
Università degli Studi di Padova

DIPARTIMENTO DI FISICA ED ASTRONOMIA, “GALILEO GALILEI”
Scuola di Dottorato di Ricerca in Fisica

Variational principles and optimality
in biological systems

Vice Coordinatore:
Prof. Cinzia Sada
Supervisore della ricerca:
Prof. Amos Maritan

Candidato:
Loren Koçillari

Anno Accademico 2015-2018



Abstract1

The aim of this thesis is to investigate the signatures of evolutionary op-2

timization in biological systems, such as in proteins, human behaviours3

and transport tissues in vascular plants (xylems), by means of the Pareto4

optimality analysis and the calculus of variations.5

In the first part of this thesis, we address multi-objective optimization6

problemswith tradeoffs through the Pareto optimality analysis ( [132],[69]),7

according which the best tradeoff solutions correspond to the optimal8

species, enclosed onto low-dimensional geometrical polytopes, defined as9

Pareto optimal fronts, in the space of physical traits, called morphospace.10

Chapter 3 is devoted to the Pareto optimality analysis in the Escherichia11

coli proteome by projecting proteins onto the space of solubility and hy-12

drophobicity. In chapter 4 we analyze the HCP dataset of cognitive and13

behavioral scores in 1206 humans, in order to identify any signature of14

Pareto optimization in the space of Delay Discounting Task (DDT), which15

measures the tendency for people to prefer smaller, immediate monetary16

rewards over larger, delayed rewards.17

The second part of this thesis is devoted to solving an optimization18

problem regarding xylems, which are the internal conduits in angiosperms19

that deliver water and other nutrients from roots to petioles in plants.20

Based on the optimization criteria of minimizing the energy dissipated in21

a fluid flow, we propose in chapter 5 a biophysical model with the goal of22

explaining the underlying physical mechanism that affects the structure of23

xylem conduits in vascular plants, which results in tapered xylem profiles24

[104, 105, 117, 164]. We address this optimization problem by formulating25

the model in the context of the calculus of variations.26

The results of these investigations, besides providing quantitative sup-27

port to previous theories of natural selection, demonstrate how processes28

of optimization can be identified in different biological systems by apply-29

ing statistical methods such as the Pareto optimality and the variational30

one, showing the relevance of employing these statistical approaches to31

various biological systems.32





Riassunto33

Lo scopo di questa tesi è quello di identificare le impronte che l’evoluzione34

ha avuto nei sistemi biologici, come ad esempio nelle proteine, nei com-35

portamenti umani e nei tessuti trasportatori delle piante vascolari (xilemi),36

attraverso un’analisi di ottimizzazione di Pareto ed il calcolo delle vari-37

azioni.38

Nella prima parte della tesi, affrontiamo l’ottimizzazione di problemi39

multi-obiettivo con competizione, attraverso l’analisi di ottimizzazione40

di Pareto, in base alla quale le migliori soluzioni di compromesso cor-41

rispondono alle specie ottimali, le quali vengono racchiuse in politopi42

geometrici, definiti come fronti ottimali di Pareto, nello spazio dei tratti43

fisici. Il capitolo 3 è dedicato all’analisi dell’ottimizzazione di Pareto nel44

proteoma dell’Escherichia coli, proiettando le proteine nello spazio della45

solubilitá ed idrofobicitá. Nel capitolo 4 analizziamo il set di dati HCP46

cognitivi e comportamentali in 1206 umani, al fine di identificare qualsiasi47

traccia di ottimizzazione alla Pareto nello spazio del “Delay Discounting48

Task” (DDT), che misura la tendenza per le persone a preferire ritorni49

economici piú piccoli e immediati rispetto a ricompense di premi piú50

grandi e ritardati.51

La seconda parte di questa tesi è dedicata alla risoluzione di un problema52

di ottimizzazione riguardante gli xilemi, che sono i condotti interni degli53

angiospermi e forniscono con acqua ed altri nutrienti le piante, dalle radici54

ai piccioli. Basandosi sui criteri di ottimizzazione perminimizzare l’energia55

dissipata in un flusso di fluido, nel capitolo 5 proponiamo un modello56

biofisico con l’obiettivo di spiegare il meccanismo fisico sottostante che57

influenza la struttura di condotti dello xilema nelle piante vascolari, che58

si traducono in profili di xilema affusolati. Affrontiamo questo problema59

di ottimizzazione formulando il modello nel contesto del calcolo delle60

variazioni.61

I risultati di queste indagini, oltre a fornire supporto quantitativo62

sulle precedenti teorie sulla selezione naturale, dimostra come i processi63

dell’ottimizzazione possono essere identificati in diversi sistemi biologici64

applicando metodi statistici come l’ottimalitá di Pareto e il variazionale65



iv |

uno, mostrando la rilevanza di impiegare questi approcci statistici a vari66

sistemi biologici.67
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Chapter 1171

Introduction172

The common thread that permeates this thesis is the idea that nature exerts173

a selective pressure for optimizing structures and functions in biological174

systems in order for them to best adapt to their ecosystem ( [101], [40]).175

In the course of evolution, organisms carry out multiple tasks to strive for176

survival, which may lead to complex tradeoffs, meaning that the perfor-177

mance levels of all tasks cannot be concurrently optimized. To unravel how178

tradeoffs affect the phenotype selection we employed a statistical approach,179

developed in a recent paper by Shoval et al., [132], based on the Pareto180

optimality theory, devised initially to solve multi-objective optimization181

problems with competing objectives in economics and engineering, to182

identify evolutionary tradeoffs in biological systems.183

According to Pareto optimality, optimal phenotypes (different species,184

individuals within a species, circuits, bacteria, proteins, etc.) that corre-185

spond to the best possible tradeoff solutions among different physical traits,186

such as the body mass, longevity, brain size etc, should be enclosed into187

low-dimensional geometrical polytopes, such as a segment, a triangle, a188

pentagon, etc., also referred to as the Pareto optimal fronts, in the space of189

traits, called morphospace. Without any tradeoff, phenotypes would be190

instead distributed in an uncorrelated cloud of points in the morphospace.191

In the first three chapters, we highlight and discuss our findings con-192

cerning the signatures of Pareto optimality in biological systems. In chapter193

2 we set the terminology and notations of Pareto optimality and define194

the fundamental concepts of multi-objective optimization, dominance and195

Pareto fronts in the objective space and in the morphospace ( [87], [89]).196

Chapters 3 and 4 are devoted to the application of Pareto optimal197

analysis to the biological systems, where the fitness, which is defined198

as an increasing function of the performance functions at all tasks, is199

harder to disclose. In chapter 3, we will present the first original result200
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which supports the emergence of signatures of Pareto optimization in201

the Escherichia coli proteome, by tuning the degree of hydrophobicity202

necessary for the proteins to fold correctly and that of solubility in order203

to perform their biological functions. In chapter 4, on the other hand, we204

show original findings in the context of the Human Connectome Project205

(HCP) dataset, by investigating cognitive and behavioral scores in 1206206

humans through Pareto optimality.207

The second part of this thesis is devoted to give a biophysical expla-208

nation of the tapering phenomenon of xylem conduits in vascular plants.209

Existing models of the tapering of xylem conduits ( [130], [157], [123])210

assume that xylem profiles have acquired a tapering degree in order to211

optimally convey water and essential nutrients to all parts of the trees212

( [104, 105, 117, 164]). Following this line of thought, we propose in213

chapter 5 a hydraulic optimal model, based on the optimization criteria214

of minimizing the energy dissipated in a fluid flow, which is due to the215

Hagen-Poiseuille resistance term. We address this optimization problem216

by formulating it in the context of the calculus of variations, where we217

define the main functional made up of the Hagen-Poiseuille resistance term218

and a Lagrange multiplier.219

Finally, in chapter 6 we summarize all findings and discuss some further220

prospects.221



Chapter 2222

Pareto optimality in biological223

systems224

All biological systems, or phenotypes, must efficiently perform multiple225

tasks to strive for survival. In some instances, the performance levels226

cannot be concurrently optimized for all tasks, so that the competition227

between them affects phenotype selection. Consequently, organisms evolve228

and adapt themselves to the environment through a precise trade-off. In229

order to accomplish this complex decision making, species are needed to230

solve an implicit multi-objective optimization problem (MOO).231

To fully disclose the properties of this complex multi-objective opti-232

mization problem, scientists have employed the Pareto optimal analysis233

[17, 28, 36, 89, 92]. Basically, a solution of the multi-objective optimiza-234

tion problem is called Pareto optimal, if there does not exist any feasible235

(possible) solution which would increase any performance without induc-236

ing a concurrently decrease of at least another performance. Solving a237

multi-objective optimization problem often results, even in the simplest238

case of two competing objectives, in a continuum and infinite set of Pareto239

optimal solutions, named Pareto fronts (see Figure 4.1).240

Since the Pareto optimal solutions are all equivalent, a decision maker241

(DM) is required to introduce further information to choose for the pre-242

ferred solution of the problem. In biology for instance, the decision maker243

is the niche itself, which, under the pressure of evolutionary selection,244

prefers those species that are endowed with traits that best adapt to the245

environment. Without any extra preferential criteria, solution cannot be246

sorted and thus they are all equivalent between each other. In other words,247

they stand as the best compromises in performing competing tasks.248

Historically, Francis Ysidro Edgeworth in 1881 ( [43]) and Vilfredo249

Pareto [100] in 1906 have been the pioneers that formulated the framework250
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Fig. 2.1 Example of a Pareto optimal front. Here we sketch a multi-objective
optimization problem in designing a car, between two tasks which present a
tradeoff. The Pareto front is the continuous blue line, which represents the set of
optimal designs. The optimal solution should be selected from the front by giving
an additional information about the weights of each task in the final decision.

of multi-objective optimization problems with competing objectives. In251

1951, Kuhn and Tucker posed the necessary and sufficient conditions for252

the Pareto efficiency [80]. For a detailed history of MOOs in the objective253

space consult Stadler and Dauer ( [139]). Since then, a plethora of compu-254

tational algorithms have been implemented in order to find Pareto fronts255

[87]. The first algorithms worked only for convex objectives, however,256

in the mid 1980s David Schaffer devised a more efficient algorithm to257

overcame this limit, called the vector evaluated genetic algorithm (VEGA),258

which was the first implementation of a real multi-objective evolutionary259

algorithm (EA) [124]. A remarkable advantage by employing EAs is that260

they generate multiple Pareto solutions in a single run [17].261

To work properly, these methods require an explicit fitness function.262

It is the main function of the model, which accounts for any tradeoffs and263

the weights of all objectives. It is the starting point for both analytical and264

computational derivations to be made in order to infer the shape of Pareto265

fronts. It often occurs that this function is difficult, if not impossible, to266

mathematically disclose [73], especially for biological systems.267

In a recent study of Shoval et al. [69, 132] however, they performed a268

study of Pareto optimality by translating the analysis from the objective269

or task space to the trait space, also referred to as the morphospace. It270

corresponds to the space of the quantitative traits that can be experimen-271

tally measured, like the mass, longevity, height, solubility, hydrophobicity,272
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delay discounting area etc., which constitute the phenotype of a given273

biological system. The choice of any subset of these traits depends both274

on the availability of datasets and on intuition of traits that could lead to275

tradeoffs, as suggested from experience.276

In [132] they provide a compelling theorem that links Pareto optimal277

fronts with convex regions in the space of traits (see Appendix A for more278

details). The theorem is based on the following two postulates: i) species279

which are specialized in a given task, also called archetypes, cluster in the280

vertices of the convex-hulls and ii) the performance functions are maximal281

for a given task at the corresponding archetypes and decrease with distance282

from the archetype. The vertices of such distributions play the crucial role283

in inferring the tasks in tradeoff.284

With the aid of this theorem, Pareto optimal fronts can be found even285

if it doesn’t exist an explicit expression for both the fitness function and286

task performances. In [132] authors show that Pareto fronts emerge as287

low-dimensional convex-hulls in the morphospace, such as lines, triangles,288

tetrahedrons etc., depending on the number of competing objectives.289

This is a more appropriate framework for a Pareto analysis in biology290

and nowadays, this method has been successfully applied to unravel signa-291

tures of evolutionary optimization in animal morphology ( [132]), animal292

behavior ( [50]), cancer ( [69]), ammonite shells ( [146]), bacterial and single293

cells gene expression ( [148]; [77]), biological circuits ( [142]), and more294

recently to the structure of polymorphisms ( [129]), and to Escherichia295

coli proteome ( [76]).296

Pareto optimality can also be used to solve multi-objective problems297

in human-made systems, in order to find those optimal designs that attain298

the best compromise of the cost-efficiency ratio. For instance, planning299

to build a new house requires to find a balance between the costs of the300

construction and its final achievable comfort. Thus, a decision maker301

is often lead with a multitude, and possibly infinite equivalent optimal302

choices. It can resolve this problem by putting further criteria on the303

weights of each cost ( [47]).304

2.1 Basic Definitions305

Single-objective optimization problems aim to find the minimum of a306

given function f0(x). The problem can be stated as follows ( [16], [27]):307

minimize f0(x) (2.1)308

subject to gi(x) ≤ bi, i = 1, ..., m. (2.2)309
310
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where fo : Rn → R is the single-objective function, x = (x1, ..., xn) ∈ S311

are the decision vectors in the feasible space S, and gi : Rn → R denote312

the m constraint functions of the feasible space. For simplicity functions313

are convex meaning that the following inequality is satisfied:314

fi(βx1 + (1 − β)x2) ≤ βfi(x1) + (1 − β)fi(x2) (2.3)315

for all 0 ≤ β ≤ 1,∑m
i=1 βi = 1 and βi ≥ 0. If the feasible space S ⊂ Rn is316

convex then:317

βx1 + (1 − β)x2 ∈ S (2.4)318

for all 0 ≤ β ≤ 1. The substantial difference between single and multi-319

objective functions is that for single-objective problems there is a single320

optimal solution, while for multi-objectives there is an infinite number of321

optimal solutions.322

When we ask to simultaneously optimize k (≥ 2) conflicting objective func-323

tions f1(x), f2(x), ..., fk(x) we face a multi-objective optimization problem324

that can be mathematically defined as follows ( [165], [166]), [17]:325

minimize y = f(x) = (f1(x), f2(x), ..., fk(x)) k ≥ 2
subject to e(x) = (e1(x), e2(x), ..., em(x)) ≤ 0

and x = (x1, x2, ..., xn) ∈ S
y = (y1, y2, ..., yk) ∈ Y

(2.5)326

327

where k (≥ 2) is the number of the fi : Rn → R competing objective328

functions and x = (x1, x2, ..., xn)T are the decision vectors that belong to329

the feasible region S, while m is the number of the constrain functions330

e(x). Objective functions are images of decision vectors Z = f(S), where331

S is the feasible decision space and Z the feasible objective space. A small332

region of the objective space constitutes the Pareto front P (S), namely the333

set of optimal solutions z = fi(x), which by definition have the property334

that none of their components could be improved without the worsening335

of at least another component.336

A useful concept for the Pareto optimality is related to the dominance.337

We say that the decision vector a dominates another vector b if the following338

conditions are satisfied [166]:339

∀i ∈ {1, 2, ..., n} : fi(a) ≥ fi(b) ∧ (2.6)340

∃j ∈ {1, 2, ..., n} : fi(a) > fi(b) (2.7)341
342
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Therefore, decision vectors x ∈ Xf ∈ S are defined as Pareto optimal or343

non-dominated iff:344

∄ a ∈ A : a ≻ x (2.8)345

and accordingly, the set of objective vectors is denoted as Pareto front if346

the corresponding decision vectors are Pareto optimal.347

In case of minimization problems the lower bound of the Pareto front348

is the ideal objective vector, denoted with z∗ ∈ Rk, whose components can349

be obtained by minimizing each objective function separately. Mathemat-350

ically, it can be expressed as z∗ = f ∗ = (f ∗
1 , f ∗

2 , ..., f ∗
M)T , where x∗(m) is351

the minimum decision vector solution and f ∗
m is the minimum objective352

solution. The ideal vector is the optimal solution of the multi-objective353

optimization problem when objectives are not competing.354

355

2.2 Pareto optimality in the morphospace356

According to natural selection, biological systems coevolve to maximize357

their fitness function, resulting in optimal phenotypes. However, when358

facing complex environments, systems carry out multiple tasks, and all of359

these tasks contribute to fitness. Hence a fundamental trade-off: As systems360

cannot achieve optimal performance in all tasks, becoming specialists in361

one set of tasks necessarily leads to a reduction of performance in a different362

set of tasks.363

The starting point of the Pareto Optimality approach is to define the364

space of traits, or morphospace, where traits represent physical features365

such as body mass, longevity, brain size etc, and species are usually data366

points in the morphospace. The Pareto Optimality theory predicts that367

if traits are likely to show trade-offs, then phenotypes will be enclosed368

into a well-defined geometrical domain of this morphospace called poly-369

tope (e.g., a segment, a triangle, a pentagon or other low dimensional370

polygons/polyhedra...). This polytope will include the phenotypes that371

have found the best possible trade-off solutions among different traits, and372

will represent the Pareto front solution (see Figure 4.14). In the absence of373

trade-offs, phenotypes will be instead distributed in an uncorrelated cloud374

of points in the morphospace.375
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Fig. 2.2 Pareto fronts in morphospace. Here we show in the morphospace
examples of Pareto fronts with an increasing number of vertices resulting in a
segment (2 tasks), a triangle (3 tasks) and a tetrahedron (4 tasks) (Figure adapted
from [132]).

