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Abstract

Given a big set of data with several variables, the aim is the eval-

uation of each unit with a method that produces a synthetic mea-

sure describing a complex and non-observable concept; this goal is

achieved respecting the characteristics of the variables, specially the

measurement scale. The information gathered with partially ordered

sets (poset) reflects this aim, because posets depends only on the order

relations among the observations, and allows to handle ordinal and

dichotomous variables fairly. In this setting, the vector of variables

observed on a unit is handled as a unique entity called profile and not

as a group of different variables that need to be aggregated.

Starting from recent developments in poset theory, this thesis is orga-

nized in three parts. The first proposes to obtain a unique indicator

combining the values given by the severity measures for evaluation,

derived from the fuzzy identification method. The second contribu-

tion is the HOGS (Height Of Groups by Sampling) procedure, which

is aimed to estimate the average rank of groups of units of a big

population. HOGS is a step forward the statistical estimation of the

average rank of a profile; furthermore it allows the estimation of the

effect of external variables on the synthetic measure.

The last results are two new R functions: the first computes the

approximated average rank for large data sets overcoming the usual

sample sizes considered by the software usually used until now, the

second implements the information given by the frequency of profiles

in the computation of approximated average rank, making its use

more profitable for social sciences.



Abstract

Data una grande popolazione osservata su diverse variabili, ci si pone

l’obiettivo di valutare le singole unità con un metodo che sia in grado

di produrre una informazione sintetica per la descrizione di un con-

cetto complesso e non osservabile; in questa tesi si vuole raggiungere

questo scopo rispettando le caratteristiche dei dati, specialmente la

scala di misura di questi.

Gli insiemi parzialmente ordinati (poset) si adattano a questo scopo;

questo tipo di insiemi sono costruiti unicamente sulle relazioni d’ordine

tra le osservazioni e quindi consentoto di trattare le variabili ordinali

e dicotomiche in modo adeguato alle loro caratteristiche. Nella let-

teratura dei poset, il vettore di variabili osservate su una unità è

chiamato profilo e trattato come un oggetto unico senza procedure di

aggregazione.

Questa tesi si connette ai più recenti sviluppi nella teoria dei poset

ed è organizzata in tre parti principali. La prima propone una sintesi

dell’informazione fornita dalle misure di severity, derivate dal metodo

di fuzzy identification. Il secondo e principale contributo è la pro-

cedura HOGS (Height OF Groups by Sampling), che ha lo scopo

di stimare l’average rank di gruppi di unità da grandi popolazioni.

HOGS permette di avvicinarsi alla stima statistica dell’average rrank

dei singoli profili ed inoltre fornisce un metodo per studiare l’effetto

di variabili esterne sulla misura sintetica.

L’ultima parte contiene le funzioni che sono state sviluppate in R:

la prima calcola l’average rank approssimato per grandi moli di dati,

la seconda implementa l’informazione data dalle frequenze dei sig-

noli profili nella popolazione osservata, rendendo questo metodo più

spendibile nelle scienze sociali.
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Chapter 1

Introduction

1.1 Overview

The definition of tools for evaluation and comparison of different alternatives in

a multi-criteria framework is a warmly debated topic.

In this context, the computation of a synthetic measure is one of the most inter-

esting solutions, because the output is a very simple and understandable measure,

also for an inexperienced audience [Nardo et al., 2005]. It is often easier to in-

terpret a single coherent synthetic measure than to identify the effect of many

elementary indicators [Saltelli, 2007].

The simplification of complex and unobservable concepts is the main reason

why this kind of methodology has gained a lot of interest in applied sciences,

where it led to different approaches of formalization. For instance, often in psy-

chometry research is aimed to model abstract constructs (intelligence, empathy,

. . . ), for this reason the construction of indicators is based on strongly correlated

elementary variables that represent the complex concept (reflective approach);

on the other hand, in sociology and economy composite indicators are commonly

used to measure unobservable phenomena (quality of life, sustainability, . . . ),

which are defined aggregating several variables that should be less correlated,

with the aim of ¨composing¨ the complex concept (formative approach); gener-

ally speaking, synthetic measures are useful in the framework of decision making,

where the evaluation is the first step of every approach.
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Despite the use of synthetic indicators is widespread, there are many method-

ological issues that should be managed.

This thesis focuses on the issues arising from the application of synthetic in-

dicators to individuals (elementary units). Especially in social science, many

concepts are observable through subjective variables (satisfaction, opinion, eval-

uation, etc), often measured with ordinal or dichotomous scale. In such a frame-

work, the combination of the information given by the data is not straightforward.

The thesis aims to deal with some of these issues it develops a methodology

and a related mathematical formalization to define synthetic measures starting

from ordinal and dichotomous variables.

In this work we want to: avoid the use of scaling procedures on the original

variables; accomplish the specific intent to develop a methodology based only

on the data structure; and obtain a final measure related to each individual.

Our final aim is to obtain this results with a model that produce easy readable

results.

Hence, we focus on the theory of Partially Ordered Sets (poset), because it

is a mathematical approach to define space based only on the reciprocal order of

observations. This approach is introduced in chapter 2.

Theory of poset [Davey and Priestley, 2002] contains several tools for the

formalization and solution of the problem under analysis. In this setting, the

vector of variables observed on a unit is handled as a unique entity called profile

and not as a group of different variables that need to be aggregated.

The information on poset’s structure is carried out by the use of linear exten-

sions, that can be defined as the atomic level of partial order information, since

the set of all linear extensions of a poset corresponds to all the possible orders

that the poset contains. One of the solutions derived from poset theory is the

computation of the rank of a unit inside a partially ordered set. The theoretical

rank is called average rank (AR or medium height) and provides a simple and

easy-to-read synthetic measure representing all the information on order relations

between the units of the set.

The computation of AR is almost impossible in real case studies, because of

the computational time that grows too fast with the number of units. Usually

such a growth is faster than exponential but slower than factorial. Because of

2



the practical limitations, two main approaches have been proposed in order to

handle poset information:

Sampling of Linear Extensions, consists in the analysis of the poset by sam-

pling of its linear extensions, for the estimation of average rank Lerche and

Sørensen [2003] or for the Fuzzy Identification method for evaluation [Fat-

tore, 2015]. The latter is conceived for social sciences, particularly for the

measurement of deprivation.

Approximation of AR, with the proposals of: Extended Local Partial Order

Model ”LPOMext” [Brüggemann and Carlsen, 2011], and Mutual Proba-

bility approximation [De Loof et al., 2011].

In Chapter 3, starting from the results of the method proposed by Fattore

[2015] and Fattore and Arcagni [2014], we developed and applied a proposal for

a synthetic measure, completely based on posets. It uses the concepts of severity

in order to derive a unique indicator to describe the complex concept, is has been

used in the thesis to study the concept of life satisfaction.

In the approximation approach, Brüggemann and colleagues started to de-

velop the information derived form posets in a framework of evaluation, taking

advantage of the concepts of comparability and incomparability to describe the

poset [Brüggemann and Patil, 2011]. These results are used in order to gather

information for: the approximation of average rank with the LPOM methods

[Brüggemann and Carlsen, 2011; Brüggemann et al., 2004], the mutual rank

probability approximation [Brüggemann et al., 2003] and the description of the

data. In the meanwhile, the concept of stochastic ordering [Lehmann and Ro-

mano, 2011] has been used to define a multi-criterion ranking approach [Patil

and Taillie, 2004]. From a Belgium research group come some advances in the

formalization of posets, with the PhD thesis of Loof [2009], which develops some

strategies based on poset of sub-posets ordered by inclusion and called lattice

of ideals, and the approximation procedure based on mutual rank probabilities

[De Loof et al., 2011].

Moving from these results, the thesis proposes a new approach for the approx-

imation of average rank of individuals and the evaluation of the effect of external

3



variables on the average rank, we call this method HOGS (Height Of Groups by

Sampling) and is presented in Chapter 4.

The last chapter of the thesis (Chapter 5) describes the computational im-

provements that we developed for the computation of the approximated average

rank. In this chapter we present two achievements. The first is the new algorithm

for LPOMext, developed in R; it allows to compute the approximated average

rank for tens of thousand of units. The second achievement is the implementation

of frequencies in the LPOMext formula; this improvement changes the original

concept of average rank, taking into account the frequency distribution of profiles.

4



1.2 Main contributions of the thesis

1.2.1 Work hypothesis

Given a set of data with several variables, the aim is the evaluation of the ob-

servations with a method that produces a synthetic information about a concept

measured through some variables. This aim has to be achieved respecting the

characteristics of the data, first of all the measurement scale.

The synthesis of information gathered from linear extensions reflects this scope,

because linear extensions depend only on data and their order relations.

We assume that: every profile, has a corresponding value (or a set of values) on

the range of a latent variable, that is not observable and consequently is measured

by the synthetic indicator (see Figure 1.1 for an intuitive representation). This

hypothesis is the starting point of this thesis, and an efficient computation of a

synthetic measure is the cornerstone.

Figure 1.1: Profiles of a poset ordered according to the synthetic indicator

5



1.2.2 Description of the original contributions

Starting from poset theory, the thesis focuses on both the approximation and the

sampling approach, proposing a solution for some of the issues related to the une

of posets in social science (a scheme can be found in Figure 1.2):

Approximation Approach

A - Large Datasets. The software for computation of Approximated AR is

not meant to handle more than some hundreds of observations, and no

results have been proposed to study the effect of explanatory variables on

the poset.

1. A new method for the approximation of the AR in large data sets is

proposed. We call it HOGS : Height Of Groups by Sampling. It is

based on a sampling procedure of small groups of observations, and

the estimation of AR for sub-groups identified by external/explanatory

variables (Chapter 4);

2. The method LPOMext is implemented in order to account for fre-

quencies of profiles, allowing a definition of AR based on observed

frequencies (Chapter 5);

3. The HOGS method is applied to the evaluation of life satisfaction, a

typical unobservable multidimensional concept in social sciences.

B - Reduction of weak orders. In the approximation approach it is common

to observe weak orders with many profiles listed in the same group:

1. The use of frequencies (implemented in the computational part of the

thesis) impose a weighting effect on the poset, this effect depends on

the frequency distribution of the elementary variables.

Sampling Approach

The sampling approach is considered in relation to the method of Fuzzy Identi-

fication [Fattore, 2015]. For this approach we present the following proposals:

6



C - Guidelines. We studied some of the properties connected to the shape

and length of the threshold for the method of Fuzzy Identification (Chapter

3). Results come from simulation studies on several posets, different in

dimension and structure;

D - Synthetic Measure. A Synthetic Measure, derived by the severity mea-

sures proposed by Fattore [2015] and Fattore and Arcagni [2014] is pre-

sented. This is an intuitive method to build a synthetic measure (Chapter

3).

1.2.3 Computational developments

E - High performing software. We developed functions pursuing the ability

to handle large sets of profiles and managing tens of thousands of observa-

tions instead of hundreds. We developed novel functions in R to implement

all of the previous proposals:

1. A new function to compute the approximated average rank [Brügge-

mann and Carlsen, 2011] is presented in Chapter 5;

2. In Chapter 4, the methodological proposal described in A.1 is realized.

The function allows to estimate the mean of ranks among subgroups;

3. A new function to implement the frequencies of profiles in the approx-

imated AR (as described in point A.2) is described in Chapter 5.

7



Figure 1.2: Main contributions of the thesis
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Chapter 2

Introduction to poset theory

The simplification of complex and unobservable concepts is the main reason why

this kind of methodology has gained a vivid interest in applied sciences.

The fundamental definitions and concepts used in this thesis for a brand new

approach come from the theory of Partially Ordered Sets (poset), which is a

mathematical approach to define space according to the order relations between

observations and not to their position in an Euclidean multidimensional space.

Theory of poset [Davey and Priestley, 2002] contains several tools for the formal-

ization and solution of the problem under analysis.

This chapter contains four sections: the first is an introduction to the mathe-

matical theory of partial order, together with the limits it has respect to the aim

of the thesis. The second part contains the motivating idea of the thesis. The

third and fourth sections are devoted to the description of the literature back-

ground, to the approximation methods and the sampling approaches respectively

[Brüggemann and Carlsen, 2011], [De Loof et al., 2011] and [Fattore, 2015].

2.1 Why Partial Order Theory?

Poset theory is a mathematical formalization of discrete space. Poset theory has

been used in the field of data analysis to compare elements of small population;

9



it is adapt for both quantitative and qualitative data. The best use of poset for

quantitative data comes out in the case of information which cannot be inter-

preted in the classic euclidean sense. As instance, if the effect of a variable on a

response does not follow any function, or the description of this function is im-

possible. In chemometrics, for example, the aim is the extraction of information

from chemical systems by mean of the analysis of data; often in this scientific field

it is not possible to assess the effect of chemicals respecting quantitative scales,

and sometimes is not even possible to compare two chemical mixture. In social

statistics, one can find many similar cases, with particular quantitative data like

years of schooling, that are completely quantitative in the sense of time spent,

but not in the sense of ¨amount of education¨. Moreover, this approach is able

to describe those cases where there is no quantity but just order, like ordinal and

dichotomous data. This premise implies the usefulness of such a theory in the

field of social statistics, where the presence of qualitative data is massive.

