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Abstract 

 
Power electronics for consumer applications represents a typical example of 

engineering tradeoff between costs, performances, system complexity, efficiency and 

robustness. In this context, control of Switched Mode Power Supplies (SMPS) has been 

traditionally achieved through analog means with dedicated integrated circuits (ICs). 

Analog compensation is well known among power electronics engineers and provides 

the designer with an excellent tool for maximizing the performances/cost ratio. 

However, as power systems are becoming increasingly complex and often composed of 

smaller interacting units, the classical concept of control has gradually evolved into the 

more general problem of power management. Beside the basic control function, a 

number of additional features are often required such as communication capabilities 

between diffrerent power converters, smart power management for efficiency 

maximization in critical applications like portable equipments, a certain degree of 

programmability of the compensation characteristics, or even intelligent solutions for 

automatic tuning of the compensator to the specific power processor. 

Though at the time of writing analog control ICs for power converters are still 

dominating the market, in these last years digital control solutions have been receiving 

increasing attention from both the scientific and industrial communities. Digital control 

in power electronics is potentially able to meet the aforementioned requirements of 

modern power supply systems and electronic equipments due to the versatility and 

programmability inherent in the digital approach. On the other hand, a digital controller 

finds its major weakness in the achievable closed-loop dynamic performances. Analog-

to-digital conversion times, computational delays and sampling-related delays strongly 

limit the small-signal closed-loop bandwidth of a digitally controlled SMPS; 

quantization effects bring other severe constraints not known to analog solutions.  
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For these reasons, intensive scientific research activity is addressing the problem of 

making digital compensators stronger competitors against their analog counterparts in 

terms of achievable dynamic performances. 

The work of this dissertation finds its origin in the outlined context. Maily focusing 

on low-voltage, high-current applications, two topics related to digital control of  

DC-DC converters are discussed. The multiple sampling technique is a  

non-conventional control approach which allows for analog-like performances to be 

achieved in terms of small-signal control bandwidth. The multiple sampling approach is 

analysed theoretically and experimentally validated, confirming its effectiveness in 

pushing the dynamic performances of a digitally controlled power supply. Secondly, a 

robust, low-complexity autotuning technique for Proportional-Integral-Derivative (PID) 

digital compensators is proposed, investigated in detail and experimentally validated. 

Finally, in the conclusions the main results of the Ph.D. activity are summarized, 

and possible developments for future works are outlined. 
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Abstract 

 

L’elettronica di potenza impiegata in applicazioni consumer costituisce un tipico 

esempio di compromesso ingegneristico fra costi, prestazioni, complessità, efficienza 

nonché robustezza del sistema. In quest’ambito, il controllo di convertitori a 

commutazione è tradizionalmente ottenuto per via analogica tramite l’impiego di 

integrati dedicati. Tecniche di compensazione analogiche sono ben note fra i progettisti 

e costituiscono un eccellente strumento di massimizzazione del rapporto 

prestazioni/costi. Tuttavia, mano a mano che i sistemi di potenza sono diventati più 

complessi e spesso costituiti a loro volta da sotto-sistemi fra loro interagenti, il classico 

concetto di controllo si è gradualmente evoluto nella più generale tematica del power 

management. Oltre alla funzione basilare del controllo, sempre più spesso sono richieste 

funzionalità addizionali quali capacità di comunicazione fra i diversi convertitori, 

strategie di gestione intelligente del convertitore al fine di massimizzare l’efficienza 

complessiva – questo di particolare importanza nelle applicazioni portatili – nonché un 

certo grado di programmabilità delle caratteristiche della compensazione, fino ad  

arrivare a soluzioni per la taratura automatica dei parametri del controllore stesso. 

Sebbene attualmente il mercato sia ancora dominato dai controllori integrati 

analogici, negli ultimi anni soluzioni di controllo integrato digitale hanno ricevuto 

attenzione via via crescente sia da parte della comunità scientifica che da parte del 

mondo industriale. Potenzialmente, il controllo digitale appare capace di soddisfare le 

esigenze sopra menzionate, in primo luogo grazie alla intrinseca programmabilità e 

versatilità del digitale stesso. D’altro canto, il punto debole più evidente di un 

controllore digitale risiede nelle prestazioni dinamiche a catena chiusa con esso 

ottenibili. I tempi finiti di conversione analogico-digitale, i ritardi di calcolo così come i 

ritardi associati al campionamento pongono limiti severi alla massima banda di 
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controllo ottenibile in un convertitore controllato digitalmente. Ulteriori limitazioni 

sono poste dagli effetti di quantizzazione. 

Per le ragioni sopra esposte, la realizzazione di controllori digitali in grado di essere 

competitivi rispetto alle classiche soluzioni analogiche in termini di prestazioni 

dinamiche è materia di intensa attività scientifica nonché interesse industriale. 

Questo lavoro di tesi si inquadra nel contesto così delineato. Con particolare 

riferimento alle applicazioni per basse tensioni ed elevate correnti, verranno discusse 

due tematiche legate al controllo digitale di convertitori continua-continua. La tecnica 

del multi-campionamento è una strategia di campionamento non convenzionale che 

consente di ottenere prestazioni dinamiche vicine all’analogico in termini di banda di 

controllo a catena chiusa. L’approccio del multi-campionamento è studiato nel dettaglio 

da un punto di vista teorico nonché verificato sperimentalmente, confermandone 

l’efficacia. In secondo luogo, è dettagliatamente discussa e verificata sperimentalmente 

una tecnica ad elevata robustezza e bassa complessità per  

l’auto-taratura di controllori Proporzionali-Integrali-Derivativi (PID) digitali. 

Infine, nelle conclusioni sono riassunti i principali risultati dell’attività di dottorato, 

nonché venogono delineati alcuni possibili sviluppi per lavori futuri. 
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Control of switched mode power supplies (SMPS) intended for consumer market 

has been traditionally achieved through analog means. Nowadays, analog control ICs 

are available at low price and for a variety of power applications and converter 

topologies. These controllers typically integrate one or more error amplifiers, 

modulation circuitry, a temperature-compensated voltage reference, 

overvoltage/overcurrent protections as well as soft-start, standby and automatic 

shutdown features. Depending on the power rating, gate drivers and power switches 

may be integrated or left as off-chip components. Surrounding passive circuitry is used 

to program the controller behavior, define the shape of the compensator transfer 

function and provide feedback and sensing interfaces between the chip and the power 

converter. 

Companies like Infineon Technologies, ST Microelectronics, Intersil, Linear, 

Maxim, National Semiconductor – just to mention few of them – offer broad lines of 

inexpensive analog ICs for SMPS control, which cover low-power solutions for 
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portable applications, general purpose adjustable step-up/step-down converters as well 

as specific control ICs for low-voltage, high-current converters intended for modern 

microprocessors power supply. At the time of writing (fall 2007) these analog solutions 

are widespread in the market of consumer applications and strongly dominate the scene. 

Digital solutions, on the other hand, are fairly common in environments where 

intelligent control strategies for power management are required and fully justify the 

increased cost of a digital control system. Main advantages of a digital control system 

over an analog solution are represented by the high degree of programmability and 

computational power, the reduced need for external passive components and the 

consequent decreased sensitivity to tolerances and other sources of parametric 

variations, the possibility to implement complex control strategies as well as to easily 

switch through different modes of operation, targeting for highest efficiency or 

optimized dynamic performances. System monitoring functions are of extreme 

importance for high-reliability applications and their implementation strongly point to 

digital solutions able to collect and process environmental data. Self-tuning, also known 

as autotuning functions allow a digital compensator to adapt its parameters to the 

specific power plant under control, eliminating the need for manual design or 

calibration and enhancing controller modularity and versatility. 

Examples in which digital controllers find natural employment include industrial 

environments, where the complexity and number of interconnected subsystems often 

demand sophisticated and “smart” control decisions whose algorithmic nature is not 

prone to analog implementations, or mission-critical applications like aircraft or 

spacecraft power supply systems, where reliability is a major concern. Another typical 

high-reliability demanding environment is represented by the distributed power system 

employed, for instance, in a server application. 
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Depending on the specific requirements and cost/performance tradeoffs, the 

hardware platform for the digital control system may be based on application-specific 

integrated circuits (ASICs), microcontrollers, digital signal processors (DSPs) or 

microcomputers. In all the described applications the increased cost for a digital control 

system has negligible impact on the overall project, and is furthermore justified by the 

savings that come from the increased system robustness and reliability. 

In recent years, however, digital solutions have been proposed in the market of 

consumer applications. Point-of-load power supplies employed in desktop/laptop 

computers are examples, along with digital control ICs for multiphase converters 

employed in voltage regulation modules (VRMs). In this context the competition with 

analog solutions leads to reconsider the previous statements concerning cost and 

performances tradeoffs. Rather than pointing to expensive microcontroller or DSP 

platforms, digital solutions for consumer applications are more prone to ASIC 

implementations which integrate A/D conversion and pulse-width modulation 

resources, control hardware, conventional protection circuitry and – depending on the 

application – communication, system monitoring and autotuning functions. 

Design of a digital control IC with analog-like performances in terms of dynamic 

capabilities, area and power consumption is a challenging issue. Leaving apart mixed-

signal solutions, pure digital systems for SMPS control invariantly require fast A/D 

converters and optimized digital pulse-width modulators (DPWMs). Accuracy 

comparable to analog controllers is achieved only by means of sufficient bit resolution 

and/or dedicated signal processing provisions. These factors all point to increase the 

overall area consumption. As far as the dynamic performances are concerned, loop gain 

delays due to A/D conversion, computational time and DPWM phase lag contribute to 

lower the ceiling of maximum achievable control bandwidth. Other limitations 
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specifically encountered in digital system include reaction times of the digital controller, 

which are limited by the sampling rate, as well as quantization phenomena such as limit 

cycle oscillations. 

Digital power also brings with it a certain “cultural shock” among circuit designers 

that must not be neglected. Building blocks of analog ICs for SMPS control – 

operational amplifiers, bandgap references, oscillators, sensing circuitry etc… – 

represent standard solutions in the world of analog design and the different companies 

have developed, across the years, a well-established know-how in the design and layout 

steps. The same cannot be stated for digital solutions, which still require a certain 

amount of knowledge not always owned or correctly mastered by traditional power IC 

designers. For similar reasons, experienced digital designers may not have an in-depth 

knowledge of power conversion systems. 

On the other hand, advantageous aspects of digital control exist that do not have 

analog counterparts, many of them have been mentioned previously. In general, digital 

control wins where the algorithmics of the operation is too complex for analog 

implementations. No analog controller exhibits the same degree of programmability and 

versatility as a digital controller does. Compensator parameters can be stored in a 

nonvolatile memory and loaded in a programmable controller at system power-on. This 

way, different sets of pre-calculated parameters can be run for many environmental 

conditions on the same control hardware. More evolved tuning algorithms literally 

perform an automatic design of the compensator parameters through a number of online 

measurements and post-processing operations. 

Different control laws can be adopted over time by the same control structure, 

depending on the particular situation. A typical example is efficiency maximization in a 

converter switching from heavy-load to light-load operation. Detection of this transition 
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allows to choose the most suitable control strategy in order to track the point of highest 

efficiency, this being of utmost importance for portable and battery-operated 

equipments. 

From these considerations, real breakthrough of digital control in consumer power 

electronics will come from cost-effective solutions featuring capabilities not available in 

analog ICs. The research for hardware, power and area optimization in digital ICs for 

SMPS control has stimulated the scientific community over the recent years, leading to 

the achievement of increasingly improved performances. 

 

1.1. Research Background 

For the reasons discussed in the introduction, digital control in power electronics has 

gained increased attention from the scientific community over the last years [1-4]. All 

the main contributions to digital solutions for SMPS presented in literature aim to 

demonstrate control approaches with minimum hardware resources and reduced 

complexity [5-23]. 

Feasibility of completely integrated digital controllers was demonstrated for the first 

time in [5-6], in which innovative solutions for the main constituents of a digital 

controller, namely the compensator, the A/D converter and the digital pulse-width 

modulator, were presented. Based on a look-up table structure, the PID compensator 

employed in [5] presented reduced complexity. Delay-line and windowed ADCs were 

used in these works for fast conversion times and small area requirements. A ring 

oscillator-MUX DPWM was implemented in [6], while in [5] a hybrid counter/delay 

line architecture was considered as a suitable tradeoff between resolution, area and 

power consumption. Further works in the area exploited ring-oscillator ADCs [8,10] 
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and other hybrid DPWM structures. Further examples of DPWM architectures can be 

found in [24-27]. 

Along with solutions aimed to an increasingly deeper integration, the research 

activity also focused on exporting control approaches widespread in the analog world 

into the digital domain, an example being the investigation and development of digital 

current-mode control techniques [13,15,20]. More recently, the concept of continuous 

time digital signal processing has been proposed in [23] as a mean to dramatically push 

the dynamic performances. 

One of the most intense and interesting research activities concerns the development 

and implementation of hardware-effective autotuning techniques for digital 

compensators [45-56]. Results presented in literature indeed point to a number of viable 

approaches for robust and repeatable autotuning. Moreover, identification approaches 

have been presented which allow for system health monitoring functions to be 

implemented [57-59], which enhance the controller with fault detection features and can 

as well be employed to undertake preventing actions against possible future faults. 

Beside purely digital control solutions, mixed-signal controllers are worth to be 

mentioned [31-35]. These approaches combine simple integrated analog blocks and 

digital provisions with the aim to achieve analog-like dynamic performances, but still 

retaining the advantages of digital systems like programmability, low passive 

component count and control robustness. 

Modeling also represents a primary research line concern in the field of digital 

power. Though conventional SMPS analog models are well known by engineers, correct 

modeling of a digitally controlled switching converter is often unclear to many 

designers and subject to errors and misconceptions, leading to difficulties in both 

understanding the behavior of the system and properly designing its controller. 
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Important contributions to the correct modeling of digitally controlled SMPS have been 

proposed in the literature [60-64]. A unique phenomenon of digital control is 

represented by limit cycling oscillations (LCOs). Being originated from quantization 

effects operating in a feedback system, these phenomena present intrinsic modeling 

difficulties. Many research groups have faced the problem through different approaches 

[65-69], presenting general guidelines for avoiding the onset of LCOs in a digitally 

controlled SMPS. 

 

1.2. State of the Art Technology 

After having outlined the status of the research, a brief overview of some digital 

control ICs currently available on the market allows to better complete the picture. 

Intersil’s ISL6595 digital multiphase controller represents a typical example in the 

field of voltage regulation modules (VRM) control for microprocessors power supply. 

This 3.3V-operated IC provides voltage control and current sharing for up to six 

interleaved phases with switching frequencies programmable from 100 kHz to 2 MHz. 

An I
2
C digital interface allows the programming of the PID compensator parameters as 

well as the shape of the loadline, making the IC compatible with Intel as well as AMD 

microprocessors. Current sensing is provided with an on-chip calibration function. Off-

chip drivers are required. A nonlinear technique – ATR, Active Transient Response – is 

employed to optimize dynamic performances during load transients. 

The PX7510-20 and PX75222-42 ICs by Primarion are a line of digital controllers 

for Point-of-Load Converters intended for single or multiple output, single or multi-

phase topologies. Multiphase operation can also be acheved by synchronization of 

multiple ICs. Control and monitoring functions are provided through the PMBus
TM

 

industry standard interface. Again the chip is equipped with a non-volatile memory 
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(NVM) which allows for the main control parameters and behavior to be online 

programmed. 

Linear’s LTC7510 digital POL controller provides similar features. Interestingly, 

this chip implements a 4x oversampling PID control. The subject of increasing the 

sampling frequency with respect to the converter switching frequency represents a main 

study in this work, as will be outlined in the next Section. 

Silicon Labs Si8250 digital power supply controller represents perhaps one of the 

most advanced and powerful ICs available on the market. Intended for DC-DC as well 

as AC-DC applications, it is based on a dedicated DSP filter engine for control purposes 

and employs a 50 MIPS CPU for system managements functions. 

It is clear from this brief overview that companies involved in the digital power 

strongly point to highly programmable products with high degree of interfacing and 

online configuration capabilities. 

 

1.3. The Work of this Dissertation 

The entire work and PhD fellowship have been sponsored by Infineon Technologies 

AG – Padova Design Center. The author would like to thank collaborators and friends at 

Infineon Technologies for their support and valuable suggestions. 

This work treats two topics related to the digital control of DC-DC switching 

converters, namely multiple sampling and autotuning. 

In Chapter II the main concepts of digital control in power electronics are 

summarized. The main topics of this work are then treated in Chapters III to V and will 

be introduced in the following subsections. 

The methodology adopted in this work for experimental testing of the various 

described techniques largely employed FPGA-based development platforms interfaced 
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with power stage boards. Field-Programmable Gate Arrays devices (FPGAs) represent 

excellent and versatile tools for rapid prototyping and verification of digital circuits [70-

83], and are extensively used in the literature of SMPS digital control. 

1.3.1. Multiple Sampling 

Multiple sampling [38-44] represents a non-conventional sampling strategy in which 

the control sampling frequency is kept higher than the converter switching frequency. 

Though sometimes employed in commercial digital ICs, a detailed analysis of the 

multiple sampling technique has never been proposed in the literature. In this work it is 

demonstrated how the increased sampling frequency brings to a significant reduction of 

the DPWM small-signal phase lag, thus breaking the bandwidth limitations usually 

found in digitally controlled SMPS and allowing for analog-like performances to be 

achieved. A small-signal model for multi-sampled modulators and converters is 

developed in Chapter III and experimentally validated, confirming these assessments. 

The analysis then proceeds in investigating the major drawbacks of the multiple 

sampling technique, which have been identified in the injection of switching frequency 

harmonics into the feedback loop, a phenomenon which has been found to trigger non-

linear effects and unexpected system behaviors. The most relevant aspect of this 

phenomenon is the onset of control dead bands in the static transcharacteristic of a 

multi-sampled pulse-width modulator. These dead bands represent sets of operating 

points for which the modulator gain is zero, and therefore make any small-signal control 

action totally uneffective. This phenomenon has a severe impact on the closed-loop 

behavior, as proper steady-state and dynamic regulation may be compromised. 

A nonlinear model is proposed in Chapter III which fully characterizes the open-

loop and closed-loop steady state operation of a multi-sampled modulator. Presence of 

sampling induced dead bands is explained through the discussed model. Simulations 
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and experimental tests are also proposed as a further evidence of the validity of the 

conclusions. 

Given these considerations, multiple sampling technique turns out to be a viable 

approach only if suitable provisions are undertaken to mitigate or eliminate the 

aforementioned nonlinear phenomena. Thus, strictly connected with the analysis and 

modeling of multiple-sampled systems is the investigation of PWM linearization 

techniques aimed to restore the linearity of multi-sampled modulators. Different 

approaches have been proposed in the literature during this PhD activity [40,42,44], the 

most relevant of which are illustrated in detail in Chapter IV. 

An interesting conclusion that was drawn while developing and experimentally 

testing the PWM linearization techniques was the evident superiority, in terms of 

intrinsic linearity, of triangular modulators with respect to trailing edge or leading edge 

PWM schemes. Multi-sampled systems based on triangular modulations are found to be 

much less prone to exhibit strong nonlinearities, resulting in an overall better behavior 

which allows to fully exploit the main benefits of the multiple sampling strategy. Proofs 

of the superior performances of triangular modulators are reported in this work, along 

with quantitative analysis derived from the developed models. 

1.3.2. Autotuning 

Part of the PhD activity has been carried out at the Colorado Power Electronics 

Center (CoPEC), at the University of Colorado at Boulder, Department of Electrical 

and Computer Engineering, under the supervision of Prof. Dragan Maksimović and 

Prof. Regan Zane. 

The activity was mainly developed as a comparative analysis of different autotuning 

techniques for digitally controlled Point-of-Load (POL) converters having wide range 

of capacitive loads. Two tuning approaches were identified and investigated in terms of 
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complexity, performance, tuning capabilities and robustness. The System-ID tuning 

technique, which finds its bases on cross-correlation methods for system identification 

[45-48], has been developed by CoPEC student and friend Mariko Shirazi. The 

technique identifies the entire frequency response of the converter through injection of a 

pseudo-random binary sequence (PRBS) and further post-processing operations. Once 

the control-to-output frequency response is identified, a tuning algorithm is enabled to 

automatically design a digital PID compensator. Tuning targets are expressed in terms 

of phase margin, gain margin and desired control bandwidth. Provisions aimed to avoid 

the onset of steady-state limit cycling were also considered. 

As a second tuning technique, the relay-feedback approach was considered and 

investigated by the author. The concept of relay feedback, well known in the industrial 

field and reproposed in [51] as a viable solution for self-tuning of digitally controlled 

SMPS, was developed with provisions specifically aimed to handle the wide range of 

capacitive loads dictated by the application. The technique induces amplitude-limited 

oscillations in the system and performs the identification of the power converter 

parameters through repeated frequency measurements. A tuning algorithm iteratively 

adjusts the parameters of the PID compensator until specified tuning targets – 

formulated as before – are met. 

Both investigated methods were HDL coded and successfully tested and validated 

on experimental FPGA-controlled point-of-load prototype converters. The results of the 

analysis are reported in [52]. 

The study of the relay-feedback autotuning has been carried out as a part of this PhD 

activity during my research time period at Boulder, and further investigated at the 

Department of Information Engineering of Padova, Italy, where additional provisions 

were studied and tested for enhanced robustness and tuning accuracy. The description of 
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the relay-based tuning approach is reported in Chapter V along with implementation 

details and experimental results confirming the validity and modest hardware 

requirements of the technique. 

Finally, Chapter VI draws the main conclusions summarizing the relevant results 

achieved by the PhD activity. Proposals for future works and subjects for further 

investigations are also outlined. 



Chapter II 

 

Principles Of Digital Control In Power Electronics 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter provides an overall introduction to the digital control of a power 

processing system based on a DC-DC switching converter. A typical control 

architecture is first discussed from a system-level point of view, where the analog power 

processing system represents the plant whose dynamics is to be controlled in order to 

fulfill the power delivery requirements dictated by the application, while the digital 

system has as its first objective that of achieve the required regulation of the converter 

state variables through negative feedback. Depending on the specific application, 

secondary functions may include system monitoring and diagnostics, communications 

and self-tuning features. 

Analog and digital systems are interfaced by means of A/D and D/A converters; 

among these, state variables A/D conversion and the Digital Pulse Width Modulator 

represent the most important from the control viewpoint. A first discussion on sampling 

strategies will also be initiated in Section 2.2, while an in-depth analysis will be 

proposed in Chapter III. 



II – Principles Of Digital Control In Power Electronics 

 14 

Correct small-signal z-domain modeling is mandatory for an effective digital 

compensator design. Section 2.3 of this Chapter is devoted to the purpose of deriving 

the discrete-time equivalent model of the power plant as well as to express the system 

loop gain. Simulation examples will be provided to appreciate the accuracy of the 

discrete-time models. 

Quantization effects are of unique importance in a digital control system, as they do 

not have an analog counterpart. Limit cycle oscillations represent the most typical – and 

undesired – quantization effect in a digital feedback system. A brief survey of 

quantization sources is carried out in Section 2.4, along with a discussion of limit cycle 

oscillations and some basic criteria proposed in the literature for their reduction or 

suppression. 

 

2.1. System-Level Overview Of A Digital Control Architecture For A DC-DC SMPS 

Figure 2.1.1 illustrates a structural description of a DC-DC digitally controlled 

power converter. The following scenario can always be drawn: an electronic equipment, 

here designated as load,  draws an average power Po and requires a tightly regulated 
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Fig. 2.1.1 – System-level architecture of a digitally controlled SMPS 
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voltage Vo in order to operate properly, while an unregulated (or poorly regulated) DC 

voltage source Vin is available. A Switched Mode Power Supply (SMPS) is thus 

employed as a power processor in order to perform a high-efficiency power conversion 

from the input power source Vin to the load. A negative feedback loop based on a digital 

compensator stabilizes Vo with respect to variations of the input voltage (line 

regulation) and of the output current drawn by the load itself (load regulation). 

In a digital control loop one or more converter state variables are sampled and 

quantized by means of Analog to Digital Converters (ADCs). Adequate signal sensing 

and analog conditioning circuitry is usually required before the conversion to take place. 

The discretized information is processed by the digital compensator through its control 

algorithm, which calculates the discrete-time control signal m[k] on a sampling cycle 

basis. Pulse-width modulated (PWM) converters will be considered in this work, where 

the control signal modulates the converter duty cycle. 

As in analog control schemes, the PWM modulator plays a key role in interfacing 

the control system to the switching converter. In a digitally controlled power converter, 

the Digital Pulse Width Modulator (DPWM) acts as a digital to analog converter (D/A), 

as its function is to translate the digital sequence m[k] produced by the compensator in 

an analog PWM signal y(t) suitable for driving the SMPS power switches.  

As modern power switches require several amps of sourcing/sinking capability from 

the gate signal during the switching transitions, gate drivers are usually present as an 

interface between the DPWM and the power converter; the function of the gate drivers 

is to enhance the driving capabilities of the PWM signal y(t) by increasing its power 

level, as well as to perform proper voltage level conversion. 

Beside its control function, the digital system may include diagnostics, 

communication and self-tuning capabilities. These features will be briefly discussed in 
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Subsection 2.1.2., while Chapter V will be entirely devoted to the subject of self-tuning 

digital compensators, as well as to the development, implementation and experimental 

validation of a specific tuning technique. 

The following subsections present a more detailed description of the main 

constituents of a digitally controlled power converter. 

2.1.1. Analog System 

The DC-DC power converter, along with the gate driving and the analog 

sensing/conditioning circuitry, represents the analog system. This section provides a 

brief overview of these constituents mainly focused to their system-level modeling in 

terms of s-domain transfer functions. 

i. Power Converter 

The power processing function performed by the switching converter represents the 

fundamental role of the analog system. The conventional modeling approach for SMPS 

employed in power electronics is based on averaging and linearizing the behavior of the 

nonlinear, time-variant switching converter to achieve a linear, time-invariant 

description of its low-frequency, small-signal dynamics, i.e. for frequencies well below 

the switching frequency fs and for small deviations with respect to the steady-state 

quiescent point. This analysis has the major objective of identifying the analog signals 

of interest from the control point of view and establishing the existing relationships 

among them. 

A number of independent input signals can be identified as those signals that are 

imposed externally and affect the converter state variables as well as its outputs. These 

include the converter input voltage perturbation v̂in(t) and the converter load current 

perturbation îo(t). In some cases the load current is not considered as an input signal, 
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and an explicit load relationship is formulated by assuming, for instance, a resistive load 

Ro. 

In pulse-width modulated SMPS the most important input signal is represented by: 

 )(ˆ)(
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i.e. the low-frequency content of the pulse-width modulator output signal y(t). While 

v̂in(t) and îo(t) represent disturbances from the control design point of view, (2.1.1) plays 

the role of the analog control signal. Its relationship with the digital control signal 

perturbation m̂[k] will be examined in Section 2.2 as well as in Chapter III. 

State variables xi(t) are the analog quantities that define the state of the switching 

converter. In general, the state vector is composed by the set of capacitor voltages and 

inductor currents. 

Output signals represent the analog quantities to be sensed and/or monitored for 

regulation or diagnostic purposes. As mentioned in the introduction, the converter 

output voltage v̂o(t) is a signal typically targeted for tight regulation when supplying a 

load. Average or peak current-mode controllers sense the converter inductor current îL(t) 

for both regulation and over-current protection purposes. Multi-phase buck converters 
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Fig. 2.1.2 – s-domain transfer functions of a  DC-DC 

switching converter 
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typically employed as low-voltage, high current Voltage Regulation Modules (VRMs) 

for modern microprocessors power supply invariantly require the sensing of the phase 

currents to ensure current sharing and proper droop resistance emulation. 

We shall describe the power converter as illustrated in Fig. 2.1.2; the control-to-

output and control-to-inductor current transfer functions Gvd(s) and Gid(s) are defined, 

along with the audiosusceptibility Gvg(s), the input voltage-to inductor current transfer 

function Gig(s), the open-loop output impedance Zo(s) and the load current-to-inductor 

current transfer function Gii(s). Explicit expressions of these transfer functions depend 

on the topology considered. Moreover, depending on the particular situation, one or 

more of these transfer functions may be neglected for the purpose of analysis. 

