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RIASSUNTO 

L’obiettivo principale di questa tesi è stato quello di valutare l’efficienza della 

spettroscopia a infrarosso per la predizione, a livello individuale, di “nuovi fenotipi” che 

descrivono le proprietà tecnologiche del latte bovino. Sono stati testati approcci statistici di 

calibrazione classici e innovativi, e sono stati inoltre stimati e valutati i parametri genetici 

delle predizioni ottenute per verificarne la possibile inclusione negli indici di selezione 

come metodo indiretto.  

Su un totale di 1,264 campioni di latte individuale, sono state effettuate le analisi che 

hanno previsto l’impiego di una procedura standard di micro-caseificazione per la misura 

di 7 caratteri relativi alla trasformazione casearia, in particolare sono state rilevate 3 misure 

di resa espresse come percentuale del latte lavorato, (%CYs; resa a fresco, resa in solidi 

totali, acqua ritenuta nella cagliata) e 4 misure di recupero di nutrienti nella cagliata o persi 

nel siero (%RECs; grasso, proteina, solidi totali ed energia). Le proprietà di coagulazione 

tradizionali (tempo di coagulazione, RCT; tempo di rassodamento, k20; consistenza del 

coagulo a 30 e 45 minuti dall’aggiunta del caglio, a30 e a45 rispettivamente) sono state 

misurate con un Formagraph (Foss Electric A/S, Hillerød, Denmark) in un test della 

consistenza del coagulo (CF) di 90 min. Utilizzando tutte le 360 informazioni di CF per 

campione registrate nei 90 min, sono stati inoltre ricavati, attraverso un modello 

matematico, dei nuovi parametri (tempo di coagulazione modellizzato, RCTeq; valore 

asintotico potenziale di CF per un tempo infinito, CFP; costante di rassodamento, kCF; 

costante di sineresi, kSR; valore massimo di CF, CFmax; tempo necessario affinché CF 

raggiunga il livello massimo, tmax). Per ogni campione sono stati raccolti due spettri a 

infrarosso in trasformata di Fourier (FTIR), utilizzando un MilkoScan FT6000 (Foss 

Electric, Hillerød, Denmark) nel range spettrale compreso tra 5,000 e 900 onde × cm-1, i 
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due spettri sono stati mediati prima delle analisi. Un primo processo di calibrazione è stato 

effettuato per la predizione di %CYs e %RECs, utilizzando il software WinISI II (Infrasoft 

International LLC, State College, PA) in cui sono implementati dei modelli basati sulla 

partial least square regression (PLS).  

I risultati ottenuti hanno mostrato ottime accuratezze di predizione tranne che per il 

recupero di grasso. Per migliorare le accuratezze di predizione, sono stati testati dei 

modelli Bayesiani, comunemente usati in genomica, e confrontati con la PLS. Dai risultati 

ottenuti, per alcuni caratteri difficili da predire, si è visto che i modelli Bayesiani hanno 

delle prestazioni migliori. Utilizzando una procedura di validazione esterna come metodo 

di valutazione delle prestazioni di calibrazione, la PLS è stata utilizzata per la predizione di 

%CYs e %RECs, mentre i modelli Bayesiani sono stati utilizzati per la predizione delle 

proprietà di coagulazione e per i parametri derivanti dalla modellizzazione della 

consistenza del coagulo. In entrambi i casi i risultati ottenuti, relativi all’accuratezza di 

predizione, hanno mostrato un’efficienza medio bassa. Inoltre, sono stati stimati i 

parametri genetici dei valori predetti nel processo di validazione e nonostante la medio-

bassa accuratezza delle predizioni, le ereditabilità dei valori predetti sono state simili o più 

alte dei corrispondenti valori misurati. L’impiego dei valori predetti come metodo di 

selezione indiretta è stato valutato attraverso la stima delle correlazioni genetiche tra valori 

predetti e misurati.  

I risultati hanno dimostrato, anche in questo caso che le correlazioni genetiche erano 

sempre superiori a quelle fenotipiche e nella maggior parte dei casi vicine o superiori al 

90%. Infine, le equazioni di predizione sviluppate per %CYs e %RECs, sono state 

impiegate per la predizione di questi fenotipi su un set di dati costituito da circa 200,000 

spettri di campioni individuali di latte di vacche di razza Frisona, Bruna e Pezzata Rossa 

italiane. I parametri genetici delle predizioni ottenute per ogni carattere sono stati stimati, 
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dimostrando di essere ereditabili, con valori di ereditabilità simili a quelli dei valori 

misurati. Le correlazioni genetiche tra i valori predetti di %CYs e %RECs, e quelli relativi 

ai dati produttivi e di composizione del latte, hanno dimostrato che i modelli di selezione in 

uso hanno un effetto limitato sul miglioramento dei parametri tecnologici. Proteina e 

grasso del latte non spiegano tutta la variabilità genetica di %CYs e, in particolare, di 

%RECs, quindi per il miglioramento dell’attitudine casearia  e conseguente valorizzazione 

economica del latte, questi caratteri andrebbero selezionati direttamente. 
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ABSTRACT 

The main objective of this thesis was to assess the infrared spectroscopy for the 

prediction at individual level of “new phenotypes” related to the technological properties 

of the cow milk, testing classic and innovative statistical approaches and evaluating the 

genetic parameters for a possible inclusion of the predicted traits in the selection indices as 

indirect selection method.  

A total of 1,264 individual milk samples were used for an individual model cheese 

making procedure and 7 new cheese-making related traits were obtained: 3 measures of 

cheese yield as percentage of processed milk (%CYs; fresh cheese yield, total solids cheese 

yield, water retained in the curd) and 4 measures of milk nutrients retained in the curd or 

lost in the whey (%RECs; fat, protein, total solids and energy). The traditional milk 

coagulation properties (rennet coagulation time, RCT; curd firming time, k20; curd 

firmness at 30 and 45 min, a30 and a45 respectively ) were also measured using a 

Formagraph (Foss Electric A/S, Hillerød, Denmark) in a curd firmness (CF) testing time of 

90 min. Using all the 360 information of the CF test recorded for each sample over the 90 

min, some new modeled parameters were also obtained (modeled rennet coagulation time, 

RCTeq; asymptotical potential value of CF at an infinite time, CFP; curd-firming rate 

constant, kCF; curd-syneresis rate constant, kSR; maximum level of CF, CFmax; time at 

which CF attains the maximum level, tmax;). For each sample two Fourier-transform 

infrared (FTIR) spectra were collected with a MilkoScan FT6000 (Foss Electric, Hillerød, 

Denmark) over the spectral range from 5,000 to 900 wavenumber × cm-1, and averaged 

before data analysis. A first chemometric process was carried out, using the WinISI II 

software (Infrasoft International LLC, State College, PA) in which the partial least square 

regression (PLS) models are implemented, for the prediction of %CYs and %RECs. High 

prediction accuracies were found except for the fat recovery. In order to improve the 
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prediction accuracy, Bayesian models, commonly used for genomic data, were tested and 

compared with PLS models.  

The results have shown that for those traits that are difficult to be predicted, the 

Bayesian models perform better than PLS. Using an external validation procedure, the PLS 

was used for the prediction of %CYs and %RECs, while the BayesB model was used for 

the prediction of MCP and CF modeled parameters. In both cases the prediction accuracy 

found in validation, ranged from low to moderate. The genetic parameters of the predicted 

were estimated through a bivariate Bayesian analysis and linear models. Despite the low-

moderate prediction accuracy in validation, the heritabilities of the predicted values were 

similar or higher than those of the corresponding measured values. The indirect selection 

of the studied traits was assessed through the genetic correlations between measured and 

predicted values, and the results shown that even when the coefficient of determination for 

the validation was moderate, the genetic correlations between predicted and measured 

values were always higher than the phenotypic correlations, and in the majority of cases 

near or higher than 90%.  

The calibrations developed for the %CYs and %RECs have been used to obtain the 

predictions on a population data set consisting of about 200,000 spectra of individual milk 

samples of Holstein, Brown Swiss and Simmental dairy cows. The genetic parameters of 

the predicted traits were estimated and the heritability values were comparable to those of 

the measured traits. The genetic correlations of %CYs and %RECs with milk production 

and composition provide evidence that the current selection paradigm used in dairy cattle 

may have a limited effects on the technological parameters. Milk protein and fat content do 

not explain all the genetic variations of %CYs and (in particular) %RECs, thus, these traits 

could be directly selected to improve the cheese making aptitude of milk and its correlated 

economic value.  
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GENERAL INTRODUCTION 

In the last decades the amount of cheese produced in the world increased 

considerably, with the largest producers represented by Europe and America (FAOSTAT). 

Under this scenario, the technological quality of milk become an important topic of world 

interest. The genetic improvement of milk traits represent a focal point, and in particular 

for those phenotypes that better represent the milk attitude for the cheese-making process, 

like the milk coagulation properties (MCP), cheese yield (CY) and milk nutrient recovery 

in cheese or loss in whey (REC). The implementation of such phenotypes for the genetic 

selection of the cows populations is limited because of the impossibility (costs, time 

consumption etc.) to carry out the individual analysis on a large number of samples, thus, 

new techniques for the possible analysis of these phenotypes at population level need to be 

studied. 

In cheese production the coagulation ability of milk play an important role with 

high importance for the evaluation of MCP in determining the technological quality of 

milk (Annibaldi et al., 1977). It is difficult to compare the results obtained in the large 

number of the available studies, because as also reviewed in Bittante et al. (2012), MCP 

measures are affected by several factors (milk quality, pre-treatment of milk samples, 

instruments type, and the repeatability and reproducibility of the method). Assessment of 

MCP can be performed using different technologies (mechanical, optical, vibrational, 

thermal) (O’Callaghan et al., 2002) measuring the curd firmness (CF) over time, three 

single points measures are conventionally carried out: time from addition of rennet to the 

start of coagulum formation (rennet coagulation time, RCT; min), time between RCT and 

the achievement of a CF of 20 mm (curd-firming time, k20; min), and the CF 30 min after 

rennet addition. The aforementioned parameters have some limitations that involve the 

presence of samples in which coagulation is not noted during the 30 min test interval 
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(noncoagulating samples; NC) and it is impossible to estimate RCT, k20 and a30. Further, 

k20 cannot be determined for late coagulating samples that have long RCT because its 

attainment occurs after the test interval. The presence of NC samples has a negative effect 

on the dairy industry and it is economically penalized in the milk quality payment system, 

furthermore, the presence of NC creates statistical problems for the correct evaluation of 

data from coagulating samples (Cecchinato and Carnier, 2011). A further limitation of the 

traditional MCP is the highly, phenotypic and genetic, dependence of a30 from RCT 

(Ikonen et al., 2004; Bittante, 2011). 

The syneresis is another important parameter for monitoring the coagulation 

process, and information about this parameter could be useful for a most accurate 

evaluation of the technological quality of milk. To overcome this limitations, Bittante et al. 

(2013) proposed a model based on the modeling of the curd-firming process over time 

(CFt), using all the available information, obtained using a Formagraph (Foss Electric A/S, 

Hillerød, Denmark), and prolonging the duration of the milk coagulation and curd firming 

tests, from 30 to 90 min. Several studies demonstrated that for the traditional MCP 

exploitable additive genetic variation exists and they are heritable (Ikonen et al., 1997; 

Cassandro et al., 2008; Cecchinato et al., 2013a), thus, recording of individual MCP could 

be used for the genetic improvement. 

For the dairy industry the percentage cheese yield (%CY, quantity of cheese 

obtained from a given quantity of milk, expressed as percentage) is the most important 

economic trait. Several formulae, based on the milk components analysis (protein, casein, 

fat), have been also reported for the prediction of CY (Emmons et al., 1990; Emmons et 

al., 1993; Emmons et al., 2010) and some are specific for kinds of cheese (Fenelon et al., 

1999; Mona et al., 2011). Several factors have power to influence the CY, some of these 

are due to animal effects, such as breed (Malacarne et al., 2006; Martin et al., 2009), parity 
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(Wedholm et al., 2006), feeding (Banks et al., 1986), and other are due to the cheese 

making conditions like technologies, handling and storage of milk (Lucey and Kelly, 

1994). A standard procedure could be a valid way to overcome the cheese making 

conditions effects that influence the assessment of CY, in order to compare the results. The 

model cheese production is described in several studies (Hicks et al., 1981; Hurtaud et al., 

1995; Cologna et al., 2009); only few studies described the procedure for individual milk 

samples (Hurtaud et al., 1995; Melilli et al., 2002; Wedholm et al., 2006). Cipolat-Gotet at 

al. (2013) carried out a model cheese production on a large number of individual milk 

samples, providing different measures of CY (classic, solids, water) and of nutrient 

recoveries from milk in the curd (fat, protein, solids and energy). Bittante et al. (2013) 

found in their work that for the phenotypes described in Cipolat-Gotet at al. (2013), a 

genetic and exploitable genetic variability exists and the estimated heritability values 

varied from moderate to high. They found that the genetic correlations between CYs and 

milk composition are high but far from one, while, those between curd recoveries and milk 

composition are rather low, concluding that the inclusion of milk fat and protein in the 

selection indices can explain part of the genetic variability of CYs for the indirect selection 

of these traits, but for the indirect selection of RECs their inclusion in the selection indices 

is less useful. 

In milk recording of dairy cows and other ruminants, the Fourier-transform infrared 

(FTIR) spectrometry has become a routine technique in the laboratories that analyze milk 

samples (ICAR, 2012), for the prediction of milk composition. This technique measures 

transmission of a spectrum consisting of more than one thousand different waves in the 

short-wave infrared region (SWIR, or near-infrared NIR), the mid-wave IR (MWIR, or 

mid-infrared MIR) and the long-wave IR (LWIR) (Byrnes, 2009), and gives the possibility 

to predict a large number of phenotypes with only a single analysis. Thus, FTIR 
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spectrometry could be a valid method, using appropriate calibration equations, for the 

prediction, during the milk recording, of MCP, CYs and RECs. A large number of studies 

on FTIR for the prediction of different milk phenotypes are available in literature, and 

some study investigated also the genetic basis of the single waves absorbance (Bittante and 

Cecchinato, 2013) or of their principal components (Soyeurt et al., 2010). The general 

procedure of using infrared spectrometry technologies for the prediction of phenotypes can 

be briefly described in five passages: 1) infrared spectra acquisition of samples; 2) 

laboratory analysis of the samples for the phenotypes recording to be used as reference; 3) 

development of the calibration equation with appropriate chemometric models, using a 

training set composed of samples spectra and relative reference phenotype; 4) validation of 

the calibration equation on an external testing set; 5) prediction of the phenotypes using the 

validated equations and the spectra of new samples. 

The correct recording of spectral information and of reference analysis, the number 

of samples used, and the amount of the analyzed substance in the samples are the basis for 

a good calibration process (Rutten et al. 2009; Karoui et al., 2010), but the focal point of 

all the procedure is the chemometric process. The most commonly used technique for 

developing the calibrations is the Partial Least Square Regression (PLS), and it is 

implemented in commercial software, e.g., WinISI (Infrasoft International LLC, State 

College, PA); Unscrambler (CAMO ASA, Oslo, Norway). These software provide 

multiple user-friendly tools for analyzing spectral data, although few regression models are 

implemented in them and the user has little control over many of the parameters 

controlling the algorithm. The PLS is a dimension-reduction method, and performs well for 

the prediction of major milk components, but the prediction accuracy is much lower for 

some qualitative and technological properties. A valid alternative to PLS is represented by 

the statistical advances made for the genomic selection, where statistical models, such as 
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the Bayesian models, have been adopted for regression on high-dimensional genotypes. 

The statistical problems related to genomics data are the same of FTIR data, for this reason 

the genomic models can be tested for the prediction of milk properties that are difficult to 

be predicted with the reduction methods, such as PLS. 

The prediction accuracy of the calibration equations is the main objective that is 

necessary to improve because good predictions are needed for the correct assessment of 

milk composition and milk attitude for the cheese-making process, especially in those 

cases where the milk payment systems is based on the milk quality. Differently, for the 

genetic improvement of milk traits based on the indirect selection, prediction accuracy is 

important but higher importance is given to the genetic correlations between measured and 

predicted traits. Only in two previous study the genetic parameters of measured and 

predicted traits were compared and the genetic correlations were estimated (Cecchinato et 

al., 2009; Rutten et al., 2010). Given the advantages that characterize the FTIR, especially 

for the genetic improvement, depth studies on its application for new milk phenotypes 

prediction are needed. 
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AIMS OF THE THESIS 

The objectives of this thesis were to assess the infrared spectroscopy for the prediction of 

“new phenotypes” related to the technological properties of the cow milk, through the 

applications of classic and innovative statistical approaches evaluating also the genetic 

effects of the predictions at population level. The study was conducted using a general data 

set of individual milk samples of Brown Swiss cows and it was structured in three main 

objectives according to the traits and the prediction statistics used. 

The first objective involved 3 individual cheese yields (fresh curd weight, curd 

solids, and curd water as percentages of the weight of milk processed) and 4 milk 

component recoveries, expressed as the protein, fat, solids, and energy contents of curd as 

a percentage of the corresponding nutrient contents of the milk processed. The predictions 

were carried out using PLS-based models, and the genetic parameters were studied. The 

aims were: 1) to evaluate the effectiveness of FTIR spectroscopy for the prediction of 

cheese yields and milk components recoveries; 2) to compare two validation techniques 

and the genetic parameters estimated for the predicted and the measured traits, also the 

study of the genetic correlations between measured and predicted was done considering the 

predictions as indicator traits for the indirect selection of dairy populations; 3) to estimate 

the genetic parameters for the FTIR predictions of cheese yield and nutrient recovery at a 

population level of Holstein, Brown Swiss and Simmental cows, examining the 

relationship of the predictions with the milk production and composition. 

For the second objective different milk traits, considered difficult to be predicted, 

were involved (fatty acids, cheese yield, nutrient recoveries and milk coagulation 

properties). The aims were: 1) to assess the predictive performances of Bayesian models, 

commonly used for genomic selection, when used for FTIR-based predictions; 2) to 
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compare the Bayesian results with those obtained using the partial least square and 

modified partial least square regression models. 

The last objective was to assess the predictive ability of the Bayesian models for the 

prediction of milk coagulation properties (MCP) measured with the Formagraph (Foss 

Electric A/S, Hillerød, Denmark), computerized lactodynamograph, and MCP obtained by 

modeling the curd firmness (measured until 90 minutes) as a function of time. The genetic 

parameters for the measured and the predicted traits were compared and also the 

phenotypic and genetic correlations between measured or modeled and predicted MCP 

were estimated. 
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ABSTRACT 

Cheese yield is an important technological parameter in the dairy industry in many 

countries. The aim of this study was to evaluate the effectiveness of Fourier-transform 

infrared (FTIR) spectral analysis of fresh unprocessed milk samples for predicting cheese 

yield and nutrient recovery traits. A total of 1,264 model cheeses were obtained from 

1,500-mL milk samples collected from individual Brown Swiss cows.  Individual 

measurements of seven new cheese yield-related traits were obtained from the laboratory 

cheese making procedure including: the fresh cheese yield (%CYCURD), total solid cheese 

yield (%CYSOLIDS) and the water retained in curd (%CYWATER), all as a percentage of the 

processed milk; and nutrient recovery (fat, protein, total solids and energy) in the curd as a 

percentage of the same nutrient contained in the milk (RECFAT, RECPROTEIN, RECSOLIDS, 

and RECENERGY, respectively). All individual milk samples were analyzed using a 

MilkoScan FT6000 (Foss, Hillerød, Denmark) over the spectral range from 5000 to 900 

wavenumber×cm-1. Two spectral acquisitions were carried out for each sample, and the 

results were averaged prior to data analysis. Different chemometric models were fitted and 

compared, with the aim of improving the accuracy of the calibration equations for 

predicting these traits. The most accurate predictions were obtained for %CYSOLIDS and 

%CYCURD, which exhibited coefficients of determination between the predicted and 

measured values in cross-validation (1-VR) of 0.95 and 0.83, respectively. A less favorable 

result was obtained for %CYWATER (1-VR: 0.65). Promising results were obtained for 

RECPROTEIN (1-VR: 0.81), RECSOLIDS (1-VR: 0.86), and RECENERGY (1-VR: 0.76), whereas 

RECFAT exhibited a low accuracy (1-VR: 0.41). As FTIR spectroscopy is a rapid, cheap, 

high-throughput technique that is already used to collect “standard” milk recording data, 

these FTIR calibrations for cheese yield and nutrient recovery highlight additional 

potential applications of the technique in the dairy industry, especially for monitoring 
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cheese-making processes and milk payment systems. In addition, the prediction models 

can be used to provide breeding organizations with information on “new” phenotypes for 

cheese yield and milk nutrient recovery, potentially allowing these traits to be enhanced 

through selection. 

Key words: mid-infrared spectroscopy; cheese yield; cheese-making; whey losses 

 

INTRODUCTION 

Percentage cheese yield (%CY: the quantity of cheese obtained from a given 

quantity of milk processed, expressed as percentage) is the most important economic trait 

for the dairy industry in many countries and, indirectly, for the definition of price of milk. 

Unfortunately, this and other traits cannot be routinely measured on a large scale for milk 

payment systems and/or direct genetic improvement at the population level.   

Several studies have described procedures for model cheese production (Hicks et 

al., 1981; Hurtaud et al., 1995; Cologna et al., 2009). These procedures include accurate 

methods for evaluating %CY, but the methods are expensive, time-consuming and not 

applicable for routine application. Furthermore, we are only aware of a few studies 

reporting the use of model cheeses for the evaluation of individual milk samples (Hurtaud 

et al., 1995; Melilli et al., 2002; Wedholm et al., 2006), and only one of these model 

cheese-making procedures was applied on a large number of individual samples (Cipolat-

Gotet et al., 2013). This latter procedure yielded a complete nutrient profile for the cheese-

making process with the quantification of three different %CYs: the classic %CYCURD, 

which is the ratio between the weight of curd produced and the weight of the milk 

processed; %CYSOLIDS, which is the weight of dry curd versus that of the milk processed; 

and %CYWATER, which is the weight of water retained in the curd versus that of the milk 
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processed. The model cheese-making procedure of Cipolat-Gotet et al. (2013) also allowed 

the recovery coefficients of individual milk components to be determined from curd, with 

RECFAT, RECPROTEIN, RECSOLIDS and RECENERGY representing, respectively, the ratios 

between the curd contents of fat, protein, total solids and energy versus the content of the 

corresponding nutrient in the milk processed. The deviations of these RECs from unity 

correspond to the whey losses of individual milk nutrients. Moreover, the measurements of 

%CYs and daily milk yield allowed the authors to calculate the daily cheese yields of 

individual cows in kg×d-1 (dCYCURD, dCYSOLIDS, and dCYWATER).  

Using the same dataset, Bittante et al. (2013a) found that the phenotypic correlation 

between RECFAT and RECPROTEIN was weak, as were the correlations between these two 

traits and the fat and protein contents of milk. This indicates that the fat and protein 

contents alone do not fully explain %CY variations or the real economic value of milk. 

Moreover, the same authors found that all of the %CYs, dCYs, and RECs (and thus also 

the whey losses) exhibited exploitable genetic variations with heritability estimates similar 

to (dCYs) or greater than (%CYs and RECs) the estimates for milk yield and similar to the 

heritability of milk quality traits (with the exception of RECPROTEIN, which was much more 

heritable than the protein content of milk) (Bittante et al., 2013a). As expected, %CYCURD 

and %CYSOLIDS showed high genetic correlations with the fat and protein contents of milk, 

whereas the other traits (especially RECFAT and RECPROTEIN) did not (Bittante et al., 2013). 

These findings indicate that the inclusion of milk fat and protein contents in the selection 

indices of dairy populations as a tool for the indirect selection for CYs is effective, but it 

cannot explain all the genetic variability of these traits, and it is much less useful for the 

indirect selection of RECs and nutrient losses in whey.  

There are several reported formulae for predicting %CY from milk components 

(Emmons et al., 1990; Emmons et al., 1993; Emmons et al., 2010), and some that are 
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specific for kinds of cheese (Fenelon et al., 1999; Mona et al., 2011). For these formulae to 

be useful in the indirect selection of dairy populations, the milk composition must be 

known (several analyses are required), and it is speculated that these formulas are seldom 

more effective than the direct use of milk composition data. However, while many 

instruments currently support the rapid analysis of milk composition, instruments that 

directly predict  %CYs and RECs are not yet available.  

The absorbance of milk samples at individual wavelengths in the medium infra-red 

(MIR) region has been demonstrated to be associated with many chemical bonds (Barbano 

et al., 2006; Brandt et al., 2010; Karoui et al., 2010) and to be heritable (Bittante and 

Cecchinato, 2013). The prediction of milk composition using Fourier-transform infrared 

(FTIR) spectroscopy has become largely routine in the dairy industry and milk recording 

laboratories (ICAR, 2012). These instruments have also been tested for the prediction of 

other technological properties of milk, particularly coagulation, and this promising 

application appears to be nearly ready for routine application (Dal Zotto et al. 2008; 

Cecchinato et al., 2009; Bittante et al., 2012). Some studies have also investigated the 

possibility of using near infrared technology for at-line monitoring of milk coagulation and 

curd syneresis in dairy plants (O’Callaghan et al., 2002; Fagan et al., 2007a; Fagan et al., 

2007b; Leitner et al., 2011). Other studies have assessed the use of near infrared 

technology to predict the curd moisture content, the whey fat content and the curd yield at 

the end of syneresis as a function of processing time during syneresis (Fagan et al., 2008). 

However, no previous study has assessed the possibility of using FTIR spectroscopy to 

directly predict %CYs and RECs (or whey losses) from raw milk samples collected for 

milk recording or milk payment systems. 

The present study sought to evaluate the effectiveness of FTIR spectroscopy for the 

prediction of three individual cheese yields (fresh curd weight, curd solids, and curd water 
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as percentages of the weight of milk processed) and four milk component recoveries (or 

whey losses), expressed as the protein, fat, solid, and energy contents of the curd (or whey) 

as a percentage of the corresponding nutrient (protein, fat, solids and energy, respectively) 

contents of the milk processed. For these aims, we examined the FTIR spectra of 

individual milk samples from 1,264 Brown Swiss cows previously used for individual 

model cheese production by Cipolat-Gotet et al. (2013). 

MATERIALS AND METHODS 

Field Data 

The present study is part of the Cowplus projects of the autonomous province of 

Trento (Italy). The sampling procedure has previously been described in detail by Cipolat-

Gotet et al. (2012) and Cecchinato et al. (2013), and the production environment was 

described in Sturaro et al. (2013). A total of 1,264 Brown Swiss cows from 85 herds 

located in Trento Province (Italy) were sampled once during evening milking. The cows 

represented different parities (1 to 5), days in milk (5 to 449), and production levels 

(24.3±7.9 kg×d-1). Within a given day, only one herd was sampled. Two milk subsamples 

per cow were collected and immediately refrigerated at 4°C without any preservative. One 

subsample (50 mL) was transported to the Milk Quality Laboratory of the Breeders 

Federation of Trento Province (Trento, Italy) for composition analysis. The other 

subsample (2,000 mL) was transferred to the Cheese-Making Laboratory of the 

Department of Agronomy, Food, Natural Resources, Animals and Environment 

(DAFNAE) of the University of Padova (Legnaro, Italy) for model cheese fabrication. All 

samples were processed for analyses and model cheese fabrication within 20 h from 

collection. Data on the cows, herds and single test-day milk yield were provided by the 

Superbrown Consortium of Bolzano and Trento (Italy), and pedigree information was 

supplied by the Italian Brown Swiss Cattle Breeders Association (ANARB, Verona, Italy). 
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Model Cheese-making Procedure 

Individual milk samples were analyzed for fat, protein, and casein percentages 

using a MilkoScan FT6000 (Foss, Hillerød, Denmark). Somatic cell count was obtained 

from the Fossomatic FC counter (Foss, Hillerød, Denmark) and was then converted to SCS 

by means of logarithm transformation (Ali and Shook, 1980). The procedure used for 

individual model cheese production was based on that described by Cologna et al. (2009), 

which showed good repeatability. A detailed description of the modified cheese-making 

procedure was previously reported (Cipolat-Gotet et al., 2013). Briefly, 1,500 mL of milk 

was heated to 35°C in a stainless steel micro-vat, supplemented with thermophilic starter 

culture, mixed with rennet, and controlled for coagulation time. The resulting curd from 

each vat was cut, drained, shaped in wheels, pressed, salted, weighed, sampled, and 

analyzed. The whey collected from each vat was also weighed, sampled, and analyzed.   

 

Trait Definitions 

All of the traits were measured based on the weights (W, g) and chemical compositions 

of milk and whey, as detailed by Cipolat-Gotet et al. (2013). The measured traits were as 

follows: 

• cheese yield (%CYCURD) as W of curd × 100 / W of milk; 

• total solid (TS) cheese yield (%CYSOLIDS) as (W of milk TS – W of whey TS) ×100 

/ W of milk; 

• water cheese yield (%CYWATER) as (W of milk water – W of whey water) × 100 / 

W of milk; 

• fat (F) recovery (RECFAT, %) as (W of milk F – W of whey F) × 100 / W of milk F; 
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• protein (P) recovery (RECPROTEIN, %) as (W of milk P – W of whey P) × 100 / W of 

milk P; 

• TS recovery (RECSOLIDS, %) as (W of milk TS – W of whey TS)  × 100 / W of milk 

TS; and 

• energy recovery (RECENERGY, %) as (milk energy – whey energy) × 100 / milk 

energy. 

 

MIR Spectral Acquisition 

All individual milk samples were analyzed using a MilkoScan FT6000 (Foss, 

Hillerød, Denmark) over the spectral range from 5000 to 900 wavenumber × cm-1; the 

spectra were stored as absorbance (A) using the transformation A = log(1/T), where T is 

the transmittance. Two spectral acquisitions were carried out for each sample, and the 

results were averaged prior to data analysis. 

 

Data Analysis and Chemometric Models 

Calibration models were developed using the WinISI II software (Infrasoft 

International LLC, State College, PA) and carried out using modified partial least square 

regression (MPLS) as the chemometric algorithm. Spectra were used without pretreatment, 

as well as with various pretreatments, including standard normal variate (SNV), standard 

normal variate and detrend (SNVD), multiplicative scatter correction (MSC) and first and 

second derivatives. Moreover, FTIR spectra were analyzed across the whole interval (from 

5000 to 900 wavenumber×cm-1) or without the two portions known to be characterized by 

a very high phenotypic variability: the transition region between the short-wave to mid-

wave infrared  (SWIR-MWIR or NIR-MIR, 3,669 to 3,052 cm-1) and region MWIR-2, 
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from 1,698 to 1,586 wavenumber×cm-1 (Bittante and Cecchinato, 2013), as shown in 

Figure 1. A combination of these pretreatments was also used, for a total of 19 models for 

each parameter. 

Anomalous spectra were detected using the Mahalanobis distance [global H (GH)] 

from the population mean; samples that exhibited large distance (GH > 10) were 

considered H-outliers. Samples for which the difference between the reference and 

predicted value was much larger than the standard error of cross-validation (SECcv) were 

considered T-outliers (the established T value was 2.5). Two steps were used to eliminate 

outliers. First, a cross-validation using four groups of samples from the calibration set was 

used to assess the robustness of calibration. Second, to compare the effectiveness of 

calibration models, we calculated the standard error of cross-validation (SECcv), the 

coefficient of determination of cross-validation (1-VR), the standard error of prediction 

corrected for the bias [SEP(C)], and the ratio of prediction to deviation (RPD) that is the 

ratio of SD of reference values to the SECCV, the RPD larger than 2 indicates a good 

calibration (Karoui et al., 2006). 

 

RESULTS AND DISCUSSION 

 

Characteristics of the infrared spectrum of milk 

Table 1 presents descriptive statistics for the milk quality traits, cheese yield and 

nutrient recoveries. The milk samples used for model cheese fabrication exhibited large 

variability in terms of chemical composition, %CYs and RECs. A comprehensive 

discussion of these traits was previously published by Cipolat et al. (2013). 

In classifying the infrared spectrum of milk into five regions, Bittante and 

Cecchinato (2013) identified the regions of 3,052 to 3,669 wavenumber×cm-1 (SWIR-
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MWIR, short-mid wavelength infrared; the transition region between NIR and MIR) and 

1,586 to 1,698 cm-1 (MWIR-2, mid-wavelength infrared-2) as being particularly important 

because they harbor the typical peaks due to water absorption (≈3,920, 3,490, 3,280 and 

1,645 wavenumber×cm-1). These peaks can significantly increase the variability of 

absorbance (Figure 1), creating interference that can reduce the accuracy of calibrations. 

For this reason, the MWIR-2 and SWIR-MWIR spectral regions were omitted when we 

performed all calibrations used for the present study, except for the prediction of protein 

recovery (Table 2). 

These two regions are important for the absorbance peaks typical of other chemical 

bonds. In fact, the SWIR-MWIR region contains wavelengths characteristic of the 

absorbances for C=CH2 bonds, the O-H bonds typical of alcohols, phenols and carboxylic 

acids, and the N-H bonds of primary and secondary amines (the major absorption peaks of 

amines I and II are at 3,500 to 3,400 and > 3,000 wavenumber×cm-1, respectively). The 

MWIR-2 region includes absorption peaks related to the acyclic and conjugated C-C, C=C, 

C=O, C-N and N-H bonds, as well as those for proteins (Karoui et al., 2011), with the 

typical absorption peaks for amides I and II falling at 1,700 to 1,600 wavenumber×cm-1 

and 1,600 to 1,500 wavenumber×cm-1, respectively (Etzion et al., 2004; Curley et al., 

1998; Hewavitharana et al., 1997). The latter peculiarity explains why, despite the 

interference due to water absorption, the inclusion of these two regions allowed us to 

obtain better calibrations for predicting protein recovery (Table 2).  

