
UNIVERSITA’ DI PADOVA FACOLTA’ DI INGEGNERIA

Dipartimento di Ingegneria dell’Informazione

Scuola di Dottorato di Ricerca in Ingegneria dell’Informazione

Indirizzo: Scienza e Tecnologia dell'Informazione e della Comunicazione

CICLO XXII

ADVANCED ALGORITHMS FOR GENOMIC DATA ANALYSIS

Direttore della Scuola: Ch.mo Prof. Matteo Bertocco

Supervisore: Ch.ma Prof. Silvana Badaloni

 Dottorando: Francesco Sambo

2

Acknowledgements

I would like to wholeheartedly thank all the people without which this thesis
would not have been possible.

Professor Silvana Badaloni, for her precious guidance of my first steps into
research, Professor Gianna Maria Toffolo for her extremely useful suggestions
and Professor Barbara Di Camillo for having let my entrance to Bioinformatics
as smooth as possible, and for the support. A special mention also to Professor
Carlo Ferrari, who first lit the sparkle, and to Doctor Marco Falda, for the
countless chatters on the staircases of DEI.

Professor Marco Dorigo, for his kind hospitality at IRIDIA, Professor Thomas
Stützle for his valuable suggestions and his bright sense of perspective and Doc-
tor Marco A. Montes De Oca for having shared with me an important part
of the trail. Many thanks also to Carlo Pinciroli, Manuele Brambilla, Matteo
Borrotti, Jérémie Dubois-Lacoste and all the IRIDIAns, for both having been
a second family in Brussels and for having lent themselves as unwitting guinea
pigs for my culinary experiments.

Professor Riccardo Bellazzi, Doctor Lucia Sacchi, Doctor Fulvia Ferrazzi and
all the Bioinformatics and Data Mining Group of the Pavia University, for the
dataset on Human Cell Cycle and the code of the Dynamic Bayesian Networks
algorithm. Our roads kept crossing during these three years, let’s hope it will
be the same in the future.

Giulia Doná, Erica Manesso, Enea Poletti, Diego Fiorin and all the Biomed-
ical Data and Signal Processing Lab, for having proven that, with a little effort,
a workplace can be an extremely funny environment. A special mention goes to
Tiziana Sanavia, for the countless hours spent together interpreting R code.

Finally, my enriched family: my parents, for the patience and precious ad-
vices, Federico, who keeps proving me how much Brother sounds similar to
Friend, Silvia, for late night and early morning vents and Enrico, for everything
else.

4

Contents

Abstract 6

Introduction 8

1 The biological problem: Inference of Gene Regulatory Net-
works from DNA microarray experiments. 13
1.1 Genetic Regulation . 13
1.2 DNA microarray data . 14
1.3 Properties of Gene Regulatory Networks 15

2 State of the art 17
2.1 Models . 17

2.1.1 Oriented and Unoriented Graphs 18
2.1.2 Boolean networks . 21
2.1.3 Bayesian networks . 21
2.1.4 Systems of equations . 23

2.2 Algorithms . 25
2.2.1 Pairwise Measures . 26
2.2.2 Search in the space of networks 27

2.3 Performance Measures . 29
2.4 Assessment of algorithm performance 30
2.5 Difficulties and limitations of the problem 31

3 Experimental data 33
3.1 Simulated data . 33

3.1.1 Netsim and simulated datasets. 33
3.1.2 DREAM4 In Silico Network Challenge 35

3.2 Real data . 36

4 Inferring the oriented network 39
4.1 Qualitative reasoning on steady state perturbations 39

4.1.1 Methods . 40
4.1.2 Results . 44
4.1.3 Conclusions and future directions 45

4.2 CNET: a novel information theory based algorithm for reverse
engineering . 46
4.2.1 CNET scoring function 46
4.2.2 Algorithm . 49

6 Contents

4.2.3 Experimental Results . 49
4.2.4 Conclusions . 51

5 Performance of the algorithms and topological properties of the
networks 53
5.1 Methods . 54
5.2 Results . 54
5.3 Conclusions . 58

6 Inferring systems of equations 61
6.1 Fitness-distance correlation analysis 61

6.1.1 Fitness-distance correlation around the optimum 62
6.1.2 Separation between structure and parameter values 63
6.1.3 Performance of two state-of-the-art optimization algorithms 65
6.1.4 Conclusions . 71

6.2 Mixed discrete and continuous optimization algorithm 72
6.2.1 Basic Algorithm . 72
6.2.2 Enhancements of the basic algorithm 73
6.2.3 Results . 75
6.2.4 Conclusions and Future Directions 79

7 Conclusions 81

Appendices 87

A Equivalence between pair consistency and causal relation 87

B Selection of differentially expressed genes from noisy data 89
B.1 Selection of flat profiles from time course data 89
B.2 Inference of a noise model . 90
B.3 Selection of differentially expressed genes from knock-out exper-

iments . 92

References 95

Abstract

English

The object of this thesis is to develop new algorithmic techniques for the infer-
ence of causal relations among the genes of an organism from DNA microarray
experiments. Cause-effect relations between genes can be inferred from microar-
ray data (Reverse Engineering) and summarized in a Gene Regulatory Network,
a graph in which nodes represent genes and edges represent causal relations
among genes: this thesis presents three novel Reverse Engineering algorithms,
tailored to tackle differend kinds of DNA microarray experiments and for differ-
ent levels of detail in the description of the biological systems, and two studies
on the difficulty of inferring Gene Regulatory Networks.

The first original contribution of the thesis is the application of the Qual-
itative Reasoning approach to steady state measurements of systematic gene
perturbation experiments, i.e. experiments in which the expression of each
gene is altered in turn and one sample of the expression is taken each time the
system reaches a steady state.

The second proposed algorithm, CNET, is based on a heuristic scoring func-
tion designed to identify causal relations from time course experiments, i.e.
repeated observations of the same biological system at subsequent temporal
instants. The algorithm is tailored to recognize causal relations even in the
presence of noise and variable regulatory delays.

We then present two original in-depth studies, the first on the relations be-
tween the performance of two network inference algorithms and the topological
and structural properties of oriented Gene Regulatory Networks and the second
on the fitness landscape around the optimal parameters configuration, when a
class of nonlinear differential equations systems, known as Dynamic Recurrent
Neural Networks, are fit to time course data. Both studies provide original and
useful knowledge on the difficulty of inferring Gene Regulatory Networks from
DNA microarray data.

Finally, we present a novel discrete/continuous optimization algorithm for
fitting systems of nonlinear differential equations to small scale time course
experiments, composed of two interacting modules: an Iterated Local Search
procedure to explore the discrete space of network structures and a continuous
optimization procedure to identify optimal system parameters.

The performance of the three proposed algorithms is assessed both on sim-
ulated data and, in some cases, on real DNA microarray data: the methods
proved to be competitive with the state of the art of Reverse Engineering algo-
rithms.

8 Abstract

Italiano

Obiettivo del presente lavoro di tesi è lo sviluppo di tecniche algoritmiche in-
novative per l’identificazione di relazioni causali fra i geni di un organismo a
partire da esperimenti di DNA microarray. Le relazioni causa-effetto fra i geni
possono essere apprese a partire dai dati di microarray (Reverse Engineering) e
riassunte in una Rete di Regolazione Genica, un grafo i cui nodi rappresentano
i geni e i cui archi rappresentano le relazioni causali fra i geni: questa tesi pre-
senta tre algoritmi innovativi di Reverse Engineering, progettati per elaborare
diversi tipi di esperimenti di microarray e con diversi livelli di dettaglio nella
descrizione dei sistemi biologici, e due studi sulla difficoltá nell’inferire le Reti
di Regolazione Genica.

Il primo contributo originale della tesi è l’applicazione del Ragionamento
Qualitativo all’elaborazione di misurazioni in stato stazionario di esperimenti di
perturbazione sistematica dei geni, vale a dire esperimenti nei quali l’espressione
di ogni gene a turno viene alterata e un solo campione dell’espressione genica
viene misurato ogni volta che il sistema raggiunge lo stato stazionario.

Il secondo algoritmo proposto, CNET, è basato su una funzione euristica
progettata per identificare relazioni causali a partire da serie temporali di espres-
sione genica, cioè osservazioni ripetute dello stesso sistema biologico in istanti
temporali consecutivi. L’algoritmo è costruito in modo tale da riconoscere le
relazioni causali anche in presenza di rumore e di ritardi variabili nella rego-
lazione.

Successivamente vengono presentati due studi approfonditi, il primo sulle re-
lazioni fra la performance di due algoritmi di Reverse Engineering e le proprietá
strutturali e topologiche della Rete di Regolazione Genica da inferire e il sec-
ondo sul panorama di fitness attorno alla configurazione ottima dei parametri di
una particolare classe di sistemi dinamici non lineari, le Reti Neurali Dinamiche
Ricorsive, che descriva un insieme di serie temporali di espressione genica. En-
trambi gli studi hanno consentito di ottenere informazioni utili e originali sulla
difficoltá nell’inferire Reti di Regolazione Genica a partire da dati di DNA mi-
croarray.

Infine, viene presentato un algoritmo innovativo di ottimizzazione mista
(continua e discreta) per il fit di sistemi di equazioni differenziali non lineari
a esperimenti contenenti serie temporali di espressione genica su piccola scala,
composto di due moduli interagenti: una procedura di ricerca locale per esplo-
rare lo spazio discreto delle strutture di rete e una procedura di ottimizzazione
continua per l’idenficazione dei parametri ottimi del sistema.

La performance dei tre algoritmi proposti viene analizzata sia su dati simulati
sia, in certi casi, su dati reali di DNA microarray: i metodi si dimostrano
competitivi con lo stato dell’arte degli algoritmi di Reverse Engineering.

Introduction

The object of this thesis is to develop new algorithmic techniques for the infer-
ence of causal relations among genes from DNA microarray experiments, which
are genome-wide observations of the expression of each gene under different
biochemical conditions or at different temporal instants.

The problem is of central importance in contemporary life sciences: at
present, reliable methods of DNA sequencing [27] allow researchers to recover
the whole DNA sequence of an organism, but the task of gathering full informa-
tion on the function of each gene in the DNA is still far from being accomplished.
Such information would be extremely valuable for understanding the real ma-
chinery of life and would have a direct impact on medicine, allowing researchers
to identify the genetic causes of diseases and the possible targets for focused
medical intervention. Understanding cause-effect relations between genes is one
of the key steps of this exploratory process.

A gene is expressed at a particular time instant if its sequence is being
transcribed into messenger RNA (mRNA); mRNA is then translated into a
protein and some proteins, possibly in combination with each other, have the
role of activating or inhibiting the expression of other genes. This self-control
mechanism of the DNA is known as gene regulation and induces a set of causal
relations among genes.

Cause-effect relations between expressed genes can thus be inferred from
DNA microarray measurements and summarized in a Gene Regulatory Net-
work, a graph in which nodes represent genes and edges represent causal re-
lations among genes. A detailed description of the biological problem, of the
DNA microarray technique and of the topological properties of Gene Regulatory
Networks is given in Chapter 1.

The problem has been widely studied in the literature (for a survey of the
state of the art, please refer to Chapter 2) because some of its features make it
hard to solve:

• Dimensionality: genomes of the various organisms contain a number of
genes in the order of the thousands. DNA microarray experiments, on the
other hand, do not usually consist of more than a hundred observations,
because of their high cost. Thus, the whole set of causal relations is hard
to be captured with a single microarray experiment.

• Observation point: DNA microarray experiments allow the biologist to
monitor the contemporary expression of each gene, but the main biological
interactions take place between proteins. The phenomenon has thus to be
studied from the indirect observation of its effects.

10 Introduction

• Heterogenity of interactions: interactions between proteins that have
as final effect the activation of a gene are extremely heterogeneous and
span different time scales. At the gene level, a consequence of this be-
haviour is a high variability between gene regulatory delays, i.e. the time
lags that elapse between the expression of the regulating genes and the
expression of their targets.

• Noise: DNA experiments are affected by a high level of noise, both in-
herent in the measurement technique and as an effect of unobservable
environmental variables. Experiments are often replicated to cope with
noise, but the number of replicas is usually limited.

For all these reasons, traditional signal processing techniques are not sufficient
to infer the whole Gene Regulatory Network of an organism from a DNA mi-
croarray experiment. The problem has to be tackled with a combination of
different advanced algorithmic techniques, selected from the fields of Artificial
Intelligence, Data Mining, Knowledge Discovery and Optimization, and at dif-
ferent scales, from a genome-wide correlation analysis to a precise description
of the interactions between small sets of genes. Moreover, results from multiple
and heterogeneous experiments can be combined and enriched with additional
knowledge from the literature. From an algorithmic point of view, the aim
is thus to choose the correct technique to tackle each particular subproblem,
depending on its scale and on the nature of the data to be processed.

This thesis will focus on two of these subproblems: the inference of the
structure of an oriented causal network (Chapter 4 and 5) and the inference of
a system of equations describing the expression of genes (Chapter 6).

In the former subproblem the objective is to infer directed causal relations
between genes. In Chapter 4 two novel algorithmic techniques are described,
designed to analyze two different types of expression data. The first technique
is a Qualitative Reasoning algorithm (Section 4.1), developed to process steady
state measurements of systematic gene perturbation experiments, i.e. experi-
ments in which the expression of each gene is altered in turn and one sample of
the expression is taken each time the system reaches a steady state. The second
algorithm (Section 4.2) is based on a heuristic scoring function designed to iden-
tify causal relations from time course experiments, i.e. repeated observations of
the same biological system at subsequent temporal instants. The algorithm is
tailored to recognize causal relations even in the presence of noise and variable
regulatory delays. It exploits the fact, known in the literature, that the network
is sparse and uses it to control the number of regulators for each gene. More-
over, an in-depth study is carried out in Chapter 5 on the relations between
the performance of two network inference algorithms and the topological and
structural properties of oriented Gene Regulatory Networks.

For the inference of a system of equations, the second subproblem we tackle,
the objective is to describe the expression of each gene with an analytical equa-
tion that relates the gene expression profile to the expression of its regulators.
The scale of this subproblem is smaller than in the previous case, because of the
increased level of detail in the description of gene relations that provides the
ability of predicting gene expression profiles. The system of equations has to be
fit to time course data and the goodness of the fit can be assessed measuring the
error between real temporal profiles and profiles predicted by the model. Opti-
mization techniques can thus be exploited to search optimal values for system

11

parameters, minimizing an error measure. In Chapter 6, the fitness landscape
around the optimal parameters configuration is first studied, for the problem
of minimizing Relative Squared Error (RSE) between real and estimated gene
profiles, when a class of nonlinear differential equations systems, known as Dy-
namic Recurrent Neural Networks, are fit to time course data (Section 6.1).
For the analysis, solutions close to the optimum are sampled in three different
ways and the correlation between the RSE of the solutions and their Euclidean
distance from the optimum is studied. Two state-of-the-art continuous opti-
mization algorithms, CMA-ES [28] and NEWUOA [56], are then tested on the
problem and compared. The results of this analysis are exploited in the design
of a mixed optimization algorithm, that searches in the discrete space of network
structures with an Iterated Local Search procedure and optimizes continuous
system parameter with CMA-ES (Section 6.2).

To properly assess the performance of an algorithm and to compare it with
the state-of-the-art, one should rely on a set of benchmark problems and exploit
them as gold standards to test average algorithm behaviour. Unfortunately, re-
liable knowledge on real Gene Regulatory Networks is still missing. For this
reason, we concentrate mostly on simulation for the analysis of the performance
of our algorithms. Chapter 3 describes the simulator we used to generate ex-
perimental data and explains in details the generated datasets. The simula-
tor resembles some of the main features of transcriptional regulatory networks,
related to topology, interaction among regulators of transcription and expres-
sion dynamics. The chapter describes also another set of simulated data, the
DREAM4 In Silico Network Challenge [46, 73], that was chosen for our analysis
because it is widely known and is considered a reliable benchmark for Reverse
Engineering algorithms by the scientific community. Finally, to validate our
approaches on real data, a dataset of DNA microarray experiments on nine hu-
man genes is presented and the (possibly incomplete) set of known biological
interactions is reported.

From performance results on simulated and real microarray data the three
novel algorithms presented in this thesis proved to be competitive with the state
of the art in solving the different problems they address, which are all parts of
the main task of Gene Regulatory Network inference from DNA microarray
data. Moreover, the two analyses we carry out, on the relations between the
performance of the algorithms and the topological properties of the networks
and on the correlation between Relative Squared Error and distance from the
optimal network, provide new valuable insights on the problem that may be
exploited in the design of new algorithms.

12 Introduction

Chapter 1

The biological problem:
Inference of Gene
Regulatory Networks from
DNA microarray
experiments.

1.1 Genetic Regulation

One of the most important discoveries of the last century in Biology is that all
the information necessary for an organism to live is coded in the genes of its
DNA. On the other hand, the certainty emerged that almost every biological
function in all the living things is carried out by proteins. The specific rela-
tionship between genes and proteins is so important in modern biology that it
is called the central dogma and can be enounced as: ”DNA molecules contain
information about how to create proteins; this information is transcribed into
RNA molecules, which, in turn, direct chemical machinery which translates the
nucleic acid message into a protein”[31].

DNA, RNA and proteins share the property of being a chain of chemicals
known as bases or nucleotides, for DNA and RNA, and aminoacids, for proteins.
In the case of DNA, nucleotides can be of four types: adenine (A), cytosine (C),
guanine (G) and thymine (T); RNA has the same set of four bases, except
that instead of thymine, RNA has uracil (U). On the other hand, there are
20 different naturally occurring amino acids that are assembled into proteins.
Each amino acid is coded by a nucleotide sequence: since there are 20 different
amino acids but only 4 nucleotides, the information required to specify an amino
acid has to be contained in at least 3 nucleotides. Nucleotide triplets are called
codons, and each amino acid is specified by one or more codon (being there
43 = 64 possible codons).

Some proteins, called transcription factors, have the role, possibly in com-
bination with each other, to activate or inhibit the transcription of genes and

14
The biological problem: Inference of Gene Regulatory Networks from DNA

microarray experiments.

Figure 1.1: Schematic representation of gene regulation: the regulating gene (on the
left) is transcribed into RNA and translated into a protein. The protein folds in a 3D
structure and, potentially docking to another protein, acts as a transcription factor
for the regulated gene (on the right), binding on the region of DNA that precedes the
gene and activating (or inhibiting) its transcription process.

to control the translation of RNA into new proteins; the process by which some
genes, through the proteins they code, control the expression level (i.e. the RNA
transcription rate) of other genes is known as genetic regulation. A schematic
representation of gene regulation is presented in Figure 1.1.

Object of the present research is the inference of such regulatory relations and
their subsequent representation on a Gene Regulatory Network, a graph in which
nodes correspond to genes and edges to regulatory relations between genes.
Inference, or Reverse Engineering, of Gene Regulatory Networks is mostly based
on the analysis of a particular kind of biological measurements called DNA
microarray experiments.

1.2 DNA microarray data

In the past few years, the study of genetic regulation was drastically improved
by the discovery of the new technology of DNA microarray [49], which allows
researchers to monitor the expression of the whole genome under various genetic,
chemical and environmental perturbations.

The DNA microarray technology is based on the fundamental property of
DNA and RNA called complementarity : each nucleotide only binds well with
its complement, A with T (or U) and G with C. Complementarity can then
be exploited to detect specific sequences of bases within strands of DNA or
RNA. The detection is achieved synthesizing a probe, i.e. a piece of DNA that
is the reverse complement of a sequence one wants to detect, and having it

1.3. Properties of Gene Regulatory Networks 15

interact with the set of genetic material that is being searched, called the sample.
Thanks to complementarity, the probe will bind to its complement if the latter
is present in the sample. The act of binding between probe and sample is called
hybridization.

A DNA microarray (also called gene chip) contains a large number of differ-
ent synthesized probes, carefully attached to specific positions on a flat surface.
Each probe is the reverse complement of a sequence of amino acids, distinctive
of a particular gene, and a chip can contain tens of thousands of different probes.
The sample can then be labeled using a fluorescent tag and spread across the
chip. Because the probes are attached at specific locations on the chip, if the
labeled sample is detected at any position on the chip, one can determine which
probe has hybridized to its complement.

The most common use of gene chips is to measure the expression level of
various genes in an organism: an expression level measures the rate at which a
particular gene is being transcribed, and this is used as a proxy measure for the
amount of corresponding protein that is being produced within an organism’s
cells at a given time.

In a typical microarray study, many experiments measure the same set of
genes under various circumstances or at various time points. Experiments are
usually replicated to cope with noise, which is largely present in raw microarray
data. However, each gene-chip experiment can cost several hundred dollars,
thus in practice experiments are replicated only a small number of times, and
time series experiments usually contain O

(
10 ∼ 102

)
time points.

Throughout the thesis, we will make the distinction between experiments
with external stimulation and in natural response. In the former case, the
biological system receives an external stimulus either right before or through
the whole course of the experiment: for example, cells can be heated or irra-
diated with UVA, some drug can be added or the expression of one or more
genes can be altered, either by making them inoperative (gene knock-out), by
degradating their RNA product (RNA silencing) or by other means of external
up/downregulation. This kind of experiments are usally paired with the syn-
chronous observation of the cell in wild type conditions, i.e. without the external
stimulation. In the case of natural response, on the other hand, cell evolution is
observed as it is, and comparisons are usually made between cells from different
tissues or in different health conditions (tumoral and normal cells, for example).

Another distinction we will make is between time course and steady state
measurements: in the former case, the same cells are observed at subsequent
time instants, gathering a time series of the expression profile. In the latter
case, multiple sets of cells are observed just once, when the biological system
has reached a steady state: each set can come from a different patient, or have
been treated differently.

1.3 Properties of Gene Regulatory Networks

Structural and topological properties of Gene Regulatory Networks and metabolic
networks have been widely studied in the past few years and a set of distinctive
properties is now known:

• Scale-free: the vast majority of genes are not regulators, and the distri-
bution of the out degree of the transcription factors (i.e. the distribution

16
The biological problem: Inference of Gene Regulatory Networks from DNA

microarray experiments.

of the numer of nodes that each transcription factor regulates) follows a
power-law of the form

P (k) = αk−γ ,

where k is the out degree of transcription factors, γ is in the range
2 < γ < 3 and α is a normalization factor [1]. Networks that share this
property are known in the literature as scale-free networks [7].

