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Chapter 1

Introduction

During the last decades, the energy sector, and in particular the electricity

one, have undergone a remarkable transition around the world. The in-

creasing competition in the market, the growing penetration of renewable

generation and the pressure for decarbonisation are all part of the process.

Moreover, in Europe, the recent market coupling initiatives are paving the

road for an integrated European electricity market, and the aim is to enable

the free movement of electricity across the different power regions.

This thesis builds from this paradigm and investigates some of the most

recent changes relative to the energy market, in the general context of the

European region.

In particular, Chapter 2 investigates the relationship between the European

electricity market and the EU ETS, namely the European Union Emission

Trading System. This chapter assesses the ability of the scheme in delivering

low-carbon investments at the firm level in the electricity generation sector,

by modeling, in a real option framework, a price taker electricity producer

subject to the EU ETS jurisdiction. It also investigates the effects of a carbon

price stabilization mechanism on the timing of the investment decision.

Chapter 3 instead looks into the so-called Capacity Remuneration Mecha-

nisms, and in particular into the pricing of the reliability option, which is a

market mechanism used to ensure security of supply in electricity markets.

This tool is about to be introduced in the Italian electricity market, and this

chapter develops methodologies for its modeling and shows that, in the sim-

1



2 1. Introduction

plest contract design, the reliability option can be written as the integral of

call options on the power price, with a strike price that can be modeled either

as a fixed quantity or as a stochastic process itself (so that it represents the

marginal cost of the marginal technology used to produce electricity). The

value of the Reliability Option is simulated under a real-market calibration,

using data of the Italian power market. A sensitivity analysis finally high-

lights the impact of the power and strike price levels and of their volatility,

mean reversion speed and correlation on the Reliability Option valuation.

Finally, Chapter 4 aims at analyzing electricity flows between intercon-

nected locations in the EU, and their effect on electricity prices in the differ-

ent locations. Building from this endeavor, we then solve the optimal control

problem of an agent who uses the interconnectors to take positions in a sub-

set of locations that are part of the interconnected network. A real-market

simulation finally shows the performance of the trading strategy.

Conference presentations and Awards. Chapters 2, 3 and 4 constitute

three different papers, and each one of them has been presented at different

seminars and conferences. In particular, I am thankful to conference and

seminar participants for the helpful comments and remarks they provided

me with at the Association for Mathematics Applied to Social and Economic

Sciences 2017 meeting (AMASES), the Energy Finance Italia III conference

(EFI), and the BOMOPAV workshop, where I presented the paper relative

to Chapter 2; the University of Padova, the Energy Finance Christmas 2017

workshop (EFC17), the Workshop on Stochastics and Optimization in En-

ergy at King’s College London, the Commodity and Energy Markets Annual

Meeting (CEM18), and the 29th European Conference on Operational Re-

search (EURO18), where I presented the paper relative to Chapter 4.

Moreover, the paper relative to Chapter 4 (Optimal cross-border electricity

trading) is the result of my visiting periods at University of Oxford, where I

have been working with Professor Álvaro Cartea on this project. This intense

and engaging period culminated with an official recognition at the Commod-

ity and Energy Markets 2018 Annual Meeting, where the paper was awarded

the General Prize for best paper.



1.1 The electricity market 3

1.1 The electricity market

After it is produced by an electricity generator, electricity flows through

transmission networks, which are run by Transmission System Operators

(TSOs). Each country can have one or more TSOs; Italy and France, for

example, have one (Terna and RTE, respectively), while Germany has four

(50 Hertz, Amprion, TenneT and TransnetBW). Finally, DSOs (Distribution

System Operators) distribute the electricity across the various households

and businesses. In Italy, for example, ENEL is the biggest DSO.

Figure 1.1: Source: Understanding electricity markets in the EU. European Parlia-
ment briefing (2016).

National transmission grids can be interconnected, meaning that electricity

can flow across national borders into another country’s grid. The physical

structures enabling this connection between two different grids are called

“interconnectors”. The recent market coupling initiatives are aimed at inte-

grating the European wholesale electricity markets, thus increasing security

of supply while reducing price volatility across Europe, and interconnectors

are at the core of the market coupling process.

The term “electricity market”, intended as a virtual space where anyone

can trade this commodity, is a relatively new concept. Citing Edwards (2009),

Prior to deregulation, only power plants owned by utilities

could sell power into a power grid. After deregulation, anyone

could build a power plant, produce power, and offer that power

for sale. In deregulated markets, utilities have shifted away from

running power plants to concentrating on operating transmission

grids. There are power plants now owned by power traders and

operated by specialized service companies. These changes revolu-



4 1. Introduction

tionized the power industry - they created a market for electrical

power.

Electricity transactions can be done over-the-counter (OTC), that is off-

exchange, directly between two parties, or on an exchange. One of the biggest

exchanges where electricity can be traded in Europe is EPEX Spot, the Euro-

pean power exchange for spot trading, covering Germany, France, the United

Kingdom, the Netherlands, Belgium, Austria, Switzerland and Luxembourg.

EPEX Spot operates the power spot markets for short-term trading, i.e.

the day-ahead and intra-day markets. However, another important piece of

the energy market is the forward one. The main difference among these three

markets is that, in each one of them, one can trade contracts on electricity

with a specific range of delivery times.

The forward and future market is mainly intended for hedging purposes,

and it can be over-the-counter (OTC) or a centralized exchange market.

In the latter case, it is a continuous trading market, where you can trade

contracts where the delivery of electricity is sometime in the future: weeks,

months, quarters, seasons, years.

The day-ahead market in Europe is a uniform auction system, where elec-

tricity contracts with delivery on the following day are traded. Each different

hour of delivery is a different product, so that the price of electricity deliv-

ered at, for example, 4 p.m. on the following day, is different from the one of

electricity delivered at 5 p.m. of the following day. Moreover, electricity can

also be traded in blocks, so that there are additional products, such as Block

Baseload (covering hours 1 to 24), Block Peakload (covering hours 9 a.m.

to 8 p.m.), Block Off-Peak (covering hours 9 p.m. to 8 a.m), among others.

This market closes at midday of the day before delivery is scheduled, and

demand and supply curves determine the price. In such a way, each electric-

ity producer has incentive to bid the marginal cost of production, because

if somebody else bids higher, and their aggregate supply is met by demand,

that higher bid will be the final price they both will receive.

Finally, the intra-day market in EPEX is a pay-as-bid system with contin-

uous trading, where one can trade electricity contracts with delivery on the

following or on the same day. In fact, starting from 3 p.m. on a certain day,

all hours of the following day can be traded, and each contract can be traded

until 30 minutes before delivery begins.
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As Creti and Fontini (2018) note, the two different systems governing these

last two markets, the continuous trading system and the auction one, each

have their own advantages and shortcomings. Continuous trading systems

are more efficient in presence of high liquidity, since they facilitate the order

matching. However, if liquidity is limited, they are riskier. An auction

system, on the contrary, provides a reference price, but can be inefficient as

it forces agents to wait until the end of the auction period.

1.2 Black & Gold

Oil and sunlight are two important sources of power in energy markets. These

are going to be the subject of the case study in Chapter 2.

Oil, compared to hydrocarbon gases, contains a lot of energy per unit of

volume. There are a lot of varieties of crude oil, and the most common oil

benchmarks, and most liquid, are Brent and WTI. Figure 1.2 and 1.3 show

the world total primary energy supply (TPES) by source, over different years.

Even if it decreased from 1971 to 2016, oil is still the dominant fuel.

Figure 1.2: 1971 and 2016 World total
primary energy supply (TPES) by source.
Source: IEA (2018).

Fossil fuel power plants can burn

oil to produce steam, which drives

a generator to produce electrical

power. A common measure of the ef-

ficiency of fossil fuel power plants is

the so-called ‘heat rate’, expressed as

a ratio of heat input to work output.

Oil-fired power plants are typically

not very efficient, when compared to

natural gas-fired ones. As for their

emissions, they also produce more

CO2 than natural gas-fired plants,

although they have a better emission factor than coal-fired ones (IPCC

(2006)). Fossil fuel power plants are the most influential in energy trad-

ing, since they are the marginal producers. As such, they usually set the

clearing price for power in auction markets, such as the EPEX day-ahead

one. In fact, as mentioned in the last section, in auction markets, all winning

bidders get paid the same price for the electricity they sell, regardless of their

bids.
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Figure 1.3: World total primary energy supply (TPES) by source, 1990-2015.
Source: IEA (2017b).

Solar power plants, instead, are always going to bid low in auction markets:

they require a considerable initial investment, but are very cheap to operate.

There are two types of solar power plants - photovoltaic (PV) and thermal

ones. The former are the most commonly referred to when discussing solar

power. PV plants produce direct current electricity using a sheet of solar cells

made of specialized semiconductors. In several countries in Europe, thanks

to governmental support schemes, this technology has been deployed rapidly

and, over the last few decades, there was a considerable growth in PV power.

The advantage, of course, is that they do not need any fuel to operate, and

thus they do not emit greenhouse gases.

1.3 Emission trading

Carbon emissions are another important commodity in the energy market.

Moreover, they are also a fairly recent one. In fact, over the last few years,

environmental regulation has tried to integrate the social costs entailed by

environmental pollution into the price of the products, and this was done

essentially in two ways: through command-and-control instruments or using

market-based ones.

The former instruments are the least efficient: they impose a quantitative

restriction on individual players, without taking into account the different

marginal abatement costs. On the other hand, market-based methods rep-

resent a more cost-effective alternative. Among these latter instruments,

cap-and-trade markets offer the promise of finding the lowest cost way to

decrease emissions.
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In a cap-and-trade scheme, the cap on the total emissions is set by the regu-

lator, while the price of the tradable emission permits, or carbon allowances,

is determined by the market. In such a way, the right to create pollution

becomes a tradable commodity.

Some of the first examples of these kind of systems can be traced back

to the 1980s in the US, when the Environmental Protection Agency offered

states such tools in order to control localized air pollutants. Then, in 1990,

Title IV of Clean Air Act amendments established a sulfur dioxide allowance

trading program, in order to control the acid rain issue. This was indeed one

of the first cases of successful implementation of an emission trading system

on a large scale.

Europe had to wait a bit more to have its own emission trading market, but

it can now boast the biggest one in the world, the European Emission Trading

Scheme (EU ETS), accounting for more than 75% of international carbon

trading. This was established by the European Directive 2003/87/EC, and

was launched in 2005. It covers a range of different greenhouse gases: CO2

emitted from power and heat generation, energy-intensive industry sectors

and civil aviation, N2O (nitrous oxide) from the production of acids and

PFCs (perfluorocarbons) from aluminum production.

During the first two phases of the EU ETS, allowances were freely allocated

among players, while Phase 3 (2013-2020) employs auctioning as the preferred

primary allocation method. Each European Union allowance (EUA) grants

the right to emit one tonne of CO2 equivalent. The price of these permits,

however, has been very fluctuating and subject to spikes and jumps, as it

can be seen in Figure 1.4.

Despite the extensive literature (see Chapter 2) advocating for a regula-

tory intervention in the market, this has never been implemented. Chapter

2 analyses the historical behavior of carbon prices and provides tools for

evaluating the effectiveness of the EU ETS in encouraging environmentally

conscious investments in the power generation sector. Specifically, it models

the choice of a price taker electricity producer to switch from her current

carbon-intensive power production technology to a cleaner one. This choice

is evaluated as a real option, via Least Squares Monte Carlo methods. More-

over, it also investigates the effects of a carbon price stabilization mechanism

on the electricity producer’s choice. The envisaged regulatory intervention is
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Figure 1.4: European Union Allowance spot price 2005-2017.

a price floor on carbon, and the scope of different floor levels is evaluated in

this context.

1.4 Capacity markets

Capacity markets (or capacity mechanisms) represent another policy tool

used to tackle the daunting challenge of decarbonizing electricity produc-

tion. Their goal is that of ensuring reliability needs are met in the power

system during the low-carbon transition. Moreover, these markets mitigate

the problems caused by the fact that electricity demand is highly inelastic to

prices.

There are two types of capacity mechanisms: targeted ones (for instance,

strategic reserves) and market-wide ones (reliability options). The former

mechanisms do not provide additional revenues, they are instead the only

source of revenues for the contracted capacity. The latter instead comple-

ment revenues from the sale of electricity, and are, in principle, the most effi-

cient ones. The largest and most complex capacity mechanism in the United

States is the PJM Reliability Pricing Model (RPM), which is a market-wide

mechanisms.

The US, and the American continent in general, have a long history of

capacity remuneration mechanisms, while in Europe they have become a pri-

ority for the regulator only in recent years (see Mastropietro et al. (2016)
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and references therein). As mentioned above, Chapter 3 will focus on the

Italian experience, as Italy is planning to implement a market-wide mech-

anisms, namely a reliability option one. These contacts grant their owner

the right, but not the obligation, to buy electricity from the option’s seller

at a predetermined strike price. In such a way, the sellers of a reliability

option obtain a stable revenue in exchange for which they forego possible

rents from price peaks. Thus, reliability options reduce supplier risk, while

also hedging load from high prices. These tools are particularly efficient in

that they avoid market price distortions, as they lower regulatory risk, and

can be easily adapted to meet national needs.

1.5 Cross-border transmission networks

In the perspective of a low carbon transition in the power market, invest-

ing in new transmission projects is a cost-efficient means of facilitating the

integration of high shares of intermittent renewable energy sources, and of

securing electricity supply. This is why interconnecting different electricity

markets is very high in the political agenda of the European Commission.

According to IEA (2014b), an investment of 546 billion dollars in trans-

mission networks is needed in OECD countries by 2035, making up 37% of

the total investment foreseen in renewables, networks and conventional gen-

eration. In fact, the present lack of fully interconnected macro regions also

causes the need to sometimes curtail the generation of electricity from renew-

able sources, simply because it cannot be distributed to a wider area (IEA

(2016)). The technology mix for electricity production varies a lot across

Europe. For example, hydroelectricity shares are high in Norway (96.3%

of total electricity generated in the country in 2016), Iceland (72.6%) and

Austria (61.2%), wind production is substantial in Germany (77.4 TWh in

2016) and Spain (48.9 TWh in 2016), while Germany (38.2 TWh in 2016)

and Italy (22.9 TWh in 2016) account for most of solar PV power production

in Europe (IEA (2017a)). Thus, having a fully interconnected market could

be very beneficial for the system, as it would increase the security of supply

and decrease overall costs.

Even if the urge for new interconnecting infrastructures is felt at the Eu-

ropean Commission level, the literature on interconnectors valuation is still

scarce. To our knowledge, the papers by Rosenberg et al. (2010) and Cartea
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and González-Pedraz (2012) are the first having undertaken this task. In

their works, they suggested to value interconnectors as a strip of real op-

tions written on the price spread between interconnected power markets, so

that, each day, each spread option can be exercised or not, depending on

its convenience. However, their analysis is static, in the sense that the way

the interconnector is used on a given day does not affect the way it will be

used on the following one. In Chapter 4, instead, we first show that traded

volumes have a direct and indirect effect on the electricity price in the differ-

ent countries, and then we provide a valuation framework based on optimal

stochastic control theory, computing the total cash flows an agent can obtain

by trading electricity contracts across interconnected locations. We do so by

considering the intra-day market.

In fact, as mentioned earlier in Section 1.1, the day-ahead and the intra-day

markets, in the European region, present a lot of different features. Moreover,

they also differ in their level of interconnectedness. In fact, the day-ahead

market is an integrated market, and prices are coupled, meaning that, pro-

vided that the interconnector capacity is enough, the price of electricity in

the two interconnected countries will be the same. Moreover, imports and

exports are implicit, in the sense that they are determined by an algorithm.

The intra-day market, instead, is not as integrated, and agents can decide to

go and buy electricity in another country, so that there could be arbitrage

opportunities. These opportunities will be explored in Chapter 4.



Chapter 2

Price dynamics in the

European Emission Trading

System and evaluation of its

ability to boost

emission-related investment

decisions ∗

In this chapter, we assess the effects of the European Union emission trad-

ing scheme (EU ETS) in delivering low-carbon investments at the firm level,

by modeling a price taker electricity producer subject to the EU ETS juris-

diction. We compute, via Least Squares Monte Carlo (LSMC) methods, the

value of the real option the greenhouse gas emitter has, consisting in the op-

portunity to switch from its current high-carbon technology to a cleaner one.

We evaluate this real option by proposing a Brennan-Schwarz model, which

exhibits positive mean-reverting prices, for fuel and a Variance Gamma (VG)

specification for carbon prices. Moreover, we further analyze the investment

decision problem, in case of a CO2 price stabilization mechanism, by explicitly

computing the expected value of the investment project by means of Fourier

∗This paper is a joint work with Tiziano Vargiolu (Università degli Studi di Padova).
This paper is currently under revision for an international journal.
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methods. Our results show that the introduction of a price stabilization mech-

anisms, in this case a carbon floor price, significantly affects the timing of

the investment decision, supporting emission related investments.

2.1 Introduction

In the past decades, it has become increasingly clear that a development

model heavily based on fossil fuels is hardly sustainable on the long term.

This is why the recent international environmental agreements (UNFCCC,

Kyoto Protocol) have urged countries to adopt emission reduction measures

and to invest in alternative energy projects. One of the policy tools of newest

implementation, aimed at reducing greenhouse gas (GHG) emissions, is emis-

sion trading. Such a tool is aimed at internalizing the negative externalities

generated through the production processes, by making the polluting pri-

vate firms buy a number of emission allowances, corresponding to the tons

of GHG they emit in the atmosphere.

Emission trading systems (ETS) are usually cap-and-trade schemes, in

which the regulator sets the maximum amount of CO2 and other pollut-

ing gases that can be emitted in the system, and then firms buy and trade

the emission permits on the base of their needs. Each emission permit (or

emission allowance) grants its owner the right to emit one ton of GHG.

The aim of this chapter is to give a quantitative view on the evolution of the

EU ETS (European Union Emission Trading Scheme) carbon market, ana-

lyzing the emission reduction problem from the point of view of an electricity

producer running a fossil fuel-fired power plant, who is confronted with the

choice of either submitting to the ETS jurisdiction, as opposed to chang-

ing the production model, by switching production to low carbon sources of

energy.

In order to do this, taking into account the uncertainty involving future

EUA (European Union Allowance) prices and the irreversible costs connected

to a new PV plant investment, we considered the opportunity of switching

production method as a real option. Computing the price of such a real

option gives a measure of how convenient it is for the GHG emitter to shut

down the fossil fuel-fired power plant and to invest in a renewable energy
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project. We focused on an oil-fired power plant, and we chose PV energy as

the alternative source of energy considered.

Section 2.2 places this work in the relevant literature on the subject. The

first part of Section 2.3 presents the model and the methodology. Pricing

a real option requires consistently defining the price dynamics of the under-

lying assets, and this is why the second part of Section 2.3 is devoted to

analyzing the EUA spot prices, in order to define a stochastic process able to

consistently replicate their trend over time. Section 2.4 presents the results

and conducts a sensitivity analysis. Section 2.5 concludes.

2.2 Relevant Literature

Since the European Union carbon market was established, in 2005, the un-

certainty related to the magnitude of compliance costs and to the impact of

this type of climate policy on the power sector has motivated some research

on this field. Some of the early contributions can be traced back to Lau-

rikka and Koljonen (2006) and Szolgayova et al. (2008). Both papers use

stochastic carbon and electricity prices and deterministic fuel prices. While

the former investigates how emission-related uncertainty affects the value of

an option to invest in a coal powered plant as opposed to that of investing

in a gas-fired power plant, the latter analyzes the effects of a cap on the

carbon price, concluding that it would jeopardize the incentive to phase in

low-carbon technologies. Both of them investigated the implications of the

EU ETS by means of a real option analysis, but did so at a time when the

EU carbon market was still very young and unstable, so historical data were

relatively short.

As time went by, the magnitude of the downward risk in the EU ETS

started to motivate some research aimed at discussing the effects of bounding

carbon prices by means of a regulatory minimum price for EU allowances.

The theoretical studies by Weber and Neuhoff (2010), Grüll and Taschini

(2011) and Wood and Jotzo (2011) act in this sense, analyzing the possibility

of enhancing the incentives provided by the EU ETS, by introducing a CO2

price floor. Their results suggest that establishing a regulatory minimum

price would be advisable in many respects.

The papers by Abadie et al. (2011) and Brauneis et al. (2013) incorporate
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the possibility of such a political intervention in their real option analysis, to

assess its effects on the firm-level investment decisions. The former employs

a binomial lattice model to compute the value of the option to abandon a

coal-fired power plant and advocates a price stabilization mechanisms in the

form of floor price. The latter, instead, uses the least-squares Monte Carlo

approach to solve the optimization problem of decision making in case of

an electricity producer who has the option to replace the existing coal-fired

power plant with a “clean” nuclear one. Brauneis et al. (2013), moreover,

compute the floor price required to trigger investment in the new low-carbon

plant, and propose a number of different designs for the floor price.

In this work, we propose an extension to the model by Brauneis et al.

(2013), introducing a different stochastic process, both for fuel and carbon

prices, in place of the geometric brownian motion (GBM). In fact, unlike

other financial products, which all fall into a precise asset category (equity,

fixed income, FX, commodities, derivatives), carbon is a special asset which

may resemble energy commodities in some aspects but differentiates itself

in others, in the sense that its price somewhat depends on an exogenous

political decision, which caps the total supply of the product. This aspect

reflects in the price distribution, featuring extreme events such as jumps

in the price process, as well as heavy tails and leptokurtic behavior in the

distribution. The majority of the papers on the ETS subject have used, for

ease of modeling, GBM processes to describe the EUA price behavior (cfr.

Szolgayova et al. (2008), Abadie et al. (2011), Yang et al. (2008), Brauneis

et al. (2013), among others). Instead, we propose a different specification

for the allowances price, namely a Variance Gamma (VG) process, which,

to our knowledge, has never been used to model carbon prices. Moreover,

we further analyze the investment decision problem in case of a CO2 price

stabilization mechanism, by explicitly computing the expected value of the

investment project by means of Fourier methods.

2.3 Methodology

We consider a price taker and risk neutral power generating firm, operating

a “dirty” electricity generation technology in Italy.1 Being subject to the EU

1Choosing a specific geographic region where to base our project is just a tool for
consistently defining the technical characteristics and output of the new plant, powered
by renewable sources. Nevertheless, our model can be used for different geographical
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ETS jurisdiction, the firm has either to buy the necessary EUAs to run its

business, or it can decide to switch production model towards more sustain-

able energy sources, in order to avoid the compliance costs. Specifically, we

decided to choose photovoltaic (PV) technology as a case study. In fact, solar

production has experienced a consistent growth in Italy over the last years,

accounting for the highest share of incremental production from renewable

energies in the period 2002-2015, going from only 677 GWh in 2009, topping

22,900 GWh in 2015 (GSE (2017)). In order to reduce the dimensionality of

the problem, we suppose that the two alternative plants, the ”clean” and the

”dirty” one, produce the same amount of electricity per year. In this way,

when evaluating the real option, we get rid of the electricity price variable.

We thus chose to model the firm as an oil-fired plant with a comparable ca-

pacity to that of the alternative solar one. The technical characteristics of

the firm at t = 0 are reported in Table 2.1.2

2.3.1 The investment decision problem

At the beginning of each period, until the end of its economic life, the com-

pany can choose to replace the existing power plant with another one, based

on PV technology, with no carbon emissions. Given the fact that this deci-

sion (1) can be taken at any moment in time prior to the end of the economic

life of the oil-fired power plant, (2) is irreversible in that it implies high sunk

costs (decommissioning of the existing plant and construction of the PV one),

and (3) is affected by the uncertainty related to some key variables, such as

the price of CO2 and that of fuels, this choice can be modeled as a real op-

tion, to which a value can be given, in a very similar way to the one in which

financial options are priced. The pricing process of a real option has received

an in depth treatment in the seminal text by Dixit and Pindyck (1994) on

real option theory. It is possible to use two different methods: dynamic

programming, in which the investment problem is formulated in terms of a

Hamilton-Jacobi-Bellman equation and solved by backward induction, using

a discount rate reflecting the opportunity cost of capital for similarly risky

investments, or contingent claims analysis, which consists in constructing a

riskless replicating portfolio of existing traded assets able to indeed replicate

locations.
2We refer the reader to Appendix A.1 for the computation of some of the values in the

table.
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Table 2.1: Technical characteristics of the oil-fired power plant.

Variable Unit Value

Capacity MW 10

Residual lifetime years 25

Capacity factor∗ rate 80%

Efficiency¶ rate 40%

Electricity produced kWh/year 7.01 ·107

Fuel consumption tons/year 1.48·104

CO2 emission factor tons/kWh 2.64·10−4

CO2 emissions per year tons/year 46,200

Operating & maintenance costs million EUR/year 0.5

Decommissioning costs million EUR 1

∗ The capacity factor is the ratio of a power station actual generation to its
maximum potential generation. This value represents the theoretical
capacity factor of an oil-fired power station in good condition. In Italy
there are some examples of fuel oil plants which have been running in full
swing over the recent years: the Livorno Marzocco power plant, Tuscany,
operating since 1965, in 2007 had a capacity factor of 79%
(see http://enipedia.tudelft.nl/wiki/Livorno Powerplant).
¶ The efficiency of a power station is a percentage measure given by the

ratio between the electricity produced and the heat energy needed in
order to produce it. According to IEA (2008), the average efficiency of
oil-fired electricity production in Italy, over the 2001-2005 period, was
41%. For ease of calculation, 40% is taken as a proxy.

the return of the claim we are trying to give a value to. Being riskless, such

a portfolio earns a risk-free rate of return. Both methods are in principle

analytical ones, in which an explicit formula for the option value should be

retrieved, by solving a partial integral differential equation (PIDE) subject

to two key boundary conditions, the value-matching and the smooth-pasting

ones; in practice, it is often not possible to do so, and instead of finding

a closed-form solution, numerical methods are employed, as is the case in

our model. As a computational method of choice, given that we model our

two relevant state variables with different stochastic processes, and given the

complexity of the VG one, we chose to implement a Least Squares Monte

Carlo (LSMC) simulation rather than a simpler binomial tree for efficiency

purposes.

The optimization procedure starts by defining the relevant state variables,

choosing a stochastic process for each one of them, and calibrating such pro-
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cesses on historical data. Using those fitted processes, Monte Carlo methods

are then employed to simulate paths for the relevant state variables. We

then match this simulation to a dynamic programming algorithm, in order

to compare the expected outcome of investing in the PV plant (that is, ex-

ercising the option), with the one obtained by postponing the decision for

an additional period. By taking the maximum between the immediate in-

vestment net present value (NPV) and the NPV obtained by delaying the

decision, we find the optimal exercise decision at any point in time.