Poset theory allows to use the order information contained in data, also if infor-

mation on distance is absent, or it is reasonably better to avoid using it.

All the definitions about poset theory that are presented in this section, can be

find in the text: ¨Introduction to Lattices and Order¨ [Davey and Priestley, 2002]

2.1.1 What is an Order

The elements of a family can be ordered with respect to some criteria, for instance

the order: ¨father ≥ mother ≥ older sister ≥ younger brother¨ could be the order

in a common family, if we consider the age as order criterion. The order is the

relation between the elements of the group (set) that respects some properties.

Let P be a set, an order on P is a relation (≤) between two elements of P such

that, for all x, y, z ∈ P the following properties hold:

reflexivity x ≤ x,

antisymmetry x ≤ y and y ≤ x imply x = y

transitivity x ≤ y and y ≤ z imply x ≤ z.

These properties are all fundamental to define the order as it is used intuitively

in everyday life. Reflexivity, for example, is necessary because it is impossible to

10



compare a value with itself if this property does not hold. The relation ¨<¨ is

not reflexive.

A set equipped with such an order relation is said to be ordered. Examples

of Ordered sets are everywhere, every ordinal variable determines an order and

any comparison too.

A hierarchic organization is usually a weak order, because some of the elements

are equal. The weak order is different from the complete order, where every ele-

ment is different and ordered. Following the family example, the criterion ¨age¨

imposed a complete order with a relation equal to: ¨older or equal than¨. On

the contrary, if the relation was ¨being responsible for¨, the order would then

be like this: {father, mother} ≥ older sister ≥ younger brother. This relation

is different because both the parents are responsible for all the children of the

family and each other, so they are comparable and equal thanks to the property

of antisymmetry.

2.1.2 The Partial Order

¨Who you like the most? Grandma or Grandpa?¨, sometimes it is possible that

two elements are neither equal nor ordered, it often happens when more than one

criteria are considered simultaneously. The relation can be defined as partial

order if there exist incomparable elements in the set:

incomparability x‖y ⇔ x � y and y � x, x, y ∈ P

This case happens in presence of multiple attributes that are conflicting. Consider

the evaluation of pollution level in two different agricultural fields, where one has

clean water and high level of lead in the soil, and the second never received

pesticides but its water is full of industrial waste. Without a priority scale on the

pollutants and a correct measure of contamination severity, it is not possible to

order the fields and evaluate which is better. Another example can be observed

in Table 2.1, where an individual answers two questions (called q1 and q2) about

the quality of three objects. In this example it is impossible to define which

object is the best, because: q2(x) ≥ q2(y) but q1(y) ≥ q1(x), this conflict is called

11



q1 q2

x low high
y medium medium
z medium low

Table 2.1: Incomparability example

incomparability, and implies the absence of an order between the elements x, y,

the same situation happens between x and z but not between y and z because

y ≥ z respect to every attribute.

In the usual notation two incomparable elements a, b are represented by a‖b;
in the example of Table 2.1 the following relations can be assess: x‖y, y ≥ z,

x‖z. The mathematical formalization of Partially Ordered Sets, commonly called

Poset, allows to describe some type of data that are commonly used in social and

applied science. Every system of ordinal variables can be correctly handled with

this approach, that takes care of every order information and avoids the use of

euclidean space an quantitative concepts.

2.1.2.1 Covering Relation

To understand the construction of poset representations, it is important to use the

concept of coverage. One element covers another if there are not other elements

between them, in mathematical language:

Given x, y, z in the ordered (or partially ordered) set P ,

x is covered by y (xC y) if x < y and x ≤ z < y ⇒ x = z

If something is between two elements in a covering relation, it has to be one of

these elements. Moreover, if P is finite,

x < y ⇔ a sequence like x = x0 C x1 C . . .C xn = y always exists.

This formalization assesses that the order relation determines and is determined

by a list of covering relations.

An object can cover and can be covered by many others.
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q1 q2

x low low

y high medium

z medium high

⇒ xC y, y||z, xC z

2.1.2.2 Hasse Diagram

In the last decades of the 19th century, mathematicians started to represent par-

tially ordered data with an hand-writing technique; they were used to represent

every profile with a node and every covering relation with an edge. Some more

rules are useful in order to make the result easy to read in every case, but di-

rection, nodes and edges are sufficient to draw this graph. This representation

is called Hasse Diagram, from the name of the German mathematician Helmut

Hasse. Hasse did not invent the representation but made an extensive use of it

(Birkhoff [1948]), allowing it to spread.

q1 q2

a 2 0
b 0 2
c 3 3
d 4 5
e 7 6
f 5 7

Figure 2.1: Example of Hasse diagram

This representation is an oriented graph, it allows an observable description of

the set. Thanks to the properties of covering relations, it describes every relation

of order between the nodes drawing only the covering edges.

2.1.2.3 Down-set and Up-set

For every ordered (or partially ordered) set, there are two important families of

sets associated. They are central in the development of methodologies based on

posets. If P is an ordered (or partially ordered) set and Q ⊆ P :
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• Q is a Down-set if: x ∈ Q, y ∈ P and y ≤ x implies y ∈ Q

• Q is an Up-set if: x ∈ Q, y ∈ P and y ≥ x implies y ∈ Q

Consequently, the down-set(up-set) of an element x ∈ P , is the set of all the

elements of P that are lower(higher) than the element x itself.

2.1.2.4 Chains and Antichains

There are two extreme cases in the field of partially ordered sets:

Complete Comparability

It occurs when every element of the set is comparable to all the others, and

there are not incomparable pairs. Sets like this are usually called chains or

linear orders, because they form a complete order and the shape of their

Hasse diagram is clearly linear (Figure 2.2).

Formally a set P is a chain if:

∀x, y ∈ P, either x ≤ y or y ≤ x.

Complete Incomparability

It is the extreme case, where every element is incomparable to all the others,

no comparison leads to an order. In such a situation, the Hasse diagram

looks like a horizontal line of isolated nodes (Figure 2.3) and is called an-

tichain.

A set P is defined antichain if:

∀x, y ∈ P, x ≤ y ⇐⇒ x = y.

2.1.2.5 Order-Maps

In the analysis of complex structures such as posets it is fundamental to define a

criterion to recognize when two ordered sets are the same in an ordinal sense. This

similarity is called order-isomorphism. Two sets P,Q are order-isomorphic
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Figure 2.2: Chain

Figure 2.3: Antichain

(P ∼= Q), if there exists a map ϕ : P → Q such that

x ≤ y in P ⇔ ϕ(x) ≤ ϕ(y) in Q

ϕ is called order-isomorphism and has the role to mirror the order structure

of the two sets.

To be bijective is a necessary but not sufficient property of order-isomorphism,

and hence is possible to notice that:

ϕ(x) = ϕ(y) ⇐⇒ ϕ(x) ≤ ϕ(y) & ϕ(x) ≥ ϕ(y)

⇐⇒ x ≤ y&x ≥ y

⇐⇒ x = y

If a map is not bijective and respects the order only in a single direction, it can

not be defined as order-isomorphism between the sets. Formally:

∀x, y ∈ P, if x ≤ y ⇒ ϕ(x) ≤ ϕ(y) in Q,

such a map is called order-preserving map.

In this case the relation is unidirectional, and the order of the set P implies the

order of set Q. This concept will be extremely useful in the following.
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2.1.3 Linear Extensions

If an order-preserving map relates a partial order to a linear order on the same set

of objects, the linear order is defined linear extension. This order preserving

map is the most important in this work’s framework.

Every linear extension ωi(P ) can be interpreted as the original poset, enriched

by much information on comparability of the elements. Naturally, a poset can

have more than one linear extension, the number depends on the dimension and

structure of incomparable elements in the set. In figure (2.5), an example of

poset is drawn next to one of its possible linear extensions. The set of all linear

extension of a poset P is called Ω(P ).

Figure 2.4: A poset and one of its linear extensions

2.1.3.1 Information from Linear Extensions

The relevance of linear extensions is well established by a fundamental result from

Schröder (Schröder [2012]), where it is stated that two different finite posets have

different sets of linear extensions and that every poset is the intersection of the set

of its linear extensions. In other words, a poset coincides with the comparabilities

that are common to all its linear extensions.

Given this result, any single linear extension can be considered as the atomic level

of order information of a poset, like a single observation in a population. Hence:

• every linear extension describes one of the possible orders of objects,
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• the set of all linear extensions of a poset Ω(P ) identifies uniquely the partial

order structure,

• the number of linear extensions |Ω(P )| suggests how complex is the poset

and how many pairs of objects are incomparable.

Figure 2.5: A poset and its linear extensions

2.1.4 The average rank of a profile

The rank of an object x on a single linear extension ωi is called height hi(x) (or

simply rank); knowing the height of objects among the entire set Ω(P ) (Figure

2.6) allows to define their Average rank (or Medium Height): a measure which

summarizes all the information about the object’s position in the set.

Figure 2.6: Height of elements among all linear extensions

In Table 2.2 the computation of the average rank for the poset of figure (2.5)

is reported. Given the structure of the partially ordered set, the element e is
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frequently in the top position or, in the worst case, in the second one. The

difference between d and e depends on the relation they have with respect to c.

h(·) ω1 ω1 ω1 ω1 ω1 h(·)
e 4 4 5 5 5 4.6
d 5 5 4 4 3 4.2
c 2 3 3 2 4 2.8
b 3 2 2 3 2 2.4
a 1 1 1 1 1 1

Table 2.2: Computation of the average rank

The knowledge of the position of a unit with respect to all the others is the

main aim of this work. With the computation of the Average Rank an order is

obtained, this order could be Weak or Complete if, respectively, there are some

elements with the same value of h(·) or every element has a different value with

respect to all the others. Nevertheless, the computation of the average rank makes

every element comparable.

2.1.5 Computational Issue

The observation of the entire set of linear extensions, is an hard task. In their

work, Brightwell and Winkler [1991] prove that the problem of determining the

height of an element x of a given poset is #P-complete (pronounced Sharp p

complete). This assertion refers to the computational complexity of the problem.

With a trivial expression we can affirm that the number of linear extensions and,

consequently, the procedure of information gathering from them have a compu-

tational time that cannot be evaluated in a deterministic way. The best results

for the approximation of the number of linear extensions started from the results

of Dyer et al. ([Dyer et al., 1991]), but extremely satisfying results can be found

also in the results of Karel De Loof’s PhD thesis ([Loof, 2009]) .

It is not possible to forecast the time needed to compute the number of linear

extensions in a deterministic way, because the number of linear extensions is

not directly dependent on the number of elements in the poset; it depends on
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the structure of the comparable and incomparable elements. Just to clarify the

magnitude of variability; let assume to observe two posets:

I, that is constituted by nineteen, comparable elements and one element incom-

parable with all the others (isolated element);

II, in which the elements are ten, but these are all incomparable;

The number of linear extensions for the first poset is |Ω(I)| = 20, because the

isolated element can occupy every position in the chain with length 19. In the

second case, every element can take every position, leading to a number of linear

extension equal to

|Ω(II)| = 10! = 479001600.

In the case of real posets, made by more than 10 elements, this number can be

extremely high, leading to a clear truth:

¨The set of linear extensions is too big!¨

In order to handle with this lack of information, researchers are following two

paths:

Approximation of the average rank: an algorithm is used to find an approxi-

mation of the average rank without observing any linear extension [Brügge-

mann and Carlsen, 2011];

Sampling of linear extensions: only a sub-sample of the linear extensions is

observed [Fattore, 2015].

The insights and applications of the two approaches are really different. In

the following: first section focuses on the approximation approaches, showing the

most used approach and a new proposal that could be an improvement for big

posets. The second section is devoted to the sampling approach used in recent

works for the evaluation of deprivation.
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2.2 Approximation of the average rank

The average rank describes the position of an element respect to the bottom and

the top of the poset (⊥,>). This type of information is what we are looking for

respect to our hypothesis (1.2.1).

The computation of the average rank is not influenced by external information

such as the importance of the constituting variables or the frequency of profiles;

for this reason it is often considered far from the framework of decision making.

The relation of this approach with the field of MultiCriteria Decision Aid has

been analyzed by [Bruggemann and Carlsen, 2012].

2.2.1 LPOM - Approximation

The explanation of the following method can be found in Brüggemann and

Carlsen [2011], while, one of the most extended presentation of posets and their

applications can be found in Brüggemann and Patil [2011]. This method is the

second generation of Local Partial Order Model, for this reason it is commonly

known as Extended LPOM.

The idea of average rank comes from the seek of a linear or weak order from

poset data (check 2.1.1 for a brief introduction of these concepts), that are attrac-

tive for sake of comparison and evaluation. The method that is presented in this

part is called Local Partial Order Model and is based on some concept we already

introduced, anyway it needs a deeper presentation. Let P be a finite poset with

order relation ≤, denoted by (P,≤) when P alone could be misinterpreted.

Let p ∈ P be defined by a vector of attributes or variables q ∈ B, and |P | to be

representing the cardinality of the set P .