The band that provides direct information about a specific constituent and its 

molecular structure is found between 400 and 4,000 wavenumber×cm-1 (Etzion et al., 

2004; Karoui et al., 2010). The present study also considered information from the SWIR 

(short wave infrared or NIR, near infrared) region found between 5,000 and 3,673 

wavenumber×cm-1, which typically does not present relevant peaks and thus has been 
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omitted from some studies (Karoui et al., 2011). In the MWIR-1 region (3,048 to 1,701 

wavenumber×cm-1), the most important peaks are located between 3,000 and 2,800 

wavenumber×cm-1 and are due to fat absorption (Karoui et al., 2010; Karoui et al., 2011), 

particularly that of fat B (Lynch et al., 2006; Kaylegian et al., 2009). For fat A, the typical 

absorption peak is at ≈ 1,740 wavenumber×cm-1. Lastly, the MWIR-LWIR region (the 

transition between the mid and long wave infrared, called the fingerprint region and 

located between 1,582 and 930 wavenumber×cm-1) contains the peaks corresponding to the 

absorbances of many chemical compounds (carbohydrates and organic acids); for example, 

lactose has an absorbance peak at ≈ 1,040 wavenumber×cm-1 (Kaylegian et al. 2009, 

Lynch et al. 2006). 

Figure 2 presents the loadings of the first two principal components used to predict 

%CYCURD, with the SWIR-MWIR and MWIR-2 regions omitted (Figure 2a), and those of 

RECPROTEIN, which were based on the entire spectrum (Figure 2b).  

 

Prediction of Cheese Yield 

The results from the best prediction models of each trait are presented in Table 2. The best 

predictions for all of the %CY measurements were those that omitted the SWIR-MWIR 

and MWIR-2 regions of the spectrum. The first derivative pretreatment was applied for all 

of them to increase the resolution of spectra peaks highlighting the signal due to the 

chemical composition, and only CYWATER required standardization (SNV). To compare the 

models in terms of accuracy, we used the coefficients of determination of cross-validation 

(1-VR), the standard errors of cross validation (SECCV), the numbers of modified partial 

least square (MPLS) components and the ratio of prediction to deviation (RPD). For 

%CYCURD, 3.8% outliers were observed using the Mahalanobis distance, 10 MPLS 

components were used, the SECCV was ±0.75 percentage points,  the 1-VR was 0.83 and 



- 28 - 
 

the RPD 2.45. The prediction of %CYSOLIDS yielded the highest 1-VR value (0.95) and 

RPD (4.24) among the examined traits; it had 6% outliers and a SECCV of only ±0.21 

percentage points, and used 10 MPLS components. Lastly, %CYWATER had a lower value 

of 1-VR (0.65), used 12 MPLS components, and was found to have 3.7% outliers and a 

SECCV of ±0.71 percentage points, the RPD value was 1.70.  

Figure 3 shows scatter plots of the predicted versus measured %CYs. The good 

predictions obtained for %CYCURD and %CYSOLIDS were not unexpected because of the 

high number of measured traits used for prediction (Rutten et al., 2010). As noted above, 

the absorbances of several wavelengths from the infrared bands of the electromagnetic 

spectrum are related to the chemical bonds typical of fats and proteins (Bittante and 

Cecchinato, 2013). Mid-infrared absorption information has been used to predict the fat 

and protein contents of milk because of the high precision and repeatability assured by 

these secondary methods of analysis. Two main methodologies have been used: the first is 

based on the absorbance at specific wavelengths (Kaylegian et al., 2006; Lynch et al., 

2006), while the second examines the entire spectrum (or large portions of it) through the 

Fourier-transform strategy (Hewavitharana et al., 1997; Etzion et al., 2004). Both of these 

techniques have reached the quality standards necessary to be approved by the ICAR 

(2012). As cheese yield primarily depends on the milk fat and protein contents, the 

promising results obtained in the present work were as expected. This relationship may 

also explain why the predictive ability of FTIR calibration equations was higher for 

%CYSOLIDS than for %CYCURD (1-VR: 0.95 vs. 0.83, respectively; Table 2). The 

%CYSOLIDS are almost exclusively composed of fats and proteins (casein) retained in the 

curd, and these substances represent most of the fat and protein contents of the milk. In 

contrast, the water retained in the curd is only a small proportion of the water in milk, and 

(unlike caseins and whey proteins) cannot be chemically differentiated. The quantity of 
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water retained in the curd (%CYWATER) cannot be estimated by the quantity of water 

present in the milk, but rather by the hydration characteristics of retained proteins and the 

quantity of solutes. Given these indirect relationships between the water retained in the 

curd and the presence of chemical bonds measurable by infrared spectra, the lower 

accuracy of FTIR calibration-based %CYWATER prediction (1-VR: 0.65; Table 2) is 

reasonable. We would also expect that the accuracy of %CYCURD prediction would be 

intermediate between those of %CYWATER and %CYSOLIDS, as it represents their sum.  

The next crucial question was whether the FTIR spectrum-based prediction of 

%CYSOLIDS was simply a different representation of the constant proportion of its fat and 

protein contents (and thus failed to add any meaningful new information), versus a more 

precise estimation of the fat and protein (and also other substances, such as minerals and 

glucose) retained in the curd. This question could only be answered by testing the ability of 

our FTIR-based technique to predict not only the quantity of different nutrients present in 

the milk sample, but also their ability to be retained in the curd when the milk is processed 

for cheese-making. 

 

Prediction of Whey Losses and Nutrient Recovery from Milk to Curd  

The best prediction model (Table 2) for RECPROTEIN used the entire spectrum, while those 

for the other measures excluded the MWIR-2 and SWIR-MWIR regions. The first 

derivative was applied for all of the REC models as spectra pretreatments to increase the 

resolution of spectra peaks highlighting the signal due to the chemical composition, and 

RECSOLIDS also used standardization (SNV). 

The number of MPLS components used for RECPROTEIN prediction was high (16) 

with 3.2% outliers observed, a SECCV of ±1.02 percentage points, and a 1-VR of 0.81, the 

RPD value was 2.29. RECFAT had the lowest value of 1-VR (0.41) and RPD (1.31), a high 
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SECCV (±2.32 percentage points) and 4.4% outliers, and used 12 MPLS components. 

RECSOLIDS had a high value of 1-VR (0.86), a SECCV of ±1.27 percentage points and 5.5% 

outliers, and used 11 MPLS components the RPD value was 2.69. Lastly, RECENERGY had 

5.4% outliers, used 12 MPLS components, and had a 1-VR of 0.76, an RPD of 2.04 and a 

SECCV of ±1.5 percentage points. Figure 4 shows scatter plots of the predicted versus 

measured REC values. These results clearly show that FTIR spectrum-based calibrations 

are valuable tools for predicting the retention of nutrients in the curd after cheese-making 

(with the partial exception of fat recovery). 

From the chemical point of view, the fat lost in the whey does not strongly differ 

from that retained in the curd (Kaylegian et al., 2009). However, FTIR spectroscopy may 

be used to predict the fatty acid profiles of milk (Soyeurt et al., 2006; Rutten et al., 2009; 

Afseth et al., 2010; De Marchi et al., 2011; Soyeurt et al., 2011), and fat retention depends 

more on physical properties, such as  fat globule size (Couvreur et al., 2007), curd firming 

rate, curd cutting, etc. (Bynum et al., 1982; Aleandri et al., 1989; Johnson et al., 2001; 

Malacarne et al., 2006). Notably, the 1-VR of RECFAT obtained herein was similar to that 

obtained by Dal Zotto et al. (2008).  

 RECPROTEIN presents a somewhat different scenario, because the protein retained in 

the curd mainly consists of caseins, which differ somewhat from whey proteins in their 

chemical compositions. It should be noted that the previous attempts to predict specific 

milk protein fractions (Grdadolnik et al., 2001; van der Ven et al., 2002; Arnould et al., 

2009; Bonfatti et al., 2011; Rutten et al., 2011) yielded accuracy parameters that were 

generally inferior to the present calibration for RECPROTEIN. Moreover, Cipolat et al. (2013) 

found that the phenotypic variability of RECPROTEIN was larger than that of the casein 

index, even though the average values of the two traits are almost identical. Finally, 

Bittante et al. (2013) estimated a much higher heritability value for RECPROTEIN than that 
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obtained for the protein content of milk. Thus, RECPROTEIN clearly represents more than 

just the protein fraction.  

The accuracy of predicting RECSOLIDS is not intermediate between those of 

RECPROTEIN and RECFAT, but this may be explained by noting that this parameter depends 

not only on fat and protein, but also on lactose and minerals and their relative proportions. 

It seems that the FTIR can discriminate between the different solids of milk that are lost 

and the solids that are retained in the curd increasing the accuracy of the RECSOLIDS 

prediction. Finally, considering the higher energy value of fat versus protein, the lower 

ability of FTIR calibration to predict fat recovery versus protein recovery explains the 

lower accuracy of RECENERGY compared to RECSOLIDS. 

 

CONCLUSIONS 

The present study investigated the feasibility of using calibrations based on the 

FTIR spectrum of fresh unprocessed milk samples to predict cheese yields, which are 

expressed as the weight of fresh curd, curd total solids, and water retained in the curd as 

percentage of the weight of the milk processed for cheese-making. The obtained results 

showed that the estimation of the total solid cheese yield was highly accurate. The FTIR 

calibrations were also capable of predicting (albeit with a lower accuracy) the amount of 

water retained in the curd, and thus the cheese yield in its most commonly known 

definition (weight of curd versus weight of milk). With respect to the indirect estimation of 

cheese yield based on milk composition, especially on the fat and protein (casein) contents, 

we found that FTIR calibrations have not only the potential to predict the main nutrient 

contents in milk but also their specific retentions in cheese or losses in the whey 

(especially for proteins, total solids and energy). Nevertheless, further research is needed to 

actually compare the results yielded by FTIR with those achievable with the use of 
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prediction formulas based only on milk composition. FTIR prediction is a rapid, 

inexpensive, high-throughput technique based on commonly used instruments that may be 

applied to milk samples that are already collected for other analyses. Thus, our analysis of 

FTIR calibrations suggests new applications for this technique in the dairy industry, 

especially for the monitoring of cheese-making processes and the valuation of milk for 

payment systems. In addition, the estimated prediction models can be used to provide 

breeding organizations with information on “new” phenotypes for cheese yield and milk 

nutrient recovery, potentially allowing these traits to be enhanced through selection. 
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TABLES AND FIGURES 

Table 1. Descriptive statistics of milk and whey quality traits, of individual percentage 
cheese yields, and of  milk components recoveries from 1,264 milk samples / model 
cheeses.  
Trait1 Mean SD Minimum Maximum 

Milk quality traits     

   Fat, % 4.38 0.90 1.06 11.89 
   Protein, % 3.75 0.43 2.60 5.77 

   Casein, % 2.88 0.32 1.94 4.51 

   Lactose, % 4.77 0.24 3.80 5.40 
   Total solids, % 13.89 1.05 10.75 21.10 

   SCS, units 2.98 1.86 -1.32 10.03 

Whey quality traits     
   Fat, % 0.53 0.22 0.08 1.78 

   Protein, % 0.97 0.16 0.56 1.68 

   Lactose, % 5.15 0.21 4.22 5.76 
   Total solids, % 7.79 0.33 6.65 9.33 

Cheese yield     

   %CYCURD 15.04 1.89 10.23 20.58 
   %CYSOLIDS 7.22 0.93 4.64 10.40 

   %CYWATER 7.80 1.28 4.43 11.72 

Nutrient recovery     
   RECPROTEIN, % 78.07 2.41 70.51 85.25 

   RECFAT, % 89.87 3.58 76.77 98.12 

   RECSOLIDS, % 52.05 3.58 42.01 63.34 
   RECENERGY, % 67.31 3.32 57.64 77.64 
1%CYCURD  = weight of fresh curd as percentage of weight of milk processed; %CYSOLIDS = weight of curd 
solids as percentage of weight of milk processed; %CYWATER = weight of curd water as percentage of weight 
of milk processed; RECPROTEIN = protein of the curd as percentage of the protein of the milk processed; 
RECFAT = fat of the curd as percentage of the fat of the milk processed; RECSOLIDS = solids of the curd as 
percentage of solids of the milk processed; RECENERGY = energy of the curd as percentage of the energy of 
the milk processed. 



 
 

Table 2. Fitting statistics of predictions models for individual cheese yields and milk components recoveries.  

Trait1 Na #Lb Mathc SDd SECe R2 f SECcv
g 1-VRh SEP(C)i RPDj 

Cheese yield           

   %CYCURD 1,205 10 W, 1,10,4,1 1.84 0.71 0.85 0.75 0.83 0.97 2.45 

   %CYSOLIDS 1,168 10 W, 1,15,4,1 0.89 0.20 0.95 0.21 0.95 0.27 4.24 

   %CYWATER 1,200 12 W, SNV, 1,10,4,1 1.21 0.68 0.69 0.71 0.65 0.93 1.70 

Nutrient recovery           

   RECPROTEIN, % 1,208 16 A, 1,4,4,1 2.34 0.87 0.86 1.02 0.81 1.33 2.29 

   RECFAT, % 1,181 12 W, 1,10,4,1 3.03 2.17 0.49 2.32 0.41 3.02 1.31 

   RECSOLIDS, % 1,181 11 W, SNV, 1,10,4,1 3.41 1.20 0.88 1.27 0.86 1.65 2.69 

   RECENERGY, % 1,171 12 W, 1,10,4,1 3.06 1.41 0.79 1.50 0.76 1.95 2.04 
1%CYCURD  = weight of fresh curd as percentage of weight of milk processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk processed; %CYWATER = 
weight of curd water as percentage of weight of milk processed; RECPROTEIN = protein of the curd as percentage of the protein of the milk processed; RECFAT = fat of the curd 
as percentage of the fat of the milk processed; RECSOLIDS = solids of the curd as percentage of solids of the milk processed; RECENERGY = energy of the curd as percentage of 
the energy of the milk processed. 
an = number of samples used in the calibration after removing outlier. 
b#L = number of modified partial least square components. 
cMath = mathematical treatments of the spectral data where the letters indicate the spectral range used for calibration (A= all the spectrum 5,011-930 cm-1; W = spectra 
segments used 5,011-3,673 cm-1 3,048-1,701 cm-1 and 1,582-930 cm-1), SNV=standard normal variate, the first number is the order of the derivative, the second number is the 
segment length in data points over which the derivative was taken, the third and fourth numbers are the segment length for first and second smoothing respectively. 
dSD = standard deviation. 
eSEC = standard error of calibration. 
fR2 = coefficient of determination of calibration. 
gSECcv = standard error of cross-validation. 
h1-VR = coefficient of determination of cross-validation. 
iSEP(C) = standard error of prediction corrected for the bias. 
jRPD = ratio of prediction to deviation (SD/SECCV) 
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Figure 1.  Plots showing the absorbance of milk samples (Log T

represents the average, while the two gray lines represent the average ± standard 

deviation). 
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.  Plots showing the absorbance of milk samples (Log T-

represents the average, while the two gray lines represent the average ± standard 

 

-1; solid black line 

represents the average, while the two gray lines represent the average ± standard 

 



 

Figure 2. First and second loading relative to: a] the prediction of percentage cheese yield 

(%CYCURD); b] the prediction of protein recovery from milk to curd (REC
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. First and second loading relative to: a] the prediction of percentage cheese yield 

); b] the prediction of protein recovery from milk to curd (RECPROTEIN

 

. First and second loading relative to: a] the prediction of percentage cheese yield 

PROTEIN, %). 

 

 



 

Figure 3. Scatter plots of predicted vs measured values of per

CYSOLIDS [b] and CYWATER 
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. Scatter plots of predicted vs measured values of percentage CY

WATER [c]. 

 

centage CYCURD [a], 

 

 

 



 

Figure 4. Scatter plots of predicted vs measured values of  REC

RECSOLIDS [c] and RECENERGY
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Scatter plots of predicted vs measured values of  RECPROTEIN [a], REC

ENERGY [d]. 

 

[a], RECFAT [b], 
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ABSTRACT 

Cheese yield  is an important technological trait in the dairy industry. The aim of 

this study was to infer the genetic parameters of some cheese yield-related traits predicted 

using Fourier-transform infrared (FTIR) spectral analysis and compare the results with 

those obtained using an individual model-cheese producing procedure. A total of 1,264 

model cheeses were produced using 1500-mL milk samples collected from individual 

Brown Swiss cows, and individual measurements were taken for ten traits: three cheese 

yield traits (fresh curd, curd total solids and curd water as a % of the weight of the 

processed milk), four milk nutrient recovery traits (fat, protein, total solids and energy of 

the curd as a % of the same nutrient in the processed milk) and three daily cheese 

production traits per cow (fresh curd, total solids and water weight of the curd). Each 

unprocessed milk sample was analyzed using a MilkoScan FT6000 (Foss, Hillerød, 

Denmark) over the spectral range from 5000 to 900 wavenumber×cm-1. FTIR spectrum-

based prediction models for the abovementioned traits were developed using modified 

partial least-square regression. Cross-validation of the whole dataset yielded coefficients of 

determination between the predicted and measured values in cross-validation (1-VR) of 

0.65 to 0.95 for all traits, except for the recovery of fat (0.41). A 3-fold external validation 

was also used, in which the available data were partitioned into two subsets: a training set 

(one third of the herds) and a testing set (two thirds). The training set was used to develop 

calibration equations, while the testing subsets were used for external validation of the 

calibration equations and to estimate the heritabilities and genetic correlations of the 

measured and FTIR-predicted phenotypes. The 1-VR results obtained from the training 

sets were very similar to those obtained from the whole dataset, but the coefficient of 

determination of validation (���) values for the external validation sets were much lower 

for all traits (0.30 to 0.73), and particularly for fat recovery (0.05 to 0.18), for the training 
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sets compared to the full dataset. For each testing subset, the (co)variance components for 

the measured and FTIR-predicted phenotypes were estimated using bivariate Bayesian 

analyses and linear models. The intraherd heritabilities for the predicted traits obtained 

from our internal cross-validation using the whole dataset ranged from 0.085 for daily 

yield of curd solids to 0.576 for protein recovery, and were similar to those obtained from 

the measured traits (0.079 to 0.586, respectively). The heritabilities estimated from the 

testing dataset used for external validation were more variable but similar (on average) to 

the corresponding values obtained from the whole dataset. Moreover, the genetic 

correlations between the predicted and measured traits were high in general (0.791 to 

0.996), and they were always higher than the corresponding phenotypic correlations (0.383 

to 0.995), especially for the external validation subset. In conclusion, we herein report that 

application of the cross-validation technique to the whole dataset tended to overestimate 

the predictive ability of FTIR spectra, give more precise phenotypic predictions than the 

calibrations obtained using smaller datasets, and yield genetic correlations similar to those 

obtained from the measured traits. Collectively, our findings indicate that FTIR predictions 

have the potential to be used as indicator traits for the rapid and inexpensive selection of 

dairy populations for improvement of cheese yield, milk nutrient recovery in curd, and 

daily cheese production per cow. 

Key words: genetic parameters, mid-infrared spectroscopy; cheese yield; whey losses, 

cross-validation 

 

INTRODUCTION 

Several traits are very important for the dairy industry in relation to cheese-making 

processes, including the cheese yield and the proportion of various milk nutrients that are 
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retained in the curd or lost in whey. Cipolat-Gotet et al. (2013) used a model cheese-

making procedure on a large number of individual samples, and found that the cheese yield 

and nutrient recovery/whey loss traits were heavily affected by the herd (and thus by 

environmental, nutritional and management factors) and individual factors (e.g., parity, 

stage of lactation and milk yield of cows). Even after accounting for these factors, 

however, a large proportion of the individual variability remained unexplained. Using the 

same large dataset, Bittante et al. (2013) found that all of these traits were characterized by 

heritability coefficients similar to or higher than those of milk yield and the fat and protein 

contents of the milk. The genetic correlations between cheese yields and milk composition 

were found to be high, but far from unity, and those between curd recovery/whey loss traits 

and milk composition were rather low. The authors concluded that the inclusion of milk fat 

and protein contents in the selection indices is an effective tool when seeking to indirectly 

select for cheese yield, but it cannot explain all of the genetic variability in these traits. 

Although such traits were much less useful for the indirect selection of nutrient recoveries 

in curd/losses in whey, the authors concluded that selection for these traits could contribute 

to increasing profitability in the milk production/cheese-making chain.  

Unfortunately, although the evaluation of cheese yield traits through model-cheese 

production is repeatable, it is also expensive and very time-consuming. Thus, these traits 

cannot be routinely measured on a large scale for direct genetic improvement at the 

population level. Similar problems in assessing other traits have been addressed by using 

predictions obtained from specific calibrations based on Fourier transform infrared (FTIR) 

spectrometry. The transmittance/absorbance of milk samples at individual wavelengths in 

the medium infra-red (MIR) and near infra-red (NIR) regions of the electromagnetic 

spectrum are demonstrably associated with many chemical bonds (Barbano et al., 2006; 

Brandt et al., 2010; Karoui et al., 2010) and are often heritable (Soyeurt et al., 2010; 
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Bittante and Cecchinato, 2013; Dagnachew et al., 2013). The FTIR spectrometer-based 

predictions of milk fat, protein, casein and lactose contents (Hewavitharana and van 

Brakel, 1997; Etzion et al., 2004; Kaylegian et al., 2006) have become routine in 

laboratories that analyze milk samples for the milk recording of dairy cows and other 

ruminants (ICAR, 2012). FTIR spectroscopy has also been proposed as a means to predict 

other interesting milk traits for which genetic parameters have been estimated, including 

fatty acid profiles (Soyeurt et al., 2007b; Rutten et al., 2010; Bastin et al., 2011), detailed 

protein compositions (Arnould et al., 2009), milk coagulation traits (Bittante et al., 2012) 

and mineral profiles (Soyeurt et al., 2009). However, only one previous report compared 

the genetic parameters of measured and predicted traits (Cecchinato et al., 2009). 

Moreover, these authors emphasized the importance of estimating the genetic correlations 

between measured and predicted traits, in order to correctly evaluate the effectiveness of 

using predicted traits for the indirect selection of desired traits. 

Ferragina et al. (2013) recently reported FTIR calibrations for the major traits 

related to cheese yield and nutrient recovery in curd/loss in whey. Similar to the majority 

of studies on other milk traits, these authors calibrated the whole dataset using the 

technique of cross-validation. In contrast, the study of Cecchinato et al. (2009) used a 

small subset for calibration and the rest of the dataset for their validation and genetic 

analysis.  

The aims of the present study were: a) to compare the use of “internal” cross-

validation versus “external” validation techniques when using FTIR spectrum-based 

calibrations to predict several traits related to cheese yield and nutrient recovery in 

milk/losses in whey; b) to estimate the genetic parameters of the predicted cheese yield and 

nutrient recovery traits; c) to compare these genetic parameters with those estimated for the 

corresponding traits measured following individual model-cheese fabrication; d) to 
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estimate the genetic correlations between corresponding predicted and measured traits and 

consider using the former as indicator traits for the indirect selection of dairy populations; 

and e) to compare the use of internal cross-validation versus external validation techniques 

on the genetic parameters of predicted traits and the genetic correlations between the 

predicted and measured traits.  

 

MATERIALS AND METHODS 

Field Data 

The present study is part of the Cowplus Project. The production environment, 

which was previously described in Sturaro et al. (2013), represented the variety of dairy 

systems in the Alps, from the small traditional farms to the large modern systems. A total 

of 1264 Brown Swiss cows from 85 herds located in Trento Province (Italy) were sampled 

once during evening milking (15 cows were sampled per herd, with a few exceptions, and 

one herd was sampled per day). The cows represented different parities (1 to 5), days in 

milk (DIM; 5 to 449), and production levels (24.3±7.9 kg×d-1). The sampling procedure 

was described in detail by Cipolat-Gotet et al. (2012) and Cecchinato et al. (2013). Two 

milk subsamples per cow were collected and immediately refrigerated at 4°C without any 

preservative. One subsample (50 mL) was transported to the Milk Quality Laboratory of 

the Breeders’ Federation of Trento Province (Trento, Italy) for composition analysis. The 

other subsample (2000 mL) was transferred to the Cheese-Making Laboratory of the 

Department of Agronomy, Food, Natural Resources, Animals and Environment 

(DAFNAE) of the University of Padova (Legnaro, Italy) for model-cheese fabrication. All 

samples were processed for analyses and model-cheese fabrication within 20 h from 

collection. Data on the cows and herds were provided by the Superbrown Consortium of 
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Bolzano and Trento (Italy), and pedigree information was supplied by the Italian Brown 

Swiss Cattle Breeders Association (ANARB, Verona, Italy). We included cows with 

phenotypic records available for the investigated traits and all known ancestors. Each 

sampled cow had at least four generations of known ancestors, and the pedigree file 

included 8,845 animals. There were 1,326 sires; of them, 264 had progeny with records in 

the dataset used in the present study, with each sire having between two and 80 daughters. 

 

Model Cheese-making Procedure 

Individual milk samples were analyzed for their fat, protein, and casein percentages 

using a MilkoScan FT6000 (Foss, Hillerød, Denmark). Somatic cell counts (SCC) were 

obtained with a Fossomatic FC counter (Foss, Hillerød, Denmark) and converted to SCS 

by means of logarithmic transformation (Ali and Shook, 1980). The cheese-making 

procedure was previously described in detail (Cipolat-Gotet et al., 2013). Briefly, 1500 mL 

of milk was heated to 35°C in a stainless steel micro-vat, supplemented with thermophilic 

starter culture and mixed with rennet. The resulting curd from each vat was cut, drained, 

shaped in wheels, pressed, salted and weighed. The whey collected from each vat was also 

weighed, sampled, and analyzed.   

 

Trait Definitions 

All of the traits were measured based on the weights (W, g) and chemical compositions 

of milk and whey, as detailed by Cipolat-Gotet et al. (2013). The measured traits were as 

follows: 

• cheese yield (%CYCURD) as W of curd × 100/W of milk; 

• total solid (TS) cheese yield (%CYSOLIDS) as (W of milk TS – W of whey TS) 

×100/W of milk; 
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• water cheese yield (%CYWATER) as (W of milk water – W of whey water) × 100/W 

of milk; 

• fat (F) recovery (RECFAT, %) as (W of milk F – W of whey F) × 100/W of milk F; 

• protein (P) recovery (RECPROTEIN, %) as (W of milk P – W of whey P) × 100/W of 

milk P; 

• TS recovery (RECSOLIDS, %) as (W of milk TS – W of whey TS)  × 100/W of milk 

TS; and 

• energy recovery (RECENERGY, %) as (milk energy – whey energy) × 100/milk 

energy. 

 

FTIR Spectral Acquisition and Calibration  

Each individual milk sample was analyzed using a MilkoScan FT6000 (Foss, 

Hillerød, Denmark) over the spectral range from 5000 to 900 wavenumber × cm-1; the 

spectra were stored as absorbance (A) using the transformation A = log(1/T), where T is 

the transmittance. Two spectral acquisitions were carried out for each sample, and the 

results were averaged prior to data analysis. Calibration models were developed using the 

WinISI II software (Infrasoft International LLC, State College, PA) and carried out using 

modified partial least-square regression (MPLS) as the chemometric algorithm, as 

described in detail by Ferragina et al. (2013). 

 

Predictive Ability  

A 3-fold cross-validation/external validation procedure was used to assess the 

ability of the calibration equations to predict individual cheese yield-related phenotypes 
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(i.e., CYs and RECs) and assess the magnitude of the genetic correlation between CY/REC 

measures and their FTIR spectrum-based predictions. Similar cross-validation procedures 

have been used successfully in animal breeding (Caraviello et al., 2004). This cross-

validation is not as computationally demanding as a leave-one-out can be, and makes 

complete use of the data (versus having one training subset and one testing subset). 

Basically, the entire data set was randomly (by herd) partitioned into three disjoint subsets, 

each containing approximately one-third of the records (~ 28 herds per subset). For the 

internal cross-validation procedure, one subset was used for fitting and prediction (training 

set) and the remaining two subsets (external validation) were used to test predictive ability 

(testing set). The calibration equations obtained from the training set were used to predict 

the CY and REC traits from the FTIR spectra of the testing set. The predicted and 

measured traits of the testing set were both used to estimate their heritabilities and genetic 

correlations, which were considered the final external genetic validation of the FTIR 

calibration procedure. In this 3-fold cross-validation, the observations included in the 

testing set were completely independent from those used to build the calibration equations. 

In addition, a standard full cross-validation was performed by applying the calibration 

equations obtained by Ferragina et al. (2013) to the same dataset. In this case, the full 

dataset (milk samples from 1,264 cows) was used as the testing set for estimating the 

heritabilities and genetic correlations of the measured and predicted CYs and RECs; this 

was the same dataset as the training set, and thus included observations that were not 

independent from those used to build the calibration equations (internal cross-validation). 

Throughout this paper, the first 3-fold cross validation is referred to as the “external 

validation,” whereas that obtained with using the equations obtained by Ferragina et al. 

(2013) is called the “internal validation.” 
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Genetic Analysis  

For each testing set, the (co)variance components for the CY/REC measures and 

their FTIR spectrum-based predictions (pCY/REC) were estimated through bivariate 

analyses and linear models. The general model assumed for the former traits was: 

����� = 
	 +	��� 	+ ������� + �� +	�� +	����� 
where ����� is the phenotypic record for the analyzed trait; DIMi is the effect of the ith 

class of days in milk (DIM; i = 1 to 10; 30 days for each class with class 1 being < 30 days 

and class 10 being > 300 days); Parityj is the effect of the jth parity of the cow (j = 1 to 5 or 

more); hk is the effect of the kth herd (k = 1 to 28 for the first subset, 1 to 28 for the second 

subset, 1 to 29 for the third subset, and 1 to 85 for the entire dataset); �� is the infinitesimal 

genetic effect of individual l; and ����� is the residual of the model.  

 

Bayesian Inference  

(Co)variance components and related parameters were estimated using a Bayesian 

approach and Markov-chain Monte Carlo methods (Sorensen and Gianola, 2002). All traits 

(measures and predictions) were taken as continuous variables, and their values were 

assumed to be sampled from the following multivariate normal distribution: 

�y�y�� |� , �", � , �", � ,�", #~%&' (
� 
�") + * (� �") + *" �� �"� , #+ 

in which � and �" are random vectors including the effects of DIM and parity; � 	and �" 

are vectors of individual additive genetic effects; �  and �" are vectors of herd effects; ', 

*  and *"  are known incidence matrices; and #  is the residual (co)variance matrix. 

Between traits, the additive, herd and residual effects were assumed to be correlated. When 

we sorted records by individual and within-individual traits, the residual (co)variance 

matrix could be written as #/ ⊗ �1, with #/ being the 2×2 residual (co)variance matrix 

between the traits analyzed, and �3  being an identity matrix of the appropriate order. 
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Bounded uniform priors were used to represent vague previous knowledge of the 

distributions of � and �". Prior knowledge concerning the additive effect and herd effect 

was represented by assuming that they were normally distributed conditional on the 

associated (co)variance components, as follows: 

������ |4~%5/, 46     (����) |7~%5/,76 

where /  is a vector of zeros; G is the genetic (co)variance matrix; and H is the 

(co)variance matrix of herd effects. When we sorted the data by individual (as described 

above), we could write matrices G and H as 4/ ⊗8 and 7/ ⊗ �9, respectively, where 4/ 

and 7/ are the 2×2 genetic and herd (co)variance matrices, respectively; A is the known 

additive genetic relationship matrix; and �9 is the identity matrix of the same order as the 

number of levels of herd effects. Bounded uniform priors were used for the components of 

the (co)variance matrices #/	and 4/ and 7/.  
Marginal posterior distributions of unknown parameters were estimated by 

performing numerical integration through the Gibbs sampler (Gelfand and Smith, 1990), as 

implemented in the TM program (http://snp.toulouse.inra.fr/~alegarra); this generated 

auto-correlated samples from the joint posterior distributions and subsequently from the 

marginal posterior distributions of all unknowns in the model. The lengths of the chain and 

burn-in period were assessed by visual inspection of trace plots, and by the diagnostic tests 

described by Geweke (1992) and Gelman and Rubin (1992). After a preliminary run, we 

decided to construct a single chain consisting of 850,000 iterations and discard the first 

50,000 iterations as a very conservative burn-in. Subsequently, one in every 200 successive 

samples was retained, in order to store draws that were more loosely correlated. Thus, 

4000 samples were used to determine the posterior distributions of the unknown 

parameters. The lower and upper bounds of the highest 95% probability density regions for 

the parameters of interest were obtained from the estimated marginal densities. The 
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posterior median was used as the point for all parameters. Auto-correlations between 

samples and estimates of the Monte Carlo Standard Error (Geyer, 1992) were calculated. 

The effective sample size was evaluated using the algorithm of Geyer (1992).   

Across-herd heritability was computed as: 

h<=� = σ<�

σ<� +σ=� +σ>�
 

where σ<� , σ=� , and σ>� 	are the additive genetic, herd and residual variances, respectively. 

Intra-herd heritability was computed as: 

h?=� = σ<�

σ<� +σ>�
 

where σ<� , σ=� , and σ>� 	are the additive genetic, herd/test-date, and residual variances, 

respectively. 

