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Abstract

In this thesis we study some portfolio optimization and option pricing problems
in market models where the dynamics of one or more risky assets are driven by Lévy
processes, and it is divided in four independent parts.

In the first part we study the portfolio optimization problem, for the logarithmic
terminal utility and the logarithmic consumption utility, in a multi-defaultable Lévy
driven model.

In the second part we introduce a novel technique to price European defaultable
claims when the pre-defaultable dynamics of the underlying asset follows an expo-
nential Lévy process.

In the third part we develop a novel methodology to obtain analytical expansions
for the prices of European derivatives, under stochastic and/or local volatility models
driven by Lévy processes, by analytically expanding the integro-differential operator
associated to the pricing problem.

In the fourth part we present an extension of the latter technique which allows for
obtaining analytical expansion in option pricing when dealing with path-dependent
Asian-style derivatives.

KEYWORDS: portfolio optimization, stochastic control, dynamic programming, HJB
equation, jump-diffusion, multi-default, direct contagion, information-induced contagion,
Lévy, exponential, default, equity-credit, default intensity, change of measure, Girsanov
theorem, Esscher transform, characteristic function, abstract Cauchy problem, eigenvec-
tors expansion, Fourier inversion, local volatility, analytical approximation, partial integro-
differential equation, Fourier methods, local-stochastic volatility, asymptotic expansion,
pseudo-differential calculus, implied volatility, CEV, Heston, SABR, Asian options, arith-
metic average process, hypoelliptic operators, ultra-parabolic operators, Black and Scholes,
option pricing, Greeks.
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Riassunto

In questa tesi studiamo alcuni problemi di portfolio optimization e di option pricing
in modelli di mercato dove le dinamiche di uno o piu titoli rischiosi sono guidate da
processi di Lévy. La tesi e divisa in quattro parti indipendenti.

Nella prima parte studiamo il problema di ottimizzare un portafoglio, inteso come
massimizzazione di un’utilita logaritmica della ricchezza finale e di un’utilita loga-
ritmica del consumo, in un modello guidato da processi di Lévy e in presenza di
fallimenti simultanei.

Nella seconda parte introduciamo una nuova tecnica per il prezzaggio di opzioni
europee soggette a fallimento, i cui titoli sottostanti seguono dinamiche che prima
del fallimento sono rappresentate da processi di Lévy esponenziali.

Nella terza parte sviluppiamo un nuovo metodo per ottenere espansioni analitiche
per i prezzi di derivati europei, sotto modelli a volatilita stocastica e locale guidati da
processi di Lévy, espandendo analiticamente I'operatore integro-differenziale associato
al problema di prezzaggio.

Nella quarta, e ultima parte, presentiamo un estensione della tecnica precedente
che consente di ottenere espansioni analitiche per i prezzi di opzioni asiatiche, ovvero
particolari tipi di opzioni il cui payoff dipende da tutta la traiettoria del titolo sot-
tostante.

KEYWORDS: portfolio optimization, stochastic control, dynamic programming, HJB
equation, jump-diffusion, multi-default, direct contagion, information-induced contagion,
Lévy, exponential, default, equity-credit, default intensity, change of measure, Girsanov
theorem, Esscher transform, characteristic function, abstract Cauchy problem, eigenvec-
tors expansion, Fourier inversion, local volatility, analytical approximation, partial integro-
differential equation, Fourier methods, local-stochastic volatility, asymptotic expansion,
pseudo-differential calculus, implied volatility, CEV, Heston, SABR, Asian options, arith-
metic average process, hypoelliptic operators, ultra-parabolic operators, Black and Scholes,
option pricing, Greeks.
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Introduction

Lévy processes have always played a key role in mathematical finance. Already in the
very first pioneering attempt to model the price fluctuations of financial markets, made by
Bachelier [13] in 1900, the price of an asset traded at the Paris Bourse coincided with the
most popular among all the Lévy processes: the Brownian motion. Indeed, the class of
the Lévy processes includes the Brownian motion as a particular case, being the latter the
“continuous part” of any Lévy process.

In the well known multiplicative version of Bachelier’s model, the Black-Scholes model
[33, (1973)], the dynamics of the assets are supposed to follow a geometric Brownian motion.
For decades, after this ground-breaking contribution, most of the literature dealing with
financial modeling only considered diffusion-based dynamics for the price of the assets, i.e.
stochastic differential equations driven by one or n-dimensional Brownian motions.

Nevertheless, several empirical evidences suggest that diffusion-based models miss to
reproduce some of the statistical and pathwise properties related to price fluctuations de-
riving from real market datas. For a complete overview of such empirical facts we refer to
the monograph by Cont and Tankov [61], whereas here we limit ourself to briefly list the
more evident ones.

In the first place, the time-scale invariance of log-returns predicted by Brownian-based
diffusion models seems to be violated when comparing the sample paths predicted by the
model with those of real markets. In particular, the presence of jumps in the latter ones
irremediably contradicts scale invariance, especially when considering short-time scales.
Furthermore, the presence of jumps itself in the observed trajectories is a feature that must
be somehow captured by a realistic model, whereas the continuity of the Brownian motion
implies the continuity of any Brownian diffusion-based dynamics. Plus, due to the Gaussian
increments of Brownian motion, the stationary distribution of prices can hardly exhibit “fat
tails” phenomena, which are instead sometimes observed in real market datas.

All these empirical features, which can hardly be predicted by diffusion-based mod-
els, can be naturally included when extending the class of the driving processes from the
Brownian motion to the general Lévy processes. One might argue that all the properties
mentioned above in the stationary distribution, as well as in the sample paths, of the ob-
served prices can be reproduced by Gaussian-based models with local and/or stochastic
volatility. Indeed, as pointed out by Bibby and Sorensen [30], an appropriate choice of the
nonlinear diffusion coefficients can generate non-Gaussian diffusion processes, thus allowing
for arbitrarily heavy tails. As for the jumps in the trajectories, sudden large changes in
the prices can be obtained as well by fine-tuning the nonconstant coefficients of the model
(see [61]), thus resulting in fluctuations in the prices that are equivalent to having actual
jumps, at any given time scale.

Nevertheless, reproducing such phenomena via diffusion-based models leads to highly



varying (nonstationary) diffusion coefficients in local volatility models or to unrealistically
high values of “vol vol” in stochastic volatility models. By contrast, the jump part of a
Lévy process includes jumps in its paths by definition, and may naturally exhibit fat-tails
phenomena in its distribution. Therefore, these features naturally arise in jump-diffusion
models, i.e models driven by discontinuous Lévy processes, with no need to fine-tune the
parameters of the model to extreme and unrealistic values. For this reason, an increasing
part of the literature in mathematical finance has been dealing, in the last fifteen years,
with discontinuous stochastic models.

In this thesis we study some portfolio optimization and option pricing problems in mar-
ket models where the dynamics of one or more risky assets are driven by Lévy processes,
and it is divided in four independent parts. In the first part we study the portfolio op-
timization problem, for the logarithmic terminal utility and the logarithmic consumption
utility, in a multi-defaultable Lévy driven model. In the second part we introduce a novel
technique to price European defaultable claims when the pre-defaultable dynamics of the
underlying asset follows an exponential Lévy process. In the third part we develop a novel
methodology to obtain analytical expansions for the prices of European derivatives, under
stochastic and/or local volatility models driven by Lévy processes, by analytically expand-
ing the integro-differential operator associated to the pricing problem. In the fourth part we
present an extension of the latter technique which allows for obtaining analytical expansion
in option pricing when dealing with path-dependent Asian-style derivatives.

> Overview of part 1

This part is based on a joint work ([186]) with Tiziano Vargiolu.

We analyze a market model given by n risky assets S? and one riskless asset B, where any
risky asset process is supposed to be the stochastic exponential driven by an n-dimensional
additive process with regime-switching coefficients, as for example in [8, 44, 45, 206]. This
market model naturally allows for defaults events, by assuming that the i-th driving process
can jump with amplitude equal to —1. We here study the case when the regimes correspond
to the default indicators of the risky assets.

This model has been chosen as a compromise between analytical tractability and flex-
ibility in modeling various situations where risky assets are allowed to default, and can
have pre-default dynamics driven by diffusion and/or jump processes, possibly with infinite
random activity. Furthermore, through the dependence of the parameters on the current
regime (i.e. the current default configuration), we are able to incorporate both simultaneous
and information-induced contagion phenomena.

Our goal is to obtain the optimal consumption and the portfolio strategy for an investor
who wants to maximize a logarithmic utility function of both his/her consumption and ter-
minal wealth. To do this, we characterize a domain for the portfolio strategies in order
for the wealth process to remain strictly positive. We then solve the utility maximization
problem by means of the dynamic programming method, succeeding in proving a verifi-
cation theorem based on the Hamilton-Jacobi-Bellman (HJB) equation and in exhibiting
an explicit smooth solution to the HJB equation. The main conclusion of this is that the
optimal consumption is an explicit linear function of the current wealth, while the optimal
portfolio strategy turns out to be the maximizer of a suitable deterministic function de-
pending only on time and on the current default indicators, but not on the current asset
prices or wealth level. This represents a generalization of the model and the findings in
[189], where the authors did not consider the case of one or multiple defaults, nor of regime



switching and intermediate consumption.

After having characterized the optimal strategies in the general case, we present several
examples with one, two or several defaultable assets, where most of the times we succeed in
getting optimal strategies in closed form. Our results also allow to study with little effort
the so-called growth optimal portfolio (GOP), and we exhibit an example where the GOP is
a proper martingale or a strict local martingale depending on some boundary conditions.

> Overview of part 11

This part is based on a joint work ([46]) with Prof. Agostino Capponi and Prof. Tiziano
Vargiolu.

The research that we propose here belongs to the stream of literature focusing on
pricing of defaultable bonds and vulnerable options within a joint equity-credit framework.
Similarly to [156] and to Chapter 1, we used a reduced form model of default, and assumed
the state dependent default intensity (h:);>0 to be a negative power of the stock price,
i.e. hy = h(S;) = S, P. This is empirically relevant, especially in light of events occurred
during the recent financial crisis. We also allowed for the possibility that the stock exhibits
exogenous jumps of finite or infinite activity.

