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Le scienze non tentano di spiegare e difficilmente 
anche tentano di interpretare, ma si occupano 
principalmente di costruire modelli. Per modello si 
intende un costrutto matematico che, con l’aggiunta di 
certe interpretazioni verbali, descrive fenomeni 
osservati. Quel che ci si attende che funzioni è 
esclusivamente e precisamente la giustificazione di un 
tale costrutto matematico. 
 

John von Neumann 
 
 
 
 

I fiumi sono strade che camminano e che portano dove 
si vuol andare. 
 

Blaise Pascal 
 
 
 
 

Non c’è un solo uomo che non sia uno scopritore. 
Inizia scoprendo l’amaro, il salato, il concavo, il liscio 
[…]; conclude col dubbio o con la fede e con la 
certezza quasi totale della propria ignoranza. 
 

Jorge Luis Borges 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 



 

 
 
 

Scopo del presente lavoro 
e breve guida per il lettore 

 
 
 
 
 
 
Lo studio morfodinamico dei sistemi sedimentari è al giorno d’oggi una parte fondamentale 

della scienza dell’ingegneria civile ed ambientale, in particolar modo nelle applicazioni 

fluviali e lagunari. 

Se da un lato la morfodinamica è in principio una disciplina estremamente complessa, alcuni 

fondamentali risultati possono essere ottenuti con modelli matematici e numerici 

relativamente semplici. 

Scopo del seguente lavoro è l’analisi di alcuni di questi modelli semplificati, che ci consenta 

di investigare la validità e i limiti del loro impiego. 

L’intero studio è in particolar modo rivolto all’analisi analitica e numerica dei modelli di 

formulazione unidimensionale per le applicazioni alla morfodinamica fluviale e di 

formulazione bidimensionale per le applicazioni alla morfodinamica lagunare. 

 

 

Capitolo 1 In questo primo capitolo introduttivo viene presentata una descrizione ed una 

revisione generale della letteratura recente in merito ai processi sedimentari e 

ai modelli morfologici che li riproducono. 

 

Capitolo 2 Sono introdotte alcune procedure numeriche per la risoluzione di modelli 

matematici semplificati che descrivono l’idraulica e la morfologia dei sistemi 

fluviali (Peviani, 2002, Fasolato et al., 2006a). 

 

Capitolo 3 Scopo dell’ analisi analitica dei modelli fluviali è lo studio degli effetti della 

variabilità delle condizioni al contorno (idrologiche e di apporto di sedimenti) 

ed allo stesso tempo della non-uniformità geometriche e spaziali. Vengono 

individuati, in particolare, alcuni parametri caratteristici che controllano la 
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propagazione e l’attenuazione lungo il fiume di questi disturbi (Fasolato et al., 

2008a). 

 

Capitolo 4 La validità e le limitazioni dell’ipotesi di “local uniform water flow” cioè di 

moto localmente quasi-uniforme (Fasolato et al., 2008b) sono qui analizzate. 

Questa ipotesi semplificata risulta particolarmente utile nelle applicazioni a 

scale temporali a lungo termine e grandi scale spaziali, come ad esempio nei 

“large unsurveyed rivers” e cioè in quei fiumi di grandi dimensioni per cui non 

sono disponibili sufficienti dati morfologici e granulometrici (Ronco et al., 

2008a). 

 

Capitolo 5 Nel presente studio morfodinamico viene simulata la generazione di canali a 

marea in a bacino lagunare con un modello morfologico a lungo termine. Sono 

riprodotte, in una laguna schematica, l’iniziale rapida ontogenesi della rete di 

canali e la conseguente graduale evoluzione morfologica del fondo. Sono 

quindi analizzate le caratteristiche planimetriche e altimetriche del nuovo assetto 

morfologico e confrontate con lo stato energetico del sistema (Fasolato et al., 

2008c). 

 

Discussione e futuri sviluppi  Infine, vengono discussi i risultati generali ed introdotti i 

possibili sviluppi futuri, sottolineando come comunque tutti i modelli 

semplificati analizzati in questo lavoro necessitino di ulteriori verifiche e 

validazioni attraverso dati sperimentali e misure di campo. 

 



 

 
 
 

Purpose of the present study 
and a guide for the reader 

 
 
 
 
 
 
Morphodynamics of sedimentary systems is nowadays a fundamental piece of knowledge for 

civil and environmental engineers involved in fluvial and lagoonal interventions. 

While morphodynamics is in principle an extremely complex discipline, some fundamental 

results may be achieved with relatively simple models. 

Purpose of the present dissertation is providing an analysis of a number of simplified models, 

discussing the usefulness of their approach and the limits of their applications. 

The entire study is especially on the analytical and numerical analysis of simplified one-

dimensional formulations of fluvial morphodynamics and two-dimensional formulations of 

lagoon morphodynamics. 

 

 

Chapter 1 A general description and literature review of the sedimentation processes and 

morphological models are introduced. 

 

Chapter 2 Numerical procedures are applied to solve mathematical models that 

represents hydraulic and morphological aspects of simplified river (Peviani, 

2002, Fasolato et al., 2006a). 

 

Chapter 3 The objective of the river model analytical analysis is to study the effects of 

geometry, hydrology and sediment input unsteadiness and non-uniformities, by 

explicitly indicating the most important parameters that control their 

propagation and attenuation along the river (Fasolato et al., 2008a). 

 

Chapter 4 Are analyzed here the validity and limitations of the local uniform water flow 

hypothesis (Chapter 4; Fasolato et al., 2008b), an extremely useful 
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simplification for large time- and space-scale computations and the only one 

which permits to cope with large unsurveyed watersheds (Ronco et al., 2008a). 

 

Chapter 5 Scope of the study, for the lagoon morphodynamics, is to reproduce and 

valuate the branching channel generation in a short tidal basin with a long 

term morphological model. In a schematic lagoon, the network ontogeny and 

the subsequent morphological bottom evolution are reproduced; consequently 

the planimetric and altimetrical features are analyzed and compared to the state 

of the system energy (Fasolato et al., 2008c). 

 

Discussion and further developments  Finally, general results and further developments 

are discussed, underlining, however, that all simplified the models analyzed in 

this dissertation require further verifications against experimental or field 

measurements. 
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Chapter 1 
 
 
 
 
 
 

INTRODUCTION AND 
LITERATURE REVIEW 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUMMARY 
The basic forms of sediment motion and the time- and space-scales of sedimentary systems 

are considered, pointing out the ample variety of features encountered moving along the river 

from the divide to coastal areas. Under the action of water, sediments are removed from the 

farthest and highest areas of the watershed and conveyed downstream. Depending on the 

water action, sediment motion assumes three basic forms: linear, surface and mass 

movement; moreover a particular attention is dedicated to the linear transport, mainly 

responsible for  river processes. 

A large number of morphological models (one-, two- and three-dimensional) developed at 

different time- and space scales and with various degrees of detail and approximation consent 

to describes these processes. However a detail and careful analysis is necessary to 

understand the validity and limitations of models hypothesis, the behavior of solutions with 

different formulations, type of boundary conditions, possibilities for simple and numerical 

solutions procedures. 
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1. SEDIMENTATION PROCESSES 
Civilization and economic development of a society are closely related to the ability to 

maximize the benefits and minimize the damage caused by rivers. A river frequently adjusts 

its cross-section, longitudinal profile, course of flow and pattern through the processes of 

sediment transport, scour and deposition. These principles and generally sediment transport, 

has been studied for centuries by engineers and river morphologists. Different approaches 

have been used to solve engineering problems and results obtained often differ drastically 

from each other and from observations in field. Some of the basic concepts, their limits and 

applications, and the interrelationships among them have become clear to us only in recent 

years. Many of the complex aspects of sediment transport are yet to be understood, and 

remain among the challenging subjects for future studies. 

In order to provide a picture of these processes, in Fig. 1.1 (Di Silvio, 2006) a middle size 

watershed of temperate zones (but in fact extendible to other climates) is schematically 

depicted with total disregard to perspective rules and proportions, as in primitive painting. 

However, to give an idea of what usually takes place at different elevations and distances 

along the water course, these quantities are respectively indicated by a linear and logarithmic 

scale in the foreground cross section. 

 

 
Fig. 1.1 Sketch of a watershed in temperate zones: Basic forms of sediment motion (Di Silvio, 

2006) 
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Under the action of water (rainfall, overland flow, channeled flow, freezing and melting, 

infiltration, etc.), sediments are removed from the farthest and highest areas of the watershed 

and conveyed downstream. Depending on the water action, sediment motion assumes three 

basic forms (linear, surface and mass movement), more or less corresponding, respectively, to 

(i) bedload and suspended transport in the stream network; (ii) distributed soil erosion mainly 

occurring in undulated, scarcely vegetated surfaces; and (iii) landslides, occasionally 

produced in the steepest slopes of the watershed even if nicely protected by vegetation; but 

also to a number of (iv) intermediate forms as, for example, debris flow, rills erosion, gully 

development, etc. Where rainfall is scarce, as in the desert or in a arid zone, wind is often the 

most effective cause of surface erosion. 

Physical mechanisms driving sediment motion and relevant problems connected with solid 

transport (but mostly arising, in fact, during the erosion or deposition phases) are therefore 

extremely numerous and present peculiarities connected with the morphoclimatic conditions 

of the ones under consideration.  

 

Mass movement phenomena, characterized by quick and short displacements of large portions 

of soil, represent sometimes a risk for human settlement and infrastructures, but also a 

physiological source of sediments to the rivers in several natural watershed (e.g. in alpine and 

humid tropical regions). Investigation on mass movement is generally carried on by applied 

geologists and, for the structural aspects, by soil mechanics engineers.  

 

Surface erosion, as well as intermediate forms like rill and gully erosion, for its strict 

implications with land use and agricultural practices, usually belongs to the province of 

agronomists and agricultural engineers. It is also investigated however by various scholars of 

earth science. These forms of erosion constitute a natural source of sediments in arid tropical 

and temperate regions where rainfall is generally the dominant mechanism of soil production. 

 

Finally, linear transport is traditionally in the competences of hydrologists and rivers 

engineers. Bedload and suspended sediment transport convey coarse and fine particles over 

extremely long distances along the river, down to the estuary, the sea and the adjacent 

beaches, where they usually pass under the jurisdiction of maritime engineers and 

oceanographs. 
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1.1 MASS MOVEMENT 

Mass movement is an important source of material for many rivers and in same cases the most 

important one. In humid tropical forests as well as in alpine climates, for example, the natural 

thick vegetation cover is such that the direct effect of rainfalls (kinetic energy) on the soil is 

negligible and the sediment production by surface erosion is practically zero. Yet the 

sediment transport by mountain rivers may be substantial and even extremely large (up to 104 

t/km2/year), due to the contribution of repeated bank collapses and occasional big landslides. 

Small and large mass movements from the watershed slopes typically occur during large 

floods and intense storms and are often associated with mud- and debris flows in the upper 

branches of the hydrographic network.  

Mud- and debris flows (including ash flow or “lahars”, taking place along the steepest 

channels of volcanoes) are intermediate forms of sediment motion, between mass movement 

and linear transport, which require a minimum slope to be initiated. While their motion 

depends on particle- and fluid-dynamics (similarly to linear transport), their triggering is 

controlled by static forces, basically depending on friction, cohesion, slope and the degree of 

saturation of permeable material (as for mass movement). For this reason attempts have been 

made to model the triggering of both shallow landslides and debris flows by simulating the 

saturation process of the surface layers of watershed slopes and steep channels (Seminara and 

Tubino, 1993; Tubino and Lanzoni, 1994; Di Silvio and Gregoretti, 1997; Dietrich and 

Montgomery, 1998; Armanini et al., 2000; Dietrich et al., 2001; Rosso, 2002). 

 

1.2 SURFACE EROSION 

Surface erosion is definitely the most important source of sediment production wherever 

vegetation does not provide a sufficient protection of soil from the rainfall impact, and 

morphological conditions are such as to foster the removal of particle by overland flow. This 

means that surface erosion is particularly active in cropland areas, especially where the soil is 

vulnerable and erosion-control measures and correct cultivation practices are not applied, as 

in many dry tropical countries. 

Also in temperate countries, however, extremely high rate of surface erosion took place in 

historical times, following the rapid expansion of cultivated areas and before sustainable land 

management was adopted. 

The most active institution in this field was certainly the U.S. Department of Agriculture, 

where the renowned U.S.L.E. model has been proposed. The U.S.L.E. (Universal Soil Loss 
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Equation) was developed since several decades (Wishmeyer and Smith, 1978) by using the 

U.S.D.A. data base containing a very large number of (plot by experiments) results.  

Besides the U.S.L.E. equation, more sophisticated models as ASWER, WEPP, SHE-SED, 

EUROSEM etc. have been recently developed for simulating, at catchment level, the 

detachment of soil particles by rainfall and their subsequent transport by overland flow and by 

river flow over the entire catchment (Beasley et al., 1980; Morgan, 1995, Nearing et al., 

1999). In contrast with the so-called “empirical” models (like USLE), the last models are 

usually called “physically based”, since they are constituted by theoretical differential 

equations (expressing the mass balance of water and sediments) and by appropriate algebraic 

equations (describing each of the physical processes involved). 

 

1.3 LINEAR TRANSPORT 

Linear transport is the motion of sediments produced by persistent, canalized water flow. It is 

mainly responsible for river processes, but also for morphological processes in other 

permanent water bodies like lakes and estuaries. 

 

1.3.1 Transport’s modes 

Linear transport assumes various modes (bedload, suspension and intermediate forms), but 

attempts have been made towards a conceptual unification of these forms, through the notion 

of adaptation length. The adaptation length is proportional to the average distance covered by 

a sediment particle entrained from the bottom before being deposed on the bottom again. The 

adaptation length depends on the particle grain size and on the characteristics of the water 

flow, i.e. more precisely on the ratio between friction velocity u* and particle settling velocity 

ws. When the ratio (u*/ws) is very small, the adaptation length has the order of magnitude of 

102 (grain diameters) and the particles move by sliding and rolling as bedload. When this 

ratio increases, also the adaptation length correspondingly increases passing from saltation to 

suspension. Adaptation length is practically zero for bedload, while for suspended transport 

may reach the value of tens of kilometers when very fine material is conveyed by fast flow. 

When the adaptation length is much larger than the significant length of the river reach, the 

sediment transport rate does not depend solely on the hydrodynamic and sedimentological 

characteristics of the reach itself, but also on the condition upstream. This circumstance 

explains in part why the suspended transport in a given section is often scarcely correlated 

with the water flow .The adaptation length can be evaluated by different methods (Gallappatti 
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and Vreugdenhil, 1985; Armanini and Di Silvio, 1988; Seminara, 1998), and its effect  should 

be taken into account, when necessary, in sediment transport computations (see par. 3.1).  

 

1.3.2 Sorted and cohesive material 

Experimental formulae providing sediment transport rate have been usually obtained in 

laboratory with almost uniform material. In most real rivers, however, particle grain sizes are 

more or less non-uniformly distributed, with markedly different statistical distributions for 

bed material and transported material. In general, bed material appears to be coarser than 

transported material, and the two distributions can be mutually related by considering the 

transport of each grain size class (see Sect. 3). 

When treating different grain size classes, due attention should be paid to the interference of 

particles of different diameter. In sediment mixtures, in fact, the intrinsic larger mobility of 

finer particles is somewhat diminished by the presence of the coarser ones (hiding effect) 

while the intrinsic smaller mobility of coarser particles is augmented by their protrusion 

(exposure effect) (Egiazaroff, 1968, Parker and Klingeman, 1982; Wu et al., 2000a). With 

very strong water flow in flood periods, the hiding-and-exposure effect may even lead to an 

“almost equal mobility” (Parker et al., 1982). In dry periods, by contrast, the different intrinsic 

mobility of various diameters strongly prevails on hiding-and-exposure effect (indeed, the 

coarser particles may even not move at all). In any case, over a long period of time, the 

transported material (e.g. the material intercepted by a reservoir) appears to be definitely finer 

than average composition of the river bed. The “hiding-and-exposure” effect may be taken 

into account by various empirical coefficients to be introduced in the formulae developed for 

uniform material.  

The time evolution of bed and transport composition is usually modelled by resorting to the 

active layer concept, first proposed by Hirano (1971) and subsequently incorporated in many 

morphodynamic models. More sophisticated approaches have been developed more recently, 

either by disaggregating the bottom active layer into a mixing-and an intrusion layer (Di 

Silvio 1991a), or by considering the bottom a continuous, indefinitely deep layer, statistically 

described in terms of entrainment capacity (Armanini and Di Silvio, 1988; Parker et al., 

2000). 

 

In some circumstances (e.g. estuaries, flood plains, deep reservoirs) sediments can hardly be 

considered as non cohesive. The role of cohesion is quite important both in the deposition 

phase (flocculation) and in the re-entrainment process (compaction). The pioneering work of 
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Partheniades (1962), Krone (1962) and subsequently of Metha and Partheniades (1975) and 

Metha (1986) is still the foundation of may models for cohesive materials. Some of the 

models developed from their basic concepts, however, do not appear completely satisfactory 

and are unable to explain a number of phenomena observed in nature. It is therefore very 

much interesting the attempt by Winterverp (2002) to bring together the behaviour of 

cohesive and non-cohesive material within a unified physical framework with specific 

definitions of vertical fluxes for each type of sediment. 

 

1.4 SEDIMENTARY SYSTEMS SCALES 

When considering morphological processes, however, it is important to have in mind the time 

and space scales of the sedimentary system under consideration. The repeated succession of 

erosion, transport and deposition, may concern for example: (i) the sliding, rolling and 

saltation of sediment particles over bed ripples (space scale: boundary layer); (ii) the 

propagation of dunes (space scale: river depth); (iii) the formation of bars and meanders 

(space scale: river width); (iv) the general aggradation or degradation of a river (space scale: 

watershed). The time scale of each system may be associated to the corresponding space-

scale, via a typical process velocity. 

It is important to note, in any case, that each system at a given scale may be considered a 

component (or sub-system) of the system at the larger scale, needing to be somehow 

incorporated in the last one. Incorporation is usually made by assuming that any subsystem at 

a smaller scale (e.g. dunes) is invariably in equilibrium conditions with the “instantaneous” 

configuration of the system at a larger scale (e.g. bars and meanders). Conversely any system 

at a larger scale (e.g. river watershed) is supposed to remain stationary at the time scale of 

interest (e.g. development of bars and meanders). This assumption is only valid, in principle, 

when the relevant systems and sub-systems have markedly different scales, but it is implicitly 

assumed in most morphological models (see par. 2). 

The scales of morphological processes extend over several orders of magnitudes ranging from 

microns to continental sizes (in space) and from seconds to millions of years (in time).  

 

2. MORPHOLOGICAL MODELS 
A large number of morphological models developed at different time and space scales and 

with various degrees of detail and approximation are available in literature. In this section 

attention will be especially concentrated on linear transport. Models of mass movement and 

surface erosion are briefly mentioned in par. 1.1 and 1.2 respectively. 
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2.1 SMALL SCALE MODELS 

Detailed small-scale models have especially been developed for research purpose. Many of 

these models (still in their infancy and needing improvements) have the scope to reproduce 

the movement of individual particles under the action of other particles and water flow and 

are usually based on a lagrangian approach. They should be able, in principle, to reproduce 

the behaviour of small scale systems (from microforms up to the depth-scale) (Strom, 2004 

and 2007) and may be extremely useful to explain the hydraulic resistance mechanisms (grain 

and form roughness), to show the validity and limitations of transport formulae, to investigate 

the dynamics of movable bottom and to describe the motion of hyper-concentrated liquid-

solid mixtures. 

 

2.2 INTERMEDIATE  SCALE MODELS  

These models are the most commonly used for practical applications. They are typically 

extended to the size of a river reach and applied for relatively short time duration (from one 

single flood event to a few years). All the subsystem processes (microforms, hydraulic 

resistance, sediment transport rates etc.) are incorporated via simple predictors, usually 

“equilibrium” algebraic equations. 

Intermediate scale models are obtained by averaging the Reynolds equations (in their turn 

obtained by averaging the Navier-Stokes equations over turbulence) over appropriate space 

dimensions. The most common commercial models are 1-D (one-dimensional), i.e. averaged 

over the river cross-section (but possibly disaggregated in a number of sub-sections). One-

dimensional models can simulate bottom erosion and deposition along the river (generally the 

most relevant requested information), somehow “re-distributed” over the cross-section (Cui et 

al., 1996; Cao et al., 2002; Papanicolaou, 2004; Wu et al., 2004; Cui and Parker, 2005; Curran 

et al., 2005; Wright and Parker, 2005a and 2005b). 1-D models can easily be applied to 

relatively large portions of the hydrographic network. 

Rather common, however, are nowadays becoming 2-D (two-dimensional) models, i.e. 

averaged over the river depth (Jia and Wang, 1997 and 1999; Ye and McCorquodate, 1997; 

Stockstill et al., 1997; Nicholas and Walling, 1998; Kassem and Chaudhry, 2002; Defina, 

2003; Cea et al., 2007; Abad et al., 2007). Two dimensional models can in principle simulate 

all the process at the width-scale (migrating and stationary bars, braiding and bifurcations, 

sediment exchange with flood plains etc.). Bank collapse and reconstruction can also be 

incorporated in a 2-D model, which therefore will be able to reproduce meander formation  

and propagation. 
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Secondary currents over the cross section are important in meander morphodynamics. Their 

reproduction require in principle a 3-D (three-dimensional) model (Jia and Wang, 1996; 

Ouillon and Dartus 1997; Duo et al. 1998, Wu et al., 2000b; Wilson et al., 2003; Olsen, 2003; 

Jia et al., 2005; Nagata et al., 2005; Zedler and Street, 2006), but their local effect can be 

approximately accounted for by a 2-D model. Reproduction of density currents, often 

important in certain reservoirs, also requires a 3-D model (Kassem et al., 2003). In some 

cases, however, a vertical 2-D model (i.e. averaged over the reservoir width) can also be 

considered (Karpik and Raithby, 1990). 

Intermediate scale models, either 1-D, 2D or 3-D, are extremely sensitive to the boundary 

conditions to be prescribed at the upstream and downstream ends of the river reach under 

investigation. Correct boundary conditions for morphological models (Sieben, 1997) should 

be given in terms of sediment input of each grainsize fraction (at the upstream end) and in 

terms of either water-level or bottom-elevation, respectively for sub-critical and super-critical 

water flows (at the downstream end). Note that boundary conditions depend in principle on 

what is going on respectively upstream and downstream the reach under consideration. For 

short-term simulations, sediment input upstream can be evaluated by reasonable hypothesis 

based on “local” quasi-equilibrium conditions (see par. 3); the same can be made for water 

level or bottom elevation downstream. For long-term simulations, however, the behaviour of 

the entire river system should be explicitly accounted for.  

 

2.3 LARGE SCALE MODELS 

Although 1-D models have been sometimes applied to relatively large real watersheds for 

specific flood events, no many examples are available in the literature of morphodynamic 

modelling at very long (historical or geological) time-scale, except in a few very schematized 

situations (simple geometry, constant waterflow, uniform grainsize) (Coulthard et al., 2007). 

The effects of geometrical, hydrological and sedimentological non-uniformities, invariably 

present in real systems, have not been thoroughly investigated for long-term, large-scale 

simulations of actual river and relevant watersheds. In fact, averaging “non-uniformities” of 

any type in non-linear equations produces “residual terms” which should be properly assessed 

and eventually modelled with appropriate sub-models.  

It may be interesting, in this respect, exploring the possibilities offered by long-term 

morphological models where averaging is performed only on time (year or number of years). 

In practice, long-term models filter the morphological fluctuations due to short term 

components and compute only the long-term evolution (time-averaged values over a year or a 
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number of years). Long-term models have been especially developed for estuaries (de Vriend 

et al., 1993; de Vriend, 1996; Dal Monte and Di Silvio, 2004) but can in principle be applied 

also to river systems. 

 

3. SEDIMENT TRANSPORT IN A RIVER 
A fundamental component of any morphological model is the predictor of the sediment 

transport rate as a function of sediment grainsize and flow characteristics. In principle 

sediment transport may be modelled in detail, considering all the relevant phenomena, from 

the particle scale up to the depth scale (ripples, dunes, hiding-and-exposure etc.) In practice, 

what can be utilized for larger scale modelling (par. 2.2 and 2.3) is a series of formulae (the 

so-called “transport formulae”), sometimes associated to other formulae providing the size of 

mesoforms and the relevant hydraulic resistance. 

Very often, however, sediment transport is disaggregated in two parts: the so-called “bed-

material transport” (typically coarser than than a conventional grain-size limit, say between 20 

and 80 microns) and the so-called “washload” (below that limit). While the transport of bed-

material is supposed to be a function of riverbed composition and flow characteristics, 

washload is assumed to be fed to the river from the watershed slopes and conveyed 

downstream by the river flow, without any interaction with the bottom. The distinction 

between bedload material and washload is obviously made for sake of simplification, but it 

does not have a solid physical foundation. 

 

3.1 TRANSPORT FORMULAE 

Available transport formulae have been obtained from simple small-scale modelling and, 

above all, from laboratory flume experiments carried out in uniform conditions (uniform flow 

and uniform grainsize). Since the early work of Du Boys (1879), tens and tens of transport 

formulae have been proposed by different authors. As all these formulae have been obtained 

in quite different experimental ranges of flow and sediment characteristics, there is no wonder 

that they appear inaccurate when applied to other situations. For example, some experiments 

have been performed in bedload transport conditions, while in other experiments suspended 

transport was substantial and even dominant. In any case, as flume experiments were carried 

out in equilibrium conditions (uniform flow), the measured sediment transport rate simply 

represents the “total transport”. 
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Assessing the prediction capability of different formulae, or even recognizing the validity 

limits of each one, is not an easy task. At first glance all the formulae seem to be hardly 

comparable. Yet it may be interesting a dimensional analysis of their structure. 