In case the firm decides to invest in the alternative energy plant, it will have

to pay for the decommissioning of the oil-fired plant, whose cost is reported in

Table 2.1. Given the negligible construction time of PV plants, we assumed

the switching decision to have immediate effect. We further assumed the PV

plant to have an economic lifetime of 25 years (average economic lifetime of

PV plants according to IEA (2014a)).

Once defined the total electricity output produced in the entire lifetime of

the solar plant, the investment required to build it is expressed by the lev-

elised cost of electricity (LCOE) of PV technology, an indicator summarizing

the various costs related to building and operating a power station. Taking

into account the benefits given by the so-called “learning curves” over time,

the LCOE is modeled as a decreasing exponential, as seen in Biondi and

Moretto (2015):

LCOE(t) = LCOE(0) eαCt (2.3.1)

where αC < 0 is the product between the negative learning curve coefficient

and the average growth rate of the PV industry.

The real option, thus, has a strike price K equal to the sunk costs the firm

incurs once it decides to invest:

K(t) = c+Q · LCOE(t),

where c represents the decommissioning cost of the high-carbon plant, and

Q is the total electricity produced over the PV plant lifetime. On the other

hand, exercising the option grants Φ, which represents the conditional ex-

pected value of the savings the company obtains by investing in the clean

technology plant, discounted with a risk-free factor r, and summed up from

the moment when the investment takes place, t, until the end of the model
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horizon, T :

Φ(Dt, Pt, t) = EQ
[∫ T

t

BDs e−r(s−t) ds +

∫ T

t

XPs e−r(s−t) ds+

+

∫ T

t

Op e−r(s−t) ds

∣∣∣∣ Ft]+K(T )
Tpv − (T − t)

Tpv
e−r(T−t) =

=

∫ T

t

EQ [BDs e−r(s−t)
∣∣ Ft] ds+

∫ T

t

EQ [XPs e−r(s−t)
∣∣ Ft] ds+

+

∫ T

t

EQ [Op e−r(s−t)
∣∣ Ft] ds+K(T )

Tpv − (T − t)
Tpv

e−r(T−t)

(2.3.2)

where D is the oil spot price, P is the carbon spot price, which are multi-

plied respectively by the fuel consumption coefficient of the oil-fired plant B,

and by its yearly CO2 emissions X, while Op represents the operating and

maintenance costs of the high-carbon technology plant. The model horizon is

set to coincide with the residual economic lifetime of the fossil fuel-powered

plant (25 years). If the end of the model horizon does not also coincide with

the end of the economic lifetime of the low-carbon plant (Tpv), in t = T , the

existing plant is sold for its book value, and an additional positive cash flow

is given.

The real option R to defer the investment is thus an American call option

on the value of the project:

R(Pt, Dt, t) = max
τ

E
[
e−r(τ−t) (Φ(Dτ , Pτ , τ)−K(τ))

]
where the maximum is taken over all stopping times τ with t < τ < T . To

compute the value of the option, first we solved the expression for Φ. Since

the solution of (2.3.2) depends on the choice of the relevant state variables

dynamics, defined in the following section, we refer the reader to Section

2.3.3 for the closed-form solution of the expression in (2.3.2).

Once the payoff given by exercising the option is computed at each point

in time, an efficient exercise rule is to assess the convenience of investing in

the project as opposed to deferring the investment at every point in time

when the decision has to be made. We followed the procedure outlined in

Longstaff and Schwartz (2001), where the estimate of the continuation value,
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that is the value given by deferring the investment decision to the following

period, is computed through a least-squares Monte Carlo simulation. Follow-

ing Brauneis et al. (2013), we defined a quadratic relationship between the

value of continuing, CVt,i, and the value our relevant simulated variables as-

sume at each time the investment decision has to be made, where i indicates

the different Monte Carlo simulated paths and t ∈ [0, T ]:

CVt,i = αt + β1Dt,i + β2Pt,i + β3(Dt,i)
2 + β4(Pt,i)

2 + εt,i. (2.3.3)

Through the least-squares analysis, we determined the regression coefficients

providing the best fit. Using these estimated coefficients and working back-

wards, at each point in time the payoff given by exercising the option is

compared to the continuation value.

Policy intervention: the carbon price floor

The procedure as outlined above represents the baseline scenario, without

policy interventions. If instead we want to include a price stabilization mech-

anism in the model, we need to reconsider (2.3.2). In fact, in presence of a

floor F on EUA prices, we need to consider max (Ps , F ) in place of Ps in

Equation (2.3.2). It can be noticed that

max (Ps , F ) = Ps + (F − Ps)+ . (2.3.4)

and that the new benefits equation ΦF becomes

ΦF (Dt, Pt, t) =

∫ T

t

EQ [BDs e−r(s−t)
∣∣ Ft] ds+

+X

∫ T

t

e−r(s−t) EQ [Ps + (F − Ps)+
∣∣ Ft] ds+

+

∫ T

t

EQ [Op e−r(s−t)
∣∣ Ft] ds+K(T )

Tpv − (T − t)
Tpv

e−r(T−t)

(2.3.5)

Bounding carbon prices downwards, thus, is equivalent to having a put option

with the floor F as strike price, and the solution to (2.3.5) is again the solution

to (2.3.2), plus the integral on [t, T ] of the price of such a put option.

To compute the value of this option, we employed Fourier inversion as the
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computational method of choice. The Fourier method is efficient in presence

of a complex or unknown probability density function of the underlying as-

set, provided that its characteristic function is analytically tractable Pascucci

(2011). This is the case for the VG process, which, as stated above, is the

specification of choice for the carbon price. Starting from Carr and Madan

(1999), other authors (e.g. Lee (2004)) have used and extended Fourier trans-

form methods in option pricing. The main idea is to use the Fourier inversion

formula on the payoff function of the option, and then, after changing the

integration order by Fubini’s theorem, one can insert in the pricing formula

the characteristic function of the desired underlying process under the se-

lected equivalent martingale measure (EMM) Q. Of course, a problem arises

when the payoff of the option is non-integrable, since the classical Fourier

transform

Φ(u) =

∫
R

eiuxf(x) dx

is only defined for f ∈ L1(R). This happens even for vanilla options like calls

or puts, but the problem can be solved, as Carr and Madan (1999) show,

by damping, or penalizing, the payoff function. While they operate on the

function in order to make it decay as logF → −∞, we follow Pascucci (2011)

in order to make the payoff function decay as the underlying goes to +∞.

Let us then define the damped function as:

fγ(x) = e−γxf(x), γ ∈ R.

In this way, we have that the damped payoff of the call is fCγ (x) = e−γx (ex − F )+,

and the damped payoff of the put is fPα (x) = e−γx (F − ex)+, and we can see

that fCγ ∈ L1(R) for γ > 1 and fPγ ∈ L1(R) for γ < 0.

Following the procedure outlined above, we obtain the following formula for

the put option price (Pascucci (2011)):

Price(Pt, F, T ) =
e−r(T−t)P γ

t F
1−γ

π

∫ ∞
0

e−iu log
Pt
F

φXT (−(u+ iγ))

(iu− γ)(iu− γ + 1)
du

(2.3.6)

where φXT (u) is the characteristic function, under the selected EMM Q, of

the underlying price process, which in our case, is a VG. This formula returns

both the price of a call, when γ > 1, and that of a put, when γ < 0.
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The LCOE of PV technology

As stated above, the LCOE is a synthetic indicator summarizing the unitary

cost of electricity production related to a certain technology. In our case,

it depends on a number of factors, including the price of PV modules, the

capacity factor of the plant, and the installation, maintenance, insurance

and decommissioning costs. Due to the uncertainty related to government

incentives, we did not include them in our analysis. To estimate the cur-

rent LCOE and the LCOE parameter αC we mentioned above, we first need

to estimate the magnitude of the costs outlined above and to compute the

learning curve coefficient and the average growth rate of the PV industry, as

αC is the product of the two.

The learning curve coefficent. According to Fraunhofer ISE (2015), the

learning rate LR of PV industry ranges between 0.19 and 0.23. We took the

average 0.21 as a proxy. The economic meaning of such a value is that, each

time the cumulated capacity doubles, the unitary cost decreases by 21%.

Given that the progress ratio PR, that is the cost improvement at each

doubling of cumulated capacity, is equal to 1− LR, we get that PR = 0.79.

Since the learning curve coefficient is defined as logPR
log 2

, it is equal to -0.34.

Growth rate of PV the industry. According to Fraunhofer ISE (2015),

in a pessimistic scenario the 2015-2050 compound annual growth rate will

be 5%, in the intermediate scenario it will be 7.5%, while, in the optimistic

one, the growth rate will be 10%. We took 7.5% as a proxy. The LCOE

parameter αC is thus equal to -0.0255.

The current cost of PV technology. Since the plant will be built in Italy,

we assume an average full load hours value of 1250 kWh/kW, which corre-

sponds to a 14.3% capacity factor. As for the cost estimates, Fraunhofer ISE

(2015) provides an estimate of the costs of a 1 MW PV utility in Germany,

related to 2014. We use them to compute the LCOE relative to year 2014,

and then update it to year 2017 with the exponential relationship mentioned

above. The LCOE relative to 2014, resulting from these assumptions, is

equal to 0.087 AC/kWh. Thus, according to (2.3.1), the LCOE for 2017 is

0.081 AC/kWh.
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2.3.2 Price modeling

In what follows, we model the two relevant stochastic variables, carbon and

oil spot prices, with two different specifications. The correlation between

EUA and WTI crude oil prices is assumed to be equal to zero, given its

very volatile nature over time, and following Chevallier (2012), who finds

the time-varying correlation between these two variables is comprised in the

range [−0.05; 0.05].

Carbon price

EU carbon prices have followed a particular path over time. A huge drop in

prices towards the end of 2007 marked the transition between the first and

the second trading phase. In fact, the first phase was conceived as a sort of

trial stage, used for “learning by doing”: soon the market realized that the

number of allowances was excessive and the price fell to zero in 2007. The

second trading phase was then launched with an adjusted cap (and the possi-

bility of banking permits was introduced), but the 2008 financial crisis deeply

affected the price development, leading to declining and unstable prices. We

are currently in the third carbon trading phase, but the price behavior is still

marked by high price uncertainty. As Grüll and Kiesel (2012) show, the high

price sensitivity of permits and their proneness to jumps are structural fea-

tures of the EU ETS in its present configuration. For these reasons, a simple

GBM model does not seem appropriate to describe carbon prices, and the

data analysis supports this conjecture: the chi-squared goodness of fit test

on log-returns gives an extremely low p-value (7.76 ·10−10) and the null hy-

pothesis of normality is rejected at the 5% significance level. This is mainly

due to the pronounced leptokurtic behavior of the log-return distribution,

which causes the high peakedness about the mean and lack of shoulders.

These characteristics suggest another stochastic process to model this vari-

able, the Variance Gamma (VG) one, originally proposed by Madan et al.

(1998). The VG process is obtained by subordinating (i.e. time-changing)

a Brownian motion by a Gamma process Tt with i.i.d. increments, so that

the final process has bounded variation and infinite activity. In this way, the

carbon spot price Pt is modeled as:

Pt = P0 eµt+θPTt+σPB(Tt) (2.3.7)
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where P0 is the initial price, µ, θP ∈ R, σP ∈ R+ and Tt ∼ Γ(αt, α) is a

Gamma process.

As we can see in the bottom panels of Figure 2.1, the VG process graphi-

cally fits the data on spot carbon prices better than the GBM; the chi-squared

goodness of fit test confirms this visual intuition, indicating that the test does

not reject the null hypothesis at the 1% significance level, with a p-value equal

to 0.44. The estimated carbon parameters are reported in Table 2.2.

Parameter Estimated value

µ̂ −5.09 · 10−4

σ̂P 0.030

θ̂P −3.59 · 10−9

α̂ 0.935

Table 2.2: Estimated parameters for carbon spot data fitted via MLE using a VG
model.

Oil price

In commodity markets, a widely accepted assumption is that of mean revert-

ing spot prices (see for example Lutz (2010)). Thus, we chose a Brennan-

Schwartz (BS) process for the WTI crude oil spot price D(t):

dD(t) = k(θD(t)−D(t)) dt+ σDD(t) dW (t) (2.3.8)

where k is the speed of reversion toward the mean, θD is the long run mean

price level, σD is the volatility of the process and dW (t) is the increment of

a Wiener process. The estimated oil parameters are reported in Table 2.3.

Parameter Estimated value

k̂ 0.0014

θ̂D 445.64
σ̂D 0.025

Table 2.3: Estimated parameters for WTI crude oil spot data fitted via MLE using
a BS model.
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Figure 2.1: Variance-Gamma vs. Normal fit on EUA spot prices, listed at the European Energy Exchange (EEX).
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2.3.3 The real option payoff - A closed-form solution

Baseline scenario

Given the price dynamics in the previous section, we can now provide the

solution to (2.3.2) (we refer the reader to the Appendix A.2 for the detailed

procedure):

Φ(Dt, Pt, t) =BDt
1− e−(T−t)(r+k)

r + k
+
kB ert

r + k

∫ T

t

θD(u)
[
e−ru − e−rT−k(T−u)

]
du

+X Pt (T − t) +
Op

r

(
1− e−r(T−t)

)
+K(T )

Tpv − (T − t)
Tpv

e−r(T−t)

(2.3.9)

Regulatory intervention scenario

As Madan et al. (1998) show, the characteristic function for the VG process

is

ϕXT (u) = E
[
eiuXT

]
= eiµTu

(
1− iθP

u

α
+

1

2
σ2
P

u2

α

)−Tα
(2.3.10)

As shown in Appendix A.2, as a necessary condition for (2.3.10) to be under

the EMM Q, we need to have

µ = r + α log

(
1−

θ + 1
2
σ2

α

)
. (2.3.11)

Looking back at (2.3.5), and using (2.3.6) along with (2.3.10), we get that
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the value of the put is:

X

∫ T

t

e−r(s−t) EQ [(F − Ps)+
∣∣ Ft] ds =

= X

∫ T

t

e−r(s−t)P γ
t F

1−γ

π
·

·
∫ +∞

0

e−iu log
Pt
F

+µ(s−t)(γ−iu)
(

1 + iθP
u+iγ
α

+ 1
2
σ2
P

(u+iγ)2

α

)−(s−t)α

(iu− γ)(iu− γ + 1)
du ds =

= X
P γ
t F

1−γ

π

∫ +∞

0

e−iu log
Pt
F

(iu− γ)(iu− γ + 1)

[
e(T−t)m(u) − 1

m(u)

]
du (2.3.12)

where

m(u) = −r − iµ(u+ iγ)− α log

(
1 + iθP

u+ iγ

α
+

1

2
σ2
P

(u+ iγ)2

α

)
,

with µ satisfying (2.3.11). In this way,

ΦF (Dt, Pt, t) = Φ(Dt, Pt, t) +X
P γ
t F

1−γ

π
·

·
∫ +∞

0

e−iu log
Pt
F

(iu− γ)(iu− γ + 1)

[
e(T−t)m(u) − 1

m(u)

]
du (2.3.13)

Choice of the damping parameter

Even if, theoretically, equation (2.3.6) is valid for any γ < 0, many authors

have noticed that the integrand in the pricing formula may be oscillatory or

highly peaked, depending on the choice of γ.

As a criterion for the selection of the damping parameter, we plot the in-

tegrand in (2.3.6) as a function of the different variables, and examine the

graphs in order to detect oscillatory behaviors.

For example, as we can see in Figure 2.2, the more the maturity increases,

the smaller γ needs to be. According to our graphical results, with the es-

timated VG parameters, an optimal choice for γ lies in the interval [−1, 0).

Specifically, we chose γ = −0.8.
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(a) T = 2, γ ∈ [−5, 0] (b) T = 20, γ ∈ [−1.5, 0]

Figure 2.2: Integrand for the VG model with the estimated parameters.

2.4 Results

This section discusses the results obtained using our model. In what follows,

we use an initial market price for oil of 54.00 $ per barrel (365.73 AC/ton),

and an initial carbon price of 5.05 AC/ton of CO2. We use a risk-free annual

interest rate r equal to 2.5%. All other parameters are as stated in the

previous sections. The results are shown in terms of expected value of the

option (computed as the average of the values on all simulated paths) and

of cumulative investment probability, defined as the sum of the number of

paths in which the investment takes place before a certain year, over the

total number of simulated paths. We run our model on Matlab, with 10,000

simulated paths.

2.4.1 Baseline scenario

Using the parameters stated above, and assuming no policy interventions

in the carbon market, the probability to invest in the clean energy project

before 10 years reaches 50%. Before the end of the model horizon, the optimal

strategy consists in replacing the oil-fired power plant in 92% of the cases

(Fig. 2.3a, dashed purple line).

This result, however, is quite sensitive to the choice of the discount rate r,

as shown in Fig. 2.3. If r is higher than the one assumed in our model, the in-

vestment probability shifts downward and the expected option value declines.

On the contrary, the lower the discount rate, the higher the probability of

switching production method, with r = 1% suggesting almost immediate
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investment.

As a second sensitivity test, we looked at the impact that different long term

mean prices for oil θD could have on the optimal timing of the investment. We

thus run our model with a set of different θD, corresponding to a reduction

or increase of 3%, 6% or 9% with respect to the initial θD estimate. Figure

2.4 shows, as we would expect, that having higher long term mean values for

oil prices results in earlier investment for a given probability value, and this

is contextual to an increase in the expected option value. An increase in θD
of 9% with respect to our estimate leads to a probability of 100% that it is

optimal to exercise the option before the end of the model horizon. On the

other hand, a decrease of 9% in the same initial value results in a decrease

by 20% in the corresponding probability.

(a) Cumulative switches (b) Expected option value

Figure 2.3: Sensitivity analysis of the results using different annual risk-free interest
rates r.

2.4.2 Regulatory intervention scenario

The impact of introducing a minimum price for EU emission allowances is

shown in Fig. 2.5 and 2.6. In Fig. 2.5 and 2.6a, we show the results on

the investment probability and on the expected option value, respectively, of

having a carbon floor price equal to {10, 20, 30, 40} AC/ ton of CO2. As the

floor gets higher, the number of simulation runs in which it is convenient to

invest in the clean energy project increases for each point in time, and the
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(a) Cumulative switches (b) Expected option value

Figure 2.4: Sensitivity analysis of the results using different long term means θD for
oil.

option to replace the “dirty” technology with a “clean” one appreciates in

value. Specifically, with a floor of 10 AC, that is slightly above the current

market price (as of February 2018), the probability that exercising the real

option before 10 years is optimal shifts from about 50% to almost 80%. With

a floor as high as 20 AC/ton, in about 55% of the cases it is optimal to invest

immediately in the project, and the probability rises to 100% if the floor is

30 AC/ton.

Finally, we run again our model using two different risk-free interest rates

r, and the results, reported in Fig. 2.7, confirm the positive effect of a floor

on carbon prices.

2.5 Conclusions

In this chapter, we evaluated the impact of the EU ETS on renewable en-

ergy investments in the power generation sector, by extending the model in

Brauneis et al. (2013).

As our case study is based in Italy, and given the country’s consistent

share of PV energy production over the total incremental renewable energy

generation over the last years (as explained in the previous sections), we

chose PV technology as the alternative production method of the electricity

producer, currently running a fossil fuel-fired power plant. After having
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Figure 2.5: Investment probability evolution over the years with different carbon
floor prices, r=2.5%.

(a) Expected option value (b) 5th and 95th percentiles for the
benefits equation Φ and for the value
of the put given in presence of a floor
= 10.

Figure 2.6: Results in presence of a carbon floor price, r=2.5%.

analyzed the statistical features of carbon prices, we found a VG process was
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(a) Cumulative switches, r=2% (b) Expected option value, r=2%

(c) Cumulative switches, r=3% (d) Expected option value, r=3%

Figure 2.7: Sensitivity analysis of the results with a floor, using different annual
risk-free interest rates r.

particularly suited for best fitting EUA price data. The other relevant state

variable in our model, fossil fuel price, was modeled according to a mean-

reverting stochastic process, as is usual practice for energy commodities:

specifically, we chose a Brennan-Schwartz dynamics. Through a Monte Carlo

simulation, we then generated a number of paths for each state variable.

After defining the payoff function of the option to replace the current power

plant with a PV one, we used a dynamic programming approach in order to

assess the optimal switching time on each path. Specifically, we used LSMC

as the computational method of choice. We also assessed the impact of a

regulatory intervention in the EU ETS, in the form of a floor price on carbon
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allowances. To do so, we computed the expected value of the investment

project, by means of Fourier methods.

Our results show that a minimum CO2 price of 30 AC/ton of CO2 would

trigger immediate investment in the clean energy plant, and this result is

quite robust to changes in the risk-free interest rate. On the other hand,

without regulatory interventions, only in 50% of the simulated paths the

optimal decision consists in exercising the option before 10 years.

Thus, according to the results of our model, a pure carbon trading system

has a limited impact on renewable energy investments, and a policy inter-

vention in the EU ETS seems advisable. Through a floor price, one of the

goals of the EU ETS, namely boosting low-carbon investments in the power

generation sector, could be achieved. Such a price management mechanism

has already been implemented in the UK, as well as in three other emission

trading programs, the northeastern US Regional Greenhouse Gas Initiative

(RGGI), the California emission trading program and the Quebec one. The

floor is implemented as a minimum bid in auctions, and, in all these three

programs, it has been successful in enhancing environmental outcomes. The

present work confirms the positive impact that such a policy intervention

could have.

2.6 Appendix A

A.1 Technical characteristics of the oil-fired power plant

Given the capacity and the capacity factor values reported in Table 2.1 (10

MW and 80%, respectively), the yearly electricity output is computed:

Electricity output = 10, 000 kW · 0.8 · 365 · 24h = 7.01 · 107 kWh/year.

The corresponding amount of energy needed to produce such an output is

retrieved by simply dividing the electricity output by the efficiency rate of the

plant (40%, as reported in Table 2.1), which results in 1.75·108 kWh/year.

Given that the calorific value of crude oil is 42.5 MJ/kg, or 11,800 kWh/ton,

the fuel consumption of the oil-fired plant is computed:

Fuel consumption =
1.75 · 108 kWh/year

11, 800 kWh/ton
= 1.48 · 104 tons/year.
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As stated by the Intergovernmental Panel on Climate Change, the default

CO2 emission factor for crude oil is 73,300 kg/TJ IPCC (2006), or 2.64 ·
10−4 tons/kWh (since 1 kWh = 3.6 MJ). The yearly carbon emissions are

thus given by:

CO2 emissions = 1.75·108 kWh/year · 2.64·10−4 tons/kWh = 46, 200 tons/year.

A.2 Solving the benefits equation

The oil spot price

The oil spot price follows a Brennan-Schwartz process, defined as

dD(t) = k(θD(t)−D(t)) dt+ σDD(t) dW (t) (A.1)

To solve this stochastic differential equation (SDE), let us first consider the

dynamics without the terms which do not depend on D(t):

dD0(t) = −kD0(t) dt+ σDD0(t) dB(t), D0(0) = d0 > 0 (A.2)

We can solve this SDE using Itō’s formula:

D0(t) = D0(0) e−(k+ 1
2
σ2
D)t+σDB(t) (A.3)

We now search for a solution to Equation (A.1), of the formD(t) = D0(t)Y (t).

Applying Itō to Y (t) = D(t)/D0(t), we get:

dY (t) = d

(
D(t)

D0(t)

)
=

= Y ′t + Y ′D1
dD + Y ′D0

dD0+

+
1

2

(
δ2Y

δD2
(dD)2 + 2

δ2Y

δDδD0

dDdD0 +
δ2Y

δD2
0

(dD0)2

)
=

=
1

D0(t)
dD(t)− D(t)

D2
0(t)

dD0(t)+

+
1

2

(
− 2

D2
0(t)

dD(t)dD0(t) + 2
D(t)

D3
0(t)

σ2
DD

2
0(t)dt

)
=

=
kθD(t)

D0(t)
dt
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⇒ D(t)

D0(t)
=

D(0)

D0(0)
+

∫ t

0

kθD(s)

D0(s)
ds

So we have

D(t) = D0(t)

[
D(0)

D0(0)
+

∫ t

0

kθD(s)

D0(s)
ds

]
(A.4)

where D0(t) is given by eq. (A.3), and, more in general,

D(t) = D0(t)

[
D(t0)

D0(t0)
+

∫ t

t0

kθD(s)

D0(s)
ds

]
(A.5)

with s > t > 0.

Solving Φ(Dt, Pt, t)

We can now use equation (A.5) to solve (2.3.2), the equation for Φ.
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• Let us begin by solving the first expected value block:∫ T

t

E [BDs e−r(s−t) | Ft] ds =

= B

∫ T

t

e−r(s−t) E [Ds|Ft ] ds =

= B

∫ T

t

e−r(s−t)
{
D1(t) E

[
e−(k+ 1

2
σ2
D)(s−t)+σD[B(s)−B(t)]

∣∣∣ Ft]
+ E

[
e−(k+ 1

2
σ2
D)(s−t)+σD[B(s)−B(t)]

·
∫ s

t

k θD(u)

e−(k+ 1
2
σ2
D)(u−t)+σD[B(u)−B(t)]

du

∣∣∣∣Ft ]} ds =

= B

∫ T

t

e−r(s−t)
{
Dt E

[
e−(k+ 1

2
σ2
D)(s−t)+σD(B(s)−B(t))

]
(A.6)

+

∫ s

t

E
[
k θD(u) e−(k+ 1

2
σ2
D)(s−u)+σD(B(s)−B(u))

]
du

}
ds = (A.7)

= B

∫ T

t

e−r(s−t)
{
Dt e−k(s−t) +

∫ s

t

k θD(u) e−k(s−u) du

}
ds =

(A.8)

= BDt
1− e−(T−t)(r+k)

r + k
+ kB

∫ T

t

e−r(s−t)
∫ s

t

θD(u) e−k(s−u) du ds =

= BDt
1− e−(T−t)(r+k)

r + k
+
kB ert

r + k

∫ T

t

θD(u)
[
e−ru − e−rT−k(T−u)

]
du

(A.9)

where (A.6) and (A.7) follow from independence of B(s) − B(t) on the fil-

tration Ft, while (A.8) is computed using the characteristic function of a

Normal random variable. In case θD is constant, we get that (A.9) is equal

to:

B

[
1− e−(T−t)(r+k)

r + k
(Dt − θD) +

θD
r

(
1− e−r(T−t)

)]
.

As for the second expected value block, let us recall that

Pt = P0 eµt+θPTt+σPB(Tt)
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where Tt has i.i.d. gamma increments, with Tt ∼ Γ(αt, α).

