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Interneuron-specific signaling evokes distinctive
somatostatin-mediated responses in adult cortical
astrocytes
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Tommaso Fellin 5, Fiorenzo Conti3,4,8 & Giorgio Carmignoto 1,2

The signaling diversity of GABAergic interneurons to post-synaptic neurons is crucial to

generate the functional heterogeneity that characterizes brain circuits. Whether this diversity

applies to other brain cells, such as the glial cells astrocytes, remains unexplored. Using

optogenetics and two-photon functional imaging in the adult mouse neocortex, we here

reveal that parvalbumin- and somatostatin-expressing interneurons, two key interneuron

classes in the brain, differentially signal to astrocytes inducing weak and robust GABAB

receptor-mediated Ca2+ elevations, respectively. Furthermore, the astrocyte response

depresses upon parvalbumin interneuron repetitive stimulations and potentiates upon

somatostatin interneuron repetitive stimulations, revealing a distinguished astrocyte plasti-

city. Remarkably, the potentiated response crucially depends on the neuropeptide soma-

tostatin, released by somatostatin interneurons, which activates somatostatin receptors at

astrocytic processes. Our study unveils, in the living brain, a hitherto unidentified signaling

specificity between interneuron subtypes and astrocytes opening a new perspective into the

role of astrocytes as non-neuronal components of inhibitory circuits.
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Inhibition is a fundamental operational mechanism in the
brain that is governed by GABAergic interneurons1,2. A
large diversity of interneurons in terms of morphology, con-

nectivity, molecular and functional properties ensures a signaling
specificity to surrounding neurons. These unique features
allow the different GABAergic interneurons to strictly
control local network excitability and modulate synaptic

transmission1,2. Among key interneurons in the neocortex are
parvalbumin (PV)- and somatostatin (SST)-expressing inter-
neurons. The former regulate the spike-timing and the gain of
pyramidal neurons by targeting soma and proximal
dendrites, while the latter control signal integration and
synaptic plasticity by targeting the distal dendrites of pyramidal
neurons1–4.
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The glial cells astrocytes are additional modulatory elements of
local network excitability and synaptic transmission5,6. In vivo
studies revealed that different neurotransmitter systems, includ-
ing glutamatergic, acetylcholinergic, and noradrenergic path-
ways7–10, signal to astrocytes inducing in these cells complex
cytosolic Ca2+ changes that represent a key event in the action of
astrocytes in local brain circuits5,6,11–13. Astrocytes have been
proposed to crucially affect GABAergic synaptic
transmission14–16, but whether the various interneuron classes,
which warrant the specificity of GABAergic signaling to post-
synaptic neurons, also specifically signal to astrocytes is a ques-
tion that remains completely unexplored. We here address this
issue in the mouse somatosensory cortex (SSCx) and study the
signaling to astrocytes of PV and SST interneurons by combining
optogenetics with 2-photon Ca2+ imaging in in vivo and in situ
slice experiments.

Results
Experimental set-up. To selectively stimulate PV or SST inter-
neurons and evaluate potential Ca2+ responses of astrocytes, we
used an adeno-associated virus (AAV)-based strategy (Fig. 1a).
Through this approach, we induced in PV interneurons of adult
PV-Cre mice or SST interneurons of adult SST-Cre mice, the
selective expression of the light-gated cation channel
channelrhodopsin-2 (ChR2)17 (Supplementary Fig. 1a–d) and in
astrocytes the sparse expression of GCaMP6f (Supplementary
Fig. 2a, b), a genetically encoded Ca2+ indicator (GECI)18–20

(ChR2-PV-GCaMP6f or ChR2-SST-GCaMP6f mice, see
Methods).

Parvalbumin interneurons evoke depressing Ca2+ responses.
We first studied Ca2+ signal dynamics in different compartments
of GCaMP6f-expressing astrocytes including the soma, the
proximal processes and the fine processes exhibiting spatially
restricted Ca2+ transients, i.e., Ca2+ microdomains19,21,22, in the
SSCx of ChR2-PV-GCaMP6f mice (Fig. 1) and quantified their
basic properties (Fig. 2). We applied 10 light pulses (λ = 473 nm,
150 ms duration, 1 Hz) that induced in ChR2-expressing PV
interneurons firing activity (mean firing rate, 40.8± 5.75 Hz;
Supplementary Fig. 3) comparable to that exhibited by these
interneurons in awake mice3. No Ca2+ elevations were observed
in GCaMP6f-astrocytes either during (Supplementary Fig. 4a, b)
or after (Fig. 1b, c) the 10 pulse stimulation. Equally ineffective
was a second episode of this type of PV interneuron stimulation
applied with a 5-min interval. Only a more prolonged activation
by 30 pulses induced at both proximal processes and micro-
domains, an increase in the mean number of active sites (regions
of interest, ROIs) and the frequency of Ca2+ transients, whereas
Ca2+ event amplitude was increased in the proximal processes
and remained unchanged in the microdomains (Fig. 1b–d;
Fig. 2b, c, open bars, Supplementary Movie 1). As revealed by
both the raster plots reporting the Ca2+ events from all the
monitored GCaMP6f-astrocytes (Fig. 1c) and the quantification
of Ca2+ response properties (Fig. 2), a second 30 pulse stimulation
evoked reduced Ca2+ elevations suggesting a depression of the

astrocyte response to successive episodes of PV interneuron
activity.

Somatostatin interneurons evoke potentiating Ca2+ responses.
We then studied the Ca2+ dynamics in GCaMP6f-expressing
astrocytes from ChR2-SST-GCaMP6f mice. Optogenetic stimu-
lation by 10 light pulses (150 ms duration, 1 Hz) induced in
ChR2-expressing SST interneurons in vivo a firing activity (mean
firing rate, 13.4± 2.4 Hz; Supplementary Fig. 3) comparable to
that exhibited by these interneurons in awake mice23,24. To
support this finding, we performed fluorescence-guided juxtaso-
mal recordings in layer 2 of the somatosensory cortex of awake
head-fixed mice, trained to remain still under the microscope
(Supplementary Fig. 5a). Compatibly with previous studies, SST
interneurons exhibited periods of spontaneous firing containing
brief bursts of high instantaneous activity (Supplementary
Fig. 5b–d) similar to that induced in these neurons by our
optogenetic stimulation. In contrast to PV interneurons, 10 light
pulse stimulation of SST interneurons was sufficient to activate
GCaMP6f-astrocytes (Fig. 1e, f) inducing an increase in the mean
number of active ROIs and the mean frequency of Ca2+ events in
both proximal processes and microdomains (Fig. 2b, c, closed
bars; Supplementary Movie 2). As in the astrocyte response to PV
stimulation, the amplitude of Ca2+ events increased only in the
proximal processes. These data indicate that astrocytes are more
sensitive to SST than PV interneuron activity. Interestingly, with
respect to the first, a second episode of SST interneuron activation
by 10 pulses applied with a 5-min interval induced a greater Ca2+

response in astrocytes and a similar potentiation was observed
following the two successive 30 pulse stimulations. The raster
plots (Fig. 1f) and the quantification of Ca2+ response in the
proximal processes and microdomains (Fig. 2b, c) confirm that,
with respect to the first, a second episode of SST interneuron
stimulation (by either 10 or 30 pulses) was significantly more
effective, rather than less effective as in the case of PV inter-
neuron stimulation, indicating a potentiation of the astrocyte
response to SST interneuron signaling. The response depression
to PV interneurons and the response potentiation to SST inter-
neurons are confirmed by the significant leftward and rightward
shift, respectively, in the cumulative distributions of Ca2+ event
frequency (Fig. 2d). These in vivo results were fully replicated in
SSCx slices obtained from young ChR2-PV- and ChR2-SST-
GCaMP6f mice (Supplementary Figs. 6 and 7).

Integration of Ca2+ microdomain responses. With respect to
spontaneous events, the mean amplitude of evoked Ca2+ eleva-
tions in the proximal processes was significantly increased in
response to activation of PV or SST interneurons (Fig. 1d, g, red
traces and Fig. 2b, right panel), whereas that of evoked Ca2+

microdomains was unchanged (Fig. 1d, g, blue traces; Fig. 2c,
right panel; see also Supplementary Figs. 6 and 7). These data
suggest that the interneuron signaling is essentially encoded into
an increased microdomain frequency in the astrocytic fine pro-
cesses and subsequently integrated in the proximal processes into
larger amplitude Ca2+ elevations. Whether this signal integration

Fig. 1 Calcium signal dynamics reveal differential astrocyte responses to PV and SST interneuron activation. a Schematic of the in vivo experimental
approach (left) and of the optogenetic stimulation of ChR2-PV or ChR2-SST interneurons (right). b Top, images of a representative GCaMP6f-astrocyte in
layer 2/3 SSCx from an adult ChR2-PV-GCaMP6f mouse with the ROIs defined by GECIquant software for the Ca2+ response to the first 30 light pulse
stimulation (blue lines) of PV interneurons at the soma (yellow), proximal processes (red), and microdomains (blue), scale bar, 20 μm (see Supplementary
Movie 3). Bottom, Ca2+ signal dynamics at different astrocytic compartments before and after successive 10 and 30 light pulse PV interneuron activations.
Scale bars, 50 s, 20% dF/F0. c, d Raster plots of Ca2+ peaks (c) and mean time course of Ca2+ transients (d) from all in vivo monitored GCaMP6f-
astrocytes, at rest and following PV interneuron stimulations. Scale bar, 5 s, 20% dF/F0. e–g Same as in b–d, but for ChR2-SST-GCaMP6f mice and SST
interneuron stimulation
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involves also the astrocytic soma is, however, unclear. Indeed, due
to the documented sparse nature of GCaMP6f expression in
astrocytes20, somatic Ca2+ events in ChR2-PV- and ChR2-SST-
GCaMP6f mice were analyzed from a limited number of cells. We
therefore addressed this issue in ChR2-PV or ChR2-SST mice
after loading a large number of astrocytes with chemical Ca2+

indicators, such as Oregon Green BAPTA-1 or Fluo-4-AM, and
SR101, a specific astrocytic marker25. By evaluating Ca2+ signals
in vivo (Fig. 2e; Supplementary Fig. 8) and in slice preparations
(Supplementary Fig. 9), we observed somatic Ca2+ response of
astrocytes to both PV and SST interneurons. These results suggest

that the integration of microdomain Ca2+ signals involve, in
addition to the proximal processes, also the astrocytic soma. The
cumulative distributions of event frequency also revealed a sig-
nificant potentiation of somatic Ca2+ signals in response to SST
interneurons and a tendency to depression in response to PV
interneurons (Fig. 2f; Supplementary Fig. 9f).