The dependence of the hazard intensity on the stock level makes the payoff of the
vulnerable claim path dependent. To this purpose, we first develop a change of measure
to reduce the problem to pricing an European style claim written on a free-default stock.
The pricing problem then is reduced to characterizing the law of a process written as the
solution of

dVy = (2(1 4 a)V; + 1)dt + 2V;id Ly,

with (L¢)¢>0 being a Lévy process. An application of the Itd formula shows V; to be an
integral functional of e’*. In the continuous case, i.e. when L is a standard Brownian
motion, the distribution of V; has been widely studied by many authors; for instance,
[77] and [213] independently derive the general expressions for the moments. A spectral
representation of the transition density has been found by Linetsky, by inverting the Laplace
transform in time, first obtained in [73] as the solution of an ordinary differential equation
in the space variable.

Our contribution to this literature is a novel representation of the characteristic function
of log V; via a new methodology, which naturally allows for the process L; to be a generic
Leévy process. More specifically, we proved that the characteristic function of log V; can be
characterized as the solution of a complex-valued infinite dimensional linear system of first
order ordinary differential equations. After a reformulation as an abstract Cauchy problem
in a suitably chosen Banach space, we obtain explicit expressions for the eigenvalues and
eigenvectors of the matrix operator, and recovered an explicit eigenfunction expansion of
the characteristic function. We then use this explicit representation to price defaultable
bonds and options, demonstrating the accuracy and efficiency of the method.

> Overview of part 111

This part is devoted to the development of some analytical approximations for PIDE’s,
arising in the pricing of European claims, under Lévy driven, possibly defaultable, models
with local and/or stochastic volatilities. All the material collected in this part is based on
the papers [171], [169], [183], [184] and [185], written in collaboration with Prof. Paolo
Foschi, Dr. Matthew Lorig, Prof. Andrea Pascucci and M.Sc. Candia Riga.

In general, analytical approaches based on perturbation theory and asymptotic expan-



sions have several advantages with respect to standard numerical methods: first of all,
analytical approximations give closed-form solutions that exhibit an explicit dependency of
the results on the underlying parameters. Moreover, analytical approaches produce much
better and much faster sensitivities than numerical methods, although often accurate error
estimates are not trivial to obtain.

All the chapters of this part are provided with numerical tests as to testify the accuracy
and the efficiency of the proposed methodology. The Mathematica notebooks containing the
general formulae and the experiments here reported are available in the authors’ web-site:
[167].

In Chapter 3 we consider a one-dimensional local Lévy model where the log-price X
solves the SDE

dXt = ,U,(t, Xt_)dt + O'(t, Xt_)th + th

Here, W is a standard real Brownian motion and J is a pure-jump Lévy process, inde-
pendent of W. Our main result in this chapter is a fourth order approximation formula
for the characteristic function of X;. In some particular cases, we also obtain an explicit
approximation of the transition density of X; and for the prices of European options.

Such local Lévy models have attracted an increasing interest in the theory of volatil-
ity modeling (see, for instance, [4], [48] and [60]); however, closed form pricing formulae
are currently available only in few cases. Our approximation formulas provide a way to
efficiently and accurately compute option prices and sensitivities by using standard and
well-known Fourier methods (see, for instance, Heston [121], Carr and Madan [50], Raible
[193] and Lipton [159]).

We derive the approximation formulas by introducing an “adjoint” expansion method;
this is worked out in the Fourier space by considering the adjoint formulation of the pric-
ing problem. Generally speaking, our approach makes use of Fourier analysis and PDE
techniques. In the purely continuous case we also prove explicit error bounds for the ex-
pansion that generalize in a new and nontrivial way some classical estimates. Finally, we
present some numerical tests under the Merton and Variance-Gamma models and show the
effectiveness of the analytical approximations compared with Monte Carlo simulation.

9

In Chapter 5 we extend the “adjoint” expansion method in order to incorporate an ex-
ogenous stochastic-volatility given by a square-root diffusion process (Heston-type volatil-
ity). Our main result is a first-order approximation formula for the two-dimensional char-
acteristic function of (S, v¢). Again, the pricing of European derivatives is done via some
standard Fourier-inversion techniques.

A characterization of the two-dimensional law of the process is also important in the
study of volatility derivatives, such as options on quadratic variation that have recently
become a very popular instrument in financial markets. Also, our result can be used for
volatility calibration purposes by Markovian projection methods via Gyongy’s lemma [113]
(see, for instance, [190] and [105]). This will be object of a future investigation.

In this Chapter 5 we extend the technique introduced in Chapter 3 by admitting the pos-
sibility of default for the underlying asset, throughout the addition of a state-dependent de-
fault intensity, and by including state dependency for the Lévy measure. A state-dependent
Lévy measure is an important feature because it allows for incorporating local dependence
into infinite activity Lévy models that have no diffusion component, such as Variance
Gamma (see [172]) and CGMY /Kobol (see [36, 47]).

Using techniques from pseudo-differential calculus, we provide explicit expansions for



the Fourier transform of the transition density and of option prices. In the case of state
dependent Gaussian jumps the respective inverse Fourier transforms can be explicitly com-
puted, thus providing closed form approximations for densities and prices. Additionally,
when considering defaultable bonds, approximate prices are computed as a finite sum; no
numerical integration is required even in the general case.

For models with Gaussian-type jumps, we also provide pointwise error estimates for
transition densities. Thus, we extend the previous results where we only consider the purely
diffusive case. Additionally, our error estimates allow for jumps with locally dependent
mean, variance and intensity. These results are comparable with the ones in [25], where
only the case of a constant Lévy measure is considered.

Finally, in Chapter 6 we adapt, in the purely diffusion case, the methodology used
in Chapter 5 by including stochastic volatility, given by an additional generic diffusion
process. We derive a family of closed-form asymptotic expansions for transition densities,
option prices and implied volatilities. In particular, the prices can be written as a differential
operator acting on a Black-Scholes price (Gaussian density), whereas the implied volatility
expansion is explicit, i.e. no numerical integration nor special functions are required. We
also establish global error bounds for our asymptotic price and density expansions.

> Overview of part IV

This part is based on a joint work ([95]) with Prof. Andrea Pascucci and Prof. Paolo
Foschi.

We aim to adapt the technique described in Chapter 3 to the case of hypoelliptic (fully
degenerate-parabolic) two-dimensional operators, in order to apply it to the problem of
pricing Asian-style claims under a general local volatility model.

Asian options are path dependent derivatives whose payoff depends on some form of
averaging prices of the underlying asset. From the theoretical point of view, arithmetically-
averaged Asian options have attracted an increasing interest in the last decades due to
the awkward nature of the related mathematical problems. Indeed, even in the standard
Black & Scholes (BS) model, when the underlying asset is a geometric Brownian motion,
the distribution of the arithmetic average is not lognormal and it is quite complex to
characterize it analytically. An integral representation was obtained in the pioneering work
by Yor [213, 214], but with limited practical use in the valuation of Asian options.

Other asymptotic methods for Asian options with explicit error bounds were studied by
Kunitomo and Takahashi [147], Shiraya and Takahashi [202], Shiraya, Takahashi and Toda
[203] by Malliavin calculus techniques. Also Gobet and Miri [111] recently used Malliavin
calculus to get analytical approximations and explicit error bounds; their approach is similar
to ours as it is based on a Taylor expansion of the coefficients, but on the basis of preliminary
numerical comparisons the resulting formulas seem to be different.

Here we consider the pricing problem for arithmetic Asian options under a local volatil-
ity, possibly time-dependent, model. Our idea is to use the natural differential geometric
structure of the pricing operator regarded as a hypoelliptic (not uniformly parabolic) PDE
of Kolmogorov type in R3. Our main results are explicit, BS-type approximation formulae
not only for the option price, but also for the the terminal distribution of the asset and the
average; furtherly we also get explicit approximation formulae for the Greeks that appear
to be new also in the standard log-normal case. Although we do not address the theoret-
ical problem of the convergence to get explicit error estimates, experimental results show
that under the BS dynamics our formulae are extremely accurate if compared with other



results in the literature. Under a general local volatility model, in comparison with Monte
Carlo simulations the results are effectively exact under standard parameter regimes. The
Mathematica notebook containing the general formulae and the experiments reported in
this part is available in the web-site of the authors: [167].

We also mention that our method is very general and can also be applied to other
path-dependent models driven by hypoelliptic degenerate PDEs; for instance, the models
proposed by Hobson and Rogers [122] and Foschi and Pascucci [96].



Part 1

Stochastic optimization in
multi-defaultable market models






Chapter 1

Portfolio optimization in a
defaultable Levy-driven market
model

Based on a joint work ([186]) with Prof. Tiziano Vargiolu

Abstract: we analyse a market where the risky assets follow defaultable exponential addi-
tive processes, with coefficients depending on the default state of the assets. In this market
we show that, when an investor wants to maximize a utility function which is logarithmic
on both his/her consumption and terminal wealth, his/her optimal portfolio strategy con-
sists in keeping proportions of wealth in the risky assets which only depend on time and
on the default state of the risky assets, but not on their price nor on current wealth level;
this generalizes analogous results of [189] in non-defaultable markets without intermediate
consumption. While the non-defaultable case has been extensively treated in one (see e.g.
[24, 28, 27, 100, 161, 132, 181]) and in more dimensions [43, 138, 145, 189], to the authors’
knowledge this is the first time that such results are obtained for defaultable markets in
this generality, whereas partial results (typically with only one defaultable asset) can be
found in [31, 34, 41, 42, 44, 45]. We then present several examples of market where one, two
or several assets can default, with the possibility of both direct and information-induced
contagion, obtaining explicit optimal investment strategies in several cases. Finally, we
study the growth-optimal portfolio in our framework and show an example with necessary
and sufficient conditions for it to be a proper martingale or a strict local martingale.

Keywords: portfolio optimization, stochastic control, dynamic programming, HJB equa-
tion, jump-diffusion, multi-default, direct contagion, information-induced contagion.