To price in a risk-neutral setting, we need to impose a restriction on the

parameters, in order for the the discounted price to be a martingale. Specif-

ically, for t < s, we need

E
[
e−rsPs

∣∣ Ft] = e−rtPt . (A.10)

We have

E
[
e−rsPs

∣∣ Ft] = e−rs P0 E
[
eµs+θPTs+σPB(Ts)

∣∣ Ft] =

= e−rsP0 E
[
eµs+θP (Ts−Tt+Tt)+σP (B(Ts)−B(Tt)+B(Tt))

∣∣ Ft] =

= e−rs−µt Pt E
[
E
[
eµs+θP (Ts−Tt)+σP (B(Ts)−B(Tt))

∣∣ F ∗t ]∣∣ Ft] =

(A.11)

= e−rs+µ(s−t) Pt E
[
e(θP+ 1

2
σ2
P )(Ts−Tt)

∣∣∣ Ft] = (A.12)

= Pt e−rs+µ(s−t)
(

1−
θP + 1

2
σ2
P

α

)−α(s−t)

= (A.13)

= e−rtPt e(µ−r)(s−t)
(

1−
θP + 1

2
σ2
P

α

)−α(s−t)

where (A.11) follows from the “tower”, or repeated expectation, property. In

fact, we define Ft as the information available up until time t, that is

Ft = σ ({B(u), u ≤ Tt} , {Tu, u ≤ t}) ,

while F ∗t is defined as

F ∗t = σ ({B(u), u ≤ Tt} , {Tu, u ≤ T}) ,

so that Ft ⊂ F ∗t . (A.12) follows again from the moment generating function

of a Normal random variable and (A.13) follows from the moment generating

function of the gamma density, with α > θP + 1
2
σ2
P which ensures the equation

is finite.

Thus, for (A.10) to hold, we need to have

e(µ−r)(s−t)
(

1−
θP + 1

2
σ2
P

α

)−α(s−t)

= 1.
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The necessary condition is then

µ = r + α log

(
1−

θ + 1
2
σ2

α

)
(A.14)

and the second expected value block becomes∫ T

t

EQ [XPs e−r(s−t)
∣∣ Ft] ds = X

∫ T

t

e rt e−rtPt ds =

= X Pt (T − t) . (A.15)

The solution to the third expected value block is trivial:∫ T

t

EQ [Op e−r(s−t)
∣∣Ft ] ds =

Op

r

(
1− e−r(T−t)

)
(A.16)

Putting together equations (A.9), (A.15) and (A.16), we have the solution

for (2.3.2), given in (2.3.9).
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Chapter 3

Pricing Reliability Options

under different electricity price

regimes ∗

Reliability Options are capacity remuneration mechanisms aimed at enhance

security of supply in electricity systems. Can be framed as call options on

power production sold by power producers to the System Operators. This

chapter provides a comprehensive mathematical treatment of the Reliability

Options. Their value is first derived by means of closed-form pricing for-

mulas, which are obtained under several assumptions about the dynamics of

the electricity prices and the strike prices. Then, the value of the Reliability

Option is simulated under a real-market calibration, using data of the Italian

Power market. Sensitivity analyses are performed to highlight the impact of

power and strike price level and volatility, mean reversion speeds and corre-

lation coefficient on the Reliability Options’ evaluation.

∗This paper is a joint work with Fulvio Fontini (Università degli Studi di Padova) and
Tiziano Vargiolu (Università degli Studi di Padova). This paper has been submitted to
an international journal.
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3.1 Introduction

In several electricity markets worldwide there are capacity remuneration

mechanisms that explicitly remunerate power capacity.1 Among these, Reli-

ability Options (RO) recognize the option nature of the investments in power

capacity (or in load reduction) and create a market for such an option. ROs,

firstly proposed in Vázquez et al. (2002), have been implemented in Colombia

(Firm Energy Obligations (Cramton and Stoft (2007))), NE-ISO (Forward

Capacity Market (FERC (2014))) and in Ireland (SEM (2015, 2016b,a))) and

are about to be implemented in Italy (ARERA (2018); EC (2018); Mastropi-

etro et al. (2017)). They are real options, namely, tools to commercialize

through a financial product the possibility given by generation capacity (or

load reduction) of providing security of supply by producing electricity (or

reducing load). They give the holder, i.e., the System Operator (SO), which

acquires them in a competitive setting, the right to call the generation ca-

pacity (or load) to produce power (or to reduce the load), and receive the

positive difference between the electricity price that effectively occurs in the

market and a pre-defined price level. Such a level, which corresponds to the

strike price of the option, is set in order to represent the value of the power

at that specific level for which load is not shed, i.e., it is the highest system

marginal price compatible with load provision with no load shedding.

It is interesting to evaluate the RO as a financial asset. As any finance

textbook shows (see e.g. Benth et al. (2008); Bjork (1998)), there are two

ways to calculate the value of a financial product. The first one calls for

defining its demand and supply, and searching for the equilibrium price under

some market rules. The other one is the arbitrage approach, which asks for

calculating the value of a replicating portfolio that yields the same return of

the asset under all possible states of the world.

For the case of ROs, the equilibrium approach requires estimating their

demand and supply. The demand of ROs is expressed by the SO. Even though

the details of the RO demands depend on the specific rules in place in the

different RO schemes, the procedure followed to derive such a demand is quite

general and requires first to identify the targeted Security of Supply (SoS),

then translate it into a desired level of installed capacity and finally introduce

1See Rodilla and Batlle (2013) and Cramton et al. (2013) for an introduction to capacity
remuneration mechanisms



3.1 Introduction 41

some security interval around that level and the corresponding premium and

discount price that the SO is willing to pay to obtain it. The supply of

RO is provided by eligible investors (that in some RO schemes might be

further distinguished between existing capacity owners and future investors,

depending on the different market rules), who participate in the RO market

by first estimating their expected cost of investments and then strategically

betting in the RO market. The arbitrage approach, on the contrary, requires

identifying the stochastic property of the asset under evaluation as well as

assuming that a continuous arbitrage between the financial derivative and

the underlying asset is possible.

In a first-best world, with complete and perfectly competitive markets,

both approaches lead to the same evaluation. However, in a second-best

world, they rely on different assumptions. For instance, in the case of the

RO, the evaluation following the equilibrium approach depends crucially on

the estimation of the level of capacity needed to provide SoS and the TSO’s

willingness to pay for it, and on the strategic behavior of participants to the

market mechanism allocating the RO. Such an estimate can turn out to be

a difficult exercise. In fact, it is true that the amount of capacity that yields

the targeted level of security of supply could be set administratively, or could

be detected applying some simulation techniques; however, this does not

guarantee that the demand is set at the efficient level, or that the estimate

is correct, given the difficulties of measuring the willingness to pay for it.

The same can be said about the strategic behavior of capacity providers,

which might be influenced by several variables, including the auction market

rules adopted to allocate ROs. The arbitrage approach, on the contrary,

depends crucially on the assumption about the probability distribution of

the underlying. In some cases, it can provide closed-form equations showing

how the value depends on the different parameters of the distribution function

of the underlying, in the style of the Black and Scholes formula (Benth et al.

(2008); Bjork (1998)) evaluating European call options.

The latter is the framework of this analysis. We follow the arbitrage ap-

proach and estimate the value of the ROs under different possible assump-

tions about the dynamics of the stochastic processes on which they depend.

RO are complex options on power supply that can have different lengths

and can be executed several times at different and possibly random strike
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prices. Therefore, in order to evaluate ROs, it is necessary to provide a

comprehensive mathematical treatment of all their aspects. This is the pur-

pose of this chapter, which is, to the best of our knowledge, the first study

undertaking this task. We first show semi-explicit formulae to evaluate the

ROs, starting from the simplest possible assumption about electricity prices

and the strike prices, and increasing the level of complexity of ROs, allowing

for an underlying that can be a mean reverting process, for stochastic strike

prices and for possibly negative electricity prices. We then simulate the RO

values under different possible assumptions, and calibrate the RO parame-

ters against real electricity market data, namely, the Italian Power Exchange

ones. The availability of long hourly price time series and the forthcoming

introduction of RO in the Italian market both justify the choice.

The chapter is structured as follows. Section 3.2 describes ROs and presents

a pricing formula under realistic assumptions. Section 3.3 presents the pricing

approaches, depending on the model that we can consider both for electricity

prices as well as for the strike price of the RO. We start by defining the

arbitrage-free boundaries of RO’s evaluation. Then we move from the very

simplistic model of geometric Brownian motion (GBM) with deterministic

strike, to correlated GBMs for stochastic strike, and by increasing realism on

the model, we arrive to the case when both electricity and strike prices are

seasonal and mean-reverting. For all these models, we present semi-explicit

pricing formulas. Finally, we provide some insights for the case of negative

prices. In Section 3.4, we provide a simulation of the RO evaluation and

perform a sensitivity analysis, using data of the Italian Power market for

estimates and calibration. Section 3.5 concludes. Data of the estimates and

proofs of propositions are in the Appendix.

3.2 Reliability options

ROs are sold in an auction, typically every year, to deliver electricity with a

given lead time T1, for a pre-defined (T2−T1)-length period of delivery. The

rules of the RO specify that the capacity provider, who sells the option, must

commit to deliver the capacity to the buyer, which in general is the TSO.

Such a commitment is made effective by prescribing that the seller must offer

to the market an amount of electricity equal to the committed capacity and

return any positive difference between the reference market price and the
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strike price K.

Each RO contract scheme specifies what a market is. In a first approxima-

tion, the reference market can be a convex combination of different markets,

such as the day-ahead or the balancing or the real-time ones. Some RO

schemes, though, only have one reference market. For instance, in Ireland,

the reference market is the day-ahead one, while in NE-ISO it is the real-time

one.

Let P represent the day-ahead market price and P (b) the price in the bal-

ancing market (or in the real-time market). Then the reference market price

R can be approximated as

R = λP + (1− λ)P (b),

where λ ∈ [0, 1] may depend on the country: λ = 0 for ISO New England; λ =

1 for Colombia and Ireland; λ ∈ [0, 1] in the case of Italy (see Mastropietro

et al. (2017) for a description of the forthcoming Italian market).

The strike price is, in general, determined by taking into account the vari-

able costs of the reference peak technology, i.e. the dispatchable technology

that would be included in the optimal generation mix with the lowest uni-

tary investment cost. In actual RO markets, the strike price is communicated

to potential sellers of ROs before the auction takes place. Thus, it can be

treated as a deterministic parameter. However, it is also possible that the

strike price changes overtime during the life span of the RO. This is a pos-

sibility envisaged, for instance, in the forthcoming Italian RO scheme. In

such a scheme, the rule linking the strike price to a reference marginal tech-

nology is set before the auction, but the marginal cost of such a technology

is calculated every given period (a month) during the life span of the RO.2

This implies that the strike price can also be conceived as a stochastic pro-

cess. We shall first derive the RO value starting with the simplest case, and

then increase the level of complexity, to derive a general representation of

the value of the RO.

2See Mastropietro et al. (2017) and Terna (2017a,b,c).
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3.2.1 A simple mathematical model for Reliability Op-

tions

The mathematical modeling of the general RO is quite complex, as many

auctions and prices are involved. We simplify it by defining a mathematical

model for the case when the reference price is simply the day-ahead price P ,

i.e. λ = 1, as in the Colombian or in the Irish CRM schemes. In this way,

only one state variable is needed for the reference market price R, and it is

indeed P . We work on a filtered probability space (Ω,F , {Ft}t≥0 ,Q) such

that the probability measure Q is the risk-neutral pricing measure used by

the market, and the day-ahead price P = (Pt)t≥0 is a Q-semimartingale. We

set t = 0 as the auction time concerning capacity in the time period [T1, T2].

Starting from these assumptions, we consider a simple case, namely that

of a thermal plant, with total capacity Q > 0. This plant converts a fuel

(oil, gas or coal) into electricity, whose spot price is P . Let C = (Ct)t≥0

represent the costs associated to the power plant, i.e. fuel costs, emission

costs, operational costs and others. The power plant sells the electricity at

time t ≥ 0 when it wins the day-ahead auction, i.e. when its bid bt is less

than or equal to Pt.

We adopt the usual simplifications, as continuous time instead of hourly

granularity and no ramping penalties/constraints. The plant can decide its

bid process b = (bt)t≥0 to maximize its revenues. Therefore the value of the

power plant at t = 0, concerning the time period [T1, T2], depends on its

income over that time interval. This depends on the solution of the problem

V (T1, T2) = sup
b∈B

EQ
[∫ T2

T1

e−rtQ1bt≤Pt(Pt − Ct)dt
∣∣∣∣F0

]
,

with B being the set of adapted processes on [T1, T2], r the instantaneous

risk-free rate of return, and EQ the expectation with respect to Q.

Obviously it will be optimal to have 1bt≤Pt = 1 if and only if Pt > Ct, i.e.

the optimal bidding process is bt = Ct, for all t ∈ [T1, T2] and the final payoff

for a thermal plant is

V (T1, T2) = EQ
[
Q

∫ T2

T1

e−rt(Pt − Ct)+dt

∣∣∣∣F0

]
.
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On the other hand, when the thermal plant writes a RO with strike price

K = (Kt)t≥0, it must again place a bid, the bidding price bt remains at its

choice, and the plant must always pay back (Pt−Kt)
+. Therefore the payoff,

in this case, takes the value:

Vro(T1, T2) = sup
b∈B

EQ
[∫ T2

T1

e−rtQ(1bt≤Pt(Pt − Ct)− (Pt −Kt)
+) dt

∣∣∣∣F0

]
and bt = Ct for all t ∈ [T1, T2] is again the optimal bidding strategy. Thus,

Vro(T1, T2) = V (T1, T2)− EQ
[∫ T2

T1

e−rtQ(Pt −Kt)
+ dt

∣∣∣∣F0

]
.

In a risk-neutral world, the value RO(T1, T2) of a RO written on the time

interval [T1, T2] should make the investor indifferent between having the orig-

inal plant without the RO, and having it with the RO written on it plus the

price of the option, i.e. V (T1, T2) = Vro(T1, T2) + RO(T1, T2). Therefore, the

final result is

RO(T1, T2) = V (T1, T2)− Vro(T1, T2)

= EQ
[∫ T2

T1

e−rtQ(Pt −Kt)
+ dt

∣∣∣∣F0

]
(3.2.1)

Thus, the value of a reliability option issued by a thermal plant is equiva-

lent to the price of an insurance contract against price peaks. Interestingly

enough, notice that the operating strategy of the power plants does not

change. In electricity markets, it is well known that perfectly competitive

markets without CRMs, the so called energy only markets, provide enough

incentives to investment, and the same is true for optimally designed CRMs,

since the latter simply anticipate ex ante the supermarginal profits that in-

vestors would gain in energy only markets. In other words, the amount of

remuneration of capacity accruing from perfectly competitive markets for

CRMs equals the expected discounted value of the supermarginal profits

gained in electricity markets; in a world without market failures, the two

levels coincide. This is confirmed in this framework: without market power,

the value of operating the plant is independent on the form of remuneration

of power production, i.e., on whether the revenues accrue ex-ante from the

CRM or ex-post from selling electricity in the market.



46 3. Pricing Reliability Options

3.3 Pricing of Reliability Options

3.3.1 Model-free no-arbitrage bounds

Equation (3.2.1) already allows to produce model-free no-arbitrage bounds

on the price of the RO. In fact, starting from the put-call parity

(Pt −Kt)
+ = (Kt − Pt)+ + Pt −Kt

we have that, since obviously 0 ≤ (Kt − Pt)+ ≤ Kt,

Pt −Kt ≤ (Pt −Kt)
+ ≤ Pt

By multiplying the inequalities for e−rt, integrating and taking the expecta-

tion, we get

QEQ
[∫ T2

T1

e−rt(Pt −Kt) dt

∣∣∣∣F0

]
≤ RO(T1, T2) ≤ QEQ

[∫ T2

T1

e−rtPt dt

∣∣∣∣F0

]
.

The right-hand side represents the forward price of delivering the quantity

Q of electricity over the period [T1, T2]3. By introducing the quantity

FP (0;T1, T2) := EQ
[∫ T2

T1

e−rtPt dt

∣∣∣∣F0

]
for this (unitary) forward price, in the case when Kt ≡ K, i.e., with fixed

strike, and recalling that we must have RO(T1, T2) ≥ 0, after a simple inte-

gration we can rewrite the no-arbitrage relation above as

Q

(
FP (0;T1, T2)−Ke−rT1 − e−rT2

r

)+

≤ RO(T1, T2) ≤ QFP (0;T1, T2) ,

(3.3.1)

i.e. the value of a reliability option written on a total capacity Q for the pe-

riod [T1, T2] lies between the intrinsic value of Q call options on the forward

FP (0;T1, T2) with a modified strikeK e−rT1−e−rT2
r

, andQ forwards FP (0;T1, T2).

Conversely, when K follows itself a stochastic process, by introducing an

3this is alternatively referred to as flow forward or swap, see e.g. Benth et al. (2008)
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analogous quantity

FK(0;T1, T2) := EQ
[∫ T2

T1

e−rtKt dt

∣∣∣∣F0

]
,

we have

Q (FP (0;T1, T2)− FK(0;T1, T2))+ ≤ RO(T1, T2) ≤ QFP (0;T1, T2) . (3.3.2)

Thus, the upper bound is the same, while the lower bound is now the intrinsic

value of Q exchange options on the forward FP (0;T1, T2) for the forward

FK(0;T1, T2).

The advantage of these no-arbitrage bounds lies in the fact that, though

no forward contract for the total period [T1, T2] could possibly be traded

on the markets, usually this period is a multiple of calendar years, whose

contracts are traded. For example, in the Italian RO design, the period

[T1, T2] typically starts on January, 1 of year Y and lasts until December, 31

of year Y + 2: thus, FP (0;T1, T2) ends up being just the sum of the three

calendar products for the years Y , Y + 1 and Y + 2. In the case when the

stochastic strikeK is indexed with some marginal technology fixed in advance

(e.g. combined cycle gas turbines), analogous forward contracts possibly exist

for the corresponding fuel (gas in this case).

The no-arbitrage bounds above are model-free, in the sense that they

should hold for any no-arbitrage model that we specify for the dynamics

of P , and possibly of K. However, in order to evaluate the RO as a financial

contract, it is necessary to specify the stochastic process modeling electric-

ity prices. The electricity price shows peculiarities that make it difficult to

model, as strong seasonality and mean-reversion. For this reason, several

processes have been adopted to reproduce the price dynamics. In the rest

of this section, we provide semi-explicit formulae to price ROs over the time

period [T1, T2] under different price dynamics, starting from the simplest one,

namely a GBM.
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3.3.2 Electricity spot price as a geometric Brownian

motion

Let us start with the simplest assumption, i.e. that the price of electricity

P evolves as a GBM, and the option’s strike price K is a fixed deterministic

value. We stress that the former is an assumption that we already know is

unreasonable, in the sense that it cannot be assumed to provide a realistic

representation of the dynamics of electricity prices. However, it is the sim-

plest possible assumption that is used to derive explicit pricing formulas for

call options. Thus, we treat it as a first simplified approach that helps us

presenting the main features of the model. In this case, the price P , under

the risk-neutral measure Q, is assumed to be the solution of the following

SDE:

dPt =rPtdt+ σPtdBt, (3.3.3)

where B is a one-dimensional Q-Brownian motion and r is the instantaneous

risk-free rate of return.

The price of a RO in this case is equivalent to the time integral over the

interval [T1, T2] of a European call option with strike price K and maturity

ranging in [T1, T2].

In the following proposition we provide a semi-explicit formula to price the

RO, under the assumptions above.

Proposition 3.3.1. Let the reference market price P follow the dynam-

ics (3.3.3), then the price of a reliability option over the time interval [T1, T2]

with fixed strike price K ≥ 0 is given by the following formula:

RO(T1, T2) =

∫ T2

T1

Q
[
P0N(d1(K,P0, t))− e−rtKN(d2(K,P0, t))

]
dt ,

(3.3.4)

where N is the cumulative distribution function of a standard Gaussian ran-



3.3 Pricing of Reliability Options 49

dom variable and

d1(K,P0, t) =
1

σ
√
t

[
ln

(
P0

K

)
+

(
r +

σ2

2

)
t

]
,

d2(K,P0, t) =d1(K,P0, t)− σ
√
t .

Proposition 3.3.1 simply makes use of the Black and Scholes formula, since

the RO(T1, T2) value turns out to be the time integral of a family of call

options with the same underlying and strike price, indexed by their maturity

in [T1, T2].4 Thus, it provides a formula that can be applied to calculate the

value of the RO, once that the parameters upon which the call depends on

have been set, namely, the riskless interest rate, the starting price P0 and the

volatility of the electricity price.

3.3.3 Electricity price and strike price as correlated

Geometric Brownian Motions

A first step towards increasing the level of complexity refers to modeling the

strike price as a stochastic process. Recall that, in ROs, the strike price

is the marginal cost of the marginal technology. Complex RO schemes can

allow it to change over time, according to a predefined rule. For instance, it

can be assumed that the strike price is given by the fuel cost of a predefined

marginal technology, such as Combined Cycle Gas Turbines, thus linked to

a reference fuel price. Alternatively, it can be established that the reference

price changes at fixed regular dates according to a given indexing formula,

for example monthly, and stays constant in each of these sub periods.5 In

any case, this requires to treat the strike price as a stochastic process. Thus,

a first extension of the model defined in Section 3.3.2 is modeling K and P

as two (possibly correlated) geometric Brownian motions. This means that

the prices (Kt, Pt)t≥0 follow a risk-neutral dynamics of the following type:{
dKt = (r − qk)Ktdt+ σkKtdB

1
t

dPt = (r − qp)Ptdt+ σpPtdB
2
t ,

(3.3.5)

4Interestingly enough, this result solves also a problem firstly posed in McDonald and
Siegel (1985), in the framework of firms’ evaluations.

5As mentioned, this is going to be the case of the future Italian RO scheme.
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where (B1, B2) are correlated Q-Brownian motions, with correlation ρ ∈
[−1, 1]. Notice that the correlation of the two stochastic processes depends

on their nature and on the rules defining the strike price. For instance, if the

variable strike price is set to be equal to the marginal cost of the marginal

technology, and if the electricity market is perfectly competitive, it would

be natural to assume a correlation coefficient equal to 1, being the system

marginal price equal to the marginal cost of the marginal technology. If,

on the contrary, the stochastic strike price equals some weighted average

of different marginal costs at different hours, for instance at peak and off-

peak hours, then the correlation coefficient would be positive but less than

1, since the electricity price P would be more volatile than the strike price

K. Finally, it is also possible that the strike price is negatively correlated

with the electricity price, depending on what the formula of the strike price

is and on what reference basket it is linked to. However, this possibility is

rather unlikely, for the reasons expressed above.

The following proposition provides the value of the RO with two GBMs:

Proposition 3.3.2. Let the reference market price P and the RO strike price

K follow the dynamics (3.3.5). Then the price of a reliability option over the

time interval [T1, T2] is given by

RO(T1, T2) =

∫ T2

T1

(
P0e

−qptN(a1(K0, P0, t))−K0e
−qktN(a2(K0, P0, t))

)
dt ,

(3.3.6)

where N is the cumulative distribution function of a standard normal random

variable, and

a1(K0, P0, t) =
ln
(
P0

K0

)
+ (qp − qk)t

σ
√
t

+
1

2
σ
√
t ,

a2(K0, P0, t) =a1(K0, P0, t)− σ
√
t ,

σ =
√
σ2
k + σ2

p − 2ρσkσp =
√

(σk − σp)2 + 2(1− ρ)σkσp .

Proposition 3.3.2 is similar to Proposition 3.3.1, except for the fact that

here the Margrabe formula with dividends is used (see, for instance, Car-

mona and Durrleman (2003)), instead of the Black-Scholes one. In fact, here

RO(T1, T2) turns out to be the time integral of a family of options to ex-
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change the (random) electricity price P with the (random) strike price K,

again indexed by their maturity. As usual in the Margrabe formula, the rel-

evant volatility here is σ, which can be interpreted as the volatility of the

ratio P/K (i.e., the electricity price expressed in units of the strike price),

which is decreasing with respect to the correlation ρ. In particular, for ρ→ 1

(i.e. when the strike price is much correlated with the electricity price), we

have σ → |σk − σp|. In this case, when σk = σp, the volatility vanishes, and

the value of the option is given just by its intrinsic value. Instead, for ρ→ −1

(i.e. when the strike price is much negatively correlated with the electricity

price), we have σ → σk + σp, i.e., the volatility is maximized. However, we

stress that this latter case is rather unlikely for the case of RO, as typically a

stochastic strike price K is defined in terms of quantities related to electricity

generation (as e.g. the marginal price of the marginal technology, or some

related market index), so that we should expect a positive correlation.

3.3.4 Mean-reverting electricity price with seasonality

As mentioned, the GBM dynamics for electricity prices used in the previous

sections is too simple and does not capture typical stylized facts of electricity

prices, namely seasonality and mean-reversion. A natural extension concerns

the pricing of ROs when the dynamics of the reference price shows the afore-

mentioned stylized facts. In particular, we choose to model the log-spot price

of electricity with a mean-reverting dynamics that encodes different season-

alities by means of a time-dependent function. Seasonality can be modeled in

different ways, for example using dummy variables , or a linear combination

of trigonometric functions (see for instance Benth et al. (2008) and references

therein). Here we chose to model seasonality using different dummies, as in

Eq. (4.3.2). For simplicity, we start by assuming that the strike price is

deterministic. In the next section, we shall remove this assumption.

We define the function describing seasonality trends for all t ≥ 0, as

µ(t) =
11∑
i=1

βimonthi +
3∑
i=1

δi dayi +
23∑
i=1

γi houri + α , (3.3.7)

where monthi, dayi and houri are dummies for month, day of week and hour,

used to capture different types of seasonality. Specifically, we assume that

day can take 4 values: ‘Friday’, ‘Weekend’, ‘Monday’, and ‘other working
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day’. This captures the differences between working days and weekend as

well as possible first- or end-of-the-working-week effect.

Then we consider the day-ahead price P as

Pt = eµ(t)eXt , (3.3.8)

where Xt, under the risk-neutral measure Q, is the solution of the SDE

dXt =− λXtdt+ σdWt , (3.3.9)

where W is a one dimensional Q-Brownian motion, σ stands for the volatility

and λ > 0 is the mean-reversion speed. We have the following:

Proposition 3.3.3. Let the reference market price P follow the dynam-

ics (3.3.8)–(3.3.9). Then the price of a reliability option over the time interval

[T1, T2] with fixed strike price K ≥ 0 is given by

RO(T1, T2) =Q

∫ T2

T1

e−rt
[
eµ(t)+mt+

V ar(t)
2 N(d2(K,P0, t))−KN(d1(K,P0, t))

]
dt ,

(3.3.10)

where N is the CDF of a normal random variable, P0 = eµ(0)+X0 and

mt =X0e
−λt ,

V ar(t) =
σ2

2λ
(1− e−2λt) ,

d1(K,P0, t) =
1√

V ar(t)
(µ(t) +mt − lnK) ,

d2(K,P0, s) =d1(K,P0, t) +
√
V ar(t) .

