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by Eng. Erica SILVESTRI

In recent years, the study of brain connectivity has received growing inter-
est from neuroscience field, from a point of view both of analysis of patho-
logical condition and of a healthy brain. Hybrid PET/MRI scanners are
promising tools to study this complex phenomenon. This thesis presents a
general framework for the acquisition and analysis of simultaneous multi-
modal PET/MRI imaging data to study brain connectivity in a clinical set-
ting. Several aspects are faced ranging from the planning of an acquisition
protocol consistent with clinical constraint to the off-line PET image recon-
struction, from the selection and implementation of methods for quantifying
the acquired data to the development of methodologies to combine the com-
plementary informations obtained with the two modalities. The developed
analysis framework was applied to two different studies, a first conducted
on patients affected by Parkinson’s Disease and dementia, and a second one
on high grade gliomas, as proof of concept evaluation that the pipeline can
be extended in clinical settings.
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Acquisizioni simultanee PET/MR per lo studio della connettività: metodi
quantitativi in ambito clinico

di Ing. Erica SILVESTRI

Lo studio della connettività cerebrale ha recentemente ricevuto un crescente
interesse da parte delle neuroscienze, sia da un punto di vista di analisi
della condizione sana che patologica. Gli scanner ibridi PET/MRI sono stru-
menti potenzialmente molto utili per studiare questo complesso fenomeno.
In questo lavoro di tesi è stato messo a punto un quadro generale per l’acquisi-
zione e l’analisi di dati simultanei PET/MRI, al fine di poter studiare in
modalità multimodale la connettività cerebrale in un ambiente sperimen-
tale di tipo clinico. Diversi aspetti sono stati affrontati a partire dalla pi-
anificazione di un protocollo di acquisizione coerente con il vincolo clinico
alla ricostruzione dell’immagine PET, dalla selezione e implementazione di
metodi per la quantificazione dei dati acquisiti allo sviluppo di metodolo-
gie per combinare le informazioni complementari ottenute attraverso le due
modalità. Il quadro di analisi sviluppato è stato applicato a due diversi studi,
un primo condotto su pazienti affetti da malattia di Parkinson e demenza, ed
un secondo su gliomi di alto grado.
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Chapter 1

Introduction

1.1 Background

In the recent decades, the study of the brain connectivity has attracted the
functional brain imaging neuroscience community, so that a quick research
on Pubmed reports almost 15000 articles on it since 1975, when the work
of Legendy (Legéndy, 1975) was published. This appealing term refers to
the fact that neurons and neural populations do not function as islands onto
themselves. Rather, they interact with other such elements through their af-
ferent and efferent synaptic connections in an orchestrated manner so as to
enable different sensorimotor and cognitive tasks to be performed (B. Hor-
witz, Duara, and Rappoport, 1984) as well as resting state fluctuations (Barry
Horwitz, 2003), according to the concepts of segregated and integrated brain
functioning (Friston, 2011). The connectivity studies typically performed in
clinical settings can be classified in two main fields: structural and functional
connectivity.
Structural studies start from the observation that in order for an interaction
to occur, the presence of a physical substrate, i.e. physical connections be-
tween neuronal population or wider brain regions carried by axons is nec-
essary. From a whole-brain perspective, structural connectivity (SC) anal-
ysis is concerned with describing and quantifying the complex network of
links made by the white matter bundle within the brain (Lang et al., 2012)
and is commonly investigated using diffusion tensor imaging (DTI) mag-
netic resonance approaches. In particular, DTI exploits the diffusive prop-
erties of water molecules to estimate the location, orientation of the brain’s
white matter tracts. Although well established mathematical models that
describe how diffusion processes are linked to white matter bundle are avail-
able in literature (Hoy and A. L. Alexander, 2015) (i.e. diffusion tensor model
(Basser, 1995), the constrained deconvolution tractography (Tournier, Cala-
mante, and Connelly, 2007) or micro-structural models (H. Zhang et al., 2012;
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Novikov, Kiselev, and Jespersen, 2018)), each of them require that the ac-
quired DTI images have specific characteristics in terms of signal to noise
ratio (SNR), voxel size, number and magnitude of applied gradient field that
need to be fulfilled and take into account when a connectivity study is de-
signed in order to match the hypothesis of the model itself (H. Zhang et al.,
2012; D. C. Alexander and Barker, 2005; Tournier, Mori, and Leemans, 2011).
Functional connectivity (FC), on the other hand, is defined as the tempo-
ral coincidence of spatially distant neuro-physiological events (Friston, 1994;
Friston, 2011), and was firstly observed by Friston and colleagues in a study
conducted on positron emission tomography data (Friston et al., 1993). In
this context, therefore, two brain regions, neural populations or single neu-
rons are considered to have a functional connection if there is a statistical
relationship between any measures of their activities. In some ways FC rep-
resents the intuitive notion that when two things happened together these
two should be related each other (B. Biswal, 2015). Based on the spatial
and temporal resolution that one wants to achieve in describing that link,
different techniques are available. Those techniques range from microelec-
trode array for cellular-resolution electrophysiology, to electro- and magneto-
encefalography for near whole-brain high temporal resolution measurement
of the electrophysiological neuronal activity, to blood-oxygen-level depen-
dent (BOLD, Ogawa et al., 1990) functional magnetic resonance imaging (MRI)
for whole-brain high spatial resolution measurement (B. Biswal et al., 1995),
and allow researchers to study brain networks during task dependent states
or resting states. Electro- and magneto-physiological signals represent a di-
rect measure of the neuronal or regional activity, while, the BOLD contrast
imaging is based on changes in blood flow, volume, and oxygen consump-
tion indirectly associated with neuronal activity (Glover, 2011). Although
these two approaches convey rather complementary functional information,
the latter is the most employed in studying functional connectivity (almost
six times more used, according to Pubmed), probably due to the high acces-
sibility of MR scanner in clinical settings, to the supposed-to-be greater ease
of use and to the extensive presence of user-friendly analysis toolbox. As
for diffusion imaging, when one is involved in the planning a BOLD-based
functional connectivity study it is of fundamental importance to take into ac-
count some constraints such as the voxel size, the sampling frequency, the
temporal signal to noise ratio (Renvall, Nangini, and Hari, 2014). Indeed, as
quantifying FC relies basically in computing a correlation, each single source
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of noise in data, such as motion, breathing or other artefactual high time-
variant noise, could potentially lead to biased estimates.
Despite the limitations due to the quality of the data acquired in the clini-
cal environment, in the last few year, the clinical study of connectivity, was
it structural or functional, proved to be a captivating and useful tool to de-
scribe and characterize the pathological brain functioning. In particular, sev-
eral studies have shown how alteration in connectivity are suggestive of neu-
rologic or psychological disorders (Azeez and B. B. Biswal, 2017). Depend-
ing on the underlying pathology, different type of misconnections has been
observed, in particular, the link between two regions or resting state net-
works could be increased, as in case of partial functional reorganization or
iperconnectivity, or, on the opposite, decreased or completely disrupted, as
for the disconnectivity phenoma revealed by studies conduced on patients
with schizophrenia (Coyle et al., 2016). Indeed, disturbances in brain regions
physical interconnection or joint activity have been reported for a number of
pathological states (Fox, 2010), including Alzheimer’s disease (Grothe and
Teipel, 2016; K. Wang et al., 2007), multiple sclerosis (M. Rocca et al., 2012;
M. A. Rocca, De Meo, and Filippi, 2016; Schoonheim et al., 2015; Tona et al.,
2014), depression (Greicius et al., 2007; Sheline et al., 2010; Wise et al., 2017;
X. Zhu et al., 2017), schizophenia (Yuan Zhou et al., 2008; Singh et al., 2015;
Sheffield and Barch, 2016), epilepsy (Chiang and Haneef, 2014) and spatial
neglect following stroke (B. J. He et al., 2007).
Beside functional and structural connectivity, it is possible to study the in-
teraction between different regions, through the underpinning physiological
processes that are linked to the observed neuronal activity, such as glucose
metabolism or blood flow, and to the transmission of information, such as
the release of specific neurotransmitters or presence of specific receptor sys-
tems. From a clinical perspective, also measures of ongoing pathophysio-
logical processes, e.g. the deposition of βamyloid in Alzheimer’s disease
or Parkinson’s disease, play an important role in the description of altered
connectivity. For this purpose, positron emission tomography (PET) with
its high biological specificity and selectivity in following functional dynamic
processes in the brain, is the modality of choice for molecular imaging (Pich-
ler et al., 2008). In fact, depending on the employed radiotracer it allows to
derive a large amount of physiological and pathophysiological parameters
such as cerebral blood flow, glucose metabolism, neuroreceptor binding, tis-
sue inflammation, protein synthesis, tau and βamiloid burden, etc. When
planning this type of study, after selecting the appropriate tracer, in order
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to relate the radioactivity measured with PET to the underlying processes
two steps are required. First of all, PET coincidence measures need to be
reconstructed into a dynamic or static image accordingly to the subsequent
analysis protocol. Then it is necessary to describe the dynamic behaviour of
the tracer in the tissues by means of mathematical models that need to be
estimated and validated.
A multimodal approach to the study of pathological connectivity has sev-
eral advantages because of the opportunity of relating the functional alter-
ation to the pathological processes that occurs in the affected tissues, and
potentially to overcome the gap in understanding the neurobiological mech-
anism through which pathology impact connectivity. The clinical literature
of recent years shows how some groups have worked in this direction, us-
ing separately acquired PET and MRI data. For example, similar altered
spatial pattern of connectivity, metabolism and amiloid load were found in
Alzheimer’s disease (Grothe and Teipel, 2016; Mattsson et al., 2014; Elman et
al., 2016; Pasquini et al., 2017; Taylor, Kambeitz-Ilankovic, Gesierich, Simon-
Vermot, Franzmeier, Caballero, et al., 2010), or dopaminergic PET imaging
and BOLD fMRI were employed to understand striatal dopamine modula-
tion of functional connectivity networks in Parkinson’s disease (Baik et al.,
2014; Lebedev et al., 2014).
On top of these first interesting results, hybrid PET/MRI scanners are the
promising tools to deal with multimodal studies aimed at delving the com-
plex phenomenon of brain connectivity, as they allowed acquiring concur-
rently structural and functional informations as well as estimates of physio-
logical and pathophysiological underlying processes (Aiello, Cavaliere, and
M. Salvatore, 2016; Cecchin et al., 2017). Indeed, those scanners allow to
perform multimodal imaging combining the PET high specificity for physio-
logical processes with several MR based measures.
Both PET and MRI techniques suffer from the high intra-individual variabil-
ity in estimates, which is related to the observed cerebral function and cogni-
tive processing as well as to the technique itself (Tyler et al., 1988; Maquet et
al., 1990; B. Chen et al., 2015). For example, glycaemia pre-scan levels, body
temperature, sleep status, and haematic changes are known to significantly
alter the glucose consumption rate and thus to bias 18F-FDG metabolism es-
timates. While, BOLD contrast could be altered by several factor such as
age, spurious signal variabilities associated with vascular, haemodynamic
and respiratory characteristic. For these reasons, concurrent measurements
of PET and MRI data have the potential of an increased sensitivity due to the
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minimization of the physiological variability and minimizing differences of
potential confounds affecting of each technique (Cecchin et al., 2017).
In the last few years, a number of concurrent PET/MRI studies have focused
on linking brain metabolism to functional connectivity and brain activity in
healthy subjects (Cecchin et al., 2017; Wehrl et al., 2013; Savio et al., 2017;
Thompson et al., 2016; V. Riedl et al., 2014; Aiello, E. Salvatore, et al., 2015;
Valentin Riedl et al., 2016), while only one study, to our knowledge, has at-
tempted to extend this type of analysis to pathological conditions (Tahmasian
et al., 2016). And no study was conducted to relate physiological and patho-
physiological processes other than metabolism with connectivity, although
this is a potentially very interesting field of application particularly for the
clinic.

1.2 Aim

The aim of the work of thesis was to develop a general framework for the
acquisition and analysis of simultaneous PET/MRI data to study brain con-
nectivity in a clinical experimental setting. Several aspects have to be faced
during this optimization process ranging from the planning of an acquisition
protocol consistent with clinical constraint to the off-line PET image recon-
struction, from the selection and implementation of methods for quantifying
the acquired data to the development of methodologies for combining the
multimodal informations obtained with the two modalities. Moreover, the
developed analysis framework was applied to two different clinical studies
in order to verify its suitability for the study and characterization of patho-
logical alterations of connectivity.

1.3 Outline of the Thesis

In the following list is reported a summary of the topics covered by each
chapter.

• Chapter 2: Hybrid PET-MRI scanner
A brief introduction to simultaneous PET/MRI acquisitions is given.
An overview of the overall structure of the scanners, the technological
solutions implemented over the years, and the currently commercially
available scanner is provided.
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• Chapter 3: Framework for Simultaneous PET/MRI Study of Brain
Connectivity
Here is detailed the process that led us to define a suitable framework
for the integrated study of connectivity. The chapter is focused on four
main points: the planning of a pipeline for off-line reconstruction of
PET images, the optimisation of the dynamic PET reconstruction sam-
pling grid for image derived input function (IDIF) extraction, the devel-
opment of a method to obtain a proxy of the cerebral blood flow from
the first samples of the PET time activity curve, and, finally, the set-
up of the MR acquisition protocol, including the tuning of sequences,
required for structural and functional connectivity study.

• Chapter 4: Multimodal Approaches to Connectivity Analysis in Parkin-
son’s Disease
In this chapter the results obtained by applying the pipeline described
in Chapter 3 to a small cohort of patients with Parkinson’s Disease are
reported and discussed. A method for integrating MR and PET feature
is also presented.

• Chapter 5: Connectivity Mapping in Brain Tumour: A Case Study
The chapter provides a second example of the feasibility of the intro-
duced framework, which is here applied to a brain tumour case study.

• Chapter 6: Conclusions
Performance evaluation, according to the preliminary results reported
in Chapter 4 and Chapter 5, as well as limitation of the proposed pipeline
of analysis are discussed.
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Chapter 2

Hybrid PET-MRI Scanner

The idea of combining PET and MRI scanner in a single acquisition sys-
tem, capable of simultaneously acquiring both datasets, was suggested in
the early-mid 1990s (B. E. Hammer, 1991; Bruce E. Hammer, Christensen,
and Heil, 1994). The integration was motivated by the complementary na-
ture of the information that can be obtained by these two imaging tech-
niques(Catana, 2017). Indeed, on one hand, PET allows imaging of a wide
range of physiological, pathological and biological processes with an high
sensitivity but low spatial resolution, while, on the other, MRI provides soft
tissue high spatial resolution anatomical images and functional images with
good spatial resolution. Albeit the two technique are mostly complementary,
when comparing and combining their results it is necessary consider the mis-
match in terms of biological specificity and quantitativeness between them.
In fact, MR-derived features are generally not quantitative and exhibit a bi-
ological specificity which is several orders of magnitude smaller than that of
positron emission tomography imaging (Catana, 2017).
As due to the physical characteristics of the two imaging systems, several
challenges has to be faced during the development of hybrid scanners and
some unsolved problems are still present, a licit question one can rise is "Is it
really necessary acquiring functional PET and MR data simultaneously?" The
answer to this question is yes, the effort required is absolutely worthwhile.
Indeed, as suggested in (Pichler et al., 2008; Cecchin et al., 2017), the need
of temporal matching between the two acquisition is justified by a number
of biological considerations such as the high inter- and intra-subject results
variability. Moreover, concurrent acquisition are compulsory for a wide class
of studies, i.e. the analysis of the effect of drug on receptor occupancy on
blood flow proposed by (Sander et al., 2013; Vidal et al., 2017), or the assess-
ment of the the relationship between specific receptor systems response and
changes in functional connectivity as reported by (Atzil et al., 2017).
Prototype of MRI-compatible PET scanner for simultaneous imaging of small
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animals started to appear in the mid 2000s (Raylman, Majewski, et al., 2006;
Schlyer et al., 2007), while only after a period of 15 years devices for human
simultaneous acquisitions became available. In contrast to the process of in-
tegration between PET and CT, in order to be able to combine the two sys-
tems, it was necessary to address a number of technological problems related
to the interference that the two systems have on each other, as the goal has
been a full integration with limited degrading of the optimum performance
of both PET and MRI system (Pichler et al., 2008; Gaspar Delso and Ziegler,
2009; Vandenberghe and Marsden, 2015; Catana, 2017).

2.1 Challenges of PET/MRI system

The main challenge in combining PET and MRI was to develop PET detectors
MR compatible, as standard detectors could not be placed in the isocentre of
an MRI scanner since their scintillation elements are highly susceptible to
magnetic field (Harald H. Quick, 2014; Vandenberghe and Marsden, 2015).
However, other phenomena related to mutual interference might also take
place, as the project of the integration of the two systems required that the
two were installed concentrically with PET scanner housed within the MR
one, as depicted in Figure 2.1. Because of this configuration, indeed, the

Figure 2.1: Schematic representation of hybrid PET-MR scanner.
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MR static field (B0) for hydrogen spin alignment of the sample, the radio-
frequency (RF) and the spatial encoding gradients employed to generate and
measure the MR signal are expected to substantially alter the PET signal
(Pichler et al., 2008). In particular, B0 tends to perturb the path of electrons
within the detectors resulting in a loss of the gain, while, the rapid switching
of MR gradient and radio-frequency fields could induce eddy current loops
in conductive components that interfere with signal and can lead to heating
and mechanical vibrations, and, finally, RF generated by the transmit coil in-
terferes with any electronics arranged within the magnet bore and this can
cause a drop in PET count rate (Vandenberghe and Marsden, 2015). In addi-
tion, as the body coils are placed inside the PET field of view, an additional
element that absorbs gamma radiation lies between the source and the detec-
tors and contributes to PET signal attenuation.
Conversely, from the MR point of view, the presence of PET detectors inside
the gradient coil and magnet could prevent the MRI scanner from working
properly. Indeed, MR scanners are built to achieve very uniform B0 strength,
so that the protons resonate at virtually the same frequency, but, when ma-
terials such as the scintillators, are placed in the magnet, the local magnetic
field strength locally changes. This causes the protons to spin at altered fre-
quencies, resulting in severe geometrical distortions and susceptibility arte-
facts. Moreover, PET electronics and power cables could interfere with radio
frequency detection inducing degradation of the MR images (Muzic and Di-
Filippo, 2015).
Over the years, several strategies were carried out to overcome the previ-
ously mentioned set of problems. First of all, MR-compatible materials has
been used both for scintillators and PET electronics and shielding. MR com-
patibility depends on the materials’ magnetic susceptibility, i.e. the degree
to which the material is magnetized when placed in a magnetic field. Ma-
terials having high magnetic susceptibility must be avoided in the PET de-
tectors and integrated electronics. The most widely used PET scintillators,
that do not contain gadolinium, have a magnetic susceptibility similar to that
of human tissue and have been demonstrated to have negligible effects on
MR. Even in this case some degree of field distortion is inevitable and needs
to be compensated by shimming. Measurement of the static magnetic field
and the linear field gradient in a commercial simultaneous PET/MR system
compared to its base MR-only system demonstrated that the inhomogeneity
caused by the PET detectors in integrated PET/MR is negligible (Muzic and
DiFilippo, 2015).
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In the meanwhile, PET detectors that are insensitive to magnetic fields were
developed. The photomultiplier tubes (PMT) commonly used in PET scan-
ners, have been replaced by avalanche photodiodes (APD), the first photon
detectors that were found to work even inside ultra–high-field magnets (Van-
denberghe and Marsden, 2015). Besides, APDs were very compact com-
pared with PMTs, which was advantageous considering the limited space
inside the gantry of an MR scanner. More recently, Geiger mode APDs (also
called solid-state photomultipliers, silicon photomultipliers (SiPMs) or mul-
tiphoton pixel counters) have emerged as promising candidates for replacing
APDs as the photon detector of choice for simultaneous PET/MR imaging, as
they have shown to have better timing properties (Vandenberghe and Mars-
den, 2015).
Finally, in order to reduce the impact on PET detectors sensitivity, maintain-
ing a high MR sensitivity, MRI radio-frequency coils were redesigned and
built using minimally attenuating materials.

2.2 PET/MRI Scanners for Human Simultaneous

Acquisitions

Currently, if we consider clinical acquisition systems that allow simultane-
ous imaging, only two hybrid PET/MRI scanners approved by Food and
Drug Administration (FDA) are commercially available: the Siemens Bio-
graph mMR (Siemens Healthcare Sector, Erlangen, Germany) and the Gen-
eral Electric (GE Healthcare, Waukesha WI, USA) Signa PET/MR (Ladefoged
et al., 2017). Siemens was the first to introduce a fully integrated whole-body
PET/MR scanner, in 2010, when the first Biograph mMR was installed at
the Technical University of Munich (Muzic and DiFilippo, 2015). This hy-
brid system comprises a 3.0T whole-body MR system with a length of 199
cm (magnet length 163 cm) that hosts a fully integrated PET detector in its
magnet isocentre providing a 60cm diameter patient bore. It is based on the
Verio 3.0T MR platform which was modified to house the PET detectors, elec-
tronics and cooling system. Maximum gradient strength is 45 mT/m in all
three axes and maximum slew rate is 200 T/m/s. The field of view (FOV) of
the MR system is specified to 50x50x45 cm3 . The PET detectors that exploit
the APD technology are positioned between the radiofrequency coil and the
gradient set. A total of 56 LSO-APD detector blocks, each consisting of 8x8
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Figure 2.2: Commercially available integrated PET/MR imag-
ing scanners for human use: Siemens Biograph mMR (panel
A, www.healthcare.siemens.it/magnetic-resonance-imaging/mr-pet-
scanner/biograph-mmr); General Electric Signa PET/MR (panel B,
www.gehealthcare.com/en/products/categories/magnetic_resonance_imaging/3-
0t/signa_pet-mr)

array of crystal elements with a block area of 32x32mm2 coupled to an array
of 3x3 APDs, are aligned circumferentially to form one PET detector block
ring. Eight detector block rings form the full PET detector unit, spanning a
field of view of 25.8 cm in z-direction, and a transaxial field of view of 59.4cm.
The timing resolution is 2.93 ns (so the system does not allow time-of-flight
(TOF) acquisition), the spatial resolution is 4.3 mm full width at half max-
imum (FWHM) at 1 cm offset from the centre of the field of view, and the
scanner sensitivity is 15.0 kcps/MBq. The patient bed and coils are modified
to reduce the attenuation of 511 keV photons (G. Delso, Furst, et al., 2011).
The system permits list mode acquisition of PET data in 3-dimensional mode
(Vandenberghe and Marsden, 2015; Catana, 2017).
General Electric introduced the first whole-body SiPM-based integrated PET-
MR imaging scanner, Signa PET/MR, in 2013. The MR component of the
Signa PET/MR scanner consists of a 60cm bore 3.0T permanent magnet,
gradient coils (44 mT/m amplitude and 200 T/m/s slew rate), and trans-
mit/receive body coils similar to the original GE 3.0T Discovery 750w MR
system on which it is based. The PET components are placed between the
radiofrequency shield of the body coil and the gradient coils, with a total de-
tector thickness (including electronics and cooling) of less then 5cm. The PET
gantry is made up of 28 modules consisting of 20 detector blocks made up of
a 4x9 array of 4.0x5.3x25mm3 lutetium-based scintillator, the readout is done
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with a 1x3 arrays of analogue SiPMs. The timing resolution is less than 400ps
(which allows time-of-flight (TOF) acquisition), the spatial resolution is 4.4
mm FWHM at 1cm offset from the centre of the field of view, and the scan-
ner sensitivity is 23.3 kcps/MBq (Vandenberghe and Marsden, 2015; Catana,
2017).
The major difference between the two hybrid scanners is the TOF capabil-
ity, which is only present in GE SIGNA PET/MR system. TOF PET refers to
the detection of positron annihilation protons with an extremely high tempo-
ral accuracy that can be used to estimate the annihilation point between the
two detectors that recorded the event by looking at the difference in arrival
times between the two protons (Bailey et al., 2005). Indeed, provided that
the the difference in arrival time (∆t) measurement is sufficiently accurate,
knowing ∆t and the speed at which the photons travel from the annihila-
tion point to the detectors (i.e. the speed of light, c), one can obtain a good
estimate of the event’s position (that is the distance from the origin of the
scanner, ∆x) via the relation: ∆x = c∆t/2 (Vandenberghe, Mikhaylova, et
al., 2016). For this reason a good temporal accuracy could potentially lead to
less blurred images (Bailey et al., 2005). Thus, the main advantage of includ-
ing TOF information is that the PET data signal-to-noise ratio improves if
compared with non-TOF acquisitions, at least from a theoretical perspective.
However recent studies reported limited improvements in image qualities
(Catana, 2017), that are probably due to the TOF performance of current gen-
eration PET/MRI scanners, if compared with PET/CT acquisition systems.

