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SUMMARY 
 
 

 
Simplified methods of seismic verification, using equivalent single degree of 

freedom systems for the  response prediction, have been the subject of great 
emphasis on research in the field of earthquake engineering particularly since the 
mid-1990s. This interest is justified still today by the great uncertainty 
characterizing the prediction of the seismic response: the variability of the 
parameters influencing the structural capacity and the seismic input definition, 
makes the use of sophisticated models not always effective and warranted. 
Furthermore, the extensive use of Non Linear Time-History (NLTH) analyses 
requires a calibration of the hysteretic model parameters and ground motions that 
seems still to date hardly applicable to day to day engineering practice. 

At the same time in last decade the design for earthquake resistance has 
undergone a critical review, triggered by the concept of Performance-Based Design. 
Performance objectives represent the attainment of certain damage levels for a 
given seismic intensity, and it has been widely recognized that the damage measure 
for a structure is directly related to deformations: displacements are the fundamental 
index of structural damage in seismic events and the achievement of the target 
displacement in relation to the different limit states should be the main objective of 
the verification procedure. 

Displacement-Based methods for seismic verification of structures hold 
together the two aspects evidenced so far, being simplified procedures which rely 
on a substitute SDOF structure and use as reference control parameter the target 
limit displacement for the system under exam. 

At present Displacement-Based Design (DBD) methods for new structures 
have reached a degree of formalization almost complete, with the recent publication 
of a Model Code for their adoption into seismic codes (Calvi and Sullivan, 2009). 
However, several aspects related to the method calibration are still matter of 
research, being the representativeness of the substitute linear structure a critical 
issue, in particular the formulation of equivalent viscous damping and the definition 
of the target displacement profile for a given structural system.   

With regard to the appraisal of existing structures, the development of 
Displacement-Based Assessment (DBA) approach represents the state of the art of 
research in this field, since so far the calibration of the methods dealt essentially  
with new structures only. The specific problems of the development of DBA 
methodologies include the prediction of the possible collapse mechanisms due to 
brittle rupture of members (which may be substantially different from those of the 
new ductile structures, designed following capacity design criteria), and the 
inclusion of local damage effects caused by nodes not adequately confined. 

In this context the research activity focuses on the evaluation, calibration 
and development of simplified Displacement-Based approaches for seismic 
verification of bridge structures, with particular reference to their use in a 
probabilistic framework, represented by vulnerability analyses and risk calculation 
on a large scale.  
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In the first part the thesis addresses the methodological aspects of the DBD 
procedures focusing on the error sources of the simplified methods. In particular the 
current design methods for new structures with flexural ductile behaviour are 
evaluated, with reference to the formulations of the equivalent viscous damping and 
target displacement profile to be adopted in the analysis. 

A first  study investigates the accuracy of the current Direct Displacement-
Based Design (DDBD) procedure applied to simple SDOF systems (with specific 
reference to multi-span simply supported  rc bridge piers), the main error sources 
being the approximation of the substitute linear structure characterized by the 
equivalent viscous damping, and the scaling of the displacement elastic spectrum 
through the modification damping factor. Using different  formulations proposed in 
literature for equivalent viscous damping and spectrum reduction factor, a 
parametric study is carried out on an ample set of  SDOF systems (previously 
designed with the DDBD method and subsequently verified with NLTH analyses), 
and an average error chart is obtained, allowing the prediction of the expected error 
for the design cases of multi-span simply supported bridge piers. 

A second work investigates the representativeness of the equivalent SDOF 
structure related to the estimation of the design displacement profile within a 
displacement-based framework. In the case of transverse response prediction for 
continuous rc girder bridges, the accuracy of the current iterative Direct 
Displacement-Based method (called DBD-IT in this work) is evaluated, and 
compared to an alternative direct design method (named DBD-DEM)  herein 
proposed. The alternative methods combine in a non-iterative procedure the DBD 
framework with a Response Spectrum Analysis carried out with effective stiffness. 

In the second part the methodological aspects are addressed with regard to 
the specific issues of  the existing bridge structures, not seismically designed (and 
not satisfying capacity design principles), and thus characterized by failure modes, 
limit states, hysteretic behaviour, and local ductility of the nodes that are different 
from those characterizing new seismically designed structures. In particular the 
calibration effort regards the assessment of pier capacity, piers generally 
representing the most vulnerable elements in existing bridges. A simplified 
numerical model is defined for the aggregation of phenomenological non linear 
shear behaviour and fiber representation of flexural behaviour for piers, calibrated 
by using experimental results on rc columns with flexure and shear failure extracted 
from on line databases (PEER database). A parametrical study is then developed for 
single bent and multiple bent piers (cantilever, walls frame), considering all main 
geometrical and material properties that can influence the pier capacity, aiming at 
the determination of the effective properties for existing rc bridge piers, to be used 
in a Displacement-Based framework. The effective ranges of the selected 
parameters were determined by a preliminary statistical analysis on the bridges of 
the reference database (the Veneto Region road network bridge stock, named VR 
stock). 

With regard to the appraisal of existing structures, the specific advantage in 
the use of simplified analytical procedures becomes apparent when a probabilistic 
seismic risk estimation is carried out on a large-scale. In this study, in the final part, 
the DBA method previously calibrated, is applied to assess the seismic vulnerability 
of the bridge stock under exam on a regional scale.  A limited number of bridges are 



DISPLACEMENT-BASED SIMPLIFIED APPROACHES FOR SEISMIC DESIGN AND VULNERABILITY ASSESSMENT OF RC BRIDGES 

 

v 
 

chosen as reference examples for each homogeneous subclass of  multi-span 
bridges, comparing simplified DBA procedures with NLTH analyses for the 
development of  analytical fragility curves, and an extensive vulnerability analysis 
for the class of multi-span rc bridges of the VR stock is then developed, using the 
previously calibrated DB fragility curves.  

Finally regional seismic risk maps are drafted including all the multi-span rc 
bridges of the VR stock, for three different scenarios of damage: the seismic risk is 
obtained by the convolution of hazard functions, defined on the base of the PGA 
exceedance probabilities provided by the current Italian seismic code, and the 
analytical fragility curves calculated with the Displacement-Based approaches. 

An immediate extension of the research on existing rc bridges, may be 
represented by the development of fragility curves for the whole classes of multi-
span structures: these fragility functions could be obtained considering the 
variability in the range of geometrical and mechanical characteristics obtained from 
the statistical analysis of the VR database for that specific classes, and the envelope 
curves obtained could than be applied for the vulnerability evaluation of typical  
bridges of the Italian or European stocks. 

A long-term development of the work may regard the extension of the 
simplified Displacement-Based procedures to the evaluation of different classes of 
structures, particularly of single span rc bridges and masonry arch bridges, which 
represent the other major category of existing bridges, to complete as much as 
possible the scenario of seismic risk for the infrastructure network under 
examination. In this context it will be possible to calibrate the seismic input for risk 
analysis through the use of hazard curves, obtained from micro-zonation studies in 
the areas of interest. 

  
Keywords: simplified methods, Displacement-Based approaches, seismic 
design of bridges, vulnerability assessment, large-scale risk analysis.  
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SOMMARIO 
 

 

I metodi semplificati di verifica sismica, che utilizzano sistemi equivalenti 
ad un grado di libertà per la predizione della risposta, hanno avuto larga diffusione 
nello scorso decennio, non solo per il progetto di nuove opere ma soprattutto in 
relazione alla valutazione del comportamento strutturale dell’esistente.  
Parallelamente, con l’affermazione di approcci alla progettazione basati su criteri di 
performance, si è consolidato il concetto che il parametro più adeguato di misura 
della risposta sismica è rappresentato dallo spostamento, e il raggiungimento dello 
spostamento target in relazione ai diversi stati limite rappresenta il vero obiettivo  
della procedura di verifica.  

Le metodologie semplificate di progetto e valutazione basate sugli 
spostamenti (Displacement-Based), tengono insieme questi due aspetti, basandosi 
nella formulazione corrente su un sistema equivalente lineare ad un grado di libertà 
rappresentativo del sistema non lineare reale, e utilizzando come parametro di 
controllo della procedura lo spostamento limite accettabile per quel dato sistema 
strutturale. 

Per quanto riguarda gli aspetti del progetto di nuove strutture, tali 
metodologie hanno ormai raggiunto un grado di formalizzazione pressoché 
completo, con la pubblicazione in tempi molto recenti della proposta finale di un 
Model Code (Settembre 2012) per il loro recepimento nei codici normativi. Restano 
tuttavia oggetto di ricerca e sperimentazione gli aspetti legati alla calibrazione del 
metodo, in relazione alla rappresentatività del sistema equivalente lineare ad un 
grado di libertà, legata alle caratteristiche di smorzamento viscoso equivalente e al 
profilo di spostamento target da assumere per le diverse tipologie di strutture. Per 
quanto riguarda il tema della valutazione delle strutture esistenti, lo sviluppo di 
approcci agli spostamenti rappresenta lo stato dell’arte della ricerca in quest’ambito, 
avendo la taratura del metodo riguardato sinora sostanzialmente le sole nuove 
strutture. Le problematiche specifiche dei metodi di valutazione riguardano la 
necessità di estendere la previsione dei possibili meccanismi globali di rottura per 
crisi di tipo fragile degli elementi, che possono essere del tutto dissimili da quelli 
delle nuove strutture duttili progettate secondo i criteri del capacity design, e 
l’inclusione degli effetti locali dovuti a fenomeni di danneggiamento per crisi dei 
nodi non adeguatamente confinati. E’ di attualità inoltre l’applicazione dei metodi 
di valutazione basati sugli spostamenti nelle analisi di rischio sismico a larga scala, 
in molti studi sinora basate sulle metodologie di analisi statica non lineare, che 
presentano molti aspetti comuni ai metodi displacement-based.  

In questo contesto si inserisce il lavoro di ricerca sulle strutture da ponte, che 
si focalizza nella prima parte sull’aspetto dell’affidabilità dei metodi di progetto per 
le nuove opere (Displacement-Based Design) e nella seconda sulle procedure di 
valutazione dell’esistente (Dispalcement-Based Assessment) con metodi 
deterministici e stime in ambito probabilistico della vulnerabilità sismica. 

Per quanto riguarda il tema del design, un primo studio affronta la 
valutazione dell’errore del metodo semplificato DDBD per strutture ad un grado di 
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libertà, individuando come principale fonti di approssimazione del metodo la 
formulazione dello smorzamento viscoso per il sistema 1gdl lineare equivalente, e 
la taratura del fattore di riduzione dello spettro elastico in spostamento.  Sulla base 
di un’estesa analisi parametrica su un campione di sistemi SDOF, progettati con il 
metodo DDBD e verificati con analisi dinamiche non lineari in time history, si è 
pervenuti alla determinazione di un abaco semplificato e alla stima dell’errore per 
sistemi reali, rappresentati da pile da ponte in c.a. per impalcati in semplice 
appoggio. 

Un secondo lavoro sulle procedure di progetto riguarda la risposta sismica in 
direzione trasversale dei ponti continui a travata, e la valutazione dell’ attuale 
procedura iterativa, in relazione alla regolarità strutturale. La predizione della 
risposta trasversale con un approccio Displacement-Based presenta alcuni aspetti 
critici legati alla rappresentatività del sistema equivalente 1gdl rispetto al sistema 
mgdl di partenza, e in particolate alla difficoltà di una corretta stima del profilo di 
spostamento di progetto per ponti irregolari. La procedura corrente viene comparata 
con una procedura proposta (non iterativa) che utilizza in modo diretto l’output del 
metodo DBD in termini di stima delle rigidezze della struttura per effettuare 
un’analisi spettrale con rigidezze effettive, e che consente di combinare l’effetto dei 
modi superiori nella risposta.  

Per quanto attiene al metodo di valutazione dell’esistente, l’interesse 
specifico dell’utilizzo di procedure semplificate affidabili ed efficienti dal punto di 
vista computazionale rispetto a metodi più complessi quali analisi dinamiche non 
lineari nel dominio del tempo, risulta del tutto evidente con analisi probabilistiche 
per stime di rischio a larga scala. Il quest’ambito il lavoro si è incentrato sulla 
valutazione di vulnerabilità sismica di opere da ponte con i metodi agli spostamenti, 
utilizzando come caso studio di riferimento il sistema della rete stradale della 
regione Veneto, che consta di circa 2700km di strade provinciali e regionali in cui si 
inseriscono 495 opere da ponte considerate strategiche, collocate prevalentemente 
in zona sismica 2 e 3. 

 Un’ approfondita analisi statistica preliminare è stato svolta nell’ambito del 
lavoro di tesi per la determinazione delle caratteristiche dello stock di ponti oggetto 
dell’indagine: il database disponibile  raccoglie i dati dei ponti oggetto di verifiche 
sismiche svolte nel periodo 2007-2010 dall’Università di Padova per gli enti gestori 
della rete, e della campagna di indagini strutturali  svolta a supporto. A partire da 
alcuni dati di anagrafica generale e utilizzando le informazioni disponibili su 
ciascun  manufatto, è stato possibile individuare con specifico riferimento ai ponti a 
travata in c.a., che rappresentano il 70% circa dei manufatti dello stock,  le 
caratteristiche geometriche, meccaniche e di armatura per classi omogenee di 
strutture, ottenendo un inventario di dati con un livello di dettaglio molto più 
approfondito dei comuni database utilizzati per le analisi di rischio a larga scala. 
Questo lavoro preparatorio ha rappresentato la base di dati necessari per svolgere 
una serie di analisi parametriche per la caratterizzazione delle curve di capacità dei 
ponti esistenti in c.a., che rappresentano il primo step di calcolo per la valutazione 
sismica con procedure semplificate agli spostamenti. Dallo studio parametrico è 
stato inoltre possibile calibrare con maggior precisione gli stati limite da assumere 
con riferimento a predefiniti livelli di danno, e ottenere una miglior taratura delle 
formulazioni dello smorzamento equivalente per le pile in c.a. esistenti. 
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La seconda parte del lavoro sulle strutture esistenti riguarda lo studio di 
vulnerabilità per i ponti a travata in c.a. costituenti lo stock e la successiva analisi di 
rischio:  i metodi semplificati DBA sono stati utilizzati per la creazione di curve di 
fragilità per i ponti a travata in c.a per 3 prefissati livelli di danno, e l’analisi di 
rischio è stata ottenuta come convoluzione con le curve di pericolosità sismica 
fornite dalla normativa italiana vigente, ottenendo delle mappe di scenario di danno 
atteso a larga scala. Tali mappe costituiscono il primo esempio della mappatura 
estesa del rischio simico applicata alla rete infrastrutturale della Regione Veneto, 
con la particolarità di essere state ottenute sulla base di curve di fragilità analitiche 
con metodi semplificati di valutazione agli spostamenti, calibrate sulle 
caratteristiche specifiche di queste tipologie di ponti esistenti, che sono del tutto 
rappresentative dei ponti stradali realizzati in Italia dal secondo dopoguerra ad oggi. 
Altri studi analoghi svolti negli ultimi anni per la valutazione del rischio 
infrastrutturale a larga scala si sono basati su procedure consolidate quali il metodo 
HAZUS (RISK-UE), che non sono tarati sulle caratteristiche specifiche dei ponti 
italiani non essendo generalmente disponibili database per studi a larga scala con 
informazioni di dettaglio tali da consentire una calibrazione delle curve di fragilità 
come in questo studio.  

Un’ estensione dello studio sull’esistente è rappresentato dalla costruzione di 
curve di fragilità per intere classi omogenee di strutture per ponti esistenti in c.a.: 
tali curve sono state ottenute a partire dalle curve di fragilità analitiche calcolate per 
una serie di opere master scelte come rappresentative delle classi omogenee di ponti 
del database, utilizzando la variabilità sui range delle caratteristiche geometriche e 
meccaniche ottenute dall’analisi statistica del database di riferimento 
precedentemente descritta. 

Sviluppi futuri del lavoro riguardano infine l’estensione delle procedure 
proposte di valutazione a classi diverse di strutture rispetto ai ponti in c.a., in 
particolare ai ponti ad arco in muratura che rappresentano l’altra categoria rilevante 
di opere dello stock, per arrivare ad una definizione il più possibile completa del 
rischio sismico sulle opere della rete in esame e ad una taratura  di curve di fragilità 
specifiche per queste classi di opere. Sarà inoltre possibile calibrare in modo più 
puntuale la definizione dell’input sismico attraverso l’utilizzo di curve di hazard 
ottenute da mappe di pericolosità sismica locale mediante studi di micro zonazione 
per le aree di interesse. 
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CHAPTER 1 

CHAPTER 1                             
INTRODUCTION 

 
 

1.1 BACKGROUND OF DISPLACEMENT-BASED SEISMIC 

VERIFICATION PROCEDURES 

In past decades design for seismic resistance has been undergoing a critical 
review during triggered by an increasing emphasis on the concept of performance 
level for a given structure; a new seismic design approach has been developing, 
called Performance-Based-Design, PBD (or Performance-Based-Earthquake 
Engineering, PBEE), aiming  at  realizing structural systems able to sustain a pre-
defined damage level under a pre-fixed earthquake intensity.  

The development of the PBD approach was in the 1990’s the natural 
outgrowth of the assessment and retrofit procedures for existing buildings. Initially, 
the practice of meeting performance-based objectives was rather informal, 
nonstandard, and somewhat qualitative. In 1992 the Federal Emergency 
Management Agency (FEMA) sponsored the development of national consensus 
guidelines for the seismic retrofit of buildings, the ATC-40 project[A1]. That project 
standardized the qualitative descriptions of performance previously used into a 
series of quantifiable performance levels that could be predicted through the use of 
specific design parameters (in terms of element forces and displacement demands). 
The same attempt to standardize the performance-based approach was addressed by 
SEAOC's (Structural Engineers Association of California) Vision 2000 project[O1] , 
including the design of new buildings. The seismic performance objectives were 
defined as the coupling of expected performance levels with expected levels of 
seismic ground motion in the Vision 2000 document[O1]. A predefined performance 
level describes the damage condition considered acceptable for a certain structure in 
relation to its importance and the desired post-earthquake serviceability, depending 
on both the non-structural and structural damage levels, which are treated 
independently and then combined in order to give a comprehensive performance 
target. 

In the Vision 2000 document four performance levels and four levels of 
seismic excitation were considered. Performance levels are defined as: 
- Level I: Operational (Fully operational). The building retains its original stiffness 
and strength. Non-structural components operate, and the building is available for 
normal use. 
-Level II: Immediate occupancy (Operational). Only minor structural and non 
structural damage has occurred. Facility continues in operation  with minor 
disruption in non essential services. The structure retains nearly all its original 
stiffness and strength. 
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-Level III: Life safety. Significant structural and non-structural damage has 
occurred. The building retains some lateral strength against collapse. The risk of life 
threatening injury during the earthquake is low. 
-Level IV: Structural Stability (Near Collapse). Damage is severe for structural and 
non structural components. Structural collapse is prevented. 

The relation between these performance levels and earthquake design levels 
is summarized in Fig. 1.1, where the line Basic Objective identifies a series of 
performance targets for normal structures, the other two lines (Essential and Safety 
Critical Objective) relate performance levels to seismic intensity for two structural 
classes of increasing importance[P1]. 
 

 

Fig. 1.1 – Performance objectives defined by the Vision 2000 report[O1] 

 
Together, the FEMA-273 NEHRP (National Earthquake Hazard Reduction 

Program) Guidelines for Seismic Rehabilitation of Buildings[F3], resulting from the 
ATC-40 project, and the Vision 2000 report defined the current state of practice in 
performance-based engineering. Although using a slightly different terminology, 
the ATC-40 and the Vision 2000 report suggested the same building performance 
levels, the latter introducing a direct relation between required performance and 
maximum tolerable drift limits: the interdependency between a predetermined 
damage level and the maximum displacement profile attained by the structure was 
recognized, and the design criteria defined on the base of different attainable 
displacements at different limit states. 

The relation introduced by the Vision 2000 document between pre-
determined damage levels  and permissible drift limits, was the first translation of 
this fundamental concept into design requirements and represented a turning point 
for the seismic design philosophy, establishing the base for a complete application  
into engineering practice of the Displacement–Based seismic Design approach that 
was pioneered in those years by Priestley and his co-workers [P2, P3, P5, P9, K1].  
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Fig. 1.2 – Limit states related to lateral deformations for a ductile structure (Fib 

Report 7-2) 

Tab. 1.1 – Drift limits suggested by the Vision 2000 report[O1] 

Building Limit States Maximum Permanent 
Operational 0.2 negligible 

Immediate Occupancy 0.5 negligible 
Life Safety 1.5 0.5 

Structural Stability 2.5 2.5 
 

At the end of the 1990’s, the growing emphasis on the Performance-Based  
approach, tied to the application of capacity design principles,  led to the 
development of  a new design process [among others P3, P5, C3, K1, K3], 
assuming as starting point the limit design displacement and obtaining as result the 
base shear force, and the distribution of strength in the structure (see §2.1).  

This approach (displacements lead to strength), was proposed as the 
opposite of the traditional (Force-Based, FB) design approach, where strength leads 
to an estimate of displacement[P1], and which was based upon a pure linear elastic 
analysis and a rough reduction of the initial design forces by a predetermined force-
reduction factor (assumed to be related with the desired level of displacement 
ductility capacity).  

The theorists of the new Displacement–Based-Design (DBD) method raised 
a series of criticisms to traditional FB design methods, which can be summarized as 
follows [P3]: 

- interdependency of strength and stiffness, and as a consequence iterative 
design required (stiffness cannot be adequately determined until the 
structure is fully designed); 

- inappropriate definition of behaviour factors for whole categories of 
structures; 

- invalid assumptions for the relationship between elastic and inelastic 
displacements; 

- inadequate representation of structural performance of systems where 
inelastic action develops in different members at different level of structural 
response (e.g. bridges with piers of different heights), or system with dual 
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load path (e.g. transverse response of continuous girder bridges with fixed 
abutments). 

- inadequate representation of variations of hysteretic characteristics of 
different structural systems. 

A quick overview of the most important problems concerning Force-Based 
design philosophy,  is herein reported. The reader is referred to other textbooks  
[P1, P3] for an exhaustive discussion of the topic. 

 

1.1.1 Criticisms of Force-Based seismic design 
approaches 

1.1.1.1 Interdependency of strength and stiffness of concrete members 

In force-based design, the stiffness of the structural members is required at 
the beginning of the entire process in order to define the natural elastic periods of 
the structure, and subsequently to distribute the global inertia force. It is common 
practice to perform this first step using the gross-section properties of the members, 
but current codes also allow the use of reduced values [e.g. D2, E1, N1], resulting 
from concrete cracking:  typically reduction factor values around 0.3÷0.5 is 
suggested.   

Regardless of what assumption is made, a constant relation between the 
gross moment of inertia of section Ig and the corresponding cracked value Icr is 
assumed: this approach states that the structural stiffness is independent of both 
flexural strength (mainly given by the amount of flexural reinforcement) and axial 
load. To examine this assumption, the flexural rigidity estimated from the moment-
curvature relationship can be considered: 

N

Y

M
E I


         (1.1) 

where MN is the nominal moment capacity of the section (c=0.004, s=0.015) and 
φY is the associated yield curvature of the equivalent bilinear representation, as 
shown in Fig. 1.4 for a typical bridge pier.  

Eq. 1.1 therefore reveals that the common assumption in force-based design, 
considering the member stiffness independent of strength, implies a direct 
proportional relationship between MN and φY. Experimental evidence indicates that 
this assumption is not valid: yield curvature is effectively independent of strength, 
and hence the stiffness EJ is directly proportional to flexural strength MN, with φY a 
constant in Eq. 1.1. The correct relationship is then represented in Fig.2.4d[P3]. As a 
consequence of these simple considerations, it clearly results impossible to perform 
an accurate analysis of the structure until the final element reinforcement, and hence 
the final member strength, is determined.  In other words, the traditional force-
based design results in the end to be an iterative process in which the members 
stiffness must be upgraded at each iteration. 
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                     (a) Full curve                                                (b) Initial part of the curve 

Fig. 1.3 – Typical moment-curvature relationship for a bridge pier with moderate 
axial load and bi-linear approximation 

 
 a) FB design assumption (constant EJ)           b) Effective condition (constant φY) 

Fig. 1.4 – Interdependency of strength and stiffness[P3]  

1.1.1.2 Force-Reduction Factors and ductility capacity  

In the traditional force-based design approach, after having performed the 
modal analysis of the structure and computed the total elastic inertia force, the 
design of the members is achieved by introducing a force-reduction factor 
formally linked with the desired ductility capacity level. This is a very simple 
procedure that leads correctly to design a structure behaving inelastically at the 
ultimate limit state under a certain (severe) seismic event, but at the same time  
reveals conceptual fallacies and inappropriate definitions of behaviour factors for 
whole categories of structures. The subsequent observations need to be taken into 
account: 

- Relationships between ductility and force reduction factor are not well 
established, leading to inaccurate calculations of the inelastic displacement as a 
function of the elastic ones.  

The force-reduction factor (R) is often related to the displacement ductility 
capacity μΔ: 
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u

y







          

(1.2)

 

 

following the “equal displacement” rule, which states that the displacement of the 
inelastic system u is equal to that of the respective elastic system 0 characterized 
by the same initial stiffness and unlimited strength. This approximation is 
graphically shown in Fig.1.4a, and it implies the formal equivalence between the 
force-reduction factor R, and the displacement ductility capacity , as reported in 
Eq. 1.3. 

0u

y y

F
R

F



  


        (1.3) 

Introducing the approximate relationship between peak acceleration and 
displacement response (based on a steady-state sinusoidal response), it is possible to 
estimate the design displacement as a function of the peak acceleration: 
      

2

0 024u

T
a


            (1.4) 

It has been recognized that equal displacement approximation is non-
conservative for short-period structures (the increase in displacement response from 
period elongation is less than the decrease resulting from augmented damping); as a 
consequence, some design codes, apply the equal energy approximation when 
determining peak displacement [P1]. According to this second approach, the area 
under the line which represents the perfect linear elastic behavior must be the same 
as that defined by the elastic perfectly-plastic approximation. 

 
Fig. 1.5 – Displacement ductility capacity approximation based on the equal-

displacement rule                        

2 2 2

0 02

1 1

2 4 2u

R T R
a

R R
 

          (1.5) 

However, if the real structure has a behavior considerably different from the 
ideal elastic perfectly plastic one, also the aforementioned procedure is no longer 
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valid. 
-The behaviour factors for whole categories of structures are defined in a 
simplicistic manner, without recognizing that ductility capacity varies widely within 
a structural class. This can be simply demonstrated with  reference to an example 
[P1], that compares the ductility capacity of two bridge piers of identical cross 
section, axial load and longitudinal reinforcement, but with different heights, 3 and 
8m respectively (see Fig.1.6).  

The two piers have the same yield and ultimate curvatures φy and φu , and 
hence, the same curvature ductility factor  = ϕ୳ /ϕ୷. The lateral displacement of 
the deck (at height H), and the displacement ductility can be quickly derived from 
the following well-known relations: 

2

3Y Y

H          (1.6) 

௉߂ ൌ ߶௉ ∙ ௉ܮ ∙  (1.7)                                         																					ܪ
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∆೤
ൌ 	

∆೤ା∆ು
∆೤

ൌ 1 ൅ 3 ∙
థು∙௅ು
థ೤∙ு

			                            (1.8) 

Lp being the plastic hinge length that will form at the pier base. 
 

 

            a) Squat pier     b) Slender pier 

Fig. 1.6 – Influence of height on displacement ductility capacity  

Using this approach, and an appropriate computation of the yield curvature, 
it can be found that the displacement ductility capacities of the two columns 
approximately differ by a factor of 2.  The use of a unique force reduction factor, 
irrespectively to the different ductility demands, results in this case in a different 
safety value obtained for the two structures ( non-uniform risk design).  
 

Despite the criticisms leveled at the FB design process, it should be 
recognized that it generally leads to safe and satisfactory designs when combined 
with capacity-design rules; however the degree of protection obtained is different 
from structure to structure. Direct Displacement-Based Design approach was meant 
to overcome the deficiencies previously emphasized.  As an alternative, more 
rational, seismic design approach, DBD aims at designing uniform-risk structures, 
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which would achieve, rather than be bound by, a given performance limit state 
under a pre-defined seismic action [P1]. 

The state of the art of the current Displacement-Based procedures is reported 
hereafter in Chapter 2, with specific reference to the application to bridge design 
and assessment. 

 

1.2 RESEARCH MOTIVATION  
It has been previously outlined that in the past decades design for earthquake 

resistance has undergone a critical review, shifting towards the perspective of a 
Performance-Based approach. Parallely simplified methods of seismic verification, 
using equivalent single degree of freedom systems for response prediction, have 
been the object of a great effort of research in the field of earthquake engineering 
particularly since the mid-1990s (Fajfar and Krawinkler[F5],1997).  

This specific interest in simplified procedures can be justified still today, as 
a citation by P. Fajfar (2002) well explains: “Structural response to strong 
earthquake ground motion cannot be accurately predicted due to large 
uncertainties and the randomness of structural properties and ground motion 
parameters. Consequently, excessive sophistication in structural analysis is not 
warranted.”  Furthermore, from a professional point of view, the extensive use of 
more complex approaches for seismic analysis such as Non Linear Time-History 
(NLTH) analyses, requires calibration of the hysteretic model parameters and an 
accurate selection of ground motions, that seems to date hardly applicable to 
everyday engineering practice. From a research perspective, the specific advantage 
in the use of simplified analytical procedures is still evident when seismic 
verification  is carried out in a probabilistic framework (i.e. fragility analysis), 
explicitly accounting for uncertainties in mechanical model and input parameters 
(and leading to a multiplication of the analyses to be performed in respect to a 
deterministic approach). When a probabilistic risk estimation based on analytical 
approaches has to be developed on a large-scale model (e.g. on a regional 
infrastructure system as  in this study), the use of simplified and reliable procedures 
for the development of fragility curves is strongly suggested, NLTH analyses being 
very time-consuming, despite the continuous enhancement of computational 
capacities. 

In the last decade displacement-based (DB) methods have become 
increasingly established assessment procedures that use strain and displacement 
measures as structural damage indexes and seismic performance control parameters. 
Displacement-Based together the two aspects evidenced so far: they are simplified 
procedures which rely on a substitute SDOF structure for the prediction of seismic 
response, and are fully developed in a Performance-Based framework, the target 
limit displacement being used as reference control parameter (damage index) for a 
pre-defined performance level. 

At present Displacement-Based Design (DBD) methods for new structures 
have reached a degree of formalization almost complete (Priestley, Calvi and 
Kowalsky[P1], 2007) and have been proposed for code-implementation (Calvi and 
Sullivan[C2], 2009 ). However, several aspects related to the method calibration are 
still matter of research, the representativeness of the substitute linear structure being 
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a critical issue, in particular the formulation of equivalent viscous damping and the 
definition of the target displacement profile for a given structural system.   

With regard to the appraisal of existing structures, the development of the 
Displacement-Based Assessment (DBA) approach represents the state of the art of 
research in this field, since so far the calibration of the methods dealt essentially  
only with new structures. The specific problems of the development of DBA 
methodologies include the prediction of the possible collapse mechanisms due to 
brittle rupture of members (which may be substantially different from those of the 
new ductile structures, designed according to capacity design criteria), and the 
inclusion of local damage effects caused by nodes not adequately confined. 
 

1.3 RESEARCH OBJECTIVES  
In this context the research activity focuses on the evaluation, calibration and 

development of simplified Displacement-Based (DB) approaches for seismic 
verification of bridge structures, with particular reference to their use in a 
probabilistic framework, such as vulnerability analyses and risk calculation on a 
large scale.  

In the first part, the thesis addresses the methodological aspects of the DB 
procedures focusing on the error sources of the simplified methods, with reference 
to their application on bridge structures represented by simple SDOF systems or 
MDOF systems. In particular the accuracy of current methods for the design of new 
structures with flexural ductile behaviour is evaluated, with special reference to the 
formulation of the equivalent viscous damping and the target displacement profile 
to be adopted in the analysis. 

In the second part the methodological aspects are considered with regard to 
the specific issues of existing bridge structures, not seismically designed (and not 
satisfying capacity design principles), and thus characterized by failure modes, limit 
states, hysteretic behaviour, and local ductility of nodes different from those of new 
seismically designed structures. In particular the calibration effort focuses on the 
assessment of pier capacity, piers generally representing the most vulnerable 
elements in existing bridges. The aim is to provide proper indications about the 
effective properties of existing piers to be adopted in a Displacement-Based 
assessment framework. 

Finally, the DBA method previously calibrated, is applied for the seismic 
vulnerability assessment on large scale of a reference bridge stock, the stock of rc 
multi-span bridges belonging to the Veneto regional road network (VR stock). 
Seismic risk maps are plotted in order to supply different scenarios of the expected 
damage for the class of bridges under exam in a low-medium seismicity area, like 
the Veneto Region (N-E of Italy), and can be used for prioritization of seismic 
retrofit interventions. 

 

1.4 RESEARCH CONTENTS  
As regards the first part of the research, more closely related to the design of 

new structures, at the beginning the accuracy of the current Direct Displacement-
Based Design (DDBD) procedure applied to simple SDOF systems (with specific 
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reference to multi-span simply supported  rc bridge piers) is investigated, the main 
error sources being the approximation of the substitute linear structure characterized 
by the equivalent viscous damping, and the scaling of the displacement elastic 
spectrum through the modification damping factor. Using different  formulations 
proposed in literature for equivalent viscous damping and spectrum reduction 
factor, a parametric study is carried out on an ample set of  SDOF systems 
(previously designed with the DDBD method and subsequently verified with NLTH 
analyses), and an average error chart is obtained, predicting the expected error for 
the design cases of multi-span simply supported bridge piers. 

Next the representativeness of the equivalent SDOF structure related to the 
estimation of the design displacement profile within a displacement-based 
framework is examined. In the case of transverse response prediction for continuous 
rc girder bridges, the accuracy of the current iterative Direct Displacement-Based 
method (called DBD-IT in this work) is evaluated, and compared to an alternative 
direct design method (named DBD-DEM)  herein proposed. The alternative method 
combines in a non-iterative procedure the DBD framework with a Response 
Spectrum Analysis carried out with effective stiffness. 

In the second part of the thesis the focus is on the calibration of the 
Displacement-Based method for the assessment of rc existing bridges. Using a 
shear-flexure non linear model calibrated on experimental data derived by the 
PEER database, an extensive study is carried out, aiming to identify the possible 
collapse mechanisms due to brittle rupture of members, specify the corresponding 
limit states in terms of material strain and global drift and define the effective 
stiffness and equivalent viscous damping for the corresponding limit states. A series 
of plots are derived, that can be used directly for the capacity evaluation of existing 
piers and the definition of the main structural parameters used in the DBA 
procedure. 

The parametrical study is developed for single bent and multiple bent piers 
(represented by cantilever, walls and frame piers), considering all the main 
properties that can influence the pier capacity. The effective ranges of these 
parameters were identified by a preliminary statistical analysis on the bridges of the 
reference bridge inventory (the VR stock), which includes about 500 bridges 
structures belonging to the Veneto regional road network. The bridge inventory 
data, and in particular the class of multi-span rc bridges, were the object of a 
detailed statistical survey within the thesis work, which allowed to get information 
about members’ structural characteristics (e.g. static schemes, piers dimensions, 
effective reinforcement content, material properties), aiming at setting the actual 
ranges of the main pier parameters.  

Finally an extensive vulnerability analysis for the class of multi-span rc 
bridges of the VR stock is subsequently developed, using the previously calibrated 
DBA procedures for the calculation of analytical fragility curves. A limited number 
of bridges are chosen as reference examples for each homogeneous subclass of  
multi-span bridges, and a direct comparisons of simplified DBA procedures with 
NLTH analyses is made on this restricted set of structures in connection to the 
development of  fragility curves.  

Regional seismic risk maps are drafted including all the multi-span rc 
bridges of the VR stock, for three different scenarios of damage (slight damage, 
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severe damage and collapse): the seismic risk is obtained by the convolution of 
hazard functions, defined on the base of the PGA exceedance probabilities provided 
by the current Italian seismic code, and the analytical fragility curves calculated 
with the Displacement-Based approach. 

1.4.1 Methods of investigation 

The numerical analyses were carried out using finite element models created 
with the software Opensees, exploiting the potentiality of the program for the fiber 
modeling of flexural behaviour and the aggregation of the non-linear shear effects. 
Through the development of specific scripts and the use of parametric datasheet for 
input and output, a considerable number of parametric analyses both in the linear 
and non linear field (simplified Displacement-Based approaches and NLTH 
analyses respectively) were easily managed. Other models made with commercial 
software were developed for the purpose of comparing results. 

Regarding the calibration of the numerical models, in particular for the 
analyses on the existing structures, experimental results for rc columns which had 
experienced flexure and shear failure were used. The experimental hysteretic cycles 
were extracted from databases available on line (Structural Performance Database, 
of the Pacific Earthquake Engineering Research Center, PEER), which included 
specimens with both circular and rectangular solid sections. 

Finally, as regards the statistical survey on the VR bridge inventory, the 
work involved the arrangement and statistical analysis of a large amount of data, 
extrapolated from the original projects, or obtained from the results of laboratory or 
on-site tests and geometrical surveys. 

1.4.2 Restrictions 

In this work some restrictions have been necessarily introduced to limit the 
field of  investigation: 

- in the parametric study on the error prediction of Direct-Displacement-
Based and subsequent analyses, only the current widespread approach, in 
which the hysteretic energy absorption is represented by equivalent viscous 
damping, is considered. Other formulations using inelastic displacement 
spectra are not investigated; 

- in the vulnerability study of multi-span rc bridges, piers are individuated as 
the only vulnerable components of the bridge lateral resisting system. Soil-
structure interaction is considered only as linear effect to include the 
increment in pier lateral drift. 

- in the risk analysis hazard curves are derived directly from Italian seismic 
hazard maps obtained by INGV (Meletti and Montaldo[M7], 2007) using log-
normal interpolation. No specific micro-zonation studies were used for the 
assessment of the local (regional) seismic hazard. 
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1.5 OUTLINE OF THE THESIS 
The  thesis is organized into the following chapters: 

- Chapter 1: “Introduction”. 

- Chapter 2: “Review of current Displacement-Based methods for seismic 
design and assessment of bridges” . 

- Chapter  3: “Direct Displacement-Based Design method: error prediction for 
multi-span simply supported bridges”.  

- Chapter 4: “Displacement-Based Design for transverse response of 
continuous rc bridges: iterative vs direct procedure”  

- Chapter 5: “Displacement-Based Assessment of existing bridges: 
parametrical analysis for capacity of rc piers”. 

- Chapter  6: “Displacement-Based approaches for vulnerability assessment of 
rc bridges: application on a regional-scale case study.  

- Chapter 7: “Conclusions” 

 
Chapter 1 describes the framework of the work, and identifies  the main 

research objectives.     
Chapter 2 contains a state-of-the-art literature review of Displacement-Based 

methods for seismic design and assessment, with specific reference to bridge 
structures.  

Chapter 3 investigates the accuracy of the current Direct Displacement-Based 
Design (DDBD) procedure applied to simple structures that can be represented by 
Single Degree Of Freedom systems. In the first part of the study a parametrical 
analysis is developed on a large sample of ideal SDOF oscillators, considering the 
influence of different equivalent damping models for the linearization of non linear 
system. As a final result a mean error chart  is presented, characterizing the scatter 
in the results as a function of design ductility d and effective period Teff. In the 
second part a displacement-based design process for an ample set of realistic 
cantilever rc piers with flexural ductile behaviour is developed. Using  the mean 
error diagram previously obtained, the error range for reinforced concrete bridge 
piers is derived with reference to the realistic design cases analyzed. Finally an 
approximate relationship between ductility and drift is derived, and parametric 
curves are plotted for pre-fixed values of pier height/diameter ratio. 

Chapter 4 investigates the representativeness of the equivalent SDOF structure 
in respect to the original MDOF system, in the case of transverse response 
prediction for continuous rc girder bridges within a displacement-based framework, 
with particular reference to the estimation of the design displacement profile. The 
accuracy of the current iterative Direct Displacement-Based method (called DBD-
IT in this work)  applied to the prediction of the transverse response of multi-span 
continuous girder bridges is evaluated, and compared to a non-iterative (direct) 
design method, named DBD-DEM, herein proposed with the aim of simplifying the 
current procedure for everyday design use. In the DBD-DEM method the effective 
stiffness of the linearized system at the target displacement  is predicted by using 
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the DBD framework, and subsequently a Spectrum Response Analysis (RSA) with 
the effective stiffnesses of members previously derived is used for the estimation of 
the target displacement shape and the final design of piers. 

Chapter 5 addresses some critical issues for the calibration of displacement-
based assessment procedure (Displacement-Based Assessment, DBA) applied to 
existing rc bridges. A simplified numerical model is used for the aggregation of 
phenomenological non linear shear behaviour and fiber representation of flexural 
behaviour for piers, and an equivalent damping formulation (EVD) for shear critical 
column is proposed, expressing the hysteretic component of EVD as a function of 
the pier lateral drift. A parametrical study is then developed for bridge piers  with 
different static scheme (cantilever, frame, walls), considering the effective ranges of 
main parameters influencing the bridge capacity, determined from the statistical 
analysis on the VR stock carried out in Chapter 6. A series of charts are obtained for 
flexural and shear pier capacity, collapse mechanisms, ultimate deformations, drift, 
secant-to-yielding stiffness, effective stiffness, that can be directly  used for the 
capacity evaluation of existing piers and the definition of the main structural 
parameters used in the DBA procedure. 

Chapter 6 presents the application of Displacement-based methods for the 
vulnerability assessment and calculation of seismic risk  for multi-span rc bridges. 
A large-scale case study is addressed, with reference to the stock of bridges 
belonging to the Veneto Region road network (VR stock). A preliminary extensive 
statistical survey is carried out, to characterize the bridge properties in terms of 
static scheme, material properties, geometrical parameters and aiming at providing 
the effective ranges of  the main pier parameters, essential for the calculation of rc 
pier capacity for multi-span bridges (longitudinal and transverse reinforcement 
ratio, confinement parameters, normalized axial load, etc.).  
An extensive vulnerability analysis of the entire multi-span rc bridge stock is 
subsequently developed, using the previously calibrated DBA procedures for the 
calculation of analytical fragility curves. A comparison with analytical curves 
obtained with TH analysis is presented for a restricted number of structures 
(selected as reference structures for the corresponding homogeneous classes of 
bridges), discussing the reliability of the method for the development of fragility 
curves. A direct comparison with fragility functions obtained with tabular methods 
(RISK-UE) is also presented, showing how these methods, usually adopted in the 
absence of detailed information on large-scale stocks, are decidedly inaccurate for 
the vulnerability prediction of Italian (or European) typical bridge structures. 
Finally seismic risk maps are plotted for all the multi-span rc bridges of the VR 
stock, for three different scenarios corresponding to light damage, severe damage 
and collapse of bridges. 

In Chapter 7 the outcomes of the thesis are summarized and future work is 
considered. 
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CHAPTER 2 

CHAPTER 2                                                                
REVIEW OF CURRENT DISPLACEMENT-BASED 

METHODS FOR SESIMIC DESIGN AND ASSESSMENT 
OF BRIDGES 

 
 

2.1 FUNDAMENTALS OF THE DIRECT DISPLACEMENT-BASED 
DESIGN METHOD 

Different displacement-based design approaches have been developed  in 
recent years[F4,C1], all aiming at designing structures capable of reaching a pre-fixed 
lateral deflection under a given seismic excitation. In the Direct Displacement-
Based Design method (called “direct” because no iteration is required in its basic 
formulation[P1]), the achievement of a given performance (expressed in terms of 
target displacement) is obtained by analyzing an equivalent elastic single-degree-of-
freedom (SDOF) model. The equivalent elastic SDOF model, is directly derived 
from the real inelastic system through some basic working equivalences, and 
characterized by an effective mass me, equivalent secant stiffness Keff (with respect 
to the maximum allowable displacement), and an equivalent viscous damping eq, 
representative of the combined elastic damping and hysteretic energy dissipated 
during the seismic response. This concept is based on the considerations developed 
in the Substitute Structure approach  initially proposed by Shibata and Sozen[S1]. 

The design process can be seen as a “reverse” procedure  with respect to the 
Force-Based approach: at the beginning it requires the selection of a performance 
level by the choice of a target displacement, and ends with the calculation of the 
stiffness characteristics and required design lateral force. The seismic input is given 
by an elastic Displacement Response Spectrum (DRS) rather than an Acceleration 
Response Spectrum (ARS). For multi-degree of freedom (MDOF) systems, the 
estimate of a consistent deflected shape considering the inelastic contribution given 
by the formation of plastic hinges is also required. 

The whole analysis is carried out focusing on the substitute equivalent linear 
SDOF system (see Fig. 2.1): first, its equivalent mass me, design and yield 
displacements are determined (d and y respectively); then, the displacement 
ductility capacity  and the corresponding equivalent viscous damping  eq are 
easily derived. Finally, using the damped  Displacement Response Spectrum (DRS), 
with the design displacement at maximum response determined,  the effective 
period Te is directly calculated, and the effective stiffness Ke of the equivalent SDOF 
system is easily obtained by the classical relations for the period of a SDOF 
oscillator: 
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while the design lateral force is given by: 

base e dF V K            (2.2) 

  
 

a) SDOF equivalent system b) Effective stiffness Keff 
 

c) Equivalent damping vs. ductility 
(different hysteretic models)

d) Design Displacement Spectra  

Fig. 2.1 – Fundamentals of DDBD procedure 

  The formulation presented above has the advantage of characterizing the 
effects of ductility on seismic demand independently from  hysteretic 
characteristics: different damping equations are generated separately for different 
hysteretic models (e.g. the Takeda Thin, TT model, is used for rc columns with high 
axial load, while the Flaged-Shaped, FS model, is appropriate for pre-stressed 
structures, see Fig. 2.6c).  It is possible, anyhow, to combine the damping/ductility 
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relationship in a single inelastic displacement response spectra set[P1]: this simplifies 
one step of the procedure, but requires the ductility modifiers to be determined for 
each hysteretic rule considered. 