Please note that the output voltage and the inductor current themselves represent 

state variables for the converter. For this reason we will often talk about sensing and/or 

sampling of the converter state variables, without much distinction between state 

variables and output signals. 

ii. Sensing and Signal Conditioning 

Analog signal conditioning is normally required when sensing the converter signals 

for control and monitoring purposes. Basic operations on sensed signals include level-

shifting and amplification for suitable interfacing with the ADCs analog input voltage 

range. Analog circuitry based on wide bandwidth operational amplifiers is commonly 

employed for voltage and current sensing along the feedback path. Filtering is usually 

limited to frequencies well beyond the converter switching frequency, in order not to 

introduce unacceptable phase losses around the desired closed-loop bandwidth. For this 

reason, aliasing effects usually occur during the A/D conversion of the analog variables, 

affecting the spectra of the digitized sequences. Depending on the sampling frequency, 
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these effects influence the closed-loop behavior of the converter in different ways. More 

detailed analyses will be carried out in Section 2.2 and in Chapter III. 

Small signal-wise, the analog sensing and conditioning circuitry can be modeled by 

means of an s-domain transfer function Hsense(s). Depending on the desired modeling 

accuracy, Hsense may be described by a pure gain or by a magnitude and phase-varying 

frequency response. 

iii. Gate Drivers 

To fully exploit modern power MOSFETs capability of achieving short turn-on and 

turn-off times, suitable gate driving circuitry is usually required. Gate drivers supply 

high-current turn-on and turn-off driving commands and operate the necessary voltage 

level conversion between the DPWM output signal y(t) and the power switches. A 

typical driving problem is represented by the high-side switch of a synchronous buck 

converter, whose source is not grounded and varies between 0V and Vin during the 

converter operation. Bootstrap techniques are often employed by the gate drivers to 

obtain a suitable gate-to-source driving voltage. In synchronous converters another 

typical driving challenge is represented by the cross-conduction phenomenon, i.e. both 

switches conducting at the same time during the switching transitions. Beside being a 

possible cause of failures, the cross-conduction degrades the converter efficiency. To 

overcome this problem a suitable dead-time has to be introduced by the driving circuitry 

between the turn-off of one switch and the other switch turn-on. 

A gate driver delivers the turn-on or turn-off command to the power switches with a 

certain delay ∆tG’ with respect to the incoming input signal y(t). The actual turn-on or 

turn-off of the power switch exhibits a further propagation delay ∆tG’’. From the control 

point of view the overall propagation delay ∆tG = ∆tG’+∆tG’’ generates a lag in the loop 

gain phase response given by: 



II – Principles Of Digital Control In Power Electronics 

 20 

 GG tff ∆−=∆ πϕ 2)(  (2.1.2) 

Modern integrated drivers exhibit propagation delays on the order of 20-50ns. 

Common values for the closed-loop bandwidth fc in analog control lie between one tenth 

to one fifth of the converter switching frequency fs, these being upper limits also for 

conventional digital control schemes. Thus, evaluation of (2.1.2) at f = fc yields: 
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with α ranging from 0.1 to 0.2. The gate driving delay impact on the loop gain phase 

response is evaluated once the switching frequency is specified. As long as fs ranges 

within few hundreds of kHz, it is easily seen from (2.1.3) that negligible phase lags are 

originated from the gate driving circuitry. Contribution (2.1.3) is therefore usually 

neglected with respect to other, more important terms originated from A/D conversion, 

computational and PWM modulation delays that will be considered in the following 

Sections. However, when high-frequency converters are considered, operating at 

switching frequencies on the order of several MHz, (2.1.3) may become significant and 

must be included to correctly account for the total loop gain phase behavior. 

2.1.2. Digital System and A/D – D/A Interfaces 

By digital system we mean that part of the power processing loop in which the 

information is processed via numerical ways. It includes the digital compensator as well 

as diagnostic, communication and self-tuning functions. Analog-to-Digital and Digital-

to-Analog interfaces exist to allow the digital system exchange information with the 

power converter and the surrounding analog world. This Section presents an overview 

of these units, focusing on those system-level aspects of primary importance from the 

control point of view. 
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i. Analog to Digital Conversion 

The sampling and quantization of the converter state variables – after sensing and 

proper conditioning is performed – serves the purpose of both providing feedback 

signals for the compensator and the necessary monitoring function for other features of 

the digital system like diagnostics or autotuning. 

Analog-to-Digital Converters operating a linear, or uniform quantization will be 

considered in this context, meaning that the quantization levels are equally spaced 

within the ADC analog input voltage range. The ADC resolution, expressed by the 

length nAD of the output binary word, and the ADC full sale range FSR define the ADC 

voltage quantization step: 

 
ADnAD

FSR
q

2
≡∆  (2.1.4) 

From a system-level point of view, there are two main aspects to be considered in 

selecting the A/D converter, namely its resolution nAD and its conversion time ∆tAD.  

The ADC resolution can be selected once the dynamic range DR required to the 

sampled signal within the digital domain is known; for an input signal uniformly 

distributed between 0 and a the resulting signal-to-noise ratio is: 

 )(log2002.6 10
a

FSR
nSNR ADdB −= , (2.1.5) 

where SNRdB is expressed in decibels. From the condition SNRdB > DR the required 

ADC resolution is found. Please note that equation (2.1.5) does not account for noise 

sources different from quantization noise and which may cause the effective number of 

bits to differ from nAD. 

The selection of the quantization step is based on regulation accuracy in both static 

and dynamic conditions. Quantization effects such as the possible onset of limit cycle 
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oscillations usually also come into play when selecting the proper A/D resolution. These 

aspects will be addressed in Section 2.4. 

As an example, let us consider a low-voltage application in which the output voltage 

is regulated up to 1.5V with a ±0.5% DC regulation accuracy. The maximum allowed 

quantization step is thus ∆qAD = 15mV, to which corresponds a minimum ADC dynamic 

range DR = 20log10(1.5V/15mV) = 40dB. From (2.1.5) and assuming FSR = 2V, the 

minimum number of bits is nAD = 8. This reasoning only accounts for steady-state 

regulation accuracy; in practice a higher number of bits will be required to achieve 

suitable dynamic responses. 

Digitally controlled SMPS usually require high conversion rate ADCs in spite of the 

relatively low sampling rate of the converter state variables, which may be equal to the 

switching frequency or few times higher (see Section 2.2 for a discussion on sampling 

strategies). In fact, the A/D conversion time ∆tAD  is of extreme importance when the 

ADC is operated within a feedback loop, as any delay time translates into a phase lag 

that limits the achievable closed-loop bandwidth: 

 ADAD tff ∆−=∆ πϕ 2)(  (2.1.6) 

The term of comparison is represented by the converter switching period Ts, as 

discussed for gate driving delays: at a given closed loop bandwidth fc defined as some 

fraction α of the converter switching frequency fs, evaluation of (2.1.6) yields: 
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Negligible values of (2.1.7) are achieved for conversion rates in the order of tens of 

megasamples per second. Please note that pipeline ADCs are not always suitable for 

SMPS control applications, as their high conversion rate does not necessarily imply a 

small conversion time. 
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Beside these system-level discussions, additional application-specific considerations 

have to be made in order to identify the most suitable A/D converter. In fully integrated 

digital controllers the use of area efficient ADCs is usually mandatory. Power 

consumption is also of primary concern especially in portable applications and it limits 

both the A/D sampling rate and the A/D resolution. An in-depth discussion of these 

issues is out of the scope of the present work. A number of solutions have been 

proposed in the literature [5-10], to which the interested reader is addressed. 

ii. Digital Pulse Width Modulator 

In any digital control scheme a control algorithm or control law is employed to 

process data sampled from the analog plant and produce the discrete-time control signal 

m[k] used to achieve the desired control action. In pulse-width modulated SMPS this 

action is obtained by modulating the duty cycle of the power switches activity. Thus, 

m[k] inherently represents the desired duty ratio. However, the information carried by 

m[k] has to be delivered to the power converter switches as an on/off signal y(t). The 

digital pulse width modulator (DPWM) thus acts as the necessary interface between the 

digital compensator and the power converter [24-27]. 

Strictly speaking, the DPWM performs a D/A conversion from the digital input m[k] 

to the modulated analog waveform y(t). It is characterized by its resolution, i.e. the 

number of bits nDA of the input digital word. Each of the possible 2
nDA

 values of the 

digital input is mapped by the DPWM to a unique duty ratio. Thus, once the switching 

period is specified, a time quantization can be associated to a particular DPWM: 
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which represents the smallest turn-on time variation the DPWM is able to generate. 
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Considerations related to quantization effects and limit cycling phenomena 

discussed in Section 2.4 suggest that the DPWM resolution should be selected as high 

as possible, limitations being posed by area and power consumption. In this work we 

will often assume an infinitesimal time quantization step, i.e. an infinite resolution, 

meaning that the validity of the discussed results will be compromised when coarse time 

quantizations are considered. 

As in the case of ADCs, the choice of a particular DPWM architecture in an 

integrated digital controller is affected by both area and power constraints. An 

interesting survey of DPWM architectures and tradeoffs among resolution, silicon area 

and power consumption is given in [25]. 

An in-depth discussion of the behavior of digital pulse width modulators in relation 

with the adopted sampling strategy will be initiated in Section 2.2 and extended in 

Chapter III. 

iii. Digital Compensator 

In both analog and digital control of SMPS the compensator objective is to perform 

a signal processing function on the sensed converter state variables in order to produce a 

control action on the plant. 

The basic operation of a digital compensator works on a sampling-cycle basis 

starting from the acquisition of an input digital sample e[k] – often recognized as the 

error between the regulated variable and the control setpoint – and terminating with the 

computed digital control sample m[k], available after a certain computational delay 

∆tcalc which depends on the control law complexity as well as on its hardware 

implementation. 
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Linear control laws represent the most important class of signal processing functions 

employed in digital control of SMPS. They relate m[k] to e[k] by means of a linear, 

constant coefficients difference equation of the type: 
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Control laws of the type (2.1.9) are of particular importance because they simply 

involve additions and multiplications. These operations are readily available in 

microcontroller or DSP-based platforms, or can be implemented as hardwired logic in 

an integrated digital controller using standard adders and multipliers blocks. Equation 

(2.1.9) includes the important subclass of Proportional-Integral-Derivative (PID) digital 

compensators. An overview of digital PIDs is given in Appendix A. 

Nonlinear control actions can also be performed [28-30], generally aimed to achieve 

better dynamic performances in closed-loop operation. These may include anti-windup 

provisions as well as nonlinear proportional and integral actions. 

More generally, a digital compensator presents programmability and versatility 

features not usually found in analog control that allow for different control laws to be 

implemented and adopted as a function of particular boundary conditions, opening the 

possibility to intelligent control strategies. A typical example has been proposed in [8], 

where efficiency maximization in a low-power application was obtained by changing 

the control strategy when switching from heavy-load to light-load conditions and 

viceversa. For these reasons, the action of a digital compensator can be better described 

by a control algorithm rather than by a simple linear or nonlinear signal processing 

operation. 
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iv. Diagnostics, Communication and Autotuning 

Beside its control function, the digital system may be provided with a number of 

features aimed to enhance the robustness of the power conversion, as well as its 

integration and interfacing capabilities with the surrounding world. 

Diagnostic functions are common in high-reliability applications. Examples are 

given by distributed power systems for server applications, aircraft and spacecraft 

power systems and military applications. The need for high-reliability invariantly 

requires fault detection features, if not fault prediction capabilities. Diagnostics is the set 

of monitoring activities aimed to periodically check the health of the power system and 

eventually activate signaling mechanisms when the onset of critical situations is 

detected. 

Communication functions allow the digital system to interact with the surrounding 

world, exchanging information about the converter status as well as receiving 

commands and programming instructions. Whenever a centralized diagnostic monitor is 

present in a distributed power system, communication buses allow the collection of 

health information of different subsystems. In some cases the communication may 

occur between the converter and the load, as it happens between modern 

microprocessors and VRM modules. 

Autotuning is a feature that allows a digital system to automatically tune its digital 

compensator parameters. This function is one of the most interesting possibilities 

offered by digital techniques and allows for great performance optimization. Beside 

optimizing the SMPS control from a dynamic point of view by determining the most 

suitable compensator for a given power plant, self-tuning features greatly enhance the 

versatility of a digital control system and its robustness with respect to process 

parametric variations, these being well known weak points in conventional analog 
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controllers. Chapter V is entirely devoted to the analysis and experimental evaluation of 

a particular tuning technique. 

The functions briefly summarized in this Subsection are quite common in high-

reliability and mission-critical applications where digital controllers are employed. On 

the other hand, low-cost and low-control complexity requirements dictated by the 

market of consumer applications make these provisions by no means widespread. For 

this reason, hardware-effective solutions for diagnostics and intelligent autotuning 

features are of great scientific interest and many publications have been and are being 

proposed in the literature [45-56, 57-59]. 
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2.2. Sampling Strategies 

The sampling strategy is related to two main aspects of the analog to digital 

conversion of the converter state variables, namely how many samples should be 

acquired per switching period and where the sampling instants should be allocated in 

time within the switching period. A third important aspect, related to the quantization 

step, will be addressed in Section 2.4. As far as the first aspect is addressed, classical 

digital control schemes often employ a sampling frequency equal to the switching 

frequency. This method will be denoted as single sampling approach. A second 

approach, the study of which constitutes one of the main contributions of this work, is to 

use a sampling frequency greater than the switching frequency. An extensive study of 

the multiple sampling technique is presented in Chapter III. In the following 

Subsections the main relevant aspects of single and multiple sampling will be 

summarized. 

We will use the notation (N,∆t) to denote a specific sampling strategy. The first 

number, N, defines the sampling frequency and represents the integer number of 

samples acquired per switching period, or multisampling factor: 

 ssampling Nff =  (2.2.1) 

The second number represents the delay time between the first sampling instant with 

respect to the beginning of the switching period. Expressing these concepts 

mathematically, the set of the sampling instants corresponding to the sampling strategy  

(N,∆t) is: 

 Ζ∈+∆= k
N

T
ktkt s
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where the time origin has been assumed to be aligned to the beginning of a 

switching period. We will make use of k as running index to denote the time 
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dependence of any discrete-time sequence obtained through sampling of an analog 

signal by means of a given sampling strategy. The particular sampling strategy will be 

clear from the context. 

Let us now consider an analog signal x(t), and let X(f) be its Fourier transform. If the 

discrete-time sequence xs[k] is obtained from x(t) by means of the sampling strategy 

(N,∆t), the Discrete Fourier Transform Xs(f) of xs[k] is related to X(f) by the  

well known sampling relationship: 
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2.2.1. Single Sampling Approach 

Single sampling strategies are of the form (1,∆t); a typical timing diagram of a 

single sampled digital controller is shown in Fig. 2.2.1. The converter state variable x(t) 

is sampled in t=tsample. The next sample of the digital error signal e[k] is available to the 

digital compensator once the A/D conversion is completed; the A/D conversion time is 

indicated as ∆tAD in Fig. 2.2.1. The digital compensator then calculates the control 

signal m[k] with some computational delay ∆tcalc. The resulting value is latched by the 

digital pulse-width modulator into its internal registers to generate the next PWM pulse. 

In single sampling approaches the most relevant aliasing effect affecting the 

resulting discrete-time sequence is represented by a DC level corruption. For (1,∆t) 

strategies (2.2.3) yields: 
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Thus: 
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Fig. 2.2.1 – Typical timing diagram of a single-sampling strategy (1,∆t) 
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In DC-DC converters a systematic offset in the output voltage or current regulation 

can result from (2.2.5) if the sampling instant position ∆t is not chosen properly. 

As an example, let us consider a 12V-1.5V application requiring the average output 

voltage to be regulated to within ±0.5% of the nominal voltage. If a 20mV peak-to-peak  

triangular (i.e. ESR-dominated) switching ripple is superimposed to the output voltage, 

a (1,0) sampling strategy would yield Xs(0)=X(0)-10mV, bringing the output voltage out 

of the regulation window. Though any systematic offset could be digitally compensated 

by adjusting the digital reference, a cleaner solution is to place the sampling instant in 

order to sample the analog waveform where it is close to its average value. In the 

preceding example, where a triangular ripple is observed at the converter output, it is 

common practice to sample the output voltage either in the middle of the turn-on or in 

the middle of the turn-off switching phases. In trailing edge modulations, (1,DTs/2) or 

(1,(1+D)Ts/2) strategies are adopted on this purpose, while (1,0) or (1,Ts/2) strategies 

are employed if triangular modulations are used. Please note that with triangular 

modulations the sampling strategy that achieves the correct average value sampling 

does not depend on the converter operating point. 

In low-voltage applications running at D<<1, sampling in the middle of the turn-off 

phase is usually preferred as it places the sampling instant sufficiently far from 

switching transitions that could inject unacceptable switching noise into the feedback 

loop. 
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2.2.2. Multiple Sampling Approach 

In multiple sampling strategies more than one sample is acquired and processed at 

each switching period. Figure 2.2.2 illustrates an example of timing diagram of a (4,∆t) 

sampling strategy. 

When employing the multiple sampling the DC level of the sampled sequence is less 

affected by aliasing effects, as higher order harmonics of the analog signal are now 

superimposing at f=0. However, switching frequency harmonics of the type  

fj = jfs, 1<j≤N-1, are now sampled and become integral part of the spectrum of xs[k], as 

pointed out by (2.2.3). This switching frequency ripple injection represents the major 

drawback found in multiple sampling strategies, as it represents a source of disturbances 

for the digital compensator and the feedback loop. The subject will be extensively 

addressed in Chapter III. 
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Fig. 2.2.2 – Typical timing diagram of a (4,∆t) multiple sampling strategy 
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2.2.3. Modeling of Digital Delays 

The A/D conversion time ∆tAD and the computational delay ∆tcalc of the digital 

compensator represent delay times which occur in the digital domain. However, for 

modeling purposes it is more convenient to represent these delays in the analog domain 

and treat the A/D conversion and the compensator as if they were delay-free. 

Referring to Fig. 2.2.1, it is sufficient to delay the analog waveform by  

∆tAD + ∆tcalc seconds and shift the sampling event of the same quantity. More formally, 

a (N,∆t) sampling strategy in which a delay ∆tdigital occurs in the digital processing of 

the information is equivalent to a (N, ∆t + ∆tdigital) strategy in which the digital system is 

delay-free, provided that the analog waveforms are delayed by ∆tdigital before the 

sampling occurs. Figure 2.2.3 illustrates the concept. The analog signal x(t) is delayed 

x[k]x(t)

Sampler

Q[ ]
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digitalts
e

∆−

Digital Delay
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∆−
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xref
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Fig. 2.2.4 – Block diagram model accounting for digital delays 
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Fig. 2.2.3 – Equivalent modeling of digital delays 
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by ∆tdigital = ∆tAD + ∆tcalc and then sampled. The error waveform e[k] and the 

modulating signal m[k] are now updated instantly, thus keeping full equivalence with 

Fig. 2.2.1. Figure 2.2.4 illustrates the block diagram corresponding to this modeling 

approach. 
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2.3. Discrete-Time Modeling Of Digitally Controlled SMPS 

In this section we will focus on the modeling of the control loop. Thus, referring 

back to Fig. 2.1.1, we will focus on the systems and elements found along the feedback 

path. As a case study, a voltage-mode control scheme will be first considered and 

discussed in Subsection 2.3.1. The modeling concepts presented can be nevertheless 

extended to more complex control schemes; a digital current-mode control example will 

be given at the end of this Section. 

Special care has to be paid when modeling the small-signal behavior of the pulse-

width modulator. Subsection 2.3.2 is devoted to the purpose of summarizing the main 

dynamic characteristics of analog and digital pulse-width modulators. For an extended 

and detailed analysis, please refer to Chapter III. 

The ultimate goal of this section is the derivation of the discrete-time equivalent 

model of a digitally controlled DC-DC converter. This subject will be addressed in 

Subsection 2.3.3. 

2.3.1. Voltage Mode Control Loop 

Figure 2.3.1 illustrates a voltage-mode control loop at a small-signal transfer 

function level. The power converter reacts, through its control-to-output transfer 

function Gvd(s), to the analog control signal d̂(t), which represents the small-signal 

content of the PWM waveform produced by the pulse-width modulator, as defined in 

(2.1.1). An additional term, not shown in Fig. 2.3.1, may be included to model the gate 

driving delay ∆tG, as discussed in Section 2.1.1. Alternatively, one may think of having 

the gate driving delay modeled in the transfer function Gvd(s) itself. 
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The converter output current îo(t) and the converter input voltage v̂in(t) represent 

disturbances that superimpose on the output voltage v̂o(t) through the converter open-

loop output impedance Zo(s) and the open-loop audiosusceptibility Gvg(s) respectively. 

The analog sensing and conditioning circuitry for the converter output voltage v̂o(t) 

has been described in Fig. 2.3.1 by means of an overall transfer function Hsense(s); its 

output signal v̂sense(t) is then sampled and quantized to a digital sequence v̂s[k]. Please 

note that in Fig. 2.3.1 the overall digital delay ∆tdelay =∆tAD + ∆tcalc  has been modeled 

in the analog domain, as described in Section 2.2. 

A single-sampling strategy will be assumed here; as discussed in Section 2.2, this 

means that the sampling frequency fsampling of the converter state variable vo(t) is equal to 

the switching frequency: 

 switchingsampling ff =  (2.3.1) 

The digital signal v̂s[k] is compared with a digital reference v̂ref. The resulting error 

signal ê[k] is then processed by the digital compensator. In what follows we will 

assume a linear and time-invariant compensation system which processes the error 
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Fig. 2.3.1 – Block Diagram Of a Voltage Mode Digital Control Loop 
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signal by means of a control law of the type (2.1.7) to produce the discrete time 

modulating signal m̂[k]. The z-domain transfer function corresponding to (2.1.7) is 

given by: 
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The control signal m̂[k] represents the output of the digital system and the input of 

the digital pulse-width modulator, which acts as a D/A converter. Its output, d̂(t), is 

related to m̂[k] by the modulator transfer function GPWM(s). A quantization of the 

control signal m̂[k] due to the finite DPWM resolution is also involved, as shown in Fig. 

2.3.1. 

When employing digital pulse-width modulators the relationship between d̂ and m̂ 

exhibits characteristics which do not have an analog counterpart, and therefore have to 

be carefully modeled. The next Subsection has the purpose of summarizing the 

differences between analog and digital pulse-width modulators, as well as to precisely 

specify the m̂-d̂ small-signal relationship that holds in a digitally controlled converter. 

As this Section deals with small-signal modeling, quantization effects present along 

the feedback loop will be temporarily ignored. The subject will be discussed in  

Section 2.4. 

2.3.2. The Pulse-Width Modulator 

Generally speaking, two main families of pulse-width modulators can be identified, 

namely naturally sampled and uniformly sampled modulators. The purpose of this 

subsection is to clarify the differences between these two classes, as well as 

summarizing their small-signal behavior. The main results discussed here are derived in 

[60-62]. 
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i. Naturally Sampled And Uniformly Sampled PWMs 

A large signal equivalent model of a naturally sampled modulator is shown in Fig. 

2.3.2; a comparator generates the PWM waveform y(t) by comparing the modulating 

signal m(t) with a periodic carrier vc(t). The switching period Ts is defined as the period 

of the carrier waveform. The turn-on and turn-off events are generated when the carrier 

equals the instantaneous value of m(t); thus, the modulator naturally samples m(t) 

during each switching period. Depending on the shape of the carrier vc(t), different 

modulation schemes are obtained. Figure 2.3.3 summarizes the three most common 

modulation schemes obtained from a triangular carrier. In the trailing-edge modulation 

vc(t) is a positive slope sawtooth waveform; the turn-on instant of the modulator output, 

i.e. the position of the leading edge, is kept constant, while the turn-off event is 

modulated by m(t). A perfectly symmetrical situation is the leading-edge modulation, 

obtained from a negative slope sawtooth-like carrier. Now m(t) modulates the leading 

+

-

vc(t)

y(t)

Ts

m(t)
+

-

vc(t)

y(t)

Ts

m(t)

 
Fig. 2.3.2 – Naturally Sampled Pulse-Width Modulator 
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Fig. 2.3.3 – Common PWM Modulation Schemes: trailing edge modulation (a), triangular 

modulation (b) and leading edge modulation (c) 
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edge, while the turn-off event is kept constant. Finally, a triangular modulation is 

obtained when vc(t) is a triangular signal with equal rise and fall times within the 

switching period. Both the turn-on and turn-off events are modulated, and the PWM 

pulse is now centred in the middle of the switching period. Figure 2.3.4 illustrates the 

equivalent large signal model of a uniformly sampled modulator. These modulators 

differ from the naturally sampled ones in the way they process the input modulating 

signal before comparing it with the carrier. More precisely, the input modulating signal 

m(t) now undergoes a sample-and-hold action before being compared with vc(t). As 

already mentioned, we are assuming in this Section that a single-sampling strategy is 

adopted by the modulator, i.e. the sampling frequency equals the switching frequency. 

Thus, the signal actually compared with vc(t) – denoted with mh(t) in Fig. 2.3.4 – is a 

staircase-like signal which assumes a constant value throughout the whole switching 

period, this value being equal to the sample of the input modulating signal m. 

Analog pulse width modulators, i.e. modulators which process an analog modulating 

signal, can be either naturally sampled or uniformly sampled. On the other hand, digital 

pulse-width modulators employed in digital control loops like the one illustrated in Fig. 

2.3.1 inherently have a uniformly-sampled nature. In this case no analog signal m(t) is 

present, as the discrete-time sequence m[k] directly comes from a discrete-time system, 

i.e. the digital compensator. 
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Fig. 2.3.4 – Uniformly Sampled Pulse-Width Modulator 
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ii. Small-Signal Modeling 

The small-signal analysis of a pulse-width modulator consists in establishing the 

relationship between the modulating signal m(t) and d̂(t) – defined in (2.1.1) – under the 

hypothesis of a small perturbation m̂(t) superimposed on m(t). Moreover, a small-ripple 

approximation will be assumed here, based on the hypothesis that any switching-

frequency ripple superimposed on m(t) is of negligible amplitude with respect to the 

carrier amplitude. 

The calculation is based on the Fourier analysis of the signal y(t) and depends on the 

specific nature of the modulator considered, i.e. naturally sampled or uniformly 

sampled. This analysis is not presented in this Section, as a more general calculation 

will be proposed in Chapter III for multiple-sampled modulators. The results 

summarized in this section will be then obtainable as limit cases, as we will see. 

As far as the naturally sampled modulators are considered, their small-signal action 

on d̂(t) is that of a simple gain: 
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where vc,max represents the amplitude of the carrier signal. Thus, a naturally sampled 

modulator does not introduce any phase shift within the feedback loop. 

On the other hand, uniformly sampled modulators exhibit a radically different 

behavior, as their small-signal transfer function has the form: 

Modulation Type A(jω,D) td(D), ∆t=0 td(D), ∆t>0 

Trailing Edge 1/vc,max D·Ts D·Ts+(Ts-∆t) 

Leading Edge 1/vc,max (1-D)·Ts (1-D)·Ts+(Ts-∆t) 

Triangular cos(ωDTs/2)/vc,max Ts/2 Ts/2+(Ts-∆t) 

 

Tab. 2.3.1 – Small-signal analysis results for  uniformly-sampled modulators 
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where A(s,D) is a real quantity, while td represents a time delay. Both A and td are, in 

general, dependent on the steady-state duty ratio D, i.e. on the converter operating point. 

As far as the gain A(s,D) is concerned, this is either a constant or a slow-varying 

function of both the frequency and D. In all cases of practical interest it can be 

approximated with 1/vc,max. 

The equivalent delay time td, however, cannot in general be neglected and represents 

the most profound difference between uniformly sampled and naturally sampled 

modulators. It can be shown that td depends both on D and on ∆t, i.e. the relative 

position of the sampling instant of the modulating signal with respect to the turn-on / 

turn-off instants of the PWM waveform y(t). Uniformly sampled pulse-width 

modulators, and therefore digital pulse-width modulators, introduce a small-signal 

phase lag which depends on the converter operating point and on the adopted sampling 

strategy. 

