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Riassunto

Le proprietà della variabilità temporale nelle sorgenti astrofisiche sono di
notevole interesse e riguardano una vasta gamma di fenomeni che si svilup-
pano in diversi tipi di oggetti. In questa tesi di dottorato abbiamo investi-
gato due classi di fenomei astrofisici, entrambi legati a studi sulla varabilità
temporale. La tesi presenta l’analisi scientifica dei dati raccolti dalla Crab
pulsar con gli innovativi contatori di fotoni ottici Aqueye e Iqueye, la cui
risoluzione temporale è la più alta mai raggiunta nel dominio ottico (centi-
naia di picosecondi). Aqueye (Barbieri et al. 2008, 2009) è stato progettato
per essere montato al telescopio Copernico in Asiago. Iqueye (Naletto et al.
2009, 2010) è una versione innovativa e progettato per il telescopio NTT in
La Silla.
Altre investigazioni qui descritte riguardano lo sviluppo e la verifica di idee
per interpretare e modellizzare la variabilità temporale al millisecondo osser-
vata in sistemi binari X.

Per quanto riguarda l’analisi scientifica dei dati dalla Crab pulsar, essa
richiede che ai fotoni raccolti venga associato, con alta precisione, il rispet-
tivo tempo di arrivo secondo un osservatore inerziale. Quindi dobbiamo
riferire il tempo di arrivo dei fotoni (TOAs) ad un sistema di riferimento
che approssimi al meglio uno inerziale. Solitamente i TOAs all’osservatorio
vengono trasformati in TOAs misurati da un osservatore al baricentro del sis-
tema solare. Tempo2 (Hobbs et al. 2006a; Edwards et al. 2006) è un software
sviluppato per modelizzare con estrema precisione (∼ 1 ns) i TOAs misurati
in un sistema di riferimento inerziale.

Dopo aver baricentrizzato i TOAs, abbiamo usato un codice numerico per
calcolare la fase della Crab pulsar. Dallo studio dell’andamento della fase nel
tempo è possibile misurare il periodo di rotazione della stella di neutroni e
sue derivate.
L’analisi dei residui in fase rispetto al modello standard può rivelare pecu-
liarità della sorgente e dell’ambiente circostante. Con questo tipo di analisi è
possibile anche verificare la bontà del modello che corregge i tempi di arrivo
al baricentro del sistema solare. Se c’è qualche discrepanza inaspettata allora
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è interessante investigare sulla sua origine fisica. Un risultato importante ot-
tenuto dall’analisi dei residui in fase è stata la scoperta del primo sistema
planetario extrasolare attorno alla pulsar PSR B1257+12 (Wolszczan & Frail
1992; Wolszczan 1994; Konacki & Wolszczan 2003). Altri studi riguardano
verifiche della teoria della Relatività Generale (Helfand et al. 1980; Kramer
et al. 2006). Inoltre, il timing delle pulsars è stato proposto come potenziale
strumento per la rivelazione di onde gravitazionali (Stappers et al. 2006;
Manchester 2010).

Dall’analisi dei residui in fase sono state notate inaccuratezze nel ricostru-
ire i TOAs al baricentro del sistema solare, dovute a problemi con i files di
configurazione del software Tempo2. Una volta risolti questi problemi, pos-
siamo concludere che i periodi di rotazione della Crab pulsar misurati con
Aqueye/Iqueye sono in accordo entro qualche picosecondo con quelli riportati
nell’archivio radio del Jodrell Bank Observatory.
I TOAs dei fotoni generano una componente di rumore che segue la statistica
di Poisson. Le differenze tra i periodi radio e ottici sono maggiori dell’errore
Poissoniano stimato. Con i dati raccolti da Aqueye/Iqueye è stato possibile
misurare la derivata prima del periodo di rotazione già con osservazioni su
una base temporale di soli 2 giorni. Anche in questo caso abbiamo notato
discrepanze maggiori dell’errore statistico.
Misurando il tempo di arrivo del picco ottico al baricentro del sistema so-
lare e confrontandolo con quello riportato nell’archivio radio, è stato ricavato
il ritardo temporale del picco radio rispetto a quello ottico. Il picco ottico
arriva ∼ 120µs in anticipo rispetto a quello radio, in accordo con altri os-
servatori (Shearer et al. 2003; Oosterbroek et al. 2008). L’analisi ha anche
rivelato un deriva della fase ottica rispetto a quella radio che sembra essere
legata alle discrepanze già menzionate tra i periodi di rotazione. Ulteriori
investigazioni hanno portato alla preliminare conclusione che il segnale ottico
dalla Crab pulsar potrebbe essere influenzato da una componente di rumore
che non segue la statistica di Poisson, conosciuto come timing noise. Rumore
non Poissoniano nel segnale da stelle di neutroni è stato rivelato da diversi
autori (Boynton et al. 1972; Lyne et al. 1993; Scott et al. 2003; Hobbs et al.
2006b; Patruno et al. 2009), comunque su basi temporali di mesi o anni. Ul-
teriori osservazioni sono necessarie per verificare la presenza di rumore non
Poissoniano su scale di giorni.

In questa tesi di dottorato è stata anche esplorata qualche idea sulla in-
terpretazione e modelizzazione della variabilità temporale al millisecondo,
osservata nel flusso X delle Low Mass X-ray Binaries (LMXBs; e.g. van der
Klis 2004). Queste oscillazioni quasi-periodiche (QPOs), a frequenze fino a
1200 Hz, sono state rivelate con i contatori di fotoni X a bordo del satellite
Rossi X-ray Timing Explorer (RXTE; Bradt et al. 1993). Oscillazioni al mil-
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lisecondo sono tipiche del tempo scala orbitale a distanze prossime all’oggetto
compatto. Lo studio temporale di queste sorgenti potrebbe essere un modo
indiretto per studiare il moto della materia in uno spazio-tempo fortemente
curvato, quindi per verificare la teoria della Relatività Generale in regime di
campo forte.
La tesi descrive qualche idea per interpolare le frequenze dei moti relativistici,
calcolate per orbite nella metrica di Kerr, con i QPOs osservati nelle LMXBs.
Abbiamo calcolato il chi-quadro ridotto (χ2/dof) su una griglia di masse e
momenti angolari e notato che il minimo χ2/dof si ottiene per masse della
stella di neutroni maggiori di 2 M⊙. Questi valori sono grandi rispetto alla
usuale massa di una stella di neutroni (1.4M⊙) ottenuta dalle pulsar binarie.
Comunque, in sistemi binari in accrescimento come le LMXBs, è stata mis-
urata una massa della stella di neutroni maggiore di quella tipica (Casares
et al. 2006, 2010). Va precisato che, utilizzare i QPOs al millisecondo per
ottenere stime precise della massa di una stella di neutroni potrebbe non
essere ancora un metodo sicuro, vista la complessità della fenomenologia e le
tuttora poco chiare proprietà.

Se i QPOs ad alta frequenza nel flusso X delle LMXBs sono prodotti da
corpi che orbitano in prossimità dell’oggetto compatto, allora un modello
consistente dovrebbe prendere in cosiderazione anche l’evoluzione della loro
forma in uno spazio-tempo curvo. In collaborazione con il Dipartimento di
Fisica e di Matematica dell’Università di Ljubljana abbiamo simulato curve
di luce e spettri di potenza prodotti da un oggetto costituito da particelle
libere orbitanti un buco nero di Schwarschild. Durante il moto orbitale la
forma dell’oggetto è fortemente alterata dall’intensa forza mareale del buco
nero (Čadež et al. 2008; Kostić et al. 2009). Tali simulazioni numeriche sono
in grado di riprodurre lo spettro di potenza osservato nella LMXB con un
buco nero XTE J1550-564 (Germanà et al. 2009).
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Abstract

The detailed knowledge of the temporal behaviour of astrophysical objects
is one of the main sources of information about physical processes occurring
in several classes of objects. In this PhD thesis we investigated two different
astrophysical topics, both of them linked to timing. We present the scientific
analysis of the data collected from the Crab pulsar by means of the novel op-
tical extremely fast-photon counters Aqueye and Iqueye, that have the best
temporal resolution ever achieved in the optical domain (hundreds of picosec-
onds). Aqueye (Barbieri et al. 2008, 2009) was designed to be mounted at
the Copernico telescope in Asiago. Iqueye (Naletto et al. 2009, 2010) is an
improvedversion for the NTT telescope.
Here we also discuss some ideas on modelling the millisecond variability ob-
served in the X-ray flux from Low Mass X-ray Binaries with either a neutron
star or a black hole.

The timing analysis of the optical emission from the Crab pulsar requires
to time-tag with extreme precision the photons as collected by an inertial
observer. Therefore we must refer the time of arrival of photons (TOAs) to a
reference frame that approximates an inertial frame to the level of precision
needed. One usually refers TOAs to a reference system located at the solar
system barycenter. Tempo2 (Hobbs et al. 2006a; Edwards et al. 2006) is
a software meant to model with extreme precision (up to ∼1 ns) TOAs as
collected by an inertial observer.
After baricentering TOAs a numerical code making use of a standard tem-
plate was used to determine the phase of the mean peak of the Crab pulsar
profile. By studying the phase behaviour it is possible to extract information
about both the rotational period of the fast rotating neutron star and its
derivatives. Moreover, the analysis of the phase-residuals left out after sub-
tracting the standard pulsar timing model may reveal interesting features of
the pulsar and its surroundings. With the anlysis of the residuals one can also
check for possible discrepancies on the modelling. If some systematic resid-
uals show up, then it is interesting to investigate the physical origin. Just to
quote a few noticeable examples, we mention the discovery of the first extra-

11



solar planetary system around the pulsar PSR B1257+12, obtained from the
analysis of pulsar phase-residuals (Wolszczan & Frail 1992; Wolszczan 1994;
Konacki & Wolszczan 2003). Other foundamental results deal with tests of
General Relativity theory (Helfand et al. 1980; Kramer et al. 2006). More-
over, pulsar timing is now being planned as a tool to reveal gravitational
wave (Stappers et al. 2006; Manchester 2010).

The analysis of the optical phase-residuals of the Crab pulsar we per-
formed has revealed poor corrections in the Roemer delay due to the Tempo2
configuration files. After correcting for them we can conclude that the ro-
tational periods of the Crab pulsar measured by Aqueye/Iqueye agree with
those quoted in the Jodrell Bank radio archive up to a few picoseconds.
The TOAs from a photon-counter usually are affected by noise that obeys
the Poisson statistics. We noticed possible discrepancies between the radio
and optical rotational periods larger than the estimated Poissonian error,
but a more extensive analysis of the pulsar timing noise and related errors
is needed before any definitive conclusion can be drawn. We were able to
measure the spin down of the neutron star already over a baseline of a few
days. Discrepancies with that reported in the Jodrell Bank radio archive are
underlined.
By comparing the time of arrival of the optical peak at the solar system
barycenter with that quoted in the Jodrell Bank radio ephemerides archive
we find a radio-optical delay in agreement with that reported in the litera-
ture (Shearer et al. 2003; Oosterbroek et al. 2008), that is, an optical peak
leading the radio one by ∼ 120µs. We also noticed same radio-optical phase
drift with time, which may be related to the radio-optical rotational period
discrepancies mentioned above. A further investigation on the possible ori-
gin of these discrepancies led to the preliminary conclusion that the signal
from the Crab pulsar may be affected by an extra-noise component, known
as timing noise, not suitable described by the Poissonian statistics. Non-
Poissonian noise in the signal from neutron stars has been reported by other
authors (Boynton et al. 1972; Lyne et al. 1993; Scott et al. 2003; Hobbs et al.
2006b; Patruno et al. 2009), but using integration times of months or years.
Further observations to confirm the existence of non-Poissonian noise in the
Crab pulsar are needed.

In this PhD thesis we also present some ideas on the origin of the mil-
lisecond X-ray timing variability in the X-ray flux from Low Mass X-ray
Binaries (LMXBs), with either a black hole or a neutron star (e.g. van der
Klis 2004). These quasi-periodic oscillations (QPOs), at frequencies up to
1200 Hz, were discovered by means of the X-ray photon-counters on board
of the Rossi X-ray Timing Explorer satellite (RXTE; Bradt et al. 1993).
Millisecond time-scales are typical for matter orbiting close to the compact
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object. Therefore, timing studies of these sources could provide a way to in-
vestigate the motion of matter in a strongly curved space-time, thus probing
General Relativity in the strong field limit.
We describe some ideas on fitting relativistic frequencies in the Kerr metric
to observed QPO frequencies in LMXBs. Using a grid of masses and specific
angular momenta for the neutron star we show that numerical fits have a
low χ2/dof for masses of the neutron star above 2 M⊙. Such masses are
bigger than the canonical value 1.4M⊙ measured in double radio pulsars.
However, in accreting bynary systems a mass of the neutron star larger than
the canonical value has been measured (Casares et al. 2006, 2010). We note
that precise measurements of neutron star masses by means of millisecond
QPOs are uncertain because of the yet poorly understood phenomenology.

If high frequency QPOs in the X-ray flux of LMXBs are produced by
orbiting blobs of matter close to the compact object then a full-consistent
modelling should also account for the interaction of the shape of the blob with
the curved geometry of the space-time. In collaboration with the Department
of Mathematics and Physics of the University of Ljubljana we ran simulations
of light curves and power spectra produced by clumps of free particles orbiting
a Schwarzschild black hole, that are deformed by tidal interaction. The
numerical code was developed by Čadež et al. (2008), Kostić et al. (2009).
The numerical simulations reproduce the high frequency part of the power
spectrum observed in the black hole LMXB XTE J1550-564 (Germanà et al.
2009).
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Chapter 1

Scientific Introduction

The studies of the temporal behaviour of the observed phenomena trace the
origin of the human being. The repeating seasonal pattern certainly was
the first best observed celestial phenomenon in order to sustain a succesful
farming culture.

In astronomy we may say that the temporal analysis is “the” basic tool.
For example, in cosmology the study of the universe is referred to distances
which in turn are measured in term of light travel time. If we want to know
more about a galaxy we analyze the light from it, which in turn is a package
of oscillating waves over a characteristic time-scale.
Besides the oscillation time-scales of the electromagnetic field, one can get
information on astrophysical sources by studying the behaviour of the repeat-
ing pattern, if any, displayed by the light emitted. For instance, oscillations
in the signal over a characteristic time-scale indicate the source to be an
eclipsing binary system.
Nowadays with timing analysis of astrophysical sources we refer to phenom-
ena showing a repeting pattern under the second time-scale. Thus, in order
to monitor so short time-scales, fast photometry is needed and the develope
of extremely fast photon-counters is certanly important in order to improve
timing studies.

1.1 Pulsars: millisecond lighthouses in the

sky

Rotating neutron stars certainly are the most representative class of objects
showing a well defined repeating pattern in time. These compact objects
originate from supernova explosions. Their emission is characterized by pul-
sations on ms-s time-scales caused by the rotation of the neutron star (at the
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16 1. Scientific Introduction

expense of their high rotational energy). A beam of radiation, tipically in the
radio band, is emitted by their magnetic cups. If the star is oriented in the
sky such that both beams, or even one of them, cross the line of sight we see
the source like a lighthouse with a pulsation period equal to the rotational
period of the neutron star. Since neutron stars have an extreme momen-
tum of inertia, the rotational period should follow a steady spin down due
to the loss of rotational energy. Thus the observed pulses are very regular.
If not, pulsar timing provides a way to investigate new physical phenomena
characterizing the source and its sorrounding.

The first pulsar ever detected in the radio band was PSR J1921+2153
(with a rotational period of 1.337 s; Hewish et al. 1968). At that time, Hewish
and collaborators were involved in studying interplanetary scintillation of
compact radio sources by means of a newly constructed large dipole array.
During the observations carried out over autumn 1967, the first periodic
radio signal from the pulsar came up. However, initially the pulsation was
not associated with the rotation of a compact star but rather with its possible
oscillation.

The discovery by Hewish and collaborators opened a new window on both
observational and theoretical astrophysics. Indeed, since then several pulsars
were discovered (Large et al. 1968b), in particular two fast-rotating pulars:
The Crab pulsar (Staelin & Reifenstein 1968), with a rotational period of
only 33 ms, and the Vela pulsar (Large et al. 1968a), with a period of 89 ms.
From the theoretical point of view, radio pulsars were the observative firm on
the theory endorsing the existence in the universe of compact objects made
of neutrons (Baade & Zwicky 1934).

Pulsars do not emit only in the radio band, their emission is distribuited
all over the electromagnetic spectrum. Pulsations in the optical band from
the Crab pulsar were discovered soon after those in the radio band (Cocke
et al. 1969). The 50 ms rotating pulsar B0540 in the Large Magellanic Cloud
was discovered in the X-ray band (Seward et al. 1984) and it has been studied
in the optical and other energy bands as well (Mignani et al. 2010).

If detected as binary systems, rotating neutron stars can provide a way
to study foundamental phenomena of modern physics. Relativistic pulsars
are laboratories in which it is possible to test General Relativity theory pre-
dictions (Hulse & Taylor 1975; Kramer et al. 2006).
A surprising result reached thanks to the long monitoring of the radio pul-
sar PSR 1257+12 was the discovery of the first extrasolar planetary system
(Wolszczan & Frail 1992; Wolszczan 1994; Konacki & Wolszczan 2003).
Stairs et al. (2000) have shown that young pulsars can freely precess, a result
that theoretically is not expected for a single rotating neutron star. Optical
studies of the Crab pulsar by Čadež & Galičič (1996), Čadež et al. (1997,
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2001) raised the question whether the pulsar in the Crab Nebula freely pre-
cesses. If confirmed, free precession can give information on the internal
structure of the star, hence on the equation of state of the matter at nuclear
density.

Despite their discovery more than 40 years ago, little is known about
the emission mechanisms in pulsars. Therefore it has becoming more and
more demanding to study these objects in several energy emission bands.
In the optical band, the brighter sources are the Crab pulsar (V ∼ 16.5),
the Vela (V ∼ 23.6) and the pulsar in the Large Magellanic Cloud PSR
B0540-69 (V ∼ 22.5), which are rotation-powered pulsars. However, with
the advent of new high time resolution instruments in the optical band both
rotation-powered pulsars and magnetars have been discovered. To date, the
number of Isolated Neutron Stars (INSs) detected in the ultraviolet, optical
and infrared band is 24 (for a general review, see Mignani 2010). INSs have
been detected and studied in X-ray (∼ 80) and γ-ray bands (∼ 60) as well
(Becker 2009; Abdo et al. 2010).
A yet unkown phenomenon charcterizing INSs is the noise left out after
subtracting the standard slow down model to the data (Cordes & Helfand
1980; Hobbs et al. 2006b). This noise is dubbed timing noise and it may
be related with physical processes in either the emission energy mechanism
(Forman et al. 1974) or the INS sorrounding (Scott et al. 2003). One usually
refers the word timing noise to what maybe left out by the modelling because
of its yet unkown physics. Recent studies by Patruno et al. (2009) have
revealed timing noise also in the X-ray emission from fast-rotating neutron
stars hosted in accreting binary systems.

Having in mind the several scientific issues described above, we can say
that pulsar timing may provide clues on foundamental physics. For instance,
pulsar timing has recently been proposed as a tool to detect gravitational
waves emission (Stappers et al. 2006; Manchester 2010).
It appears clear that it is worth to devolepe new improved instrumentations to
monitor and study the yet unknown issues of pulsar physics. After a review,
in the following we concentrate on the scientific analysis of the optical data
collected from the Crab pulsar with the nanosecond-time resolution photon-
counters Aqueye (Barbieri et al. 2008, 2009) and Iqueye (Naletto et al. 2009,
2010).

1.2 The pulsar in the Crab Nebula

As well known, the young fast-rotating neutron star in the Crab Nebula (PSR
B0531+21 or PSR J0534+2200) displays a light curve with a characteristic
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Figure 1.1: Optical light curve profile of the Crab pulsar obtained with Iqueye at the
NTT telescope on December 2009. Two rotation of the neutron star are shown. The
integration time is ∼ 800 s.

double peak profile (see Fig. 1.1) with a rotational period of 33 milliseconds,
almost aligned in phase over the whole electromagnetic spectrum. It is the
brigthest optical pulsar and the first to be detected as a pulsating source in
the optical band (Cocke et al. 1969; Lynds et al. 1969). The central star of
the Nebula was optically identified by Minkowski (1942) and later discovered
to be a radio source (Bolton et al. 1949). However, it was only about 20 years
later that, soon after the detection of the first pulsar by Hewish et al. (1968),
pulsating radio emission was observed (Staelin & Reifenstein 1968; Comella
et al. 1969), providing strong evidence for a connection with a supernova
explosion. The pulsations were later recognized to be Giant Radio Pulses
(occasional powerful pulses with an energy thousands times larger than that
of the average pulses). The Crab pulsar is also a powerful X-ray and gamma-
ray emitter (Bowyer et al. 1964; Haymes et al. 1968).
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1.2.1 Multi-wavelenght observations

Several studies concentrated on the pulse shape of the Crab in various pho-
tometric bands (e.g. Percival et al. 1993; Lundqvist et al. 1999). The pulse
shape is characterized by a double peak profile, separated in phase by ∼ 140◦

and almost aligned through the entire electromagnetic spectrum (although
the morphological details differ substantially from radio to Gamma-rays).
This clearly suggests that the emission originates from two polar beams from
an almost orthogonal rotator. The pulse shape is very stable, despite the
secular decrease of the luminosity (Nasuti et al. 1996) and the presence of
glitches and timing noise (Lyne et al. 1993). Occasionally small variations of
the shape of the pulse have been observed (Karpov et al. 2007). Wavelength-
dependent changes in the pulsar properties have been reported also by Ford-
ham et al. (2002).

Precise timing of pulsar light curves in different wavebands (Mignani
2009a; Kanbach et al. 2010) is a powerful tool to constrain theories of the
spatial distribution of various emission regions. A time delay most natu-
rally implies that the emission regions differ in position. It has been shown
that the main pulse and the interpulse are not aligned in time in the radio,
X-ray and Gamma-ray bands, but the high energy photons lead the radio
ones (Kuiper et al. 2003; Rots et al. 2004). At optical and radio wavelengths
Shearer et al. (2003) and Oosterbroek et al. (2008) performed simultaneous
absolute timing and found an optical peak leading the radio one by hundrends
of µs. Simultaneous X-ray and optical observations has been performed as
well, leading to the conclusions that the X-ray-radio time delay depends on
the hardness of the X-ray radiation (Molkov et al. 2010).

1.3 Studies in the Optical band of the Crab

pulsar

It is widely accepted that the optical emission of pulsars is synchrotron radi-
ation from relativistic particles that spiral around the pulsar magnetic field
lines. The basic engine is the pulsar rotational energy, that is somehow trans-
ferred to low-frequency radiation and into accelerating charged particles. The
major uncertainty is related to the acceleration mechanism of this relativis-
tic wind. Very little is known about the acceleration site, either surface and
magnetic poles or further out near the light cylinder, where the particles
rotating with the neutron star field lines reach the velocity of light.

