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TIPICALITA` ,  FLUTTUAZIONI E DINAMICA QUANTISTICA : 
MECCANICA STATISTICA DI SISTEMI QUANTISTICI  

 

 

SOMMARIO 

 

Nuove tecnologie hanno reso possibile lo studio spettroscopico di proprietà di singola 

molecola e di singolo spin, inoltre, gli avanzamenti nel campo delle nanotecnologie, mettono 

costantemente alla prova la nostra comprensione dei meccanismi che governano la dinamica 

a livello quantistico. Questi recenti sviluppi stanno rinnovando l’interesse intorno a questioni 

fondamentali non pienamente comprese e risolte; una di queste questioni riguarda i  

fondamenti della meccanica statistica quantistica. Lo scopo della presente tesi è quello di dare 

un contributo in questo affascinante campo, alla luce degli importanti cambiamenti avvenuti 

negli ultimi vent’ anni  nella nostra comprensione della meccanica quantistica. In particolare gli 

studi condotti nell’ambito della teoria dell’informazione hanno profondamente modificato la 

nostra percezione dell’ entanglement quantistico. Questo è stato per lungo tempo considerato 

una proprietà quasi paradossale della materia su scala atomica mentre oggi è ritenuto un 

fenomeno essenziale e onnipresente importante per comprendere l’emergere del mondo 

macroscopico così come lo conosciamo. Inoltre, la formulazione e lo sviluppo del cosiddetto 

“decoherence program” ha introdotto un nuovo paradigma nella descrizione dell’evoluzione 

temporale dei sistemi quantistici riconoscendo il ruolo fondamentale dell’interazione con 

l’ambiente nel determinare aspetti essenziali della dinamica. Assumendo una prospettiva in 

linea con questi progressi, in questa tesi si parte dall’idea che la correlazione quantistica, 

l’entanglement, non possa essere ignorata nel derivare una descrizione statistica coerente dei 

sistemi complessi tradizionalmente considerati in meccanica statistica. La logica conseguenza 

di questo punto di vista è che la meccanica statistica quantistica non possa essere basata 

sull’idea dell’esistenza di insiemi di sistemi quantistici fra loro indipendenti, ma al contrario 

debba emergere dalla descrizione in termini di una singola funzione d’onda (stato puro) che 

descrive il sistema nella sua globalità, i.e. il sottosistema di interesse insieme con il suo 

ambiente (“environment”).   

Allo scopo di costruire tale descrizione, in questa tesi si considera in primo luogo la 

distribuzione di probabilità che descrive lo stato di equilibrio di un sistema quantistico isolato. 
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Essa è definita, in analogia con la teoria ergodica classica, sulla base dell’evoluzione 

temporale del sistema. Per studiare l’emergere delle proprietà termodinamiche si introducono 

poi distribuzioni di probabilità su insiemi di stati puri (“Ensemble Distributions”). Tali 

distribuzioni sono derivate sulla base della geometria dello spazio di Hilbert che descrive il 

sistema nella sua interezza. Inoltre si sono sviluppati gli strumenti teorici che permettono la 

caratterizzazione di tali distribuzioni di probabilità: essi consistono da un lato 

nell’implementazione di metodi numerici di tipo Monte Carlo che permettono il campionamento 

statistico diretto delle distribuzioni, d’altro canto sono state sviluppate approssimazioni 

analitiche delle distribuzioni  sulla base del principio di massima entropia. 

I risultati fondamentali che emergono dal quadro teorico sviluppato sono illustrati mediante 

lo studio della statistica in sistemi di spin: il messaggio fondamentale è che le funzioni 

termodinamiche, come l’entropia del sistema globale e lo stato di equilibrio di un sottosistema, 

sono caratterizzate da distribuzioni sull’ ensemble che risultano molto concentrate intorno ad 

un valore tipico. Dall’analisi condotta si deduce quindi che ognuno dei singoli stati puri 

considerati nell’insieme è caratterizzato dallo stesso valore delle funzioni termodinamiche 

studiate. Questa è una chiara evidenza della proprietà di tipicalità, (“typicality”), di queste 

funzioni. L’essenza di questo risultato è che la nostra incapacità di conoscere i dettagli dello 

stato quantistico del sistema non è così importante dal momento che la grande maggioranza 

dei possibili stati che appartengono all’insieme considerato sono caratterizzati dallo stesso 

valore delle proprietà termodinamiche alle quali siamo interessati. In virtù di tale proprietà 

risulta sensato studiare gli andamenti dei valori tipici delle proprietà termodinamiche. Sotto 

certe condizioni si ritrovano i risultati della meccanica statistica standard: in particolare lo stato 

di equilibrio di un sottosistema risulta essere in media lo stato canonico di Boltzmann alla 

temperatura definita dall’usuale relazione termodinamica dS dUβ= . 

Nella seconda parte della tesi, invece, si illustra la dinamica associata allo stato di 

equilibrio di un sistema in interazione con il suo ambiente. Le caratteristiche delle fluttuazioni 

intorno ai valori medi di equilibrio dipendono sia dall’entanglement tra il sistema e l’ambiente 

che dal tipo di interazione considerato. Per finire si considera la connessione fra la dinamica 

delle fluttuazioni all’equilibrio e i processi di rilassamento da uno stato iniziale di non equilibrio.  

Il lavoro presentato in questa tesi è stato in parte motivato da un analisi critica dei metodi 

stocastici utilizzati nella modellizzazione teorica delle spettroscopie magnetiche. Durante il 

primo anno di dottorato tali metodologie sono state impiegate per l’interpretazione di alcune 

osservabili in esperimenti di risonanza magnetica elettronica bidimensionale. [Fresch B., 

Frezzato D., Moro G. J., Kothe G., Freed J. H.; J. Phys. Chem. B., 110, 24238, (2006)]. 
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TYPICALITY, FLUCTUATIONS AND QUANTUM DYNAMICS: 
STATISTICAL MECHANICS OF QUANTUM SYSTEM 

 

 

 

ABSTRACT 

Recently, the possibility of investigating single molecule, or single spin observables, as well 

as the necessity of a better understanding of the mechanisms underlying quantum dynamics in 

order to obtain nanoscale devices and nanostructered materials suitable for quantum 

computing tasks, have revived the interest in foundational aspects of quantum statistical 

mechanics. This thesis aims to give a contribution to this field by re-considering the statistical 

characterization of a quantum system at the light of some paradigmatic changes in our 

understanding of quantum theory which have taken place in the last two decades. In particular 

the impressive development of quantum information theory has changed the perceptions of 

quantum entanglement: for a long time it has been considered a somewhat paradoxical 

property of the matter at the atomic scale, but now it is regarded as an essential and 

ubiquitous phenomenon whose consequences are affecting the very macroscopic world that 

we experience. Still the decoherence program has brought out the importance of considering a 

quantum system together with its environment in order to clarify some key aspects of quantum 

dynamics. Thus, we start from the idea that quantum correlations are ubiquitous and 

somewhat uncontrollable in systems with many degrees of freedom which are typically 

considered in statistical mechanics. As a consequence we assume the standpoint that 

quantum statistical mechanics has not to be based on the underlying idea of a collection of 

many, independent quantum systems but rather it has to emerge at the level of a global 

wavefunction (pure state) which describes the system as well as its environment as a whole.  

In order to investigate the consequences of these assumptions we study the equilibrium 

distribution of an isolated quantum system. This is defined, in analogy with the ergodic 

foundations of classical statistical mechanics, on the basis of the time evolution of the quantum 

state. Then, we study the emergence of thermodynamic properties in a quantum system by 

studying the probability distribution of some function of interests, as the entropy and the 

equilibrium state of a subsystem, on Ensembles of Pure States. Such a probability distribution 

is derived from the geometry of the Hilbert space, and the theoretical tools suitable for its 

characterization are developed. On the one hand we perform a numerical sampling of the 
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ensemble distributions by employing Monte Carlo techniques, on the other hand simpler 

analytical approximation of the geometrical distributions are derived by means of a maximum 

entropy principle.  

Model systems composed of an ensemble of spins are chosen to illustrate the salient 

features which emerge from the developed theoretical framework: the main point is that the 

Ensemble Distributions of “thermodynamic observables” (entropy or equilibrium state of a 

subsystem) are sharply peaked around a typical value. From the analysis it emerges that each 

of the overwhelming majority of the wavefunctions which has appreciable weight in the 

considered ensemble, is characterized by the same value  of the “macroscopic” functions. This 

is a striking evidence of the “typicality” of these properties. In the essence, our impossibility to 

know the state of the system in detail does not matter, just for the remarkable fact that almost 

all quantum states behave essentially in the same way. By virtue of this typicality the study of 

the behaviour of the typical values of the thermodynamic function become meaningful. 

Notably, under certain conditions, one recovers the results of standard statistical mechanics, 

that is, the equilibrium average of the state of a subsystem can be cast in the Boltzmann 

canonical form at the temperature given by the usual thermodynamical relation dS dUβ= . 

In the second part of the thesis we consider the dynamical aspects of the equilibrium state 

of a subsystem interacting with its environment. The fluctuations around the equilibrium 

average critically depends on the entanglement between the system and the environment and 

on the form of the interaction Hamiltonian. The connection between the dynamics of the 

fluctuations of an observable at the equilibrium and the relaxation toward the equilibrium from 

a “non typical” initial value is also investigated with the aid of simple model systems. 

The study presented in this thesis was partly motivated by a critical analysis of the statistical 

methods available for the theoretical modelling of magnetic resonance experiments. One of 

these, the Stochastic Liouville Equation, has been employed in a work completed during the 

first year of my Ph.D. program in order to interpret some feature of a two dimensional electron 

spin resonance experiment, [Fresch B., Frezzato D., Moro G. J., Kothe G., Freed J. H.; J. 

Phys. Chem. B., 110, 24238, (2006)]. 
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CLT: Central Limit Theorem 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1. STATISTICAL MECHANICS 

Through the rational thought which characterizes the scientific knowledge, many different 

theories have been developed in order to describe and interpret the rules which govern the 

physical phenomena. The main ingredients of these theories, as well as the nature of the logical 

connections between them, sensibly depend on the complexity of the object under study. Still, 

the description of complex phenomena can be approached from different perspective which 

leads to physical theories of completely different characters. A striking example of this is the 

duality, for a given physical system, between its thermodynamical characterization and the pure 

mechanical description. Thermodynamics has been initially formulated as a pure 

phenomenological science describing the behaviour of macroscopic systems. Indeed, it has 

been developed at a time when the atomistic nature of the matter was not well understood; 

nonetheless it is a fully self consistent physical theory whose validity is beyond any doubt today. 

At the end of the nineteenth century the increasing popularity of the atomic theory of matter 

stimulated the research of a microscopic foundation of thermodynamics, i.e. a connection 

between a pure mechanical description of a system and its thermodynamic properties. The 

natural tools to look for such a connection are of statistical nature. The birth of statistical 

mechanics due to the innovative work of Maxwell1, Boltzmann2 and Gibbs3 among others, was 

                                                             

1 Maxwell J. C., On the Dynamical Theory of Gases, Philosophical Transactions of the Royal Society 

of London, 157, pp. 49-88, (1867). 

2 Boltzmann L, On the relation between the second law of the mechanical theory of heat and the 

probability calculus with respect to the theorems on thermal equilibrium, Sitzungsber. Kais. Akad. Wiss. 

Wien, Math. Naturwiss. Classe 76, 373–435, (1877). 

3 Gibbs J. W.: Elementary Principles in Statistical Mechanics. Developed with Especial Reference to 

the Foundation of Thermodynamics. Yale Univ. Press (1902). 
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an enormous step toward a more organic comprehension of the mechanisms which underlie 

physical phenomena. 

The peculiarity of statistical mechanics is that it deals with probability distributions: on the 

one hand this is the reason of its success in connecting the microscopic mechanical 

description with other theories which account for macroscopic phenomena, on the other hand 

this is also the root of the difficulties one encounters when trying to rigorously justify its 

principles. Despite these difficulties, or perhaps right for the necessity to face these difficulties, 

the work on the foundations of statistical mechanics has lead to insight into many crucial 

issues as the role of chaos in classical dynamic and the emergence of macroscopic 

irreversibility from the microscopic, time reversible, equations of motion. 

There is, however, a curious fact in this story: the underlying microscopic theory which is 

often assumed in order to discuss foundations of statistical physics is classical mechanics. 

Meanwhile quantum theory has produced a paradigmatic change so to become the theory of 

the microscopic world which is believed to be more fundamental than classical mechanics. 

However, the basic structure of modern statistical mechanics is still close to that formulated by 

Gibbs.  

This fact invites a critical re-examination of the foundations of quantum statistical 

mechanics.  

Equilibrium statistical mechanics finds its conceptual justification in the ergodic theory, 

[Khinchin, (1949)]: the trajectory of the representative point of the system in the phase space is 

supposed to fill up the hyper surface of constant energy uniformly, spending an equal amount 

of time in equal volumes of the phase space. From the assumption of ergodicity, the 

microcanonical distribution for an isolated classical system can be derived and, under certain 

assumptions about the energy density, this leads to the Boltzmann canonical distribution for a 

subsystem. 

It is interesting to note that, while the justification of the microcanonical ensemble in 

equilibrium classical mechanics has been the object of lively debates for almost one century, in 

quantum mechanics the microcanonical ensemble is simply assumed, see e.g. ref. [Huang, 

(1987), Tolman (1980)], and the only justification remains a hand-waving analogy with classical 

ergodicity and the agreement with experiments. Indeed, the notion of ergodicity leads to 

statistical mechanics only at the classical mechanics level. Attempts to extend the notion of 

ergodicity to the quantum domain have not been successful in leading to a similar conclusion. 

The problem of quantum ergodicity was discussed for the first time in a famous paper by Von 
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Neumann4. In this paper Von Neumann established an inequality which he thought gave a 

dynamical foundation to quantum ergodic theory. Several subsequent contributions [Haar 

(1955); Farquhar (1957); Bocchieri (1958), (1959)] strongly criticized the results of Von 

Neumann and, in conclusion, the problem was left open. 

Recently, basic questions of quantum statistical physics have gained renewed interest, 

[Popescu, (2006), Goldstein, (2006), Reimann, (2007), (2008)]. In addition questions of 

relaxation and thermalization for non equilibrium system are again receiving attention from 

foundational perspective, [Rigol, (2008)] This is partly triggered by intuitions from quantum 

information theory which have shed light on a fundamental feature of quantum theory such as 

the existence of non local correlation among quantum systems, i.e. the quantum entanglement 

[Wootters, (1998)]. Entanglement is, currently, one of the most studied phenomena in physics. 

This because, besides being an issue of fundamental interest, it is considered as the crucial 

resource for quantum information processing [Nielsen, (2000)]. The transformation of the point 

of view about entanglement has been remarkable. In less than a century, from being 

considered a somewhat paradoxical property of the matter at the atomic scale we arrive to 

regard it as an essential and ubiquitous phenomenon whose consequences are affecting the 

very macroscopic world that we experience, [Vedral, (2008)]. Still its role in the foundations of 

statistical physics has been only recently recognized, [Popescu, (2006)].  

There is a second very important change in perspective that has took place in the last two 

decades in quantum theory, and it is related to a better understanding of the measurement 

process as well as the transition from quantum to classical world. A quantum state is identified 

with a wavefunction, ( )tψ , which is, in general, a superposition of many different eigenstates 

of an observable. However, the superposition principle, which is one of the most revolutionary 

elements introduced by quantum mechanics, is not easily reconcilable either with the 

appearance of a well defined outcome in a measurement process, nor with our usual 

perception of the physical world. The so called “measurement problem” in quantum theory 

concerns the breaking of the unitary evolutions of a generic wavefunction to give a single 

measured outcome which corresponds to just one state among those which contributes to the 

definition of the quantum state before the measurement. Von Neumann, [Von Neumann, 

(1996)], being a mathematician, postulated that an observation reduces the wavefunction, or 

“probability amplitude”, to a probability distribution. However we think that, from a physical 

                                                             
4 Von Neumann J., Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik, Z. 

Phys. 57 30, (1929) 
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point of view, a postulate does not lead to new knowledge and the postulated reduction of the 

wavefunction risks to have the role of the “miracle” of the cartoon (Figure 1-1). The 

“wavefunction collapse” postulate has deeply influenced also the foundation of quantum 

statistical mechanics because one is tempted to not distinguish the statistical characterization 

of a time evolving quantum system from the statistics associated with an eventual 

measurement outcome. However the decoherence program initiated by Zurek [Zurek, (1982), 

(2003)], has moved the attention back again to the unitary evolution of the total wavefunction 

by demonstrating how the entangling interactions between a quantum system and its 

environment can destroy coherence between the states of the quantum system. While the 

question whether decoherence provides or at least suggests a solution to the measurement 

problem is still object of debate and active research, [Schlosshauer, (2004)], it is sure that 

decoherence bring out the importance of considering a quantum system together with its 

surrounding in order to clarify some key aspects of the quantum theory. 

The aim and the goal of the present thesis are to re-consider the statistical characterization 

of quantum systems from a point of view which is close in spirit to that of decoherence. In 

particular we share the idea that quantum correlations are ubiquitous and somewhat 

uncontrollable in system with many degrees of freedom which are typically considered in 

statistical mechanics. As a consequence we assume the standpoint that quantum statistical 

mechanics has not to be based on the underlying idea of a collection of many, independent 

quantum systems but rather it has to emerge at the level of a global wavefunction (pure state) 

which describes the system as well as its environment as a whole.         
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Figure 1- 1: S. Harris Cartoon 

1.2  DIFFERENT  LEVELS  OF  DESCRIPTION  IN  CLASSICAL  AND  QUANTUM 
MECHANICS 

Within the framework of classical mechanics, self-consistent and efficient methods have 

been developed for the stochastic modelling of a system interacting with the environment 

playing the role of thermal bath. The basic formalisms are provided in a complementary way by 

stochastic differential equations (i.e., Langevin equations) for the trajectories or by Fokker-

Planck equations for the probability density. A comparably well recognized methodology is not 

available for quantum systems. In such a case, even the basic tools of a stochastic model 

have not a clear definition, and alternative (and conflicting as well) choices have been 

proposed in the literature, see e.g. [Gardiner, (1988); van Kampen, (1996), (2005); Strunz 

(2001)]  

We now briefly analyze the problem from a methodological point of view, in order to 

recognize what should be the ideal structure to be used in the stochastic modelling of open 

quantum systems.  
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First, let us recall the standard methods employed to model classical systems interacting 

with a thermal bath in order to point out the salient features of a statistical description in 

comparison with the full, exact, mechanical description. The system of interest (which could be 

also a molecule, or even a subset of its degrees of freedom) is described by the set ( ),x Q P=  

of coordinates and momenta, while the set ( , )B B Bx q p≡  will be employed for the (thermal) 

bath. The overall system described by the set ( , )tot
Bx x x≡  of coordinates and momenta is 

supposed to be isolated. In the following, the main methodological ingredients are 

characterized as separate items: 

1. Evolution of the overall system: It is fully characterized through the trajectory ( )totx t  

in the phase space Γ  pertinent to the overall system. The time evolution of the 

overall system is specified by an ordinary differential equation 

           ( ) ( )tot tot
j j

d x t X x
dt

=                                            (1.2.1) 

with the vector field ( )totX x  provided by classical mechanics. It should be emphasized in 

this framework that these trajectories are made available (at some level of approximation) 

by using Molecular Dynamics (MD) simulations.  

 

2. Evolution of the system of interest.  The trajectories ( )x t  fully characterize the system but, 

because of the interactions with the bath, they cannot be obtained as solutions of an 

autonomous equation like (1.2.1). On the other hand, Molecular Dynamics simulation can 

provide statistical information on both static (equilibrium) and dynamic properties of the 

system. 

 

3.  Stochastic modeling. This can be done at two levels: by describing the time evolution of 

the state of system through i) Langevin type of equations (stochastic differential equations) 

 ( ) ( ) ( ) ( )j j jk k
d x t a x b x t
dt

η= +                                                           (1.2.2) 

where ( )ja x  are the deterministic components of the field while ( )k tη  are independent 

white-noise components, or through ii) a Fokker-Planck equation for the probability density 

( , )p x t   
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2( )( , ) ( , )( , ) ( )

2
jk

j
j j k

B xp x t p x tp x t A x
t x x x
∂ ∂ ∂

= − +
∂ ∂ ∂ ∂

 (1.2.3) 

These two levels have a complementary nature since, given a Langevin form, one can 

derive the corresponding Fokker-Planck equation, and the other way around. It should be 

stressed that in order to properly represent the open system according to an autonomous 

differential equation, the fluctuating contribution in eq. (1.2.2) is essential. Indeed, in the 

absence of such a term, the equilibrium condition, instead of being represented by a 

distribution on x , would be determined by one or a finite set of x  values in correspondence of 

the stationary solutions of the deterministic counterpart of eq. (1.2.2). 

We emphasize that a given system specified according to items 1) and 2), does not find an 

exact correspondence with the stochastic model 3), in the meaning that differences would 

arise in the time dependent properties evaluated with the two procedures. The stochastic 

methods can only provide approximations to the “true” dynamics of the system, even if through 

a self-consistent procedure. The equilibrium distribution ( )eqp x , that is the stationary solution 

of eq. (1.2.3) has to be considered separately. As long as ( )eqp x  can be considered as an 

independent ingredient in modelling the Fokker-Planck equation (1.2.3), one can choose it to 

represent exactly the equilibrium distribution of the system (to be obtained, for instance, by a 

proper sampling of MD trajectories). On the other hand, such a distribution can be evaluated 

by describing the system of interest according to the Statistical Thermodynamics for the 

canonical ensemble.  

 In the quantum case the three level of description mentioned above have not a clear 

counterparts. We know that an isolated quantum system is characterized by a wave function 

( )tψ  whose time evolution is governed by the Schrödinger equation. A completely equivalent 

description is obtained by means of the pure state density matrix ( ) ( ) ( )t t tρ ψ ψ= . If the 

corresponding eigenvalue problem can be solved to some level of approximation, one can 

think of Quantum Dynamics (QD) simulations providing the time evolution of the overall 

system. On the other hand if one is interested in the dynamics of a quantum subsystem the 

density matrix formalism became convenient. The Reduced Density Matrix of the subsystem is 

obtained by taking the partial trace over the environment degree of freedom 

( ) ( )( )TrEt tμ ρ=                                                                                                (1.2.4) 
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and it provides a complete representation for the system of interest since it allows the 

calculation of any observable for the subsystem. It should be emphasized that in this 

framework, the wave function of the system is not defined, and only the description through the 

reduced density matrix ( )tμ  is meaningful. On the other hand, such a density matrix is lacking 

of an autonomous equation because of the interaction with the bath, and its exact evolution 

can be derived only from the time dependence of the overall density matrix by performing 

suitable QD simulations. Like for classical systems, one might develop a model for its evolution 

by including both a deterministic component associated to the dynamics for the isolated 

system, and a fluctuating component arising from the stochastic interactions with the bath, that 

is 

( ) ( ) ( , )i t a t b t
t
μ μ μ∂

= +
∂

                                           (1.2.5) 

where a  is the superoperator describing the deterministic dynamics, while ( , )b tμ  accounts for 

the noise contributions. A complementary level of description should be represented by the 

probability density ( , )p tμ  for the reduced density matrix. Once a suitable set of variables has 

been introduced to parameterize the density matrix, one can conceive a Fokker-Planck 

equation describing the evolution of such a probability density, in strict relation with Langevin-

type of equation (1.2.5). 

The conclusion of such an analysis is that, for a complete analysis of open quantum 

systems, one should employ or stochastic differential equations for the reduced density matrix, 

or time dependent probability distributions on it. The idea of probability distribution on reduced 

density matrix is not present in quantum statistical mechanics because the density matrix itself 

has always been considered as the quantum analogue of the classical probability distribution. 

This is due on the one hand to the ensemble view which characterizes the standard quantum 

statistical mechanics, [Tolman, (1980)], in which the density matrix is essentially thought to 

represent the probability that the system is in one or in another pure state described by a well 

defined wavefunction. On the other hand, as already mentioned, this is also due to the 

statistical character of the quantum measurement process. In this sense the density matrix is 

associated to the probability to obtain one or another definite outcome in an idealised set up in 

which we can perform the same measure on an ensemble of identically prepared quantum 

system, [Fano, (1957)].  

In this thesis we shall leave the above mentioned standpoints and start from the only 

assumption that since a quantum system which interacts with its environment can not be 
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described by a pure state than it has to be described by its instantaneous reduced density 

matrix, ( )tμ .  

Still, it is well know that the dynamical description of an open system has to account for 

the relaxation toward an equilibrium state, [Kohen, (1997)]. Thus, while the density matrix of an 

isolated system evolves unitarily according to the Von Neumann equation, the time evolution of 

the reduced density matrix of a system in contact with a heat bath has to include dissipation. In 

the framework of non equilibrium statistical mechanics the standard way to “introduce” 

irreversible relaxation is the treatment of open systems by means of a master equation for the 

statistical reduced density matrix, [Davies, (1976); Breuer, (2002)].  

Any differential equation for a density matrix must preserve its unit trace, its hermiticity and 

positive definiteness. The most general form of such an equation has been derived by 

Kossakowsky and by Lindblad, [Lindblad (1976); Gorini (1976)], by means of an axiomatic 

approach, that is, by assuming a linear differential equation for the time evolution of the density 

matrix  

   
( ) ( )S

S

d t
t

dt
ρ

ρ= L                                                          (1.2.6) 

The generator L  represents a superoperator which is given explicitly in its diagonal form 

by 

[ ] { }
2 1

† †

1

1, ,
2

N

S S k k S k k k S
k

i H A A A Aρ ρ γ ρ ρ
−

=

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

∑L                                (1.2.7) 

The first term of the generator represents the unitary part of the dynamics generated by the 

Hamiltonian H . The operators kA , introduced above as linear combinations of the basis 

operators iF  in Liouville space, are usually referred to as Lindblad operators and the 

corresponding density matrix equation is called the Lindblad equation. As one can see the time 

evolution of the reduced density matrix includes the dissipation but exhibit no stochastic 

features. 

It is interesting to note that in order to provide a microscopic derivation of eq. (1.2.6) from 

the underlying complete mechanical description, one has to pass through a number of 

assumption and approximation. The starting point is usually to take the partial trace over the 

environment on both sides of the Liouville Von Neumann equation for the total system  
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( ) ( ) ( ),B

d t
iTr H t t

dt
μ

ρ⎡ ⎤= − ⎣ ⎦                                                                            (1.2.8) 

Notice that in the r.h.s of eq. (1.2.8) we still have the total density matrix and thus one 

would have in principle to specify the initial state of the whole system. The initial value problem 

is dismissed by assuming that initially the bath is in equilibrium, described by a canonical 

density matrix, and uncorrelated with the system 

( ) ( )0 0 B
S eqρ ρ ρ= ⊗                                                                                               (1.2.9) 

Notice that already at this stage the density matrix in eq. (1.2.9) is not a pure state density 

matrix, i.e. it does not correspond to a wavefunction. It is for this reason we have used a 

different symbol for the density matrix of the system, i.e. ( )0Sρ , by reserving the notation μ  

for the density matrix obtained by applying the partial trace operation to the pure state density 

matrix of the overall system as in eq. (1.2.4). One then proceeds by assuming the weak 

coupling condition in order to perform a perturbative expansion in the interaction strength of 

eq. (1.2.8). Given ( )0Sρ  one thus explicitly calculate the reduced density matrix after a small 

time tΔ  which reads 

( ) ( ) ( ) ( )0 , 0 0S S S S St i H t tρ ρ ρ ρ⎡ ⎤Δ = − Δ + Δ⎣ ⎦ K                                                      (1.2.10) 

where K  is a superoperator acting on the Liouville space of the system. At this point further 

two assumptions have to be introduced in order to recover an equation which can be cast in 

the Lindblad form, (1.2.7). One of this concerns the dynamic of the bath which has to be fast 

compared to the relaxation time of the system; the other is the so called rotating wave 

approximation, (also known as secular approximation in magnetic spectroscopy language).  

For a complete derivation we refer the interested reader to the excellent exposition in ref. 

[Breuer, (2002)].  For our purposes, it is worthy to focus on the assumption about the initial 

condition, eq. (1.2.9). This is of course an artificial assumption since the system and its 

environment are never fully uncorrelated as they are constantly interacting.  Furthermore, as 

point out by van Kampen, [van Kampen, (2004)], it is not sufficient to assume the absence of 

correlation between the system and its environment at some initial time 0t = . Indeed, in order  

to pass from eq. (1.2.10) to a differential equation like eq. (1.2.6), one must to assume that the 

unavoidable correlation, which is built between the system and its environment in a time step 

tΔ , does not affect the results at each new time step tΔ . This is of course an assumption 

which has deep implications and it is conceptually unsatisfactory especially after the lesson of 
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decoherence and the recognition of the important role of quantum entanglement even in 

macroscopic phenomena, [Brukner, (2006)]. The words of van Kampen are particularly 

effective: 

“There is no valid reason for this condition [eq. (1.2.9)]: nobody believes that it is necessary for 

understanding Brownian motion to assume that at some time in the past the Brownian particle 

was uncorrelated with the surrounding fluid. [...] Brownian motion, rather then starting at one 

initial moment, is a fluctuating phenomenon taking place while the total system is in 

equilibrium.” 

[van Kampen, (2005)]   

The standard set up of quantum statistical mechanics implies that the equilibrium state, i.e. 

the stationary solution of the time evolution equation (1.2.6), is described by a specific density 

matrix, say eqρ . On the contrary, with our approach the equilibrium state would be described 

by the stationary distribution ( )eqp μ  on the reduced density matrix. From this perspective, also 

the Statistical Thermodynamics of quantum systems appears to be lacking, as long as it 

provide information not on ( )eqp μ , but on the average of eqρ . On the other hand, if QD 

simulations can be performed, one can think of characterizing such a distribution ( )eqp μ  by 

performing a suitable statistical sampling.  

 

1.4 OVERVIEW OF THE THESIS  

As it emerges from the arguments discussed above, statistical quantum mechanics is far 

from being a well founded and completely understood field, despite its unquestionable success 

in accounting for many experimental evidences, such as the interpretation of the results from a 

wide range of spectroscopic techniques. However also the recent developments in this field, as 

the possibility of investigating single molecule, or single spin observables, refs. [Suter, (2008); 

Neumann, (2008); Berezovsky, (2008)], as well as the necessity of a better understanding of 

the mechanisms underlying quantum dynamic in order to obtain nanoscale devices and 

nanostructered materials suitable for quantum computing tasks, have revived the interest  in 

foundational aspects of quantum statistical mechanics. This thesis aims to give a contribution 

on this fascinating field from a perspective which is in line with the recent developments 

presented in refs. [Goldstein, (2006); Popescu, (2006); Reimann, (2007)].  One of the key 

ingredients of this new perspective consists of shifting the focus from the traditional statistical 
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equilibrium ensemble back to the role and predictability of one single experimental realization 

of a system and its environment described theoretically by a quantum mechanical pure state.  

The first part of the thesis deals with the statistical characterization of quantum systems at 

the equilibrium and with the connection between equilibrium statistic and thermodynamic 

properties.  

In particular in Chapter 2 we recall the quantum mechanical description of an isolated 

quantum system and then define the equilibrium distribution of any observables on the base of 

its time evolution. There is a strong analogy with the ergodic foundation of classical statistical 

mechanics. On the one hand one finds an equilibrium distribution function which is strictly valid 

only for the considered quantum state, on the other hand, from the standard quantum 

statistical mechanics, one has the intuition that at least some state functions, such as the 

thermodynamic functions, e.g. the entropy, should not depend on the detail of the quantum 

state but only on other thermodynamic properties such as the energy. We thus want to answer 

the following questions: 

Is the equilibrium average of some functions of interest independent on the initial state of 

the system ( )0ψ ? 

If so, is it equal to an appropriate thermal average with respect to some properly defined 

equilibrium probability distribution? 

To analyse these points we study in Chapter 3 the probability distribution on Ensembles of 

pure state. In this framework by ensemble we always mean an abstract construction for the 

statistical sampling of the possible pure states of an isolated quantum system and should not 

be confused with real ensemble of systems or of wavefunctions. The Ensemble Distributions 

are derived by considering the geometry of the Hilbert space and the constraints used to 

specify the ensemble. In particular we shall consider the ensemble of all the wavefunctions 

which lie in the Hilbert space (Random Pure State Ensemble) and the ensemble of all the 

wavefunctions characterized by a given value of the expectation energy, (Fixed Expectation 

Energy Ensemble). The distributions for these ensembles are high dimensional functions 

defined in non trivial domains. 

In Chapter 4, the tools for the study of the ensemble probability distributions are developed: 

on the one hand we perform a numerical sampling of the ensemble distributions by employing 

Monte Carlo techniques, on the other hand simpler analytical approximation of the geometrical 

distributions are derived by means of a maximum entropy principle.  
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By using these tools, in Chapter 5 we study the properties of the Ensemble Distribution of 

the entropy and of the equilibrium average of the Reduced Density Matrix of a subsystem for a 

system composed of n  spins 1 2 . The major point which emerges from such an analysis is 

that Ensemble Distributions are sharply peaked around a typical value. Generally the variance 

of the ensemble distribution diminishes as the number of spins and thus the dimension of the 

Hilbert space increases. Evidently the sharp distribution on the “thermodynamic observable” 

(entropy or equilibrium state of the subsystem) can emerge only if it is true that for each of the 

overwhelming majority of the microscopic state (wavefunctions) which has appreciable weight 

in the considered ensemble, we would obtain the same behaviour of the “macroscopic” 

functions. This is a striking evidence of the “typicality”, [Goldstein, (2006)] of some properties 

among the wavefunctions which could describe our system. In other world, for many properties 

of interest, it does not matter our impossibility to know the state of the system in detail just for 

the remarkable fact that almost all quantum states behave essentially in the same way. 

By virtue of such a typicality property, it is meaningful to study the behaviour of the typical 

values of a given function. In Chapter 6 we consider the dependence of the typical entropy and 

of the typical value of the reduced density matrix of a subsystem as a function of the internal 

energy. It is shown that the behaviour of this quantity depends on the definitions of the 

ensemble. Notably for the Random Pure State Ensemble, one recovers the results of standard 

statistical mechanics, that is, the equilibrium average of the state of a subsystem has the 

Boltzmann canonical form at the temperature given by the usual thermodynamical relation 

dS dUβ= .  Instead, different behaviours emerge for the typical values in the Fixed 

Expectation Energy Ensemble. 

In Chapter 7 we briefly comment the obtained results. The main message is that we can 

understand the emergence of thermodynamic properties within a single pure quantum state 

and leave behind the idea of ensemble of pure states which is inconsistent with basic concept 

of quantum mechanic as the superposition principle. 

In the second part of the thesis we consider the dynamical aspects of the equilibrium state 

of a subsystem. Once we have established that for a typical wavefunction which describes the 

total isolated system, i.e. subsystem of interest plus its environment, the equilibrium average of 

the reduced density matrix of the subsystem is canonical, we pass to consider the equilibrium 

fluctuations about this average value. This implies to study a single, time evolving, pure 

quantum state. The connection between the dynamics of the equilibrium fluctuations of an 

observable and the relaxation toward the equilibrium from a “non typical” initial value is also 

investigated with the aid of simple model systems. 
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In Chapter 8 the equilibrium fluctuations of the reduced density matrix of the system of 

interest is first analyzed from a general point of view, and a relation between the amplitude of 

such fluctuations and the entanglement of the system with its surrounding is found. 

Furthermore, by considering a simple system made up of spins interacting through a pure 

dephasing term, we point out the relation between the dynamics of the equilibrium fluctuations 

and the decoherence process.  

With the aim of introducing a model system as general as possible, in Chapter 9 we study 

the equilibrium fluctuations of a two level system which interacts with its environment through a 

interaction Hamiltonian modelled by means of a Gaussian Orthogonal Random Matrix. The 

fluctuations amplitude are calculated as a function of the interaction strength and analyzed with 

the aid of perturbation theory. Furthermore, in order to investigate the relation between the 

equilibrium dynamic and the relaxation from a non equilibrium state we simulate a Free 

Induction Decay experiment. A first theoretical interpretation of these results is given and 

finally the interesting points which require further investigation are discussed.   

 

 

 

The study presented in this thesis was partly motivated by a critical analysis of the statistical 

methods available for the theoretical modelling of magnetic resonance experiments. In a work 

completed during the first year of my Ph.D. program we developed an analysis of the effects of 

the collective fluctuations in ordered fluids (such as liquid crystal or membranes), on certain 

observables in a two dimensional electron-electron double resonance spectroscopy (2D-

ELDOR). For the sake of logical consistency, I do not report about this work here, however it 

can be found at the following reference:   

Fresch B., Frezzato D., Moro G. J., Kothe G., Freed J. H.; Collective fluctuations in ordered 

fluids investigated by two-dimensional electron-electron double resonance spectroscopy; J. 

Phys. Chem. B., 110, 24238, (2006). 
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CHAPTER 2 

DYNAMICS OF ISOLATED QUANTUM SYSTEMS AND THE PURE 
STATE DISTRIBUTION 

 

 

 

2.1 INTRODUCTION 

In this chapter we will deal with the statistical characterization of a quantum system which 

can be described by a wavefunction. Thus we assume that the system is isolated, in the 

meaning that energy interactions with the surrounding are missing, but also we require that our 

system is not entangled with other quantum systems. Only when both conditions are satisfied 

one can define the wavefunction of the system independently of the environment. 

Under these conditions, the time evolution of the system is unitary and completely 

determined by the Hamiltonian operator. We will assume that our system is bounded and, 

therefore, with a discrete Hamiltonian spectrum. 

In the same spirit of the ergodic foundation of classical statistical mechanics we shall define 

the equilibrium probability distribution function on the basis of the region of the Hilbert space 

which is explored by the system during its time evolution.  
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2.2 QUANTUM MECHANICAL DESCRIPTION OF THE TIME EVOLUTION:  

The state of an isolated quantum system is completely specified by its wavefunction ( )tψ , 

in which case we say that the system is in a pure state, whatever is the wavefunction. Formally 

the wavefunction is an element of the complex Hilbert space H  of dimension N . Here a finite 

dimensional Hilbert space is considered, and one has to evaluate the limit N →∞  when the 

generalization to the infinite dimensional case is required.  

 The normalization condition reads 

( ) ( ) 1t tψ ψ =                                                                                                               (2.2.1) 

where the bra-ket notation denotes as usual the scalar product between two elements of the 

Hilbert space. 

Let us introduce an arbitrary orthonormal basis set for the Hilbert space  

i j iju u δ=                                                                                                              (2.2.2) 

with the basis vectors determined within a phase factor. Thus the wave vector can be 

expanded on such a basis  

( ) ( )
1

N

i i
i

t c t uψ
=

=∑                                                                                                     (2.2.3) 

where the coefficients of the expansion, ( ) ( ):i ic t u tψ= , are nothing else but the 

coordinates which identify the state with respect to the selected basis and carry the parametric 

dependence on time. 

The corresponding density operator reads 

( ) ( ) ( ) ( ) ( )*

,

:
N

i j i j
i j

t t t c t c t u uρ ψ ψ= =∑                                                                   (2.2.4) 

and the density matrix specifies the representation of such an operator in the chosen basis 

( ) ( ) ( )*Trij j i i j i ju u u u c t c tρ ρ ρ= = =                                                (2.2.5) 

The density matrix has the following properties  
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1. unit trace: ( )( )Tr 1tρ =  

2. hermiticity: ( ) ( )†t tρ ρ=  

3. positive definiteness: 0φ ρ φ ≥  for every Hφ ∈  

Notice that a density matrix which represents a pure state can be regarded as the projection 

operator onto the one dimensional subspace determined by ( )tψ , so that another property is 

4. idem potency ( ) ( )2t tρ ρ=   

The evolution of the quantum state is ruled by the Schrödinger equation 

( )( )i t H t
t
ψ ψ∂

=
∂

                 (2.2.6) 

which, written for the density operator, takes the form of the Liouville-Von Neumann equation 

( ) ( ),
t

i H t
t

ρ
ρ

∂
⎡ ⎤= ⎣ ⎦∂

                       (2.2.7) 

where the square brackets denote the commutator:  [ ], :H H Hρ ρ ρ= − . A time independent 

Hamiltonian will be employed, as long as the system is isolated.  

In the analysis of the time evolution of the quantum state, one finds that the Hilbert space 

has a privileged basis in correspondence to the eigenvectors of the Hamiltonian 

n n nHe E e=                                    (2.2.8) 

i j ije e δ=                                           (2.2.9) 

since it allows the direct solution of the Schrödinger equation 

( ) ( ) /( ) (0) 0 niE t
n n

n
t U t c e eψ ψ −= =∑                        (2.2.10) 

where ( )U t  is the unitary time evolution operator, while ( ) ( )0 : 0n nc e ψ=  are  the 

components of the initial state in the energy representation.  
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The density operator is then specified as 

( ) ( ) ( ) ( ) ( ) /*

,

( ) : 0 0 n mi E E t
n m n m

n m

t t t c c e e eρ ψ ψ − −= = ∑                         (2.2.11) 

In the following, unless otherwise explicitly stated, we shall employ the density matrix 

representation eq. (2.2.11) on the basis of the Hamiltonian eigenstates. 

This is in the essence the mechanical description of an isolated quantum system: from the 

knowledge of the Hamiltonian and of the initial state ( )0ψ  of the system one predicts, in the 

deterministic meaning, the state ( )tψ  of such a system at any time and in the full detail. The 

analysis we shall present is primarily based on the unitary time evolution governed by the 

Schrödinger equation [Schrödinger, (1926)] and thus no measurement-like process is 

considered. This is a quite natural assumption when the object of the study is the nature of the 

thermal equilibrium or the mechanisms which underlie the tendency to reach it in many body 

systems [Rigol, (2008); Srednicki (1999)]. This is due to the necessity of separating the 

problem of the statistical description of dynamical properties, i.e. the statistical mechanic of a 

quantum system, from the problem of quantum measurement.  

The state of the system described by the time evolving density matrix uniquely determines 

the expectation value of any quantum mechanical operator A  

( ) ( ) { } ( ) ( )* ( ) /
,

,

( ) : =Tr ( ) 0 0 n mi E E t
m n n m

n m

a t t A t A t A c c eψ ψ ρ − −= =∑          (2.2.12) 

 where  

,m n m nA e A e=                                 (2.2.13) 

If A  represents a physical observable, than A  is hermitian and ( )a t  is real. However, we will 

not restrict the analysis to this case only, by considering generic operators A . In particular the 

expectation value of non hermitian operators like 

n mA e e=                              (2.2.14) 

can be identified with elements of the density matrix  

( )( ) ( ) ( )* ( ) /( ) 0 0 n mi E E t
nm m n n mt Tr e e t c c eρ ρ − −= =                         (2.2.15) 
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Notice that operators which commute with the Hamiltonian H , [ ], 0A H = , are constant of 

motion, ( )( )Tr costA tρ = , because they are diagonal in the same basis of H . 

Furthermore, the energy E  of the system, given as the expectation value of the 

Hamiltonian operator, is a conserved quantity  

( ) ( ) ( ) ( )2 2
0n n n n

n n

E t H t c t E c Eψ ψ= = =∑ ∑                                                   (2.2.16) 

 

 

 

 

2.3 STATISTICAL CHARACTERIZATION OF THE EQUILIBRIUM  

The main objective of the statistical mechanics of classical isolated systems at equilibrium is 

the replacement of the mechanical description given by a trajectory, with a description in terms 

of probability density on the space which represents the possible states of the evolving system 

during its motion, i.e. the phase space Γ , [Khinchin, (1949)]. The ergodic approach to the 

foundation of statistical mechanics allows one to recognize the conditions of validity of such a 

replacement. Let us briefly recall them  

1. There are subspaces of the phase space which always transforms into themselves during 

the natural motion, and they are called invariant parts of the phase space.   

2. An invariant part V  is called metrically indecomposable if it cannot be represented in the 

form  1 2V V V= +  

where 1V  and 2V  are in turn invariant parts with non vanishing measure. 