Table 2.3.1 reports the expressions of td(D) and A(jω,D) for the three modulation 

schemes illustrated in Fig. 2.3.3 for ∆t=0 and ∆t>0. The general considerations 

discussed above can be verified. 
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2.3.3. Discrete-Time Equivalent Of The Power Converter 

We are now in the position of deriving the discrete-time equivalent model Gp(z) of 

the power converter. Gp(z) will be defined here as the z-domain relationship between the 

digital control signal m̂[k] produced by the compensator and the sequence v̂s[k]. The 

latter represents – once subtracted from v̂ref  – the input signal of the compensator itself. 

Thus, looking back at Fig. 2.2.1 and letting v̂in=0 and îo=0, we define Gp(z) as: 
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zG s

p ≡  (2.3.5) 

Sampled data systems theory asserts that the impulse response of the discrete-time 

system (2.3.5) is the sampled version of the impulse response of the analog system 

defined by: 

 )exp()()()()( digitalsensevdPWMp tssHsGsGsG ∆−≡  (2.3.6) 

The desired discretization equation is thus obtained: 

 )]([)( sGZTzG pTsp s
= , (2.3.7) 

where ZTs[·] denotes the Z-transform operator applied with a sampling step equal to 

the switching period Ts. 

Equation (2.3.7) allows, in principle, the analytical derivation of Gp(z). However, if 

certain extremely simple cases are excluded, the calculation is lengthy and often results 

in rather cumbersome expressions, from which poor physical insight can be drawn. Nor 

a closed-form expression of Gp(z) is required in many practical design situations. Thus, 

the discretization (2.3.7) is better computed with the aid of a computer-based 

mathematical environment (e.g. Matlab). 

From (2.3.7) and given the digital compensator transfer function (2.3.2) the system 

loop gain can be explicited: 
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 )()()( zGzGzT pc=  (2.3.8) 

2.3.4. Examples 

Two simulation examples will be presented in this Section, namely a voltage-mode 

control and a current-mode control of a given power converter, with the main purpose 

of verifying the accuracy of the discrete-time models presented in Section 2.3.3. 

Let us consider a 12V-to-5V, 50W synchronous buck converter with L = 2µH,  

C = 1mF, ESR = 1mΩ, switching frequency fs = 200kHz. Stability margins 

specifications require a minimum phase margin mΦ,min = 45° and a minimum gain 

margin GMmin = 10dB. A triangular, uniformly sampled modulator will be employed. 

A/D conversion delays as well as the compensator computational delays will be 

assumed to form a negligible fraction of the switching period Ts = 5µs and therefore 

neglected. 

i. Voltage-Mode Control 

Voltage mode control has been discussed in Section 2.2.3. Please refer to Fig. 2.3.1 
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for the corresponding block diagram.  

A (1,0)-sampled digital PID compensator will be designed here to achieve the 

desired stability margins at a closed-loop bandwidth fc = fs/10 = 20kHz. On this purpose, 

let us first evaluate the discrete-time equivalent of the power converter. According to 

(2.3.7) and letting Hsense(s) = 1: 

 )]
2

exp()([)( s
vdTsp

T
ssGZTzG

s
−= , (2.3.9) 

where the transfer function of the triangular modulator has been approximated with 

GPWM(s) = exp(-sTs/2), according to the discussion developed in Section 2.3.2. Bode 

diagrams of Gp(z) are illustrated in Fig. 2.3.5, from which a phase lag greater than 180° 

is seen at f = fc = 20kHz. A PID structure is therefore mandatory to achieve the 

necessary phase margin: 
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The design of the PID compensator was carried out by first placing one of the two 

PID zeros close to the resonant frequency f0 = 3.6 kHz of the power converter, then 

placing the second zero so that a phase margin of about mΦ = 50° is achieved at  

f = fc = 20kHz. Finally, the PID gain K was selected to achieve a unity loop gain at fc. A 
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Matlab routine was written to refine calculations, yielding z1 = 0.974, z2 = 0.894,  

K = 4.38 V
-1

. These parameters define the PID structure (2.3.10) and allow the 

calculation of the system loop gain T(z) (2.3.8). 

 The designed control has been simulated in the Matlab/Simulink environment. Load 

step-up transients from 0A to 10A are shown in Fig. 2.3.6 and 2.3.7 for the output 

voltage and inductor current respectively. Damping and settling time of the load 

transient responses are in agreement with the designed phase margin and bandwidth. 

A further verification of the modeling accuracy of (2.3.9) is given in Fig. 2.3.8. 

Loop gain simulations were carried out in the frequency range f0-fs/5 on the same 

Simulink model used to obtain the load transients illustrated in Fig. 2.3.7 and 2.3.8. 

Simulation points are superimposed to the theoretical loop gain T(z) = Gc(z)·Gp(z) in the 

Bode diagrams shown in Fig. 2.3.8, yielding an excellent matching both in magnitude 

and phase. Inspection of Fig. 2.3.8 reveals a gain margin GM = 14dB, well above the 

given specifications. 
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ii. Current-Mode Control 

It is interesting to develop a current mode controller for the case study considered in 

this Section, as this will allow to appreciate how the modeling concepts presented in 

Section 2.3.3 for voltage-mode loops naturally extend to more complex control 

schemes. 

Let us consider the current-mode control block diagram illustrated in Fig. 2.3.9. The 

inner current loop samples the inductor current and compares it with the reference 

sequence îL,ref set by the voltage loop controller Gcv(z). The current error êi[k] is 

processed by the current loop regulator Gci(z), which produces the modulating signal 

m̂[k]. The voltage loop regulator generates the reference signal for the current loop by 

processing the voltage error êv[k], obtained through sampling of the converter output 

voltage. For the sake of simplicity, other independent inputs of the power stage such as 

the load current îo(t) and the input voltage v̂in(t) are not shown in Fig. 2.3.9. 

Similarly to what is usually done in analog control design, the current loop gain will 

be designed to achieve a rather high bandwidth, this being possible because of the good 
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Fig. 2.3.9 – Block diagram of a digital current mode control scheme 



II – Principles Of Digital Control In Power Electronics 

 47 

phase behavior of the duty cycle-to-inductor current transfer function Gid(s) of the 

power converter: 

 
LCsCsESR
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VsG inid 21

)(
+⋅+

=  (2.3.11) 

A note on (2.3.11). In this context we define Gid(s) as the open circuit inductor 

current îL(s) over the applied duty cycle d̂(s), i.e. when îo(s) = 0, implying that the load 

is being modeled by an independent current source. Whenever the load is modeled by a 

resistor Ro, and as long as Ro is much greater than the open-loop impedance Zo(s) of the 

power converter, it is easy to prove that its effect on (2.3.11) is that of moving the zero 

from the origin to sz = -1/(RoC). Beside these modeling details, the following 

considerations can be considered of general validity. A (1,0) sampling strategy will be 

adopted for both the voltage and current sampling. Due to the triangular shape of the 

inductor current, this translates in a correct sampling of its average value, thus reducing 

aliasing effects discussed in Section 2.2. 

The design of the current loop compensator Gci(z) will be carried out by first 
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deriving the current loop control-to-output transfer function Gpi(z) of the power 

converter, i.e. the discrete-time transfer function between the modulating signal m̂ and 

the sampled inductor current îL[k]. The derivation of Gpi(z) can be obtained through the 

very same reasoning already developed in Section 2.3.3, leading to: 
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Bode diagrams of Gpi(z) are shown in Fig. 2.3.10. Similarly to what happens in the 

analog domain, the good phase behavior of Gid(s) is preserved in the digital domain. 

Comparison with Fig. 2.3.5 reveals a drastically lower phase lag at high frequencies.  

A PI compensator can be designed to achieve a current loop bandwidth  

fci = fs/5 = 40kHz by placing its zero close to f0 and properly adjusting the compensator 

gain. The current loop regulator Gci(z) has therefore the following structure: 
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with Kpi = 0.037 A
-1

 and Kii = 4.3·10
-3

 A
-1

. The Bode diagrams of the resulting 

current loop gain Ti(z) = Gci(z)·Gpi(z) are shown in Fig. 2.3.11, from which a phase 

margin of about 50° and a gain margin of 4.7dB are visible. 

Having designed the current loop regulator, the design of the voltage loop transfer 

function Gcv(z) can be performed once the voltage loop control-to-output transfer 

function Gpv(z) is obtained, Gpv(z) being defined as the transfer function between the 

reference current signal îLref[k] and the sampled output voltage v̂o[k]. Straightforward 

block diagram algebra can be employed to derive Gpv(z): 
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It is easily seen from its Bode diagrams visible in Fig. 2.3.12 that Gpv(z) has a 

capacitive-like behavior up to about a frequency of 10kHz. This result is by all means 

expected, since as long as frequencies well below the current loop bandwidth fci are 

considered îL ≈ îLref and thus Gpv(z) approaches the capacitive impedance Zc of the 

power stage. 
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Fig. 2.3.12 – Bode diagrams of the voltage loop control-to-output 

transfer function Gpv(z) 
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Similarly to what done for the current loop, a PI structure will be chosen for the 

voltage loop regulator, designed for a closed loop bandwidth fcv = fs/10 = 20kHz and 50° 

phase margin: 

 
11
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z

K
KzG iv

pvcv  (2.3.15) 

with Kpv = 99 V
-1

 and Kiv = 22 V
-1

. The Bode diagrams of the resulting voltage loop 

gain Tv(z) = Gcv(z)·Gpv(z) are shown in Fig. 2.3.13. A 14dB gain margin is found, within 

the minimum 10dB specification. 
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Fig. 2.3.13 – Theoretical (continuous line) and simulated (dots) Bode 

diagrams of the compensated voltage loop gain Tv(z) 

Fig. 2.3.14 – Output voltage during a 

0A�10A load step up transient 

Fig. 2.3.15 – Inductor current during a 

0A�10A load step up transient 
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Following the previous approach aimed to verify the correctness of the discrete-time 

models, the loop gains Ti(z) and Tv(z) have been simulated and the results compared to 

the analytically derived plots. In both Fig. 2.3.11 and 2.3.13 the simulation points 

exactly match the expected results. 

The simulated transient response of the resulting current-mode control is shown in 

Fig. 2.3.14 and 2.3.15 as far as the output voltage and inductor current are concerned. 
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2.4. Quantization Effects And Limit Cycling 

Quantization effects represent one of the aspects that are unique to digital control 

systems. The nonlinearities introduced by the different quantizations present in the 

feedback loop may degrade the system performance affecting its behavior in different 

ways, the effects ranging from accuracy issues to limit cycle oscillations. 

2.4.1. Sources Of Quantization 

This section provides some basic classification among the different sources of 

quantization present in a typical digital control system. In what follows, the voltage-

mode control illustrated in Fig. 2.2.1 will be taken as a reference. Three points can be 

identified in the feedback loop where quantization effects come into play: the A/D 

conversion, the DPWM quantization and the digital compensator, where finite-precision 

arithmetic causes quantization errors to affect both the compensator coefficients and the 

calculations. In this Section uniform quantizers will be considered, i.e. characterized by 

a constant quantization step. Uniform quantizers are common in digital control, where 

the low cost and low complexity requirements of microcontrollers or hardwired logic 

dictate the use of fixed-point arithmetic for calculation purposes, preferred to floating 

point arithmetic which has significantly higher overheads in terms of both hardware 

requirements and speed. 

i. A/D Resolution 

The A/D resolution, expressed by the width nAD of the A/D converter output binary 

word, introduces a quantization error affecting the error signal e[k] processed by the 

digital compensator. Thus, nAD limits the extent to which the actual error is known to the 

digital compensator. Denoting with FSR the full scale range of the A/D converter, the 

quantization step ∆qe,AD on the voltage error signal is: 
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, ≡∆  (2.4.1) 

In most cases it is more meaningful to refer the quantization step to the converter 

state variable being acquired; for the voltage mode control shown in Fig. 2.2.1: 
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The quantization step (2.4.2) represents an upper limit to the regulation accuracy 

achievable by a given control loop. Of particular importance is the zero error bin, which 

represents the ∆qv,AD-wide interval of output voltage values that produce e[k] = 0 and 

therefore are not distinguished by the digital compensator. Any steady state output 

voltage lying within the zero-error bin does not produce any further regulating action. 

As a consequence, given a setpoint Vref, A/D quantization causes the digital 

compensator to be able to regulate Vref only to within ∆qv,AD. 

ii. DPWM Resolution 

The DPWM resolution nDA is usually limited by either area and power consumption 

requirements. For this reason the DPWM digital input is usually stored in a binary word 

which is smaller than the word length of the modulating signal m[k] produced by the 

control algorithm. The necessary conversion, i.e. truncation, round-off etc…, represents 

a quantization for the signal m[k] that translates in a duty cycle quantization: 

 
DAnDAq

2

1
=∆  (2.4.3) 

Thus, nDA limits the extent to which a desired duty ratio D can be realized to drive 

the power stage. Even if an infinite resolution A/D is considered, (2.4.3) degrades the 

output regulation accuracy; referring again the quantization step to the converter output 

voltage, one has: 



II – Principles Of Digital Control In Power Electronics 

 54 

 )0(
2

1
, vdnDAv Gq

DA

=∆  (2.4.4) 

iii. Finite Precision Arithmetic 

Two other important sources of quantization error are represented by the 

quantization of the compensator coefficients and by the truncation and round-off 

operations occurring during the computational activity of the digital compensator. Both 

these phenomena can be designed as finite precision arithmetic quantizations. 

It is well known in the theory of digital filters how coefficients quantization cause 

the actual – i.e. implemented – transfer function to differ from the desired one. This, of 

course, also holds when considering the implementation of a digital compensator. The 

entity of the deviation depends on the word length nCoeff that defines the coefficients 

resolution, and on the particular realization of the compensator transfer function. The 

degree of complexity of a digital compensator employed in a SMPS control system is 

usually quite small, and general guidelines can be followed to ensure a robust 

implementation in most cases. 

Taking, as an example, a digital PID compensator, its series – or interacting – 

implementation allows a direct control on the quantization errors affecting the gain K 

and the two zeros z1,2: 
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The PID coefficients Kt, z1 and z2 can be then implemented with the required 

resolution. Another common and quite robust implementation of a PID regulator is the 

non interacting, or parallel form: 
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with Kp, Ki and Kd representing the proportional, integral and derivative gain 

respectively. 

Round-off and truncation operations also affect the behavior of the implemented 

compensator, generating what is known as calculation noise. A typical example is the 

operation of digital multipliers. Given two n-bit binary words, the minimum number of 

bits required to represent their product without error is 2n. Thus, whenever the result 

has to be stored in a shorter binary register, a truncation or round-off operation occurs, 

depending on the particular multiplier implementation. 

Worst-case and stochastic methods exist to estimate the calculation noise 

superimposed to the output signal produced by the digital compensator and therefore 

infer the minimum number of bits to be used to store intermediate results. Proper sizing 

of the intermediate registers and handling of truncations and round-offs usually makes 

the calculation noise effects negligible with respect to more important contributions like 

A/D quantizations and DPWM resolution. 

 

2.4.2. Limit Cycle Oscillations 

Limit cycle oscillations (LCO) indeed represent the most typical and undesired 

nonlinear effect in a feedback-based digital or mixed-signal system [65-69]. They 

represent persistent, amplitude-limited oscillatory modes originated by nonlinearities 

present in the feedback loop. Beside affecting a clean and stable regulation of the output 

voltage, LCOs may be undesirable also from an electromagnetic interference (EMI) 

point of view, as they represent additional frequencies – usually much lower than the 

converter switching frequency – present in an otherwise stable system. 

The study of LCOs present many mathematical difficulties due to their intrinsic 

nonlinear nature. General criteria and guidelines have nevertheless been proposed in the 
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literature [65] aimed to establish necessary conditions aimed to avoiding LCOs. Some 

basic considerations will be reported here, assuming that a digital PID compensator is 

employed. Further details and more sophisticated approaches can be found in the 

literature. 

From (2.4.2) and (2.4.4) a first simple consideration can be formulated: if there is no 

DPWM quantization level that maps in the ADC zero error bin, then the system will 

exhibit limit cycle oscillations. The reason is that under this condition no DC operating 

point exists that nulls the error e[k]. On the other hand, a constant nonzero error would 

be indefinitely integrated by the PID integrator, thus violating the DC hypothesis. As a 

result, e[k] will oscillate around the zero error bin maintaining a zero average value. 

From this discussion, the existence of a DC operating point compatible with e[k] = 0 is 

ensured if the DPWM resolution, referred to the converter output voltage, is finer than 

the ADC resolution: 

 ADvDAv qq ,, ∆<∆  (2.4.7) 

In practice, it is recommended to realize (2.4.7) with a certain margin; an equivalent 

DPWM resolution two or three bits higher than the A/D resolution is usually advisable. 

Even with an infinite resolution DPWM (i.e. ∆qv,DA = 0) the existence of a limit 

cycle-free DC operating point is not guaranteed because of the integral gain of the PID 

compensator. To show this, let us consider a steady state condition in which e[k] = 0 

and let us assume that a transient perturbation occurs, after which the controller restores 

the correct DC operating point reaching the zero error bin e[k] = 0. The final value of 

the unquantized error es[k] can be evaluated by application of the final value theorem: 
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where Gc(z) represents the PID transfer function (2.4.6) and Gp(z) is the discrete-

time equivalent of the power converter (see (2.3.9)). For the sake of simplicity,  

Hsense(s) = 1 was assumed in (2.4.8). 

Evaluation of (2.4.8) yields: 

 )1()1(]0[][ EGKee piss =−+∞  (2.4.9) 

Consistence with the hypothesis e[+∞] = 0 requires that the overall variation of the 

unquantized error is smaller than the ADC quantization step: 

 ADvpi qEGK ,)1()1( <  (2.4.10) 

A necessary condition for (2.4.10) is obtained by letting E(1) be equal to the 

smallest possible error perturbation, i.e. qv,AD. Hence: 

 1)1( <piGK , (2.4.11) 

which poses a necessary constraint on the compensator integral gain. The meaning 

of (2.4.11) is that a necessary no-limit cycling condition requires the integral gain to be  

sufficiently small to fine tune the error in response to small perturbations, so that the 

zero error bin can be reached through small corrections of the duty cycle command. 

Equations (2.4.2) and (2.4.11) are formulated in [65] as two static, necessary no-

limit cycling conditions. It must be underlined that the existence of a DC solution 

compatible with e[k] = 0 by no means guarantees that the converter will actually 

converge to this particular steady-state mode of operation. Dynamic no-limit cycling 

conditions are derived in [66] that formulate additional constraints and better investigate 

the causes of the onset of LCOs in a digitally controlled SMPS. 

As a final note, it is worth to mention other LCO modeling approaches proposed in 

literature based on energetic and statistical descriptions [67-68]. 
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Chapter III 

 

Multiple Sampling 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Section 2.1.3 we defined the multiple sampling technique as a sampling strategy 

which consists of employing a sampling frequency fsampling strictly higher than the power 

converter switching frequency fs, and evaluating the control signal m[k] on a sampling 

cycle basis [39]. In the following we will assume that the sampling frequency is an 

integer multiple of the switching frequency, so that a number N of sampling events 

occur during each switching period: 

 ssampling Nff =  (3.1) 

The present Chapter presents an in-depth analysis of the consequences of (3.1) on 

the converter equilibrium and closed-loop dynamics. The main result, which is the 

ultimate motivation for increasing the sampling frequency, is the strong reduction of the 

DPWM small-signal phase lag which gets decreased, roughly speaking, by a factor 1/N. 

This gives rise to the possibility of achieving higher closed-loop bandwidths with 

respect to the single sampling approach, still maintaining robust stability margins. 
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On the other hand, oversampling of the converter waveforms containing switching-

frequency ripple represent an additional injection of disturbances into the feedback 

loop; this has been already pointed out in Section 2.3 when considering the spectrum of 

a discrete-time sequence xs[k] obtained through a (N,∆t) sampling of a continuous 

signal x(t): 

 ∑
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∆−−=
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ss
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π

 (3.2) 

It will be shown how the Pulse-Width Modulator static and dynamic behavior is 

profoundly affected by the presence of sampled ripple in the modulating waveform, the 

most striking effect being the onset of sampling-induced dead bands in the modulator 

transcharacteristics. Presence of the sampling-induced dead bands negatively affect the 

behavior of the closed-loop control system as they easily trigger regulation failures or 

even oscillating behaviors. 

Solutions aimed to restoring the DPWM linearity thus appear mandatory when the 

multiple sampling strategy is adopted. Chapter IV presents a detailed analysis of 

different linearization techniques which restore partially or completely the DPWM 

linearity, still retaining the main phase-boost property of the multiple sampling 

approach. 

 

3.1. Motivations For Increasing The Sampling Frequency 

The main advantage of the multiple sampling approach is the dramatical reduction 

of the small-signal phase lag introduced by the DPWM modulator. A rigorous analysis 

of the small-signal transfer function of a multi-sampled DPWM will be presented in 

Section 3.2; however, the argument of the phase delay reduction due to the increased 
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sampling frequency can be nevertheless understood on an intuitive basis through the 

following reasoning. 

Let us first consider the switching dynamics of a naturally sampled pulse width-

modulator. Its large-signal model, discussed in Section 2.3, is shown in Fig. 3.1.1.a. The 

carrier vc(t) and the modulating signal m(t) are shown in Fig. 3.1.2. A trailing edge 

Ts

t
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vc(t)

t

t1=0 t2

y(t)

 
Fig. 3.1.2 – Switching dynamics of a naturally-sampled modulator 
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Fig. 3.1.1 – Large-signal models for naturally sampled (a) and uniformly sampled (b) modulators 
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PWM modulation and a a triangular-shaped modulating signal was assumed. In a buck 

converter, this situation may correspond to an ESR-dominated output voltage ripple 

processed by a proportional or proportional-integral (PI) analog compensator; the 

switching ripple inherently present in the error waveform is amplified by the 

proportional gain of the compensator itself. This results in the modulating signal 

depicted in Fig. 3.1.2. It is important to point out that these hypotheses are by no means 

necessary and have been here assumed for the sake of definiteness. 

As shown in Fig. 3.1.2, the turn-on event t1, i.e. the leading edge of the modulator 

output signal, always occurs at the beginning of the switching cycle, while the turn-off 

instant t2 is implicitly defined by the condition: 

 )()( 22 tmtvc =  (3.1.1) 

The switching event t2 is thus determined by the value that the modulating signal 

assumes at that instant. The pulse-width modulator naturally samples the value of the 

modulating signal in t=t2 and instantaneously updates the PWM waveform by 

generating the trailing edge. 

Let us now consider the operation of a uniformly sampled pulse width modulator; its 

large-signal model is shown in Fig. 3.1.1.b, while Fig. 3.1.3 illustrates the modulating 

and carrier waveforms during a transient condition. As described in Chapter II, the input 

modulating signal m(t) is sampled once during the switching period, and its value held 

constant until the next sampling event. That is, the input modulating signal is processed 

by a zero-order hold system that generates the signal mh(t): 

 )1()()),(()( +<≤= kttktktmtm samplingsamplingsamplingh  (3.1.2) 
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In Fig. 3.1.3 a (1,Ts(1+D)/2) sampling strategy was used. As discussed in Chapter II, 

this allows the correct sampling of the output voltage average value in steady-state 

condition. 

The turn-off  event is now defined by the condition: 

 )()( 22 tmtv hc =  (3.1.3) 

Equation (3.1.3) is deeply different from (3.1.1) in that now the turn-off event 

depends on the value of the modulating signal at the sampling event, as it is clear from 

the relationship existing between m and mh and expressed by (3.1.2). The sampling 

action of the comparator inherently present in the PWM modulator just re-samples mh 

and not m. The result is a small-signal delay td in the PWM action which can be 

quantified as the difference between the actual turn-off instant and the sampling event 

immediately preceding it. Small-signal wise, this delay is a function of the steady-state 

duty cycle D. 

From a simple inspection of Fig. 3.1.3 it can be deduced that: 
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Fig. 3.1.3 – Switching dynamics of a uniformly sampled modulator 
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a result which agrees with the one reported in Tab. 2.2.1 for the trailing edge 

modulation. 

A phase lag can be associated to (3.1.4) as: 

 dtωωφ −=∆ )(  (3.1.5) 

Impact of (3.1.5) on the system phase margin can be easily evaluated. As an 

example, for low-voltage applications where D<<1 and assuming a closed-loop 

bandwidth of about fc=fs/10, (3.1.5) yields ∆Φ ≈-18°. 

The delay (3.1.4) is intimately related to the difference between the extrinsic 

sampling event due to the adopted sampling strategy and the intrinsic sampling operated 

by the PWM comparator, which is in turn related to the converter operating point. It 

now appears intuitively reasonable how increasing the sampling frequency by a factor N 

will reduce the modulator equivalent delay by approximately the same factor. A small-

signal analysis of multi-sampled PWM modulators will be presented in the next section 

that will prove this statement. 

Increasing the sampling frequency brings with it a number of drawbacks that have to 

be carefully evaluated. Functional drawbacks, i.e. related to the malfunctioning of the 

closed-loop system due to an increased sampling frequency, have already been 

mentioned in the introduction and will be extesively addressed in this Chapter. 

Solutions aimed to their overcome will be investigated in Chapter IV. Beside these 

effects, one may ask if there are technological or design drawbacks that may suggest not 

to go oversampling the converter state variables. 

Limitations of modern digital technology do not seem to represent a problem. A 

typical modern digital process employed for consumer applications allow for clock 
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frequencies that can easily reach tens of MHz. The switching frequency in pulse-width 

modulated power converters, on the other hand, can only be pushed up to several 

hundreds of kHz or few MHz, the upper limit being imposed by switching losses in the 

power semiconductor devices employed. A hard-wired digital compensator can thus be 

pushed to clock frequencies on the order of ~10fs without even approaching the 

technological limits of a modern digital process. The same reasoning also holds for A/D 

converters, which can be easily designed to achieve conversion rates well above the 

ones dictated by a multi-sampled application. 

The main objection against increasing the sampling frequency is related to the well-

known design tradeoff existing in digital systems between clock frequency and power 

consumption. Indeed, power consumption of a digital electronic circuit based on 

standard CMOS technology increases about linearly with the operating clock frequency. 

This may pose limitations to the application of the multiple sampling strategy in  

low-power or micro-power applications. 
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3.2. Multi-Sampled Pulse-Width Modulators 

In a (N,∆t) multi-sampled digital control scheme the control signal m[k] is updated 

N  times per switching period. A multi-sampled modulator (MSPWM) is thus required 

which latches the value of m[k] on a sampling-cycle basis rather than on a switching 

cycle basis as classical uniformly sampled modulators do. 

This section presents an analysis of MSPWMs from both a small-signal and large-

signal point of view. The starting point is the large-signal equivalent model illustrated in 

Fig. 3.2.1. This model describes the operation of the modulator independently on its 
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Fig. 3.2.1 – Large-signal model of a multiple sampled modulator 
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Fig. 3.2.2 – Switching dynamics of a (4,∆t) multiple-sampled pulse-width modulator 
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actual implementation. The modulating sequence m[k] is  converted to the analog signal 

mh(t) through a zero-order hold action clocked at f=fsampling. A comparator generates the 

pulse-width modulated waveform y(t) by comparing mh(t) with the triangular carrier 

signal vc(t). This operation is illustrated in Fig. 3.2.2 in the case of a trailing edge 

modulation. 

In order to generalize the following analyses and simplify the notation, a number of 

hypotheses and assumptions will be made from here on: 

• The time axis will be normalized to Ts. The notation tn will be employed, 

defined as tn = t/Ts, to denote a generic instant in time. The origin of the time 

axis will be aligned with the beginning of a switching period. Thus, the 

generic n-th switching period under consideration will correspond to the 

interval n ≤ tn ≤ n+1. 

• Without loss of generality, only (N,0) multiple sampling strategies will be 

considered. Extension of the results to  ∆t>0 is straightforward and does not 

present any conceptual difficulties. 