The optical spectrum of the Crab shows a flat, featureless continuum,
that is well fitted by a power-law with spectral index α = 0.1± 0.01 (Nasuti
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et al. 1996). Stroboscopic observations were used to obtain the spectrum
during the main pulse and the interpulse, finding a dereddened spectral in-
dex α = −0.2 ± 0.1 (Carramiñana et al. 2000). Optical polarization mea-
surements (Mignani 2009b) of the Crab pulsar have also been attempted
and showed that the optical emission is highly polarized, especially in the
bridge and off-pulse phase (Kanbach et al. 2005). Highly polarised emission
strongly depending on the pulse phase has been observed also in the soft
Gamma-rays with INTEGRAL (Dean et al. 2008). Recently, S lowikowska
et al. (2009) studied the linear polarization of the Crab pulsar with very
high time resolution (11µs) and showed that degree of optical polarisation
and the position angle correlate in surprising details with the light curves at
optical wavelengths and at radio frequencies, suggesting a subtle connection
between presumed non-coherent (optical) and coherent (radio) emissions.

Short timescale (few minutes) modulations of the phase and amplitude of
the optical light curve were investigated by Čadež & Galičič (1996), finding
evidence for a 60 s modulation that was interpreted as the pulsar free preces-
sion period. This raised the question whether a young fast-rotating neutron
star can freely precesses (Čadež et al. 1997, 2001). If confirmed, the Crab
free precession could be used to constrain the pulsar moment of inertia and
hence the equation of state of nuclear matter.

1.4 Aqueye/Iqueye: extremely fast optical photon-

counters

A new generation of extremely fast optical photon counters are being de-
veloped in light of the future Extremely Large Telescopes (ELTs; Dravins
et al. 2005; Barbieri et al. 2006). Extremely large telescopes such as E-ELT
will provide very high photon fluxes, allowing studies on the statistics of
the photons collected. Therefore several instrumental features are needed:
high quantum efficiency, capability to time tag the arrival time of each pho-
ton to better than few tens of picoseconds, high stability clock running for
hours, acquisition devices capable to sustain arrival rates from 10 Hz up to
1 GHz. In such way, the time frontier of astronomy will be pushed toward
the limit imposed by Heisenberg’s principle. Therefore, we have called this
novel method to utilize the light from the celestial sources as “Quantum As-
tronomy”.
Modern technologies of single photon detectors, clocks and data storage al-
low today to reach the wanted photometric capabilities, as we have shown
starting from the QuantEye study in the frame of the instrumentation for the
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ESO OWL (Dravins et al. 2005; Barbieri et al. 2006) and following develop-
ments (Naletto et al. 2007; Barbieri et al. 2008). A valuable contribution to
the understanding of pulsar emission mechanisms can certainly comes from
studies of very high photon fluxes, time tagged by such very fast photon
counters.

While the exploitation of the full “quantum” capability of such novel pho-
tometer requires the high photon fluxes insured by the ELTs, an instrument
having the above mentioned characteristics will serve two important pur-
poses: on one side, it will serve as a prototype to test in the real astronom-
ical environment those concepts and lead to a final design for an upgraded
version for the E-ELT, on the other, it will produce new astrophysical results
on a variety of objects, including optical pulsars, thanks to the enormous
dynamic range, very low intrinsic noise, extremely accurate time tagging of
each detected photon.

To put these expectations to solid tests, a first simple photometer for
the 182cm telescope of Asiago, named Aqueye (the Asiago Quantum Eye;
Barbieri et al. 2008, 2009) has been built. Subsequently, an improved version
for the NTT telescope, Iqueye (the Italian Quantum Eye; Naletto et al. 2009,
2010) has been developed.
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Figure 1.2: (a) Twin kilohertz (kHz) QPOs detected in the Z-source Sco X-1, (b) hec-
tohertz (hHz) QPOs in the atoll-source 4U 0614+09, (c) High Frequency (HF) QPOs in
the black hole GRO J1655-40 (van der Klis 2004)

1.5 Timing studies of X-ray binaries

During the past decade, the millisecond time-scales variability seen in the
X-ray flux from X-ray binaries (Fig. 1.2) was brought to the attention of the
astrophysicists community. X-ray binaries mainly emits in the X-ray band,
thus their timing analysis deals with X-ray photons. These sources have
either a neutron star or a black hole as compact objects and a companion
star with a mass ≤ 1M⊙. In sources with a neutron star, its magnetic field
is low (108 − 109 G). For this reasons these objects are dubbed Low Mass
X-ray Binaries (LMXBs; Frank et al. 2002). Due to the strong gravitational
pulling of the compact objects, matter from the companion accretes onto the
compact objects and forms an accretion disc around it. During accretion,
because of the large temperature, the innerpart of the accretion disc emits
thermal X-ray photons. One more class of X-ray binaries are High Mass X-
ray Binaries, whose companion star is a massive star. These objects accrete
usually via stellar wind and do not show variability on millisecond time-
scales. In the following we concentrate on the timing variability in LMXBs.

The Rossi X-ray Timing Explorer satellite (Bradt et al. 1993) has dis-
covered millisecond time-scale modulations in the X-ray flux from LMXBs.
This time scale is typical for matter orbiting close to the compact object.
Therefore, timing studies of these sources could provide a way to investigate
the motion of matter in a strongly curved space-time, thus probing General
Relativity in strong field regime. Information about so rapid phenomena are
obtained calculating the power spectrum of the photon-time series collected.
The peaks seen in the power spectra have a non-zero width, thus they are
dubbed Quasi-Periodic Oscillations (QPOs).
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1.5.1 What is a QPO?

A QPO is a peak of given width in the Fourier power spectrum. It usually
is fitted with a Lorentzian (van der Klis 2004)

Pν ∝ ∆ν

(ν − ν0)
2 + (∆ν/2)2 (1.1)

where ν0 is the central frequency of the peak, ∆ν its Full Width at Half
Maximum (FWHM). The FWHM depends on the coherence time of the
oscillation τ = 1/π∆ν. The quality factor Q of a QPO is

Q =
ν0

∆ν
, (1.2)

which gives a measure of the coherence of the peak. QPOs are modulations
in the power spectrum with Q > 2, while those with Q < 2 are classified as
peaked noise.
The amplitude of a QPO is the integrated power of the peak P =

∫

Pνdν
and it is usually expressed in terms of “root mean square amplitude” (rms;
Nowak et al. 1999)

rms =

(

< N2 > − < N >2

< N >2

)1/2

(1.3)

where N is the count rate (number of photons/s) in the segment of data.
The significance of a QPO is given by (van der Klis 1998)

nσ =
1

2
N rms2

(

t

∆ν

)1/2

(1.4)

where t is the integration time (t≫ 1/∆ν).

1.5.2 The QPOs morphology

The observed timing variability in LMXBs shows a large dynamic range
(∼ 10−3−103 Hz). In the past years the attention has been focused on those
time-scales typical for the motion of matter close to the compact objects
(103 Hz). However, studies on the Low Frequency (LF) QPOs have been
done as well and showed that they are correlated with the High Frequency
(HF) ones (Psaltis et al. 1999). LF QPOs in systems with a neutron star
(NS LMXBs) in the range 0.001 − 0.01 Hz are dubbed millihertz QPOs,
those with a frequency range from 0.5 Hz to 2 Hz are known as 1Hz QPOs,
normal/flaring branch oscillations (N/FBOs) are in the interval 4 − 20 Hz
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Figure 1.3: Quality factor (coherence) Q = ν0/∆ν of both the upper (crosses) and lower
peak (dots) versus their central frequencies for several sources with a neutron star (Barret
et al. 2006). The lower peak in frequency of the twin peaks is much coherent than the
upper one.

and finally ∼ 20 − 60 Hz QPOs are called horizzontal branch oscillations
(HBOs). The names N/FBOs and HBOs derive from different X-ray state of
the source in wich they are detected. Several features with similar properties
are seen in systems with a black hole, depending on the spectral state of the
source (for a general review see van der Klis 2004).

In systems with a neutron star, beside LF QPOs and HF QPOs, another
class of QPOs with frequency around 100-300 Hz is observed. They are called
hectoHz (hHz) QPOs. hHz QPOs have central frequencies that do not drift
up and down like LF and HF QPOs. For this reason, they are believed to be
related to the spin frequency of the neutron star. The spin frquency of some
sources has been measured during type I X-ray bursts, i.e. sudden repeated
increments of the X-ray luminosity of a factor of 10, followed by a slower
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Source Type Frequeny (Hz) rms(%) FWHM (Hz)
4U 0614+09 Atoll 400 − 600 6 − 15

500 − 1045 ∼ 88 ± 26
327

630, 727 16.5 − 15.8
4U 1728-34 Atoll 637 − 716 5.2 − 6.9 8 − 94

500 − 1100 5.5 − 8.1
Sco X-1 Z 570 − 830 0.9 − 1.2 ∼ 80

870 − 1130 0.6 − 0.9 13 − 68
GX 17+2 Z 470 − 780 3 − 5 ∼ 70

645 − 1087 5.7 − 2.5 180 − 90

Table 1.1: Frequency range and typical values of both the rms (fractional root mean
square) and the FWHM (full width at half maximum) for twin kHz QPOs observed in
Z e atoll sources. Z sources are much more brighter than atoll, accreting close to the
Eddington limit.

decay (Méndez & Belloni 2007). hHz QPOs are not observed in system with
a black hole. Spin frequencies are well measured in Accreting Millisecond
Pulsars (AMPs), another class of LMXBs showing both QPOs and a well
defined spike at the spin frequency of the neutron star (see Fig. 2.1).

Those QPOs with frequency typical of the orbital motion often show up
as a couple: They are called twin peak High Frequency (HF) QPOs (Fig. 1.2;
van der Klis et al. 1996). Twin peak HF QPOs have puzzling proprieties.
In sources with a black hole they always have the same central frequencies,
therefore they are believed to carry imprints of some foundamental physi-
cal mechanism (Remillard & McClintock 2006). In sources with a neutron
star twin peaks drift in frequency up and down as the spectral state of the
source changes (Kaaret et al. 1998). Moreover, in these sources a systematic
behaviour of both the power and the coherence of the peaks versus their
frequency is clearly observed (Fig. 1.3; Barret et al. 2006). One more re-
markable feature is the clustering of the ratio of their central frequencies at
∼ 3 : 2 (Fig. 1.4 bottom; e.g. Török et al. 2008). In Table 1.1 we report the
main parameters for twin HF QPOs observed in some sources with a neutron
star.

1.5.3 Proposed models for the QPOs phenomenon

Several models have been proposed to explain twin peak HF QPOs. The
relativistic precession model is based on the orbital motion of test particles
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in a curved space-time (see Chapter 6; Stella et al. 1999). Miller et al. (1998)
proposed that the twin peaks in NS LMXBs could be produced by beat-
frequency mechanisms (Fig. 1.4 top). A clustering of the central frequencies
of the twin peaks around a ∼ 3 : 2 ratio was claimed by Abramowicz &
Kluźniak (2001) as probe of non-linear resonance mechanisms in a strongly
curved space-time (Fig. 1.4 bottom). Other models take into account disk-
seismology or magnetohydrodynamics waves through the accretion disk (for
a general review see van der Klis 2004). Osherovich & Titarchuk (1999)
proposed that the origin of twin HF QPOs maybe related to both keplerian
oscillations in a rotating reference frame and interaction of the matter with
the magnetosphere of the neutron star.
In Chapter 6 we describe in more detail the motion of a test-particle in the
Kerr metric, its implications and limits for the modelling of the twin HF
QPOs.
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νspin

νspin

orbν

Figure 1.4: Top: The beat-frequency model idea for the twin peak kHz QPOs in systems
with a neutron stars. A blob of matter orbiting the nutron star at the orbital frequency
νorb beats with the spin frequency of the neutron star νspin thus producing a modulation at
νorb and one at νorb−νspin (Miller et al. 1998). Bottom: The 3:2 frequency ratio clustering
of the twin peaks claimed by the relativistic resonance model (Török et al. 2006)





Chapter 2

Timing analysis techniques

Different techniques are used to study the variability in time of astrophysical
sources. The adopted approach depends on the specific problem and variabil-
ity timescale one is interested in. For bright sources with small underlying
noise and for ordinary time-scales (hours), one can look directly at variations
of the light curve. However, if the source pulses on much shorter time-scales
(typically smaller than 1 sec), then it is hard to disentangle the signal. In
these cases Fourier transform techniques are the best approach. The Fourier
transform of a signal displays the spectrum of the relavant frequencies in the
modulation.

If we want to study in detail the shape of the pulsation, then we have
to reconstruct also its profile. By masuring both the amplitude and phase
of the many Fourier components of the power spectrum one can express the
signal as a Fourier series. For strictly periodic sources of known period we
can reconstruct the pulse shape by folding the signal over intervals whose
lenght is the period of the pulsation. This method is known as epoch-folding
technique. It averages the profile over a number of intervals equal to the
number of periods contained in a given observation.

2.1 Fourier analysis

The Fourier analysis is a powerful tool to perform timing studies of rapidly
varying signals. It states that any signal can be decomposed into a sum of
many sine waves, hence allowing the study of the proprierties of the signal
and of the mechanism producing it.

This is particularly useful when dealing with pulsating sources. The goal
is to determine the period of the pulsation. If the source is strictly periodic
and extremly stable (e.g. pulsars) then the Fourier spectrum will show a spike

29
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Figure 2.1: Power spectrum from the accreting millisecond pulsar SAXJ1808.4-3658.
The broadened peaks are twin kHz QPOs. The pulsation from the rotation of the neutron
star at 401 Hz shows up as a spike (Wijnands et al. 2003).

at the rotational frequency of the neutron star. If the signal is not either
strictly periodic or stable (e.g. quasi-periodic oscillations in X-ray binaries)
broadened peaks are observed (Fig. 2.1).

2.1.1 The Fourier Transform

If the signal x(t) is a continuous function, then the FT decomposes it into
an infinite number of sine waves. We can write

x(t) =
∫ −∞

∞
a(ν)e−2πνitdν (2.1)

a(ν) =
∫ −∞

∞
x(t)e2πνitdν (2.2)

with −∞ < t < ∞, −∞ < ν < ∞; in this case we refer to the continuous
FT. The continuous FT does not introduce spurious features in the analysis,
i.e. the continuous FT of a sine wave is a delta function. As we will see this
is not true for the “discrete” Fourier transform.

Let our signal x(t) be a time series of lenght T divided into N intervals,
each of equal width tk = kT/N and containing a number of photons xk

(k = 0, ..., N − 1). Then the Fourier transform aj is an equidistant discrete
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series of step δν = 1/T

aj =
N−1
∑

k=0

xke
2πijk/N j = −N

2
, ...,

N

2
− 1 (2.3)

xk =
1

N

N/2−1
∑

j=−N/2

aje
−2πijk/N k = 0, ..., N − 1. (2.4)

where xk is the discrete inverse Fourier transform.
The squared modulus of the aj represents the power spectrum of the

signal, it tells us “how much signal” is modulated at the frequency νj. Fol-
lowing the normalization by Leahy et al. (1983) the power spectrum is (e.g.
see Fig. 2.1)

Pj =
2

Nph

|aj|2 (2.5)

where Nph is the total number of photons.

2.1.2 Relation between Discrete and Continuous Fourier
Transform

We can think to express a discrete time series xk (k = 0, ...N − 1), of finite
lenght T , in terms of a continuous and infinite signal x(t) multiplied by a
window function

w(t) =

{

1, 0 ≤ t ≤ T
0, otherwise

(2.6)

and a delta function

i(t) =
∞
∑

k=−∞

δ (t− tk) . (2.7)

Using the convolution theorem, the FT of y(t) = x(t)w(t)i(t) is b(ν) =
a(ν) ∗W (ν) ∗ I(ν), where W (ν) and I(ν) are the Fourier transforms of w(t)
and i(t). The FT W (ν) is a wide peak with some sidelobes. The FT I(ν) is
again a delta function centered at νj = j/δt. The window function introduces
a broadening of the peaks, the sampling function other peaks one usually does
not expect, coming from a reflection of the power spectrum with respect to
the Nyquist frequency νN/2 = N/2T , a pheomenon know as “aliasing”.
Aliasing is overcome by binning the time series into bins of width δt. Indeed
binning a time series is like averaging the signal over the bin width. The
problems caused by the windowing can be more serious: It can spread the
Fourier transoform of a sine wave over the entire spectrum (see M. Van der
Klis, Fourier Techniques in X-ray Timing).



32 2. Timing analysis techniques

2.2 Epoch folding techniques

These techniques are useful for analyzing periodic signals. The method is
also used to search for periodicity in a time series. The first step is to guess
a period, then the time series is divided into intervals of lenght equal to the
period guessed. The values for each periodic point are averaged and plotted
as a function of the chosen period, that is, if the test period was six day,
the seventh bin is plotted back with the first day’s data bin. This is the
step known as epoch folding, since the different test periods are stacked and
averaged over an epoch. An epoch is defined in units of the period chosen,
such that an entire period ranges from 0-1 in epoch, or phase. Fig. 2.2 shows
the signal collected in Asiago (October 11, 2008, obs 4 in Table 4.1) and
binned at 1 s (above) and then the Crab pulsar profile (below) after folding
the time series over many periods of the source.

To determine the period a test statistic is applied to the folded light curve
and the results of this statistics gives the period. The test statistic applied
to the folded data is quite similar to a chi-square test, but the interpretation
of the output is different. Instead of looking for the minimum we try to
maximize the χ2 with respect to the average value of the time series (Leahy
et al. 1983):

χ2 =
Nb
∑

i=1

(xi − x̄)2

σ2
i

(2.8)

where Nb is the number of bins the time series is divided into, x̄ the average
value of the signal and σi the associated error of the ith bin.
The best period is the one that maximizes the sum (2.8) (Fig. 2.3). This
means that, folding over that specific value of the period P , the light curve
has a well peaked and defined profile, statistically not consistent with being
constant.

2.2.1 Estimating errors: sinusoidal and non-sinusoidal

signals

The error on the period from epoch-folding techniques can be estimated
following Leahy (1987). Larsson (1996) suggested a different method based
on a work by Kovacs (1981). The gaussian frequeny error for a sinusoidal
and evenly sampled signal is

σf =

√
2aσtot√
NAT

, (2.9)

where σtot is the standard deviation in the unfolded time series, N the total
number of data points, A is the sinusoidal amplitude and T the total time
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Figure 2.2: Top: Time series binned at 1 s as taken by Aqueye from the Crab pulsar.
Bottom: Folded light curve of time series above. The bin size is 33.6 µs producing 1000
bins for each period of the Crab pulsar (33.6 ms). For clarity two rotation of the Crab
pulsar are shown (i.e. phase 0-2.)

lenght for the data. The parameter a was estimated to be a ≈ 0.45. Following
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Figure 2.3: χ2 distribution of the Crab pulsar rotational period. The best estimate of
the period is the one that corresponds to the maximum of χ2. Observation taken in Asiago
on October 11, 2008 (obs 4 in Table 4.1).

Larsson (1996) we can arrange (2.9) for the error on the period

σ2
P =

6σ2
tot

πNA2T 2
P 4 (2.10)

where P is the estimated period of the sinusoid.
For a non-simusoidal signal we can write the amplitude A as a weighted sum
over the many Fourier components νk = kν1 forming the signal. The error
on the period is

σ2
P =

6σ2
tot

π2NT 2

P 2

∑m
k=1 k

2A2
k

, (2.11)

thus we need to know the Fourier harmonic contents of the signal. This can
be easily calculated performing an iterating fit procedure to the signal: The
signal can be written as a sum of sin waves whose amplitudes and phases are
determined by the fit.
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2.3 Other mathematical tools: cross-correlation,

auto-correlation functions

The correlation function can be used to detect non-randomness in the data, to
identify an appropriate model for a time series (if the data are not random) or
to detect deterministic components masked in a random background because
correlation functions of deterministic data (like sine wave) persist over all
time displacements, while correlation functions of stocastic processes tend to
zero for large time displacement (for 0-mean time series).

If f(r, t) and g(r, t) are functions in space and time their cross-correlation
is defined as follow

f ⊗ g =
∫

f ∗ (r, t) g (r + δr, t+ τ) dt, (2.12)

where δr and τ are spatial and temporal delays, respectively, and ∗ stands for
the complex conjugate of f . We may say that the cross-correlation function
tells us the degree of “similarity” between two functions, i.e. the degree of
coherence at two different space-time points.
If g(r, t) = f(r, t) we name (2.12) auto-correlation function: The signal is
cross-correlated to itself. If f(t) is only a function of time and makes oscilla-
tions on a typical time scale t̂, then (2.12) describes the degree of correlation
as function of a delay τ . The value of τ at which f(t) ⊗ f(t+ τ) reaches the
minimum is the typical time-scale t̂ over which the signal makes oscillations.

Fig. 2.4 (top) shows the autocorrelation of the signal from the Crab as
seen by Aqueye on October 11, 2008, 01:45:44. The normalitation is such that
the autocorrelation is one at zero delay. The count rate for this observation
is ∼ 5000count/s while the source net photon flux is ∼ 1000 − 2000count/s
(see Table 4.2). The time resolution (bin time) is 30µs. The figure on the
bottom shows a zoom-in the region around the main pulsation, from which
we can estimate the width of the beam of light.
It is also interesting to use these concepts to study the nature of the electro-
magnetic field of a signal (Appendix A).
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Figure 2.4: Top: The autocorrelation of the Crab pulsar signal calculated over intervals
0.3 s long and averaged into one frame. The bin time is 30µs. The characteristic profile is
seen. Bottom: A zoom-in the region around the main peak, from which we can estimated
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Chapter 3

Baricentering and
phase-analysis procedure

Studying pulsars requires to time-tag with extreme precision the photons we
collect from them. Therefore we must refer the time of arrival of photons
(TOAs) to a reference frame that approximates an inertial frame to the level
of precision needed. For microsecond precisions it is sufficient to account
for both the rotation and revolution of Earth. Therefore it is common to
refer TOAs to the solar system baricenter (SSB). The light travel time delay
between the position of the observatory and that of SSB is commonly referred
to as Roemer delay. To achieve higher time-tagging precisions one should also
correct for the deviation of the photon’s trajectories due to the presence of
massive bodies in the solar system (Shapiro delay), and accounting for the
non-uniform time beaten by clocks lying in the gravitational field of the solar
system (Einstein delay).

In this chapter we will describe how to apply corrections to the acquired
time series. We analyze the barycentric corrected TOAs adopting the tools
described in Chapter 2. A more accurate approach, known as phase-analysis
in pulsar timing, is described.

