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“The true definition of science is this: the study of the beauty of the world. As soon as 

one thinks about it, it becomes obvious. Matter, blind force are not the object of 

science. Thought is incapable of reaching out to them; they fly ahead of it. The savant's 

thought is never able to reach beyond relations in which matter and force are knit into 

an invisible, impalpable and unalterable pattern of order and harmony. “Heaven's net 

is vast”, says Lao-Tse; “its meshes are wide; yet nothing gets through.” 

 

Simone Weil, “The Need for Roots: prelude towards a declaration of duties 

towards mankind”, 1949. 
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Summary of the research  

Lipid membranes are a fundamental component of living cells, mediating the physical 

separation of intracellular components from the external environment, as well as the 

different cellular organelles from cytoplasm. Transmembrane transport proteins 

confer permeability to lipid membranes, which is essential for nutrient translocation 

and energy metabolism (1). Crystallography of transmembrane proteins is a 

particularly challenging problem. Due to their natural localization and chemical 

properties only a limited number of structures are to date available at atomic 

resolution (2). In silico analysis can be successfully applied to address the structure and 

to propose testable models of transporters and pores and of their function. My PhD 

work focused on two main models: Pendrin (SLC26A4) and the Permeability Transition 

Pore (PTP). These two systems allowed me to investigate different membrane types 

and permeation mechanisms, i.e. the plasma membrane-specific anion exchange 

(SLC26A4) and the inner mitochondrial membrane (IMM) unselective PTP.  

Pendrin mutations are estimated to be the second most common genetic cause of 

human deafness, but a precise 3D structure of the protein is still missing. Aim of my 

work was to obviate the absence of structural information for pendrin transmembrane 

domain and to give a functional explanation for mutations collected in the MORL 

Deafness Variation Database. The human pendrin 3D model was inferred by homology 

with SLC26Dg (3) and then validated analyzing the surface distribution of hydrophobic 

residues. The resulting high quality model was used to map 147 pathogenic human 

mutations. Three mutation clusters were found, while their localization suggested an 

innovative 14 transmembrane domain structure for pendrin.  

The nature of PTP has long remained a mystery. In 2013 Giorgio et. al. (4) suggested 

dimers of F1FO (F)-ATP synthase to form the pore, however the exact PTP composition 

and how can a pore form from the energy-conserving enzyme is still matter of debate. 

PTP opening is triggered by an increased Ca2+ concentration in the mitochondrial 

matrix, and is favored by oxidative stress. To shed light on PTP function, I investigated 

the effect of Ca2+ binding to the Me2+ binding site of the F1 domain of F-ATP synthase 
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through molecular dynamics (MD) simulations. A similar approach was also applied to 

the F-ATP synthase β subunit mutation T163S, which alters the relative affinity for 

Mg2+ and Ca2+ (5). Experimental data show that Ca2+ binding stiffens the complex 

structure and that the T163S mutation induces resistance to PTP opening. Further, 

catalytic site rearrangement induced from different ion occupancy, as well as the 

mutation T163S, yields relevant variation of the interaction between F1 domain and 

OSCP subunit. I suggest that an unstructured loop between residues 82-131 of the β 

subunit transmits the structural rearrangement originated into catalytic site to the 

OSCP subunit and then to the inner membrane through the rigid lateral stalk.  

The critical role emerging for OSCP in the PTP regulation opens two parallel questions, 

i.e. (i) how the OSCP-mediated opening signal is transmitted to the trans-membrane 

region and (ii) what are the transmembrane PTP components. Variation in pore 

conductivity among species suggested that the putative pore-forming subunits may be 

different in different species. Sequence alignment was performed for all the subunits 

of F-ATP synthase, but we mainly focused on subunits e, g and b due to their 

localization in the complex and sequence conservation. Specific mutations affecting F-

ATP synthase were collected and their functional effect is currently under analysis. In 

parallel, the presence and features of e, g and f subunits across eukaryotes was 

investigated by mean of phylogenetic analysis. Protein homologues of these specific 

subunits were found to be widespread in eukaryotes from yeast to plants while we 

found that Oomycetes lack subunits e and g and green algae subunit e. This 

observation suggest an ancient evolution for the F-ATP synthase dimerization subunits 

and possibly  for the PTP. Further analysis and experimental validation are planned to 

clarify this aspect. 
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Riassunto della ricerca 

Le membrane lipidiche sono una componente fondamentale delle cellule viventi, 

separano fisicamente le componenti intracellulari dall’ambiente esterno e i diversi 

organelli del citoplasma.  

Le proteine di trasporto conferiscono permeabilità alle membrane lipidiche, proprietà 

essenziale per la traslocazione di nutrienti e la conservazione dell’energia (1).  

La cristallografia di proteine transmembrana è problematica a causa della loro 

localizzazione e proprietà chimiche, e solo un numero piuttosto ridotto di strutture è 

disponibile (2). L’analisi in silico può essere applicata con successo per investigare le 

strutture e il funzionamento proporre modelli testabili di trasportatori e delle loro 

funzioni. Il lavoro del mio dottorato sì è focalizzato su due modelli: la pendrina 

(SLC26A4) e il poro di transizione di permeabilità (PTP). Questi due sistemi proteici mi 

hanno permesso di studiare due differenti tipi di membrana e meccanismi di 

permeabilità:  la membrana plasmatica con scambio specifico di anioni (SLC26A4) e la 

membrana interna mitocondriale con la permeabilità non selettiva mitocondriale 

(PTP). 

Le mutazioni della pendrina sono stimate essere la seconda causa genetica più comune 

della sordità umana, ma la struttura della proteina non è stata ancora determinata. 

Scopo del mio lavoro è stato quello di sopperire all’assenza di informazioni strutturali 

per il dominio transmembrana della pendrina e di dare una spiegazione funzionale per 

le mutazioni raccolte nel MORL Deafness Variation Database.  

Il modello 3D della pendrina è basato sull’omologia con SLC26Dg (3) ed è stato validato 

analizzando la distribuzione sulla superfice dei residui idrofobici. L’alta qualità 

risultante dal modello è stata usata per mappare 147 mutazioni patologiche umane. 

Tre cluster di mutazioni sono stati trovati e la loro localizzazione suggerisce per 

pendrina un innovativa struttura a 14 domini transmembrana.  

Anche la natura del PTP è rimasta a lungo misteriosa. Nel 2013 Giorgio et al. (4) hanno 

suggerito che i dimeri di F1FO (F)-ATP sintasi formino il poro, tuttavia l’esatta 

composizione e il modo in cui il poro di transizione si possa formare è ancora materia 

di dibattito. L’apertura del PTP è innescata da un aumento della concentrazione di Ca2+ 
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nella matrice mitocondriale ed è favorita dallo stress ossidativo. Per fare luce sul 

funzionamento del PTP ho studiato l’effetto del legame del Ca2+ al sito per i cationi 

divalenti (Me2+) nel dominio F1 attraverso la dinamica molecolare (MD). Un approccio 

simile è stato anche applicato alla mutazione T163S, che fa variare l’affinità relativa per 

Mg2+ e Ca2+ (5). I dati sperimentali mostrano come la mutazione induca resistenza 

all’apertura del PTP. La MD ha dimostrato come il legame del Ca2+ irrigidisca la 

struttura del complesso. Il riarrangiamento del sito catalitico indotto dai differenti ioni 

che lo occupano, così come la mutazione T163S, causa rilevanti variazioni delle 

interazioni tra il dominio F1  e la subunità OSCP. Suggerisco che un loop non strutturato 

tra i residui 82-131 della subunità β trasmetta il riarrangiamento strutturale originato 

nel sito catalitico a OSCP e quindi alla membrana interna attraverso il rigido stalk 

laterale.  

Il ruolo critico che emerge per OSCP nella regolazione del PTP apre due domande 

collegate: (i) come il segnale di apertura mediato da OSCP venga trasmesso alla 

regione trans-membrana e (ii) quali siano i componenti transmembrana del PTP.  

Le variazioni di conduttanza del poro osservate in specie diverse suggeriscono che le 

subunità che formano il canale debbano avere delle differenze significative.  E’ stato 

prodotto un allineamento di sequenze per tutte le subunità della F-ATP sintasi.  I 

risultati preliminari ci hanno spinto a focalizzarci sulle subunità e, g e b a causa della 

loro localizzazione e conservazione di sequenza. Basandomi sugli allineamenti multipli 

ho suggerito mutazioni puntiformi per testare l’importanza di specifici residui ai fini 

dell’apertura del poro. In parallelo la presenza delle subunità e e g tra gli eucarioti è 

stata indagata attraverso un analisi filogenetica. Proteine omologhe di queste 

specifiche subunità sono presenti in tutti gli eucarioti: dai lieviti alle piante, tuttavia gli 

Oomiceti sono risultati mancanti delle subunità e  e  g e le alghe verdi della subunità e. 

Questi risultati suggeriscono un’origine antica per le subunità di dimerizzazione della F-

ATP sintasi e probabilmente anche del PTP. Per chiarire questo aspetto saranno 

necessarie ulteriori analisi e verifiche sperimentali .  



 
5 
 

1.INTRODUCTION 

1.1 Cell membranes and membrane proteins   

Phospholipid membranes are a fundamental component of both Prokaryotic and 

Eukaryotic cells. Their functions are crucial, dividing the cell from the external 

environment, maintaining the differences in solutes concentrations and electrostatic 

potentials and permitting the compartmentation of the cell (6). The chemical exchange 

of the cell with the environment or between cytoplasm and organelles is essential for 

life. Evolution solved the permeability problem by incorporating complex 

transmembrane protein machineries, providing in turn specific transport capabilities 

(1). The importance of this function is apparent, given that approximately 25% of all 

proteins are membrane proteins (7) and that solute carriers (SLCs) are the second 

largest family of membrane proteins with at least 384 proteins in humans (8).  

Here I will present two systems involved in cell homeostasis: (i) Pendrin (SLC26A4), an 

anion exchanger located on the plasma membrane, (ii) and the PTP of the IMM. 

1.2 Pendrin (SLC26A4) 

Pendrin is an anion exchanger of the apical cell membrane and a member of the 

SLC26A family (SLC26A4) (9,10). It mediates the transport of Cl-, HCO3
-, OH-, I- ions, as 

well as of formate, nitrate and thiocyanate. The SLC26A4 gene is mostly expressed in 

the inner ear, thyroid and kidney, while different tissue-specific specializations were 

reported in the literature (11–14). 

1.2.1 Pendrin pathophysiology 

Reduction in pendrin function causes endolymph acidification and is thought to be 

responsible for Ca2+ re-absorption inhibition, yielding auditive sensory transduction 

defects (12). In the inner ear, pendrin was found in endolymphatic sac and hair cells 
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(11), where it is involved in pH homeostasis, acting as a HCO3
- /Cl- exchanger (12). In 

the thyroid, pendrin is expressed in follicular cells (15), where it operates as an 

electroneutral I−/Cl- exchanger allowing I− efflux from the cell to the follicular lumen 

(13,16). The presence of a low concentration of Cl− in the thyroid follicular lumen is 

necessary to support I− efflux by the pendrin exchanger (16). However the  K0.5 of I− is 

lower that of Cl−  favoring the [Cl−]o/[I−]i over  [Cl−]o/[Cl−]i exchange (16) . 

In kidney, pendrin was found in both type B and non-A-non-B cells of cortical collecting 

ducts (17), either as Cl−/OH- or Cl−/ HCO3
- exchanger (14).   

Mutations of the SLC26A4 gene cause Pendred Syndrome (PS), as well as non-

syndromic hearing loss with enlarged vestibular aqueduct (ns-EVA) (18). Biallelic 

SLC26A4 mutations are thought to affect I- efflux, promoting a localized defect of I- 

organification, which is believed to be one the causes of typical Pendred syndrome, 

characterized by congenital fluctuating and progressive hearing loss associated with 

vertigo and/or goiter (19).  

A number of monoallelic mutations have been associated with ns-EVA (20). However, 

previous experiments aimed at shedding light on ns-EVA pathogenesis suggested that 

a minimal retained transport ability is sufficient to prevent thyroid dysfunction but not 

sensorineural deafness (21). ns-EVA patients with no or biallelic mutations in SLC26A4 

have been reported (18,22–24). On the other hand, cases of Pendred syndrome and 

ns-EVA associated to a more complex genetic scenario are described in the literature, 

i.e. double heterozygosity between SLC26A4 and other genes, such as FOXI1 (25) and 

KCNJ10 (26). 

1.2.2 Pendrin domain organization  

As already mentioned experimental information on protein structure is still missing,. 

Some mutations have been analyzed for their effects on anion transport (Table 1), 

however the precise molecular mechanisms underlying pendrin function remain 

largely unknown. Like the SulP transporters, pendrin comprises a transmembrane 

domain and an intracellular Sulfate Transporter–AntiSigma factor agonist (STAS) 

domain, regulating anion trafficking, stability and transport (16). The transmembrane 

domain of 423 amino acids presents a conserved “SulP sulfate transport signature” at 
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the N-terminus of the transmembrane (TM) region (27), and a “Saier motif”, conserved 

among all SLC26A family members, located at the C-terminus of the TM domain (9,28). 

Finally, two glycosylation sites at Asparagines N167 and N172, probably located on an 

extracellular loop of the TM domain, have been experimentally determined (29).  

In 1997 Everett et al. proposed a topology model of the transmembrane region 

characterized by 11 transmembrane (TM) segments (30), while Royaux et al. 

demonstrated the cytosolic localization of the N- and C- termini suggesting 12 TM 

segments (31,32). Recently, Gorbunov et al. proposed an innovative 14 TM model for 

prestin (SLC26A5), a member of the SLC26/SulP family and paralog of pendrin (33). 

This model was constructed using a high-resolution structure of the bacterial uracil 

transporter UraA (34). The authors predicted the two conserved SulP and Saier motifs 

to be in direct contact, overlapping two functionally relevant regions distant in 

sequence, termed Non Linear Charge domains NLC1 and NLC2, respectively. Very 

recently, the structure of SLC26Dg, a prokaryotic member of the SLC26 family, was 

solved. SLC26Dg adopts the same fold observed for UraA, with a slightly higher 

sequence identity with pendrin (SLC26Dg 19%, UraA 14%, respectively (3)).  

1.3 Mitochondrial Permeability Transition Pore 

The Permeability Transition Pore (PTP) is an unselective channel located in IMM (35). 

The PTP may regulate mitochondrial Ca2+ homeostasis, through transient openings 

(36), while long-lasting PTP openings cause depolarization, ATP depletion, osmotic 

swelling of the matrix leading to rupture of the outer mitochondrial membrane (OMM) 

with release of pro-apoptotic factors thus contributing to cell death (37).  

1.3.1 Mitochondria  

Mitochondria evolved from a bacterial progenitor via symbiosis within an eukaryotic 

host cell. The development of genomics, strongly supported the monophyletic origin of 

mitochondria from α-Proteobacteria with Rickettsiales often identified as the closest 

phylogenetic order related to mitochondria (38).  
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Besides their central role in ATP synthesis and oxidative metabolism, mitochondria 

contribute to intracellular Ca2+ homeostasis and generation of reactive oxygen species 

(ROS) and are determinant for cell death. Mitochondrial processes are highly 

compartmentalized due to the existence of two membranes and to the quite selective 

localization of proteins, nucleotides and coenzymes in the intermembrane and matrix 

spaces (37).  

The OMM is characterized by a high content of phosphatidylcholine, 

phosphatidylinositol and triglyceride (39). OMM prevents the release of cytochrome c 

and other mitochondrial proteins involved in apoptosis (40).  