 
1)  Selection of input parameters: 

  (geometric parameters, material properties, effective mass me; 
 target displacement u and elastic Displacement Response Spectrum) 

 
2) Evaluation of global system displacement ductility 

capacity 
(yield displacement y is estimated) 

 
3) Evaluation of equivalent viscous damping eq  

(as a function of displacement ductility) 

 
4) Determination of the damped Displacement Response 

Spectrum(DRS) 
( using the reduction factor R, dependent on displacement ductility) 

 
5) Calculation of the effective period of vibration Teff 

(using the damped DRS spectrum) 

 
6) Calculation of the effective stiffness of the structure 

(calculation of related design base shear)  

 

7) Design of member reinforcement 

Fig. 2.2 – Direct Displacement-Based Design flowchart for a SDOF structure   

2.1.1 Performance levels: section and structure limit 
states 

The definition of physical damage is one of the key aspects of Performance-
Based Earthquake Engineering, whether it is applied to the design of new structures 
or to the assessment of existing constructions. As stated earlier, the most significant 
damage index for a structure is  represented by a displacement measure: the damage 
estimation based on the maximum displacement attained by the system during a 
pre-defined event is a challenging topic, and is still a subject of research work (see 
among others Priestley[P7], 1997, Priestley et al. [P4], 1996, Priestley et al. [P1], 2007, 
Crowley et al. [C4],  2006). 
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The focus of the present paragraph is the definition of appropriate limit states 
for ductile rc structures, and more in specifically for rc bridges. Additional 
considerations should be addressed for assessment purposes, being existing 
structures often characterized by inadequately confined members and different 
failure mechanisms in respect to newly designed structures. 

1.1.1.1 Performance objectives 

A performance  objective  has been defined in the Vision 2000[O1] document 
as the “coupling of expected performance with expected level of seismic ground 
motion”, and represents the performance level of the structure to be addressed in the 
design, related to a predefined seismic hazard. 

The Vision 2000 guidelines are useful for general reference, having 
introduced the concept that performance objective have to be more demanding  (i.e. 
there should be less damage)  for a high probability earthquake (one that may occur 
several times during the life of the structure) or for an important structure or 
dangerous occupancy.  However, to better relate the structural response to the 
performance level, it is necessary to define sectional (member) and global 
(structure) limit states, the former  to be used in displacement-based capacity 
equations. 

Design limit states 

A comprehensive summary of material strain limits, maximum drift limits 
and residual drifts criteria for different structures is presented in the DBD09 Model 
Code[C2], by Calvi and Sullivan, 2009, drawing on earlier studies, and extending the 
information provided.  Three limit states are set for design reference: 

- LS1, Serviceability: only insignificant damage can be expected and any 
necessary repair  can be carried out without affecting normal operations; 

-  LS2,  Damage Control: damage should be economically repairable; 
-  LS3, Collapse prevention(near collapse): no collapse is required. 

The drift ratio used for maximum and permanent drifts, is defined as: 

1

1

i i
i

i ix x
 



  



          (2.3) 

where i and i+1 are the maximum displacements of levels i and i+1 respectively 
and  (xi+1 - xi ) represents the distance between levels.  

The target displacement for a bridge pier can be characterized by either 
serviceability or ultimate criteria, which are likely to be based on the local drift 
limits for the piers, derived from accepted ductility limits or, more correctly, from 
accepted strain limits.  

Serviceability limit state might be taken to be the onset of concrete cover 
crushing (related to extreme compression fibre concrete strain), or the development 
of crack widths of a size that might require injection grouting (related to limit strain 
in reinforcing bars). 

Ultimate conditions may be taken as corresponding to a damage control 
limit state beyond which structural repair is not economically feasible, or 
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alternatively to a true “collapse” limit state[K1]; a maximum  fibre compression 
strain can be set based on the volumetric ratio of the transverse reinforcement (e.g. 
according to Mander[M3] model), while reinforcement strain limits will be provided 
for adequate protection against bar buckling or extreme deformations. 
 
Tab. 2.1 – Structural Drift limits (after DBD09 Model Code[C2]) 

Drift Limit LS1 LS2 LS3 

Buildings with brittle non structural elements 0.004 0.025 No limit 
Buildings with ductile non structural elements 0.007 0.025 No limit 

Building with non-structural elements detailed to sustain 
building displacements 0.010 0.025 No limit 

Framed Timber walls 0.010 0.020 0.030 
RC Bridge Piers Y 0.030 0.040 
Isolated bridges 2/3*qY 2/3*qY	 qY	

Tab. 2.2 – Permanent Drift limits (after DBD09 Model Code[C2]) 
Drift Limit LS1 LS2 LS3 

Building Structures 0.002 0.004 No limit 
Bridge Structures 0.002 0.004 No limit 
Retaining walls 0.005 0.010 No limit 

 
The “first yield” is defined as the point when the section first attains the 

longitudinal reinforcement yield strain of εy = fy/Es, or a concrete compression of 
the extreme fiber of 0.002. Even if it was common in the past to require for LS1 
near elastic response, implying a reinforcement strain equal to the yield strain, this 
is currently felt to be excessive conservative, as a strain of several times the yield 
value can be sustained without creating damage involving repair. The nominal yield 
point (MN, y) is thus defined by an extreme fibre compression strain of 0.004 or an 
extreme reinforcing bar strain of 0.015, whichever occurs first [P3]. 

For confined concrete members the damage control limit states,can be  
characterized as follows: 

௖,ௗ௖ߝ ൌ 0.004 ൅
௩ߩ1.4 ௬݂௛ߝ௦௨

௖݂௖
′ 																																																															   (2.4)						 

௦௠ߝ ൌ  (2.5)																																																																																														 ௦௨ߝ	0.6

Tab. 2.3 – Material strain limits for rc structures (after DBD09 Model Code[C2]) 
Material LS1 LS2 LS3 

Concrete comp. strain 0.004 ec,dc <0.02 1.5*ec,dc	

Rebar tension strain 0.015 0.6esu ൏0.05 0.9esu൏0.08 

 

The limits are proposed for bridge piers with fixed-pinned end conditions.  
The target performance consists in obtaining a displacement shape, where at 

least one column or abutment reaches its desired damage level[K3]. The 
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effective modal shape. 
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Assessment limit states 

For existing structures, the definition of physical damage is one of the key 
aspects of loss estimation appraisal.  In this work, dealing with bridge rc structures 
with inadequately confined members in a displacement-based framework, 
references for sectional damage limit states were derived from the works by 
Priestley et al. [P4], 1996, Priestley[P9], 1997, Calvi [C1,C7], 1997 and Crowley[C8], 
2006. References to current seismic codes in force (Italian and Turkish codes) were 
also considered. Structure limit states are individuated in terms of strain limits on 
materials, displacement ductility values or limit drift/rotations for single members. 

2.1.2 Displacement response spectra 

As briefly outlined before, DDBD methods use elastic Displacement 
Response Spectra for different levels of equivalent viscous damping, rather than the 
classical elastic Acceleration Response Spectrum. Design spectra were typically 
defined as a spectral shape related to soil condition, modified by the PGA value 
reflecting the seismicity of the region. To date, only some seismic codes[X1,X4] give 
more detailed information, providing spectral acceleration ordinates at two or three 
key periods for different probabilities of occurrence, and thus enabling design data 
based on site longitude and latitude to be extracted. In any case in most codes, 
following the definition of the standard 5% damping ARS as a function of the 
probability of occurrence of a certain event and the soil characteristics, the related 
5% damping DRS is directly generated using the following approximate 
relationships:  

ܵ஽௘ሺܶሻ ≅
ଵ

ఠమ ܵ௘ሺܶሻ						       (2.6) 

∆ሺ்,ହሻ≅
ଵ

ఠమ ܽሺ்,ହሻ݃ ൌ
்మ

ସగమ
ܽሺ்,ହሻ݃									     (2.7) 

where SDe is the spectral relative displacement, Se the spectral absolute 
acceleration and a(T,5) represents the spectral design acceleration (expressed in 
units of g) with reference to a SDOF system with an elastic period T and a viscous 
damping of 5%. Ideally the elastic displacement spectra should be developed 
separately, by using a set of time history records, and deriving the exact DRS 

directly through Duhamel’s integral, in which ߱஽= ߱ඥ1 െ  ଶ represents theߦ
damped frequency of the system. 

ܵ஽௘ ൌ ሻ|௠௔௫ݐሺݔ| ൌ ቚെ ଵ

ఠ೏
׬ ሷ௚ሺ߬ሻ݁ିకఠݔ

ሺ௧ିఛሻ߱݊݅ݏௗሺݐ െ ߬ሻ݀߬
௧
଴ ቚ

௠௔௫
		(2.8) 

Fig. 2.3 shows the ARS and the respective DRS, derived with regard to the EC8[X2] 
formulation in the case of a peak ground acceleration ag=0.35g, and soil type from 
A to E.  

The equations used to derive the ARS spectra are the following: 
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0 ൑ ܶ ൑ ஻ܶ:					ܵ௘ሺܶሻ ൌ ܽ௚ ∙ ܵ ∙ ቂ1 ൅
்

்ಳ
∙ ሺߟ ∙ 2,5 െ 1ሻቃ    (2.9) 

஻ܶ ൑ ܶ ൑ ஼ܶ:					ܵ௘ሺܶሻ ൌ ܽ௚ ∙ ܵ ∙ ߟ ∙ 2,5                  (2.10) 

	 ஼ܶ ൑ ܶ ൑ ஽ܶ:					ܵ௘ሺܶሻ ൌ ܽ௚ ∙ ܵ ∙ ߟ ∙ 2,5 ∙ ቂ	
்಴
்
	ቃ        (2.11) 

஽ܶ ൑ ܶ ൑ ௘ሺܶሻܵ					:ݏ4 ൌ ܽ௚ ∙ ܵ ∙ ߟ ∙ 2,5 ∙ ቂ	
்಴∙்ವ
்మ

	ቃ    		  (2.12) 

where: 

Se(T)   is the acceleration elastic response spectrum; 
ag  is the design ground acceleration on type A ground; 
TB  is the lower limit of the period of the constant spectral acceleration branch; 
TC  is the upper limit of the period of the constant spectral acceleration branch; 
TD  is the value defining the beginning of the constant displacement range; 
S  is the soil factor; 
η  is the damping correction factor  ߟ ൌ ඥ10/ሺ5 ൅ 		ሻߦ ൒ 0,55;	 

The corresponding DRS spectra are obtained using Eq. (2.6). 

         a) ARS spectra        b) DRS spectra 
 

Fig. 2.3 – Elastic ( acceleration response spectra a)  and Displacement 
Response Spectra for different ground types (A,B,C,D,E). Spectrum type 1, (Mw > 5,5), 

ag = 0.35 [g],  according to EC8[X2]. 
 

Tab. 2.5 – Values of the parameters describing the recommended Type 1 elastic response 
spectra according to EC8[X2]. 

 

 

 

Ground type S  [-] TB [s] TC [s] TD [s] 
 A 1.00 0.15 0.4 2.0 
B 1.20 0.15 0.5 2.0 
C 1,15 0.20 0.6 2.0 
D 1.35 0.20 0.8 2.0 
E 1.40 0.15 0.5 2.0 
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The current EC8[X2] regulations specify that the corner period TD is taken as 
1.2s for causative earthquakes with magnitude Mw<5.5 (Type 2 spectra), and as 2.0 
for Mw≥5.5 (Type 1 spectra). Recent studies by Boore and Bommer[B2] have 
suggested that this low corner period is the result of data from analogue records 
which were processed with low-order filters set at periods making interpretations 
unreliable at periods above 2 seconds[P1].   

Recent work  by Faccioli et al. [F1,F2],  analyzing high-qualtiy digital records, 
has shown the possibility of generating DRS directly from the moment magnitude 
Mw of the seismic event and the distance r of the site under consideration, from the 
nearest “fault plan”.  

The corner period appears to increase almost linearly with magnitude, and  
the following conservative relationship is proposed: 

௖ܶ ൌ 1,0 ൅ 2,5ሺܯ௪ െ 5,7ሻ,									ܯ௪ ൒ 5.7																											    (2.13) 

For the peak response displacement, ߂௖	,௠௔௫, the following relationship is 
derived for  firm ground conditions: 

ଵ଴݃݋݈ ,௠௔௫	௖߂ ൌ െ4,46 ൅ 0,33 ଵ଴݃݋݈ ߪ߂ ൅ܯ௪ െ ଵ଴݃݋݈ ݎ 			ሺܿ݉ሻ														(2.14) 

where ߪ߂ is the stress drop, expressed in MPa, and  ݎ is the epicentral distance, 
expressed in km. Using an average value of  ߪ߂ ൌ 6	MPa, the following expression 
is obtained: 

,௠௔௫	௖߂ ൌ ௌܥ ∙
ଵ଴ሺಾೢషయ,మሻ

௥
									ሺ݉݉ሻ                           (2.15) 

The authors[F1,F2] proposed some tentative coefficient Cs for different ground 
condition, as reported in Tab.2.3. 

 
Tab. 2.6 – Values of the parameters describing the recommended Type 1 elastic response 
spectra. 

Ground                        Type ۱܁ 

Rock (A) 0.7 
Firm Ground (B) 1.0 

Intermediate Soil (C) 1.4 
Very soft Soil (D) 1.8 

 
Other findings of the above mentioned study are the following:  

-  the 5% damped spectra tends to increase almost linearly with T up to the corner 
period value; beyond this is conservative to assume a constant spectral 
displacement; 
-the measure of the peak ground displacement can be considered the value 
corresponding to T=10s in the 5% damped displacement spectrum; 
-soft soil amplification is more pronounced at longer distances (30-50km). 

The DRS formulation proposed by Faccioli (Eqs. 2.21 and 2.23) is plotted below 
for Mw values from 7.5 to 6.0 and for values of epicentral distance r equal to 10 and 
20km. 
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a) r=10km b) r=20km 
Fig. 2.4 – Influence of Mw and r on  damped displacement spectra for firm ground 

(type B), according to Faccioli et al[F1]. 

2.1.3 Equivalent Damping models 

DDBD approach involves replacing the non linear structure with an 
equivalent linear structure whose maximum displacement response is approximately 
equal to the non linear structure response (equivalent secant stiffness Keff), and 
whose Equivalent Viscous Damping (EVD) is given as a combination of elastic and 
hysteretic components: 

eq el hyst                              
(2.16) 

where the hysteretic damping hyst depends on the hysteresis rule appropriate for the 
structure to be designed and is generally related to the displacement ductility 
capacity , while the viscous-elastic ratio el is generally, for concrete structures,  
taken as 5%, related to critical damping.  Many significant studies have been 
conducted on equivalent damping over the past decades (Jennings[J3], 1968, Gulkan 
and Sozen[G2], 1974, Ivan and Gates[I1], 1979, Kowaksy et al.[K1], 1995,  Miranda 
and Garcia[M2], 2002); recently much effort has been addressed to find EVD 
expressions coherent with DDBD assumptions [G1,P11,D1]. A brief discussion on 
this topic and a summary  of the main findings is reported in the following 
paragraphs.  

2.1.3.1 Hysteretic damping 
The equivalent structure approach was first suggested by Jacobsen[J1,J2], 

equating the energy absorbed by hysteretic steady-state cyclic response of a non 
linear oscillator to the EVD of the equivalent linear oscillator. This concept leads to 
the well-known relationship: 

2 2

2 (2 2 )
h h

hyst la

m m m m

A A
R

F F


  
  

 
            (2.17) 
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where Ah is the area of one complete stabilized hysteretic cycle (also defined as 
energy dissipated per cycle) and Rla is the so-called loop area ratio. 

The whole discussion, here presented, refers to a F-Δ diagram, but it can be 
demonstrated that the same considerations can be made by looking at the classic 
moment-curvature hysteretic loop. 

 
 
 
 
 
  

 
 
 

Fig. 2.5 – Equivalent damping for bilinear (BI) and RPP hysteretic models. 

While Jacobsen’s original approach was tied to the initial stiffness of the 
system, the DDBD application of his approach has been tied to secant stiffness at 
peak response, resulting in an equal period shift (Teff/Ti) for each hysteretic model 
considered: 

1

d
eff

d

i

T

T r r






  


 

         (2.18) 

with reference to a bilinear hysteretic model (as shown in Fig. 2.13), with initial 
stiffness Kel, secondary stiffness rKel , and displacement ductility /d

m y    . 

Applying the Jacobsen’s approach in conjunction with the secant stiffness at 
peak response (JDSS approach) for the theoretical case of a Rigid-Perfectly-Plastic 
(RPP) loop (see Fig. 2.13), leads to the maximum value of the equivalent damping, 
hyst=2/π (Jennings[J3], 1968);  Eqs. 2.19-2.23 are therefore obtained for the 
hysteretic damping as a function of displacement ductility, with reference to 
hysteretic models presented in Figs. 2.5 and 2.6a,b,d. 

 
- Elasto-Plastic Bi-linear Hysteretic Model (BI): 

௛௬௦௧ߦ ൌ
2
ߨ
	ሺࢤࣆ െ ૚ሻሺ૚ െ ሻࢤ࢘

ሺ૚ࢤࣆ ൅ ࢤࣆࢤ࢘ െ ሻࢤ࢘

ൈ 100%																																																																														(2.19) 					 

- Flag Shaped Hysteretic Model (FS) (r =0.1 ;  r1=0.04 ;  rs=1.0): 

௛௬௦௧ߦ ൌ
217
ߨ

ቈ
௱ߤ5

ଶ ൅ ௱ߤ95 െ 100
௱ߤ௱ሺ10ߤ ൅ 90ሻ

቉ ൈ 100%																																									(2.20ሻ 
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- Takeda’s Hysteretic Model: 

௛௬௦௧ߦ ൌ ൬
2
ߨ
൰ ቊ1 െ

3
4
ߛ	௱ఈିଵߤ െ

1
4
൤
௱ߤߚ௱ݎ
௱ߤ

൬1 െ
1
௱ߤ
൰ ൅ 1൨ ൤2 െ ߚ ൬1 െ

1
௱ߤ
൰ െ ൨ߛ௱ఈିଵߤ

െ
1
4
ቈ
௱ߤଶߚ௱ݎ
ߛ

൬1 െ
1
௱ߤ
൰
ଶ

቉ቋ ൈ 100%																																									 (2.21)			 

where  ߛ ൌ ௱ߤ௱ݎ െ ௱ݎ ൅ 1. 
With α=0.5  ,  β=0  and  r =0 , the Takeda Thin (TT) model is expressed as:  

௛௬௦௧ߦ	 ൌ
1
ߨ
൬1 െ

1

௱ߤ√
൰ ൈ 100%																																																													 	ሺ2.22ሻ 		 

and with α=0  ,  β=0.6  e  r =0 , Takeda Fat (TF) model can be simplified as 
follows: 

௛௬௦௧ߦ ൌ ቀଶ
గ
ቁ ቄ1 െ ଷ

ସ
௱ߤ
ିଵ െ ଵ

ସ
ቂ2 െ 0.6 ቀ1 െ ଵ

ఓ೩
ቁ െ ௱ߤ

ିଵቃቅ ൈ 100%				(2.23)		   

Later works [P11,D1], in order to evaluate the displacement-prediction 
capability of equivalent linear structures (ELS), used specific accelerogramms, 
rather than equating steady-state response to sinusoidal excitation. Dwairi et al. 
(2007), made an extensive evaluation of the JDSS approach, indicating an 
overestimation of  the EVD for intermediate to long periods, in particular for 
systems with high energy absorption, confirming the results of previous studies 
(Chopra [C1], 2001).   

Tab. 2.7 – Values of EVD coefficients used  by D.K. formulation. 

Hysteretic model  C(Teff <1s) C(Teff ≥1s) 

Elasto-Plastic (EPP)  85 ൅ 60൫1 െ ௘ܶ௙௙൯ 85 
Takeda Fat (TF)  65 ൅ 50൫1 െ ௘ܶ௙௙൯ 65 

Takeda Thin (TT)  50 ൅ 40൫1 െ ௘ܶ௙௙൯ 50 
Flag Shaped, β=0.35 (FS)  30 ൅ 35൫1 െ ௘ܶ௙௙൯ 30 

 
In addition new equivalent viscous damping formulations for different 

hysteresis rules were calibrated, presenting the hysteretic component in the 
following general form (herein called Dwairi and Kowalsky, D.K., formulation): 

1
hyst C




 
  

 
%         (2.24) 

where the coefficient C depended on the hysteresis rule, and a period-dependency 
was found for Teff<1.0s (see Tab. 2.8). 

Another refined formulation for hysteretic damping has been recently 
proposed by Grant et al.[P11], with a period dependency related to variable 
coefficients in accordance with the various hysteresis rules investigated (see 
Fig.2.14): 
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௛௬௦௧ߦ ൌ ܽ ቆ1 െ
1

∆ߤ
௕ቇ ൥1 ൅

1

൫ ௘ܶ௙௙ ൅ ܿ൯
ௗ൩ ൈ 100%																																(2.25) 

         a) Takeda Thin (TT)        b) Takeda Fat (TF) 
 

         c) Ramberg-Osgood (RO)        d) Flag Shaped (FS) 

Fig. 2.6 – Hysteresis rules considered for calibration of Eq.2.35[P11]. 

 The values of the coefficients a,b,c,d used in Eq. 2.35 are listed in Table 2.9 
(herein called Grant-Blandon-Priestley, G.B.P., formulation). 

A final comparison of the different formulations proposed is presented in 
Fig. 2.7: the hysteretic component hyst is plotted as function of displacement 
ductility  D.K. and G.B.P models are plotted eliminating the period-dependency 
(a value of Teff =4s is assumed for both models). 

Tab. 2.8 – Values of EVD coefficients for hysteretic component using  Eq. 2.25, proposed 
by Grant et al[P11]. 

Hysteretic model a b c d 

Elasto-Plastic (EPP) 0.224 0.336 -0.002 0,250 
Bilinear, r=0.2 (BI) 0.262 0.655 0.813 4.890 
Takeda Thin (TT) 0.215 0.642 0,824 6.444 
Takeda Fat (TF) 0.305 0.492 0.790 4.463 

Flag Shaped, β=0.35 (FS) 0.251 0.148 3.015 0.511 
Ramberg-Osgood (RO) 0.289 0.622 0.856 6.460 
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Fig. 2.7 – Comparison of the hysteretic component hyst  formulations as function of 
displacement ductility for the JDSS, D.K. and G.B.P. models

2.1.3.2 Elastic damping 
In Eq.2.16, the fraction of critical damping referred to the elastic component el 

is generally assumed to be 5% for rc structures, as noted above. In SDOF systems 
dynamic analysis, the elastic damping coefficient c, is derived by the well known 
equations: 

gm x c x k x m x             (2.26) 

2 2ic m m k                                             (2.27) 

a) Elasto-Perfectly-Plastic (EPP) b) Takeda Thin (TT) 

c) Takeda Fat (TF) d) Flag Shape, =0.35 (FS) 
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where m, k, are mass and stiffness, the fraction of critical damping and i the 
circular frequency; hence the value of the damping coefficient is assumed constant, 
related to the initial-elastic stiffness Ki, or less commonly, as a variable associated 
to a tangent-stiffness, and updated at each step when the stiffness degrades. 

However, it is apparent that there is a possible inconsistency, the damping 
coefficient of the substitute structure being in the DDBD method related to secant 
stiffness to maximum displacement Keff (Keff=Ki/for low post-yield stiffness). 

Grant et al.[G1,P11] determined a correction factor k to be multiplied by the 
elastic damping el to ensure compatible assumptions when elastic damping is used 
in the DDBD framework to characterize the equivalent substitute structure.   
The form of Eq. 2.16 is slightly changed: 

e q e l h y s t             (2.28) 

k            (2.29) 

Tab. 2.9 – Secant stiffness correction factors [G1]for elastic damping. 

Hysteretic model Initial stiffness Tangent stiffness 

Elasto-Plastic (EPP) 0.127 -0.341 
Bilinear, r=0.2 (BI) 0.193 -0.808 
Takeda Thin (TT) 0.340 -0.378 
Takeda Fat (TF) 0.312 -0.313 

Flag Shaped, β=0.35 (FS) 0.387 -0.430 

Ramberg-Osgood (RO) -0.060 -0.617 

 
The coefficient  depends on the hysteresis rule, and the elastic damping 

assumption, while is the displacement ductility factor. Values for are listed in 
Tab. 2.9[G1]; the modification factor for secant stiffness EVD model is generally k>1 
(for >1) when referred to initial stiffness damping (except for the RO hysteretic 
model), while it’s always k<1 for tangent stiffness damping. 

2.1.3.1 Design recommendations 
In the final table herein presented, the ductility dependency of the elastic 

damping of Eq. 2.27 is included inside the basic form of the equivalent viscous 
damping equations. It can be observed that the period-dependency of Eq. 2.23 can 
be ignored for most of the structures, since it will be unusual for regular structures 
such as frame, wall buildings and bridges to have Teff <1.0s[P1]. With this 
simplification, Eq. 2.22 provides almost identical results to the more complete 
expressions of Eq. 2.23, and the coefficient C are adjusted, so the final value taken 
for el is 0.05: 

1
0.05eq SC




 
   

 
      (2.30) 

where the coefficient CS depended on the hysteresis rule. 
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Tab. 2.10 – Equivalent viscous damping coefficients Cs for tangent-stiffness 
damping[P1]. 

Structural member  Hysteretic model Cs(tangent-stiffness) 

Friction slider Elasto-Plastic (EPP) 0.670 
Bilinear isolation system Bilinear, r=0.2 (BI) 0.519 

Rc wall, bridge pier Takeda Thin (TT) 0.444 
Rc frame Takeda Fat (TF) 0.565 
Prc frame Flag Shaped, β=0.35 (FS) 0.186 

Steel frame Ramberg-Osgood (RO) 0.577 

2.1.4 Elastic Spectrum Reduction Factor 

The DDBD method uses a secant stiffness representation of structural 
response, and requires a modification to the elastic DRS spectrum to account for the 
ductile behaviour of the system under design;  the influence of ductility can be 
represented either by equivalent viscous damping  or directly by inelastic 
displacement spectra for different ductility levels. Some authors have proposed for 
DDBD the use of inelastic spectra instead of elastic design spectra[C1], but it is 
current practice to use  the equivalent viscous damping approach[P1], considering 
that  inelastic spectra based on displacement ductility must be calibrated for each 
different hysteretic rule. 

However some uncertainty remains in the calibration of the EVD model (as 
discussed in the previous section), and in the definition of the spectrum reduction 
factor R to be applied  to the DRS spectrum for different levels of damping eq. In 
this work three different forms (among the most widely used) for the Rexpression 
are presented: 

1. Newmark e Hall[N1], 1982: 

 1 .31 0 .19 100   R ln           
(2.31)

 

2. EC8[X3], 1998: 

  0 .5
0 .0 7 / 0 .0 2   R            

(2.32)
 

3. EC8[X2], 2003: 

  0 .5
0 .1 0 / 0 .0 5  R              

 (2.33)                  

The three expressions are compared in Fig. 2.10 for different values of 
damping ratioeq; the Newmark-Hall form implies higher values of the damping 
factor Rso less reduction to elastic displacement are required, while the other two 
expressions are comparable, having the same tendency. 

It has been recently demonstrated by Faccioli and Villani[F2], 2009, that the 
modification factor Rshall be obtained considering the local seismicity and 
earthquake characteristics; on the basis of a study on spectral displacement 
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variations in Italy the following expressions are proposed for sites where near–field 
effects are not expected: 

0.5
0.10

0.05
R 

 
  

  for  T≤7s       (2.34)     

0 0

1
(1 ) 25 7

18LR R T R             for  7<T<25s     (2.35)     

 

a)  b)  

Fig. 2.8 – Damping modifiers to elastic spectral displacements:  
a) comparison of different expressions for R . b) EC8 type 1 Displacement Spectra 
(ag/g=0.35, type C ground), reduced by R  factors for damping values =10, 30% 

 
For near-field sites where forward directivity is possible, being energy 

dissipation not so effective in reducing seismic response, a lower reduction factor is 
suggested: 

0.25

0

0.10

0.05
R 

 
  

                      (2.36)  

Previously, an equivalent expression for site where forward directivity pulse 
characteristics might be expected Priestley[P3] had been suggested by Priestley[P3], 
2003, modifying the EC8-1998 expression: 
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0.25
0.07

0.02
R 

 
  

          (2.37) 

2.1.5 Stiffness and material and properties of rc 
sections  

It was stated in Chapter 1, that the elastic stiffness of cracked sections is 
essentially proportional to strength (see Eq. 1.3). The concept of a constant yield 
curvature y independent of strength is fundamental for the direct-displacement 
based approach. In the following figures, a summary of the research[P3] results 
obtained from Moment-Curvature analysis, is reported. 

The following yield curvature are applicable for the “corner” of the equivalent 
bilinear approximation of force-deformation response: 

2.25 /y y D          for circular rc column    (2.38) 

 2 .10 /y y ch      for  rectangular rc column   (2.39) 

2 .00 /y y wl     
rectangular concrete walls

      
(2.40) 

 
a) b) 

Fig. 2.9 – a)Dimensionless Nominal Moment and b) Yield Curvature for circular piers  
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a) b) 

  

c) d) 

 

e) 
Fig. 2.10 – Dimensionless Nominal Moment and Yield Curvature for: c) and d) 

rectangular columns, e) walls with distributed reinforcement 
 

2.1.5.1 Material Design Strengths 

For gravity load design of structures, a lower bound value for material 
strength is generally used when determining the nominal strength of sections. This 
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is combined with partial material factors to ensure a conservative estimate of the 
section strength. 

f N RM M           (2.41) 

where f is the flexural strength reduction factor and MN, MR are the designed and 
required moment capacities. However in seismic design it is expected that the 
moment capacity will be considerably less than the demand resulting from an elastic 
response, when designing locations of intended plastic hinging. Consequently it is 
recommended that flexural strength reduction factors not be used when designing 
locations of intended plastic hinging. The following design material strengths can 
be adopted[P1, C2]: 

f’ce=1.3f’c    for concrete                                      (2.42) 

fye=1.1fy  for steel       (2.43) 

2.2 DISPLACEMENT-BASED DESIGN OF GIRDER BRIDGES  

Girder bridges are structures composed of few structural elements to be 
designed for seismic response, in specific foundations, piers, abutments, bearings 
and joints, while in general the superstructure is dimensioned by vertical dead and 
traffic loads, and is supposed to remain elastic under seismic inertial forces. 
Nevertheless, bridges can exhibit a highly irregular behaviour, comparatively more 
complex than that of wall-frame buildings, due to variable column heights, non-
uniform span lengths, transverse flexibility of the superstructure, and sometimes to 
the horizontal or vertical curvature of the deck. 

Furthermore, in bridge seismic design, specific aspects have to be considered, 
that can significantly influence the longitudinal and transverse response of the 
structure and which can be effectively included in the DDBD approach: 

- P-Delta effects: these effects are particularly important for bridges, as piers 
can be very high. Thus, although it is uncommon for buildings to be designed for 
drifts exceeding 0.025, bridges may be designed for a response drift of 0.04 or even 
higher[P1,C2], generally governed by material strain limit. In the DDBD the design 

displacement is known at the beginning of the design process and hence the P-d 

moment is known before the required strength is determined; a stability index  
can be introduced: 

/d DP M           (2.44) 

where MD is the base moment capacity. When  exceeds a pre-fixed value (e.g. 
0.085 for rc frame structures), the design base moment capacity should be 
amplified: 

d
b e d

P
V K C

H


            (2.45) 

b e d dM K H C P          (2.46) 

where C is a constant to account for the hysteresis loop (C=1 is suggested for steel 
structures, while C=0.5 seems suitable for rc members[P1]). 
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-  Soil-structure interaction and foundation flexibility  affect the damping, 
elastic period and ductility demand on the structure, in relation to the different 
support conditions (Spread footing, Column/Pile Shaft, Pile-supported Footing). 
Foundation effects can be more easily integrated in Displacement-Based design, 
including the additional displacement resulting from rotation at the pier base. 

- Dual load paths: for bridges with lateral  restraints at the abutments, some 
of the transverse inertia forces will be carried back by the superstructure bending to 
the abutments, proportionally to the intensity increase, the superstructure 
responding elastically and the pier response being ductile. 

- Seismic isolation and added damping: adapting the procedure to include 
additional damping sources it is quite straightforward in the DDBD framework.  
First the design displacement has to be decided: normally it can be based on the 
isolator displacement capacity, which may be equated to the plateau displacement 
of the displacement response spectrum, for the system damping level.  This results 
in a minimum-strength design. In this case the system design displacement will be 
equal to the superstructure displacement, and can be considered the same in both the 
longitudinal and the transverse direction; capacity design procedures will be used to 
ensure that the piers remain elastic under the design level of excitation. The 
effective damping of each pier/isolator combination can be expressed as: 

pier pier iso iso

pier iso

 


  


  
                       (2.47) 

where the displacement of the pier, Δpier is reduced from the pier yield displacement 
by about 20% to allow for possible overstrength in the isolator devices. 
Investigation of the DDBD approach to incorporate seismic isolation or added 
damping in bridge design is beyond the scope of this work. 

A discussion on this topic and related design details can be found in 
Priestley et al[P1], 2007. 

- Influence of abutment design: often a monolithic connection between the 
superstructure and the abutment is provided, especially for shorter bridges of few 
spans. In this case the inertial response will be often related to a short effective 
period, and the design will be dictated by strength characteristics more than 
ductility properties. Damping, however, can be higher than the 5% generally 
adopted by force-based elastic design. 

- Degree of fixity at column top: the pier-top degree of fixity can influence the 
expected moment pattern for transverse response, and affect the yield displacement 
and the plastic hinge length. If the pier consists of two or more columns, it can be 
considered fully fixed at the top, with equal moments at top and bottom of the 
columns. For a single-column bent, both in the case of monolithic connection with 
the superstructure or multiple support on two or more bearings, though it would 
appear that behaviour will always be that of a simple cantilever, if the 
superstructure is torsionally stiff and restrained against uplift at the abutment, then a 
reversal moment may develop over the height of the pier. 
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2.2.1 SDOF  bridge structures  

In the case of multi-span girder bridges, if the superstructure consists of 
simple-supported  spans with rotational flexibility at the movement joints about the 
vertical axis, it is reasonable to consider the design of each pier individually, based 
on the tributary superstructure mass and the pier displacement capacity. Essentially 
the seismic design of a regular bridge under transverse excitation becomes a series 
of independent systems, and the assumption of a SDOF approximation is generally 
accepted[P1]: the deformation of the pier with a concentrated mass on the top,  is 
assumed to be controlled by a first-mode response. 

2.2.1.1 Design displacement 
Generally for a bridge structure, for any given limit state, structural 

performance will be governed by limiting material strain (see Sec. 2.1.1). For 
serviceability limit state, LS1, the nominal moment capacity is required, defined by 
an extreme fibre compression strain of 0.004 or an extreme tension strain of 0.015 
of the reinforcing bars. The two limit strain do not generally occur simultaneously, 
consequently there are two possible limit state curvatures: 

߶௠௖ ൌ ௖௠ߝ ܿ⁄ 	; 				߶௠௦ ൌ ௦௠ߝ ሺ݀ െ ܿሻ⁄ 					     (2.48) 

and the lesser governs the structural design U=min(mc, ms). Once the limit 
curvature m is known, the design displacement ∆௨ௗcan be estimated as a function of 
the yield curvature y, and the plastic hinge length Lp. For a cantilever the following 
relation is valid: 

∆௨ௗ,థൌ ∆௬ ൅ ∆௉ൌ
߶௬ሺܪ ൅ ௌ௉ሻଶܮ

3
൅ ൫߶௨ െ ߶௬൯ܮ௉ܪ																						(2.49)	 

where the plastic hinge length is: 
௉ܮ ൌ ܪ	ሺ݇	ሾݔܽ݉ ൅ ;ௌ௉ሻܮ ሺ2ܮௌ௉ሻ	ሿ        (2.50) 

with: 

݇ ൌ 0,2 ൬
௙ೠ
௙೤
െ 1൰ ൑ 0,08         (2.51) 

and	Lsp representing the strain penetration length: 

It should be noted that Eq. 2.46 requires the knowledge of the neutral axis 
depth, which is a function of axial load ratio and longitudinal reinforcement, 
typically not known at the first stage of design; dimensionless expressions based 
only on material properties and geometric dimensions[P3] are reported in Sec. 2.1.5. 

An alternative design approach would assume a pre-fixed tolerable value for  
plastic rotation ߴ௉,		according to element detailing, or for global design drift, and 
then design the detail to ensure that the strain limits will be achieved. This 
simplifies the design process. 

௉ߴ ൌ ൫߶௨ െ ߶௬൯ܮ௉																																																																																							(2.52) 

ௗߴ ൌ ௒ߴ ൅  (2.53)																																																																																																	௉ߴ
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∆௨ௗ,ణൌ ∆௬ ൅ ∆௉	ൌ
థ೤ሺுା௅ೄುሻమ

ଷ
൅ ܪ௉ߴ ൌ ሺߴ௒ ൅ ܪ	௉ሻߴ ൌ  (2.54)												ܪ	ௗߴ

2.2.1.2 SDOF design process 
The general DDB framework (see Fig. 2.8) can be applied straigthforwardly 

directly for a SDOF system represented by a reinforced concrete pier cantilever. 
The procedure can be summarized as follows:  
- step 1: select a level of performance and obtain the target-displacement u

d based 
on strain or drift criteria (see Sec. 2.1.1); 
- step 2: estimate the yield displacement y, and evaluate the displacement ductility 
capacity d: 

2( ) / 3y y spH L            (2.55) 

/d d
u y                                                 (2.56)   

- step 3: evaluate the equivalent viscous damping values eq as a function of 
displacement ductility (e.g. using Eq. 2.28 with Cs defined for the TT hysteretic 
model)   

1
0.05 0.444eq




 
   

 
                                           (2.57)                    

- step 4: determine the damped displacement elastic spectrum, using the reduction 
factor Rdependent on the value eq calculated in the previous step. The EC8-2003 
form is suggested: 

0.5
0.10

0.05
R 

 
          

(2.58)      

- step 5:  enter the damped displacement elastic spectrum with u
d and calculate the 

effective period Teff ; 
- step 6: compute effective stiffness Keff using Eq. 2.1, and calculate design base 
shear, accounting for P- effects if required: 

0.5
d

d u
eff eff u

P
V K

H


             (2.59)  

- step 7: design the structure for the base shear demand obtained at the previous 
step. 

2.2.2 MDOF bridge structures: continuous bridges 

For MDOF structures the initial part of the design process requires the 
determination of the substitute SDOF system characteristics: equivalent mass me, 

design displacement d and effective damping e.  
Once the substitute structure has been determined, the global design base 

shear is calculated following the same procedure as for SDOF systems (reported in 
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Fig.2.8); subsequently the base shear is distributed among the masses of the original 
structure as inertia forces, and the structure is analyzed under these forces 
calculating design moments at locations of potential plastic hinges.   

2.2.2.1 Design Displacement 

The design displacement of the equivalent SDOF structure (the generalized 
displacement coordinate) is based on the inelastic mode shape of the bridge 
considered, and is calculated as: 

∆ௗൌ෍൫݉௜߂௜
ଶ൯

௡

௜ୀଵ

෍ሺ݉௜߂௜ሻ
௡

௜ୀଵ

൙ 																																																															(2.60) 

where m
i 
and Δ

i 
are the masses and displacements of the n significant mass 

locations respectively.  The equation is based on the requirement that the work done 
by the equivalent SDOF system be equivalent to the work done by the MDOF force 
system, (Calvi, et al.[C3], 1995). 

The design displacement depends on the limit state displacement of the 
critical pier, and on the assumed displacement shape for the structure.  

With a knowledge of the displacement of the critical element and the design 
displacement shape, the displacement of individual masses is given by[P1]: 

∆௜ൌ ௜ߜ ቀ
∆೎
ఋ೎
ቁ 																																																																																	(2.61)			  

where ߜ௜ is the inelastic first mode shape, ߂௖ is the design displacement at the 
critical mass  c, and ߜ௖ is the value of the mode shape. Generally a discretization of  
deck with masses lumped at the top of piers and at abutments is considered; a portion of 
column masses and the cap beam masses can also be lumped at the top[P4]. 
 If higher modes are expected to determine a significant overall increase in 
displacement and superstructure transverse moments (and consequently in abutment 
reactions), as in the case of irregular bridge structures, simplified methods should be 
used to account for their effects, in two possible forms: use of simple conservative 
design rules or use of modified methods for modal superposition (see the related 
Capacity Design Requirements section).  In this case it is suggested[C2] to reduce the 
design drift limit: 

∆௜ൌ ߱ఏߜ௜ ൬
∆௖
௖ߜ
൰ 																																																																																											(2.62) 

where  ߱ఏ ൌ ൫1 െ ௖൯߂/௛௜௚௛߂ ൏ 1			with ߂௛௜௚௛ is the displacement at the critical 
pier caused by higher mode response (modal response spectrum analysis can be 
used to estimate displacement contributions due to higher modes at potentially 
critical pier locations), or alternatively ߱ఏ ൌ 0.7 if non linear time history analysis 
is performed to verify the bridge behaviour. 

2.2.2.2 Displacement Shape 
The determination of the displacement shape is one of the most critical 

points of the design process: in the case of a straight continuous bridge 
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superstructure, integrally connected with the piers, the displacements of all 
superstructure masses will generally be identical for the longitudinal response, 
while for the transverse response the displacement of each bent will vary in 
accordance with the modal response of the system[K3].  The mode shape will depend 
on the relative transverse stiffness of the piers, the presence or absence of internal 
movement joints, the degree of lateral restraint provided at abutment supports and 
the superstructure lateral stiffness.  

Some indexes can be utilized to characterize the relative stiffness of the 
superstructure in respect to pier stiffness; according to the index proposed by Calvi 
and Sullivan [C2], the deck can be consider “stiff” if the ratio of its lateral stiffness to 
the pier sectional stiffness EIs/EIp satisfies the following relationship: 

48	
ாூೄ

஼ು௡ುாூು
ቀ
ுು
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ቁ
ଷ
൒ 0,02															   (2.63) 

where np is the number of piers, ܪ௉ can be taken as the everage pier height, ܮௌ is the 
distance between the abutments,  ܥ௉ is a factor accounting for pier fixity ( 3 for 
pinned-fixed, 12 for fixed-fixed piers).  

For bridges without restraint at the abutments and with fixed pier tops, the 
superstructure can be considered effectively rigid according to Dwairi et 
Kowalsky[D2], 2006,  evaluating the relative stiffness index RS:   
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ೕసభ
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ହ௅ೄ

య ∙ ∑
ுುೕ
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௠
௝ୀଵ 	൒ 0,6												  (2.64) 

where Is and ls are the superstructure transverse moment of inertia and length 
respectively, while HPi and IPi are pier effective height and moment of inertia 
respectively. The superstructure is assumed to be uncracked (elastic response), 
while pier stiffness is based on cracked-section stiffness (ductile response). 

In general there are three kinds of possible transverse displacement, 
corresponding to a fully restrained abutment, a completely unrestrained abutment, 
and the case where the abutment is restrained, but has significant transverse 
flexibility. 

In the first instance, if the superstructure is rigid in the transverse direction, there 
is a simplification of the displacement pattern  for symmetric structures, all columns 
translating by the same displacement (Fig. 2.11a), and the target system 
displacement is limited to the lateral single pier capacity; in the case of irregular 
systems, this translation may be accompanied by a rotational component (Fig. 
2.11b). 
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a) Symm., Free abuts.         b) Asymm., Free abuts.       c) Symm., Free abuts. 
Rigid SS                               Rigid SS      Flexible SS 

 

 

d) Symm., Restr. abuts.     e) Mov. joint, Restr. abuts.   f) Mov. joint, Free abuts. 
Flexible SS                       Rigid SS      Flexible SS 

Fig. 2.11 – Possible transverse displacement profile for girder bridges[P1] 

  For a fully or partial restraint at the abutments, in the case of a symmetric 
structure (Fig. 2.11d) with flexible superstructure, the displacement shape can be 
approximated by a sine function (Alfawakhiri et al[A4], 2000): 
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                 (2.65) 

where x is the longitudinal  coordinate,  Ls  is the bridge length, B a coefficient 
calculated on the base of the elastic abutment stiffness. Also  a parabolic function 
can be utilized, as reported in Tab. 2.12[C2]. 

For irregular bridges that do not match the simple configuration of pier 
distribution and support restraint reported in Tab 2.12, the displaced shape at peak 
response (i.e. the inelastic first mode shape[P1]) should be calculated. The 
displacement pattern, as discussed above, depends on the elastic properties of the 
superstructure (elastic lateral stiffness), known at the start of the seismic design, and 
on the effective piers’ properties, (effective stiffnesses related to  strengths and 
ductilities), which are not initially known, hence an iterative design approach  is  
usually required. A good estimation of the overall displaced shape has been 
proved[K3] to be obtainable considering an Effective Mode Shape (EMS) modal 
analysis: elastic properties are used for the superstructure to solve the eigenvalue 
problem, while secant stiffness at maximum response is used for columns and 
abutment. If an iterative procedure is applied, an initial assumption of 10% of the 
uncracked section stiffness can be applied to columns expected to exceed their yield 
displacement, a value of 50% can be used for the other columns, while 30% of the 
initial elastic stiffness is suggested for the abutments[K3]. 

 
Tab. 2.11 – Displacement shape for regular continuous deck bridges[C2] 

Pier configuration Abutment  Displacement shape 

Uniform 
 

Pinned ߜ௜ ൌ
16
ௗܮ5

ସ ሺݔ
ସ െ ଷݔௗܮ2 ൅ ௗܮ

ଷ ሻݔ 			  
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Uniform  Free ߜ௜ ⁄௖ߜ ൌ 1 					 

Valley 
 

Pinned ߜ௜ ൌ
16
ௗܮ5

ସ ሺݔ
ସ െ ଷݔௗܮ2 ൅ ௗܮ

ଷ  				ሻݔ

Valley 

Ridge 

 
Free ߜ௜ ൌ 1,5 െ

8
ௗܮ5

ସ ሺݔ
ସ െ ଷݔௗܮ2 ൅ ௗܮ

ଷ  	ሻݔ

2.2.2.3 Design process for longitudinal response 
 The design process is in this case  straightforward: the deck is typically 
assumed to be axially rigid, imposing the same displacement demand along the 
length of the bridge in the longitudinal direction. The design displacement shall 
then be limited by the critical pier or abutment member deformation. 

The total base shear force is found from Eq.2.2, and distributed to the piers. The 
way in which this distribution is effected is a designer’s choice, but will normally 
be based on the assumption of equal moment capacity (and hence identical 
reinforcement details) at the base of all piers (note that this is markedly different 
from force-based design, where the design moments would be inversely 
proportional to the squared pier heights). The system damping is then found as the 
average of damping ratios of the individual elements, weighted by shear force and 
displacement. For longitudinal response the design displacements will be equal, and 
hence: if the decision to assume equal moment capacity at the base of all piers is 
made at the start of the design process, then the relative fractions of shear force 
carried by the piers is known, and Eq.(6) can be solved even though the absolute 
magnitudes of piers’ shears are still unknown. 