3.1 From site to solar system-barycentered

TOAs: Tempo2

The photons from the pulsar are collected at the observatory, and we re-
fer to them as site arrival times (SATs). Before performing timing analysis
some corrections to the SATs need to be done, i.e. we have to reconstruct
the TOAs as detected by an observer in an inertial reference frame. This
is meant to clean TOAs by all the effects they carry imprints of, undergone

37
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along the path from the source to the observatory. For instance, for radio
frequencies the dispersion measure (DM) due to the interstellar medium is
relavant. Its effect is a delay on the TOAs detected, dependending on the
frequency of the radiation. Thus one can use pulsars to give an estimate
of the DM (e.g. Backer et al. 1993). The proper motion of the pulsar also
introduces effects affecting TOAs and needs to be taken into account.
Photons get through our solar system and therefore their trajectories are
distorted by the curvature of the space-time due to the presence of massive
bodies such as the Sun, Jupiter, Saturn and the other smaller planets. The
role of a planet depends on what precision we require: The higher the pre-
cision the more relevant smaller planets in describing the curvature of the
space-time. The curvature introduces a delay on TOAs known as Shapiro
delay.
Precise timing also requires the time beaten by clocks being uniform. In a
gravitational field clocks run slower and this effect is also differential, de-
pending on the gravitational potential the clock lies in (Einstein delay).
Therefore we need to model all these effect in order to reconstruct TOAs in
an inertial reference frame. One usually refers TOAs to an observer located
at the solar system barycenter (SSB) and name them baricenter arrival times
(BATs).

Tempo2 (Hobbs et al. 2006a; Edwards et al. 2006) is a software meant to
model with exterme precision (up to ∼1 ns) TOAs as collected by an inertial
observer at SSB. The software is an updated version of its precursor Tempo.
In Tempo the precision achieved on TOAs was of ∼100 ns. Since pulsar tim-
ing has been becoming more and more demanding other phenomena had to
be taken into account (polar motion of Earth, Shapiro delays due to gaseous
planets and other features listed in Table 2 in Hobbs et al. 2006a).

3.1.1 Site versus solar system-barycentric clocks

In recostructing TOAs in a inertial reference frame we can start discussing the
so-called clocks correction chain. One must refer times to a clock running
as much uniform as possible. At the observatory the clock against which
TOAs are time tagged is an oscillator that, depending on its nature, can
not run uniformely for an infinite interval of time. These clocks are usually
characterized by an offset and a mean drift that needs to be corrected. As
explained in Section 4.7 corrections are performed by means of the GPS time.
The Bureau International des Poids et Measures (BIPM) publishes monthly
bulletins with the offsets between various clock pairs. Using these bulletins
one can tie GPS to UTC time. UTC time is the weighting of data from an
ensamble of clocks around the world.
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To account for the irregular rotation of Earth UTC is tied to Temps Atom-
ique International (TAI) time by adding an integer number of leap seconds.
However due to the gravitational and rotational energy of Earth, clocks on
its surface do not run uniformely, therefore the time beaten by atomic clocks
need to be tied to the Geocentric Celestial Reference System time (TCG).
This is done by constructing a refence of clocks, named Terrestial Time (TT),
which differs from TCG by a constant rate such that its unit corresponds to
the second in the International System on the surface of the geoid

TT (TAI) = TAI + 32.184s (3.1)

(for more details Guinot 1988; Petit 2003).
TT time expresses only approximately the proper time experienced by the

observer at the observatory. More corrections should be taken into account.
Indeed these geoid times are measured against a clock which still suffers the
effects of the gravitational field of the solar system bodies. Thus we have
now to refer TOAs to the “quasi-inertial” SSB frame.

The observatory and SSB are related by a relativistic 4-dimensional space-
time transformation. The spatial part of the event is the distance from
the observatory to SSB, altered by a negligible gravitational and special
relativistic lenght contraction. The relativistic time-dilation effects however
can not be neglected. The Einstein time-dilation integral is (Edwards et al.
2006)

∆⊙−⊕ =
1

c2

∫ t

t0

(

U⊕ +
v2
⊕

2
+ ∆L

(PN)
C + ∆L

(A)
C

)

dt. (3.2)

where U⊕ represents the gravitational potential where Earth moves in and v⊕
the velocity of its center. Its value is discussed in Irwin & Fukushima (1999),
who computed it using the DE405 Solar system ephemerides (Standish 1998).

In (3.2) most of the correction comes from the acceleration of Earth dur-
ing its motion around SSB. Thus (3.2) represents the time-dilation for an
observer at the center of the geoid. The first two terms describe the gravi-
tational redshift and the special relativistic time-dilation, respectly, and are
those whose contributions are more relavant (with a mean drift of ∼ 1.5×10−8

s/s); the third and fourth terms are higher-order relativistic and asteroids cor-

rections (∆L
(PN)
C ∼ 1.97 × 10−16 s/s and ∆L

(A)
C ∼ 5 × 10−18 s/s; Fukushima

1995).
Finally we have to make one more correction, accounting for the time-

dilation and gravitational redshift of the observer on the surface of the Earth
with respect to the geocenter. We refer to this quantity as differential gravi-
tational redshift and time-dilation (Edwards et al. 2006)

1

c2

(

s · ṙ⊕ +W0t
obs
a

)

. (3.3)
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Here ṙ⊕ is the velocity vector of the geocenter with respect to SSB given
by the solar system ephemerides; s is a vector from the observatory to the
geocenter, expressed as

s = Q(tobs
a )R(tobs

a )W(tobs
a )sITRS. (3.4)

The matrices W, R and Q account for the polar motion, rotation and the
motion of Earth spin axis in the International Celestial Reference System
(for more details see McCarthy & Luzum 2003; McCarthy & Petit 2004).

In (3.3) W0 is the gravitational and spin potential of the Earth. Although
this potential varies with the observation site and in time, Tempo2 ties the
time TT to the SI coordinate time at the geocenter, using as definitive value
W0 = 6.969 290 134 × 10−10c2 (Rickman 2001).
Once all transformations are performed, the lenght of the second beaten by
the clock is the proper time experienced by an observer in the “quasi”-inertial
frame located at SSB.

3.1.2 Getting through the solar system: Roemer and
Shapiro delay

In the previous section we have seen how to obtain a uniform running clock
in the inertial frame at SSB. A further correction on TOAs to account for the
spatial distance between the observatory and SSB has to be done. Indeed
photons are collected at the observatory and since we want to know the TOAs
as detected by the inertial observer at SSB we should know the light travel
time from the observatory to SSB. The Roemer delay is the vacuum delay
between the arrival of the pulse at the observatory and SSB:

∆R⊙ = −r · R̂
c

, (3.5)

where r = r⊕+s is a vector from the observatory to SSB and it is constructed
in two steps: r⊕ is given by the planetary ephemerides, and s is given in
(3.4). The vector R̂ ≡ R/ |R| is a unit vector in the direction of the pulsar
at the time of observation. R̂ is expressed in term of right ascension (α) and
declination (β), the Cartesian components of the proper motion of the source
in the plane of the sky (µα, µδ) and along the line of sight (µ||) (see Edwards
et al. 2006). Expanding (3.5) one gets

r · R̂ = r|| +
k⊥ · r⊥
|R0|

− r|| |k⊥|2

2 |R0|2
− k||k⊥ · r⊥

|R0|2
(3.6)
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Figure 3.1: Difference of the Roemer delay as calculated by Tempo2 and Tempo for a set
of simulated TOAs at the Asiago Cima Ekar observatory. The Earth diurnal oscillation is
clearly seen. The amplitude reflects the effects due to the polar motion of Earth and to a
different nutation-precession model used by Tempo2 (see text). Both the amplitude and
shape of this figure testify the correct setup of our software (see Hobbs et al. 2006a).

here k||/⊥ ≡ µ||/⊥ |R0|
(

tPa − tpos

)

; tPa is the time of arrival at the pulsar at a
given position with respect to the baricentric at the epoch tpos. In principle
tPa can not be calculated without knowing the Roemer delay (3.5) itself; this
is resolved by iteration procedures (see Edwards et al. 2006).
Equation (3.6) consists of four terms: the initial direction, the proper motion,
a correction to unit length after the addition of the proper motion and its
acelaretion or deceleration.

As already mentioned in Section 3.1 Tempo2 calculates the Roemer delay
taking into account the polar motion of Earth (motion of the rotation axes
relative to the crust). Since Tempo does not account for it this difference
provides a way to check the Tempo2 installation setup. Indeed we can run
Tempo2 in the “Tempo emulation mode” and calculate the Roemer delay.
Taking the difference between the Roemer delays we can check whether the
behaviour is as expected.
Not accounting for the polar motion gives the coordinates of the observatory
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off the corrected values. The worst case resulting by a positional error δθ,
corresponding to δθR⊕/c, in timing is

δt

1ns
∼ δθ

9.7mas
(3.7)

The polar motion has three major components. A free oscillation with period
about 435 days (Chandler wobble) and an annual oscillation forced by the
seasonal displacement of air and water masses, beating with each other. For
these reasons the position on the geoid of the mean pole can differ from the
true pole by an amount up to ±300mas and the observatory will result off
a few meters the real position. From equation (3.7) this will give an error
in timing of ∼ ±30 ns. Therefore the Roemer delay difference as calculated
by Tempo and Tempo2 should show a diurnal oscillation signature with an
amplitude of ∼ ±30ns, drawn by the rotation of Earth.

Fig 3.1 shows the difference of the Romer delay between Tempo2 and
Tempo for a set of simulated TOAs at the Asiago observatory. The amplitude
of the oscillation is ∼35ns and it shows the typical diurnal oscillation. The
amplitude also includes the contribution due to the out of date precession-
nutation model used by Tempo (∼5 ns). The behaviour in Fig. 3.1 can be
compared to that in Hobbs et al. (2006a, Fig. 4 left) and testifies the correct
setup of the software.

One final important correction to account for is the delay caused by the
curvature of the space-time due to massive bodies in the solar system (Shapiro
delay). Tempo2 corrects for it taking into account the gravitational poten-
tial of the Sun, Venus and gaseous planets (Jupiter, Saturn, Uranus and
Neptune). The Shapiro delay is expressed as

∆S⊙ = −2
∑

j

Gmj

c3
ln |rj| (1 − cosψj) + ∆S⊙2 (3.8)

where mj and rj are the mass and the position, with respect to SSB, of the
jth planet. ψj is the pulsar-telescope-object angle of the jth planet. The
term ∆S⊙2 is a second-order correction for the Sun, mostly accounting for
the geometrical excess path lenght due to gravitational bending (Richter &
Matzner 1983).

3.2 Rotational period from epoch folding tech-

niques

Once TOAs are referred to the inertial observer at SSB we can analyze them.
In this section we apply to the baricentric corrected time series (BATs) the
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Table 3.1: Rotational period of the Crab pulsar measured by Aqueye in 2008 (see
Table 5.1).

MJDa Period
(s)

1 54749.99287724855327 0.0336216381
2 54750.00668638351852 0.0336216389
3 54750.04505792216435 0.0336216406
4 54750.07656540930556 0.0336216417
5 54750.10252841002315 0.0336216430
6 54750.14465028032407 0.0336216444
7 54750.97900758696759 0.0336216746
8 54751.97132990998842 0.0336217110

a Corrected MJD at the solar system barycenter (Tempo1 mode).

method to search for periodicities, already described in Section 2.2. To
this purpose we adopted the task efsearch in the timing analysis pack-
age Xronos1 v. 5.21, distributed by the NASA’s High Energy Astrophysics
Science Archive Research Center.

The BATs are first saved into a FITS file and then loaded in the software.
We searched for periodicities by folding the data over a range of periods and
by looking for a maximun chi-square as a function of period (see Sec 2.2).
We binned the data using 1000 bins per period and a resolution between
contiguous periods in the search of 10−10 s. As an example Table 3.1 shows
the rotational periods measured in this way for the Asiago observations of
the Crab pulsar taken in October 2008. The start time is the GPS integer
second, accurate to better than approximately +/-30 nanoseconds.
Fig. 2.3 shows the results of the epoch-folding analysis for observation 4.
The average period of the Crab pulsar during the observation is PAqueye =
0.0336216417 s. For comparison, the period at the beginning of the obser-
vation, obtained interpolating the Jodrell Bank Crab ephemerides, is PJB =
0.0336216414 s, 0.3 ns longer. Since Aqueye is sensitive to the spin down of
the neutron star already over observations 20m long (∼ 0.5 ns), we should
compare the Aqueye-rotational period with that in the radio calculated at
mid observation. If we do so then the radio period at mid observation is
PJB = 0.0336216418, within 0.1 ns PAqueye.

1http://xronos.gsfc.nasa.gov/
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The expected statistical error σP on the period has been estimated using
equation (2.11) (Larsson 1996), which takes into account the knowledge of
the harmonic content of the pulse shape. In order to compute it we need
to calculate the amplitude of each component in the Fourier series of the
signal. We performed a χ2 fit of the observed folded light curve of the Crab
(see Fig. 4.2) to that written numerically as sum of many Fourier compo-
nents. Once determined the amplitude of the Fourier components of the
signal (see Fig. 4.1 bottom) we find σP ≃ 120 picoseconds. Therefore the
rotational periods in Table 3.1 are in agreement within the statistical error
to those from Jodrell Bank radio ephemerides calculated at mid observation
(for a more suitable technique to estimate high-accuracy rotational periods
see Section 3.3 and Chapter 4).

3.3 Period and period derivative from phase-

analysis

The period derivative of the Crab pulsar is about 1.5ns/h. The accuracy
achieved with our instrument already on a 20m long observation is < 1ns,
comparable to the change of the rotational period induced by the pulsar spin
down. Therefore, epoch folding techniques are not suitable for high accuracy
instruments. The method here described is used in pulsar astronomy to study
the main aspects of pulsars. It consistes in determing the phase of a specific
features of the light curve of the source and studying how its phase changes
in time. For the Crab pulsar the reference point is the main peak of the
folded light curve. The timing model for pulsars states that the phase of the
source changes as follows:

φ(t) = φ0 + ν(t− t0) +
1

2
ν̇(t− t0)

2 +
1

6
ν̈(t− t0)

3 (3.9)

where ν, ν̇ and ν̈ are the rotational frequency, its first and second derivative.
Therefore from the behaviour of the observed phase one can estimate the
rotational period and its derivatives. Moreover the residuals left out after
fitting this model provide a way for studying unknown features of the source.
For instance this method led to the discovery of the first extrasolar plane-
tary system (Wolszczan & Frail 1992; Wolszczan 1994; Konacki & Wolszczan
2003).

The specific implementation of the analysis adopted here follows from the
one developed by A. Čadež, (2008, Harrison project report).
To calculate the phase an analytical approximation of the pulse shape S(φ) is



3.3. Period and period derivative from phase-analysis 45

0.0 0.2 0.4 0.6 0.8 1.0

 phi

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

co
un

t/
s

Figure 3.2: The analytic pulse shape (black) and the average pulse shape obtained from
the folding of the data (red points).

constructed (Fig. 3.2), such that S(φ) is a continuous, periodic and differen-
tiable function everywhere expect two points (Čadež 2008, Harrison project
report). These two points correspond to the main and interpulse peak of
the Crab pulsar. The phase ψ(t) is defined by means of the following phase
function Ψ(t, ψ)

Ψ(t, ψ) =
∫ t0+PiniN

t0−PiniN
P(φ(t))S ′(

t

Pini

+ ψ)dt (3.10)

where P(φ(t)) is the actual pulsar signal, N is an integer, Pini an approximate
rotational period for the observation determined by means of, for instance,
Xronos or read directly from the Jodrell Bank radio ephemeris archive. S ′ is
the derivative of the analytical profile S and it is used as template to calculate
the phase of the mean peak of the Crab by means of a phase-cross-correlation
of S ′ with the actual signal from the source P(φ(t)) (Fig. 3.3, 3.4).
Following the standard pulsar slow down model, the pulsar phase can be
written as φ(t) = ψ0 + t

P
− 1

2
Ṗ ( t

P
)2 + ... where P is the actual rotational

period of the pulsar. That is, for no too long baseline (few days) we may say
that the phase evolution from a reference phase ψ0 is dictated by both the
frequency 1/P of the pulsar and its first derivative Ṗ /P 2. Since we choose
Pini such that (P − Pini) ≪ 1 the pulsar signal and the template does not
change over the time interval [t0 − PiniN, t0 + PiniN ]. What we want is the
phase of the main peak as function of the time t0 representing the middle
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Figure 3.3: The analytic approximation for the pulse profile S(φ) (blue) and
its derivative S ′(φ) (red), used as a template in determining the average
phase (by A. Čadež).

point of intervals n seconds long. The pulsar signal P(φ(t)) is averaged over
such time intervals and then it is cross-correlated with the template S ′. So,
introducing u = (t− t0)/Pini, the phase function can be written as:

Ψ(t0, ψ) =
∫ N

−N
P

(

ψ0 +
t0
P

− 1

2
Ṗ
(

t0
P

)2

+ u+
(

Pini

P
− 1 − Ṗ

Pint0
P 2

)

u+

−1

2
Ṗ
(

Pini

P

)2

u2

)

S ′
(

u+
t0
Pini

+ ψ
)

du. (3.11)

The last two terms in the argument P are very small on the interval of
integration. We choose ψ such that

ψ +
t0
Pini

= φ(t0) + ǫ = ψ0 +
t0
P

− 1

2
Ṗ
(

t0
P

)2

+ ǫ (3.12)

i.e. the phase of the pulsar at t0 and that of the template (Fig. 3.3) at the
same time differ by ǫ. When performing the cross-corrlation with respect to
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Figure 3.4: The correlation function Ψ(t0, ψ) of the template with two sets
of Ljubljana data taken in Oct. 11, 2008. The phase of zero crossing is ψ0=
0.99 (by A. Čadež).

ψ, for each t0, then ǫ gets ǫ ≪ 1, thus the integrand in the phase function
can be expanded into a Taylor series and the phase function Ψ(t0, ψ) can be
written as:

Ψ (t0, ψ) =
∫ N

−N

((

P
(

u+
t0
Pini

+ ψ
)

+ ǫ+
(

Pini

P
− 1 − Ṗ

Pinit0
P 2

)

u+

−1

2
Ṗ
(

Pini

P

)2

u2

)

S ′
(

u+
t0
Pini

+ ψ
)

)

du

= ǫ
∫ N

−N
S ′
(

u+
t0
Pini

+ ψ
)

du+

−1

2
Ṗ
(

Pini

P

)2 ∫ N

−N
u2S ′

(

u+
t0
Pini

+ ψ
)

du. (3.13)

The last line is arrived at by noting that
∫N
−N S(x)S ′(x)dx = 1

2

∫N
−N

d
dx
S2(x)dx,

and it vanishes since the integral is over an integer number of periods. We
would remind that the analytical signal S ≡ P, where P is the actual signal
from the pulsar. The integral with the u term in the integrand also vanishes,
because the rest of the integrand has even parity. Furthemore, the last inte-
gral is also negligible for not too large N , so what finally remains is only the
first integral, which is a positive constant, multiplied by ǫ, i.e.:

Ψ(t0, ψ) →
(

ψ +
t0
Pin

− φ(t0)
) ∫ N

−N
S ′(u+

t0
Pini

+ ψ)du (3.14)
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S ′ has two discontinuities at the main and interpulse peak and under the con-
dition of (3.14) the template is aligned with the pulse profile (e.g. Fig. 3.3),
thus the phase of the pulsar is determined by the value ψ1(t) of the steepest
zero crossing the phase function Ψ(t0, ψ1) = 0 (Fig. 3.4). Since Pini is very
near the correct pulsar period, ψ1(t) changes with time very slowly.

To calculate the phase ψ1(t) we assumed a starting frequency νini = 1/Pini

which is not exactly equal to the true one ν0. The true frequency decreases
as:

ν = ν0 + ν̇0 · t+
1

2
ν̈0 · t2 (3.15)

Taking the integral over the time, the true phase of the source is

φ(t) = ν0 · t+
1

2
ν̇0 · t2 +

1

6
ν̈0 · t3. (3.16)

We calculated a phase ψ1(t) evolving as the folllowing

ψ1(t) = (ν0 − νini) · t+
1

2
ν̇0 · t2 +

1

6
ν̈0 · t3. (3.17)

As ν̈0 is very small, the behavior of ψ1(t) over the data set is expected to be
well approximated by a parabola.



Chapter 4

Asiago observations

The team from the Univeristy of Padova led by Prof. Cesare Barbieri and
Prof. Giampiero Naletto observed the Crab pulsar with the extremely fast
optical photon-counters Aqueye. Aqueye is a prototype mounted at the
182cm Copernico telescope of Cima Ekar in Asiago. An indipendent pro-
totype of very fast photometer with a similar technology was built at the
University of Ljubljana by the research group led by Prof. Andrej Čadež.
Synchronized observations of the Crab pulsar between Asiago and the obser-
vatory of Ljubljana were pursued. The goal of these joint observations was
to show how well we can synchronize the phase of the Crab as seen by two
such prototypes at different locations.

The phase-analysis procedure described in the previous chapter was ap-
plied to the data collected by Aqueye from the Crab pulsar. The data show
a high quality such that we were able to determine the pulsar first-order slow
down over a baseline of only 2 days.
We compared our measurements to the radio ones reported in the archive of
the Jodrell Bank Observatory. The instrumet is able to account for the 0.5
ns rotational period discrepancy due to the different time beaten by iniertial
and non-inertial clocks in the gravitational field of the Solar system.
A discussion on a further 0.4 ns discrepancy due to poor estimates of the
Roemer delay is also given.

4.1 Aqueye: The Asiago Quantum Eye

Aqueye is mounted at the 182cm Copernico telescope in Asiago, cima Ekar,
on the focal plane of the imaging spectrograph AFOSC, which is used as focal
reducer. The Aqueye team have obtained observations in several runs from
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June 2007 to October 2008, which have permitted to optimize the hardware
and software, but also to obtain significant data on the Crab pulsar (Germanà
et al. 2011, in preparation), on several rapidly variable stars, on diffuse
nebulae with forbidden spectral lines.

The design of Aqueye follows that of QuantEYE (the Quantum EYE;
Dravins et al. 2005; Barbieri et al. 2008), an instrument specifically tailored
for studying rapid optical variability of astrophysical sources with the ESO
E-ELT down to the quantum limit. It can record and store the arrival time
of each single photon with a final precision of 500ps for a 1 hour long ob-
serving session. Here we shortly describe the opto-mechanical design and the
acquisition system of the instrument. For further details see Barbieri et al.
(2008, 2009).

The entrance aperture captures a field of view of 3 arcsec. Inside the
instrument the light beam crosses a focal reducer and is then split in 4 sym-
metrical arms by a pyramidal mirror. In each arm, filters and polarizers can
be inserted in a collimated portion of the beam. The beam is then refo-
cussed on four SPADs (single photon avalanche photodiodes, produced by
the Micro Photon Devices, Italy), that have a diameter of 50 µm, quantum
efficiency in the visible band higher than 50%, dead time of 75 nanoseconds,
and time-tagging capability better than 50 picoseconds. Every channel can
be analyzed independently. The advantage of this design is to partly recover
dead time effects in each SPAD, to increase the sustainable count rate, and
to allow cross-correlations among the different sub-pupils.