1.1 Introduction

In the last years, mainly after the 2008 financial crisis and its aftermath, growing atten-
tion has been paid to financial models where the possibility of defaults is explicitly taken
into account. However, in the literature one can only find models for financial markets with
partial results (see [31, 34, 41, 42, 44, 45]) where typically only one asset can default, or
models for several defaultable entities (typically CDS or CDO tranches) where the pricing
problem is studied only for very specific derivatives (usually CDS or CDO, see [14, 64]).

In order to fill this gap in literature, we here present a model for a financial market
where all the risky assets can possibly default, and their dynamics can depend on their
default state, i.e. on which assets are already defaulted. In particular, we analyze a market
model given by n risky assets S’ and one riskless asset B, where any risky asset process is
supposed to be the stochastic exponential

ds} =S dR!
St e i=1,--,n, (1.1)
Sp=s">0,
with R = (R',---,R") being an n-dimensional additive process with regime-switching

coefficients, as for example in [8, 44, 45, 206]. This market model naturally allows for
defaults events, by assuming that the i-th driving process R’ can jump with amplitude equal
to AR" = —1. We here study the case when the regimes correspond to the default indicators
of the risky assets. Under suitable conditions on the jump measure (where jumps can be
related to the default or to the risky assets’ dynamics), we obtain the optimal consumption
and portfolio strategy for an investor who wants to maximize a logarithmic utility function
of both his/her consumption and terminal wealth. The optimal consumption turns out to be
proportional to the current level of the agent’s wealth, while the optimal portfolio strategy
turns out to depend only on the default configuration process, i.e. it does not depend on
the current value of the risky assets S’ but only on which assets are still not defaulted.
This represents a generalization of the model and the findings in [189], where the authors
did not consider the case of one or multiple defaults nor of intermediate consumption. On
the other hand, the optimal consumption/investment strategies still depend on time as in
[189] (this is also due to the non stationarity of the increments of the driving process R).
After having characterized the optimal strategies in the general case, we present several
examples with one, two or several defaultable assets, where most of the times we succeed in
getting optimal strategies in closed form. Our results also allow to study with little effort
the so-called growth optimal portfolio (GOP), and we exhibit an example where the GOP
is a proper martingale or a strict local martingale depending on some boundary conditions.

The model in Equation (1.1) has been chosen as a compromise between analytical
tractability and flexibility in modeling various situations where risky assets are allowed
to default, and can have pre-default dynamics driven by diffusion and/or jump processes,
possibly with infinite random activity. The naive way to model this would have been
to take the dynamics in Equation (1.1), which generalizes several models where one [24,
28, 27, 100, 161, 132, 181] or several [43, 138, 145, 189] assets can exhibit jumps in their
dynamics and which was already present in [189], with R still being a n-dimensional additive
process, and allow for it to jump with multiplicative increments AR? = —1. This allows
for direct contagion, as for suitable choices of the jump measure (see for example Section
6.5) simultaneous defaults are possible, but not for information-induced contagion, i.e.
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where the knowledge that previous defaults had occurred does modify the dynamics of the
undefaulted assets, as well as their default probabilities. This naive model is sketched out
in Section 2. However, in order to take into account also information-induced effects in
both the dynamics and the default probabilities, in Section 3 we show how to incorporate
dependencies on past defaults in the risky assets’ dynamics. This is done via a probabilistic
construction, in the spirit of the one proposed in [22], where a process R with independent
increments in each time interval between two consecutive defaults is built; thus, in this
model R can be considered a regime-switching additive process, with regimes corresponding
to the default indicators of the risky assets.

For the model in Equation (1.1), in Section 4 we study the problem of maximizing a
logarithmic utility function; to do this, we characterize a domain for the portfolio strategies
in order for the wealth process to remain strictly positive. We then solve the utility maxi-
mization problem by means of the dynamic programming method (in Section 5), succeeding
in proving a verification theorem based on the Hamilton-Jacobi-Bellman (HJB) equation
and in exhibiting an explicit smooth solution to the HJB equation. The main conclusion
of this is that the optimal consumption is an explicit linear function of the current wealth,
while the optimal portfolio strategy turns out to be the maximizer of a suitable determin-
istic function depending only on time and on the current default indicators, but not on the
current asset prices or wealth level. This allows us to present several examples in Section 6,
where one, two or several defaults can occur, possibly simultaneously. Particularly, several
models already present in literature [14, 31, 41, 64] can be obtained as specific cases of
this general framework or as starting points for the models presented here. In most of the
examples, we obtain optimal investment strategies in closed form and discuss them.

In Section 7, we turn our attention to the characterization of the GOP, here defined as
the portfolio which maximizes a logarithmic utility (for equivalent definitions of the GOP
see for instance [56, 91]). In mathematical finance, the existence and the properties of the
GOP have been widely studied by many authors, due to its relation with the numéraire
portfolio. In particular, in [56] it has been shown in a quite flexible semi-martingale model
that the GOP is such that all the other portfolios, evaluated with the GOP as numéraire,
are supermartingales; this is called the numéraire property, which can be exploited in order
to develop non-classical approaches in pricing derivative securities. For instance, in the
benchmark approach by Platen [191] this can be done even in models where an Equivalen
Martingale Measure (EMM) is absent. In [56] the authors proved that, even when a classical
risk neutral measure does not exist, the existence of the GOP implies the existence of a
numéraire under which an EMM exists. Nevertheless, GOP denominated prices might fail
to be martingale and being instead strict supermartingales. Examples of this phenomenon
are also given in [22, 38, 66, 146]. In this regard, we will show that in our model the inverse
GOP process is either a martingale or a strict supermartingale depending on whether the
growth optimal strategy is an internal or a boundary solution with respect to the domain
of the admissible strategies.

We now give a brief outline of this chapter: in Section 2 a naive model, where the risky
assets’ prices are defaultable exponential additive models, is presented. In Section 3 we build
a more general model where asset prices are driven by regime-switching additive models,
with regimes corresponding to default indicators. In Section 4 we frame the portfolio
optimization problem and characterize the portfolio strategies such that the portfolio wealth
stays strictly positive. In Section 5 the portfolio optimization problem is solved with the
dynamic programming method by using the HJB equation. In Section 6 we present several
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examples, with many optimal portfolios written in closed form and commented. In Section
7 we study the GOP and show in an example under which conditions the GOP is a strictly
local martingale or a true martingale.

1.2 A simplified model

Before rigorously defining our framework in its full generality, we aim in this section to
give a heuristic description of a simplified version of it. This approach allows the reader to
get a quite intuitive idea of the dynamics involved in our model. After this brief introduc-
tion, the definition of the general setting in Section 3 will seem a natural extension of this
simple one.

We consider a portfolio composed of a locally riskless asset B and n risky assets S,

1 =1,---,n. By considering discounted prices, we can assume without loss of generality
that B = 1. For the risky assets we assume the dynamics in Equation (1.1) where in
this section R = (R!,--- ,R") is an n-dimensional additive process, i.e. a process with

independent increments [61], that can exhibit jumps with size —1 in any of its components,
possibly simultaneously. We notice that we can rewrite Equation (1.1) in the vectorial form

dSt = dlag(St_) th,

where diag(v) is the diagonal matrix in R™*" with principal diagonal containing the el-
ements of v. This allows to explicitly represent the n-dimensional additive process R in
Equation (1.1) via the Levy-Ito representation as

dRy = p(t)dt + o (t)dW; + [, x(N(dt, dx) — vy(dz)dt),
Ry=0, i=1,.m,
with g = (1, , ) 2 [0, 7] = R™, 0 = (045)ij : [0,T] — R™* deterministic measurable
functions, W = (W',--- ,W*) a k-dimensional Brownian motion and N(dt,dz) a jump
random measure on R™ x R™ with compensating measure v;(dz). The solution of Equation
(1.1) is
Si = siefi=3 Jollow|du [] @ +AR)e R =1, n, (2.2)
O<u<t
(see [192], Theorem I1.37), where AR! := R! — R!_ represents the jump of R’ at the time
u.

Equation (2.2) shows first that we shall impose AR! > —1 in order for S° to stay non-
negative, and furthermore that the process S reaches the cemetery value 0 as soon as the
process R’ jumps with amplitude AR? = —1. Therefore, we define the default time 7 as
time at which S? jumps to 0, i.e.

7' := min{t > 0|AR} = —1}. (2.3)
Now, for any i = 1,--- ,n, we introduce the default indicator process
D =T o0)(t).

Note that D’ admits the differential representation

dDi = / - D} )1 gyie 1y ()N (dt, da). (2.4)
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According to this setting, two or more S’ may simultaneously jump to 0 with positive
probability. Indeed, this scenario is verified any time two or more R’ jump simultaneously
with size —1. Nevertheless, the driving process R has independent increments, and thus, Di
is independent of (D3,)y<¢, for any j # i. To sum up, simultaneous defaults are allowed, but
defaults occurred in the past can not change the probabilities of future ones. Financially
speaking, within this framework we are able to capture instantaneous contagion but not
information-induced one.

In order to overcome this shortcoming, a natural extension seems to let the jump mea-
sure N(dt,dz) depend on the current default configuration D;: this will be done in the
next section.

1.3 The general setting

In this section we generalize the construction of Section 2 by introducing different
regimes for the jump measure, the drift and the diffusion of the driving process R =
(R',--- ,R"), regimes consisting in the default indicators’ vector D = (D*',--- , D"). This
construction is analogous to the one in [22].

Let n,k € N, T > 0, and (£, F,P) be a probability space rich enough to support:

e a k-dimensional Brownian motion W = (W', ..., Wk);

e a family (N9, l/d)de{071}n, where N¢ = N(d, dt,dz) are independent Poisson measures
on [0,T] x R", and v{! = v4(d,dxz) are the respective compensating measures.

Next, in analogy with (2.3)-(2.4), we define the default time of the i-th asset 7% by means
of the respective default indicator process D".