The position of a given phenotype inside the Pareto front distribution376

is informative of its evolutionary strategy. Specifically, the vertices of377

the polytope contain the archetypes, namely the phenotypes that have378

traits leading to the maximal performance in one of the tasks and minimal379

performance in the competing tasks. Other key biological traits related380

to that task will be then maximally expressed or ‘enriched’ near that381

archetype, and minimally enriched near the other archetypes. Phenotypes382

that fall in the middle of the polytope are generalists, i.e. showing average383

performance in those tasks that define the trait space. In the case of two384

competing tasks, the phenotypes fall on a line segment in the morphospace,385

whereas for three tasks the phenotypes fall into a triangle. Four tasks would386

result in a tetrahedron distribution, and so on. Notably, this analysis is387

data-driven since it is the distribution of the data to indicate which traits are388

indicator of tradeoffs and what is the number of competing tasks, which389

correspond to the number of vertices/archetypes in polytopes.390

An example of the application of Pareto optimality is the study (??).391

The authors found that species of mammals and birds fall within a triangu-392

lar Pareto front distribution when they are projected in a morphospace393

created by the variables longevity and mass. The vertices of this triangle394

represent three archetypes. Specifically, large animals with high longevity395

(whales being the archetype); small animals with high longevity (bats);396

and, small animals with low longevity (mice). All other species, including397

humans, fall in between. Importantly, through enrichment analysis, it is398

possible to show that these traits are related to (enrich on) other traits399

that account for their evolutionary fitness. For instance, small animals400

with low longevity tend to have high fertility and tend to be preys (mice);401

conversely, small animals with high longevity have lower fertility, but also402

tend to be predator (bats).403
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2.2.1 Theoretical framework for biological systems404

Consider a biological system denoted by n physical traits νi, i = 1, ..., n,405

which is described as a data point in the morphospace and assume that406

it concurrently performs k competing tasks. The k performances Pi(ν)407

for each task are expressed as functions of the physical traits νi. To each408

phenotype ν is assigned a fitness function F (P1(ν), ..., Pk(ν)), which is409

defined as an increasing function of the k competing performances.410

As defined previously, a Pareto optimal solution is associated to a411

given phenotype ν for which it doesn’t exist any other feasible different412

phenotype ν ′ that is better at all tasks than ν. The set of all Pareto optimal413

phenotypes provide the Pareto front. For two tasks, Pareto fronts are line-414

segments connecting both archetypes and data points in the line-segment415

are found to be optimal phenotypes of the multi-objective tradeoff problem.416

For three tasks, Pareto optimal fronts are triangles, while for k-tasks, in417

principle we should get (k-1)-dimensional simplexes with k vertices, such418

as tetrahedrons, etc. Pareto optimal fronts could explain the long-standing419

observation that the morphospace is mostly void and phenotypes typically420

cluster in small regions ( [88], [108],[109], [125]). Based on the principle421

of natural selection, indeed evolutionary pressures have wipe out the422

morphospace from species that are sub optimal, leaving only the optimal423

species inside the Pareto fronts.424

According to the theorem shown in Appendix A, it has been proved425

the relationship among Pareto fronts and convex-hulls in the morphospace.426

The vertices of these polytopes play a crucial role in the theory, since they427

are the place where archetypal species sit. Each archetype is defined as the428

specialized organism that optimally performs a single task at the expenses of429

the performances of other competing tasks, which are optimally performed430

by the remaining archetypal species, located in the other vertices of the431

polytope. The performance of a given task decreases monotonically from432

the corresponding archetypes toward the center of the convex-hull as433

follows:434

Pi(ν) = Pi((ν − ν∗
i )T M(ν − ν∗

i )), (2.9)435

where M is a positive-definite matrix denoting the metric of the space.436

We will consider now on that M = I, which correspond to the euclidean437

metric.438

For Euclidean metrics Pareto fronts are enclosed by straight lines. In439

that case, the performance function Pi(ν) is a decreasing function of the440

Euclidean distance from the corresponding archetype ν∗
i , resulting with441

circular performance contours 4.15. By connecting the dots where two442
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adjacent circular contours are tangent we get the straight edges of Pareto443

fronts. In case of more general metrics, the contours of the performance444

functions would acquire different shapes, and the set of tangent dots will445

typically result in curved lines [128] (see Figure 4.15). In addition, when446

performance is maximized in a whole region of archetypes, the Pareto447

front is the straight line connecting the closest point between the regions448

of archetypes. For more detailed cases, see [128].449

Fig. 2.3 Parti algorithm in theMorphospace. Relaxing some assumptions result
in a curved Pareto fronts in the morphospace. In a) it is shown the Pareto front in
case of regions of archetypes instead of single-point archetypes, b) a Pareto front
resulting with straight lines in case of Euclidean metric, c) and d) cases when the
assumption of the Euclidean metric is relaxed (Adapted from [132])

2.2.2 Classical examples of Pareto optimality inmorphospace450

In their seminal paper [132], Shoval et al. provided several examples of451

Pareto fronts in animal morphology for Darwin finches, leaf-cutter ants452

and microbats, and the gene expression of Escherichia coli bacteria.453

As a first example (Figure 2.4A), they analyzed the dataset of Grant454

et al. [62] of Darwin’s finches and detected a statistically significant tri-455

angular shaped distribution in the space of body mass and beak shape.456

Species at the vertices of the triangle were inferred to correspond to three457

archetypal Darwin finches that feed with totally orthogonal diets, which458

are supposed to be in tradeoff, namely that it is not possible for a given459

finches to concurrently feed with the same performance at all diets (see460

Supplementary Materials of [132]).461
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Fig. 2.4 Examples of Pareto fronts in morphospace. In a) a Pareto front for
Darwin’s ground finches in the trait space of beak shape and size after performing
a PCA, b) a triangular-hull Pareto front for the leaf-cutter ants in the space of
head width vs a normalized poison sac length, c) a triangular-hull Pareto front in
bats in the space of body mass and wing aspect ratio (Adapted from [132]).

As a second example (Figure 2.4B), authors analyzed the dataset E. O.462

Wilson’s [158] on leaf-cutter ants and found another statistically significant463

triangular-hull in the space of traits such as the head width and poison464

sac length. They proved that the triangle was a Pareto front by inferring465

the archetypal ants for each vertex, namely ants that are specialized in : 1)466

nursing/gardening, 2) foraging outside the nest, and 3) soldiering.467

They identified a triangular-hull Pareto front also for the microbats468

study (Michrochiroptera) of Norberg and Rayner [97] (see Figure 2.4C),469

in the trait space of the body mass and wind aspect ratio. The three470

archetypes that correspond to each vertex are interpreted to be associated471

to specialized microbats in 1) eating insects in vegetations, 2) in the air472

above the vegetation, and 3) large prey in vegetation.473

A Pareto front was found by analyzing the gene expression in the474

Escherichia coli bacteria [163]. They inferred two competing tasks such475

as rapid growth, mostly provided by the ribosomal genes, and survival,476

which is mainly provided by the oxidative stress response proteins.477

2.3 Pareto optimality in the objective space478

As a complementary argument we summarize in this section the idea479

behind the MOOs algorithm when applied in the objective space. The480

most frequently used algorithm to attempt a solution of multi-objective481

optimization problems is the weighted sum method. It can be stated as482
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follows ( [51], [161], [90]):483

minimize y =
k∑

i=1
wifi(x) (2.10)484

subject to x ∈ Xf (2.11)485
486

where wi ≥ 0 ∀i = 1, ..., k and
∑k

i=1 wi = 1. The weighted sum method487

aims to link to each objective a weighting parameter wi and linearly sum488

the parametrized objectives into a single fitness functions. As a result of489

this process, the multi-objective problems are converted in single-objective490

problems, which are simpler to be solved. The major weakness of this491

method is related to the fact that it is unable to find any Pareto optimal492

solutions for non-convex objective functions. In order to overcome this493

limitation, it has been developed the so called ϵ−constraint method ( [68]),494

which minimizes only one objective and transforms the other objectives495

into constraint functions with an ϵ upper bound (see [90]).496

A common drawback of these methods is related to their highly de-497

manding computational efforts in order to search the Pareto-optimal solu-498

tions in the objective space. However, more efficient algorithms, called499

evolutionary algorithms (EA), have been established in order to handle the500

computational limits and search for the whole Pareto optimal front within501

a single run of simulation [27]. EA algorithms have been first implemented502

by Schaffer in his pivotal work ( [124]), and since then, five classical EA503

approaches have been developed (for a quantitative comparison of their504

efficiency see ( [165]), which substantially differ in the definition of the505

fitness function ( [166], [47]).506

Once the fitness function is clearly stated, EAs have the particular507

advantage to capture several Pareto optimal solutions simultaneously in a508

single computational run. Remarkable applications of Pareto optimality in509

the objective space, by employing classical and evolutionary methods have510

been applied, ranging from optimal protocols ( [135]) in thermodynamics,511

the design of low-thrust spacecraft trajectories in aeronautics ( [34]), to512

optimal complex networks ( [126]), multilayer network growth ( [122]),513

and language networks ( [127]). The major limitation of evolutionary algo-514

rithms is that they always need to get assigned a specific fitness functions,515

and thus become ineffective in the majority of cases in biological systems,516

where the fitness function is only known to exist, but we don’t have an517

explicit expression.518
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Fig. 2.5 Pareto optimal set in protein morphology. Here we show an example
of a Pareto optimal front that emerges as the solution of the folding of proteins
in optimal shapes, subjected to the tradeoff objectives such as tension, torsion etc.
in the objective space (Adapted from [35])

2.4 Summary519

In this chapter we defined in section 2.1 multi-objective optimization520

problems and introduced the basic concepts of Pareto optimality such as521

Pareto fronts and dominance and laid the basic terminology. In section522

2.2 we posed the rules for studying Pareto fronts by means of the Parti523

algorithm, even if we don’t have a fitness function. This comes at the cost524

of shifting analysis from the objective to the trait space. We furthermore525

discussed some examples of Pareto fronts in biology, such as in Darwin526

finches, ants and bats (microbats), as found by Parti in finding Pareto fronts527

in biology, which emerge as low-dimensional polytopes in the space of528

physical traits. In section 2.3 we furnished some literature for the MOOs529

in the objective space.530

In the following chapters of this first part of the thesis we will apply531

the computational algorithm [69], to investigate signatures of Pareto fronts532

in the solubility and hydrophobicity space of the proteome of Escherichia533

coli bacteria (see chapter 3), and in human behavioral tasks (see chapter 4).534





Chapter 3535

Signature of Pareto optimization536

in the Escherichia coli proteome537

Pareto polytopes have been shown to enclose the variation of phenotypic538

traits for organisms of the same species that adapt to different environmen-539

tal niches, or the variation of gene expression patterns for cells of the same540

organism that adapt to different tissues (or pathological conditions in the541

case of tumor cells). In this chapter, we extend the Pareto front analysis542

to a further downward step toward shorter scales of the proteome of the543

Escherichia coli bacteria. Proteins have coevolved with cellular environ-544

ments to improve or preserve their functions, maintaining at the same545

time the degree of hydrophobicity necessary to fold correctly and enough546

solubility to perform their biological roles.547

Here, we study the variation in protein physico-chemical features of548

solubility-hydrophobicity in the Escherichia coli proteome using a Pareto549

front analysis. We choose the E.coli since it is a simple prototype organism550

which has been widely studied and, furthermore, its genome is extensively551

annotated.552

From the Taguchi’s database [95], we extracted the following three553

continuous characteristics: experimental solubility, experimental yield,554

and predicted isoelectric point (pI). All quantities were available only for555

a subset of 3,172 proteins. We added, as a further fundamental continuous556

trait, an overall measure of protein hydrophobicity, which was obtained557

by summing up the hydrophobicity values of all its residues according to558

the Kyte-Doolittle scale [81].559

We find evidence that E.coli proteins were selected by trading off the560

performances of various competing tasks and we infer those tasks. Indeed,561

in section 4.4 we report the results of the Pareto analysis, indicating the562

emergence of a triangular-hull Pareto optimal front in the space of solubility563
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and hydrophobicity, whose vertices correspond to archetypal proteins564

specialized in distinct tasks, such as 1) regulatory processes, 2) membrane565

transport, 3) outer-membrane pore formation, catalysis, and binding.566

In section 3.2 we will set and generalize the theoretical framework567

of of the state-of-the-art Pareto optimality analysis, in order to connect568

specific sub-cellular environments with the competing tasks performed by569

the proteins located in these regions.570

In section 3.3 we further show that the vertices are enriched also571

with proteins that occupy different subcellular compartments, namely,572

cytoplasmic, inner membrane, outer membrane, and outer membrane573

bounded periplasmic space. The combination of various enriching features574

offers an interpretation of how bacteria use the physico-chemical properties575

of proteins, both to drive them into their final destination in the cell and576

to have their tasks accomplished.577

In section 3.4 we will show that when the Pareto analysis is extended to578

include protein yield, a tetrahedron emerges as the convex hull representing579

the new front in 3D with the yield feature corresponding to the third580

principal component.581

Finally, in section 5.4 we summarize our results and make some final582

remarks and discussions.583

3.1 A triangle in the space of solubility vs hy-584

drophobicity585

Three of the above traits (i.e. the experimental solubility, experimental586

yield, and predicted isoelectric point (pI)) inherently convey competing587

chemical characteristics of polypeptide chains concerning both a water-like588

solvent and different cellular environments, such as the crowded cytoplasm589

and the interior of biological membranes. The yield, which is how many590

proteins are expressed by the ‘in vitro’ reconstituted translation system591

[95], adds a further characterization.592

3.1.1 PCA analysis593

With each protein represented by the set of continuous traits defined before,594

we apply a Principal Component Analysis (PCA) to reduce the dimen-595

sionality of the morphospace and search for Pareto polytopes. The PCA596

variance is mainly explained (about 95%) by two principal components597

that are substantially parallel to the hydrophobicity (PC1) and solubility598
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Fig. 3.1 PCA for the four dimensional space of continuous traits. The first
component is better explained by the hydrophobicity, the second component
by the solubility, whereas the third component by the protein yield (see Table
1). The first two traits, i.e. solubility and hydrophobicity, are able to explain
around 95% of the overall variability. We achieve almost the total variability if
we consider also the third principal component, but in this three dimensional
morphospace the convex hull is affected by robustness caveats (see Section 3.2).

(PC2) trait, respectively (Table 3.2, Figure 3.1). This can be rationalized by599

considering that hydrophobicity is the dominant force implicated in the600

folding process of globular proteins [5, 20, 23, 41], whereas solubility is a601

property that emerges as a necessary feature to prevent protein aggregation602

[38, 144, 151], and, consequently, the onset of relevant maladies in humans603

[26]. Solubility also appears to be related to mRNA expression levels, at604

least for specific proteins [145]. The maintenance of protein solubility is605

also a fundamental aspect of protein homeostasis [38], being an essential606

requirement for protein functionality. Furthermore, proteins are evolu-607

tionarily selected to perform necessary and useful functions, so they must608

be stable (at least marginally) but also flexible enough to accomplish their609

tasks through relevant conformational changes.610

If we z-score solubility-hydrophobicity-yield-pI traits before the PCA,611

we find that the variance changes, with the pI trait which this time has612

relevant loadings in the first two principal components. However, by613

projecting the data points in the first two principal components, as obtained614

from the z-scored traits, the resulting convex hull is not a triangle anymore,615

with a p-value>0.05, as evaluated from the t-ratio test.616

3.1.2 PCHA analysis617

We performed the archetypal analysis, introduced by Cutler and Breiman618

[36], whose goal is to find the best-fitting convex hull of the data in the619
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trait space, that is the solution of the minimization problem. This can be620

done computationally by the PCHA algorithm, developed by Morup et al.621

[92] and implemented in the Pareto Task Inference (ParTI) developed by622

Hart et al [69]. This algorithm allowed us to find the explained variance of623

the convex hull that encloses the data points, as a function of the number624

of vertices (see Figure 3.2). The positions of the vertices of the convex625

hull in the trait space were determined by employing the Sisal algorithm626

[12] which is analogous to PCHA but considers in a more flexible way627

the presence of outliers and the possibility that archetypes lie outside the628

convex hull [69]. See Table 3.1 for the archetype positions found using629

Sisal, after 100 iterations, and Figure 3.4 for the archetype positions using630

different types of algorithms. We also computed the errors in the positions631

of the archetypes by employing the so called bootstrapping method [69].632

This relies on the generation of n-bootstrapped datasets with the same633

number of proteins (3, 172) as the original dataset, and on computing from634

each new dataset the corresponding archetype positions. We generated635

104 bootstrapped datasets, and we computed their center of mass and the636

standard deviations of archetype positions. Errors are depicted as ellipsoids637

in Figure 3.3.638

Fig. 3.2 Number of archetypes. Explained variance [92] of the data points as a
function of the number of archetypes. In our analysis, we considered only the
first three archetypes, which account for 94% of the total variance.
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Fig. 3.3 Archetype positions. Error distribution of the coordinates of the vertices
of the triangle as obtained by the Sisal algorithm[12] performing 104 bootstrapped
datasets .

Arch (PCA) Position Hydrophobicity (PC1) Solubility (PC2)
Blue 639.2 -41.0
Red -691.6 -52.2
Green 10.9 130.5

639

Arch (Orig) Position Hydrophobicity Solubility
Blue 572.4 1.5
Red -751.7 1.1
Green 7.3 193.9

640

Table S 3.1 Position of the three archetypes as found with Sisal. The positions
of the three vertices in the principal component plane are shown in the top table,
whereas the same positions in the solubility -hydrophobicity plane are shown in
the bottom table.641
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Fig. 3.4 Archetype coordinates. Archetype coordinates evaluated with four
different methods such as Sisal, PCHA, MVSA, SVDMM. They give equivalent
results.

Fig. 3.5 Robustness of the Pareto front. PCHA analysis does not necessarily
imply that the data are well distributed on a convex hull. Sometimes Pareto
analysis cannot be applied, for example in cases where the outliers dominate the
statistics and triangles appear even when the majority of points clusters only in
specific regions of the convex hull and a few outliers are responsible for adding
other vertices.
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Fig. 3.6 Robustness of the triangle in the solubility vs hydrophobicity plane.
We computed the p-value, after removing the proteins in red, for each case. For
a) p-value= 0.5%, b) p-value=0.4% , c) p-value< 0.01%, d) p-value=0.06%, e)
p-value= 0,04%, f) p-value< 0.01%
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3.1.3 Statistical robustness of the Pareto front642

In the solubility-hydrophobicity space, the E.coli proteins lie inside a643

triangle, a clear hallmark of Pareto optimality (Figure 3.8). The statistical644

significance of the detected Pareto front is assessed using the p-value [132],645

which is based on the t-ratio, defined as the ratio between the area of the646

triangular convex hull (in Figure 3.8), and the area of the minimum triangle647

in which the convex hull can be embedded. The t-ratio of the experimental648

data points is then compared to the t-ratios of 104 null-models, generated649

by randomizing pairs of solubility and hydrophobicity values from the650

original data, i.e., by taking the same cumulative distribution function651

(CDF), along single axes, as in the original dataset. The resulting p-value is652

lower than 5 ∗ 10−3 and in literature, p-values lower than 5% are accepted653

as highly significant. Pareto analysis however, can be hampered when654

the results are heavily influenced by the presence of some outliers (see655

Figure S6). Statistically speaking, the results must be, as much as possible,656

outlier-independent. More practically, the deletion of a small number of657

data points in the above analysis must not affect archetype identification658

and the p-value of the detected polytope. We generated 104 null-models for659

all of the six possible combinations of the four continuous traits, finding660

that the most robust triangles with the lowest p-values are projected in the661

hydrophobicity-solubility and hydrophobicity-yield planes (p-value of the662

order of 0.5%). In the remaining four cases the lowest p-value is higher663

than 5%. We further found that the triangle in the yield-hydrophobicity664

plane is strongly dependent on outliers, while the triangle in the solubility-665

hydrophobicity plane is very robust. In the former case, the p-value666

fluctuates in the range 0.5% − 10% when (up to 4) proteins with the667

highest yield are removed, while in the latter case the p-value is almost668

unaffected (see Figure S6).669

the volume of the convex hull with a higher number of vertices that670

encloses the majority of the data points. The t-ratio is usually larger than671

1, and the closer it is to 1, the better the polytope captures the shape of672

the data.673
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Fig. 3.7 The Pareto front. Data points in the space of solubility vs hy-
drophobicity. Proteins are coloured as follows. Green:Inner membrane, Yel-
low:Cytoplasmic, Light blue:Periplasmic-bounded outer membrane, Rose:Outer
membrane.
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3.2 Theoretical framework674