Each signal from the SPADs is timetagged by a Time to Digital Con-
verter (TDC) board (produced by Costruzioni Apparecchiature Elettroniche
Nucleari, Italy), that makes use of an external Rubidium clock and a GPS
unit for checking the long time stability of the clock. The TDC tags each
event with a resolution of 24.4 ps per channel and transfers all the data to
an external computer through an optical fiber, where the data are stored.

4.2 The Asiago Cima Ekar campaign

Observations at the Cima Ekar observatory started at the end of 2007 and
were pursued by the Aqueye team led by Prof. Cesare Barbieri and Prof.
Giampiero Naletto. As usual when dealing with prototypes, many technical
problemes arise and need to be solved. A problem the instrument ran into
displayed jumps in the phase of the main peak of the pulsar. This problem
dealt with the acquisition system and was then solved. The first working run
with good seeing conditions, was that performed at October 2008.
Table 4.1 shows the log of these observations. They span over two days and
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Table 4.1: Log of the October 2008 observations of the Crab pulsar performed with
Aqueye mounted at the 182cm Copernico telescope in Asiago. The start time of the
observations is the GPS integer second, accurate to better than approximately +/-30
nanoseconds.

Starting time MJDa Duration
(UTC) (s)

1 October 10, 23:45:14 54749.99287724855327 1078
2 October 11, 00:05:07 54750.00668638351852 1197
3 October 11, 01:00:22 54750.04505792216435 1797
4 October 11, 01:45:44 54750.07656540930556 1797
5 October 11, 02:23:07 54750.10252841002315 1631
6 October 11, 03:23:46 54750.14465028032407 1197
7 October 11, 23:25:08 54750.97900758696759 3597
8 October 12, 23:13:57 54751.97132990998842 3998

a Corrected MJD at the solar system barycenter (Tempo1 mode).

have different durations. Fig. 4.1 (top) shows the count rate for the time
series of observation 4 in Table 4.1. As can be seen the average count rate is
5000 count/s and includes photons collected from the background and from
the nebula surronding the pulsar. The other observations show a similar av-
erage count rate.
Fig. 4.1 (bottom) shows the power spectrum for the same observation. It
shows a well known pattern with the fundamental harmonic ∼29 Hz. At
least other 20 harmonics are recognizable. The power spectrum was calcu-
lated by binning the time series in 200 µs. The binned time series was then
divided into segments 1 second long. For each of them the power spectrum is
calculated and then all of them are averaged into one. The average is meant
to increase the signal-to-noise ratio. However, with such a high photon flux,
it is not relevant to average power spectra into one. In order to check this,
after barycentering (Chapter 3) we can construct the folded light curve of the
source and fitting it to a sum of several Fourier components (Fig. 4.2). By
means of an iterative chi-square fitting procedure, we determine the ampli-
tude and the phase of each Fourier components. We fitted both the profile
obtained by folding the light curve over the entire time series and the profile
obtained averaging the pulse shape over several 1 minute long intervals. The
binning time is 33µs. Table 4.2 shows the amplitude (count/s) of the first
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Figure 4.1: Top: Light curve (binned at 1 s) of the Crab pulsar obtained with Aqueye.
The observation was performed on 11 October 2008, starting at 01:45:44 UTC (observation
4 in Table 4.1). Bottom: Power spectrum of the signal from the Crab pulsar as seen by
Aqueye (observation 4). The binning time is 2× 10−4 s. The typical harmonic content of
the signal is visible.
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Table 4.2: Amplitude of the (first and last five) harmonics of the Crab obtained fitting
the folded light curve (see text for details). The amplitudes in the 2nd and 3rd column
refer to two different folding procedures. The χ2 ∼ 1 after fitting 50 harmonics.

Harmonic Count/sa Count/sb

Foundamental 761.2 752.9
2th 1492 1476.7
3nd 1064 1053
4rd 861 852
5th 973 963
46th 17.16 16.97
47th 17.87 17.68
48th 17.66 17.48
49th 16.07 15.90
50th 18.77 18.57

a Number of photons per second from the non-averaged power spectrum.

b As a after averaging 27 power spectra calculated over 1 minute long
segments.

and last 5 Fouriers components. We see that differences are of the order of
∼1%.
The calculations shown in this section were used to estimate the statistical
error associated with epoch folding techniques (see Section 2.2.1 and 3.2 ).

4.3 The radio phase of the Crab pulsar from

the Jodrell Bank radio ephemerides archive

In order to test our instruments, we have to compare the phase of the Crab
pulsar measured by Aqueye/Iqueye with that reported in the Jodrell Bank
Crab radio ephemerides archive1 (Lyne et al. 1993). Following the standard
pulsar slow down model the behaviour of the phase of the pulsar is described
by

φ(t) = φ0 + ν(t− t0) +
1

2
ν̇(t− t0)

2 +
1

6
ν̈(t− t0)

3 (4.1)

1http://www.jb.man.ac.uk/ pulsar/crab.html
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Figure 4.2: Folded light curve of the Crab pulsar obtained by fitting a Fourier series (see
text). Red points: Observed folded light curve (observation 4 in Table 4.1). The error bars
on the red points are of the order of tens of count/s. Black curve: fitted Fourier series.

where ν, ν̇ and ν̈ are the rotational frequency, its first and second derivative,
respectively. The phase φ0 is the phase of the pulsar at the epoch t0. Thus,
the evolution of the phase φ(t) is dictated by ν, ν̇ and ν̈.
In order to calculate the radio phase φ(t) we used the values of ν, ν̇ and ν̈
nearest to our observation epochs and reported in the JB archive2. Then
φ(t) is extrapolated all over our observation run by means of (4.1). What we
are actually interested in is the phase-drift of (4.1) with respect to a phase
φ′(t) = (t − t0)/Pini = νini(t − t0), where Pini is the rotational period used
to calculate the optical phase from Aqueye/Iqueye (see Section 3.3 and 4.4).
Therefore, we compare the optical phase to the radio phase described by

∆φ = φ(t)− φ′(t) = φ0 + (ν − νini)(t− t0) +
1

2
ν̇(t− t0)

2 +
1

6
ν̈(t− t0)

3 (4.2)

Equation (4.2) checks the correct functioning of our instruments. Indeed, if
the optical-Pini-folded-phase matches (4.2) then it means that Aqueye/Iqueye
is seeing the Crab pulsar as reported in the Jodrell Bank radio ephemerides
archive.
The phase φ0 at epoch t0 is calculated with a Fortran code available in

2http://www.jb.man.ac.uk/ pulsar/crab/all.gro
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the radio ephemerides website3. Since the Fortran program makes use of a
different ephemerides table4, we tied φ0 in (4.2) to that from the Fortran
code. In order to check the consistency of our radio phase behaviour (4.2)
we compared it to the radio ephemerides that Jodrell Bank directly sent
us (Andy Shearer, private comunication). A remark should be done: For
our typical observation runs (a few days) the role of ν̈ maybe considered
negligible.

4.4 The Crab pulsar observed in Asiago

The Crab pulsar was observed by the Aqueye team with the novel photon-
counter Aqueye mounted on the Copernicus telescope at Cima Ekar in Asiago
(Zampieri et al. 2011). For a log of the observations see Table 4.1. The TOAs
were corrected to the Solar System Baricenter (SSB) by means of the software
Tempo25 (Hobbs et al. 2006a; Edwards et al. 2006), that accurately accounts
for general relativistic effects on both the photon’s trajectory and on the time
beaten by clocks at different coordinates in the Solar system’s potential (see
Chapter 3).

The first step in our reduction is the calculation of the phases, by cross-
correlation of a standard template with the Crab profile averaged over n
seconds long intervals (see Section 3.3). Then the measured drift of the phase
with respect to a reference phase is fitted with a polynomial expression whose
coefficients are the first and second derivative of the phase drift:

ψ(t) = ψ0 + a(t− t0) + b(t− t0)
2. (4.3)

Usually, for longer baselines, a cubic polynomial accounting for the third
derivative of the phase is needed. In our case, a 2 days baseline, it is sufficient
the second derivative of the phase. The second derivative of the phase gives
the first derivative of the frequency. In order to understand that (4.3) is
sufficient to fit the phase drift over a baseline of days, we can make the
following calculation. The first derivatve of the period is estimated to be
ν̇/ν2 ∼4×10−13 s/s and the second derivative is ∼ ν̇2/ν3 ∼ 10−24s−1, where
ν and ν̇ are the rotational frequency and its first derivative. Therefore over a
2 days baseline the first derivative changes by ∼ 10−19s/s and the changing of
the period over 2 days due to the second derivative is ∼ 10−14s, too small to
be detected by Aqueye. Therefore, over a baseline of a few days, the second
derivative of the frequency is negligible. This means that we can neglect the

3http://www.jb.man.ac.uk/ pulsar/crab.html
4http://www.jb.man.ac.uk/ pulsar/crab/crab2.txt
5http://www.atnf.csiro.au/research/pulsar/ppta/tempo2
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third dervitative of the phase, and thus fitting the phase drift to a parabola
(eq. [4.3]).

The first derivative of (4.3) gives the shift in frequency in order to carry
the assumed value of 1/Pini to the true frequency at each n seconds integra-
tion. In other words, the true phase is

φ(t) =
(t− t0)

Pini

+ ψ(t) (4.4)

where Pini is the period at a given epoch used in the folding to calculate the
folded light curve on intervals n seconds long; t0 is the epoch to which all the
measured phases after the folding are referred (see Section 3.3); a, b are the
coefficients determined by the fit. Thus the rotational frequency at a given
epoch t is ν(t) = dφ(t)/dt.

The above phase-analysis has been applied with two different assump-
tions for the barycentrization:
Tempo1 as emulated by Tempo2 (TDB time units are implicitly assumed)
and Tempo2 in TCB units. The difference between TDB and TCB time units
is a rate of 1.550 519 791 54×10−8s/s (Irwin & Fukushima 1999). It is the
mean value of the Einstein integral (eq.[3.2]), i.e. the mean value of both the
time dilation and gravitational redshift, plus the value of the gravitational
redshift on the surface of the geoid, due to the Earth gravitational poten-
tial (second term in eq.(3.3); see also Backer & Hellings 1986). Therefore the
time in TDB units is not the proper time experienced by an inertial observer.
The IAU resolution A4 (1991) recommends the use of the barycentric coor-
dinate time (TCB). If TDB is used it should be specified. For uniformity
reasons the Jodrell Bank (JB) monthly radio ephemerides are in TDB units.
Moreover they are computed with a previous version of Tempo2, i.e. Tempo
(hereafter Tempo1). Therefore in order to compare our measurements to JB
radio ephemerides, we baricentered TOAs in the Tempo1 emulation mode.
However, in order to have ephemerides in SI units we baricentered them in
Tempo2 TCB units as well. The Jodrell Bank radio ephemerides are calcu-
lated setting the proper motion of the source equal to zero, and assuming the
position of the Crab pulsar at J2000. Thus, in order to compare our mea-
surements with JB radio ephemerides, in the barycentrization with Tempo1
we had to set a zero proper motion of the source as well.

The mean rate difference K−1 = 1.550 519 791 54×10−8s/s (Hobbs et al.
2006a) between TDB and TCB units leads to rotational periods 0.5 ns longer
than those reported in the JB radio ephemerides. Indeed, over the rotational
period of the Crab (∼ 0.033 s) the mean rate gives a 0.5 ns discrepancy.
Fig. 4.3 (top) shows the parabola fitted (blue line) to the phase calculated
with Tempo2. The first observation is at t ∼ 86400 s because the reference
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Figure 4.3: Top: The parabolic fit to the phase-drift measured by Aqueye (points). The
different colours of the points indicates different observations (see Table 5.1 for a log of the
observations). The blue line shows the best-fitted parabola. The green line is the phase
from JB radio ephemerides. Bottom: The residuals left after subtracting the JB phases
to those measured by Aqueye (see text).

epoch t0 is at MJD=54749 (00:00:00 October 10, 2008), see Table 5.1. The
green line is the parabola as from the JB radio ephemerides. Since we want
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to check whether there is a difference in the curvature of the two curves,
the initial phase is chosen such that the two curves match at MJD=5479.99.
Already in this plot we note that, as time goes on, the blue curve drifts with
respect to the green one. This means that the function ψ(t) we measured does
not match that from JB radio ephemerides (eq.[4.1]). Fig 4.3 (bottom) shows
this discrepancy: It shows the residulas of the optical phases after subtracting
the JB radio ones (green line). We see that there is a discrepancy up to ∼ 5ms
over 2 days. The blue straight line is a fit to the residuals (red points) and
shows a liner trend of ∼ 2.6×10−8s/s. Thus, besides the mean rate difference
between TCB and TDB units (K − 1 = 1.550 519 791 54×10−8s/s) there
is something else leading the phases even further apart. However, we are
comparing data baricentered in Tempo1 (Jodrell Bank) with those obtained
from Tempo2 (Aqueye phases). We know that Tempo2 takes into account
corrections which Tempo1 does not (e.g. polar motion of Earth, Shapiro
delays due to gaseous planets and other features listed in Table 2 in Hobbs
et al. 2006a). Therefore, the further ∼ 1.1 × 10−8s/s might be due to some
of these corrections.
If we calculate the rotational periods with the best-fitted parabola to the data
(blue line; eq. [4.4]) they are sistematically 0.9 ns longer than those reported
in the JB ephemerides. Therefore we have a further 0.4 ns discrepancy.

4.4.1 On the origin of the further 0.4 ns discrepancy

In order to understand the further 0.4 ns discrepancy we ran the baricentriza-
tion in the Tempo1 emulation mode, performed again the phase-analysis and
fitted the quadratic polynomial (4.3) to the phases; the following is the so-
lution we got from the best fit:

ψTempo1(t) = −0.778649 +
0.0000318096

s
t− 1.85916 × 10−10

s2
t2 (4.5)

We calculated the rotational periods from (4.5) and the ∼0.4 ns discrepancy
with respect to the JB radio ephemerides is still there.
To check in more detail possible differences between Tempo2 and Tempo1
we ran again the baricentrization in Tempo2 but now in TDB units, since
Tempo1 works only in TDB units. The following is the solution we got from
the best fit:

ψTempo2TDB(t) = −0.778837 +
0.0000318182

s
t− 1.85934 × 10−10

s2
t2. (4.6)

We subtract (4.5) to (4.6) and plot the residuals between them in Fig. 4.4.
There are residuals up to 26 µs (0.0008) in phase and therefore either Tempo2
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Figure 4.4: Residuals between (4.6) and (4.5).

or Tempo1 leaves some physical effects unmodelled. To check this further
out we fit a cubic to the phases instead of a quadratic

ψ(t) = ψ0 + a(t− t0) + b(t− t0)
2 + c(t− t0)

3; (4.7)

if there is some physical effect left unmodelled, it will be absorbed in the
cubic term and the difference with the corresponding quadratic may reveal
the origin of the 0.4 ns discrepancy.
From the best fit of the Tempo2TDB-phases to a cubic we get the following
solution

ψTempo2TDB−cubic = −0.777428+0.0000317892t−1.85754×10−10t2−3.46131×10−19t3

(4.8)
and its difference with the corresponding quadratic (4.6) is shown in Fig. 4.5
(top).
The best-solution from the fit of the Tempo1-phases to the cubic is

ψTempo1−cubic = −0.796768+0.0000321824t−1.88238×10−10t2+4.45013×10−18t3

(4.9)
and its difference with the corresponding quadratic (4.5) is shown in Fig. 4.5
(bottom). We note that there are residuals up to 0.0004 in the Tempo1 case,
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Figure 4.5: Top: Residuals between the cubic (4.8) and the quadratic (4.6) for the
Tempo2TDB case. Bottom: Residuals between the cubic (4.9) and the quadratic (4.5) for
the Tempo1 case. In the Tempo1 case the residuals are one order of magnitude bigger
than those in the Tempo2TDB case.

therefore one order of magnitude bigger than those shown in the Tempo2TDB
case. This might mean that Tempo1 does not properly correct for some
physical effect. The rotational periods of the Crab calculated with (4.9)
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Figure 4.6: Residuals between the cubic (4.8) (Tempo2TDB) and (4.9) (Tempo1) (blue
points). The amplitude in phase corresponds to ∼26µs. The yellow curve is a sinusoid
with a diurnal period. The red curve in the middle is a portion of the yellow sinusoid
shifted in phase. The trend of the residuals is much alike to that shown in Hobbs et al.
(2006) (see also Fig. 3.1).

are not anymore sistematically 0.4 ns longer than those from the JB radio
ephemerides: The discrepancy oscillates over the 2 days baseline from -0.4
ns to 0.4 ns.

It is instructive to study the difference between the Tempo2TDB-cubic-
best-solution (4.8) and the Tempo1-cubic-best-solution (4.9). Fig. 4.6 shows
the residuals. The shape of the residuals reminds a characteristic diurnal os-
cillation shown in Hobbs et al. (2006a, Fig. 4) and here reported in Fig. 3.1.
The plot shows the difference of the Roemer delay as calculated by Tempo2
and Tempo1. As explained in Hobbs et al. (2006), the characteristic diurnal
trend reflects the rotation of Earth and it shows up once we subtract the Roe-
mer delay as calculated by Tempo1 to that from Tempo2. The Roemer delay
is the light travel time from the observatory to the solar system baricenter
(SSB), projected onto a vector from SSB to the source (see Section 3.1.2).

The phenomenon related to the trend in Fig. 3.1 is the polar motion
of Earth. Since the rotation axes of Earth changes direction in an almost
unpredictable way, the position of the true pole differs from that of the mean
pole. That is, the position of the true pole is off with respect to that of
the mean pole. Thus this offset affects the coordinates of the observation
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site as well. If the coordinates of the observatory are not corrected for the
polar motion then the Roemer delay is wrongly estimated and the offset
shows up with a typical diurnal trend (see Section 3.1.2). Tempo1 does not
correct for the polar motion, Tempo2 does. Moreover, Tempo1 uses an out
of date precession-nutation model. However the large offset of ∼26µs we get
in Fig. 4.6 is not expected. As explained in Hobbs et al. (2006a) the offset
between Tempo1 and Tempo2 expected from the polar motion correction is
40 ns at most.

To check for the correctness of the Roemer delay estimate we simulated
a string of TOAs over a baseline of several years. Fig. 4.7 shows what is not
expected: There is a huge divergence up to ∼ 30µs from MJD∼54500 on.
The typical oscillations of ∼ 40 ns as reported in Hobbs et al. (2006a) are
all over the flat region. The Asiago observation campaign is around 54750.
Thus at these epochs the Roemer delay is wrongly estimated, introducing
the 0.4 ns discrepancy we systematically get with respect to the JB radio
rotational periods. For the record, the observations taken during the NTT
campaign fall around MJD=54847 and MJD=55181. At these epochs the
Romer delay difference begins again to be as expected. Indeed for the NTT
campaign we never got this additional 0.4 ns discrepancy.
We checked the software for the origin of this problem. The bug was in
the procedure for updating the configurative files described in the Tutorial.
Therefore we downloaded all the files from the link
http://tempo2.cvs.sourceforge.net/viewvc/tempo2/tempo2/T2runtime/
and posted by “ankurchaudhary”. Then we ran again the software to check
for the trend of the Roemer delay difference. Fig. 4.7 (bottom) shows the
trend one expects and shown in Fig. 4 of Hobbs et al. (2006a).

Having in mind all this analysis we can conclude that the instrument is
able of detecting very small inaccuracy in the modelling of the TOAs from
the pulsar to the observatory. For instance, we may think of using Aqueye in
geological applications, e.g. monitoring the polar motion of Earth all along
the years, i.e. studying this phenomenon by means of the extremely precise
pulse-time-tagging from the Crab pulsar that Aqueye provides. Other appli-
cations might deal with the continental drift expected to be a few centimeter
per year, leading to errors on TOAs of few ns.
Trying to give measures of the conversion factor K (Section 4.4) is tempting
with such an instrument. The factor K gives the rate at which a non-inertial
clock in the Solar system gravitational well beats the time with respect to an
inertial one. The value quoted in literature is the mean value of the Einstein
integral plus a term describing the gravitational redshift due to Earth. The
K-value is calculated by interpolations and by means of numerical planetary
ephemerides (Irwin & Fukushima 1999). Aqueye may be sensitive to the
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variation of K during the year, depending on the position of Earth on its
orbit and on the positions of the other planets.



64 4. Asiago observations

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 49000  50000  51000  52000  53000  54000  55000

D
iff

er
en

ce
 (

ns
)

MJD

Figure 4.7: Top: Roemer delay difference Tempo2-Tempo1. The trend one expects are
oscillations of ∼ 40 ns in amplitude due to the polar motion of Earth not accounted for by
Tempo1. The plot shows a huge divergence of amplitude of ∼ 30µs from MJD∼54500 on.
Bottom: The trend one expects as shown in Fig. 4 of Hobbs et al. (2006a) after loading
in the software the correct updated files.
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4.5 Rotational periods and first derivative mea-

sured by Aqueye in Asiago

From the behaviour of the observed phase of the pulsar one can estimate the
rotational period and its derivatives. Fig. 4.8 shows the best-fitted parabola
ψ(t) (blue curve; equation 4.3) to the phase-drift of the Crab with respect
to a reference phase. The reference epoch the phase-drift is calculated with
respect to is t0 = 0 (MJD=54749.0). In order to compare our ephemerides to
those by Jodrell Bank, the time of arrivals were barycentered in the Tempo1
mode. We note that the parabola from Jodrell Bank ephemerides is off by the
expected phase-shift (Shearer et al. 2003; Oosterbroek et al. 2008) between
optical and radio (Fig. 4.8 middle; see Chapter 6).
In Section 4.4 we have seen that the true phase of the pulsar is

φ(t) =
(t− t0)

Pini

+ ψ(t). (4.10)

The first derivative of (4.10) gives the rotational frequency of the pulsar at
a given epoch t

ν(t) =
dφ(t)

dt
=

1

Pini

+ ψ̇(t) (4.11)

and the rotational period is P = 1/ν. Here Pini is the period at a given
epoch used as reference in the estimation of the phase-drift. In this analysis
we used the radio period at MJD=54750.0, Pini = 0.0336216386529.
The best-fitted soultion ψ(t) is

ψ(t) = 0.9683 +
0.0000321341

s
t− 1.85941 × 10−10

s2
t2 (4.12)

and the rotational frequency as fuction of time

ν(t) =
dφ(t)

dt
=

1

0.0336216386529
Hz+0.0000321341Hz−3.71882×10−10Hzt.

(4.13)
In Table 4.3 we report the rotational periods at the beginning of each obser-

vation as measured by Aqueye (see Table 5.1 for a log of the obsevations). In
the table the periods at the same epoch reported in the Jodrell Bank radio
ephemerides are also given.
While we postpone a more detailed treatment of the error on the rotational
periods to a forthcoming investigation here we provide an order of magnitude
estimate as follows (Boynton et al. 1972). In Fig. 4.8 (bottom) the residuals
after subtracting the best-fitted parabola to the data are of the order of 0.003



66 4. Asiago observations

0 50 000 100 000 150 000 200 000 250 000

-4

-3

-2

-1

0

1

2

Time@sD

Ph
as

eH
cy

cl
es
L

87 500 87 600 87 700 87 800 87 900 88 000
2.350

2.355

2.360

2.365

2.370

2.375

Time@sD

Ph
as

eH
cy

cl
es
L

100 000 150 000 200 000 250 000

-300

-200

-100

0

100

200

300

Time@sD

Ph
as

eH
Μ

sL

Figure 4.8: Top: Behaviour of the phase-drift of the main peak of the Crab over the
obsevation run in Asiago on October 2008 (blue points). The blue curve is the best-fitted
parabola (eq[4.12]). The red curve is the parabola from the Jodrell Bank radio ephemerides
(Section 4.3). Middle: A zoom-in of the plot on the top, showing the difference in phase
between optical and radio (Shearer et al. 2003; Oosterbroek et al. 2008, see Chapter 6).
Bottom: phase-residuals after subtracting to the blue points on the top the best-fitted
parabola (eq[4.12]; blue curve).
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Table 4.3: Rotational periods of the Crab pulsar measured by Aqueye in 2008 compared
to those reported in the Jodrell Bank radio ephemerides (see Table 5.1). Time of arrivals
were barycentered in the Tempo1 mode.