Additive genetic correlations were estimated as: 

r< = σ<�,<�
σ<� ∙σ<�

 

where σ<�,<�	is the additive genetic covariance between traits 1 and 2; and σ<�  and 

σ<�	are the additive genetic standard deviations for traits 1 and 2, respectively. 

 

RESULTS 

Calibration, Prediction and Validation of Cheese Yields and Nutrient Recoveries  

Table 1 presents the number of milk samples used to calibrate the FTIR 

spectrometer for predicting the cheese yield and nutrient recovery traits (training set). For 

all seven predicted traits, the first three calibration rounds were carried out on three 

training sets (subsets A, B, and C) containing similar numbers of cows, which were 

obtained dividing all sampled farms into three groups. The two subsets not used for 

calibration were used for external validation of the predictions (testing set). The forth 
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calibration round was carried out using the whole dataset (A+B+C); in this case, no 

external validation was possible, and an internal validation was conducted by cross-

validation of the same dataset. For each of the studied traits, the training and testing sets 

had all means and SDs very similar to those of the whole dataset (A+B+C) (Table 1). 

As in all the rounds, the calibration process was carried out through a randomized 

cross-validation within the training set, to compare the different rounds the standard errors 

of internal cross-validation (SECCV) and the coefficient of determination of cross 

validation (1-VR) have been shown in Table 1. The calibrations performed on the data 

subsets were characterized by some variability, but showed (on average) cross-validation 

parameters similar to those obtained from the whole dataset for all traits, with the 

exception of RECPROTEIN in the curd. The 1-VR values were high or very high (0.60 to 

0.95) for all predictions, except for RECFAT (0.27 to 0.46). The external validation yielded 

standard errors for the predictions that were much higher than the corresponding values 

obtained during the cross-validations, and coefficients of determinations of validation (���) 

that were much lower than those (1-VR) of the internal validations for all analyzed traits 

(Table 1), with the highest value observed for %CYSOLIDS and the lowest for RECFAT. 

 

Variance Components and Heritabilitis for the Predicted and Measured traits 

Table 2 reports the genetic parameters of the predicted and measured cheese yields, 

expressed as a % of the milk processed or as daily production per cow (according to the 

testing subset used), while Table 3 presents those of the nutrient recoveries. In general, the 

variabilities of the estimated variance components among the different testing subsets used 

for external validation (B+C, A+C, and A+B) were large. In fact, they were higher than 

those observed for the entire dataset (A+B+C) used for internal validation. On average, the 

variance components of the FTIR-predicted traits were lower than the corresponding 
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variance components of the measured traits, with some exceptions (e.g., the herd variance 

components). As a consequence, the heritability estimates were also variable. Due to the 

high variability of the herd variance components, the variabilities of the across-herd 

heritability estimates tended to be higher than those of the intra-herd heritability estimates 

(Tables 2 and 3). The majority of the heritability coefficients were in the range of 0.15 to 

0.30. However, there were a few exceptions, such as the very high estimates obtained for 

RECPROTEIN (0.230 to 0.661). The heritability estimates of the predicted traits were 

generally similar to those of the measured traits, tending higher or lower based on the 

importance of the relative variations (decreases) in the genetic, herd and residual variance 

components. In the majority of cases, the heritabilities of the predicted traits were slightly 

higher than those of the measured traits because the genetic variance components of the 

predicted versus measured traits tended to be lower than the respective residual variance 

components (Tables 2 and 3).  

 

Genetic and Phenotypic Correlations between Predicted and Measured traits 

The genetic and phenotypic correlations between the measured and predicted 

cheese yield traits, expressed as the % of processed milk and daily production per cow, are 

shown in Table 4, while Table 5 presents the correlations between the predicted and 

measured nutrient recoveries. The phenotypic correlations were in the range of 0.459 to 

0.962 for the %CY traits, much higher (0.787 to 0.995) for the dCYs, and 0.383 to 0.905 

for all of the REC traits. In general, the phenotypic correlations followed the same trait 

order observed for our external validation of the calibrations. The genetic correlations were 

less variable and always much higher than the phenotypic correlations, with values 

exceeding 0.846 for %CYCURD and %CYSOLIDS, 0.522 to 0.76 for %CYWATER, 0.887 to 

0.993 for dCYs, and 0.791 to 0.981 for RECs. 
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DISCUSSION 

Internal or External Validation for FTIR-based Predictions of Cheese Yields and 

Nutrient Recoveries 

The first aim of this study was to compare cross-validation with external validation 

for FTIR-based predictions. In a previous study (Ferragina et al., 2013), the cross-

validation of calibrations obtained on the whole dataset yielded very high coefficients of 

determination all except for CYWATER and RECFAT. These results were confirmed in the 

present study. FTIR spectrometry may be used to predict many chemical components of 

food, taking advantage of the direct relationships between specific chemical bonds and the 

emission of electromagnetic radiations at specific wavelengths (Karoui et al., 2010; 

Bittante and Cecchinato, 2013). For example, the typical absorption peak for fat A is found 

at ≈ 1,740 wavenumber×cm-1. The MWIR-LWIR region (the transition between the mid- 

and long-wave infrared, called the fingerprint region and located between 1,582 and 930 

wavenumber×cm-1) contains the absorbance peaks characteristic of many chemical 

compounds (e.g., carbohydrates and organic acids). An example of this is lactose, which 

has an absorbance peak at ≈ 1,040 wavenumber×cm-1 (Lynch et al. 2006; Kaylegian et al. 

2009). The coefficients of determination for the calibrations used to predict the fat, protein 

and lactose contents of milk are close to unity, which is why ICAR approved FTIR 

spectroscopy for the official measurement of milk samples collected for milk recording of 

lactating females (ICAR, 2012). However, cheese yields and nutrient recoveries are 

technological traits rather than chemical parameters; this explains why their 1-VR values 

are  always lower than unity, and may in fact be very low. It is not surprising that 

%CYSOLIDS had the highest 1-VR, given that it depends on the fat and protein contents of 

the milk processed. The observation that %CYWATER and RECFAT had the lowest 1-VR 
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reflects the finding that %CYWATER does not strongly depend on the chemical composition 

of the milk (even though water is its major component). In fact, the raw spectrum obtained 

from milk in the near- and mid-infrared wavelengths is very similar to that obtained for 

pure water (Kaylegian et al., 2009), and the transmittance of water can mask that due to the 

other components of milk. To avoid this problem, modern FTIR spectrometers express the 

milk spectrum as the ratio between the transmittance of milk and that of water for each 

individual wavelength (Bittante and Cecchinato, 2013). Moreover, the water retained in the 

curd does not appear to be strongly related to the water content of milk (Bittante et al., 

2013a), but rather to the processes of milk coagulation and syneresis and the hydration 

characteristics of the retained proteins and fats. Furthermore, RECFAT depends primarily on 

the curd-firming process. Previous studies on milk samples from Holstein Friesian (Dal 

Zotto et al., 2008) and Brown Swiss (Cecchinato et al., 2009) cows demonstrated that the 

prediction of milk coagulation properties by FTIR spectrometry is not very efficient.  

With respect to cross-validation, there is a large body of literature describing 

different approaches. For example, when validating a curd syneresis sensor at the 

laboratory level, Mateo et al. (2009) found that external validation yielded (as expected) 

less favorable results then internal cross-validation, and further reported that the standard 

error of the predictions were more useful than R2 for comparisons with cross-validation, as 

the former were not strongly influenced by the number of data points or the range of 

reference values. When studying the possible utilization of FTIR predictions for the 

genetic improvement of milk coagulation traits, using a dataset similar to that examined in 

the present study, Cecchinato et al. (2009), performed a “pseudo-cross-validation.” The 

variabilities of R2 in their calibrations (0.61 to 0.69 for rennet coagulation time and 0.46 to 

0.52 for curd firmness) were lower than those obtained in the present study for traits with 

similar average R2 values (0.60 to 0.76 for %CYWATER, 0.27 to 0.46 for RECFAT, and 0.65 
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to 0.75 for RECENERGY; Table 1), and much lower for traits with higher average R2 values 

(Table 1). Notably, the validation set used in the present study was totally external with 

respect to the calibration sets (i.e., containing data from cows of different herds and 

sampled on different dates), whereas the previous study assessed two sets of data that 

represented different cows but were taken from the same herds and on the same sampling 

dates. In seeking to use FTIR calibrations to predict milk calcium and phosphorus contents 

(which were characterized by the highest R2 values in our cross-validation, at 0.80 and 

0.79, respectively), Soyeurt et al. (2009) compared results of cross-validation with those 

obtained with a validation group of the same origin. The R2 values of the validation group 

were higher than those of the cross-validation in both cases (0.97 and 0.88, respectively). 

However, both sets had relatively small sample sizes (57 and 30, respectively); the 

variability of the mineral contents was much higher in the validation group; the distribution 

of the calcium content in the validation group was far from normal; and the authors did not 

report the SEs of the predictions. In studying the use of FTIR calibrations to estimate the 

fatty acid profiles of milk, Rutten et al. (2009) did not carried out a cross-validation, but 

rather randomly divided their dataset into two subsets and used one for calibration and the 

other for validation. Moreover, they performed their calibration-validation procedures 

separately on winter- or summer-collected samples. The authors found that the R2 values 

for their validation were always much lower in the winter or summer calibrations 

compared to the overall calibration. They also found a large variability of R2 when they 

used the validated calibration of one season to predict the fat composition of samples 

collected in the other season. Unfortunately, the authors did not report the SEs of their 

predictions. More recently, the same authors (Rutten et al., 2011) used a similar procedure 

to predict the detailed milk protein composition, and found that the validation R2 values 

(obtained from a separate randomly obtained subset) were generally low. In an 
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international study on predicting the fatty acid content of milk, Soyeurt et al. (2011) 

divided their calibration and validation sets based on the variability of their FTIR spectra; 

the most variable samples were used for calibrations, while the remainder were used for 

validation. They found that the R2 values obtained from their validation were often lower 

than those of their cross-validation, with larger differences seen for those with smaller 

values. Moreover, the R2 values were much lower for their validation of the content of 

individual fatty acids expressed as a percent of milk fat, calculated on the basis of their 

predicted content in milk. Soyeurt et al. (2012) used external validation to test the ability of 

FTIR spectroscopy to predict the milk content of lactoferrin, and found that the R2 values 

of their cross-validations varied between 0.74 and 0.69 according to the mathematical 

treatment of the FTIR spectra, whereas the R2 values of their external validations varied 

much more, from 0.60 to 0.27. The authors did not include the SE of their predictions. 

Recently, Maurice-Van Eijndhoven et al. (2013) tested the ability of FTIR calibrations to 

predict various fatty acid contents in milk samples obtained from different breeds, 

countries and laboratories by performing a real external calibration on cows of four breeds. 

The authors found that the validation R2 values were always lower than calibration R2 

values, especially for those < 0.90 (the decrease varied from 0.01 to 0.47). Moreover, the 

SEs of the predictions were always higher than those of their cross-validation (from 20 to 

300%, depending on the fatty acid).  

Collectively, these previous studies seem to suggest that cross-validation can be 

used to initially evaluate calibration equations when the number of reference samples is 

low, but cross-validation generally overestimates the prediction ability of FTIR 

calibrations. Moreover, the use of R2 values for cross-validation can contribute to a further 

overestimation of the predictive ability when the calibrations are carried out on datasets 

that are more variable than the samples used for predictions.  
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Genetic Parameters of FTIR-predicted Cheese Yields and Nutrient Recoveries 

The genetic bases of the milk traits predicted by FTIR spectra have been 

demonstrated by studies showing that the absorbances of milk samples at individual 

wavelengths (Bittante and Cecchinato, 2013) or the absorbances of their principal 

components (Soyeurt et al., 2010) are often heritable. In particular, Bittante and Cecchinato 

(2013) showed an appreciable heritability for the absorbance of milk at several 

wavelengths associated with the chemical bonds that characterize many milk components. 

Several authors have estimated the genetic parameters of milk traits predicted through 

FTIR calibrations, and compared their results with estimates previously reported for the 

measured traits using different populations, conditions and methodologies. The fatty acid 

content has been widely studied in milk (Soyeurt et al., 2007b; Arnould et al., 2010; Bastin 

et al., 2011) and beef (Cecchinato et al., 2012). Also, the genetic parameters of lactoferrin 

have been studied (Soyeurt et al., 2007a; Arnould et al., 2009). Our increasing knowledge 

of the genetic parameters of predicted traits allows us to consider using FTIR-based 

predictions as indicator traits for the genetic improvement of populations. As a first step 

toward this objective, we must compare the genetic parameters of the predicted and 

measured traits.  

 

Comparison Between the Genetic Parameters of FTIR-Predicted and Measured Cheese 

yields and Nutrient recoveries 

In the present study, our calibrations based on the whole dataset showed that, for 

traits related to cheese yields and nutrient recoveries, the intra-herd heritabilities of the 

predicted traits were similar to or slightly higher than those of the corresponding measured 

traits. The exceptions to this were the traits with the lowest calibration R2 values, 
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%CYWATER and RECFAT, for which the intra-herd heritabilities of the FTIR-predicted traits 

were much higher than those of the corresponding measured traits.  

Very few previous studies have compared the genetic parameters of infrared-

predicted and measured traits. Similar to the present study, Cecchinato et al. (2009) 

reported on the use of FTIR calibration to predict the rennet-coagulation time (RCT) and 

curd firmness (a30) of bovine milk. The obtained heritability estimates were slightly higher 

for the predicted RCT compared to the measured trait, and much higher in the case of a30. 

Consistent with our present findings, the difference was greater for the trait with the lower 

calibration R2. In this previous study, the genetic and residual variance components were 

both decreased by FTIR prediction; the decrease was greater for the residual variance, 

especially in the case of a30, explaining the observed differences in heritability. In the 

present study, the differences in the genetic variance between the predicted and measured 

traits ranged from +8% (%CYSOLIDS) to -23% (RECFAT), while the differences in the 

residual variance ranged from -7% (%CYSOLIDS) to -59% (RECFAT). In comparing the 

genetic parameters of eight measured and NIRS-predicted technological traits of beef, 

Cecchinato et al. (2011) found a close negative relationship between the R2 values of their 

calibrations and the losses of both genetic and residual variance components. Furthermore, 

Rutten et al. (2011) found that the intra-herd heritabilities of milk protein fractions 

characterized by moderate calibration R2 values (0.57-0.59) were greater than the 

heritabilities of the traits with higher R2 values (0.23-0.44). Differently from the present 

and previous studies, comparing the heritabilities of the FTIR-predicted protein content of 

bovine milk (Rutten et al., 2011) with the corresponding measured traits obtained from the 

same population (Shopen et al., 2009) shows that the heritabilities of the predicted values 

are always lower than those of the measured ones. Unfortunately, the variance components 

of the predicted values were not reported in the previous studies.  
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In the present work, FTIR-based prediction reduced the variance components 

related to HTD more than the other components (e.g., by -9% for %CYSOLIDS to -49% for 

RECFAT), such that the increases in the across-herd heritabilities of the predicted values 

were slightly higher than those of the intra-herd heritabilities. In the previous study on milk 

coagulation traits, the herd variance component was not decreased by FTIR prediction in 

the case of RCT, but it was almost halved in the case of a30 (Cecchinato et al., 2009). The 

herds were only sampled once in the present study, so we do not know if the decrease 

reflected a sampling date component or a herd-structure herd component.  

Clearly, when the genetic and residual variances are smaller, the observation of 

similar or even higher heritability values does not guarantee that the FTIR-predicted values 

will yield the same genetic improvements that may be achieved using direct measurements 

of the trait. Thus, it is essential that we increase our knowledge of the genetic correlations 

between predicted and measured traits.  

Although the phenotypic correlations between the predicted and measured cheese 

yield and nutrient recovery traits were in line with the FTIR-based external validation 

coefficients of determination, the genetic correlations were similar to or higher than the 

phenotypic ones; they were very high in general (> 0.88), with the exceptions of 

%CYWATER (0.76) and RECFAT (0.79). Similar results (i.e., higher genetic correlations than 

phenotypic correlations between FTIR-predicted and measured traits) have been found for 

other traits. Cecchinato et al. (2009) obtained genetic correlations > 0.90 between the 

FTIR-predicted and observed RCT, and correlations of 0.71 to 0.87 for a30. Rutten et al. 

(2011) found genetic correlations > 0.60 for all studied milk protein fractions. Cecchinato 

et al. (2011) found that the NIR-predicted technological traits of beef showed high genetic 

correlations (> 0.70) for all traits, with a heritability > 0.10 for measured values. Thus, it 

appears that FTIR-based calibration could be a valuable tool for informing the genetic 
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improvement of economically important traits, especially in cases where population-level 

recording is complex and expensive.  

 

Comparison between the Genetic Parameters of FTIR-Predicted traits obtained by 

Internal cross-Validation or External Validation  

To the best of our knowledge, this is the first study to compare the genetic 

parameters of measured traits with those predicted by FTIR-based calibrations obtained 

from a large dataset using cross-validation on the same dataset or on much smaller 

datasets, followed by an external validation. The calibration was performed on one third of 

the reference data and repeated three times, as seen in Table 1. We obtained 1-VR 

coefficients comparable with the calibrations obtained using the whole dataset (averaging 

+4% for %RECWATER to -6% for RECFAT), but the external validation coefficients of 

determination were much smaller and variable than those obtained from the cross-

validation. In fact, the average ���  coefficient of the three external validations for each 

predicted trait was 74% of the average value of the corresponding 1-VR coefficient 

obtained from cross-validation in the case of %CYSOLIDS, and dropped to only 37% in the 

case of RECFAT.  

The heritability coefficients did not differ greatly between the predicted and 

measured traits or between those obtained from the testing (two third of the whole dataset 

used for external validation) or full (cross-validation) datasets. The only evident 

differences were noted for %CYWATER and RECFAT, which also had the lowest calibration 

1-VR values. In both cases, the average heritability values obtained from the external 

validation datasets were lower than those obtained from the cross-validation dataset. With 

respect to the variance components, the average genetic variances from the testing datasets 

were generally smaller than the corresponding estimates from the whole dataset (-16% to -
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42%). A similar pattern was seen for the residual variances (-3% to -28%), with the 

exception of RECFAT (-57%). In the case of the HTD variance components, the variability 

was much higher, with higher values often estimated from the testing dataset than the 

cross-validation datasets.  

Cecchinato et al. (2009) did not carry out a true external validation, as their 

validation subsets were sampled at random from the whole dataset and thus included 

samples from the same herd and sampling dates found in the calibration subsets. However, 

theirs was the only previous work to report the genetic parameters of different datasets 

(four of them) created using calibrations obtained from separated datasets. Similar to our 

present findings, the authors of the previous study found that the genetic parameters of the 

FTIR-predicted traits were more variable than those estimated from measured traits, and 

the variability was greater for the trait with the lower calibration 1-VR (i.e., a30) than for 

that with the higher 1-VR (i.e., RCT).  

Regarding the genetic correlations between the FTIR-predicted and measured traits, 

the decreased correlations found for the reduced validation datasets versus the whole cross-

validation dataset were < 10% (Tables 4 and 5), with the exceptions of %CYWATER (-15%) 

and RECFAT (which failed to yield estimable values in one of the three validation datasets). 

In the previous study on milk coagulation properties (Cecchinato et al., 2009), the 

variability of the genetic correlation estimates was greater for the trait with the lowest 1-

VR values (a30, 0.71 to 0.87) than for the that with the highest 1-VR values (RCT, 0.91 to 

0.96). In the previous study on the technological traits of beef (Cecchinato et al. 2011), the 

genetic correlations between the predicted and measured traits were not strictly linked to 

the other genetic or phenotypic parameters of the traits, but rather seemed to depend more 

on the coefficient of determination for the calibration than on the heritability coefficients.  

 



- 64 - 
 

CONCLUSIONS 

The present study investigated calibrations based on the FTIR spectra of fresh 

unprocessed milk samples, and examined the their potential use for the genetic 

improvement of 10 traits related to cheese yield, milk nutrient recovery in curd/loss in 

whey, and daily cheese production per cow. The heritability estimates of the FTIR-

predicted cheese traits ranged from moderately low (daily cheese production) to high 

(protein recovery in curd/loss in whey) values. The heritability values of the predicted 

cheese traits were very similar to those estimated from the corresponding measured traits, 

with the partial exceptions of the prediction for the % of water retained in the curd and fat 

recovery. The genetic correlations between each predicted and measured trait were 

generally high, and they were higher than the corresponding phenotypic correlations. Our 

external validations showed that the use of internal validation tends to overestimate the 

predictive ability of FTIR calibrations. Even when the coefficient of determination for the 

validation was moderate, our genetic analyses showed high genetic correlations between 

the measured and predicted values. Collectively, these results show that the use of FTIR 

calibrations on samples collected for milk recording of dairy cows could allow the rapid 

and fairly inexpensive prediction of several traits related to cheese yield and cheese-

making efficiency in dairy cow populations. These predictions could therefore prove useful 

for the efficient selection of dairy populations. Future work is warranted to examine the 

economic importance of these traits and their improvement in dairy populations, and to 

establish their optimal weights for use in selection indices.  
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TABLES AND FIGURES 

Table 1. Descriptive statistics and calibration results of individual percentage cheese yield [a] (%CY; weight of fresh curd, curd solids, and 
curd water as percentage of weight of milk processed), milk nutrient recovery [b] (REC; protein, fat, solids, and energy of the curd as 
percentage of the protein, fat, solids, and energy of the milk processed) for each subset of data1. 
[a] 

Item 
Training set  Testing set 

Subset n Mean SD SECCV
2 1-VR3  Subset n Mean SD SEP ��� 

%CYCURD              
  A 400 15.17 1.75 0.74 0.82  B+C 845 14.98 1.95 1.33 0.60 
  B 402 14.76 1.88 0.69 0.86  A+C 837 15.17 1.86 1.45 0.55 
  C 413 15.21 1.94 0.84 0.81  A+B 824 14.97 1.84 1.69 0.48 
  A+B+C4 1,205 15.03 1.84 0.75 0.83  - - - - - - 
%CYSOLIDS               

  A 394 7.23 0.94 0.22 0.95  B+C 849 7.27 1.07 0.67 0.61 
  B 393 7.19 0.83 0.21 0.93  A+C 844 7.27 1.09 0.57 0.73 
  C 399 7.23 0.99 0.28 0.92  A+B 827 7.26 0.99 0.52 0.73 
  A+B+C 1,168 7.20 0.89 0.21 0.95  - - - - - - 
%CYWATER               

  A 402 7.94 1.10 0.69 0.60  B+C 849 7.74 1.50 1.29 0.34 
  B 393 7.53 1.24 0.61 0.76  A+C 844 7.96 1.35 1.30 0.31 
  C 410 7.96 1.42 0.77 0.71  A+B 827 7.73 1.30 1.50 0.30 
  A+B+C 1,200 7.79 1.21 0.71 0.65  - - - - - - 
1Calibration set = samples used to develop a calibration equation to predict individual phenotypes using mid-infrared (MIR) spectra; test set = samples used to validate the 
calibration equation and to estimate heritabilities and the genetic correlation for measured phenotypes and their predictions obtained from MIR spectra and calibration 
equation. 2SECcv = standard error of cross-validation. 
31-VR = coefficient of determination of cross-validation. 4A+B+C: Entire data set used both for training and testing (Internal cross-validation). 
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[b] 

Item 
Training set  Testing set 

Subset n Mean SD SECCV
2 1-VR3  Subset n Mean SD SEP ��� 

RECPROTEIN               

  A 404 78.58 2.16 1.19 0.70  B+C 849 77.76 2.73 2.30 0.44 
  B 408 77.68 2.34 1.13 0.77  A+C 844 78.18 2.71 2.25 0.40 
  C 419 78.00 2.59 1.42 0.70  A+B 827 78.11 2.39 2.00 0.38 
  A+B+C4 1,208 78.13 2.34 1.02 0.81  - - - - - - 
RECFAT               

  A 393 90.11 3.25 2.39 0.46  B+C 849 89.59 4.37 4.14 0.16 
  B 399 90.34 2.96 2.53 0.27  A+C 844 89.47 4.57 4.17 0.18 
  C 412 89.80 3.68 3.06 0.31  A+B 827 89.75 4.01 4.33 0.05 
  A+B+C 1,181 90.26 3.03 2.32 0.41  - - - - - - 
RECSOLIDS               

  A 393 52.27 3.44 1.28 0.86  B+C 849 52.09 3.83 2.48 0.59 
  B 396 52.04 3.22 1.24 0.85  A+C 844 52.11 3.87 2.45 0.62 
  C 408 52.07 3.77 1.55 0.83  A+B 827 52.18 3.56 2.28 0.62 
  A+B+C 1,181 52.08 3.41 1.27 0.86  - - - - - - 
RECENERGY               

  A 392 67.35 3.18 1.61 0.75  B+C 849 67.27 3.72 3.05 0.37 
  B 392 67.57 2.80 1.63 0.66  A+C 841 67.13 3.83 2.92 0.46 
  C 406 67.23 3.41 2.03 0.65  A+B 824 67.33 3.40 2.92 0.34 
  A+B+C 1,171 67.48 3.06 1.50 0.76  - - - - - - 
1Calibration set = samples used to develop a calibration equation to predict individual phenotypes using mid-infrared (MIR) spectra; test set = samples used to validate the 
calibration equation and to estimate heritabilities and the genetic correlation for measured phenotypes and their predictions obtained from MIR spectra and calibration 
equation. 2SECcv = standard error of cross-validation. 
31-VR = coefficient of determination of cross-validation. 4A+B+C: Entire data set used both for training and testing (Internal cross-validation). 
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Table 2. Posterior median (SD) for additive genetic (σ2
a), herd (σ2

h) and residual variance (σ2
e) and across-herd (h<=� ) and intra-herd (h?=� ) 

heritabilities for model cheese-making measures and predictions by mid-infrared spectroscopy (MIR) of percentage cheese yield [a] (%CY; 
weight of fresh curd, curd solids and curd water as percentage of weight of milk processed) and daily production [b] (dCY; curd, curd solids, and 
curd water produced per cow). 
[a] 

1Subsets A, B, and  C are subsets of data used to validate the calibration equations and to estimate genetic parameters for measures of phenotypes and their predictions 
obtained from MIR spectra and calibration equations. 
 
  

Item1 
Model cheese-making measures  FTIR-predictions 

σ
2

a σ
2

h σ
2

e h<=�  h?=�   σ
2

a σ
2 

h σ
2

e h<=�  h?=�  
%CYCURD, %            
   B+C 0.64(0.24) 1.12(0.27) 1.49(0.21) 0.194(0.070) 0.299(0.102)  0.50(0.17) 0.49(0.13) 1.05(0.15) 0.243(0.077) 0.323(0.091) 
   A+C 0.57(0.22) 0.74(0.19) 1.58(0.20) 0.196(0.071) 0.265(0.094)  0.51(0.20) 1.04(0.25) 1.40(0.18) 0.171(0.066) 0.265(0.098) 
   A+B 0.71(0.23) 0.94(0.23) 1.23(0.20) 0.244(0.076) 0.364(0.106)  0.41(0.15) 2.95(0.66) 1.10(0.14) 0.091(0.035) 0.269(0.091) 
   A+B+C 0.52(0.17) 0.81(0.16) 1.45(0.15) 0.186(0.050) 0.263(0.078)  0.45(0.13) 0.49(0.10) 1.23(0.12) 0.206(0.058) 0.269(0.073) 
%CYSOLIDS, %            
   B+C 0.33(0.12) 0.27(0.07) 0.45(0.10) 0.313(0.105) 0.423(0.136)  0.22(0.09) 0.15(0.04) 0.39(0.07) 0.291(0.106) 0.362(0.129) 
   A+C 0.15(0.06) 0.29(0.07) 0.63(0.06) 0.135(0.058) 0.187(0.078)  0.12(0.06) 0.17(0.05) 0.52(0.06) 0.147(0.062) 0.188(0.084) 
   A+B 0.17(0.07) 0.18(0.05) 0.53(0.06) 0.188(0.073) 0.239(0.091)  0.15(0.05) 0.12(0.03) 0.34(0.05) 0.239(0.081) 0.300(0.098) 
   A+B+C 0.13(0.05) 0.11(0.03) 0.40(0.04) 0.197(0.071) 0.239(0.085)  0.14(0.05) 0.10(0.02) 0.37(0.01) 0.222(0.076) 0.266(0.088) 
%CYWATER, %            
   B+C 0.20(0.10) 0.81(0.19) 1.06(0.11) 0.096(0.041) 0.162(0.078)  0.09(0.03) 0.15(0.04) 0.27(0.03) 0.173(0.063) 0.247(0.06) 
   A+C 0.27(0.11) 0.58(0.14) 0.79(0.10) 0.161(0.060) 0.251(0.098)  0.14(0.06) 0.72(0.16) 0.42(0.05) 0.105(0.046) 0.244(0.097) 
   A+B 0.17(0.09) 0.51(0.12) 0.82(0.09) 0.111(0.061) 0.169(0.090)  0.14(0.06) 2.08(0.46) 0.47(0.05) 0.049(0.022) 0.223(0.085) 
   A+B+C 0.15(0.06) 0.58(0.11) 0.58(0.06) 0.116(0.046) 0.210(0.080)  0.15(0.04) 0.34(0.06) 0.34(0.04) 0.175(0.049) 0.301(0.079) 
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 [b] 

1Subsets A, B, and  C are subsets of data used to validate the calibration equations and to estimate genetic parameters for measures of phenotypes and their predictions 
obtained from MIR spectra and calibration equations. 

  

Item1 
Model cheese-making measures  FTIR-predictions  

σ
2

a σ
2

h σ
2

e h<=�  h?=�   σ
2

a σ
2 

h σ
2

e h<=�  h?=�  
dCYCURD, kg×d-1            
   B+C 0.16(0.06) 0.59(0.13) 0.42(0.05) 0.135(0.057) 0.276(0.106)  0.12(0.06) 0.56(0.12) 0.44(0.05) 0.107(0.04) 0.215(0.09) 
   A+C 0.06(0.03) 0.73(0.16) 0.44(0.03) 0.048(0.020) 0.121(0.060)  0.04(0.02) 0.77(0.17) 0.42(0.03) 0.038(0.02) 0.101(0.05) 
   A+B 0.18(0.06) 0.65(0.14) 0.42(0.05) 0.140(0.050) 0.296(0.090)  0.11(0.04) 0.50(0.11) 0.38(0.04) 0.111(0.04) 0.227(0.08) 
   A+B+C 0.07(0.03) 0.62(0.11) 0.47(0.04) 0.061(0.030) 0.132(0.070)  0.06(0.03) 0.59(0.10) 0.44(0.03) 0.057(0.03) 0.126(0.06) 
dCYSOLIDS, kg×d-1            
   B+C 0.03(0.01) 0.14(0.03) 0.12(0.01) 0.093(0.044) 0.183(0.083)  0.04(0.01) 0.12(0.02) 0.20(0.01) 0.125(0.048) 0.225(0.081) 
   A+C 0.01(0.00) 0.18(0.04) 0.12(0.00) 0.033(0.024) 0.079(0.055)  0.01(0.00) 0.18(0.04) 0.12(0.00) 0.037(0.026) 0.085(0.057) 
   A+B 0.04(0.01) 0.15(0.03) 0.12(0.02) 0.120(0.005) 0.234(0.103)  0.03(0.02) 0.14(0.03) 0.10(0.01) 0.124(0.07) 0.250(0.132) 
   A+B+C 0.03(0.01) 0.14(0.02) 0.10(0.01) 0.109(0.050) 0.224(0.101)  0.03(0.01) 0.13(0.02) 0.10(0.01) 0.102(0.05) 0.208(0.103) 
dCYWATER, kg×d-1            
   B+C 0.04(0.02) 0.18(0.04) 0.14(0.02) 0.127(0.050) 0.251(0.090)  0.02(0.01) 0.15(0.03) 0.12(0.01) 0.079(0.03) 0.162(0.07) 
   A+C 0.02(0.01) 0.21(0.04) 0.13(0.01) 0.069(0.029) 0.166(0.060)  0.02(0.00) 0.21(0.04) 0.10(0.00) 0.037(0.019) 0.105(0.051) 
   A+B 0.05(0.02) 0.19(0.04) 0.14(0.02) 0.13(0.066) 0.264(0.123)  0.02(0.01) 0.17(0.03) 0.11(0.01) 0.079(0.044) 0.183(0.095) 
   A+B+C 0.02(0.01) 0.19(0.03) 0.13(0.01) 0.053(0.030) 0.123(0.066)  0.02(0.00) 0.17(0.03) 0.11(0.00) 0.068(0.027) 0.160(0.060) 
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Table 3. Posterior median (SD) for additive genetic (σ2
a), herd (σ2

h) and residual variance (σ2
e) and across-herd (h<=� ) and intra-herd (h?=� ) 

heritabilities for model cheese-making measures and predictions by mid-infrared spectroscopy (MIR) of milk nutrient recovery (REC; protein, 
fat, solids, and energy of the curd as percentage of the protein, fat, solids, and energy of the milk processed) and their predictions obtained from 
MIR spectra and calibration equations 

1Subsets A, B, and C  are subsets of data used to validate the calibration equations and to estimate genetic parameters for measures of phenotypes. 

