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Summary

Diabetes is a serious metabolic disorder that according to the International Diabetes

Federation (IDF) [1] 2012 report affects about 371 million of people worldwide. This

number is likely to increase in the next years especially due to the contribution of the

emerging countries where health care is less effective. That is the reason why in these

years scientific research has been carried out intensely facing diabetes with different

field expertise from cellular biology to pharmacology to engineering and so on. Various

scientific questions were answered but still many others are to come. For instance, different

tests were developed to study the glucose-insulin system in vivo whose data were analyzed

with model based approaches to extrapolate some knowledge of the underlying phenomena

of the glycemic control. The research presented here aims to analyze data coming from

different test by exploiting the nonlinear mixed-effects approach modeling population

method (NLMEM) in order to study the glucose-insulin system. This statistical approach

is largely employed in pharmacokinetics and pharmacodynamics (PKPD) studies during

drug development but is not that much widespread in metabolic studies. This technique

is really appealing because is able to quantify not only the individual and population

parameters but also is able to identify the biological sources of inter-individual and

intra-individual variability. Moreover the nonlinear mixed-effects approach is particularly

recommended in ”sparse dataset”, the typical epidemiological study condition, where the

standard individual techniques have difficulties in getting the physiological information

from the data. In this case a complete statistical description is obtainable by borrowing

the lack of information from the entire population thus potentially reducing the need for

blood samples and invasive trials. Because of its potential, the nonlinear mixed-effects

approach offers a valuable modeling tool to be investigated and validated on data coming

from metabolic studies as those regarding the glucose-insulin system. The rationale of

this work was first to optimize the metabolic minimal models that where built using the

standard individual estimation approach by exploiting to the full the potentials of the

nonlinear mixed-effects. Then, the second step was to choose the best algorithm to solve

the likelihood maximization required by using the nonlinear mixed-effects, that due to

the model parametric nonlinearity generally does not have an explicit solution. Finally,

the last part was evaluating the model performances providing evidence for the quality of

the results. To do this, in addition to the use of the available statistical tests for nonlinear

mixed-effects, an ad hoc technique was developed to ensure a correct model performance

assessment. This thesis is the natural extension and integration of Denti et al work

[2, 3] where the IVGTT glucose minimal model was identified investigating different

estimation methods and studying the effect of the introduction of the covariates. In this
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work, the glucose, insulin and c-peptide minimal models during an intravenous glucose

tolerance test (IVGTT) are revised with the final aim of implementing an integrated

system. Moreover with the same technique the glucose and c-peptide minimal model

during a meal tolerance test (MTT) are implemented. By moving from an intravenous to

an oral test a new scientific challenge is faced in terms of increased complexity of the

experiment and of the physiology since the gastro intestinal tract has to be considered.

More precisely, as a first step, new different estimation methods were compared on a

data rich and data poor glucose simulated dataset using the IVGTT glucose minimal

model in order to understand which is the best estimator to use. The results select the

First-Order Conditional Estimation as method of choice and show its robustness to poor

sampling. As a second step, the IVGTT glucose minimal model was implemented using

the nonlinear mixed-effects approach as a two compartment model with a delay term that

is able to describe all the time dynamic of glucose in order to make the integration with

the other IVGTT models possible. Afterwards, the C-peptide IVGTT minimal model was

implemented and a covariate analysis was carry out. In particular after having introduced

a delay term, a correlation analysis between the covariates was done and a following

generalized additive models (GAM) analysis was performed between the parameters

and the covariates in order to test the time consuming forward and backward covariate

insertion on a small subset of possible parameter-covariate relations. Finally the IVGTT

insulin model was implemented by introducing a time delay, coherently with the C-peptide

model, a second compartment that is able to catch all the kinetics of the data and other

modeling expedients. Once the insulin and glucose minimal models were implemented

by NLMEM, an integrated model was identified that is able to describe simultaneously

the glucose and insulin kinetics. As a third main step, the meal tolerance test (MTT)

data were analyzed. The C-peptide minimal model was implemented using the nonlinear

mixed-effects and estimated on a full and reduced dataset of healthy subjects. The same

model was tested in populations with different degrees of pathology such as prediabetic

and diabetic subjects. Then the meal glucose minimal model was implemented using

the same technique on a simulated MTT dataset. Different models were implemented

to describe the rate of appearance (Ra) and we looked for the best model that ensures

the compromise between the best prediction of Ra data and the best estimation of the

insulin sensitivity.

Typically in a PKPD study the performance of the models are evaluated using the visual

predictive check (VPC) that is a diagnostic tool based on a comparison between the

statistics obtained from the simulated data using the estimated population parameters and

the true observed data. All the models presented in this thesis have at least one forcing
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function that is a time varying known input function. An ”ad hoc VPC” was developed

to better study these types of model. In particular the standard VPC method presents

some pitfalls during the simulation step because it does not take into consideration a

link between the simulated parameters and the forcing function associated. In this thesis

a new method is proposed to have a correct evaluation of the VPC results.

To conclude, in this thesis we proved the advantages of using the population approach

with respect to the standard individual technique: it prevents the use of Bayesian a priori

information, it can handle sparse dataset and so future studies for protocol reduction are

now possible, it permits the introduction of new modeling parts and covariate analysis

can be carried out.
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Sommario

Il diabete è una grave malattia metabolica che secondo  l’ International Diabetes

Federation (IDF) [1] colpisce circa 371 milioni di persone in tutto il mondo. Questo

numero è destinato a crescere nei prossimi anni grazie al contributo dei paesi dove la

sanitá e la prevenzione sono meno efficaci. Questo è il motivo per cui in questi anni la

ricerca scientifica è stata portata avanti intensamente studiando il diabete da diversi

punti di vista: dalla biologia cellulare alla farmacologia alla ingegneria e via dicendo.

Molti quesiti scientifici sono stati risolti ma molti altri sono ancora aperti. Recentemente

sono stati sviluppati diversi test per studiare il sistema glucosio insulina in vivo i cui dati

sono stati analizzati con approcci basati su modelli matematici che servono a estrapolare

della conoscenza sui fenomeni sottostanti del controllo glicemico.

La ricerca qui presentata si propone di analizzare i dati provenienti da test differenti

sfruttando  l’ approccio di popolazione nonlineare a effetti misti (NLMEM) per studiare

il sistema glucosio-insulina. Questo approccio statistico è largamente impiegato in studi

di farmacocinetica e farmacodinamica (PKPD) durante lo sviluppo di farmaci, ma non è

molto diffuso negli studi metabolici. Questa tecnica è molto interessante perché non solo

è in grado di quantificare i parametri del l’ individuo e della popolazione, ma è in grado di

identificare le fonti biologiche della variabilitá inter-individuale e intra-individuale. Inoltre

 l’ approccio non lineare a effetti misti è particolarmente indicato in ”dataset sparsi”,

la condizione tipica degli studi epidemiologici in cui le tecniche standard individuali

hanno difficoltá ad ottenere le informazioni dai dati. In questo caso una descrizione

completa statistica è ottenibile recuperando la mancanza di informazioni dalla popolazione

riducendo cośı potenzialmente la necessitá di campioni di sangue e di prove invasive.

Grazie al suo potenziale,  l’ approccio non lineare a effetti misti offre un valido strumento

di modellazione da utilizzare e convalidare su dati provenienti da studi metabolici, come

quelli che riguardano il sistema glucosio-insulina.

Il razionale di questo lavoro è stato innanzitutto ottimizzare i modelli metabolici che

sono stati costruiti utilizzando  l’ approccio standard di stima individuale sfruttando al

massimo le potenzialitá del metodo ad effetti misti non lineari. Poi, il secondo passo

è stato quello di scegliere il miglior algoritmo per risolvere la massimizzazione della

likelihood richiesta nei modelli implemtentati con tecnica non lineare a effetti misti, che

a causa delle non linearitá presenti nei modelli spesso non ha una soluzione esplicita.

Infine,  l’ ultima parte è stata la valutazione delle prestazioni dei modelli che fornisce la

prova della qualitá dei risultati. Per fare questo, in aggiunta al l’ uso di test statistici

giá disponibili e adatti al metodo NLMEM, una tecnica ad hoc è stato sviluppata per

garantire una corretta valutazione delle prestazioni di alcuni modelli.
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Questa tesi è  l’ estensione naturale e  l’ integrazione del lavoro di Denti et al [2, 3, 4] dove

il modello minimo del glucosio IVGTT è stato identificato indagando diversi metodi di

stima e su cui sono state introdotte le covariate. In questo lavoro, i modelli minimi del

glucosio, insulina e C-peptide minimo durante un test di tolleranza al glucosio per via

endovenosa (IVGTT) sono stati rivisti, con  l’ obiettivo finale di implementare un sistema

integrato. Inoltre si sono implementati con la stessa tecnica il modello minimo del glucosio

e del C-peptide durante un test di tolleranza al glucosio orale (MTT). Passando da un

carico di glucosio endovenoso ad uno orale una nuova sfida scientifica viene affrontata in

termini di maggiore complessitá degli esperimenti e della fisiologia in quanto il tratto

gastrointestinale deve essere considerato.

Piú precisamente, in una prima fase, diversi metodi di stima sono stati confrontati su

un dataset simulato usando il modello minimo del glucosio IVGTT con campionameto

ricco e ridotto, al fine di capire quale è il miglior stimatore da utilizzare. I risultati

hanno selezionato il metodo First order Conditional (FOCE) e hanno dimostrato la

sua robustezza nel campionamento ridotto. In una seconda fase, il modello del glucosio

IVGTT minimo è stato implementato utilizzando  l’ approccio non lineare a effetti

misti come un modello a due compartimenti con un tempo di ritardo che è in grado

di descrivere la dinamica del glucosio per tutta la durata del l’ esperimento, al fine di

rendere  l’ integrazione con gli altri modelli IVGTT possibile. Successivamente, il modello

minimo del C-peptide IVGTT è stato implementato ed è stata svolta uâ analisi delle

covariate. In particolare dopo aver introdotto un ritardo, sono state effettuate un analisi

di correlazione fra le covariate e una successiva analisi, usando i generalized additive

models (GAM), tra i parametri e le covariate al fine di ottenere un sottoinsieme piccolo

di possibili combinazioni tra parametri e covariate su cui svolgere la time consuming

forward and backward analysis in NONMEM. Infine, il modello del l’ insulina IVGTT è

stato implementato introducendo un ritardo, coerentemente con il modello del C-peptide,

un secondo compartimento in grado di catturare la cinetica dei dati ed ulteriori espedienti

modellistici. Una volta che i modelli minimi del l’ insulina e del glucosio sono stati

implementati usando le tecniche NLMEM, è stato costruito un modello integrato che è in

grado di descrivere contemporaneamente la cinetica del l’ insulina e del glucosio. Come

terzo passo sono stati analizzati i dati del test di tolleranza al glucosio orale (MTT). Il

modello minimo del C-peptide è stato implementato utilizzando le tecniche NLMEM ed è

stato stimato su un dataset di soggetti sani con campionamento ricco e ridotto. Lo stesso

modello è stato testato in popolazioni con differenti livelli di patologia come i soggetti

prediabetici e diabetici. Poi con la stessa tecnica è stato realizzato il modello minimo

del glucosio orale su un datset simulato MTT. Diversi modelli sono stati implementati
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per descrivere la velocitá di comparsa del glucosio nel sangue (Ra) ed è stato scelto il

modello che è in grado di garantire il compromesso tra la migliore predizione di dati di

Ra e la migliore stima della sensibilitá al l’ insulina.

In genere in uno studio PKPD le prestazioni dei modelli sono valutate con la tecnica del

visual predictive check (VPC). Questo è uno strumento diagnostico basato su un confronto

tra le statistiche ottenute dai dati simulati utilizzando i parametri della popolazione

stimati e i dati veri osservati. Tutti i modelli presentati in questa tesi hanno almeno

una funzione forzante che è una funzione di ingresso tempo variante nota ed un VPC

”ad hoc” è stato sviluppato per studiare proprio questo tipo di modelli. In particolare

il metodo VPC standard ha presentato alcuni problemi durante la fase di simulazione

perché non prende in considerazione il legame tra i parametri simulati e la funzione

forzante associata. In questa tesi è stato quindi proposto un nuovo metodo che permette

di avere una corretta valutazione dei risultati del VPC.

Per concludere, in questa tesi abbiamo dimostrato i vantaggi dell’ utilizzare un approccio

di popolazione rispetto alla tecnica standard individuale: evita  l’ uso di informazioni

bayesiane a priori, puó gestire dataset sparsi e cośı futuri studi per la riduzione del

protocollo sono ora possibili, permette  l’ introduzione di nuove parti di modellazione e  l’

analisi delle covariate puó essere ora effettuata.



Contents

1 Introduction 1

2 Background 3

2.1 The glucose insulin system . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Methods and protocols to study the glucose and insulin system . . . . . . 8

2.3 Models for IVGTT data and models for MTT data . . . . . . . . . . . . . 10

2.4 Nonlinear mixed-effects models . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Stochastic nonlinear mixed effects methods to quantify IVGTT data 25

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Disussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 The IVGTT glucose minimal model: a two compartment model 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Covariate selection for the IVGTT C-peptide minimal model 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



xii Contents

6 An integrated model to describe the glucose and insulin system during

an IVGTT 77

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 The MTT glucose minimal model on a synthetic dataset 97

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 The MTT C-peptide minimal model 115

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 The visual predictive check in model with forcing functions 131

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10 Conclusions 145



Introduction

This thesis is the natural extension of Denti et al work [4] where are clearly shown the

advantages of using the population approach with respect to the traditional individual

weighted least square (WLS) approach. This approach in fact unlike the traditional

approach is particularly effective during the model estimation when the sampling scheme

is reduced or data are largely variable. In these situations the population approach

is able to compensate the lack of information by borrowing the knowledge spread on

the population and include it during the estimation step. Moreover the population

approach is able to investigate and possibly identify the sources of variability in the

population which makes the technique more appealing then the individual approach.

In pharmacokinetic and pharmacodynamic (PKPD) studies this approach is largely

employed as it allows a possible cost reduction of the trials and less invasive experiments

whereas in metabolic studies this technique is less widespread but due to its potentials it

is worthy to investigate its effects also in this field.