The IMM is rich of cardiolipin (39), its permeability is strictly controlled by highly 

specific transporters and by tightly regulated channels. IMM indeed is the site where 

the coupled processes of respiration and ATP synthesis (oxidative phosphorylation) 

occur. Oxidative phosphorylation is a sequence of energy conversion processes 

through which the exergonic flow of electrons along the respiratory complexes 

produces the endergonic pumping of protons from the mitochondrial matrix to the 

intermembrane space. The subsequent proton gradient, formed by two components 

namely m and pH, generates a proton motive force (p) that is used by F-ATP 

synthase to synthetize ATP. Furthermore, the proton gradient is also utilized for the 

uptake of phosphate, the exchange of ADP/ATP and for the maintenance of ion 

homeostasis.  

The IMM is characterized by the presence of invaginations named cristae. Electron 

cryomicroscopy of mitochondria (41) revealed that F-ATP synthase, organized in 

dimers, is essential to maintain a high local curvature of the IMM (42) and normal 

cristae morphology (43) and that dimers associate to form long rows of oligomers at 

the cristae edges of mitochondria. It was suggested that in areas of sharp membrane 

curvature the charge density is higher and hence a higher proton concentration could 

drive  F-ATP synthase (44).  

1.3.2  Ca2+ homeostasis in mitochondria 

The proton motive force across the IMM is utilized to maintain mitochondrial Ca2+ 

homeostasis. The mitochondrial Ca2+ uniporter (MCU) mediates Ca2+ uptake down its  
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electrochemical gradient (45). Release of Ca2+ from the matrix to the intermembrane 

space is mediated by the mitochondrial Na+/Ca2+ exchanger, which is functionally 

coupled with the Na+/H+ exchanger. This coupling makes matrix Ca2+ release 

dependent on H+ reuptake (46). An increase in the intramitochondrial Ca2+ 

concentration activates enzymes involved in oxidative metabolism as pyruvic, isocitric 

and oxoglutaric dehydrogenases as well as F-ATP synthase (47). This increase could 

reflect the ability of mitochondria to buffer undesired elevation in cytosolic Ca2+ 

concentration. However, a recent quantitative analysis has indicated that 

mitochondria do not appear to represent a significant dynamic buffer of cytosolic Ca2+ 

under physiological conditions while they might shape cellular Ca2+ concentration 

dynamics upon prolonged elevations of cytosolic Ca2+ concentration (48). 

The uptake of Ca2+ may lead to opening of the PTP, an unselective channel of high 

conductance (40).  Transient opening of PTP permits depolarization (49) with release of 

mitochondrial Ca2+ (36) even for small Ca2+ gradients. Consistently,  treatment of 

cardiomyocytes with cyclosporin A (CsA), which desensitizes the PTP by inhibiting the 

binding of cyclophilin (CyP) D, a PTP enhancer, causes the increase of Ca2+ in 

mitochondria (48), and the same result was obtained with the genetic deletion of CyP 

D (50). On the other hand, long-lasting PTP opening causes matrix swelling, rupture of 

the OMM and release of proapoptotic factors  causing cell damage which can result in 

cell death (37).  

1.3.3 Mitochondrial permeability transition pore  

The PTP is an unselective channel located in the IMM with a radius of 1.4 nm in 

mammals (35)  and a conductance between 0.9 and 1.5 nS (51,52). The existence of 

the mitochondrial permeability was discovered very early, and in the 1970s Haworth 

and Hunter coined the term “permeability transition” and suggested that the 

permeability increase was due to the opening of a protein channel in the IMM (53–56).  

For a long time the structural composition of PTP remained a mystery.  A variety of 

proteins have been claimed to be responsible for pore formation: the Pi carrier and the 

adenine nucleotide translocator (ANT) in the IMM and TSPO (translocator protein of 18 

kDa) and VDAC (voltage-dependent anion channel) in the OMM (57). Only in 2013 
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Giorgio et. al. identified the F-ATP synthase dimer as the channel-forming component 

of the PTP. This finding was based on two sets of results: (i) the interaction of CyPD 

with F-ATP synthase and the recognition of OSCP as the binding partner of CyPD. CyPD 

is a matrix protein that has peptidyl-prolyl cis-trans isomerase activity that assists in 

protein folding (58). Its binding with F-ATP synthase was favored by Pi and was 

counteracted by CsA. CyPD sensitizes the PTP to Ca2+  and reduces by 30% ATPase 

activity. Treatment with CsA, which induces the detachment of CyPD, reestablishes the 

F-ATP synthase activity (59). The binding of CyPD occurs on the lateral stalk on OSCP 

subunit (25), and OSCP is also the binding site of Bz-423, which also partially inhibits F-

ATP synthase and induces  PTP  opening (4,60). 

Gel-purified dimers of F-ATP synthase form channels triggered by Ca2+, Bz-423 and 

oxidative stress, and inhibited by Mg2+/ADP in Bos taurus (4), Saccharomyces cerevisiae 

(61) and Drosophila melanogaster (62), demonstrating their role in PTP formation.  

The mechanism of PTP formation is still the subject of active investigation. Bernardi et 

al. proposed that the channel forms starting from dimers of F-ATP synthase after a 

conformational change that would follow replacement of Mg2+ with Ca2+ at the 

catalytic site, which is consistent with the literature on the F-ATP synthase. Indeed, 

when Ca2+ replaces Mg2+ ATP hydrolysis is not coupled to the formation of a H+ 

gradient (63,64) suggesting that a conformational change leads to the apparent 

uncoupling of chemical catalysis from H+ transport. Bernardi and coworkers suggest 

that the conformational change leads to PTP opening, and the lack of measurable H+ 

translocation is due to H+ backflow through the pore (37). 

In this scenario the binding of CyPD to OSCP would cause a conformational change 

affecting the accessibility of Me2+ to the catalytic binding sites, favoring the possible 

occurrence of Ca2+ binding when its matrix concentration increases. The 

conformational change would also be favored by ROS-dependent thiol oxidation and 

counteracted by thiol reduction. 

As described in the previous paragraph opening of the PTP is reversible, and probably 

follows the replacement of Ca2+ by Mg2+ in the catalytic binding site (2). 
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1.3.4 Regulation of the PTP  

PTP formation and regulation appear to be well conserved among species. PTP so far 

was detected in mitochondria from Bos taurus, Saccharomyces cerevisiae and 

Drosophila melanogaster as well as fish and plants (4,61,62). In all these organisms PTP 

Ca2+-dependent channel formation took place under condition of oxidative stress (thiol 

oxidation or cross-linking) and was inhibited by Mg2+, adenine nucleotides and acidic 

pH.  

However differences exist between species, in terms of channel unit conductance, 

sensitivity to Pi, presence of a mitochondrial  CyPD and  inhibition by CsA.  

In bilayer experiments with dimers of the F-ATP synthase, channel conductance varies 

between 53 pS in Drosophila melanogaster to 300 pS in yeast and 500 pS in mammals 

(4,61,62) suggesting structural differences in the channel. Only mammals and 

Saccharomyces cerevisiae possess mitochondrial matrix CyPs but the PTP is inhibited 

by CsA only in mammals. However, Drosophila melanogaster does not possess a 

mitochondrial CyP, yet expression of human CyPD in Drosophila S2R+ cells sensitizes 

the PTP to Ca2+ in a process that is insensitive to CsA (62).  

Pi favors the opening of PTP increasing the binding of CyPD to OSCP on F-ATP synthase. 

In keeping with the effect of CyPD, Pi enhances PTP opening (65) only in mammals 

while in yeast and Drosophila melanogaster it acts as a PTP inhibitor. These sets of 

data suggest that CyPD is able to regulate PTP only in mammals.  

As mentioned before an essential permissive factor to trigger PTP opening is the 

presence of matrix Ca2+, which binds a Me2+  binding site where also other ions  (Mg2+, 

Sr2+ and Mn2+) can bind resulting in PTP inhibition (37).   

PTP  is strongly affected by matrix pH and mitochondrial depolarization. The pH 

optimum for PTP opening is 7.4, while the open probability decreases below pH 7.4 

through protonation of histidine residues that can be prevented by 

diethylpyrocarbonate (66,67). This effect is present also in CyPD null mitochondria, 

indicating that the histidine isn’t located on CyPD  (68). Finally IMM depolarization 

increases the probability of pore opening (67,69,70) in a process where arginine 

residues may play a critical role (71–73). 
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1.3.5 Structure of F-ATP synthase 

F-ATP synthase is a multiprotein complex found in bacterial energy-transducing 

membranes, mitochondria and chloroplasts (74). It consists of two functional domains: 

the membrane extrinsic F1 and the membrane intrinsic FO connected by central and 

peripheral stalks. Seventeen distinct subunits form the eukaryotic complex (Fig. 1). F1 

domain is composed by five type of globular proteins α, β, γ, δ and ϵ. Three α and β 

subunits are present in each domain giving a total mass of approximately 350 kDa (75). 

Walker compared the F1 domain of F-ATP synthase to “an orange made of six segments 

(αβ) arranged around the central pith stalk of the fruit (γ, δ and ϵ)” (74) .  

The F1 domain contains a total of six Me2+-adenosine phosphate binding sites, three 

catalytic and three non-catalytic. ATP catalysis requires the binding of the adenosine 

phosphate  in complex with Mg2+ (76) that is fundamental in the β subunits substrate 

recognition.  Mg2+ is hexa-coordinated by βThr163 (in the bovine enzyme), and by 3 

ordered water molecules coordinated by  βArg189, βGlu192 and βAsp256 (77). Mg2+ can 

be replaced by other divalent cations like Co2+, Zn2+, Fe2+, Mn2+, Cd2+, Ni2+, Ca2+ but the 

catalytic activity is inversely proportional to the ionic radius of the metal (78). Ca2+ ions 

support γ subunit rotation and ATP hydrolysis, but not H+ translocation and ATP 

synthesis, as found both in bacteria (63) and mammals (64), suggesting that the 

catalytic site is subject to a rearrangement when occupied by Ca2+. 

ATP catalysis is mediated by the rotation of the FO domain generated by the proton 

motive force. Rotation of subunit γ takes each of the 3 catalytic sites through at least 3 

major functional states denoted as E, DP and TP, thereby supporting the synthesis of 

3 ATP molecules for each 360° rotation (79–81). 

The rotation of subunit γ depends on rotation of the c-ring. The latter is formed by a 

variable number of c subunits (8 in bovine mitochondria (82) 10 in Saccharomyces 

cerevisiae (83), 11 in Ilyobacter tartaricus (84), 13 in Caldalkalibacillus thermarum (85), 

14 in spinach chloroplast (86) and 15 in Spirulina platensis (87)). Each subunit has two 

transmembrane segments connected by a loop exposed in the matrix connecting the c-

ring with the central stalk. The N-terminal α-helix forms the core of the c-ring while 

aspartate or glutamate residues located around the midpoint of the C-terminal helix 

mediate the passage of H+(88). The proton motive force generates a clockwise rotation 
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with an estimated rotary speed of approximately 100–150 rev/s depending on the 

species (74). However, under anaerobic conditions, the energy that drives the rotation 

is provided by the hydrolysis of ATP, which drives the rotor in a counter clockwise 

direction and pumps protons across the energy transducing membrane in the outward 

direction (74). The c ring is in contact with the a subunit and rotates against its 

hydrophobic surface. Recently Allegretti et all. using electron microscopy resolved the 

structure finding a fold never observed before composed by horizontal membrane-

intrinsic α-helices, arranged in two hairpins at an angle of approximately 70° relative to 

the c-ring helices (89). An arginine (R210 in Escherichia coli protein), strictly conserved 

in homologs of a subunit, participates in the transport of protons through the FO 

domain (90) allowing protons to access the external surface of the c-ring in the rotor, 

where two polar residues (an aspartate and a glutamine residue) have been proposed 

to mediate the process (91–93). 

The F1 domain is strongly connected with the transmembrane region through the 

peripheral stalk. In eukaryotes the peripheral stalk is formed by OSCP, d, F6 and b 

subunits (94). OSCP is located on top of the F1 domain and is connected at the C-

terminus with the b subunit and F6 (95). b subunit has a long coiled coil region and at 

the level of the membrane continues with two transmembrane domains, the first of 

which is involved in the dimerization of the F-ATP synthase complex (42).  

Hahn et al. recently obtained by cryo-EM a 7Å structure of the IMM region (96). 

Subunits e and g occupy a density on the dimer interface next to the N-terminal trans-

membrane helices of subunit b, with a narrow extension that protrudes 40Å into the 

inner mitochondrial space.  

Subunit e and g are predicted to have a single transmembrane helix with a conserved 

GxxxG motif, known to facilitate oligomerization of transmembrane proteins (97), and 

indeed e and g subunits may tightly interact through this motif (98). Furthermore, 

subunit e holds a hydrophilic coiled coil region at the C terminus that would account 

for the IMS extension and appears to be involved in F-ATP synthase oligomerization 

(99). The g subunit interacts with the N terminus of b subunit in the matrix (100). In 

cryomicroscopy subunit f appears as a curved density at the base of the peripheral 
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stalk, and the charged C-terminal domain seems to form the most prominent dimer 

contact (96). 

 

Figure 1  Model of the structure of F-ATP synthase dimer, modified from Bernardi et. al. (40). The F1 

and FO domains and the lateral stalk are highlighted on the left monomer,while in the left monomer 

the single subunis are shown. The F1 α and β subunits are colored in red and yellow, respectively. The 

F1 γ, δ, and ε subunits are colored in shades of blue, the peripheral stalk subunits b, d, F6 and OSCP in 

shades of green, and the c-ring in purple.  The remaining FO subunits a, e, f, g, and A6L are colored in 

light blue. The intramembrane FO is surrounded by detergent, shown in white. The PTP regulatory 

protein cyclophilinD is shown in grey on bound to OSCP. The localization of Me
2+ 

 in the β subunit is 

indicated. 

1.3.6  F-ATP synthase and PTP formation 

The mechanism for PTP channel formation is still an open question. Two sites were 

proposed as pore forming in F-ATP synthase: the c-ring (101) and the F-ATP synthase 

dimers at the interface between monomers (4). This second hypothesis was used as 

the basis for the present work.  

 

c-ring 

Jonas and coworkers 2014 (102) reconstituted the c subunit in liposomes observing the 

formation of a Ca2+-activated channel with properties similar to those described in our 

labotarory for F-ATP synthase dimers. It was proposed that the channel of the PTP 
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forms within the c-ring itself after Ca2+-dependent release of F1 domain. The “FO 

channel” could not be closed by subunits γ, δ, or ε, while it was blocked by subunit β. 

However, it should be considered that displacement of F1 from FO requires very drastic 

conditions, like treatment with 2 M urea.  Furthermore such a dramatic change in the 

F-ATP synthase complex is hardly compatible with the PTP flickering between open 

and closed states,  characteristic of  the Ca2+ release. 

Another weak point of the c-ring hypothesis is the finding that the Drosophila 

melanogaster F-ATP synthase forms channels with a unit conductance of 53 pS  (62), 

while the mammalian one has a conductance of 500 pS. Since the c-ring of both 

Drosophila melanogaster and mammals belongs to the c8 set it is quite difficult to see 

how c-rings of the same size can form 500-pS channels in mammals and 53-pS 

channels in drosophila. 

F-ATP synthase dimer  

The Bernardi laboratory observed channel formation after incorporation of gel-purified 

F-ATP synthase dimers of mitochondria from Bos taurus hearts, Saccharomyces 

cerevisiae, and Drosophila melanogaster in asolectin bilayers, while channel formation 

was not observed when monomers were used (4,62,103). The dimer hypothesis is also 

strongly supported by the effects of genetic ablation of the e and/or g subunits on the 

yeast PTP (61). The dimerization subunits e and g are not involved in the ATP catalysis 

process, in keeping with the fact that the catalytic activity of F-ATP synthase can be 

inhibited (e.g., with oligomycin) without affecting PTP formation. At the same time PTP 

opening can be inhibited (e.g. by CsA) without affecting the  activity of F-ATP synthase 

(40). 