 

Item1 
Model cheese-making measures  FTIR-predictions  

σ
2

a σ
2

h σ
2

e h<=�  h?=�   σ
2

a σ
2 

h σ
2

e h<=�  h?=�  
RECPROTEIN, %            
   B+C 1.71(0.58) 2.34(0.58) 3.31(0.51) 0.230(0.077) 0.338(0.108)  1.48(0.55) 1.18(0.30) 1.85(0.44) 0.323(0.109) 0.443(0.141) 
   A+C 2.48(0.74) 1.87(0.49) 2.93(0.61) 0.337(0.095) 0.458(0.120)  2.26(0.59) 1.78(0.45) 1.81(0.46) 0.383(0.093) 0.556(0.122) 
   A+B 2.94(0.66) 1.09(0.30) 1.51(0.50) 0.525(0.105) 0.660(0.120)  1.20(0.30) 1.60(0.39) 1.39(0.24) 0.282(0.070) 0.462(0.103) 
   A+B+C 2.24(0.50) 1.46(0.29) 1.64(0.39) 0.417(0.085) 0.576(0.109)  2.00(0.45) 1.12(0.29) 1.41(0.34) 0.439(0.088) 0.586(0.109) 
RECFAT, %            
   B+C 2.18(0.99) 5.83(1.45) 11.56(1.04) 0.110(0.049) 0.158(0.068)  2.48(0.71) 3.12(0.74) 2.46(0.54) 0.305(0.081) 0.501(0.118) 
   A+C 2.48(1.08) 6.12(1.53) 13.34(1.19) 0.112(0.048) 0.156(0.065)  1.03(0.36) 1.71(0.42) 2.05(0.31) 0.211(0.072) 0.333(0.105) 
   A+B 2.77(1.27) 3.24(0.90) 10.20(1.19) 0.169(0.070) 0.212(0.091)  0.37(0.20) 5.94(1.30) 1.62(0.19) 0.046(0.026) 0.185(0.093) 
   A+B+C 1.80(0.57) 2.57(0.52) 4.81(0.51) 0.195(0.059) 0.271(0.080)  1.31(0.34) 1.31(0.26) 1.96(0.28) 0.283(0.069) 0.399(0.093) 
RECENERGY, %            
   B+C 3.04(1.20) 3.42(0.90) 7.65(1.08) 0.212(0.081) 0.281(0.104)  2.31(1.03) 1.45(0.43) 4.78(0.82) 0.268(0.104) 0.325(0.124) 
   A+C 1.80(0.94) 3.57(0.94) 9.54(0.95) 0.118(0.06) 0.157(0.079)  1.46(0.78) 2.98(0.75) 5.57(0.71) 0.144(0.074) 0.207(0.103) 
   A+B 2.08(0.96) 2.15(0.62) 7.48(0.91) 0.176(0.077) 0.217(0.093)  1.27(0.52) 3.12(0.75) 3.36(0.46) 0.162(0.065) 0.273(0.102) 
   A+B+C 1.76(0.69) 1.61(0.38) 5.69(0.62) 0.192(0.070) 0.235(0.085)  1.48(0.55) 1.12(0.27) 4.40(0.49) 0.211(0.073) 0.251(0.086) 
RECSOLIDS, %            
   B+C 3.81(1.42) 3.49(0.91) 6.09(1.17) 0.282(0.099) 0.385(0.128)  2.47(1.08) 1.10(0.34) 4.29(0.85) 0.311(0.118) 0.363(0.135) 
   A+C 1.94(0.96) 3.12(0.83) 8.23(0.91) 0.144(0.068) 0.189(0.087)  1.46(0.77) 2.37(0.63) 5.84(0.69) 0.148(0.074) 0.198(0.096) 
   A+B 2.72(1.00) 2.36(0.65) 6.27(0.89) 0.237(0.083) 0.302(0.102)  2.02(0.70) 2.52(0.65) 4.63(0.62) 0.218(0.073) 0.303(0.097) 
   A+B+C 2.18(0.72) 1.84(0.41) 5.47(0.63) 0.228(0.071) 0.284(0.086)  1.89(0.66) 1.37(0.31) 4.60(0.56) 0.239(0.077) 0.290(0.091) 
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Table 4. Posterior median and the lower and upper bounds of the 95% highest posterior 
density region (HPD95) for additive genetic and phenotypic correlations between measures 
of percentage model cheese yield (%CY; weight of fresh curd, curd solids and curd water 
as percentage of weight of milk processed) and daily production (dCY; curd, curd solids, 
and curd water produced per cow) and their predictions by mid-infrared spectroscopy 
(FTIR) 
 

Item Subset 
Genetic correlations  Phenotypic correlations 

rA HPD95  rP HPD95 
%CYCURD, %       
 B+C 0.846 0.58; 0.96  0.706 0.63; 0.76 
 A+C 0.905 0.67; 0.98  0.663 0.57; 0.73 
 A+B 0.868 0.64; 0.97  0.634 0.52; 0.71 
 A+B+C 0.972 0.87; 0.99  0.881 0.87; 0.90 
%CYSOLIDS, %       
 B+C 0.957 0.80; 0.99  0.748 0.69; 0.79 
 A+C 0.950 0.71; 0.99  0.822 0.78; 0.85 
 A+B 0.968 0.82; 0.99  0.830 0.80; 0.85 
 A+B+C 0.983 0.93; 0.99  0.962 0.95; 0.97 
%CYWATER, %       
 B+C 0.522 -0.15; 0.98  0.495 0.39; 0.58 
 A+C 0.727 0.16; 0.97  0.459 0.32; 0.56 
 A+B 0.698 0.01; 0.97  0.486 0.35; 0.59 
 A+B+C 0.761 0.42; 0.94  0.772 0.74; 0.81 
dCYCURD, kg×d-1       
 B+C 0.986 0.89; 0.99  0.956 0.94; 0.96 
 A+C 0.961 0.75; 0.99  0.951 0.93; 0.97 
 A+B 0.987 0.93; 0.99  0.960 0.89; 0.94 
 A+B+C 0.988 0.92; 0.99  0.983 0.98; 0.99 
dCYSOLIDS, kg×d-1       
 B+C 0.984 0.87; 0.99  0.943 0.92; 0.95 
 A+C 0.987 0.84; 0.99  0.966 0.95; 0.97 
 A+B 0.993 0.94; 0.99  0.973 0.96; 0.98 
 A+B+C 0.996 0.98; 0.99  0.995 0.96; 0.99 
dCYWATER, kg×d-1       
 B+C 0.972 0.78; 0.98  0.872 0.83; 0.90 
 A+C 0.887 0.55; 0.99  0.871 0.82; 0.91 
 A+B 0.952 0.74; 0.99  0.787 0.70; 0.84 
 A+B+C 0.924 0.71; 0.99  0.950 0.93; 0.96 
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Table 5. Posterior median and the lower and upper bounds of the 95% highest posterior 
density region (HPD95) for additive genetic and phenotypic correlations between measures 
of milk nutrient recovery in model cheeses (REC; protein, fat, solids, and energy of the 
curd as percentage of the protein, fat, solids, and energy of the milk processed) and their 
predictions by mid-infrared spectroscopy (FTIR) 
 

Item Subset 
Genetic correlations  Phenotypic correlations 
rA HPD95  rP HPD95 

RECPROTEIN, %       
 B+C 0.901 0.63; 0.99  0.587 0.50; 0.65 
 A+C 0.815 0.14; 0.98  0.646 0.57; 0.70 
 A+B 0.807 0.39; 0.97  0.560 0.47; 0.63 
 A+B+C 0.881 0.67; 0.96  0.863 0.84; 0.87 
RECFAT, %       
 B+C 0.894 0.57; 0.99  0.383 0.27; 0.48 
 A+C 0.791 0.15; 0.98  0.402 0.29; 0.49 
 A+B n.e. n.e.  n.e. n.e. 
 A+B+C 0.794 0.49; 0.95  0.632 0.58; 0.68 
RECSOLIDS, %       
 B+C 0.928 0.71; 0.99  0.629 0.55; 0.69 
 A+C 0.832 0.57; 0.98  0.592 0.50; 0.66 
 A+B 0.981 0.86; 0.99  0.603 0.51; 0.67 
 A+B+C 0.982 0.93; 0.99  0.891 0.88; 0.91 
RECENERGY, %       
 B+C 0.932 0.74; 0.99  0.719 0.66; 0.76 
 A+C 0.912 0.59; 0.99  0.722 0.66; 0.77 
 A+B 0.932 0.73; 0.99  0.744 0.69; 0.78 
 A+B+C 0.963 0.87; 0.99  0.905 0.89; 0.92 
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ABSTRACT 

Cheese yield is the most important technological parameter in the dairy industry. 

The aim of this study was to infer (co)variance components for cheese yields (CYs) and 

nutrient recoveries in curd (RECs) predicted using Fourier-transform infrared (FTIR) 

spectroscopy of samples collected during milk recording on Holstein, Brown Swiss and 

Simmental dairy cows. A total of 311,354 FTIR spectra representing the test-day records 

of 29,208 dairy cows (Holstein, Brown Swiss, and Simmental) from 654 herds, collected 

over a 3-year period, were available for the study. The traits of interest for each cow 

consisted of three cheese yield traits (%CYs: fresh curd, curd total solids, and curd water 

as a % of the weight of the processed milk), four curd nutrient recovery traits (RECs: fat, 

protein, total solids, and the energy of the curd as a % of the same nutrient in the processed 

milk) and three daily cheese production traits (dCYs: daily fresh curd, total solids, and the 

water of the curd per cow). Calibration equations (freely available by requesting them to 

the first author of this paper) were used to predict individual test day observations for these 

traits. The (co)variance components were estimated for the CY, REC, milk production and 

milk composition traits via a set of four-trait analyses within each breed, which were 

performed using REML and linear animal models. The heritabilities of the %CYs were 

always higher for Holstein and Brown Swiss cows (0.22 to 0.33) compared to Simmental 

cows (0.14 to 0.18). In general, the fresh cheese yield (%CYCURD) showed genetic 

variation and heritability estimates that were slightly higher than those of its 

components, %CYSOLIDS and %CYWATER. RECPROTEIN was the most heritable trait in all the 

three breeds, with values ranging from 0.32 to 0.41. Our estimation of the genetic 

relationships of the CYs and RECs with milk production and composition revealed that the 

current selection strategies used in dairy cattle are expected to exert only limited effects on 

the REC traits. Instead, breeders may be able to exploit genetic variations in the %CYs, 
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particularly RECFAT and RECPROTEIN. This last component is not explained by the milk 

protein content, suggesting that its direct selection could be beneficial for cheese 

production aptitude. Collectively, our findings indicate that breeding strategies aimed at 

enhancing CYs and RECs could be easily and rapidly implemented for dairy cattle 

populations in which FTIR spectra are routinely acquired from individual milk samples. 

Key words: genetic parameters, mid-infrared spectroscopy (MIRS); cheese yield; whey 

losses; dairy breeds 

 

INTRODUCTION 

The amount of milk used for cheese production is growing in many countries 

(International Dairy Federation, 2013), increasing the importance of the milk technological 

parameters that are related to dairy processing. Cheese yield (CY), which is the percentage 

ratio between the curd weight and the milk weight, is the most important parameter for the 

dairy industry and affects the milk’s value (Emmons, 1993). Protein and fat, together with 

water, are the most important milk components retained in the curd, and CY is usually 

predicted from the milk protein and fat contents (Emmons et al., 1990; Verdier-Metz et al., 

2001). This assumes that there is a linear relationship and constant recovery (REC) for 

milk nutrients in the curd (i.e., the percentage of a given milk nutrient that is retained in the 

curd). 

In the current dairy cattle breeding programs, the aptitude of milk for cheese 

production is improved via changes in milk composition, indirectly exploiting the 

favorable phenotypic relationships of the milk protein and fat contents with CY. Individual 

variations in the recoveries of protein (RECPROTEIN) and fat (RECFAT) are not considered. 

In a study on individual model cheeses fabricated from the milk of individual Brown Swiss 

cows, however, Bittante et al. (2013) showed that CY has genetic variability and a 
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moderate heritability. They also found that although the genetic correlations of the milk fat 

and protein contents with CY were positive and high, the milk composition did not explain 

all of the genetic variation observed in CY.  

Othmane et al., (2002b), using a very simplified procedure on 10 mL of milk  

heated, added with rennet, centrifuged after one hour, drained and weighed (Othmane et al., 

2002a), estimated that CY of ovine milk is characterized by a rather low heritability (about 

one half that of milk yield and one third that of protein content) 

The recoveries of protein and fat in the curd are genetically controlled traits, with 

high and moderate heritability values, respectively (Bittante et al., 2013). Their genetic 

relationships with the corresponding nutrient contents in the milk are low, whereas they 

show positive and consistent genetic correlations with CY (Bittante et al., 2013). Hence, 

breeders could perhaps more effectively improve the aptitude of milk for cheese 

production if they selected directly for technological parameters rather than for milk 

composition. However, such selection has been limited by the relative lack of phenotypic 

data: a routine genetic evaluation would require population-level data for individual CY or 

REC traits, but such work is clearly infeasible for both operative and economic reasons. 

Infrared optical technologies, such as Fourier-transform infrared (FTIR) 

spectroscopy, have proven to be efficient in predicting a variety of chemical bonds (Brandt 

et al., 2010; Karoui et al., 2010), and can be used to predict milk characteristics (Rutten et 

al., 2009; Karoui et al., 2011; Rutten et al., 2011). Indeed, within the current milk 

recording schemes, milk samples are routinely analyzed for their protein and fat contents 

using FTIR (ICAR, 2012). As FTIR spectra are now obtained for every milk sample 

collected during milk recording activities, we speculated that the use of appropriate 

calibration equations could enable the inexpensive large-scale analysis of multiple new 

phenotypes that might be incorporated into the current breeding programs.  



- 77 - 
 

In the FTIR spectra of milk, the transmittance of many individual waves in the range from 

wavenumber 5.000 × cm-1 (in the near-infrared interval, NIR) to 930 × cm-1 (in the mid-

infrared interval, MIR) was found to be heritable (Bittante and Cecchinato, 2013), as were 

the principal components obtained from the milk spectra (Soyeurt et al., 2010; Dagnachew 

et al., 2013).  Bittante and Cecchinato (2013) also showed that the many heritable 

individual waves of the milk spectra included some whose transmittances are typically 

linked to the chemical bonds that characterize important components of milk. These 

findings provided the biological basis for using FTIR-based predictions for the selection of 

dairy species. Recent studies have examined the possible use of population-level FTIR 

predictions for the genetic improvement of milk characteristics, including the milk fatty 

acid profile (Soyeurt et al., 2007b; Arnould et al., 2010; Bastin et al., 2011) and protein 

content (Soyeurt et al., 2007a; Arnould et al., 2009). 

Cecchinato et al. (2009) showed that MIR-based predictions of milk coagulation 

properties could be used for genetic improvement even when the predictive values of the 

calibration equations were moderate, as these traits were heritable and displayed genetic 

correlations that were much higher than the phenotypic correlations with the corresponding 

measured traits. Similar results were found by Rutten et al. (2010) for the milk fatty acid 

profile and by Cecchinato et al. (2011a) for beef quality traits. 

Ferragina et al. (2013) used FTIR spectroscopy to predict different measures of the 

CY and REC traits in Brown Swiss cows, and obtained moderate to highly accurate 

predictions for most of them, except for RECFAT for which the coefficient of determination 

between the predicted and 

measured values in cross-validation was equal to 0.41. In an external validation study, 

Bittante et al. (2014) compared the genetic parameters of FTIR predictions with those of 

the observed measures for CY and REC traits in Brown Swiss cows. For all of the 
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considered traits, the heritabilities of the FTIR predictions were similar to or higher than 

those of the measured traits; furthermore, the genetic correlations between the predicted 

and observed measures were very high for all the traits. These results suggest that it may 

be possible to consider the FTIR predictions as potentials indicators traits for enhancing 

CY and REC traits at genetic level and, as a consequence, to apply a population-level 

selection scheme aimed at improving the cheese yield-related traits in dairy cattle. 

However, this would require specific knowledge of the (co)variance components and 

heritabilities of the predicted traits in different dairy breeds. 

Therefore, the objective of this study was to estimate the genetic parameters for the 

FTIR predictions of various CY and REC traits at the population level (as obtained during 

routine milk recording data collection) and examine their genetic relationships with milk 

production and composition traits in Holstein, Brown Swiss and Simmental cows.  

 

MATERIALS AND METHODS 

Data and Records 

The data for this study were provided by the Breeders Federation of Trento 

Province (in the North-East Italian Alps) as a part of the Cowplus Project. In Italy, 

individual samples are collected during routine milk recording, and the milk composition 

of each sample is predicted by FTIR spectroscopy (ICAR, 2012). Since 2010, the FTIR 

spectra of all such milk samples obtained from the dairy herds of Trento Province have 

been stored by the local Breeders Federation (FPA, Trento). A total of 311,354 FTIR 

spectra from the test-day records of 29,208 Brown Swiss, Holstein and Simmental cows 

from 654 herds, obtained over 3 years, were available for this study. The herds were 

located in a mountainous area, and were managed within the production systems described 

in Sturaro et al. (2013).  
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Only records from cows with known parents, at least 2 test-day records within 

lactation and between 5 and 380 days in milk have been included. The minimum size of 

contemporary groups, formed by cows of the same breed controlled in the same herd and 

in the same day, was set to 8 for Holstein and Brown Swiss, and to 5 for Simmental due to 

the smaller average herd size for this breed. Records with response variables outside the 

range of mean ± 3 standard deviation units were discarded. After editing procedures, the 

number of records available for statistical analyses in each breed was 84,732 for Holstein, 

70,321 for Brown Swiss, 19,333 for Simmental; the corresponding number of included 

cows was 8,786 , 7,342 and 2,037 (Table 1). 

 

Genetic Background of Breeds 

The populations of the three breeds considered in this study show a genetic 

background directly related to best international selection. In fact, even if the majority of 

used AI bulls are of Italian origin (Table 2), the large majority of the sires of the AI bulls 

of all breeds belong to the most important populations internationally available. In detail, 

the sires of the bulls whose semen was used on the Holstein cows were mainly of North 

American and, to a lower extent, European origin; in Brown Swiss the sires of AI bulls 

were mainly of Italian, USA, and German origin; in the Simmental dual-purpose cows 

were from, German-Austrian (Fleckvieh) and French (Montbeliarde) origin (Table 2). The 

Italian selection indices used for the three investigated breeds include, like in many other 

countries, milk yield, milk quality, type traits (especially udder traits), and functional traits. 

In the case of Brown Swiss some emphasis is also given to technological properties of milk 

(including in the selection index also the κ-casein genotype), whereas in the Simmental 

breed meat production also plays an important role. 
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Calibration Equations and Traits Definitions  

The calibration equations developed by Ferragina et al. (2013), and freely available 

by requesting them to the first author of this paper, were used to predict the individual test 

day observations for traits related to CY. A preliminary analysis was carried out in order to 

verify if the FTIR spectra from the test-day records of the three breeds were in range of the 

spectral variability of the dataset used to obtain the calibration equations. As reported in 

Figure 1, the almost complete overlapping between FTIR spectra of different dataset over 

the entire wavenumber range, support the application of such calibration equations at the 

population level. The data used for the calibrations were obtained from individual model 

cheese manufacturing from 1,264 Brown Swiss cows reared in 85 herds representing the 

different areas and dairy systems of the Trento province and sampled in different seasons 

of the year (Ferragina et al., 2013).  

The predicted traits included the fresh cheese yield (%CYCURD), the total solid 

cheese yield (%CYSOLIDS) and the water retained in curd (%CYWATER), all expressed as a 

percentage of the processed milk, and the nutrient recoveries of fat (RECFAT), protein 

(RECPROTEIN), total solids (RECSOLIDS) and energy (RECENERGY) in the curd as a percentage 

of the same nutrient contained in the milk (the difference between each REC and 100% 

was taken as the nutrient loss in the whey). Also traits displaying calibration equations of 

low to moderate accuracy, such as RECFAT and %CYWATER, have been considered in the 

study because it was previously demonstrated that additive genetic correlations between 

measures and predictions were higher than the phenotypic ones (Bittante et al., 2014). 

In addition to the %CY and REC traits, the milk yield (dMY), the fat, protein and 

lactose percentages, and the somatic cells score (SCS) of each individual test day were 

available. The daily fresh cheese yield (dCYCURD), solid cheese yield (dCYSOLIDS) and 

water cheese yield (dCYWATER) were obtained as dMY times the corresponding 
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predicted %CY. Details on the definitions and calculations of the predicted traits can be 

found in Cipolat-Gotet et al. (2013).  

Statistical Analysis 

Non-genetic Effects. To begin, the GLM procedure (SAS Inc., Cary, NC, USA) was 

used to identify the non-genetic effects that should be included in our model for estimating 

the (co)variance components. For each trait and breed, the final model included the fixed 

effects of the herd by test date (4,020, 3,040 and 1,671 levels in Brown Swiss, Holstein and 

Simmental cows, respectively), the days in milk of each cow within parity (108 levels), 

and the year by season of calving (8 levels). Days in milk was treated as a classification 

variable; it had 11 monthly classes ranging from <30 to 330 days, and one additional class 

for observations over 330 days. The parity effect was modeled in nine classes: parities of 

>4, 4 and 3 were modeled as such; in parities 1 and 2, we also considered the effect of age 

at calving (three classes within each parity) to account for different degrees of maturity at 

the beginning of lactation. Two seasons of calving were considered: April to September 

and October to March. 

Genetic Analysis. The (co)variance components were estimated by the REML 

algorithm using the VCE software, v.6 (Neumaier and Groeneveld, 1998; Groeneveld et 

al., 2010). As computational limitations made it infeasible to perform a multivariate 

analysis that simultaneously included all of the available traits, the genetic parameters were 

estimated by fitting several four-trait analyses within each breed. The multivariate mixed 

model was 

e+peZ+aZ+Xb=y pea
, 
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where y is the vector of observations for four traits (i.e., the CY, REC or milk composition 

traits and the single test day milk yield); b , a , pe  and e  are vectors representing 

unknown fixed non-genetic effects, random animal additive genetic effects, random 

permanent environmental effects, and random residuals effects, respectively; and X , aZ
 

and 
peZ  are incidence matrices (of appropriate order) relating observations in y to b , a , 

and pe , respectively. 

Conditional on the unknown parameters of the model, the data were assumed to be 

generated from the multivariate normal distribution 

�|�, �, #~�C%D RpeZ+aZ+Xb pea , E 

 

Random effects were assumed to be normally distributed with null mean and 

variances equal to  
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where G, P and E are the (co)variance matrices among the four traits for the animal, the 

permanent environmental effects, and the residual effects, respectively; A is the numerator 

of Wright’s relationship matrix; Ic

 
and Io are identity matrices of size c and o, respectively; 

c and o denote the number of cows and observations, respectively; and ⊗  is the Kronecker 

product operator. Additive relationships in A were computed using a pedigree file that 

included all phenotyped animals and their ancestors  (28,783,  29,262 and 6,885 animals in 

Holstein,  Brown Swiss and Simmental breeds with a number of average equivalent 

complete generations of 3.5, 3.7 and 2.4, respectively) (Table 1).  
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RESULTS 

Descriptive Statistics 

Table 3 presents descriptive statistics for the investigated traits. All of the %CYs 

were higher in Brown Swiss cows followed by Simmental cows, whereas Holstein cows 

always showed lower values. The CYs also displayed very high variabilities (the CV 

ranged from 12 to 16%). In each breed, the contribution of water (%CYWATER) to the total 

fresh cheese yield (%CYCURD) was around 55%, and was thus higher than that 

of %CYSOLIDS (45%). 

Compared to the CYs, the RECs showed much lower variabilities (the CV ranged from 3% 

for RECPROTEIN to 7% for RECSOLIDS), but the breeds ranked in the same order. Around 50% 

of the milk total solids were retained in the curd, mainly resulting from large proportions of 

fat (over 85%) and protein (over 76%) being recovered in the fresh cheese. 

Compared to Holstein cows, the daily milk productions of Brown Swiss and 

Simmental cows were 15% and 23% lower, respectively; this affected the breed order for 

all of the daily cheese yields. The milk composition (in terms of the fat and protein 

percentages) was more favorable in Brown Swiss cows, whereas the lactose content 

showed limited variations across and within the tested breeds. The values of SCS followed 

the same breed order seen for milk production. 

 

Heritability and Repeatability 

Estimates of additive genetic variances, heritabilities and repeatabilities are 

presented in Table 4. For all traits, our inferences of additive genetic variation, heritability 

and repeatability were based on pooled estimates obtained in multivariate analyses. The 

heritabilities of the CY traits were always significantly larger for Holstein and Brown 

Swiss cows (0.22 to 0.33) compared to Simmental cows (0.14 to 0.18). In general, the total 
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fresh cheese yield (%CYCURD) displayed slightly higher genetic variabilities and 

heritabilities than those of its components, %CYSOLIDS and %CYWATER. Permanent 

environmental effects were found to affect all of the CY parameters, yielding repeatability 

values between 0.32 and 0.47, depending on the breed. 

The heritability estimates for the milk production and dCY traits were consistent 

across the breeds and were much lower than those of the %CYs, at 0.06 to 0.11. As 

expected, the permanent environmental variances were large for all of the production traits; 

hence, the repeatabilities were about four times higher than the heritabilities. 

The RECSOLIDS and RECENERGY had higher additive genetic variances and higher 

residual variances compared to RECPROTEIN and RECFAT. The RECPROTEIN was the most 

heritable trait in all three breeds (0.32 to 0.41) and also had a high repeatability (0.45 to 

0.53). Interestingly, this was the only trait among the %CYs and RECs for which the 

heritability value in Simmental cows (0.35) was comparable to those of the other breeds. 

RECSOLIDS, RECENERGY and RECFAT had similar heritabilities and repeatabilities within 

each breed. RECFAT was more (Holstein and Brown Swiss) or equally (Simmental) 

heritable compared to the milk fat content. The results for RECPROTEIN were similar to 

those of the protein percentage, displaying a heritability that was greater than that of the 

milk content in Brown Swiss and Simmental cows. 

 

Phenotypic and Genetic Correlations between Cheese Yields and Curd Nutrient 

Recoveries 

All of the %CYs were heavily correlated with each other from the genetic point of 

view, with values ranging from 0.92 to 0.99 (Table 5). The corresponding phenotypic 

correlations were slightly lower (as in the case of %CYCURD with its 

components, %CYSOLIDS and %CYWATER) or markedly lower (as in the case of the water 
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and solids retained in the curd, which was around 0.60). No large between-breed difference 

was observed among these correlations. 

The overall recoveries (i.e., RECSOLIDS and RECENERGY) were strongly correlated to each 

other both genetically and phenotypically (0.94 to 0.96). The other phenotypic correlations 

between nutrient recoveries were positive, but smaller than the corresponding genetic 

correlations. The estimated correlations among nutrient recoveries for Simmental cows 

were always lower than those of the other two breeds; this was likely due to the more 

limited data availability for Simmental cows, and was always associated with larger 

standard errors.  

The total cheese (%CYCURD) and solid (%CYSOLIDS) yields (Table 6) were 

positively and moderately correlated with RECFAT and RECPROTEIN, both phenotypically 

(0.31 to 0.50) and genetically (0.34 to 0.62). Moreover, these %CYs were highly correlated 

with RECSOLIDS and RECENERGY from both points of view (0.81 to 0.97). The %CYWATER 

showed very strong genetic correlations with RECSOLIDS and RECENERGY, but the 

phenotypic correlations were lower than those of the other CYs. Unexpectedly, the genetic 

correlations of %CYWATER with the nutrient recoveries were stronger than those 

of %CYSOLIDS and comparable to those observed for %CYCURD. 

  

Relationships of Cheese Yields and Nutrient Recoveries with Milk Production and 

Composition  

The genetic and phenotypic correlations of the %CY and REC traits with the milk 

production and composition traits are presented in Tables 7 and 8, respectively. In general, 

milk production displayed antagonistic relationships with all of the %CY and REC traits in 

each breed, especially from the genetic point of view. The association of milk production 

with RECFAT and RECPROTEIN was negative, but to a much smaller degree. The daily cheese 
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yields showed moderate positive genetic and phenotypic correlations with all of the %CY 

and REC traits in Holstein and Brown Swiss cows. In Simmental cows, the same genetic 

correlations were markedly lower, sometimes close to zero or even slightly negative as in 

the case of dCYWATER, the exceptions to this were the moderate correlations with 

RECPROTEIN. The milk fat and protein contents were much more correlated with cheese 

yields and overall nutrient recoveries than with their own recoveries in the curd (Table 8). 

The genetic correlations of  RECFAT with the milk fat percentage ranged from 0.17 to 0.42.  

RECPROTEIN showed a low genetic correlation with milk protein percentage in Simmental 

cows (0.10), but more moderate correlations in Holstein (0.24) and Brown Swiss (0.37) 

cows. 

The milk lactose content showed moderate positive genetic and phenotypic 

correlations with all of the %CY and REC traits except for those with %CYSOLIDS and 

RECSOLIDS, which were inconsistent or slightly negative. The SCS was both genetically 

and phenotypically independent of the CYs and overall RECs, but showed limited negative 

genetic correlations with RECPROTEIN. 

   

DISCUSSION 

Description of Dairy Systems 

Sturaro et al. (2013) described the dairy production environment of the 

geographical area interested by this study, identifying four main dairy systems. The first is 

the traditional alpine farming, based on summer highland pastures grazing, with small size 

farms rearing mainly Brown Swiss and Simmental breeds. The second system and third 

systems are similar to the previous one but they involve the bigger farms. In the second, 

traditional feeding with hay and some compound feed  is used without alpine grazing; in 

the third more modern feeding regimes based on corn silage and often on total mixed 
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rations (TMR) are used, but cows are still tied. In those systems Brown Swiss and Holstein 

are the most represented breeds. Finally a fourth system was identified which is the typical 

intensive dairy system with open barns, free animals, milking parlor, often with TMR. This 

system involves the larger farms and accounts for half of the milk produced in the area of 

the Trento Province. Within this system, Holstein is by far the most represented breed 

followed by Brown Swiss. It is worth noting that in each of the production systems 

described by Sturaro et al. (2013) a high incidence of multi-breed herds was found. 

 

Genetic Parameters of Cheese Yields and Curd Nutrient Recoveries 

Brown Swiss cows had higher %CYs than cows of the other studied breeds. 

Their %CYCURD was 15.4%; this was slightly higher than that reported by Cipolat-Gotet et 

al. (2013) for the same breed, and mainly reflected a higher predicted water retention in the 

curd (8.3% vs. 7.8%). The milk of Brown Swiss cows is generally considered to be 

particularly suitable for cheese production because of its favorable fat and protein 

compositions and its good aptitude for coagulation (Cecchinato et al., 2011b; Bittante et al., 

2012). This breed therefore plays an important role in the Alpine dairy farming industry, 

where the large majority of milk is destined for the production of high-priced Protected 

Designation of Origin traditional cheeses (Bittante et al., 2011a and 2011b). Notably, the 

greater FTIR-predicted %CYs of milk from Brown Swiss cows reflected not only higher 

fat and protein contents, but also higher REC traits. Obviously, the differences observed 

among the studied breeds could be at least partially attributable to the environments, 

feeding strategies and management characteristics of the herds. In their analysis of Trento 

province dairy farms, Sturaro et al. (2013) found an unequal distribution of breeds across 

dairy systems with a greater proportion of Holstein Friesian cows in the more modern dairy 

farms, whereas the dual-purpose Simmental cows were more frequent in traditional Alpine 
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farms, and Brown Swiss cows presented an intermediate distribution. They also found that 

the dairy system heavily affected the daily milk yield, but had only negligible effects on 

the milk fat and casein contents. De Marchi et al. (2008) carried out a small-scale study on 

milk obtained from Holstein and Brown Swiss cows that were reared on nine farms and 

used to produce three different traditional cheeses of Trento province. The results showed 

that a greater %CYCURD was obtained from the milk of Brown Swiss cows, regardless of 

the cheese type, and that this was not totally explained by the differences in milk 

composition; instead, it also reflected the RECs and water retention in the curd. In a very 

different production environment (that of Cheddar cheese), Mistry et al. (2002) 

demonstrated that the milk of Brown Swiss cows had a greater RECFAT than that of 

Holstein cows. When comparing the use of whole milk from Holstein and Montbeliarde 

cows for the production of Cantal cheese, Martin et al. (2009) found that the latter was 

superior in both %CYCURD and %CYSOLIDS, and the %CYSOLIDS was about 50% higher than 

would be expected based on the observed differences in the milk fat and protein contents. 

In two previous studies, Verdier-Metz et al. (1995 and 1998) examined vat milk 

composition during Saint-Nectaire cheese production from the partially skimmed milk of 

Holstein, Montbeliarde and Tarentaise cows, and found that %CYCURD and RECSOLIDS 

were not affected by breed. These results support the need for the use of specific prediction 

of cheese-yield (like the FTIR prediction of %CYCURD and %CYSOLIDS), or the need to 

combine RECFAT and RECPROTEIN with milk fat and protein contents because milk 

composition alone is not able to fully characterize the value of milk for cheese production. 

In the present work, the additive genetic variances of %CY were found to be 

heterogeneous across breeds, with 2-fold higher values in Holstein cows compared to 

Simmental cows, whereas Brown Swiss cows had intermediate values. This heterogeneity 

may reflect between-breed differences in the genetic basis of the milk fat and protein 
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contents and of the %CY traits, but also in the herd sizes and farming systems (Sturaro et 

al., 2013). The residual variances and permanent environmental variances were similar 

across breeds (data not shown), so the heritability values of these parameters reflected 

breed-specific differences in the additive genetic variance. In studying individual cheeses 

produced from 1,272 Brown Swiss cows reared in the same area as those of the present 

study, Bittante et al. (2013) reported estimated additive genetic variances for the %CY and 

REC traits greater than those obtained in this study for the FTIR predicted traits of the 

same breed, with the exception of %CYCURD. In a subsequent study, the same authors 

found that estimates of additive genetic variances for FTIR-predicted %CY and REC traits 

were lower than those of the corresponding laboratory measurements on the same animals 

(Bittante et al., 2014). Notably, the latter values were very similar to those obtained in the 

present study.  This indicates that FTIR predictions can capture most of the population-

level genetic variation among cheese yields, with limited loss of information. Interestingly, 

estimates of genetic parameters for FTIR predictions of the different cheese yields in this 

study were similar, even when large differences in the accuracy of calibrations 

exist: %CYWATER, despite the less satisfactory calibration parameters compared 

to %CYCURD and %CYSOLIDS (Ferragina et al., 2013), showed comparable heritability 

values.  