• The periodic carrier signal will be written in a parameterized form; during 

the n-th switching cycle the following analytical expression will be assumed: 
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• The carrier amplitude is normalized to unity and parameterized so that the 

instants tn,α=α+n represent the points at which vc(tn,α)=0. Trailing edge, 

leading edge and triangular modulations are obtained from (3.2.1) by letting 

α=0, α=1 and α=0.5 respectively. 
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• Time quantization due to the sampling process will be denoted with the 

following notation: 

 
N

Ntfloor
tq n

nN

)(
][ ≡ , (3.2.2) 

where floor(x) denotes the greatest integer smaller than or equal to x. 

Operation (3.2.2) associates to each normalized instant the sampling instant 

immediately preceding it. 
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3.2.1. Small-Signal Modeling Of MSPWM. Phase Boost. 

The purpose of this section is to establish the small-signal relationship existing 

between the modulating signal m[k] and the low-frequency content d(t) of the PWM 

waveform y(t).  

A general preliminar result, the derivation of which is straightforward, will be useful 

in the development of the analysis: 

Theorem: Let us consider a generic modulator employing the carrier vc(tn;α) and 

processing the modulating signal m[k]. Let y(t) be the PWM output signal. Then y(t) 

can be written as: 

 )()()( 12 tytyty −= , (3.2.3) 

where y1(t) and y2(t) are two PWM waveforms obtained by trailing-edge modulation 

of m[k] by means of two carriers vc1(tn;α) and vc2(tn;α) respectively. The carriers 

vc1(tn;α) and vc2(tn;α) are defined as: 
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Fig. 3.2.3 – Decomposition of a generic modulation in two trailing-edge modulations 
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This basic result is illustrated in Fig. 3.2.3, where the generic n-th switching cycle is 

shown for a (4,0) multisampled modulator. 

We shall denote with t1n[nTs] and t2n[nTs] the normalized turn-on and turn-off 

instants of y(t) during the n-th switching cycle. These quantities are related to the duty 

cycles dy1[nTs] and dy2[nTs] of y1(t) and y2(t) during the same switching period by the 

following relationships: 

 ][][ 11 sysn nTdnnTt +=  (3.2.5.a) 

 ][][ 22 sysn nTdnnTt +=  (3.2.5.b) 

If dy[nTs] is the duty cycle of y(t) dring the n-th switching cycle, the decomposition 

(3.2.3) implies that: 

 ][][][ 12 sysysy nTdnTdnTd −=  (3.2.6.a) 

In a similar way, if d1(t), d2(t) and d(t) are the low-frequency contents of y1(t), y2(t) 

and y(t) respectively, then: 

 )()()( 12 tdtdtd −=  (3.2.6.b) 

i. Small-Signal Analysis 

Given these preliminar results, the small-signal analysis can be carried out following 

these steps: 

1) First, the relationships between m[k] and the duty ratios dy1[nTs] and 

dy2[nTs] will be derived. 

2) Second, the relationships between dy1[nTs] and d1(t) and between dy2[nTs] 

and d2(t) will be obtained. 

3) Finally, the decompositions (3.2.6) will be used to derive the small-signal 

relationship between m[k] and d(t). 
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Let us consider the following modulating signal m[k], obtained by superposition of a 

DC value M to a small-signal sinusoidal perturbation m̂[k]: 

 )sin(][ˆ][ 0 ϕ
θ

+∆+=+= k
N

mMkmMkm , (3.2.7) 

where ∆m represents the perturbation amplitude, ϕ its initial phase and θ0 a 

normalized angular frequency: 

 ss TfT 000 2πωθ ==  (3.2.8) 

We will further assume f0/fs to be a rational number, thus making m[k] a periodic 

sequence. Though unnecessary to derive the main result of the following analysis, this 

hypothesis considerably simplifies the calculations. 

In equation (3.2.7) the only time-varying term is the small-signal perturbation; thus 

we are implicitly making a small-ripple approximation, assuming no switching 

frequency ripple superimposed to m[k]. The effect of the ripple will be discussed in the 

next section discussing the modulator static transcharacteristics. 

The analog signal mh(tn) actually compared with the modulator carrier is obtained 

from (3.2.7) by means of a sample-and-hold action: 

 )][sin()( 0 ϕθ +∆+= nNnh tqmMtm  (3.2.9) 

The duty cycles dy1[nTs] and dy2[nTs] are implicitly defined by the conditions: 

 )];[(])[( 111 αsncsnh nTtvnTtm =  (3.2.10.a) 

 )];[(])[( 222 αsncsnh nTtvnTtm =  (3.2.10.b) 

By substituting (3.2.9) in the left-hand side and (3.2.1) in the right-hand side of 

(3.2.10), and employing the relationships (3.2.5), one obtains: 
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 ][
1

1)]][[sin( 1100 sysyN nTdnTdqnmM
α

ϕθθ −=++∆+  (3.2.11.a) 

 )][(
1

1
)]][[sin( 2200 α

α
ϕθθ −

−
=++∆+ sysyN nTdnTdqnmM  (3.2.11.b) 

Further manipulation of Eqs. (3.2.11) will be carried out by making use of a small-

signal approximation. More precisely, dy1 and dy2 will be written as the superposition of 

a DC component and a perturbation: 

 ][][ 111 sysy nTdDnTd ∆+=  (3.2.12.a) 

 ][][ 222 sysy nTdDnTd ∆+=  (3.2.12.b) 

Then the small-signal approximation will be formulated in the following way: 

 ][]][[]][[ 1111 DqnTdDqnTdq NsyNsyN =∆+=  (3.2.13.a) 

 ][]][[]][[ 2222 DqnTdDqnTdq NsyNsyN =∆+=  (3.2.13.b) 

As long as (3.2.13) are verified, (3.2.11) can be re-written in the form: 

 ][
1

1)][sin( 1
1

100 syN nTd
D

DqnmM ∆−−=++∆+
αα

ϕθθ  (3.2.14.a) 

 ][
1

1

1
)][sin( 2

2
200 syN nTd

D
DqnmM ∆

−
+

−

−
=++∆+

αα

α
ϕθθ  (3.2.14.b) 

From (3.2.14) the DC terms and perturbation terms can be equated separately. As far 

as the DC terms are considered, a relationship is established between D1 and D2: 

 
α

α

α −

−
=−=

1
1 21 DD

M  (3.2.15) 

On the other hand the steady state duty ratio is D = D2 – D1. Combining this 

condition with (3.2.15) the expected result is found: 

 MD =  (3.2.16) 

Expressions of D1 and D2 as a function of D are also obtained: 
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 )1(1 DD −= α  (3.2.17.a) 

 DD )1(2 αα −+=  (3.2.17.b) 

Equations (3.2.17) state that the steady state duty cycle D determines the DC 

position of the turn-on and turn-off instant in a unique way. A generalized result, which 

will include the effect of the switching ripple, will be derived in Section 3.2.2. 

Equating the perturbed terms in (3.2.14) and using the relations (3.2.17) yields: 

 ))]1([sin(][ 001 ϕαθθα +−+∆−=∆ DqnmnTd Nsy  (3.2.18.a) 

 )])1([sin()1(][ 002 ϕααθθα +−++∆−=∆ DqnmnTd Nsy  (3.2.18.b) 

Equations (3.2.18) represent the result of the first step of the calculation, as they 

express the perturbation of the turn-on and turn-off instant of y(t) as a function of the 

input modulating signal amplitude and phase. 

Let us denote with M(jω0) the Fourier component of m̂[k] at the perturbation 

frequency ω0, and let ∆Dy1(jω0) and ∆Dy2(jω0) be the Fourier components of ∆dy1[nTs] 

and ∆dy2[nTs] at the same frequency. Equations (3.2.18) can be then summarized as 

follows: 

 ))]1([exp(
)(

)(
0

0

01

sN

y
TDqj

jM

jD
−−=

∆
αωα

ω

ω
 (3.2.19.a) 

 )])1([exp()1(
)(

)(
0

0

02

sN

y
TDqj

jM

jD
ααωα

ω

ω
−+−=

∆
 (3.2.19.b) 

The second step of the analysis consists in the derivation of the relationship between 

the low-frequency content of the PWM waveforms y1(t) and y2(t), i.e. the analog signals 

d̂1(t) and d̂2(t), and the discrete-time sequences dy1[nTs] and dy2[nTs] given by 3.2.12. 

This analysis does not depend on the nature of the modulator considered – if 

uniformly sampled, naturally sampled or multi-sampled – but only on the particular 
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modulation type. The calculation, based on a detailed Fourier analysis of the PWM 

waveform, has been carried out in [60] for trailing edge modulations and will not be 

repeated here. The main result can be summarized as follows: the Fourier components 

D1(jω0) and D2(jω0) of d̂1(t) and d̂2(t) at the input perturbation frequency are related to 

∆Dy1(jω0) and ∆Dy2(jω0) by the following equations: 

 )exp(
)(

)(
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01
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s

y

TDj
jD

jD
ω

ω
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∆
 (3.2.20.a) 

 )exp(
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−=

∆
, (3.2.20.b) 

with D1 an D2 given by (3.2.17). This result completes the second step of the small-

signal analysis. 

Equations (3.2.19) and (3.2.20) can be now combined to obtain the desired small-

signal relationship between m̂[k] and d̂(t). The decomposition relations (3.2.6) allow us 

to write the transfer function GPWM(jω0) in the form: 

 )()(
)(

)()(
)( 0102

0

0102
0 ωω

ω

ωω
ω jHjH

jM

jDjD
jGPWM −=

−
≡ , (3.2.21) 

with: 

 ))])1([)1((exp()( 001 sN TDqDjjH −−−−−= ααωαω  (3.2.22.a) 

+

-

d ̂(t)m̂[k]

H1(s)=-αexp(-std1(D,N))

H2(s)=(1-α)exp(-std1(D,N))
 

Fig. 3.2.4 – Small-signal model of a multi-sampled pulse-width modulator 
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 )]))1([)1((exp()1()( 002 sN TDqDjjH ααααωαω −+−−+−−=  (3.2.22.b) 

The small-signal block diagram of a multiple sampled pulse-width modulator is 

shown in Fig. 3.2.4. The modulation of the turn-on and turn-off edges of the PWM 

signal gives rise to two distinct paths, each of them introducing a small-signal delay 

time: 

 sNd TDqDNDt )])1([)1((),(1 −−−= αα  (3.2.23.a) 

 sNd TDqDNDt ]))1([)1((),(2 αααα −+−−+=  (3.2.23.b) 

These delay times are dependent on the converter operating point through the 

steady-state duty ratio D and on the multisampling factor N through the time 

quantization qN[·]. 

ii. Discussion 

Equations (3.2.23) formalize the intuitive reasoning developed in Section 3.1 

concerning the delay time reduction operated by the increased sampling frequency. 

Indeed, if we let N=1 and thus consider single-sampled modulators, the terms in qN[·] 

vanish and one obtains: 

 sd TDNDt )1()1,(1 −== α  (3.2.24.a) 

 sd TDNDt ))1(()1,(2 αα −+==  (3.2.24.b) 

It is a matter of simple mathematical manipulations to verify that plugging (3.2.24) 

into (3.2.22) yields, for α = 0, 1 or 0.5, the same results summarized in Chapter II – see 

Table 2.1 - when uniformly sampled modulators were analyzed. These results have been 

extensively discussed in [60-62]. 

When N>1 the terms in qN[·] in general do not vanish and act as to decrease the 

equivalent delay time of the turn-on and turn-off path. Recalling the intuitive reasoning 

carried out in Section 3.1, as N increases, the delay time between the extrinsic sampling 
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instant due to time quantization and the intrinsic sampling instant due to the 

downsampling action of the PWM comparator decreases. Indeed, as N approaches 

infinity, these two sampling instants tend to become equal and null the overall delay 

time. Formally: 

 nnN
N

ttq =
+∞→

][lim  (3.2.25) 

Thus: 

 0),(1 =+∞→NDtd  (3.2.26.a) 

 0),(2 =+∞→NDtd  (3.2.26.b) 

The multi-sampled modulator thus approaches the behavior of a naturally sampled 

modulator as the multisampling factor increases. 

A rough estimation of the time delay reduction expressed by (3.2.23) can be derived 

by noting that for every tn one has tn - qN[tn] < 1/N. As anticipated in Section 3.1, the 

multiple sampling action reduces the PWM time delays by at least a factor 1/N: 

 
N

T
NDt s

d ≤),(2,1  (3.2.27) 

A more insightful expression of the modulator transfer function (3.2.21) can be 

derived if the three basic modulation schemes are considered. For α = 0, 1 and 0.5, 

simple algebraic manipulation of (3.2.21) shows that: 

 )),(exp(),,()( NDstNDsAsG dPWM −= , (3.2.28) 

where A(s,D,N) is a real function and td represents the overall delay time of the 

modulator. Table 3.1 summarizes the expressions of A and td. As anticipated in Chapter 

II, A represents a constant or slowly varying function and can be always approximated 

with unity (please recall that a normalized carrier was considered). The overall delay 

time td of the modulator is a discontinuous function of the steady-state duty ratio D as 
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long as trailing edge and leading edge modulations are considered. An exception is 

represented by the triangular modulation achieved for α = 0.5, for which td does not 

depend on D and is exactly equal to Ts/2N. This result is not surprising, as α = 0.5 

represents a condition in which the two turn-on and turn-off edges of the PWM 

waveform are symmetrical with respect to Ts/2, and the overall dependence on D 

vanishes. 

This observation is a first hint of a general property of the triangular modulator, i.e. 

that of maintaining a superior linearity with respect to trailing-edge or leading-edge 

modulators when multiple-sampling strategies are adopted. In the next Section a 

stronger evidence of the superior performences of multi-sampled triangular modulators 

will be presented. 

Modulation Type A(jω,D,N) td(D,N) 

Trailing Edge (α=0) 1 (D-qN[D])·Ts 
Leading Edge (α=1) 1 (1-D-qN[1-D])·Ts 

Triangular (α=0.5), N even cos(ω(D/2-qN[D/2]-1/(2N))Ts) Ts/(2N) 

Triangular (α=0.5), N odd cos(ω(D/2-qN[D/2+1/(2N)])Ts) Ts/(2N) 

 

Tab. 3.1 - Small-signal analysis results for  multiple-sampled modulators 
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iii. Model Validation 

The small-signal model presented in this section has been validated both in 

simulation and experimentally. A multi-sampled modulator was simulated in the Matlab 

/ Simulink environment and post-simulation FFT analyses were carried out on the PWM 

output signal y(t). As an example, Fig. 3.2.5 illustrates the phase plot of a triangular 

modulator (α = 0.5) operated at N=1, N=4 and N=8 times the switching frequency at a 

steady state operating point D=0.3. In Fig. 3.2.5 dots represent simulation results, while 

the continuous lines are theoretical plots derived from the analytical small-signal model 

previously discussed. The input perturbation frequency spanned the range fs/50 to fs/3. 

The modulator phase lag appears to be rigorously linear with respect to frequency, thus 

confirming the existence of the overall equivalent delay time td as well as its value and 

dependence on N. At f = fs/5 the single-sampled modulator exhibits a ∆ϕ ≈ -36° phase 

lag. Oversampling to N=4 reduces the phase lag to ∆ϕ ≈ -9°, and N=8 yields  

∆ϕ ≈ -4.5°. It is interesting to observe how even a slight oversampling action 

dramatically reduces the small-signal phase lag. The phase plot for a multi-sampled 

trailing edge modulator operated at D=0.7 is shown in Fig. 3.2.6, from which similar 
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Fig. 3.2.5 – Simulated phase plot of a multi-

sampled triangular modulator; D=0.3 

Fig. 3.2.6 – Simulated phase plot of a multi-

sampled trailing edge modulator; D=0.7 
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considerations can be drawn. 

The dependence of the equivalent delay time on the converter operating point D is 

shown in Fig. 3.2.7 for triangular and trailing edge modulators operated at N=4. The 

delay time is normalized to its maximum value Ts/N (see (3.2.27)). As anticipated, time 

quantization introduces discontinuities in the dependence of td on D in the trailing-edge 

(or leading edge) modulations. On the other hand a constant delay time equal to Ts/(2N) 

is observed for the triangular modulator. Simulation results shown in Fig. 3.2.7 fully 

confirm the previous discussion. 

In order to experimentally validate the small signal model, a digital pulse-width 

modulator was VHDL coded and implemented on a Xilinx Spartan3 FPGA. The 

implemented counter-based DPWM was clocked at 100 MHz and set for a 500 kHz 

switching frequency. The input signal m[k] was obtained by D/A conversion of the 

sinusoidal output of a waveform generator and superimposing an offset M set digitally. 

A free-running 25 MHz A/D converter was employed, its digital output stream 

downsampled to 500 kHz or 2 MHz, corresponding to a multisampling factor N=1 and 

N=4 respectively. A frequency analyzer was employed to obtain the amplitude/phase 
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relationship between the DPWM output signal and the input perturbation. 

In Fig. 3.2.8 the experimental phase plot of a multi-sampled triangular modulator is 

shown for the two different sampling rates and for D=0.3. For the theoretical plot, the 

A/D conversion time of the employed converter was accounted by summing it to the 

DPWM intrinsic delay time. As shown in Fig. 3.2.8, experimental data fit the theoretical 

predictions. In Fig. 3.2.9 the experimental phase plot of a trailing edge modulator is 

shown for D=0.7. 

Experimental results concerning the independence of the equivalent delay time on 
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Fig. 3.2.8 – Experimental phase plot of a 

multi-sampled triangular modulator; D=0.3 

Fig. 3.2.9 – Experimental phase plot of a multi-

sampled trailing edge modulator; D=0.7 
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the steady state duty ratio D for triangular modulators are shown in Fig. 3.2.10. 

 

3.2.2. Steady-State Analysis Of MSPWM. Sampling-Induced Dead Bands 

It is well known that switching frequency ripple superimposed to the modulating 

signal of an analog PWM modulator affects its behavior by lowering its DC and small-

signal gain. In a multiple-sampled modulator this effect plays a fundamental role and 

deserves a detailed study. In fact, the sampled nature of the switching ripple can induce 

zero-gain regions. These sampling-induced dead bands are visible if the static 

modulator transcharacteristics are drawn, and define a set of operating points for which 

no duty cycle modulation can be achieved. Proper closed-loop operation of the system 

is seriously compromised if the converter is operating close to a PWM dead band, the 

effects spanning from poor dynamic performances to steady-state oscillating behaviors. 

This section provides a systematic study of the static behavior of pulse-width 

modulators in presence of switching ripple superimposed to the modulating signal. An 

analytical approach will be first introduced in the context of naturally sampled 

modulators, and will be then extended to multi-sampled modulators. 

i. Injection Of Switching Frequency Ripple 

Switching harmonics are inherently present in the analog state variables xi(t) of the 

power converter under control and are therefore injected into the feedback loop as these 

variables are sensed and / or sampled for control purposes. Their most critical effect is 

to induce a periodic disturbance superimposed to the control signal m produced by the 

compensator, thus affecting the control action itself. The process by which the 

switching frequency ripple is injected into the feedback loop is illustrated in Fig. 3.2.11 

and 3.2.12 for a naturally sampled and multiple sampled modulator respectively. These 
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figures show the portion of the feedback loop that goes from the sensed analog state 

variable x(t) of the converter to the PWM output signal y(t). 

Single-sampled systems represent a special case in which the sampling process 

actually removes any switching harmonic present in the sensed variable. As the 

multisampling factor increases, however, frequencies multiple of fs are sampled and 

processed by the digital compensator. 

In this Section the steady-state operation of PWM modulators will be considered, 

meaning that the modulator is operating at a constant duty ratio D. Its input modulating 

signal is periodic over time, with period equal to Ts. Let us denote with <m> the DC 

value of the modulating signal and with mr the ripple component containing the 

switching harmonics; for naturally sampled modulators we shall write: 
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Fig. 3.2.11 – Switching frequency ripple injection process for a naturally sampled modulator 
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Fig. 3.2.12 – Switching frequency ripple injection process for a multiple sampled modulator 



III – Multiple Sampling 

 83 

 )()( tmmtm r+>=<  (3.2.29a) 

while the following holds for a generic (N,∆t) multi-sampled modulator: 

 ][][ kmmkm r+>=<  (3.2.29b) 

In both cases the quantity <m> is defined as the average value of m within a 

switching period: 

 ∫
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, (3.2.30.b) 

It is of utmost importance to realize that <m> is not equal to the steady state duty 

ratio D at which the modulator is operating. For this to be rigorously true, no switching 

ripple has to be superimposed to m. This is coherent with the small-ripple 

approximation which allowed the derivation of (3.2.16). 

When the modulator is operated in a closed-loop feedback control system, mr 

depends on the shape of the analog ripple superimposed to the converter analog state 

variable(s) x(t) processed by the compensator, on the adopted sampling strategy and on 

the frequency response of the compensator itself. All these elements are shown in Fig. 

3.2.12. 

Formally, a decomposition similar to (3.2.29) can be assumed for the analog sensed 

state variable x(t): 

 )()( txxtx r+>=< , (3.2.31) 

Due to the periodicity of xr(t), its transform consists of a series of spectral lines: 

 ∑
≠

−=
0

, )()(
m

smrr mffXfX δ , (3.2.32) 
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where Xr,m is the m-th Fourier component of xr(t).  

The spectrum of the sampled state variable xs[k] is given by (3.2); taking into 

account (3.2.32) and retaining only the ripple spectrum Xs,r(f) of xs[k], i.e. neglecting the 

DC component of xs[k], one can write: 

 ∑ ∑ ∑
+∞
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−∞=
+ ∆++−=
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l i

siNlrsrs tfiNljXfmNlffX
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1

,, ))(2exp())(()( πδ  (3.2.33) 

Xs,r(f) is a periodic stream of spectral lines, its period being equal to the sampling 

frequency Nfs. The N-1 spectral lines located at fl = lfs, 1 ≤ l ≤ N-1 are repeated all over 

the frequency axis to form the typical spectrum of a periodic, discrete-time signal. 

Given the frequency response Gc(f) of the digital compensator, the general frequency 

domain relationship between mr and xr(t) is: 

 ∑ ∑
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l i

siNlrscsr tfiNljXlfGlfffM πδ  (3.2.34) 

, the expression being valid for 0 ≤ f ≤ (N-1)fs. A very special case is when the 

compensator frequency response can be considered constant at the switching frequency 

and its harmonics. This happens, for instance, whenever a digital PI regulator is 

employed. In this case mr[k] is the sampling of a scaled version of the analog ripple, and 

preserves its shape. 

ii. Steady-State Solution Of A PWM Modulator 

The problem of studying the steady-state behavior of a pulse-width modulator will 

be formulated as follows: given a steady state duty ratio D and having specified – in a 

manner that will be clearer later on - the shape of the ripple waveform mr, the problem 

consists in determining the modulating signal m(t) or m[k] that generates D. The 

knowledge of m allows for the calculation of its average value <m>. The couple 

(D,<m>) will be denoted as the steady-state operating point of the modulator under the 
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ripple mr. If D is swept from 0 to 1, this process identifies the set of all possible steady-

state solutions (D,<m>) of the modulator. This set represents the modulator static 

transcharacteristic under the ripple mr. 

Being a steady-state analysis, the study of all the waveforms can be limited to a 

single switching period. In what follows, the normalized time interval 0 ≤ tn ≤ 1 will be 

considered. Moreover we shall indicate with t1n and t2n the turn-on and turn-off instants 

of the PWM output signals. Please note that t1n and t2n represent unknowns for the 

problem, the only a priori relationship being: 

 Dtt nn += 12  (3.2.35) 

Let us now consider a naturally sampled modulator; due to the fact that the turn-on 

and turn-off events are unknown, mr(t) can only be specified to within a time 

translation. This fact is easily understood from Fig. 3.2.11. A variation in the turn-on 

instant t1n is equivalent to a time translation of x(t). As long as the compensator is a 

time-invariant system, the same time translation is observed in m(t). Thus, we can 

arbitrarily call mr0(t) the ripple waveform obtained when t1n=0, and state that the ripple 

waveform related to a generic value of t1n is: 

 )();( 101 nnrnnr ttmttm −≡  (3.2.36) 

For reasons that will become clearer in the next sections, the shape of the ripple 

waveform mr will be specified through its time derivative s: 

 )();( 101 nn

n

r
nn tts

t

m
tts −=

∂

∂
≡  (3.2.37) 

The periodicity of mr represents a constraint on s(tn;t1n), namely that its average 

value over a switching period be zero: 
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 10,0);( 1

1

0
1 ≤≤=∫ nn tdts ττ  (3.2.38) 

Things are somewhat different when we consider multi-sampled modulators. The 

main difference resides in the fact that the ripple waveshape cannot be specified to 

within a simple time translation. Let us examine Fig. 3.2.12. Though the analog ripple 

xr(t) superimposed to the sensed state variable x(t) actually shifts in time as a function of 

t1n, the corresponding sampled ripple xs,r[k] modifies its shape. This phenomenon is 

intimately related to the fact that a sampler is not a time-invariant system. 

Correspondingly, the discrete-time ripple mr[k] superimposed to the modulating 

waveform undergoes the same phenomenon. Thus, no simple relationship similar to 

(3.2.36) can be assumed for discrete-time modulating waveforms. The ripple waveform 

will be a generic function of two variables mr[k;t1n] that will depend on the particular 

analog ripple waveshape. 

Beside this important difference, the ripple waveform at the modulator input can be 

nevertheless specified by its time derivative if we consider the analog signal mh(t) rather 

than the discrete-time signal m[k]. Indeed, the decomposition (3.2.29.b) translates in a 

similar decomposition of mh(t): 

 );();( 1,1 nnrhnnh ttmmttm +>=< , (3.2.39) 

where mh,r(tn;t1n) is the sampled-and-held version of  mr[k;t1n]. 

We will thus define: 

 
n

rh

nnh
t

m
tts

∂

∂
≡

,

1 );(  (3.2.40) 

The periodic nature of mr[k;t1n] again poses a constraint on its slope (3.2.40): 

 10,0);( 1

1

0
1 ≤≤=∫ nnh tdts ττ  (3.2.41) 
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Summarizing, the problem of finding the possible steady-state operating points of a 

naturally sampled or multi-sampled PWM modulator is formulated by specifying the 

pair (D, s(tn;t1n)) for naturally sampled modulator or the pair (D, sh(tn;t1n)) for multi-

sampled modulators, and then searching for a modulating waveform m(tn) or mh(tn) 

which generates D and has the specified slope. 

iii. Naturally Sampled Modulators 

We shall start the steady-state analysis of naturally sampled modulators with a 

specific, simple example, namely the case of purely triangular ripple. The analysis of 

this particular case will nevertheless clarify the basic concepts that will be generalized 

to arbitrary ripple waveforms. Moreover, the triangular ripple hypothesis is by all means 

justified in a number of cases of practical interest, namely every time an ESR-

dominated voltage ripple, or a current ripple, are processed by a proportional-integral 

(PI) compensator. 

Let us then specify a triangular-shaped ripple associated to a given steady-state duty 

ratio D: 
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
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nn
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1

,

);(
11

1 , (3.2.42) 

where sON>0 represents the slope (in absolute value) of the ripple during the turn-on 

switching phase. It can be verified that (3.2.42) satisfies the fundamental constraint 

(3.2.38). 

The values m(t1n) and m(t2n) of the modulating signal at the turn-on and turn-off 

instants are related by: 

 Dstmtm ONnn −= )()( 12  (3.2.43) 
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On the other hand, in an analog modulator the turn-on and turn-off instants occur 

when the modulating signal equals the modulator carrier vc: 

 );()( 11 αncn tvtm =  (3.2.44.a) 

 );()( 22 αncn tvtm =  (3.2.44.b) 

Thus, taking into account (3.2.35), this fundamental steady-state condition is 

derived: 

 DstvDtv ONncnc −=−+ );();( 11 αα  (3.2.45) 

Equation (3.2.45) is easily solved employing the expression (3.2.1) of the carrier: 

 ])1(1[1 DsDt ONn αα −−−=  (3.2.46.a) 

 ))(1(12 DsDDtt ONnn ααα −−+=+=  (3.2.46.b) 

It is useful to compare (3.2.46) with (3.2.17), obtained using a small-ripple 

approximation. Indeed, if sON vanishes then the previous results are obtained. On the 

other hand, when the switching frequency ripple cannot be neglected, corrective terms 

appear and modify the general steady-state solution. 