1.4 Are pendrin and F-ATP synthase dimers moonlighting 
proteins? 

Moonlighting proteins are multifunctional proteins able to perform multiple 

autonomous, often unrelated, functions without partitioning these functions into 

different protein domains. Indeed both functions are independent meaning that 
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inactivation of one of the functions (e.g. by mutation) should not affect the second 

function and vice versa. Moonlighting proteins are usually well conserved and ancient 

proteins (104).  The typical example of moonlighting protein is cytochrome c. Indeed, 

when located in mitochondrial intermembrane space cytochrome c is part of the 

electron transport chain, while when released into the cytosolic space after 

permeabilization or rupture of OMM the protein plays an important role in apoptosis. 

Indeed, cytosolic cytochrome c forms a complex with the apoptotic protease-activating 

factor 1 (Apaf-1) starting a signalling cascade that results in apoptotic cell death (105). 

The respiratory and pro-apoptotic functions are completely independent (106,107).  

The proteins studied in my work don’t fit perfectly with the definition of moonlighting 

proteins, but they share several features with this protein class.  

Pendrin is an anion exchanger and a member of the ancient SLC26 gene family 

encoding anion exchangers and anion channels (10), however it shows a high 

variability in the transported substrates depending on the local concentration of the 

anionic species. Pendrin is a pH regulator in kidney and inner ear, exchanging HCO3
-/Cl-

, while in the thyroid gland pendrin plays a fundamental role in the efflux of I-, which is 

necessary for the synthesis of the thyroid hormone. The transport of I- apparently 

could be separated by the HCO3
- transport. Indeed in ns-EVA only the HCO3

- transport 

is compleatly lost while a residual I- efflux persists. However future studies are needed 

to clarify the rationale of the different functions.  

F-ATP synthase is one of the oldest protein complexes known (108). The proton 

transport and ATP catalysis are conserved in eukaryotes and prokaryotes while PTP is a 

feature present only in eukaryotes, suggesting that PTP formation was acquired at a 

later time. Indeed catalytic activity of F-ATP synthase can be inhibited (e.g., with 

oligomycin) without affecting PTP formation and vice versa. However in contrast with 

the definition of moonlighting proteins F-ATP synthase is a complex and not a single 

protein and different subunits are involved in different functions. 
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1.5 Theoretical introduction to the methods used 

1.5.1 Transmembrane domain prediction 

The typical transmembrane (TM) segment is a stretch of residues in α-helix folding, 

crossing a phospholipid membrane. Due to the lipid environment the transmembrane  

domains are characterized by the  predominant presence of hydrophobic amino acids 

(109). This feature, easily recognizable from the primary structure, encouraged the 

development of transmembrane domain predictors from the early 1980s (110). An 

example of the use of this simple approach is the Kyte-Doolittle algorythm, based on a 

simple hydropathy scale of the lateral chains (111). Slightly more complex is the 

Goldman-Engelman-Steitz algorithm that considers the TM segment as α-helix and also 

takes into account the presence of polar or charged residues in the TM domains (e.g. 

pore lining helices or internal salt bridges). 

Over the years, with the increased availability of transmembrane protein sequences, 

other features were recognized as useful to predict the arrangement of 

transmembrane segments. In particular: clustering of tryptophans and tyrosines at the 

end of the transmembrane segment, TM specific sequence motifs (eg. GxxxG), 

different composition of the inside or outside facing connecting loops (109,110). 

The inclusion of these rules improves the predictions (112), however a more significant 

evolution in TM domains predictors was made possible with the use of Hidden Markov 

Models (HMMs) and other machine learning techniques. With HMMs it is possible to 

model more precisely the length of the transmembrane α-helices compared with the 

simplest sequence-based methods, where the length of the membrane helix is defined 

a priori by setting upper and lower limits for the length. Indeed HMMs permit the  

incorporation of hydrophobicity, charge bias, helix lengths, and grammatical constrains 

into a single model (113). Another significant increase in the quality of the prediction 

of transmembrane segments comes from the use of more than one predictor in 

consensus algorithms (114,115).  
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1.5.2 Homologue search  

A necessary step for different computational analysis (multiple sequence alignment 

(MSA), homology model, phylogenetic analysis) is the search of homologues protein in 

databases. Nowadays two algorithms are mostly used for homologous search BLAST, 

and HMMER.  

BLAST 

BLAST (basic local alignment search tool), was developed by Altschull in 1990 (116). It 

is a heuristic algorithm that directly approximates alignments optimizing a measure of 

local similarity. The BLAST algorithm is composed of three steps:  

The query is divided in different “words” of 3 amino acids (or nucleosides). A list of 

alternative words per each word of the query is built using a substitution matrix. Only 

the words with a score above an established threshold are considered.  

Each word of the alternative words list is searched in the database. When a word 

matches with the database, the algorithm tries to extend the hit in both directions. If 

the extensions reach a threshold value “S”, the sequence is named HSP (High Score 

Segment Pair) and defines a zone of local homology. The “S” value is calculated as a  

function of the “E” value that describes the number of hits one can "expect" to see by 

chance when searching a database of a particular size. A high E values and a low S 

lower the threshold reach increasing the sensitivity but reducing the selectivity. The 

extension of the homologous segment continues until the local maximum score is 

reached.  

To search homologous sequences in proteins the Position Specific Iterated (PSI-BLAST) 

version of the BLAST algorithm was used. Compared with pBLAST, PSI-BLAST is less 

specific but more sensitive, allowing the identification of proteins with a distant 

evolutionary relationship. PSI-BLAST uses position-specific scoring matrices (PSSMs) to 

score the matches between query and database, in contrast to pBLAST which uses pre-

defined scoring function. Indeed, PSI-BLAST uses a standard scoring matrix only in the 

first round while in the next steps PSSMs are generated using MSA of the sequences 



 
19 

 

found in the previous round, and the process can be iterated until no new sequences 

are found (116).  

HMMER 

HMMER is an algorithm analogous to BLAST in the function, but different in the 

approach used. HMMER indeed converts the query sequence into a HMM profile. The 

HMM profile residue probabilities are set considering the probability of a standard 

score matrix such as BLOSUM62 with empirically set insertion/deletion transition 

probabilities (117). Similarly the iterative method called JackHMMER builds a HMM 

profile with all the sequences of the first search that reach an E score inclusion 

threshold. The obtained HMM profile is used for a second search round in the 

database. With the new HMM profile it is normally possible find more distant 

homologous that can be iteratively used to build the next profile and perform a new 

search. The search converges when no new sequences can be found (118). 

JackHMMER is able to recover a larger number of sequences with a bigger evolutive 

distance than PSI-BLAST, with a 28% increase in remote homolog detection (118). 

HHpred  

HHpred algorithm starts from a query sequence or a MSA, to build an alignment of the 

target homolog protein by multiple iterations of PSI-BLAST. A HMM profile is 

generated from the MSA and is then compared with each HMM in the selected 

database. HHpred possesses a higher sensitivity and alignment accuracy when 

compared to PSI-BLAST and HMMER (119). The use of more sensitive fold 

identification techniques are useful to retrieve significant structural relationships when 

sequence identity between the target and the template is below 25% (120). 

1.5.3 Multiple sequence alignment  

MSA of protein sequences are important for many applications in computational 

biology. In this work, the MSA were used to build up phylogenetic trees, identify 
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important residues in proteins lacking resolved structures, as well as profile-based 

homolog search.  

Several different algorithms to estimate MSA are available (121). Generally they try to 

maximize the summed aligned score of each sequence pair (122). A popular strategy is 

the progressive method. This approach can be divided in two steps: (i) a phylogenetic 

tree is built for the sequences, (ii) the two closer objects are aligned two by two. At 

first these are single sequences, but progressively groups of still aligned sequences are 

aligned together.  

T-Coffee 

T-Coffee is an algorithm based on the progressive method. A global alignment 

between each pair of sequences is generated using ClustalW, while a local pairwise 

alignment is performed by Lalign. The local and global pairwise alignments are 

weighed by sequence identity and the resulting alignments are combined together by 

addition.  

The alignment is extended until the final weight for any pair of residues reflects the 

information contained in the whole library. This permits the alignment between two 

sequences to be influenced by the overall alignment. A neighbor-joining tree is built 

with the pair-wise alignment. Subsequently the tree is used in the final alignment. 

(123) 

MUSCLE 

MUSCLE algorithm is composed by three stages: 

1) A progressive alignment is performed based on a tree built using UPGMA or 

neighbor-joining. 

2) A second tree is built using a Kimura distance matrix and applying a clustering 

method to this matrix. The obtained tree is compared with the first one, 

identifying the set of internal nodes for which the branching order has changed. 

New alignments are created for the changed tree nodes. 

3) The edges are deleted from the tree and the sequences are divided in two 

disjoint subsets. The MSA for of each subset is extracted and the empty 
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columns are removed. The next step is the re-alignment of the two subsets one 

against the other. If the score increase the new alignment is retained while the 

process is iterated with lowered value. 

1.5.4 Protein Homology Modelling  

Knowledge of protein structure has a primary importance in modern biochemistry. 

Improper folding of proteins is associated with many diseases, and this information is 

critical for the rational design of new drugs. However only a limited number of protein 

structures is available. The X-ray based structure determination of transmembrane 

proteins is particularly challenging, due to their peculiar physicochemical properties 

(124).  

In the absence of a resolved protein structure, a possible approach is the homology 

modeling. In this method  a target sequence is aligned with the sequence of a resolved 

structure called template. To generalize homology modeling can be divided in different 

steps:  

1) Choice of template and sequence alignment. The target sequence is used to 

search the  template with the highest similarity. In our case we perform the 

template search in Protein Data Bank (PDB) (125) througth HHpred (119). The 

choice of the best template is a critical step for the homology model, because 

the higher the similarity between target protein and template the higher is the 

final accuracy of the model. The alignments have then to be evaluated and 

optimized. 

2) Backbone Generation. The backbone coordinates of the template are copied in 

the model.  

3) Loop and side chain modeling. When the alignment contains gaps the 

backbone is modified. If the gap is in the target sequence the missing part can 

be modeled ab initio, or can be searched in PDB only for the missing sequence 

and added to the obtained sequence in the model.  



 
22 

 

The side chains placement is performed by extraction from a large library of 

side chian rotamers derived from X-Ray structures. Different rotamers are 

placed and ranked using energy functions.  

4) Model  optimization and validation. The placing of the side chains easily 

produces clashes between residues, requiring structure optimization. In this 

work optimization was achieved by energy minimization using Chimera (126). 

The quality of the model was investigated with Qmean (127), while manual 

inspection was used to evaluate the expected features of a transmembrane 

protein, e.g. the final position of transmembrane domains, localization of 

known pathological mutations, as well as hydrophobicity pattern. 

 

1.5.5 Molecular Dynamics Simulation 

The first MD simulation was performed on the bovine pancreatic trypsin (BPTI) in 

1977. From the early simulations MD has rapid evoled from the initial 10 ps (30) to the 

millisecond range (57).  MD simulations allow in silico investigation of the motions of a 

protein as function of time. MD can be used to address specific questions about the 

features of the model and in particular on its protein functions (30).  

All simulations in this work were carried out with NAMD (129). The atoms of our 

protein model follow the Newtonian equation of motion. 

mα𝑟̈α⃗⃗ = −
∂

∂r α

 U𝐭𝐨𝐭𝐚𝐥
(r 1 , r 2, … , r N ), α = 1,2…N 

Where mα is the mass of atom α, 𝑟 𝛼 is its position, and Utotal is the total potential 

energy that depends on all atomic positions and thereby couples the motion of atoms 

(130). 

The potential energy (Utotal) is calculated through the Force Field CHARMM-27(131). 

Potential energy consists of the sum of the different force components acting on each 

atom. Indeed it can be represented as:  
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Utotal = U bond + U angle + Udihedral + 𝑈𝑣𝑑𝑊 + UColumb 

The first three terms represent the energetic component of the covalent bonds. In 

particular the potential energy generate by the stretching of covalent bond is 

expressed as: 

U bond = ∑ 𝑘𝑖
𝑏𝑜𝑛𝑑(𝑟𝑖 −

𝑏𝑜𝑛𝑑𝑠 𝑖

𝑟0𝑖)
2 

The component of the angles between two covalent bonds is expressed as: 

U angle = ∑ 𝑘𝑖
𝑎𝑛𝑔𝑙𝑒

(𝜙𝑖 −

𝑎𝑛𝑔𝑙𝑒 𝑖

𝜙0𝑖)
2 

The torsional bonded interaction : 

U dihedral = ∑ 𝑘𝑖
𝑑𝑖ℎ𝑒[1 + cos( 𝑛𝑖𝜙𝑖 −

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 𝑖

𝛾𝑖)
2 

The last two terms describe the interactions resulting from nonbonded atom pairs, i.e. 

the van der Waal’s and the electrostatic contributions. These are respectively 

derivation of Lennard-Jones potential equation and of Coulomb’s law:  

  

U vdW = ∑∑4𝜀𝑖𝑗

𝑗>𝑖𝑖

[(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] 

 

U Coulomb = ∑∑
𝑞𝑖  𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
𝑗>𝑖𝑖

 

 

The production is carried on in a cell with periodic boundary conditions: the particles 

are enclosed in the cell that is replicated to infinity by periodic translations. If a particle 

leaves the cell during the simulation it is copied and replaced at the opposite side. This 

expedient is used to simulate a large volume of solvent. 
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Each step of  the simulation correspond to 2fs. For each step, the Potential Energy and 

forces acting on each atom are used to determine the new atom positions. These 

process is iterated until the end of the molecular dynamics. 

1.5.6 Phylogenetic tree  

The phylogenetic tree represents the evolutionary relationship of genes or proteins 

among organisms. Darwin’s “Origin of the Species” contains one of the first examples 

of an evolutive tree, but the use of this analytical tool underwent a dramatic increase 

with the development of molecular biology. The growth of available DNA and protein 

sequences dramatically increased the possibility to infer phylogenesis (132).  

Several methods were developed for phylogenetic tree construction. These can be 

divided in: distance methods, where the aligned sequences are converted into a 

distance matrix of pairwise differences between the sequences; character-based 

methods, where the characters of each column of the multiple alignment are directly 

compared between the sequences. Distance methods are Neighbor Joining and 

UPGMA. Character-based methods include Parsimony, Maximum Likelihood, Bayesian 

Interference. 

Among these methods we chose the Bayesian Inference, which with our samples 

resulted in more stable trees. Bayesian Inference is based on the Bayes’s theorem.  

Pr[Tree|Data] =
Pr[Data|Tree]  × Pr[Tree]

 Pr[Data]
  

The Bayes’s theorem combines the prior probability of phylogeny Pr[Tree] (determined 

from a probability distribution over all possible trees given before the data are 

examined (133)) with the likelihood Pr[Data|Tree] to produce a posterior probability 

distribution on trees Pr[Tree|Data]. The posterior probability of a tree is the 

probability that the tree is correct. The tree with the highest posterior probability 

might be chosen as the best estimate of phylogeny. Markov chain Monte Carlo 

(MCMC) method simplifies significantly the calculation of posterior probability. MCMC 

algorithm involves two steps: (i) A new tree is proposed by stochastically perturbing 

the current tree. (ii) This tree is then either accepted or rejected. If the new tree is 
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accepted, then it is subjected to further perturbation. The proportion of the time that 

any tree is visited is a valid approximation of the posterior probability of that tree 

(132). 
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2. Materials and methods  

2.1 Transmembrane domains predictions of pendrin 

In the work described in this thesis for the transmembrane domains of pendrin I used a 

consensus approach between nine different predictors: HMMTOP (134), DAS-TM filter 

(135), Phobius (136), TMHMM (113) OCTOPUS(137), SCAMPI-seq(138), SCAMPI-

msa(138),  PRODIV(139),  PRO(139). The same weight was given to all the predictors. 