Given that for x, y ∈ P , x ≤ y ⇔ qi(x) ≤ qi(y) ∀qi ∈ B and ∃i∗ such that

qi∗ < qi∗ , and for x, y ∈ P , x ‖ y ⇔ x � y and y � x.

Then, ∀x ∈ P we can define the following subsets of a poset:

Down Set O(x) = {y ∈ P : y ≤ x}
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Up Set F (x) = {y ∈ P : y ≥ x}

Incomparables U(x) = {y ∈ P : y ‖ x}

It is important to notice that O(x)∩F (x) = x, because of the reflexivity property

of the relation ≤. The set made out of all the elements equal or smaller than x

contains x itself. The same is true for the set made by equal or higher elements.

2.2.1.1 Concepts and Formulas

The concepts moving the Extended LPOM are basically two:

• the position of an element x respect to its upset and downset is fixed, there

is no linear extension where an element of the upset F (x) could be lower

than x. Hence the average rank of x has to be contained inside an admissible

interval;

• the elements y ∈ U(x) have a range of possible positions to take respect to

x (lower or higher), and these positions depends on the relations between y

and the sets O(x) and F (x).

Figure 2.7: Example of LPOMext

Both these insights are essential for the definition of this approximation method.

In order to understand this procedure more deeply, we propose the example of

Figure 2.7. In this example the height of x has to be at least 2, that is the di-

mension of its downset, indeed |O(x)| = |{x, a}| = 2. Moreover, the only source

of uncertainty are the elements of the incomparable set U(x) = {y, b}, which

can have only a limited number of positions respect to x; the number of possible
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positions for y is 3, two of these positions are below x an one is over it, as one

can see from the figure. According to this example y is lower than x in two out

of three times 2/3, and so the effect of y on the average rank of x is δy(x) = 2
3
.

In formula:

H(x) = |O(x)|+
∑
y∈U(x)

|O(x) ∩ U(y)|
|O(x) ∩ U(y)|+ |F (x) ∩ U(y)|

. (2.1)

The first part of the formula describes the lowest possible height of x, while

the sum computes the contribution of the incomparable elements, adding them

together. This formula defines the approximated average rank as if it is composed

by two parts, the comparable one and the incomparable one.

The fraction δx(y) = |O(x)∩U(y)|
|O(x)∩U(y)|+|F (x)∩U(y)| defines the effect of every element that

is incomparable to x. It represents a proportion of positions; the proportion of

position in which y is lower than x (and then increases the rank of x), out of the

total number of possible positions.

This method improves significantly the approximation proposed in the basic

model called LPOM0 Brüggemann et al. [2004], where the entire set U(x) was

used as a unique entity, instead of approximating the effect of every y ∈ U(x)

alone.

As confirmed by the authors of LPOMext method, the main crucial points in

the comparison of LPOM to the exact average rank are:

1. the ¨Combinatorial¨ effect, happening when an element y ∈ U(x) can take

more positions than what is expected by LPOMext, because of different

relation of x and y respect to some ¨covering antichain¨; The authors of

the method proposed some criteria to quantify this effect.

2. the ¨One-after-Another¨ effect, which underline the absence of simultaneity

in the evaluation of the effects of the elements of U(x);

3. the absence of ¨Restrictions¨, in the sense of limitation of the possible

position for an element of U(x) according to the expected position of another

element of the same group. For instance, in Figure 2.7, the effect δx(b) and
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δx(y) wuold be 2/3 for both of them, but they should be different since they

are ordered (and then dependent in the sense of average rank).

Analysis and proposals respect to these crucial points can be found in the

original work.

As last point we want to make explicit the relation of this method with weak

orders: the LPOMext method considers the elements as a mathematical entity.

Without taking into account the frequency of them, an element is considered in

the computation if it appears at least once; no modification is considered if the

same profile appears twice. The application field of this thesis forces us to deal

with big populations and then to take into account the frequencies of the profiles.

2.2.2 Mutual probabilities approximation

A recent work [De Loof et al., 2011] proposes a new method to approximate the

average rank: the authors use two concepts that have not been introduced yet.

First, rank probability P(rank(x) = i) of an element x ∈ P is defined as the

fraction of linear extensions in which element’s rank is equal to i. According to

this definition the average rank of an element is the expected value of the rank:

h(x) =

|P |∑
i=1

i · P(rank(x) = i).

Second, the actual change in the point of view comes from the quantity called

Mutual rank probability P(x > y) of two elements of the poset, defined as

the fraction of linear extensions in which x > y.

The proposal depends on a relationship between average ranks and mutual

rank probabilities, proven by the authors in the same article with a theorem (we

quote it, adapting notation):

Theorem 1 For a poset (P,≤) where P = {p1, p2, . . . , pn} and pl ∈ P , the follow-

ing relationship holds between the average ranks and the mutual rank probabilities:

h(pl) =
n∑
i=1

i · P(rank(pl) = i) = 1 +
n∑
j=1

P(pl > pj).
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The proof is given in the original article. So the relation between average rank

and mutual probabilities is established, and it implies

h(x) = 1 +
n∑

y∈P

P(x > y) = |O(x)|+
n∑

y∈U(x)

P(x > y).

This formula is extremely similar to the one used in LPOMext but the compu-

tation of the mutual rank probability is different. To clarify the next steps we

will use the quantities o(x) = |O(x) \ {x}|, and f(x) = |F (x) \ {x}|. Using an

approximation of the mutual rank probability proposed by [Brüggemann et al.,

2003], for x 6= y:

P∗(x > y) =
[o(x) + 1][f(y) + 1]

[o(x) + 1][f(y) + 1] + [o(y) + 1][f(x) + 1]
.

This could be enough to improve the previous approximation, but the authors

suggest to improve the accuracy with an approximation of the values o(x) and

f(x) that takes into account the incomparable elements in this way:

õ(x) = o(x) +
n∑

z∈U(x)

P∗(x > z)

f̃(x) = f(x) +
n∑

z∈U(x)

P∗(x < z).

With the improved information, they introduced the formula

ρ(x) = o(x) + 1 +
∑
y∈U(x)

[õ(x) + 1][f̃(y) + 1]

[õ(x) + 1][f̃(y) + 1] + [f̃(x) + 1][õ(y) + 1]
. (2.2)

For a poset with dimension n, the time complexity of this approximation

method is O(n2). Exactly the same of Local Partial Order Models.

The simulations carried out by the authors of this method show that the estimator

ρ(x) has a smaller mean squared error than the LPOMext model, it is true in

randomly generated poset with n > 4 and in most of the real dataset used to test

them.
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2.2.3 The approximation approach applied to the social

science

In the last two sections, we described the most used procedures for the approxima-

tion of the average rank, but, beside the level of error coming from approximation

procedures, there are some other limits in this approach that emerge if we analyze

the data coming from social surveys.

Our point of view is the social statistics, where the observation of big datasets is

frequent, in this case we need a methodology ad hoc.

Dimension of the dataset. All the approximation methods are developed in

the framework of small datasets, this implies some drawback respect to the

use of big datasets, typically used in social studies:

Frequency of profiles. The LPOMext and the Mutual Probability method

are supposed to handle the poset as a set of distinguished elements of a

set. If two elements are equal respect to the vector of attributes, these

are considered as an equivalence class and treated like one element in

the computation of approximation. It is straightforward that this is

an important drawback for social statistics, where probably every pro-

file is observed at least once, but some are more relevant than others

because of their frequency.

Complexity of the poset. The structural complexity of a poset depends

on the observed elements, in the framework of big datasets it is prob-

able to observe almost every combination of the elementary variables,

generating a challenging complexity.

Software Limitations. All the software developed in the last years are

limited to one or two hundreds observations, whereas a typical social

survey is based on a sample with thousands of observations.

Weight of Variables One of the main features of the poset approach for syn-

thetic indicators is the complete absence of external information about the

relevance of the elementary variables. This is a great strength for the con-

struction of a synthetic indicator based on the data driven approaches (see
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[Decancq and Lugo, 2013]), but, on the other hand, it could be a limit when

the importance of variables should be taken into account.

2.3 Sampling of linear extensions

Despitew, the estimation of average rank by sampling of linear extensions has

been proposed in literature Lerche and Sørensen [2003], in this thesis we propose

a method that uses the sample of linear extension, in a different way. We will

refer to this approach as Evaluation Method for posets. It was actually developed

for the measurement of deprivation in the case of ordinal variables, nevertheless,

we propose some interpretations in the framework of our hypothesis.

2.3.1 A method to evaluate Posets

This subsection is devoted to remind and quote some of the basic concepts con-

stituting the method proposed by Fattore [2015]. We suggest the reading of the

original work in order to understand completely the mathematical formalization.

A specific note should be devoted to underline the different aims between this

chapter of the book and the original work proposed in Fattore [2015] and Maggino

and Fattore [2011]: the cited work contains the conceptual and mathematical for-

malization for the measurement of social concepts in poset data, specifically the

most recent one is explicitly focused on the measurement of deprivation. On the

other hand, the proposal of the next chapter is the utilization of the tools given

by these works in order to define a procedure to obtain synthetic indicators out

of ordinal or dichotomous data.

2.3.1.1 Product order of variables

In the original formalization of this method, the partially ordered set contains all

the possible values that are observable considering the starting variables’ struc-

ture. In partial order theory, it is called product order, because it is made by the

interaction of the linear order determined by the single variables. As instance, two

dichotomous variables define their own linear orders made by two levels {0, 1}.
The product of these two orders produces a poset made by the elements: 00, 01,
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10 and 11. Then, the elements of the poset need to be described by a sequence

of values (e.g. 10), and this sequence is called profile, called p in the following.

2.3.1.2 Setting a threshold

The poset derived from a product order is a mathematical structure without

information about the meaning of the variables constituting it. In order to give a

¨meaning¨ to this structure, is possible to define a threshold τ which contains

external information defined by the researcher. Because of the multidimensional

framework, it is possible to define a multidimensional threshold, that is a list of

profiles, that respects two requirements:

1. Every element of the threshold must be considered completely deprived;

2. It has to be made by incomparable profiles (i.e. to be an antichain, intro-

duced in 2.1.2.4).

The scope of the threshold is to cover the elements that are ¨deprived¨, acting

like a frontier between the low and the high level of the poset. It can be only

defined externally. Deeper information about the threshold and its meaning are

presented in the next chapter.

2.3.1.3 Identification step

The role of the identification function idn(·) is to assign a deprivation membership

score to every element of the poset, this score is contained in the interval [0, 1]:

idn : P 7→ [0, 1]

: p 7→ idn(p).

The construction of the identification function is inspired to the principle of

reduction to linear extensions, previously introduced in (2.1.3.1). Each linear ex-

tension l is interpreted as a binary classifier where a profile p is classified deprived

or not. A small notation improvement is necessary in order to understand the

procedure. In every linear extension l there will be a top element of the threshold

τl, that is better than all the other elements of τ . For every linear extension,
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a profile p is defined as deprived in that linear extension and the value of the

identification function is 1 if this profile is lower or equal than τl; otherwise the

value is 0:

idnl(p) =

{
1 if p E τl

0 otherwise

The position of the profile p and the value of τl can change in different linear

extensions; the aggregation of the results among the observed linear extensions

gives the value of the identification function:

idn(p) =
1

|Ω(P )|
∑

l∈Ω(P )

idnl(p).

At the end of the procedure, every statistical unit will be associate with its

identification value, that will be:

• idn(p) = 0 if the profile is always not deprived in every linear extension,

• idn(p) = 1 when the profile is under the threshold in every extension,

• idn(p) ∈ (0, 1) if the profile is ambiguously defined in the middle.

Following the derived information it is possible to define three subsets:

- Non deprived profiles W = {s ∈ P : m(s) = 1}

- Deprived profiles D = {s ∈ P : m(s) = 0}

- Ambiguous profiles A = {s ∈ P : 0 < m(s) < 1}

For deeper explanation and properties we suggest again to refer to the original

work, of [Fattore, 2015].

2.3.1.4 Severity

The measure of severity defines the intensity of deprivation of the deprived or

ambiguous elements (subsets D and A), by assigning a numerical value to each

profile of D ∪ A:

svr : D ∪ A 7→ R+

: p 7→ svr(p).

28



In every linear extension, the measure of interest is the distance between a profile

and the first element higher than τl called ql. The distance is computed respect

to the rank of the two objects:

svrl(p) =

{
rl(ql)− rl(p) if p E τl

0 Otherwise
.

The severity value is computed only on those linear extension where the profile

is considered as deprived.

The deprivation severity of a profile is then obtained aggregating all the results

observed on the linear extensions:

svr(p) =
1

|Ω(P )|
∑

l∈Ω(P )

svrl(p).

The Wealth function wea is a function complementary to svr; it measures the

concept of intensity in the opposite direction, the direction of non deprivation.

The computation is the same of svr, but it is oriented to the positive side and is

evaluated on the subset (W ∪ A) [Fattore et al., 2011].

The R package devoted to the computation of these functions is called PARSEC,

and was developed by Fattore and Arcagni [Fattore and Arcagni, 2014].