In this thesis is carried on the investigation of the glucose-insulin system started by Denti

et al [4] not only after an intravenous but also after an oral glucose perturbation. In

particular by exploiting the potentials of the population approach some of the minimal

models that were developed so far with the traditional individual approach are revised.

New modeling parts are added, Bayesian a priori information is avoided when possible,

covariates information is added (i.e. subject physiological characteristic such as weight,
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height ...) and possible protocol reductions are studied.

In the following chapters we explored the population approach advantages to study the

glucose-insulin system in many ways. In particular in chapter 3 different population

estimation methods on a simulated dataset are tested using the IVGTT glucose minimal

model and their behavior on various discarded sampling schemes are explored. In chapter

4 a two compartment glucose minimal model during an intravenous glucose tolerance test

(IVGTT) is implemented and its performance is compared with the one compartment

glucose minimal model described by Denti et al [2]. In chapter 5 the IVGTT C-peptide

minimal model is implemented and a covariate analysis is carried out. In chapter 6 the

IVGTT glucose two compartment minimal model is integrated with a revised IVGTT

insulin minimal model. In chapter 7 and 8 the glucose insulin system is studied after

an oral glucose perturbation test (OGTT) by doing so we move into a more complex

and variable context as the GI tract is involved during the experiment. In particular in

chapter 7 four different models to describe the glucose rate of appearance are proposed

and matched with the oral glucose minimal model. In chapter 8 the oral C-peptide

minimal model is explored on a rich, a reduced and furtherly reduced datasets and its

performance is studied to identify different pathophysiolgical groups. Finally in chapter

9 a revision of the evaluating model technique, the Visual Predictive Check, is proposed

to study the models, like the minimal models, that present forcing functions.



Background

2.1 The glucose insulin system

Glucose is a simple sugar that represents a primary font of energy for the whole body.

Even if all the cells metabolize sugar the body tissues can be classified differently according

to their glucose uptake. In particular the brain nervous tissue and the red blood cells

are glucose dependent tissue or insulin independent because a continuous sugar intake

must be present to guarantee their metabolic activity. This fix and continuous intake

of the nerve cells amounts to about 100 mg/min (150 g/24 h) in a normal individual

[5, 6]. The muscular and the adipose tissues are insulin dependent tissues because in their

cells are present the glucose transporters GLUT-4 that are responsible for the insulin

regulated glucose transport and storage in the cell. The liver, the pancreas and the

hypothalamus are the glucose sensors organs in the sense that they are able to detect

the glucose concentrations and start an appropriate action. Finally the intestine and the

kidney are glucose eater organs in the sense that they deal with the glucose income and

return. At steady state, that means that there is no ingestion of food and no physical

activity, the glucose blood concentration is kept greater than 65 mg/dl. This is achieved

through the liver that provides glucose in blood and through the pancreas that controls

that the glucose is used by the insulin dependent tissues and that is not released in

big amounts by the liver. The pancreas is able to perform these actions through the
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β-cells that secrete the insulin hormone that reaches the system circulation after liver

degradation, and is peripherally cleared primarily by the kidneys. The hypothalamus

prevent the brain and the glucose-dependent organs in general from hypoglycemia by

increasing the glucose hepatic production and limiting the glucose uptake by the insulin

dependent tissues. During a meal ingestion the intestine provides in the blood circulation

some glucose that through the insulin action is stored in the muscular and the adipose

tissues. At the same time insulin inhibits the hepatic glucose production. Moreover

the glucose load itself stimulates the glucose uptake in the insulin dependent organs

and in the liver and limits the glucose hepatic production. Although this is a very

synthetic analysis of the glucose homeostasis, the processes and the organs that have just

been described are a good approximation of the glucose-insulin system and its glycemic

control mechanism Fig. 2.1. These control interactions are usually referred to as insulin

sensitivity and β-cell responsivity. In other words insulin sensitivity is the capacity of

insulin to regularize the level of glucose in plasma whereas the β-cell responsivity is

the ability of the pancreas to secrete insulin in an efficient fashion. Any deregulations

of the processes just described can provoke hypoglycemia or hyperglycemia that are

the cause of dangerous situations for the body such as ketoacidosis, dehydration and

coma. When the human body is not able to compensate these deregulations, begins

the chronic disease called diabetes mellitus. Diabetes mellitus is a metabolic alteration

due to a reduce activity of the insulin hormone or an occlusion of its secretion or both.

The main characteristic of this chronic disease is a status of hyperglycemia that in long

term is combined with other peculiar severe complications such as retinopathy that

leads to blindness, nephropathy that leads to kidney failure, neuropathy that leads to

ulcer and macro angiopathy that leads to premature arteriosclerosis. According to the

international diabetes federation (IDF) [1] in 2012 there were about 371 millions diabetic

patients around the world (Fig. 2.2). This number is likely to increase especially thanks

to the contribution of the developing countries [1, 7]. In fact according to the World

Health Organization [7] the 80% of the diabetic patients around the world come from low

and middle income countries. According to the American Diabetes Association (ADA)

guidelines [8] a patient can be diagnosed of diabetes mellitus if its glycemic levels in

venous blood at fasting are equal or greater than 126 mg/dl or if its glycemic levels

after two hours from a glucose meal eaten during a glucose tolerance test (OGTT) are

greater or equal than 200 mg/dl (Tab. 2.1) Moreover two other categories were defined to

describe altered glucose tolerance conditions that are placed halfway between the healthy

state and the diabetic state. In particular was defined the Impaired glucose tolerance

(IGT) category as patients with glycemic levels between 140-200 mg/dl after two hours



2.1 The glucose insulin system 5

Figure 2.1: The glucose-insulin system scheme: glucose is produced (mainly by the liver),
distributed, and utilized in both insulin-independent (e.g., central nervous system and red
blood cells) and insulin-dependent (muscle and adipose tissues) tissues. Insulin is secreted by
pancreatic beta cells, reaches the system circulation after liver degradation, and is peripherally
cleared primarily by the kidneys. The glucose and insulin systems interact by feedback control
signals, e.g., if a glucose perturbation occurs (after a meal), beta-cells secrete more insulin in
response to the increased plasma glucose concentration and in turn insulin signaling promotes
glucose utilization and inhibits glucose production so as to bring rapidly and effectively plasma

glucose to the physiological level.
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Figure 2.2: 2012 IDF diabetes statistics [1]
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from a glucose meal and the Impaired fasting glucose (IFG) that were defined as patients

with glycemic levels at fasting between 100-126. Diabetes was classified by ADA in 1997

and approved by the world health organization (OMS) in different categories according

to etiopathogenesis criteria. The main two are described in the following subchapters.

state FPG glucose level (mg/dl) 2-h plasma glucose in OGTT (mg/dl)

healthy ≤ 99 ≤ 139
IFG 100- 125 ≤ 139
IGT ≤ 99 140-199

diabetic ≥ 126 ≥ 200

Table 2.1: ADA diabetes classification using glucose levels at time 0 and at 2 h after an
OGTT

Type 1 diabetes

Type 1 diabetes mellitus is usually diagnosed in children and young adults and affects an

estimated 5% of all the diabetes cases [8]. It is caused by an autoimmune destruction

of the β-cell of the pancreas that in other terms means no insulin secretion. The

recognized origins nowadays are both genetic and environmental. The lack of insulin

creates hyperglycemia in the glucose blood and to fix this is necessary to use a daily insulin

therapy that maintains blood sugar levels within the physiological range. The therapy

consists on injecting insulin analogs that mimics the missing endogenous insulin profiles.

Likewise a pancreas transplantation is necessary or recently also islet cell transplantations

are explored. Transplantation is still in an experimental phase.

Type 2 diabetes

Type 2 diabetes is the most common form of diabetes (about the 90% of diabetes cases

[8]).Traditionally is considered as the adult diabetes, it is increasing also in children.

It is related to an insulin secretion deficiency and to an insulin resistance. Insulin

resistance is the inability of the insulin dependent tissues to respond adequately to

normal levels of insulin. For example liver would inappropriately release glucose into the

blood despite the insulin presence that should promote the inhibition of the mechanism.

The type 2 diabetes causes are a combination of lifestyle and genetic factors. For example

obesity, diet, sedentary lifestyle, increasing aging and race (African Americans, native

Americans, Latinos etc) are some of the risk factors for the disease development. Insulin

administration normally is not necessary with this kind of diabetes, usually increasing

physical exercise and dietary modification are initially sufficient to lower down the glucose
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levels into physiological ranges. In case these two are not enough then medication or

insulin is needed.

2.2 Methods and protocols to study the glucose and

insulin system

In these years research has been carried out intensely to study the mechanism of regulation

of the glucose insulin system. Many approaches have been proposed to grasp information

from the system and study its efficiency starting from simple indices like HOMA and

QUIKI [9] to more sophisticated technique such as the Euglycemic/Hyperglycemic Clamp

[10]. The first two indices are poor indicator of the system efficiency since they are based

only on the fasting values of glucose and insulin and do not take into account the dynamic

of the system in their formulation. The Clamp technique is a more sophisticated method

that aims to measure insulin secretion (β-cell responsivity) and insulin resistance (insulin

sensitivity). In particular the first is obtained through the hyperglycemic clamp where

the plasma glucose is firstly raised by a priming infusion and then the desired glucose

concentration is kept constant. Under these conditions the insulin is biphasic and provides

then a measure of the β-cell response. The insulin resistance instead is measured through

the euglycemic or hyperinsulinemic clamp where the insulin levels are acutely raised and

maintained high by a prime continuous infusion of insulin whereas plasma glucose is kept

constant at basal levels by a variable glucose infusion that corresponds to the glucose

uptake by all the body tissues. These two protocols are invasive, expensive and requires

prepared technicians to carry out the experiment successfully that means that they cannot

be applied in epidemiology studies where the number of patients and experiments to

carry out is big. Moreover since they force the system at a different steady state from the

basal they lose the description of the system dynamic and they focus on a measurement

to derive the insulin secretion and the insulin resistance. The approach that has so far

the best results in describing the glucose and insulin system is the model based approach.

This method rely on a description of the system under analysis through a mathematical

model that enables to quantify mechanisms in the inaccessible pools from the measures

of the accessible pool [11]. In our case the system under study is the glucose-insulin

system and through the mathematical modeling approach for example we are able to

quantify not directly accessible information such as the insulin secretion through the

simple measurement of the blood levels of glucose and C-peptide, an insulin co secreted

substance. There are two protocols to study the glucose and insulin system through

a mathematical model approach, the difference between them is that they perturb the
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system in a different way at the beginning of the experiment. The intravenous glucose

tolerance test (IVGTT) gives the glucose dose intravenously in plasma whereas the oral

glucose tolerance test (OGTT or MTT) administers the glucose dose orally. Moving

from the intravenous to the oral administration means increasing the modeling challenges

because the variable GI tract, through which the glucose appears in plasma, has to be

described 2.3. Once the experimental data are collected following the selected protocol,

some statistical assumptions on the measurement error are made and the mathematical

model can be applied on the experimental data. Its parameters reflect a description of

the system response and of its inaccessible pool. The most widely used mathematical

models to study the glucose and insulin system are the minimal models that are at the

same time parsimonious and describe the key components of the system functionality

[12]. The two protocols are described hereafter.

Intravenous glucose tolerance test (IVGTT)

The Intravenous glucose tolerance test consists on an injection in one arm of glucose

usually about 0.3 g/kg total body weight and on the other arm there is a withdrawal of

blood for the following four hours. A following modification of the protocol was proposed

that consists on an injection of glucose at time 0 min followed by an infusion of insulin

(0.02 units/kg total body weight, begun at 20 min) given as a square wave over 5 min.

Blood is sampled over the next four hours. This modified protocol is called the insulin

modified IVGTT and helps to have more informative data to determine afterwards the

insulin kinetics. The minimal models proposed to interpret this kind of data are described

in the following paragraph.

Oral glucose / Meal tolerance test (OGTT/MTT)

The oral glucose and the meal tolerance tests consist both on an oral glucose dose

consumption that in case of an OGTT is a standard oral dose of glucose (∼ 75 g) ingested

in 5 minutes whereas in case of an MTT is a mixed meal (10 kcal/kg body weight, 45%

carbohydrate, 15% protein, 40% fat) usually consisting of three scrambled eggs, Canadian

bacon, and glucose Jell-O (containing 1.2 g/kg body weight of dextrose) and consumed

within 15 min. Following the oral dose blood samples are withdrawal for the following 7

hours. The minimal models proposed to interpret this kind of data are described in the

following paragraph.
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Figure 2.3: Intravenous and oral glucose tolerance test scheme.

2.3 Models for IVGTT data and models for MTT data

In the following section are described the models developed to study the glucose and

insulin system during an intravenous or an oral glucose load. These models were designed

using the traditional individual approach weighted nonlinear least square (WNLS) that

was applied on the experimental data of each single subject. Remeber that this individual

approach is feasible only on data rich situation such as the two protocols IVGTT and

MTT where are present 21 samples for each subject. In case of sparse or noisy dataset

or in case of locally identifiable models Bayesian analysis has shown to be effective

[13, 14, 15, 16] but this kind of analysis has the main drawback of knowing a priori

statistical information that might be not easy to have.