This was confirmed also by Bittante et al. (2014) who found that also the herd and 

residual variances were smaller for FTIR predicted than for laboratory measured %CY and 

REC traits. The consequence is that heritability estimates of observed and predicted values 

were similar for all traits, regardless of the accuracy of calibrations. Moreover, the genetic 

correlations between measures and predictions  were high, confirming that a FTIR 

calibration judged poor for predicting a phenotype, could yield good predictions when 

applied to the genetic evaluation of animals. 



- 90 - 
 

Similarly to the findings of Bittante et al. (2013) on lab measured traits, the genetic 

correlations between the different FTIR predicted %CY traits were largely over 0.9 in the 

present study, suggesting that selection based on one such trait could effectively improve 

the others. Among them, %CYCURD is probably the trait of choice, because it showed 

higher additive genetic variance, heritability and repeatability in all three of the tested 

breeds. 

As protein and fat are the main solid components of the curd, CY is directly related 

to their retention in the curd (Fagan et al., 2007; Hallén et al., 2010).  

In the present study, RECFAT ranged from 86% to 87%, while RECPROTEIN was 

between 76.6% and 78.2%. Among all of the recoveries, RECPROTEIN was the most 

promising trait, as it consistently displayed a larger heritability in all three tested breeds. 

Similar to the above-described results, between-trait differences in the accuracy of the 

prediction equations (Ferragina et al., 2013) were not reflected in the estimated heritability 

of the nutrient recoveries. These findings support the conclusion that although a loss of 

variation is implicit when FTIR predictions are used instead of measured traits, this has 

only a limited effect on the potential of the analysis to highlight genetic differences 

between animals. 

The genetic correlations between RECFAT and RECPROTEIN were positive and 

consistent, but not very high (from 0.37 to 0.51), whereas the corresponding phenotypic 

correlations were only moderate. Using laboratory-measured traits, Bittante et al. (2013) 

found a similar pattern in these correlations, even though their estimated values were lower 

than those obtained in the present study. Therefore, the recoveries of individual nutrients 

do not appear to be highly associated with one another. This was further confirmed by their 

respective genetic relationships with RECSOLIDS, which ranged from 0.40 to 0.61. 

Regarding laboratory-measured traits, RECSOLIDS and RECENERGY were highly 
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correlated with %CYCURD and %CYSOLIDS, and showed consistent genetic correlations 

with %CYWATER. In contrast, the genetic and phenotypic associations of RECFAT and 

RECPROTEIN with the %CYs were lower than those of overall recoveries. Hence, the 

improvement of CY seems to be related to increasing both the nutrient retention and the 

water-holding capacity of the curd. The relevance of water retention was also confirmed by 

the genetic and phenotypic correlations of the individual nutrient recoveries 

with %CYWATER, which were higher than that with %CYSOLIDS in all three tested breeds. 

 

Genetic Relationship with Milk Production and Composition 

The genetic correlations of the %CYs and RECs with milk production and 

composition are important to our understanding of how cheese technological parameters 

respond to the selection of dairy cattle. They also allow us to explore the potential use of 

direct selection to improve cheese aptitude. 

The farms included in this study were small, located in a mountainous area, and often 

represented more than one breed (Sturaro et al., 2013). Thus, the production environment, 

herd structure and herd management yielded heritability values for dMY that were 

markedly lower than those reported in national genetic evaluations of the three breeds. In 

all three of the breeds studied in the present work, dMY displayed antagonistic genetic 

relationships with all of the %CY traits, whereas the phenotypic correlations were also 

negative, but only moderately so. A negative effect of increased milk production on %CY 

would be expected, mainly because of the known negative genetic correlation between 

daily milk yield and milk fat and protein contents, but also due to the relationships between 

daily milk yield and the curd recovery of the two nutrients. This was also indirectly 

confirmed by the strong and favorable relationships between the milk fat and protein 

contents and %CY (Table 8). Bittante et al. (2013) obtained similar results. However, in 
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their study of the laboratory-measured %CY and REC traits, the negative correlations 

between dMY and the %CYs were lower in magnitude, even though they were associated 

with relatively large areas of the posterior distributions of the estimated parameters.  

The total solid and energy recoveries behaved similarly to the %CY traits, as they 

were negatively associated with dMY and positively related to milk composition. However, 

the latter associations depended on the dilution of lactose (which is lost in the whey) when 

the milk total solids increase rather than the higher fat and protein retentions. In fact, the 

RECPROTEIN showed very weak negative genetic correlations with dMY (these were even 

sometimes inconsistent, as in the case of RECPROTEIN in Simmental cows), and the 

phenotypic correlations were null. An increase in dMY seemed to have a very limited 

effect on the ability of the curd to retain milk nutrients. The fat and protein contents of the 

milk were moderately correlated (in a favorable direction) with their respective recoveries 

in the curd for Holstein and Brown Swiss cows, but poorly correlated in Simmental cows. 

In contrast, the study of Bittante et al. (2013) on laboratory-measured traits found a 

negligible correlation between RECFAT and the milk fat percentage and RECPROTEIN and the 

protein content of the milk.  

The breeding goals and selection indices used worldwide for dairy cattle include the 

milk protein and fat yields or percentages (Miglior et al., 2005), and breeders indirectly 

select for the aptitude of milk for cheese production by seeking to increase its protein and 

fat contents. Based on the genetic correlations estimated in the present study, it might be 

expected that, due to their favorable relationship, all of the %CY traits would also be 

improved by such selection. However, given that the daily protein and fat quantities are 

also positively correlated with milk production, the consistent negative genetic correlations 

between dMY and %CY would partially counteract this positive effect. Furthermore, there 

is also genetic variability in the retention of milk fat and protein. The improvement of the 
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milk protein and fat contents would only marginally affect the individual nutrient 

recoveries in the curd, as the favorable genetic correlations between these traits are only 

moderate, while those of dMY with RECPROTEIN and RECFAT is slightly negative.  

Thus, based on the results of the present and previous studies, direct selection of %CY 

could be a more efficient means of capturing all of the genetic variance related to milk 

technological properties, which is not completely explained by the milk composition. The 

prediction of %CY can be easily obtained on the same samples and with the same 

instrument used for prediction of milk fat and protein contents. Furthermore, there is an 

opportunity to directly exploit the genetic variations of RECPROTEIN and RECFAT, as they 

are nearly independent of the milk composition and could provide useful information when 

farmers seek to select for improved cheese yield. 

 

CONCLUSION 

This study provided the first estimation of genetic parameters of three dairy breeds 

for %CY and nutrient recoveries in the curd at population level, using their FTIR 

predictions. 

All of the predicted traits proved to be heritable and displayed heritability values 

comparable to those of the measured traits, although a loss of genetic variability was 

generally observed. The estimated heritabilities of the %CYs and RECs were similar in 

magnitude to those of the milk fat and protein percentages and higher than that of dMY. 

Although the between-breed differences were limited from a biological standpoint, the 

heritabilities were systematically lower in Simmental cows (except for RECPROTEIN) 

compared to Holstein and Brown Swiss cows, which were fairly homogeneous in these 

measures.  

Our estimates of the genetic correlations of %CY and REC with milk production 
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and composition provide evidence that the current selection paradigm used in dairy cattle 

may have only limited effects on the technological parameters of milk for cheese 

production. Instead, genetic variations in %CY and (in particular) the recovery of protein 

and fat in the curd, which is not explained by the milk protein and fat contents, could be 

directly selected to improve the aptitude of milk for cheese production.  

The applicability of routine FTIR-based predictions for these traits means that we 

have ready and inexpensive access to a large amount of phenotypic data, with repeated 

observations for cows within and across lactations. This should allow for the routine 

genetic evaluation of %CY and REC in the curd, in addition to the currently studied 

production traits, and the establishment of new direct selection strategies for improved 

cheese yield.  
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TABLES AND FIGURES 

Table 1. Summary of data available after editing. 

 Holstein Brown Swiss Simmental 

Records1 
81,847 to 

84,732 

68,456 to 70,321 18,634 to 19,333 

Herds 170 259 121 

Herd by test date 3,040 4,020 1,671 

Lactations with FTIRS recorded 14,466 12,585 3,873 

Cows with FTIRS and milk yield 8,786 7,342 2,037 

Average records per cow 9.6 9.6 9.5 

Animals with pedigree  28,783 29,262 6,885 
1Records: number of records varies according to traits. 

 



 
 

 

Table 2. Summary of pedigree informations. 

 Holstein  Brown Swiss  Simmental 

Sires Sires of sires Sires Sires of sires Sires Sires of sires 

Bulls  1,908 355  986 165  681 153 

Bulls with ≥ 5 daughters 310 -  326 -  119 - 

Daughters of bulls ≥ 5 daughters, % 69 -  85 -  58 - 

Country of origin of bulls, %         

   Italy 61 13  57 38  40 13 

   Austria -   15 -  25 12 

   Canada 3 11  - -  - - 

   France 3 4  0.5 -  5 25 

   Germany 13 11  14 18  30 49 

   Netherland 8 10  - -  - - 

   Switzerland 1 -  6 6  - - 

   United States 9 50  7 36  - - 

   Other countries 2 1  0.5 2  - - 
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Table 3. Descriptive statistics of cheese yields (%CY; weight of fresh curd, curd solids, and curd water as percentage of weight of milk 
processed), milk nutrient recovery (REC; protein, fat, solids, and energy of the curd as percentage of the protein, fat, solids, and energy of the 
milk processed), daily production (dCY; curd, curd solids, and curd water produced daily per cow) for Holstein, Brown Swiss and Simmental 
cows1. 

 Holstein  Brown Swiss  Simmental 
Trait Mean SD P1 P99  Mean SD P1 P99  Mean SD P1 P99 
Cheese yield, %               
   %CYCURD 14.10 1.96 9.96 19.31  15.38 1.86 11.25 19.93  14.69 1.98 10.44 19.83 
   %CYSOLIDS 6.40 1.01 4.13 9.06  6.95 0.92 4.79 9.27  6.57 0.99 4.28 9.24 
   %CYWATER 7.69 1.24 5.13 11.02  8.34 1.22 5.70 11.44  8.07 1.27 5.35 11.36 
Nutrient recovery, %               
   RECFAT 85.98 3.50 78.71 93.73  87.37 3.55 79.97 95.03  86.41 3.44 79.19 94.22 
   RECPROTEIN 76.54 2.46 71.00 83.22  78.19 2.52 72.14 84.45  77.27 2.52 71.55 83.99 
   RECSOLIDS 48.82 3.57 41.22 58.17  50.84 3.26 43.20 58.98  49.51 3.47 41.88 58.75 
   RECENERGY 63.87 3.46 56.30 72.77  65.91 3.18 58.22 73.78  64.47 3.27 57.01 73.00 
Production traits, kg×d-1               
   dMY 29.28 8.88 10.2 51.1  24.79 7.75 8.8 44.8  22.56 7.77 6.00 42.8 
   dCYCURD 4.09 1.22 1.51 7.20  3.79 1.18 1.37 6.84  3.29 1.16 0.99 6.56 
   dCYSOLIDS 1.85 0.58 0.68 3.45  1.71 0.54 0.62 3.20  1.47 0.53 0.46 3.08 
   dCYWATER 2.23 0.69 0.78 4.03  2.06 0.67 0.72 3.82  1.81 0.67 0.52 3.68 
Milk composition               
   Fat, % 3.86 0.83 1.79 6.10  4.07 0.75 2.09 6.09  3.88 0.80 1.75 6.13 
   Protein, % 3.41 0.39 2.65 4.49  3.67 0.40 2.82 4.64  3.51 0.39 2.76 4.60 
   Lactose, % 4.82 0.20 4.21 5.17  4.83 0.20 4.23 5.17  4.81 0.19 4.23 5.17 
   SCS, Units2 3.06 1.81 -0.06 7.29  2.90 1.75 -0.18 7.11  2.67 1.78 -0.32 7.03 
1P1 = 1st percentile; P99 = 99th percentile.  2SCS = log2 (SCC × 100,000-1) + 3. 
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Table 4. Pooled estimates of additive genetic variance ( 2
aσ ), heritability ( 2h ) and repeatability ( r ) for cheese yields (%CY; weight of fresh curd, 

curd solids, and curd water as percentage of weight of milk processed), milk nutrient recovery (REC; protein, fat, solids, and energy of the curd 
as percentage of the protein, fat, solids, and energy of the milk processed), daily production (dCY; curd, curd solids, and curd water produced 
daily per cow)  milk production and composition in Holstein, Brown Swiss and Simmental cows1 
 2

aσ   2h   r  
Trait Holstein Brown Swiss Simmental  Holstein Brown Swiss Simmental  Holstein Brown Swiss Simmental 

Cheese yield, %            
   %CYCURD 0.803 0.570 0.381  0.327 0.280 0.181  0.468 0.423 0.378 

   %CYSOLIDS 0.201 0.123 0.109  0.276 0.215 0.182  0.400 0.331 0.319 

   %CYWATER 0.193 0.150 0.081  0.293 0.262 0.137  0.421 0.395 0.332 
Nutrient recovery, %            

   RECFAT 1.104 1.271 0.572  0.278 0.334 0.153  0.394 0.419 0.323 

   RECPROTEIN 1.120 1.605 1.237  0.316 0.412 0.354  0.454 0.528 0.447 
   RECSOLIDS 2.525 1.612 1.158  0.292 0.249 0.168  0.412 0.346 0.320 

   RECENERGY 2.518 1.813 1.265  0.296 0.267 0.185  0.406 0.348 0.315 

Production traits, kg×d-1            
   dMilk yield 3.468 2.470 2.246  0.094 0.102 0.105  0.427 0.461 0.425 

   dCYCURD 0.061 0.046 0.042  0.082 0.078 0.087  0.378 0.406 0.362 

   dCYSOLIDS 0.013 0.008 0.010  0.077 0.062 0.090  0.352 0.377 0.346 
   dCYWATER 0.019 0.014 0.013  0.083 0.081 0.089  0.374 0.403 0.352 

Milk composition            

   Fat, % 0.099 0.045 0.065  0.195 0.107 0.154  0.297 0.199 0.235 
   Protein, % 0.029 0.023 0.015  0.320 0.298 0.188  0.480 0.493 0.422 

   Lactose, % 0.009 0.008 0.007  0.283 0.260 0.258  0.477 0.449 0.439 

   SCS, Units1 0.232 0.205 0.268  0.082 0.081 0.102  0.382 0.426 0.394 
1Standard errors of heritabilities ranged from 0.002 to 0.019 for Holstein, from 0.004 to 0.019 for Brown Swiss from 0.016 to 0.037 for Simmental 
2SCS= log2 (SCC × 100,000-1) + 3
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Table 5. Estimates of phenotypic ( Pr ) and additive genetic ( Ar ) correlations among cheese yields (%CY; weight of fresh curd, curd solids, and 
curd water as percentage of weight of milk processed), and among milk nutrient recovery (REC; protein, fat, solids, and energy of the curd as 
percentage of the protein, fat, solids, and energy of the milk processed) in Holstein, Brown Swiss and Simmental cows1. 
 

Trait 
Phenotypic correlations ( Pr )  Genetic correlations ( Ar ) 

Holstein Brown Swiss Simmental  Holstein Brown Swiss Simmental 

Cheese yield, %        

%CYCURD - %CYSOLIDS 0.904 0.886 0.890  0.977 0.979 0.972 

%CYCURD - %CYWATER 0.876 0.885 0.859  0.978 0.975 0.993 

%CYSOLIDS - %CYWATER 0.647 0.594 0.612  0.922 0.920 0.939 

Nutrient recovery, %        

RECFAT - RECPROTEIN 0.255 0.299 0.198  0.507 0.512 0.368 

RECFAT - RECSOLIDS 0.429 0.387 0.334  0.603 0.612 0.399 

RECFAT - RECENERGY 0.560 0.539 0.483  0.723 0.775 0.595 

RECPROTEIN - RECSOLIDS 0.300 0.357 0.331  0.448 0.568 0.400 

RECPROTEIN - RECENERGY 0.408 0.484 0.440  0.587 0.712 0.562 

RECSOLIDS - RECENERGY 0.946 0.937 0.939  0.963 0.947 0.946 
1Standard errors of additive genetic correlations ranged from 0.003 to 0.034 for Holstein, from 0.003 to 0.031 for Brown Swiss, and from 0.012 to 0.142 for Simmental. 
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Table 6. Estimates of phenotypic ( Pr ) and additive genetic ( Ar ) correlations between cheese yields (%CY; weight of fresh curd, curd solids, and 
curd water as percentage of weight of milk processed), and milk nutrient recovery (REC; protein, fat, solids, and energy of the curd as percentage 
of the protein, fat, solids, and energy of the milk processed) in Holstein, Brown Swiss and Simmental cows1 

Trait 
Phenotypic correlations ( Pr )  Genetic correlations ( Ar ) 

Holstein Brown Swiss Simmental  Holstein Brown Swiss Simmental 

%CYCURD with        

   RECFAT 0.475 0.438 0.387  0.611 0.590 0.408 

   RECPROTEIN 0.413 0.496 0.439  0.478 0.620 0.425 

   RECSOLIDS 0.873 0.853 0.858  0.939 0.931 0.901 

   RECENERGY 0.836 0.815 0.813  0.904 0.888 0.836 

%CYSOLIDS with        

   RECFAT 0.395 0.345 0.307  0.563 0.524 0.335 

   RECPROT 0.331 0.402 0.373  0.412 0.539 0.370 

   RECSOLIDS 0.962 0.955 0.956  0.970 0.955 0.951 

   RECENERGY 0.939 0.926 0.927  0.935 0.900 0.874 

%CYWATER with        

   RECFAT 0.455 0.431 0.383  0.642 0.644 0.484 

   RECPROT 0.409 0.469 0.415  0.505 0.645 0.503 

   RECSOLIDS 0.650 0.605 0.608  0.902 0.902 0.861 

   RECENERGY 0.595 0.549 0.548  0.857 0.874 0.832 
1Standard errors of additive genetic correlations ranged from 0.002 to 0.031 for Holstein, from 0.003 to 0.036 for Brown Swiss, from 0.010 to 0.106 for Simmental.
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Table 7. Estimates of phenotypic ( Pr ) and additive genetic ( Ar ) correlations of production 
traits with cheese yields (%CY; weight of fresh curd, curd solids, and curd water as 
percentage of weight of milk processed), and milk nutrient recovery (REC; protein, fat, 
solids, and energy of the curd as percentage of the protein, fat, solids, and energy of the 
milk processed) in Holstein, Brown Swiss and Simmental cows1 

Trait 
Phenotypic correlations ( Pr )  Genetic correlations ( Ar ) 

Holstein Brown 
Swiss 

Simmental  Holstein Brown 
Swiss 

Simmental 

dMY with        
%CYCURD -0.240 -0.179 -0.212  -0.526 -0.485 -0.643 

%CYSOLIDS -0.242 -0.157 -0.169  -0.547 -0.569 -0.492 

%CYWATER -0.188 -0.149 -0.194  -0.453 -0.398 -0.476 
RECFAT -0.075 -0.017 -0.049  -0.231 -0.145 -0.153 

RECPROTEIN 0.094 0.065 0.090  -0.253 -0.190 -0.006 

RECSOLIDS -0.265 -0.186 -0.194  -0.491 -0.532 -0.417 
RECENERGY -0.202 -0.108 -0.111  -0.483 -0.437 -0.345 

dCYCURD with        

%CYCURD 0.258 0.259 0.235  0.426 0.284 0.042 
%CYSOLIDS 0.213 0.234 0.231  0.362 0.161 0.120 

%CYWATER 0.245 0.229 0.195  0.469 0.379 0.092 

RECFAT 0.152 0.163 0.113  0.341 0.328 0.108 
RECPROT 0.305 0.279 0.291  0.190 0.296 0.251 

RECSOLIDS 0.177 0.192 0.196  0.408 0.185 0.146 

RECENERGY 0.221 0.246 0.256  0.382 0.256 0.173 
dCYSOLIDS with        

%CYCURD 0.293 0.270 0.243  0.495 0.312 0.079 

%CYSOLIDS 0.358 0.350 0.347  0.478 0.233 0.209 
%CYWATER 0.184 0.150 0.108  0.501 0.382 0.130 

RECFAT 0.149 0.150 0.082  0.374 0.338 0.108 

RECPROT 0.291 0.262 0.279  0.181 0.273 0.266 
RECSOLIDS 0.315 0.307 0.309  0.510 0.241 0.211 

RECENERGY 0.357 0.359 0.371  0.488 0.305 0.255 

dCYWATER with        
%CYCURD 0.163 0.185 0.157  0.315 0.215 -0.128 

%CYSOLIDS 0.051 0.090 0.083  0.216 0.091 -0.020 

%CYWATER 0.276 0.278 0.240  0.371 0.336 0.008 
RECFAT 0.124 0.154 0.108  0.308 0.321 0.107 

RECPROT 0.278 0.257 0.264  0.149 0.284 0.264 

RECSOLIDS 0.034 0.070 0.061  0.263 0.126 -0.009 
RECENERGY 0.071 0.117 0.114  0.254 0.190 0.041 

1Standard errors of additive genetic correlations ranged from 0.031 to 0.070 for Holstein, from 0.036 to 0.075 

for Brown Swiss, from 0.058  to 0.161 for Simmental. 
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Table 8. Estimates of phenotypic ( Pr ) and additive genetic ( Ar ) correlations of milk 
composition with cheese yields (%CY; weight of fresh curd, curd solids, and curd water as 
percentage of weight of milk processed), and milk nutrient recovery (REC; protein, fat, 
solids, and energy of the curd as percentage of the protein, fat, solids, and energy of the 
milk processed) in Holstein, Brown Swiss and Simmental cows1 

Trait 
Phenotypic correlations ( Pr )  Genetic correlations ( Ar ) 

Holstein Brown 
Swiss 

Simmental  Holstein Brown 
Swiss 

Simmental 

Milk fat content with        
%CYCURD 0.715 0.665 0.683  0.862 0.835 0.845 

%CYSOLIDS 0.919 0.903 0.907  0.945 0.916 0.941 

%CYWATER 0.399 0.312 0.350  0.755 0.713 0.747 
RECFAT 0.194 0.123 0.086  0.420 0.314 0.169 

RECPROTEIN 0.254 0.287 0.294  0.339 0.402 0.288 

RECSOLIDS 0.872 0.843 0.849  0.912 0.847 0.888 
RECENERGY 0.880 0.845 0.858  0.896 0.785 0.833 

Milk protein content 
with 

       

%CYCURD 0.724 0.704 0.723  0.875 0.880 0.813 
%CYSOLIDS 0.576 0.533 0.575  0.816 0.859 0.751 

%CYWATER 0.716 0.691 0.694  0.891 0.848 0.792 

RECFAT 0.239 0.204 0.195  0.285 0.223 0.008 
RECPROTEIN 0.104 0.158 0.120  0.244 0.373 0.099 

RECSOLIDS 0.560 0.523 0.560  0.762 0.779 0.630 

RECENERGY 0.416 0.361 0.395  0.627 0.629 0.424 
Milk lactose content 
with 

       

%CYCURD 0.126 0.143 0.109  0.212 0.186 0.330 

%CYSOLIDS -0.045 -0.024 -0.062  0.138 0.125 0.252 
%CYWATER 0.179 0.210 0.165  0.203 0.216 0.388 

RECFAT 0.382 0.384 0.360  0.410 0.355 0.392 

RECPROTEIN 0.329 0.388 0.304  0.200 0.255 0.265 
RECSOLIDS -0.187 -0.179 -0.210  -0.027 -0.037 0.012 

RECENERGY -0.017 0.024 -0.037  0.128 0.152 0.183 

SCS2 with        
%CYCURD -0.013 -0.033 -0.006  -0.146 -0.089 0.090 

%CYSOLIDS 0.052 0.041 0.064  -0.097 -0.092 0.077 

%CYWATER -0.080 -0.091 -0.079  -0.179 -0.022 0.043 
RECFAT -0.116 -0.112 -0.099  -0.300 -0.123 -0.200 

RECPROTEIN -0.313 -0.268 -0.270  -0.270 0.030 -0.112 

RECSOLIDS 0.081 0.102 0.106  -0.104 0.009 0.050 
RECENERGY 0.008 0.012 0.027  -0.169 -0.034 -0.080 

1Standard errors of additive genetic correlations ranged from 0.005 to 0.070 for Holstein, from 0.011 to 0.078 

for Brown Swiss, from 0.022 to 0.169 for Simmental; 2SCS= log2 (SCC × 100,000-1) + 3



 

 

Figure 1. Plots of the absorbance of milk samples (Log T
samples collected during milk recording on Holstein, Brown Swiss and Simmental dairy cows. The spectrum is divided in differe
according to Bittante and Cecchinato (2013): 2 regions, one in the transition area between the short
wavelength infrared (MWIR) divisions of the electromagnetic spectrum (SWIR
division (MWIR-2 region) 
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Plots of the absorbance of milk samples (Log T−1) for the calibration set and for the Fourier-transform infrared spectroscopy 
samples collected during milk recording on Holstein, Brown Swiss and Simmental dairy cows. The spectrum is divided in differe
according to Bittante and Cecchinato (2013): 2 regions, one in the transition area between the short-wavelength infrared (SWIR) and mid
wavelength infrared (MWIR) divisions of the electromagnetic spectrum (SWIR-MWIR region) and another very short 

transform infrared spectroscopy of 
samples collected during milk recording on Holstein, Brown Swiss and Simmental dairy cows. The spectrum is divided in different regions 

wavelength infrared (SWIR) and mid-
MWIR region) and another very short region in the MWIR 
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ABSTRACT 

The aim of this study was to assess the performance of Bayesian models commonly 

used for genomic selection to predict ‘difficult-to-predict’ dairy traits such as milk fatty 

acid (FA) profiles and technological properties such as fresh cheese yield and protein 

recovery using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis is that 

Bayesian models that can estimate shrinkage and perform variable selection may improve 

our ability to predict FAs and technological traits above and beyond what can be achieved 

using the current industry standard calibration method (Partial Least Squares, PLS). To this 

end, we assessed a battery of Bayesian methods and compared their prediction 

performance with that of PLS. Data consisted of 1,264 individual milk samples collected 

from Brown Swiss cows for which FA composition, milk coagulation properties and 

cheese-yield traits were available. For each sample, two spectra data in the infrared region 

5011 to 925 wavenumber × cm-1 were available and averaged prior to data analysis. Three 

Bayesian models (Bayesian Ridge Regression (Bayes RR), Bayes A and Bayes B) and two 

reference models (PLS and modified partial least squares (MPLS) procedures) were used 

to calibrate equations for each of the traits. Prediction accuracy was estimated for each trait 

and model using 25 replicates of a training-testing validation procedure. Compared with 

the current industry standard, the PLS method, the prediction accuracy of MPLS and the 

three Bayesian methods tested was greater by a sizable margin. The maximum R2 of 

validation was obtained with Bayes B and Bayes A for the FAs: 0.75 (C10:0 the FA as a 

proportion of the sum of all FAs), and for the technological traits: 0.81 (fresh cheese yield 

and protein recovery). These two methods have proven to be useful instruments in 

selecting very informative wavelengths and inferring the structure and functions of the 

analyzed traits. We conclude that Bayesian models are powerful tools for deriving 

calibration equations, and, importantly, these equations can be easily developed using 
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existing open-source software. As part of our study we provide scripts based on the open-

source R-software BGLR, which can be used to train customized prediction equations for 

other traits or populations. 

 

Key words: infrared spectroscopy; Bayesian methods, milk traits, fatty acids, cheese yield. 

INTRODUCTION 

Infrared spectroscopy (IRS) is grounded in the ability of the different waves of the 

infrared region of the electromagnetic spectrum to excite fundamental vibrations of 

molecules in relation to their rotational-vibrational structure (Karoui et al., 2010). The 

infrared spectrum of a sample is recorded after passing a beam of infrared light through it. 

When the frequency of the infrared wave is the same as the vibrational frequency of a 

chemical bond, absorption occurs; the spectrum therefore reflects the quantities and 

proportions of the various chemical bonds within the sample and  hence its composition.  

Infrared spectroscopy is often used to predict the chemical composition of food and 

feed (Karoui et al., 2010), but it is a secondary method needing prior calibration based on a 

training dataset and validation based on a different dataset, both obtained using samples 

analyzed according to reference methods. The Fourier-transform infrared (FTIR) 

spectrometer, which measures transmission of a spectrum consisting of more than one 

thousand different waves in the short-wave infrared region (SWIR, or near-infrared NIR), 

the mid-wave IR (MWIR, or mid-infrared MIR) and the long-wave IR (LWIR) (Byrnes, 

2009), is often used to predict the chemical composition of milk (Barbano and Linch, 

2006; Karoui and Baerdamaeker, 2007). FTIR spectroscopy is an accurate tool for 

predicting major milk component content and is used internationally for analysis of the fat, 

protein, casein and glucose content of cow’s milk recording samples (ICAR 2012). 



- 108 - 
 

In recent years several studies have used FTIR spectroscopy to predict the fatty acid 

(FA) content of milk (Soyeurt et al., 2006; De Marchi et al., 2011). Unfortunately, these 

components are difficult to predict and the level of accuracy has been lower than when 

predicting major milk components. In part, this is due to the fact that FAs make up a 

smaller fraction of milk and many compounds with a similar chemical composition are 

also present (Stefanov et al., 2013; De Marchi et al., 2014). FTIR calibration is even more 

difficult if an FA profile (each FA as a proportion of the sum of all FAs) is to be predicted. 

Few studies have attempted predicting the FA profile of milk fat using FTIR spectroscopy 

and the results are even worse than those for the total FA content of milk (Soyeurt et al., 

2006; Rutten et al., 2009). 

Nor is the IRS technology very precise when used to predict the technological 

properties of food that only indirectly depend on the sample’s chemical composition. In the 

case of milk, FTIR spectroscopy has been used to predict new phenotypes of significant 

economic interest to the dairy industry, like milk coagulation properties (Cecchinato et al., 

2009), cheese yield (CY) and curd recovery/whey loss (REC) of milk nutrients (Ferragina 

et al., 2013). 

IRS prediction of new phenotypes is of particular interest for its potential use in the 

selection of farm animal populations using existing samples and spectro meters, such as 

milk recordings for the genetic improvement of milk fat and protein. Several studies have 

estimated the genetic parameters of IR-predicted phenotypes, such as FA content (Rutten 

et al., 2010; Bastin et al., 2011; Cecchinato et al., 2012), milk coagulation properties 

(Bittante et al., 2012) and CY and REC of different nutrients (Cecchinato et al., 2014). 

Compared with measured phenotypes, heritability estimates of predicted traits were similar 

or higher in the case of milk technological properties (Cecchinato et al. 2009 and 2011b; 

Bittante et al., 2014) but more variable in the case of milk FA profiles (Rutten et al., 2010). 
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Importantly, the estimated genetic correlations between measured and FTIR-predicted 

values for all the traits studied were greater than the phenotypic correlations between the 

same values. The biological basis of the potential of FTIR spectra for genetic improvement 

of farm animals lies in the fact that the absorbance of many individual waves (Bittante and 

Cecchinato, 2013) or their principal components (Soyeurt et al., 2010; Dagnachew et al., 

2013) have been proven to be heritable.  

The accuracy of predictions obtained with IRS is influenced by many factors other 

than the trait being predicted, including: the quality of the reference data set and the 

spectra, the number of samples used to develop the prediction equations, the amount of the 

analyzed substance in the samples (Rutten et al. 2009; Karoui et al., 2010). A special role, 

however, is played by chemometrics, including the selection of wavelengths, the 

pretreatment of spectra data and the statistical model used to develop the calibration 

equation. Infrared spectral data are high dimensional and therefore require special 

modeling techniques, such as dimension reduction regression, shrinkage estimation and 

variable selection methods. 

Partial Least Squares Regression (PLS), a dimension-reduction method, is the most 

commonly used technique for developing calibration equations and is implemented in 

commercial software, e.g., WinISI (Infrasoft International LLC, State College, PA); 

Unscrambler (CAMO ASA, Oslo, Norway).  These software provide multiple user-friendly 

tools for analyzing spectral data, although few regression models are implemented in them 

and the user has little control over many of the parameters controlling the algorithm.  

As noted above, principal component regression (PCR) and PLS perform well in 

predicting major milk components, although their prediction accuracy is much lower for 

qualitative traits such as milk FA profiles and technological properties. This highlights the 

need to develop more efficient chemometric methods to analyze spectral data. 
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In recent years important advances have been made in developing penalized and 

Bayesian models for high-dimensional regressions, and many of these methods have been 

adopted for regression on high-dimensional genotypes (e.g., genomic selection, Meuwissen 

et al. 2001). The Bayesian method is extremely flexible in that, with the choice of prior 

density assigned to marker effects, it allows implementation of models that estimate 

shrinkage and perform variable selection, as well as a combination of both. Evidence from 

genomic selection suggests that these Bayesian models may have higher predictive power 

than dimension reduction methods (de los Campos et al., 2013).  We hypothesize that these 

methods can help us improve our ability to predict milk properties that are difficult to 

predict using dimension reduction methods such as PCR and PLS. 