From (3.2.46) the modulating signal waveform for every tn can be easily obtained: 

 ∫+=
n

n

t

t
nncn dtstvtm

1

);();()( 11 ττα  (3.2.47) 

The steady-state problem is now solved, as m(tn) has been determined. 

Equation (3.2.45) can be interpreted in the following manner: the carrier variation 

over the time interval [t1n, t1n+D] equals the variation of the modulating signal over the 

same interval. This basic observation can be generalized to arbitrary ripple waveforms: 

 ∫
+

=−+
Dt

t
nncnc

n

n

dtstvDtv
1

1

);();();( 111 τταα  (3.2.48) 

Let us define: 
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);()( 11 ττ  (3.2.49) 

 )();();()( 1111 nncncn tIDtvtvtf ++−≡ αα  (3.2.50) 

Then, the search for solutions of (3.2.48) is equivalent to finding the zero of f(t1n). 

As far as naturally sampled modulators are considered, the problem has a 

straightforward solution. In fact, it can be easily shown that the integral I(t1n) is actually 

independent on t1n. To show this one has simply to use (3.2.37): 

 IdsdtstI
DDt

t
nn

n

n

≡=−= ∫∫
+

0
0101 )()()(

1

1

ττττ  (3.2.51) 

Being I(t1n) a constant, the function defined in (3.2.50) can be easily verified to have 

a continuous, monotonically decreasing behavior. A unique solution exists to the 

equation f(t1n) = 0, expressed by: 

 IDt n )1()1(1 ααα −+−=  (3.2.52.a) 

 IDDtt nn )1()1(12 αααα −+−+=+=  (3.2.52.b) 

Again, the modulating signal is found by applying (3.2.47). 

Equations (3.2.52) represent the generic solution to the steady-state problem of a 

naturally sampled pulse-width modulator and can be employed to generate the 

modulator transcharacteristics under any switching ripple. 

Before coming to the subject of the steady-state analysis of multi-sampled 

modulators, a number of examples based on (3.2.52) will be made to better appreciate 

their meaning. A simplifying assumption will be made considering a constant frequency 

response of the analog compensator at the switching frequency and its harmonics: 

 +Ζ∈≅ lKlfG psc ,)(  (3.2.53) 
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As already discussed, this condition implies that the modulating ripple mr is 

proportional to the sensed ripple xr. Moreover, for the sake of definiteness we shall 

focus on a DC-DC buck converter application. 

Two ripple waveshape will be considered, namely triangular and parabolic ripple. 

Triangular ripple (3.2.42) has already been analyzed and the corresponding solution 

is given in (3.2.46). This kind of waveshape is typically encountered when the output 

capacitors of the converter present a non-negligible equivalent series resistance (ESR). 

The output voltage ripple waveform is thus practically proportional to the inductor 

current ripple, the constant of proportionality being given by the ESR. In this context 

the slope of the ripple at the modulation point is: 

 ESR
Lf

VV
Ks

s

oin
pON

−
=  (3.2.54) 

An example is shown in Fig. 3.2.13 for α = 0.25, D = 0.48 and sON = 1/3. The 

solution given in (3.2.46) yields t1n=0.1 and t2n=0.58, producing the illustrated 

modulating waveform m(tn). 
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Fig. 3.2.13 – Modulation diagram of a 

naturally sampled modulator under 

triangular ripple 

Fig. 3.2.14 – Modulation diagram of a 

naturally sampled modulator under parabolic 

ripple 
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Next, a parabolic ripple case is shown in Fig. 3.2.14. Parabolic ripple is typically 

originated from the integration of a triangular waveshape, a common example being the 

output voltage ripple of a buck converter when ceramic output capacitors are employed. 

The following expression can be given for s: 
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The parameter S defines the maximum and minimum slope of the ripple and is 

related to the peak-to-peak ripple ∆m itself, being ∆m = S/4. If a buck converter with 

output ceramic capacitance is considered, the following expression for S can be easily 

derived: 

 D
LCf

VV
KS

s

oin
p 22

−
=  (3.2.56) 

It is straightforward to verify from (3.2.55) that I = 0, thus the turn-on and turn-off 

instants coincide with the no-ripple solution. 
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Fig. 3.2.15 – Static transcharacteristic of a 

trailing edge naturally sampled modulator 

under triangular ripple 

Fig. 3.2.16 – Static transcharacteristic of a 

trailing edge naturally sampled modulator 

under parabolic ripple 
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The static transcharacteristics of a trailing edge modulator under triangular and 

parabolic ripple are shown in Fig. 3.2.15 and 3.2.16. In each case the solution obtained 

in presence of the ripple is compared with the no-ripple transcharacteristic (3.2.16). The 

well known reduction of the modulator gain in presence of switching frequency ripple is 

clearly visible. 

Figures 3.2.15 and 3.2.16 have been plotted using a constant value for the 

parameters sON and S. However, (3.2.54) and (3.2.56) point out a general dependence of 

these parameters on the steady state duty ratio. This ripple modulation effect could be 

easily accounted for by introducing in the slope s(tn;t1n) the proper dependence on D. 

This approach will be followed in Section 3.3, when discussing the closed-loop 

behavior of multiple-sampled modulators. 

iv. Multiple-Sampled Modulators 

The approach for deriving the steady-state transcharacteristics of a multi-sampled 

modulator will follow the general method presented in the previous Subsection for 

naturally sampled PWMs. There are, however, important differences that must be 

clearly discussed. 

Let us write the equation that relates the variation of the modulating signal mh(t) 

from the turn-on instant t1n to the turn-off instant t2n: 

t1n

mh(tn)
vc(tn;α)

t1n

mh(tn)
vc(tn;α)

t1n

mh(tn)

vc(tn;α)

t1n

mh(tn)

vc(tn;α)

a) b)  

Fig. 3.2.17 – Turn-on crossing configurations in a multiple sampled modulator; 

horizontal crossing (a) and vertical crossing (b) 
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This equation always holds provided that the derivative sh of the staircase-like signal 

mh is intended in a generalized sense. This means that sh consists of a stream of Dirac 

pulses centered at the sampling instants, i.e. where mh is discontinuous. 

When discussing naturally sampled modulators, equation (3.2.57) was the starting 

point of the analysis, the second step being using relationships (3.2.44) to obtain the 

steady-state equation (3.2.48). No such substitution can be performed if multiple 

sampled modulators are considered. The reason is that the modulating signal and the 

carrier signal have, in general, different values in t1n and t2n. Examples are shown in Fig. 

3.2.17 concerning the turn-on instant: whenever mh crosses vc horizontally, then 

mh(t1n)=vc(t1n). On the other hand, when a vertical crossing occurs we have 

mh(t1n)>vc(t1n). A similar reasoning can be applied to the turn-off instant t2n=t1n+D. The 

condition mh(t2n)=vc(t2n) is fulfilled if and only if a horizontal crossing occurs in t2n; a 

vertical crossing yields mh(t2n)<vc(t2n). 

Having made these observations, let us define: 

 )()()()( 1111 nhncncnh tIDtvtvtf ++−≡  (3.2.58.a) 
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dtstI
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);()( 11 ττ  (3.2.58.b) 

Equation (3.2.58.a) defines fh in a similar way to what already did for naturally 

sampled modulator, i.e. as the difference between the carrier variation during the 

interval [t1n,t1n+D] and the corresponding variation of mh, expressed by the quantity Ih. 

The potential presence of vertical crossings in the modulation diagram means that for a 

given duty ratio D, the searched solution t1n does not necessarily null fh. However, fh can 

be nevertheless employed to solve the problem as t1n represents the point at which fh 
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changes its sign. Thus the search for the zero crossing of fh yields the steady-state 

position of the turn-on instant t1n. 

Let us summarize the main properties of fh and Ih, leaving the formal proofs in 

Appendix B: 

• The integral Ih(t1n) is a function of t1n. The reason is that sh(tn;t1n) does not 

depend on t1n by means of a simple time translation, as observed in 

Subsection ii. Ih has a regular (continuous) behavior everywhere except 

when t1n=qN[t1n] or t1n+D=qN[t1n+D] , i.e. when t1n or t1n+D coincide with 

sampling instants; these points represent negative-slope discontinuities for Ih. 

• The function fh(t1n) is monotonically decreasing with a regular behavior 

except where Ih is discontinuous. fh inherits the negative discontinuities of Ih. 

• If there exist a t1n
*
 such that fh(t1n

*
) = 0, then t1n

*
 and t1n

*
+D are the turn-on 

and turn-off instants of the searched solution. Both the intersection are 

horizontal. 

• If fh changes its sign with a discontinuity, i.e. if fh(t1n
*
-δ) > 0 and  

fh(t1n
*
+δ) < 0, then t1n

*
 and t1n

*
+D are the turn-on and turn-off instants of the 

searched solution. At least one vertical crossing will be found in the 

modulation diagram. 

The problem formulated by (3.2.58) cannot in general be solved analytically, mostly 

due to the discontinuities present in the functions involved. It is nevertheless possible to 

find the solution by means of numerical integration. Whatever method is used to solve 

(3.2.58) for a given value of D, it will give a unique solution (t1n, t1n+D) for the turn-on 

and turn-off instants. The modulating signal mh(tn) is then constructed once its value at 

t1n or at t1n+D is known. For instance, if t1n does not coincide with a sampling instant, 

then mh(t1n)=vc(t1n) and: 
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Similarly, if t1n+D ≠ qN[t1n+D]: 
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);();()( 11 ττα  (3.2.59.b) 

However, if both t1n and t1n+D coincide with sampling instants, the modulating 

signal is defined to within an additive constant δm, yielding multiple solutions to the 

problem: 

 mdtstvtm
n
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t

t
nhncnh δττα ++= ∫

1

);();()( 11 , (3.2.59.c) 

the only constraint on δm being that the given duty ratio D is preserved by the 

vertical translation. 

These solutions (3.2.59.c) share the same duty ratio D and correspond to different 

values of <m>. They form a dead band in the modulator transcharacteristic, i.e. a 

region in which the MSPWM loses its modulating capabilities. The dead band extension 

is defined by the upper and lower bounds of δm in (3.2.59.c). 

Similarly to what done concerning the naturally sampled modulators, few examples 

will be given now of modulation diagrams and static transcharacteristics of a multiple 

sampled PWM. Hypothesis (3.2.53) will be assumed to remain valid for the high-

frequency response of the digital compensator: 

 11,)( −≤≤≅ NlKlfG psc  (3.2.60) 

This assumption implies that the shape of the discrete time ripple sequence mr[k] is 

essentially proportional to the ripple xr(tn) superimposed to the sensed analog state 

variable. Having defined an “analog” modulating waveform in this manner: 

 )()()( , nrpanraana txKmtmmtm −>≡<+>=< , (3.2.61) 
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the following relationship holds: 

 ])[(])[()( , nNraanNanh tqmmtqmtm +>=<≡  (3.2.62) 

Under these assumptions it is particularly easy to derive the ripple derivative sh of 

mh (see 3.2.40) from the corresponding derivative s of ma,r: 
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nnNnnnh dtstqttts

/1
11 );(])[();( ττδ , (3.2.63) 

and the important quantity Ih(t1n) finds this alternative useful expression: 

 ∫
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As an example, let us apply (3.2.64) to derive the expression of Ih(t1n) when the 

“analog” ripple ma,r(t) is supposed to have a triangular shape. Integration of (3.2.42) as 

expressed by (3.2.64) yields: 
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)( 11111 nnNONnNnONnh tDtqstqts
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D
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−
=  (3.2.65) 

As anticipated in the general discussion, Ih(t1n) is a function of t1n and presents 

negative discontinuities when t1n or t1n+D coincide with sampling instants. The 

presence of the discontinuities is deduced from the time quantization qN[·]. 
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Fig. 3.2.18 – Modulation diagram of a  

4-sampled modulator under triangular ripple 

 

Fig. 3.2.19 – Modulation diagram of a  

4-sampled modulator under parabolic ripple 
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In Fig. 3.2.18 an example of modulation diagram of a multiple sampled modulator 

(N=4, α=0.25) is shown in the case of triangular ripple. The numerical solution of 

(3.2.58.a) was carried out using (3.2.65) as expression for Ih and employing the Matlab 

environment. The “analog” signal ma(t) is also shown in Fig. 3.2.18 to better visualize 

the triangular-shaped ripple. Figure 3.2.19 illustrates an example where parabolic ripple 

was assumed. Relationship (3.2.64) was employed to derive an expression for Ih – not 

reported here – from (3.2.55). 

Let us now consider the static transcharacteristic of a 4-sampled trailing edge 

modulator shown in Fig. 3.2.20. The ideal transcharacteristic, obtained assuming no 

switching ripple superimposed to m, is compared with the curve obtained assuming a 

triangular ripple waveshape (sON = 1/3). Three large dead bands are visible in the latter 

curve at D = 0.25, 0.5 and 0.75. The sampled switching ripple superimposed to m[k] 

causes the modulator transcharacteristic to largely depart from the ideal one. Each of the 

three dead bands visible in Fig. 3.2.20 correspond to a vertical crossing between the 

carrier and the modulating signal. In the trailing edge modulator, where α = 0 and 

therefore the turn-on event t1n is always unmodulated, the vertical crossing occurs at the 

turn-off instant.  
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Fig. 3.2.20 – Static transcharacteristic of a 

4-sampled trailing edge modulator under 

triangular ripple 

Fig. 3.2.21 – Static transcharacteristic of a  

4-sampled triangular modulator under 

triangular ripple 
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It is interesting to compare the transcharacteristic shown in Fig. 3.2.20 to the one 

illustrated in Fig. 3.2.21, where a triangular modulator was employed while keeping 

fixed the other boundary conditions (N=4, sON=1/3). No dead bands are found in the 

plot, meaning that no steady-state operating points are found where both the rising and 

falling edges are originated from vertical intersections. Instead, a reduced gain region is 

observed around D = 0.5. Reduced gain regions are common in the static 

transcharacteristics of multiple sampled modulators, and correspond to situations where 

only one vertical crossing occurs, hence the reduction in the modulator gain. 

The absence of dead bands is not a general property of triangular modulators; 

however, triangular modulators exhibit an overall superiority with respect to leading 

edge and trailing edge modulators in terms of linearity. On this purpose, let us denote 

with DN(<m>) the static transcharacteristic of a N-sampled modulator under the ripple 

ma,r(t) and with D∞(<m>) the static transcharacteristic of a naturally sampled modulator 

under the same ripple. The nonlinearity NL of DN with respect to D∞ can be defined in 

this way: 
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Fig. 3.2.22 – Nonlinearities of a  trailing 

edge and a triangular modulator under 

triangular ripple 

Fig. 3.2.23 – Nonlinearities of a  trailing 

edge and a triangular modulator under 

parabolic ripple 
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Definitions differerent from (3.2.66) can be adopted, yielding slightly different 

results without altering the following general conclusions. In Fig. 3.2.22 the 

nonlinearity functions of a trailing edge and a triangular modulators under triangular 

ripple are compared for increasing values of the multiple sampling factor N. The 

triangular modulator is seen to exhibit a drastically lower nonlinearity even at small 

values of N. A comparison carried out using parabolic ripple is shown in Fig. 3.2.23, 

from which similar conclusions can be drawn concerning the superior linearity of the 

triangular modulation. Further evidence will be given in the next Section, where the 

closed-loop operation of multiple sampled modulators will be addressed. 

 

3.3. Closed-Loop Operation Of Multi-Sampled Modulators 

In the previous Sections the small-signal and steady-state analysis of multi-sampled 

modulators mainly addressed their open loop operation. The sensing and sampling 

processes of the converter state variables were mentioned to explain the ripple injection 

mechanism and therefore justify the presence of switching frequency harmonics in the 

spectrum of modulating signal. We wish now to make a step further and consider the 

operation of a multi-sampled modulator within the feedback control loop. 

3.3.1. Multi-Sampled Voltage Mode Control 

A case study is presented in this Section to show how the multiple sampling 

technique can lead to significantly improved performances in the closed-loop dynamics. 

Let us consider a 12V-to-2V step down buck converter intended for high current 

applications. Let fs = 500 kHz be the switching frequency, C = 1.5mF be the output 

filter capacitance, ESR = 1.2mΩ its equivalent series resistance and L = 400nH the 

phase inductance. Stability margin specifications require a minimum phase margin 

mΦ,min = 45° and a minimum gain margin GM > 10dB. A single-sampled control will be 
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compared with a 4-sampled solution in terms of achievable closed-loop bandwidth fc. In 

order to simplify the discussion, no quantization phenomena will be considered in this 

Section. 

A triangular modulation will be employed for both the solutions. To achieve correct 

sampling of the output voltage average value, a (1,0) sampling strategy will be 

employed (see Section 2.1.3) for the single-sampled solution. 

The small-signal model of the power converter is given by its control-to-output 

transfer function Gvd(s): 
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VsG invd 21

1
)(

+⋅+

⋅+
= , (3.3.1) 

while the small-signal model of the pulse-width modulator will be approximated as: 

 )exp()( dPWM stsG −≅  (3.3.2) 

This approximation is by all means justified, as the amplitude variation of GPWM 

with frequency has been shown to be negligible. The time delay td is equal to Ts/2 = 1µs 
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for the single-sampled system and to Ts/8 = 250ns in the multiple sampled system. With 

these information, the small-signal z-domain equivalent model of the power converter 

can be obtained for the single and multiple sampled loops: 

 )]
2

exp()([)(,
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−=  (3.3.3.a) 
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These transfer functions are to be considered as uncompensated loop gains. Their 

Bode diagrams are compared in Fig. 3.3.1, where the phase boost effect due to the 

multi-sampling approach is clearly seen. 

In particular, the phase lag of the 4-sampled power converter is seen to be above  

-135° at fs/5 = 100kHz. This suggests that a simple Proportional-Integral compensator 

can be designed to achieve fc=fs/5, the proportional term setting the desired bandwidth 

and the PI zero boosting the loop gain magnitude at low frequency, its upper limit being 

set by the phase margin and gain margin constraints. Given these considerations, a PI 
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regulator was designed to achieve fc = fs/5, mΦ = 55°, GM = 17dB. 

On the other hand, no PI compensator can be designed for the single-sampled 

system. The phase lag compensation requires a derivative action, leading to a PID 

structure. Closed-loop bandwidth can now be pushed as long as the high-frequency gain 

boost of the derivative action does not cause the gain margin to fall out of specification. 

The designed PID achieves fc = fs/16, mΦ = 45°, GM = 10dB. 

The Bode diagrams of the compensated loop gains TSS and TMS are shown in Fig. 

3.3.2. From these designs, the multi-sampled system will exhibit a faster and more 

damped transient response with respect to its single-sampled counterpart. 

Systeml-level simulations were carried out using the Simulink/Matlab environment 

to investigate the dynamic performances of the two designs. The output voltage vout(t) 

and inductor current iL(t) during a 0A-20A load step are shown in Fig. 3.3.3 and 3.3.4 

respectively. Each figure compares the single sampling solution to the multiple sampled 

one, confirming the previous discussion. 

As previously mentioned, quantization effects will practically limit the achievable 

bandwidth mainly because of the onset of limit cycle oscillations. Though simplified, 

this example nevertheless shows how a slight increase in the sampling frequency could 

bring significant improvement in the dynamic performances of the closed loop system. 
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Interestingly, the structure of the multi-sampled compensator could be greatly 

simplified because of the intrinsic phase boost of the multi-sampled process. 

 

3.3.2. Sampling Induced Dead Bands 

Presence of the sampling induced dead bands in the modulator trascharacteristics 

was discussed in Section 3.2.2. From a steady-state point of view, a dead band identifies 

a precise value of the duty ratio D that cannot be maintained with stability over time by 

a closed-loop configuration, as its loop gain would be exactly zero over a finite range of 

modulating signals. Dynamically, zero gain regions affect the control action, giving rise 

to poor transient performances or even oscillatory behaviors. This Section is devoted to 

analyze the dead bands phenomenon in the context of the closed-loop operation of the 

converter by means of simulation and experimental investigations. 

i. Closed Loop Transcharacteristics 

The static transcaracteristic of a multi-sampled modulator operating in a closed-loop 

configuration can be obtained using the model presented in Section 3.2.2. However, the 

switching frequency ripple is now a function of the steady-state duty ratio D and this 

dependence has to be taken into account. The ripple modulation effect is a typical 

closed-loop phenomenon and affects the shape of the transcharacteristic and the 

extension of its dead bands. 

Let us consider a buck converter operating with high-ESR output capacitors. As 

anticipated by (3.2.51), the slope of the output voltage ripple is given by: 

 ESR
Lf

VV
Ks

s

oin
pON

−
=  (3.3.4) 

Since Vo = DVin, the dependence of sON on D can be explicited: 
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Adding equation (3.3.5) to the model presented in Section 3.2.2 allows the closed-

loop static transcharacteristic to be plotted. Figure 3.3.5 exemplifies the effect of the 

ripple modulation (3.3.5) over a 4-sampled modulator. A “(1-D)/D” modulated 

characteristic is compared with a constant-sON characteristic. The constant sON value was 

chosen to be equal to the variable sON at a specific duty ratio D0=0.56. The effect of the 

ripple modulation is particularly evident in the lowest dead band, which appears to be 

greatly enlarged by the (1-D)/D dependence. Indeed, when D is low the ripple slope 
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(3.3.5) tends to be large, thus leading to higher peak-to-peak ripple. This in turn 

corresponds to a larger interval of <m> for which the double vertical crossing occurs. 

ii. Simulation and Experimental Tests 

System-level simulations have been carried out using the Simulink/Matlab 

environment to compare the analytically-derived closed-loop transcharacteristics to the 

simulated ones. On this purpose, the 4-sampled system discussed in Section 3.3.1 was 

operated in a quasi-steady state condition, where the power converter input voltage Vin 

was slowly swept from 12V to 2.5V, thus forcing the duty cycle to sweep between 17% 

and 80%. In the meanwhile, the cycle-by-cycle duty ratio applied to the converter was 

evaluated together with the running average <m> of the modulating signal produced by 

the modulator, calculated as in (3.2.27.b). These two waveforms were then used to 

construct the simulated PWM transcharacteristic. 

The analytical transcharacteristic was generated assuming a purely triangular ripple 

and employing (3.3.5). The triangular ripple assumption appears to be justified because 

of the PI  nature of the compensator and because of the relatively high ESR of the 

output filter capacitors of the converter. 

The analytical and simulated transcharacteristic are compared in Fig. 3.3.6, where 

perfect matching can be observed. A similar analysis was carried out changing the 

Fig. 3.3.8 – Experimental PWM 

transcharacteristic of a 8-sampled trailing 

edge modulator 

Fig. 3.3.9 – Experimental PWM 

transcharacteristic of a 8-sampled 

triangular modulator 
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modulator to a trailing edge PWM, leaving unaltered the other parameters. The 

comparison is shown in Fig. 3.3.7, again confirming the accuracy of the steady-state 

model presented in Section 3.2.2. 

It is worth to notice the presence of a dead band at D = 0.5 in the simulated 

transcharacteristic shown in Fig. 3.3.6, visible in the inset. The dead band is not present 

in the analytically derived curve. The reason is that the analytic curve has been 

generated assuming a perfectly triangular shape of the output voltage ripple, while in the 

simulation a capacitive component is always present. This slight difference in the ripple 

waveform gives rise to a dead band of small amplitude, surrounded by low gain regions. 

Experimental evidence of the sampling induced dead bands was obtained employing 

a method by all means similar to the one previously described and employed to simulate 

the modulator transcharacteristics. A 5V-to-2.5V buck converter switched at 200 kHz in 

closed-loop configuration was tested, measuring the duty ratio and modulating signals 

while sweeping the control reference voltage. Power stage parameters were L = 400nH, 

C = 1.5mF, ESR = 2mΩ. A digital PI regulator was employed, sampled at N = 8 times 

the switching frequency. Tests were carried out for a trailing edge and a triangular 

modulator, yielding the transcharacteristics shown in Fig. 3.3.8 and 3.3.9. Dead bands 

appear in the trailing edge modulator characteristic, while the triangular modulator 

exhibits a large reduced gain zone. The main conclusions previously drawn concerning 

the superior linearity of the triangular modulation are confirmed. In Fig. 3.3.9 the 

presence of a small dead band at D = 0.5 is found, similarly to what observed in the 

simulated curve of Fig. 3.3.6 and explainable through the same arguments. 
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iii. Effects On The Converter Closed-Loop Operation 

Converter steady state equilibrium is compromised whenever its operating point 

falls into or sufficiently close to a dead band. Let us consider the 12V-to-2V step-down 

converter discussed in Subsection i when a trailing edge modulator is used instead of a 

triangular modulator. Nominally, the converter operating point lies at  

D = 2/12 ≈ 0.17; from Fig. 3.3.7, critical operating points for the converter are D = 0.5 

and D = 0.25, while a smaller dead band appears at D = 0.75. Thus, if the input voltage 

decreases down to, for instance, 8V, the closed-loop system will operate in the vicinity 

of a critical point. Simulations were carried out to compare the converter transient 

responses to a 0A-20A load step up when the input voltage is Vin = 12V or Vin = 8V. In 

the latter case the converter was kept operating slightly below D = 0.25, then the load 

step was applied. This forces the control to reach a new steady-state operating point D 

situated slightly above D = 0.25, in order to compensate for the increased conduction 

losses. Looking at Fig. 3.3.7, this means that the contoller will have to cross the dead 

band located at D = 0.25 by properly offsetting the average value of the modulating 

signal. During the dead band crossing the converter will operate in open loop 

configuration, resulting in a degraded transient response. 
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Figures 3.3.10 and 3.3.11 show the comparison. The difference in the dynamic 

behavior is particularly evident in the output voltage response, in which a temporary 

open-loop operation is visible for Vin = 8V immediately after the load step. It is 

important to realize that the degraded response is not due to the lower bandwidth that 

results from the input voltage reduction. It is a strictly non-linear phenomenon 

generated by the sampling induced dead bands. 

The dead band crossings during the transient can be clearly seen from Fig. 3.3.12, in 

which the average modulating signal <m> and the cycle-by-cycle duty ratio d are 

shown during the transient response for Vin = 8V. Careful examination of this plot leads 

to the observation that the dead band at D = 0.25 is crossed two times during the 

transient. During the dead band crossing the modulating signal experiences large 

variations due to the action of the controller. As expected, the final steady state value of 

<m> is offset with respect to the initial value, meaning that a dead band has been 

crossed. In Fig. 3.3.13 the same plot is shown for the Vin = 12V transient. A strikingly 

faster transient is achieved. 
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PWM Linearization Techniques 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The previous Chapter illustrated the fundamentals of the multiple sampling 

technique, presenting modeling approaches for both the small-signal and steady-state 

behavior of multi-sampled modulators. The modulator phase lag reduction due to an 

increased sampling frequency can be successfully employed to design compensators 

that easily achieve large control bandwidths compared to classical single-sampling 

control loops. However, increasing the sampling frequency with the purpose of reducing 

the PWM equivalent delay time comes at the price of injecting switching frequency 

harmonics into the feedback loop. This deeply affects the operation of a multi-sampled 

system both statically and dynamically, the most relevant effect being the appearing of 

dead bands in the modulator transcharacteristics. Examples were made in the previous 

Chapter showing how the presence of a dead band in the vicinity of the converter 

operating point leads to severe degradation of the control action. 

In this Chapter a number of linearization techniques will be considered that share 

the common purpose of eliminating, totally or partially, the sampling induced dead 
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bands phenomenon, thus restoring the linear behavior of the digital modulator 

[40,42,44]. A second, but not less important objective of the proposed techniques is that 

of preserving the phase boost property of the multi-sampling approach. 

Two categories of linearization techniques will be examined in this Chapter, namely 

ripple removal techniques and PLL-based techniques. The former obtain the PWM 

linearization by means of proper small-signal processing of the sampled error signal 

aimed to remove the switching frequency ripple. In PLL-based techniques, on the other 

hand, no ripple removal is performed and the linearization of the modulator 

transcharacteristic is achieved by properly phase-shifting the modulating signal with 

respect to the carrier waveform. 