We theoretically extended the state-of-the-art Pareto analysis [132], in order675

to connect specific sub-cellular environments with the competing tasks676

performed by the proteins located in these regions. We made the following677

assumptions:678

(i) The bacterium environments are characterized by specific concen-679

trations, (ρ1, ρ2, . . . , ρn) ≡ ρ, of n chemicals (water, lipids, etc.). As one680

moves from one place to another, ρ varies with continuity at the meso-681

scopic scale. This is a formal representation of the fact that, even though682

bacterial cells lack membrane-bounded organelles, they are intricately683

organized, with different chemical concentrations in different locations684

[32, 59, 120].685

(ii) Each protein can perform k possible tasks/activities, and to each686

of them (the j-th task) we may associate a specific performance Pj , as687

measured by the amount of biological activity of j-th type, j = 1, . . . , k.688

The j-th task is performed at its best in the environment characterized689

by ρ(j), i.e. Pj is maximal at a specific value of ρ (e.g. transport is better690

carried out where there is a high concentration of chemicals that need to691

be transported from one membrane side to the other). The environment692

with ρ = ρ(j) will be called the j-th environment. As a consequence, the693

performances are in trade-off, since the k environments where each of694

them can be maxized are mutually exclusive (one could also assume that695

the environments are k′ < k, since more than one performance can be696

maximal in the same environment).697

(iii) The relevant traits are represented by a vector ν that targets the698

protein to the environment characterized by ρ(ν), in such a way that its699

biological function is maximally exploited. Thus the j-th performance is700

assumed to be a function of ρ(ν), Pj(ρ(ν)).701

(iv) The biological function of a protein is quantified by its fitness
function, as follows:

F (P1(ρ(ν)), . . . , Pk(ρ(ν))) . (3.1)

F is assumed to be an increasing function of all its arguments. According
to (iii), we must maximize F with respect to ν in order to find where
the protein characterized by F will be directed. The derivative of F with
respect to the traits ν leads to the optimal solutions:

0 = ∂F

∂νm

=
k∑

j=1

∂F

∂Pj

∂Pj(ρ)
∂νm

. (3.2)
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From (ii) Pj(ρ) is maximum at ρ = ρ(j). We make the simplifying hypoth-
esis that ρ(j) ≡ ρ(ν(j)) and, at the leading order in ρ − ρ(j),

Pj(ρ) = Pj(ρ(j)) − (ρ − ρ(j))T g(ρ − ρ(j)) , (3.3)

where g is some metric tensor and, at the leading order in ν − ν(j),

ρ(ν) − ρ(ν(j)) = M(ν − ν(j)) , (3.4)

with Mi,m = (∂ρi(ν)/∂νm)ν=ν(j) , independent of j. This leads to

0 =
k∑

j=1

∂F

∂Pj

ĝ(ν − ν(j)) , (3.5)

where ĝ = MT gM is the induced metric tensor in trait space. Thus, we
are led to the condition for the optimal choice of ν,

ν =
∑k

j=1 ν(j)∂F/∂Pj∑k
j=1 ∂F/∂Pj

, (3.6)

which means that the optimal ν lies in the convex hull in ν-space whose702

vertex are ν(j), j = 1, . . . , k. We then expect that a convex hull in the trait703

subspace is a signature of a Pareto optimization in the E.coli proteome.704

3.3 Enrichment analysis705

Each archetype/vertex must be enriched with at least one discrete or706

continuous feature characterizing the corresponding archetype. Density707

profiles of the features enriching a given vertex must attain their maximum708

value in the region (or bin) of the polytope containing that vertex, and709

then decrease monotonically with the distance from it. From enrichment710

analysis, Pareto optimality theory allows us to infer competing tasks for711

each vertex of the polytope (three tasks in our triangular case) from the712

attributes of the corresponding enriched features (continuous or discrete).713

3.3.1 Enrichment analysis with continuous and discrete714

features715

We performed enrichment analysis on discrete features, such as the subcel-716

lular localization annotations (6 annotations), obtained from the Taguchi’s717

dataset, and the GO-annotations (702 annotations). GO-annotations were718
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obtained from the Gene Ontology dataset [3] which has the structure719

of a directed acyclic graph with nodes, called GO terms, which describe720

the molecular functions of each protein, their locations in the cell envi-721

ronment and the biological processes in which they are involved. Below,722

we will show how to build the complete table of discrete features for the723

enrichment analysis.724

We treated the discrete features on the same footing as the continuous725

features, by assigning to data points the value 1 if they hold a given feature726

and 0 otherwise. For each vertex we associate a ranked vector of euclidean727

distances ordered from the nearest point to the furthest from the vertex.728

Data points are then clustered in bins, such that each bin has the same729

number of points. We compute the ratio of densities of the discrete feature730

in a given bin, with respect to the mean density among all data. The results,731

plotted versus the bin number (ordered from the nearest to the farthest732

from the archetype), are shown in Figure 3.10.733

3.3.2 Statistical significance of enriched features734

The statistical significance of the enriched features can be evaluated by735

computing a p-value test, based on the probability of finding a higher736

density of the feature in the first bin with respect to the other bins (see737

Supplementary Materials of [132]). We analyzed a large dataset of 708738

discrete features. With such a big number, several enriched curves could739

appear just by chance. Thus, the p-values must be corrected for the possi-740

bility of “false-positive” p-values. A common approach employed to deal741

with these type of errors is the false discovery rate (FDR) [8].742

The statistical significance of enriched features was tested also against743

the null-model, by reshuffling the values of a given feature. It is expected744

that only a few enrichments survive after a random reshuffling. For 103
745

random datasets, with 708 randomized features each, we found that only746

50 out of 106 NULL-features are enriched by chance, with a threshold of747

0,05 for the FDR.748
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Fig. 3.8 Solubility-hydrophobicity triangle. We show a scatter plot of the 3,172
proteins of the Escherichia coli proteome. Each protein is represented as a point
whose coordinates are the values of its hydrophobicity and solubility. The Pareto
front is the triangular-hull that exhibits a low p-value of the order of 5 · 10−3,
confirming the statistical significance of the plotted distribution. Proteins whose
points lie inside the triangle are the best compromise in the multi-objective
optimization of the three tasks, which are better performed by the corresponding
archetypes located at the three vertices. Points outside the triangle would have a
better counterpart inside the triangle in at least one of the tasks. The RGB colors
identify the distribution of the integral inner membrane (blue), outer membrane,
and outer membrane bounded periplasmic (red) and cytoplasmic (green) proteins,
which also characterize the vertices.

Table S 3.2 Principal components and their relative weights

Table Of Loadings PC1 PC2 PC3
Hydrophobicity 0.9996 0.0002 0.0275
Solubility -0.0040 0.9999 0.1409
Yield -0.027193 -0.1410 0.9896
Calculated pI 0.0037 -0.0069 -0.0095
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Table S 3.3 Inferred tasks for each archetype in the Escherichia coli proteome,
along with subcellular localization labels.

Archetype (Vertex) Inferred tasks Subcellular localization Enriched GO-annotations
Cation transmembrane transporter;

Blue (V1) Transporting Integral Membrane Active transmembrane transporter;
Anion transmembrane transport.

Polysaccharyde Outer Membrane and Porin activity;
Red (V2) Binding outer membrane Polysaccharide metabolic process;

Catalysis bounded periplasmic Hydrolase activity;
Molecular function regulator.

Green (V3) Regulation Cytoplasm Regulation of the metabolic process;
Regulation of biological process.

3.3.3 Sub-cellular Localization Annotations749

The process of targeting proteins towards the correct cellular compart-750

ments seems critical in the functionallity of prokaryotes and eukaryotes.751

Here, we are looking for optimization criteria which drive the localization752

of proteins inside the cells. As pointed out in the above section, Pareto op-753

timization requires enriched features at the archetypes, so that we consider754

as discrete features the sub-cellular localization annotations as given by755

Taguchi [95]. Each protein is labelled with one out of eleven possible cellu-756

lar component features: periplasmic, cytoplasmic, inner membrane, outer757

membrane beta barrel (see figures 1 and 3 in the main text), membrane an-758

chored, inner membrane lipoprotein, outer membrane lipoprotein, mem-759

brane lipoprotein, membrane associated, perisplasmic with N-terminal760

Membrane Anchored and extracellular proteins. We selected for further761

analysis only the six features with an occurrence frequency higher than 15:762

periplasmic, cytoplasmic, inner membrane, outer membrane (see Figure 3763

in the main text), membrane anchored, outer membrane lipoprotein.764

We remind that in Escherichia coli, as in other gram-negative bacteria,765

the cytoplasm is surrounded by a multi-layered cell envelope that consists766

of the plasmatic or inner membrane, composed of a phospholipid bilayer,767

and a second external lipid bilayer, identified as the outer membrane. This768

second external membrane is asymmetric and has a different composition769

with respect to the inner membrane. Moreover, the outer membrane ex-770

poses lipopolysaccharide molecules to the external environment. The outer771

membrane, is the most protective barrier for the organism, and the lipidic772

layer, together with the outer membrane proteins and the lipopolysaccha-773
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Fig. 3.9 Discrete enrichments of proteins annotated with sub-cellular com-
partmentalization. Data points are clustered in 25 bins with the same number
of proteins according to their euclidean distance from one of the three archetypes.
We booleanized the data (1 for proteins with the given feature, 0 otherwise) and
for each of the 25 bins we computed the ratio between the fraction of proteins
with the specified feature in the bin over the fraction with the same feature inside
the whole triangle. This procedure is repeated for all the archetypes. The red and
blue curves are almost specular since the triangle is approximately isosceles, with
a slight shift toward the blue vertex.

ride, create the tactile organ of the gram-negative bacteria. Between the774

two membranes lies the periplasm, a crowded space that contains proteins,775

small molecules and a peptidoglycan mesh layer [99] The vertices with the776

lowest solubility values are mainly populated by membrane proteins (V1777

and V2 in Table 3.3). Nonetheless, there is a clear-cut distinction between778

the two vertices. Vertex V1 has a very high hydrophobicity component,779

in the trait vector, and is enriched in inner membrane proteins (repre-780

sented by blue points in Figure 3.8). Whereas vertex V2, which presents781

higher water-like propensity (i.e., low hydrophobicity), is enriched in782

outer-membrane and outer membrane bounded periplasmic proteins (red783

points in Figure 3.8). This sharp separation between membrane proteins784

(both with low solubilities) is striking, and it shows that the different785

values in their hydrophobicity component appear to be an essential ingre-786

dient in driving membrane proteins to their final destination. Vertex V3,787

which has a very high solubility, is enriched with proteins that occupy the788

cytoplasmic region (green points in Figure 3.8). Enrichment curves are789

rather smooth in the case of a small number of bins (5 − 10) while their790

roughness increase with a higher number of bins.791
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3.3.4 Enrichment analysis: GO annotations792

The distribution of Gene Ontology annotations [3], considered as a func-793

tion of the distance from the polytope vertices (the archetypes), unveils794

the competing tasks related to them. The Gene Ontology annotations of795

each protein hereafter referred to as GO-terms, are extended to include796

the parent GO-terms, to improve the robustness of protein annotations797

(see SI for further details). We consider the Gene Ontology dataset as798

given from http://geneontology.org, which consists on a total number of799

4442 GO-terms. We booleanized this dataset by assigning to each protein800

the value 1, if they are annotated with the given term, and 0 otherwise.801

Then, we considered only those annotations with occurrencies higher than802

15, resulting with a final table of 702 GO-terms. ( Each protein can be803

annotated with more than one GO-term at the same time. We bin the804

space into equally populated regions [69, 143], and for any given anno-805

tation, we check whether the first bin is more enriched than the other806

bins. The statistical significance of the enriched terms is evaluated with807

a Benjamini-Hochberg procedure to take into account the problem of808

multiple hypothesis testing. Finally, the False Discovery Rate (FDR) with809

a threshold set to 0.05 is computed [8].810

Based on this analysis, we find GO-annotations that are significantly811

enriched at each vertex. The vertex V1 (blue) is enriched in transmembrane812

transporters; in the vertex V2 (red) we observe enriched GO-terms for813

Porin activity, polysaccharide metabolic process, and hydrolase activity;814

the third vertex V3 (green) is enriched in molecular functions related815

to different kinds of regulation tasks. The enrichment densities of these816

features are shown in Figure 3.10 and listed in Table 3.3.817

According to our mathematical derivation, the tasks found to enrich818

the triangle vertices are expected to be better performed in the distinct819

subcellular localizations that label the corresponding vertices. This finding820

is confirmed by the types of GO-terms, related to the molecular functions821

and biological processes, that enrich those vertices.822
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Fig. 3.10 Enrichments. Enrichment plots as a function of the distance from the
corresponding archetype. Pareto optimality is defined such that the points closest
to the vertices of the triangle must be maximally enriched in some features (they
behave as specialists or “pure” types). All the tasks (GO-terms) that enrich each
vertex are added together. Next to the enrichment plot, the proteins are mapped
in the solubility-hydrophobicity plane. The colors highlight the enriched proteins
belonging to the first bin. The vertices in the figures (V1, V2, and V3) label the
protein subcellular localizations (as presented in Figure 3.8), namely, cytoplasmic
proteins (green), integral inner membrane proteins (blue), outer membrane, and
outer membrane bounded periplasmic proteins (red).
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Archetype 1823

The right vertex, the blue one, is enriched with inner membrane pro-824

teins, which are characterized by low solubility and high hydrophobicity.825

It is highly populated by proteins specialized in the transportation pro-826

cess such as: cation transmembrane transporter activity (GO:0008324),827

ion transport (GO:0006811), active transmembrane transporter activity828

(GO:0022804), ion transmembrane transport (GO:0034220),ion trans-829

membrane transporter activity (GO:0015075), organic anion transport830

(GO:0015711), substrate-specific transmembrane transporter activity (GO:0022891).831

Further GO-terms that specify the inner membrane location are the832

following: single-organism transport (GO:0044765), intrinsic compo-833

nent of plasma membrane (GO:0031226), single-organism localization834

(GO:1902578), bacterial inner membrane (GO:0005886) (see Figures 3.11835

and 3.12).836

Fig. 3.11 Right Vertex Density enrichments are shown in the case of 15 bins
and FDR<0.05.
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Fig. 3.12 Right Vertex Density enrichments are shown in the case of 15 bins
and FDR<0.05.
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Archetype 2837

At the left vertex, the red one, we find outer-membrane and outermembrane-838

bounded periplasmic proteins, which are characterized by low solubility839

and low hydrophobicity. In this vertex, proteins are specialized in wide-840

pore forming from the intake of molecules, catalysis, binding activity and841

polysaccharide metabolic processes. The enriched GO-terms are the fol-842

lowing: elemental activities, such as catalysis or binding (GO:0003674),843

polysaccharide metabolic process (GO:0005976), macromolecule catabolic844

process (GO:0009057), hydrolase activity (GO:0016787), external mem-845

brane of Gram-negative bacteria (GO:0019867), outer membrane-bounded846

periplasmic space (GO:0030288), cellular polysaccharide metabolic process847

(GO:0044264), external encapsulating structure part (GO:0044462), 4 iron,848

4 sulfur cluster binding (GO:0051539) (see Figures 3.13 and 3.14).849

Fig. 3.13 Left Vertex Density enrichments are shown in the case of 15 bins and
FDR<0.05.
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Fig. 3.14 Left Vertex Density enrichments are shown in the case of 15 bins and
FDR<0.05.
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Archetype 3850

As seen in the section above, cytoplasmic proteins, which are characterized851

by high solubility and low hydrophobicity, cluster at the top vertex. These852

proteins are specialized in regulation processes, as derived from the enrich-853

ment analysis of the GO terms. In the figure 9 below we have examples of854

enriched regulation processes, such as: regulation of biological processes855

(GO:0050789), regulation of metabolic processes (GO:0019222), biological856

regulation (GO:0065007) and regulation of primary metabolic processes857

(GO:0080090). The cytoplasmic characteristic of these proteins is sup-858

ported also by the cellular component cytosol component (GO:0044445),859

see Figure 3.15.860

Fig. 3.15 Top Vertex Density enrichments are shown in the case of 15 bins and
FDR<0.05.
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We end this section by introducing three generic GO-labels which are861

useful to group the archetypal GO-annotations with each other in three862

main classes. Enrichment analysis performed on this new labels can be863

considered as an average analysis of the archetypal annotations.864

GO-annotations associated toArchetype 1, (GO:0005886, GO:0008324,865

GO:0006811, GO:0022804, GO:0034220, GO:0015075, GO:0015711, GO:0022891,866

GO:0031226, GO:0044765, GO:1902578), are thus relabelled as "trans-867

portation", those associated to Archetype 2 (the red one), (GO:0003674,868

GO:0005976, GO:0009057, GO:0016787, GO:0019867, GO:0030288, GO:0044264,869

GO:0044462, GO:0051539), are relabelled as "porin-binding-polyssaccharyde",870

while those associated to Archetype 3 (the green one), (GO:0050789,871

GO:0019222, GO:0044445, GO:0065007, GO:0080090), are thus rela-872

belled as "regulation". In the Figures 3.16 and 3.17 below, we plot the873

displacement of the proteins pertaining to the three classes:874

Fig. 3.16 Density of the archetypal feature Proteins labelled with regulation
proteins, porin-binding-polyssaccharyde, transport proteins are plotted in the
space of solubility vs hydrophobicity. We enclose with a yellow convex hull the
specialized proteins.
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Fig. 3.17 Archetypal proteins in the 1st bin. Red points denote the proteins
with the given feature in the bin nearest each vertex (≈ 200 proteins).

Enrichment analysis performed on the three archetypal groups is shown875

below in the Figure 3.18:876

Fig. 3.18 Enrichment analysis of the three main groupsWe binned the dataset
into 15 bins. In panel a) porin-binding-polyssaccharyde proteins, b) regulation
proteins, c) transportation proteins.

Statistical fluctuations increase with the number of bins. In the case877

of 25 bins the three archetypal groups have the following enrichment878

patterns:879
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Fig. 3.19 Enrichment analysis of the three main groupsWe binned the dataset
into 25 bins.