Therefore, the main goal of this study was to assess the performance of Bayesian 

models commonly used for genomic selection in predicting “problematic” traits, such as 

milk FA profiles and technological properties, using FTIR spectral data. We assessed a 

battery of methods including shrinkage only and variable selection, and compared the 

performance of each of them with the current industry standards based on PLS. We also 

provide scripts based on the open-source R-software BGLR (de los Campos and Perez 

Rodriguez, 2014; Pérez and de los Campos, 2014), that can be used to develop calibration 

equations for other traits and data sets. 

MATERIALS AND METHODS 

Field Data 

Data came from the Cowplus projects of the Autonomous Province of Trento, Italy. 

Samples were obtained from a total of 1,264 Brown Swiss cows from 85 herds located in 

the Province of Trento with parities of 1–5, days in milk (DIM) ranging from 5 to 449, and 

production levels of 24.3 ± 7.9 kg × d−1. On a given day, only 1 herd was sampled during 

the evening milking; two milk subsamples per cow were collected and immediately 
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refrigerated at 4°C without any preservative. One subsample (50 mL) was taken to the milk 

quality laboratory of the Breeders Federation of the Province of Trento (Trento, Italy) for 

composition analysis. The other subsample (2,000 mL) was taken to the cheese-making 

laboratory of the Department of Agronomy, Food, Natural Resources, Animals and 

Environment of the University of Padua for model cheese fabrication. Further details 

regarding the sampling procedure can be found in Cipolat-Gotet et al., 2012, and 

Cecchinato et al., 2013a. All samples were processed for analysis and model cheese 

fabrication within 20 h of collection. Data on the cows, herds, and individual test-day milk 

yield were provided by the Superbrown Consortium of Bolzano and Trento (Italy). 

  

FTIR Spectral Acquisition 

All individual milk samples were analyzed using a MilkoScan FT6000 (Foss, 

Hillerød, Denmark) over the spectral range from 5,011 to 925 wavenumber × cm-1 (from 

SWIR to LWIR). Spectra were stored as absorbance (A) using the transformation A = 

log(1/T), where T is the transmission (Figure 1). Two spectral acquisitions were carried out 

for each sample, and the results were averaged prior to data analysis. 

 

Traits: Milk Fatty Acids and Technological Properties 

  Forty-seven FAs were analyzed by gas chromatography on a frozen aliquot of 

each individual milk sample and expressed as a percentage of total FAs in the sample. We 

selected three FAs for the prediction models: decanoic (or capric) acid (C10:0), 9-

tetradecenoic (or myristoleic) acid (C14:1c9), and octadecanoic (or stearic) acid (C18:0). 

These three FAs are highly representative of the variation in all 47 FAs in terms of: effect 

of diet, physiology, length of the carbonated chain (small, medium and long), presence or 
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absence of double bonds in the FA structure, proportion of the total FA, and heritability 

(Cecchinato et al. 2013b). 

For every cow sampled, we produced an individual model cheese in accordance 

with the cheese-making procedure described by Cipolat-Gotet et al. (2013) and Bittante et 

al. (2013a). Briefly, 1,500 mL of milk from each individual cow was heated to 35°C in a 

stainless steel microvat, supplemented with thermophilic starter culture, mixed with rennet, 

and controlled for coagulation time. The resulting curd from each vat was cut, drained, 

shaped in wheels, pressed, salted, weighed, sampled, and analyzed. The whey collected 

from each vat was also weighed, sampled, and analyzed. All the traits were derived from 

measures of the weights (g) and chemical compositions of the milk and whey. The traits 

considered here were: cheese yield (CYCURD) as grams of curd / 100g of milk; protein 

recovery (RECPROTEIN) as (grams of milk protein – grams of whey protein) × 100g of milk 

protein; and fat recovery (RECFAT) as (grams of milk fat – grams of whey fat) × 100g of 

milk fat. 

Milk coagulation properties (MCP) of each individual milk sample were measured 

using a Formagraph (Foss Electric A/S, Hillerød, Denmark) as described in Cipolat-Gotet 

et al., 2012. A rack containing 10 cuvettes was prepared, milk samples (10 mL) were 

heated to 35°C, and 200 µL of a rennet solution [Hansen Standard 160, with 80 ± 5% 

chymosin and 20 ± 5% pepsin, 160 international milk clotting units (IMCU)/mL; Pacovis 

Amrein AG, Bern, Switzerland] diluted to 1.6% (wt/vol) in distilled water was added at the 

beginning of the analysis to a final concentration of 0.051 IMCU/mL. Rennet coagulation 

time (RCT, min), defined as the time from addition of the enzyme to milk gelation, was 

used in this work as a trait representative of MCP. 
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Pre-editing of the Spectra and Outlier Detection 

The absorbance values of every wave in the FTIR spectra were centered and 

standardized to a null mean and a unit sample variance. Next, we calculated Mahalanobis 

distances using the standardized spectra data for outlier spectra detection; observations 

with a Mahalanobis distance greater than five times the standard deviation were discarded. 

All data editing was done in the R environment (R Core Team 2013). 

 

Statistical Analysis 

Separate models were fitted to RCT, CYCURD, RECPROTEIN, RECFAT, C10:0, 

C14:1c9 and C18:0. Here we describe the statistical models for a generic phenotype 

(FG; I = 1,… , L).  Three Bayesian models, Bayesian Ridge Regression (Bayes RR), Bayes 

A and Bayes B (Meuwissen et al. 2001) (see details below), and two reference models, 

partial least squares (PLS) and modified partial least squares (MPLS), were fitted to each 

of the outcomes. Although PLS is one of the most commonly used in the industry, the 

MPLS method was also included as a reference as it has recently been gaining attention. 

Each of these methods is briefly described below. 

Bayesian Models. Phenotypes were regressed on standardized spectra covariates using the 

linear model: 

FG = MN + ∑ PGQMQ + RG�,NSN
QT�  , 

where MN  is an intercept, UPGQV  are standardized FTIR spectra-derived wavelength data 

5W = 1,… ,1,0606, MQ are the effects of each of the wavelengths and RG	 are model residuals 

assumed to be iid (independent and identically distributed) with normal distribution 

centered at zero with variance Z[�. Given the above assumption, the conditional distribution 

of the data given effects and variance parameters is:  

\5�|]) = ∏ _(`
GT� aG , Z[�), 
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where ]  represents the collection of model parameters ] = bMN, c, Z[�d , _(aG, Z[�)  is a 

normal distribution centered at  aG = MN + ∑ PGQMQ
�,NSN
QT�  and with variance Z[�, and c = UMQV 

is a vector containing the effects of the individual spectra-derived wavelengths. 

Specification of the Bayesian model is completed by assigning prior distribution to the 

unknowns, ]. In the Bayesian models considered here, the prior density was as follows: 

  e(]) = _(MN|0,1 × 10f)gh�(Z[�|ij[ , k[)U∏ elMQmno
�,NSN
QT� Ve(n) 

Here, the intercept is assigned a normal prior with a very large variance, which amounts to 

treating the intercept as a “fixed” effect, the residual variance is assigned a scaled-inverse 

chi-square density with degree of freedom ij[ and scale parameters k[, and the effects of 

wavelengths are assigned IID priors, elMQmno, indexed by a set of hyper-parameters, n, 

which are also treated as random.  

 The Bayes RR, Bayes A and Bayes B models differ in the form of the prior density 

assigned to the effects. In the Bayes RR, effects are assigned Gaussian priors, that is, 

lMQmno _lMQm0, Zp
�o~		

GGq , n = Zp
� , and e(n) = gh�lZp

�mijp , kpo. This specification shrinks 

the estimate towards zero; the extent of shrinkage is similar across effects and the method 

does not perform variable selection. In Bayes A lMQmno rlMQmijp , kpo~		
GGq 	 is a scaled-t 

density, which is indexed by two hyperparameters Uijp , kpV: we fixed ijp = 5 and treated 

the scale as random, that is, n = kp, and e(n) = tuvvulkp|wurx, yℎuexo.  The scaled-t 

density has greater mass at zero and thicker tails than the Gaussian prior, and also 

generates differential shrink effects.  

Finally, in Bayes B elMQmno is a mixture of a point of mass at zero and a scaled-t 

density, that is, lMQ|Ωo | × rlMQmijp , kpo + (1 − |) × 1lMQ = 0o~		
GGq ; therefore, a-priori, 

with probability |, MQ is drawn from the t-density and with probability (1 − |) MQ = 0, a 
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priori. As with Bayes A, we set ijp = 5, and the other hyperparameters were treated as 

random, specifically, 	kp~tuvvulkp|wurx, yℎuexo and |~~xru(||yℎuex�, yℎuex�). 

The Bayesian models described above were implemented in BGLR (de los Campos 

and Pérez-Rodriguez, 2014). A detailed description of the models and algorithms 

implemented in BGLR, as well as a comprehensive list of examples can be found in Peréz 

and de los Campos (2014). All the above models have high-order hyperparameters that 

need to be specified, which include: ij[ , k[ , ijp , wurx, yℎuex, yℎuex�  and yℎuex�. All 

these parameters were specified using built-in BGLR rules that select default values for 

these unknowns and which are fully explained in Peréz and de los Campos (2014). The 

rules were designed to yield proper but relatively uninformative priors. In all the Bayesian 

models, inferences were based on a total of 30,000 samples collected after discarding the 

first 10,000 samples.  

Simplified scripts showing how the predictive equations for Bayes A, Bayes B and 

Bayes RR models can be implemented in BGLR are provided in the Supplementary 

Methods section, and data files relative to milk spectra and reference data can be obtained 

by writing to the corresponding author. 

Reference Models. We compared the performance of the Bayesian models with two 

commonly used methods: partial least squares (PLS) and modified partial least squares 

(MPLS), both as implemented in the WinISI II software (Infrasoft International LLC, State 

College, PA). The following program settings were used to implement the reference 

models: no spectra pretreatments nor outlier elimination stage, 4 groups for the cross-

validation procedure (internal to the training data sets); a maximum of 16 MPLS and PLS 

terms. 
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Data Analysis. First, we fitted the models described above to each of the traits separately 

using the entire data set. We used this analysis to derive estimates of error variance (Z[�), 

the R-squared between phenotypes and predictions in the training data set, and the 

correlations among the predictions made by the different models. For the Bayesian models, 

we also report the deviance information criterion (DIC) and the effective number of 

parameters (pD) (Spiegelhalter et al. 2002). In addition, we provide the marginal 

correlation between the traits and the absorbances for each wave and the estimated 

coefficients for each model to shed light on how the different Bayesian models and the 

MPLS and PLS models work. 

Assessment of Prediction Accuracy. Most of the literature on calibration equations has 

assessed prediction accuracy using validation methods where individual records are 

randomly assigned to either training or testing sets, or folds of a cross-validation 

procedure. When this is done, records from the same herd are likely to appear in both 

training and validation data sets. In industry practice, calibration equations are derived 

using data from a a more restricted number of herds, which is problematic as it means 

predicting from FTIR traits (e.g., FA content or profiles) in herds that were not used to 

derive the prediction equations. This is clearly a much more difficult, but perhaps more 

realistic, prediction scenario. Therefore, in this study we assigned herds and not individual 

records to training and testing data sets. In total we generated 25 training-testing 

experiments, in each of which the data set was split into a training (TRN) and a testing 

(TST) subset. The training subset was used to fit the models and to develop the calibration 

equation for predicting individual phenotypes in the validation data sets. Partition of the 

data set into TRN and TST subsets was done as follows: we sampled random herds and 

assigned all cows in the selected herds to the TST data set; we then randomly added herds 

until we had at least 200 complete records in the TST data set. The remaining records were 
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assigned to the TRN subset. This procedure guarantees that the records from all cows in a 

given herd are in either the TRN or the TST subset, so that our setting assessed the ‘across-

herd’ predictive power of the calibration equations.  

The TRN-TST procedure described above was replicated 25 times for each trait. 

The average number of samples (out of the 25 TRN-TST partitions) in TRN(TST) were: 

974(206), 1,036(206), 1,040(206), 1,035(206), and 1,025(205) for FAs, RCT, CYCURD, 

RECPROTEIN and RECFAT, respectively. The average number of herds in TRN(TST) were: 

69(14) for FAs, and 71(14) for RCT, CYCURD, RECPROTEIN and RECFAT. 

Prediction accuracy was measured using the coefficient of determination between 

predictions and observed traits in the TST data sets, the squared root of the mean squared 

prediction error (RMSE), and the regression (estimated intercept and slope) of observed 

phenotype in the TST data set and predictions. In addition, we conducted pair-wise 

comparisons by counting the number of times (out of 25 replicates) in which the R2 of a 

model was higher than that of another model, and conducted paired t-tests to compare the 

R2 of pairs of models. 

 

RESULTS 

Table 1 shows descriptive statistics for the three FAs (C10:0, C14:1c9, and C18:0) 

and technological traits RCT, CYCURD, RECPROTEIN and RECFAT. All traits have 

distributions in the expected ranges of values. Parameter estimates by trait and model using 

the full data set are presented in Table 2 for milk FAs and Table 3 for technological traits. 

The calibration R-squared values (in the training data set) were high for RCT, CYCURD, 

RECPROTEIN and C10:0 and lower for RECFAT, C14:1c9 and C18:0. The model for PLS had 

the smallest R-squared and largest residual variance across traits. The Bayesian methods 

had higher calibration R-squared and smaller residual variance than the MPLS for RCT, 
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RECPROTEIN, C10:0 and C18:0; however, for the remaining traits the fitness of the 

calibration equations to the calibration data set obtained with MPLS and Bayesian methods 

were very similar. DIC tended to favor Bayes A and Bayes B over the Bayes RR, 

particularly in the case of the three FAs.  

Tables 2 and 3 also display correlations between the predictions derived from the 

models. In general, these correlations are high for all pairs of models, although the 

correlations between the predictions obtained with the Bayesian methods are stronger, 

whereas they are slightly lower between the predictions obtained using PLS and MPLS. 

Figures 2 and 3 show the absolute values of marginal correlations between the 

absorbances at each wave and the phenotypes (FAs in Figure 2, and technological traits in 

Figure 3), together with the estimated absolute value of effect of each wavelength by 

model. The coefficients of the individual waves of the calibration equations were 

expressed as the absolute ratio with respect to the greatest one, so that they included values 

in the [0,1] range. All the wavelengths in the short-wave infrared (SWIR) region were 

positively correlated with the FAs (about 0.3) and RCTs (about 0.2), while within the same 

region the correlations with RECFAT and RECPROTEIN were considerably lower. The 

marginal correlations in the SWIR-MWIR region were very low for all the traits, except 

CYCURD. The MWIR and LWIR regions show different correlation patterns across traits. 

Many waves were correlated with the traits of interest and in most cases the individual 

correlations were lower than 0.3, the only notable exception being CYCURD, characterized 

by many waves with correlations greater than 0.5. 

The same figures show the absolute values of estimated effects for the MPLS, 

Bayes RR and Bayes B methods, characterized by very different patterns of effect size. 

The BRR and MPLS methods generated many intermediate estimates in all regions of the 

spectra, typical of shrinkage estimation procedures. On the other hand, with Bayes B, a 
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variable selection method, the effects on most regions were small or null and very few 

waves had sizable effects. 

The results of validation in an independent sample are summarized in Table 4 for 

milk FA proportions and Table 5 for technological traits. As expected, the coefficients of 

determination in the independent data sets (TST) were lower than those of the calibration 

data set (TRN). In most cases, the external validation R-squared was 10 to 20 percentage 

points smaller than the calibration R-squared. The SDs of validation R-squared ranged 

from 5 to 10 percentage points across traits and methods (Tables 4 and 5), the greatest 

variability being for the two REC traits, the lowest for RCT. 

BayesA and BayesB had the highest prediction accuracy across traits. Pair-wise 

comparisons showed that the PLS had the lowest prediction accuracy across traits. MPLS 

was better than PLS but less accurate than the Bayes A and Bayes B methods. The BRR (a 

shrinkage method) produced somewhat mixed results: for some traits (e.g., RECPROTEIN, 

RCT) it performed better than MPLS, but for other traits (e.g., RECFAT) performance was 

worse. Table 6 shows the intercept and regression coefficient estimates from regressions of 

the observed phenotype and predictions from the testing data set. A null intercept and a 

unit slope are interpreted as no prediction bias. The estimated intercepts of the Bayesian 

models were closer to zero and the estimated slopes consistently closer to one than the PLS 

and MPLS. Table 6 also shows the proportion (across TRN-TST partitions) of cases where 

a 95% CI for the intercept (slope) included zero (one). These proportions were clearly 

higher for the Bayesian methods suggesting that their prediction bias is smaller than PLS 

or MPLS.  
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DISCUSSION 

Phenotypic values for milk FA proportions and technological traits 

The average fractions of total milk FAs of the three FAs considered in the present 

study are within the range found in Holsteins (Bobe et al., 2008; Garnsworthy et al., 2010) 

and various other breeds (Heck et al., 2009; Poulsen et al., 2012). The 85 herds sampled 

for the present study were from mountain farms rearing Brown Swiss cows fed 

predominantly with hay and concentrates, with some silage only on a small percentage of 

the farms, and without the use of pasture or fresh forage (Sturaro et al., 2013). The RCT 

average value found in the present study is longer than the average coagulation time found 

in 33 studies on Holstein cows reviewed by Bittante et al. (2012), despite the fact that they 

found the values for Brown Swiss cows to be 11% shorter than those for the Holstein 

breed. This is likely due mainly to two factors: the low quantity of rennet added, and the 

inclusion of late coagulating samples (Bittante et al., 2013b).  

Finally, the fresh CYCURD found in the present study is similar to that found by 

Martin et al. (2009) in Montbéliarde cow’s milk and greater than that found by the same 

authors and by Cologna et al. (2009) in Holstein cow’s milk, characterized by lower fat 

and protein contents. Also, the average RECFAT and RECPROTEIN in the present study are 

similar to those measured by Bynum et al. (1982) and by Mistry et al. (2002). 

 

FTIR Calibrations of Technological Properties 

Prediction of milk fat content using FTIR calibrations is very accurate (Ferrand et 

al., 2011; Soyeurt et al., 2011) and is approved by ICAR (ICAR, 2012) as an official 

method for milk recording. This reflects the ability of the FTIR spectrum to capture 

information on the main chemical bonds characterizing the lipids C-C, C-H, and C=O 

(Bittante and Cecchinato, 2013). Predictions of individual FAs are usually much less 
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accurate because of the great similarity between them in terms of chemical bonds.  Soyeurt 

et al. (2006) computed the calibration equations from a GC-analysis of 49 milk samples 

using PLS and obtained calibration R-squared values of 0.77, 0.12 and 0.76 and cross-

validation R-squared values of 0.64, 0.07 and 0.69 for capric, myristoleic and stearic acids 

in milk, respectively. Applying PLS to the 4000-900 × cm-1 FTIR spectral data of 267 

randomly selected GC-analyzed milk samples, De Marchi et al. (2011) obtained cross-

validation R-squared of 0.72, 0.66 and 0.65, respectively, for prediction of the amounts of 

the same three fatty acids in milk. Selecting the same number of samples according to 

spectral variability, adopting a mathematical pretreatment of spectral data before PLS, and 

selecting only a quarter of the FTIR spectrum, Soyeurt et al. (2011) improved the 

calibration R-squared to 0.91, 0.58 and 0.87 and the validation R-squared to 0.90, 0.50 and 

0.74, respectively, for the three FAs. Applying PLS to the first derivative of spectral data 

of 1,236 analyzed samples to predict the amounts of the same three FAs in milk, Maurice-

Van Eijndhoven et al. (2012) obtained R-squared values of 0.96, 0.80, and 0.91 from 

calibration, and of 0.85 to 0.94, 0.64 to 0.80, and 0.58 to 0.80 from validation, according to 

the breed of cow. 

Predicting FA proportions in milk fat (FA profile) is more difficult than predicting 

FA content in milk due to the fact that only the proportions and not the quantities of 

different chemical bonds can be taken into account, which explains the smaller R-squared 

obtained from FA calibration and especially from validation in predicting fat composition 

with respect to milk composition. 

Soyeurt et al. (2006) obtained R-squared cross-validation of only 0.53, 0.23 and 

0.09 for capric, myristoleic and stearic acids, respectively. Using the larger pre-selected 

dataset with mathematical pretreatment and only one quarter of the spectral range the same 

authors were able to improve prediction accuracy to R-squared levels of 0.75, 0.39 and 
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0.38 for these FAs (Soyeurt et al., 2011). Prediction accuracies obtained in our study are in 

line with previous reports. Using records from 1,180 milk samples from Brown Swiss 

cattle, with no mathematical pretreatment or spectral area selection, and with replicated 

external validations on samples from different farms and dates, with the PLS method we 

obtained validation R-squared values of 0.44, 0.30 and 0.26 for prediction of the fat 

content of capric, myristoleic and stearic FAs, respectively (Table 4). With the best 

performing model (Bayes B), we achieved prediction R-squared values of 0.66, 0.39 and 

0.46 for prediction of the fat content of capric, myristoleic and stearic FAs, respectively 

(Table 4). It is worth noting that the fat content of milk from the Brown Swiss breed is 

characterized by lower genetic variability estimates compared with milk from the Holstein 

Friesian breed (Cecchinato et al., 2011b; Samorè et al., 2012), in part due to the fact that 

the DGAT1 gene in the Brown Swiss breed is monomorphic (Cecchinato et al., 2012). 

A previous study on predicting milk coagulation properties was carried out on a 

similar dataset of 1,200 milk samples from Brown Swiss cows from different regions, but 

using an FTIR spectrum of 4000 to 900 waves × cm-1 collected with a different 

spectrometer (Cecchinato et al., 2009). Calibration was carried out using PLS on 4 

calibration subsets of 170-175 cows, while validation was performed on the remaining 

858-863 cows from the same herds. The calibration R-squared values for RCT ranged from 

0.61 to 0.69 according to the different subsets. Results from Cecchinato et al. (2009) are 

similar to those obtained in the present study with different animals, spectrometer and 

spectral interval using PLS (0.64, Table 3). The validation R-squared values obtained in 

the previous study on randomly selected cows varied from 0.61 to 0.72, while the values 

obtained in the present study using PLS methods on randomly selected herds were smaller, 

varying from 0.41 to 0.59 (Table 5). This was expected because the out-of-herd prediction 
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problem identified in this study is much more challenging than that identified by 

Cecchinato et al. (2009).  

The only published results from FTIR prediction of the remaining milk 

technological traits (CYCURD, RECFAT and RECPROTEIN) were obtained from the same 

dataset as that used in the present study (Ferragina et al., 2013). The MPLS method was 

adopted with 10, 12 and 16 principal components for the three traits respectively, some 

mathematical pretreatments, and, in the case of RECPROTEIN, exclusion of the spectral 

regions affected by water absorbance (SWIR-MWIR and MWIR-2). The calibration R-

squared obtained in the previous study was 0.85, 0.49 and 0.86 for CYCURD, RECFAT and 

RECPROTEIN, respectively. The corresponding values obtained in the present study using the 

MPLS method are very similar (0.81, 0.46 and 0.75, Table 3). In the previous study, the 

cross-validation R-squared were 0.83, 0.41 and 0.81, while in the present research the 

external validation R-squared for PLS (Bayes B) were 0.66(0.70), 0.47(0.66) and 

0.21(0.24) for CYCURD, RECFAT and RECPROTEIN, respectively. Fat retention in the curd 

(RECFAT) is more dependent on physical properties, such as fat globule size, curd-firming 

rate and curd cutting (Fagan et al., 2007; Cipolat-Gotet et al., 2013), than on chemical 

composition, which can explain the low accuracy of all the prediction models. 

To our knowledge, ours is the first study to have considered using Bayesian 

shrinkage and variable selection methods for predicting milk composition and industrial 

traits using FTIR.  Comparison of the methods yielded conclusive results: Bayesian 

methods, especially Bayes B, outperformed PLS and MPLS across traits, and moreover, 

the profile of estimated effects suggests that Bayes B was able to capture a subset of 

wavelengths that were more informative for predicting milk composition and industrial 

traits.  
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Coefficients of Individual FTIR Waves  

FTIR data have a larger number of predictors, so that for regression the number of 

parameters (p) to be estimated (the effect on the wavelengths) is potentially greater than 

sample size (n). Traditional statistical methods cannot accommodate this type of large-p-

small-n regression, although dimension reduction regression, shrinkage estimation and 

variable selection methods can. A naïve ‘variable selection’ method includes pre-selection 

of predictors based on regions of the spectrum (e.g., regions affected by water absorbance) 

or individual wave correlations (Rutten et al., 2009). Another popular calibration method 

uses PLS (Soyeurt et al., 2006 and 2011; Ferrand et al., 2011), which is based on reducing 

the size of the set of predictors. Other authors have taken a different approach to pre-

selection of the waves whose absorbances are to be analyzed using PLS. In particular, 

Ferrand et al. (2011) combined a genetic algorithm (GA) with PLS and obtained a 

substantial reduction in the number of waves to be considered (112 to 150 waves) and 

increased accuracy in predicting the content of several FAs in milk. Subsequently, Ferrand-

Calmels et al. (2014) compared several alternative methods to PLS on untreated milk FA 

data from cows, sheep and goats: PLS on de-noised data using first derivative or wavelet 

transformation and multi-resolution analysis, PLS on GA-based pre-selected waves, the 

use of penalization methods like the least absolute shrinkage and selection operator 

(LASSO) and elastic net methods. They concluded that the best results were obtained with 

PLS on untreated or first derivative data or GA-based pre-selected waves, according to the 

different FAs. 

Bayesian methods have not previously been used in the calibration of milk traits 

from FTIR spectra, although they have been studied for NIR spectra of other materials 

(Thodberg et al., 1996; Pérez-Marìn et al., 2012). Our results (see Figures 2 and 3) indicate 

that the methods examined in our study (PLS, MPLS and the three Bayesian methods) use 
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milk FTIR spectrum information in very different ways. Bayes RR is a shrinkage 

procedure so it does not perform variable selection but instead tends to use information 

from all the available wavelengths. At the other extreme, Bayes B uses a prior to perform 

variable selection, and our results suggest that predictions from this method are mostly 

based on a relatively small number of wavelengths with large effects. The MPLS 

procedure showed a somewhat intermediate situation. 

The Bayes RR method assigns small effects to almost all waves, even within the 

“water” regions which are characterized by small-effect coefficients in MPLS and Bayes 

B; this was particularly clear in the case of the equations for CYCURD. 

As already mentioned, Bayes B was highly selective among the 1,060 waves 

considered. For instance, estimated effects were all small in the “water” regions (SWIR, 

SWIR-MWIR, and MWIR-2). Comparison of the Bayes B selected waves with the waves 

characteristic of different chemical bonds (Bittante and Cecchinato, 2013) suggests that 

this method is useful for identifying informative waves and for understanding the structure 

and functions of molecules involved in each trait.  

 

CONCLUSION 

Infrared spectroscopy (IRS) is a rapid, non-destructive and cheap technique that 

allows accurate predictions to be made of the content of many chemical compounds in 

various food materials, mainly due to the fact that many chemical bonds of the analyzed 

material affect a specific area of the IR spectrum. Being a secondary method, IRS requires 

a calibration equation that links the IR spectrum with a primary analysis carried out on a 

“training” or “calibration” set of samples. When IRS is not used to predict the content of a 

given substance in the sample, but instead to predict features as ratios among nutrients, or 

physico-technological properties, or the geographical origin/production system of the 
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analyzed sample, the nature of the prediction is mainly correlative in nature and accuracy 

is lower. In these cases, the choice of method for selecting and “weighing” the information 

hidden in the absorbances of individual waves in the IRS could be of prime importance.  

The results of the present study clearly show that the 5 methods tested using the 

FTIR spectra of milk samples use individual wave absorbance information in very different 

ways, and in a way that is very different to the simple correlations between individual 

wave absorbances and milk traits and the measured value of the trait to be predicted. 

Compared with PLS, the most widely used calibration method, MPLS and the three 

Bayesian methods tested showed significantly greater prediction accuracy. Accuracy 

increased in moving from calibration to external validation methods, and in moving from 

PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. As the latter 

method performed best in predicting “difficult to predict” milk traits, it would appear to be 

a promising tool for deriving prediction equations for use in industry to control the quality 

milk submissions and to make genetic improvements to these “difficult to measure” milk 

traits.  

Bayes B had a remarkable ability to select a small subset of important waves from 

the 1060 in the FTIR spectrum, while dimension reduction methods (e.g., PLS, MPLS) and 

the Bayes RR shrinkage estimation procedure tended to use information from a large 

number of spectral waves. The impressive selection ability of Bayes B makes it an 

interesting instrument for researchers to identify the chemical bonds more closely related 

to the expression of the predicted trait, which may shed light on the nature and effects of 

the trait studied.  
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TABLES AND FIGURES 

Table 1. Descriptive statistics of three milk fatty acids and selected technological traits. 

Trait1 N Mean SD 

Fatty acids    

 C10:0, % 1,180 3.17 0.63 

 C14:1c9, % 1,180 1.08 0.32 

 C18:0, % 1,180 8.97 1.89 

Technological traits    

 RCT, min 1,242 19.88 5.71 

 CYCURD, % 1,246 15.04 1.89 

 RECPROTEIN, % 1,241 78.08 2.41 

 RECFAT, % 1,230 89.88 3.58 
1: RCT= rennet coagulation time, min; CYCURD= cheese yield, weight of fresh curd as a percentage of the 
milk processed by weight; RECPROTEIN= recovery of protein, protein of the curd as a percentage of the protein 
of the milk processed; RECFAT= recovery of fat, fat of the curd as a percentage of the fat of the milk 
processed; C10:0 = decanoic (capric) acid; C14:1c9 = 9-tetradecenoic (myristoleic) acid; C18:0 = 
octadecanoic (stearic) acid; each fatty acid is expressed as a percentage of the total fatty acids by weight. 

 



 
 

 

Table 2. Parameter estimates, goodness of fit statistics and correlations between predictions made by different methods obtained for three milk 
fatty acids when models were fitted to the entire data set, by trait and model 

Traita/Modelb 
Variance 

R2 DICc pDd 
Correlations between predictions of different models 

Phenotypic Residual MPLS Bayes RR Bayes A Bayes B 
 C10:0 0.40         
  PLS  0.15 0.62 - - 0.92 0.95 0.92 0.91 
  MPLS  0.12 0.71 - - - 0.97 0.95 0.95 
  Bayes RR  0.12 0.76 986 184 - - 0.98 0.98 
  Bayes A  0.11 0.75 903 135 - - - 1.00 
  Bayes B  0.11 0.75 869 128 - - - - 
 C14:1c9 0.10         
  PLS  0.05 0.51 - - 0.92 0.96 0.96 0.96 
  MPLS  0.05 0.56 - - - 0.92 0.95 0.95 
  Bayes RR  0.06 0.49 96.7 102 - - 0.97 0.96 
  Bayes A  0.05 0.54 -44.9 102 - - - 1.00 
  Bayes B  0.05 0.56 -83.9 105 - - - - 
 C18:0 3.56         
  PLS  1.82 0.49 - - 0.90 0.96 0.91 0.90 
  MPLS  1.57 0.56 - - - 0.94 0.94 0.93 
  Bayes RR  1.64 0.61 4,095 165 - - 0.98 0.98 
  Bayes A  1.47 0.64 3,941 143 - - - 1.00 
  Bayes B  1.42 0.66 3,903 145 - - - - 
a: C10:0 = decanoic (capric) acid; C14:1c9 = 9-tetradecenoic (myristoleic) acid; C18:0 = octadecanoic (stearic) acid; each fatty acid is expressed as a percentage of the total 
fatty acids by weight. 
b: PLS= partial least squares regression; MPLS= modified partial least squares regression, Bayes RR= Bayes Ridge regression. 
c: DIC= deviance information criterion. d: pD= effective number of parameters. 
  