The states of each residue (transmembrane, or not) were determined by a consensus 

of at least five predictors. The choice of the predictors fulfills the need of a wide range 

of different methods: HMMTOP, Phobius, TMHMM, SCAMPI, PRO and PRODIV are 

based on Hidden Markov model, OCTOPUS uses a combination of Hidden Markov 

model and artificial neural networks, while DAS-TM filter is based on hydrophobicity 

profile.   

2.2 Pendrin homologous search and multiple alignment  

Pendrin homolog sequences were retrieved with three iterations of PSI-Blast (140) on 

the non-redundant database and aligned using T-Coffee (141) (both used with 

standard parameters). The alignment was manually refined using the Jalview viewer 

(142).  

2.3 Pendrin Homology Modelling  

A template search for homology modelling was performed with HHpred (143) from the 

manually curated alignment using default parameters. 

At first the bacterial uracil transporter UraA (144) (which shows 14% identity with 

pendrin) resulted as the best template for the transmembrane domain, subsequently 

the resolution of SLC26Dg, a prokaryotic member of the SLC26 family (3) offered a 

better template for pendrin  with 19% identity.  
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Three different softwares were used for homology modeling: SwissModel (145), 

Modeller (146) and I-Tasser (147).  SwissModel and Modeller use a similar approach of 

homology modeling in which the loops are retrieved from a database/set of 

experimental structures. I-Tasser models the loops by ab-initio modelling. All the 

softwares were used starting from the same target template alignment. 

2.4 Structure preparation and molecular dynamics 

Chains  A, B, C, D, E, F, G, S of bovine F-ATP synthase membrane extrinsic region 

published by Rees et al. (95) (PDB code: 2WSS) were used as starting point of 

simulations. The structure consists of 3 α-subunits (chains A, B, C) and 3 β-subunits 

(chains D,E,F) crystallized in three catalytic states “Empty” (E), ATP bound (TP) and ADP 

bound (DP), respectively. The crystal structure also includes  subunits γ (chain G) and 

OSCP (chain S). Although this currently represents the most complete high resolution 

structure available for F-ATP synthase complex, some protein fragments were not 

resolved at atomic resolution. Chains presenting unresolved segments were removed 

and not included in our simulations. The final system consisted of 8 chains contain the 

following 3,273 resolved residues: αE, 1–510; αTP, 23–401 and 410–510; αDP, 27–510; 

βE, 9–474; βTP, 9–474; βDP, 9–475; γ, 1–61, 70–96, and 101–272; OSCP, 1–146. The 

phosphoaminophosphonic acid-adenylate ester (ANP) present in the crystal structure 

was substituted with adenosine triphosphate (ATP). Parameters for ATP were included 

in the force field as described in Polticelli et al. (148).  

The β subunit T163S mutation was introduced on all three β subunits binding sites. 

Mutation placement was performed with Bluues (149).  Two metals were tested in the 

Me2+ nucleoside binding sites: Mg2+ (originally present in the protein structure) and  

Ca2+. No specific restrictions were applied to the metal ions binding sites during MD 

run. 

The simulations of all four models were carried out on GPUs with NAMD (129) using 

the CHARMM-27 force field. The TIP3p water model was used to simulate the explicit 

solvent in a cubic box of 141.5 x 160.2 x 162.5 Å. Each simulation run consisted of 100 
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conjugate gradient minimization steps, 100 ps in NVT conditions, and 50 ns of MD. The 

temperature was kept at 310 K and pressure at 1.01325 bar in all simulations, 

excluding the NVT pre-simulation steps. A 2 fs integration timestep was used with a 

Verlet method integrator (129). 

2.5 Mrbayes tree building 

A search of homologous protein for the b subunit was performed using the human 

sequence (Uniprot ID P24539) as query in a 5 iterations search of Jackhmmer setted to 

E score at 0.01 the 14 march 2016. Six hundred thirty-four sequences were obtained 

from the search. Because of the absence of vegetal organisms the search was repeated 

for 3 interactions using as query the previously identified Arabidopsis thaliana F-ATP 

synthase b subunit homolog (Uniprot ID G1C2W7), collecting 78 new sequences.  

All 712 sequences were manually refined: removing fragmented or biased sequences, 

deleting redundant sequences (more than 98% identity), selecting the isoform (if more 

than one) with the lowest E score. After this filtrations 228 sequences were selected. 

The sequences where used in Mrbayes to build the phylogenetic tree of b subunits. 

The alignment obtained with Muscle was converted in a nexus file format and copied 

in the execution file. The mixed model for amino acids sequences with gamma lset 

rates. Ten million maximum of generation were setted. A single chain was used with a 

temperature of  0.2. 
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3.RESULTS AND DISCUSSION 

3.1 PENDRIN (SLC26A4) 

3.1.1 Aim of the project 

Pendrin is an anion exchanger of the apical cell membrane and a member of the 

SLC26A family (SLC26A4) (9,10). The SLC26A4 gene is mostly expressed in the inner 

ear, thyroid and kidney, while different tissue-specific function were reported in the 

literature (11–14). Precise information of protein structure is still missing, although 

SLC26A4 mutations are estimated to be the second most common genetic cause of 

human deafness. In the absence of structural information for pendrin transmembrane 

domains, aim of my work was to provide a working model for protein topology and a 

functional explanation for mutations collected in the MORL Deafness Variation 

Database. The structure of pendrin was modelled by homology and used to map the 

pathological mutations. Using our model we suggest a putative functional and 

structural effect for the mutations. A paper originated form this project was published 

(150). 

3.1.2 Background and state of the art: preliminary 
mutation mapping reveals the presence of three 
mutations clusters  

One hundred and forty-seven pathological missense point mutations, found in patients 

with Pendred syndrome or ns-Eva were selected in MORL Deafness Variation Database 

(URL:http://www.deafnessvariationdatabase.org/). All these mutations affecting the 

transmembrane region of pendrin were preliminarily mapped on the topology 

obtained by Uniprot (151). The map (Fig. 2)  highlights the presence of three mutation 

clusters marked with the capital letters A, B, C. In the Uniprot based transmembrane 

http://www.deafnessvariationdatabase.org/
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topology, mutations clusters are localized respectively on: 3rd transmembrane domain 

(TMD), on the external loop between the 9th and the 10th TMD, on the internal loop 

between the 10th and the 11th TMD. 

 

Figure 2 Uniprot 12 TMDs model of pendrin. The TM helices are indicated as rectangles. The 

pathological mutations are listed above the corresponding TM domain. In TM domains the point 

mutations are indicated with stars while the stop codon mutations are indicated with squares. The 

colors change with the caused pathology: red for the mutations found in Pendred syndrome, yellow 

for the mutations found in ns-EVA, orange for the mutations found in both pathologies. Purple 

denotes mutations with a mild phenotype. The mutation clusters are indicated with the letters A,B,C .  

3.1.3 Trasmembrane prediction  

The human pendrin sequence was retrieved from Uniprot (152)  (accession code: 

O43511-1) and used as query in nine different transmembrane domain predictors. The 

results of the predictors were used for the construction of a consensus (Fig. 3). The 

results show substantial differences between the different predictors. The number of 

predicted TMDs vary between the 9 predicted by TMHMM and the 14 predicted by 
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HMMTOP with a relative majority of a 12 TMD predictor. The consensus between the 

major predictors confirms 12 TM domains.  
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Figure 3: Results obtained from TM predictors for pendrin. The number of the first and the last residues of the TM segment are shown according to different methods. Consensus is 

established between at least 5 predictors and compared to the homology model. 
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3.1.4 Homology modelling  

A prokaryotic member of the SLC26 family SLC26Dg (PDB code: 5DA0)  (3) was used as 

template for pendrin. The alignment is shown in Fig. 4.  It appears that pendrin 

contains two sequence insertions not present in SLC26Dg, corresponding to two loops 

between TM3-TM4 and TM5-TM6.  

 

Figure 4. Alignment between SLC26Dg and Pendrin performed by ESPript, modified adding in blu TM 

domains of Pendrin model and in red TM domains for SLC26Dg template. For SLC26Dg the TM 

domains where assigned based on PDB structure (ID 5DA0),  while for pendrin by our  model 

inspection.  

The alignment was used in three different homology modelling softwares:  

SwissModel.  I-Tasser, and Modeller. Fig. 5 shows the three structures superimposed. 



 
34 

 

As expected the number and the position of the TMDs are conserved in all the models, 

while only the conformations of  loops 154-186 and 241-269 show significant 

differences.  

 Figure 5  Superposition of pendrin structures obtained using different softwares. 

 

The pendrin model (Fig. 6) is characterized by 14 TMs 12 of which are classic 

transmembrane α-helices, while the third and tenth TM present a peculiar structure 

(Fig. 6, panel A). In these segments, the α-helices are shorter and preceded by loops. In 

our model, the peculiar fold of TM3 and TM10 contributes to form a central cavity in 

the structure. The same cavity was experimentally determined in the SLC26Dg 

template and in UraA, where the antiparallel β-strands plays a fundamental role in the 

uracil transport mechanism (34). In UraA, the E290 residue located in TM10 is known 

to directly mediate uracil transport (34) while in SLC26Dg residues E38, E241 and 

Q287, located in TM1 and TM8, are supposed to form the fumarate binding site (3). 

Coherently with the different substrates specificity, these residues are not conserved 

in pendrin. Indeed, the pendrin model presents a Serine-Arginine pair (S408, R409) at 
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the position corresponding to the SLC26Dg G286 and Q287, which are suspected to 

mediate anion translocation through the transporter (33).  

 

 

Figure 6 Representation of the pendrin model.  The NLC domains are shown in green, the rest of the 

core domain in light blue and the gate domain in deep blue. A) Zoom on TM3 and T10 (TM11 is 

hidden) B) Transmembrane segments (TM) labelled and numbered from the N- to the C- terminus. 

 

The TMDs topology obtained by homology modelling differs from the consensus of the 

transmembrane domain predictors. Although predicted TM residues are very similar in 

the 3D model and the TM consensus map, all prediction methods failed to predict 

TM10 and the majority of methods predicted TM13 and TM14 as a single TM domain.  

A core and gate domain were found in both the prestin model and SLC26Dg crystal 

structure (Fig. 6). In pendrin, the core domain is composed of TM1-TM4 and TM8-

TM11, while TM5-TM7 and TM12-TM14 form the “gate” domain. We believe that 

changes in the arrangement of the core and the gate domains allow the substrate 

binding site to be exposed to the two sides of the membrane, as also suggested for 

SLC26Dg (3) and UraA (153). The pendrin TM domain shows a tertiary structure 

pseudo-symmetry, with two groups of seven TM segments facing the two opposed 
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membrane sides. Sequence conservation mapped on the pendrin model shows that 

conserved regions in the structure are close to the exchanger core (Fig. 7).  

 

 

Figure 7 Panel A, 14 TM model coloured using the Consurf schema. Highly conserved residues are 

show in purple, and less conserved in light blue. Spheres show the location of mutations in clusters 

indicated with the letters A,B, C. Panel B, Mutated residues lining the central cavity (S93, T105, F141, 

P142, R409, V402, E414,  N457) coloured using Consurf schema on the surface of the structure. 

 

Indeed, as seen in prestin, the SulP and Saier motifs are close in structure and TM2 and 

TM9 are in direct contact. A sequence alignment between pendrin (UniProt accession: 

O43511-1) and prestin (UniProt accession: P58743) shows an overall global identity of 

38%, raising to 58% and 41% when restricted to residues 89-142 and 393-448, 

corresponding to the functionally relevant prestin NLC1 and NLC2 domains (33,154). 

This suggests that the structurally peculiar TM3 and TM10 as much as the SulP and 

Saier motifs are involved in pendrin anion transport. As expected for a TM protein, 

amino acid composition for the membrane-facing surface is highly hydrophobic 

compared to the cytosolic and luminal portions (Fig. 8).  
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Figure 8  Hydrophobicity profile of pendrin. Red lines delimit the putative lipid bilayer. Pendrin 

hydrophobic and hydrophilic surfaces are shown in red and blue respectively. 

3.1.5 Pathogenic mutations mapping 

We mapped 147 pathological missense point mutations, found in patients with 

Pendred syndrome or ns-Eva, on the 3D TM domain model to gain insight about 

functionally relevant protein regions. The mutations were mostly found to affect 

residues oriented towards the TM center clustering between residues 89-142 and 393-

448 (Figs. 8 and 9), forming three different clusters.  

The ratio of pathogenic mutations within the region homologous to the prestin NLC 

domains and the entire TM domain was analyzed to investigate the functional role of 

these specific regions. We found 1 pathological mutation every 1.7 residues affecting 

NLCs, against a background of 1 mutation every 3.0 residues for the entire TM domain. 

As expected, structural positions of the mutation cluster vary depending on the 

considered topology. In the classical 12 TM topology model, mutations clusters at TM3 

and in an extracellular loop between TM9 and TM10, as well as at the end of TM10 and 

the following cytosolic loop were found (Fig. 2).  In our 14 TM topology model, the 

same clusters were found in TM3, TM10 and at the C-terminal of TM11 (Figs 7 and 9). 

This class of mutations is suspected to promote disease onset by affecting anion 

transport between TM3 and TM10, confirming the importance of TM3 and TM10 in 

SLC26 protein family (3,33). In particular, 35% of Pendred Syndrome-causative variants 
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localize within TM3 and TM10, suggesting that both regions are also functionally 

relevant for pendrin activity (Fig. 9).  

A subset of 37 missense mutations has been previously tested for the ability to affect 

anion transport. We used the 3D model to analyze possible structural effects deriving 

from these amino acid substitutions to gain insight in the structure-function 

relationship (Tables 1 and 2). Twenty-nine missense mutations occur at conserved 

positions. Functional alteration is predicted to occur mainly through the following 

mechanisms: destabilization of the central core (e.g. L236P), steric hindrance or 

destabilization of the central loops (e.g. V138F), alteration of substrate binding site 

(e.g. R409H), altered local structural flexibility of TMs or loops involved in 

conformational changes (e.g. P123S), disruption of the GxxxG motif on TM14 (e.g. 

G497S). The energy variation induced by mutations was tested with NeEMO (155) and 

BLUUES (149) (see Table 1 and Table 2).  

NeEMO predicts changes in internal folding energy and can be useful to identify highly 

destabilizing mutations. I chose this predictor because of the presence of 

transmembrane proteins in the training dataset. Indeed, predictor trained on dataset 

composed only of cytosolic protein (eg. Maestro (156)), may fail in predicting the 

change in stability upon mutations when applied to transmembrane proteins like 

pendrin.  

BLUUES estimates the change in solvation energy for mutations on the protein surface, 

which can serve to estimate the effect on the surrounding lipids. The majority of the 

mutations tested show an increase in free energy which is consistent with reduced 

folding. A significant number of inner facing mutations cause a slightly reduction in 

total free energy, which may suggest a not folding-derived functional impairment. 
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Figure 9. Mutation map on the 14 TM model. α-helices are indicated as rectangles, with  the gate domain in blue, the core domain in light blue, and the NLC1 and NLC2 domains (part of 

the core domain) in green. The pathological mutations are listed above the corresponding α-helices. In α-helices domains point mutations are indicated with stars while stop codon 

mutations are indicated with a square. Colors change with the caused pathology: red for mutations found in Pendred syndrome, yellow for mutations found in ns-EVA, orange for 

mutations found in both. Purple denotes mutations with a mild phenotype. Mutation clusters are indicated with the letters A,B,C.  
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Table 1 Functionally tested mutations 

Table 1. Summary of the 37 mutations tested experimentally. Missense mutations are listed with their affected nucleotide, 

exon and amino acid change followed by their location on the 14 TM model, conservation of the mutated residues (Cons.), 

and (where possible) predictions for stability with NeEMO and solvation with BLUUES. References are provided together with 

the cellular localization and functionality of each pathogenic variant. Where possible, a prediction of the molecular effect of 

the mutation based on the 14 TM model completes the information. The location column shows the position of the residue 

change in the 14 TM model, indicating for affected transmembrane segments whether the position is inward-looking (Inw) or 

lipid-exposed (Lip). The degree of conservation shown ranges from “-“ (unconserved) to “+++” (highly conserved). Both 

NeEMO and BLUUES predict ΔΔG energies in Kcal/mol. The following acronyms are used for pathogenic effect: Pendred 

Syndrome (PS), enlarged vestibular aqueduct (EVA), non-syndromic hearing loss (NSHL). The cellular localization can be 

plasma membrane (PM), endoplasmic reticulum (ER) or intracellular (Intracell.). 