2.3 Attenuation Correction in Hybrid PET/MRI Scan-

ner

Beside material and technical developments that made it possible to reliably
insert PET detectors into an MR environment, one of the major challenge that
has been faced in order to use the PET/MRI equipment was to develop ro-
bust methodologies for attenuation correction (AC). This is still an open issue
(Ladefoged et al., 2017).
To provide a valid quantification of tracer activity, PET data need to be atten-
uation corrected before performing image reconstruction. Indeed, the anni-
hilation protons are absorbed by scanner hardware components (i.e. scanner
bed, positioning aids, RF coils, body coils, etc.) as well as by patients tis-
sues interposed between the emitting source and the PET detectors, and this
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Figure 2.3: Example of complete attenuation map (µmap) for attenuation correction
in hybrid PET/MRI imaging system (sagittal, coronal and transversal view). The
µmap includes the CT-based hardware attenuation map of RF head-neck coil and
the scanner table, clearly visible in the transversal view, and the spatial pattern of
bone, soft tissues and air of the patient’s head and neck.

Figure 2.4: 3D render of a complete µmap. The µmap includes the CT-based hard-
ware attenuation map of RF head-neck coil and the scanner table (yellow scale), and
the spatial pattern of bone, soft tissues and air of the patient’s head and neck (grey
scale).

reduces the number of detected true annihilation events and consequently
leads to systematic quantification error and biased quantification (Daniel H.
Paulus and Harald H. Quick, 2016). In particular, photon attenuation can re-
sult in as high as 90% signal reduction in some regions (Keereman, Mollet, et
al., 2013). For this reasons, performing attenuation correction is fundamen-
tal in quantitative imaging. To do so, as will be discuss later in this chap-
ter a proper map of the attenuation properties of tissues and environment,
the so-called µmap, is compulsory for quantitative studies. An example of a
complete attenuation map is depicted in Figure 2.3 and in Figure 2.4. The
reconstruction of PET images is based on the fact that the acquired data in
the form of sinograms represent the number of coincidence events detected
by photomultipliers and that this number is proportional to the amount of
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tracer content assessed along single projection of detection or line of response
(LOR). However,several physical phenomena affect the coincidence detec-
tion and should be taken into account before and during performing the im-
age reconstruction, i.e. detector efficiencies variation, presence of random
coincidences, scattered coincidences, photon attenuation, dead time and ac-
tivity decay (Bailey et al., 2005; Henkin et al., 2006; Federico E. Turkheimer,
Veronese, and Dunn, 2014). In particular, detection efficiency of detector
pair varies from pair to pair because of non-uniformities in individual de-
tectors efficiencies, geometrical variations and detector electronics. Random
and scatter coincidence are background events that degrade the quality of
the resulting images (i.e poor contrast), and refer respectively to detection by
a pair of detector of two unrelated photons from two separate positron anni-
hilation location and to detection of photons. And finally, dead time refers to
the time interval between the instant in which the photon interacts with the
detector and the instant in which, through the system electronics, the posi-
tion of the event is counted. During this time, the detection system is unable
to process a second event, which will be lost (Henkin et al., 2006; Saha, 2010).
Among these phenomena, the one that requires a PET-MRI ad-hoc correction
methods development is the attenuation, because for the remaining method-
ologies already developed in the PET field can be borrowed.
Photon attenuation is due to the interaction of gamma radiation with the mat-
ter at atomic level. The primary interaction mechanism at energy around 511
keV is by a Compton interaction, which results in loss of energy and change
of direction of the photon. From a physical perspective the attenuation is a
function of the photon energy and the electron density of the material tra-
versed by the photon to reach the detector. Mathematically, the magnitude
of photon transmission through an attenuating object can be expressed by
the following exponential equation:

Φ = Φ0 exp

[
−
∫
S

µ(x, y)dr

]
(2.1)

where Φ and Φ0 are the incident and transmitted photon fluencies and dr

is the differential of the thickness of the tissues crosses by the photon beam
along the path S. The parameter µ is the linear attenuation coefficient and
represents a measure of the probability that a photon will be attenuated while
passing through a unit length of the medium (Saha, 2010; Berker and Y. Li,
2016). In the case of positron emission tomography, as the system records two
anti-parallel photons that traverse the total tissue thickness, the equation 2.1
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can be reduced to:
C = C0 e−µS (2.2)

whereC andC0 are respectively the probability of counting both anti-parallel
photon by detectors and the probability of the annihilation event. Therefore,
the problem of correcting for photon attenuation in the body is that of deter-
mining the probability map of attenuation of all sources lying along a partic-
ular LOR (Zaidi and Hasegawa, 2003).
Therefore, while correcting PET data for attenuation, the main challenge re-
lies in finding reliable attenuation correction factors that compensate for pho-
ton detection loss. These factors are typically computed as the inverse of the
attenuation map. The attenuation map should contain information about the
spatial distribution of the linear attenuation coefficient and accurately delin-
eate the contours of the patient’s anatomy that is included in PET camera
field of view (T. C. Lee et al., 2016). Since the advent of combined PET/CT
scanner in 2001, the AC problem had been considered solved as computed
tomography images inherently represent a three-dimensional spatial distri-
bution of tissue density and hence can provide an accurate patient’s specific
µmap. Before applying the CT-based correction factor to the PET data, the
only additional step that should be performed is converting Hounsfield unit
(HU) of CT into the linear attenuation coefficient at the photon energy ra-
dionuclide, i.e. at 511 keV. This conversion commonly consist in a scaling
process that involves an experimentally measured and linearly or bi-linearly
approximated transform, that is optimized for human tissues and depends
on the acquired CT peak voltage (Kinahan et al., 1998; Zaidi, Montandon,
and Alavi, 2007). Although the CT-AC method suffers from a number of lim-
itation, such as metal-induced or beam-hardening artefacts, it is considered
the clinical gold standard approach to AC (Y. Chen and An, 2017), and the
ground truth also for the development magnetic resonance based AC (MR-
AC) methods (Ladefoged et al., 2017).
When dealing with PET/MRI equipment, the attenuation map is obtained as
the sum of a µmap of the fixed system component with a patient’s µmap. In-
deed, as proven in several studies, even for optimized coil designs with least
attenuation effect, the attenuation correction must not be omitted, as the de-
sign of completely PET-transparent RF coil is not yet possible (Eldib et al.,
2016). Concerning the rigid hardware components, as their peculiar absorp-
tion characteristics are stationary, the related µmap is commonly generated,
memorized and made available within the image reconstruction PET/MRI
software by the vendor (Eldib et al., 2016). The µmap is typically computed
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from the CT scan of the equipment (i.e. RF coils and scanner’s table) by con-
verting the HU values to linear attenuation coefficient at 511 keV (Daniel H.
Paulus and Harald H. Quick, 2016) as described in (Carney et al., 2006). To
note that, as the equipment is made of plastic and electronics that show atten-
uation higher than human tissues, for this conversion instead of employing
the previously mentioned brain linear or bilinear transform, it is necessary to
adapt it to this kind of materials (D. H. Paulus, Tellmann, and H. H. Quick,
2013).
Whereas, considering the high variability observed among the human head
morphology, for each patient it is fundamental to determine a specific photon
attenuation map that delineates the single subject specific anatomical pattern
of absorption. Although in conventional PET/CT scanner the human µmap
is computed from a patient’s CT scan, CT image is not generally available
in integrated PET/MRI studies. Hence, the µmap should be obtained from
suitable MR data (Y. Chen and An, 2017). Several MR-based methods had
been proposed in the last few years to address this problem, but it still re-
mains one of the most debated step in PET/MRI image reconstruction (Y.
Chen and An, 2017; Ladefoged et al., 2017). Inferring the photon absorption
characteristics from MR images is particularly complicated because of the
different physical principles that underlie the signal generation in the two
modalities. Specifically, the MR signal depends on proton density and tissue
relaxation times and it does not reflect electron density, which, on the other
hand, is relevant for attenuation correction (Lundman et al., 2017). Hence,
there is no direct correspondence between the MR signal and gamma radia-
tion absorption at 511 keV. In particular, this is the case of bone tissue and air,
whose AC values are at the lower and upper bound of the attenuation factor
distribution. Those tissues are fundamental for calculating µmap but very
complex to describe with standard MR sequences. Indeed, the cortical bone
T2∗, i.e. the spin-spin relaxation in presence of field inhomogeneity, is so fast
the tissue signal dephases before any conventional MR sequence collect data.
However, if the sequence echo time is short enough, the bone signal has not
completely dephased and thus detectable.
In the last ten years, several approaches have been proposed in literature
to solve the MR-based attenuation correction problem. These can be cate-
gorized in two main groups: template/atlas-based and segmentation-based
methods (Y. Chen and An, 2017).
The template/atlas-based methods rely on an atlas of predefined paired struc-
tural MR and CT images and on an algorithm that create a pseudo-CT image
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starting from the patient’s MR image. Those methods commonly derive a
computational relationship between a group of observed CT and MR im-
age pair using population data, which can be generalized for subsequent
deployment in absence of CT image. Depending on how the pseudo-CT is
computed, the atlas-based methods could subdivided into three subgroups:
patch-based, voxel-based and machine learning-based approaches. The first
two approaches are aimed at achieve a good alignment between the single
subject structural image and the atlas MR, that was previously matched to
the population CT, the pseudo-CT is then typically obtained by an averag-
ing of all the atlas CT (Burgos et al., 2014; Catana et al., 2010). The machine
learning-based approaches employ the atlas paired MR and CT images to de-
rive a mathematical relationship between the two images using a set of fea-
tures such as signal intensity, geometrical metrics, or heterogeneity extracted
from the structural MR image and recombined to determine the pseudo-CT
map. Although the high computational cost due to the learning step, this
third methods class represents one of the most investigated and intriguing
MR-AC technique in the last few year. Several machine learning methods
including support vector machine, gaussian process regression, random for-
est have been proposed (Y. Chen and An, 2017; Shi et al., 2017; Mehranian,
Arabi, and Zaidi, 2016), however the most promising seems to be convolu-
tional network-based techniques such as those proposed by Gong and col-
leagues (Gong et al., 2017) and by Han and colleagues (Han, 2017).
The segmentation-based methods are direct MR imaging-based methods that
derive the µmap exclusively from MR images, usually by segmenting the
structural T1-weighted (T1w) images or images acquired with expressly ded-
icated sequences into multiple tissue classes. To build the subject specific
pseudo-CT, each class is uniquely assigned to a constant mean linear atten-
uation coefficient according to literature values (Wagenknecht et al., 2013),
an analogous to colour-by-numbers. This way a piecewise constant AC fac-
tor along the LOR is employed during the AC step (Y. Chen and An, 2017).
Beside T1w images, the images that are commonly employed for this pur-
pose are collected using the following sequences: two-point Dixon-Water-
Fat (Dixon), (Martinez-Moller et al., 2009; Wollenweber et al., 2013), the ul-
trashort echo time (UTE) (Catana et al., 2010) and the 3-dimensional radial
zero echo time (ZTE) (G. Delso, F. Wiesinger, et al., 2015; Sekine et al., 2016;
Florian Wiesinger et al., 2016). The ability to identify different regions and
the number of different classes (tissue content) largely depends on the MRI
sequences used. Concerning Dixon images, a three tissue segmentation is
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usually performed (i.e. air, fat and water) to compute the photon absorption
map as bone, especially cortical bone with high density, seems to be unde-
tectable on these images. On the opposite, UTE and ZTE sequences are more
sensitive to high density tissues and thus allow for the imaging of the bone (Y.
Chen and An, 2017; Keereman, Fierens, et al., 2010). This lead to more robust
tissue segmentation and accurate pseudo-CT map. In particular, the dual-
echo UTE is employed as it gives information of both bone and soft tissues;
the first echo, the shortest one, is mainly used to imaging the bone, while the
second, to collect data from all the other tissues. Images from the two echoes
are then combined to produce a map that represents bone, soft tissues, fat
and air (Muzic and DiFilippo, 2015). Relative to ultrashort echo-time (UTE),
zero echo time (ZTE) imaging offers higher SNR and reduced image blurring
for short-T2 imaging (G. Delso, F. Wiesinger, et al., 2015). However, as the se-
quence is inherently 3D, ZTE imaging is time consuming (Florian Wiesinger
et al., 2016; Sekine et al., 2016). Images obtained with this technique are pro-
ton density weighted images. The pseudo-CT is computed by normalizing
and segmenting the image according to specific predetermined signal inten-
sity threshold (Sekine et al., 2016).
Atlas-based methods have shown to be little sensitive to image noise and
artefact and thus highly accurate and robust, but concurrently time consum-
ing and unable to account for subject’s abnormal anatomy and/or unusual
tissue density that significantly differ from the population atlas. In particular
the last point is a critical aspect for machine learning approaches. On the op-
posite, segmentation based approaches are fast and can account for patient’s
variability better than atlas-based methods, however, as will be shown and
discussed in the next chapter, they are influenced by image noise and arte-
facts such as the one produced by metal dental implants (Y. Chen and An,
2017) or by high magnetic field inhomogeneity (G. Delso, Carl, et al., 2014).
Concerning the two commercially available PET/MRI scanner, the attenua-
tion correction step is realized in two different ways. The AC in GE Signa
PET/MRI system is based on an atlas of MRI/CT pairs used to derive the
approximate size and location of bones and air cavities, as reported in (Wol-
lenweber et al., 2013). Two AC-methods are available in the Biograph mMR
system, both based on segmentation of the MR image into tissue classes. The
first, as described in (Martinez-Moller et al., 2009), exploits Dixon images,
while the second makes use of UTE images and is implemented as proposed
by Catana and colleagues (Catana et al., 2010).
A recent study (Ladefoged et al., 2017) compared the performances of 11
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different clinically feasible AC methods that employed either atlas-based or
segmentation-based approaches. What was found was that globally liter-
ature methods outperformed the vendor methods, in particular, the atlas-
based method proposed by (Izquierdo-Garcia et al., 2014) was one of the best
performing methods, as it minimized the number of outliers, standard de-
viation, and average global and local errors. The study concluded that the
challenge of improving the accuracy of MR-based attenuation correction in
adult brains with normal anatomy has been solved to an acceptable degree,
with errors smaller than the quantification reproducibility in PET imaging
(i.e. 5%). But it should be taken into account that the most part of clinical
studies is performed on pathological tissues and thus robustness and repro-
ducibility need to be assessed also in this case before considering the AC
problem in PET/MRI being solved.
Finally, to obtain a complete µmap to be exploited for AC, it is necessary to
consider another difference between the PET and MR imaging modalities.
Indeed, as the field of view (FOV) of the PET camera is larger than the MRI
scanner field of view, the MRI-derived attenuation map is typically incom-
plete, and that could potentially have an impact on the reconstructed data
and bias the tracer kinetic quantification. The truncation effect becomes more
evident if specific body regions, such as the torso, are scanned, because for
example the arms of the patients in most cases exceed the field of view of the
MRI camera and contrary to PET/CT standard acquisitions are posed beside
the patient’s body. Although outside the MR FOV they contribute to gamma
rays attenuation anyway (Harald H. Quick, 2014). The same could be said for
the lower part of the neck while acquiring the patient’s brain. To overcome
this problem, on the Biograph mMR scanner, a maximum likelihood activity
and attenuation (MLAA) estimation algorithm was implemented (Nuyts et
al., 2013; Berker and Y. Li, 2016). This allows to recover the missing part of
the attenuation map from the PET emission data (Heußer et al., 2017; Catana,
2017).
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Chapter 3

Framework for Simultaneous
PET/MRI Study of Brain
Connectivity

To perform analyses of brain connectivity with an hybrid PET/MRI scanner,
it was necessary to define an optimal acquisition protocol for both MR and
PET, as well as an ad hoc PET image reconstruction and analysis pipeline.
The optimization process was carried out in order to obtain highly sensitive
images for both modalities, remaining within a predominantly clinical en-
vironment such as the one in the Nuclear Medicine Department of Padova
Hospital. Indeed, when my PhD work started, the Siemens Biograph mMR
scanner at the Nuclear Medicine Department was mainly devoted to clinical
studies, that did not required advanced MR imaging protocols and did not
have specific technical requirements on the reconstructed PET data images,
as only static analyses were performed.
Concerning PET, the goal of this framework was to obtain data suitable for a
quantitative analysis which was not limited to a single static image descrip-
tion of the observed phenomena, but, conversely, that could enable us to
fully model the kinetics of the tracer within the tissues, providing a quantifi-
cation of the underpinning physiological and biological processes. For this
reason, the image reconstruction pipeline had to be modified so that it could
include a state-of-art attenuation correction step, and it could allow different
sampling time grid (or time binning) of the dynamics, which turned to be
particularly useful for identifying and quantifying specific characteristics of
the PET signal.
The interest in describing the brain connectivity both in terms of statistical
dependencies among regions activities (i.e. functional connectivity) and in
terms of presence of anatomical links between pairs of brain regions, led to
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the necessity of optimizing respectively functional magnetic resonance imag-
ing (fMRI) blood oxygen-level dependent (BOLD) and diffusion tensor imag-
ing (DTI) sequences. Particularly, to achieve the scanner best performance, it
was indispensable to employ the recently introduced multi-band EPI parallel
imaging techniques.
In what follows, a detailed description of the optimization process and ob-
tained framework is reported.

3.1 Dynamic PET Data Reconstruction and Analy-

sis

One of the main goal of this work was to quantify physiological and physio-
pathological processes, such as metabolism and blood flow, by means of
mathematical kinetic modelling of PET signal (R. N. Gunn, S. R. Gunn, and
Cunningham, 2001). To this aim, while scanning, the raw count data were
collected in 3D list mode and images were reconstructed according to the
type of analysis and features that would be extracted. Even if the experimen-
tal setting did not allow acquisition of arterial sampling, when the entire PET
dynamic was available, the compartmental modelling with image derived
input function was used for the kinetic analysis. This method has been pre-
ferred for two reasons: first, the radiotracers employed in our studies did not
have reference regions, hence, compartmental modelling with reference re-
gion was not a viable approach to describe our kinetic; and second, from our
data it was possible to extract a reliable image derived input function (IDIF),
as the major vessels of the neck were included in the PET images thanks to
the wide field of view of the PET camera in the PET/MRI system. As for
every signal, the ability in describing the IDIF shape is tightly related to the
PET signal sampling (Oppenheim, Willsky, and Nawab, 1997), therefore the
PET signal reconstruction time grid has been selected so that it was suitable
both for extracting the IDIF and for fitting the model. This choice was based
not only on the possibilities offered by the modelling technique, but also on
the used tracer, i.e. 18F-Flutemetamol for the study reported in Chapter 4 and
18F-Fluorodeoxyglucose (18F-FDG) for the proof-of-concept study reported in
Chapter 5.
This section describes three distinct problems that have to be addressed to
obtain reliable quantification of PET data, and the proposed solution. In par-
ticular, first it is delineated a pipeline for off-line PET list mode preprocessing
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and reconstruction, then is investigated how to define an PET time binning
(i.e. time framing) which could be reasonable for extracting the IDIF, and
finally a method for estimate a proxy of the cerebral blood flow from the
dynamic PET data is introduced.

3.1.1 Off-line Preprocessing and Reconstruction Pipeline

PET data preprocessing and reconstruction was performed outside the scan-
ner (off-line) using the Siemens e7-tool for Biograph mMR (version VB20P)
software, which is a stand-alone version of the software pre-installed on the
PET Reconstruction Server (PRS) of the Biograph mMR system. The use
of this software offers more degrees of freedom in defining the processing
pipeline than the PRS reconstruction, as it consists of a collection of com-
mand line scripts, one for each step. Therefore, it enabled us to choose the
step of the process to be performed and which attenuation map to be em-
ployed, and to avoid the time-consuming PET reconstruction process being
done on-line, with obvious positive implications on clinical trials. For these
reasons, the goal was to delineate a fully automated pipeline that performs
off-line preprocessing and reconstruction of the PET data acquired using the
Biograph mMR scanner, making use of a state-of-art attenuation correction
algorithm.
The e7-tool reconstruction pipeline consists in three main step: histogram-
ming of list mode file, calculation of the extended µmap (via MLAA, as dis-
cussed in the previous chapter), and finally image reconstruction including
data preprocessing and post-processing smoothing. In the first step, the list
mode file is sorted in multiple emission sinograms, one for each time frame
of the reconstructed dynamic PET, or one in the case of static PET image. In
the second, if necessary, the maximum likelihood activity and attenuation
estimation algorithm is employed to extend the MR-derived human attenua-
tion map to the PET camera FOV. In the third, each single emission sinogram
undergoes a preprocessing that includes attenuation correction, scatter and
random correction, normalization, dead time correction and decay correc-
tion. Finally, the reconstruction algorithm is applied to corrected sinograms
to obtain the dynamic PET data.
While organizing the reconstruction pipeline, we mainly focused on attenu-
ation correction, since as discussed in the previous chapter is still one of the
open issues in PET/MRI reconstruction. Neither the default parameters nor
the algorithms used in the sinograms preprocessing and reconstruction have
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been modified, except for parameters related to the attenuation correction
and potentially to the time binning.

Attenuation correction: Since attenuation maps obtained from vendor
Dixon and UTE sequences were known to be less accurate than µmap com-
puted from other MR sequences, it has been decided to derive the single
patient attenuation map from the structural T1-weighted MPRAGE image
using the method proposed by (Izquierdo-Garcia et al., 2014), which, at the
time, was one of the best performing method according to comparison study
performed by Ladefoged an colleagues (Ladefoged et al., 2017). In particular,
two are the main reasons that have been considered during the choice of this
method. First, it has been shown that this is one of the two best performing
in terms of average and standard deviation error in the cerebellum region,
which is a brain region of utmost interest for PET studies as it is often used
as reference for normalization purposes like in the first application of this
framework reported in Chapter 4. Second, it was the only one that at the
time had been performed and evaluated on brain tumours, which is the case
of the second framework utilization and evaluation described in this work of
thesis.
This method implement a template-based approach. It first corrects for bias
field inhomogeneities and normalizes the T1w image using the normaliza-
tion tool (Sled, Zijdenbos, and Evans, 1998) included in the FreeSurfer Soft-
ware Suite (https://surfer.nmr.mgh.harvard.edu). Then, it employs the Sta-
tistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm/) ver-
sion 8 (SPM8) to extract patient specific tissue probability maps from the indi-
vidual’s intensity normalized T1w MPRAGE image. These probability maps
are subsequently exploited to robustly register the subject’s T1w image to a
template of CT co-aligned probability maps of 15 healthy adults. The aver-
aged corresponding CT template is then back-warped to patient space, con-
verted to linear attenuation coefficient at 511 keV, and blurred with a 4mm
Gaussian filter (Izquierdo-Garcia et al., 2014). In the proposed pipeline, the
attenuation map thus obtained is then merged with the attenuation map of
the head-neck coil and scanner bed, and employed in the attenuation cor-
rection step of the preprocessing. To note that, as the MR-derived µmap is
already spatially smoothed, the regularization operation within the attenua-
tion correction step in off-line pipeline is not performed. This step is in fact
intended for the use of attenuation maps obtained with vendor sequences,
for which generally is not carried out a spatial smoothing. An example of the
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patient’s UTE- and MPRAGE-derived photon attenuation µmap is shown in
the first row of Figure 3.1.

Extended µmap: The FOV truncation potentially bias the tracer kinetic
quantification and typically it is necessary to recover the attenuation map of
the truncated part both in body and head studies. Nevertheless, we avoided
inserting it into our reconstruction pipeline because of the wide field of view
of the MR structural images, which comprised all the patient’s neck and
shoulders tissues included in the PET images and that contributed to the
signal attenuation.

The proposed pipeline was written in Matlab (The MathWorks, Inc.). The
script is essentially a wrapper of the µmap computation algorithm call and
of each single step e7-tool functions system calls. It runs on two different op-
erating systems (OS) as the e7-tool is only compiled for Windows OS but the
Izquierdo and colleagues methods requires the usage of FreeSurfer software
that is specifically implemented for Linux OS. It works as follows: it receives
as input the raw PET data and the MPRAGE image of the patients exported
from the scanner and provides as output the required dynamic PET data ac-
cording to the selected time grid and voxel size. In particular, the pipeline
consists of the subsequent steps:

1. the PET raw data (list mode and normalization file) are organized ac-
cording to e7-tool requirement

2. the attenuation map is computed using the method proposed by (Izquierdo-
Garcia et al., 2014)

3. the complete µmap is calculated using the vendor provided acquisition
system µmap and the subject specific attenuation map

4. the list mode is time binned (histogramming step)

5. the sinogram is preprocessed employing the custom human µmap and
the daily acquired normalization files, and the PET image reconstructed
exploiting the iterative 3D ordinary Poisson ordered subset expecta-
tion maximization (OP-OSEM) algorithm (Popescu, Matej, and Lewitt,
2004). Image matrix size 256x256x127, voxel size 2.8x2.8x2 mm3.