Remark 3.3.1. Equation (3.3.10) is a generalization of Equation (3.3.4): in

fact, if we let µ(t) := (r− qp− 1
2
σ2)t and λ→ 0, then, at the limit, we obtain

again the model of the previous section. In fact, we have that mt ≡ X0,

V ar(t)→ σ2t,

e−rteµ(t)+mt+
V ar(t)

2 → e(r−qp)t+X0 ,
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and

d1(K,P0, t)→
1

σ
√
t

(
X0 + (r − qp)t−

1

2
σ2t− lnK

)
=

1

σ
√
t

ln
eX0+(r−qp)t

K
− 1

2
σ
√
t .

Thus, the evaluation formula in Equation (3.3.10) collapses into that of

Equation (3.3.4).

3.3.5 Allowing for mean-reverting strike price with sea-

sonality

As already pointed out at the end of Section 3.2, a stochastic K is used to

model its possible dependence on variables linked to electricity generation.

Thus, a natural extension of the model in Section 3.3.4 consists in providing

also K with a mean-reverting dynamics including a seasonality term. The

dynamics of the state variables become then

{
Pt = eµ(t)eXt ,

Kt = eν(t)eYt .
(3.3.11)

Here µ is given by (4.3.2) and ν is a seasonality function for K of the same

form, while the processes X and Y are solution to the following:{
dXt = −λxXtdt+ σxdW

1
t ,

dYt = −λyYtdt+ σydW
2
t ,

(3.3.12)

where (W 1,W 2) are correlated Q-Brownian motions, with correlation ρ ∈
[−1, 1]. One can prove that the price of the reliability option is given by the

following expression:

RO(T1, T2) = Q

∫ T2

T1

e−rtEQ [(eµ(t)eXt − eν(t)eYt)+
∣∣F0

]
dt. (3.3.13)

It is easy to see that the above formula is the time integral of a family of

exchange options, indexed by their expiration date in [T1, T2].
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Proposition 3.3.4. Let the reference market price P and the RO strike price

K follow the dynamics (3.3.11); then the price of a reliability option over the

time interval [T1, T2] is given by

RO(T1, T2) =Q

∫ T2

T1

e−rt
[
EQ[Pt]N (d2(K0, P0, t))− EQ[Kt]N (d1(K0, P0, t))

]
dt

(3.3.14)

where N is the CDF of a normal random variable, P0 = eµ(0)+X0, K0 =

eν(0)+Y0 and

EQ[Pt] = eµ(t)+e−λxtX0+ 1
2
σ2
x
1−e−2λxt

2λx , (3.3.15)

EQ[Kt] = e
ν(t)+e−λytY0+ 1

2
σ2
y
1−e−2λyt

2λy , (3.3.16)

d1(K0, P0, t) :=
1√

V ar(t)
(µ(t)− ν(t) + m̄t) , (3.3.17)

d2(K0, P0, t) := d1(K0, P0, t) +

√
V ar(t) , (3.3.18)

m̄t := e−λxtX0 − e−λytY0 + ρσxσy
1− e−(λx+λy)t

λx + λy
− σ2

y

1− e−2λyt

2λy
,

(3.3.19)

V ar(t) := σ2
x

1− e−2λxt

2λx
+ σ2

y

1− e−2λyt

2λy
− 2ρσxσy

1− e−(λx+λy)t

λx + λy
.

(3.3.20)

This result is a similar to Proposition 3.3.3 in the same sense as Proposition

3.3.2 is similar to Proposition 3.3.1: in fact, here RO(T1, T2) turns out to be

again the time integral of a family of options to exchange the electricity price

P with the strike price K. Here too, the relevant volatility is V ar(t), which

can again be interpreted as the volatility of the ratio P/K (i.e., the electricity

price expressed in units of the strike price: this is made explicit in the proof

in Appendix 3.6), which is again decreasing with respect to the correlation

ρ. In particular, for ρ→ 1 (i.e. when the strike price is much correlated with

the electricity price), and λx = λy =: λ (i.e. when the two mean-reversion

speeds are the same), we have V ar(t) → 1−e−2λt

2λ
(σx − σy)

2. In this case,

when σx = σy, the volatility vanishes, and the value of the option is given
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just by its intrinsic value. Instead, in the unlikely case (see the discussion at

the end of Section 3.3.3) when ρ → −1 (i.e. when the strike price is much

negatively correlated with the electricity price) and λx = λy =: λ, we have

V ar(t)→ 1−e−2λt

2λ
(σx + σy)

2, i.e., the volatility is maximized.

3.3.6 Possible extension to negative day-ahead and strike

prices

In principle, it is possible to allow for power prices to have negative values,

since we know this is a possibility in energy prices, see Edoli et al. (2017) and

references therein. An analogous extension can be also imagined for strike

prices, especially when these are linked to power prices.

A possible approach to model negative prices is to set negative values −P ∗
and −K∗, for certain P ∗, K∗ ≥ 0, as price floors for P and K, respectively,

and to consider for them a shifted dynamics of the type{
Pt =

(
eµ(t)eXt − P ∗

)
,

Kt =
(
eν(t)eYt −K∗

)
.

(3.3.21)

where µ and ν are again seasonality functions for P and K and the processes

X and Y are solutions of Equation (3.3.12), in analogy with the previous

section.

By setting C := P ∗ − K∗, one can prove that the price of the reliability

option is now given by the following expression:

RO(T1, T2) = Q

∫ T2

T1

e−rtEQ [(eµ(t)eXt − eν(t)eYt − C)+
∣∣F0

]
dt. (3.3.22)

It is easy to see that the above formula is the time integral of a family of

spread options with a fixed strike price C and indexed by their expiration

date in [T1, T2]. Therefore, considering dynamics of type (3.3.21) relates the

problem of pricing a Reliability Option to the problem of pricing a spread op-

tion (see Carmona and Durrleman (2003) for a survey of classical frameworks

and methods for spread options). Unfortunately, a general closed formula for

the pricing of spread options is not available. However, since the RO is in

principle a product which is quite illiquid, one can use a numerical method

to price it in this general case, for example Monte Carlo.
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3.4 Simulation and sensitivity analysis

In this section we simulate the value of the RO under realistic assumptions

on the value of the parameters. To do so, we fit the parameters of the elec-

tricity price dynamics to a real market, using data of the Italian market. For

simplicity, we consider day-ahead prices only, and use the weighted average

of Italian zonal prices, called PUN (Prezzo Unico Nazionale), ranging from

January 1, 2016 to December 31, 2016.

As previously explained, we use dummies to capture monthly, daily and

hourly seasonality, as defined in Eq. (4.3.2). We choose ‘January’, ‘Fri-

day’ and ‘hour 1’ as reference groups, against which the comparisons are

made. Figure 3.1 shows the calibrated seasonality function, plotted against

the historical PUN data. Furthermore, we consider an annual risk-free rate

r = 0.01, and, in the pricing models where the only stochastic variable is the

electricity price, we consider K = 40 AC /MWh. The pricing of the RO starts

4 years from now, and the option has a maturity of 3 years (T1 = 4, T2 = 7).

This resembles the structure of the RO which is about to be implemented in

the Italian market. The starting point X0 is taken equal to 0.

Table 3.1 reports the estimated parameters for each different model, while

Table B.1 shows the estimated seasonality parameters.

GBM 1-OU 2-OU

σ̂ 5.4041 6.5932 6.5932

λ̂ - 294.84 294.84

Table 3.1: Estimated yearly parameters σ̂ and λ̂ for each pricing model (electricity
price following a Geometric Brownian motion (GBM), electricity price following a
mean-reverting Ornstein-Uhlenbeck process (1-OU), correlated electricity and strike
prices following mean-reverting Ornstein-Uhlenbeck processes (2-OU)).

As mentioned, real electricity prices do not follow GBMs. Therefore, in

the simulation, we start from the model defined in Section 3.3.4.
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Figure 3.1: Seasonality function in (4.3.2) (solid red line, upper panel) calibrated
on historical 2016 PUN electricity data (solid blue line, upper panel) and residuals
(bottom panel).

3.4.1 Mean reverting electricity price with seasonality,

fixed strike

We simulate the value of the RO using the Monte Carlo methodology. Specif-

ically, we compute the RO value using 10,000 simulations of the price path

of the underlying.

Figure 3.3 shows the comparative statics for different parameters σ and

λ and strike price K. As expected, the higher the strike price, the lower

the value of the reliability option for each value of σ (left panel). On the

other hand, both the left and right panel show that, when σ increases, the

RO value rises as well. Moreover, when λ is low, the relative increase in the

RO value is high (right panel). This is consistent with the fact that a low λ

allows fluctuations of the underlying that are far from the long term mean

to be more persistent.
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Figure 3.3: Sensitivity analysis of the results using a yearly σ in the range (0; 2σ̂]
with a strike price K in the range [20; 60] (left panel), and a yearly σ in the range

(0; 2σ̂] with and a yearly λ in the range (100; 2λ̂] (right panel). The RO value is
expressed in AC /MWh.

3.4.2 Electricity spot price and RO strike price as cor-

related OU with seasonality

We simulate now the value of the RO using the model described in Section

3.3.5, again by means of a Monte Carlo method (again using 10,000 runs).

We start from a given correlation coefficient, set at ρ = 0.5, and assume that

λK and σK are equal to the ones estimated for the electricity price. Again,

X0 = 0. In line with the PUN mean price, which is equal to 42.77 AC /MWh,

K0 is arbitrarily chosen equal to 40 AC /MWh, so that, after de-seasonilizing

(using the same estimated seasonality parameters of the PUN price), we

obtain Y0 = −0.21.

Figure 3.4 shows the results when we assume the strike price process to have

the same parameters estimated for the electricity price P . The upper left

panel shows that the initial level of the strike price K0 has no influence on the

value of the reliability option. This is due to the magnitude of the estimated

λP , and thus of λK : a mean reversion speed as high as that estimated makes

the strike price process return to its mean level in an amount of time negligible

with respect to the maturity, meaning that the starting point of the process

has no relevant impact on the RO value.

The upper right panel of Figure 3.4 instead shows how sensitive the RO

value is to changes in the electricity price parameters λP and σP (and thus in

turn in λK and σK). Similarly to what we have observed before, the higher
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Figure 3.4: Sensitivity analysis of the results using a yearly σP in the range (0; 2σ̂P ]
with an initial strike K0 in the range [20; 100] (upper left panel), with a yearly λP in

the range (100; 2λ̂P ](upper right panel), with a correlation ρ in the range [−1; 1] (left
bottom panel) and with a yearly risk free rate r in the range [0; 0.2] (right bottom
panel).

the volatility of the underlying (and, in this case, of the strike price), the

higher the RO value, and this relationship increases in proportionality as the

speed of mean reversion lowers, since it takes more time to return to the

mean, and thus volatility matters more.

The impact of the correlation factor ρ is instead investigated in the bot-

tom left panel, where we assessed how different correlation factors in the

range [1;−1] affect the price of the reliability option. When the two assets

are perfectly correlated (ρ = 1), the RO value is zero for all levels of σP .

In fact, as we have seen in Section 3.2, the volatility is minimized and the

RO can be interpreted as an integral of calls, with maturity ranging in the

interval [T1, T2], being exactly at the money at the time of expiration, and

thus having zero value. Instead, as shown, when the two processes are un-
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correlated, the level of risk increases, and it reaches its maximum when they

are perfectly negatively correlated. In this case, the volatilities of the two

Brownian motions sum up, increasing the overall volatility of the option pay-

off and minimizing the risk of having the call options at the money. Finally,

the bottom right panel shows that the RO price is negatively correlated with

the risk free rate r: a higher r decreases the option value as it lowers the

discounted cash flows.

In the previous figures, the parameters for λP and λK , and σP and σK , were

tied together, in the sense that λK and σK were always equal to, respectively,

λP and σP .

Instead, we now investigate what happens keeping σK equal to σP as before,

but changing λK independently from λP . Moreover, we also investigate the

effects of a variation in σP different from that in σK . Figure 3.5 and 3.6 show

the results.

The left panel of Figure 3.5 reports the results for a variation in λK (in

the range (0; 2λ̂P ] and shown in log10 scale) independent from the value of

λP . We can see how K0 hardly affects the reliability option value, having an

impact only when both σK and λK are sufficiently small. This confirms the

result shown above, i.e. that the initial condition of the parameters matters

only when it takes a sufficient amount of time for them (for the strike price,

in this case) to return to their long term value. The right panel instead

shows the sensitivity of the RO value to changes in the yearly λK (again in

the range (0; λ̂P ]) independent from the value of λP , and in the correlation

factor ρ (in the range [−1; 1]) (in this graph, σK is always equal to σP and

they are in turn equal to σ̂P , λP = λ̂P , and λK is shown in log10 scale.). Here

we can see that the ρ value matters more when both λK = λP and σK = σP .

In fact, ρ affects (negatively) the RO value only when it tends to −1 and λK
is closer to the value of λP (note that, in the figure, λK ∈ (0; λ̂P ], where λ̂P
corresponds to the value of 2.47 in log10 scale). This confirms the intuition

that when the initial value of the electricity price and the strike price are

close, and the two random variables follow the same dynamics, the RO has

a limited or null value since it is likely that it will be always at the money.

Conversely, if the two random variables are not perfectly correlated, or they

follow different dynamics, it is unlikely that at every point in time Pt and Kt

coincide, and this adds value to the RO.
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Figure 3.5: Sensitivity analysis of the results using a yearly λK in the range (0; λ̂P ]
with an initial strike price K0 in the range [20; 100], both with a yearly σK equal to
the yearly σP (upper left panel) and with and a scaled down yearly σK (upper right
panel), and with a correlation ρ in the range [−1; 1] (bottom panel) (here σK = σP ).
The RO value is expressed in AC /MWh.

Finally, Figure 3.6 shows the effect of a disjoint variation in the two volatil-

ities, with a yearly σP and σK in the range (0; 2σ̂P ], for different levels of

ρ (in these graphs, λK is always equal to λP = λ̂P ). When ρ ≤ 0, we can

see that the RO price is always increasing in the electricity price volatility

σP and in the strike price’s one σK . This is as expected, since the volatil-

ity adds value to the call options. Instead, when ρ > 0, the fact that the

two processes move together can lower the aggregate risk, since the spread

between the electricity price and the strike price decreases. This translates

into a negative effect on the option value. The RO value is minimized when

σP = σK . In Figure 3.6, panel ρ = 0.5, we can see that the option value is

still positive; in the panel ρ = 1, the RO value becomes null for σP = σK ,

since, as we have seen, having two perfectly positively correlated identical

processes means that the RO value simply corresponds to its intrinsic value.

Thus, there is a non-monotone effect of the rise of volatility of one process,

depending on the amount of volatility of the other process, and on the level

of the correlation coefficient. The flex is maximum when the two processes

are perfectly positively correlated.
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3.5 Conclusions

In this chapter, we have studied the value of the RO from a financial per-

spective. The simplified mathematical model that we proposed is a starting

point in the analysis of ROs. In particular, it does not consider the different

market mechanisms through which they are sold, or the possible strategic

behavior of power producers. However, even in this simplified framework,

we obtained semi-explicit formulae for the value of the RO, increasing the

level of realism and complexity of the model. We moved from simple inte-

grals of call options written on GBMs to correlated mean reverting processes

that capture the behavior of realistic electricity price time series, on the one

hand, and complex rules for RO, on the other hand. Then, we simulated

the value of the Reliability Option through a real-market calibration of the

parameters. We saw that the value of the RO moves coherently with expec-

tations of option theory: a rise in strike price lowers the RO value, which

depends positively on the volatility of the electricity price, as well as on the

volatility of the strike price itself. The mean reversion speed of the processes

reduces the impact of the starting point, which was another expected result.

However, when both the strike price and the electricity price are assumed to

be stochastic processes, the value of the RO crucially depends on their cor-

relation coefficient ρ. In particular, a positive correlation reduces the value

of the RO. Moreover, there is a non-monotone impact of the volatility of

one process, depending on the level of volatility of the other process and

on a positive correlation. This is important when designing the rule of the

RO. For instance, if the strike price is allowed to change with respect to a

reference marginal cost, which is also believed to be the technology setting

the system marginal price at the day ahead level, the two process clearly

covariate positively. In this case, it is very likely that a RO scheme has a

very limited value, for every possible starting value of the state variables P

and K.

More in general, our results show that a careful estimate of the parameters

is needed to calculate the value of the ROs. Ceteris paribus, the RO value will

be lower the lower the volatility of the electricity price, the higher the strike

price, the quicker the speed of mean reversion, the higher the correlation of

the electricity price with the strike price, if the latter is allowed to change

over time, and the closer the two volatilities to each other. These are all
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factors that need to be taken into account when designing the market for

ROs and calculating the equilibrium value.

Acknowledgments. The “Giorgio Levi-Cases” Interdepartmental Centre

for Energy Economics and Technology, University of Padua, is gratefully

acknowledged for its financial grant “Capacity markets and the evaluation of

reliability options”.



64 3. Pricing Reliability Options

3.6 Appendix B

B.1 Seasonality parameters’ estimates

Estimate S.E. pValue Estimate S.E. pValue

Intercept 3.79 0.01 0 hour6 −0.13 0.01 0

month2 −0.22 0.01 0 hour7 −0.01 0.01 0.5

month3 −0.27 0.01 0 hour8 0.1 0.01 0

month4 −0.36 0.01 0 hour9 0.18 0.01 0

month5 −0.28 0.01 0 hour10 0.16 0.01 0

month6 −0.23 0.01 0 hour11 0.12 0.01 0

month7 −0.07 0.01 0 hour12 0.07 0.01 0

month8 −0.21 0.01 0 hour13 0 0.01 0.8

month9 −0.07 0.01 0 hour14 −0.05 0.01 0

month10 0.14 0.01 0 hour15 −0.02 0.01 0.13

month11 0.23 0.01 0 hour16 0.04 0.01 0

month12 0.21 0.01 0 hour17 0.09 0.01 0

Monday −0.01 0.01 0.04 hour18 0.15 0.01 0

Weekend −0.14 0.01 0 hour19 0.22 0.01 0

Working day 0.02 0.01 0 hour20 0.28 0.01 0

hour2 −0.08 0.01 0 hour21 0.27 0.01 0

hour3 −0.15 0.01 0 hour22 0.2 0.01 0

hour4 −0.18 0.01 0 hour23 0.12 0.01 0

hour5 −0.18 0.01 0 hour24 0.03 0.01 0.01

Table B.1: Linear regression estimates, standard errors and p-values obtained using
the specification in (4.3.2). The base group categories for each dummy variable are
month1, Friday and hour1.
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B.2 Proofs of pricing formulae

Proof of Proposition 3.3.1. Let us underline that we can write the following:

RO(T1, T2) =

∫
Ω

∫ T2

T1

f(s, ω)ds dQ(ω|F0),

where f(s, ω) : = e−rsQ(Ps(ω)−K)+ is a non-negative measurable function

from [T1, T2]× Ω to R. Then, if we set

A(K,P0, s) : = e−rsEQ [(Ps −K)+
∣∣F0

]
, (B.1)

by Tonelli’s theorem, we have immediately that

RO(T1, T2) = Q

∫ T2

T1

A(K,P0, s)ds. (B.2)

A(K,P0, s) is clearly the price of a European call option with strike price K

and maturity s, thus equation (3.3.4) is obtained simply with Black and Sc-

holes formula.

Proof of Proposition 3.3.2. As in the proof of Proposition 3.3.1, if we write

A(K0, P0, s) : = e−rsEQ [(Ps −Ks)
+
∣∣F0

]
; (B.3)

then, by Tonelli’s theorem, we have

RO(T1, T2) = Q

∫ T2

T1

A(K0, P0, s)ds.

Here A(K,P0, s) is clearly the price of an exchange option between the elec-

tricity price P and the strike price K, with maturity s, thus Equation (3.3.6)

is obtained simply with the Margrabe formula with dividends (see Carmona

and Durrleman (2003)).

Proof of Proposition 3.3.3. As in the previous proofs, writing A(K,P0, s) : =
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e−rsEQ
[
(Ps −K)+

∣∣F0

]
and applying Tonelli’s theorem give

RO(T1, T2) = Q

∫ T2

T1

A(K,P0, s)ds.

We plan to evaluate A(K,P0, s) by exploiting the fact that the factor X,

described by the dynamics (3.3.9), is a Gaussian process. Indeed, it is easy

to show that almost surely, for all t > 0, it holds

Xt = X0e
−λt +

∫ t

0

e−kλ(t−s)σdWs = mt +
√
V ar(t)Z

with Z ∼ N(0, 1) and

EQ [Xt| F0] =X0e
−λt =: mt,

VarQ [Xt| F0] =σ2 1− e−2λt

2λ
=: V ar(t).

Thus we have that

Q{Ps > K} = Q{eµ(s)+Xs > K} = Q{Z < d1(K,P0, s)}

where Z ∼ N(0, 1) under Q. As above, we compute

EQ [(Ps −K)+
∣∣F0

]
= EQ [Ps 1{Z<d1(K,P0,s)}

]
−KQ{Z < d1(K,P0, s)} =

=

∫ d1(K,P0,s)

−∞
eµ(s)+ms+

√
V ar(s)x 1√

2π
e−

1
2
x2 dx−KN(d1(K,P0, s)) =

= eµ(s)+ms+
1
2
V ar(s)

∫ d1(K,P0,s)

−∞

1√
2π
e−

1
2

(x−
√
V ar(s))2 dx−KN(d1(K,P0, s)) =

= eµ(s)+ms+
1
2
V ar(s)

∫ d1(K,P0,s)+
√
V ar(s)

−∞

1√
2π
e−

1
2
y2 dy −KN(d1(K,P0, s))

and Equation (3.3.10) follows.

Proof of Proposition 3.3.4. As before, we write

A(P0, K0, s) : = e−rsEQ [(eµ(s)eXs − eν(s)eYs)+
∣∣F0

]
,



3.6 Appendix B 67

we use by Tonelli’s theorem and we obtain

RO(T1, T2) = Q

∫ T2

T1

A(K,P0, K0, s)ds.

We start by noticing that, under the pricing measure Q, we have (Xs, Ys) ∼
N(M(s),Σ(s)), with

M(s) :=

(
e−λxsX0

e−λysY0

)
, Σ(s) :=

(
σ2
x

1−e−2λxs

2λx
ρσxσy

1−e−(λx+λy)s

λx+λy

ρσxσy
1−e−(λx+λy)s

λx+λy
σ2
y

1−e−2λys

2λy

)

From this, Equations (3.3.15) and (3.3.16) follow trivially. We now rewrite

A(P0, K0, s) as

A(K,P0, K0, s) = e−rsEQ

[
Ks

(
Ps
Ks

− 1

)+
∣∣∣∣∣F0

]

= e−rsEQK

[(
Ps
Ks

− 1

)+
∣∣∣∣∣F0

]
EQ[Ks]

where we introduced the new probability measure QK , defined via its den-

sity as

dQK

dQ
:=

Ks

EQ[Ks]
=

eYs

EQ[eYs ]
.

With some algebra, one can verify that, under this new probability measure

QK , we have (Xs, Ys) ∼ N(M̃(s),Σ(s)), with

M̃(s) := M(s) +

(
ρσxσy

1−e−(λx+λy)s

λx+λy

σ2
y

1−e−2λys

2λy

)
,

Thus, Xs − Ys ∼ N(m̄s, V ar(s)), with m̄s and V ar(s) given by Equations

(3.3.19) and (3.3.20), respectively. We then have that
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QK

{
Ps
Ks

> 1

}
= QK{eµ(s)−ν(s)+Xs−Ys > 1} = QK{Z < d1(K0, P0, s)} ,

where Z ∼ N(0, 1) under QK . Now, similarly to the proof of Proposition

3.3.3, we can now compute

EQ [(Ps −Ks)
+
∣∣F0

]
= EQ[Ks]E

QK

[(
Ps
Ks

− 1

)+
∣∣∣∣∣F0

]
=

= EQ[Ks]

(
EQK

[
Ps
Ks

1{Z<d1(K0,P0,s)}

]
−QK{Z < d1(K0, P0, s)}

)
=

= EQ[Ks]

(∫ d1(K,P0,s)

−∞
eµ(s)−νs+m̄s+

√
V ar(s)x 1√

2π
e−

1
2
x2 dx−N(d1(K,P0, s))

)
=

= EQ[Ks]

(
eµ(s)−νs+m̄s+ 1

2
V ar(s)

∫ d1(K0,P0,s)

−∞

1√
2π
e−

1
2

(x−
√
V ar(s))2 dx−

−N(d1(K0, P0, s))

)
=

= EQ[Ks]

(
eµ(s)−ν(s)+m̄s+

1
2
V ar(s)

∫ d1(K,P0,s)+
√
V ar(s)

−∞

1√
2π
e−

1
2
y2 dy−

−N(d1(K,P0, s))

)
.

By using Equation (3.3.16) for EQ[Ks],

after some simplifications we arrive at the final result

EQ [(Ps −Ks)
+
∣∣F0

]
=eµ(s)+e−λxsX0+ 1

2
σ2
x
1−e−2λxs

2λx N

(
d1(K,P0, s) +

√
V ar(s)

)
−

− eν(s)+e−λysY0+ 1
2
σ2
y
1−e−2λys

2λy N(d1(K,P0, s))

and Equation (3.3.14) follows.
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Figure 3.6: Sensitivity analysis of the RO value to a disjoint variation in the two
volatilities, with a yearly σP and σK in the range (0; 2σ̂P ] (here λK = λP ). In the
different panels, we can see how a variation in the correlation coefficient ρ affects the
RO value: when the two processes are independent or negatively correlated, higher
σP and σK result in a higher option value. However, when the correlation is positive
(middle right and bottom panels), the higher the correlation, and the more the two
volatilities are similar, the lower the value of the option. The RO value is expressed
in AC /MWh.
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Chapter 4

Optimal cross-border electricity

trading ∗

We show that electricity flows between interconnected locations have a direct

and indirect effect on electricity prices in the different locations. The direct

effect refers to how prices between two locations are affected when power is

flowing between these two locations only. The indirect effect refers to how the

flows between two locations affect the price of power in other locations that are

part of the interconnected electricity network. Based on this result we propose

a model of the joint dynamics of electricity prices where flows of electricity

affect, directly and indirectly, prices in all locations, and model a common co-

integration factor of prices. We solve the optimal control problem of an agent

who uses the interconnector to take positions in a subset of locations that are

part of the interconnected network. We reduce the Hamilton-Jacobi-Equation

satisfied by the value function of the investor to a system of Riccati equations,

which we solve analytically, and obtain the optimal electricity trading strat-

egy in closed-form. We show that including cross-border effects in the trading

strategy specification significantly improves the performance of the strategy,

that takes advantages of price differentials in interconnected locations. For

example, for contracts with delivery at 3 p.m., we show that over a time hori-

zon of one year, the optimal strategy delivers a profit that is approximately

∗This paper is a joint work with Álvaro Cartea (University of Oxford), Tiziano Vargiolu
(Università degli Studi di Padova) and Georgi Slavov (Marex Spectron Ltd). This paper
was awarded the best paper general prize at the Commodity and Energy Markets 2018
Annual Meeting.
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4% more than the profit of a naive strategy, which is based on the spread

between locations (i.e., does not take into account cross-border effects).