2.2.2.4 Design process for transverse response 

As discussed earlier, the transverse response of multi-span bridges is 
inherently more complex than longitudinal response, and the following issues must 
be considered: 

-transverse design displacements profiles; 
-dual seismic load paths; 
-effective system damping; 

An iterative procedure is currently proposed to overcome this intrinsic complexity, 
and two initial assumptions are required: the fraction x of the load carried by the 
superstructure bending back to abutments, and the displacement profile. The 
procedure is articulated in the following steps[P1]: 

a) Estimate the initial displacement profile, which should reproduce the 
inelastic displaced shape. Choose the limit-state target displacement for the critical 
pier (strain-based or drift-based). A parabolic or sine-based  displacement shape 
(see Tab.2.12) may be assumed for the initial iteration. The initial displacement 
profile is thus obtained by Eq.2.61, and the displacement of each pier or abutment 
i is estimated. 



DISPLACEMENT-BASED APPROACHES FOR SEISMIC DESIGN AND VULNERABILITY ASSESSMENT OF MULTI-SPAN RC BRIDGES 
 
 
 
 

42 
 

b) Estimate the fraction of  lateral force x carried by the superstructure 
bending  (based on experience: possible choice could be x=0.5 for restraint at the 
abutments, x=0 for unrestrained abutments). 

c) Determine the SDOF equivalent system properties. 

c.1) Determine the equivalent system displacement d , given by Eq.2.60. 
c.2) Determine the effective mass me, including the appropriate contribution 

from pier mass ( typically1/3rd):      

1

/
n

e i i d
i

m m


           (2.66) 

c.3) Determine the effective height He: 

1 1

( ) /
n n

e i i i i i
i i

H m H m
 

          (2.67) 

c.4) Compute the yield displacement of all piers, using Eq.2.55, and then 
their displacement ductility demand with Eq.1.4. 

c.5) Determine the system damping e: 
when different structural elements with different strengths and damping factors 
contribute to seismic resistance, the global damping may be found by weighting the 
individual components by the work done:  

1 1

( ) / ( )
n n

e i i i i i
i i

V V 
 

           (2.68) 

where Vj, j are the shear force and the design displacement of the jth element, while 
j can be evaluated from Eq.2.54. Since shear force distribution is unknown at this 
stage of design procedure, some realistic assumption should be made. In general, as 
a matter of convenience, the designer may choose the same section and 
reinforcement ratio of the pier diameter, even if sometimes it might not be possible 
or convenient (design may be governed by different load combination, not by 
seismic action). However, Eq. 2.68 can be simplified by assuming for DDBD 
design a shear force distribution in inverse proportion to height. This relation can be 
easily derived when the same flexural strength (with zero post-yield stiffness) to all 
pier bases is provided[K3], but it can also be used if a different flexural strength is 
adopted, introducing the factor j, ratio of flexural strength of a pier to the flexural 
strength of the critical pier[A5] : 

j
j

j

V
H


  (ductile piers), 

j j
j

j

V
H

 
  (elastic piers)    

 (2.69) 

Combining all the contributions from superstructure damping SS, abutment damping 
SS and pier damping i, the equivalent system damping is derived as:  
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 (2.70) 

the coefficient C=jj being used for elastic piers, C=j for yielded piers. 
d) Calculate the effective period, effective stiffness and total base shear 

Vbase for the ESDOF system, entering the design spectrum, damped with e, and 
using Eq.2.1, 2.2. 

e1) Distribute the base shear as inertia forces to the masses in accordance 
with the assumed target displacement profile: 

1

( ) /
n

i base i i i i
i

F V m m


         (2.71) 

e2) Estimate the effective stiffness of pier and abutments by distributing 
shear forces from Eq.2.67 and calculating  

Keff,i=Vi/i         (2.72) 
f) Execute a linear static analysis using the load vector computed at step e1) 

and the member stiffness at step e2) to estimate the displacement of critical pier 
c,CALC, and the new displacement profile iNEW. 

g) Revise the critical pier displacement c, c=c,CALC  

h) Revise the design displacement profile iOLDiNEW, and iterate to 
convergence. 

i) Use iNEW and Keff,I to calculate design strength required to each pier. 

l) Design reinforcement for critical section and apply capacity design 
principle for other sections. 
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Fig. 2.12 – Flowchart of the current DDBD procedure for transverse design of 
continuous bridges[P1] 

2.2.2.5 Capacity design issues 

The purpose of capacity design is to ensure that undesiderable modes of inelastic 
deformation and brittle collapses may occur. To this aim, overstrength factors are 
used, and the general requirement for capacity protection is defined by the 
following relation: 

0

S D R ES S S               (2.73) 

where SE is the design action, 0 is the ratio of overstrenght moment capacity to 
required capacity, SD is the design strength, S  is a strength reduction factor (related 
to partial material factors..). Furthermore, the influence of higher mode effects can 
be included in Eq. 2.35, using a dynamic amplification factor ≥This is a 
simplified approach, also applied by some current seismic codes[X4], to take into 
account possible amplification of moments and shears due to secondary modes. 
Alternatively a more consistent estimation of the higher mode effects  can be 
obtained with the ModifiedModalSuperposition (MMS) method, using an 
appropriate combination rule (CQC or SRSS),  combining the inelastic first-mode 
design forces, S1D,i with the elastic forces Si,e related to higher mode periods 
(calculated with the elastic stiffness of the members), applying the basic equation: 

 2 2 2 2

, 1 , 2 , 3 , ,. . .C D i D i e e n eS S S S S           (2.74) 

  A simple modification of the previous approach is introduced by the 
EffectiveModalSuperposition method[O2,P1,A5]: a Response Spectrum Analysis is 
carried out after  the completion of the DDBD procedure, whereby stiffness of 
members with plastic hinges (e.g. piers) is represented by secant stiffness to the 
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peak displacement response, while elastic members  (e.g. the superstructure) are 
modelled by initial stiffness value, and seismic hazard is defined by a 5% damped 
elastic design spectrum (Adhikari et al. [A5], 2010). Final results are obtained by 
combining the higher mode-elastic forces from SRA with the DDBD inelastic first 
mode design forces: 

  20 2 2 2

, 1 , 2, 3, ,...CD i D i i i n iS S S S S             (2.75) 

   Both overstrength at plastic hinges and higher mode effects may have a 
significant influence on the maximum transverse moment developed in the 
superstructure and on the maximum abutment reaction. 

2.3 DISPLACEMENT-BASED APPROACHES FOR SEISMIC 
ASSESSMENT OF EXISTING STRUCTURES 

As outlined in Chapter 1, the development of an assessment procedure in a 
displacement-oriented framework is the natural development of a performance-
based approach for the evaluation of existing structures. The major difficulty in 
such a methodology is based on the initial definition of displacement values 
(drifts/rotations) as damage indexes, is the determination of the structure displaced 
shape at collapse. For new structures, typical displacement profiles can be generally 
used, but they can be inappropriate for  older substandard structures[P1], where 
different inelastic mechanisms may develop, due to inappropriate location of plastic 
hinges and premature failure of non-ductile members. 

2.3.1 Specific issues for DBA  

A series of issues has to be addressed for the development of an appropriate 
DBA approach, because additional problems arise interpreting the structural 
behaviour compared to newly design structures, related to the appropriate 
identification of the collapse mechanism and the displacement shape. The main 
specific aspects related to the assessment procedure can be summarized as follows: 

- Definition of performance limit state: less conservative expressions could be 
applied in respect to design estimates, but different (generally poorer) 
material properties are expected, and low confinement levels are usually 
provided for existing rc members. 

- Identification of the collapse mechanism: different behaviour can be 
expected compared to new structures, which are designed accordingly to 
capacity designed principles. In terms of  local collapse of members, 
hierarchy of strength for ductile and brittle mechanisms could not be 
respected. In terms of global capacity of the structure the inelastic 
mechanism can be beam-sway type, column-sway, or mixed. In this context 
the effects related to higher modes and torsional behaviour can be of 
considerable importance. They can be evaluated in the characteristic 
displacement formulation D with simplified conservative expression, or 
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computed with a more consistent analysis in the determination of the 
inelastic mode shape. 

- Identification of the likely hysteretic model: appropriate cyclic models 
should be calibrated  for structures with different level of dissipation 
capacity. Structures affected by shear failure, are not characterized by fat 
hysteretic cycles, anyhow a residual energy dissipation is still present, and 
the equivalent viscous damping expression has to be calibrated accordingly.  

- Local collapse of nodes: in existing structures premature local collapse and 
increment of stiffness degradation can be due to unconfined joints, lap-
splices in hinge zones, bond slip effects between reinforcement bars and 
concrete, buckling of vertical bars (which are non effectively tied by 
stirrups), or foundation failure (vertical, overturning or sliding). 

For a detailed coverage on this topic, reference can be made to Priestley et 
al. [P4], 1996, Priestley [P9], 1997. 

2.3.2 Displacement Based Assessment procedures 

Two methods are proposed by Priestley et al.[P1] as displacement–based 
seismic assessment procedures, both complying with the principles of DDBD. In 
this text they will be recalled as DBA/D, DBA/C procedures, the first varying  
iteratively the displacement demand Dem, and comparing its final estimate with the 
capacity cap, the latter calculating the elastic capacity cap,el and comparing it with 
the elastic demand Dem,el.  

The methods have many similarities to non linear static methods proposed in 
the last decade by Fajfar and others[F4], requiring at the initial stage of the procedure 
the development of the force-displacement response being, based on available 
structural details. In the DBA procedures the use of the equivalent substitute 
structure characterized by an equivalent damping allows a better inclusion of the 
hysteretic properties of the system; in addition, a direct estimation of the risk for the 
assessed structure can be carried out. 

The DBA/D procedure is recognized by the author valid only for a pass/fail 
assessment, but not adequate to determine risk for structures that do not pass the 
criterion cap ≥ cap: in fact the damping values corresponding to capacity and 
demand differ (ductilities for the two displacements are different), and hence the 
two damped spectra are not directly comparable. The method DBA/C seems more 
consistent: it determines the equivalent elastic spectral displacement corresponding 
to the assessed displacement capacity and associated damping; the step by step 
procedure[P1] is described in the next paragraph. 

2.3.2.1 DBA/C procedure 

1. Estimatethe inelastic mechanism and the related displacement capacity, e.g. 
through the assessment of the global Force-Displacement (pushover) curve. 

2. Calculate the equivalent SDOF displacement d
cap and y , the effective height he, 

the effective mass me.  
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where mi e i are the masses and displacements of the significant mass locations. 

3. Determine the displacement ductility capacity:  

/d
Cap y           (2.77) 

4. Determine the effective damping A corresponding to from Eq. 2.30.
5. Calculate the spectral reduction factor R corresponding to A, e.g. from Eq. 2.32, 
(repeated here for simplicity): 

0.5
0.07

0.02 A

R 
 

  
        (2.78) 

6. Calculate the equivalent elastic spectral displacement capacity: 

,

d
Cap

Cap el R


                 (2.79) 

7. Determine the effective assessment stiffness KA=F/cap, including P- effects, 
corresponding to the displacement capacity (the displacement capacity depends on 
what performance level is chosen). 
8. Calculate the effective stiffness by the SDOF equation:  

b
e d

cap

V
K 


        (2.80) 

8. Calculate the effective period from the SDOF equation:  

2 e
e

e

m
T

K
         (2.81) 

9. If a suite of elastic displacement spectra for different annual probabilities of 
exceedance is available, the appropriate spectrum can be matched to cap,e ; if not, 
the equivalent elastic “code” displacement demand dem,el can be read off the code 
elastic spectrum at the period Te. 
10. The capacity/demand displacement ratio C/D can be estimated: 

, ,/ /Cap el Dem elC D                     (2.82) 

11. The C/D ratio can be used to determine the risk from a plot giving the annual 
probability of exceedance as a function of displacement. 
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At present hazard curves are generally available as measure of the seismic 
intensity PGA related to annual probability of exceedance p; however if the spectral 
shape is considered independent of intensity (but there are many restrictions to this 
assumption), the C/D ratio represents also the ratio corresponding to  

, ,/Cap el Dem elPGA PGA           (2.83) 

and the hazard curve can be directly used. 
 

a)  b)  
 

c)  c) 

Fig. 2.13 – Overview of the DBA/C procedure: a) Estimate of inelastic displacement 
shape, b) Equivalent SDOF representation, c) Identification of seismic intensity that 

would cause limit state to develop, d) Risk estimate 

 

2.4 CLOSING REMARKS  
The basic Direct Displacement-Based design and assessment procedures are 

simple and straightforward for the user, but complexity is implicit in  many of the 
assumptions required by the procedure.   

In the specific case of the assessment method, the direct approach of the DB 
method is further made complex by the uncertainties in material strength, the 
absence of pre-defined hierarchies between flexural and shear strength of members, 
and the limited capacity of the structure, related to possible no-ductile global 
mechanisms. 

 There are still several aspects, common to the design and assessment 
methods,  that need a detailed evaluation and possibly further development. The 
following  aspects have to be highlighted: 
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1a. Selection of target displacement: the selection of appropriate 
performance levels in terms of sectional limit states and global structural 
limit states, is still an open field of research for many structural 
typologies[C2]. Estimation of damage can be related to maximum attained 
strain, drift/chord rotation limit, global behaviour (e.g. displacement related 
to a certain percentage decrease of the total strength). For assessment 
purposes, specific limits have to be individuated considering material 
properties and reinforcement detailing of sections.  
1b. Selection of seismic input, in the form of an elastic Displacement 
Response Spectrum: the DRS spectra provided by many current seismic 
codes are inadequate for DDBD design.  
2. Estimate of the collapse mechanism and design displacement shape: the 
method requires the estimate of the design displacement shape for MDOF 
systems, which is not easy to be  assessed for irregular structures (e.g. 
bridges with piers of variable heights). In the evaluation of existing 
structures further uncertainties are related to development of non-ductile 
local and global mechanisms.  
3.,4. Evaluation of equivalent viscous damping (EVD) and the related 
spectrum reduction factor R: different formulations for eq exist, relating 
the hysteretic energy component to ductility values, and there is  still 
emphasis in research activity about  its appropriate form [D1,P11]. A related 
aspect is the identification of the likely hysteretic mode for existing 
structures, which may be characterized by a reduced hysteretic dissipation, 
thus appropriate cyclic models should be calibrated for existing rc members 
with different level of dissipation capacity.  

Furthermore, there is continuing debate over the correct formulation 
of the spectral displacement reduction factor R

[C2] to be taken into account, 
especially for near field-site design cases.  
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CHAPTER 3 

CHAPTER 3                                                                
DIRECT DISPLACEMENT-BASED DESIGN METHOD: 

ERROR PREDICTION FOR MULTI-SPAN SIMPLY 
SUPPORTED BRIDGES  

 

3.1 INTRODUCTION 

In this chapter a research work investigating the accuracy of the current 
Direct Displacement-Based Design (DDBD) procedure applied to simple Single 
Degree Of Freedom (SDOF) systems is presented, with specific reference to multi-
span simply supported  rc bridge piers. The seismic design of a regular girder bridge 
under transverse excitation is usually considered as a series of independent systems, 
and the assumption of a SDOF approximation is generally accepted.  

In the first part of the work a parametrical analysis is carried out, aimed at 
the design with the current DDBD procedure, of a considerable amount of simple 
ideal oscillators, and at the verification by dynamic inelastic time history analysis of 
the previously designed systems. A range of effective periods Teff between  0.2 and 
4.0 seconds are considered for the SDOF ideal systems, and values of displacement 
ductility d between 1.25 and 5.0 are assumed to include possible low, medium 
and  high ductile behaviours. Four different Equivalent Viscous Damping models 
eq are evaluated, associated to three forms of the R scaling factor for the elastic 
Displacement Response Spectrum (DRS). In total 4212 SDOF ideal systems were 
designed, and subsequently compared with the results obtained from Non Linear 
Time History (NLTH) analyses, performed for the same set of non linear simple 
oscillators  based on the Takeda Thin hysteretic model.  On the basis of these 
results, the more appropriate forms of  EVD models and the R  factor to be adopted 
in the current DDBD procedure are discussed. The relative error of the DDBD 
method is thus obtained, and by interpolating the medium error curves, a simplified 
abacus of the expected approximation error of  the simplified design method is 
derived. 

In the second part of the work a sensitivity study is performed, to obtain  
realistic design values in terms of Teff and d for cantilever rc piers with flexural 
behaviour, all having different values of slenderness and reinforcement amount; 
such columns are designed for drift values  between 1.5% and 4.0%. Using the 
medium error diagram previously obtained, it is shown that in the realistic design 
cases of rc bridge piers, the DDBD method has good accuracy for low and medium 
ductility design levels (d<1.5), while for high displacement ductility values 
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(1.5≤d ≤3.5) the relative error results higher, though always acceptable 
considering that DDBD method generally overestimates. 

3.2 ERROR SOURCES OF THE DDBD METHOD FOR SDOF 
SYSTEMS 

Approximate solutions for non linear structures have gained a good reputation for 
performance-based design procedures in the last two decades[F4]; one of these  techniques is 
the concept of equivalent linearization, initially developed by Shibata e Sozen[S1], 1976, and 
later implemented in the current form of the DDBD method by Priestley et al.[P3, P1, C2], 
2007. It requires the use of an equivalent elastic structure  (Equivalent Single Degree of 
Freedom, ESDOF) substitutive of the real inelastic systems (SDOF or MDOF). The 
Substitute structure is characterized by the effective stiffness Keff, which is the secant 
stiffness at maximum displacement u, the effective damping eq, related to the hysteretic 
energy absorbed, and the effective mass me, which is the effective mass of the structure 
participating in the fundamental mode of vibration. 

 It is of interest to identify the error range prediction for the simplified DDBD 
procedure, so that its attractiveness may be evaluated as much for its conceptual coherency 
as for the balancing of accuracy against reduced computational effort. 

One  of  the most realistic structures conforming to the assumptions of a SDOF 
approximation is a cantilever pier of a regular isostatic bridge under transverse excitation[P1] 
(when the soil-structure interaction can be neglected): its structural behaviour under cyclic 
loads can be characterized by a simple oscillators, represented by a cantilever with a 
concentrated mass on the top. 

 

 

Fig. 3.1 – Substitute structure for a cantilever bridge pier (SDOF system) 

In order to assess the accuracy of DDBD method when applied to simple 
SDOF inelastic systems, it is necessary to focus on the critical assumptions 
introduced by the method, namely: 

 1. the equivalent linearization process, with the estimation of an equivalent 
viscous damping eq; 

2. the use of overdamped displacement elastic spectra.   

The equivalence of a simple non linear oscillator with an elastic system, is 
based on the response of a system whose period Teff is related to the secant stiffness 
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at maximum displacement u. The energy absorbed by the hysteretic steady-state 
cyclic response of the non linear oscillator is equated to eq of the linear oscillator, 
and the maximum displacement response of the two systems is considered 
approximately to be equal. The appropriate calibration of the EVD model depends 
on the hysteresis cycles of the real system during seismic excitation, and represents 
the first source of approximation of the simplified design method. 

Another source of uncertainty in the design process is represented by the use 
of overdamped displacement elastic spectra to represent the peak response of 
ductile inelastic systems; since the effective properties of the ESDOF systems are 
elastic, the current DDBD method uses damped elastic response spectra for the 
design, but debate is going on over the correct formulation of the reduction factor 
R. Alternative methods, such as the use of inelastic design spectra proposed by 
some authors (Chopra[C1], 2001) are not examined in this study. 

This work aims to quantify the scatter in the results of the approximate 
solutions obtained through equivalent linearization of non linear systems as applied 
to the DDBD method, if compared to non linear time-history analysis (NLTH) for 
the prediction of SDOF structures response. The approximations highlighted above 
are intrinsic in the simplified method also when it is applied to MDOF systems, in 
which case further assumptions, in particular the target-displacement shape adopted, 
introduce additional uncertainties.  

Other limitations of the current DDBD design procedure discussed in Chapter 
2, related to the initial choice of the target displacement and to the appropriate 
definition of 5% damping elastic displacement spectrum (associated with the 
magnitude and fault plan distance, Facciole & Villani[F2], 2009) are not considered 
herein. 

3.3 PARAMETRICAL ANALYSIS FOR IDEAL SDOF SYSTEMS 

3.3.1 Elastic Displacement Response spectrum 

The seismic action for the design of SDOF systems  is obtained from the 
elastic response spectrum proposed by  EC8(2003): the horizontal component of 
”type 1” spectrum (5% damping) is selected as reference acceleration response 
spectrum for a ground of medium stiffness (type C, S=1.15, TB=0.20s, TC=0.6s, 
TD=2.0s), with a PGA=0.35g. 
The corresponding horizontal displacement response spectrum is derived with the 
following relation: 

      

2

( ) ( )
2D a

T
S T S T


    

                 (3.1)  

where SD(T) is the spectral elastic displacement response. 
A set of 7 synthetic accelerograms compatible with the EC8 spectrum were 

generated with the SIMQKE program (Gasparini and Vanmarcke, 1976). In Fig. 3.2 
the acceleration response spectra for the 7 generated accelerograms compared with 
the code horizontal acceleration response spectrum and the code elastic 
displacement spectrum, are plotted. 



DISPLACEMENT-BASED APPROACHES FOR SEISMIC DESIGN AND VULNERABILITY ASSESSMENT OF MULTI-SPAN RC BRIDGES 
 
 
 
 

54 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

Se
  [
g]

T [s]

Code
A1
A2
A3
A4
A5
A6
A7
90% Code

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4

S D
[m

]
T [s]

Code

a)  b)  

Fig. 3.2 – a) Acceleration response spectra from time histories set compared with 
code acceleration spectrum (EC8-type 1,ag= 0.35, ground type C), b) code 

displacement elastic response spectrum (5% damping) 

3.3.2 Equivalent viscous damping models 

The DDBD design procedure requires the estimation of an equivalent 
viscous damping for the substitute linear structure; the damping relationships used 
in the parametric analysis consider the effect of ductility on damping, and are 
obtained as a combination of elastic and hysteretic components (see Eq. 2.16, here 
reported for simplicity): 

  
eq el hyst                       (3.2) 

a value el =0.05 is generally adopted for concrete structures, and hyst is calibrated 
taking into account the appropriate hysteresis rule for the structure to be designed.  

  
Takeda Thin 

(TT) r  
 0.0  

               

 

Fig. 3.3 – Takeda Thin (TT) hysteretic model parameters 
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 In this case the Takeda Thin (TT) hysteretic model was used as a good 
representation of structural elements with significant axial load, such as bridge 
piers. An unloading stiffness factor =0.5 and a bilinear stiffness ratio r0.0 were 
adopted (see Fig.3.3). 

Four different EVD models are compared in the numerical analyses, all 
calibrated for the TT hysteretic model, with the parameters 
rtakenasspecified above. The first one, the JDSS model, is the original 
Jacobsen’s model[J1,J2],  tied to the initial stiffness of the non linear system, while 
the other expressions (D.K., G.B.P., D.K.G.)  have been developed in the past 
years[G1,P11,D1] more coherently with DDBD assumptions, by relating the model to 
secant stiffness at peak response (this results in an equal period shift Teff /Ti for any 
of the hysteretic models considered). For further details see considerations in 
§2.1.3. 

  The EVD expressions adopted in this study are reported in Eqs. 3.3-3.8: 

1. Jacobsen’s Model[J1,J2] (JDSS): 

12 3 1
1  

4 4eq el hyst el
     





       
            

(3.3) 

The expression can be simplified as follows with the values reported in Fig. 3.3: 

 
1 1

1  eq el hyst el   
 

 
      

 
  %                    (3.4)  

2. Model by Dwairi[P1] et al. (D.K): 

1
=  eq el hyst el TTC

   





 
    

 
  %           (3.5)   

 where:    

 50 40 1
TT effC T    for  1   e f fT s      

(3.6) 

     5 0
T T

C  ,                  1  e f fT s                 
(3.7) 

                               
 

3.  Model by Grant[G1,J2] et al. (G.B.P) : 

 eq el hystk      

 6,4440,642

1 1
 0,215 1 1  

0,824
el

eff

k
T




             
%   (3.8)  

where:  

 k=1            <1 

   k          ≥1,   
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 =0.340   for the initial stiffness damping model (TT hysteresis rule, Tab. 
2.10) 

The factor  is the secant stiffness correction factor proposed by Grant et 
al.[G1,P11], and is related to the hysteresis rule selected (in this case the TT hysteretic 
model): it introduces an adjustment that was proved to be necessary because in 
DDBD, the initial elastic damping is related to the secant stiffness to maximum 
displacement, whereas in inelastic time-history analysis, it is conventional practice 
to relate the elastic damping to the initial stiffness. Without such an adjustment the 
verification of DDBD by NLTH analysis would be based on an incompatible 
assumption (§2.1.3).  

4. Model by Dwairi et al. with the correction factor for elastic damping[P1] 
(D.K.G.): 

1
   eq el hyst el TTk C     







 
     

 
   %   (3.9)  

where:  50
TT

C  , has the same value as in Eq.(8). 

The Eq.3.9 modifies Eq.3.5 introducing the correction factor for elastic 
damping suggested by Grant et al. [G1,P11],  with the same value of term usedin 
Eq.3.8.

 
 

a) b) 
 

Fig. 3.4 – a) Period dependency of hysteretic component for equivalent damping 
models (D.K.) and (G.B.P.), plotted for different ductility levels (TT hysteretic 

model). b) Equivalent viscous damping ratio provided by the four models 
based on the TT hysteretic rule: (JDSS), (D.K.), (G.B.P.) for Teff=4s and 

(D.K.G.) for Teff>1s. 
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The (D.K.) and (G.B.P.) equivalent viscous damping models have a period 
dependency, which leads to an evident increase of damping for Teff <1s, but which 
is not significant for periods greater than 1.0 seconds in both cases; this dependency 
can be seen in Fig.3.4a for various ductility levels. To compare the different 
damping formulas only as functions of the displacement ductility, the expressions 
for D.K. and (G.B.P.) models have been plotted for Teff ≥1s and Teff=4s respectively 
in Fig. 3.2b. First it can be observed that a significant difference is represented by 
the (D.K.) model, due to the absence of the correction factor for the elastic 
damping, which leads to a damping ratio underestimation, increasing for high 
ductility values. Moreover the highest damping values are given by the JDSS 
model, which represents a sort of upper envelope, even if does not present a 
correction factor for elastic damping. The JDSS model high overestimation  has 
been proved by different authors[C1,D1]; in this specific case, being the TT hysteresis 
rule associated with the (JDSS) model, its trend seems to be very close to more 
“advanced” models like (G.B.P) and (D.K.G.). Thus the scatter in the results is 
expected to be lower than in other cases, in which “fatter” hysteretic models are 
adopted (for example the Takeda-Fat or the Elasto-Plastic model, see also Fig. 2.6). 

3.3.3 Response spectrum reduction factors 

The basic elastic displacement response spectrum (corresponding to an 
elastic damping ratio of eq =0.05) shall be damped with regard to the calculated 
structural equivalent viscous damping eq, by multiplying spectral ordinates with the 
reduction factor R

0 .0 5( ) ( )S T R S T  
       

(3.10)
 


To date seismologists are still debating about the  appropriate form of the 
damping modifier Rto elastic spectral displacement as previously discussed in 
§2.1.4 In this study three commonly used expressions presented in §2.1.4 are 
compared: the first was proposed by Newmark and Hall[N1] in 1987, while the 
second was presented in the 1998 edition of Eurocode 8[X3], and was subsequently 
replaced by the third in the 2003 revision of EC8[X4]. Eqs 2.31, 2.32 and 2.33 are 
reproduced for convenience here below:  

1.  Newmark e Hall (NH): 

 1,31 0,19 100   R ln                            (3.11) 

2. EC8-1998: 

  0 ,5
0 , 07 / 0, 02   R                            (3.12) 

3. EC8-2003: 

  0 ,5
0 ,1 0 / 0 , 0 5  R                              (3.13)  

Other expressions for the Rcoefficient have been recently proposed by some 
authors[F2] for near-field sites (see §2.1.4); such effects on spectral displacements 
are not addressed in this study. 
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3.3.4 Evaluation algorithm 

The parametric analysis was performed with the aim of comparing the 
DDBD target displacements  with T-H response for a wide range of SDOF systems. 
The analysis is based primarily on the definition of a series of simple nonlinear 
oscillators, obtained by “inverting” the current DDBD procedure: by choosing a set 
of initial input parameters to address the design and the EVD models previously 
presented (Eqs. 3.3-3.8),  the overdamped displacement spectra can be determined 
by scaling the elastic spectrum with the reduction factor R. The capacity curve for 
each ideal oscillator is derived on the basis of the pre-fixed design ductility d  and 
the design displacement u

d , calculated by entering the damped spectra with the 
input effective period Teff. At this point the design of the ideal SDOF system can be 
considered complete; once the key features of each non linear SDOF system have 
been defined by means of the capacity curve, and the hysteresis rule is associated 
(Takeda Thin model, Fig.3.3), the inelastic response in terms of ultimate 
displacements can be evaluated using non linear analysis in the time domain, and 
the relative error compared to the design displacement. 

The evaluation procedure is articulated in the following steps: 

(i)  DEFINE INITIAL INPUT PARAMETERS 
a) Select the basic response spectrum 0.05 ( )S T . 

b) Select a value for  design displacement ductility d and effective period Teff 
of  the SDOF ideal oscillator. 

(ii)  DETERMINE THE DAMPED RESPONSE SPECTRUM 
c) Calculate the equivalent viscous damping eq as a function of ductility, 

choosing one of the models given by Eqs.3.3, 3.5, 3.8, 3.9;  
d) Obtain the response spectrum reduction factor Rusing one of the formulas 

3.11, 3.12, 3.13.
e) Multiply the basic response spectral ordinates with the reduction factor Rand 

obtain the design displacement response spectrum ( )S T
in accordance with 

the Eq.3.9. 

(iii)  CALCULATE THE TARGET RESPONSE 
f) Enter the damped displacement spectrum ( )S T

with Teff, and calculate the 

target displacement u
d. 

g) Calculate the design acceleration au
d entering the acceleration response 

spectrum ( )aS T with Teff. 

(iv)  OBTAIN THE CAPACITY CURVE FOR SDOF OSCILLATOR 
h) Calculate the yield displacement y for the SDOF system as /d d

u y     

i) Calculate the elastic period with the following equation: 

 1 /   d d
e l e f fT T r r      

    
                                   (3.14)                                          

where ris the bilinear stiffness ratio of Fig.3.1 
l) Calculate the yield acceleration as  
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2

2

4
y y

el

a
T


                                                                        (3.15)                                   

The capacity curve has thus been obtained and can be plotted in the 
acceleration-displacement (A-D) plane. 

  

 

Fig. 3.5 – Flowchart of the evaluation algorithm used in the parametrical analysis. 
 

( v)  EXECUTE NLTH ANALYSES 
m) Run the TH analyses using the SDOF non linear system defined by the 
capacity curve and adoptingthe Takeda Thin hysteretic model (with the 
parameters specified in Fig.3.3; the value el=5% is to be assumed for the elastic 
viscous damping
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(vi) COMPARE NLTH RESPONSE AND DDBD TARGET DISPLACEMENT 
n) Plot the displacement u

TH obtained as the average of maximum displacement 
demands calculated for the 7 spectrum compatible time histories represented in 
Fig.3.2, and compute the relative error: 

 [%]    
d TH
u u

TH
u

E
 




                                                                (3.16)                                         

Following the procedure described from point (i) to (vi) a parametric study 
was carried out by considering as input parameters 39 different values of effective 
period Teff, defined between 0.2 and 4 seconds, by stepping 0.1s, and 9 different 
ductility levels d in the range [1.25, 5]; consequently for a single design spectrum 
351 analyses were performed. Each spectrum was obtained scaling the basic 
response spectrum after choosing among 4 types of equivalent damping models eq 
(§3.3.2), associated to three different scaling factors R(§3.3.3). In total 4212 
SDOF non linear systems were designed, and subsequently verified in terms of 
displacement demands through dynamic non linear analyses in the time domain.  

3.3.5 DDBD verification 

In this section a synthesis of the results obtained from the parametrical 
analyses on ideal SDOF systems is reported. Figs. 3.6, 3.7 show the comparison of 
results for different EVD models, for a pre-fixed form of the damping modification 
factor R. Here the single case of R= EC8-2003 is reproduced, but the following 
considerations are based also on similar  results obtained for the other Rformulas, 
(NH) and (EC8-1998). The relative errors between the design displacement of the 
DDBD method and the mean value of the TH  peak displacements value are 
represented for constant displacement ductility values d. 

It is apparent that for all EVD models errors increase with high ductility 
values, in particular overestimation errors: this seems reasonable, being the 
prediction of a “near” elastic response more easily reproduced by a linearized 
system, than an inelastic behaviour requiring a deep excursion into the plastic field. 

Problems related to the overestimation errors of the JDSS model are not so 
evident as in other studies, and this is due to the shape of the hysteretic model 
adopted (Takeda Thin model) for the non-linear cyclic behaviour of bridge piers, as 
already anticipated before. 

The graphs show that three of the different EVD models evaluated, give 
very similar results for Teff >0.75s, and consequently the same trend of the relative 
error plot is obtained for all ductility levels. The exception is represented by the 
(D.K.) model, to which is tied the greatest inaccuracy in this range, due to the 
absence of the elastic damping correction.   

For Teff  <0.75s the (JDSS) and (D.K.G.) models sensibly underestimate the 
EVD required to the linear SDOF system to equate the non linear peak 
displacements obtained with TH analyses. This is due to the absence of a 
dependence on the effective period Teff, that on the contrary is accounted for by 
(D.K.) and (G.B.P) model. In particular best results are obtained for all ductility 
levels by the (G.B.P.) model, even if it is not accurate in the low-period range. 
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 Finally it can be observed that it will be unusual for normal structures (wall 
and frame buildings or bridges) to have effective period values less than  0.75-1s, 
and this is confirmed also by the results of the sensitivity analysis on realistic piers 
design developed in the second part of the work.   

 

a) b) 
 

c) d)
Fig. 3.6 – Relative error obtained (Eq.3.16),  using different EVD models for the pre-

fixed spectrum reduction factor R=EC8-2003. Case studies presented: a) 
=1.25, b) =1.5, c) =2.0, d) =3.0 
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e) f) 

Fig. 3.7 – Relative error obtained (Eq.3.16) between the DDBD design displacement 
ud and the maximum displacement demand uTH,  using different EVD 

models for the pre-fixed spectrum reduction factor R=EC8-2003. Case studies 
presented: e) =4.0, f) =5.0. 

 
Since Teff  is greater than 1 in most of real design cases, and since the (DKG) 

model  requires as input data only  the ductility value d (unlike the GBP model, 
that needs also Teff, an output of the DDBD method, leading to an iterative 
procedure), it can be concluded that the (DKG) model is effectively the most 
convenient. 

In Figs. 3.8, 3.9 the comparison of relative errors obtained on the design 
displacement prediction using different forms for the spectral reduction factor R  is 
presented. The same equivalent damping model (D.K.G.) is used in these cases, 

with reference to some pre-fixed ductility levels,  =1.25, 1.5, 2.0, 3.0, 4.0, 5.0. It 
can be observed that accuracy diminishes with the increase of the ductility demand 
for all the R forms considered. 

The formula that leads to more conservative results (greatest overestimation 
errors) is by Newmark-Hall, which results to be too cautious; as for the other two, 

‐30

0

30

60

90

120

150

180

210

240

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

E 
[%

]

Teff [s]

JDSS D.K. G.B.P. D.K.G.

R:  EC8‐2003
= 4.0  

‐30

0

30

60

90

120

150

180

210

240

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

E 
[%

]

Teff [s]

JDSS D.K. G.B.P. D.K.G.

R:  EC8‐2003
= 5.0  



3. DIRECT DISPLACEMENT-BASED DESIGN METHOD: ERROR PREDICTION FOR MULTI-SPAN SIMPLY SUPPORTED BRIDGES 

 
 
 

63 
 

‐30

0

30

60

90

120

150

180

210

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
E 
[%

]

Teff [s]

EC8 2003 EC8 1998 NH

eq:  (D.K.G) 
 = 1.5

‐30

0

30

60

90

120

150

180

210

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

E 
[%

]

Teff [s]

EC8 2003 EC8 1998 NH

eq:  (D.K.G) 
 = 1.25

‐30

0

30

60

90

120

150

180

210

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

E 
[%

]

Teff [s]

EC8 2003 EC8 1998 NH

eq:  (D.K.G) 
 = 3.0

‐30

0

30

60

90

120

150

180

210

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

E 
[%

]

Teff [s]

EC8 2003 EC8 1998 NH

eq:  (D.K.G) 
 = 2.0

EC8-2003 and EC8-1998, can be observed an overall reduction of the relative error 
as the period increases, with a quite comparable trend  for Teff> 1s. 

 

a) b) 

c) d)
 

Fig. 3.8 – Relative error obtained (Eq.3.16) using different expression for the 
spectrum reduction factor R , for a pre-fixed EVD model, eq=(D.K.G.).Case 

studies presented: a)=1.25, b)=1.5, c)=2.0, d)=3.0,  
 

The most precise equivalent spectral elastic displacement, seems to  
obtained using the  R= EC8-1998 factor but the EC8-2003 curve remains always 
above the corresponding EC8-1998 curve, consequently the underestimation  error 
is  smaller for  Teff >2s; this consideration can justify the preference for the EC8-
2003 formula, currently adopted by Calvi et al.[C2], 2009.  
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The results obtained for the other damping models and ductility levels are 
not reported here for brevity’s sake, but same conclusions can be drawn. 

 

e) f) 
 

Fig. 3.9 – Relative error obtained (Eq.3.16) between the DDBD target displacement 
ud and the required maximum displacement uTH,  by using different 

expression for the spectrum reduction factor R , for a pre-fixed EVD model, 
eq=(D.K.G.).Examples presented: e)=4.0, f)=5.0. 

 
Following the verification process described by the flowchart in Fig. 3.5  it is 

possible to plot the iso-ductility displacement design spectra, and compare them 
with the inelastic displacement spectra obtained by NLTH analysis. An example of 
this comparison is given in Fig.3.10 for the choice of EVD model eq=(D.K.G.), and 
R=EC8-2003. In Fig.3.11 the relative error according to Eq.3.16 is plotted with 
the same assumptions for the entire periods range, considering all the different 
ductility levels. 

In Fig. 3.10 it can be observed that the DDBD target displacements, 
corresponding to the inelastic displacement response spectra, are generally higher 
than the TH average peak displacement demands, at least up to the corner point of 
the spectra: being the displacement that results from the non linear analysis of 
bridges smaller, it can be deduced that the method tends to overestimate the 
response. 

The point of intersection between the DDBD design displacement spectrum 
and the curve of the effective peak displacement demand (obtained with TH 
analysis for the non linear SDOF system) shifts towards higher values of Teff for 
increasing ductility levels. This means that the overestimation error of the DDBD 
method increases for higher d values, consequently the method is proved to be 
more conservative for high-ductility design cases.  
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Fig. 3.10 – Design displacements d of 
the DDBD method  compared with the 
average inelastic displacement spectra 
obtained by TH analyses, following the 
procedure of Fig. 3.2, for all ductility 

levels (=1.25-5.0). Case study: 
eq=(D.K.G.), R = EC8-2003. 

 

Fig. 3.11 – Relative error obtained for 
design displacements ud of Fig. 3.8  with 
the average inelastic displacement spectra 

obtained by TH analyses. Case study: 
eq=(D.K.G.), R= EC8-2003. 

 

 
The method is generally conservative, at least for structures with Teff <2.5-

3.0s, with overestimation errors for ideal SDOF oscillators significantly dependent 
on  the design ductility level, while underestimation errors are of small relevance. 

As previously noted, it should be evidenced that the effective periods Teff 
below 0.7s do not correspond to real pier designs with flexural behaviour (see also 
subsequent Figs. 3.13-3.14), thus the high errors committed by the simplified 
DDBD method in this range are of small significance and no practical interest. 

It could be useful to know  “prior”  the accuracy of the DDBD method when 
applied to SDOF systems, namely the error that the simplified procedure introduces 
using the approximations of a substitute linear structure characterized by the 
equivalent viscous damping  eq and the scaling of the displacement elastic 
spectrum through the modification damping factor RWith this aim, a diagram of 
the mean relative error is plotted in Fig.3.12 A polynomial interpolation of the 
relative error curves plotted in Fig.3.11 for constant ductility levels is obtained, and 
the average prediction error is expressed as a function of design displacement 
ductility d (which is an input of the DDBD method), and Teff. 
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The error ranges identified in Fig. 3.12 define the design areas in which all 
the possible SDOF systems designed with the simplified DDBD method are 
affected by medium errors included between the extreme values of the range. 

  
 

 
 

Fig. 3.12 – Relative error obtained for design displacements ud of Fig. 3.8  with the 
average inelastic displacement spectra obtained by TH analyses. Case study: 

eq=(D.K.G.), R= EC8-2003 
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3.4 PREDICTION ERROR FOR DIRECT DISPLACEMENT-BASED 
DESIGN OF CANTILEVER BRIDGE RC BRIDGE PIERS  

This chapter deals with a sensitivity analysis on realistic SDOF structures, 
namely cantilever rc piers of simply-supported bridges. The study was carried out 
with the aim of identifying the ranges of all possible combinations of displacement 
ductility d and effective periods Teff  for such structures.   

3.4.1 Input data and design limitations 

The input data for the sensitivity analysis are listed below: 
- Seismic action: the reference elastic spectrum is the same used for the 

parametrical analysis in the first part of the work, i.e.  EC8-2003 spectrum “type 1”, 
Ground  type C (S=1.15, TB=0.20s , TC=0.6s, TD=2.0s), ag=0.35g, 5% damping. 

-  Effective mass of the SDOF system: 2 values of tributary mass are 
considered, m1eff =250 t; m2eff = 500 t;  

- Materials: effective properties are used for concrete and reinforcement. 
Concrete C32/40: f’ce= 1,3 f’c= 43,2MPa. Reinforcement steel B450C: fye =1,1fy = 
495 MPa. 

- Pier geometry, bar diameter: circular section, concrete cover: 3.5 cm, bar 
diameter dbl=30mm; 

The following limits relating to geometry (D,L), reinforcement ratio l, 
slenderness  and normalized axial load are introduced to address the design of 
circular cantilever piers for typical multi-span simply supported girder bridges:  

1. Longitudinal reinforcement ratio: 0,5%< l <4%                       (3.17)   

2. Maximum value of the dimensionless axial load:  

/ 'E d c cN f A   <0.6  (3.18)   

3. Pier slenderness ( limit suggested by NTC’08, for linear analysis) 

  15 .4  lim

C 


           (3.19)   

where the coefficient C is expressed by C =1,7-rm,  with  the limits 0,7 ≤ C ≤ 2,7,   
depending on the first order distribution of flexural moments at the pier top and 
bottom rm=M01/M02 (set equal to 0 for a cantilever pier). 

4. Geometric parameters (to individuate an appropriate geometric range for 
bridge piers and guarantee a flexural behaviour):  

Minimum diameter :   D ≥ 1 m                       (3.20)   

Height/ Diameter ratio: H/D ≥ 3.5                                      (3.21)   

Adequate confinement and sufficient transverse reinforcement are supposed 
to be used, ensuring a ductile flexural response of the piers. 
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3.4.2 Design process of cantilever rc piers and limits 
check 

A series of circular cantilever columns are designed with the DDBD method, 
considering as target design drift limits d = 0.015-0.04, and stepping 0.005 (6 
values); 9 levels of design displacement ductility are addressed:d=1.25, 1.5, 2.0,  
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 

The realistic design limits fixed above in terms of slenderness, amount of 
reinforcement, and height-diameter ratio are implemented: design cases not 
satisfying the previous limits are considered “unrealistic”, and excluded from the 
number of possible solutions. 

Numerical analyses are carried out by considering as equivalent viscous 
damping the (D.K.G.) model (Eq. 3.9), and as spectrum reduction factor the EC8-
2003 formula (Eq. 3.13). 

The design procedure is articulated in the following steps: 
a) Initial input:  choice of the effective mass value me, selection of the target 

drift level d = 0.015-0.04 among the 6 pre-fixed  values, choice of the 
displacement ductility level d. 

b)  Construction of the damped displacement response spectrum using 
Eqs.3.10,3.13.. 

c)  Choice of the Teff  for the selectedd and d values (the same period range of 
0.2-4.0s used in the parametrical analysis of ideal SDOF systems was 
considered). 

d)  The damped displacement spectrum ( )S T is entered with Teff, and the 

target displacement d is calculated. 
e)  The yield displacement is obtained as: 

/ d
y d             (3.22)   

    f)   The pier height is estimated with the relation: 

/d
u dH           (3.23)   

g)  The yield curvature y is calculated, the strain penetration length Lsp being 
known: 

0.022sp ye blL f d        (3.24)   

 2
3 /y y spH L           (3.25)   

g)  Calculation of pier design diameter, using a simplified relation for 
dimensionless yield curvature y, (Priestley[P3], 1993): 

2, 25 /          2, 25 /y y y yD D     
    

(3.26)   

h)  First design check for minimum diameter requirement and expected flexural 
behavior, according to Eqs.3.18, 3.20; if the limits  are not satisfied the design case 
is  excluded as possible realistic solution, and the process is interrupted. 
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i) Second design check for pier slenderness  according to Eq.3.18; if the limit is 
not respected the procedure is stopped. 
j) If h) and i) requirements are satisfied, the effective stiffness Keff is calculated:  

2 2 4 /  eff eff effK M T   
(3.27)   

k) Determination of the design shear (including P- effects), and bending moment 
at the pier base:

e: 

0, 5 /   d
u eff d dF K P H   

  
(3.28)   

d
base uM F H

    
(3.29)   

l) Determination of the minimum longitudinal reinforcement; for the calculated 
Mbase, (and acting axial load  the minimum reinforcement ratio is computed for 
symmetric reinforcement, imposing as strain limits c=0.004, s=0.015. Only 
reinforcement ratio percentage according to Eq.3.17 are accepted. 