Let us define (see for example Yalin, 1963) the non-dimensional sediment transport rate: 

dgd
qT s

∆
=∗          (1.1) 

where qs is the solid discharge in volume per unit width; 
ρ
ρρ )( −

=∆ s  is the relative density 

of sediments; g the gravity and d the (uniform) sediment grainsize. It follows that ∗T  should 

be a function of 3 independent non-dimensional morphological parameters; for example : 

- the particle Froude number (or mobility index, or Shields parameter): 

dg
uF
∆

=
2
*

*          (1.2) 

- the particle Reynolds number : 

υ
du*

*Re =          (1.3) 

- the relative depth : 

⎟
⎠
⎞

⎜
⎝
⎛

d
h           (1.4) 

The particle’s Reynolds number plays an important role for fine particles transported in 

suspension, as it controls the falling velocity. The relative depth, by contrast, is important for 

very coarse particles moving as bed load, as they can affect the free surface of shallow flows. 

Conversely, as for several hydraulic phenomena, the influence of both the Reynolds number 

and the relative depth tends to disappear when these quantities become very large. This occurs 

respectively for mountain rivers (high flow velocity and coarse material) and for large plain 

rivers (high depth and fine material). 

In any case, the parameter ∗F  is invariably the most important one as it represents the ratio 

between the mobilizing effect of the water drag on the particle and the stabilizing effect of the 

particle’s immersed weight. Most of the available transport formulae, in fact, can be 

approximately plotted on a graph ∗T  vs. ∗F  , either in the form 
β

** aFT =          (1.5) 

or in the form : 

( )γcrFFbT *** −=         (1.6) 
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assuming that the coefficients a and b and the exponents β  and γ  are not constant, but 

functions of other quantities besides ∗F . 

 

The monomial structure of eq. (1.5) is typical of many formulae like Brown (1950), Engelund 

and Hansen (1967) etc. The binomial structure of eq. 6 implies that no movement occurs if 

the mobility (or Shield’s) parameter ∗F  is smaller than a critical value crF∗  (usually function 

of *Re ). The binomial structure is typical of several popular formulae like Meyer-Peter and 

Müller (1948), Ackers and White (1973), van Rijn (1984) etc. Note that also other formulae in 

literature, having an apparently different theoretical background (like the ones based on 

minimal stream power), can approximately be written as eqs. 1.5 and 1.6. 

It is matter of philosophical discussion whether in principle a critical value crF∗  for incipient 

sediment transport should exist. Indeed, due to the stochastic character of turbulence, one may 

even think that an (occasional) transport would take place even with extremely small 

(average) values of ∗F . In any case, since the transport rate should rapidly decrease for very 

low values of *F , the exponent β  in monomial formulae needs to be rather large (and in fact 

it ranges between values 2.5-3), while the exponent γ  in binomial formulae is much smaller 

(it ranges between values 1.2-1.5). 

For both types of formulae, however, the numerical value of the exponents (β  and γ ) and of 

the coefficients (a and b) should depend, explicitly or implicitly, on the other non-

dimensional parameters mentioned before, that is *Re  and ( )dh . In fact, many of the 

experimental formulae contain other quantities besides *F  that affect the non dimensional 

sediment transport. Although these quantities are not explicit functions of *Re  and ( )dh , 

they are very likely somehow related, depending upon the range of flow and sediment 

characteristics in which the experiments have been carried out. 

At this point, for practical applications, instead of selecting a certain available formula, it is 

perhaps better resorting to an expression like (1.5) or (1.6). In this case, of course, the values 

of exponents and coefficients should be properly chosen for the river configuration one is 

interested in (ranging from steep alpine torrents conveying gravel and boulders, to slow 

lowland rivers conveying silt and sand). This choice corresponds to the transport formula 

calibration. 

For calibrating the transport formula for a given river configuration, the simpler monomial 

equation (1.5) is preferable to the binomial equation (1.6), even if one has to expect for the 
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values of a and β  a larger variability than for the values of b and γ . The calibration 

procedure of the transport formula (Di Silvio, 2006) consists in associating to eq. (1.5) a 

uniform flow formula, either Chézy or Manning-Gauckler-Strickler, and in introducing the 

grainsize distribution of the bed material together with an appropriate “hiding-and-exposure” 

coefficient (par. 1.3.2). The final expression for the total sediment discharge (sums of all 

grainsize classes, i=1,2,…N ) is: 

( )

s q m n
k k

k s p
k k

d Q IP P
d B

βα
β

− ⎛ ⎞∑
= ∑ = ⋅⎜ ⎟∑ ⎝ ⎠

       (1.7) 

where Q, I and B are respectively the waterflow discharge, the river slope and the river width, 

dk is the diameter of the k-th grainsze class and kβ  is the percentage of the k-th grainsize class 

present in the bottom. The value of the exponents m, n, p and q depend on the exponent β  in 

eq. (1.5) and on the selected uniform flow formula, according to the following expressions : 
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In general, assuming a constant Chézy coefficient (i.e. a constant relative roughness) is more 

appropriate for lowland rivers (dominant bedform resistance); while a constant Manning 

coefficient (i.e. a constant absolute roughness) is more appropriate for mountain rivers (flat 

bed and dominant grain resistance). The exponent of the hiding-and-exposure coefficients 

tends to be equal to q for extremely high values of Q (equal mobility). On the averages may 

be taken equal to 0.8. 

Note that eq. (1.7) is just another form of eq. (1.5), in which the transport of each grainsize 

class present in the bottom has been considered. Equation (1.7) indicates that, being the other 

quantities constant, a biunivocal relation should exist between P and Q. This is true, however, 

only for an experimental flume in equilibrium conditions (uniform flow for water and 

sediments): indeed, for a re-circulating flume with prescribed values of I, B and bottom 

composition, the transport rate P is a unique function of the water flow Q. For a real river, by 

contrast, even if waterflow in the relevant river reach is reasonably uniform, different values 

of P may be measured for the same value of Q. This is basically due to the fact that the local 

energy slope I and the local bottom composition kβ  may vary during the hydrological cycle, 
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as fluctuating erosions and depositions invariably occur. As seen before, moreover, also the 

exponent s may not be constant. 

Finally, if the material is very fine, the material transported in suspension may be not solely 

controlled by the local conditions, but also by the conditions quite upstream. The last 

circumstance, however, is not so dramatic if the adaptation length is shorter than the river 

reach under investigation. It should be noted, in this regard, that the transport of fine particles 

depends on the local bottom composition, even if their presence in the bottom is extremely 

scarce. As it appears from eq. (1.7), in fact, due to their much larger mobility, the particles 

belonging to a very fine faction (say dk = 50 microns) may have a very small value of kβ , but 

a very large value of ( )k kP P∑ . In other words, the notion that only the transport of the 

material abundantly represented in the river bed (the relatively coarse, so-called “bed 

material”) depends on the local conditions, while the fine material should be considered 

“wash-load”, may be misleading. 

In conclusion, for relatively large watersheds, the scattering of short-term measurement P vs. 

Q is generally due to short-term fluctuation of I, β and (probably) exponent s, rather than to 

the time-dependent input of fine sediments from the watershed slopes.  

Indeed if one supposes that fluctuations of the above mentioned quantities are mutually 

independent and assumes an exponential duration curve for Q(t), the integration of (1.7) over 

one year provides: 

1

( )
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       (1.10) 

where Vs is the total annual transport of sediments (all classes), Vo is the annual runoff volume 

and Qo the annual flood peak. 

Although the hypothesis on the statistical independence of I and β  may be questionable, eq. 

(1.10) shows a very good correlation between hydrological parameters Qo and Vo and the 

annual sediment yield Vs. 

 

3.2 SOIL PRODUCTION 

One of the most difficult problems in establishing a sediment balance at watershed scale is the 

relation between the sediment removed from the watershed slopes (soil production) and the 

soil transported by the river (sediment yield). The very same definition of those quantities in 

fact may present some ambiguities.  

Sediment yield is defined as the amount of sediment transported during a prescribed period of 

time trough a given cross-section of the river. The ratio between the sediment yield though the 
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closure section of a watershed and the amount of sediment removed from the entire watershed 

surface during the same period of time is called delivery ratio. This quantity incorporates all 

the complexity of the sediment motion down to the closure cross-section of the watershed and 

strongly depends, again, upon the space- and the time-scale selected for the computation. 

While for an experimental plot or even for a regular cropland field, ditches clearly show 

where they initiate and terminate, for a natural slope the only apparent boundary is 

represented by the channels and the divides of the hydrographic network. It seems therefore 

more reasonable computing the length and steepness of natural slopes from the basin's 

drainage density and relief. 

A definition of soil production is the portion of sediments which reaches the closure of the 

watershed. In this case, the computation at river scale should be affected by an even smaller 

reduction coefficient (overall delivery ratio), which should take into account also the river 

processes along the entire hydrographic network. 

The concept of overall “delivery ratio” for sediments is somehow analogous to the concept of 

“runoff coefficient” for water. Yet it is much more elusive to be defined and difficult to be 

predicted, due to its variability in space and time along the sediment route. From the early 

data in the literature (Maner, 1958; Roehl, 1962; Williams and Berndt, 1972) it appears that 

delivery ratio decreases from 1 to a few percents, more or less proportionally to the inverse of 

the stream length (or square root of the watershed area) but scattering of data appears to be 

extremely high. Several attempts to have a more accurate prediction of delivery ratio as a 

function of the watershed and river morphology (see for instance Walling and Webb, 1996) 

did not provide generally valid results. 

Similarly to the “runoff coefficient”, the concept of  “delivery ratio” is hardly useful when it 

becomes much smaller than 1 (namely for watersheds larger than 50-100 Km2). The notion of 

delivery ratio is in fact probably acceptable exclusively at intermediate scale, namely for an 

overall description of the “monotone” trapping effect the watershed slopes, where few 

localized permanent sinks may give rise to (averaged) value of the delivery ratio close to 1. 

When river processes become dominant it would probably be better substituting the static 

concept of "delivery ratio" with a dynamic concept of "response delay", in which the time 

scale also plays a role. Indeed, if the watershed is large, it is not correct assuming that the very 

same particles detached from the watershed slopes during a certain storm can reach the 

closure section of the basin during the corresponding flood. The sediments moving as bedload 

or as suspended transport along the river (including the very fine ones, usually called 

“washload”), have continuously phases or deposition and re-entrainment with the river bed, 
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banks and floodplains. Repeated deposition and re-entrainment may produce relevant 

altimetric and planimetric changes at different time scale and, in any case, will delay the 

response of river morphology (and river transport) with respect to the sediment input from the 

watershed slopes. 

A direct evaluation of sediment yield is possible by utilizing regular (daily) measurements of 

turbidity and water dischange carried on at some stations along the river. This procedure 

assumes that there is a direct relationship between measured "turbidity" and "transport 

concentrations" (ratio between total sediment transport and water discharge).  

The most precious and reliable information about sediment yield in terms of both quantity and 

grainsize composition, however, is given by the progressive sedimentation of existing 

reservoirs. The surveying technology based on the joint use of remote sensing and Global 

Positioning System (GPS) (e.g. Lee et al., 1999; Agarwal and Idiculla, 2002) has already been 

applied in similar circumstances. In assessing the sediment volume trapped in a reservoir, the 

time-depending compaction of the deposited material should be taken into consideration (see 

for instance Morris and Fan, 1998). The data collected in existing reservoirs, as well as at 

measuring stations, may be used for calibrating reliable semi-empirical relationships (even if 

limited to a specific river configuration) which provide long-term sediment transport as a 

function of hydrological, geometrical and sedimentological characteristics of the river reach 

(see par. 3.1). 

 

4. SEDIMENT TRANSPORT IN A TIDAL LAGOON 
Morphological processes in tidal lagoons are controlled by tides, waves and fluvial currents, 

and develop at different space- and time-scales. At the tidal scale (hours), sediments in 

suspension move from the sea into the lagoon during the flood phase and from the lagoon 

towards the sea during the ebb phase. At a seasonal scale (months), net sediment fluxes are 

mainly controlled by the wave climate inside and outside the lagoon. When waves produced 

by local winds inside the lagoon are persistent, stirred sediments leave the lagoon in larger 

quantity during the ebb phase; contrastingly, if there is a long period of rough sea, the 

quantity of sediments entering the lagoon is larger during the flood. At historical scale 

(decades or centuries), however, the fluxes of sediments leaving and entering the lagoon, 

including the positive sediment input by the river, tend to compensate each other. If the 

combined effect of eustatism (rising of the mean sea level) and subsidence (lowering of the 

basin bottom) is also taken into account and if the balance is perfectly closed, the lagoon 
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maintains a steady-state configuration; otherwise, it keeps evolving at geological or even at 

historical scale. 

A very useful tool that has been applied since many years to the Venice Lagoon (Di Silvio, 

1989) and then extended to a number of semi-empirical models (De Vriend, 1996) is the 

concept of transport concentration. Morphological models based on this concept are very 

flexible and can be applied with different degrees of spatial resolution (two-dimensional, one-

dimensional and zero-dimensional approach). Moreover, they can incorporate a variety of 

complex processes, as grain size sorting, effects of vegetation, collapse of steep banks, 

compaction of sediment deposits, etc. (Di Silvio, 1999; Di Silvio and Teatini, 1992a,b; Di 

Silvio and Padovan, 1998; Di Silvio et al., 2001).  

 

4.1 THE TRANSPORT CONCENTRATION 

The concept of transport concentration is particularly suitable for tidal lagoons but can be 

extended to other coastal systems, like estuaries and deltas, which can be recognized as limit-

cases of lagoons. An interesting extension of the concept incorporates in the model of an 

estuary system (ASMITA) the ebb delta at the inlet and the adjacent coast (Stive et al., 1998). 

Transport concentration is defined as the longterm concentration, prevailing in a certain 

location, which provides the long-term net sediment transport as proportional to the quantity 

itself (advection) and/or proportional to its spatial gradient (dispersion), depending upon the 

characteristics of the water flow in the same location. 

In a tidal basin, sediments are conveyed (mostly in suspension) from the shoals to the 

channels and through the channels out to the sea during the ebb phase, and are generally 

moved inward during the flood phase. At the tidal scale (hours), the sediment transport is 

predominantly advective. It is given by the product of depth-integrated velocity (discharge per 

unit width, also called water flux) and depth-averaged concentration, while the local 

longitudinal dispersion (Taylor or Elder type) is almost negligible. 

At the intertidal scale (weeks), sediment is mainly transported by the intertidal dispersion 

(several orders of magnitude larger than Taylor’s dispersion), while the advective term (i.e. 

Eulerian residual water fluxes) is generally rather small. Another long-term component of 

sediment transport is due to the asymmetry of the tidal wave, i.e. to the different duration of 

the ebb and the flood phases; this gives rise to an intertidal residual motion of particles in 

either the ebb or the flood direction and may be quite important in the channels of some 

estuaries or lagoons. At both tidal and intertidal scales, however, the averaged concentration 

is determined by the shear stress on the bottom. This shear stress is mainly due to wind waves 
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in the shallow areas and to fluvial and tidal currents in the channels. The transport 

concentration can be computed by averaging over a long period of time the instantaneous 

concentration corresponding to the duration curve of the shear stress for both stirring 

mechanisms. 

Long-term transport can then be expressed in terms of the transport concentration and its 

spatial gradients as soon as the intertidal residual velocities and the intertidal dispersion 

coefficients are known.  

 

4.2 EULERIAN WATER FLUXES AND INTERTIDAL DISPERSION 

Eulerian residual water fluxes are given by the long-term average of depth-integrated 

velocities (water fluxes) at tidal scale. When fluvial currents are strong, Eulerian water fluxes 

are basically due to the river discharges. In general, however, Eulerian residual water fluxes 

also depend on tidal currents. In many lagoons, for instance, residual water fluxes of tidal 

origin are determined by the interaction of inertial, gravity and friction forces in the tidal 

channels network. As a consequence, some branches of the interconnected channels convey a 

larger volume of water during the ebb phase and others during the flood phase. Intertidal 

dispersion is due to the alternate gradient of concentration, between shallow areas and tidal 

channels and between tidal channels and the sea, taking place respectively during the ebb and 

the flood phase. This mechanism has been called ‘‘trapping and pumping’’ (Schijf and 

Schőnfeld, 1953) and the corresponding dispersion coefficient can be evaluated in terms of 

exchanged volumes and local morphology (Okubo, 1973; Dronkers, 1978).  

While intertidal dispersion is driven by the spatial deviations of water flux and concentration 

from their respective average, the long-term sediment transport in the channels due to the 

asymmetry of tidal phase depends on the temporal deviations of those quantities. 

In fact, if the duration of one tidal phase is systematically shorter than the duration of the 

other, the corresponding tidal velocity is larger and the net intertidal sediment transport is not 

zero, even if the residual water flux is zero. An analysis of the net sediment transport driven 

by non-symmetrical tidal flow and of the consequent morphological effects has been made for 

convergent estuaries (Lanzoni and Seminara, 2002). 

In conclusion, the long-term (two-dimensional) sediment transport component along the x- 

and y-axis can be expressed as (Dal Monte and Di Silvio, 2004):  

( )x xx R A xx xy
C CT C q q h D D
x y

⎛ ⎞∂ ∂
= ⋅ + − ⋅ +⎜ ⎟∂ ∂⎝ ⎠

     (1.11) 
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where h is the local tide-averaged water depth, C is the transport concentration, Dij are the 

intertidal dispersion coefficients, 
jRq  is the x-(or y-)component of the Eulerian residual water 

flux and 
jAq  the x-(or y-)component of the “virtual” water flux along the channel (either in 

the flood or in the ebb-direction) that accounts for the asymmetry of the tidal flow. 

In the Venice Lagoon (Dal Monte, 2004), the dispersion terms at the intertidal scale eqs. (1.11 

and 1.12) turn out to be much larger than the advective ones. It is important to note that tidal 

fluxes in channels are basically controlled by the platform of the channel network (area of the 

tidal watershed and width of the channel) and hardly by the bathymetric configuration. 

Since the horizontal morphology of tidal lagoons tends to remain constant in time, the 

hydrodynamic parameters Dij, qR and qA can reasonably be considered constant for very long 

periods of time (decades or more), even if the bottom elevation is subject to evolution. 

 

4.3 THE EQUILIBRIUM CONCENTRATION 

The equilibrium concentration Ceq in a certain place is the average sediment concentration 

over the water column which would yield neither erosion or deposition (equilibrium 

condition). It depends on the grain size diameter of the particles, on the local hydrodynamics 

(waves and currents) and on the local depth (Dal Monte, 2004). 

Let us consider a monomial transport formula for the sediment transport in suspension (e.g. 

Engelund and Hansen type) produced by tidal waves and let us call qs the volumetric sediment 

discharge (eq. 1.13) per unit width produced by the water flow q=vh, where v is the water 

velocity averaged over the depth h:  

5 6n
sq v where n∝ ≅ −       (1.13) 

By assuming that the proportionality (eq. 1.13) still holds if v is the instantaneous orbital 

velocity produced by waves just outside the boundary layer, one finds for the “equilibrium 

concentration” the following expression, where atid, which depends on the grain size 

distribution, can be assumed constant: 
1 1
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This assumption implies that the alternate sediment flux qs during the passage of a wave is in 

phase, or constantly delayed, with respect to the corresponding alternate water flow q. Note 

that waves do not transport sediments but just stir them: long-term sediment transport on the 
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shoals (as well as in the channels) is produced, via the long-term averaged concentration, by 

intertidal dispersion and residual flow. 

The height of significant wave Hw in shallow water is also due to the effects of wind velocity 

uA and the length of the effective fetch Fe, as the formula of Bretschneider (1969) computed. 

In order to facilitate the long-term averaging, we want to approximate the Bretschneider’s 

formula with a monomial formula (1.15): 

2w e s AH k F h uα β γ= ⋅ ⋅ ⋅       (1.15) 

where hs is the water depth along the fetch. 

Although the exponents α, β, γ and the coefficient k2 depend in general on the local 

conditions, they are reasonably constant within a limited range of Fe, hs and uA (Fe=1000–

5000 m, hs=0.5–2.0 m, uA=15–25 m/s). 

By a comparison between the Bretschneider formula and the monomial approximation (eq. 

1.15), it can be found the following acceptable values: 

α=0.32    β=0.50   γ=1.45   k2=3.2·10-3 

By assuming that the average depth along the fetch hs is proportional to the local depth, h, the 

concentration is: 
4/3 6

wind

e A
eq

t

F uC
h
⋅

∝        (1.16) 

Expression (1.16) indicates that the instantaneous concentration produced by waves depends 

on the local depth ht (varying with the tide) and on a combination of fetch length and wind 

velocity. For sake of simplicity we shall consider tide and wind velocity, both time-dependent 

quantities, as mutually independent. The duration of tidal elevation is almost linearly 

distributed, all over the lagoon, around its average value. Wind and fetch both depend on 

direction; however, as it will be seen later, their statistical distributions are again mutually 

independent. In conclusion, expression (1.16) can be integrated over the time and over 

directions to get the averaged value: 

wind

wind
eq

fC
h

=        (1.17) 

of the equilibrium concentration produced by wind waves, where h is the local tide-averaged 

depth. The value of fwind depends on wind velocity and fetch length but also on sediment grain 

size; it tends to decrease for coarser bottom composition. Moreover, an appropriate value of 

fwind can also account for the enhanced resistance of the bottom due to vegetation, either sea 

weeds (e.g. Zostera marina) on the shoals or aerial alophile species on the salt marshes. 
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The total equilibrium concentration 
tid windeq eq eqC C C= +  in any location is obtained in principle 

by summing up expressions (1.14) and (1.17). 

The derivation of expressions (1.14) and (1.17) justifies the empirical expressions of transport 

concentration already used in some of the previous models. With respect to other 

formulations, expressions (1.14) and (1.17) are simpler, robust and susceptible of a relatively 

easy calibration of their coefficients against morphological data in quasi-steady conditions. 

In formulating the concentration Ceq, it is relevant the value of the exponent of v (n=5–6) to be 

introduced in the monomial transport formula (eq. 1.13), as opposed to smaller exponent (2–

3) valid for the binomial transport formulae (Meyer-Peter, Ackers, etc.). 

The exponent n reflects in the exponent of h in eqs. (1.14) and (1.17), with important 

consequences that will be discussed in the following paragraph. 

 

4.4 THE SEDIMENT BALANCE EQUATION 

Long-term sediment balance can be expressed in two-dimensional form by the well-known 

Exner equation: 

yx TTh Ch
t t x y

α
∂∂∂ ∂

= + + +
∂ ∂ ∂ ∂

       (1.18) 

where α = αe + αs is the combined rate of eustatism (sea level rise) αe and soil subsidence αs. 

Note that balance equation may possibly account for a time- and space-lag of suspended 

transport. 

Eq. (1.18) provides the long-term evolution of the tide-averaged depth, h, in each location of 

the lagoon. For solving eq. (1.18), the following data should be available: distribution all over 

the lagoon of the hydrodynamic quantities Dij, jRq  and 
jAq  in eqs. (1.11) and (1.12), provided 

by a tidal flow model; distribution all over the lagoon of the stirring coefficients atid and fwind 

for currents and waves. 

The stirring coefficient fwind in salt marshes can be set right away equal to zero or can be 

evaluated more precisely by biological considerations based on existing flora. The stirring 

coefficients in channels and shoals can in principle be evaluated by semi-empirical procedures 

and/or calibrated against field data. An evaluation of these parameters for different zones of 

the Venice Lagoon has been made for simulating the evolution of the lagoon since 1800 (Di 

Silvio, 1991b). 

For simulating the evolution of the salt marshes, moreover, one needs the equations 

describing their geotechnical behaviour (collapse and reconstruction of the edges; 

consolidation process of the captured material). It should be mentioned, in this regard, that 
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salt marshes of the Venice Lagoon represent a dynamic component as far as planimetric 

morphology is concerned. In fact, while the planimetric configuration of the tidal channel 

network has remained very stable through the centuries, the area covered by salt marshes has 

been and is still subject to a very fast reduction. The extension of salt marshes, on the other 

end, controls the fetch distribution in the lagoon and, consequently, the value of fwind in eq. 

(1.17). 

Once the quasi-equilibrium spatial distribution of atid and and fw is known, by solving the 

sediment balance equations one may predict the lagoon’s evolution ensuing from any possible 

perturbation introduced in the system. Perturbations may be produced by natural or 

anthropogenic changes of the external boundary conditions: strongly increased rate of 

eustatism and subsidence (e.g. due to the global warming or excessive groundwater 

withdrawal); variations of fluvial input (e.g. due to the diversion of rivers); decreased 

concentration at the sea side of the inlets (e.g. due to the construction of jetties and 

consequent increase of the inlet depth). Perturbations may also be produced by variations of 

the internal conditions. For instance, the depth of channels and shoals may be locally altered 

because of dredging and dumping operations. 

Any of the above mentioned perturbations produces in the model some variations of the local 

concentration with respect to the initial quasi-uniform distribution and, consequently, the 

establishment of concentration gradients. Those gradients, in their turn, activate both 

advective (residual) and dispersive (intertidal) sediment transport and ultimately aggradation 

or degradation of the bottom. Aggradation and degradation will proceed till a new 

bathymetric equilibrium configuration will be attained. Eqs. (1.14) and (1.17) constitute the 

coupling relation between hydrodynamics (represented by the locally constant stirring 

coefficient) and morphodynamics (represented by the local variable depth), showing a general 

tendency to reach a stable condition. In fact, when a channel or a shoal is subject to erosion 

(deposition), the depth increases (decreases) and transport concentration decreases (increases) 

in such a way that sediments are transported by dispersion towards (away from) that location. 