• Sparsity: related to the previous property, but worth mentioning, is the
sparsity of regulatory networks [3]. For a network of n genes, the total
number of regulatory relations is O (n), much less than the total possible
number of direct connections, n2.

• High clustering coefficient: the clustering coefficient of a node i is
defined as the ratio between the number of edges linking nodes adjacent
to i and the total possible number of edges among them [77]. On random
sparse network, the average clustering coefficient tends to have a low value,
wich decreases with the number of nodes. On metabolic networks, on the
contrary, the clustering coefficient has a higher value and it is independent
of the number of nodes.

• Small-World: metabolic pathways between each pair of gene tend to be
shorter than what expected in a random network, thus regulatory networks
belong to the class of small-world networks [77].

• Network Motifs: some regulatory motifs, i.e. connection patterns be-
tween three or more genes, appear in regulatory networks with a signif-
icantly high frequency [2]. Each motif is supposed to have a particular
biological function and is thus conserved through different kinds of organ-
isms.

All these network properties can be exploited in the process of Reverse Engi-
neering, either as a priori information for the algorithms or as a way to score
multiple putative networks inferred for the same data.

Chapter 2

State of the art

The process of Reverse Engineering Gene Regulatory Networks can be decom-
posed in two subsequent tasks: choice of the model for describing regulatory
interactions and fit of the model to data.

When choosing a model, one has always to balance between two opposite
model features:

• Accuracy in describing real data, directly proportional to the model com-
plexity and thus to the level of detail with which data are modeled.

• Scalability, in terms of the number of numerical or categorical parameters
to be estimated, with respect to the number of genes present in the network
to be inferred.

A large amount of models and algorithms are available in the literature. We
will present in what follows a selection of the most relevant ones, pointing out
the trade-off between scalability and accuracy and discussing strengths and
limitations. For a summary of all the main features of each model, please refer
to Table 2.1. Subsequently, we will review the most important algorithms from
the literature, used for fitting each model to data. A section on performance
measures will illustrate how to assess and compare performance of the various
algorithms. Finally, we will outline the difficulties and limitations that each
Reverse Engineering approach has to face, when dealing with real data, and
present results on average algorithmic performance from five recent assessment
papers.

2.1 Models

In this section a review of the most frequently adopted models in the litera-
ture is presented. In ascending order of model complexity and descending order
of model scalability, we will present Oriented and Unoriented Graphs (Sec-
tion 2.1.1), Boolean Networks (Section 2.1.2) Bayesian Networks and Dynamic
Bayesian Networks (Section 2.1.3) and systems of equations, both linear and
nonlinear, differential and additive and S-Systems (Section 2.1.4).

18 State of the art

Oriented and Unoriented
graphs

• O
`
n2

´
Boolean variables

• Do not allow to make predictions
on the evolution of the signal

• No measure for the goodness of
fit

Boolean Networks
• O

“
n2k+2

”
Boolean variables,

with k maximum regulators per
gene

• Can be used to make predictions
on Boolean data

• No measure for the goodness of
fit

Bayesian Networks
• The number of parameters de-

pends on the type of variables
(discrete-continous) and on the
probability distributions relating
parents and children

• Can be used to make prediction
on noisy data

• The structure can be evaluated
with posterior probability

Systems of equations
• O

`
n2

´
continuous variables

• Can be used to make predictions
on noise-free data

• Can be evaluated with Minum
Squared Error between real and
predicted gene profiles

Table 2.1: The main features of Gene Regulatory Network models.

2.1.1 Oriented and Unoriented Graphs

Probably the most straightforward way to model a Gene Regulatory Network
is to view it as a graph G = (V,E), which is completely determined by its sets
of vertices V and edges E. Within this formalism, genes are mapped to vertices
of the graph and regulatory relations are mapped to edges. An edge e is a pair
(i, j), in which i and j denote vertices, i.e. elements of the set V . If edges are
directed, i.e. (i, j) "= (j, i), the graph is said to be oriented, if the direction is
not taken into account the graph is unoriented.

In an oriented graph the direction of the regulation can also be expressed,
with the source vertex regulating the destination vertex. Moreover, directed
edges can be labeled as ”activating” or ”inhibiting”, to distinguish between the
two regulatory mechanisms.

The presence or absence of a particular edge can be inferred with a set of
different measures, such as Pearson Correlation and Partial Pearson Correlation
[16], Mutual Information [9, 15, 47] and Conditional Mutual Information [84].
All the measures have the common goal of identifying dependence or indepen-
dence between gene profiles, seen as discrete or continuous random variables,
and are explained in detail in what follows.

Pearson Correlation

Pearson Correlation (PC) is probably the simplest, yet powerful measure of
association between random variables. If a random variable x is associated to

2.1. Models 19

each gene, the (0th order) PC between the random variables x and y is

rxy =
Cov (xy)√

Var (x)Var (y)
,

where Var() is the variance of the random variable and Cov() is the covariance
between the two random variables.

Since correlation alone is a weak concept and cannot distinguish between
direct and indirect interactions, (e.g. mediated by a common regulator gene),
an algorithm for network inference can be improved by the use of partial corre-
lations (PPC) [16]. The minimum first order partial correlation between x and
y is obtained by exhaustively conditioning the pair x, y over all z and taking
the minimum. If exists z "= x, y which explains all of the correlation between
x and y, then the partial correlation between x and y becomes 0 and the pair
x, y is conditionally independent given z. In the same way, the minimum second
order partial correlation coefficient between x and y is obtained by exhaustively
conditioning the pair x, y over all possible pairs z, q.

The equations for computing first and second order partial correlation coef-
ficients are:

rxy.z =
rxy − rxzryz√

(1− r2
xz)

(
1− r2

yz

)

rxy.zq =
rxy.z − rxq.zryq.z√(
1− r2

xq.z

) (
1− r2

yq.z

)

Since the computation is exhaustive over all n genes, the computational cost
of searching for the k-th order minimum PPC is of the order of O

(
nk+2

)
, and

it becomes quickly prohibitive for k ≥ 3, if n is of the order of the thousands.
The exhaustive conditioning over n−2 genes can be expressed explicitly only

if the n × n matrix R of elements rxy is invertible and if one can assume that
the data are drawn from a multivariate normal distribution. Denoting Ω = R−1

the concentration matrix of elements Ω = (ωxy), the partial correlation between
x and y is

rxy.all = − ωxy√
ωxxωyy

.

When R is not full rank, as is often the case with gene expression data, one can
rely on an estimation of the inverse Ω, as described in [68].

PC and PPC are symmetric measures and thus can be used to infer parts
of the unoriented regulatory network, as is done in [16] on a dataset composed
by 781 genes of buddying yest (Saccharomyces Cerevisiae) and in [68] on 3883
genes from a study on human breast cancer tumor.

Mutual Information

In an association network, alternatively to PC and PPC, one can use the
information-theoretic concept of Mutual Information (MI), together with the
notion of conditional independence to discern direct from indirect interdepen-
dencies. Given a discrete random variable x, taking values in the set X, its
Shannon Entropy is defined as

H(x) = −
∑

x̄∈X

p(x̄) log p(x̄),

20 State of the art

where p(x̄) is the probability mass function p(x̄) = Pr(x = x̄), x̄ ∈ X. The joint
entropy of a pair of variables x, y, taking values in the sets X, Y respectively, is

H(x, y) = −
∑

x̄∈X,ȳ∈Y

p(x̄, ȳ) log p(x̄, ȳ)

while the conditional entropy of x given y is defined as H(x|y) = H(x, y)−H(x).
The Mutual Information of x, y is defined as MI(x, y) = H(x) − H(x|y) and
can be explicitly expressed as

MI(x, y) = −
∑

x̄∈X,ȳ∈Y

p(x̄, ȳ) log
p(x̄, ȳ)

p(x̄)p(ȳ)
≥ 0. (2.1)

When the two variables are independent, the joint probability distribution fac-
torizes and the MI vanishes:

p(x̄, ȳ) = p(x̄)p(ȳ) ⇒ MI(x, y) = 0.

The MI conditioned with respect to a third variable z is:

MI(x, y|z) = H(x, z) + H(y, z)−H(z)−H(x, y, z).

All pairs of nodes can be conditioned exhaustively on each of the remaining
n− 2 nodes, and the minimum of such conditional MIs

mMI(x, y) = min
z #=x,y

MI(x, y|z) (2.2)

can be taken as a measure of conditional independence.
Just like in the PC and PPC case, the two measures (2.1) and (2.2) can

be used to construct the graph of the unoriented gene network: in [9] Mutual
Information is exploited for the analysis of 2,467 genes of S. Cerevisiae, in [15] a
global analysis is carried out on two datasets of 5345 genes of S. Cerevisiae and
22608 human genes and in [47] RNA products from human B lymphocytes are
processed on a global scale. Finally, in [84] an unoriented network is inferred
from a dataset of 527 genes from 31 human patients affected by melanoma.

In [83], empyrical evidence is shown that direct measures, such as PC and
MI, are more robust in detecting coexpression situations, when two or more
genes coparticipate in the same protein complex, whereas conditional measures,
such as PPC and mMI, are more suited for causal regulatory interactions.

Strengths and weaknesses of the model

Oriented and unoriented graphs are among the simplest and less detailed models
of gene regulation, thus exhibiting the highest level of scalability: oriented net-
works are completely described by n2 boolean variables (presence or absence of
an edge) and unoriented networks by n(n−1)/2 variables. The simplicity comes
at the cost of being unable to predict the evolution of gene expression profiles
across time. Moreover, the application of different measures of independence
often produces different networks as output, and it is still unclear which of the
measures is the more reliable. Yet, at present these are still the only tractable
models applicable when inference is carried out on the global scale of a whole
organism, i.e. when O

(
103

)
gene profiles need to be processed.

2.1. Models 21

2.1.2 Boolean networks

The Boolean Network formalism was first introduced in the pioneering work
of Kauffman et al. [34]. Within this paradigm, genes are treated as binary
random variables, which can be active (on, 1) or inactive (off, 0) and hence
their products are present or absent. Moreover, interactions between genes can
be represented by Boolean functions, which calculate the state of a gene from
the activation of other genes. Gene interactions are supposed to be synchronous,
and thus the state of each gene at the discrete temporal instant t is completely
determined by the state of the system at time t− 1.

With a more strict mathematical formalism, let the vector x of variables
denote the state of a regulatory system of n elements. Each xi is a binary
variable, so the state space of the system consists of 2n states. The state xi of
an element at the time instant t+1 is computed by means of a boolean function

xi(t + 1) = bi [x1 (t) , . . . , xk (t)] , 1 ≤ i ≤ n

from the state of k of the other n elements at the previous time instant t (k can
be smaller then n). For k inputs, with possibly a different k for each gene, the
total number of possible Boolean functions mapping the inputs to the output is
22k

.
Strategies for the inference of Boolean Networks from time series of gene

expression profiles can be found in [41, 51].

Strengths and weaknesses of the model

The Boolean Network model relies on the two strong assumptions of Boolean
behaviour of genes and of synchronous regulatory interactions. While the first
assumption is true at the gene level (either a gene is translated or it is not
translated, in a particular time instant), DNA microarray measurements permit
only the observation of the average behaviour of a population of cells, and
interactions at the protein level depend more on protein concentration than on
presence or absence of the protein. Microarray data is thus continuous and
interactions are triggered when protein concentrations overcome some gene-
specific thresholds. Identifying quantization thresholds for expression profiles is
thus a hard task and can introduce additional noise in the data [19].

The second assumption is even more strict, because genes are known to
exhibit variable regulatory delays [85]. Nevertheless, such an approach may
be able to capture subsets of regulatory relations with time delay in the same
range, ignoring relations at different time scales.

Scalability of this model strictly depends on the maximum allowable number
k of regulators for each gene, because the number of possible boolean functions
for each gene grows superexponentially with k. Under the two aforementioned
assumptions, Boolean Networks can be used to make predictions on gene tem-
poral profiles, and have been exploited by theoretical biologists to formulate
hypothesis on the general behaviour of biological systems [34].

2.1.3 Bayesian networks

A Bayesian Network (BN) [53, 69] is fully determined by two components: a
directed acyclic graph (directed tree) and a probability distribution. Nodes in

22 State of the art

the graph represent stochastic variables and edges represent direct dependencies
among variables, quantified by conditional probability distributions.

Following the direction of edges, source nodes are called parents and desti-
nation nodes children. The probability distribution of each child is completely
determined given its parents, and can thus be expressed in tabular form (for
discrete variables) or with continuous conditional probability distributions (for
continuous variables).

The local Markov property on Bayesian Networks states that each node is
independent of its non descendants given its parents. This leads to a direct
factorization of the joint probability distribution of the network variables into
the product of the conditional distribution of each variable Xi given its parents
Pa(xi) (in the following, capital letters denote random variables, and small
letters denote their values). Therefore, the joint probability of the n network
variables can be written as:

p(x1, . . . , xn) =
n∏

i=1

p(xi|pa(xi)),

where p(y|x) denotes the probability density of the variable Y , given X = x, and
pa(xi) denotes a set of values of Pa(xi). The overall probability distribution is
then broken into modules that can be interrelated, and the network summarizes
concisely all the significant dependencies.

Bayesian Network have been succesfully exploited to model biological sys-
tems (see [24, 70] for two examples of application and [69] for guidelines on
using BNs in genomic data analysis). Nodes in the network can represent both
gene products and phenotipic information, such as occurrence of a disease or
presence of a somatic trait.

When used to model genetic regulation, however, Bayesian Networks have
the strong limitation of not allowing cycles in the directed graph; cycles, how-
ever, are frequent in regulatory networks. For this reason, a particular class of
BN is usually exploited for microarray data analysis, Dynamic Bayesian Net-
works (DBNs) [50].

In DBNs each node models a variable in a particular time instant, and edges
represent conditional dependence between the values of parents at time step t
and the values of children at time t + 1. This formalism allow cycles in the
network and even dependencies of a variable on its value in the previous time
step. It is usually assumed that for DBNs holds the first-order Markov property,
i.e. that connections are allowed only between subsequent time slices, and thus
the state of the whole set of variables at time t is completely determined by the
state at time t− 1.

Bayesian Networks can model both discrete and continous variables: in the
former case, the dependency of each variable on its parents is represented by
a set of multinomial distributions that describe the conditional distribution of
the variable on each configurations of the parent variables. In the latter case,
children probabilities are described by a full probability density function, given
each parent.

Network structures are chosen in terms of maximum posterior probability
given the data. In the special cases of networks with discrete variables and of
networks with continuous Gaussian variables and linear dependencies between
parents and children, the posterior probability can be computed in closed form,

2.1. Models 23

averaging out probability distributions and serving as a score fore just the struc-
ture.

Strengths and weaknesses of the model

Bayesian Networks, for their stochastic nature, are particularly suited to model
noisy data such as gene expression profiles. Inferring a BN, however, requires
both the identification of the oriented graph and the estimation of the param-
eters of the probability distribution for each node, with respect to its parents;
as for Boolean Networks, then, scalability strictly depends on the maximum
allowable number of parents for each node.

Network structures can be evaluated in terms of posterior probability given
the data, and thus a coherent search in the space of networks can be carried out
to identify the best structure.

2.1.4 Systems of equations

Systems of equations are the most accurate way to model a biological system:
the rate of concentration of each gene, protein or reagent can be associated to
a variable, and relations between the variables can be described analytically
through a set of equations.

When analyzing microarray data, one usually associates variables with genes,
and in some cases models other reagents as external inputs to the system of
equations. Depending on the cases, equations relate the expression of regulators
to either the expression of the regulated gene (additive systems) or the derivative
of its expression (differential systems). The function applied to the expression
of the regulators can also contain a nonlinear element, like a sigmoid function
(nonlinear sigmoidal systems), or be intrinsecally nonlinear in its definition (S-
Systems [67]). Each class of models is explained in details in what follows.

Additive systems

Historically among the first equation models adopted for Gene Regulatory Net-
works [17], additive systems have recently been used to model the SOS pathway
of the organism Escherichia Coli [25]. With the addition of a nonlinear element,
they have also been exploited to infer a network of five genes involved in the
cell cycle of S. Cerevisiae [36, 58].

In its general form, an additive system of n genes is described by the set of
equations

xi(t) = f




n∑

j=1

wjixj(t) + ui(t)



 1 ≤ i ≤ n,

where xi denotes the rate of expression of gene i, f can be the identity function
or a sigmoid function (for nonlinear additive systems), wji is the relative weight
of the influence of gene j on gene i and ui is the effect of the external input
on gene i; this last term is time varying in the most general case, but can be a
gene-specific constant, a global constant or even absent.

This kind of models lack, in general, the capability of fully describing gene
regulatory relations, which are highly nonlinear and differential in nature, but

24 State of the art

can be exploited positively under the hypothesis that the observed system op-
erates near a steady state [25]. The simplicity of the model makes it computa-
tionally easier to handle and more robust to noise, having only to deal with the
absolute value of the expression signal and not with its derivatives. The number
of parameters to estimate when inferring an additive system of n genes is n2

(the weights wji), plus additional O (n) parameters when the external input is
modelled.

Differential systems

Systems of differential equations are more widely adopted, because of the afore-
mentioned differential nature of regulatory relations.

A system of linear differential equations representing the behaviour of n
genes has the form

dxi

dt
=

n∑

j=1

wjixj + ui 1 ≤ i ≤ n,

where xi is the rate of expression of gene i, wji is the relative weight of the
influence of gene j on the derivative of gene i and ui is the effect of a possible
external input. Linear differential equations are studied in [55] on simulated
data and exploited in [52] on both a dataset of E. Coli SOS pathway (9 genes)
and a dataset of 24 S. Cerevisiae cell cycle related genes.

A systems of nonlinear sigmoidal differential equations of n genes, on the
other hand, has the form

dxi

dt
= σ




n∑

j=1

wjixj + ui



− λixi 1 ≤ i ≤ n,

and differs from the linear model for the presence of the sigmoid function σ()
and of the coefficients λi, usually adopted to explicitly represent the degradation
rate of each gene product. Additional parameters can control the shape of the
sigmoid function and vary among genes, thus modeling gene-specific regulatory
responses, at the cost of increasing the complexity of the model.

Nonlinear sigmoidal differential equations, formally identical to what is known
as Dynamic Recurrent Neural Networks [39, 54] in the Machine Learning com-
munity, are exploited in [76] to match the best trascription factor to each of a
set of 40 cell cycle-related genes of S. Cerevisiae, in [80, 81] to infer the E. Coli
SOS pathway and in [45] on the DREAM1 in vivo Five-Gene-Net challenge [73].

Fitting both the linear and the nonlinear model to n gene profiles requires
the estimation of n2 continuous variables, plus additional O (n) parameters for
external inputs and/or degradation coefficients.

Finally, S-Systems of n genes have the form

dxi

dt
= αi

n∏

j=1

x
gij

j (t)− βi

n∏

j=1

x
hij

j (t) 1 ≤ i ≤ n, (2.3)

where xi is the rate of expression of gene i, αi and βi are non-negative rate
constants and gij and hij are kinetic orders. The equations explicitly splits the
set of regulatory effects into two opposite components, the excitatory effects and

2.2. Algorithms 25

the inhibitory effects. A fit of an S-System of n genes requires the estimation
of 2n(n + 1) continuous parameters.

S-Systems are used in [37] to infer a network of 24 clusters of gene profiles
from a set of Thermus thermophilus HB8 strains and in [38] for the E. Coli SOS
repair pathway; moreover, they are exploited in simulations to compare a set of
Evolutionary Algorithms in [72] and to generate a set of benchmark problems
for Reverse Enineering algorithms in [26].

Strengths and weaknesses of the model

Systems of equations accurately describe the behaviour of a biological system
across time and can thus be used to make predictions on the evolution of the
system. Moreover, when fitting systems of equations to data, measuring the
accuracy of a choice of system parameteres is straightforward: it is sufficient to
measure the error between real and estimated expression profiles.

This comes at the cost of a large parameter set, of size O
(
n2

)
if n is the

number of genes. For this reason, systems of equations are usually adopted
when modeling small sets of genes (5 to 30). Nevertheless, the size of tractable
networks can be increased with the use of a priori information on network
properties or on known links, as it is often the case in microarray studies.

When the system is differential, having to deal with derivatives poses an
additional problem: if one wants to decouple the system and to fit each equa-
tion separately, derivatives of the signal have to be estimated from data. If
the time sampling is sufficiently fine grained and the signal does not contain
noise, derivatives can in principle be approximated with finite differences; with
gene expression data, though, this is rarely the case. Numerically solving the
whole system of equations, on the contrary, reduces the effect of noise, but is
computationally more expensive and the system cannot be decoupled.

2.2 Algorithms

After having reviewed the main models from the literature for Gene Regulatory
Networks, we will present in the following the algorithmic techniques proposed
to fit these models to gene expression data. The algorithms mainly fall into two
categories, depending on the presence or absence of a measure for the good-
ness of the fit: for oriented graphs, unoriented graphs and, in general, Boolean
Networks, there is not such a measure, and thus one can only rely on pairwise
measures of similarity or correlation between expression profiles and compute
them extensively for each pair or triplet.

If, on the contrary, one can clearly define a measure for the goodness of fit,
such as Relative Squared Error for systems of equation or maximum posterior
likelihood for Bayesian Network, the process of fitting can be mapped to a search
for the optimal configuration in the discrete space of network structures and in
the continuous space of system parameters. In this second case, the search can
be extensive, greedy, stochastic or exploit some statistical techniques.

In both cases, one can then exploit additional information on the properties
of regulatory networks, such as sparsity or the scale-free distribution of node
degree, and a priori information on some genes, like genes known to code for
transcription factors, either to reduce the size of the search space or to post-

26 State of the art

process the inferred network. Ensemble Learning strategies can also be exploited
to merge the results of different algorithms on the same dataset or on multiple
experiments.

The two main algorithmic approaches are described in what follows, review-
ing the best solutions to the problem from the literature.