6. no additional spatial smoothing is performed to avoid increasing the
partial volume effect .
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To note that a considerable number algorithm are available for reconstruc-
tion, which differ mainly on the hypothesis of reconstruction model that rep-
resents the relationship between the measured PET sinogram and the actual
image (i.e. the actual position of observed annihilation events). The exist-
ing methodologies can be divided essentially into two types: analytical al-
gorithms where the model is deterministic and can be inverted to find the
image, and iterative algorithms where the model is stochastic (i.e. it includes
a statistical description of the distribution of the signal noise, typically a Pois-
son or log-normal distribution) and cannot be analytically inverted, and the
image needs to be estimated with iterative approaches (Bailey et al., 2005;
Henkin et al., 2006).
Since the selection of the optimal reconstruction algorithm and the fine tun-
ing of its parameters was beyond the scope of this work of thesis, it was
decided to employ the e7-tool implementation of the iterative algorithm 3D
OP-OSEM using the software default and commonly used parameters (i.e. 3
iterations and 21 subsets). OSEM (Hudson and Larkin, 1994) is indeed the
most widely used methodology in the literature (Henkin et al., 2006). More-
over, it models the relationship between the detected annihilation events and
the image in a realistic and complete way (Henkin et al., 2006; Zaidi, 2006),
and has proved to be particularly robust to poor count statistic (i.e. low dose
injection or regions with limited tracer uptake) and not affected by steak arte-
facts (Van Velden et al., 2008). Although aware of the presence of different
optimization approaches for the estimators used for the OSEM model (Reil-
hac et al., 2008; Qi and Leahy, 2006; Rapisarda et al., 2010), as an agreement
on which of these is the best has not yet been reached, in order to obtain
results comparable to the literature, the 3D OP-OSEM implementation was
chosen to remain consistent with what is done by the scanner PET Recon-
struction Server.

Off-line and on-line SSR PET Reconstruction Experimental Comparison

In order to verify that the reconstruction performed with the proposed pipeli-
ne was consistent with the scanner PRS reconstruction and to quantify the
impact of the use of the MPRAGE-derived µmap on our data, the static im-
ages obtained with different attenuation maps and with different reconstruc-
tion systems for a single oncological patient imaged with 18F-FDG were com-
pared. The available data for that comparison were: the 70min 18F-FDG
PET list mode acquisition (administered dose 261 MBq), the normalization
files, the 3D T1-weigthed MPRAGE (TR/TE 2400/3.2 ms, voxel dimension
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of 1x1x1mm3, FOV 256 mm, 160 slices) and the 3D T2-weighted Fluid Atten-
uated Inversion Recovery (FLAIR) (TR/TE 5000/395 ms, voxel dimension of
1x1x1mm3, FOV 250 mm, 160 slices). As e7-tool requires input in list mode
form, it was not possible to extend the analysis to other datasets collected in
the Nuclear Medicine Department of Padova Hospital because they not ac-
quired in this specific format.
The e7-tool reconstruction was performed with default parameters, the se-
lected voxel size was the same of the scanner reconstruction (matrix size
344x344x127) and a post-processing smoothing with a 2mm FWHM kernel
was applied to be in line with on-line reconstruction.
To highlight the differences between the reconstruction results, we also com-
puted the percentage difference between the achieved static images and anal-
ysed those differences both at whole brain level and at the level of single
tissue (i.e. as average of differences in white matter, grey matter and cere-
brospinal fluid), including the tumour tissue. At voxel level the percentage
differences were computed as follow:

ScannerUTE − e7UTE =
ScannerUTE − e7UTE

ScannerUTE
∗ 100

ScannerUTE − e7BOSTON =
ScannerUTE − e7BOSTON

ScannerUTE
∗ 100

e7UTE − e7BOSTON =
e7UTE − e7BOSTON

e7UTE
∗ 100

where ScannerUTE , e7UTE , e7BOSTON are respectively the static reconstruc-
tion obtained on-line using the UTE-derived µmap, the e7-tool static recon-
struction obtained using the UTE-derived µmap, and the e7-tool static recon-
struction obtained using the MPRAGE-derived µmap.
In order to carry out these analyses, the patient’s FLAIR image was em-
ployed by an expert nuclear physician to delineate the tumour tissue and the
MPRAGE was automatically skull-stripped and segmented in white matter,
grey matter and cerebrospinal fluid using the Advanced Normalization Tool
(ANTs) software (Avants, Tustison, Song, et al., 2011; Avants, Tustison, Stauf-
fer, et al., 2014). Both segmentation were then moved into the PET space
using the affine transform estimated by the scanner. Finally, for each tissue
of interest the mean and standard deviation of the percentage change were
computed.
The employed µmaps and the resulted static images are reported in Figure
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3.1. The MPRAGE-derived µmap was only utilized in the off-line reconstruc-
tion, because it was not possible to import that map into the scanner. As
can be seen, there is a significant difference between the two µmaps, that is
more and more evident in the frontal and paranasal sinus area and results
in geometrical distortion in the static images (highlighted in the images with
red circles). This pattern of differences in the µmaps should be attributed to
the type of MR sequence that was exploited to compute the maps. Indeed,
UTE-derived maps suffers from the geometric distortion and signal loss that
are characteristics of echo-planar images and that are tightly to the MR im-
age readout and to static magnetic field inhomogeneity induced by magnetic
susceptibility variations (Haacke et al., 1999).
The maps of the percentage differences between the three reconstruction are
displayed in Figure 3.2, and the tissue mean percentage differences are re-
ported in Table 3.1. From the maps in Figure 3.2, it could be observed that
there was no significant spatial pattern of differences between the ScannerUTE
and the e7UTE reconstruction, conversely, a spatial pattern of differences were
found when the different µmaps were used and those differences were mainly
confined in the UTE geometric distorted area (depicted in yellow and light
blue shades in the figure).

As reported in Table 3.1, percentage differences were negligible both at
whole brain level and at tissue level when we compared the ScannerUTE and
the e7UTE reconstruction, but not negligible differences were found when we
compared the results obtained with the two different µmap. As expected, the
higher differences were found in the grey matter and the CSF.
To conclude, the consistency between e7-tool proposed pipeline and PRS re-

Tissue ScannerUTE - e7UTE ScannerUTE - e7BOSTON e7UTE - e7BOSTON

WB -1.59±2.88 -9.85±29.16 -7.76±21.27
GM -1.45±1.02 -8.91±9.73 -7.32±8.43
WM -1.44±0.73 -7.18±7.45 -5.64±6.68
CSF -1.75±3.41 -8.44±34.18 -5.95±24.67
Tumour -1.43±0.34 -4.33±3.02 -2.86±2.97

Table 3.1: Summary of the comparison of results obtained with the three test AC
methods: ScannerUTE , e7UTE and e7BOSTON . For each couple the mean and stan-
dard deviation of the percentage difference is reported.

construction has been verified. This means that the proposed pipeline for
off-line PET image reconstruction is sufficiently robust. In addition the dif-
ferences in white and grey matter between the static images reconstructed
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Scanner Reconstruction e7 Reconstruction

UTE-derived μmap MPRAGE-derived μmap

e7 Reconstruction

29

Figure3.1:Attenuationcorrectionmapsandcorresponding18F-FDGstaticrecon-
struction.Toprow:lefthandside,UTE-derivedattenuationmap(µmap);righthand
side,MPRAGE-derivedattenuationmap,computedusingthealgorithmproposed
in(Izquierdo-Garciaetal.,2014).Bottomrow:leftpanel,scanner(left)ande7-tool
(right)UTE-derivedµmapbasedreconstructionof18F-FDGstaticPET;rightpanel,
e7-tool(right)MPRAGE-derivedµmapbasedreconstructionof18F-FDGstaticPET.
Theredellipsehighlightstheareasinthefrontalpolenearthefrontalandparanasal
sinuswheretheimpactofthedifferentµmapismoreevident.

usingthetwoµmapswereinlinewiththefindingsofthestudyreportedin

(Ladefogedetal.,2017).Atthetime,nodatawereavailableinliteraturefor

aresultscomparisonwithinthetumourtissue.Indeed,althoughithasbeen

shownthatµmapsobtainedwiththeIzquierdoandcolleaguesmethodare

veryrobustalsointhepresenceofatumour,particularlynearthecranium,

ithasnotyetbeenevaluatedhowthepresenceoftumourtissuecanactin

termsofattenuationofthePETsignal.Furtheranalysesarecertainlynec-

essarytoevaluatehowaµmapdevoidofthecontributionintumourtissue

attenuationcanimpactonattenuationcorrectionstep,althoughthereported

resultstumourregionseemstobethelessaffectedregion.

Inlightofthisresults,thefollowingconsiderationscanbemade:first,itis

fundamentalthatwithinthesamestudythereconstructionofthePETimages

iscarriedoutusingthesameprocessingpipeline,asdifferencesinprocessing

couldpotentiallybiastheresults.Second,asthedifferencesinreconstruction

haveshownaclearspatialpattern,whichwasinagreementwiththepattern
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Figure 3.2: Maps of percentage difference between the 18F-FDG static reconstruc-
tion. The panels exhibit the ScannerUTE − e7UTE percentage difference (A), the
ScannerUTE−e7BOSTON percentage difference (B), and the e7UTE−e7BOSTON per-
centage difference (C). To note that the colour scales of the second two panels cover
a wider range of values.

observed by Ladefoged and colleagues (Ladefoged et al., 2017), when a com-
parison with literature is performed, it is necessary to take into account that
some differences especially if located in frontal regions may be partially ex-
plained by the type of reconstruction carried out.

3.1.2 Optimal PET Time Binning for Image Derived Input

Function

One of the problems that had to be faced during the development of the
framework for the acquisition and analysis of simultaneous PET/MRI data
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was how to sample the PET signal so that it was suitable for using in a com-
partment modelling. Indeed, to employ this mathematical approach to dy-
namic PET data, it is necessary to know precisely how the concentration of
the tracer varies dynamically within the arteries, as this is the input signal
(arterial input function, AIF) to the model, and to have reliable time activity
curves (i.e. signals with good signal to noise ratio) (R. N. Gunn, S. R. Gunn,
and Cunningham, 2001).
Typically in research studies, the AIF is obtained by means of an invasive
arterial sampling, which is considered the gold standard technique (Zaidi,
2006), however in the PET/MRI clinical setting of the Nuclear Medicine De-
partment of Padova Hospital a MR-compatible device capable of acquiring
this type of data is not available. For this reason and due to the fact that
the PET/MRI system allows to have a larger field of view, it was decided to
use an image derived input function (IDIF) as input for the compartmental
modelling (K. Chen et al., 1998; Mourik et al., 2009). Indeed, large arterial
blood pools (i.e. common carotids) are included in FOV. Moreover, accord-
ing to Zanotti-Fregonara and colleagues (Zanotti-Fregonara et al., 2011) sig-
nal extracted from the neck large vessel are subjected to less partial volume
effect than signal obtained from other small brain vessels such as the internal
carotid siphons.
As the image derived input function is extracted from the reconstructed dy-
namic PET data, the ability to discriminate and characterize the IDIF is ob-
viously dependent on the time binning employed during the reconstruction
(X. Li and K. Chen, 2000).
To evaluate what was the appropriate time binning for the IDIF extraction
several time grids were tested. The choice of the time grids to be tested
was performed according to the frame-sampling intervals proposed by Hag-
gstrom and colleagues in their simulation study (Haggstrom et al., 2015) and
by Raylman and colleagues (Raylman, Caraher, and Hutchins, 1993). The
performances of a subset of these two sampling schemes were assessed. In
addition the selection of the time grid was performed having as reference the
arterial sampling grid commonly used in literature for that specific analysed
tracer. Finally, it has been selected the time framing that allowed to better
identify the IDIF time to peak and peak amplitude, that are the two most im-
portant parameters for the fit of the arterial input to the model. We mainly
focused on the temporal description of the signal rather than the spatial one
since in PET/MRI scanners large vessels could be localized using the time-
of-flight (TOF) MR angiography as suggested by Fung and Carson (Fung
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and Richard E. Carson, 2013) and subsequently developed by Sari and col-
leagues (Sari et al., 2017). TOF angiography is an MRI techniques that allows
to visualize the vessels, without the need to administer contrast agent, and
is based on the principle of flow-related enhancement of spins (Haacke et al.,
1999). To note that if the TOF angiography is not available, as in the study
reported in the Chapter 4, a more dense signal sampling becomes also use-
ful for the spatial location of those vessels. This increased disentangle ability
was quantified by means of contrast to noise ratio (CNR), which is computed
as follows

CNR =
mCC −mBG

σBG
(3.1)

where mCC , mBG and σBG are respectively the average of the counts in the
common carotids and in the background, and the standard deviation of the
background’s counts, computed at the time frame corresponding to the spe-
cific reconstruction IDIF peak. This approach was borrowed from previ-
ously PET activation studies, where to be detected the stimulated activity
signal needs to overcome the background noise variance (Richard E. Carson,
Daube-Witherspoon, and Herscovitch, 1998).
An example of the image derived input function extracted from the same
pool of voxels and reconstructed with four different time grids, is reported
in Figure 3.3. From the image, it is clear that the last sampling (i.e. the one
with the more dense sampling) allowed a better description of tracer dynam-
ics within the vessels with respect to the others.
For each of the two tracers used in the two proof-of-concept studies reported

in this work, the obtained results as well as the selected time binning are re-
ported and discussed in the corresponding chapter.
It is useful to highlight at this point how this type of binning selection is sub-
optimal mainly for two reasons. The first is that it is not possible to directly
validate the choice, because no arterial sample is available. As reported in
the two following chapters, an attempt to justify the performed choice was
made by evaluating the reproducibility of the IDIF curves obtained for the
entire dataset, or alternatively by checking whether the estimates of the pa-
rameters obtained form the compartment modelling were or not in line with
the literature results, as it is known from studies conducted by Cheng and
colleagues (Cheng and Yetik, 2011) and by Haggstrom and colleagues (Hag-
gstrom et al., 2015) that blood input function error propagates to the estimate
of the model kinetic parameters and significantly alter those estimates. The
second potential limitation is that as the time binning has a non negligible im-
pact on the signal noise distribution due to the reduced frame count content,
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Figure 3.3: Example of image derived input function. The four panels display the
same 10-minutes PET dynamic sampled with different time framing: top-left, 2-
minutes sampling step ; bottom-left, 1-minutes sampling step; top-right, .5-minutes
sampling step; bottom-right, framing intervals of 30x10s and 10x30s.

this could possibly interfere with the reconstruction step as it employs an es-
timation maximization approach that is tightly linked with the hypotheses
of noise distribution (Barrett, Wilson, and Tsui, 1994). Thus, further studies
designed with a proper factorial analysis could be performed with the aim
of quantifying the interaction effect between the time binning and the recon-
struction parameters, and potentially confirm that the 3D OP-OSEM recon-
struction algorithm and its main parameters are sufficient to robustly solve
the reconstruction inverse problem and converge to a global minimum of the
cost function.

3.1.3 Proxy of Cerebral Blood Flow from Dynamic PET Data

In the last few years several studies have investigated the relationship be-
tween the cerebral blood flow (CBF) and the connectivity both in healthy
subjects (Qiu et al., 2017; Liang et al., 2013) and in pathological condition
such as schizophrenia (J. Zhu et al., 2017), mild traumatic injury (Sours et
al., 2015), Alzheimer’s disease (Sierra-Marcos, 2017) and dementia (Lou et
al., 2016). Concerning functional connectivity, in healthy subjects a tight re-
lationship has been found between the pattern of CBF and the topology of
resting state networks (RSNs) like default mode network and other executive
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control network (Liang et al., 2013). On the other hand, from a clinical per-
spective, alterations in CBF have been linked to resting state network disrup-
tion, in particular, areas with reduced perfusion appear to have a decreased
functional connectivity with the rest of the brain (Lou et al., 2016). Despite
these early studies the association between hypoperfusion, functional net-
work alteration and cognition is still unclear. However, understanding the
CBF changes in the context of changes in the network connectivity may pro-
vide further insights into the pathophysiology and may extend the under-
standing of the mechanism of the disease. For these reasons, part of this
work of thesis was focused on providing a proxy of the cerebral blood flow
from dynamic PET data.
The compartmental modelling describes the kinetic of the radiotracer dis-
placement within the tissues and according to the specificity of the tracer
how it is metabolised or it binds to specific ligands. An example of the struc-
ture of a compartmental model is depicted in Figure 3.4. The rate at which
the tracer from plasma or blood compartment crosses the blood-brain barrier
(BBB) to enter the first brain compartment, namely the influx rate constant
(K1,(ml/cm3/min)), is tightly related to CBF and can be used as a proxy of
it. Indeed, in a capillary model, this rate constant for blood-brain barrier
transport is related to perfusion according to the following equation:

K1 = FE (3.2)

whereE is the unidirectional extraction fraction from blood into brain during
the tracer’s first pass through the capillary bed, and F denotes the blood flow
(Natalie Nelissen et al., 2008). Using the Renkin-Crone model (Renkin, 1959;
Crone, 1963), the unidirectional extraction fraction can be expressed as:

E = 1− e−
PS
F (3.3)

where P is the blood brain barrier permeability (cm/min) and S is the the
capillary surface area per gram of tissue (cm2/gr). For highly permeable
tracers, the product PS is much greater than the cerebral blood flow F, so
the exponential term is small, and the unidirectional extraction fraction is
close to 1. In this case, the influx rate constant is approximately equal to flow
(Richard E Carson, 2003). From the previous observation, it is clear that de-
pends on the brain blood barrier permeability and thus is strictly dependent
on the dynamic PET study tracer.
In the present work the employed tracer was the 18F-Flutemetamol, which is
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a tracer that binds to the aggregated Aβ peptides in neuritic amyloid plaques
and is generally exploited in clinical studies for the diagnosis of Alzheimer’s
disease (AD) and other types of dementia. 18F-Flutemetamol is an analogue
of 11C-Pittsburgh Compound B (11C-PiB), with which it has been shown to
have a good agreement both in terms of static and dynamics analyses of the
PET signal (N. Nelissen et al., 2009; Hatashita et al., 2014; Mountz et al., 2015).
In particular, as reported by Heurling and colleagues (Heurling et al., 2015)
and by Chen and colleagues (Y. J. Chen et al., 2015) compartmental modelling
estimates of the K1 obtained with the two tracers are highly correlated.
Recently, a number of studies has been performed in order to prove that the
early PET dynamic of 11C-PiB and its fluorinate derives could be used as a ro-
bust proxy of cerebral blood flow. In particular, in a early study Bloomquist
and colleagues reported that changes in the influx rate constant of 11C-PiB
closely followed changes in CBF, caused by alteration of PaCO2 on studies
performed in rhesus monkeys (Blomquist et al., 2008). Subsequently, sev-
eral studies investigated in humans the relationship between the early frames
standard uptake value (SUV) or the regional relative radioligand delivery of
11C-PiB and the regional cerebral glucose metabolism, which is considered a
surrogate of CBF (Meyer et al., 2011; Farid et al., 2015; Forsberg et al., 2012).
More recently, Chen and colleagues (Y. J. Chen et al., 2015) quantitatively in-
vestigated whether or not the influx rate constant could be a robust surrogate
index of the CBF through a full quantitative evaluation of 15O-water and 11C-
PiB delivery parameters (i.e. K1 and R1) performed on a cohort of AD and
MCI patients as well as healthy volunteers. What was found is a significant
correlation between the parameters in analysis that is independent on the
pathological condition, in agreement with the studied performed on BBB per-
meability conducted by Gjedde and colleagues (Gjedde et al., 2013), where
no significant differences were found in ermeability between healty controld
and AD patients. All these evidences support the use of 11C-PiB K1 and R1

as reliable proxy of cerebral blood flow. In addition, studies on the relation-
ship between the early frames SUV and the regional cerebral metabolism
have also been conducted using fluorinate analogues of 11C-PiB with similar
results (Hsiao et al., 2012; Elena Rodriguez-Vieitez et al., 2017). For these rea-
sons it was decided to employ the K1 estimated through the compartmental
modelling of the 18F-Flutemetamol as a possible proxy of CBF.
Despite the compartmental model that best describes the 18F-Flutemetamol
tracer dynamics, i.e. the two reversible compartments model (2TC), has been
known for several years (N. Nelissen et al., 2009; Heurling et al., 2015), it was
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not possible to implement it on the dataset acquired at the Nuclear Medicine
Department of the Padova Hospital. Indeed, due to the long time the radio-
tracer takes to reach the steady state (90 min, (Heurling et al., 2015), a full list
mode acquisition of the after tracer injection entire dynamic was incompat-
ible with the clinical timing. Hence, the data collection was divided in two
distinct 20min lasting time windows: a first during the fast evolution of the
PET signal immediately preceding and after the tracer intravenous injection,
and a second acquired during the system steady state.
For this reason, to estimate the influx ratio constant, what was done was
evaluating the feasibility of the use of a simplified compartmental model for
robustly describing the first few minutes of the early-phase dynamic. In this
framework it was hypothesised that, within the first minutes after the injec-
tion, it was possible to simplify the 2TC compartment model with a model
with only one irreversible compartment (1TC), assuming in this way that ex-
changes with the second compartment and the venous efflux have not yet
had place, or if it is so, that their effect on the dynamics is negligible. The re-
liability of this hypothesis was tested on a 11C-PiB dataset, as will be discuss
later in this chapter. The structure of the two models is depicted in Figure 3.4.

Figure 3.4: Compartmental model structures: on the left side the complete two re-
versible compartments model (2TC), on the right side the simplified one irreversible
compartment model (1TC). CP , arterial plasma tracer concentration; C1, first com-
partment tracer concentration; C2, second compartment tracer concentration; K1

(ml/cm3/min) and k2 (1/min), tracer transport from plasma to first compartment
and back, respectively; k3 (1/min) and k4 (1/min), tracer transport from first to sec-
ond compartment and back, respectively.

As the PET signal was particularly noisy, mainly due to the low dosage
employed, it was decided to implement 1TC model with two different mea-
surement equations that would allow us to include or not a parametrization
of the fraction of blood volume in the model itself. In equations 3.4 and in
3.5 the equation of the model that includes the blood volume fraction param-
eter, and the equation of the model that does not include it, are respectively
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reported. 
dC1(t)
dt

= K1CP (t) C1(0) = 0

CT (t) = Cb(t)Vb + C1(t)(1− Vb)
(3.4)


dC1(t)
dt

= K1CP (t) C1(0) = 0

CT (t) = C1(t)
(3.5)

C1(t), is the tracer’s concentration at time t in the compartment 1, CP (t) is the
tracer’s concentration in the arterial plasma, CT (t) is the total tracer concen-
tration in the tissue, K1 (ml/cm3/min) is the influx rate constant and Vb is the
fraction of blood volume. For each patient, the model was fitted at ROI level
within a time window ranging from 0 minutes to the time at which the av-
erage grey matter time activity curve reaches the maximum (less than 3 min-
utes after the tracer injection, in agreement with what has been suggested in
(E. Rodriguez-Vieitez et al., 2016)), using a linear least square approach with-
out weighting the data.
The model that best fits the data was selected between the models described
by equations 3.4 and 3.5 according to the Akaike information criterion (Akaike,
1974).
As for technical reasons the experimental setting did not allow us to collect
arterial blood samples, the image derived input function was employed as
arterial input for the model. The individual arterial input function was de-
rived directly from the PET images of each subject by manually drawing a
region of interest (ROI) in the left and right internal carotids. Since the model
hypothesis is that the arterial input is not affected by noise, the extracted dy-
namic has been fitted using the tree-exponential model as proposed by (Feng,
Huang, and X. Wang, 1993). The time to peak and peak amplitude were fixed
in order to reduce the number of model’s parameters that would have been
estimated. An example of IDIF samples and fit is represented in Figure 3.5.
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Figure 3.5: Example of image derived input function and tissue time activity ob-
tained for a single patient. Black dots, image derived samples; red line, IDIF 3-exp
model prediction; grey line, cortical grey matter average time activity curve.