MJDa Period (As) Period (JB)
(s) (s)

1 54749.99287724855327 0.0336216384023 0.0336216384049
2 54750.00668638351852 0.0336216388933 0.0336216388959
3 54750.04505792216435 0.0336216402869 0.0336216402895
4 54750.07656540930556 0.0336216414313 0.0336216414339
5 54750.10252841002315 0.0336216423742 0.0336216423768
6 54750.14465028032407 0.0336216439041 0.0336216439067
7 54750.97900758696759 0.0336216742076 0.0336216742102
8 54751.97132990998842 0.0336217102484 0.0336217102510

a Corrected MJD at the solar system barycenter (Tempo1 mode).

Table 4.4: Rotational periods of the Crab pulsar measured by Aqueye in October 2008
(see Table 5.1 for a log of the observations). Time of arrivals were barycentered with
Tempo2 (TCB units).

MJDa Period (s) (Asiago)

1 54749.99304560657631 0.0336216389066
2 54750.00685473487799 0.0336216394081
3 54750.04522628093586 0.0336216408017
4 54750.07673377043712 0.0336216419460
5 54750.10269677046000 0.0336216428890
6 54750.14481863190191 0.0336216444188
7 54750.97917596163527 0.0336216747218
8 54751.97149830025131 0.0336217107620

a Corrected MJD at the solar system barycenter (Tempo2 mode).

in cycles (∼ 100µs). We assume this error as the error in measuring the phase
of each point. The number of phases measured in each observation night is
N ∼ 1122 (each point refers to the phase calculated over a 2 s interval).
Assuming that the noise follows a Poisson distribution, the average phase,
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on each observation night, is uncertain by 0.003/
√

1122 = 9 × 10−5 (e.g. see
Boynton et al. 1972) and the phase difference (φ2−φ1) between beginning and
end is uncertain by δφ = 1 × 10−4. The average frequency measured during
the baseline of the observations, ∆t = 172800 s, is (φ2−φ1)/∆t and the error
on this frequency is δν = δφ/∆t = 7 × 10−10 Hz. Therefore the statistical
error on the rotational periods is δP = P 2δν = 1 × 10−12 s. The statistical
error on the radio period quoted by Jodrell Bank is ∼ 10−13 s. From Table 4.3
the rotational periods measured by Aqueye are systematically shorter than
the Jodrell Bank ones by ∼ 3×10−12 s. There is a discrepancy slightly bigger
than the statistical error. This might be an indication of extra-noise from
the source. However, since our error is an approximate estimate, no defini-
tive conclusion can de drawn on extra-noise detected in Asiago. The last
term in (4.13) is the first derivative of the rotational frequency. Jodrell Bank
quotes a spin down in frequency of the neutron star (at MJD=54754.0) of
ν̇ ∼ −3.71865×10−10. Our measurment is ν̇ ∼ −3.71872×10−10±2×10−15.
As will see in Chapter 5, this discrepancy is due to a mean drift of the optical
phase with respect to the radio phase. We recently understood by compari-
son with simultaneous radio observations that those drifts in each observation
run (Asiago/NTT runs), with different magnitude and sign from run to run,
may be caused by short term variations of the dispersion measure and of the
radio phase, that may differ from that reported in the Jodrell Bank radio
archive. Therefore rotational periods are different by some ps. Differences in
the first derivatives of the frequency ν̇ reported above might also be caused
by this effect.

We would stress that in order to compare our data with those in the Jo-
drell Bank radio archive, we barycentered the time of arrivals (TOAs) we col-
lected in the Tempo1 (Tempo) mode in Tempo2. The JB radio ephemerides
are calculated with the previous version of the software Tempo. As we al-
ready mentioned in Section 4.4, in Tempo1 the length of the second is not the
proper time beaten by an inertial clock. Moreover Tempo1 does not take into
account for corrections that at this precision level might be relavant. Thus, in
Table 4.4 we report the rotational periods after barycentering with Tempo2
in TCB units (see Section 4.4). The IAU resolution A4 (1991) recommends
the use of the barycentric coordinate time (TCB). The main difference be-
tween rotational periods in the Tables 4.3, 4.4 is due to the use of TCB unints
(SI units) instead of TDB. Since the TCB second is the proper time expe-
rienced by an inertial observer it is 1-K=1.550 519 791 54×10−8 s (Irwin &
Fukushima 1999) shorter than the TDB one and the rotational periods of
the Crab are ∼ 0.5 ns longer than those in TDB units (see Section 4.4).
We note also further and smaller differences, i.e. the ratio of the periods
in Table 4.4 (TCB units) to those in the first column of Tables 4.3 (TDB
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units) is not equal to the value K=1+1.550 519 791 54×10−8 but ranges from
1+1.49992689×10−8 to 1+1.52937061×10−8. These differences may be due
to either further corrections Tempo2 does (Hobbs et al. 2006a) or to some
systematic errors in our data maybe introduced by Tempo1, such that the
periods by Aqueye in Tables 4.3 do not agree with those from the Jodrell
Bank radio ephemerides within the error we estimated. We would remind
that we assumed a Poissonian noise to estimate the statistical error. It might
be possible that if the noise in the source has a different distribution, then
the error bar might be larger than that we estimated above (Patruno et al.
2009). A not yet clear component of noise in young pulsars (timing noise)
has been observed by several authors, however over much longer integration
time than those reported here (a few days) (Lyne et al. 1993; Scott et al.
2003). A further discussion on the discrepancies between optical and radio
rotational periods in Tables 4.3 is given in Section 5.6.

4.6 Asiago-Jodrell phase-residuals

Fig. 4.9 shows the residual of the time of arrivals of the optical peak (Ta-
ble 4.5) after subtracting the Jodrell Bank ephemerides. In order to calculate
the time of arrival of the optical peak, we have to re-define the phase φ. The
output of the code described in Section 3.3 gives a phase φ̃ that describes
how the beam of light from the pulsar is oriented with respect to the line of
sight, which is how the radio phase is defined as well. Therefore, if at a given
epoch t0 the phase is φ̃ = φ̃0 then the time of arrival of the first pulse after
t0 at the detector is Tarr = (1 − φ̃0)P0 = φ0P0, where P0 is the rotational
period at t0.

Fig. 4.9 shows that in Asiago the optical peak leads the radio one, in
agreement with other authors (Shearer et al. 2003; Oosterbroek et al. 2008).
The spreding on the residual is ∼ ±100µs (assumed as error bar). Since the
number of points is N ∼ 1122, for each observation night, the expected value
of the time of arrival of the optical peak is uncertain by ∼ 100µs/

√
N ∼ 3µs

(Boynton et al. 1972). The quoted error for the JB radio peak at this epoch
is ∼ 60µs6. Therefore the optical peak leads the radio one by ∼ (113±60)µs
(at t = 86400 s, epoch of the first observations). The blue line gives a slope
of (−7 ± 43)µs/day.

6http://www.jb.man.ac.uk/ pulsar/crab/crab2.txt
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Figure 4.9: Residual of the the time of arrivals of the optical peak, measured by Aqueye,
after subtracting the JB radio ones (see Fig. 4.8). The negative value means that the
optical peak leads the radio one by ∼ 113µs (at t = 86400 s, epoch of the first observation;
see text). The blue line is a linear fit to the residuals giving a drift of the optical peak with
respect to the radio one by ∼ −7µs/day. The time t=0 is at MJD=54749 (see Table 4.5
for a log of the observations).

4.7 The Asiago-Ljubljana observation cam-

paign

A third fast photon counters was constructed for the 70 cm Vega telescope
in Ljubljana, by the research group led by Prof. A. Čadež. The concepts
design follow those of Aqueye. Unlike Aqueye, the prototype in Ljubljana
has only one SPAD and the photon stream is focused on it by meas of an
optical fiber.

In Oct. 2008, the Asiago and Ljubljana photometers were used for a
campaign of synchronized observations of the pulsar in the Crab Nebula. To
our knowledge, the only experiment of this kind was performed in 1971 by
Horowitz et al. (1971). The aim of these join observations was to determine
the stability of pulsar clock with respect to GPS clock and to determine the
accuracy to which both observatories agree on the precise pulse arrival timing.
Efforts in this campaign were also made to investigate the yet unknown
physics of the phase (timing) noise seen in the pulsar (e.g. Boynton et al.
1972; Lyne et al. 1993; Čadež & Galičič 1996; Scott et al. 2003).
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Table 4.5: The geodetic and geocentric different observing site considered in this work.

Telescope/Observatory Copernicus/Asiago Vega/Ljubljana

Geodetic long (◦ ′ ′′ ) +45 50 55.01 +46 02
37,65

Geodetic lat (◦ ′ ′′ ) +11 34 08.52 +14 31
39,73

Height (m) 1429 413

X (m) 4360967 4293298

Y (m) 892723 1112537

Z (m) 4554567 4568925

To prepare for this event, several prior activities, including the construc-
tion of a pulsar simulator built in Ljubljana by Prof. D. Ponikvar, were
performed by the two teams in order to properly prepare and calibrate the
two hardware sets. The coordinates of the two observatories in the WGS84
7 reference frame are given in Table 4.5.

The relationship between the Time to Digital Converter (TDC) internal
time and the GPS time was calculated in the following way (A. Čadež, 2008,
Harrison project report). Let tk be the TDC internal time at the k-th GPS
second. A quadratic polynomial:

P2(k) = c2k
2 + c1k + c0 (4.14)

is fitted to the function tk and then the difference tk −P2(k) is approximated
with a Fourier series with 50 coefficients. Therefore, the TDC internal time
as a function of GPS time is:

tTDC(tGPS) = c2t
2
GPS+c1tGPS+c0+

∑

(aicos((2π/T )itGPS)+bi(sin((2π/T )itGPS)).
(4.15)

The measured scatter of residual differences tTDC(k) − tk was about ±10ns
(Fig. 4.10), consistent with the declared GPS accuracy. Since residuals were

7http://earth-info.nga.mil/GandG/publications/tr96201/tr96201.html
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white noise we concluded that the TDC - GPS time transformation could
not reasonably be improved any more, at least with the present quality of
the GPS signal.

Subsequent to these initial tests, two receivers prepared by Thales Alenia
Space Italy as prototypes for the GALILEO GNSS signals were brought to
the Observatories. Further tests were performed by the two groups, again on
the GPS signals and on the signals generated by the pulsar simulator. The
results confirmed the previous ones, and actually were slightly better because
the better quality of the GPS receiver inside the ACTS units. At this stage,
the clocks of each group could be considered synchronized to the best possible
precision with the available equipment, and indeed amply sufficient to reach
the main scientific goal of the experiment, namely to unambiguously detect
and measure phase noise in the pulsar.

Table 4.6: Log of the October 2008 observations of the Crab pulsar performed at the
Vega telescope in Ljubljana. The start time of the observations is the GPS integer second,
accurate to better than approximately +/-30 nanoseconds. Observations 2 and 3 are
simultaneous observations with Asiago (see Table 4.1)

Starting time MJDa Duration
(UTC) (s)

1 October 10, 23:14:26 54749.968365918236522 1200
2 October 11, 00:07:22 54750.007936873654867 9658
3 October 11, 23:06:55 54750.963133542481746 3731
4 October 26, 22:21:55 54765.931893708696666 4306

a Corrected MJD at the solar system barycenter (Tempo1 mode).
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Figure 4.10: Timing residuals tTDC(k)− tk for the Asiago 3rd test run. Abscissa is time
that spans over 1797 seconds.

4.8 Rotational periods and phase residuals in

Ljubljana

Fig. 4.11 shows the phase-drift behaviour in Ljubljana (Table 4.6) with re-
spect to both a folding epoch (MJD=54749) and a rotational period (Pini =
0.033621638529) (see eq.[4.11]). The best-fitted parabola in Fig. 4.11 gives
the following solution

ψ(t) = 0.975337 +
0.0000320063

s
t− 1.85441 × 10−10

s2
t2. (4.16)

Following Section 4.5, the rotational frequencies of the Crab as measured in
Ljubljana are

ν(t) =
dφ(t)

dt
=

1

0.033621638529
Hz+0.0000320063Hz−3.70882×10−10Hzt.

(4.17)
Assuming an error on each measured phase of ∼ 300µs (Fig. 4.11, bot-

tom), the statistical error on the rotational periods is δP ∼ 1 × 10−12 s
(Section 4.5). The statistical error on the radio period from the Jodrell Bank
archive is ∼ 10−13 s. The difference between the optical periods measured in
Lj and the radio ones shown in Table 4.7 is from ∼ 4 × 10−11 at obs 1, to
−1.5 ∼ 10−9 at the obs 4 15 days later. The discrepancy at obs 4 is huge.
It is a conseguence of the optical-radio phase drift which is huge over a 16



74 4. Asiago observations

Table 4.7: Rotational periods of the Crab pulsar measured at the Vega telescope in
Ljubljana on 2008 compared to those reported in the Jodrell Bank radio ephemerides (see
Table 5.1). Time of arrivals were barycentered in the Tempo1 mode.

MJDa Period (Lj) Period (JB)
(s) (s)

1 54749.968365918236522 0.0336216375577 0.03362163751103
2 54750.007936873654867 0.0336216388658 0.03362163882257
3 54750.963133542481746 0.0336216735914 0.03362167364063
4 54765.931893708696666 0.0336222158078 0.03362221729010

a Corrected MJD at the solar system barycenter (Tempo1 mode).

days baseline. Such phase-drift may be an indication of noise larger than
that expected, however it needs further investigations.



4.8. Rotational periods and phase residuals in Ljubljana 75

0 500 000 1.´106 1.5´106

-400

-300

-200

-100

0

Time@sD

Ph
as

eH
cy

cl
es
L

86 000 86 500 87 000 87 500 88 000
2.345

2.350

2.355

2.360

2.365

2.370

Time@sD

Ph
as

eH
cy

cl
es
L

200 000 400 000 600 000 800 000 1.´106 1.2´106 1.4´106

-400

-200

0

200

Time@sD

Ph
as

eH
Μ

sL

Figure 4.11: Top: Behaviour of the phase-drift of the main peak of the Crab over
the obsevation run in Ljubljana on October 2008 (blue points). The blue curve is the
best-fitted parabola (eq[4.16]). The red curve is the parabola from the Jodrell Bank radio
ephemerides (Section 4.3). Middle: A zoom-in of the plot on the top, showing the difference
in phase between optical and radio (Shearer et al. 2003; Oosterbroek et al. 2008). Bottom:
phase-residuals after subtracting to the blue points on the top the best-fitted parabola
(eq[4.16]; blue curve). The simmetry of the residuals testifies the stringent phasing over
16 days.



76 4. Asiago observations

100 000 120 000 140 000 160 000
-400

-300

-200

-100

0

100

200

Time@sD

O
pt

ic
al

de
la

y
@Μ

sD

Figure 4.12: Residual of the time of arrivals of the optical peak, with respect to the radio
peak, for the Asiago-Ljubljana simultaneous observations. Red points are the Ljubljana
observations (see Table 4.6), the blue points the Asiago ones (see Table 4.1). The blue
and red lines are linear fits showing a slop of ∼ −15µs/day (see text).

4.8.1 The Asiago-Ljubljana joint observations

Fig. 4.12 shows the residual of the time of arrivals of the optical peak after
subtracting the radio ones to both the simultaneous Asiago-Ljubljana obser-
vations (obs 2 and 3 in Table 4.6, obs 2, 3, 4 and half of obs 7 in Table 4.1).
The number of time of arrivals for each observation in the Lj run is N ∼ 50.
Each phase-point has been calculated over segments 33 s longer, because of
the lower count rate in Lj than Asiago. We would remind that in Asiago
the phase is calculated over segments 2 s long. In Ljubljana each time of
arrival is uncertain by 300µs, therefore the expected optical time of arrival is
uncertain by 300µs/

√
N ∼ 35µs (Boynton et al. 1972). The quoted error by

Jodrell Bank on the radio peak is 60µs. Hence the optical peak in Ljubljana
leads the radio one by ∼ (104 ± 70)µs at t ∼ 86400 s (epoch of the first
observation.)

On this temporal baseline, the expected optical time of arrival in Asiago,
in each observation night, is uncertain by 100µs/

√
671 ∼ 4µs. The opti-

cal peak in Asiago leads the radio one by ∼ (121 ± 60)µs (the radio error
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Table 4.8: Rotational periods of the Crab pulsar measured during the Asiago-Ljubljana
observations). Time of arrivals were barycentered in the Tempo1 mode.

MJDa Period (As) Period (Lj)
(s) (s)

2 54750.007936873654867 0.03362163890 0.03362163916
3 54750.963133542481746 0.03362167418 0.03362167396

a Corrected MJD at the solar system barycenter (Tempo1 mode).

dominates).

The difference of the time of arrival of the optical peak as seen by the two
observatories is ∼ 17µs (at t ∼ 86400 s). The peak in Ljubljana is uncertain
by 35µs, that in Asiago by 4µs, thus the error on the residual Ljubljana-
Asiago is ∼ 35µs. The optical peak from the Crab pulsar as seen at both
observatories is aligned within the error. Over this temporal baseline, both
runs show a drift in the phase-residuals of ∼ −15µs/day, with an error bar
of ∼ 90µs for Lj.

Table 4.8 shows the rotational periods measured in As and in Lj from the
best-fitted parabolas over the simultaneous run (obs 2 and 3 in Table 4.7,
obs 2, 3, 4 and half of obs 7 in Table 4.1). The Poisson statistical error bar
is ∼ 2×10−11 s for Lj, ∼ 10−12 for As. The difference between the rotational
periods in Table 4.8 oscillates from ∼ 2 × 10−10 s to ∼ −2 × 10−10 s over
the simultaneous run. Fig. 4.13 shows in more detail the As-Lj phasing.
The figure shows the difference of the best-fitted parabola to the As phases
with that fitted to the Lj phases. We see that the difference is not within
the Poisson error (∼ 35µs) all over the run. The slope of the parabola in
Fig. 4.13 is the difference between the rotational periods measured at the
two observatories. Thus, the periods agree around the maximum of the
parabola, but they do not agree within the Poisson error (∼ 10−11 s) at
the observation epochs (red points). From the figure we also see in more
detail that the difference of the time of arrival of the Crab optical peak as
measured by the two observatories is within the Poisson error (∼ 35µs) only
at some observation epochs. Whether this extra-noise component is intrinsic
in the source or it is an artifact of the much lower count rate in Lj remains
to be investigated. We would remind that both the instrumentations were
calibrated to better than ±10 ns by means of a pulsar simulator (Section
4.7).
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Figure 4.13: Difference of the best-fitted parabola to the Asiago phases with that fitted
to the Lj phases during simultaneous observations.

As already mentioned, a more extensive analysis of the pulsar timing noise
and related errors is needed before any definitive conclusion about all these
discrepances can be drawn. A further discussion on the discrepancies we
have described in this Chapter is given in Section 5.6.



Chapter 5

La Silla observations

The Crab pulsar was also observed by the team from the University of Padova
with the extremely fast optical photon-counter Iqueye mounted at the NTT
telescope in La Silla. The phase-analysis procedure described in the previous
chapters was applied also to the data collected by Iqueye. The rotational
period of the Crab was measured with an accuracy better than a few ps.
The quality of the data is such that we were able to determine the pulsar
first-order slow down over a baseline of only 2 days.
We compared our measurements to the Jodrell Bank radio ephemerides. Dis-
crepancies with respect to the radio ephemerides and possible implications
are discussed as well.

5.1 Iqueye: The Italian Quantum Eye

For a description of the scientific motivations of Iqueye and of its optome-
chanical characteristics see Barbieri et al. (2009), Naletto et al. (2009) and
references therein. Iqueye is a conceptually simple fixed-aperture photometer
which collects the light within a field of view (FOV) of few arcseconds around
the target object. It is mounted at the Nasmyth focus of the 3.6-m ESO NTT.
A holed folding mirror at 45 on the NTT focal plane brings a 1 arcmin field
around the star under investigation to the field acquisition TV camera. The
light from the target object instead passes through the central hole and is
collected by a collimating refracting system. Two filter wheels located in the
parallel beam after the first lens allow the selection of different filters and
polarizers. Then the light reaches a focusing system which (de)magnifies the
telescope image by a 1/3.25 factor. On this intermediate focal plane, one
out of three pinholes (200, 300 and 500 micrometers diameter) can be in-
serted. These pinholes act as field stops, and their sizes allow the selection
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of three different FOVs (3.5, 5.2 and 8.7 arcsec diameter). After the pinhole,
the light impinges on a pyramid having four refracting surfaces and whose
tip coincides with the center of the shadow of the secondary mirror. The
pyramid splits the telescope pupil in four equal portions, and sends the light
from each sub-pupil along four perpendicular arms. Along each arm, the sub-
pupil light is first collimated and then refocused by a suitable system, further
(de)magnifying the image by an additional 1/3.5 factor. Each sub-beam is
then focused on a single photon avalanche photodiode (SPAD) operated in
Geiger mode. The quantum efficiency of the Silicon SPADs extends from the
blue to the near infrared, with a peak sensitivity of 55% at 550 nm. When
used without filter, as in the present case, the overall efficiency of Iqueye
(SPAD + telescope + atmosphere) at the Zenith is approximately 33%. The
dark counts of the temperature-controlled detectors are very low, varying
from 30 to 50 count/s for each individual unit. The SPAD circular sensitive
area of 100 µm diameter, nominally defines a 5.8 arcsec FOV. Therefore, the
smallest pinhole acts as the actual field stop at 3.4 arcsec. This pinhole can
be selected when it is necessary to reduce as much as possible the background
around the target, e.g. when observing a pulsar embedded in a nebula, as
in the present case. The optical solution of splitting the beam by a pyramid
in 4 sub-beams was dictated by the need to overcome as much as possible
the dead time intrinsic to the SPAD (75 nanoseconds), in order to give to
Iqueye the largest possible dynamic range. In other scientific applications
(e.g. intensity interferometry; Hanbury Brown 1974), having four indepen-
dent detectors allows to cross correlate the counts from each sub-aperture.
The pulses produced by the SPADs are sent to a Time to Digital Converter
(TDC) board which has a nominal resolution of 24.4 ps. Considering also
the other possible noise sources, the nominal accuracy of the photon arrival
time determination is of the order of 100 ps or better. An external Rubidium
oscillator provides the reference frequency to the TDC board. The board ac-
quires also a pulse per second (PPS) from a GPS receiver, used to remove the
Rubidium frequency drift and to put the internal detection times on the UTC
scale. Taking into account all error factors, the final overall precision of each
time tag in the UTC scale is approximately 450 ps, maintained throughout
the duration of the observations. In order to take care as well as feasible of
the rotation of the NTT building, the GPS antenna was mounted on the top
of the dome, at the centre of one of the sliding doors (about 3 meters away
from the dome rotation axis). The signal was brought to the receiver by a
high-quality, length compensated cable.