3. Birkhoff’s Theorem: let V  be an invariant part of Γ  with finite volume and ( )f P  a phase 

function defined at all points P V∈ , then the following limit 

( ) ( )
0

1ˆ lim ,
T

T
f P f P t dt

T→∞
= ∫                                                                                       (2.3.1) 
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exists almost everywhere on V . Moreover if V  is metrically indecomposable, then almost 

everywhere on V  

( ) 1ˆ ( )
V

f P f P dV
V

= ∫M
                                                                                          (2.3.2) 

where VM  is the total measure of the set V .  

The proofs of these results as well as a detailed discussion of their implication in classical 

statistical mechanic can be found in ref. [Khinchin, (1949)]. The Birkhoff’s theorem is important 

for the foundations of statistical mechanic because it provides a rigorous proof of the 

equivalence between asymptotic time averages, which represent by definition the equilibrium 

“macroscopic” properties of the system, and phase space averages. The equivalence can be 

established if the time evolution of the system, i.e. the motion of its representative point in the 

phase space, covers all the region of phase space in which we want to perform the averaging 

procedure.  

In the following we describe how the ergodic approach can be applied to isolated quantum 

systems. 

 

 

2.3.1 TIME AVERAGE AND EQUILIBRIUM PROBABILITY DISTRIBUTIONS 

The isolated quantum system, when considered for long enough time, can be taken as a 

representation of an equilibrium system. Thus the equilibrium average can be identified with 

the asymptotic time average. In particular the averaged density matrix is given as  

0

1lim ( )
T

T dt t
T

ρ ρ→∞= ∫                (2.3.3) 

Let us first consider the simpler case of a system with a non degenerate energy spectrum 

0 forn mE E n m− ≠ ≠                  (2.3.4) 

the generalization to degenerate energy spectra does not change substantially the conclusion, 

and it will be discuss in the Appendix 2.2. Under the condition eq. (2.3.4) the time average is 

readily performed  
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( ) /
,

0

1lim n m

T
i E E t

T n mdt e
T

δ− −
→∞ =∫                                    (2.3.5) 

and the averaged density matrix can be specified as 

( ) 2
0n n n n n n

n n

c e e P e eρ = =∑ ∑                                               (2.3.6) 

Where we have introduced the N  conserved quantities 2: | (0) |n nP c=  which we shall call 

“populations” associated to the n -th basis vector. They are the diagonal elements of the pure 

state density matrix 

( )( )n n n nnP Tr e e tρ ρ= =                        (2.3.7) 

which do not depend on time since , 0n nH e e⎡ ⎤ =⎣ ⎦ .                                       

The time evolving quantum state can thus be parameterized in terms of constant 

populations and time dependent phases: by writing the initial coefficients of eq. (2.2.10) in 

polar form as 

(0) ni
n nc P e α=                                      (2.3.8) 

the state vector at time t  is specified as 

( ) ( )( )( ) expn n n n n n
n n

t c t e P i E t eψ α= = −∑ ∑                  (2.3.9) 

The set of populations fulfills the normalization requirement  

1
1

N

i
i

P
=

=∑                                         (2.3.10) 

and determine the total energy of the system (2.2.16) 

n n
n

E H P Eψ ψ= =∑                   (2.3.11) 

In conclusion, for a given Hamiltonian, a pure state is uniquely identified through the set of 

populations { }1,..., NP P P=  and the set of initial phases { }1,..., Nα α α=  defined with respect to 

the Hamiltonian eigenfunctions. 
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One can introduce also the following entropic functions which depend only on populations 

and thus is characteristic of a certain pure state 

logn n
n

S P P= −∑                  (2.3.12) 

The entropy as defined in the above equation is not the Von Neumann entropy, 

{ }Tr logVNS ρ ρ= −  (which for a pure state is always zero). It actually corresponds to the 

entropy as defined by Shannon, which is usually interpreted as a measure of the lack of 

information about the outcome of a given measurement. In this context we are not interest in 

the measurement process so the function (2.3.12) is rather interpreted as a measure of the 

degree of disorder of a quantum pure state in relation to its decomposition onto the 

Hamiltonian eigenstates. In particular a vanishing entropy would be recovered only for a 

stationary eigenenergy state.    

The time averaged density matrix eq. (2.3.6) determines the energy of the system and all 

the other conserved quantities, as well as the entropy as defined in (2.3.12). However ρ , 

being a statistical density matrix, cannot be interpreted as the density matrix of a given 

wavefunction. Indeed it violates the condition of idem potency 2ρ ρ≠  unless just one state is 

populated, which corresponds to the system in a stationary eigenenergy state. Though the 

density matrix has been proposed for nearly 80 years, there are still confusions and sometime 

disputes on matter related to it. Some are caused by confusion in the terminology, but others 

are true disputes of the fundamental nature. It can be discussed, for example, if it can actually 

be associated to a single quantum system or has to be interpreted as describing only 

ensembles of systems, each described by a wavefunction, refs. [Aharonov, (1999); 

d'Espagnat, (1998); Long, (2006)]. Here by avoiding at all the problems related to the 

measurement process, we shall adopt the point of view that a density matrix actually describes 

a single quantum system.    

Let ( )f a  be any (real) function of the expected value (2.2.12) defined in a domain U ∈ , 

and then we define the equilibrium probability distribution ( )p a  through the equality 

( ) ( )( ) ( ) ( )
0

1lim
T

T
U

f a dt f a t da f a p a
T→∞

= =∫ ∫                         (2.3.13) 

provided the first limit exists. 
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It is worth to note explicitly that the average of a function ( )f a  which is not linear in the 

observable a  does not coincides with the function ( )f a  evaluated at the average value a  of 

the observable. Indeed the average density matrix allows the calculation of the average of the 

expectation value 

( ) ( ) ( ){ }
0

1lim
T

T nn n
n

a t dta t Tr A t A P
T

ρ→∞= = =∑∫                       (2.3.14) 

but not the average of the n -power 

( ) ( )( ) ( ){ } { }( )
0

1lim Tr Tr
T nnnn

Ta t dt a t A t A
T

ρ ρ→∞ ⎡ ⎤= = ≠⎣ ⎦∫               (2.3.15) 

Let us now consider a generic observable ( )a t  as given in (2.2.12) which is not a constant 

of the motion. Let us imagine to pick a statistical sample of its values along a given time 

trajectory. In this way one can obtain the probability distribution ( )p a  of eq. (2.3.13). We shall 

now assume that no accidental degeneracy occurs in the frequency spectrum [Peres, (1984); 

Tasaki, (1998)], i.e.  

' ' only if and ' ', or ' and 'n n m mE E E E n m n m n n m m− = − = = = =              (2.3.16) 

Under this condition one can easily evaluate the variance 2σ  of the observable ( )a t   

( ) ( ) ( )
22

' ' '
'

A n n nn nn
n n n

a t a t a t P P A Aσ ∗ ∗

≠

= − =∑∑                                                         (2.3.17) 

Which is equivalent to the sum of the variances of the real and imaginary part of the expected 

value ( )a t . 

Eqs. (2.3.14), (2.3.17) show that average and variance of observables along a given 

trajectory depends on the matrix representation of the operator and on the populations but not 

on the initial phases α . As discussed in Appendix 2.1, this conclusion can be generalized to 

demonstrate the phase independence also of the distribution function ( )p a , which then 

carries a parametric dependence on the set of populations only. This implies that the 

distribution function ( )p a  and the average of any function ( )f a  of the observable as well, 

are independent of the choice of the initial time for the sampling along the trajectory, since a 
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shift of the time origin t t t→ +Δ  is equivalent to a shift of the initial phases  n n nE tα α→ − . 

Of course the independence on the initial time is a prerequisite for dealing with a distribution 

function describing a truly equilibrium system. 

 

 

 

 

2.3.2  PURE STATE DISTRIBUTION (PSD)   

In the previous section we have shown how to derive in the ergodic framework the 

distribution function ( )p a  for a generic time dependent observable ( )a t . Now we generalize 

such an approach in order to obtain the distribution function for the time dependent  density 

matrix ( )tρ , which we shall denote as the Pure State Distribution (PSD). It represents the 

more general statistical description of the equilibrium state of an isolated quantum system. The 

basic procedure is the same: a statistic sample for the density matrix can be always obtained 

from a long enough trajectory of the system. However, one must take into account that the 

statistical observable is not a parameter but an operator which should satisfy the constraints 1-

4 listed in Section 2.2 and, therefore, a suitable parameterization of the density matrix has to 

be introduced. Given the wavefunction specified in eq. (2.3.9), it is convenient to specify the 

density matrix as  

,
,

( ) exp[ ( )]n m n m n m
n m

t P P i t e eρ α= −∑     (2.3.18) 

where we have introduced the time dependent relative phase , ( )n m tα  between directions ne  

and me  according to the relation 

, ,( ) :n m n m n mt tα α α ω= − −                                                                    (2.3.19) 

, : ( ) /n m n mE Eω = −  being the (angular) transition frequency between the two eigenstates. 

Because of the sum rule 

, , ,( ) ( ) ( )n m m l n lt t tα α α+ =      (2.3.20) 
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these relative phases are not independent. Only ( 1)N −  of them can be taken as independent, 

and a convenient choice for them is provided by the set of angles 

 { }1 2 1 1,1 1,1 1,1, , , ( ) : ( ) (0)N j j j jt t tγ γ γ γ γ γ γ ω− + + += = = +    (2.3.21) 

which allows one to specify the instantaneous value of any relative phase 

, 1 1( ) ( ) ( )n m n mt t tα γ γ− −= −                         (2.3.22) 

The set ( )tγ  of angles together with the set P  of constant populations represent the set  of 

stochastic variables 

( ){ }( ) ,X t P tγ≡                  (2.3.23) 

which determine the instantaneous value of the density matrix (and also the reverse condition 

holds, i.e., that for a given set X  of parameters one can determine in a unique way the 

corresponding density matrix). In other words such parameters are the coordinates of the 

phase space, i.e. the space of the possible state of the system.  

According to this identification of the stochastic variables, one can determine the probability 

distribution ( | )p P γ  on angles for a given set P  of populations, with normalization 

( | ) 1d p Pγ γ =∫                      (2.3.24) 

where 

2 2 2

1 2 1
0 0 0

: Nd d d d
π π π

γ γ γ γ −=∫ ∫ ∫ ∫                (2.3.25) 

having chosen the standard definition domain for each angle: 0 2jγ π≤ < . The distribution 

function should be identified by imposing the condition that, for any function ( )f γ , the average 

on the angle space and the average along a trajectory should be equivalent: 

 
0

1lim ( ( )) ( ) ( | )
T

T dt f t d f p P
T

γ γ γ γ→∞ =∫ ∫    (2.3.26) 

In the case of a two-dimensional problem with one angle only, such a distribution is obviously 

homogeneous as long as the angle 1( )tγ  has a linear dependence on the time 
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2 : ( | ) 1/ 2N p P γ π= =      (2.3.27) 

Because of the linear dependence of all these angles, one should expect that such a 

distribution is homogeneous also in systems with a larger dimensionality ( 2N > ). However, 

this is not necessarily true and, to clearly show the origin of the problem, in Figure 2.1, we 

have represented in the 1 2( , )γ γ  plane part of a trajectory for a 3N =  systems. The upper 

panels represent the trajectory by attributing to the angles values in the infinite 2  domain, 

while in the lower panels the representations of the same trajectory but with the angles in their 

definition domain 1 20 , 2γ γ π≤ < , which represents their true phase space, are reported. On 

the right part referring to a case of incommensurate transition frequencies 2,1ω  and 3,1ω , the 

trajectory tends to cover all the phase space.  On the contrary on the left side for the case of 

commensurate transition frequencies with the ratio 3,1 2,1/ 2ω ω = , the trajectory occupies a zero 

measure subset of the phase space corresponding to two segments. Evidently the 

homogenous angle distribution can be employed only in the case of incommensurate transition 

frequencies.  
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Figure 2- 1: Angles variables for the case 3N =  in a portion of time evolution: in the real plane 

(upper panels)  and in the domain [ )0,2π  (lower panels). The left side depict the phase space 

trajectory in the case of commensurate frequency while on the right side the case of two 
incommensurate frequency is reported. 

 

In order to provide a more formal analysis of the problem, let us introduce the Fourier 

transform of the distribution function 

 ( )
1 2 1

1 2 1

1 1 2 2 1 1 , ,...( | ) exp( ) exp( ) exp( )
N

N

N N n n n
n n n

p P in in in p Pγ γ γ γ
−

−

− −= ∑ ∑ ∑    (2.3.28) 

with coefficients given as 

( )
( )

( )
1 2 1

1

, ,... 1
1

1 exp
2N

n

n n n j jN
j

p P d i n p Pγ γ γ
π−

−

−
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑∫           (2.3.29) 

For a given set of indices ( )1 2 1, ,... Nn n n − , let us select the function 

( )
( )

1

1
1

1 exp
2

n

j jN
j

f i nγ γ
π

−

−
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑                                                                                 (2.3.30) 
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From its average on the phase space according to the series expansion eq. (2.3.28) of the 

distribution function, one derives that 

( )
1 2 1, ,... Nn n nf p P

−
=  (2.3.31) 

 

On the other hand, by evaluating f  as the average along the trajectory, the following relation 

is recovered 

( )
( )

( )
( )

1

1
10

1 1

1,11
1 10

1 1lim exp
2

1 1exp 0 lim exp
2

T N

j jNT j

TN N

j j j jN Tj j

f dt i n t
T

i n dt it n
T

γ
π

γ ω
π

−

−→∞
=

− −

+− →∞
= =

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑∫

∑ ∑∫
 (2.3.32) 

which is not vanishing only if the following constraint is satisfied 

1

1,1
1

0
N

j j
j

n ω
−

+
=

=∑                                                            (2.3.33) 

In conclusion, by comparing the two average of f  we derive that an expansion coefficient 

( )
1 2 1, ,... Nn n np P

−
 is not vanishing only under the previous condition. An obvious case is that for 

vanishing values of all the indices, 1 2 1... 0Nn n n −= = = . But the important question to answer is 

whether this is the only case satisfying such a constraint. In all generality the answer is 

negative. For instance let us consider the case when two transition frequencies are 

commensurate, i.e. 2,1 3,1 e kω ω =  with e  and k  integer numbers. Then the constraint is 

satisfied also for the following non vanishing set of indices 1 2 3 4 1, , ... 0Nn k n e n n n −= = − = = = . 

To exclude this type of peculiar cases, in the following we shall assume that all the transition 

frequency are incommensurate, in which case the expansion coefficients are given as 

( )
( )1 2 1

1

,0
1

, ,... 12

j

N

N

n
j

n n n Np P
δ

π−

−

=
−=

∏
 (2.3.34) 

which corresponds to a homogeneous distribution on the angles 

( ) 1
1( | )

2 Np P γ
π −=                                                                               (2.3.35) 
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Such a conclusion, however, calls for a discussion about the issue of how reasonable is the 

assumption of incommensurability of transition frequency. In real systems, with different types 

of interactions, which of them with different possible magnitude according to interparticle 

distance, the energy eigenvalues, and correspondingly the transition frequency, are 

characterized by distributions with at least partially random character. This, for instance, is the 

underling point of view supporting the statistical analysis of the energy levels in complex 

quantum system like in the Wigner theory [Wigner, (1967), Casati (1996)], and which justify the 

employment of mathematical tools like the random matrix theory, [Guhr (1998), Esposito 

(2003), Lebowitz (2004)]. Thus, if the transition frequencies have to be selected with some 

level of randomness, it would result a vanishing probability that two of them are 

commensurate, since the ensemble of rational numbers is a subset of zero measure of the set 

of real number. On the other hand, often quantum systems are described with particular 

Hamiltonian models leading to commensurate transition frequencies. An obvious example is 

the triplet spin system ( )3N =  with only two Zeeman interactions, in which case 3,1 2,12ω ω= . 

In this case, one can think always there are others sort of interactions, that are neglected in the 

model, but which slightly modifies the energy spectrum so leading to incommensurate 

transition frequency. Moreover one can assume that these interactions are so weak that lead 

only infinitesimal modifications of the transition frequency predicted by the model, but sufficient 

to destroy them commensurability. Then, one is legitimate to adopt a homogeneous angles 

distribution for the PSD, still continuing to use simple models for the energy spectrum. The 

same kind of arguments support the application of the result of our analysis requiring the non 

degeneracy of the energy spectrum to model system lacking such a property, as illustrated in 

Appendix 2.2.  

It should be emphasised  the PSD distribution allows in principle the calculation of the 

average of any function of the observable. Since the population P  and the angles ( )tγ  

determines the instantaneous density matrix ( )tρ , one can denote its functional dependence 

as 

( ) ( )( ),t P tρ ρ γ=                                                                            (2.3.36) 

Thus the average of a function ( )( )f a t  can in principle be determined through the angle 

averaging 

( )( ) ( )( )( ) ( )Tr ,f a t d f A P t p Pγ ρ γ γ⎡ ⎤= ⎣ ⎦∫                                                   (2.3.37) 
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Notice that with a suitable manipulation of the previous angle integral, one can in principle 

derive the distribution function ( )p a  of the observable a . 

One can assume the point of view that the Pure State Distribution is the distribution on the 

set of parameters which belong to the ergodic subspace, i.e. the indecomposable part, of the 

full phase space. The central point is that the equilibrium probability distribution, the PSD, is 

defined on the basis of the temporal evolution of the single system through eq. (2.3.26) and 

this is the same concept which lies on the base of the ergodic theory. Then, the linearity of the 

Schrödinger evolution makes the problem of identification of the ergodic region of the phase 

space very simple in principle for quantum mechanical systems. The PSD identifies the region 

of the Hilbert space, characterized by a fixed set of N  populations, which is invariant as well 

as metrically indecomposable, to which then  the Birkhoff’s theorem can be applied. 

 This point of view is also used in ref. [Brody, (2007)] in order to define a statistical 

equilibrium density matrix ρ  which assure that the average expected value of observables 

(2.3.14) is given as  

( )eq
a Tr Aρ=                                                                          (2.3.38) 

In this approach the specification of ( )2N −  integral of the motion is required in order to 

perform the statistical average and in order to give a thermodynamical characterization of the 

equilibrium state. The diagonal elements of ρ  are in fact written as functions of these 

conserved quantity in a form which resembles the grand canonical distribution function.  

Also Rigol et al. in ref [Rigol, (2008)] recognizes the infinite time average (2.3.14) of an 

observable as its equilibrium value. Thus the authors introduce a “diagonal ensemble”  which 

is seen as an ensemble formed by the Hamiltonian eigenvectors with a corresponding 

statistical weight determined by the set of populations, see eq. (2.3.6). 

We do not follow this line and we prefer to avoid the identification of the equilibrium state 

with an ensemble of eigenstates. Instead we use the asymptotic time average in order to 

define the corresponding equilibrium average.  Indeed the time averaged density matrix of eq. 

(2.3.6) represents the equilibrium average density matrix, which is exactly the density matrix 

averaged on the pure state distribution (2.3.35).     

In conclusion, the isolated quantum system is fully characterized through the PSD 

distribution on the angles for the given set of populations, that is  
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0 1

1( , ) ( )
(2 )Np P P Pγ δ
π −= −                                            (2.3.39) 

Then the issue of quantifying the populations of a given quantum system naturally arises. By 

excluding the exceptional case of a system prepared with a priori defined populations, it should 

be clear that complete information on the populations is not available, and that one can 

analyze only statistically the different possibilities for the given system. That is, one should 

consider ensembles of pure state distributions, corresponding to the system with different sets 

of populations, in order to derive the suitable statistical distribution for the set of populations. 

This will be the objective of the next Chapter. 

Sill one can introduce particular pure state distributions by selecting the populations 

according to the standard procedure of equilibrium statistical mechanics. In this context the 

usual quantum microcanonical setup, refs. [Tolman, (1980); Huang (1987)] can be interpreted 

as a particular choice for the populations, that is 

( )
1 if

0 otherwise

n
n

E E E E
E EP

⎧ − Δ ≤ ≤⎪Ω Δ= ⎨
⎪
⎩

                                         (2.3.40) 

Where ( )EΩ  is the density of energy levels and the parameter EΔ  is fixed and small with 

respect to E . Notice that the corresponding entropy is given by the Boltzmann formula 

lnBS k N= , where ( )N E E= Ω Δ  is the number of populated eigen energy. It should be 

emphasised that the particular PSD obtained by using the model for the populations given in 

eq. (2.3.40) is conceptually different from the conventional microcanonical distribution. Indeed 

this latter only concerns with the average density matrix, while the PSD is intended to describe 

the full distribution on the instantaneous density matrix, including its fluctuations. However, 

there is no compelling reason why an isolated system should be in an eigenstate of the 

Hamiltonian, or in a superposition of stationary states all with about the same energy. On the 

contrary, time-dependent states are generic and their time average determines the equilibrium 

condition. This point of view has been emphasized by Schrödinger who, in his preface of ref. 

[Schrödinger, (1952)], states “To ascribe to every system always one of its sharp energy 

values is an indefensible attitude”. 

Recently a generalized microcanonical ensemble has been proposed in refs. [Brody, 

(2005), (2007); Bender, (2005)] in which the microcanonical energy is identified with the 

expectation value of the Hamiltonian. This framework defines an Ensemble of pure state 
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because many different sets of populations can give the same expectation energy. However it 

is not clear how such an ensemble description can be related with the statistical 

characterization of a single quantum state. To circumvent this point Naudts et al. in [Naudts, 

(2006)] propose to apply the maximum entropy principle. Indeed one can maximize the Gibbs 

entropy, log
N

n n
n

S P P= −∑ , under the constraints of normalization and constant expectation 

energy, E H= . By imposing such a constraint by means of Lagrangian multipliers, one 

derive the canonical set of populations 

:
n

n

E
E

n
n

eP Q e
Q

β
β

−
−= =∑  (2.3.41) 

with parameterβ  given as implicit solution of the equation 

n

n

E
n

n
E

n

E e
E

e

β

β

−

−=
∑
∑

 (2.3.42) 

and identified with 1/ Bk Tβ =  according to conventional statistical mechanics. In this way the 

populations are uniquely specified, and they coincide with the canonical distribution of 

statistical mechanics. It should be emphasized, however, that the coupling with a thermal bath 

has not to be invoked and thus we find a canonical statistic associated to microcanonical 

conditions. 
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2.4 SYSTEM PLUS ENVIRONMENT PARTITION OF THE ISOLATED SYSTEM  

In order to describe a quantum system S  which can interact with its surrounding E , we 

should consider it as a subsystem of the composed system S E+ . Indeed a striking feature of 

quantum mechanics is that any interaction also produces entanglement, [Gemmer, (2001)]. As 

a consequence the description in terms of wavefunction can be rigorously applied only to 

isolated quantum system. Moreover, even in the ideal case of absence of any energetic 

interactions, the system S  can always be entangled with another quantum system with which 

it interacted in the past [d’Espagnat, (1990)]. In this case it is impossible to assign two 

separate wavefunctions to the subsystems. For these reason we will always consider the total 

system S E+  to be in a pure state and thus described by a wavefunction ( )tψ .  

The Hamiltonian of the total system can be generally partitioned as  

S E SEH H H H= + +                 (2.4.1) 

where SH  is the Hamiltonian of the subsystem of actual interest, EH  is the Hamiltonian of the 

rest of the overall system, i.e. the environment, and SEH  is the interaction Hamiltonian. 

We choose the eigenvectors of the system and environment Hamiltonian as the basis set 

for the corresponding Hilbert spaces SH , of finite dimension SN , and EH  of dimension EN , 

that is 

{ }: , 1,... S S sspan s s N H s E s= = =SH                    (2.4.2) 

{ }: , 1,... E E bspan b b N H b E b= = =EH                 (2.4.3) 

Where the energy is intended in frequency unit. The total pure state thus lies in the tensor 

product space ⊗S EH = H H  spanned by the product basis { }, 1,... S Esb s b sb N N= = .  

Let us consider first the ideal case where no interaction between the system and the 

environment are present, 0SEH = . The eigenfunctions of the total Hamiltonian coincides with 

the product basis, n sb=  and the total wavefunction can be expanded in such a basis as 

usual 
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( )( ) n ni E t
n

n
t P e nαψ −=∑                                                                                      (2.4.4) 

where n s eE E E= +  and the index n  specifies the state sb .  

We stress that also in this case the system and the environment can be in an entangled 

state, that is, the total wavefunction could not be cast in a factorized form, S Eψ ψ ψ≠ ⊗ . The 

state of the system S  has to be specified through its Reduced Density Matrix (RDM), which is 

defined as the trace over the environmental degree of the total instantaneous density matrix 

eq. (2.2.11). 

( ) ( )TrEt tμ ρ=                               (2.4.5) 

If the system S  is to some extent entangled with the other system E  then it is not possible to 

assign to it an autonomous wave function, as a consequence its Reduced Density Matrix is not 

idem potent, that is ( ) ( )2t tμ μ≠ . In this case the state of the quantum system is said to be 

mixed. For a bipartition of a total pure state there exists a unique measure of the entanglement 

between the two parts [Popescu, (1997)]. This is the Von Neumann entropy which can be 

computed equivalently from the system or the environment Reduced Density Matrix 

( ) ( ) ( )( ) ( ) ( )( )Tr ln Tr lnS S E ES t t t t tμ μ μ μ= − = −                                  (2.4.6) 

Another quantity which is often used because it is simpler to compute is the purity P , 

[Zurek, (1991)], defined as 

( ) ( )( )2Tr tμ=P t                                                                                                  (2.4.7) 

It provides the first nontrivial term in a Taylor series expansion of the Von Neumann Entropy 

about its maximum value. It assumes the maximum value of 1 fore pure states and it is 

bounded from below by 1 SN . 

The RDM of the system specifies the expectation value of any observable pertinent to the 

system only, SA∈H , indeed 

( ) ( )( ) ( )( ) ( )( )Tr Tr Tr TrS E Sa t A t A t A tρ ρ μ= = =                    (2.4.8) 
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In the case of no interaction, 0SEH = , despite of the non existence of an autonomous 

wavefunction for the system of interest one can still formulate an autonomous equation for the 

time evolution of its Reduced Density Matrix, eq. (2.4.5). Starting from the Liouville-Von 

Neumann equation for the pure state density matrix eq (2.2.7) and by applying the trace 

operator one has 

( ) ( )Tr ,E S E

t
i H H t

t
μ

ρ
∂

⎡ ⎤= +⎣ ⎦∂
                                                                 (2.4.9) 

and by considering that 

[ ]( )Tr , 0E EH ρ =                                                     (2.4.10) 

one obtains 

( ) ( ),S

t
i H t

t
μ

μ
∂

⎡ ⎤= ⎣ ⎦∂
                                             (2.4.11) 

This is not the case when one consider the presence of an interaction between the system 

and the environment, this case will be discuss in more detail in the Part II of the present study. 

The solution of (2.4.11) is 

( ) ( ) ( )'
'

'
0 '

S
s s

N
i E E t

ss
ss

t e s sμ μ − −=∑                             (2.4.12) 

Where the initial state ( )0μ  is determined from (2.4.5) for 0t =  and is explicitly given by 

( ) ( )'
'

'
0 'sb s bi

sb sb
ss b

e P P s sα αμ −=∑∑                                 (2.4.13) 

Notice that if no interaction are present the Von Neumann entropy eq. (2.4.6) and the purity, 

eq. (2.4.7), are conserved during the time evolution. 

According to (2.3.13) the equilibrium average of the Reduced Density Matrix is  

sb
s b

P s sμ =∑∑                                                       (2.4.14) 
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APPENDIX 2.1:  INITIAL PHASES  INDEPENDENCE OF THE EQUILIBRIUM DISTRIBUTION 

OF AN OBSERVABLE  

To demonstrate the independence of ( )p a  of eq, (2.3.13) on the phases parameters α , let 

us consider the Fourier transform ( )p q  of the equilibrium distribution 

( ) : ( )iqap q da e p a
∞

−∞

= ∫  (A2.1.1) 

and its series expansion  

0 0

( ) ( )( ) ( )
! !

n n
n n

n n

iq iqp q da a p a a
n n

∞∞ ∞

= =−∞

= =∑ ∑∫  (A2.1.2) 

which is specified through the moments na .  

Let us evaluate the n -th power of ( )a t  according to eq. (2.3.15) 

' '

''
1 11 1

( ) ( ) /
, ' '

, '

/

, ' '
' 1

( ) m m m m

n nn n

m mm m k kk k
k kk k

k k k k

n
i i E E tn

m m m m
m m

i E E tn i i

m m m m
M M k

a t A P P e e

A P P e e

α α

α α
= == =

− − −

⎛ ⎞
⎜ ⎟− −− ⎜ ⎟
⎝ ⎠

=

⎧ ⎫
= =⎨ ⎬
⎩ ⎭

∑ ∑∑ ∑⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∑

∑∑ ∏
 (A2.1.3) 

where 1 2( , , , )nM m m m=  and  1 2' ( ' , ' , , ' )nM m m m=  are sets of n  indices. By performing 

the time average of eq. (A2.1.3) one derives that, in the absence of energy degeneration, only 

the contributions in eq. (A2.1.3) where 'M  is a permutation of M survive. But in such a case, 

the difference on the phases '
1 1

k k

n n

m m
k k
α α

= =

−∑ ∑   also vanishes and, therefore, no dependence on 

the phases would be revealed by the moments na . Therefore ( )p q  does not have any 

parametric dependence on the phases and the same conclusion can be drawn for its Fourier 

transform 

1( ) ( )
2

iqap a dq e p q
π

∞
−

−∞

= ∫                                                            (A2.1.4) 

Which is the distribution function for the observable. 
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APPENDIX 2.2: EFFECTS OF ENERGY AND FREQUENCY DEGENERACY  

In defining the PSD we assumed for the sake of simplicity a non degenerate energy 

spectrum so that condition (2.3.4) always holds, and also the absence of degeneracy in the 

frequency spectrum, in order to satisfy condition (2.3.16). In this section we will investigate the 

consequences of relaxing these conditions by showing how eventually degeneracy on the 

energy or frequency spectrum has to be treated in the above presented framework. The main 

difference when one consider the possibility of energy and frequency degeneration is that the 

equilibrium distribution of observables is not in general independent on the initial phases, but 

depend on a certain combination of them. In particular the condition (2.3.16)  is not generally 

true in the case our total system consists of parts which does not interact each others. To see 

this consider for example the energy and frequency spectra of two spins which do not interact, 

depicted in Figure 2-2,  

( ) ( )1 2
1 2z zH S S= Δ + Δ                                 1

2

1
0.75

Δ =
Δ =

                                     (A2.2.1) 

Even if the energy spectrum is not degenerate, the frequency spectrum is (i.e., the non 

resonance condition (2.3.16) is not satisfied). In order to properly account these cases it is 

convenient to analyze the problem in the Liouville Space notation. The basic definitions and 

the super operator form of the Liouville-Von Neumann equation (2.2.7) are briefly discussed in 

Section A2.2.1.   

Even if one could in principle take into account all the phases dependent conserved 

quantities which derive from the presence of degeneracy, as it is shown in Section A2.2.2, it is 

worthy to note that for realistic systems, due to the complexity of internal interactions, one 

expects degenerate energy eigenvalues to split in nearly located but distinct levels. This is also 

briefly illustrated in Section A2.2.3.    
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Figure 2- 2: Energy Spectrum (left) and Frequency Spectrum (right) of two non interacting spins 
with different Zeeman frequencies, the Hamiltonian is given in eq. A2.2.1. 

 

A2.2.1: NOTE ON THE LIOUVILLE SPACE 

The von Neumann equation for the evolution of a pure state density matrix can be 

conveniently cast in a superoperator form as  

( ) ( ) ( ),
d t i H t t

dt
ρ

ρ ρ⎡ ⎤= − =⎣ ⎦ L                                 (A2.2.2) 

If we define the Liouville space as the direct product ×H H  of the Hilbert space of 

dimension N  we can represent the operators as vectors and the superoperators as matrices 

in this new space of dimension 2N . An operator A  in Hilbert space, including the density 

matrix, is represented by a vector A  in the Liouville space. The scalar product is defined by 

  ( ) { }†Tr A B=A B                           (A2.2.3) 

and the norm is ( )=A A A . Projectors and theirs adjoint, which are superoperators in the 

Hilbert space, take the following representation 
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)
(†

' '

' '

nn n n

nn n n

= =

= =N

N
                                         (A2.2.4) 

and constitute an orthonormal basis for the Liouville space 

( ) ( ) ' '' ' nm n mnn mm δ δ= =N M                                 (A2.2.5) 

The identity is thus written as )(
'

' '
nn

nn nn=∑I . 

As usual any operator and superoperator can be expanded on the chosen basis 

( ) )
2

2

''
1

'
N

N
nnnn

A nn
=

= =∑ ∑
N

A N A N                                   (A2.2.6) 

( ) )(∑∑
N M

N M N ML = L                                              (A2.2.7) 

where  

( ) ( )', ' ' ' ' 'nn mm nm n m n m nm
i H Hδ δ= = − −N ML L                     (A2.2.8) 

which is anti-hermitian, i.e. † = −L L  

If n  and m  indices correspond to the eigenstates of the Hamiltonian we have 

( )', ' ' ' ' ' ' 'nn mm n n nm n m nn nm n m
i E E iδ δ ω δ δ= − − = −L                                (A2.2.9) 

that is, we see that the spectrum of the Liouvillian consists of all the frequencies which 

characterized the evolution of the total system. In fact the evolution of the total density matrix, 

eq. (A2.2.2), can be written using the Liouville space notation as 

( ) ( ( )) ( ) )0 i tt e ωρ ρ −=∑ N

N

N N                                                     (A2.2.10) 
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A2.2.2 MEAN AND VARIANCE OF OBSERVABLES IN LIOUVILLE SPACE: HOW TO 
ACCOUNT FOR DEGENERACY 

Consider the density matrix as a vector in the Liouville space, working in the complete basis 

corresponding to the energy representation ){ }N  its time evolution is ruled by the frequencies 

which characterize the spectrum of the Liouville operator iL .  We shell use the following 

partition of the full Liouville space 

0 1 2 .... jL ε ε ε ε± ± ±= ⊕ ⊕ ⊕                                (A2.2.11) 

where each εN  is defined as the subspace spanned by the set of eigenvectors 

corresponding to the Liouvillian eigenvalue 'n nE Eω = −N . For example for N = 0  we write 

 ) ( ) ){ }0 , 0span iε ε= =0N N = 1,..dim NL                      (A2.2.12) 

Clearly 0ε  has dimension N  in the case of a non-degenerate spectrum of the Hamiltonian 

while all the others are one-dimensional subspaces if the non resonance hypothesis, eq 

(2.3.16), is satisfied. However the following picture is general and includes the above case as 

a special one. The expected value of the operator A  is now written as a scalar product 

( ) ( )( ) ( ) ( )( )
)

0i ta t Tr A t e ωρ ρ= =∑ N

N

N A N                 (A2.2.13) 

Averaging over time one excludes all the subspaces different from 0ε  and the summation is 

thus restricted to this degenerate subspace 

  ( ) ( ) ( )) ( )( )
0

'

0

1lim 0
T

T
a t a t dt

T ε
ρ

∈→∞
= =∑∫ N

N A N                  (A2.2.14) 

While in the case of a non degenerate spectrum the only terms which survive to the 

average are those which refer to the same eigenstate, resulting in eq. (2.3.17), in the 

degenerate case one has to consider also the contribution of the two different but degenerate 

levels. If, for example there are K  pairs of distinct but degenerate eigenstates de  and 'de , the 

mean value in the Hilbert space notation became 

( ) ( )' '
' ' ' ' deg

( ') 1

d d dd

K
i i

nn n dd d d d d d d
n dd

a t A P A P P e A P P e a aα αΔ Δ

=

= + + = +∑ ∑               (A2.2.15) 
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where the phase differences ' 'd d d dα α αΔ = −  relative to the degenerate states are now 

additional conserved quantities. By supposing the matrix elements of the observable being 

positive, notice that while in the first summation all the terms would give a positive contribution, 

the summation due to the degeneracy contains positive and negative terms. Given that the 

single phases are uniformly distributed, so are they relative differences. This means that in the 

limit of a highly degenerate spectrum the contribution to the average of the observable, 

(A2.2.15), due to the presence of degeneracy would be small compared to the first one.     

The following time dependent product can be written as 

( ) ( ) ) ( ) ( )) ( )( )( ( )) ( )0 0 Mi ta t a t e ω ωρ ρ∗ −=∑ ∑ N

N M
M A A N N M            (A2.2.16) 

but now the terms which survive after the time average are all those for which )N  and )M  

belong to the same subspace. The variance is thus 

 ) ( ) ( )) ( )( )( ( ))2 0 0A ε ε
σ ρ ρ

∈ ∈
≠

=∑ ∑ ∑
J JN M

J 0

N A A M N M                       (A2.2.17) 

As before, in the case of frequency degeneracy there are additional contribution to the 

variance which are given by those transitions for which ' ' 0nn m mω ω+ =  but ( ) ( )' 'm m n n≠ .  

Again this extra-contribution is phase dependent, say there are K  of such a group of four 

states, then   

( )

( )

' '2
' ' ' ' '

' ' '

nn m m
K

i
A n n nn nn n n m m

n n n nn mm

P P A A P P P P e α ασ Δ +Δ∗

≠

= +∑∑ ∑                         (A2.2.18) 

From this treatment one can easily sees that degeneracy in the energy spectrum has to be 

taken into account in order to correctly evaluate the time average, eq. (A2.2.14), but does not 

affect the variance of the observable because all the terms pertinent to the 0ε  subspace are 

cancelled by subtracting the mean value.  On the contrary, degenerate frequencies has to be 

consider in evaluating the variance of the distribution, eq. (A2.2.17), but do not affect the 

average value of the distribution. 

Note that for self adjoint A  eq. (A2.2.17) is also equivalent to  

) ( ) ( )) ( )( ) ( )( )2 0 0saA ε ε
σ ρ ρ

∈ ∈
≠

=∑ ∑ ∑
J -JN M

J 0

N A M A N M                   (A2.2.19) 
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If the system is composed of parts which does not interact one has to analyze the spectrum 

of the Liouville operator in order to correctly identify the basis vectors which contribute to the 

summation. This problem, however, became less important when an interaction term is added 

to the Hamiltonian. In fact a generic perturbation removes the degeneracy due to some 

symmetry both in the energy and in the frequency spectrum (clearly with the exception of the 

subspace 0ε  of the Liouville space). 

A2.2.3 REMOVING THE DEGENERACY 

An Hamiltonian which include energetic terms relative to different systems but no interaction 

between them is on one hand theoretically important because simple and on the other hand 

quite unrealistic. To see this consider for example to add a purely adiabatic interaction term to 

the above considered zero order Hamiltonian (A2.2.1) 

( ) ( ) ( ) ( )1 2 1 2
1 2z z z zH S S S Sλ= Δ + Δ +                                                                           (A2.2.20) 

the eigenvectors are not affected and the eigenenergies as a function of the interaction 

strength parameter reads 

1 2 1 1 2 2 1 2s sE s s s sλ= Δ + Δ +                                                           (A2.2.21) 

where is  is the eigenvalue of the spin operator ( )i
zS . The spectrum as a function of the 

interaction parameter λ  is depicted in Figure 2-3. This interaction is sufficient to remove the 

initial degeneracy in the Liouville subspaces different from 0ε . However, because the 

perturbation has the same symmetry of the zero order Hamiltonian, the energy eigenvalues 

cross for some special values of the interaction parameter. As consequence also the 

frequency spectra became degenerate for these and others single values of λ .  

To analyze the most general case a further small perturbation can be added to the 

Hamiltonian 

( ) ( ) ( ) ( )1 2 1 2
1 2z z z z IH S S S S Hλ= Δ + Δ + +                                                                          (A2.2.22) 

where IH  is a self-adjoint matrix with no other symmetries. By removing all the symmetries 

from the Hamiltonian one sees that the energy levels are never degenerate, because the non 

crossing rule is valid. The energy and frequency spectra which refer to this case are depicted 

in Figure 2.4. As before the degeneracy of the zero order frequencies is completely removed 

by the perturbation (inset A). Also other punctual degeneracy in the frequency spectrum 
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become avoided crossing due to the interaction (inset C). Only for few special values of the 

strength parameter some accidental degeneracy of frequencies are still present (inset B). 
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Figure 2-3: Energy Eigenvalue (left) and frequencies (right) as a function of the strength of a 
purely adiabatic interaction term in the Hamiltonian two spins, see eq. A.2.2.20.  
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Figure 2-4: Energy Eigenvalue (A) and frequencies (B) as a function of the strength of a purely 
adiabatic interaction term in the Hamiltonian of two spins. In this case a further perturbation term 
in the form of a random matrix is added to the Hamiltonian, eq. A.2.2.22. 
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CHAPTER 3 

STATISTICAL ENSEMBLES OF PURE STATES AND ENSEMBLE 
DISTRIBUTIONS 

 

 

 

3.1 INTRODUCTION 

By defining the equilibrium distribution function on the basis of the asymptotic time average 

of an isolated system we have, in principle, completely characterized the equilibrium state from 

a statistical point of view: the equilibrium value of any phase function (observable) is the time 

average which can be equivalently computed  by integrating over the Pure State Distribution, 

eq. (2.3.35). This, however, is not the end of the story for the statistical mechanics of an 

isolated quantum system, since the Pure State Distribution is defined for a given set of 

populations which we usually do not know.  

In this Chapter we thus consider Ensembles of pure states and define probability 

distributions on such ensembles. The connections with the ergodic foundations of statistical 

mechanic on the one hand and the standard formulation of statistical ensemble in quantum 

mechanic on the other hand are also discussed.  

It is worth to stress that here by ensemble is always meant an abstract construction for the 

statistical sampling of the possible pure states of an isolated quantum system. It should not be 

confused with a real ensemble of systems, each of them described by a single pure state. 

Such an ensemble cannot exist in the reality due to the uncontrollable effects of the 

entanglement which prevent the possibility to assign a state vector to a system which is part of 

a real ensemble of other quantum systems. The use of the ensemble concept in the here 

presented framework has to be intended as a logical step toward the final purpose which is to 

find the basis of a statistical description of the populations for an isolated quantum system.    
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3.2 ENSEMBLE DISTRIBUTIONS 

At this point we face the problem that we cannot say anything a priori about the populations 

which characterize a single isolated quantum system. It seems there are no reasons to assign 

a superiority of a particular set of populations with respect to any other set which equally 

satisfies some constraint, for instance the expected value of some thermodynamic quantity 

such as the energy.  

We will thus take a different perspective and consider the statistical properties of different 

Ensembles of pure states. Each element of such an ensemble would be characterized by its 

particular set P  of populations, and the Ensemble Distribution (ED) is described by a 

probability density ( )p P  normalized as ( ) 1dPp P =∫ . Then, as long as the distribution on the 

angular parameters is independent of the populations, the overall ensemble probability density 

is given as 

1( , ) ( ) / (2 )Np P p Pγ π −=                       (3.2.1) 

With normalization condition ( , ) 1dPd p Pγ γ =∫ .   

This introduces basically two problems in connection with the equilibrium statistic of the 

considered quantum system:  

1. First one has to properly define the Ensemble and thus specifies the corresponding 

ensembles distribution, eq. (3.2.1). Clearly many choices are possible: all the 

wavefunctions which have in common required properties, e.g. dimensionality or expected 

value of some observable, define an ensemble in the meaning here intended. In particular 

we shall introduce and study the properties of two ensembles: 

Random Pure State Ensemble (RPSE): i.e.  the ensemble of all the N -dimensional 

normalized wavefunction which belong to a certain, finite dimensional, Hilbert space 

⊆RPSH H . In general the dimension N  of the considered Hilbert space is defined trough a 

high energy cut off maxE , that is 

{ }maxn nspan e E E= ≤RPSH                                   (3.2.2) 

If one deal with Hamiltonian with a bounded spectrum, as in the case of a system of spins, 

one can also consider the whole Hilbert space, RPSH = H .          
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Fixed Expectation Energy Ensemble (FEEE): i.e., the ensemble of all the N -dimensional 

normalized wavefunction in FEEH  characterized by the same value of the expectation 

energy. This is analogous to the generalized microcanonical ensemble mentioned at the 

end of Section 2.3 and considered in refs. [Brody, (2005), (2007); Bender, (2005), Naudts, 

(2006)]. 