 

Nucleoside 

change 
Exon 

Residue  

change 

Protein 

Location 
Cons. 

NeEMO 

stability 

 

BLUUES 

solvatation 

 

Ref. 
Pathogenic 

effect 

Cell 

localization 
Functionality 

Predicted 

molecular 

effect 

c.259G>T 3 p.Asp87Tyr 
TM1 

(Inw) 
+++ -0.61  (157,158) NSHL PM 

Reduction of 

formate uptake 

Loss of a charge 

at the membrane 

interface. 

c.279T>A 3 p.Ser93Arg 
TM1 

(inw) 
++ -0.67  (157) EVA PM 

Reduction of 

formate uptake 

Insertion of a 

charged residue 

at the interface 

between gate and 

core. 

c.296C>G 3 p.Thr99Arg 

TM1 

(Inw) 

 

+ +0.5  (24) EVA  
Normal I- 

transport 
 

c.304G>A 3 p.Gly102Arg 
TM1 

(Inw) 
+++ +0.03  (159) PS ER Loss of I- efflux 

Insertion of a 

charged residue 

in a hydrophobic 

region in the 

contact interface 

between TM1 

and TM11 

c.367C>T 4 p.Pro123Ser 
TM2 

(Inw) 
+++ +1.22  

(22,160,16

1) 
NSHL Intracell. 

Loss of Cl-/I-

exchange 

activity 

Removal of 

proline-kink in 

TM2 

c.412G>T 4 p.Val138Phe 
TM3 

(Inw) 
+ -0.63  

(159,162–

164) 

PS 

NSHL 
ER Loss of I- efflux 

Interference with 

the transport 

mechanism 

c.419C>A 5 p.Pro140His 
TM3 

(Inw) 
++ +1.77  (165,166) PS  

Loss of I- and 

cloride transport 

Substitution of  

proline in central 

loops. Disruption 

of the local 

structure. 

  p.Pro142Arg   -0.65  (23,167)   Loss of Cl- Substitution of  
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c.425C>T 5 TM3 

(Inw) 

++ EVA Intracell. /HCO3
- 

exchange 

activity 

proline in the 

loops disruption 

of the local 

structure. 

c.439A>G 5 p.Met147Val 
TM3 

(Inw) 
+++ 

+0.32 

 
 

(22,160,16

7–169) 
NSHL Intracell. 

Loss of Cl- and 

I- transport 

Partial loss of 

local 

hydrophobic 

interaction 

c.440T>C 5 p.Met147Thr 
TM3 

(Inw) 
+++ +11.07  (24,167) EVA Intracell. 

Loss of Cl-

/HCO3
- 

exchange 

activity 

Loss of local 

hydrophobic 

interaction 

c.497G>A 5 p.Ser166Asn 
Extracell. 

Loop 
- +0.12  (23,170) EVA  

Normal Cl-

/HCO3
-   

exchange 

 

c.554G>C 5 p.Arg185Thr 
Extracell. 

Loop 
++ -0.19  (171–173) PS Intracell. 

Reduction of I- 

transport 

Loss of a salt 

bridge with 

Asp182 

c.626G>T 6 p.Gly209Val 
Amphipati

c helix 
+++ +0.73  

(159,162,1

64) 

EVA 

NSHL 

PS 

PM 
Severe reduction 

of I- transport 
 

c.665G>T 6 p.Gly222Val 
TM5 

(Inw) 
+++ +1.17  (157) EVA PM 

Reduction of 

formate uptake 

Insertion of a 

side chain at the 

interaction 

interface of 

TM13 

c.707T>C 6 p.Leu236Pro 
TM5 

(Lip) 
+++  +0.08 

(21,162,16

7,174,175) 

PS 

NSHL 
E.R. 

Loss of I- 

transport and Cl-

/I- and Cl-

/HCO3
- 

exchange 

activity 

Insertion of a 

proline in α-helix 

c.707T>C 6 p.Val239Asp 
TM5 

(Inw) 
++ -0.05  

(20,176,17

7) 

PS 

NSHL 
E.R. 

Severe reduction 

of Cl- and I- 

transport 

Disruption of an 

hydrophobic 

interaction 

between TM5 

and TM6 

c.907G>C 7 p.Glu303Gln 
TM7 

(Inw) 
+++ +0.17  (178,179) EVA PM 

Loss of Cl-/I- 

and Cl-/HCO3
- 

exchange 

activity 

 

c.941C>T 8 p.Ser314Leu 
TM7 

(Inw) 
+++ -0.04  (157) NSHL Intracell. 

Reduction of 

formate uptake 
 

c.1003T>C 9 p.Phe335Leu 
External 

loop 
+ -0.5  (180,181) PS PM 

Reduction of Cl-

/I- and Cl-

/HCO3
- 

exchange 

activity 

 

c.1079C>T 9 p.Ala360Val 
TM8 

(Inw) 
+++ +0.7  

(157,169,1

82,183) 
PS  

Reduction of 

formate uptake 

Larger side chain 

destabilization of 

the central loops 

c.1105A>G 9 p.Lys369Glu 
TM8 

(Inw) 
- -0.43  

(22,160,16

1) 
EVA  

Normal Cl-/I- 

exchange 

Maintenance of a 

charged reside at 

the cytosolic 

interface. 

c.1115C>T 9 p.Ala372Val TM8 ++ +0.73  
(22,160,16

1) 
EVA  Reduction in the  
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(Inw) Cl-/I- exchange 

.1151A>G 10 p.Glu384Gly 
TM9 

(Inw) 
+++ +1.82  

(21,167,17

4,175,184) 

PS 

NSHL 

ER 

Intracell. 

Loss of Cl- and 

I- uptake 

Loss of H bonds 

between Glu384 

and Tyr127. 

Necessary for 

TM9 and TM2 

interaction. 

c.1174A>T 10 p.Asn392Tyr 
TM9 

(Inw) 
+++ -0.32  

(160,169,1

76,185,186

) 

NSHL Intracell. 
Reduction in the 

Cl-/I- exchange 

Clashes in the 

protein core. 

c.1204G>A 10 p.Val402Met 
TM10 

(Inw) 
+ +0.29  (181) EVA Intracell. 

Loss of Cl-/I- 

and Cl-/HCO3
- 

exchange 

activity 

Clashes in the 

protein core. 

c.1225C>T 10 p.Arg409Cys 
TM10 

(Inw) 
+++ +0.48  (157) EVA Intracell. 

Loss of formate 

uptake 

Loss of Arg409 

putatively 

involved in anion 

binding 

c.1226G>A 10 p.Arg409His 
TM10 

(Inw) 
+++ +1.43  

(32,162,18

5,187,188) 
PS Partially PM 

Reduction of Cl- 

and I- transport, 

loss of I- efflux 

Loss of Arg409 

but partial 

conservation of 

the positive 

charge. 

c.1229C>T 10 p.Thr410Met 
TM10 

(Inw) 
++ -1.02  

(159,164,1

69,178,184

,185,189,1

90) 

PS 

NSHL 
ER Loss of I- efflux 

Alteration of the 

anion binding 

site 

c.1238A>C 10 p.Gln413Pro 
TM10 

(Inw) 
++ -0.61  (165,166) PS  

Loss of cloride 

and I- transport 

Insertion of a 

proline in the α 

helix 

c.1246A>C 10 p.Thr416Pro 
Cytosolic 

Interface 
+++ -0.49  

(21,162,16

4,167,174,

175) 

EVA 
ER 

Intracell. 

Loss of Cl- and 

I- uptake 

Insertion of a 

proline in the 

loop 

c.1271G>A 11 p.Gly424Asp 
TM11 

(Inw) 
+++ +0.42  (165,166) PS  

Reduction of Cl- 

and I- transport 

H Bond  with 

His135 and 

destabilization of 

the internal loops 

c.1334T>G 11 p.Leu445Trp 
External 

Loop 
+++ +1.31  

(162–

164,168,18

1) 

PS 

NSHL 
Intracell. 

Loss of Cl- and 

I- transport 

Change in the 

steric hindrance 

c.1337A>G 11 p.Gln446Arg 
External 

Loop 
+ +0.10  (159,191) EVA ER Loss of I- efflux 

Insertion of a 

charged residue 

c.1439T>A 13 p.Val480Asp 
TM13 

(Lip) 
+  -18.89 (21) PS  

Reduction of Cl- 

and I- uptake 

Charged residue 

lipid facing 

c.1454C>G 13 p.Thr485Arg 
TM13 

(Inw) 
+ -0.46  (165,166) PS  

Reduction of Cl- 

and I- transport 

Disruption of the 

interaction 

between TM13 

and TM5 

c.1468A>C 13 p.Ile490Leu 
TM13 

(Lip) 
++ -0.49  (21,192) EVA  

Mild reduction 

of Cl- and I- 

uptake 

 

c.1517T>G 13 p.Leu506Arg 
TM14 

(Lip) 
++ -0.11  (157) EVA PM 

Reduction of 

formate uptake 

Insertion of a 

lipid facing 

charged residue 
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Table 2 not functionally tested mutations 

Table 2. Summary of SLC26A4 missense variants without experimentally validated functional information. Missense mutations 

are listed with their affected nucleotide, exon and amino acid change followed by their location on the 14 TM model, 

conservation of the mutated residues (Cons.), and (where possible) predictions for stability with NeEMO and solvation with 

BLUUES. References are provided for the origin of each variant and their pathogenic effect is indicated. Where possible, a 

prediction of the molecular effect of the mutation based on the 14 TM model completes the information. The location column 

shows the position of the residue change in the 14 TM model, indicating for affected transmembrane segments whether the 

position is inward-looking (Inw) or lipid-exposed (Lip). The degree of conservation shown ranges from “-“ (unconserved) to “+++” 

(highly conserved). Both NeEMO and BLUUES predict ΔΔG energies in Kcal/mol. The following acronyms are used for pathogenic 

effect: Pendred Syndrome (PS), enlarged vestibular aqueduct (EVA), non-syndromic hearing loss (NSHL), sensorineural deafness 

with palmoplantar lichen planus (SDPLP). 

 

Nucleoside 

change 
Exon 

Residue  

change 

Protein 

location 
Cons. 

 NeEMO 

stability  

BLUUES 

solvatation   
Ref. Pathogenic 

effect 

Predicted molecular 

effect 

c.262G>A 3 p.Val88Ile 
TM1 

(Lip) 
++  +0.74 (20,165) Benign 

Maintenance of lipid facing 

Hydrophobic reside 

c.269C>T 3 p.Ser90Leu 
TM1 

(Inw) 
+++ -0.84  (176) NSHL Loss of H bond with Asp87 

c.281C>T 3 p.Thr94Ile 
TM1 

(Inw 
+++ -1.17  (179) EVA 

Loss of H bond with Ser427 

of TM12 

c.311C>T 4 p.Ala104Val 
TM1 

(Inw) 
+++ +0.28  (193) NSHL Clash with Val454 

c.314A>G 4 p.Tyr105Cys 
TM1 

(Inw) 
++ +1.45  (180) PS 

Loss of hydrogen bond with 

Asn457. 

c.317C>A 4 p.Ala106Asp 
TM1 

(Inw) 
+++ +1.08  (180) PS 

Disruption of the interaction 

between TM2 and TM3 

c.334C>T 4 p.Pro112Ser 
Extracellular 

Loop 
+++ +0.09  (179) EVA Loss of conserved proline 

c.340G>A 4 p.Gly114Arg 
TM2 

(Inw) 
- -0.73  (194) EVA 

Addition of a charge in a 

hydrophobic poket 

c.347G>T 4 p.Gly116Val 
TM2 

(Inw) 
+++ -0.63  (195) NSHL 

Disruption of Gly-Gly 

interaction with Gly92 of 

TM1 

c.349C>T 4 p.Leu117Phe 
TM2 

(Inw) 
+++ 1.37  (196) 

Benign 

(in silico) 

Maintenace of the 

hydrophobicity 

c.392G>T 4 p.Gly131Val 
Cytoplasmic 

Loop 
+++ -0.01  (197) NSHL Clash with Tyr 127 

c.395C>T 4 p.Thr132Ile 
Cytoplasmic 

Loop 
+++ -0.58  (198) NSHL 

Loss of H bond with Asp380 

 

 

c.397T>A 4 p.Ser133Thr 
Cytoplasmic 

Loop 
+++ +0.62  (199) PS  
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c.398C>A 4 p.Ser133Stop 
Cytoplasmic 

Loop 
+++   (164,200) PS Protein truncation 

c.404A>G 4 p.His135Arg 
TM3 

(Inw) 
+++ +1.62  (185) EVA Putative anion binding site 

c.409T>C 4 p.Ser137Pro 

TM3 

loop 

(Inw) 

+++ -0.67  (200) PS 
Loss of anion binding 

cooperation? 

c.412G>C 4 p.Val138Leu 

TM3 

loop 

(Inw) 

+ -1.14  (201) PS 

Change in the lateral chain 

steric hindrance in the central 

loops. 

c.413T>A 4 p.Val138Asp 

TM3 

loop 

(Inw) 

+ +0.01  (158) NSHL-EVA 
Destabilization of the central 

loops. 

c.416G>C 5 p.Gly139Ala 
TM3 

(Inw) 
+++ -0.15  (162) PS 

Change in the lateral chain 

steric hindrance in the central 

loops. 

c.416G>T 5 p.Gly139Val 
TM3 

(Inw) 
+++ +0.25  (202) NSHL 

Change in the lateral chain 

steric hindrance in the central 

loops. 

c.422T>C 5 p.Phe141Ser TM3 

(Inw) 
+++ +3.12  (203) NSHL 

Loss of Pi stack between 

Phe141 and Pro142 

c.425C>G 5 
p.Pro142Leu 

 

TM3 

(Inw) 
++ 

-1.20 

 
 (163) EVA 

Loss of Pi stack between 

Phe141 and Pro142 

c.441G>A 5 p.Met147Ile 
TM3 

(Inw) 
+++ 

+0.02 

 
 (204) EVA  

c.446G>A 5 p.Gly149Glu 
TM3 

(Inw) 
+++ -0.75  (163) EVA 

Disruption of hydrophobic 

interaction between TM3 and 

TM1 

c.487G>A 5 p.Val163Ile 
Extracellular 

Loop 
- -0.48  (197) EVA 

Interference with the 

glycosilatyon site Asn 167N? 

c.487G>C 5 p.Val163Leu 
Extracellular 

Loop 
- -0.27  (170) NSHL 

Interference with the 

glycosilatyon  Asn 167N? 

c.532A>C 5 p.Thr178Pro 
Extracellular 

Loop 
- +0.35  (205) EVA 

Insertion of a proline, 

interference with  

glycosilatyon site Asn 172N? 

c.554G>C 5 p.Ile188Thr 
TM4 

(Inw) 
++ +1.38  (169) EVA 

Insertion of a polar residue in 

a hydrophobic pocket. 

c.349C>T 5 p.Ala189Ser 
TM4 

(Inw) 
++ +1.30  (196) Benign 

Tolerate insertion of a polar 

residue in a hydrophobic 

pocket 

c.578C>T 5 p.Thr193Ile 
TM4 

(Inw) 
+ -1.15  (163,206) 