Conversely, if local concentration increases (decreases), deposition (erosion) takes place till 

the new depth is again in equilibrium with the local conditions. 

Let us comment, now, the role of the exponents 5 and 1 of the local depth h, respectively, in 

eqs. (1.14) and (1.17). The two values designate a different sensitivity of channel and shoals 

in reacting to any change of transport concentration. For a (small) relative change of 

concentration r=∆C/C, the relative variation of the shoal depth is again r, while the variation 

of the channel depth is about five times smaller. This means that while channels tend to 
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remain relatively stable, shoals may give rise to huge modifications, depending upon the new 

boundary conditions. It is relevant to emphasize that since the external boundary conditions, 

as well as the internal ones (residual flow, dispersion coefficients, stirring coefficients), do not 

depend upon the bathymetric evolution of the lagoon, no external adjustment of these data is 

necessary during the numerical computation. This represents a crucial advantage of 

expressions (1.14) and (1.17) with respect to other formulations of the transport concentration, 

often implicitly dependent on the changes of the basin bottom. It should be noted that, in 

principle, the quantity hs in eq. (1.15) (average depth along the fetch) does depend on the 

bathymetric evolution of the basin, but this dependence has been removed by assuming hs 

proportional to the local depth he. Also, the quantity Fe (fetch length) may in principle remain 

not constant, as it depends on the extension of marshes and, indirectly, on the bottom 

evolution (Dal Monte and Di Silvio, 2004). 

 

4.5 SALT MARSHES 

Salt marshes are relatively active components of the lagoon and changes of their planimetric 

configuration may affect the fetch distribution all over the basin. Although some attempts of 

modelling the complex behaviour of marshes have been made, a thorough verification of 

those models is not yet available. 

Salt marshes are peculiar features of tidal lagoons, characterized by their elevation above the 

mean sea level and hence by their submergence time. While shoals are permanently 

submerged by water, salt marshes are very often dry. Consequently, they are generally 

covered by a thick aerial vegetation. As aerial vegetation strengthens to a very large extent the 

bottom resistance, stirring of sediments is virtually impossible and transport concentration 

results to be extremely low or even zero. In other words, salt marshes act as a very efficient 

trap, capturing sediments from the shoals and the channels nearby. Sediments trapped by salt 

marshes, while subject to consolidation, contribute to the raising of the marsh surface. As the 

surfaces rises, water fluxes in the marshes, as well as the corresponding sediment transport, 

become smaller and smaller. Sediment transport goes practically to zero when the marsh 

surface approaches the maximum elevation of the tidal range. 

At this point, a salt marsh remains permanently dry and evolves into an island. The elevation 

of salt marshes, however, is almost invariably limited by the rate of subsidence and eustatism, 

which compensate the capture of sediments. The overall balance of sediments determines not 

only the elevation, but also the surface area covered by salt marshes. For predicting the 

elevation of salt marshes, soil consolidation should be accounted for and appropriate 
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compaction coefficients should be assumed. Finally, for predicting the salt marshes area, the 

collapse of their steep edges needs to be described. In this regard, a simple zero-dimensional 

geotechnical model has been proposed (Di Silvio et al., 2001), but not verified against field 

data. In any case, the geotechnical analysis requires a careful revision with regard to the role 

of vegetation is strengthening the marsh edges. Special attention should also be given to the 

growth process of the pioneer vegetation, when the bottom of the salt marshes reaches a 

sufficient elevation to permit vegetation to thrive. 

The behaviour of salt marshes in non-stationary conditions (that is when the long-term overall 

sediment balance is in excess or deficit) is quite interesting, as their evolution seemingly 

presents a strong hysteresis and asymmetry (Di Silvio and Padovan, 1998). In fact, while the 

“construction” phase is gradual and controlled by the progressive grown of vegetation, the 

“demolition” phase is generally delayed with respect to the sediment deficit as it depends on 

the collapse of the steep edges. This particular behaviour can be simulated by the long-term 

morphological model, provided that the biological and geotechnical processes are correctly 

incorporated. 
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Chapter 2 
 
 
 
 
 
 

ONE-DIMENSIONAL 
NUMERICAL MODEL OF RIVERS 
 
 
 
 
 
 
 
 
 
 

SUMMARY 
Is presented here a one-dimensional morphodynamic model (mathematical and numerical) 

for non-uniform grain-size sediments which is intended to be employed for computations at 

relatively large space scale and for both short and long-term calculations.  

The mathematical model is based on the “active layer” concept. It considers two layers 

(Armanini and Di Silvio, 1988): the mixing layer (Hirano, 1971), also called transport layer, 

containing the particles transported in suspension and as bedload, and the storage layer (Di 

Silvio, 1991a) containing particles that are not in movement, but are liable to vertical 

movements to and from the upper transport layer. The water flow equations are solved 

together with the sediment equations in a quasi-coupled way by means of a predictor-

corrector numerical scheme. The predictor step was carried out with a FTBS (Forward Time 

Backward Space) scheme while the corrector step was performed with a Four Points scheme. 

A completely new hydrodynamic module was developed based on the simplified steady and 

unsteady (Kinematic wave propagation) shallow water equations. The models are applied to 

verify the analytical solutions (Chapter 4; Fasolato et al., 2008b) and to some study cases 

(Chapter 5, Fasolato et al., 2007; Ronco et al. 2008a). 
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1. INTRODUCTION 
Modelling erosion and deposition processes in rivers and particularly in mountain streams 

(where the sediment grainsizes vary over several order of magnitude from boulders to silt) 

requires in principles a careful reproduction of a number of phenomena related to the non 

uniformity of a sediment mixture. For this reason and for the easily application to relatively 

large portions of the hydrographic network, the most common commercial models used for 

this kind of simulations are 1-D (one-dimensional) (Chapter 1, par. 3.2) i.e. averaged over the 

river cross-section (but possibly disaggregated in a number of sub-sections). They can 

simulate bottom erosion and deposition along the river (generally the most relevant requested 

information), evolution of bottom grainsize composition and sediment transport. 

Compared to the more complex 2-D, 1-D models further present a reduced computational 

time and make possible its application for long-term simulations at watershed scale. At last, 

models may also include a (quasi 2-D) component for simulating the planimetric evolution of 

the channel width (bank collapse and reconstruction). 

A one-dimensional morphodynamic model (mathematical and numerical) and its hydraulic 

modifications (quasi steady and unsteady flow) are presented here. A numerical code 

implemented by Di Silvio and Peviani (1989) was used for computation, integrating some 

modifications during different simulations. 

 

2. MATHEMATICAL MODEL 
The one-dimensional morphological models studied here, present some common simplified 

assumptions both for hydraulic and sediment transport hypothesis, reported in the followed 

sections. Moreover, three different models have been developed, based on the simplification 

of the hydrodynamic hypothesis. For all three the numerical models, the equations of water 

flow and sediment movement should be considered quasi-coupled. It however can be justified 

considering that the bottom variation are much slower than water surface variations. 

 

2.1 HYDRODYNAMIC HYPOTHESIS 

For all the models, channel cross sections are simplified as rectangles of bankfull channel 

width and no bank erosion or floodplain sediment contribution affect the bottom evolution. In 

the present formulation of the model the stream width (Bs) has been evaluated as a function of 

Q where Bs = KpQ0,5 (Kp  is assumed to be constant). Each reach is schematized as a 

rectangular channel with uniform flow condition; water depth is calculated with the classical 
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Gauckler-Strickler equation (eq. 2.1), in which A is the wetted area (m2), R the hydraulic 

radius (m), Sf the friction slope and Ks, the Strickler coefficient that may change in time and 

space (eq. 2.2): 
2 3 1 2

s fQ K AR S=      (2.1) 

1 6
9026sK d=      (2.2) 

The three models present the same assumptions for the morphodynamic aspects but are 

different for the hydrodynamic characteristics (Table 2.1). The STE.RI.MOR model (STEep 

RIver MORphology model) is based on the hypothesis of local uniform flow and assume 

instantaneous adaptation in time of the water discharge in each branch of the network.  

The second model, PLA.RI.MOR model (PLAin RIver MORphology model) is pretty similar 

to the first one but consider quasi-steady flow condition and a standard backwater formulation 

is employed to solve for flow characteristics.  

The third model, UN.RI.MOR model (UNsteady RIver MORphology model) is based on the 

kinematic wave hypothesis. As a matter of fact, neglecting inertia and pressure differential 

terms in the dynamic equation for unsteady gradually varied flow in open channels and then 

combining it with the continuity equations we obtain: 

w w l
Q Qc c q
t x

∂ ∂
+ =

∂ ∂
     (2.3) 

in which Q is the water discharge (m3/s), ql is the input lateral water discharge per unit length 

(m2/s) and cw is the kinematic wave celerity (m/s) which is equal to (Cunge et al., 1980; 

Miller, 1984): 

w
x

Qc
A

∂
=
∂

     (2.4) 

 
Hyphotesis Model De St. Venant equation 

Unsteady flow UN.RI.MOR ( )
2

2 0
2

Q Q hg g J I
t A x A x

β⎛ ⎞∂ ∂ ∂⎛ ⎞ + + + − =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

Quasi-steady flow PLA.RI.MOR ( )
2

2 0
2

Q hg g J I
x A x

β⎛ ⎞∂ ∂
+ + − =⎜ ⎟∂ ∂⎝ ⎠

 

Quasi-uniform flow STE.RI.MOR ( ) 0J I− =  

 

Table 2.1 Different hydrodynamic models and their applications. 
 



28   Simplified models for morphological evolution of river and lagoon systems 

In the Table 2.1 a summary briefly described the different models characteristics; in the De St. 

Venant equation x and t are the spatial and temporal axes; A is the flow area, Q is the flow 

discharge, h is the flow depth, I is the bed slope β is a correction coefficient for the 

momentum due to the nonuniformity of velocity distribution at the cross section; g is the 

gravitational acceleration and J is the friction slope. 

 

2.2 SEDIMENT TRANSPORT HYPOTHESIS 

For all models it is assumed that the motion equation for the k-th sediment fraction 

(k=1,2,…N), both as bedload and in suspension, is completely governed by the local 

parameters, such as discharge, energy slope, channel width, grain size, etc. (it means, 

instantaneous adaptation of the vertical sediment concentration in the water stream). 

The bed material is divided into several layers to allow the computation of changes in bed-

material gradation due to erosion or deposition. The sediment vertical exchange take place 

basically considering two layers (Armanini and Di Silvio, 1988): the transport layer, 

containing the particles transported in suspension and as bedload, and the active (or mixing) 

layer (Hirano, 1971) containing the particles that are not instantaneously in movement, but are 

liable to vertical movements to the upper transport layer (Fig. 2.1). 
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Fig. 2.1 Definition sketch for the sediment balance in the transport- and in the active-layer. 

 

The balance in the transport layer between transport Pk and net deposition Dk, is written as eq. 

(2.5), where B is the active channel width (m) and gk is lateral specific solid discharge (m2/s). 

k
k k

PBD g
x

∂
+ =
∂

     (2.5) 

Eq. (2.6) expresses the balance in the active layer and it leads to the computation of bed-

composition changes. In this equation βk is the percentage of the k-th class present in the 
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active-layer, βk
s the percentage below the active-layer and βk

* assuming different values 

during the erosion Dk<0 ( )* S
k kβ β=  or deposition phase Dk>0 ( )*

k kβ β=  

( ) *k
k k

ZD
t t
δβ

β
∂ ∂

= −
∂ ∂

     (2.6) 

Bottom level change is expressed by eq. (2.7) and the mixing layer thickness (δ) is assumed to 

be constant (order-of-magnitude about twice the representative diameters D90 of the coarsest 

particles). 

Models consider 4 granulometric fractions (size class k) and the solid transport Pk (eq. 2.7) is 

approximated by a monomial expression, where αc is a coefficient depending on the river 

category, βk is the percentage of the k-th grainsize class dk presents in the bottom and ζk the 

“hiding-exposure” coefficient (s=0.8) which reduces the larger mobility of smaller particles 

and vice-versa (eq. 2.8). 
m n

k c k kp q
k

Q JP
B d

α β ζ=         (2.7) 

1
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k k k k
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d dζ β
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⎛ ⎞
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⎝ ⎠

∑         (2.8) 

 

3. NUMERICAL MODEL 
The set of equations of the two–phase mathematical model was solved numerically using a 

finite difference approximation. A predictor-corrector method was used. The predictor step 

was performed with a FTBS (Forward Time Backward Space) scheme, while the corrector 

step was carried out with a Four-Points scheme. 

 

3.1 PREDICTOR STEP: FTBS SCHEME 
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In the predictor step the time and space derivatives of the water discharge are approximated in 

the following way (superscript n is the present time level, superscript ξ is the predicted value, 

superscript n+1 is the new time level): 
n

j jQ QQ
t t

ξ −∂
=

∂ ∆
     (2.10) 

1
n n
j jQ QQ

x x
−−∂

=
∂ ∆

     (2.11) 

while the sediment continuity equation in the transport layer is solved by means of the 

following difference equation: 

( )1

1
j j j j

n n n
k k k k

j
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     (2.12) 

the difference equation for the temporal bed level changes is given by: 
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and the vertical sediment balance in the mixing layer is discretized in the following manner: 

( ) 4
*

1

j j

j j j

n n
j k k

k k k
k
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ξ ξ
δ β β

β
=

−
= −
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it is noted that in the predictor step the mixing layer thickness in equation (2.14) is considered 

constant in time. 

 

3.2 CORRECTOR STEP: FOUR POINTS SCHEME 
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In the corrector step the time and space derivatives of the water discharge are approximated in 

the following way: 

( ) ( )( )1 1
1 11n n n n

j j j jQ Q Q QQ
t t

ψ ψ+ +
− −− + − −∂

=
∂ ∆

     (2.15) 

( ) ( )( )1 1
1 11n n n n

j j j jQ Q Q QQ
x x

θ θ+ +
− −− + − −∂

=
∂ ∆

     (2.16) 

celerity cw, weighted in space and time, is expressed as follows: 

( ) ( ) ( )
1 1

1 1 1 1
j j j j j

n n n
w w w w wc c c c cξ ξθ ψ ψ θ ψ ψ

− −

+ ⎡ ⎤ ⎡ ⎤= + − + − + −⎣ ⎦ ⎣ ⎦    (2.17) 

while the sediment continuity equation in the transport layer is solved with the following 

difference equation: 
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k k k k k k k

j

D P P G P P G
B x

ξ ξθ θ
− −

+ +⎡ ⎤= − − + + − +⎣ ⎦∆
   (2.18) 

the difference equation for the temporal bed level changes is written as follows: 
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and the difference equation for the vertical sediment balance in the mixing layer is given by: 
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The sequence of the numerical calculation is: 

a) The water discharge is predicted (eqs. 2.10, 2.11) and corrected (eqs. 2.15, 2.16) 

considering for the celerity the mean value (eq. 2.17).  

b) The motion equation for the sediment is applied at every grid point at time level n, in 

which the channel geometric data and the sediment data are known. 

c) The predicted values kDξ  and k
ξβ  are computer at every grid point by using the sediment 

contuinuity equation (2.12) with the predictor-scheme and the vertical balance equation (eq. 

2.14). Then the sediment transport kPξ  computed again at every grid point as a function of the 

predicted values k
ξβ . 

d) By applying again eq. (2.12) with the corrector-scheme the value of 1n
kD +  is computer, and 

with eq. 14 the value 1n
kβ
+  is computer at every grid point. 

e) The sediment transport at time level n+1 is now computed as a function of 1n
kβ
+ . 

f) At the end, the new bottom level is computed from eq. (2.13), with the value 1n
kD + . 
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3.3 LATERAL SEDIMENT INPUTS AND INTERNAL BOUNDARY CONDITIONS 

In the model the lateral sediment inputs from tributaries and internal boundary conditions can 

be represented in different ways depending upon the kind of processes to be simulated. These 

are briefly described below. 

 

3.3.1 Tributary conveying material as ordinary sediment transport 

In this case the sediment transported by the water flow before the landslide event is computed 

(by the transport equation) with the local hydrodynamic and sedimentological characteristics 

of the final reach of the tributary. 

 

3.3.2 Tributary conveying material from a nearby landslide as extraordinary sediment 

transport  

In this case, to compute the sediment input as a function of the tributary water discharge it is 

assumed that the bed material composition of the tributary (slope less than 10-15 %), 

immediately after the landslide event, changes to that of the landslide material and remain that 

until the total volume is transported by the flow. However, it is possible to consider the input 

of a debris flow (tributary slope greater than 15-20%) by changing the composition of the 

riverbed to that of the debris material and by assuming a constant debris flow velocity 

entering the main stream. In both cases the landslide material composition and volume as well 

as the time of occurrence and the locations of the landslide events must be known before 

starting with the morphological calculations.  

 

3.3.3 Fixed rocky bottom 

In mountain rivers reaches, fixed rocky bottom are usually ecountered along the main 

streams; in this case erosion cannot progress below the rocky bottom and the sediment load 

coming from upstream is transferred to the downstream reaches as overpassing loads. 

 

4. MODEL ANALYSIS  
4.1 STABILITY CONDITION AND TIME STEP SIZE ADJUSTMENT 

In the morphodynamic model the choice of the time step size ∆t is subject to Courant-

Friedrischs-Lewy (CFL) stability constraint: 

max

xt
c

σ ∆
∆ =      (2.21) 

where 0<σ≤1 and cmax is the maximum celerity at a relevant time step: 
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{ }max max , ,
k bw Zc c c cβ=      (2.22) 

in expression 22, cw is the celerity related to the flow which is given by the following 

equation: 

5
3wc u=      (2.23) 

while 
k

cβ  is the celerity associated to a disturbance in the bed material composition of the k-th 

class which can be expressed as follows: 
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     (2.24) 

and 
bzc  is the celerity related to a disturbance in the bed level which is given by the following 

equation: 
4 4
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∑ ∑       (2.25) 

In order to avoid phase error and numerical diffusion in the constant σ in eq. (2.21) is 

generally set to values close to unity. 

 

4.2 STABILITY AND ACCURANCY ANALYSIS 

Some preliminary tests were performed as to analyze the stability of the numerical schemes as 

well as to check their accuracy against the theoretical evaluations of celerity and physical 

damping. 

All the tests were performed by studying the behaviour of a channel in uniform conditions 

when a sudden variation of the bottom composition is introduced in its upper part. This 

variation simulates the input of fine materials in a mountain river, by landslides or debris flow 

(overfeeding); the availability of fine material in the bed generates a much higher transport 

(until the fine material is completely removed) and a rapid aggradation along the river. 

The parameters used for the analysis, the granulometry of the initial bed (
0kβ ) and of the 

landslide material ( *k
β ) is given in the following Table 2.2. The mixing layer thickness was 

kept constant and equal to 1 m, not much different from the value of 2d90.  

Fig. 2.2a and 2.2b gives an example of stability analysis, showing the progressive aggradation 

of the bottom along the channel caused by the stepwise disturbance at the upper end. 

The distance along grid points is ∆x=250 m while the time step is ∆t=400 s in case a and 

∆t=250 s in case b. The weight coefficient in eq. 16 (the discharge was considered constant 

along the river reach) was θ. 
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Q [m3/s] 300 m 1.8   dk [mm] 0kβ  *k
β  

B [m] 67 n 2.1  1st 0.3 0.080 0.250 
I [-] 0.02 p 0.8  2nd 3 0.240 0.520 
α [-] 0.011 q 1.2  3rd 30 0.460 0.200 

  s 0.0  4th 300 0.220 0.030 
 

Table 2.2 Parameters used for the model stability analysis  
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Fig. 2.2a and 2.2b An example of stability analysis. Propagation of a bottom level disturbance 

(stepwise variation of bottom composition) with different Courant numbers (Di Silvio and 

Peviani, 1989). 

 

 

Pe
rc

en
ta

ge
[β

1*
-β

10
] 

Grid point number

Pe
rc

en
ta

ge
[β

1*
-β

10
] 

Grid point number

Pe
rc

en
ta

ge
[β

1*
-β

10
] 

Grid point number

Pe
rc

en
ta

ge
[β

1*
-β

10
] 

Grid point number  
Fig. 2.3a and 2.3b An example of celerity analysis. Propagation of a bottom-composition 

disturbance: a) (left side) gradual variation and b) (right side) stepwise variation of the first 

fraction β1 (Di Silvio and Peviani, 1989). 
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The result shows an actual upper limit for the Courant number, Cr=0.65. 

Fig. 2.3a and 2.3b show the propagation of the disturbance of the bottom composition 

introduced in the upper part of the channel (only the propagation of the fraction k=1 is 

reported). 

 

4.3 SENSITIVITY ANALYSIS OF THE PHYSICAL PARAMETERS 

Some preliminary tests were performed to see the influence of the main physical parameters 

on the behaviour of the disturbance propagation. In particular, the celerity and height of the 

bottom aggradation was analyzed for different granulometries of the initial bottom and of the 

landslide material. 

 

4.3.1 Influence of the initial bottom composition (β10) 
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Fig. 2.4a and 2.4b Sensitivity analysis. Effects of the initial bottom composition β10 on the 

disturbance propagation (Di Silvio and Peviani, 1989). 

 

In both simulations (Fig. 2.4a and 2.4b) the composition of the material at the upstream 

boundary is *1
β =0.250, *2

β =0.520, *3
β =0.200, *4

β =0.030, with δ=2d90 and s=0.6. The initial 

bottom composition in Case a is 
01β =0.040, 

02β =0.200, 
03β =0.500, 

04β =0.260. On the other 

hand, Case b has a finer material composed of 
01β =0.120, 

02β =0.280, 
03β =0.420, 

04β =0.180. 

It is possible to see that the disturbance wave propagates faster in case of finer initial bottom 

composition. As the transport at the upstream boundary is the same in both cases, the height 

of the wave is smaller in case of finer material. 
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4.3.2 Landslide material composition (β1*) 

In both cases (Fig. 2.5a and 2.5b) the initial composition of the bottom is 
01β =0.080, 

02β =0.240, 
03β =0.460, 

04β =0.220, with δ=2d90 and s=0.6. 

The composition of the overloading material at the upstream boundary in Case a is *1
β =0.463, 

*2
β =0.349, *3

β =0.168, *4
β =0.020. In Case b there is a coarser material with composition 

*1
β =0.250, *2

β =0.520, *3
β =0.200, *4

β =0.030. The plots show a faster propagation 

disturbance in case of finer material; in spite of the difference on the upstream transport 

values (P=2.67 m3/s in Case a, and P=1.55 m3/s in Case b) the height of the wave remain 

quite constant. 

Further tests confirm that the thickness of the mixing layer δ influences the celerity of the 

disturbance propagation on an inverse way: with smaller values of δ the celerity increases. 

The values of s on the exposure-correction coefficient influences the sediment transport 

values of each fraction. In this way, for higher values of s the transported material becomes 

coarser. 
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Fig. 2.5a and 2.5b Sensitivity analysis. Effects of the overloading composition β1* on the 

disturbance propagation  (Di Silvio and Peviani, 1989). 

 

5. APPLICATIONS 
At present , the one-dimensional river models were applied mainly for mountain rivers to 

study the sediment transport and consequent morphological evolution of a stream during 

natural and artificial floods (Bonfigli et al., 1994; Peviani et al., 1995; Basile and Peviani, 

1996; Fasolato et al., 2006) or during anthropologic activities from reservoirs (e.g. flushing 

operations) (Chapter 5, Fasolato et al., 2007). Another trend concerns expanding analysis to 
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long term evolution of rivers (Di Silvio and Peviani, 1991; Peviani, 2002; Ronco et al., 2007) 

and to large unsurveyed rivers (Ronco et al., 2008a). 
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Chapter 3 
 
 
 
 
 
 

ONE-DIMENSIONAL 
ANALYTICAL MODEL OF 
RIVERS 
 
 
 
 
 
 
 
 
 
 

SUMMARY 
A one-dimensional analytical morphodynamic model for non-uniform grainsize material is 

discussed here. Besides the instantaneous propagation of the waterflow along the river reach, 

this model (“harmonic river”) considers a sinusoidal variation of the boundary conditions at 

both ends (in time), as well as of the channel width (in space) and takes into account two 

grainsize classes of solid material. The objective of the model analysis is to study the effects 

of geometry, hydrology and sediment input unsteadiness and non-uniformities, by explicitly 

indicating the most important parameters that control their propagation and attenuation 

along the river. Apart from instantaneous propagation of waterflow, the information 

regarding the boundary conditions are conveyed along the river reach by three waves, two 

propagating in the downstream direction and one propagating upstream, independently from 

flow conditions. Moreover, except for extremely low values of Froude number, both the third 

and the second waves may be neglected in the middle of the reach and virtually all 

information is transmitted in the downstream direction by the first wave. 
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1. INTRODUCTION 
The morphological behavior of a river reach is affected by the variability in space and time of 

its boundary conditions. Variability regards geometry (longitudinal and transversal bottom 

profile), hydrology (input of water and water levels), and sediment input (transport rate and 

grainsize distribution). In engineering applications, the variability of boundary conditions is 

often somehow filtered and an “equivalent” constant quantity is employed in lieu of the 

variable one. In most applications only the water flow input is assumed to be an independent 

boundary condition variable in time, while the sediment input and its composition are 

considered in equilibrium with the water flow. This, however, is not the case in nature, where 

the sediment input from the watershed slopes may vary in time in a total different way with 

respect to the runoff, depending upon the prevailing forms of erosion (mass movement, 

surface erosion, combination of the two forms, intermediate forms etc..). 