2. By introducing the concept of Ensemble one has to analyze the connection between the 

Ensemble Distribution and the statistical characterization of the equilibrium of a single 

system which is based on its temporal evolution. There are of course no obvious reasons 

to think that average value of a function of interest with respect to an Ensemble Distribution 

should be related to its time averages along the evolution of a single pure state. As we will 

discussed this problem present some analogy with the ergodic problem in classical 

mechanics and also sheds some light on the corresponding, not so well defined,  problem 

of ergodicity in quantum theory, Refs. [Bocchieri (1958), (1959); Pechukas (1984); Casati 

(1999); Deutsch (1991); Klein (1952); Peres (1984)]. 

To analyze this points we shell start by consider in the next section the geometry of the phase 

space.   

 

3.3 WHAT DOES GEOMETRY SAY ABOUT STATISTICS?  

An isolated quantum system can be described in a N  dimensional complex Hilbert space 

which is specified by 2N  real parameters with a normalization constraint and a total phase 

invariance property. We thus introduce a real phase space Γ  of dimension 2N . Different 

types of parameterization of the density matrix correspond to different choice of the reference 

system in such a space. Looking at the state of the system and its evolution from a geometrical 

point of view turns out to be particularly convenient especially when one has in mind a 

statistical characterization of such a state.  For our purpose the main motivations to introduce a 

geometrical description are 

1. the concept of probability distribution are closely related to the concept of measure in a 

manifold 

2. classical statistical mechanics is formulated in the classical phase space. When quantum 

mechanics is view from a geometrical point of view, refs. [Anandan, (1994); Brody, (2001); 

Chruscinski (2006)], many analogies with the statistical mechanics of classical system 
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become apparent and can be used as guidelines for the statistical mechanics in the 

quantum case. 

3. It will be shown that, by considering the geometry of the quantum phase space, one can 

characterize the probability distribution of the populations, i.e. the above mentioned 

Ensemble Distribution. 

In Appendix 3.1 we briefly review some basic concepts related to the geometry of a space 

which will be used later in the discussion, ref. [Dubrovin, (1985)]. 

Let us now describe the phase space of a generic isolated quantum system from a 

geometrical point of view. Consider first the expansion of the wave function in an arbitrary 

orthonormal basis i j iju u δ=  

N

J J
J

c uψ =∑                       ( )1 2, ..., N
Nc c c c≡ ∈                                     (3.3.1) 

then it is natural to identify the following set of Cartesian coordinate for the phase space Γ  

( ) 2Re , Im Nx c c≡ ∈                   (3.3.2) 

By using this set of coordinates, the scalar product between two vectors of the Hilbert 

space, i.e. two wavefunction ψ  and 'ψ  represented by the set of coordinate x  and 'x , 

respectively, can be evaluate as Euclidean scalar product between their representations  

2
'

1
'

N

k k
k

x xψ ψ
=

=∑                     (3.3.3) 

That is, if no restriction on the space spanned by { }x  is imposed, then Γ  is an Euclidean 

space with x  the corresponding Euclidean coordinate, its metric tensor, eq. (A3.1.7), is the 

unit tensor. It is interesting to observe that the Schrödinger equation, when written for these 

coordinates, take the same form of the canonical equation of motion for classical system: let 

2ix  and 2 1ix −  be the real and imaginary part of the i-th coefficient of the state vector expansion 

in the eigen-energy basis. The time evolution of the state of the system is then determined by 

the following equation of motion, [Anandan, (1994)] 

                           2 2 1
2 1 2

1 1
2 2i i

i i

E Ex y
y x−

−

∂ ∂
= = −

∂ ∂
                         (3.3.4) 
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Where E Hψ ψ=  is the expectation value of the Hamiltonian operator. As in the 

classical case the state of a system at any given time determines uniquely its state at any 

other time. This time evolution is described by the canonical equations of motion. Being the 

state of a system represented by a point in the corresponding phase space we can say that a 

point 0P  during the interval of time ( )0 ,t t  goes over to another point P  and the two points 

determines each other uniquely. During the same interval all the other points of Γ  goes over 

into new definite positions. In other words all the phase space is transformed into itself and in a 

one to one way.  

The normalization condition introduces a constraint on the total space Γ  which defines an 

hyper surface of real dimension 2 1N − . The volume element on this new space turns out to be 

the standard volume element for a 2 1N −  dimensional hyper sphere. This is shown in 

Appendix 3.2 by using the generalized spherical coordinate system.  

In other words on the set of pure states in a N -dimensional complex vector space there is 

a unique measure which is invariant under all unitary transformations. One can reasonably call 

this measure the uniform distribution over the unit sphere of dimension 2 1N −   

{ }2 1 1N NS ψ ψ ψ− = ∈ =                  (3.3.5) 

In order to specify the Ensemble Distribution on the populations we may answer the 

following question: if pure states are distributed uniformly over the unit sphere eq. (3.3.5), how 

are  their corresponding populations P distributed over the populations space? 
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3.4 RANDOM PURE STATE ENSEMBLE (RPSE) 

Let us consider first the simpler case of the Random Pure State Ensemble. All the 

normalized wave functions which could describe the system of interest belong to this 

ensemble. 

First let us derive an alternative representation of the phase space and the corresponding 

metric tensor. The transformation is 

2 1 2cos sini i i i i ix P x Pα α− = =                             (3.4.1) 

for 1i N= ÷ . Notice that ( )1..., NP P P≡  are not truly populations as long as they are not yet 

normalized: 2

1 1
1

N N

n n
n n

P x
= =

= ≠∑ ∑ . The Jacobian matrix of the transformation is block diagonal, and 

the i-th block is 

( ) ( )
( )

2 1 2 1 1

1
2 2

2 cos sin

2 sin cos

i i

i i i ii ii

i i
i i i i

i i

x x
P PP

A
x x P P
P

α αα

α α
α

− − −

−

∂ ∂⎛ ⎞
⎛ ⎞⎜ ⎟ −∂ ∂ ⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟∂ ∂ ⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂⎝ ⎠

                    (3.4.2) 

And the metric tensor, according to eq. (A3.1.11), is diagonal with components 

2 1 2 1

2 2

,

,

1
4i i i i

i i i i

PP
i

i

g g
P

g g Pγ γ

− −
= =

= =
                                           (3.4.3) 

Now let us introduce the normalization constraint as 

( )
1

, 1 0
N

i
i

f P Pα
=

= − =∑                               (3.4.4) 

Following (A3.1.23) we can thus introduce local coordinates '
iα  for 1i N= ÷  and '

iP  for 

( )1 1i N= ÷ −  so that 
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'

'
1 1

'
1 1

1
'

1
1

i i

N N

N

N i
i

P P

P P

P P

α α

− −

−

=

=

=

=

= −∑

                  (3.4.5) 

and specify the metric tensor on the surface defined by eq. (3.4.4) according to the prescription 

of eq. (A3.1.24). The resulting metric tensor ijg  has the following structure 

1 1NP P − 1 Nγ γ

 

where it results partitioned in two blocks, that on the phases which is diagonal and the block on 

populations which is not. Explicitly one obtains 

( )1

1

1 1 , 1 1
4 4 1

i jPP ij N
i

k
k

g i j N
P P
δ

−

=

= + = ÷ −
⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑

                (3.4.6) 

 1

1

1

i j

N N

i ij

N

k
k

g P

g P

γ γ

γ γ

δ
−

=

=

= −∑
                                                                       (3.4.7) 

 In order to find the corresponding measure 1 1 1,... ,..,N NdV gdP dP d dα α−=   we have to 

calculate the determinant of the metric tensor 

( )det ijg g=                                                                   (3.4.8) 

This can be done by using the following identity for determinants: suppose A  is an 

invertible square matrix and u , v  are column vectors. Then it can be verified [Harville, (1997)] 

that 
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 ( ) ( ) ( )1det 1 detT TA uv v A u A−+ = +                                         (3.4.9) 

By identifying A  with the diagonal matrix whose entries are ( )1 4 iP , the vector v  with the 

vector whose elements are all 1, and the elements of u  with the second term of the sum in eq. 

(3.4.6)  we find the population contribution to the volume 

1

1 11 1
1

1 1 1 ,...,
2

1

N

P NN N
k k

k
k

dV dP dP
P

P

−

−− −
=

=

−
∏

∑
                                        (3.4.10) 

while the contribution from the phases is 

 
11

1
1

1 ,...,
NN

k k N
k k

dV P P d dα α α
−−

=

= −∑ ∏                                        (3.4.11) 

So that the total volume element is simply 

1 1 11

1 ,..., ,...,
2P N NNdV dV dV dP dP d dα α α−−= =                                       (3.4.12) 

It turns out that both the phases and the set of populations are uniformly distributed in the 

phase space.  

Note that for the phases this is the same result obtained from the analysis of the pure state 

distribution. Indeed a uniform distribution on the wavefunction phases jα  implies a uniform 

distribution on the relative phases γ  of eq. (2.3.21). 

The uniform distribution on the set of populations P , is instead one of the possible 

ensemble distribution, in particular the only and appropriate one if no other constraints but 

normalization is required. Here “uniform” means that if populations space is represented in 
1N−  with the axis being the populations 1 1... NP P − , then the weight attached to any region is 

proportional to its volume. 

In other words the uniform distribution of the wave vectors on the surface of the 2 1N −  

corresponding hypersphere induces a uniform measure in the N  simplex of the populations 

( )1
1,..., 1 0N N

N k k
k

P P P and P for all k− ⎧ ⎫
Δ = ∈ = ≥⎨ ⎬

⎩ ⎭
∑                 (3.4.13) 
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This result has already been obtained by means of other arguments by Sykora in ref. [Sykora, 

(1974)], where its relevance in the framework of quantum information has been discussed.  

Now, the average value of some function of a state ( )A A ψ= , for example an expectation 

value a Aψ ψ= , over this generalized ensemble (RPSE) is then defined as 

   ( ) ( )
1

1

1 , ,
N

P RPS k k NRPS
kN D D

a AdV dV A P p P dP d d
V α α α α α

−

=

= = ∏∫ ∫                                 (3.4.14) 

where the domain of integration is the region of the phase space characterized by normalized 

populations and NV  the total volume of such a region. Only in this simple case the total 

volume, and thus the normalization factor of the distribution, can be explicitly calculated. 

Indeed it corresponds to the surface area of a 2 1N −  dimensional hypersphere, eq. (3.3.5) 

and can be calculated by switching to generalized spherical coordinates. This is shown in 

Appendix 3.2; the final result is eq. (A3.1.32) where the dimension of the space is  2M N=  in 

the present case. The total volume thus reads 

( )
2 1 2

1 !

N
N

NV S
N
π−= =
−

                                         (3.4.15) 

It should be explicitly noted that the ( )1N −  relevant populations are not statistically 

independent due to the normalization constraint. This is evident if we consider the boundary of 

the integration domain. Let us specify the order of integration as in eq. (3.4.12), the condition 

of positivity of  the dependent population, say 

 
1

1
1 0

N

N i
i

P P
−

=

= − >∑                         (3.4.16) 

define the allowed region in which 1NP −  can exist  

2

1 2
1

1
N

N N J
J

P b P
−

− −
=

≤ = −∑                        (3.4.17) 

Then by requiring the upper bound 2Nb −  to be a positive number one find the upper bound 

for the next integration variable 2NP − , and so on. By defining 
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1

1
K

K J
J

b P
=

= −∑                         (3.4.18) 

and by considering that the phase variable are all independent and defined on ( ]0, 2π one can 

explicitly define the domain of integration D  which appears in (3.4.14) as 

1 2

1 1
10 0

2 ...
KbN

N
N P K

kD

V dV dV dP dPα π
−

+
=

= = ∏∫ ∫ ∫                                      (3.4.19) 

The normalized probability distribution on the populations (3.2.1) is thus 

( ) ( )1 1,..., 1 !RPS Np P P N− = −                                                                (3.4.20) 

 

 

3.5 FIXED EXPECTATION ENERGY ENSEMBLE  (FEEE) : THE MEASURE ON THE 
SURFACE OF CONSTANT ENERGY  

If we want to introduce the further constraint of fixed energy expectation value we have to 

find the measure induced on the 2 2N −  surface defined implicitly by the constraints of 

normalization and fixed expectation energy. 

1

1
N

i
i

P
=

=∑                n n
n

E H P Eψ ψ= =∑                                               (3.5.1) 

By applying the definition of Appendix 3.1, eq. (A3.1.23), we can define the surface by the 

following parametric equations 

( )

( ) ( )

2 2
'

1 1 2
' '' ' '

2

' 2 1 2 1 1 2
'

,... 1

,... 1 ,...

N N
i k

k N i i
i kk i kkk k k k k k

N

k N i N
i kk

E EEP f P P P P
E E E E E E

P f P P P f P P

− −

−
≠ ≠

−

− −
≠

⎛ ⎞
= = − + −⎜ ⎟− − − ⎝ ⎠

= = − −

∑ ∑

∑
                           (3.5.2) 

Thus, the metric tensor on the populations, defined according to eq. (A3.1.24) , is 

1 1 2 2

1 2

1 1 1
4 4 4j tP P jt

j j t j t

f f f fg
P f P P f P P
δ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

                             (3.5.3) 
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Again we can calculate the determinant of this matrix by using the following general 

property of the determinant 

( ) ( ) ( )† † 1det det detA UV I V A U A−+ = +                           (3.5.4) 

By defining  

'

'

k J
J

k k

E Ea
E E

−
=

−
                                  (3.5.5) 

( )

( )

2
2

11
'1
2 2

22
'2

2

12
'2 1

1

1 1

1 1

N

J J
J kk

N

J J
J kk

N

J J J
J kk

R P a
f

R P a
f

R P a a
f f

−

≠

−

≠

−

≠

=

= +

= +

∑

∑

∑

 

And after some algebra we find 

( )( )( )
2

2
11 22 12

'

1det 1 1
4i j

N

P PP
J kk J

g g R R R
P

−

≠

= = + + − ∏                   (3.5.6) 

Thus one has for the surface element 
2

'

N

P P J
J kk

dV g dP
−

≠

= ∏ . On the other hand dVα  remains 

unchanged so that the total volume element reads 

( ) ( )
1 222 2 222

1 2 1 2 12
' ' '

1 1 1 ,..., ,...,
2

FEED P

N N N

J J J J J J J N NN
J kk J kk J kk

dV dV dV

f P a f P a P a a dP dP d d

α

α α
− − −

−−
≠ ≠ ≠

= =

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + + − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑ ∑

 

This can be recast as 

( )
1 222

' '
1 2 12

' ' '

1 1 ,..., ,...,
2

FEED

N
k k

J J J N NN
J kk k k k k

dV

E E E EP a a dP dP d d
E E E E

α α
−

−−
≠

=

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥= + − +⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑

   (3.5.7) 

The ensemble average of any phase function is thus 
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( )

( )

1 ,

,

FEED FEEFEE
FEED D D

FEED
FEE

FEED

a adV ap P dPd
V

dVp P dPd
V

α α

α α

= =

=

∫ ∫
                                    (3.5.8) 

Notice that now the domain of integration is the projection on the 2 2N −  dimensional manifold 

of those points of the phase space Γ  which represents normalized state with the given 

expectation energy, and it is not reducible to a simple form. Moreover the total volume of the 

manifold, and thus the normalization constant FEEDV , can not be calculated analytically. 

  

 

3.6 THE CONNECTION WITH THE CLASSICAL ERGODIC PROBLEM  

The starting point is that the exact statistical characterization of a single isolated system is 

given by its particular Pure State Distribution: this means that the actual populations 0P  are 

fixed and “arbitrary”, in the sense that there are no reasons to assign them a particular 

functional dependence on the corresponding energy eigenstate or on some others parameters 

of the problem. The equilibrium distribution on the phases is uniform, that is, all set of phases 

is, at the equilibrium, equally probable. Notice that this is equivalent to the “random phases 

hypothesis” of standard quantum statistical mechanics but in this context there are no reasons 

to postulated it since it emerges naturally from the definition of the pure state distribution itself. 

However it turns out that quantity of interest averaged over the PSD depend on the particular 

set of population, and we are not able to specify it. As we have discussed in the previous 

sections, we can in the best case define ensemble of pure states, each of them with its own 

population set and introduce a probability measure on this set. This allows to consider the 

following question: 

 Since the PSD average of an observable depends on the particular set of population, what 

is a “typical” set which satisfies a given constraint, for example a given total energy? 

We can answer this question by considering the FEE or the RPS Ensemble which give us a 

probability distribution ( ) ( )1,..., Kp P p P P=  on the set of the K  independent populations. Thus 

if we are interest in studying properties of a “typical” pure state, for example the state of a 

subsystem, we should choose the population set in a region of high probability. 
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However, the critical point is that now we do not have any logical connection between the 

average value of a function of interest with respect to the Ensemble Distribution and the actual 

equilibrium value of such a function which is defined by its asymptotic time average. 

The problem of replacing the dynamical average of an observable with statistical average 

with respect to an appropriate equilibrium probability distribution is the main point of the 

ergodic theory. The theorem of Birkhoff, (see Section 2.3), rigorously proves that this is 

actually possible by choosing as equilibrium probability distribution the uniform distribution over 

the ergodic subspace of the considered system, that is the portion of the entire phase space 

which is invariant and metrically indecomposable. While in the classical framework the 

identification of such metrically indecomposable regions of the phase space is a very difficult 

task, we have emphasized that in the quantum case the solution of this problem is 

straightforward.  By considering the time evolution of an isolated quantum system the ergodic 

subspace is easily individuate as the region characterized by a fixed set of populations 

coordinates, and this leads to the definition of the PSD.  

However, in quantum as in classical mechanics, when one ask about the equivalence 

between time and phase space average one want consider almost always the averages of 

phase functions on a given surface of constant energy (microcanonical average). With 

reference to this point it is also interesting to note that the natural quantum counterpart of the 

constant energy surface which defines the classical microcanonical ensemble appear to be the 

Fixed Expectation Energy Ensemble. This is strongly suggests by the formal analogy which 

exists between the Schrödinger equation written for the phase space coordinates, eq. (3.3.4), 

and the classical Hamiltonian equation of motion. The problem is that the subspace defined by 

having constant energy is not in general metric indecomposable so that replacing time 

averages with averages over the space of constant total energy (microcanonical distribution) 

cannot be rigorously justified. As Ruelle commented (reported as it is cited in ref. [Gallavotti, 

(2008)]) 

“… while one would very happy to prove ergodicity because it would justify the use of Gibbs’ 

microcanonical ensemble, real system perhaps are not ergodic but behave nevertheless in 

much the same way and are well described by Gibbs’ ensemble…”  

Nonetheless, since in the quantum mechanical framework the clear identification of the 

metrically indecomposable region of the phase space is possible, one can analyze such a 

problem from a closer perspective then in the classical case: indeed one should not only take 

the average over the microcanonical ensemble, but instead look at the dependence of the 

equilibrium distribution of the quantity of interest on the particular Pure State Distribution. 
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 The resulting analysis will lead us to a solution of the puzzle which is close in spirit to an 

argument which is also present in the classical formulation of the ergodic theory. In this context 

the problem is that, on the one hand there will exist almost always some other free integral of 

motion, independent from the energy constraint, which in theory should be considered when 

performing the phase space average. On the other hand the wide applicability of statistical 

mechanic and Gibbs’ distributions are out of doubt and call for a physical justification. We 

briefly recall the central argument to overcome this apparent duality in classical mechanic, 

along the line drawn by Khinchin, because it gives a useful perception of the statistical nature 

of the problem. For a more detailed and rigorous treatment of this point we refer the reader to 

ref. [Khinchin, (1949)]. The main idea is that  

1. The majority of physical phase functions which are of interest in statistical physics have a 

specific structure which makes the value of these functions on the energy surface very 

near each other at all point except for a set of very small measure. 

2. If I  is an integral of motion different from the energy integral which has a structure as in 1 

then the possibility of replacing time integral with phase average does exist. On the other 

hand, if I  does not have such a structure, the phase function which it represents does not 

have, as a rule, an actual physical interpretation so that the relation between its different 

averages have no interest.  

These qualitative considerations seem to move the core of the problem from the structure of 

the phase space to the property of the phase functions in which we are interested in. In 

classical statistical mechanics these function are typically “sum-functions”, i.e. the sum of 

functions each depending on the dynamical coordinates of only one component. This is surely 

not the case for quantum phase functions because the state vector ψ  describe the entire 

system and the state vectors of the smaller “components” is not defined at all. However the 

same arguments (1 and 2) could apply also in this case even if for different reasons. The 

phase functions we are interested in are indeed sum functions with respect to the global 

populations, e.g. the Shannon entropy defined in eq. (2.3.12), even if we consider observable 

referring to one small subsystem, e.g. the equilibrium average RDM eq. (2.4.12). 

It is a matter of fact that from the standard quantum statistical mechanics one has the 

intuition that at least some state functions, which we could call “thermodynamic functions”, e.g. 

the entropy, should not depend on the detail of the quantum state, that is on the particular 

choice of the populations, but only on other thermodynamic properties such as the energy. 

Therefore the following further question suggest itself  
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 Do they exist functions whose PS average is approximately the same regardless of the 

specific set of populations considered? Stated differently: Are some functions of the 

populations actually independent on the set of populations and dependent only on the fixed 

energy constraint?   

If this is the case this could be the definition of what we can call a thermodynamic function. 

If we denote the global probability distribution on the ensemble phase space as ( ),EDp P γ  we 

want to see whether and when 

PSD ED
⋅ = ⋅  

Given the inherent complexity of the derived probability density, in order to investigate the 

properties of the introduced ensembles, and the behavior of the phase functions of interest, we 

will take two different (complementary) approaches 

1.  Explicit numerical calculations for simple model systems (ensemble of non interacting 1 2  

spins, harmonic oscillators) by using Monte Carlo sampling techniques. This will permit to 

numerically generate a statistical sample from the above derived probability density and 

thus to study the ensemble distribution of some functions of interest.  

2. Development of approximate simpler forms of the ensemble distributions valid under 

certain conditions. Analytical approximations of the geometrical distributions are important 

to study as the mean value (and the successive moments) of the ensemble distribution of 

some phase functions depends on the parameters of the problem. They are also necessary 

in order to consider the limiting behavior for dimension N  arbitrarily large which can not be 

approached by direct numerical calculations.  

 These two points which are the technical bases which permits further reasoning on the 

statistical characterization of quantum states will be presented in the next Chapter. 
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APPENDIX    3.1:  BASIC GEOMETRICAL DEFINITIONS: METRIC,  VOLUME ELEMENT AND 

INTEGRATION 

The geometrical properties of a space are in general specified by its so called metric which 

allows one to compute quantities based on lengths and angles from coordinates, [Dubrovin, 

(1985)]. 

 

 

A3.1.1 LINE ELEMENT AND METRIC TENSOR 

Let us first consider a M  real dimensional space  M  whose elements (vectors) are  M -

tuples of real numbers  

( ){ }1: ,.., M ix x x x= ∈                                                          (A3.1.1) 

Moreover we assume that such a space has an Euclidean metric such that the norm of the 

vector x  is given as :x x x= , where 

( )2

1

M
k

k

x x x
=

=∑                                                                                          (A3.1.2) 

Let us now consider a curve in this space defined parametrically as 

( )

( )

1 1

2 2N N

x f t

x f t

=

=

                                                         (A3.1.3) 

and ask about its length. First define the tangent vector as  

( )
1

,...,
Mdx xv t

dt dt
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                     (A3.1.4) 

The length of a portion [ ],a b  of the curve parameterized by t  is then defined as the integral 

of the norm of this vector (which is also known as velocity vector giving the intuitive meaning of 

the length measure) 
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( ) ( ) ( )
2

2

1

b b b bk

ka a a a

dxl v t v t dt v t dt dt dl
dt=

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
∑∫ ∫ ∫ ∫                    (A3.1.5) 

where the line element is written in term of the Euclidean coordinates { }x  as 

( ) ( )2 22 1 ... Mdl dx dx= + +                            (A3.1.6) 

It can be shown, but it is just what one naturally expects, that the length of the segment 

does not depend on the velocity we use to go from a  to b . Moreover it should not depend on 

the choice of the coordinates we use to describe the space. To properly account for this 

invariance property one introduces the metric tensor ijg . This is the unit tensor when 

Euclidean coordinates are used 

( )x
ij ijg δ=                                              (A3.1.7) 

Consider to switch from the Euclidean coordinates x  to another set of generic coordinates 

( )1..., Mz z z≡ , with the transformation defined through a set of functions ( )i ix x z=  for 

1i M= ÷ . We suppose also that along the curve the transformation is not singular, that is with 

a non vanishing determinant for the corresponding Jacobian matrix 

 

1 1

1

1

det det 0

M
i

j
M M

M

x x
z zx

z
x x
z z

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎜ ⎟⎛ ⎞∂

= ≠⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎜ ⎟∂ ∂⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

                                                  (A3.1.8) 

Then, the differential displacement of the components can be specified as 

j
j k

k
k

xdx dz
z
∂

=
∂∑                                                                                           (A3.1.9) 

and therefore the square infinitesimal length, eq. (A3.1.6), can be specified in the new 

variables  

( )2 k j
kj

kj

dl g z dz dz=∑                                                      (A3.1.10) 



STATISTICAL ENSEMBLES OF PURE STATE AND ENSEMBLE DISTRIBUTIONS 

 

70 

with in general a metric tensor which is not the unit tensor  and can be z -dependent. Its 

components in the new representation are given by 

( ) ( )
i h

kj ihk j
ih

x xg z g x
z z
∂ ∂

=
∂ ∂∑                                                            (A3.1.11) 

where ( )ik ikg x δ=  if x  are the Euclidean coordinates. 

The integration along the curve ( ) ( )( )z t z x t=  provides a length measure which is 

independent on the choice of the variables. Furthermore, if one introduces another set of 

coordinates y  with the corresponding transformation law ( )z z y= , by following the same 

previously illustrated procedure, one obtains the infinitesimal length in the y -coordinates 

( )2 k j
kj

kj

dl g y dy dy=∑                                                                                      (A3.1.12) 

with the following relation 

( ) ( )
i h

kj ihk j
ih

z zg y g z
y y
∂ ∂

=
∂ ∂∑                                                                 (A3.1.13) 

which determines how the metric tensor changes with a transformation of variables. 

In conclusion, by explicitly using the metric tensor in the definition of the length in the 

considered normed space, one can use any coordinate system without warning about the 

invariance of the distance which is naturally guaranteed by the corresponding transformation of 

the metric tensor. 

 

 

A3.1.2. VOLUME ELEMENT,  INTEGRATION AND PROBABILITY MEASURE 

Having introduced the notion of length in our M  space through the definition of the line 

element (A3.1.10) we can now define the volume element dV  which can be integrated over a 

region MU ∈  of the space to give the volume of that region. This is defined as 

( ) 1 2: ... MdV g x dx dx dx= ∧ ∧ ∧                              (A3.1.14) 
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where g  is the determinant of the metric tensor in the coordinate system { }x  

( )( )det ijg g x=                                                    (A3.1.15) 

Eq.  (A3.1.14) is what is called in differential geometry language a “volume form”. The use of 

the antisymmetric wedge product instead of the symmetric product 1 2... Mdx dx dx  is a technical 

refinement due to the orientation assigned to the region representing the domain of integration. 

The following equivalence 

( ) ( )1 2 1 2... ...M M

U U

V g x dx dx dx g x dx dx dx= ∧ ∧ ∧ =∫ ∫                          (A3.1.16) 

holds if the domain U  is a positive oriented manifold, otherwise one has to change the sign of 

the last integral. From here on we will always omit the wedge product in specifying the volume 

element because we are only interest in the measure, that is, the absolute value of the volume 

(A3.1.16). The reason behind this is that probabilities are just particular measures which satisfy 

the conditions of positivity and normalization. On can easily justify the form  

( ) 1 2: ... MdV g x dx dx dx=  for the infinitesimal volume element by taking into account that 

1. If x  are Euclidean coordinates, ij ijg δ= , then 1g =  and one recover the standard form 

1 2... MdV dx dx dx=  for the volume element. 

2. In the case of a general transformation of coordinates z y→  the invariance of the 

measure implies the equivalence ( ) ( )1 2 1 2... ...M Mg z dz dz dz g y dy dy dy= . According to 

(A3.1.13) one has 

      
( )
( )

det
i

j

g y z
g z y

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

  (A3.1.17) 

which is just the Jacobian determinant to change the integration variables well known from 

the multivariate calculus. 

To make more clear this connection between measure and probability let us imagine that 

coordinate x  describes a sample space U . Then the probability for a stochastic variable X  to 

take values belonging to a certain region W  of the sample space U  is 
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( ) ( )
x W

P W p x dx
∈

= ∫                                 (A3.1.18) 

where we have assumed the existence of the probability density ( )p x . Notice that ( )P W  

should be positive and normalized 

( ) ( ) 1
U

P U p x dx= =∫                           (A3.1.19) 

Let us assume that coordinates x  have been chosen in such a way that the probability 

( )p x dx  for an outcome with jx  in the infinitesimal interval between jx  and j jx dx+  for all 

1j M= ÷ , is proportional to the geometrical volume element ( ) 1 2: ... MdV g x dx dx dx= . Then, 

by tacking into account the normalization condition, (A3.1.19), we can specify the probability 

density as 

( )
U

g
p x

gdx
=
∫

                             (A3.1.20) 

In other words, probability is a concept that can be thought as strongly connected with the 

concept of geometrical measure as defined in eq. (A3.1.16), and by using this connection one 

can identify the probability distribution function with g  up to a normalization factor. 

 

 

A3.1.3. METRIC AND VOLUME ELEMENT ON A SURFACE 

A K -dimensional surface in a domain of the M -dimensional space is defined by a set of  

( )2N K−  equations, which have to be interpreted as constraints for the points belonging to 

the surface  

( )

( )

1
1

1
2

,..., 0

,..., 0

M

M
N K

f x x

f x x−

=

=

                                                           (A3.1.21) 
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The point ( )1 2,..., N
P PP x x≡  satisfying eq. (A3.1.22) is said to be non singular if the rank of 

the matrix 
i i

P

i
j

x x

f
x =

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

(where 1,..., 2 , 1,..., 2i N K j N= − = ) is equal to ( )2N K− . In the 

neighborhoods of a non singular point one can introduce local coordinates ( )1,..., Kz z  which 

parametrically defines the surface in the considered point 

( )

( )

1 1

1 1 1

2 2 1

,...,

,...,

K K

K K K

N N K

x z

x z

x x z z

x x z z

+ +

=

=

=

=

                                               (A3.1.23) 

It can be shown, ref. [Dubrovin, (1985)], that the metric of the space induced a metric on the 

embedded surface; the corresponding metric tensor is given by 

( ) ( )' '
1

i jM

kk ijk k
ij

x xg z g x
z z=

∂ ∂
=

∂ ∂∑                                   (A3.1.24) 

where , ' 1,...,k k K= . As before, once the metric on the surface is known, one can specify 

the line element, eq. (A3.1.12), and the volume element with the corresponding measure, eq. 

(A3.1.16). 
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APPENDIX 3.2: VOLUME AND SURFACE AREA OF THE HYPERSPHERE  

As already mentioned in Section 3.3 the normalization condition defines a hypersphere on 

which the normalized vectors lie. Let us thus consider a hypersphere embedded in a M -

dimensional Euclidean space 

{ }1M MS x x R− = ∈ =                                                                                 (A3.2.25) 

In order to calculate the surface volume one switches to spherical coordinates 

{ } { }1 1,..., , ,...,M Mx x r φ φ→  

1 1

1

1

2 1

1

cos

sin cos

sin

J

J i J
i

N

M i
i

x r

x r

x r

φ

φ φ

φ

−

=

−

=

=

=

=

∏

∏

                                                                             (A3.2.26) 

where      

      
[ ]
[ ]1

0, 1 2

0, 2
J

M

for J Mφ π

φ π−

∈ ≤ ≤ −

∈
 (A3.2.27) 

The determinant of the Jacobian matrix of the transformation specified in eq. (A3.2.26) can be 

evaluated, ref. [Hassani, (1999)], and reads 

( ) ( )
2

11

1

det sin
M

M JM
J

J

J r rφ φ
−

− −−

=

= ∏                                                                    (A3.2.28) 

Thus, the volume element transforms according to  

( )
2

11 1
1

1 1

sin
M M

M JM M
i J J M

i J

dx r dr d d r drdφ φ φ
−

− −− −
−

= =

= = Ω∏ ∏       (A3.2.29) 
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where dΩ  contains the dependence on the angular variables and it is the surface element.  

By integrating the radial displacement one obtains 1 1

M

M M
RV S
M− −= . The total surface, 

1MS d− = Ω∫ , can be written in terms of the following standard integrals [Dwight, (1961)] 

( )
1/2

0

1
2sin
1

2

p

p

I p xdx
p

π π +⎛ ⎞Γ⎜ ⎟
⎝ ⎠= =

⎛ ⎞Γ +⎜ ⎟
⎝ ⎠

∫                                                                  (A3.2.30) 

where ( )xΓ  denotes the Gamma function. Indeed 

( ) ( ) ( ) ( ) ( ) ( )
2 2

1
1 1

10 0

sin 2 2 3 ... 2 1
M

M J
M M J J

J

S d d I M I M I I
π π

φ φ φ π
−

− −
− −

=

= = − −∏∫ ∫                   (A3.2.31) 

Thus, by using eq. (A3.2.30), one readily finds 

( )
1

2

1

2

2

M

MS
M

π π
−

− =
⎛ ⎞Γ⎜ ⎟
⎝ ⎠

                                                                   (A3.1.32) 
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CHAPTER 4 

DISTRIBUTION OF THE POPULATIONS IN RANDOM QUANTUM 
STATE: 

 ANALYTICAL APPROXIMATIONS VS MONTE CARLO SAMPLING  

 

 

 

4.1 INTRODUCTION 

In this chapter the technical methodologies necessary to investigate the Ensemble 

Distributions introduced in Chapter 3 are developed. On the one hand approximate forms of 

the distributions relative to the Random Pure State Ensemble and the Fixed Expected Energy 

Ensemble are introduced following the idea of  W. K. Wootters in Random quantum states 

(Foundations of Physics, 20, 1365, (1990)). On the other hand Monte Carlo numerical 

sampling of the geometrical distributions is introduced in order to compare the geometrical 

distributions with the approximate ones. This chapter deals in particular with the validation of 

the numerical sampling methods as well as the analytical approximation of the distribution. The 

comparison between the two methodologies is made at the level of the resulting marginal 

distribution for the single population for both the ensembles. The tools here developed will be 

apply in the next chapters to the study of the ensemble distributions of some observable 

pertinent to a spins system and they furnish the basis for discussing the statistical 

thermodynamic associated to the introduced ensemble. 
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4.2  CHARACTERIZATION  OF  THE  ENSEMBLE  DISTRIBUTIONS  BY  MONTE 
CARLO SAMPLING 

In order to obtain the average value of any function of the quantum state, i.e. a function 

( ),f P α  of the parameters ( )1 2, ... KP P P P≡  and ( )1 2, ,... Nα α α α≡ , one has to numerically 

evaluate multidimensional integrals of the type 

( ) ( ) ( ), , ,
D

I f P f P p p dPdα α α α= = ∫                                                                       (4.2.1) 

with an estimate of the error and in a reasonable number of iterations S  (number of steps). 

The parameter K  is the number of independent populations in the considered ensemble, that 

is 1RPSEK N= −  and 2FEEEK N= − . We shall focus only on the ensemble probability 

distribution function of the populations, because we have already established that the phases 

are statistical independent and uniformly distributed either in the PSD as in the ED, indeed 

 ( ) ( )
( )

,
2 N

p P
p P α

π
=                                                                     (4.2.2)  

We can thus easily evaluate the following 

( )
( )

( )
2 2

1
0 0

1 ... ,
2

P NNf P d d f P
π π

α α α
π

= ∫ ∫                                                                         (4.2.3) 

so reducing eq. (4.2.1) to  

( ) ( ) ( )P P
D

I f P f P p P dP= = ∫                                                         (4.2.4) 

However the populations Ensemble Distribution, ( )1,... Kp P P , is still a function of K  

variables which does not factorize, so we have to consider multi-dimensional integration 

techniques. To study this class of problems deterministic methods of numerical integration 

(e.g. Newton-Cotes formulae, Gaussian quadratures) are  practically useless because the 

error scales as /c dS −  where c  is a constant which depend on the method (typically 2 or 4), S  

is the number of nodal point in the domain of the function, while d  denotes the dimension of 

the considered problem. The wide class of Monte Carlo sampling techniques allow to generate 

points according to the target ensemble distribution ( )1,... Kp P P . One can thus obtain a 

statistical sample of the distribution and can ask about the form of marginal distributions 
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( ) ( )1,...J K i
i JD

p P p P P dP
≠

= ∏∫                                                                                            (4.2.5) 

which can be obtain by making an histogram of the sampled points, or any expected value of 

phase functions. If we denote as ( ) ( ) ( ){ }1 ...i i i
KP P P≡  a point of the phase space generated from 

the wanted distribution, the Monte Carlo estimate of the  integral I  is given by  

( )( )
1

1 S
i

P
i

E f P
S =

= ∑                                                                                                         (4.2.6) 

where S  is the number of generated point. The law of large number ensures that the estimate 

converges to the true value as S →∞ .  Furthermore, the error on the evaluation of the integral 

scales as 1 2S −  regardless of the dimension of the problem.  

The choice of the particular algorithm to obtain the statistical sample depends on the target 

probability distribution. In the following paragraphs we shall separately describe two different 

methods which are used for sampling the Random Pure State Distribution and the Fixed 

Expected Energy Distribution of the populations. However let us first introduce the basic idea 

which permits to derive an analytically tractable but approximate form for the populations 

distribution ( )1,... Kp P P .  

               

 

4.3 APPROXIMATE DISTRIBUTION OF POPULATIONS  FROM MINIMIZATION OF 
THE INFORMATION FUNCTIONAL      

As we have seen before, the ensemble we consider are defined by some constraints. These 

constraints define a hyper surface in the Hilbert space whose metric properties determines the 

geometrical distributions. Now we want to use such a constraints as conditions which has to be 

approximately satisfied and then check a posteriori the goodness of our approximation. 

Imagine to have a set of N  random variables ( )1,..., Nx x x≡  each defined in the domain 

[ ]0,∞ . We want to find a normalized probability distribution ( )W x  requiring that, on average, 

the sum of our variable x  is equal to the unity, that is 

    
1

1
N

k
k

x
=

=∑                                                                                                    (4.3.1) 
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( )
0

k kx dxW x x
∞

= ∫           where            
1

N

k
k

dx dx
=

=∏                                                       (4.3.2) 

The set ( )1,..., Nx x x≡  is not strictly an allowed set of populations, because the condition 

(4.3.1) does not assures that 
1

1
N

k
k

x
=

=∑  is true for every single realization of the process of 

generating x . However we shall construct a probability distribution for this set and check if this 

could be an approximate form of the geometrical distribution on the “real” populations. 

Eventually we can formulate a further condition, that is, we require the energy expected values 

calculated with the variable x  to be “on average” equal to some value E  

1

N

k k
k

E x E
=

=∑                                                                                                      (4.3.3) 

Of course the probability density has to be normalized 

( )
0

1dxW x
∞

=∫                                                                                                                 (4.3.4) 

The conditions (4.3.1), (4.3.4) does not specify a unique probability function. The general 

problem of the specification of the probability function in the absence of guideline for a full 

characterization of it is as old as the theory of probability itself. The “Principle of Insufficient 

Reason” of Laplace was an attempt to supply a criterion of choice for the probability if no other 

stronger reasons are available. The development of information theory and statistical inference 

has lead to the maximum entropy principle as the rule which permits to determine the less 

biased distribution according to our initial information.  This principle states that, among the 

infinite set of function ( )W x  which satisfy our constraints, it is reasonable to choose that which 

minimize the informational functional, (or equivalently which maximizes the corresponding 

Shannon entropy functional) 

[ ] ( ) ( )1 1
1

,..., ln ,...,
N

N N k
k

I W W x x W x x dx
=

= ∏∫                                                                  (4.3.5) 

Where [ ]I W  denotes a functional dependence of the information content I  on the 

distribution ( )W x . The minimization procedure has to be performed under the given 

constraints on the average values eqs. (4.3.1), (4.3.3). For an interesting discussion of this 

principle and its relation with the field of statistical mechanics we refer the reader to the paper 
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written by Jaynes,  [Jaynes (1957)]. The maximum entropy distribution has the property that no 

possibility is ignored; it assigns positive weight to every situation that is not absolutely 

excluded by the given information, i.e. the constraints. In other word we select the most 

homogeneous distribution compatible with the given constraints. 

The minimization under constraints can be performed by using the method of Lagrange 

Multiplier, that is, we introduce three Lagrange multiplier which corresponds to the three 

constraints eqs. (4.3.1), (4.3.3) and (4.3.4), and thus minimize the following functional 

[ ] [ ] ( )( )

( ) ( )

1 1

log

k k k
k k

k k k
k k

F W I W x x E U W x dx

dxW x W x x E x U

λ μ η

λ μ η λ μ η

⎛ ⎞ ⎛ ⎞= − − − − − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
= − − − + + +⎢ ⎥⎣ ⎦

∑ ∑ ∫

∑ ∑∫
                      (4.3.6) 

The functional derivatives which has to be set to zero results in 

[ ]
( ) ( )log 1 0k k k

k k

F
x E x

δ
λ μ η

δ
= − − − − − =∑ ∑x

x
W

W
W

   (4.3.7) 

leading to the a distribution factorized in N  independent exponential distributions 

( ) ( )

( )
( )

( )

1

k k

N
k

FEEE FEEE k
k

E x
k

FEEE k
k

W x W x

eW x
E

λ μ

λ μ

=

− +

=

=
+

∏
                                                                                               (4.3.8) 

The Lagrange parameters λ  and μ  are implicitly determined by the following equations  

( )

( )

1

1

1 1
N

k k

N
k

k k

E

E E
E

λ μ

λ μ

=

=

=
+

=
+

∑

∑
                                                                                                      (4.3.9) 

Eq. (4.3.8) is the candidate approximate distribution for the FEE Ensemble. For the RPS 

Ensemble one follows the same procedure but by considering only the constraints (4.3.1) and 

(4.3.4). The resulting distribution is factorized into identical exponential distributions for all the 

components of the random vector x  
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( ) ( )

( )
1

k

N
k

RPSE RPSE k
k

Nxk
RPSE k

W x W x

W x Ne
=

−

=

=

∏
                                                                                             (4.3.10) 

The distributions (4.3.10) for the Random Pure State Ensemble and (4.3.8) for the Fixed 

Expectation Energy Ensemble are exactly the distributions proposed by Wootters in ref. 

[Wootters, (1990)] on the basis of different type of considerations. The important feature of 

these distributions is that they are factorized into single variable distributions. This can never 

be strictly correct if the random variables are identified with the set of populations, which are 

not statistically independent due to the constraints. Nevertheless we shall compare these 

approximate forms of the Ensemble Distributions ( )W x  with the numerical sample of the exact 

ones ( )p P  derived in the previous chapter for the two Ensembles. 

 

 

4.4 RANDOM PURE STATE ENSEMBLE DISTRIBUTION:  

 

4.4.1 DIRECT NUMERICAL GENERATION OF THE SAMPLE 

As we have seen the ( )1N −  independent populations in the Random Pure State Ensemble 

are uniformly distributed on the simplex defined by the normalization condition  
1

1
N

k
k

P
=

=∑ . 

However if we draw independently ( )1N −  populations from the uniform distribution on the 

possible domain [ ]0,1  it is clear that the last population, say 
1

1

1
N

N k
k

P P
−

=

= −∑ , will very likely falls 

outside the allowed domain. 