PS 

NSHL 

Lost of H bond with Phe401 

Ile383 

c.589G>A 5 p.Gly197Arg 
TM4 

(Inw) 
+++ -0.11  (169,179) EVA 

Disruption of the interaction 

between TM5 and TM9 

c.596T>C 5 p.Ile199Thr 
TM4 

(Inw) 
++ +0.90  (24) EVA 

Disruption of hydrophobic 

interaction with TM8 

c.611G>T 6 p.Gly204Val TM4 +++ -0.26  (179) EVA 

Disruption of the Gly 

interaction between TM4 and 

TM10 

c.626G>A 6 p.Gly209Glu 
Amphipatic 

helix 
+++ +0.47  (179) EVA 

Clashes with TM11 and 

TM12 
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c.644T>C 6 p.Leu215Ser 
Intracellular 

loop 
+++ +0.42  (197) EVA 

Formation of  H bond with 

Ala131 

c.664G>A 6 p.Gly222Ser 
TM5 

(Inw) 
+++ +0.72  (170) NSHL 

Formation of hydrogen bond 

withThr485 or Cys486 

c.665G>T 6 P.Gly222Ala 
TM5 

(Inw) 
+++ +0.57  (197) EVA 

Insertion of a side chain at 

the interaction interface of 

TM13 

c.668T>C 6 p.Phe223Ser 
TM5 

(Inw) 
+++ +2.22  (207) NSHL 

Insertion of a polar residue in 

a hydrophobic pocket. 

c.679G>C 6 p.Ala227Pro 
TM5 

(Inw) 
+++ +0.67  (186) NSHL 

Insertion of a proline in the α 

helix 

c.691G>A 6 p.Val231Met 
TM5 

(Inw) 
++ -0.32  (202) NSHL Clashes in the protein core. 

c.697G>C 6 p.Val233Leu 
TM5 

(Inw) 
+ -0.40  (208) NSHL  

c.749T>C 6 p.Val250Ala External loop + +0.38  (178) NSHL  

c.754T>C 6 p.Ser252Pro External loop ++ +0.38  
(169,176,186

) 
NSHL 

Reduction of the loop 

flexibility 

c.757A>G 6 p.Ile253Val External loop ++ +0.52  (157,170) NSHL  

c.811G>C 7 p.Asp271His 
TM6 

(Inw) 
- +0.16  (162) PS 

Loss of a salt bridge with 

Lys447 

c.812A>G 7 p.Asp271Gly 
TM6 

(Inw) 
- +0.30  (179) EVA 

Loss of a salt bridge with 

Lys447 

c.841G>A 7 p.Val281Ile 
TM6 

(Inw) 
++ -0.41  (172) NSHL  

c.849G>C 7 p.Met283Ile 
TM6 

(Lip) 
++  +1,13 (196) 

Benign 

(in silico) 

Maintenance of a  

hydrophobic lipid facing 

residue. 

c.890C>A 7 p.Pro297Gln 
Intracellular 

loop 
- -0.20  (161) EVA Loss of a Proline in the loop 

c.917T>G 7 p.Val306Gly TM7 ++ + 3.55  (205) NSHL 
Insertion of a Gly in alpha 

helix 

c.920C>T 8 p.Thr307Met 
TM7 

(Inw) 
+ -1.06  (24) EVA  

c.941C>A 8 p.Ser314Stop     (209) NSHL Protein truncation 

c.946G>T 8 p.Gly316Stop     (169,178) PS Protein truncation 

c.964A>G 8 p.Asn322Asp External loop - +0.34  (196) 
Benign 

(in silico) 
 

c.970A>T 8 p.Asn324Tyr External loop ++ +0.63  (196) 
Benign 

(in silico) 
 

c.983T>G 8 p.Val328Gly External loop ++ +0.71  (197) EVA  

c.1000G>T 8 p.Gly334Trp External loop +++ +1.95  (194) EVA  

c.1001G>C 8 p.Gly334Ala External loop +++ +2.31  (210) NSHL  

c.1001G>T 8 p.Gly334Val External loop +++ +2.86  (211) NSHL  
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c.1004T>C 9 p.Phe335Ser External loop + +7.49  (212) EVA  

c.1061T>C 9 p.Phe354Ser 
TM8 

(Lip) 
+   (196) 

Benign 

(in silico) 
 

c.1102G>T 9 p.Gly368Stop     (188) NSHL Protein truncation 

c.1124A>G 9 p.Tyr375Cys  ++ -0.58  (178) NSHL Lost of pi stack with Tyr 371 

c.1147C>G 9 p.Gln383Glu 
TM9 

(Lip) 
+++   (213) 

PS 

NSHL 

Insertion of a negative 

charge at the citosololic  

membrane interface 

c.1160C>T 10 p.Ala387Val 
TM9 

(Inw) 
+++ +1.11  (214) EVA 

Larger side chain cause 

clashes with TM2 

c.1165G>C 10 p.Gly389Arg 
TM9 

(Inw) 
+++ -0.35  (164) EVA 

Disruption of the interaction 

site between TM9 and TM4 

c.1172G>A 10 p.Ser391Asn 
TM9 

(Inw) 
+ -0.32  (200) PS 

Formation of a H-bond with 

Thr126 

c.1173C>A 10 p.Ser391Arg 
TM9 

(Inw) 
+ -0.53  (24) EVA 

Charged residue in a 

hydrophobic pocket. 

Disruption of the 

arrangement of the central 

loops 

c.1174A>T 10 p.Asn392Ser 
TM9 

(Inw) 
+++ +0.38  (179) EVA 

Loss of H-bond with Ala403 

 

c.1187G>A 10 p.Gly396Glu 
TM9 

(Inw) 
++ -0.72  (161) EVA 

Disruption of the interaction 

between TM9 and TM4 

c.1195T>C 10 p.Ser399Pro 
Extracellular 

loop 
- -1.28  (32) NSHL 

Change of the local 

flexibility 

c.1211C>T 10 p.Thr404Ile 

TM10 

loop 

(Inw) 

++ -0.84  (194) EVA Clashes in the protein core. 

c.1226G>C 10 p.Arg409Pro 
TM10 

(Inw) 
+++ +0.53  (176) NSHL 

Loss of Arg409 putatively 

involved in anion binding 

c.1226G>T 10 p.Arg409Leu 
TM10 

(Inw) 
+++ -0.37  (197) EVA 

Loss of Arg409 putatively 

involved in anion binding 

c.1231G>A 10 p.Ala411Thr 
TM10 

(Inw) 
+ -0.26  (215) EVA 

Formation of a new H-bond 

with Leu407. 

c.1231G>C 10 p.Ala411Pro 
TM10 

(Inw) 
+ -0.51  (216) PS 

Insertion of a proline in the α 

helix 

c.1238A>G 10 p.Gln413Arg 
TM10 

(Inw) 
++ -0.56  

(169,179,217

) 
NSHL 

Loss of a H bonds with TM1, 

Ser432 and Tm12, Ser90. 

Disruption of local folding 

c.1240G>A 10 p.Glu414Lys 
TM10 

(Inw) 
+++ -0.02  (157) EVA 

Charge inversion loss of Salt 

bridge with Lys374 

c.1245C>A 10 p.Ser415Arg 
TM10 

(Inw) 
+++ -0.08  (157) EVA Charge insertion 

c.1259C>T 10 p.Thr420Ile Cytosolic loop +++ +0.27  (211) NSHL  

c.1261C>A 10 p.Gln421Lys 
TM11 

(Inw) 
+++ -0.44  (218) PS Charge insertion 

c.1262A>C 10 p.Gln421Pro 
TM11 

(Inw) 
+++ -0.51  (164,179) EVA 

Insertion of a proline in the α 

helix 

c.1262A>G 10 p.Gln421Arg TM11 +++ -0.52  (193) NSHL Charge insertion 
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(Inw) 

c.1262A>T 10 p.Gln421Leu 
TM11 

(Inw) 
+++ -0.57  (24) EVA  

c.1265T>A 11 p.Val422Asp 
TM11 

(Lip) 
++  +15,17 (218) PS Charged residue lipids facing 

c.1277T>A 11 p.Ile426Asn 
TM11 

(Lip) 
- +2.01  (158) PS Polar residue Lipid facing 

c.1286C>A 11 p.Ala429Glu 
TM11 

(Lip) 
++  +22,44 (169) EVA Charged residue Lipid facing 

c.1300G>A 11 p.Ala434Thr 
TM11 

(Lip) 
+ -0.14  (161,219) SDPLP Polar residue Lipid facing 

c.1315G>A 11 p.Gly439Arg 
External 

anphipatic helix 
+++ +0.25  (161,220) NSHL 

Charged residue in 

hydrophobic region. 

c.1318A>T 11 p.Lys440Stop 
External 

anphipatic helix 
-   (179) EVA Protein truncation 

c.1322T>C 11 p.Leu441Pro 
External 

anphipatic helix 
+++ +0.16  (212) EVA 

Insertion of a proline in the α 

helix 

c.1327G>C 11 p.Glu443Gln External Loop - -0.02  (157) EVA 
Loss of salt bridge wiht 

Lys440 

c.1336C>T 11 p.Gln446Stop External Loop +   (179) 
NSHL 

PS 
Protein truncation 

c.1343C>T 12 p.Ser448Leu 
TM12 

(Inw) 
++ -0.94  (214) EVA Loss of H-bond with Asp271 

c.1363A>T 12 p.Ile455Phe 
TM12 

(Lip) 
++ +0.18  (176) NSHL  

c.1367C>A 12 p.Ala456Asp 
TM12 

(Inw) 
++ -0.15  (170) NSHL 

Disruption of the intarction 

with TM6 

c.1369A>G 12 p.Asn457Asp 
TM12 

(Inw) 
+++ -0.02  (208) NSHL 

Residue putatively involve in 

the movement of the gate 

domain 

c.1369A>T 12 p.Asn457Tyr 
TM12 

(Inw) 
+++ -0.41  (203) NSHL 

Residue putatively involve in 

the movement of the gate 

domain 

c.1370A>T 12 p.Asn457Ile 
TM12 

(Inw) 
+++ -1.29  (170) NSHL 

Residue putatively involve in 

the movement of the gate 

domain 

c.1371C>A 12 p.Asn457Lys 
TM12 

(Inw) 
+++ -0.25  (176) NSHL 

Residue putatively involve in 

the movement of the gate 

domain 

c.1397G>A 12 p.Cys466Tyr Loop - +0.25  (170) NSHL  

c.1409G>A 12 p.Arg470His Loop - +0.05  (221) NSHL  

c.1415G>A 12 p.Trp472Stop Loop  -0.05  (170) NSHL  

c.1454C>T 13 p.Thr485Met 
TM13 

(Inw) 
+ -1.22  (222) EVA 

Disruption of the interaction 

between TM13 and TM5 

c.1472T>C 13 p.Ile491Thr TM 13 + -0.30  (221) NSHL Protein truncation 

c.1477G>T 13 p.Gly493Trp Loop +++ -0.08  (213) 
PS 

NSHL 
Loss of the Glycine 

c.1489G>A 13 p.Gly497Ser 
TM14 

(Inw) 
+++ 0.17  (21,167,192) 

EVA 

PS 
Disruption of GXXXG motif 
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3.1.6 Discussion 

The X-ray-based structure determination of transmembrane proteins is challenging 

due to the peculiar structural and physicochemical proprieties, and to the fact that 

only a limited number of structures is available (224). This work aimed at generating a 

novel structural model, at gaining insight into the pendrin structure-function 

relationship, and at studying the pathogenic role of mutations present in Pendred 

Syndrome and ns-EVA patients. In particular, we have characterized the topology of 

the TM domain by in silico structural analysis. One of the most critical aspects of 

current pendrin models is the exact assignment of TM segments. Experimental 

procedures (e.g. x-ray crystallography) generally fail to solve transmembrane proteins 

due to their hydrophobic nature and TM prediction tools still have difficulty to predict 

the correct TM topology (114). Furthermore, TM topology does not provide 

information on 3D TM arrangement relative to the membrane. Several different 

pendrin models were presented in the literature (15,31,187). The most used model 

counts 12 TM segments, while several authors proposed alternative topologies 

(30,187), all generated by single TM predictors. Our novel pendrin TM domain 

homology model uses the very recent SLC26Dg protein crystal structure as template 

(3). The approach we adopted to build the model included construction of a TM 

consensus map of pendrin, based on the convergence of at least five different 

predictors. This was used to refine a MSA for both template search and target-

template alignment in homology modeling. SLC26Dg shows only 19% sequence 

identity with the pendrin TM region, even though it is a member of the SLC26/SulP 

protein family. Comparison between the predictor consensus and our homology model 

revealed a good agreement in the definition of the TM-forming residues, confirming a 

large part of the model, except for a discrepancy in TM segment number. TM13 and 

c.1489G>C 13 p.Gly497Arg 
TM14 

(Inw) 
+++ 0.l3  (223) EVA Disruption of GXXXG motif 

c.1522A>G 13 p.Thr508Ala TM14 +++ -0.12  (197) EVA  

c.1523C>A 13 p.Thr508Asn TM14 +++ -0.09  (223) PS 
Disruption of the interaction 

between TM13 e TM14 
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TM14 are predicted as a single TM, while TM10 is not predicted. Our model shows a 

short loop separating the TM13 from TM14, while TM10 was predicted as a non-

canonical TM helix, instead of forming a “loop” followed by a short α-helix. The short 

coil between TM13 and TM14, as well as the unusual topology of TM10, are probably 

the reason why predictors fail to recognize the two TM domains (225).   

Pathological mutations were mapped on our novel 14 TM model. We found known 

pathological mutations to cluster in two regions corresponding to the functionally 

relevant prestin NLC domains. Based on the proposed topology, pathological pendrin 

mutations are gathered in TM3 and TM10, as well as in TM11, suggesting their 

relevance for pendrin activity. TM3 and TM10 are also found to be non-canonical TM 

α-helices. Discontinuous helices are also found in other ion transporters, such as NhaA 

(226) and LeuTAa (227). In these proteins, the discontinuity has a fundamental role for 

the recognition of different ions and for substrate binding, conferring the required 

flexibility at a lower energy cost than an α-helix (228). SLC26Dg and UraA, the only two 

experimentally solved structures related to the SLC26 family, have a short antiparallel 

β-strand in TM3 and TM10 instead of the loops predicted by our model. Future studies 

will clarify the exact structure of these two regions, in particular, whether absence of 

the central β-strands in pendrin is a modeling artifact or a real peculiarity of pendrin. 

This may be due to P142 being located in correspondence of the β-strands present in 

the homologous structures. The structural rigidity of proline may alter the 

conformation yielding the two loops predicted by our model. The TM segments show 

an inverted repetition. Pseudo-symmetry is a common feature of TM proteins as half 

of the all known transmembrane proteins contain internal symmetrical repeats (229). 

In particular for ion transporters, it was suggested that inverted repeats help the 

protein to assume the inward and outward conformations (230). A “gate “ and “core” 

domain are distinguished in the structure and involved in conformational change.  