3.4 Evidence for a tetrahedron880

If protein yield is added as a third trait to the Pareto front analysis, a881

statistically significant tetrahedron emerges as the convex hull enclosing882

all data. The tetrahedron base, in the hydrophobicity-solubility plane at883

the low yield, reproduces the already discussed triangle with vertices V1,884

V2 and V3 corresponding to different cellular compartments. The fourth885

tetrahedron vertex, V4, at high yield, is inferred to be related to archetypal886

proteins that are cytoplasmatic (as for vertex V3) but involved explicitly887

in tRNA/RNA metabolic processes. The above conclusion needs to be888

further validated, because of the low number of proteins found close to889

V4. The finding that proteins highly expressed by a cell-free translation890

system [95], based on translation factors, tRNAs and ribosomes, with no891

chaperons involved, can be associated to Pareto optimality through their892

functional role in tRNA/RNA metabolic processes is intriguing. In keep-893

ing with the general framework established in this work, whereby different894

tasks are associated with different environments, the presence of RNA895

molecules may be interpreted as defining a specific type of environment896

for the archetypal V4 protein.897

When the Pareto analysis is extended to include protein yield, a tetrahe-898

dron emerges as the convex hull representing the new front in 3D (Figure899

3.20). The yield feature, as derived from the Taguchi’s dataset, corresponds900

to the third principal component (see Table 3.2). The tetrahedron encloses901

most of the data points, with a p-value smaller than 0.01%. Based on the902

Pareto theory, all the vertices of the tetrahedron must be enriched with at903
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least one feature per vertex, in order to infer the competing tasks for all904

the vertices. The triangular convex hull discussed above can be obtained905

from the tetrahedron by projecting it on the solubility-hydrophobicity906

plane, so that the enriched features found for triangle vertices can be as-907

sociated to three of the tetrahedron vertices as well. The new vertex,908

V4, is characterized by proteins with a high yield component, low hy-909

drophobicity, and low solubility. This vertex, similar to vertex V3, is910

enriched with cytoplasmic proteins; however, the tasks that characterize911

vertex V4 are different. According to our GO-terms analysis (see Figure912

3.21), they are related to RNA processes such as tRNA metabolic process913

(GO:0006399), tRNA modification (GO:0006400 and GO:0009451) and914

ncRNA metabolic process (GO:0034660). This finding indicates that pro-915

teins involved in tRNA/RNA metabolic processes are also the ones that916

have higher expression levels in a cell-free translation system. However, in917

contrast to the two-dimensional triangular Pareto front, the found tetra-918

hedron is not robust. When few data points with the highest yields are919

removed, the p-value increases from 10−4 to 10−1, making the results of920

this analysis less reliable.921
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Fig. 3.20 Tetrahedron projectionsTetrahedron in the hydrophobicity-solubility-
yield space. The three vertices in the hydrophobicity-solubility plane, correspond
to the archetypes identified in the previous section.
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Arch (Orig) Position Hydrophobicity Solubility Yield
Red -755.26 -2.62 5.57
Purple -128.65 48.15 378.9
Green 13.31 211.37 -0.09
Blue 636.04 -34.12 1.84

922

923

Arch (PCA) Position Hydrophobicity (PC1) Solubility (PC2) Yield (PC3)
Red -703.60 -47.41 -53.32
Purple -87.59 -49.51 340.54
Green 63.94 165.46 -7.68
Blue 687.40 -77.69 -23.15

924

Table S 3.4 Coordinates of the four archetypes as found with Sisal. The
coordinates of the four vertices in the solubility-hydrophobicity-yield space are
shown in the top table, whereas the coordinates in the principal component space
are shown in the bottom table.925
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Fig. 3.21 Fourth Vertex enrichments Density enrichments are shown in the
case of 15 bins and FDR<0.05. We show the subcellular location in the case of
25 bins.
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3.5 Conclusion and Discussion926

In this chapter, we extended the Pareto front analysis to the molecular level.927

We found evidence that Escherichia coli proteins were selected by trading off928

the performances of different competing tasks, and we inferred the latter929

ones. According to the Pareto interpretation, we suggest that E.coli seems930

to exploit solubility and hydrophobicity signals to drive the proteins in the931

cell compartments where they perform the required biological functions932

at their best. Finally, in the specific case of membrane proteins, which933

inherently have very low solubilities, our analysis can split apart outer and934

inner membrane proteins, using their different hydrophobicities.935

According to the standard view, the basic physical properties considered936

here, hydrophobicity and solubility, were evolved in the first place to allow937

the foldability of proteins and to prevent them from aggregation. On top of938

that, our findings suggest the novel idea that the solubility-hydrophobicity939

signal encoded in the protein sequence can flag the final localization of the940

latter in the cell, and at the same time can hint at its biological function.941

According to the Pareto interpretation, the two traits have evolved to942

optimize three different performances simultaneously, each related to a943

separate cellular compartment.944

Thus, the major result of our study is the crucial role played by subcel-945

lular compartments in the fitness of the Escherichia coli proteome, obtained946

by a direct mapping between the Pareto front vertices and the subcellular947

compartments (Figure 3.10, 3.22). It turns out that natural selection pushed948

the bacterium to optimality by tuning the solubility-hydrophobicity traits949

of all proteins, in such a way that each of them can reach the distinct950

environment where it can perform the required task at its best. On the951

other hand, protein biological tasks are eventually related to their interac-952

tions with metal ions, ligands, substrates, other proteins, or nucleic acids.953

Therefore, one could speculate that the specific solubility-hydrophobicity954

traits of each protein are needed to optimize the interactions associated955

with the related biological tasks.956

The Pareto analysis shows that the protein performances are in a trade-957

offwith each other and identifies archetypal tasks located closer to polytope958

vertices. From that, we can infer that the archetypal proteins found at959

vertex V1 of Figure 3.8(inner membrane) are specialized in the transport of960

organic and inorganic molecules. Archetypal proteins at vertex V2 (outer961

membrane and periplasmic space) are specialized in wide-pore forming962

from the intake of molecules, catalysis, binding activity and polysaccharide963

metabolic processes, while those at vertex V3 (cytoplasmic space) are964
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specialized in the regulation of different processes (Table 3.3). As noted965

before, the difference in solubility can be due to different structural classes966

[95]. Nonetheless, we found that membrane proteins, which have very967

low solubilities (also confirmed by experimental data [95]), can be split968

into outer and inner membranes through their hydrophobicities. Notably,969

the two membrane protein classes have very different structures, in spite970

of the fact that their measured solubilities are similar.971

The problem of spatial protein distribution in bacteria is of paramount972

importance since the subcellular localization of proteins is crucial to pro-973

vide the physiological context for their function, to achieve functional974

diversity and to economize protein design and synthesis [18]. Although975

bacterial cells (such as E. coli) lack internal membrane-bounded structures,976

they are not ”bags of mostly randomly localized macromolecules” [59].977

Instead, they are organized with different macromolecules that display com-978

plex subcellular localization patterns [18, 32, 120]. Different mechanisms979

drive proteins toward their final cell destination [18, 32, 120] through the980

cytoplasm and the subcellular localization of proteins in E. coli across the981

different membrane barriers, and one of the major achievements that our982

analysis offers is a significant breakthrough for the comprehension of this983

transport mechanism. With the Pareto front analysis, we find indications984

that Gram-negative bacteria exploit the solubility and the hydrophobicity985

of proteins to take them in the major compartments where they can per-986

form the function needed for the organism at their best. This finding does987

not exhaust the complexity of the protein sorting, but it adds new clues.988

Among all known mechanisms and signals, the solubility-hydrophobicity989

balance of a protein could be exploited by the cell as a subcellular local-990

ization signal. According to our results, it appears that solubility and991

hydrophobicity values provide a signature to the protein’s final destiny,992

and possibly an indication of the task that proteins perform at their best993

in that environment. This result, which was obtained from our Pareto994

analysis, should be experimentally validated in future research.995
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Fig. 3.22 Cell compartments and Pareto triangle. There is a direct mapping
between the four different compartments of Escherichia coli (outer membrane and
outer membrane bounded periplasmic proteins, inner membrane, and cytoplasm)
and the proteins that populate the vertices of the Pareto front.



Chapter 4996

Archetypes of human cognition997

defined by time preference for998

reward and their brain999

correlates: an evolutionary1000

trade-off approach1001

4.1 Introduction1002

Biological systems carry out multiple tasks in their lifetime, which, in the1003

course of evolution, may lead to trade-offs. In fact phenotypes (different1004

species, individuals within a species, circuits, bacteria, proteins, etc.) can-1005

not be optimal at all tasks, and, according to Pareto optimality theory,1006

lay into a well-defined geometrical distribution (polygons and/or poly-1007

hedrons) in the space of traits. The vertices of this distribution contain1008

archetypes, namely phenotypes that are specialists at one of the tasks,1009

whereas phenotypes inside the geometrical distribution generalists.1010

In this chapter we test the predictions of Pareto optimality theory1011

to human cognition and behavior by analyzing data from the Human1012

Connectome Project (HCP) that includes a wealth of cognitive, personality,1013

health, socio-economic status, and brain measures ( [150], see also section1014

4.2).1015

The trade-offs in cognitive tasks are not a given. In fact, the well1016

established theory of general intelligence, or g-factor, posits a positive1017

correlation among a large number of cognitive tasks ( [137]). While human1018

intelligence may embrace more than sixty specific cognitive abilities, the g1019

factor is common to all of them ( [21]; [29]), explaining large amount of1020
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variance ( 45–50%) across test scores in large samples of healthy subjects1021

( [4]; [46]).1022

We asked if neuropsychological or behavioral scores distribute accord-1023

ing to Pareto Optimality theory and focused on triangular shaped distri-1024

bution. In section 4.4 we show that among all possible combinations of1025

pairs of cognitive and behavioral traits of the dataset, the best fit to Pareto1026

optimality is found when individuals were plotted in the trait-space of time1027

preferences for reward, evaluated with the Delay Discounting Task (DDT).1028

As we will exhaustively introduce in section 4.4.2, the DDT measures sub-1029

jects’ preference in choosing either immediate smaller rewards or delayed1030

larger rewards. Time preference for reward was described by a triangular1031

distribution in which each of the three vertices included individuals who1032

used a particular strategy to discount reward.1033

These archetypes accounted for variability on many cognitive, person-1034

ality, and socioeconomic status variables, as well as differences in brain1035

structure and functional connectivity, with only a weak influence of genet-1036

ics. Based on this enrichment analysis, we inferred the competing human1037

evolutionary strategies. Furthermore, we identified differences among1038

archetypes in brain structure (volume, gray matter, etc.), and function1039

(resting state functional magnetic resonance imaging rs-fMRI connectiv-1040

ity). Finally, we explored the influence of genetics on archetype variability.1041

Specifically, we asked if behavioral scores on the identified tasks were more1042

concordant in monozygotic versus dizygotic twin pairs. In summary, time1043

preference for reward reflects a core variable that biases human phenotypes1044

via natural and cultural selection.1045

4.2 HCP Dataset1046

We analyzed the public data release of the WU-Minn Human Connec-1047

tome Project (HCP) consortium ( [150]), which includes 1206 healthy1048

young adults, from families with both twins and non-twin siblings. The1049

current sample was obtained from the March 2017 data release (1200 Par-1050

ticipants; http://www.humanconnectome.org). The database consists of1051

behavioural measures (e.g., cognitive, personality), socio-demographic1052

measures, and high-resolution 3T MRI imaging data. Some data are re-1053

stricted due to subject privacy (e.g. twin or smoking status etc). The1054

HCP subjects include 168 Monozygotic twin pairs, and 103 Dizygotic1055

twin pairs. The behavioral database consists of tests that are part of the1056

NIH Toolbox battery and of several Non-Toolbox behavioral measures1057

(see below). For each subject, we also obtained the brain volumes from1058
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the Freesurfer software and analysed them by voxel-based morphometry.1059

They consist of continuous features and are normalized with respect to1060

intracranial volume.1061

The behavioral database consists of tests that are part of the NIH1062

Toolbox battery and of several Non-Toolbox behavioral measures. They1063

are collected in the following main domains:1064

1) Demographics: Gender, Age by Year, Race, Ethnicity, Handedness,1065

Self-Reported demographics on education, income, relationship status1066

from SSAGA.1067

2) Health and Family History: Body Mass Index, Blood Pressure,1068

Parental Psychiatric or Neurological Illnesses.1069

3) Alertness: Cognitive Status, Sleep1070

4) Cognition: Episodic memory (Picture sequence and Verbal), Exec-1071

utive Function (Cognitive Flexibility and Inhibition), Fluid Intelligence,1072

Language (Reading decoding and Vocabulary comprehension), Processing1073

Speed, Self-regulation/Impulsivity (Delay Discounting), Spatial Orienta-1074

tion, Sustained Attention, Working Memory.1075

5) Emotion: Emotion recognition, Psychological Well-being, Social1076

Relationships, Stress and Self-Efficacy.1077

6) Motor: Endurance, Locomotion, Dexterity, Strength.1078

7) Personality: Five Factor Model (NEO-FFI).1079

8) Psychiatric and Life Function: Achenbach Self-Report of Life1080

function and Psychiatric Clinical Symptoms, Self-reported Psychiatric1081

Clinical Symptom measures from SSAGA.1082

9) Sensory: Audition, Olfaction, Pain, Taste, Contrast Sensitivity,1083

Color Vision, Visual Acuity.1084

10) Substance Use: Urine Drug Screen, Seven-day Alcohol and To-1085

bacco Use Retrospective, Self-Reported Substance Use and Abuse measures1086

from SSAGA.1087

4.3 Pareto Optimality Inference method1088

The Pareto Optimality analysis is based on the assumptions presented in1089

chapter 3, where, instead of dealing with the proteins of the Escherichia coli1090

bacteria, we considered each subject as a data point in the morphospace of1091

the set of continuous traits ν, which correspond to measures of cognitive,1092

personality, socio-demographic, and brain features.1093

We focused on identifying the best-shaped polytope that encloses the1094

data points in the multi-dimensional space of traits starting from a tri-1095

angular Pareto front distribution ( [13]). In principle, other polygons or1096



50 | Archetypes of human cognition defined by time preference for
reward and their brain correlates: an evolutionary trade-off approach

polyhedrons in higher dimensional space might exist, but, based on prior1097

evolutionary studies ( [132]; [50]; [142]; [147]), and our study [76] pre-1098

sented in chapter 3, the initial focus was on triangular solutions. Clearly1099

more work is needed to investigate polyhedrons in higher dimensional mor-1100

phospaces, however this study is consistent with the theory that cognitive1101

traits, as many other phenotypes in nature, are in trade-off.1102

As compared with other classical clustering methods (k-means, Gaus-1103

sian Mixture models, Latent Class Analysis), Pareto Optimality approach1104

differs as it identifies the vertices (rather than centroids) of a distribu-1105

tion. Clustering and Pareto analysis are indeed both able to find cen-1106

troids, but in a complementary way, since the former is sensible to lo-1107

cal density inside the distribution, while Pareto is mainly sensitive to1108

the external shape (the external perimeter) of distributions, also called1109

convex hulls (for further comparisons between the Pareto method and1110

clustering methods see [69]). Pareto analysis and enrichment analysis, as1111

described below in this section, were run using the software package ParTI:1112

(https://www.weizmann.ac.il/mcb/UriAlon/download/ParTI).1113

The first step in our analysis was projecting for each pair of behavioral1114

measures the 1206 participants’ data points in a two-dimensional space.1115

We considered measures related to each cognitive and performance domain1116

(e.g., fluid intelligence, memory, spatial orienting, self-regulation, strength,1117

dexterity etc. (see section 4.2 for details on the measures). After removing1118

redundant, ordinal measures or measures with too few observations, we1119

considered a subset of 25 traits and we combined them in pairs of cognitive1120

and performance-related traits, resulting in 300 possible combinations.1121

As a second step, we checked if the distribution of points obtained for1122

each combination of pairs of traits fits a triangular shape. The statistical1123

significance of each potential triangle was tested with the triangularity1124

test (the t-ratio test (see section 3.1.1 in chapter 3)). To further assess the1125

validity of a triangular Pareto distribution, we measured the fraction of1126

variance accounted for (across subjects) as a function of the number of1127

vertices (2 to 6) of the possible polygons (see Figure 4.2).1128

This chapter focus on the best triangle in the morphospace of traits of1129

the HCP dataset. This triangle includes individual scores on two measures1130

of the Delay Discounting Task (DDT). The DDT measures the tendency1131

to opt either for immediate smaller rewards or delayed larger rewards ( [63];1132

[74]). This task assumes that the subjective value of a reward (e.g., money)1133

is increasingly discounted from its nominal amount as a function of the1134

delay until reward reception. Discounting is a pervasive phenomenon in1135

decision making shared by humans and animals ( [103]). The DDT is a1136
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sensitive measure of the ability to wait for a reward (time preference) as1137

well as impulsivity and self-control processes ( [75]; [91]). In the context of1138

Pareto Optimality, the vertices of this triangle contain individuals that use1139

different strategies to discount reward in time. Interestingly, these groups1140

enriched on a variety of other cognitive, behavioral, socio-economic, and1141

health features, and differed on measures of brain structure and function.1142

However, genetic influence was modest. Therefore, strategies for discount-1143

ing reward represent phenotypes that have developed under evolutionary1144

and/or cultural pressures to adapt to our environment.1145

4.4 A Pareto front in the delay discounting space1146

(DDT)1147

For each participant, we took into account 25 continuous measures of the1148

HCP (i.e., cognitive and behavioural scores), mapping them into the multi-1149

dimensional space of traits (i.e., morphospace). The best triangular Pareto1150

front solution was found in a two dimensional space that contains, for1151

each subject, the values associated with the Area-under-the-curve (AUC)1152

for $200 and AUC for $40, 000, two measures of the DDT (Figure 4.1).1153

Indeed, among all possible pairwise combinations of traits, the triangle1154

defined by the two measures of the DDT was the only one to survive1155

the permutation test on triangularity (over 1000 permutations) corrected1156

for False Discovery Rate (FDR) (p < 10−4). The Principal Convex Hull-1157

Archetypal analysis (PCHA) showed that the triangle was the best polygon1158

to enclose all the data points among planes with 2-6 vertices. In fact, a1159

triangle shape distribution (n = 3 vertices) explained the majority of1160

variance (> 99.5% variance), and increasing the number of vertices did1161

not improve the amount of variance accounted for (Figure 4.2).1162

4.4.1 Validation of Pareto Front Solution1163

Even though the triangularity test examines the statistical significance of1164

the obtained Pareto front solution against a null distribution through per-1165

mutation tests, we also ran additional validation analyses. In one analysis,1166

we performed a split-half replication: we ran the Pareto analysis separately1167

on two random independent smaller samples of the HCP data set (n=5591168

and n=560 subjects, respectively), taking into account all 300 possible1169

combinations of pairs of the 25 traits. This was done to ensure that the1170

Pareto Front solution obtained from Pareto Optimality Inference method1171
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Fig. 4.1 Pareto distribution (triangular polytope) in a space of AUC $200
(x-axis) versus AUC $40, 000 (y-axis).. The AUCs (Area-Under-the-Curve) are
two measures of the Delay Discounting Task. The distribution of AUC scores is
triangular hence fitting Pareto optimality theory. The three vertices of the triangle
(labelled as Blue, Green, Red) contain individuals who adopt three different
strategies for time preferences for reward (archetypes). These strategies co-vary
with cognitive, sensory and physical abilities, personality traits, measures of
substance use, and socio-demographic variables, which were identified by an
enrichment analysis (see also Figure 4.13 and Table 4.8). The size of the font
corresponds to the relative significance of each trait (larger font, lower p-value).
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Fig. 4.2 Optimal number of vertices of the Pareto Front. This figure shows
that three is the optimal number of vertices that explaines the largest amount of
variance (in percentage) of the data point, which are plotted in the two dimensional
space of AUC $200 and AUC $40,000. We made the analysis by varying the
number of vertices from two to six. The vertices were found by using PCHA
algorithm, as developed by [93]. The slope of the blue curve describes the
increment of the explained variance as increasing the number of vertices. It
results that three is a stationary point, after which the explained variance increases
negligibly.
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Fig. 4.3 Robustness of the Pareto Front-Test 1. This figure shows the robustness
of our triangular front when we randomly split in two sub-samples of equal
population the original sample of 1206 subjects and then we made for both the
triangularity test. It results that the p-values are < 10−4.