Nonetheless, the problem of drawing samples from the uniform probability distribution on 

the N -simplex can be solved directly by a change of variable as explained in the following. 

One can parameterize the N  populations in terms of 1N −  independent azimuthal angles 

[ )0, 2kθ π∈  as   
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2
1 1

1
2 2

1

1
2

1

cos

cos sin

sin

J

J J i
i

N

N i
i

P

P

P

θ

θ θ

θ

−

=

−

=

=

=

=

∏

∏

                                                                                                     (4.4.1) 

This transformation is suggested by the Hurwitz parameterization of the unitary group, see 

[Życzkowski, (1999), (2001)]. The Jacobian determinant of the transformation  reads 

{ } { }1 1 1 1,..., ,...,N NP P θ θ− −→  

( ) ( )1
2 12cos sin

N
N k

k k
k

J θ θ
−

− −
=∏  

This means that one can generate populations uniformly on the N  simplex by generating 

independently ( )1N −  angles according to the probability density 

( ) ( )( ) ( )2 12 sin cosN k
k k kp N kθ θ θ− −= −                                                                             (4.4.2) 

For the k -th angle. To simplify the task we can look for a one dimensional mapping in order to 

obtain θ  as a function of uniformly distributed random variable 0 1ξ< ≤ , say ( )θ φ ξ= .  By 

considering that 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
2 1 1

0 0 0

ˆdf f p d f p d f p d
d

π

θ φ ξ

θθ θ θ θ θ θ ξ φ ξ ξ ξ
ξ=

⎡ ⎤= = =⎣ ⎦∫ ∫ ∫  

one has ( ) ( )( )ˆ dp p
d
θξ θ ξ
ξ

= . Thus we have to find a map ( )φ ξ  such that ( )ˆ costp ξ = , that is 

( ) ( )
1' d

d p
θφ ξ
ξ θ

= = . 

This leads to the following auxiliary set of variables [Życzkowski, (1999)] 

( ) ( )2
sin

N k

k kξ θ
−

=                                                                        (4.4.3) 

that satisfy the previous condition, since their derivative 
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( )( ) ( )2 12 sin cosN kk
k k

k

d N k
d
ξ θ θ
θ

− −= −  

is exactly the probability density eq.(4.4.2). In other words we can sample the uniform 

distribution of the populations in the N  dimensional simplex with the following two step 

algorithm: 

1. Draw ( )1N −  random numbers kξ , each of them uniformly distributed within [ ]0,1   

2. By virtue of eqs. (4.4.1), (4.4.3), the populations are calculated as 

1
1

1 1

1 11

1

11

1

1

1

N

J
N J N i

J J i
i

N
N i

N i
i

P

P

P

ξ

ξ ξ

ξ

−

−
− −

=

−
−

=

= −

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

=

∏

∏

                                                                                                (4.4.4) 

 

 

4.4.2 MARGINAL DISTRIBUTION ON A SINGLE POPULATION IN THE RPSE 

It is interesting to note that a random pure state drawn according to the unitarily invariant 

measure on the hypersphere, (a random pure state from the RPSE) can also be found as a 

raw, or a column, of a realization of the Unitary Random Matrix Ensemble, [Życzkowski, 

(1994)]. We shall follow the methodology illustrated in [Pereyra, (1983)] in order to obtain the 

exact marginal distribution of a single population, eq.(4.2.5), by direct integration of the 

complete populations’ distribution of the RPSE, eq. (3.4.20). By using iteratively the analytical 

integral 

( ) ( )
( )

1

1

bnb
n J

J
a a

a P
a P dP

n

+⎡ ⎤−
− = ⎢ ⎥

− +⎢ ⎥⎣ ⎦
∫                                      (4.4.5) 

one derives the following joint probability density on K  populations of the Random Pure State 

Ensemble 
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( ) ( ) ( ) ( )
( )

( )2 1
1 1 1 1 10 0

1 !
... 1 ! ... ,...

1 !
K Nb b N K

RPSE K K N RPSE N K

N
p P P N dP dP p P P b

N K
− − −

+ − −

−
= − =

− −∫ ∫  (4.4.6) 

where 
1

1
K

K j
j

b P
=

= −∑ . 

For the single state population one thus obtains 

( ) ( )( ) 21 1 N
RPSE J Jp P N P −= − −                                              (4.4.7) 

which gives the following average population  

( )
1

2

1 1
2 3 2

N

J
NP

NN N

>>−
= ≈

− + +
 

where the relative error between the exact value and 1N −  is less then 0.1 for 10N > . By 

considering the equivalence of the N  variables and by knowing that their mean value is of the 

order of ( )1N −O , we can expand the logarithm of  (4.4.7) under the assumption 1N >> , to 

obtain 

( ) JNP
RPSE Jp P Ne−≈                                                                                                          

which is exactly the approximate distribution ( )k
RPS kW P , eq. (4.3.10), derived before.  

In Figure 4-1 the comparison is made between the marginal probabilities obtained from the 

numerical sampling and from the exponential approximate form ( )R
k kW P , eq. (4.3.10). The 

approximation became rather good also for Hilbert space of low dimensions, say 8N = . 

On the basis of these results, it is interesting to look at the statistical behaviour of the sum 

of the N  random variables ( )1,..., Nx x x≡  each of them defined in the domain [ ]0,∞  and 

distributed according to eq. (4.3.10). If we define 

1

N

k
k

X x
=

=∑                                                                            (4.4.8) 
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we see that, by virtue of the Central Limit Theorem (see Appendix 4.4), X  is a normally 

distributed random variable with mean 1X = , and variance which scales with the dimension 

N  

( )
( )1

2 2
'

1 , '

11
N NN

k k k
k k k k

X X x x x
N

−

= ≠

− = + − =∑ ∑                                (4.4.9) 

In other words, as N  become very large, the condition of normalization “on average”, eq. 

(4.3.1), becomes effectively a condition on the normalization of each realization of the set. 

However the exact equivalence is found only in the limit N →∞ . This also means that exactly 

normalized populations { }1,..., NP P , even if they never are strictly statistically independent due 

to the normalization requirement, tend to be independent as the dimension N  increases. 
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Figure 4- 1: Marginal Distribution of a Single Population in the RPSE: the (normalized) 

histograms refers to the statistical sample of 510  points (in 100 bins) generated by the algorithm 

described in the text for a system with N  equally spaced energy levels. The red lines depicts the 

corresponding approximate distributions, eq. (4.3.10). 
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4.5  FIXED  EXPECTATION  ENERGY  ENSEMBLE  DISTRIBUTION:  MC  (MONTE 
CARLO) METHODS 

First notice that we cannot calculate analytically the total volume of the FEEE and thus we 

do not know the normalization constant of the FEEE distribution. Monte Carlo Markov Chains 

(MCMC) are methods for drawing a sample from a given multivariate probability distribution 

(the target distribution) which are known up to a normalizing constant, [Chib, (1995)]. On the 

other side MCMC methods introduces other difficulties which we briefly discuss in the 

following, together with the basic theory and the implementations for the problem considered 

here. 

 

4.5.1 BASIC THEORY OF MARKOV CHAIN 

A stochastic process is Markovian if the transition probability between different values of the 

stochastic (vector) variable X  in the corresponding phase space Γ  depends only on the 

stochastic variable’s current state.  A Markov chain refers to a sequence of random variables 

( )1,... tX X  generated by a Markov process. A particular chain is defined by its transition kernel, 

which represents (conditional) probability of moving from a point of the phase space X  to 

another position, say Y . Given some initial distribution ( ) ( )0f X  for the Markov chain and a 

transition kernel ( )K X Y  the probability distribution function for the chain at time t  is: 

( ) ( ) ( ) ( ) ( )1t tf Y K X Y f X dX−= ∫                                   (4.5.1) 

The main points of Markov chain theory is to determine under which conditions an invariant 

distribution of the chain exists 

( ) ( ) ( )K X Y X dX Yπ π=∫                               (4.5.2)      

and iterations of the transition kernel converges to it 

( ) ( ) ( )tf Y Y as tπ→ →∞                                           (4.5.3) 

The main theorem [Chib, (1995)] asserts that in order to have convergence of the 

distribution, the chain needs to be irreducible and aperiodic: this means that if X  and Y are in 
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the domain of π  it is possible to move from X  to Y in a finite number of iterations with non 

zero probability, and the number of moves needs not to be a multiple of some integer. 

MCMC turns the theory around: the invariant distribution is fixed and known (it is the target 

distribution from which one want to draw a sample) but the transition kernel is unknown. To 

generate a sample from π , the methods find and utilize a transition kernel whose t -th iterate 

converges to the distribution of interest for large t . That is, if the chain runs for enough number 

of steps the distribution of the observations generated from the simulation is approximately the 

target distribution. The point is to find a suitable transition kernel.  

 

4.5.2 METROPOLIS HASTINGS ALGORITHM 

The Metropolis-Hastings updating scheme was first described by Hastings [Hastings, 

(1970)] as a generalization of the Metropolis algorithm of Metropolis et al [Metropolis, (1953)].  

 Consider the following form of a transition kernel to a state Y  of the chain which lies within 

some set A   

( ) ( ) ( ) ( ), A
A

K X A p X Y dY r X I X= +∫                                                                          (4.5.4) 

Here ( ),p X Y  is the density associated with selecting a point which is accepted while 

( ) ( )1 ,
D

r X p X Y dY= − ∫                                                                                                  (4.5.5) 

is the probability that the chain remains at the prior value X . ( )AI X  is the indicator function, 

which is 1 if X A∈  and zero otherwise. It can be shown [Tierney, (1994)] that if ( ),p X Y  

satisfies the detailed balance condition  

( ) ( ) ( ) ( ), ,X p X Y Y p Y Xπ π=                                           (4.5.6) 

then ( )Xπ  is the invariant density of ( )K X Y . The Metropolis-Hasting algorithm gives an 

easy recipe to construct a markov chain with the required reversibility property eq. (4.5.6). 

The algorithm is basically made up by the following steps 
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1. Start at an arbitrary point X  which belong to the domain of π , with ( ) 0Xπ >  

2. Generate a random variable Y  from an arbitrary  but fixed proposal distribution ( ),q X Y , 

this represents a proposed move from the state X  to the state Y  

3. Calculate what can be termed the probability of move 

( ) ( ) ( )
( ) ( )

,
, min 1,

,
Y q Y X

X Y
X q X Y

π
α

π
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                  (4.5.7) 

4. Generate a random variable u  uniformly from  [ ]0,1 : if u α<  accept the proposal and move 

to state Y . Otherwise reject the proposal and remain in X , the new sample equals the old 

one 

Repeat 1-4. 

Thus, by applying the Metropolis-Hastings updating scheme we sample from ( ),q X Y  and 

then accept to move with probability ( ),X Yα , so that the transition probability is  

( ) ( ) ( ), , ,p X Y q X Y X Yα=                                                        (4.5.8) 

One can easily verify that the probability density (4.5.8) satisfies the reversibility condition 

eq. (4.5.6) and thus the sampling converges to the target distribution. 

Some remarks are in order: 

Notice that the calculation of α  does not require the normalization of the target distribution 

because this constant cancel out in the ratio. 

If the proposal density is symmetric, i.e. ( ) ( ), ,q X Y q Y X= , the acceptance probability 

reduces to ( ) ( )Y Xπ π ;  hence, if ( ) ( )Y Xπ π> , the chain moves to Y , otherwise it moves 

with probability given by ( ) ( )Y Xπ π . This latter is the algorithm originally proposed by 

Metropolis et al [Metropolis, (1953)]. 

Although this method must converge to the stationary distribution in the limit of infinite 

sample size, in practice the progress can be exceedingly slow especially in high dimensional 

problems. There are  many empirical questions such as the number of initial steps that should 
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be discarded from the statistic (the so called “burn in” period) or how long the sampling should 

be run. A chain is said to be poorly mixing if it stays in small regions of the phase space for 

long periods of time, as opposed to a well mixing chain that seems to happily explore the 

phase space.  The rate of convergence is strongly dependent on the choice of the initial state 

of the chain and of the proposal distribution. In the following we briefly discuss three different 

possible choices that we have used in our calculations. 

 

4.5.3 CHOICE OF THE PROPOSAL DISTRIBUTION  ( ),q X Y  

There is an infinite range of choices for the proposal distribution q . In particular one has to 

choose either a particular updating scheme, that is, how the proposal distribution depends on 

the current state of the chain, and also the parameters defining the proposal distribution which 

can be tuned to reach a well behaving Markov chain. We shall restrict our attention to few 

special cases which we have applied to the here considered problem: 

Random Walk chain (MCRW): in the random walk updating scheme the proposed new value 

Y  equals the current values X  plus a random variable Z :  

 Y X Z= +  

In this case ( ) ( ) ( ),q X Y g Y X g Z= − =  is the density associated to the random variable Z . 

In the following we will use, as a common choice, a multivariate normal distribution 

( ),ZG μ Σ . This is the generalization of the Gaussian distribution for a multidimensional 

stochastic variable ( )1 2, ... NZ z z z≡  

( )
( ) ( )

( ) ( )T 1
2 1 2
1 1, exp

22 det
Z NG Z Zμ μ μ

π
−⎡ ⎤Σ = − − Σ −⎢ ⎥⎣ ⎦Σ

               (4.5.9) 

where μ  is the vector of the average value of the components while Σ  is the covariance 

matrix. 

The variance (or in general the covariance matrix) of the proposal distribution can be 

thought of as a tuning parameter to be adjusted to get a good sampling of the target 

distribution. One has to consider at least two aspects: the acceptance rate (the percentage of 

accepted points) and the region of the sample space which is covered by the chain. In large 
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dimension problem, this can become particularly difficult: if for example we take as proposal an 

N -dimensional normal distribution with unit variance the average radial displacement is 

roughly proportional to N . That is, large step size which probably lands in a region of phase 

space with low probability or outside the boundary which defines the domain. In this case we 

should have a very small acceptance rate with a chain which remains “trapped” in a small 

region. To maintain a significant acceptance rate as the dimension increases we would have to 

scale the variance by a factor N : 2 2 Nσ σ→ . On the other hand such a variance 

corresponds to a mean radial displacement of Nσ , which is often very small compared to 

the scale of the distribution to be sampled; again we will end with a slow mixing chain. In the 

following when this scheme is used the proposal distribution will be a multivariate Gaussian 

with diagonal covariance matrix proportional to the average populations calculated on the 

basis of the approximate distributions eq. (4.3.8) 

( )
2

1

P k N

k k kP E

σ

σ λ μ
−

−

Σ ∝

= = +

1
 

this turns out to lead to very accurate predictions of the average values of the populations with 

respect to the geometrical distribution which we want to sample from. However, when the 

expectation energy is chosen rather low, this leads to populations much higher than the 

canonical ones which however represent a point with a positive weight. The point which 

represents canonical populations,  as we will see, has to be considered as an “extreme” point 

of the phase space, i.e., it lies on the boundary of the domain. This entails that, if the chain is 

started on a point which is far from the centre of the distribution, as for example in a point near 

to the canonical one, many of the proposed steps drawn from ( )G 0, PΣ  are likely to be 

rejected.       

Independence Sampler chain (MCIS): if ( ) ( ),q X Y f Y=  then the candidate observation is 

drawn independently of the current state of the chain. In this case the  probability of move is  

  ( ) ( )
( )

, min 1,
w Y

X Y
w X

α
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

where ( ) ( )
( )
Y

w Y
f Y
π

=  is the weight function which one would use in an important sampling.  As 

in that case this can be efficient if ( )f Y  produces a weight function as close as possible to a 
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constant, that is, a function which well approximates the target distribution. Notice that the 

samples drawn according to this scheme are not independent from each other, because the 

probability to move depends on the current state. In the following we will use the above derived 

approximate distributions 

( ) ( ) ( )
2

1
1 2

1

,... k k
N

E P
N k

k

f P P E e λ μλ μ
−

− − +
−

=

= +∏            (4.5.10) 

as proposal. Since the population relative to the first eigenvalue has a peculiar distribution as 

shown by random walk results, we sample the last 2N −  populations from the exponential 

distributions (4.5.10) and then determine the first two from the constraints. 

We verifies that, for relatively low number of stochastic variables (10-30)  this procedure 

and the random walk chain give coherent results. For higher dimension of the problem random 

walk became problematic and the independent chain can be more efficient in some cases, the 

acceptance rate however became smaller as the dimension of the problem increases. 

Random Walk with adaptive proposal distribution (AP): Since from MCRW calculations, it turns 

out that the major difficulty as the number of populations increases and especially at low value 

of expectation energy, derives from the necessity of making moves which do not land outside 

the boundaries but large enough to cover in a reasonable number of steps the entire phase 

space, we will use an adaptive scheme introduced by Haario et al. [Haario, (1999)]. Basically 

the updating scheme is the same as in the Random Walk chain but the parameters of the 

proposal distribution are tuned along the chain according to the covariance calculated from a 

fixed number of previous states. In other words the proposal distribution depends on a certain 

“history” of the process and the chain is clearly not markovian. The convergence and 

irreducibility properties of such a chain are thus not obvious and are discussed in [Haario, 

(1999)]. Our implementation assume as proposal a multivariate Gaussian distribution ( )0,G Σ  

but now the covariance matrix Σ  is update every U  steps (updating frequency) on the basis of 

the covariance between the H  previous population sets  

2 1
1

Tc K K
H

Σ =
−

 

Where H  is called the memory parameter, K  is the ( )2H N× −  matrix whose rows are the 

sampled points while K K K= − . c  is a parameter which can be tuned to optimize the 
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acceptance rate, the suggested value reported in [Haario, (1999)] is 2.4c d= , with d  

denoting the dimension of the problem. 

 

4.5. IMPLEMENTATION TEST AND ILLUSTRATION OF THE RESULTS FOR  4N =  

We shall now discuss the application of the above introduced methods to a test case. 

Consider a spectrum of four equidistant energy levels, the separation is set to one. The FEEE 

Distribution for the corresponding pure states of dimension 4N =  depends on 2 populations 

and of course on the value of the expectation energy E Hψ ψ= . Once fixed the value of 

the energy we can look at the joint probability distribution of the first two populations 

( ) 1 2

1 2

1 2 1 2, P P

P P

dV
p P P dPdP

dV
=
∫

                      (4.5.11) 

and the corresponding domain of integration. The volume element has been derived in Section 

3.5. In Figure 4-2 the distribution obtained by numerical quadrature is shown.  The fixed 

expectation energy is set to be 210E −= . One readily notes that the domain of the distribution 

is a very acute triangle of the entire unit square. Notably the canonical value of the 

populations, eq. (2.3.41), that is, the set of populations obtained by applying the maximum 

entropy principle corresponds to the low probability vertex of such a triangle.  

This leads to the drawback that if one starts with a random walk chain near this value the 

steps size has to be very small in order to stay inside the domain, in higher dimension this 

effect became still more drastic. For this reason, after have performed some test to assure the 

mixing property of the chains we have usually initialized the chains to a point near the mean 

value of the populations. Figure 4-3 shows the “time trace” from a MCRW, i.e. the value of the 

function at each step of the chain, of the entropy function  

1
ln

N

k k
k

S P P
=

= −∑                                                  (4.5.12)       

for an analogue system with 10N =  energy levels. It is evident that if the chain starts near the 

canonical population set it takes longer to equilibrate and the size of the burn in period 

increases. In higher dimension a chain which starts near the boundary does not equilibrate in 

any reasonable time. 
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( )1 2,FEEp P P

1P

2P
2P

1P

( )1 2,FEEp P P

1P

2P
2P

1P

Figure 4- 2: Joint distribution calculated by numerical quadrature of two populations in the FEE 

Ensemble for the case 4N = , and the expectation energy fixed to 210E −= . 

 

 

 

number of steps

S

 

Figure 4- 3: Mixing of the Random Walk Markov chain with multivariate Gaussian proposal as 
described in the text. The calculations refer to a system with ten equally spaced energy levels.  
The two paths represent two chains which differ only for the starting value. In the case of 
canonical initial population (a particular starting point far from the average value of the random 
variables), represented by the blue line, the burn in period is evident. 
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Let us now came back to the analysis of the three different type of MC sampling introduced 

above. In order to check the methods we compare the “exact” single population distribution 

obtained by quadrature with those obtained with the three MC chains. Thus we are looking at 

the marginal distribution for a single population 

( ) ( )1 2,...,FEE k i FEEE N
i k

p P dP p P P −
≠

= ∏∫                                                                       (4.5.13)                         

Figure 4-4 shows in particular the probability distribution of 1P  and 2P  obtained by the 

different chains (MCRW, MCIS, AP) with total number of steps 510S = . All the techniques give 

distributions which are in excellent agreement with the exact one.  
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Figure 4- 4: Agreement between the exact marginal geometrical distribution on 1P  and 2P  and 

the distributions from the different Monte Carlo sampling algorithms. The calculations refer to a 

spectrum of 4N =  equidistant energy levels and the expectation value is fixed at 210E −= . 

 

Two useful quantities which should be monitored in order to check the convergence of the 

chain are the estimated average value of the objective function, eq. (4.2.6), and the related 

error eq. (A4.1.3) as function of the chain’s length. The estimation of the error in a Monte Carlo 

sampling is treated in Appendix 4.1. The average value and the relative variance are shown in 

Figure 4-5 for the entropy eq. (4.5.12) and give a criterion for establishing when the chain is 

long enough on the base of the tolerance admitted for the mean values. 
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Number of steps Logarithm of the number of steps  

Figure 4- 5: Estimated average and relative error for the entropy function as a function of the 
chain length. The system is the same of Figure 4-4. 

Notice that the variance associated to the estimation of the average value as described in 

the Appendix 4.1, eq. (A4.1.3), and depicted in the right panel of Figure 4-5 decrease as 1N −  

at least after the first 1000 steps, and this means that the correlation between the sampled 

points does not make serious deviation from the typical trend of the error predicted for 

independent sampling. 

Finally in Figure 4-6 the distributions of the entropy function obtained from MCRW and MCIS 

for a ten levels system are compared and a good agreement is established. 

S

( )p S

S

( )p S

 

Figure 4- 6: Comparison of the distribution of the entropy function S  obtained from RW markov 

chain (white) and IS chain (red) for a relatively small dimensional problem, i.e. spectrum of 

10N =  equally spaced energy levels. 
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4.6 MARGINAL DISTRIBUTION ON A SINGLE POPULATION IN THE FEEE 

The aim of this section is to analyze the agreement between the marginal distributions on 

the single populations which arises from the Fixed Expected Energy Distribution ( )FEEE kp P , 

eq. (4.5.13), and the exponential approximate distributions ( )k
FEE kW P , eq. (4.3.8). In this case 

no analytical integration can be carried out because of the complexity of the boundary which 

defines the integration domain. All we can do is thus to compare the marginal distributions 

obtained by the Monte Carlo Markov Chain sampling as described above, with the 

approximate form derived by means of the minimization of the informational functional. First let 

us briefly look at the behaviour of the average values of the populations as predicted from the 

approximate distribution 

( ) 1
kW

P Eλ μ −= +                                                                          (4.6.1) 

as a function of the energy expectation value E . These can be calculated by solving the linear 

system of the constraints, eqs. (4.3.9), that is 

( )

( )

1

1

1 1 0

0

N

k k

N
k

k k

E

E E
E

λ μ

λ μ

=

=

⎧
− =⎪ +⎪

⎨
⎪ − =⎪ +⎩

∑

∑
 

 It is easy to show that the populations do not depend on a global shift of the energy scale 

while the scale of the parameters is given in Appendix 4.2. We are thus free to choose the zero 

of the energy in correspondence of the first eigenvalue of the Hamiltonian, and this will always 

be the case if no otherwise specified.  

 Figure 4-7 shows the average populations, eq. (4.6.1), for a spectrum of ten equally spaced 

energy levels, that is 

0 0 9kE k kω= = ÷                                                                                                    (4.6.2)            

One sees that there is a value of energy for which all the average populations, eq. (4.6.1) 

became equal, we will refer to this value as the infinite temperature energy 

inf
2

1 N

T k
k

E E
N =

= ∑                                                  (4.6.3) 
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for this value of energy Nλ →  and 0μ →  and the mean populations equals those of a 

Random Pure State Ensemble defined in the same Hilbert space. Moreover for infTE E<  the 

two parameters λ  and μ  are strictly positive. Note that for values of expectation energy 

higher than infTE  an inversion of population occurs, and at this point μ  changes sign and 

became negative. 
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Figure 4-7: Average values of the populations from the approximate FEEE distribution as a 

function of the energy expectation value.  The calculation refers to a spectrum of 10N =  equally 

spaced energy levels.  

 

From now on we will restrict our analysis on the physical meaningful range of expectation 

value infTE E< . If one want to consider the case infTE E> , which can be interpreted as a 

system with negative temperature, one has just to interchanges the role of 1P  and NP  in the 

following analysis.  

 

 

E

1P

2P

10P

9P

infTE
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Let us compare the FEEE geometrical distribution with the approximate form derived in 

Section 4.3: first we have verified that the exponential distributions given in eqs. (4.3.8) are a 

good approximation of the true ( )FEEE kp P  for all 1k ≠  and for all the range of possible values 

of the expectation energy E . Figure 4-8 depicts two (normalized) histograms which refers to 

the numerical sample of 3P  and 5P  for the Hamiltonian (4.6.2). The expectation value of the 

energy is an independent parameters and it is set at the value 1.92E =  in the reported case. 

The corresponding distributions 

( )
( )

( )
k kE P

FEE k
k

eW P
E

λ μ

λ μ

− +

=
+

                                                                                               (4.6.4)                         

are superimposed to the histograms (continuous line).  
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( )3FEEp P
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( )3FEEp P
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PP
 

Figure 4- 8: Marginal distributions of 3P  and 5P  (histograms) obtained from a Random Walk 

Chain ( 510  sampled points) for a 10N =  equally spaced energy levels system, and 

corresponding analytical approximation (solid lines). The expected value of the energy is fixed at 

1.92E = .  

 

1.92E =



CHAPTER 4 

 

99 

On the other hand the exponential approximation completely misses the salient features of 

the distributions of the first populations, as it results evident from figures 4-9. Indeed, for 

infTE E<  the sampled distribution of the first population is a rather peaked function and 

became more peaked as the expectation energy diminishes. (For the case infTE E>  the same 

considerations can be made for the population of the last energy level). Notably, even if the 

exponential distribution is not a good approximation for the marginal distribution of 1P , in 

particular for small values of the energy, nevertheless the predicted average 1 1
W

P λ=  is a 

good estimation of the average obtained from the sampling of the geometrical distribution, as 

depicted in figure 4-10. 

This implies that we can use the exponential approximations for the distribution of 1P  in 

order to calculate average value of its linear function but we have to pay attention in the case 

we want to analyze non linear function, as for example the entropy. Average value of non 

linear functions depends in fact on the distributions of the stochastic variable and not only on 

its average. For this reason we derive another form of analytical approximation for the Fixed 

Expectation Energy Distribution, ( )FEEE kp P , which is useful in the range of small E .  
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Figure 4- 9: Mean value of the first population 1P : prediction on the base of the approximate 

distribution 1
1P
λ

=
W

 (red dot) and average values obtain from four sampling of the 

geometrical distribution. 

E
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Figure 4- 10: Distribution of the first population 1P  obtained by the numerical sampling and 

corresponding analytical approximations ( )1FEEW P  (red lines). The system is the same as in 

Figures 4-7 and 4-8. The panels refer to different values of the expectation energy, for this 
population the geometrical marginal distribution is completely different from the exponential 
approximation as commented in the text. 
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4.7 SECOND FORM FOR THE APPROXIMATE FEE DISTRIBUTION   

In order to obtain a better approximation we want to take into account the peculiar 

behaviour of the distribution of the first population. The idea is to use again the same 

procedure of minimization of the information functional eq. (4.3.5), but now we restrict the 

space of the allowed function and consider only functions of the form 

( ) ( ) ( )1 1 1 ˆ,...,II N IIW x x w x w x= a                                                                                     (4.7.1) 

where { }2ˆ ,..., Nx x x= . That is, we now know that the distribution on the first variable is different 

from the others and thus we use this information by specifying ( )1 1w xa  as a function of a set 

of parameters { }1 2, ..., ja a a=a . The procedure for the minimization of the information 

functional then gives the values of a  and the form of ( )ˆIIw x . Such a procedure is described in 

Appendix 4.3 and for ( )ˆIIw x  one find, eq. (A4.3.13) 

( )
( )

( )
2 2

1 2 2

ˆ
k kE xN

II
k k

ew x
E

λ μ

λ μ

− +

≠

=
+∏                                                                                                (4.7.2) 

Here we apply it for a particular choice of ( )1 1w xa . First note, as depicted in figure 4-11, 

that the distribution function of 1P  for small values of the expectation values of the Hamiltonian 

can be approximate with a Gaussian distribution with mean 1a  and standard deviation 

( )21 2aσ = , that is 

( ) ( ) ( )21 1 22
1 1 1 2 1, x a aaw x G a a x e

π
− −= =a                                                                            (4.7.3) 

The figure also shows that the variance of the distribution decreases as the value of the 

expectation energy E  diminishes. For the trial function (4.7.3) the set of equations (A4.3.17)

which determines the parameters 2 2,λ μ  and a  reads 
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( )

1
22 2

2

22 2 2

2
1 2 2

1 1 1

1 1

1 log 0
2

N

k k

N

k k

a
z E

N z E
z E

a a z

μ

μ μ

μ
π

=

=

⎧
+ =⎪ +⎪

⎪ −⎪ + =⎨ +⎪
⎪ ⎡ ⎤∂ ⎛ ⎞⎪ − − =⎜ ⎟⎢ ⎥∂⎪ ⎝ ⎠⎣ ⎦⎩

∑

∑

a

                                                                                      (4.7.4) 

where 2
2

2

z λ
μ

= . 

The solutions of the system gives the following value for the parameters which specifies the 

distributions (4.7.2) and (4.7.3) 

2 2

2 1
1

0 0
1 11

1

N

k k

a
N Ea

E N E

λ

μ
≠

= =

−
= = −

− ∑
                                                                               (4.7.5) 

In conclusion the approximate distribution we derive reads 

( ) ( ) ( ) ( )
( ) ( ) 2

1 1 1
1

2

,...,

k k

N
k

II N II k
k

k E P
II k k

W P P P a w P

w P E e μ

δ

μ
≠

−

= −

=

∏
                                                                                (4.7.6) 

with 2μ  and 1a  specified as in eqs. (4.7.5). 

This second form of the approximate distribution is practically equivalent to the previous one 

for the populations kP  with 1k ≠ , while it approximates the ( )1FEEEp P  with a Dirac delta 

distribution at its average value given by the parameter 1a  

 1
1

11
1II

N

W
k k

EP
N E≠

= −
− ∑                                                                      (4.7.7)           

This is surely a better approximation of the real distribution with respect to the exponential 

one for low value of E N . This is not the case when the energy is near the infinite 

temperature values, as one can see from figure 4-11. 
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Figure 4- 11: Distribution of the first population 1P  obtained by the numerical sampling and 

corresponding analytical approximations ( )1FEEW P  (red lines). In this case the expectation 

energy is near the value corresponding to the infinite temperature condition which in this case is 

inf 4.5TE = . 

 

 Around infTE E≈ one has to pay attention and use the RPSE distribution because also the 

ensemble distribution of the first population tends to an exponential function. Moreover the 

average value of 1P  predicted from the distribution (4.7.6) deviate from the real one, as one 

can see in Figure 4-13. Nevertheless this second approximation to the FEE Distribution is 

particularly convenient as long as it is directly specified on the base of the free parameter 

E .The average populations different from the first reads 

( )1
1

1II
J W

J

EP
N E≠ =
−

                                                    (4.7.8)               

In the next chapter we will use the sampling methods and analytical approximations 

developed in this Chapter for investigating the ensemble distribution of some properties of 

interest as the equilibrium average of the reduced density matrix for a subsystem of the total 

isolated system or collective functions of the entire quantum state such as the entropy.  
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Figure 4- 12: Sampled Distribution of the first population 1P  for low values of the expectation 

energy. On the low left panel the standard deviation of the distributions as function of the 
expectation energy is depicted.  
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Figure 4- 13: Mean value of the first population 1P : comparison between the prediction on the 

base of the first approximate distribution 1 1
W

P λ=  (red dot), according to the second form of 

the approximation, 
2

1 1W
P a=  (black dot) and average values obtain from the numerical 

sampling of the geometrical distribution (blue dot). 
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APPENDIX 4.1:  ROUGH ESTIMATION OF THE ERROR IN MCMC METHOD 

As already mentioned the Monte Carlo estimate of a multivariate integral on 

{ }1,..., dx x x= after S  sampled points is given by  

( )( )
1

1 S
i

i
E f P

S =

= ∑                                                                                                             (A4.1.1) 

If I  is the exact value of the integral then the error associated to the Monte Carlo 

estimation is, in the simplest case of an independent sampling, related to the variance of the 

function itself and the number of collected points 

( ) ( )2
2 f

s E
S

σ
=                                                                                                               (A4.1.2) 

The fact that a chain produces points which can be highly correlated can introduce other 

factors in the estimation of the error but we will see that in the present case the basic theory is 

sufficient to analyze the result. 

Of course in practice one usually does not know the exact variance of the objective function 

and thus uses the Monte Carlo estimate  

( ) ( )( )22

1

1
1

S

n
n

S f f x E
S =

= −
− ∑                                                                                        (A4.1.3) 

It seems worthy to state explicitly that Monte Carlo techniques give only a probabilistic error 

bound, that is, we can only give a probability that Monte Carlo estimate lie within a certain 

range of the true value.  
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APPENDIX 4.2: SCALE OF THE  ,λ μ  PARAMETERS UNDER AN ENERGY SHIFT 

Consider the average value of the k-th population 

( ) ( )
1 1 1

k
k k

P
E z Eλ μ μ

= =
+ +W

                                                                                       (A4.2.1)

       

Where we have defined z λ μ= . From the normalization requirement one find  

1
k kE z

μ =
+∑                                                                 (A4.2.2) 

and thus populations can be written as function of the parameter z  as 

( )

( )

1

1

k
NW

k
k

E z
P

E z

−

−

+
=

+∑
                                                  (A4.2.3)           

After an energy shift spectrum is specified as k kE E E= + Δ  and the mean populations reads 

( )
( )

1

1

k
NW

k
k

E z
P

E z

−

−

+
=

+∑
                                                                        (A4.2.4) 

where z z E= −Δ  

The corresponding expectation energy E  is shifted by Δ  as expected 

( )
( ) ( ) 11

N
k k

k k k k
N

k
k k

k

E E
E z E zE E

E zE z
−−

+ +
= = + Δ = + Δ

++

∑ ∑

∑∑
                                    (A4.2.5) 

Given that z λ μ= , one obtains the scaling rule for the parameters  

Eλ λ μ
μ μ
= − Δ
=

                                                                                  (A4.2.6)             
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APPENDIX  4.3:  DERIVATION  OF  THE  MAXIMUM  ENTROPY  DISTRIBUTION  IN  A 

RESTRICTED SPACE OF CANDIDATE FUNCTIONS 

The problem we want to solve is the minimization of the information functional 

[ ] ( ) ( )1 1
1

,..., log ,...,
N

N N k
k

I W W x x W x x dx
=

= ∏∫                          (A4.3.1) 

with function of the form 

( ) ( ) ( )1 1 1 ˆ,..., NW x x w x w x= a                                                     (A4.3.2) 

where { }2ˆ ,..., Nx x x=  and we can choose a specific function parametrically dependent on the 

set { }1 2, ..., ja a a=a  for describing the probability distribution of the first variable. Naturally, 

such a function has to be properly normalized 

( )1 1 1 1dx w x =∫ a                                                   (A4.3.3)              

The information functional can be written as 

[ ] ( ) ( ) ( ) ( ) ( ) [ ]1 1 1 1 1 1ˆ ˆ ˆlog logI W dx w x w x dxw x w x I I w= + = +∫ ∫a a a              (A4.3.4) 

The constraints are of course the same as before, that is normalization of the average 

populations, fixed value for the average expectation energy and normalization of the probability 

density: 

1
1

N

k
k

x
=

=∑                                                                                       (A4.3.5)      

1

N

k k
k

E x E
=

=∑                                                       (A4.3.6) 

( )
0

ˆ ˆ 1dxw x
∞

=∫                                                           (A4.3.7)    

But now the average value of the first population is expressed as 

( ) ( )1 1 1 1 1 1x X dx w x x= = ∫a a                                                               (A4.3.8) 
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By introducing the Lagrange multiplier the functional to minimizes reads  

[ ]( ) ( ) [ ] ( )( )

( ) ( )( ) ( ) ( )

1

1 1 1
1 1

ˆ ˆ, 1 1

ˆ ˆ ˆlog

k k k
k k

k k k
k k

F w I I w x x E E w x dx

I X E dxw x w x x E x E

λ μ η

λ μ λ μ η λ μ η
≠ ≠

⎛ ⎞ ⎛ ⎞= + − − − − − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
= − + + − − − + + +⎢ ⎥⎣ ⎦

∑ ∑ ∫

∑ ∑∫

a a

a a
 (A4.3.9) 

Actually [ ]( ),F w a  is a functional of ( )ˆw x  and an ordinary function of the parameters a . 

The minimization thus requires setting to zero the following derivatives 

( ) ( )( )1 1 1 0F I X Eλ μ∂ ∂
= − + =⎡ ⎤⎣ ⎦∂ ∂

a a
a a

                                             (A4.3.10) 

[ ]
( ) ( )

1 1

ˆlog 1 0
ˆ k k k

k k

F w
w x x E x

w x
δ

λ μ η
δ ≠ ≠

= − − − − − =∑ ∑                                        (A4.3.11) 

From (A4.3.11) one obtains 

( ) ( ) ( )
1 1 1

ˆ exp 1
N

k k k k k
k k k

w x x E x w xη λ μ
≠ ≠ ≠

⎡ ⎤= − + − − =⎢ ⎥⎣ ⎦
∑ ∑ ∏                             (A4.3.12) 

this, by taking into account the normalization condition (A4.3.7), can be written as 

( )
( )

( )
1

k kE x

k k
k

ew x k
E

λ μ

λ μ

− +

= ≠
+

                                                   (A4.3.13) 

So that the average values are expressed as before  

( )
1 1k

k

x k
Eλ μ

= ≠
+

                                                   (A4.3.14) 

while the parameters ,λ μ  are determined from the vinculums   

( ) ( )

( ) ( )

1
1

1 1
1

1 1
N

k k

N
k

k k

X
E

EE X E
E

λ μ

λ μ

≠

≠

+ =
+

+ =
+

∑

∑

a

a
                                                                                    (A4.3.15)          

where a  is calculated from the solution of eq. (A4.3.10). 
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Define the following function 

( )
2

1N

k k

S z
E z=

=
+∑      (A4.3.16) 

where z λ μ= . By assuming the scale of the energy such that 1 0E = , the equations to be 

solved for the specification of the parameters are 

 

( ) ( )

( ) ( )

( ) ( )

1

1 1

1

1

0

S z
X

N S z
z U

I X z

μ

μ μ

μ

⎧
+ =⎪

⎪
⎪ −⎪ + =⎨
⎪
⎪ ∂

⎡ ⎤− =⎪ ⎣ ⎦∂⎪⎩

a

a a
a

                                                                (A4.3.17)               

In conclusion by choosing a parametric function which describes the distribution of the first 

population, ( )1 1w xa , and solving the system (A4.3.17) we can specify the approximate 

maximum entropy distribution as 

( ) ( )
( )

( )1 1 1
1

,...,
k kE xN

N
k k

eW x x w x
E

λ μ

λ μ

− +

≠

=
+∏a                                                                 (A4.3.18) 

 

 

APPENDIX 4.4: DISTRIBUTION OF SUM OF STOCHASTIC VARIABLE AND CENTRAL LIMIT 

THEOREM 

In order to derive the distribution of ( )P X  for a stochastic variable 

 
1

n

i
i

X x
=

=∑             (A4.4.1) 

where ix  are independently distributed random variable with probability density ( )i ip x  it is 

convenient to introduce the corresponding characteristic function 
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( ) ( ) ( )
1

n
iqX

i
k

G q dXe P X g q
=

= =∏∫                   (A4.4.2) 

where the functions ( )ig q  are the characteristic functions of the distributions ( )i ip x  

( ) ( )iiqx
i i i ig q dx e p x= ∫                  (A4.4.3) 

In the case we deal with n  identical exponentially distributed random variables, 

( ) xp x e αα −= , one readily finds 

( )
n

iG q
q i
α
α

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

which is the characteristic function of a Gamma Distribution with parameter ( ),n α , that is 

( ) ( ) ( )
1

, 1 !

n
n x

nP X X X e
n

α
α

α − −= Γ =
−

                           (A4.4.4) 

where n  is the shape parameter while α  is the rate parameter.  

On the other hand the Central Limit Theorem states that if ix  are independent and identically 

distributed random variables and ( )p x  has finite mean μ  and variance 2σ , then the sum 

variable (A4.4.1) is distributed, for N →∞ , according to a Normal Distribution with average 

M nμ=  and variance 2 2nσΣ = , that is 

( ) ( )
( )2

22
,

1lim
2

X n
n

n MP X G X e
n

μ
σ

σ π

−
−

→∞ Σ= =                     (A4.4.5)      

It is easily verified indeed that the Gamma distribution tends to a Normal one as the shape 

parameter n   increases. 

The Central Limit Theorem also applies in the case of random variables that are not identically 

distributed, as it is the case for the approximate distribution derived for the FEEE: 
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Let ix  be a random variables defined on the same probability space. Assume that ix  has 

finite expected value iμ   and finite standard deviation iσ .  Then the sum 
1

n

i
i

X x
=

=∑  has 

average value 

1

n

i
i

X μ
=

=∑                                  (A4.4.6) 

and variance 

2 2

1

n

n i
i

s σ
=

=∑                              (A4.4.7) 

If the third central moment 

( )33

1

n

i i
i

r x μ
=

= −∑                              (A4.4.8) 

exists and is finite for every n , and if it is valid the following (Lyapunov) condition 

lim 0n

n
n

r
s→∞

=                                              (A4.4.9) 

Then the distribution of X converges to a normal distribution centred at the average value 

given by eq. (A4.4.6) and variance given by eq. (A4.4.7), that is 

( ) ( )
( )2

22
,

1lim
2

n

n

X X

s
n X s

n

P X G X e
s π

−
−

→∞ = =                      (A4.4.10) 

Notice that for a exponentially distributed random variable, ( ) xp x e αα −= , the n-th moment is 

simply 

!n
n

nx
α

=                                                                                                                   (A4.4.11)         
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CHAPTER 5 

TYPICALITY ON THE ENSEMBLES: 
STUDY OF A SPIN SYSTEM 

 

 

 

5.1 INTRODUCTION 

Ensembles of spins are convenient systems for investigations of quantum statistical 

behaviour, since one has to consider a finite dimensional Hilbert space. The numerical 

calculations of the energy spectra and the time evolution of arbitrary initial states can be 

performed to machine precision without introducing any artificial truncation of the Hilbert 

space. Furthermore this kind of model system is the subject of a continuously increasing 

attention either from a theoretical [Cucchietti, (2005); Suter, (2008)] as well as experimental 

perspective [Neumann, (2008); Hanson, (2008); Berezovsky, (2008)] because it represents the 

natural test bed for quantum information protocols. 

In this chapter we shall analyze the Ensemble Distribution of the entropy and of the 

equilibrium average state of a subsystem for a system composed of n  non interacting spins. In 

this and in the following Chapter we will deal with ideal system, i.e. systems composed of non 

interacting parts. This is convenient and does not cause any drawbacks since we shall focus 

on the properties of Ensembles Distributions of quantities which does not depend sensibly on 

the dynamical aspects of the system: in particular we shall consider the ensemble distribution 

of the entropy, eq. (2.3.12), and of the equilibrium average of the reduced density matrix of a 

subsystem, as defined in eq. (2.4.14). Instead, the dynamical aspects of the equilibrium state 

will be considered in the second part of this thesis. 