The user interface, developed as a Java multitasking code, controls each
subsystem (e.g. the mechanisms), performs the data acquisition and storage,
provides some real time monitoring of the data acquisition, and provides
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tools for a quick look statistical analysis of the data. Each arrival time is
recorded on the storage device which has a total capacity of approximately 2
TB. Being the data stored in a mass memory device, all the data can be an-
alyzed in post-processing: this allows, for example, to sort the collected time
tags in arbitrarily long time bins still preserving the original data. Between
the January and December 2009 run, some improvements were made to the
instrument (Naletto et al. 2010), in particular the addition of a fifth SPAD
to acquire the signal from the sky.

5.2 Observations at the NTT telescope:

The January and December 2009 runs

The Iqueye team (Naletto et al. 2009) performed observations at the NTT
telescope on 14-19 January and 12-16 December 2009, operating Iqueye
across its entire range of count rates, from extremely faint to very bright
sources. The capability of the apparatus to time-tag photons with extremely
accurate precision over a very wide dynamic range was demonstrated con-
vincingly.

The Crab pulsar was observed several times during the two runs (see the
log of the observations in Table 5.1). Fig. 5.1 (top) shows the capabilities
of Iqueye in conventional high speed photometry. The great sensitivity of
Iqueye is clearly evident: it is able to resolve to high accuracy the 33 ms
single periods of this weak V = 16.5 object. The pulses from the pulsar are
after transmission through a linear polarizer, with the counts binned in 0.5
ms time bins, which is 1/66th of the pulsar period.

Observations of the pulsar PSR B0540-69 in the Large Magellanic Cloud
were pursued as well and are described in Appendix B.
A naive experiment to study the spatial second-order degree of light (see
Appendix A) has been made by cross correlating the signal from the four
channels of Iqueye (Naletto et al. 2009).
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Table 5.1: Log of the January/December 2009 observations of the Crab pulsar performed
with Iqueye mounted at the NTT telescope in La Silla. The start time of the observations
is the GPS integer second, accurate to better than approximately +/-30 nanoseconds.

Starting time MJDa Duration
(UTC) (s)

1 January 16, 01:55:33 54847.08587011805557 1197
2 January 16, 02:31:07 54847.11459567151620 1797
3 January 17, 01:22:18 54848.06272740807870 3597
4 January 19, 00:48:19 54850.03901748245370 3597
5 January 20, 01:28:31 54851.07300875886574 3712
6 December 13, 03:51:16 55178.16707177530092 1792
7 December 14, 02:36:51 55179.11539707857639 2602
8 December 14, 04:40:15 55179.20109179855324 2596
9 December 15, 03:20:17 55180.14556120746528 2570
10 December 16 02:18:16 55181.10249429464120 1922
11 December 16 03:18:48 55181.14453133057870 892

a Corrected MJD at the solar system barycenter (Tempo1 mode).
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Figure 5.1: The first five pulses from the Crab pulsar as detected by Iqueye at NTT.
The bin time is 5 × 10−4s

5.3 Rotational periods and first derivative from

Iqueye: The January 2009 run

Similarly to Chapter 4 for the Asiago 2008 run, here we report the rota-
tional periods as calculated by Iqueye mounted at the NTT on January
2009. Fig 5.2 shows the results for the January 2009 run. The figure on
the top describes the phase-drift behaviour with respect to a reference epoch
MJD=54847.0 (see Table 5.1 for a log of the observations) and a folding pe-
riod P=0.0336252342 s (radio period at MJD=54849.0). The blue points are
the Crab phases as measured by Iqueye. The red curve is the radio phase-drift
as from the Jodrell Bank monthly ephemerides archive. A zoom-in (middle)
shows the best-fitting parabola to the Iqueye phases (blue curve). The offset
between the red and the blue curve is the optical-radio phase delay (Shearer
et al. 2003; Oosterbroek et al. 2008, see Section 5.5.1). Finally, the figure
on the bottom shows the residuals left out after subtracting the best-fitted
parabola (blue curve) to the phases (blue points). The spread of the residuals
is similar (∼ 40µs) to that obtained in the December run (Fig. 5.3). The
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Table 5.2: Rotational periods of the Crab pulsar measured by Iqueye on January 2009
compared to those reported by Jodrell Bank radio ephemerides (see Table 5.1 for a log of
the observations).

MJDa Period (NTT) Period (JB)
(s) (s)

1 54847.08587011805557 0.03362516470042 0.03362516469808
2 54847.11459567151620 0.03362516574368 0.03362516574136
3 54848.06272740807870 0.03362520017813 0.03362520017654
4 54850.03901748245370 0.03362527195367 0.03362527195304
5 54851.07300875886574 0.03362530950662 0.03362530950632

a Corrected MJD at the solar system barycenter (Tempo1 mode).

best-fitting solution to the optical phase in Fig 5.2 (top) gives

ψ(t) = 1.8791 +
0.0000642735

s
t− 1.85888 × 10−10

s2
t2 (5.1)

Table 5.2 shows the rotational periods calculated with equation (5.1) in (4.11)
(for the observations listed see Table 5.1). Over the run the difference optical-
radio oscillates from ∼ −2.3 ps to ∼ 2.3 ps. The estimated statistical error is
∼ 5×10−14 s (see Section 4.5), and that quoted by Jodrell Bank is 1.8×10−13

s.
The first derivative of the frequency quoted by Jodrell Bank at MJD=54847.0

is ν̇ ∼ −3.7178476 × 10−10 ± 3.6 × 10−16, that obtained from Iqueye in this
run is ν̇ ∼ −3.7177633 × 10−10 ± 2.6 × 10−16. They differ by ∼ 8.4 × 10−15

(∼ 28 times the estimated error in ν̇). The change of the first deriva-
tive all over the run due to the second derivative (ν̈ = 1.5 × 10−20) is
ν̈∆T = 1.5 × 10−20 × 350000s = 5.25 × 10−15, where ∆T = 350000 s is
the time interval from MJD=54847.0 to the last observation. If we account
for ν̈ then ν̇ = 3.7177633 × 10−10 + 5.25 × 10−15 = 3.7178158 × 10−10 at
MJD=54847.0, therefore the radio and optical differ by 11 times the esti-
mated error in ν̇. As in the December run case, both the rotational periods
and first derivatives mesured by Iqueye are off those reported by the Jodrell
Bank observatory.
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Figure 5.2: Top: Behaviour of the phase-drift of the main peak of the Crab over the
obsevation run in La Silla on January 2009 (blue points). The blue curve is the best-fitted
parabola (eq[5.1]). The red curve is the parabola from the Jodrell Bank radio ephemerides
(Section 4.3). Middle: A zoom-in of the plot on the top, showing the difference in phase
between optical and radio (Shearer et al. 2003; Oosterbroek et al. 2008, see Section 5.5.1).
Bottom: phase-residuals after subtracting to the blue points on the top the best-fitted
parabola (eq[5.1]; blue curve).
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5.4 The December 2009 run at NTT

Table 5.3: Rotational periods of the Crab pulsar measured by Iqueye on December 2009
compared to those reported by Jodrell Bank radio ephemerides (see Table 5.1 for a log of
the observations).

MJDa Period (NTT) Period (JB)
(s) (s)

1 55178.16707177530092 0.0336371877769 0.0336371877689
2 55179.11539707857639 0.0336372222108 0.0336372222034
3 55179.20109179855324 0.0336372253224 0.0336372253150
4 55180.14556120746528 0.0336372596163 0.0336372596096
5 55181.10249429464120 0.0336372943628 0.0336372943567
6 55181.14453133057870 0.0336372958892 0.0336372958831

a Corrected MJD at the solar system barycenter (Tempo1 mode).

Fig 5.3 shows the parabolic fit to the phase-drift (with respect to the
epoch MJD=55178 and to the folding period P=0.0336372543529), a zoom-
in to show the offset between the radio and the optical phase (Shearer et al.
2003; Oosterbroek et al. 2008) and the residuals left out after subtracting
the best-fitted parabola. Equation (5.2) gives the best-fitted parabola to the
phases from Iqueye

ψ(t) = 0.85062 +
0.0000642058

s
t− 1.85715 × 10−10

s2
t2 (5.2)

The assumed error on each measured phase is the spread of the residuals
shown in Fig 5.3 (bottom). Following the same calculations in Section 4.5 the
statistical error on the rotational periods determination is δP ∼ 2.5 × 10−13

s. That reported by Jodrell Bank is ∼ 10−13 s. Although the statistical
error is a bit lower than that obtained by Aqueye, the rotational periods are
∼ 3 − 6 ps systematically longer than the radio ones, a discrepancy similar
to the that noticed in Asiago (∼ 3 ps) and in the January NTT run, altough
the count rate between Asiago and NTT is different.
The spin down rate of the neutron star is ν̇ ∼ −3.71564 × 10−10 ± 1 ×
10−15 and that reported in the Jodrell Bank ephemerides is ν̇ ∼ −3.71436 ×
10−10. As we already mentioned in Section 4.5 these differences might be
caused by oscillations of the dispersion measure and the radio phase leading
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to radio ephemerides slighly different than those reported in the JB archive.
These discrepancies may also be due to an extra compononent of noise, but
further investigations are needed to confirm it. A further discussion on these
discrepancies is reported in Section 5.6.
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Figure 5.3: Top: Behaviour of the phase-drift of the main peak of the Crab over the
obsevation run in La Silla on December 2009 (blue points). The blue curve is the best-fitted
parabola (eq[5.2]). The red curve is the parabola from the Jodrell Bank radio ephemerides
(Section4.3). Middle: A zoom-in of the plot on the top, showing the difference in phase
between optical and radio (Shearer et al. 2003; Oosterbroek et al. 2008, see sectionv5.5.2
)). Bottom: phase-residuals after subtracting to the blue points on the top the best-fitted
parabola (eq[5.2]; blue curve).
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Figure 5.4: Phase-connection of the January-Decmber 2009 run. The symmetric distri-
bution of the residuals shows the Iqueye capability in measuring with high accuracy the
phase of the pulsar.

5.5 Phase-residuals analysis: La Silla runs

The analysis of the phase-residuals left out after subtracting the standard
pulsar timing model (3.10) may reveal interesting features of the pulsar and
its surroundings. As we already have seen in Section 4.4.1, by studying the
residuals one can also check for possible discrepancies on the modelling. If
some systematic residuals show up, then it is interesting to investigate on
the physical origin. A very nice result obtained from the analysis of the
phase-residuals was the discovery of the first extrasolar planetary system
around the pulsar PSR B1257+12 (Wolszczan & Frail 1992; Wolszczan 1994;
Konacki & Wolszczan 2003). Other foundamental results deal with tests of
General Relativity theory in the strong field regime (Kramer et al. 2006).
Moreover, pulsar timing is now being planned as tool to reveal gravitational
wave emission (Stappers et al. 2006).

Fig. 5.4 shows the connection of the phase of the Crab for the two observ-
ing runs performed at NTT 11 months apart . The symmetric distribution
of the residuals left out after subtracting the best-fitting parabola (Fig. 5.4
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Figure 5.5: Bottom: Residual of the time of arrivals of the optical peak, measured by
Iqueye, after subtracting the JB radio ones (see Fig. 5.3). The optical peak leads the radio
one by ∼ 170µs (at t0 = 0 see text). The blue line is a linear fit to the residuals giving a
drift of the optical peak with respect to the radio one of ∼ 5µs/day. The time t=0 is at
MJD=54847 (see Table 5.1 for a log of the observations).

.

bottom) shows that the two data sets can be phase connected. Phases are
calculated taking as reference the period at MJD=54749. The sampling in-
terval for the phase is 10 s. The spread of the phases increases with time as
the localization of the peak in the folded light curve becomes less accurate.
This is caused by the fast motion of the peak at late times. Here a further
uncertainty is caused also by the procedure for the localization of the peak
itself that is performed by means of a polynomial interpolation.

5.5.1 The January 2009 run

For a log of the observations taken during the January 2009 run at NTT see
Table 5.1. Fig. 5.5.1 shows the residual left out after subtracting the Jodrell
Bank radio time of arrivals to those measured by Iqueye.

The quoted error on the radio time of arrival at these observation epochs
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Figure 5.6: Residual of the time of arrivals of the optical peak, measured by Iqueye,
after subtracting the JB radio ones (see Fig. 5.3). The negative values means that the
optical peak leads the radio one by ∼ 114µs (at t0 = 0), consistent with the measurements
by other observers (Shearer et al. 2003; Oosterbroek et al. 2008). The blue line is a linear
fit to the residuals giving a drift of the optical peak with respect to the radio one of
∼ 18µs/day. The time t = 0 at MJD=557178 (see Table 5.1 for a log of the observations).

.

(MJD=54846)1 is ±90µs. As error on each optical time of arrival we assume
the spreading of the phase-residuals after subtracting the best-fitted parabola
(see Fig. 5.2 bottom), i.e. ∼ ±40µs. Assuming a Poissonian statistics, the
expected value of the opical time of arrival is uncertain by 40µ/

√
1730 ∼ 1µs

(N ∼ 1730 is the number of optical time of arrivals measured in each night).

Therefore each residuals is uncertain by
√

(12 + 902)µs2 ∼ 90µs. Fig. 5.5.1

shows an optical peak leading the radio one by ∼ (170±90)µs (Shearer et al.
2003; Oosterbroek et al. 2008). The slope gives ∼ (5 ± 35)µs.

5.5.2 The December 2009 run

Fig. 5.6 shows the residual of the time of arrivals of the optical peak after
subtracting the Jodrell Bank radio ephemerides (see Fig. 5.3 top), for the

1http://www.jb.man.ac.uk/ pulsar/crab/crab2.txt
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data taken in La Silla with Iqueye on December 2009 (see Table 5.1 for a
log of the observations). Each points was calculated over intervals 2 s long.
From Fig. 5.6 it can be seen that the optical peak leads the radio one by
∼ 100µs, in agreement with other works (Shearer et al. 2003; Oosterbroek
et al. 2008).

The quoted error in the Jodrell Bank radio ephemerides2 on the radio
peak is 200µs. Following the estimate in Section 4.5 (now N ∼ 1000 for each
observation night) the error on the expected time of arrival of the optical

peak is ∼ 1.3µs. Therefore each residual is uncertain by
√

(1.32 + 2002)µs2 ∼
200µs. Thus the radio error dominates and our measurements are well within
the radio error bar.
The blue line is a linear fit to the residuals and gives a drift of the optical
peak with respect the radio one of ∼ (18 ± 96)µs/day

5.6 Radio-optical phase drifts caused by an

extra-noise component?

Let us go back to the measured rotational periods by Aqueye showed in Ta-
ble 4.3. As a preliminary estimation of the statistical error, we assumed a
Poissonian noise (e.g. see Boynton et al. 1972). In Asiago the statistical er-
ror is ∼ 1 × 10−12 s and the rotational periods are slighlty off the radio ones
by ∼ 3 × 10−12 s. However the discrepancy is almost within the statistical
error, therefore we might not endors firmily conclusions. For the NTT runs
disagreemnets larger than the error are more evident than that in Asiago.
Over the temporal baseline of the simultaneous Lj-As run (obs 2, 3, 4 and half
of obs 7 in Table 4.1), the statistical error on the rotational periods measured
in Asiago is ∼ 1 × 10−12 s. If we calculated the rotational periods in Asiago
from the best-fitted parabola over the Lj-As run (1 day baseline), they are
off with the corresponding in Table 4.3 (entire Asiago run) by ∼ 5× 10−12 s,
larger than the statistical errors. Therefore the rotational periods measured
by Aqueye (and possible those by Iqueye as well), after barycentering TOAs
with Tempo1, are not selfconsistent within the errors. As already pointed
out in Section 4.5 it might be an indication of either some uncorrected phys-
ical effect in Tempo1 or noise in our data different than the Poissonian one
(see also Fig. 4.13). If the measure of a quantity gives values depending on
the data used, values differing more than the statistical error, it might mean
that the sampling used is affected by some systematic effect, in such a way
that each observation contributes with a different weight in the statistical

2http://www.jb.man.ac.uk/ pulsar/crab/crab2.txt
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analysis.
The difference between radio and optical rotational periods seems to be re-
lated to the radio-optical phase drifts shown in Fig. 5.5.1, 5.6, 4.9. Drifts
of this type were also noticed in works by J. W. Percival performed with
HST (High Speed Photometer Pulsar Timing and Light Curve Reduction3).
For the Asiago run the slope of the blue line in Fig. 4.9 is ∼ −7µs/day =
−7.7 × 10−11s/s, which over the Crab rotational period (∼ 0.033 s) gives
rotational periods ∼ 3 ps shorter than the radio one, as we already summa-
rized in Table 4.3. Similarly for the December 2009 run: The radio-optical
phase drifts is ∼ 18µs/day = 2 × 10−10s/s which, over the Crab rotational
period, gives rotational periods ∼ 7 ps longer than the radio ones. At the
end of Section 4.5 we also mentioned that one more possible source of these
radio-optical phase discrepancies, thus rotational periods, might be the vary-
ing dispersion measure, in such a way that the radio phase reported in the
JB archive is slightly different than the actual. However, we above have seen
that our optical rotational periods (thus the phase) are not selfconsistent
after barycentering TOAs with Tempo1, therefore possible inaccuracies in
the radio ephemerides might not be the only cause of these dicrepancies. To
check further out whether the problem hides in the Tempo1 emulation mode
we barycentered TOAs in Tempo2. We fitted the best-parabola over the As-
Lj run and calculated the rotational periods. As in the Tempo1 case, we then
compared these periods with those obtained from the best-solution over the
entire Asiago run and listed in Table 4.4. As in the Tempo1 case, they differ
by ∼ 5× 10−12 s while the statistical error over the As-Lj run is ∼ 1× 10−12

s: They are not selfconsistent within the error. It might mean that the signal
from the Crab pulsar is affected by some noise which may not be suitably
described by the Poisson statistics. We would stress that we assume a priori
a Poisson statistics to estimate the error due to the noise, statistics expected
for the noise from conuting measurements. We would point out that the
statistical error to assign to the measurements needs further investigations.
Having in mind these considerations we might not endorse definitive coclu-
sions, but may suspect that the radio-optical phase drifts (we showed in this
Chapter and in Section 4.6 for the Asiago run), leading to rotational periods
a few ps shorter/longer (see Section 4.5, 5.3, 5.4), might be caused by an
extra-noise component (e.g. Lyne et al. 1993; Čadež & Galičič 1996; Čadež
et al. 1997, 2001; Scott et al. 2003; Patruno et al. 2009).
Fig. 5.7 is a collage of plots each showing the difference between the best-
parabola obtained over the entire run and that obtained with a few obser-
vations, for the Asiago, NTT December 2009 and January 2009 run. For

3http://www.stsci.edu/hst/hsp/documents/hspisrs.html
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the Asiago “reduced” run, obs 2, 3, 4 and half of obs 7 were used (see Ta-
ble 4.1, 4.3). For the NTT December 2009 run obs 1, 4 and 5 were used to
obtained the best-fitted “short” parabola. The other parabola was obtained
all over the entire run (Table 5.1, 5.3). Similarly for the NTT January 2009
run one parabola is from the best-fit all over the run, the other using only
obs 1, 3 and 5 (Table 5.1, 5.2). From Fig. 5.7 the drifit between the two
parabolas (blue parabola) is off the Poissonian error bars (∼ 5µs for Asiago,
∼ 1.3µs for the NTT Dec 2009 run and ∼ 1µs for the NTT Jan 2009 run).
Differences larger than the statistical error may indicate that the signal from
the Crab pulsar might be characterized by an extra-noise component not
suitable described by the Poissonian statistics (e.g. Patruno et al. 2009). A
not yet clear component of noise in pulsars (timing noise) has been observed
by other authors, however over much longer integration time than those re-
ported here (Lyne et al. 1993; Scott et al. 2003). With the word “timing
noise” one usually refers to what may be left out by the modelling because
of its yet unknown nature. Further data analysis is required to have robust
conclusions.
Fig. 5.8 shows how much the two parabolas for the Asiago case look like.
That is, it descirbes that component making the two parabolas (obtained
with different subsets of data) differing each other. We see that the ratio,
minus 1, is up to 8µs at the epoch of some observation (red points). This
discrepancy leads to a phase as measured by Aqueye, thus rotational periods,
depending on the data set one uses, which is not selfconsistent. In the figure,
throught the observation epochs (red points), we interpolated a 15th order
polynomial (blue curve). The shape of the blue curve is much alike to that
in Lyne et al. (1993) (Fig. 5.8 middle), describing the shape of the timing
noise component in the Crab pulsar over many years, with an amplitude
of ms. Here we have a curve over days with an amplitude of µs. Boynton
et al. (1972) (Fig. 5.8 bottom) report as well sinusoid-like shape curves with
different periods and amplitudes, depending on the observation run lenght.
Over years with an amplitude of ms, over months hundrends of µs. They
also mention that the oscillation seems to have a period which is either 2/3
or 1/3 the lenght of the run.
To conclude, the signal from the Crab pulsar as collected by Aqueye/Iqueye
leads us to suspect the existence of some unknown noise component. Future
observations and a more extensive data analysis are needed to draw more
solid conclusions.
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Figure 5.7: Difference of the drift between the best-fitted parabolas over two different
set of observations. Red points indicate the epoch of the observations. Top: The Asiago
parabolas-drift; the statistical Poissonian error bar is ∼ ±5µs. One parabola is from the
best-fit over the entire obserbvation run, the other is from the best-fit using obs 2, 3, 4
and half of obs 7 (see Table 4.1, 4.4). The drift is huge at the last obs (obs 8): The
extrapolated model from the short parabola does not exactly predict where obs 8 shoud
fall in the plot (see text). Middle: Same as above for the NTT December 2009 run. The
statistical Poissonian error bar is ∼ ±1.3µs. The difference between the two parabolas is
larger than the Poissonian error bar, suggesting an extra-noise component in the signal
from the Carb pulsar. Bottom: The parabolas-drift for the NTT January 2009 run. The
statistical Poissonian error bar is ∼ ±1µs.
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Figure 5.8: Parabolas ratio describing the shape of the component wich makes the two
parabolas differing each other (Asiago observation run) (top). One parabola is from the
best-fit over the entire observation run, the other is from the best-fit using obs 2, 3, 4
and half of obs 7 (see Table 4.1, 4.4). Sinusoid-like shape curves desribing an extra-noise
component in the Crab pulsar are also reported by Lyne et al. (1993) (middle) and Boynton
et al. (1972) (bottom).