Almost all tracers used in brain imaging produce variable amounts of ra-
diometabolites, and this is also the case of 18F-Flutemetamol, as reported in
(N. Nelissen et al., 2009; Gjedde et al., 2013; Heurling et al., 2015). It is well-
known that failure to correct for metabolites in the plasma curve might lead
to ’quantitative’ results that have no meaning (Lammertsma, 2002). One im-
portant limitation of IDIF is that it cannot distinguish the parent compound
from its radioactive metabolites and the plasma radioactivity to that of whole
blood (Zanotti-Fregonara et al., 2011). For this reason, the arterial sampling is
required for determining the percentage of radioactive parent compound and
metabolites. Once the percentage of metabolites is quantified, it is possible to
correct the IDIF for this confound. Nevertheless, since the 18F-Flutemetamol
is a derivative of 11C-PiB, whose metabolites behaviour is well described by
Price and colleagues (Price et al., 2005) and by Gjedde an colleagues (Gjedde
et al., 2013), and the time window where the model was fitted is confined
within the first few minutes (less than 3 minutes), we assumed that the pres-
ence of metabolites could be considered negligible. This choice is mainly
supported by the reports of Edison and colleagues (Edison, D. J. Brooks,
et al., 2009) where the calibrated arterial input functions generated for the
whole blood activity concentration, the total plasma activity concentration
and the parent 11C-PiB plasma activity concentration were compared. From
the plot depicted in that work it is clear that within the first 3 minutes the im-
pact of the metabolites on the parent plasma fraction is nearly undetectable.
Moreover, we assumed that Cb(t) was equal to CP (t), i.e. the tracer uptake
by the red-blood cells is negligible. So the fitted IDIF was employed as noise-
free input of the 1TC model instead of the unavailable metabolites-corrected
plasma input function.
Albeit 18F-Flutemetamol full dynamics were not available for this study, we
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tested the reliability and aptness of our choices on a dataset of healthy con-
trols imaged using 11C-PiB. The dataset is properly described in (Mikhno
et al., 2008). In brief, it consist in 12 healthy controls (age 71.5 ± 8.4, 6 fe-
male). PET emission data were collected for 85min after intravenous injec-
tion of 426 MBq (± 151) of 11C-PiB and the dynamic data were reconstructed
into 18 frames of increasing duration (3x20s, 3x1min, 3x2min, 2x5min, and
7x10min). In addition, arterial blood samples were acquired in order to
assess the concentration the radioligand over time and the fraction of un-
changed radioligand in plasma (the Plasma Parent fraction or PPf) were mea-
sured with high-performance liquid chromatography (HPLC). Radiometabo-
lite correction of AIF was performed as suggested in (Tonietto, Rizzo, Veronese,
Fujita, et al., 2016).
We have first evaluated whether the proposed model reduction gave com-
parable results with respect to the full compartmental model and next quan-
tify the effect of the hypothesis of metabolites negligibility within the first 3
minutes emission dynamic. The well known 2TC-4k (2-tissue 4-parameter)
model (Price et al., 2005), which has the same structure of the model depicted
in left-hand side of Figure 3.4 was employed to fit the data. Our hypothesis
was that limiting the time interval where the model was fitted it was reliable
to use a simplified compartmental model. To quantify how this assumption
impact on the model estimates, for each patients we estimate at ROI level the
kinetic parameters using both the complete and simplified models. The com-
parison was performed using the results obtained with the full dynamic (i.e.
0-85min) as reference. Beside the full dynamic three different fitting interval
were evaluated: 0-15min, 0-5min and 0-3min. To fit the data of the last two
time windows the compartmental model was reduced to the 1TC-2k (1-tissue
2-parameter) model as it was found that the data were not able to support the
full model and the estimator became insensitive to the presence of the two
additional fluxes included in the 2TC-4k model. Radiometabolite corrected
AIF was exploited as input function and curve fitting was performed using a
weighted non-linear least-square estimator. Weights were chosen optimally
as:

w(ti) =
∆ti

CROI(ti)
(3.6)

where ti is the time instant, ∆ti is the length of the scanning interval and
CROI(ti) is the ROI average time activity at time ti (as suggested in (E. Car-
son, Cobelli, and Finkelstein, 1983)).
In order to assess the impact of metabolites on K1, concerning the 0-3min
time window, we also estimate the 1TC-2k model parameters using as input
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function the uncorrected arterial curve.
Four regions of interest were considered: the bilateral cingulate cortex, the
hippocampi, the bilateral prefrontal cortex and bilateral parahippocampal
gyri. Results are reported in terms of parameters percentage differences,
computed as follows:

∆% =
pMod − pRef

pRef
∗ 100 (3.7)

where pMod and pRef stand respectively for estimates of the single model pa-
rameter obtained using the specific time interval and model in analysis and
the 2TC-4k model on the full dynamic. In Table 3.2 are presented the results
achieved for a single subject that was considered representative of the entire
dataset. From the table it is evident that when the 0-15min interval was con-
sidered, the 2TC-4k model starts to show some difficulties in following the
ROI activity curves, in particular, the fit of k4 is not supported by the data
for the majority of the ROIs. Indeed, although the model prediction is good
and the residues accomplish the hypothesis of the noise distribution, the es-
timates of k4 hit the lower bound (i.e. zero). The 1TC-2k model is adequate
for the fit of the ROI time activity curves restricted to the interval 0-5min,
although at the cost of a decrease in estimates precision. Indeed, a modest
increase of the estimates coefficient of variation (CV) in this case is observed.
In particular, the obtained estimates are reliable in terms of CV and compa-
rable with the results of full dynamic, with changes in K1 lower than 10%.
If the fitting time windows is further reduced, i.e. within the 0-3min inter-
val, the 1TC-2k model is not supported by the data. In this case the model
estimator becomes insensible to the presence of the k2 parameter. Hence, the
1TC-1k (1-tissue 1-parameter) seems to be the most proper model to describe
the 11C-PiB activity curves within the interval 0-3min. Moreover, K1 esti-
mates percentage difference are lower than 10%, that is obtained results are
comparable with what is assessed using the entire dynamic.
Regarding the use of uncorrected for metabolites arterial input function, as
expected, no significant differences were found. Parameter estimates and
CVs are comparable with estimates and CVs gathered with corrected AIF
(with ∆% lower than 12%).
To summarise, the model structure (i.e. 1TC-1k) and the metabolites negli-
gibility within the 0-3min observation window proved to be reliable for the
11C-PiB tracer with estimates that are comparable with the results assessed
using the full dynamic.
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ROI Par
Fitting time interval

0-85min 0-15min 0-5min 0-3min 0-3min†

Estim Estim ∆% Estim ∆% Estim ∆% Estim ∆%

cin

K1 0.160 (5) 0.169 (15) 5 0.164 (23) 2 0.149 (26) 7 0.143 (26) 10
Vb 0.079 (15) 0.074 (32) 7 0.076 (39) 4 0.079 (54) 0 0.081 (52) 2
k2 0.144 (7) 0.166 (39) 15 0.146 (71) 2 — (–) — (–) –
k3 0.011 (26) 0.021 (175) 95
k4 0.019 (27) — (–) –

hip

K1 0.119 (4) 0.130 (34) 10 0.131 (20) 10 0.113 (20) 5 0.109 (20) 9
Vb 0.074 (12) 0.067 (36) 9 0.066 (31) 11 0.073 (34) 2 0.074 (33) 0
k2 0.102 (8) 0.152 (212) 49 0.136 (64) 33 — (–) — (–) –
k3 0.009 (38) 0.088 (1001) 906
k4 0.021 (36) 0.134 (985) 527

pfc

K1 0.129 (4) 0.136 (11) 5 0.137 (17) 6 0.117 (16) 9 0.113 (16) 12
Vb 0.063 (12) 0.059 (24) 7 0.058 (31) 8 0.065 (32) 3 0.066 (30) 5
k2 0.137 (5) 0.158 (30) 16 0.158 (47) 15 — (–) — (–) –
k3 0.005 (32) 0.017 (169) 224
k4 0.013 (45) — (–) –

pip

K1 0.127 (4) 0.132 (13) 4 0.126 (20) 0 0.117 (24) 8 0.112 (24) 11
Vb 0.066 (13) 0.063 (26) 5 0.066 (31) 1 0.068 (45) 3 0.070 (43) 6
k2 0.104 (7) 0.119 (45) 15 0.094 (90) 9 — (–) — (–) –
k3 0.009 (35) 0.021 (234) 121
k4 0.026 (29) — (–) –

Table 3.2: Summary of the 11C-PiB compartmental modelling results obtained in a
representative subject fitting the dynamic PET signal at ROI level on different time
interval. Four ROIs were considered, namely cin, hip, pfc, pip that refer respec-
tively to bilateral cingulate cortex, hippocampi, bilateral prefrontal cortex and bilat-
eral parahippocampal gyri. Par are the model parameters that has been estimated
for each ROI. The 2TC (4k) model was applied to fit the data of the 0-85min and
0-15min interval, and the 1TC (2k) model to fit the remaining intervals. The metabo-
lites corrected arterial input function (AIF) was used as model input for the first four
intervals. † marks the interval where uncorrected AIF is exploited. Estim refers to
model parameter estimates with coefficient of variance in parentheses. ∆% is the
percentage difference between the parameter estimates obtained respectively fitting
the entire curve and the curve restricted to the considered interval. — (–) is reported
when data does not support the model and the estimator becomes insensitive to the
parameter.

Concerning the use of the early PET dynamic to compute a proxy of cere-
bral blood flow (i.e. K1), although it was not possible to validate the ob-
tained results because at the time no CBF data and no fully acquired 18F-
Flutemetamol dynamic were accessible, a comparison with the results re-
ported in literature was performed to support our findings.
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3.2 MR Acquisition Protocol

As the aim of our studies was to analyse the patients’ functional and struc-
tural connectivity, our MR acquisition protocol at least included a T1-weighted
image (isovoxel 1x1x1 mm3), a T2-weighted image (isovoxel 1x1x1 mm3), a
15min resting state BOLD-fMRI and a diffusion tensor imaging acquisition.
To take advantage of the full capability of the Biograph mMR scanner the
simultaneous multi-slice (SMS) EPI, also known as multi-band (MB) EPI (K.
Setsompop et al., 2012), acquisition technique was employed for both fMRI
and DTI imaging. This technique, allowing the simultaneous acquisition of
multiple slices yielding an equivalent reduction of measurement time and a
consequent relaxation of the constraint for tuning the sequences (Feinberg
and Kawin Setsompop, 2013).
The fMRI and DTI SMS-EPI pulse sequences that we included in the ac-
quisition protocol were provided by University of Minnesota’s Center for
Magnetic Resonance Research (CMRR) through a master research agreement
(MRA) with Siemens and then a Core Competence Partnership (C2P) agree-
ment with CMRR.
After obtaining the pulse sequences, for each of them it was necessary per-
forming a parameters fine-tuning in order to make the acquired images com-
patible with our research goals. More specifically, we focused on having a
good voxel size and whole brain coverage. In the next two paragraphs we
will briefly describe the process that was carried out to set the sequences up.

3.2.1 BOLD Functional Magnetic Resonance Imaging

Accordingly to the constraints of the Biograph mMR scanner and 12-channel
head-neck coil, we performed the tuning of the fMRI MB EPI following the
recommendation of the Human Connectome Project (HCP) as reported by
Smith and colleagues (S. M. Smith, Beckmann, et al., 2013).
The use of the multi-band allowed us to obtain functional images with an
isotropic voxel size of the order of 3x3x3mm3 and a good temporal reso-
lution, with repetition time (TR) substantially bellow 2s (lower than 1.5s),
maintaining a near whole brain coverage and a good and spatially homoge-
neous temporal signal to noise ratio (tSNR) (Wald and Polimeni, 2015). The
echo-time (TE) was set as close to 30ms as possible in order to match the typi-
cal T2* of most of the brain (Wald and Polimeni, 2015) to minimize the signal
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dropout due to field inhomogeneity. In particular, signal dropout and geo-
metric distortion are especially induced near orbitofrontal and inferior tem-
poral regions of the brain, namely where sinuses and other air-tissue inter-
faces cause large susceptibility gradients (P Jezzard and Balaban, 1995; Ciris
and Todd Constable, 2015). To avoid decreasing in image SNR, no in-plain
acceleration was performed (i.e. GeneRalized Autocalibrating Partial Paral-
lel Acquisition (GRAPPA, Griswold et al., 2002) equals to 0). These choices
provided a good overall balance in which both spatial and temporal resolu-
tion were significantly improved if compared with the conventional single
band fMRI data.
Since the duration of the functional acquisition was set to 15min (which is
in a general the fMRI run duration required in order to provide a reliable
and reproducible FC estimation according to the findings reported by An-
derson and colleagues (Anderson et al., 2011) and thereafter confirmed by
Birn and co-workers (Birn et al., 2013) and by Gonzalez-Castillo and collab-
orators (Gonzalez-Castillo et al., 2014)), the multi-band did not reduce the
acquisition time, but increased the statistical power of the functional con-
nectivity analysis by increasing the number of samples of the BOLD activity
signal thanks to a reduced TR.
In addition, as the EPI acquisition is prone to geometric distortion which be-
come more important when no in-plain acceleration is applied, beside the
fMRI BOLD images, two spin echo EPI images with reverse phase encoding
directions were acquired. These two spin echo images had the same geomet-
rical, echo spacing, and phase encoding direction parameters as the BOLD-
fMRI images (according to what is suggested in (Glasser et al., 2013)), and
were exploited to perform the readout distortion correction of the functional
images (Peter Jezzard, 2012). Moreover, as suggested in (Glasser et al., 2013),
the single band reference was saved and subsequently used as template for
the realignment fMRI preprocessing step and for an accurate registration of
the EPI to the T2-weighted anatomical scan.

3.2.2 Diffusion Tensor Imaging

DTI is the technique of choice for the studies of in-vivo brain tractography
and derived structural connectivity. The diffusion tensor is still the most
commonly used model to relate the diffusion-weighted MRI signal to the
underlying water diffusion process in biological tissues, however it is now
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widely acknowledged to be inadequate for this purpose and that it’s limi-
tations have important implications for application such as diffusion-based
tractography (Farquharson et al., 2016). Indeed, the tensor framework as-
sumes a single straight fibre orientation within each imaging voxel, and is
hence inadequate for the purpose of describing diffusion data within voxels
containing complex fibre configurations or multiple fibre populations (crossing-
fibres). The impact of crossing fibres has important implications for the ap-
plication of tractography, as the DTI model provides incorrect fibre orienta-
tion estimates, this result in the delineation of false negative or false positive
delineation of white matter pathways. The high angular resolution diffusion-
weighted imaging (HARDI) (Hirsch et al., 2003; D. C. Alexander and Barker,
2005; Tournier, Calamante, Gadian, et al., 2004) was developed specifically to
overcome these limitations and to provide more robust fibre orientation es-
timates for diffusion tractography application. Thus, the diffusion sequence
we included in our protocol was an HARDI acquisition. The HARDI acqui-
sition is essentially identical in nature to the standard DTI acquisition, and
differs only in that a larger number of unique diffusion-weighting gradient
directions are used (typically greater than 60). For this reason, the tuning of
the diffusion MB pulse sequence focused mainly on increasing the number
of diffusion-weighting gradient directions (>90), maintaining the acquisition
time compatible with the clinical constraint, i.e. lower than 20min. A num-
ber of factors contribute to an accurate mapping of the white matter fibres,
in particular the voxel size, the accuracy of the EPI readout distortion correc-
tion, the bvalue and the ability to disentangle the different tissues. Concern-
ing the voxel size, as we were principally interested in the cortico-cortical
connectivity, it has been decided to favour a better spatial resolution (about
2x2x2mm3) and a good SNR, rather than whole brain coverage (with cerebel-
lum partially excluded from the field of view). To perform an optimal distor-
tion correction we used a double phase encoding acquisition. Unfortunately,
the drawback of this approach was that the acquisition time duplicated, as
for each diffusion-weighting gradient direction two volumes were acquired
with anti-parallel phase encoding directions. It is generally acknowledged
that higher b-values (i.e. b = 3000 s/mm2) lead to a better estimation of fi-
bre orientation (Farquharson et al., 2016), however while setting the pulse
sequences b-values we dealt with the limited performance of the Biograph
mMR gradients. Therefore, the selected b-values were a trade-off between
the image SNR (which is tightly related to the multi-band factor) and the
scanner capability. An example of diffusion orientation distribution function



3.2. MR Acquisition Protocol 45

Figure 3.6: Example of fibre orientation distribution (FOD) estimates obtained from
a two-shell HARDI acquisition with the higher b-values set to 2000s/mm2 (B), and
to 2850s/mm2 (C), using the multi-shell spherical deconvolution method described
in (Jeurissen et al., 2014). The panel A represents the anatomical region (red circle)
from which the B and C images are extracted. This region is rich of crossing-fibres
and allows us to appreciate the different ability of the two acquisition to disentangle
this type of fibres. A narrow FOD results in a greater ability in distinguish the white
matter fibre passing through the voxel.

obtained with different b-values is reported in Figure 3.6 To disentangle mul-
tiple tissues and to reduce partial volume effect, a multi-shell HARDI was
employed. A two shell experimental setup was employed, whose b-values
were selected as in (H. Zhang et al., 2012). Finally, as also distributions of the
diffusion-weighting gradient directions affect the white matter fibre tracking,
according to (Caruyer et al., 2013), we choose a uniform distribution of the
directions.
To summarize, the diffusion acquisition included in the protocol consist in a
two-shell HARDI acquisition with more than 90 diffusion-weighting gradi-
ent directions and b-values selected according to (H. Zhang et al., 2012) and
to (Caruyer et al., 2013). These choices provided an adequate overall bal-
ance between spatial resolution and diffusion directions, if compared with
the conventional single band diffusion data acquisition, and allowed both
tractography and micro-structural (for example using the neurite orientation
dispersion and density imaging (NODDI) model proposed by (H. Zhang et
al., 2012)) analyses with same experimental protocol.
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Chapter 4

Multimodal Approaches to
Connectivity Analysis in
Parkinson’s Disease

4.1 Introduction

In this chapter a first application of the proposed framework is described and
critically discussed. To evaluate the its effectiveness in clinical settings, the
pipeline was used to study with a multimodal approach the brain connectiv-
ity of patients affected by Parkinson’s disease.
Diagnosis of Parkinson’s disease (PD) relies on the presence of specific motor
symptoms such as bradykinesia, resting tremor, and rigidity (Biundo, Weis,
and Antonini, 2016). Besides these symptoms, a significant number of pa-
tients with PD also develop either mild cognitive impairment or frank de-
mentia (Edison, Rowe, et al., 2008). The reported prevalence of dementia in
PD rises with disease duration and averages at around 40%. Compared with
healthy age-matched controls, PD is associated with a six-fold higher risk of
developing dementia and this is characterized by impairment of short-term
recall, attention, visuospatial and executive functions such as decision mak-
ing (Janvin et al., 2006; David J. Brooks, 2009).
Multiple pathological processes have been linked to dementia in PD: degen-
eration of basal forebrain cholinergic nuclei, frontal-subcortical circuit deaf-
ferentation due to degeneration of brainstem dopaminergic neurons, diffuse
cortical Lewy bodies associated with α-synuclein, and Alzheimer-like lesions
with β-amiloid (Aβ) plaques (Gomperts et al., 2013). Among these processes,
the presence of Aβ is one most studied in the recent year (Hepp et al., 2016),
as it seems to be related to the severity of the cognitive pathology (David J.
Brooks, 2009; Edison, Rowe, et al., 2008) and to be a prognostic negative fac-
tor (Hepp et al., 2016; Petrou et al., 2012). The Aβ load studies were carried
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out both from PET imaging perspective using Aβ highly sensitive tracers,
such as 11C-Pittsburgh Compound-B (11C-PIB) (David J. Brooks, 2009; Edi-
son, Rowe, et al., 2008; Gomperts et al., 2013), and from histopathological
perspective (Hepp et al., 2016).
Besides these studies, other studies were carried out with the aim to under-
stand and describe how brain networks, that underpin the deteriorated cog-
nitive functions, are altered by pathology. In particular, resting state func-
tional connectivity has proven to be an useful technique to investigate this
type of changes (Biundo, Weis, and Antonini, 2016; Peraza et al., 2015; Elman
et al., 2016; Gratwicke, Jahanshahi, and Foltynie, 2015). Since the presence
of high amyloid load in Alzheimer’s disease (AD) has been related to al-
terations in functional and structural connectivity (Yongxia Zhou, Yu, and
Duong, 2015), and the dementia associated with Parkinson disease when
amyloid Aβ is present has similar characteristics to AD, in this study was
evaluated whether there were a relationship between amyloid burden and
brain connectivity changes. Moreover, as , according to (Rodell et al., 2017),
amyloid deposition seems to be related to a dendritic spine pathology with
consequent inhibition of brain energy metabolism and reduction of blood
flow by neurovascular coupling, a comparison between the pattern of blood
flow between Aβ positive and negative patients were performed. Finally, it
was also tested whether these changes in CBF could be significantly related
to changes in brain connectivity, as those two phenomena are tightly linked
(Qiu et al., 2017; Liang et al., 2013; Lou et al., 2016), in particular for BOLD-
based connectivity.
Simultaneous PET/MRI acquisitions were employed to acquire time matched
amyloid load, brain perfusion, and brain connectivity. A multimodal inte-
gration was performed to study the relationship among them. Amyloid load
and brain perfusion were assessed using the recent 18F-Flutemetamol tracer,
one of the three currently Food and Drug Administration (FDA)-approved
18F-labelled amyloid PET imaging agents. While, brain connectivity was esti-
mate both as resting state functional connectivity and structural connectivity.
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4.2 Materials and Methods

4.2.1 Dataset

This study involved twelve patients (8 men and 4 women; mean age 67.25y,
range [57-77y]) affected by Parkinson’s disease with different degree of cog-
nitive decline, recruited at the Parkinson and Movement Disorders Unit, IR-
CCS (Istituto di Ricovero e Cura a Carattere Scientifico) San Camillo Hospi-
tal, Venice, Italy. Patients with suspect of AD-like dementia with concurrent
Aβ deposition were enrolled for the present simultaneous PET/MRI study.
The protocol for the experiments obtained the approval of the ethical com-
mittee of the University Hospital of Padova and all of the subjects had given
written informed consent before the scans. All PD patients were diagnosed
according to the UK brain Bank criteria (Gelb, Oliver, and Gilman, 1999). The
possibility of diagnosis of Lewy Body Disease (LBD) was excluded according
to international consensus criteria (McKeith et al., 2005). Cognitive assess-
ment (including Montreal Cognitive Assessment (MoCA) and Mini Mental
State Examination (MMSE) tests (Biundo, Weis, Bostantjopoulou, et al., 2016),
and other selective tests for specific cognitive domains) was administered
and used to quantify the cognitive impairment. The group characteristics are
reported in Table 4.1.

Groups Age Disease Cognitive MMSEc MoCAc

Duration State

Aβ-POS 70± 7y 6.7± 4.0y PDD 20.2± 4.6 14± 2

Aβ-NEG 67± 8y 12.7± 6.7y MCI/PDD 24.3± 1.8 21± 4

Table 4.1: Demographic informations.

Patients were separated by an expert nuclear physician (Prof. D.C.) in two
groups according to the cortical amyloid load assessed using the static 18F-
Flutemetamol PET patient’s image. The distinction was performed follow-
ing the FDA recommendation for this specific tracer. Hence patients were
marked as amyloid positive (Aβ-POS) when their images exhibited an al-
tered pattern of tracer uptake in which white and grey matter boundaries
were difficult to disentangle, whereas patients were reported as amyloid neg-
ative (Aβ-NEG) when in their images the white-grey matter intensity ratio
was preserved.
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Two patients were discarded because they were not able to complete the
PET/MRI scan and two were discarded due to excessive head movement
during the acquisition, which made the majority of the images unusable.

4.2.2 PET/MRI Brain Imaging Acquisition Protocol

Simultaneous PET/MRI scans were acquired at the Nuclear Medicine Unit,
Department of Medicine – University Hospital of Padova, on a Siemens Bi-
ograph mMR (Siemens Medical Solutions USA, Inc.) equipped with a com-
mercial PET transparent 16-channels head-neck coil (4-channels neck).
For reasons related to the organization of the Nuclear Medicine Unit and pa-
tient comfort, it was not possible to acquire the entire PET dynamics for 110
consecutive minutes, as suggested in literature (Heurling et al., 2015) for a
full dynamic analysis, so, after the tracer injection, each patients underwent
two subsequent session of simultaneous multimodal acquisition, as shown
in Figure 4.1. Each session lasted 20 minutes; the first session, to which we
will refer in the future as early phase, was acquired immediately before the
radiopharmaceutical administration, while the second, late phase, started 90
minutes later. Between the two sessions the patients were free to leave the
scanner and were repositioned into it before the start of the second session.
The MR brain imaging protocol included the following sequences:

• Ultra-short Time Echo (UTE), TR/TE1/TE2 11.9/0.07/2.46 ms, voxel
dimension of 1.6x1.6x1.6 mm3, FOV 300 mm, 192 slices

• 3D T1 (T1w) Magnetization-Prepared Rapid Gradient-Echo (MPRAGE)
TR/TE 2400/ 3.2 ms, voxel dimension of 1x1x1mm3, FOV 256 mm, 160
slices

• 3D T2-weighted, TR/TE 3200/536ms, voxel dimension of 1x1x1mm3,
FOV 256 mm, 160 slices

• Resting state functional MRI (fMRI) Echo-planar Imaging (EPI), two-
fold acceleration with GRAPPA (Griswold et al., 2002), SMS (CMRR,
R014) 2, TR/TE 1100/30 ms, FA 63◦ (set by Ernst Criteria), voxel di-
mension of 3x3x3mm3, FOV 204 mm, 40 slices, anterior-posterior (AP)
phase encoding direction, 800 dynamic scan
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• two fMRI geometrically matched spin echo (SE) EPI, two-fold accel-
eration with GRAPPA, SMS 1, AP and posterior-anterior (PA) phase
encoding direction

• 3D T1 Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) TR/TE
2400/ 3.2 ms, voxel dimension of 1x1x1mm3, FOV 256 mm, 160 slices

• two Diffusion Tensor Imaging (DTI), SMS (CMRR, R014) 2, TR/TE 4600/90
ms, voxel dimension of 2.3x2.3x2mm3, FOV 220 mm, 64 slices, 1 shell at
b-value of 1000 (60 directions), AP and PA encoding direction respec-
tively

Figure 4.1: Time-line of the acquisition protocol: the two red boxes delineate respec-
tively the early and late phase

More specifically, the first five sequences were acquired during the early phase,
while the remaining sequences in the second session (late phase).
Concerning the PET protocol, an average dose of 180 MBq (range: 165–196
MBq, according to the body mass index and glycaemia) of 18F-Flutemetamol
(a 3’-fluoro-analogue of 11C-Pittsburgh Compound B (11C-PiB) developed by
GE Healthcare) was administered to each patient by an intravenous bolus
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injection. As no MR-compatible injection pump was available, the radio-
tracer was manually intravenously administered. The injection and subse-
quent saline flush lasted about 40 seconds. To reduce the variability caused
by this method of administration, the same nuclear physician (Prof. D.C.)
has always carried out injection. PET 18F-Flutemetamol emission data from
both early and late phase were acquired in list-mode format. No arterial blood
sample was collected because the facility that houses the PET/MRI scanner
does not have an MR-compatible arterial sampling system.