The concept of typicality in the ensemble is introduced and illustrated for the considered 

systems. The major point is indeed the emergence of properties which does not depend on the 

detail of the state of the system but are “typical” for the great majority of the wave functions in 

the considered ensemble.  
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5.2 ON THE CONCEPT OF TYPICALITY IN QUANTUM STATISTICAL MECHANICS 

Recently the concept of typicality has been introduced by Goldstein et al. [Goldstein, (2006)] 

and used to provide very strong foundations to the canonical statistics of a quantum 

subsystem S  which is part of a much bigger isolated quantum system S E+ . The crucial point 

which emerges from the above mentioned investigation is the following: by choosing at random 

a pure state ψ  from an ensemble of all the wavefunctions which lie on the Hilbert space 

spanned by a set of Hamiltonian eigenstates  

[ ],j j j jH e E e E E E Eδ= ∈ +                   (5.2.1) 

with the usual condition E Eδ << , the corresponding reduced density matrix of a small 

subsystem defined as  

ETrμ ψ ψ=                                                                           (5.2.2) 

is approximately equal to the canonical density matrix 

SH

can
e

Z

β

μ
−

=                                                           (5.2.3)             

for the overwhelming majority of the pure state which belong to the initially considered 

ensemble. Here the important conceptual point which is absent in the standard formulation of 

quantum statistical mechanics is the idea that the usual statistics (in this case the Gibbs form 

of the statistical density matrix) originates from the pure state wavefunction itself, without any 

invocation of real ensemble, randomness or chaos assumptions. Related, less general, results 

was obtained in ref [Tasaki, (1998)], by assuming that the total independent state is in an 

eigenstate of the total Hamiltonian.   

It is worth to mention here that the ensemble of pure states for which the Canonical 

typicality has been established [Goldstein, (2006)] is a particular case of the Random Pure 

State Ensemble considered by us: it is an ensemble defined by the uniform measure on the 

unit sphere in the subspace spanned by the Hamiltonian eigenfunctions je  with the 

eigenvalues [ ],jE E E Eδ∈ + , that is, the RPSE with the additional constraint defined by the 

parameter Eδ , which is assumed to be small in the macroscopic scale. 

Nearly at the same time, Popescu et al [Popescu, (2006)]  presented a very clear and 

general analysis of the typicality properties of the subsystem density matrix within an approach 
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independent from the standard definitions of microcanonical and canonical distributions used 

in statistical mechanics. It is worth to briefly summarize here the general setup of this work 

because it will be useful in the interpretation of our results.  

Let us consider a large isolated quantum mechanical system, “the universe”, which can be 

partitioned into the system, S , and the, comparatively large, environment, E . Let the state of 

the universe obey some global constraint R  which reduces the dimension of the 

corresponding Hilbert space 

R S E⊆ ⊗H H H                 (5.2.4) 

where SH  and EH  are the Hilbert spaces of the system and the environment, of dimensions 

SN  and EN  respectively. Let us define Rε  , the equiprobable state of the universe 

corresponding to the constraint R , as 

1
R R

RN
ε = 1        � (5.2.5) 

where R1  is the projection operator on RH  and RN  is the dimension of  the total space RH . 

Equation (5.2.5) denotes the statistical density matrix corresponding to the maximally mixed 

state of the universe, that is, it assigns equal probability to each pure state. The generalized 

canonical state of the system is thus defined as 

S E RTrρ ε=                                                                                                                       (5.2.6)       

Popescu et al. prove that if the universe is in a pure state ψ  belonging to RH , then the 

reduced state of the system 

ETrμ ψ ψ=               (5.2.7)        

is very close to the canonical state Sρ  defined in eq. (5.2.6) for almost every pure state 

RHψ ∈ . This theorem provides an exponentially small bound to the probability of finding the 

system in a state that is far from the canonical one. The deviation from the canonical state is 

characterized by the ratio between the system size and the effective size of the environment. 

The proof of the theorem comes from geometrical consideration on the Hilbert space and does 

not involve any dynamical argument.   



CHAPTER 5 

 

115 

The above statement is called “general canonical principle” because, as the authors point 

out, the canonical state (5.2.6) corresponds to the standard canonical state eq. (5.2.3) for a 

particular choice of the global constraint R , i.e. if the constraint is chosen as the restriction of 

the Hilbert space according to the condition (5.2.1), which is equivalent to the definition of the 

ensemble used by Goldstein et al. [Goldstein, (2006)]. 

 

 

5.2.1 TYPICALITY FOR ISOLATED SYSTEMS 

In a recent contribution, [Reimann, (2007)], Reimann points out that, under rather generic 

assumptions, the typicality properties already emerge for collective observables pertinent to 

the whole system without the necessity of a “system plus environment” division. While in 

[Popescu, (2006)] the foundation of the statistical description for a subsystem is clearly 

connected to the “massive entanglement between the subsystem and the rest of the universe”, 

this would not be the case for an isolated system which is, by definition, not entangled. In 

[Reimann, (2007)] the typicality refers to a generalized ensemble defined through a probability 

density function ( )p c  for the un-normalized complex coefficients which specify the 

wavefunction: 

nc n
c

ψ =∑                                                                                                                  (5.2.8)          

where ( )1: ,..., nc c c=  and 
2

nc c= ∑ . The two key assumptions of Reimann concern the 

distribution ( )p c  on the wavefunction coefficients. The first one requires statistical 

independence 

( ) ( )
1

N

n n
n

p c p c
=

=∏                      (5.2.9)                 

The second assumption regards the “purity” of the ensemble averaged density matrix and it 

can be written as 

2

2
max 1nc

c

⎛ ⎞
⎜ ⎟ <<
⎜ ⎟
⎝ ⎠

                        (5.2.10)                   
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If the validity of the conditions eqs. (5.2.9) and (5.2.10) is assumed, then the typicality is 

established as an upper bound to the variance of the ensemble distribution of the expectation 

value, for a given bounded operator. 

The study we shall here present is similar in the spirit to that in ref. [Reimann, (2007)] but 

the framework is quite different: first we are looking at the Ensemble Distribution of equilibrium 

value of state functions. Such a value is naturally defined as an asymptotic time averages on 

the “trajectory”, as explained in Section 2.3, from which a uniform distribution on the phase 

variables is derived rather than assumed as in [Reimann, (2007]. Secondly we study specific 

ensembles whose characteristic probability distributions are not arbitrary since they are 

established from the geometry of the Hilbert space. Moreover we will explore interesting 

connections between the concept of typicality and the emergence of thermodynamic properties 

in differently defined ensembles. 

It is worthy to note, that the study of the RPS and FEE ensemble distributions developed so 

far can be used to substantiate the assumptions of Reimann. First we have shown that, at 

least in the limit of large N , the joint distribution of the populations is well approximated by a 

factorized probability distribution 

( ) ( )
1

N
k

k
k

W P W P
=

=∏                          (5.2.11) 

where the explicit form of the single variable distributions kW  depends on the particular 

ensemble but in general is exponential, (see eqs. (4.3.8) and (4.3.10))   

( ) k kxk
k kW P e λλ −=                         (5.2.12)     

Secondly, since 2 2
k kP c c= , the condition (5.2.10) is equivalent to require that the 

maximum of the ensemble average value of a population, is much less than one; in other 

words it is assumed that, on the average, several energy eigenstates contribute to the 

specification of the total wavefunctions which belong to the considered ensemble. This 

condition is naturally satisfied in the Random Pure State Ensemble, for which the average 

population are all equal and of the order of ( )1O N . In the Fixed Expectation Energy 

Ensemble the maximum of the average population is that corresponding to the ground state. 

This is, according to eq. (4.7.7) , 1
1

11
1II

N

W
k k

EP
N E≠

= −
− ∑  , thus the validity of the condition 
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(5.2.10) depends on the total energy and on the energy spectrum; in particular it is not satisfied 

for small values of the expectation energy. 

We emphasize that the above mentioned approaches to the problem of relating the 

statistical ensemble to the property of a single pure state on the basis of the concept of 

typicality are of pure “geometrical” character, in the meaning that the dynamics of the quantum 

state is never invoked. A somewhat different approach based on the analysis of the time 

evolution can be found in ref. [Jensen, (1985)]. Jensen et al. perform a numerical experiment 

on a cyclic chain of 7 spin in order to compare the equilibrium value of the collective transverse 

magnetization resulting from the time evolution of a pure state with the standard 

microcanonical average. The remarkable finding is that the “solution of the Schrödinger 

equation is reach enough to exhibit statistical behaviour” in the sense that the short time 

average of the observed ( )xM t , calculated from the full knowledge of the initial pure state, is 

accurately predicted by an ensemble average which requires only the knowledge of the mean 

energy. This numerical evidence is again relative to initial states which are superposition of 

energy eigenstates with a distribution which is “reasonably” narrow in energy, as in the case of 

Goldstein et al. [Goldstein, (2006)]. Interestingly the statistical character of the dynamics, as 

defined in this framework, does not depend on the nearest neighbourhood level spacing 

statistics of the eigenstates (Wigner-Dyson or Poisson type), while this feature is considered 

as a central issue in the quantum chaos theory.    

In our analysis both the ingredients are present, that is the dynamical evolution on the one 

hand and the geometrical statistics on the other hand. However they also plays different roles 

in determining the statistical mechanics of quantum states and this is emphasized by the 

introduction of the two different  probability distributions: the Pure State Distribution on the one 

hand and the Ensemble Distributions on the other hand. 

 

Let us now focus on this second aspect, i.e. the Ensemble Distributions, and study the 

eventual typicality property of some functions of interest. As already mentioned we are 

primarily interested about two kind of functions  

1. those which characterize the equilibrium state of a subsystem, i.e. the equilibrium average 

Reduced Density Matrix as defined in (2.4.14). 

sb
s b

P s sμ =∑∑                                  (5.2.13)                   



TYPICALITY ON THE ENSEMBLES 

 

118 

2. collective functions such as the Shannon entropy, eq. (2.3.12): 
1

ln
N

k k
k

S P P
=

= −∑  

 

 

5.3 ENSEMBLE OF  n  SPINS 1 2   

   The system we shall consider is an ensemble of n  non interacting 1 2  spins. Each spin 

having its Zeeman frequency kω . The total number of state is in this case  

2nN =                                                                                                                             (5.3.1) 

The M-th eigen energy state will be denoted as 1 2 ....M M M
nM m m m=  and the corresponding 

energy is 

1

n
M

M k k
k

E mω
=

=∑       (5.3.2)         

Where 
1
2

M
km = ∓   

In the case that the spins are all identical with Zeeman splitting 0kω ω= , we obtain a 

spectrum with 1n +  energy eigenstates with a binomial degeneracy scheme, by identifying the 

states 1 2 ....M M M
nM m m m=  on the basis of the number k  of spins “up” one has     

0 2M k
nE E kω ⎛ ⎞→ = −⎜ ⎟

⎝ ⎠
�              (5.3.3)       

with the corresponding degeneracy given by 

( ) ( )
! 12 Bin( , )

! ! 2
n

k

n nd E n
k k n k
⎛ ⎞

= = =⎜ ⎟ −⎝ ⎠
�                   (5.3.4)        

where 
1Bin( , )
2

n  denote the binomial probability distribution with parameter 
1
2

p =  and 

0k n= ÷ . If n  is at least of the order of 5, the binomial distribution is fairly well approximate by 
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a normal distribution. In order to apply the population distributions previously derived, we set 

the zero of the energy in correspondence to the first eigen energy 

1 02k k k
nE E E E ω= − = +� �                                            (5.3.5)          

The density of state is in general 

( ) ( )
1

N

k k
k

d E E Eδ
=

= −∑                                                

which, by using the normal approximation to the binomial, can be written as 

( )
( )22

22
2

E nn
nd E e

nπ

−
−

=�                                (5.3.6)                 

If the resonance frequency are not identical but somewhat distributed then, when n  is large, 

the spectrum is dense and one can introduces a smoothed density of state 

( ) ( )
2

0
2

lim
E

E

g E d E dE
ε

ε
ε

+

→
−

= ∫                (5.3.7)               

where ε  is a small energy interval which contains enough energy levels to guarantee the 

smoothness of the density function. In the limit of large n  and dense spectrum one can thus 

introduces a Gaussian density of state 

( )
( )2

22
22

E E
Ng E e σ

πσ

−
−

=                        (5.3.8)          

with mean 
1

1
2

n

k
k

E ω
=

= ∑  and variance given by 

2 2

1

1
4

n

k
k

ωσ ω
=

= ∑                            (5.3.9) 

This is shown in Figure 5-1 for 10n = : figure 5-1-A shows the binomial degeneracy of a 

spectrum of 10 identical spins with 0 1ω =  and the corresponding Gaussian envelope, in 5-1-B 

the resonance frequency of each spin has been modified by adding a random number drawn 

from a normal distribution with standard deviation 110σ −= .   
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Figure 5- 1: Energy spectrum of A) 10n =  identical spins 1 2  with 0 1ω =  B) 10n =  spins with 

different energy separations. 

 

 

5.4 THE FIXED EXPECTATION ENERGY ENSEMBLE 

Because for the considered system the energy spectrum is naturally bounded we can study 

the property of the entropy function and the equilibrium average state of a subsystem as a 

function of the expectation energy E Eψ ψ= . The energy per spin E nε =  is the only 

independent parameter which defines the Fixed Expectation Energy Ensemble. It has been 

proposed, [Brody, (2005), (2007); Naudts, (2006)], to consider this ensemble as the real 

quantum counterpart of the classical microcanonical ensemble. The standard quantum 

microcanonical set up, see eq. (2.3.40), is indeed not completely satisfactory, first because it 

relies on the introduction of an arbitrary energy band EΔ  and, furthermore because it suggests 

to consider a quantum system  in thermal equilibrium as being in a energy eigenstate, which is 

in contrast with the superposition principle. The alternative definition proposed in [Brody, 

(2005)] based on the fixed expected energy is indeed rather appealing since its analogy with 

the classical microcanonical ensemble results particularly evident from the equation of motion 

written as in eq. (3.3.4). However its usefulness in the framework of the quantum statistical 

mechanics requires further investigations. The methodologies developed in chapter 4 can be 

employed for this purpose. 

 Figure 5-2 shows the FEE Ensemble Distributions of the first population ( )1p P , obtained 

from the sampling of the geometrical distribution, as a function of the energy per spin. The 
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distributions are fitted with a normal distribution whose variance clearly diminishes as the 

energy decreases. In the case when the Zeeman frequencies are all identical, the approximate 

distribution on 1P  introduced in Section 4.7 reads  

( ) ( )1 1 1IIw P P Pδ= −                             (5.4.1)           

1

1
1

11
2

n

n
k k

nEP
k E

+

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑                   (5.4.2)                   

where the energies are expressed in units of the spin frequency 0ω . In the limit of large n , the 

binomial coefficient which determines the degeneracy, eq. (5.3.4), is a function of k  sharply 

peaked around 2k n= , and in this limit the ensemble average of the first population is a linear 

function of the energy per spin ε  

1 1 2P ε= −                      (5.4.3)         

Note that in order to assure the positivity of this variable the energy per spin has to be lower 

than that corresponding to the infinite temperature limit as defined in eq. (4.6.3), that is 

inf 1
2

n
TE
n

ε
→∞

< =                                               (5.4.4)           

Actually this value is slightly less than 1 2  for n  of the order of 10 as considered here.  

In the same limit of large n  the ensemble average of the populations different from the first 

are given by 

( )
1 2 1

2 1

n
n

J n
k

E nP J
E J

ε
→∞

−= = ≠
−

                 (5.4.5) 
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Figure 5- 2: Sampled FEE Distribution of the first population 1P  as a function of the energy per 

spin ε . The distributions are fitted with  Normal distributions. 

 

 

5.4.1 ENSEMBLE DISTRIBUTION OF THE ENTROPY 

At this point we can study the ensemble distributions of the entropy as defined in eq. 

(2.3.12). The important evidence is that the Ensemble Distribution of this function is 

concentrated around a “typical” value which is an increasing function of the energy. In other 

words the great majority of the possible states which can describe a system composed of n  

identical spins 1 2  with fixed energy are also characterized by the same value of the entropy 

function. This is evident from Figure 5-3 which depicts the ensemble distribution of S  obtained 

by sampling the FEE distribution for a system of 6n =  and 10n =  spins 1 2 . One readily 

notes that the variance of such distributions decreases as the number of considered spins, and 

hence the dimension of the corresponding Hilbert space, is increased, the calculated variances 

are reported in Figure 5-3.  
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Figure 5- 3: Ensemble distribution of the entropy from the sampling of the geometric fixed 
expectation energy distribution.  The (normalized) histograms refer to different values of the 
energy per spin as indicated in the figure, and they are fitted with a Gaussian distribution. The 

upper panel refers to a system of 6n =  spins while the lower panel is the sampling for  10n =  
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Figure 5- 4: Standard deviation of the Ensemble Distribution of the Entropy function depicted in 
Figure 5-3 as a function of the energy per spin 

 

Since practically all the states of the ensemble are characterized by a value of entropy 

which is very close to its ensemble average when n  is moderately large, we study this 

average as a function of the energy. The analytical approximation of the distributions 

previously derived is very convenient for this purpose because the averages can be calculated 

analytically. Being a non linear function of the set of stochastic variables { }1,..., NP P  the 

average entropy in the ensemble depends on the distributions of the stochastic variables and 

not just on their averages { }1 ,..., NP P .   

According to the distribution introduced by Wootters, eqs. (4.3.8), the average entropy 

reads 

( )
1

ln 1
FEE FEE FEE

N

k JW W W
k

S P P γ
=

= − − −∑         (5.4.6)             

where 0.5772γ =  is the Eulero constant, and the average populations reads 

( ) 1

FEE
J JW

P Eλ μ −= + . In Figure 5-5 the average entropy per spin 
FEEW

S n  as a function of 

the energy per spin is depicted. The symbols refer to the averages obtained from numerical 

sampling of the geometrical FEE Distribution while the blue lines are the averages according to 
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the Wootters distribution, i.e. eq. (5.4.6). Due to the difference between the approximate form 

of the distribution of the first population and the real one, discussed in Section 4-6, the average 

value of the entropy per spin calculated according to the approximate distribution ( )FEEW P  

underestimates in general the real values. Notice also that for low energy and moderate value 

of spins number n  it  takes negative values. 

 Averaging with respect to the alternative distribution ( )1,..., NP PIIW , eq. (4.7.6) derived in 

Section 4-7 by tacking into account the peculiar behaviour of the distribution of the first 

population, one gets 

( )( )1
1

ln 1 1
II II II II

N

k kW W W W
k

S P P Pγ
=

= − − − −∑                          (5.4.7) 

where now the ensemble averages of the populations are those given in eqs. (5.4.2)-(5.4.5).  

A very good agreement between the average entropy calculated according to ( )IIW P  and 

the average entropy which result from the sampling of the geometrical distribution is obtained, 

as depicted in Figure 5-5 for both the considered case. For comparison we have also drawn 

the entropy corresponding to the global canonical populations, eq. (2.3.41), corresponding to 

the same value of the expectation energy, eq. (2.3.42). which is, by definition, the maximum 

value of the entropy compatible with a give value of the expectation energy E . 
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Figure 5- 5: Average Entropy per spin as a function of the energy per spin, Figure A refers to a 

system of 6n =  spins while B is the sampling for 10n = . In the figure are shown the average 

obtained by the numerical sampling (circle/asterisk), the average according to the Wootters 
approximation (blue line), the average according to the second approximate form (black dotted 
line), and the canonical value (red line) 

  

We can thus use eq. (5.4.7) in order to predict the behaviour of the typical entropy per spin 

in the limit  n →∞ .  By using the average populations, eqs. (5.4.3) and (5.4.5) one obtains the 

following average entropy in the limit of large n  

( ) ( )1 22 ln 2 1 2 2 ln ln 1 2
n

S n εε γ ε ε ε
ε

→∞ −⎛ ⎞= − − + − −⎜ ⎟
⎝ ⎠

        (5.4.8)          

which entails a linear relation between the average entropy per spin and the energy per spin in 

the thermodynamic limit n →∞ , costE nε = =  

2ln 2
nS

n
ε

→∞

=                                                                  (5.4.9)              

In figure 5-6 the convergence toward this limiting behaviour is depicted. Even if we have 

considered for the sake of simplicity the ideal case of identical spins the same behaviour is 

found also for non identical spins with different Zeeman splitting.  

B
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Figure 5- 6: Average Entropy per spin as a function of the energy per spin according to the 

approximate distribution ( )1,...,II NW P P . The curve refers to different value of the number of 

spins as specified in the legend 

 

 

5.4.2 ENSEMBLE DISTRIBUTION OF THE EQUILIBRIUM STATE OF A SUBSYSTEM 

In Section 2.4 the equilibrium average state of a non interacting subsystem was defined 

through its asymptotic time average and reads 

sb
s b

P s sμ =∑∑                                       (5.4.10)               

where each populations sbP  corresponds to an energy level of the global system which can be 

expressed as the sum of an energy level of the subsystem and of the environment (bath) 

k s bE E E= +                                                     (5.4.11)                  

From eq. (5.4.10) it appears that the equilibrium state of the subsystem S  depends on the 

detailed specification of the whole pure state, i.e. depends on the specific populations set. We 

shall now consider the ensemble distribution of the equilibrium average reduced density matrix 
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of Sn  spins among the n  spins which constitute the whole system. The other B Sn n n= −   

spins have to be considered as the environment for the selected subsystem. Figure 5-7A 

shows the ensemble distribution obtained from the sampling of the FEED for the diagonal 

element ββμ  of the time averaged reduced density matrix of a single spin which belongs to a 

six spins system. In the following Eβ  ( )Eα  will denote the lowest (higher) eigen energy of a 

two level system. The normalized histograms of the sampling refer to different values of the 

energy per spin and they are fitted with Gaussian distributions whose variance decreases as 

the energy per spin is lowered. The typicality of the equilibrium reduced density matrix can be 

seen, in this case, as a direct manifestation of the Central Limit Theorem (Appendix 4.4). An 

element of the RDM is in fact a sum of 2 Bn
BN =  random variables exponentially distributed on 

the ensemble (see eqs. (4.7.6), (4.7.5)), the scale parameter of such distributions reads 

 
( )

2

1k
k

E N
E

E
μ

−
=                                                                              (5.4.12) 

 For the diagonal element of the RDM which corresponds to 0sE =  there is a contribution 

due to 1P  whose probability distribution is different from the others, and it is given by a Dirac 

delta distribution, eq. (5.4.1). 

In the simple case of identical spins, the energies bE  of the environment are distributed as 

the spectrum of Bn  identical spins, that is 

( ) ( )
!

! !
B B

b
B

n nd E
b b n b

⎛ ⎞
= =⎜ ⎟ −⎝ ⎠

 (5.4.13)  

Thus, it follows from the CLT, eq. (A4.4.10), that, if 2 Bn
BN =  is large, the Ensemble 

Distribution of the stochastic variable ssμ  is a Gaussian with average 

( ) 1 1
0 0

1
2 1

B Bn n
B

ss sb sn
b b S b

n EP P
b E E

μ δ
= =

⎛ ⎞
= = +⎜ ⎟ − +⎝ ⎠
∑ ∑                  (5.4.14) 

and variance 

( ) ( )
( ) ( )

2 2 2
2 2

2 2
0 0

1

2 1

B Bn n
B B

ss sb nb b S b

n n EP
b b E E

σ μ σ
= =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

+⎝ ⎠ ⎝ ⎠ −
∑ ∑    (5.4.15)      
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By considering again that the binomial coefficient is very peaked around 2Bb n= , and by 

using the following properties of the binomial coefficients  

2 2

0

2 2B Bn n
BB

b B B

nn
nb nπ=

⎛ ⎞⎛ ⎞
= ≈⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑                               (5.4.16)         

(where the last relation is obtained by applying the Stirling’s approximation for the factorial) the 

variance (5.4.15) can be estimated as 

( )
( )

2 2 2
2

22 2 5/2

1 1 2 1
2

ss
S S BB S B

E E
N N nn E n

σ μ
π π

≈ ≈
+

     (5.4.17)           

It turns out that the variance of the distributions of the equilibrium average of the state of a 

subsystem of spins is proportional to the expectation energy, while it decreases as the number 

of spins in the environment increases. This is evident also from the performed sampling: 

Figure 5-7C shows the standard deviation of the obtained distributions for the state of one spin 

as a function of the energy per spin and for two different sizes of the total system 6n =  and 

10n = .  

The average values of the ensemble distribution, eq. (5.4.14), for the diagonal element 

corresponding to the lower eigenstate of the two level system can be written as 

1ββμ ε= −                                                                           (5.4.18)             

Figure 5-7B shows that the averages obtained from the sampling are actually well fitted by 

eq (5.4.18), and this average value does not depend, as one expects,  on the dimension of the 

total system.  

We thus verify that, while the variance of the ensemble distribution of the RDM elements is 

inversely proportional to a power of the number of spins in the environment, its average 

depends only on the energy per spin, thus the existence of a typical value for the equilibrium 

reduced density matrix is assured when Bn  is moderately large. Moreover, since the ensemble 

distribution is Gaussian, the typical value of the equilibrium average of the diagonal elements 

of the RDM of a subsystem can be identify with its average, eq. (5.4.18). 
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Figure 5- 7: A) Ensemble Distribution for the equilibrium average of the RDM diagonal element 

ββμ  of a single spin which belongs to a 6n =  spins system, obtained from the sampling of the 

FEED of the total system. The red lines are the Gaussian fit. In B) the ensemble average values of 
the same element of the reduced density matrix are represented: such a parameter does not 

depend on the total number of spins in the system. The circles refer to the sampling for 6n =  

while the asterisks refer to the case 10n = , and it is well fitted by eq. (5.4.18) (dotted line). The 

variances of the sampled distributions are depicted in C) and diminishes as n  is increased: the 

circle refers to 6n =  while the asterisks refer to 10n = . 
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Notice that the diagonal elements of the RDM of a two levels system can be always written 

in canonical forms 

0 0
2 2e e

Q Q

ω ω
β β

ββ ααμ μ
− +

= =                    (5.4.19)              

One can thus think to use the typical reduced state of one spin as a sort of thermometer, and 

following this idea one can define a local inverse temperature given by 

0

1 ln
1loc
εβ

ω ε
⎛ ⎞= − ⎜ ⎟−⎝ ⎠

                      (5.4.20)            

which in this case corresponds to the inverse temperature which one would obtain from the 

canonical form of the global populations, eq. (2.3.41).  

 

 

5.5 THE RANDOM PURE STATE ENSEMBLE 

For a spins system the Random Pure State Ensemble defined on the full Hilbert space can 

be interpreted as the infinite temperature limit of the Fixed Expected Energy Ensemble. One 

has indeed that as the energy per spin approaches its infinite temperature value 

inf 1
2

TE
n

ε → =                                      (5.5.1)        

the parameters which define the Fixed Expectation Energy Distribution according to the 

conditions (4.6.9) tend to their limiting values Nλ →  and 0μ → . Therefore, the populations 

distributions ( )FEE kW P  approach the Random Pure State populations distribution as one can 

see from e.g. Figure 5-2 

  ( ) ( ) kNP
FEE k RPS kW P W P Ne−→ =                    (5.5.2)       

where N  is determined by the number of spins in the system according to eq. (5.3.1). 
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5.5.1 TYPICALITY IN THE LIMIT OF INFINITE TEMPERATURE: A TEST FOR THE INDEPENDENCE HYPOTHESIS 

In this condition the only free parameter of the problem is the number of spins which 

constitutes the whole system. It is worth to take advantage of the symmetry underlying the 

RPSE which implies a very simple form of the analytic approximation of the population 

distributions, eq. (5.5.2), as well as the availability of the exact joint distribution on K  

populations, eq. (4.4.6). Thus, we shall study the behaviour of the Ensemble Distribution of our 

“target” functions, that is, the equilibrium average value of the RDM of a subsystem and the 

global entropy, as the number of components (spins) n  is increased.   

First let us look at the ensemble distribution of the Reduced Density Matrix of Sn n<  spins, 

eq. (5.4.10). In this case it is a sum of 2 Sn n
BN −=  identically distributed random variables. By 

assuming also that they are independent, that is by using the approximate exponential 

distribution eq. (5.5.2), one can apply the Central Limit Theorem (Appendix 4.4) to conclude 

that the probability distribution of the equilibrium value of an element of the RDM ssμ  in the 

ensemble is Gaussian with mean 

1B
ss

S

N
N N

μ = =                                      (5.5.3)           

that is, equal average population for each energy level of the system, and a variance 

decreasing very rapidly with the number of spins in the system  

2
2

1 1
2ss

B
n

S

N
N Nμσ = =                        (5.5.4)                

At a first sight the prevision of the CLT about the Ensemble Distribution of the equilibrium 

RDM is satisfactory as shown in Figure 5-8 in which the subsystem is identified as a single 

spin. 

Interestingly enough,  by looking at the variance of the Gaussian distributions as a function 

of the total number of states, one finds that the actual value of the variance is smaller by a 

factor 2 than that predicted on the base of the  CLT. This, for 1Sn =  reads  

1 1ln ln ln 2
2 2

CLT N
ββμσ = − −               (5.5.5)    

This is shown in Figure 5-9A, the results of eq. eq. (5.5.5) are represented with a  

continuous line, while the red dots are the actual values of the variance resulting from the 
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Monte Carlo sampling of the geometrical distribution, which depend on the total number of 

states as 

1ln ln ln 2
2

real N
ββμσ = − −             (5.5.6)   

and thus they are twice the variance one expects on the basis of the Central Limit Theorem  

1 2
2

CLT real

Nββ ββμ μσ σ= =             (5.5.7)         

The origin of this discrepancy is found in the statistical correlation between the different 

populations which is neglected in the approximate form of the ensemble distribution. Indeed, 

the variance of a sum of non independent stochastic variables is  

( ) ( )2 cov ,i i j
i j

x x xσ =∑ ∑∑                   (5.5.8) 

where ( ) 2cov ,
ii i xx x σ= ,  while the covariance for i j≠  is defined as 

( )cov ,i i i j i jx x x x x x= −                                     (5.5.9) 

We can evaluate the covariance of two different populations by means of their joint RPSE 

probability distribution, from eq. (4.4.6) this is 

( ) ( )( )( ) 3
1 2 1 2, 1 2 1 N

RPSEp P P N N P P −= − − − −                   (5.5.10)     

The covariance turns out to be 34 N− , and thus it brings a negative contribution to the 

variance of the reduced density matrix distribution. Explicit calculation for the specific case, 

1Sn = ,  gives the following exact variance according to eq. (5.5.8)  

( )
2( )

2 2
' '

1 1 11 cov ,
2 2 2 2 4 4 2k

CLT

P k k k k
N N N P P

N N N
ββ

ββ

μ
μ

σ
σ σ ≠

⎛ ⎞= + − = − = =⎜ ⎟
⎝ ⎠

     (5.5.11) 

which is exactly what one obtains from the numerical sampling. In figure 5-9-B the two 

contributions to the total variance are separately drawn. From the above analysis one can 

conclude that: 
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1. The populations are actually less and less statistically correlated as N  increases, the 

correlation coefficient R  is in fact of the order of 1N −  

( )
,

cov , 4i j
i j i

i j

P P
R

Nσ σ≠ = = −  

2. However, when we are interested to evaluate the variance in the ensemble of a 

quantity which results from the sum of a great number of populations, that is all the 

observables pertinent to the subsystem as well as collective functions such as the 

entropy, the contribution from the correlations is of the same order of that due to the 

variance of the single populations. Moreover, this is a negative contribution which thus 

enhances the typicality properties of all that quantities which are defined as linear 

combination of populations with positive coefficients as, e.g. the expectation value of 

the energy.  
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Figure 5- 8: RPS Ensemble Distribution of the ββ  element of the equilibrium reduced density 

matrix of a single spin for different numbers of components in the total system, as specified in 
the figures. 
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Figure 5- 9: A) Variance of the Ensemble Distribution of the ββ  element of the equilibrium 

reduced density matrix of a single spin as a function of the total dimension of the Hilbert space 

2nN = . Blue line: behavior predicted on the base of the statistical independence hypothesis, 

red line: actual behavior. B) Different contributions to the variance of the RDM elements (red 
line): positive contribution due to the variance of the single populations (blue dots) and negative 
contribution due to the statistical correlation between different populations (black dots). 

 

To conclude this section we look at the typical entropy in the RPS, which is given as  

ln 0.423S N= −                                        (5.5.12)                   

As it is depicted in Figure 5-10 the entropy per spin approaches its maximum value (i.e., 

ln 2 ) as the number of spins in the composite system increases while the corresponding 

variance in the ensemble diminishes. It can be shown that, in the leading order of N , 

A 

B 
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1S

S N
σ

∝              (5.5.13) 

Thus the Ensemble Distribution of the entropy becomes sharper and sharper as the number 

of spins in the system increases. 
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Figure 5- 10: Average value (A) and variance of the RPS Ensemble Distribution of the entropy per 
spin as a function of the number of spins which form the total system. 

 

At this point we notice that also the expectation value of the Hamiltonian is effectively a 

function which tends to assume its typical value according to the specification of the 

considered Hilbert space. In this section we have considered the ensemble of all possible 

wavefunctions which can describe a system of n  spins 1 2 . Despite the fact that pure states 

characterized by any value of the expectation energy belong to such an ensemble it turns out 

that, when n  is large, by virtue of what we have called “typicality”, the overwhelming majority 

of such states represents the system in its infinite temperature limit. Indeed, the RPS 

Ensemble distribution of the expectation energy is centered at the energy corresponding to the 

infinite temperature condition, and its standard deviation decreases as the system size 

increases  

1
2

E
n

ε = =
2

2E n

nOσ
⎛ ⎞

≈ ⎜ ⎟
⎝ ⎠

                                                                               (5.5.14)   

This implies that if we pick at random a wavefunction from this ensemble we will find very 

likely a system with total energy 2E n≈ . From this perspective the Fixed Expectation Energy 

Ensemble studied before selects states which have extremely low probability of existence with 

respect to the maximum energy states.    
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We can thus ask the following question: how can we define Random Pure State Ensembles 

with a given typical expectation energy different from that corresponding to the infinite 

temperature condition? One way to obtain this, is that of working with a subspace of the total 

Hilbert space. In the following Section, we shall illustrate the results of this procedure for the 

1 2  spins system. However, it is worth to point out that the restriction of the Hilbert space to 

some finite dimension becomes necessary when dealing with systems whose Hamiltonian 

spectrum is unbounded. 

 

5.5.2 RANDOM PURE STATE WITH TYPICAL ENERGY     

Let us now define a RPSE with a typical value of the expectation energy E . The typical 

value can be identified with the average of the expectation energy ensemble distribution and 

reads 

( ) ( )
[ ]max

max 00
max

1 k

k

n
E k k

kN k
ω

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                 (5.5.15)                   

where maxk  is the index which identifies the highest energy eigenstate which can be populated, 

and [ ]maxk  is the greatest integer less then or equal to maxk . The number of populated energy 

levels, and thus the dimension of the Hilbert space on which the RPS Ensemble is defined, 

reads as 

( ) [ ]max

max 0

k

k

n
N k

k=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                                                               (5.5.16) 

It is convenient to use the Gaussian continuous form of the energy density of the spectrum, 

eq. (5.3.6). If the considered spins are not all identical, the general form (5.3.8) has to be used, 

but this does not change the properties of the Ensemble Distributions which we want to 

investigate. In the continuum approximation Eq. (5.5.16) become 

( )
( )2max 2

12 max
max

0

22 2 1 erf
2 2

E nEn
nn E nN E e dE

n nπ

−
−

−
⎛ ⎞⎛ ⎞−

= = +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫                    (5.5.17) 

where maxE  is the maximum energy which is allowed be populated in order to have a RPSE 

with a typical expectation energy equal to E , [ ]max max 0E k ω=  in the case of identical spins. 
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However the representation of the spectrum as a continuum can easily describe the more 

general situation of spins with different Zeeman frequencies. 

Let maxme E n=  then 

( ) ( )( )( )1
m m2 1 erf 1 2 2nN e e n−= + −                                 (5.5.18)                 

and the typical energy as a function of the maximum energy reads 

( )
( )

( )

21 2 212
2 2

me nn

m
m

n n eE e
N eπ

− −− ⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

                                               (5.5.19) 

The relation between the typical expectation energy and the parameter me , eq. (5.5.19), is 

represented in Figure 5-11 together with the exact discontinuous function, eq. (5.5.15). The 

figures refer to systems with different numbers of identical spins. As one expects, the real, 

discontinuous function approaches the continuum approximation as n  increases. In the limit 

n →∞  for a fixed value of 1 2me <  the argument of the error function in eq. (5.5.18) tends to 

−∞ , and thus the asymptotic expansion of the complementary error function can be used (we 

retain just the first term):  

( )( ) ( ) ( )m m1 erf 1 2 2 1 erf 1 2 2e n x x e n+ − = − = − −  

( )
2

1 erf
xx ex

x π

−→∞

− ≈  

In this limit we obtains 

( )
( )

( )

2
m 1 2 2

1
m

m

2
1 2 2

e n
n eN e

e nπ

− −
−=

−
                                (5.5.20)        

( )m m

E
e e

n
=                                                      (5.5.21) 

It turns out that the typical expectation energy in the RPSE corresponds to the maximum 

energy level which is populated. 
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In conclusion the Random Pure State Ensemble is defined in the Hilbert space spanned by 

the Hamiltonian eigenvectors which corresponds to energies maxkE E<  

{ }maxkspan k E E= <H RPS                             (5.5.22)     

Once defined the active Hilbert space the approximate Ensemble Distributions on the 

populations are defined as 

( ) ( ) ( )max
max

kN E P
RPS kW P N E e−= .                                   (5.5.23)  
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Figure 5- 11: Typical expectation energy per spin of the RPSE as a function of the Maximum 
energy per spin. The red line is the exact discontinuous function eq. (5.5.15) while the black line 
represents the continuum approximation, eq. (5.5.19).  
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5.5.3 ENTROPY AND EQUILIBRIUM STATE OF A SUBSYSTEM  

We can now study the behaviour of the RPSE typical entropy as a function of the typical 

energy in this ensemble. Differently from the FEEE in which the expectation energy is fixed 

arbitrarily as an independent parameter, here also the energy is a quantity which is distributed 

on the ensemble. In Figure 5-8 the Ensemble Distribution of the expectation energy and the 

corresponding distribution of the entropy are shown for a system composed of 8n =  spins 1 2 . 

In order to study the entropy as a function of the energy, we exploit the relation between their 

average values, and this is meaningful in the probabilistic sense since the typicality properties 

is itself defined in terms of probability. 

The ensemble average entropy is, according to eq. (5.5.12)      

( )maxln 0.423S N k= −              (5.5.24) 

where the number of energy levels are related to the energy trough 5.4.15 and corresponds 

to the dimension of the considered Hilbert space, 5.4.22.  
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Figure 5- 12: Random Pure State Ensemble Distribution of the expectation energy E  and 

corresponding ensemble distribution of the entropy. The figure refers to a system of 8n =  

identical spins 1 2 . 
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The typical entropy per spin as a function of the typical Energy per spin is depicted in figure 

5-13 for system of different size. The average values calculated according to (5.5.15) and 

(5.5.24), represented by the dotted black lines, perfectly agree with that obtained from the 

Monte Carlo sampling of the geometrical distribution performed for 6,8,10n = . For larger 

system, 50,500n =  it is evident that the average entropy approaches its corresponding 

canonical value even if the populations itself are not canonical at all. The variances of the 

Ensemble Distributions of the considered functions, energy and entropy, are also shown and 

they decreases as the number of spins is increased according to the analysis presented 

above.  

In the limit of large n  we can use eqs. (5.5.20) and (5.5.21) to calculate the typical entropy 

per spin as a function of the typical energy per spin and it reads 

2
1log 2 2
2

S E
n n

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
   (5.5.25)            

This is a valid approximation when the energy is not too low, because for low energy the 

continuum approximation breaks down and one has to “count” the energy levels according to 

eq. (5.5.16). Nonetheless the dependence of the typical entropy on the energy implied by eq. 

(5.5.25) is quite different from the linear relation obtained for the FEEE, eq.(5.4.9). This is a 

sign that the statistical thermodynamics which arise from the two ensembles is different. This 

interesting feature will be analyzed in the next Chapter. 

Notice that the typicality become “efficient” in selecting the typical value of the considered 

functions also for systems composed of relatively few spins. In this perspective we can think 

about the emergence of thermodynamic properties also for mesoscopic systems and without 

invoking the thermodynamic limit. 
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Figure 5- 13: Typical entropy per spin as a function of the typical Energy per spin for different 

number of components (spin 1 2 ) of the system. On the left the figure shown the average 

obtained from the sampling (circle) and the prediction on the base of the approximate 
distributions (black lines). The canonical value (red dotted line) is reported for comparison. On 
the right the variances on the RPSE for the considered functions are depicted as a function of 
the average energy per spin and for two different numbers of components.   

 

 

 

The equilibrium average state of a much smaller subsystem in the RPSE is also 

characterized by a much peaked distribution as in the case of the FEEE. Its Ensemble 

Average is, in this case, a sum of the average global populations in the considered Random 

Pure State Ensemble 

( )
( )

max
max

max

sk

ss sb
b

N k
P

N k
μ = =∑                                                                                           (5.5.26)         
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where sbP  are the ensemble averaged population corresponding to maxsb s bE E E E= + ≤ .  In 

the case of identical spins, the energy levels sbE  which contributes to the summation for the s -

th diagonal element of the RDM are distributed as the energies of sn n−  spins centred at 

,
1

2m s s
nE E −

= +  . If the subsystem is a single spin, 1Sn = , one explicitly has 

( )
( )

( )

max

max

max

max

max

1
1

k

b
b

k

k

N k
P

N k

n
N k

k

α

αα α

α

μ = =

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

∑

∑
                                                                                       (5.5.27)      

In this case the average value of the equilibrium RDM as function of the energy per spin 

resulting from the RPSE is the same as in the FEEE, see Figure 5-7-B, and thus the relation 

(5.4.18) and what follows is valid as well. 

In this section the ensemble properties of the entropy and the equilibrium state of a 

subsystem have been investigated for the simplest case of a system composed of non 

interacting spins. By virtue of what we have called here typicality, the functions we have 

considered are characterized by very sharp distributions on both the ensembles, even for 

moderate values of the number of spins in the system. For this reason it is meaningful to study 

the relation between their typical values. The notably evidence that it does exist a most 

probable value of e.g. the entropy function in the ensembles can be interpreted as the 

emergence of a possible thermodynamic description of the finite system. Indeed, such a 

description does not depend on the details of the state of the system itself but only on the 

“typical” value of some functions which at this point we can denote as thermodynamic 

functions, such as the energy. In the next chapter we directly consider this possibility by 

generalizing the analysis presented here to generic systems in order to have a better 

understanding of the behaviour of these typical values.  
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CHAPTER 6 

CONNECTION WITH THERMODYNAMICS: 

COMPARISON BETWEEN ENSEMBLES 

 

 

 

6.1 INTRODUCTION  

For a given system described by a wavefunction in a finite dimensional Hilbert space and 

characterised by a generic spectrum of the energy, the distributions on the possible set of 

populations and phases are the broadest ones compatible with the constraints. Nevertheless 

the concept of typicality discussed in the previous Chapter assures that if N , the dimension of 

the considered Hilbert space, is large then it exists a typical value of the entropy function that 

can be considered as the actual value which characterizes any wavefunction which belongs to 

the ensemble. Moreover, since the Ensemble distribution is in general a Gaussian distribution, 

such a typical value coincides with the average value. In this chapter we shall discuss the 

possibility to consider the ensemble average of functions such as the entropy or the energy 

from a thermodynamical point of view. The resulting statistical thermodynamic which is 

associated to the ensemble can be thought as emerging from the single pure state which 

belongs to the considered ensemble.  