The effects of the variability has been studied mainly by field observations, laboratory 

experiments and numerical models (Marin and Di Silvio, 1996; Cui et al., 1996; Cao et al., 

2002; Papanicolaou, 2004; Wu et al., 2004; Cui and Parker, 2005; Curran et al., 2005; Wright 

and Parker, 2005a and 2005b) but not less helpful have been several analytical discussions 

(Seminara, 1997; Repetto et al., 1999; Lyn and Altinakar, 2002, Lanzoni et al., 2006). 

The perturbations created by the variable boundary conditions at the two ends of the river 

propagate downstream and upstream along the river reach, following the characteristic lines 

of the governing equations. A discussion of the characteristics lines to evaluate the general 

behaviour of these perturbations has been initiated since almost one century for the fixed-

bottom channels and reconsidered later for the case of uniform grainsize material (De Vries, 

1965 and 1973; Lyn, 1987; Correia, 1992; Morris and Williams, 1996; Lyn and Altinakar, 

2002). The discussion has subsequently been expanded and developed to include more and 

more aspects (non-uniform grainsize, adaptation length of suspended particles, two 

dimensional equations), with the purpose, among others, to single out the limits of different 

models’ application (Sieben, 1997). 

An analytical solution of the linearized one-dimensional equations for uniform grainsize has 

been found, for uniform sediments, by assuming sinusoidal variations in space and time (e.g. 

Ribberink and van der Sande,1985; Vreugdenhil, 1994).  

The non-uniformity of grainsize material, however, is quite important for a correct description 

of river morphodynamics, as it has been clearly shown by Sieben (1997) and will be 

confirmed in the present Chapter. The “harmonic river” proposed here considers a sinusoidal 

variation of the boundary conditions at both ends (in time), as well as of the channel width (in 
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space) and takes into account two grainsize classes of solid material. The harmonic solution 

gives useful indications on the effects of unsteadiness and non-uniformities, by explicitly 

indicating the most important parameters that control their propagation and attenuation along 

the river. 

 

2. THE LINEARIZED HARMONIC RIVER 
2.1 BASIC EQUATIONS 
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Fig.3.1 The one-dimensional model and its variables 

 

The one-dimensional mathematical model (Fig. 3.1) for simulating the morphodynamic 

evolution of any river is characterized by a system of differential equations describing 

waterflow (De St. Venant equations, eq. 3.1 and 3.2), the sediment exchange between stream 

and bottom (Exner equation, eq. 3.3) and, for non-uniform sediments, the change of 

composition in the bottom “active layer” (Hirano equation, eq. 3.4).  

* * 0Q A
x t
∂ ∂

+ =
∂ ∂

         (3.1) 

2

* 2 *

1
2
Q UH Z J

x gA g t
⎛ ⎞∂ ∂
+ + + = − −⎜ ⎟∂ ∂⎝ ⎠

      (3.2) 

 * *
1

N
k

k

P ZB
x t=

∂ ∂
= −

∂ ∂∑         (3.3) 

*
* * *
k k

k
P ZB B

t x t
βδ β∂ ∂ ∂

= − −
∂ ∂ ∂

       (3.4) 

In eqs. 3.1-4, x* and t* are the (dimensional) space and time coordinate, Q is the water 

discharge, A is the wetted cross section area, H is the average water depth, Z the bottom 

elevation, g is the acceleration due to gravity, U=Q/A the flow velocity, J the energy slope, Pk 
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is the solid discharge of the k-th class of sediment (k=1,2…N), B(x*) the channel width, δ is 

the thickness of the active-layer, βk is the percentage of the k-th class present in the active-

layer, βk
s the percentage below the active-layer and βk

* assuming different values during the 

erosion ( )* S
k kβ β=  or deposition phase ( )*

k kβ β= . 

For the water flow two important simplifications are assumed: an instantaneous propagation 

of the water flow discharge (simplified continuity equation, eq. 3.1’) and quasi-steady flow 

condition (simplified momentum equation, eq. 3.2’ with Coriolis coefficients equal to 1). 

Both conditions are satisfied in most rivers, whenever the flood wave length is quite longer 

than the distance between two major tributaries. 

* 0Q
x
∂

=
∂

          (3.1’) 

2

* 22
Q H Z J

x gA
⎛ ⎞∂

+ + = −⎜ ⎟∂ ⎝ ⎠
       (3.2’) 

The hydraulic resistance is pounded by the Chézy formula, hQ U A C HJ= ⋅ = . 

Solid transport Pk is approximated by a monomial expression (Chapter 2, eq. 2.7), similar to 

the Engelund-Hansen transport formula, rounding some exponents (eq. 3.5); where αc is a 

coefficient depending on the river category, βk is the percentage of the k-th grainsize class dk 

presents in the bottom and ζk the “hiding-exposure” coefficient (s=0.8) which reduces the 

larger mobility of smaller particles and vice-versa (eq. 3.6). 
2 2

k c k k
k

Q JP
Bd

α β ζ=         (3.5) 

1

sn

k k k k
k

d dζ β
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑         (3.6) 

 

2.2 TWO GRAINSIZE MODEL 

For sake of simplicity, the material has been assumed to be composed by only two 

representative diameters, 1d  and 2d . For selecting the two diameters, the hypothesis has been 

made that the bottom material of the base configuration of the river reach (see 2.3) has a 

Gaussian distribution with a mean (or median) diameter 50d d=  and a standard deviation 

( )
2 22

1
k k

k
d dσ β

=

= −∑  (Fig. 3.2). 
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Under this hypothesis the representative grainsize diameters have been chosen as 

1 16d d d σ= = −  and 2 84d d d σ= = + , being the compositions of the reference river reach  

β1=β2=0.5 (Fig. 3.2). 

In the course of the morphological evolution, the effective compositions of the river, ( )1 ,x tβ  

and ( )2 ,x tβ  will change in space and time, being 1 2 1β β+ = . The non-dimensional 

parameters (characteristic of the reference reach) 1 2/ 1β β β= =  and 1 2 16 84/ /d d d d d= =  

will also be introduced; the last one is corrected as d*= d1-s=d1/d2·ζ1/ ζ2 considering the 

hiding-exposure coefficient ζk  (eq. 3.6) and s=0.8.  

 

0   

0.16

0.4 

0.6 

0.84

1   

d-2σ d-σ d=d50 d+σ d+2σ

d1=d16=d-σ

d2=d84=d+σ

 
Fig. 3.2 Cumulative grainsize distribution function and representative diameters (d1 and d2). 

 

2.3 LINEARIZED EQUATIONS 

For an analytical approach to the problem, a linearization of the equations is necessary. This is 

made by assuming for each homogeneous river reach (e.g. between two major tributaries) a 

base configuration for river geometry (a finite rectangular channel with constant width B and 

slope J), river hydrology (constant water discharge Q) and river sediment (transport P and 

bottom composition βk, i.e. grainsize percentage of a given particle size dk). For each river 

reach, the base configuration it is assumed to be in equilibrium condition (uniform waterflow, 

sediment transport and bottom composition), so that a relationship, given by the transport 

equation (3.5), should exists between the quantities mentioned above. 

In order to account for space and time irregularities, periodical perturbations will be 

introduced in the base configuration: river geometry (sinusoidally varying channel width), 
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river hydrology (sinusoidally varying water flow) and river sediment (sinusoidally varying 

classes). These perturbation (eqs. 3.7-12) will be in principle (albeit not always in nature) 

considered small with respect to their mean values, corresponding to the base configuration, 

indicated in the following by an underscore. In this way the model equations can be linearized 

around the mean value and an harmonic solution can be found satisfying the boundary 

conditions. 

( ) ( )( )1Q t Q q t= +         (3.7) 

( ) ( )( )1B x B b x= +         (3.8) 

( ) ( )( ), 1 ,H x t H h x t= +        (3.9) 

( ) ( )( ), 1 ,P x t P p x t= +        (3.10) 

( ) ( ), ,Z x t Z H z x t= + ⋅        (3.11) 

( ) ( )( )0
1 1 1, 1 ,x t x tβ β β= +        (3.12) 

Under the above mentioned hypothesis and assuming q, b, h, p and 0
1β  much smaller than 1, 

the partial differential equations that describe the time- and space-evolution of the river (eqs. 

3.1-6) can be written in terms of non-dimensional perturbation (eqs. 3.13-17), with the non 

dimensional temporal and spatial coordinates x and t ( *t t U H=  and *x x H= ): 

0q
x
∂

=
∂

          (3.13) 

2 2(1 )
3 3

h z b h b q
x x x

α α ε∂ ∂ ∂ ⎛ ⎞+ − − = + −⎜ ⎟∂ ∂ ∂ ⎝ ⎠
     (3.14) 

0z p
t x

ψ∂ ∂
+ =

∂ ∂
         (3.15) 

( )* 0
16 6 5p q h s bη η β= − + + −        (3.16) 

0 0
* *1 1 0pS

t x x
β ψ β ψ η∂ ∂ ∂

+ + =
∂ ∆ ∂ ∆ ∂

       (3.17) 

where the following constant coefficients pertain to the base configuration of the river reach, 
21 Frα = −  and Fr is the Froude number ( 22Fr U gH= ); ( ) 23 2 EFrε =  and E is the 

resistance coefficient ( 22 hE g C= ); ( ) ( )1 1d dη = − +  where d is the ratio 1 2d d d=  

between the diameters; ( ) ( )* * *1 1d dη = − +  depending on the “hiding-exposure” phenomena 
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through * 1 sd d −=  and ( )2* *1S η= − ; P Qψ =  represents the sediment concentration and 

Hδ∆ = , is the relative mixing-layer thickness. 

The system of five equations (eqs. 3.13-17) and five dependent variables, that describes the 

behavior of the base configuration river perturbed by sinusoidal waves, can be reduced to a 

system of three partial differential equations, function of space and time (Di Silvio and Marin, 

1996). Therefore, the solution of the homogenous part of the system, for each variable, can be 

expressed in a general form as sum of three basic damped harmonic waves (eq. 3.18). A 

further (virtual) wave, with no damping and infinite celerity, is represented by the 

instantaneous propagation of Q (eq. 3.13). 

( )
3

1
, n

n

i k x i t
c

n
f x t f e ω⋅ ⋅ − ⋅ ⋅

=

= ⋅∑        (3.18) 

The parameter i represents the imaginary number, ω the forcing angular frequency, 

considered constant for all the variables, 
ncf  and nk  complex coefficients. These coefficients 

will be found, respectively, using boundary conditions (par. 3.1) and solving the connected 

equations (par. 3.2).  

The real part of the solution (eq. 3.19) is function of the imaginary and real part of nk  and of 

the modulus and argument of 
ncf .  

( ){ } { } { } ( )( )ImRe , cos Ren

n n

k x
c n cf x t f e k x t Arg fω− ⋅= ⋅ − +    (3.19) 

Terms { }/ Re
nf nc kω=  and { }1/ Im

nf nL k=  (with n=1,2,3) represent, respectively, celerities 

and attenuation lengths of the three basic waves which propagate in the downstream direction 

(two waves) and in the upstream direction (one wave) along the river. 

 

2.4 BOUNDARY CONDITIONS 

In mobile-bed models, the number of upstream and downstream (independent) boundary 

conditions to be prescribed (Sieben, 1997) depends on the numbers of granulometric fractions 

and on the mode of sediment motion considered. For this model, with two sediment classes, 

local adaptation of transport and instantaneous propagation of flow discharge, the required 

independent boundary conditions are four and precisely three upstream and one downstream. 

Sediment transport p, and sediment grainsize composition β1, sinusoidally varying on time 

(eqs. 3.20-3.21) are two of the upstream boundary conditions (where 0
1,cβ  and cp  are 

complex coefficients). 
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( ) ( )0 0 0
1 1, 1,0, cosi t

c cx t e tωβ β β ω−= = =       (3.20) 

( ) ( )0, cosi t
c cp x t p e p tω ω−= = =       (3.21) 

Note that, due to the hypothesis (eq. 3.13), the non-dimensional water discharge perturbation 

q is only function of time (and not space) as it propagates instantaneously all over the river 

reach: 

( ) ( )cosi t
c cq q t q e q tω ω−= = =        (3.22) 

The angular frequency ω is considered here corresponding to the typical flood event’s period 

Twave (expressed in a non dimensional form with the mean water depth H  and velocity U , eq. 

3.22) as a function of the concentration time. 

2

wave

H
T U
πω =          (3.23) 

Finally, the last sinusoidally varying boundary condition is to be imposed downstream and 

depends on the flow regime. For supercritical flow, the condition is the bottom elevation z 

(eq. 3.24/a), for subcritical flow the condition is the water elevation z+h (eq. 3.24/b); l 

represents the non-dimensional length of the river (l = L / H ). 

( ) ( ), cosi t
c cz x l t z e z tω ω−= = =       (3.24/a) 

( )( ) ( ) ( ) ( ), cosi t
cc c cz h x l t z h e z h tω ω−+ = = + = +     (3.24/b) 

In all the expressions mentioned above (eqs. 3.20-24) cq , cp , 0
1,cβ , cz  and ch  represent the 

maximum values of the relative perturbations. 

Also the geometric shape is considered sinusoidally varying and the cross width perturbation 

b can be expressed function of the non-dimensional spatial coordinate x, where bH λΩ =  

and λb is the wave length of the cross width oscillation. 

( ) ( ) ( )cos 2 2 sin 2c cb x b x b xπ π π= Ω + = − Ω      (3.25) 

 

3. THE HARMONIC SOLUTION 
The harmonic solution of the system equations (eqs. 3.13-17) should be split into the 

homogeneous part and a particular solution of the system. 

A particular solution can be determined considering the morphodynamic stationary conditions 

of the river. This is obtained by setting equal to zero the time variations of the morphological 

quantities z(x,t) and β1
0(x,t). In this case (eqs. 3.26-29) the solid transport’s perturbation p(x,t) 
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becomes only function of time (via water discharge q(t)) while the bottom’s perturbation z(x,t) 

only function of space (via river width b(x)). 

( )0
1 0xβ =          (3.26) 

( ) ( )2p t q t=          (3.27) 

( ) ( ) ( )2 5,
3 6

h x t q t b x= −        (3.28) 

( ) ( ) ( )
0

1
6 6

x
z x b x b x dxα ε⎛ ⎞= − −⎜ ⎟

⎝ ⎠ ∫       (3.29) 

The morphodynamic stationary solution considers the effects of topographical and 

hydrological variations b(x) and q(t), assuming the river at “equilibrium” conditions. It means 

that, along a river reach, sediment discharge is a univocal function of waterflow for any 

sections and time (Fasolato et al., 2006b). Note that this condition should eventually be 

attained by real river reaches, provided that sediment input is always in equilibrium with 

water input. This condition, however, is hardly satisfied in nature, especially on the small 

tributaries where the phase lag between runoff and sediment production (by surface erosion 

and mass movement) may be relevant. 

The solution of the homogeneous part of the system, by contrast, considers the other 

perturbations which affect the morphodynamic equilibrium of the river due to variable 

boundary conditions. Variables p(x,t), h(x,t), z(x,t) and β1
0(x,t) can be expressed (in the form 

of eq. 3.18) as it follows: 

( ) 31 2

1 2 3
, ik x i tik x i t ik x i t

c c cp x t p e p e p e ωω ω −− −= + +      (3.30) 

( ) 31 2

1 2 3
, ik x i tik x i t ik x i t

c c ch x t h e h e h e ωω ω −− −= + +      (3.31) 

( ) 31 2

1 2 3
, ik x i tik x i t ik x i t

c c cz x t z e z e z e ωω ω −− −= + +      (3.32) 

( ) 31 2

1 2 3

0 0 0 0
1 1 1 1, ik x i tik x i t ik x i t

c c cx t e e e ωω ωβ β β β −− −= + +      (3.33) 

The complete harmonic solution is given by the sum of the non-homogeneous and 

homogeneous part, after having determined the values of the complex amplitudes 
ncp , 

nch , 

ncz , 0
1 ncβ  of the forcing perturbations and the propagation coefficients nk  (with n=1,2,3). 
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3.1 DEFINITION OF WAVES’ AMPLITUDES AND PROPAGATION 

COEFFICIENTS 

Substituting in the system (eq. 3.14-17), the expressions of the unknown quantities p(x,t), 

h(x,t), z(x,t) and β1
0(x,t), the system equations can be reduced to the following nine 

expressions (with n=1,2,3):  

( )*
1

* *
1

0
6 6 6 6

0

0

n n n

n n

n n

n c n c n c

c n c

n c n c

k i p k iz k i s

z k p

S k k p

ε α α ε η η β

ω ψ

ψ ψω β η

⎧⎛ ⎞ ⎛ ⎞− + + − + =⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎠⎪⎪ − + =⎨
⎪

⎛ ⎞⎪ − + + =⎜ ⎟⎪ ∆ ∆⎝ ⎠⎩

   (3.34) 

Eqs. 3.34 are determined in a first step substituting the variable h(x,t) (obtained from eq. 3.16) 

in the other equations of the system (eqs. 3.14, 3.15 and 3.17) and subsequently substituting in 

the equations so changed, the complete harmonic solution (expression of h(x,t) is for the 

moment omitted) (Madeo, 2002). 

For a non trivial system solution, the nine equations (3.34) have to be rendered linearly 

dependent. This condition (as it is demonstrated below, par. 3.2) allows to determine complex 

coefficients nk . 

In this way the system can be reduced to two linearly independent equations for each n, it 

means 6 equations, for 9 unknown complex quantities 
ncp , 

ncz , 0
1 ncβ  (

nch  will be calculated 

later with eq. 3.16); other 3 equations are furnished by the boundary conditions (eqs. 3.20-22 

and 3.24). 

Amplitudes 
ncz , 0

1 ncβ , 
nch  can be expressed as a function of the amplitude 

ncp  in the 

following way (with n=1,2,3), apart from the flow conditions (Fr≥1 or Fr<1): 

n nc n cz k pψ
ω

=          (3.35) 

( ) ( )
2

0
1 *

61 1
n n

n
c c

n

ik p
s ik

ψβ
η η ω ε α

⎡ ⎤
⎢ ⎥= +
⎢ ⎥+ −⎣ ⎦

      (3.36) 

( )
2

n n

n
c c

n

ikh p
ik

ψ
ω ε α

=
−

        (3.37) 

On the other hand, the amplitude 
ncp  can be expressed as a complex function of nk  that 

differs for supercritical and subcritical flow (Appendix 3.A); in this way, once calculated nk , it 
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is possible to univocally determine values of the 9 waves amplitudes and finding the complete 

non trivial system solution. 

To rend equations 3.34 linearly dependent, the characteristic equation of the system (eq. 3.38) 

should be put equal to zero (Appendix 3.B): 

( ) ( )( )2 * 1 1 0i X XS Xi Xε α γ− + − − =      (3.38) 

where (see eqs. 13-17) * *21S η= − , *1 sγ ηη= + , 26
εψε
ω

=
∆

, 
6
αα =
∆

 and kX ψ
ω

=
∆

. 

This is a polynomial equation of the third degree with complex coefficients and it admits tree 

complex solutions; to determine the corresponding three solutions of k , the relation 

n
n

Xk ω
ψ
∆

=  is to be considered (with n=1,2,3). For two of them, the real and imaginary part 

of the complex number are positive, while for the third solution both the real and imaginary 

part are negative. 

 

3.2 WAVES’ CELERITY AND ATTENUATION LENGTH 

The three waves celerities and their attenuation lengths (expressed in a dimensional form) 

result so expressed: 

{ }* / Re
n nf f nc c U k Uω= ⋅ = ⋅    { }* / Im

n nf f nL L H H k= ⋅ =  

The expressions above confirm what it has been already found regarding the number and 

direction of perturbations (Sieben, 1997): two of them (
1f

c  and 
2f

c ) propagate from upstream  

to downstream; the third one (
3f

c , always negative, plotted in Fig. 3.3 as 
3f

c ) propagate on 

the contrary from downstream to upstream. 

The graphs (a, and b), in Fig. 3.3, provide respectively the values of the tree celerities 
nf

c , and 

of the three corresponding attenuation lengths 
nf

L , as a function of Froude number.  
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Fig. 3.3 Values of the three wave’s celerities cfn (a) and their attenuation lengths Lfn (b) 
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The graphs have been obtained from the numerical solutions of eq. 3.38 by varying the 

parameters ω  (wave frequency, eq. 3.23), P Qψ =  (sediment concentration) and 1 2d d d=  

(grainsize uniformity) defined in eqs. (3.13-17). The parameters 22 hE g C=  (resistance 

coefficient) and Hδ∆ =  (non-dimensional mixing-layer) are assumed to be constant, 

respectively E ≈ 0.01 [-] and ∆ ≈ 0.1 [-]. 

Wave celerities represent the response time of the reach to the perturbations created at the 

boundaries. The only wave with negative celerity (n=3) propagates along the reach the 

perturbation created at the downstream end by water- and bottom-elevation. 

For very low values of Fr the negative celerity 
3f

c  tends to be very fast while it becomes very 

slow for high Fr. In any case, with the exception of quite low values of Fr (dammed rivers) 

and definitely high values of ω  (very short flood waves) and ψ  (very high concentration), all 

three morphological waves have celerities many orders of magnitude slower than water flow. 

This means that even the fastest of the tree waves has a wave length (Λ=cf·Twave) much shorter 

than the length of the river reach. As a consequence, in any given moment, one may recognize 

along a river reach a sequel of sinusoidal waves, more or less numerous, created by the 

combination of all three perturbations or, at least, by one or two of them. In other words, all 

the perturbations created at the boundaries with respect to the equilibrium conditions (in 

particular the input of sediment transport and its composition) propagate relatively slowly and 

do not reach, in general, the opposite end during the same flood event. The only exception is 

represented by the “wash load”, constituted by extremely fine particles (loam and clay), which 

moves with the velocity of water and does not leave any trace on the river bottom. It should 

be noted in this regard that the “real” wash load is in general a negligible part of the total 

transport, even if it may be strongly visible for its brown or yellow color. 

Even more interesting are the graphs of Fig. 3.3b, representing the attenuation length of the 

three perturbation waves, namely the distance, in the downstream (n=1,2) or upstream 

direction, over which the perturbation amplitude created at the boundaries is reduced 1 e  

times. This means that, at a very short distance from the upper end and from the lower end of 

the reach, we may respectively neglect the second (n=2) and third wave  (n=3) with respect to 

the first one. In other words, no matter the celerity of propagation of the three waves, only the 

first wave is not destined to disappear very soon but to maintain a good part of its amplitude 

for the entire length of the reach. As it appears from the graphs, however, the attenuation 

length of the first wave tends to increase (namely its amplitude to persist longer) when the 

flood period is longer (small ω ) and the sediment concentration higher (large ψ). By contrast, 
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appear to be less relevant on the attenuation rate both the grainsize non-uniformity (d) and the 

slope of the river reach (Fr). 

 

3.3 AMPLITUDE OF THE FORCING WAVES 

In the present model the boundary conditions in terms of sediment input, grainsize 

composition, bottom and water elevation are assumed to vary sinusoidally with frequency ω  

(eqs. 3.20-24). The respective amplitudes ( cp , 0
1cβ , cz  and or ch ) are arbitrary values 

depending on the intensity of the perturbations prescribed at both ends of the river reach. 

These amplitudes are given by the sum of the respective amplitudes of the propagating waves 

ncp , 0
1 ncβ , 

nch , 
ncz  (n=1,2 and 3) in eqs. 3.30-33. 

In principle, each wave is affected by all the boundary conditions, as it appears from the 

expressions of 
ncp  (reported in Appendix 3.A, 

xcp  with x=1,2, and 3) and of  0
1 ncβ , 

nch  and 

ncz  provided by eqs. 3.35-37. However, if we look at the different attenuation rates of the 

three waves (see par. 3.2), we recognize that only the first wave will be sufficiently persistent 

over the river reach, while the second one and the third one will substantially affect only the 

extreme zones of the reach, respectively near the upstream and the downstream end. 

Consequently it will suffice evaluating the effects of the boundary conditions only on the first 

wave. This can be made by computing the (complex) coefficients 1A , 1B , 1C , 1D , 1E  and 

1F  in the following expressions (for subcritical flow) and in the analogous ones (for 

supercritical one): 

( ) ( )1 1

0
1 1 12 2 3

cc c c c c cp A B p q C z h qβ= ⋅ + ⋅ − + ⋅ + −     (3.39) 

( ) ( )1 1

0 0
1 1 1 12 2 3

cc c c c c cD E p q F z h qβ β= ⋅ + ⋅ − + ⋅ + −     (3.40) 

which provide the relative importance of the boundary conditions ( cp , cq , 0
1cβ , cz  and or 

ch ), respectively on the first-wave amplitudes, 
1c

p  and 
1

0
1cβ , which convey along the river 

reach the perturbations of, respectively, sediment transport and bottom composition. 

The graphs of the coefficients 1A , 1B  and 1C  (Fig. 3.4, 1st, 2nd and 3rd row, respectively) have 

been obtained from the expression in Appendix 3.A while the graphs of the coefficients 1D , 

1E  and 1F  (Fig. 4.3, 4th, 5th and 6th row, respectively) have been obtained by eqs. 3.35-37, 

with n=1, by changing the values of Fr (for different values of the parameters ω, ψ and d). 
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Fig. 3.4 Coefficients of the eq. 3.39 and 3.40 dependent on the Froude number (with varying 

ω, ψ and d). 