2.2.1 Pairwise Measures

Algorithms based on pairwise measures compute some indicators of causal re-
lation between all the possible pairs of genes, creating a fully connected graph
of gene relations, and then prune less probable links from the graph, with the
objective of extracting the underlying unoriented graph of regulatory relations.
The two similarity measures usually adopted are Pearson Correlation and Mu-
tual Information (see Sections 2.1.1 and 2.1.1) and graphs ar pruned by condi-
tioning the two measures over all the other genes, or by removing links whose
measured score falls below some kind of threshold. While PC can be directly
computed from continuous profiles, MI is originally designed for discrete random
variables, and thus different algorithms propose different solutions to apply it
to gene expression data.

In [9], gene profiles are quantized in 10 equally spaced bins, and then MI is
computed between each pair of quantized random variables. The complete graph
is then pruned, removing all the edges whose MI falls below a threshold. The
threshold is computed by gathering the MI distributions of the profiles after 30
random permutations of the samples and by choosing as a threshold the highest
obtained MI value. The authors define the obtained graph a Relevance Network.

In [15], the binning procedure of gene profiles is realized through the use
of polynomial B-spline functions, allowing each measurement to be assigned to
more than one bin, with weights given by the B-spline. MI is then computed
among binned variables.

In [47], the ARACNe algorithm computes MI for continuous gene profiles
through a Gaussian Kernel estimator. The graph is then first pruned with a
threshold computed similarly to [9], and the remaining links are then pruned
again exploiting the Data Processing Inequality: for each triplet of edges, the
edge with the lowest value of MI is removed.

Finally, in [84], two algorithms are proposed. The first one computes MI with
quantization on k equally spaced bins, deletes link below a certain threshold tS
and, for remaining links, compute the minimum Mutual Information (mMI)
conditioned on all the other variables (see Section 2.1.1); if mMI drops below a
second threshold, tM , the edge is removed. Since the authors state that there is
no effective automated way to set the two thresholds tS and tM , they propose a
second algorithm, which weights each edge with the product (MI · mMI) and
returns the network as it is, leaving the user with the task of identifying a cutoff
threshold.

A similar approach is proposed in [16] with the use of Pearson Correlation:
(Oth order) PC is computed for each pair, the edges whose PC falls below a
threshold are pruned, then 1st order PC is computed for the remaining edges
and, after a second pruning, 2nd order PC is computed on what remains.

The last example we cite for unoriented graphs is [68], in which the con-
centration matrix is exploited as a measure of partial correlation between genes
conditioned on all the other genes. The matrix should be obtained by inverting

2.2. Algorithms 27

the correlation matrix, whose rank is rarely full when dealing with microarray
data. The algorithm, then, exploits a bootstrap technique for estimating the
true correlation matrix and then pseudo-inverses it to find the concentration
matrix. Choice on edge inclusion in the network are then made through statis-
tical tests and p-values computation. The output of the algorithm is defined by
the authors a Graphical Gaussian Model (GGM).

Mutual Information is exploited also for the inference of Boolean Networks
by the algorithm reveal, as described in [41]. The authors make the implicit
assumption that the update rule of the Boolean Network they are inferring has
a time delay exactly equal to the sampling time in the expression measurements
(see Section 2.1.2 for some considerations on this assumption); with this hypoth-
esis, the algorithm quantizes gene profiles in 2 levels (0 and 1) and, for each gene,
searches among all the possible combination of regulators the one that maxi-
mizes MI. The expression profiles of the putative regulators and of the regulated
gene are aligned after a proper time shift of one step and Mutual Information
is computed, progressively increasing the number ki of possible causes for each
gene i. The algorithm stops when the sets of causes that fully explain each gene
are found (MI = 1). In a second phase, the algorithm searches the boolean rule
of ki inputs that best relates the behaviour of each gene i with the profiles of
its identified regulators.

2.2.2 Search in the space of networks

Models of higher complexity, such as systems of equations or Bayesian Networks,
allow the user to make predictions on the evolution of gene expression over
time. The goodness of a particular choice of network structure and system
parameters can thus be evaluated simply by generating expression profiles with
the estimated model and by computing an error measure between real and
generated gene profiles.

Moreover, for some particular classes of Bayesian Networks, namely networks
with discrete variables and networks with continuous Gaussian variables and
linear dependencies between parents and children, it is possible to compute in
closed form the posterior probability of a network structure given data, which
measures the goodness of a particular structure indepently of the values of
network parameters [69].

When such measures of goodness of fit can be defined, a clever exploration
of the spaces of network structures and of network parameters can be accom-
plished, exploiting either enumeration, greedy search, exact search or Stochastic
Local Search algorithms.

To reduce model complexity and computational time, algorithms usually
exploit the property of sparsity of Gene Regulatory Networks, designing tech-
niques to limit the number of regulators for each gene, either by limiting the
maximum allowable in-degree, by progressing the search from easier to more
complex configurations of the model or by adding a complexity term to the cost
function to be minimized.

Most of the approaches based on Stochastic Local Search algorithms, which
can return different solutions at each run, exploit some kind of Ensemble Learn-
ing strategies to merge the results of the various independent runs.

In what follows, we present the main examples from the literature of the
usage of each of the aforementioned search strategies.

28 State of the art

In the NIR (Network Identification by multiple Regression) algorithm [25],
a linear additive model is fit to a set of steady state expression values, obtained
with multiple perturbations of a biological system. Linear additive models can
be decoupled, thus the algorithm search gene by gene for the best set of reg-
ulators. All the possible combinations of k regulators are linearly regressed to
each gene profile and the combination with the smallest error is chosen. For
each gene, the algorithm selects the value of k that provides the best balance
between coverage and false positives.

The same model and search technique are exploited in [52], with a fixed num-
ber of 4 maximum regulators for each gene. In addition, the algorithm adopts
an Ensamble Learning strategy, collecting votes on each edge from the topmost
combinations of regulators (with a tunable threshold) and then choosing the
edges with the highest scores.

In [24], Dynamic Bayesian Networks with Gaussian variables are fit to time
series of gene expression data; networks are built in a greedy fashion with the
K2 algorithm [12], which evaluates models of increasing complexity as long as
there is a gain in the posterior likelihood of the model structure given the data.

In [38], the problem of fitting a system of differential equations is reduced to
training n classifiers, one for each gene, able to identify the sign of the derivative
of the expression signal at each time instant from the expression values of all the
other genes. The learning procedure is treated as a linear programming problem
and solved using an interior point method [48]. Regulatory relations are then
inferred from the values of the numerical parameters of each trained classifier.
Derivatives, used to train the classifiers, are estimated from expression profiles,
after a proper filtering with local linear regression to reduce the effects of noise.

In [36] and [58], two variants of the same approach are proposed to fit a sys-
tem of nonlinear additive equations: a search in the space of structures is carried
out with an Ant Colony Optimization (ACO) algorithm [21] and candidate net-
work structures are evaluated optimizing the continuous nonzero parameters
with a Particle Swarm Optimization (PSO) algorithm [35] and returning the
obtained Mean Squared Error as a measure of fitness of the candidate struc-
ture. The maximum allowed number of regulators for each gene is set to 2,
to limit the size of the search space. The final solution is assembled from the
results of multiple runs of the same stochastic algorithm, choosing the edges
that were identified in at least the 50% of the runs.

The same idea of a mixed discrete and continuous optimization approach
is exploited in [81] to fit a system of nonlinear sigmoidal differential equa-
tions (Dynamic Recurrent Neural Network). The space of network structures is
searched with a binary PSO; each candidate structure is then evaluated, opti-
mizing nonzero system parameters with a continuous PSO. Sparsity is induced
stochastically with an additional parameter in the particle velocity update rule
of the binary PSO aglorithm. Final edges are then selected from multiple runs
of the same algorithm, with a majority vote strategy. The system is differential,
and derivatives of the signals are approximated with finite differences, exposing
the algorithm to the problems explained in Section 2.1.4.

A hybrid algorithm, that combines Differential Evolution [75] and Particle
Swarm Optimization, is used in [80] to fit a Dynamic Recurrent Neural Network
to gene expression data. The algorithm alternates between the two continuous
optimization approaches in each iteration. Derivatives are approximated with
finite differences and final edges are selected with majority vote, as in the pre-

2.3. Performance Measures 29

vious cited paper.
A biomimetic evolutionary reverse engineering method [44] is exploited in

[45], in conjuction with a signed voting strategy, to infer a log-sigmoid system
of differential equations. Results of multiple independent runs of the algorithm
are collected; each edge then receives a score of +1 every time it appears with
a positive sign in one of the resulting matrices, of −1 ever time it appers with
negative sign and of 0 every time its absolute value falls below a certain thresh-
old. The algorithm is thus able to compute a confidence level for each edge,
cancelling out discordant results and enhancing coherent results.

Evolutionary Computation and Stochastic Local Search techniques have
been applied also to S-System fitting problems: in [37], a cooperative coevolu-
tionary algorithm is designed, with the aim of trying to decouple the fit problem
without having to estimate derivatives from data. The algorithm assign each
equation of the S-System (see Eq. 2.3 in Section 2.1.4) to a different evolution-
ary solver. At each iteration, the solvers search for the optimal values of the
equation parameters and compute an estimate of the gene expression profile; in
the subsequent generation, the estimate is used in the optimization process by
all the other solvers. A penalty term is added to the error function to keep the
indegree of each node below a fixed value.

In [42], the inference of an S-System is treated as a multi-objective opti-
mization problem, trying to minimize the error on gene expression, the error
on the derivative and the complexity of the model. Single-objective problems
are solved with Hybrid Differential Evolution [10] and solutions for the multi-
objective problems are searched with the ε-constraint method [61].

2.3 Performance Measures

Performance of Reverse Engineering algorithms are compared in terms of the
ability in reconstructing the real regulatory network. Two widely used measures,
borrowed from the Information Retrieval community, are Precision (P) and
Recall (R) [43] and are defined as:

P =
tp

tp + fp

R =
tp

tp + fn

where tp is the number of true positives, i.e. the number of causal relations
correctly identified by the algorithm, fp is the number of false positives, i.e. the
number of relations identified by the algorithm which are not correct, and fn is
the number of false negatives, i.e. the number of relations present in the real
network but not identified. Both measures range in the interval [0, 1] and can
be used both for oriented and unoriented graphs. A graphical explanation of
the two measures is given in Figure 2.1.

When possible, the comparison between two algorithms should be based on
the performance on a set of Reverse Engineering tasks, rather than on a single
problem. One can then compare the average behaviour of the algorithms, using
statistical tools such as the exact Wilcoxon two-sample test, and consider as
significant differences whose p-value is below a certain threshold [13].

30 State of the art

FP TP FN

Inferred relations Real relations

Figure 2.1: Graphical explaination of True Positives (tp), False Positives (fp) and False
Negatives (fn). The left circle is the set of relations inferred by an algorithm and the
right circle is the set of relations present in the real gene regulatory network. Precision
is then the area of the intersection over the area of the left circle (tp/(tp + fp)) and
Recall is the area of the intersection over the area of the right circle (tp/(tp + fn)).

2.4 Assessment of algorithm performance

After having reviewed the state-of-the-art of Reverse Engineering algorithms
and described how to compare the performance of two algorithms, we present
some results from recent assessment papers on the performance of the most
widely used algorithms.

Relevance Networks (RNs), Graphical Gaussian Models (GGMs) and Bayesian
Networks (BNs, sampled with an MCMC algorithm) are compared in [78], on a
set of both simulated and real time course data, coming from an experiment on
11 human proteins involved in the Raf signalling network [22]. Time series are
composed of 100 samples and are obtained both from experiments in natural re-
sponse and from experiments with up and downregulation of some genes. GGMs
and BNs outperform RNs on each dataset, and BNs show a higher performance
than GGMs on the datasets with external stimulation, while no significant dif-
ferences between the two are observed on the natural response datasets. BNs
reach an average Precision on the oriented graphs of approximately 0.8 and 0.5
on simulated data, respectively with and without the external stimulus, and of
0.5 and 0.4 under the same conditions on real data.

In [13], a comparison between linear and nonlinear Dynamic Bayesian Net-
works (DBNs), Graphical Gaussian Models (GGMs) and the ARACNe algo-
rithm is carried out on a set of simulated time series of gene expression profiles.
The algorithms are compared on their ability to infer the unoriented gene net-
works: experiments are carried out on networks of different sizes (12, 20 and
100 genes) and with and without noise. Time series are gathered by initializ-
ing multiple times the simulated systems at random and leaving them free to
evolve, sampling the evolution at subsequent time instants. From the analysis,
linear DBNs show the best behaviour in data-rich situations (500 samples from
10 different experiments) both with and without noise, whereas ARACNe shows
better performance when the number of samples per experiment is reduced. For
networks of 100 genes, however, performance of the best method is poor even

2.5. Difficulties and limitations of the problem 31

in the data-rich case (P and R below 0.4) both with and without noise; for
networks of 20 genes, the best P and R are in the range of 0.5, and of 0.6 and
0.7 for 12 genes, respectively with and without noise. With fewer time samples
(50 and 100) and on networks of 12 genes, both P and R of the best algorithm
are in the range of 0.5.

Pairwise measures, both direct (Pearson Correlation and Mutual Informa-
tion) and conditional (1st and 2nd order Partial Pearson Correlation, Graphical
Gaussian Models and Conditional Mutual Information) are compared in [71] on
a set of simulated networks with n = 100 genes, with increasing sample size
m, both with systematic knock-out of each gene and in natural response exper-
iments and both on time course and steady state experiments. Results show
that steady state systematic gene knock-out experiments are the more informa-
tive; in this scenario, linear similarity measures (PC, PPC and GGM) shows the
best performance. For time series data, performance is in general poorer, with
the best behaviour exhibited by conditional measures (PPC, GGM and CMI)
with respect to direct similarity measures. Performance tends to stabilize for
steady state experiments when m ≥ n, whereas it keeps growing for time course
experiments.

In [6], ARACNe, Bayesian Networks (both static and dynamic, with the
Banjo implementation [82]), NIR and a simple Hyerarchical Clustering are com-
pared on a set of simulated networks of size 10, 100 and 1000, with 10, 100 and
1000 samples and in three conditions: steady state measurements, from pertur-
bations of each gene and of the whole set of genes, and time course experiments
obtained perturbing the 10% of the genes. In accordance with the previous
assessment paper, better results are obtained in steady state experiments. On
global perturbation, the highest performance is reached by Bayesian Networks;
on locally perturbed data, the best algorithm is NIR, which however requires
more information than the other algorithms to run. No algorithm is able to
behave significantly better than random on time course experiments.

Finally, in [72] time course experiments, generated in simulation with S-
Systems of 5 and 10 genes, are exploited to test a set of Evolutionary Algorithm
on the network inference problem. Among Monte-Carlo search, multi-start hill
climbing, binary and real-valued genetic algorithm, evolution strategies, evolu-
tion strategies with covariance matrix adaptation (CMA-ES, [28]), differential
evolution and particle swarm optimization, CMA-ES is able to reach the low-
est values of Relative Squared Error. No analysis, however, is carried out on
Precision and Recall of the inferred networks.

2.5 Difficulties and limitations of the problem

As it is clear from the results presented in the previous section, the problem
of Reverse Engineering of Gene Regulatory Networks is inherently difficult and
the state-of-the-art of the algorithms is still far from reaching good results on
a genomic scale (O

(
103

)
genes). In the following, we try to resume these in-

trinsic difficulties and motivate them on the basis of what is known about gene
regulation.

The first problem resides in the point of observation: with DNA microar-
ray measurements, we observe the amount of RNA that is being translated in
a particular time instant, but most of the biological interactions take place at

32 State of the art

the protein level; thus, we have to rely on an inderect observation of the phe-
nomenon we are studying [49]. Moreover, we are possibly still not aware of all
the components that interact in the regulatory process. For example, recent ev-
idence emerged about micro RNA (µRNA, [59]), short molecules of non-coding
RNA which interact with gene regulation, but are usually left out from normal
microarray experiments because of their non-coding feature.

For all these reasons, we always observe a certain amount of intrinsic noise
in microarray experiments, even between synchronized replicas of the same ob-
servation. Moreover, the vast amount of regulatory interactions that can take
place at the protein level has the observed effect, on microarray observation, of
variable regulatory delays among genes [85]. Models and algorithms that hy-
pothesize synchronous interactions with a fixed time step usually fail to capture
these kind of relations.

Another issue, known in the literature as the curse of dimensionality [8], is
the disparity between the number of observed variables in a DNA microarray
experiment (O

(
103

)
) and the usual number of observations for each variable

(O
(
10 ∼ 102

)
). From the theory of dynamical systems [8], if the number of

observations of a system is less than the number of system variables, a whole
set of different parameters settings for the system can explain the observations.
Moreover, even in the case of more observations than variables, there can be
the possibility that not all the dynamical states of the system are excited, and
thus some relations are impossible to be inferred, simply because they were not
observed in the experiment.

These are probably the reasons why state-of-the-art algorithms are not able
to fully reconstruct regulatory networks even with simulated data, a large amount
of samples and no noise [6, 71].

Time course experiments seem to be the less informative: there is good
evidence of regulatory systems being nonlinear and differential, features that
classifies them as the most difficult systems to infer from their dynamic evolution
across time. Steady state measurements with systematic perturbation of genes,
on the contrary, are the most informative [6, 71], but a lot of information on the
dynamic evolution is lost. For these reasons, Ensamble Learning methods, that
combine results of the same stochastic algorithm, of different algorithms on the
same dataset or results on multiple and heterogenous experiments, are probably
a good candidate to reliably infer regulatory relations on a global scale.

Chapter 3

Experimental data

We present in this chapter the experimental datasets that will be used through
the thesis to test and validate the proposed approaches. Since there are a few
regulatory networks which are known in the literature with sufficient confidence
and no gold standards can be defined [13, 71], we mainly rely on simulation to
assess the performance of the algorithms we design. In some cases, however, we
test also the ability of our techniques to infer what is biologically known from
real microarray data.

3.1 Simulated data

Performance assessments for each of our methods are carried out on simulated
data generated with the Netsim biological network simulator [20], which is
described in detail in Section 3.1.1. The performance of some algorithms is
also tested on a dataset included in the DREAM4 In Silico Network Challenge
[46, 73], more widely known by the Reverse Engineering community, which is
presented in Section 3.1.2

3.1.1 Netsim and simulated datasets.

The biological network simulator Netsim [20] is able to mimic some important
features of real regulatory networks: scale-free degree distribution, high clus-
tering coefficient (independent of the number of nodes in the network) and low
characteristic path length (small-world). Networks are built following a model
hypothesized in [57] and exhibit a fractal organization: sampling from three
kinds of different connection modules, which are found in regulatory networks
with a frequency significantly higher than in random networks [2], nodes are
connected together at different levels of network organization. Some of the
links between nodes are randomly added to guarantee the desired clustering
coefficient and scale-free distribution of the node degree.

Once the network is built, dynamic profiles are generated with a combination
of fuzzy boolean logic and differential equations, accounting for saturation in
the response to regulation and transcription activation thresholds: for each
gene i, the expression of its regulators is combined with a set of fuzzy boolean
rules, modeling cooperative, competitive and synergic interactions. The result

34 Experimental data

is a gene-specific function Ti(t), ranging from 0 to 1. A nonlinear differential
model is then applied to the regulatory function, according to the two following
equations:

Si [Ti(t), αi, βi] =
1

1 + e−αi·(Ti(t)−βi)

dxi(t)
dt

= λi · [Si (Ti(t), αi, βi)− xi(t)] 1 ≤ i ≤ n,

where αi, βi and λi are gene-specific parameters. Throughout the thesis, we
will refer to this model as the fuzzy boolean model.

The simulator implements the possibility of observing gene dynamics by
either letting the system in natural response from opportunely chosen initial
conditions or by exciting it with external stimuli acting on chosen nodes.

From the same simulated networks, a second set of dynamics were generated
with a different model and exploited for the experiments of Chapter 6. Since we
developed a method for the optimization of a weight matrix system, we chose
to model expression dynamics with a system of sigmoidal differential equations
in the form

dxi

dt
= σ




n∑

j=1

wjixj + ui



− λixi 1 ≤ i ≤ n.

For further details and motivations on the selected model, which is identical
to what is known in literature as Dynamic Recurrent Neural Networks, please
refer to Section 2.1.4. Throughout the thesis, we will refer to this model as the
recurrent neural network model.

Simulated networks

To have a dataset which spans across different levels of complexity, we generated
a set of networks with different number of genes, namely 5, 8, 10, 20, 50 and
100. To assess the average behaviour of our algorithms on different test cases,
we generated 20 different networks for each size.

Simulated dynamics

A set of different simulated experiments were generated, starting from the sim-
ulated networks structures, to test the behaviour of the various algorithms on
different kind of experimental data:

• Natural response: gene profiles of each network were initialized at ran-
dom and left free to evolve until a steady state is reached. Samples were
taken at equally spaced temporal instants for the boolean fuzzy model and
at logarithmically spaced temporal instants for the recurrent neural net-
work model. Increasing logarithmically the time spacing while sampling is
common practice in real microarray experiments, because meaningful in-
formation usually concentrates right after the perturbation of a dynamical
system.

• External stimulation: a second set of time series was obtained by ex-
ternally stimulating each network at its hub, i.e. at the node with the

3.1. Simulated data 35

highest out degree. The node was stimulated with three kinds of signals:
a ramp, a step an a sinusoid1. Amplitude of stimulating signals lies in the
range of simulated expression data and the period of the sinusoid is one
third of the total observation time.

• Knock-out: a third dataset was obtained simulating a systematic knock-
out of each gene in the network. The system was intialized at random, left
free to evolve and sampled after a time lag sufficient for reaching a steady
state, to simulate the so called wild type experiment. Expression of one
gene at a time was then initialized at zero and kept constant during the
evolution of the system, while all the other n − 1 genes were initialized
with the same initial values of the wild type experiment; one sample for
each of the experiments was collected at the steady state.

3.1.2 DREAM4 In Silico Network Challenge

The DREAM project (Dialogue for Reverse Engineering Assessments and Meth-
ods [46, 73]) has the main goal of catalyzing the interaction between experiment
and theory in the area of cellular network inference, trying to achieve a fair com-
parison of the strengths and weaknesses of Reverse Engineering methods and
a clear sense of the reliability of the network models they produce. With this
purpose, a set of simulated Reverse Engineering challenges is published every
year and researchers has the possibility to compete on their ability to infer the
networks underlying the simulated data.