- 129 - 



 
 

Table 3. Parameter estimates, goodness of fit statistics and correlations between predictions made by different methods obtained for milk 
technological properties when models were fitted to the entire data set, by trait and model 

Traita/Modelb 
Variance 

R2  DICc pDd 
Correlations between predictions of different models 

Phenotypic Residual MPLS Bayes RR Bayes A Bayes B 
 RCT 32.57         
  PLS  11.61 0.64 - - 0.95 0.96 0.96 0.96 
  MPLS  9.52 0.71 - - - 0.98 0.98 0.98 
  Bayes RR  9.72 0.75 6,524 183 - - 0.99 0.99 
  Bayes A  9.92 0.73 6,505 138 - - - 1.00 
  Bayes B  10.10 0.73 6,523 131 - - - - 
 CYCURD 3.57         
  PLS  0.74 0.79 - - 0.98 0.99 0.99 0.99 
  MPLS  0.68 0.81 - - - 0.98 0.99 0.99 
  Bayes RR  0.83 0.79 3,408 118 - - 0.99 1.00 
  Bayes A  0.80 0.80 3,336 99.9 - - - 1.00 
  Bayes B  0.79 0.80 3,335 108 - - - - 
 RECPROTEIN 5.80         
  PLS  2.04 0.65 - - 0.92 0.92 0.92 0.92 
  MPLS  1.43 0.75 - - - 0.97 0.97 0.97 
  Bayes RR  1.28 0.82 4,018 205 - - 0.99 1.00 
  Bayes A  1.33 0.81 4,041 174 - - - 1.00 
  Bayes B  1.31 0.81 4,037 188 - - - - 
 RECFAT 12.83         
  PLS  7.43 0.42 - - 0.93 0.97 0.96 0.96 
  MPLS  6.88 0.46 - - - 0.92 0.91 0.91 
  Bayes RR  8.38 0.41 6,209 105 - - 0.99 0.99 
  Bayes A  8.47 0.40 6,206 89 - - - 1.00 
  Bayes B  8.48 0.39 6,209 89.7 - - - - 
a: RCT= rennet coagulation time, min; CYCURD= cheese yield, weight of fresh curd as a percentage of the milk processed by weight; RECPROTEIN= recovery of protein, protein 
of the curd as a percentage of the protein of the milk processed; RECFAT= recovery of fat, fat of the curd as a percentage of the fat of the milk processed;  
b: PLS= partial least squares regression; MPLS= modified partial least squares regression, Bayes RR= Bayes Ridge regression. 
c: DIC= deviance information criterion. d: pD= effective number of parameters.  
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Table 4. Prediction R-squared (R2
VAL) and square-root of the mean-squared prediction error (RMSE) in testing data sets by trait and model, and 

pair-wise comparisons of prediction accuracies of the models 

Traita/Modelb R2
VAL

c 
RMSEd Pair-wise comparisonse 

Mean Minimum Maximum SD PLS MPLS Bayes RR Bayes A Bayes B 
C10:0           
 PLS 0.435 0.327 0.566 0.072 0.49 - 100 100 100 100 
 MPLS 0.556 0.437 0.683 0.067 0.43 *** - 72 100 100 
 Bayes RR 0.583 0.502 0.681 0.055 0.41 *** *** - 100 100 
 Bayes A 0.654 0.577 0.750 0.054 0.38 *** *** *** - 56 
 Bayes B 0.655 0.564 0.751 0.056 0.38 *** *** *** NS - 
C14:1c9           
 PLS 0.296 0.203 0.412 0.060 0.28 - 88 100 100 100 
 MPLS 0.331 0.178 0.440 0.063 0.27 *** - 40 96 92 
 Bayes RR 0.329 0.240 0.422 0.050 0.27 *** NS - 100 100 
 Bayes A 0.384 0.277 0.483 0.054 0.26 *** *** *** - 48 
 Bayes B 0.386 0.283 0.483 0.052 0.25 *** *** *** NS - 
C18:0           
 PLS 0.262 0.085 0.380 0.077 1.65 - 80 88 100 100 
 MPLS 0.298 0.160 0.430 0.075 1.61 *** - 52 100 100 
 Bayes RR 0.303 0.187 0.417 0.067 1.58 *** NS - 96 96 
 Bayes A 0.452 0.293 0.565 0.073 1.40 *** *** *** - 60 
 Bayes B 0.458 0.259 0.573 0.076 1.39 *** *** *** NS - 
a: C10:0 = decanoic (capric) acid; C14:1c9 = 9-tetradecenoic (myristoleic) acid; C18:0 = octadecanoic (stearic) acid; each fatty acid is expressed as a percentage of the total 
fatty acids by weight. 
b: PLS= partial least squares regression; MPLS= modified partial least squares regression, Bayes RR= Bayes Ridge regression. 
cR2

VAL= coefficient of determination calculated as the square of the correlation between observed and predicted values; Mean= mean of the R2 of 25 replicas; Minimum= 
minimum value of R2 obtained in 25 replicas; Maximum= maximum value of R2 obtained in 25 replicas; SD= standard deviation of the R2 of 25 replicas. 
dRMSE= mean of the root mean square errors of 25 replicas. 
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eP= p-values [(***)<0.001; (**)<0.01; (*)<0.05; (NS)>0.05] for the paired t-tests (alternative hypothesis: true difference in means is not equal to 0) of the R2 of the models in 
25 replicas (lower triangle for each trait), and percentage of time in which the R2 of the model in the column is higher than the mean of the model in the corresponding row 
(upper triangle for each trait).. 
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Table 5. R-squared and pair-wise comparisons between models for prediction accuracy of milk technological traits in external validation sets, by 
trait (significances are given in the lower triangle; the percentage of replicates in which the model in the column had better prediction accuracy 
than the model in the row is given in the upper triangle). 

Traita/Modelb R2
VAL

c 
RMSEd  Pair-wise comparisone 

Mean Minimum Maximum SD PLS MPLS Bayes RR Bayes A Bayes B 
 RCT            
  PLS 0.498 0.409 0.593 0.049 4.14  - 96 100 100 100 
  MPLS 0.570 0.410 0.652 0.053 3.82  *** - 92 88 84 
  Bayes RR 0.597 0.478 0.669 0.047 3.70  *** *** - 60 64 
  Bayes A 0.602 0.467 0.677 0.049 3.67  *** *** NS - 56 
  Bayes B 0.604 0.475 0.671 0.049 3.66  *** *** NS NS - 
 CYCURD            
  PLS 0.659 0.550 0.763 0.067 1.11  - 84 92 96 92 
  MPLS 0.680 0.538 0.796 0.072 1.07  *** - 48 84 76 
  Bayes RR 0.679 0.557 0.776 0.069 1.07  *** NS - 84 84 
  Bayes A 0.699 0.586 0.814 0.066 1.04  *** *** *** - 44 
  Bayes B 0.697 0.581 0.803 0.068 1.04  *** *** *** NS - 
 RECPROTEIN            
  PLS 0.474 0.299 0.627 0.087 1.75  - 100 100 100 100 
  MPLS 0.604 0.372 0.747 0.097 1.52  *** - 96 96 92 
  Bayes RR 0.649 0.474 0.788 0.091 1.42  *** *** - 48 64 
  Bayes A 0.649 0.456 0.803 0.088 1.42  *** *** NS - 60 
  Bayes B 0.655 0.480 0.813 0.088 1.41  *** *** NS NS - 
 RECFAT            
  PLS 0.213 0.072 0.364 0.075 3.31  - 88 80 88 80 
  MPLS 0.280 0.141 0.415 0.091 3.13  *** - 4 16 16 
  Bayes RR 0.227 0.075 0.365 0.083 3.24  ** *** - 84 80 
  Bayes A 0.235 0.083 0.368 0.081 3.23  *** *** * - 64 
  Bayes B 0.237 0.081 0.356 0.081 3.22  *** *** *** NS - 
a: RCT= rennet coagulation time, min; CYCURD= cheese yield, weight of fresh curd as a percentage of the milk processed by weight; RECPROTEIN= recovery of protein, protein 
of the curd as a percentage of the protein of the milk processed; RECFAT= recovery of fat, fat of the curd as a percentage of the fat of the milk processed;  
b: PLS= partial least squares regression; MPLS= modified partial least squares regression, Bayes RR= Bayes Ridge regression. 
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cR2
VAL= coefficient of determination calculated as the square of the correlation between observed and predicted values; Mean= mean of the R2 of 25 replicas; Minimum= 

minimum value of R2 obtained in 25 replicas; Maximum= maximum value of R2 obtained in 25 replicas; SD= standard deviation of the R2 of 25 replicas. 
dRMSE= mean of the root mean square errors of 25 replicas. 
eP= p-values [(***)<0.001; (**)<0.01; (*)<0.05; (NS)>0.05] for the paired t-tests (alternative hypothesis: true difference in means is not equal to 0) of the R2 of the models in 
25 replicas (lower triangle for each trait), and percentage of time in which the R2 of the model in the column is higher than the mean of the model in the corresponding row 
(upper triangle for each trait). 
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Table 6. Estimated intercept and slope of the regression between predictions and 
phenotypes in testing data sets, by trait and model 
 

Trait/Modela Interceptb %Intercept=0c Sloped %Slope=1e 

C10:0, %     
 PLS 0.394 64 0.872 52 
 MPLS 0.194 68 0.935 64 
 Bayes RR 0.005 88 0.997 88 
 Bayes A 0.000 76 0.996 76 
 Bayes B 0.010 60 0.994 76 
C14:1c9, %     
 PLS 0.185 56 0.831 52 
 MPLS 0.164 60 0.850 48 
 Bayes RR 0.025 80 0.979 76 
 Bayes A 0.045 80 0.957 80 
 Bayes B 0.038 80 0.964 80 
C18:0, %     
 PLS 2.186 36 0.752 32 
 MPLS 2.062 32 0.763 32 
 Bayes RR 0.503 76 0.937 72 
 Bayes A 0.379 64 0.953 76 
 Bayes B 0.344 68 0.956 72 
RCT, min     
 PLS 1.670 72 0.927 68 
 MPLS 1.138 76 0.951 76 
 Bayes RR 0.238 92 0.999 84 
 Bayes A 0.355 84 0.991 80 
 Bayes B 0.374 80 0.992 84 
CYCURD, %     
 PLS 1.211 64 0.920 60 
 MPLS 0.942 68 0.938 68 
 Bayes RR 0.679 76 0.956 80 
 Bayes A 0.671 72 0.956 76 
 Bayes B 0.668 68 0.956 72 
RECPROTEIN, %     
 PLS 10.240 48 0.869 48 
 MPLS 6.591 48 0.916 44 
 Bayes RR 2.593 64 0.967 68 
 Bayes A 3.108 64 0.960 64 
 Bayes B 3.069 68 0.961 68 
RECFAT, %     
 PLS 21.820 40 0.755 36 
 MPLS 11.560 56 0.870 56 
 Bayes RR 7.376 68 0.916 68 
 Bayes A 9.245 68 0.895 64 
 Bayes B 8.905 72 0.899 68 
a: RCT= rennet coagulation time, min; CYCURD= cheese yield, weight of fresh curd as a percentage of the 
milk processed by weight; RECPROTEIN= recovery of protein, protein of the curd as a percentage of the protein 
of the milk processed; RECFAT= recovery of fat, fat of the curd as a percentage of the fat of the milk 
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processed; C10:0 = decanoic (capric) acid; C14:1c9 = 9-tetradecenoic (myristoleic) acid; C18:0 = 
octadecanoic (stearic) acid; each fatty acid is expresses as a percentage of the total fatty acids by weight. 
aPLS= partial least squares regression; MPLS= modified partial least squares regression, Bayes RR= Bayes 
Ridge regression. 
bIntercept= mean of the intercept estimated between observed and predicted values (of each replicate) in 25 
replicas. 
c: %Intercept=0: % of times (over 25 replicas) in which the estimated 95% CI for the intercept included zero. 
d Slope= mean of the slope estimated between observed and predicted values (of each replicate) in 25 
replicas. 
e %Slope=1: % of times (on 25 replicas) in which the estimated 95% CI for the slope included one. 
 
 



 
 

 

 

Figure 1. Absorbances of milk samples (Log T−1; solid black line represents the average, whereas the 2 gray lines represent the average  ± SD). 

The vertical dashed lines define the five infrared regions (SWIR=short-wavelength infrared or near-infrared; MWIR=mid-wavelength infrared; 

LWIR=long-wavelength infrared). 
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Figure 2. Absolute values of estimated effects (solid curves) and marginal correlations 

with phenotype (dashed curve) by wavelength (horizontal axis). Each panel corresponds to 

a fatty acid. 

 

Fatty acid: C10 

Fatty acid: C14 

Fatty acid: C18 
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Figure 3. Absolute values of estimated effects (solid curves) and marginal correlations 

with phenotype (dashed curve) by wavelength (horizontal axis). Each panel corresponds to 

a technological trait. 
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APPENDIX  

This supplementary material contains instructions to obtain data and fit the models 

presented in the main manuscript. Boxes 1 to 4 contain R scripts (R core Team, 2013)  for 

the Bayesian calibration using the R-package BGLR (Gustavo de los Campos and Paulino 

Perez-Rodriguez, 2014). 

1. Supplementary data 

The following file: 

 DataSpectra.RData 

contains a portion of the data used in the scientific article, and can be obtained by 

requesting it to the corresponding author Alessio Cecchinato. 

The file contains the following R-objects: 

- Y:  (numeric vector, each data is a sample) where there are the traits to 

be used for the calibrations. Each column represents a trait and each row 

a milk sample. 

- X:  (numeric matrix), spectra data where each row contains the spectra 

for a milk sample, which phenotype is located in the same row of the Y 

vector, X contains centered and standardized records. The detection of 

outliers is done using the Mahalanobis distances, and samples with a 

distance higher than three times the SD were discarded. 

 

The identifiers of Y and X can be obtained with colnames(Y) (phenotype), 

rownames(Y) observation number, colnames(X) wavelength name, rownames(X) 

observation number.  
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2.  Setting up the data 

Box 1 provides some initial values needed to use the BGLR package and partition the 

data in  training and testing sets. We describe an example with a short number of 

iterations for illustration proposes only; however the number of iterations and samples 

discarded as burn in should be determined by inspection of the trace plots of samples 

from the posterior.  

Box 1: Setting Variables and Parameters and Partitioning Data in Training and 

Testing Sets 

1 load(“DataSpectra.RData”)  
2 # Assign the name of the y variable to the "trait" object, for example: CYcurd (cheese 

yield). 
3 trait="CYcurd" 
4 # Define the number of iteration (nIter), number of samples to be discarded (burnIn) 
5 # model (prior density) to be used: Gaussian (BRR), Scaled-t (BayesA), Gaussian 

Mixture (BayesB) 
6 nIter=10000 
7 burnIn=2000 
8 model="BRR" 
9 # Define the percentage of samples to be used as testing set 
10 tst_percento=10 
11 tst_percento<-tst_percento/100 
12 y<-Y[,which(colnames(Y)==trait)] 
13 nTst<-round((length(y))*tst_percento,digits=0) 
14 n<-length(y) 
15 tst<-sample(n, size=nTst, replace=FALSE) 
16 # Creation of Training and testing sets for the trait (Y) and for the spectra (X) 
17 yTST<-y[tst] 
18 XTST<-X[tst,] 
19 yTRN<-y[-tst] 
20 XTRN<-X[-tst,] 
 

Box 2 illustrates how to fit a simple  model, for illustration proposes we present a very 

simple example, however, the Bayesian Generalized Linear Regression R-library 

(available at CRAN), is a comprehensive statistical package that implements a large 
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collection of Bayesian procedures, including shrinkage and variable selection methods for 

linear models and semi parametric procedures (RKHS). BGLR supports quantitative 

(censored or not) and categorical (binary or ordinal) outcomes and offers researchers great 

flexibility in combining various statistical methods into data analysis models. Deatails of 

the use of BGLR can be seen at: Pérez and de los Campos (2014). 

In Box 2 we are fitting a Bayesian Ridge Regression model, using all spectra variables in 

X as predictors treated as random effects with Gaussian priors. The model adjusted is 

described in our paper (BayesRR).  

Box 2: Fitting the Model  

1 library('BGLR') 

2 ETA<-list(   list(X=XTRN, model=model)    ) 

3 fm <-BGLR( y=yTRN, ETA=ETA, nIter=nIter, burnIn=burnIn, thin=2) 

 

In Box 3 we illustrate how to calculate retrieve estimates from the model. 

Box 3: Retrieving Estimates  

1 # Extracting and ploting samples of the residual variance 

2 fm$varE # residual variance 

3 vare<- scan(‘varE.dat’) 

4 plot(vare) 

5 abline(h=mean(vare[(burnIn/2+1):nrow(vare)]), col=’red’) 

6 #Extracting effects associated to the wavelengths, and their standard deviation 

7 wlef<- fm$ETA[[1]]$b 

8 sdwlef<- fm$ETA[[1]]$sdb 

9 plot(wlef) 

 

In Box 4 we illustrate how to calculate the predictive ability of the model in the testing set. 
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Box 4: Evaluating Prediction Accuracy of the Model in a Testing Set   

1 # Prediction of y on testing set applying the developed calibration equation 

2 yHatTST <-XTST%*%fm$ETA[[1]]$b + fm$mu 

3 #Descriptive statistics (mean and standard deviation) for the training and the testing 

sets 

4 meanyTRN<- mean(yTRN) 

5 sdTRN<-sd(yTRN) 

6 meanyTST<-mean(yTST) 

7 sdTST<-sd(yTST) 

8 #Square correlations and errors of measured and predicted values for calibration and 

validation 

9 R2cal<-(cor( yTRN, fm$yHat ))^2 

10 rmse_cal<-sqrt(( sum((yTRN- fm$yHat)^2))/length(yTRN)) 

11 R2val<-(cor(yTST, yHatTST))^2 

12 rmse_val<-sqrt((sum((yTST-yHatTST)^2))/length(yTST)) 
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ABSTRACT 

The object of the present study was to infer the genetic parameters of measured 

traditional milk coagulation properties (MCP) and of curd firmness modeling parameters 

and derived traits, and to compare them with the genetic parameters of the corresponding 

predicted traits obtained using Fourier-transform infrared (FTIR) spectra. 

Individual milk samples of 1,264 Brown Swiss cows were analyzed with a 

Formagraph (Foss Electric A/S, Hillerød, Denmark) lactodynamograph extending the 

duration of curd firming test from 30 to 90 min. The traditional MCP (rennet coagulation 

time, RCT; time to a curd firmness of 20 mm, k20; and curd firmness at 30 and 45 min, a30 

and a45 respectively) were acquired directly from the instrument. The 360 curd firmness 

(CF) values recorded for each sample during the 90 min (one every 15 sec) were extracted 

and modeled with the following four parameters model:  

��� = ��� × �1 − x���×l�h�����o� × �xh���×l�h�����o� , obtaining the following four 

parameters: modeled rennet coagulation time (RCTeq), asymptotical potential maximum 

value of curd firmness (CFP), curd-firming rate constant (kCF), curd syneresis rate constant 

(kSR), and two calculated traits: maximum curd firmness (CFmax), and the time from rennet 

addition to CFmax (tmax). The FTIR spectra were recorded for each unprocessed milk 

sample using a MilkoScan FT6000 (Foss Electric, Hillerød, Denmark), over the spectral 

range from 5,000 to 900 wavenumber × cm-1.  

The chemometric models were developed using the Bayesian analysis, commonly 

used for the genomic selection, available in the BGLR package of the R environment (R 

Core Team 2013). To test the predictive ability of the calibration equations an “across-

herd” 3-fold external validation procedure was used, in which the available data were 

partitioned into two subsets: a training set (one third of the herds) used to develop the 

calibration equations, and a testing set (the remaining two third of the herds) used for the 
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external validation and to obtain the predictions for the estimation of the heritabilities and 

the genetic correlations of the measured and FTIR-predicted phenotypes. The coefficients 

of determination of calibration (R2
CAL) ranged from low (on average 0.16 and 0.28 for kSR 

and CFP, respectively) to high (̴ 0.70 for RCT and RCTeq). The validation procedure 

yielded errors (RMSEVAL) higher than the calibration (RMSECAL), and coefficients of 

determination of validation (R2
VAL) generally lower than those of calibration, ranging from 

1 (CFmax) to 40 (kCF) percentage points less.  

The (co)variance components for the measured and FTIR-predicted phenotypes 

were estimated using bivariate Bayesian analysis and linear models. The heritabilities 

across-herd (h2
AH) and intra-herd (h2

IH) were obtained. For the measured traits, the 

heritabilities ranged from 0.07 (h2
AH of kSR) to 0.40 (h2

IH of RCTeq). In the majority of 

cases, and especially with the traits characterized by the lowest R2
VAL, the heritability of 

the predicted traits was greater than that of the measured traits because FTIR prediction 

tended to reduce the additive genetic variance of the traits, but reduced much more their 

residual variances. The genetic correlation between measured and FTIR predicted values 

were always much greater than the phenotypic ones, ranging from 0.79 (k20) to 0.89 (a45) 

for the MCP and 0.29 (kSR) to 0.91 (CFmax) for the modeling traits.  

In conclusion, our findings indicate that for the FTIR calibrations of traditional 

MCP and CF modeled traits, even if carried out using new statistical approaches, need to 

be improved further, but the genetic analysis demonstrated that the obtained FTIR 

predictions could be useful for the selection of dairy populations, with the only exception 

of the syneresis instant rate constant. 

Key words: infrared spectroscopy; Bayesian models, milk traits, coagulation properties 
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INTRODUCTION 

Milk coagulation properties (MCP) have received a great deal of attention in the 

last years, and Bittante et al. (2012) reviewed the main studies available on genetics and 

modeling of these traits. Different approaches can be used to determine MCP (Bynum and 

Olson, 1982; O’Callagan et al., 2002) and three single point parameters have been 

considered to be useful: rennet coagulation time (RCT, min), time to a curd firmness (CF) 

of 20 mm (k20, min) and the CF at 30 min after enzyme addition (a30, mm). The 

aforementioned parameters have some limitations that involve the presence of samples in 

which coagulation is not noted during the 30 min test interval (noncoagulating samples; 

NC) and so it is impossible to estimate RCT, k20 and a30. Further, k20 cannot be determined 

for many late coagulating samples that have long RCT because the attainment of the 20 

mm CF did not occur within the test interval. The presence of NC samples has a negative 

effect on the dairy industry and it is economically penalized in the milk quality payment 

system (Bittante et al., 2011a and 2011b), furthermore, the presence of NC creates 

statistical problems for the correct evaluation of data from coagulating samples (Ikonen et 

al., 1999; Cecchinato and Carnier, 2011). A further limitation of the traditional MCP is the 

highly, phenotypic and genetic, dependence of a30 from RCT (Ikonen et al., 2004; Bittante, 

2011), that, especially when slowly coagulating samples are analyzed, causes a30 not to add 

any significant information beyond that already provided by RCT.  

To overcome this limitations, Bittante (2011), exploited all available information 

(all single point CF measures recorded during the lactodynamographic test of a milk 

sample) by modeling the curd-firming process over time (CFt) of the sample. The derived 

model ( ��� = ��� × �1 − x���×(�h�����)� ) contained three parameters where: CFP (mm) 

is the asymptotical potential value of CF at an infinite time; kCF (min-1) is the curd-firming 

instant rate constant; and RCTeq (min) is not the single point traditional RCT but it is 
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estimated using all the CF measures recorded with time for each milk sample. The three 

parameters are less correlated among them than the traditional MCP. Also kCF can be 

computed by the model also for the majority of the slowly coagulating samples.  

Syneresis of curd is another important phenomenon of the cheese-making process, 

and it consists in the expulsion of whey from curd when gel contracts (Pearse and 

Mackinlav, 1989; van Vliet et al., 1991; Calvo and Balcones, 2000). The model proposed 

by Bittante (2011) can solve some limitation of traditional MCP, but it does not solve the 

problems of NC and does not capture syneresis information. To overcome these 

deficiencies, Bittante et al. (2013) proposed to extend the duration of the 

lactodynamographic test to the phase in which CF measures decrease because of whey 

expulsion and to use a 4 parameters model ( ��� = ��� × �1 − x���×(�h�����)� ×

�xh���×(�h�����)� ) where kSR (min-1) represents the curd syneresis rate constant.  

Several studies demonstrated that exploitable additive genetic variation exists for 

traditional MCP (Bittante et al., 2012). Moreover, Cecchinato et al. (2009), considering 

that the available instrumental techniques for routine record of individual CF measures is a 

critical issue, evaluated the implementation of Fourier-transform infrared (FTIR) 

spectrometry based technique for predicting traditional MCP in order to assess the 

possibility of implementing an indirect selection. No study on the FTIR spectroscopy for 

the prediction of MCP modeling  and their genetic parameters is available. 

In their study Cecchinato et al. (2009) applied the partial least square (PLS) 

regression as prediction model, while later Ferragina et al. (2015, submitted to J. Dairy 

Sci.)  concluded that the Bayesian models, commonly used in genomic selection, 

outperform PLS for predicting technological properties of milk.  

Thus, the aims of the present study were (1) to apply the Bayesian models for the 

prediction of traditional MCP and of new curd firmness modeling parameters (CFM), 
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using an external validation procedure; (2) to estimate the genetic parameters of the 

measured and of the predicted traits; (3) to estimate the genetic correlations between 

corresponding measured and predicted traits as indicators of the feasibility of an indirect 

selection of dairy populations for improving milk coagulation and curd firming and 

syneresis processes. 

 

MATERIALS AND METHODS 

Field Data 

A total of 1,264 milk samples of Brown Swiss cows were collected in 85 herds (1 

herd sampled in a given day) during the Cowplus project of the Autonomous Province of 

Trento, Italy. Details about the sampling procedure are available in Cipolat-Gotet et al., 

2012 and Cecchinato et al., 2013. The represented parities of the cows were 1 to 5 with a 

range of days in milk (DIM) of 5 to 449, and a production level of 24.3±7.9 kg × d-1. Two 

subsamples of milk per cow were collected and immediately refrigerated (4°C) without 

preservative. One subsample of 50 mL, was used for the composition analysis in the milk 

quality laboratory of the Breeders Federation of the Province of Trento (Trento, Italy). The 

second subsample of 2,000 mL, was taken in the milk laboratory of the Department of 

Agronomy, Food, Natural Resources, Animals and Environment of the University of Padua 

for the analysis of MCP within 20 h from collection.  

The Superbrown Consortium of Bolzano and Trento (Italy) provided the data on the 

cows and herds, while the pedigree information was supplied by the Italian Brown Swiss 

Cattle Breeders Association (Verona, Italy). Each cow had at least 4 generations of known 

ancestors and the total number of animals included in the pedigree file was 8,484 where 

1,326 sires. Two-hundred sixty four sires had progeny with records in the data set used and 

a number of daughters between 2 and 80. 
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FTIR Spectral Acquisition 

All individual milk samples were analyzed using a MilkoScan FT6000 (Foss 

Electric, Hillerød, Denmark) over the spectral range from 5,000 to 900 wavenumber × cm-

1. Spectra were stored as absorbance (A) using the transformation A = log(1/T) where T is 

the transmittance. Two spectral acquisitions were carried out for each sample, and 

averaged before data analysis. 

Curd Firmness Measurements 

The CF measurements were carried out using a Formagraph (Foss Electric A/S, 

Hillerød, Denmark) as described in Cipolat-Gotet et al., 2012. Briefly, A rack containing 

10 cuvettes of 10 mL each was prepared, milk samples were heated to 35°C, and 200 μL of 

a rennet solution [Hansen Standard160, with 80 ± 5% chymosin and 20 ± 5% pepsin, 160 

international milk clotting units (IMCU)/mL; Pacovis Amrein AG, Bern, Switzerland] 

diluted to 1.6% (wt/vol) in distilled water was added at the beginning of the analysis to a 

final concentration of 0.051 IMCU/mL. Recording of CF was conducted every 15 sec for 

90 min after curd addition, creating a final file with a total of 360 CF values for each 

sample. The traditional MCP (RCT, k20, a30) and the CF at 45 min after rennet addition 

(a45, mm) were also yielded by the apparatus. 

Modeling Curd Firmness and Syneresis 

The 360 CF values recorded for each sample during the 90 min measurement, 

allowed to use the four parameters model described by Bittante et al. (2013): 

��� = ��� × �1 − x���×l�h�����o� × �xh���×l�h�����o� 

With this model, all the available information are used for estimation of the four 

parameters, that are not single points measurements and it is characterized by a better 
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repeatability than the traditional parameters. The CFP (asymptotical potential maximum 

value of curd firmness at infinite time; mm) is independent from test duration and from 

RCT. The CF increase, with an increment kCF (curd-firming rate constant; min-1), toward 

CFP, whereas kSR is assumed to cause a decrease toward a null asymptotic value. When the 

test starts, kCF prevails over kSR and CFt (curd firmness at time t; mm) increases to a point 

in time (tmax) at which the effects of the two rate parameters are equal but opposite in sign; 

thus CFt attains its effective maximum level (CFmax). Thereafter, CFt starts decreasing 

toward a null value, because of the effect of curd syneresis and of the corresponding 

expulsion of whey that allow the coagulum to float freely without move the instrument 

pendulum. The RCTeq has the same meaning of the traditional single point RCT, but is 

estimated using all the available data. The curvilinear regression were fitted to the 

available CFt observations by using the non-linear procedure (PROC NLIN) of the SAS 

(2001) Institute. The parameters of each individual equation were estimated employing the 

Marquardt iterative method (350 iterations and a 10-5 level of convergence). 

Data Analysis and Chemometric Models 

- Spectra editing and outlier detection 

All the data analysis and the chemometric models, were done in the R environment 

(R Core Team 2013). A previous editing of spectra and detection of outliers was 

performed. The absorbance values of each wave in the spectra were centered and 

standardized to a null mean and a unit sample variance, next, the Mahalanobis distance 

were calculated for the outlier spectra detection; observations with a Mahalanobis distance 

greater than five times the standard deviation were discarded. FTIR spectra were then 

analyzed across the whole interval (from 5,000 to 900 wavenumber × cm-1; 1,060 data 

points) or without the 2 portions known to be characterized by a very high phenotypic 
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variability: the transition region between the short-wave to mid-wave infrared (3,669-3,052 

cm-1; SWIR-MWIR) and the mid-wavelength infrared region (MWIR-2), from 1,698 to 

1,586 wavenumber × cm-1 (Bittante and Cecchinato, 2013; Ferragina et al., 2013). 

- Statistical analysis 

As already described by Ferragina et al. (2015, submitted to J. Dairy Sci.), the 

models used were those based on the Bayesian analysis, commonly used for genomic 

selection. Separate models were fitted to traditional MCP (RCT, k20, a30, a45) and CF 

modeling parameters and derived traits (RCTeq, CFP, kCF, kSR, CFmax, tmax). The statistical 

model for a generic phenotype (yi; i=1,…, n) is described. Two Bayesian models, Bayesian 

Ridge Regression (Bayes RR), and Bayes B (Meuwissen et al., 2001), were fitted to each 

of the phenotype. 

Phenotypes were regressed on standardized spectra covariates using the linear 

model: 

FG = MN + � PGQMQ + RG
�,NSN

QT�
 

where MN is an intercept, UPGQV are standardized FTIR spectra-derived wavelengths 

data 5W = 1, … ,1,0606, MQ  are the effects of each of the wavelengths and RG	 are model 

residuals assumed to be iid (independent and identically distributed) normal distribution 

centered at zero with variance Z[�. Given the above assumption, the conditional distribution 

of the data given effects and variance parameters is:  

\5�|]) = ∏ _(`
GT� aG , Z[�), 

where ] represents the collection of model parameters ] = bMN, c, Z[�d, _(aG, Z[�) is 

a normal distribution centered at  aG = MN + ∑ PGQMQ
�,NSN
QT�  and with variance Z[� , and 
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c = UMQV is a vector containing the effects of the individual spectra-derived wavelengths. 

Specification of the Bayesian model is completed by assigning a prior distribution to the 

unknowns, ]. In the Bayesian models considered here, the prior density was as follows: 

  e(]) = _(MN|0,1 × 10f)gh�(Z[�|ij[ , k[)U∏ elMQmno
�,NSN
QT� Ve(n) 

The intercept is assigned a normal prior with a very large variance, which amounts 

to treating the intercept as a “fixed” effect, the residual variance is assigned a scaled-

inverse chi-square density with degree of freedom and scale parameters ij[  and k[ , 

respectively, and the effects of wavelengths are assigned IID priors, elMQmno, indexed by a 

set of hyper-parameters, n, which are also treated as random. The Bayes RR and Bayes B 

models differ in the form of the prior density assigned to the effects. For Bayes RR, effects 

are assigned Gaussian priors, that is, lMQmno _lMQm0, Zp
�o~		

GGq , n = Zp
� , and e(n) =

gh�lZp
�mijp , kpo. With this specification the estimates are shrunk toward zero; the extent 

of shrinkage is similar across effects and the variable selection is not performed. In Bayes 

B, elMQmno is a mixture of a poit of mass at zero and a scaled-t density, that is 

lMQ|Ωo | × rlMQmijp , kpo + (1 − |) × 1lMQ = 0o~		
GGq ; this density is indexed by three 

hyperparameters U|, ijp , kpV, therefore, a-priori, with probability |, MQ is drawn from the t-

density and with probability (1 − |)  MQ = 0 . We set ijp = 5  and the other 

hyperparameters were treated as random, specifically, kp~tuvvulkp|wurx, yℎuexo and 

|~~xru(||yℎuex�, yℎuex�) . The above models have high-order hyperparameters 

(ij[ , k[ , ijp , wurx, yℎuex, yℎuex�, yℎuex�  ), that were specified using built-in BGLR 

rules, selecting default values for this unknown and are fully explained in Pérez and de los 

Campos (2014). In all the Bayesian models, inference were based on a total of 30,000 

samples collected after discarding the first 10,000 samples. The described models were 

implemented in the BGLR package (de los Campos and Pérez-Rodriguez, 2014). 
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Predictive Ability 

The procedure adopted to assess the predictive ability of the calibration equations 

and the magnitude of the genetic correlations between measures and predictions of 

traditional MCP and CF modeling parameters, was a 3-fold cross-validation or external 

validation. For this procedure the entire data set was randomly (by herd) split in three 

disjoint subset, with approximately one third of the records (̴ 28 herds per subset) each. 

One set or training set (TRN) was used to fit the model and develop the calibration 

equation for predicting individual phenotypes in the remaining two subsets or testing set 

(TST) used for validation. The observations included in the TST set were completely 

independent from those used to build the calibration equations. The TRN-TST procedure 

was repeated three times in order that each subset was used as TRN set. To measure the 

prediction accuracy and to compare the calibration and validation results, we used the 

coefficient of determination between predictions and measured traits in the TRN (R2
CAL) 

and in the TST (R2
VAL), also the squared root of the mean squared prediction error in the 

TRN (RMSECAL) and in the TST (RMSEVAL) sets were calculated. Heritabilities and 

genetic correlations for both, predicted and measured traits of the testing set, were 

estimated as final external genetic validation of the FTIR calibration procedure. 