IVGTT minimal models

Glucose minimal model

The IVGTT glucose minimal model is a compartmental model allowing the quantitative

description of glucose metabolism and insulin control. In figure there is a schematic

rappresentation of it (Fig. 2.4). Glucose is presented in a single compartment, the plasma,
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and the fluxes in and out of this compartment represent the tissue uptake and the Net

Hepatic Glucose Balance (NHGB), both controlled by remote insulin that is insulin

present in the interstitial fluid. For model identifiability reason a riparametrization was

Figure 2.4: IVGTT glucose minimal model schematic representation

done [17] that leads to the following equations:

Q′(t) = −(SG +X(t)) ·Q(t) + SG ·Qb Q(0) = D +Gb · V

X ′(t) = −p2 ·X(t) + p2 · SI · (I(t)− Ib) X(0) = 0
(2.1)

where D (mg/kg) denotes the glucose dose per unit of body mass, Q(t) (mg/kg) is glucose

mass in plasma and Qb its basal value, G(t) (mg/dl) is plasma glucose concentration

and Gb its basal value, I(t) (pmol/l) is insulin concentration and Ib its basal value, and

X(t) is insulin action (min− 1−1). The uniquely identifiable model parameters are: SG

(min−1) glucose effectiveness, SI (min−1pmol−1l) insulin sensitivity, p2 (min−1) the

insulin action parameter, and V (dl/kg) the apparent glucose distribution volume per

unit of body mass. SG and SI in particular are well known metabolic indexes that are

able to distinguish among different pathophisiological states in the glucose and insulin

system. SG measures the ability of glucose per se, at basal insulin, to stimulate glucose

disappearance and to inhibit endogenous glucose production whereas SI measures the

ability of insulin to enhance the glucose per se stimulation of its disappearance and the

glucose per se inhibition of endogenous production. The model considers data from

min 8 of the experiment because the one compartment formulation cannot take into

account for the quickest kinetics. To remedy this and an SG overestimation and an SI
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underestimation a two compartment glucose minimal model was proposed by Cobelli et

al [18]. The two compartment model expression is the following:

Q′1(t) = −(SG +X(t)) ·Q1(t) + SG ·Q1b − k21 ·Q1(t) + k12 ·Q2(t) Q1(0) = D +Gb · V

Q′2(t) = k21 ·Q1(t)− k12 ·Q2(t) Q2(0) =
k21 ·Q1b

k12

X ′(t) = −p2 ·X(t) + p2 · SI · (I(t)− Ib) X(0) = 0

(2.2)

Due to identifiability problem a bayesian analysis was used to make the model uniquely

identifiable that fixed the rates between the two compartments of glucose (i.e. k12 and

k21) to a priori knowledge.

C-peptide minimal model

The C-peptide minimal model [19] is a widely used tool to assess pancreatic β-cell

function. It can assess the insulin secretion since C-peptide is secreted equimolarly with

insulin, and its extraction by the liver is negligible.In Fig. 2.5 is presented a schematic

representation of the model. The model equations are presented in Eq. 5.1.

Figure 2.5: IVGTT C-peptide minimal model schematic representation.
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CP ′1(t) = −(k01 + k21) · CP1(t) + k12 · CP2(t) +m ·X(t) CP1(0) = CPb

CP ′2(t) = −k12 · CP2(t) + k21 · CP1(t) CP2(0) = CPb · k21/k12

X ′(t) = −m ·X(t) + Y (t) X(0) = X0 + (k01 · CPb)/m

Y ′(t) =



−α · (Y (t)− β · (G(t)−Gb)− k01 · CPb)

Y (0) = (k01 · CPb), if β · (G(t)−Gb)− k01 · CPb ≥ 0

−α · (Y (t))

Y (0) = (k01 · CPb), if β · (G(t)−Gb)− k01 · CPb < 0

(2.3)

where CP1 and CP2 are the C-peptide concentration in the accessible and peripheral

compartments respectively (pmol/l) and CPb is its basal value, X (pmol/l) is the C-

peptide amount in the β-cell and Y is the C-peptide provision in the β-cell (pmol l−1

min−1). The transfer rate between CP1 and CP2 k12, k21 and k01 (min−1) are fixed

kinetics determined through the Van Cauter formulas [20]. G is the glucose concentration

(mg/dl) and Gb is its basal value. The uniquely identifiable parameters are: the secretion

rate constant m (measured in min−1), the provision rate constant α (measured in min−1),

the second-phase sensitivity to glucose β (measured in dl mg−1 pmol l−1 min−1) and the

incremental amount of C-peptide secreted during the first phase X0 (measured in pmol/l).

This model is widely used because it provides indexes of β-cell sensitivity to glucose

during the first and the second phase of insulin secretion. In particular the derived β-cell

responsivity indexes are:

• the first phase β-cell responsivity to glucose φ1 = X0
∆G where ∆G is the maximal

excursion of glucose above basal;

• the second phase β-cell responsivity to glucose φ2 = β;

• the total β-cell responsivity to glucose φt = φ2 + φ1·∆G∫∞
0 (G(t)−Gb) dt

representing the

average increase above basal of pancreatic secretion over the average glucose

stimulus.

Insulin minimal model

The insulin minimal model was proposed by Toffolo et al [21] to describe the insulin

kinetics and secretion in order to assess the hepatic extraction in a second moment

through the combined use of insulin and C-peptide minimal models results. Note that to

identify the insulin model was used the IM-IVGTT that through more informative insulin
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data facilitates a reliable estimation of insulin kinetics in each individual, a prerequisite

to avoid errors in modeling secretion. The model has the following expression.

I ′(t) = −n · I(t) +m ·X(t) + U(t) I(0) = Ib

X ′(t) = −m ·X(t) + Y (t) X(0) = X0 + (n · Ib)/m

Y ′(t) =



−α · (Y (t)− β · (G(t)−Gb)− n · Ib)

Y (0) = (n · Ib), if β · (G(t)−Gb)− n · Ib ≥ 0

−α · (Y (t))

Y (0) = (n · Ib), if β · (G(t)−Gb)− n · Ib < 0

(2.4)

where I is the insulin concentration in plasma (pmol/l) and Ib its basal value, X (pmol/l)

is the insulin amount in the β-cell and Y is the insulin provision in the β-cell (pmol

l−1 min−1). G is the glucose concentration in plasma (mg/dl) and Gb is its basal value

and U is the exogenous insulin input (pmol l−1 min−1) different from zero in the 20/25

min interval. The uniquely identifiable parameters are: the rate constant of insulin

disappearance n (1/min), the secretion rate constant m (measured in min−1), provision

rate constant α (measured in min−1), the second-phase sensitivity to glucose β (measured

in dl mg−1 pmol l−1 min−1) and the incremental amount of insulin secreted during the

first phase X0 (measured in pmol/l).

MTT minimal models

Glucose minimal model

The oral glucose minimal model was proposed by Dalla man et al [22, 23] and its schematic

representation id presented in Fig. 2.6. The model has the following expression:

Q′(t) = −(SG +X(t)) ·Q(t) + SG ·Qb +Rameal(p, t) Q(0) = Gb · V

X ′(t) = −p2 ·X(t) + p2 · SI · (I(t)− Ib) X(0) = 0
(2.5)

where Q (mg/kg) is the glucose mass in plasma and Qb (mg/kg) its basal value, Gb (mg/dl)

is the basal glucose concentration in plasma, I (µU/ml) is insulin plasma concentration

and Ib (µU/ml) its basal value, X (min−1) is insulin action, Ra (mg kg−1 min−1) is the

glucose unknown rate of appearance in plasma, V (dl/kg) is the volume distribution, SG

(min−1) is glucose effectiveness, SI (min−1 µU−1 ml) is insulin sensitivity and p2 (min−1)

is an insulin action parameter. Note that Rameal is a parametric function expressed as

dependent of a vector of unknown parameters p. In particular Rameal is described by a
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Figure 2.6: MTT glucose minimal model schematic representation.

piecewise-linear function with a given number of breakpoints that are more concentrated

at the first part of the experiment where the signal varies more rapidly and more sparsely

afterwards. The rate of appearance can be described by the following equation:

Rameal(p, t) =

αi−1 + αi−αi−1

ti−ti−1
· (t− ti−1), if ti−1 ≤ t ≤ ti, i = 1, ..., 8

0, otherwise
(2.6)

where αi are the unknown parameters and ti are the breakpoints. Note that α2 was

not estimated but derived using the following constraint on the area under the curve of

Rameal: ∫ ∞
0

Rameal(p, t) dt =
D · f
BW

(2.7)

where D is the dose (mg), f is the fraction of the ingested dose (fixed to 0.9) and BW

(kg) is the subject weight. For identifiability reason the model parameter SG, V were

fixed to population values respectively 0.025 (min−1) and 1.45 (dl/kg) and a gaussian

bayesian prior was considered for p2 (min−1) with ln(p2) ∈ N(−4.414, 0.4414).
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C-peptide minimal model

The C-peptide oral minimal model was proposed by Breda et al [24, 25] and is described

by the following equations:

CP ′1(t) = −(k01 + k21) · CP1(t) + k12 · CP2(t) + SRn CP1(0) = CPb

CP ′2(t) = −k12 · CP2(t) + k21 · CP1(t) CP2(0) =
CPb · k21

k12

Y ′(t) =



−α · (Y (t)− β · (G(t)−Gb) + k01 · CP1b)

Y (0) = k01 · CP1b, if β · (G(t)−Gb) + k01 · CP1b ≥ 0

−α · (Y (t))

Y (0) = k01 · CP1b, if β · (G(t)−Gb) + k01 · CP1b < 0

(2.8)

where CP1 and CP2 are the C-peptide concentration in the accessible and peripheral

compartments respectively (pmol/l), SRn is the secretion rate (pmol l−1 min−1), Y is the

releasable C-peptide provision (pmol/l min), G is the glucose concentration (mg/dl) and

Gb its basal value. The transfer rate between CP1 and CP2 k12, k21 and k01 (min−1) are

fixed kinetics determined through the Van Cauter formulas [20]. The model also assumes

that SRn is made up of a static (SRs) and a dynamic (SRd) component as it is described

in Eq. 2.9. The static secretion is proportional to the insulin provision controlled with

some delay (1/α where α is measured as (min−1)) by glucose concentration above a

threshold level Gb, through the parameter β (measured in dl mg−1 pmol l−1 min−1).

Whereas the dynamic secretion represents the secretion of insulin from the promptly

releasable pool and is proportional to the rate of increase of glucose through a constant

parameter k (min−1).

SRn(t) = SRs(t) + SRd(t)

SRs(t) = Y (t)

SRd(t) =

k · dGdt , if dG
dt ≥ 0

0 if dG
dt < 0

(2.9)

As the IVGTT C-peptide minimal model also the oral has some derived indexes that

describe the beta-cell responsivity. In particular the derived indexes:

• the static β-cell responsivity (Φs) is defined as:

Φs = β (2.10)
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• the dynamic β-cell responsivity (Φd) is defined as:

Φd = k (2.11)

• Overall or total β-cell responsivity (Φt) can be derived from the previous calculated

index as:

Φt = Φs +
Φd ·∆G∫∞

0 (G(t)−Gb) dt
(2.12)

where ∆G is the maximal excursion of glucose above basal.

2.4 Nonlinear mixed-effects models

Very often in epidemiological studies, when experimental data are available for a large

number of subjects, it is of interest to determine not only the individual characteristics

but also the description of the parameters distribution across the population. Many

approaches have been developed to determine both the features from the easiest that is

a straightforward statistic (mean and variance) on the individual parameter estimates

set (i.e. standard two stage (STS) [26]) to more sophisticated iterative methods that

alternates at each iteration until convergence an individual and a population optimization

phase such as the iterative two stage (ITS)[27] or the global two stage (GTS) [27]. Finally

a more sophisticated technique is the Nonliner mixed effects models (NLMEM) approach.

With this technique each individual data is described by the following individual level

model:

yij = f(pi, xij) + εij 1 ≤ i ≤ m 1 ≤ j ≤ ni (2.13)

where yij is the j-th observation of the i-th subject at some known time instant xij and

εij is the measurement error of the i-th subject in the j-th sample.

The NLMEM assumes a two stage hierarchy of variability through different probability

distribution that allows the investigator to have more flexibility in the study design. The

first stage describes the intra individual variability (measurement error and unforeseen

error sources) whereas the second stage describes the inter individual variability (phys-

iological variability). The intra individual variability, the so called Residual Unknown

Variability (RUV), is assumed to be normally distributed with zero mean and variance

that might be dependent on the model prediction or the measured data. For example the

RUV of the i-th subject at the j-th observation with variance dependent on the model
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prediction would be expressed like in the following equation:

εij ∼ N(0, (σf(pi, xij))
2) (2.14)

where σ is the proportional error variance. The second stage of variability is explainable

due to the fact that the individual parameters are seen as realizations of a certain

distribution that is characterized by a mean vector that represents the so called fixed

effects θ , the features that do not vary among the population, and by a variance matrix

(Ω) that is the population variability or the Between subject variability (BSV). In other

words the vector of parameters of the i-th subject can be described through the so called

population level model as:

pi = g(θ,ηi,ai) (2.15)

where ηi are the random effects of the subject i that are assumed normally distributed,

with zero mean and variance Ω. The flexibility of the technique is guaranteed by the

definition of the probability density function g which can also incorporate other factors

such as physiological information about the subject ai (e.g. body height and weight).

This makes the NLMEMs very appealing as it allows easy incorporation of covariates

in the model. Note that Eq. 2.15 characterizes how pi vary among individuals due

to systematic association with the individual characteristic (ai) or due to unexplained

variation in the population like biological variation. The Ω matrix determines the

magnitude of the unexplained variation.