Using the model, we discuss the role of 37 functionally tested pathological mutations 

(Table 1). For most mutations it was possible to propose a molecular mechanism 

explaining the observed altered anion transport. As expected, pathological mutations 

were found mostly facing towards the protein interior, due to the higher probability 

for a mutated residue to have a pathological effect when altering the protein core than 
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by contacting lipids. Lipid facing mutations, tested with BLUUES, promote relevant 

changes in solvation energy, confirming a disruptive effect on hydrophobic interactions 

with lipid bilayer. Most loss of function mutations are predicted by NeEMO to 

destabilize the protein and cause unfolding, coherently with different papers 

suggesting retention of improperly folded pendrin mutants in the endoplasmic 

reticulum as the major pathological mechanism for Pendred syndrome (231,232). The 

remaining inner facing mutations showed slight reduction in total free energy, 

probably affecting the protein functionality, but with weaker effects on protein 

stability. In SLC26Dg the central cavity residues E38, E241 and Q287 (located in TM1, 

TM8 and TM10) are supposed to form the fumarate binding site, while their role in 

proton symport remains to be elucidated (3). These residues are not conserved in 

pendrin, which presents Q101 and V367 at the same position. This arrangement  in 

turn may explain the absence of fumarate-proton symport activity. Q287 is substituted 

by R409 in the pendrin model. Based on the anion binding mechanism previously 

proposed for prestin (33), we believe that R409 is located at the cavity center, where it 

mediates anion entrance. For this reason, the substitutions with three different amino 

acids (R409H, R409C and R409P, respectively) are of particular interest, because they 

are causative of both Pendred syndrome and ns-EVA. Functional assays performed on 

R409H show a detectable activity reduction not coupled with complete functional 

impairment (187). R409H does not abolish the positive charge, but may introduce a 

relevant pH dependence yielding a reduction in activity. This finding  also suggests that 

a positive charge in this position is an important factor for pendrin function. Our data 

suggest that regions regulating core and gate mobility are mutation hotspots. Indeed, 

mutations affecting residues S93, T105, F141, P142, V412, E414, N457 are located in 

the central cavity at the cytosolic site. Similarly, pathogenic mutations were found at 

the C-terminus of TM11 at the extracellular membrane side between the gate and core 

domains (Fig. 8). These two regions were suggested to have a relevant role in anion 

binding as well as core and gate gating regulation. 

The non-canonical transmembrane segments formed by TM3 and TM10 are delimited 

by TM2 and TM9, where the conserved Y127 residue belonging to the “Saier motif” 

and E384 in the SUL1 domain interact with each other to stabilize the protein fold. 
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Mutation E384G is known to cause Pendred syndrome, yielding a phenotype 

characterized by complete loss of Cl- and I- uptake (187), confirming the structural role 

of this residue in maintaining activity. Five pathogenic mutations are located at the C-

terminus of TM11, between the gate and core domains, and their position suggests a 

specific role in regulating opening/closing.  

Mutations in the GxxxG region suggest this specific motif to play a 

functional/structural role in pendrin dimerization. In membrane proteins, the GxxxG 

motif is known to facilitate oligomerization and to help proteins reaching the correct 

fold (97). In the case of pendrin, GxxxG containing domain was associated with protein 

dimerization (187). While pendrin appears to be mostly monomeric under 

physiological conditions, a dimeric form was observed by sucrose gradient 

centrifugation (233). Of note, oligomerization was also reported for the bacterial SLC26 

protein structures (234,235). Although prestin C415 plays a role in protein 

oligomerization (236), we did not find relevant conservation in the phylogenetic tree 

for the four pendrin cysteines located in the TM domain, and only mutation C466Y is 

reported as pathogenic. Finally, considering the good fit between our novel 3D model, 

the location of mutations and hydrophobicity profile, we believe that this study will be 

useful to future works aimed to shed light on pendrin function.  
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3.2 Mitochondrial 
Permeabilty Transition Pore  

3.2.1 Aim of the project 

We tried to answer two key questions, i.e. where in F-ATP synthase is the Ca2+ binding 

site that triggers PTP opening, and which subunits are involved in the opening signal 

transmission and channel formation.  

Matrix Ca2+ is a necessary trigger of the PTP opening while Mg2+, Sr2+, Mn2+ and Ba2+ 

cause an inhibition of PTP activation, suggesting competition for the same divalent 

metal ion (Me2+) binding site (237,238).  Six Me2+ binding sites are located in the F1 

domain of F-ATP synthase. Three catalytic Me2+ binding sites are located at the αβ 

subunits interface while other three non-catalytic Me2+ binding sites are at the 

opposite face of αβ protomers. Efficient ATP catalysis requires the binding of the 

nucleotide complex with Mg2+ to both catalytic and non catalytic binding sites.  

In the α-proteobacterium Rhodospirillum rubrum it has been possible to modulate the 

relative affinity for Ca2+ and Mg2+ of F-ATP synthase with a T159S point mutation at the 

 subunit, which decreased Ca2+-ATPase and increased Mg2+-ATPase activity (63,239). 

This same threonine residue (T163 in the bovine sequence) was also shown to play a 

key role in coordinating Mg2+ in the catalytic site of the bovine enzyme during ATP 

hydrolysis (77), suggesting that it might affect the relative affinity for Me2+ in the 

mammalian  subunit as well. Indeed, experimental evidence in cells and in zebrafish 

embryos confirms the effect of the T163S mutation of  subunit, as the mutation 

results in resistance to PTP opening (5). To clarify the molecular effect of the Ca2+ 

binding and of T163S mutation on F-ATP synthase, we performed MD on four F-ATP 

synthase models (WT and T163S binding Mg2+ or Ca2+). Our expectation was that 

simulations should highlight key differences, allowing in turn to make predictions on 

the mechanism through which F-ATP synthase can turn into a channel upon Ca2+ 

binding. We speculated that OSCP, known to be the target of PTP regulators, could 
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transmit the opening signal through the lateral stalk in the membrane region so we 

focused the analysis on the interactions between OSCP and the F1 domain. 

Furthermore, to answer the question of how is the signal transmitted by OSCP to the 

membrane region and which are the pore forming subunit a phylogenetic analysis was 

performed.  A PTP was demonstrated in yeast (240), Drosophila melanogaster (62), 

mammals (4,102) and appears to be a feature of all eukaryotes (40), yet differences in 

several features including conductance were found in different species. For these 

reasons it could be speculated that while PTP constituents have to be conserved in 

eukaryotes they should be sufficiently divergent to explain the different dimensions of 

the pore. Starting from these assumptions I investigated the conservation of putative 

pore forming subunits across organisms using MSA  and building phylogenetic trees. 

Previous studies (240) show that the deletion of the e or/and g subunits in yeast 

induces a relative resistance to opening of the pore. The e and g subunits were 

characterized in silico to identify putative functionally important residues. 

Subsequently I expanded my analysis to the b and f subunits. A phylogenetic tree made 

of 228 sequences was built for b subunit. For each organism of the tree the presence 

of e, g and f subunit was investigated.  

3.2.2 The four F-ATP synthase systems  

Wild type and mutant F-ATP synthase structures described in the Material and Method 

section were used for MD simulation. Two metals were tested in the Me2+ nucleoside 

binding sites: Mg2+ (originally present in the protein structure) and  Ca2+. The average 

distance between the cation and the coordinating  amino acids changes depending on 

the Me2+, due to their different van der Waals radii (Fig. 10). This difference is present 

with both the adenosine nucleosides.  
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Figure 10 Lateral and top view of F1; location of  T163 is marked by green spheres. Red,  subunits; 

yellow,  subunits; blue,  subunit; turquoise, OSCP (lateral view only). The enlargement shows Mg
2+

 

and Ca
2+

 bound to the Me
2+

 sites and their coordination distances. Hydrogen bonds and ion contacts 

are shown in blue and purple, respectively, with the distance between ion and coordinating atoms 

in Å.  

3.2.3 Root Mean Square Deviation 

Root Mean Square Deviation (RMSD) represents the structural variation between each 

frame of the dynamics and the starting T0 structure. RMSD gives information about the 

stability of the simulated system. Indeed, if the simulated system results stable the 

RMSD reaches a plateau in which RMSD fluctuations remain constant during time. 
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The RMSD values calculated for each system (Fig. 11) present an exponential grow in 

the first 7ns of simulation, while plots continue to increase slightly with small 

fluctuations for the remaining 43ns, although never reaching a real plateau. The 

behavior suggests the systems to be stable enough despite the presence of  broken 

chains ( subunit, αTP). 

   

Figure 11 Root mean square deviation of coordinates for non-hydrogen atoms as a function of 

simulation time. Calculation was performed during 50 ns of MD simulation. The x-axis represents the 

simulation time (ns) and the y-axis the backbone movement (Å). 

3.2.4 Root Mean Square Fluctuation  

Root Mean Square Fluctuation (RMSF) shows the fluctuation of each residue in 

comparison to the average structure of the molecular dynamics. RMSF gives 

information about the mobility of the complex considering each single protein residue. 
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The RMSF analysis (Fig. 12) shows a clear difference in the mobility between the 

structure after binding Mg2+ or Ca2+. The complex appears more flexible when bound 

to Mg2+ while, the binding of Ca2+ results in an higher stiffness of the structure. The 

average value of RMSF is 4.8 Å for both the Mg2+ binding system WT and T163S mutant 

while the structures binding Ca2+ have an average RMSD of 3.6 in the WT and 3.9 in the 

T163S.  Furthermore the empty catalytic site (on the B structures of the boxes of 

Fig.12, and Fig 13 c) show a higher stiffness compared with the β-subunits in TP and DP 

conformations.    

Of particular interest is the behaviour of the OSCP subunit in the MD. The partial OSCP 

chain remains firmly anchored to F1 with its C-terminal tail (residues 112-146) freely 

fluctuating through the simulation box. Considering that the mobility of OSCP region 1-

112 changes significantly in the dynamics (Fig. 13a) , and in particular in the Ca2+ WT 

Figure 12. Backbone colouring and thickness correspond to RMSF calculated for each residue. Blue 

represents residues with RMSF ≤ 4Å while red is for ≥ 5,5 Å. The same range of RMSF is highlighted with 

the increase of the backbone thickness. 
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were the OSCP results “blocked” (average RMSF 4.0 Å), compared with Mg2+ binding 

complexes (WT average RMSF 5.2 Å, and T163S average RMSF 4.6 Å) and the Ca2+ 

T163S mutant (average RMSF 4.9 Å), respectively. The interactions between OSCP and 

the crown region of αβ subunits appears highly flexible and affected by the cation 

occupying the Me2+ metal binding site and by the T163S mutant. 
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Figure 13 a) The plot show the RMSF values of OSCP interacting with wild-type (WT) and T163S mutant β subunits binding Mg
2+ 

and Ca
2+

. Rectangles below the graphs 

indicate the position of the α-helices (H) of OSCP and the C-terminus region. b) Focus on the structural regions of the β subunit and OSCP. c) The plots show the RMSF 

values of wild-type (WT) and T163S mutant of β subunit region 9-163,  binding Mg
2+ 

and Ca
2+

. 
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3.2.5 Investigation of the OSCP crown region interactions 

The interactions between OSCP and the crown region of αβ subunits were investigated 

using Ring2 (241).  Ring2 is a software for the identification of non-covalent bonds in 

protein structures able to build an interactions network with charge-charge, H-bond, 

van der Waals, π–π stacking and π–cation interactions. Interactions networks were 

generated for non-covalent interactions of the four systems every 10 ns. The number 

of interactions during the dynamics vary between 20 and 46 Fig 14. The types of 

interactions are mainly van der Waals, charge-charge interactions and H-bonds (Table 

3). 

  

 

Figure 14 Interactions between OSCP and the crown region of α and β subunits calculate by RING. 

Considering the number and the strength of the interactions the main contribution 

between OSCP and the crown region is the disruption/formation of salt bridges. 

Inspection of the structure, reveals  the presence of charged residues (glutamic, 

aspartic acid, lysine and asparagine) located at the interface between OSCP and α β 

subunits (Fig. 15A). 
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Table 3   Interactions between OSCP and the crown region divided by type and frame. 

 

These residues form a highly dynamic network of salt bridges that rearranges 

significantly during the simulations. Only the salt bridge between αE-subunit E13 and 

OSCP K28 was always found in all the steps of the four simulated systems. Indeed the 

N-terminus of subunit αE (in red in Fig. 15B) interacts with helices 1 and 5 of OSCP 

probably accounts for the high-affinity site (95). 

Time (ns) 0 10 20 30 40 50 

Mg
2+

 WT 28 34 27 20 29 39 

Charge- charge 3 6 8 4 7 11 

H-bond 10 13 2 5 2 4 

π–π /π–cation 2     1 

Van der Waals 13 15 17 11 20 23 

Mg
2+

 T163S 24 40 37 36 36 46 

Charge- charge 1 6 5 6 5 6 

H-bond 9 5 9 7 6 6 

π–π /π–cation 2  1 1   

Van der Waals 12 29 22 22 25 34 

Ca
2+

  WT 24 43 45 27 38 32 

Charge- charge 5 5 5 3 9 5 

H-bond 7 8 9 6 8 6 

π–π /π–cation 1      

Van der Waals 11 30 31 18 21 21 

Ca
2+

  T163S 26 33 24 31 25 35 

Charge- charge 4 5 7 6 5 10 

H-bond 8 7 6 6 9 10 

π–π /π–cation       

Van der Waals 14 21 11 19 11 15 
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Figure 15 OSCP is colored in light sea-green, α and β subunits in white and yellow, respectively.  A)  

the Positive charged residues (Arg, Lys) are blue and negative charged (Glu, Asp) in red at the 

interface between OSCP (sea green) and F1 domain (white). B) The N-terminus of subunit αE 

interacting with OSCP is highlighted in red. 

To verify if the T163S mutation affects the interaction network of OSCP, complexes 

binding Ca2+ and Mg2+ were compared Fig. 16 and Table 4. From the analysis it appears 

that at T0  35% of the interactions are shared by the WT and T163S mutant  when Mg2+ 

is bound while the common interactions between WT and T163S mutant are only 18%  

when Ca2+ is bound, suggesting that the T163S mutation has a stronger effect in the 

dynamics of OSCP in Ca2+ -binding F-ATP synthase. 

 

Figure 16 Number of interactions conserved between WT and T163S mutant system binding Ca
2+  

and Mg
2+
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Table 4  Interactions between OSCP and the crown region conserved in WT and Mutant binding the 

same metal divided by type and frame. 

3.2.6 The catalytic site-crown region connection loops 

The previous results, in keeping with the experimental data of Giorgio et al. suggest 

that a long range transmission of a conformational change between the catalytic site 

and OSCP is possible. The connection between the mutant residue and the N-terminus 

 barrel appears in the structure as a long unstructured loop (residues 82-131) (Fig. 

17a). We suggest that through this loop a small change due to binding of Ca2+ can be 

amplified at the level of the crown region inducing a conformational change on OSCP. 

To investigate the behaviour of the connection loops in the four systems we consider 

the RMSF values of residues 9-163 of β subunit and OSCP. In Fig. 17c the colour and 

the thickness of the backbone of these regions  correspond to the RMSF calculated for 

each residue of the sequence.  

The RMSF values Fig.17c and Fig.13c of the connecting loop and of the crown regions 

as the complete F1 domain are strongly influenced by the metal bound. Indeed the β 

subunit loops fluctuate more when Mg2+ is bound to the catalytic site, while in the 

Time (ns) 0 10 20 30 40 50 

Interactions  conserved in 

Mg
2+ 

WT and T163S mutant 
23 13 14 9 12 13 

Charge- charge 1 3 4 4 3 4 

H-bond 8 4    1 

π–π /π–cation 2      

Van der Waals 12 6 10 5 9 8 

Interactions  conserved in 

Ca
2+ 

WT and T163S mutant 
14 9 6 5 4 5 

Charge- charge 3 4 3 2 3 2 

H-bond 4 2  1   

π–π /π–cation       

Van der Waals 7 3 3 2 1 3 
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presence of Ca2+  fluctuations are limited to the β chain connecting loop segment N96-

E112 and to the crown region Q39-R44. 

Interestingly, the mobility of the loop is dependent on the occupancy of the catalytic 

site. The fluctuation is higher in presence of ATP and ADP and lower when the site is 

empty. The RMSF values of the 9-163 regions of the β subunits are reported in Fig. 13c. 

Comparing the wild type and the mutated complex in the presence of Mg2+ the 

motility appears to be  decreased in the β 82-131 loop and crown region in the TP 

conformation, while the motility increased in the DP conformation. Indeed, we found 

that the mutation affects the catalytic site, with increased distance of β side chains 

F418, F424 and Y345 from ADP and decreased surface contact with the adenosine ring. 