 

The graphs indicate that for virtually any river (i.e. for any value of Fr, ω, ψ and d, with the 

only exception of Fr<0.2, corresponding to dammed rivers), the coefficients 1C , and 1F  are 

definitely much smaller than the coefficients 1A , 1B , 1D  and 1E . This means that both waves 

1c
p  (sediment transport) and 

1

0
1cβ  (bottom composition) are practically unaffected by the 

boundary conditions prescribed at the downstream end (water and bottom elevation). 
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On the other end, the coefficients 1A  are in general larger than 1B ; while the coefficients 1D  

are in general larger than 1E . This means that the waves 
1c

p  and 
1

0
1cβ  are affected by both the 

boundary conditions prescribed upstream, although the perturbation on the bottom 

composition ( 0
1cβ ) appears to be relatively more important than the perturbation on the 

sediment transport ( cp ). 

 

4. SIMPLIFIED SOLUTIONS 
4.1 QUASI UNIFORM MODEL 

Simplification of quasi-uniform model can be generally considered when in a river, the energy 

variations from the bottom are considerably lower than the bottom slope (this is generally true 

for high value of the Froude number). Eq. 3.2 can be simplified in eq. 3.2’ (where Ch is the 

Chézy coefficient, considering Q=ChBH3/2) and for the linearized system, eq. (3.14) can be 

reduced in eq. (3.14’). 
2

* 2 2
h

Z QJ
x A C H
∂

≅ − = −
∂

        (3.2’) 

2 2
3 3

z h b q
x

ε∂ ⎛ ⎞= + −⎜ ⎟∂ ⎝ ⎠
        (3.14’) 

For very high values of Fr, also the parameter 
2

2 1
4

E Fr ψε
ω

⋅
= >>

∆
 and eq. (3.38) can be 

simplified neglecting terms with lower order of magnitude (Appendix 3.C). The correspond 

solutions for celerities 
nf

c  and 
nf

L are reported below: 

1f
c ψ γ=

∆
    

( )1

2 4

3 2 *6fL
S

εψ γ
ω γ

=
∆ −

   (3.41) 

2

*12
f

Sc ω ψ
εγ

= +    
2

*12
f

SL ψ
εγω

= +    (3.42) 

3

*12
f

Sc ω ψ
εγ

= −    
3

*12
f

SL ψ
εγω

= −    (3.43) 

For the uniform flow (as it’s also possible to observe in Fig. 3.3, for Fr>1) the celerity 
1f

c  is 

always (for any values of the perturbations’ period Twave and for the sediment concentration 

ψ ) dominant compare to the other two celerities 
2 / 3fc . Moreover 

1f
c  doesn’t depend on the 

perturbations’ period, while 
2 / 3fc  tend to be neglected rising Twave. Finally, 

1f
c ψ∝  while 
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2 / 3fc ψ∝  it means the difference between celerities rises increasing the sediment 

concentration ψ . Similar observations can be made for the attenuation lengths 
nf

L ; the first 

attenuation length is enough bigger than the others for any reasonable value of Twave and ψ . 

 

4.2 RIGID LID MODEL 

The simplification of rigid-lid model can be instead considered when in a river, the 

longitudinal cinetic variations are considerably lower than the water depth slope (this is 

generally true for very low values of the Fr number). It means eq. 3.2 can be simplified in eq. 

3.2’’ and for the linearized system, eq. 3.14 can be reduced in eq. 3.14’’. 

( )* 0H Z
x
∂

+ ≅
∂

        (3.2’’) 

2 2 0
3 3

z h h b q
x x

ε∂ ∂ ⎛ ⎞+ = + − ≅⎜ ⎟∂ ∂ ⎝ ⎠
      (3.14’’) 

For very low values of Fr (Fr≈0), also the parameter 
2

2 0
4

E Fr ψε
ω

⋅
= ≅

∆
 and 21 1Frα = − ≅ ; 

making an additional hypothesis of substantially different representative diameters for the two 

granulometric classes (S*<<1) eq. 3.38 can be simplified neglecting terms with lower order of 

magnitude (Appendix 3.D). The correspond solutions for celerities 
nf

c  and 
nf

L result: 

( )
1

6fc ψ γ= ∆ +
∆

   
1

6
6fL γ
ε
∆ +

=
∆

    (3.44) 

2

*6
6f

Sc ψ
γ

=
∆ +

    
2

6
fL γ

γε
∆ +

=     (3.45) 

3f
c = −∞     

3

1
fL

ε
= −     (3.46) 

For rigid lid model (as it’s also possible to observe in Fig. 3.3, for Fr<<1) the celerity 

3f
c →−∞  while 

1/ 2fc  don’t depend on the perturbation period Twave but they both result 

1/ 2fc ψ∝  with 
1 2f fc c>>  always. 

 

4.3 COMPLETE ANALYTICAL SOLUTION 

A complete and general solution of the harmonic system, it has been discussed in Chapter 3 

with numerical results. It is important to underline that in general is not possible to find an 

analytical expression for the tree celerities and attenuation lengths without introducing some 

simplification of the system. Moreover it can be possible to represent the three roots of the eq. 
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(3.38) in a complex plane (a modified Cartesian plane, with the real part of complex numbers 

represented along the x-axis, and the imaginary part along the y-axis). It’s important to 

underline how these solutions have a physical meaning for the tree perturbations waves, in 

fact: 

{ }Re
n

n
f

X
c
ψ ∆

=    { }Im
2

n

wave
n

f

TUX
L H
ψ

π
∆

=  

Qualitatively controlling the roots’ variation, basically function of the four parameters of eq. 

(3.38), *S , γ , α  and ε  it’s possible to describe variations and characteristics of the tree 

waves and so response of the river system to the equilibrium perturbations. While *S  and γ  

are function of the river granulometric features (in particular function of the ratio between 

diameters d and the hiding exposure coefficient s), the other two parameters α  and ε , 

consider multiple river’s characteristics. In particular, the last one results the most 

representative parameter for the river and can be explicitly expressed as 
2

28 wave
E Fr U T

H
ψε

π
⋅

=
∆

; 

solutions are analyzed varying Twave and consequently ε . 

In the following analysis the negative solution of X (it means { }Re 0X ≤ ) will be always 

represented as X3, while the other two solutions X1 and X2 will be considered always as 

{ } { }1 2Re ReX X≤ . 

 

In the case of Twave=0, also ε  results equal to zero and solution of the system is similar to the 

rigid-lid hypothesis. The real and imaginary part of Xn, roots of eq. 3.38 (see Appendix 3.D) 

can be so summarized: 

{ }1/ 3Re 0X =       { }1/ 3Im 0X =   (3.47) 

{ }
( ) ( )2 *

2 *

1 1 4
Re

2

S
X

S

γα γα α+ + + −
=   { }2Im 0X =   (3.48) 

{ }
( ) ( )2 *

3/1 *

1 1 4
Re

2

S
X

S

γα γα α+ − + −
=   { }3/1Im 0X =   (3.49) 

All solutions present the imaginary part equal to zero and so they are located along the x-axis. 

For any values of α  { }2Re 0X > , while, with α >0 (Fr<1), { } { }1/3 3Re Re 0X X= =  and 
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{ } { }3/1 1Re Re 0X X= >  and, with α <0 (Fr>1), { } { }3/1 3Re Re 0X X= <  and 

{ } { }1/3 1Re Re 0X X= = . 

 

In the case of waveT →∞ , also ε →∞  and uniform-flow hypothesis can be considered. The 

real and imaginary part of Xn, roots of eq. (3.38) (see Appendix 3.C) can be so summarized as: 

{ }1
1Re X
γ

≈     { }1Im 0X ≈     (3.50) 

{ }2 * *Re
2 2

X
S S
αγ γ ε

= +    { } { }2 2 *Im Re
2

X X
S
αγ

≈ −   (3.51) 

{ }3 * *Re
2 2

X
S S
αγ γ ε

= −    { } { }3 3 *Im Re
2

X X
S
αγ

≈ −   (3.52) 

It’s interesting to note the first solution X1 is represented as a point on the x-axis and it 

depends exclusively from the granulometric composition of the bottom γ, while the other two 

solutions X2/3 (particularly wide) are asymptotic (and with opposite sign) to a straight line, 

inclined of π/4 that intersects the y-axis on *2Sαγ− . Because of the inverse proportion 

between Lf and X, the first wave presents a much bigger attenuation length than the other two 

so, also for high value of Twave (as shown in Fig. 3.3), it is possible to neglect the second and 

third perturbation waves (in fact results 
1

2
wavefL T∝  while 

2 / 3 wavefL T∝ ). 

 

In an intermediate situation with a generic value of Twave (and consequentlyε ) it’s possible to 

represent the qualitative trend of the tree solutions Xn for two main case; with positive and 

negative values of α  and consequent α . 

Both in the case of subcritical flow (Fr<1 and α >0, Fig. 3.5a) and supercritical flow (Fr>1 

and α <0, Fig. 3.5b), increasing ε , the two solutions X3 and X2,  tend to the asymptote 

inclined of π/4 while X1 is confined in a restricted area (with very low values compared to the 

other two solutions) around x-axis.  

Therefore, considering the inverse relation { }1/ Re
nf nc X∝  and { }1/ Im

nf nL X∝ , it’s 

possible to find a sufficiently large value of Twave (and consequently ε ), for any flow 

conditions, that both 
2 / 3fc  and 

2 / 3fL  can be neglected and the river system solution simplified 

on the determination of 
1f

c  and 
1f

L . 
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Fig. 3.5 Variation of the tree roots Xn for two hypothetical river with respectively α>0 (Fr<1) 

and α<0 (Fr>1) varying the parameter ε . The thin continuous line represents the asymptote 

inclined of π/4. 

 

5. NUMERICAL APPLICATIONS 
Some numerical applications have been made to three rivers and basins with substantially 

different sizes and hydraulic characteristics; rivers’ features and consequent analytical 

parameters are reported in Table 3.1. 

 

Charac.s 
 

River A: 
Comelico 

River B: 
Piave 

River C: 
Zambezi 

Parameters
 

River A: 
Comelico 

River B: 
Piave 

River C: 
Zambezi 

L [m] 8,200 40,000 200,000  ω  [-] 5.11E-05 2.55E-05 1.30E-06

J [-] 0.0157 0.0030 0.0002  α  [-] -0.44 0.51 0.95 

B [m] 20 100 600  α  [-] -1.47 1.70 3.16 

Ch [m1/2/s] 30 40 50  ε  [-] 0.047 0.009 0.001 

Twave [h] 10 50 4,000  ε  [-] 19.9 3.501 0.103 

Qeq [m3/s] 100 900 4,000  η  [-] 1.00 0.98 0.82 

β = β2/β1 [-] 1.0 1.0 1.0  *η  [-] 0.60 0.43 0.23 

ψ [-] 0.000324 0.000149 0.000003  *S  [-] 0.642 0.815 0.949 

Fr [-] 1.20 0.70 0.23  
1

*
fc  [mm/s] 39.57 14.28 0.11 

d = d1/d2 [-] 0.001 0.01 0.10  
2

*
fc  [mm/s] 7.34 2.73 0.02 

∆ [-] 0.05 0.05 0.05  
3

*
fc  [mm/s] -4.35 -19.31 -335.12 

E [-] 0.021791 0.012258 0.007845  
1

*
fL  [km] 17.454 7.452 98.379 

H [m] 1.21 2.56 4.46  
2

*
fL  [km] 0.033 0.230 7.61 

U [m/s] 4.13 3.51 1.49  
3

*
fL  [km] -0.033 -0.223 -7.060 

 

Table 3.1 Different rivers’ characteristics and consequent analytical parameters 

 

0

0

Real (Xn)

Im
 (
X

n)

0

0

Real (Xn)

Im
 (
X

n)

X3
X1

X2
asymptote

α > 0 α < 0 
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The first one (River A) is a Italian mountain river reach, part of the Piave river, with a 

catchment area of 372 km2, subsequently called Comelico (Fasolato et al. 2007). The second 

one (River B) is a piedmont reach of the Piave river, located in the Eastern Alps, with a 

catchment area of 3,899 km2. The last one (River C) is a lower reach of the Zambezi River, 

located in the Southeastern Africa, with catchment area of 1,332,412 km2 (Ronco et al. 2006). 

Only Comelico (River A) has a Froude number larger than one, Piave (River B) has a Froude 

number slightly smaller than one, while the lower Zambezi river (River C) has a very low 

Froude number.  
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Fig. 3.6 Longitudinal variation of perturbations p(x*,t*=0) and ( )0 * *
1 , 0x tβ = , as the sum of 

the tree perturbations pn(x*,t*=0) and ( )0 * *
1 , 0n x tβ =  for the three rivers analyzed, by 

assuming  pc=0.1 and  0
1cβ = cz = ch =0. 

 



60   Simplified models for morphological evolution of river and lagoon systems 

The length of the reach is the typical distance between major tributaries in that part of the 

respective river. In all rivers, the perturbations on width and water flow were put equal to zero 

( 0cb =  and 0cq = ) while the downstream boundary conditions were considered 0cz =  (River 

A) or 0c cz h+ =  (River B and C). The only initial perturbation different from zero was 

considered, separately, 0.1cp =  and 0
1 0.1cβ = . 
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Fig. 3.7 Longitudinal variation of perturbations p(x*,t*=0) and ( )0 * *
1 , 0x tβ = , as the sum of 

the tree perturbations pn(x*,t*=0) and ( )0 * *
1 , 0n x tβ =  for the three rivers analyzed, by 

assuming β0
1c=0.1 and cp = cz = ch =0. 

 

The numerical results reported in Fig. 3.6 and Fig. 3.7, confirm the observations made in the 

preceding Sections 3.2 and 3.3. In all three rivers the third wave, propagating from the 

downstream end, is absolutely negligible, while the first one is definitely dominant. The 

effects of the second wave (propagating from the upstream end) is also quickly decaying, with 
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the only exception of the lower Zambezi river (having an extremely small Froude number), 

where its presence persists for about 10% of the river reach and at the beginning part of the 

reach seems to be dominant compared to the first wave (Fig. 3.5 River C). 

As for the importance of the two upstream boundary conditions on the wave amplitude, it is 

confirmed that the perturbation of the river composition appears to be relatively more 

important than the perturbation on the sediment transport. 

 

6. CONCLUSIONS 
The harmonic solution of the morphodynamic equations provides the response of any 

homogeneous river reach (between the confluences of two subsequent large tributaries) to the 

forcing actions represented by the sinusoidal boundary conditions prescribed at its ends. The 

solution depends on four non-dimensional parameters, * *21S η= − , *1 sγ ηη= + , 
6
αα =
∆

 and 

26
εψε
ω

=
∆

, which appears in the characteristic complex eq. (3.38). While the first three 

parameters are function of the mean morphological and fluvial characteristics (granulometric 

composition 16 84d d d= , hiding and exposure coefficient s, mixing-layer thickness ∆ and the 

Froude number Fr); the last one, is also function of the mean sediment concentration ψ  and 

of the forcing perturbations’ frequency ω. 

The mean sediment concentration ψ  is an important parameter in determining the amplitude 

of all perturbations, as well as their propagation’s celerity. In all applications the celerity 

tends to increase when ψ  increases, while it tends to decrease when d (grainsize non-

uniformity) decreases or the mixing-layer thickness ∆ increases. 

The perturbations’ frequency ω controls the time response of the river reach. As a matter of 

fact, an harmonic solution is strictly connected to the forcing frequency ω that, in this work, is 

considered to be the same for all the perturbations. This forcing frequency may be understood 

as the average recurrence of the major storms determining the variations of water discharge, 

sediment transport and bottom composition or, alternatively, as the frequency corresponding 

to the period of the annual largest flood wave. In real rivers, however, the independent 

boundary conditions present in general a large number of periodical components ranging from 

rainfall duration, to seasonal or annual periodicity, to the intermittence of rare catastrophic 

events. 
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Although the quantity ω is certainly important , a more significant parameter seems to be ε  

which is an interesting combination of frequency, Froude number and sediment concentration. 

As it will be shown in some papers (Fasolato et al., 2008b, Ronco et al., 2008a), when ε  is 

large enough, the hypothesis of local uniform water flow can be accepted, in lieu of eq. 3.2, 

with substantial simplifications of the harmonic solution. 

In any case, independently from the specific values of the parameters which characterize the 

river, a number of general conclusions can be drawn about the morphodynamic response of a 

river reach to variable boundary conditions. The information regarding the boundary 

conditions are conveyed along the river reach by three waves, plus one wave which represents 

the instantaneous propagation of the water flow. Of the three waves with finite celerity, only 

the third one propagates in the upstream direction but attenuates very quickly. Also the second 

wave, propagating in the downstream direction, has a rather strong damping. For this reason 

both the third and the second waves may be neglected, unless one is interested in the short 

extreme portions of the river reach. 

Virtually all the information is transmitted in the downstream direction by the first wave. The 

first wave propagates along the reach with a finite celerity, 
1

*
fc , which is three order of 

magnitudes slower than the water velocity and is more or less proportional to the value of ψ  

(Fig. 3.3a).  

The attenuation length of the first wave (more or less corresponding to the halving distance) is 

comparable with the length of the reach and increases with larger values of wave period and 

sediment concentrations (Fig. 3.3b). This means that the first wave’s amplitude generally 

persists all over the river reach with relevant values.  

In conclusion, there is one “first” significant wave (initial amplitude 
1c

p ) that conveys 

downstream the perturbations of sediment transport and one “first” significant wave (initial 

amplitude 
1

0
1cβ ) that conveys downstream the perturbation of bottom composition. It is 

important to note , that both amplitudes 
1c

p  and 
1

0
1cβ  are affected in principle by all the 

boundary conditions prescribed at the upstream and the downstream end of the river reach 

(eqs. 3.39 and 3.40). As it appears from graph of Fig. 3.4, however, each amplitude is 

practically affected only by the boundary conditions of cp  and 0
1cβ , while the importance of 

the boundary conditions downstream results again to be negligible. 
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The harmonic solution provides a useful insight on the behavior of rivers and consents to 

assess the validity and limitation of “filtering” the space- and time- non-uniformities, as a 

common practice in numerical models. 
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Chapter 4 
 
 
 
 
 
 

RIVER MORPHODYNAMIC 
EQUILIBRIUM AND UNIFORM-
FLOW HYPOTHESIS 
 

 

 

SUMMARY 
A one-dimensional morphological model is applied to determine the altimetric and 

granulometric response of a movable-bed channel subject to prescribed sinusoidal variations 

of its width. Aim of the work is, on one hand, to analyze the morphodynamic equilibrium 

configuration of such a channel by varying the Froude number and the length of sinusoidal 

width variations and, on the other hand, to analyze the validity and limitations of the local 

uniform water flow hypothesis, an extremely useful simplification for large time- and space-

scale computations. Analytical and numerical results suggest that, in equilibrium conditions, 

the configuration of the altimetric (bottom) profile with respect to the planimetric (bank) 

profile depends significantly on the Froude number and the wavelength of planimetric width 

variation. While for low values of these quantities, bed peaks correspond to the wide sections 

and bed troughs to the narrow sections, for higher and higher values, peaks and troughs of 

the bottom profile tend to move upstream. 

Solutions in morphodynamic equilibrium also indicate that the local uniform water flow 

hypothesis is acceptable for large enough values of the Froude number and the width’s wave 

length. The same criterion seems to work as well in (mild) non-equilibrium conditions. 

The validity criterion of the local uniform water flow for a sinusoidal channel has been 

subsequently adapted to the case of irregular (natural) rivers (Ronco et al., 2008a).  
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1. INTRODUCTION 
Many morphological processes in a river system basically controlled by its altimetric 

configuration (e.g. aggradation and degradation of the bottom and corresponding evolution of 

grainsize composition) can be described in terms of 1D (one-dimensional) equations of water 

flow (De St. Venant equations) and sediment transport of one or various granulometric classes 

(Cui et al., 1996; Cao et al., 2002; Papanicolaou, 2004; Wu et al., 2004; Cui and Parker, 2005; 

Curran et al., 2005; Wright and Parker, 2005a and 2005b). 

When considering morphodynamic processes at very long (historical or geological) time-

scale, however, the entire watershed should in principle be reproduced, and simplifications of 

De St. Venant equations become virtually necessary. In these cases, in fact, a complete one-

dimensional morphodynamic model is still too much cumbersome and simplifying hypothesis 

must be applied (Di Silvio, 2006; Fasolato et al., 2006b). 

The most interesting simplification to be possibly applied to a 1-D model for a river at 

watershed scale, is the so-called local uniform water flow hypothesis (Marin and Di Silvio, 

1996). The hypothesis of local uniform water flow implies for the morphodynamic model a 

number of consequences which permit remarkable reductions of the computational time. 

Local uniform flow means that, for a given discharge, water depth (and velocity), in any cross 

section, exclusively depends on the local slope of the bottom. This hypothesis is usually 

assumed to be valid whenever the river presents a reasonably regular shape and uniform bed 

slope (Di Silvio and Peviani, 1991). The idea is of course to consider as “uniform” the water 

flow averaged over a reach of finite length, but no criterion is available to evaluate the effects 

of the geometric irregularities both in width and depth (Ronco et al., 2008a). In the present 

chapter an attempt will be made to define the validity of the local uniform water flow 

hypothesis and the minimum length of the reach to be considered for the relevant averaging 

equations. 

 

2. COMPLETE SIMPLIFIED AND LINEARIZED 1-D 

MORPHODYNAMIC MODEL 
The complete one-dimensional mathematical model used to study the altimetric and 

granulometric evolution of a river (Chapter 3, Fig. 3.1) is the usual system of partial 

differential equations described before (Chapter 3, sect. 2). 
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To simplify the study, it is assumed that spatial variation of the waterflow is basically 

controlled by the main tributaries and that, along the reach between two main tributaries, 

(Chapter 3, eq. 3.1) may be substituted by:  

* *

1

w

Q Q
x t c
∂ ∂

=
∂ ∂

         (4.1) 

where 3
2wc U=  is the (cinematic) celerity of the flood wave. For relatively long waves (or 

short reaches) one can even put */ 0Q x∂ ∂ =  (instantaneous flood wave propagation). It was 

also considered a wide rectangular cross section, the energy slope provided by the Chézy 

equation and a monomial expression, similar to the Engelund and Hansen’s formula (Fasolato 

et al., 2006b), for the sediment discharge (Chapter 2, eq. 2.7) of the grainsize class k-th, 

including an “hiding-exposure” coefficient ζk (Chapter 2, eq. 2.8). 

Eq. (2.7) implies that the transport of each sediment fraction, both as bedload and in 

suspension, is completely governed by the local parameters (it means instantaneous 

adaptation of the vertical sediment concentration in the water stream). The second De St. 

Venant equation (3.2) may be subject to further simplifications. First of all the “local” and, 

possibly, the “convective” acceleration term may be neglected. Even more radically, eq. (3.2) 

may be reduced to eq. (4.2) 

*

Z J
x
∂

= −
∂

         (4.2) 

which corresponds to the already mentioned local uniform flow hypothesis. This hypothesis 

will be discussed later. 

 

For an analytical approach, the non-linear terms of equations (3.1-3.6) are to be linearized 

with respect to the basic configuration of the river reach (Chapter 3, par. 2.3). 

The basic configuration corresponds to the stationary (equilibrium) conditions of a 

rectangular prismatic reach conveying a constant discharge (i.e. uniform water flow and 

corresponding sediment discharge). To evaluate the evolution in space and time, some small 

perturbations that affect the initial and boundary conditions of the reach were introduced. A 

complete (albeit rather complex) analytical solution of equations (3.13-3.17) has been found 

(Chapter 3, par. 3) by considering sinusoidal perturbations with respect to the basic 

configuration (“harmonic river). 

A much simpler solution will be discussed in the following section with the hypothesis of 

morphodynamic stationary conditions. 
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3. ANALYTICAL SOLUTION IN 

MORPHODYNAMIC EQUILIBRIUM CONDITIONS 
3.1 MORPHODYNAMIC STATIONARY CONDITIONS 

A particular solution of the system (eqs. 3.13-17), that corresponds to equilibrium conditions, 

can be determined considering the stationary configuration for the bed profile and the bottom 

grainsize composition of the river reach. Namely, by putting equal to zero the time variations 

of the morphological quantities z(x,t) and βk
0(x,t). In this case eq. 3.17 becomes 0p x∂ ∂ =  

and it means p is only function of the time t (eq. 4.3) while z is only function of the space x 

(eq. 4.6). Substituting this variables and solving the system, equations become: 

( )0 , 0k x tβ =          (4.3) 

( ) ( )2p t q t=          (4.4) 

( ) ( ) ( )2 5,
3 6

h x t q t b x= −        (4.5) 

( ) ( ) ( )1
6 6

z x b x
b x

x x
α ε∂ ∂⎛ ⎞= − −⎜ ⎟∂ ∂⎝ ⎠

      (4.6) 

By integrating eq. (4.6) from the origin of the reach to the distance x, one finds:  

( ) ( ) ( ) ( ) ( )
0

0 1 0
6 6

x
z x z b x b b x dxα ε⎛ ⎞ ⎡ ⎤− = − − −⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫     (4.6’) 

This expression (eq. 4.6’) will be simplified imposing that over the length L of the river reach 

the average deviation ( )
0

L
z x dx L∫  is zero. 

Eqs. 4.3-5 and 4.6’ are valid for any river in equilibrium, not necessarily “harmonic” 

(sinusoidal variations).  

An inspection of the solution allows for a number of interesting observations on the behavior 

of a river in equilibrium, namely in morphodynamic stationary conditions, in a channel with 

sinusoidally varying width. Some preliminary analysis have also been discussed for three and 

two dimensional models by Repetto et al. (2001, 2002) and for one dimensional model by 

Seminara (1997) but a more detailed discussion is necessary here. 