2.3.2 Limits of Evaluation Method

In the last section, we described a method to evaluate the elements of a poset,

avoiding the concept of average rank. Despite the augmentation of information

handled by this approach, there are still some limitations we would like to un-

derline.

The method for the evaluation of a poset is not conceived to define a synthetic

measure. Then, some of the drawback we are going to underline are referred to

our aim and not to the method itself.

Computational Limitations. The R package devoted to the computation of

this method is optimized. On the other hand, the number of linear ex-

tensions to observe in order to get the results grows too much with the
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dimension of the poset. The procedure is already time consuming in the

case of five dichotomous variables (this case requires to observe at least 123

million linear extension).

Effect of the threshold. The threshold has an evaluation effect on the original

variables (as we will explain deeply in the next chapter), but this effect is

not strong enough to impose a sort of priority system on the poset.

Weight of Variables. As well as the approximation approach, excluding the

threshold, there is complete absence of external information on the relevance

of elementary variables.
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Chapter 3

A synthetic measure from the

sampling approach

3.1 A step towards a synthetic indicator

In this chapter a simple procedure to construct a synthetic indicator is proposed.

Taking the lead of the proposals contained in Fattore [2015], Maggino and Fattore

[2011] and Fattore and Arcagni [2014], which have been presented in the last part

of the previous chapter (see Section 2.3.1).

The definition of the synthetic indicator is the topic of the next paragraph (3.1.1).

In the following section the central concepts of the Evaluation method are de-

scribed in their implications: the threshold is the only source of exogenous infor-

mation, its implications will be presented with examples. The last part (3.3), con-

tains the study of Life Satisfaction and its relations with many socio-economical

factors.

3.1.1 The Height of a profile

The evaluation procedure proposed in [Fattore, 2015], is constituted by the identi-

fication function and the severity functions. These functions has been previously

introduced in 2.3.1.3 and 2.3.1.4. In the following we propose to combine the

information given by the method to obtain a unique measure.

The combination of the results transforms the meaning of the measure: the func-
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tions of identification and severity are conceived to describe the membership of a

profile to a group, the group of deprived individuals for instance, and the intensity

of this membership. The aim and meaning of the combined values is different,

because it tries to represent the position of the profiles respect to a complex con-

cept mimed by the poset.

The measure we suggest consists in the combination of the indexes of severity

produced in Fattore and Arcagni [2014]:

IH(p) = wea(p)− svr(p)

Starting from the values of the absolute severity and wealth measures, it is

possible to obtain a unique value by their difference. Given that:

wea(p)− svr(p) =
1

|Ω(Π)|
∑
l∈Ω

weal(p)− 1

|Ω(Π)|
∑
l∈Ω

svrl(p)

=
1

|Ω(Π)|
∑
l∈Ω

(weal(p)− svrl(p)),

the index IH is the mean of the difference ∆l = weal−svrl on the set of all linear

extensions.

Meaning: The value ∆l represents a sort of height of the profile, evaluated with

respect to the defined threshold; in every linear extension the profile is compared

to the highest element of the threshold, it gets positive value if it is higher, neg-

ative otherwise.

The value of ∆l is called evaluated height because, respect to the concept of Av-

erage Rank, it contains the information given by the threshold τ . Two elements

of the poset could be equal with respect to the average rank and different with

respect to IH or viceversa; the difference depends on the threshold and specifi-

cally on its length and shape.

In the following section, the method of Fattore [2015] is the center of the

discussion. Some thoughts about the meaning of the threshold, and the criteria
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to define it are presented. These consideration are valid also for the indicator we

proposed here.

3.2 About the meaning and the use of the thresh-

old

The threshold τ proposed in the Evaluation method of Fattore is the corner-

stone of the procedure; it inserts information that are exogenous respect to data,

impressing an evaluative meaning. This kind of information is essential in a mul-

tivariate evaluation framework, where an absolute best does not exists, and the

relative most acceptable option is the aim (Munda [2008] and Arrow and Ray-

naud [1986]).

But, what is the best way to choose the threshold? Is it correct to look at

elementary variables or is it better to choose an expert defined set of profiles?

The aim of this section is to help the new users, giving some tips to manage this

decision with more consciousness.

This section is divided in four parts: in the first one, the evaluation procedure

and the indicator IH are compared to a more classic method based on the poset

theory. The argument of interest is the value added by the user defined threshold.

In the second part the effect of the shape of the threshold is investigated, trying to

understand how it can impress values and priorities on the elementary variables.

The third part is devoted to show the effect of the threshold’s dimension on the

discrimination skill of the identification function an the indicator IH . Finally, in

the last part, we propose some short guidelines for the definition of a threshold,

pulling together the deductions presented in this entire section.

3.2.1 The shape of threshold

The possible interpretation of the threshold are multiple, but it is clear that the

purpose of the proposer is to define it as a set covering every deprived element

of the poset; all the elements that are lower than the threshold are deprived.

Without the meaning imposed by the threshold, two variables constituted by the
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same number of level cannot be distinguished, neither conceptually nor mathe-

matically. In order to perceive this limit, the case of a poset generated by two

ordinal variables made by three levels is sufficient. It can be observed in Figure

3.1.

Figure 3.1: Poset derived by two variables with three levels

Without an externally defined preference system, the constituting variables

are completely interchangeable. For instance, these variables could represent the

degree of appreciation for an ice-cream’s taste or the personal self-perceived safety

in a residential zone; considering only the structure of the poset, the two variables

are identical. Adding a threshold to this structure, we impose a system of values

and discriminate among the variables.

Figure 3.2: Asymmetric threshold Figure 3.3: Symmetric threshold

Figures 3.2 and 3.3 look very similar, and yet they impress a very differ-

ent meaning to the structure. In order to make it simple: in Figure 3.2 the
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constituting variables are non exchangeable! In this setting profiles 32, 22 and

31 are always deprived. The same cannot be confirmed for 23, since it could

be higher or lower than 32 depending on the linear extension. Therefore, there

is an implicit assertion about the importance of the variables on the classification.

On the contrary, in the poset represented in Figure 3.3, we can perceive a

sort of symmetry among the variables, the first variable is equated to the second.

Thus, the poset is evaluated in a manner that is more similar to the computation

of the average rank. Thanks to this property of the threshold, it is possible to

impress a system of preferences and weights, these ¨weights¨ are implicit and

non linear, because they change intensity in different positions of the poset. So,

it is not fair to interpret this preference effects in the same way of Composite

Indicators weights.

In order to underline the relevance of such a property, it is sufficient to imagine

a poset made by several dichotomous variables, like the one represented in Figure

3.4. This type of variable has only two levels, by definition, therefore the levels

are not much descriptive; nevertheless two dichotomous variables could represent

a deeply different meaning. For example, this is important in deprivation stud-

ies, where the ownership on different goods is considered: owning a fridge and

be owner of a house are conceptually different information; these variables are

different in their meaning and distribution but not in their level structure. In an

European country like Italy, to be deprived of the fridge is much more meaningful

than not having the property of an entire house.

Figure 3.4: Poset derived by four dichotomous variables
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3.2.2 The length of the threshold

If the shape can influence the importance of the variables, the length of the

threshold can change the fuzzyness of the profiles that are non comparable to the

threshold itself. With the word length, we mean the dimension of the threshold,

that is, the cardinality of the set τ .

Indeed, if the threshold is defined by a single element p, only the elements in

the downset of p will be certainly deprived and the inverse result apply to the

elements of the upset; all the other profiles will be included in the group of am-

biguous elements. On the contrary, if the length of the threshold is big, the

amount of uncertainty will decrease in intensity.

This concept is particularly intuitive in the case of identification function: in

order to illustrate this effect, two evaluation functions have been computed on

the same poset, made by four variables measured on four levels (256 nodes), using

the following thresholds:

Single threshold composed by the single profile: 2232, that is quite central in

the poset;

Extended threshold composed by the profiles: 2232, 1233, 2133, 2223, 1242,

2142, 2241, 3132, 3222, 3231, 1332, 2322, 2331, actually all the profiles

that are obtained from the single threshold and changing every elementary

variable by one unit at time.

The results of the identification function show the effect of the threshold’s

length on the classification. In the single case (Figure 3.5), more or less forty

profiles out of 256 (15.6%) are in an intermediate position around value 0.5, and

only 67 have a value of deprivation close or equal to one. On the other hand, when

the threshold is extended (Figure 3.6), the number of certainly deprived elements

increases to more than one hundred units, because it now contains nodes that

were ambiguous in the single-threshold case. Moreover, one out of three elements

previously defined as non deprived (Identification = 0), is now less certain iden-

tified, and are distributed in the interval (0.2; 0.4). Judging the whole picture,

there is more deprivation, and the class of absolute ambiguity, identifiable with
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the values around 0.5, disappears.

Figure 3.5: Identification function with Single threshold

Figure 3.6: Identification function with Extended threshold

The identification function is oriented to recognize deprived profiles because

of it definition, which takes into account the highest element of the threshold in

every linear extension (τl).

According to this property, the enlargement of the threshold’s dimension can

only imply the equality or the increment of the deprivation level of the poset’s

elements.
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if τ s ⊂ τ e ⇒ idnτ
s

(p) ≤ idnτ
e

(p), ∀p ∈ P.

The same results apply to the severity function.

3.2.3 Comparison between the evaluation approach and

the average rank

A common tool developed in poset theory, is the computation of the average

rank of an element of the poset. As described in paragraph (2.1.4), this method

allows to compute the medium height of observed units, making possible to order

them reciprocally, and in our assumption, defining their position respect to an

unobservable dimension. The main interests of these section are the similarities

and differences between the average rank and the evaluation method previously

presented.

The evaluation method is constituted by two different measures: the identifi-

cation function, which defines the degree of membership of the profiles to one of

the opposite sides of the poset (the bottom or the top); and the severity function,

that measures the depth of a profile, describing how much it moves towards on of

the two poles. The use of two different measures is motivated by the suggestion of

Sen [1976], which proposed that a methodology for measuring multidimensional

poverty is made up of an identification method and an aggregate measure.

Moreover, the user defined threshold impress a meaning of centrality to all

the element composing it. These elements may be neither higher nor lower than

the threshold τ . In this way, the poset gains some reference points, which do not

exist in the definition of the average rank.

So, the definition of the threshold gives a specific meaning to the results of

the evaluation function: if a profile is always higher than this reference group

(resulting in an identification function equal to 0), it can be classified as non

deprived (using the terminology shared by Fattore [2015] and [Alkire and Foster,

2011]). Similarly, if the profile is always lower the deduction is the opposite, but
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it actually is an evaluated classification, not simply a score. As instance, if the

poset is obtained from variables about the satisfaction of individuals, defining a

good threshold will enable to discriminate between satisfied and unsatisfied sub-

jects.

This result is not possible in the case of average rank, in that case, the defi-

nition of a limit value between two different poles will result in something with a

different meaning, since:

• If the identification function is equalt to 1, there is no linear extension

where the profile is greater than every element of τ . In other words, there

is at least one element of the threshold that is better than the profile, in

every linear extension. This information is not accessible in the average

rank approach;

• Using the average rank, the classification of a profile as deprived implies that

its average value is lower than a predetermined value, and hence it means

that the profile is sufficiently low in average. Because of the properties of

the arithmetic mean, this result tells nothing about the distribution of ranks

among the linear extensions, because there could be some linear extensions

influencing the average rank more than others. In this sense, the average

rank can be defined as less robust than the evaluation method.

The difference between these two approaches is conceptually important, espe-

cially in the definition of a classification procedure; indeed these approaches imply

two different definitions of classification. The simple fact of imposing a subset of

the poset as threshold impresses a meaning on the constituting variables. Instead

in the average rank method the variables are handled as mathematical entities,

according to the observed levels, and nothing else.

From the severity point of view, the added value is determined by the shape

and position of the threshold, because it can influence the severity measure ob-

served on profiles. The point we want to stress is the centrality of the threshold;

without that, average rank and evaluation method are not so different. Indeed,
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if the complexity of the threshold increases, the difference between the two ap-

proaches increases too. The length and shape of the threshold is deeper examined

in the following part.

The last relevant difference between these approaches relies in the profiles that

are considered: the average rank method is based only on the observed profiles

and its complexity depends on the relation structure of the set, for this reason

it is used for small samples or it is performed with the help of approximation

procedures ([Brüggemann and Carlsen, 2011], [De Loof et al., 2011]). On the other

hand, the evaluation procedure is commonly based on all the possible profiles that

can be observed starting from the elementary variables (2.3.1.1), hence, it does

not depend on the numerical dimension of the population. Recent developments

(Fattore [2015]) allowed the use of a smaller set of profiles in the evaluation

method, avoiding the evaluation of those profiles that are not observed in the

population.