A smaller effect was observed for the ATP binding site, suggesting that the T163S 

mutation favors ADP release during hydrolysis. Simulations of the T163S mutant with 

Ca2+ show an increase of the mobility of both the DP and TP conformations. 
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Figure 17 a) F-ATP synthase extrinsic domain highlighting the relative position of OSCP and the  subunits region 9-163 in the  empty, ATP- and ADP-bound states. B) Focus on the 

structure of the β subunit c) The enlargement to the right shows a front view of wild-type (WT) and T163S mutant with Mg
2+ 

and Ca
2+

. The first column shows a structural superposition 

of all  subunits, while the next 3 columns show front views of individual  subunits in the ATP-bound (TP, orange wedge), ADP-bound (DP, green wedge) or empty (E, yellow wedge) 

state. Backbone colouring and thickness correspond to RMSF calculated for each residue. Blue represents residues with RMSF ≤ 4 Å while red is for ≥ 5.5 Å. The same range of RMSF is 

highlighted with the increase of the backbone thickness. Notice the increased rigidity of the Ca
2+

-containing structures. 
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3.2.7 Multiple sequence alignment of e, g and b subunits 

Homologs of F-ATP synthase subunits from: Homo sapiens, Bos taurus, Mus musculus, 

Sarchophilus harrisii, Danio renio, Oreochromis niloticus, Anolis carolinensis, Gallus 

gallus, Drosophila melanogaster, Saccharomyces cerevisiae were retrieved by BLAST 

and aligned using T-COFFEE Fig. 18.  These organisms were chosen in order to be  

representative of eukaryotes in which PTP has more extensively addressed (Homo 

sapiens, Bos taurus, Mus musculus, Drosophila melanogaster, Saccharomyces 

cerevisiae). I focused on subunits e, g and b because experimental evidence (103) 

showed their involvement in PTP formation, as well as because subunit e from 

Drosophila melanogaster is markedly different from that of other superior eukaryotes. 

Indeed, in Drosophila melanogaster the C terminus has a unique insertion of 10 

residues in a coiled coil region which is rather conserved in other eukaryotes. Subunits 

g and e present conserved GxxxG motifs, which are known to facilitate oligomerization  

of membrane proteins (137) and is also thought to permit different subunits to interact 

with one another.  

Surprisingly, both the e and g subunits possess conserved charged residues (Arg 8 in 

subunit e and Glu 102 in subunit g) in the middle of the transmembrane domain (TM). 

Charged residues in a TM segment are due to the hydrophobic environment. We 

speculated that these residues could have a relevant role in the PTP formation. 

Currently, we are in the process of testing experimentaly the Arg8Ala and Glu102Ala 

mutations in Saccharomyces cerevisiae.  

We also propose that the b subunit acts as a transducer of the opening stimulus, which 

is transferred from the OSCP through a long coiled coil segment. The first TM domain 

interacts with both subunits e and g (96,242) and is necessary for F-ATP synthase 

dimerization (42). Based on this evidence, we suggest that the first TM domain is 

involved in formation and modulation of PTP. The effect of the deletion of the first TM 

domain in subunit 4 (a Saccharomyces cerevisiae homolog of subunit b) is under 

investigation. 
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Figure 18 Subunits e, g, and g alignment in Homo sapiens, Bos taurus, Mus musculus, Sarchophilus harrisii, Danio renio, Oreochromis niloticus, Anolis carolinensis, Gallus gallus, 
Drosophila melanogaster, Saccharomyces cerevisiae. Secondary structure of Homo sapiens, structural and functional domains are presented on the top, while conserved charged 
residues found inside transmembrane domains are highlighted by coloured boxes. 
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3.2.8 F-ATP synthase b subunit phylogenetic tree 

I start the phylogenetic analysis from the b subunit. The rationale of this choice rests 

on the hypothesis that this subunit could mediate the transmission of the opening 

signal from the catalytic site to the transmembrane domain.   

To retrieve homologous sequences from a number of eukaryotic organisms a 

preliminary search was performed. Multiple searches from different databases shown 

the “55rp” from Uniprot (243) as the best representative set for the aims of this 

research. This subgroup was then further filtered with JackHMMER as described in 

material and method section. A final dataset composed of 228 sequences was finally 

built.  

Interestingly, the final dataset is mainly composed of eukaryotic sequences, with the 

inclusion of three members of a -proteobacteria family, i.e. Rhodospirillum centenum, 

Rhizophagus irregularis and Rickettsia prowazekii.  

The b subunit seems to vary among different organisms. In superior eukaryotes and in 

fungi it presents two transmembrane domains, while in plants and algae only one is 

recorded. In the case of α-proteobacteria, b subunit is a homodimer formed by two b 

subunits forming a single TM domain. To better clarify the evolutionary role of these 

findings, a multiple sequence alignment was performed using Muscle, while an 

evolutionary tree was built using MrBayes. Based on our calculation, the b subunit 

clusters fit with the currently accepted evolutionary relationship among organisms. Of 

particular interest is the localization of the -proteobacteria clusters which appear to 

be evolutionarily closer to plants, Oomycota and green algae. 

3.2.9 F-ATP synthase e, g and f subunits homologous 
search 

The presence of e, g and f subunits across the 228 organisms was investigated through 

a phylogenetic analysis.  Using human sequences of e, g and f subunits as query, a five 

http://www.uniprot.org/taxonomy/414684
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iterations search was performed with JackHMMER. The sequences belonging to the 

228 organisms were extracted and used to build up a MSA. The alignment was used in 

a new search profile based on HMM to mine the proteomes of organisms in which 

sequence was missing.  

The three subunits appear to be highly conserved across the 228 organisms (Fig. 19) 

with notable exceptions. The three α-proteobacteria miss the three dimerization 

subunits. This finding, which is not completely unexpected, is in line with the absence 

of subunits e, g and f in the bacterial F-ATP synthase. 

Of interest is the absence of these subunits in an eukaryotic group of fungi, i.e the  

Oomycotes, where both e and g are missing despite the presence of a conserved f 

subunit. Furthermore, in the green algae Micromonas sp. (MICSR) and Ostreococcus 

tauri (OSTTA) only subunit e homologs are missing, while a homolog of g subunit was 

recovered.  Interestingly, it is known in the literature that F-ATP synthase dimer 

followed a very different evolution path in green algae Chlamydomonadaceae family 

(species not included in this study) (244). In this class, the dimerization process is 

mediated by a class of unique proteins, i.e the F-ATP synthase-Associated proteins 

(ASA) which have no equivalents in mitochondrial F-ATP synthases from mammals, 

plants, or fungi (245).  

Furthermore, subunits e, g and f were not found in other isolated eukaryotic organisms 

in the tree. However, based on the data collected in this study we could not decide 

whether this absence is real or it is due to other reasons, such as incomplete 

sequencing, poor data available in current databank and possible errors in protein 

sequence annotation. 

Figure 19 shows the phylogenetic tree obtained for the b subunit, with colored boxes 

indicating the organisms apparently lacking subunits e, g or f. Different color was used 

for organisms without the complete sequenced genome (see legend for further 

details). A complete list accounting for organisms in which subunits sequences could 

not be obtained is reported in Appendix A.    
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Figure 19 b subunit phylogenetic tree. The identifier for each sequence is in the form 

UniprotID_TaxonID_startingAA_finalAA of the sequence. Boxes near the name of the organisms 

indicate if one between e, g, f subunits was not found;  g subunit (red if the genome of the organism is 

completed sequenced, orange if not), e subunit (blue if the genome of the organism is completed 

sequenced, light blue if not), f subunit (dark green if the genome of the organism is completed 

sequenced, yellow if not)  
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 3.2.10 Discussion 

MD of the F1-domain and OSCP subunits has provided key insights into a potential 

mechanism through which Ca2+ binding to the catalytic sites is transmitted via OSCP to 

the peripheral stalk and thence to the inner membrane. Indeed (i) all MDs show a 

significant stiffening of the F-ATP synthase complex in response to Ca2+ binding and 

rearrangement of Me2+ binding site, (ii) the 82-131 unstructured loop may transmit the 

rearrangement of the Me2+ binding site to the crown region, (iii) interactions between 

the crown region and OSCP are influenced by Ca2+ and T163S mutation. 

The decreased flexibility of F-ATP synthase after Ca2+ binding might transmit 

mechanical energy to OSCP, which could be transferred to the inner membrane (where 

the PTP forms) through the lateral stalk (96,242). Consistent with this possibility, 

combined conformational changes of the peripheral stalk at OSCP/F6 and b subunit at 

its point of entrance into the membrane have been observed (242). Indeed T163S 

mutation in presence of Ca2+ displayed large fluctuations at the level of OSCP, 

comparable to those observed for the wild-type protein in the presence of Mg2+. 

Therefore the mutation appears to prevent the Ca2+-dependent conformational events 

that, through the connecting loop and the crown region, affect OSCP motility in the 

wild-type  subunit. These findings may explain the increased resistance to PTP 

opening of the mutants. 

Concerning the FO region, a phylogenetic tree was built for subunit b and the 

distribution of subunits e, g and f  was studied. We are in the process of testing alanine 

mutants in yeast for residues eArg8 and gGlu102 and for the deletion of the first TM 

domin of subunit b.  

b subunit displayed great variability in structure and sequence. Form the phylogenetic 

tree plants, green algae and Oomycetes appear to be the closest eukaryotic b subunit 

to the α-proteobacteria counterpart. Indeed, plants are the closer sub-kingdom to 

bacteria possessing all the dimerizations subunits.   

In green algae, subunit e homologs are missing and in Oomycetes both e and g 

subunits are lacking. The genetic code suggests that mitochondria of Oomycota share a 

direct common ancestor with mitochondria of algae and plants. These clades acquired 
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mitochondria in a second endosymbiotic event, which occurred later than the 

acquisition of other eukaryotes (246). These pieces of evidence could justifie a 

different composition and rearrangement of F-ATP synthase and consequently on the 

presence of  PTP.  

Subunits e, g and f are missing as well in other isolated eukaryotes among the tree but 

it is difficult to distinguish if the reported lack of the subunits is real or is rather due to 

the limits of the database. 
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4. Conclusions  
Transmembrane proteins play a fundamental role in nutrient translocation and energy 

conservation (1). In this work I investigated membrane proteins involved in 

permeability of respectively of PM and IMM.  

From my analysis Pendrin SLC26A4 appears to be a 14 transmembrane domain 

protein. The innovative topology is confirmed by the distribution of the pathological 

mutations, which cluster in the predicted central loops of the protein and in between 

the core and the gate domains. One hundred forty-seven pathogenic mutations were 

mapped on the model. This model fits very well with the known functional important 

regions and residues of SLC26 family, and will be useful for future work on pendrin 

function. 

For decades the nature of the PTP was a mystery, and only in 2013 dimers of F-ATP 

synthase were recognized as PTP constituents (4) yet the opening mechanism and the 

pore forming subunits remain unclear. A T163S mutation in the catalytic β subunit 

induces resistance to PTP opening. Here we performed MD simulations on the extrinsic 

region of F-ATP synthase, finding that Ca2+ binding in the Me2+ binding site of the 

complex stiffens the structure. Further, catalytic site rearrangement induced from 

different ion occupancy, as well as the mutation T163S, yields relevant variation of the 

interaction between F1 domain and OSCP subunit. We found that the interactions are 

highly dynamic and mostly dependent on salt bridges. We suggest an unstructured 

loop between residues 82-131 of the β subunit to transmit to OSCP the structural 

rearrangement originated from the catalytic site. These pieces of evidence suggest 

that the Ca2+ binding event able to trigger PTP opening occurs in the catalytic sites of F-

ATP synthase. 

OSCP is known to have a key role in PTP regulation, and CyP D  interacts directly with 

this subunit (59). We speculate that an OSCP conformational change triggered by  Ca2+ 

binding could propagate to the lateral stalk and be transmitted to the trans-membrane 

region. 

Future studies will  identify the transmembrane PTP components. These investigations 

appear feasible in the light of the variation in pore conductivity among species, which 
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suggests that sequence alignment will help identify the critical sites. Our current study 

has focused on subunits e, g and b due to their localization in the complex and 

sequence conservation. Specific mutations that may affect PTP opening were collected 

and their functional effect is currently under analysis. 

Proteins homologs of e, g and f subunits were found to be widespread and well 

conserved in eukaryotes. On the other hand we found that Oomycetes lack of subunit  

e, and that in green algae both subunits e and g are missing. The b subunit displayed 

great variability. The plant b subunit show a single transmembrane domain and appear 

to be closest to their α-proteobacteria counterpart. This finding allow us to suggest an 

ancient evolution for the F-ATP synthase dimerization subunits and, possibly, for the 

PTP. Further analysis and experimental validation are planned to clarify this aspect. 

 

Both Pendrin and PTP are associated to widespread diseases. Pendrin mutations cause 

non-syndromic hearing loss and Pendred syndrome (18) while PTP is involved in huge 

number of pathologies like myocardial ischemia-reperfusion injury, ischemic and 

traumatic brain damage, muscular dystrophy caused by collagen VI deficiency, 

amyotrophic lateral sclerosis, acetaminophen hepatotoxicity, hepatocarcinogenesis by 

2-acetylaminofluorene, fulminant, death receptor-induced hepatitis and several others 

(247). Despite their importance for human health the structures of PTP and Pendrin 

long remained a mystery. This work contributed to shed light on both systems and to 

increase our understanding of these membrane permeability mechanisms. Due to their 

pathogenic relevance, these studies can be of help for new treatments. 
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APPENDIX A – Organisms lacking of subunit e, g and f 

e subunits were not found in α-proteobacteria (Rhodobacterales, Rhodospirillum 

centenum, Rickettsia prowazekii), yeasts (Scheffersomyces stipitis, Candida maltose, 

Dekkera bruxellensis, Uncinocarpus reesii, Uncinula necator, Endocarpon pusillum), 

Oomycota (Phytophthora sojae, Phytophthora infestans, Pythium ultimum, 

Hyaloperonospora arabidopsidis), Green algae (Ostreococcus tauri, Micromonas), 

Plants (Amborella trichopoda, Tricum urartum, Physcomitrella patens subsp. patens) 

and Metazoa (Trichoplax adhaerens, Nematostella vectensis, Gasterosteus aculeatus, 

Takifugu rubripes, Branchiostoma floridae, Harpegnathos saltator, Lasius niger). 

g subunits were not found in α-proteobacteria (Rhodobacterales, Rhodospirillum 

centenum, Rickettsia prowazekii) yeasts (Scheffersomyces stipitis, Cyberlindnera jadinii, 

Ceriporiopsis subvermispora, Serpula lacrymans var. lacrymans, Dacryopinax 

primogenitus), Oomycota (Phytophthora sojae, Phytophthora infestans, Pythium 

ultimum, Hyaloperonospora arabidopsidis) and Metazoa (Ophiophagus hannah, 

Strigamia maritima, Lasius niger) 

f subunits were not found in α-proteobacteria (Rhodobacterales, Rhodospirillum 

centenum, Rickettsia prowazekii), yeasts (Scheffersomyces stipitis,Gibberella fujikuroi, 

Colletotrichum gloeosporioides, Meyerozyma guilliermondii, Tuber melanosporum, 

Arthroderma benhamiae,Uncinula necator, Blumeria graminis f. sp. hordei, Cordyceps 

military, Malassezia sympodialis), Plants (Tricum urartum), Protista (Plasmodiophora 

brassicae, Monosiga brevicollis) and Metazoa (Trichoplax adhaerens, 

Strongylocentrotus purpuratus, Pteropus alecto, Anopheles gambiae, Ascaris suum). 

 

 

http://www.uniprot.org/taxonomy/126957
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