The NLMEM rely on a Maximum likelihood estimator that was expanded with respect

to the original single subject formulation to take into account the inter subject variability

of the parameters and the within-individual error [28]. The population likelihood 2.16

is defined as the sum of all the i-th individual contribution that are twice the negative

logarithm of the joint marginal density of the data yi for subject i. In formulae the total

objective function (L) is:

L = −2log(p(y|θ,Ω, σ)) =
m∑
i=1

Li = −2

m∑
i=1

log(

∫ ∞
−∞

l(yi|p,σ)h(p|θ,Ω) dp) (2.16)

where l(yi | p,σ) is the individual observed data likelihood for subject i and h(p |
θ,Ω) is the probability density of the vector of parameters p given the fixed effects θ

and the variability of the random effects Ω and σ is the RUV. Usually in PKPD the

probability density of the individual vector of parameters p is assumed to be Gaussian

or the transformation is Gaussian (lognormal distribution) and in formulae not including
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a constant term this can be written as:

h(p|θ,Ω) =
1√
|Ω|

exp[−1

2
(p− θ)′Ω−1(p− θ)] (2.17)

To find the values of θ, Ω and σ that best fit all the subject data the joint marginal density

has to be maximized that means minimize the 2.16. Due to nonlinear parameter relations

the m k-dimensional integrals usually do not have a close form. The computational

burden of the iterative algorithm like Newton Raphson that maximize the problem

increase significantly at each internal iteration step since for each subject a k-dimensional

integral have to be evaluated through numerical techniques. Many approximations to

the integrals have been proposed to make them more tractable. Here we introduce the

NLMEM methods implemented in the NONMEM software [29] that are used in the

thesis and we divide them in two different groups that represent two ways to treat the

integral approximation problem: methods that linearize the likelihood (e.g. first order

conditional-FOCE) and methods based on the Expectation-Maximization (EM) algorithm

and that approximate in different ways the E-step (e.g. iterative two stage-ITS, Monte

Carlo with importance Sampling IMP, importance sampling with mode a posteriori

IMPMAP and Stochastic approximation EM-SAEM). These two groups are called the

2-stage hierarchical maximum likelihood methods where the first stage of the hierarchy

is represented by the individual likelihood of the data yi l(yi|p,σ) and the second stage

is the likelihood of the set of parameters p given some knowledge on the parameter

distribution (h(p | θ,Ω)). In this thesis was analyzed also a method that adds a further

third hierarchical stage to the individual and population step that takes into account

the uncertainty of the knowledge of the parameters θ, Ω and σ. This method is the

Bayesian method (BAYES).

Likelihood linearization methods

The FOCE method linearize the model [29]( 2.13) with a Taylor first order approximation

around a properly individualized parameter estimate. The alternative objective function

that is minimized is the following:

LN = −2log(p(y|θ,Ω, σ)) =

m∑
i=1

LiN (2.18)

where the approximate individual likelihood contribution is given by:

LiN = −2log(p(yi, p̂i|θ,Ω, σ))− log|B̂i| (2.19)
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where the first term is the approximate joint probability density of the i-th subject

around the mode or of the distribution (p̂i) and the second term is the Taylor first order

approximation to the conditional variance matrix of the parameters. The resolution of

the algorithm is done through a 2-step process: first each individual data are fitted with

θ, Ω and σ set. The modes of the distribution p̂i and B̂i are found and the LN function

is constructed as the sum of each individual contribution. Then with a quasi-Newton

Rhapson routine the optimal values of θ, Ω and σ are found. Potential pitfalls of this

method is when the number of samples for each subject is small (the more samples

the more the approximation is accurate) and when the assumptions of normality are

infringed.

EM based methods

The Expectation Maximization (EM) algorithm aim is to maximize the exact likelihood

when the observations can be seen as incomplete. Note that in the NLMEM the missing

data or non observed data are the individual random effects. Each iteration of the

algorithm consists of two steps: the E-step where the expectation of the log-likelihood

given current population estimates is calculated and the M-step where new population

estimates are calculated maximizing the function obtained in the former step. If the

population density h(p | θ,Ω) of a given p is a multivariate normal distribution (or the

transformation of p is normal) it can be shown that at the minimum of the objective

function the following relationships are true:

θ =
1

m

m∑
i=1

p̄i

Ω =
1

m

m∑
i=1

Ω̄i

(2.20)

This relations correspond to the M-step that is evaluated at each iteration after having

calculated the E-step that is described by the following equations:

p̄i =

∫ ∞
−∞

pz(p|yi,θ,Ω,σ) dp

Ωi = (p̄i − θ)(p̄i − θ)′ +
∫ ∞
−∞

(p− p̄i)(p− p̄i)
′z(p|yi,θ,Ω,σ) dp

(2.21)

Where the first equation is the conditional mean vector of p for subject i and the second

equation is the contribution to the population variance from each subject i and the

integral term is conditional variance matrix of p for subject i. z(p|yi,θ,Ω,σ) is the
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conditional density of p given data yi and population parameters θ, Ω and σ and is

described in the following equation:

z(p|yi,θ,Ω,σ) =
l(yi|p,σ)h(p|θ,Ω)∫∞

−∞ l(yi|p,σ)h(p|θ,Ω) dp
(2.22)

At each iteration given fixed values for θ and Ω these two equations 2.21 are calculated,

the so called E-step. The E-step can be calculated in close form under specific conditions

that is the f is linear in p and RUV does not depend on the random effects. In the

remaining situations there is no analytical solution to the E-step and so many approaches

were proposed to approximate it. In particular different Monte Carlo sampling methods

were used to calculate the integration step present in both the conditional mean and

variance matrix (Eq. 2.21) by randomly sample over the entire space of p and evaluate

the integrals by summation. Note that by substituting Eq. 2.22 in both Eq. 2.21 it is

evident the presence of the same integral of the population likelihood in the denominator

and of a similar integral in the numerator that due to parameter nonlinearity does not

have a close form (see Eq. 2.23).

p̄i =

∫∞
−∞ pp(yi,p|θ,Ω,σ) dp∫∞
−∞ p(yi,p|θ,Ω,σ) dp

Ωi = (p̄i − θ)(p̄i − θ)′ +
∫∞
−∞(p− p̄i)(p− p̄i)p(yi,p|θ,Ω,σ) dp∫∞

−∞ p(yi,p|θ,Ω,σ) dp

(2.23)

Several Monte Carlo methods were developed to evaluate the conditional mean and

variance matrix among them the importance sampling that is implemented in NONMEM

software [29] in the estimation method IMP [30] and in the estimation method IMPMAP

[29] and the stochastic approximation method that is implemented in NONMEM software

in the estimation method (SAEM) [31]. These methods can be made as accurate as

possible with the disadvantage of having a big computation time load. Here we briefly

describe the different way to treat the E-step using the EM based algorithm implemented

in the NONMEM software [29]:

Iterative two stage (ITS)

The ITS algorithm first suggested by Steimer et al [27], implements the E-step through

the same linearized approximation that is done in FOCE. In particular each individual fit

is carried out to obtain the individual mode p̂i and B̂i that are then used in the M-step
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that is simply their average value in the population:

θ =
1

m

m∑
i=1

p̂i

Ω =
1

m

m∑
i=1

Ω̂i

(2.24)

Importance sampling (IMP) / Importance sampling supported by mode a

posteriori (IMPMAP)

The IMP method [30] implements the E-step by approximating the integral using a

Monte Carlo sampling method that draw the samples in more informative positions with

respect to the direct sampling that requires the integration in all the parameter space. In

this way the variance of the Monte Carlo estimator is reduced. The population likelihood

is weighted adjusted with an importance sampling function b(p) that approximate the

joint density l(yi|p,σ)h(p|θ,Ω):

L = −2
m∑
i=1

log(

∫ ∞
−∞

l(yi|p,σ)
h(p|θ,Ω)

b(p)
b(p) dp) (2.25)

In the IMP estimation method in the first iteration the normal distribution proposal

(sampling) density from which Monte Carlo samples are drawn comes from an FOCE

analysis. In the IMPMAP estimation step instead the FOCE linearization method is

present at each step to build the normal distribution proposal sampling density from

which Monte Carlo samples are drawn.

Stochastic approximation expectation maximization (SAEM)

The SAEM method [31] is a stochastic approximation of the traditional EM method. In

particular it consists in replacing the usual E-step with a stochastic procedure composed

of two steps: a simulation step and a stochastic approximation step. For the k-th iteration

of the algorithm the iter in the E-step would be this:

• SIMULATION STEP : draw mk individual parameters pk(i) (with i=1,.̇. , mk)

from the posterior density h(p|θk,Ωk)

• STOCHASTIC APPROXIMATION : update Qk(δ) where δ = [θ,Ω, σ]:

Q̂k(δ) = Q̂k−1(δ) + γk(
1

mk

mk∑
i=1

logp(yi,pk(i)|θ,Ω, σ)− Q̂k−1(δ)) (2.26)
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Note that for all k ∈ N γk ∈ [0,1],
∑∞

k=1 γk =∞,
∑∞

k=1 γ
2
k =∞

where γk is a sequence of positive step sizes decreasing to 0. The maximization step

consist in maximizing Q̂k(δ) and finding the new θk+1,Ωk+1 If the simulation step

cannot be performed directly the algorithm was combined with the MCMC procedure

where the sequence pk is a Markov Chain with transition kernels (
∏
δk). The new

simulation step will draw pk from the transition probability
∏
δk(pk−1). Note that for

any δ ∈ Γ, the transition kernel
∏
δ generates a uniformly ergodic chain which invariant

probability is h(p|θ,Ω). Note that there is also an implementation of SAEM using

simulated annealing to prevent the algorithm from local minima and to ensure then the

global minima achievement. In this way the algorithm is faster and robust to initial

estimates.

Bayesian method

The Bayesian method (BAYES) [32] does not maximize the likelihood but give back a com-

plete distribution profile of the population parameters θ, Ω and σ (p(θ,Ω, σ|y,q,H,w, τ ))

and the maximum likelihood estimates can be identified by choosing the set with the

highest frequency. In particular the complete distribution can be calculated through the

following equation:

p(θ,Ω, σ|y,q,H,w, τ )

=
p(y,θ,Ω, σ|q,H,w, τ )

p(y|q,H,w, τ )

=
p(y|θ,Ω, σ)π(θ,Ω, σ|q,H,w, τ )∫∞
−∞ p(y, θ,Ω, σ|q,H,w, τ )dθdΩdσ

=

∏m
i=1[
∫∞
−∞ l(yi|p,σ)h(p|θ,Ω) dp]π(θ,Ω, σ|q,H,w, τ )∫∞

−∞
∏m
i=1[
∫∞
−∞ l(yi|p,σ)h(p|θ,Ω) dp]π(θ,Ω, σ|q,H,w, τ ) dθdΩdσ

(2.27)

where π(θ,Ω, σ|q,H,w, τ ) is the probability of the population parameters based on

prior knowledge. In particular θ is modeled as a normal distribution N(q,H), Ω is a

Whishart distribution W(w) and σ is modeled as a gamma distribution with parameter

τ . If there is no prior knowledge on the experiment H should be large and τ should

be small: these are the so called uninformative prior that mean that there is a great

search region for the parameters θ, Ω and σ with a consequent computational expensive

load. The process to evaluate Eq. 2.27 would be with Monte Carlo to randomly select

from their prior distribution the population parameter θ, Ω and σ from which randomly

select the p and then evaluate the likelihood. In conclusion the result is a collection of
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the population parameters θ, Ω and σ with their frequency and by choosing the highest

frequency are identified the maximum likelihood estimates. To increase the efficiency

of the Monte Carlo method the Markov Chain Monte Carlo (MCMC) has been used

implemented through algorithms like the Metropolis-Hastings or the Gibbs sampling.



Stochastic nonlinear mixed effects methods to

quantify IVGTT data

3.1 Overview

The nonlinear mixed effects models (NLMEM) are widespread modeling techniques in

PKPD analysis and epidemiological studies because they can produce a description of

not only the individual but also of the population features. Moreover, they are able to

deal with individual data sparseness by borrowing the lack of information from the entire

population. In this way, the NLMEM do not fail where instead other techniques, such

as the traditional individual weighted least squares (WLS), sometimes do. The NLME

approach relies on the maximization of a likelihood function that due to model parametric

nonlinearity not always has an explicit solution. Various techniques have been proposed

to solve this problem including the first order (FO) and the first order conditional (FOCE)

estimation methods that approximate the likelihood function through a linearization;

the expectation maximization algorithm (EM) that maximize the exact likelihood; the

Bayesian estimation method where a third stage of variability, the distribution of the

population parameters, is taken into account [28]. Recently, new estimation methods that

rely on the EM algorithm have been implemented in the last release of the population

software NONMEM [29]. These methods are: the iterative two stage (ITS), Monte Carlo
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importance sampling EM (IMP), Monte Carlo importance sampling EM assisted by Mode

a Posteriori estimation (IMPMAP) and the Stochastic Approximation EM (SAEM).

Moreover, another new method is available, the Markov Chain Monte Carlo Bayesian

Analysis (BAYES), next to the more known FO and FOCE. With this article we want

to complete the Denti et al [2] simulation study by evaluating the newest population

methods applied on the IVGTT glucose minimal model.

3.2 Introduction

The IVGTT glucose minimal model (MM) is a well known tool to study the glucose-insulin

system in different pathophysiological states after an intravenous glucose perturbation.

Indeed, its parameter SI, the insulin sensitivity, that is the overall effect of insulin

to stimulate glucose uptake and inhibit glucose production, represents an important

metabolic index in clinical and epidemiological trials. By now the model has been identified

using both individual and population approaches. At the beginning the weighted least

square (WLS) single subject technique was used and applied on the data of each individual.

The WLS, though, in typical epidemiological conditions such as sparse and noisy data

per individual does not produce satisfactory estimations. In order to improve this aspect,

the population approaches were then introduced to identify the MM by exploiting the

not used information spread on the subject collection. Vicini et al [33] identified the MM

by the iterative two stage (ITS), a population technique. This method is made up of two

steps: first each subject’s data is separately fitted and then the population parameter

estimates are obtained. This procedure is repeated until convergence. Afterwards, Agbaje

et al [34] used a different population approach to identify the same model: the Bayesian

hierarchical method [32]. This method adds a third stage of knowledge to the individual

and population step that is the prior distribution of the population parameters. More

recently [2], the MM was quantified using both iterative methods, like the Global two

stage (GTS) and ITS and other techniques like the first order (FO) and the first order

conditional (FOCE). These last two methods are approximated solutions of the nonlinear

mixed effects models (NLMEM) approach that aims to characterize the individual and

population description by maximizing a likelihood function. Due to nonlinear parametric

dependencies it is almost impossible to have an explicit solution of this optimization

problem. FO and FOCE methods fix this by approximating the likelihood through

a linearization. This work is the natural follow up of Denti et al [2] where different

population estimation methods, implemented in the software SPK [35], were tested in a

simulation study. In particular the study aims are mainly two. The first is to complete
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the population analysis done so far in the MM with the latest methods implemented

in the software NONMEM [29]. Three new optimization techniques have never been

applied so far to quantify the MM parameters: the Monte Carlo importance sampling

EM (IMP) [30], the Monte Carlo importance sampling EM assisted by Mode a Posteriori

estimation (IMPMAP) [2] and the Stochastic Approximation EM (SAEM) [31]. These

three, together with the ITS method, are implemented in NONMEM by exploiting the

characteristic two steps of the Expectation-Maximization algorithm (EM). In the first

step (the expectation step) the expectation of the log-likelihood given current estimates

of the population parameters is calculated and, in the second step (the maximization

step), new population parameters that maximize the expectation are computed. This

procedure is repeated until there are no visible changes in the objective function. Note

that the four different implementations of the EM algorithm are different approximations

of the expectation step for which no analytical solution is available. The second aim of

this work is to test the robustness of the different methods in a data poor context by

comparing their performances on two randomly generated datasets obtained by removing

respectively 50% and 75% of the original samples respectively. All our analysis is carried

out using the software NONMEM VII [29].