Altogether, these data demonstrate that astrocytes
differently respond to PV and SST interneurons and change
their Ca2+ response as a function of the previous history of
activity in the surrounding GABAergic interneuron type-specific
network.
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We next performed additional in vivo and brain slice
experiments to obtain further insights into PV and SST
interneuron signaling and to control the specificity of the
astrocyte response. In SSCx slice preparations, we found that
the increased Ca2+ elevations induced by interneuron signaling in
the different astrocytic compartments, including microdomains,
were mediated by activation of GABAB receptors (GABABRs)
because they were abolished by the specific GABABR antagonist
SCH50911 (Supplementary Figs. 7 and 9). These responses were
independent on TRPA1 channel activation (Supplementary
Fig. 10), a channel that has been previously proposed to modulate
spontaneous microdomain activity26. The microdomain
responses were detected with a delay of 14.93± 1.34 s from the
onset of 10 pulse activation of SST interneurons and with longer
delays in the proximal processes and soma, which may reflect
slow intracellular GABABR-mediated signaling pathways. A
similar delay (14.97± 1.30 s; p = 0.949) of the microdomain
response was measured following the onset of 30 pulse activation
of SST interneurons (Supplementary Fig. 4c, d) suggesting that
the duration of interneuron stimulation does not affect the delay
of the astrocyte response. Altogether, these results suggest that
astrocytes do not respond rapidly to synaptically released GABA
and accompany a sustained interneuron activity with multiple,
slowly developing GABABR-mediated Ca2+ elevations.

We also evaluated the time window of the astrocyte response
potentiation to SST interneuron signaling by increasing the
interval between the first and the second SST interneuron
stimulation. We found that the potentiation is a transient
phenomenon as it was absent with 20-min intervals (p = 0.688)
and observed with 10-min intervals only as a small, albeit
significant (p = 0.031), increase in the mean number of active
microdomains (Supplementary Fig. 11).

To rule out the possibility of unspecific effects produced on
astrocytes by prolonged illumination with the imaging laser27, we

monitored Ca2+ signals in astrocytes from ChR2-SST- or ChR2-
PV-GCaMP6f mice without optogenetic stimulation. We failed to
detect during the imaging sessions any significant change in the
frequency or the amplitude of Ca2+ peaks in the different
astrocytic compartments, in both in vivo (Supplementary
Fig. 12a–c) and SSCx slice experiments (Supplementary
Fig. 12d–f).

The results obtained with the specific GABABR antagonist
SCH50911 indicate a direct effect of synaptic GABA on
astrocytes. The astrocyte response to interneurons might,
however, be due, at least in part, to an increased local network
excitability deriving from the inhibition exerted by SST
interneurons on PV interneuron firing that, in turn, reduces the
inhibition of PV interneurons to pyramidal neurons, ultimately
enhancing glutamatergic signaling28,29. To address this hypoth-
esis, we stimulated SST interneurons in the presence of
different glutamate receptor selective blockers, i.e., NBQX (10
μM, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline) for
AMPARs, D-AP5 (50 μM, D-2-amino-5-phosphonopentanoate)
for NMDARs and MPEP (50 μM, Methyl-6-(phenylethynyl)
pyridine) for the metabotropic glutamate type 5 receptor. Under
these conditions, the overall Ca2+ response of astrocytes to SST
interneuron signaling was unchanged (Fig. 3) suggesting that
glutamatergic signaling does not contribute to the astrocyte
response to SST interneuron activity.

The depression of astrocytic Ca2+ elevations in response to PV
interneurons and the potentiation in response to SST interneur-
ons could be due to a change in the synaptic release of GABA
rather than to an intrinsic astrocytic property. To address this
hypothesis, we measured the firing rate from PV and SST
interneurons and the amplitude of evoked inhibitory post-
synaptic currents (IPSCs) from pyramidal neurons, at each light
pulse in the two sets of 10 and in the two sets of 30 light pulses
applied with a 5-min interval. In the case of PV interneurons,
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besides an unchanged firing rate during each set of light pulses,
we observed a reduction in IPSC amplitude (Supplementary
Fig. 13e) that can be indicative of a GABAA receptor
desensitization30 and/or a decrease in synaptic GABA release.
The IPSC reduction during the two sets of 30 pulse PV
interneuron stimulation was, however, similar, in terms of both
its time course (p = 0.66 and p = 0.83 for the fast and the slow
time decay component, respectively) and amplitude (p = 0.55;
Supplementary Fig. 13e, f) suggesting that a decrease in GABA
release cannot explain the impairment of the astrocyte response
to the second PV interneuron stimulation. In the case of SST
interneurons, both the firing rate (Supplementary Fig. 13g–i) and
the evoked IPSC amplitude (Supplementary Fig. 13j–l) were
unchanged suggesting that the astrocyte response potentiation to
SST interneurons is unlikely due to an increase in the amount of
synaptically released GABA. However, direct measurements of
GABA concentrations would be necessary to validate this
conclusion.

Individual PV or SST interneurons recruit nearby astrocytes.
The optogenetic activation induces synaptic GABA release from a
large number of ChR2-expressing interneurons. We asked

whether a more restricted release of GABA, such as that deriving
from activation of a single interneuron, also recruits neighboring
astrocytes. To address this question, we used SSCx slices from
tdTomato-floxed::PV- and SST-Cre mice as well as G42 and GIN
mice expressing the enhanced green fluorescence protein (GFP)
in a subset of PV- or SST-positive interneurons, respectively, after
astrocyte loading with Fluo-4-AM and SR101. We found that
astrocytes from an area within 100 μm from the patched inter-
neuron were effectively recruited by individual PV or SST
interneuron activation (30 depolarizing current pulses, 300-ms
duration, 1 Hz) and they exhibited potentiated Ca2+ elevations in
response to SST interneuron and depressed Ca2+ elevations in
response to PV interneuron stimulation (Fig. 4d). Both responses
were sensitive to the GABABR antagonist SCH50911 (Fig. 4a–c).
A localized synaptic GABA release from a single interneuron is,
therefore, sufficient to recruit nearby astrocytes evoking a
response with the same properties as those of the response
observed in the optogenetic experiments.

Crucial role of the neuropeptide somatostatin. To clarify
whether the mechanism of the higher sensitivity of astrocytes to
SST than PV interneurons derives from a closer position of
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astrocytic processes to SST than PV interneuron synapses, we
performed electron microscope (EM) immunocytochemical
experiments. Obtained data revealed, however, similar structural
relationships between astrocytic processes and PV/SST inter-
neuron synapses (Supplementary Fig. 14; Table 1).

The different astrocytic response to PV and SST interneurons
may be due to a different molecular signaling between these
interneuron classes and astrocytes. To address this hypothesis, we
studied whether the neuropeptide SST, that is released in addition
to GABA by SST interneurons31, contributes to the response of
astrocytes. In double-immunogold EM experiments, we first
investigated whether astrocytes express SST receptors, focusing
on the SST type 4 receptor (SSTR4), which was previously
described in astrocytes from cell culture and hippocampal slice
preparations32,33. Post-embedding EM experiments revealed that
astrocytic processes express both GABAB2 and SSTR4 with
similar densities at perisynaptic astrocytic processes (PAPs) and
at processes not contacting symmetric synapses (nPAPs;
Fig. 5a, b). Most interestingly, pairs of GABAB2-SSTR4 gold
particles exhibiting an edge-to-edge separation distance within 50
nm, were found almost exclusively at nPAPs (Fig. 5c) suggesting
functional interactions between the two receptors. Notably, the
GABAB2-SSTR4 couples (<50 nm) were found at nPAPs at a
mean distance of 1.79± 0.10 μm from symmetric synapses
(Fig. 5d).

The specificity of the anti-GABAB2 and anti-SSTR4 antibodies
used in our EM immunocytochemical study was validated in
experiments on GABAB2

34 and SSTR435 knockout mice (Supple-
mentary Figs. 15 and 16; Supplementary Tables 2 and 3).

We then asked whether activation of astrocytic SSTRs could
induce per se Ca2+ signal changes. We found that application of
the neuropeptide SST (1–2 μM) induced a weak, albeit significant,
increase of Ca2+ event frequency in GCaMP6f-astrocytes from
SSCx slices (Fig. 6a, b). In the presence of tetrodotoxin (TTX, 1
μM) and a cocktail of different neurotransmitter receptor

antagonists, such as SCH (50 μM, for GABABR), MPEP (50 μM,
for mGluR5), and PPADS (100 μM, for P2YR), the response of
astrocytes to SST was unchanged suggesting a direct action of SST
on astrocytic SSTRs (Fig. 6c).

These observations prompted us to directly investigate whether
a synergistic action of SST may occur on GABA-mediated Ca2+

response of astrocytes to SST interneuron signaling. First, we
found that in the presence of CYN 154806 (20 μM), a SSTR
antagonist, SST interneuron activation by 10 light pulses was
ineffective and only following 30 pulses were Ca2+ changes
observed (Fig. 6d; Supplementary Movie 3). Second, in the
presence of CYN 154806, the astrocyte Ca2+ response induced by
a second episode of 30 pulse stimulation was not potentiated and
it rather exhibited a significant reduction in the mean number of
microdomains (p = 0.007) and the mean event frequency (p =
0.003, Fig. 6d, e, lower panels). Therefore, astrocytic Ca2+

responses to SST interneurons in the presence of CYN 154806
become comparable to those evoked by PV interneurons. We
next asked whether bath perfusion of the neuropeptide SST (1–2
μM) could result in an astrocyte response to PV interneurons
similar to that induced by SST interneurons. We found that under
these conditions, astrocytes did not exhibit the response
depression upon the second episode of 30 pulse activation of
PV interneurons, albeit they failed to respond to 10 pulse
stimulation (Fig. 7a–d). It appears, therefore, that PV interneuron
activation coupled with exogenous SST peptide can mimic, at
least in part, the astrocyte response to SST interneurons.