 The research of the realistic design cases was carried out by determining the 
extreme values of  the effective period admissible range, Teff, min and Teff,max , for a 
pre-fixed drift d and an established ductility level d.   
 In Figs.3.13-3.14 the realistic designs obtained are plotted for the case of 
tributary mass Me: for a better graphic result the occurrences corresponding to 
single designs are represented with a step of Teff 0.1- 0.15s. The design ductility d 
values are plotted versus effective period Teff, and the obtained ranges for pier 
slenderness  are superimposed. 
 It can be observed that typical design values for rc cantilevers piers are 
obtained for a range of d=1.25-5.0, and effective periods vary from a minimum of 
0.75s to almost 3.0s. 
 The range of slenderness  considered varies from  =28 to  =69. 
 

In order to better compare the final results obtained with target ductility 
values commonly accepted in Europe  for bridge design, it seems appropriate to 
consider  the range of the parameter d according to the  maximum values of 
behaviour factors q currently proposed by seismic codes [X1],[X2] for reinforced 
concrete piers design (implicity assuming the validity of the “equal displacement” 
rule, q=d, for the typical range of periods considered).  Two classes have been 
defined: low-medium (DCM) design ductility, 1.5≤d <2.0, and high design 
ductility (DCH), 2.0≤d ≤3.5. 
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Fig. 3.13 – Realistic SDOF designs obtained for cantilever rc piers with 
tributary mass Meff=250t.  

 
 

Fig. 3.14 – Realistic SDOF designs obtained for cantilever rc piers with 
tributary mass Meff=500t. 
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Fig. 3.15 – Relative error prediction (%) for the DDBD method applied to the design of 

cantilever rc bridge piers (SDOF systems). The medium error diagram in the 
background refers to Fig.3.12, while the design points for realistic cases are extracted 

from Figs.3.13, 3.14. 
 

A final plot is proposed superimposing the “realistic “ design points  to the 
medium error diagram  previously obtained in the (Teff, d) plane (see Fig.3.13):  it 
is possible to derive the error prediction of the DDBD method when applied to the 
design of cantilever piers of  simply supported rc bridges (SDOF systems). 

It can be observed that the DDBD method is generally conservative: 
underestimation errors are limited for any realistic design, almost always less than 
10% , with few cases (6%) with relative error just slightly higher (Em<12%). 

As regards the overestimation error range, as already observed for ideal 
SDOF systems, the accuracy is dependent on design ductility: 

- for low-medium ductility design cases (d≤1.5), the DDBD method is 
again very accurate, with a low error range calculated for the single pier design, 
Em<+10%;  
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- for high ductility values, (1.5<d≤3.5), the relative error results higher, 
even if most of the samples attain errors levels that can be considered still 
acceptable (Em<20% in 63% and Em< +30% in 90% of design cases), considering 
that is an overestimation inaccuracy, and that the design process is a simplified 
direct method. Anyhow there is a not negligible percentage of structures (10%) with 
higher errors, with a maximum lower than 40%. 

3.4.3 Relationship between drift and ductility 

A key point of the displacement-based procedure is the definition of the 
accepted drift, which implies an evaluation of the relationship between drift and 
ductility, the latter being often adopted as a damage measure. 

With reference to the realistic design cases analyzed, it was possible to plot 
the interval of ductilities corresponding to prefixed drift values (see Fig. 3.16).  

It can be observed that higher drifts  are tied to high displacement ductility 
d values, and drifts ≥2.5-3%, corresponds to >3.5, that is the upper limit  
currently adopted by seismic codes for bridge piers, so higher drift design 
requirements imply a strong inelastic behaviour of the rc members. 

  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.16 – Intervals for ductlity demand, D, versus drift , obtained for the realistic 
design cases analyzed,  and interpolating line approximating values corresponding to 

medium Teff values of the design intervals. 
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Fig. 3.17 – Approximate relation D, versus drift , and curves obtained for some pre-

defined values of L/D (Eq. 3.30) 
 

Observing that the ductility ratio between the medium value, represented by 
the interpolating line, and the an extreme value of the interval, corresponds 
approximately to the (D/L) ratio of the corresponding columns, it was possible to 
derive the more general relation, given by (Eq. 3.30), and plot a series of curves for 
prefixed (D/L) values, extending the ranges previously obtained (see Fig. 3.14).  

1
(1.32 0.7)

D

L
 


         (3.30)   

where  
3.25

0.12
100

   , and  expressed as (%). 

 

3.5 CONCLUSIONS 

This work provides an estimate of the medium error committed by the current 
DDBD method for the design of SDOF structures, with specific reference to 
isostatic bridge piers (cantilever piers conform to the assumption of SDOF 
systems). It could be useful to know  “prior”  the accuracy of the method, namely 
the error that the simplified procedure introduces, the main error sources being the 
approximation of a substitute linear structure characterized by the equivalent 
viscous damping  eq, and the scaling of the displacement elastic spectrum through 
the modification damping factor R 
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In the first part of the study a parametrical analysis has been developed on a 
large sample of ideal SDOF oscillators (4212), discussing the influence of different 
equivalent damping models eq 

[D1], [G1], [J1] for the linearization of non linear system.  
The SDOF ideal systems were designed according to the DDBD procedure, 

and subsequently verified with Non Linear Time History (NLTH) analyses, 
performed for the same set of non linear simple oscillators (based on Takeda Thin 
hysteretic model). The effect on the scaling of elastic spectra with different 
reduction factors R  is also discussed, with reference to current formulations[N1],[X1], 

[X2].   
The method is shown to be generally conservative, at least for structures with 

Teff <2.5-3.0s, with overestimation errors for ideal SDOF oscillators significantly 
dependent on  design ductility level, while underestimation errors are almost never 
relevant. As final result a medium error diagram[T1] is presented, which summarizes 
the scatter in the results as a function of design ductility d and effective period 
Teff. 

In the second part a realistic displacement-based design process for cantilever 
rc piers with flexural behaviour is carried out, to investigate the range of the 
variables d and Teff  within the possible design solutions. An ample set of circular 
columns were designed for drift values between 1.5 and 4.0%, and “realistic” 
design limits have been fixed in terms of slenderness, amount of reinforcement, 
normalized axial load and height-diameter ratio. Using  the medium error diagram 
previously obtained, the error range for reinforced concrete bridge piers is derived 
for the realistic design cases analyzed.  

It can be observed that underestimation errors are modest for any realistic 
design, almost always less than 10%, with few cases (6%) with relative error just 
slightly higher (Em<12%); as regards the overestimation error range, as already 
evidenced for ideal SDOF systems, the accuracy is strongly dependent on design 
ductility. For low-medium ductility design cases (d≤1.5), the DDBD method is 
again very accurate, Em<+10%, while for high ductility values, (1.5<d≤3.5), the 
relative error is higher, even if most still acceptable in most of the design cases 
(Em< +30% in 90% of design cases). 
Finally an approximate relationship between ductility and drift is derived, and 
parametric curves are plotted for pre-fixed values of D/L ratio. 
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CHAPTER 4 

CHAPTER 4                                                                
DISPLACEMENT-BASED DESIGN FOR TRANSVERSE 
RESPONSE OF CONTINUOUS RC GIRDER BRIDGES: 

ITERATIVE VS DIRECT PROCEDURES  
 
 

4.1 INTRODUCTION 

Transverse response prediction for continuous rc girder bridges in a 
displacement-based framework presents some critical issues related to 
representativeness of the equivalent SDOF structure in respect to the original 
MDOF system, particularly in the estimation of the design displacement profile in 
the case of irregular bridges (see also § 2.2). 

Transverse seismic response of multi-span continuous bridges is more 
complex to evaluate than that of multi-span simply-supported bridges. The presence 
of a continuous deck precludes the possibility of separating the responses of single 
piers, which cannot be studied independently as SDOF systems.  

In its current formulation (Priestley et al.[P1], 2007) the Direct Displacement-
Based Design method uses a substitute linear equivalent structure (ESDOF), 
characterized by a secant stiffness Keff, and an appropriate level of equivalent 
viscous damping ξeq, in order to represent the seismic behavior of a MDOF system. 
The equivalent damping value ξeq, is used to scale the elastic displacement-spectrum 
through the correction factor Rξ, and consequently to calculate the effective period 
Tsys and the effective stiffness Ksys of the ESDOF system. The calibration of the 
equivalent damping value ξeq and related factor Rξ, which has to be tied to the 
hysteretic energy dissipated by the structure in the non linear field, introduces a first 
approximation[T1]. Another error component is introduced into the method related to 
the representation of the real system (MDOF) with an equivalent SDOF, through 
the definition of the target displacement profile. 

In the transverse response of a continuous bridge the relative stiffness 
between deck and piers affects the ultimate displacement profile, depending on the 
deck transverse stiffness and the type of bearings at the abutments[T3]. If the 
superstructure is effectively rigid and the bearings are very deformable transversally 
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to the bridge axis, the deck reacts like a rigid body, and the design displacement 
profile is simplified, being a combination of rigid translation and rotation (Dwairi 
and Kowalsky, 2006). Conversely, when the abutment bearings are fixed 
transversally, the superstructure is subjected to a transverse global deformation for 
the entire length of the bridge (with fixed points at the abutments), restraining the 
pier top displacements proportionally to its transversal stiffness. Deck flexural 
stiffness under lateral force is generally higher than that of piers. The superstructure 
is assumed to be elastic, and the only elements undergoing plasticity are the piers. 

The inelastic displacement profile is also conditioned by the pier transverse 
stiffness relative ratios, depending on the pier strengths and ductilities, that are not 
initially known (Priestley et al., 2007). For this reason, in the case of continuous 
bridges the current suggested procedure is iterative, being the ultimate displacement 
shape an input value of the DDBD method. 

It seems evident that the system regularity can significantly affect the 
reliability of the DDBD simplified method, based on the assumption that the 
structural response is represented by a simple ESDOF system, and controlled by the 
fundamental mode (inelastic first mode). For highly irregular structures several 
modes should be considered to determine the kinematic mechanism of the structure, 
and this could be certainly the case of  girder bridges with non-symmetric 
distribution of piers, especially with long spans, thus higher mode effects are of 
necessity to be incorporated in the DDBD procedure to estimate flexural 
strengths[A5]. Moreover, if concentrations of nonlinearity are very high, the system 
deformed shape forecast by modal analysis (i.e. based on the superposition of the 
deformed shapes associated with the modes of the elastic structure) may be very 
different from the actual deformation sustained by the bridge during a seismic event 
and this nullifies the prediction of deformation and force distribution[G3]. 

This chapter investigates the accuracy of the current iterative Direct 
Displacement-Based method (called DBD-IT in this work) when applied to the 
prediction of the transverse response of multi-span continuous girder bridges, and 
compares it to a non-iterative (direct) design method, named DBD-DEM, herein 
proposed with the aim of simplifying the current procedure for everyday design use.  

The numerical analyses are carried out considering multiple configurations 
of regular and irregular continuous bridges with 4 to 6 spans, designed with target 
drift limits of 1% to 4%, and subsequently checked with non linear time history 
analysis. The parametric study is performed on the transverse response of multi-
span continuous bridges with the abutment bearings transversally fixed; the aim is 
to quantify the errors for a wide range of bridge configurations in respect to non-
linear Time-History analysis, and try to evidence the error components related to 
equivalent viscous damping calibration (ESDOF system) and the inelastic 
displacement shape estimation.  
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At the same time, the DBD-DEM procedure, implemented in a non-iterative 
fashion, is evaluated. The DDBD process based on a substitute equivalent SDOF 
structure is applied in one direct step, by assuming an initial estimate of the 
displacement profile 1i and obtaining the effective pier stiffnesses Keff,j and the 
system damping eq. Subsequently the values  Keff,j are assigned to calibrate the 
piers’ stiffnesses in a spectral response analysis, where the design spectrum is 
damped according to the eq value. In this way a better estimation 2iof the inelastic 
displacement profile is obtained by normalizing the displacement shape 2i 
calculated by SRA, to the critical displacement c, while shear forces and moments 
are calculated consequently. Using SRSS superposition, the effects of higher modes 
can be included when they are significant; it is assumed that ductility substantially 
influences only the first-mode response (Priestley et al., 2007), and the higher mode 
effects are the same in the inelastic range as in the elastic range.  

It has to be noted that the proposed DDBD-DEM method has the relevant 
advantage of being a direct procedure, maintaining and also enhancing the accuracy 
of the DBD-IT approach when compared on the same case-studies set. 

4.2 ISSUES RELATED TO THE PROPOSAL OF THE DBD-DEM 
PROCEDURE  

The dispalcement-based method herein presented, called 
DirectEffectiveMethod (DBD-DEM), descends from the Effective Modal 
Superposition (EMS) initially proposed by Alvarez[A3], 2004, Ortiz[O2], 2006, 
subsequently supported by Priestley et. al[P1], 2007, and recently adopted also by 
Adhikari et al.[A5], 2010. 

The EMS method uses a ResponseSpectrumAnalysis (RSA) after  
completion of the DDBD (iterative) procedure, whereby stiffness of members with 
plastic hinges (e.g. piers) is represented by secant stiffness to the peak displacement 
response, while  elastic members  (e.g. superstructure) are modeled by initial 
stiffness value, and seismic hazard is defined by a 5% damped elastic design 
spectrum (see also §2.2). In the EMS procedure the final results are obtained 
combining the higher mode-elastic forces from SRA with the DDBD inelastic first 
mode design forces, using SRSS or CQC combination rule. In previous 
approaches[A3,O2,P1] higher mode effects were considered only for determining the 
design elastic responses (e.g. transverse moment at deck, abutment shear force, 
etc.), and flexural strength at plastic hinges was taken from the inelastic first mode, 
while recently[A5] higher mode effects have been incorporated in the DDBD 
procedure for estimating flexural strengths too. 

The above mentioned procedures were anticipated by another work[K3], by 
Kowalsky M.J., 2002, where the concept of an effective mode shape was already 
introduced: the displacements of columns and abutments were obtained by an 
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appropriate combination of modes, such as SRSS, and the effective shape was used 
iteratively in the DDBD framework to calculate the ESDOF properties at the target 
displacement. Once the base shear global force was calculated, the force 
distribution was assigned according to Eq. 2.67 (with =1), under the hypothesis of 
all columns having the same longitudinal steel ratio and column diameter. In the 
work by Kowalsky, there wasn’t yet the idea of subdividing explicitly the lateral 
force x carried by the superstructure bending load path, which was introduced later 
(see the procedure  in §2.2.2.4); moreover high errors were evidenced at abutment 
locations. 

The modifications introduced by the DBD-DEM procedure described below 
address the following issues: 

-Simplification of the design process, the proposed method relying on a non-
iterative procedure. In its original aim DDBD was to be a direct and simplified 
design method (hence the name “Direct” DB procedure), while the current form 
(but also the previous versions mentioned above) requires iterations for transverse 
bridge design, otherwise than the simplified approach used for all other kinds of 
structures. Even if the specific reasons that led to the current definition were well 
grounded, of an iterative design process, it seems to the author the attractiveness of 
a direct method should be maintained also for the design of continuous girder 
bridges.. 

-Use of a general ResponseSpectrumAnalysis to account for higher mode 
effects in the prediction of the inelastic displacement pattern. Recently several 
authors have demonstrated that simplified methods based on the ESDOF 
representation of MDOF systems, relying on the assumption that inelastic behaviour 
can be controlled only by a single mode, suffer shortcomings when applied to 
highly irregular structures[K5, A5]. The RSA represents the most general approach for 
the linear analyses of irregular structures and can conveniently be adopted also in 
Displacement-Based Design. In DBD-DEM method the effective stiffness of the 
linearized system at the target displacement  is predicted by using the DBD 
framework, and subsequently the contribution of higher mode effects is added with 
an appropriate combination of modes, such as SRSS (assuming that higher mode 
effects in the inelastic range are the same as in  the elastic range).  

-Possibility of assigning different flexural strengths to piers: the current 
DBD-IT procedure allows the irregular distribution of flexural strength among piers 
with the modification proposed by Adhikari et al.[A5], 2010, introduced in Eq.2.67 
with factor j. 

In the end the DEM procedure uses the DDBD framework to calibrate the 
estimate of effective pier stiffness ܭ௘௙௙,௝ and global damping e , which are 
subsequently used to execute a ResponseSpectrumAnalysis, where the usual 
approximations related to the choice of element stiffness and spectrum reduction 
factor are eliminated or at least reduced on the base of DDBD results. 
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4.3 DBD-IT AND DBD-DEM PROCEDURE  

The current iterative DDBD procedure[P1] for transverse design of continuous 
bridges has been described in detail in §2.2.2.4, and the flowchart of the process 
represented in Fig. 2.11. The reader is addressed to Chapter 2 for a detailed 
coverage of this topic. 

In the DirectEffectiveMethod (DEM) herein proposed, the DDBD procedure 
based on a substitute equivalent SDOF structure is applied only in one direct step. 
The procedure needs the support of an elastic F.E. model, because linear static 
analyses (LSA) and a spectral response analysis have to be carried out.  
The design process can be summarized as follows: 
a) Initial displacement shape estimate. The initial displacement vector i is 
assumed as an initial estimate of the first modal shape. The objective is to obtain a 
displaced shape, wherein the performance target is reached by the pier (or 
abutment), identified as the critical member. 

It is suggested to perform a modal analysis with a cracked stiffness for piers 
(elastic properties should be used for the superstructure), reducing it uniformly for 
all piers, or better (as in the examples presented in this paper) taking as yield secant 
stiffness the initial value reduced to 60%, and then scaling it for each pier trough the 
displacement ductility factor μΔ

j (that can be obtained directly from the design 
drift). Abutment stiffness can be assumed as 30% of the initial elastic stiffness. 

This displacement shape is then normalized to the critical displacement c, 
to obtain the initial displacement profile:  

c

c
 

  
 

1i 1iΔ δ          (4.1)   

b) Estimate of the lateral force fraction carried by superstructure. The value of 
the lateral force fraction x, carried by the superstructure, can be calculated trough a 
static analysis (LSA) of the system with imposed transverse displacements i and 
pier stiffness calculated before.  

 
1 2a a b a s eV V x V         (4.2)  

c) Determination the ESDOF system properties and displacement. In order to 
characterize the multi-span continuous bridge as a corresponding SDOF structure, 
various equivalent  system properties have to be identified:  effective displacement 
∆௘௙௙
ௗ  , mass ܯ௘௙௙ , height ܪ௘௙௙ and damping ߦ௘௙௙ of ESDOF system have to be 

evaluated as in the typical DDBD design process, by using the following 
expressions: 

∆௘௙௙
ௗ ൌ ∑ ൫݉௜߂௜

ଶ൯௡°	௠௔௦௦
௜ୀଵ ∑ ሺ݉௜߂௜ሻ	

௡°	௠௔௦௦
௜ୀଵൗ                                        (4.3)                                      

Mୣ୤୤ ൌ ∑ ሺm୧∆୧ሻ ∆ୣ୤୤
ୢ⁄୬°୫ୟୱୱ

୧ୀଵ ௘௙௙ܯ  ൌ ∑ ሺ݉௜∆௜ሻ ∆௘௙௙
ௗ⁄௡°	௠௔௦௦

௜ୀଵ            (4.4)                                      
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௘௙௙ܪ ൌ ∑ ሺ݉௜∆௜݄௜ሻ
௡
௜ୀଵ ∑ ሺ݉௜∆௜ሻ

௡
௜ୀଵ⁄                                                  (4.5)                                         

where mi, i, hi are respectively the i-th mass, its displacement and height (the offset 
due to the deck height is accounted for in the calculation of hi in respect to Hj of the 
pier). 

݂݂݁ߦ ൌ
݂݂݁߂ݔ

݀ ∙ 0,05 ൅ ሺ1 െ ሻݔ ൬∑
ܥ
ܪ݆ ∙ ∆݆ ݆ߦ

݊° ݏݎ݁݅݌
݆ൌ1 ൰ ∑ ܥ

ܪ݆
݊° ݏݎ݁݅݌
݆ൌ1൘

݂݂݁߂ݔ
݀ ൅ ሺ1 െ ሻݔ ൬∑

ܥ
ܪ݆ ∙ ∆݆

݊° ݏݎ݁݅݌
݆ൌ1 ൰ ∑ ܥ

ܪ݆
݊° ݏݎ݁݅݌
݆ൌ1൘

 (4.6)                                              

where Hj, j, j, are the height, top displacement and damping, calculated with 
Eq.(2.2), of the j-th pier . Elastic damping  (5%) is adopted for the superstructure, 
and  its displacement is assumed to be equal to the system  displacement d

eff. 
The coefficient C=j is taken for yielded piers, while the modifying factor C=jj 
has to be assumed for piers remaining elastic under seismic excitation, with j 
representing the assumed ratio of the flexural strength of a pier to the strength of the 
critical pier ( often j=1 for all pier for convenience). 
d) Determination of the design base shear of the ESDOF system. To determine the 
effective period ௘ܶ௙௙, entering the displacement spectra (damped trough the R 
factor) are entered with ∆௘௙௙

ௗ . The effective stiffness ܭ௘௙௙  and the total base shear 
Vbase ( considering the P- effects) are calculated as follows:  

௘௙௙ܭ   ≅ ଶߨ4
ெ೐೑೑

்೐೑೑
మ                                             (4.7)                                            

  ௕ܸ௔௦௘ ൌ ∆௘௙௙	௘௙௙ܭ
ௗ ൅ 0,5	 ܲ	∆௘௙௙

ௗ 	 ൗ																								௘௙௙ܪ	 																																									(4.8)   

e) Estimate of the effective stiffness of piers. Distributing total base shear ௕ܸ௔௦௘ for 
each pier in a simplified way (proportional to “1 ⁄௝ܪ ” for yielded piers, and to 
∆ߤ“ ⁄௝ܪ ” for elastic piers), the i-th pier effective stiffness estimate ܭ௘௙௙,௝, is 
obtained as follows: 

  ௝ܸ ൌ ሺ1 െ 	ሻݔ ௕ܸ௔௦௘ 	൬
஼

ுೕ
	 ∑ ஼

ுೕ

௡°	௣௜௘௥௦
௝ୀଵൗ ൰                                            (4.9) 

௘௙௙,௝ܭ		 ൌ ௝ܸ ∆ଵ௝⁄                                                                         (4.10) 

f) Estimate of the modal effective shape. A spectral response analysis (SRA) is 
performed to obtain a better estimate of the inelastic effective shape 2i. ܭ௘௙௙,௝ 
values for piers and a displacement spectrum damped by the factor Reff  are 
used. 
g) Estimate of the inelastic design profile and related effective stiffnesses of piers. 
The modal effective shape 2i determined at the previous step, is normalized with 
Eq. 4.1 to the critical displacement c, in order to obtain the inelastic design profile 
estimate ∆૛ܑ while the related final estimate of pier effective stiffness is obtained as: 
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4.4 CASE-STUDIES AND REGULARITY OF BRIDGES 

In the parametric study, a set composed by 36 different bridge configurations 
was analyzed; 8 different four-spans bridge geometries and other 10 six-spans were 
considered, with terminal span of 40m and central ones 50m long. Two different 
deck types were adopted[T1], a PrestressReinforcedConcrete (PRC) box girder deck, 
and a composite SteelConcrete (SC) deck. The PRC deck is characterized by a 
transverse bending stiffness ECJ22 about three times higher than the SC deck (for 
simplicity the SC deck was replaced in the F.E. model with an equivalent steel box 
section, J22,PRC≈ 15J22,SC).  Concrete C40/45 and  reinforcement steel B450C were 
used for piers, while concrete C75/85 for PRC deck and structural steel S355were 
used for deck materials. 

Deck properties are reported in Table 4.1, and all bridge geometrical 
configurations are presented in Table 4.2. Each bridge is identified by the deck code 
and the specific sequence of piers height values (e.g. PRC132), where H=1 is the 
reference height equal to 4.0m. All piers are single cantilevers, with circular 
sections of variable diameter D (specified in Table 4.2); in the transverse direction 
the superstructure is assumed to be connected to the piers with fixed bearings, and 
lateral restraints are provided at the abutments.  

The case study set was chosen considering regular and irregular 
configurations: the structural regularity of a continuous bridge is difficult to be 
evaluated before the analysis with reference to the transverse response, since the 
elastic behaviour of the deck interact with the non linear response of piers during 
the seismic excitation. Some authors evaluated structural regularity through various 
approaches that resulted in different regularity indexes: some studies refers to the 
participating modal mass as a parameter of regularity (Calvi et al.[C5],1989), 
whereas other use parameters comparing the modal behaviour of the single deck 
and of the whole bridge in linear phase (Calvi and Pinto[C6], 1996). 

In this study a relative stiffness index, RS, is introduced  to relate 
superstructure and piers’ transversal stiffness (Priestley et al.[P1], 2007): 

 
1

/
n

S P ii
RS K K


                                                (4.14)                                    

where Ks is the transversal stiffness of the deck, derived from the static scheme of a 

simply-supported beam spanning between the abutments and undergoing a uniform 

load:  

 
3384 5 ( )s s sK EI L         (4.15)                                    

and Kpi is the transverse pier stiffness 
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Tab. 4.3 –Bridge configurations. 

Geometric configuration Bridge Dpier[m] 
  

 

 
 

PRC/SC 22222 

 

PRC/SC 22322 

 

PRC/SC 32223 

 

PRC/SC 43234 

 

PRC/SC 32423 
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Eqs. 2.55, 2.56 are used for the formulation of eq and R respectively. 
Seven synthetic acceleration records, compatible with the proposed design 

spectra were generated with SIMQKE program (Gasparini and Vanmarke[G4], 
1976), and used as input ground motions in non-linear Time History analyses for 
the verification study. The seismic input to all piers was assumed coherent and in 
phase: possible effects due to spatial variability of ground motion were not 
considered. 

Two limit drift values θ were considered for of each sample in the case-
study set as performance criteria for high-ductility design, according to the 
reference values proposed by Calvi and Sullivan[C2], 2009: drift limit θL=3% was 
defined for Level 2 (damage-control) of earthquake design intensity, while value 
θL=4% was chosen for Level 3 (collapse prevention), though probably representing 
an upper limit for usual design. In addition a very low drift θL=1% was considered 
for serviceability limit state (Level1) in order to obtain low ductility design cases, 
with pier mean ductility value close to 1.  

In the end the series of models investigated in the parametrical analyses are 
the following: 

Series 1: θL=1%, symmetric bridge configuration with PRC and SC deck, 4-
spans (PRC/SC 222, 131, 323) and 6-spans (PRC/SC 22222, 22322, 
32223, 43234, 32423). 

Series 2: θL=1%, asymmetric bridges with PRC and SC deck, 4-spans 
(PRC/SC 132, 133, 123, 224, 324)  and 6 spans (PRC/SC 22234, 
11313, 11321, 22262, 26242). 

Series 3: θL=3%, same bridge configurations as Series 1. 
Series 4: θL=3%, same bridge configurations as Series 2. 
Series 5: θL=4%, same bridge configurations as Series 1. 
Series 6: θL=4%, same bridge configurations as Series 2. 

 

4.6 VERIFICATION STUDY 

In order to verify the procedures in terms of meeting the design displacement 
and hence damage levels, the bridges were subjected to 
NonLinearTimeHistoryAnalyses (NLTHA). The accuracy of the DBD-IT and 
DBD-DEM procedures were evaluated through NLTHA using the free available 
software Opensees (2006); numerical models reproduce the 3D real bridges’ 
geometries, incorporating the realistic distribution of mass and stiffness, and using 
elastic elements for the superstructure and fiber discretization for piers with the 
implicit Force-Based element representation. (see Fig.4.3).  
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0
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30

40
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0 40 80 120 160 200 240 280

L[
m
]

L[m]

DBD‐IT THmean               TH (A1÷A7)    u   +y 

A1 P1 P2 P3 P4 P5 A2 Meff  [t] 3832

HP [m]  - 8.00 8.00 8.00 8.00 8.00  - Heff  [m] 9.43

DP [m]  - 1.80 1.80 1.80 1.80 1.80  - d
eff [m] 0.10

mass[ton] 306 706 782 782 782 706 306 y,eff  [m] 0.08

m    - 0.76 1.22 1.31 1.22 0.76  - D,eff  [-] 1.15

eq  5.00 5.00 7.51 8.37 7.51 5.00 5.00 eff  [%] 6.9

V [kN] -1321 3637 4788 4788 4788 3637 -1321 Teff  [s] 0.89

M [kNm]  - 29093 38304 38304 38304 29093  - Keff [kN/m] 192339

Keff [kN/m]  - 71429 58719 54409 58719 71429  - Vbase [kN] 18996

r l [% ]  - 3.8 3.8 3.8 3.8 3.8  - x  [%] -14.2

The error is evaluated by comparing the ultimate design displacement of the 
equivalent SDOF system with THA displacement: 

݂݋݀ݏ݁ܧ  ൌ ൫∆݂݁݋݀ݏ
ܦ െ ݂݋݀ݏ݁∆

ܪܶ ൯ ൫∆݂݁݋݀ݏ
ܪܶ ൯ൗ                                           (4.19)  

where D
esdof  is the design displacement of DDBD procedure, while  TH

esdof  is the 
ultimate displacement obtained by the ESDOF with non-linear THA (an elastic-
perfectly plastic Takeda Thin model  is assumed for the ESDOF hysteretic law-see 
Fig. 3.3). 

A typical example of the complete output obtained for the DDBD-IT and 
DDBD-DEM verification study is reported in Tab.4.6, for the case of a symmetric 
bridge (PRC22222). The main properties of the ESDOF system are reported (Keff, 
eq,), as well as the piers’ required ductility and the piers’ design shear and moment 
for the different  Performance Levels adopted (=1%,3%,4%). 
 For easiness of reading other detailed results are inserted in Appedix A, with 
reference to the design procedures DBD-IT and DBD-DEM and NLTH verification 
for the bridges of Series 3 and 4 (=3%). 
 
 
Tab. 4.6 – Typical output obtained for one bridge for different Drift Levels L 
 L=1%   

   SC 22222                                  MDOF                                           ESDOF 
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
[c
m
]

L [m]

DBD‐IT THmean               TH (A1÷A7)    u   +y 

A1 P1 P2 P3 P4 P5 A2 Meff  [t] 3735

HP [m]  - 8.00 8.00 8.00 8.00 8.00  - Heff  [m] 9.46

DP [m]  - 1.80 1.80 1.80 1.80 1.80  - d
eff [m] 0.25

mass[t] 306 706 782 782 782 706 306 y,eff  [m] 0.10

D [-]  - 1.73 3.17 3.58 3.17 1.73  - D,eff  [-] 2.44

eq [%] 5.00 10.97 14.67 15.19 14.67 10.97 5.00 eff  [%] 13.3

V [kN] -93 2958 2958 2958 2958 2958 -93 Teff  [s] 1.62

M [kNm]  - 23667 23667 23667 23667 23667  - Keff [kN/m] 56241

Keff [kN/m]  - 25506 13943 12327 13943 25506  - Vbase [kN] 14606

 l [%]  - 2.0 2.0 2.0 2.0 2.0  - x  [%] -1.2

0

10
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0 40 80 120 160 200 240 280

[
cm

]

L[m]

DBD‐IT THmean               TH (A1÷A7)    u   +y 

A1 P1 P2 P3 P4 P5 A2 Meff  [t] 3662

HP [m]  - 8.00 8.00 8.00 8.00 8.00  - Heff  [m] 10.60

DP [m]  - 1.80 1.80 1.80 1.80 1.80  - d
eff [m] 0.38

mass[ton] 306 706 782 782 782 706 306 y,eff  [m] 0.14

m    - 2.30 4.19 4.77 4.19 2.30  - D,eff  [-] 2.68

eq  5.00 13.00 15.76 16.17 15.76 13.00 5.00 eff  [%] 13.9

V [kN] -715 5432 5432 5432 5432 5432 -715 Teff  [s] 1.58

M [kNm]  - 43456 43456 43456 43456 43456  - Keff [kN/m] 57929

Keff [kN/m]  - 35186 19329 16975 19329 35186  - Vbase [kN] 22637

r l [% ]  - 4.0 4.0 4.0 4.0 4.0  - x  [%] -9.2

 L=3%   

   SC 22222                                  MDOF                                           ESDOF 
 
 

 
 L=4%   

   SC 22222                                  MDOF                                           ESDOF 
 
 



4. DISPLACEMENT -BASED DESIGN FOR TRANSVERSE RESPONSE OF CONTINUOUS RC GIRDER BRIDGES: ITERATIVE VS 

DIRECT PROCEDURES 
 
 
 

91 
 

4.7 SUMMARY OF DBD-IT VS DBD-DEM RESULTS 

The verification study results for the two compared methods DDBD-IT and 
DDBD-DEM are presented in Fig.4.6 in terms of relative errors in respect to TH 
verification. 

It can be observed that the DDBD-IT method is almost always conservative, 
being Emin (DDBD-IT)>0 except in single cases, and the overestimation error 
tending to increase in the inelastic range for high ductility design cases (i.e. for high 
drift limit design cases). 

The accuracy of the DDBD-IT method appears to be closely related to 
structural regularity: when applied to very regular bridges, corresponding to 
uniform or “v-shaped” symmetric configurations with high values of RS index 
(approximately RS>2), the method is reliable, with a low error range with respect to 
TH analyses. For low-ductility design cases (=1%), the mean error range is 
EM(DDBD-IT)<20%, and remains less than 35% for high ductility design cases 
corresponding to =3%, (EM <45% for drift =4%, but this represents a drift upper 
limit for common design).  

Considering all symmetric bridges (on the left of the graphs in Fig.6) the 
mean error range is EM <25% for =1% and EM <50% for high ductility design 
cases;  this overestimation could be considered still acceptable on the basis of the 
significant approximations introduced by the simplified method. The same error 
range is valid also for non symmetric bridges with RS>2; this means that the 
ESDOF system is quite representative also for non-symmetric bridges with a very 
rigid superstructure dominating the response. For other cases a verification with non 
linear THA is required; in particular for non-symmetric bridges with RS<1 the error 
range is unacceptable, being more than 80%. Results show also that Eesdof  is a small 
component of the total error, rarely exceeding the value of 10%.  

As regards the DDBD-DEM method herein proposed, the results show that, 
though it’s a direct method, it enhances the accuracy of the current procedure, 
especially for high-ductility design cases. As can be seen from the general error 
trend, DDBD-DEM generally leads to better results, not only for symmetric bridges 
(with a decrease of 20-25% of the mean error EM), for which the iterative current 
method is already accurate enough, but in particular for irregular cases, being the 
medium error EM(DDBD-DEM) always within the range of 55% in respect to THA 
results.  However, the direct estimate obtained with the DDBD-DEM method could 
not be still satisfactory for irregular cases. A further enhancement can be obtained 
by modifying the DDBD-DEM method proposed into a two-step procedure: the 
final displacement shape calculated at the first step,  can be used to redistribute 
more precisely the total effective stiffness Keff of the entire system among piers, 
obtained with DBD framework (step e). In this way a second, partial step can be 
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implemented, in which the RSA is carried out again with the new values of 
stiffnesses for piers. 

 
 

 
 

Fig. 4.5 –  Series 1-2 bridges with SC deck (L=1%). DBD-IT and DBD-DEM deformed 
shaped comparison in respect to THA medium displacement results. 

 DBD-IT DBD-DEM 
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Fig. 4.6 –  Series 5-6 bridges with PRC deck (L=4%). DBD-IT and DBD-DEM deformed 

shaped comparison in respect to THA medium displacement results 
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Fig. 4.7 –  DDBD-IT and DDBD-DEM methods: relative errors respect to THA medium 
displacement results. 
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4.8 CONCLUSIONS 

The research study presented in this chapter investigates the accuracy of the 
current iterative Direct Displacement-Based method (called DBD-IT in this work) 
when applied to the prediction of the transverse response of multi-span continuous 
girder bridges, comparing it with a non-iterative (direct) design method, named 
DBD-DEM, herein proposed with the aim of simplifying the current procedure for 
everyday design use.  

Parametric analyses were carried out by considering multiple configurations 
of regular and irregular continuous girder bridges, with 4 to 6 spans. Each of the 36 
bridge samples was previously designed according to the DDBD-IT and DDBD-
DEM procedure, for the 3 adopted different performance levels (=1,3,4%), and 
subsequently each bridge, detailed with longitudinal reinforcement accordingly with 
the previous step, was subjected to a suite of 7 ground motions (3 accelerograms 
series for the 3 different design spectra adopted), for a total of 1512 non-linear 
Time-History analyses carried out. 

The results indicate that the bridges designed with direct displacement-based 
design globally follow their target displacement pattern when subjected to TH 
analyses, and it should be noted that even if there are excess displacements, they are 
almost always less than design limits. 

It can be observed that the DDBD-IT leads to design overestimations for the 
transverse response of RC continuous bridges, with a variable error trend: the mean 
error EM(DDBD-IT), with respect to TH, increases significantly with the ductility 
demand, and although it is relevant, in most cases it can be considered acceptable 
on the basis of the significant approximations introduced by the simplified design 
method. The best results were obtained for very regular bridges (uniform or “v-
shaped” symmetric pier configurations with high values of RS index (approximately 
RS>2). In these cases the substitute ESDOF system is still representative of the 
MDOF original structure, and the mean error value EM is lower than 25% for low-
ductility design cases (θ=1%), and remains less than 35% for high ductility design 
cases corresponding to =3% (that is the reference value when damage-control 
considerations govern the design for ultimate limit states). Higher errors can be 
obtained for higher drift values, =4% (EM <45%) but this represents a drift upper 
limit for common design also for the collapse limit state.  

For irregular structures there is a problem of representativeness of the global 
displacement shape: it seems apparent that the system regularity affect significantly 
the reliability of the DDBD simplified method, based on the assumption that 
structural response is represented by a simple ESDOF system, and controlled by the 
fundamental mode (inelastic first mode). In particular for non-symmetric bridges 
with RS<1 the error range is unacceptable, reaching more than 80%. Results show 
also that Eesdof  (the error related to the SDOF system, tied to the choice of 
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equivalent damping eq and spectrum reduction factor Ris a small component of 
the total error, rarely exceeding the value of 10%. This is consistent with the results 
of investigations carried out in chapter 3, because medium ductility values eff 
obtained for ESDOF system (see Tab 4.6) rarely  exceed the value 2.5. 

As regards the non-iterative procedure (DDBD-DEM) proposed, it offers the 
advantages of a direct design, generally leading also to better estimates too. The 
results show that the suggested method enhances the accuracy of the current 
DDBD-IT procedure not only for symmetric bridges, with a decrease of the 20-25% 
of the mean error in respect to EM(DDBD-IT), but also for irregular cases, where 
the iterative procedure DDBD-IT leads to very high overestimates, and a 
verification with non linear THA is consequently required. This can be related to 
the use of a general ResponseSpectrumAnalysis in the DDBD-DEM method, 
accounting for higher mode effects in the forecast of the inelastic displacement 
pattern.  If the estimate obtained is still not satisfactory, in particular for irregular 
structures, a further enhancement can be obtained by modifying the proposed 
DDBD-DEM method into a two-step procedure. The final displacement shape 
calculated at the first step  can be used to redistribute more precisely the total 
effective stiffness Keff  among piers (step e), by implementing a second, partial step, 
in which the RSA is carried out again with the new values of pier stiffness derived 
by the design process in the first step. 
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CHAPTER 5 

CHAPTER 5                                                                
DISPLACEMENT-BASED ASSESSMENT OF EXISTING 

BRIDGES: PARAMETRICAL ANALYSIS FOR 
CAPACITY OF RC PIERS 

 
 

5.1 INTRODUCTION 

 
Appropriate seismic assessment of reinforced concrete bridges is an important 

challenge in economically advanced countries where the majority of road bridges 
have been constructed between the 50s and the 70s, when many areas had not yet 
been recognised to be earthquake prone and seismic provisions were not enforced.  

In past earthquakes, many older reinforced concrete bridges failed 
catastrophically due to design deficiencies of piers, related to the reduced 
confinement, inadequate shear reinforcement especially in plastic hinge regions, 
insufficient length of lap splices. Most failures observed in concrete structures were 
related to shear (see some examples in Figs. 5.1 a, b). The deficiencies in amount, 
distribution and anchorage of transverse reinforcement led to brittle and unsafe 
modes of failure, that are precluded in new seismically designed structures, in 
which the application of capacity design principles protect columns from inelastic 
action by implementing an adequate member strength hierarchy. The characteristics 
of a large class of existing bridge piers make them vulnerable to shear failure, and 
they are referred to as “shear-critical” columns. 

A rational assessment of existing bridges may require a revision of limit 
states and methods to calculate strength and deformation capacity of members[C9]. 
The on-going interest towards a displacement-based approach to seismic assessment 
of reinforced concrete structures has shifted the focus on the study of the 
deformation characteristics of members. In terms of displacements, the total 
member response is not only influenced by the sectional behaviour, but also by 
other sources of flexibility like rotation at foundation level, bond-slip in the member 
boundary, and for shear-critical columns also the formation of a stable diagonal 
shear cracks has been suggested as the source of flexibility that triggers the 
additional member displacement[M8]. For this type of columns,  generally a linear-
elastic force-deformation response is assumed up to flexural yield, and generally the 
assessment implies failure at very low displacements, with a too conservative 
approach  respect to the evidences of experimental tests (see among others Sezen 
and Mohele[S5], 2004, Calvi et al.[C9], 2005). The use of a more accurate model 
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steel are considered. The effective ranges of the selected parameters are determined 
by the preliminary statistical analysis conducted on the bridges of the reference 
database adopted in this study (the Veneto Region road network bridge stock), 
presented in Chapter 6. The parametric study aims at the determination of the 
effective properties for existing rc bridge piers, to be used in a Displacement-Based 
framework: pier flexural and shear capacity, collapse mechanisms, ultimate 
deformations, drift, secant-to-yielding stiffness, effective stiffness are defined and 
calibrated with the help of non linear static and dynamic analyses. Parametrical 
analysis are performed for a large number of pier configurations,  and the results are 
summarized in a series of charts and proposed expressions that can be directly used 
within the DBA framework, giving the equivalent properties of piers. 

These extensive numerical analyses supply a sound mechanical background to 
the Displacement-Based assessment methodology implemented in Chapter 6 for the 
vulnerability analysis and seismic risk evaluation of the Veneto Region bridge 
stock. 

5.2 SIMPLIFIED PHENOMENOLOGICAL MODEL FOR 
AGGREGATION OF FLEXURE BEHAVIOUR AND NON-LINEAR 
SHEAR EFFECTS  

In the 1981 Seismic Design Guidelines for HighwayBridges[A6], named 
(ATC-6), the Applied Technology Council proposed a conceptual model that 
describes the relationship between shear strength and displacement ductility,  
recognizing that the strength is reduced with increasing ductility as lateral drift 
increases, the flexure-shear cracks widen and the concrete mechanism of shear 
transfer degrades due to loss of aggregate interlock. Three possible failure modes of 
columns subjected to lateral displacement were individuated, described in Tab. 5.1 
and represented in Fig.5.2. 

The conceptual model proposed in ATC-6 gave rise to several ductility 
dependent shear capacity models. Among others, the more recent and extensively 
used are the Modified UCSD model, proposed by Kowalsky and Priestley[K7], 2000, 
and the Sezen and Mohele model[S5], 2004. 

Since ductility can be related to lateral drift, the ductility dependent shear 
models can be used to determine the “drift at shear failure” [M8]. Priestley et al.[P4] 
(1996), stated that the drift at shear failure can be taken as that corresponding to the 
ductility level at which the flexural strength response curve intersects the shear 
strength envelope. 

In this study, following the work of Calvi et al.[C9], 2005, the level of drift at 
failure is carried out using the shear capacity model approach. The Sezen model is 
adopted for calculation of the shear strength envelope, described in §5.2.2. 

Experimental observations also indicate that the force level at which the 
flexural force-deformation response curve starts to deviate from the measured 
hysteretic response usually coincides with the formation of diagonal shear cracks in 
the column[M8]. Calvi et al.[C9], 2005, based on test results of shear columns, 
evidenced that there is a considerable loss of stiffness after shear cracking, and 
constructed a semi-empirical force-deformation by independently calculating the 
flexural and shear stiffness of the column and then properly combining the two 



DISPLACEMENT-BASED APPROACHES FOR SEISMIC DESIGN AND VULNERABILITY ASSESSMENT OF MULTI-SPAN RC BRIDGES 
 
 
 
 

100 
 

components. In this study an updated, simplified approach of the conceptual 
framework proposed in [C9] is adopted, as suggested by Miranda et al.[M8], 2005. 
The formalization of the conceptual framework is described in  §5.2.1; however, the 
implementation of the model (see §5.2.4), was done differently from [M8], because 
a fiber-discretization was used for the modeling of the flexural behaviour and shear 
effects were subsequently aggregated using the non linear Force-Displacement 
curve proposed in [M8]. For the shear cracking expression the experimental formula 
obtained by Calvi et al.[C9], 2005, is adopted, which is derived from ACI 318-02[A7], 
and applicable for assessment purposes, requiring the transverse reinforcement 
spacing ratio s/d ( see Eq. 5.14). 

   

a) b) c) 

Fig. 5.2 –  Classification of rc column failure modes according to the ATC-6[A6] 
 

Tab. 5.1 –Classification of rc pier type, according to failure model 

Code Failure Description 

(F) Flexure 
 

Take place if the shear force corresponding to the 
nominal flexural strength is less than the shear 
capacity for any value of ductility 

(FS) Flexure-Shear 
 

Occurs when the column reaches its nominal 
flexural capacity first, but as ductility increases the 
corresponding shear force exceeds the shear 
strength envelope 

(S) Brittle Shear 
 

The shear capacity of column is reached prior to the 
development of the nominal flexural strength 

 

5.2.1 Aggregation of non-linear shear effects 

In the model proposed by Miranda, Calvi, Pinho, Priestely[M8] (named herein 
M.C.P.P, 2005) adopted in this study, the total stiffness that characterizes each 
phase of response is derived from the sum of the flexural stiffness and shear 
stiffness that correspond to each particular phase. In each loading phase the global 
stiffness can be calculated assuming  the flexure and shear components as two 
springs working in series, thus the following relation can be adopted: 
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The evaluation of shear stiffness after flexural cracking is carried out 
according to recommendation by Priestley et al.[P4], 1996, whereby the shear  
stiffness is proportional to the product GAve, and the reduction in shear stiffness is 
proportional to the reduction of flexural stiffness (after flexural cracking). The 
member shear stiffness in phase II is given by: 

ve
sf

G A
K

H
 ,

 

e c e
ve v v

g c g

I E I
A A A

I E I
 

    
(5.6)    

the additional displacement component related to the shear, at onset of diagonal 
cracking is thus: 

/sI cr s fV k           (5.7)    

Phase II: stiffness cracked in shear 

In the proposed simplified approach the flexural stiffness remains 
unchanged after shear cracking occurs. In order to seek agreement with Park and 
Pauly[P10] model, the stiffness Kff governs flexural response both in Phase I and II 
(see Fig.5.1). 