was robust, i.e. significant in two independent samples. The only signifi-1172

cant triangle that emerged in both groups was that defined by the DDT1173

measures (for both sub-samples: p < 10−4, after FDR correction) (Figure1174

4.3).1175

We also asked whether the obtained Pareto front solution was robust1176

to gender and race. In one analysis, two samples of subjects were created1177

based on gender: Males (549 subjects) vs. Females (649 subjects) (p < 10−4
1178

independently for male and female subjects). In the second analysis, three1179

groups of subjects were compared: Asian-Nat. Hawaiian-Other Pacific1180

(n=67 subjects) vs. Black or African American (n=192 subjects) vs. White1181

(n=883 subjects), with p-values such as: 1) p = 5 · 10−2 for Asian-Native1182

Hawaiian or Other Pacific populations; p = 10−4 for White subjects;1183

p = 0.2 for Black orAfricanAmerican individual (Figure 4.4). In summary,1184

the Pareto front for the DDT was highly significant, and robust over race,1185

gender, and independent samples of subjects.1186
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Fig. 4.4 Robustness of the Pareto Front-Test 2. This figure shows the robustness
of our triangular front. We considered many sub-samples of the data points (1206
subjects) and made for each of them the triangularity test. We analyzed separately
samples of only female/male subjects and the different race (Asian-Nat.Hawaiian-
Other Pacific, Black or African American, White). It results that the triangular
shape is robust to gender and race labels, meaning that the properties of the
triangle are not related to them.
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4.4.2 The Delay Discounting Task (DDT)1187

Since the best Pareto front solution was observed in the morphospace1188

created by two measures of the Delay Discounting Task (DDT), here we1189

briefly describe the DDT. All subsequent analyses (enrichment (in section1190

4.5), structural and functional brain features (in section 4.6), heritability1191

(in section 4.7)) will be carried out on the distribution of data points1192

derived from the combination of two measures of the DDT.1193

In the DDT, participants were asked to choose between two options1194

on each trial: a smaller amount of money to be given immediately vs. a1195

larger amount of money given at a later point in time. Participants made1196

choices for each of 6 possible delays (1 month, 6 months, 1 year, 3 years, 51197

years, and 10 years), and for two ‘reference’ delayed amounts that were1198

kept constant ($200 and $40,000). The amount available immediately1199

was instead adjusted after each choice in order to determine the amount1200

judged subjectively as equivalent to the delayed amount. If the participant1201

choose the immediate amount, then the immediate amount was reduced1202

on the next trial, whereas if he/she choose the delayed amount, then the1203

immediate amount was increased. For each combination of amount of1204

delayed reward and time delay, participants were asked to make 5 choices,1205

and the value that would have been used for the immediate amount in1206

the 6th choice was used as the indifference point. The indifference point1207

represents the point where an individual is equally likely to choose a1208

smaller reward earlier (e.g., $50 immediately) versus a larger reward later1209

on (e.g., $200 in 1 month). The Area under the curve (AUC) for each of1210

the two reference amounts ($200 and $40,000) was computed based on the1211

indifference points and ranges from 0 (maximum discounting) to 1 (no1212

discounting) ( [94]).1213

The AUC measures of the DDT are considered a reliable indicator of1214

self-control in cases of lower discounting rate (i.e. preference for larger1215

delayed rewards), and impulsive behavior in cases of higher discounting1216

rate (i.e. preference for smaller earlier rewards)( [75]; [91]). Although the1217

rewards are hypothetical, there is a good correspondence with real rewards1218

( [82]). Based on the processes involved in the DDT, the three vertices1219

(‘archetypes’) of the Pareto front triangle identify three optimal strategies1220

to deal with discounting reward in time.1221
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4.5 Enrichment analysis of the Archetypes1222

According to the Pareto Optimality theory, the vertices of the triangle iden-1223

tify specialists that express different traits to the maximum (or minimum)1224

extent, and that according to the theory are in trade-off. If Pareto theory1225

is correct, then, other traits (i.e., enriched features) should be maximal1226

or minimal in those specialists, and performance on those traits should1227

decline (or rise) as a function of the distance from that archetype.1228

To identify traits that enrich, we first divided the distribution of indi-1229

vidual scores in bins and then analyzed, for each trait, the change of the1230

mean value of that trait across the bins of the polytope, normalized with1231

respect to the mean value of the given trait for the whole distribution. For1232

simplicity, we binned the Pareto front three times, each time starting from1233

one of the three vertices, into n bins. To make the analysis statistically1234

valid in terms of sample size, we constrained each bin to contain the same1235

number of participants. This procedure was repeated systematically by1236

varying the number of bins between 8 and 15. A higher number of bins1237

leads to higher statistical fluctuations in the density analysis. Features1238

could be discrete or continuous. For continuous variables, we computed1239

the ratio among the mean value at all bins and the mean value of the1240

entire triangle. We plotted this ratio as a function of the n-th bin. For1241

discrete features, we first booleanized them (i.e. a value 1 was given if the1242

participant had the given feature, 0 otherwise), then we treated them as1243

continuous variables.1244

Enriched features were validated if they passed the p-value test based on1245

the hyper-geometrical distribution ( [69]) and corrected for FDR test. This1246

testmeasures the probability that themean value of a trait is maximal/minimal1247

in the bin closest to a given vertex. The robustness of the enrichment was1248

assessed by performing a null-test, namely a random permutation of the1249

values of the traits among the different bins. Features belonging to four1250

main domains were separately analyzed:1251

1. Cognitive, Physical and Sensory traits (1119 subjects and 46 mea-1252

sures);1253

2. Discrete traits of Personality, affective behaviour, substance abuse,1254

socio-demographic features (1123 subjects, 40 measures);1255

3. Continuous traits of Personality, affective behaviour, substance1256

abuse, socio-demographic background (1123 subjects, 70 continuous mea-1257

sures);1258

4. Structural brain measures (1105 subjects and 56 measures).1259
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Structural brain measures (n=56) included volume of cortical gray1260

matter, white matter, and volume of anatomical regions in the right and left1261

hemisphere (e.g. right and left hippocampus, thalamus, etc..) segmented1262

in Free Surfer. Before running the enrichment analysis, the measures were1263

first normalized per intracranial volume.1264

The three vertices of the DDT triangle (see Figure 4.1), colored in Blue,1265

Red, and Green, identify archetypes, namely ‘specialists’, i.e. subjects who1266

adopt unique strategies to deal with the discounting task, while subjects in1267

the middle of the triangle are ‘generalists’.1268

In the following we will show that the Blue archetype corresponds1269

to individuals with stable preference for larger rewards that are delayed1270

in time, independently of the amount. The Red archetype identifies in-1271

dividuals with stable preferences for smaller immediate rewards. The1272

Green archetype includes individuals who prefer delayed rewards when the1273

amount is very large (i.e., $40, 000), but prefer taking sooner for smaller1274

amounts ($200).1275

4.5.1 Cognitive, Physical and Sensory traits1276

We carried out the enrichment analysis on 46 features reflecting cognitive,1277

physical, and sensory abilities from 1119 participants, with a complete1278

data set. We found that near the Blue archetype, several cognitive features1279

enriched including crystallized and fluid intelligence, vocabulary knowl-1280

edge, working memory, spatial orientation, and attention (Figures 4.1-4.13;1281

Table 4.8; Figure 4.5-4.6).1282

For all these measures, individuals close to the Blue archetype showed1283

the highest scores, hence they were superior in these domains. Also mea-1284

sures of sensory and physical abilities enriched near/at the Blue archetype,1285

with those subjects showing the highest levels of hearing function, sub-1286

maximal cardiovascular endurance, and manual dexterity.1287

When focusing on the Green archetype, individuals near this vertex1288

scored high on measures of cognitive flexibility, crystallized intelligence1289

and spatial orientation, and were fastest in recognizing facial emotions.1290

Finally, individuals closest to the Red archetype showed the lowest1291

levels of performance on crystallized and fluid intelligence, vocabulary and1292

spatial orientation, cognitive flexibility, attention and inhibition, working1293

memory, verbal and visual episodic memory. These individuals also mani-1294

fested the lowest performance on endurance and dexterity tasks. However,1295

they scored highest on taste perception, i.e. they had a stronger perceived in-1296

tensity to gustatory stimuli. Therefore, individuals near the Red archetype1297
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showed an overall lower g factor. Notably, many of the cognitive, physical,1298

sensory traits (excluding taste perception) reached a minimum near the1299

Red archetype, and increased rapidly with distance from that archetype.1300
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Cognitive1301

Fig. 4.5 Cognitive 1



4.5 Enrichment analysis of the Archetypes | 61

Fig. 4.6 Cognitive 2
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Physical and Sensory1302

Fig. 4.7 Enrichment analysis of Cognitive, Physical and Sensory traits. We
plotted all the enriched features of the Cognitive, Physical and Sensory traits,
which result from the density analysis of the archetypes, in the case of 8 bins.

4.5.2 Personality, Substance use, socio-demographic traits1303

Data from 1123 participants were analyzed. Two analyses were performed1304

separately on 70 continuous and 40 discrete measures (however, for clarity1305

they will be described jointly). The enrichment analysis was carried out1306

on measures clustered into:1307

1) self-reported measures reflecting behavioral, social, and emotional1308

problems, adaptive functioning, and substance use (e.g., ASR and DSM-1309

oriented measures);1310
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Archetype 
 

Experimental Measures 
 

Features 
 

Average 
difference 
(p-value) 

First 
bin 

 
B ReadEng_Unadj Crystallized Intelligence 2.5873E-12 max 
B PicVocab_Unadj Crystallized Intelligence 1.1805E-10 max 
B PMAT_ACR Fluid Intelligence 2.9223E-10 max 
B NEOFAC_O Openness 0.00000285 max 
B PSQI_Score Sleep problems 0.00001369 min 
B BMI Body Mass Index 0.0000747 min 
B Endurance_Unadj Endurance 0.00021863 max 
B SAGA_Income: 8  High Income 0.00032978 max 
B ASR_Rule_Raw Rule-Breaking Behaviour 0.0012588 min 
B ListSort_Unadj Working Memory 0.001287 max 
B Race:Asian/Hawaiian/Oth 

Pacific 
Race 0.0021611 max 

B DSM_Antis_Pct Antisocial Behaviour 0.002465 min 
B ER40_CRT Emotion Recognition (RTs) 0.0056397 max 
B SCPT_SPEC Attention 0.0063268 max 
B VSPLOT_TC Spatial Orientation  0.0077114 max 
B Noise_Comp Hearing  0.010801 max 
B Dexterity_Unadj Dexterity* 0.010861 max 
B ASR_Extn_Raw Externalizing 0.013512 min 
B DSM_Hype_Raw Hyperactivity 0.017876 min 
B Taste_Unadj Taste* 0.037597 min 

G VSPLOT_TC Spatial Orientation  0.0040994 max 
G ASR_Thot_Pct Thought problems 0.016071 min 
G Avg_Weeday_Any_Tobacc

o_7days 
Tobacco 0.017359 min 

G ReadEng_Ageadj Crystallized Intelligence 0.031099 max 
G ER40_CRT Emotion Recognition (RTs)* 0.13533 min 

R ReadEng_Ageadj Crystallized Intelligence 2.5873E-12 min 
R Race: Black/African 

American 
Race 4.0364E-11 max 

R PicVocab_Unadj Crystallized Intelligence 1.1805E-10 min 
R PMAT_ACR Fluid Intelligence 2.9223E-10 min 
R Endurance_Unadj Endurance  3.8829E-07 min 
R SAGA_Education: 12 Low Education 1.0987E-06 max 
R VSPLOT_TC Spatial Orientation  2.3749E-06 min 
R SAGA_TB_Still_Smoking Cigarette Smoking 7.5111E-06 max 
R Avg_Weeday_Any_Tobacc Tobacco 0.00001353 max 

Fig. 4.8 Enrichment analysis of the archetypes. The first column represents
the label of each archetype (B = Blue archetype; G = Green archetype; R =
Red archetype). The second and the third columns describe the measure and
the corresponding trait enriched, respectively. The resulting p-value is shown
in the fourth column and it is specified, in the last column, if the value of each
trait is maximum or minimum in the bin close to a given archetype. The asterisk
indicates traits that are significantly enriched using a 6-bins analysis.



64 | Archetypes of human cognition defined by time preference for
reward and their brain correlates: an evolutionary trade-off approach

2) substance use and physiological variables (e.g., quality of sleep,1311

smoking);1312

3) socio-demographic features (i.e., educational level, race, income)1313

(Figures 4.1-4.13; Table 4.8; Figure 4.9-4.11).1314

Individuals closest to the Blue archetype resulted more open to experi-1315

ences, defined as an appreciation for art, creativity, intellectual curiosity,1316

and preference for variety and novelty. They also reported the lowest1317

scores on scales related to sleep problems, rule-breaking and antisocial1318

behavior, hyperactivity and externalizing behaviors (such as impulsivity1319

and aggression). Finally, they had the lowest Body Mass Index (BMI), a1320

measure of body fat.1321

Individuals close to the Green archetype were characterized by mini-1322

mum scores in thought problems (i.e., hallucinations, strange thoughts1323

and behaviors, obsessive-compulsive behavior, self-harm and suicide at-1324

tempts), and by the lowest number of cigarette smoked per day (or other1325

tobacco-related substances (Table 4.8; Figures 4.9-4.10-4.11)).1326

Finally, near the Red archetype, several features enriched with max-1327

imum scores in scales reflecting aggressive, hostile, antisocial and rule-1328

breaking behavior, withdrawn behavior and anxiety. Furthermore, indi-1329

viduals closest to the Red archetype reported the lowest life satisfaction,1330

highest perception of stress, most feelings of social rejection, most somatic1331

complaints, most problems related to intrusive thoughts, greatest inter-1332

ference of pain perception in daily life, and poorest sleep quality. Near1333

this archetype, we also observed the highest number of smokers, individ-1334

uals reporting to smoke the most cigarettes per day, and cannabis users1335

as indicated by the number of positive cases to the THC drug test on the1336

day of the experiment (Figures 4.1-4.13). Notably, BMI (obesity) was also1337

maximal in the bin next to the Red archetype, and steeply declined with1338

distance from that archetype.1339

Examining socio-demographic variables, individuals close to the Blue1340

archetype had the highest income whereas individuals close to the Red1341

archetype had the lowest income, lower educational level, and were most1342

frequently unemployed. Finally, when considering enrichment on the1343

variable race, Black or African-American individuals were more numerous1344

near the Red archetype, whereas Asian (and Hawaiian or other Pacific1345

Islanders) individuals were more concentrated in the bin closest to the1346

Blue archetype (Figure 4.13). The variable race was one of the strongest en-1347

riched features (p= 4.06x10-11). Therefore, it is important to ask whether1348

a triangular distribution for the DDT scores existed separately in each race.1349

As shown above (Figure 4.4), a Pareto optimal distribution was found1350
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in each racial group, i.e. when considering separately White, Asian and1351

Hawaiian individuals, or Blacks. In Black subjects, however, the distribu-1352

tion was also triangular, but no longer significant, compatible with the1353

results of the enrichment analysis (see Figure 4.4).1354

In summary, this enrichment analysis shows that stronger (Blue archetype)1355

and more flexible (Green archetype) self-control, as indexed by the DDT1356

scores, are associated with higher fitness on cognitive, behavioral, socio-1357

economic, and health variables, while weaker self-control is associated1358

with lower scores. Importantly, Blue and Green archetype subjects scored1359

highest on different domains, suggesting different cognitive profiles (Figure1360

4.1 and Table 4.8).1361
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Personality1362

Fig. 4.9 Personality 1
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Fig. 4.10 Personality 2
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Fig. 4.11 Personality 3
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Substance use1363
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Socio-demographic1364

Fig. 4.12 Enrichment analysis of personality, Substance use and socio-
demographic traits. We plotted all the enriched features of the personality,
Substance use and socio-demographic group, which result from the density analy-
sis of the archetypes, in the case of 8 bins.

4.6 Structural variables1365

We examined 56 measures related to mean volume of both white and gray1366

matter, both in specific anatomical brain regions, and in the total cortical1367

and subcortical gray and white matter level, normalized per intracranial1368

volume. Measures were collected from a total of 1105 participants. Only1369

total cortical gray matter volume was shown to be significantly enriched1370

near the archetypes.1371

Total cortical gray matter volume was highly enriched near the Blue1372

archetype reaching a maximum value near that archetype (Figure 4.14).1373

To compare total gray matter volume as function of archetype, we ran1374

an ANOVA restricted to individuals close to each of the three vertices1375

(100 participants per group). This analysis showed a significant effect of1376
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TESTS SOCIODEMOGRAPHICPERSONALITY HABITS

Crystallized Intelligence (PicVocab_Unadj)

Fluid Intelligence (PMAT24_ACR)

Physical Fitness (Endurance_Unadj)

Agreeableness (NEOFAC_A)

Anger Agression (AngAggr_Unadj)

Self-Efficacy (Selfeff_Unadj)

Tobacco (Avg_Weekday_Any_Tobacco 7days)

Body Mass Index (BMI)

Sleep Problems (PSQI_Score) Not Employed (SSaga_Employ:0)

High Income (SSaga_Income:8)

Race (Black Or African American)Openness (NEOFAC_O)

Perception of Stress (PercStress_Unadj)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Fig. 4.13 Enrichment of different features near each archetype. Individuals
were binned to equal sized bins according to distance from each archetype. The
average value in the bin is normalized by the average value in the whole front
distribution. The error bars are computed only for continuous measures. The
enrichment analysis included cognitive tests, personality scales, substance use and
socio-demographic features. Curves for features that enrich significantly near an
archetype are marked with an asterisk.
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archetype [F (2, 297) = 7.9; p < .001; = .05], with the Blue archetype1377

being characterized by larger cortical gray matter volume as compared to1378

both Red and Green archetypes (p < .05; Bonferroni correction) (Fig-1379

ure 4.14). No difference was instead observed between Red and Green1380

archetypes (p > .05). In summary, stronger self-control (Blue archetype)1381

was associated with larger gray matter volume. Importantly, Blue and1382

Green archetype subjects showed a different profile.1383

4.6.1 Resting-state Functional Connectivity analysis1384

To characterize differences in functional connectivity among different1385

archetypes of significant Pareto front solution, we analyzed resting state1386

functional connectivity (FC) from R-fMRI as available in the HCP data1387

set. Subjects. Three-hundred healthy subjects (172 F, age: 29 ± 3y)1388

were selected from the 1200-subject release HCP dataset, considering,1389

for each archetype, 100 subjects with minimal Euclidean distance from1390

each archetype vertex of the Pareto distribution. This sample size was1391

selected because it was similar to the average sample size of the binning1392

analysis for feature enrichment.1393

Imaging Data. The HCP imaging protocol included up to four 15-1394

minute runs of resting state fMRI (60 min total), divided in two imaging1395

sessions (TR = 720ms, isotropic voxel-size 2 mm) and structural images,1396

made available as data packages with pre-defined processing options, for1397

more details refer to the study by [55]. In this analysis, we employed1398

minimally pre-processed fMRI time series from surface space defined and1399

registered by means of a Multi-modal surface alignment method (MSM-1400

All, ( [112])) with minimal smoothing (surface and volume based 2mm1401

spatial smoothing) and de-trending. Moreover, FIX-ICA ( [121]) denoised1402

data was employed as available from HCP public repository to reduce1403

motion-related confounds ( [86]).1404

Data Processing. Available denoised rs-fMRI time-series were signal1405

averaged based on the functional parcels defined from the [58] for cortical1406

regions, and a volume based segmentation ( [45]) for subcortical regions1407

(Cerebellum, Putamen, Pallidum, Ventral Diencephalon, Thalamus, Cau-1408

date, Amygdala, Hippocampus, and Accumbens in each hemisphere and1409

Brainstem).1410

Parcellated rs-fMRI time series were Pearson cross-correlated and Fisher1411

r-to-z transformed, with r the estimated Pearson linear correlation coeffi-1412

cient at edge-level ( [70]) to obtain for each subject and run a FC matrix1413

across 352 brain regions ( [133]). We discarded rs-fMRI runs that included1414
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more than 30% of motion corrupted volumes. Framewise Displacement1415