The results reported above suggest an important role of the
neuropeptide SST in the astrocyte response to SST interneurons.
To evaluate the degree of astrocytic response facilitation or
depression, we calculated the mean ratio of the second to the first
response of the astrocytes to the two successive activations of SST
interneurons (RR, see Methods), comprehensive of both Ca2+

elevations at proximal processes and microdomains, in the
absence or presence of the SSTR blocker, and of PV interneurons
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in the presence or absence of the neuropeptide SST (Fig. 8a).
Obtained values confirmed that the astrocyte response was
significantly depressed upon the 30 pulse successive stimulations
of PV interneurons and it was significantly facilitated upon both
10 and 30 pulse successive stimulations of SST interneurons.
When the activation of SSTRs was prevented, the astrocyte
response to SST interneuron stimulations was depressed and
became undistinguishable from that to PV interneurons.
Furthermore, when the PV interneuron stimulations were applied
in the presence of the neuropeptide SST, no depression of the
astrocyte response was observed (Fig. 8a).

Discussion
We analyzed the GABAergic signaling to astrocytes of PV- and
SST-expressing interneurons in the mouse somatosensory cortex
in vivo and in situ. Our work provides evidence for the following
main findings. First, astrocytes are more sensitive to SST than PV
interneuron signaling. Second, astrocytic Ca2+ responses weaken

or strengthen upon successive episodes of activity in PV and SST
interneuron circuit, respectively. Third, both the high sensitivity
and the potentiated Ca2+ response to SST interneurons crucially
depend on the neuropeptide Somastostatin, released by these
interneurons, and the following activation of SST receptors
expressed at astrocytic processes in close association with GABAB

receptors.
The higher sensitivity of astrocytes to SST than PV interneuron

signaling was revealed by the observation that a prolonged
activity in the PV interneuron circuit was necessary to evoke
astrocytic GABABR-mediated Ca2+ elevations, whereas a short
episode of activity in the SST interneuron circuit was sufficient to
activate astrocytes. These results provide indication of a signaling
specificity to the astrocytic network of GABAergic interneuron
subtypes. As a further support to this, we observed that astrocytes
activated by a first episode of activity in the PV interneuron
circuit, either failed to respond or exhibited a response depression
upon a successive episode of similar activity, both in terms of
frequency and amplitude of evoked Ca2+ elevations. In contrast,
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the robust long-lasting astrocytic Ca2+ oscillations evoked by an
initial SST interneuron activation were further strengthened by
successive episodes of activity and almost all astrocytes from the
SSCx layer 2–3 were ultimately recruited indicating that a sus-
tained activity in the SST interneuron circuit is complemented by
a sustained activity in the astrocytic network. Notably, evoked
GABABR-mediated Ca2+ elevations in astrocytes weaken or
strengthen when surrounding PV or SST interneurons are repe-
titively activated demonstrating a distinguished plasticity of the
astrocyte response to these two interneuron subtypes.

Clues for a modulation of the astrocytic Ca2+ elevations evoked
by neuronal signals have been previously obtained in cell cul-
tures36 and slice preparations37–40, but totally unexplored was
this property of astrocytes in the real functioning in vivo context.
Our study unveils that astrocytes in the adult mouse somato-
sensory cortex modulate their Ca2+ responses as a function of
previous states of activity in the surrounding interneuronal net-
work suggesting the existence in these glial cells of a form of
cellular memory. This remarkable plasticity of the astrocyte
response and the signaling specificity of GABAergic interneuron
subtypes suggest that astrocytes are functionally associated to

inhibitory circuits. Accordingly, the sustained recruitment of a
large astrocytic network to SST interneuron circuit, coupled with
the typically slow neuromodulatory action of gliotransmission5,
may contribute to the homeostatic regulation of dendritic inputs
and signal integration in pyramidal neurons that is a primary role
of SST interneurons4,23,41–43. Consistent with this hypothesis,
GABABR-mediated Ca2+ elevations in astrocytes has been
recently reported to evoke a release of the gliotransmitter gluta-
mate44 that significantly potentiates synaptic transmission in the
hippocampus45.

The differential properties of the astrocyte response to PV and
SST interneurons were observed following both optogenetic light
pulses, that activate a large number of ChR2-expressing inter-
neurons, and intracellular current pulse activation of individual
interneurons. A synaptic GABA release from a single interneuron
is, therefore, sufficient to recruit neighboring astrocytes indicating
that each interneuron is in extensive and efficient functional
contacts with the surrounding astrocytic network.

The mechanism governing the dynamics of Ca2+ micro-
domains is poorly defined. We here report that Ca2+ elevations
evoked by synaptic GABA in different astrocytic compartments,
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including microdomains, were mediated by activation of the
GABABR that previous studies reported to be functionally
expressed in astrocytes44–49. We also evaluated the possible
contribution of Ca2+ influx through TRPA1 channels that a
recent study using plasma membrane-targeted GCaMP3 pro-
posed to modulate spontaneous microdomain activity26. In our
study, we found that both spontaneous and evoked micro-
domains were not affected in the presence of the TRPA1
antagonist HC030031 (Supplementary Fig. 8). These findings
should, however, be interpreted with caution as cytosolic
GCaMP6f signal may understate near plasma membrane Ca2+

microdomain activity. The signaling pathways mediating the Ca2
+ microdomain activity remain, therefore, to be clarified. The
contribution of IP3 signaling pathway in the Ca2+ elevations
induced by PV and SST interneuron signaling also remains to be
defined. Future analyses on IP3R2-/- mice expressing ChR2 on PV
or SST interneurons and GCaMP6f on astrocytes will help clar-
ifying this important issue. It will be also important to validate the
GABAergic interneuron type-specific response of astrocytes in
awake non-anesthetized animals, given that astrocyte Ca2+ sig-
naling can be affected by anesthetics50,51.

The unique properties of the astrocyte response to SST inter-
neurons, i.e., the high sensitivity to synaptic GABA and the
potentiated Ca2+ elevations, were mediated by the neuropeptide
somatostatin that is co-released with GABA by SST, but not PV
interneurons31. Consistently, the astrocyte response was observed
after an intense activation of Somatostatin interneurons that
triggers somatostatin release52,53. As a further support to this
signaling mode of SST interneurons, our immunogold experi-
ments revealed a close association between SSTRs and GABABRs
at astrocytic processes that is consistent with functional interac-
tions occurring between the two receptors. GABABR-SSTR4
couples (<50 nm) were fundamentally found at processes not
contacting symmetric synapses, rather than at perisynaptic
astrocytic processes suggesting that once released from SST
interneurons, GABA and SST travel a certain distance before
reaching GABAB-SSTR4R couples. Therefore, a possible syner-
gistic action between the two astrocytic receptors, which may
account for the enhanced Ca2+ elevations in response to SST
interneurons, would eventually occur with a certain delay after
intense firing in these interneurons, as we observed in our
experiments. All together, our results suggest that astrocytes do
not respond rapidly to synaptically released GABA. Rather, they
sense GABA tonic elevations and accompany a sustained inter-
neuron activity with multiple, slowly developing Ca2+ elevations.

The mechanism of the Ca2+ response depression induced by
PV interneuron signaling to astrocytes remains to be defined.
Desensitization and internalization of GABAB receptors have
been reported to occur in neurons30,54, but whether similar
mechanisms also occur in astrocytes and account for the reduc-
tion of the astrocytic response to PV interneurons is unknown. If
this were the case, a prevention of GABAB receptor desensitiza-
tion or internalization by a concomitant activation of astrocytic
SST and GABAB receptors might account for the powerful
recruitment of astrocytes by SST interneuron signaling. Con-
sistent with this hypothesis, we found that exogeneous neuro-
peptide SST applications prevented the depression of the
astrocyte response, otherwise, occurring after the second episode
of PV interneuron stimulation, whereas it was not sufficient to
induce a response potentiation. A low SST concentration, possibly
due to poor penetration of the neuropeptide into the brain tissue,
might account for such a partial effect.

Subtypes of SSTRs have been reported to interact and form
heterodimers with other G-protein-coupled receptors generating
receptor oligomers that can have different desensitization and
internalization properties as well as unique pharmacological
profiles33,55–58. In support of this view, SSTR activation in cul-
tured astrocytes has been reported to synergistically potentiate the
Ca2+ response to α1 adrenergic receptor-mediated signaling55.

Different SSTRs are also expressed on neuronal axon terminals
and they are proposed to cooperate with pre-synaptic GABARs in
the control of glutamate release31. We cannot, therefore, exclude
that a change in the network activity mediated by neuronal SSTR
activation may contribute to modulate the astrocyte response to
SST interneuron signaling.

Besides SST, various neuropeptides, such as neuropeptide Y
(NPY), vasointestinal polypeptide (VIP), colecystokinin (CCK),
neurokinin B and enkephalins, are synthesized with GABA by
distinct interneuron classes and their release has been proposed to
contribute to interneuron-specific actions by targeting neuronal
receptors31. Our results suggest that neuropeptides are also used
by interneurons to target astrocytic receptors. Besides SSTRs,
astrocytes express, indeed, different receptors for neuropeptides
that are released by interneurons including NPY, VIP, CCK, and
opioids31,33,55,59. Based on these observations, we postulate that
the mode of the SST interneuron signaling that we describe here
may represent a general mechanism in brain networks by which
neuropeptide-releasing interneurons recruit to their specific cir-
cuits neighboring astrocytes inducing Ca2+ elevations with unique
spatial-temporal properties (Fig. 8b).
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In the somatosensory cortex of adult mice, we identified a
novel signaling mode of GABAergic interneurons that revealed
the presence of cell-specific interneuronal-astrocytic networks.
Our study opens a new perspective into the role of astrocytes as
distinct functional components of interneuron type-specific
neocortical circuits.

Methods
Mouse strains and adeno-associated virus injections. We used C57BL/6 wild
type (WT) mice and the following transgenic mice: Tg(GadGFP)45704Swn (GIN),
(CB6-Tg(Gad1-EGFP)G42Zjh/J) (G42), Pvalb<tm1(cre)Arbr>(PV-Cre) and Sst <
tm2.1(cre)Zjh>(SST-Cre), and tdTomato reporter line B6;129S6-Gt(ROSA)
26Sortm14(CAG-tdTomato)Hze/J. All procedures were conducted in accordance with
the Italian and European Community Council Directive on Animal Care and
approved by the Italian Ministry of Health. Injections of viral vectors AAV2/1.EF1.
dflox.hChR2(H134R)-mCherry.WPRE.hGH (Penn Vector Core, Addgene 20297)
or AAV1.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH, Addgene 20298), carrying
the doublefloxed ChR2 sequence, and AAV5.GfaABC1DcytoGCaMP6f.SV40,
carrying the astrocytic promoter GfaABC1D, which induces a sparse expression of
the Ca2+ indicator GCaMP6f in astrocytes, were performed into the SSCx of
postnatal day 35–50 (P35-P50) PV-Cre or SST-Cre mice anesthetized with Zoletil
(30 mg/kg) and Xylazine (20 mg/kg). Depth of anesthesia was assured by mon-
itoring respiration rate, eyelid reflex, vibrissae movements, and reactions to
pinching the tail and toe. Injections of the two viral vectors were performed after
drilling one or two holes (0.5 mm dia) into the skull over the SSCx at a distance of
1.5 mm (1.5 μl to each hole, 0–1.5 mm posterior to Bregma, 1.5 mm lateral to
sagittal sinus, and 150 μm depth) using a pulled glass pipette in conjunction with a
custom-made pressure injection system. After injections, the skin was sutured and
mice were revitalized under a heat lamp and returned to their cage. Optogenetic
and imaging in vivo experiments were performed in P50-P65 mice, 2 weeks after
injections. For slice experiments, PV-Cre and SST-Cre pups (P0–P2) anesthetized
by hypothermia and secured into a modeled platform were injected. Optogenetic
and imaging experiments were carried out on SSCx slices from P15-P25 mice.