We exploited one of the datasets of the most recent edition, the 10 genes
DREAM4 In Silico Network Challenge of 2009, to assess the performance of
some of our methods. The datasets consists of a variety of different simulated
experiments on a set of five networks of ten genes, whose structure is extracted
from what is known in the literature of the real regulatory networks of two
biological organisms, namely Saccharomyces Cerevisiae and Escherichia Coli.

For each of the five networks, various types of experiments are simulated to
produce the gene expression datasets:

• Wild type: the dataset contains the steady-state levels of the wild-type,
i.e. of the unperturbed network.

• Knock-out: the dataset contains the steady-state levels of single-gene
knockouts. An independent knockout is provided for every gene of the
network. A knockout is simulated by setting the transcription rate of the
target gene to zero.

• Knock-down: the dataset contains the steady-state levels of single-gene
knockdowns. A knockdown of every gene of the network is simulated by
reducing the transcription rate of the corresponding gene by half.

• Multifactorial perturbations: the dataset contains steady-state levels
of variations of the network, which are obtained by applying multifactorial
perturbations to the original network. Multifactorial perturbations are

1Thanks to synthetic biology techniques, it is feasible to excite a system using a ”step”
or a ”ramp” stimulus, whereas a sinusoidal signal is still difficult to implement in practice;
however, it is interesting from a theoretical point of view to evaluate its effects.

36 Experimental data

obtained by slightly increasing or decreasing the basal activation of all
genes of the network simultaneously by different random amounts.

• Time series: the dataset contains time courses showing how the network
responds to a perturbation and how it relaxes upon removal of the per-
turbation. For networks of size 10, 5 different time series are provided,
each with 21 time points. The initial condition always corresponds to a
steady-state measurement of the wild-type. At t=0, a perturbation is ap-
plied to the network. The first half of the time series shows the response
of the network to the perturbation. The perturbation is then removed and
the second half of the time series shows how the gene expression levels go
back from the perturbed to the wild-type state.

The simulations are based on stochastic differential equations to model in-
ternal noise in the dynamics of the networks. In addition, measurement noise
is added to the generated gene expression datasets.

In our analysis, then, we first exploit the time course data to infer a model
for the noise and then use the model to select the genes which are differentially
expressed between the knock-out and the wild type experiments, as described
in detail in Appendix B. Information on differentially expressed genes is then
used by the Qualitative Reasoning algorithm presented in Section 4.1 to infer
the underlying regulatory networks.

3.2 Real data

To validate the behavour of some of our algorithms on real data, we run them
on a dataset consisting of human genes involved in cell cycle [79]. From the
original dataset, we extracted 9 genes whose interactions are documented in the
BioGRID database2: CCNA1, CCNB1, CCNE1, CDC2, CDC6, CDKN3, E2F1,
PCNA and RFC4. The documented relations between the 9 genes are shown in
Figure 3.1.

The time series consist of 47 equally spaced samples, taken every hour; since
human cell cycle is approximately 15 hours long, the time series span across
approximately three complete cell cycles. The dataset has already been used
in [60] to test the accuracy of a method for extracting temporal relationships
between genes.

2www.thebiogrid.org

3.2. Real data 37

CDC2

CCNE1

CDC6

PCNA

RFC4

CCNA2 E2F1

CCNB1

CDKN3

Figure 3.1: Network of known interactions for the real dataset of 9 human genes related
to cell cycle.

38 Experimental data

Chapter 4

Inferring the oriented
network

In this chapter, we present two novel algorithms for the inference of Oriented
Networks from DNA microarray experiments. The two techniques are designed
to process two different kinds of microarray data: in the first case (Section 4.1)
steady state measurements of systematic gene perturbation experiments are
analyzed with a Qualitative Reasoning approach. Causal relations between
genes are inferred through the qualitative comparison between each perturbation
experiment and the wild type, i.e. the experiment in which no gene is perturbed.
In the second case (Section 4.2), time-course profiles of gene expression are
processed with an information-theoretic approach, through the use of a heuristic
scoring function for causal relations. The scoring function is able to tolerate a
certain level of noise in expression profiles and of variability in gene-specific
regulatory delays.

4.1 Qualitative reasoning on steady state per-
turbations

Steady state experiments of systematic gene perturbation are among the most
informative for the purpose of reconstructing Gene Regulatory Networks [71].
The experiments consist in the systematic suppression of each gene, either by
making it inoperative (gene knock-out) or by degradating its RNA product
(RNA silencing), followed by a single microarray observation, sampled when the
system has reached a steady state. In parallel, a wild type experiment is carried
out, sampling the steady state of the system when no genes are perturbed.

Steady state perturbation experiments are usually processed by means of
quantitative methods but, as far as we know, no systematic study on quali-
tative analysis of perturbation data has ever been conducted. In this section,
we describe a novel qualitative reasoning approach to the inference of directed
regulatory relations between genes; our approach exhibits an extremely low rate
of false positives and provides meaningful insights on the amount of useful in-
formation conveyed by steady state perturbations.

The analysis is carried out on two simulated datasets of systematic gene

40 Inferring the oriented network

Figure 4.1: Graphical representation of a set of 20 gene knock-out experiments plus
the wild type. Each row correponds to a gene and each column to an experiment. The
level of gray is proportional to the relative expression value of the gene, from white
(no expression) to black (maximum expression).

knock-out experiments, to assess the average performance of our algorithm on
a rich set of test cases and with complete information on network topologies.
The first dataset is generated with the Netsim simulator, as described in Sec-
tion 3.1.1, while the second one is extracted by the DREAM4 In Silico Network
Challenge, presented in Section 3.1.2.

4.1.1 Methods

Figure 4.1 shows a graphical representation of the output of a set of systematic
gene knock-out experiments on a simulated network of 20 genes, flanked with
the output of the wild type experiment (the rightmost column). Rows of the
grid correspond to genes and columns to experiments, and the level of gray in
each box is proportional to the normalized value of gene expression, from white
(no expression) to black (maximum expression). One can observe that, in the
majority of the experiments, the expression of most of the genes does not differ
much from the wild type: just in a small set of cases a knock-out of a gene has
visible effects on a large number of genes. This behaviour is possibly related
to the fact that regulatory networks are scale-free, thus exhibiting few highly
connected nodes and a large number of loosely connected nodes. Moreover,
knocking out genes that reach a low expression value in the wild type experiment
has no visible effects on the other genes.

To extract qualitative information contained in a set of knock-out exper-
iments, one can subtract the wild type from all the other experiments and

4.1. Qualitative reasoning on steady state perturbations 41

Figure 4.2: Graphical representation of the qualitative information contained in the
same set of 20 knock-out experiments, obtained by subtracting the wild type from each
column and taking absolute values. The number of elements whose value is larger than
a fixed threshold θ is reported on top of each column.

consider all the genes whose absolute values lie above a threshold θ; for each
knock-out experiment, we define these genes as the observed effects of the ex-
periment. The result of such an operation on the example dataset is shown in
Figure 4.2, where effects of the knock-out of each gene are clearly readable in
its corresponding column. On top of each column, we reported the number of
observed effects for each gene knock-out.

Moreover, we define as not observed the genes for which the corresponding
element on the diagonal exhibits an absolute value smaller than the threshold
θ. In Figure 4.2, the corresponding columns are marked with ∅. Notice that
this is different from having no observed effects, as in the case of genes 2, 3, 6,
9 and 20 in the Figure.

With the aim of extracting direct regulatory relations in the form

y ⇒ x ,

where y is one of the regulators of x and x is one of its regulated genes, we take
into account for each gene the binary qualitative feature of being or not being
an observed effect of a particular knock-out experiment (thus leaving aside the
quantitative values of expression). All the observed effects of each gene are
mapped to a string representation, as the one in Table 4.1. For convenience, we
denote eff (x) the set of observed effects of the knock-out of gene x.

The following considerations can be drawn from the string representation:

42 Inferring the oriented network

10: not observed
12: not observed
13: not observed
15: not observed
16: not observed
18: not observed
19: not observed
2:
3:
6:
9:

20:
11: 8
14: 9 19
17: 8 11
4: 12 13 15
5: 8 11 17 19
7: 5 8 11 17 19
8: 5 7 11 17 19
1: 2 3 4 6 9 10 12 13 14 15 16 18 19 20

Table 4.1: String representation of the observed effects for each gene.

• No inference can be carried out on the effects of not observed genes, be-
cause the information is not present in the particular set of experiments.

• For knock-out experiments with only one observed effect, a causal rela-
tion between the knocked out gene and its observed effect can always be
inferred. We name these inferred relations single effect rules. Table 4.1,
for example, reveals the causal relation 11 ⇒ 8.

• If there exist x and y such that eff (y) = {x, eff (x)}, the causal relation
y ⇒ x can be inferred. The motivation for this rule is the propagation
of the perturbation originating from the knock-out of y to all and only
the observed effects of the knock-out of x. We name this type of inferred
relations simple inclusion rules. Two examples from Table 4.1 are 17 ⇒ 11
and 7 ⇒ 5.

• If there exist x and y such that eff (y) = {x, eff (x), K}, with K an addi-
tional set of genes, to infer the causal relation y ⇒ x one has to exclude
that none of the genes in K interposes in the path between y and x (i.e.
is not a direct or indirect cause for x). The latter condition is verified if
each k ∈ K satisfies either of the two following conditions:

– k is observable and x is not an observable effect of k,
– there exists a z such that k is an observable effect of z and x is not.

We name this type of inferred relations strict inclusion rules. An example
from Table 4.1 is the rule 5 ⇒ 17: the effect list of gene 5 contains gene
17, the effect list of 17 and gene 19. However, 19 is an observed effect of
14 and 17 is not, thus 19 can not be a cause for 17 and the rule holds.

4.1. Qualitative reasoning on steady state perturbations 43

Simple inclusion and strict inclusion rules have an exception: they cannot be
applied to infer the causes of a gene x if there exists at least a gene y such that
{x, eff (x)} ≡{ y, eff (y)}. This behaviour is in fact the evidence of the presence
in the regulatory network of an oriented closed loop to which both x and y
belong. For the simple inclusion and strict inclusion rules the two genes are
thus indistinguishable in this qualitative framework. An example of genes for
which this situation holds in Table 4.1 is the pair 7 and 8.

A Qualitative Reasoning algorithm can thus be designed to infer single effect
rules, simple inclusion rules and strict inclusion rules from a set of systematic
gene knock-out experiments; its pseudocode is presented in what follows.

Qualitative(An×n,wn×1, θ)
1 Subtract w from each column of A, and store the absolute value in Dn×n

2 For each element in D, if abs(D[i, j]) < θ then D[i, j] ← 0
3 For each x, extract eff (x) as the indexes of nonzero elements of the x-th column of D.
4 n ← ncols(D)
5 ! Single effect rules
6 for x ← 1 to n
7 do
8 if length(eff (x)) = 1
9 then C[eff (x), x] ← 1

10 for l ← 1 to argmax
x

length(eff (x))− 1

11 do
12 for all x | length(eff (x)) = l
13 do
14 ! Simple inclusion rules
15 if ∃ y | eff (y) = {x, eff (x)}
16 then C[x, y] ← 1
17 ! Strict inclusion rules
18 else if ∃ y | eff (y) = {x, eff (x), K}
19 then if for each k ∈ K:
20 k observable and x /∈ eff (k)
21 or
22 ∃ z | k ∈ eff (z) and x /∈ eff (z)
23 then C[x, y] ← 1
24 return C

The algorithm receives as input the squared matrix of knock-out experiments
An×n, the column vector of the wild type experiment wn×1 and the threshold θ;
it returns as output the inferred connectivity matrix Cn×1, in which C[x, y] = 1
if the rule y ⇒ x was inferred.

Analyzing the computational complexity, one can observe that the prepro-
cessing phase (rows 1 and 3) take O

(
n2

)
operations. Searching for single effect

rules takes O (n) operations (rows 6−9); then, the two for loops at rows 10 and
12 scan totally O (n) elements, searching for simple inclusion rules takes O (n)
and searching for strict inclusion rules can take O

(
n3

)
in the worst case, i.e. if

the condition on line 22 has to be verified for every k. Thus, the algorithm has
a total worst case complexity of O

(
n4

)
.

The inference ability of this method is however limited: it is designed to
infer at most one regulatory relation for each line of the string representation,

44 Inferring the oriented network

10 genes 20 genes 50 genes 100 genes
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

10 genes 20 genes 50 genes 100 genes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
ca

ll

Figure 4.3: Boxplots of Precision (left) and Recall (right) of the qualitative inference
algorithm, on 20 networks of sizes 10, 20, 50 and 100.

with the gene corresponding to the line as the regulator. Thus, even in the case
of all observable genes, no rule can be inferred for nodes wich are leaves in the
graph, i.e. which have no outgoing edges. The maximum possible number of
inferred relations is thus n− l, where l is the number of leaves in the graph.

4.1.2 Results

We first run our qualitative inference algorithm on the gene knock-out simulated
dataset described in Section 3.1.1, composed of 20 test network for each of the
sizes 10, 20, 50 and 100. After an empyrical nonexhaustive search, we set the
threshold θ to the 5% of the maximum expression value. As measures of the
performance of the algorithm, we exploited Precision and Recall, described in
detail in Section 2.3. Boxplots for Precision and Recall on the four sets of
networks are showed in Figure 4.3.

As it is clear from the figure, Precision is 1 in the vast majority of cases,
meaning that the number of false positives is extremely low. Average Recall, on
the other hand, is low: on average, the method is able to infer approximately
the 10% of the real regulatory relations.

The algorithm was then run on a set of simulated knock-out experiments
extracted from the DREAM4 In Silico Network Challenge: the dataset consists
of the sistematic knock-out of each gene, plus a wild type experiment, for five
networks of ten genes. Data, in this case, contain noise both inherent in the
dynamical model, a system of stochastic differential equations, and added in
a second step to simulate experimental noise. To extract the genes which are
differentially expressed between the wild type experiment and each of the knock-
out experiments we adopted the procedure described in Appendix B, which
consists in learning a model for the noise and in exploiting it to compute the
confidence threshold θ.

The results on the DREAM4 data, in terms of Precision and Recall, are
shown in Figure 4.4. As one can observe, the Precision of the qualitative algo-
rithm is rather high even in the presence of noise, with an average of 0.85, and

4.1. Qualitative reasoning on steady state perturbations 45

Precision Recall
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: Boxplots of Precision and Recall of the qualitative inference algorithm, on
the 5 networks of size 10 from the DREAM4 In Silico Network Challenge.

the average Recall, 0.20, is almost doubled with respect to the one obtained on
the previous dataset.

The high level of Precision reached by our Qualitative Reasoning algorithm,
together with the polynomial running time, makes it a good preprocessing tool
for a general inference algorithm, able to provide valuable and reliable informa-
tion on a subset of the regulatory relations and thus to reduce the size of the
search space of the second algorithm.

4.1.3 Conclusions and future directions

We described in this section a novel Qualitative Reasoning algorithm for the
inference of directed causal relations between genes from steady state experi-
ments of systematic gene perturbation. The algorithm extracts from the data
a qualitative description of the observable effects of each perturbation and it
is both able to infer three kinds of regulatory rules and to explictly point out
which parts of the network are impossible for it to infer, given the outcomes of
the perturbation experiments.

The qualitative abstraction is based on a fixed numerical threshold θ, used to
select the observed effects of each experiment. A possible future direction would
be to make the threshold adaptive to data, relating it to either the expression
of the same gene through all the experiments (gene-specific threshold) or to all
the genes in each experiment (experiment-specific threshold). In the presence of
noise, as we present in Appendix B, another approach is to learn the noise model
from the data and to exploit statistical techniques to identify the differentially
expressed genes, i.e. the genes whose expression differs from the wild type
experiment.

Another possible future direction would be to extend the qualitative frame-
work to consider also the sign of the observed effects of each perturbation,
classifying them as overexpressed or underexpressed with respect to the wild
type, and to study both how this affects the three rule inference procedures and
if new procedures can be defined in this framework.

46 Inferring the oriented network

In the next section, we present a different approach to the inference of ori-
ented regulatory graphs, which exploits time course rather then steady state
data.

4.2 CNET: a novel information theory based al-
gorithm for reverse engineering

A widely used approach to infer regulatory relations is the analysis of the Shan-
non Entropy and Mutual information between shifted time series of gene ex-
pression signals, proposed by Liang et al. in the reveal algorithm [41]. In this
section, we propose an extension of the reveal approach, introducing a scoring
function for regulatory relations and an algorithm, CNET [63, 64] that exploits
the function to infer regulatory relations between genes. The function allows
our approach to account for inconsistencies in gene expression time series caused
by variable regulatory delays, measurement noise and quantization errors.

The output of our algorithm is an oriented regulatory graph (for a detailed
description of this model, please refer to Section 2.1.1). We compare CNET with
the original reveal algorithm and with Dynamic Bayesian Networks (DBNs)
[24], an approach that was identified as promising in the three assessment papers
[6], [13] and [71] and that is suitable for the inference of oriented graphs from
time series data.

Comparisons are carried out on the simulated set of time course experiments
described in Section 3.1.1: simulated data are useful when comparing different
algorithms, because of the lack of information on real regulatory networks, which
prevents one from obtaining both reliable test beds from real biological exper-
iments and multiple cases to evaluate average performance [71]. To assess the
behaviour of our algorithm on real data, we tested it also on the real dataset de-
scribed in Section 3.2, consisting of the observation during cell cycle of 9 human
genes.

In Section 4.2.1 we describe our inference model and the scoring function for
causal relations, in Section 4.2.2 we present CNET algorithm, in Section 4.2.3
we show the results of the comparison between CNET and DBNs and in Sec-
tion 4.2.4 we draw some conclusions.

4.2.1 CNET scoring function

CNET algorithm is designed to infer oriented graphs, in which nodes represent
genes and edges represent causal regulatory interactions among genes. Nodes
can be in three possible discrete states {1, 0,−1}, corresponding to high, medium
and low (or increasing, steady and decreasing) expression level.

To adapt our algorithm to the behaviour of real gene profiles, which com-
prehends noise and variable regulatory delays, and to limit the effect of the
error introduced by the quantization, we decided to map the reveal condi-
tion on Shannon Entropies to the domain of consistent pairs, as previously
suggested by [51]: for signals with a finite set of possible values (quantized
signals), the pair 〈regulators, regulated signal〉 is said to be consistent if and
only if each combination of values for the regulators univocally correponds to
a particular value for the regulated signal after ∆ time steps. In Appendix A,
we prove mathematically that the reveal condition is verified if and only if

4.2. CNET: a novel information theory based algorithm for reverse
engineering 47

0 1 2 3 4 5 6 7 8 9 10 11

1 -1 0 1 -1 0 0 0 1 -1 0

0 0 0 1 -1 0 1 -1 -1 1 0

0 1 -1 0 1 -1 0 1 0 0 0

x1

x2

x0

Figure 4.5: An example of a causal relation (x1, x2) => x0 which satisfies reveal
condition: profiles are quantized in increasing, steady and decreasing and time delay
∆ is equal to 1. To each combination of values (x1, x2) at time t always corresponds the
same value x0 at time t+1: for example, to (0,0) in the regulators always corresponds
a 0 in the regulated gene after one time step.

Figure 4.6: Example of a causal relation (x1, x2) ⇒ x0. Profiles are already aligned
properly.

〈regulators, regulated signal〉 is a consistent pair. An example which verifies
this condition is shown in Figure 4.5, with two regulators and time delay ∆ = 1.

This switch of domains allowed us to design a novel heuristic function for
regulatory pairs: each term of the function is ment to capture a particular aspect
of gene expression profiles and the ensemble of terms gives an indication of how
far the regulatory pair is from being consistent, thus inducing an ordering among
regulatory pairs. For a given regulated signal, then, the particular combination
of regulators that maximizes the scoring function can be searched.

For every gene x0, the algorithm searches extensively for the best set of k
regulators (x1 . . . xk) that maximizes a scoring function f :

f = we
1

1 + e
+ wss + wc

c

3k
with we + ws + wc = 1 . (4.1)

f ranges in (0,1] and combines the contribution of an error term e, a shape
term s and a completeness term c, by weighting them with parameters we, ws

and wc. Each term is explained in what follows.

48 Inferring the oriented network

Error Term

To illustrate the meaning of 1/(1 + e), we refer, without loss of generality, to
the case with two regulators x1 and x2 for a regulated gene x0: (x1, x2) ⇒ x0 .
The error term e is defined as:

e =
1∑

i=−1

1∑

j=−1

eij =
1∑

i=−1

1∑

j=−1

Lpij −Mpij

Lpij
, (4.2)

where Lpij is the number of occurrences of the input pattern 〈i, j〉 (e.g. 〈1,−1〉
in Figure 4.6 occurs 9 times, then Lp1,−1 = 9), and Mpij is the value of gene
x0 that is most frequent as output in correspondence to the input 〈i, j〉 (e.g. in
Figure 4.6, for the input pattern 〈1,−1〉, the value x0 = 0, occurring 7 times, is
more frequent than −1, occuring twice, thus Mp1,−1 = 7).

If there is a univocal correspondence between input and output profiles (and
then the pair 〈(x1, x2);x0〉 is consistent), all the eij are equal to zero and thus
1/(1 + e) = 1, otherwise 1/(1 + e) < 1. This allows the function to relax the
consistency condition and to tolerate a certain amount of noise and quantization
errors in the data.

Shape term

The shape term is calculated organizing the quantized profiles into blocks of
equal input combinations, such as the three blocks identified by vertical bars in
Figure 4.6. The shape term s is computed as

s =
1

#blocks

#blocks∑

i=1

si =
1

#blocks

#blocks∑

i=1

SSLi

BLi
(4.3)

where BLi is the length of the i-th block and SSLi is the length of the rightmost
substring of identical characters in the i-th block of x0.

For example, in Figure 4.6, the shape terms for the three blocks are 1 (3/3),
0.6 (3/5) and 0.67 (4/6), thus leading to an average shape term of 0.76.

The shape term s is similar to e, in the sense that it relaxes the consistency
condition, but it assigns lighter penalties to output inconsistencies occurring
right after a change of state in regulators; it then rewards situations in which
the output signal, after a change in the input, shows a short transient state
followed by a longer steady state. This terms helps the algorithm to capture
regulatory relations even in the presence of regulatory delays variable from gene
to gene and longer than the fixed value ∆.