(FD) was employed to identify the motion-corrupted volumes as it indexes1416

bulk head movements across consecutive volumes ( [106]) from the volume1417

realignment parameters (motion correction). Since the available rs-fMRI1418

data were previously pre-processed with FIX-ICA denoising, we relaxed the1419

threshold for motion-corrupted volumes to FD > 0.5 mm as compared1420

to previous suggestions of FD > 0.15 − 0.2 mm ([106]). After removal1421

of motion-corrupted runs, all subjects had at least two valid fMRI runs.1422

Correlation values in corresponding edges were finally averaged across1423

valid runs to obtain a single FC matrix per subject.1424

The subjects included in the sample were not found to be significantly1425

different in terms of motion content as function of the archetype. Inter-run1426

and inter-subject global variability was removed by normalization ( [52]).1427

ROI analysis on DDT and reward. Importantly, we performed a1428

region of interest (ROI) analysis in the three groups of subjects based on1429

a-priori hypotheses of cortical and subcortical regions recruited during the1430

DDT and associated with reward processing ( [84]; [83]; [155]). The se-1431

lected ROIs were: Ventromedial prefrontal cortex (vmPFC), orbitofrontal1432

gyrus (OFG), middle frontal gyrus (MFG), dorsomedial prefrontal cor-1433

tex (dmPFC), dorsolateral prefrontal cortex (dlPFC), superior frontal1434

gyrus (SFG), anterior prefrontal cortex (aPFC), anterior cingulate cortex1435

(ACC), posterior cingulate cortex (PCC), anterior internal capsule (aIC),1436

hippocampus (Hip), parahippocampus (Parahip), Striatum, Caudatum,1437

Putamen, Accumbens, Globus Pallidus, Thalamus, and Amygdala. These1438

ROIs were mapped onto the cortical/subcortical parcels/regions of the1439

Gordon-Lauman atlas according to a visual overlap criterion at the group1440

level. The selected ROIs overlapped with 63 parcels of the 352-parcels1441

of the Gordon-Lauman atlas extended to subcortical regions. Therefore,1442

the initial 352x352 FC matrix was reduced to a 63x63 matrix. In general,1443

each ROI included multiple adjacent parcels with very similar functional1444

connectivity profiles. To enhance the statistical robustness and the inter-1445

pretability of comparisons across archetypes, we averaged the correlation1446

values of adjacent parcels within anatomically defined ROIs based on De-1447

strieux Atlas ( [45]) and across hemispheres (left and right homologous1448

parcels were averaged). This led to a reduction of the correlation matrix1449

from 63x63 parcels to 18x18 ROIs corresponding to the functional ROIs1450

identified above from the literature. To check that this anatomical selection1451

was not introducing biases, we ran a hierarchical clustering on the FC1452

profiles of the 63 parcels (Ward hierarchical method, [153]). The tree was1453

cut to yield the same number of clusters as the anatomical areas of interest1454
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(i.e. 18). We found a high point-wise agreement (high Rand’s index of1455

0.922; [72]) between the clusters and the anatomical grouping criteria.1456

Analysis and statistical comparisons. We carried out a Ward hierarchical1457

clustering between coupled archetypes based on Euclidean distance simi-1458

larity of connectivity profiles (i.e. FC rows, or columns by symmetry)1459

similar to [96]. This analysis consists in the hierarchical clustering of FC1460

matrices to identify the node clustering structure of one group of subjects1461

(e.g. those belonging to one archetype) and use this structure to reshape1462

the FC representation of another group of subjects (those belonging to1463

the other archetype). In this way, differential hierarchical organization1464

between FC in different groups of subjects will be visually clarified. As we1465

did not find any significant difference in the FC hierarchical organization1466

among the three archetypes, the reported analysis is based on clustering1467

of FC matrices based on all subjects across the three groups. Next, we1468

tested for differences among groups using a 1-way Analysis of Variance1469

(1w-ANOVA) with bootstrap sampling for statistic evaluation on pair-wise1470

ROI FC (Fisher-transformed Pearson correlations) testing the null hypoth-1471

esis of equal connectivity between the three archetypes (see [159], for a1472

similar approach). An FDR method was applied to correct for not inde-1473

pendent multiple comparisons testing conditions. Post-hoc tests were run1474

by means of one-tailed paired two-sample t-test with bootstrap sampling to1475

investigate the directionality of connectivity by archetypes couples. FDR1476

correction was again employed and restricted according to a Bonferroni1477

strategy over the number of performed post-hoc tests.1478

Software and tools. Processing of rs-fMRI data, available as Neu-1479

roimaging Informatics Technology Initiative volumes (NIFTI) or Connec-1480

tivity File BasedData (CIFTI) files was donewith ConnectomeWorkbench1481

( [86]) and CARET (Van Essen Laboratory, Washington University) as1482

well as surface visualization and representation of relevant brain areas.1483

Statistical comparisons and further analysis were performed in MATLAB1484

(R2016b; MathWorks, Natick, MA).1485

4.6.2 Brain functional connectivity1486

To explore differences in functional organization we compared resting state1487

FC to/from ROIs recruited during the DDT and associated with reward1488

processing ( [84]; [83]; [155]) mapped onto the Gordon Laumann func-1489

tional atlas of the human cerebral cortex ( [58]). This analysis was run in1490

three samples of subjects (each n=100) who were closest to each archetype1491

on the DDT. The three samples were matched in gender frequency (per-1492
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centage of females: Red=63%; Green=52%; and, Blue=57%) (Chi-square1493

test, p > 0.1 for each paired comparison), and age (Average age: Red=28.91494

years old; Green=28.6 years old; Blue=29.6 years old) [F(2,299) = 1.99, p1495

> 0.1], variables known to influence functional connectivity. The subjects1496

were the same as those utilized in the structural MRI assessment.1497

A paired hierarchical analysis of connectivity profiles showed two main1498

clusters: one cluster cortical involving regions in medial prefrontal and1499

parietal cortex plus hippocampus, para-hippocampus, and amygdala; the1500

other cluster subcortical-cortical including basal ganglia, thalamus, and1501

lateral prefrontal cortex (Figure 4.15A).1502

The cortical cluster (violet in Figure 4.15A) includes areas belonging to1503

the fronto-parietal network (FPN) and the default mode network (DMN),1504

typically involved in control- and regulatory processes. The subcortical1505

cluster (orange in Figure 4.15A) includes regions more strictly related to1506

reward processes. To examine functional connectivity differences across1507

archetypes, we ran a 1-way bootstrap-ANOVA with 0.05 significance level1508

(FDR corrected for multiple comparison across 18 ROIs x17/2 tests). Fig-1509

ure 4.15B shows edges where FC significantly differed between archetypes:1510

red vs. blue post-hoc comparisons under the diagonal, and blue vs. green1511

above the diagonal of the matrix.1512

Interestingly, there were significant differences in ROI connectivity1513

between clusters (Figure 4.15B), specifically between prefrontal and cingu-1514

late regions, involved in control and regulation, and subcortical regions1515

involved in reward. In contrast, there was no significant difference in1516

ROI connectivity within each cluster. In particular, subjects of the Blue1517

archetype, as compared to subjects of the Red and Green archetypes,1518

showed increased FC: 1) between amygdala and posterior cingulate cor-1519

tex (PCC), thalamus, caudate nucleus and putamen; 2) between caudate1520

nucleus and ventromedial Prefrontal Cortex (vmPFC), anterior cingulate1521

cortex (ACC), PCC, amygdala and ventral diencephalic structures (e.g.,1522

substantia nigra, hypothalamus, thalamus); and 3) between anterior pre-1523

frontal cortex (aPFC) and vmPFC (Figure 4.15B). All these connections,1524

except those involving the amygdala, were also stronger in subjects of1525

the Green archetype as compared to subjects of the Red archetype. The1526

Red archetype showed stronger FC between superior frontal gyrus (SFG)1527

and ACC and hippocampus, as compared to the other two archetypes. In1528

summary, stronger (blue archetype) and more flexible (green archetype)1529

self control was associated with stronger FC between reward/emotion1530

related regions (e.g. amygdala, caudate) and control related regions.1531
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Fig. 4.14 Total cortical grey matter volume varies as a function of archetype.
The enrichment analysis (left panel) shows that total grey matter volume is en-
riched for the Blue archetype. The histograms (right panel) indicate mean volume
in the sub-groups of participants (n=100 for each group) that are closest to the
three archetypes. Total cortical gray matter volume is maximal for individuals
next to the Blue archetype, intermediate next to the Green archetype, and mini-
mum next to the Red archetype. Asterisks highlight significant differences. Bars
indicate standard error. .
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4.7 Analysis of heritability1532

Finally, we sought to investigate the heritability of time preferences for1533

rewards by assessing possible differences in intra-class correlations (r) for1534

the AUC $200 and AUC $40,000 between pairs of monozygotic twins1535

(MZ; n = 130) and dizygotic twins (DZ; n = 138) by means of Fisher’s1536

z test. Then, we calculated the heritability (h2) index on the basis of the1537

difference in the MZ–DZ correlations for AUC $ 200 and AUC $40,000,1538

applying the Falconer’s formula (see the study by [39] for a similar ap-1539

proach).1540

4.7.1 Twin correlations and heritability1541

In the last analysis, we explored the genetic influence on time preferences1542

for rewards by assessing possible differences in intra-class correlations1543

(r) for the AUC 200andAUC40000 between pairs of MZ twins and DZ1544

twins by means of Fisher’s z test. The correlation value did not signifi-1545

cantly differ between MZ and DZ pairs, either for the AUC 200(MZr =1546

0.30versusDZr = 0.32; z = −0.208p = 0.48), ortheAUC40,000 (MZ r1547

= 0.51 versus DZ r = 0.40; z = 1.158 p = 0.124). The difference in MZ–DZ1548

correlation forAUC 40, 000was0.11, indicatingabroadheritability(h2)ofonly0.22.ForAUC1549

200, this calculation was even meaningless as the value for DZ twins was1550

higher than the value for MZ twins. Therefore, MZ twins were not substan-1551

tially more similar in delay discounting than DZ twins. The heritability1552

(h2) value indicates that there is not a strong genetic dominance of this1553

trait, as genetic dominance can be inferred for DZ twin correlations that1554

are about ¼ MZ twin correlations.1555
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Fig. 4.15 Resting-state functional connectivity differences between
archetypes. (a) Average rsFC matrix between regions of interest involved in
reward and delay discounting task. The FC matrix is divided in two clusters
based on a hierarchical cluster analysis (the colour indicates the same functional
module membership; the thickness of the line represents the similarity of FC
weighted by the connectivity significance). (b) Differences in rsFC among the
three archetypes as identified by post-hoc comparisons. The lower triangular part
compares Blue (B) versus Red (R) archetypes; the upper triangular part contrasted
B archetype versus Green (G) archetype. The color of the squares indicates the
edges showing stronger rsFC (p < .05, FDR corrected) for one archetype over
the other. The ‘c and d’ panels depict the topography of significantly different
connections. Connections are coloured according to the archetype that shows
stronger connectivity level, separately for B/R comparison (c panel) and B/G
comparison (d panel). Cortical regions are displayed in yellow, while subcortical
regions are displayed according to the color legend.
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4.8 Conclusion and Discussion1556

In the present chapter we have applied Pareto Optimality theory to human1557

cognition and behavioral data to find trade-offs and archetypes that repre-1558

sent potentially different evolutionary strategies in cognitive development.1559

In the HCP dataset that measures in a large sample of healthy subjects,1560

cognitive, sensory and physical abilities, personality traits, substance use,1561

and socio-demographic variables, the strongest Pareto Front solution was1562

found when we projected scores from two measures of the DDT that1563

measures time preferences for reward, an index of self-control and regula-1564

tion. This Pareto Front triangular distribution was robust in independent1565

samples of subjects. The archetypes defined different strategies for time1566

preference for reward that enriched on different cognitive functions, but1567

also physical, emotional, personality, and socio-economic variables. The1568

archetypes also differ in total gray matter volume, and functional connec-1569

tivity between subcortical reward and cortical control regulatory regions.1570

Finally, archetypes were weakly affected by genetics.1571

In this section, we discuss the difference between Pareto Optimality and1572

g-factor accounts of cognitive variability, potential evolutionary pressures1573

that led to different strategies in time preference for reward, and under-1574

lying neural correlates, which provide insights into evolution, cognition,1575

neuroscience, psychology and economy.1576

4.8.1 Pareto Optimality vs. g-factor theories of individ-1577

ual variability in cognition1578

We focused on the first one related to the DDT scores that appeared to1579

be the most robust. This experiment was not designed to pitch Pareto1580

Optimality vs. g-factor theories, but to evaluate the presence of Pareto1581

fronts and their potential significance in human cognition and behavior.1582

The results clearly support that there is more than bivariate relationships1583

in human cognition, and time preference for reward appears a powerful1584

variable that shapes many other cognitive, behavioral, and brain variables.1585

4.8.2 Time preferences for reward: evolutionary perspec-1586

tive1587

The evolutionary foundation of time preference for rewards has attracted1588

the interest of economists and biologists for many years ( [115]). The1589

study of delay discounting and time preferences for reward originated from1590
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animal work (e.g., [107]). This body of research has shown that animals1591

discount rewards hyperbolically ( [64]), and that birds and roditors discount1592

delayed rewards significantlymore steeply than humans ( [1]). Interestingly,1593

bonobos and chimpanzees - our closest living relatives - show a degree1594

of patience not present in other species, and chimpanzees are even more1595

willing to wait for food than humans. Overall these studies support the1596

evolutionary importance of discounting rewards as time-sensitive decisions1597

are important for foraging and mating in their natural environment (see1598

[60]).1599

In this chapter, we have shown that measurements of time preferences1600

for reward in humans distribute according to a triangular Pareto front1601

which, which according to the theory, indicates that this trait is under1602

evolutionary pressure. The archetypes identified by the analysis correlate1603

with other cognitive, physical, emotional, and socio-economic variables1604

that should provide those specialist individuals with relative advantages1605

from an evolutionary standpoint.1606

People close to the Blue archetype enrich on features that are typically1607

considered positive and desirable qualities, at least in a highly structured1608

and modern environment. For example, being intelligent, agreeable, and1609

open, as well as physically fit, could increase the likelihood to find a mate,1610

as well as earning a high income could increase the offspring quality, via1611

better nourishment and/or investment in education.1612

Likewise, people near the Green archetype flexibly changes the strategy1613

according to the reward amount, suggesting, as compared to the two1614

archetypes, a greater flexibility in adapting their behavior to environmental1615

pressures. Also, these Green archetype individuals are best at recognizing1616

facial expressions, which may help them in understanding others’ feelings1617

and needs.1618

The evolutionary advantage of people near the Red archetype is less1619

intuitive, but it may be explained as follows. Firstly, there may be ‘evolu-1620

tionary mismatch’ between the environment in which we currently live1621

and the environment in which we evolved. Therefore, a behavior that was1622

adaptive hundreds of thousands to hundreds of years ago becomes inappro-1623

priate into our current environment ( [113]). In some circumstances, for1624

example, children and adolescents showing aggressive and externalizing1625

behaviors become dominant and respected in their peer groups, whereas1626

in other cases become unpopular or rejected ( [49]). Hence it is conceiv-1627

able that the strategy of taking immediately irrespective of the rewards1628

might have been more advantageous in the past to achieve social status and1629

dominance. Secondly, according to life history theory, time preferences1630
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are influenced by resource scarcity, mortality and uncertainty in the en-1631

vironment ( [65]). Delay discounting rate was found to be steepest under1632

stressful conditions in people with low socio-educational background or1633

poor health, all conditions in which individuals close to the Red archetype1634

report to live ( [24]; [65]). Finally, natural selection would favor individuals1635

who made reproductive efforts sooner. In this regard, although the HCP1636

dataset does not include such information, we expect that individuals close1637

to the Red archetype were more likely to have their first child sooner and1638

have a larger number of offspring. This speculation is supported by data1639

showing that a steeper discounting rate in teenagers and young adults is as-1640

sociated with a range of sexual behaviors, including earlier first experience1641

with sexual intercourse and past or current pregnancy ( [25]). Furthermore,1642

if discounting rate is influenced by the expected future fitness, then living1643

in relatively adverse circumstances (e.g., elevated risk of mortality, high1644

stress levels, resource scarcity) makes individuals more prone to activate1645

reproductive effort immediately ( [37]), as also apparent in other species1646

(e.g. wasps, [116]).1647

As for the nature vs. nurture question: are archetypes in time prefer-1648

ences for reward genetically or environmentally determined? The absence1649

of significant differences between MZ and DZ correlations and the low1650

heritability (h2) value indicate a weak genetic influence. Yet, genetic and1651

cultural selection are not mutually exclusive. Heritability of time pref-1652

erences is indeed not constant across lifespan. It is higher during late1653

childhood/adolescence ( [2]) and several studies found genetic polymor-1654

phisms being associated with differences in time preferences ( [14]; [44]).1655

By contrast, heritability has less contribution in adulthood (age range of1656

HCP participants: 22-35 years), when other factors, such as environmental1657

stressors and/or cultural factors, could have an impact on individuals’ time1658

preferences to some extent. A sensitive issue is the impact of evolutionary1659

vs. socioeconomic factors in explaining the high proportion of Black and1660

African American individuals near the Red vertex. Adverse health and1661

socioeconomic conditions, as consistently revealed by the large amount of1662

data collected through the NSAL (The National Survey of American Life:1663

http : //www.rcgd.isr.umich.edu/prba/nsal.htm#overview), may fa-1664

vor strategies that emphasize short term rewards. At the moment, however,1665

the present findings cannot clearly disentangle biological and cultural fac-1666

tors.1667
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4.8.3 Archetypes for time preference for reward: brain1668

and cognitive associations1669

Our study demonstrates that archetypes for time preference for reward also1670

differ in brain structure and functional connectivity. The Blue archetype1671

has larger cortical gray matter volume respect to the other two archetypes,1672

consistent with previously reported associations between brain volume1673

and intelligence ( [111]), or self-control, a critical function in the DDT1674

( [85]). Interestingly, in [85] the evolution of self-control was linked to1675

absolute brain size across 36 different species ( [85]).1676

The three archetypes also differed in the functional connectivity profiles1677

of brain regions associated with the DDT ( [83]; [84]; [155]). Individuals1678

with more self-control showed stronger functional connections at rest1679

between cortical prefrontal, cingulate, and parietal regions involved in1680

control and regulation, and subcortical regions involved in reward and emo-1681

tions. Importantly, functional connectivity differences between archetypes1682

occurred in the projections that connected different modules. In previous1683

work, stronger functional connections between modules or networks were1684

observed when subjects went from rest to an attention demanding task,1685

consistently with increased interactions (e.g. [136]). So we can interpret1686

our results suggesting that individuals with more self-control have more1687

communication between regulatory control regions and reward regions.1688

These data are also consistent with a number of dual-system models of1689

decision-making (e.g., [7]; [9]). These models state that decision-making1690

underlies a relative balance of activation between two neurobiological1691

systems ( [9]). An evolutionarily older impulsive system that includes1692

limbic and paralimbic regions (amygdala, ventral pallidum, striatum, nu-1693

cleus accumbens) values immediate rewards. By contrast, a more recently1694

evolved control system that includes PFC and ACC is important for the1695

inhibition/regulation of the impulsive system and the associated evaluation1696

of delayed rewards. Our findings support these ideas showing that the1697

ability of delaying a reward is associated with stronger functional coupling1698

between regulatory cortical and reward subcortical regions, specifically1699

amygdala and caudate.1700

A key area of the reward system is the amygdala, whose functional con-1701

nections with putamen, caudate, and aPFC in our data (Figure. 4.15C-D)1702

were strongly modulated by archetype, stronger in the Blue than Red and1703

Green archetypes. The amygdala is classically regarded the core region1704

for the regulation of emotions regulation ( [33]), and a hub of emotion re-1705

lated networks ( [102]). In line with our results, altered amygdala-centered1706



4.8 Conclusion and Discussion | 83

connectivity was found in drug addicts ( [141]) who show steeper discount-1707

ing rates and lower self-regulation ( [11]). Interestingly, [136] reported1708

altered resting-state functional amygdala-centered connectivity in cigarette1709

smokers during early nicotine withdrawal. The ability of self-control and1710

postpone a reward may be the result of a stronger functional connections1711

to/from the caudate nucleus. Fronto-striatal circuitry is implicated in in-1712

hibitory control ( [53]), with the caudate nucleus associated to behavioral1713

control and goal-directed actions ( [61]). Importantly, [57] documented1714

that connections between dorsal caudate and frontal regions facilitate1715

self-control. The increased FC between caudate and PFC regions in sub-1716

jects able to exert stronger self-control is consistent with these findings.1717

Conversely, alterations of cortico-striatal connectivity has been linked1718

to disruption of self control. Several studies have reported alteration of1719

functional connectivity between ACC and striatum in cigarette smokers1720

( [71]; [82]), as well as altered activation of these regions in cannabis users1721