Slice preparation, dye loading and patch-clamp recordings. Coronal SSCx slices
of 350 μm were obtained from mice at postnatal days P15-25. Animals were
anesthetized as reported above, the brain removed and transferred into an ice-cold
solution (ACSF, in mM: 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 25 glucose, pH 7.4
with 95% O2, and 5% CO2). Slices were cut in the solution reported in Dugue
et al.60 and then kept for 1 min in the solution (in mM): 225 D-mannitol, 2.5 KCl,
1.25 NaH2PO4, 26 NaHCO3, 25 glucose, 0.8 CaCl2, 8 MgCl2, 2 kynurenic acid with
95% O2, and 5% CO2. Finally, slices were kept in ACSF at 30 °C for 20 min and
then maintained between 19 and 22 °C for the entire experiment. In a set of
experiments, SSCx slices were incubated with the Ca2+ sensitive dye Fluo-4 AM
(10 μM; Life Technologies) and the selective astrocyte dye Sulforhodamine 10125

(SR101, 0.2 μM, Sigma Aldrich, Italy), as previously described44. For the in vivo
experiments, the bulk loading of cortical astrocytes was performed with the dye
OGB-1 AM (final concentration 1 mM, Thermo Fisher Scientific, USA) and SR101
(final concentration 0.5 mM). For whole-cell patch-clamp recordings, slices were
perfused in a submerged chamber at a rate of 3–4 ml/min with (in mM): 120 NaCl,
2.5 KCl, 1 NaH2PO4, 26 NaHCO3, 1 MgCl2, 2 CaCl2, 10 glucose, pH 7.4 (with 95%
O2 and 5% CO2). Neurons were visualized under a confocal microscope (TCS-SP5-
RS, Leica Microsystems, Germany) or a Multiphoton Imaging System (Scientifica
Ltd, UK) equipped with a CCD camera for differential interference contrast (DIC)
image acquisition. Single-cell recordings were performed in voltage- or current-
clamp configuration using a multiclamp 700B amplifier (Molecular Devices, USA).
Signals were filtered at 1 kHz and sampled at 10 kHz with a Digidata 1440 s
interface and pClamp 10 software (Molecular Devices). The pipette resistance was
3–4MΩ. Access resistance was monitored throughout the recordings and was
between 8.4 and 24.2 MΩ. Neurons that had a >15% change in access resistance
were discarded. Whole-cell intracellular pipette solution was (in mM): 145 K-
gluconate, 5 MgCl2, 0.5 EGTA, 2 Na2ATP, 0.2 Na2GTP, 10 HEPES, to pH 7.2 with
KOH, osmolarity, 280 ÷ 290 mOsm. Data were not corrected for the liquid junction
potential. Recordings were analyzed with Clampfit 10.3.

Drug applications. Drugs applied to the slice perfusion solution were: SCH50911
(20–50 μM), CYN 154806 (20 μM), and somatostatin (SST, 1–2 μM) from Tocris
(UK), Tetrodotoxin (1 μM), CGP52432 (20 μM), HC030031 (80 μM), NBQX (10
μM), APV (50 μM), MPEP (50 μM), PPADS (100 μM) from Abcam (UK).

Ca2+ imaging. To image Ca2+ dynamics in GCaMP6f-astrocytes, we used 2-photon
laser scanning microscope in both in vivo (Ultima IV, Bruker) and brain slice
(Multiphoton Imaging System, Scientifica Ltd., UK) preparations equipped with a
pulsed red laser (Chameleon Ultra 2, Coherent, USA) tuned at 920 nm. Power at
sample was controlled in the range 5–10 mW. The excitation wavelengths used
were 920 nm for GCaMP6f, 740 nm for Fluo-4 and 830 nm for OGB-1. SR101 is
visible at both 740 and 920 nm. Images were acquired with a water-immersion lens
(Olympus, LUMPlan FI/IR 20×, 1.05 NA), with a field of view between 700 × 700

μm and 120 × 120 μm at 1–3.5 Hz acquisition frame rate. Each Ca2+ signal
recording was performed in cortical layers 2–3 for about 2 min and 30 s with 5 min
interval between the first and the second stimulation of interneurons by 10 or 30
light pulses, whereas a longer interval of about 10 min was applied before initiating
the first 30 pulse stimulation. In control experiments, the same imaging protocol
was applied without optogenetic stimulation. A confocal laser scanning microscope
(TCS-SP5-RS, Leica Microsystems, Germany) equipped with two lasers tuned at
488 nm and 543 nm was used only in a subset of experiments to continuously
monitor Ca2+ signals from GCaMP6f-astrocytes during optogenetic light activation
of PV or SST interneurons in SSCx slices (Supplementary Fig. 4), an unfeasible
condition in our 2-photon experiments. In in vivo imaging experiments, P55-P65
ChR2-PV-GCaMP6f or ChR2-SST-GCaMP6f mice were anesthetized with ure-
thane (20% urethane, ethylcarbamate; SIGMA Aldrich). Animal pinch withdrawal
and eyelid reflex were tested to assay the depth of anesthesia. Dexamethasone
sodium phosphate (2 mg/kg body weight) was injected intramuscularly to reduce
cortical stress response during surgery and prevent cerebral edema. Atropine (0.05
mg/kg body weight) was injected subcutaneously to avoid saliva accumulation.
Both eyes were covered with an eye ointment to prevent corneal desiccation during
the experiment. We monitored the respiration rate, heart rate, and core body
temperature throughout the experiment. The mouse was head-fixed and a cra-
niotomy of 2–3 mm in diameter was drilled over the SSCx. Mice were mounted
under the microscope with a metal head-post glued to the skull. Imaging was
performed through a water-immersion lens (Olympus, LUMPlan FL/N 20×, 1.05
NA) at a resolution of 512 × 512 pixels with zoom 4, leading to a field of 50.7 ×
50.7 μm in superficial layers (50–150 μm below the cortical surface) and acquired at
1–2 Hz. Imaging session lasted up to 2 h.

Optogenetic stimulation. Full-field photo-stimulation of ChR2-expressing inter-
neurons consisted of 150 ms light pulses (λ = 473 nm) delivered by a blue module
laser diode (MLD, COBOLT, Solna, SE), which was collimated and coupled under
the objective with an optic fiber (ThorLabs, NJ, USA) held at 26° angle above the
brain tissue. The optic fiber was 300 μm in diameter with a 0.22 NA. The resulting
illuminated ellipse was 550 μm long and 150 μm wide.

Two-photon-targeted juxtasomal recordings in vivo. Experimental procedures
followed what previously described61. In brief, for recordings in anesthetized mice,
PV-Cre/tdTomato and SST-Cre/tdTomato double-transgenic mice were injected at
P0 with AV2/1.EF1.dflox.hChR2(H134R)-mCherry.WPRE.hGH (Addgene 20297).
Four to five weeks after virus injections mice were anesthetized with urethane (2 g/
kg) and a small craniotomy (~1 mm × 1mm) was opened onto the mouse skull.
The patch pipette (resistance: 4–9MΩ) was filled with ACSF solution mixed with
Alexa Fluor-488 (20 μM, Invitrogen Thermo Fisher, USA) and lowered to cortical
layer 2/3 (110–300 μm from the brain surface). tdTomato-positive neurons were
targeted by imaging their fluorescence with the two-photon microscope (λ = 920
nm or 730 nm). Full-field optogenetic stimulation of interneurons was performed
as in Zucca et al.61 Light intensity was 0.2–6 mW at the fiber tip. For recordings in
non-anesthetized mice, 2 weeks before the experiment mice were anesthetized with
2% isoflurane/0.8% oxygen and a custom metal plate was mounted with dental
cement on the skull. Habituation sessions were performed on each day (starting
2–3 days after plate implantation) with a gradually increasing duration (from 15 to
60 min, for 7–10 days). The day of the recording, mice were anesthetized with
isofluorane and a small craniotomy was opened on the somatosensory cortex as
described above. After the surgery, mice recovered for at least 30 min before the
beginning of the experimental session. Electrical signals were amplified by a
Multiclamp 700B, low-pass filtered at 10 kHz, digitized at 50 kHz with a Digidata
1440 and acquired with pClamp 10 (Axon instruments, USA). Electrophysiological
traces were analyzed using Clampfit 10 software.