First of all (eq. 4.3), the bottom composition does not change in time (i.e. when the water flow 

change) or in space (i.e. between narrow and wide cross sections). Secondly (eq. 4.4), the 

sediment transport does not depend on the local geometry and may only change if the water 

flow changes. 
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In equilibrium conditions, moreover the changes of water depth h depend exclusively on the 

changes of the channel width, with opposite sign of variation. Finally, contrary to the bottom 

profile z, the water depth doesn’t depend on the Froude number (subcritical or supercritical 

flow).  

Other relevant results of eqs. 4.3-4.6’, regard the different behaviors of the longitudinal 

profiles of energy, water surface and bottom. 

Defining as j the local energy slope ( ) *2 2j H Z U g x= −∂ + + ∂ , and as ( ) *
wi H Z x= −∂ + ∂  

and ( ) *
fi Z x= −∂ ∂  respectively, the local slope of water surface and bottom, these variables 

can be expressed as a function of b(x), (eqs. 4.7-9): 

( ) ( )11
2

j x J b x⎛ ⎞= +⎜ ⎟
⎝ ⎠

        (4.7) 

( ) ( ) ( )1 11
2 2w

b x
i x J b x

x
α
ε

⎛ ⎞∂−⎛ ⎞= + −⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎝ ⎠
     (4.8) 

( ) ( ) ( )1 61
2 2f

b x
i x J b x

x
α
ε

⎛ ⎞∂−⎛ ⎞= + −⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎝ ⎠
     (4.9) 

The local deviation of energy slope from the mean value J  depends exclusively on the 

variation of the channel width b(x) (it results, eq. 4.7, exactly half of b(x)) and it doesn’t 

depend on the flow conditions (Froude number). On the contrary, the water surface (eq. 4.8) 

and the bottom (eq. 4.9) slope depend both on the derivative of the longitudinal width 

variation and on the Froude number. For 0Fr →  ( 1α → ) it’s easy to observe that 

( ) ( )wi x j x J→ ≅  and therefore the water surface tends to a straight surface parallel to the 

basic configuration; this simplification is also called “rigid lid” hypothesis (Chapter 3, par. 

4.2). For Fr >> 1 (ε →∞ ) it results that ( ) ( ) ( ) ( )( )1 2w fi x i x j x J b x→ → = +  and the 

locally quasi-uniform flow hypothesis can be applied (Chapter 3, par. 4.1). 

Some of these results have also been found by Seminara (1997) who discussed the 

discordance between water depth and bottom elevation in equilibrium conditions. Now a 

question is in order: how much realistic are the equilibrium conditions for a real river? 

Indeed, the solution (eq. 4.3-6’) in morphodynamic stationary conditions corresponds to an 

effective configuration which a real river reach should eventually attain, provided that the 

water and sediment discharge are mutually related by a transport formula. This last condition, 

however, is not precisely fulfilled by the boundary conditions of a real river reach, especially 

in the steepest and farthest branches of the hydrographic network where the instantaneous 
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sediment input from the watershed slopes (by the surface erosion and mass movement) is 

rather independent from the contemporary runoff. We may expect therefore that the precise 

equilibrium conditions are never reached. 

A detailed analysis of the effects of non-equilibrium boundary conditions in a river reach was 

made by Fasolato et al. (2008a). Yet, if the morphological configuration of a river reach 

remains substantially stationary, we may assume that it is in quasi-equilibrium conditions and 

its configuration is approximately described by eqs. (4.3-6’). 

 

3.2 SINUSOIDAL EQUILIBRIUM RIVER 

For a preliminary evaluation of the morphodynamic equilibrium profiles, it was considered a 

series of simple cases with a sinusoidal variation of the cross width, in space and the water 

discharge in time, (eq. 4.10 and 4.11):  

( ) ( )sin 2cb x b xπ= − Ω         (4.10) 

( ) ( )coscq t q tω=         (4.11) 

where H λΩ =  is the frequency of the spatial perturbation while ( )2 waveH T Uω π=  is the 

angular frequency of the temporal perturbation; Twave is the wave’s period of the discharge 

oscillation and λ is the wave length of the cross width oscillation; bc and qc represent the 

maximum values of width and discharge perturbations. 

In this way, considering for simplicity qc=0 (no flow oscillations), is possible to write the 

water depth and bottom erosion/deposition oscillations as functions of Froude number (α and 

ε) and parameter 1 Hλ−Ω =  (eqs. 4.12-13): 

( )* *5 sin 2
6c

h x x
b

π
λ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
       (4.12) 

( )* * *

1 sin 2 cos 2
6 6 2c

z x x x
b H

α ε λπ π
λ π λ

⎛ ⎞ ⎛ ⎞⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    (4.13) 

As it appears from eq. 4.12, the relative water depth (h/bc) variation does not depend neither 

on the Froude number, nor on the width’s wave-length (Fig. 4.1). Its relative amplitude is 

constant and equal to 5/6. This simply means that, to maintain the same sediment transport, 

water depth should increase more or less in the same proportion as the width decreases. 

More complex is the behavior of the river bottom (z/bc). The amplitude of the relative 

variation (peaks and troughs) tends to increase with the Froude number and with the length of 

the river width. These quantities also affect the position of peaks and troughs (Fig. 4.1). 
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For low Froude numbers the bottom peaks occurs at the wide section and the troughs at the 

channel narrowing. The bed profile is nearly in phase with the banks. 

By increasing the Froude number, or the width wave-length, the peaks and troughs tend to 

anticipate the variation of the channel width and to locate themselves near to the flex of the 

width variation (Fig. 4.1). 
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Fig. 4.1 Longitudinal water depth and bottom elevation (considering qc=0), as a function of 

Froude number and 1 Hλ−Ω =  

 

Other parameters to be analyzed are local slopes (compared to the mean energy slope J ) of 

energy j(x*), water flow iw(x*) and bottom slopes if(x*) (eq. 4.7’-4.8’). 

The relative graphs are reported in Fig. 4.2. 
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Fig. 4.2a Longitudinal slopes, respectively, of energy, water flow and bottom as a function of 

parameter 1 Hλ−Ω =  (Fr is considered constant and equal to 0.5) 
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Fig. 4.2b Longitudinal slopes, respectively, of energy, water flow and bottom as a function of 

parameter Fr ( 1 Hλ−Ω = is considered constant and equal to 104). 
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First of all, it is interesting to note that the oscillations of the energy slope are invariably very 

small (1/2 of the relative oscillations of the width). Oscillations of water surface by contrast, 

have a much larger amplitude and even more the oscillations of the bottom slope. 

As shown by graphs, the slope of energy is in phase with the channel width variation, while, 

on the contrary, the amplitude and the phase lag of the water- and bottom-slope (eq. 4.9’), 

depends on 1 Hλ−Ω = . 

By increasing the parameter 1 Hλ−Ω =  (Fig. 4.2), namely the length of the width wave, 

water flow and bottom slopes tend to the energy slope 

( ) ( ) ( ) ( )( )* * * *1 2w fi x i x j x J b x→ → = +  (Fig. 4.2a, 4.2b and eqs. 4.8’-4.9’), while for low 

values of the ratio Hλ  there is both an increase and an evident phase lag of the water and 

bottom slopes compared to the energy slope. 

 

3.3 PEAKS AND TROUGHS OF THE BOTTOM ELEVATION 

We have already observed that the bottom configuration is the most interesting morphological 

feature of an equilibrium river reach. 

The bottom configuration is characterized by the amplitude of the peaks and troughs and by 

their position (phase lag) with respect to the forcing (width b(x)). 

The maximum bottom elevation (peaks) of the bed morphological conformation at the 

equilibrium condition can easily be predicted analytically considering the value of *
maxx  (eq. 

4.14) that maximizes Zst(x*) (zst is considered equal to z). 

*
max

6 2
2

Hx arctgλ α π
π ε λ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

       (4.14) 

Both the amplitude and the phase lag of peaks and troughs depend on the Froude number and 

the length of the width-wave λ. This dependence is shown in Fig. 4.3; low values of both Fr 

and λ correspond, in physical terms, to prevailing “backwater effects”. With prevailing 

“backwater effects” we tend to be close to the so-called “rigid lid approximation”: namely a 

variation of the channel width does not produce any relevant variation of the water surface 

and therefore the change “dz” of the bottom elevation is practically equal to the change “-dh” 

of the water depth. 

With high values of Fr and λ by contrast the “backwater effects” produced far away are 

rapidly damped and we move towards the local uniform flow approximation: namely the 

change of water depth “dh” produced by the change of the channel width corresponds to a 

relatively large variation of both the water level and the bottom elevation. 
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The corresponding phase lag, on the other hand, tends to be null with the rigid lid 

approximation and to anticipate till -90° for the local uniform flow hypothesis. 
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Fig. 4.3 a) Maximum oscillations of bottom deposition function of Froude number and wave 

length; b) phase lag (expressed in degrees) of the peaks of bottom oscillations as regards the 

width channel oscillations, function of the wave length and Froude number. 

 

4. THE UNIFORM FLOW HYPOTHESIS 
4.1 THE ONE-DIMENSIONAL EQUATIONS 

The characteristic lines of the one-dimensional morphodynamic model (set of equations) 

introduced in Chapter 3 (eq. 3.1-4) has been thoroughly discussed since many years, initially 

in the case of uniform grainsize material (De Vries, 1965 and 1973; Lyn, 1987; Correia, 1992; 

Morris and Williams, 1996; Lyn and Altinakar, 2002) and, more recently, for the case of a 

sediment mixture (Marin and Di Silvio, 1996; Sieben, 1997; Fasolato et al., 2008a). 
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In its most complete form the set of equations implies the presence of (2N+2) characteristic 

lines, in the downstream and/or in the upstream direction, along which propagate the 

perturbations defined by the quantities that appear in the equations (Sieben, 1997).  

For the mathematical model considered here (Chapter 3, eqs. 3.1-3.6) the hypothesis has been 

made that the sediment transport depends on the local hydraulic and granulometric conditions, 

namely that the adaptation length of the suspended particles is negligible. Moreover, note that 

for the analytical solution, (eqs. 3.13-17) only two grainsize classes (N=2) have been 

considered and one perturbation, with no damping and infinite celerity, is represented by the 

instantaneous propagation of Q along the river. So, only two (N) independent boundary 

conditions should be prescribed upstream and 1 boundary condition downstream (Sieben, 

1997; Fasolato 2008a).  

At least two grainsize classes (e.g. sand and gravel) are necessary to describe the space- and 

time- changes at watershed scale. However a further, extremely useful, simplification of the 

de St. Venant equations, can be introduced in the one-dimensional morphodynamic model to 

make it more adapt for watershed scale computations: namely the local uniform flow 

hypothesis. This consists in considering the local bottom slope almost equal to the energy 

slope:  
2

* 2 2
h

Z QJ
x A C H
∂

≅ − = −
∂

        (4.15) 

which is valid whenever: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂ H

gA
Q

xx
Z

2

2

** 2
       (4.16) 

 

4.2 IMPLICATIONS OF THE UNIFORM FLOW HYPHOTESIS 

The advantages of transforming the second de St. Venant equation (Chapter, eq. 3.2) into the 

much simpler (eq. 4.15) are many and mainly connected to the fact (Chapter 3) that, under 

this hypothesis, the effects of the perturbations moving downstream along the N characteristic 

lines, originating at the upstream-end of the channel, are invariably dominant with respect to 

the perturbations moving in the upstream direction along the only characteristic line 

originating at the downstream end. 

This means that the solution along the channel depends prevalently on the boundary 

conditions prescribed upstream (waterflow input and bottom composition or, equivalently, 

waterflow input and sediment input of the N grainsize classes), rather than on the boundary 

condition prescribed downstream (bottom elevation or, equivalently, water elevation). It 
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should be noted, in fact, that the evolution of the bottom elevation is very slow while the 

water level (under the uniform flow hypothesis) is univocally related to the water flow. In 

uniform flow conditions, then, the effect of the boundary conditions at the downstream end is 

either transmitted instantaneously all over the channel (water depth) or propagates slowly and 

strongly attenuated in the upstream direction (bottom elevation). This circumstance permits to 

proceed with the numerical integration only in the downstream direction, with relatively large 

space- and time-steps. 

Another, even more important, advantage of the uniform flow hypothesis is the possibility to 

compute the annual sediment transport PS in any cross section of the channel, by integrating 

eq. (2.7) in the following way: 

( )
1 1

nN N
mk k

S k p q year
k k k

JP P Q t dt
B d

β ζα
= =

= =∑ ∑ ∫      (4.17) 

In eq. (4.17) it has been put *J Z x≅ −∂ ∂  and it has been assumed that all the quantities 

remain practically constant during the year, except the waterflow Q(t). This assumption, 

again, depends on the fact that the (N) perturbations basically related to the sediment 

boundary conditions move downstream with a much slower celerity and stronger attenuation 

than the perturbations related to the waterflow. 

If one supposed a duration curve for the waterflow (eq. 4.18): 

( ) 0
tQ t Q e γ−= ⋅          (4.18) 

one finds (for great values of γ): 

( )1
0 0

1

n N
mk k

S p q
k k

JP Q V
m B d

β ζα −

=

= ∑        (4.19) 

where Q0 is the annual peak flow and V0 the annual runoff volume (see Chapter 1, eq. 1.10). 

By using PS as local sediment discharge, the morphodynamic evolution of the watershed can 

be simulated at much longer (year) time-steps (Chaper 1, par. 3.1). 

 

4.3 LIMITATIONS OF THE UNIFORM FLOW HYPHOTESIS 

In order to evaluate the errors made by applying the uniform flow hypothesis in river 

computations, let us consider the peak (or trough) created along a sinusoidal river reach, as 

discussed in the preceding sections. We may define the absolute error along that river reach as 

the difference between the maximum bottom elevations (peak or trough) computed with the 

steady flow model Zst(x*) (supposed to be the exact solution) and the maximum peak 

elevation computed with uniform flow model Zun (x*); this error eabs can be expressed as (eq. 

4.20): 
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( ) ( )* ' * '

max max
un stL L

abs un st

Z x dL Z x dL
e Z Z

L

−
= − =

∫ ∫
   (4.20) 

Then, let us define the relative error as the maximum absolute error scaled by the exact value 

of the peak (eq. 4.21):  

( ) ( )
( )

* ' * '

* '

max max
max

un stun st L L
rel

st stL

Z x dL Z x dLZ Z
Er

Z Z x dL

−−
= =

∫ ∫
∫

  (4.21) 

where *
maxx  represents the distance from the reach origin where the bottom elevation (Zst(x*)) 

is maximum (eq. 4.14). As shown in Fig. 4.4, the maximum relative error is function both of 

the Froude number and of the wave length but doesn’t depend on the wave amplitude bc. 
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Fig. 4.4 Maximum relative error of the analytical solution between bottom elevation (function 

of Froude number and wave length). 
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5. NUMERICAL SOLUTIONS 
The analytical solution provided in par. 3 (either based on the steady- or on the uniform-flow 

equations) has been obtained by a one-dimensional model which incorporates a number of 

simplifications. First of all, all the equations have been linearized; secondly, the flood wave 

propagation is assumed to be instantaneous ( )0=∂∂ xQ ; and, finally, the grainsize 

distribution is limited to only two grainsize classes, while the exponents of the transport 

equation (eq. 2.7) have been rounded (m,n=2 and p,q=1; Chapter 3, eq.3.5). 

In the present section the analytical solutions (both for the steady- and uniform-flow) have 

been compared with the non linear numerical model, under three different water flow 

hypothesis. 

The numerical code STERIMOR (Fasolato et al., 2006a) was used for computation, 

integrating some modifications for water flow equations during different simulations (see 

Chapter 2, Table 2.1). 

Note that, a model can be decoupled but still retaining some unsteady features of the 

waterflow equations as, for instance, the case of the unsteady model, where the cinematic 

wave hypothesis is made and unsteadiness is retained only by the continuity equation 

0A t Q x∂ ∂ = −∂ ∂ ≠  but not by the momentum equation 0Q t∂ ∂ = . 

For the characteristics of the three numerical models see Chapter 2.  

Numerical analysis were made varying the mean bottom slope (and Fr) and the sinusoidal 

wave length of the width perturbation of an hypothetical river (river length 108 km, mean 

width 90 m, mean water discharge 100 m3/s and Chézy coefficient 50 m1/2/s). 

 

5.1 NUMERICAL ACCURANCY 

The space- and time-steps throughout all the present calculations are ∆x=900 m and ∆t=1000 

s. Numerical tests show that this spatial and temporal step is appropriate since there is no 

appreciable difference among the computational results with finer steps, which moreover 

comply with Courant (CFL) stability requirement (Chapter 2). Note that ∆x and ∆t are much 

smaller of, respectively, the shorter spatial wave (9000 m) and the shorter temporal wave 

(about 350000 s) of the sinusoidal width and flow perturbation. 

 

5.2 NON LINEARITY 

A comparison of the analytical (linearized solution) and the non-linear numerical solution for 

the quasi-uniform and quasi-steady flow hypothesis is shown, respectively, in Fig. 4.5 varying 

the hydraulic conditions (Fr) and the wavelength of planimetric width variation.  
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In this way is possible to study different results (under exactly same boundary and initial 

conditions) and to consider negligible the numerical errors solely due to the non-linearity of 

the equations solved with the numerical model. As it can be seen, model results show slight 

underpredictions of the bed peaks and troughs. However, these discrepancies are at maximum 

less then 10%-15% and these values don’t depend on the hydraulic (Fr) or planimetric 

variations (λ/H).  

It must be emphasized that no calibration based on the analytical solutions was performed on 

the numerical models. The slight discrepancies (both for the quasi-uniform and for the quasi-

steady flow) are totally caused by the non-linearity of the equations solved with the numerical 

model. 

Numerical simulations confirm the peaks translation of bottom oscillations, function of Fr 

and λ/H in the case of quasi-steady flow (Fig. 4.5b) while the absence of this translation in the 

case of quasi-uniform flow. 

 

5.3 NON EQUILIBRIUM CONDITIONS 

Numerical simulations were made starting from a non-equilibrium river condition (initial 

bottom elevation), on one hand to verify if the final morphodynamic equilibrium corresponds 

to the theoretical one, on the other hand to analyze the differences between models in non-

equilibrium, especially as far as the time to reach the equilibrium condition is concerned. For 

different simulations, the time to reach the equilibrium conditions depends both on the 

distance between the initial configuration and the final one and on the characteristics of the 

river (bottom slope, wave length etc.). So, to compare a non-dimensional time t̂  was defined 

in such a way that ˆ 1t =  when the bottom peaks’ amplitude, calculated with the quasi-steady 

model, is half of the theoretical one (Fig. 4.6a). It was than assumed that at ˆ 5t ≥  the (quasi-) 

equilibrium conditions were reached by the numerical model solutions. 

A systematic series of numerical simulations in non-equilibrium conditions has also been 

carried on with different boundary conditions (e.g. by feeding the river with a sinusoidal input 

of sediments and waterflow). As for the non-equilibrium initial condition, also in this case the 

numerical relative error between steady- and uniform-flow hypothesis varies with Froude 

number and wave length in the same way as the analytical solution. Moreover, the maximum 

numerical error generally occurs at the beginning of the simulation, when is largest the 

distance from the equilibrium conditions. In any case, the maximum error is only slightly 

larger than the analytical one (Fig. 4.7). 
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Fig. 4.5. Comparisons between bottom elevation calculated numerically and theoretically 

(analytically) for the quasi-uniform flow models (a) and quasi-steady flow models (b) varying 

Froude numbers and wave lengths. 
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Fig. 4.6 a) Maximum bottom peak simulated with quasi-steady model and b) numerical errors 

between quasi-steady and quasi-uniform models, compared to the analytical ones considering 

different values of Froude number (λ/H=2.7·104 for all the simulations). 
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Fig.4.7 Numerical error (maximum in non equilibrium conditions) and analytical one function 

of Fr number and the wave length λ. 

 

6. CONCLUSIONS 
The analytical solution of the linearized 1-D morphodynamic equations applied to a 

sinusoidal river in equilibrium conditions has permitted to investigate the variation of bottom 

elevation, water depth, and energy slope along the river as a function of the river width. The 

same solution provides a general criterion to predict the maximum relative error between the 

steady- and the uniform-flow hypothesis. The theoretical solution has been numerically 

checked for evaluating the effects of non-linearity and non-equilibrium. In the case of 

sinusoidal perturbations of the river width, the numerical analysis confirm the theoretical 

criterion: namely the relative error decreases when the wave length of the width perturbation 

and the Froude number of the river increase. 

Therefore the analytical criterion also permits, for a given Froude number, to define a 

“minimum” wave length above which the error is less than a prescribed values. Based on this 

criterion, in another paper (Ronco et al., 2008a) has been developed the concept of 

“morphological box” to be applied to the case of natural rivers with an irregular configuration. 
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EVOLUTION OF A RIVER DUE 
TO SEDIMENT FLUSHING 
FROM A RESERVOIR 
 
 
 
 
 
 
 
 
 

SUMMARY 
Is presented here a comprehensive study combining field measurements and numerical 

modelling of an upper area of the Piave Basin (Eastern Alps, Italy) where flushing operations 

from an alpine reservoir (Comelico reservoir, capacity of 1.4 106 m3) were performed 

periodically in the past decades. Boundary conditions (partially controlled by management) 

for the downstream channel of this reservoir are known; further downstream, this channel 

empties into the Pieve di Cadore reservoir. 

Two numerical morphodynamic models (CCHE1D from University of Mississippi, based on 

unsteady flow and STERIMOR from University of Padua, based on quasi-uniform flow) were 

applied to simulation of the chronological sequence of strong deposition, subsequent erosion-

phases of the river downstream and sediment transport caused by sediment flushing 

operations. The simulation results make it possible to better understand the sediment 

transport and morphological change processes in the channel and improve sediment flushing 

practices; as well as to analyze the validity and limitations of the local-uniform-flow 

hypothesis by comparing the two models’ simulation results. 
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1. INTRODUCTION 
The annual rate of reservoir storage capacity loss to sedimentation in the world is 0.5–1%, and 

it varies dramatically from one river basin to another due to different forest cover and 

geological conditions. In order to control reservoir sedimentation, different approaches such 

as bypassing, dredging, flushing, sluicing, and upstream sediment trapping have been 

developed. Although combinations of these sediment control measures are usually adopted to 

retain the maximum capacity. The flushing approach, among others, is an efficient hydraulic 

sediment removal technique to restore the reservoir storage capacity. 

In this study, two numerical morphodynamic models (CCHE1D from University of 

Mississippi, based on unsteady flows and STERIMOR from University of Padua, based on 

quasi-uniform flow) have been developed and applied to simulate flushing operations 

performed in the alpine reservoir in the last decade. The simulation results were compared 

with the measurements during and after the sediment flushing operations and were used to 

evaluate the impacts of these operations on the river downstream. Finally, once calibrated and 

validated, the more efficient STERIMOR model was also used to reproduce the long-term 

tendency of the morphology of the river. 

 

2. STUDY SITE 
The study area (Fig. 5.1) is located in the upper part of the Piave basin, between Pieve di 

Cadore reservoir (64.3·106 m3) and Santa Caterina reservoir (6.7·106 m3) and Comelico 

reservoir (1.4·106 m3). 

In this area the present physiographic setting of the river results mainly from the evolution of 

the drainage system during the Lateglacial and the Holocene (Surian, 2002). The drainage 

basin is mainly composed of sedimentary rocks (predominantly limestone and dolomite) and 

the river is incised in the bedrock and presents a quite narrow channel. 

All the released sediments (from Comelico dam, during flushing operations) moreover, are 

intercepted by the Pieve di Cadore reservoir. The catchment collected by the lake has a total 

area of about 860 km2 but excluding basins collected by the two upstairs dams (in which the 

discharge released is partially controlled by management), the watershed area directly 

draining to the lake is about 230 km2. Some mountain peaks are higher than 3,000 m, the 

snow and glacial ice constitute an important mountain source of water for power generation.  
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Until the year 2005, about 18.0·106 m3 of sediments were deposited in the Pieve di Cadore 

lake, causing the progressive reduction of the reservoir water storage capacity with an annual 

rate of about 0.5%. 
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Figure 5.1. Location of the study site in the upper course of Piave river. (a) Aerial photos 

(2000) and (b) Digital elevation map (extract from .dxf files 1:5.000) with some sections (the 

number of sections are related to the computation grid point) of the rivers. 

 

3. FIELD MEASUREMENTS AND DIGITAL DATA 
3.1 HYDROLOGICAL DATA 

The alternate operations of flushing and flood at the Comelico dam have continued probably 

for 70 years (the dam was built in 1931), but they have been quantitatively recorded only in 

the last decades (1994 to 2005). By analyzing the water discharges released from Comelico 

dam (from 1990 to 2005), it was possible to identify three distinct regimes: (i) flushing 

periods, (ii) very long minimum flow periods and (iii) moderate flow (from April to May, due 

to the melting of snow) and flood periods (about one flood event per year). From autumn 
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2003, however, the water flow management of Comelico dam has changed because of a new 

Italian regulations, prescribe a “vital minimum discharge” to be released downstream. 

From the Comelico dam and before the beginning of the Pieve di Cadore lake there are 

(besides the Ansiei river) two other significant tributaries reaching the Piave river; the Piova 

river and the Cridola river (Fig.5.1a). For these rivers the daily average discharge data are not 

available; this information had to be obtained indirectly from the other available hydrological 

data. Since Piova and Cridola’s watershed areas are respectively of 36 and 19 km2, the 

monthly average discharges are noticeably smaller than the others and for these reasons, 

during these first series of simulations, were neglected. At the same time, an important 

contribution of water discharge is supplied by the Pelos power plant (Fig. 5.1a) that returns 

the water diverted from the two lakes upstream after its use. While the discharge released 

from the Pelos power plant is obviously lacking in sediments, the solid transport supply from 

the Cridola river (particularly during flood events) aids considerably the sedimentation of the 

Piave di Cadore reservoir and its influence has to be studied in depth in the future. 