( [160]). [71] have proposed that rsFC between dACC and striatum may1722

represent a circuit-level biomarker for nicotine addiction.1723

The Red archetype showed stronger functional connections between1724

ACC and superior frontal regions. Although at a first sight this result1725

appears counterintuitive, it is, however, consistent with a study that found1726

stronger functional coupling in ACC-frontal circuits to be predictive of1727

a poorer DDT performance in drug addiction, even if it is important1728

to acknowledge that the study involved a different population, namely1729

cocaine users ( [19]).1730

Finally, from a psychological perspective, although the present study1731

cannot make any conclusion about causal relationships, it provides the1732

most comprehensive overview of the associations between time preference1733

and other individuals’ attributes. We observed that people tendency to1734

choose more immediate or more delayed rewards is a crucial trait that1735

can explain individual differences not only in cognitive abilities, but also1736

personality traits, substance use and dysfunctional behaviors, as well as1737

socio-demographic features. Notably, in line with previous studies, we1738

found that a stable preference for immediate smaller rewards seems to pre-1739

dict a constellation of behavioral and real-life problems, including hostile,1740

antisocial, rule-breaking and withdrawal behaviors (e.g., [48]), anxiety1741

( [119]), problems of intrusive thoughts ( [134]), sleep problems, high levels1742

of stress and high BMI (e.g., [22]), somatic symptoms and pain interference1743

with daily living ( [149]), and perception of rejection, low levels of life1744

satisfaction and self-efficacy, and substance addiction (e.g., [11]). Taken1745

together, our findings support the idea that steeper discounting rates are1746
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associated with a range of impulse-control disorders and unhealthy behav-1747

iors ( [10]; [110], for reviews). Therefore, time preference appears to be a1748

promising candidate endophenotype for multiple dysfunctional behaviors1749

and might represent a therapeutic target for treating these disease states.1750



Chapter 51751

Variational principle for xylem’s1752

tapering in vascular plants.1753

5.1 Introduction1754

In chapters 3 and 4 we applied the Pareto optimality analysis to search1755

for Pareto optimal fronts in the morphospace to fully disclose the role of1756

evolutionary pressures in biological systems which face complex multi-1757

objective optimization problem. Based on the optimization criteria of1758

minimizing the energy dissipated in a fluid flow, we propose in this chapter1759

a biophysical model with the goal to explain the underlying physical1760

mechanism that affects the structure of xylem conduits in vascular plants,1761

which result in tapered xylem profiles [104, 105, 117, 164].1762

Xylem conduits are the fundamental constituents in trees which convey1763

water and nutrients by means of a negative pressure gradient from roots to1764

leaves, and their conductance measures the degree in the efficiency of water1765

transportation ( [56], [164], [138], [66],[67]). The concept of resistance of1766

the fluid flow, which is by definition the inverse of the conductance, can be1767

approximately accounted by the Hagen-Poiseuille equation [140, 154, 164].1768

This physical law is only valid in the idealistic case of long cylindrical pipes1769

of constant cross section, being proportional to the length of the pipe and1770

inversely proportional to the fourth power of the radius.1771

Existing optimalitymodels of the tapering of xylem conduits ( [130],[157],1772

[123]) assume that xylem profiles have acquired a tapering degree in order1773

to optimally convey water and essential nutrients to all parts of the trees1774

( [104, 105, 117, 164]).1775

We propose here an optimality model by aiming to minimize the1776

hydrodynamic resistance of the sap flow inside the xylem conduits, in the1777

context of the calculus of variations. The variational approach presents1778
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several theoretical advantages, in what it is mathematically well established1779

and it has been widely applied in physics.1780

In section 5.1.1 we make a brief review of the literature for two promi-1781

nent models, such as the pipe and WBE models. In section 5.2 we present1782

our model by first defining an initial functional, that accounts for the1783

Hagen-Poiseuille resistance term and in section 5.9 we show how the ta-1784

pered xylem profile can be derived. In section 5.3 we validate of our results1785

by sampling 72 vascular plants species of the angiosperm family and fitted1786

themwith the parametric curve. As compared to theWBE-model, it comes1787

out that our theory accurately describes the tapering seen in xylems by1788

means of a universal function, which is a key property of the model. In1789

addition, the model allows us to correlate the heights of the trees with the1790

xylem’s radius at the stump of the trees. Finally, in section 5.4 we discuss1791

our results.1792

5.1.1 Classical hydraulic models1793

A great theoretical effort has been devoted to model the xylems’ profiles1794

in order to shed light on the tapering mechanisms in vascular plants ( [30]1795

[98]), see Figure 5.1. A distinctive approach in hydraulic models is re-1796

lated to the incorporation of the tapering effect in xylems. In the pipe1797

model ( [130],[131]), authors conceived xylems of as thin cylinder with1798

a constant diameter along the stem. Recently, West, Brown and Enquist1799

conceptualized an optimality hydraulic model [157] (WBE-model), and1800

generalized in [123], where xylems widen tip-to-base with a power law1801

scaling, in order to minimize the hydrodynamic resistance cost of the sap1802

flow inside xylems.1803

Based on the underlying assumptions of [157], xylems’ architecture1804

results in a fractal-like transportation network, which is structured in1805

several branch levels. Each branch is composed by an identical number of1806

xylem segments, and is connected in series with the branches of previous1807

and further levels. This model is mainly an idealized representation of the1808

xylems’ architecture since they totally ignore the tapering of the radius in1809

xylem conduits within segments in a given branch.1810

The WBE model is based on four simplifying axioms. The first axiom1811

regards the space-filling property of the branching pattern, which induce1812

the fractal-like network in xylems. This axiom is inspired from the ob-1813

servation that most distribution systems can be described by a branching1814

network [156]. As a second axiom it is required the size-invariance of1815

leaf and petiole, meaning that the capillary density in a cross sectional1816
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Fig. 5.1 Tapering in xylem conduits. Adapted from: “Convergent tapering of
xylem conduits in different woody species”, Anfodillo et al.

area remains constant across levels. The third axiom is related to the area-1817

preserving branching condition, which is a bio-mechanical constraints that1818

assures that at each level, branches split in smaller ones whose area sums to1819

the original one. The fourth axiom requires the minimization of the total1820

hydrodynamic resistance term [156, 157], representing the optimization1821

criteria in which we are mainly focused.1822

Based on these assumptions it is possible to derive a plethora of scaling1823

relations (refer to [157] for more details), and among others, the scaling1824

exponent of 1/4 of the tapering of xylem conduits (see Appendix C). The1825

WBE-model has turned out to be the reference model for analyzing xylems1826

tapering, however, several criticisms have arisen by showing the inadequacy1827

of some biological assumptions and of theoretical derivations, and demand1828

for an improved biophysical model, which is capable to overcome these1829

fundamental issues ( [117], [164], [162], [78], [79], [104]).1830

5.2 The model1831

In this section we explicit the mathematical framework of the theory,1832

which is based on the variational formalism. Johann Bernoulli in 1696 was1833

the first to apply the variational principle and find the optimal solution1834

which minimizes the total time for a sliding object to descend from an1835
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higher to a lower point. The curve, called brachistochrone (from Ancient1836

Greek, meaning “shortest time”), is found by using tools from the calculus1837

of variations [118].1838

In our model, xylems are thin pipes that continuously taper from roots1839

to petioles and individually feed single leaves. Similarly to the WBE model,1840

we still make the basic assumption that the xylem profiles are optimized by1841

evolution to minimize the hydraulic resistance. However, contrary to the1842

WBE assumption that pipes have a constant cross sectional radius within a1843

given branching level, we highlight that tapering of xylem conduits is a1844

continuous effect running through the whole path from roots to leaves.1845

By following the variational formalism, we start by defining the main1846

functional of the model F [σ(h), σ̇(h), h], which accounts for the Hagen-1847

Poiseuille resistance term of the sap solute inside xylems, integrated from1848

the stump of trees to leaves. The variational approach requires the mini-1849

mization of the functional and the derivation of the Euler-Lagrange (EL)1850

equations . The optimal function that minimizes the integrated hydraulic1851

term is the solution of the EL equations. As we will show below, we are1852

enforced to introduce a Lagrange multiplier term in the functional to limit1853

the optimal solution to the biologically feasible space.1854

Hagen-Poiseuille term1855

The Hagen-Poiseuille law has been experimentally derived by solving1856

the laminar flow dynamics of an incompressible and Newtonian fluid,1857

inside a thin cylindrical pipe with a constant circular cross section [140].1858

The volumetric flow rate Q of a laminar fluid in a cylindrical pipe with1859

circular cross sections is proportional to the applied pressure gradient ∆P ,1860

according to the Hagen-Poiseuille law [140, 154, 164]:1861

Q = |∆P |πR4

8µL
, (5.1)1862

where L is the length and R is the radius of the pipe, µ is the fluid viscosity,1863

and ∆P is the pressure gradient between the tip and the base. The total1864

resistance Ω of the pipe is defined as the inverse of the volumetric flow1865

rate, thus Ω ∼ L/R4, meaning that the flow resistance increases with the1866

length of the pipe and decreases with the fourth power of the radius of the1867

pipe.1868

For non circular cross section it is common to introduce a constant1869

factor in the numerator of 5.1 (for more details see [42] and Appendix B).1870

In this model we absorbed this constant in the parameter of the Lagrange1871
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multiplier. The Hagen-Poiseuille law governs the dynamics of the flow of1872

sap solute inside xylems in the limit of infinitesimal parts of the xylem,1873

where the radius stands constant. The total hydraulic resistance in xylems1874

is obtained after integrating the infinitesimal resistances dΩ(h) across the1875

whole xylem path length. In terms of the cross-sectional area, defined as1876

σ(h) = π
(

d(h)
2

)2
, we get:1877

dΩ(h) = Ω(h)dh ∼ c

σ2(h)dh (5.2)1878

where c is a positive real constant. Equation (5.2) is valid also for other1879

general shapes, such as rectangular, triangular and ellipsoidal conduits as far1880

as the lengths of the cross-sectional areas are of the same order of magnitude.1881

Thus, the explicit expression of the starting functional F [σ(h), σ̇(h), h],1882

becomes the following:1883

F [σ(h), σ̇(h), h] =
∫

dh

[
1

σ2(h)

]
(5.3)1884

Lagrange multiplier term1885

The EL equations of the functional 5.3 are solved by the non biological1886

xylem profiles σ(h) = σmax = σtrunk, which are contrary to any exper-1887

imental evidence. In order to avoid this unfeasible solutions, we added1888

a series of Lagrange multipliers, to put a cost in the tapering of xylems,1889

which, especially in the proximity of leaves where the xylems enter steeply1890

into the leaves. Thus the Lagrange multipliers are introduced with the1891

following series:1892

a1σ̇(h) + a2σ̇
2(h) + a3σ̇

3(h) + . . . + anσ̇n(h). (5.4)1893

and the cost becomes infinite if σ̇(h) → ∞. The first term a1σ̇(h) is1894

trivial because its integral depends only on the boundary values of σ,1895

thus the next simplest term is a2σ̇
2(h), while higher order terms need the1896

further parameters a3, ...an to be introduced. Thus, we start to consider1897

for simplicity only the second term:1898

K(h) = α

2 σ̇2(h). (5.5)1899
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where α
2 ̸= 0 is the parameter of the Lagrange multiplier. Then, the new1900

constrained action Fα becomes:1901

Fα[σ(h), σ̇(h), h, α] =
∫

dh

[
1

σ2(h) + ασ̇2(h)
2

]
(5.6)1902

From the classical physical perspective, eq. (5.6) can be considered as the1903

action of a classical particle with a kinetic term K(h) = ασ̇2(h)
2 and a mass1904

α in the effective potential V (h) = 1
σ2(h) .1905

Instead of considering the Euler-Lagrange equations of the above func-1906

tional we focus on the energy of the system, defined as follows:1907

E = ∂L

∂σ̇(h) − L = ασ̇2(h)
2 − 1

σ2(h) . (5.7)1908

which is a nonlinear differential equation for σ(h), and independent from1909

h.1910

5.2.1 Optimal solution1911

We solve Eq. (5.7) analytically by putting on one side σ̇(h):1912

σ̇(h) =
√

2
α

√
E + 1

σ2(h) (5.8)1913

where α > 0 and we fixed the boundary condition to be σ(0) = 0, in order1914

to avoid a multitude of parameters. This condition is an approximation,1915

because xylems do not completely close near the leaf; they indeed maintain1916

a width proportional to the size of a cell. Thus, equation (5.8) can be1917

analytically solved:1918

σ(h) = h1/2
( 8

α

)1/4
√

1 + E√
2α

h (5.9)1919

where E and α are free parameters of the theory. Since α > 0, real1920

solutions exist if E < 0. The stationarity point of 5.9 coincides to putting1921

to 0 Equation 5.8. Thus, we have that:1922

σF = σ(hmax) = 1√
|E|

. (5.10)1923
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We can define hmax as follows:1924

hmax =
√

α

2
1

|E|
. (5.11)1925

Thus, by substituting (Eqs. 5.10 and 5.11) in (Eq. 5.9) we have that:1926

σ(h) =
( 8

α

)1/4 √
h

(
1 − h

2hmax

)1/2

. (5.12)1927

The above xylem profile results in a tapered function, with the parameters1928

hmax and α that depend on the specific tree. In the limit of h ≪ hmax, we1929

have that σ(t) ∼
√

t, which is equivalent to the well-known power-law1930

expression of d(h) ∼ h1/4, as predicted by the WBE model.1931

5.2.2 Data fitting1932

We validated our theory by performing a data fitting analysis of the pre-1933

dicted xylem profile 5.12, as derived from the variational approach, to1934

experimental xylem profiles in a comprehensive dataset of 72 angiosperms.1935

We considered the parametrized optimal solution 5.12 and transformed it1936

to the more intuitive form:1937

σ(h) = σF

√√√√ h

hmax

·
(

2 − h

hmax

)
(5.13)1938

and fitted it to data points of angiosperms, by holding fixed hmax to corre-1939

spond to the experimental heights.1940

We performed data fitting with the lsqcurvefit algorithm as imple-1941

mented in Matlab. It is a nonlinear least-squares solver, useful in solving1942

nonlinear data-fitting problems. Mathematically, it is equivalent to solving1943

the followingminimization problem (see https : //uk.mathworks.com/help/optim/ug/lsqcurvefit.html):1944

1945

minx

∑
i

(F (x, xi) − yi)2. (5.14)1946

We can map the above variables in terms of our problem as follows:1947

xi ≡ hi are the experimental height measures, yi ≡ σi(h) are the cross-1948

sectional measures, x ≡ σF is the free parameter to be fitted, and F is1949

the nonlinear curve Eq. (5.13). We chosen σ(0) = 1 as initial value.1950

To check the robustness of the initial point selection we used also the1951

values 10−6, 100, 10+6. To crosscheck, we performed the fitting analysis1952
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with another algorithm called fminsearch and implemented in Matlab1953

https : //uk.mathworks.com/help/matlab/ref/fminsearch.html.1954

The parametrized optimal solution 5.13 carries a particularly interest-1955

ing form because with a simple scaling Σ(t) = σ(h)/σF and t = h/hmax,1956

we get:1957

Σ(t) =
√

t(2 − t), (5.15)1958

which is generally valid for all tree species and independent of the height.1959

Σ(t) and 0 < t < 1 are dimensionless variables. For visual purposes, we1960

made the following transformation of the height axis in the log space, in1961

order to plot the collapse:1962

x =
(

log
(

1 + x0

x

)
− log(x0)

)
·
(

1 +
(

x0

x

)b
)