Both these two approaches will be discussed in terms of linearization effectiveness, 

phase boost preservation and complexity. 

 

4.1. Ripple Removal Techniques 

Ripple removal techniques work on the basic concept illustrated in Fig. 4.1.1 for a 

voltage mode control. Before being processed by the control algorithm Gc(z), the 

sampled error signal e[k] undergoes some signal processing operation RR(z) aimed to 

remove its switching frequency components. Being the resulting sequence ef[k] ripple-

free, no or negligible switching harmonic content is found superimposed to the 

modulating signal m[k], yielding a linear modulator operation. 

Two ripple removal solutions differ in the structure of RR(z). More precisely, RR(z) 

determines both the technique’s ripple rejection capability and its degree of phase boost 

preservation. Indeed, if T0(z) represents the system’s loop gain with no ripple removal 

provision employed, the actual loop gain is: 

 )()()( 0 zTzRRzT =  (4.1.1) 
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A ripple removal technique able to completely remove the switching frequency 

ripple is characterized by a transfer function RR(z) that has N-1 zeros placed on the unit 

circle, where N is the multisampling ratio: 

 11,,0))2exp(( −≤≤=== Nllff
N

T
fjzRR sl

s
ll π  (4.1.2) 

On the other hand, to maintain the phase boost property of the multisampling 

technique, one should have: 

 0)))2exp((arg( ==
N

T
fzRR s

cπ , (4.1.3) 

i.e. no phase lag should be introduced by RR at the designed crossover frequency fc. 

Requirements (4.1.2) and (4.1.3) cannot be simultaneously satisfied, and a certain 

degree of tradeoff exist between the phase boost preservation requirement and the 

switching frequency ripple attenuation. 

Two ripple removal techniques will be described in the following Subsections based 

on different structures for RR(z). 
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4.1.1. Moving Average Filtering 

The most straightforward solution to the ripple removal problem is to calculate ef[k] 

as a running average of the N most recent samples of e[k]: 
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In the theory of digital filters (4.1.4) is recognized as the time-domain equation of a 

moving average filter. Its z-domain transfer function is easily calculated as: 
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This Finite-Impulse-Response (FIR) filter has N-1 zeros located exactly as described 

by (4.1.2), and therefore is able to perform a complete ripple removal. Moreover, its FIR 

nature allows the ripple cancellation to be performed in N sampling steps, i.e. one 

switching period. 

In spite of these desirable properties, a ripple removal technique based on (4.1.5) 

lacks any phase boost preservation capability and is therefore not recommended for 

multisampling applications. It is nevertheless useful to dedicate this section to the study 

of the moving average filtering, as it will clarify the role and effect of RR(z) in the 

closed-loop configuration and will naturally lead to the development of other, more 

effective ripple removal techniques. 

Let us consider the case study presented in Chapter III, Section 3.3.1, namely a 12V-

to-2V buck converter intended for high-current applications. In Section 3.3.1 a  

4-sampled digital PI regulator was designed so as to achieve a closed loop bandwidth  

fc = fs/5, a phase margin mΦ = 55° and a gain margin GM = 17dB. The simulated 

dynamic performances revealed a fast and damped response as far as a triangular 

modulation was employed. However, when a trailing edge modulator was used, 
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presence of large sampling induced dead bands in the modulator transcharacteristics 

revealed severe dynamical limitations, clearly visible if the converter operates around 

certain critical operating points. We wish now to show first how the moving average 

filtering (4.1.5) effectively linearizes the modulator by removing the static dead bands. 

Secondly, we will prove that the same moving average action severely deteriorates the 

system’s phase margin. 

Let us consider the critical operation at Vin = 8V used in Section 3.3.2 to highlight 

the negative impact of the modulator dead bands on the converter dynamics. In Fig. 

4.1.2 simulation results are reported which compare the converter response to a 0A-20A 

load step up with and without the filter RRMA(z) inserted in the regulation loop. When no 

ripple removal provision is employed, the output voltage transient (already seen in Fig. 

3.3.10) exhibits a temporary open-loop evolution immediately after the load step, due to 

the modulating signal m crossing the dead band located at D = 0.25. On the other hand, 

when the moving average filtering is applied to e[k], a clearly faster transient is 

achieved. The action of RRMA(z) can be appreciated from Fig. 4.1.3, where its input and 

output waveforms e[k] and ef[k] are illustrated during the same load step. 

 The faster transient response shown in Fig. 4.1.2 is due to the suppression, operated 

by RRMA(z), of the modulator dead band located at D = 0.25. To see this, let us examine 
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in detail Figure 4.1.4, where average value <m> of the modulating signal is shown 

during the load transient for both the linearized and unlinearized system. In Section 

3.3.2 we observed how the presence of the dead band forces the final steady state value 

of <m> to be largely offset with respect to its initial value due to the crossing of the 

dead at D = 0.25. No such offset appears in Fig. 4.1.4 when the ripple removal 

algorithm is operating. Moreover, the transient behavior of <m> in the linearized 

system does not experiment the large variations visible in the unlinearized case, 

meaning that a partial removal of dynamic dead bands is also achieved by RRMA(z). 

The final and strongest proof of the dead bands elimination operated by the filtering 

action is shown in Fig. 4.1.5, which illustrates the simulated static transcharacteristics 

Fig. 4.1.5 – Simulated PWM 

transcharacteristic, with and without MA 

ripple filtering 
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obtained with and without the ripple removal. Zero static nonlinearity is achieved (see 

eq. 3.2.66). 

The excellent ripple rejection capabilities of moving average filters are entirely 

overcome by their intrinsic inability to preserve the phase boost property deriving from 

the multiple sampling. Indeed, though the load step response shown in Fig. 4.1.2 is 

greatly improved by the presence of the ripple filtering, the resulting system exhibits an 

unacceptably low phase margin. The poor stability margins of the system can be 

appreciated in Fig. 4.1.6, where a 2V�2.1V reference step is applied to the closed loop 

configuration at Vin = 12V. In the case of multisampling with moving average filtering, 

a significant overshoot originated by temporary duty cycle saturation is observed. This 

nonlinear behavior is nevertheless originated by the poor damping of the closed-loop 

system; on the other hand, the transient response of the pure multisampled system 

exhibits a less deep duty cycle saturation and therefore a significantly smaller 

overshoot. 
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The transient response of the control loop designed in Section 3.3.1 to have a phase 

margin of 55° is compared with the one achieved after the insertion of RRMA(z). Bode 

diagrams of T and T0 are shown in Fig. 4.1.7, from which the phase margin reduction 

can be estimated as ∆mΦ = 28°. Thus, after the insertion of RRMA(z) the system phase 

margin is 27°. Though the PI compensator could be re-designed to partially compensate 

for the phase margin loss in presence of the moving-average filter, no small-signal 

performances comparable to the pure multisampling approach could be achieved. 

Though derived in the context of a specific case study, the inadequacy of the moving 

average filtering as a ripple removal technique can be stated generally. Figure 4.1.8 

shows the phase lag introduced by a moving average filter as a function of the 

multisampling factor N and evaluated at fc = fs/10 and fc = fs/5. An analytical expression 

for the phase lag is easily derived from (4.1.5) by letting z = exp(j2πfTs/N) and 

performing simple algebraic manipulations: 
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which represents an additional time delay for the control loop. Equation (4.1.6) 

rapidly approaches -2πfTs/2, destroying the modulator phase boost achieved through 
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multiple sampling. From (4.1.6) it can be stated that, as far as the phase boost and hence 

the achievable closed-loop bandwidth are concerned, the moving average filtering is by 

all means comparable to the classical single sampling approach. 

Filter families indeed exist that ensure a strong ripple rejection and maintain 

adequate phase boost preservation. The next Subsection is devoted to their study, in the 

context of the repetitive ripple estimation algorithms. 

 

4.1.2. Repetitive Ripple Estimation 

Let us consider the ripple removal filter illustrated in Fig. 4.1.9. It exploits the 

periodic nature of the ripple er[k] superimposed to e[k] to generate a periodic sequence 

er,est[k] which, in steady state operation, is equal to er[k], hence the name repetitive 

ripple estimation (RRE) under which this technique is known. The error and the 

estimated ripple are subtracted to form the sequence ef[k], yelding a total ripple 

rejection.  

The filter operates as a feedback system which uses the signal ef[k] as a reference 

and sees the switching ripple superimposed to e[k] as a disturbance. The 1/(1-z
-N

) block 

in the feedeback path represents a digital oscillator that infinitely amplifies the 
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Fig. 4.1.9 – Ripple removal technique by means of repetitive estimation 
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switching harmonics fl = lfs, 1 ≤ l ≤ N-1, so that the steady-state signal er,est[k] is an 

exact copy of the error ripple er[k]. The moving average block that processes er,est[k] is 

fundamental to ensure that the DC component of e[k] is not canceled by the ripple 

estimation process. In fact, as the 1/(1-z
-N

) block contains an integrating action due to its 

pole at z = 1, whatever DC component present at its input would be compensated, thus 

nulling the DC component of ef[k]. The moving average block provides the necessary 

DC compensation at the digital oscillator input. 

Straightforward block diagram algebra can be employed to determine the transfer 

function RRRE(z) of the repetitive estimator: 
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having defined the repetitive estimator loop gain TRE(z): 
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Fig. 4.1.10 – Bode diagrams of the Repetitive Ripple Estimator 

loop gain; N=8, KRE=0.25 
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Equation (4.1.8) can be written in a far more insightful form using the equality: 
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Plugging (4.1.9) into (4.1.8) yields: 
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Bode plots of TRE(z) are shown in Fig. 4.1.10 in the case N = 8 and KRE = 0.25. As 

anticipated, the magnitude of TRE(z) is infinite at the switching harmonics because of the 

poles of the digital oscillator, while the low-frequency magnitude is limited by the pole 

located at z = (N-1)/N. Correspondingly, the Bode diagrams of RRRE(z) shown in Fig. 

4.1.11 exhibit total ripple rejection and a low-phase lag behavior at low frequencies. 
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This latter observation, i.e. the good phase behavior of RRRE(z) in the low frequency 

range, is what makes this technique interesting and suitable for multisampling 

applications. Moreover, the repetitive estimator is essentially a feedback system. 

Therefore its ability to reconstruct and cancel the switching ripple does not depend on 

the particular converter topology, operating condition or ripple waveshape, but relies 

only in the periodic nature of the ripple itself. 

The only design parameter of the repetitive estimator (4.1.7) is the gain KRE, which 

is primarily related to the number nc of sampling cycles required for the ripple 

reconstruction to be performed. Rigorously speaking, (4.1.7) is a IIR system and 

therefore its transients extend to infinity; however, a representative number nc can 

nevertheless be defined as the number of sampling cycles required by the estimator to 

reduce the estimation error to negligible levels and therefore obtain the ripple 

cancellation. The higher KRE, the fastest is the ripple reconstruction due to the increased 

estimator loop gain TRE. 

Increasing KRE, however, reduces the low-frequency magnitude of RRRE(z), and 

therefore of the whole control loop gain. More precisely, the repetitive estimator 

introduces a low-frequency attenuation which is more pronounced as KRE increases. At 

DC, evaluation of (4.1.7) yields: 
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The attenuation introduced by KRE estimator is not constant over frequency and 

cannot be compensated, in general, by a mere adjustment of the compensator gain. 

Thus, a tradeoff exists between a fast ripple reconstruction and elimination, and an 

overall loop gain reduction due to a low-frequency attenuation operated by the 

estimator. As pointed out in [40] suitable values of KRE lie between 0.125 and 0.25, for 
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which the ripple compensation is achieved in few tens of sampling steps with negligible 

loop gain attenuation. 

Similarly to what done in the previous Section concerning the moving average 

filtering, we will exemplify the operation of a repetitive ripple estimator on the case 

study introduced in Section 3.3.1. Basing on the previous observations, we will choose 

KRE = 0.25 and consider a 4-sampled repetitive estimator. 

Bode diagrams of the system loop gain with and without the repetitive estimator are 

10
3

10
4

10
5

10
6

-60

-40

-20

0

20

40

60

10
3

10
4

10
5

10
6

-270

-225

-180

-135

-90

-45

0

Frequency (Hz)

M
ag

n
it

u
d
e 

(d
B

)
P

h
as

e 
(°

)

Multisampling + RRE

Multisampling

Multisampling + RRE

Multisampling

∆mΦ=0

Fig. 4.1.12 – Loop gain Bode diagrams with and without 

repetitive ripple estimation 

-10 0 20 40 60 80 100
-30

-15

0

15

30

45

60

time (µs)

V
o
lt

ag
e 

E
rr

o
r 

(m
V

)

After RE Filtering: ef[k]

Before RE Filtering: e[k]

Fig. 4.1.13 – Output voltage during a 

0A�20A load step up transient, Vin = 8V, 

with and without RRE 

Fig. 4.1.14 – Voltage error during a 

0A�20A load step up transient, Vin=8V, 

before and after RRE filtering 

 

-10 0 20 40 60 80 100
1.92

1.94

1.96

1.98

2

2.02

2.04

time (µs)

v
o
u
t
(V

)

Multisampling

Multisampling + RRE



IV – PWM Linearization Techniques 

 122 

shown in Fig. 4.1.12. No appreciable phase deviation occurs up to the designed closed-

loop bandwidth fc = fs/5 = 100kHz. The system phase margin is thus entirely preserved. 

The load step-up transient shown in Fig. 4.1.13 for Vin = 8V is now fast and well 

damped compared with the response obtained without ripple removal. The voltage error 

during the transient response is shown in Fig. 4.1.14 before and after the repetitive 

estimation. From this plot the dynamics of the ripple reconstruction after a transient 

event can also be appreciated. 

A 2V�2.1V reference step transient is shown in Fig. 4.1.15 compared to the pure 

multisampling solution. The two responses show an essentially equal dynamics, this 

being a further evidence of the phase boost preservation property of the repetitive 

estimator.  

Finally, in Fig. 4.1.16 the modulator static transcharacteristic with and without 

repetitive ripple removal is shown. As observed when discussing the moving average 

filtering, perfect linearization is performed in steady state condition. 

A single-phase Voltage Regulation Module (VRM) prototype board was employed 

to experimentally investigate the ripple cancellation technique. A 4-sampled Adaptive 

Voltage Positioning (AVP) control was implemented to design a resistive output 

impedance, this being a common requirement in VRM applications; with AVP control 

Fig. 4.1.16 – Simulated PWM 

transcharacteristic, with and without RRE 

ripple filtering 
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[101-105] the analog error signal representing the error e(t) to be sampled and processed 

by the digital compensator is a linear combination of inductor current and output 

voltage: 

 )()()( tiRtvVte Ldrooporef −−=  (4.1.12) 

where Rdroop is the droop resistance. The parameters of the VRM synchronous buck 

converter employed for the experimental tests were Vin = 5V input, Vo = 1V output,  

L = 400 nH, C = 1.54 mF (tantalum), ESR=2 mΩ, Rdroop = 2 mΩ. The digital control has 

been implemented using a Spartan3 Field Programmable Gate Array (FPGA) by Xilinx. 

A typical 0 to 15A load transient response achieved without RRE filtering is depicted in 

Fig. 4.1.17. Please note that the waveform e
*
(t) = vo(t)+Rdroop·iL(t) is shown as the error 

signal in Fig. 4.1.17, along with the ripple-affected modulating signal mh(t) and the 

PWM output waveform y(t). When the RRE algorithm is active, the load transient 

illustrated in Fig. 4.1.18 is obtained. The switching frequency ripple is now effectively 

e*(t) = vo(t) + RdroopiL(t)

mh(t)

y(t)

Switching Ripple

 
Fig. 4.1.17 – Experimental 0�15A load step without RRE filtering; e*(t) 

100mV/div, mh(t) 200mV/div, y(t) 10V/div, time scale 5µs/div 
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removed from mh(t), confirming the expected operation of the repetitive estimation. As 

a side effect of the ripple removal, the transient dynamics shown in Fig. 4.1.18 is 

slightly faster compared with Fig. 4.1.17. 

 

 

e*(t) = vo(t) + RdroopiL(t)

mh(t)

y(t)

Ripple removed

Fig. 4.1.18 – Experimental 0�15A load step with RRE filtering; e*(t) 

100mV/div, mh(t) 200mV/div, y(t) 10V/div, time scale 5µs/div 
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4.2. PLL-Based Technique 

The linearization approaches discussed in Section 4.1 achieve the elimination of the 

sampling-induced dead bands by complete steady-state removal of the switching ripple 

from the sampled error waveform processed by the comparator. 

An alternative way to remove the PWM dead bands is that of eliminating the 

possibility of vertical crossings between the modulating signal mh and the carrier vc 

[44]. This approach, which does not involve the removal of the switching harmonics, 

relies on a dynamic adjustment of the relative phase shift between m and vc that ensures 

horizontal crossings for every steady-state operating point. Thus, in steady state 

condition m and vc are properly phase-locked, hence the name of this kind of approach. 

Let us consider Fig. 4.2.1.a, in which the generic n-th switching cycle is shown for a  

(N,0)-sampled trailing-edge modulator operating in steady-state. Please note that the 

time axis is normalized with respect to the switching period Ts, as done in Chapter III. 

We shall denote with ε[n] the error between the actual turn-off instant t2n[n] and a 

reference turn-off instant t2n,ref[n] located in the midpoint of the sampling cycle: 
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Fig. 4.2.1 – Modulation diagrams before (a) and after (b) PLL locking 
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 ][][][ ,22 ntntn refnn −≡ε  (4.2.2) 

The PLL correction algorithm will force ε[n] to zero by properly phase-shifting m 

with respect to vc. After a number Nc of switching cycles that depends on the dynamics 

of the correction algorithm, the error ε  will become negligible and the steady-state 

modulation diagram will approach the one depicted in Fig. 4.2.1.b. It is clear that as 

long as the error converges to zero, no steady-state operating point will exhibit vertical 

crossings between mh and vc, meaning a complete elimination of the static sampling-

induced dead bands. 

The required phase-shifting is achieved by temporarily modulating the sampling 

period. Let us denote with Tc[n] the sampling period decided by the correction 

algorithm after the measurement of the error ε[n]: 

 ][
1

][ nT
N

nT cc ∆+=  (4.2.3) 

In the n+1-th switching cycle the measured error ε[n+1] is related to ε[n] by the 

following relationship: 

 ][][]1[ nTNnn c∆−=+ εε  (4.2.4) 

Indeed, if the sampling period is corrected by ∆Tc[n], the overall error reduction 

after N sampling steps, i.e. after one switching period, is N·∆Tc[n]. It is important to 

point out that (4.2.4) is an approximated relationship, in that it is assumed that a time 

shift of the sampling instants brings a corresponding time shift of the modulating signal. 

As discussed in Chapter III, Section 3.2.2, the sampler is not a time-invariant system 

and a shift in the sampling events causes the modulating signal to modify its shape. 

However, as long as a small corrections in the sampling pattern are considered, this 

effect can be neglected. 
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Equation (4.2.4) can be thought as the difference equation describing the system to 

be controlled by the PLL correction algorithm, the feedback signal being ε[n] and the 

control signal being ∆Tc[n]. Please note that (4.2.4) contains an inherent integrating 

action, and therefore allows the error signal to be nulled by means of a purely 

proportional control law: 

 ][][ n
N

K
nT C

c ε=∆ , (4.2.5) 

where KC plays the role of proportional gain and represents the design parameter for 

the correction algorithm. These concepts are illustrated in Fig. 4.2.2. Please note that 

when the correction is achieved, ε = 0, ∆Tc = 0 and thus Tc = 1/N: the steady state 

sampling frequency is always equal to Nfs. This property is of extreme importance, as it 

means that no provisions have to be taken to ensure stabilization of the sampling 

frequency. 

Solving (4.2.4) and (4.2.5) for the correction loop gain TCorr(z) yields: 
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Fig. 4.2.2 – Block diagram of the PLL correction 
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The dynamics of the correction algorithm is then determined by solving the 

characteristic equation 1 + TCorr(z) = 0. The single pole which governs the closed-loop 

response of the correction law is: 

 CC Kp −= 1  (4.2.7) 

Stable correction is achieved for 0 < KC < 2. However, oscillatory modes are found 

for 1< KC < 2 and should be avoided. Thus the range of interest of KC is 0 < KC ≤ 1. The 

higher the proportional gain KC, the faster will result the correction action. Interestingly 

KC = 1 yields a dead-beat corrector, which achieves the required correction in one 

switching step. Though the possibility of emplying a dead beat corrector is indeed 

appealing, care must be taken when designing very fast correction algorithms. In fact, a 

fast correction law may affect the duty cycle modulation operated by the control law of 

the digital compensator, resulting in possible malfunctioning. On the other hand, if the 

control loop and the correction loop have different dynamics – i.e. one is faster than the 

other – more robust performances are achieved. 

Considering, as usual, the 12V-to-2V step down converter taken as a case study, Fig. 

4.2.3 illustrates the static PWM transcharacteristic linearization operated by the PLL 

approach. For the PLL design, KC = 0.8 was chosen. Please note that perfect 
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linearization can not be achieved through this technique, as no switching ripple removal 

occurs. The resulting characteristic is nevertheless very close to the ideal one and dead 

bands are completely eliminated. 

Figures 4.2.4 shows the modulating signal mh(t) and the carrier vc(t) for a steady 

state operation at Vin = 8V when no PLL correction is active. As expected, the system 

operates in the vicinity of a vertical crossing, i.e. next to a dead band. On the other hand, 

when the PLL is operating the modulation diagram of Fig. 4.2.5 is obtained, clearly 

showing the correct phase-locking at the desired midpoint intersection. 

Figure 4.2.6 illustrates the 0A�20A load transient with and without the PLL 

correction and for Vin = 8V. The closed-loop response clearly benefits from the m-vc 
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Fig. 4.2.4 – Modulation diagram at  

D = 0.25 without PLL correction 

 

Fig. 4.2.5 – Modulation diagram at D = 0.25 
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phase locking. Moreover, this technique does not interfere with the system’s phase 

margin. In Fig. 4.2.7 the 2V�2.1V reference step response with PLL operation is 

compared to the operation with no PLL, showing no dynamical differences. 

Experimental tests were carried out in order to verify the effectiveness of the PLL-

based dead bands removal technique. On this purpose, the proposed correction 

algorithm was VHDL-coded on an Altera EP200KE FPGA development board and 

tested on a step-down prototype converter; the parameters of the power stage were  

Fig. 4.2.9 – PWM Waveforms with the PLL Locked. Time scale 1µs/div 
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Fig. 4.2.8 – Experimental PWM transcharacteristic, 

with and without PLL correction 
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fs = 200kHz switching frequency, Vin = 5V input voltage, Vo = 2.5V output voltage,  

L = 400 nH, C = 1.5 mF, ESR = 2 mΩ. A digital PI regulator sampling at N = 4 times 

the switching frequency was employed, tuned in order to obtain a closed-loop 

bandwidth of about fc = 18 kHz, i.e. about one tenth of the switching frequency. The 

correction law (4.2.5) was implemented with KC = 1; a simple counter was used to 

measure the error ε[n], this being the only additional hardware requirement for the 

correction algorithm implementation. Comparative results are illustrated in Fig. 4.2.8, 

where the experimental static PWM transcharacteristic are shown with and without the 

PLL algorithm active. Finally, Fig. 4.2.9 shows the modulator waveforms with the PLL 

locked. 

As a final note, it is worth to underline that the choice of the sampling period 

midpoint as the reference for the m-vc phase locking is not the only possibility. In 

principle, any point within the sampling period could be used as reference point. 

However, from a small-signal perturbation point of view, the midpoint choice keeps the 

modulator operating point equally distant from the two neighboring sampling instants 

and thus to the respective dead bands. For this reason this approach has been used to 

present the PLL-based technique. 
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Chapter V 

 

Autotuning Of Digitally Controlled SMPS: 

Digital Relay Feedback Approach 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Autotuning [45-56] is a feature that enables a control system to automatically 

calculate the compensator parameters in order to achieve some specified closed-loop 

performances, usually expressed in terms of stability margins and dynamic capabilities. 

The self-calibration of a compensator enhances the versatility of a control system 

especially in those situations where the control design boundary conditions are only 

known to a limited extent. These include a precise knowledge of the plant transfer 

function, its parametric variations due to components tolerances, aging, temperature 

drifts as well as failures that may affect the behavior of the process being controlled. 

Autotuning features may also be strictly connected with availability requirements 

when system non-catastrophic failures are temporarily handled by re-tuning of the 

compensator parameters to ensure stable operation and thus a higher degree of fault 

tolerance. 
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The autotuning process can be conceptually thought as composed of two phases, 

namely identification and tuning. The identification activity relies on a number of 

measurements aimed to determine some key parameters concerning the process to be 

controlled. In the field of SMPS, examples include the resonant frequency of the power 

stage, its input or output voltages, its control-to-output transfer function at a specified 

frequency or over an entire frequency range. These parameters may or may not be 

directly measurable. Thus, the identification process usually involves a certain degree of 

computational complexity. The tuning phase consists of elaborating the information 

gained from the identification activity in order to calculate the compensator parameters 

that allow the fulfillment of the specifications. This phase is usually handled by a tuning 

algorithm, the complexity of which depends on the specific technique. Both the 

identification and tuning phases inherently involve a high degree of programmability of 

the compensator parameters. 

From this discussion it is clear how autotuning features strongly point to digital 

implementations. The intrinsic programmability of a digital compensator allows for a 

complete control of both its parameters and the applied control law. Tuning algorithms 

are easily implemented using microcontrollers or hardwired digital logic based on finite 

state machines (FSM). Identification-related computations can be realized by means of 

standard arithmetic blocks, the implementation of which is straightforward in the digital 

world. Thus, feasibility of a self-calibrating controller dictates a degree of freedom that 

has no analog counterpart, making the autotuning a potential feature unique to digital 

control systems. 

In this Chapter some general considerations on self-tuning digital compensators will 

be made before presenting a specific tuning approach, based on the digital relay 

feedback. After a detailed description of the technique and the provisions aimed to 
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enhance its robustness, simulation and experimental results will be provided to give 

proof of its effectiveness and relatively modest hardware requirements. 

 

5.1. Introduction to Self-Tuning Digital Compensators 

Before presenting the digital relay feedback technique in its details, some general 

boundary conditions will be discussed to identify a possible application context as well 

as to give the necessary definitions that will be used later on. 

5.1.1. A Motivating Example: Point Of Load Applications 

Point-Of-Load (POL) converters represent an excellent case study for a tuning 

technique. In a distributed power architecture, these are the converters supplying the 

different loads present in the system. As an example, in server applications the 

electronic equipment to be powered consists of microprocessors, hard disk drives, 

peripherals and fans with different power supply specifications and voltage regulation 

requirements. 

A simplified schematic diagram of a POL step-down converter is exemplified in Fig. 

5.1.1. A synchronous buck topology is here employed to supply a low-voltage, high-

…… ……
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Fig. 5.1.1 – Point Of Load Converter 
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current load – such as a microprocessor –, modeled in Fig. 5.1.1 as a current source. The 

converter module has its own phase inductance L and its own output bulk capacitance 

C; in addition, a number of decoupling capacitors are usually placed in close proximity 

to the load. This capacitor bank is normally composed by both electrolytic caps for low-

frequency decoupling and ceramic caps for high-frequency bypass purposes. The 

overall capacitive impedance seen by the POL converter determines, together with the 

phase inductance L, the open-loop dynamic behavior of the power stage. Parasitic 

resistances and inductances due to the POL-load interconnections, not shown in Fig. 

5.1.1, usually also come into play when high di/dt load transients are considered. 

In these applications the control designer has limited knowledge of the number and 

type of the decoupling capacitors, because they strictly depend on the load and on its 

voltage regulation requirements. Temperature drifts as well as component aging, the 

latter phenomenon especially affecting electroytic caps, also contribute to parametric 

variations in the converter behavior. 

In these conditions a worst-case analysis of the system is always possible, leading to 

control design guidelines that aim to achieve some minimum stability margins, usually 

at the price of very poor dynamic performances. On the other hand, a self-calibrating 

compensator would ensure optimized performances regardless of the specific boundary 

conditions in which the POL converter is employed. 