Fig. 5.2 indicates the time series of water surface elevation of the Pieve di Cadore Lake. The 

time series do not show a clear periodic behavior (they are artificially controlled) but is 

interesting to note that the minimum annual levels of the lake were always occurred during 

the same period (March of every year), due to the necessity to make the most of the storage 

reservoir capacity for the spring, the snow and glacial ice melting season. 
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Figure 5.2. Time series of daily lake levels  (From 1st January 1990 to 30th June 2005); the red 

line fits the entire data and its slope indicates a positive trend.  
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The mean annual levels vary between 668.2 m and 676.5; it is also important to underline that 

over the years, levels of the Pieve di Cadore lake have slowly but gradually increased (as 

shown by the red line in Fig. 5.2) and this is probably due to sedimentation. 

 

3.2 TOPHOGRAFIC DATA 

The extraction of cross sections, the coordinates of the thalweg, the longitudinal profile and 

other useful information, such as the locations of various important landmarks, confluences 

with tributaries had to be determined using various maps (electronic and paper format) and 

were integrated with photographic survey made by authors in the last two years. A set of 

detailed cross sections and thalweg elevations were surveyed in the summer of 2005 for the 

first few kilometres downstream Comelico Dam (Fig. 5.3) validate and complete information 

extracted from maps but unfortunately covered just a limited part of the studied river. 

For the simulations, the cross section geometries at various locations were mainly extracted 

from aerial and digital data (1:5000, .dxf files, contour maps with a contour-line interval of 

5m). Due to the insufficient resolution of the existing contour map (5 m), the lower parts of 

the cross-sections were completed artificially by assuming a parabolic shape. Obviously this 

assumption is a rough estimate of the real profile. Neverthless, as much as possible these 

cross section geometries were modified based on the surveyed cross section data (2005), 

which was available only for the upper part of the study reach. 
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Figure 5.3. Piave river’s (from Comelico dam to the beginning of Pieve di Cadore Lake) 

channel thalweg elevation (from map and surveyed) and locations of cross sections surveyed. 
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3.3 GRANULOMETRIC DATA 

The sampling method was designed to investigate longitudinal, vertical (armouring) and 

temporal variations in the bed material. Along the study reaches, surface and volumetric 

material was sampled in different sites and in different times (Table 5.1 and Fig. 5.4). 

 

Study reach Location (Fig. 1b) Surveyed 
period 

Number of 
samplings 

Type of 
sampling 

Piave river Tudaio valley (Sect. 2) August 2005 5 Surface 
Piave river Cima Gogna (Sect. 19) August 2005 1 Vol. & Surf. 
Ansiei river Cima Gogna (Sect. 19) August 2005 1 Vol. & Surf. 
Piave river Tudaio valley (Sect. 2) November 2005 1 Surface 
Piave river Cima Gogna (Sect. 19) November 2005 1 Surface 
Piave river Pelos November 2005 1 Surface 
Piave river Cima Gogna (Sect. 19) August 2006 4 Volumetric 
Ansiei river Cima Gogna (Sect. 19) August 2006 1 Volumetric 
Cridola river Lozzo di Cadore August 2006 2 Volumetric 

Pieve di cadore lake Lozzo di Cadore (Sect. 43) August 2006 2 Volumetric 
 TOTAL SAMPLINGS 19  

Table 5.1. Location, number and type of granulometric sampling in study reaches 

(2005/2006). 
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Figure 5.4. Grain size composition along the Piave river 

 

Surface material was sampled using the grid by number method (Surian, 2002). Gravel 

samples were taken from exposed bars (lateral, mid-channel or point bars) and close to active 
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channels. Since this method doesn’t allow to sample fine materials, some volumetric 

samplings were made in the same places to characterize the bed complete granulometry. 

The tributary Ansiei (where virtually flows only clear water) presents an armoured bed with 

definitely coarse material (Fig. 5.4). The Piave reach below the Comelico dam, by contrast, 

presents a more complex pattern, with layers of different material caused by the chronological 

sequence of strong deposition and subsequent slow erosion-phases. 

In particular, two series of samplings were made in the Piave river before and after the flood 

event of October 2005. In this way it was possible to distinguish the finer material of the 

stratified thick layer (yellow line in Fig. 5.4) (deposited during flushing periods) from the 

coarser material of the bottom (red line in Fig. 5.4). 

 

4. NUMERICAL MODELING 
The CCHE1D is an unsteady model, it was used to reproduce both the quick chronological 

sequences of strong deposition (hours) due to flushing activities (or strong erosion due to 

flood events) and subsequent slow erosion-phases (months) with relatively small flow (the so-

called “vital minimum discharge”). 

A simpler but more efficient model (STERIMOR, from University of Padua, see Chapter 2) 

were used for simulating the long-term tendency (years or decades) of the morphology of the 

river. The STERIMOR model (STEep RIver MORphology) is based on quasi-uniform flow 

hypothesis and consent, filtering the morphological fluctuations due to short term 

components, to predict the long-term evolution (time-averaged values over a year or number 

of years) of the study reach. 

 

4.1 CCHE1D MODELING SYSTEM 

The CCHE1D model is a one-dimensional model but it includes a (quasi 2D) component for 

simulating the cross-sections evolution of the channel (with bank erosion procedures). It 

simulates the non-equilibrium transport of non-uniform total load under unsteady flow 

conditions in dentritic channel networks (Wu et al., 2004). 

The model offers four method for the determination of sediment transport capacity; for the 

purpose of this work, the modified Engelund and Hansen’s 1967 formula was choice. The 

hiding and exposure correction factor εk for non-uniform material is determined with Wu et 

al’s (2000a) method. 
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4.2 STERIMOR MODELING SYSTEM 

The STERIMOR model is based on a relatively simple hydrodynamic component, while 

much attention is devoted to the non-uniform distribution of sediment grainsize (see Chapter 

2). Model consider 4 granulometric fractions (size class k) and the transport equation (Chaper 

2, eq. 2.7) is: 
m n

k c k kp q
k

Q JP
B d

α β ζ=         (5.1) 

where Q is the water discharge, B is the active channel width and J is the energy slope of the 

flow. The exposure-correction coefficient is the same of CCHE1D (ζk= εk). 

The formula is similar to the Engelund and Hansen’s transport formula (Di Silvio, 1991) with 

the following values of the exponents 

m=17/10=1.7   n=33/20=1.65   p=7/10=0.7   q=1 

The value of αc is equal to the following equation (eq. 5.2) and in all simulations carried out is 

considered 
2

0.310.1
2c s

s

k
g

γα
γ γ

⎛ ⎞
= ⋅⎜ ⎟−⎝ ⎠

       (5.2) 

 

5. SHORT TERM SIMULATIONS 
One-year simulations were conducted for the entire 2004 (Fig. 5.5a, reported the event 

starting the 100th day of the year) and the entire 2002 (Fig. 5.5b, reported the event starting 

the 300th day of the year). 

Several important parameters were evaluated according to the CCHE1D computational limits 

(Wu et al., 2004). Because of the lack of detailed surveying data, Manning’s roughness 

coefficient was considered constant and proportional to the representative diameters of the 

bed material. The non-equilibrium adaptation length of bed load was calibrated as 100 m. The 

mixing layer thickness is assumed to be twice the representative diameters of the coarsest 

particles d90 (it was set equal to 0.2 m). Several computational time-step were tested (from 1 

minute to 15 minutes) and it was found that the simulations results are not particularly 

sensitive to the length of this range. Therefore, only the simulation results with 10-minute 

time-steps are presented in this paper.  

 

5.1 ONE-YEAR SIMULATIONS 

In the upper reach of the Piave River, (Fig. 5.5a, section 2) the consequence of flushing 

operation is a strong deposition of stratified material that is partially eroded by the subsequent 
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low water flood. Thalweg elevation can increase of about 4-5 meters at the end of the 

operation. The deposited material rapidly lessened with distance from the dam and in the 

proximity of Cima Gogna, about 3,500 meters below the dam (Fig. 5.5a, section 19), the bed 

area change is still evident but much smaller (thalweg elevation increases just 0.5-1 meter). 

Finally, about 800 meters below, after the confluence with the tributary Ansiei, the effects of 

this deposition are rapidly removed by the tributary river (Fig. 5.5a, section 26) and almost all 

the deposited sediments are washed out by the incoming water.  

 

100 150 200 250 300 350
0

10

20

30
Boundary conditions  (flushing operation May 2004)

(days)

Q
 (
m

3 /
s)

100 150 200 250 300 350
0   

0.05

0.1

0.15

Q
s 

(m
3 /

s)

100 150 200 250 300 350
-50

0

50

100
Accumulated Bed area changes

(days)

B
ed

 a
re

a 
va

ria
tio

n 
(m

2 )

300 310 320 330 340 350
0

50

100

150

200
Boundary conditions  (flood event Nov/Dec 2002)

(days)

Q
 (
m

3 /
s)

300 310 320 330 340 350
-200

0

200
Accumulated Bed area changes

(days)

B
ed

 a
re

a
va

ria
tio

n 
(m

2 )

300 310 320 330 340 350
0

0.1

0.2
Variation of the D50

Temporal variation (days)

D
50

 (
m

)

100 150 200 250 300 350
0

0.1

0.2
Variation of the D50

Temporal variation (days)

D
50

 (
m

)

Water discharge

Solid discharge

Section 2 Section 19 Section 26 Section 43

Water discharge

 
Figure 5.5. Upstream boundary conditions (1) and consequent evolution of (2) bed area and 

(3) grain-size at different sections, respectively during (a, left side) flushing operation of May 

2004 and (b, right side) flood event of Nov\Dec 2002. [As shown in Fig. 5.1b, the 2,19, 26 and 43 

sections are located respectively 200, 3500, 4250, and 8250 meters below the Comelico Dam]  

 
What is more interesting is that the flushing operations affect also the lower part of the reach 

(part of the released sediments starts to reach the lake after about seven days), in proximity of 

the Pieve di Cadore Lake (Fig. 5.5b, section 43, outlet section). The effects are considerable 

and the material continue to settle also after the flushing events. This phenomena is probably 

due to the moderate flow (prescribed by environmental regulation) that partially eroded the 

deposited material and transport it to the Pieve di Cadore Lake. 



92   Simplified models for morphological evolution of river and lagoon systems 

Analyzing the variation of the bed material composition, the granulometric size (D50 , Fig. 

5.5a – 3) decreases as a consequence of the finer material deposited by flushing and increases 

during the erosion with moderate flow (for the armouring tendency).  

In the year 2002, there were flushing operations (May 2002) and a strong flood event (Fig. 

5.5b) during the end of the year (Nov/Dec 2002). The flood period caused a strong erosion in 

the upper part of the Piave (Fig. 5.5b, Sec 2) and consequent coarsening of the bed material. 

The flood effects also can be noticed at the outlet section (beginning of the Pieve di Cadore 

Lake, Fig. 5.5b, Sec 43) where sediments transported seem to reach the lake. 

 

5.2 MULTIPLE-YEAR SIMULATIONS 

In order to extend the study to the long-term morphodynamic effects of the chronological 

sequence of strong deposition and subsequent erosion-phases, the last  six years (from  July 1st 

1999 to June 30th 2005) were simulated with the CCHE1D model (Fig. 5.6).  

 

 
Figure 5.6. Upstream boundary conditions (1) and consequent (2) bed area evolution and (3) 

accumulated volumetric sediment yield at different sections, simulated from July 1st 1999 to 

June 30th 2005.  

 

During this period three flushing operations were carried out and several strong flood events 

were recorded. As shown in Fig. 5.6, the results of this six-years simulation confirmed what 
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was previously underlined; as a consequence of the flushing operations, considerable amounts 

of sediment deposit in the first few hundreds meters downstream of the release point (section 

2); the moderate and low flow (normally released from the dam) are not sufficient to carry all 

the sediments downstream. 

 

6. LONG TERM SIMULATIONS 
To reproduce the long-term (decades or centuries) tendency of the morphology of the river 

downstream of the dam it was necessary to apply a simplified model (STERIMOR) that 

enable us, to reduce the computational time for long-term simulation, and avoid using an 

unsteady model to run with low efficiency. 

The validity and limitations of the local-uniform-flow hypothesis, were in detail discussed in 

Chapter 4 but, generally, quasi-uniform models can be applied to mountain rivers (as the 

upper Piave River), characterized by quite high values of Froude number (larger than or close 

to 1). 

Considering, for instance, one-year simulation (2004, with the flushing event of May) and 

comparing the simulation results between CCHE1D and STERIMOR models (Fig. 5.7), the 

trend is similar and the difference between the total material discharge in every section was 

less than 20% (Fig. 5.7, green line). Moreover, this difference, seems to decrease with 

decreasing time and spatial resolution.  
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Figure 5.7. Comparison between results of the STERIMOR and CCHE1D models for 

simulation of the flushing event of 2004 (total amount of sediment discharged for each section 

and relative error). 

 

By assuming an hypothetical year with two wet periods (a moderate flow and a flood period) 

and flushing events alternating every two years, twenty years were simulated (Fig. 5.8). 
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Preliminary results shown the upper part of the river, in spite of the fluctuation due to the 

flushing and flood events, during the long period seems to preserve (except a slight 

degradation) the current elevation. Instead, the middle course of the river has been incising by 

the tributary Ansiei. In fact, the clear water, incoming from the S. Caterina Dam, can be 

referred to as hungry water and causes a slow but constant degradation of the River bed and 

coarsening of the bed material. 

 

 
Figure 5.8. Simulation of the bottom profile evolution for long term simulation (20 years). 

 

7. CONCLUSIONS 
One-year simulations (2002 and 2004 year) were conducted to calibrate and validate the 

models with the available data. These simulations were also for investigating the fate and 

transport of the flushed sediment. After the flushing operations, thalweg elevation increases 

considerably in the upper part of the river, but the deposited material rapidly lessened with 

distance from the dam and in proximity of the confluence with the tributary Ansiei, the effects 

of this deposition are rapidly vanished. Simulations results also show that the flood period 

caused a strong erosion in the upper part of the river (with coarsening of the bed material) but 

the effects can also affect the outlet section (Pieve di Cadore Lake). 

The six-years simulations (from July 1st 1999 to June 30th 2005) were conducted to study the 

middle-term consequences of strong deposition and subsequent erosion-phases. Simulations 

show that after six years only part of the sediments released from the dam reach the outlet 

zone. This is in part due to the particular dry years (2003 and 2004) but maybe also the 

simplified hydrology underestimates the total sediment transport along the reach. Analyzing 

the variation of the bed material composition, during this six years, the granulometry of the 

bed decreases as a consequence of the finer material deposited by flushing and increases 

during moderate and flood period (it’s more evident in the upper part of the study reach). 
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Besides this distinction, along the study reach it is possible to distinguish a progressive 

reduction of bed material size (“downstream fining”) in spite of some irregularities probably 

due to the tributaries’ modifications in the sediment texture. 

The twenty-years simulations (as hypothetical future scenario) show that while for the long-

term period, alternating flushing and flood events doesn’t affect the mean bottom slope, the 

tributary Ansiei, with his “hungry” water, seems to incise the Piave bed elevation. This 

general trend seem to affect also the lower part of the river, where recent measurements 

demonstrate a reduction of the bed elevation and coarsening of the bed material. 

Is necessary to underline that the simplified hydrology considered and neglecting the finer 

transport material, limits the study of the Pieve di Cadore Lake’s sedimentation. As a matter 

of fact, the sedimentation rate of the lake reproduced with simulations is about 120,000-

150,000 m3/year, while from the field measurements, results of about 180,000-200,000 

m3/year in the last 6 years (in the past decades it was more than 300,000 m3/year). 

In the future the models so calibrated, will be applied also to the study of the sedimentation 

process inside the Pieve di Cadore Lake. 
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GENERATION AND EVOLUTION 
OF A TIDAL NETWORK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUMMARY 
The branching channel generation in a short tidal basin has been modeled (Fasolato et al., 

2004) by a  long term morphological model based on the notion of long term equilibrium 

concentration, intertidal diffusion coefficient (Di Silvio, Padovan, 1998) and on the 

simplification of the two-dimensional shallow water equations. The model consents to 

reproduce, in a schematic lagoon, the network ontogeny and the subsequent morphological 

bottom evolution, as a consequence of a breaching of the littoral dune line. As the channels 

evolve, the system tends asymptotically toward a quasi-equilibrium condition apparently 

characterized by a stable planimetric configuration of the channel network. Numerical 

channel structures and their watersheds are qualitatively similar to the Venice Lagoon’s 

ones. It has been also shown that the simulated lagoon embayment tends to develop towards 

an increasingly lower state of energy. 

 



98   Simplified models for morphological evolution of river and lagoon systems 

1. INTRODUCTION 
Channels, shoals and marshes are important features in estuaries and tidal inlets. The tidal 

network controls the hydrodynamics and sediment exchange of the entire tidal basin while the 

intertidal areas are of great ecological importance, being the feeding and breading grounds for 

a varieties of species.  

Human action (hydraulic constructions or dredging activities) and long term natural events 

(sea level rise or subsidence) can alter and change the natural equilibrium of the 

morphological and hydraulic tidal environment, therefore it is important to understand and 

predict the morphodynamic behavior of these complex systems. Recent developments for 

automatic extraction of the tidal channel network from digital terrain maps (Fagherazzi et al., 

1999) have improved the possibilities to study these systems (Rinaldo et al., 1999a, 1999b). 

Using this technique, it was shown that tidal networks exhibit a great variety of geometrical 

and topological forms, and that channels in different tidal basins exhibit quite different overall 

scaling characteristics (Fagherazzi et al., 1999; Rinaldo et al., 1999a). 

At the same time, typical timescales for adjustment of the channel/shoal pattern after 

completion of major works are in the range of decades but in the case of environmental or 

geological changes can go over centuries (de Vriend, 1996). 

Object of the present paper is the morphological evolution of tidal systems (with all their 

components of channels, shoals and marshes), initiated by a persistent large breach trough the 

littoral dunes protecting the adjacent coastal plain. The evolution may be affected by possible 

changes of the forcing action (e.g. sea level rise) as well by anthropogenic action (dredging 

and construction). 

The conventional approach to lagoon morphodynamic is based on the repeated application of 

“tidal scale” models (Marciano, 2005). It is interesting, however, exploring the possibilities 

offered by long-term morphological models, defined also as conceptual models, that consent 

to simulate and reproduce the long term (centuries) system’s evolution with a relatively light 

computational effort.  

Conceptual models filter the morphological fluctuations due to short term components and 

reproduce all the processes (with time-averaged values over a year or a number of years). 

They incorporate many physical (and even biological) processes via a number of algebraic or 

differential equations containing semi-empirical coefficients, which can be calibrated by 

direct comparison with experiments or with specific short-term models.  
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The simplified two-dimensional conceptual model presented here, simulates the long term 

contributions of tidal currents and wind waves to the sediment transport and bottom evolution 

in a tidal basin. The effect of halophyte vegetation or marshes is also put into account. 

 

2. CONCEPTUAL MODEL 
2.1 HYDRODYNAMICS 

In the present conceptual model (Di Silvio, Padovan, 1998) sediments are not physically 

conveyed to an fro by tidal currents but their “net” (long term) transport is given in the form 

of intertidal dispersion. Tidal currents, however, are utilized to define the intertidal dispersion 

coefficient Dij (eq. 6.8). 

For this purpose the waterflow model may be relatively crude as it should provide only the 

velocity field in maximum flood conditions. It is based on a simplification of the two-

dimensional shallow water equations, similar to the dimensionless Poisson form obtained by 

Rinaldo et al. (1999b).  

In a relatively “short” tidal lagoon (with propagation time between inlet and lagoon basin 

lower than a quarter of a tidal period Tm), one can assume that at maximum flood conditions 

friction terms dominate inertial effects in momentum equations and the flood velocity of tidal 

elevation ( τη ∂∂ ) is constant (and equal to the maximum rising velocity in the sea) in each 

part of the lagoon (Fig. 6.1). 
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Fig. 6.1 Tidal elevation at maximum flood conditions. 

 

The friction term, under this hypothesis, has been linearised using the energy criterion first 

introduced by Lorentz (1926), which allows one to write the depth averaged velocity as: 
2

2 2
hh CU

xU V
η⋅ ∂

= −
∂+

   (6.1) 
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2

2 2
hh CV

yU V
η⋅ ∂

= −
∂+

   (6.2) 

where (U, V) denote the depth-averaged flow velocities in the (x, y) directions respectively, 

h=zb - η is the local water level, zb is the bottom depth, η the local surface elevation and Ch is 

Chezy’s coefficient. 

To put into account the resistance due to vertical walls in the inlet and along the barrier island 

the Chezy’s coefficient is considered linearly increasing from 30 to 50 m1/2/s over a distance 

of 500 m from the wall. In all the other part of the lagoon is considered constant and equal to 

50 m1/2/s (D’Alpaos et al., 2007). 

The two-dimensional continuity equation can be written as: 

( ) ( ) 0
hU hV
x y

η
τ

∂ ∂∂
+ + =

∂ ∂ ∂
       (6.3) 

Local surface elevation η(x,y) in the basin lagoon can be defined substituting expressions 

(6.1) and (6.2) into (6.3) and the governing equations can be simplified with a dimensionless 

Poisson form. The Poisson form equation can be correctly used for determining the velocity 

field in the shoals in which the depth is more or less uniform. As the boundary conditions for 

the shoals it can be assume that the level η0 in the sea propagates instantaneously and without 

damping along the deeper channels (Rinaldo et al. 1999b). 

This procedure can be applied if the planimetric structure of the channels is known and stable. 

The different behaviour of channels and shoals, however, cannot  be postulated during the 

generation of the very same channel network. 

If one wants to calculate local surface elevation and field velocity all over the lagoon without 

distinguishing between channels and shoals, it is not possible to neglect bathymetric gradients 

in direction x and y. So it is necessary to solve the system of equations (6.1), (6.2) and (6.3) 

obtaining the following expression (6.4) and using “under-relaxation” approximation method 

for the convergence; 
2 2 2 2

0max
0 0

2 0h h
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h C h C
T x U x y U y
π η ηη

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −∂ ∂ ∂ ∂
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   (6.4) 

where 2 2
0U U V= + . 

 

2.2 SEDIMENT TRANSPORT 

The  two-dimensional intertidal balance equations for the sediments (Chapter 1, eq. 1.18) are 

written as: 
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yx TTCh E
t x y

∂∂∂
+ + =
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        (6.5) 

where Tx and Ty are the “net” sediment transport (averaged over a number of tidal oscillations) 

in the direction x and y respectively; E is the long-term entrainment or deposition rate and the 

first term Ch t∂ ∂  (the accumulation term) is neglected because much smaller then E (Fig. 

6.2). 
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Fig. 6.2 Long-term balance of sediment trough a infinitesimal element of the lagoon. 

 

The following expressions for the "net" sediment transport are obtained by integrating the 

suspended transport equations, over a long period of time: 

x xx xy
C CT h C U D D
x y

⎛ ⎞∂ ∂
= ⋅ ⋅ − −⎜ ⎟∂ ∂⎝ ⎠

      (6.6) 

y yx yy
C CT h C V D D
x y

⎛ ⎞∂ ∂
= ⋅ ⋅ − −⎜ ⎟∂ ∂⎝ ⎠

      (6.7) 

where h is the averaged water depth, C the intertidal averaged sediment concentration in the 

water column, U and V denote the depth-averaged residual (intertidal) flow velocities in the x 

and y directions, Dij the intertidal dispersion tensor. 

In the chosen lagoon basin, the residual terms of advection C V⋅  and C U⋅  can be neglected 

in comparison with the intertidal dispersion transport. 
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2.3 INTERTIDAL DISPERSION 

The intertidal dispersion is the dominant mechanism of transport in a long time period. It 

determines the spatially distribution of lagoon’s suspended sediments and it is controlled by 

the gradient of the long term averaged sediment concentration. 

For a tidal lagoon formed by a network of deep channels cut in broad and shallow areas, the 

dominant intertidal mixing is due to the alternate “trapping and pumping” phenomena 

between channel and shoals during the entire tidal cycle (Schijf and Schönfeld, 1953). 

To understand this mechanism, let suppose that any tracer (not necessarily a sediment) is 

continuously discharged in the lagoon and from there to the sea. 

In tidal flood conditions clear water enters from the sea to the lagoon basin transported by the 

channel. The tracer concentration in the channel is smaller than in the shoals, so the clear 

water is transported to the shoals from the channel. In ebb tide conditions the concentration in 

the shoals is higher and the tracer is transported to the channel and eventually to the sea (Dal 

Monte, 2004). 

The same mechanism applies to suspended sediment if the concentration in the sea is lower 

than within the lagoon (degrading lagoon). The sign of transport is inverted if the 

concentration in the sea is higher than within the lagoon (silting lagoon). 

The tensor of intertidal dispersion Dij expresses the physics of this exchange through a square 

proportionality with the field velocity (Dronkers, 1978): 
2

2
xx xy

e
yx yy

D D U UV
D k

D D VU V
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

      (6.8) 

The spatial distribution of the dispersion tensor D depends on the velocity field, in its turn 

depending on the planimetric structure of the channel network. It is assumed in this model 

that the velocity field directions remain basically constant during the tidal cycle. As a 

conseguence the distribution of D  be provided by the velocity field in maximum flood 

conditions (par. 2.1). 