Pre-embedding electron microscopy. Three C57BL/6 (P21) mice were anesthe-
tized with chloral hydrate (12% i.p., 300 mg/kg) and perfused through the
ascending aorta with physiological saline solution followed by a mixture of 4%
paraformaldehyde (PFA) and 0.2% glutaraldheyde in PBS. Brains were post-fixed
in the same fixative used for perfusion for 3 days and parietal cortex was cut serially
in the coronal plane (40 μm sections) with a vibratome and immediately processed
for immunoperoxidase according to previous pre-embedding electron microscopy
protocols62. For antibody specificity on the SSTR4, two 9-month-old mice (WT
and SSTR4 KO35) were perfused through the ascending aorta with a flush of
physiological saline solution followed by 4% PFA in PBS. Brains were post-fixed in
the same fixative for 1 h, cryopreserved and then frozen until cutting by a vibra-
tome. For antibody specificity on the GABAB2 two 7-week-old WT BALB/c JR1
mice and two GABAB2 KO BALB/c JR1 mice34 were perfused through the
ascending aorta with physiological saline solution followed by 4% PFA in PBS.
Brains were post-fixed in the same fixative used for perfusion for 7 days until
cutting by a vibratome. For PV and SST visualization sections were incubated in a
solution containing rabbit polyclonal anti-PV (1:500; raised against rat muscle PV;
PV28, RRID:AB_10013386, Swant, Switzerland) or rat monoclonal anti-SST pri-
mary antibodies (1:80; raised against synthetic 1–14 cyclic SST, MAB 354; RRID:
AB_2255365 EMD Millipore, Germany; 2 h at room temperature and overnight at
4 °C)63. The following day, sections were incubated in a solution containing the
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appropriate biotinylated secondary antibodies (1:200; Jackson ImmunoResearch,
USA; 1 h at room temperature). Antibody bindings sites were visualized by
avidin–biotin peroxidase complex, 3,3 diaminobenzidinetetrahydrochloride and
H2O2

62. Method specificity was verified by substituting primary antibodies with
phosphate buffer (PB) or non immune serum. Subsequently, embedding procedure
of immunoperoxidase processed sections was performed as described62. Small
blocks of embedded tissue containing layers 2/3 of the SSCx were selected, glued to
blank epoxy and sectioned with an ultramicrotome (MTX; Research and Manu-
facturing Company Inc., USA). The most superficial ultrathin sections (60 nm)
were collected and mounted on 200 mesh copper grids, stained with Sato’s lead and
examined with a Philips EM 208 and CM10 electron microscope (Eindhoven, The
Netherlands) coupled to a MegaView-II high resolution CCD camera (Soft Imaging
System, Germany). Identification of labeled and unlabeled profiles was based on
established morphological criteria64. Microscopic fields were selected and captured
at original magnifications of 30,000 or ×50,000. According to the different post-
synaptic targets of PV and SST interneurons, PV interneuron immunopositive
terminals were sampled at axo-somatic, proximal axo-dendritic, and axo-axonic
synapses, and SST interneuron immunopositive terminals at axo-dendritic shaft
and axo-spinous synapses PAPs were then identified and quantification at sym-
metric synapses of PV and SST interneurons performed.

Post-embedding electron microscopy. Three C57BL/6 (P21) were anesthetized
with chloral hydrate (12% i.p.; 300 mg/kg) and perfused through the ascending
aorta with a flush of physiological saline solution followed by 4% PFA in PBS.
Brains were post-fixed in the same fixative for 7 days and parietal cortex was cut
serially in the coronal plane in 50 μm thick sections with a vibratome. Sections were
processed for an osmium-free embedding method62,65,66. Chips including layers 2/
3 of SSCx, were selected, glued to blank resin blocks and sectioned with an
ultramicrotome. Thin sections (60–80 nm) were cut and mounted on 300 mesh
nickel grids and processed for immunogold post-embedding labeling62,65,66. For
GABAB2 and SSTR4 visualization, grids were incubated overnight (26 °C) in a
solution containing anti-GABAB2 mouse monoclonal antibody (1:50; raised against
amino acids 183–482 mapping within an extracellular domain of GABAB2 of
human origin, specific for detection of GABAB2 of mouse, rat and human; H10; sc-
393270, Santa Cruz Biotechnology Inc., USA) and anti-SSTR4 rabbit polyclonal
antibody (1:50; raised against amino acids 171–220 of SSTR4 of human origin,
specific for detection of SSTR4 of mouse, rat and human; H50; sc-25678, RRID:
AB_2196360, Santa Cruz Biotechnology), and then incubated for 2 h (26 °C) in a
solution containing anti-mouse and anti-rabbit secondary antibodies conjugated to
18 and 12 nm gold particles (1:20; 115–215–068, 111–205–144, Jackson Immu-
noResearch, USA). Grids were finally stained with uranyl acetate and Sato’s lead.
The optimal concentration of antibodies to GABAB2 and SSTR4 was sought by
testing several dilutions; the concentration yielding the lowest level of background
labeling and still immunopositive elements was used to perform the final studies.
Gold particles were not detected when primary antiserum was omitted. When
normal serum was substituted for immune serum, sparse and scattered gold par-
ticles were observed, but they did not show any specific relationship to subcellular
compartments. Ultrathin sections (15 ultrathin sections/animal) were examined at
×50,000–85,000 and fields that included at least 1 immunolabeled astrocytic profile
and/or perisynaptic astrocytic process associated with a symmetric synapse exhi-
biting a clear pre-synaptic (AZ) and post-synaptic specialization were selected64,67.
For determining the relative density of GABAB2 and SSTR4 double-labeled
astrocytic profiles, pyramidal cell nuclei were also identified: gold particles within
labeled structures counted and areas calculated using ImageJ (NIH, Bethesda, MD,
USA). Background was calculated by estimating labeling density over pyramidal
cell nuclei (0.54± 0.05, n = 12 for GABAB2 and 0.57 ± 0.02, n = 12 for SSTR4)62,68.
Particle densities were counted in perisynaptic (PAPs; 42.43± 7.27 for GABAB2

and 44.02± 10.66, n = 40 for SSTR4) and non perisynaptic astrocytic processes
(nPAPs; 44.26± 6.07 for GABAB2 and 49.88± 7.87 for SSTR4) and compared with
background labeling. Gold particles were considered associated with plasma
membrane if they were within 15 nm of the extracellular side of the membrane, and
cytoplasmic if they were 25 nm from the extracellular processes. Edge-to-edge
separation distance between GABAB2 and SSTR4 membrane-associated gold par-
ticle pairs were measured and the distribution of the separation distance between
immunogold labeled GABAB2 and SSTR4 pairs was determined69,70. In astrocytic
processes, pairs of immunogold labeled GABAB2 and SSTR4 with an edge-to edge
distance within 50 nm, were also localized with respect to the closest AZ margin of
symmetric synapses. Lateral position of a pair was defined as the distance along the
plasma membrane from the AZ edge to the middle point between the two particles,
and measured using ImageJ. For experiments in KO mice and relative controls,
microscopical fields containing spines, axon terminals and astrocytic processes
with at least one gold particle for GABAB2 analysis, proximal and distal dendrites,
axon terminals, and astrocytic processes for SSTR4 analysis were randomly
selected. For both pre- and post-embedding studies, all material from WT and KO
mice was processed in parallel. Acquisition of ultramicroscopical fields and density
analysis of WT and KO mice were performed in a blind manner.

Immohistochemistry and cell counting. For the evaluation of the number of
GCaMP6f-expressing astrocytes and neurons we prepared 100 μm thick brain slices
from young and adult animals injected with AAV-ChR2 and AAV2/5.GfaABC.

cyto.GCaMP6. Slices were fixed in cold 4% PFA for 2 h, washed with PBS and
processed for double immunofluorescence staining. First, we incubated floating
sections for 1 h in the Blocking Serum (BS: 1% BSA, 2% goat serum and 1% horse
serum in PBS) and 0.2% TritonX-100. We then performed a second incubation
with primary antibodies mixed and diluted in BS and 0,02% TritonX-100 (16 h at 4
°C). Primary antibodies used were: anti-NeuN antibody (RRID:AB_2298772, 1:400
mouse, Millipore MAB377) plus anti-GFP (RRID:AB_221477, 1:200 rabbit, Invi-
trogen Thermo-Scientific, A21311), and anti-glial fibrillary acidic protein (GFAP,
RRID:AB_10013382, 1:300 rabbit, Dako, Denmark, Z0334) plus anti-GFP (RRID:
AB_221568, 1:200 mouse, Invitrogen Thermo-Scientific, A11120). The anti-GFP
antibodies were used to enhance the GCaMP6f fluorescence. After washing with
PBS, slices were incubated for 2 h at room temperature with secondary antibodies
conjugated with Alexa Fluor-488 (for staining GFP) and with Alexa Fluor-633 (for
staining NeuN or GFAP; Invitrogen Thermo-Scientific, 1:500). Slices were then
washed and mounted on glass coverslips. Negative controls were performed in the
absence of the primary antibodies. For the evaluation of the number of PV- and
SST-interneurons expressing ChR2, PV-cre/tdTomato and SST-cre/tdTomato
double-transgenic mice were injected at P0 with AAV1.EF1a.DIO.hChR2(H134R)-
eYFP.WPRE.hGH (see above for details). Four weeks after virus injection, mice
were anesthetized with urethane (2 g/kg) and perfused transcardially with 0.9%
saline solution, followed by 4% PFA in 0.1 M PB, pH 7.4. Brains were post-fixed for
6 h, cryoprotected in a 30% sucrose solution in 0.1 M PB pH 7.4 and frozen. Free-
floating coronal serial sections (40 μm) from injected PV-cre/tdTomato and SST-
cre/tdTomato mice were collected and stained against parvalbumin or somatos-
tatin, respectively. The following primary antibodies were used: anti-parvalbumin
(RRID: AB_477329, 1:1000 mouse, Sigma P3088) and anti-somatostatin (RRID:
AB_2255365, 1:200 rat, Millipore MAB 354). Secondary antibodies consisted of:
goat anti-mouse 647 (RRID: AB_141725, 1:800, Molecular Probes A21236) and
goat anti-rat 647 (RRID:AB_141778, 1:800, Molecular Probes A21247). Sections
were mounted on SuperFrost slides (Molecular Probes), air dried, and coverslipped
in polyvinyl alcohol with diazabicyclo-octane (DABCO). Confocal image z-stacks
were captured through the thickness of the slice at 1 μm steps and used for double-
labeled cell count using an open source ImageJ plugin.