Genetic Analysis 

The (co)variance components were estimated for MCP and CF modeling traits 

measures and for their FTIR predictions, using bivariate analyses and linear models. The 

general model assumed was: 

FGQ�� = ���G + \uwIrFQ + ℎ� + u� + RGQ��, 
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where FGQ�� is the phenotypic record for the analyzed trait; ���G is the effect of the 

Ith class of DIM (I=1 to 11; 30 d for each class with class 1 being <30 d and class 11 being 

> 330 d); \uwIrFQ is the effect of the Wth parity of the cow (W=1 to 5); ℎ� is the effect of the 

�th herd (�= 1 to 28 for the first and second subset, 1 to 29 for the third subset); u� is the 

infinitesimal genetic effect of individual �; and RGQ�� is the residual of the model. 

Bayesian inference 

Bayesian approach and Makov-chain Monte Carlo methods (Sorensen and Gianola, 

2002) were used to estimate the variance (and covariance) components and related 

parameters, as already shown also in Bittante et al. (2014). All measured and predicted 

traits were taken as continuous variables and their values were assumed to be sampled 

from the following multivariate normal distribution: 

�F�F�� |��, ��, ℎ�, ℎ�, u�, u�, �~_ &� (����) + �� (ℎ�ℎ�) + �� �u�u�� , �+, 

where � and �" are random vectors including the effects of DIM and parity; � 	and �" are 

vectors of individual additive genetic effects; �  and �" are vectors of herd effects; ', *  

and *" are known incidence matrices; and # is the residual (co)variance matrix. Between 

traits, the additive, herd and residual effects were assumed to be correlated. The residual 

(co)variance matrix could be written as #/ ⊗ �1 , with #/  being the 2× 2 residual 

(co)variance matrix between the traits analyzed, and �3  being an identity matrix of the 

appropriate order. Bounded uniform priors were used to represent vague previous 

knowledge of the distributions of � and �" . Prior knowledge concerning the additive 

effect and herd effect was represented by assuming that they were normally distributed 

conditional on the associated (co)variance components. 
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Marginal posterior distributions of unknown parameters were estimated by 

performing numerical integration through the Gibbs sampler (Gelfand and Smith, 1990), as 

implemented in the TM program (http://snp.toulouse.inra.fr/~alegarra); this generated 

auto-correlated samples from the joint posterior distributions and subsequently from the 

marginal posterior distributions of all unknowns in the model. The lengths of the chain and 

burn-in period were assessed by visual inspection of trace plots, and by the diagnostic tests 

described by Geweke (1992) and Gelman and Rubin (1992). The single chain consisted of 

850,000 iterations discarding the first 50,000 iterations as a very conservative burn-in. 

Subsequently, one in every 200 successive samples was retained, in order to store draws 

that were more loosely correlated. Thus, 4000 samples were used to determine the 

posterior distributions of the unknown parameters. The lower and upper bounds of the 

highest 95% probability density regions for the parameters of interest were obtained from 

the estimated marginal densities. The posterior median was used as the point for all 

parameters. Auto-correlations between samples and estimates of the Monte Carlo Standard 

Error (Geyer, 1992) were calculated. The effective sample size was evaluated using the 

algorithm of Geyer (1992).   

Across-herd heritability was computed as: 

h<=� = σ<�

σ<� +σ=� +σ>�
 

where σ<� , σ=� , and σ>� 	are the additive genetic, herd and residual variances, respectively. 

Intra-herd heritability was computed as: 

h?=� = σ<�

σ<� +σ>�
 

where σ<� , σ=� , and σ>� 	are the additive genetic, herd/test-date, and residual variances, 

respectively. 

Additive genetic correlations were estimated as: 
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r< = σ<�,<�
σ<� ∙σ<�

 

where σ<�,<�	is the additive genetic covariance between traits 1 and 2; and σ<�  and 

σ<�	are the additive genetic standard deviations for traits 1 and 2, respectively. 

 

RESULTS 

Calibration and Validation 

In the tables 1 and 2 are presented the results of the calibrations and validations for 

the traditional MCP and CF modeling parameters, respectively. The results reported are 

those of the model and the spectral range that gave better results, thus, the Bayes B model 

fitted using the reduced spectral range (SWIR+MWIR1+MWIR-LWIR; Figure 1). For all 

the analyzed traits, the calibrations were carried out on 3 training sets (TRN; A, B and C) 

containing similar number of cows, obtained dividing all sampled farms into three groups. 

The two remaining subsets, for each of the three calibrations, were used as testing set 

(TST) for external validation of the predictions (TRN_A on TST_B+C, TRN_B on 

TST_A+C, TRN_C on TST_A+B). For all the traits, the TRN and TST sets had all means 

and SD very similar. For the calibrations, the coefficients of determination of calibration 

(R2
CAL) ranged from very low (on average 0.16 and 0.28 for kSR and CFP, respectively) to 

high (̴ 0.70 for RCT and RCTeq). The validation procedure yielded errors (RMSEVAL) 

higher than the calibration (RMSECAL), and coefficients of determination of validation 

(R2
VAL) much lower than those of calibration (from 20% lower of RCTeq to 85% lower for 

kSR). 
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Variance Components and Heritabilities 

Tables 3 and 4 report the variance components and heritabilities of the measured 

and predicted traits. In general the variance components of the FTIR-predicted traits were 

lower than those corresponding of the measured traits, whit some exception for the herd 

variance components (σh) and for a30 where both, genetic (σa) and herd variance 

components where higher. For all the subsets of the predicted traits and respect to σa and 

σh, the residual variance was much lower. For the measured traits, the heritabilities ranged 

from 0.04 (h2
AH of kSR) to 0.40 (h2

IH of k20) with the exception of the A+C subset of RCTeq 

where highest values where observed (0.56 and 0.61 for h2
AH and h2

IH, respectively). In the 

majority of cases, and in particular for the CF modeling parameters, the heritabilities of the 

predicted traits were higher than those of the measured traits because the lower residual 

variance component (σe). 

Genetic and Phenotypic Correlations between Predicted and Measured Traits 

The genetic (rA) and phenotypic (rP) correlations between predictions and measures 

of traditional MCP are shown in table 5, those of CF modeling parameters in table 6. The 

phenotypic correlations for MCP ranged from 0.39 (a45) to 0.75 (RCT) and those of CF 

modeling from 0.05 (kSR) to 0.76 (RCTeq), following the external validation results of 

tables 1 and 2. The genetic correlation were always much higher than the phenotypic ones, 

ranging from 0.74 (k20) to 0.94 (RCT, a45) for the MCP and 0.13 (kSR) to 0.97 (RCTeq) for 

the modeling traits. 
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DISCUSSION 

FTIR-based Predictions of Traditional MCP and CF Modeling Parameters 

The most common approach for the chemometric process is based on the use of 

partial least square regression (PLS) and the cross-validation procedure, normally 

implemented in the software used (i.e., WinISI (Infrasoft International LLC, State College, 

PA); Unscrambler (Camo A/S, Oslo, Norway)). The aforementioned software, give also 

the possibility to carry out several spectra pretreatments for the improvement of the 

calibrations (standardization, scatter corrections, derivatives etc.). Ferragina et al. 

(submitted to J. Dairy Sci.) explored in their study, the effectiveness of the Bayesian 

models, commonly used for genomic selection, for the prediction of several milk related 

traits using only standardized FTIR spectra, and using a similar validation procedure as the 

one presented in this work, their TRN set was composed by more than 80% of the 

available samples and the remaining portion was used as TST set. For RCT they found, for 

R2
CAL, a maximum value (between the models compared) of 0.75, while, a maximum 

R2
VAL of 0.60 (mean of 25 replicas of the TRN-TST procedure) and RMSEVAL of 3.66, 

considering the higher number of samples in TRN, their results are on line with those 

reported in table 1 for RCT. A further study whit a similar approach of calibration and 

validation, was presented by Ferragina and Cipolat-Gotet (2013), in their work they used 

the same data set of the present work for the prediction of the traditional MCP, through the 

implementation of the chemometric procedure in the WinISI II software (Infrasoft 

International LLC, State College, PA), using as prediction models the partial leas square 

(PLS) and modified partial least square (MPLS) regressions. Their study was based on the 

comparison of different spectrum pretreatments, the cross-validation, the external 

validation, and the genetic validation  where used as instrument for the predictions 

assessment. 26 different calibration equations were developed for each trait combining 
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models and spectra treatments. The results of their study are comparable with the results 

obtained here, the ranges for the coefficients of determination of cross-validation were: 

0.01 to 0.72, 0.02 to 0.49, 0.00 to 0.55, 0.17 to 0.41 for RCT, k20, a30 and a45, respectively, 

highlighting the importance in selecting the model and the treatment that better fits the 

data, and from the validation results, a lower predicting ability was appreciable, 

underlining also the importance of the validation procedure. The effectiveness of FTIR 

spectroscopy for the prediction of MCP was also investigated by Dal Zotto et al. (2008) 

and De Marchi et al. (2009), their calibration results for the prediction of RCT and a30 

showed lower R2
CAL values than those reported here, also in Cecchinato et al. (2009), 

lower R2
CAL values were shown and, unfortunately, they did not report their validation 

results. For the CF modeling parameters (table 2) the FTIR calibrations gave results not 

higher than 0.79 in calibration (R2
CAL) and 0.61 in validation (R2

VAL). For CFP and kSR we 

found the lower efficiency of prediction. For all of the predicted traits we found less 

prediction accuracy in validation, and this was expected considering that here we used a 

more realistic prediction scenario, where a restricted number of herds and samples was 

used in calibration to predict, from FTIR, traits in herds and of samples not used to derive 

the prediction equation, and this tendency was also found and explained by Bittante et al. 

(2014) for the prediction of several milk technological traits. 

 

Comparison Between the Genetic Parameters of FTIR Predictions and Measueres 

The knowledge about the genetic parameters of infrared spectroscopy (IR) 

predicted traits is increasing and several authors have estimated the genetic parameters of 

milk traits (Soyeurt et al., 2007; Arnould et al., 2010) or beef (Cecchinato et al., 2012). 

Genetic studies of FTIR spectra of milk have demonstrated the existing heritability of 
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absorbance at individual wavelength (Bittante and Cecchinato, 2013) and of their principal 

components (Soyeurt et al., 2010). In the present study, the intra-herd heritabilities 

estimated for the predicted traits were higher than the measured, in particular, for those 

traits with low prediction accuracy (a45, k20, kSR, and CFP) the estimated heritabilities of the 

predicted values were much higher than those of measured. In the few previous study, 

where the genetic parameters of predicted and measured traits were compared (Cecchinato 

et al., 2009; Ferragina and Cipolat-Gotet, 2013; Bittante et al., 2014), the same trend of 

heritabilities was found. In the previous study on MCP (Cechinato et al., 2009) and on 

other technological traits (Bittante et al., 2014), the genetic and residual variance 

components of FTIR-predictions were both decreased, especially for the residual variance, 

explaining the differences observed for the heritabilities. In the present study, the 

differences observed in the genetic variance between predicted and observed traits ranged 

from 60 (a30) to -87% (CFP), the differences in the residual variance ranged from -23 to -

96% (kSR), and the differences in the HTD variance ranged from 177 (kCF) to -92% (kSR). 

The differences shown for the residual variance components, always lower for the 

predicted traits respect to the measured, explain why the heritabilities of the predicted traits 

are more or less higher than those of the measured, while, the high variability  in the range 

of the HTD variance components (269 percentage points) explain the variability of the 

heritability between the traits and more between the subsets. Considering that the herds 

were sampled once and one herd in one day, it is difficult to know if the HTD variance 

variability is due to the herd component or to the test day component. As already 

considered by Bittante et al. (2014), the study of heritability is not enough to consider the 

FTIR predictions as a valid method for the genetic improvement through an indirect 

selection. In order to assess the FTIR-predicted values as a valid method for genetic 

selection, we increased our knowledge studying also the genetic correlations between 
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predicted and measured traits. The posterior median of the phenotypic correlations were 

not higher than 0.76 (RCTeq) with the maximum upper bound of the 95% highest posterior 

density (HPD95) of 0.79. kSR was the trait with lowest phenotypic correlations (upper 

HPD95 bound of 0.21) and with the highest range of upper and lower HPD95 bounds for 

the genetic correlations (from -0.88 to 0.99). For all the traits, the genetic correlations were 

much higher than the phenotypic as demonstrated also by Cecchinato et al. (2009) and 

Bittante et al. (2014), except for the A+C set of RCTeq (rA=0.49, rP=0.61). In general the 

posterior median of the genetic correlations were not lower than 0.70 with the upper 

bounds of HPD95 never under 0.94 (except for RCTeq as shown). From the results 

obtained, it appears that the FTIR-based predictions, could be a valuable instrument for the 

genetic improvement of important milk related traits, considering that the FTIR 

instruments can be easily used at population level. 

 

CONCLUSIONS 

In the present study the application of new statistical models for the calibration of 

traditional milk coagulation properties and several traits derived from a modeling of curd 

firmness, were assessed trough an external validation procedure, moreover, genetic 

parameters for the FTIR-predicted and measured traits were estimated as further validation 

and to examine the potential use of FTIR predictions for the genetic improvement. 

Considering that the external validation is the appropriate procedure for the simulation of 

the real condition for the use of the developed calibration, loss of prediction efficiency in 

terms of coefficient of determination was expected, anyhow the Bayesian models, and in 

particular Bayes B, demonstrated that also reducing the spectra treatments, they can be 

used for the calibration of the studied traits. The best calibration results were found for 
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RCT and RCTeq, but the genetic estimates have highlighted a different scenario especially 

for those traits in which the calibration has shown low efficiency. The heritability of the 

predicted traits were higher than those of measured, with medium to high estimated values. 

The genetic and phenotypic correlations between measured and predicted values were 

estimated and compared in order to assess the possibility of using FTIR predictions for an 

indirect selection. The genetic correlations were generally high, and they were higher than 

the corresponding phenotypic correlations. The FTIR calibrations trough new statistical 

approaches demonstrated that further study are needed to improve the predicted values, but 

the genetic analysis demonstrated also that the predictions obtained from calibration 

characterized by low efficiency, could prove useful for the efficient selection of dairy 

populations. 

 



 
 

TABLES AND FIGURES 

Table 1. Descriptive statistics, calibration and validation results, of traditional MCP (RCT, k20, a30, a45) for each data subset. 

Item 
Training seta  Testing setb 

Subset n Mean SD RMSECAL
c R2

CAL
d  Subset n Mean SD RMSEVAL

e R2
VAL

f 

RCT, min              
 A 401 19.49 5.88 2.75 0.78  B+C 836 20.07 5.62 3.89 0.56 
 B 411 20.07 5.70 2.62 0.79  A+C 825 19.81 5.72 4.01 0.52 
 C 430 20.13 5.59 3.03 0.71  A+B 808 19.79 5.79 3.79 0.58 
k20, min              
 A 385 5.19 2.52 1.67 0.57  B+C 804 5.24 2.34 2.08 0.30 
 B 399 5.19 2.19 1.57 0.49  A+C 789 5.25 2.51 2.10 0.30 
 C 409 5.30 2.50 1.86 0.46  A+B 780 5.19 2.35 1.95 0.32 
a30, mm              
 A 401 28.24 12.34 7.40 0.65  B+C 836 28.14 12.50 9.99 0.38 
 B 411 28.09 12.32 8.40 0.54  A+C 825 28.17 12.54 10.25 0.33 
 C 430 28.07 12.79 8.11 0.61  A+B 808 28.15 12.31 9.88 0.38 
a45, mm              
 A 401 31.89 8.63 6.80 0.38  B+C 836 33.80 8.12 7.43 0.23 
 B 411 34.07 8.03 6.43 0.36  A+C 825 32.74 8.46 7.41 0.26 
 C 430 33.49 8.23 6.43 0.39  A+B 808 32.98 8.41 7.72 0.19 
aTraining set: samples used to develop a calibration equation to predict individual phenotypes using Fourier-transform infrared (FTIR) spectra; 
bTesting set: samples used to validate the calibration equation and to estimate heritabilities and the genetic correlations for measured phenotypes and their predictions obtained from 
FTIR spectra and calibration equations; 
cRMSECAL: squared root of the mean squared prediction error in the training set; 
dR2

CAL: coefficient of determination of calibration; 
eRMSEVAL: squared root of the mean squared prediction error in the testing set; 
fR2

VAL: coefficient of determination of validation. 
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Table 2. Descriptive statistics, calibration and validation results, of CF modeling parameters (RCTeq, CFP, kCF, kSR) and derived data (CFmax, tmax) for 
each subset of data. 

Item 
Training seta  Testing setb 

Subset n Mean SD RMSECAL
c R2

CAL
d  Subset n Mean SD RMSEVAL

e R2
VAL

f 

RCTeq, min              
 A 404 20.39 5.93 2.88 0.77  B+C 843 21.12 6.61 4.93 0.47 
 B 416 21.09 6.26 2.86 0.79  A+C 830 20.79 6.48 4.83 0.45 
 C 432 21.20 6.95 4.98 0.50  A+B 817 20.75 6.10 3.84 0.61 
CFP, mm              
 A 369 52.48 12.15 10.38 0.27  B+C 767 55.58 14.66 13.65 0.18 
 B 382 55.71 14.19 11.12 0.39  A+C 753 54.02 13.82 12.89 0.16 
 C 389 55.38 15.06 13.76 0.17  A+B 748 54.13 13.34 12.10 0.19 
kCF, min-1              
 A 371 13.64 5.98 3.93 0.58  B+C 779 12.10 5.46 5.24 0.24 
 B 387 12.12 5.52 3.42 0.62  A+C 762 12.81 5.75 5.29 0.22 
 C 396 12.07 5.41 4.29 0.39  A+B 756 12.87 5.79 5.15 0.23 
kSR, min-1              
 A 373 1.47 0.57 0.49 0.28  B+C 775 1.36 0.55 0.59 0.00 
 B 388 1.33 0.53 0.50 0.10  A+C 759 1.43 0.57 0.57 0.02 
 C 391 1.38 0.57 0.55 0.09  A+B 758 1.40 0.55 0.55 0.02 
CFmax, mm              
 A 404 35.63 7.90 5.00 0.60  B+C 842 36.73 7.34 6.27 0.34 
 B 416 36.89 7.36 5.53 0.44  A+C 829 36.12 7.62 5.84 0.43 
 C 431 36.55 7.30 4.89 0.55  A+B 817 36.26 7.66 6.31 0.33 
tmax, min              
 A 404 40.83 14.05 8.27 0.66  B+C 842 42.87 13.43 11.29 0.36 
 B 416 42.91 13.70 8.91 0.58  A+C 829 41.90 13.67 11.17 0.35 
 C 431 42.96 13.29 9.19 0.53  A+B 817 41.89 13.88 10.41 0.44 
aTraining set: samples used to develop a calibration equation to predict individual phenotypes using Fourier-transform infrared (FTIR) spectra; 
bTesting set: samples used to validate the calibration equation and to estimate heritabilities and the genetic correlations for measured phenotypes and their predictions obtained from 
FTIR spectra and calibration equations; 
cRMSECAL: squared root of the mean squared prediction error in the training set; 
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dR2
CAL: coefficient of determination of calibration; 

eRMSEVAL: squared root of the mean squared prediction error in the testing set; 
fR2

VAL: coefficient of determination of validation.  
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Table 3. Posterior median (SD) for additive genetic (σ2
a), herd (σ2

h) and residual variance (σ2
e) and across-herd (h<=� ) and intra-herd (h?=� ) heritabilities 

for MCP measures and for their predictions obtained by Fourier-transform infrared spectroscopy (FTIR). 

1Subsets A, B, and C  are subsets of data used to validate the calibration equations and to estimate genetic parameters for measures of phenotypes and their predictions obtained from 
FTIR spectra and calibrations. 

  

Item1 Subset 
MCP measures  FTIR-predictions 

σ
2

a σ
2

h σ
2

e h<=�  h?=�   σ
2

a σ
2 

h σ
2

e h<=�  h?=�  
RCT, min             
 B+C 5.18(2.23) 4.41(1.33) 19.90(2.15) 0.17(0.07) 0.21(0.08)  6.47(2.09) 6.34(1.62) 11.38(1.77) 0.27(0.08) 0.36(0.11) 

 A+C 8.77(3.09) 3.74(1.22) 18.53(2.70) 0.28(0.09) 0.32(0.10)  3.98(1.33) 7.06(1.70) 8.67(1.17) 0.20(0.07) 0.32(1.10) 
 A+B 6.67(3.00) 4.89(1.45) 18.42(2.70) 0.22(0.09) 0.27(0.11)  6.90(2.12) 5.21(1.42) 10.27(1.78) 0.31(0.09) 0.40(0.11) 
k20, min             
 B+C 0.72(0.44) 0.22(0.14) 4.45(0.45) 0.13(0.08) 0.14(0.08)  0.96(0.28) 1.05(0.27) 1.30(0.24) 0.29(0.08) 0.43(0.11) 
 A+C 2.03(0.89) 0.37(0.19) 4.05(0.75) 0.31(0.12) 0.33(0.13)  0.41(0.17) 0.37(0.10) 0.94(0.15) 0.24(0.09) 0.30(0.11) 
 A+B 2.17(0.73) 0.28(0.15) 3.20(0.62) 0.38(0.12) 0.40(0.12)  0.78(0.21) 0.40(0.11) 0.71(0.17) 0.41(0.10) 0.53(0.12) 
a30, mm             
 B+C 17.56(9.31) 7.69(3.62) 97.61(9.71) 0.14(0.07) 0.15(0.08)  28.10(6.93) 19.94(5.29) 37.13(5.87) 0.33(0.08) 0.43(0.09) 
 A+C 28.76(12.09) 12.66(4.48) 78.57(10.92) 0.24(0.10) 0.27(0.11)  35.16(8.84) 13.36(3.98) 30.95(7.21) 0.44(0.10) 0.53(0.12) 
 A+B 27.65(11.52) 12.74(4.46) 79.36(10.58) 0.23(0.09) 0.26(0.10)  35.46(8.62) 13.37(3.90) 30.77(7.01) 0.44(0.10) 0.53(0.11) 
a45, mm             
 B+C 4.75(3.39) 8.60(2.79) 53.09(4.10) 0.07(0.05) 0.08(0.06)  3.84(1.48) 7.08(1.71) 8.61(1.23) 0.19(0.07) 0.31(0.11) 
 A+C 9.24(4.54) 13.43(3.76) 49.70(4.60) 0.13(0.06) 0.16(0.07)  2.22(1.09) 8.72(2.02) 8.36(0.98) 0.11(0.05) 0.21(0.09) 
 A+B 14.63(5.57) 12.30(3.50) 42.69(5.10) 0.21(0.08) 0.26(0.09)  4.27(1.68) 10.31(2.43) 9.48(1.47) 0.18(0.07) 0.31(0.11) 
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Table 4. Posterior median (SD) for additive genetic (σ2
a), herd (σ2

h) and residual variance (σ2
e) and across-herd (h<=� ) and intra-herd (h?=� ) heritabilities 

for CF modeling parameters and derived traits measured and for their predictions obtained by Fourier-transform infrared spectroscopy (FTIR). 

1Subsets A, B, and C  are subsets of data used to validate the calibration equations and to estimate genetic parameters for measures of phenotypes and their predictions obtained from 
FTIR spectra and calibrations. 

 

Item1 Subset 
CF modeling measures  FTIR-predictions 

σ
2

a σ
2

h σ
2

e h<=�  h?=�   σ
2

a σ
2 

h σ
2

e h<=�  h?=�  
RCTeq, min             
 B+C 10.81(4.46) 4.16(1.44) 25.95(3.96) 0.26(0.10) 0.29(0.11)  7.65(2.22) 7.17(1.80) 10.83(1.84) 0.30(0.08) 0.41(0.11) 
 A+C 23.14(5.58) 3.58(1.36) 14.63(4.34) 0.56(0.12) 0.61(0.13)  5.79(1.75) 7.47(1.81) 9.19(1.47) 0.26(0.07) 0.39(0.10) 
 A+B 8.88(2.75) 4.66(1.46) 20.35(2.57) 0.26(0.08) 0.30(0.09)  7.71(2.02) 4.10(1.14) 8.67(1.66) 0.37(0.09) 0.47(0.11) 
CFP, mm             
 B+C 10.65(10.20) 21.95(7.91) 168.67(13.08) 0.05(0.05) 0.06(0.05)  4.08(1.56) 10.80(2.57) 10.67(1.44) 0.16(0.06) 0.28(0.10) 
 A+C 15.58(12.29) 18.98(7.16) 152.45(13.49) 0.08(0.06) 0.09(0.07)  6.13(2.10) 19.24(4.44) 12.25(1.86) 0.16(0.06) 0.33(0.10) 
 A+B 24.47(14.92) 24.91(7.69) 121.36(14.14) 0.14(0.08) 0.17(0.10)  3.23(1.53) 5.16(1.33) 8.43(1.32) 0.19(0.09) 0.28(0.12) 
kCF, min-1             
 B+C 3.85(2.59) 4.11(1.27) 20.23(2.49) 0.14(0.09) 0.16(0.10)  5.12(1.57) 5.06(1.26) 5.93(1.30) 0.32(0.09) 0.46(0.12) 
 A+C 4.50(3.30) 3.28(1.20) 23.98(3.09) 0.14(0.10) 0.16(0.11)  2.40(0.91) 9.07(2.06) 4.42(0.77) 0.15(0.06) 0.35(0.12) 
 A+B 5.76(3.15) 5.94(1.70) 20.09(2.87) 0.18(0.09) 0.22(0.11)  2.74(0.66) 2.48(0.63) 2.67(0.54) 0.34(0.08) 0.51(0.11) 
kSR, min-1             
 B+C 0.02(0.02) 0.02(0.01) 0.25(0.02) 0.08(0.06) 0.08(0.07)  0.01(0.00) 0.03(0.01) 0.01(0.00) 0.16(0.06) 0.40(0.12) 
 A+C 0.01(0.01) 0.05(0.01) 0.26(0.02) 0.04(0.04) 0.05(0.05)  0.00(0.00 0.00(0.00) 0.20(0.00) 0.20(0.07) 0.32(0.11) 
 A+B 0.03(0.02) 0.04(0.01) 0.23(0.02) 0.09(0.08) 0.11(0.00)  0.01(0.00) 0.01(0.00) 0.01(0.00) 0.29(0.09) 0.47(0.13) 
CFmax, mm             
 B+C 5.70(3.10) 7.48(2.25) 34.21(3.21) 0.12(0.06) 0.14(0.07)  5.85(1.82) 12.71(3.00) 12.86(1.63) 0.19(0.06) 0.31(0.09) 
 A+C 8.07(3.72) 14.37(3.61) 30.19(3.55) 0.15(0.07) 0.21(0.09)  2.92(1.04) 5.47(1.36) 9.45(1.01) 0.16(0.06) 0.24(0.08) 
 A+B 13.11(4.20) 10.67(2.85) 25.76(3.64) 0.26(0.08) 0.34(0.10)  4.84(1.63) 8.40(2.02) 8.29(1.39) 0.22(0.07) 0.37(0.11) 
tmax, min             
 B+C 32.25(13.28) 23.19(7.22) 114.58(12.73) 0.19(0.07) 0.22(0.08)  34.12(9.48) 31.80(7.79) 42.33(7.89) 0.32(0.08) 0.45(0.11) 
 A+C 44.03(16.19) 20.89(6.79) 111.12(14.61) 0.25(0.09) 0.28(0.10)  14.43(4.52) 39.27(9.06) 30.45(4.07) 0.17(0.05) 0.32(0.09) 
 A+B 42.22(14.65) 33.33(9.30) 101.64(13.14) 0.24(0.08) 0.29(0.09)  34.01(8.02) 14.85(4.15) 27.05(6.29) 0.45(0.09) 0.56(0.11) 
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Table 5. Posterior median and the lower and upper bounds of the 95% highest posterior 
density region (HPD95) for additive genetic (rA) and phenotypic (rP) correlations between 
measures of MCP and their predictions obtained by Fourier-transform infrared 
spectroscopy (FTIR). 
 

Item Subset 
Genetic correlations  Phenotypic correlations 
rA HPD95  rP HPD95 

RCT, min       
 B+C 0.93 0.69; 1.00  0.73 0.67; 0.77 
 A+C 0.77 0.44; 0.94  0.68 0.61; 0.73 
 A+B 0.94 0.72; 1.00  0.75 0.71; 0.79 
k20, min         
 B+C 0.82 0.20; 1.00  0.54 0.48; 0.60 
 A+C 0.74 0.32; 0.94  0.52 0.46; 0.59 
 A+B 0.82 0.55; 0.96  0.54 0.47; 0.60 
a30, mm         
 B+C 0.81 0.43; 0.98  0.60 0.54; 0.65 
 A+C 0.90 0.64; 0.99  0.61 0.55; 0.66 
 A+B 0.91 0.65; 1.00  0.61 0.55; 0.66 
a45, mm         
 B+C 0.86 0.30; 1.00  0.48 0.41; 0.55 
 A+C 0.88 0.41; 1.00  0.49 0.41; 0.57 
 A+B 0.94 0.67; 1.00  0.39 0.29; 0.48 
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Table 6. Posterior median and the lower and upper bounds of the 95% highest posterior 
density region (HPD95) for additive genetic (rA) and phenotypic (rP) correlations between 
CF modeling parameters and derived traits measures and their predictions obtained by 
Fourier-transform infrared spectroscopy (FTIR). 
 

Item Subset 
Genetic correlations  Phenotypic correlations 
rA HPD95  rP HPD95 

RCTeq, min       
 B+C 0.76 0.41; 1.00  0.65 0.60; 0.70 
 A+C 0.49 0.15; 0.72  0.61 0.55; 0.67 
 A+B 0.97 0.86; 1.00  0.76 0.73; 0.80 
CFP, mm         
 B+C 0.55 -0.69; 1.00  0.37 0.29; 0.45 
 A+C 0.81 0.08; 0.99  0.36 0.28; 0.44 
 A+B 0.79 0.10; 1.00  0.34 0.26; 0.43 
kCF, min-1         
 B+C 0.84 0.32; 1.00  0.45 0.36; 0.52 
 A+C 0.64 -0.11; 1.00  0.41 0.33; 0.50 
 A+B 0.68 0.22; 0.96  0.43 0.34; 0.51 
kSR, min-1         
 B+C 0.13 -0.88; 0.95  0.05 -0.05; 0.15 
 A+C 0.33 -0.76; 0.99  0.11 0.01; 0.21 
 A+B 0.41 -0.52; 0.94  0.10 0.00; 0.20 
CFmax, mm         
 B+C 0.90 0.52; 1.00  0.58 0.51; 0.64 
 A+C 0.95 0.70; 1.00  0.65 0.58; 0.71 
 A+B 0.90 0.66; 0.99  0.57 0.49; 0.64 
tmax, min         
 B+C 0.92 0.63; 1.00  0.59 0.52; 0.65 
 A+C 0.87 0.58; 1.00  0.55 0.47; 0.61 
 A+B 0.88 0.66; 0.99  0.68 0.63; 0.73 



 
 

 

Figure 1. Absorbance of milk samples (Log T−1; solid black line represents the average, whereas the 2 gray lines represent the average  ± SD). The 
vertical dashed lines define five infrared regions (SWIR=short-wavelength infrared or near-infrared; MWIR=mid-wavelength infrared; LWIR=long-
wavelength infrared. 

 

 

- 172 - 



- 173 - 
 

GENERAL CONCLUSIONS 

The main objective of this thesis was to assess the infrared spectroscopy for the 

prediction at individual level of “new phenotypes” related to the technological properties 

of the cow milk, testing classic and innovative statistical approaches and evaluating the 

genetic parameters for a possible inclusion of the predicted traits in the selection indices as 

indirect selection method. Fourier-transform infrared spectroscopy is a rapid, inexpensive, 

high-throughput technique based on commonly used instruments that may be applied to 

milk samples that are already collected for other analysis. In this study its feasible 

application for the prediction of new milk phenotypes has been demonstrated.  

Using the most common calibration procedures, the FTIR was capable of predicting 

with high accuracy different measures of cheese yield and in particular the TS cheese 

yield. High accuracy was also found for the prediction of the retention in the curd or loss in 

the whey of the main milk nutrient, with exception of fat recovery in which a less accurate 

prediction was obtained. The choice of the calibration methods that better exploits the 

information hidden in the absorbances of individual waves is of prime importance, and in 

particular for those traits that are difficult to be predicted. The Bayesian models tested in 

this thesis for the prediction of “difficult to predict” milk traits, showed greater prediction 

accuracy than the most widely used methods.  

The prediction of traditional MCP and the CF modeling parameters, predicted using 

the Bayesian models, have shown low accuracy in the external validation, as found also in 

the results of the external validation for the prediction of CYs and RECs obtained with the 

PLS. Despite the low prediction accuracy in validation, the heritabilities of the predicted 

values were similar or higher than those of the corresponding measured values, and even 

when the coefficient of determination for the validation was moderate, the genetic 

correlations between predicted and measured values were always higher than the 
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phenotypic correlations, and in the majority of cases near or higher than 90%, underlining 

that the FTIR predictions could therefore prove useful for the efficient selection of dairy 

populations.  

The prediction equations of %CY and REC were used to predict the traits in a dairy 

cows population of Holstein, Brown Swiss and Simmental breeds. The genetic parameters 

of the predicted traits were estimated proving to be heritable and the heritability values 

were comparable to those of the measured traits. The genetic correlations of %CY and 

REC with milk production and composition provide evidence that the current selection 

paradigm used in dairy cattle may have a limited effects on the technological parameters. 

Milk protein and fat content do not explain all the genetic variations of %CY and (in 

particular) REC, thus, these traits could be directly selected to improve the cheese making 

aptitude of milk. 
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