The shear stiffness in phase II is evaluated according to the work by Park 
and Pauly[P10], 1975. In their analysis the diagonally cracked member was idealized 
as an elastic truss, following the same principles of the Ritter-Morsch truss 
mechanism for reinforced concrete. The expression given by Park and Pauly for the 
unitary shear stiffness makes allowance for different compressions strut inclinations 
and stirrup orientations.  

                  (5.8)  
where x is the volumetric transversal reinforcement ratio, s is the inclination of 
compression struts, from member axis, h the inclination of stirrups from member 
axis, n the steel to concrete module ratio. 

       (5.9)   

When the stirrups are placed perpendicular to the axis of the column 
(h=90°), as in practically all seismic applications, Eq. 5.7 simplifies as follows: 

      (5.10)   

The member shear stiffness after the opening of diagonal cracks is finally 
given as: 

v
ss

k
K

H
            (5.11)   

The diagonal compression struts usually forms at 45° angles, and then tend 
to flatten towards 30° as yielding of the member progresses. In this study a 45° 
compression strut inclination was used in the calculation of stiffness after shear 
cracking. It can be observed that the proposed approach does not take into 
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consideration the effects that flexure-shear interaction has on the shear 
deformations; however a brittle shear failure can be assumed to preclude flexural 
effects from taking over the member response. 

At nominal flexural strength the shear deformation is thus: 

( ) /sN sI N cr ssV V K            (5.12)   

VN  is the shear corresponding to nominal moment,  VN=MN/H for a cantilever. 

Phase III: after  nominal yield 

The next event for a Shear-Flexure pier may be the nominal yielding of bars, 
before the attainment of shear ultimate force. There could be also the case in which 
the flexural collapse is reached after the shear cracking, in both cases the yield point 
produces an abrupt change in the flexural stiffness. The result is a simplified 
bilinear Force-displacement curve for simple flexural piers and  tri-linear global 
capacity curve in the case of Shear-Flexure (SF) piers. 

In this work, the flexural behaviour is obtained directly by fiber 
schematization, so the change in stiffness after yielding is directly obtained by 
uniaxial stress-strain laws of materials. Anyhow in the  original (M.C.P.P) 
formulation this point is defined  on the base of the idealized  moment –curvature 
diagram:  after the yielding, the post yielding slope is given by: 

U N
fy

U N

M M
k

 





         (5.13)   

and consequently the flexural displacement component is obtained by a simple 
modification of Eq. 2.49 (introducing y (MU/My) instead of y and U-y (MU/My) 
instead of U-y). 

Evaluation of the shear stiffness after flexural yield was performed under the 
assumption the flexural yield does not affect the shear stiffness[M8]. Under this 
assumption, the shear stiffness after shear cracking Kss governs the response in both 
Phase II and Phase III, and shear deformation, as a fraction of total reformation 
remains essentially constant.  

Other authors[P1] suggest to increment shear deformation in proportion to 
flexural deformation after yield, however the significance to total deformation in 
this phase is typically small.  
 

Tab. 5.2 –Summary of stiffness components (Simplified Approach [M8]) 

Phase Flexure Shear Total Stiffness 

Phase I Kff Ksf 1/(1/Kff + 1/Ksf) 

Phase II Kff Kss 1/(1/Kff + 1/Kss) 

Phase III Kfy Kss 1/(1/Kfy + 1/Kss) 

5.2.2 Shear-Cracking equations  

The phenomenological model introduced for the description of shear 
additional deformations, require the definition of both the cracking conditions and 
the post-cracking stiffness reduction. 
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The aspect of diagonal shear–flexure cracking has been explored since the 
early 60s (Park and Paulay[P10], 1975). Experimental tests on 194 solid section 
beams with little or no shear reinforcement had been used for the definition of the 
concrete contribution to the shear strength used in the ACI 318-02[A7] formulation:  

       ( )cw cw wV v b d           (5.14)   
 
(5.15)   
 

 
where 

0.33 't cf f  concrete tension strength                                      (5.16)   

/pc gf P A   average axial stress     (5.17)   

vwc is the cracking shear stress corresponding to the opening of the web shear 
cracks, which initiates when the principal tension stress induced by the applied 
loading or deformation increases to a value that is equal to the tension strength of 
the concrete. 

Different formulations have been successively adopted by other codes, 
maintaining the general expression and meaning of Eq. 5.12, with similar 
formulation of the cracking shear stress, here reported only for comparison: 

Eurocode 2:          

(1.2 40 ) 0.15 /cr p rd s l gv k P A             (5.18)   

where p=1 ( for member without concentrated loads near support), rd=0.25fck0.05, 
ks=(1.6-d/1000)≥1.0 

Australian Concrete Design Standard AS-3600: 

1/3

1 2 3

'st c
cr

w

A f
v

b d
 

 
  

 
       (5.19)   

where 1=1.1(1.6-d/1000)≥1.1, 2=1+P/(14Ag) for members with axial 
compression, 3=1(for member without concentrated loads near support). 

5.2.2.1 Miranda, Calvi, Pinho, Priestley formulation 
(M.C.P.P.) 

Miranda et al.[M8] observed that there is a sensible variation in the accuracy 
of shear cracking force prediction using the previous expression (Eqs. 5.12-5.17), 
and all of the equations appear to generate a considerable variability when applied 
to a shear critical column experimental database, constituted by solid and hollow 
sections. They proposed a modified formulation to obtained results that better 
matched with experimental values: 

0.57

0.215cr cr w

s
V v A

d


   
 

       (5.20)   
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(5.21)   
Differently from the other formulations this expression reflects an influence 

of the transverse reinforcement, thus its application is straightforward for 
assessment purposes (not for design), transverse reinforcement details being already 
known.  

In this study the (M.C.P.P) formulation is adopted to characterize the shear 
force level corresponding to the beginning of Phase II (stiffness cracked in shear) 
described in §5.2.1. 

5.2.3 Shear capacity envelope 

The shear strength capacity is calculated in this study using the predictive 
model by Sezen. Ideally the shear strength envelope should coincide with the cyclic 
lateral force deformation curve at the lateral drift corresponding to maximum 
capacity, and should represent a higher bound to the strength developed by the 
column at higher ductility levels. In general terms it can be observed that the 
modified UCSD model[K7],  resulted in higher estimations of the shear strength[M8]. 
For the reference column database used in this research it was observed that the 
Sezen model provided a better correlation with experimental results, generally 
being more conservative than UCDS model. 

5.2.3.1 The Sezen shear model (2004) 
In this predictive model, the shear capacity is given as the sum of two 

components: the concrete mechanism and the steel truss mechanism. The effect of 
the axial load is included in the concrete component. The shear strength provided by 
steel truss is also assumed to be ductility-dependent, and degrade with increasing 
ductility due to transverse reinforcement misalignment and anchorage degradation 
(which occurs especially in older columns with non seismic detailing). Shear 
strength is given by: 
 

       (5.22)   
 

                                         (5.23)   

    (5.24)   
where 

      (5.25)   
The non-dimensional parameters krelates the shear strength with the 

ductility level. The effective shear area is taken as Ae=0.8Ag. The term a/d appears 
because it was recognize that the column aspect ratio has an influence in the shear 
strength associated to the concrete mechanism; Sezen proposed a linear reduction 
for increasing aspect ratios in the range between 2.0 and 4.0. Outside this range the 
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stiffness degrading, defined accordingly with (M.C.C.P) model[M8], with the Vcr 
point corresponding to cracking level defined by Eqs. 5.18-5.19.  

Another aspect taken into account in the model is the bond-slip effect in 
proximity of the section of plastic hinges. This phenomenon is due to the difference 
between the deformation of the bars and concrete which yields a typical crack. It is 
worth to point out that this effect may be pronounced for plain bars due to the low 
adhesion between concrete and steel. Following the approach proposed by Zhao and 
Sritharan[Z1] (2007), a way to account for the bond-slip effect consists of 
concentrating the rotation due to the slip in a section. This is done in Opensees by 
using a zeroLengthSection element which has a length equal to 1 with a single 
integration point, thus element deformations correspond to section deformations and 
then the moment-curvature is equivalent to moment-rotation relation. In this way, 
the rotation due to bond slip effect may be evaluated by defining a properly stress-
slip relation for the steel, describing the interaction between concrete and bar.  

5.2.4.1 Material constitutive laws 
The reinforcing steel bars are modeled according to Menegotto-Pinto constitutive 

law (Menegotto and Pinto[M9],1973), implemented in Opensees with the Steel02 
model.  A modulus of elasticity equal to 205000 MPa is assumed, along with a yield 
stress and a hardening parameter b defined in Tab. 6.18 for Aq50-60 and FeB44k 
steel types. The transition parameters from elastic to plastic behavior are set 
according to Menegotto and Pinto, 1973. 

 A Kent-Scott-Park model is chosen for the concrete behavior (Kent and Park[K8], 
1971), implemented in Opensees with the Concrete02 model. This constitutive law 
for uniaxial material response has a first parabolic trend up to compression peak 
stress equal to fc with a corresponding strain equal to 0 and a decreasing linear 
trend up to fcu, with corresponding strain cu. The concrete contribution for tension 
stresses is neglected and then its constitutive law has zero strength when the strain 
assumes positive values, even if the model allows to implement it with linear trend 
till ft, maximum tensile stress). The ratio between reloading stiffness and  initial 
stiffness is given by the parameter  

To define the confined concrete, the maximum compressive strength (f’cc) 
and concrete crushing strength (fcu) are calculated according to Mander et al.[M3], 
1988, related to the unconfined compression strength f’c and lateral confining 
pressure f’l: 
	

												 ௖݂ ൌ
௙೎೎ᇲ ௫௥
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                                    (5.26)   
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cc c cf f ,   where the confinement parameter c is expressed as:             

 2.254 1 7.94 2 1.254l l
c

c c

f f

f f
          (5.30)            

												 ௟݂ ൌ
ଵ

ଶ
௦ߩ ௬݂௛  (for circular sections with hoops or spirals) (5.31) 

Fig. 5.5 –  Constitutive laws adopted in the F.E. model: a) concrete, Kent and Park[K8] 
model, b) reinforcement steel, Menegotto and Pinto model, 1973. 

 
Tab. 5.3 –Steel02 material model parameters 

Material fy Es (MPa) b R0 cR1 cR2 
Reinforcement steel fy* 205000 b* 20 0.925 0.15 

 
fy*, b* yield stress and hardening parameter defined for Aq50-6and FeB44k steel types   

accordingly to Tab 6.18 
 
Tab. 5.4 –Concrete02 material model parameters 

Material fc 0 fcu cu  ft Ets 

Concrete cover f’c+ 2f’c/Ec++ 0 0.004 0.10 0 ft/0 

Concrete core f’cc** 2f’cc/Ec++ fcu** cu*** 0.10 0 ft/0 

+      from test results and material characterization (see §6.2.3) 
௖ܧ    ++ ൌ 5000ඥ ௖݂

′	 
**     Equation from Mander et al.[M3] 

***    Equation 2.4  
 

5.2.5 Experimental database 

The phenomenological model adopted in this study for interaction of 
flexure-shear behaviour in the piers is deducted from previous studies (Calvi et 
al.[C9], 2005, Miranda et al.[M8], 2005). However, as clarified before, its 
implementation differs because the flexural stiffness component is directly obtained 
by a fiber-discretization modeling and the shear stiffness of the (M.C.P.P.) model is 

 

 

a) b) 



 

a
e
a

r
c

S
R

r
c
e
d

 

c
t

T

D

 
 
 
 
 

5. DISPLAC

aggregated. 
experimenta
a new equiv

No ac
research; th
columns wit

In spe
Structural P
Research Ce

The s
rectangular 
control in d
explicitly re
deformation

 

The m
characteristi
the propertie

 
Tab. 5.5 – E

Database 
ID 

C01F 

C02F 

R01F 

R02S 

R03S 

R04S 

R05S 
 
 
 
 
 

CEMENT-BASED A

Thus it w
al tests, that
valent viscou
ctual exper
e validation
th flexure a
ecific the so
Performanc
enter, availa
caled colum
solid secti

double bend
eported the h
n and type o

Fig. 5.

main proper
ics are repo
es of the ex

Experimental

Source 

SPD-PEER

SPD-PEER

SPD-PEER

SPD-PEER

SPD-PEER

SPD-PEER

SPD-PEER

ASSESSMENT OF E

was consider
t were also 
us damping
rimental w
n of the mo
nd shear fai
ource used 
e Database
able on line
mns of the r
on, were te
ing, and ha
hysteretic re

of failure we

.6 –  Typical

rties of the
orted in Tab
xperimental 

l database 

Au

R Lehman

R N

R Park a

R Imai and
(1

R Lynn e

R Lynn e

R Lynn e

EXISTING BRIDGE

109 

red necessa
considered 

g expression
work was c

del was obt
ilure extract
for the sele

e, arranged b
e (http://nise
reference ex
ested with 

ad shear or f
esponse cur
ere consider

l test setup fo
 

e reference 
bs.5.3-5.5. 
database ca

uthors 

n et al. (1998

NIST 

and Paulay 

d Yamamoto
1986) 

et al. (1998) 

et al. (1998) 

et al. (1998) 

ES: PARAMETRICA

ary to valid
in the persp

n for shear-c
carried out 
tained using
ted from on
ection of th
by the Paci
ee.berkely.e
xperimental
quasi-static

flexural fail
rve in terms
red. 

for the selecte

experiment
Other detai

an be found 

Specim

8) 41

Full Fl

Specime

o No. 1

3CLH

3CMH

3CMD

AL ANALYSIS FOR

date the mo
pective of t
critical colu

during the
g experimen
n line databa
e experimen
fic Earthqu
du/spd/).  
l database h
c cycles wi
lure. Only c
s of applied 

ed specimen 

tal database
ils on the te
in [M8]. 

men ID Se
T

5 C

lexure C

en No.9 R

1309 R

H18 R

H18 R

D12 R

R CAPACITY OF R

modelization 
the calibrati
umns. 
e course o
ntal results 
ases. 

ental test wa
uake Engine

have circula
ith displace
column test
force and l

n 

e and speci
est setup an

ection 
Type 

Fa
ty

Circ. F

Circ. F

Rect. F

Rect. Sh

Rect. Sh

Rect. Sh

Rect. Sh

RC PIERS 
 
 
 

with 
ion of 

of the 
on rc 

as the  
eering 

ar and 
ement 
ts that 
ateral 

 

imens 
nd on 

ilure 
ype 

Flex. 

Flex. 

Flex. 

hear 

hear 

hear 

hear 



DISPLACEMENT-BASED APPROACHES FOR SEISMIC DESIGN AND VULNERABILITY ASSESSMENT OF MULTI-SPAN RC BRIDGES 
 
 
 
 

110 
 

Tab. 5.6 –Geometric and reinforcement characteristic of the specimens  

 Geometric properties Reinforcement ratio 

ID  d 
(mm) 

s 
(mm) 

 ࢒࣋ ࢊ/ࢇ
(%)  ࢙࣋ (%) 

C01F  609,6 31.75 4,00 1.49  0.698 

C02F  1520 88.9 6.01 1.99  0.630 

 b 
(mm) 

h 
(mm) 

s 
(mm) 

 ࢒࣋ ࢈/ࢇ
(%) ࣋࢞ (%) ࣋࢟ (%) 

R01F 400 600 80/160 1.65 1.88 1.25 1.05 

R02S 400 500 100 3.22 2.66 0.40 0.31 

R03S 457 457 457 3.22 3.03 0.08 0.08 

R04S 457 457 457 3.22 3.03 0.08 0.08 

R05S 457 457 305 3.22 3.03 0.21 0.21 
 
Tab. 5.7 – Properties of the specimens in the experimental database. 

Database ID Material properties Axial load 

 ݂′௖	ሺܽܲܯሻ ௬݂ ሺܽܲܯሻ ௬݂௛ ሺܽܲܯሻ ܲ/ܣ௚݂′௖ 

C01F 30.3 483 607 0.072 

C02F 35.8 475 493 0.069 

R01F 26.9 432 305 0.100 

R02S 27.1 318 336 0.072 

R03S 26.9 331 400 0.089 

R04S 27.6 331 400 0.262 

R05S 27.6 331 400 0.262 

 

The numerical model of  the specimen was implemented as described in 
§5.2.4, and subjected to quasi-static loads in displacement control accordingly to the 
loading history of the experimental tests.  
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a)  

 
b) 

 
c)

Fig. 5.7 –  Specimen C01F: a) experimental and numerical Force-Displacement curves 
of the column subjected to quasi-static cycles with displacement control, superimposed 

with Pushover curve; b) numerical pushover and shear envelope; c) comparison of 
Moment-curvature plots obtained with Opensees and Cumbia 
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a)  

 
b) 

 
Fig. 5.8 – Specimen R04S: a) experimental and numerical Force-Displacement curves of 

the column subjected to quasi-static cycles with displacement control, superimposed 
with Pushover curve; b) numerical pushover and shear envelope; c) comparison of 

Moment-curvature plots obtained with Opensees and Cumbia 
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d) 
 

e) 

Fig. 5.9 –Experimental and numerical Force-Displacement cycles for specimens C02, 
R01F, R02S, R03S, R05S 

5.2.5.1 Summary of results on tested columns 
In the following Figs. 5.7-5.9 the experimental cycles superimposed with the 

numerical hysteretic loops obtained are reported for all the specimens. 
The response of the models to cyclically imposed displacements is quite 

satisfactory: it matches well the experimental response of the physical model till the 
attainment of the maximum displacement at failure, and also the stiffness in the 
reloading phase is accurately reproduced till the drift at failure.  In the cases were a 
flexure (F) or flexure-shear (FS) behaviour  is obtained for the specimen,  the 
numerical model reproduces the experimental cycles quite well also after the drop 
of resistance corresponding to failure, in the post-peak response. However, when a 
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brittle shear failure (S) is reproduced after the reaching of shear strength, the post 
peak numerical cycles show an overestimation of the residual strength.  

The definition of the drift at shear failure and corresponding effective 
properties (stiffness) being the aim of the experimental calibration, the numerical 
model is judged adequate, even the post-shear failure behaviour is not always 
accurately reproduced. 

5.2.6 Calibration of Equivalent Viscous Damping 
expression for shear-failure mechanisms 

It has already been discussed in §2.1.3 that the Substitute Structure approach 
implemented in the Displacement-Based framework requires the definition of an 
equivalent viscous damping ratio, reflecting the energy dissipation characteristics of 
the real structure at maximum response, and various expression proposed by 
different authors were presented [D1,P1,D11]. Subsequently in Chapter 3 it was 
demonstrated  how the choice of  different EVD expressions and related spectrum 
reduction factor affects the accuracy of DDBD procedure.  

It has to be observed that most of the equivalent damping models proposed 
to date [D1,P1], were developed on the basis of theoretical, experimental or 
numerical investigations on ductile members, and the displacement ductility  was 
used as the reference parameter to express the hysteretic energy dissipation, 
depending the dissipated energy in one hysteretic cycle on the amplitude of the 
displacement. However, for shear-critical columns, shear precludes the 
development of a stable ductile hysteretic response, and existing bridge piers are 
often affected by a limited shear resistance. Moreover, the yield strength in often 
not attained by columns failing in shear. 

 
 
 
 

4
hyst

eq

el

A

A



  

Fig. 5.10 –  Definition of equivalent damping ratio according to the area-based 
approach by Jacobsen[J1,J2] 

 
In the work by Miranda et al.[M8], to which this study refers for the EVD 

evaluation approach based on experimental results, a preliminary hypothesis for 
columns failing in shear is done, relating the EVD to the expression of the lateral 
drift, . It was observed that in general there appears to be less scatter when the 
experimental damping estimation are reported in terms of lateral drift rather than 
and that the relationship between EVD and a measure of the lateral deformation 
amplitude is better expressed as a function of drift, since it has a unique definition, 
while ductility is capable of many interpretation[M8]. However a formalization of 
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  eq   eq   eq   eq   eq

R02S 0.22% 6.74% 0.48% 8.19% 0.99% 17.51% 0.99% 17.51% 2.11% 21.28%

R03S 0.14% 5.50% 0.53% 5.17% 1.05% 12.69% 1.56% 13.39% 1.82% 15.58%

R04S 0.13% 5.95% 0.52% 5.31% 1.04% 13.86% 1.55% 14.01% 1.81% 16.17%
R05S 0.14% 5.62% 0.25% 5.54% 1.07% 10.48% 1.64% 16.53% 2.17% 18.18%

ID - S
Cycle 2 Cycle 5Cycle 4

POST-Peak cycles- 
Not stabilized

POST-Peak cycles  -              
Stabilized

Cycle 3

 PRE-Peak cycles

Cycle 1

 eq  eq  eq  eq

C01F 0.79% 2.39% 1.58% 12.13% 3.15% 20.66% 5.27% 25.96%

C02F 0.74% 6.80% 1.96% 8.46% 2.94% 19.20% 3.92% 24.78%

R01F 1.18% 16.95% 2.35% 21.67% 3.55% 28.04% 4.76% 28.90%

Cycle 2 Cycle 3 Cycle 4Cycle 1ID - F

these consideration is not presented in [M8], and to the extent of the author’s 
knowledge, currently there is no EVD expression validated specifically for shear-
critical columns to be adopted in the DBA approach. 

In this paragraph a new formulation of EVD is proposed on the base of the 
evaluation of the experimental results extracted from the reference database 
described  in the previous paragraph. The interpolating law is based on a restricted 
number of experimental tests analyzed, the expression representing a first proposal 
that may be tested and calibrated on a more ample set of  specimens. 

5.2.6.1 Evaluation of EVD component from experimental force-
deformation cycles 

A study on the damping characteristics of reinforced concrete columns with 
limited shear resistance was performed using the experimental force-deformation 
curves from the specimens of the reference database reported in Tab. 5.3. 

Following the area-based approach introduced by Jacobsen[J1,J2], the 
equivalent viscous damping ratio eq can be defined in terms of the proportion 
between the area enclosed by one complete hysteretic cycle and the area under a 
linear elastic response curve evaluated to the same displacement amplitude (see Fig. 
5.7). 

The equivalent viscous damping ratio was evaluated using a number of cycles  
(4 or 5), belonging to the experimental force-deformation response curve for the all 
the specimens in the reference database (7 specimens, 3 with flexural failure, 
individuated with the final “F” letter in the database ID, and 4 failing in shear). The 
equivalent viscous damping ratio eq was calculated using standard area comparison 
through the Eq. 2.17.   
 
Tab. 5.8 – Flexural  columns: characteristics of the analyzed hysteretic cycles 

 
Tab. 5.9 – Shear critical columns: characteristics of the analyzed hysteretic cycles 

 
In the shear-critical columns, the hysteresis loops evidenced the presence of 

two or three cycles to the same displacement amplitude prior to the peak response 
(see Tab. 5.8, cycles 1 and 2), corresponding to the attainment of the maximum 
shear capacity.  
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R03S R04S 

a) b) 
Fig. 5.11 –  Pre-peak and post-peak stabilized hysteresis loops considered for the 

specimens R03S and R04S, corresponding to cycles 2 and 5  
 

  

 
Fig. 5.12 –  Evaluation of Equivalent Viscous Damping as a function of lateral drift : 

pre-peak, post-peak experimental results and proposed interpolating law  
 

In the DBA approach the effective stiffness is calculated to maximum 
displacement, evaluated for shear critical columns as the drift corresponding to the 
maximum shear capacity (peak response). Equivalent damping for the substitute 
linear structure has to be evaluated using hysteretic cycles whose displacement 
amplitude is lower than the drift at peak response (represented in Tab. 5.8 and Fig. 
5.7 by pre-peak cycles) or almost equal (represented by post-peak cycles, not 
stabilized). To better represent the progression of hysteretic dissipation, also 
additional post-peak cycles were considered in the evaluation, corresponding to 
target displacement that are beyond that corresponding to the peak force response. 

 
A logarithmic law  interpolates quite accurately the experimental results, and 

the following expression is proposed for the EVD for shear-critical columns:  

eq [%]=4.6ln+34.5    ≤    (5.32)   
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Experimental results showing that failure occurs around the 1% drift level 
(see Fig. 5.7), the experimentally evaluated damping ratio eq lies between 12-15%, 
and the ultimate drift value limited under 1.5% for Shear (S) columns or Flexure-
Shear (FS). This values will be confirmed also by the parametric analysis developed 
for cantilever and frame bridge piers in next paragraphs. 

It seems apparent that the hysteretic dissipation and related EVD value has 
to be higher at the target drift for flexural piers than for shear-critical piers. Only 
with the aim of comparing the absolute values of EVD obtained, a law expressing 
eq=f() for flexural piers is introduced and plotted in Fig.5.7. Interpolation 
obtained with typical eq expression as function of displacement ductility (see also 
Eq. 2.30 and Tab. 2.10) is reported in Fig. 5.10 for flexural columns. 
 

Fig. 5.13 –  Superposition with Logarithmic interpolating laws obtained for evaluation 
of EVD for flexural columns 

 

Fig. 5.14 –  Logarithmic interpolating laws obtained for evaluation of EVD for flexural 
and shear critical columns 

It can be observed that for flexural piers, with ultimate drifts of about 3- 4% 
corresponding eq values of about 20-25% are obtained. 
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5.3 PARAMETRICAL ANALYSIS 

An extensive parametrical analysis is carried out to assess the force 
displacement characteristics of existing piers, accounting to shear deformation 
accordingly to the shear-flexural model described in previous paragraphs.  

The main properties that can influence the pier capacity are considered, 
including the aspect ratio of the section, the normalized axial load, the percentage of 
longitudinal reinforcement and volumetric transverse reinforcement (tied to the 
level of confinement of the concrete core), the strength of concrete and steel. The 
values adopted for the selected parameters are determined by the statistical survey 
conducted on the structures of the reference VR bridge stock, presented in Chapter 
6, and fall within the database extent described in Tabs. 6.15-6.20. 

Single bent and multiple bent piers are analyzed represented by cantilever, 
walls and frame piers. In the parametrical analysis the rc member are supposed to 
be fully restrained at the foundations. 

The parametric study aims at the determination of the effective properties 
for existing rc bridge piers, to be used in a Displacement-Based framework. Three 
different collapse mechanisms are individuated (brittle shear-S-,flexure-shear-FS- 
and flexure mechanism), and pier flexural and shear capacity in terms of force-
displacement curves are individuated. Synthetic charts are supplied, giving 
adimensional yielding moment, secant-to-yielding stiffness, ultimate deformations 
and drifts, and ultimate effective stiffness for different pier configurations. The 
charts summarize the information obtained from all the capacity curves obtained in 
the parametric study, which were developed for each pier sample by non linear 
static analysis.  

In the DBA framework these charts can be subsequently used, for a certain 
rc pier under exam,  to reconstruct in a simplified manner the member capacity 
curve (Force-Displacement curve), that has to be known at the beginning of the 
procedure. 

5.3.1 Single bent (cantilever) piers with circular 
section 

In the following table the values of the parameters adopted for circular piers 
are reported.  

 
Tab. 5.10 –Single bent circular piers: 1440 pier samples studied in total. 

  

D [m] 2.0 2.6 3.2 3.5

H * [m] 4.0 6.0 8.0 12.0

l  [%] 0.20 0.35 0.50

st [%] 0.05 0.20

k [-] 0.05 0.10 0.20 0.25

fc [MPa] 30 40 55
Steel [-] Aq50-60 FeB44K

* effective H/D ratios:

1.9, 2.0, 2.3, 2.5, 3.1, 3.4, 3.8, 4.0, 4.6, 6.0

Single Bent - Circular Piers
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 The parameters (longitudinal and transverse reinforcement l, st 
respectively, and  normalized axial load, k)  are defined  accordingly to the 
expressions reported in §6.2.4, while the steel properties are individuated in 
Tab.6.20 for FeB44k and AQ50-60 steel types. 

The circular cantilever piers analyzed have diameters variable between 2.0 
and 3.5m, with  height over diameter ratios, H/D ranging between 2.0 and 6.0. This 
kind of existing piers have a very low reinforcement content, with a longitudinal 
reinforcement ratio l equal at maximum to 0.5 and  volumetric transverse 
reinforcement content between 0.05 and 0.20. The axial load at the pier base is 
generally quite low, under 25% of the section concrete strength.  The ranges 
analyzed for material characteristics are quite ample, to reflect the substantial 
variability of the concrete and steel properties in the reference database.  

The number of pier samples obtained from the combinations of the analyzed 
parameters are 1440. 

5.3.1.1 Capacity curves  
The capacity curves obtained are reported  in an adimensional  fashion for 

(S), (SF) and (F) piers.  The lateral resisting acceleration (expressed in terms of g) is 
expressed as a function of the total drift , and also as a function of the 
displacement ductility,  , in the case of  (SF) and (F) piers. 

 

  
a) b) 

c) d) 
Fig. 5.15 –  Adimensional capacity curves (resistant acceleration vs displacement 

ductility): a) shear flexure (FS) piers, b),c),d flexure (F) piers 
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c) d) 

  
e) f) 

Fig. 5.16 –  Adimensional capacity curves (resistant acceleration vs drift): a) shear (S) 
piers, b), c) shear flexure (FS) piers, d),e),f) flexure (F) piers 

 
 

In the previous figures the capacity curves obtained for S,SF, F piers 
reinforced with FEB44k steel type are reported as general reference. The 
corresponding curves obtained for columns reinforced with steel AQ50-60 have a 
similar trend, and are omitted for brevity.  However, all the significant results that 
can be extracted from the capacity curves, are included in the charts in the 
subsequent paragraphs.  

The pier samples being a large number, capacity curves were divided into 
sub-groups in relation to failure mechanisms, and for flexural piers also in different 
subclasses separating medium-short piers from slender piers with higher ductility 
capacity.  
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5.3.1.1 Failure mechanism 
As expected, it can be observed for the failure mechanism a strict 

dependence on the H/D aspect ratio. Approximate ranges individuating  different 
collapse mechanisms for cantilever circular piers in relation to the H/D ratio are 
found to be the following: 

 

 
 Fig. 5.17 –  Failure mechanisms chart. c represents the value of the limit confinement 

parameter 

H/D<2.5 shear, shear-flexure; 
2.5<H/D<3.5 shear-flexure, flexure; 
H/D>3.5  flexure  

More precisely, the plot on Fig. 5.17 can be used to find the pier type 
collapse mechanisms, on the base of  geometric aspect ratio (with low values 
corresponding to shear critical columns) and normalized axial load. The series of 
points correspond to effective H/D ratios individuated in Tab 5.10; interpolating 
laws are proposed for =0.05 and =0.25. The range 0-1 in y axis represents the 
range of (F) piers, 1-2 the range (FS) piers, while y>2 correspond to (S) piers. 

5.3.1.2 Strain limits 
In Tab.2.4 a summary of the current limit states proposals for the assessment 

of existing rc structures is reported. The limits chosen in this work for material 
strain and sectional limit states are reported in Tab. 6.23.  

A sensitivity analysis was carried out in order to individuate the 
correspondence between  the selected limit states (PL1 and PL3) and the effective 
material strain obtained for the circular pier sections under exam.  
 For  PL1 it can be observed that for higher normalized axial load 
(=0.20,0.25) steel strain limits are less likely to occur when the concrete strain 
limit has already been reached. 

For  PL3 it can be noted than the section failure is always related  to the 
attainment of maximum concrete strain when steel bars are already yielded. The 
maximum strain at the concrete core outer fibers is always under 1%, that is typical 
of a poorly confined section (for seismically design rc members higher values can 
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- 0.7%<u<3.6% for (F) piers, with a greater variability, and a medium value 
of m=2.2%. 

In Fig. 5.20 interpolating curves are proposed as functions of the aspect ratio 
H/D and normalized axial load, and can be used to derive the ultimate drift, u (and 
thus the ultimate displacement, Du) for the pier under exam, whose characteristics 
fall within the ranges defined in Tab.5.10.   

It has to be found (as for other charts reported hereafter), that other 
parameters like the reinforcement ratio l, have not much influence, because the 
actual ranges are not so variable (all piers samples have low longitudinal 
reinforcement content and are poorly confined by transverse hoops, with small 
variability). 

 

5.3.1.4 Nominal drift and drift at shear cracking 

 
Fig. 5.21 –  Nominal drift for flexure-shear (FS) and flexure (F) cantilever piers 

 

 
Fig. 5.22 –  Drift at shear cracking for shear critical piers (S, FS).  

Nominal drifts  for (F) and (FS) piers are reported in Fig. 5.21, and can be 
used to determine the displacement associated to nominal capacity.  
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In particular for (F) piers the variability is significant, and the indication of 
the mean nominal drift N,m=0.57 obtained, is not applicable to reconstruct directly 
the capacity curve for a certain pier under exam. In this case the same information 
can be obtained from the adimensional curvature plots reported in §5.3.1 (this is 
possible when the (F) curves are not affected by the attainment of the Shear 
Cracking, thus the shear deformation is not significant and the capacity curve can be 
simply represented as bilinear, as can be seen in Fig.5.17). 

 

5.3.1.5 Nominal moment and curvature  
As it was mentioned in Chapter 1, a fundamental assumption in DB 

procedure is that the elastic stiffness of cracked  concrete sections is essentially 
proportional to strength, on the contrary the yield curvature can be assumed 
independent  from strength (reinforcement content). The following charts, are 
obtained from a moment curvature analysis with bilinear representation (see 
§1.1.1).  The charts follows the layout of similar charts proposed by other authors[P1, 

P3] for section of new seismically designed members. Here the concrete sections 
analyzed are typical of existing bridges piers, with material and reinforcement 
characteristics corresponding to the ranges individuated in Tabs. 5.10.  

The results obtained, that can be used also to plot directly the capacity curve 
for flexural piers, are aligned but partially different from those obtained in literature 
for newly designed sections (reported in Fig. 2.10): e.g. the average values of yield 
curvature are generally lower in respect to those proposed by [P1, P3] for the 
section under exams, and also the stiffness ratio for cracked section at yielding is 
lower.  

The values of adimensional nominal moment ,Mn, and nominal curvature, n 
are derived for different values of concrete strength, steel properties of longitudinal 
bars, and different reinforcement content l (confinement effects related to the 
different transverse reinforcement content ratio are evaluated, but not much 
significant in relation to the percentages considered). 
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5.3.2 Multiple bent (frame) piers with circular section 

Multiple bent piers with circular section are also analyzed in the parametric 
study, with the characteristics reported in Tab.5.12, covering the ranges 
individuated in Tabs. 6.15-6.20. 

The circular frame piers have small diameters, variable between 0.4 and 
1.6m, with  height over diameter ratios, H/D, ranging between about 2.0 and 12.0. 
Longitudinal reinforcement ratios l reaches higher values in respect to cantilever 
piers, within the range [0.5-1.5], the concrete section being smaller. Also the 
volumetric transverse reinforcement content is higher, between 0.10 and 0.30%. 
The axial load at the pier base is generally quite low, under 25% of the section 
concrete strength.  The ranges analyzed for concrete strength is 30<fc<55, and two 
steel types are considered, FeB44k and AQ50-60.  

The number of pier samples obtained from the combinations of the analyzed 
parameters are 2376. 
 
Tab. 5.12 –Multiple bent circular piers: 2376 pier samples studied in total. 

 
 

5.3.2.1 Capacity curves  
The capacity curves obtained are reported  in an adimensional  fashion for 

(S), (SF) and (F) piers.  The lateral resisting acceleration (expressed in terms of g) is 
expressed as a function of the total drift , and also as a function of the 
displacement ductility,  , in the case of  (SF) and (F) piers. 

In the previous figures the capacity curves obtained for S,SF, F piers 
reinforced with AQ50-60 steel type are reported as general reference. The 
corresponding curves obtained for columns reinforced with steel FeB44k have a 
similar trend, and are omitted for brevity.   

As already done for cantilever piers, the samples being a large number, 
capacity curves were divided into sub-groups in relation to the failure mechanism, 
and for flexural piers also in different subclasses separating medium-short piers 
from slender piers with higher ductility capacity. 

The adimensional capacity curves are representative in terms of resistant 
acceleration of a single column for a multiple pier bent.  This value has to be 

D [m] 0.4 0.8 1.2 1.6

H * [m] 2.5 3.0 4.0 5.0 7.0 12.0

l  [%] 0.50 1.00 1.50

st [%] 0.10 0.20 0.30

k [-] 0.05 0.10 0.20 0.25

fc [MPa] 30 40 55
Steel [-] Aq50-60 FeB44K

* effective H/D ratios: 1.9, 2.1, 2.5, 3.1, 3.3, 3.8, 4.4, 6.3, 8.8, 10.0, 12.5

Multiple Bent - Circular Piers
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multiplied for the number of columns (supposed all equal) to obtain the total 
resistant shear of the pier bent. 

 

  
a) b) 

  
c) d) 

 

e) 
Fig. 5.31 – Adimensional capacity curves (resistant acceleration vs displacement 

ductility): a), b) shear flexure (FS) piers, c),d),e) flexure (F) piers 
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e) f) 

 
 g) 

Fig. 5.32 –  Adimensional capacity curves (resistant acceleration vs drift): a), b) shear 
(S) piers, c),d) shear flexure (FS) piers, e), f), g) flexure (F) piers 
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5.3.2.1 Failure mechanism 
The chart represents a tools for the individuation of the failure mechanism 

expected for the pier under exam. Approximate ranges individuating  different 
collapse mechanisms for cantilever circular piers in relation to the H/D ratio are 
found to be the following: 

H/D<2.5 shear; 
2.5<H/D<3.5 shear, shear-flexure, flexure; 
3.5<H/D<4.5  shear flexure, flexure; 
H/D>4.5  shear flexure, flexure 
 

 
Fig. 5.33 –  Failure mechanisms chart. c represents the confinement parameter 

 

The series of points correspond to effective H/D ratios individuated in Tab 
5.10; interpolating laws are proposed for =0.05 and =0.25. The range 0-1 in y 
axis represents the range of (F) piers, 1-2 the range (FS) piers, while y>2 
correspond to (S) piers. 
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5.3.2.2 Drift limits 
In this paragraph the global drift limits extracted from the capacity curves 

reported in §5.3.2.1. are plotted. 
Drift at failure is firstly individuated. The drift values correspond to strain 

limits defined for PL3 (see Tab. 6.23) 
- 0.4%<u<2.1% for (S), (SF) piers, with a mean value 1.3%. 
- 0.7%<u<4.1% for (F) piers, with a greater variability, and a medium value 

of m=2.4%. 
In Fig. 5.25 interpolating curves are proposed as functions of the aspect ratio 

H/D and normalized axial load, and can be used to derive the ultimate drift, u (and 
thus the ultimate displacement, Du) for the pier under exam, whose characteristics 
fall within the ranges defined in Tab.5.10.   

 

 
Fig. 5.35 –  Drift at failure (u) for flexural(F), shear-flexural (FS), and shear (S) piers. 
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Fig. 5.38 –  Drift at shear cracking for shear critical piers (S, FS).  

 
Nominal drifts  for (F) and (FS) piers are reported in Fig. 5.37.  For nominal 

drift, same comments reported in §5.3.1.4 are valid. 
Drift at shear cracking is reported in Fig. 5.38, and the medium value of 

0.1% can be considered representative. 
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 In this study the simplified phenomenological model developed by Miranda 
et al.[M8], 2005, and adopted by Priestley et al.[P1], 2007, is used to include the 
effects of non linear shear deformations for existing piers, by aggregating non linear 
shear effects to fiber modeling of flexural effects. The model is validated using 
experimental results of cyclic tests on scaled columns available from the . 

 Experimental hysteretic cycles are also used to derive a new equivalent 
damping expressions for shear critical column, which provides the equivalent 
viscous damping at failure as a function of the total drift instead of the displacement 
ductility as usually proposed[D1, P1]  for new ductile members. 

An extensive parametric analysis is subsequently carried out to obtain the 
deformation characteristics and effective properties of piers. The analyses are 
performed for a large number of pier configurations (cantilever, frame piers, wall 
piers),  whose effective ranges of main parameters influencing the seismic capacity 
were obtained from the preliminary statistical survey on the VR bridge stock 
described in Chapter 6.  

The results are summarized in a series of charts that can be used to develop 
the capacity curves of  piers under exam,  and to obtain the pier equivalent 
properties that can be directly used within the DBA framework. 
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CHAPTER 6 

CHAPTER 6                                                                
DISPLACEMENT-BASED APPROACHES FOR THE 
VULNERABILITY ASSESSMENT OF RC BRIDGES: 

APPLICATION ON A REGIONAL-SCALE CASE STUDY  
 

6.1 INTRODUCTION 

In Italy, in consequence of Ordinance n.3274/2003 of the Prime Minister and 
its implementing provisions, Decree of the Department of Civil Protection 
n.21/2003, the managing authorities of road and railway networks are charged not 
only with the routine maintenance of all structures, but also with the seismic 
appraisal of the critical elements in the infrastructure systems.  Retrofit 
interventions are required to enhance the seismic reliability of strategic structures, 
since they are to operational for the post-event emergency activities of the  Civil 
Protection. Bridges play a crucial role, representing the key nodes of several road 
routes. Motivated by the potential vulnerability of the transportation infrastructure, 
many public and private managing authorities are going to incorporate seismic risk 
assessment in their Bridge Management Systems, as already done abroad by local 
Departments of Transportation (FEMA[F4], 2003, Shinozuka et al, 2000).  

In this context BMS, previously used only in relation to day-to-day upkeeping 
of bridges, have been developing over the past years, into efficient instruments for 
determining the best allocation of resources to maximize the safety and 
functionality of the road network (Thompson et al. 1998[T3], Bazos and 
Kiremidjian[B4], 1995, Frangopol and Neves[F5], 2004, Frangopol and Liu[F6], 2007).  

At present there is a growing demand for including in BMS tools for the 
appraisal of seismic bridge vulnerability, as it is of critical importance to predict the 
operational state of the roads in a post-earthquake scenario. This implies the 
formulation, for the infrastructure under examination, of an earthquake loss model, 
that can serve different purposes: help an efficient planning of rescue operations in 
an emergency situation, minimize the impact of a possible system downtime in 
terms of economical loss, and mitigate the risk, through a prioritization of urgent 
retrofit interventions for the most vulnerable structures. 

The main aim of a loss model is to calculate the seismic hazard at all the sites 
of interest and convolute this hazard with the vulnerability of the exposed structure 
stock, to predict the damage distribution (Crowley et al.[C4], 2004). The damage 
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ratio can be used to calculate the loss relating the cost of repair to the cost of 
demolition and replacement of the structure under exam. 

It is current practice to assess seismic vulnerability with fragility curves, 
describing the conditional probability for a structure of exceeding a defined level of 
damage at the different levels of the seismic action intensity. 

With regard to the assessment methods for existing constructions, the 
interest in using simplified procedures  is apparent when probabilistic risk analysis 
is carried out on a large-scale (e.g. on a regional infrastructure system). 

As estimation of vulnerability involves a large number of structures, the 
fragility curves have to be obtained by means of quick and reliable numerical 
calculations. The so-called Capacity Spectrum Method (ATC-40, 1996 and 
HAZUS, 1999) developed for the analytical assessment of the structural 
vulnerabilities has emerged as a standard tool for loss evaluation and has been 
implemented in several related softwares (Stafford et.al, 2007). More recently a 
Displacement-Based loss assessment methodology  was formulated (see among 
others, Crowley et al.[C4], 2006): the procedure uses mechanics-derived formulae to 
describe the displacement capacity of classes of buildings at three different limit 
states. Recent applications were proposed for the Turkish building stock  (see Bal et 
al.[C3], 2010).  

The most extensively used tool currently available to derive vulnerability 
curves of large-scale systems is the Hazus methodology  (FEMA, 1999[F8], 
2003[F9]), which provides fragility curves for whole classes of structures, calibrated 
on databases developed in the US. The HAZUS model is sufficiently accurate when 
applied to a class of buildings or bridges very similar to those in the default system, 
but it shows deficiencies when applied to a community–specific database, where 
different typologies  are represented. Fragility functions are not calibrated to the 
Italian (and more in general European) bridge typologies and construction 
characteristics: for example masonry arch bridges, in the Hazus database, fall within 
the category “other”  system, not clearly defined in relation to their specific 
vulnerable elements, while they represent, in Italy, more than 20% of the existing 
road bridge database (see §6.2), and at least the 50% of all railway bridges. Other 
shortcomings  are related to different construction methodologies also for the same 
structural types supplied in the original database. 

  Despite these considerations, the Hazus framework is reliable and has been 
extensively used in recent years as a tool for Earthquake Risk estimation on a large 
scale, as generally the possibility of modifying its parameters does not exist, for 
lack of a detailed comprehensive data inventory regarding European (and Italian) 
structure types. A step forward in this sense was made with the RISK-UE 
project[M5], with definition of earthquake risk scenarios for different European 
towns, with supplied more specific data for the European building and bridges 
stock. Related to this project, a comparison study of five European earthquake loss 
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assessment methodologies as opposed to the unified U.S. HAZUS model, was 
presented by Strasser et al., 2008[S3]. As regards fragility curves for bridges, the 
RISK-UE method is built using the Hazus approach, parameters and ranges, and the 
only difference is related to the initial classification of the structure with reference 
to homogeneous classes more adequate for the European bridge typologies. 

Bridge inventories are generally poor, because the availability of detailed data 
in a Bridge Management System entails a specific campaign of inspection, a 
structural survey, on-site and laboratory tests, archive research for original project 
information, requiring an extraordinary effort for the managing authority, and costs 
as wells.  In this  work, the bridge inventory refers to the Veneto Region road 
network bridge stock (named VR stock), which was the object, in the years 2007-
2010, of a seismic verification study, carried out by the University of Padova, 
according to the requirements of  Decree n.21/2003, mentioned above. This activity 
represented a long preliminary work, and allowed to obtain detailed information of 
members’ structural characteristics (e.g. piers dimensions, effective reinforcement 
content, material properties) for a significant number of structures in the inventory 
(with some inevitable operational restrictions, related to the possibility of execution 
of extensive laboratory tests).  

All these data were collected within this thesis in an extensive statistical 
survey, described in next paragraphs. Focusing on the rc bridges’ macro-class, after 
a preliminary subdivision of the stock into homogeneous sub-classes, it was 
possible to characterize the effective range of bridge properties in terms of static 
scheme, material characteristics, geometrical parameters and reinforcement content. 