Chapter 6

Low Mass X-ray Binaries and
QPOs

As mentioned in Chapter 1 the Rossi X-ray Timing Explorer satellite (RXTE)
discovered millisecond time-scale modulations in the hard X-ray flux from
LMXBs. These time-scales are of the order of the Keplerian motion for
test-particles orbiting close to the compact object. Therefore, if these quasi-
periodic oscillations (QPOs) are produced by modulations at these charac-
teristic frequencies then, in principle, we could use them to give constrains
on the mass m and specific angular momentum j of the compact object.
Indeed, as shown below, these frequencies depend on these two parameters.
This would imply the possibility to constrain the internal structure of a neu-
tron star, that is, the equation of state of matter at nuclear density. Also, one
could use QPOs to study the motion of matter in a strongly curved space-
time and check predictions of the General Relativity, such as the existence
of an innermost circular orbit (ISCO). Although all these prospects are very
exiting, one shuold extremely be careful in the interpretation of the complex
phenomenology observed in LMXBs.

This exciting possibility has motivated a number of theoretical investiga-
tions (for a general review see van der Klis 2004). Although most of them
deal with the motion of matter around the compact object, they differ in the
details of the mechanism producing the QPOs (Miller et al. 1998; Morsink &
Stella 1999; Abramowicz & Kluźniak 2001; Osherovich & Titarchuk 1999).
In this Chapter we will follow the basic idea suggested in this models. We will
start describing the motion of test-particles in the Kerr metric. We will then
give analytical expressions of the oscillation modes for the motion of a test-
particle moving in a quasi-circular orbits. We use these expressions to fit the
observed central frequencies of the high frequency QPOs and discuss both
implications and limits of this approach. Finally we briefly describe some

97
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recent works accounting for the tidal interaction of matter with the strong
gravitational field of a black hole, that maybe related to the underlying twin
high frequency QPOs mechanism.

6.1 Motion in a curved space-time

The gravitational field around a rotating black hole is described by the Kerr
metric (Kerr 1963). The 4-dimension interval ds2 in Boyer & Lindquist (1967)
coordinates has the following expression

ds2 =
(

−∆A

B
+
B

A
ω2 sin2 θ

)

dt2+
B

A
sin2 θdϕ2+

A

∆
dr2+Adθ2−2

A

B
ω sin2 θdϕdt

(6.1)
where

A = r2 + a2 cos2 θ (6.2)

B =
(

r2 + a2
)2 − ∆a sin2 θ (6.3)

∆ = r2 − 2mr + a2 (6.4)

ω =
2amr

B
. (6.5)

The previous equations are expressed in geometric units (G = c = 1). m =
M/M⊙ where M is the mass of the black hole. The parameter a (the angular
momentum in geometric units) is related to the the Kerr parameter j = a/M ,
where j is the specific angular momentum of the rotating hole. We can write
(6.1) in the compact form

ds2 = gαβdx
αdxβ (6.6)

where gαβ is the metric tensor

gKerr
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(6.7)

The indices α and β run from 0 to 3 and describe the time (t=0) and spatial
(r=1,θ=2,ϕ=3) coordinates. In (6.7) we see that the metric coefficients do
not depend on φ and t. Therefore the t and φ components of the 4-momentum
(pt and pφ) are constant of motion. A test particle of mass µ moving in the
Kerr metric has:

{

pt = −E = const
pϕ = Φ = const

(6.8)
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i.e. its energy E and angular momentum Φ are conserved. Their expressions
in terms of r, m and a are (Bardeen 1972)

Ẽ =
r3/2 − 2mr1/2 ± am1/2

r3/4 (r3/2 − 3mr1/2 ± 2am1/2)
1/2

(6.9)

Φ̃ = ±
m1/2

(

r2 ∓ 2am1/2r1/2 + a2
)

r3/4 (r3/2 − 3mr1/2 ± 2am1/2)
1/2

(6.10)

where Ẽ and Φ̃ are in energy and angular momentum divided by the mass µ
of the test-particle. The contravariant components of pt and pϕ are

pt = µ
dt

dτ
, pϕ = µ

dϕ

dτ
(6.11)

The variation of ϕ along the trajectory is

dϕ

dt
=
pϕ

pt
. (6.12)

Using these expressions, after some math, we can calculate the analytic ex-
pression of the Keplerian frequency for the motion of a test-particle in the
Kerr metric

νK =
dϕ

dt
=

1

2π

{

r2 (r2 − 2mr + a2)

[r (r2 + a2) + 2ma2]

(

Ẽ − ωΦ̃
)

+

+
2mra

r [r (r2 + a2) + 2ma2]

}

. (6.13)

For the sake of exactness, (6.13) can not be named “keplerian frequency”,
since in the Kerr metric one also has to account for the dragging of the inertial
frames due to the spinning hole, such that the motion is not keplerian like
in the Schwarschild or Minkowski metric. Therefore in the Kerr metric one
usually referes to (6.13) as “azimuthal frequency”. In the following we will
continue to name it “keplerian frequency”.

Close to a compact object the orbits should circularize on very short
time-scales (Markovic 2000). However in order to study effects due to small
deviations from circularity we can calculate the frequency at which a test-
particle makes oscillations from the periastron to the apoastron and back,
i.e the radial oscillation frequency νr. For infinitesimally eccentric orbits, we
can write the equation of radial motion dr/dτ as a Taylor series in r− r0 (r0
radius of a circular orbit) up to the second order. Since we want to study
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very small perturbations in the radial coordinate r, we assume that first order
perturbations are negligible and focus on second-order ones. The analytical
expression of the radial frequency for orbits with small eccentricity e ∼ 0,
lying in the equatorial plane, is

νr =
νK

r
7/2
0

(

B1 −
mra

πνK

)

Φ̃−1 ×

×
{

−3a2

r0

[
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]
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24am

r2
0

ẼΦ̃ +
3

r0
Φ̃2 +

− 2m

[

1 +
6

r2
0

Φ̃2

]

+
3a2

r0

}1/2

(6.14)

where r0 is the radial coordinate the infinitesimal oscillation takes place
about.

One more oscillation mode to be taken into account is due to orbits
slightly off the equatorial plane. These orbits oscillate in the vertical di-
rection θ about the line of nodes. As before we procede with a Taylor expan-
sion, around θ = π

2
, of the equation of motion dθ/dτ and study second-order

perturbations. The vertical frequency for a circular orbit of radius r is

νθ =
νK
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(6.15)

where the subscript (1) means that quantities are calculated at θ = π/2.

Following the work by Kennefick & Poisson (1994) we developed a code
to calculate these expressions in the more general case of bounded orbits of
eccentricity e. The energy E and the angular momentum Φ are expressed
as a function of the eccentricity e and the semi-latus rectum p of the orbit,
defined such that the periastron of the orbit is rp = pM/(1 + e), with M
mass of the black hole and e eccentricity of the orbit. Given the complexity
this was done only in the Schwarschild metric, i.e. when the Kerr parameter
j = 0. More details on calculations in this section are reported in Germanà
(2007).
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6.1.1 Relativistic frequencis and QPOs

From (6.13) the Keplerian frequency in the Schwarschild metric (j = 0) can
be written as

νK =

√
GM

2πr
3/2
K

∼ 1200 Hz
(

rK

15 km

)−3/2
(

M

1.4 M⊙

)1/2

. (6.16)

For a test particle grazing the surface of a neutron star (M ∼ 1.4M⊙, r ∼
15km) the Keplerian frequency is ∼ 1200 Hz. This frequency is typical of
the twin peaks high frequency (HF) QPOs observed in the X-ray flux from
LMXBs with a neutron star (NS). For systems with a black hole (BH) the
typical frequency of the twin peaks raises ∼ 100 − 400 Hz. From (6.16)
we obtained these values if we rescale for the mass of the compact object,
since the innermost keplerian radius rk scales as M . Therefore HF QPOs
in both NS and BH systems may be produced by modulations due to the
keplerian motion of matter orbiting the compact object. Blobs of matter
may orbit on non-perfect circular orbits and hence they may oscillate at the
radial and vertical frequency. Thus, in principle, besides the imprint of the
keplerian modulation, also radial and vertical oscillations may be seen in the
X-ray power spectra of accreting sources with compact objects, as already
suggested by Stella et al. (1999).

The motion of a test particle in a quasi-circular orbit slightly off the equa-
torial plane is the superposition of the three mentioned modes: azimuthal,
radial and vertical. From Fig. 6.1 we see that the radial frequency is smaller
than the keplerian one close to the compact object. This peculiar behaviour
causes the precession of the orbits. As νr < νk, after one complete revolution
the particle is not yet at the initial radial position. When it reaches the
initial radius, the azimuthal angle is:

∆ϕ = 2π

[

1 − 6
rg

r
+ 8a

(

rg

r

)3/2

− 3a2
(

rg

r

)2
]−1

. (6.17)

In a flat space-time (r/rg → ∞)this quantity is 2π as expected. In a curved
space-time ∆φ is bigger than 2π and depends on the distance r from the
compact object, on its mass m and specific angular momentum j. We refer
to this phenomenon as the periastron precession of the orbits. It shows that
in a curved space-time eccentric orbits are not closed.
The motion of the periastron occurs at a frequency equal to that of the
periastron passage νp = νk − νr. From Fig. 6.1 we see that νp → 0 for
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Figure 6.1: Relativistic frequencies for prograde orbits in the Kerr metric for a neutron
star with j = 0.25 and m = 1.95M⊙. The distance r from the NS is in gravitational radii.
The innermost circular orbit (ISCO) is at ∼ 5rg. Red curve: Keplerian frequency (eq.
[6.13]); Blue curve: Vertical frequency (eq. [6.15]); Green curve: Radial frequency (eq.
[6.14]). Because of the curvature of space-time νr reaches a maximum and then drops to
zero at the ISCO.

r → ∞, i.e. in a flat space-time. Also the vertical oscillation frequency νθ is
different with respect to the keplerian one and this phenomenon induces the
precession of the line of nodes of the orbit at a frequency νnod = νk−νθ. This
phenomenon is known as the Lense-Thirring effect (Lense & Thirring 1918),
caused by the dragging of the inertial frames close to a massive spinning
body. The effect is a relativistic correction one should account for in order
to estimate the correct precession of a gyroscope in the gravitational filed of
a spinning body.
All the frequencies we have seen up to here have been invoked to explain
both low and high frequency QPOs in accreting X-ray binaries (for a general
review, see van der Klis 2004).

6.1.2 The Relativistic Precession Model

In Section 1.5.3 we have seen that a model based on the motion of matter
in a strongly curved space-time is the Relativistic Precession Model (RPM;
Stella et al. 1999). Fig. 6.2 shows a comparison with the data. The model
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Figure 6.2: Relativistic Precession Model vs observations. Periastron precession fre-
quency νp = νk − νr (blue curve) and first overtone of the nodal precession frequency
2νnod = 2(νk − νθ) (red curve) as a function of the keplerian frequency νK . Multiple
curves correspond to several values of j for a neutron star with a mass m = 1.95M⊙.
Green points are both HF and LF QPOs observed in the source Scorpius X-1. Orange
points are from other sources. We see a remarkble qualitative agreement between the
model and the observations for j ∼ 0.1 − 0.2. HBO on the y axes stands for Horizzontal
Branch Oscillation, a class of LF QPOs (Stella et al. 1999).

links the upper peak of twin peaks to the keplerian frequency νk, whereas
the lower one to the periastron precession frequency νp. Low frequency (LF)
QPOs (e.g. horizzontal branch oscillations) are linked to twice the nodal
precession frequency 2νnod. It is worth noting that the RPM is able to match
qualitatively a very complex phenomenon just giving two parameters, i.e. m
and j. Subsequent studies have put forward some drawbacks of this model
both on the theoretical side and in matching quantitatively the data (e.g
Markovic & Lamb 2000).

6.1.3 An alternative interpretation of twin HF QPOs

If QPOs observed in the power spectra of LMXBs are produced by modula-
tions at these characteristic frequencies then, in principle, we could use them
to give constrains on m and j. Indeed, as shown above, these frequencies
depend on these two parameters. This would imply the possibility to con-
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strain the internal structure of a neutron star, that is, the equation of state of
matter at nuclear density. Also, one could use QPOs to study the motion of
matter in a strongly curved space-time and check predictions of the General
Relativity, such as the existence of an innermost circular orbit (ISCO). Al-
though all these prospects are very exiting, one should extremely be careful
in the interpretation of the complex phenomenology observed in LMXBs. It
is important to stress that, to date, no universally accepted model of the
QPO phenomenon exists.

In the following we will describe some ideas on fitting relativistic frequen-
cies to observed twin kHz QPOs in NS LMXBs. We are still basing the
mechanism on the relativistic motion as the RPM does, but with a slighlty
different interpretation.

We fit the data from systems with a neutron star because in BH LMXBs
twin peaks are always detected at a given frequency, i.e. they do not drift
up and down as in NS systems they do (van der Klis 2004). Therefore, in
BH LMXBs we can not fit any analytical relation showing a dependence on
some parameters, since we do not have a range of frequency to fit to.
We use analytical expressions of relativistic frequencies in the Kerr metric to
describe geodesics motion around a neutron star. Works by Markovic (2000),
and more recently by Török et al. (2010), asses that relativistic frequencies
calculated with specific neutron star metrics slightly drift from those obtained
in the Kerr metric. Specific neutron star metrics need to be taken into
account for describing effects sensytive to the oblatness of the star, i.e. the
Lense-Thirring effect, hence the precession frequency of the nodes of the
orbits. In the following we will focus our attention only on twin kHz QPOs
and link them to the keplerian and apsidal motion νr.

We begin considering data from the NS LMXBs Scorpious X-1 (van der
Klis et al. 1996). Following the RPM interpretation of twin peaks the upper
one is the keplerian frequency νk (6.13) whereas the lower peak is the pe-
riastron precession frequency of the orbit the blob of matter moves on, i.e.
νp = νk − νr. We fit the separation of twin peaks, i.e. νr (6.14), as function
of the keplerian frequency νk.

Before doing any numerical fit we should make some assumptions. Fol-
lowing the work by Lattimer & Prakash (2007) on neutron star-structure
models we restrict our analysis to the range of reasonable masses and spe-
cific angular momentum to be fitted m = 1.4 − 2.4M⊙ and j = 0 − 0.5. The
need of putting restrictions on m and j is because of the equation we fit to
the data. Indeed we see that the separation of twin peaks νr (6.14) dependes
on two parameters, m and j. Therefore, once given νk in the fit, there are
several couples (m, j) giving a similar fit, such that the fit degenerates (see
also Török et al. 2010). Therefore we are not interested in determining pre-
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Figure 6.3: Relativistic frequencies vs twin kHz QPOs in the source ScoX-1. Relativistic
frequencies are computed from the best-fitting χ2/dof locus of (m, j) (see Fig. 6.5). Twin
peaks may be produced in a region of the space-time around which the radial frequency
νr (green curve) reaches a maximum.

cise estimates of both m and j. Rather we want to investigate whether we
can obtained reasonable numerical fits of relativistic frequencies to observed
twin peaks kHz QPOs.

To scan a wide range of mass m and specific angular momentum j we
constructed a grid (m, j). As above the mass ranges m = 1.4 − 2.4M⊙ with
a step of 0.1, the specific angular momentum j ranges j = 0 − 0.5 and we
scanned it with a 0.05 step. Following the RPM we fitted the separation of
twin peaks νr as function of νk, interpreted to be the upper peak of twin
peaks. Fig. 6.4 shows the results of the numerical fits. The figure on the top
show the χ2/dof surface (dof stands for degrees of freedom) for all possible
combinations of (m, j) in the range as above. The χ2/dof reaches a deep
minimum for m > 2 and 0 < j < 0.5. However when we zoom-in this region
(figure on the bottom) we see a minimum χ2/dof ∼ 40 yet big in order to
endorse a good numerical fit (in agreement with Markovic & Lamb 2000).

We can give a slightly different interpretation of the twin peaks and check-
ing whether numerical fits improve. From the literature, we know the lower
peak always be the more coherent one (see Fig. 1.3; Barret et al. 2005, 2006;
Boutelier et al. 2009). Moreover, when RXTE detected these features for
the first time, the upper peak was not observed in several sources. To iso-
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late it from the noise special improved data analysis techniques had to be
developed (Mendez et al. 1998). The keplerian motion is a foundamental
oscillation mode instead νp is not, thus it appers more suitable to link the
keplerian frequency to the more coherent peak, therefore to the lower peak of
the twin peaks. In order to understand what to link the upper peak to we can
look at the 3:2 ratio the frequencies of twin peaks cluster at (Abramowicz &
Kluźniak 2001; Török et al. 2008; Lamb 2003; Belloni et al. 2005; Boutelier
et al. 2010). From the proprierties of the space-time we know that the kep-
lerian frequency is twice the radial one where νr reaches its maximum (see
Fig. 6.1). Thus we link the upper peak to νk + νr.

Fig. 6.5 shows the corresponding result of Fig. 6.4 when we link the twin
peaks to νk and νk + νr. Now the χ2/dof is much smaller all over the grid of
(m, j). The minimum χ2/dof ∼ 3 is the azure region shown in the figure on
the bottom.

Although the numerical fit is encouring, many aspects of this puzzeling
phenomenology remain a matter of debate. If numerical fits with the combi-
nation νk, νk+νr might be the right way, then we wonder how the modulation
at νk + νr is produced. In the next section we show the signal as emitted by
a clump of matter tidally disrupted by a black hole. The power spectrum
actually shows the peak at νk+νr be the upper one. A model reproducing the
observed power spectra is of valuable help in order to understand the work-
ing principles of the phenomenon. Besides the relativistic frequencies twin
peaks are linked to, a self-consistent model should also describe the observed
systematic trends of both the coherence and rms of the peaks (Barret et al.
2006), explaning also why the peaks are produced in a given region of the
space-time (see Fig. 6.3), hence describing the energy emission mechanism
making QPOs detectable features in a very noisy enviroment.

In Fig. 6.6 and Fig. 6.7 we report the minimum of the χ2/dof surface for
four more sources: GX17+2, a Z-source like Sco X-1, 4U0614+09, 4U1728-34
and 4U1636-53 all atoll-sources. Z-sources are much more luminouses than
atoll-sources, accreting close to the Eddington limit (Sanna et al. 2010). We
note that the combination νk, νk + νr does not work for the peculiar source
Circinus X-1 (Boutloukos et al. 2006; Török et al. 2010).
All these plots show a very small χ2/dof for masses above 2M⊙. Such masses
are bigger than the canonical neutron star value 1.4M⊙. However, in accret-
ing bynary systems a mass of the neutron star larger than the canonical value
has been measured (Casares et al. 2006, 2010).

The spin frequency νs of some of these neutron stars has been measured
from type I X-ray bursts (Méndez & Belloni 2007). In the source in Fig. 6.7
4U1728-34 it was measured to be ∼ 360Hz (Méndez & van der Klis 1999).
We can roughly draw the locus of (m, j) giving a spin frequency 330Hz <
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νs < 390Hz. The spin frequency is given by

νs =
1

2π

G

c

M2

I
j (6.18)

where M is the mass of the neutron star in grams, I its momentum of inertia.
From the tables in Morsink & Stella (1999) masses above 2M⊙ are only
possible with the stiff equation of state (EOS) L. From those tables we read
the momentum of inertia I. Crossing the locus of (m, j) giving 330Hz < νs <
390Hz with that giving the minimum χ2/dof (Fig. 6.7), only the couple
(m, j ∼ 2.4, 0.2) satisfies both the minimum χ2/dof ∼ 2 and the value
νs ∼ 363Hz.

A recent work by Lin et al. (2011) quoted a worse χ2/dof for both the
sources Sco X-1 and 4U1636-53. They argue that the combination νk and
νk + νr describes well the lower part of the frequencies, the higher part of
the observed relation deviates from the theoretical value one expects. They
conclude that this may be due because getting closer to the neutron star the
phenomenon may be influenced by the dirty surrounding of the star.
Making a direct comparison between our numerical fits with those in Lin
et al. (2011) is not straightforward, since the authors do not mention which
metric they use to calculate the relativistic frequencies. Moreover, it is not
clear why they use only few points out of many to fit the frequencies in the
source Sco X-1 (van der Klis et al. 1997; Méndez & van der Klis 2000).
We would stress that the use of QPOs to give precise estimates of both
the mass and specific angular momentum may be misleading, because of
the many yet poorly understood proprierties of the phenomenon. Rather
it may be worth to investigate on the phenomenon by means of numerical
simulations able to reproduce what is observed (Čadež et al. 2008; Kostić
et al. 2009; Germanà et al. 2009).
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Figure 6.4: Fit of relativistic frequencies to observed kHz QPOs in Sco X-1. Top: The
χ2/dof (dof = 27) surface for all the possible combinations of (m, j) following the RPM
interpretation of twin kHz QPOs. The mass ranges m = 1.4−2.4M⊙, j = 0−0.5. There is a
deep minimum from masses above 2 and 0 < j < 0.3. Different colours indicate a different
χ2/dof value. Bottom: A zoom-in of the region around the minimum χ2/dof . Although
the figure on the top shows a deep minimum, we see that the lowest χ2/dof ∼ 40 is big
to endorse a good quantitative numerical fit. In the minimum green region, the χ2/dof
changes of some units.
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Figure 6.5: Fit of relativistic frequencies to observed kHz QPOs in Sco X-1. Top: The
χ2/dof surface for all the possible combinations of (m, j) after interpreting the lower peak
of twin peaks as the keplerian frequency νk, whereas the upper as νk + νr. The mass
ranges m = 1.4−2.4M⊙, j = 0−0.5. There is a deep minimum from masses around ∼ 2.4
and 0 < j < 0.3. Different colours indicate a different χ2/dof value. Bottom: A zoom-in
the region around the minimum χ2/dof above. We see that the lowest χ2/dof ∼ 3 gives
a reasonable quantitative numerical fit to the data. In the minimum azure region, the
χ2/dof changes of some units.
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Figure 6.6: Fit of relativistic frequencies to observed kHz QPOs. The upper peak is
linked to νk the lower one to νk + νr. Top: The minimum of the χ2/dof surface for
the Z-source GX17+2. The lowest χ2/dof is ∼ 1. The degrees of freedom (dof) are 6.
Bottom: The minimum of the χ2/dof surface for the atoll-source 4U0614+09. The lowest
χ2/dof is ∼ 6 with dof = 9.
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Figure 6.7: Fit of relativistic frequencies to observed kHz QPOs. The upper peak is
linked to νk the lower one to νk + νr. Top: The χ2/dof surface for the atoll-source
4U1636-53. The lowest χ2/dof is ∼ 2 with dof = 12. Bottom: The χ2/dof surface for
the atoll-source 4U1728-34. The lowest χ2/dof is ∼ 2 with dof = 13
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Figure 6.8: The evolution of tidal deformations of a low-mass satellite orbiting a
Schwarzschild black hole as seen by an observer 20◦ above the orbital plane. Due to strong
gravitational lensing, two images of the satellite can be seen. The colours correspond to
the redshift.