3.3 Material and Methods

1. Synthetic Data

As already mentioned this work is the Denti et al [2] natural follow up but carried

out with different software and estimation methods. The dataset used is the same.

The dataset (dataset A1) consists of 58 simulated insulin modified IVGTT profiles

(dose 330 mg/kg glucose at time 0, 0.02 units/kg of insulin at time 20). This

dataset was obtained through two steps. Firstly, the MM was identified using the

individual estimation method WLS, implemented in the software SAAM II [36], in

58 nondiabetic young subjects (mean age 23±3 and mean BMI 24.5 ± 2.9 kg/m2)

that underwent an IVGTT in the Clinical Research Center at the Mayo Clinic,

Rochester, MN. Blood samples were collected at -120, -30, -20, -10, 0, 2, 4, 6, 8, 10,

15, 20, 22, 25, 26, 28, 31, 35, 45, 60, 75, 90, 120, 180 and 240 min for measurement

of glucose and insulin concentrations. Secondly, the profiles were simulated using

the individual estimates obtained at the first step and a measurement noise equal to

the 2% of the simulated profile was added. In order to exploit the potentials of the

population technique and to test the robustness of the estimates we evaluate the

different methods performance in a data poor context. In particular the simulated
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dataset was reduced by randomly removing the original samples. The first time

50% of the original samples were randomly removed (dataset A2), while the second

time instead 75% of the original samples were removed (dataset A3). In this way

the typical condition of the epidemiological studies, that is few and noisy data per

individual, was recreated. Note that only the glucose data were reduced whereas

the insulin data that acts as a forcing function in the model was not. This choice

was made because the work aim is to test different estimation methods and not

really simulate a real experiment data sparseness situation.

2. Glucose minimal model

The IVGTT MM is described by:

Q′(t) = −(SG +X(t)) ·Q(t) + SG ·Qb Q(0) = D +Gb · V

X ′(t) = −p2 ·X(t) + p2 · SI · (I(t)− Ib) X(0) = 0
(3.1)

where Q is the glucose mass in plasma (mg/kg) and Qb its basal value, Gb is the

basal glucose concentration in plasma (mg/dL), I is insulin plasma concentration

(pmol/L) and Ib its basal value, X is insulin action (min−1). The uniquely

identifiable parameters are: glucose effectiveness SG (min−1), insulin sensitivity SI

(min−1 pmol−1 L), insulin action parameter p2 (min−1) and volume V (dL/kg).

The model is not designed to take into account the first 8 minutes of glucose so the

corresponding measurements were excluded from the modeling analysis.

3. Population assumptions

In the population analysis done using the NLME approach data are described by

the model:

yij = f(pi, xij) + εij 1 ≤ i < m 1 ≤ j < ni (3.2)

where yij is the jth observation of the ith subject at some known time instant xij .

Here, m is the number of individuals and ni is the number of observations of the

individual i. Pi is the vector of model parameters for the ith individual. The model

parameters across the population are assumed to be lognormal distributed. In

particular they can be described by:

pki = θke
ηki

ηi = N(0,Ω)
(3.3)

where pki is the kth model parameter of the ith subject, θk is the typical value of
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the kth parameter common to the entire population and ηki is the random effect

of the kth model parameter of the ith subject. ki is assumed to be independently

distributed with zero mean and Gaussian with Ω being a positive definite covariance

matrix Eq. 3.3. The Ω values define the Between-Subject Variability (BSV). The

omega set up matrix was chosen coherently with Denti et al [3] including just the

correlations term between the SI -P2 and SG-V. The variability due to measurement

and model errors, known as the residual unknown variability (RUV), instead is

described by εij which is assumed to be independently distributed with zero mean

and Gaussian with standard deviation described by σ (proportional error variance)

being an additional parameter to estimate:

εij = N(0, (σyij)
2) (3.4)

4. Nonlinear mixed effects methods

The reference estimates (REF) were obtained by the WLS approach implemented

in SAAM II [36] applied on the original data. Then the other methods were applied

on the simulated dataset. At first we investigated the standard two-stage (STS)

performance which is another individual WLS that we implemented in NONMEM.

Then we applied the population approach NLME that provides different estimation

methods due to computational non feasibility of the exact solution of the likelihood

maximization. Firstly, we applied the FOCE algorithm that is a linearization of the

likelihood function. Then, we used the EM algorithm based estimation methods.

These methods are the ITS, the IMP, the IMPMAP and the SAEM. Finally we

applied the BAYES method that adds the third stage of variability due to the

population parameters. The priors that were given to the population estimates were

vague as in Agbaje et al [34], representing the lack of information about parameter

distributions.

5. Analysis of Results

In order to assess the different methods performance both the individual and the

population estimates were evaluated and compared to REF estimates. As far as

the population results are concerned, we evaluated the percentages of discrepancy

between the estimated (fixed effects and square root of the BSVs) and the true values.

The true values are the geometrical mean and standard deviation of the individual

estimates REF. As far as the individual results are concerned, we evaluated the

goodness of the individual estimates assessed by the square Root of the Mean
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Square Error (RMSE):

RMSE =

√√√√ m∑
k=1

(pi − p̂i)2

m
(3.5)

where pi is the true parameter value (REF) for subject i, p̂i its estimate, and m is

the number of subjects involved in the analysis. For readability purposes, these

values were indicated as percentage of the true population mean of each parameter.

3.4 Results

As already said, we exploited the population approaches to the full by analyzing both

the population and the individual results in the simulated dataset (A1) and in its two

reduced versions (A2-A3). Before proceeding it, is important to make a remark. All the

methods were successful and no subject was excluded from the analysis. However some

methods are more sensitive to initial estimates. In order to make them run smoothly we

used a software feature that allows minimizing in cascade different methods; i.e. starting

from the most stable whose final estimates are given as initial estimates to the subsequent

less stable method. These methods were SAEM, IMP, IMPMAP and BAYES and each

one was preceded in the minimization by ITS which is a more stable and at the same

time fast technique in producing reliable estimates.

1. Population results

For the population estimates in dataset A1, in general, all methods provide results

coherent with the ones that were used for the simulation. However, not all the meth-

ods behave the same. Looking at Table 3.1, we can see that the best performing

methods are ITS, FOCE and BAYES where all the fixed effects estimates discrep-

ancy percentage do not exceed the 4% modulus and the discrepancies percentage of

the BSV square root (values in brackets) do not exceed 28% modulus. The param-

eter that is worst estimated in these three methods in both the fixed effects and

in the BSV is SG. Whereas SAEM, IMP and IMPMAP tend to underestimate SI

(fixed effects percentage discrepancy values from -11% using SAEM or IMP to the

-13% using the IMPMAP) and p2 (fixed effects percentage discrepancy values from

-7% using SAEM or IMP to the -8% using IMPMAP). The parameter whose mean is

estimated more precisely using all the estimation methods is V, whereas SG, SI and

p2 are affected by a slightly larger error. The population approach, anyway, works
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better than the individual approach STS. Looking at Table 3.1, one can see that

STS presents the largest BSV. The overestimation of the variance of the population

was expected as it is already well known in literature [26]. The population approach

improvement due to the information borrowed across the population is expected to

grow with the paucity of data. Looking now at the reduced dataset A2 and the

furtherly reduced dataset A3, we can see that the discrepancy of the estimates, as

expected, becomes larger with the samples reduction. This is true apart from some

cases where instead there is the opposite effect. In particular, looking at table 3.1

we can see that if we consider the parameter SI estimated with the SAEM method

and we move from dataset A1 to dataset A3, the parameter fixed effect seems

to be estimated better with less samples. This effect is a typical feature of the

population approach, especially in a poor data context. In fact when there is not

enough individual information (i.e. few samples per individual), a condition that

is merely tolerated by the individual approach, a sort of constraint is generated

between the individual estimates that tends to bring them together towards the

population mean. This phenomenon is known in literature as shrinkage [37]. Also

in these two reduced dataset, in general the parameter whose mean is estimated

more precisely is V, whereas SG, SI and p2 are affected by a slightly larger error.

The individual approach worsens its performance moving from dataset A2 to A3 as

one can see clearly in Tab. 3.1from the increase of discrepancy percentage of the

BSV square root.

2. Individual results

As far as the individual results are concerned, all the different population es-

timation methods perform comparable apart from the STS. In Fig. 3.1.the RMSE

percentage of the individual estimates are presented. Looking at dataset A1, all the

methods estimate well V and SI , whereas SG and p2 have a RMSE percentage larger

than 13%. Also in this case, analyzing the individual results, the population ap-

proaches behave better than the individual approach represented by STS. Moreover,

moving the attention to the reduced datasets, the same trend that was previously

observed in the population results, is present here: RMSE percentage increases as

expected with the lack of samples. V and SI , as in A1 dataset individual results,

are the parameters that are estimated more precisely. Regarding the comparison

between the individual and the population approach, the population technique

improvement due to the borrowed information across the subjects is larger in the

two reduced datasets. In particular, the difference between the %RMSE values of
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∆SG ∆V OL ∆SI ∆p2

dataset A1 STS -2 0 0 0
(74) (173) (41) (47)

ITS 4 0 -2 1
(-25) (-1) (4) (-8)

FOCE 4 0 -2 1
(-28) (-2) (4) (-10)

SAEM 0 1 -11 -7
(-30) (1) (6) (-9)

BAYES 2 -1 0 2
(-17) (21) (8) (-2)

IMP 3 -1 -11 -7
(-25) (0) (7) (7)

IMPMAP 5 -1 -13 -8
(-26) (-1) (10) (-5)

dataset A2 STS 1 -1 1 -13
(93) (184) (46) (65)

ITS 10 -1 -1 -9
(-27) (0) (2) (7)

FOCE 10 -1 -1 -8
(-29) (-2) (3) (-10)

SAEM 7 0 -9 -17
(-32) (-2) (6) (-5)

BAYES 8 -1 -1 -6
(-17) (21) (8) (-1)

IMP 7 -1 -6 -12
(-28) (1) (4) (-7)

IMPMAP 7 -1 -10 -14
(-29) (-2) (9) (-4)

dataset A3 STS -11 -3 -13 -4
(122) (257) (94) (107)

ITS 13 -1 -1 -3
(-40) (-18) (-10) (-31)

FOCE 13 -1 -1 -4
(-53) (-26) (-9) (-24)

SAEM 13 -1 -4 -3
(-42) (-20) (-6) (-39)

BAYES 10 -1 -1 -1
(-44) (-18) (-4) (-19)

IMP 12 -1 -5 -6
(-53) (-25) (-7) (-20)

IMPMAP 15 -2 -6 -9
(-53) (-25) (-6) (-19)

Table 3.1: The distance of the estimated values for both the fixed effects and the square root
of the BSV (in brackets) from the true values are reported as percentage differences normalized

to the true values for the three datasets



3.4 Results 33

the STS method and the other corresponding values of the different population

techniques increases moving from dataset A2 to dataset A3. In other words, the

population approach features can be better appreciated in severely reduced datasets.

Figure 3.1: RMSE of the individual parameters expresses as percentage of the true population
mean for the three datasets.
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3. Residual Unknown variability

In the population approach the residual unknown variability (RUV) represents the

variability due to model error and measurement error. RUV is estimated with the

parameter σ that was not fixed to 2% of the data (the error structure that was

used to individually generate the data) but was left free to be optimized by the

algorithm.

Figure 3.2: Estimated CV with the different methods in dataset A1

In Fig. 3.2 the estimated σ in the dataset A1 for the different population methods

are compared with the true value (2%). Note that STS σ is not present because it

is the worst performing method with 1.69% estimated CV. The measurement error

was on average well estimated by all the methods apart from STS. BAYES, IMP

and ITS seem to slightly underperform as we can see from Fig. 3.2. In table 3.2

are presented the estimated CV in the three datasets with all the different methods.

The size of the measurement error is evaluated quite well in all the methods as

the sample size decreases apart from STS method that clearly underestimates

the RUV. This underestimation can be explained knowing that STS does not use

population information during the estimation process. When the data points are

very few for each individual as in dataset A2 and A3, it is easy to accommodate

the parameter values to fit the experimental data since there are no constraints

like in the population approach (e.g. the population parameters) that bind the

parameters to remain close to plausible values. Note that the RUV for the other

methods tends to become slightly bigger with the discarding of the dataset meaning
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that with fewer information spread in the population there are more error sources.

estimated CV
dataset A1 dataset A2 dataset A3

TRUE 2.00% 2.00% 2.00%
STS 1.69% 1.32% 0.65%
ITS 1.97% 2.01% 2.21%

FOCE 1.97% 2.01% 2.22%
SAEM 1.97% 2.00% 2.28%
BAYES 1.96% 1.98% 2.07%

IMP 1.97% 2.00% 2.21%
IMPMAP 1.97% 2.00% 2.21%

Table 3.2: Estimated CV with the different methods in the three datasets.

3.5 Disussion and Conclusions

We have confirmed that the population approach behaves better than the individual

approach and that this trend is more evident with the samples reduction in the dataset.