3.2.4 Conclusions about the threshold

The thoughts proposed in this section are not meant as rules, but more as high-

lights. According to our aim, we propose three criteria for the choice of the

threshold:

- Meaning The threshold can be dependent on the univariate distribution of

the elementary variables or be defined externally by experts who evaluate

the entire profiles;

- Shape The structure impressed on the poset by the threshold have to be taken

into account, an asymmetric threshold could be recommended in the case

of variables with different importance;

- Length The number of elements of the threshold influences significantly the

results, especially the identification function. As a rule of thumb: if the

information useful to define a large threshold is available, then is better to

use it entirely.
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3.3 Study of life satisfaction in Italy

The aim of synthetic indicators is the measurement of complex and non-observable

concepts; in this work the complex concept under study is Life Satisfaction as

a proxy of well-being. It is a multidimensional concept that cannot be defined

objectively, because it depends on both life and socio-psychological conditions.

It is fair to say that: the same conditions, (assuming the possibility of identical

conditions among humans), are evaluated in different ways by different subjects.

Such a variability depends on culture, society and psychology interactively, so we

can not measure effective satisfaction but its perception.

In order to analyze satisfaction, we use the indicator construction method

proposed in 3.1.1. IH(x) represents the position (height) of profile p with respect

to the threshold τ . Once one got the value of such an indicator for every observed

unit, it is possible to use this information as a variable. The values of IH(p) come

out from an average of ranks among linear extensions, this construction proce-

dure needs to be taken into account, in order to use and interpret the results.

3.3.1 Data

Data comes from a survey carried out by the Italian National Institute of Statistics

(ISTAT). This survey is part of the Multi-Purpose surveys ¨Aspetti della vita

quotidiana¨, literally Aspects of Daily Life.

This survey is extremely useful because of its longevity and complexity; it collects

information on many life aspects such as: work, health, safety perception, social

inclusion, society and much more. In the year 2012 more than 40 thousands

individuals have been interviewed.

In this work the focus is oriented on the concept of Life Satisfaction and its

determinants. In order to produce a measure of Life Satisfaction, seven variables

have been considered, each one describes the satisfaction on a single aspect of life:

Economical Situation, Health Status, Family Relations, Friendship Relations,

Free Time, Work Conditions and Environment. Three of these variables are not

taken into account in the following, because:
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- Work Condition is observed only among the individuals who were occupied

at the time, for sake of precision, occupied and homemakers. The study is

intended for all people.

- Environment is observed only since recent time in the surveys, and this ap-

plication is meant to be part of a wider, time-crossing, application.

- Friendship Relations is too much associated to family relations and free

time, showing a small amount of original information.

Hence, at the end of the selection procedure the elementary variables are: Eco-

nomical Situation (Economy), Health Status (Health), Family Relations (Family)

and Free Time (Time). All the satisfaction variables are measured on a four-levels

ordinal scale: A Lot, Enough, A Little, Not at All. The poset produced by these

variables is composed by 44 = 256 nodes. Apart from specific reasons, the most

limiting criterion in the selection of starting variables is computational. The

number of linear extensions required from the Identification method in a poset

made by 256 elements according to Karzanov and Khachiyan [1991] is around

6.1× 1012. Adding one single variable with four levels, this number increases to

7.8 × 1015, more then one thousand times bigger, making the computation too

long for any research purpose.

3.3.2 Construction of the satisfaction Indicator

The procedure to determine the values of the satisfaction indicator has been

described in Section 3.1.1. In this application the established threshold is made

by a unique profile: 2232, so it is the first deprived profile and the less severe

one (among the deprived). The profile 2232 means: level 2, A Little satisfied, on

Economy, Health and Time, and level 3, Enough satisfied on Family.

This profile has been selected taking into account the univariate distribution of

the elementary variables (Table 3.1). In the threshold only the Family variable

has a value equal to Enough Satisfied. This threshold assesses that: the border

between satisfaction and dissatisfaction is located in this exact combination of

levels. If a profile will show a Family values lower than 3, it will implies that
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Variable 4.%A lot 3.%Enough 2.%A Little 1.%Not at all Total

Economically 2.6 41.9 39.3 16.3 100
Health status 18.5 64.2 1.8 4.4 100
Family relations 37.3 55.8 5.6 1.4 100
Free time 16.2 51.5 25.7 6.6 100

Table 3.1: Univariate distribution of the satisfaction variables

profile to be lower or incomparable to the threshold; the incomparability case is

obtained only, at least, one of the other variables is higher than 2.

This threshold takes into account the higher frequency of the highest levels of

satisfaction observed on Family ; the same care has not been repeated for Health,

because of the low frequency of the top level of satisfaction for this variable.

After the computation of the value of the indicator IH(·) for every individual,

the data have been scaled with the use of MIN-MAX method. The scaling is

important because the aim is the definition of an intuitive indicator, and the use

of absolute values (that in this case have a range equal to (−90; 166)) is not a

straightforward solution for the first description of the phenomenon. In the fol-

lowing the scaled indicator is called S(·), to represent satisfaction.

Observing the indicator IH , there is no need to focus on the level zero as it

happen for the interpretation of the svr(·) index. The satisfaction is full if the

indicator is 1, in the opposite case it is 0.

Figure 3.7: Distribution of satisfaction on the 256 nodes, without frequencies
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The construction of the indicator defines a value for each one of the 256 nodes

of the poset, these values are represented in Figure (3.7). The highest concentra-

tion is on the middle values, because the poset is larger in the central part, in the

sense of number of profiles, the central nodes are evaluated around those values.

The graph is symmetric; this feature will be useful in the following, because it

implies that every asymmetry in the observed distribution is attributable to the

distribution of satisfaction in the population.

In the following, the distribution of profiles is called theoretical because it does

not depend on the amount of population in every profile.

The observed distribution of S in the population of 2012 is represented in Fig-

ure 3.8. The picture shows a strongly skewed distribution, with a high amount

of individuals assessing good levels of satisfaction. The number of elements with

a value lower than 0.4 is extremely low, this graph is actually the evaluated dis-

tribution of Satisfaction among the Italian population in 2012. The interviewed

are quite satisfied, their answers show a population which is highly pleased with

their level of satisfaction.

Figure 3.8: Distribution of satisfaction according to the observed frequencies

This trend is more observable in the representation of deciles (Figure 3.9 ):

the first 10% of the population has a satisfaction level in the interval (0; 0.33).
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Mean 0.671 Std Deviation 0.230
Median 0.668 Interquartile Range 0.306
Mode 0.782 Coeff Variation 34.334

Descriptive Statistics of the Index in the population

The difference respect to the distribution of theoretical profiles is large, it means

that a really small amount of people define itself as severely dissatisfied on every

aspect. The difference between theoretical and observed frequencies is reabsorbed

in the interval (0.5; 0.90), actually between the median and the nineth decile. The

highest levels of the index (0.9; 1) are distributed in theoretical and observed data

similarly.

Figure 3.9: Deciles of the indicator, theoretical and with the frequencies

The amount of individuals with a Satisfaction lower than 0.5 is less than 20%

of the population.

Just to have a criteria for comparison, between these results and the basic Identifi-

cation approach, one can consider that the profile 2232 has a value of IH(2232) =

−1, while its Satisfaction value is S(2232) = 0.35. It means that every value

higher than 0.35 should be considered as satisfied in the identification point of

view. The population of Italy can be defined as mainly satisfied, since four indi-

viduals out of five are assessing a S bigger than 0.35.
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Effect of the elementary variables on the indicator The relation between

the satisfaction and the single variables is an important information to understand

the behavior of the indicator; the regression tree method has been used to explore

these internal relations. Given the construction procedure of the indicator, the

observed effects are dependent on the distribution of the elementary variables.

Group Mean S(·) Time Health Economy Family

1 0.121 1+2 1+2 1 —

2 0.324 1+2 1+2 2+3+4 —

3 0.486 1+2 3+4 1+2 —

4 0.582 3+4 — 1+2 1+2+3

5 0.714 1+2 3+4 3+4 —

6 0.785 3+4 — 3+4 1+2+3

7 0.812 3+4 — 1+2 4

8 0.937 3+4 — 3+4 4

Table 3.2: Groups identified by the regression tree
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N = 39571

S(·) = 0.671

Time ≤ 2

N = 12781

S(·) = 0.481

Health ≤ 2

N = 3530

S(·) = 0.257

Economy = 1

N = 1161

S(·) = 0.122

Group 1

Economy ≥ 2

N = 2369

S(·) = 0.324

Group 2

Health > 2

N = 9251

S(·) = 0.567

Economy ≤ 2

N = 5983

S(·) = 0.486

Group 3

Economy > 2

N = 3268

S(·) = 0.714

Group 5

Time > 2

N = 26790

S(·) = 0.761

Family ≤ 3

N = 16001

S(·) = 0.681

Economy ≤ 2

N = 8225

S(·) = 0.582

Group 4

Economy > 2

N = 7776

S(·) = 0.785

Group 6

Family = 4

N = 10789

S(·) = 0.880

Economy ≤ 2

N = 4874

S(·) = 0.812

Group 7

Economy > 2

N = 5915

S(·) = 0.927

Group 8

Table 3.3: Regression tree with the original variables

47



The results of the regression tree are represented in tables (3.3) and (3.2).

The procedure defines 8 groups, with increasing medium value of the indicator

S(·); they show different levels of the elementary variables.

The Family variable is not considered in the first three groups, it means it is

not useful to discriminate among the low levels of the indicator; this elementary

variable seems to be more influential at the highest values. Indeed, in the two

top levels, the value of the family is four (A lot), the most satisfied group with

Family lower than four has a mean value of the indicator equal to 0.785.

The role of Health is complementary respect to the Family ’s one: it shows its

importance in the lower levels, where the the medium value is 0.324 or less; in

those groups the value of Health is equal or lower than A Little (1 or 2). The real

key variable of the severe dissatisfaction is Economy, indeed, in the lowest group

every observation has value Not at All on it.

The seventh group is peculiar, the elements of this group have a high satisfaction,

but the level of Economy is 1 or 2. Therefore, if the family relations are completely

satisfying and the free time is at a good value, the level of satisfaction could be

very high, despite a low level on the economical point of view.

3.3.3 Life satisfaction in society

In the following the original indicator of satisfaction IH is used as a response

variable in a quantile regression procedure without scaling it. In every regression

model, the aim is the estimation of some characteristics of the response variable,

conditioned to the values of the explanatory variables. In the quantile regres-

sion the aim is the estimation of a quantile of the response variable conditionally

to the effect of explanatory variables (Koenker [2005], Koenker and Bassett Jr

[1978]). This construction makes quantile regression highly recommended when

the response variable is not normally distributed, and this is the reason why we

are applying it to this data.

The estimated quantile could be the median or the quartiles, but also every other

quantile. Therefore, this method is particularly suggested when the effect of the

explanatory variables is supposed to change along quantiles. Focusing on order

statistics such as quantiles, there is no need of assumption on the distribution of
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the response variable in quantile regression. This property makes quantile regres-

sion significantly different from many other approaches.

The method of quantile regression has been applied by defining the indica-

tor Hτ as the response variable and 14 socio-economical variables as explanatory

ones. In Table 3.4, the explanatory variables that have been selected are shown

as well as the estimation of the parameters at the 50th quantile. For example,

the estimated parameter for men (with respect to woman) is 2.84.

In this case, the estimated value of the median of our indicator of satisfaction

can be easily computed; keeping fixed the subject’s qualitative variables to the

reference levels (the values between brackets), the estimated quantile for a median

age individual in a family with dimension 2 is

83.23− 0.56 · 49− 1.57 · 2 = 52.95,

where 49 and 2 are the values of the variables age and N. of family members. On

the other hand, if the individual is a man, the estimated value has to be increased

by the gender parameter 2.84, reaching the value of 55.79.

The formalization of the model allows a simple approach of interpretation:

the men population has a higher median satisfaction than the women popula-

tion, and hence they are more satisfied, given all the other explanatory variables

in the model (at least at the median).

The table of estimates at the median can be used as reference to study the

differences among the explanatory variables. The direction of results is not sur-

prising, but their dimension is quite interesting. If we exclude the age, the most

important variables are: Economical change, and Geographical Partition. The

economical change agree with the well known concept of relative satisfaction,

which assess how the satisfaction is a measure relative to the peers; in this case

the effect comes from the comparison with the past. If the situation is worse then

the previous year, the level of satisfaction decreases strongly. The comparison be-

tween equal and better level gives non-significant results before the 70-th quantile.
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Variable (Reference level) Level of variable Estimate Pr > |t|

Intercept 83.23 <.0001

Sex (Female) Male 2.84 <.0001

Marital Status Unmarried 7.96 <.0001

(Divorced/Widower/Separ.) Married 8.22 <.0001

Education University or higher 7.78 <.0001

(Middle or lower) High school 4.76 <.0001

Work Conditions Occupied -11.27 <.0001

(Retired/Student) Unemployed/Housekeep -14.90 <.0001

Smoking (Non Smoker) Smoker -5.45 <.0001

Religious Practice Often 13.38 <.0001

(Rarely) Some Times 10.42 <.0001

Politic Discussion Often 4.42 <.0001

(Rarely) Some Times 3.67 <.0001

House contract Rent -6.79 <.0001

(Free use without property) Property 2.75 0.059

Economical changes Better 19.88 <.0001

(Worse) Equal 19.72 <.0001

House Type Distinguished 16.12 <.0001

(Rural/Public) Average city house 11.53 <.0001

Geo. Partition North 22.57 <.0001

(South) Center 13.57 <.0001

Age -0.56 <.0001

N. Family members -1.57 <.0001

Table 3.4: Quantile regression’s parameters at the median of IH
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The geographical partitions probably acts as a wide summary of relevant fac-

tors for the determination of life satisfaction. Indeed, The southern partition has

the most negative effect of the quantiles of satisfaction. The comparison between

the center and the north underlies a statistical difference, assessing the northern

partition as the best environment for satisfaction improvement.