5.1.2. Overview of Proposed Techniques for Digital Autotuning 

As digital techniques gained increasing attention from the scientific community 

during the last years, a number of techniques for precise and hardware-effective 

identification and autotuning have been proposed. Of particular interest are 

identification techniques based on cross-correlation methods [45-47], in which the 

whole frequency response of the power converter is identified through white noise 
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injection and consequent post-processing of the power stage response. A tuning 

approach based on these identification techniques was proposed in [48]. Another family 

of identification and tuning techniques relies on inducing amplitude-limited limit cycle 

oscillations in the system [49-51]. The relay-feedback approach described in section 5.2 

belongs to this family. More recently, techniques partially or totally based on frequency 

injection methods have been developed [53-55]. An example will be given in section 

5.3, where a frequency injection technique will be employed to perform the PID gain 

tuning. Self-calibrating controllers have also been proposed based on linear prediction 

methods [56].  

Tuning techniques for POL converters with wide range of capacitive loads have 

been proposed in [52], showing feasibility and hardware-effectiveness of tuning 

compensators capable of handling parametric variations of the power stage capacitance 

covering several orders of magnitude. This work was carried out at the Colorado Power 

Electronics Center (CoPEC), University of Colorado at Boulder, during part of this PhD 

activity, under the supervision of Prof. Dragan Maksimović and Prof. Regan Zane and 

in collaboration with CoPEC student Mariko Shirazi. 

5.1.3. Tuning Strategies 

An important aspect related to the self-calibration of a digital compensator is when, 

or more precisely how often the autotuning should be performed. Two distinct situations 

can be identified, namely start-up, i.e. the power-on event for the converter under 

control, and the normal operation of the converter itself. 

The start-up sequence of a power converter often involves a soft-start phase, in 

which the output voltage is linearly increased from 0V to the regulation level Vref, then 

the digital compensator is enabled to provide regulation. A start-up tuning  is performed 

on this purpose, which carries out initial measurements on the converter and calculates 
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the proper compensator parameters before entering the regulation state. Start-up is 

perhaps the most critical situation for a tuning technique, as it corresponds to a 

condition in which the knowledge of the power plant is minimum. Moreover, load 

specifications usually require the output voltage to stay confined within some tolerance 

band centered around the regulation level, meaning that proper regulation has to be 

maintained even during the tuning process. 

Tuning may be necessary also during the system normal operation. Parametric 

variations in the plant behavior can be caused by thermal drifts, component aging or 

failures. An online tuning strategy can be planned to periodically re-calculate the 

compensator parameters to ensure stability and proper dynamic performances. Again, 

the tuning has to be carried out without significantly perturb the output voltage. 

The technique presented in this work has been mainly developed as a start-up tuning 

process. It can be nevertheless extended and modified to include online tuning features. 
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5.1.4. Formulation of the Tuning Targets 

The tuning technique that will be presented in the next section will consider the 

single-sampled voltage-mode control scheme illustrated in Fig. 5.1.2 and employing a 

programmable digital PID compensator of the form: 
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The compensator (5.1.1) is uniquely identified once the triplet (Ki, Kz1, Kz2) is 

specified. In particular, the two zeros z1 and z2 of (5.1.1) are determined by Kz1 and Kz2 

respectively: 
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The cascade implementation of form (5.1.1) will result to be particularly useful for a 

number of reasons. First of all, the two PID zeros can be tuned by varying Kz1 and Kz2. 

Please note that relationship (5.1.2) is bijective, i.e. to a given Kz corresponds only one 

real positive zero and viceversa. Moreover, each factor (1+Kz - Kzz
-1

) maintains a unity 

value at DC independently on Kz. Thus, a variation in Kz1,2 moves the corresponding 

zero without affecting the low-frequency portion of the PID response. 
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Fig. 5.1.2 – Voltage-mode digital control employing a self-tuning PID 

compensator 
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It is also worth to notice that the overall PID gain Ki in (5.1.1) is equal to the 

integral gain of the compensator in its non-interacting – or parallel – implementation 

(see Appendix A). Thus, the integral gain is directly available in form (5.1.1) and allows 

for simple no-limit cycling checks, according to the discussion carried out in Chapter II. 

Similarly to what is done in the analog domain, it is useful to associate two 

frequencies fz1 and fz2 to the zeros z1 and z2. By applying the inverse Euler 

transformation to (5.1.1) one obtains an analog PID compensator with zeros located at: 
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≡  (5.1.3) 

Equation (5.1.3) will be taken as definition of the frequencies associated to the 

digital PID zeros. It must be kept in mind, however, that fz1,2 are not related to the 

magnitude and phase response of the compensator by the same relationships that hold 

for an analog system, the approximation being valid only for fz << fs. Please also note 

that Kz1,2 defines, to within a constant factor, the ratio between the switching frequency 

fs and fz1,2. 

As shown in Fig. 5.1.2, during the autotuning process the tuning algorithm 

elaborates the digitized error signal e[k] and calculates (Ki, Kz1, Kz2) so that the resulting 

compensator will meet proper stability and dynamic constraints. Leaving the detailed 

description of the tuning process to the next section, the tuning targets will be now 

defined. 

In particular, a target phase margin mΦ
*
 will be assumed as a stability objective, 

while a target closed-loop bandwidth fc
*
 will represent the dynamic objective. 

As far as this latter tuning target is concerned, a first approach consists in choosing a 

fixed value for fc
*
, which thus becomes a tuning constant. This choice is suitable to 

guarantee the same dynamics regardless of the specific power stage characteristics. 
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As a second approach [52], rather than expressing fc
*
 as an absolute value, it may be 

specified as a function of the resonant frequency f0 of the power converter: 

 0
*

ffc α≡ , (5.1.4) 

with α > 1. Equation (5.1.4) represents a possible criterion for dynamically selecting 

the target closed-loop bandwidth once f0 is known. It therefore assumes that f0 has been 

previously measured during the identification process. Details related to the 

identification of f0 by means of the relay-feedback technique will be given in the next 

section. 

The reasoning behind the empirical criterion expressed by (5.1.4) is based on a 

number of observations.When f0 ranges over a wide interval, as may happen for the 

POL converters discussed in section 5.1.1, a constant fc
*
 specification may lead to poor 

bandwidth optimization for high-f0 power converters, while the design of high-

bandwidth compensators for very low-f0 power stages could be impractical and result in 

tuning failures. Moreover, a high-fc, low-f0 control design would probabily lead to limit 

cycle oscillations whenever a large integral gain is required by the digital compensator. 

Thus, in these conditions a possible approach is to relate fc and f0 through (5.1.4). 

Simulations and experimental tests point at 2 < α  < 4 as a suitable range. 

Care must be taken in applying (5.1.4) with extremely high-f0 values, as the resulting 

target bandwidth could be a significant fraction of the switching frequency fs. If fs/10 is 

taken as an upper limit for the closed-loop bandwidth in a voltage-mode control, 

criterion (5.1.4) can be easily corrected to account for the switching frequency limit: 

 )
10

,min( 0
* s

c

f
ff α≡  (5.1.5) 

Having formulated the tuning objectives, the proposed tuning algorithm can now be 

specified. Its flowchart is illustrated in Fig. 5.1.3. Three tuning phases are identified, 
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each of them associated to the tuning of one of the three PID parameters. The relay-

feedback technique will be efficiently exploited for the tuning of the two PID zeros z1 

and z2, with the purpose of achieving the target phase margin mΦ
*
. Details of phases A 

and B will be given in section 5.2. 

As far as the PID gain Ki is concerned, a different tuning approach will be 

employed, based on a frequency injection method. Explained in section 5.3, this 

approach allows for accurate tuning of Ki in order to achieve the target closed-loop 

bandwidth fc
*
. 

Please note that the flowchart illustrated in Fig. 5.1.3 can be extended to include no-

limit cycling conditions as well as outer loops that allow for a finer selection of the 

closed-loop bandwidth. In this context, criterion (5.1.5) can be thought as a starting 

point for more sophisticated tuning approaches. 

 

Phase A: identification of f0 and tuning of z1

Phase B: tuning of z2 to meet the 

target phase margin specification

Phase C: tuning of PID gain K in order to achieve 

the desired target bandwidth fc
*

Optional: Dynamic selection of the target 

bandwidth fc
*

Tuning Complete

Tuning Enable

 

Fig. 5.1.3 – Flowchart of the proposed tuning algorithm 
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5.2. Digital Relay-Feedback Autotuning 

Tuning techniques based on the relay-feedback concept are widely used in industrial 

controllers. The technique consists in inducing amplitude-limited oscillations in the 

feedback loop by introducing a strong nonlinearity in the loop itself. The nonlinear 

block used is a relay, i.e. a nonlinear system which outputs a constant positive or 

constant negative signal depending on the sign of its input. The frequency and the 

amplitude of the oscillation can be used to gain information on the plant under control 

and consequently choose the regulator parameters. 

The use of the relay-feedback technique has been proposed as a viable approach for 

the self-tuning of digitally controlled SMPS in [51] and further investigated in [52-53]. 

This technique, defined as digital relay-feedback autotuning, will be now presented. 

5.2.1. Digital Relay Feedback Fundamentals 

Let us consider the voltage-mode scheme illustrated in Fig. 5.2.1. The closed-loop 

configuration during the tuning process of z1 and z2 is shown. The structure of the 

digital compensator consists of a non-linear part, which implements the relay function: 
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Fig. 5.2.1 – Block diagram of digital relay-feedback autotuning 
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where AR > 0 is the amplitude of the relay output, and a linear part described by an 

ordinary linear difference equation: 
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The precise structure of (5.2.2) – i.e. its coefficients – depends on the particular 

tuning phase and will be explicited later on. For now, let us simply assume that (5.2.2) 

contains an integrating action, i.e. a pole at z = 1.  

Under this assumption it is easy to realize that a limit cycle oscillation will arise in 

the system shown in Fig. 5.2.1. In fact, the action of the integrator is that of nulling 

whatever DC component is present in its input signal. However, from (5.2.1) it is seen 

that the relay output cannot be zero. Thus, r[k] must be oscillating between +AR and  

–AR with zero average value. We will further postulate that the oscillation at the output 

of the power converter is essentially sinusoidal, i.e. the filtering action of the power 

converter is strong enough to let only the fundamental frequency of r[k] pass, 

attenuating higher frequency harmonics. Under these assumptions, we shall denote with 

fosc and Aosc the oscillating frequency and amplitude measured at the output of the power 

converter, as indicated in Fig. 5.2.1. 

Formally, the above hypotheses allow us to analyse the system employing the 

describing function method. Let us denote with T(z) the linear part of the system’s loop 

gain: 



V – Autotuning Of Digitally Controlled SMPS 

 145 

 )()()( zGzGzT pc≡ , (5.2.3) 

where Gp(z) is the equivalent z-domain control-to-output transfer function of the 

power converter, as defined in (2.3.7). For a persistent oscillation of amplitude Aosc and 

frequency fosc to be sustained in the loop, the following fundamental equation has to be 

verified: 
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 (5.2.4) 

The left-hand term represents the non-linear loop gain, defined as the product of 

(5.2.3) and the amplitude-dependent relay describing function 4AR/(πAosc). Similarly to 

what happens when considering linear oscillators, (5.2.4) states that the system loop 

gain evaluated at the oscillating frequency has to present a unity magnitude and a 180° 

phase lag. Equation (5.2.4) is fundamental for understanding the relay-feedback 

concept. The key point to realize is that, for a given structure of the linear compensator 

(5.2.2), the oscillating frequency and amplitude implicitly defined by (5.2.4) will 

depend on the power stage. Thus, the oscillation frequency carries information on the 

power stage and its measurement can be used for identification and tuning purposes. 

The operation of the relay-feedback autotuner is that of measuring the oscillating 

frequency and consequently adjusting the compensator parameters until the tuning 

targets are met. The frequency measurement operation and the action of the tuning 

algorithm are also shown in Fig. 5.2.1. The measure-and-tune strategy employed by the 

relay-feedback autotuner interleaves the identification and tuning phases to achieve a 

continuous adjustment the the PID parameters. It differs from other tuning techniques in 

which identification and tuning phases are well-separated in time. From an 

implementation point of view, the frequency measurement block can be easily 
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implemented by means of counters and proper surrounding control logic. Please refer to 

section 5.4 for further details. 

Before going through the details and showing how (5.2.4) is actually employed by 

the relay-based autotuner, it is important to point out some facts and approximations 

related to this important equation. 

First, the nonlinear part of (5.2.4) apparently only accounts for the relay, while no 

contribution comes from the A/D quantizer. Actually, it is easy to realize that the 

cascade of a n-bit quantizer and a relay is, in turn, a relay. Thus, it is formally correct to 

neglect the A/D contribution. Seen from another point of view, one may think of having 

lumped the A/D quantizer and the relay block in an equivalent relay function. This 

intermediate step was not explicited in the present discussion. 

An approximation has nevertheless been made in writing (5.2.4), and more precisely 

in writing the describing function of the relay block. Actually, 4AR/(πAosc) is the 

describing function of an analog relay. The details and consequences of this modeling 

issue are not further investigated in this work. 

Finally, in a practical implementation a small hysteresis band is going to be 

implemented in the relay function in order to eliminate noise-induced chatter. This 

introduces an amplitude-dependent phase lag in the relay describing function, not 

predicted by (5.2.4). The effects of the hysteresis-induced phase lag will be addressed 

later on. 

 



V – Autotuning Of Digitally Controlled SMPS 

 147 

5.2.2. Phase A: Identification of the Resonant Frequency and Tuning of z1 

Letting Gc(z) be the transfer function of a pure digital integrator represents a 

straightforward way to identify the power converter resonant frequency. Let us then 

assume: 
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By plugging (5.2.5) in (5.2.4) and taking the argument one obtains: 

 °−=
−

180]
)2exp(1

))2(exp(
arg[

sosc

soscp

Tfj

TfjG

π

π
 (5.2.6) 

As long as the oscillating frequency is much lower than the converter switching 

frequency the product foscTs is very close to zero; by Taylor expansion of the 

denominator 1-exp(j2πfoscTs) the following approximation can be made: 
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Thus: 

 °−≅ 90))]2(exp(arg[ soscp TfjG π  (5.2.8) 

Equation (5.2.8) implies that the oscillating frequency is very close to f0. For most 

practical cases one may assume: 

 0ffosc ≅  (5.2.9) 

Thus, when structure (5.2.5) is employed, the system oscillation will be at the power 

stage resonant frequency. Measurement of fosc directly allows for the identification of f0. 

More generally, when the damping of the power coverter is significant, fosc may 

result higher than the actual resonant frequency. Equation (5.2.8) nevertheless implies 

that the oscillation occurs where the process transfer function lags -90°: 
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 °−= 90ffosc  (5.2.10) 

Independently on these details, the proposed tuning strategy for phase A is to place 

the first PID zero so that fz1 equals the identified frequency f-90°: 

 °−= 901 ff z  (5.2.11) 

This tuning criterion (5.2.11) is simetimes employed in manual design. The zero z1 

introduces a phase boost where the power stage phase response starts dropping – i.e. at  

f ≈ f0 and beyond – without unnecessarily lowering the low-frequency magnitude of the 

loop gain. The remaining phase boost necessary to achieve the target phase margin will 

be provided by the second zero, z2. 

According to (5.1.3), the tuning of z1 consists in selecting: 
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It is important to point out that (5.2.12) only apparently involves a division. A 

counter-based frequency measurement directly outputs the ratio fs/f0, thus reducing 

assignment (5.2.12) to a multiplication by a constant. Further details will be given in 

section 5.4 when some aspects of the VHDL implementation of the autotuner will be 

discussed. 

Fig. 5.2.3 – Error signal and relay output 

during phase A 
Fig. 5.2.2 – Output voltage perturbation 

during phase A 
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The relay-feedback configuration shown in Fig. 5.2.1 has been modeled in the 

Matlab/Simulink environment and simulated on a 12V-to-1.5V buck coverter switched 

at fs = 200 kHz and with L = 1µH, C = 600µF, ESR = 1mΩ. Simulation results for phase 

A are shown in Fig. 5.2.2, in which the output voltage oscillation is illustrated, and Fig. 

5.2.3, in which the digitized error signal e[k] is superimposed to the relay output r[k]. 

The observed oscillating frequency is fosc = 6.5 kHz, which correctly approaches the 

power stage resonant frequency. 

As a last point, the identification of f0 – or, more rigorously, of f-90° – allows the 

calculation of the target closed-loop bandwidth fc
*
 whenever the dynamic bandwidth 

selection (5.1.5) is adopted. 
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5.2.3. Phase B: Tuning of z2 for the Target Phase Margin 

As previously mentioned, z2 is tuned so that the target phase margin is obtained at 

the desired crossover frequency. This condition is expressed as follows: 
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where TPID(z) represents the system loop gain in its normal regulation state: 

 )()()( zGzGzT pPIDPID ≡  (5.2.14) 

and having defined θPID(f) and θG(f) as the phase responses of GPID(z) and Gp(z) 

respectively. 

It is important to realize the difference between (5.2.14), i.e. the loop gain after the 

tuning process has completed, and (5.2.3), i.e. the linear part of the loop gain during the 

relay-feedback operation. 

The system configuration during phase B is the same used for phase A and depicted 

in Fig. 5.2.1, but with Gc(z) defined as follows: 

 )()()( zFzGzG PIDc = , (5.2.15) 

with GPID(z) expressed by: 

 
1

1
22

1
11

1

)1)(1(
)(

−

−−

−

−+−+
=

z

zKKzKK
zG zzzz

PID  (5.2.16) 

and F(z) defined as a digital low-pass filter, the role of which will be clear soon. 

In (5.2.16) the parameter Kz1 is given by (5.2.12), while Kz2 is the parameter being 

tuned during this phase. A suitable initial value for Kz2 is zero, which corresponds to a 

PI structure for GPID(z). Please note that the gain Ki is set to unity and it will be 

determined later on in the tuning process. 
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To understand how condition (5.2.13) can be realized by means of the relay-

feedback configuration illustrated in Fig. 5.2.1, let us derive a phase equation from the 

fundamental relationship (5.2.4): 
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where θF denotes the phase response of F(z). Equation (5.2.17) can be re-arranged in 

the following form: 

 )(180)()( oscFoscGoscPID fff θθθ +°−=+  (5.2.18) 

The left-hand term represents the phase response of TPID evaluated at the oscillation 

frequency. This key point is rigorously true as long as the relay describing function is 

real. Comparison between (5.2.18) and (5.2.13) reveals the trick: if the system is forced 

to oscillate at fosc = fc
*
 and as long as the lowpass filter F(z) is designed to introduce a 

phase lag |θF(fc
*
)| = mΦ

*
, then (5.2.18) implies (5.2.13). In other words, the tuning of z2 

for a desired phase margin is equivalent to tune z2 in order to force fosc = fc
*
. 

Beside the constraint |θF(fc
*
)| = mΦ

*
, the structure of F(z) can be arbitrary. A single-

pole or double pole structure is the common choice. Please note that whenever a 

dynamic bandwidth selection is employed, the filter F(z) has to be online-tuned, as fc
*
 is 

not known a priori. 

As long as the loop gain phase response is monotonic within the frequency range 

under consideration, the system oscillation can be driven to any desired value by a 

measure-and-tune strategy which detects the current oscillating frequency, compares it 

with the target value fc
*
 and consequently adjusts Kz2. More precisely, whenever  

fosc > fc
*
, fosc can be decreased by lowering fz2, i.e. increasing Kz2. Conversely, condition 

fosc < fc
*
 can be handled by lowering Kz2. Thus, the tuning of z2 only relies on frequency 

measurements followed by slight adjustments of a PID parameter. 
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Different methods exist that correctly implement the positioning of z2. A possibility 

is to evaluate the frequency error and let it be processed by a digital integrator that acts 

on Kz2. Another approach is the bisection method, illustrated in Fig. 5.2.4 in a flowchart 

form. This method can be thought as a binary search algorithm that converges to the 

target oscillation frequency by iteratively splitting in two the allowed range for Kz2. 
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Again, this method relies on the measurement of the oscillation frequency and 

consequent comparison with the target value fc
*
. The algorithm terminates when the 

upper and lower bounds of Kz2 are sufficiently close one to another. The implementation 

of the bisection method is particularly hardware-efficient and thus well-suited for 

hardwired logic realizations. 

Simulation results of the tuning of z1 and z2 are shown in Fig. 5.2.5 for the same 

converter considered in the previous section. For this simulation the tuning targets were 

set to fc
*
 = 16.3 kHz and mΦ

*
 = 50°. 

After the soft-start phase, in which the output voltage ramps up to the regulation 

band, the system enables the tuning process with phase A, which terminates with the 

positioning of z1 according to (5.2.12). Phase B is then initiated with the compensator in 

a PI configuration – i.e. z2 = 0, or Kz2 = 0 – and the lowpass filter inserted in the 

feedback loop. The iterative adjustment of z2 by hand of the bisection algorithm can be 

appreciated in Fig. 5.2.5. Phase B lasts until the measured oscillation frequency equals 

the target closed-loop bandwidth, according to the discussion carried out in this section. 

The output voltage oscillation at the end of phase B is illustrated in Fig. 5.2.6, from 

which the oscillation frequency is correctly observed at fosc = 16.3 kHz. The error signal 

e[k] and the relay output r[k] during the same time interval are shown in Fig. 5.2.7. 
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Please note how the output voltage oscillation maintains a rather good sinusoidal 

shape even at fosc = fc
*
, this being a fundamental hypothesis on which (5.2.4) relies. 

As far as the output voltage amplitude is concerned, simulation results shown in Fig. 

5.2.2 and 5.2.6 point out how Aosc tends to decrease as the tuning proceeds, the intuitive 

reason being that the higher is the oscillation frequency, the stronger is the filtering 

action of the power converter. The value of Aosc is essentially determined by the power 

stage parameters and by the relay output amplitude AR. An interesting property of the 

proposed tuning is that it does rely solely on frequency measurements. Thus, Aosc can be 

kept as low as desired as long as the oscillating frequency is measured correctly. For the 

same reason quantization of the output voltage does not significantly impact the tuning 

results. Simulations shown in Fig. 5.2.2 – 5.2.7 were carried out with a quantization step 

set to ∆qv ≈ 1mV. The important subject of limiting Aosc is discussed in the next section. 
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5.2.4. Limitation of the Output Voltage Perturbation 

When supplying loads requiring tight voltage regulation, perturbations that exceed 

the specified regulation band are not allowed. A tuning perturbation not respecting this 

condition may induce operation failures if not permanent damage in the load. 

As far as the relay-feedback tuning presented in the previous sections is concerned, 

an effective way to limit the oscillation amplitude Aosc is to properly select the relay 

output amplitude AR. Worst-case calculations will be now presented that allow for the 

deternination of the maximum allowed AR that keeps Aosc below some predefined value 

Aosc,max. 

It is easy to realize that the worst-case condition occurs during phase A, i.e. when 

the power stage is oscillating close to its resonant frequency f0. This is physically 

intuitive, as the power stage tends to enhance any frequency close to its resonance. 

Formally, fosc ≈ f0 places the oscillation close to the resonance peak in the magnitude 

response of the linear loop gain T. From (5.2.4), this condition maximizes Aosc. Let us 

write (5.2.4) taking the magnitude of the left-hand and right-hand terms: 

 1
14

0

=in

sosc

R QV
TA

A

ωπ
, (5.2.19) 

where expression (5.2.5) was used for Gc(z), along with the low-frequency 

approximation foscTs << 1. This same low-frequency approximation was used to 

approximate the z-domain control-to-output transfer function Gp(z) at f ≈ f0 as the 

product of the power stage quality factor Q and the input voltage Vin. 

 From (5.2.19) an letting Aosc < Aosc,max one obtains: 

 
ins

oscR
VfQ

AA
1

4

0
max,

ωπ
<  (5.2.20) 
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From (5.2.20) a worst-case design for AR can be derived as long as the minimum 

value assumed by the ratio ω0/Q can be estimated. An example will be proposed here, 

assuming that Q is limited solely by the inductor and capacitor equivalent series 

resistances rL and ESR. In this case the following approximation holds: 

 
L
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C

L

ESRr

LC

Q

L

L

+
=

+

≅
1

1

0ω
 (5.2.21) 

Thus, from (5.2.20), the following worst-case design criterion for AR is obtained: 

 
max,max
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max,max,
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4 ins
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oscR
VfL
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AA

+
=

π
 (5.2.22) 

Please note that (5.2.21) is an extremely conservative estimation, which makes 

(5.2.22) a somewhat restrictive upper bound for AR. Additional damping sources like the 

load, on-resistances of the power switches and gate driving dead times would probably 

allow for larger values of AR. 

As a numerical example, the 12V-to-1.5V synchronous buck converter simulated in 

the previous sections had Q ≈ 1.9. If a maximum ±3% output voltage perturbation is 

allowed, then from (6.2.20) one obtains AR,max = 300·10
-6

. Simulations shown in Fig. 

5.2.2 – 5.2.7 were carried out with AR = 100·10
-6

. The oscillation amplitude is 

effectively limited well within the tolerance band specification, as visible from Fig. 

5.2.2 and Fig. 5.2.6. 
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5.3. Phase C: PID Gain Tuning via Frequency Injection 

The relay-feedback technique presented in section 5.2 has been employed to tune the 

two zeros of the PID compensator. Tuning of z1 and z2 according to the proposed 

strategies only involved frequency measurements and thus found straightforward 

implementation with the relay-based method. 

As far as the tuning of the PID gain Ki is concerned, its value has to be determined 

in order to bring the crossover frequency fc of the system to its target value fc
*
. This 

process involves the measurement – directly or indirectly – of the loop gain magnitude 

at f = fc
*
 and, in turn, of the oscillation amplitude at some point along the feedback path. 

In [52], Ki was found by approximate calculations based on assumptions about the 

shape of the loop-gain magnitude response. An alternative, more robust approach 

presented in [53] is introduced in this section. 

5.3.1. Frequency Injection Method 

The closed-loop configuration during phase C is shown in Fig. 5.3.1. The relay 

block and the lowpass filter used during phase B have been removed from the loop. The 

PID compensator has its zeros now placed, and its gain Ki represents the remaining 
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Fig. 5.3.1 – Frequency injection method 
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untuned parameter. At the beginning of Phase C Ki is brought to an initial value Ki0 low 

enough to ensure a stable, low-bandwidth condition. 

In this configuration, a sinusoidal perturbation signal mp[k] oscillating at f = fc
*
 and 

with amplitude ∆mp is superimposed to the PID output sequence m2[k] to form the 

actual modulating signal, which we shall indicate with m1[k]: 

 )2sin(][][][][ *
221 kTfmkmkmkmkm scpp ⋅∆+=+= π  (5.3.1) 

As long as quantization effects occurring in the A/D conversion and in the DPWM 

modulation can be neglected, the linearity of the system implies that m1 and m2 are also 

sinusoidal signals. Moreover, as a single frequency is being injected in the system, a 

phasor representation will be used to develop the analysis. Denoted with m̂1[k] and 

m̂2[k] the ac sinusoidal components of m1[k] and m2[k] respectively, let M1 and M2 be 

the corresponding phasors. Straightforward block diagram analysis can be used to 

derive the phasor relationship between M1 and M2: 
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Fig. 5.3.2 – PID gain tuning via frequency injection (phase C) 
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=

, (5.3.2) 

where AT denotes the magnitude of the loop gain at f = fc
*
. The phase relationship 

between M1 and M2 is the result of tuning phases A and B, after which the PID zeros are 

positioned to yield the target phase margin mΦ
*
 at the desired crossover frequency. As 

far as the loop gain magnitude AT is concerned, its initial value is less than one; the 

objective of phase C is to achieve AT = 1 through proper adjustment of Ki. 