; (5.16)1963

x0 = 10−5; (5.17)1964

b = 1
2 . (5.18)1965

1966

where x0 and b are two parameters chosen to equally distribute data points1967

in the whole range 0 < t < 1. This transformation does not affect the1968

relationship among the variables σ and h. It serves only as an auxiliary1969

tool for showing results.1970

In Figure 5.2 is shown the outcome of the individual-based data fitting,1971

in the particular cases of the Caudatum and Starfoot species, for both1972

the WBE and our model. Although the theoretical curves are almost1973

indistinguishable near the apex, it could be highlighted the deviation from1974

the power-law behavior in the proximity of the stump of the trees, with1975

our theory that accurately fits data points.1976

5.2.3 WBE formulation1985

TheWBEmodel predicts the scaling law for the tapering of xylem conduits1986

with the exponent of 1/4 in the diameter, which becomes 1/2 for cross1987

sectional areas. Thus, xylem conduits are predicted to taper as follows:1988

σ(h) = A ·
√

h

hmax
(5.19)1989

where A is the free parameter with the dimensions of a cross sectional area,1990

and hmax corresponds to the experimental heights. By rescaling σ(h) and1991
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Fig. 5.2 Xylem tapering: A model comparison in individual trees. In panel
(a) and (b) we show two examples of angiosperms, the Caudatum and Starfoot
trees. Data points are depicted with the black dots, while in dashed-blue and
red curves we plot the theoretical curves obtained after fitting with data points
respectively the function (Eq 5.12) of our model and the function (Eq. 5.19) of
the WBE model.
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19831984

h as follows:1992

Σ(h) = σ(h)/A, (5.20)1993

t = h/hmax, (5.21)1994
1995

we can rewrite 5.19 in a universal way, independent from any parameter:1996

Σ(t) = t1/2 (5.22)1997

which becomes a straight line in the space of the t-axis after the log trans-1998

formation Eq. (5.16).1999
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5.3 Collapse on the universal curve2000

We hypothesized that xylems, like many other biological and complex2001

systems are characterized by having the key feature of scale invariance2002

( [54], [156],[152]). To test the validity of this hypothesis, we showed that2003

in the space of Σ and t variables, all trees collapse in the single universal2004

curve 5.15. In Figure 5.3 data points of each tree are scaled as follows:2005

Σ(t) = σ/σF and t = h/hmax. Then, we binned the t-axis in bins with2006

distinct widths, each containing approximately the same number of data2007

points. Figure 5.3 shows that the universal curve of our model 5.15 (the2008

red-dotted line) matches almost perfectly the averages of the cross sectional2009

areas (black bold dots) and their standard deviations (bars), performed2010

for all bins, meaning that the majority of xylem profiles approximately2011

collapse in the average in the universal curve 5.15. We repeated this same2012

analysis for the WBE model, however, Figure 5.3 shows that the universal2013

curve predicted by the WBE model, does not match data points with the2014

same accuracy of our model.2015

We plotted in log space the two parameters hmax and σF and studied2016

their relationship (see Figure 5.4).2017
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Fig. 5.3 The collapse of 61 trees. In panel (a), we show all the empirical 61 trees
in scaled coordinates Σ(t) = σ(h)/σF and t = h/hmax. For visual purposes,
we stretched the height axis with a suitable logarithmic transformation (see Eq.
(5.16)), in order to uniformly distribute data points in the whole range 0 < t < 1.
Empirical data are shown in gray dots. We binned the t−axis in 20 intervals,
each interval containing the same number of data points. Bold dots represent
averages, while bars are the standard deviations of the mean. The red dotted line
represents the universal curve in the scaled coordinates, as derived theoretically
in (Eq. 5.15). In panel (b), we repeated the same analysis described in (a), but
employing a polynomial function Eq. (5.19) as derived from the WBE model.
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2030

Fig. 5.4 Parameter Space in log space. We studied the parameter distribution
in the log space. Linear regression fitting has been done on both distributions
resulting in the colored lines.
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2032

20332034

We rearranged equation 5.12 as follows:2035

σ(h) = σstump ·

√√√√( h

hF

·
(

2 − h

hF

))
(5.23)2036

and fitted it to data points in order to derive the free parameters hF which2037

coincides with the total heights. We checked for scale invariance by per-2038

forming the following transformations: Σ(t) = σ(h)
σstump

and t = h
hF
. In2039

the space of Σ(t) and t, they fall in the universal curve (in panel a) of2040

Figure 5.5). In panel b) and c) we plotted in log-space the predicted versus2041

empirical heights as derived from our model and WBE. We fitted the dis-2042

tributions with a linear regression before plotting in log space and found2043

that the linear curve has a slope of 0.97 for our model and 0.67 for the2044

WBE model.2045

Finally, we present an interesting relation in the parameters space of2046

log(σF ) vs log(hmax) and log(E) vs log(α) (Figure 5.6a, Figure 5.6b). We2047

fitted the distributions with a linear regression.2048



96 | Variational principle for xylem’s tapering in vascular plants.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Scaled Xylem Height

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ca

le
d 

X
yl

em
 A

re
a

Tree Collapse - 20 Bins - Sigmafixed - 72 Trees

Binned DataPoints
Our Prediction

(a)

11 12 13 14 15 16 17 18 19
Log(Empirical Height)

11

12

13

14

15

16

17

18

19

Lo
g
(P

re
d
ic

te
d

H
e
ig

h
t)

Predicted Height vs Empirical Height - OUR Model

Lin. Reg,:   y =  0.96907*x+13106.0982

(b)

12 13 14 15 16 17 18 19
Log(Empirical Height)

11

12

13

14

15

16

17

18

19

Lo
g
(P

re
d
ic

te
d

H
e
ig

h
t)

Predicted Height vs Empirical Height - WBE Model

Lin. Reg,:   y =  0.68986*x+-45858.5124

(c)

2049

Fig. 5.5 The collapse of 61 trees with fixed σmax. We plot the empirical 61
trees in the space of the scaled cross sections Σ(t) = σ(h)/σmax and of the scaled
heights t = h/hF . As done in (Fig. 5.4), we stretched the height axis (Eq. 5.16),
in order to uniformly distribute data points in the whole range 0 < t < h/hF .
Empirical measures of the 61 trees are the gray dots in the plot. We binned data
points in 20 bins, with each bin containing the same number of data points. Bold
dots are averages of Σ(t) at each bin, while bars are the standard deviations of the
mean. The red dotted line represents the universal curve in the scaled coordinates,
as derived theoretically. We have not plot 11 trees, since they don’t strictly follow
the universal curve. In panels b) and c) we showed in scatterplot the predicted vs
empirical heights for each of the 61 trees, in the log space. Before plotting in log
space we found the linear regression as derived from our theory and the WBE
models.
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Fig. 5.6 Parameter Space of the WBE parameters in log space.20652066

5.3.1 Statistical Robustness2067

We performed the statistical robustness of the collapse of our model by2068

increasing the number of bins from 30 to 100 (Figure 5.7). For 100 bins,2069

fluctuations become relevant.2070
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Fig. 5.7 Robustness of the collapse. Here we show the trees’ collapse when the
number of bins range from 30 to 100.)

2072

20732074

5.4 Conclusion and Discussion2075

In this chapter we addressed the open problem of the tapering of xylem2076

profiles in vascular plants and studied their physical properties within a2077

variational formulation. We modeled this phenomenon with a Lagrangian2078

made up of a Poiseuille resistance term (Eq. 5.2), constrained by a Lagrange2079

multiplier (Eq. 5.5). The Euler-Lagrange solutions lead to a tapered shape2080

for xylems, as observed in several experimental studies. The main result of2081

this investigation rests on the emergence of the scale invariance symmetry2082

of xylems profiles, which greatly simplifies the complexity of the theory2083

with a single universal curve.2084

As compared to the WBE, our model is able to extract from a very2085

general principle of optimization, the analytical expression of xylems2086

profiles. In addition, data points match more accurately our predictions2087

than the WBE model especially at the stump of the trees, where large2088

deviations between theoretical predictions and empirical data points have2089

been reported. Our model considers only the principle of minimizing the2090

cost of the constrained Poiseuille term, instead of considering additional2091

and unnecessary biological principles.2092

Based on the Lagrangian formulation, we were able to obtain the2093

tapered structural shape of each individual xylems in the angiosperm2094

dataset. The resulting tapered curves steeply widen near twigs, where it2095

is concentrated the majority of resistance (up to 93% [117]), and then2096

smoothly widen until the basis of the tree (Eq. 5.15) (see Figure 5.3). In2097

the proximity of the twigs, the xylems closely follow the 1/4 polynomial2098

functions, as predicted by the WBE model [157]. Another significant2099

result of our model is related to the correlation of the heights of trees2100

to the cross-sectional areas at the stump of trees. This might extend our2101

possibility to predict tree heights during growth of the trees. Theoretically,2102
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we considered the simplest model by adding only one multiplier term in2103

the Lagrangian, however we could in principle have introduced higher2104

order terms in order to increase the accuracy of our description of the2105

xylem profiles. This analysis is left for further studies. We think that2106

this study paves the way for more biological models that will be able to2107

predict the maximum heights in angiosperms, based on the fact that we2108

have derived the analytical profiles of xylems.2109

We performed the same statistical robustness for the WBE model by2122

considering the power-law function σ(h) = σF

√
2h

hmax
. We show in Figure2123

5.8 the collapse of the fitted trees, as predicted by the WBE model:2124
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2111

Fig. 5.8 Tree collapse with a power-law. We plot experimental data points in
gray and rescale them in the following way: Σ(h) = σ(h)/σF , t = h/hmax. We
binned data points as before. The red-dotted line represents the WBE polynomial
curve in the rescaled space, thus we have that Σ(t) =

√
t. In the left figure we

plotted only the first 44 trees that best-fit with the power-law 1/4, while in the right
figure we chosen to plot the first 48 trees. A deviation from the universal curve
becomes clear in this latter case. In the bottom plot we show the collapse of all
trees, which present a large deviation from the theoretical prediction, invalidating
the power-law 1/4 prediction.
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Chapter 62125

Conclusions and Perspectives2126

In this thesis we have quantitatively addressed by means of statistical tools2127

the role of evolutionary selection in shaping the physical traits in biological2128

systems to best adapt their niche.2129

In the first part of this thesis, we have employed a recently imple-2130

mented algorithm for studying biological systems, based on the concept2131

of Pareto optimality in competing objective functions. By investigating2132

for signatures of Pareto optimization in the Escherichia coli proteome, we2133

found a triangular-shaped Pareto optimal front by projecting each protein2134

in the space of solubility and hydrophobicity, whose vertices correspond2135

to archetypal proteins specialized in distinct tasks, such as regulatory pro-2136

cesses, membrane transport, outer-membrane pore formation, catalysis,2137

and binding. Furthermore, they occupy different subcellular compart-2138

ments, namely, cytoplasmic, inner membrane, outer membrane, and outer2139

membrane bounded periplasmic space.2140

In chapter 3, we analyzed the Human Connectome Project (HCP)2141

dataset of cognitive and behavioral scores in 1206 humans through Pareto2142

optimality. When projected in the morphospace of time preferences for2143

reward, which is evaluated with the Delay Discounting Task (DDT), we2144

found a Pareto triangular distribution in which each of the three vertices2145

included individuals who used a particular strategy to discount reward.2146

These archetypes accounted for variability on many cognitive, personality,2147

and socioeconomic status variables, as well as differences in brain structure2148

and functional connectivity, with only a weak influence of genetics. In2149

summary, time preference for reward reflects a core variable that biases2150

human phenotypes via natural and cultural selection. To date, the degree2151

to which biological systems are optimized remains an outstanding problem.2152

Based on these findings and recent literature, it is evident that the Pareto2153

optimality approach is a powerful method to investigate the signatures2154
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of natural selection, and as a prospect, we could adopt this method to2155

unravel further Pareto optimal fronts in biological systems. Possible gener-2156

alizations regard the application of Pareto optimality in multi-dimensional2157

morphospaces.2158

Finally, chapter 4 was dedicated to disclose the theoretical mechanism2159

of the well-known tapering phenomenon in the xylem structure in an-2160

giosperms. We presented a framework based on the variational formulation2161

with the postulate of minimizing the hydrodynamic resistance cost. The2162

main result of this investigation rests on the emergence of the scale invari-2163

ance symmetry of xylems profiles, which greatly simplifies the complexity2164

of the theory with a single universal curve. Based on the Lagrangian2165

formulation, we were able to obtain the tapered structural shape of each2166

individual xylem in the angiosperm dataset. The resulting tapered curves2167

steeply widen near twigs, where the majority of resistance is concentrated2168

and then smoothly widen until the basis of the trees. In prospect, this2169

model could be generalized in order to predict the maximum heights in2170

vascular plants.2171

In summary, we disclosed two Pareto fronts in two very different2172

biological systems which are signatures of multi-objective evolutionary2173

optimization with tradeoffs. Furthermore, we provided a model of the2174

tapering in xylems, which aims to find the best profile which minimized2175

the total energy of the fluid flow.2176
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Appendix A2704

Pareto fronts identified as2705

convex hulls in the morphospace2706

In this appendix we provide the full proof of the theorem given in ( [132],2707

see Supplementary Materials), that identifies the optimal Pareto front2708

solutions as convex hull of archetypes in the morphospace. This theorem2709

is valid for finite dimensional vector space and denoted by V : Rk, which2710

is endowed with a norm topology such as the locally convex Hausdorff2711

space, and an inner-product norm ||x|| =
√

x · x ∀x ∈ V .2712

Definition 1. Pareto optimal solutions2713

The Pareto front of a finite subset of V, called X, is the set of points P(X)2714

which are Pareto optimal, namely for each y ∈ V, /∈ X there exists xi ∈ X2715

such as ||y − xi|| > ||x − xi||.2716

Definition 2. Convex hull of X2717

Convex hull of X are defined as follows:

CH(X) = {x ∈ V : x =
M∑

n=1
αnxn ≥ 0 (n = 1, ..., M),

M∑
n=1

αn = 1}

(A.1)

Theorem 1. (Hahn-Banach)2718

Let V be a Hausdorff locally convex topological vector space, and let A and2719

B be two non-empty disjoint closed convex subsets of V with B compact.2720

Then, there exists a continuous linear function h : V → R and a number2721

γ ∈ R such that h(a) < γ, ∀a ∈ A and h(b) > γ, ∀b ∈ B.2722
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Theorem 2. (P(X)=CH(X))2723

Suppose that x ∈ CH(X) and x /∈ P (X). Then, there exists y ∈ V, y ̸= x

such that:

(y − xn) · (y − xn) ≤ (x − xn) · (x − xn) (n = 1, ..., M) (A.2)

We can rewrite it in the following way:

y · y − 2(y − x) · xn − x · x ≤ 0 (n = 1, ..., M) (A.3)

By definition we have that α1, ..., αM , αn ≥ 0 (n = 1, ..., M),∑M
n=1 αn =

1, such that x = ∑M
n=1 αnxn. We can straightforwardly obtainwhat follows:

(y − x) · (y − x) ≤ 0 (A.4)

but the inner product of a vector is by definition nonnegative, thus (y −2724

x) · (y − x) = 0 and y = x, in contradiction with y ̸= x, and thus2725

CH(X) ⊂ P (X).2726

2727

To prove the opposite, suppose that x ∈ P (X) and x /∈ CH(X),
meaning that CH(X) and {x} are nonempty, disjoint, closed and convex
subsets of V. According to the Hahn-Banach theorem there exist v ∈ V

and γ ∈ R such that:
v · x > γ (A.5)

and
v · xn < γ (n = 1, ..., M) (A.6)

and thus:
v · (x − xn) > 0 (n = 1, ..., M) (A.7)

We make the following definition:

t = minxn∈X
2v · (x − xn)

v · v
> 0 (A.8)

Then there exists xi ∈ X such that:

(x − tv − xi) · (x − tv − xi) > (x − xi) · (x − xi) (A.9)

and obtain a contradiction:

t >
2v · (x − xi)

v · v
≥ t (A.10)
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implying that x /∈ CH(X) is false. Thus we have that P (X) ⊂ CH(X).2728





Appendix B2729

Non-circular pipe flow constant2730

In this appendix we show some case of non-circular pipes that has been2731

investigated in [42]. In case when the xylem cross section is elliptic x2/a2 +2732

y2/b2 = 1, it can be shown that the volumetric flow rate has the following2733

expression ( [42], [15], [6]):2734

Q = πPa3b3

4µ(a2 + b2) (B.1)2735

which becomes a Poiseuille volumetric flow if a = b.2736

Further examples have been studied in ( [42], [15]) such as pipes with2737

an equilateral triangular cross section, with a flow rate given by:2738

Q = Gh4

60
√

3µ
(B.2)2739

where 2h/
√

3 is the side length of the cross section.2740

In case of a rectangular channel of height h and width l we have the2741

volumetric flow rate given as ( [42],[15]):2742

Q = Gh3l

12µ
− 16Gh4

π5µ

∞∑
n=1

1
(2n − 1)5 (B.3)2743

Other different cross sectional shapes have been considered, however all2744

these generalized formulas show that the volumetric flow rate is propor-2745

tional to the fourth power of the cross sectional radius Q ∝ R4, where the2746

constant depends on the shape of the cross section.2747





Appendix C2748

WBE model (West et al. 1999)2749

The WBE model is based on the four axioms:2750

1. the branching pattern follows a space-filling mechanism [156], which2751

ensures biologically that all leaves are serviced by capillaries,2752

2. terminal elements are size-invariant, meaning that the capillary den-2753

sity in a cross sectional area remains constant across levels,2754

3. the total hydrodynamic resistance is minimized,2755

4. the bio-mechanical constraints are uniform, which assures that at2756

each level branches split in smaller ones whose area sums to the2757

original one.2758

Based on these axioms, it can be derived a continuously branching2759

network for xylems, going from roots to leaves, which is structured with2760

k successive levels of branching, with a bundle of parallel and identical2761

cylindrical pipes at each level.2762

C.0.1 Notation2763

We define the branch radii as:

βk ≡ rk+1

rk

≡ n−a/2 (C.1)

the tube radii as:
β̄k = ak+1

ak

= n−ā/2 (C.2)

and the branch lengths as:

γk ≡ lk+1

lk
(C.3)
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where n is the branching ratio, defined also as the number of daughter2764

branches as derived from a parent branch.2765

In [157] authors consider that the total number of tubes is preserved2766

at each branching, thus n is taken independent of k. This condition has2767

been generalized in Savage et al [123].2768

C.0.2 Derivation of the 1/4 tapering exponent2769

The first axiom of volume-filling states that [156]:

γk = n−1/3 (C.4)

The total number of tubes is preserved at each branching so n = nk+1
nk

2770

is independent of the k-level and we also have that nk = nNnN−k, where2771

N is the total number of branching generations from roots to leaves.2772

Authors assumed that xylem tapering is constant across levels, meaning
that ā is independent of k and thus the tube radius scales as:

ak

aN

=
(

rk

rN

)ā/a

(C.5)

and the branch lengths as follows:

lk
lN

=
(

rk

rN

)2/3a

(C.6)

From the area-preserving as derived from the bio-mechanical axiom, we2773

have that a = 1.2774

The resistance Ri
k of a single xylem i within the branch segment k is

given by the Hagen-Poiseuille law:

Ri
k = 8µlk

a4
k

(C.7)

and the total resistance of a given xylem along the whole path is the sum of
all k contributing branch segments. By substituting our notation for lk and
ak we have the following relation: where lT = ∑N

k=0 lk = l0/(1 − n−1/3).
When lT ≫ lN , Ri will depend mostly on the degree of tapering, that is
for ā < 1/6 the resistance increases with path length lT , while for ā > 1/6
the resistance reaches a minimum, and is a constant, independent from
the total xylem height lT . By choosing ā = 1/6, which minimizes xylem
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tapering, we have that the tube radius scales as:

ak

aN

=
(

rk

rN

)1/6
(C.8)

and by combining it to the branch lengths

lk
lN

=
(

rk

rN

)2/3
(C.9)

we derive the classic ak/aN ∝ (lk/lN)1/4 relation.2775
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