Data analysis. Detection of astrocyte ROI containing Ca2+ elevations was per-
formed with ImageJ in a semi-automated manner using the GECIquant plugin20.
The software was used to identify ROIs corresponding first to the soma (>30 μm2;
confirmed by visual inspection), then to the proximal processes (>20 μm2 and not
corresponding to the soma) and finally to the microdomains (between 1 and 20
μm2 corresponding to neither the soma nor the proximal processes). All pixels
within each ROI were averaged to give a single time course F(t). Analysis of Ca2+

signals was performed with ImageJ (NIH) and a custom software developed in
MATLAB 7.6.0 R2008 A (Mathworks, Natick, MA, USA). To compare relative
changes in fluorescence between different cells, we expressed the Ca2+ signal for
each ROI as dF/F0 = (F(t) − F0)/(F0). We then defined as baseline trace for each ROI
the points of the Ca2+ trace with absolute values smaller than twice the standard
deviation of the overall signal. Significant Ca2+ events were then selected with a
supervised algorithm as follows. Firstly, a new standard deviation was calculated on
the baseline trace, and all local maxima with absolute values exceeding twice this
new standard deviation were identified. Secondly, of these events, we considered
significant only those associated with local calcium dynamics with amplitude larger
than threefold the new standard deviation. The amplitude of each Ca2+ event was
measured from the 20th percentile of the fluorescent trace interposed between its
maximum and the previous significant one (see Supplementary Fig. 17). Essentially,
this procedure combines a threshold measured from the global baseline with a
stricter threshold computed from a local baseline. We adopted this method to
reduce artefacts from the recording noise superimposed on the slow astrocytic
dynamics and from slow changes in baseline due to physiological or imaging drifts.
All the Ca2+ traces were visually inspected to exclude the ROIs dominated by noise.
For all experiments, we calculated the number of active ROIs and for each ROI
corresponding to the soma, proximal processes and microdomains the frequency,
and the amplitude of the Ca2+ signal. All the Ca2+ peaks were aligned to their onset
to compute the average Ca2+ peak (Supplementary Fig. 17). The onset of each Ca2+

event was defined as the last time point when its fluorescence trace was below one
standard deviation of the baseline. Finally, the time onset of all detected Ca2+

events was reported in raster plots and peristimuls time histograms (PSTH). These
procedures were applied for the analysis of both in vivo and brain slice data. To
provide an estimate of the change in the overall microdomain activity per astrocyte
following PV or SST interneuron stimulation, the number of individual micro-
domains (active ROIs) and the average frequency of Ca2+ microdomain events per
cell were measured under the different experimental conditions. Then, these values
were averaged across all astrocytes to obtain the bar graphs reported in the figures.
A response ratio (RR; Fig. 8a) that describes the change in the response of astro-
cytic processes to successive stimuli was calculated as follows. Firstly, for each
astrocyte the response to a given interneuron stimulation was measured by the
number of active ROIs, frequency and amplitude of Ca2+ peaks at proximal and
fine processes. These values were normalized to their corresponding baseline
values, pooled and averaged. Secondly, the astrocyte RR was defined as the ratio of
the second to the first response to 10 (or 30) pulse activation of PV or SST
interneurons.
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Mean IPSCs peak amplitudes in Supplementary Fig. 13 were fitted to the double
exponential equation A(t) =A1*exp(−x/t1) + A2*exp(−x/t2), where A1 and A2 are
the amplitude of the fast and the slow decay component and t1 and t2 are the
corresponding decay time constants.

Statistical analysis. Data were tested for normality before statistical analysis. For
the number of ROIs and the frequency of astrocytic Ca2+ events, we used paired
Student’s t-test (on normal data distribution) or paired sample Wilcoxon signed-
rank test (on non-normal data distribution). For the RR, one sample Wilcoxon
signed-rank test was used. For cumulative distribution comparisons, we applied the
Kolmogorov–Smirnov test. For EM data, normality test and statistical analysis were
performed using GraphPrism v.4.0 (GraphPad Software, San Diego, CA, USA).
Given the non-normal distribution of data, Mann–Whitney test and Kruskal Wallis
with Dunn’s multiple comparison test were used. Pairwise statistical comparisons
of each value of the astrocyte response to a given stimulation was carried out with
respect to basal values. The astrocytes response to the two successive 10 (or 30)
pulse stimulation was also similarly evaluated. All results are presented as mean±
SEM. Results were considered statistically significant at p ≤ 0.05. *p ≤ 0.05, **p ≤
0.01, ***p ≤ 0.001. The exact p-values for each set of data are reported in the
Supplementary Table 4.

Data availability. Data presented in this work are available from the corre-
sponding author upon reasonable request.
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A B S T R A C T

Brain network activity derives from the concerted action of different cell populations. Together with inter-
neurons, astrocytes play fundamental roles in shaping the inhibition in brain circuitries and modulating neuronal
transmission. In this review, we summarize past and recent findings that reveal in neural networks the im-
portance of the interaction between GABAergic signaling and astrocytes and discuss its physiological and pa-
thological relevance.

1. Introduction

The dynamic communication among different types of neurons in
the brain is finely tuned to achieve a fast and accurate computation of
incoming sensory signals, which ultimately governs cognitive and
motor functions. Over the last two decades, a growing body of evidence
revealed that astrocytes, a functionally heterogeneous class of glial cells
in the brain [1], are not merely passive supporters of brain function, but
they rather actively participate in information processing. The study of
neuron-astrocyte interactions has brought to the concept of the tri-
partite synapse in which astrocytic processes, which enwrap the pre-
and post-synaptic neuronal elements, contribute to synaptic transmis-
sion modulation. Astrocytes possess a wide variety of plasma membrane
receptors and respond to neurotransmitters with intracellular [Ca2+]
elevations. The consequent release of gliotransmitters, such as gluta-
mate, D-serine and ATP establishes a bidirectional communication with
neurons, which contributes to different forms of short- and long-term
plasticity of synaptic transmission [2]. The release of these molecules
from activated astrocytes can involve different pathways and mechan-
isms, some of which depend on intracellular calcium increases and
vesicular release, others - unrelated to calcium signal - on plasma
membrane transporters or channels [3].

While numerous in situ and in vivo studies explored the role of the
astrocytes in glutamatergic, cholinergic and noradrenergic signaling
pathways [4–6], the involvement of astrocytes in GABAergic pathways
has been poorly investigated. GABAergic inhibitory signals are gener-
ated by a very heterogeneous class of interneurons in terms of firing
properties, molecular markers, somatic, dendritic and axonal mor-
phology and represent a fundamental operation in brain neural net-
works [7–10]. Most importantly, the signaling diversity of the different

types of GABAergic interneurons to post-synaptic neurons is crucial to
generate the functional heterogeneity of brain circuits [11]. Two key
interneuron types are the Somatostatin-expressing (SST) and the Par-
valbumin-expressing (PV) interneurons. The former target the tuft
dendrites of principal cells providing an efficient control of dendritic
signal integration, the latter target different sub-compartments of
principal cells: the PV basket cells target the soma and the proximal
dendrites, while the PV chandelier cells target the axon initial segment.
PV interneurons are, therefore, in a privileged position to control the
timing of the action potential firing. Interneurons subtypes are also
interconnected, with SST interneurons being inhibited by vasoactive
intestinal peptide (VIP) interneurons and, in turn, inhibiting PV inter-
neurons [12]. During development, SST interneurons also exert an
important role in the synaptic maturation of PV interneurons [13].
Recent in vivo studies highlighted some distinct features of SST and PV
interneurons. In the hippocampus SST interneurons regulate the size of
neuronal memory ensembles, therefore determining the size of cellular
engram [14]. In the neocortex, the transition to active wakefulness
modulates the activity of SST interneurons in a layer-specific way, es-
sentially depending on the degree of VIP interneuron or cholinergic
innervation, with consequences on dendritic inhibition of different
principal cells [15]. In the medial entorhinal cortex, a key component
for neuronal representation of the space in mammalian brain, PV and
SST interneurons interact with distinct, spatially modulated sub-
populations of cells. Interestingly, PV interneurons are needed to spe-
cifically tune the activity of grid and speed cells, while SST interneurons
are recruited to maintain the spatial specificity in cells [16].

Understanding how interneurons - and possibly different inter-
neuron subtypes - interact with astrocytes, and whether these glial cells
integrate GABAergic communication is fundamental to widen our
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comprehension of brain circuit function. In this review, we will discuss
the following raising issues: i) the astrocytic response to GABAergic
signals; ii) the relevance of GABA-activated astrocytes (GAAs) in dis-
tinct brain circuits; iii) the astrocytic ability to influence GABAergic
transmission; iv) the physiological and pathological relevance of in-
terneuron-astrocyte interplay.

2. Activation of astrocytes by GABA

The expression in astrocytes of ionotropic and metabotropic GABA
(γ-Aminobutyric acid) receptors (Rs) as well as of GABA transporters
(GATs) indicate that astrocytes have the potential to sense GABAergic
signals. Direct evidence that astrocytes can respond to GABA was ob-
tained in electrophysiological studies firstly in acutely isolated astro-
cytes [17,18] and later in hippocampal, retinal and cerebellar slices
[19–21], where astrocytes were shown to possess functional GABAARS

similar to those observed in neurons. However, while the activation of
GABAARs leads to hyperpolarization in mature neurons, it drives a
depolarizing current in astrocytes. This different effect is dependent on
the high expression in astrocytes of the Na+/K+/Cl− cotransporter
(NKCC1) that maintains in these cells a larger intracellular concentra-
tion of Cl− ions with respect to neurons, thus inverting the trans-
membrane gradient. This event contributes to regulate extracellular
[Cl−] levels [22], thereby buffering extracellular chloride and ulti-
mately allowing to maintain an efficient GABAergic signaling. The
possible physiological consequence of Cl−-mediated astrocytic depo-
larization is still a matter of debate. Unlike neurons, astrocytes are
electrically non-excitable cells and exhibit a form of excitability that
relies on intracellular Ca2+ elevations. The first clue of this Ca2+-based
form of excitability in astrocytes was obtained in the early 1990 s, when
the application of Ca2+ imaging techniques to cultured astrocytes re-
vealed that these cells respond to neurotransmitters with intracellular
Ca2+ elevations [23,24]. This property of astrocytes was confirmed in
different brain regions where astrocytes respond with Ca2+ elevations
to the synaptic release of different neurotransmitters [33,34,35,25–27].
The neurotransmitter GABA makes no exception to this rule, evoking
astrocytic Ca2+ events that were mediated by the activation of iono-
tropic GABAA and/or metabotropic GABABRs [28] (Fig.1A–B). Calcium
elevations mediated by GABAARs activation are dependent on Ca2+

influx from extracellular space through voltage-sensitive Ca2+ channels
(VOCCs), activated upon membrane depolarization. In contrast, the
mechanism of GABABR-mediated Ca2+ events has been shown to in-
volve G proteins and Ca2+ release from internal stores [29,30]. Indeed,
the specific GABABR agonist baclofen (BAC) fails to induce astrocytic
Ca2+ elevations in mice lacking the IP3R type 2 (IP3R2-/-), which in the
brain is mainly, if not exclusively, expressed in astrocytes [31,32].
Additionally, astrocytic Ca2+ signaling upon GABA activation depends
also on Gi/o protein activation, as it occurs in neurons [30]. Several
studies demonstrated that GABA activation of astrocytes can be also
mediated by GATs. Olfactory bulb astrocytes enwrapping GABAergic
synapses were shown to respond to synaptically released GABA with

intracellular Ca2+ events that were fully prevented by GAT blockers
[33]. In a more recent study, Boddum and co-workers similarly found
that activation of GAT3 induces astrocytic Ca2+ increases in the hip-
pocampus [34]. The general mechanism that drives intracellular Ca2+

increases in astrocytes upon GAT activation depends on the co-trans-
port of GABA and Na+. The increase in intracellular Na+ concentration
that follows GAT activity leads to the inverse operation of the Na+/
Ca2+ exchanger (NCX) with a consequent increase in cytosolic [Ca2+]
[33] (Fig.1C).