Education level is surprising in the opposite point of view. Its effect is smaller

that 10 from the third to the tenth decile. The university and high school lev-

els are statistically different, by a really small amount (2.5) for the middle-high

quantiles.

Moreover, it is useful to evaluate the quantile regression’s estimates among

many percentiles. In the following, those trends are represented: every graph

represents the estimation at the percentiles from the 5-th to the 95-th with steps

of 5 quantiles.

Figure 3.10: Quantile regression of Intercept and Gender

a. Parameter of Intercept b. Param. Males vs Females

The graph shown in Figure 3.10a represents the estimated value of the in-

tercept. It follows the trend of the indicator, and hence it constantly increases

among the quantiles. The original range of the indicator is close to 250, precisely

(−90; 166). The values of the intercept moves in the interval (−28; 160), almost
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linearly with respect to the increase of quantiles. In Figure 3.10b the estimated

parameters for the men group is plotted. There is strong evidence of the higher

level of satisfaction for the male population with respect to the female one. For

instance, in the lower quantiles, the men’ satisfaction is between 4 and 7 points

higher. Furthermore, the level 95% confidence interval computed among the es-

timates proves the male parameter to be significantly higher than zero in every

quantile. At this point, we begin highlighting the shrinking effect on the esti-

mated values, which is a trend that can be found in many cases under study. The

positive effect of being male is reduced in proximity of highest satisfaction to less

than half of the observed maximum.

Figure 3.11: Quantile regression of variable Marital Status

a.Parameter of Married b. Param. Unmarried

Most of the parameters are significantly different from zero, especially be-

cause of the large number of observations used. The effects of the Marital Status

variable are not surprising: married and unmarried individuals show a higher

level of satisfaction with respect to the class of individuals whose relations were

interrupted. The difference between married and unmarried individuals is small

(Figures 3.11a and 3.11b). From this data, notice that the group of unmarried

people is composed by both singles and individuals that are too young for mar-

riage. From the graphs, it is possible to see how the status of unmarried has a

different effect on the satisfaction among the quantiles: it is maximum around

the 30-th percentile, where the value is 12.6, then, it decreases constantly to
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0.25 where the estimation is not significantly different from zero. This type of

fluctuation of the effect is visible only with the use of quantile regression. In

this application, we get particular information by this method: at the lower lev-

els of satisfaction, the Unmarried effect behaves differently from the Married one.

Figure 3.12: Quantile regression of variable Education

a. Parameter of University b. Param. High School

The effect of education is sharper: with the increase of education, the median

satisfaction grows too. The parameters are evaluated with respect to the level

of middle school or lower. In figures 3.12a and 3.12b, the effects are represented

showing that university is stronger than high school, which confirms the ordinal

nature of the variable Education. The university effect is stronger in the low

levels, which means that the less satisfied graduated individuals are significantly

(around 14 points) more satisfied than the less satisfied people with a middle or

low education. In addition, the differences among the quantiles are visible, but

these are certainly not as big as we experienced with Gender and Marital Status ;

it probably means that education is useful as a tool for satisfaction at every

level and not only for the low level of general satisfaction. The effect of a high

school education has the same direction as the graduation, but it has a smaller

intensity. Furthermore, the parameter of High school reaches its maximum around

the 40-th quantile showing a different shape from the University ’s effect. Hence,

the education is certainly a good investment to gain good results and increase

satisfaction for everyone.
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Figure 3.13: Quantile regression of variable Professional Condition

a. Parameter of Employed b. Unemployed/Housekeeper

The curves of professional condition behave differently from many of the other

results: these are not monotone, especially in the case of the Employed group

(Figure 3.13a). This variable has the reference value in inactive individuals,

mainly retired and a minority part of students. The employed individuals de-

fines themselves as less satisfied than the reference group, and this difference is

stronger between the 20-th and the 80-th quantile. Similarly, the group of Un-

employed/Housekeeper has a lower value of satisfaction, even stronger than the

employed group. Maybe it can be interpreted as a positive effect of being retired

or a student, simply because it implies being out of working age, with all the

sources of stress that can be avoided only with a low or advanced age. Moreover,

Employed individuals are not significantly more satisfied then the reference group

in the first quantile (5-th).

Studying the habits of the individuals, one result shows up significantly: the

individuals who belong to the group of smokers show a generalized reduction of the

level of satisfaction with respect to non-smokers and those who stopped smoking

(Figure 3.14). The smoking habit is not a direct cause of dissatisfaction, but the

number of cigarettes is tightly related to satisfaction and happiness. Moreover,

this behavior has been found to be a proxy for socio-economical level in many

works. In addition, the group of Non-Smokers receives a satisfaction boost from

the subset of people who actually stopped smoking recently and who experienced

the physical and psychological effect. These results are completely in line with the
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Figure 3.14: Quantile regression of variable Smoking

Quant. Param. of Smoker

literature. In their work, Grant et al. [2009] confirmed the association between

life satisfaction and health-promoting behavior that is likely to be bidirectional.

Regarding ¨quitters¨, in contrast to continuing smokers, an improved subjective

well-being has been reported that could be the motivation for the quit attempts

by individuals [Piper et al., 2012].

Figure 3.15: Quantile regression of variable Religious practice

a. Frequent practice b. Saltuary practice

The effect of religious participation is plotted in figures 3.15a and 3.15b. The

main goal of this type of information is to catch the connection between religiosity

and satisfaction, but the limits of a single variable in the description of such a

complex concept are straightforward. Hence, using this variable, together with
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the Political Participation variable, we want to present some perspectives of social

inclusion and participation. People who attend the religious services Often and

Sometimes are both more satisfied about life than those who rarely practice. But

the rigorous practicing individuals are not more satisfied than the interviewed

who visit the religious place once a week or less but more than once a month,

as one would expect. To be exact, the confidence intervals of the groups are

overlapping at many quantiles.

Figure 3.16: Quantile regression of variable Political participation

a. Frequent polit. activity b. Saltuary polit. activity

The effects of political participation have the same shape as religious practice

but are less intense. The Often level (Figure 3.16a) and the Sometimes level

(Figure 3.16b) are almost overlapping. This variable is obtained by asking how

often the individual talks about politics. Hence, it makes it possible to under-

stand partially the involvement of the individual in society’s changes. Differently

from religious habits, political activity seems to become lightly negative for sat-

isfaction in the top levels, but the final value is not significant.

This variable together with Religious practice are perfect examples to appre-

ciate the utility of quantile regression method: both show the satisfactory effect

of participation which is far more important at the lower levels and decreases

with the improvement of satisfaction.

There are three explanatory variables that help to model the economic sit-

uation of the subjects: the House type, the House contract, and the Economic
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changes. The effects of the first variable are represented using the Public houses

and Rural Houses as the reference level. The plotted effects of Distinguished and

City houses are so similar in shape that probably we should use the information

to say something about the reference level. In the low level of housing, the sub-

jects declare a lower satisfaction; this difference is stronger between the second

and the forth deciles. We can compare average housing with the distinguished

housing only by recognizing the larger dimension of the effect observed for the

houses of the higher level. The value of the estimates for the group of average city

houses is not significantly different from zero in the highest evaluated quantile.

Figure 3.17: Quantile regression of variable House contract

a. Property of the house b. House for Rent

The results given by the House contract are more easy to interpret. In Ta-

ble 3.4, the value Free use without property takes the reference role. This group

is made by the individuals who own the right to use the house without paying

(because it is free for them or because they sold the property with a delayed

transaction). The satisfaction of house owners is higher, but this result is signifi-

cant only in the first three deciles (Figure 3.17a). The effect of being a tenant is

negative, with a quite constant trend (Figure 3.17b); in this case, the significance

level is reached only after quantile 0.10.

In the Economic Change question, subjects were asked to say if they consid-

ered the economic situation of the family improved, stable, or deteriorated with
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Figure 3.18: Quantile regression of variable Economical Change

a. Economically improved b. Economically equal

respect to the previous year. The reference level is Worse, so it is possible to ob-

serve the estimated effect of an improved situation, which is presented in Figure

3.18a, and the effect of a stable situation (Figure 3.18b). The estimated trends

for Better and Equal are almost overlapping in intensity and shape, which means

that the real difference is observable between them and the group who perceives

its situation as Worse. Indeed, the members of this negative class are generally

less satisfied, by a large gap, and represent the strongest observed in this work.

Figure 3.19: Quantile regression of variable Geographical Partitions

a. Northern Partition b. Central Partition

The Geographical partitions are a cornerstone in the interpretation of Italian

data; the characterization is always strong, and this case follows the rule. The
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southern partition is the reference point and the comparison with the Northern

one is clear (Figure 3.19a): the inhabitants of the North are more satisfied among

the entire spectrum of observation. Especially in the middle-low levels, the value

of the Northern parameter is 10% of the entire range of the indicator Hτ , ex-

actly 25 out of 256. People living in central Italy are still more satisfied than the

southerners, but the effect is mitigated with respect to the northerners (Figure

3.19b). This result respects the knowledge about the socio-economical situation

of these partitions.

Figure 3.20: Quantile regression of variables Age and Family Members

a. Quantile param. of Age b. Param. of Family Members

As last issue, we want to take into account and show two demographic pieces

of information. The Age and the number of Family members are quantitative

variables, hence they are not evaluated with respect to a reference value. The

estimated value is the gain/loss of satisfaction experienced by an individual when

the considered variable is increased by one unit.

The effect of Age is negative on Life Satisfaction (Figure 3.20a); the age has a

range of 90 units, then, in the 1-st decile, where the estimate of the parameter

is −1.02, being the oldest of the population would mean to lose more than 90

points with respect to the youngest (since 90 years is the difference between the

minimum and the maximum age).

The number of members in the families has a negative effect too, according to
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Figure 3.20b; in the lowest level, every added member decreases the satisfaction

by a value around 2.

3.4 Conclusion

Considering the results of Fattore [2015], we studied some of the features of this

method; particularly the threshold, which stands in the center of this model inno-

vation. Starting from the available information a procedure for the construction

of a synthetic indicator has been proposed and then used to obtain a measure

of a complex and unobservable concept such as Life Satisfaction. The result

is a unique indicator, that we used to represent the concept under study. The

properties of the indicator, allow to study the complex concept with the use of

a method such as quantile regression. In this practice, the estimation of the ef-

fect of many socio-economical variables on life satisfaction have been enhanced,

confirming many result of literature about Satisfaction. It has been possible to

estimate the effects of the explanatory variables on the different quantiles of the

satisfaction, proving that the external variables act differently at different levels

of the response variable.
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Chapter 4

HOGS - Height Of Groups by

Sampling

This chapter has two important contents: first of all we propose a new approach

for the computation of a synthetic measure of an unobservable concept out of

ordinal (or mixed) variables, then we proceed with a model to study the effect of

explanatory (external) variables on the different levels of such a concept.

These developments start from several issues, that are specific needs due to our

field of application: The implementation of profiles’ frequency in order to take

the distribution into account, the complexity of the poset structure in the case

of big datasets, and the dimensional limitation of recent software respect to this

topic (see also Sections 2.2.3 and 2.3.2).

In particular, we look for a method able to study a complex concept and to

define the relations of the concept with external information. We are interested in

the evaluation of the effect of socio-economical variables on the level of the com-

plex concept described by the poset built on the population. To do so, a measure

of the concept is the fundamental step, and a criterion to define a relation be-

tween this measure and the explanatory variables is the second pillar. Finally,

the ability to deal with large sets of data is an important property of this proposal.
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4.1 What is HOGS

HOGS is an approach conceived to handle a big set of observations using poset

theory with the help of a sampling criterion. This procedure computes the mean

of the average ranks of a profile or group of profiles among different samples,

and allows the investigation of the relations between the average rank and the

explanatory variables. This method is limited to ordinal or nominal explanatory

variables at the moment, but only because of computational parsimony.

4.1.1 The HOGS procedure

Let assume to have a population P represented by the matrix P(n,m), where n

units are observed on m variables (q1, . . . , qm). We organize the first k variables

as internal variables (I), that are the variables containing the information about

the poset. The first k columns of the row i define the i− th profile pi. Moreover,

it is common practice to assume all the internal variables to be oriented in the

same direction; to low values of the variables correspond low values of the latent

variable (and consequently of the synthetic indicator). This assumption allows to

expect the cograduation between the variables to be always positive or at least

null. In the following, we will refer to the remaining m − k variables of P as

external (E), because they are not relevant in the definition of the complex con-

cept of interest, but could be, for instance, explanatory variables (E-variables).