This information represented a sound base for the development of a 
parametrical analysis on the capacity of members (e.g. bridge piers),  as previously 
described in Chapter 5. Owing this parametric study it was be possible to calculate 
more precisely the limit states to be taken for shear and flexural behavior (with 
reference to pre-defined levels of damage), and get a better calibration of the values 
of equivalent damping for the existing rc piers, to be later adopted in the simplified 
DBA analyses.  

A limited number of rc multi-span bridges were then chosen as reference 
samples (named Reference Bridge structures, RBs) for each homogeneous class, and 
a direct comparisons of simplified DBA procedures with NLTH analyses were 
carried out on this restricted set of structures. First the deterministic safety factors, 
represented by Capacity/Demand ratios obtained for different earthquake intensity 
levels were compared, and subsequently the fragility curves obtained for the bridges 
under exam.  

An extensive vulnerability analysis of the entire stock was subsequently 
developed,  using the previously calibrated DBA procedures: analytical fragility 
curves were derived  with the simplified displacement-based method (DBFr curves) 
for all the multispan rc bridges of the VR stock (101). 
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Seismic risk maps were drafted in the end: the calculation of seismic risk as 
convolution integral of the hazard curve was explicity derived for the RB structures, 
and tabulated for  all the multi-span rc bridges.  The spatial distribution of damage 
was the represented for all the Veneto region stock superimposed on Google Earth 
maps. 

6.2 THE VENETO REGION ROAD NETWORK BRIDGE STOCK 

The first component of a reliable risk assessment model for an infrastructure 
system is the detailed definition of the bridge inventory, that is fundamental for the 
evaluation of the vulnerability characteristics of the exposed structures. The 
reference database of this work is represented by  the stock of  bridges of the 
Veneto Region (N-E of Italy) road network, consisting in 496 bridges belonging to 
the provincial and regional infrastructure systems, mostly located in medium-high 
seismicity areas (Zone 2 and 3 according to the Italian seismic zonation map valid 
for the administrative classification of the country). 

A large number of these structures have been already classified in the Italian 
bridge Interactive Database (I.br.I.D.), arranged by the University of Padova-
Department of Civil, Environmental and Architectural Engineering-    
(http://ibrid.dic.unipd.it/),  which gathers information of about 500 bridges.. The 
database is open-source, and synthetic data for the reference structure such as, 
localization, geometrical and material features, photos, year of construction, are 
made available.  
  In this work, a detailed statistical analysis was carried out on the whole 
bridge stock, on the basis of the results of the structural survey campaign and the 
archival research conducted in years 2007-2010 first on the road network managed 
by Veneto Strade s.p.a. (km 1476,8 of regional and provincial roads in  the province 
of Venezia, Treviso, Belluno, Padova, Verona, Rovigo, with 347 bridges located in 
seismic zones 2, 3 and 4) and subsequently extended to the network of  Vi.abilità 
(km 1250 of provincial roads located  in the province of Vicenza,  with 149 
bridges). The raw data were elaborated and re-organized in this thesis with the aim 
of defining a detailed picture of the properties of existing rc bridges,  with specific 
reference to girder bridges, which represent about 70% of the total number of  
constructions in the database. The final objective of the statistical survey, was the 
definition of the effective ranges of properties influencing the seismic structural 
capacity of the different rc bridge typologies.  

The statistical survey is organized on different levels: a first set (SET 1) of  
statistics considerss the general features of the stock.  At the beginning of the work 
only these general data were partially available. Localization, deck material, 
number of spans, span length, year of construction are reported in this set and 
described in paragraph §6.2.1. 



6. DISPLACEMENT-BASED APPROACHES FOR VULNERABILITY ASSESSMENT OF RC BRIDGES: APPLICATION ON A REGIONAL –
SCALE CASE STUDY  

 
 
 

155 
 

28.2%

38.5%

25.0%

5.2% 3.0%

DC
DPC
DM
DCS
ND

The second set of statistics relates only the category of rc girder bridges, 
focusing on the geometrical and mechanical parameters that may influence the 
capacity of a structure. With reference to the different typological classes of  
bridges (which can differ for static scheme, deck properties, pier, abutment or 
support characteristics, etc..), described in the SET 2a, appropriate ranges for  all 
the geometrical and mechanical parameters having an influence on the seismic 
response were individuated.  Number of spans, deck typeand geometry, span length, 
pier and abutment type, pier cross section type, pier aspect ratio (h/d), pier cross 
section geometries, foundation type etc. were recorded in SET 3a, while 
longitudinal reinforcement ratio, transverse reinforcement ratio, confinement 
parameters, normalized axial loads, foundation type etc. were catalogued in SET 3b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 6.1 –  Localization of the bridges and classification on the base of deck/pier 
material: DC- reinforced concrete, DPC- prestressed reinforced concrete, DM-masonry 

(or unreinforced concrete, deck or piers), DCS-composite/steel, ND-not classified. 
 

A final  set of statistics (SET 4) regards  material properties, for concrete  
and reinforcement steel. On the base of laboratory and in-situ tests, it appeared that 
a wide range of concrete strength were adopted for piers and substantially two types 
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<1920 1920-40 1940-60 1960-80 1980-2000 >2000 ND

3 53 19 104 47 8 262

0.6 10.7 3.8 21.0 9.5 1.6 52.8 100 %

No. of Bridges

496

TOTAL

Year of construction

496

0.6 10.7 3.8

21.0

9.5 1.6

52.8

0
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20
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40
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Year of Construction

%

Most of the structures are single-span (65.1%), with short-medium span 
lengths. Including also multi-span bridges, only 10.7%  have spans longer than 
30.0m, and very long structures, with total length greater than 250m are only 
exceptions (2%).  

 The information available for the stock is very detailed compared to usual 
bridge databases: the geometrical survey, regarded almost all the structures 
(97.6%), while on site tests  were executed on a selected subset of structures 
(14.9%), representative of the different bridge classes. Lab tests were conducted on 
a limited number of bridges (35, 7.1% of the whole) to characterize material 
properties. In addition, an archive research allowed to recover the original projects 
of 87 bridges (mostly rc bridges), which represent  17.5% of the total. 

Tab. 6.1 –SET 1 statistics: general properties of the whole bridge stock. 

  

 
  

   

 

 

DC DPC DM DCS ND

140 191 124 26 15

28.2 38.5 25.0 5.2 3.0 100 %
496

496

TOTAL

Bridge Material

No. of Bridges

28.2
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%%%
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323 38 117 9 9
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6.2.2 Rc bridge stock –SET2- 

The present study focuses mainly on the girder bridges category. The 
classification aiming to the seismic evaluation, composite structures are grouped 
with rc and prc bridges, in an overall girder bridge set, which represents the 66.3% 
of the whole stock (No. 329). 

The data gathering is based on a preliminary subdivision of the whole 
population of rc bridges into  different sets and subsets . This classification is useful 
for establishing of a number of homogeneous classes of rc girder structures, 
characterized by similar properties in terms of structural typology, geometric 
characteristics, static behaviour and finally seismic capacity. 

Three different orders of classification are listed in Tab. 6.3, and indentified 
as follows. 

-MACRO-CLASSES, with reference to deck type:  
1) girder bridges, single span; 
2) girder bridges, multi-span; 
3.) arch bridges; 
4.) frame bridges;  

-CLASSES, with reference to the static scheme adopted:  
Macro-class1 (single span girder bridges)  

1.1) simply-supported bridges (S_SIMPLY); 
1.2) integral bridges (S_INTEG); 

Macro-class2 (multispan girder bridges):  
  2.1) simply supported (M_SIMPLY);  

2.2) gerber bridges (M_GERBER);  
2.3) continuous bridges (M_CONT);  
2.4) simply supported with kinematic chain (M_KINEM).  

Macro-class3 (arch bridges):   

 

 

Girder Slab Arch Deck _Arch Tie_Arch Frame

329 12 10 2 4

92.2 3.4 2.8 0.6 1.1 100 %

No. of Bridges
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3.1) slab arches (rc bridges with barrel-vaults) (SLAB-ARCH),  
3.2) tied arches -with horizontal tie-beams- (TIED ARCH),  
3.3) deck arches -arch connected with pillars to the upper deck-  

(DECK ARCH).  
Macro-class4 (frame bridges):   

4.1) frames 
- SUB-CLASSES, are defined with reference to the main parameters affecting the 

static and seismic response. The subclasses are individuated only for girder bridges, 
in relation to type of bearings (for Classes 1.1), pier static scheme ( for Classes 2.1-
2.2), number of spans and pier arrangement (Class 2.3). Parameters related to pier 
sections, deck material and properties, abutment and foundation characteristics,  are 
considered for  the classification,  but only as internal variables for each subclass. 
Some classes are unique and do not have subclasses (e.g. Classes 1.2- simple span 
integral bridges, and 2.4 multi-span bridges with kinematic chain). The following 
subclasses are identified for 

Class 1.1 ( single span simply-supported girder bridges):  
    1.1.I fixed long. restraint (steel hinges, shear keys)  

        1.1.IIa partial long. restraint-neoprene pads 
    1.1.IIb partial long. restraint-friction support 
    1.1.IIc partial long. restraint-seismic devices 

Class 1.2: no subclasses  
Class  2.1 ( multi-span simply-supported girder bridges): 

2.1.1 single bent piers  
2.1.2 wall piers 
2.1.3 multiple bent piers ( single frame) 
2.1.4 multiple bent piers ( multiple frame) 

Class  2.2 ( multi-span gerber girder bridges): no subclasses 
Class  2.3 ( multi-span continuous girder bridges):  

2.3.1 multi-span bridges with 2-3 spans 
2.3.2  multi-span symmetric bridges (n>3 spans) 
2.3.3 multi-span non symmetric bridges (n>3 spans) 

Each class contains a set of structures with similar properties, and the 
statistics are principally aimed at determining the effective ranges of the significant 
parameters for each class.  

The SET2 of statistics regards the general properties of girder bridges 
(No.329), while SET3 covers more specifically the multi-span classes (No.101 
bridges), with regard to geometric properties of piers (SET3a) and reinforcement 
content (SET3b). In the end a final group of statistics regards material properties 
(SET4), referred to the limited number of structures, specified above, for which it 
was possible to execute on-site and lab tests. 

The main parameters investigated in the statistics are listed in Tab. 6.2. 
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Tab. 6.2 – Parameters used for the classification of rc girder bridges 

   

PARAMETER RANGE CODE
Single Span simply supported S_SIMPLY

Single Span Integral S_INTEG

Multi-Span Simply supported M_SIMPLY

Multi-Span Gerber Scheme GERBER

Multi-Span Continuos CONT

Multi-Span Kinematic Chain KINEM

Arch ARCH

Frame FRAME

Single Span 1

2-3 Spans 2-3

Multi-spans M

Span Leght
Rc Deck DC

Prc Deck DPC

Composite Deck DCS

Slab SLAB

Concrete Double Girder C_DOUBLE

Concrete Multiple Girder C_M_G

Concrete Box C_BOX

Steel Double Girder S_DOUBLE

Steel Multiple Girder S_M_G

Steel Box S_BOX

Straight Deck G-ST

Skew Deck G-SK

Curved Deck G-CV

Deck skweness Low skweness l-SK

Medium skweness m-SK

High skweness h-SK

Cantilever -Single Column- PSC

Cantilever -Wall- PW

Frame -Double Pier- PF2

Frame -Multiple Pier- PFM

Solid Rectangular (or Poligonal) SR

Solid Circular SC

Hollow  Simply-Connected HS

Hollow Multiply-Connected HM
Axial Normalized Load  k
Piers/Abutment height H

Cross section long. 
Aspect Ratio H/BL

Cross section transv. 
Aspect Ratio H/BT

Long. Reinforcement 
Ratio l

Transverse Volumetric 
Reinforcement Ratio st

Confinement Parameter 
( by Mander) c

Neoprene pads NEO

Friction  FRI

Steel‐rubber devices DEV

Spread footings S_FOOT

Pile footings P_FOOT

Pile shafts P_SHAFTS

Caissons CAISSONS

Foundation Type

Bearings

Pier Type

Pier Section

Static Scheme

N of spans        

Deck Material

Deck Properties

Deck geometry



6. DISPLACEMENT-BASED APPROACHES FOR VULNERABILITY ASSESSMENT OF RC BRIDGES: APPLICATION ON A REGIONAL –
SCALE CASE STUDY  

 
 
 

163 
 

mm 

T
a

b
. 6

.3
 –

 I
d

en
ti

fi
ca

ti
on

 o
f 

h
om

og
en

eo
u

s 
cl

as
se

s 
fo

r 
rc

 a
n

d
 p

rc
 b

ri
d

ge
s’

 s
to

ck
. 

 



DISPLA

 

Tab.

  

 

No. o

N

ACEMENT-BASED 

. 6.4 –SET 

S_Sof Bridges

329

No. of Bridges

329

APPROACHES FO

T 2  statistic

SIMPLY S_IN

187

56.8 1

0

10

20

30

40

50

60

%

329

No. of Brid

0

10

20

30

40

50

60

70

%

0-3 3-5 5

1 7

0.3 2.1 2

s

R SEISMIC DESIG

s: rc and pr

NTEG M_SI

41 6

12.5 2

Static S

56.8

12.5

1 2

228

69.3 4

dges

N 

69.3

1

5-10 10-15

76 79

23.1 24.0

Span

GN AND VULNERA

164 

rc bridges g

IMPLY M_GE

68

0.7 2

Scheme - RC

20.7

2.1

2-3 4-10

16 79

4.9 24.0

 of Spans

4.9

2

2‐3 4

15-20 20-25

51 48

15.5 14.6

n Lenght [m]

ABILITY ASSESSM

general pro

ERBER M_CO

7 2

2.1 7.

C

1 7.0 0

>10

6

1.8 100

TOT

32

24.0

1.

4‐10 >1

25-30 30-40

25 28

7.6 8.5

]

ENT OF MULTI-SP

operties 

 

 

 

 

ONT M_KIN

3 3

.0 0.9

0.9

%

TAL

29

.8

10

40-60 >60

12 2

3.6 0.6

PAN RC BRIDGES

 

NEM

9 100 %

TOTAL

329

100 %

329

TOTAL

S 
 
 
 
 

 %

L



6. DISPLACEMENT-BASED APPROACHES FOR VULNERABILITY ASSESSMENT OF RC BRIDGES: APPLICATION ON A REGIONAL –
SCALE CASE STUDY  

 
 
 

165 
 

 

 

  

 

   

 

 

C_SLAB C_DOUBLE C_M_G C_BOX S_DOUBLE S_M_G S_BOX

48 3 248 5 7 17 1
14.6 0.9 75.4 1.5 2.1 5.2 0.3 100 %

329
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Deck Properties
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14.6 0.9

75.4

1.5 2.1 5.2 0.3
0

10

20

30

40

50

60

70

80
yp

%

CURVED STRAIGHT

17 312

5.2 94.8 100 %

No. of Bridges TOTAL

329

Deck geometry

329

5.2

94.8

0

10

20

30

40

50

60

70

80

90

100

CURVED STRAIGHT

%

NEO DEV FRI OTHER

84 10 200 35

25.5 3.0 60.8 10.6 100 %

No. of Bridges

329

TOTAL

Bearings

329

25.5

3.0

60.8

10.6
0

10

20

30

40

50

60

70

NEO DEV FRI OTHER

%



DISPLACEMENT-BASED APPROACHES FOR SEISMIC DESIGN AND VULNERABILITY ASSESSMENT OF MULTI-SPAN RC BRIDGES 
 
 
 
 

166 
 

15.8

38.6

21.8 23.8

0

10

20

30

40

50

PSC PW PF2 PFM

%

Tab. 6.5 –SET 3a  statistics: multi-span  rc girder bridges properties 

 

    

 
 

 

 

  

<10 10-15 15-20 >20 ND

22 72 2 4 1
18.3 60.0 1.7 3.3 0.8 100 %

101
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No. of Bridges TOTAL
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%

PSC PW PF2 PFM

16 39 22 24
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Pier Type 

No. of Bridges
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TOTAL

SR SC HS HM

53 46 1 1
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TOTAL
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Tab. 6.6 –SET 3b statistics: pier geometric properties of multi-span  rc girder 
bridges 
  

 

                        

P_FOOT S_FOOT P_SHAFTS CAISSONS

22 12 2 0

61.1 33.3 5.6 0.0 100 %

Foundation Type

TOTAL

36
36
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%
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0 0 0 1 5 1 4 0

0.0 0.0 0.0 9.1 45.5 9.1 36.4 0.0 100 %

3 2 18 12 0 0 0 0

8.6 5.7 51.4 34.3 0.0 0.0 0.0 0.0 100 %

Single-Column 
Bent 11

35

Circular Piers: DIAMETER -D- [m] 
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Tab. 6.7 –SET 3c  statistics: pier reinforcement ratio and confinement 
parameter 

 

 MMM 

 

  

<0.1 0.1-0.2 0.2-0.35 0.35-0.5 0.5-0.75 0.75-1 1-1.25 >1.25
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6.2.3 Material properties of the existing rc bridges (SET4) 

A final set of statistics regards material properties: strength properties for 
concrete (fcm on cylindrical specimen with h/d ratio equal to 1), yield strength fym, 
ultimate strength ftm, and elongation for steel bars were derived from the results of 
laboratory tests. In the following tables frequency istograms and relative probability 
density functions and cumulative probability curves are presented for normal and 
log normal distributions. A wide dispersion of values was obtained for concrete 
strength (from Rcm<15 MPa to Rcm>70 Mpa), considering all the specimens together 
in a single set (no. 57, concrete cores extracted were generally more than one for 
each bridge). A mean value of 37.1 MPa and standard deviation of 15.28 MPa were 
obtained for normal distribution fitting the frequency istograms. Also the non 
symmetric lognormal distribution was found to satisfy the test used for fitting the 
distribution curve, with a mean value Rcm=27.93 MPa. 
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Tab. 6.8 –SET 4 statistics: Rcm values obtained from laboratory tests on concrete 
specimens 

 

 

 
Dividing tests results on concrete with regard to pier types, it can be noted 

that there is still a wide range of strength, but some differences can be evidenced. 
Single column bent (cantilever) piers are generally made of good concrete (Rcm≥30 
MPa), while wall piers exbith the highest percentage of unsatisfactory resistance 
(10% of samples  have Rcm<20 MPa), and concrete strength never reach high values 
(Rcm<60 MPa). Multicolumn bent show a wider dispersion, with the same 
percentage (6.7%) of low and high strength values (Rcm<20 MPa and Rcm>60 MPa 
respectively), while most of the samples are in a medium range, with 25<Rcm<60. 
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bars in two category, type Aq 50-60 and FeB44k, and subsequently updating 
material properties with bayesan approach. 

Tab. 6.11 –SET 4b statistics: Fym, Ftm, Elongation 5  values obtained from 
laboratory test on reinforcement bar specimens  

 

 

 

 

 

Tab. 6.12 –SET 4 statistics: Fym, Ftm, Elongation 5  values obtained from 
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6.2.3.1 Bayesian updating of reinforcement bars properties 

Bayesian statistics provide a powerful tool to update prior information (e.g. 
based on code requirements) with additional information on material properties 
derived by in situ tests or lab tests. As material properties are often considered as 
normal or lognormal variables in fragility analysis, normal gamma or lognormal 
gamma distribution form a class of natural conjugate priors, that enable to easily 
update prior hyperparameteres for these properties.  

In this case a normal distribution was assumed as prior information: 

																 ோ݂ሺܴሻ ൌ ܰሺܴ௠଴, ோ଴ሻߪ ൌ
1

ோ଴ߪ ∙ √2 ∙ ߨ
݌ݔ݁ ቆെ

1
2
∙ ൬
ݔ െ ܴ௠଴

଴ߪܴ
൰
ଶ

ቇ 				(6.1) 

where N is the probability normal function, ܴ௠଴ is the prior mean value of the 
variable R (fy, ft), and ߪோ଴ its standard deviation.  

The following relationship can be assumed between characteristic and mean 
value: 
    											ܴ௞଴ ൌ ܴ௠଴ െ 1.64 ∙ .ሺ6																																																																										ோ଴ߪ 2ሻ	

Characteristic values  can be statistically updated on the basis of the results 
x1, x2, ..., xn tests, using the following equations: 

																ܴ௠ ൌ
ሺݔ௠ ∙ ோ଴ߪ

ଶ ൅ ܴ௠଴ ∙ ௫ଶሻߪ
ሺߪ௫ଶ ൅ ோ଴ߪ

ଶ ሻ
, ோߪ ൌ ඨ

௫ଶߪ ∙ ோ଴ߪ
ଶ

௫ଶߪ ൅ ோ଴ߪ
ଶ 																															ሺ6. 3ሻ 

where xm, x are the mean value and standard deviation of the specimen sample 
tested and Rm, R, are the variable updated values.  

This procedure was used for the strength parameters of reinforcement bars, 
smooth bars and deformed bars. On the base of prior code information, smooth bars 
were supposed to be applied extensively in the constructions of the VR stock 
realized till the beginning of the 1970s (type Aq50 was selected as reference type), 
and deformed bars afterwards ( FeB44k type was chosen for deformed bars). 

 
Tab. 6.13 –Requirements for reinforcement bars according to different Italian Codes of 
past decades. 

Code
D

Dolce Semiduro Duro Aq42 Aq50 Aq60 FeB22 FeB32 A38 A41 FeB44
Fy ≥ 225 ≥ 260 ≥ 300 ≥ 225 ≥ 260 ≥ 300 - ≥ 215* ≥ 315* ≥ 375* ≥ 400* ≥ 430*
Ft 420 - 490 490 - 585 585 - 685 410 - 490 490 - 585 585 - 685 - ≥ 335* ≥ 490* ≥ 450* ≥ 490* ≥ 540*

Elongation 
A5

- - - - - - - ≥ 24* ≥ 23* ≥ 14* ≥ 14* ≥ 12*

Elongation 
A10

≥ 20 ≥ 16 ≥ 14 ≥ 20 ≥ 16 ≥ 14 ≥ 12 - - - - -

Elongation 
Agt

- - - - - - - - - - - -

Bar type D
R.D.L. n° 2229/1939 LL.PP. N° 1472/1957 D.M. 30/05/1972

S S S
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xm/Rm

xm mx Rm0 m0 Rm m [%]

fy [MPa] 357.54 16.86 260.00 30.00 330.00 14.70 108.34
ft [MPa] 551.00 28.85 535.00 25.00 550.00 18.89 100.18

Elongation 
A5 [%]

27.67 5.35 16.00 1.00 16.39 0.98 168.76

fy [MPa] 449.00 32.76 466.93 35.00 460.00 23.92 97.61

ft [MPa] 672.94 51.02 610.72 30.00 620.00 25.86 108.54
Elongation 

A5 [%] 22.56 3.56 13.64 1.00 14.29 0.96 157.83

Aq50-60

FeB44k

 Specimens Prior values Updated values
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fy ‐ Aq50/Aq60
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0.00
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0.10

0.15
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0.30

150 250 350 450 550 650 750

fy ‐ FeB44K

Prior pdf
Specimen
Updated  pdf

 

 
 
In the following tables the prior information and the updated values Rm, m 

for Normal distribution are reported. The updated values of mean strength and 
standard deviation, reported  in Tab. 6.13, were used in fragility analyses for the 
normal distribution of  steel bars, type Aq 50-60 and FeB44k (for smooth bars and 
deformed bars respectively). 

 
Tab. 6.14 – Updating of Normal pdf distribution parameters for smooth bars ( type 
Aq50-60) and deformed bars (type FeB44k) 

 

 

a) b)

Fig. 6.4 –  Normal pdf of yield strength fy,  for prior distribution, distribution 
obtained by test values on specimen, and updated pdf with Bayesian approach: a) 

smooth bars (Aq50-60), b) deformed bars (FeB44K) 

Code
D D D D

FeB22 FeB32 FeB38 FeB44 FeB22 FeB32 FeB38 FeB44 B450A B450C
Fy ≥ 215* ≥ 315* ≥ 375* ≥ 430* ≥ 215* ≥ 315* ≥ 375* ≥ 430* ≥ 450* ≥ 450*
Ft ≥ 335* ≥ 490* ≥ 450* ≥ 540* ≥ 335* ≥ 490* ≥ 450* ≥ 540* ≥ 540* ≥ 540*

Elongation 
A5

≥ 24* ≥ 23* ≥ 14* ≥ 12* ≥ 24* ≥ 23* ≥ 14* ≥ 12* - -

Elongation 
A10

- - - - - - - - - -

Elongation 
Agt

- - - - - - - - ≥ 2,5* ≥ 7,5*

SBar type

D.M. 14/01/2008
S D
D.M. 30/05/1974 D.M. 09/01/1996

S= smooth bars, D= Deformed bars
* Characteristic values referred to a 5% fractile for strength and 10% fractile for elongation
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6.2.4 Extent of the database 

The statistical survey described in the previous paragraphs allowed to 
highlight the effective ranges of  the main pier parameters for multi-span bridges, in 
terms of geometry, reinforcement content, confinement parameters, normalized 
axial load that are necessary  for the calculation of pier capacity.  

The significant values obtained directly from the VR stock are reported in 
the following tables. In the tables the ranges used as reference values for the 
parametrical analysis developed in Chapter 5 are also presented. It has to be noted 
that some values are extrapolated  to fill some gaps of the bridge inventory, due to 
the small number of samples present in the database for some sub-category. 

It can be noted that reinforcement content is generally very low: longitudinal 
reinforcement ratio l (Eq.6.1) piers has as upper bound value of 1% for single 
cantilever piers, that is the minimum amount generally required for columns by 
current seismic codes, and percentages less than 0.5% are very frequent. Transverse 
reinforcement volumetric ratio st has extremely low values (0.05-0.3%), being the 
standard transversal reinforcement arrangement of piers represented by perimetral 
hoops D10-12@25-30cm, without any internal tie legs. This leads to very low value 
of confinement parameter c, 1.05-1.15,  while generally varying for newly 
designed structures between 1 and 2. 

Normalized axial load acting, k, is always less than 0.25, so columns have 
limited compressive stress due to vertical loads (0.6 is the upper limit provided by 
most codes for ductile behaviour of columns in seismic zones). 
 Symbols used are reported in the following equations: 

s
l

A

Ac
    longitudinal reinforcement ratio    (6.4)   

sw
st

w L

A

b s
   transverse reinforcement volumetric ratio  (6.5)   

Ed
k

c ck

N

A f
      normalized axial load    (6.6)   

c    confinement parameter (see Eq. 5.28) 
where: 

As= total area of longitudinal reinforcement 
Ac= area of concrete cross-section 
Asw= total area of transverse steel within a distance sL, (mm2) 

 
 

In the following tables the ranges directly obtained from the VR database for 
significant pier parameters are reported for cantilever and frame piers (single and 
multiple bent). Rounded values to be considered as representative of the effective 
ranges are also reported, representing the basis for the combinations adopted in the 
parametric analysis of Chapter 5. Values with bold characters are extrapolated and 
not directly found in the VR bridge inventory. 
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Single Bent 
Circular Piers Min Max Mean 

D [m] 1.9 3.5 2.62 
H [m] 3.60 10.90 7.23 2.21
H/D 1.71 4.95 2.88 1.04
l [%] 0.22 0.31 0.24 0.11
st [%] 0.04 0.27 0.18 0.12

c 1.03 1.17 1.10 0.50
k 0.02 0.16 0.06 0.06

Concrete 35.60 63.58 44.34 22.91
Reinf. steel Aq50-60 FeB44K

2 2.3 2.6 2.9 3.2 3.5
4 6 8 10 12 16

1.75 2 2.5 3 4 6 8
0.2 0.35 0.5 0.7 1

0.05 0.1 0.2 0.3 0.4
1 1.1 1.2

0.05 0.1 0.15 0.2
30 35 40 45 55 65

Aq50-60 FeB44K

Representative values for parametrical analysis

3 3.5 5
2 2.5 3 3.5

4 6 8 10 14 18
2 2.5 3 4 6

0.2 0.35 0.5 0.7 1
0.05 0.1 0.2 0.3 0.4

1 1.1 1.2
0.05 0.1 0.15

30 35 40 45 55 65
Aq50-60 FeB44K

Representative values for parametrical analysisSingle Bent 
Square Piers Min Max Mean 

BT [m] 3.30 3.50 3.40 0.14
BT/BL 2.00 3.50 2.75 1.06
H [m] 2.00 16.00 10.40 7.92
H/BT 1.37 4.57 2.97 2.26
l [%] 0.26 0.71 0.48 0.31
st [%] 0.10 0.15 0.13 0.03

c 1.03 1.09 1.06 0.04
k 0.02 0.03 0.03 0.01

Concrete 35.68 50.60 42.32 7.59
Reinf. steel Aq50-60 FeB44K

Wall Piers
Min Max Mean 

Wall thick. BL[m] 0.40 2.25 1.17 0.48
BT/BL 3.56 43.70 10.65 8.07
H [m] 0.80 18.00 4.82 2.92
H/BL 0.75 12.00 4.70 2.49
l [%] 0.03 0.34 0.22 0.09
st [%] 0.03 0.19 0.10 0.05

c 1.01 1.07 1.02 0.02
k 0.00 0.06 0.02 0.01

Concrete 16.23 55.17 38.89 15.58
Reinf. steel Aq50-60 FeB44K

0.4 0.8 1.2 1.6 2.2

3.75 4 5 10 20 40 45
2 4 6 8 12 18

0.75 2 4 6 8 12
0.05 0.2 0.35 0.5
0.025 0.05 0.1 0.2

1 1.05 1.1
0.05 0.1

15 25 30 35 40 45 55
Aq50-60 FeB44K

Representative values for parametrical analysis

 
Tab. 6.15 –Significant parameters of the VR stock – single bent circular piers-: a) 
effective ranges, b) representative values individuated for parametrical analysis 

a) b) 
Tab. 6.16 – Significant parameters of the VR stock – single bent square piers-: a) 
effective ranges, b) representative values individuated for parametrical analysis 

a) b) 
 
 

Tab. 6.17 – Significant parameters of the VR stock –wall piers: a) effective ranges, b) 
representative values individuated for parametrical analysis 

a) b) 
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Aq50-60 FeB44K
Fy [MPa] 330 460
Ft   [MPa] 550 620
Agt [%] 13.5 11.5

Multiple Bent 
Circular Piers Min Max Mean 

D [m] 0.30 1.60 1.22 0.36
H [m] 2.50 18.87 5.57 2.88
H/D 2.04 11.79 4.87 2.17
l [%] 0.16 0.90 0.39 0.20
st [%] 0.09 0.27 0.15 0.05

c 1.05 1.15 1.09 0.04
k 0.03 0.24 0.07 0.04

Concrete 26.75 77.24 39.35 15.56
Reinf. steel Aq50-60 FeB44K

Multiple Bent 
Square Piers Min Max Mean 

BT [m] 0.60 1.50 0.99 0.35
BT/BL 0.60 2.50 1.38 0.63
H [m] 3.75 10.00 5.66 1.95
H/BT 3.20 9.50 6.25 2.36
l [%] 0.36 1.82 0.81 0.55
st [%] 0.13 0.30 0.20 0.06

c 1.02 1.06 1.04 0.01
k 0.01 0.17 0.09 0.05

Concrete 17.51 50.66 35.58 13.13
Reinf. steel Aq50-60 FeB44K

0.3 0.6 0.9 1.2 1.5 1.8
2 4 6 8 10 14 18

2 4 6 10 12
0.3 0.5 0.75 1 1.5 1.8

0.05 0.1 0.2 0.25 0.4
1 1.1 1.2 1.3

0.05 0.1 0.15 0.2 0.25
20 25 35 40 45 50 60 70

Aq50-60 FeB44K

Representative values for parametrical analysis

0.5 1 1.5 2
0.75 1 1.5 2 2.5

2 4 6 10 14 18
2 4 6 10 12

0.3 0.5 0.75 1 1.5 1.8
0.05 0.1 0.2 0.3 0.4

1 1.1 1.2 1.3
0.05 0.1 0.15 0.2 0.25

20 25 35 40 45 50 60 70
Aq50-60 FeB44K

Representative values for parametrical analysis

Tab. 6.18 – Significant parameters of the VR stock – multiple bent circular piers-: a) 
effective ranges, b) representative values individuated for parametrical analysis 

                                    a) b) 
 
Tab. 6.19 – Significant parameters of the VR stock – multiple bent square piers-: a) 
effective ranges, b) representative values individuated for parametrical analysis 

a) b) 
 
Tab. 6.20 – Characteristics of reinforcement steel 
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 No. 
RBs 

N° Zone Name Road     
(S.P.- S.R.)

Km Year Span L span
[m]

2.1 M_SIMPLY 2.1.1a RBs1 496 2 Botteon S.S. 51 X 1978 7 24.00
2.1.1.b RBs2 304 3 Rio Ghisel S.R. 203 39+056 1972 5 16.40
2.1.2a RBs3 334 3 Torrente Frison S.R. 465 4+200 1967 3 48.8
2.1.3a RBs4 196 3 Cavalcavia A27 S.R. 89 2+778 1988 3 37.50
2.1.3b RBs5 59 2 Cav. Vittorio Veneto - S.P. 32 0+429 1970 21 23.73
2.1.3b RBs6 5 2 Campelli S.P. 251 103+750 1964 8 30.33
2.1.4a RBs7 8 2 S.P.248 "Schiavonesca" S.R. 348 17+710 1967 3 16.14
2.1.4b RBs8 21 3 Fiume Reghena S.R. 53 113+712 1970 4 24.00

2.2 GERBER 2.2.1 RBs9 35 2 Fante d'Italia S.P. 1 bis 16+078 1969 13 34.50
2.2.2. RBs10 162 3 Canal Bianco S.R. 482 59+831 1971 3 31.35

2.3 CONT 2.3.1.II.c RBs11 400 3 Autostrada A4 S.P. 21 4+846 ND 3 36.40
2.3.1.I.c RBs12 197 3 Cavalcavia A13 S.R. 06 4+400 1967 3 26.1
2.3.1.II.d RBs13 116 3 Cavalcavia zona città S.R. 11 292+800 1974 2 5.00
2.3.2.II.a RBs14 70 3  Cavalcaferrovia FF.SS S.R. 245 2+486 2000 12 33.00
2.3.2.II.b RBs15 292 3 Cavalcavia Borgo Vicenza S.R. 47 29+990 1994 6 26.30
2.3.3.I.a RBs16 299 3 Pontet l S.R. 50 60+608 1994 6 58.00

2.4 KINEM 2.4.1 RBs17 495 3 Cavalcavia Silea S.R. 53 X 2004 4 40

CLASS

6.2.5 Reference Bridge structures 

A limited number of Reference Bridge structures (RBs) was chosen in the 
inventory as representative elements for each homogeneous bridge class and 
subclass. The listing of these structures, with reference to the corresponding class, is 
reported in Tab. 6.11. Brief summaries with the main characteristics of the bridges 
are reported in Appendix C. 

In the following paragraphs, the RBs belonging to multi-span bridge classes 
2.1-2.4, are used as bridge samples in DBA analysis and TH verification,  firstly 
with a direct deterministic approach  (see §6.3), and subsequently in a probabilistic 
framework for the construction of fragility curves. 

 
Tab. 6.21 – Reference Bridge structures: Macro-class 2. Classes 2.1, 2.2, 2.3, 2.4. 
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6.3 DISPLACEMENT-BASED ASSESSMENT OF REFERENCE 
BRIDGE STRUCTURES: DETERMINISTIC APPROACH 

In this section deterministic verifications with the DBA approach (described 
in §2.3.2.1) are carried out on a selected number of structures, represented by the  
the Reference Bridge structures(RBs) for multi-span girder bridges specified in the 
previous paragraph, assumed as representative samples of the respective 
homogeneous classes and subclasses (see Tab.6.19). 

 Direct applications of the DBA/C procedure (see §2.3.2) are carried for the 
three performance levels established in §6.3.6. Displacement-based approach results 
are subsequently compared with NLTH verifications: for each PL, Incremental 
Dynamic Analyses (Vamvatsikos & Cornell[V1], 2002) were performed by scaling 
incrementally the set of spectrum-compatible accelerograms till the ultimate pier 
displacement capacity was reached for PL3, or other displacement level 
individuated by the corresponding PL1 or PL2.  

The mean value 1,2,3( )j PL  of the recorded seismic action scaling factors 
j,is accepted as the Capacity/Demand ratio for the structure being assessed  
(Paskoy and Petrini[P15], 2012). The damage index is represented by the inverse 
value 1/D/C(see Eq. 6.6). 

6.3.1 F.E. model 

Incremental Dynamic Analyses and comparisons with the simplified DBA/C 
approach are implemented in the finite element code Opensees (McKenna et al.[Y1], 
2007).  

Three dimensional nonlinear F.E. models were developed for the analysis. 
Thery are spine model of the bridge structure with line elements located at the 
centroid of the cross section following the alignment of the bridge. The frame 
elements representing only the single pier for multi-span simple supported bridges 
(Classes 2.1, 2.2), and the entire 3D structure for continuous bridges (Classes 2.3, 
2.4).  Pier members are modeled with non linear elements, while superstructure 
(deck) is modeled with linear elements.  

The pier schematization is a direct applications of the flexural-shear model 
validated in Chapter 5 (the reader is referred to §5.2.4 for more details). The 
flexural behaviour is obtained with a fiber-modeling schematization: each element 
is subdivided in fibers, such that it is possible to assign for each material the 
constitutive model and exact position of reinforcing bars. A different number of 
element in used in dependence of the type of static scheme for pier bent (cantilever 
or frame) and its height. The Concrete02 model (available in the Opensees library), 
calibrated on Mander model, is chosen for the concrete ( cover and core of the 
section) behavior, while the reinforcing steel bars are modeled according to 
Menegotto-Pinto constitutive law (see §5.2.4). In order to represent the shear 
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The correspondance between Pvr and return period Tr is defined by the well-
known relationship: 

														 ோܶ ൌ െ ோܸ

݈݊൫1 െ ௏ܲ௥ሺܵܮሻ൯
																																																																								ሺ6.7ሻ 

thus the return periods associated to PL1, PL2, PL3 are Tr=225, 1225, 4975 
years. 

The seismic input used herein for the DBA method is represented by smooth 
response spectra defined by the Italian Seismic Code [X1]. The horizontal 
acceleration spectra are characterized by following equations: 
 

0 ൑ ܶ ൑ ஻ܶ ܵ௘ሺܶሻ ൌ ܽ௚ ∙ ܵ ∙ ߟ ∙ ଴ܨ ∙ ቂ
்

்ಳ
൅ ଵ

ఎ∙ிబ
∙ ቀ1 െ ்

்ಳ
ቁቃ 

஻ܶ ൑ ܶ ൑ ஼ܶ        ܵ௘ሺܶሻ ൌ ܽ௚ ∙ ܵ ∙ ߟ ∙  ଴ܨ

஼ܶ ൑ ܶ ൑ ஽ܶ        ܵ௘ሺܶሻ ൌ ܽ௚ ∙ ܵ ∙ ߟ ∙ ଴ܨ ∙ ቀ
்಴
்
ቁ                               			(6.8) 

஽ܶ ൑ ܶ                 ܵ௘ሺܶሻ ൌ ܽ௚ ∙ ܵ ∙ ߟ ∙ ଴ܨ ∙ ቀ
்಴∙்ವ
்మ

ቁ  

where:  	

	 ஼ܶ ൌ ஼ܥ ∙ ஼ܶ
∗	,			 ஻ܶ ൌ ஼ܶ 3,⁄ ߟ		  ൌ ට

ଵ଴

ହାక
൒ 0.55, 	

஽ܶ ൌ 4,0 ∙
௔೒
௚
൅ 1.6  represents the corner period  

The corresponding displacement response spectra Sde(T) are obtained by Eq. 2.7.  

 

Fig. 6.9 – Smooth elastic acceleration and displacement response spectra for 
PL1, PL2, PL3 according to Eq. 6.5 for Campelli Bridge construction site (Longarone-

BL-, Zone 2, ground type B) 
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The input parameters ag, Fo, Tc are defined for the specific construction site 
of each bridge, by interpolating on the reference grid values supplied by the code, 
while the  S factor varies to the ground type of ground and topographic condition of 
the site.  

As said above, the DBA results were compared against those obtained with 
non linear time histories analyses for the selected RBs. Seismic input for analyses in 
time domain was represented by a set of 7 synthetic accelerograms compatible with 
the code spectrum for each PL, generated with the SIMQKE program (Gasparini 
and Vanmarcke[G4], 1976). In Fig. 6.10 a typical set of generated ground motions, 
compatible with the PL3 spectrum of Fig. 6.8 is presented. The corresponding 
acceleration response spectra for the 7 generated accelerograms, compared with the 
relative code acceleration response spectra, are plotted in Figs. 6.9 a,b 
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Strain c= 0.004 es=0.015 c=  cdc <0.01 s= 0.6su<0.06

Drift

Brittle 
shear 

behaviour
Drift

PIERS

Spalling of 
concrete, residual 
crack widths max 

1.0mm

Significative 
repair required, 
wide flexural or 

shear crack

Collapse does not take place; 
extensive damage, not repairable, 

due to shear failure of vertical 
elements or excess flexural 

Description

LS1   LS2 LS3
(Sligth Damage) (Severe Damage) (Extensive/Complete)

Ductile 
flexural 

behaviour yn u u

cr s 1.1 s

corresponds to the displacement (or drift) tied to strain on materials equal to 
c=1.5c,dc and s=0.9su. For the intermediate severe damage limit state, a drift limit 
corresponding to 2/3u, was chosen;  alternatively it could be represented by the 
attainment of the ultimate deformation on the most outer fibers of the concrete core, 
c=c,dc (see Eq.2.4), or a limited steel deformation s=0.6su.  

Corresponding limit states are defined also for piers with shear behaviour; 
LS1 is individuated as drift (cr) corresponding to the attainment of the shear value 
corresponding to shear cracking, Vcr, while LS2 is represented by the drift 
corresponding to shear ultimate resistance s, and LS3 is  set to 1.1s, considering 
that  a residual displacement capacity is still present after shear ultimate force has 
been reached. 

Tab. 6.23 –Definition of limit states for the assessment of rc bridge piers 

 
Damage measures (DM) are directly defined in relation to the attainment of 

the limit displacement for each performance level, in terms of ratio between 
displacement demand and capacity  

DMPLj=(D/C)PLj        (6.9) 

Taking LS1 as example, for a cantilever pier of height h, the displacement 
capacity is expressed by C,LS1=ynh, which value is directly compared with the 
displacement demand D in terms of elastic spectral displacement according to the 
procedure described in §2.3.2.1. 

6.3.4 Comparison of results between DBA approach and 
TH verification 

The result of the comparison between DBA analysis and TH verification are 
reported in this paragraph for each one of the Reference Bridge structures selected, 
as representative of multi-span rc girder bridges of classes 2.1, 2.2 ( see Tab. 6.19). 

The behaviour is separately investigated in the longitudinal and transverse 
direction for multiple bent bridge piers, which act under horizontal inertial forces as 
cantilever structures along the bridge axis, and as frames (simple or multiple) in the 
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orthogonal direction. For wall piers the longitudinal direction is the most 
vulnerable, so only longitudinal behaviour is investigated. 

Capacity curves are also reported, with the definition of the shear envelope 
and the performance levels attained. Capacity curves are plotted with reference to a 
single column  also for multiple bents, to characterize the pier behaviour (Shear-S-, 
Flexure-Shear, FS, or flexure, F),  and corresponding ductility values and drift 
values. 