4.1 Introduction

The recent market coupling initiatives in the European Union are aimed

at integrating the European wholesale electricity markets, thus increasing

security of supply while reducing price volatility across Europe. At the core of

the market coupling process, there is the construction of new interconnecting

facilities, namely bi-directional transmission lines connecting the grids of two

countries. The aim of this Chapter is to develop an optimal trading strategy

for an agent who uses the interconnectors to take simultaneous positions in

electricity contracts in all locations.

The first part is devoted to an econometric analysis of the electricity price

determinants, and the results of this analysis are employed in the second

part of the work, where we derive the optimal trading strategy by posing

and solving a stochastic control problem.

In our setup, we consider permanent and temporary impacts of cross-border

electricity flows on the electricity price, and we assume these impacts to be

linear in the agent’s speed of trading. The econometric analysis is instru-

mental in determining the magnitude of these impacts.

Our trading strategy makes then use of these market impacts, as well as

of the information provided by the co-movement of the electricity prices in

three interconnected countries object of our study. This is done by consid-

ering the joint dynamics of the three price processes, driven by intertwined

co-integration factors, and profiting from the structural dependence in the

electricity prices’ dynamics. We then pose an optimal control problem, and

solve the resulting dynamic programming equation, deriving a closed-form

solution up to a 10-ODEs system.

Our work builds on two streams of literature. The first one is related to

pairs trading. In this respect, one of the earliest contributions employing

co-integration in a stochastic control problem is that of Mudchanatongsuk

et al. (2008), who model the log-price spread of a pair of stocks as a mean-

reverting process, and use this in a stochastic control framework based on
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trading in the spread. Tourin and Yan (2013) employ a similar co-integration

model and find a closed-form solution for a dynamic trading strategy based

on a portfolio composed of a money bank account and two stocks. Extending

their work, Leung and Li (2015) and Lei and Xu (2015) formulate an optimal

entry-exit strategy on a pair of co-integrated assets. Benth et al. (2017)

develop a cross-commodity model with co-integrated dynamics in a Heath-

Jarrow-Morton framework. Finally, another extension to Tourin and Yan

(2013) is given by Cartea and Jaimungal (2016a) and Lintilhac and Tourin

(2017), who generalize their dynamic model for an arbitrary number of assets.

These last two works are those closest to ours, although our study differs in

the nature of assets traded, in the specification of the asset’s dynamics, and

in the definition of the co-integration factor.

Our model is also related to a second stream of literature, relative to the

modeling of power prices. Relevant works are those of Cartea and Figueroa

(2005), Roncoroni (2002), Geman and Roncoroni (2006), Benth et al. (2007)

and Weron (2007) (see also Benth et al. (2012) for a critical comparison of

the first four models).

The remainder of the chapter is organized as follows: Section 4.2 presents

the intra-day data collected for the analysis. In Section 4.3, using economet-

ric tools, we show the direct and indirect effects of the cross-border flows

of electricity on the electricity price in the countries object of our study;

moreover, we describe the stochastic process employed for modeling the elec-

tricity price, and estimate the relative parameters. Section 4.4 derives the

optimal trading strategy for an agent taking positions in electricity contracts

in all markets considered in the study. Section 4.5 showcases the empirical

performance of the strategy, while Section 4.6 concludes.

4.2 Data

Electricity is a commodity that can be traded in different markets, and the

three main ones are the day-ahead market, the intra-day one and the forward

one. The main difference among these three markets is that, in each one of

them, one can trade contracts on electricity with a specific range of delivery

times.

As mentioned earlier in Chapter 1, the two spot markets, i.e. the day-
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ahead and the intra-day ones, also differ in their level of interconnectedness:

the day-ahead market is an integrated market, and prices are coupled, while

the intra-day market is not as integrated, and agents can decide to go and

buy electricity in another country, so that there are arbitrage opportunities.

The aim of this Chapter is to build on this opportunity and to develop an

optimal trading strategy for an agent who uses the interconnectors to take

simultaneous positions in electricity contracts in a set of locations in the

intra-day market.

One of the biggest exchanges where electricity can be traded is EPEX

Spot, the European power exchange for spot trading. Thus, we use tick data

relative to all hours and 15-minute period contracts traded on EPEX Spot

Intraday Continuous, for the period 01/01/2016 - 31/12/2017, corresponding

to 7,306,380 transactions (see Table 4.1 for a sample of the dataset).

Delivery Time Stamp
Market Area

Buy
Market Area

Sell
Volume
(MWh)

Price
(AC /MWh)

05/03/2017 h 21 2017-03-05 10:00:00 FR AT 12 35.70
05/03/2017 h 21 2017-03-05 10:02:00 FR AT 1 35.70
05/03/2017 h 21 2017-03-05 10:04:00 CH DE 1 39.00
05/03/2017 h 21 2017-03-05 10:04:00 CH AT 1 39.00
05/03/2017 h 21 2017-03-05 10:06:00 CH DE 1 38.80
05/03/2017 h 21 2017-03-05 10:08:00 DE DE 1 38.80
05/03/2017 h 21 2017-03-05 10:08:00 DE AT 19 39.00
05/03/2017 h 21 2017-03-05 10:14:00 DE CH 6 35.90
05/03/2017 h 21 2017-03-05 10:35:00 NL AT 20 38.90
05/03/2017 h 21 2017-03-05 10:35:00 NL DE 25 39.00
05/03/2017 h 21 2017-03-05 11:05:00 FR DE 5 37.10
05/03/2017 h 21 2017-03-05 11:05:00 DE DE 6 37.00
05/03/2017 h 21 2017-03-05 11:17:00 NL FR 1 38.00
05/03/2017 h 21 2017-03-05 11:48:00 DE DE 18 38.90
05/03/2017 h 21 2017-03-05 12:02:00 DE AT 11 38.30
05/03/2017 h 21 2017-03-05 12:02:00 DE AT 2 38.20
05/03/2017 h 21 2017-03-05 12:02:00 DE AT 10 38.10

Table 4.1: Sample of the dataset. Each row represents a different trade on the intra-
day spot market, and provides information about (from left to right) the hour and
day of delivery, about the time of execution of the transaction, about the originating
market area and the delivery market area, about the volume and the price of the
transaction.

In our model, we treated each country as if it was a distinct markets, so

that the agent can buy or sell electricity in all directions in any of these

markets.

The possibility of trading across the interconnected locations is limited by

the available transfer capacity (ATC) (Table 4.2), resulting from the subtrac-
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Figure 4.1: Physical flow of electricity (relative to contracts with delivery at 3 p.m.)
for each trading direction (starting from the top left panel: France to Switzerland,
Switzerland to France, France to Germany, Germany to France, Germany to Switzer-
land and Switzerland to Germany) over the corresponding ATC.

tion from nominal capacity (NTC) of the committed volume under long term

contracts, and after taking into account the transmission reliability margin.

The volumes in Table 4.1 are the so-called commercial flows; however, to

check the level of actual usage of the ATC, we need data about the so-called

physical flows, which are provided by ENTSO-E on their Transparency Plat-

form. In fact, the physical flows are the actual flows of electricity transiting

across the national borders into another country’s grid. As we can see in

Figure 4.1, the proportion of used ATC varies a lot throughout the year,

highlighting a seasonal pattern.

From To
Available Transfer
Capacity (MW)

France Switzerland 3,200
France Germany 3,000
Germany France 3,050
Germany Switzerland 800
Switzerland France 2,200
Switzerland Germany 4,000

Table 4.2: Available transfer capacity (ATC) for each trading direction.

The descriptive statistics relative to the volumes of electricity traded every-
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day in the intra-day market across the interconnected locations are reported

in Table 4.3. For exemplificatory purposes, we decided to report statistics

for contracts with delivery at 3 p.m. and 3 a.m., respectively a peak and

an off-peak hour. As we can see from the table, and as is also clear from

Figure 4.1, on average, the greatest load of electricity flows from France to

Switzerland, and there is a high volatility in volumes of electricity across all

the interconnected countries.

Mean Std. Dev. Max Min Skewness Kurtosis # of obs.

FR-CH
3 p.m. 16.10 9.72 100 0.1 0.52 6.66 5, 061

3 a.m. 14.18 10.08 50 0.1 0.33 2.64 1, 177

CH-FR
3 p.m. 14.55 9.88 100 0.1 0.59 4.98 3, 465

3 a.m. 14.15 11.05 101 0.1 1.28 9.4 1, 141

FR-DE
3 p.m. 10.84 9.69 148.4 0.1 1.76 15.24 6, 382

3 a.m. 10.17 9.43 100 0.1 1.78 11.91 5, 571

DE-FR
3 p.m. 11.91 10.98 342 0.1 6.03 144.13 7, 879

3 a.m. 10.81 10.25 300 0.1 5.32 122.03 5, 600

CH-DE
3 p.m. 9.79 8.32 50 0.1 0.79 2.74 4, 364

3 a.m. 8.74 8.49 98 0.1 1.52 8.25 3, 322

DE-CH
3 p.m. 10.69 8.71 100 0.1 0.99 5.32 5, 749

3 a.m. 8.26 8.01 76 0.1 1.34 5.66 3, 114

Table 4.3: Descriptive statistics of intra-day volumes between interconnected coun-
tries for contracts with delivery during a peak (3 p.m.) and an off-peak (3 a.m.) hour.
The values of mean, standard deviation, maximum and minimum are expressed in
MWh.

Table 4.4 instead shows the descriptive statistics for intra-day prices (Panel

A) and price spreads (Panel B), for the same specific peak and off-peak hours.

Specifically, the statistics depicted in Panel A are found using all tick data

for each specific hour of delivery, while Panel B is built using a sub-sample of

the dataset: we divide the data in intervals of 60 minutes each, and consider

the “closing price” of each interval, that is the price of the last transaction

over those 60 minutes. In such a way, we can compare the prices of two

different countries hour by hour, and consider the difference between them

(price spread). Looking at Panel B, from a mean price point of view, we

can see that it would be profitable (leaving aside the transaction costs) to
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Panel A: Intra-day Prices

France Switzerland Germany

3 p.m. 3 a.m. 3 p.m. 3 a.m. 3 p.m. 3 a.m.

Mean 39.99 27.74 40.5 28.15 29.97 23.91
Std. Dev. 20.29 12.16 24.22 11.92 20.01 10.35
Max 295.00 120.00 185.00 139.80 209.00 200.00
Min −18.00 −10.00 −150.00 −18.90 −320.00 −85.00
Skewness 1.56 1.26 1.24 1.65 −0.68 −1.25
Kurtosis 8.01 6.57 9.71 8.95 27.41 9.58
ADF 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
Jarque-Bera 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
# of obs. 39, 717 19, 280 23, 532 10, 475 364, 273 192, 447

Panel B: Intra-day Price Spread

France -
Switzerland

Switzerland -
Germany

Germany -
France

3 p.m. 3 a.m. 3 p.m. 3 a.m. 3 p.m. 3 a.m.

Mean 3.63 1.22 −2.77 −4.29 −0.86 3.07
Std. Dev. 16.56 13.61 20.98 16.33 19.62 15.22
Max 295.00 120.00 252.01 139.80 130.00 60.00
Min −87.90 −139.80 −175.00 −60.00 −252.01 −86.00
Skewness 2.68 0.22 0.04 0.44 −0.73 −0.07
Kurtosis 26.48 15.03 11.35 6.86 14.2 5.55
ADF 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
Jarque-Bera 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
# of obs. 7, 158 5, 215 7, 158 5, 215 7, 158 5, 215

Table 4.4: Descriptive statistics of intra-day prices and price spreads for a peak (3
p.m.) and off-peak (3 a.m.) hour. The values for mean, standard deviation, maximum
and minimum are expressed in AC /MWh. We report the p-values of the Augmented
Dickey-Fuller (ADF) test statistic, which indicate that the null hypothesis of unit
root is rejected in favor of the mean reverting alternative in all cases. We also report
the p-values for the Jarque-Bera test, which reject, in all cases, the null hypothesis of
normality.

send electricity from Switzerland to France, from Switzerland to Germany,

and from Germany to France when trading contracts with delivery at 3 p.m.,

from France to Germany when trading contracts with delivery at 3 a.m.. If

we have a look at the results for the Augmented Dickey-Fuller (ADF) test on

prices and spreads, we can see that the unit root hypothesis is rejected in all
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cases, with a p-value equal or lower than 0.01%, favoring the mean reverting

alternative. The Jarque-Bera test, again with p-values lower than 0.01% in

all cases, suggests that both prices and spreads are far from being normally

distributed. The same results, both for the ADF test and the Jarque-Bera

one, hold for all single peak and off-peak hours.

4.3 Econometric Analysis

Using data for all intraday contracts traded on EPEX, we first look for pat-

terns in the dynamics of prices and flows of electricity across the different

countries, and choose a sub-set of locations where to base our trading strat-

egy. Specifically, the locations we choose are Germany, Switzerland and

France, because all of them are interconnected with each other, and thus the

agent can buy or sell electricity in all directions in each of these three mar-

kets. We want to understand how the volumes of electricity traded can affect

the electricity price over time, so to calibrate the agent’s trading strategy

accordingly.

We run the multivariate robust OLS (ordinary least squares) regression in

(4.3.1), where the dependent variables are the price increments over 1 hour

of trading, and the explanatory variables are the total volumes per trading

hour, traded in all possible directions. The price increment is computed over

1 hour because the market is not a particularly liquid one, so that the effects

of the different trades are evident over a somewhat appreciable amount of

time.

∆PPP t = βββ1VolSFt−1 + βββ2VolFSt−1 + βββ3VolGSt−1 + βββ4VolSGt−1 + βββ5VolGFt−1 + βββ6VolFGt−1

+ βββ7VolOFt−1 + βββ8VolFOt−1 + βββ9VolOSt−1 + βββ10VolSOt−1 + βββ11VolOGt−1 + βββ12VolGOt−1 + εεεt ,

(4.3.1)

with

PPP t =

P F
t

P S
t

PG
t

 ,

where F stands for “France”, S for “Switzerland”, G for “Germany”, and O

for “other country”, so that P F
t is the French price of electricity at time t,

P S
t is the Swiss one, and PG

t is the German one; VolFSt represents the sum

of all volumes of the transactions hour by hour where the market area Buy
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is France and the market area Sell is Switzerland, and so on. Finally, εεεt is a

vector of normally distributed error terms.

Then, we also run (4.3.1) using a stepwise algorithm. In a stepwise regres-

sion, the choice of the predictive variables is carried out by an algorithm.

In fact, the algorithm adds or removes terms of the multilinear model based

on their statistical significance, so that the final choice of regressors has the

maximum explanatory power.

We expect that, when the agent buys a certain amount of electricity in

France to sell it in Switzerland, the French price will be negatively affected

(in the sense that it will increase), while the Swiss one will proportionally

decrease. When buying electricity, the agent is reducing the electricity sup-

ply, so that the price will increase. On the other hand, selling electricity

will increase the supply, and prices will drop. The estimated coefficients

of (4.3.1) confirm this intuition, both with the multivariate regression and

with the stepwise one (see, for example, Table 4.5). We observe that, when

the dependent variable is ∆P F
t , most of the times β1 is negative, while β2

is positive, β5 is negative, while β6 is positive, β7 is negative, while β8 is

positive (when significant). If the dependent variable is instead ∆P S
t , most

of the times β1 is positive, while β2 is negative, β3 is negative, while β4 is

positive, β9 is negative, while β10 is positive (when significant). Coherently,

when the dependent variable is ∆PG
t , most of the times β3 is positive, while

β4 is negative, β5 is positive, and so is β12, while β6 is negative, and so is β11

(when significant) (see Appendix C.1 for the complete results both for the

multivariate and the stepwise regressions).

Moreover, the coefficients referring to the same country pair are statistically

different one from the other when taken in absolute value (β1 6= −β2, for

example).

These results show that flows of electricity between two locations affect the

prices of the two locations that receive/send electricity and also affect the

prices of other locations which are not directly receiving electricity. That

is, the price increment relative to a specific country is not only affected

by the trades between that country and another, but is also affected by

electricity trades happening somewhere else in the system. We label these

effects “cross-border permanent impacts”. When constructing our optimal

trading strategy, we take into account the presence of these price impacts,
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∆PFt ∆PSt ∆PGt

VolSFt 0 0 0

VolFSt 0.0032∗∗∗ −0.0007∗∗∗ 0

VolGSt 0 0 0.0064∗∗∗

VolSGt 0 0 0

VolGFt 0 0.0009∗∗∗ 0

VolFGt 0 −0.0007∗∗∗ −0.0060∗∗∗

VolOFt 0 0 −0.0013∗∗∗

VolFOt 0.0022∗∗∗ 0 −0.0038∗∗∗

VolOSt 0 0 0

VolSOt 0 0 0

VolOGt 0 0 −0.0068∗∗∗

VolGOt 0 0 0.0052∗∗∗

Table 4.5: OLS robust estimates, obtained using the stepwise algorithm, for con-
tracts with delivery at 3 p.m.. Dependent variables: ∆PF

t , ∆PS
t , ∆PG

t . ∗∗∗ = p <
0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.

because the agent’s trades are going to permanently affect the price in a way

proportional to the quantity traded.

The β coefficients in (4.3.1) give an indication of the magnitude and sign

of the permanent price impacts that trading activity in each direction has on

the price of electricity in each country of the interconnected network.

In our setup, we assume these impacts to be linear in the agent’s speed of

trading.

4.3.1 Co-integrated electricity prices

As mentioned in the previous chapter, the behavior of electricity prices dis-

plays pecularities that make its statistical features different from those of

other financial assets. When high demand brings on stream less efficient

power generation sources, the electricity price exhibits spikes and jumps,

and, depending on different electricity usage throughout the year, it also

displays a marked seasonal component.

For this reason, before using the price data, we need to de-seasonalize

them. We model the seasonal component f(t) using sinusoidal functions

with different periodicities (in this case, annual, semi-annual and weekly
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with different centers) (see for example Lucia and Schwartz (2002), Seifert

and Uhrig-Homburg (2007) and Pilipovic (1998)). We thus get

f(t) = b1 sin(2πt) + b2 cos(2πt)+b3 sin(4πt) + b4 cos(4πt)

+ b5 sin(104πt) + b6 cos(104πt) + b7 .

(4.3.2)

The seasonality parameters are calibrated using OLS, and Figure 4.2 reports

the results of the calibration for intra-day contracts with delivery at 3 p.m..

In our set up, because the three countries are interconnected and, as shown

in the previous section, there is presence of cross-border effects, we model

the prices as co-integrated. Co-integration was first defined in Engle and

Granger (1987) as the property according to which a combination of two

non-stationary processes can be stationary, and has since then found several

applications, from macroeconomic analysis to fund management and portfolio

selection. The core of the idea is to take advantage of the co-movement among

the co-integrated stochastic variables in a dynamic specification framework.

In our model, the drift of the stochastic process we use to model electricity

prices is composed of an idiosyncratic component, which only affects the sin-

gle country, and a systemic one, which is a proxy for all the common drivers

of the electricity price in all countries, and which is what causes them to

co-move. This common component is the co-integration factor. In this re-

spect, our specification is similar to that of Cartea and Jaimungal (2016a),

but differs from their one in the nature of the assets traded (electricity prices

versus IT stocks), in the definition of the co-integration factor, in that we

add a jump component to the dynamics, and most importantly, in that we

consider the permanent impacts that cross-border trading has on the elec-

tricity price, as found in the previous section. Our electricity price dynamics

is thus defined as:

dP k
t =

(
θk +

n∑
i=1

δkiα
i
t

)
dt+

n∑
i=1

σkidW
i
t + J(ψk, ξk)dΠ(λk) , (4.3.3)

where (P k
t )t>0 is the de-seasonalized price of electricity in country k at time

t (from now on, we will simply refer to the de-seasonalized electricity price

as ‘electricity price’), θk is the idiosyncratic component of the drift, δki are

country-specific constants, W i
t are standard Brownian motions independent
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(a) Historical closing prices with seasonality - hour 3 p.m.

(b) Residuals - hour 3 p.m.

Figure 4.2: Historical (4.2a) and de-seasonalized (4.2b) electricity price for contracts
with delivery at 3 p.m. for each country in the sample. The three sub-figures in each
panel show the prices for, from top to bottom, France, Switzerland and Germany.
The red solid line in 4.2a represents the calibrated seasonality function f(t). Prices
are expressed in AC /MWh.

of each other, and σki are the elements of the Cholesky decomposition of the

instantaneous variance-covariance matrix of electricity prices. Jumps arrive

as a Poisson process Π with intensity λk and have a normally distributed
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jump size with mean ψk and standard deviation ξk. Moreover,

αit =
n∑
j=1

aijP
j
t (4.3.4)

is the co-integration factor for country i, where aij are constants. We can

thus see that the price of electricity in each country also depends on the

electricity price in the other ones.

Eq. (4.3.3) can be rewritten in matrix notation as

dPt = (θθθ −ΦΦΦ Pt) dt+ σσσ dWt + J(ψψψ,ξξξ)dΠΠΠ(λλλ) . (4.3.5)

Here ΦΦΦ is a n× n matrix and ΦΦΦ = −∆∆∆ ·A , where

∆∆∆ =

δ11 · · · δ1n

...
. . .

...

δn1 · · · δnn

 and A =

a11 · · · a1n

...
. . .

...

an1 · · · ann

 .

Since we defined a different co-integration factor for each of the three coun-

tries, ΦΦΦ contains exactly three positive eigenvalues, and this ensures that the

three price processes display mean reverting behavior. For reasons that will

be clear later on in what follows, we impose the restriction that ΦΦΦ has to be

a symmetric matrix.

The parameters in (4.3.5) can be estimated through Maximum Likelihood

Estimation (MLE). In order to do this, we first need to find the multivariate

density function of the price process. Thus, we perform an Euler discretiza-

tion on (4.3.5). To discretize the jump component, we assume that, within

a small time interval dt, the increment of the Poisson process behaves like

a Bernoulli random variable. This means that, over the interval dt, we can

have at most one jump. Thus, in presence of jumps, we get

PPP t+1 = θθθ + (1n −ΦΦΦ)PPP t + σσσεt + (ψψψ + ξξξεJ t)YYY λ , (4.3.6)

where 1n is a n × n identity matrix, (εt)t and (εJ t)t are i.i.d. sequences of
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standard normal random variables, also independent of each other, and

YYY λ =


Y λ1

1 0 · · · 0

0 Y λ2
2

. . .
...

...
. . . . . . 0

0 · · · 0 Y λn
n

 ,

with Y λk
k ∼ Bern(λk) independent of Y λi

i ∀ k 6= i, k = 1, ..., n. We thus get

that the multivariate conditional density function is

f (PPP t+1|PPP t) =
∑
e∈E

[
n∏
i=1

λei
i

(
1− λ1−ei

i

)]
( 2π )−

n
2 |ΩΩΩ + ξξξe |−

1
2

· e−
1
2

[PPP t+1−ψψψe+θθθ+(1n−ΦΦΦ)PPP t]
ᵀ(ΩΩΩ+ξξξe)−1[PPP t+1−ψψψe+θθθ+(1n−ΦΦΦ)PPP t] ,

(4.3.7)

where ΩΩΩ = σσσσσσᵀ, and |ΩΩΩ + ξξξe | is the determinant of ΩΩΩ + ξξξe. Let E = {0, 1}n,

then, ∀ e ∈ E, ξξξe is the n×n diagonal matrix with elements (ξe)ii = ξ2
ii ·ei and

(ξe)ij = 0 ∀ i 6= j. Similarly, ψψψe is a vector with n elements (ψe)i = ψi · ei.

A numerical maximization of the log-likelihood function returns the es-

timates reported in Table 4.6. Figure 4.3 shows simulated in-sample and

out-of-sample paths for the (non-deseasonalized) price process, both for a

peak (3 p.m.) and an off-peak (3 a.m.) hour.

4.4 Optimal trading strategy

In this section, we show how to build up on the previous section’s findings in

order to set up an optimal trading strategy. To do this, the agent’s trading

should not only be based on the price spreads observed over time among the

three interconnected countries, but also on the market impacts of electricity

flowing across the neighbouring locations.

4.4.1 Cross-border trading impacts on the electricity

price

We assume two different types of impact: permanent and temporary ones.

According to the previous section’s findings, the agents’ trading activity has
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(a) Historical and simulated prices - hour 3 p.m.

(b) Historical and simulated prices - hour 3 a.m.

Figure 4.3: Historical and simulated electricity price paths for contracts with deliv-
ery at a peak – 3 p.m. (4.3a), and an off-peak – 3 a.m. (4.3b), hour, for France (top
panels), Switzerland (middle panels) and Germany (bottom panels). The blue solid
line represents the historical price path, while the red one represents a single out-of-
sample price simulation. The gray area represents the 1st and 99th percentiles of all
in-sample simulations, while the black solid line is their mean. Prices are expressed
in AC /MWh.
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France Switzerland Germany

ΦΦΦ

France
0.78 −0.14 −0.06

(2.62 · 10−146) (3.49 · 10−8) (0.03)

Switzerland
−0.14 0.76 −0.04

(3.49 · 10−8) (2.85 · 10−58) (0.06)

Germany
−0.06 −0.04 0.86
(0.03) (0.06) (6.99 · 10−27)

σσσ

France
11.95 0 0

(1.91 · 10−64) (-) (-)

Switzerland
10.28 4.60 0

(7.95 · 10−74) (2.06 · 10−9) (-)

Germany
7.12 2.26 10.04

(1.79 · 10−15) (0.07) (9.54 · 10−7)

θθθ
−1.26 −0.14 0.70
(0.03) (0.79) (0.39)

ψψψ
−7.07 2.60 25.00

(0) (6.53 · 10−87) (0)

diag(ξ)
68.31 57.79 99.84

(0) (0) (0)

λλλ
0.03 0.02 0.03
(0.76 (0.84) (0.79)

Table 4.6: Daily parameters of the multivariate price process in (4.3.5), estimated
via MLE against price data relative to contracts with delivery at 3 p.m.. P-values are
in parentheses.

a permanent impact on the price of electricity contracts. This is due to the

fact that buying (or selling) these contracts increases the demand (or supply)

of electricity in each country, thus causing upward (or downward) pressure

on prices. (For a further discussion on permanent price impacts, see Alfonsi

et al. (2010), Cartea and Jaimungal (2016b) and Cartea et al. (2016)).