Definition 3.1. Let the {0, 1}"-valued process D = (Dy)o<i<r = (D}, -+, D)o<i<T be the
unique strong solution of the n-dimensional system
dD! = (1 — D;‘)/ L 1y (x)N(De,dt,dz), i=1,---,n, (3.5)
Rn
with the initial conditions A
Dy=0, i=1,---,n. (3.6)

Then, denoting with F = (F;)i>0 the filtration generated by (Dy)i>0, we define the F-stopping
times ‘ '
' i=min{t >0|/D; =1}, i=1,--- ,n.

Remark 3.2. (Construction) The process D can be constructed pointwise in the following
way. We first consider two families of random variables (t;)o<k<n, tx € RT U{oc}, and
(Ck)o<k<n, Ck € {0,1}", recursively defined as

to =0, CO =0,
and
t};_H = tiiltf;; {t|Fz € R s.t. Tip——1y (@) N (Ck, {t}, {z}) = 1} Licigy +00lycioyy,

t ‘= min t!
k+1 121 k41>
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Chyr =G+ (1= Gy, 3 (Ehqn), 1 <i<n.
Note that, in the above construction, the random variable tj, represents the k-th default time
in chronological order, whereas the random vector (i1 represents the default indicators’
configuration when the k-th default event occurs. We prefer to remark one more time that
index k in ty is referred to the chronological order, and that ty is in general different from
the time TF, when the k-th risky asset defaults.
Then, for any t € [0,T] we define

Dy := Z Ck]]'{[tkythrl[}(t)'
k=0

It is easy to verify that the {0,1}"-valued process D = (Dy)o<i<T 15 a solution for (3.5)-
(3.6).

We now define the driving process R = (Ry)o<t<r = (R}, -+, R)o<t<r in (1.1) as the
unique strong solution of the n-dimensional system

{th = p(t, Dy)dt + o(t, Dy)dW; + [o, 2(N(Dy_, dt, dz) — v(D,—, dz)dt),

P=0, i=1,---,n,

(3.7)

where u(-,d) : [0,T] = R", o(-,d) : [0,T] — R™*? are deterministic measurable functions
for any d € {0,1}". Afterwards we will denote with o;(¢,d) the i-th row of o(¢,d). In
order for Equation (3.7) and the further computations to make sense we need the following
assumptions to be satisfied.

Assumption A.1l. (Finite variance) For any d € {0,1}",

T
2 2
| (el + ot + [ ol dn) ) < o

where the ||-|| represent the Buclidean norms on R"™ and R™*<,
Assumption A.2. (Non negativity of prices) For any d € {0,1}" and t € [0,T],
supp(vd) € X" :={z e R"|z; > —1Vi=1,--- ,n}. (3.8)

Assumption A.3. (Continuity in time of the compensator) For any d € {0,1}" and for
any Borel set B C R, v}(B) is continuous in t.

As seen in the previous section, Assumption A.3. is equivalent to say that the risky
assets prices stay a.s. non-negative for each ¢ € [0,7]. Indeed, the solution of the SDE
(1.1) is still

§i = st SRR T (14 AR 2R (3.9)
0<s<t
(see [192], Theorem I1.37) with [R, R?]° being the continuous part of the quadratic variation
process of R, end (3.8) implies 1 + AR} > 0 for any i = 1,--- ,n and t € [0,7]. On the
other hand, Equation (3.9) shows that the process S jumps to 0 as soon as the process
R’ jumps with amplitude AR’ = —1, and stays there at any future time. Eventually, by
Definition 3.1 combined with Equation (3.7) we get

7' = min{t > 0|AR! = —1} = min{t > 0[S} = 0},

and thus, as in the previous section, the default of i-th asset coincides with its value jumping
to 0.
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1.4 The portfolio optimization problem

Let now 7y = (7}, -+ ,77) be a trading strategy representing the quantities of the risky
assets (S},---,SP) held in a self-financing portfolio, whose value at time ¢ is given by

n
Vit = 7Tt0+ <7Tt7St> = 7Tt0 +Z7T§ t
=0
where (-, -) represents the scalar product in R". In the case when V;™ > 0, we can represent
the portfolio in terms of its proportions invested in each risky asset, defining the vector
b == (b}, ,b?) componentwise as

i Qi

TSy

T )
Vi

b = i=1,--,n, (4.10)

Furthermore, we consider a strictly positive process ¢; denoting the instantaneous consump-
tion at time ¢t. By the self-financing property we have

AV = "wl dSi —qdt =Y 7 S;_dR} — cdt
i=1 i=1
(by (4.11))
= V2 (b, dRy) — it

where we denoted by V¢ the portfolio value to remark that it is expressed as a function
of its proportions h and the consumption ¢. Here we used

m_S;_=VThi_, tel0,T], (4.11)
which is still true also for t > 7¢ because, by (4.10), we have
he=0, Vtel[riT], i=1,---,n. (4.12)
Nevertheless, if h is a generic F-predictable process, the solution of
AVP = Vb, dR,) — qdt, t e [0,T], (4.13)

still depends on b’ even after the time 7¢. Thus, we should impose the condition (4.12)
on the control variable h when using Equation (4.13) for optimization purposes, but this
would lead to a problem with very non standard control constraints.

In alternative, we prefer to define V9¢ as the solution of the SDE

AV, = V;_(diag(1 — Dy_ )b, dR,) — c,dt, t € [0,T], (4.14)

where 1 = (1,---,1) € R™, as in [42]. In this way, we need no additional conditions on b,
as the process V7 is independent of h? after 7°. In order to shorten notation we introduce
the following definition.

Definition 4.1. For any d € {0,1}" and x € R", we define the vector ¢ € R™ as

z? = 2 - diag(1 — d).
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In other words, xfl is equal to x; if d; = 0, i.e. the i-th risky asset is still alive, whereas
x¢ = 0if d; = 1, i.e. the i-th risky asset already defaulted. A necessary condition for V"<
to stay P-a.s. positive for any ¢ € [0,7] is that

(2" AR > -1 P—as. Vtel[0,T). (4.15)

Indeed, by (4.14) we have

t t
Vo= [Cedst [ VPl )
0 0

and therefore, as long as Vgh’c is positive for s € [0, 1], V;h’c jumps with size less or equal

—V;ﬁc if ( th*,ARQ < —1. A sufficient condition for (4.15) to hold is

be € Hy = {h € R"|(h,x) > —1 vi(dz) —a.s. Vd € {0,1}"}, Vt e [0,T). (4.16)
Example 4.2. If the jumps of the process R are unbounded from above, i.e. supp(v{) = X"
for any d € {0,1}", with X™ as in (3.8), then H; is the n-dimensional unit simplex in R,
i.e. Hy = {h S Rn‘ h; > 0, Z?:l h; < 1}.

We now define the set of admissible strategies.

Definition 4.3. An R"*'-valued F-predictable process (h,¢) = (bu, cu)t<u<r is said to be
an admissible strateqy if

a) by € H P-a.s. for any u € [t,T], where H is a compact conver set H C R™ such that
H C int(mue[t,T}Hu);

b) ¢, >0 P-a.s. for any u € [t,T).

¢) For any initial condition V; = v > 0 and Dy = d € {0,1}", the (n + 1)-dimensional
system (3.5)-(4.14) has a unique strong solution (V, D)"<tvd = (Vgh’c;t’v’d,D?d)se[t,T]
such that Vs > 0 for any s € [t,T).

We denote by Alt, T the set of all admissible strategies.
Sometimes in the sequel, in order to shorten the notation, we will suppress the explicit

dependence on t,v,d in (V, D)btvd,
We aim to find the optimal control process (h,¢) € A[t, T] such that

i T
BT (Vostedy) E |y (yhetvd / te,)dt 417
U= g™ [P0y e D

where U, u are logarithmic utility functions
U(z) = Alogz, wu(t,c)= Be 0T log ¢, (4.18)

with A, B,d > 0 such that A+ B > 0.
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1.5 Dynamic programming solution

Here we use dynamic programming in order to solve the optimal control problem (4.17).
For any (h,¢) € A[t,T], t € [0,T], v € R* and d € {0,1}" we define the function

T
J(t,v,d) =K [U(V{l"?t’”’d) +/ u(t,ct)dt} (5.19)
0

Moreover we define the value function J : [0,7] x RT x {0,1}" — R* as

J(t,v,d) = sup J"(t,v,d). (5.20)
(b,c)€A[t,T]

Following the approach in [90], by formal arguments we obtain that J solves the so-called
HJB (Hamilton-Jacobi-Bellman) equation

—Jy(t,v,d) = sup (AMCJ(t,v,d) + u(c)) (5.21)
heH,c>0

where, for any h € H and ¢ > 0, A" is the infinitesimal generator of the process (V, D),
ie.:

1
Abe(t,v,d) = <<,u(t, d), hyw — c) Ju(t.v,d) + 5 (b S(E AR (8,0, d)

+/ ) (J(t,v(l + (2, b)), d+ x(d 7)) — J(t v, d) — (B 2)ody (¢, v, d))ug(dx),

(5.22)
with
X(t,d) = oo™ (t,d),
and where the function y : {0,1}" x R™ — {0,1}" is defined as
Xi(d, ) = (1= di)liy=—ny(x), i=1,---,n (5.23)
Moreover, by (5.19)-(5.20) we directly obtain the terminal condition
J(T,v,d) =U(v) veR" de{0,1}" (5.24)

The next theorem, which is a particular case of [90, Theorem III.8.1], rigorously connects the
optimal control problem (4.17) with the HJB equation and gives us a useful characterization

of the optimal control process (h,¢) when it exists. Before stating the verification theorem,
we formally define the domain of the operator A™°.

Definition 5.1. We denote with D the set of the functions f € CY2([0,T] x Rt x {0,1}")
such that, for any (t,v,d) € [0,T] x R* x {0,1}" and for any (h,c) € A[t,T] the so-called
Dynkyn formula holds, i.e.