 

 

6.2 DEFINITION OF THE THERMODYNAMIC FUNCTION 

In line with the analysis of the 1 2  spins system of the previous Chapter, we shall 

concentrate on the existence of a typical entropy in the ensemble which can be studied as 

function of the expectation energy. By virtue of its typicality, the definition of the 

thermodynamic entropy is given as the ensemble average of the entropy function. Thus, 

according to (4.2.4)  
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( ) ( )1 1 1,..., ,..., ..B K K K
D

S k S P P p P P dP dP= − ∫               (6.2.1)     

where Bk  is the Boltzmann constant and the probability distribution on the K  independent 

populations has to be specified according to the considered ensemble and can be approximate 

by the corresponding analytical forms reported in Chapter 4.  

 On the other hand the expectation energy E  shall play the role of the thermodynamic 

internal energy U . Two different scenarios exists for the internal energy depending on the 

considered ensemble. In the FEE Ensemble the value of the expectation energy is an 

independent parameter and it is not distributed in the ensemble of wavefunctions, thus U E= , 

while in the RPS Ensemble the portion of the Hilbert space we consider determines a typical 

value of the energy expectation value. In this case also the expectation energy is characterized 

by an ensemble distribution, see for example Figure 5-12, and thus the internal energy is 

defined as its RPS Ensemble average 

( )( ) ( )( ) ( )
( )

max max max

max

1 1 11 1 1,..., ,..., ..RPSN E N E N E
D E

U E E P P p P P dP dP− − −= = − ∫              (6.2.2)             

where the function ( )maxU E E=  has to be specified according to the energy spectrum of the 

considered system.  

Once verified the existence of a typical entropy as a function of the typical energy, (or the 

fixed expectation energy in the case of the FEEE), we want to explore the congruence of such 

a function from the thermodynamical point of view. Indeed, in order to be a candidate for the 

role of thermodynamic entropy, an entropic function has to be an extensive quantity. This 

basically means that, for large enough number of components n , it should be possible to write 

it as a function of the energy per particle as 

US ns
n

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                                                      (6.2.3)                 

where 
Us
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the entropy of a single particle. The extensivity of the entropy is required in 

order to define the microcanonical temperature, which is of course an intensive quantity and it 

is defined according to thermodynamics as 
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1

B

d S
k T dU

β= =                                                      (6.2.4)                          

The extensive nature of the entropy is often assumed even in those cases in which it is not 

at all an obvious consequence of the definition itself, see for example the discussion of this 

point in [Gemmer, (2004)]. According to the definition, eq. (6.2.1), and by using the 

approximate distribution, eq. (5.5.23) for the populations, the average entropy in the RPSE is 

given in eq. (5.5.24) and reads  

( )maxln 0.423
RPS

S N e= −                                                                                   (6.2.5)              

This is an extensive property, only if the parameter m maxe E n=  turns out to be directly 

proportional to the corresponding typical energy per particle E nε =  as it is the case for the 

spins system considered in the previous Chapter, see eq. (5.5.21). Indeed by duplicating the 

considered system one has ' 2E E=  and if also '
max max2E E=  then the number of resulting 

states is just the square of the original number of states, thus also the entropy is increased by 

a twofold factor. The asymptotic formula of the entropy derived for the spins system, eq. 

(5.4.25), is indeed of the form (6.2.3).   

The average entropy in the Fixed Expectation Energy Ensemble is given in eq. (5.4.7) and 

reads 

( )( )1
1

ln 1 1
II II II II

N

k kW W W W
k

S P P Pγ
=

= − − − −∑                                                            (6.2.6)      

Apart from the constant term which does not matter in the large n  limit, the entropy (6.2.6) 

would be naturally extensive if the average populations of the hypothetical doubled size 

system could be written as the product of the average populations of the original, identical, 

systems, i.e. ' 1 2k k kP P P= , but this is not the case for the FEEE average populations as it is 

clear from eq. (4.7.7) and (4.7.8). Nevertheless, in the 1 2  spins system examined in the 

previous Chapter we have found that the average entropy per spin is a linear function of the 

energy per spin, and thus is extensive. It remains to verify whether such a property emerges 

also in more general cases. 

The definition of the microcanonical temperature, eq. (6.2.4), is actually the bridge to 

connect the properties of the whole isolated pure state with the equilibrium state of a 
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subsystem. Indeed the usual canonical state associated to a system in thermal contact with a 

heat bath is 

loc SH
S e

Q

β

ρ
−

∝                                                                                 (6.2.7)                   

The canonical state plays a central role in all statistical mechanics. In the classical 

framework it can be derived from the microcanonical ensemble by assuming that the energy 

density increases approximately exponentially with the energy. In standard quantum statistical 

mechanics one can do the same by starting from the postulated form of the microcanonical 

statistical density matrix. The goal of ref. [Gemmer, (2006)], for example, is to show that the 

canonical state (6.2.7) can be also derived from a pure state which is a superposition of 

eigenstates which have about the same energy. Thus, our second focus will be on the typical 

value of the equilibrium state of a subsystem.      

ss sb
s b

P s sμ =∑∑                                                          (6.2.8)                   

The points are: is it possible to write the ensemble typical value of the RDM, eq. (6.2.8), in 

the canonical form (6.2.7)? And if this is the case, does the “local” temperature which appears 

(6.2.7) agree with the microcanonical temperature defined by (6.2.4)? 

In the following we shall answer these questions for our two ensembles. 

 

 

6.3 STATISTICAL THERMODYNAMICS OF THE FIXED EXPECTATION ENERGY 
ENSEMBLE 

We shall now generalize the analysis proposed in Section 5.4 for systems different from the 

1 2  spins. The average entropy in the FEEE  is given in eq. (6.2.6) as a function of the 

ensemble average populations which reads 

 1
1

11
1II

N

W
k k

UP
N E≠

= −
− ∑                                              (6.3.1)                  

( )1
1

1II
J W

J

UP
N E≠ =
−

                                                                                     (6.3.2)          
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The average populations and consequently the typical value of all the functions of the 

quantum state depend on the spectral properties of the system Hamiltonian. Let us introduce 

the following function 

0
2

1N

k k

S
E=

= ∑                                                                         (6.3.3) 

Let NE  be the highest eigenvalue of the spectrum. We can evaluate the summation in eq. 

(6.3.3) by introducing the corresponding smoothed density of state, eq. (5.3.7), and solve the 

resulting integral, that is  

( )
2

0
2

1 NEN

k k E

g E
S dE R

E E=

= ≈ +∑ ∫                                                            (6.3.4) 

An estimate of the rest R  allows one to quantify the goodness of the continuum 

approximation. We can use the formula of the rest of a numerical integration which uses the 

trapezoidal scheme, since our transformation of the summation into an integral is in fact the 

inverse operation. This however depends on the specific model of the spectral density and 

reads  

( ) ( )3

3

''

12

n

i
i

i i i

fb a
R x x h

n n

ζ
ζ

−
= < < +

∑
                       (6.3.5) 

where ( ) 2Nb a E E− = −  are the integration interval, n  is the number of intervals of length h , 

and ( )'' if ζ  is the second derivative of the integrand evaluated at a point which belong to the 

segment. 

Let us introduce the scaled internal energy u U N= , after some algebra the FEEE typical 

entropy, eq. (6.2.6), can be written as  

( ) ( ) ( )0 0 0 0 01 ln 1 ln 0.423
FEE

S u uS uS uS u uF uS= − − − − + −                         (6.3.6) 

where we have defined another quantity characteristic of the considered spectrum which has 

to be evaluated  

( )
2

0
2

lnln NEN
k

k k E

g E EEF dE R
E E=

= ≈ +∑ ∫                                        (6.3.7) 
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The functions (6.3.4) and (6.3.7) can be evaluated for general models of spectral density as 

reported in Appendix 6.1. In the next section we will discuss what happens in the case of the 

spectrum of a harmonic oscillator, which is the simplest system characterized by an 

unbounded energy spectrum. 

 

 

6.3.1 UNBOUNDED ENERGY SPECTRUM: THE HARMONIC OSCILLATOR CASE  

The energy spectrum of a harmonic oscillator (shifted such as 1 0E = ) reads 

( )0 0 1kE k k Nω= = ÷ −                          (6.3.8) 

Where 0ω  is the characteristic frequency of the considered oscillator while N  is its number 

of energy levels. In the Fixed Expectation Energy Ensemble there are in principle no reasons 

to restrict the number of the energy states which can be populated. The entropy, eq. (6.3.6), 

thus depends on two parameters: the expectation energy and the dimension of the considered 

Hilbert space N . Since our first aim is to establish the existence of the function ( )S U   it is 

natural to ask if the average entropy of a single Harmonic oscillator reaches a constant value 

for some N  large enough. Notice that for a fixed value of the internal energy U , the maximum 

value of the entropy is that obtained with the global canonical populations, that is 

n

n

E
Can

n E

n

eP
e

β

β

−

−=
∑

                                                                                                              (6.3.9) 

( )( ) ( )max lnCan Can
Can n n

n
S U S U P P= =∑                                                 (6.3.10) 

    Can
n n

n
U P E=∑                 (6.3.11) 

The canonical entropy, for large enough N , depend only on the internal energy U , as is 

shown in Figure 6-1.   
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Figure 6- 1: Canonical entropy as a function of the number of energy eigenstates with a non 

vanishing population. The considered system is a single harmonic oscillator with 0 1ω = . 

  In order to evaluate the behavior of the FEEE typical entropy eq. (6.3.6) for large N  it is 

sufficient to specify the functions 0S , eq. (6.3.4), and 0F , eq. (6.3.7), for the spectrum of the 

Harmonic oscillators. By choosing 0ω  as the unit of the energy scale, 0S  is the harmonic 

series which asymptotically tends to 

( )0 ln 1S N≈ −                   (6.3.12) 

while 0F  can be evaluated, within an absolute error smaller then 1 10 , as  

( )2

0

ln 1
2
N

F
−

≈                                             (6.3.13) 

In Figure 6-2 the entropy as a function of the number N  of energy eigenstates with a non 

vanishing population N  is represented. The circles are the average values obtained from the 

numerical sampling of the geometrical distributions corresponding to the FEEE of a harmonic 

oscillator for different N  in the range between 50 and 3000 and for two different values of the 

internal energy U . The dotted lines represent the trend predicted from eq. (6.3.6), by using the 
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estimates of eqs. (6.3.12) and (6.3.13), and a good agreement is found. As it clearly appears, 

the typical FEEE entropy does not reach a finite asymptotic value. On the contrary it tends to 

zero as N →∞ , independently of the value of the expectation energy U . This peculiar 

behaviour of the entropy function can be better understood by considering the average 

populations as a function of N  and for a fixed value of the expectation energy. This is shown 

in Figure 6-3, where, as before, the circles corresponds to the average of the first population 

1P  from the sampling of its geometrical ensemble distribution while the dotted line are the 

prediction from the analytical approximation, eq. (6.3.1). The results show that 1 1P →  for 

N →∞  regardless of the value of the expectation energy. This rather paradoxical result points 

out that the Fixed Expectation Energy Ensemble is well defined only for Hilbert spaces of finite, 

even if arbitrarily large, dimensions. This is true for a large class of models of spectral density, 

as one can easily understand by rewriting eq. (6.3.1) as 

0
1 1

1
SP U

N
= −

−
                   (6.3.14)         

Thus it is clear that, whenever the function 0S  grows slower than linearly with N , the first 

population tends to one for N →∞ . This is true for the harmonic oscillator, for which  0S  is 

given in (6.3.12), but it is also true for the generic spectral models described in the Appendix 

6.1.  

Thus a necessary condition for the existence of the FEEE Ensemble is to consider finite 

dimensional Hilbert space: this condition is naturally met for systems whose Hamiltonian is a 

bounded operator as it is the case for spins system. In the other cases one has to truncate the 

Hilbert space in correspondence of some maximum energy NE . We shall analyze in the next 

paragraph the behaviour of the typical entropy for a system composed of n  subsystems each 

with a bounded spectrum. As prototype of this kind of system we will consider an ensemble of 

n  spins with spin quantum number J .  
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Figure 6- 2: log-log diagram of the typical FEEE entropy as a function of the number of energy 
eigenstates with a non vanishing population. The considered system is a single harmonic 

oscillator with 0 1ω = . The circles represent the average values obtained from the numerical 

sampling of the geometrical distributions while the dotted lines are the corresponding trend 

predicted from eq. (6.3.6). The two data sets refer to different values of the internal energy U , as 

specified in the inset.  
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Figure 6- 3: Average value of the first population as a function of the number of energy 
eigenstates with a non vanishing population. The considered system is the same as in Figure 6-
2. The circles represent the average values obtained from the numerical sampling of the 
geometrical distributions while the dotted lines are the corresponding trend predicted from the 
analytical approximation eq. (6.3.14). The two data sets refer to different values of the internal 

energy U , as specified in the inset. 
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6.3.2 FEEE OF COMPOSITE SYSTEMS 

We shall now analyze the typical FEEE entropy as a function of the internal energy for a 

composite system.  

We first assume that each component, when considered isolated, can be described in a 

finite dimensional Hilbert space. The Hilbert space of the total system is thus the tensor 

product of n  Hilbert spaces, each of dimension ( )2 1J +  

1 1.... n⊗ ⊗H = H H H  

Thus, the total Hilbert space is spanned by a basis set of energy eigenvectors of overall 

dimension ( )2 1 nN J= + . This is the case of a system of n  spins with spin quantum number 

equal to J . However, the analysis is more general because the results does not depend on 

the peculiar form of the energy spectrum of each subsystem as long as it is bounded, because 

the energy density of such a composite system is given by the convolution of the single 

component energy density. If the energy spectrum of each component is bounded, that is, if 

the moments of the normalized energy density function exist and are finite, then, by virtue of 

the Central Limit Theorem, the total energy density can be in general well approximate with a 

Gaussian function. For the sake of simplicity we now refer to the spectrum of n  spins J . The 

energy levels of the composite spectrum, if the origin of the energy axes is set in 

correspondence of the first eigenvalue, are given by 

0
1

n

M j
j

E m nJω
=

⎛ ⎞
= +⎜ ⎟
⎝ ⎠
∑              (6.3.15)      

where each index jm  can take one of the ( )2 1J +  values , 1,....,J J J− − + .  In the simpler 

case of identical spins, the spectrum consists of 2 1nJ +  distinct energy levels whose density is 

a function peaked around its average value given by 

0ME nJω=                                          (6.3.16)        

This is shown in Figure 6-4 for the case of ten spins with 1J =  together with the Gaussian 

Envelope of the corresponding smoothed density of states. 



CONNECTION WITH THERMODYNAMICS 

 

154 

E
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Figure 6- 4: Spectrum of ten identical spins 1J =  with 0 1ω = . The histogram shows the discrete 

spectrum with the corresponding degeneracy while the red continuous line is the corresponding 
Gaussian smoothed density of states.  

The function 0S  can thus be evaluated as 

0
0

NS
nJω

=                                                       (6.3.17) 

The typical energy per components in unit of 0ω  reads 

0

U
n

ε
ω

=                                                          (6.3.18) 

and it ranges between zero and its infinite temperature value infTE n J≈ .  One finds for the 

typical FEEE entropy, eq.(6.3.6), the following dependence on the energy per spin  

( ) ( )( )0ln 1 ln 1 ln ln ln 0.423
FEE

S E N nJ
J J J J
ε ε ε εε ω⎛ ⎞ ⎛ ⎞= − − + − − − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
         (6.3.19) 

By taking into account that ( )2 1 nN J= + , in the limit of large number of components one 

finds the following asymptotic behaviour of the entropy per spin as function of the energy per 

spin  

( )1 ln 2 1n
FEE

S J
n J

ε
>> +
=                                     (6.3.20) 
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In Figure 6.5 the typical entropy per spin as a function of the energy per spin is represented 

for a system composed of n  three levels systems, i.e. spins with 1J = . As the number of 

components n  increases the trend of the typical entropy per spin is well described by eq. 

(6.3.20).  
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Figure 6- 5: Typical entropy per spin as a function of the Energy for a system composed of n  

three levels systems, i.e.  spins with 1J = . The three lines refer to different number of 
components. 

 

It is worth to note that the essence of the result (6.3.20) does not change if one starts with 

components which are characterized by an unbounded spectrum and then truncate the total 

energy spectrum of the composite system at some maximum energy NE . Let us consider for 

example an ensemble of n  harmonic oscillators with characteristic frequency 0ω . The 

resulting energy levels are highly degenerate and reads 

0kE kω=                                ( ) ( )
( )

11 !
! 1 !k

k nk n
d E

kk n
+ −+ − ⎛ ⎞

= = ⎜ ⎟− ⎝ ⎠
                (6.3.21) 

where 0k N= ÷  and 0NE Nω= . Differently from the case of the spectrum arising from the 

convolution of n  bounded spectra,  in this case the degeneracy of each energy level, and thus 

also the corresponding smoothed density of states, eq. 5.3.7, rapidly increases with the energy 
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as it is shown in Figure 6-6. This continuously increasing density of states is usually 

considered a fundamental ingredient for a consistent thermodynamic behaviour (it enters e.g. 

in the standard demonstration of the equivalence between the microcanonical and the 

canonical formalism). As already anticipated, also for this kind of spectral density we find a 

linear dependence of the FEEE typical entropy on the energy per component. Moreover the 

proportionality constant depends on the maximum energy NE . This is shown in figure 6-7 for a 

system composed of n  harmonic oscillators and NE n∝ . 
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Figure 6- 6: Energy density for a system composed of n  harmonic oscillators. The degeneracy is 

scaled with the total number of energy levels and the energy is scaled with the maximum energy 

NE  which is chosen proportional to the number of components n .  
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Figure 6- 7: Typical entropy per component as a function of the energy per component for a 

system composed of n  harmonic oscillators. The cut off energy NE  is assumed to be 

proportional to the number of components in the system. 

 

From a thermodynamical point of view eq. (6.3.20) corresponds to an entropy which is 

extensive, but from (6.2.4) one would obtain a constant temperature which does not depend on 

the internal energy of the system.  

In order to better understand the implication and the meaning of this evidence, in the 

following we shall consider the typical equilibrium state of a subsystem in this FEEE ensemble. 

Note that the asymptotic behaviour of the typical entropy for the system composed of n  spins 

1 2 , eq. (5.4.9), is a particular case of the more general relation obtained here, eq. (6.3.20).  In 

the case of the ensemble of 1 2  spins, the equilibrium average of the single spin reduced 

density matrix can be cast in a canonical form, eq. (5.4.19). As discussed in Section 5.4.2 this 

fact can be used to define a “local temperature”, eq. (5.4.20). In this case such a local 

temperature has no relation with the microcanonical temperature, eq. (6.2.4), which would be 

independent on ε  and equal to 2ln 2 . However, it should be point out that the diagonal 

elements of a TLS (Two Level System) can be always written in a canonical form. We will see 

this is not the case if the subsystem is, e.g., a spin with 1J = . 
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According to eq. (6.2.8), the ensemble typical value of the equilibrium average reduced 

density matrix of a subsystem is calculated as a sum of the average global population. For a 

single spin J , the RDM is a ( ) ( )2 1 2 1J J+ × +  matrix and the spectrum of the system of n  

similar spins is of the type shown in Figure 6.4. The energy eigenvalue of the total system can 

be expressed as the sum of the eigenen-ergies of the subsystem Hamiltonian, S
kE , and the 

energy B
bE  of the ( )1n −  remaining spins which play the role of the environment. Thus, the 

typical diagonal elements of the equilibrium RDM can be written as 

( )
( )

( )1 2 1

1 1
1

1
2 1

B n JN

kk kb k bn S B
b b k b

UP P d E
E EJ

μ δ
− +

=

= = +
++

∑ ∑                    (6.3.22) 

where ( )bd E  denotes the degeneration of the energy levels of the environment. By inserting 

eq. (6.3.17) into eq. (6.3.14), the ensemble average of the global ground state population as a 

function of the typical energy per spins ε  (in unit of 0ω )  reads 

1 1P
J
ε

= −                                             (6.3.23) 

The energy levels of the environment ( ){ }, 1 1 2 1B
bE b n J= ÷ − +  are distributed as in the 

spectrum of ( )1n −  spins J . Thus, the degeneracy function ( )bd E , in eq. (6.3.22), or the 

corresponding smoothed density of states, is in substance a Gaussian function whose centre 

depends on the k th−  energy level of the subsystem. Such a function is thus peaked around 

the energy 

( ) ( )1S S
b k b kd E E E E n J= + = + −                                      (6.3.24) 

By inserting eqs. (6.3.23) and (6.3.24) in the definition of the typical RDM elements, eq. 

(6.3.22), one obtains the following form of the equilibrium average RDM of a single spin 

( ) ( ) ( )

1

11

1

1

21
2 1

1
2 1 1 2 1

n

n

kk

J
U
J k n J J J

μ ε

εμ

>>

>>

≠

≈ −
+
⎛ ⎞

= ≈⎜ ⎟⎜ ⎟+ + − +⎝ ⎠

                           (6.3.25) 
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As usual the energy scale is shifted with respect the ground state energy of the total system 

and thus 1 0SE = . Notice that the typical value for ββμ  found for the spin 1 2  in the previous 

Chapter, eq. (5.4.18), is a particular case of eqs. (6.3.25). But now the following question 

arises: can these functions of the energy per spin ε  be written in the canonical form eq. (6.2.7) 

as a function of some local temperature locβ , even if different from the (constant) 

microcanonical temperature defined on the base of the total entropy and energy?  

By looking to eqs. (6.3.25) the answer is evidently negative. In Figure 6-8 this is illustrated 

for a spin 1J =  in a system of n  similar spins. In each panel the typical equilibrium average 

element of the RDM corresponding to one of the three energy eigenvalues of the subsystem is 

shown as a function of the energy per spin. The blue (red) circle depicts such functions for a 

system of 5n = , ( 10n = ) spins. The black continuous line is the asymptotic value for large n , 

eqs. (6.3.25). These Figures also show the corresponding canonical RDM elements at the 

temperature which would results from canonical global populations, eq. (6.3.9)for the same 

value of the internal energy U . 

 

 

6.3.3 A REMARK ON TYPICALITY AND STATISTICAL THERMODYNAMIC IN THE FEE 
ENSEMBLE 

As it clearly appears from Figure 6-8 and the discussion above, the typical equilibrium state 

of a subsystem emerging from the FEE Ensemble is not of the standard Boltzmann form. In 

the spirit of Popescu et al. [Popescu, (2006)] this would be called the canonical state relative to 

the constraint of fixed expectation E  in the total Hilbert space. As the authors of ref. [Popescu, 

(2006)] clearly point out, the problem of the existence of a typical value for the RDM of a 

subsystem has to be considered separated from the problem of finding what this state actually 

looks like. If the typical state is called a “generalized canonical state”, its actual form will 

depend on the constraints imposed in defining the Ensemble. In other words if we would define 

the FEE Ensemble as all the wavefunctions which are arbitrary superposition of energy 

eigenstates with energy eigenvalues kE  in the range  2E EΔ∓ , with EΔ  very small, then 

we would obtain a typical equilibrium RDM of the Boltzmann form.  
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Figure 6- 8: Typical elements of the equilibrium average reduced density matrix of a spin 1J =  

in a system composed of n  spins  1J = . In A, B, C the diagonal elements corresponding to the 

three energy levels of a spin 1 are separately shown as a function of the energy per spin. The 

blue (red) circle depict such functions for a system of 5n = , ( 10n = ) spins. The black 

continuous line is the asymptotic value for large n . For comparison also the elements of the 

corresponding canonical RDM at the temperature given by eq. (6.3.9) are reported (dotted line).  
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6.4 STATISTICAL THERMODYNAMIC OF THE RANDOM PURE STATE ENSEMBLE 

Let us consider the behaviour of the thermodynamic functions, i.e. typical values of the 

internal energy and the entropy, and of equilibrium average state of a subsystem in the 

Random Pure State Ensemble. We recall that this Ensemble includes all the wavefunctions 

which lie in a Hilbert space of total dimension ( )maxN E . The probability distribution on 

populations is uniform on the N  simplex defined by the normalization constraints and can be 

approximated by a factorized probability distribution derived in Section 4.4.2, namely 

( ) ( ) ( )
1

k

N
NPk k

RPS RPS k RPS k
k

W P W P W P Ne−

=

= =∏                 (6.4.1) 

As already mentioned in Section 6.2 the internal energy of the Random Pure State 

Ensemble is not an independent parameter as in the FEEE but it is identified with the typical 

value of the expectation energy in the Ensemble. Thus, the definition of the internal energy as 

the average value of the expectation energy, eq. (6.2.2), is meaningful only as long as the 

ensemble distribution of the expectation energy E  is a function peaked at a typical value. We 

will first show that this is actually the case whenever the density of the energy spectrum is an 

increasing function of the energy.  

To this aim we study for generic system the RPS Ensemble Distribution of the expectation 

energy 

1

N

k k
k

E P E
=

=∑                                                              (6.4.2) 

Here ( )maxN N E=  is the dimension of the Hilbert space spanned by the non vanishing 

populations. This is in general a subspace of the full Hilbert space, as illustrated e.g. for the 

system composed of 1 2  spins in section 5.4.2. Thus, for the RPSE the finiteness of the 

considered Hilbert space is guaranteed by the definition of the ensemble, even if the total 

Hilbert space of the system can be infinite. As in the previous chapter maxk  denotes the index 

of the highest populated energy level. The number of states N  depends on maxk    

 ( ) ( )
max

max
1

k

k
k

N k E Eδ
=

= −∑                                    (6.4.3) 

or, by introducing the corresponding smoothed density of states, eq. (5.3.7) 
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( ) ( )
max

max
0

E

N E g E dE= ∫                                                                                             (6.4.4) 

The expectation energy E , being a linear combination of the random variables kP  , can be 

considered as a random variable in the ensemble with average value 

( )

( )
( )max max

1 1 max

N k N k
k

k k
k k

EE P E
N k= =

= =∑ ∑                                               (6.4.5) 

We can again invoke the Central Limit Theorem to establish that the RPS Ensemble 

distribution of E  converges to a Gaussian distribution with the mean value given by  eq. 

(6.4.5) and the variance given by 

( ) ( ) ( )
maxmax

2 2 2
2 2

1max max 0

1 1 Ek

U k
k

E E g E dE
N k N E

σ
=

= ≈∑ ∫                         (6.4.6) 

Let us consider the following  general energy density, (see Appendix 6.1) 

( ) Eg E
n

α

κ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

                        ( ) ( )
1

max max1
N E E

n
α

α

κ
α

+=
+

               (6.4.7) 

This is the energy density attributed to an ideal gas if the parameter α  is of the order of the 

number of components n . From eq. (6.4.5) and (6.4.6) one derives that the expectation value 

of the Hamiltonian is very narrowly distributed around its average value 

max
1
2

E Eα
α
+

=
+

                                       (6.4.8) 

Indeed the variance of its RPS Ensemble Distribution is estimated from eq. (6.4.6) as 

1
2

1
max

1 1 1
2E E E

α

α

ασ
α

−

−

+⎛ ⎞= = ⎜ ⎟+⎝ ⎠
                                       (6.4.9) 

which decreases rapidly when α  is large. As discussed in section (5.4.1) the correlation 

between the populations which is neglected by assuming the approximate probability density  

(6.4.1), assures that the variance given in eq. (6.4.9) is still a pessimistic guess. 

Thus, for moderately large N  and under the hypothesis that the energy density is a weakly 

increasing function of the energy, the vast majority of the wave functions which can described 
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our system is characterized by the same value of the expectation energy which we identify as 

the internal energy function U E= .   

On the other hand the typical value of the RPSE entropy is given by 

( )maxln 0.423S N E= −                                  (6.4.10) 

By tacking into account the relation (6.4.8) between the internal energy and maxE , one  obtains 

the entropy as a function of the internal energy. For the considered spectral density, eq. (6.4.7) 

it reads 

 ( ) ( )2ln ln 1 ln log 1 0.423
1

S n Uακ α α α
α
+⎛ ⎞= − + + − + −⎜ ⎟+⎝ ⎠

                 (6.4.11) 

If we assume the energy density of the ideal gas [Gemmer, (2004)] for which nα =  we 

obtain the simple result 

ln
nS U

n n

→∞

≈                                                (6.4.12) 

which gives by means of eq. (6.2.4) the inverse temperature as a function of the internal 

energy. For this case one obtains  

1dS
dU U

β = ∝                                                                                                                 (6.4.13)   

Thus, with the RPSE a reasonable functional dependence of the temperature on the internal 

energy which characterizes the ideal gas model is recovered, this is shown in Figure 6.9.        
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Figure 6- 9: Inverse temperature as a function of the internal energy in the RPSE of an ideal gas 
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6.4.1 RPSE TYPICAL ENTROPY FOR A COMPOSITE SYSTEM 

In the following we shall analyze the behaviour of the typical entropy as a function of the 

internal energy in the Random Pure State Ensemble which describes our test system 

composed of n  spins J . The analysis is more conveniently performed by using the continuum 

approximation for the energy density of the total energy spectrum. Thus, we introduce the 

smoothed density of states for the spectrum of the system  which can be written as a Gaussian 

function whose parameters depend on the quantum spin number J , as  

( ) ( ) ( ) ( )2
22

,

2 1
2

n E M

M

J

J
g E G E e

M J

n

π
μ

σ

−
−

Σ
Σ

+
= =

Σ
=

Σ =

                 (6.4.14) 

where μ  and Jσ  are the average and the variance of the spectrum of a single spin J   

0Jμ ω=                                                         (6.4.15) 

( )
2

2 2

1
2 1

J

J
k

k J Jσ
=

= + −∑                                                      (6.4.16) 

where, as usual, the first eigenvalue is taken as the zero of the energy scale. In terms of 

energy per spin 
0

Ee
nω

=  the density (6.4.14), reads 

( ) ( ) ( )2
22

2

2 1

2

n JJ
g e e

ε
σ

πσ

−
−+

=               where                  J nσ σ=                            (6.4.17) 

For convenience of notation we also define the scaled energy per spin 
( )

2
e J

y
σ

−
= .  

We have now to establish the maximum energy which can be populated in order to obtain a 

certain typical value of the expectation energy, i.e. the internal energy as a function of maxE . To 

this aim, one first evaluate the number of populated state as a function of the maximum 

allowed energy maxE  

( ) ( ) ( )max max
12 1 1
2

nN E J erf y⎡ ⎤= + +⎣ ⎦                                                                        (6.4.18) 
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It is worth to point out that, even if the continuum representation does not cause any 

problem for almost the whole range of the possible value of the expectation energy and it 

become a better and better approximation as n  increases if the system components are not 

assume to be identical, it remains an approximation. This means that when one want to 

consider extremely low value of the expectation energy, and consequently a low value of the 

maximum energy which can be populated, one has to take into account the discrete nature of 

the spectrum. In particular the difference between eq. (6.4.4), which is a continuum function of 

the energy and the real number of states (6.4.3) become important for max 2E E∼ , as it is 

illustrate in Figure 6-10.  

Having in mind this warning one easily finds the relation between the typical energy and the 

maximum allowed energy. This is given in the general case as 

( ) ( ) ( ) ( )
maxmax 2

1max max 0

1 ek

k k
k

nU d E E g e de
N k N E=

= ≈∑ ∫                                                        (6.4.19) 

For our system by using (6.4.17) and (6.4.18) the internal energy per spin is explicitly given 

by 

( )

2
max

max

2
1

yU eJ
n erf y

σε
π

−

= = −
+

                                                                                    (6.4.20) 

By considering that the variance of the density (6.4.17) decreases as the number of 

components n  increases, one can use the asymptotic expansion of the complement error 

function  

( )
2

1
yy eerf y

y π

−→∞

− ≈                                                                                                   (6.4.21) 

so that in the limit of large n  a linear relation between the internal energy and the maximum 

energy is established 

1

max

nU e
n

ε
>>

= =                                                                                                             (6.4.22) 

The identification of the typical value of the expectation energy and the maximum energy 

which can be populated appears to be, in the RPSE, a property that is quite independent from 

the detail of the spectral structure of the specific system. Indeed it emerges for the 1 2  spins 
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system, see eq. (5.5.21), it is recovered here for the case of systems composed by generic J -

spins, and, more generally, for systems characterized by a rapidly increasing density of energy 

levels, see eq (6.4.8).  
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Figure 6- 10: Number of populated states as a function of the scaled maximum energy: the 

calculation refers to a system of 10 identical spins with 1J = . The red lines is the exact number 

of states calculated as the sum in eq. 6.4.3 while the black line is the corresponding result from 
the continuum approximation of the energy density.  

 

The typical entropy is defined by eq. (6.4.10) on the basis of the number of states eq. 

(6.4.3) or, when it is possible, by using the continuum approximation, eq (6.4.18). In this case 

by retaining the leading terms with respect to n , we obtain the following function for the 

system composed of n  spins with value J   

 ( ) ( )2

2

1ln 2 1
2

n

J

S J J
n

ε
σ

→∞

= + − −          (6.4.23) 

In figure 6-11 we show the typical entropy per spin as a function of the typical energy per 

spin for a system composed of different numbers of spins with 1J = . Remarkably, as n  

increases, the RPSE typical entropy tends to reach the maximum entropy compatible with the 
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given energy, i.e. the canonical entropy eq. (6.3.10). This Figure also includes the asymptotic 

formula obtained with the continuum approximation of the energy density, eq. (6.4.23). It fails, 

as expected, for low value of the energy while it is a good estimation in the high energy limit.  

We are now in the position to define the microcanonical temperature in the RPS Ensemble. 

While the differential relation, eq.(6.2.4), is meaningful only in the thermodynamic limit 

, constantn U nε→∞ = = , where the entropy and the internal energy become continuous 

functions, we can define, for finite n , the global temperature as the incremental ratio between 

entropy and energy, that is 

( )( ) ( )( )
( )( ) ( )( )

max max

max max

1
1

S N k S N k
U N k U N k

β
+ −

=
+ −

                            (6.4.24) 

It is worth to note that this temperature converges to that defined by the global canonical 

population through eq (6.3.11) for n  of the order of 100 . However we stress that the actual 

populations of the individual pure states in the RPSE which can be characterized by this 

temperature are not canonical neither equal to their RPSE average ( )max1 N k .  We thus see 

as the typicality of the entropy and of the energy function in the ensemble can be used as a 

bridge between the unknown microscopic details of an individual pure state and the existence 

of thermodynamic quantities, such as the temperature, which depends only of some “gross 

feature” of the considered pure state. 

To complete our analysis it remains to investigate the properties of the typical equilibrium 

state of a subsystem, i.e. the equilibrium average of the RDM of a single spin J .   
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Figure 6- 11: RPSE typical entropy per spin as a function of the internal energy per spin for a 

system composed of n  spins with 1J = .  The black dash and dotted lines refer to the typical 

entropy calculated according to the exact counting of the states eq. (6.4.3), and for 5n = , 10n =  

respectively. The blue line is the entropy calculated with the asymptotic continuum 
approximation, eq. (6.4.23). For comparison, also the entropy obtained with global canonical 
populations. eq. (6.3.10)  is represented (red line). 

 

 

6.4.2 CANONICAL EQUILIBRIUM STATE FOR A SINGLE SPIN 

According to the definition given in eq. (6.2.8), the equilibrium average of the RDM of a 

subsystem in the RPSE can be calculated as the sum of the average global populations 

corresponding to those energy levels that correspond to the given value of the subsystem 

energy sE , that is  
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( ) ( )
( )
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N k
P
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μ

≡

= =∑                    (6.4.25) 

In Section 5.5.2 this definition has been used to obtain the RDM of a single spin 1 2 . As 

already mentioned, in that case the parameterization of the resultant two diagonal elements of 

the RDM in terms of a local temperature is always possible. Indeed we have shown that in 

both the ensemble of pure states, the FEEE and the RPSE, the equilibrium state of the single 

spin 1 2  can be used to define a “local temperature”, eq. (5.4.20). On the other hand we have 

seen that this is no longer true in the FEEE ensemble for system composed of subsystems 

whit more than two energy levels, as illustrated in Figure 6-8.  

 Here we will show that in the RPSE not only a canonical value of the equilibrium RDM 

elements is recovered for subsystems different from a Two Level System, but also the local 

temperature which characterized this canonical distribution is actually the microcanonical 

temperature defined in eq. (6.4.24), if n  is large enough. 

This is shown in Figure 6-13 for a single spin 1J = : the circle represents the typical value of 

the equilibrium RDM elements calculated according to eq, (6.4.25) while the black solid lines 

are the corresponding canonical form at the temperature calculated according to the definition 

(6.4.24) for a global system composed of 500n =  spins. It is worth to note here that the typical 

equilibrium values of the RDM calculated according to (6.4.25) as a function of the energy per 

spin, converge to their asymptotic value with respect to the number of component n  already 

for number of components of the order of 10 , while the convergence of the typical entropy to 

its asymptotic value is much slower as can be seen from Figure 6.12.   
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Figure 6- 12: Elements of the Equilibrium RDM of a single spin 1J =  in a system composed of  

500n =  similar spins, as a function of the typical energy per spin. The red circle are the typical 

elements calculated according to eq. (6.4.25) while the black line are the canonical distribution 
corresponding to the microcanonical temperature calculated on the base of the RPSE typical 
entropy as a function of the RPSE typical energy, eq. (6.4.24).  
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APPENDIX 6.1 : GENERAL MODELS OF SPECTRAL DENSITY 

For any system one can introduce a density of energy level ( )g E . Thus the following 

integral gives the total number of energy levels 

( ) ( )
2

1
NE

E

g E dE N= −∫                                                                                 (A6.1.1)                  

while  

( )
2

0

NE

E

dES g E
E

≈ ∫                                                        (A6.1.2) 

Here we list some useful and generic model of spectral density 

1. harmonic oscillator:  it is characterized by a constant density of energy levels ( )hog E c=  

and the above functions are evaluate as 

 ( )
2

1 1NEN c
E

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
        ( )0

2

1ln ln 1 ln 1NE NS c c N
E c
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                       (A6.1.3)  

2. Algebraic spectral density ( )ag E kEα=  in which 0α > . In this case 
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3. Exponential spectral density ( ) E
eg E kEeβ=  
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              ( )2
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β β
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−= − ∝    (A6.1.5)    

It is worth to mention that an algebraic spectral density characterizes for example the 

spectra of the ideal gas model where 3 2nα =  with n  denoting the number of gas particles. 

More generally it is always assumed that a system composed of many particles is 

characterized by a spectral density which rapidly increases with the energy. For example such 

an assumption is essential in order to derive the equivalence of the microcanonical and the 

canonical formalism in the thermodynamic limit. In [Gemmer, (2004)] a generic derivation of 
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the energy density resulting from the convolution of n  “single particle” spectral density is 

presented. Here we only report the final result which correctly predicts, almost always, a total 

density of state which is a rapid increasing function of the energy.  

4. Typical Spectra for Composite System: The typical energy density of such a system, studied 

by Gemmer et al in ref. [Gemmer, (2004)], is found to be 

( )
n E E

nEG E R e
n

α⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                                                                  (A6.1.6)                    

with 

( )
0

E x
nER e g x dx

n

∞
−⎛ ⎞ =⎜ ⎟

⎝ ⎠ ∫          

Where ( )g x  is the energy density of one of the n  identical components and the quantity on 

the function at the exponent is explicitly given by 

1E
En r
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CHAPTER 7 

IN ITINERE SUMMARY AND SOME REMARKS 

 

 

 

7.1 STATISTICAL DESCRIPTION OF QUANTUM SYSTEMS: SINGLE PURE STATE 
VS ENSEMBLES 

 

It is now worth to discuss some points which emerge from the analysis presented in the 

previous Chapters. First let us look back at what we have done: the starting point is the 

definition of the equilibrium properties of an isolated quantum system, parameterized in terms 

of populations and phases, on the basis of the asymptotic time average of the expectation 

value of the corresponding observable 

( ) ( )( )

( )( ) ( ) ( )
0

1lim ,

,

T

T
f t dt f P t

T

f P t t F t

γ

γ ψ ψ

→∞
=

=

∫                                                                        (7.1.1) 

 This choice is strictly related to the ergodic foundations of classical statistical mechanics as 

discussed in Chapter 2. One can rise the objection that such a foundation relies on the 

assumption that the result of a measure performed on a classical system in equilibrium can be 

identified with a time averaged properties. On the other hand it is not obvious at all whether a 

time averaged expectation value is actually related to a quantum measurement. This is of 

course true, however our standpoint is that a detailed analysis of the quantum measurement 

process is not essential for the understanding of equilibrium quantum statistical mechanics 

[Srednicki, (1995)]. On the contrary, one can go a step further and conjecture that a better 

understanding of the concepts which lie of the basis of the statistical description of quantum 

states and its dynamics are essential in order to correctly approach the quantum measurement 

problem. This is however far beyond the scope of the present analysis. On the other hand it is 

worth to stress that also in the much more understood and robust field of the foundation of 

classical statistical mechanics, the ergodic theory, which deals with infinite time averages, is 
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not directly related to real measurements which are always performed in a finite time. Indeed 

the power and the conceptual importance of statistical mechanics derives from the fact that it 

deals with the entire distribution and not only with average values. For this reason the 

statistical mechanics is the natural bridge between very different descriptions of the same 

physical system, e.g. from the microscopic to the macroscopic point of view, from the 

mechanical to the thermodynamical description.      

Having identified the equilibrium properties of a quantum pure state, eq. (7.1.1), as the main 

objective of our study, we have introduced the Pure State Distribution, eq. (2.3.27), in the 

phase space described by the coordinates { },X P γ≡   

0 1

1( , ) ( )
(2 )Np P P Pγ δ
π −= −                                                          (7.1.2) 

This distribution reflects the characteristics of the temporal evolution ruled by the 

Schrödinger equation: in the 2N  dimensional phase space one has N  constants of the 

motion, i.e. the populations, while for time long enough the phase variables take all their 

possible values with a uniform probability distribution. There is a nice geometrical 

representation of such an evolution which is pictorially represented in Figure 7-1: we can 

imagine the phase space as a product of a ( )1N −  dimensional simplex, built of the 

populations ( )1... NP P , and an ( )1N − -dimensional torus, built of the phases variables 

( )1 1... Nγ γ − .  Given an initial pure state, the motion of its representative point in the phase 

space is confined to the torus containing that initial state. From this point of view it is clear that 

the portion of phase space corresponding to a given expectation energy is not metrically 

indecomposable, since many different population sets lead to the same expectation value of a 

given Hamiltonian. Thus, one cannot speak about quantum ergodicity in these terms. 

Nonetheless the following questions remain meaningful:  

Is the infinite time average of a function of interest independent on the initial state of the 

system ( )0ψ ? 

If so, is it equal to an appropriate thermal average with respect to some properly defined 

equilibrium probability distribution? 

In other words if the concept of thermal equilibrium is meaningful for a quantum system then 

we would expect that the equilibrium average f  of at least some functions of interest depends 
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on the total energy of the system, but it is independent on all other aspects of the initial state. 

This property has been proposed as a good definition of “quantum ergodicity” [Peres, (1984)].  

The above mentioned problem has been discussed in the past by many authors from 

different points of view: in particular one line of investigation emphasizes the role of “quantum 

chaos” in order to explain the emergence of thermal behavior in quantum systems [Srednicki 

(1996), (1994); Peres, (1984), Casati, (1999)] while other approaches point out several 

aspects of this problem under specific assumptions for the considered system or on in relation 

to the initial conditions [Deutsch, (1991); Tasaki, (1998)]. 

More recently the concept of typicality has been introduced and used to give strong 

foundation to the canonical state of a subsystem, [Goldstein, (2006)]. The more general setting 

presented in ref [Popescu, (2006)] points out the existence of a typical state for the subsystem 

which depends on the constraints used to define the total allowed states. In ref [Reimann, 

(2007)] Reimann proves, under certain hypotheses, that the property of typicality already holds 

at the level of pure states, that is, it is not a consequence of the massive entanglement of a 

subsystem of a typical random quantum state with its environment, as argued in [Popescu, 

(2006)] but it is inherent to the wave function itself. 

Our setup allows the analysis of the role of typicality in the emergence of the equilibrium 

statistical mechanics within a simple but effective theoretical framework. Once recognized the 

PSD, eq. (7.1.2), as the distribution on the phase space deriving from the temporal evolution of 

the considered system, in Chapter 3, we have introduced the Ensembles of Pure States. The 

first key step is the definition of such ensembles and the derivation of the corresponding 

Ensemble Distributions. We focus on two ensembles:  

I. The Random Pure State Ensemble, composed of all the wave functions in a subspace 

RPSH  of the full Hilbert space of the considered system.  