The mean error with reference to the C/D ratio is calculated as follows: 

        (6.10) 
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Flexure (F) D [mm] F [kN]  [%] 
0 0

PL1 115 811.82 1.00 0.72

PL2 522 770.49 4.54 3.26

PL3 783 755.38 6.81 4.89

Flexure (F) D [mm] F [kN]  [%]  
0 0 00

PL1 63 1697.81 1.00 0.39

PL2 326 1637.12 5.17 2.04

PL3 489 1580.93 7.76 3.06

Botteon-L- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 115 811.82 0.050 2.264 0.558 1.793 

 PL2 522 770.49 0.168 3.603 2.458 0.407 

 PL3 783 755.38 0.177 4.217 1.740 0.575 

Botteon-L- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 0.539 0.049 9.093 0.490 0.588 0.558 -3.550 
 PL2 2.323 0.035 1.507 2.288 2.358 2.458 -5.82 
 PL3 1.580 0.091 5.760 1.489 1.671 1.740 -10.13 

BOTTEON-T- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 63 1697.81 0.050 1.097 0.621 1.609 
 PL2 326 1637.12 0.170 2.907 1.284 0.779 
 PL3 489 1580.93 0.186 3.726 0.954 1.048 

Botteon-T- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 1.740 0.069 3.965 1.671 1.809 1.609 7.53 
 PL2 0.891 0.117 13.127 0.774 1.008 0.779 12.60 
 PL3 1.261 0.126 9.996 1.135 1.387 1.048 16.86 

RBs 1-Botteon Bridge 

Tab. 6.24 – RBs1: Capacity curves of a single column of the pier bent: a) longitudinal b) 
transverse direction 

 
a) b) 

  

Tab. 6.25 – RBs1: long. direction (L), comparison between DBA and TH results  

DBA analysis-L 

 

TH verification-L 

 

Tab. 6.26 – RBs7: transverse. direction (T), comparison between DBA and TH results 
DBA analysis-T 

 

THA verification-T 
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Flexure (F) D [mm] F [kN]  [%]   

PL1 18 1030.5 1.00 0.3

PL2 85 996.2 4.83 1.3

PL3 128 974.6 7.24 2.0

Rio Ghisel  cap  Vbase  c  Tc  C/D   DMPL=D/C 

       [mm]  [KN]  ‐  [s]  - ‐ 

   PL1 18 1030.5 0.050 0.513 1.373 0.728 
PL2 85 996.2 0.162 1.146 2.197 0.455 

   PL3 128 974.6 0.172 1.419 1.624 0.616 
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F
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Shear  Envelope
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Rio Ghisel TH DBA Error 

 
C/D  C.o.V C/D ±  C/D   

  
- - [%] - - % 

  PL1 1.383 0.125 9.004 1.259 - 1.508 1.373 0.754 

 PL2 2.373 0.220 9.272 2.153 - 2.592 2.197 7.412 
  PL3 1.828 0.133 7.259 1.695 - 1.960 1.624 11.113 

RBs 2-Rio Ghisel Bridge 

Tab. 6.27 – RBs2: Capacity curve of the pier: a) longitudinal and transverse direction 

 

a) 
 

Tab. 6.28 – RBs 2: long. and transverse direction, comparison between DBA and TH 
results  

DBA analysis 

 

THA verification 
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Flexure (F) D [mm] F [kN]  [%]   

PL1 91 1059.99 1.00 0.62

PL2 283 1049.28 3.11 1.91

PL3 425 1028.89 4.66 2.87

Frison-L- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 91 1060.0 0.050 1.113 1.039 0.962 
 PL2 283 1049.3 0.135 2.983 2.274 0.440 
 PL3 425 1028.9 0.154 3.699 2.034 0.492 

Frison-L- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 0.984 0.091 9.249 0.893 1.075 1.039 -5.60 
 PL2 2.480 0.083 3.346 2.397 2.563 2.274 8.32 
 PL3 2.229 0.138 6.192 2.091 2.367 2.034 8.74 

RBs 3- Frison Bridge 

Tab. 6.29 – RBs 3: Capacity curves of the pier: a) longitudinal direction 

 

a) 
 

Tab. 6.30 – RBs 3: long. direction (L), comparison between DBA and TH results  

DBA analysis-L 

 

TH verification-L 
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Cav. A27-L- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 24 438.09 0.050 0.617 0.734 1.363 
 PL2 108 409.32 0.167 1.527 1.346 0.743 
 PL3 162 391.89 0.175 1.911 1.073 0.932 

Cav. A27-L- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 0.726 0.060 8.319 0.666 0.786 0.734 -1.04 
 PL2 1.483 0.155 10.463 1.328 1.638 1.346 9.26 
 PL3 1.185 0.132 11.147 1.053 1.317 1.073 9.46 

Flexure (F) D [mm] F [kN]  [%] 

PL1 15 901.39 1.00 0.3

PL2 72 855.56 4.93 1.5

PL3 109 828.07 7.39 2.2

Cav. A27-T- c Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
   PL1 15 901.387 0.050 0.344 0.842 1.187 

PL2 72 855.565 0.168 0.866 1.601 0.625 
   PL3 109 828.074 0.176 1.078 1.281 0.780 

Cav. A27-T- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

  PL1 0.959 0.139 14.494 0.820 1.098 0.842 12.20 

 PL2 1.897 0.182 9.579 1.716 2.079 1.601 15.65 

  PL3 1.569 0.133 8.493 1.436 1.702 1.281 18.33 
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Flexure (F) D [mm] F [kN]  [%

PL1 24 438.09 1.00 0.5

PL2 108 409.32 4.44 2.2

PL3 162 391.89 6.66 3.3
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RBs 4- A27 Bridge 

Tab. 6.31 – RBs7: Capacity curves of a single column of the pier bent: a) longitudinal b) 
transverse direction 

a) b) 

  

Tab. 6.32 – RBs7: long. direction (L), comparison between DBA and TH results  

DBA analysis-L 

 

TH verification-L 

 

Tab. 6.33 – RBs7: transverse. direction (T), comparison between DBA and TH results 
DBA analysis-T 

 

THA verification-T 
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Flexure (F) D [mm] F [kN]  [%]  

PL1 25 518.51 1.00 0.4

PL2 130 446.18 5.10 2.4

PL3 195 401.2 7.65 3.5

Campelli-L- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 25 518.52 0.050 0.689 0.599 1.670 
 PL2 130 446.18 0.164 1.676 1.075 0.931 
 PL3 195 401.20 0.173 2.165 0.888 1.126 

Campelli-L- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 0.540 0.068 12.540 0.473 0.608 0.599 -10.79 
 PL2 1.201 0.090 7.499 1.111 1.291 1.075 10.54 
 PL3 1.006 0.134 13.282 0.872 1.139 0.888 11.67 

Campelli-T- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 0.699 0.034 4.861 0.665 0.733 0.677 3.20 
 PL2 1.326 0.133 10.048 1.193 1.459 1.232 7.11 
 PL3 1.265 0.066 5.250 1.199 1.332 1.013 19.95 
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Flexure (F) D [mm] F [kN]  [%] 

PL1 16 1078.37 1.00 0.3

PL2 83 966.43 5.28 1.5

PL3 124 916.3 7.93 2.3

Campelli-T- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 16 1078.37 0.050 0.374 0.677 1.478 
 PL2 83 966.43 0.165 0.933 1.232 0.812 
 PL3 124 916.30 0.174 1.211 1.013 0.987 

 
RBs 5-Campelli Bridge 

Tab. 6.34 – RBs7: Capacity curves of a single column of the pier bent: a) longitudinal b) 
transverse direction 

a) b) 

  

Tab. 6.35 – RBs5: long. direction (L), comparison between DBA and TH results  

DBA analysis-L 

 

TH verification-L 

 

Tab. 6.36 – RBs5: transverse direction (T), comparison between DBA and TH results 

DBA analysis-T 

 

THA verification-T 
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Flexure (F) D [mm] F [kN]  [%]  

PL1 49 344.2 1.00 0.5

PL2 228 303.7 4.67 2.4

PL3 342 291.2 7.00 3.6

Flexure (F) D [mm] F [kN]  [%] 

PL1 29 741.4 1.00 0.3

PL2 144 671.7 4.95 1.5

PL3 216 630.2 7.43 2.3

Fener-T- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 0.637 0.089 14.055 0.547 0.726 0.715 -12.36 
 PL2 1.380 0.074 5.368 1.306 1.454 1.225 11.23 
 PL3 1.197 0.094 7.891 1.103 1.292 0.957 20.12 

Fener-T- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 29 741.36 0.050 0.623 0.715 1.398 
 PL2 144 671.69 0.163 1.515 1.225 0.817 
 PL3 216 630.15 0.172 1.979 0.957 1.045 

Fener-L- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 49 344.21 0.050 1.187 0.633 1.581 
 PL2 228 303.66 0.161 2.776 1.055 0.948 
 PL3 342 291.15 0.171 3.603 0.831 1.204 

Fener-L- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 0.659 0.079 11.986 0.580 0.738 0.633 3.96 
 PL2 1.094 0.106 9.652 0.988 1.200 1.055 3.57 
 PL3 0.939 0.130 13.889 0.809 1.070 0.831 11.56 

 
RBs 6- Vittorio Veneto (Fener Bridge) 

Tab. 6.37 – RBs7: Capacity curves of a single column of the pier bent: a) longitudinal b) 
transverse direction 

a) b) 

  

Tab. 6.38 – RBs6: long. direction (L), comparison between DBA and TH results  

DBA analysis-L 

 

TH verification-L 

 

Tab. 6.39 – RBs6: transverse direction (T), comparison between DBA and TH results 

DBA analysis-T 

 

THA verification-T 
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Flexure  
Shear (SF)

D [mm] F [kN]  [%]   

PL1 12 2350.27 1.00 0.49

PL2 17 2388.07 1.38 0.68

PL3 20 2408.733 1.59 0.78

Shear (S) D [mm] F [kN]  [%]  

PL1 3 589.19 - 0.11

PL2 16 1140.16 - 0.64

PL3 18 1207.18 - 0.70

Reghena-L- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 0.493 0.056 11.361 0.437 0.549 0.448 9.110 
 PL2 2.180 0.055 2.523 2.125 2.235 1.737 20.33 
 PL3 3.256 0.123 3.778 3.133 3.379 2.481 23.80 
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Reghena-L- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 3 589.19 0.050 0.217 0.448 2.233 
 PL2 16 1140.16 0.090 0.362 0.576 1.737 
 PL3 18 1207.18 0.103 0.372 0.403 2.481 

Reghena-T- TH DBA Error 

 
C/D  C.o.V[%] C/D ±  C/D  % 

 PL1 1.545 0.072 4.662 1.473 1.617 1.682 -8.90 
 PL2 0.661 0.113 17.106 0.548 0.774 0.739 -11.90 
 PL3 0.809 0.098 12.113 0.711 0.907 0.627 22.50 

Reghena-T- c [mm] Vb [KN] c [-] Tc[s] C/D DMPL=D/C 
 PL1 12 2350.27 0.050 0.271 1.682 0.594 
 PL2 17 2388.07 0.121 0.383 0.739 1.353 
 PL3 20 2408.73 0.132 0.412 0.627 1.594 

 
RBs 8- Fiume Reghena Bridge 

Tab. 6.43 – RBs7: Capacity curves of a single column of the pier bent: a) longitudinal b) 
transverse direction 

 
a) b) 

  

Tab. 6.44 – RBs7: long. direction (L), comparison between DBA and TH results  

DBA analysis-L 

 

TH verification-L 

 

Tab. 6.45 – RBs7: transverse direction (T), comparison between DBA and TH results 

DBA analysis-T 

 

THA verification-T 
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F
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N
]

D[mm]

Pushover
Shear Envelope

Flexure (F) D [mm] F [kN]  [%]  
0 0

PL1 18 1575.27 1.00 0.44

PL2 86 1455.42 4.81 2.10

PL3 129 1390.05 7.21 3.15

C. BIANCO-L- TH DBA Error 

 
C/D  C.o.V C/D ±  C/D   

  
- - [%]  - % 

  PL1 0.503 0.031 6.167 0.472 
 

0.534 0.496 1.33 

 PL2 1.481 0.069 4.660 1.412 
 

1.550 1.354 8.56 
  PL3 0.968 0.086 8.884 0.882 

 
1.054 0.866 10.54 

C. BIANCO-L- cap  Vbase  c  Tc  C/D   DMPL=D/C 

     [mm]  [KN]  ‐  [s]  - ‐ 

   PL1 18 1575.27 0.050 0.443 0.496 2.018 
PL2 86 1455.42 0.176 1.356 0.738 1.354 

   PL3 129 1390.05 0.181 1.661 1.155 0.866 

RBs 9-Canal Bianco Bridge 

Tab. 6.46 – RBs7: Capacity curve of the pier: a) longitudinal direction 

 

a) 
 

Tab. 6.47 – RBs7: long. direction, comparison between DBA and TH results  

DBA analysis 

 

THA verification 
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The medium error  obtained by the comparison of the C/D ratios is reported 
in Fig.6.11. A general trend can be observed for PL1,PL2, PL3 limit states: the 
simplified method is generally conservative, and the error increases for the more 
severe limit damage states (PL2,PL3). Underestimation error is generally limited in 
the range [-10%, 0], while overestimation, in most of cases under the 20%, is a little 
bit higher for shear failure cases ( Reghena Bridge), with a maximum of about 25%. 
 

  

Fig. 6.12 –  Medium error trend for C/D ratio calculated according to Eq. 6.7, 
for PL1, PL2, PL3 limit states for RBs of classes 2.1,2.2. 

 

6.4 METHODS FOR FRAGILITY CURVE DEVELOPMENT 

In evaluating the seismic risk of a structural system, in this case consisting 
of bridges or viaducts, it is important to identify the vulnerability of the structural 
components associated with various levels of damage; the probabilistic approach to 
the problem is due to the uncertainty of the variables involved. Characteristics of 
the material and structural properties, on which the overall capacity of the bridge 
depends, are not exact values, and neither are the intensity of earthquake action and 
site conditions, governing the seismic demand. It follows that the performance of 
the structure has to be represented by a range of values, associated to a certain 
probability of exceeding a pre-defined damage level.  

The cumulative function representing the exceeding probability is 
represented by a fragility curve, traditionally individuated by a two-parameter 
lognormal distribution, which is function of the seismic intensity measure (IM). 
There are various methods for its determination: a first approach is empirical, based 
on data collected on-site as a result of seismic events (Basoz[B5], 1994, with 
reference to observations after the 1994 earthquake in Northridge, and 
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Shinouzuka[S4], 1998, after the earthquake in Kobe). The other fundamental 
approach is analytical. In the past decade different numerical approaches were used 
with various degrees of complexity: analysis with elastic spectrum (Hwang et al., 
2000), Capacity Spectrum-based analysis (Shinozuka et al.[S2], 2000) and nonlinear 
dynamic analysis in Time History (Karim, 2001, Choi, 2003). Also hybrid 
approaches are possible, when there is a lack of damage at certain intensity levels, 
by combining post-eartquake damage statistics with simulated damage data in 
hybrid damage probability matrices (Barabat et al.[B6], 1996). 

A realistic structure behaviour  can best be described with NLTH analysis on 
full three-dimensional MDOF models, but at the present there is still a problem with 
computation time requirements when TH is used in Monte Carlo simulation, hence 
simplified analysis are required for vulnerability evaluations on a large scale. 

As said above, non linear static methods had a widespread  diffusion for 
vulnerability appraisal in past decade (Hazus method, FEMA[F4], 2003), while 
Displacement-Based methods were being developed, even if some applications for 
buildings in urban environment had already been presented (Ordaz et al., 2000, 
Restrepo-Velez and Magenes, 2004). These methods made use of displacement or 
inter-story drifts as the fundamental indicator of performance level, following the 
observed better correlation of these parameters to structural and non-structural 
damage. A full probabilistic framework for Displacement-Based Earthquake Loss  
Assessment (DBELA) was formulated by Crowley et al.[C4], 2004.  

The main concept of DBELA is the comparison of the displacement capacity 
of the building stock and the imposed displacement demand from a given scenario 
earthquake. In this case the probability of exceedance, which is calculated by 
comparing the displacement demand with the displacement capacity, is plotted 
against the mean spectral displacement demand to the randomly generated set of 
buildings, using the displacement at the fundamental vibration period of the 
building Sd(T1) as the Intensity Measure (IM), instead of the traditional PGA values. 
This evaluation can be repeated for a number of displacement response spectra with 
increasing levels of intensity (in terms of PGA or spectral displacement at a given 
period, for example) and plotted to produce fragility curves. Recent applications of 
of the DBELA method can be found in Bal et al.[B3], 2010 and Tarque et al.[T4], 
2012. 

In the present study analytical fragility curves based on simplified 
Displacement-Based Assessment procedures are developed, and used for the 
prediction of the expected damage for  all  multi-span rc bridges of the VR stock. 

The (DBFr) curves can be obtained in two forms: one using PGA as 
intensity measure, the other one using the spectral displacement Sd(T1), calculated at 
the fundamental period of the structure. The PGA-fashion of fragility curves has the 
advantage that at present hazard functions are generally available in seismic codes 
relating PGA to annual probability of exceedance, consequently this form is to date 
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The IDA is repeated for all the j sample structures representing the real bridge 
for each specific value of seismic intensity a. The result is a “cluster” of data (see 
Fig. 6.2). 

3.) The mean value of  D/C  ratio for each a value is described in this case by 
an exponential function: 

( ) B Ac a a e           (6.12) 

represented in the bi-logarithmic plane by the line: 

ln( ( )) ln( )c a A B a          (6.13) 

in which a is the seismic intensity and A, B fixed parameters, determined by a least-
squares linear regression. Here the standard deviation  of the data cluster is 
calculated on the whole set of data, thus  is independent of seismic intensity a. 

 4.) Once coefficient A, B and standard deviation are determined, the 
fragility curve is represented by a log-normal CDF function, and the conditioned 
exceedance probability (fragility), is calculated as: 

,  (a)  [ | ]f PL PLP P DM dm a  =
( )

( | )  d
P L

D M

D M a dm

f dm a dm

  

 (6.14) 

where DM is the damage variable (e.g. D/C), dmPL is a given damage level, and fDM 
is pdf of the damage function, with a log-normal distribution:  

2
1 1 ln

( ) exp
22

DM

dm
f dm

dm




     
   

       (6.15) 

 l n ( )A B a  is the mean value calculated on the regression line for a 
certain value of a, is the standard deviation. 

5.) According to this method the damage function fDM (dm|a) has a mean 
defined for each value of seismic intensity a, and a standard deviation independent 
of seismic intensity. Consequently, other fragility values can be extrapolated for any 
possible value of seismic intensity, the curve being a continuous function of the 
variable a. 

6.4.2 Displacement-Based fragility curves (DBFr) 

The method herein presented for the calculation of fragility curves is 
adapted from the procedure proposed for non-linear static analysis by Shinozuka et 
al.[S2], 2000.  In this method, random populations of bridges are generated using 
Monte Carlo simulation, each real bridge being represented by a set of sample 
bridges, obtained by considering the uncertainty on material and structural 
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6.4.2.1 DBFr curves development: method DBFr2 

This second procedure is introduced to obtain fragility curves as continuous 
functions of the variable a, in order to compare numerically the DBFr and THFr 
curves. 

Displacement-Based fragility curves were approximated with cumulative log-
normal functions by mean of non-linear regression analysis (as already done for TH 
analysis) using all the cluster of data  obtained for different a values. The two 
parameters of cumulative log normal distribution functions (average c and standard 
deviation can be thus directly compared. 

In this procedure only some modifications are introduced into DBFr1 method: 
regarding g)-l) steps.  

a)-f): same as method DBFr1. 
g) step a)-f) are repeated for each value of seismic intensity a. The result is a 

“cluster” of data, with three DM values for each a value of the range. 
h) construction of the continuous CDF fragility curve according to step 3.) to 

5.) of the THFr procedure, using least squares linear regression on the overall data 
set. 

i) the procedure is repeated for each j-th sample bridge (j=1...k), carring out k 
fragility curves, where k is the total number of statistically different bridges. For the 
given seismic intensity a, the final fragility value for the examined real bridge is 
obtained as: 

k

daP

daF

K

j
lj

l


 1

),(

),(        (6.21) 

6.4.3 System fragility curves for bridges 

In many studies fragility analyses assume piers as the only vulnerable 
components for multi-span bridge structures, and the column damage state is 
assumed as representative of the damage state of the entire bridge (among others, 
Shinozuka et al.[S2], 2000, Karim and Yamazaki[K6], 2001). 

In the case of simply supported bridges, for which each pier’s response can 
be considered as statistically independent from the others’, the system fragility for 
the overall bridge consisting of N piers, given a pre-defined Performance Level, can 
be estimated as:  

, , , ,
1

1 (1 )
N

f PL system f PL pier
pier

P P


         (6.22) 

. 
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As regards multi-span continuous bridges, the deck connect the pier top 
displacements proportionally to its transversal stiffness, and the system can be 
regarded as an elastic element (deck), laterally and longitudinally restrained by a 
series of non linear springs, represented by the piers. The failure of one springs 
(piers) can be considered as the event leading  to the failure of the overall 
system[C6]: this assumption is generally acceptable because piers are the main 
elements of the horizontal-force resisting system, and generally a deck does not 
collapse before piers.  

If the coupling of piers’ response given by the continuous deck is effective, 
the vulnerable components (piers) can be assumed as fully stochastically dependent, 
and the system fragility is represented by: 

, , , ,
1

max  [ ]
n

f PL system f PL pier
pier

P P


        (6.23) 

The process described above for the development of fragility curves regards 
only a structural element of the lateral load resisting system, namely the piers. 
However, the overall fragility of multi-span bridges can be conditioned by other 
vulnerable structural components such as bearings, expansions joints, abutment and 
foundations. 

In this case multiple different components are considered, an overall bridge 
fragility can be obtained through a crude Montecarlo simulation, but an alternative 
would be to combine the component fragility curves to derive the system (bridge) 
fragility curve. The process requires information about the stochastic dependence 
between the damage states of the various bridge components. Using first-order 
reliability theory, an upper and lower bound of the system fragility can be 
determined[C6]: 

1
1

max  [ ( )] ( ) 1 (1 ( ))
mm

i sys i
i

i

P F P F P F




         (6.24) 

The lower bound represents the probability of failure for a system whose 
components are all fully stochastically dependent, while the upper bound is 
calculated by assuming components are all statistically independent, and thus 
providing a conservative estimate of the overall bridge fragility. 

Different works have shown that fragility bridge components other than 
piers affect overall bridge fragility with a variable trend of influence in dependence 
of the different bridge types: for example,  the columns  for the multi-span 
continuous pre-stressed concrete girder typical in Mid-America has been found to 
be the most fragile bridge component (Choi et al.[C6], 2002), while for steel girder 
bridges steel fixed bearings seems to condition the bridge performance  at different 
damage states (Nielson [N2], 2003). As regards bridge typologies typical of the 
reference database (VR database), some considerations were drawn in a previous 
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Fig. 6.16 –  Hazard map of the Veneto region supplied  by INGV (PGA, 10% 
probability of exceeding in 50 years on a soil type A) and exposure of the analyzed 

bridge stock 
 

The hazard curves used in this work are directly derived from Italian 
seismic hazard maps obtained by INGV (Meletti and Montaldo[M7], 2007), with 
reference to 50 years probability of exceedance for PGA values on rock soil (type 
A; Vs30>800 m/s). The probability values are referred to 9 return period Tr: 30, 
50, 72, 101, 140, 201, 475, 975, 2475 (corresponding to exceedance probability of 
81%, 63%, 50%, 39%, 30, 22%, 10%, 5%, 2% respectively). The Italian hazard 
maps are plotted on a reference grid 10x10km, and the hazard curve for 
construction sites of the bridges are obtained interpolating the values of the nearest 
grid nodes.  In Fig. 6.15 the hazard curves for four of the examined bridges are 
presented. For the computation of the seismic risk, a regression analysis was 
carried out on the nine values supplied by INGV maps, and the hazard curve 
functions were approximated with log-normal distributions to provide values less 
than 2% probability.  

 

Fig. 6.17 –  Hazard curve supplied by INGV: Campelli Bridge (Longarone-BL-, 
seismic zone 2), Botteon Bridge (Fadalto-TV- seismic zone 2), Ivach Bridge (San 

Tommaso Agordino-BL- seismic zone 3), Fener Bridge (Alano di Piave-BL-, seismic zone 
2). 

 

6.5.2 Seismic risk  

Seismic risk is defined as the relationship between the occurrence of seismic 
events and socio-economic losses of the functional system being examined.  The 
ultimate goal of loss estimation in performance-based earthquake engineering is to 
compute the mean annual probability, or annual rate P(DV) of a decision variable 
(DV) to be exceeded (DV could be for example a predefined level of repair cost).  

The mean annual frequency of DV is obtained by applying the theorem of 
total probability (Cornell & Krawinkler, 2002), using three intermediate variables: 
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the measure of seismic action (Intensity Measure, IM), a parameter of structural 
response (Engineering Demand Parameter, EDP), and the Measure of Damage 
level, DM. 

( ) ( | ) | ( | ) ( | ) | ( ) |P D V P D V D M dP D M ED P dP ED P IM d IM    (6.25) 

where: 
- P(DV|DM) is the probability DV of exceeding  a specific value, given that 

the Demage Measure (DM)  is equal to particular values; 
- P(DM|EDP) is the probability DM of exceeding a specific value when the 

parameter EDP related to structural response is equal to a certain value, and 
therefore P(DM|EDP) is the vulnerability; 

- P(EDP|IM) is the probability EDP -e.g. maximum drift- exceeds a specified 
value, given a certain level of IM; 

- |d(IM)| is the derivative absolute value of the annual rate of exceeding a 
given value of the intensity measure (the seismic hazard curve).The absolute 
value is needed because the derivative is negative. 

Evaluation of seismic risk in terms of global direct and indirect economic losses 
is out of the goals of this work, which focuses only on the probability prediction of 
observing a certain damage level for the structure, with reference to a residual 
period of their service life, set in 50 years, considering that the reference structures 
are existing bridges, and most of them were built soon after the IInd World War. 
Thus only seismic hazard and structural vulnerability are considered, and Eq. 6.1 
becomes:  

( ) ( | ) | ( ) |P DV P DV IM d IM        (6.26) 

where (DV), in this case, coincide with DM. Thus, the assessment of the expected damage 

for a set performance level PL is obtained by the convolution of the hazard probability 

density function:  
 

( )
( | )PL PL

IM

d IM
P P D d IM dIM

dIM


       (6.27) 

 
 
where P(D>dPL|IM) is the fragility curve associated with damage state dPL and 
H(IM) is the hazard function. The continuous IM variable can be discretely 
triggered at certain values, and the previous equation becomes: 

( | ) | ( ) |PL PL
IM

P P D d IM IM         (6.28) 
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With this procedure a total exceeding probability is derived, that has to be 
compared with acceptable values for a pre-defined Performance Level. 
Alternatively seismic risk can be evaluated for a certain scenario earthquake, with 
reference to a specified value of IM (e.g. PGA value), which means considering 
seismic risk associated to a seismic intensity having a certain probability of 
occurrence in the reference period assumed for the structure (e.g. 50 years). 
 

6.6 DISPLACEMENT-BASED FRAGILITY CURVES FOR 
REFERENCE BRIDGES  

In the present paragraph analytical fragility curves for the reference bridge 
structures (RBs), are calculated with DBFr and THFr approach and compared in 
terms of medium values c(a) and standard deviation (a).  
 Fragility analysis includes: simulation of ground motions, simulation of 
bridge samples to account for uncertainty in bridge properties, development of 
fragility curves from the seismic response data of the bridges. 

6.6.1 Seismic input 

As regard seismic input definition, it has to be evidenced that for a correct 
definition of local amplification of the ground motion intensity supplied by the 
seismic macro-zonation maps, soil type at the construction site has to be known.  

In this context has to be evidenced that only for a limited number of 
structures, for  which the original bridge project was recovered, informations about 
soil characteristics were available. No specific geotechnical on site-tests were 
performed in the structural survey campaign, except for masonry structures (some 
of these masonry arch bridges were next to other rc bridges, and in some cases it 
was possible to use the information obtained also for the rc structures). 

 In most cases other sources had to be used for the definition of soil 
characteristics in the vulnerability study:  

-  a seismic mapping-Vs30 map- of the  Treviso Province, (Vs30 measurement 
is the average shear-velocity down to 30 m) is available as deliverable of a study  
realized by the Istituto Nazionale di Oceanografia e Geofisica Sperimentale[F10]; 

- Vs30 global maps, free downloadable from the website 
http://earthquake.usgs.gov/hazards/apps/vs30/. Wald et al.[W1], 2007, describe a 
methodology for deriving maps of seismic site conditions using topographic slope 
as a proxy. Vs30 measurements were correlated against topographic slope to develop 
two sets of coefficients for deriving Vs30: one for active tectonic regions that possess 
dynamic topographic relief, and one for stable continental regions where changes in 
topography are more subdued. These coefficients have been applied to the plotting 
of Vs30 global maps,. These maps were applied as approximated tools for the 
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fc [MPa] 14.2 23.2 32.2 41.2 50.2

6.6.2 Bridge model simulation 

To represent the inherent variability in the material properties, compressive 
strength of unconfined concrete and the yield strength of reinforcing steel were 
taken as random variables, with a mean and standard deviation defined on the 
base of the results of the previous statistical survey. 

The reference values for fy of reinforcement bars are reported in Tab.6.14, 
for bars classified as Aq50-60 and FeB44k. The attribution of steel bars to these 
category for a bridge of the VR stock were defined on the base of lab tests or 
original project specification, if available, or on the base of construction year 
(Aq50-60 for bridges built before 1972, and FeB44k for more recent structures). In 
the absence of this information the reference values of Tab 6.11 were adopted for 
the normal distribution, with =Paand=86 MPa. 

As regard concrete properties, fcm was in several cases directly available 
from on site tests or lab tests; in these cases a standard deviation of 9 MPa was used 
for the normal distribution. In other cases the normal distribution reported in Tab. 
6.8 was adopted (=Paand=15.3 MPa). 
 

  
 

a) b) 
Fig. 6.19 –  a) fc normal distribution (=32.2 MPa, =9.0 MPa) , and  corresponding 5 
realizations used in bridge samples, b) fy normal distribution for Aq50-60 steel (=330 

MPa, =17 MPa) and 3 realizations adopted for fragility analysis. 
 

A sample of 15 nominally identical but statistically different bridges were 
created by simulating 15 realizations of fc and fy according to respective probability 
distribution functions assumed. The probabilistic distribution of strength of the two 
materials is also taken into account by associating a suitable weight to each of the % 
values of concrete strength and each of the 3 values of steel strength. Other 
parameters that could contribute to variability of structural response were not 
considered. 

As regards numerical models used for fragility assessment, they were 
represented by single piers f.e. fiber models, with the aggregation of non linear 
shear behaviour, calibrated with the parametrical analysis developed in Chapter 5. 
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The f.e models of single bridge samples are thus similar to the models used for the 
previous deterministic analysis in §6.3. 

 As for the representation of restraint at foundation and soil-structure 
interaction, translational and rotational elastic spring were used, to model 
foundation stiffness. In most cases multi-span bridges of the VR stock have pile 
footings; if the Winkler modulus is known or hypothesized the foundation spring 
can be derived with the following simplified formulas:  

pv mnkK   ,  ,h p hK nk
, 




n

i
ipr xkmK

1

2
              (6.29)   

where: 

m   is the number of pile files parallel to the direction of the seismic action; 

kp=EA/L  is the axial stiffness of a single pile of length L; 

xi    is the pile distance from the plinth geometric center; 
kp,h  is the horizontal stiffness of the single pile, calculated with a f.e. 

model, considering the pile as vertical elastic beam subjected to unit horizontal 
force, with a rotational restraint on the cap, and horizontal springs ki distributed on 
the length, calculated considering a linearly variable ground reaction modulus: 

ki=nh(z/D)           (6.30) 
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E
c [g]  c [g]  c [%]

PL1 0.044 0.076 0.049 0.117 10.38
PL2 0.560 0.101 0.632 0.146 11.39
PL3 0.651 0.186 0.697 0.165 6.60

THADBA

 

6.6.3 Fragility curves and risk assessment for RBs: 
DBA and TH approach 

Tab. 6.48 –RBs1, Botteon  Bridge. DBFr and THFr fragility curves and medium 
error: a) Long. Direction-single pier-, b) Transv. Direction-single pier-, c) System 
fragility curves for the bridge 

 
a) b) 

 
c) 

 
Tab. 6.49 –RBs1, Botteon Bridge: a) hazard curve b) Seismic Risk 
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E
c [g]  c [g]  c [%]

PL1 0.129 0.082 0.121 0.061 -6.61
PL2 0.548 0.123 0.495 0.105 -10.67
PL3 0.656 0.150 0.585 0.139 -12.12

THADBA
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E
c [g]  c [g]  c [%]

PL1 0.119 0.056 0.126 0.080 5.56
PL2 0.291 0.070 0.320 0.117 8.98
PL3 0.359 0.070 0.369 0.113 2.84

THADBA

 

a) b) 
 
Tab. 6.50 –RBs 2, Rio Ghisel Bridge. DBFr and THFr fragility curves and medium 
error: a),  b)  Long.  and Transverse Direction-single pier-, b) c) System fragility curves 
for the bridge. 

 

a) b)

 
c) 

 
 
Tab. 6.51 –RBs 2, Rio Ghisel Bridge: a) hazard curve b) Seismic Risk 
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Risk Index

DBA TH
PL1 0.127 0.108
PL2 0.011 0.010

PL3 0.009 0.007
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Tab. 6.52 –RBs 3, Torrente Frison Bridge. DBFr and THFr fragility curves and 
medium error: a),  b)  Long.  and Transverse Direction-single pier-, c) System fragility 
curves for the bridge. 

 

a) b)

 
c) 

 
 
Tab. 6.53 –RBs 3, Torrente Frison Bridge: a) hazard curve b) Seismic Risk 
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PL1 0.071 0.174 0.082 0.227 13.75
PL2 0.413 0.238 0.415 0.324 0.45
PL3 0.482 0.309 0.493 0.441 2.39

THADBA
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E
c [g]  c [g]  c [%]

PL1 0.122 0.080 0.127 0.095 3.94
PL2 0.305 0.116 0.373 0.161 18.33
PL3 0.369 0.129 0.453 0.169 18.44

THADBAE
c [g]  c [g]  c [%]

PL1 0.079 0.072 0.074 0.066 -6.76
PL2 0.235 0.088 0.271 0.125 13.32
PL3 0.283 0.093 0.344 0.128 17.56

THADBA

Risk Index

DBA TH
PL1 0.604 0.410
PL2 0.017 0.016

PL3 0.011 0.011
 

a) b) 
 

 
 
 
 
Tab. 6.54 –Rbs 4, A27 Bridge. DBFr and THFr fragility curves and medium error: a) 
Long. Direction-single pier-, b) Transv. Direction-single pier-, c) System fragility curves 
for the bridge. 

a) b) 

 
c) 
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E
c [g]  c [g]  c [%]

PL1 0.109 0.102 0.102 0.124 -6.86
PL2 0.306 0.079 0.314 0.132 2.61
PL3 0.368 0.082 0.374 0.122 1.44

DBA TH E
c [g]  c [g]  c [%]

PL1 0.123 0.102 0.133 0.130 8.08
PL2 0.334 0.078 0.392 0.122 14.72
PL3 0.390 0.080 0.478 0.122 18.47

DBA THA

 
 
Tab. 6.55 –Rbs3, A27 Bridge: a) hazard curve b) Seismic Risk 

 

a) b)
 
 
Tab. 6.56 –RBs5, Campelli Bridge. DBFr and THFr fragility curves and medium 
error: a) Long. Direction-single pier-, b) Transv. Direction-single pier-, c) System 
fragility curves for the bridge 

 

a) b) 
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Risk Index
DBA TH

PL1 0.757 0.710
PL2 0.076 0.038

PL3 0.042 0.031

E
c [g]  c [g]  c [%]

PL1 0.099 0.065 0.106 0.081 6.51
PL2 0.375 0.086 0.390 0.104 3.90
PL3 0.462 0.143 0.503 0.117 8.02

THADBA
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Tab. 6.57 –RBs 5, Campelli Bridge: a) hazard curve b) Seismic Risk 

 

a) b) 
 
Tab. 6.58 –RBs6,  Vittorio Veneto (Fener) Bridge. DBFr and THFr fragility curves 
and medium error: a) Long. Direction-single pier-, b) Transv. Direction-single pier-, c) 
System fragility curves for the bridge. 

 

a) b) 
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c [g]  c [g]  c [%]

PL1 0.114 0.059 0.126 0.064 9.38
PL2 0.414 0.095 0.485 0.122 14.55
PL3 0.501 0.089 0.629 0.110 20.30
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E
c [g]  c [g]  c [%]

PL1 0.131 0.087 0.126 0.113 -3.97
PL2 0.470 0.169 0.524 0.205 10.21
PL3 0.582 0.178 0.663 0.197 12.27

THADBA

Risk Index

DBA TH
PL1 0.740 0.665
PL2 0.218 0.135

PL3 0.066 0.037

 
 
Tab. 6.59 –RBs 6, FenerBridge: a) hazard curve b) seismic risk 

 

a) b)
 
Tab. 6.60 –RBs7, Schiavonesca Bridge. DBFr and THFr fragility curves and 
medium error: a) Long. Direction-single pier-, b) Transv. Direction-single pier-, c) 
System fragility curves for the bridge. 
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E
c [g]  c [g]  c [%]

PL1 0.126 0.090 0.113 0.112 -11.50
PL2 0.461 0.118 0.560 0.127 17.62
PL3 0.517 0.100 0.633 0.123 18.34
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E
c [g]  c [g]  c [%]

PL1 0.206 0.038 0.193 0.072 -6.51
PL2 0.269 0.129 0.240 0.177 -12.26
PL3 0.250 0.099 0.331 0.139 24.52

THADBAE
c [g]  c [g]  c [%]

PL1 0.076 0.079 0.086 0.113 11.63
PL2 0.121 0.121 0.142 0.185 14.85
PL3 0.128 0.128 0.158 0.183 19.05

THADBA

Risk Index

DBA TH
PL1 0.469 0.432
PL2 0.027 0.020

PL3 0.020 0.012

 
 
Tab. 6.61 –RBs7, Schiavonesca Bridge: a) hazard curve b) Seismic Risk 

 

a) b) 
 

Tab. 6.62 –RBs 8, Reghena Bridge. DBFr and THFr fragility curves and medium 
error: a) Long. Direction-single pier-, b) Transv. Direction-single pier-, c) System 
fragility curves for the bridge. 

a) b) 
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Risk Index

DBA TH
PL1 0.328 0.253
PL2 0.132 0.121

PL3 0.114 0.102

E
c [g]  c [g]  c [%]

PL1 0.121 0.072 0.124 0.101 2.42
PL2 0.403 0.113 0.403 0.171 -0.01
PL3 0.520 0.193 0.559 0.242 6.89

THADBA

 
 
Tab. 6.63 –RBs 8, Reghena Bridge: a) hazard curve b) Seismic Risk 

 

a) b)
 
Tab. 6.64 –RBs10, Canal Bianco Bridge. DBFr and THFr fragility curves and 
medium error: a),  b)  Long.  and Transverse Direction-single pier-, b) c) System fragility 
curves for the bridge. 

 

a) b)

 
c) 

 
Tab. 6.65 –RBs 10, Canal Bianco Bridge: a) hazard curve b) Seismic Risk 
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Risk Index

DBA TH
PL1 0.486 0.262
PL2 0.011 0.009

PL3 0.006 0.005

 

a) b) 
 

 

 

 

The medium error obtained for the reference bridges is reported in Fig.6.19; 
c[g] is calculated in correspondence to the value p=0.5 of the DBFr and THFr 
curves, for  PL1,PL2, PL3 damage states. 

 

 
 

Fig. 6.20 –  Error obtained by comparing the medium value c[g] of DBFr and THFr 
curves for the Reference Bridge structures analyzed 
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a) RBs1  
Botteon Bridge 

 
 
a) RBs2  
Rio Ghisel Bridge 

 
 
a) RBs 3  
Frison Bridge 
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a) RBs 4-  
A27 Bridge 

 
 
a) RBs5-  
Campelli Bridge 

 

 
a) RBs 6-  
Fener Bridge 
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a) RBs 7-  
Shiavonesca Bridge 

 

 
 
a) RBs 8-  
Reghena Bridge 

 
 
a) RBs 10-  
Canal Bianco Bridge 
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6.7 EXPECTED SEISMIC DAMAGE 

In this chapter  the level of expected seismic risk for all rc bridges of  classes 
2.1, 2.2 (multi-span bridges) is derived and the spatial distribution of expected 
damage is represented for the Veneto Region (VR) stock. 

Fragility curves obtained with NLTH analyses (THFr) were generated only 
for the Reference Bridge structures as comparison with the simplified approach, and 
the corresponding seismic risk is calculated  in §6.6.2. DBFr curves, obtained with 
the displacement-based approach, were carried out for all the rc multispan bridges 
of  the VR stock (101 girder bridges in total) for the predefined Performance Levels 
described in  §6.3.3. 

6.7.1 Maps of the expected damage for the Veneto 
Region stock 

The maps of  expected damage related to Performance Levels PL1, PL2, PL3 
are shown superimposed on digital orthophoto images (Google Earth maps),  in 
Figs 6.18, 6.19, and 6.20 respectively. The listing of the risk values obtained for all 
multispan rc girder bridges is reported in Tab.6.64. Bridges are denoted by dots of 
different colors, according to the total probability Ri ( Risk index) of exceeding the 
limit state (not the probability of a single scenario corresponding to a pre-defined 
return period Tr). This value is calculated by the convolution of the hazard 
probability density function, using Eqs. 6.23, 6.24. 

For the graphical representation, 4 categories are used, corresponding to 
increasing probability values: green (Ri<10-2), yellow (10-2< Ri <10-1), orange (101< 
Ri <5*10-1) and red (Ri >5*10-1). 

The results show that the seismic risk characterizing the VR stock of multi-
span rc bridges is generally moderate.  

For limit state PL3 only a limited number of bridges (the 11% on the whole) 
has high failure probability (belonging to the orange category, none to the red), as 
shown in Fig. 6.17, and this percentage is incremented for PL2 till the 20%. More 
than the half of bridges exhibit a non negligible probability (yellow category, 10-

2<Ri<10-1) of exceeding the limit states PL3 and PL2 (53% and 57%). Very low 
probability (Ri<10-2) are attained for collapse or severe damage limit states by the 
remaining part of the of the structures (22% and 36% respectively). 

Although the direct seismic risk involving collapse or severe damage ( PL3 

and PL2) is moderate, complete system operation at network level could be a 
concern in a post earthquake situation, due to the fact that the 85% of bridges of the 
VR stock are supposed to sustain with high probability (orange to red categories) a 
light damage, associated to PL1 limit state. This damage could also not require in 
most cases a repair intervention, but it could imply at least structural inspections 
and provisional downtime for the traffic. It is worth to evidence that in this case,  
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PL1 is defined for ductile members as a condition in which a certain, even limited 
ductility is already developed (and not as the first yielding of the section at pier 
base, see Tab. 6.23). 

These results can be partially explained by the seismic activity of the Veneto 
region, which is characterized by low-medium seismicity. From Fig. 2.11, it can be 
seen that for the 475 year return period (10% in 50 years), PGA values in south are 
of the Veneto region are under the limit 0.05g , which corresponds to the limit for 
lowest seismicity areas (Zone 4). On the north part of the Belluno Province 
corresponds in the administrative classification to Zone 3 (0.05< PGA<0.15), as 
well as the central part of the region, in the territory of Verona and Vicenza 
provinces. There are higher PGA values in the north-east part of the region, 
corresponding to the territory of Treviso, and Belluno (zone 2, 0.15<PGA<0.275). 

The other fundamental component of the seismic risk is the intrinsic fragility 
of the structure. No seismically designed rc structures, built in the past decades (like 
the most of the bridges of the VR stock), are generally affected by typical 
construction defects, such as low confinement of nodes (see results of statistics in 
§6.2.4), insufficient transversal reinforcement, poor detailing for starter bars, etc. 

It can be noted that seismic vulnerability of rc multi-span bridges is 
substantially different for each subclass, depending on pier type. 
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Ri< 1E-2
1E-2 < Ri< 1E-1
1E-1 < Ri<5E-1
Ri > 5E-1

                         
PL1 

Fig. 6.21 –  Seismic Risk for multi-span rc bridges ( classes 2.1, 2.1) in the VR stock. 
Damage state corresponding to PL1 
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Ri< 1E-2
1E-2 < Ri< 1E-1
1E-1 < Ri<5E-1
Ri > 5E-1

Ri< 1E-2
1E-2 < Ri< 1E-1
1E-1 < Ri<5E-1
Ri > 5E-1

  PL2 

PL3 

 

Fig. 6.22 –  Seismic Risk for multi-span rc bridges ( classes 2.1, 2.1) in the VR stock. 
Damage states corresponding to PL2 and PL3. 
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-Bridges with wall piers, which represent a considerable amount of the 

whole stock (the 38.6% of the total including also continuous  bridges, see §6.2.2), 
are less vulnerable. Shear resistance is very high, and in longitudinal direction 
generally the great inertia of the section is sufficient to guarantee adequate 
resistance for flexural displacement demand, even with limited ductility. According 
to the analyses developed, none of the sample bridges of the stock belonging to 
class 2.1.2 (bridges with pier wall) has high probability of collapse or severe 
damage, and in the 84% of cases Ri<10-2; 

-Simply supported bridges with shear (or flexure-shear) piers ( typically 
with H/BT<2.5-3, see chapter 5) are the most vulnerable, because existing piers 
(cantilever and frame) have limited shear resistance and low transverse 
reinforcement ratio. In the 66% of cases these piers fail with high probability 
(Ri>10-1), and also complete collapse can be expected. They represent a small 
number of structures in the VR stock. 

- Very slender cantilever and frame pier bents (H/D>4.5) with flexural 
behaviour, are subjected to low inertia forces due to the high effective periods of 
vibration. Bridges equipped with this kind of piers have low seismic damage  
exposure. Also for this subclass always low probabilities were found for PL2 and 
PL3 (yellow and orange category, Ri<10-1). 

- Fragility is higher for very long bridges with multiple spans, increasing 
with the number of vulnerable elements (number of pier bents of multi-span simply 
supported bridges).  Vulnerability of long bridges can be incremented also by  
asynchronism of ground motion, that can greatly influences pounding forces and 
deck-pier differential displacements (not addressed in this study, see for detail 
Tecchio et al.[T5], 2012). 
 