E[f(T, (V, D)3)] - E[f (¢, (V. D)) = E [/t AP fu, (V. D))du |

We can now state the following
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Theorem 5.2. Let K € D be a classical solution of (5.21) with terminal condition (5.24).
Then, for any (t,v,d) € [0,T] x R* x {0,1}" we have

a) K(t,v,d) > J%(t,v,d) for any admissible control (b,¢) € A[t,T);

b) if there exists an admissible control (h,¢) € A[t,T| such that

- h,c h,5;t,v,d .
(hs,s) € (zz’rc er%aﬁw(A K(s,(V,D)] )+ u(s,c)) P—as. Vs € [t,T], (5.25)

then K(t,v,d) = J"(t,v,d) = J(t,v,d).

Now we use Theorem 5.2 in order to solve the optimization problem (4.17). Analogously

to [189] it turns out that the optimal control (h,¢) in (5.25) is a Markov control policy. In
particular we are going to find out that

b(s) = h(s,Ds), s) = c(s)Ve,

where h : [0,T] x {0,1}* — H and ¢ : [0,T] x R* — R are deterministic functions such
that

h(t,d),e(t,v)) € (Ah’CKt, .d t, )

(h(t.d),c(t,v)) Qremmax (t,v.d) + u(t,c)

for any (¢,v,d) € [0,T] x R x {0,1}". We are now in the position to characterize the value

function J and the optimal strategy (h,¢). Before to state our main result we introduce
the following

Definition 5.3. For any d € {0,1}", let F?:[0,T] x H — R be the function

Fi(t,h) = (M(t,d),hd>—%(hd,E(t,d)hd>+/ log (1 + (z, h%)) — (z, h?) vi(dzx), (5.26)

n

where h? is defined as in Definition 4.1.
Theorem 5.4. Let U(v) and u(t,c) be the logarithmic functions defined as in (4.18). Then:

a) Equation (5.21) with terminal condition (5.24) has a classical solution K given by

(A+Z(1—eT=))logv+ @4(t) if 5 >0,
K(t,v,d) = (5.27)
(A+ B(T —t))logv + ®%(t) if § =0,

for any (t,v,d) € [0,T] x RT x {0,1}", where (®%)e(0,1yn is a family of suitable C'*
deterministic functions such that ®4(T) = 0.

b) K belongs to D.

¢) K = J and an optimal control process (h,¢) is given by
(6(6),&(t)) = (h(t. D), e()V,) (5.28)
where h : [0,T] x {0,1}* — H is a function such that

h F 2
h(t,d) € arg max (t,h) (5.29)
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with FA(t,h) as in (5.26),

Be—6(T—t) .
if 6 >0,
e(t) == { At (1me0 =) f (5.30)
A+B(T—1) if 6 =0,

and where VO is the unique positive solution of

av* .
‘Z;c — (diag(1— Dy VA(t, Dy ), dR,) — ()dt, t € [0, T,
t

Before proving Theorem 5.4 we explicitly remark what follows.

Remark 5.5. A function h such that (5.29) holds exists and, for any d € {0,1}" is unique
in its components h' such that d; = 0. In fact, F¢ in (5.26) does not depend on the i-th
components of h if di = 1, and on the other hand, F® is a strictly concave function and
H is a compact convexr subset of R™. Roughly speaking, the i-th component of the optimal

strateqy h is not relevant after the risky asset S* defaults, which is consistent with Equation
(4.14).

Remark 5.6. In analogy with [189, Remark 3.2], we point out that the optimal Markov
policy h does not depend on the variable v. Thus, the optimal strateqy only depends on t
and Dy through p(t, Dy_), o(t, D) and v (Dy—,dx), but not on the current level of wealth
Vi. The dependence on the risky asset prices Si, i = 1,--- ,n, is just when the process S'
jumps to zero, otherwise the optimal strateqy is a completely deterministic function as in
[189]. In the time-homogeneous case, i.e. pu(t,d) = pu(d), o(t,d) = o(d) and v¥ = v, b is
piecewise constant in time, jumping only at the default times 7°, i =1,--- ,n.

Remark 5.7. By contrast, for any t € [0,T], ¢ is a linear function of Vi that only de-
pends on the parameters A, B,6 of the utility functions U and w. Therefore, the optimal
consumption ¢ does not depend explicitly on default configuration Dy, nor on the model
parameters u(t,d),o(t,d), v (d,dz). Furthermore, consistently with the financial intuition,
the optimal consumption ¢; is constantly equal to 0 when consumption the utility function
u(t, c) is constantly null, i.e. B = 0.

In order to prove Theorem 5.4, we need to introduce the following notation.

Definition 5.8. Given d € {0,1}", we call the length of d the positive integer defined as

(d):=n—) d
=0
Moreover we establish on {0,1}" the following (partial) order relation:
d<d if di >d, Vi=1,--- n.

Note that, given Dy = d for a certain t < 0, the states d’ < d are the only states accessible
for D after the time t.
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Roughly speaking, the length of d is equal to the number of risky asset that are still
alive. In particular, when every risky asset is already defaulted we have I(d) = 0, while
when every risky asset is still alive we have [(d) = n. We also explicitly observe that

d+ x(d,z) <d Vde{0,1}",z € X"

Hence by (5.22), given a state d € {0,1}", A".J(t,x,d) depends only on the states d’ < d, i.e.
the states whose alive assets are a subset of the alive ones in d; in other words, A™¢J (t,z,d)
does not depend on the assets already defaulted.

We also need the following

Lemma 5.9. Consider the function

~5(T—1) _ AT (e TY)
w(t,v,0) =4 B¢ loge — ¢ e ,  0>0 (5.31)
Blogc— c%, 0=0

with A,B >0, A+ B > 0. Then, for anyt € [0,T] and v > 0 we have

c(t)v = arg max P(t,v, ), (5.32)

where ¢ is defined as in (5.30). Moreover,
Be—0(T'-t)
= &(t)v) =Be 0T [ ] —1
max(t, v, ) = P(t, v, c(t)v) =Be | oo B (1 i)
+ Be TV og v (5.33)

if 6 > 0, whereas

B
max P(t,v,c) =(t,v,é(t)v) =B (log <m> - 1) + Blogwv

if 6 =0.
Proof. We only prove the case § > 0. For any ¢ € [0,T],v > 0 we have

Be0(T—t) A4 % (1 _ 6—5(T—t))

& v

=0

T;Z)c(ta v, C) =

if and only if ¢ = ¢(t)v. Thus, ¢(t)v is the only stationary point for ¢(¢,v,-), and since
lime 0 ¥(t,v,¢) = lim 00 P(t,v,¢) = —00, we obtain (5.32). Eventually, (5.33) follows
from a direct computation. ]

We now prove Theorem 5.4.

Proof of Theorem 5.4. We only prove the theorem for § > 0, as the case 6 = 0 is totally
analogous.

Part a). By induction on k = [(d). We start proving the statement when k& = 0. In this
case we clearly have d =1 := (1,--- ,1), i.e. all the risky assets are defaulted. If we search
for a solution of the kind K (¢,v,d) as in (5.27), we clearly obtain

At B (1 oTD)
—C
v

AVK (tv,1) = APK(tv,1,---,1) =

)
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so that the HJB equation becomes

g<I>1(t) =Be YT 1og v — sup (Be_‘s(T_t) logec —c

dt c>0

A+2(1- eww))
v

=Be T 1og v — sup P(t,v,c),
c>0

with ¢ (t,v,¢) as in (5.31). Thus by Lemma 5.9 we have

gc1>1(ze) =Be T logv — p(t, v, &(t)v)

dt
Be—0(T'-t)
o —8(T—t) _
Be <log (A (- 65(Tt))> 1) (5.34)

Therefore, we define @1 as the unique solution of (5.34) provided with the terminal condition
®Y(T) = 0, so that K (t,v,1) solves Equation (5.21) with the terminal condition (5.24).

We now assume the statement to be true for any d’ € {0,1}" such that I(d') < k — 1,
and we prove it to be true for any d such that [(d) = k. We set

K(t,v,d) = (A + ? (1 - e5<Tt>)> logv + (), (5.35)

where ®? is a C'! deterministic function such that ®(T) = 0. Then we have

0K d
— _q)d _B —6(T—t)
at (t,’U, d) dt (t) € 9
0K  L,0’K B B (Tt
v%(t’v’d)__vW(tav,d)—A—Fg(l—e >
Therefore we obtain
AMCK (t, v, d) oo 1, 4
A+ B (l—e 0T D) (u(t, d), h?) = — = S(h5(t, d), h)

K(t,v(1+ (z,h?),d + x(d,z)) — ()
+/< A+ B (1 - e0(T-0)

—logv — <x,hd>> v (dx)
(by (5.23))
= (u(e), ) — & — S8, 1 + L+ B,

where

s _/ K(t,v(1+ (z,h?)),d) — ®%t)
P xme A+ B (1 e0a0)

—logv — (z, hd>> vi(da),
(by (5.35))

= /Xn\ed (log (1+ (z, hd>) — (z, hd>)lfg(dl“),
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with

o'=x"| U {zi=-13],

1<i<n,

d;=0

and where

I _/ K(to(1 + (4, h%)), d + x(d, ) — (1)
2 = o

d 1d d
A4 B (1— i) —logv — (% h >> v (dz)

(by induction hypothesis)

_ XL (1) — di(t) d 1d dpdy ) d
- /ed <A+ B (1 — ¢-o(T-1)) +log (1 + (29, h%)) — (2%, h >> Vi (dz)

(by (5.23))

_¢() — v (09) 24(1)
T A+ (1- e

+-/Qd (1og (1 + (2, 1)) — (@, 1) )l (da),

where ¢¢ is the continuous deterministic function
o'(t) = > v (A7) @7 (1),
d'<d

with

AM=x"| N {=#-1 ] ) {zi=-1}

1<i<n 1<i<n,
d;:O d;:l

Thus we obtain

c

) (5.36)

v

APCR (v, d) = ¢4(t) — vd (@d) oUt) + (A + ? (1 - e—5<T—t>)> (Fd(t, h)

with F¢ as in (5.26), and the HJB equation becomes

d
—(t) =Be T Dlogv — sup (Ah’CK(t, v,d) + Be 9T Jog c>
dt heH, c>0

— Be 5T log v + 1 (@d) od(t) — ¢(t)