The value of the constant ke, also adsorbs the frequency distribution of the intensity of tidal 

currents. 

An attempt of the theoretical evaluation in the case of one directional channel has been made 

(Dal Monte e Di Silvio, 2003). In this work the value of ke is considered constant (2.55*103 

sec-1) and it corresponds to the maximal value of 500 1000xxD −∼  m2/sec in the inlet area. 

Similar values have been experimentally found in the lagoon of Venice (Imberger, 1992). 
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2.4 EQUILIBRIUM CONCENTRATION 

The erosion rate E (eq. 6.5) is expressed by the following first-order reaction equation: 

( )CCwE eq −⋅=        (6.9) 

where C is the time-averaged sediment concentration and Ceq is the equilibrium concentration 

of the water column (Chapter 1, par. 4.3). The parameter w is proportional to the fall velocity 

ws of the equivalent particle size of the bottom material. The ratio (w/ws) depends in principle 

on the vertical profile of the concentration. In the present work w is considered constant an 

equal to 0.003 m/sec. 

The equilibrium concentration in a certain place is the average sediment concentration over 

the water column which would yield neither erosion or deposition (equilibrium condition). It 

depends on the grain size diameter of the particles, on the local hydrodynamics (waves and 

currents) and on the local depth and can assume an expression of the following type (Chapter 

1, par. 4.3): 

( ) ( )
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,,1

++=
−

      (6.10) 

where the three terms consider the entrainment effects on the sediments of sea waves, tidal 

currents and local wind respectively. Note that all the three terms decrease when the local 

depth increases. Following the transport monomial formula (Engelund-Hansen), the 

exponents m, n and p are considered, respectively, equal to  3, 5 and 1. 

The function fsea is considered increasing parabolically along the distance from the shore, 

from 0 (in the middle of inlet) to 2.5*10-2 m3 and equal to zero in the lagoon basin.  

The value of atid, which depends on the grain size distribution, is also assumed constant 

(2.7*10-3 sec4/m3) inside and outside the lagoon basin. 

The quantity 2 2q h U V= + is provided by the hydrodynamic sub-model (par. 2.1). 

The local wind wave function fwind is a function of the local fetch and wind intensity and it 

may appreciably decrease in presence of sea weeds. In the present simulation it is assumed 

fwind =2.5*10-5 m. 

The averaged sediment concentration of the water column C, can be so calculated solving the 

system (eqs. 6.5-9) expressed in the following symbolic equation (6.11): 

( ) eqh D C w C w C∇⋅ − ⋅ ⋅∇ + ⋅ = ⋅       (6.11) 
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3. BOTTOM EVOLUTION 
3.1 MARSHES GENERATION 

The long-term evolution of the bottom depth, h, is given by adding up the bottom erosion rate 

E, the eustatism αe (rise of mean sea level) and the subsidence rate αs (settlement of ground 

surface), (eq. 6.12). 

seE
t
h αα ++=
∂
∂        (6.12) 

A better insight into the physical mechanisms behind this aspect of lagoon morphodynamic is 

worth pursuing.  

Sediment deposition occurs in the shoals when the local concentration C is larger than Ceq (eq. 

6.9); as the depth progressively decreases, the value Ceq increases (eq. 6.10), the settling rate 

is increasingly compensated by the pick-up rate and the bottom rise slows down. However if 

sediment deposition proceeds, the bottom will emerge more and more frequently form the 

water. As soon as the bottom is not submerged for a sufficiently long period of time during 

the tidal cycle, vegetation takes place, the bottom becomes protected and the pick-up rate 

vanishes. At this point, all the sediments reaching the marshes are captured and the bottom 

rapidly rises. Rise, however, is very soon limited by the rapid reduction of water flow when 

the bottom is above the mean sea level. Above a certain elevation, in fact, only a negligible 

amount of sediment reaches the marshes to compensate eustatism and subsidence. In the 

model, the two phenomena are simulated, respectively, considering Ceq=0 when zb<zbv 

(bottom above the limit of vegetation) and Dij =0 m2/sec when zb<zbt (bottom above the limit 

of the highest tides). 

The value of the zbv (limit of vegetation) depends on the local species of halophyte vegetation. 

In the present simulations it has been assumed zbv=0 m (mean sea level). 

The value of zbt (limit of high tides) depends on the significant high waters. In the present 

simulations it has been assumed zbt=-0.35 m. 

 

3.2 MARSHES DEMOLITION 

According to the mechanism described in 3.1, the equilibrium elevation of marshes is to be 

found between zbt and zbv depending upon the values of αe and αs. As matter of fact, the 

bottom distribution of the marshes in the lagoon of Venice is comprised in quite narrow 

range. In any case, if the elevation of the marshes is practically constant, their surface may be 

strongly variable, depending upon the sediment balance in the shoals. 
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Indeed the collapse of the marsh contour is determined by an excessive depth of the adjacent 

shoal. The maximum permissible step between marshes and shoals depends basically on the 

soil characteristics (e.g 0.25 m). This mechanism activated whenever the shoals are subjected 

to erosion, has not been incorporated in the present simulations. 

 

3.3 EFFECTIVE WATER DEPTH 

The average water depth in a certain location of the lagoon is not always given by the value of 

h, but depends on the local bottom elevation. In fact, if the annual maximum tidal range is am, 

it follows that, during the year, the bottom is permanently submerged only where zb>am/2; by 

contrast the bottom is never submerged where zb<-am/2, while we have an intermediate 

submergence for values in between. if we assume that the frequency distribution of the tidal 

range is sensibly linear, we may obtain the value of the effective water depth h* in each 

location of the lagoon, by multiplying the local value of h by the submergence period of the 

tide. One find: 

h*=h     (if zb>am/2)    (6.13) 
2

*
0

0

11 1
2

hh η
η

⎛ ⎞⎛ ⎞
= ⋅ − ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (if –am/2<zb<am/2)   (6.14) 

h*=0      (if zb<-am/2)    (6.15) 

The effective value of h* should be used instead of h, in every equation of the model. 

 

4. NUMERICAL MODEL 
4.1 MODEL DESCRIPTION 

The numerical two-dimensional model consists of a number of modules which describe 

hydrodynamics, sediment transport and bottom evolution respectively. The dynamic 

interaction of these processes with the bed-topography changes is taken into account in the 

time-loop. 

The following flow-chart describes every step of the simulation (Fig. 6.3). The simulation 

starts with initial conditions and computes lagoon hydrodynamics and local surface elevation 

at maximum flood conditions. In a second step, the model calculates the local intertidal 

dispersion coefficients and equilibrium concentration as a function of hydrodynamic and 

depth conditions which control sediment transport and the evolution of channels, shoals and 

marshes. As third step  the model computes the local sediment concentration and new 
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bathymetric depth. An under relaxation procedure is employed for solving the non linear 

hydrodynamic equations. 
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Fig. 6.3 Model flow chart. 

 

4.2 MODEL SETUP 

The generation process of the lagoon has been assumed to be initiated by an occasional large 

breach of the littoral dunes, which will be transformed in the lagoon inlet. Trough the breach 

water will invade a portion of the coastal alluvial plain behind the dunes which will constitute 

lagoonal basin. 

The model is applied to a schematic representation of the sea (longitudinal direction between 

0 km and 3 km, area 42 km2); breach and inlet area (longitudinal direction between 3 km and 

4 km, area 1 km2); and lagoon basin (longitudinal direction between 4 km and 11 km, area 98 
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km2). The schematization makes it possible to investigate the influence of the sea waves on 

the development of the channel pattern within the lagoon. 

As initial configuration, the bottom bathymetry in the sea is considered linearly increasing 

along the longitudinal direction seaward (from –8 m to -1 m near to the inlet) and constant (–1 

m) in the inlet and in the lagoon. 

Transversal
direction [m] Longitudinal

direction [m]

Offshore area

Lagoon basin

Inlet zone

Bottom depth [m]  
Fig. 6.4 Bottom bathymetry of the flat lagoon conformation (x longitudinal direction, y 

transversal direction, z bottom bathymetry) 

 

Different triangular model grids are used in the numerical computation but the most of 

simulations are implemented with a mesh grid of 11’984 triangles of about 200 m sides. 

The vertical boundary enclosing the lagoon basin are fixed and impermeable. At the seaward 

boundary, constant values of tidal range and concentration (equal to the local equilibrium 

concentration) are imposed.  

 

5. MODEL APPLICATION 
The model described in the sections above is still to be subject to appropriate operations of  

validation, calibration and verification. These operations will be based first of all, to 

systematic sensitivity analysis with respect to the main parameters of the model: the meteo-

marine coefficients fsea, fwind and am (eq. 6.10) which control the equilibrium concentration; the 

coefficient ke (eq. 6.8) quantifying the tensor of the intertidal dispersion; the coefficient w (eq. 

6.9) defining the intensity of sediment exchange between water column and bottom. 
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The model results, obtained with different parameters, will subsequently be compared with 

known situations of quasi-equilibrium conditions or morphological evolution at historical 

scale. 

This will be especially done with reference to the lagoon of Venice, but also to other similar 

environments (“short” tidal lagoons with different tidal range, sea force and local wind), e.g. 

the Wadden Sea in the Netherlands. It seems likely, in fact, that while the meteo-marine 

parameters control the quasi-equilibrium morphological configuration of the lagoon, the 

dispersion tensor and the vertical exchange parameter control the response rapidity of the 

morphology to natural and anthropogenic changes. 

 

5.1 FIRST RESULTS 

The model has been applied to simulate the generation of a tidal basin as the consequence of 

the sea ingression in a rectangular basin of given surface (7x14 km2) trough a breach of a 

given width (1000 m). The maximum annual tidal range has been assumed am/2=± 0.35 m 

and the initial depth in the basin was assumed constant (h=1 m). The provisional values of the 

model parameters have been assumed as mentioned in the relevant sections. The model results 

indicate two distinct phases of morphological evolution. During the first phase (lasting a few 

weeks) the proper ontogenetic process of the channel network occurs: following the breach 

the depth in the inlet almost immediately increases from 1 m to about 8 m while the scour 

rapidly propagates towards the sea and (even more) towards the lagoon (Fig. 6.5). 
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Fig. 6.5 First phase (few weeks) of the ontogenetic process of the channel network. 

 

After a few days the external configuration of the “fuosa” (as it was called in Venice the 

external delta, now obliterated by the jetties) is practically completed. Within the lagoon, by 

contrast the tidal network continues to be formed by retrograde erosion of the channels ad 

simultaneous silting of the adjacent shoals. After about 20 days, the planimetric configuration 

of the tidal network has reached a quasi-equilibrium configuration, but the bathymetric 

evolution is still active, with a very slow progressive deepening of the channels and a 

corresponding rising of the shoals. During this phase some marshes are also formed near the 
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source of sediment (the inlet), where the bottom elevation reaches the mean sea level and 

vegetation thrives (Fig.6.6). 
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Fig. 6.6 Second phase (several years) of morphological evolution and consequently marshes 

and islands formation. 

 

The second phase or morphological evolution is much slower than the first one and may last 

several years. Only bathymetry is involved in the process, while all the quantities basically 

related to the planimetric configuration (flow field pattern) tend to remain constant. Therefore 
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the values of the parameters controlled by the flow field pattern (spatial distribution of 

( ) 2 2,q x y h U V= +  and of the dispersion tensor D , eq. 6.8) do not change in time (Fig.6.7). 
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Fig. 6.7 Evolution of the spatial distribution of q(x,y) in different time scale (as it is possible 

to observe, there is a very little changing of q(x,y) after 10 years). 

 

This result is extremely important from the practical point of view, as it allows to apply the 

morphological model to extremely long period of time, for long-term sediment balance, 

without repeating the computation of the flow field, definitely the model component which is 

the most time consuming. On the other hand, the immediate planimetric effects produced by 

new constructions can be simulated by relatively short period of time, even tough the 

corresponding CPU may be relevant. 

 

5.2 ENERGY EVOLUTION 

It may be interesting to observe the time evolution of the total kinetic energy of the lagoon, 

provided by the following integral: 

( )2 * 2 21 1
2 2kinetic

S

En mW h U V dSρ= = +∫      (6.16) 

where S is the total surface of the lagoon and h* is the “effective” depth. 
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As it appears from Fig. 6.8 the total energy of the lagoon tends to decrease with time, towards 

an (equilibrium) value apparently depending on the size of the lagoon and on is meteo-marine 

parameters. 
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Fig. 6.8 Total lagoon kinetic energy evolution (and its initial and final spatial distribution) 

during simulation. 

 

6. CONCLUSION 
The 2-D “intertidal” morphodynamic model described here is apparently able to reproduce 

both the “planimetric phase” of the lagoon ontogenesis (with the generation of the planimetric 

pattern of the tidal network) and the subsequent “bathymetric phase” of the depth adjustment 

of the channels, shoals and marshes in the lagoon. 

Although much more numerical analysis are required for validating, calibrating and verifying 

the model, the first results indicate that the time scales of the two phases are very different.  

During the first phase (lasting a few weeks) the proper ontogenetic process of the channel 

network occurs: following the breach, the depth in the inlet almost immediately increases 

while the scour rapidly propagates towards the sea and the lagoon. In this phase the lagoon 

system seems strongly variable (morphological variations occur rapidly, in few weeks) and 

kinetic energy of the system is particularly high. 
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In the second phase, after about 1 month, the planimetric configuration of the tidal network 

has reached a quasi-equilibrium configuration, but the bathymetric evolution is still active, 

with a very slow progressive deepening of the channels and a corresponding rising of the 

shoals and marshes’ formation (vegetation thrives). Also the energy system is lower than the 

beginning and continue, slowly, to decrease during the years. 
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Discussion and 
further developments 

 
 
 
 
 
 
The simplified morphodynamic models discussed in the present dissertation are all quite 

promising as far as their application is concerned. 

The first one (namely, the one-dimensional model for rivers under the hypothesis of steady-

uniform flow) is extremely robust and releasable in a variety of conditions. Although initially 

this model (STERIMOR) was employed only for mountain rivers (i.e. for quite high values of 

Froude numbers) (Chapter 5), it was made clear in this thesis that it may be applied also to 

lowland rivers (quite low values of Froude numbers), provided that appropriate sizes of the 

morphological box were assumed, depending on the local slope (Chapter 4). This means that 

no detailed information may be obtained over distances smaller than the box-size (up to tens 

of kilometers for large plain rivers), but only averaged ones. 

On the other hand, averaged information is quite sufficient for problems at the watershed 

scale and while providing the necessary boundary conditions for detailed investigations (e.g. 

with a 2D model) (Chapter 1). Simplified models based on the uniform-flow hypothesis, 

moreover, are the only ones which permit to cope with large unsurveyed watersheds (Ronco 

et al., 2008a) especially in developing countries. 

The second one-dimensional model (namely its more complete form based on the steady 

waterflow hypothesis, but properly simplified by linearizing the equations) can be analytically 

solved. The analytical solution permits an extremely useful insight on the relative importance 

of the boundary conditions and on the river’s reaction to the external perturbations (Chapter 

3). 

Predicting the effects of the external perturbations on the river equilibrium conditions is 

extremely important from the practical point of view. Evaluating the propagation and 

attenuation of these perturbations gives us an idea about the possible errors made by 

neglecting them (as it is usually the case: for example when assuming a unique relationship 

between water flow and solid discharge). 
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Further analysis might be conducted in the future by utilizing for these discussions more 

appropriate physical parameters. 

It seems in fact that the new, combiner parameter 
2

28 wave
E Fr U T

H
ψε

π
⋅

=
∆

 (Chapter 3) (including 

the Froude number and the perturbation’s wave period) could be more significant than the 

single parameters utilized up to now. 

The simplified model analyzed in this work for simulating the morphological changes of tidal 

lagoons (Chapter 6) is also very promising. This morphodynamic models is two dimensional 

and is based on the concepts of “tide-averaged and storm-averaged concentration” and 

“intertidal dispersion” of sediments. 

Consequently the model does not require a time-consuming simulation of each individual 

tidal cycle and each individual mind storm, but only of morphological changes on longer time 

steps. 

Although very much simplified from the hydrodynamic point of view, the model incorporates a 

number of fundamental, complex processes for the lagoonal environments. For example the 

building and the demolition of the tidal flat, taking into account the role played by the 

alophile vegetation. 

The simplified morphodynamic model of the lagoon indicates that there are two distinct 

morphological time scales: a shorter one (from weeks to months) for the planimetric initiation 

and development of the tidal channel network (ontogenesis) and a longer one (from decades 

to centuries) for the bathymetric evolution of channel cross-sections, shoals and tidal flats. 

The model has been applied up to now to a schematized geometrical situation and should be 

soon applied to more realistic conditions (lagoon of Venice). Moreover besides the intertidal 

dispersive transport of sediments, a certain amount of convective transport should also be 

incorporated in the model for simulating one-directional fluvial and littoral currents, as well 

as the (one-directional) effect of tidal asymmetry. 

Finally, all simplified the models analyzed in this dissertation require further verifications 

against experimental or field measurements and by comparison with non-simplified models.  
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NOTATION – Chapter 3 
 

Symbol Definition  Units Symbol Definition or expression 

A Wetted cross section m2 1A , 1B , 1C Coefficients for the expression of 
1c

p  

B Channel width m *
nf

c  
nf

c U= ⋅  

nf
c  Dimensionles perturbations’ 

celerities (n=1,2,3) - 1D , 1E , 1F Coefficients for the expression of 
1

0
1cβ  

Ch Chézy coefficient m1/2/s d  1 2d d=  

dk 
Representative diameter of k-

th cl. m *d  1 sd −=  

d  Mean diameter. m 
nch  Boundary amplitudes of the water depth 

waves (n=1,2,3) 

E Resistance coefficient - ch  
3

1 ncn
h

=
= ∑  

Fr Froude number - nk  ( )nX ω ψ= ∆  

g Gravity acceleration m/s2 *
nf

L  
nf

L H= ⋅  

H Average water depth m 
ncp  Boundary amplitudes of the solid 

transport waves (n=1,2,3) 

J Energy slope - cp  
3

1 ncn
p

=
= ∑  

nf
L  Dimensionles perturbations’ 

attenuation length (n=1,2,3) - *S  ( )2*1 η= −  

Pk Solid discharge of k-th class m3/s t *t U H=  

Q Water discharge m3/s x *x H=  

s Hiding-exposure exponent  
ncz  Boundary amplitudes of the bottom 

elevation waves (n=1,2,3) 

t* Dimensional time coordinate s cz  
3

1 ncn
z

=
= ∑  

Twave Perturbation period s α  21 Fr= −  

U Flow velocity m2/s α  ( )6α= ∆  

x* Dimensional space 
coordinate m 0

1 ncβ  Boundary amplitudes of the bottom 
composition waves (n=1,2,3) 

nX  Solution of the characteristic 
equation  (n=1,2,3) - 0

1cβ  
3 0

11 ncn
β

=
=∑  

Z Bottom elevation m γ  *1 sηη= +  

αc Transport formula coefficient - ε  ( ) 23 2 E Fr= ⋅  

βk Percentage of k-th class - ε  ( )26εψ ω= ∆  

βk
s Percentage below active-lay - η  ( ) ( )1 1d d= − +  

δ Active-layer thickness m *η  ( ) ( )* *1 1d d= − +  

∆ Relative mixing layer - ω  2 waveT H Uπ= ⋅  

ζk Hiding-exposure coefficient -   

ψ Sediment concentration -   
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NOTATION – Chapter 4 
 

Symbol Definition Expression Units 

Q Water discharge  m3/s 
A Wetted cross section  m2 
B Channel width  m 
x* Dimensional space coordinate  m 
t* Dimensional time coordinate  s 
H Local water depth   m 
Z Bottom elevation  m 
g Gravity acceleration  m/s2 
U Flow velocity  = Q/A m/s 
j Energy slope  - 
B Channel width  m 
Pk Solid discharge of k-th class  m3/s 
δ Active-layer thickness  m 
βk Percentage of k-th class  - 
βk

s Percentage below active-lay  - 
Ch Chézy coefficient  m1/2/s 
dk Representative diameter of k-th cl.  m 
d Ratio between diameters =d1/d2  
αc Transport formula coefficient  - 
ζk Hiding-exposure coefficient  - 
δ Active-layer thickness  m 
H Reference water depth  m 
B Reference width length  m 
Z Reference bottom elevation  m 
P Reference sediment transport  m3/s 
if Bottom slope =-∂Z/∂x* - 
iw Water slope =-∂y/∂x* - 
βk Averaged percentage of k-th class  - 
x Non-dimensional spatial coordinate =x*/H - 
t Non-dimensional temporal coordinate =t*U/H - 
α  =1-Fr

2 - 
Fr

2 Froude number =V2/gH - 
E Resistance coefficient =2g/χ2 - 
ε  =3/2E Fr

2 - 
η  =(1-d)/(1+d) - 
d*  =d1-s - 
η*  =(1-d*)/(1+d*)  
S*  =1- η*2 - 
ψ Sediment concentration =P/Q - 
∆ Relative mixing layer = δ/H - 
bc Amplitude of river width perturbation  - 
Ω Frequency of spatial perturbation =H/ λ - 
λ Wavelength of the channel width  m 
L Morphological box  m 
ω Angular frequency of temporal perturbation =2πTwave·H/U  

Twave Perturbation wave’s period  s 
γ Irregularity coefficient  s 

Q0 Annual flood peak  m3/s 
V0 Annual runoff volume  m3 
Vs Annual sediment runoff  m3/year 
qc Amplitude of discharge perturbation  - 
t̂  Non-dimensional (non-equilibrium) time  - 
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APPENDIX 
 

 
Appendix 3.A 
 

For supercritical flow (Fr>1) amplitudes 
ncp  results defined as the following expression: 
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where subscripts (x, y, z) means a circular permutation of (1, 2, 3), as for instance, (x, y, z)= 

(1, 2, 3), (2, 3, 1), (3, 1, 2). 

 

Instead, for subcritical flow (Fr<1) the expressions of the amplitudes 
ncp  assumes a different 

form, where subscripts (x, y, z) means a circular permutation of (1, 2, 3) and 
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⎜ ⎟− − ⎛ ⎞⎝ ⎠ + −⎜ ⎟⎡ ⎤ ⎝ ⎠Ω −Ω Ω −Ω Ω −Ω

⎢ ⎥+ +
− − −Ω −Ω ⎢ ⎥⎣ ⎦  

 

Appendix 3.B 
 

To annul the determinant of eqs. (3.34), it means to consider: 

( )*

* *

6 6 6 6

det 0 0

0

ki ki ki s

k

k S k

ε α α ε η η

ψ ω
ψ ψη ω

⎡ ⎤⎛ ⎞− − +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥− =
⎢ ⎥
⎢ ⎥− +⎢ ⎥∆ ∆⎣ ⎦

 

and after some arithmetic calculations (with * *21S η= − and *1 sγ ηη= + ) it can be expressed 

as: 

( )2 * * 0
6

k i S k ki kψ ω ψψ ω ε α η ω⎛ ⎞ ⎛ ⎞− + − − =⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠
 

that, with 26
εψε
ω

=
∆

, 
6
αα =
∆

 and kX ψ
ω

=
∆

, results eq. (3.38): 

( ) ( )( )2 * 1 1 0i X XS Xi Xε α γ− + − − =       (3.38) 
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Appendix 3.C 
 

Considering 1Xiε α>> >>  and, as first approximation, 1X ∼ , eq. (3.38) can be solved with 

an approximation value of 1/apprX γ= . For a better solution of the eq. (3.38), it is possible to 

find a little δ such as apprX X δ≅ +  can be a zero of the eq. (3.38). It’s easy to demonstrate 

that 
( )*

4

S
i

γ
δ

εγ

−
≅  and one zero of eq. (3.38) can be written as: 

( )*

1 4

1 S
X i

γ

γ εγ

−
≅ + . To find 

the other two zeros, it’s possible to find an approximation value * *2 2apprX i
S S
γ ε γ ε⎛ ⎞

⎜ ⎟≅ ± +
⎜ ⎟
⎝ ⎠

, 

considering  ( )X ε∼  and to correct this value with *2S
αγδ ≅ . So the other two zeros can be 

written as: 2/3 * * *2 2 2
X i

S S S
αγ γ ε γ ε⎛ ⎞

⎜ ⎟≅ ± +
⎜ ⎟
⎝ ⎠

. Once determined values of nX  the consequent 

values of nk , 
nf

c  and 
nf

L  can be easily expressed with eqs. 3.41-43. 

 

 
Appendix 3.D 
 

Considering, as first approximation, 0ε ≅  and 0α >>  the zeros of eq. (3.38) can be written 

as: ( ) ( )2* * *
1/ 2 1 2 1 4 2X S S Sαγ γα α≅ + ± + −  and 3 0X ≅ ; if it can be assumed the 

hypothesis of substantially wide granulometric distribution (S*<<1) and expanding the root of 

terms with a MacLaurin’s series, the first two solutions can be approximated as: 

( )1, 1apprX α αγ≅ +  and ( ) *
2, 1apprX Sαγ≅ + . As for uniform-flow solution (Appendic 3.C), 

these values can be corrected with appropriate 1,2,3δ  and with some easy computations the tree 

solutions become: 

( ) ( )1 1 1X iα αγ ε α αγ⎡ ⎤≅ + + +⎣ ⎦ ,  ( ) ( )*
2 1 1X S iαγ γ ε αγ= + + +  and ( )3 1X α αγ= + . 

Once determined values of nX  the consequent values of nk , 
nf

c  and 
nf

L  can be easily 

expressed with eqs. 3.44-46, with the further approximation of ( )1fα α= ≅ . 
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