4.2.3 PET Data Analysis

PET Images Reconstruction

PET images were offline reconstructed using the e7-tool for Biograph mMR,
as described in Chapter 3. Firstly acquired sinogram was corrected for scat-
ter, dead time and attenuation due to head and radio-frequency coil, then
decay and normalization correction was performed and finally the 3D or-
dinary Poisson ordered subset expectation maximization (OP-OSEM) algo-
rithm with 3 iterations and 21 subset was applied to the corrected sinogram.
It should be noted that, at the time of the analysis, the algorithm for comput-
ing the attenuation map from the T1 MPRAGE (Izquierdo-Garcia et al., 2014)
had not yet been integrated into the reconstruction pipeline, therefore the at-
tenuation correction was performed using the µmap calculated from the UTE
sequence.

PET Time Binning for Image Derived Input Function

As the interest was in modelling the rising of the PET time activity and quan-
tify the simplified compartmental model introduced in the previous chapter,
the early phase tracer dynamic was reconstructed for the first 10 minutes.
Four different framing time grid were tested to evaluate which was the most
accurate to extract the image derived input function. In particular, the PET
early phase dynamic was reconstructed using the following grid: 5x2min (TG1);
10x1min (TG2); 20x30s (TG3); 30x10s plus 10x30s (TG4). The best timing grid
was selected as the grid that allowed to better identifying the characteristic
features of the image derived input function (namely lower time to peak and
higher peak amplitude), and that led to consistent time to peak among the
patients. Consistency among patients was evaluated only in terms of time
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to peak as due to the different amount of injected tracer dose a less unifor-
mity in peak amplitude was expected. Moreover, since in this study MR an-
giographic data were not available and hence it was necessary to manually
drawn the pool of arterial voxels to be used to compute the IDIF, for each
time grid the ease of segregate the common carotids from the background in
PET images was evaluated by means of the contrast to noise ratio.
Once the common carotids ROIs were defined, for each patient the IDIF was
computed as the average of the time activity curves of the selected voxels.
No partial volume correction (PVC) was performed, as it was hypothesised
that these vessels were large enough to make negligible the partial volume
effect, such as in left ventricle or ascending aorta (Zanotti-Fregonara et al.,
2011).
An example of the same time activity curve of the left carotid reconstructed
with the four time framing is reported in Figure 4.2.
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Figure 4.2: on the panel A, in grey scale scale the patient’s MPRAGE, in red the
over-imposed map of the vessels, in purple marker that points to the pool of voxels
inside the internal carotid from which the IDIF were extracted. On panel B, the
extracted time activity curve reconstructed using four different time grid: top-left,
2-minutes sampling step (TG1) ; bottom-left, 1-minutes sampling step (TG2); top-
right, .5-minutes sampling step (TG3); bottom-right, framing intervals of 30x10s and
10x30s (TG4).

Neck vessels are visible in different MR-structural images other than TOF,
such as the T1w MPRAGE, however it has been decided to not exploit these
images to identify the vessel because those are elastic structures housed in
a critical area for movement and, consequently, even a small displacement
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between PET and MR images would have potentially compromised the seg-
mentation once mapped in PET space. An example of the mismatch between
T1w image and PET volume corresponding to the IDIF peak is shown in Fig-
ure 4.3.

Figure 4.3: Example of spatial mismatch between T1w image and PET in Aβ-NEG
patient. Structural T1w image in grey scale, PET volume corresponding to the IDIF
over-imposed in red-yellow scale and rescaled to highlight the vessels information
content. Green cross points to the centre line of the left common carotid in T1w
image.

From the figure it is clear that although the two images were acquired
simultaneously, if the patient has moved slightly during the time interval
between the volume corresponding to the arterial signal peak and the T1w
image acquisition, this can cause a wide mismatch in terms of neck vessels.

PET Reconstructed Images Preprocessing

In order to relate the results of PET analyses to those obtained from the anal-
ysis performed on the MRI signal, we chose to work at region of interest
(ROI) level rather than at voxel level, since functional connectivity is usually
analysed at ROI level. Being mainly concerned with the integration of infor-
mation coming from the two techniques from a functional networks point of
view, we decided to employ the functional atlas proposed by Gordon et al.
(E. M. Gordon et al., 2016) for the cortical grey matter and the MICCAI2012
atlas (publicly available from the 2012 MICCAI Multi-Atlas Labelling Chal-
lenge) for the deep grey matter nuclei. Both atlases work at subject level,
therefore the early phase T1w MPRAGE has been parcelled for each patient, as
will be described in the MR devoted session of this chapter, and then the ob-
tained parcellation was mapped respectively in the early- and late-phase PET
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single subject space. This preprocessing step was carried out using the Ad-
vanced Normalization Tool (ANTs) software (Avants, Tustison, Song, et al.,
2011; Avants, Tustison, Stauffer, et al., 2014). To register the parcellation to the
early phase PET space it was enough to apply the affine transformation esti-
mated by the scanner. While for the late phase space registration we addition-
ally computed a non-linear transform to map the early phase T1w MPRAGE
to the late phase T1 MPRAGE and concatenated the obtained diffeomorphic
deformation field with the scanner affine transform before mapping the par-
cellation.
Exploiting the EPI (resting state and DTI) acquisitions, it was possible to ver-
ify that there were no large movements of the patients head during the scan,
if related to the PET scanner spatial resolution (i.e. 4.3 mm, as reported in
(Catana, 2017)), and, moreover, as previously mentioned, patients with great
head displacement were discarded due to poor MR image quality. Hence,
it was decided not to perform any motion correction step either on early or
on late phase data. Conversely, as we will discuss in the next paragraphs, the
MRI data is more sensitive to movement and therefore correction for move-
ment on that data has proved to be crucial.
Finally, the grey matter parcelling moved into PET space was used to extract
the mean time activity curve of each ROI.

Early Phase PET Signal Quantification: estimate of the CBF proxy

The early phase PET dynamic has been quantified at ROI level using the method
described in the Chapter 3. The simplified one irreversible compartment
(1TC) was employed. Albeit we were working at the regional level, being
aware of that the signal we were dealing with would be particularly noisy,
mainly due to the low dosage employed, we have decided to implement 1TC
model with two different measurement equations. This approach allowed
us to include or not in the model a parametrization of the fraction of blood
volume, which is known to be one of the most difficult parameters to esti-
mate in case of noisy data, as its estimate relies on the first few frames of the
PET dynamic that typically have low signal to noise ratio due to the reduced
number of counts.
For each patient, the two models described by equation 3.4 and 3.5 were fit-
ted at ROI level within a time window ranging from 0 minutes to the time at
which the average grey matter time activity curve reaches the maximum (less
than 3 minutes after the tracer injection, this interval is in line with findings of
Rodriguez-Vieitez and colleagues (Elena Rodriguez-Vieitez et al., 2017) and
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with findings reported in Chapter 3), using a linear least square approach
without weighting the data.
The model that best fits the data was selected according to the Akaike infor-
mation criterion (Akaike, 1974). The influx rate constant (K1,(ml/cm3/min))
obtained with the winner model were then used as a proxy of the CBF, as
discussed in Chapter 3.
The IDIF extracted with the best time framing reconstruction was employed
as model input function. Since the model hypothesis is that the arterial input
is not affected by noise, the extracted dynamic has been fitted using the tree-
exponential model as proposed by (Feng, Huang, and X. Wang, 1993). The
time to peak and peak amplitude were fixed in order to reduce the number
of model’s parameters that would have been estimated. As mentioned in the
Chapter 3, one severe limitation of IDIF when applied to tracers such as the
18F-Flutemetamol is that it cannot distinguish the parent compound from its
radioactive metabolites and the plasma radioactivity to that of whole blood
(Zanotti-Fregonara et al., 2011). Therefore the percentage of tracer metabo-
lites needs to be quantified to correct the IDIF for this confound. Neverthe-
less, since the 18F-Flutemetamol is a derivative of 11C-PiB, whose metabolites
behaviour is well described in (Price et al., 2005) and in (Edison, D. J. Brooks,
et al., 2009), and the time window where the model was fitted is confined
within the first few minutes (less than 3 minutes), we assumed that the pres-
ence of metabolites could be considered negligible. This hypothesis is sup-
ported by the plot of the calibrated arterial input functions generated for the
whole blood activity concentration, the total plasma activity concentration,
and the parent 11C-PiB plasma activity concentration reported in the work
of Edison and colleagues (Edison, D. J. Brooks, et al., 2009). Moreover, we
assumed that Cb(t) was equal to CP (t), i.e. the tracer uptake by the red-blood
cells is negligible. So the fitted IDIF was employed as noise-free input of
the 1TC model instead of the unavailable metabolites-corrected plasma in-
put function.

βAmyloid Load Assessment

The Standard Uptake Volume Ratio (SUVR) was employed to quantify the
βAmyloid load, as the cortical uptake increase occurs in proportion to fibril-
lary βAmyloid levels. SUVR is a semi-quantitative measure of tracer uptake
normalized to the mean uptake in a reference region, and it is computed as
the ratio between the integrated activity of the voxel over a given period and
the integrated activity of the reference region over the same given period. For
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the 18F-Flutemetamol radiotracer the reference region is commonly accepted
to be the grey matter of the cerebellum (Leinonen et al., 2014), as it supposed
to be an area devoid of β-amyloid deposits till the late stages of the pathol-
ogy both in AD and AD-like patients.
The time window where signal integration is appropriate is between 90 and
110 minutes after injection (N. Nelissen et al., 2009), as in that interval the
tracer has already reach the steady state.
The SUVR was computed for each patient at voxel level and then for each
functional parcellation ROI of each patient the mean Standard Uptake Vol-
ume Ratio was extracted.
Moreover, all SUVR images were rated as normal (amyloid negative) or al-
tered (amyloid positive) with respect to 18F-Flutemetamol grey matter uptake
pattern, by an expert nuclear physician (Prof. D.C.).

4.2.4 MRI Data Analysis

Structural Images Preprocessing and Parcellation

Each patient’s early-phase MPRAGE was processed using a combination of
the following software: Advanced Normalization Tools software (ANTs, Avants,
Tustison, Song, et al., 2011), FMRIB Software Library (FSL, S. M. Smith, Jenk-
inson, et al., 2004), FreeSurfer Software Suite (http://surfer.nmr.mgh.harvard.edu),
Caret (Van Essen et al., 2001) and Connectome Workbench (Marcus et al.,
2011). The structural image was initially corrected for bias field using the N4
algorithm (Tustison et al., 2010) which minimizes the field inhomogeneity ef-
fects, and then the bias field corrected images were automatically parcelled
using two different atlases: the Gordon atlas (E. M. Gordon et al., 2016) and
the MICCAI2012 atlas. The choice of these two atlases arises from a compro-
mise between good segmentation of the subcortical nuclei, provided by the
MICCAI2012 atlas, and a refined functional segmentation for the study of the
resting state networks, provided by the Gordon atlas.
In order to apply the Gordon segmentation, as reported in (E. M. Gordon et
al., 2016), firstly the anatomical surfaces were generated from each subject’s
bias-field corrected MPRAGE using FreeSurfer’s default recon-all processing
pipe-line (excluding the N3 bias field correction). This pipeline included
brain extraction, segmentation, generation of white matter and pial surfaces,
inflation of the surfaces to a sphere, and surface shape-based spherical regis-
tration of the subject’s “native” surface to the fsaverage surface (Fischl, Sereno,
and Dale, 1999; Ségonne, Dale, et al., 2004; Ségonne, Pacheco, and Fischl,
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2007). The fsaverage-registered left and right hemisphere surfaces were re-
sampled to a resolution of 164000 vertices, and the Gordon atlas mesh was
registered to the patient’s resampled mesh, using the Freesurfer_to_fs_LR
Caret script. Finally, each subject’s surface was downsampled to a 32 492 ver-
tex surface and the relative surface-based 333-ROIs parcellation back-projected
into the volumetric MPRAGE reference system.
In order to obtain the MICCAI2012 atlas parcellation, the bias field corrected
structural image was segmented into white matter (WM), cerebrospinal fluid
(CSF), ventricles, and 120 cortical and 16 deep grey matter (GM) regions,
using the multi-atlas segmentation algorithm with joint label fusion as im-
plemented in ANTs (Wang and Yushkevich, 2013). Briefly, 35 manually seg-
mented T1w images and associated manually labelled volumes (data pub-
licly available from the 2012 MICCAI Multi-Atlas Labelling Challenge) were
non-linearly registered to the T1w image of each patient. This produced 35
independent segmentation for each T1w image, which were then combined
using the joint label fusion technique (Wang, Das, et al., 2011), obtaining a
high quality anatomical parcellation of the entire brain.
The single subject Gordon parcellation and subcortical MICCAI2012 segmen-
tation were then incorporated in an unique individual volumetric parcella-
tion. More precisely, the Gordon parcellation included 333 ROIs, that can be
grouped according to the following well known main resting state networks
(RSN): Visual (VIS), Retrosplenial-Temporal (RSTN), Sensory-Motor hand
(SMH), Sensory-Motor mouth (SMM), Auditory (AUD), Cingulo-Opercularis
(CON), Ventral Attention (VAN), Salience (SAL), Cingulo-Parietal (CPN), Dor-
sal Attention (DAN), Fronto-Parietal (FPN), Default Mode Network (DMN).
For this analysis, the selected subcortical regions were the left and right ac-
cumbens, caudate and pallidum nuclei, the left and right thalami and the
cerebellum grey matter separated in left and right hemisphere.
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Figure 4.4: Final brain parcellation, each colour represents a single region of interest.
The pink-scale parcels are the deep grey matter ROIs derived from the MICCAI2012
parcellation, the other colour-coded regions are the Gordon cortical regions.

Resting State Functional Connectivity

Functional connectivity (FC) is defined as statistical dependencies among
remote neurophysiological events and it is usually inferred on the basis of
correlations among measurements of neuronal activity (Friston, 1994; Fris-
ton, 2011). In recent years, there has been growing interest in the study of
functional connectivity on patients that are not performing any specific task,
i.e. in resting state functional connectivity. In particular, many studies have
linked differences in FC with cognition and diagnosis (M. H. Lee, Smyser,
and Shimony, 2013), like in the case of Parkinson disease. Several methods
are available for estimating FC from fMRI images, and one of the most pop-
ular one is the atlas-based correlation analysis, mainly because the atlas par-
cellation can be used as a common framework for cross-modality and cross-
subject quantitative analysis.
As we were interested in a multimodal approach to the study of the connec-
tivity in PD patients with cognitive impairment, the atlas-based functional
connectivity analysis was implemented. More specifically, this method re-
quires the selection of a parcellation atlas, which should be consistent with
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the subsequent analysis. Considering that this study was predominantly fo-
cused on the connectivity analysis of networks involved in cognitive func-
tions, a parcellation that include both the Gordon atlas and the MICCAI2012
deep grey matter regions seemed to be a good choice.

Resting State fMRI Data Preprocessing The resting state acquisition of
each patient was preprocessed in the individual space using the ANTs soft-
ware. Since in the last five years several works highlighted how the presence
of head motion has a severe impact on the study of functional connectivity
in resting state (Power, Barnes, et al., 2012; Dijk, Sabuncu, and Buckner, 2012;
Power, Schlaggar, and Petersen, 2015; Zeng et al., 2014; Joshua S. Siegel, An-
ish Mitra, et al., 2016) and we also experienced this issue in a study conduced
on a large dataset of Multiple Sclerosis patients, particular attention has been
paid to removing the variance introduced by head displacement during the
acquisition.
Functional images were corrected for readout distortion, using the two SE
images and the FSL’s TOPUP algorithm (J. L. R. Andersson, Skare, and Ash-
burner, 2003). Data were then corrected for head motion with ANTs’ antsMo-
tionCorr; a 12-degree of freedom affine transformation was estimated to re-
align each volume to the single-band acquired volume. Moreover, ANTs’
antsMotionCorrStats algorithm was employed to compute patient’s head frame-
wise displacement (FD, Power, Barnes, et al., 2012) from the estimated mo-
tion parameters.
The volumetric parcellation was required for the following FC analysis, so
it was mapped from MPRAGE to fMRI space. The functional images were
spatially normalized to the single subject early-phase MPRAGE in a two-step
process: first, the single-band reference volume was registered to the T2w im-
age using an affine transform and an additional diffeomorphic deformation
field limited to the anterior-posterior direction; secondly, the T2w image was
rigidly registered to the T1w. The estimated displacement fields and affine
matrices were combined into a single concatenated transformation, which
mapped fMRI space into the MPRAGE reference system; the inverse of this
transformation was then used to move the MPRAGE parcellation to the fMRI
space with a single interpolation step.
One of the primary sources of artefacts in FC is due to correlation of fMRI
signals from non-neuronal physiological activity, such as residual motion,
breathing and hearth beating. To remove remaining source of noise, we re-
gressed out from each voxel of the motion-corrected image a set of signal of
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no interest, which consisted in time courses of WM, CSF, 6 rigid-body mo-
tion parameters (describing rotations and translations along the three princi-
pal axes), and their derivatives (Jo, Gotts, et al., 2013; Power, A. Mitra, et al.,
2014). The motion parameter were extracted applying the Cholesky decom-
position to the affine transformation matrices estimated during the motion
correction step. As in the Component Based Noise Correction Method (Com-
pCorr, Behzadi et al., 2007), the WM and CSF signals were computed as the
five top principal components of the voxels signals respectively within the
WM and lateral ventricles masks, that were derived from the single subject
parcellation. To note that the masks were eroded to prevent respectively in-
clusion of grey matter or white matter via partial-volume effect as reported
in (Jo, Saad, et al., 2010). Finally, after regression, images were high-pass
filtered (cut-off frequency 1/128 Hz).

FC matrices computation The time course of each ROI of the volumetric
parcellation (moved into the fMRI space) was extracted by means of prin-
cipal component analysis (PCA), which was here employed for additional
de-noising purpose. The ROI time course was thus calculated as the aver-
age of the set of principal component that explained the 90 % of the variance
of the time courses of all the voxels inside the region, the idea behind this
choice was that at most the 10 % of the variance could be associated with
non-interest phenomena.
Before computing FC matrices as cross-correlation between each pair of post-
processed time courses, an high-motion data censoring was performed (Power,
A. Mitra, et al., 2014; Joshua S. Siegel, Power, et al., 2014). Time points re-
lated with fMRI volumes highly corrupted by motion were identified using
the frame-wise displacement as proxy of patient’s head motion and the cor-
responding samples removed from the time course itself. The FD threshold
was set to 0.4, a trade-off between what was suggested by (Power, A. Mitra,
et al., 2014) and the type of population we were studying. FC matrices were
then z-Fisher transformed to allow following statistical comparisons.

Graph Theory An advantage of the atlas-based approach is that it gives
the opportunity to interpret the matrix of functional connectivity as a ma-
trix of adjacencies and to associate this matrix with a graph. In this way, the
observed system can be interpreted as a network. The application of graph
theory aims at ascribing nodes to various regions of interest, and generating
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links or arcs between them. This approach makes it possible to explore func-
tional connectivity networks using tools that characterize typical properties
of networks, for example the study of efficiency and modularity.
A complex network can be represented mathematically by edges and nodes
(Rubinov and Sporns, 2010). Mathematically, nodes represent different parts
of a system, and the relationship between two nodes is represented by an
edge. Applying these mathematical concepts to the brain, nodes represent
different areas of the brain (the parcellation ROIs), while edges represent the
connectivity between these nodes. In functional connectivity models, edge
weighting indicates the magnitude of a correlation between brain areas.
Weak and non-significant links may represent spurious connections. These
links tend to obscure the topology of strong and significant connections and
as a result are often discarded, by applying an absolute, a proportional weight,
or a sparsity threshold. We implemented a sparsity thresholding, whose
threshold was set at 0.8. This decision is a trade off between a sparse net-
work (low threshold) and a highly linked one (high threshold).
In this study graph measures that both described the centrality of each node
within the network, such as node degree, node strength and betweenness
centrality, and characterized the functional segregation, such as clustering
coefficient and local efficiency has been used.
The degree (Deg) is one of the most common measures of centrality, and is
defined as the number of links connected to that node, which in practice is
also equal to the number of neighbours of the node itself.

Deg(i) =
∑
j∈N
j 6=i

δ(i, j) δ(i, j) =

1 W (i, j) 6= 0

0 W (i, j) = 0

where N is the set of the network nodes and W is the functional connectiv-
ity matrix. The degree has a straightforward neurobiological interpretation:
nodes with a high degree are interacting, functionally, with many other nodes
in the network, various study related a decrease of node degree to cognitive
decline as observed in Alzheimer’s patients.
The node strength (Str) is defined as the sum of the weight of links connected
to that node:

Str(i) =
∑
j∈N
j 6=i

W (i, j)
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The betweenness centrality (BC) is defined as the fraction of all shortest
paths in the network that pass through a given node:

BC(i) =
1

(n− 1)(n− 2)

N∑
h,j∈N,

h6=j,h6=i,i6=j

ρhj(i)

ρhj

where n is the number of nodes, ρij is the number of shortest paths between
h and j, and ρij(i) is the number of shortest paths between h and j that pass
through i. Bridging nodes that connect disparate parts of the network often
have a high betweenness centrality.
Locally, the fraction of triangles around an individual node is known as the
clustering coefficientCC and is equivalent to the fraction of the node’s neigh-
bours that are also neighbours of each other:

CC(i) =
2ti

ki(ki − 1)

where ki is the number of node neighbours, and ti is the number of triangles
around the node, that is computed as:

ti =
1

2

∑
j,h∈N

(W (i, j)W (i, h)W (j, h))1/3

To compute these graph measures from the FC matrices the Brain Connectiv-
ity Toolbox (Rubinov and Sporns, 2010) was employed.

Structural Connectivity

Structural connectivity describes anatomical connections linking a set of brain
regions. These connections generally refer to white matter projections link-
ing cortical and subcortical regions. Axons that share a similar destination
tend to form larger bundles, called white matter tracts. The major tracts can
be delineated by DTI with 2–3 mm image resolution using so-called tractog-
raphy or fibre-tracking algorithms. They operate based on the voxel- wise
information provided by DTI to infer connections between adjacent voxels
that may belong to the same tract, thereby reconstructing the white matter
architecture (tractogram) in 3D (Tournier, Mori, and Leemans, 2011).
The tractogram could be then converted into a connectome (or structural con-
nectivity (SC)) matrix, based on a brain parcellation scheme, such as the par-
cellation previously described.
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Diffusion MR Data Processing Diffusion MR data processing was per-
formed using the MRtrix3 software (http://www.mrtrix.org).
Patient head motion during acquisition is a major challenge for diffusion
imaging data, as well as for functional data, since it severely affect the quan-
tification of diffusion parameters and the resulting structural connectivity
matrix (Tournier, Mori, and Leemans, 2011).
For each patient, a manual data checking was performed in order to iden-
tify and discard motion-corrupted volumes, a step that works like the data
censoring in fMRI. Patients with less than 60 volumes retained after this step
were removed from subsequent analysis. In total, two subjects were dis-
carded for this reason.
Data preprocessing was then executed using the dwidenoise and dwipreproc
scripts. The dwidenoise was applied both to blip up and down DTI acquisition
(i.e. DTI images acquired with respectively AP and PA readout). It improves
the SNR of the diffusion data reducing the effect of thermal noise, and ex-
ploits data redundancy in the PCA domain using the prior knowledge that
the eigenspectrum of random covariance matrices is described by the uni-
versal Marchenko Pastur distribution (Veraart et al., 2016). This dwipreproc
script then executes the actual preprocessing of diffusion image data and in-
cludes eddy current-induced distortion correction, motion correction (i.e. re-
alignment of volumes), and susceptibility-induced distortion correction (us-
ing the two acquired encoding directions of each gradient direction and the
FSL’s TOPUP tool) (J. L. R. Andersson, Skare, and Ashburner, 2003; J. L. An-
dersson and Sotiropoulos, 2016; S. M. Smith, Jenkinson, et al., 2004).
The single-shell constrained spherical deconvolution as reported in (Tournier,
Calamante, Gadian, et al., 2004; Tournier, Calamante, and Connelly, 2007)
and implemented in the MRTrix3 software was used to compute the fibre
orientation density function (FOD). From the estimated FOD the 5-millions-
streamlines tractogram was computed using the probabilistic fibre-tracking
algorithm implemented by default in MRTrix3 with the option anatomically-
constrained tractography (ACT, R. E. Smith et al., 2012) turned on and the
minimum-length constrain set at 4 mm. In short, the algorithm identifies
suitable position from which to initiate the streamline (the seed point), prop-
agates the track along the estimated fibre orientation, and terminates the
track when appropriate termination criteria are met. ACT causes stream-
lines only to terminate precisely at the grey matter - white matter interface,
within sub-cortical grey matter, or at the inferior edge of the image. Whereas
minimum-length criterion essentially acts as a noise filter, removing short



4.2. Materials and Methods 65

spurious tracks for which the support is poor given the diffusion image data.
Moreover, in order to improve the quantitative nature of whole-brain stream-
lines reconstructions the spherical-deconvolution informed filtering of trac-
tograms (SIFT, R. E. Smith et al., 2013) was applied to the obtained trac-
togram. This approach carries out a track pruning based on the FOD, which
in our case resulted in a 2.5-million-streamlines tractogram.