Not all the population estimation methods perform equally as well. We suggest to use

ITS and FOCE since they are stable to initial estimates and at the same time they

produce reliable estimates. BAYES is less stable but it produces comparable and maybe

improvable estimates if more informative population priors are given. Finally, from this

analysis we do not recommend to use SAEM, IMP and IMPMAP as they perform slightly

worse and are less stable.
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The IVGTT glucose minimal model: a two

compartment model

4.1 Introduction

The glucose minimal model [17] during an intravenous glucose tolerance test (IVGTT) is

a widely used tool in the metabolic field because from it are estimated very important

physiological indexes such as the insulin sensitivity (SI) and the glucose effectiveness

(SG). In particular these indexes are defined as the overall effect of stimulating glucose

uptake and inhibiting glucose production in presence (SI) or absence (SG) of an insulin

incremental effect. However it has been shown [18, 38, 39, 40] that the traditional

one glucose compartment (1GMM) formulation causes under modeling of the glucose

kinetics with a consequent underestimation of SI and an overestimation of SG. To

deal with this under modeling a second compartment (2GMM) that describes the non

accessible pool of the glucose system was appended to the main glucose compartment. The

numerical identification of the 2GMM with the traditional weighted least squares (WLS)

requires Bayesian a priori knowledge on the two transfer rates between the two glucose

compartments due to model identification problems. In this article we exported the

2GMM in a population approach context and consequently we avoid the need of a priori

knowledge on the glucose transfer rates by exploiting the nonlinear mixed effects models
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(NLMEM) approach. The NLMEM in fact resort to the population information spread

in the collection of subjects that creates a prior that facilitate the estimation process. In

this way the NLMEM are able to deal with individual data sparseness by borrowing the

lack of information from the entire population. In particular the individual parameter is

seen as a realization of a distribution that is characterized by a typical value, the fixed

effect, that is common to the entire population and by a certain variability, the between

subject variability (BSV), that explains the spread of the parameter individual values

among the population. Moreover we implemented in the model a delay term through a

transit model [41] that aims to describe the dose infusion of two minutes, the distribution

of the glucose dose in the body and possible technical problems during each individual

experiment (different beginning of the experiment, longer infusion) before glucose appears

in plasma. By introducing this delay we add more flexibility in the model to describe

the first part of the data that enables to catch the glucose dynamics from minute 0 of

the experiment to the end. This 2GMM was compared with the previously published

1GMM that was also implemented using the NLMEM. This comparison was done to

confirm in a population context the overestimation of SG and the underestimation of SI

that was previously detected using the classical individual estimation method (WNLS).

Finally we integrate on the model a typical PKPD analysis the so called allometric scaling

[42] that consists on describing the model parameters like clearances and volumes with

empirically derived size relations. This analysis helps to explain in a deterministic way

part of the BSV of these parameters through the use of different weight information and

consequently to reduce the estimated BSV.

4.2 Material and methods

1. Data

The data, provided by the Clinical Research Center at the Mayo Clinic, Rochester,

MN, USA, originates from an insulin modified IVGTT protocol performed on 204

nondiabetic subjects (118 M /86 F, mean age 55.53±21.66 mean BMI 26.62±3.39

kg/m2). Blood samples were collected at -120, -30, -20, -10, 0, 2, 4, 6, 8, 10, 15,

20, 22, 25, 26, 28, 31, 35, 45, 60, 75, 90, 120, 180 and 240 min for measurement of

glucose, insulin and C-peptide concentrations. Different weight information were

collected to improve the parameter estimation process by adding some individual

information the so called covariates. In table 4.1 are summed up the weight

descriptors characteristic.
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Covariate Name Units Mean Min 1stQ Median 3rdQ Max

BW Body weight kg 77.95 53 68.9 79 87 129
VAF Visceral abdominal fat cm2/CT slice 141.84 11.86 62.54 125.09 206.73 478.23
TAF Total abdominal fat cm2/CT slice 301.76 43.94 193.28 292.32 407.66 837.5
TBF Total body fat grams 23413.06 4884 17364 22520 28420 46986

%TBF percentage of total body fat % 32.41 7.3 25.8 31.6 39.75 56.7
LBM Lean body mass kg 49.53 30.1 38.5 51.84 58.68 74.58

Table 4.1: Continuous covariates for the glucose-insulin system measured in our 204 subject
database. Statistics include minimum and maximum value, 1st and 3rd quartiles, and mean

and median.

2. The one compartment glucose minimal model (1GMM)

The 1GMM implemented in NLMEM by Denti et al [2] is described by the following

two equations:

Q′(t) = −(SG +X(t)) ·Q(t) + SG ·Qb Q(0) = D ·BW +Gb · V

X ′(t) = −p2 ·X(t) + p2 · SI · (I(t)− Ib) X(0) = 0
(4.1)

where Q is the glucose mass in plasma (mg), Gb is the basal glucose concentration

(mg/dl), I is insulin plasma concentration (pmol/l) and Ib is its basal value, X is

insulin action (min−1) and D is the dose (330 mg/kg). The parameters of the model

are the following: the glucose effectiveness SG (min−1), the insulin sensitivity SI

(min−1 pmol−1 l), the insulin action p2 (min−1) and the volume V (dl). The

final set of unknown parameters is p=[clSG , SI , V, p2] where clSG (dl/min)is the

clearance of SG. Usually, glucose measurements prior to 8 min are excluded from

the parameter estimation, because the one-compartment model is not designed to

account for the quickest phase of glucose kinetics.

3. The two compartments glucose minimal model (2GMM)

The 2GMM [38] was revised by adding a delay term in the appearance of glu-

cose in plasma due to the infusion and distribution of the glucose in the body. In

particular a transit model [41] was inserted in the original formulation of the model

by using a cascade of first order models with a single transfer rate ktr. The final
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model is described by the following equations:

Q′1(t) = −(SG +X(t)) ·Q1(t) + SG ·Q1b − k21 ·Q1(t) + k12 ·Q2(t)

+D ·BW · (ktr · t)n

n!
· e−ktr·t Q1(0)=Gb·V

Q′2(t) = k21 ·Q1(t)− k12 ·Q2(t) Q2(0) =
k21

k12
·Gb · V

X ′(t) = −p2 ·X(t) + p2 · SI · (I(t)− Ib) X(0) = 0

(4.2)

where Q1 and Q2 is the glucose mass in plasma (mg) in the accessible and non

accessible pool of the glucose system, Gb is the basal glucose concentration (mg/dl),

I is insulin plasma concentration (pmol/l) and Ib is its basal value, X is insulin

action (min−1) and D is the dose (330 mg/kg). The parameters of the model

are the following: the glucose effectiveness SG (min-1), the insulin sensitivity SI

(min−1 pmol−1 l), the insulin action p2 (min−1), the volume V (dl), the glucose

two compartment transfer rate k21 and k12 (min−1), the transit model transfer rate

ktr (min−1) and the number of compartments n. Note that ktr can be expressed

as a function of n and of the mean transit time (MTT) (min) or the time of delay

of the glucose appearance in blood in the following way:

ktr =
n+ 1

MTT
(4.3)

In this article we estimate n and MTT. Note that the parameters SG, k21 and

k12 were expressed as clearances because by definition are more informative than

their corresponding transfer rates. Moreover between the accessible and the non

accessible compartment was supposed a diffusion process meaning that at the equi-

librium state the concentration are the same so as a consequence also the clearance

between those two compartments. To sum up the final set of unknown parameters

are p=[clSG , SI , V, p2, clk, V2, n, MTT] where clSG (dl/min)is the clearance of SG,

clk (dl/min) is the clearance of the parameters that was supposed to be equal in the

two compartments due to the diffusion hypothesis and V2 (dl) is the volume of the

non accessible compartment. Note that the model compartments were expressed in

mass to have the parameters that do not depend implicitly on weight information

and to be able to introduce this information through the allometric scaling.
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4. Population modeling assumptions

Nonlinear mixed effects models (NLMEM) are able to quantify both the pop-

ulation and the individual parameters and identify by a hierarchical approach

the biological sources of intra-individual and inter-individual variability. More

specifically, in a first step, the data are described by:

yij = f(pi, xij) + εij 1 ≤ i ≤ m 1 ≤ j ≤ ni (4.4)

where yij are is the jth observation (in our case glucose concentration) of the ith

subject at some known time instant xij . Here, n is the number of individuals

and mi is the number of observation of individual i. Pi is the vector of model

parameters of the ith individual. The variability due to measurement and model

errors, better known as the residual unknown variability (RUV), is explained

through εij which is assumed to be independently distributed with a zero mean

and Gaussian distribution:

εij = N(0, (σpropyij + σadd)
2) (4.5)

The variance model for both 1GMM and 2GMM is described as a combination of

a proportional and an additive error model where σprop and σadd are additional

parameters to estimate. In a second step, the model parameters are represented as

function of some physiologically meaningful attributes that do not vary across the

population (θ, fixed effects, i.e. values that are common to all subjects) and some

others that do (ηi, random effects, i.e. values typical of a specific subject). In our

model we chose the function:

pki = θke
ηki (4.6)

where pki is the kth model parameter of the ith subject, θk is the typical value of

the kth parameter common to the entire population and ηki is the random effect of

the kth model parameter of the ith subject. The random effect ηi are assumed to

be independently distributed with a zero mean and Gaussian distribution:

ηi ∼ N(0,Ω) (4.7)

with Ω being a positive definite diagonal covariance matrix. With this formulation

the second stage of variability, better known as Between-Subject Variability (BSV),

is explained. The omega matrix set up of the 1GMM was chosen coherently with
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Denti et al [3] including just the correlations term between the SI -P2 and CLSG-V.

The omega set up of the 2GMM was full. Note that the parameter n is not present

in the Ω matrix because is assumed constant in the population. In particular n

is fixed to a population value big enough but not enormous (n=100) to facilitate

the computational process. The value n is the smallest that through a simulation

process do not change dramatically by visual inspection the glucose profiles.

5. Analysis of the results

The first step of the analysis is to show the 2GMM model fit and compare it

with the 1GMM fit. Both the population and the individual results were analyzed

with particular attention to the mean of the weighted individual and population

residuals. Then the second step is to confirm at the population level the trend that

was previously detected [38] in a smaller subset of subjects using the traditional

WNLS individual analysis. In this work was highlighted an overestimation SG and

an underestimation of SI . To show this trend we compare both the population

estimates and the mean of the individual estimates. Finally the last part of the

analysis is to introduce the allometric scaling in the 2GMM and show its benefit in

terms of drop of objective function and reduction of the BSV.

6. Allometric scaling

It has been widely shown the importance of the introduction of size measures

in pharmacokinetic parameter estimates [42] especially in pediatric study where

the population PK characteristics in terms of growth and maturation is likely to

be not homogenous with a consequent more difficult characterization of the dose.

This theory yields that parameters like volume and clearance are related to size

information like weight through the so called allometric model that are power model

formulated in this way:

pi = θp ·
(

Wi

Wmedian

)a
(4.8)

where pi is the individual parameter, θp is the parameter fixed effect common to the

entire population, Wi is the weight of the individual i and Wmedian is the median

weight and a is the coefficient that is equal to 3
4 in case of clearance parameter or 1

in case of volume parameter. To determine the most informative parameters weight

predictor a linear regression between each volume parameters and the different

weight predictors (body weight, lean body mass, visceral abdominal fat..) of the

dataset was done due to the allometric linear relationship. For the clearance
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parameters instead the predictors selected in the first step were introduced in all

the different combinations and the drop of objective function was the rule of thumb

to find the best combination.

7. Algorithms

All the model estimation analysis were carried out using the software NONMEM

7.2.0 [29] that implements the NLMEM approach which consists in obtaining the

population parameters by maximizing a likelihood function. Because of the compu-

tational infeasibility of the exact solution, different approximations were proposed.

Here we applied the First Order Conditional Estimation (FOCE) approximation

with INTERACTION coherently with was found previously in literature [2] and

what was found in chapetr 3.

4.3 Results

All the run minimized successfully with their own covariance step and the estimated

parameters observed the imposed distribution. The histograms of the logarithm of the

individual estimates of the 2GMM are presented in Fig. 4.1: the gaussianity of the

distributions is respected.
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Figure 4.1: Histogram of the logarithm of the individual estimates of the 2GMM

The first step of the analysis is to show the fit of the 2GMM model and compare it with

the 1GMM fit. In Fig. 4.2 are presented the mean and the standard deviation of the
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individual weighted residuals (IWRES) calculated from the individual predictions in the

two models 1GMM and 2GMM. There is also a zoom in the temporal window that goes

from minute 0 to minute 25. The two models present a reasonably good fit in terms of

amplitude and pattern: the mean individual weighted residuals did not show systematic

deviations from zero and it lays within the range [-1 +1]. The new formulation of the

2GMM is able to describe the kinetics from time zero which is not possible in the 1GMM

and is able to improve the description of the kinetics in the first part of the experiment

(around min 10-20). This last feature is evident in Fig. 4.3 where are presented the

typical subject fit and its individual weighted residuals in the temporal window of 10-26

min using the 1GMM and the 2GMM model. The 2GMM is able to describe better the

data and its residuals are smaller in this particular time window.

Figure 4.2: Mean ± standard deviation of individual glucose weighted residuals (IWRES)
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Figure 4.3: Typical subject fit (on the left) and weighted individual residual (IWRES) using
the 1GMM and the 2GMM models in the temporal window that goes from 10 to 26 min.

In Fig. 4.4 are presented the average and the standard deviation of the population

residuals calculated from the population predictions in the two models 1GMM and 2GMM

with a particular attention to the first part of the data from minute 0 to minute 25. The

two models present a reasonably good fit in terms of pattern and amplitude. As in the

individual residuals the 2GMM is able to describe the initial 8 minutes of the experiment

and is able to improve the description of the kinetics in the first part of the experiment

(around min 10-20).

The second step of the analysis was to compare the population and individual estimates of

the well known physiological indexes SG and SI to confirm the trend previously detected.

In particular as far as the population estimates are concerned the overestimation of SG

and underestimation of SI in the 1GMM is confirmed by the values of the population

estimates as shown in the graph bar in Fig. 4.5. Precision of these indexes estimated

in the 2GMM was comparable to that of the 1CMM. The same situation can be found

looking at the mean of the individual estimates of the two models that have the following

average values: S1
I 7.29E-05 ± 4.67E-05 [l pmol−1 min−1] vs S2

I 1.44E-04 ± 9.46E-05 [l

pmol−1 min−1] and CL1
SG

2.53 ± 0.47 [dl min−1] vs CL2
SG

2.21 ± 0.41 [dl min−1].