- (A + B (1 - e_é(T_t))> sup F(t, h)
0 heH

AvB(1- eww))

— sup (Be_‘s(T_t) loge—c¢
v

c>0

—y <9d> od(t) — ¢d(t) — (A n ? (1 - 65<Tt>>> sup Fi(t, h)

+ Be 9T Jog v — sup(t, v, c), (5.37)
c>0
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with ¢ (¢,v,¢) as in (5.31). Let us observe that argmaxycy F?(t,h) is not empty for any
t € [0,T] because H is a compact subset of R" and F'¢ is continuous, and thus

sup Fi(t,h) = F(t, h(t,d)), (5.38)
heH

with F? as in (5.31). Therefore, plugging (5.38)-(5.32) into (5.37) we get

%de(t) =i (0) @(t) - ¢(t) - (A + ? (1- 65<Tt>)> FU(t, Rt d))

+ Be T log v — (¢, v, &(t)v)

(by (5.33))

. (@d) ol(t) — ¢(t) — (A + ? (1 - 65<Tt>)> FA(t, h(t, d))

Befé(Tft)
_ Be 0(T—1) _
Be <log <A T e—&(T—t))) 1) . (5.39)

Furthermore, note that ¢%(t) and v{ (@d) are continuous in ¢ by Assumption A.4. Thus,
setting ®?(-) as the unique solution of the ODE (5.39) with terminal condition ®%(7") = 0,
we have that K (¢,v,d) solves Equation (5.21) with terminal condition (5.24), and Part a)
is proved.

Part b). In order to prove K € D it is sufficient to prove that, for any ¢ € [0,7] and
(b,¢) € Alt, 71,

_ t -
K(t, (V,D)?,c;t,v,d) o /t AhU7CuK(u’ (V,D)Z’C;t’v’d)du

is a martingale. Now, by applying the Ito6formula, we obtain

dK (t, (V, D)) = A< K (t, (V, D)) dt + dM,

where
dM; =a(t)b o (t)dW; + /Rn (a(t) log (1+ (z,5,7))
+ BD XD ) (g @Dt—@)) (N(Dy_, dw,dt) — vy(Dy_, dz)dt),
and where we have set a(t) := A + ? (1 — e*‘s(T*t)). Therefore, in order to prove the

theorem is sufficient to check that M; is a martingale. Since

e[ " la(t) Potwlar] < a0 [ "ol oo
<0y sup [0l | oI du < 1.

the continuous part is a martingale. We observe now that, since § takes values in the
compact set H C int(Nyecrr)He), there exists a constant § > 0 such that 1 + (he,x) >0
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ve(dz)-a.s. for any d € {0,1}", t € [t,T]. Thus, the function x — log (1 + (hs,z)) is
bounded from below and with linear growth, and so there is a constant C' > 0 such that

[log (1 + (he, )| < C,fu}?[ IRl 2] v¥(de)—as. (5.40)
S

for any d € {0,1}", ¢ € [t,T]. According now to the notation used in the proof of part a),
we define

0 := 00 = | J{a; = -1}, (5.41)

and finally, in order to verify the pure jump stochastic integral to be a martingale, we only
need to check that, for any d € {0,1}"

o[ Lok

(by (5.23) and (5.41))

AL

(by the triangular inequality)

<2a?(0)E UtT/n
49 [ /t ! /@ ‘(I)DtJ“X(Dt’JC)(t)—(I)Dt(t)‘Qth(dx)dt]

(by (5.40) and Assumption A.1.)

2
log 1_|_< Dt >) +(I)Dt—+X(Dt—7$)(t)_q)Dt—(t)‘ l/fl(da?)dt:|

t)log (1 + (z, f)t_ )) + Lo(z) <(I>Dt*+X(Dt*’x)(t) - @Df*(t)> ‘2 Vf(dx)dt}

log (1+ (z,h7)) ‘2 ug(dx)dt]

2
< 2a*( / C? sup 1A / |z))? v (dz) +2< max @d/(t)> v(©)dt < +o0.
d'e{0,1}n

Part ¢). By (5.36), (5.38) and Lemma 5.9 we have

(h(t,d),&(t)v) € arg max AMK(t,v,d) YveR"
heH, c>0

for any t € [0,7] and d € {0,1}". Therefore, the process (b, t;) defined in (5.28) satisfies
(5.25) and the statement follows by Theorem 5.2. O

1.6 Examples

In this section we present several examples of market models with one, two or several
defaultable assets. In particular, in Section 6.1 we present a general model with one nonde-
faultable stock, one defaultable stock and one defaultable bond, where the vulnerable assets
default simultaneously, with the bond possibly recovering part of its notional. Section 6.3
and 6.4 are particular cases of this general example, where the agent cannot trade in the
defaultable stock or in the defaultable bond, respectively. These two cases have already
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been dealt in literature in [31, 41] respectively. Section 6.4 presents a market model, in-
spired by [14, 64], with several defaultable bonds that cannot default simultaneously; as a
consequence, the optimal portfolio proportion of each bond depends only on its dynamics
and not on that of the other ones. Instead in Section 6.5 we study the same market model,
with only two defaultable bonds, where we introduce the possibility of a simultaneous de-
fault; as a consequence, the optimal portfolio proportion of each bond prior to any default
turns out to depend also on the dynamics of the other bond.

In the light of Remark 5.7, in the following examples we only focus on the optimal
investment strategy h; = h(t, D;), as the optimal consumption ¢; does not depend on the
choice of the model.

1.6.1 Diffusion dynamics with default

In this section we present an example of market model with three risky assets, namely
one default-free stock, one defaultable stock and one defaultable bond, where we assume
that the two latter assets are issued by the same entity. This model generalizes two models
in [31, 41], which can be obtained by imposing a null strategy in the defaultable stock or
in the defaultable bond respectively.

The risky assets’ dynamics (1.1)-(3.7) takes now the form

ds; =S} dR), i=1,2,P

dR} = puyi(t, Dy)dt + o (t, D)dWy,

dR} = pa(t, Dy)dt + oa(t, Dy)dWy — (AN, — A(t)dt),
dRF = pp(t, Dy)dt — (1 — Dy )(AN; — A(t)de),

where NN; is a 1-dimensional Poisson processes with intensity \, acting on S? and S* and
where (following [31])

up(t, Dy) = (1 — Dy )A(t) (ﬁ - 1)
In other words, both the stocks S' and S? follow a standard Black-Scholes dynamics,
with the only admissible jump of the process (S',S9%,SF) having amplitude equal to
(0,52, —-€£ST), and causing the default of both the stock S? and of the bond SP. In
this case the stock loses all its value, while the bond loses a fixed fraction £ € [0, 1] of its
value, thus allowing for a partial recovery. Notice that the drift of the defaultable bond pp
is proportional to the difference between the intensity % of N under an equivalent mar-
tingale measure and the intensity A of N under the real world probability measure, under
which the utility is maximized. In [31], the quantity % is called default event risk premium.

The compensating measure v is now equal to A(t) > 0 times the Dirac delta distribution
concentrated in {x; = 0,29 = —1,23 = —{} € R3, ie.
1/?({:61 =0,290 = —1,23 = —f}) = A1),
v (R*\{z1 = 0,20 = —1,23 = —¢}) = 0, Vte[0,T].

Note that, by contrast, the post-default compensating measure v! can be actually set

identically equal to 0 without loss of generality, as none of the jumps of the process R?
(thus also of R?) occurring after the default time 72 have any impact on the price SZ, nor
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on the price Sf. Indeed, the former process has already jumped to the absorbing state 0,
whereas the latter is constant because pup(t,1) = 0, and thus its dynamics is identically
equal to the riskless asset.

Under this particular choice of v, d = 0,1, the subset H; C R? defined in (4.16) takes
the form

Hy = {(ln, ha, hp) | ha + Ehp < 1}

For sake of simplicity we can assume, without losing generality, the convex compact subset
H C R? of Definition 4.3-a expressed in the form H = H; x H,, where H; and Hy are
convex compact subset of R and of the half-plane {(hg2,hp) | he + {hp < 1} respectively.
Now, Equation (5.26) can be written, in extended form, as

FI () = (1, D — 3 loa(e, D
FO(£,h) = (u(t,0), h) — %((hl, ha)S(t,0), (hy, hy)) + A(t) (log (1 — hy — Ehp) + hy + Ehp).

where we denote

_ * o ||O'1(7f,0)||2 <01(t’0)’0-2(t’0)>
=(,0) =00 “"”"(<m<t,o>,@<t,o>> o (£,0)] >

as the diffusion component of the risky bond S* is null.

Now, as F! is strictly concave in h;, the maximization problem with respect to hq over
H, has a unique solution that can be either internal or on the boundary. A necessary and
sufficient condition under which the maximum over H; is internal is that the solution of
the first order condition

pa(t,1) = [lon (8, 1) o,

mth yelongs to int(Hy). Thus, under this condition, the first com-

given by hi(t) =

T e D))
ponent of h(t,1) in (5.26) is univocally determined by
- t,1
hi(t,1) = L)z
lon(t, 1)

Analogously, assuming the matrix rank(¢,0) = 2, FO(¢,h) is a strictly concave function
and so the maximization problem over H has a unique solution. Moreover, we have the
following

Proposition 6.1. For any t € [0,T], the unique mazimum of F°(t,h) over H is an
internal point if and only if hi(t) € Hy, where hi(t) is the first component of

R ﬂl(tao)
(h1,ha)(t) ==X ( pia(t,0) — A(t) (ﬁ - 1) >

and (h3(t), hp(t)) € Ha, where
1

hp(t) = ¢ (1 = A(t) — ho(t)) (6.42)

Under these assumptions, the unique mazimizer of FO(t,h) is
h(t,0) = (hi(t), h5(t), hp(t)).
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Proof. Being F(t,h) strictly concave on H with respect to h, the unique maximum over
H is an internal point if and only if it is the solution of the first order condition

Vi EO(t,h) = 0.
Condition (6.46) is explicitly given by

pa(t,0) = 11t 0)h1 + Xa1(t,0)he,
p2(t,0) = Xa1(t,0)h1 + Zaa(t,0)ha + £(2) (m - 1) ; (6.43)
pp(t,0) = L)€ <m - 1) :

(recall that 3;; = (0;,0;)). Now, by substituting the third equation into the second, the
first two equations in (6.50) become

pi(t,0) = X11(t,0)hy + Xa21(t,0)ho,
p2(t,0) — A(t) (ﬁ - 1) = Y21(t,0)h1 + X92(t,0)ho,

which results in a modified Merton problem on the stocks, whose solution is given by
Equation (6.1). Once we have hg, we can easily obtain hp from the third equation of
(6.50), resulting in Equation (6.49). It is also very easy to assess that he +{hp < 1, so the
triple (h1, ho, hp) € H. Thus, the conclusion follows. O

Corollary 6.2. Let (R} (t),h}(t)) := B7(¢,0)(u1(t,0), u2(t,0)) be the Merton optimal
strategy for the undefaultable log-normal dynamics of the risky assets. Then, by calling
p = ”f;’;l”’ﬁ’;z” the correlation between S1 and So, under the assumptions of the previous

proposition we have that

(B0) (). W& - 1) [ Tl

L—p 1

llo2]?