The map of seismic risk can be used for economic loss estimation and 
provides also a basis for prioritization of interventions on the existing structures, 
aimed at lowering their intrinsic vulnerability: the listing provided in Tab. 6.58 
represent a direct tool that may directly be implemented in a Bridge Management 
System for assigning retrofit prioritization for bridges. 
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Tab. 6.68 –Seismic risk associated to PL1, PL2, PL3 for multi-span rc continuous 
bridges (Classes 2.1) 

N° Location Zone Name
Road       

(S.P.‐ S.R.)
Km

No. of 

Spans

Static 

scheme

Pier 

type

Pier 

Cross 
PL1 PL2 PL3

5 Longarone 3 Campelli S.P. 251 103+750 5 M_SIMPLY PF2 SC 0.757 0.076 0.042

8 Montebelluna 2 S.P.248 "Schiavonesca" S.R. 348 17+710 3 M_SIMPLY PFM SR 0.469 0.027 0.02

9 Montebelluna 2 Bocca Cavalla S.R. 348 18+929 4 M_SIMPLY PFM SR 0.128 0.028 0.013

12 Crocetta del Montello 2 FF.SS S.R. 348 25+025 2 M_SIMPLY PF2 SC 0.492 0.058 0.035

18 Pederobba 2 Torrente Courogna S.R. 348 29+753 3 M_SIMPLY PF2 SC 0.301 0.039 0.027

21 Portogruaro 3 Fiume Reghena S.R. 53 113+712 4 M_SIMPLY PFM SC 0.328 0.132 0.114

22 Portogruaro 3 Calvalcavia FF.SS. S.R. 53 114+880 4 M_SIMPLY PFM SR 0.192 0.013 0.007

24 Crocetta del Montello 2 Via 4 Novembre S.R. 348 24+838 3 M_SIMPLY PF2 SC 0.071 0.003 0.002

30 Cittadella 3 FF.SS S.P. 47 28+430 3 M_SIMPLY PFM SC 0.212 0.023 0.014

33 Feltre 2 Torrente Sonna S.R. 348 48+925 3 M_SIMPLY PSC SC 0.255 0.029 0.018

35 Quero/Vas 2 Fante d'Italia S.P. 1 bis 16+078 13 GERBER PSC HM 0.566 0.023 0.01

36 Motta di Livenza 3 Fiume Livenza Ramo Morto S.R. 53 96+802 2 M_SIMPLY PW SR 0.088 0.012 0.007

37 San Pietro di Cadore 3 Viadotto sulla SR355 S.R. 355 41+355 6 M_SIMPLY PF2 SC 0.044 0.003 4E‐04

38 Paese 3 SP Postumia S.R. 348 9+100 3 M_SIMPLY PW SR 0.322 0.011 0.005

59 Alano di Piave 2 Cav. Vittorio Veneto ‐ Ponte Fener‐ S.P. 32  0+429 21 M_SIMPLY PF2 SC 0.74 0.218 0.066

71 La Valle Agordina 3 Torrente Cordevole S.R. 203 19+647 3 M_SIMPLY PW SR 0.754 0.028 0.019

74 Cencenighe 3 Torrente Cordevole S.R. 203 35+958 3 M_SIMPLY PSC SC 0.489 0.125 0.093

75 Masarè 3 Torrente Cordevole S.R. 203 44+800 2 M_SIMPLY PW SR 0.1 0.004 0.003

78 Forno di Zoldo 3 Torrente Mareson S.R. 251 121+226 3 M_SIMPLY PF2 SC 0.712 0.259 0.219

87 Voltago Agordino 3 Torrente Zoppei e Cortolei S.R. 347 23+500 4 M_SIMPLY PFM SR 0.099 0.011 0.003

90 Taibon Agordo 3 Torrente Cordevole S.R. 347 30+835 3 M_SIMPLY PW SR 0.099 0.005 0.003

91 Zoldo Alto 3 Torrente Moiazza S.R. 347 48+278 3 M_SIMPLY PF2 SC 0.663 0.166 0.143

96 San Biagio di Callalta 3 Ponte sul Piave S.R. 53 73+260 7 M_SIMPLY PW SR 0.062 0.009 0.006

98 Motta di Livenza 3 Canale Malgher S.R. 53 98+973 3 M_SIMPLY PW SR 0.537 0.024 0.015

134 Silea 3 Sottopasso via Sile S.R. 89 1+030 2 M_SIMPLY PFM SC 0.601 0.059 0.042

144 Meolo 3 Cavalcaferrovia FF.SS. TS‐VE S.R. 89 16+350 3 M_SIMPLY PFM SC 0.621 0.065 0.029

148 Nervesa della Battaglia 2 Canale Vittoria S.P. 248 76+115 2 GERBER PW SR 0.489 0.049 0.031

162 Ceneselli 3 Canal Bianco S.R. 482 59+831 3 GERBER PW SR 0.486 0.011 0.006

196 Silea 3 Cavalcavia A27 S.R. 89 2+778 3 M_SIMPLY PF2 SR 0.83 0.119 0.109

200 Verona 3 Cavalcavia A22 del Brennero S.R. 11 293+435 3 M_SIMPLY PFM SC 0.926 0.312 0.161

215 Meolo 3 Cavalcavia Autostrada VE‐TS S.R. 89 13+312  3 GERBER PW SR 0.572 0.068 0.029

221 San Tomaso Agordino 3 Torrente Cordevole S.R. 203 38+736 4 GERBER PSC SC 0.1 0.006 0.004

242 Falcade 3 Torrente Gavon S.P. 346 23+230 3 M_SIMPLY PSC SC 0.048 0.006 0.003

280 Alano di Piave/Quero 2 Torrente Tegorzo S.R. 348 36+313 3 M_SIMPLY PW SR 0.11 0.009 0.004

286 Montebello 3 Cavalcavia Autostrada BS‐PD S.R. 11 333+564 2 M_SIMPLY PFM SR 0.142 0.047 0.041

290 Piazzola sul Brenta 3 Fiume Brenta S.R. 47 14+080 DX 3 M_SIMPLY PF2 SC 0.209 0.038 0.021

295 Auronzo di Cadore 3 Torrente Diebba S.R. 48 159+800 4 M_SIMPLY PF2 SC 0.415 0.117 0.101

303 Agordo 3 Torrente Rova S.R. 203 26+387 2 M_SIMPLY PW SR 0.09 0.009 0.005

304 ncenighe/San Tommaso A 3 Rio Ghisel S.R. 203 39+056 5 M_SIMPLY PSC SC 0.127 0.011 0.009

305 San Tommaso Agordino 3 Torrente Ivach S.R. 203 39+584 9 M_SIMPLY PSC SC 0.198 0.008 0.004

312 Loreggia 3 Fiume Muson dei Sassi S.R. 307 20+538 3 M_SIMPLY PFM SR 0.71 0.134 0.054

322 San Pietro di Cadore 3 Fiume Piave S.R. 355 42+210 2 M_SIMPLY PW SR 0.057 0.006 0.003

334 Santo Stefano di Cadore 3 Torrente Frison S.R. 465 4+200 3 M_SIMPLY PW SR 0.604 0.017 0.011

341 Rocca Pietore 3 Pian de Lobbia I S.P. 641 16+224 6 M_SIMPLY PSC SR 0.003 0.001 9E‐04

343 Rocca Pietore 3 Rio Crepolba S.P. 641 26+550 3 M_SIMPLY PW SR 0.153 0.002 0.001

344 Rocca Pietore 3 X S.P. 641 26+890 4 M_SIMPLY PSC SR 0.032 0.002 0.001

347 Noventa Vicentina ‐ Caselle 4 Ponte sul Frassine S.P. 4 2+160 3 M_SIMPLY PW SR 0.145 0.008 0.003

348 orri di Quartesolo ‐ Maro 3 Fiume Bacchiglione S.P. 28 1+500 3 M_SIMPLY PF2 SC 0.212 0.018 0.011

349 Grumolo delle Abbadesse 3 Ferrovia MI‐VE e strada S.P. 26 1+307 9 M_SIMPLY PW SR 0.206 0.012 0.007

353 Arzignano 3 Ponte delle Tezze S.P. 89 2+985 3 M_SIMPLY PFM SC 0.32 0.022 0.012

355 Cartigliano 3 Fiume Brenta S.P. 58 5+630 16 M_SIMPLY PF2 SC 0.672 0.057 0.031

358 Marano Vicentino 3 Torrente Timonchio S.P. 10 4+640 2 M_SIMPLY PW SR 0.245 0.015 0.008

359 Dueville 3 Torrente Timonchio S.P. 101 2+000 3 M_SIMPLY PW SR 0.276 0.011 0.006

360 Oliero 4 Torrente Oliero S.P. 73 10+100 3 M_SIMPLY PW SR 0.03 0.006 0.003

370 Bassano del Grappa 3 Bacino imbrifero strade comunali S.P. 248 2+946 7 M_SIMPLY PFM SC 0.694 0.074 0.049

372 Bassano del Grappa 3 Fiume Brenta S.P. 248 3+535 12 M_SIMPLY PFM SC 0.666 0.042 0.035

373 Zugliano 3 Fiume Astico S.P. 67 5+530 6 M_SIMPLY PF2 SC 0.316 0.019 0.015

374 Lugo di Vicenza 3 Fiume Astico S.P. 68 4+900 3 M_SIMPLY PF2 SC 0.314 0.019 0.015

377 Schio 3 Torrente Leogra S.P. 46 23+700 3 M_SIMPLY PW SR 0.155 0.017 0.009

379 Caldogno 3 Fiume Bacchiglione S.P. 41 4+400 3 M_SIMPLY PW SR 0.352 0.021 0.011

380 Sandrigo 3 Ponte sull'Astico S.P. 248 12+250 8 M_SIMPLY PF2 SC 0.54 0.037 0.023

381 Bassano del Grappa 3 Torrente Longhella S.P. 248 2+595 4 M_SIMPLY PFM SC 0.677 0.053 0.034

382 Pozzoleone 3 Fiume Brenta S.P. 44 0+200 17 M_SIMPLY PF2 SC 0.583 0.047 0.03

383 Sarcedo 3 Ponte sull'Astico S.P. 111 5+210 6 M_SIMPLY PF2 SC 0.613 0.058 0.037

399 Grisignano di Zocco 3 Ferrovia MI‐VE S.P. 21 3+402 2 M_SIMPLY PW SR 0.103 0.004 0.002

402 Torri di Quartesolo 3 Autostrada A4 S.P. 27 1+161 3 M_SIMPLY PFM SR 0.313 0.025 0.013

415 Bassano del Grappa 3 Torrente Longhella S.P. 52 3+150 3 M_SIMPLY PW SR 0.067 0.013 0.006

416 Bolzano Vicentino 3 Ferrovia VE ‐ TV S.P. 30 0+100 3 M_SIMPLY PF2 SC 0.49 0.042 0.025

420 Malo 3 Autostrada Valdastico A31 S.P. 48 1+540 3 M_SIMPLY PSC SC 0.36 0.127 0.113

422 Marano Vicentino 3 Autostrada Valdastico A31 S.P. 10 7+350 3 GERBER PSC SC 0.247 0.012 0.006

426 Dueville 3 Autostrada Valdastico A31 S.P. 63 2+100 3 GERBER PSC SC 0.22 0.012 0.006

471 Noventa Vicentina 4 Fiume Alonte S.P. XI 0+450 3 M_SIMPLY PFM SC 0.494 0.301 0.08

472 Pojana Maggiore 4 Scolo Alonte S.P. XIV 12+840 3 M_SIMPLY PFM SC 0.499 0.219 0.084

473 Sossano 3 Scolo Alonte S.P. 4 4+140 3 M_SIMPLY PFM SC 0.553 0.246 0.087

496 Fadalto 2 Botteon S.S. 51 X 6 M_SIMPLY PSC SR 0.91 0.028 0.02
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Tab. 6.69 –Seismic risk associated to PL1, PL2, PL3 for multi-span rc continuous 
bridges (Classes 2.2) 

 
 
 

6.8 CONCLUSIONS 

With regard to the methods of assessment of the existing bridges, the 
specific interest of the use of simplified procedures is apparent when probabilistic 
risk analysis is carried out on a large-scale, reliable indications having to be 
provided in a relatively short time for a large number of structures. 

Displacement-Based assessment procedures are used herein to assess the 
seismic vulnerability of the multi-span rc girder bridges (101) belonging to the 
regional road network of the Veneto region (N-E of Italy).   

After a preliminary subdivision of the bridge stock into homogeneous sub-
classes, a detailed statistical survey of the reference VR bridge database is 
presented, characterizing the effective ranges of pier properties (in terms of material 
characteristics,  geometrical properties,  reinforcement ratios etc.) that can influence 
the pier seismic capacity.  

A limited number of rc multi-span bridges are chosen as reference samples 
(named Reference Bridge structures, RBs) for each homogeneous class, and  a direct 
comparisons of the DBA procedure with NLTH analyses are carried out on this 
restricted (but representative) set of structures, showing how the analytical 
simplified DB method allows to predict the seismic fragility with fair accuracy. A 
direct comparison with fragility curves obtained by the application of the tabular 
RISK-UE method  (extensively used for large-scale fragility analyses) is also 
proposed for the RB structures, showing how these  curves are generally very 
distant from the analytical ones, while the analytical DB curves catch much better 
the overall fragility of the structure, giving a representative value of the final 
seismic risk index. 

N° Location Zone Name
Road       

(S.P.‐ S.R.)
Km

No. of 

Spans

Static 

scheme

Pier 

type

Pier 

Cross 

Sect.

PL1 PL2 PL3

70 Castelfranco Veneto 3  Cavalcaferrovia FF.SS S.R. 245 2+486 12 CONT PSC SC 0.676 0.074 0.051

100 Castelfranco Veneto 3 SP per Treville (Torr. Muson) S.R. 54 1+533 3 CONT PW SR 0.017 0.01 0.009

115 Bussolengo 3 Cavalcavia Z.I. Bussolengo S.R. 11 292+040 2 CONT PW SR 0.167 0.001 3E‐05

116 Bussolengo 3 Cavalcavia zona città mercato S.R. 11 292+800 2 CONT PFM SR 0.012 1E‐03 3E‐06

119 Colognola ai Colli/Caldiero 3 Torrente Progno S.R. 11 314+412 2 CONT PW SR 0.064 0.013 0.012

125 Treviso 3 Tang. Tv Ponte sul Sile S.R. 53 63+315 3 KINEMATIC PFM SC 0.433 0.116 0.096

126 Treviso 3 Tang. Tv Ponte sul Sile S.R. 53 63+387 3 KINEMATIC PFM SC 0.433 0.116 0.095

164 Castelfranco Veneto 3 Cavalcavia S.P. 83 S.R. 54 3+146 8 CONT PSC SC 0.648 0.077 0.051

197 Occhiobello 3 Cavalcavia A13 S.R. 06 4+400 3 CONT PF2 SC 0.146 0.013 0.005

282 Peschiera del Garda 3 Ponte del fiume Mincio S.R. 11 278+205 3 CONT PW SR 0.369 0.134 0.124

292 Cittadella 3 Cavalcavia Borgo Vicenza S.R. 47 29+990 6 CONT PW SR 0.566 0.095 0.08

299 Sovramonte 3 Pontet l S.R. 50 60+608 4 CONT PSC HS 0.645 0.078 0.065

323 Ponte nelle Alpi/Pous d'Alpago 2 Loc. La Secca S.R. 422 0+115 3 CONT PW SR 0.722 0.025 0.012

350 Longare 3 Fiume Bacchiglione S.P. 20 0+298 3 CONT PW SR 0.094 0.003 0.002

352 Montecchio Maggiore 3 Torrente Guà S.P. 33 1+340 5 CONT PW SR 0.016 1E‐08 2E‐15

357 Malo 3 Ponte sul Timonchio S.P. 48 3+850 3 CONT PW SR 0.417 0.01 0.005

363 Tonezza del Cimone 3 Valle S.P. 64 5+000 3 CONT PW SR 0.138 0.004 0.002

378 Montebello Vicentino 3 Torrente Chiampo S.P. 31 0+600 3 KINEMATIC PFM SC 0.321 0.08 0.067

400 Grisignano di Zocco 3 Autostrada A4 S.P. 21 4+846 3 CONT PF2 SR 0.102 0.028 0.056

425 Montebello Vicentino 3 Autostrada A4 S.P. 18 5+018 3 CONT PF2 SR 0.355 0.199 0.154

438 Grumolo Pedemonte 3 Canale S.P. 67 2+325 2 CONT PW SR 3E‐04 3E‐07 9E‐08

452 Sandrigo 3 Fiume Tesina S.P. 46 15+336 2 CONT PW SR 0.014 0.003 0.002

453 Sandrigo 3 Torrente Leverda S.P. 248 15+782 2 CONT PW SR 0.419 0.01 0.005

468 Agugliaro 4 Scolo Liona S.P. 7 3+710 3 CONT PW SR 0.121 0.034 0.031

493 Lonigo 3 Torrente S.P. 57 X 3 CONT PW SR 0.008 0.001 0.001

495 Silea 3 Cavalcavia Silea S.R. 53 X 4 CONT PFM SC 0.054 0.01 0.006
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Subsequently the vulnerability analysis of the entire bridge stock for multi-
span rc bridges is developed. Displacement-Based fragility curves are calculated by 
adapting  the procedure proposed for non-linear static analyses by Shinozuka et 
al.[S2], 2000, using displacement elastic spectra, and calculating the damage index as 
the Demand/Capacity ratio, expressed in terms of elastic spectral displacements for 
a pre-defined Performance Level. 

The seismic risk maps, show that the majority of structures are supposed to 
sustain with high probability a light damage, while risk involving severe damage 
collapse or is generally moderate, even if it is substantially negligible only for about 
1/3rd of the analyzed structures (at PL3  limit states). These results, that represent to 
the author’s knowledge the first indication on large scale of the expected seismic 
damage for bridges in this region, confirm that there is an intrinsic fragility typical 
of these classes of bridge structures, and the related seismic risk should be lowered 
through retrofit interventions. To this aim, the risk maps can be used as a direct tool 
by managing authorities to assign prioritization for  interventions. 
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CHAPTER 7 

CHAPTER 7                                                                
CONCLUSIONS 

 
 

7.1 GENERAL OBSERVATIONS 

The fast few years have seen the emergence of Displacement-Based (DB) 
design methods as the most promising basis for the future developments in a 
Performance-Based approach for seismic design and assessment. In these methods 
the capacity-demand comparison is expressed in terms of displacements and 
deformations, since it has been recognized that they are primary variables for te 
seismic damage estimation. 

DB methods are simplified approaches using equivalent single degree of 
freedom systems for response prediction. As in the case of other simplified methods 
the constant interest is explained by the great uncertainty characterizing the 
prediction of the seismic response, which makes the use of sophisticated models not 
always effective and warranted. This specific interest is further justified when the 
seismic risk evaluation is carried out in a probabilistic framework, relating to large-
scale case studies, quick and reliable simplified approaches being more convenient 
in respect to NLTH analyses, balancing accuracy and time saving.  

Displacement Based methods for seismic design and assessment of bridges in 
the present study are addressed from a methodological point of view: in the first 
part the current DB design methods for new structures with flexural ductile 
behaviour are evaluated, in particular with reference to the formulations of the 
equivalent viscous damping and the target displacement profile to be adopted in the 
analysis.  

In the second part the calibration of the DB procedures regards the specific 
issues arising in the evaluation of existing structures, not seismically designed, and 
often  not characterized by a global ductile behaviour. In particular the research 
focuses on the assessment of pier capacity and effective properties, piers generally 
representing the most vulnerable elements in the lateral resisting system of  bridges. 

The final outcome of the study is the supply of regional seismic risk maps for  
the whole class of multi-span  rc bridges belonging to the Veneto regional road 
network. The expected seismic damage is obtained with vulnerability analyses 
based on the simplified analytical displacement-based procedures, previously 
calibrated. 
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7.2 INNOVATIVE ASPECTS OF THE RESEARCH 

The thesis contains unpublished material, or partly, material that has recently 
been submitted to scientific journals or conferences in a different form. Most of the 
content of the work is therefore new, and the main results of the research are 
summarized below. 
As regards the calibration of the Displacement-Based Design procedures, applied to 
new structures with global ductile behaviour, the following original results were 
obtained:  

- the estimate of the medium error committed by the current DDBD method 
for the design of SDOF structures is derived, with specific reference to 
isostatic bridge piers (cantilever piers conform to the assumption of SDOF 
systems), through the development of an average error chart, characterizing 
the scatter in the results as a function of design ductility d and effective 
period Teff. A relation between displacement ductility and drift is also 
derived for cantilever piers, and a parametric chart is presented for pre-fixed 
values of pier height/ diameter ratio. The chart can be directly employed for 
design purposes; 

- a comparison between the current DDBD procedure and NLTH analyses for 
the prediction of transverse response of continuous bridges is presented with 
reference to an ample set of bridge configurations, showing how the system 
regularity can significantly affect the reliability of the DDBD simplified 
procedure. An alternative direct design method (named DBD-DEM), is 
proposed with the aim of simplifying the current iterative procedure for 
everyday design use. In the DBD-DEM method the global effective stiffness 
of the linearized system at the target displacement  is predicted by using the 
DBD framework, and subsequently an effective Spectrum Response 
Analysis (RSA) is used for the estimation of the final target displacement 
shape and the design of piers. 

As regards the calibration of Displacement Based Assessment procedures and its 
application to existing bridge structures, the following results were achieved: 

- the definition of the typical effective ranges of  the main pier parameters, 
essential for the calculation of rc multi-span bridges pier capacity for multi-
span bridges (longitudinal and transverse reinforcement ratio, confinement 
parameters, normalized axial load, etc.), obtained through the statistical 
analysis of the VR bridge inventory. The usual level of detail carachterizing 
existing bridge database is generally very poor, and the definition of the 
ranges of structural pier characteristics as basic data for a vulnerability 
analysis on a large scale, represents an achievement in itself; 

- the simplified non linear numerical model used for the flexural and shear 
interaction, gives a reliable representation of the non linear behaviour of 
shear critical piers, for which a new equivalent damping expression is 
formulated. The extensive parametrical analysis developed for pier capacity, 
allowed to define the collapse mechanisms, significant limit states in terms 
of strain and drifts, and effective properties of single bent and multiple bent 
piers were.  A series of parametric charts, that can be directly employed for 
the construction of piers capacity curves are presented, and can be used 
within the framework of the Displacement-Based assessment method; 
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- direct comparisons of simplified DBA procedures with NLTH analyses are 
developed on a representative set of structures for the construction of  
analytical fragility curves in a probabilistic framework. On the same set of 
bridges comparisons are also made with tabular methods (RISK-UE), 
usually employed as tools for earthquake risk assessment on a large scale; 

- seismic risk maps on a regional scale are finally plotted for all the multi-
span rc bridges of the VR stock, for three different scenarios corresponding 
to light damage, severe damage and collapse of bridges. These maps, 
obtained with analytical Displacement-Based methods, represent the first 
indication of seismic vulnerability for the whole class of multi-span rc 
bridges belonging to the Veneto regional road network, and can be used by 
the managing authorities as a direct tool to assigning a priority of retrofitting 
interventions. 

 

7.3 FUTURE DEVELOPMENTS AND RECCOMENDATIONS FOR 
FURTHER RESEARCH 

  The development of Displacement-Based Assessment (DBA) approaches  
has to address the specific issues of the definition of possible failure modes, limit 
states, hysteretic behaviour for existing structures, generally different from those 
characterizing new seismically designed structures.  

This research contributes to the implementation of these aspects in bridge 
seismic Displacement-Based assessment. However, further studies are needed in 
order to calibrate simplified but accurate models for the interaction of shear-flexure 
behaviour of piers under cyclic forces, predicting the shear cracking level and  
individuating the point of expected collapse. Moreover the definition of adequate 
performance levels related to the observable damage states is still a fundamental 
task for a displacement-based vulnerability analysis, and research on this topic need 
to be progressed. 

Several ideas for continuing the research presented in this thesis may be 
considered. An immediate extension of the research, may be represented by the 
development of a set of displacement-based fragility curves valid for the whole 
class of multi-span rc bridges. The need for analytical fragility curves representative 
of whole classes of bridges is apparent, if we consider that existing tabular methods 
(Hazus, Risk-UE) prove unreliable when applied to common Italian or European 
bridge typologies. A long-term development of the work may regard the extension 
of the simplified Displacement-Based procedures to the evaluation of different 
classes of bridge structures, particularly the single span rc bridges and masonry arch 
bridges, which represent the two other major categories of existing bridges in Italy. 
This could lead to completion of the scenario of seismic risk for the infrastructure 
network under examination (Veneto Region bridge inventory) on a regional scale. 
Furthermore in this context it will be possible to calibrate the seismic input for risk 
analysis through the use of hazard curves, obtained from micro-zonation studies in 
the areas of interest. 
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A.1 DESIGN RESULTS (DBD-IT) PROCEDURE. BRIDGES 
SERIES 3  

 

Tab. A.1 –Substitute SDOF parameters for bridges of Series 3, L=3% 

 

 

 

 

 

 

 

 

 

PRC222 3424 9.16 0.23 0.157 1.50 9.68 1.35 74061 17772 55.6
PRC131 3351 8.98 0.24 0.172 1.41 9.13 1.37 69984 17442 45.2
PRC323 3467 11.22 0.23 0.182 1.25 7.82 1.22 91457 21092 59.1
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[%]
Teff     

[s]
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[kN/m]
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x      
[%]
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[ton]
Heff     

[m]
d
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[m]
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[m]
D,eff    

[-]

SC222 2357 9.16 0.24 0.136 1.74 11.00 1.42 46283 11194 26.1
SC131 2267 9.06 0.25 0.112 2.23 12.80 1.59 35260 9151 11.8
SC323 2417 11.24 0.23 0.167 1.40 9.07 1.32 54591 13025 39.1

PRC22222 5384 9.48 0.24 0.094 2.57 13.64 1.58 85118 21368 9.3
PRC22322 5306 10.61 0.28 0.117 2.37 13.18 1.78 65824 18970 8.1
PRC32223 5455 10.46 0.24 0.146 1.66 10.62 1.44 103329 25682 29.7
PRC43234 5602 13.39 0.25 0.164 1.51 9.78 1.44 106780 27049 33.3
PRC32423 5356 12.67 0.27 0.174 1.56 10.07 1.59 83895 23347 26.3

SC22222 3735 9.46 0.25 0.103 2.44 13.34 1.62 56241 14606 -1.2
SC22322 3666 10.59 0.28 0.122 2.31 13.01 1.80 44680 13061 -4.6
SC32223 3831 10.51 0.26 0.151 1.69 10.79 1.53 64868 17011 22.5
SC43234 3950 13.51 0.27 0.178 1.50 9.68 1.53 66316 18006 27.7
SC32423 3705 12.69 0.28 0.171 1.62 10.42 1.64 54411 15481 18.1
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A.2 DESIGN RESULTS (DBD-IT) PROCEDURE. BRIDGES OF 
SERIES 4  

Tab. A.3 –Substitute SDOF parameters for bridges of Series 4, L=3% 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Meff     

[ton]

Heff     

[m]
d

eff     

[m]

y,eff    

[m]
 ,e ff   

[-]
 eff      

[%]

Teff     

[s]

Keff     

[kN/m]

Vbase    

[kN]

x      
[%]

PRC222 3424 9.16 0.23 0.157 1.50 9.68 1.35 74061 17772 55.6
PRC131 3351 8.98 0.24 0.172 1.41 9.13 1.37 69984 17442 45.2
PRC323 3467 11.22 0.23 0.182 1.25 7.82 1.22 91457 21092 59.1
PRC132 3379 10.03 0.25 0.188 1.33 8.48 1.38 69959 17886 51.9
PRC133 3390 11.15 0.25 0.201 1.24 7.77 1.35 73530 18805 56.8
PRC123 3403 9.38 0.24 0.174 1.37 8.79 1.33 75945 18488 56.9
SC222 2357 9.16 0.24 0.136 1.74 11.00 1.42 46283 11194 26.1
SC131 2267 9.06 0.25 0.112 2.23 12.80 1.59 35260 9151 11.8
SC323 2417 11.24 0.23 0.167 1.40 9.07 1.32 54591 13025 39.1
SC132 2293 10.12 0.28 0.156 1.77 11.16 1.67 32467 9262 24.3
PRC22234 5476 11.67 0.24 0.129 1.89 11.66 1.50 96155 24019 20.8
PRC11313 5317 8.88 0.16 0.072 2.25 12.84 1.04 195848 32355 15.4
PRC11321 5405 14.06 0.24 0.099 2.45 13.36 1.56 87789 21666 11.3
PRC22262 5497 15.54 0.24 0.116 2.05 12.23 1.48 98853 23843 6.5
PRC26242 5051 9.06 0.22 0.109 1.97 11.98 1.34 111460 24618 -26.0
SC22234 3806 11.87 0.26 0.128 2.05 12.24 1.63 56210 15111 11.7
SC11313 3687 9.04 0.17 0.069 2.48 13.43 1.10 119441 20735 9.5
SC11321 3624 14.70 0.26 0.103 2.55 13.59 1.71 49111 13227 1.4
SC22262 3821 15.76 0.25 0.120 2.08 12.33 1.57 61345 15643 -1.4
SC26242 3402 9.16 0.25 0.131 1.87 11.57 1.50 59305 15008 -35.1
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PRC222 3424 9.16 0.23 0.157 1.50 9.68 1.35 74061 17772 55.6
PRC131 3351 8.98 0.24 0.172 1.41 9.13 1.37 69984 17442 45.2
PRC323 3467 11.22 0.23 0.182 1.25 7.82 1.22 91457 21092 59.1

Meff     

[ton]
Heff     

[m]
d

eff    

[m]
y,eff    

[m]
D,eff    

[-]
eff      

[%]
Teff     

[s]
Keff     

[kN/m]
Vbase   

[kN]
x      

[%]

SC222 2370 9.15 0.24 0.156 1.54 9.93 1.40 48063 11829 39.6
SC131 2241 9.14 0.26 0.164 1.57 10.11 1.51 38903 10333 33.7
SC323 2428 11.25 0.24 0.171 1.39 8.94 1.33 53855 13031 38.6

PRC22222 5405 9.47 0.25 0.150 1.65 10.57 1.47 99079 25161 34.0
PRC22322 5317 10.61 0.28 0.174 1.62 10.43 1.67 75227 21938 33.1
PRC32223 5492 10.47 0.25 0.160 1.55 9.99 1.44 103981 26387 36.5
PRC43234 5648 13.42 0.25 0.166 1.53 9.87 1.47 102530 26561 34.0

SC22222 3759 9.46 0.25 0.136 1.86 11.54 1.55 61517 16093 22.3
SC22322 3664 10.60 0.29 0.158 1.81 11.34 1.75 47504 14104 21.4
SC32223 3869 10.53 0.26 0.161 1.62 10.39 1.54 64190 17229 28.6
SC43234 4009 13.59 0.28 0.181 1.55 10.03 1.64 59023 16961 28.8
SC32423 3699 12.73 0.29 0.181 1.58 10.21 1.68 51800 15218 20.0

A.3 DESIGN RESULTS (DBD-DEM) PROCEDURE. BRIDGES 
SERIES 3  

Tab. A.5 –Substitute SDOF parameters for bridges of Series 3, L=3% 
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Meff     

[ton]
Heff     

[m]
d

eff    

[m]

y,eff    

[m]
D,eff    

[-]
eff      

[%]
Teff     

[s]
Keff     

[kN/m]
Vbase   
[kN]

x      
[%]

SC132 2262 10.20 0.30 0.170 1.77 11.17 1.82 26912 8424 29.2
SC133 2272 11.44 0.33 0.201 1.64 10.50 1.95 23664 8091 33.0
SC123 2321 9.62 0.25 0.152 1.63 10.44 1.47 42601 10851 30.9
SC224 2438 11.61 0.25 0.161 1.53 9.89 1.43 47075 11839 35.0
SC324 2483 12.46 0.24 0.170 1.44 9.29 1.39 50927 12651 36.4

PRC22234 5471 11.86 0.26 0.151 1.75 11.04 1.59 85732 23159 27.5
PRC11313 5318 8.95 0.17 0.093 1.85 11.50 1.06 187340 32928 27.2
PRC11321 5231 14.57 0.26 0.128 2.05 12.23 1.64 76585 20585 12.1
PRC22262 5434 15.79 0.25 0.132 1.92 11.76 1.56 88339 22759 10.7
PRC26242 5054 9.08 0.22 0.119 1.81 11.31 1.31 116248 25628 24.8

PRC132 3379 10.03 0.25 0.188 1.33 8.48 1.38 69959 17886 51.9
PRC133 3390 11.15 0.25 0.201 1.24 7.77 1.35 73530 18805 56.8
PRC123 3403 9.38 0.24 0.174 1.37 8.79 1.33 75945 18488 56.9

SC22234 3700 12.21 0.30 0.160 1.86 11.54 1.82 43864 13512 21.5
SC11313 3627 9.31 0.19 0.092 2.11 12.43 1.22 95553 18977 18.1
SC11321 3292 15.67 0.31 0.144 2.14 12.53 1.95 34281 10905 -3.5
SC22262 3593 16.47 0.28 0.145 1.96 11.93 1.76 45567 13278 0.6
SC26242 3355 9.27 0.25 0.112 2.27 12.90 1.61 50786 13324 15.8

A.4 DESIGN RESULTS (DBD-DEM) PROCEDURE. BRIDGES 
SERIES 4 

 

Tab. A.7 –Substitute SDOF parameters for bridges of Series 4, L=3% 
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CHAPTER B                                                                
PARAMETRIC STUDY FOR CAPACITY AND PIER 

EFECTIVE PROPERTIES: SINGLE AND MULTIPLE 
BENT RECTANGULAR PIERS AND WALL PIERS  
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e) 

Fig. A.1 – Single bent rectangular piers: adimensional capacity curves 
(resistant acceleration vs drift): a) shear (S) piers, b) shear flexure (FS) piers, 

c),d),e) flexure (F) piers 
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B.1 WALL PIERS 

  
a) b) 

  
c) d) 

Fig. A.2 – Wall piers: adimensional capacity curves (resistant acceleration vs 
drift). a) shear (S) piers, b) shear flexure (FS) piers, c),d),e) flexure (F) piers 
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a) b) 

  
c) d) 

Fig. A.3 – Wall piers: adimensional capacity curves (resistant acceleration vs 
displcament ductility). a), b), c), d) Flexure (F) piers 
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CHAPTER C                                                                     
VENETO REGION (VR) BRIDGE STOCK  

 

 

 

 

 

 

 

 

 

 
 



 

 
R

 

C.1  

RBs1- Bo

LOCATION 

  

  

 REFEREN

tteon Bri

     

N:   4

E:  1

City 

Province 

Road 

Km 

NCE BRID

idge- 

 

46° 02' 18" [g

12° 18' 35" [g

Fadalto 

Treviso 

S.S. 51 

[‐]  [

 

DGE STRU

grad]

grad]

[‐] 

[‐] 

[‐] 

[km] 

PI

  

  

DE

  

  

UCTURES

ER    

Pier T

No. c

BT 

BL 

H 

Fcm

Reinf

Tran

Long

ECK 

Span

n° Sp

Widt

Mate

Deck

Stati

S  

Type 

columns 

f. Steel 

sv. Reinf. 

g. Reinf. 

n Lenght 

pan 

th 

erial 

k mass on pier

cScheme 

APPE

  

Single Bent

1 

3.50 

1.75 

16 

32.90 

FeB44k 

16/25cm

5020 

24.00 

7 

14.6 

DPC 

r  470 

M_SIMPLY

ENDIX C 
 
 
 

  

t  [‐] 

[‐] 

[m] 

[m] 

[m] 

[MPa]

[‐] 

m  [‐] 

[‐] 

[m] 

[‐] 

[m] 

[‐] 

[t] 

Y 



DISPLA

 

 

 
 
RBs

 

LOC

  

 
 
 
 

ACEMENT-BASED 

s2- Rio Gh

CATION    

   N

E

Ci

Prov

Ro

K

APPROACHES FO

hisel Brid

  

N:   11° 58

E:  46° 22

ity  Cencen

vince Bellu

oad  S.R. 2

m  39+0

R SEISMIC DESIG

dge- 

  

8' 39"  [grad]

' 60"  [grad]

nighe  [‐] 

no  [‐] 

203  [‐] 

056  [km] 

GN AND VULNERA

 

PIER 

  

  

DECK 

  

  

ABILITY ASSESSM

  

Pier Type

No. colum

D 

H 

Fcm 

Reinf. Stee

Transv. Re

Long. Rein

Span Leng

n° Span 

Width 

Material 

Deck mass

StaticSche

ENT OF MULTI-SP

  

Sing

mns 

4

el  Aq

einf.  1

nf.  2

ght  1

1

s on pier

eme  M_

PAN RC BRIDGES 

 

  

gle Bent  [‐

1  [‐

2.20  [m

6.50  [m

40.92  [MP

q 50‐60  [‐

10/25cm  [‐

2025  [‐

16.40  [m

5  [‐

10.00  [m

DPC  [‐

360  [t

_SIMPLY 

 
 
 

‐] 

‐] 

m] 

m] 

Pa]

‐] 

‐] 

‐] 

m] 

‐] 

m] 

‐] 

t] 



 

 
 
R
 
RBs3-  Fr

LOCATION 

  

  

rison Brid

     

N:   4

E:  1
City  S.

Province 

Road 

Km 

dge- 

46° 32' 04" 

12° 35' 56" 
Stefano di 
Cadore 

Belluno 

S.R. 465 

4+200 

 

 

[grad]

[grad]

[‐] 

[‐] 

[‐] 

[km] 

PI

  

  

DE

  

  

ER    

Pier 

BT 

BL 

H 

Fcm

Rein

Tran

Long

ECK 

Span

n° Sp

Widt

Mate

Deck

Stati

Type 

f. Steel 

sv. Reinf. 

g. Reinf. 

n Lenght 

pan 

th 

erial 

k mass on pier

cScheme 

APPE

  

Wall 

8.00 

1.50 

14.80 

24.23 

Aq 50‐60 

12/30cm

6220 

48.6 

2‐3 

8.00 

DCS 

r  320 

M_SIMPLY

ENDIX C 
 
 
 

 

  

[‐] 

[m] 

[m] 

[m] 

[MPa]

[‐] 

m  [‐] 

[‐] 

[m] 

[‐] 

[m] 

[‐] 

[t] 

Y 



DISPLA

 

 

 
  
RBs
 
 

 

LO

  

ACEMENT-BASED 

s4-  Caval

OCATION    

  

C

Pro

Ro

K

APPROACHES FO

lcavia A2

 

  

N:   45° 3

E:  12° 1

City  Si

ovince Tre

oad  S.R

Km  2+

R SEISMIC DESIG

27 Bridge-

  

38' 52"  [gra

18' 60"  [gra

ilea  [‐]

eviso  [‐]

R. 89  [‐]

+778  [km

GN AND VULNERA

- 

ad]

ad]

] 

] 

] 

m] 

PIER

  

  

DEC

  

  

ABILITY ASSESSM

R    

Pier Ty

No. of 

BT 

BL 

H 

Fcm 

Reinf. 

Transv

Long. R

CK 

Span L

n° Spa

Width

Mater

Deck m

StaticS

ENT OF MULTI-SP

ype 

columns 

Steel 

v. Reinf. 

Reinf. 

Lenght 

n 

ial 

mass on pier 

Scheme 

PAN RC BRIDGES 

  

Multiple Ben
2 

0.90 

0.90 

3.75 

26.14 

FeB44k 

12/30cm 

1320 

37.50 

3 

10.00 

DCS 

290 

M_SIMPLY 

 
 
 

 

 

  

nt  [‐] 

[m] 

[m] 

[m] 

[MPa]

[‐] 

[‐] 

[‐] 

[m] 

[‐] 

[m] 

[‐] 

[t] 



APPENDIX C 
 
 
 

 
 

 
RBs5- Campelli Bridge- 
 

  

 

 

LOCATION          

   N:   46° 16' 04" [grad]

E:  12° 18' 27" [grad]

City  Longarone  [‐] 

Province  Belluno  [‐] 

Road  S.P. 251  [‐] 
   Km  103+750  [km] 

PIER          

   Pier Type  Multiple Bent  [‐] 

No. of columns  2  [‐] 

D  1.25  [m] 

H  5.50  [m] 

Fcm  64.11  [MPa]

Reinf. Steel  Aq 50‐60  [‐] 

Transv. Reinf.  10/15cm  [‐] 

   Long. Reinf.  1226  [‐] 

DECK 

Span Lenght  30.33  [m] 

n° Span  8  [‐] 

Width  9.00  [m] 

Material  DPC  [‐] 

   Deck mass on pier 312  [t] 

   StaticScheme  M_SIMPLY 



DISPLA

 

 

 
RBs
 
 

 

LOC

  

ACEMENT-BASED 

s6-  Fener

CATION    

   N

E
Cit

Prov

Ro

Km

APPROACHES FO

r Bridge- 

 

  

N:   45° 53

E:  11° 56
ty  Alan

Pia

vince Bellu

ad  S.P.

m  0+4

R SEISMIC DESIG

 

  

3' 59"  [grad

6' 52"  [grad
o di 
ve  [‐]

uno  [‐]

32  [‐]

429  [km]

GN AND VULNERA

 

 

d]

d]

] 

PIER 

  

  

DECK

  

  

ABILITY ASSESSM

  

Pier Type

No. of colu

BT 

BL 

H 

Fcm 

Reinf. Stee

Transv. Re

Long. Rein

Span Leng

n° Span 

Width 

Material 

Deck mass

StaticSche

ENT OF MULTI-SP

  

Mu

umns 

A

el  1

einf.  2

f. 

ht 

s on pier

me  M

PAN RC BRIDGES 

  

ltiple Bent 
2 

1.50 

9.50 

51.72 

Aq 50‐60  [M

10/20 cm 

2220 

1.50 

23.73 

21 

9.00 

DPC 

320 

M_SIMPLY 

 
 
 

[‐] 

[m] 

[m] 

[m] 

MPa]

[‐] 

[‐] 

[‐] 

[m] 

[‐] 

[m] 

[‐] 

[t] 



 

 
 
R
 

 

 
 
RBs7-  Sc

LOCATION   

  

P

  

chiavones

 

    

N:   4

E:  12
City  Mo

Province 

Road  S

Km 

sca Bridg

 

 

5° 46' 49"  [

2° 04' 02"  [

ontebelluna

Treviso 

S.R. 348 

17+710 

 

ge- 

 

 

[grad]

[grad]

[‐] 

[‐] 

[‐] 

[km] 

PIE

  

  

DEC

  

  

ER    

Pier Ty

No. of 

BT 

BL 

H 

Fcm 

Reinf. S

Transv

Long. R

CK 

Span Le

n° Span

Width

Materi

Deck m

StaticS

ype 

columns 

Steel 

. Reinf. 

Reinf. 

enght 

n 

al 

mass on pier 

cheme 

APPE

 

  

Multiple Bent
4 

0.70 

1.00 

5.33 

28.73 

FeB44k 

10/20 cm 

1820 

16.14 

3 

10.00 

DPC 

225 

M_SIMPLY 

ENDIX C 
 
 
 

  

t  [‐] 

[m] 

[m] 

[m] 

[MPa]

[‐] 

[‐] 

[‐] 

[m] 

[‐] 

[m] 

[‐] 

[t] 



DISPLA

 

 

 
 
RBs
 

 

LOCA

  

ACEMENT-BASED 

s8-  Reghe

ATION    

   N:

E: 
City

Provin

Roa

Km

APPROACHES FO

ena Bridg

  

   45° 46

12° 48
y  Portogr

nce Trevi

ad  S.R. 

m  113+7

R SEISMIC DESIG

ge- 

 

  

6' 48"  [grad]

' 26"  [grad]

ruaro  [‐] 

iso  [‐] 

53  [‐] 

712  [km]

GN AND VULNERA

]

]

PIER 

  

  

DECK 

  

  

ABILITY ASSESSM

  

Pier Type 

No. of colum

D 

H 

Fcm 

Reinf. Steel

Transv. Rein

Long. Reinf.

Span Lengh

n° Span 

Width 

Material 

Deck mass o

StaticSchem

ENT OF MULTI-SP

  

Mult

mns 

2

Fe

10

nf.  28

. 

t 

on pier

me  M_

PAN RC BRIDGES 

  

tiple Bent  [
3 

[m

1.25  [m

22,20  [m

eB44k  [M

0/25cm  [

820  [

1.25  [

24  [m

3  [

12.5  [m

DPC  [

470  [

_SIMPLY 

 
 
 

[‐] 

m] 

m] 

m] 

MPa]

[‐] 

[‐] 

[‐] 

m] 

[‐] 

m] 

[‐] 

[t] 



 

 

 

 

 
 

RBs9- Fa

LOCATION 

  

  

ante d’Ita

 

     

N:   4

E:  11

City 

Province 

Road  S

Km 

alia Bridg

  

5° 55' 48" [g

1° 56' 28" [g

Quero 

Belluno 

S.P. 1 bis 

16+078  [k

 

ge- 

 

grad]

grad]

[‐] 

[‐] 

[‐] 

km] 

PIE

  

  

DE

  

  

ER    

Pier T

No. o

BT 

BL 

H 

Fcm

Reinf

Trans

Long

ECK 

Span

n° Sp

Widt

Mate

Deck

Static

Type 

of columns 

f. Steel 

sv. Reinf. 

. Reinf. 

Lenght 

pan 

h 

erial 

mass on pier

cScheme 

APPE

  

Single Bent

1 

7.80 

2.50 

40.30 

28.04 

Aq 50‐60 

8/20cm 

16114 

34.50 

13 

10.00 

DPC 

r  414 

GERBER 

ENDIX C 
 
 
 

  

  [‐] 

[‐] 

[m] 

[m] 

[m] 

[MPa]

[‐] 

[‐] 

[‐] 

[m] 

[‐] 

[m] 

[‐] 

[t] 



DISPLA

 

 

RBs
 

 

LOCA

  

 

 

 

ACEMENT-BASED 

s10-  Cana

ATION    

   N:

E: 
City

Provin

Roa

Km

APPROACHES FO

al Bianco

 

  

   45° 02

11° 24
y  Cenes

nce Rovig

ad  S.R. 4

m  59+8

R SEISMIC DESIG

o Bridge- 

  

' 59"  [grad]

' 27"  [grad]

selli  [‐] 

go  [‐] 

482  [‐] 

831  [km]

GN AND VULNERA

 

 
 

]

]

PIER 

  

  

DECK 

  

  

ABILITY ASSESSM

  

Pier Type 

No. of colum

BT 

BL 

H 

Fcm 

Reinf. Steel 

Transv. Reinf

Long. Reinf.

Span Lenght

n° Span 

Width 

Material 

Deck mass on

StaticScheme

ENT OF MULTI-SP

  

W

ns 

7.

0.

4.

39

Aq

f.  1

70

31

2

10

D

n pier 5

e  GER

PAN RC BRIDGES 

 

  

Wall  [‐]
1 

.40  [m

.90  [m

.10  [m

9.01  [MP

q50  [‐]

6/25  [‐]

20  [‐]

1.35  [m

2‐3  [‐]

0.00  [m

DC  [‐]

520  [t]

RBER 

 
 
 

] 

] 

] 

] 

Pa]

] 

] 

] 

] 

] 

] 

] 

] 



APPENDIX C 
 
 
 

 
 

RBs11-Autostrada A4 

  

 
 
 

 
 

LOCATION          

   N:   45° 28' 45"  [grad]

E:  11° 42' 16"  [grad]

Country  Grisignano Zocco [‐] 

Province  Vicenza  [‐] 

Highway  S.P. 21  [‐] 
   Km  4+846  [km] 

PIER          

   n° trasv. Pier  2  [‐] 

Pier Type  PF2‐SR  [‐] 

BT  1.50  [m] 

BL  0.60  [m] 

H  4.80  [m] 

Fcm  37.05  [Mpa] 

Reinf. Steel  FeB44k  [‐] 

Transv. Reinf.  12/20cm  [‐] 

   Long. Reinf.  2018  [‐] 

DECK 

Span Lenght  10.20‐36.40  [m] 

n° Span  2‐3 (3)  [‐] 

Width  11.00  [m] 

Material  DPC  [‐] 

   Mass  382.26  [t] 

BRIGDE          

   StaticScheme  M_CONT  [‐] 

BEARING         

   Type  NEO  [‐] 
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RBs17-Cavalcavia Silea 

 

  

 
 
 

 

 

LOCATION          

   N:  45° 39' 25 [grad]

E:  12° 17' 06 [grad]

Country  Silea  [‐] 

Province  Treviso  [‐] 

Highway  S.R. 53  [‐] 
   Km  nd  [km] 

PIER          

   n° trasv. Pier  3  [‐] 

Pier Type  PFM‐SC  [‐] 

BT  1.30  [m] 

BL  1.30  [m] 

H  4.00‐5.00  [m] 

Fcm  37.05  [Mpa] 

Reinf. Steel  FeB44k  [‐] 

Transv. Reinf.  10/10cm  [‐] 

   Long. Reinf.  3024  [‐] 

DECK 

Span Lenght  40.00  [m] 

n° Span  M (4)  [‐] 

Width  13.50  [m] 

Material  DCS  [‐] 

   Mass  550.46  [t] 

BRIGDE          

   StaticScheme  M_CONT  [‐] 

BEARING         

   Type  DEV  [‐] 

 