According to these definitions, the main aim is to investigate the effect of external

variables on the poset defined upon the internal ones.

If n is very big, before our research it was not possible to compute the average

rank because of computational limits, because many of the available software were

developed for small posets cases (see Chapter 5). The approximation LPOMext

was possible only with the use of a program written in Python called PyHasse

[Bruggemann and Voigt, 2009]. The procedure of approximation used from the

local partial order models finds its weakness in the complexity of the structure of

the poset. The poset observed on a huge amount of units is probably very com-

plex, because it contains with high probability almost every possible profile that
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can be found observing the internal variables (the concept of ¨possible profile¨

is intended as the product order of internal variables measured on ordinal scale).

Computing the average rank (even the exact one) on a poset that contains every

possible node, leads to a weak differentiation among the profiles of the same level,

therefore the faster function that we developed for the approximation (see Chap-

ter 5) is still not enough. In the following, the concept of complexity of a poset

will be widely used. In order to share the meaning of the structure’s complexity

we propose a general example. Let the number of observations to be constant,

and consider different posets with their number of incomparabilities u = |U(P )|.
Then, complexity is very low in complete orders (like chains) where u = 0, and

very high in the case of u = n(n− 1)/2, that corresponds to the anti-chain case.

Clearly, the observed complexity is never so neat, all the intermediate shades of

complexity can be observed.

In the following, we explain every step of the HOGS procedure. Finally, the

algorithm is described with a pseudo code.

To recap, when n is too big, we will refer to sub-samples. We need to define

n∗, the optimal number of units in every sample. At the moment n∗ is a value

defined in the interval (100; 200) following the usual limitation followed by other

existing software, but, thanks to the development achieved during this research,

these limits are going to be largely relaxed. One of the next steps in this research

will be the definition of an optimal value for n∗.

The HOGS procedure follows the following steps:

i Define whether n is too big for LPOMext (Is n >> n∗?);

ii Sample n∗ units from the population with a simple random sampling pro-

cedure without replacement to form the sample si. The same units can be

sampled in different samples;

iii Observe the poset based on si and compute the average rank of every profile

in the sub-sample;

iv Divide the sample si in groups, according to the levels of a grouping criterion
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(the criterion is an external variable, a profile or a group of profiles like a

cluster). Estimate the medium average rank (H}), that is the mean of the

average ranks of the elements belonging to each group.

The definition of the external grouping criteria has a huge relevance.

v Repeat steps ii − iv until a stopping criterion is reached and at least all

observations have been observed once;

vi Compare the results of the groups obtained by all the samples, by means of

statistical tests.

Every step needs a specific care.

i) Dimension of the population

The dimensional problem, given by the number of observations in a poset, has

been introduced in 2.2.3 and 2.3.2: the number of observed elements determines

the width of a poset and, consequently, increases the probability of incompara-

bilities. This augmented complexity decreases the correctness of approximation

procedures because it increases the amount of complex structures, multiplying the

combinatorial effect described in the introducing Section 2.2.3 and in Brüggemann

and Patil [2011].

ii) Sampling of sub-sets

Sampling at random from the original population, the most frequent profiles

will be observed more frequently, having more representation, and the less fre-

quent ones will be often absent.

Observing a sample, only a subset of the poset P is observed and the structure

is easier. For instance, if we assume to observe the poset represented in Figure

4.1, were the darker profiles are more frequent, sampling n∗ = n/2 elements; we

can expect to observe most of the black elements and a few of the white ones.

Hence, the resulting poset for the sample si will have an easier structure (Figure

4.2). Along with the reduced complexity of the poset also the approximation is

improved. The difference in the probability of extraction among the profiles will

determine a regularity in the structure of the observed sub-posets. An example

of poset built on the sample is represented in Figure 4.2, where the degrees of
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Figure 4.1: Distribution of observations among the poset. Darker implies More
frequent

grey are used just to recall the profiles from the previous figure.

This effect of ¨auto-selection¨ of the most frequent profiles is almost sure

in every real application where the elementary variables are not homogeneously

distributed. Nevertheless, there is a need to formalize exactly the probability of

simplification of the sub-poset built on the sample; it is one of the most important

future development for this approach.

iii) Average rank of the sample Once a sample is observed, the relative

poset is mapped onto a linear order with the LPOMext method. Therefore, every

element xj ∈ si has an associated value of the approximated average rank (Hi),

like the elements in the example (Table 4.1).

si x1 x2 · · · xj · · · xn∗−1 xn∗

Hi(·) 3.3 2.7 · · · 5.2 · · · 1.4 4.6

Table 4.1: Example of LPOMext on a sample

The results of the approximation procedure can assume values in the range

(1;n∗). Unfortunately, according to the properties of the LPOMext approach,
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Figure 4.2: Distribution of observations among the sub-poset.

if two units show the same profile, only one representative element is selected:

decreasing the maximum observable value for the average rank (see 2.2.3).

This limit can be handled in two ways:

1. Rescaling the values of H(·), to impose the range (0, 1):

H̃(xj) =
H(xj)− 1

(n∗si)

where H̃(·) is the re-scaled value of the approximated average rank and n∗si
is the number of different profiles observed on the sample si.

2. Implementing the frequency of equivalent profiles in the formula of LPOMext ;

in our opinion this is the best solution, and a proposal for this implemen-

tation is described in Chapter 5. For sake of simplicity, in the following we

will simply assume that every sample contains n∗ different profiles.

iv) Selection of entities for aggregation In order to select the external

information that defines the levels of aggregation, two conceptual paths are pos-
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sible: the E−variables and the observed profiles. The choice defines the rules and

length of the sampling procedure:

E−Variables. Aggregation by level .

Example: Estimate and compare the average rank of females and males

in every sample, respectively HiF and HiM (E−variable: gender). More

generally, assuming an external variable qi with e levels: the elements of

the sample si are divided in e sub groups and the values of H(·) are observed

on the elements of every group.

Good features:

• The required time is usually small, if the number of levels is not too

high. Since the number of levels is sufficiently smaller that n∗, every

single sample will constitute a sufficient population to test the differ-

ence of effect among the levels.

• It allows to estimate effect of variables interactions if the level of es-

timation is defined on their combination (male worker, female worker,

male non-worker, female non-worker).

Bad feature:

• The procedure needs to be repeated from the beginning for every ex-

ternal variable of interest, this could be annoying with the current

software. This problem is mainly overcame by the computation speed

of the HOGS function, thanks to the routines presented in Chapter 5.

si x1 x2 · · · xj · · · xn∗−1 xn∗ xM = HiM xF = HiF

H(·) 3.3 2.7 · · · 5.2 · · · 1.4 4.6 3.6 2.3
gender M F · · · M · · · F M

Table 4.2: Example of LPOMext by level of gender on a sample

Aggregation by profile .

Example: If the set I is constituted by two dichotomous variables, the proce-

dure can aggregate the average ranks by the possible profiles: 00, 01, 10, 11.
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If the number of profiles that can be observed according to internal vari-

ables is finite, the sampling procedure can be oriented to find an efficient

estimation of every profile, with a stopping criterion focused on the conver-

gence of the estimation.

In this case we can assess that the sampling is based on internal variables

(I).

Good feature:

• The computation of the profiles’ value is performed only once, the

result of this approach is the average rank of profiles, a value of that

profile on the latent variable. It fits well our aim in the research on a

synthetic indicator.

Bad features:

• The amount of profiles to estimate could be very large, causing prob-

lems to find convergence.

• This approach is limited to I sets made by ordinal or discrete variables

with low number of levels; the use of variables with many levels will

determine a problem of estimation, in case of continuous variable it

will converge to the unit aggregation.

si x1 x2 x3 x4 · · · xn∗−1 xn∗

H(·) 3.3 2.7 2.7 5.2 · · · 3.3 4.6
profile 120 111 111 221 · · · 120 112

Table 4.3: Example of LPOMext by profile on a sample

The type of comparisons and statistical methods used to analyze the results

depends on the chosen level of estimation.

In the following the focus is imposed to the aggregation by level, because it

fits better for the investigation of the effect of external variables on the ranks of

units.
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v) Stop criterion The stop criterion is an important part of the HOGS algo-

rithm, because the quality of the estimation depends on it.

In the following, the Level aggregation is presented; in such a case, the values Hig

are the aim of the estimation, where g ∈ {observable levels of the E variable}.
Before any further steps, we want to underline an important result coming from

this aggregation procedure. Let xijg represents the j-th element observed in the

i-th sample, and which has been found to show the g-th level of the external vari-

able used for the aggregation; we assume xijg to be a realization of the random

variable Xg.

Xg is the random variable that represents the mean of the average ranks of the

elements of the g − th group and nig is defined as the number of elements of the

group g in the sample i.

We assume that {Xs
g} = (X1g, . . . , Xig, . . . , Xsg) is a sequence of independent

and identically distributed, real valued random variables. Then, if s is sufficiently

big, according to the Central Limit Theorem [Polya, 1920]: the distribution of

the sample mean is normal, with mean and variance respectively equal to µg and

σ2
g/s;

X
s

g v N(µg, σ
2
g/s). (4.1)

In this case, we can assess that: if the number of samples (s) large enough, the

aggregated value Hig is a realization of the normally distributed random variable

X
s

g.

The stop criterion could be defined according to this result. Following the

widespread heuristic relative to the central limit theorem, the normal distribu-

tion of the sample mean is reached if s, the number of samples for every group,

is sufficiently big. Usually the number 30 is considered big enough.

Hence, we define 30 as the minimum number of observations for every group

g, if a group is not observed in a given sample then we need to observe more

samples as long as the number of observations for every group (sg) is bigger than

the heuristic value, sg ≥ 30,∀g ∈ E.
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Furthermore, the procedure is required to observe every element of the popu-

lation of the survey under study, because it often represents the entire population.

The procedure stops when both these criteria are reached.

The structure of the external variable E has a central role, its frequency dis-

tribution influences directly the computational time of the procedure; this is the

reason why we do not suggest to use the HOGS procedure with E−variables

measured on the quantitative scale.

vi) Comparison of results At the end of the procedure, the results are col-

lected in the HOGS matrix H(e, s). The dimensions of the HOGS matrix are

defined by the number of levels of the external variable (e) and the number of

observed samples (s).

So, according to the results on the distribution of the aggregated values Hig, the

levels are compared with tests on the difference of means. For instance, in the

case represented in Table (4.4), the effects of being male or female can be com-

pared using the t−test. Future developments will implement the comparison of

levels through the tests on ranks.

s s1 s2 · · · si · · · ss−1 ss Hg

HiM 3.6 3.7 · · · 5.6 · · · 1.8 4.3 3.8

HiF 3.0 2.9 · · · 4.6 · · · 3.1 3.9 3.5

Table 4.4: Example of the HOGS table H

4.1.2 The algorithm

Here, the HOGS procedure is described in the simplified form of pseudo-code:
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Algorithm 1 HOGS algorithm

1: procedure HOGS(I, n∗,E− variable)
2: levs ← e . Number of levels of the E− variable
3: nobs ← n . Number of units in the population

4: UnitCheck ← Vector(0, nobs) . 1 if a unit has been observed

5: GroupCheck ← Vector(0, levs)

6: . Counter, number of samples in which each group is observed

7: H←Matrix(e, s)

8: for i← 1 to realization of criteria (Units & Groups) do . see 4.1.1

9: si ← i-th sample ⊂ I . The samples are subsets of I

10: function LPOMext(si)

11: Hi ← Approximation on si . LPOMext is computed on si

12: end function

13: for g ← 1 to levs do

14: Hgi ←Mean(hgi) . hgi = {hi ∈ Hi|hi ∈ Group g}
15: end for

16: end for

17: Return H . which contains s means computed on e levels

18: end procedure

4.2 Evolution of life satisfaction in Italy

Data are the same presented in Section 3.3.1. As well as before, the set I is con-

stituted by the four ordinal variables of life satisfaction: Economy, Health, Family

and Time. Here we present the results of HOGS procedure on the level of life

satisfaction with respect to the external variables gender, age and geographical

region. According to their definition, all the elements of the HOGS matrix have

value in the interval (0, 1).

The results obtained using gender as external variable are represented in Fig-

ure 4.3: in the picture the time series of satisfaction by gender are plotted. The

time series refer to the period covered by the national survey from 1993 to 2012
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(2004 is missing).

The line representing females is clearly shifted to the bottom with respect to

the male’s one. It confirms the result observed in the previous chapter, where

the quantile regression shows higher satisfaction among men than women. The

confidence bands of the two groups are narrow, showing a statistically significant

difference between the groups.

Figure 4.3: Index of life satisfaction by gender. Italy, 1993-2012.

Most of the socio-economical effects are influenced by the age of the respon-

dents. In Figure 4.4, we can see the large difference among four age classes:

(13; 34], (34; 50], (50; 64], and (64; 105]. These time series proof statistically the

dependence of satisfaction by age. The interesting result is in the dimension

of the difference between the young individuals and the rest of the population.

Furthermore, a strong decrease can be observed in the population of over 64 cor-

responding to the passage from 2002 and 2003.