6.2 Tidal effects close to a black hole

In the previous section we have seen that numerical fits of relativistic fre-
quencies to observed QPOs may improve if we asssociate the lower peak to
the Keplerian frequency νk of a test-particle and the upper peak to νk + νr,
where νr is the radial (or apsidial) frequency.
If QPOs are produced by orbiting blobs of matter close to the compact object
then a full-consistent modelling should also account for the interaction of the
shape of the blob with the curved geometry of the space-time. Here we show
that a blob of matter tidally interacting with a black hole produces a power
spectrum that is much alike to those observed.

The tidal evolution of the orbits of low-mass satellites around a Schwarzschild
black hole has recently been investigated by Čadež et al. (2008). The nu-
merical code we use (Čadež & Kostić 2005; Kostić 2008; Kostić et al. 2009),
allows to study the effects of the strong gravitational field of a black hole on
small objects. The appearance of a spherical blob during its tidal evolution,
as calculated by numerical simulations, is shown in Figure 6.8. The blob is
squeezed and stretched by tidal forces into a bar and then into a ring-like
shape along the orbit.

A blob of matter orbiting the black hole on a quasi-circular orbit with a
Keplerian frequency νk moves from the periastron of the orbit to the apoas-
tron and back with a radial frequency νr 6= νk. During this motion the
blob undergoes oscillations due to the changing tidal field: At the perias-
tron the tidal force is stronger than at apoastron. Hence the tidal force does
work against internal pressure forces and this work is transformed in inter-
nal energy of the blob. Gomboc & Čadež (2005) estimated that the energy
release during resonant oscillations can be as high as ∼ 0.1 mc2. Therefore,
a ∼ 150 m blob of dense matter orbiting close to a 10 M⊙ black hole can
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Figure 6.9: Left : simulated light curve produced by a clump of matter orbiting a
Schwarzschild black hole. Right : Fit of the simulated power spectrum (thin line) and
the high frequency part of the observed one of the X-ray binary XTE J1550-564 (thick
line) (Remillard & McClintock 2006).

radiate energy of ∼ 1034 erg.
Figure 6.9 (left) shows the light curve produced by the blob in Figure 6.8.

In this region of space-time, the Keplerian frequency (νk) is almost three
times the radial one (νr). During tidal evolution, the light curve shows an
overall increase in luminosity which is a consequence of increasing emitting
area of the source. The luminosity is normalised to its initial value L0. The
time is expressed in rg/c units. For a 10 M⊙ black hole, the light curve lasts
for ∼ 1 s. The inset in the figure is an enlargement of a small part of the light
curve: each peak takes place on a time scale which is almost the expected
Keplerian period at this radius. The peaks are due to relativistic effects, such
as gravitational lensing, Doppler boosting and blue/redshift.

Figure 6.9 (right) shows the fit of the simulated power spectrum and
the high frequency part of the one observed in LMXB XTE J1550-564 that
contains a black hole (Germanà et al. 2009). The simulated power spectrum
describes the signal emitted by a blob 0.01 rg big (e.g. ∼ 150 m for a
10 M⊙ black hole) orbiting the black hole on an orbit with eccentricity of
e ∼ 0.05 and periastron of ∼ 6.1 rg, that is highly disrupted by the tidal
force (Fig 6.8). The simulated power spectrum shows the twin peaks and
the observed characteristic power law (Belloni & Hasinger 1990). The upper
peak corresopnds to νk + νr, the lower one to νk.

At present, we are working at the code in order to improve the accuracy
of the calculation of the power and coherence of the QPO peaks.





Summary

In light of the novel extremely fast optical photon-counters which have been
designed for the future E-ELT (Dravins et al. 2005), prototypes for the Coper-
nico telescope in Asiago (Aqueye, the Asiago Quantum Eye; Barbieri et al.
2008, 2009), for the NTT telescope in La Silla (Iqueye, the Italian Quan-
tum Eye; Naletto et al. 2009, 2010) and for the Vega telescope in Ljubljana
were constructed. This new generation of optical photon-counters will al-
low to study the statistics of the enormous stream of photons collected (e.g.
Dravins & Germanà 2008). High-accuracy statistical studies on the time of
arrivals of the photons collected requires extreme precise time-tagging. The
technology of these instruments is based on Silicon Photon Avalanche Diods
(SPADs) and on electronics capable of sustain arrival rates from 10 Hz to 1
GHz (E. Verroi 2011, PhD thesis).
In this PhD thesis we presented the scientific analysis of the data collected
from the optical counterpart of the Crab pulsar by means of the novel photon-
counters Aqueye and Iqueye. Synchronized observations between Asiago and
the other prototype at the Vega telescope in Ljubljana have been discussed
as well.

The photons from the pulsar are collected at the observatory, and we
refer to them as site arrival times (SATs). Before performing timing analysis
some corrections to the SATs need to be done, i.e. we have to reconstruct the
time of arrivals (TOAs) as detected by an observer in an inertial reference
frame. This is meant to clean TOAs by all the effects they carry imprints of,
undergone along the path from the source to the observatory. For instance,
for radio frequencies the dispersion measure due to the interstellar medium
is relavant. The proper motion of the pulsar also introduces effects affecting
TOAs and needs to be taken into account. Photons get through our solar
system and therefore their trajectories are distorted by the curvature of the
space-time due to the presence of massive bodies such as the Sun, Jupiter,
Saturn and the other smaller planets. Precise timing also requires the time
beaten by clocks being uniform. In a gravitational field clocks run slower
and this effect is also differential, depending on the gravitational potential
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the clock lies in. To correct for these effects TOAs are referred to the so-
lar system barycenter (SSB). We applied these corrections to the photons
collected by Aqueye/Iqueye by means of the software Tempo2 (Hobbs et al.
2006a; Edwards et al. 2006). Tempo2 is a software meant to model with
exterme precision (up to ∼1 ns) TOAs as collected by an inertial observer.

After barycentering TOAs we analyzed them by means of several tools.
Light curves and rotational periods of the Crab pulsar were calculated by
means of epoch folding techniques, implemented in the software Xronos1 v.
5.21, distributed by the NASA’s High Energy Astrophysics Science Archive
Research. By fitting the folded light curve profile to a Fourier series we
calculated the statistical error associated to epoch folding thechniques (Lars-
son 1996). We concluded that our measures are within the error bars (120
picoseconds).

In order to obtain higher-accuracy rotational periods phase-analysis tools
were developed by Andrej Čadež (2008, Harrison project report). These tech-
nique is widely used in pulsar astronomy. It consists in determining the phase
of a given point of the pulsar lght curve profile and follow its behaviour. The
phase at each n seconds long integration time interval is usually obtained by
cross-correlating the pulsar profile with a standard template. In our analysis
the template used is the first derivative of the analytical signal constructed
from the observed profile. Its specific implementation is in Čadež (2008, Har-
rison project report). Cross-correlating the first derivative of the profile to
the signal, instead of the profile itself, let us get a high accuracy in measuring
the phase of the main peak of the Crab.
With such a tool at hand, we investigated the phase evolution of the Crab
pulsar profile calculated every 2 seconds. We noticed inaccuracies in the mod-
elling of the Roemer delay due to wrong Tempo2 configuration files. These
problems were noticed on several installations of the software. After correct-
ing for them, from the phase behaviour we calculated the rotational periods
of the Crab and compared them to those reported in the Jodrell Bank Crab
radio ephemerides archive.
We conclude that the rotational periods measured by Aqueye in Asiago and
Iqueye in La Silla agree up to a few picoseconds with the radio ones. However,
assuming a Poissonian statistics on the TOAs, as expected for the noise from
photon-counting measurements (Boynton et al. 1972), the statistical error in
Asiago (∼ 1 × 10−12 s) is sligthly smaller than the radio-optical rotational
periods discrepancies (∼ 3× 10−12 s). For the NTT runs the statistical error
is smaller (∼ 10−13 s) because of the higher photon-count rate, but the dis-
crapancies with the radio archive on rotational periods are again like those

1http://xronos.gsfc.nasa.gov/
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in Asiago (∼ 3 × 10−12 s). We were able to measure the spin down of the
neutron star (∼ 4 × 10−13 s/s) already over a temporal baseline of 2 days.
Discrepancies with the radio measurements larger than the statistical error
were reported as well.
By comparing the time of arrival of the optical peak from the Crab at the
SSB to that reported in the Jodrell Bank radio ephemerides archive we found
that the optical peak leads the radio one by ∼ 120µs, as reported in previous
analyses (Shearer et al. 2003; Oosterbroek et al. 2008). Since the radio error
bar dominates and since in this PhD project we did not deal with optical-
radio simultaneous observations (for some observing run the radio delay is
well within the error bar) we might not endorse our results as firmly as other
authors did (Shearer et al. 2003; Oosterbroek et al. 2008).

We investigated further out on the optical-radio rotational periods dis-
crepancies mentioned above. They maybe related to radio-optical phase
drifts we noticed, although statistically meaningless, and observed by J. W.
Percival (High Speed Photometer Pulsar Timing and Light Curve Reduction2)
as well. Then, in more detail, we cross-checked the optical phase measured
by Aqueye/Iqueye and we may conclude that the signal collected seems to
display an extra-noise component, that is, it seems not to be suitably de-
scribed by the Poisson statistics. Non-Poissonian noise (timing noise) in the
Crab pulsar, and more in general in pulsars, has been noticed and stud-
ied by several authors, however over much longer temporal baselines than
those reported here (a few days) (e.g. Groth 1975; Helfand et al. 1980; Lyne
et al. 1993; Čadež & Galičič 1996; Čadež et al. 1997, 2001; Scott et al. 2003;
Patruno et al. 2009). To conclude, the signal from the Crab pulsar as col-
lected by Aqueye/Iqueye leads us to suspect the existence of some unknown
noise component. Future observations and a more extensive data analysis
are needed to draw more solid conclusions.

An indipendent prototype of very fast photometer with a similar tech-
nology was built at the University of Ljubljana by the research group led by
prof. Andrej Čadež. Synchronized observations of the Crab pulsar between
Asiago (As) and the observatory of Ljubljana (Lj) were pursued. The goal
of these joint observations was to show how smooth we can synchronize the
phase of the Crab as seen by two of such prototypes at different locations.
The photon statistics in Lj is lower than that in As. We showed a stringent
phasing of the Crab pulsar over the entire 16 days Lj run. However, as in
the Asiago case, the Crab pulsar rotational periods measured in Lj are off
the Jodrell Bank ones by more than the statistical error. They agree within
a time window in the run.

2http://www.stsci.edu/hst/hsp/documents/hspisrs.html
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Regarding the joint As-Lj observations, we have shown that the rotational
periods measured from the As-Lj joint observations do not agree within the
Poisson error (∼ 10−11 s). The difference between the best-fitted solution to
the As phases with that fitted to the Lj ones shows, in more detail, that the
phase as seen by the two instruments differ more than Poisson error (∼ 30µs)
at some observation epochs. This might be an indication of extra-noise in
the source. This issue remains to be investigated with further simulataneous
runs.

In this PhD project we also investigated some ideas on modelling the
millisecond timing X-ray varaiblity detected in the power spectra of Low
Mass X-ray Binaries (LMXBs), with either a netron star or a black hole.
These sources mainly emit in the X-ray band and millisecond variability, up
to date, has been detected in the X-ray band. Millisecond time-scales are
typical for matter orbiting close to the compact object, therefore studying
these features might provide a way to investigate the motion of matter close
to a compact object, thus probing General Relativity in its strong field limit.
Moreover, if such High Frequency Quasi-periodic Oscillations (HF QPOs)
are actually produced by energetic X-ray emission from satellites orbiting
the compact object, one, in principle, could constrain both the mass and the
angular momentum of a neutron star, therefore constraining the equation of
state of the matter at nuclear density. Indeed, as we have shown for the
Kerr metric case, orbital (νk) and apsidial (νr) frequencies depend on both
the mass (m) and the specific angular momentum (j) of the compact object.
This exciting possibility has motivated a number of theoretical investigations
(for a general review see van der Klis 2004). Although all these prospects
are very exiting, one shuold be extremely careful in the interpretation of the
complex phenomenology observed in LMXBs.

HF QPOs often show up as a couple and are named twin peak HF QPOs
(e.g. van der Klis et al. 1996). The Relativistic Precession Model (RPM) by
Stella et al. (1999) links the upper peak in frequency of twin peaks to the
keplerian frequency νk of a test-particle orbiting the central object, whereas
the lower one to the periastron precession frequency νp = νk − νr of the
orbit the test-particle moves on (νr is the apsidial oscillation frequency, i.e.
from the periastron to the apoastron and back). The RPM is able to match
qualitatively a very complex phenomenon just giving two parameters, i.e. m
and j. Subsequent studies have put forward some drawbacks of this model
both on the theoretical side and in matching quantitatively the data (e.g
Markovic & Lamb 2000). We would remark that obtaining precise estimate
of both m and j by means of QPOs may be misleading because of the yet
poorly understood proprerties of the phenomenology. Therefore in this PhD
project we were not interested in determining precise estimates of both m
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and j. Rather we wanted to investigate whether we could obtain reasonable
numerical fits of relativistic frequencies to observed twin peaks HF QPOs.

We have performed some numerical fits of relativistic frequencies in the
Kerr metric to observed HF QPOs in systems with a neutron star (NS
LMXBs). We have shown that numerical fits can improve if we give a slightly
different interpretation of twin HF QPOS in NS LMXBs (in these systems
they are called twin kiloHertz (kHz) QPOs). We have seen that if we link
the lower peak of twin peaks to νk and the upper one to νk +νr the minimum
of the χ2/dof fit of the relativistic frequencies with respect to the data as
a function of m and j reaches a deep minimum for masses of the neutron
star above 2M⊙. Such masses are bigger than the canonical neutron star
value 1.4M⊙ infered from binary radio pulsars. However, in accreting bynary
systems a mass of the neutron star larger than the canonical value has been
measured (Casares et al. 2006, 2010). We note that precise measurements of
neutron star masses by means of millisecond QPOs are uncertain because of
the yet poorly understood phenomenology.

With this interpretation in mind, in collaboration with Prof. A. Čadež
and Dr. U. Kostić from the University of Ljubljana, some simulations were
run with a code computing how a distant observer would see the signal
emitted by a small satellite orbiting a Schwarschild balck hole and tidally
interacting with it. The code was developed by Čadež et al. (2008) and
Kostić et al. (2009). The numerical simulations show that a small satellite
150 m large orbiting a hole of 10M⊙, on an orbit with eccentricity of ∼ 0.05
and periastron rp at about the innermost circular orbit (rp ∼ 6.1rg ∼ 90
km), produces a signal that is much alike to the observed one (Germanà
et al. 2009). From the power spectrum of the simulation both twin peaks HF
QPOs are recognized: The lower peak corresponds to the keplerian frequency
νk, the upper peak to the modulation at νk + νr. The simulation shows
that, at this radial coordinate, the frequencies of the twin peaks are in a
(νk + νr)/νk = 1.26 ratio, near to the 3:2 ratio the central frequencies of
HF QPOs cluster at (Török et al. 2006). The numerical simulation also
reproduces the characterist power law seen in observed power spectra (e.g.
Belloni & Hasinger 1990).

A model reproducing the observed power spectra is of valuable help in
order to understand the working principles of the phenomenon. Besides the
relativistic frequencies twin peaks are linked to, a self-consistent modelling
should also describe the observed systematic trends of both the coherence
and rms of the peaks (Barret et al. 2006), explaning also why the peaks
are produced in a given region of the space-time, hence describing the en-
ergy emission mechanism making QPOs detectable features in a very noisy
enviroment.
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Appendix A

Auto-correlation: understanding the nature of

the EM field

The auto-correlation function of the electromagnetic field (EM) can give us
information on the nature of the emission mechanism. Let us concentrate
only on the electric filed (E), since the magnetic one follows similar concepts.
If the function f(r, t) is the electric field E(r, t) emitted by a source, from the
autocorrelation function we can get information on the spatial and temporal
coherence of light. These concepts are the working principles of both the
Michelson and Hanbury Brown interferometers. Both of them measure the
spatial degree of coherence of light, from which the diameter of the source
can be deduced. The Michelson interferometer measures the degree of first-
order coherence, auto-correlating the electric field of the light collected at
the same instant and at two different spatial points. The Hanbury Brown
interferometer measures the degree of second-order coherence.

The first-order auto-correlation function is, at the two spatial-temporal
points (r1t1) e (r2t2), (Loudon 1973)

〈E∗ (r1t1)E (r2t2)〉 = lim
T→∞

1

T

∫ T

0
E∗ (r1t1)E (r2t1 + t21) dt1 (6.19)

and the degree of first-order coherence is its normalization

γ(1) (r1t1, r2t2) ≡ γ
(1)
12 =

|〈E∗ (r1t1)E (r2t2)〉|
(〈

|E (r1t1)|2
〉 〈

|E (r2t2)|2
〉)1/2

, (6.20)

therefore information about the phase of E are preserved. The degree of
second-order coherence of light is

γ(2) (r1t1, r2t2; r2t2, r1t1) ≡ γ
(2)
12 =

〈E∗ (r1t1)E
∗ (r2t2)E (r2t2)E (r1t1)〉
〈|E (r1t1)|〉2

.

(6.21)

121



time
-1.1

-0.6

-0.1

0.4

0.9

Figure 6.10: Black curve: Real part of the electric field from a chaotic process. Red

curve: Intensity profile of the electric field. The profile is described by a gaussian because
of the randomness of the emission mechanism. The width of the gaussian profile rapresents
the coherence time of light. The x axes is in random units. For chaotic light it is in 10−15

s units. The y axes is normalized to unit (Germanà 2007, Research stay report, Lund
Observatory)

and we can write it as

γ
(2)
12 =

〈I (r1t1) I (r2t2)〉
〈I (r1t1)〉2

. (6.22)

We see that the Hanbury Brown intensity interferometr measures the degree
of correlation of the intensity of light, thus information about the phase are
lost and the instrument is insensytive to perturbations due to mechanical
oscillations of the apparatus or caused by the atmosphere light gets through.
In this respect the intensity interferometr has a big advantage with respect
to the Michelson one. However since the intensity interferometer measures
second-order effects, it requires a high photon-fluxes to reach the minimum
required signal-to noise ratio (for more details see Hanbury Brown 1974).

From the working principles of an intensity interferometer one deduces
that they can be used to study the coherence time of light, thus studying the
nature of the emission mechanisms. Indeed the auto-correlation function at
the same point but at two different instants gives information about the co-
herence time of light, i.e. it tells us how coherent the emission mechanisms is.
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The amplitude of an electric filed emitted in a cahotic process (e.g. colliding
process) is described by a gaussian whose FWHM is linked to the mean free
path of the atomos. For a cahotic process the spectral line has a gaussian
shape. The Fourier transform of a gaussian is a gaussian, thus if we Fourier
transform the spectral line into the Fourier time domain we get the profile
of the intensity of the electric field. Its width is the time-scale over wchich
the intensity makes oscillations (Fig. 6.10) and for (6.22) the coherence time
of light (Germanà 2007, Research stay report, Lund Observatory).

The intensity-correlation of signals is used in medical and other apllica-
tions under the name of intensity-correlation spectroscopy. Intensity-correlation
spectroscopy was pinoreed by Phillips et al. (1967) to measure in the labo-
ratory the width of extremely narrow spectral line (∼ 100MHz). In light
of the extremely fast optical photon-counters are being developed (Barbi-
eri et al. 2009; Naletto et al. 2009), the method has recently been proposed
(Dravins & Germanà 2008) to give proofs of “suspected” laser emession in
astrophysical sources such as η Carinae (Johansson & Letokhov 2007).
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Appendix B

The pulsar PSR B0540-69 in the LMC

The pulsar PSR B0540-69 (Seward et al. 1984) is a 50 ms pulsar in the Large
Magellanic Cloud, the second brightest (V ∼ 22.5) in the optical band after
the Crab pulsar (V ∼ 16.5). It has been observed in recent years with a
variety of imaging and spectroscopic instruments on ground as well as space
telescopes (Serafimovich et al. 2004; Mignani et al. 2010).

B0540-69 has been observed with Iqueye mounted at the NTT telescope
in La Silla (Gradari et al. 2010). Table 6.2 shows a log of the observations.
The columns UTC and MJD provide values of time and date at mid counting
period referred to the barycentre of the solar system in TCB units (Tempo2;
Hobbs et al. 2006b).

Gradari et al. (2010) binned the arrival times in convenient time bins, e.g.
1/20 of the expected period, so that standard time-series analysis algorithms
can be applied to single out the frequencies in the signal. The Power Spectral
Density of the data was dominated by a frequency at the expected (according
to the ephemerides available in the literature) value of 19.7433 Hz (period

Table 6.1: Log of the observations of Iqueye at the NTT

Date UTC MJD (d) Observation
(hh mm ss) (mid-exposure duration

time) (s)
2009 01 18 05 11 10.0 54849.21665 5994
2009 01 20 04 03 19.0 54851.16190 5874
2009 12 14 07 27 59.9 55179.31111 3600
2009 12 15 02 42 00.0 55180.11250 3600
2009 12 16 01 39 59.6 55181.06944 3000
2009 12 18 02 30 00.3 55183.10417 3600
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Figure 6.11: Fitted light curve from the faint pulsar B0540-69. Black points are the
observed folded light curve. The red line is the fitted Fouriers series. Ten harmonics were
used in order to reach a χ2/dof ∼ 1. The characteristic profile of the source is clearly
seen.

around 0.05065 s) for January’s data and 19.7380 Hz (period around 0.05066
s) for December’s data with a statistical significance higher than 20 standard
deviations (σ) of noise; no other signal was visible above 30 σ of noise in the
range 0-200 Hz.

In order to perform the detailed analysis of the period and light curve,
the arrival times of the photons are referred to the barycentre of the solar
system, by using the latest release of the Tempo2 software (Hobbs et al.
2006b; Edwards et al. 2006) with the DE405 JPL Ephemerides (Standish
1998).

Figure 6.11 shows both the observed folded profile (black points) and that
obtained analitically (red curve) after fitting a Fourier series to tha observed
one. An iteration least-square fit procedure was applied. The characteristic
double peak profile of B0540 is clearly seen. The data provide the most
detailed optical light curve available so far for this pulsar, extending to 27
years the time spanned by X, optical and radio data and allowing a refined
determination of the first and second derivatives of the pulsar spin rate.
Further details are in Gradari et al. (2010).
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