II. The Fixed Expectation Energy Ensemble, composed of all the wave functions in the 

Hilbert space of the considered system characterized by the same value of the 

expectation energy of the total Hamiltonian. This Ensemble was introduced as the 

quantum analogue of the microcanonical ensemble in ref. [Brody, (2005); Naudts, 

(2006)].  

The Ensemble Distributions on the parameters  { },X P γ≡  which define a pure state is 

derived by considering the geometry of the Hilbert space. There is indeed a unique measure 

on the set of normalized wave function which is invariant under the full group of unitary 
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transformations, [Sykora, (1974)], and this yields a uniform distribution on the surface of the 

unit sphere defined by the normalization condition 1ψ ψ = . Starting from such a measure 

the corresponding RPSE and FEEE Distributions on the populations and phases have been 

derived in Chapter 3. Two important points which are common to both the ensembles are  

I. Populations and phases are statistically independent and the phases are uniformly 

distributed according to the PSD 

     
( ) ( )1

( , ) ( ) ( )

( ) 2 N

p P p P p

p

γ γ

γ π − −

=

=
                                                                                                 (7.1.3) 

II. The Ensemble probability densities on the independent populations, i.e. 

( )1 1,...,RPSE Np P P −  and ( )1 2,...,FEEE Np P P − ,  are defined in high dimensional domains with 

a non trivial topology, because the populations are not statistically independent for the 

presence of the constraints. 

In Chapter 4 the numerical methods for the sampling of the Ensemble Distributions as well 

as analytical approximations valid in the large N  limit have been developed. These allow one  

to study the Ensemble Distributions of the single populations as well as those of the functions 

of interest. We focused on two functions of the quantum state: the Shannon entropy 

associated to the pure state of the whole system (a “collective”, non linear function of the 

global populations) and the equilibrium average of the Reduced Density Matrix of a subsystem. 

A main point which emerges from the study of the Ensemble Distribution in ideal (non 

interacting) composite systems, as the system of n  spin 1 2  analyzed in Chapter 5, is the 

following: 

While the Probability Distribution of the populations itself is the broadest one compatible 

with the constraints of the considered ensemble, the Ensemble Distributions of both the 

considered observables are, on the contrary, very peaked functions, and this allows their 

characterization trough their typical values.  

  The fact that it does not actually exist a set of populations which is preferred or more 

probable with respect to the other sets equally compatible with the given constraints for an 

isolated system, was already noted in [Rigol, (2008)]. Evidences were founded in favor of what 

it is called the “eigenstate thermalization hypothesis”, [Srednicki, (1994); Deutsch, (1991)]. This 

however can occur in large, interacting, many body systems. On the other hand the typicality 

of the state of a subsystem, or of a collective function such as the entropy, is an evidence 
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which does not depend on the nature of the system but seems to be a simple consequence of 

the high dimensionality of the phase space together with the structure of the observed 

functions which are defined as sums of many terms. Another point which is worth to stress is 

indeed the relation between the considered ensemble distributions and the inherent geometry 

of the Hilbert space. If one considers that the probability distribution on the parameters of the 

phase space is directly determined by the geometry of the Hilbert space, then it becomes clear 

that the existence of a typical value for a large class of observables can be viewed as a 

manifestation of the “concentration of measure” phenomenon [Hayden, (2006)]: it is a striking 

fact from elementary geometry of high dimensional surfaces that the uniform measure on the 

k -sphere, kS , is strongly concentrated about any equator when k  gets large; consequently 

any polar cap strictly smaller than a hemisphere has a relative volume exponentially small in 

k . This induces a similar behavior for any slowly varying function on the sphere, which we can 

understand indeed as a random variable induced by the uniform measure on the sphere: 

namely, it will take values close to the average except for a set of volume exponentially small 

in k . This idea is made rigorous in the Levy’s Lemma which is also the main ingredient in the 

general proof of the typicality given in Popescu et al., [Popescu, (2006)]. Since pure quantum 

states which lies in a Hilbert space of dimension N  can be represented as real unit vectors in 

a 2N -dimensional phase space, the above observations on the sphere ensure that, as the 

dimension of a quantum system becomes large, the behaviour of the typical value of a certain 

property of the quantum state becomes meaningful. Among the functions which are 

characterized by this property of typicality we find either properties of the whole system such 

as its Shannon entropy or properties pertinent to a smaller subsystem, in particular its 

equilibrium RDM. This fact can be very likely the conceptual bridge between the behaviour of 

the single, observed, quantum system and the ensemble point of view typical of the statistical 

mechanics, in the sense that for many properties of interest, it does not matter our impossibility 

to know the state of the system in detail just for the remarkable fact that almost all quantum 

states behave in essentially the same way. The importance of this point, already present in 

classical statistical mechanics, is emphasized by Lebowitz as follows:  

“Having results for typical microstates rather than averages is not just a mathematical nicety 

but at the heart of understanding the microscopic origin of observed macroscopic behaviour. 

We neither have nor do we need ensembles […]. What we do need and can expect is typical 

behaviour”. 

[Lebowitz, J. L., Boltzmann’s entropy and time’s arrow, Physics Today, 46, 32–38. (1993)] 
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 It is worth to note explicitly that the ensembles we consider, i.e. FEEE and RPSE, are 

composed of wavefunctions which are general superposition of energy eigenfunctions 

corresponding to a large range of the eigen energy of the system. Indeed such an energy 

range is of the order of the internal energy  U  in the RPSE and still larger in the FEEE. This is 

in contrast with the usual assumption that the considered quantum state has to be “reasonably 

narrow” in energy in order to assure the validity of ordinary statistical mechanics, see in 

particular Tasaki, [Tasaki, (1998)] but also [Rigol, (2008); Jensen, (1985); Goldstein, (2006); 

Peres, (1984); Deutsch, (1991)]. 

On the other hand, from the study of the above mentioned ensembles another aspect of the 

problem emerges: there exists a typical value of the function of interest, but typical among 

what kind of states? 

Indeed different functional dependences between typical values of quantities, e.g. the 

entropy as a function of the energy, emerge from the study of the two Ensemble Distributions, 

as discussed for a variety of model systems in Chapter 5 and 6.  Specifically we find that the 

typical FEEE entropy per spin is a linear function of the internal energy per spin. From a 

thermodynamical point of view this would define a global temperature which does not depend 

on the internal energy. Curiously one also finds that the typical FEEE equilibrium state of a 

subsystem is not of the standard canonical form. On the contrary in the RPSE one finds that, 

as the number of components n  gets large, the typical entropy approaches its maximum 

value, i.e. that corresponding to canonical global populations, even if the populations are not 

canonical at all. Notably, for the equilibrium state of a subsystem one recover the standard 

Boltzmann canonical form at the temperature given by the usual thermodynamical relation 

dS dUβ= .  

It is interesting that these results are valid, of course in a probabilistic means, for finite 

system. It is not necessary to invoke the thermodynamic limit since the property of typicality 

become effective even in systems made up of relatively few components, as demonstrated in 

the case of the spins system. 
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Figure 7- 1: Pictorial Representation of a quantum dynamical trajectory in the corresponding 
phase space.  
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7.2 EMERGENCE OF THERMODYNAMICS WITHIN A SINGLE, FINITE 
DIMENSIONAL, PURE STATE: TYPICALITY AND “THE PRINCIPLE OF 
MACROSCOPIC UNIFORMITY” 

In order to discuss the results on the trend of the thermodynamic functions in the two 

ensembles, it is interesting to follow an argument presented by Jaynes in [Jaynes, (1957)], 

where the epistemological aspects of his “subjective statistical mechanics” are carefully 

considered. First one observes that the statistical character of a theory entails that it makes 

prediction only when, and to the extent that, it leads to sharp distributions on the observables. 

In our case the “macroscopic” observable is the value of the entropy, or the elements of the 

RDM. The emergence of a “typical” value for the function of interest is thus necessary for the 

mere existence of a statistical theory. On the other hand we have seen that the probability 

distribution on the parameters of the problem, i.e. populations and phases, is well 

approximated by means of a maximum entropy distribution, as discussed in Section 4.3. Of 

course, the maximum entropy distribution depends on the constraints which define the 

considered Ensemble; such a definition corresponds to our assignments of the weights of the 

microscopic states. Then, the process of maximum entropy inference is one in which we 

choose the broadest possible probability distribution over the microscopic states, compatible 

with the given constraints. Evidently the sharp distribution on the “thermodynamic observable” 

(entropy or equilibrium state of the subsystem) can emerge only if it is true that for each of the 

overwhelming majority of the microscopic states which have appreciable weight in the 

considered ensemble, we would obtain the same behaviour of the “macroscopic” functions. 

With the words of Jaynes  

“It is this principle of macroscopic uniformity, which provides the objective content of the 

calculation, not the probability per sè”. 

The principle of macroscopic uniformity of Jaynes has the same significance of the typicality 

of the thermodynamic functions in our ensemble. In the same spirit we can understand the 

emergence of thermodynamic properties within a single pure quantum state and leave behind 

the idea of ensembles of pure states which is inconsistent with basic concepts of quantum 

mechanics as the superposition principle. 

From this perspective, if the theory would predict values of macroscopic functions which do 

not agree with the law of thermodynamics, then it is reasonable to conclude that the 

hypothesis on the enumeration of the possible state in the ensemble was not correctly given. 

The two ensembles we have considered can be view as two different rules for selecting the 

possible states and their weights. Following the above line of reasoning one can interpret the 

failure of the FEEE in predicting well behaving thermodynamic functions as the falsification of 
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the hypothesis on which the counting rule of the microscopic states is based. More specifically 

we see that the temperature of the isolated system is not determined only by its expectation 

energy, because the behavior of macroscopic observables obtained by starting from such an 

assumption does not agree with thermodynamics, that we know to be experimentally verified. 

The temperature is instead determined from the number of populated states (in the sense that 

maxE  determines exactly this quantity). It depends only indirectly on the expectation energy E  

because in the ensemble which predicts well behaving thermodynamic functions, the RPSE, 

also E  is sharply determined by the number of involved states and it is not varied 

independently as in the FEEE.  

In this first part we have considered the statistical characterization of isolated quantum 

systems, described as pure states. In the second part we will focus on a subsystem which is 

part of a system plus environment set up. We assume that the global system is described by a 

pure state and its time evolution is determined on the basis of a given Hamiltonian.  First we 

shall study the equilibrium of such a subsystem: in fact we have just established that the 

equilibrium average of its corresponding RDM does not depend on the particular choice of the 

populations of the global state. On the other hand we can now focus on the dynamical aspects 

of the equilibrium. This implies to consider a single, time evolving, pure state. Later, some 

insights into the mechanism which underlies the non equilibrium process of the relaxation 

toward the equilibrium state will be also considered. 
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CHAPTER 8 

FLUCTUATIONS AT THE EQUILIBRIUM 

 

 

 

8.1 INTRODUCTION 

In the previous Chapters we have defined the equilibrium average of the state of a quantum 

system (and thus, of any observables) and we have investigated the statistical behaviour of 

such a quantity in Ensembles of Pure States. We established that, by virtue of the property of 

typicality, the equilibrium average of observables of interest is very likely determined by few 

“macroscopic” characteristic of the system,  like its total energy, and does not depend on the 

details of the wave-function. 

In this second part we shall study the dynamical aspect of the equilibrium state, in other 

words we focus on the fluctuations around the average equilibrium state. This implies the need 

of studying a single, time evolving, pure quantum state. The connection between the dynamics 

of the equilibrium fluctuations of an observable and the relaxation toward the equilibrium from 

a “non typical” initial value is also investigates with the aid of a simple model system. 

 

 

 

 

 

 

 



FLUCTUATIONS AT THE EQUILIBRIUM 

 

184 

8.2 VARIANCE OF AN OBSERVABLE ALONG A TRAJECTORY 

As a first indication of the amplitude of the equilibrium fluctuations of any observable we 

shall take the variance of its expectation value along the time evolution of a pure state ( )tψ . 

This was given in Chapter 2 and reads 

( ) ( ) ( )
22

A a t a t a tσ ∗= −                  (8.2.1) 

where ( ) ( )( )Tra t A tρ=  and the bar denotes the asymptotic time average or, equivalently, the 

average with respect the Pure State Distribution, eq. (2.3.35). By introducing the deviation of 

the density matrix from its equilibrium average, ( ) ( )t tδρ ρ ρ= − , we can write the variance of 

any observable in terms of the of variances (and covariances) of the time dependent part of 

the density matrix elements as 

( ) ( )( )2 * * 2
' ' ' ' ' ' ' , '

' ' ' '
A ss tt s s tt ss tt s s t t

ss tt ss tt
A A t t A Aσ δρ δρ σ= =∑∑ ∑∑                                                  (8.2.2) 

where  

( ) ( )2
' , ' ' '

0

1: lim
T

s s t t T s s t tdt t t
T

σ δρ δρ→∞= ∫                                                                         (8.2.3) 

While the variance define the average amplitude of fluctuations in the equilibrium state, we 

now introduce the time correlation function of these fluctuations in order to characterized their 

dynamical properties. Without loss of generality, it is convenient to shift the expectation value 

with respect to its equilibrium average ( ) ( ) ( )a t a t a tδ = − . Then we define the time correlation 

function as 

( ) ( ) ( ) ( ) ( )2 2
0

1 1lim
T

A t
A A

a t a t
C a t a t dt

T
δ δ τ

τ δ δ τ
σ σ →∞

+
= = +∫                                           (8.2.4) 

Notice that ( )0 1AC =  by construction.  

Later we will consider the dynamics of an open quantum system which interacts with its 

environment. The notation will be that introduced in section 2.4 and in this case the variances 
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2
' , 's s t tσ  which appears in eq. (8.2.2) are to be intended as the variance of the element of the 

Reduced Density Matrix ( )tμ . 

 

8.3 EQUILIBRIUM DYNAMICS OF AN ISOLATED QUANTUM SYSTEM  

First let us see what can be stated about the equilibrium fluctuations of the whole, isolated, 

system described by a Pure State which belong to the RPS Ensemble characterized by well 

defined typical value of thermodynamic functions, as the energy per component ε . From the 

analysis of the time evolution conducted in Chapter 2, we know that the diagonal elements of 

the density matrix (in the energy representation) are the populations which are conserved 

quantities which do not fluctuate at all in the time. On the contrary, off diagonal elements of the 

density matrix are periodic functions of time 

,( ) exp[ ( )]nm n m n mt P P i tρ α= −                                                                                       (8.3.1) 

and thus each of them oscillates with an amplitude determined by the populations. As a 

consequence the variance of such elements during the evolution is  

2
' , '

if ' '
0 otherwise

n m
n n m m

P P m n n m n
σ

= = ≠⎧
= ⎨
⎩

                                                         (8.3.2) 

It should be noted that the variance of a single density matrix element always depends on the 

details of the considered pure state. It does not assume a typical value in the Ensemble of 

Pure States, however we can say that on average it is of the order of 2Nε
− .  On the other hand 

the variance which characterized a generic operator A  eq. (8.2.2), with many non zero off 

diagonal elements in the energy representation, has a typical value in the RPSE given by  

2
' '2

'

1
A nn nn

n n n
A A

Nε

σ ∗

≠

≈ ∑∑                                                                                                    (8.3.3)

Since also the number of terms in the summation is of the order of 2Nε , in principle the 

standard deviation Aσ  of an observable can be of the order of its typical average 

( ) 1
nn

n
a t A

Nε

= ∑                                                  (8.3.4) 
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 The actual value of the variance depends on the structure of the representation of the 

observable in the eigen energy basis of the total Hamiltonian. Some results about this point are 

available for a class of operators which has a well defined classical limit, [Feingol, (1986)]. 

However an estimate of (8.3.3) on these basis is dependent on certain hypotheses about the 

chaoticity of the model in the classical limit [Peres, (1984); Srednicki, (1996)].  

As we have already noted in Section 2.4, a quantum sub-system described by a pure state 

should be considered the exception rather then the rule. Thus, let us analyse the fluctuations 

of the RDM of a subsystem S  which is part of an isolated system S E+ . The whole system is 

described by a pure state ( )tψ . Let us first consider the case of no interaction between the 

two subsystems S  and E , in this case the total Hamiltonian can be expressed as the sum of 

the Hamiltonians of the system and of the environment 

S EH H H= +                                                                                                             (8.3.5) 

In this ideal system the RDM evolves in time according to its Liouville Equation, eq. (2.4.11). 

Thus, in the eigen energy basis of the system Hamiltonian { }, 1... Ss s N=  , the elements of 

the reduced density matrix read 

( ) ( )'
' ' 0ssi t

ss sst e ωμ μ=                                                                                                   (8.3.6) 

Where the RDM at the instant 0t =  is determined by tracing out the degrees of freedom of the 

environment from the whole pure state density matrix, ( )' 'ss s sE Eω = −  being the eigenvalues 

of the system Liouville operator in frequency units (that is, 1= ). Since the subsystem is 

assumed to be isolated the diagonal elements of the RDM are conserved during the evolution 

and are determined from the global populations 

( ) ( )0 :ss ss sb s
b

t P Pμ μ= = =∑                                                                                        (8.3.7) 

We shall call the diagonal elements of the RDM the “reduced populations”, sP , of the 

subsystem. However it is necessary to stress that the reduced populations have very different 

properties with respect to the global populations whose statistics we have studied up to now. 

First it has been shown in the previous chapters that they assume a typical value on 

Ensembles. In particular they are very likely to be of the standard canonical form if we consider 

a pure state which belongs to the RPSE. Second, we stress that, contrary to the global 
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populations nP ,  the reduced populations are not necessary constant during the time evolution 

of the system. They are conserved only in the absence of energy exchange between system 

and the environment. The dynamical aspects of the equilibrium state of the subsystem in the 

presence of the interactions with the surrounding will be the central issue of the following 

Sections.     

The off-diagonal elements of the RDM are instead oscillatory functions of time and they are 

given explicitly by 

( ) [ ] ( )' ' ' 'exp exp
EN

ss ss sb s b sb s b
b

t i P P iμ ω α α= − −⎡ ⎤⎣ ⎦∑                                        (8.3.8) 

with 's s≠ . Their variance along a trajectory is easily obtained under the assumption of no 

frequency degeneracy in the spectrum of the system, eq. (2.3.16), and reads 

( )
2

2
', ' ' ' ' ' ' ' ' '

'
exp

EN

ss s s sb s b sb s b sb s b s b sb
bb

P P P P iσ α α α α⎡ ⎤= − + −⎣ ⎦∑                      (8.3.9) 

Notice that if the subsystem is in a pure state, then the global populations are factorized, while 

the initial phases are the sum of the initial phases of the wavefunction of the system ( )0Sψ  

and that of the environment ( )0Eψ , that is 

sb s bP P P=                                                                                                                  (8.3.10) 

sb s bα α α= +                                                                                                             (8.3.11) 

If this is the case, one sees that the elements of the RDM, eq. (8.3.7) and eq. (8.3.8), does not 

depend on the environment and the variance eq. (8.3.9) assumes its maximum value 

2
', ' 'max ss s s s sP Pσ⎡ ⎤ =⎣ ⎦                                                                                                   (8.3.12) 

As we have already noted also the extent to which the system is entangled with its 

environment cannot change in the absence of interactions. The purity P , defined in eq. 

(2.4.7), and which is a measure of this property, is conserved during the motion and can be 

related to the variance, eq. (8.3.9), as follows 

( ) ( ) 2 2
', '

'
0 s ss s s

s s s s
t P σ

≠

= = +∑ ∑∑P P                                                                              (8.3.13) 
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If the subsystem is in a pure state then the variance is given by eq. (8.3.12), and the unity 

value 1=P  is recovered. Notice that, even if the purity of the system is bounded from 

below by 1 SN in the general case, the minimum value of the purity compatible with a given set 

of populations SP  is  

2
SN

s
s

P=∑minP                                                                                                           (8.3.14) 

which corresponds to the case of a completely mixed initial state.  

To illustrate this result let us consider a total system composed of 8n =  spins 1 2  and look 

at the time evolution of one of them. The system Hamiltonian is 

0S ZH Sω=                                                                                                                (8.3.15) 

In the upper panel of Figure 8-1 the time oscillation of the real part of the off diagonal 

elements of the single spin RDM, ( )tαβμ  are shown for different values of the initial bipartite 

entanglement given by the purity. In the lower panel the corresponding probability distributions 

obtained by sampling the trajectory of ( )tαβμ  are reported. Notice the common shape of these 

distributions which represent a coherent oscillation; in this special case the variance 2
,αβ βασ  

provides information about the amplitude of such an oscillation. In the reported case the global 

population are equal to the average populations of the RPSE which correspond to an average 

energy per spin equal to 0.45ε = . The corresponding inverse temperature calculated on the 

basis of the subsystem populations according to eq. (5.4.20) is 0.2β ≈ . It is interesting to note 

that the RPSE global population cannot be in general factorized as in eq. (8.3.10), so that the 

maximum purity which can be obtained for the subsystem with this global population is 

0.9133=P  (green line). On the contrary a pure state for the subsystem is obtain by using 

canonical global populations (red line) which, in the absence of interactions are naturally 

factorized. For both the set of populations the minimum purity, eq. (8.3.14), is  0.5046=P  and 

corresponds to an exactly diagonal density matrix. 

These considerations can be directly employed to derive a lower and an upper bound to the 

equilibrium fluctuations of any observable. Let us define the following 

max

min

max '

min '

s A s a

s A s a

=

=
ss'

ss'

                             (8.3.16) 
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that is, the maximum and the minimum value of the considered operator in the energy 

representation. Then, from eqs. (8.2.2), (8.3.13) and (8.3.14), it follows that the variance of the 

observable ( )a t  at the equilibrium is bounded between 

( ) ( )2 2 2
min maxAa aσ≤ ≤min minP - P P - P                                 (8.3.17) 

This result relates the amplitude of the equilibrium fluctuations to the measure of the 

entanglement between the system and its environment. If a subsystem is isolated from its 

environment at a certain time 0t = , but remains nearly maximally entangled with it, then large 

deviation of its properties from the equilibrium average value will be extremely rare. A similar 

result is used in [Reimann, (2008)] to justify the validity of equilibrium statistical mechanics 

under “experimentally realistic conditions”, i.e. for macroscopic system. 

 On the other hand, eq. (8.3.17), also means that the dynamical fluctuations for observables 

with min 0a ≠  are never absent unless we start with a perfectly mixed state.  
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-0.5

0

0.5

( )Re tαβμ⎡ ⎤⎣ ⎦

( )Re tαβμ⎡ ⎤⎣ ⎦

( )0t ω
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0.7046P =
0.5063P =

 

Figure 8- 1: Time evolution of the off diagonal element of one spin which is entangled with an 
environment of other 7 spins. The different evolutions refer to different values of the purity of the 
subsystem. In the lower panel we show the corresponding probability distributions, obtained 
from the sampling of the trajectory. 
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Having established this connection, one can now use the results about the Ensemble 

Distribution of the purity of bipartite quantum system. It is well known that typical large bipartite 

state are highly entangled. However the reduced state resulting from a generic bipartition of a 

random pure state is, on average, not maximally entangled as noted for example in ref. 

[Facchi, (2006), (2008)]. The average has to be taken over the set of all pure state in H  

according to the unitarily invariant Haar measure. The first moment of the purity distribution is 

calculated in [Lubkin, (1978); Page, (1993)] and reads 

1 1
1

S E

S E S E

N N
N N N N
+

= ≈ +
+

P                                                                                        (8.3.18) 

where the last term is a good approximation when 1S EN N N= >> . 

In [Scott, (2003); Giraud (2007)] also the higher order moments has been exactly calculated, 

with the following result for the variance 

 
( )( )

( ) ( )( )

2 2
22

2 2 2 2

2 1 1 1 1 12
1 2 3

S E

S ES E S E S E

N N
N N N NN N N N N N

− − ⎛ ⎞
− = ≈ − −⎜ ⎟++ + + ⎝ ⎠

P P         (8.3.19) 

It should be noted that the above results eq. (8.3.18) and eq. (8.3.19) corresponds to the 

typical value for RPSE in the limit of infinite temperature. But in our framework we have seen 

that the typical subsystem populations, eq. (8.3.7), are canonical at a temperature determined 

by the typical energy per component of the system. Thus, it becomes clear that the minimum 

purity of the system, eq. (8.3.14) as well as the typical purity on the ensemble, eq. (8.3.13), 

can be related to the typical energy of the wavefunctions which belong to the ensemble. In 

Figure 8-2 the ensemble distributions of the purity of a spin 1 2  in a global system of 8n =  

similar spins is shown for different values of the typical energy per spin.  
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β=0.79
β=1.29
β=0.43

P

( )RPSp P

 

Figure 8- 2: Random Pure State Ensemble Distribution of the purity of a single spin 1 2  in a 

system composed of 8n =  spins, the (normalized) histograms refers to different typical energy 

per spin. The corresponding inverse temperature are reported in the inset. 

 

 

To formalize this observation, let us derive the RPSE average purity of a bipartition of the 

total system by using the ensemble distributions obtained for the global population. First let us 

recall the result obtained for the ensemble average of the subsystem populations, given in eq. 

(5.5.26): in order to compute sP  we have to sum the average global population of the energy 

levels maxn s bE E E E= + ≤ . The number of terms which contribute to this sum obviously 

depends on the specific subsystem population we are considering and it is denoted by s
bN . If 

the spectrum of the environment is characterized by a smoothed density of states ( )bg E  this 

reads     

( )
max s

s

E E
s
b b b

E

N g E dE
−

= ∫                                                                                               (8.3.20) 
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Then the average subsystem population can be expressed as 

s
b

s
NP
Nε

=                                                                                                                (8.3.21) 

where s
b

s
N Nε = ∑  denotes as usual the total number of states which one has to consider in 

order to obtain a typical energy per component equal to ε . The ensemble average minimum 

purity is then given as 

22
'

'

S S sb sb S SN N N N N N
s

s sb sb s
s s b b s s

P
P P P P

Nε

= = = +∑ ∑∑∑ ∑ ∑minP                                              (8.3.22) 

Where we have used the definition of the reduced population eq. (8.3.21). If the total number 

of states is large then the second term can be neglected and one obtains an ensemble 

average minimum purity as a function of the typical subsystem populations which we know to 

be canonical. Notice that in the limit of infinite temperature, 0β → , 1 sN≈minP  which is the 

usual lower bound. For the average purity one finds 

( )max , '1 1

' 2
' '

S S sb S S s sN N N N N
b

sb s b
s s s b s s s

NP P
Nε

− −

≠ ≠

= + = +∑∑∑ ∑∑min minP P P                                                  (8.3.23) 

Where in the last term ( )max , 's s
bN  is the number of states associated with the highest energy 

between sE  and 'sE . In the 0β →  limit one exactly recovers eq. (8.3.18), since sb EN N= . 

The above result also contains the Random Pure State Ensemble typical value of the variance 

of the off diagonal elements of the RDM. For a spin 1 2 , one has 

2
,

P
N
α

αβ βα
ε

σ =                                                                                                        (8.3.24) 

The whole Random Pure State Ensemble distributions of the variance of the off diagonal 

elements of the RDM of a single spin which belong to a total system composed of 8n =  spins 

are depicted in Figure 8-3 for three different values of the temperature.  

 

At this stage the typical amplitude of the fluctuations, eq. (8.3.24), as well as the typical 

value of the purity of the subsystems, eq. (8.3.23), still refers to the great majority of the 
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wavefunctions which belong to the considered RPSE. However it remains a “geometric” result. 

If, for any reason, one starts with a wavefunction which is not typical in this sense, the actual 

value of the purity of the subsystems and thus of the fluctuation amplitude does not change 

during the time evolution. This because we are considering the ideal case of no interaction 

between the two subsystems S E+ . In the next Sections we shall consider the effects of the 

presence of interactions. The interaction between the system and its environment is necessary 

in order to approach the equilibrium state from a “non typical” initial value. Indeed, if we follow 

the time evolution ideally for infinite time we obtained the Pure State Distribution, however if 

we start from a particular state and consider only a finite time window we can eventually 

observe relaxation  toward the equilibrium average. 
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Figure 8- 3: Random Pure State Ensemble Distribution of the variance of the off diagonal 

elements of the RDM of a single spin 1 2  in a system composed of 8n =  spins, the (normalized) 

histograms refers to different typical energy per spin. The corresponding inverse temperature 
are reported in the inset. 
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8.4 EQUILIBRIUM DYNAMICS IN OPEN SYSTEMS 

We now consider the equilibrium dynamics of the system of interest S , which is part of a 

composed system S E+  described by a pure state ( )tψ , and which interacts with its 

environment E . In all generality the total Hamiltonian which determines the time evolution of 

the whole system can be specified as 

S E SEH H H H= + +                                                                                                 (8.4.1)      

where SH  is the Hamiltonian of the subsystem of interest, BH  is the Hamiltonian of the rest of 

the overall system, i.e. the environment, and SBH  is the interaction Hamiltonian. The presence 

of the interaction has deep consequences on the dynamics of the subsystem: the first point to 

stress is that the subsystem cannot, in principle, be described by a pure state. Even if one 

assume that at some time 0t =  the global state is factorized, ( ) ( ) ( )0 0 0S Eψ ψ ψ= , this is not 

true for any successive time, [Gemmer, (2001), (2002)]. One necessarily has to describe the 

subsystem by means of its Reduced Density Matrix ( )tμ . 

The second main point to stress is that, if the system is not isolated, an autonomous 

equation for the time evolution of the  RDM can not be exactly formulated. It is well know that 

the dynamics of an open system has to account for relaxation. Several approaches has been 

developed and successfully used to describe the non equilibrium dynamics of an open 

quantum system, as the introduction of master equations for the statistical density matrix of the 

open system. Here we shall focus on another very general approach to this problem that does 

not need the assumptions about the non correlation between the system and its environment 

discussed in Chapter 1. The main idea is that to treat the system and its environment as a 

whole, by solving the Schrödinger equation for the global pure state. We will see that the time 

evolution of the subsystem can be quasi-irreversible even when the subsystem interacts with a 

relatively small environment.  Still we shall  investigate the relation between the dynamics of 

the equilibrium fluctuations and the relaxation dynamics. 

By considering the presence of a generic interaction Hamiltonian between the system and 

the environment, we have to deal in general with two different basis set: the eigenfunctions of 

the total Hamiltonian (8.4.1) 

nH n E n=       (8.4.2) 
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and the product basis { }, 1,... , 1,...S Esb s b s N b N= = =  which diagonalizes the Hamiltonian 

in the absence of the interaction term, i.e. if 0SEH = . Indeed the first basis is convenient in 

order to evaluate the time evolution, while only with the product basis we can perform the 

partial trace over the to determine the reduced density matrix. In such a basis the 

instantaneous RDM is given explicitly by 

( ) ( ) ( )' '
'

' '
' ' 'n n n ni E E t i

n n
ss b n n

t e e P P sb n n s b s sα αμ − − −=∑∑∑∑                                         (8.4.3) 

It can be divided into a constant part, for 'n n= , and a fluctuating part 

( ) ( )' ' 'ss ss sst tμ μ δμ= +  

where 

' 'ss n
b n

sb n n s b Pμ =∑∑                                                                                       (8.4.4) 

( ) ( ) ( )' '
' '

'

' ' n n n ni E E t i
ss n n

b n n n

t sb n n s b P P e e α αδμ − − −

≠

=∑∑∑                                             (8.4.5) 

with ( )' 0ss tδμ = . 

The variance of the equilibrium distribution of any observable can be obtained from eq. (8.2.2) 

where now the variances of the RDM elements are explicitly given by 

( ) ( )2
' , ' ' ' '

' '

1lim ' ' ' ' ' '
2

T

s s t t ss tt n nT bb n n nT

dt t t sb n n s b tb n n t b P P
T

σ δμ δμ
→∞

≠−

= =∑∑∑∫     (8.4.6) 

Of course the variance of the equilibrium distribution does not contains all the information 

required to characterize the equilibrium state. Indeed we are also interested to study the whole 

equilibrium distribution and the time scale of the fluctuations.  In particular the correlation 

function, eq. (8.2.4), of the equilibrium fluctuations of the expectation values of an observable 

for the subsystem is given as 

( ) [ ]' ' ' '
' ' ' '

' ' ' ' ' ' expA ss tt n n nn
ss tt bb n n n

C A A sb n n s b tb n n t b P P i tτ ω
≠

= −∑∑ ∑∑∑          (8.4.7) 
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A general approach requires the analysis of the exact time evolution of the whole system 

S E+ , for which the Schrödinger equation is well defined. Accordingly the time evolution of the 

Density Matrix ( )tρ  is determined by the Liouville-Von Neumann equations (2.2.7) with the 

total Hamiltonian eq.  (8.4.1). At any time t , the total density matrix is given as    

( ) ( )0
i iHt Htt e eρ ρ−=                                                                (8.4.8) 

Now, if ( )tρ  is traced out over the environment E  for a given set of points of the time axis, 

one gets the reduced density matrix of S  at these times. Then one can study the distribution of 

the reduced density matrix elements ( )tμ  from the resulting time series. A pictorial 

representation of these procedure is given in Figure 8-4. For previous works with a similar 

approach but different intents see refs. [Nag, (2005); Lahiri, (2003); Miller (1999), Borowski, 

(2003)].  

It is worthy to mention that assumptions on phenomenological, random, time dependent 

interactions are sometimes made in studies about the reduced dynamic, e.g. in the Stochastic 

Theory of Lineshape by Kubo and Anderson, [Kubo, (1954), (1963); Anderson (1954); Faid 

(1986)]. In the present approach these assumptions are not needed, because we work with the 

full, time independent Hamiltonian, and any time dependence should come out as a 

consequence of the model. 

As we have already noted the presence of the interaction produce entanglement between 

the subsystem and the environment. Consequently the purity of the bipartition is not conserved 

during the evolution, and its explicit general expression is  

( ) ( ) ( )
( ) ( )' ' ' '

' '
'

' '
' ' ' '

' ' ' ' ' ' r r t t r r t t

ss s s
ss

i E E E E t i
r r t t

ss bb rr tt

t t

sb r r s b s b t t sb P P PP e e α α α α

μ μ

− − + − − + −

=

=

∑

∑∑∑∑

P t
 (8.4.9) 

A relation like eq. (8.3.13) between this measure of the entanglement and the equilibrium 

fluctuation amplitude is recovered by considering the equilibrium average, i.e. the asymptotic 

time average, of the purity  

( )
( ) ( )1 1

2
' ' ' ' ', '

' ' '

S S S SN N N N

ss s s ss s s ss s s
ss ss ss

μ μ δμ δμ σ
− −

= + = +∑ ∑ ∑minP t P                                              (8.4.10) 
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It is clear that the time evolution of all the quantities of interest critically depends on the form 

of the interaction between the two subsystems S  and E . It is possible to recognize two main 

class of such interactions: 

1. Pure dephasing interaction: this is achieved when the Hamiltonian of the system SH  

commutes with the interaction term of the Hamiltonian,  

[ ], 0S SEH H =  (8.4.11) 

In this case no energy exchange occurs between the two subsystems. For this type of 

interaction the population of the system, i.e. the diagonal elements of the reduced 

density matrix, does not evolve during the motion. As will be illustrated in detail in 

Section 8.5 the main effects of the interaction is to induce Decoherence in the system.  

2. Non adiabatic interaction: in this case the interaction Hamiltonian is not diagonal in the 

eigenenergy basis of the system and the energy exchange between the system and the 

environment is allowed. Thus the system energy usually dissipates into the 

environment irreversibly and we name this effect quantum dissipation, [Leggett (1987), 

Weiss (1992)]. In this case the interaction affects either the eigenenergies and the 

eigenstates of the total Hamiltonian.  

One can further distinguish between the absence of self-interaction between the 

environmental degrees of freedom and the case of a self-interacting environment. Of course 

the first assumption is an idealization largely used in the literature because of the great 

simplification of the algebra which entails. However it was point out in ref. [Tessieri, (2003)] 

that the intrabath coupling have interesting effects on the decoherence dynamic of the system. 

This observation has stimulated a great amount of studies in this direction, see e.g. [Dawson 

(2005), Rossini (2007), Cormick (2008), Yuan (2008)]. It appears clearly that both the 

fluctuation amplitudes, eq. (8.4.6), and the equilibrium correlation function of a subsystem 

observable, eq. (8.4.7), does not depend on the specific spectrum of the environment in the 

absence of an interaction which couples different states, b  and 'b , of the environment. We will 

consider in the next Chapter the equilibrium dynamic of a model system which account for the 

presence of an intrabath interaction.  

In the following Sections and in the next Chapter we shall consider the equilibrium dynamics 

of two model systems taken as paradigms of the two kinds of interactions introduced above. 

The system of interest S  will be always a two level system for which the usual notation used 

for the description of a spin 1 2  will be employed.    
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Figure 8- 4: Representation of the procedure used for obtaining the exact time evolution of the 
Reduced Density Matrix of a subsystem. 

 

8.5:  TWO LEVEL  SYSTEM  IN A  SPIN  ENVIRONMENT:  EQUILIBRIUM DYNAMICS 
AND DECOHERENCE 

The first model we shall analyze is a central spin 1 2  in an environment of n  similar spins 

1 2 . The Zeeman frequency of the central spin will be taken as the reference energy unit. Thus 

the system and the environment Hamiltonian are specified as  

0
S zH S=                                                                                                                  (8.4.12) 

 ( ) ( )

1 1

n n
k k

E E k Z
k k

H H Sω
= =

= =∑ ∑  (8.4.13) 
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Which are diagonal in the product basis { }n s M=  

{ } 1,
2S s sH s m s s mα β= = = ±                                                              (8.4.14) 

{ }1
1

1...,
2

n

E M n M k k k
k

H M M M m m m mω ω ω
=

= = = = ±∑                              (8.4.15) 

We will first consider a pure dephasing interaction  

( )0

1

n
k

SE z k Z
k

H S g S
=

= ∑                                                                                                    (8.4.16) 

This is equivalent to the model introduced by Zurek some time ago, [Zurek, (1982)], as the 

simplest solvable model to study the decoherence process. The special feature of this 

Hamiltonian is that it is diagonal in the product basis { }sM  

SE s MH sM m sMλ=  

Where  

1

n

M k k
k

g mλ
=

=∑                                                                                                              (8.4.17) 

We can consider the set  of indices { }, 1...,km k n=  as a set of independent random variables 

which take the values 1 2±  with probability 1 2 . Thus both the parameters Mω , eq. (8.4.15) 

and Mλ , eq. (8.4.17) are sum of random variables. By virtue of the Central Limit Theorem, and 

under mild assumptions about the distribution of the single spin parameters kg  and kω , 

[Cucchietti, (2005)], they will be distributed according to a Gaussian smoothed density of 

states, that is  

( ) ( )

( ) ( )

2 2

2 2

1, 0
4

1, 0
4

n

M k
k

n

M k
k

g G

g G g

ω ω ω ω

λ λ λ λ

ω μ σ μ σ ω

λ μ σ μ σ

= = =

= = =

∑

∑
                                       (8.4.18)  
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It was shown in ref. [Zurek, (1982)] that the Reduced Density Matrix of the system S  which 

is initially in a pure state represented by a coherent superposition of eigenstates { }s  

undergoes a rapid decoherence process, which results in a RDM which is approximately 

diagonal in the pointer basis. In the case of the Hamiltonian eq. (8.4.16) the pointer basis 

coincides with the eigenstates of the system Hamiltonian. As we have already noted the 

diagonal elements of the RDM do not evolve and they are given by eq. (8.3.7), while according 

to eq. (8.4.3) the off diagonal elements are specified as  

( ) ( ) ( ) ( )exp 1M M
N b

i
M M M

M

t t P P e i tα β
α

α α
αβ αβ α βμ δμ λ− ⎡ ⎤= = − +⎣ ⎦∑                                       (8.4.19) 

If the system is initially descried by an autonomous wavefunction, then conditions (8.3.10) 

and (8.3.11) are satisfied and eq. (8.4.19) can be rewritten as 

( ) ( ) ( )it P P e z tα βα α
αβ α βμ −=                                                                                        (8.4.20) 

where [ ]( ) exp
N b

M M
M

z t P i t
α

λ= −∑  is the decoherence factor. Notice that ( )0 1z =  for the system 

initially in a pure state. It was shown by Zurek, [Zurek, (1982)], that the variance of such a 

quantity around its zero asymptotic time average is of the order of ( ) 1
EN −  with  EN  being the 

number of the active environmental state. He also argued that the distribution of the 

decoherence factor sampled from a time trajectory should be normal by virtue of the Central 

Limit theorem. Here, we recover the results of the analysis of Zurek. Indeed, the variance of 

the off diagonal elements of the RDM reads, according to eq. (8.4.6) 

2
,

1

MN

M M
M

P P
α

αβ βα α βσ
=

= ∑                                                                                                   (8.4.21) 

which scales with the number of energy levels that contribute to the overall wavefunction in the 

case of pure states of the RPSE. Moreover, as it is shown in Figure 8-5, the distribution 

obtained from the sampling of the time evolution of ( )tαβμ  is Gaussian, in contrast to the 

distribution which characterized an isolated system reported in Figure 8-1. 
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Figure 8- 5: Distribution of the off-diagonal element of the reduced density matrix of a single spin 
which interacts with an environment composed of 7 spins trough a pure dephasing interaction. 

 

The decoherence process is associated with an increase of the extent to which the 

subsystem is entangled with its environment. Thus , the purity of the subsystem (and that of 

the environment), eq. (8.4.9), evolves in time. For this model one explicitly obtains  

( ) ( ) ( )

( ) ( )

2 2

' '2
'

2

2 4 cos
MN

M
min M M M M

MM M

P P t t

N t
N N

α

α β αβ βα

α
α α

ε ε

μ μ

λ λ α α
≠

= + +

⎡ ⎤= + + − + −⎣ ⎦∑

P t

P
                      (8.4.22) 

where minP  is the minimum purity compatible with the actual set of system populations, eq. 

(8.3.14). It is well know that almost periodic functions, such as eqs. (8.4.19) and (8.4.22) return 

arbitrarily close to any value within their range infinitely many times in the course of their 

evolution, [Percival, (1961)]. However, when a moderately large number of the energy states 

results populated, it can be shown that the time required for these recurrences is so huge that 

is physically uninteresting. Thus, we can effectively define a characteristic time scale in which 

this functions decay  to its average value and fluctuates around it. For a more quantitative 

analysis of the recurrence phenomenon we refer to [Zurek, (1982); Peres, (1982); Kolovsky, 

(1994)]. In order to see such a relaxation one has to start with a state which is far from the 

equilibrium average. From eq. (8.4.22) it is clear that the equilibrium average purity is near to 

the minimum one, if we choose an initial state characterized by a high purity for the subsystem, 

for example an initially factorized state, we expect to see relaxation. This point has been 

analyzed also in the framework of quantum thermodynamics based on the Hilbert space 
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average method developed by Gemmer et al. [Gemmer, (2004)]. Within this framework one 

first selects the region of the phase space which a quantum system composed of two 

subsystems interacting only through a pure decoherence interaction can explore during its 

motion. Then one can show that the large majority of those state are characterized by purity 

which is close to the minimum one minP . This implies that the Von Neumann entropy of the 

subsystems is close to its maximum value, and this evidence has been proposed as the 

quantum origin of the second low of thermodynamics, [Gemmer, (2001)]. Here we shall not 

give any thermodynamical role to the purity, rather we are interesting to its dynamics in order 

to establish a connection between its evolution from a non typical initial state and its 

equilibrium dynamics.      

First let us consider the time evolution of the purity of a central spin which interacts through 

the decoherence Hamiltonian, eq. (8.4.16), whit other 5 spins representing the environment. 