We denote by ννν = (νννt){0≤t≤T} the vector of the agent’s speed of trad-

ing for each trading direction. Since we are treating the three countries

as distinct markets, we consider trading in opposite directions across each

country couple as two separate positions. Moreover, the choice of keep-

ing 6 controls, rather than 3, is also motivated by the results of Section
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4.3. These show that the impact of trading in a specific direction is sta-

tistically different, in absolute value, from the impact of trading in the op-

posite direction. We thus get a vector of six elements, one for each trad-

ing direction: France-Switzerland, Switzerland-Germany, Germany-France,

Switzerland-France, Germany-Switzerland and France-Germany.

The permanent impact function on power prices is thus defined as:

gk(νt) = βakν
ij
t + βbkν

ji
t + βckν

iz
t + βdkν

zi
t + βekν

jz
t + βfkν

zj
t , (4.4.1)

with i, j, z ∈ {France, Switzerland,Germany} and i 6= j 6= z. Of course,

with no trading activity, we get gk(0) = 0. The permanent impact β is

different for each country k, and the electricity price in each specific country

is affected by the flow of electricity in each trading direction in different

ways (this is why β is indexed by superscript). When the speed of trading

νij is positive, the agent, over a small time step ∆t, is buying in country i

a quantity of electricity νij∆t, and selling the same quantity in country j.

On the contrary, when νij is negative, the agent is buying contracts for νij∆t

MWh of electricity in country j to sell them in country i. Equivalently, in

matrix notation,

g(νννt) = HνHνHνt , (4.4.2)

and, in our set-up, we define the vector of optimal controls as

νννᵀ =
(
νSFt νFSt νGSt νSGt νGFt νFGt

)
,

while HHH is the 3× 6 matrix of permanent impacts β. Specifically, the entries

H1,· represent the permanent impacts of all trades on the price of electricity

in France, H2,· represent those on the price of electricity in Switzerland, and

H3,· those on that of Germany. It is noteworthy to underline that these β

coefficients are the coefficients estimated in regression (4.3.1). Because of the

greater explanatory power of the regressors, we use the estimates obtained

by means of the stepwise algorithm, rather than those of the multivariate

regression. Since, as the results of the regression in (4.3.1) indicate, the flows

of electricity between two locations have a direct effect on the price electricity

of those two locations, but also an indirect effect on the electricity price in

all other locations, we include these impacts in the price dynamics (4.3.5),
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which becomes:

dPt = (θθθ −ΦΦΦ Pt + g(νννt)) dt+ σσσ dWt + J(ψψψ,ξξξ)dΠΠΠ(λλλ) . (4.4.3)

The temporary impact is instead referred to the price the agent gets con-

textually to the market clearing. In fact, when her orders are executed, the

price she gets is a little worse than the quoted one, the one she saw before

her trading action. We define the 1 × 3 vector of temporary impacts on

power prices as ωωω, whose elements are country-specific parameters, so that

the (non-deseasonalized) price with temporary market impact is as follows:

P̂ k
t =

{
P̃ k
t + ωkν

kj
t when buying in k and selling in j

P̃ k
t − ωkν

jk
t when selling in k and buying in j

, j 6= k ∧ ωk ≥ 0,

(4.4.4)

where {k, j} ∈ {France, Switzerland,Germany}. The execution price of elec-

tricity in country k at time t is denoted by P̂ k
t , while P̃ k

t denotes the (non-

deseasonalized) quoted one, so that P̃ k
t = P k

t + fk(t), with fk(t) equal to

the seasonal component of country k, in the form of Equation (4.3.2). In

such a way, if, for example, νFSt > 0 (νFSt < 0), it means that, at time t, the

agent will buy (sell) electricity contracts in France (and sell (buy) them in

Switzerland), and the price P̂ F
t that she will pay (get) will be slightly higher

(lower) than the quoted price P̃ F
t she observed immediately before her trade.

Similarly, when νSFt > 0, the agent will sell electricity contracts in France

(and buy them in Switzerland), and the price P̂ F
t that she will get will be

slightly lower than the quoted price P̃ F
t . The temporary impact is partly due

to the fact that the agent is “walking the book” and partly to the fact that

the trading activity implies transaction costs.

4.4.2 Optimal cross-border trading strategy

The agent aims at maximizing, over a trading horizon T , her marginal cash

flows, here denoted by X. Her cash process at each time t is given by the sum

of all price spreads between each country couple, times the relative speed of
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trading. We thus get:

X(t,Pt, νννt) =
(
P̂ S
t − P̂ F

t

)
νFSt +

(
P̂ F
t − P̂ S

t

)
νSFt +

(
P̂G
t − P̂ S

t

)
νSGt

+
(
P̂ S
t − P̂G

t

)
νGSt +

(
P̂ F
t − P̂G

t

)
νGFt +

(
P̂G
t − P̂ F

t

)
νFGt .

(4.4.5)

Substituting (4.4.4) into (4.4.5), we get

X(t,Pt, νννt) =
(
P F
t − P S

t

) (
νSFt − νFSt

)
− (ωF + ωS)

(
ν2
t
SF

+ ν2
t
FS
)

+
(
P S
t − PG

t

) (
νGSt − νSGt

)
− (ωS + ωG)

(
ν2
t
GS

+ ν2
t
SG
)

+
(
PG
t − P F

t

) (
νFGt − νGFt

)
− (ωF + ωG)

(
ν2
t
GF

+ ν2
t
FG
)

+
(
fF (t)− fS(t)

)
νSFt +

(
fS(t)− fF (t)

)
νFSt

+
(
fS(t)− fG(t)

)
νGSt +

(
fG(t)− fS(t)

)
νSGt

+
(
fF (t)− fG(t)

)
νGFt +

(
fG(t)− fF (t)

)
νFGt . (4.4.6)

In matrix notation, this is equal to

X(t, P, ν) = νννᵀBBBᵀPPP − νννᵀΥΥΥννν + νννᵀf(t)f(t)f(t) , (4.4.7)

where

PPP ᵀ =
(
P F P S PG

)
,

BBB =

 1 −1 0 0 1 −1

−1 1 1 −1 0 0

0 0 −1 1 −1 1

 ,

f(t)f(t)f(t) =



fF (t)− fS(t)

fS(t)− fF (t)

fS(t)− fG(t)

fG(t)− fS(t)

fF (t)− fG(t)

fG(t)− fF (t)


,
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and

ΥΥΥ =



ωF + ωS 0 · · · 0

0 ωF + ωS 0 · · · ...
... 0 ωS + ωG 0 · · ·

0 ωS + ωG 0

0 ωF + ωG 0

0 · · · 0 ωF + ωG


.

Thus, her value function is

V (t,P) = sup
ννν∈A

E t,P

[∫ T

t

X(u,Pu, νννu) du

∣∣∣∣Pt = P

]
, (4.4.8)

where the set of admissible strategies A is defined as

A =

{(
νννt = (νννijt )i,j∈{F,G,S},i 6=j

)
t∈[0,T ]

progr. meas. and s.t. E
[∫ T

0
‖νννt‖2du

]
< +∞

}
.

Moreover, E t,P denotes the expectation computed when the process {Pννν;t,P
u , u ∈

[t, T ]} is the solution of Equation (4.4.3) with initial condition Pt = P and

control ννν.

The dynamic programming principle suggests that (4.4.8) is the unique

solution to the following Hamilton-Jacobi-Bellman (HJB) equation

∂tV (t,P) + sup
ννν∈A

[LνV (t,P) +X(t,P, νννt)] = 0 , (4.4.9)

where the infinitesimal generator Lν acts as follows

LνV (t,PPP ) = (θθθ −ΦΦΦ Pt + νννᵀtHHH
ᵀ)VP (t,PPP ) +

1

2
Tr [ΩΩΩH ]

+
n∑
k=1

λk

∫ +∞

−∞
∆k(y)V (t,P)

1√
2πξk

e
−(y−ψk)2

2ξ2
k dy ,

where VP (t,PPP ) is the vector with elements ∂V
∂Pi

, Tr[·] denotes the trace opera-

tor and H is the Hessian of V , namely a matrix with elements Hi,j = ∂2V
∂Pi∂Pj

.

The operator ∆k(y)V (t,P), due to the jump part, acts as follows (cf. Cartea
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et al. (2015) and Øksendal and Sulem (2007)):

∆k(y)V (t,P) = V (t,P + y1k)− V (t,P) ∀ k ∈ {1, ..., n} ,

where the indicator function 1k is defined as

11 = (1, 0, · · · , 0)ᵀ , 12 = (0, 1, · · · , 0)ᵀ , · · · , 1n = (0, 0, · · · , 1)ᵀ .

Proposition 4.4.1. Given (4.4.9), the optimal speed of trading in feedback

control form is defined as

ννν∗t =
1

2
ΥΥΥ−1 (HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t)) . (4.4.10)

and the HJB reduces to the following partial integro-differential equation

(PIDE):

0 = ∂tV (t,P) + LV (t,P)

+
1

4
[HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t)]

ᵀ
ΥΥΥ−1 [HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t)] ,

(4.4.11)

with

LV (t,PPP ) = (θθθ −ΦΦΦ Pt)VP (t,PPP ) +
1

2
Tr [ΩΩΩH ]

+
n∑
k=1

λk

∫ +∞

−∞
∆k(y)V (t,P)

1√
2πξk

e
−(y−ψk)2

2ξ2
k dy .

Proof. See Appendix C.2.

We remark here that the second term in brackets in (4.4.10) can be seen as

a myopic trading strategy, simply based on the electricity price spread. The

first term is instead the added value given by acknowledging the permanent

impacts on prices. Finally, the third term is simply the seasonality spread

between each country couple. In what follows, we are going to label näıve

strategy the simple strategy based on the price spread, namely

νννn
t =

1

2
ΥΥΥ−1 (BBBᵀPPP t + f(t)f(t)f(t)) . (4.4.12)
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This is going to be the benchmark against which to compare the performance

of the optimal trading strategy ννν∗.

Now, in order to solve (4.4.11), we need to guess a solution. We expect the

value function to be a quadratic combination of prices. Thus, we propose

the following ansatz:

Proposition 4.4.2 (Solving the HJB.). The PIDE in (4.4.11) admits a so-

lution of the form

V (t,P) = A(t) +DDDᵀ(t)P + PᵀEEE(t)P , (4.4.13)

where A(t), a scalar, and

D(t) =

D1(t)

D2(t)

D3(t)

 , E(t) =

E11(t) E12(t) E13(t)

E12(t) E22(t) E23(t)

E13(t) E23(t) E33(t)


are the solution of the a 10-ODEs system: specifically, E solves a matrix

Riccati equation, D solves a linear differential equation and A solves an in-

tegrable equation. Moreover, E(t) = Y (t)X(t)−1, with(
X(t)

Y (t)

)
= exp

[
(T − t)

(
−1

2
HHHΥΥΥ−1BBBᵀ + ΦΦΦ −HHHΥΥΥ−1HHHᵀ

1
4
BBBΥΥΥ−1BBBᵀ

(
1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ)](X(T )

Y (T )

)
,

(4.4.14)

and (
X(T )

Y (T )

)
=

(
I

E(T )

)
. (4.4.15)

The solution of D(t) is instead given by

D(t) = Xᵀ(t)−1D(T ) +

∫ t

0

[
X(t)−1

]ᵀ
Xᵀ(s)

[
2EEE(s)(θθθ + λλλ ◦ψψψ)

+ EEE(s)HHHΥΥΥ−1fff(s) +
1

2
BBBΥΥΥ−1fff(s)

]
ds , (4.4.16)

where ◦ denotes the Hadamard product between two vectors, i.e. (λλλ ◦ ψψψ)i =
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λiψi ∀ i. Finally,

A(t) = A(T ) +

∫ T

t

1

4
(DDDᵀ(s)HHH + fffᵀ(s)) ΥΥΥ−1 (HHHᵀDDD(s) + fff(s)) + Tr [ΩΩΩEEE(s)]

+DDDᵀ(s) (θθθ + λλλ ◦ψψψ) +ψψψᵀdiag(EEE(s)) (λλλ ◦ψψψ) + ξξξᵀdiag(EEE(s)) (λλλ ◦ ξξξ) ds .

(4.4.17)

where diag(EEE(t)) is a matrix with the elements on the main diagonal equal

to those on the main diagonal of EEE(t), and with all other elements equal to

zero, such that

diag(EEE(t)) =

E11(t) 0 0

0 E22(t) 0

0 0 E33(t)

 .

Moreover, the optimal controls are given by

ννν∗t = ΥΥΥ−1

(
1

2
HHHᵀDDD(t) +HHHᵀEEE(t)PPP t +

1

2
BBBᵀPPP t +

1

2
f(t)f(t)f(t)

)
. (4.4.18)

Proof. See Appendix C.2.

We are now ready to close the gap between the original optimal control

problem of the agent in Equation (4.4.8) and the HJB equation (4.4.9). First

of all we need a technical lemma.

Lemma 4.4.1. For all ν ∈ A, for all t ∈ [0, T ] and for all initial conditions

P ∈ R3, the process Pννν;t,P is such that

Et,P
[

sup
t≤u≤T

‖Pννν;t,P
u ‖2

]
< +∞ .

Proof. First of all, we have that, for u ∈ [t, T ], Equation (4.4.3) has the
unique solution

Pννν;t,P
u = e−(u−t)ΦPt +

∫ u

t
e−(v−t)Φ(θθθ +Hνννv) dv +

∫ u

t
e−(v−t)Φ(σσσ dWt + J(ψψψ,ξξξ)dΠΠΠ(λλλ))

= P0;t,P
u +

∫ u

t
e−(v−t)ΦHνννv dv .
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Thus,

Et,P
[

sup
t≤u≤T

‖Pννν;t,P
u ‖2

]
≤ 2Et,P

[
sup
t≤u≤T

‖P0;t,P
u ‖2

]
+ 2Et,P

[
sup
t≤u≤T

∥∥∥∥∫ u

t

e−(v−t)ΦHνννv dv

∥∥∥∥2
]
.

Since the process P0;t,P is solution of Equation (4.4.3) with zero control,

which satisfies the assumptions of Protter (2003, Theorem V.67), the first

term in the right-hand side is finite. For the second term, we have

Et,P

[
sup
t≤u≤T

∥∥∥∥∫ u

t

e−(v−t)ΦHνννv dv

∥∥∥∥2
]
≤ Et,P

[∫ T

t

‖e−(v−t)ΦH‖2‖νννv‖2 dv

]
≤

≤ sup
t≤v≤T

‖e−(v−t)ΦH‖2Et,P
[∫ T

t

‖νννv‖2 dv

]
,

which is finite, as [t, T ] 3 v → e−(v−t)ΦH is continuous and bounded and ννν

is admissible.

Theorem 4.4.1 (Verification Theorem). Assume that, for a certain t ∈
[0, T ], the matrix-valued function t → EEE(t) defined in Equation (4.4.14) is

the unique solution of Equation (C.8) on [t, T ]. Then the function V in

Equation (4.4.13), solution of the HJB equation (4.4.9), coincides with the

value function (4.4.8). Moreover, the process ννν∗ defined in Equation (4.4.10)

is the optimal control for the problem (4.4.8).

Proof. The proof is basically a check on the more general result in Fleming

and Soner (1993, Theorem III.8.1). In fact, we already know that V is a

classical (i.e., C1,2) solution of the HJB equation (4.4.9). Thus, it follows that

V (t,P) ≥ E t,P

[∫ T
t
X(u,Pu, νννu) du

]
∀ ν ∈ A, provided that the Dynkyn

formula

Et,P[V (T,PT )] = V (t,P) + Et,P
[∫ T

t

LνV (u,PPP u) du

]
(4.4.19)

holds. To prove this, first of all we notice that the integral to the right-hand
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side is well defined. In fact, since V is bilinear in P, we have that

|LνV (u,P)| ≤ C(1 + ‖P‖2 + ‖P‖ · ‖ννν‖)

for a suitable C. This implies that

Et,P
[∫ T

t

|LνV (u,PPP u)|du
]
≤ Et,P

[∫ T

t

C
(
1 + ‖Pu‖2 + ‖Pu‖ · ‖νννu‖

)
du

]
≤

≤ C(T − t) + CEt,P
[∫ T

t

‖Pννν;t,P
u ‖2du

]
+CEt,P

[∫ T

t

‖Pννν;t,P
u ‖2du

]
· Et,P

[∫ T

t

‖νννu‖2du

]
,

where the third term comes from the Cauchy-Schwarz inequality. Thus, it

turns out that the sum above is finite from the fact that

Et,P
[∫ T

t

‖Pννν;t,P
u ‖2du

]
≤ (T − t)Et,P

[
sup
u∈[t,T ]

‖Pννν;t,P
u ‖2

]
< +∞ , (4.4.20)

by Lemma 4.4.1, and from ννν ∈ A.

To prove the Dynkyn formula, we notice that the Itō formula applied to

V (t,Pννν
t ) gives

V (T,Pννν
T ) = V (t,P) +

∫ T

t

LνV (u,PPP νννu)du+ I1
T + I2

T , (4.4.21)

where

I1
u :=

∫ u

t

(D(v) + 2E(v)P νννv )ᵀσ dWv ,

I2
u :=

∫ u

t

(D(v) + 2E(v)P νννv−)ᵀJ(ψψψ,ξξξ) dΠΠΠ(λλλ) .
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By the Itō isometry, (I1
u)u∈[t,T ] is a martingale. In fact,

Et,P
[∫ T

t

‖(D(v) + 2E(v)P νννv )ᵀσ‖2dv

]
≤

≤ ‖σ‖2Et,P
[∫ T

t

(‖D(v)‖2 + 2‖E(v)P νννv )‖2)dv

]
≤

≤ ‖σ‖2(T − t) sup
v∈[t,T ]

‖D(v)‖2 + 2‖σ‖2 sup
v∈[t,T ]

‖E(v)‖2Et,P
[∫ T

t

‖P νννv ‖2dv

]
,

where the sup are finite, as D and E are continuous on [t, T ], and the latter

term is finite by Equation (4.4.20); thus, I1 is a martingale. For I2, we invoke

Protter (2003, Theorem V.66), for which, for all u ∈ [t, T ], we must check

the finiteness of

Et,P

[∥∥∥∥∫ u

t

J(ψψψ,ξξξ) dΠΠΠ(λλλ)

∥∥∥∥2
]

=
3∑

k=1

Et,P

 Πku∑
`=1

Jk`

2 =

=
3∑

k=1

Et,P

Et,P
 Πku∑

`=1

Jk`

2 ∣∣∣∣∣∣Πk
u

 =
3∑

k=1

Et,P

 Πku∑
`,m=1

Et,P
[
Jk` J

k
m

] =

=
3∑

k=1

Et,P
[
Πk
u(ψ

2
k + ξ2

k)
]

=
3∑

k=1

λk(u− t)(ψ2
k + ξ2

k) < +∞ .

Since v → (D(v)+2E(v)P νννv−)ᵀ is left-continuous, thus predictable, by Protter

(2003, Theorem V.66) there exists a K > 0 such that

Et,P

[
sup
u∈[t,T ]

|I2
u|2
]
≤ K

∫ T

t

Et,P[‖D(u) + 2E(u)P νννu−‖2]du ,

where the right-hand side is finite, in analogy with what we did with I1. This

means that also I2 is a martingale: then, taking the expectation of Equation

(4.4.21) gives the Dynkyn formula (4.4.19). As announced, this implies that

V (t,P) ≥ E t,P

[∫ T
t
X(u,Pu, νννu) du

]
∀ ν ∈ A .

To prove the second part, we already have that ννν∗(t,P) defined in Equation

(4.4.10) is a maximizer of the HJB equation (4.4.9). Thus, we only need

to check that the process (ννν∗(t,Pt))t ∈ A. Given that it is progressively
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measurable by construction, we only need to check its square integrability:

Et,P
[∫ T

t

‖ννν∗(u,Pu)‖2du

]
=

=
1

4
‖ΥΥΥ‖−2Et,P

[∫ T

t

‖HHHᵀ(D(u) + 2E(u)Pu) +BBBᵀPu + fᵀ(u)‖2 du

]
≤

≤ CEt,P
[∫ T

t

(1 + ‖Pu‖2)du

]
,

for a suitable C. This is because D, E and f are continuous functions

of time u ∈ [t, T ]. Again, by Lemma 4.4.1 and arguments analogous to

those used before, we can conclude that Et,P
[∫ T

t
‖ννν∗(u,Pu)‖2 du

]
< +∞ and

(ννν∗(t,Pt))t ∈ A, which implies the second part of the verification theorem.

4.5 Empirical performance

To showcase the strategy’s performance, we first run 10,000 simulations of

the multivariate price process using the parameters estimated above, for each

day and for a trading horizon of 1 year. We use the solution (4.4.14) to the

matrix Riccati equation in Appendix C.2, along with (4.4.16) and (4.4.17),

to compute the six optimal controls for each run. Finally, the agent’s cash

process X is computed by taking the mean over the 10,000 runs.

The mean of all 10,000 paths for each optimal control is depicted for each

day in Figure 4.4, both when trading a peak hour (3 p.m.) and an off-peak

one (3 a.m.). The figure showcases a comparison between the controls paired

by country pair (left panels) and a comparison between each control and the

relative näıve strategy (right panels). We note here that the optimal controls

for each country pair assume values that are quite similar in absolute value

for each given day, although not exactly one the opposite of the other.

Figure 4.5 instead shows the cumulative cash process obtained when trad-

ing a peak (Figure 4.5a, upper panel) and an off-peak (Figure 4.5b, upper

panel) hour, both using the optimal trading strategy (dashed blue lines), or

the näıve one (dashed red line), as well as the difference between the two

(blue area). Moreover, the bottom panels of Figure 4.5a and 4.5b depict

the cumulative cash process broken down with respect to the three bilateral
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transmission lines.

Overall, Figure 4.5 shows how, at t = T , the optimal trading strategy

outperforms the näıve one, and this holds for all hourly contracts, as we can

see in Figure 4.8. Specifically, the marginal gains with respect to the strategy

purely based on the price spread are in the range of AC 50,000 to AC 4,351,000

after 1 year of trading. Trading in contracts with delivery at 7 p.m., 9 a.m.

and 7 a.m. returns the highest yield at T = 365, with profits respectively

about 24%, 16% and 16% higher than those obtaied with the näıve strategy.

On the other hand, trading in contracts with delivery at 2 p.m., 12 p.m.

and 11 a.m. gives the least considerable improvement, with a performance

of respectively 0.6%, 0.9% and 1.5% more with respect to the näıve strategy.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 6 t = 8

0 −1, 893.34 −3, 511.36 −3, 203.81 −947.37 7, 886.19 2, 3780.21

t = 10 t = 15 t = 20 t = 100 t = 200 t = 300 t = 365

43, 224.3 94, 291.27 140, 853.19 623, 671.06 1, 158, 672.06 2, 123, 017.42 4, 351, 132.31

Table 4.7: Additional gains (in AC ) obtained when trading hour 7 p.m. using the
optimal trading strategy over the näıve one. The incremental profits are shown for
different times t (expressed in days), until the end of the trading horizon, T = 365.

It is also interesting to observe the evolution of the cumulative cash flows

over the trading period. As we mentioned, trading hour 7 p.m. leads to the

best marginal gains at t = T . Table 4.7 shows the value of the integral of

the cash flows at different points in time t. It is worth noticing how, at the

beginning of the trading period, the optimal strategy actually fell below the

gains obtained using the näıve strategy. This means that, at the beginning

of the trading period, it is optimal to actually go against the sensible trading

direction. It can be conjectured that this serves to the purpose of widening

the price spread even more, in order to profit from this later on, de facto

acting as a speculative trading strategy.

However, it is worth stressing that these results strongly depend on the

choice of the temporary impact parameters. These are the only parameters

we cannot estimate. The results presented above were obtained using a

temporary impact vector ωωω =
[
0.01 0.01 0.01

]
. This choice is motivated

by the conjecture that these parameters are mainly due to transaction costs,

and they represent a sort of fee applied to each transaction νt. Nevertheless,

to assess their actual impact on the overall performance of the strategy, we
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Figure 4.4: Optimal controls ν∗ paired by country pair (left panels) and compared
with the relative näıve strategy (right panels), with a trading horizon T = 365 days.
Upper panels show the results when trading a peak hour (3 p.m.), and bottom panels
depict those when trading an off-peak hour (3 a.m.).

conduct a sensitivity analysis. Figures 4.6 and 4.7 show the results.

Specifically, Figure 4.6 shows how the marginal gains at t = T of the opti-

mal strategy over the näıve one change depending on the different magnitudes

of ωωω and on different model horizons. In particular, we let ωωω = ω0ω0ω0 ·(K factor),

where ω0ω0ω0 =
[
0.02 0.02 0.02

]
, and K factor ∈ [0.1; 10]. In such a way, we can

observe how the marginal performance (in log10 scale) of the optimal trad-

ing strategy (that is, log10 (V ∗(T )− V n(T ))) changes when the temporary

impact factors ωk vary by two orders of magnitude, from −1 to −3. More-

over, on the y-axis, we can also see how the performance depends on the

model horizon T , with T ∈ [30; 365]. The results show that the marginal

performance is increasing in T , and, obviously, decreasing in the temporary

impacts. Moreover, it is always positive, showing that the optimal trad-
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(a) T = 365 days, ωωω = [ 0.01 0.01 0.01 ]. Trading hour 3 p.m.

(b) T = 365 days, ωωω = [ 0.01 0.01 0.01 ]. Trading hour 3 a.m.

Figure 4.5: Cumulative cash flows obtained when trading in contracts with delivery
at 3 p.m. (4.5a), and in contracts with delivery at 3 a.m. (4.5b). The blue dashed
lines in (4.5a) and (4.5b), upper panels, represent the cumulative cash flows obtained
using the optimal trading strategy, while the red dashed lines in (4.5a) and (4.5b),
upper panels, those obtained using the näıve trading strategy. The solid yellow, red
and blue lines depict the profits resulting from trading in contracts between Germany-
Switzerland, Germany-France and France-Switzerland, respectively, using the optimal
strategy (left bottom panels of (4.5a) and (4.5b)), or the näıve one (right bottom
panels of (4.5a) and (4.5b)).

ing strategy always outperforms the benchmark, for all trading horizons and

temporary impact vectors considered. Finally, the heat maps in Figure 4.7

show similar results, depicting V ∗(T ) and V n(T ) on separate graphs.
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Figure 4.6: Analysis of sensitivity to the trading horizon T and to the vector of
temporary impacts ωωω. The marginal gains (in AC , expressed in log10 scale) of the
optimal trading strategy over the näıve one at t = T (i.e., log10 (V ∗(T )− V n(T )))
are depicted when trading hour 3 p.m. (left panel) and hour 3 a.m. (right panel).
T ∈ [30; 365], whileωωω = ω0ω0ω0·(K factor), whereω0ω0ω0 =

[
0.02 0.02 0.02

]
, and K factor ∈

[0.1; 10].