The tuning process, illustrated in Fig. 5.3.2, works as follows: ac signals m̂1[k] and 

m̂2[k] are sensed by measuring m1[k] and m2[k] and successivley subtracting their 

common DC component M. Signal m̂2[k] is then delayed by mΦ
*
 degrees. The delayed 

signal m̂2,d[k] is thus in phase with respect to m̂1[k], as implied by (5.3.2). An error 

signal mε[k] is then calculated as m̂ε[k] = m̂1[k]- m̂2,d[k]. In phasor representation: 

 )exp( *
21 ϕε jmMMM −−≡  (5.3.3) 

Combining (5.3.2) with (5.3.3) yields: 

 )1(1 TAMM −≡ε  (5.3.4) 

Equation (5.3.4) states that Mε is a measure of the tuning error, i.e. how far is AT 

from unity. The phasor diagram in Fig. 5.3.3 gives a graphical description of (5.3.2) 

through (5.3.4). 
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Fig. 5.3.3 – Phasor diagram for signals m̂1, m̂2, m̂2d and m̂ε 
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A time-domain multiplication between m̂1[k] and m̂ε[k] is then performed: 

 ][ˆ)1(][ˆ][ˆ][ 2
11 kmAkmkmkp T−=⋅≡ ε  (5.3.5) 

The product defined by p[k] contains a DC component proportional to the tuning 

error (1-AT). To see this it is sufficient to average both sides of (5.3.5): 

 
2

1)1( MAp T−>=<  (5.3.6) 

A digital integrator, shown in Fig. 5.3.2, performs the tuning by processing p[k] and 

forcing <p> to zero by properly adjusting Ki. The tuning is completed when a steady 

state condition is reached in which ||M1|| = ||M2||, and thus AT = 1. The tuning speed is 

determined by the gain KA of the tuning integrator. As usual when adjusting a 

compensator parameter, the action of KA should be slow enough not to interfere with the 

compensator regulating function. 

Results for phase C on the simulation case study examined in the previous sections 

are shown in Fig. 5.3.4, where the signals m̂1[k] and m̂2[k] are illustrated. Please note 

how the amplitude of m̂2[k], initially small because AT < 1, gradually increases as the 

tuning proceeds. The phase shift between the two signals shows how m̂2 actually leads 

m̂1 by mΦ
*
 = 50°, according to (5.3.2). The time-domain waveform of the PID gain Ki(t) 
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is illustrated in Fig. 5.3.5. When phase C starts Ki is brought to a safe level Ki0; the 

tuning integrator is then enabled. The output voltage waveform is shown in Fig. 5.3.6 

during the first couple of milliseconds after phase C has begun. The oscillation 

amplitude is now limited by the amplitude ∆mp of the perturbation signal mp. Worst-

case considerations similar to those discussed in the previous section are necessary to 

ensure safe limitation of Aosc during the tuning process. For the simulation results shown 

in Fig. 5.3.4 through 5.3.6, ∆mp = 5·10
-3

 was used. 
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The post-tuning loop gain of the system is shown in Fig. 5.3.7. Both the phase 

margin and the closed-loop bandwidth specifications are met with high accuracy; the 

simulated post-tuning 0�10A load transient shown in Fig. 5.3.8 exhibits dynamics and 

damping in agreement with the specified tuning targets. 

 

5.3.2. Accuracy and Implementation Issues 

A couple of points need to be briefly analysed concerning the accuracy of the tuning 

process in achieving a target closed-loop bandwidth as well as slight modifications of 

the basic scheme of Fig. 5.3.2 aimed to more hardware-efficient implementations. 

i. Delay Error on m̂2[k] 

The multiplication between m̂ε[k] and m̂1[k] can be viewed as a projection of the 

first signal onto the direction defined by the latter. Indeed, the DC component of the 

product p[k] given by (5.3.5) can be written as: 

 )cos(1 εε ϕ∆⋅>=< MMp , (5.3.7) 

where ∆ϕε represents whatever phase difference exists between m̂ε and m̂1. Quantity 

(5.3.7) is the scalar product between phasors M1 and Mε. For this reason, whatever 

phase error exists between m̂ε and m̂1, a tuning error on fc will result. 
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In the previous description of the tuning algorithm employed during phase C it was 

implicitly assumed that the signals m̂2d[k] and m̂1[k] were exactly in phase. However, as 

digital sequences can be delayed by only integer multiples of the sampling period, a 

delay error will always occur, causing m̂2d[k] to be out of phase with respect to m̂1[k]. 

In turn, the error phasor Mε will present a non-zero component along the direction 

orthogonal to M1. Formally, if ∆ϕ represents the delay error between m̂2d[k] and m̂1[k], 

then (5.3.4) becomes: 

 ))exp(1(1 ϕε ∆−−= jAMM T  (5.3.8) 

Substituting (5.3.8) in (5.3.7) yields: 

 )cos(1)cos(2
2

1 ϕϕε ∆−∆>=< TAMp  (5.3.9) 

Thus, the tuning integrator will force (5.3.9) to zero by adjusting Ki until: 

 
)cos(

1

ϕ∆
=TA  (5.3.10) 

Equation (5.3.10) represents the tuning error in terms of the loop gain magnitude at  

f = fc
*
; as a worst case estimation, a delay error corresponding to ±0.5·Ts at fc

*
 = fs/10 

yields ∆ϕ ≈ 18°. The corresponding tuning error ∆fc/fc on the closed-loop bandwidth can 

be roughly estimated by assuming a -20dB/decade slope of the loop gain magnitude 

around f = fc, which yields ∆fc/fc ≈ 5%. This result points to a surprisingly accurate 

tuning even in presence of large delay errors. Though the present calculation only 

accounts for time quantization, neglecting amplitude quantization effects coming into 

play, the results can be considered representative of the good accuracy of the proposed 

approach. 
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ii. Square-Wave Perturbation 

The single-frequency injection scheme of Fig. 5.3.1 has been used to present the 

concept of the proposed tuning method. However, its implementation requires the 

generation of the sinusoidal signal m̂p[k] and may thus involve the use of look-up tables. 

Moreover, whenever the target bandwidth fc
*
 is dynamically selected, proper digital 

circuitry has to be provided to synthesize the correct perturbation frequency. More 

hardware-effective implementations can be achieved with other perturbation 

waveforms. Square waves or triangular waves are easily generated and can be 

C fc
*
 mΦ

*
 fc mΦ ∆fc/fc ∆mΦ/mΦ 

 (kHz)  (kHz)    

600µF 16.3 50° 16.3 47.2° 0% -5.6% 

1mF 12.9 50° 12.5 49.7° -3.1% -0.6% 

3mF 7.4 50° 7.5 49.1° 1.4% -1.8% 

10mF 4.4 50° 4.6 51.9° 4.5% -3.8% 

 
Tab. 5.1 – Tuning simulations with square-wave injection (ESR=1mΩ) 
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Fig. 5.3.9 – Square-wave injection scheme 
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conveniently used. A square-wave injection scheme is provided in Fig. 5.3.9. The 

tuning process is by all means similar to the one already described. The difference lies 

in that we are now dealing with a multiple-frequency injection, as the square-wave 

harmonics contribute in perturbing the system. The phasor analysis presented previously 

no longer holds – or it can be applied to the fundamental frequency only – and the 

harmonic distortion of m̂p[k] contributes to an additional tuning error. Indeed, when 

m̂1[k] and m̂ε[k] are multiplied, the average value of p[k] is affected by the entire 

spectrum of the two factors and not only by their fundamental frequency. A possible 

provision is to reduce the harmonic content of m̂1[k] and m̂2d[k] through two identical 

digital filters, as shown in Fig. 5.3.9. 

Simulations were carried out with this modified version of the autotuner. The  

12V-to-1.5V buck converter previously examined was considered, and simulations were 

performed for different values of the output capacitance C. Tuning targets were set to 

mΦ
*
 = 50° and fc

*
 = 2.5·f0. A square-wave perturbation was used during phase C, with 

amplitude ∆mp = 5·10
-3

. First-order digital lowpass filters tuned at 10kHz were 

employed along the tuning feedback path. Table 5.1 reports the tuning results, showing 

an overall good accuracy over more than one order of magnitude in the variation of the 

output capacitance. 
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5.4. Implementation Details and Experimental Results 

The tuning algorithm described through sections 5.2 and 5.3 has been 

experimentally tested on a 12V-to-1.5V, 10A synchronous buck converter prototype. 

The converter was operated at fs ≈ 195 kHz (Ts = 5.12 µs); the phase inductance was  

L = 1 µH, while the filter capacitance was C = 600 µF, composed by both ceramic and 

tantalum electrolytic caps. Power stage board included signal conditioning circuitry as 

well as 12-bit, 4V full scale range A/D converters, for a voltage quantization step  

∆qv,AD ≈ 1mV. 

The control and tuning hardware were entirely VHDL-coded and implemented on a 

Xilinx FPGA development board based on a Virtex-4 device. A 12-bit trailing edge 

modulator was employed, with a time resolution ∆qt = 1.25 ns. The programmable 

digital PID was realized in the cascade form (5.1.1) with 16-bit internal registers. 

Tuning phases A, B and C were sequenced by a main finite-state-machine (FSM), while 

local FSMs were employed for the algorithmics of each phase. The control and tuning 

VHDL code was synthesized and implemented using Xilinx ISE environment, for an 
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Fig. 5.3.10 – Experimental error signal and relay output during phase A 



V – Autotuning Of Digitally Controlled SMPS 

 167 

about 18,000 equivalent gates design. 

For the experimental tests the tuning targets were set to fc
*
 = 16.3 kHz and  

mΦ
*
 = 50°; in Fig. 5.3.10 the experimental error sequence e[k] is illustrated along with 

the relay output r[k] during phase A of the tuning process. These waveforms, as well as 

the one that will be illustrated later on, have been acquired using the Xilinx Chipscope 

debugging tool, which allowed for an on-line acquisition of digital signals from the 

FPGA during the tuning process. 

Both the waveforms shown in Fig. 5.3.10 are expressed in terms of A/D LSB units. 

The relay amplitude has been set to AR ≈ 122·10
-6

, i.e. 1/8 of the A/D LSB. With this 

choice the output voltage oscillation amplitude is found to be Aosc ≈ 20 mV, i.e. 1.3% of 

the regulation value. The oscillation frequency is measured by a counter clocked at the 

switching frequency which is enabled by the tuning algorithm and frozen after a fixed 

number Nosc of system oscillation cycles, detected by the zero crossings of the relay 

waveform r[k]. The measurement of the oscillating frequency fosc is represented by the 

number Ns of counted switching clock cycles. With this technique extremely hardware-

effective implementations are achieved that ensure accurate frequency measurements. In 

the autotuner implementation Nosc = 16 was used, which yields a worst-case resolution 

of about 120 Hz at fosc = fs/10 = 19.5 kHz, more than enough for the tuning purposes. 

With a 12-bit counter, frequencies down to 760 Hz can be measured. 

The oscillation frequency measured during phase A is 6.1 kHz, as illustrated in Fig. 

5.3.10. From the discussion carried out in section 5.2, this also represents the converter 

resonant frequency f0. The measured value slightly differs from the theoretical one – 

about 6.5 kHz – calculated using nominal L and C mainly because of component 

tolerances. Off-board measurements on the buck phase inductor pointed at L close to  

1.2 µH, which would yield f0 = 5.9 kHz. Taking into account the slight difference 
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between f-90 and f0 discussed in section 5.2, the measured value of 6.1 kHz appears by 

all means reasonable. A further evidence will be provided later on when showing the 

experimental post-tuning loop gains. 

Experimental waveforms of the PID zeros during phases A and B are shown in Fig. 

5.3.11. The first zero is positioned according to (5.2.12) as soon as f0 is measured. Then, 
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Fig. 5.3.11 – Experimental tuning of the two PID zeros (phases A and B) 
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during phase B the bisection algorithm iteratively adjusts z2 until the system oscillation 

frequency is equal to fc
*
. This latter point is illustrated in Fig. 5.3.12, which shows the 

error and relay waveforms at the end of phase B. The oscillating frequency, measured 

through the same counter-based technique described previously, is equal to  

fc
*
 = 16.3 kHz, as expected. 

After the tuning of z1 and z2, phase C is started. In the VHDL implementation the 

square-wave injection method illustrated in Fig. 5.3.9 was implemented, with the 

amplitude of the perturbation set to 10·10
-3

. Reduction of the harmonic content of 
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signals m̂1[k] and m̂2d[k] was accomplished through two identical first-order filters 

tuned at 5 kHz. Experimental waveforms of the filtered signals m1,f[k] and m2d,f[k] 

during phase C are shown in Fig. 5.3.13. The amplitudes of the two signals rapidly 

converge to the same value through the action of the tuning integrator. In the HDL 

implementation, KA = 15 was used. The experimental waveform for the PID gain Ki is 

finally illustrated in Fig. 5.3.14, from which a settling time of few milliseconds can be 

appreciated. 

Post-tuning performances of the system were investigated through loop gain and 

transient response measurements. As far as the loop gain measurement is concerned, the 

voltage injection method illustrated in Fig. 5.3.15 was employed [115], which allows 

for the loop gain to be measured in closed-loop configuration. A frequency analyser was 

used to perturb the system through injection of an AC voltage signal vz; the amplitude 

and phase relationship between signals vy and vx located before and after the injection 

point were then measured. The experimental loop gain is then defined as: 
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Fig. 5.3.15 – Voltage injection method for loop gain measurements 
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The perturbation frequency f was swept from 1 kHz to about 30kHz. Bode diagrams 

of the experimental loop gain (5.3.11) are shown in Fig. 5.3.16. The system exhibits a 

closed-loop crossover frequency fc = 16 kHz, with a phase margin mΦ = 61°. The excess 

of phase margin with respect to the target value of 50° is explainable by the relay 

hysteresis. Indeed, in the HDL implementation of the relay a small hysterisis band equal 
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to ±2LSBs was used to reduce noise-induced chatter and obtain a clean oscillating 

waveform. The presence of the hysteresis band introduces a phase lag in the relay 

describing function. Thus, the tuning of the PID zero z2 operated by the bisection 

method compensates for an additional phase lag not present during normal system 

operation. This additional term in (5.2.17) results in the observed excess of phase 

margin. Please note that this phenomenon does not compromise stability, since the 

phase margin deviation is always positive. Whenever a precise phase margin has to be 

obtained, the hysteresis effect can be quantified and compensated by targeting for a 

somewhat smaller mΦ
*
. 

The experimental transient response of the converter to a 0�9A load step change is 

illustrated in Fig. 5.3.17. The damping and recovery time of the transient agree with the 

designed bandwidth and phase margin. 

The tuning was then performed with the input voltage decreased by 20% with 

respect to its nominal value. Experimental loop gain and transient response for Vin = 

9.6V are shown in Fig. 5.3.18 and 5.3.19 respectively. Comparison with Fig. 5.3.16 and 
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Fig. 5.3.18 – Experimental post-tuning loop gain, Vin = 9.6V 
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5.3.17 reveals the same stability margins and dynamic characteristics, proving that the 

tuning approach correctly handled the decreased input voltage by converging to a higher 

compensator gain, keeping the same locations for the PID zeros. 
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Fig. 5.3.19 – Experimental post-tuning 0�9A load step response, Vin = 9.6V; 

vo 50mV/div, y 2V/div, time 50µs/div 
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Chapter VI 

 

Conclusions and Future Work 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work investigated two main topics related to the digital control of switched 

mode power supplies. Dynamic performances of digital control loops for SMPS have 

been shown to gain great ehancements in terms of achievable bandwidth from an 

increased sampling frequency. Such multi-sampled systems approach performances of 

analog solutions, still retaining the robustness and versatility of digital controllers. An 

in-depth modeling discussion has been presented which addressed the small-signal and 

steady-state large signal behavior of multi-sampled converters. The main drawback of 

the increased sampling frequency was identified as the injection of switching harmonics 

into the feedback loop, which causes nonlinear effects to arise in the DPWM behavior. 

Solutions aimed to restore the PWM linearity have been presented and validated 

through computer simulations and experimental tests, proving their effectiveness. 

As a second topic, a specific autotuning technique based on the digital relay 

feedback approach was discussed and presented in its analytical and implementation 

details. The approach was successfully validated through experimental tests on a FPGA-
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controlled prototype Point-of-Load converter and via HDL coding of the control and 

tuning hardware. Accurate and repeatable tuning results were achieved with limited 

hardware requirements. 

Future research lines which would naturally follow the studies proposed in this work 

may address modeling aspects of quantization effects in multi-sampled systems. The 

subject appears to be particularly interesting in that it is not clear whether or not the 

increased sampling frequency may help in reducing limit cycle oscillations and 

quantization-related phenomena. 

Further research in the field of self-tuning of digital compensators may lead to the 

formulation of more sophisticated tuning algorithms which may account for no-limit 

cycle conditions, “smart” dynamic selection of the control bandwidth as well as 

strategies for complete periodic online self-calibration of the controller. These aspects, 

not necessarily related to a specific tuning technique, are of extreme importance from an 

industrial point of view, as would allow the definition of robust, intelligent controllers 

able to safely operate the system in a broad range of environmental conditions. 

 



Appendix A 

 

Digital PID Compensators 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.1  Analog PID Compensators 

 

Proportional-Integral-Derivative (PID) compensators are well known and 

widespread in the world of analog control design for their versatilty, easy-to-implement 

and easy-to-tune features. Analog PIDs are briefly recalled in this section before 

treating digital PID compensators. 

An analog PID compensator processes a continuous-time error signal e(t) and 

produces a continuous-time control signal m(t), which is the superposition of three 

terms: 

 )()()()( tmtmtmtm dip ++= , (A.1.1) 

where: 
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That is, the control signal m(t) contains a term proportional to the error signal, a 

term proportional to the integral of e(t), and a term proportional to the derivative of e(t). 

The three constants Kp’, Ki’ and Kd’ are defined as the proportional, integral and 

derivative gains respectively. 

Taking the Laplace transform of (A.1.1) allows the derivation of the additive form of 

the PID transfer function, which explicitly highlights the three contributions to the 

control signal: 
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The triplet (Kp
’
, Ki

’
, Kd

’
) uniquely defines the shape of the PID frequency response 

and is determined by the design constraints dictated by the specific application. 

Equation (A.1.3) is also known as the non-interacting form of the PID transfer 

function, as it suggests a parallel implementation of the compensator where the three 

gains can be adjusted independently. The interacting form, which can be associated to a 

series implementation of the compensator, has the following expression: 
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= , (A.1.4) 

in which the Bode gain K
’
 and the frequencies ωz1 and ωz2 associated to the 

compensator zeros are explicited. As (3) and (4) indeed describe the same system, the 

following relationships hold between the two triplets (Kp’, Ki’, Kd’) and (K’, ωz1, ωz2): 



A – Digital PID Compensators 

 179 

 

)
4

11(
2

)
4

11(
2

2'

''

'

'

2

2'

''

'

'

1

''

p

di

d

p

z

p

di

d

p

z

i

K

KK

K

K

K

KK

K

K

KK

−+=

−−=

=

ω

ω , (A.1.5a) 

 

21

'
'

''

21

'' )
11

(

zz

d

i

zz

p

K
K

KK

KK

ωω

ωω

=

=

+=

 (A.1.5b) 

where two real zeros were assumed, with ωz1<ωz2. Whenever 4Ki
’
Kd

’
/Kp

’2
>1, two 

complex conjugate zeros are obtained. The interacting nature of the form (A.1.4) is 

expressed by Eq. (A.1.5b), from which it is clear how the PID zeros affect both the 

proportional and derivative actions. Interestingly, the overall PID gain K
’
 in the series 

form is equal to the integral gain Ki
’
 in the parallel representation. 

Simplified relationships between (Kp’, Ki’, Kd’) and (K
’
, ωz1, ωz2) can be found 

assuming two real and well-separated zeros, i.e. ωz1<<ωz2. Under this assumption, the 

following approximated relationships are obtained: 
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Thus, for a given proportional gain, the low-frequency zero depends on the integral 

gain, while the derivative gain defines the position of the high-frequency zero. On the 

other hand, increasing the proportional gain tends to further separate the two zeros, 

moving ωz1 to lower frequencies and pushing ωz2 at higher frequencies.  
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Analog PID compensators are typically implemented employing one or more 

operational amplifiers with passive feedback R-C networks. In integrated analog 

controllers an on-chip error amplifier is usually found, and the compensator transfer 

function is often shaped by the control designer through external resistors and 

capacitors. Finally, in every analog application additional poles are present that limit the 

high-frequency gain of the compensator and ensure a proper filtering action at 

frequencies beyond the designed crossover frequency. 

 

A.2  Discrete-Time PID Compensators 

A discrete-time PID compesator processes a discrete time error sequence e[kT] and 

produces a discrete time control signal m[kT], where T is the sampling period. 

Discrete-time PID compensators can be formally derived by discretization of their 

analog counterparts. Let us apply, for instance, the backward Euler discretization 

method s = (1-z
-1

)/T and derive the non-interacting (parallel) form of a discrete-time 

PID from (3): 
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where Kp, Ki and Kd are the discrete-time counterparts of the three analog PID gains 

Kp’, Ki’ and Kd’: 
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In the time domain, the control signal m[kT] is again decomposed in three terms: 

 ][][][][ kTmkTmkTmkTm dip ++= , (A.2.3) 
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with: 
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From (A.2.2) it can be observed that the integral and derivative gains both depend 

on the sampling period T: for a given desired analog integral action, the discrete-time 

integral gain Ki will scale with the sampling period; similarly, the discrete-time 

derivative gain Kd will scale inversely with the sampling period for a given desired 

analog derivative action. 

The interacting (series) form of a discrete-time PID transfer function can be obtained 

from (A.1.4) and still applying the backward Euler discretization rule: 
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where: 
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As in the case of analog PID compensators, each of the two forms (A.2.1) and 

(A.2.5) is uniquely defined by three parameters; the following relationships exist 

between (Kp, Ki, Kd) and (K, z1, z2) that allow to switch from the parallel form to the 

series form and viceversa: 

 

)
)2(

)(4
11(

)(2

2

)
)2(

)(4
11(

)(2

2

22

21

dp

dipd

dip

dp

dp

dipd

dip

dp

i

KK

KKKK

KKK

KK
z

KK

KKKK

KKK

KK
z

KK

+

++

−−

++

+

=

+

++

−+

++

+

=

=

 (A.2.7a) 



A – Digital PID Compensators 

 182 

 

)1)(1(

)1)(1(

2

21

21

21

2121

zz

zz
KK

KK

zz

zzzz
KK

d

i

p

−−

=

=

−−

−+
=

 (A.2.7b) 

 

The discrete-time PID transfer functions (A.2.1) and (A.2.5) have been here derived 

by discretization from their analog counterparts; this approach provides an intuitive link 

to the analog domain that helps in gaining better insight on the behavior of discrete-time 

PIDs. However, this should not lead to the conclusion that the design of a discrete-time 

PID compensator should start from an analog PID and then derive the discrete-time 

regulator by discretization. A more rigorous approach is to design discrete-time PIDs 

directly in the digital domain, provided a discrete-time equivalent of the plant is 

available. 
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Steady-State Analysis of Multisampled PWMs 

Mathematical Details 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.1 The function Ih(t1n) 

The behavior of the function Ih(t1n) defined in (4.2.58.b) and here reported: 
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is continuous except for t1n = qN[t1n] or t1n+D = qN[t1n+D], i.e. when the turn-on or 

turn-off instants (or both) coincide with a sampling event. With the exception of these 

critical points, the continuity of (A.1.1) is ensured by the regularity of the function 

sh(·,t1n) and will not be questioned any further in this work. 

As long as the critical points of (A.1.1) are concerned, it will be now shown that 

these represent negative discontinuities for Ih(t1n) if proper hypotheses, verified in all 

cases of practical interests, are assumed. 

Let us consider the behavior of the modulating signal mh(tn) in the neighbourhood of 

the turn-on instant t1n, shown in Fig. A.1.1.a. The figure represents a critical condition, 
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i.e. t1n = qN[t1n]. In all cases of practical interest, the condition mh(t1n+δ) ≥ mh(t1n-δ) is 

satisfied – with 0 < δ < 1/N – while it is clear that the opposite situation, i.e.  

mh(t1n+δ) < mh(t1n-δ), would not be compatible with a turn-on event generated by a 

negative-slope carrier. For similar reasons, a critical turn-off event t1n+D = qN[t1n+D] is 

characterized by the condition mh(t1n+D+δ) ≤ mh(t1n+D-δ), as illustrated in Fig. A.1.1.b. 

These conditions will be taken as general properties of the modulating signal mh(tn;t1n): 
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If we focus on a critical turn-on event t1n = qN[t1n], the variation ∆Ih1 of (A.1.1) from 

t1n-δ to t1n+δ is: 
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Thus, ∆Ih1 is a negative discontinuity for Ih. The same holds for discontinuities 

associated with critical turn-off events t1n+D = qN[t1n+D] : 
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Fig. A.1.1 – Critical turn-on (a) and turn-off (b) events 
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Equations (A.1.3) prove that (A.1.1) exhibits negative discontinuities for both 

critical turn-on and turn-off events. 

A.2 The function fh(t1n) 

The function fh(t1n) was defined in (4.2.58.a) as: 

 )()()()( 1111 nhncncnh tIDtvtvtf ++−≡  (A.2.1) 

Lke (A.1.1), fh exhibits a regular behavior with the exception of some critical points, 

which fh inherits from Ih.  

It is possible to show that fh is a monotonically decreasing function of t1n. In fact, as 

long as regular points are cosidered: 
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The α-dependent term in the right-hand side of (A.2.2) is associated with the carrier 

waveshape, and more precisely to its slopes. The term dIh/dt1n is instead originated from 

the shape variation of mh(tn;t1n) as the turn-on instant t1n is varied, or, equivalently, as 

the sampling instants are shifted in time. An alternative expression can be given for 

(A.2.2) if Ih is written in terms of the average slope of mh during the turn-on time D: 
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From (A.2.3), derivative (A.2.2) is written in this form: 
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In all cases of practical interest the average slope during the turn-on time is a slowly 

varying function of t1n, and the main contributor to the variation of fh comes from the 

carrier waveshape. thus, (A.2.2) is negative and fh is monotonically decreasing. 
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When critical points are considered, fh inherits the negative discontinuities of Ih and 

preserves its negative monotonicity. 

Let us now suppose that t1n
*
 represents the steady-state turn-on event of a pulse-

width modulator operating at a duty cycle D, and let us analyse the behavior of fh in the 

neighbourhood of t1n
*
. Four possible situations can arise, depending on how the 

modulating signal intersects the carrier: 

a) Neither t1n
*
 nor t1n

*
+D coincide with a sampling instant 

b) t1n
*
+D= qN[t1n

*
+D] but t1n

*
 ≠ qN[t1n

*
] 

c) t1n
*
 = qN[t1n

*
], but t1n

*
+D ≠ qN[t1n

*
+D] 

d) Both t1n
*
 and t1n

*
+D coincide with sampling instants, i.e. t1n

*
 = qN[t1n

*
] 

and t1n
*
+D = qN[t1n

*
+D] 

In case a) the modulating signal and the carrier exhibit horizontal crossings for both 

the turn-on and the turn-off event: mh(t1n
*
) = vc(t1n

*
) and mh(t1n

*
+D) = vc(t1n

*
+D). 

Hence: 

 0)( *
1 =nh tf  (A.2.5) 

Thus, when no vertical crossing occurs, the steady-state solution of the modulator 

corresponds to the zero of the function fh. 

Case b) corresponds to a horizontal turn-on crossing and a vertical turn-off crossing. 

This means that mh(t1n
*
) = vc(t1n

*
), but mh(t1n

*
+D+δ) ≤ vc(t1n

*
+D). The latter inequality 

is graphically represented in Fig. A.1.1.b, where it is evident how the carrier must lie 

above the modulating signal if a critical turn-off event is considered. Evaluation of fh 

then yields: 
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On the other hand, evaluation of fh at t1n = t1n
*
+δ yields a negative result: 
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Thus, t1n
*
 corresponds to the zero-crossing of fh. A similar reasoning can be carried 

out for case c), i.e. when mh(t1n
*
+D) = vc(t1n

*
+D) but mh(t1n

*
- δ) ≤ vc(t1n

*
). In this case: 
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while a positive value is found in t1n = t1n
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Again, the steady-state solution is found at the zero-crossing of the function fh. Case 

d) can be treated in a similar way as cases b) and c), yielding the same conclusion. 
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