The strength of the interaction Hamiltonian is modulated by a parameter xλ  defined with 

respect to  the central spin Zeeman energy, that is  

SE MsM H sM sxλλ=  

while the coefficients Mλ  are drawn from a Gaussian distribution of unit variance. The 

populations of the total wavefunction are chosen in correspondence of the average population 

of the RPSE for an inverse temperature of 0.5β ≈ . We start with an initial state in which the 

system is characterized by a purity much greater then the minimum one, actually the maximum 

value compatible with the chosen population. The results are shown in Figure 8-6. In the 

central panels the short time behaviour of the purity is depicted: we observe a decay of the 

purity, with a characteristic time determined by the strength of the interaction. Moreover, 

according to the analysis in ref. [Cucchietti, (2005)], it is evident that the relaxation is not 

exponential, but rather the purity follows a Gaussian decay. After the short time behaviour we 

recover the equilibrium dynamics, that is, the value of the purity fluctuates around its 

equilibrium average, eq. (8.4.10), which is represented by the black continuous line in the left 

panels. The average amplitude of these fluctuations depends on the number of spins which 

form the whole system. Indeed, Figure 8-7 refers to a central spin which interacts with other 7  

spins, and it is evident that in this case the variance of the purity is smaller. However, an 

interesting feature arises if we look at the time autocorrelation function of the equilibrium 

fluctuations of the purity. This is defined in analogy with the correlation function of an 

observable, eq. (8.2.4), as    
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( ) ( ) ( ) ( ) ( )2 2
0

1 1lim
T

t

t t
C t t dt

T
δ δ τ

τ δ δ τ
σ σ →∞

+
= = +∫P

P P

P P
P P                        (8.4.23) 

The time correlation functions of the equilibrium fluctuations of the purity are shown in the right 

panels: interestingly the correlation functions decay with the time constant of the relaxation 

from the non typical initial state.      
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Figure 8- 6: Evolution of the purity of one spins interacting through a pure decoherence 

Hamiltonian with an environment composed of 5  spins. The left panels depict the entire 

evolution for three different values of the interaction strength. The central panels show the initial 
decay of the purity from a non typical initial value. The right panels shows the correlation 
function of the purity fluctuations at the equilibrium. 

 

In figure 8-7 the purity evolution of the central spin which interacts con 7 spins of the 

environment is depicted for three different values of the interaction strength. On the right 

panels the corresponding time correlation function of the purity fluctuations at the equilibrium is 

reported. The decay of the correlations clearly reflects the decay of the initial purity toward its 

equilibrium average. The red lines refers to the infinite temperature limit, where all the energy 

levels is populated and the average RPSE population can be factorized in the product of 

system and environment populations, eq. (8.3.10), i.e. the total wavefunction can be written as 

the product of two autonomous wavefunctions. The black trace refers to different 
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temperatures, as specified in the figure caption. While the equilibrium average value of the 

purity depends on the subsystem populations, eq. (8.3.7), and  thus on the temperature of the 

system, the relaxation and the fluctuation dynamics are the same for the two different 

temperatures and it is dominated by the interaction strength.  
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Figure 8- 7:  Evolution of the purity of one spins interacting through a pure decoherence 

Hamiltonian with an environment composed of 7  spins. The left panels depict the evolution for 

three different values of the interaction strength, while the right panels shows the correlation 
function of the purity fluctuations at the equilibrium. The red lines correspond to the infinite 

temperature limit, while the black lines refer to the following temperatures: 0.462β =  for 

0.1xλ = , 0.68β =  for 0.5xλ = , 0.99β =  for 0.1xλ = . 

 

While the time evolution of the purity of the system, eq. (8.4.22), depends only on the 

differences between the eigenenergy of the interaction Hamiltonian, the evolution of the off 

diagonal terms of the Reduced density matrix depends also on the Zeeman frequency of the 

observed spins, which we have taken as the unit measure of the frequency, i.e. 0 1ω = . Let us 

consider for simplicity the x  component of the polarization vector  of the central spin 
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( ) ( )( ) ( ) ( ) ( )Tr 2Re 2 cos cos 1
bN

x x M M M
M

p t S t t P P t
α

αβ α β α βμ μ α α λ= = = − +⎡ ⎤⎣ ⎦∑   (8.4.24) 

Clearly its equilibrium average is zero and the equilibrium fluctuation amplitude are given in 

eq. (8.4.21). However if we start from an initial state characterized by high purity also the initial 

value ( )0xp  is rather  far from its asymptotic time average. In figure 8-8 the time evolution of 

such an observable is depicted for the system composed of the central spin and other 7  spins 

as environment. Also this observable shows a decay toward its equilibrium average value, and 

then fluctuations around it with a typical amplitude (left panels). However the dynamics of the 

short time relaxation, shown in the right panels, is completely different from that we have seen 

for the purity and presents characteristic oscillations. Also in this case we find that the 

correlation function of the equilibrium fluctuations of the observable, depicted in Figure 8-9, 

reproduces exactly the initial relaxation from the non typical state.  
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Figure 8- 8: Evolution of the x  component of the polarization vector of one spins interacting 

through a pure decoherence Hamiltonian with an environment composed of 7  spins. The left 

panels depict the equilibrium evolution for three different values of the interaction strength, the 
right panel depicts the initial dynamic on a much shorter time scale.  
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Figure 8- 9: correlation function of the equilibrium fluctuations of the x  component of the 

polarization vector for the same system as in figure 8-8. 

 

In this Section we have considered the simplest model Hamiltonian which produces the 

decoherence of an initial state characterized by high purity with respect to the equilibrium 

average purity. The initial state is set “by hand” as a state characterized by a non typical value 

of such a quantity. In the next chapter we shall consider a more general Hamiltonian with a 

non adiabatic interactions: in this case also the population of the subsystem fluctuates as a 

consequence of the interaction with the surrounding. Moreover, as already noted, the 

equilibrium dynamics does not depend on the environment energy spectrum as long as an 

“ideal bath” without self interaction is assumed. In the next model we consider an interaction 

Hamiltonian containing also intra bath interactions terms, and we will see that in this case the 

equilibrium fluctuations display an interesting dependence on the energy spectrum of the bath.    
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CAPITOLO 9 

A RANDOM MATRIX MODEL FOR THE RELAXATION  

 

 

 

9.1 INTRODUCTION 

In the framework of “system plus bath” models, the system undergoes relaxation and 

fluctuations due to the interactions with the bath. These processes are frequently found to be 

insensitive to the details of the interactions, only a few “gross properties”, such as the diffusion 

coefficient in the Brownian motion problem, being relevant for their description. In this last 

Chapter we will consider a model system proposed in [Esposito, (2003)] and named spin-

GORM model. This model provides a very general form of the environment and the interaction 

Hamiltonian which are modeled as Gaussian Orthogonal Random Matrices. Wigner in 1960 

[Wigner, (1967)] was the first to develop random matrix theory for modeling spectra of complex 

quantum system containing many states. This tool has now become very common in many 

fields [Guhr, (1998)] from nuclear physics to quantum chaos [Casati, (1996)]. One might 

picture the complex environment whose Hamiltonian is taken to be a random matrix as a 

“black box” in which a large number of particles are interacting according to unknown laws. 

The system of interest will be always a two level system described as a spin 1 2 . We 

emphasize two important aspects of the model Hamiltonian considered in the following 

sections: first the coupling between the central spin and the environment is taken proportional 

to the xS  spin operator, thus the interaction is non adiabatic and imply an energy exchange 

between the system and the environment. This implies that also the diagonal elements of the 

Reduced Density Matrix, i.e. the reduced populations, evolves in time and fluctuates around its 

equilibrium average. This can be seen from equation (8.4.5) since now the eigenvector of the 

total Hamiltonian, n , does not coincide with the product basis, sb . Moreover the presence 

of a coupling between the degrees of freedom of the environment has important consequence 

on the equilibrium dynamics of the system. Again this is due to the structure of the eigenstates 

of the total Hamiltonian, which are linear combinations of product basis states which 

correspond to different states of the bath, that is, 0n sb ≠  and ' ' 0n s b ≠  also for 'b b≠ . 

Under these conditions, both the amplitude and the dynamics of the equilibrium fluctuations 
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depend on the spectrum of the environment. We will recognize different regimes for such 

dependence on the basis of the system-environment interaction strength.   

Finally a numerical experiment is considered in order to explore the relation between the 

equilibrium dynamics and the relaxation from a non equilibrium state. While in the previous 

Chapter we have studied the decoherence process of the central spin initialized “by hand” in a 

non typical state characterized by high purity, here we will start with a typical state of the 

Random Pure State Ensemble. Thus, the subsystem is in a high entangled state from the 

beginning. Thus, the non equilibrium initial state will be “created” through an interaction with an 

external field.  

 

 

9.2 THE MODEL 

 

The model we shall consider is a spin 1 2  coupled to a complex environment described by 

random matrix of dimension n . The Hamiltonian of the composite system is therefore a 

2 2n n×  matrix of the form 

2S Z n B XH S H S Vλ= Δ ⊗ + ⊗ + ⊗1 1 �� � � �                                                                      (9.2.1) 

where ( )2,m m n=1  is the m m×  unit matrix, XS  and ZS  are the spin 1 2  operators 

( )1/ 2 0
0 1/ 2ZS = −        ( )0 1/ 2

1/ 2 0XS =                                                                 (9.2.2) 

SΔ�  and λ�  are positive constants which represent the energy spacing between the two states 

of the system and the strength of the system-environment coupling, respectively. 

The representations of the environmental operators of the Hamiltonian (9.2.1) are 

 12
bath

BH Wσ
=
��                                                                                                          (9.2.3) 

22
intV Wσ

=
��                                                                                                            (9.2.4) 
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where iW , 1, 2i = , are Gaussian orthogonal random matrices with zero mean and unitary 

variance for the diagonal elements. 1W  and 2W  are different realization of the same random 

matrix ensemble and have therefore the same statistical properties. The definition of the 

random matrix ensembles and the description of some of their salient feature are briefly 

illustrated in Appendix 9.1. The parameters bathσ�  and intσ�  are the standard deviation of the 

diagonal elements of BH�  and V� , respectively. We define the variances which characterize the 

bath and the interaction terms in the Hamiltonian as follows                                                                            

2
2

8
B

bath n
σ Δ

=
�

�                                 2 1
8int n

σ =�                                     (9.2.5) 

where BΔ�  is the width of the spectrum of the environment Hamiltonian. With this choice of 

n− dependent total variance for the bath Hamiltonian, the density of the states increases with 

n  without changing its width, and the average smoothed density of states of the environment 

reads: 

2
2

2

8
4 2( )

0
2

B B

B

B

n E if E
d E

if E

π

⎧ Δ Δ
− <⎪

⎪ Δ= ⎨
⎪ Δ

≥⎪⎩

� �� �
��

��
                                            (9.2.6) 

Similarly the interaction spectrum is bounded between 2λ±  and its density linearly 

increases with n . For an immediate comparison between the different energy scales involved 

in the model we shall express all the energies in units of the system energy gap SΔ� . The 

Hamiltonian (9.2.1) thus becomes 

1 24 4
B

Z X Z B XH S W S W S H S V
n n

λ λΔ
= + + = + +                                                (9.2.7) 

The model is therefore defined by the following parameters:                            

, ,B
B

S S

nλλΔ
Δ = =

Δ Δ

��
� �                                                            (9.2.8) 

In the following we will set 10BΔ =  and 100n = , and we shall study the equilibrium 

dynamics of the subsystem reduced density matrix for different values of the interaction 
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strength λ . Notice that, due to the scaling of the random matrix variance, eq. (9.2.5), the 

elements of the interaction matrix V  are on average of the order of ( )210O − . The maximum 

value of λ  which will be considered is around 100λ ≈ , and in this limit the elements of the 

interaction matrix are of the same order of the system Zeeman energy. The representation of 

the total Hamiltonian has the following structure with respect to the basis of the spin system 

1
2

1
2

B

B

H VH H
H H

V H

αα αβ

βα ββ

λ

λ

⎡ ⎤− +⎢ ⎥⎡ ⎤
= ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ +⎢ ⎥⎣ ⎦

                                 (9.2.9) 

Each block is a matrix in an arbitrary basis for the Hilbert space of the environment. We will 

denote the basis set which diagonalizes the bath Hamiltonian, eq. (9.2.3), as b , while the 

different basis set in which the interaction operator, eq. (9.2.4), is diagonal will be denoted as 

η . Notice that the reduced density matrix can be obtained equivalently by performing the 

partial trace operation in the product basis sb  or sη .  

 

 

9.3 FLUCTUATIONS AT THE EQUILIBRIUM: THE PERTURBATIVE TREATMENT  

Let us consider the variance of the equilibrium distribution of the diagonal elements of the 

reduced density matrix for different values of the interaction strength. According to eq. (8.4.6), 

the variance of the reduced population reads 

2
, '

' '
' ' ' ' n n

bb n n n
b n n b b n n b P Pββ ββσ β β β β

≠

=∑∑∑                                (9.3.1) 

 In Figure 9-1 we shows the variance of the reduced population ( )tββμ  calculated for 

different value of the parameter λ . For the global populations P  we use the RPSE average 

populations corresponding to a high temperature case, 0.01β ≈ . The different sets of data 

refer to different realizations of the random matrices 1 2,W W . Thus, the equilibrium fluctuations 

amplitude of the reduced population depends on the fine detail of the energy spectrum, i.e. 

from the particular realization of the random matrices, for a range of values of  λ , and then 

tends to converge to common values for stronger interactions, 110λ −> .  An insight into the 

nature of this dependence can be obtained by means of a perturbation treatment: this permits 
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to evaluate the correction to the eigenstate of a zero order Hamiltonian due to the presence of 

a weak perturbation. 
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Figure 9- 1: Variance of the equilibrium distribution of the reduced population ββμ  as a function 

of the interaction strength,  for the spin- GORM model. The different sets of data refers to 
different realizations of the random matrices which define the Hamiltonian of the model, eq. 
(9.2.7). The lines depict the trends predicted from different perturbative treatments as described 
in the text.  

 

In the case under study the system and the environment Hamiltonians are of order 1 and 

10BΔ = , respectively, while the coupling term is of order λ . Therefore we can examine two 

different extreme cases that can be treated perturbatively: the weak and the strong coupling 

regimes. Notice that, by virtue of the random nature of the interaction and the environment 

Hamiltonian, the total Hamiltonian is never strictly degenerate.  
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The weak coupling regime: Bλ << Δ  

For small value of the parameter λ  we can treat the interaction as a perturbation. In this 

case the zero-th order description is defined as 

0 1
2 b
sH sb E sb s= + = ∓                                           (9.3.2) 

where { }bE  is the energy spectrum of BH  and b  its eigenvectors. We take into account the 

effects of the perturbation SBH  by a power series expansion on the interaction parameter λ . 

Since we have assumed a pure non adiabatic coupling with the environment the first correction 

to the energy is of order 2λ  

( )
( ) ( ) ( )

( ) ( )
0 1 2 2

0 0
' ' ' '

' '
2sb sb sb bn sb

s b sb sb s b

s b V sbsE E E E E
E E

λ
≠

= + + = + +
−

∑                                                  (9.3.3)           

However the first order correction exists for the eigenvectors, and reads 

(1)
sbn sb λ φ= +                                                                 (9.3.4) 

with the correction given explicitly by 

(1)

' '

'
' ' '

n
SB

sb
b b b

b H b
s b for s s

s E E
φ = ≠

+ −∑                             (9.3.5) 

We can use this result in order to evaluate the variance of the reduced population given in 

eq. (9.3.1). After some algebra one obtains the average reduced population ββμ  and its 

variance as explicit functions of the interaction strength λ  

 
( )

2

2
'2

, ' '

'

1
b b

b b b b b

b V b
P P

E E
ββ β βμ λ= −

+ −
∑ ∑                                             (9.3.6) 

( )
( )

2

2 2
'2

, ' '

'
2

1
b b

b b b b

b V b
P P

E E
ββ β ασ μ λ=

+ −
∑                                            (9.3.7) 

In Figure 9-1 the perturbative approximation for the variance, eq. (9.3.7), is represented by 

a dotted black line. From this explicit expression it is clear that in the perturbative regime the 
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fluctuation amplitude of the reduced population are controlled by the quantity 

[ ]' 'inf inf 1b b b bm E E E Eα β⎡ ⎤= − = + −⎣ ⎦ . That is, if there exists a frequency of the environment 

which is very close to the system frequency, then the corresponding term dominate the sum in 

equation (9.3.7) and thus determines the fluctuation amplitude. Of course, the perturbative 

treatment is valid only when the interaction is smaller than the parameter m  

[ ]'inf 1 b bE Eλ <≈ + −                                                             (9.3.8) 

Notice that the Hamiltonians corresponding to the sets of data represented in Figure 9-1 by 

the red, black, gray and magenta circles have been obtained by selecting some realizations of 

the random matrices with a particular low value of the parameter m  among hundreds of 

thousands of realizations. Indeed a “typical” realization of the Hamiltonian produces a trend of 

the variance of the reduced population which is similar to the set represented in the Figure by 

the blue circles. It is interesting to look at the entire distribution of the reduced population 

obtained by sampling the time evolution of the system: this is shown in Figure 9-2 for the 

Hamiltonians corresponding to the red sets of Figure 9-1, for which 510m −≈ , and for the 

Hamiltonian corresponding to the blue sets, for which 310m −≈ . We will name the first 

Hamiltonian 1H  and the second 2H , as reported in the Figure. The distributions refers to a 

common value of the interaction strength log 4.6λ = − , which is in the perturbative regime. It 

turns out that the equilibrium distribution ( )p ββμ  is Gaussian for 1H , while for 2H  we recover 

a distribution which resemble that of a classical oscillator. Again, this can be understood on the 

basis of the structure of the perturbed eigenstates. Indeed, according to eq (8.4.5) and by 

using the result from perturbation theory, eqs. (9.3.4) (9.3.5), one obtains the following explicit 

form (at the first order in λ ) for the time dependent part of the reduced population  

( ) ( ) ( ) ( )' ' '
' '

'
2 cos cos 1

1 b b b b b b
b b b b

b V b
t P P E E

E Eββ β α β αδμ λ α α= − − −
− + −∑∑     (9.3.9) 

Thus if a single oscillating term has much higher weight in the summation, the time 

evolution is dominated by the corresponding frequency. Consequently the probability 

distribution characteristic of a pure oscillatory function arises. On the contrary, if many terms of 

about the same magnitude contributes to the summation, a Gaussian distribution results.  
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Figure 9- 2: Equilibrium probability distribution function of the reduced population ββμ  for two 

different realizations of the random matrix terms in the Hamiltonian. On the right  we have shown 

the distribution corresponding to 1H , while on the left the distributions refers to the Hamiltonian 

2H . 

 

Perturbation for nearly degenerate state 

Notice that when the weak coupling condition, eq. (9.3.8), is not satisfied the validity of the 

perturbative approximation for the variance, eq. (9.3.7), breaks down and a common plateaux 

around the value ( )2log 5ββσ μ ≈ −  emerges. One can think that, when the interaction 

becomes larger than the m  parameter then the two states corresponding to [ ]' 's b sbinf E E−  

are seen as degenerate. In order to include this idea in the perturbative treatment we have to 

identify the degenerate subspace and thus removing the degeneration by the diagonalization 

of the corresponding subspace. This procedure is described in the following. 

Let dα  and 'dβ  be the pair of nearly degenerate state and wλ  the element of the 

interaction Hamiltonian which connects such states, i.e. 'w d V dλ λ= . By means of the 

diagonalization of this two dimensional subspace one obtains the following eigenvalues 

( ){ }2 2 2
'

1 4 1
2kD d dE E E k w m kλ= + + + = ∓                                  (9.3.10) 
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where dE  are the eigenvalues of the environment Hamiltonian, B dH d E d= , and 

'd dm E Eα β= − . The eigenvalues are modulated by the ratio 
2
m

wλ
, indeed 

( )

( )

1 02

1
2

'
1 2
2

m
w

kD sB

m
w

kD d d

E E

E E E k w

λ

λ λ

⎯⎯⎯→

⎯⎯⎯→ + +

�

�
 

The corresponding eigenvector can be written as 

'

'

k D c d c d

k D c d c d

α β

α β

α β

α β

+ + +

− − −

= +

= +
                                (9.3.11) 

where the coefficients are given by 

'
1 1

2
1 1

2

d k D

d k D

wc E E c
N N

wc c E E
N N

α β

α β

λ

λ

+

−

+ +

+ +

− −

− −

−⎛ ⎞= − − =⎜ ⎟
⎝ ⎠

− ⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

                          (9.3.12) 

with normalization factors 

1/ 22
2 2

'

1/ 22
2 2

1
2

1
2

d k D

d k D

N E E w

N E E w

λ

λ

+

−

+

−

⎡ ⎤⎛ ⎞= − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞= + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

                                                       (9.3.13) 

One can now use the eigenvectors (9.3.11) as the new zero-th order component of the 

basis instead of sd , so removing the degeneracy. In order to evaluate explicitly the variance 

( )2
ββσ μ  one has to take into account that the overlap integrals will be different for the pair of 

nearly degenerate state. In particular the perturbed states n  at the first order in λ  are of four 

different kinds. Explicitly 

( ) ( )''

' ' '

' '
1

dB d BB B
B B d

B d B B Bk D

c V c VVB B c d c d
E E E E

α β
α α β

α

φ α λ β α β
−

− −
− −

≠
≠

+
= + − +

+ − −∑  
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( ) ( )''
'

' '

' '
1

dB d BB B
B B d

B d B B Bk D

c V c VVB B c d c d
E E E E

α β
β α β

β

φ β λ α α β
+

+ +
+ +

≠
≠

+
= + − +

− + − −∑                          

( )'

'
' dB d B

k D
B d B k D

c V c V
c d c d B

E E
α β

α β
β

φ α β β+

+

+ +
+ +

≠

+
= + −

−∑  

( )'' dB d B

k D
B d B k D

c V c V
c d c d B

E E
α β

α β
α

φ α β α−

−

− −
− −

≠

+
= + −

−∑  

With a, as lengthy as straightforward, evaluation of the non vanishing contributions in eq. 

(9.3.1) and by retaining only the second order terms, we obtain the following explicit 

expression for the variance of the reduced population  

( )
( )

( )
( )

( )
( )

( ) ( ) ( )

2
21 1 1

'2 '
'2 2

' ' ' ''

2
2 2 2'

2

2 2
1

2 2

n n n
dB d BBB

B B Bk D
B d B d B dB B B k D

N
dB d B

Bk D k D k D
B d

Bk D

c V c VV P P P P
E E E E

c V c V
c P P c c P P

E E

α β
ββ β α β

β

α β
β α β β

α

σ μ +

+

− − +

−

+ +− − −

≠ ≠ ≠

− −
− − +

≠

+
= + +

+ − −

+
+ +

−

∑ ∑ ∑

∑
        (9.3.14) 

This result is represented by the red dotted lines in Figure 9-1. Thus, this approximation is 

valid for a larger range of λ  in comparison with the previous perturbative result, eq. (9.3.7). 

However the regime between the first and the second plateaux in the values of the variance, 

i.e. from about 210λ −=  to 1λ = , is not described by any of our perturbative treatments. It is 

reasonable to think that, as λ  increases, increases also the number of states that should be 

considered as degenerate. When this is the case, the perturbation theory is no longer a 

convenient tool in order to describe the trend of the variance. Nonetheless we can still consider 

the opposite limit of strong interaction. 

 

The strong coupling regime:  Bλ > Δ  

In this case the zero-th order Hamiltonian is defined as the Hamiltonian of the system and 

the interaction term, while the Hamiltonian of the environment is treated as the perturbation, 

that is 

0 S XH H Vλσ= +                                                        (9.3.15) 
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By representing the environment operator in the basis which diagonalize the interaction matrix 

V Eηη η=                                                         (9.3.16) 

the Hamiltonian (9.3.15) has a 2 2×  block diagonal form in the basis sη  as depicted in figure 

9-3. 

 

1
2

1
2−

Eηλ

Eηλ

Eηα

Eηβ

1
2

1
2−

Eηλ

Eηλ

Eηα

Eηβ

 

Figure 9- 3: Block structure of the zero-th order Hamiltonian in the strong coupling limit 

 

By the diagonalization of the spin subspace we define the following eigen-energies and the 

corresponding eigenstates which depend on the parameter 2 24x Eη ηλ=  as 

1 1
2k
kE x kη η= + = ∓                                                  (9.3.17) 

k kk c cα βη αη βη= +                                                             (9.3.18) 

where 

( ) ( )

( ) ( )( )

1 1 1

1 sgn

c c x
N x

c c x E
N x

α β η
η

β α η η
η

+ −

+ −

= − = − + +

= = −
                                           (9.3.19) 

with the normalization factor 
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( ) ( )
1/ 21/ 2

2 2 2 1N x x xη η η
⎡ ⎤= + + +⎢ ⎥⎣ ⎦

                                                (9.3.20) 

The first order correction due to the presence of the bath Hamiltonian to the zero-th order 

energies, eq. (9.3.17), is thus  

    (1)
k BE Hη η η=                                                               (9.3.21) 

while for the eigenvectors one obtains 

(1)
kn k ηη φ= +                                                          (9.3.22) 

( ) ( )
(1)

1/ 2 1/ 2
'

'

'
'

1 1
2

B
k

H
k k x x

η
η η

η η

η η
φ η

≠

= −
⎡ ⎤+ − +⎢ ⎥⎣ ⎦

∑                                     (9.3.23) 

However this correction does not contribute to the definition of the reduced density matrix, 

eq. (8.4.3), because 

'

' .....s n s k s k
η η

η η η η η
≠

= −∑                                           (9.3.24) 

but ' 0s kη η =  due to the orthogonality of the basis vector. We thus obtain for the mean 

value of the subsystem population and its variance the following equations 

( ) ( ){ }2 2n

k k
c P c Pββ β βη η

η

μ + −
+ −= +∑                                             (9.3.25) 

( ) ( ) ( ){ }2 22 2
n

k k
c c P Pββ β β η η

η

σ μ − +
+ −= ∑                                         (9.3.26) 

Equation (9.3.26) is represented by the black continuous line in Figure 9-1. It is the same for 

all the realization of the Hamiltonian; indeed it does not depend on the specific Hamiltonian of 

the environment. 

Notice the following asymptotic limits of the square of the overlap integral 

( )2 2
k cβη βη− −=  
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( )
( )

2

2

0 1

1 2

x c

x c

η β

η β

−

−

→ →

→∞ →
                                                                            (9.3.27) 

Thus, by not considering the Hamiltonian environment at all, the eigenstates of the system 

smoothly change from the ZS  eigenbasis to the XS  eigenbasis due to the influence of the 

interaction term. This is related to the change of the pointer basis dynamically selected from 

the environment, see [Cucchietti, (2005), Paz (1999)]. Indeed, the self Hamiltonian of the 

system competes with the interaction for establishing the direction in which the decoherence 

process is effective, that is, the basis in which the reduced density matrix of the system is 

approximately diagonal. This change in the direction of the pointer states also affects the 

fluctuation amplitude of the Reduced Density Matrix written in the ZS  eigenbasis 

representation.    

The asymptotic value of the variance of the reduced population can be calculated for the 

limit xη →∞  and reads 

( )2 1
2x k k

P P
η ββ η η

η

σ ρ − +→∞ = ∑                                                             (9.3.28) 

This limiting value is represented in figure 9-1 as the horizontal black line which matches 

the common asymptotic limit of the population variance. Such a value is mostly controlled in 

this model by the dimension of the active environment subspace. 
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9.4 APPROACHING THE EQUILIBRIUM: SIMULATION OF THE FREE  INDUCTION 
DECAY EXPERIMENT 

In the previous section we have characterized statistically the equilibrium distribution of the 

reduced population of the spin. We shall now consider the route toward the equilibrium from a 

non equilibrium initial state. The first problem to face is: what is a “non equilibrium” initial state? 

We have established that, by considering a generic random pure state which belongs to the 

RPSE, the equilibrium average of the reduced population of a subsystem is very likely 

represented by a canonical distribution at a given temperature. Thus, we have to look for an 

initial state for which the reduced populations are “far” from this value. This can be done with 

the aid of an external field. 

 The basic idea which has motivated the experiment described in this Section is the 

following: the equilibrium state of a subsystem, which is part of an isolated quantum system 

which evolves in time according to its Hamiltonian, is characterized by dynamical fluctuations 

of the subsystem properties around the corresponding equilibrium average value. The average 

amplitude, i.e. the square root of the variance, of such fluctuations scales with the dimension of 

the whole system thus, even if we look at the properties of one small subsystem, the 

probability of observing a fluctuation of large amplitude, as compared to the average 

amplitude, is very low. However if one acts with an external perturbation on the system and 

then follows the time evolution, one expects to see it to relax toward its equilibrium state. This 

intuition suggests that the non equilibrium initial state induced by an external field can be 

interpreted as a state corresponding to a very improbable equilibrium fluctuation, and thus it 

evolves as a fluctuation would relax. In the following we will investigate the foundation of this 

conjecture through a numerical experiment. 

The set up of the experiment is the following: 

First we choose a wavefunction from the RPSE. We recall here that the equilibrium average 

of the RDM has a typical value in the ensemble. Since the Ensemble Distribution is Gaussian, 

the typical value can be identified with the value obtained from the average global populations. 

For this reason we choose an initial wavefunction ( )0tψ −  defined by the set of average 

populations 1P Nε=  and a set of phases each drawn from a uniform distribution between 

](0,2π .  We emphasize that the wavefunction is defined for the whole system, no factorization 

is assumed. Indeed the subsystem results highly entangled with its surrounding from the 

beginning, because this is the typical condition for a subsystem of a random quantum state. 

The total density matrix at the time 0t
−  is thus defined as ( ) ( ) ( )0 0 0t t tρ ψ ψ− − −=  
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At the instant 0t t=  we simulate the application of a magnetic pulse acting on the spin. The 

effect of a magnetic pulse of frequency 1ω  which acts on the spin system for a time t , can be 

described by means of a rotation operator 

1 1

1 1

cos sin
2 2

sin cos
2 2

n

t ti
R

t ti

ω ω

ω ω

⎡ ⎤
⎢ ⎥

= ⊗⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1                                                                                (9.4.1) 

The total density matrix right after the application of the magnetic pulse is given by 

( ) ( )†
0 0t R t Rρ ρ+ −=                                                                                          (9.4.2) 

and we shall analyze the effect of a 2π  pulse.  

After the pulse the time evolution is governed according to the model Hamiltonian, eq. 

(9.2.7). We shell follow the time evolution of the x  and z  component of the spin polarization 

vector 

( ) ( )( ) ( )
( ) ( )( ) ( ) ( )

Tr 2Re

Tr
x X

z Z

p t t S t

p t t S t t
αβ

αα ββ

μ μ

μ μ μ

= =

= = −
                                                                (9.4.3) 

The usual picture of a magnetic resonance experiment of this kind is the following: the 

magnetization is initially aligned along the static field which defines the Z axis, then the 2π  

pulse brings the magnetization in the X-Y plane where it starts its precession motion around 

the Z axis which induces the Free Induction Decay (FID) signal. 

This simple experiment numerically performed on a single spin which interacts with the 

random matrix environment shows a variety of interesting aspects whose theoretical 

interpretations are not obvious. Here, we shall illustrate some results. 

We use the Hamiltonian 2H  with 1λ =  which is in the regime where the fluctuation 

amplitude does not depend on the details of the bath (see Figure 9-1). The exact time 

evolution of the two observables, eqs. (9.4.3),  depends from the details of the initial state. In 

Figure 9-4 the time evolution of the polarization ( )zp t  is represented. The blue and the red 

dotted lines represent the time evolution obtained for two different initial states, characterized 

by different sets of phases before the pulse. As already mentioned the populations are chosen 
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as the average population of the RPSE at a certain temperature, and thus they are fixed. 

Figure 9-4 refers to a system for which the number of populated state is 85Nε = , which 

correspond to a spin inverse temperature of about 0.3β ≈  before the pulse is applied, while in 

Figure 9-5 the same Hamiltonian is assumed but  the number of populated states is 50Nε = , 

which correspond to a lower temperature for the subsystem.  We can now think to treat the 

initial time of the experiment 0t t=  as a uniformly distributed random variable and average the 

response with respect to it. This corresponds to average the density matrix just before the 

pulse application with respect to the corresponding Pure State Distribution. The time evolution 

of the PSD average density matrix is represented in the Figures by the bold black line, and of 

course this does not depend any more on the particular phases of the initial state. An important 

question arises about the equilibrium average, i.e. the asymptotic time average, of the single 

realizations after the application of the pulse: 

is the equilibrium average independent on the initial state right after the pulse? If the answer is 

yes, does it coincide with the equilibrium average of the trajectory of the PSD average density 

matrix? 

The numerical evidence shows that for the considered value of the interaction strength 

1λ =  the answer is approximately yes, however larger deviations appear for smaller values of 

the interaction strength. To have an insight into the nature of this problem, one has to consider 

in detail what happens to the total density matrix during the experiment: before the application 

of the pulse our system is described, according to eq. (2.3.18), by  

( ) ( ) ( )0 0 0 , 0
,

exp[ ( )]n m n m
n m

t t t P P i t n mρ ψ ψ α− − − −= = −∑                 (9.4.4) 

where , 0 , 0( ) :n m n m n mt tα α α ω− −= − − . After the application of the pulse each elements of the total 

density matrix is a linear combination of the elements of the density matrix before the pulse 

( ) ( ) ( )†
0 , 0

,
n m mjinij n m

t R t Rρ ρ+ −⎡ ⎤ =⎣ ⎦ ∑                   (9.4.5) 

where kjR  are the elements of the rotation operator, eq. (9.4.1), represented in the total 

eigenenergy basis. After the pulse the new initial density matrix, (9.4.5), evolves in time 

according to the Liouville Von-Neumann equation. Its asymptotic time average determines the 

equilibrium average of the subsystem, indeed { }TrBμ ρ= . As usual the asymptotic time 

average procedure washes out the oscillating off-diagonal elements of the total density matrix 
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in the energy representation. As a consequence we can identify a new set of population P� , i.e. 

the diagonal elements of ( )0tρ + , which will determine the equilibrium average of the 

subsystem observable for each particular trajectory, that is 

( ) ( )†
0

,
k nm mkkn

n m

P R t Rρ −=∑�               (9.4.6) 

' 'ss k
b k

sb k k s b Pμ =∑∑ �                                                      (9.4.7) 

Notice that the equilibrium average at which the subsystem state has to tend after the pulse, 

eq. (9.4.7), depends in general on the time 0t  at which the pulse is applied since the new 

population (9.4.6) are determined as combination from all the elements of the density matrix at 

0t t−= , eq. (9.4.4).  

Let us now consider the asymptotic time average corresponding to the PSD average initial 

state. In this case the elements of the density matrix right after the pulse are combination only 

of the diagonal elements of the density matrix at 0t
− : 

( ) ( ) ( ) ( )† †
0 , 0

,
n m mj n njin inPSD PSDij n m n

t R t R R P Rρ ρ+ −⎡ ⎤ = =⎣ ⎦ ∑ ∑                       (9.4.8) 

Thus, in this case, the new populations which determines the equilibrium average are given as   

( )†
k n nkknPSD

n
P R P R=∑�                                                                      (9.4.9) 

At this point we can ask: under which condition the equilibrium average state of each 

trajectory is likely to be close to that which characterizes the equilibrium of the density matrix 

averaged over the initial condition? Stated differently: when the equilibrium state does not 

depend on the initial state? 

From eqs. (9.4.6) and (9.4.9) one has that 

( )0k k kn nm mkPSD
n m n

P P R t Rρ −

≠

= +∑∑� �                                                (9.4.10) 

thus, by using (9.4.7) and (9.4.4), one obtains 
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' ' , 0' exp[ ( )]ss ss kn mk n m n mPSD b k n m n
sb k k s b R R P P i tμ μ α −

≠

= + −∑∑∑∑        (9.4.11) 

If the second term of the right hand side is exactly zero then all the possible initial states 

relax in the same manner and toward the same equilibrium value. The actual magnitude of the 

deviations depends from the interaction trough the overlap between the perturbed and the 

unperturbed eigenstate. However, since the angle variables in (9.4.11) are uniformly 

distributed, one should expect that, for large enough number of populated state, the relaxation 

does not depend on the initial phases. Moreover we have also seen in the first part of this 

thesis that the subsystem equilibrium average state tends to assume a typical value also in 

ensembles of pure states and thus for different set of the populations. In this case one should 

expect that also the global populations just after the pulse, eq. (9.4.9), assume a typical value 

in the RPSE, being a sum of the original populations which are exponentially distributed 

random variables in the ensemble. In other words, when large systems are considered, the 

great majority of the possible pure states not only gives the same canonical average RDM for 

the subsystem, but also relaxes with the same dynamics when perturbed from an external 

field.   

Another interesting aspect arises from the comparison between the relaxation dynamics of 

the PSD average initial state and the time correlation function of the equilibrium fluctuations of 

the same operator in a single trajectory, which are shown in the right panels of Figure 9-4 and 

9-5. The evidence that the correlation functions decay with about the same characteristic time 

of the relaxation, supports the idea that a non equilibrium initial state produced by an external 

force will dissipate in the same way as a random fluctuations. However this point requires 

further future investigation, for example in relation to the correlation function which appears in 

the linear response theory developed by Kubo, [Kubo, (1957)].  
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Figure 9- 4: Time evolution of the z  component of the spin polarization vector, ( )zp t , after the 

application of the magnetic pulse. On the left panel the blue and red dotted lines refers to the 
evolution of two different initial states while the black line refers to the evolution of the PSD 
average initial density matrix. In the right upper panel a magnification of the initial relaxation is 
reported. The right lower panel shows the time correlation function of the equilibrium 

fluctuations of ( )zp t  calculated from the time evolution of the two different initial states. 
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Figure 9- 5: As in Figure 9-5 but with different initial populations which correspond to a different 
temperature for the subsystem.   
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Figures 9-6 and 9-7 report the time evolution of the x  component of the spin polarization 

vector for the system in the same conditions as before. The signal corresponding to the 

evolution of the density matrix averaged over the initial time (black line) resembles a real FID 

signal measured in a macroscopic sample. Again, the correlation functions of the xp  

equilibrium fluctuations calculated from the single realizations show the same time 

dependence of the relaxation dynamic.  

 

 

0 20 40 60
-0.2

-0.1

0

0.1

0.2

0 20 40 60
-1

-0.5

0

0.5

1
( )xp t

( )0t ω= ( )0τ ω=

( )
xpC τ

 

Figure 9- 6: Time evolution of the x  component of the spin polarization vector, ( )xp t , after the 

application of the magnetic pulse. On the left panel the blue and red dotted lines refers to the 
evolution of two different initial states while the black line refers to the evolution of the PSD 

average initial density matrix. In the right panel we show the time correlation function of ( )xp t  

calculated from the time evolution of the two different initial states. 



CHAPTER 9 

 

227 

( )xp t

( )0t ω=

( )tP

0 50 100
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 

Figure 9- 7: As in Figure 9-6 but with different initial populations which correspond to a different 
temperature for the subsystem.   

 

We emphasis that in this experiment, differently from the case presented in Figure 8-8, we 

are not observing a true decoherence dynamics of the spin. Indeed we have never assumed 

that the observed spin is described by an autonomous wavefunction. This can be understood 

by looking at the time evolution of the purity of the subsystem, shown in Figure 9-8 for three 

different realizations of the experiment. As it is evident no decay of the purity occurs, this is 

because the system is highly entangled with its surrounding from the beginning of the 

experiment. Thus, while we see the average polarization to relax toward its equilibrium value, 

the purity just fluctuates around its average value due to the continuous interactions with the 

environment.       
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0.7( )tP
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Figure 9- 8: Time evolution of the purity of the subsystem during three realizations of the FID 
experiment. 
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APPENDIX 9.1 : SOME PROPERTIES OF RANDOM MATRICES 

There are three generic ensembles of random matrices, defined in terms of the symmetry 

properties of the Hamiltonian. For time-reversal invariant systems with rotational symmetry the 

Hamiltonian matrix can be chosen to be proportional to a real and symmetric random matrix 

*
ij ji ijW W W= =                                                                        (A9.1.12) 

The requirement of invariance under orthogonal transformations and the assumption of 

statistical independence for the various elements ,ijW i j≤ , fix the functional form of the 

probability density which describes the Gaussian Orthogonal Ensemble (GOE): 

( ) { }2
2

1exp
2n

W

P W C Tr W
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
                                                     (A9.1.13) 

The probability of finding a particular matrix is thus given by the weight function ( )nP W  

times the product of the differentials of all independent matrix elements. The ensemble is fully 

characterized by the parameters n  and Wσ . The last one sets the scale of the eigenvalues 

and plays no role in the statistics of the energy spacing: a change in Wσ  amounts to a 

multiplication of the matrix by a constant factor, which does not affect the eigenvectors.  

The 
( )1

2
n n +

 independent elements are Gaussian random numbers with the following 

statistical properties 

0ij GOE
W =           ( )

2
2 1

2
W

ij ijGOE
W σ δ= +                                           (A9.1.14) 

where the average is respect to the distribution (A9.1.13). The averaged density of states in 

the limit of very large matrix dimension n →∞  obeys the Wigner semicircular law, (Figure 9-

9), that in our notation  is  

2 2
2

1 2 2
( )

0 2

W W
W

W

n E if E n
d E

if E n

σ σ
σ π

σ

⎧ − <⎪= ⎨
⎪ ≥⎩

                                  (A9.1.15) 
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Figure 9- 9: Histograms of the spectrum of three different realizations of the Gaussian 
Orthogonal Ensemble. 

 

If we assume the value of the total variance 2
Wσ  to be independent on n  then the width of 

the spectrum is 28 Ww nσΔ = . We set 2 2Wσ =  which implies that the range of energy where 

the eigenvalues are distributed scales with the matrix size as  

4w nΔ =                                                                     (A9.1.16) 

An important feature of this family of matrices is the statistic of the eigenvalues level 

spacing s , which is characterized by a Wignerian distribution 

( ) ( ) 24

2
sWP s se ππ −=                                                                  (A9.1.17) 

This kind of distribution is typical for quantum systems that in the classical limit shows chaotic 

dynamic [Bohigas, (1984)]. On the other hand, the systems whose classical dynamics is 

completely integrable, are expected to be characterized by a Poisson-like level spacing 

distribution (Figure 9-10).  

                                            ( )P sP s e−=                             (A9.1.18) 
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Figure 9- 10: Wigner and Poisson distributions. 

 

With reference to the spectrum of a GORM (Gaussian Orthogonal Random Matrix), Figure 

9-11, it is interesting to note that at least some properties as the density of states ( )d E  or the 

nearest neighbors spacing s  have the same distribution when taken along an individual 

spectrum a million levels above the ground state as when taken across an ensemble at the 

ground state itself. In other words in the limit of infinite size n →∞ , the average over the 

spectrum of a GORM ( )...
n

 coincides with the average over the ensemble ( )...
GOE

.          
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Figure 9- 11: Spectra of three different realizations of the Gaussian Orthogonal Ensemble. 
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CONCLUSION 

 

Fundamental problems in quantum statistical mechanics are as intriguing  as they are 

elusive. On the one hand standard statistical mechanics is very effective in accounting for 

many phenomena and experimental evidences, on the other hand when one try to re-conduce 

it to the underlying mechanical description one encounters all the interpretational and 

conceptual difficulties which characterized quantum theory. With this work we give our small 

contribution to this field: the intent has been that to develop a theoretical framework for the 

statistical description of quantum system which is coherent but at the same time as simple as 

possible. In this spirit we have often taken classical statistical mechanics as a conceptual 

benchmark. 

One of the key ingredients of the developed framework is the separation between the Pure 

State Distribution, which is derived from the analysis of the time evolution of the quantum 

state, and the Ensemble Distributions which have instead a “geometrical” origin. The 

theoretical tools developed for the characterization of these distributions are very convenient in 

order to study the role and the importance of the typicality of the properties which 

characterized a given quantum system. The study conducted for the ensembles of spins, for 

example, shows how thermodynamic properties can emerge from the description of the whole 

system in term of a  pure state.  

Still, we think that the characterization of the quantum equilibrium state as a dynamical 

equilibrium, in which fluctuations play their role, is promising to give interesting insights into 

quantum dynamics.       
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