The third step of our analysis is the introduction of covariates in the volume and

clearances 2GMM parameters with relations described following the allometric scaling

theory. Before starting with this analysis is important to underline that all the parameters

of the 2GMM have shrinkage values [37] that are under the limit of alarm of 20-30%. This

is important because in presence of high shrinkage the volume parameters - covariates

relations detected might be false because there is not enough information in the data to
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Figure 4.4: Mean ± standard deviation of population glucose weighted residuals (WRES)

Figure 4.5: Bar graph of the population estimates of CLSG and SI in the 1GMM and 2GMM
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permit reliable estimates of the BSV. In particular the shrinkage values range from a

maximum of 20.5% relative to the SG parameter to a minimum of 3.2% relative to the

parameter V that is the volume of the accessible compartment of glucose. In our dataset

more than one descriptor of weight is present. By exploiting the allometric scaling theory

assumptions that is the volume linearly depends on weight information, we firstly fit a

linear regression between the V and V2 individual estimates and each weight predictors.

The strongest relations with the two parameters were then selected to form the covariate

subset that was tested for the clearance parameters in all the possible combinations in

the NONMEM software [29]. The combination that present the biggest drop of function

was selected as the final model. In Tab. 4.2 are presented the R2 value of the linear model

fit between the volume parameters and the weight predictors. The predictors selected

are for V the BW and for V2 the LBM.

R2 V V2

BW 0.198 0.216
VAF 0.025 0.139
TAF 0.028 0.079
TBF 0.048 0.002

PTBF 4.41·10−5 0.092
LBM 0.109 0.304

Table 4.2: R2 values of the linear regression between the 2GMM V and V2 individual
estimates and all the weight predictors

The biggest drop of function was obtained with the following final combination of

weight predictors with clearance and volume parameters:

CLSG i = θCLSG · exp(ηCLSG i) ·
(

LBMi

LBMmedian

)0.75

CLki = θCLk · exp(ηCLki) ·
(

LBMi

LBMmedian

)0.75

Vi = θV · exp(ηV i) ·
(

BWi

BWmedian

)
V2i = θV 2 · exp(ηV 2i) ·

(
LBMi

LBMmedian

)
(4.9)

This is the final model parameter formulation with allometric scaling for the subject i.

In Tab. 5.3 are presented the population estimates obtained in the base model and in

the final model with the allometric scaling introduction. The weight information in the

final model helped to reduce the parameter BSV by explaining it in a deterministic way.
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In particular the CLSG BSV swift from 23% to 20.6%, the V BSV moves from 30% to

25.6%, the CLK BSV moves from 33% to 31.5% and finally the V2 BSV moves from

45.7% to 32.4%. The drop of objective function is statistically significant and it is around

270 points.

In Fig. 4.6 are presented the population prediction in the base model and in the

final model: it is clear the reduction of variability in the final model that it translates

into a more compressed graph towards the bisector of the plane.

The shrinkage of the final model ranges from a minimum value of 4.4% of the parameter

V to a maximum value of 25.5% of the parameter CLK : all the values are below the

limit of alert 20-30%. In Fig. 4.7 are presented the individual and the population fits of

some random individuals. Finally in Fig. 4.8 is presented the visual predictive check

(VPC) [43] of the final model. The graph yields that the model is able to catch the data

variability as the CI of the percentiles of the simulated profiles are on the whole able to

follow the percentiles of the observed data.
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base model final modes
Model parameters Units population estimates RSE % population estimates RSE %

Fixed Effects
CLSG dl/min 2.21 3% 2.35 2.9%

V dl 82.1 3.30% 83 2.8%
SI l pmol−1 min−1 112 6.80% 112 6.0%
p2 1/min 0.0273 5.40% 0.0272 4.9%
CLk dl/min 16.9 7.50% 19.2 6.4%
V2 dl 47.5 5.10% 53.1 3.8%

MTT min 1.99 0.80% 2 0.8%
n - 100 - 100 -

Random effects
Interindividual Variability
ω CLSG 23.00% 12.6% 20.60% 12.1%
ω V 30.00% 7.2% 25.60% 8.9%
ω SI 67.10% 8.2% 67.80% 8.1%
ω P2 42.3% 12.1% 41% 12.6%
ω CLK 33.00% 15.1% 31.50% 17.4%
ω V2 45.70% 12.1% 32.40% 14.2%

ω MTT 9.10% 7.7% 9.10% 7.4%
correlation CLSG V 4.60% 326.1% -10.50% 154.3%
correlation SI CLSG -20.10% 66.7% -27.90% 51.3%
correlation SI VOL -39.30% 25.3% -25.10% 43.4%

correlation P2 CLSG -15.80% 101.3% -24.00% 65.4%
correlation P2 VOL 18.80% 74.5% 28.40% 47.2%

correlation P2 SI 65.20% 14.4% 67.60% 13.5%
correlation CLK CLSG 37.90% 47.2% 11.00% 205.5%
correlation CLK VOL 18.30% 105.5% 24.00% 79.2%

correlation CLK SI 41.40% 33.1% 32.90% 43.5%
correlation CLK P2 36.20% 55.5% 45.70% 46.2%

correlation VOL2 CLSG 23.60% 62.3% -7.80% 207.7%
correlation VOL2 VOL -39.10% 28.1% -72.00% 9.6%

correlation VOL2 SI 26.70% 37.3% 24.70% 44.5%
correlation VOL2 P2 -31.70% 37.9% -42.70% 34.7%

correlation VOL2 CLK 28.90% 55.7% -20.40% 77.9%
correlation MTT CLSG 8.80% 156.8% -9.60% 165.6%
correlation MTT VOL 28.10% 32.6% 18.20% 55.5%

correlation MTT SI -12.90% 70.6% -12.00% 79.0%
correlation MTT P2 5.60% 208.9% 6.70% 185.1%

correlation MTT CLK 19.00% 72.1% 20.10% 73.1%
correlation MTT VOL2 -8.80% 111.1% -22.50% 43.2%

Residual unknown variability
σprop 0.0188 3.80% 0.0192 3.60%
σadd 4.48 2.00% 4.48 2.00%

Table 4.3: Summary of 2GMM parameter estimates obtained before (base model) and
after (final model) the allometric introduction. Typical values for parameters are in original
units. Given that between-subject variability is modeled as log normal, variance measures are
reported as approximate coefficients of variation (CV), whereas the covariance terms are in

terms of correlation.
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Figure 4.6: 2GMM Population predictions in the base model (on the top) and on the final
model (on the bottom) after the allometric scaling introduction
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Figure 4.7: The 2GMM individual and the population fit of some random subjects. The
dots are the observations, the red line is the individual fit whereas the blue dashed line is the

population prediction.
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Figure 4.8: The 2GMM VPC of the final model.
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4.4 Disussion

It has been shown that the IVGTT one compartment glucose minimal model implemented

in the traditional approach (WNLS) presents some pitfalls in the modeling of the glucose

kinetics [38] and that this under modeling can be fixed by using a two compartment

glucose model. In this paper we transpose the problem in the population approach by

implementing the 2GMM with the NLMEM technique and by comaparing it with the

1GMM implemented by Denti et al [2, 3]. In particular we exploit the potential of the

NLMEM that uses the information spread on the set of subjects as a sort of prior during

the estimation process to avoid the use of the Bayesian a priori information and to add

further modeling parts to better explain the data in the first part of the experiment.

Note that with the individual estimation approach this would not be possible due to

identifiability problems. In fact with this approach not only the use of a priori information

that might be not suitable to the population under analysis is necessary but also the

possibility of adding other degree of freedom to the model (parameters) is denied. The

2GMM here developed aims to describe the glucose kinetics from minute 0 until the end

of the experiment. This is a very important future since it was shown the importance of

describing correctly the glucose dynamics to have more reliable physiological indexes (SI

and SG). The 2GMM improvement introduced in the fit when compared to the 1GMM

is evident in the first part of the experiment (from minute 0 to roughly minute 20). This

is expectable since the second compartment that we add is a diffusive that means that

the process that it explains is a fast one. Note that the 1GMM was implemented by

excluding the first samples of glucose (usually prior to minute eight) depending on each

subject glucose profile that means that among all the fit that we can obtain with the

1GMM this is the best because the glucose samples exclusion was personalized. In the

2GMM the exclusion is no more a problem since each subject profile is modeled from

minute 0 so another advantage of using the 2GMM apart from having the description of

the entire experiment is avoiding the time consuming and tricky personalized exclusion of

samples. From the comparison of the physiological indexes between the 1GMM and the

2GMM we can say that the trend that was previously reported in literature [38] using

the individual approach is caught also by using the population approach: there is an

overestimation of SG with the 1GMM and an underestimation of SI with the 1GMM.

If we look at the allometric scaling introduction in the 2GMM is interesting to note

the big improvement in the model fit due to insertion of the covariate information in

the parameters: the drop of function is statistically significant, the BSV decreases and

especially the population fit with respect to the base model is improved (see Fig. 4.6).

Some correlations were estimated with an elevated RSE but the condition number of
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the model is low meaning there is no severe collinearity and its consequent probable

overparameterization. It’s interesting to note that the descriptor of the diffusion parame-

ters (CLK and V2) is the lean body mass (LBM) that is the mass of the body without

the fat (storage lipid). The diffusion phenomena in the body is known to be insulin

independent so the dependence of its parameter from a descriptor that is not dependent

on the glucose storage might be not determined by chance. This second compartment of

the non accessible glucose pool might stand for the description of the insulin independent

tissues whereas the main compartment whose volume (V) is described by the body weight

might stand for the insulin dependent tissues. Obviously this conclusions are data depen-

dent and other studies should be carry on to corroborate this physiological hypothesis.

Finally the VPC (Fig. 4.8) shows that the model is able to simulate profiles with the

same variability of the observed data. As we can see though there are some observable

mismatching between the observed and the simulated data in particular between the CI

of the simulated 5th percentile and the 5th percentile of the observed data. This can be

assigned to the individual known input function in the model (insulin) that does not

always interact properly with the individual parameters realization. In particular, there

is no additional information in the model that can link the set of individual parameters

to the proper forcing function in order to obtain always reasonable physiological outputs

[44].

4.5 Conclusions

In this study a two compartment IVGTT glucose minimal model was developed using

the NLMEM. This technique helped us to avoid the use of Bayesian information and to

introduce a delay term at the beginning of the data that aims to describe the dose infusion

of two minutes, the distribution of the glucose dose in the body and possible technical

problems during each individual experiment. Moreover its performance was compared to

the one obtained in Denti et al using the one compartment glucose minimal model and

the benefit of the second compartment was clear because it allows to describe the data

from minute 0 and it improves the fit in the first 20-30 minutes of the experiment. The

same trend of overestimation of SG and underestimation of SI that was found using the

single subject estimation process was detected using the population approach. Moreover

the introduction of the weight predictor using the allometric scaling theory helped us to

furtherly improve the fit, to reduce the BSV in the parameters and to detect possible

physiological interesting relationships. These relations needs further investigations to be

corroborated. To conclude this optimization of the IVGTT glucose minimal model is the
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first step to build an integrated IVGTT system that describes both the glucose and the

insulin kinetics without splitting it in two separated subsystems.
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Covariate selection for the IVGTT C-peptide

minimal model

5.1 Introduction

The quantification of insulin secretion is crucial to assess β-cell function in different

pathophysiological states. The C-peptide minimal model (CMM) allows to quantitatively

evaluate the β-cell response to a glucose stimulus [19, 45]. In particular it allows to

reconstruct the prehepatic insulin secretion profile and to quantify the indices of glucose

control on first-phase, second-phase and basal insulin secretion. This is possible because

the C-peptide is a substance cosecreted with insulin in an equimolar way but, conversely

from insulin, is not extracted by the liver and has a constant peripheral clearance. The

intravenous glucose tolerance test (IVGTT) is a widely used test to calculate the β-cell

sensitivity. By now, the CMM has been identified using the traditional Weighted Least

Squares approach (WLS) applied on the experimental data of each single subject. Very

often, in epidemiological studies, it is of interest to obtain also a description of the

parameter distribution across the population. This information can be obtained through

different techniques starting from the simplest i.e. a straightforward sample statistics

(mean and covariance) on the individual parameter estimate set to the most explicative

and at the same time complex nonlinear mixed-effects modeling (NLMEM) approach.
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The aim of this work is to revise the CMM proposed by Toffolo et al [19, 45] by exploiting

the population approach. This technique is able to deal with individual data sparseness

by borrowing the lack of information from the entire population. Moreover the individual

parameter identifiabiality is changed with respect to the individual approach because

it can be improved by resorting to the population knowledge that creates a prior that

facilitate the estimation process. In this article we introduce a transit model [41] to

describe a delay in the first part of the data that is due to glucose signal that is infused

from minute zero with a 2 minute of infusion that slow down the activation of the insulin

production and of its cosecreted signal, the C-peptide. Moreover, in this paper, once the

CMM model was optimized through the population approach, we exploit the potentials

of the NLMEM population technique by inferring a covariate analysis in order to better

explain the random variability in parameters and eventually its cause in order to improve

the predictive performance of the model.