In particular,

h(t,0) = hM(t) as A(t) =0

Proof. A direct computation shows that

(45)- (48) - Cond )
ha(t) hy'(t) At)(x —1)
By inverting ¥, the conclusions follow. O

Remark 6.3. If p = 0, i.e. when the default-free asset is independent of the defaultable
part of the portfolio (bond and stock), then the optimal portfolio in the default-free asset is
exactly equal to the Merton portfolio, as in [31].
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1.6.2 One default-free stock and one defaultable bond

As already said, if we impose the portfolio constraint he = 0, i.e. we do not allow our
agent to invest in the defaultable stock, we obtain exactly the market model treated in [31].
In this case, the set of all admissible strategies becomes

Ht = {(hl,oahp) | hP < 1/5},

and again we can assume without losing generality the convex compact subset H C R? of
Definition 4.3-a expressed in the form H = H; x {0} x Hs, where H; and H, are convex
compact subset of R and of the half-line (—o0, 1/£) respectively. Now, Equation (5.26) can
be written, in extended form (by omitting the variable ho = 0), as

FI(1) = (1) — 5 o (8, 1)
FO(t, 1) = (u(1,0), ) — 5 lon (6, DI 12 + A(5)(log (1 &hp) + Ehp).

Now, as F! is again strictly concave in hi, the maximization problem with respect to
hq1 over Hy has a unique solution that can be internal or on the boundary of Hi, leading
to the exact same conclusion as in the general case in Subsection 6.2. We also notice that
FO(t, h) is a strictly concave function and so the maximization problem over H has a unique
solution.

Proposition 6.4. For any t € [0,T], the unique mazimum of F°(t,h) over H is an
internal point if and only if

* o Ml(ta 0)
0= wope <5
and 1
hp(t) = £ (L= A(D) € H.

Under these assumptions, the unique mazimizer of FO(t,h) is

B(tv 0) = (hT (t)7 h; (t)7 h}’(t)) .

Proof. Being FO(t,h) strictly concave on (—o0o,1) x R with respect to h, the unique maxi-
mum over H is an internal point if and only if it is the solution of the first order condition

Vi FO(t,h) =0,
which now reads as
1251 (t, O) — Ell(t, O)hla
up(t,0) = 60 (ks 1)

Thus the conclusion follows easily. U

Remark 6.5. We obtain the same conclusion as in [31] (notice that there the utility func-
tion is U(x) = 7 /v, so mathematically speaking we obtain the same conclusions in the
limiting case v — 0). In particular, the investment in the riskless stock is independent of
the default possibility of the risky bond. Plus, due to the log-utility function, the optimal
strategy of the risky bond is myopic, i.e. it does not depend on the residual investment
horizon T' — 1.
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1.6.3 Two stocks, one of which defaultable

We now impose the portfolio constraint hAp = 0, i.e. we allow our agent to invest only
in the default-free and in the defaultable stocks; thus, we obtain the same market model
treated in [41]. In this case, the set of admissible strategies becomes

Ht = {(h15h2,0) | h2 < 1}7

and again we can assume without losing generality the convex compact subset H C R? of
Definition 4.3-a expressed in the form H = Hj x Hy x {0}, where H; and Hs are convex
compact subset of R and of the half-line (—oo, 1) respectively. Now, Equation (5.26) can
be written, in extended form (by omitting the variable hp = 0), as

FI () = (1) — 5 o (s, 1) 3,
Fo(t7 h) = <:U'(t7 0)7 h> - %«hl? hQ)E(tv 0)7 (h17 h2)> + )‘(t)(log (1 - h2) + hQ)'

Now, as F! is again strictly concave in hi, the maximization problem with respect to hq
over Hq has a unique solution that can either be internal or on the boundary of Hy, leading
to the exact same conclusion as in the general case in Subsection 6.2. We also notice that,
if we again assume that rankY = 2, then F°(¢, h) is a strictly concave function and so the
maximization problem over H has a unique solution.

Proposition 6.6. For any t € [0,T], the unique mazimum of F°(t,h) over H is an
internal point if and only if

A(t) = (det S(t,0) — S11(¢,0)pa(£,0) + E1a(t, 0) 1 (£,0))?
+2A(£)S11 (¢, 0) (det 2(t,0) 4 L11(2,0)pa(t,0) — 12(t,0)pa (£,0)) + A*(£) £, (¢,0) > 0,

(6.44)
and
hi(t) = p(t,0) z_jlilfg) 0)h3(t) o
hi(t) = det 3(t,0) 4+ 311 (¢, 0)pa(t, 0) — X12(t, 0)p1 (¢, 0) + X11(t, 0)A(t) — /A(2)

2det X(t,0) ’

belong to Hy and Hsy respectively. Under this condition, the function h(t,0) in (5.26) is
univocally determined by

h(t,0) = (hi(t), h5(t)).

Proof. Being FO(t, h) strictly concave on (—00,1) x R with respect to h, the unique maxi-
mum over H is an internal point if and only if it is the solution of the first order condition

Vi FO(t,h) = 0. (6.46)

Condition (6.46) is explicitly given by

Ml(t,O) == Ell(t,O)h1+212(t,0)h2
:U‘2(t’0

6.47
)+ 4(t) = Sia(t,0)hy + Saa(t, 0)hy + -2 (6.47)

“ha
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Now, by substitution and by multiplying for (1 — h1)X11(¢,0) the first equation, (6.47)

becomes
_ p1(t,0) — X12(t,0)hy

hy (
¥11(t,0)
a(t)h3 +b(t)he +c(t) =0

where
a(t) = det X(¢,0),
b(t) = —(det (¢, 0) + X11(2, 0)2(t, 0) — E12(2, 0)p1 (¢, 0)) — X11(2, 0)A(),
c(t) = S11(t, 0)pa(t, 0) — X12(t, 0)pa (¢, 0).

Thus, System (6.47) may have two solutions: h* = (h}, h%) as in (6.45), and ¢* = (g7, 93)
given by

*(t) _ H1 (t70)7212 (t70)h% (t)
g1 - ¥11(¢,0)

* t _ det E(t70)+211(t70)u2 (tvo)_212 (tvo)ul (t70)+211(t70))‘(t)+ \ A(t)
g5(t) = 2det (1,0)

where A(t) is defined as in (6.44). In order to conclude it is enough to observe that g*
cannot belong to H C R x (—o0,1). Indeed, let us assume that g5 < 1. Then hj < g3
implies h3 < 1 and so FY(t, h) has two stationary points on R x (—o0, 1), which is impossible
because it is strictly concave with respect to h. O

Corollary 6.7. Let h™(t) :== X~1(¢,0)u(t,0) be the Merton optimal strategy for the unde-
faultable log-normal dynamics. Then

h(t,0) — KM (t) as A(t) = 0 (6.48)
if and only if KM (t) € H. In particular, if

_ 222(t7 O)Ml (t7 O) - ElZ(ta O)MZ (ta 0) <1
det 3(¢,0) '

we can always find a compact H C (—o0,1) X R such that (6.48) holds. In this case, we

have < Z;Eg > _ ( Zéﬂjgg ) +A(DA®) < _2%12 > +o(A(t)

' (1)

with

A(t) o 1 1 det E(t, 0) + Ell(t, O)Mg(t, 0) — Elg(t,O),u,l(t, 0)
T 2det™ det E(t, 0) — Ell(t, O)Mg (t, 0) + Y19 (t, O),ul(t, 0)

Proof. A direct computation shows that h*(t) = hM(¢t) when A(t) = 0. Then the limit

follows by continuity of h*(¢). For the first-order asymptotics, we have that

\/ A(t) = (det E(t, O) — En(t, O),U,Q (t, O) + Elg(t, O)Ml (t, O)) X

det 3(¢,0) + X11(¢,0)pa(t,0) — X12(¢,0) 1 (¢, 0)
X <1 + MOZ0 00 3er5-0) — s (. 0 (£.0) T Eoae. O (6. 00 0““”) '

Hence Equation (6.7) follows. O

Remark 6.8. In this case, if the two assets are independent, then Y12 = 0, and the same
conclusion of the previous sections follows “at first order”; in fact, by Equation (6.7), one
has that hy = h +o(\(t)), i.e. the deviations from Merton’s portfolio of the non-defaultable
asset are of higher order with respect to \(t).
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1.6.4 Several defaultable bonds