Completeness term

The completeness term c/3k is the normalized number of different combinations
of values for regulators present in data (1 ≤ c ≤ 3k, if k is the size of the set of
regulators). For example, in Figure 4.6 two combination of values, 〈1,−1〉 and
〈0, 1〉, are present in input, then c/3k = 2/9. This term induces the algorithm to
prefer simpler solutions, i.e. solutions with less regulators, the other two terms
being equal.

4.2. CNET: a novel information theory based algorithm for reverse
engineering 49

4.2.2 Algorithm

Pseudocode for CNET algorithm is as follows:

CNET(data, max causes)
1 for i ← 0 to n genes
2 do max fitness[i] ← 0
3 C [i] ← ∅
4 for k ← 1 to max causes
5 do for causes in combinations(k, n genes)
6 do f ← fitness(i, causes)
7 if f = max fitness[i]
8 then
9 C [i] ← C [i]∪ causes

10 if f > max fitness[i]
11 then
12 C [i] ← causes
13 max fitness[i] ← f
14 if C [i] > 1
15 then weight each cause proportionally to

the number of times it appears in C [i]
16 return C

For each gene, CNET algorithm searches extensively for all the possible combi-
nations of regulators, from one to a maximum user defined number (max causes),
and keeps track of the best scoring combinations. If more than one set of regu-
lators for the same gene achieve the best score, the weight of each regulator is
set proportional to the number of times it appears among the best scoring sets.

4.2.3 Experimental Results

We first test CNET on a simulated dataset, to compare its performance with
the reveal algorithm and with Dynamic Bayesian Networks (DBNs), one of
the best approaches for reverse engineering gene regulatory networks from time
series data. In the implementation we chose, DBNs model continuous Gaussian
variables and relations between parents and children are linear [24]; networks
are inferred with the greedy search K2 algorithm, which builds the network
node by node, adding regulators as long as a gain is observed in the posterior
likelihood of the model structure given the data. We then validate performance
on a real microarray dataset of 9 human genes. Datasets are described in detail
in Sections 3.1.1 and 3.2 and are briefly reviewed in what follows.

Simulated data consist of 60 networks of 10 genes and 60 networks of 20
genes. For each network, 4 different time series of 50 samples were generated: the
first time series is obtained observing the natural response of the network from
random initial conditions, the other three time series are obtained stimulating
the network with a sinusoid, a ramp and a step signal respectively. Networks
are stimulated at their hub, i.e. the node with the highest out degree, to excite
the highest number of nodes in the network.

The real dataset, on the other hand, consists of 9 genes involved in human
cell cycle, for which samples were taken every hour for 47 hours (approximately
three complete cell cycles). To measure the performance of CNET, we compared

50 Inferring the oriented network

Figure 4.7: Average Precision and Recall for reveal, CNET and DBNs on 60 networks
of 10 genes (upper row) and 60 networks of 20 genes (lower row). Values are reported
for each of the three external stimuli and for the case without stimulus.

the output of the algorithm with the interactions documented in the BioGRID
database (www.thebiogrid.org).

The inference algorithm for DBNs has 2 tunable parameters, the mean and
the standard deviation of the prior probability distribution, µ0 and σ0. The
tunable parameters for CNET are we, wc and ws, relative weights of the three
terms in Equation 4.1. The parameters of the two algorithms were set by running
DBNs and CNET on a training set consisting of 10 networks with 10 genes
and 10 networks of 20 genes. Parameter values able to optimize the average
performance on the training set were used for the remaining tests.

We compare the results of the three algorithms in terms of Precision and
Recall, which are described in Section 2.3. Scores were compared using exact
Wilcoxon two-sample tests: we considered as significant differences correspond-
ing to a p-value < 0.05.

Results of the comparison between reveal, CNET and DBNs are shown in
Figure 4.7. CNET significantly outperforms reveal both in terms of Precision
an Recall, and its performance is comparable to DBNs: on networks of 10 genes,
there is no significant difference between the two algorithms, whereas on 20 genes
networks DBNs exhibit a significantly higher Recall. Precision and Recall are in
line with the literature, being in the same range of values reported in Section 2.4
for similar experiments. CNET seems to be more sensitive than DBNs to the
kind of input signal, showing significantly higher performance when the network
is stimulated with the sinusoid. Both algorithms, however, show equal or higher
performance when an external stimulus is present.

In microarray experiments, when a particular gene is externally stimulated,
the interest usually focuses mostly on genes directly dependent from the target:
for this reason, we analyzed also the performance of CNET and DBNs on the
inference of regulatory relations directly outgoing from the externally stimulated
gene. Results are shown in Figure 4.8. Performance on this subset of relations

4.2. CNET: a novel information theory based algorithm for reverse
engineering 51

10 genes, CNET

20 genes, CNET 20 genes, DBN

10 genes, DBN

Figure 4.8: Precision and Recall for CNET and DBN, on edges directly outgoing from
the stimulated gene, for networks of 10 genes (upper row) and 20 genes (lower row).
The striped part represents average Precision and Recall on the whole networks.

is more than doubled, and scales better when network size increases, both for
CNET and DBNs. The sensitivity of CNET to a particular external stimulus is
even more evident here: in the presence of a sinusoidal signal, CNET exhibits
an average Recall of 0.80 on networks of 10 genes and of 0.65 on network of 20
genes.

Results of the CNET algorithm on the real dataset are shown in Figure 4.9.
On the left side of the figure known relations between genes are plotted, while
on the right side the reconstructed network is represented: four of the orig-
inal edges, depicted in bold, were correctly identified, and two other edges,
CCNE1 → CDC2 and PCNA → CDC2, were identified reversed, thus lead-
ing to Precision and Recall of (0.36,0.44) on the oriented network and (0.54,0.67)
on the unoriented network, which are in line with the results on simulated data.
Moreover, for genes CCNA2, CCNB1, CCNE1, CDKN3 and RFC4 no regula-
tors are known among the nine genes; if we assess the performance of CNET
in inferring regulators only of the genes for whom a regulator is known, we ob-
tain a Precision of 0.80. Precision and Recall of DBNs on the same dataset are
(0.19,0.33) on the oriented network and (0.31,0.56) on the unoriented network.

4.2.4 Conclusions

In this section we presented a novel algorithm, CNET, for Reverse Engineering
of Gene Regulatory Networks from time series data of DNA microarray exper-
iments. The major point of innovation of our algorithm is the heuristic way in
which it handles noise, variable regulatory delays and network complexity: a
similar approach for tolerating quantization noise is presented in [51] and the
completeness term, exploited to reduce the number of regulators given the pre-
dictive accuracy of a causal relation, is closely related to the Bayes Information

52 Inferring the oriented network

Figure 4.9: Network of known interactions (left) and reconstructed network (right) for
the real dataset of 9 human genes related to cell cycle.

Criterion present in most inference algorithms for Bayesian Networks [24]. How-
ever, their contemporary usage, together with the novel shape term to capture
variable regulatory delays, is the strongest point of innovation of our approach.

Tests on simulated data showed that CNET outperforms the reveal algo-
rithm, of which it can be considered an improvement, and exhibits performance
comparable to a state-of-art approach, Dynamic Bayesian Networks, in recon-
structing both entire networks and subsets of them close to external stimulation.
Similar performance was exhibited on a real dataset.

Both CNET and DBNs exhibit higher performance in the presence of an
external stimulus and on the subset of edges directly outgoing from the stim-
ulated node. This behaviour suggests that performance of the algorithms can
vary across different portions of the networks. In the next chapter, we further
explore CNET and DBNs behaviour on the simulated data set, to study how
the performance is related to the local structure and the topological properties
of the network to be inferred.

Chapter 5

Performance of the
algorithms and topological
properties of the networks

Recent assessments papers of the performance of different algorithms on realis-
tically simulated data [6, 13, 71], reviewed in Section 2.4, showed that overall
performance of Reverse Engineering algorithms is on average quite poor: com-
monly adopted performance measures, such as Precision and Recall, rarely rise
beyond 0.5 in a 0 to 1 scale. Some evidence is emerging that performance is
related to the design of the particular microarray experiment, for example to
the presence or absence of an external stimulus, and depends on local network
structure [5, 62, 65].

In this chapter, we systematically investigate these hypotheses by applying
two Reverse Engineering algorithms, Dynamic Bayesian Networks (DBNs, [24])
and CNET (section 4.2), on the simulated dataset of externally stimulated data
described in Section 3.1.1. The two algorithms have been chosen because both of
them analyze time series data, infer oriented graphs and represent two different
approaches to reverse engineering: a model based method applied to continuous
expression data and an information theory based method applied to quantized
data.

Networks reconstructed by the two algorithms are inspected, searching for re-
gions of the networks correctly identified by both algorithms or, on the opposite,
missed by both. It has already been shown in the previous chapter (Section 4.2)
that the performance increases in the presence of an external stimulus and de-
pends on the distance from the stimulation point in the regulatory network; in
this chapter, we show empirical evidence of relations between the performance
of the algorithms and some topological properties of the networks, such as the
in-degree of nodes and the presence or absence of particular network motifs and
of alternative paths for the regulatory signal.

54 Performance and topological properties

5.1 Methods

For the analysis of this section, we exploit Dynamic Bayesian Networks (DBNs)
and CNET, with the particular implementations described in section (4.2). We
run our experiments on the simulated dataset of externally stimulated time
course data presented in Section 3.1.1: we consider 60 networks of 10 genes and
60 networks of 20 genes. For each network, we take into account three time
series of 50 samples, obtained stimulating the network with a sinusoid, a ramp
and a step signal respectively. Networks are stimulated at the node with the
highest out degree. Since we want to focus on the effects of the propagation
of the stimulus through the network, we do not consider datasets in natural
response for this analysis.

Overall performance of the algorithms will be measured in terms of true
positives, false positives and false negatives, as defined in Section 2.3. Moreover,
to search regions of the networks that are more easily detected by both Reverse
Engineering methods, regardless of the stimulus adopted to excite the system,
we developed a performance measure called S-score: S-score counts, for every
edge in the simulated network, the number of times it was identified by one
of the two algorithms in one of the different datasets, and thus ranges from 0
(never identified) to 6 (identified by both algorithms for the three data sets).

Edges are characterized in terms of:

• distance from the stimulated node,

• structure of the subnetworks containing them,

• topological properties of their source and destination nodes, such as in
and out degree, clustering coefficient, cyclic coefficient and betweenness
centrality,

• presence of alternative paths from their source to their destination.

For a survey and rigorous mathematical definition of topological properties of
the nodes in a network, please refer to [14].

5.2 Results

Results from Section 4.2 show that the performance of the two algorithm is
higher in the presence of an external stimulus, and that the sinusoid is the
most informative between the three possible stimulating signals. Moreover,
performance of both algorithms is almost doubled on the edges directly outgoing
from the stimulated node. This seems to suggest that the behaviour of the two
algorithms can be similar on particular regions of the network.

To further explore this hypothesis, we computed the six sets of true positives,
false positives and false negatives of the two algorithms and the relative size of
the intersection of the same set between the two algorithms. Results are shown
in Figure 5.1.

One can observe that the intersection of true positives and false positives
are low, i.e. that the two algorithms have different strategies of identifying
correct and incorrect connections. The sets of false negatives, on the other

5.2. Results 55

0%

20%

40%

60%

80%

100%

FP FN TP

10 genes

sin

step

ramp

0%

20%

40%

60%

80%

100%

FP FN TP

20 genes

sin

step

ramp

Figure 5.1: Relative size of the intersection between false positives, false negatives and
true positives returned by CNET and DBNs, for the three externally stimulated data
sets.

External stimulus

5
5

4

4

4

3

3

2

2

1

1

0

Figure 5.2: A 10 genes simulated network, with S-score reported on the edges.

hand, strongly overlap, suggesting that the portions of the network which are
difficult to be identified by the two algorithms are mostly the same.

To locate these portions and to explore their properties, S-score was evalu-
ated for every edge in the networks, as the number of times it was identified by
the two algorithms for the three externally stimulated datasets. The average
S-score is 2.00 for the networks of 10 genes and 1.34 for the networks of 20 genes,
thus low, as expected. An example of a 10 gene network, with S-score reported
on the edges, is shown in Figure 5.2.

As one can observe from the Figure, difficulty in inferring an edge is directly
proportional to the distance from the stimulus, but it seems also to depend on
the particular substructure in which the edge is contained: the edges on the left
branch, the distance being equal, are recognized with a higher accuracy than
the edges on the right one.

We indeed discovered that there are network substructures which are rec-
ognized with a significantly higher accuracy: for example, on circles of genes
regulating each ohter in a chain, like the one on the left side of Figure 5.3, edges
exhibit a mean S-score significantly higher than the average (3.5). The simple

56 Performance and topological properties

Figure 5.3: Edges in subnetworks like the one on the left exhibit an S-score significantly
higher than the average. The same is not true for subnetworks like the one on the
right.

addition of a diagonal edge, as in the subnetwork of Figure 5.3, is sufficent for
the S-score to drop down to the average level.

Trying to motivate this behaviour, we further searched for possible correla-
tions between S-score and the topological properties of source and destination
nodes of each edge. The topological properties we considered are:

• in and out degree, i.e. the number of edges incoming to and outgoing
from a node,

• clustering coefficient, i.e. the ratio between the number of edges linking
the neoghbours of a node and the total possible number of edges among
them, and

• cyclic coefficient, i.e. the average of the inverse of the sizes of the
smallest cycles formed by a node and its neighbours.

Moreover, we considered also the betweenness centrality of each edge, i.e.
the ratio between the number of shortest paths between each pair of nodes that
pass through the edge and the total number of shortest path between each pair.

Among all the aforementioned measures, we found significant correlation
only between S-score of an edge and the in degree of its destination node: as
reported in Figure 5.4, S-score is significantly higher on edges incoming to nodes
with in degree equal to one rather than edges incoming to nodes with in degree
greater than one.

Results are consistent with intuition, because single one-to-one relations are
likely to be identified more easily than N-to-one combinations of effects. No
significant differences in S-score were observed among edges with destination
nodes having in-degree greater than one; the major distinction is thus between
one-to-one and N-to-one relations.

Finally, we searched for a correlation between S-score on an edge and the
presence or absence of an alternative directed path between the source and
the destination of the edge. As depicted in Figure 5.5, an alternatve directed
path for an edge eij = (vi, vj) can be defined as a sequence of directed edges
eik1 . . . ekmj (k1, . . . , km "= i, j) originating from node vi and ending on node vj .

5.2. Results 57

0

1

2

3

4

5

6

destination

indeg = 1

destination

indeg > 1

10 genes

S
-s

co
re

0

1

2

3

4

5

6

20 genes

S
-s

co
re

destination

indeg = 1

destination

indeg > 1

Figure 5.4: Average S-score for edges incoming on nodes with in degree equal to one
and greater than one, for networks of 10 genes (left) and 20 genes (right).

Figure 5.5: Graphical representation of an alternative directed path between the two
shaded nodes.

58 Performance and topological properties

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

without
alternative path

with alternative
path

without
alternative path

with alternative
path

10 nodes 20 nodes

S-score on edges with and without alternative paths

Figure 5.6: Average S-score on edges with and without an alternative path, for net-
works of 10 genes (left) and 20 genes (right).

We found that S-score on edges without an alternative path is indeed sig-
nificantly higher than on edges with one or more alternative path, as shown in
Figure 5.6. Such a result is consistent with intuition: the presence of an al-
ternative path for the regulatory signal can create strange precedence patterns
in the output of the system and confound a Reverse Engineering algorithm.
No significant differences were observed between alternative paths of different
lenghts.

5.3 Conclusions

Reverse Engineering methods tend to exhibit poor average performance on real
or realistically stimulated data (see Section 2.4). Here, we presented an analy-
sis of the behaviour of two Reverse Engineering algorithms, DBNs and CNET,
over a dataset of 120 simulated gene networks, to understand how their perfor-
mance is related to presence/absence of an external stimulus, distance from the
simulated node and topological properties of the networks.

In general, the presence of an external stimulus improves the performance of
both methods: significant differences were observed for systems perturbed with
a sinusoidal signal in case of CNET (for both 10 and 20 genes networks) and
with all the stimuli in case of DBNs (only for 20 genes networks). Moreover,
the performance of both algorithms on the edges directly outgoing from the
stimulated node is almost doubled, with respect to the average performance on
the whole networks. This result seems to suggest the effectiveness of multi-
stimulus experiment design, with consecutive stimulations of different nodes in
the network.

The overlap between false positives, false negatives and true positives re-
turned by the two algorithms shows that the algorithms make different false

5.3. Conclusions 59

positives errors and similar false negatives errors, suggesting that there are parts
of the networks difficult to be identified from available data, independently of
the method used to reverse engineer the system.

A deeper analysis of simulated networks, through the use of an opportunely
defined measure, S-score, outlined that the distance from the stimulus is not
the only discriminant for performance variations: the substructure in which a
node is contained has also an effect on the performance of Reverse Engineering
algorithms that try to infer it. Searching for motivations of this behaviour,
a further analysis revealed that edges whose destination node has in-degree
equal to one and edges without an alternative path are significantly easy to be
identified than the others. These results are consistent with intuition, but as
far as we know this is the first systematic study that proved their empirical
evidence.

60 Performance and topological properties

Chapter 6

Inferring systems of
equations

In this chapter, we present an optimization approach to the problem of reverse
engineering of systems of sigmoidal differential equations from time course mea-
surements of gene expression. If the system consists of n equations, each with
n free parameters, the search space of an optimization algorithms is thus Rn×n

and the cost function to be minimized can be a measure of the error between
real and estimated gene expression profiles.

The problem of inferring Gene Regulatory Networks (GRNs) from gene ex-
pression profiles using optimization techniques has proved to be difficult even
when dealing with very small networks (5-10 genes) [72]. In Section 6.1, we
address the issue of the difficulty of inferring GRNs by performing an analy-
sis based on the notion of fitness-distance correlation (FDC) [32, 33, 66]. We
then exploit the results obtained from this analysis to design a novel mixed dis-
crete/continuous optimization algorithm for the inference of GRNs, described
in Section 6.2. The algorithm is tested on a dataset of simulated gene profiles
and its results are compared with the state-of-the-art in Section 6.2.3.

6.1 Fitness-distance correlation analysis

In this section, we study the difficulty of inferring the parameters of a system of
nonlinear differential equations used to model a GRN, starting from time course
observations of gene expression profiles. To model regulatory interactions, we
chose a system of nonlinear sigmoidal differential equations, also known as Dy-
namic Recurrent Neural Networks (RNNs) [39], which has the form

dxi

dt
=

k1

1 + exp
(
−

∑
j=1...n wijxj + b

) − k2xi , i = 1 . . . n (6.1)

where n is the number of genes in the system, xi is the rate of expression of
gene i, wij represents the relative effect of gene j on gene i (1 ≤ i, j ≤ n), b is a
bias coefficient, k1 is the maximal rate of expression and k2 is the degradation
rate. For our analysis, we set for simplicity b = 0, k1 = 1 and k2 = 1. The

62 Inferring systems of equations

search space for an optimization algorithm is then formed by the matrix W of
coefficients wij .

We decided not to approximate derivatives with finite differences, because
such an approach implies estimating the derivatives from temporal data and thus
both amplifies the effects of noise and requires a large amount of data points.
On the contrary, we generate temporal profiles with numerical integration of
the whole system, with a Runge-Kutta-Fehlberg method with adaptive step
size control [23]. For further details on this type of model, motivations for
its implementation and examples of its use in the literature, please refer to
Section 2.1.4.

As a measure of the deviation of time profiles generated by an inferred
network from the real profiles, we adopted the Relative Squared Error (RSE),
which is defined as

RSE =
1

Tn

T∑

t=1

n∑

i=1

[x̂i(t)− xi(t)]
2

x2
i (t)

,

where n is the number of genes, T is the number of time samples, xi(t) is the
real value for gene i at time t and x̂i(t) is the estimated value for the same
sample.

As a first contribution, we present an analysis of the error surface generated
by the combination RNN-RSE (Section 6.1.1). The main result of this analysis
is that the RNN-RSE error surface has a strong positive fitness-distance correla-
tion; however, the data also show the existence of many local optima of extreme
depth, which seems to be the main cause for the poor performance shown by
optimization algorithms on this problem. A second contribution is the quan-
tification of the effect that a priori information on the target’s GRN structure
has on the fitness landscape (Section 6.1.2). The final contribution is the anal-
ysis of the behavior of two state-of-the-art continuous optimization algorithms,
NEWUOA [56] and CMA-ES [28], on the problem with and without a priori
network structure information (Section 6.1.3). The results obtained from this
analysis constitute strong evidence in favor of inference approaches in which the
spaces of network topologies and of network parameters are decoupled.

6.1.1 Fitness-distance correlation around the optimum

To investigate the structure of the fitness landscape of our optimization prob-
lem, we performed a fitness-distance correlation analysis [33, 32]: we randomly
sampled interesting areas of the search space and studied, for sampled solutions,
the distribution of fitness values versus distance from the optimal solution. In
our case, a fitness value is considered to be better if the solution associated with
it has a lower value of the fitness function, the RSE between real and estimated
gene profiles. As distance measure between candidate solutions and the optimal
solution, we used the Euclidean distance.

As experimental data, we exploited the natural response time course dataset
described in Section 3.1.1: the expression of each gene is initialized uniformly at
random and the system is let free to evolve to a steady state. 50 logarithmically
spaced samples of gene expression are collected for each gene. The analyses
reported in this section are carried out on gene networks of size 10, in line with

6.1. Fitness-distance correlation analysis 63

(a) Example of widely distributed samples
(network 1)

(b) Example of more narrowly distributed
samples (network 3)

Figure 6.1: RSE vs Euclidean distance of 10000 log-uniform perturbations of the
elements of the optimal system matrix, for two networks of 10 genes.

the experimental results from the state-of-the-art approaches to this problem
[72, 81, 80].

As a first step of our analysis, we explored relations between fitness and
distance among a set of random perturbations of the optimal solution: each
element of the optimal matrix was perturbed with the addition of a log-uniformly
distributed random variable (i.e. a random variable uniformly distributed in
logarithmic scale) in the interval [10−a, 10−0], where a was tuned to account for
different problem sizes, to increase the density of the samples near the optimum.
Results for 10000 iterations of the perturbation procedure on two networks of
10 genes are shown in Figure 6.1.