Structural connectivity matrix The volumetric parcellation that included
Gordon and MICCAI2012 ROIs was employed to convert the tractogram to
structural connectivity (connectome, (Catani et al., 2013)) matrix. Since, from
a structural point of view, the main interest of the study was to identify pos-
sible retrograde degeneration associated with amyloid deposition, the con-
nectivity metric that was employed was the streamline count. What was
expected was a decrease of the number of streamlines due to an increase of
amyloid load.

Graph Theory A complex-network graph was associated with the struc-
tural connectivity matrix as in (Bassett et al., 2008) and in (L. Wang et al.,
2009). The nodes of the graph were the parcellation ROIs, and the edge
weights in this case represented number of detected streamlines between the
nodes. Since the SC matrix for construction is sparse, no threshold has been
applied. We then computed the same metrics previously calculated for the
FC matrix; namely node degree, node strength, betweenness centrality, clus-
tering coefficient and local efficiency.

4.2.5 Statistical Analysis and Multimodal Integration

After establishing the effectiveness and reliability of the results assessed us-
ing the proposed framework, despite the severe limitation represented by the
size of the dataset, an attempt of statistical analysis was performed to evalu-
ate whether there were or not a significant relationship between connectivity
and the biological processes estimate from PET data. The comparisons were
performed between the two groups of Aβ positive and negative patients, that
were classified according to the SUVR-based medical report.
First of all, we separately tested the two group for significant differences
in K1, SUVR, functional connectivity and structural connectivity. Then we
checked for significant relationship both between alteration in connectivity
and in the proxy of CBF, and between changes in connectivity and in amy-
loid load.



66
Chapter 4. Multimodal Approaches to Connectivity Analysis in Parkinson’s

Disease

As suggested in (Bassett et al., 2008) and in (Y. He et al., 2009), changes in con-
nectivity were quantified as differences in graph theory metrics separately
computed from the average connectivity matrices of Aβ-NEG and Aβ-POS
groups. Variation in K1, SUVR were computed as ROI-wise differences be-
tween the groups average maps of the two parameters.
Concerning the PET results, for each single ROI the K1 group average was
computed for both Aβ-POS and Aβ-NEG groups. To evaluate whether there
were a significant difference between the two groups at whole brain level,
the group mean K1 of all the ROIs were compared in median and dispersion
respectively with the Wilcoxon rank sum and Ansari-Bradley tests. The two
tests were implemented in a permutation test framework with 20.000 permu-
tations. In addition, at ROI level, differences in K1 between amyloid positive
and negative patients were determined with Wilcoxon rank sum test. As in
the previous analysis, a permutation test was implemented, but, considering
the very limited number of samples for each group, it was possible to per-
form an exact permutation test. The same comparisons were also carried out
for SUVR values.
Regarding the connectivity analysis, we inspected the mean functional con-
nectivity matrices of the Aβ-POS and Aβ-NEG groups both in terms of FC
weight distribution and in terms of matrix structure. To assess differences in
median and dispersion of the two functional connectivity distributions, the
Wilcoxon rank sum and Ansari-Bradley statistics were implemented within a
permutation test framework (20.000 iterations). In addition, the Krzanowski
test (Krzanowski, 1993) was employed to investigate differences in mean
FC matrices structure. Since we hypothesised that differences between the
groups could be restricted to single specific resting state networks, we fur-
ther compared the structure of the sub-matrix and the distribution of intrinsic
and extrinsic connections for each single RSN as in (Brier et al., 2012). Intrin-
sic and extrinsic connections index respectively the set of links between all
the nodes of a specific network, and set of the links of all the nodes of that
specific network with the rest of nodes. More specifically, they represent two
different characteristics of the resting state network, the first shows how the
RSN is self-connected, i.e. how the associated function is segregated (Friston,
1994), and second how the RSN is related with all the other brain regions.
Furthermore, to summarize the connectivity characteristics the node degree,
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node strength, betweenness centrality, clustering coefficient and local effi-
ciency were computed from the two groups mean FC matrices and the Wilco-
xon rank sum test was employed to test whether there were significant dif-
ferences between the groups both at whole brain level and at RSN level.
Similarly, the two groups structural connectivity matrices and the related
graph measure were compared.
To obtain an integrated description of connectivity, both from a PET and MRI
point of view, we tested whether there was a relationship between changes
in functional and structural connectivity graph theory metrics and the in-
crease of amyloid load in Aβ positive patients, by means of a correlation
analysis (Pearson’s correlation). A permutation test was performed both at
whole brain network and at single RSN level, with 100.000 permutations.
Moreover, as several studies conducted on AD patients reported that lo-
cal alteration of cerebral blood flow seems to be related with the extent of
cognitive impairment (Kisler et al., 2017), we evaluated whether FC and SC
graph metrics correlated with the decrease of the proxy of CBF (i.e. K1) in
the amyloid positive group. Evaluation was performed with a permutation
test (100.000 permutations) both at whole brain network and at single RSN
level, the employed statistic was the Pearson’s correlation too. In all tests sig-
nificance value was set at 0.05 and the false discovery rate (FDR, (Benjamini
and Hochberg, 1995)) was employed to correct for multiple comparison. The
choice of non parametric tests was justified by the limited number of patients
or by the non-gaussianity of the considered feature distribution (assessed by
means of Kolmogorov–Smirnov test).
All analyses were performed using in-house developed MATLAB (The Math-
works Inc., Natick, USA) implementations of the cited tests, as well as PET
data and connectivity analyses.

4.3 Results

Analysis results will be reported following the Material and Methods sec-
tion order. We firstly show and discuss the results obtained the proposed
framework both for PET time framing reconstruction and early phase PET
data quantification. Later the 18F-Flutemetamol static PET data are described,
then the connectivity analysis results will be reported and finally we will de-
scribe the results of the multimodal analysis of connectivity.
Based on the clinical assessment, 3 patients resulted in having a positive β
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amyloid load pattern (Aβ-POS group) and 5 a negative pattern (Aβ-NEG
group).

4.3.1 PET Data Reconstruction and Analysis Results

Time Binning for IDIF Results

An example of the IDIF signal obtained for a single Aβ-NEG patient recon-
structing the PET list-mode using the four proposed time grids is reported in
Figure 4.2. From the image it is clear that the first two sampling grid (i.e. TG1
and TG2) are not capable to capture the typical IDIF signal shape and that the
obtained shape is far to be compatible with the commonly employed model
to fit these type of data, such as the ones proposed by Feng et al. (Feng,
Huang, and X. Wang, 1993) or by Tonietto and colleagues (Tonietto, Rizzo,
Veronese, and Bertoldo, 2015). Concerning the two remaining time framing
the one that led to the most consistent results within the dataset in terms of
peak time was the TG4 (i.e. the one with the lower frame length). For this
framing we obtained a time to peak that was on average of 37.5s (range 25s
÷ 45s) in the dataset. These results in terms of variability are compatible
with manual injection and with the speed of the injection, which last at most
40s. Since the administration duration was so short, it was not possible to
compare the obtained curves with literature results. Indeed, it is well known
that this duration heavily impact on the IDIF or AIF shape, in particular re-
garding the peak amplitude and dispersion (Tonietto, Rizzo, Veronese, and
Bertoldo, 2015).
The selected time binning was also the framing that gave better results in
CNR. An example of the four PET volumes corresponding to the IDIF peak
obtained in a single Aβ-NEG patient exploiting the four binning grids is
shown in Figure 4.5, in addition, common carotids and background ROIs
are depicted. ROIs were segmented in four consecutive slides paying atten-
tion to restrict the selection to slices where no PET reconstruction boundary
effect was evident. A summary of the IDIF features obtained for this patients
as well as CNR are reported in Table 4.2. As expected the peak amplitude
definitely increase with the decrease of the frame length, the same pattern
was observed for all the patients of the dataset.
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Figure 4.5: Contrast to noise ratio obtained for an Aβ-NEG patient reconstructing
the PET data using the four time grid. On the left panel: the patient’s MPRAGE
(grey scale) with over-imposed the PET volume corresponding to the IDIF peak (red-
yellow scale). In green and blue are respectively represented the two masks of the
common carotids ROIs (CC) and the background ROI (BG). On the right panel: from
A to D are depicted the PET volumes corresponding to the IDIF peak reconstructed
using respectively the time grids TG1,TG2,TG3,TG4, normalized to one third of each
peak amplitude intensity. In transparency are shown the CC and BG masks.

CNR ∆CNR tpeak Apeak

TG1 7.57 - 60 7.96
TG2 13.47 77.99% 30 9.84
TG3 13.80 82.42% 45 12.30
TG4 16.71 120.89% 35 24.80

Table 4.2: Contrast to noise ratio and IDIF characteristics obtained for one of the Aβ-
NEG patients using the four proposed time grid TG1,TG2,TG3,TG4. CNR: contrast
to noise ratio; ∆CNR: percentage difference between the TG1 and the time grid in
analysis; tpeak: time to IDIF peak (s); Apeak: IDIF peak amplitude (kBq/ml).
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Early Phase PET Signal Quantification Results

The model that best described the early phase PET data was the one repre-
sented by equation 3.5, indeed in the 100% of the regions of interest of all
patients it has been found to be the model for which the AIC reaches its min-
imum. Although the estimates were performed at ROI level the fact that the
winner model was the model with the lower number of parameters (i.e. 1
parameter) could be due to poor signal to noise ratio of the extracted time ac-
tivity, that is probably related to the low radiotracer dose employed during
the study, and to the limited number of samples included in the time window
on which the model were fitted.
The maps of the average ROI-wise influx rate constant obtained for Aβ-POS
and Aβ-NEG groups are reported respectively in Figure 4.6(a) and Figure
4.6(b). The mean K1 values in the grey matter are 0.31±0.05 ml/g/min in
Aβ positive group and 0.36±0.06 ml/g/min in Aβ negative group. These re-
sults are in line with findings on 18F-Flutemetamol reported literature both
for healthy controls and for AD patients, though they tend to be on aver-
age higher than estimates achieved by Heurling and colleagues by fitting the
18F-Flutemetamol dynamics using the 2TC model, namely 0.25±0.03 in HC
0.23±0.03 in AD patients (Heurling et al., 2015). From a purely qualitative
perspective it can be said that the observed pattern of K1 is compatible with
a cerebral blood flow pattern in both groups. Indeed, the two maps assume
higher values bilaterally in visual cortices, motor areas, posterior cingulate
cortices and in subcortical nuclei (in agreement with CBF maps reported in
(N. Zhang, M. L. Gordon, and Goldberg, 2017) and in (J. J. Chen, Rosas, and
Salat, 2011) and obtained using the MR arterial spin labelling (ASL, (Haacke
et al., 1999; Alsop et al., 2015)) technique. While lower values of K1 can
be distinguished in watershed areas (i.e. border zone regions supplied by
the major cerebral arteries), this pattern is in line with major arterial district
described by Tatu and colleagues (Tatu et al., 1999). Undoubtedly to quanti-
tatively support those finding in spatial patterns, it could be very convenient
a comparison with CBF maps simultaneously obtained for the same patient
possibly using other techniques such as ASL or dynamic contrast enhanced
(DCE) MR, nevertheless, due to time constrains, in this study it was not pos-
sible to add other sequence to the MR protocol.
The whole brain influx rate constant between the two groups was signifi-
cantly different both in median and in dispersion (p-value lower than 10−6

in both cases), conversely no significant difference was found at ROI level.
The absence of detected regional differences could be ascribed to the limited
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cardinality of the groups.
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Figure 4.6: Maps of average ROI-wise influx rate constant estimates (K1)

βAmyloid Load PET Assessment Results

The maps of the average ROI-wise SUVR in the Aβ positive and negative
groups are shown respectively in Figure 4.7(a) and Figure 4.7(b). The de-
rived global cortical SUVR values (1.64±0.26 g/ml in Aβ positive group and
1.28±0.17 g/ml in Aβ negative group) are in line with the SUVR values re-
ported by (Mountz et al., 2015) for AD patients, where a positivity threshold
was posed at 1.66 g/ml and with the results obtained by (Hatashita et al.,
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2014), (N. Nelissen et al., 2009), and (Lowe et al., 2017).
The whole brain SUVR between the two groups was significantly different
both in median and in dispersion (p-value < 10−6 and p-value 0.025), and
significant differences were also found at ROI level in all regions, when no
multiple comparison correction was performed. Contrary to the influx rate
constant results, the SUVR values had a low within-group variance, and
probably this allowed to observe significant differences even in presence of a
limited number of patients.
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Figure 4.7: Maps of average ROI-wise standard uptake value ratio

The regional relative changes in K1 and SUVR between the two groups
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are depicted in the map in Figure 4.8(a) and in Figure 4.8(b). K1 relative
changes ranged from -0.52 to 0.02 ml/g/min, with mean variation of -0.15
ml/g/min and standard deviation amounting to 0.13 ml/g/min. Whereas
SUVR relative changes ranged from -0.08 to 0.71 ml/g/min, with mean vari-
ation of 0.28 ml/g/min and standard deviation amounting to 0.16 ml/g/min.
Observing the map in Figure 4.8(a), no specific spatial pattern can be noticed.
Conversely, SUVR relative changes have a well-defined spatial pattern that,
considering the areas of high amyloid load increase, resembles the pattern of
the resting state default mode network.

(a) Influx rate constant (K1)

(b) SUVR

Figure 4.8: Maps of ROI-wise relative change between Aβ negative and Aβ positive
groups
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4.3.2 Connectivity Analysis Results

The average matrices of functional connectivity of the Aβ positive and Aβ

negative groups are respectively shown in Figure 4.9(a) and Figure 4.9(b).
In both maps the parcels have been reordered according to the resting state
networks and the deep grey matter network. Observing the two matrices,
therefore, it is possible to identify functional modules, such as the visual net-
work or the default mode network. The RSNs modules pattern is in line with
the pattern reported by Gordon and colleagues (E. M. Gordon et al., 2016),
except for the two sensory-motor networks, this could be ascribed to the lim-
ited SNR of the sequence exploited during the resting state fMRI acquisition.
The group average connection weights range from 0.10 to 0.86 for both Aβ

positive and Aβ negative groups.
The results of the statistical analysis carried out on functional connectivity
matrices and derived graph theory measures are listed in Table 4.3 and in
columns two and three of Table 4.5.
In short, differences were found in within-network connection weights dis-
tribution at whole brain level and for the following resting state networks:
cingulo-opercularis network, ventral attention network, dorsal attention net-
work and fronto-parietal network. Moreover, the same networks and the
default mode network resulted significantly different also in extra-network
connection weights distribution. The connectivity matrices and connections
distribution of VAN, DAN, and FPN are represented in Figure 4.10(a), Figure
4.10(b) and Figure4.10(c). Observing Figure 4.10, it could be noted that the
intrinsic connectivity of these networks was on average significantly greater
in the negative group than in the positive group. Although for some RSNs,
such as the networks depicted in Figure 4.10, structural pattern differences
was identifiable by visual inspection, no statistical difference were found in
the related matrices structure. As the Krzanowski test is a permutation test,
which in this case was implemented in the exact form, the absence of signifi-
cant differences could be mainly attributed to the reduced dataset.
Furthermore, concerning graph theory measures, differences were found in
betweenness centrality and local efficiency at whole brain level. Albeit not
significant after multiple comparisons correction, all the considered DMN
graph measures except node strength were found to differ between the groups.
Figures 4.11(a) and 4.11(b) show respectively the average matrices of struc-
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(a) Aβ positive group

(b) Aβ negative group

Figure 4.9: Average functional connectivity matrices obtained for the two groups.
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(a) Ventral-attention Network

(b) Dorsal-attention Network

(c) Fronto-parietal Network

Figure 4.10: Resting state networks for which the intrinsic and extrinsic connec-
tion distributions resulted significantly different between Aβ negative and positive
groups. The matrices on the two panels on the left represent the average RSN func-
tional connectivity network respectively of Aβ positive and Aβ negative patients
(links’ weight ranges from -0.1 to 0.3). On the right panel: left hand side boxplot of
intrinsic connection weights of Aβ positive (left) and Aβ negative (right), right hand
side boxplot of extrinsic connection weights of Aβ positive (left) and Aβ negative
(right).
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Network Distr. Struct. Graph Measures
median dispersion Deg Str BC CC EL

Whole Brain X X - - - X X† X
VIS - - - - - - - -
RSTN - - - - - - - -
SMH - - - - - - - -
SMM - - - - - - - -
AUD - - - - - - - -
CON X X - - - - - -
VAN X X - - - - - -
SAL - - - - - - - -
CPN - - - - - - - -
DAN X X - - - - - -
FPN X X - - - - - -
DMN - - - X† - X† X† X†

dGM - - - - - - - -

Table 4.3: Summary of the results obtained with the statistical analysis carried out on
the functional connectivity matrices (intrinsic connections) and the graph measures
derived from them. Symbols X, X† and - stand respectively for significant differ-
ence after multiple comparison correction, significant difference when no multiple
comparison correction is performed, and no statistical difference

tural connectivity of the Aβ positive and Aβ negative groups. As for func-
tional connectivity, parcels were reordered according to the functional net-
work. In this case, however, due to the choice of the connection weight mea-
sure, it was more difficult to identify the functional modules. Conversely,
inter- and intra-hemispheric connections within and between networks were
more evident, as intra-hemispheric connections commonly had weights higher
(depicted in red-scaled colours in Figure 4.11(a) and Figure 4.11(b)) than
inter-network. The group average connection weights ranged between 1 and
2.42 103 streamlines in the negative group, and from 1 to 3.15 104 streamlines
in the negative group. The whole brain distribution of structural connec-
tion weights was significantly different between the groups both in median
and in dispersion, and all the whole brain connectome-derived graph mea-
sures, except the betweenness centrality, were significantly different between
the groups. The only network that, when no multiple comparison correction
was performed, resulted to significantly differ between the two groups was
the DMN. For this network we also found differences in clustering coefficient
(p-value 0.01 uncorrected). All the structural connectivity statistical analysis
results are listed in Table 4.4 and in column four and five of Table 4.5.
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(a) Aβ positive group

(b) Aβ negative group

Figure 4.11: Average structural connectivity matrices obtained for the two groups.
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Network Distr. Struct. Graph Measures
median dispersion Deg Str BC CC EL

Whole Brain X X - X† X† - X† X
VIS - - - - - - - -
RSTN - - - - - - - -
SMH - - - - - - - -
SMM - - - - - - - -
AUD - - - - - - - -
CON - - - - - - - -
VAN - - - - - - - -
SAL - - - - - - - -
CPN - - - - - - - -
DAN - - - - - - - -
FPN - - - - - - - -
DMN X† X† - - - - X† -
dGM - - - - - - - -

Table 4.4: Summary of the results obtained with the statistical analysis carried out
on the structural connectivity matrices (intrinsic connections) and the graph mea-
sures derived from them. Symbols X, X† and - stand respectively for significant
difference after multiple comparison correction, significant difference when no mul-
tiple comparison correction is performed, and no statistical difference. Distr. and
Struct. respectively refer to distribution of the link weights and connectivity matrix
structure.



80
Chapter 4. Multimodal Approaches to Connectivity Analysis in Parkinson’s

Disease

Network
Functional connectivity Structural connectivity

Distribution Distribution
median dispersion median dispersion

VIS - - - -
RSTN - - - -
SMH - - - -
SMM - - - -
AUD - - - -
CON X X - -
VAN X X - -
SAL - - - -
CPN - - - -
DAN X X - -
FPN X X - -
DMN X X X† X†

dGM - - - -

Table 4.5: Summary of the results obtained with the statistical analysis carried out on
extrinsic connections of functional and structural connectivity matrices. Symbols X,
X† and - stand respectively for significant difference after multiple comparison cor-
rection, significant difference when no multiple comparison correction is performed,
and no statistical difference.

4.3.3 Multimodal Integration Results

Correlation analyses between structural and functional network measures,
and the PET-derived physiological features were carried out only at whole
brain level and for the resting state network that we found to significantly
differ between the two groups, namely VAN, FPN, DAN and DMN.
Albeit in an uncorrected for multiple comparison framework, changes in
functional connectivity node strength, clustering coefficient and local effi-
ciency significantly correlated with increase in amyloid load in Aβ positive
patients. The scatter-plots of the ∆SUV R versus ∆Str, ∆CC and ∆EL are
represented in Figure 4.13, the obtained Pearson’s correlations were respec-
tively 0.46 (p-value 0.016), 0.50 (p-value 0.009) and 0.47 (p-value 0.012). More-
over, changes in node degree and strength were significantly related to the re-
duction ofK1 in the default mode network (respectively R=-0.33 p-value=0.036,
R=-0.32 p-value 0.04), as reported in Figure 4.12.
Variations in structural-connectivity-derived graph measures were not sig-
nificantly related either to amyloid load increase or to reduction of cerebral
blood flow proxy.
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Figure 4.12: Scatter-plot of ROI-wise changes in K1 versus changes in FC-derived
graph measures obtained for the Default Mode Network. Panel A and B represent
respectively changes in node degree (∆Deg) and node strength (∆Str). The black
line in each scatter plot depict the linear fit of the data.