2.1. Astrocytes activated by different GABAergic interneurons

A topic of interest concerning GABA-activated astrocytes is to
characterize the dynamics and properties of Ca2+ signals evoked by
GABA. Taking advantage of the genetically encoded Ca2+ indicator
GCaMP3, it has been demonstrated that GABA evokes at the soma and
the processes of neocortical astrocytes oscillatory and long-lasting Ca2+

responses both in situ and in vivo [30] (Fig. 2A–C). Noteworthy, these
responses were shown to possess a form of plasticity, which depends on
the subtype of GABAergic interneurons recruiting astrocytes [35]. A
selective optogenetic light pulse activation of ChR2-expressing PV or
SST interneurons, in both slice and in vivo preparations of the mouse
somatosensory cortex (SSCx), was indeed observed to evoke weak and
robust GABABR-mediated Ca2+ elevations, respectively. Furthermore,
astrocytic Ca2+ elevations were depressed after repetitive stimulation
of PV interneurons, but they were potentiated after repetitive stimula-
tion of SST interneurons. The potentiated Ca2+ response was shown to
crucially depend on the neuropeptide SST, co-released with GABA by
SST interneurons, suggesting that different interneurons may avail of
the concurrent release of GABA and neuropeptides to differentially re-
cruit astrocytes to their specific circuits. Overall, this study unveils the
existence in the brain of specific interneuron type-astrocyte networks in
which astrocytes not only discriminate the GABAergic signaling from
different interneuron subtypes, but also retain memory of the previous
history of activity in the surrounding interneuron network. These
properties of astrocytes are akin to those of memory cells and define a
new context that could help to direct future studies on learning and
memory mechanisms in brain circuits, specifically with respect to the
role played in these phenomena by the neuropeptide Somatostatin and
the SST interneurons [14,36–39].

3. Can GABA-activated astrocytes modulate neuronal activity?

The effect of GABA-activated astrocytes (GAAs) on neuronal activity
has been mainly explored in the hippocampus, with the first pioneering
study published in 1998. In this paper, Kang and collaborators provided
evidence that GABA can trigger in hippocampal astrocytes a Ca2+ de-
pendent release of glutamate which increases the probability of GABA
release onto pyramidal neurons (PyrNs) [40]. This enhancement of
inhibitory transmission was strictly dependent on the astrocyte Ca2+

response to GABA, since it was abolished when Ca2+ elevations were

Fig. 1. (A–C) Intracellular pathways leading to Ca2+ increase in GABA-activated astrocytes.
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blocked by GABABR antagonists or by the insertion of the Ca2+ chelator
BAPTA into the astrocytic syncytium. Less than a decade later, it was
reported that in the same CA1 region of hippocampus, glutamate re-
leased from GAAs can also act on presynaptic group II/III metabotropic
glutamate receptors (mGluRs) and cause a transient reduction in glu-
tamate release probability at glutamatergic axon terminals, a phe-
nomenon known as transient heterosynaptic depression (tHD) [41].
Beside glutamate, other gliotransmitters released by GAAs can mod-
ulate synaptic strength. The group of Robitaille reported that astrocytes
are directly involved in another form of heterosynaptic depression (HD)
in hippocampal circuits, which depends on astrocytic release of ATP, its
conversion to adenosine and activation of presynaptic A1RS, finally
decreasing glutamate release probability [42]. More relevant for the
role of GAAs, it was reported that both astrocytic Ca2+ responses and
HD were dependent on GABABR activation. The astrocytic influence on
HD can also involve the specific astrocytic GABA transporter GAT-3. In
hippocampal astrocytes, GAT-3 activation leads to a Ca2+- dependent
release of ATP/adenosine, that acting on presynaptic A1Rs causes a
diffused inhibition of neuronal glutamate release, contributing to the
homeostatic control of network activity [34]. So far, we presented how
GAAs can contribute to “diffusion” of inhibition in hippocampal net-
works. Unexpectedly, astrocytes have also the potential to decode in-
terneuron activity and convert inhibitory into excitatory signals, as
unveiled in Perea [43]. Minimal Schaffer collateral stimulation was
paired with applications of depolarizing pulses to an individual hip-
pocampal interneuron, while assessing the response of a synaptically
connected pyramidal neuron. Depending on the strength of interneuron
activation, resulting in single APs or AP bursts, this experimental pro-
tocol resulted in inhibition or potentiation of CA3-CA1 synapses, re-
spectively. While inhibition was dependent on presynaptic GABAARs,
burst-induced potentiation relied on GABABR activation and it was
accompanied by Ca2+ elevations in astrocytes. Depletion of internal
Ca2+ stores through thapsigargin perfusion and selective BAPTA
loading in the astrocytic syncytium both succeeded in abolishing not
only Ca2+ elevations in astrocytes but also the synaptic potentiation.
The same downstream effects were obtained in the presence of GABAB

receptor antagonists and using an astrocyte-specific GABABR1 knockout

mouse. As expected, the deletion of GABABRs in astrocytes hampered
the potentiation upon interneuron bursts, while leaving intact the in-
hibitory effect of single AP induction, confirming that GAAs are ne-
cessary for this potentiation. Again, slight variations in the context and
the molecular players, in this case CA3-CA1 synapse and astrocytic
glutamate acting on presynaptic mGluRI, determine the final effect of
GAAs on the neurotransmission modulation.

The role of GAAs in tuning neuronal activity has been explored also
in the cortex in a recent paper by Mariotti [30]. In this study, the au-
thors chose to monitor, as a marker of neuronal activation by astrocytic
release of glutamate, slow inward currents (SICs), events of widely
accepted astrocytic origin. SICs are indeed preserved when synaptic
transmission is inhibited by TTX and TeNT, and can be induced by a
variety of protocols all resulting in astrocytic calcium increases, from
metabotropic receptor activation to calcium uncaging in individual
astrocytes [44]. Single and dual-cell patch clamp recordings were per-
formed from PyrNs in the presence of TTX and low frequency gluta-
matergic SICs were recorded (Fig. 2D-F). GABABR activation with
exogenous application of BAC, beside inducing long-lasting Ca2+ ele-
vations in astrocytes, increased the frequency and the synchronization
of SICs in PyrNs. When the same experiments were repeated in IP3R2−/

− mice, BAC effects were abolished. These results clearly indicate that
GAAs can modulate neuronal activity also in the cortex, and report
another example of astrocytes turning a local transient inhibition in a
delayed excitation.

Overall, the above discussed studies highlight the complexity of the
astrocyte signaling and reveal that the specificities in the action of as-
trocytes are determined by the type of synaptic circuit, neuro-
transmitter system and region involved (Fig. 3A).

4. Astrocytic modulation of GABAergic transmission

After the pioneering study of Kang in 1998 [40], the ability of as-
trocytes to influence inhibitory transmission has been neglected for a
long time. Over the last decade, different studies resumed this aspect
and shed light into the potential effect of astrocytes on inhibitory
transmission (Fig. 3B). A variety of stimuli was used to induce

Fig. 2. GABAB receptor activation induces long-lasting
Ca2+ oscillations in astrocytes and slow inward currents
in pyramidal neurons. (A-C) Experiments in anaesthetized
mice. (A) Schematic representation of the two-photon in vivo
set up. The excitation wavelength 910 nm excites both
Dextran-TRITC and GCaMP3. (B) Maximal projection of blood
vessels filled with Dextran-TRITC and astrocytes expressing
GCaMP3 in layer I/II of SSCx (right). White arrowheads in-
dicate three representative astrocytes soma. (C) Ca2+ traces
before and after a BAC application. Yellow area marks the
local BAC application (scale bars: 20% DF/F0, 50 s). (D–F)
GABA-activated astrocytes evoke SICs in pyramidal neu-
rons. Representative whole cell currents from single pyr-
amidal neurons (D) or a pair (E) of adjacent pyramidal neu-
rons (90mm apart; Pyr-1 and -2) showing the occurrence of
SICs (asterisks) after a BAC local application (black arrow-
heads) to layer V SSCx in a WT mouse and the absence of SICs
upon a similar BAC application in presence of D-AP5 (D,
bottom trace) and in IP3R2−/− mice (F). (Scale bars: For
single recordings: 1min, 100 pA; enlarged SIC: 500ms; for
paired recording and D-AP5: 20 s, 100 pA and 2 s for the en-
larged SIC) From Mariotti et al., 2015 [30] (For interpretation
of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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gliotransmitter release, from UV light flashes or optogenetic tools, to
more physiological stimulation of neuronal afferents to the brain region
of interest. It was found that astrocytic Ca2+ increases triggered by UV-
light pulses induce an increase in the frequency of spontaneous IPSCs
(sIPSCs) in hippocampal CA1 interneurons of the stratum radiatum.
This effect was dependent on the direct activation of kainate receptors
in interneurons following astrocytic glutamate release [45]. In the
SSCx, Lalo and colleagues conversely reported an astrocytic modulation
of both phasic and tonic inhibition affecting postsynaptic targets rather
than GABAergic presynaptic sites [46]. Astrocytes were activated
through photolysis of NP-EGTA or application of TFLLR or N-methyl-D-
aspartate receptor (NMDAR), which lead to the vesicular release of ATP
ultimately acting on neuronal P2XRs. The consequent intracellular
Ca2+ increase induced a phosphorylation-dependent downregulation of
GABAARs, and reduced IPSCs amplitude. Accordingly, in a transgenic
mouse model with impaired vesicular ATP release, i.e. the dnSNARE
mice [47], both the IPSCs and the tonic GABA current were sig-
nificantly larger than in wild- type (WT) mice. These data support the
idea that astrocytic ATP release can affect both synaptic and

extrasynaptic GABAergic signaling. More recently, the use of optoge-
netic tools to directly stimulate astrocytes has allowed to further eval-
uate the potential role of astrocyte activation in the modulation of
neuronal network. Light stimulation of ChR2-expressing astrocytes in
the visual cortex induced a short-term enhancement of both excitatory
and inhibitory synaptic transmission onto PyrNs [48]. This effect de-
pends on astrocytic glutamate acting on presynaptic mGluR1a, as al-
ready described in a large variety of brain areas [49–51]. A similar
stimulation of ChR2-expressing astrocytes in the hippocampal area CA1
results in differential changes in the activity of neuronal populations,
causing a decrease in the firing frequency of hippocampal PyrNs and a
firing frequency increase in a selective population of interneurons in
this region, i.e. cholecystokinin (CCK) interneurons [52]. These effects
were mediated by the astrocytic release of ATP. ATP-derived adenosine
binds to A1Rs on PyrNs and induces hyperpolarization via activation of
GIRK channels, while the direct activation of P2YRs in CCK inter-
neurons inhibits the two-pore domain K+ channels, thus leading to
membrane depolarization. This ChR2-mediated activation of astrocytes
can mimic the high levels of astrocytic activation occurring in several

Fig. 3. (A) Modulation of neuronal activity from GABA-activated astrocytes. (B) Gliotransmitter-mediated modulation of inhibitory transmission.
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pathological conditions, such as stroke and epilepsy. In these brain
disorders, ATP released by astrocytes may differentially modulate GA-
BAergic and glutamatergic neurons finally resulting in a global reduc-
tion of hippocampal excitatory output. Optogenetic techniques were
also applied to indirectly activate hippocampal astrocytes via light sti-
mulation of septal cholinergic interneurons, as it is described in Pabst
et al. [53]. In this paper, optogenetic activation of cholinergic neurons
causes intracellular Ca2+ increases in hilar astrocytes through nicotinic
receptors. The consequent release of glutamate from astrocytes recruits
hilar inhibitory interneurons, thus leading to a slow inhibition of hip-
pocampal granule cells through astrocytic intermediates.