In this section we present an example of market model with several defaultable bonds,
with dynamics analogous to Sections 6.2, 6.3; namely:

dsi = Si dR, i=1,...,n,
dR; = pi(t,D,)dt — &(1 — Di_)(dN{ — Ni(t, D, )dt),
where

ot D1 1= 60 = DM D) (57 1)

and where now, the intensities of the Poisson processes N (both under the real world
probability measure and the risk-neutral one) can possibly depend on the default state Dy
of the other bonds. This model is inspired by [14, 64]. Precisely, we can distinguish two
relevant cases: the case when simultaneous defaults cannot occur (as in [14, 64]), and the
case when they can occur. In the first case we only have information-induced contagion
among bonds, whereas in the second one it is also possible to model direct contagion.
While in the next example we will focus on the case when simultaneous defaults can
occur, here we focus on the case when they cannot. This is obtained by imposing that the
N', i=1,...,n, are independent Poisson processes conditional to the default state D. The
compensating measure v; is then equal to
n
ve(Dy—,da) = (1= Di)Xi(t, Dy )d_c, (dw)
i=1
where ¢; is the i-th coordinate-vector in R™, with 1 in the i-th component and 0 in the
other ones.
Under this choice of v4(d, -), the subset H; C R™ defined in (4.16) takes the form

1
H, = {h | hi < — Wzl,...,n}.
&
Again, for sake of simplicity we can assume the convex compact subset H C R" of Definition
4.3-a expressed in the form H = [[;", H;, where H; are convex compact subsets of the
interval (—oo, é) Now, Equation (5.26) can be written as

FAt,h) = (u(t,d), h)+

+ > (1= d)Ni(t,d)(log(1 — &hi(1 — d')) + &hi(1 — d')),
i=1

for all d € {0,1}". Now, as each F'¢ is strictly concave in all the non-null components of
h?, the maximization problem with respect to these variables over H has a unique solution
that can be internal or on the boundary. In particular, we have the following

Proposition 6.9. For any t € [0,T] and d € {0,1}", a unique mazimum of F(t,h) over
H is an internal point if and only if

() = ¢ (1= Aule) € H, (6.49)

7

for alli = 1,...,n such that d; = 0. Under these assumptions, h*(t) is a maximizer of
Fi(t, h).
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Proof. Being F(t, h) strictly concave on H with respect to the non-null variables of h¢,
the unique maximum over H is an internal point if and only if it is the solution of the first
order condition

F{l(t,h) =0  Visuch that d; =0,

which now reads as

&idi(t, d) (A:(t) = 1> = Ai(t,d)&; (ﬁ - 1) : (6.50)

Thus the conclusion follows easily. U

Remark 6.10. In this particular example, where there is not direct contagion, it turns
out that the optimal portfolio on the i-th bond (if still alive) is uniquely determined by its
coefficients, with no dependence on the coefficients of the other defaultable bonds.

Corollary 6.11. If & = € and A; = A, then the optimal portfolio for all the defaultable

bonds is
1

hi(t) = 5(1 —A(1)).

Remark 6.12. The assumptions of the corollary above are qualitatively known as “name
homogeneity” [14], and hold when default risks of the bonds are exchangeable, for example
when bonds are of the same credit rating and/or of firms from the same industrial sector.
Notice that for this conclusion it is not necessary to assume that \; = \.

1.6.5 Two defaultable bonds with direct contagion

In this section we specialize the previous example to n = 2 but add the possibility of
simultaneous default, by modifying the dynamics as

ds; = S dR;, i=1,...,2,
dR; = pi(t,D;-)dt — &(1 — Di_) (AN} — Xi(t, D, )dt)
—&i(1 = D) (1 — D) (dN; — A(t)dt),

where N1, N2 and N are independent Poisson processes and this time

pi(t,Di_) = &(1 — D! Y\(t,D;) (Ail(t) - 1>

1
+&6(1 = D) (1 = DE)A(t, Dy-) <m - 1) ;
and where now the intensities of the Poisson processes N (both under the real world
probability measure and the risk-neutral one) can possibly depend on the default state
D;_ of the other bond, while the Poisson process N, with intensity A, acts on both the
defaultable bonds when they are still non-defaulted.
The compensating measure 14 is now equal to

vi(Dy_,dz) = Zn:u — D )Ai(t, De)6—c,(dz) + (1 — Di_)(1 = D )A(t, Dy—)5(—1,1y(dz),
=1
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where again e;, i = 1,2, is the i-th coordinate vector in R?, and we also have the possibility
of a simultaneous jump to (—1, —1) with intensity A.
Under this choice of v4(d, -), the subset H; C R™ defined in (4.16) takes the form

1
th{h’hi<g Vi=1,2, §1h1+§2h2<1}.

Also in this example, for sake of simplicity we can assume the convex compact subset
H C R"™ of Definition 4.3-a expressed as H = H; x Hsy, where H; are convex compact
subsets of the interval (—oo, 5—11)

Now, Equation (5.26) can be written, in extended form, as

F(O’O) (t’ h) = <:u( log(l - 5@ z) + glhl) (6'51)

HMM

+ A(t,(0,0))(lo (1 — &oha) + &1hy + &2ha),
FOU@ h) = py(t,(0,1))hy + /\1(t7( ))(10g(1 —&1he) + &),
FEO(¢ h) = pa(t, (1,0))ha + Xa(t, (1,0))(log(1 — Eahg) + Exhg).

Now, as each F'¢ is strictly concave in all the non-null components of A%, the maximization
problem with these variables over H has a unique solution that can be internal or on the
boundary. More in details, we have the following
Proposition 6.13. For any t € [0,T], fori=1,2, if

N 1

hi (t) = — (1 — Az(t)) € H;
&

then h}(t) is the optimal portfolio proportion of the i-th bond after the other one is defaulted.
For the case d = (0,0) (i.e. prior to any default), if the unique solution (hi,h3) € Hy of
the system

Mo N A
Ay 1—&h  1—=&h —&hy’
X o_d A

Ag 1—&hy 1 —=E&h —&hy’

also belongs to Hy x Ho, then it is the optimal pre-default portfolio.

Proof. The situation when the i-th bond is already defaulted is analogous to the previous
example, with exactly the same results.
Let us now pass to the case d = (0,0). Since in this case F?(t, h) is strictly concave on
H, the unique maximum over H is an internal point if and only if it is the solution of the
first order condition
Fl(th)=0 Vi=12,

corresponding to Equations (6.52-6.53). Thus the conclusion follows. O

Remark 6.14. In this example with a direct contagion, it turns out that the optimal portfo-
lio in the i-th bond prior to any default depends (via a non-linear relation) on its coefficients
and also on the coefficient of the other bond. Thus, the possibility of simultaneous defaults
introduces a (non-linear) dependence among the defaultable bonds, which is somewhat anal-
ogous to the correlation effect arising in diffusion models.
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Note that, solving the system (6.52)-(6.52) requires solving a 3rd order algebraic equa-
tion. When A tends to 0 we have the following continuity property.

Remark 6.15. Let us denote by (h’{’)‘(t), h;’)‘(t)) the optimal strategy when both the bonds
are still alive, i.e. d = (0,0). Then we have

lim (h37(6), 557 (1)) = (hy° (1), b3 (1)).

Indeed, F(O0) (b, ha; A) in (6.51) is continuous, and thus uniformly continuous on the com-
pact Hy x Hy x [0, A], for any A > 0. Thus,

RN, B (1)) = FOO (B hy: )
(R (1), hy™ (1)) o8 mex (h1,ha; \)

tends to

FOO (hy ho:0) = (WF0(1), B2t
(h?ﬁl%)egllaxxm (h1,ho;0) = (hy"(t), hy" (1))

as X\ tends to 0. In particular, for i = 1,2, by Proposition (6.9) we have

. #,A o 1 )
lim () = & (1- As(t)

1.7 GOP and GOP-denominated prices

Throughout this whole section we will consider a null utility function u(t,¢) = 0 for the
consumption, i.e. B =0 in (4.18). In the light of Theorem 5.4, this is equivalent to consider
the optimization problem with terminal utility function U(v), with null consumption rate
¢ = 0. Furthermore, we will enlarge the set of the admissible strategies Alt, T'|. In particu-
lar we drop part a) of Definition 4.3 and we only assume that bh; belongs to H; defined as in
(4.16). Under this more general assumption, the optimal strategy (h;)o<i<7 that solves the
logarithmic maximization problem (4.17)-(4.18) with A = 1 is called, when it exists, the

growth optimal strategy. The related wealth process Vth is called Growth Optimal Portfolio
(GOP).

As already said in the Introduction, the GOP has the so-called numéraire property [56],
in the sense that all the other portfolios measured in terms of the GOP are supermartingales.
The numéraire property can be used for example in the benchmark approach [191] to price
contingent claims even in models where an Equivalen Martingale Measure (EMM) is absent.
GOP denominated prices might however fail to be martingale and being instead strict
supermartingales [22, 38, 66, 146]. We will now show that in our model the inverse GOP
process is either a martingale or a strict supermartingale depending on whether the growth
optimal strategy is an internal or a boundary solution with respect to the domain of the
admissible strategies.

Hereafter assume that a growth optimal strategy b exists, and it is characterized as

h(t) = h(ta Dt—)7
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where h(t,-) : {0,1}" — H; is a deterministic function such that

h(t,d) € arg max F(t, h), (7.54)
heH;

for any t € [0,7], with F?(¢,h) as in (5.26). For sake of simplicity, we can always assume

without any loss of generality that h;(t,d) = 0 if d; = 1. Then, by the Itd’s formula, the

dynamics of the inverse GOP process [I; := Vi is

b
t

a,

== (h(t,Dy_), Vi, FP=(t,h(t, D)) dt — h(t, Dy_)o(t, Dy)dW,

1
“J. (1 S D) 1) (N(De- dt,do) = (Do, de)d),

Now, observe that

T 1 2 ) )
- /0 /Xn <1+<B(t,Dt),x>_1> vi(Di—, dw) + [h(t, Di-)o(t, Dy)|” | dt

2
T 1 - 2
— EEE———————— d.d hit.d)o(t.d dt
/0 de%?f{}nén <1+<h(t,d),x> ) ol ) A ot d) s

From this we get that E[supg<;<r [1:]*] < +00 (see [192, V.Theorem 67]) and that

— It,h(t, Dt,)O'(t, Dt)th

1
+ I /X" (1 T (h(t, D)) - 1) (N(Dy—,dt,dz) — vy(Dy—, dx)dt)

is the stochastic different