4.4 Conclusion

In this chapter the proof-of-concept application of the developed clinical frame-
work to a dataset of patients affected by Parkinson’s disease with concur-
rent cognitive impairment has been described. PD represent an interesting
benchmark for the framework as the pathophysiological basis of the cogni-
tive impairment and dementia in Parkinson disease is considered to be multi-
factorial with heterogeneous underlying pathophysiology and neuropsycho-
logical phenotype (Edison, Rowe, et al., 2008), hence, a multimodal approach
to investigate this condition could potentially be very effective in under-
standing the causes and the progress of the disease (Monchi, Hanganu, and
Bellec, 2016).
The analysis was mainly focused on connectivity alteration and how these
could be related to changes in cerebral blood flow and to grey matter βamyloid
burden. The comparisons were performed between two groups of PD pa-
tients, namely the Aβ-POS group that consist in patients that exhibit an al-
tered grey matter pattern of amyloid load that is compatible with the pattern
observed in Alzheimer’s disease, and Aβ-NEG group for which no signifi-
cant βamyloid burden was found.
The choice to refer changes in connectivity to perfusion and to βamyloid
load was supported by literature findings. Indeed, in PD patients changes
in connectivity has been proven to be related to cognitive impairment by
several studies such as the one proposed by Peraza and colleagues where
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Figure 4.13: Scatter-plot of ROI-wise changes in SUVR versus changes in FC-derived
graph measures obtained for the Ventral Attention Network. Panel A, B, C represent
respectively changes in node strength (∆Str), clustering coefficient (∆CC) and local
efficiency (∆ EL). The black line in each scatter plot depict the linear fit of the data.
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lower functional connectivity or significant disconnection were found in cog-
nitively impaired PD patients when compared with healthy controls (Peraza
et al., 2015). Analogous results were obtained in DMN intrinsic connectivity
by Zhan and colleagues (Zhan et al., 2018) and by Taylor and colleagues (Tay-
lor, Kambeitz-Ilankovic, Gesierich, Simon-Vermot, Franzmeier, Araque Ca-
ballero, et al., 2016) and described for attention-related fronto-parietal RSN
by Lopes and colleagues (Lopes et al., 2017). In addition, graph theory mea-
sures applied to resting state functional connectivity matrices were employed
by Abòs and colleagues as robust features to discriminate PD patients cog-
nitive status. Moreover, βamyloid burden has been observed in PD with
concurrent dementia both in (Edison, Rowe, et al., 2008) and in (Hepp et al.,
2016). The described pattern is similar to that recognized in AD patients
and, according to (Gomperts et al., 2013), is related to cognitive decline and
connectivity in PDD. The hypothesis that amyloid contributes to dementia
initially came from the Alzheimer field, where excessive Aβ is viewed as an
early, perhaps inciting, event in a cascade of pathologic changes leading to
synaptic loss, neuronal degeneration, and clinical dementia and was then
transposed in PDD. In particular that burden seems to affect the executive
function networks (Gomperts et al., 2013; Campbell et al., 2015), i.e. the pre-
viously mentioned networks.
On the other hand, Rodell and colleagues identified perfusion as a factor
that plays an important role in AD-related cognitive impairment (Rodell et
al., 2017), more specifically a reduced cerebral blood flow was observed in
patients affected by dementia, for these reason we search for a potential link
between the pattern of decreased perfusion and the altered functional con-
nectivity.
The proposed framework was able to produce satisfactory results in the clin-
ical experimental setting. In particular, concerning the PET data it allowed
us to go beyond the clinically common static analysis (i.e. SUV computa-
tion) and to assess, beside the amyloid load, a proxy of the cerebral blood
flow. To note that at the time it was not possible to quantify the CBF in any
other way as, due to limited scanner time, no other MR sequence such as
dynamic susceptibility contrast could have been added to the protocol, and
that using this approach it was not necessary to perform an additional con-
trast injection, with evident advantage for the patient. From literature it was
clear the relationship between the influx rate constant (K1) obtained through
the compartmental modelling of the 11C-PiB (a 18F-Flutemetamol analogous)
dynamic and the cerebral blood flow, however, to estimate a reliable proxy of
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CBF from our dataset, two were the main problems that have to be faced: the
absence of arterial samples to be used as model input function and the lim-
ited dynamic acquisition time window (i.e. 0-20min after injection). To solve
the first problem it was decided to employ an image derived input function,
while to address the second it was proposed to employ a reduced model to
fit the dynamic PET data corresponding to the first 3min after the tracer in-
jection. As for every signal, the capability to accurately extract the image
derived input function is tightly related to the PET time framing reconstruc-
tion. Therefore, thanks to the developed wrapper that implement the off-line
PET reconstruction, it was evaluated which was the best PET reconstruction
time framing for the extraction of the IDIF in the present dataset. Although
the injection duration shortness and variability, the selected time grid has led
to a good CNR images that allowed us to easily drawn the pool of voxels ta
be used for the IDIF extraction, and to consistent results among the group.
Consistency was expected as it was hypothesised that the patients did not
suffer from significant pathologies affecting the large vessels of the neck. In
spite of these interesting and reproducible results, to rigorously validate our
choices and entirely confirm the reliability of the obtained IDIF further data
are needed. In particular, a direct comparison with the gold standard tech-
nique, i.e. arterial blood sampling, is required, however, at the time of the
study these kind of data were not available.
Regarding the CBF proxy, estimates obtained using the model introduced
in the previous chapter (i.e. 1TC-1k) are in line with the 18F-Flutemetamol
literature findings. Moreover, from a purely qualitative perspective, the spa-
tial pattern of the quantified maps is compatible for both groups with the
cerebral blood flow pattern known from physiology. One of the advantages
offered by this type of approach if compared with the static approach such
as the SUV computation proposed in (E. Rodriguez-Vieitez et al., 2016), is
that beside the estimates of K1 we also obtained the coefficient of variation
of those estimates, i.e an index of reliability of the results. In particular, this
index could be used to discard areas where the estimate process becomes crit-
ical or where the images’ signal-to-noise ratio does not accomplish the model
hypotheses and is not compatible with the model fitting, and where probably
also the SUV value is not reliable.
The provided results as well as the finding in 11C-PiB literature support the
aptness of the proposed method, nonetheless, the absence of PET full dy-
namics and of arterial input function has prevented us from fully validating
it. Indeed, although, as demonstrated in Chapter 3, the model structure has
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proved to be adequate when applied to 11C-PiB dynamics in the 0-3min time
window, the appropriateness of this structure needs to be verified also for
the 18F-Flutemetamol. In addition, considering that the propagation of the
input uncertainty to the estimates of kinetic parameters is a well know phe-
nomenon, as clearly described in the work of Cheng and colleagues (Cheng
and Yetik, 2011), it could be convenient to evaluate the impact of the use of
IDIF instead of AIF on the compartmental modelling results.
Albeit the dataset limitations, the K1 maps has shown to be able to detected
significant differences between the two groups of patients. In particular, an
evident decrease in perfusion has been found in the Aβ-POS group when
compared with the Aβ-NEG group. This is in line with the findings reported
in the AD literature, where a significant reduction in CBF were described by
means of ASL techniques by Schuff and colleagues (Schuff et al., 2009) and
by Binnewijzend and colleagues (Binnewijzend et al., 2013), and related to
the βamyloid load by Mattsson and colleagues (Mattsson et al., 2014).
Considering the MR side of the study, fMRI and DTI sequences fine tun-
ing has led to good data, in line with the research state-of-art requirements,
as well as to reliable connectivity matrices that resembled literature known
modularity pattern. For what concerns functional connectivity the two ma-
trices exhibited a resting state networks modularity pattern that is mainly
comparable with findings reported by Siegel and colleagues (J. S. Siegel et al.,
2015) and by Gordon and colleagues (E. M. Gordon et al., 2016), where the
same functional parcellation atlas was exploited. To note that, although from
a whole brain point of view the match with the literature was good, the two
sensory-motor network modules were found be less evident in our results
(even in healthy controls, not reported here), this was ascribed to a limited
MR-sequence-related tSNR of the cortical areas involved in those two net-
works. Concerning structural connectivity, the resulted matrices are in agree-
ment with the reports of Hagmann and colleagues (Hagmann et al., 2008). It
should be noted that, at the time this work of thesis started, this kinds of
study were not feasible in the clinical setting of the Nuclear Medicine Unit of
the University Hospital of Padova, as the multiband was not exploited and
data were collected using only vendor sequences.
Finally, concerning the framework for the multimodal integration of features
of pathophysiology and connectivity, albeit applied on this limited set of
data, it has proved to be a promising tool to define the interplay between
the neurodegenerative processes and the functional and structural altered
connectivity.
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Performing a multimodal integration based on an atlas-based approach (i.e.
at ROI level) instead of voxel-wise analysis, allowed us to work with a better
signal to noise ratio signals and to avoid the step of normalization of all the
images to a common space, with clear advantages linked both to the fact that
it was possible to work in the space of the single subject and of the single
collected modality, and to the fact that the estimation of this transformation
in subjects with evident atrophy such as the PDD patients can be particularly
complex and accurate not very accurate.
At the same time, as suggested by Mijalkov and colleagues (Mijalkov et al.,
2017), the use of graph metrics borrowed from the information theory has
proved to be a particularly convenient tool to summarise nodal behaviour
within the network. This way it was possible to directly compare PET and
MR results, as for each ROI and for each modality we has only a single value
provided by the analysis of that specific modality data.
What was found with this multimodal analysis was a significant correlation
between the amyloid load and the changes in cognitive network, such as
the VAN and DAN, that according to the literature are modified in Parkin-
son’s disease when cognitive impairment is present (Gratwicke, Jahanshahi,
and Foltynie, 2015; Peraza et al., 2015). In addition a significant correlation
was found between the decrease in perfusion and the reduction in node de-
gree and strength of DMN ROIs, which is in agreement with the studies con-
ducted on AD patients, where DMN connectivity alteration were reported to
be related to changes in perfusion of the involved areas (Lou et al., 2016).
Although, from a methodological point of view, this study has shown that the
developed framework is appropriate for the integrated study of PDD con-
nectivity, further data is needed to confirm the clinical value of the presented
preliminary findings as well as the robustness of the proposed solutions. In-
creasing the number of patients in the study would not only increase the sta-
tistical power, but would also allows the inclusion in the statistical analysis
of possible confounding factors, such as disease duration, time of conversion
from MCI to dementia, age and APOE genotype. For this purpose further
acquisitions are still ongoing.
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Connectivity Mapping to Guide
Neuro-Surgery of Brain Tumours

5.1 Introduction

In this chapter is described and discussed a second proof-of-concept applica-
tion of the proposed framework. The framework was employed for collect-
ing, reconstructing and analysing images of a single patient suffering from
high grade glioma, which is the most frequent type of primary tumours of
the central nervous system in adults according to (Fernandes et al., 2017),
and the most common and aggressive form of primary intracranial tumour
(Ghinda et al., 2018).
Oncological field is probably the first and most common area of application
of simultaneous PET/MRI acquisitions as they benefit of simultaneity from
different perspective (Catana, 2017). Indeed, combining PET and MR has
been proved to provide a better estimate of the tumour extent, a more accu-
rate tumour grading, and to be a potentially efficient tools for therapy op-
timization (Miller-Thomas and Benzinger, 2017), as this approach leads to a
more comprehensive picture of tumour and peritumoural tissues.
An accurate tumour grading could be achieved by means of integration of
contrast MR imaging and metabolic imaging, especially for gliomas, as re-
ported in (Pirotte et al., 2006). Indeed, high grade tumours are typically char-
acterized by a high rate of glucose metabolism and increased 18F-FDG uptake
and a concurrent breakdown of the blood-brain barrier, that could be identi-
fied by MR contrast images and is typically associated with a poor prognosis,
according to (Herholz, 2017).
In particular, the knowledge of the spatial pattern and extent of the tumour
and of the altered morphology of the surrounding brain tissue may be a
valuable tool for planning the therapy. Neurosurgical resection is the stan-
dard of care for gliomas and mounting evidence suggests that more extensive
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surgical resection, which is typically based on FLAIR hyper-intensities and
18F-FDG uptake, is associated with longer life expectancy for both low- and
high-grade gliomas (Ghinda et al., 2018). The benefits of a radical resection
in prolonging survival and facilitating adjuvant therapy need to be balanced
against the risk of significantly altering the quality of life of the patients.
The multimodal approach represent a potentially useful tool in this respect,
as merging physiological information quantified not only from PET and MR
static data, but also from dynamic data could possibly allow to better dis-
tinguish tumour core region, necrosis, surrounding vasogenic oedema re-
gion, functionally altered or suffering regions and changes in the course of
the white matter bundles (via diffusion tensor imaging). As suggested by
Ghinda and colleagues (Ghinda et al., 2018), additional useful elements for
planning the treatment can be provided by connectivity studies, that can for
example highlighting regions where a residual activity persists and whose
resection could negatively affect the patient’s quality of life. At the same
time a dynamic study of the most commonly employed PET tracer (i.e. 18F-
FDG) can provide further insight of the physiological processes that are tak-
ing place in this regions (i.e. perfusion and glucose oxidative phosphoryla-
tion).
The proposed framework was hence applied to those type of data to evalu-
ate the feasibility of a 18F-FDG quantitative dynamic study in the clinical set-
ting of the Nuclear Department of the Padova University Hospital PET/MR
scanner and to explore the opportunity offered by an integrated connectivity
study approach in mapping peritumoural areas with residual activity that
could potentially reveal useful in guiding the planing of the surgical resec-
tion.
The study was designed as a longitudinal study in which patients were im-
aged just before the surgery, after a month and three month later. Acqui-
sitions were planned in order to follow changes both in connectivity and
metabolism. Since at the time this thesis was written only the first time point
of a single patient was acquired, in what follows are reported the preliminary
results obtained on this first subject. Further acquisitions are ongoing.
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5.2 Materials and Methods

5.2.1 Dataset

The framework of reconstruction and analysis was applied to the data col-
lected in the first patient of the longitudinal study, a 37 years old male, suffer-
ing from high grade glioma located in the left frontal lobe. The same pipeline
will be used to reconstruct and quantify the images of all the patients en-
rolled in this study. The acquisitions are still ongoing.
In particular, the available data are related to the first patient acquisition,
before being subjected to surgical operation.

5.2.2 PET/MRI Brain Imaging Acquisition Protocol

Simultaneous PET/MRI scans were acquired at the Nuclear Medicine Unit,
Department of Medicine – University Hospital of Padova, on a Siemens Bi-
ograph mMR (Siemens Medical Solutions USA, Inc.) equipped with a com-
mercial PET transparent 16-channels head neck coil.
A 70min of 18F-FDG positron emission tomography imaging was acquired,
starting immediately before the radiopharmaceutical administration.
The MR brain imaging protocol included the following sequences:

• Ultra-short Time Echo (UTE), TR/TE1/TE2 11.9/0.07/2.46 ms, voxel
dimension of 1.6x1.6x1.6 mm3, FOV 300 mm, 192 slices

• Time-of-flight (TOF) MR angiography, TR/TE 24/4.16 ms, voxel di-
mension of 0.4x0.4x1 mm3, FOV 200 mm, 96 slices (positioned at the
level of the carotid arteries)

• 3D T1 Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) TR/TE
2400/3.2 ms, voxel dimension of 1x1x1mm3, FOV 256 mm, 160 slices

• 3D T2-weighted, TR/TE 3200/536ms, voxel dimension of 1x1x1mm3,
FOV 256 mm, 160 slices

• 3D T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) TR/TE
5000/395 ms, voxel dimension of 1x1x1mm3, FOV 250 mm, 160 slices

• Two Diffusion Tensor Imaging (DTI), SMS (CMRR, R014) 2, TR/TE
5255/104 ms, voxel dimension of 2x2x2mm3, FOV 220 mm, 68 slices,
2 shell at b-value of 700 and 2855 (99 directions), AP and PA encoding
direction respectively (~18min)
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• Resting state functional MRI (fMRI) Echo-planar Imaging (EPI), SMS
(CMRR, R014) 2, TR/TE 1260/30 ms, FA 68◦ (set by Ernst Criteria),
voxel dimension of 3x3x3mm3, FOV 204 mm, 40 slices, anterior-posterior
(AP) phase encoding direction, 750 dynamic scan (~15min)

• Two fMRI geometrically matched spin echo (SE) EPI, two-fold accel-
eration with GRAPPA, SMS 1, AP and posterior-anterior (PA) phase
encoding direction

Data were collected following the order of the previous list. To note that,
as one of the interest of the study was to temporally match the metabolic
consumption with the functional connectivity, the resting state fMRI was ac-
quired at the end of the MR protocol in correspondence of the tail of the PET
dynamics (i.e. when the tracer reached its steady state).
Concerning the PET protocol, a dose of 261 MBq (according to the patient’s
body mass index and glycaemia) of 18F-FDG was administered by an intra-
venous bolus injection. As no MR-compatible injection pump was available,
the radiotracer was manually intravenously administered . The injection and
subsequent saline flush lasted less then 30 seconds. 18F-FDG PET emission
data were acquired in 3D list-mode format. As for the the study reported
in the previous chapter, no arterial blood sample was collected because the
facility that houses the PET/MRI scanner does not have an MR-compatible
arterial sampling system.

5.2.3 PET Data Analysis

PET Images Reconstruction

PET images were reconstructed outside the scanner using the implemented
in-house Matlab scripts that wrap the e7-tool reconstruction functions ac-
cording to the pipeline described in Chapter 3. Therefore, firstly acquired
sinogram was corrected for scatter, dead time and attenuation due to head
and radio-frequency coil, then decay and normalization correction was per-
formed, and finally the ordinary Poisson ordered subset expectation maxi-
mization (OP-OSEM) algorithm with 3 iterations and 21 subset was applied
to the corrected sinogram to reconstruct PET images (matrix size 256x256x127,
voxel size 2.8x2.8x2 mm3). The µmap employed in the attenuation correction
step was computed from the T1 MPRAGE using the (Izquierdo-Garcia et al.,
2014) method. To avoid increasing partial volume effect, no further spatial
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smoothing was applied to the obtained images.

PET Time Binning

As we were aimed at employing the compartmental modelling to describe
the tracer kinetics within the tissues and no arterial sampling were available,
also for this second application we employed an image derived input func-
tion as input for the model, therefore, PET dynamics were reconstructed at
different time framing and it was selected the binning that allows a better
identification and description of the image derived input function.
In contrast to what was found in the literature regarding the 18F-Flutemetamol
kinetic studies, where the number of papers is limited and the employed PET
temporal binning is quite consistent among the studies, concerning the 18F-
FDG, the number of studies is much higher and the framing definitely less
consistent (an example of the variability of the time binning used in 18F-FDG
dynamic reconstruction is reported in Table 5.1). For this reason it was not

References Area Time Binning

Bowen et al., 2013 HB 4x30s, 3x60s, 2x150s,2x300s, 4x600s
Christen et al., 2015 HM 12x10s, 4x120s, 10x300s
Hattori et al., 2004 HB 4x30s, 4x120s, 10x300s
Huisman et al., 2012 HB 6x10s, 2x30s, 3x60s, 2x150s, 2x300s,4x600s
Kawai et al., 2005 HB 1x40s,2x20s, 4x40s, 4x60s, 4x180s, 8x300s
Lucignani et al., 1993 HB 5x60s, 5x120s, 21x300s
Mosconi et al., 2007 HB 4x30s, 8x60s, 10x300s
O’Sullivan et al., 2010 HB 4x15s, 4x30s, 4x60s, 4x180s, 14x300s
Reivich et al., 1985 HB 10x180s, 1x300s
Sari et al., 2017 HB 6x10s, 2x30s, 3x60s, 2x150s, 2x300s,4x600s
Bertoldo et al., 2001 HM 12x15s, 4x30s, 3x60s, 1x120s, 22x300s

Table 5.1: List of some PET time framing reported in literature. HB stands for Human
Brain, and HM for Human Muscle (thigh skeletal muscle).

possible to test each single time grid, conversely, it was decided to reduce the
number of tests and to evaluate the performance of only two sampling grid.
The first time grid (TG1) was the one exploited by Sari and colleagues (Sari et
al., 2017) and was selected for two reasons: first, the obtained dynamic in that
paper was exploited to extract the IDIF and is reported to perform properly,
and, second, it was also used in other studies, such as the one of (Huisman
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et al., 2012). The second time grid (TG2) was borrowed from studies per-
formed by Bertoldo and colleagues with 15O-H2O (Bertoldo et al., 2001) and
consisted in framing intervals of 10x6s, 8x15s, 7x60s and 2x1500s. The choice
of this grid was driven by the necessity of having an higher number of sam-
ples during the first two minutes of the PET dynamic. Indeed, due to the
duration of the radiopharmaceutical administration (less than 30s) that was
considerably sorter than the common injection duration, which typically lasts
up to 2min, a faster activity curve was expected for the current data. Since
data were available for only one patient it was not possible to use consis-
tency among the dataset to support the selection of the best performing time
grid. In this case we preferred the time grid that, given the same pool of
voxel within the two common carotids, led to higher values of IDIF peak am-
plitude and lower values of time to peak. The pool of voxels was derived
directly from the PET images of the patient using a three step process: first,
the TOF image mapped into the PET space was used to identify the voxels
of the main neck vessels (i.e. the left and right common carotid) by means
of a simple threshold (manually selected). Second, a subset of vessel voxel
was selected using a hierarchical clustering approach (derived from the one
proposed in (Peruzzo et al., 2011)) applied to the reconstructed dynamics of
the vessel voxels. Finally, the IDIF was computed as the average dynamic of
this subset.
To note that unlike what it has been proposed in the work of Sari and col-
leagues (Sari et al., 2017) where TOF and PET data were acquired in two
separate systems, it has been choose to use the signal of neck large vessels
(i.e. the common carotids, that in our case were included in the PET camera
field of view) to reduce the partial volume effect and increase the reliability
of the estimates, as suggested in (Zanotti-Fregonara et al., 2011).
In what follows the dynamic PET images reconstructed using the most ap-
propriate time grid for IDIF extraction is named as dynPETIDIF .
Once the best performing grid was selected, as the compartmental modelling
hypothesis is that the arterial input is not affected by noise, the extracted dy-
namic has been fitted using the tree-exponential model as proposed by Feng
and colleagues (Feng, Huang, and X. Wang, 1993). As for the previous study,
the time to peak and peak amplitude were fixed in order to reduce the num-
ber of model’s parameters that would have been estimated.
Given the speed of intravenous injection, the three exponential model proved
to be adequate to our data, so no more complex modelling, such as the one
proposed in (Tonietto, Rizzo, Veronese, and Bertoldo, 2015) in which also the
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injection duration is modelled, was required.
In addition to IDIF devoted framing, PET data were reconstructed employing
a second time binning (dynPETFIT ) with framing intervals of 8x30s, 8x60s
and 12x240s. As the reliability of the model estimates depends on the signal
to noise ratio of the voxel/region activity signal, we adopted this second time
grid in which the sampling step, especially for the first frames, was longer
than the previous one in order to increase the count statistics. The time grid
was in agreement the majority of the framing reported in Table 5.1. The signal
sampled using this second time grid was employed as tissue tracer concen-
tration to estimate the kinetic parameters with the compartmental modelling.
Finally, a static image was reconstructed, i.e. a single frame was obtained by
the integration of the event counts in the time windows comprised between
40 and 60 minutes after the tracer injection. This last image was mainly pro-
duced for clinical purpose.

PET Images Preprocessing

The goal of the analysis was to integrate the different informations coming
from PET and MRI data analysis to identify tissues were residual activity was
still present despite the presence of the tumour. To do so, it was necessary to
take into account that the tumoural mass significantly altered the geometry
and the spatial pattern of the brain tissue. Thus, in contrast to the approach
carried out in the previous study, PET analysis was performed at voxel level
and then the results were mapped in the subject’s structura image space. For
comparison purposes, we also necessary to perform a tissue segmentation
(i.e. WM, GM and CSF) and tumour delineation, as we will discuss later in
this chapter these two steps were carried out on the T1w MPRAGE image.
Segmentations were then mapped into the PET space. For this patient, the
mapping was simply performed applying the affine transformation from MR
to PET reference system that is always estimated by the scanner. In general,
it is important to verify the efficiency of this step because if during the acqui-
sition patients moves a lot, this transform is not accurate and the following
coregistation results in a not negligible mismatch between MR and PET im-
ages.
Exploiting the scanner transform also the TOF angiography was registered
into the PET, in order to be used as guide to extract the IDIF, as suggested in
(Fung and Richard E. Carson, 2013) and in (Sari et al., 2017).
Finally, taking advantage of the EPI (resting state fMRI and DTI) acquisitions,
it was possible to verify that there were no large movements of the patient
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head during the scan, if related to the PET scanner spatial resolution (i.e. 4.3
mm, as reported in (G. Delso, Furst, et al., 2011)), and thus, it was decided
not to perform any motion correction step.

PET Modelling and Quantification of Tissue Metabolic Activity

The 18F-FDG PET data modelling and quantification of the tissue metabolic
activity was carried out using a compartmental modelling approach.
No model selection was required as the optimal compartmental model for the
description of the 18F-FDG dynamics within the brain tissues has been known
for several decades, since it was developed by Sokoloff in 1977 (Sokoloff
et al., 1977) for autoradiographic 14C-deoxyglucose (14C-DG) method in rat
brain and subsequently modified for 18F-FDG human applications by Phelps
and colleagues (Phelps et al., 1979) and by Schmidt and colleagues (K. Schmidt
et al., 1992). It is a 2 compartment and 3-rate-constant (2TC-3k) model.
The model structure and the related differential equation are reported respec-
tively in Figure 5.1 and Equation 5.1:

Figure 5.1: Structure of the 2TC-3k model for measuring the metabolic rate of glucose
with 18F-FDG (adapted from (Sokoloff et al., 1977)). CP , arterial plasma 18F-FDG
concentration; Ci,e, tracer interstitial and intracellular concentration; Cm, 18F-FDG 6-
phosphate intracellular concentration; K1 and k2, 18F-FDG transport from plasma to
interstitial-intracellular space and back, respectively; k3, 18F-FDG phosphorylation


dCi,e(t)

dt
= K1CP (t) + (k2 + k3)Ci,e(t) Ci,e(0) = 0

dCm(t)
dt

= k3Ci,e(t) Cm(0) = 0

CT (t) = (1− Vb)(Ci,e(t) + Cm(t)) + VbCb(t)

(5.1)

whereCP represents the arterial plasma 18F-FDG concentration;Ci,e, the tracer
interstitial and intracellular concentration; Cm, the 18F-FDG 6-phosphate in-
tracellular concentration;CT represents the total activity concentration within
the voxel; Cb(t), the arterial blood tracer concentration; K1 (ml/cm3/min)
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and k2 (1/min), the 18F-FDG transport from plasma to interstitial-intracellular
space and back, respectively; k3 (1/min), the 18F-FDG phosphorylation; and
finally Vb is the fraction of the total volume (i.e. voxel) occupied by blood
pool (K. C. Schmidt and F E Turkheimer, 2002).
The model prediction of the fitted image derived input function was em-
ployed as nose-free arterial input of the model. The presence of radiometabo-
lites do not affect the 18F-FDG tracer (Zanotti-Fregonara et al., 2011), there-
fore, no additional hypothesis or processing was required.
The compartmental model parameters were estimated at voxel level using
the weighted non-linear least square approach applied to the dynPETFIT

voxel dynamic reconstruction. Weights were chosen optimally as:

w(ti) =
∆ti

Cvoxel(ti)
(5.2)

where ti is the time instant, ∆ti is the length of the scanning interval and
Cvoxel(ti) is the voxel emission activity at time ti (as suggested in (E. Carson,
Cobelli, and Finkelstein, 1983)). Finally, during the fitting, the Cb(t) was sup-
posed to be equal to the CP (t), i.e. negligible tracer uptake of the red-blood
cell. This an implicit assumption in the use of IDIF that was validated for
18F-FDG in a previous study by Gambhir and colleagues for the 120min time
period (Gambhir et al., 1989).
In order to verify the reliability of the estimated parameters, those findings
were compared with literature results. The comparison was carried out lim-
iting the analysis to the grey matter far from the diffuse oedema in the tu-
mour contra-lateral hemisphere. The average of each model parameter was
computed over this selected area. To note that only reliable estimates were
comprised in the testing, namely estimates with sufficient precision (CV <
100%) and physiologically plausible (K1,k2,k3 >0, and Vb ranging form 0 to
1).