Beside releasing gliotransmitters that directly influence GABAergic
transmission at pre- or post-synaptic sites, astrocytes can modulate
neuronal excitability by controlling the extracellular GABA concentra-
tion via GATs. This action of astrocytes is especially relevant when
network activity is increased. In a recent paper, Jacob et al. [54] de-
monstrated that GAT1/3 activity can be negatively influenced by ATP
signaling through activation of P2Y1Rs in cortical astrocytes. The in-
tracellular signaling pathway underlying this phenomenon depends on
IP3-mediated Ca2+ release from the endoplasmic reticulum. The in-
creased intracellular Ca2+ concentration raises the activity of NCX
eventually leading, as previously described, to the reduction of GAT
mediated GABA uptake. Therefore, the effect on GABA transport may
be important in the generation of a negative feedback loop that in-
creases the extracellular GABA concentration to brake neuronal firing.
Importantly, GATs can even revert their direction and release GABA in
the extracellular space under conditions in which network activity may
lead to excitotoxic effects, as highlighted in Heja’s work [55]. Indeed,
during enhanced neuronal network activity the increased excitatory
amino acid transporter 2 (EAAT2) activity, leads to GABA release after
the reversal of GATs. This causes a final increase of tonic inhibition on
nearby CA1 PyrNs, demonstrating a direct conversion of glutamatergic
excitation to GABAergic inhibition in the brain.

5. Physiological and pathological relevance of GABA-Astrocytes
interplay

In the previous chapters, we explored the direct effect of GABA on
astrocytic activity and, more importantly, the influence of GAAs on
neuronal activity and synaptic transmission. In this last section, we
focus our attention on the physiological and pathological relevance of
these interactions. Indeed, it remains largely undefined whether and
how distinct GABAergic signaling to astrocytes impacts complex be-
haviors. Evidence for such a role has been provided in a study in-
vestigating in the mouse visual cortex the contribution of GABAergic
interneurons in the processing of visual stimuli [48]. In this study,
performed in anesthetized mice, optogenetic activation of ChR2-ex-
pressing astrocytes modulates the response selectivity of visual cortical
neurons. The authors evaluated the visual response to oriented drifting
gratings by recording from L2/3 excitatory and different inhibitory
neurons. After astrocyte stimulation, PV interneurons displayed an
enhancement in the baseline firing rate, a parameter independent of
spontaneous activity that measures the overall level of visually driven
responses. Such an increase in the baseline predicts a reduction in the
Orientation Selectivity Index (OSI). Indeed, after astrocyte photo-
stimulation, PV interneurons showed a robust reduction in OSI. Con-
versely, the effect of astrocyte activation on excitatory PyrNs and SST
interneurons was variable and less clear. Notably, using a specific
mGluR1a blocker (AIDA), the authors could demonstrate that the
ability of astrocytes to regulate visual tuning properties of PV cortical
interneurons is mediated by mGluR1a activation. This work comple-
ments previous in vivo results showing that the transient blockade of
astrocyte glutamate transporters prolongs the orientation-tuning re-
sponse [4] and that astrocyte-specific deletion of IP3R2-mediated Ca2+

responses abolishes adaptation-induced changes in orientation-tuning
curves [56]. To our knowledge, this work is the only one that correlates

an astrocyte-mediated activation of inhibitory neurons with a physio-
logical response. The reciprocal interactions between GABAergic in-
terneurons and astrocytes in the healthy brain probably represent an
important phenomenon in the dynamic control of brain circuit activ-
ities. This leads to the question of whether a dysfunction in these in-
teractions is involved in brain disorders characterized by a change in
the efficacy of GABAergic transmission and brain circuit hyperexcit-
ability. Under pathological conditions, astrocytes become hypertrophic
and reactive [57]. One of the diseases in which the role of reactive
astrocytes has been extensively explored is temporal lobe epilepsy
(TLE), the most common form of focal epilepsy [58]. In this pathology,
network hyperexcitability is accompanied by neuronal loss and reactive
astrocytosis both in hippocampus and associated temporal lobe struc-
tures. In 2010, Ortinski and colleagues [59] tried to isolate the effect of
astrocytosis on network hyperexcitability in hippocampal CA1 region,
by assessing the effect on synaptic transmission of virus-induced re-
active astrocytosis. They found that an early effect of astrocytosis is a
decrease in glutamine synthesis in astrocytes, which is fundamental for
the production of both glutamate and GABA. The consequent reduction
in the pool of GABA available for synaptic release, in the region of
reactive astrocytosis, leads to a selective deficit in inhibitory, but not
excitatory, transmission. This defect leads to network hyperexcitability,
a common feature of different mouse model of TLE.

Another pathophysiological condition characterized by neuronal
hyperexcitability is the spreading depression (SD). This phenomenon
can occur in different pathological conditions, such as migraine with
aura, stroke and brain injuries [60]. Very recently, a new cellular event
that involves both astrocytes and GABA has been described in SD [61].
SD is characterized by propagating waves of neuronal and glia depo-
larization, followed by a recovery phase. After an initial astrocytic Ca2+

wave, SD was shown to promote an oscillatory Ca2+ activity in astro-
cytes during the recovery phase, accompanied by an increase in SICs
occurrence in nearby neurons, indicative of an increase in glia to
neuron transmission [44]. Experimental results showed that the oscil-
latory Ca2+ activity in astrocytes did not require synaptic transmission,
since it persisted in the presence of TTX or AMPA receptor antagonists,
and it was independent on purinergic and glutamatergic receptors. In-
terestingly, during SD an increase in extracellular GABA has been re-
ported [62,63] and, as previously described, long-lasting Ca2+ oscil-
lations can be induced in astrocytes by activation of GABABRs [30].
Accordingly, by using GABABR antagonists the authors succeeded in
abolishing both the oscillatory Ca2+ activity in astrocytes and the en-
hancement of SICs in neurons. The mechanisms at the basis of network
hyperexcitability reported in these two studies recapitulate two im-
portant aspects already discussed in this review. The first is the ability
of astrocytes to modulate GABA levels through different mechanisms, in
this case by controlling the availability of its precursor glutamine, the
second is the role of GAAs and gliotransmission in regulating neuronal
network excitability.

The relationship between GABA and astrocytes has been in-
vestigated in different papers also in relation with Alzheimer’s disease
(AD). AD is the most common form of dementia, characterized by fre-
quent association with extracellular deposits of Aβ-plaques and in-
traneuronal accumulation of neurofibrillary tangles [64]. In 2014, two
different laboratories revealed the detrimental role of GABA released
from reactive astrocytes in different mouse models of AD. Wu et al. [65]
investigated GABA effects in the dentate gyrus (DG), i.e. the gateway of
cortical input to the hippocampus that is crucially involved in learning
and memory, of 5xFAD mice as well as in brain samples from human AD
patients [66]. They found an unusual high GABA content in reactive
astrocytes of the DG only in the presence of fully developed Aβ-plaques
(in 6–8 months old mice and in human brains from AD patients). This
was accompanied by an augmented expression of glutamic acid dec-
arboxylase (GAD), i.e. the enzyme involved in GABA synthesis, and of
the GABA transporter GAT3/4. In order to verify the possibility that
GATs mediate GABA release from reactive astrocytes, the authors
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focused their attention on tonic inhibition in the DG of 5xFAD mice,
where GABA released by reactive astrocytes generates a tonic GABA
current mediated by GABAAR activation on nearby neurons [67]. They
found that DG cells from 6 to 8 months old 5xFAD mice showed a larger
tonic GABA current with respect to age-matched WT mice, that was
abolished by specifically blocking GAT3/4. Noteworthy, inhibitors of
GAT3/4 or GABAAR were also able to rescue behavioral memory defi-
cits in 5xFAD mice. In the same year, Jo and colleagues [68] published
a similar study using, beside the 5xFAD mouse model, the APP/PS1 AD
model. These authors confirmed the abnormal GABA release in DG and
showed that it involves an increased extrusion of Ca2+ through the
glutamate and GABA-permeable bestrophin-1 channel (Best1), that is
highly expressed at the astrocytic microdomains near synapses [69].
The authors previously demonstrated that this mechanism is physiolo-
gically present in the cerebellum [70] whereas in hippocampus tonic
GABA release in physiological conditions is low [71]. GABA released
from astrocytes through Best-1 channel activates both GABAAR and
GABABR, leading to a presynaptic form of inhibition that hampers
neurotransmitter release. The main consequence is an impairment of
LTP and cognitive functions, caused by a reduction in spike probability
at the perforant-path-to-dentate-granule-cell synapse. Astrocytic GABA
release plays therefore, a central role in AD influencing both neuronal
activity and cognitive functions.

Despite the evidence of a strict relationship between GABAergic and
astrocytic networks in different brain regions, our knowledge of how
this interaction is correlated to physiological processes remains un-
satisfactory. A long way is ahead to clarify the relevance of these me-
chanisms in behavioral contexts. Exploring in vivo this crucial aspect
will open new perspectives in the comprehension of brain physiology
and, at the same time, it will help the development of new therapeutic
strategies in brain diseases.
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