As it can be seen from the figure, there is a strong correlation between
Euclidean distance and RSE, because samples distribute along a band with
positive slope, but the band is rather wide (approximately 10 orders of mag-
nitude of RSE for Figure 6.1a and 6 orders for Figure 6.1b), thus leading to
an average correlation coefficient of 0.471. We formulate the hypothesis that
the difficulty in solving the particular problem instance is closely related to the
width of the band in the fitness-distance plot. A large band width, in fact, sug-
gests the presence of extremely deep valleys in the fitness landscape, in which
a general purpose continuous optimization algorithm can keep decreasing the
RSE without getting closer to the optimal solution. The perturbation procedure
was repeated for 20 different problem instances of 10 genes. For the majority of
them (17 out of 20) the band in the RSE vs distance plot exhibits a width close
to the one of network 3 (Figure 6.1b), and for the remaining instances the width
is larger, close to the one of network 1 (Figure 6.1a). Therefore, we decided to
use network 1 and 3 throughout the chapter as two representative examples of
problem instances, to validate empirically our hypothesis.

6.1.2 Separation between structure and parameter values

As a second step, we decided to investigate the relation between the features
of the search space and the structure of the networks (i.e. the pattern of zero

64 Inferring systems of equations

Figure 6.2: RSE vs Euclidean distance of 10000 log-uniform perturbations of nonzero
elements of the optimal system matrix, for two networks of 10 genes. Plots are cut to
keep the same scale adopted in the other figures; the diagonal lines spread with the
same behavior down to 10−15 for Euclidean distance and 10−35 for RSE.

and nonzero elements in the weight matrix): gene networks are largely sparse,
thus the number of parameters to be fine tuned by an optimization procedure is
small with respect to the number of variables in the search space. We wanted to
understand how much the search space is affected by information on the network
structure.

To this end, we perturbed only nonzero elements of the optimal solution for
each problem instance, fixing to zero the other elements. As before, pertur-
bations were obtained with the addition of a log-uniformly distributed random
variable. RSE vs Euclidean distance of 10000 perturbations for network 1 and
3 are shown in Figure 6.2.

Even though the average correlation coefficient is 0.424, thus slightly lower
than the one form the previous step, fitness-distance plots tend to be more
structured: as it is clear from the figure, most of the samples lie on straight lines
parallel to the bands of the previous experiment, and the vertical span of the
lines reflects the width of the bands. A deeper analysis revealed that each line
corresponds to a single nonzero element of the weight matrix, thus suggesting
that some variables may be optimized independently, once one knows which
elements are nonzero. Such a hypothesis was not necessarily evident from the
mathematical description of the system and should be explored in future works.

We then decided to further explore the shape of the fitness landscape in
regions close in structure to the global optimum; for this purpose, we exploited
the concept of Hamming distance between two connectivity matrices1, and we
randomly sampled Boolean matrices at Hamming distance 1, 2, 5 and 10 from
the global optimum. We then kept original values for elements that are nonzero
in both matrices, the original one and the sampled one, and set new values
for the other nonzero elements, drawing them uniformly at random from the
interval [−10, 10]. 10000 samples for each value of Hamming distance are shown
in Figure 6.3, where lighter gray corresponds to higher Hamming distance, for

1The Hamming distance between two binary strings of the same length is the number of
bits that differ between the two strings. In our case, connectivity matrices are binary matrices
with 1 on element (i, j) if there is an edge from node j to node i, and a 0 otherwise; Hamming
distance can thus be properly computed between two connectivity matrices.

6.1. Fitness-distance correlation analysis 65

Figure 6.3: RSE vs Euclidean distance of 10000 log-uniform perturbations of the
optimal system matrix at Hamming distance 1, 2, 5, 10, for two networks of 10 genes.

networks 1 and 3.
From the figure, it is evident that at higher Hamming distances there is no

particular correlation between fitness and distance, but when the Hamming dis-
tance decreases the fitness vs. distance plot becomes more and more organized,
approaching the global shape of the bars from Figure 6.1. Indeed, average cor-
relation coefficients are 0.219, 0.196, 0.185 and 0.177 for networks at Hamming
distance 1, 2, 5 and 10, respectively. At Hamming distance 1, samples tend to
lie on curved lines and the structure of the plots become closer to the one from
Figure 6.2.

This latter analysis outlines that portions of the search space which corre-
spond to networks structurally close to the optimum (i.e., at a low Hamming
distance) present more organization in the fitness landscape and, in general,
better fitness values; these regions can thus serve as a local basin of attraction
for an algorithm which searches in the discrete space of network structures. To
test the quality of a particular network structure, a second algorithm can be
alternated to the first, to optimize continuous nonzero values of the network;
for the second algorithm, the probability of finding the optimal solution should
increase as the network structure becomes closer to the optimal structure.

6.1.3 Performance of two state-of-the-art optimization al-
gorithms

The analysis presented above gives an overall picture of the fitness-distance
relationship in the search space. In addition, it is of interest to study the
behaviour of some specific algorithms in the same space. The question we want
to address is whether an algorithm is capable of inferring the structure of the
target network using only the information provided by the RSE measure. If
that is not the case, a second experiment consists in measuring the performance
of the algorithm when the optimal network topology is known a priori. For our
experiments, we use NEWUOA [56] and CMA-ES [28], two approaches that are
considered to be state-of-the-art for continuous derivative-free optimization [4].
The two algorithms are described in detail in what follows.

66 Inferring systems of equations

NEWUOA

NEWUOA is a software for unconstrained continuous optimization in many di-
mensions that does not need information about the derivatives of the objective
function f : Rn → R it is applied to. At each iteration, NEWUOA creates a
quadratic model that interpolates k values of the objective function which is
used in a trust-region procedure [11] to update the variables. The main ad-
vantage of NEWUOA is that it can be used to solve large scale optimization
problems thanks to the reduced number of interpolation points it needs to build
the quadratic model (usually k = 2n + 1, where n is the number of variables
to optimize, is recommended). By definition, trust-region methods search lo-
cally, which means that they may converge to some local optimum in the case
the objective function is multimodal. For this reason, we used NEWUOA with
multiple restarts, so as to explore different regions of the search space in order
to reduce the chances of converging to low quality local optima. In our set-
ting, NEWUOA is restarted from a new initial solution after it has reached a
maximum number of function evaluations, or when the final radius of the trust
region reaches a certain threshold.

CMA-ES

The CMA-ES (Covariance Matrix Adaptation - Evolution Strategy) algorithm
belongs to the class of population-based optimization algorithms called Evolu-
tion Strategies. In this kind of algorithms, a population of solutions is sampled
from a multivariate normal distribution, with mean m and covariance matrix
C, for a certain number of generations; at each generation, the best individu-
als are selected and used to adapt the sampling mechanism, in order to select
potentially better solutions. In CMA-ES, the covariance matrix is dynamically
adapted with three concurring strategies: (i) reproduce the best steps in the
search space from the current generation, (ii) reproduce the set of moves from
the previous generations and (iii) obtain uncorrelated steps with step size con-
trol. The effect of the adaptation is to skew the sampling distribution, so to
obtain the highest variance along the steepest direction of the search space, re-
maining robust to badly scaled problems and avoiding premature convergence.
Because of this last property, we do not fix a maximum number of function
evaluations before stopping the search and restarting CMA-ES, relying only on
its internal stopping criteria (if global standard deviation increases more than a
constant factor, if the condition number of C is too large or if differences between
the best values in subsequent generations are smaller than a threshold).

In Tables 6.1 and 6.2 we show the parameters used in our experiments. These
parameters were chosen after an initial non-exhaustive experimentation phase.

The results obtained from running both NEWUOA with multiple restarts
and CMA-ES without any a priori information about the correct topology of
the target GRN are shown in Figure 6.4. Each shade of gray represents a run
of the algorithm; for each run, we generate different temporal profiles from the
same network, initializing each gene uniformly at random and then letting the
network evolve, so to test the robustness of the two algorithms across different
simulated microarray experiments. Although the two algorithms are capable of

6.1. Fitness-distance correlation analysis 67

Table 6.1: Parameters used with NEWUOA with multiple restarts

Parameter Value
Initial trust region radius 0.2

Final trust region radius 1× 10−10

Number of interpolation
points

k = 2n+1, where n is the number
of variables to optimize

Maximum number of function
evaluations per NEWUOA
run

2× 104

Maximum total number of
function evaluations

2 × 105, with structure
information

1 × 106, without structure
information

Number of independent runs 20

Table 6.2: Parameters used with CMA-ES

Parameter Value
Initial search point 0T

Initial standard deviation 3T

Population size λ = 2n + 1, where n is the num-
ber of variables to optimize

Maximum increasing factor
for standard deviation

3

Maximum condition number
for C

1014

Minimum value for differ-
ences between best conse-
quent solutions

10−17

Maximum total number of
function evaluations

2 × 105, with structure
information

1 × 106, without structure
information

Number of independent runs 20

68 Inferring systems of equations

(a) NEWUOA on network 1 (b) NEWUOA on network 3

(c) CMA-ES on network 1 (d) CMA-ES on network 3

Figure 6.4: The progress of NEWUOA with multiple restarts and CMA-ES on two 10-
gene-network inference problems. Each shade of gray represents a run of the algorithm.
The plots shown correspond to the case in which no a priori information about the
correct topology of the target GRN is provided to the algorithm.

making progress in terms of the value of the objective function (they descend
from a value in the order of 10 to a value in the order of 10−5 for NEWUOA
and 10−13 for CMA-ES), they do not make much progress towards the actual
target GRN. This can be seen by the (almost) vertical lines that appear on the
upper right corner of the plots in Figure 6.4.

In Figure 6.5, we show the results obtained after running NEWUOA with
multiple restarts and CMA-ES when the correct topology of the target GRN
is provided to the algorithms, which is equivalent to reducing the size of the
search space so that only nonzero entries are optimized. As before, each shade
of gray represents a run of the algorithm. In this case, the behaviour of the
two algorithms depends on the target network. With network 1, the two al-
gorithms move towards the optimal solution while improving the value of the
RSE over several orders of magnitude. However, in the vast majority of cases,
the algorithms cannot find solutions that are closer than a distance of 10−1 to
the optimal solution. In contrast, with network 3, the algorithms are capable
to find the optimal solution in each run.

The results presented above, together with those of the analysis based on
structure perturbations, constitute strong evidence in favor of optimization al-

6.1. Fitness-distance correlation analysis 69

(a) NEWUOA on network 1 (b) NEWUOA on network 3

(c) CMA-ES on network 1 (d) CMA-ES on network 3

Figure 6.5: The progress of NEWUOA with multiple restarts and CMA-ES on two 10-
gene-network inference problems. Each shade of gray represents a run of the algorithm.
The plots shown correspond to the case in which the correct topology of the target
GRN is provided to the algorithm.

70 Inferring systems of equations

−25

−20

−15

−10

−5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Networks

NEWUOA
lo
g 1

0(
RS

E)

−25

−20

−15

−10

−5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Networks

CMA−ES

lo
g 1

0(
RS

E)

Figure 6.6: Boxplots of RSE reached in 20 runs of NEWUOA and CMA-ES on 20
network instances of 10 genes, with full information on the topology of the networks;
the maximum number of function evalutations for both algorithms is set to 4× 104.

gorithms that explicitly intertwine a network structure search phase with a
network’s parameters search phase. A reduction in the distance from the opti-
mal network topology allows a continuous optimization algorithm to make more
progress toward the truly optimal solution.

With this perspective, we run an experiment to test the ability of both
NEWUOA and CMA-ES in returning an accurate and stable RSE value, when
provided with the correct structure and when given a limited amount of func-
tion evaluations (4 × 104). The most stable between the two algorithms is the
most suitable for being used as a parameter search algorithm and, implicitly,
as a reliable evaluator of the goodness of a proposed structure, once we use an
additional algorithm for searching the discrete space of network structures.

In Figure 6.6, we show the boxplots of RSE values achieved by 20 runs of
both algorithms on 20 test networks of 10 genes. Boxplots show that CMA-ES
obtains RSE values smaller than 10−15 on almost every run. NEWUOA, on
the other hand, gets better results for some network structures, but for several
others it is very poorly performing when compared to the much more stable
performance of CMA-ES; the latter is thus a more reliable estimator of the
goodness of the correct structure.

To further explore CMA-ES abilities, we run it on the same set of problems,
with the same maximum number of function evaluations (4× 104) but without
restarting the algorithm if one of its internal stopping conditions is encountered
first. Results are shown in Figure 6.7: performance does not deviate much in

6.1. Fitness-distance correlation analysis 71

−25

−20

−15

−10

−5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Networks

CMA−ES without restarts

lo
g
1
0
(R
S
E
)

Figure 6.7: Boxplot of RSE reached in 20 runs of CMA-ES on 20 network instances
of 10 genes, with full information on the topology of the networks; the maximum
number of function evalutations is set to 4× 104, but no restart is allowed if CMA-ES
encounters one of its internal stopping conditions before reaching the limit of function
evaluations.

terms of stability from the case of CMA-ES with restarts, but the maximum
reached number of function evaluations before stopping is always lower than
4 × 104, with a median of approximately 1.3 × 104. Thus, without restarts
CMA-ES exhibits roughly the same performance in terms of RSE stability, but
with a time gain of a factor of 3.

6.1.4 Conclusions

In this section, we presented a study of the fitness landscape for the problem of
Gene Regulatory Network inference, when Dynamic Recurrent Neural Networks
are adopted as a model for gene regulation and Relative Squared Error is chosen
as a fitness function. As far as we know, this is the first study on fitness-distance
correlation analysis for the problem of gene regulatory networks inference.

The study consists in a fitness-distance correlation analysis of different ran-
dom samplings around the problem’s optimal solution, which is in the form of
a weight matrix W . The optimal matrix was first perturbed globally, then only
on its nonzero elements and at fixed Hamming distance. Results show that the
error surface has a strong positive fitness-distance correlation, but they also re-
veal the presence of extremely deep valleys in the fitness landscape, which are
responsible for the poor performance of optimization algorithms not designed
explicitly for this problem.

The network structure perturbation analysis highlights that: (i) RSE alone
is not sufficient to guide a search algorithm towards regions of the search space
close to the global optimum, (ii) even if information about the optimal network
structure is provided to the algorithm, convergence to the global optimum is
not guaranteed because the fitness landscape presents many deep local optima,
and (iii) the closer a network structure is to the one of the optimal solution, the
higher the chances are that an algorithm for parameter optimization converges
to the optimum. This last fact seems to be due to the higher level of organization
in the fitness landscape in the proximity of the optimal structure.

Because of these observations, we conclude that a two-phase algorithm,
which alternates between a search step in the discrete space of network struc-

72 Inferring systems of equations

tures and a search step in the continuous space of nonzero system parameters,
has the potential of reaching high-quality solutions. Research in this direction
has already been done, for example in [81, 58, 36], but no analysis of the under-
lying fitness landscape had been performed before.

6.2 Mixed discrete and continuous optimization
algorithm

The analysis of the fitness lanscape described in the previous section provided
evidence in favour of a decomposition of the problem of Gene Regulatory Net-
work inference into two interconnected subproblems: a discrete search of the
optimal network structure in the space of connectivity matrices and a continu-
ous search of the optimal network parameters in Rm, where m is the number of
edges in the network.

In Section 6.2.1, we present a basic implementation of such an approach,
exploiting an Iterative Best Improvement Local Search strategy with Multiple
Restarts for the discrete search step, and CMA-ES for the continuous search
step. In Section 6.2.2, we describe two communication strategies between the
two optimization layers that enhance the performance of the basic algorithm.
In Section 6.2.3 we report experimental results of the application of the mixed
optimization algorithm to a set of simulated data and in Section 6.2.4 we present
some conclusions and future directions.

6.2.1 Basic Algorithm

The Iterative Best Improvement Local Search strategy belongs to the class of
Stochastic Local Search (SLS) algorithms, in which a complex or highly dimen-
sional search space is locally explored, starting from a random position in the
space and iteratively moving in the direction that locally minimizes (or maxi-
mizes) a scoring function. From the current position, SLS algorithms iteratively
generate a set of neighbours, i.e. solutions that do not differ much from the cur-
rent one, and replace the current solution with one of the neighbours, based on
some acceptance criterion. The process is iterated until no further improvement
of the current solution can be found; in this case, the current solution is called
a local optimum. The various SLS algorithms differ in the strategies to explore
the neighbourhood, to choose the next solution and to avoid local optima. In
the Iterative Best Improvement Local Search strategy, the current solution is
iteratively replaced with the best improving solution from its neighbourhood
and the process is repeated until a local optimum is reached. Restaring mul-
tiple times the algorithm from different random solutions guarantees that the
algorithm eventually converges to the global optimum, i.e. the best solution in
the search space.

In our case, the discrete search space consists of a subset of all squared
boolean connectivity matrices of size n×n, where n is the number of genes and
the element (i, j) of the connectivity matrix is equal to one if gene j regulates
gene i. Feasible solutions satisfy the following additional constraints:

• each row has at least one element equal to one, thus each gene has at least
a regulator (and the number of nonzero elements is greater than or equal

6.2. Mixed discrete and continuous optimization algorithm 73

to n),

• the number of nonzero elements is smaller than or equal to 2n, to force
sparsity of the network,

• elements on the diagonal are zero, i.e. self-regulation is not allowed2.

As neighbourhood for the local search, we chose all possible flips of one bit
in the connectivity matrix, excluding the flips that lead to unfeasible solutions.
Nonzero parameters of each candidate structure are optimized with CMA-ES
and the RSE between real and estimated profiles is used as cost function for
the structure. The maximum number of function evaluation for CMA-ES is set
to 4 × 104, as suggested by the results reported in the previous section, but
the algorithm is not restarted if, by means of its internal stopping criteria, it
terminates the computation before reaching the limit on the number of function
evaluations. The neighbour solution with the lower RSE value is chosen as
origin of the new neighbourhood, and the process is iterated until no improving
solution can be found in the current neighbourhood. The complete algorithm is
then restarted a maximum of 10 times, to increase the possibility of exploring
interesting regions of the search space.

6.2.2 Enhancements of the basic algorithm

In the basic version of our mixed algorithm the two optimization components,
Iterated Best Improvement Local Search and CMA-ES, communicate with each
other exchanging candidate structures and RSE values. In this section, we
describe two techniques for increasing the information exchange between the
two components and enhancing the overall algorithm behaviour.

The first technique consists in a feedback mechanism from the continuous to
the discrete optimizer: when all solutions in the neighbourhood have been eval-
uated, some elements of the best neighbour solution could have been estimated
by CMA-ES as close to zero, i.e. with absolute value below a fixed threshold. If
that is the case, when the center of the next neighbourhood is chosen, these ele-
ments are set to zero, thus implementing a longer move towards more promising
regions of the search space.

The second communication strategy is used during the evaluation of the
neighborhood, to exploit information on locality and similarities between neigh-
boring solutions in the continuous optimization procedure. Each neighbour
differs from the current solution by just one bit, i.e. by the presence or absence
of an edge in the corresponding network. Since the network is sparse, there can
be regions of the network which are not affected by the edge modification, being
upstream in the signal flow through the network. Continuous values for the pa-
rameters corresponding to edges in these regions do not need to be re-optimized
by CMA-ES and are thus kept fixed. Moreover, for the parameters that need to
be re-optimized, initial search values for CMA-ES are chosen equal to the one
obtained when evaluating the center of the neighbourhood, under the hypothe-
sis that optimal parameters values for two networks that differ by just one edge
are close to each other. The motivation for this strategy is that CMA-ES, when

2This last constraint is introduced for simplicity, but can be relaxed without affecting the
global behaviour of the algorithm.

74 Inferring systems of equations

used to optimize a smaller set of values and initialized with a good search point,
tends to reach earlier its internal stopping criteria, thus converging faster.

The pseudocode of the complete algorithm is the following:

Discrete Search(Tn×m)
1 global best ← 1
2 for i ← 1 to 10
3 do
4 Sample a feasible connectivity matrix Cn×n

curr

5 rowsn×1 ← Boolean vector, each value set to true
6 local best ← Continuous Search(T,Ccurr, rows)
7 neighb best ← local best
8 while improvement
9 do

10 improvement ← false
11 for i, j ← 1 to n
12 do
13 Cneighb ← flip(Ccurr, i, j)
14 if isFeasible(Cneighb)
15 then
16 rows← propagate(Ccurr, i, j)
17 costneighb ← Continuous Search(T,Cneighb, rows)
18 if costneighb < neighb best
19 then
20 neighb best ← costneighb

21 Cbest neighb ← Cneighb

22 improvement ← true
23 Set to zero the elements of Cbest neighb

24 identified as close to zero by the
25 continuous search algorithm
26 if improvement
27 then
28 local best ← neighb best
29 Ccurr ← Cbest neighb

30 if local best < global best
31 then
32 global best ← local best
33 Cbest ← Ccurr

34 return Cbest

Continuous Search(Tn×m,Cn×n, rowsn×1)
1 problem size ← number of nonzero elements of C[rows, :]
2 if first call of the procedure
3 then x start ← (problem size) random values
4 else if the current bit flip is 1 → 0
5 then x start ← (problem size− 1) results of the optimization of Ccurr

6 else x start ← (problem size) results of the optimization of Ccurr,
7 plus an additional random value.
8 cost ← CMA-ES(problem size, x start,T)
9 return cost

6.2. Mixed discrete and continuous optimization algorithm 75

The discrete optimization procedure receives as input the matrix of time
course experiments Tn×m and returns the best connectivity matrix Cn×n

best . In
each of the 10 iterations from line 2, an initial solution is sampled at random
and evaluated (lines 4−7). At each iteration, the process of neighbourhood
generation (lines 13−16), neighbour evaluation (lines 17−25) and update of the
current solution (lines 26−29) is repeated until a local optimum is reached.
The procedure flip(C, i, j) flips the bit (i, j) of the matrix C to its opposite
value, isFeasible(C) returns true if C does not contain a row full of zeros,
has less than 2n nonzero elements and does not contain ones on the diagonal.
propagate(C, i, j) propagates the effects of the bit flip (i, j) in the matrix
C: a bit flip consists in the addition or the removal of an edge in the con-
nection graph, thus all edges downstream of the modification are affected and
propagate(C, i, j) returns true for each row corresponding to the destination
of an affected edge.