5.2.4 MRI Data Analysis

Anatomical Images Preprocessing

The extent of the tumour in this patient caused a significant alteration of the
brain morphology, for this reason it was not possible to perform either an
advanced preprocessing, such as the surface mapping, or a fine parcellation
of the structural images such as the one proposed by Gordon and colleagues.
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But rather, the anatomical images preprocessing consisted only in a manual
tumour delineation and in a basic tissue segmentation.
The tumour extent was delineate by an expert physician using the FLAIR as
well as the T2w image. While the tissue segmentation of the T1 MPRAGE
image was performed using the Advanced Normalization Tools software
(ANTs). Briefly, the image was corrected for bias field inhomogeneity and
then segmented into white matter, grey matter, cerebrospinal liquid, deep
grey matter, cerebellum, and brain stem using the probabilistic tissue seg-
mentation implemented in the ANTs Atropos tool. Moreover, to discriminate
between left and right hemisphere the MICCAI2012 atlas parcellation was
performed, as described in the previous chapter.

Functional Connectivity Analysis

The goal of functional connectivity analysis was to characterized the rest-
ing state networks (RSNs) of the patients. In particular, the interest was in
identifying possible functional alteration of those networks, that could be re-
lated to the presence of the tumour, and RSN regions where no appreciable
change was detectable. Due to the significant impact of the tumour on the
brain anatomy, to study the RSN it was decided to employ a data-driven ap-
proach instead of an atlas-based approach. This choice was made because
we were aware of the limited efficiency of the parcellation process in case of
significant morphological deformations.

Resting State fMRI Data Preprocessing The resting state acquisition of
the patient was preprocessed in the individual space using a combination
of ANTs software and FMRIB Software Library (FSL, S. M. Smith, Jenkinson,
et al., 2004).
Functional images were corrected for readout distortion, using the two SE
images and the FSL’s TOPUP algorithm (J. L. R. Andersson, Skare, and Ash-
burner, 2003). Data were then corrected for head motion with ANTs’ antsMo-
tionCorr, specifically, a 12-degree of freedom affine transformation was esti-
mated to realign each volume to the single-band acquired volume.
To compare functional results with the feature extracted with the other imag-
ing technique, it was necessary to map the fMRI space to the T1 MPRAGE
space. The functional images were spatially normalized to the single sub-
ject MPRAGE in a two-step process: first, to single-band reference volume
was registered to the T2w image using an affine transform and an additional
diffeomorphic deformation field limited to the anterior-posterior direction;
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then, the T2w image was rigidly registered to T1w. The estimated displace-
ment fields and affine matrices were combined into a single concatenated
transformation, which mapped fMRI space into the MPRAGE reference sys-
tem; this transformation was then used to move the RSNs maps obtained in
the fMRI space to the MPRAGE space with a single interpolation step.

Resting State Networks The resting-state connectivity pattern was inferred
from the preprocessed patient fMRI data using the independent component
analysis (ICA) technique. This is one of the most widely used techniques
in the study of functional connectivity (Fox, 2010). Briefly, ICA is a multi-
variate voxel-based approach that considers all voxels dynamic at once and
performs a dataset separation into distinct systems or networks that are cor-
related in their spontaneous fluctuations but also maximally independent in
the spatial domain.
For this analysis the FSL’s Multivariate Exploratory Linear Optimized De-
composition into Independent Components (MELODIC) software was em-
ployed. A relatively high number of independent component (IC) was cho-
sen, i.e. 100 components, according to what was proposed by Allen and
colleagues (Allen et al., 2012). Resting state components were then manu-
ally identified, the selection was made on the basis of the IC source time
dynamics and frequency behaviour, and of the IC spatial pattern. In partic-
ular, components were marked as artefactual when either IC spatial pattern
mainly overlapped structures of non interest or vascular structure such as
the superior sagittal sinus, or IC frequency content was principally confined
in the high frequencies (i.e. in a frequency range higher than 0.1Hz).
Thanks to the high number of IC, the main resting state networks were clearly
identified, i.e. the default mode network (DMN), the visual network, the au-
ditory network, executive control, etc, and the signal noise content discarded.
Nonetheless, we mainly focused of the DMN because its spatial pattern was
heavily affected by the presence of the tumour and has been found to fall in
FLAIR areas of altered signal that would have been potentially considered
completely compromised.

Structural Connectivity Analysis

The white matter projections linking cortical and subcortical regions are typ-
ically altered in presence of large tumour, in particular, some fibres are in-
terrupted and others changes their path (Potgieser et al., 2014). Changes in
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the major tracts can be delineated using the so-called tractography or fibre-
tracking algorithms.
Being able to follow the direction of the bundles allows us to give a descrip-
tion not only of the structure itself, but also of the reliability of the observed
residual activity and connectivity. The idea was to test whether there were
a residual or undamaged structural connectivity that underpinned the func-
tional links recognised with the fMRI analysis. For this reason, the study of
structural connectivity on this patient did not focus on the entire brain but
rather was focused on the connectivity between the nodes of the identified
functional networks, and, in particular to the default mode network.
To note that the use of RSN maps derived directly from the patient avoids
the problem of having to match the altered anatomy of the patient with that
of different resting state network templates present in the literature and al-
lowed us to work with subject specific data driven maps.

DTI MR Data Processing Diffusion MR data processing was performed
using the MRtrix3 software (http://www.mrtrix.org).
As previously mentioned, patient head motion during acquisition is a major
challenge for diffusion imaging data, therefore for the patient’s DTI data a
manual data checking was performed to ensure motion-corrupted volumes
were identified and discarded, a step that works like the data censoring in
fMRI. The number of not discarded volumes was higher than 60, hence, it
was possible to proceed the analysis.
Data preprocessing was then executed using the dwidenoise and dwipreproc
scripts. The dwidenoise was applied both to blip up and down DTI acquisition
(i.e. AP and PA acquisition of the same weighting gradient direction). It im-
proves the SNR of the diffusion data reducing the effect of thermal noise, and
exploits data redundancy in the PCA domain using the prior knowledge that
the eigenspectrum of random covariance matrices is described by the univer-
sal Marchenko Pastur distribution (Veraart et al., 2016). This dwipreproc script
then execute the actual preprocessing of diffusion image data and includes
eddy current-induced distortion correction, motion correction (i.e. realign-
ment of volumes), and susceptibility-induced distortion correction (using the
two acquired encoding directions of each gradient direction and the FSL’s
TOPUP tool) (J. L. R. Andersson, Skare, and Ashburner, 2003; J. L. Anders-
son and Sotiropoulos, 2016; S. M. Smith, Jenkinson, et al., 2004).



5.3. Preliminary Results 99

The multi-shell constrained spherical deconvolution as reported in (Jeuris-
sen et al., 2014) and implemented in the MRTrix3 software was used to com-
pute the fibre orientation density function (FOD). From the estimated FOD
the 5-millions-streamlines tractogram was computed using the probabilistic
fibre-tracking algorithm implemented by default in MRTrix3 with the option
anatomically-constrained tractography (ACT, R. E. Smith et al., 2012) turned
on and the minimum-length constrain set at 4 mm. In short, the algorithm
identifies suitable position from which to initiate the streamline (the seed
point), propagates the track along the estimated fibre orientation, and termi-
nates the track when appropriate termination criteria are met. ACT causes
streamlines only to terminate precisely at the grey matter - white matter in-
terface, within sub-cortical grey matter, or at the inferior edge of the image.
Whereas minimum-length criterion essentially acts as a noise filter, removing
short spurious tracks for which the support is poor given the diffusion image
data. Moreover, in order to improve the quantitative nature of whole-brain
streamlines reconstructions the spherical-deconvolution informed filtering of
Tractograms (SIFT, R. E. Smith et al., 2013) was applied to the obtained trac-
togram. This approach carry out a track pruning based on the FOD, which
in our case resulted in a 2.5-million-streamlines tractogram.

Resting State Network Structural connectivity In order to analyse the con-
nectivity between regions among the same RSN, the maps of the main RSNs
were mapped into the DTI space and used as seeds to restrict the tractogram
to the bundles just originating from the nodes of the specific network (i.e.
seed based approach), using the MRtrix3 tckedit script.

5.3 Preliminary Results

In this session the preliminary results obtained for the first patient of this
study are reported and briefly discussed. The report will follow the Material
and Methods session order. We will firstly show and discuss results obtained
from the 18F-FDG PET data, then the resting state network functional and
structural connectivity will be described and and finally some results of the
multimodal integration will be shown.
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5.3.1 PET Data Analysis Results

As regard the optimal time binning for the image derived input function, the
TG2 framing has resulted to be the best as, given the same pool of voxels
dynamics identified by means of the TOF image, it has led to a lower time
to peak and higher peak amplitude value. In particular, the time to peaks
obtained for TG1 and TG2 were respectively of 55s and 51s, and the peak
amplitudes respectively of 40.6kBq/ml and 64.4kBq/ml (with a percentage
increase of 37.2%). The IDIF dynamics achieved using the two time grids,
limited to the first 5min, are depicted in Figure 5.2. From the figure it is clear
how the second framing leads to a less disperse IDIF, with an full width at
half maximum (FWHM) that decrease from 31.2s of TG1 to 9.5s of TG2.
The complete 18F-FDG image derived input function obtained from dynPETIDIF

Figure 5.2: Image derived input functions obtained reconstructing the PET volumes
using the TG1 time binning (panel A) and the TG2 time binning (panel B).

data as well as the Feng model prediction are reported in panel A of Figure
5.3. In the same figure, it is also depicted an example of arterial sampling ob-
tained for a 18F-FDG study (described in (Bertoldo et al., 2001)) where intra-
venous injection lasted 2min, instead of the 30s of the present study. Looking
at the two curves it can be clearly perceived how injection period influences
the input function shape and why in this study the Feng model was consid-
ered to be sufficiently reasonable to fit the extracted IDIF dynamic. Indeed,
the Feng model was aimed at describing the impulse response function of
the circulatory system (Feng, Huang, and X. Wang, 1993).
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Figure 5.3: Image derived input function: panel A, normalised patient’s IDIF (grey
dots) and Feng model prediction (red line) (intravenous injection duration: 30s);
panel B, normalized arterial sampling input function obtained in a study where the
intravenous injection lasted 2min. To note that for both the time activity curves the
peak amplitude was employed for normalization purpose.

The parametric maps of the model estimates are reported for eight represen-
tative slices in Figure 5.4 and 5.5. The needed of two different figures is due
to the extent of the tumour. The maps show a significant hypo-metabolism
(K3 and Ki maps) and hypo-perfusion (K1) both in the tumoural and in the
peritumoural area, that suggest a diffuse suffering also in the surrounding
tissues. From a purely qualitative point of view, it could be said that the ob-
served pattern seems to be closely related to the oedema pattern depicted
in FLAIR image (first row of the image), even if there are areas where a the
FLAIR signal is altered but this corresponds neither to appreciable changes
in k3 nor in K1.
For what concern the comparison of the compartmental modelling estimates

in the tumour unaffected grey matter with the literature results, as the val-
ues of the literature findings are very variable, it was chosen to consider as
reference for the comparison the average values of what was found in lit-
erature. The studies we referred to for this comparison are the following:
(Sari et al., 2017), (O’Sullivan et al., 2010), (Bowen et al., 2013), (Hattori et
al., 2004), (Kawai et al., 2005), (Mosconi et al., 2007), (Reivich et al., 1985),
(Heiss et al., 1984) and (Lucignani et al., 1993), (Huisman et al., 2012). We
considered the studies’ findings in healthy grey matter tissues and briefly
summarised them in Table 5.2. In that table are also reported the average and
standard deviation of each parameter computed across the group of consid-
ered studies. Concerning the tumour contral-lateral grey matter a 1.2% of
voxels results were discarded due to limited precision or not physiological
parameters value. The average of the assessed micro- and macro-parameters
in this potentially tumour unaffected region are the following: K1, 0.16±0.06
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Figure 5.4: Compartmental Modelling results (tumour’s upper slices). Parametric
maps of K1 (panel B), k2 (panel C), k3 (panel D), Vb (panel E) and Ki (panel F)
estimates. Panel A, structural T2-weighted Fluid Attenuated Inversion Recovery
(FLAIR).
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Figure 5.5: Compartmental Modelling results (tumour’s lower slices). Parametric
maps of K1 (panel B), k2 (panel C), k3 (panel D), Vb (panel E) and Ki (panel F)
estimates. Panel A, structural T2-weighted Fluid Attenuated Inversion Recovery
(FLAIR).
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References K1 k2 k3 Vb Input

Bowen et al., 2013 0.068±0.023 0.18±0.06 0.09±0.025 – AIF
Hattori et al., 2004 0.010±0.014 0.23±0.08 0.175±0.04 0.04±0.02 AIF
Huisman et al., 2012 0.062±0.008 0.071±0.04 0.067±0.03 – AIF
Heiss et al., 1984 0.07±0.1 0.13±0.15 0.06±0.082 – AIF
Kawai et al., 2005 0.082±0.012 – 0.064±0.014 – AIF
Lucignani et al., 1993 0.11±0.02 0.07±0.02 0.04±0.01 – AIF
Mosconi et al., 2007 0.11±0.03 0.3±0.08 0.11±0.02 AIF
O’Sullivan et al., 2010 0.13±0.05 0.15±0.1 0.1±0.1 0.085±0.05 AIF
Reivich et al., 1985 0.105±0.006 0.148±0.008 0.074±0.005 AIF
Sari et al., 2017 0.43±0.1 0.22±0.06 0.046±0.007 0.076±0.02 IDIF

Overall 0.120±0.098 0.18±0.065 0.08±0.036 0.06±0.024

Table 5.2: Summary of literature results of 18F-FDG compartmental modelling ap-
plied to the time activity curves of healthy grey matter. For each study are reported
the estimates of the model parameters (i.e. K1, k2, k3, Vb), as well as the type of input
function employed. – refers to estimate not reported in the corresponding paper. AIF
stands for arterial sampling and IDIF for image derived input function. The Overall
row refers to the average and standard deviation of the parameter computed across
the studies.

ml/cm3/min; k2, 0.09±0.09 1/min; k3, 0.04±0.01 1/min; Vb, 0.03±0.10; Ki,
0.04±0.02 ml/cm3/min. These results are reasonably in line with values re-
ported in Table 5.2.

5.3.2 Resting State Connectivity Analysis Results

Independent component analysis performed on functional MR data has been
able to identify the major resting state networks. In Figure 5.6 and 5.7 era
respectively depicted the default mode network and the sensory-motor net-
work spatial pattern. The default mode network is altered in the frontal re-
gions of the right hemisphere, where the anterior cingulate cortex node of
the network is completely absent, whereas residual connectivity in the left
frontal lobe is recognised, even in regions of altered FLAIR signal. On the
contrary, SMN is entirely present, but the network’s spatial pattern is modi-
fied due to the presence of the tumour and oedema. Concerning the analysis
of structural connectivity, the attention was focused on the DMN connectiv-
ity. The obtained tractogram restricted to this network is reported in Figure
5.8. Connection between posterior cingulate cortex and anterior cingulate
cortex is present only for the hemisphere contra-lateral to the tumour, while
links between the other nodes of the network are maintained and consistent
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Figure 5.6: Axial view of the patient’s default mode network spatial pattern. The
map of the network (IC z-score, hot scale) is over-imposed on the FLAIR structural
image (grey scale). In the upper-right corner, FLAIR sagittal view on which the
reported slices are marked in red.
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Figure 5.7: Axial view of the patient’s sensory-motor network spatial pattern. The
map of the network (IC z-score, hot scale) is over-imposed on the FLAIR structural
image (grey scale). In the upper-right corner, FLAIR sagittal view on which the
reported slices are marked in red.
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with the well known pattern of the DMN, reported for example in (Horn et
al., 2014).

Figure 5.8: Patient’s 3D tractogram colour map restricted to the patient’s default
mode network seed areas. Panel A, sagittal view form left and right hand side;
panel B, axial view; panel C, coronal view. DMN seeds are in hot scale, according
to the z-score values of the patient’s DMN related independent component. Colour
coding is exploited to show the direction of the fibre bundles, as default: red indi-
cates directions in the X axis (right to left or left to right), green directions in the Y
axis (posterior to anterior or anterior to posterior), and blue directions in the Z axis
(foot-to-head direction or vice versa). (Radiological convention)

5.3.3 Multimodal Integration of Connectivity and Metabolic

Features

The Figures 5.9 and 5.10 show how it is possible to relate our preliminary PET
and MR results in order to describe the functional and structural behaviour
of tumoural and peritumoural regions.
From a qualitative perspective, the metabolic and functional pattern are re-
lates. In the first figure, the areas of activation of the sensor-motor network
correspond to regions where cortical metabolism is similar to that of the
healthy tissue. While, concerning the second figure, the integration of the
two information enables us to identify both regions where a residual activity
is present and regions where no activity can be identified. Indeed, although
in the FLAIR image the DMN frontal portion is covered by oedema, the pres-
ence of residual activity can be proved from different points of view: ICA
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identifies activation areas for which PET indicates metabolic consumption
(oxidative phosphorylation) and perfusion not-negligible, moreover, those
areas are anatomically linked to the rest of the network, as indicate by the
structural connectivity analysis.

Figure 5.9: Multimodal maps of the sensory-motor network. First row depicts FLAIR
structural image (grey) with over-impose standard uptake value map (rainbow) and
spatial map of z-scored independent component related to SMN (hot). Second row
depicts axial and coronal views of the FLAIR structural image with over-impose
spatial map of the SMN.

Figure 5.10: Multimodal maps of the default mode network. Top-left panel, FLAIR
structural image (grey); top-right panel, DMN tractogram; bottom-left, metabolic
consumption (standard uptake value, rainbow) over-imposed on FLAIR; bottom-
right, DMN spatial map (hot) and metabolic consumption (rainbow) over-imposed
on FLAIR.
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5.4 Conclusion

The proposed framework has proved to be appropriate also for this second
application, although limited to a single proof-of-concept case. As regard
the analyses carried out on PET data, several limitations related to the spe-
cific clinical setting has to be faced, namely the minimal injected dose (which
however was in line with the clinical indication of Azienda Italiana del Far-
maco) that typically leads to limited signal to noise, the absence of an au-
tomatic pump to the tracer injection (which would allowed us to set the
injection speed and to avoid collecting input function poorly in line with
literature), the absence of an arterial sampling system (to be used as input
function of the compartmental model that describes the tracer kinetics) and
of venous samples of the tracer concentration (to be used possibly as scal-
ing factor to correct the image derived input function tail as in population
based input function described in (Zanotti-Fregonara et al., 2011)). Nonethe-
less, it was possible to carry out a quantitative analysis of the PET dynamics
though a compartmental modelling approach using an image derived input
function. This function was computed using the MR TOF image to precisely
guide the selection of the voxels within the common carotid arteries, as sug-
gested by the work of Fung and colleagues (Fung and Richard E. Carson,
2013) where however the PET camera FOV includes only the external and
internal carotids. In particular, it was hypothesised that, extracting this in-
put function from the common carotid arteries, the partial volume effect was
negligible as mean diameters of those structure are 6.52±0.98mm in men and
6.10±0.80mm in women (according to Krejza et al., 2006) whereas the PET
camera resolution of the Biograph mMR scanner is 4.3mm (G. Delso, Furst,
et al., 2011). Moreover, being aware of the impact of time sampling on the
ability of detect a dynamic signal, two different time binning for PET images
reconstruction were tested to evaluate which one was the better in describing
the IDIF shape. A direct comparison between the obtained IDIF and popula-
tion arterial input functions was not feasible due to the short duration of the
tracer injection. However the consistency of the kinetic parameter quantified
using the compartmental modelling, with the literature findings supports
the reliability of the assessed IDIF. To note that to perform a fair compari-
son it was necessary to identify regions of grey matter from the tumour area
and FLAIR hyper-intense area. Notably, when the compartmental modelling
will be applied to tumour regions further confirmation of the aptness of the
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2TC-3k model in describing the kinetics will be necessary, as for some partic-
ularly active tumours, the tissues alterations may be so critical that the two
compartments could collapse in a single compartment.
Beside a comparison with literature, a robust validation of the results was not
possible because of the lack of arterial samples to be used as input function.
Moreover, to confirm those preliminary results it is fundamental applying
the same framework of reconstruction and analyses to a wider pool of pa-
tients as one of the major limitation of this study is that it was carried only
on one single patient.
Concerning the MR side of the study, the fMRI and DTI sequences tunning
has lead to a state-of-art signal in both signals. The images quality was com-
parable with what is reported in literature (not shown here) as well as the
estimated connectivity.
In addition, these very preliminary results has proved to be interesting and
promising in terms of delineating areas with residual activity. Indeed, thanks
to a multimodal integration of the two techniques results based on connec-
tivity it was possible to highlight areas where MR structural images have
displayed an altered signal intensities but both connectivity and metabolism
analyses have proved that a remaining tissues activity was present. Clearly
the type of information in clinical setting where the surgery has to be planned
could be particularly useful. However, although this approach seems to be
promising it is necessary to verify is feasibility on a wider dataset with a
longitudinal approach. To this end further acquisitions are still ongoing.
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In recent years, the study of brain connectivity has received growing interest
from neuroscience field, from a point of view both of a pathological condi-
tion and of a healthy brain. PET-MRI simultaneous acquisition has proven
to be a promising tool for the this type of studies as it can provide comple-
mentary multimodal information about the physiological and pathophysio-
logical processes as well as about the brain functional activity and structure.
The great challenge that has been faced with this thesis was to export this
kind of analysis into a clinical experimental setting, such as the one housed
in the Nuclear Medicine Department of the Padova Hospital. For this pur-
pose a framework of acquisition, reconstruction and quantification has been
developed. During this PhD programme several aspects of the hybrid PET-
MRI acquisition have been addressed. At first, we dealt with the planning
of MR image acquisition protocols so that they could provide images that
were suitable for functional and structural connectivity analysis at state-of-
art level, and at the same time that could meet the constraints imposed by
the clinic, particularly in terms of time. To this end, a fine tuning of the MR
pulse sequences was required, both to reduce acquisition times and to im-
prove image resolution, field of view and signal to noise ratio.
Then, we have been involved in the reconstruction of PET images, for which
a pipeline for the scanner off-line reconstruction has been implemented. The
pipeline includes a step of advanced attenuation correction step, which leads
to a better attenuation correction with respect to the scanner one, and pro-
vides the possibility of reconstructing the list mode PET dynamics using dif-
ferent time grids. In particular, the possibility of reconstructing on differ-
ent time grids has proved to be very useful in the PET quantification phase.
The quantification of PET dynamics was performed through a compartmen-
tal modelling approach, which required an accurate input function. One of
the main limitation our clinical setting is the lack of arterial blood samples
to be used as input function, therefore it was necessary to employ an input
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function derived directly from the PET images. To this end it was fundamen-
tal to reconstruct the PET signals identifying and using a time sampling grid
suitable for detecting the shape of the IDIF signal.
A second severe constrain imposed by the clinical setting is the duration of
the PET/MR acquisition. The compartmental model that better describe a
tracer dynamic is typically developed and estimated using PET data col-
lected over a long period, however this was not the case of first of the two
studies described in this work. As we were interested at computing a proxy
of the cerebral blood flow, which in literature has been proven to be quantifi-
able using long PET scan of 11C-PiB, it was necessary to develop and evaluate
how to reduce the well known compartmental model of our tracer that is an
analogous of 11C-PiB to reliably estimate this parameter. The proposed re-
duced model has proved to be adequate in describing the collected data and
estimating reliable proxy of CBF.
Once optimized, the acquisition setting was applied to two different studies,
a first conducted on patients affected by Parkinson’s Disease and dementia
(PDD), and a second one on high grade gliomas.
The acquisition framework as well as the implemented analysis pipeline pro-
ved to be adequate to the clinical context and in both cases provided promis-
ing results. Indeed, in the case of the PDD study thanks to the analyses con-
ducted, it was possible to obtain first results on the relationship between the
pathophysiological process underlying the dementia (i.e. amyloid burden
and decrease of cerebral blood flow) and the structural and functional varia-
tions experienced by resting state cognitive networks. While, concerning the
study of high-grade gliomas, the integrated approach to the study of con-
nectivity has allowed to identify regions with residual activity and thus to
provide information of potential interest for clinical practice.
Overall, although additional data is needed to confirm the our first clinical
results, simultaneous PET/MRI acquisitions and the implemented analysis
pipeline have proven to be a good tool for studying the pathological alter-
ations in connectivity.
With this thesis we have shown two promising proof-of-concept applica-
tions of the proposed framework to study the alterations of brain connec-
tivity in relation to ongoing pathological processes. But ongoing acquisitions
on patients affected by high grade glioma will lead to a wider dataset for
which it will be exiting find new ways of combining structural, functional,
and metabolic informations possibly introducing causal interactions between
them, in order to better understand the pathology.
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