With the use of the HOGS procedure, we also estimated the level of satisfac-

tion using the region as external variable.
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Figure 4.4: Index of life satisfaction by age class. Italy, 1993-2012.

The Figure 4.5 shows the time series for four Italian regions: Trentino- Alto

Adige, Veneto, Lazio, and Campania. Trentino - A.A. is the best performing

region, this region has an outstanding result respect to all the others. The rest of

Italy could be divided in three sections, that mime the usual partition of North-

Center- South, within the partitions the confidence bands are often overlapping.

Veneto represents the northern partition, that is the most satisfied. The central

partition (represented by Lazio) is usually lower than the northern, and only in

some years the confidence bands touch each other. It implied an interesting effect

of time, that is different among the regions. The time effect is evident in the time

series of Campania, that shows a generalized lower level of satisfaction among the

years, characterized by a strong increment after year 2002, and an even stronger

reduction after 2009.
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Figure 4.5: Index of satisfaction by region. Italy, 1993-2012.
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4.2.1 Conclusion

The use of this new procedure finds its motivation in the large dimension of

the datasets. Instead of engorging the basic approximation procedures, that are

expected to handle small populations, it decomposes the problem in s samples

achieving the following steps:

• the approximation error decreases because of the reduced complexity of the

poset referred to the sub-samples;

• the frequency of the profiles is considered and exploited, the most frequent

profiles are observed in many different samples, increasing the robustness

of the estimates;

• the approximation error depends on the structure of the poset and it is

not systematic. Aggregating the results of different samples in a unique

test, we obtain a method to measure the distribution of the error and test

statistically the observable differences.

Thanks to its construction, HOGS procedure allows to relate a profile made

by multiple variables, to a single value that represents a complex concept without

the use of assumptions on the distribution of the variables. With the estimation

by level, in particular, it is possible to manage the relation between ordinal ex-

planatory variables and multiple response variables. The further development

of this model looks promising and challenging, especially for: the definition of

samples size, the estimation of interactions among the explanatory variables and

the development of the profiles estimation.
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Chapter 5

The computation of

approximated average rank in

large datasets

5.1 The Average Rank with large datasets

In social science it is common to deal with big amount of data. Therefore we

recognize the need of obtaining a fast tool in order to handle tens of thousands of

observations without requiring too much memory from the supporting machine.

Such a computational tool is the corner stone for the novel methodologies pro-

posed in this thesis and for the research on approximation of average rank for

social statistics.

In the present chapter, we deal with the computation of the approximated

average rank, which has been introduced in Section 2.2. Among the software for

poset-related computations, PyHasse [Bruggemann and Voigt, 2009] is consid-

ered one of the most complete. Nonetheless, PyHasse (from Python and Hasse

diagram) has been developed in the framework of chemometrics with a focus on

graphical representation of the Hasse diagrams. Hence, it is not meant to deal

with many observations.

We developed a function (R-LPOMext) with the software R, that is able to
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perform LPOMext approximation for bigger sets of data.

5.1.1 Characteristics of the procedure

The function R-LPOMext is a simple procedure. Nevertheless, many tools may

be obscure for the usual R-user, because are obtained from the recently developed

package called PARSEC (PARtial order in Socio-EConomics), that has been pre-

sented by Fattore and Arcagni [2014]. This package contains several instruments

for the analysis of posets, in the following we list the ones that are part of our

procedures.

pop2prof: translates the matrix made by internal variables (I) in the correspon-

dent list of observed profiles, the information is enriched with the frequencies

of profiles in the population described by I;

getzeta: computes the zeta matrix, a squared boolean matrix were the list of

profiles describes both the rows and columns. The boolean value is true if

the row profile is lower or equal than the column profile;

downset(upset): returns a boolean vector indicating which poset’s elements are

equal or below(above) at least one element of the function’s argument (see

Section 2.1.2.3);

incomparability: returns a boolean matrix (as the zeta metrix) whose elements

are TRUE when row and column profiles are incomparable.

5.1.2 The algorithm of R-LPOMext

R-LPOMext has no dimensional limitations but those imposed by the memory

used for function getzeta. Every step of the algorithm uses as less memory as

possible, because we accept a slower procedure in order to obtain the ability to

manage larger datasets; this is the reason why the apply functions are missed

while simpler and slower for and while cycles are used.

The R-LPOMext algorithm is described in Algorithm 2. We add here some

tips in order to make the reading of the pseudo-code faster.
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The main source of confusion in the code is the difference between theoretical

profiles, observed profiles, and profiles of the observations.

Once the population is observed, there are n rows in the matrix of internal

variable I, every statistical unit has an observed profile that can be equal to the

profile of other units. The number of theoretical profiles is equal to the mul-

tiplication of the number of levels for every I-variable as introduced in Section

2.3.1.1. So, the observed profiles could be a subset of the theoretical ones, and

their frequency depends on the profiles shown by all the observations.

For instance: let observe a population of 7 individuals on two internal vari-

ables measured on three levels {1, 2, 3}. The theoretical profiles are 9, given

by every possible coming from the composition of the two internal variables

(11,12,21,22,...). In Table 5.1 we can see the observed profiles. 11,23,31,12

are the observed profiles, and their frequency is always 2, excluding 12 that has

been observed once.

Observation Observed Profile

x1 11
x2 23
x3 31
x4 23
x5 12
x6 11
x7 23

Table 5.1: Example of observed profiles

In the R-LPOMext algorithm the frequencies of profiles are not taken into

account, because in LPOM approaches the frequencies of profiles are not used for

the approximation of the average rank.

In row 2, every observation determines a profile according to its internal vari-

ables; the aim of R-LPOMext is to obtain a vector of approximated average ranks

(lpom) which elements correspond to the elements of the vector ¨strings¨. The
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Algorithm 2 R-LPOMext algorithm in R

1: procedure R-LPOMext(I)
2: strings ← toString(I) . Vector of profiles of Observations
3: lpom ← V ector(n)
4: poset ← pop2prof(I) . It is the poset of the observed population
5: np ← Number of profiles
6: Z.pop ← getzeta(poset) . Builds the zeta matrix of order relations
7: incom ← incomp(Z.pop) . Matrix of incomparability between profiles
8: for p← 1 to np do
9: downp ← downset(p)

10: upp ← upset(p)
11: heightp ← |downp|
12: incomp ← p-th row of incom . List of profiles incomparable to p
13: for every element i ∈ incomp do
14: effecti ← πd/(πd + πu)|i . see Formula 2.1
15: heightp=heightp+ effecti
16: end for
17: lpom[p] ← heightp
18: . heightp is assigned to all the observations with profile p
19: end for
20: return lpom
21: end procedure

statements downp, upp, and heightp are the realization of the different parts of

the LPOMext formula. The effect of every incomparable element is evaluated

step by step in a recursive sum.

Future steps This procedure is extremely fast and allows the use of datasets

made by tens of thousands of observations, but still, it needs improvements. First

of all, we want to implement the possibility to use other approximation formulas

(see 2.2 as example).

5.2 The use of profiles’ frequency

In the recent development of procedures based on poset theory, the repetition

of the same profile is usually treated as a single equivalence class, without any
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information about its frequency. This illusory lack of information is, oppositely, a

precise choice, due to the development context of these procedures. Many of the

advances in the application of poset theory has been proposed in the science of

chemometrics, where small samples of units are measured on precise quantitative

scales.

In the context of this research, the ordinal scale of measure and the large

amount of information impose the opposite choice; the information given by the

frequency of profiles must be used in the evaluation of average rank. This is the

aim of this section.

The procedures of approximation of the average rank are based on the ob-

served profiles: if two or more observations show the same one, these are grouped

in a unique equivalence class, becoming a unique element in the computation of

the average rank.

Example: Lets take a chain made by 3 elements (a < b < c), with frequency

described in Figure 5.2; in the same table is possible to see the value of the ap-

proximated average rank H(x) (in this example it is equal to the exact average

rank).

Profile Frequency H(x)

a 2 1
b 5 2
c 3 3

Table 5.2: Frequency and rank for the example set

The proposal is to take into account the frequencies of the profiles {a, b, c},
and compute the approximated average rank considering every profile for its di-

mension. The rank of the elements of a profile is the range of ranks occupied by

the profile’s members (see Figure 5.1).

According to this approach, we define the average rank of the elements of a

profile as the middle value of the range of ranks, as described in Table 5.3.

80



Figure 5.1: Ranks of the elements of the example chain

Profile Frequency H(x) new measure

a 2 1 1.5
b 5 2 5
c 3 3 9

Table 5.3: Frequency, LPOMext and new approximation for the example set

The rank of all the elements of a profile in a chain is determined by:

1. The number of observations in the downset (and not the number of profiles

in the downset),

2. The number of observations in the profile itself: the observations within the

same profile are assumed to be uniformly distributed inside the equivalence

class.

The classic LPOMext procedure computes the height of profile x as the average

number of lower profiles. This proposal defines a slightly different height, given

by the average number of observed units that are lower than x.

This example may appear too simple, because it refers to a linear order, but the

concept of average rank is completely based on linear orders (linear extension);

we propose to assume this interpretation of rank to every linear extension, im-

pressing a larger meaning to the concept of average rank.
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5.2.1 LPOMext with frequencies

The basic formula of LPOMext is composed by the starting height of the profile

x given by the cardinality of the set (|O(x)|), and the sum of the effects of in-

comparable elements (
∑

y∈U(x)
ηd(y)

ηd(y)+ηu(y)
).

In our proposal we want to define a generalization of the LPOMext method, not

a brand new approximation procedure.

The starting height is given by the number of observations in |O(x)| and the

sum of ¨effects of incomparables¨ is not changed, not even in the indices (that

are representing profiles as usual, not the observations). The only difference is in

the amount of every addend of the sum, in this proposal the number is not one

for every addend (as in LPOMext), it is f(y) that is the number of units observed

in the equivalence class of y (y ∈ U(x)).

Then, given the LPOMext formula 2.1;

Hav(x) = |O(x)|+
∑
y∈U(x)

ηd(y)

ηd(y) + ηu(y)
,

we propose

H∗av(x) = F{O(x)}∗ +
∑
y∈U(x)

ηd(y)

ηd(y) + ηu(y)
f{y}, (5.1)

where F{O(x)}∗ represents the cumulative frequency of all the elements of the

downset of x. We call this model Local Partial Order Model for Observations

(LPOM-O). The first part of the formula determines how to measure the starting

height of a profile x which frequency is considered only by a half F{O(x)}∗ =

F{O(x) \ x}+ 1/2f{x}, for the determination of the starting height. Thanks to

the assumption of uniform distribution for the observations inside the profiles,

we propose to consider the position of every observation to be equal to the mid-

dle point of its profile range of rank. This is the reason why the frequency of

the observed profile is reduced by an half in the computation of the cumulative

F{O(x)}∗, because it coincides with the assumption of uniform distribution (see

Table 5.3). Clearly, other functions of the downset can be defined for F{·}∗,
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making the LPOM-O formula even more generalizable.

5.2.2 The algorithm for LPOM-O

The LPOM-O algorithm that we developed in R is described in Algorithm 3. The

general structure of the algorithm is not changed respect to R-LPOMext but, it

contains three fundamental differences.

In row 5 the frequency of the profiles is considered. This passage allows the com-

putation of the frequency for every profile, this is the fundamental change. The

information of freq.prof is used for the definition of starting height (row 12)

and the weight of the effect (row 15).

The values of height and effect are computed according to 5.1, they do not

determine some changes respect to the R-LPOMext algorithm’s organization.

The result of this algorithm is the vector lpom-o, which has length n equal to

the number of observations of the dataset. This output is ready to be attached

to the data where it comes from because the order of observations is respected.

This naive features implements the usability of the function for further analysis.

As a final remark: the information supplied by the frequency depends com-

pletely on the characteristics of the internal variables, it impresses to the average

rank something unique that is dependent on the population distribution. Actu-

ally it is one of our main aims, and a fundamental feature for a method used in

social statistics.
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Algorithm 3 LPOM-O algorithm in R

1: procedure LPOM-O(I)
2: strings ← toString(I) . Vector of profiles of Observations
3: lpom-o ← V ector(n)
4: poset ← pop2prof(I) . It is the poset of the observed population
5: freq.prof ← f(p), ∀p ∈ P . Frequencies of Profiles
6: np ← Number of profiles
7: Z.pop ← getzeta(poset) . Builds the zeta matrix of order relations
8: incom ← incomp(Z.pop) . Matrix of incomparability between profiles
9: for p← 1 to np do

10: downp ← downset(p)
11: upp ← upset(p)
12: heightp ← F{O(x)}∗ . Frequency of downset
13: Up ← p-th row of incom . List of profiles incomparable to p
14: for every element i ∈ Up do

15: effecti ← ηd(y)
ηd(y)+ηu(y)

f{y}|i . see Formula 5.1
16: heightp=heightp+ effecti
17: end for
18: lpom-o[p] ← heightp
19: . heightp is assigned to all the observations with profile p
20: end for
21: return lpom-o . A vector containing a value for every observation
22: end procedure
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