The continuous optimization procedure, on the other hand, is exploited to
evaluate candidate network structures. When called for the first time, the pro-
cedure optimizes all the nonzero values of the connectivity matrix C, starting
from a complete random vector x start and scoring its progress with the RSE
between real time course data T and time course data generated with both
the connectivity matrix C and the current values for the set of parameters to
be optimized; the optimization is carried out through the CMA-ES optimiza-
tion algorithm. All the subsequent calls of Continuous Search need only
to optimize nonzero elements of the connectivity matrix contained in the rows
indicated by rows (line 1) and can exploit the parameters values optimized in
the previous function call as starting point for the search (lines 4−7).

6.2.3 Results

In this section, we present experimental results of our mixed discrete and contin-
uous algorithm on a simulated dataset of time course experiments. The dataset
consists of networks of size 5, 8 and 10 genes, with 20 simulated networks of each
size, generated as described in Section 3.1.1. Network dynamics are obtained
initializing at random a system of Dynamic Recurrent Neural Networks and
sampling 50 logarithmically spaced time points. Network sizes are in line with
the best results from the state-of-the-art on the inference of systems of nonlin-
ear equations representing Gene Regulatory Networks [72, 80, 81]: a complete
system of differential equations offers a detailed description of the observed
phenomenon and has thus to be exploited on a small scale problem.

Boxplots of Precision and Recall of the best scoring solutions obtained in 10
restarts of our algorithm, on 20 networks of size 5, 8 and 10, are reported in
Figure 6.8.

The algorithm is able to infer the correct structure (Precision and Recall
equal to 1) on 19 networks of 5 genes, 8 networks of 8 genes and 7 networks of 10
genes. However, when analyzing the minimum RSE reached after 10 iterations
(Figure 6.9), on 17 networks of 8 genes and 9 networks of 10 genes the algorithm
is able to reach RSE values below 10−18, a value extremely close to zero. This
discrepancy between correct structure and low RSE is probably to be attributed
to the complexity of nonlinear dynamical systems: the same set of time series,
in fact, can potentially be described by more than one system of equations with
great accuracy. Forcing the sparsity of the system greatly reduces the size of the

76 Inferring systems of equations

P R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 genes

P R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 genes

P R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 genes

Figure 6.8: Boxplots of Precision and Recall of the best solution, i.e. the solution
with the lowest RSE, obtained in 10 restarts of the mixed optimization algorithm on
20 networks of 5, 8 and 10 genes.

6.2. Mixed discrete and continuous optimization algorithm 77

 5 genes 8 genes 10 genes

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0
lo

g 10
RS

E

Figure 6.9: Boxplots of the logarithm of the lowest RSE values reached in 10 restarts
of the mixed optimization algorithm on 20 networks of 5, 8 and 10 genes.

set of possible different systems, but apparently not enough, even with systems
of 8 / 10 variables and observations of 50 time points.

For what concerns computational time, in Figure 6.10 we plot the trends of
Precision, Recall and RSE across time, on the 20 problem instances of 5, 8 and
10 genes, when restarting 10 times the algorithm and considering the solution
with the lowest so far RSE. For Precision and Recall, we chose to plot the mean
value over the 20 instances, whereas for the RSE we plot the median. All tests
were run on a single AMD Opteron2216 HE 2,4GHz processor.

From the figure, one can observe that for the majority of networks of 5 genes
a RSE lower than 10−18 is reached after 2×102 seconds, and after 5×104 seconds
for the majority of networks of 8 genes. As said before, low RSE values do not
always correspond to exact structure, but best networks are not too far, on
average, from the correct structure: when the best values for RSE are reached
for the majority of networks of 5 and 8 genes, Precision and Recall are both
greater than 0.8. On networks of 10 genes, on the other hand, 10 restarts seem
not to be enough for the algorithm to reach optimal RSE values in the majority
of cases; resulting Precision and Recall are 0.6 and 0.7, respectively.

To compare our algorithm with the state-of-the-art, we chose to consider
the results obtained in [80] and [81], which both present two mixed discrete
and continuous optimization approaches to the problem of inferring Dynamic
Recurrent Neural Networks from DNA microarray time course data. In both
papers, however, experiments are carried out on a single simulated gene network
(4 genes for [81] and 8 genes for [80]), thus the presented results are not really
indicative of the average behaviour of the algorithms. In [81], on a network of 4
genes and with 50 time samples, reached Precision and Recall are respectively
0.44 and 0.5. In [80], on a network of 8 genes and with 3 time series of 30 samples
each (thus 90 total samples), reached Precision and Recall are respectively 0.74
and 0.67. Our algorithm is thus able to reach better performance on problems

78 Inferring systems of equations

102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

Pr
ec

isi
on

5 genes
8 genes
10 genes

(a)

102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

Re
ca

ll

5 genes
8 genes
10 genes

(b)

102 103 104 105

10−20

10−15

10−10

10−5

100

Seconds

RS
E

5 genes
8 genes
10 genes

(c)

Figure 6.10: (a) average Precision, (b) average Recall and (c) median of the RSE of the
solutions with the lowest so far RSE in 10 repeated restarts of the mixed optimization
algorithm, on 20 networks of 5, 8 and 10 genes.

6.2. Mixed discrete and continuous optimization algorithm 79

of the same size.

6.2.4 Conclusions and Future Directions

In this section, we presented a mixed discrete and continuous optimization ap-
proach to the inference of Gene Regulatory Networks from DNA microarray
time course data. The algorithm is made of two interacting components, an It-
erated Best Improvement Local Search algorithm, which searches in the discrete
space of network structures, and a Covariance Matrix Adaptation - Evolution
Strategies algorithm for the optimization of continuous system parameters. Two
additional communication strategies between the two components are presented,
one to exploit locality in the space of network structures and the other to provide
additional feedback from the continuous optimization algorithm.

The mixed discrete and continuous optimization approach was motivated by
the study of the fitness landscape presented in the previous section, and proved
to be effective and competitive with the state-of-the-art on a set of simulated
time course experiments. The experimental analysis, however, provided empyri-
cal evidence of a problem related to the chosen model: time series obtained by
sampling the dynamic evolution of a system of nonlinear differential equations
can in general be described by more than one set of configurations of system
parameters, even with long time series (50 samples), small scale systems (5 /
8 variables) and additional constraints on system sparsity. For this reason, a
future research direction will be the study of Ensemble Learning strategies to
merge the results of different runs of the same stochastic algorithm, with the
purpose of sampling the space of all the equivalent networks able to describe the
same data and providing confidence levels for each edge, proportional to how
much it is conserved across the different system configurations.

80 Inferring systems of equations

Chapter 7

Conclusions

In this thesis, the problem of reverse engineering Gene Regulatory Networks
from DNA microarray experiments has been studied from an algorithmic point
of view. After a review of the biological problem and of the state of the art in
reverse engineering algorithms, its main difficulties and limitations were pointed
out. We have explained the need of decomposing the main task into a set
of subproblems and of identifying the correct algorithmic approach for each
subproblem, taking into account the scale and nature of the data to be processed
(Chapters 1−3).

Within this perspective, three novel algorithmic techniques were presented,
designed to cope with different types of microarray experiments and to address
the problem at different levels of scale. Moreover, two detailed studies were
carried out to further get insight into the difficulty of the problem of Gene
Regulatory Network inference.

Chapter 4 focused on the problem of inferring oriented Gene Regulatory
Networks, i.e. on identifying the presence or absence of regulatory relations
between two genes, without considering the strength or the analytical shape of
the relations. Two kinds of DNA microarray experiments were considered for
this: steady state observations of systematic perturbations of gene expressions
and time course observations of gene expression profiles. Two novel algorithms
were designed to process these two types of data.

In the first case (Section 4.1), a Qualitative Reasoning algorithm is designed
to process steady state perturbation experiments. The algorithm is able to infer
a subset of the regulatory rules from the differences in gene expression between
the perturbation experiments and the wild type experiment, i.e. the steady
state observation of the system when none of the genes is perturbed. The algo-
rithm can infer regulatory relations in three different scenarios, exploiting the
propagation of the perturbation throughout the network. From experiments on
simulated data, we observed that the Precision of the qualitative algorithm is
extremely high, close to one even on large scale networks (100 genes), but that
the algorithm is intrinsically unable to reconstruct the entire network. These
observations, together with its polynomial running time, make the algorithm
a good candidate for a preprocessing phase of some other inference technique,
because of its ability to provide fast and reliable information on some regula-
tory relations, which can be used to reduce the size of the search space of a
second Reverse Engineering algorithm. To our knowledge, this is the first sys-

82 Conclusions

tematic study on the application of Qualitative Reasoning to DNA microarray
experiments of steady state perturbation.

In the second case (Section 4.2) CNET, an inference algorithm based on a
heuristic scoring function for putative causal relations, is designed to process
time course observations of gene expression. The scoring function is carefully
tailored to identify the best set of regulators for each gene even in the presence of
noise and variable regulatory delays in the expression profiles. At the same time,
it rewards simpler regulatory rules. CNET proved to be competitive with one of
the best algorithms for this particular subproblem, Dynamic Bayesian Networks
(DBNs), both on simulated and on real time course data. Some approaches have
already been proposed in the literature to tackle the three separate problems
of noise, variable regulatory delays and increasing complexity of the model;
the main point of innovation of CNET is its ability to face the three problems
together, through the heuristic scoring function for putative causal relations.

The behaviour of CNET and DBNs was then further explored in a study
to understand how the performance of Reverse Engineering algorithms is re-
lated to the structural and topological properties of Gene Regulatory Networks
(Chapter 5). The analysis outlined that:

• there are regions of the regulatory networks which are intrinsically difficult
to be solved by both algorithms;

• both algorithms exhibit equal or higher performance when the system is
externally stimulated for the whole course of the experiment;

• when a single node i is externally stimulated, accuracy in inferring the
edges directly outgoing from i is significantly higher,

• accuracy in inferring an edge depends on the network substructure con-
taining it, being significantly higher if the in-degree of its destination node
is equal to one and if alternative directed paths are absent.

All these results are consistent with intuition but, as fare as we know, this is
the first systematic study that proves their empirical evidence.

Chapter 6 focused on the inference of systems of nonlinear differential equa-
tions from time course data. The scale of this second problem is smaller, because
the objective is to fit to time course data a system able to analytically describe
dependencies between genes and capable of making predictions on the evolution
of the gene expression across time. For our analysis, we chose a class of systems
of nonlinear sigmoidal differential equations known as Dynamic Recurrent Neu-
ral Networks [54], already exploited in the literature to analyze gene expression
profiles [80, 81, 76] and provided with a set of interesting features: regulatory
relations, in fact, are known to exhibit a differential and strongly nonlinear na-
ture and Dynamic Recurrent Neural Networks are among the simplest systems
able to reproduce a similar behaviour [39].

The ability to predict the evolution of the system across time provides one
with a direct measure of the goodness of a particular configuration of the sys-
tem, in terms of the error between real profiles and profiles predicted by the
current system configuration. The inference problem can thus be mapped to
an optimization problem, in which model parameters form the search space and
the error is the fitness function to be minimized. In Section 6.1, we present a
detailed analysis on the problem, when Dynamic Recurrent Neural Networks

83

have to be inferred and the Relative Squared Error (RSE) has to be minimized.
The analysis is carried out by sampling the search space around the optimal
solution and by studying the correlation between the RSE of the samples and
their Euclidean distance from the optimum. The study outlined that:

• the correlation between RSE and distance from the optimum is strong,
but the search landscape exhibits deep valleys, in which a general purpose
continuous optimization algorithm can be trapped; it can in fact keep
reducing RSE without a real decrease in the distance from the optimum;

• information on the structure of the networks, in terms of the pattern of
zero and nonzero elements in the system, is valuable and provides the
search space with a higher level of organization, useful for a continuous
optimization algorithm;

• organization in the fitness landscape is inversely proportional to the accu-
racy of the provided additional information on the structure, in terms of
Hamming distance from the original connectivity matrix.

This is the first study in the literature on fitness-distance correlation analysis
for the problem of inferring Gene Regulatory Networks and its results can be
exploited for the design of novel Reverse Engineering algorithms.

The aforementioned properties of the search space motivated the design of a
novel mixed optimization algorithm, described in Section 6.2, which searches at
a higher level in the discrete space of connectivity matrices and exploits a con-
tinuous optimization algorithm to tune the nonzero parameters of candidate ma-
trices, which are evaluated through the obtained minimum RSE. The algorithm
exploits Iterative Best Improvement Local Search with Multiple Restarts [30]
for the discrete search and Covariance Matrix Adaptation - Evolution Strategies
(CMA-ES [28]) for optimizing continuous nonzero parameters. The main point
of innovation of our algorithm are two communication strategies between the
discrete and the continuous optimizer, which allow them to exploit locality in the
search space and to progress faster towards the global optimum. Performance
results on simulated data showed that the algorithm is able to infer correct
GRNs and is competitive with the state-of-the-art on the same subproblem, but
pointed out a limitation of the chosen model: sampled nonlinear differential
dynamics can potentially be described by a set of different configurations of the
system of equations with extremely low RSE, even with a large set of samples
and a small number of system variables.

Most of our performance results are obtained in simulation, because of the
need for large set of benchmark problems to test the average behaviour of the
algorithm. Reliable information on real regulatory systems is still missing, thus
a set of gold standards is hard to find in the literature [6, 71]. However, we
tested the behaviour of one of our algorithms, CNET, on a real gene expression
dataset, analyzing its ability to infer what is known of real regulatory relations;
moreover, we assessed the performance of our Qualitative Reasoning algorithm
on a widely known simulated benchmark for Reverse Engineering algorithms,
the DREAM4 In Silico Network Challenge. As a future direction, we intend
to test the Qualitative Reasoning and the mixed optimization algorithms on a
real problem, although with the proper care in considering the results of the
algorithms and in comparing them with information from the literature on the
biological system under analysis.

84 Conclusions

Since the inference of a Gene Regulatory Network from a single experiment
proved to be unfeasible, as further shown by our presented studies on the diffi-
culties of the inference process, we will exploit both problem decomposition and
complementary information provided by multiple heterogenous experiments to
try to fully understand the complex mechanisms beyond regulatory systems.
Ensamble Learning strategies will thus be studied, with the aim of combining
the results of our three novel algorithms, when applied to different datasets
originating from the same biological system. For example, from a dataset of
both steady state perturbation experiments and time course experiments, the
Qualitative Reasoning algorithm can be exploited to gather reliable information
on a subset of regulatory relations, which can then be provided as a priori in-
formation to CNET and to the mixed optimization algorithm, reducing the size
of their search space. Moreover, given the stochastic nature of the mixed opti-
mization algorithm, we will study the design of one or more voting strategies to
merge the results of multiple runs of the algorithm, thus providing confidence
levels for the inferred edges.

Finally, the mixed discrete/continuous optimization technique developed for
the inference of Gene Regulatory Networks can also be adapted to other network
inference problems, such as learning of Bayesian Networks or Artificial Neural
Networks: traditional approaches to these problems usually adopt greedy al-
gorithms [12] or heuristic rules of thumb [29] to identify good network struc-
tures and then exploit optimization techniques to find the best configuration of
network parameters. Our mixed approach can be applied to these problems,
maintaining the paradigm of discrete search in the space of structures and con-
tinuous search in the space of network parameters, selecting from time to time
the best optimization algorithms for the two components and developing novel
techniques for the communication between the two search layers.

Appendices

Appendix A

Equivalence between pair
consistency and causal
relation

In this appendix we prove mathematically the equivalence between the reveal
condition for causal relations, based on Shannon Entropy, and the consistency
of the pair 〈regulators; regulatedgene〉, i.e. the condition on which the scoring
function of CNET algorithm is based (see Section 4.2).

Definition 1 The pair 〈(X1 . . . XK);X0〉 is consistent if, every time a given
combination of values (x1 . . . xK) appears for (X1 . . . XK), the value of X0 after
∆ time steps is always the same.

Definition 2 The Shannon Entropy for a sequence X of symbols xi from an
alphabet of size b is

H(X) = −
b∑

i=1

p(xi) logb p(xi) (A.1)

where p(xi) is the probability of observing the particular symbol xi.

Definition 3 The Joint Shannon Entropy for the sequences (X1 . . . XK) of
symbols from an alphabet of size b, is

H(X1, ..., XK) = −
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p(x1i, . . . , xKi) logb p(x1i, . . . , xKi) (A.2)

where p(x1i, . . . , xKi) is the probability of observing simultaneously the particular
combination of symbols x1i, . . . , xKi in sequences X1, . . . , XK .

Proposition 1 The causal relation

X1 . . . XK ⇒ X0 (A.3)

holds if and only if

H(X1 . . . XK) = H(X0, X1 . . . XK) (A.4)

88 Equivalence between pair consistency and causal relation

after a proper shift of sequence X0, to account for the fixed delay ∆ in the causal
relation.

Proven in [41].

Theorem 1 The causal relation A.3 holds if and only if the pair 〈(X1 . . . XK);X0〉
is consistent.

Proof From Proposition 1, equation (A.3) holds if and only if

H(X1 . . . XK) = H(X0, X1 . . . XK) (A.5)

but then, from definition 3

H(X1, ..., XK) = −
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p(x1i, . . . , xKi) logb p(x1i, . . . , xKi) (A.6)

and, supposing w. l. o. g. that Xi ∈ {i, s, d}1,

H(X0, X1 . . . XK) = −
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K+1 times

p(x0i, x1i, . . . , xKi) logb p(x0i, x1i, . . . , xKi) =

−
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p((x0 = i) ∧ (x1i . . . xKi)) log p((x0 = i) ∧ (x1i . . . xKi))

−
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p((x0 = s) ∧ (x1i . . . xKi)) log p((x0 = s) ∧ (x1i . . . xKi))

−
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p((x0 = d) ∧ (x1i . . . xKi)) log p((x0 = d) ∧ (x1i . . . xKi)) (A.7)

If the pair 〈(X1 . . . XK);X0〉 is consistent, every time a given combination
(x1i . . . xKi) appears for (X1 . . . XK), x0 after ∆ time steps has always the
same value x, being it increasing, steady or decreasing. Then,

p(x0i, x1i, . . . , xKi) =
{

p(x1i, . . . , xKi) if x0i = x;
0 otherwise.

And then, in equation (A.7), for every combination of values (x1i . . . xKi) there
is exactly one term in one of the three summations which is different from
zero. And then equation (A.5) holds.

1Which stand for increasing, steady and decreasing.

Appendix B

Selection of differentially
expressed genes from noisy
data

In DNA microarray experiments, for the case in which an external perturbation
of the system is present in some experiments and absent in some others (wild type
experiments), genes are said to be differentially expressed in the perturbation
experiment if their level of expression differs significantly from their level in the
wild type experiment.

In this appendix, we present the methodology we adopted for the selection
of differentially expressed genes from noisy knock-out experiments. As a case
study, throughout the appendix we will show the application of this methodology
to a dataset extracted from the DREAM4 In Silico Network Challenge [46, 73],
namely the Size 10 Subchallenge, which is described in detail in Section 3.1.2 and
is used as a benchmark for our Qualitative Reasoning algorithm in Section 4.1.

The procedure can be divided in three subsequent steps:

1. Identification of flat profiles from time course experiments,

2. Inference of a noise model from flat profiles,

3. Selection of differentially expressed genes from knock-out experiments
with the inferred noise model.

Each step is described in detail in what follows.

B.1 Selection of flat profiles from time course
data

The core idea behind our methodology is to infer an accurate description of the
noise present in the data. With this aim, we want to identify a set of profiles
which can be considered representative of the noise at different levels of gene
expression. If both steady state and time course experiments are present in
the dataset under analysis, as it is the case in the DREAM4 In Silico Network

90 Selection of differentially expressed genes from noisy data

Challenge, one can exploit the dependencies among the expression samples at
subsequent temporal intervals to reliably identify flat profiles, i.e. profiles whose
expression is not changing significantly over time. All the variations present in
flat profiles are caused only by noise, thus one can exploit a set of flat profiles
at different levels of expression to gain a precise model for the noise and then
use this model to select differentially expressed genes from the steady state
experiments.

To this purpose, we exploited the procedure described in [74] and imple-
mented in the open-source EDGE software [40]: for each gene expression time
series in the dataset, the method fits a model under the null hypothesis that
there is differential expression, and then under the alternative hypothesis that
there is no differential expression. The null model is the curve that minimizes
the sum of squares among the general class of natural cubic splines. The al-
ternative model is the flat line that minimizes the sum of squares among all
possible flat lines. A statistic is calculated that compares the goodness of fit of
the two model: the lower is the p-value of the statistic, the higher the chances
are that the gene expression profile is flat.

For each of the five networks of ten genes from the DREAM4 In Silico Net-
work Challenge, we processed altogether the five time course experiments with
the EDGE software and selected, among the ten profiles with the lower p-values,
the five profiles with the better span across the whole normalized gene expression
range. The five selected profiles for each network are shown in Figure B.1.

B.2 Inference of a noise model

The second step of our analysis consists in the inference of a model for the noise
from the previously identified flat profiles. With this purpose, we follow the
procedure described in [18]: given two measurements (xi, xj) of the expression
of the gene x and assuming additive noise we can write

{
xi = µi + εi

xj = µj + εj
(B.1)

where µi and µj represent the real (unknown) gene expression values and εi, εj

are two realizations of the noise variable ε.
Since our purpose is to identify genes whose espression is significantly differ-

ent between the knock-out experiment and the wild type experiment, we want
to infer a model for the variable

δ = xi − xj = (µi − µj) + (εi − εj) (B.2)

at different levels of the average expression intensity

xixj =
xi + xj

2
(B.3)

If the Null Hypothesis H0 is defined as the situation in which the generic gene
x is not differentially expressed in two different arrays, and thus µi = µj , δ
can be seen as a distribution in Null Hypothesis conditions. Therefore, from
δ distribution knowledge it is possible to derive a confidence interval for the
selection of differentially expressed genes. In our case, the δ distribution can be

B.2. Inference of a noise model 91

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
5 most flat profiles, network1

time

in
te

ns
ity

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
5 most flat profiles, network2

time

in
te

ns
ity

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
5 most flat profiles, network3

time

in
te

ns
ity

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
5 most flat profiles, network4

time

in
te

ns
ity

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
5 most flat profiles, network5

time

in
te

ns
ity

Figure B.1: Five most flat profiles for each of the five networks in the DREAM4 In
Silico Network Challenge, selected with the EDGE software for differentially expressed
time course experiments analysis.