4.6 Conclusions

Using econometric tools, we have shown statistical evidence of cross-effects

on the price of electricity in neighbouring countries, due to electricity flows

across interconnected locations. We built on this result to set up an opti-

mal trading strategy, based not only on the price spreads observed over time

among the selected interconnected countries, but also on the market impacts

caused by the flows of electricity among them. Using the aforementioned

econometric analysis findings, we modeled the joint dynamics of electric-

ity prices as including both temporary and permanent impacts of electricity

trades, as well as driven by a common co-integration factor. Finally, using

optimal control techniques and the dynamic programming principle, we de-

fined the optimal trading strategy for an agent trading in intra-day electricity

contracts.

The results of the empirical analysis evidence a considerable improvement

of our strategy over a näıve strategy purely based on the price spread, and

the main sources of profits of our strategy derive from considering the co-

movement of electricity prices through co-integration, and the direct and

indirect impacts of the cross-border electricity flows on the electricity price.



102 4. Optimal cross-border electricity trading

Figure 4.7: Analysis of sensitivity for trading in contracts with delivery at 3 p.m.
(left panels) and at 3 a.m. (right panels). The upper panels depict the cumulative cash
flows obtained with the optimal trading strategy over 1 year of trading when varying
ωωω, with ωωω = ω0ω0ω0 · (K factor), where ω0ω0ω0 =

[
0.02 0.02 0.02

]
, and K factor ∈ [1; 10].

The remaining panels are heat maps depicting the level of the value function at time
T , obtained when trading with the optimal trading strategy (middle panels), or with
the näıve one (bottom panels), depending on the model horizon T ∈ [30; 365], and on
the K factor ∈ [0.1; 10].

Finally, it is worth noticing that there are a number of directions of fu-

ture research to improve our model. Firstly, as Kiesel and Paraschiv (2016)

suggest, intraday prices adjust to the forecasting errors in renewables, thus

a possible extension to this work would be to improve the regression speci-

fication (4.3.1), used to estimate the direct and indirect price impacts, with
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additional explanatory variables. Secondly, the literature on price impacts

is scarce as for electricity markets, but it is rich as for stock markets. This

stream of literature (for instance, Engle and Dufour (2000) and Hasbrouck

(1991)) makes use of order book data to provide an estimate of price impacts

of trades. If we were to obtain such data relatively to the intra-day electricity

market, we could build from those works to improve the estimation proce-

dure. Finally, in this chapter we only analyzed how interconnecting countries

affects the level of electricity prices. A possible extension would be to also

analyze how cross-border trades affect the price volatility. It is reasonable to

think that adding interconnector capacity lowers price volatility. Including

this effect in the model could further improve it.
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Figure 4.8: Cumulative cash flows (in AC ) obtained using the optimal strategy (solid
black line) and the näıve one (dashed black line) for all hourly contracts, over 365
days of trading. The gray boxed area shows the percentage improvement at T = 365
days of the optimal strategy over the näıve one. ωωω = [ 0.01 0.01 0.01 ].
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4.7 Appendix C

C.1 Econometric analysis results

01:00 02:00 03:00 04:00 05:00 06:00

(1) 0.0020∗∗∗ 0.0012 −0.0016∗∗∗ 0.0001 −0.0006 −0.0003
(2) 0.0006 −0.0002 −0.0006 −0.0006 −0.0013∗ 0.0004
(3) −0.0017∗∗∗ −0.0005 −0.0002 −0.0011∗ −0.0001 0.0001
(4) 0.0139∗∗∗ 0.008∗∗∗ 0.0052∗∗∗ 0.0044∗∗∗ 0.009∗∗∗ −0.0005
(5) −0.0004 −0.0002 0.0004 0.0002 0.0004 0.0008
(6) −0.0047∗∗∗ −0.0018∗ 0.0007 0.0001 −0.002 −0.0027∗∗

07:00 08:00 09:00 10:00 11:00 12:00

(1) 0.0006 −0.0001 −0.001∗∗ −0.0009∗ −0.0003 −0.0021∗∗∗

(2) 0.0005 0.0001 −0.001∗∗∗ 0.0018∗∗∗ −0.0002 −0.0005
(3) −0.0008 −0.0008 −0.0004 0.0001 −0.0003 −0.0007
(4) −0.0003 0.007∗∗∗ 0.0049∗∗∗ −0.002∗∗∗ 0.0028∗∗∗ 0.0036∗∗∗

(5) −0.0014 −0.0008 0.00 −0.0007∗ 0.0003 0.0023∗∗∗

(6) 0.0009 −0.0001 0.0005 −0.004∗∗∗ −0.0017∗∗∗ 0.0001

13:00 14:00 15:00 16:00 17:00 18:00

(1) −0.0030∗∗∗ −0.0009∗ 0.0022∗∗∗ 0.0025∗∗∗ 0.0026∗∗∗ 0.0013∗∗∗

(2) 0.0011∗∗∗ 0.0006∗∗ 0.0006 0.0007∗∗ 0.0012∗∗∗ 0.0006∗∗

(3) −0.0003 −0.0012∗∗ −0.0013∗∗∗ 0.0007 −0.0004 0.0018∗∗∗

(4) 0.0032∗∗∗ 0.007∗∗∗ 0.0048∗∗∗ 0.0018∗∗∗ 0.0023∗∗∗ 0.0087∗∗∗

(5) 0.0014∗∗ 0.002∗∗∗ −0.0009 −0.0010∗ 0.0010∗∗ −0.0001
(6) −0.002∗∗∗ −0.0026∗∗∗ −0.0015∗∗ −0.0008 −0.0045∗∗∗ −0.0012∗∗

19:00 20:00 21:00 22:00 23:00 24:00

(1) −0.0013∗∗∗ −0.0025∗∗∗ −0.0003 −0.0005 −0.0015∗∗∗ −0.0014∗∗

(2) −0.0008∗∗∗ 0.0021∗∗∗ 0.0002 0.0001 0.002∗∗∗ 0.0013∗∗∗

(3) −0.0025∗∗∗ −0.0014∗∗∗ −0.0006 0.0002 0.0004 −0.0001
(4) 0.0087∗∗∗ 0.0059∗∗∗ 0.0047∗∗∗ 0.0026∗∗∗ 0.0035∗∗∗ 0.0021∗∗∗

(5) −0.0023∗∗∗ 0.0011∗∗∗ 0.0005 0.0002 −0.0005 0.0017∗∗∗

(6) −0.0124∗∗∗ −0.01∗∗∗ −0.0035∗∗∗ −0.0018∗∗∗ −0.0065∗∗∗ −0.0047∗∗∗

Table C.1: Mutivariate OLS robust estimates. Dependent variable: ∆PF
t . Explana-

tory variables: VolGF
t−1 (1), VolGS

t−1 (2), VolFG
t−1 (3), VolFS

t−1 (4), VolSG
t−1 (5), VolSF

t−1 (6).
∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.2: Mutivariate OLS robust estimates. Dependent variable: ∆PF
t . Explanatory variables:

VolGO
t−1 (7), VolOG

t−1 (8), VolFO
t−1 (9), VolOF

t−1 (10), VolSO
t−1 (11), VolOS

t−1 (12).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(7) −0.0011∗∗ −0.0004 0.0007∗ 0.00 −0.0005 −0.0002 −0.0002 0.0010∗∗∗

(8) 0.0018∗∗∗ 0.0012∗∗ 0.0002 0.00 −0.0001 −0.0001 0.0007∗ 0.0002

(9) 0.0014∗ 0.0047∗∗∗ 0.00 0.0008 0.0008 0.0040∗∗∗ 0.0021∗∗ 0.0070∗∗∗

(10) −0.0079∗∗∗ −0.0048∗∗∗ −0.0011 −0.0026∗∗∗ 0.0001 −0.003∗∗∗ −0.0058∗∗∗ −0.0018∗∗∗

(11) 0.0042∗ −0.0009 −0.0011 −0.0006 0.0094∗∗∗ 0.0001 0.0061∗∗∗ −0.0081∗∗∗

(12) −0.0048∗ 0.0013 −0.0012 0.0006 −0.0008 −0.0006 0.0027 −0.0056∗∗∗

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(7) 0.0035∗∗∗ −0.0015∗∗∗ −0.0017∗∗∗ 0.0003 0.0013∗∗∗ 0.0019∗∗∗ 0.0011∗∗∗ 0.0002

(8) 0.0008∗ 0.0006 0.0014∗∗∗ 0.0002 0.0009∗∗ −0.0009∗ −0.0007 −0.001∗

(9) 0.0025∗∗∗ 0.0019∗∗∗ 0.0032∗∗∗ 0.002∗∗∗ 0.0025∗∗∗ 0.0013∗∗ 0.0037∗∗∗ 0.0031∗∗∗

(10) −0.0085∗∗∗ 0.0002 −0.0043∗∗∗ −0.0025∗∗∗ −0.0024∗∗∗ −0.0058∗∗∗ −0.0041∗∗∗ 0.0009

(11) −0.0092∗∗∗ 0.0049∗∗∗ 0.0088∗∗∗ 0.0031∗∗ −0.0019 −0.0073∗∗∗ −0.0046∗∗ −0.0036∗∗

(12) −0.009∗∗∗ −0.0061∗∗∗ 0.0007 0.0026 0.0015 −0.0006 0.001 0.0061∗∗∗

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(7) −0.002∗∗∗ −0.0003 0.0049∗∗∗ 0.0018∗∗∗ 0.0003 −0.0007∗∗ 0.0013∗∗∗ 0.0011∗∗∗

(8) −0.0001 −0.0015∗∗∗ −0.0034∗∗∗ −0.0011∗∗∗ −0.0013∗∗∗ −0.0008∗∗ 0.00 −0.0009∗∗

(9) 0.0050∗∗∗ 0.0020∗∗∗ 0.0147∗∗∗ 0.0034∗∗∗ 0.0003 0.0045∗∗∗ 0.0036∗∗∗ 0.0046∗∗∗

(10) −0.0084∗∗∗ −0.0011∗∗ 0.0145∗∗∗ 0.0077∗∗∗ 0.0052∗∗∗ 0.0039∗∗∗ 0.0017∗∗∗ 0.0006

(11) 0.0051∗∗∗ −0.0110∗∗∗ 0.0035∗∗∗ 0.0033∗∗ 0.0029∗ −0.0041∗∗ −0.0005 −0.006∗∗∗

(12) 0.0053∗∗∗ 0.0026 0.0085∗∗∗ 0.008∗∗∗ 0.0033∗∗ 0.0083∗∗∗ −0.0022∗ −0.0022

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.3: Mutivariate OLS robust estimates. Dependent variable: ∆PS
t . Explanatory variables:

VolGF
t−1 (1), VolGS

t−1 (2), VolFG
t−1 (3), VolFS

t−1 (4), VolSG
t−1 (5), VolSF

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) −0.0001 −0.0003 −0.0001 −0.0002 −0.0002 −0.0002 −0.0015∗∗∗ −0.0004

(2) −0.0006 −0.0006 −0.0007 0.0012 −0.0003 −0.0005 0.00 0.0002

(3) 0.0006 0.0005 0.0027∗∗∗ −0.0014∗∗ 0.0002 −0.001 −0.0021∗∗∗ 0.0005

(4) −0.0018∗∗ 0.0024∗∗ −0.0019∗ −0.0039∗∗∗ 0.0003 −0.0018∗∗∗ 0.0016 −0.0038∗∗∗

(5) 0.0005 −0.0001 0.0002 −0.0008 −0.001 0.0025∗∗∗ 0.0018∗∗ 0.0014∗∗

(6) −0.0001 0.0008 0.0004 0.0007 −0.0035∗∗ 0.0005 −0.0055∗∗∗ 0.0014

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) 0.0008∗ 0.00 0.0006 0.0010∗∗ −0.0002 −0.0015∗∗∗ 0.0017∗∗∗ −0.0016∗∗∗

(2) 0.0003 0.0002 −0.0004 0.0039∗∗∗ 0.0008∗∗∗ 0.001∗∗∗ 0.0003 0.0027∗∗∗

(3) 0.00 −0.0002 −0.0010 0.0011∗∗ −0.0014∗∗ −0.0022∗∗∗ −0.0027∗∗∗ −0.0022∗∗∗

(4) −0.0018∗∗ −0.0019∗∗∗ −0.0027∗∗∗ −0.0063∗∗∗ 0.0017∗∗∗ 0.0021∗∗∗ −0.0007∗ −0.0006∗

(5) 0.0004 −0.0008∗ −0.0008∗ 0.0004 0.0012∗∗ 0.0029∗∗∗ 0.0008 0.0109∗∗∗

(6) −0.0026∗∗∗ 0.0028∗∗∗ 0.0005 0.003∗∗∗ 0.0006 0.0016∗∗ −0.0009 0.0001

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) 0.0014∗∗∗ −0.0004 0.0007∗∗ −0.001∗∗∗ 0.0003 0.00 0.0001 0.0014∗∗

(2) −0.0015∗∗∗ −0.0002 −0.0006∗∗ 0.0015∗∗∗ −0.0004 0.0002 −0.0001 −0.0004

(3) −0.0005 0.0002 −0.0001 −0.0004 0.00 0.0003 −0.0003 0.0004

(4) −0.0016∗∗∗ 0.0010∗ 0.0027∗∗∗ −0.0029∗∗∗ 0.0008 −0.0012∗∗ 0.0003 −0.0013∗∗∗

(5) −0.0039∗∗∗ −0.0012∗∗∗ −0.0007∗∗ 0.0007∗∗ 0.0002 0.0003 0.0007∗ −0.0005

(6) 0.0005 −0.0004 0.0014∗∗ −0.0005 −0.0005 −0.0005 0.0010∗ −0.0038

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.4: Mutivariate OLS robust estimates. Dependent variable: ∆PS
t . Explanatory variables:

VolGO
t−1 (7), VolOG

t−1 (8), VolFO
t−1 (9), VolOF

t−1 (10), VolSO
t−1 (11), VolOS

t−1 (12).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(7) 0.0009∗∗ 0.0006 0.0006∗ −0.0003 −0.0002 0.0009∗∗∗ 0.0007∗∗ −0.0006∗

(8) −0.0013∗∗ −0.0003 −0.0004 0.00 −0.0003 0.0004 0.0002 0.0004

(9) 0.0004 −0.001 −0.0002 0.0029∗∗∗ 0.0057∗∗∗ −0.001 −0.0026∗∗∗ −0.0004

(10) 0.0001 −0.0001 0.0002 0.0001 0.00 0.0006 0.0042∗∗∗ 0.00

(11) 0.0002 −0.0010 −0.0036 0.0054∗ 0.0136∗∗∗ −0.0021 −0.0029 −0.0016

(12) −0.0001 −0.0006 −0.0003 −0.003 −0.0014 −0.0019 −0.0035 0.0005

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(7) −0.0019∗∗∗ 0.0002 0.0009∗∗∗ −0.0047∗∗∗ −0.0027∗∗∗ −0.0001 0.0004 −0.001∗∗∗

(8) 0.0002 0.0014∗∗∗ 0.0024∗∗∗ 0.0002 0.0015∗∗∗ 0.0002 0.00 −0.0023∗∗∗

(9) 0.0011 0.0016∗∗ 0.0001 0.0051∗∗∗ 0.0002 0.0002 −0.0005 0.0004

(10) 0.0004 −0.0006 −0.0001 −0.0015∗∗ 0.0010 −0.0013∗ 0.0001 −0.0032∗∗∗

(11) 0.0072∗∗∗ 0.0037∗∗ −0.0003 −0.0007 −0.004∗∗∗ −0.0029∗ 0.0035∗ −0.003∗

(12) −0.0036∗∗ −0.0132∗∗∗ −0.0002 −0.0003 0.0006 −0.0049∗∗∗ 0.0013 0.0043∗∗∗

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(7) 0.00 0.0008∗∗∗ −0.0002 0.0012∗∗∗ 0.0002 −0.0001 0.0004 0.0006∗∗

(8) 0.0005 0.0005 0.0008∗∗ 0.0005 −0.0001 −0.0005 −0.0006 0.0009∗∗

(9) 0.0017∗∗∗ −0.0015∗∗∗ 0.0035∗∗∗ 0.0002 0.0012∗∗ −0.0008 0.0002 −0.0002

(10) 0.0044∗∗∗ −0.0005 −0.0002 −0.0003 −0.0011∗ 0.0003 0.00 0.0008

(11) 0.003∗ −0.0019 0.0025∗ 0.0035∗∗ 0.0001 0.0018 −0.0010 −0.0054∗∗∗

(12) 0.0013 −0.0036∗∗ 0.0075∗∗∗ −0.0044∗∗ 0.0008 −0.0028∗∗ 0.0003 −0.0009

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.5: Mutivariate OLS robust estimates. Dependent variable: ∆PG
t . Explanatory variables:

VolGF
t−1 (1), VolGS

t−1 (2), VolFG
t−1 (3), VolFS

t−1 (4), VolSG
t−1 (5), VolSF

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) −0.0013∗ −0.0012∗ 0.0005 −0.0002 −0.0001 −0.0022∗∗∗ −0.0010∗∗ −0.0016∗∗∗

(2) 0.0068∗∗∗ 0.0012 0.0062∗∗∗ 0.008∗∗∗ 0.0074∗∗∗ 0.0068∗∗∗ −0.0011∗ 0.0029∗∗∗

(3) −0.0017∗∗∗ 0.00 −0.0043∗∗∗ −0.0019∗∗∗ −0.0023∗∗∗ −0.0005 0.0048∗∗∗ −0.0003

(4) −0.003∗∗∗ −0.0013 0.0034∗∗∗ −0.0028∗∗ −0.0038∗∗∗ 0.0023∗∗ −0.0041∗∗∗ 0.0001

(5) −0.0036∗∗∗ −0.0052∗∗∗ −0.0039∗∗∗ −0.0038∗∗∗ −0.0043∗∗∗ −0.0056∗∗∗ −0.0086∗∗∗ −0.0065∗∗∗

(6) −0.0032∗∗∗ −0.0010 −0.0039∗∗∗ −0.0072∗∗∗ −0.0082∗∗∗ −0.0049∗∗∗ 0.005∗∗∗ −0.0056∗∗∗

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) −0.0006 −0.0005 −0.0013∗∗∗ −0.0020∗∗ −0.0013∗∗∗ 0.0039∗∗∗ 0.0088∗∗∗ 0.0054∗∗∗

(2) 0.0068∗∗∗ 0.0018∗∗∗ 0.0023∗∗∗ 0.0122∗∗∗ 0.0056∗∗∗ 0.0033∗∗∗ 0.0063∗∗∗ 0.0047∗∗∗

(3) 0.0044∗∗∗ 0.0004 −0.0047∗∗∗ −0.0053∗∗∗ −0.0026∗∗∗ −0.0063∗∗∗ −0.0076∗∗∗ −0.0024∗∗∗

(4) −0.005∗∗∗ 0.0028∗∗∗ 0.0025∗∗∗ −0.0033∗∗∗ −0.0010∗∗ −0.0046∗∗∗ −0.0015∗∗∗ 0.00

(5) −0.0054∗∗∗ −0.0022∗∗∗ −0.003∗∗∗ −0.004∗∗∗ −0.0070∗∗∗ −0.0033∗∗∗ 0.0007 0.0030∗∗∗

(6) −0.0020∗∗ −0.0019∗∗∗ −0.0024∗∗∗ −0.0022∗∗∗ −0.007∗∗∗ −0.0009 −0.0048∗∗∗ −0.0109∗∗∗

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) 0.0066∗∗∗ 0.0047∗∗∗ 0.0046∗∗∗ 0.0041∗∗∗ 0.0005 0.0027∗∗∗ −0.0004 0.0009

(2) 0.0046∗∗∗ 0.0029∗∗∗ 0.0032∗∗∗ 0.0045∗∗∗ 0.0043∗∗∗ 0.0056∗∗∗ 0.0044∗∗∗ 0.003∗∗∗

(3) −0.0020∗∗∗ 0.0011∗∗∗ 0.0006∗ −0.0018∗∗∗ 0.0007∗ 0.0005 0.0010∗∗ 0.0011∗∗∗

(4) 0.0001 0.0004 0.0024∗∗∗ 0.0020∗∗∗ 0.0069∗∗∗ 0.0003 0.0003 0.0017∗∗∗

(5) 0.0053∗∗∗ −0.0047∗∗∗ −0.0076∗∗∗ −0.0012∗∗∗ −0.0040∗∗∗ −0.0047∗∗∗ −0.0032∗∗∗ −0.0051∗∗∗

(6) −0.0038∗∗∗ −0.0051∗∗∗ −0.0002 −0.0028∗∗∗ −0.0009 −0.0066∗∗∗ −0.0056∗∗∗ −0.0013∗∗

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.6: Mutivariate OLS robust estimates. Dependent variable: ∆PG
t . Explanatory variables:

VolGO
t−1 (7), VolOG

t−1 (8), VolFO
t−1 (9), VolOF

t−1 (10), VolSO
t−1 (11), VolOS

t−1 (12).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(7) 0.0047∗∗∗ 0.0036∗∗∗ 0.0035∗∗∗ 0.0039∗∗∗ 0.0015∗∗∗ 0.0019∗∗∗ 0.0027∗∗∗ 0.0032∗∗∗

(8) −0.0043∗∗∗ −0.002∗∗∗ −0.0039∗∗∗ −0.0033∗∗∗ −0.0046∗∗∗ −0.0036∗∗∗ −0.0027∗∗∗ −0.0022∗∗∗

(9) 0.0044∗∗∗ 0.005∗∗∗ −0.0017∗∗ −0.0064∗∗∗ 0.0036∗∗∗ 0.0013 0.0044∗∗∗ 0.0047∗∗∗

(10) −0.0009 −0.0028∗∗∗ 0.0010 −0.0049∗∗∗ −0.0010 0.0048∗∗∗ 0.0015∗ −0.0022∗∗∗

(11) −0.0109∗∗∗ −0.006∗∗∗ −0.0058∗∗ 0.0001 0.0031 0.0061∗∗∗ −0.0197∗∗∗ −0.0163∗∗∗

(12) −0.0016 −0.0034∗ −0.0128∗∗∗ −0.0021 0.0075∗∗∗ 0.0178∗∗∗ 0.0298∗∗∗ 0.0123∗∗∗

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(7) 0.0054∗∗∗ 0.0035∗∗∗ 0.004∗∗∗ 0.0066∗∗∗ 0.0041∗∗∗ 0.0042∗∗∗ 0.003∗∗∗ 0.0035∗∗∗

(8) −0.0066∗∗∗ −0.0028∗∗∗ −0.0039∗∗∗ −0.0048∗∗∗ −0.0042∗∗∗ −0.0064∗∗∗ −0.0103∗∗∗ −0.0093∗∗∗

(9) −0.0041∗∗∗ −0.0016∗∗ −0.0022∗∗∗ −0.0056∗∗∗ −0.0063∗∗∗ −0.0027∗∗∗ −0.0029∗∗∗ 0.0031∗∗∗

(10) 0.0024∗∗∗ 0.0006 0.0094∗∗∗ −0.0028∗∗∗ 0.0050∗∗∗ 0.0029∗∗∗ −0.0016∗∗ −0.0022∗∗∗

(11) −0.0016 −0.0063∗∗∗ −0.0184∗∗∗ −0.0095∗∗∗ 0.0040∗∗∗ −0.0034∗ −0.0068∗∗∗ −0.0106∗∗∗

(12) 0.0056∗∗∗ 0.0114∗∗∗ −0.0003 −0.0095∗∗∗ −0.0075∗∗∗ −0.0003 0.0020 0.0044∗∗∗

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(7) 0.0007∗∗∗ 0.0032∗∗∗ 0.0045∗∗∗ 0.0061∗∗∗ −0.0011∗∗∗ 0.0016∗∗∗ 0.0036∗∗∗ 0.0017∗∗∗

(8) −0.0064∗∗∗ −0.0009∗ −0.0038∗∗∗ −0.0062∗∗∗ −0.0037∗∗∗ −0.0017∗∗∗ −0.0009∗∗ −0.0058∗∗∗

(9) −0.0035∗∗∗ −0.0013∗∗ −0.0031∗∗∗ −0.0003 0.0016∗∗∗ 0.0027∗∗∗ 0.0038∗∗∗ −0.0010∗

(10) −0.0023∗∗∗ −0.0001 0.0014∗∗∗ −0.0008∗ 0.0010∗ −0.0012∗∗ 0.0039∗∗∗ 0.0014∗∗

(11) −0.0206∗∗∗ −0.0165∗∗∗ 0.0172∗∗∗ −0.0167∗∗∗ −0.0037∗∗ −0.0026 −0.0088∗∗∗ −0.0237∗∗∗

(12) −0.0009 −0.0010 0.0125∗∗∗ 0.0326∗∗∗ 0.0163∗∗∗ 0.0077∗∗∗ 0.0027∗∗ 0.0061∗∗∗

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.7: Stepwise OLS robust estimates. Dependent variable: ∆PF
t . Explanatory variables:

VolGF
t−1 (1), VolGS

t−1 (2), VolFG
t−1 (3), VolFS

t−1 (4), VolSG
t−1 (5), VolSF

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) 0 0 −0.0016∗∗∗ 0 0 0 0 0

(2) 0 0 0 0 −0.0013∗∗ 0 0 0

(3) 0 0 0 0 −0.0012∗∗ 0 0 0

(4) 0.0042∗∗∗ 0.0039∗∗∗ 0 0 0.0048∗∗∗ −0.0022∗∗ 0 0.004∗∗∗

(5) 0 0 0 0 0 0 0 0

(6) −0.0018∗∗ 0 0 0 0 0 0 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) −0.0016∗∗ 0 0 0 0 0 0 0

(2) 0 0 0 0 0 0 0 0

(3) 0 0 0 0 0 0 0 0

(4) 0 0 0 0.0030∗∗∗ 0.0036∗∗∗ 0.0035∗∗∗ 0.0032∗∗∗ 0.0027∗∗∗

(5) 0 0 0 0 0 0 0 0

(6) 0 −0.0050∗∗∗ 0 0 0 −0.0025∗∗ 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) 0 0 −0.0026∗∗∗ 0 0 0 0 0

(2) 0 0 0.0016∗∗∗ 0 0 0 0 0

(3) 0 0 0 0 0 0 0 0

(4) 0.0041∗∗∗ 0.0046∗∗∗ 0.0074∗∗∗ 0.0030∗∗ 0.0016∗∗ 0.0016∗∗∗ 0.0024∗∗∗ 0.0022∗∗∗

(5) 0 0 0 0 0 0 0 0

(6) 0 −0.0021∗∗ 0 −0.0029∗∗∗ −0.0028∗∗∗ 0 −0.0026∗∗∗ −0.0022∗∗∗

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.8: Stepwise OLS robust estimates. Dependent variable: ∆PF
t . Explanatory variables:

VolGO
t−1 (7), VolOG

t−1 (8), VolFO
t−1 (9), VolOF

t−1 (10), VolSO
t−1 (11), VolOS

t−1 (12).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(7) 0 0 0.0005∗∗ 0 0 0 0 0

(8) 0 0 0 0 0 0 0 0

(9) 0 0 0 0 0 0 0 0.0039∗∗∗

(10) −0.0025∗∗ −0.0039∗∗∗ 0 0 0 −0.0011∗∗ 0 −0.0017∗∗

(11) 0 0 0 0 0 0 0 0

(12) 0 0 0 0 0 0 0 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(7) 0 0 0 0 0 0 0 0

(8) 0 0 0 0 0 0 0 0

(9) 0.0041∗∗∗ 0 0 0 0.0017∗∗ 0 0.0022∗∗∗ 0.0022∗∗∗

(10) 0 0 −0.003∗∗ −0.0023∗∗∗ −0.0029∗∗ −0.0028∗∗ 0 0

(11) 0 0 0 0.0048∗∗ 0 0 0 0

(12) 0 0 0 0 0 0 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(7) 0 0 0 0 0 −0.0009∗∗∗ 0.0008∗∗ 0

(8) 0 −0.0013∗∗ 0 0.0012∗∗ 0 0 0 0

(9) 0.0019∗∗ 0.0024∗∗∗ 0 0.0028∗∗∗ 0 0.0038∗∗∗ 0 0.0023∗∗∗

(10) 0 0 0 −0.0019∗∗ 0 −0.0015∗∗∗ 0 0

(11) 0 −0.0072∗∗∗ 0 0 0 0 0 −0.0071∗∗∗

(12) 0 0 0 0 0 0.0028∗∗ 0 0

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.9: Stepwise OLS robust estimates. Dependent variable: ∆PS
t . Explanatory variables:

VolGF
t−1 (1), VolGS

t−1 (2), VolFG
t−1 (3), VolFS

t−1 (4), VolSG
t−1 (5), VolSF

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) 0.0004∗∗∗ 0 0 0 0 0 −0.0004∗∗∗ 0

(2) 0 0 0 0 0 0 0 0

(3) 0 0 0 0 0 0 0 0

(4) −0.0006∗∗∗ 0 0 0 0 0 0 0

(5) 0 0 0 0 0 0 0 0

(6) 0 0 0 0 −0.0016∗∗∗ −0.0012∗∗ 0.0017∗∗∗ 0.0025∗∗∗

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) 0 0 0.0012∗∗ −0.0019∗∗∗ 0 0 0.0009∗∗∗ −0.0013∗∗∗

(2) 0 0 0 0.001∗∗∗ 0 0 0 0

(3) 0 0 0 0 0 0 −0.0007∗∗ 0

(4) −0.001∗∗ 0 −0.0021∗∗∗ 0 0 0 −0.0007∗∗ −0.001∗∗

(5) 0 0 0 0 0 0 0 0

(6) 0 0.0028∗∗ 0 0 0.0014∗∗ 0 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) 0 0 0 0 0 0 0 0

(2) 0 0 0 0 0 0 −0.0002∗∗∗ 0

(3) 0 0 0 0 0 0 0 0

(4) −0.001∗∗∗ 0 0.0015∗∗∗ 0 0 0 −0.0005∗∗∗ 0

(5) 0 −0.0007∗∗∗ −0.0006∗∗ 0 0 0 0 −0.0004∗∗

(6) 0 0.0009∗∗ 0 0 0.0005∗∗∗ 0 0.0005∗∗ 0

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.10: Stepwise OLS robust estimates. Dependent variable: ∆PS
t . Explanatory variables:

VolGO
t−1 (7), VolOG

t−1 (8), VolFO
t−1 (9), VolOF

t−1 (10), VolSO
t−1 (11), VolOS

t−1 (12).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(7) −0.0003∗∗∗ 0 0 0 0 0 0.0002∗∗ −0.0003∗∗

(8) −0.0003∗∗ 0 0 0 0 0 0 0

(9) 0 0 0 0 0.0013∗∗∗ 0 0 −0.0007∗∗∗

(10) 0 0 0 0 0 0 0 0

(11) 0 0 −0.0018∗∗∗ 0 −0.0028∗∗∗ 0 0 0

(12) 0 0 0 0 −0.002∗∗∗ 0 −0.0017∗∗ 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(7) 0 0 0 0 0 0 0 0

(8) 0 0 0 0 0 0 0 0

(9) 0.0009∗∗ 0 0 0.0018∗∗∗ 0 0 0 0

(10) 0 0 0 −0.0012∗∗ 0 0 −0.0013∗∗ 0

(11) 0 0 0 0 0 0 0 0

(12) 0.0027∗∗∗ −0.0134∗∗∗ 0 0 0 −0.0051∗∗∗ 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(7) 0 0 −0.0005∗∗ 0 0 0 0 0

(8) 0 0 0.0013∗∗∗ 0 0 0 0 0

(9) 0.001∗∗ 0 0.0009∗∗ 0 0 0 0 0

(10) 0 0 0 0 0 0 0 0.0007∗∗∗

(11) 0 0 0.0043∗∗∗ 0 0 0 0.0012∗∗∗ 0

(12) 0.0027∗∗ 0 0 0 0 0 0 0

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.



4
.7

A
p
p

e
n
d
ix

C
1
1
5

Table C.11: Stepwise OLS robust estimates. Dependent variable: ∆PG
t . Explanatory variables:

VolGF
t−1 (1), VolGS

t−1 (2), VolFG
t−1 (3), VolFS

t−1 (4), VolSG
t−1 (5), VolSF

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) 0 0 0 0 0 0 0 0

(2) 0.0056∗∗ 0 0.0063∗∗ 0.0075∗∗∗ 0.0087∗∗∗ 0.0067∗∗ 0 0.0042∗∗∗

(3) 0 0 −0.0047∗∗ 0 0 0 0.005∗∗ 0

(4) 0 0 0 0 0 0 0 0

(5) −0.0055∗∗∗ −0.0079∗∗∗ −0.006∗∗ 0 0 −0.007∗∗ −0.0117∗∗∗ −0.0068∗∗∗

(6) 0 0 0 −0.0105∗∗ 0 0 0 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) 0 0 0 0 0 0 0 0.005∗∗∗

(2) 0.0043∗∗∗ 0 0 0 0 0 0.0064∗∗∗ 0

(3) 0 0 0 0 0 0 −0.006∗∗∗ 0

(4) 0 0 0 0 0 0 0 0

(5) 0 −0.0029∗∗ −0.0040∗∗ 0 −0.0077∗∗∗ 0 0 −0.0060∗∗

(6) −0.0108∗∗∗ 0 0 0 −0.0065∗∗∗ 0 0 −0.0076∗∗∗

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) 0.0044∗∗∗ 0 0 0 0 0 0 0

(2) 0.0026∗∗ 0 0.0044∗∗∗ 0.0048∗∗∗ 0.0038∗∗∗ 0.0041∗∗∗ 0.003∗∗∗ 0.0042∗∗∗

(3) 0 0 0 0 0 0 0 0

(4) 0 0 0 0 0 0 0 0

(5) 0 −0.0047∗∗∗ −0.0051∗∗∗ −0.0052∗∗∗ −0.0049∗∗∗ −0.0042∗∗∗ −0.0037∗∗∗ −0.0056∗∗∗

(6) 0 0 0 0 0 −0.0059∗∗∗ −0.0051∗∗ 0

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table C.12: Stepwise OLS robust estimates. Dependent variable: ∆PG
t . Explanatory variables:

VolGO
t−1 (7), VolOG

t−1 (8), VolFO
t−1 (9), VolOF

t−1 (10), VolSO
t−1 (11), VolOS

t−1 (12).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(7) 0.0039∗∗∗ 0.0024∗∗ 0 0.0035∗∗∗ 0 0 0 0

(8) −0.0053∗∗∗ 0 −0.0037∗∗∗ −0.0044∗∗∗ −0.0041∗∗∗ −0.0036∗∗∗ 0 −0.0032∗∗

(9) 0 0 0 0 0 0 0 0

(10) 0 0 0 0 0 0 0 0

(11) 0 0 0 0 0 0 0 0

(12) 0 0 0 0 0 0.0169∗∗ 0.0248∗∗ 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(7) 0.0048∗∗∗ 0.0031∗∗∗ 0.0045∗∗∗ 0.0058∗∗∗ 0.0047∗∗∗ 0.0058∗∗∗ 0.0052∗∗∗ 0.0048∗∗∗

(8) −0.006∗∗∗ 0 0 −0.004∗∗ 0 −0.0053∗∗ −0.0068∗∗∗ −0.0067∗∗∗

(9) 0 0 0 0 0 0 −0.0038∗∗ 0

(10) 0 0 0.006∗∗ 0 0 0 0 0

(11) 0 0 −0.0195∗∗ −0.0149∗∗ 0 0 0 0

(12) 0 0 0 0 0 0 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(7) 0 0.0045∗∗∗ 0.0054∗∗∗ 0.0041∗∗∗ 0 0.0024∗∗ 0.0026∗∗ 0

(8) 0 0 0 0 0 0 0 −0.0052∗∗∗

(9) 0 0 0 0 0 0 0 0

(10) 0 0 0 0 0 0 0 0

(11) 0 −0.0144∗∗ 0 0 0 0 0 0

(12) 0 0 0 0.0152∗∗ 0 0.0083∗∗ 0 0

∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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C.2 Proofs

Proof of Prop. 4.4.1

Since the argument of the sup in (4.4.9) is quadratic in ννν, and ωk ≥ 0 ∀ k ∈
{F, S,G}, the sup attains a maximum. It is then trivial to obtain the first

order condition (FOC) for the vector of controls ννν.

Substituting the feedback control forms of ννν∗ into (4.4.9), we get

0 = ∂tV (t,P) + LV (t,P)

+

[
1

2
ΥΥΥ−1 (HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t))

]ᵀ
(HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t))

−
[

1

2
ΥΥΥ−1 (HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t))

]ᵀ
ΥΥΥ

[
1

2
ΥΥΥ−1 (HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t))

]
,

with

LV (t,PPP ) = (θθθ −ΦΦΦ Pt)
ᵀ VP (t,PPP ) +

1

2
Tr [ΩΩΩH ]

+
n∑
k=1

λk

∫ +∞

−∞
∆k(y)V (t,P)

1√
2πξk

e
−(y−ψk)2

2ξ2
k dy .

Collecting terms in
[

1
2

ΥΥΥ−1 (HHHᵀVP (t,PPP ) +BBBᵀPPP t)
]ᵀ

, we obtain

0 = ∂tV (t,P) + LV (t,P)

+
1

4
[HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t)]

ᵀ
ΥΥΥ−1 [HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t)] .

Proof of Prop. 4.4.2

Using the ansatz (4.4.13) into (4.4.11), and collecting terms in powers of P

and constant terms, after some computations, we obtain the following system
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of 10 ordinary differential equations (ODEs):

0 =
1

2
∂tE11(t) +

(ηa1(t) + 1)2 +
(
ηb1(t)− 1

)2

4(k1 + k2)
+

(ηc1(t)− 1)2 +
(
ηd1(t) + 1

)2

4(k1 + k3)

+
ηe1(t)2 + ηf1 (t)2

4(k2 + k3)
− Φ11E11(t)− Φ21E12(t)− Φ31E13(t) ,

0 =
1

2
∂tE22(t) +

(ηa2(t)− 1)2 +
(
ηb2(t) + 1

)2

4(k1 + k2)
+
ηc2(t)2 + ηd2(t)2

4(k1 + k3)

+
(ηe2(t) + 1)2 +

(
ηf2 (t)− 1

)2

4(k2 + k3)
− Φ12E12(t)− Φ22E22(t)− Φ32E23(t) ,

0 =
1

2
∂tE33(t) +

ηa3(t)2 + ηb3(t)2

4(k1 + k2)
+

(ηc3(t) + 1)2 +
(
ηd3(t)− 1

)2

4(k1 + k3)

+
(ηe3(t)− 1)2 +

(
ηf3 (t) + 1

)2

4(k2 + k3)
− Φ13E13(t)− Φ23E23(t)− Φ33E33(t) ,

0 = ∂tD1(t) +
Ba(t) (ηa1(t) + 1) +Bb(t)

(
ηb1(t)− 1

)
2(k1 + k2)

+
Bc(t) (ηc1(t)− 1) +Bd(t)

(
ηd1(t) + 1

)
2(k1 + k3)

+
Be(t)η

e
1(t) +Bf (t)η

f
1 (t)

2(k2 + k3)

+ E11(t)θ1 − Φ11D1(t) + E12(t)θ2 − Φ21D2(t) + E13(t)θ3 − Φ31D3(t) ,

0 = ∂tD2(t) +
Ba(t) (ηa2(t)− 1) +Bb(t)

(
ηb2(t) + 1

)
2(k1 + k2)

+
Bc(t)η

c
2(t) +Bd(t)η

d
2(t)

2(k1 + k3)

+
Be(t) (ηe2(t) + 1) +Bf (t)

(
ηf2 (t)− 1

)
2(k2 + k3)

+ E12(t)θ1 − Φ12D1(t) + E22(t)θ2

− Φ22D2(t) + E23(t)θ3 − Φ32D3(t) ,

0 = ∂tD3(t) +
Ba(t)η

a
3(t) +Bb(t)η

b
3(t)

2(k1 + k2)
+
Bc(t) (ηc3(t) + 1) +Bd(t)

(
ηd3(t)− 1

)
2(k1 + k3)

+
Be(t) (ηe3(t)− 1) +Bf (t)

(
ηf3 (t) + 1

)
2(k2 + k3)

+ E13(t)θ1 − Φ13D1(t) + E23(t)θ2

− Φ23D2(t) + E33(t)θ3 − Φ33D3(t) ,

0 = ∂tE12(t) +
(ηa1(t) + 1) (ηa2(t)− 1) +

(
ηb1(t)− 1

) (
ηb2(t) + 1

)
2(k1 + k2)

+
(ηc1(t)− 1) ηc2(t) +

(
ηd1(t) + 1

)
ηd2(t)

2(k1 + k3)
+
ηe1(t) (ηe2(t) + 1) + ηf1 (t)

(
ηf2 (t)− 1

)
2(k2 + k3)

− Φ11E12(t)− Φ12E11(t)− Φ21E22(t)− Φ22E12(t)− Φ31E23(t)− Φ32E13(t) ,
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0 = ∂tE13(t) +
(ηa1(t) + 1) ηa3(t) +

(
ηb1(t)− 1

)
ηb3(t)

2(k1 + k2)

+
(ηc1(t)− 1) (ηc3(t) + 1) +

(
ηd1(t) + 1

) (
ηd3(t)− 1

)
2(k1 + k3)

+
ηe1(t) (ηe3(t)− 1) + ηf1 (t)

(
ηf3 (t) + 1

)
2(k2 + k3)

− Φ11E13(t)− Φ13E11(t)− Φ21E23(t)

− Φ23E12(t)− Φ31E33(t)− Φ33E13(t) ,

0 = ∂tE23(t) +
ηa3(t) (ηa2(t)− 1) + ηb3(t)

(
ηb2(t) + 1

)
2(k1 + k2)

+
ηc2(t) (ηc3(t) + 1) + ηd2(t)

(
ηd3(t)− 1

)
2(k1 + k3)

+
(ηe2(t) + 1) (ηe3(t)− 1) +

(
ηf2 (t)− 1

)(
ηf3 (t) + 1

)
2(k2 + k3)

− Φ12E13(t)− Φ13E12(t)

− Φ22E23(t)− Φ23E22(t)− Φ32E33(t)− Φ33E23(t) ,

0 = ∂tA(t) +
Ba(t)

2 +Bb(t)
2

4(k1 + k2)
+
Bc(t)

2 +Bd(t)
2

4(k1 + k3)
+
Be(t)

2 +Bf (t)
2

4(k2 + k3)
+D1(t)θ1

+D2(t)θ2 +D3(t)θ3 +
1

2
E11(t)λ1

(
σ2
J1

+ ψ2
1

)
+

1

2
E22(t)λ2

(
σ2
J2

+ ψ2
2

)
+

1

2
E33(t)λ3

(
σ2
J3

+ ψ2
3

)
+

1

2

(
σ2

11 + σ2
12 + σ2

13

)
E11(t) +

1

2

(
σ2

21 + σ2
22 + σ2

23

)
E22(t)

+
1

2

(
σ2

31 + σ2
32 + σ2

33

)
E33(t) + (σ21σ11 + σ22σ12 + σ23σ13)E12(t)

+ (σ31σ11 + σ32σ12 + σ33σ13)E13(t) + (σ31σ21 + σ32σ22 + σ33σ23)E23(t) ;

where

Bx(t) =
3∑
i=1

hxiDi(t) , ηxi =
3∑
j=1

hxjEij(t) .

and with terminal condition

A(T ) = D1(T ) = D2(T ) = D3(T ) = E11(T ) = E12(T ) = · · · = E33(T ) = 0 .

However, we were not able to find an explicit solution to the system written
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in this way. Instead, we decided to re-write the system in matrix form. Thus,

we get:

Vt = A′(t) +DDD′
ᵀ
(t)PPP +PPP ᵀEEE ′(t)PPP , (C.1)

VPi = Di +
∂·
∂Pi

n∑
j,k=1

EjkPjPk = Di +
n∑

j,k=1

Ejk
∂·
∂Pi

(PjPi) =

= Di +
n∑

j,k=1

Ejk (1j 6=k=iPj + 1i=j 6=kPk + 1i=j=k2Pi) =

= Di +
n∑
j=1

EjiPj +
n∑
k=1

EikPk

⇒ VP = DDD + (EEEᵀ(t) +EEE(t))PPP = DDD + 2EEE(t)PPP , (C.2)

VPP = EEEᵀ(t) +EEE(t) = 2EEE(t) , (C.3)

where the last step both in (C.2) and in (C.3) follows from the fact that we

are assuming EEE(t) to be a symmetric matrix.

Inserting the derivatives (C.1)-(C.3) into the PIDE (4.4.11), we get

A′(t) +DDD′
ᵀ
(t)PPP +PPP ᵀEEE ′(t)PPP + LV (t,PPP )

+
1

4
[HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t)]

ᵀ
ΥΥΥ−1 [HHHᵀVP (t,PPP ) +BBBᵀPPP t + f(t)f(t)f(t)] =

= A′(t) +DDD′
ᵀ
(t)PPP +PPP ᵀEEE ′(t)PPP + LV (t,PPP )

+
1

4
{HHHᵀ [DDD + (EEEᵀ(t) +EEE(t))PPP ] +BBBᵀPPP + f(t)f(t)f(t)}ᵀΥΥΥ−1·

· {HHHᵀ (DDD + (EEEᵀ(t) +EEE(t))PPP ) +BBBᵀPPP + f(t)f(t)f(t)} = 0 , (C.4)

where L is the infinitesimal generator obtained under the optimal control,
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corresponding to

LV (t,PPP ) = (θθθ −ΦΦΦ Pt)
ᵀ VP (t,PPP ) +

1

2
Tr [ΩΩΩᵀHΩΩΩ ] +

∫ +∞

−∞
J ·∆V (t,PPP ) dy =

= (θθθ −ΦΦΦ Pt)
ᵀ [DDD + (EEEᵀ(t) +EEE(t))PPP ] +

1

2
Tr [ΩΩΩ (EEEᵀ(t) +EEE(t)) ]

+

∫ +∞

−∞
J ·∆V (t,PPP ) dy =

= (θθθᵀ −Pᵀt ΦΦΦᵀ) (DDD + 2EEE(t)PPP ) + Tr [ΩΩΩEEE(t) ] +

∫ +∞

−∞
J ·∆V (t,PPP ) dy ,

where, with a slight abuse of notation,∫ +∞

−∞
J ·∆V (t,PPP ) dy =

n∑
i=1

λi

∫ +∞

−∞
∆i(y)V (t,P)

1√
2πξi

e
−(y−ψi)

2

2ξ2
i dy .

Jump part:

∆i(y)V (t,P) = V (t,P + y1i)− V (t,P) ∀ i ∈ {1, ..., n} ,

where the indicator function 1i is defined as

11 = (1, 0, · · · , 0)ᵀ , 12 = (0, 1, · · · , 0)ᵀ , · · · , 1n = (0, 0, · · · , 1)ᵀ .

Thus, we have:

V (t,P + y1i) = A(t) +DDDᵀ(t)P +Di(t) y + PᵀEEE(t)P+

+ y1ᵀiEEE(t)P + PᵀEEE(t)y1i + y2
1
ᵀ
iEEE(t)1i ,

and

∆i(y)V (t,P) = Di(t)y +
n∑
j=1

PjEij(t)y +
n∑
j=1

PjEji(t)y + Eii(t)y
2 =

= Di(t)y + 2
n∑
j=1

PjEij(t)y + Eii(t)y
2 , (C.5)

where the last step follows from the fact that we are assuming EEE(t) to be a
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symmetric matrix. Thus,∫ +∞

−∞
J ·∆V (t,PPP ) dy =

n∑
i=1

λi

∫ +∞

−∞
∆i(y)V (t,P)

1√
2πξi

e
−(y−ψi)

2

2ξ2
i dy =

=
n∑
i=1

λi

[(
Di(t) + 2

n∑
j=1

PjEij(t)

)
ψi + Eii(t)

(
ξ2
i + ψ2

i

)]
,

(C.6)

where the last step follows from E(Y ) =
∫ +∞
−∞ yf(y) dy = ψ, and from

E(Y 2) = V ar(Y ) + E(Y )2 = ξ2 + ψ2. Finally, we get:∫ +∞

−∞
J ·∆V (t,PPP ) dy = [DDDᵀ(t) + 2PPP ᵀEEE(t)] (λλλ ◦ψψψ) +ψψψᵀdiag(EEE(t)) (λλλ ◦ψψψ)

+ ξξξᵀdiag(EEE(t)) (λλλ ◦ ξξξ) , (C.7)

where ◦ denotes the Hadamard product between two vectors, and diag(EEE(t))

is a matrix with the elements on the main diagonal equal to those on the

main diagonal of EEE(t), and with all other elements equal to zero, such that

diag(EEE(t)) =


E11(t) 0 · · · 0

0 E22(t) 0
...

... 0
. . . 0

0 · · · 0 Enn(t)

 . �

Now, collecting quadratic and linear terms of P and constant terms in
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(C.4), we obtain the following three equations:

0 = EEE ′(t) +
1

2
EEEᵀ(t)HHHΥΥΥ−1BBBᵀ +

1

2
BBBΥΥΥ−1HHHᵀEEE(t)− 2ΦΦΦᵀEEE(t) +EEEᵀ(t)HHHΥΥΥ−1HHHᵀEEE(t)

+
1

4
BBBΥΥΥ−1BBBᵀ

= EEE ′(t) +
1

2
EEEᵀ(t)HHHΥΥΥ−1BBBᵀ +

(
1

2
HHHΥΥΥ−1BBBᵀ

)ᵀ
EEE(t)−ΦΦΦᵀEEE(t)−ΦΦΦᵀEEE(t)

+EEEᵀ(t)HHHΥΥΥ−1HHHᵀEEE(t) +
1

4
BBBΥΥΥ−1BBBᵀ

= EEE ′(t) +EEEᵀ(t)

(
1

2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)
+

(
1

2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ
EEE(t)

+EEEᵀ(t)HHHΥΥΥ−1HHHᵀEEE(t) +
1

4
BBBΥΥΥ−1BBBᵀ ; (C.8)

0 = DDD′(t) +EEEᵀ(t)HHHΥΥΥ−1 (HHHᵀDDD(t) + fff(t)) +
1

2
BBBΥΥΥ−1 (HHHᵀDDD(t) + fff(t))

+ 2EEE(t)(θθθ + λλλ ◦ψψψ)−ΦΦΦᵀDDD

= DDD′(t) +

(
1

2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ
DDD(t) +EEEᵀ(t)HHHΥΥΥ−1HHHᵀDDD(t)

+ 2EEE(t)(θθθ + λλλ ◦ψψψ) +EEEᵀ(t)HHHΥΥΥ−1fff(t) +
1

2
BBBΥΥΥ−1fff(t) ; (C.9)

0 = A′(t) +
1

4
(DDDᵀ(t)HHH + fffᵀ(t)) ΥΥΥ−1 (HHHᵀDDD(t) + fff(t)) + Tr [ΩΩΩEEE(t) ]

+DDDᵀ(t) (θθθ + λλλ ◦ψψψ) +ψψψᵀdiag(EEE(t)) (λλλ ◦ψψψ) + ξξξᵀdiag(EEE(t)) (λλλ ◦ ξξξ) ,
(C.10)

with terminal condition

A(T ) = DDD(T ) = EEE(T ) = 0 .

The last step in (C.8) is where we need the restriction on ΦΦΦ we previously

imposed when defining the price dynamics. In fact, if and only if ΦΦΦ is a

symmetric matrix, we can apply Gombani and Runggaldier (2013) and solve

the matrix Riccati equation (C.8), writing the solution to E(t) as follows:

E(t) = Y (t)X(t)−1 , (C.11)
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where X and Y satisfy the following linear differential equation:

∂

∂t

(
X

Y

)
=

(
1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ HHHΥΥΥ−1HHHᵀ

−1
4
BBBΥΥΥ−1BBBᵀ −

(
1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ)(X
Y

)
, (C.12)

with final condition (
X(T )

Y (T )

)
=

(
I

E(T )

)
. (C.13)

We thus get(
X(t)

Y (t)

)
= exp

[
(T − t)

(
−1

2
HHHΥΥΥ−1BBBᵀ + ΦΦΦ −HHHΥΥΥ−1HHHᵀ

1
4
BBBΥΥΥ−1BBBᵀ

(
1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ)](X(T )

Y (T )

)
.

(C.14)

We thus have the solution for E(t), and, using a corollary in Gombani and

Runggaldier (2013), we can also compute the solution of D(t), which is given

by

D(t) = Xᵀ(t)−1D(T ) +

∫ t

0

[
X(t)−1

]ᵀ
Xᵀ(s)

[
2EEE(s)(θθθ + λλλ ◦ψψψ)

+ EEE(s)HHHΥΥΥ−1fff(s) +
1

2
BBBΥΥΥ−1fff(s)

]
ds .

Finally, we can solve (C.10):

A(t) = A(T ) +

∫ T

t

1

4
(DDDᵀ(s)HHH + fffᵀ(s)) ΥΥΥ−1 (HHHᵀDDD(s) + fff(s)) + Tr [ΩΩΩEEE(s)]

+DDDᵀ(s) (θθθ + λλλ ◦ψψψ) +ψψψᵀdiag(EEE(s)) (λλλ ◦ψψψ) + ξξξᵀdiag(EEE(s)) (λλλ ◦ ξξξ) ds .

(C.15)
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