92 Selection of differentially expressed genes from noisy data

inferred from flat time course profiles and then exploited to select differentially
expressed genes in the knock-out and wild type experiments.

The inference procedure is composed by the following steps:

• A bootstrap operation is carried out on the set of flat profiles, extracting
(with replacement) 100 pairs of measurements (xi, xj) for each flat profile.

• Average expression intensity and δ are computed for each pair of mea-
surements with equations B.3 and B.2. δ vs average intensity scatterplots
of the obtained samples for the DREAM4 data, one for each network, are
represented in Figure B.2. As it is clear from the figure, in some cases
the samples do not cover the whole span of the average expression inten-
sity, because the dadaset does not contain flat profiles for all the possible
average intensities.

• The range of average intensity values is discretized in 20 intervals of vari-
able sizes, grouping sets of 25 samples with consecutive intensity values.

• For each of these intervals, the standard deviation of δ is calculated using

SDδ =

√√√√ 1
n− 1

·
n∑

i=1

(δi −mδ)2 (B.4)

where n is the number of samples and mδ is the average of the n observed
δi in the considered interval.

• In order to explicit the relation between the standard deviation of δ and the
average intensity of the gene expression, the standard deviation is fitted
using Weighted Least Squares method. The model we chose for the fit,
after having inspected the sampled distributions of standard deviations,
is of constant coefficient of variation: the samples were thus fitted to
straight lines. The samples of the standard deviations, together with the
fitted models, for the DREAM4 data are represented in Figure B.3. Some
cases of deviation from the fitted linear model can be imputed to the
aforementioned lack of flat profiles to cover the whole range of average
expression intensity.

The inferred noise model, i.e. the description of the standard deviation of
δ as a function SDδ(xixj) of the average expression intensity, is then used in
the next step to identify the genes which are differentially expressed between
knock-out and wild type experiments.

B.3 Selection of differentially expressed genes
from knock-out experiments

To select the genes whose expression intesity differs significantly between the
knock-out and the wild type experiments we exploit the noise model through
the following procedure:

B.3. Selection of differentially expressed genes from knock-out experiments 93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Bootstrap, 100 samples for each flat profile, network1

(xi + xj) / 2

δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Bootstrap, 100 samples for each flat profile, network2

(xi + xj) / 2

δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Bootstrap, 100 samples for each flat profile, network3

(xi + xj) / 2

δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Bootstrap, 100 samples for each flat profile, network4

(xi + xj) / 2

δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Bootstrap, 100 samples for each flat profile, network5

(xi + xj) / 2

δ

Figure B.2: δ vs average intensity scaterplots of the bootstrap sampling for each of
the five networks in the DREAM4 In Silico Network Challenge. 100 samples were
gathered for each of the 5 flat profiles.

94 Selection of differentially expressed genes from noisy data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

SD
δ
 vs average intensity, network1

intensity

SD
δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

SD
δ
 vs average intensity, network2

intensity

SD
δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

SD
δ
 vs average intensity, network3

intensity

SD
δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

SD
δ
 vs average intensity, network4

intensity

SD
δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

SD
δ
 vs average intensity, network5

intensity

SD
δ

Figure B.3: SDδ vs average intensity plots for each of the five networks in the
DREAM4 In Silico Network Challenge, with the results of Weighted Least Squares
fits of models with constant coefficient of variation.

B.3. Selection of differentially expressed genes from knock-out experiments 95

• For each gene and each knock-out experiment, we compute the two mea-
sures

δij = xij − wti, xij =
xij + wti

2
, (B.5)

where xij is the intensity of the expression of gene xi measured during the
knock-out of gene xj and wti is the intensity of the expression of the same
gene measured in the wild type experiment.

• For each pair (δij , xij) we compute

δ′ij =
δij

SDδ(xij)
, (B.6)

normalizing each δij by its corresponding standard deviation, computed
from the noise model inferred in the previous step.

• The distribution of the variable δ′ reproduces the null hypothesis distri-
bution and, assuming Gaussian noise, it can be considered equivalent to
the standard normal distribution. Fixing a significance level α, where α
represents the probability of rejecting the null hypothesis when the null
hypothesis is true, one can thus compute a confidence threshold θ directly
from the inverse of the normal cumulative distribution function. θ can
then be used to identify differentially expressed genes through the follow-
ing inequalities:






δ′ij > θ ⇒ Overexpressed gene
δ′ij < −θ ⇒ Underexpressed gene

−θ ≤ δ′ij ≤ θ ⇒ Gene not differentially expressed
(B.7)

For the case of the DREAM4 In Silico Network Challenge, we set a conservative
significance level α = 0.002, thus obtaining a threshold θ = 3.09. Information
on differentially expressed genes was then used for the Qualitative Reasoning
algorithm described in Section 4.1 to infer direct causal relations between genes
from gene knock-out experiments.

96 Selection of differentially expressed genes from noisy data

Bibliography

[1] R. Albert. Scale-free networks in cell biology. Journal of Cell Science, 118:4947–
4957, 2005.

[2] U. Alon. Network motifs: theory and experimental approaches. Nat. Rev. Genet.,
8(6):450–461, June 2007.

[3] M. Arnone and E. Davidson. The hardwiring of development: organization and
function of genomic regulatory systems. Development, 124:1851–1864, 1997.

[4] A. Auger, N. Hansen, J. M. Perez Zerpa, R. Ros, and M. Schoenauer. Empirical
comparisons of several derivative free optimization algorithms. In Acte du 9ime
colloque national en calcul des structures, May 2009.

[5] S. Badaloni, M. Falda, and F. Sambo. Scale-free structure and topological prop-
erties in reverse engineering of gene regulatory networks. In Workshop Italiano di
Vita Artificiale e Computazione Evolutiva WIVACE2008., Venezia, Italy., Sept.
8-10 2008.

[6] M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. di Bernardo. How to
infer gene networks from expression profiles. Mol. Syst. Biol., 3(78), February
2007.

[7] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, Oct. 1999.

[8] R. E. Bellman. Adaptive control processes - A guided tour. Princeton University
Press, Princeton, New Jersey, U.S.A., 1961.

[9] A. J. Butte and I. S. Kohane. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. In Pacific Symposium
on Biocomputing, pages 418–429, 2000.

[10] J.-P. Chiou and F.-S. Wang. Hybrid method of evolutionary algorithms for static
and dynamic optimization problems with application to a fed-batch fermentation
process. Computers and Chemical Engineering, 23(9):1277 – 1291, 1999.

[11] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. MPS-SIAM
Series in Optimization. SIAM, Philadelphia, PA, 2000.

[12] G. F. Cooper and E. Herskovits. A bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 09(4):309–347, October 1992.

[13] A. Corradin, B. Di Camillo, G. Toffolo, and C. Cobelli. In silico assessment of four
reverse engineering algorithms: role of network complexity and multi-experiment
design in network reconstruction and hub detection. In ENFIN-DREAM Con-
ference Assessment of Computational Methods in Systems Biology, Madrid, April
28-29, 2008.

[14] L. d. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas. Characterization of
complex networks: A survey of measurements. Advances in Physics, 56(1):167–
242, January 2005.

98 Bibliography

[15] C. O. Daub, R. Steuer, J. Selbig, and S. Kloska. Estimating mutual informa-
tion using b-spline functions - an improved similarity measure for analysing gene
expression data. BMC Bioinformatics, 5:118, 2004.

[16] A. De La Fuente, N. Bing, I. Hoeschele, and P. Mendes. Discovery of meaningful
associations in genomic data using partial correlation coefficients. Bioinformatics,
20(18):3565–3574, 2004.

[17] P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mRNA
expression levels during CNS development and injury. In Pacific Symposium on
Biocomputing, pages 41–52, 1999.

[18] B. Di Camillo. Modelling Dynamic Gene Expression Profiles: Insulin Regulation
in Skeletal Muscle. PhD Thesis in Bioengineering, Department of Information
Engineering, University of Padova, Italy, 2003.

[19] B. Di Camillo, F. Sanchez-Cabo, G. Toffolo, S. K. Nair, Z. Trajanoski, and C. Co-
belli. A quantization method based on threshold optimization for microarray short
time series. BMC Bioinformatics, 6:S11, 2005.

[20] B. Di Camillo, G. Toffolo, and C. Cobelli. A gene network simulator to assess
reverse engineering algorithms. Annals of the New York Academy of Sciences,
1158(1):125–142, 2009.

[21] M. Dorigo and T. Stützle. Ant Colony Optimization (Bradford Books). The MIT
Press, July 2004.

[22] M. K. Dougherty, J. Mller, D. A. Ritt, M. Zhou, X. Z. Zhou, T. D. Copeland,
T. P. Conrads, T. D. Veenstra, K. P. Lu, and D. K. Morrison. Regulation of raf-1
by direct feedback phosphorylation. Molecular Cell, 17(2):215 – 224, 2005.

[23] E. Fehlberg. Low-order classical runge-kutta formulas with step size control and
their application to some heat transfer problems. Technical Report 315, NASA,
1969.

[24] F. Ferrazzi, P. Sebastiani, M. F. Ramoni, and R. Bellazzi. Bayesian approaches
to reverse engineer cellular systems: a simulation study on nonlinear gaussian
networks. BMC Bioinformatics, 8 Suppl 5, 2007.

[25] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins. Inferring genetic net-
works and identifying compound mode of action via expression profiling. Science,
301(5629):102–105, July 2003.

[26] P. Gennemark and D. Wedelin. Benchmarks for identification of ordinary differ-
ential equations from time series data. Bioinformatics, 25(6):780–786, 2009.

[27] N. Hall. Advanced sequencing technologies and their wider impact in microbiol-
ogy. J Exp Biol, 210(9):1518–1525, May 2007.

[28] N. Hansen. The CMA evolution strategy: a comparing review. In Towards a
new evolutionary computation. Advances on estimation of distribution algorithms,
pages 75–102. Springer, 2006.

[29] S. Haykin. Neural networks : a comprehensive foundation. 1999.

[30] H. H. Hoos and T. Stützle. Stochastic Local Search : Foundations & Applications
(The Morgan Kaufmann Series in Artificial Intelligence). Morgan Kaufmann,
September 2004.

[31] L. Hunter. Life and its molecules: A brief introduction. AI Magazine - Special
issue on AI and Bioinformatics, 25(1):9–22, 2004.

[32] T. Jones. Evolutionary algorithms, fitness landscapes and search. Working Papers
95-05-048, Santa Fe Institute, May 1995.

Bibliography 99

[33] T. Jones and S. Forrest. Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In Proceedings of the 6th International Confer-
ence on Genetic Algorithms, pages 184–192, San Francisco, CA, 1995. Morgan
Kaufmann.

[34] S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology, 22(3):437–467, March 1969.

[35] J. Kennedy, R. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kaufmann,
San Francisco, CA, 2001.

[36] K. Kentzoglanakis, M. Poole, and C. Adams. Incorporating heuristics in a swarm
intelligence framework for inferring gene regulatory networks from gene expression
time series. In ANTS ’08: Proceedings of the 6th international conference on Ant
Colony Optimization and Swarm Intelligence, pages 323–330, Berlin, Heidelberg,
2008. Springer-Verlag.

[37] S. Kimura, K. Ide, A. Kashihara, M. Kano, M. Hatakeyama, R. Masui, N. Nak-
agawa, S. Yokoyama, S. Kuramitsu, and A. Konagaya. Inference of S-system
models of genetic networks using a cooperative coevolutionary algorithm. Bioin-
formatics, 21(7):1154–1163, 2005.

[38] S. Kimura, S. Nakayama, and M. Hatakeyama. Genetic network inference as a
series of discrimination tasks. Bioinformatics, 25(7):918–925, 2009.

[39] J. F. Kolen and S. C. Kremer. A Field Guide to Dynamical Recurrent Networks.
Wiley-IEEE Press, 2001.

[40] J. T. Leek, E. Monsen, and J. D. Dabney, A. R. ans Storey. Edge: extraction
and analysis of dierential gene expression. Bioinformatics, pages 507–508, 2006.

[41] S. Liang, S. Fuhrman, and R. Somogyi. Reveal: a general reverse engineering
algorithm for inference of genetic network architectures. In Pacific Symposium
on Biocomputing, pages 18–29, 1998.

[42] P.-K. Liu and F.-S. Wang. Inference of biochemical network models in s-system
using multiobjective optimization approach. Bioinformatics, 24(8):1085–1092,
2008.

[43] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel. Performance measures
for information extraction. In Proceedings of DARPA Broadcast News Workshop,
pages 249–252, 1999.

[44] D. Marbach, C. Mattiussi, and D. Floreano. Bio-mimetic Evolutionary Reverse
Engineering of Genetic Regulatory Networks. In E. Marchiori, J. H. Moore, and
J. C. Rajapakse, editors, 5th European Conference on Evolutionary Computa-
tion, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2007), vol-
ume 4447 of Lecture Notes in Computer Science, pages 155–165. Springer-Verlag
Berlin, 2007.

[45] D. Marbach, C. Mattiussi, and D. Floreano. Combining Multiple Results of a
Reverse Engineering Algorithm: Application to the DREAM Five Gene Network
Challenge. Annals of the New York Academy of Sciences, 1158:102–113, 2009.

[46] D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano. Generating Realis-
tic In Silico Gene Networks for Performance Assessment of Reverse Engineering
Methods. Journal of Computational Biology, 16(2):229–239, 2009.

[47] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla Fav-
era, and A. Califano. Aracne: an algorithm for the reconstruction of gene regu-
latory networks in a mammalian cellular context. BMC Bioinformatics, 7 Suppl
1, 2006.

[48] S. Mehrotra. On the implementation of a primal-dual interior point method.
SIAM Journal on Optimization, 2(4):575–601, 1992.

100 Bibliography

[49] M. Molla, M. Waddell, D. Page, and J. Shavlik. Using machine learning to design
and interpret gene-expression microarrays. AI Magazine - Special issue on AI
and Bioinformatics, 25(1):23–44, 2004.

[50] K. Murphy and S. Mian. Modelling gene expression data using dynamic bayesian
networks. Technical report, Computer Science Division, University of California,
Berkeley, CA., 1999.

[51] D. Nam, S. Seo, and S. Kim. An efficient top-down search algorithm for learning
boolean networks of gene expression. Machine Learning, 65:229–245, 2006.

[52] D. Nam, S. H. Yoon, and J. F. Kim. Ensemble learning of genetic networks from
time-series expression data. Bioinformatics, 23(23):3225–3231, 2007.

[53] J. Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible
Inference. Morgan Kaufmann, September 1988.

[54] B. A. Pearlmutter. Dynamic recurrent neural networks. Technical Report CMU-
CS-90-196, Carnegie Mellon University, Pittsburgh, PA, 1990.

[55] R. Peeters and R. Westra. On the identification of sparse gene regulatory net-
works. In Proc 16th Intern Symp on Mathematical Theory of Networks, 2004.

[56] M. J. D. Powell. Large-Scale Nonlinear Optimization, volume 83 of Nonconvex
Optimization and Its Applications, chapter The NEWUOA software for uncon-
strained optimization, pages 255–297. Springer-Verlag, Berlin, Germany, 2006.

[57] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabasi. Hierar-
chical organization of modularity in metabolic networks. Science, 297(5586):1551–
1555, August 2002.

[58] H. W. Ressom, Y. Zhang, J. Xuan, Y. Wang, and R. Clarke. Inference of gene
regulatory networks from time course gene expression data using neural networks
and swarm intelligence. In IEEE Symposium on Computational Intelligence and
Bioinformatics and Computational Biology, pages 1–8. IEEE, 2006.

[59] G. Ruvkun. Molecular biology. glimpses of a tiny rna world. Science,
294(5543):797–799, 2001.

[60] L. Sacchi, C. Larizza, P. Magni, and R. Bellazzi. Precedence temporal networks to
represent temporal relationships in gene expression data. Journal of Biomedical
Informatics, 40(6):761–774, 2007.

[61] M. Sakawa. Fuzzy Sets and Interactive Multiobjective Optimization. Plenum
Press, New York, 1993.

[62] F. Sambo, B. Di Camillo, M. Falda, G. Toffolo, and S. Badaloni. Evaluation
of local reliability of gene networks inferred from time series expression data.
In RECOMB Satellite on Regulatory Genomics and Systems Biology - Abstract
Book., page 121, Boston, MA., oct 29 – nov 2 2008.

[63] F. Sambo, B. Di Camillo, M. Falda, G. Toffolo, and S. Badaloni. CNET: an
algorithm for the inference of gene regulatory interactions from gene expression
time series. In Proceedings of the 14th Workshop on Intelligent Data Analysis
in Medicine and Pharmacology IDAMAP09, pages 23–28, Verona, Italy, July 19
2009.

[64] F. Sambo, B. Di Camillo, and G. Toffolo. CNET: an algorithm for reverse en-
gineering of causal gene networks. In Bioinformatics Methods for Biomedical
Complex Systems Applications. 8th Workshop on Network Tools and Applications
in Biology NETTAB2008., pages 134–136, Varenna, Italy, May 19-21 2008.

[65] F. Sambo, B. Di Camillo, and G. Toffolo. Role of network structure and ex-
perimental design on the performance of two reverse engineering methods. In
7th European Conference on Computational Biology ECCB2008., Cagliari, Italy,
Sept. 22-26 2008.

Bibliography 101

[66] F. Sambo, M. A. Montes de Oca, B. Di Camillo, and T. Stützle. On the difficulty
of inferring gene regulatory networks: A study of the fitness landscape gener-
ated by relative squared error. In Proceedings of the 9th Conference on Artificial
Evolution, Lecture Notes in Computer Science, Strasbourg, France, Oct. 26–28
2009.

[67] M. A. Savageau. Biochemical Systems Analysis: a Study of Function and Design
in Molecular Biology. Addison-Wesley, Reading, MA, 1976.

[68] J. Schäfer and K. Strimmer. An empirical bayes approach to inferring large-scale
gene association networks. Bioinformatics, 21(6):754–764, March 2005.

[69] P. Sebastiani, M. Abad, and M. F. Ramoni. Bayesian networks for genomic data
analysis. In E. R. Dougherty, I. Shmulevich, J. Chen, and Z. J. Wang, editors,
EURASIP book series on signal processing and communications: genomic signal
processing and statistics, pages 281–320. Hindawi, New York, NY., 2005.

[70] P. Sebastiani, M. F. Ramoni, V. Nolan, C. T. Baldwin, and M. H. Steinberg.
Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia.
Nature Genetics, 37(4):435–440, March 2005.

[71] N. Soranzo, G. Bianconi, and C. Altafini. Comparing association network algo-
rithms for reverse engineering of large-scale gene regulatory networks: synthetic
versus real data. Bioinformatics, 23(13):1640–1647, July 2007.

[72] C. Spieth, R. Worzischek, F. Streichert, J. Supper, N. Speer, and A. Zell. Com-
paring evolutionary algorithms on the problem of network inference. In M. Cat-
tolico, editor, Genetic and Evolutionary Computation Conference, GECCO 2006,
Proceedings, Seattle, Washington, USA, July 8-12, 2006, pages 305–306. ACM,
2006.

[73] G. Stolovitzky, R. J. Prill, and A. Califano. Lessons from the DREAM2 challenges:
A community effort to assess biological network inference. Annals of the New York
Academy of Sciences, 1158(1):159–195, 2009.

[74] J. D. Storey, W. Xiao, J. T. Leek, R. G. Tompkins, and R. W. Davis. Sig-
nificance analysis of time course microarray experiments. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 102(36):12837–12842,
September 2005.

[75] R. Storn and K. Price. Differential evolution: A simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341–359, 1997.

[76] Vu, T. Thi, Vohradsky, and Jiri. Nonlinear differential equation model for
quantification of transcriptional regulation applied to microarray data of sac-
charomyces cerevisiae. Nucleic Acids Research, 35(1):279–287, January 2007.

[77] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442, June 1998.

[78] A. V. Werhli, M. Grzegorczyk, and D. Husmeier. Comparative evaluation of
reverse engineering gene regulatory networks with relevance networks, graphical
gaussian models and bayesian networks. Bioinformatics, 22(20):2523–2531, 2006.

[79] M. L. Whitfield, G. Sherlock, A. J. Saldanha, J. I. Murray, C. A. Ball, K. E.
Alexander, J. C. Matese, C. M. Perou, M. M. Hurt, P. O. Brown, and D. Botstein.
Identification of genes periodically expressed in the human cell cycle and their
expression in tumors. Molecular Biology of the Cell, 2002.

[80] R. Xu, G. K. Venayagamoorthy, and D. C. Wunsch, II. Modeling of gene regula-
tory networks with hybrid differential evolution and particle swarm optimization.
Neural Networks, 20(8):917–927, 2007.

102 Bibliography

[81] R. Xu, D. Wunsch II, and R. Frank. Inference of genetic regulatory networks with
recurrent neural network models using particle swarm optimization. IEEE/ACM
Trans. Comput. Biol. Bioinformatics, 4(4):681–692, 2007.

[82] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Advances
to bayesian network inference for generating causal networks from observational
biological data. Bioinformatics, 20(18):3594–3603, December 2004.

[83] M. Zampieri, N. Soranzo, and C. Altafini. Discerning static and causal inter-
actions in genome-wide reverse engineering problems. Bioinformatics (Oxford,
England), May 2008.

[84] W. Zhao, E. Serpedin, and E. R. Dougherty. Inferring connectivity of genetic regu-
latory networks using information-theoretic criteria. IEEE/ACM Trans. Comput.
Biol. Bioinformatics, 5(2):262–274, 2008.

[85] R. Zhu, A. S. Ribeiro, D. Salahub, and S. A. Kauffman. Studying genetic regula-
tory networks at the molecular level: Delayed reaction stochastic models. Journal
of Theoretical Biology, 246(4):725 – 745, 2007.