5.2 Material and methods

1. Data

The data, provided by the Clinical Research Center at the Mayo Clinic, Rochester,

MN, USA, originates from an insulin modified IVGTT protocol performed on 204

nondiabetic subjects (118 M /86 F, mean age 55.53 ± 21.66 mean BMI 26.62 ± 3.39

kg/m2). Blood samples were collected at -120, -30, -20, -10, 0, 2, 4, 6, 8, 10, 15, 20,

22, 25, 26, 28, 31, 35, 45, 60, 75, 90, 120, 180 and 240 min for measurement of glucose,

insulin and C-peptide concentrations. Additional patient information, so called

covariates, was also collected with the purpose of investigating which physiological

characteristics were significant as predictors of glucose-insulin metabolism. In

particular, for each subject were collected thirteen different covariates: age (AGE),

sex (SEX), height (BH), weight (BW), basal levels of glucose (GBSL) and insulin

(IBSL), total body fat (TBF), percentage of total body weight (%TBF), lean body

mass (LBM), visceral (VAF) and total abdominal body fat (TAF), and finally

the derived indexes body mass index (BMI) and body surface area (BSA). As

far as TBF, %TBF and LBM are concerned, these covariates were assessed using

dual-energy X-ray absorptionmetry (DEXA) as described in Basu et al [46], whereas

VAF and TAF were assessed using single-slice computed tomographic (CT), scan

at the level of L2/L3 were employed as explained in Jensen et al [47]. Twelve out

of the thirteen covariates are listed in Tab. 5.1. and graphic summaries of their

distributions, also showing regressions between the most correlated pairs, can be
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seen in Fig. 5.1. Three subjects had some missing values for VAF, TAF, and

%TBF; therefore, their values were assumed to be the population median.

Figure 5.1: Regressions between the most correlated covariates are also shown, and a
smoothed tendency line is superimposed to depict the trend of the relation

2. The C-peptide minimal model

The CMM was revised by adding a delay term in the activation process of the

secretion of insulin due to the glucose signal. In particular a transit model [41] was

inserted in the original formulation of the model to delay the initial first phase of

secretion by using a cascade of first order models with a single transfer rate ktr.
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Covariate Name Units Mean Min 1stQ Median 3rdQ Max

AGE Age years 55.53 18 27 65 71 87
BH Body height cm 170.86 145 163 171 178 194
BW Body weight kg 77.95 53 68.9 79 87 129
VAF Visceral abdominal fat cm2/CT slice 141.84 11.86 62.54 125.09 206.73 478.23
TAF Total abdominal fat cm2/CT slice 301.76 43.94 193.28 292.32 407.66 837.5
TBF Total body fat grams 23413.06 4884 17364 22520 28420 46986

%TBF percentage of total body fat % 32.41 7.3 25.8 31.6 39.75 56.7
LBM Lean body mass kg 49.53 30.1 38.5 51.84 58.68 74.58
GBSL Basal Glucose mg/dl 91.36 72.86 86.76 90.49 95.02 125.25
IBSL Basal Insulin pmol/l 27.48 5.52 19.05 24.66 32.10 78.36

Table 5.1: Continuous covariates for the glucose-insulin system measured in our 204 subject
database. Statistics include minimum and maximum value, 1st and 3rd quartiles, and mean

and median.

The deviation from the basal model is described by the following equations:

CP ′1(t) = −(k01 + k21) · CP1(t) + k12 · CP2(t) +m ·X(t) CP1(0) = 0

CP ′2(t) = −k12 · CP2(t) + k21 · CP1(t) CP2(0) = 0

X ′(t) = −m ·X(t) + Y (t) +X0 ·
(ktr · t)n

n!
· e−ktr·t X(0)=0

Y ′(t) =

−α · (Y (t)− β · (G(t)−Gb)) Y (0) = 0, if G(t)−Gb > 0

−α · (Y (t)) Y (0) = 0, if G(t)−Gb ≤ 0

(5.1)

CP1 and CP2 (pmol/l)are the C-peptide concentration in the accessible and in the

peripheral compartments respectively whereas X (pmol/l) and Y (pmol l−1 min−1)

are respectively the C-peptide amount and provision in the β-cells. Note that the

level of basal C-peptide is estimated (CPb) whereas the glucose basal is fixed to

the average of the four samples before the beginning of the IVGTT measured at

time -120, -30, -20, -10 min and the sample at time 0. The parameters kij (min−1)

describe the C-peptide kinetics, in particular k12 and k21 are the transfer rate

parameters between the two compartments and k01 is the irreversible loss. These

kinetic parameters are fixed to population values following the method proposed

in Van Cauter et al [20]. The remaining parameters α (min−1), β (mgdl−1pmol

l−1 min−1)and m (min−1) represent the secretion parameters whereas ktr (min−1)

and n are referred to the transit model and they are the constant transfer rate (ktr)

between the n compartments of the cascade. Note that ktr can be expressed as a

function of n and of the mean transit time or the time of delay of the secretion in

the following way:

ktr =
n+ 1

MTT
(5.2)



5.2 Material and methods 61

In this article we estimate n and MTT. X0 (pmol/l) is the stored amount of C-

peptide immediately releasable after a glucose stimulus and it represents the first

phase secretion. The second phase of secretion instead depends on the provision

Y which in turn is controlled by the glucose concentration through the parameter

β and Gb that represent respectively the sensibility to glucose and the glucose

threshold above which there is insulin production. The provision comprehends the

insulin production coming from the new synthesis and from the conversion of the

stable insulin to labile.

3. The derived indexes

The model allows calculating three fundamental indexes that explain the β-cell

sensitivity to glucose respectively in the basal state, in the first phase and in the

second phase of secretion. The basal sensitivity to glucose is described by the

following index:

φb =
k01 · CP1b

Gb
(5.3)

where Gb is the basal glucose concentration. The first and second phase secretion

of insulin are described respectively by the following indexes:

φ1 =
X0

∆G

φ2 = β

(5.4)

where ∆G is the maximum increment of the plasma glucose concentration. Finally

there is a global index of β-cell sensitivity to glucose that is defined as the average

increase above basal of pancreatic secretion over the average glucose stimulus above

the threshold level Gb:

φt = φ2 +
φ1 ·∆G∫∞

0 (G(t)−Gb) dt
(5.5)

4. Population modeling assumptions

In the population analysis by NLMEM the data are described by the model:

yij = f(pi, xij) + εij 1 ≤ i ≤ m 1 ≤ j ≤ ni (5.6)

where yij are is the jth observation (in our case C-peptide concentration) of the ith

subject at some known time instant xij . Here, m is the number of individuals and

ni is the number of observation of individual i. Pi is the vector of model parameters

for the ith individual. The model parameters across the population are assumed to
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be lognormal distributed coherently with previous literature [2]. In particular the

parameters can be described:

pki = θke
ηki (5.7)

where pki is the kth model parameter of the ith subject, θk is the typical value of

the kth parameter common to the entire population and ηki is the random effect of

the kth model parameter of the ith subject. The random effect ηi are assumed to

be independently distributed with zero mean and Gaussian:

ηi ∼ N(0,Ω) (5.8)

with Ω being a positive definite covariance matrix. The Ω matrix comprises only

the significant correlations between the parameters that are the following: X0 − β ,

X0−α , β−α , β−CPb , α−CPb (Eq. 5.9). Given these definitions of typical value

and random effect the first stage of variability, better known as Between-Subject

Variability (BSV), is explained.

Ω =


ω2
X0

ωX0−β ωX0−α 0 0

ωX0−β ω2
β ωβ−α ωβ−CPbsl 0

ωX0−α ωβ−α ω2
α ωα−CPbsl 0

0 ωβ−CPbsl ωα−CPbsl ω2
CPbsl

0

0 0 0 0 ω2
MTT

 (5.9)

Note that the parameters m and n are not present in the Ω matrix because they are

assumed constant in the population. In particular m is estimated as a fixed effect θ

that whereas n is fixed to a population value big enough but not enormous (n=150)

to facilitate the computational process. The variability due to measurement and

model errors, better known as the residual unknown variability (RUV), instead can

be explained through εij which is assumed to be independently distributed with

zero mean and Gaussian:

εij ∼ N(0, (σpropyij + σadd)
2) (5.10)

where σadd and σprop (combination of additive and proportional error) are additional

parameters to estimate.

5. The covariate analysis

Before starting with the covariate model building, we did a pre analysis that consists

in examining the covariate data and check if there are any correlations between
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them in order to select only independent covariates with unique information. The

strongest correlation were deleted but at the same time were kept those predictors

that were of interest from a clinical point of view. From this subset potentially

all the covariate combinations, for each of the five model parameters, are possible

candidates to be tested into model. This turns into a very time consuming analysis.

So in order to further narrow down these combinations we applied a technique

that aims to identify a potential selection of covariates for each parameter. This

technique is a stepwise generalized additive model (GAM) as described in Mandema

et al. [48] and it was performed using R [49] package Xpose [50]. To be sure about

the final subset of covariates selected for each parameter an influential individual

analysis was performed using the R package Xpose in order to test the robustness

of the chosen predictors in case that the subjects that influence mostly the GAM

fit are left out. If the GAM fit changes the predictors, the covariate final subset is

the one obtained without the influential individual. In particular we looked at the

Cook Distance and at the leverage that measures respectively the effect of deleting

a given observation on the vector of the parameter estimates and how much the

certainty in the fit depends on the data point (high value=high dependence) [51].

The cut-off to determine a critical observation was selected by visual inspection

from the graphs and the values that are larger than the rest were tested. The

GAM algorithm implemented in Xpose tests also nonlinear relationship between

the covariate and the parameters through the use of a linear piecewise function

with one cut off. In this article though only linear relationship were tested. Once

the selection was completed, we did a forward and backward elimination in the

computer program NONMEM. Starting from the basic model (without covariates),

in the NONMEM selection all possible parameter covariate combinations are tried,

and inclusion of covariate effects is based on the likelihood ratio test. The covariate

relationship that gives rise to the largest ∆ OFV is retained in the model, given

that inclusion results in ∆ OFV > 3.84 (corresponding to P < .05). The full model

is established when no more covariates can be included according to this criterion.

From the full model, the covariate relations were then deleted one at a time using

a stricter criterion of significance ∆ OFV > 10.83 (corresponding P < .001). The

final covariate model was achieved when deletion of each covariate relation was

significant.

Continuous covariates were investigated with the following covariate model:

pki = θke
θk+l(covi−covmedian)+ηki 1 ≤ l ≤ ncov (5.11)
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where pki is the kth model parameter of the ith subject and ncov are the number

of covariates. This model guarantees the positivity of the parameter without

constraining θk+l. The only categorical covariate that was present in the dataset

was given as a dichotomous variable (sex: male/female). The coding will be

illustrated using an indicator variable (IND), being 1 or 0 (e.g. male or female).

pki = θke
θk+l(INDl)+ηki l = 1 (5.12)

6. Algorithms

All the model estimation analysis were carried out using the software NONMEM

VII [29] whereas the covariate exploration were done using the R package Xpose [50].

The software NONMEM VII implements the NLMEM approach, which consists in

obtaining the population parameters by maximizing a likelihood function. Because

of the computational infeasibility of the exact solution, different approximations

were proposed. Here we applied the First Order Conditional Estimation (FOCE)

approximation with INTERACTION coherently with was found previously in

literature [2] and in 3.

5.3 Results

1. Base model analysis

In Fig. 5.2 is presented the individual and the population fit of the CMM using

some random subjects. In Fig. 5.3 is presented the basic goodness of fit plot

that consist in two correlation graphs between the individual or the population

predictions vs the observations and two plots of the individual and of the population

weighted residual. We can see that the population prediction fail sometimes in

the description of the first part of the curve where the observations assume big

concentrations but on the whole the fit is still reasonable as we can see from the

matching of the bisector of the plane with the linear regression (the red line). The

individual predictions are in a better agreement with the observation as the data

are less spread in the plane and the linear regression matches well the bisector

of the plane. As far as the residuals are concerned, both the individual and the

population weighted residuals behave well in terms of pattern and amplitude apart

from few outliers. The population estimates (see Tab. 5.3) in terms of fixed effects,

random effects and RUV are estimated precisely with a relative standard error

(RSE) that ranges from 1.2% of the RUV estimate σPROP to a RSE of 26.7%
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of the Ω estimate ω2
β−α. The individual estimates are also estimated precisely

with a coefficient of variation (CV%) that ranges from a CV% average value of

9% for the CPb estimate to a CV% average value of 34% for the α estimate. Is

important to underline that there is no shrinkage [37] in the EBE that otherwise

would have invalidate the covariate analysis by for example inducing or hiding some

false covariate relationship. In particular the η-shrinkage values range from a value

of 1% relative to CPb to a value of 13.1% relative to α. To sum up all the shrinkage

values are below the limit of alarm of the 20-30%.
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Figure 5.2: The individual and the population fit of some random subjects. The dots are the
observations, the red line is the individual fit whereas the blue dashed line is the population

prediction.

2. Covariate model analysis

Once the CMM base model is optimized, the covariate model can be built up.

Before starting with the covariate analysis, we perform a pre analysis to check the

correlation among the covariates since we want them to add unique information

to the model. The strongest correlations were deleted and moreover were kept

those predictors that were of interest from a clinical point of view. The final

set of covariates that is kept is the following: AGE, BMI, BSA, VAF, %TBF,

LBM, SEX, GBSL and IBSL. Given the still high number of candidate predictors

available a further exploratory analysis was carried out to narrow down a pool

of potential candidate models to test using the GAM algorithm. The covariate

selection obtained is illustrated in the first column of table 2. Note that the number

2 close to the covariate indicates a nonlinear relationship between the covariate and

the parameters. To corroborate the results of the final subset of covariates to test,

an influential analysis was carried out by means of leverage and Cook distance and
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Figure 5.3: Plot of the individual and population predictions (at the top) and residuals (at
the bottom).
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GAM selected predictors
Model parameters Pre influential analysis Post influential analysis

β IBSL BMI(2) VAF IBSL BMI VAF
α SEX GBSL AGE(2) VAF PTBF GBSL AGE(2) VAF
X0 GBSL IBSL AGE BSA SEX GBSL IBSL AGE(2) PTBF

MTT AGE(2) AGE
CPb GBSL IBSL(2) AGE VAF PTBF GBSL IBSL AGE VAF PTBF

Table 5.2: The GAM selection of covariates for each of the five CMM parameters before and
after the influential analysis. (2) indicates a nonlinear relationship between the parameter and

the covariate.

the outliers were detected by visual inspection (see Fig. 5.4 and 5.5). In particular

from figure 5.4 we can see that subject with ID 1 presents a high Cook distance

value with respect to the others and that subject with ID 66 instead presents a

high leverage value with respect to the others. In Fig. 5.5 is presented the Cook

distance in details calculated for each GAM term. In this figure only subject with

ID 1 stands out from the others. The final subset of covariates for each CMM

parameter is presented in the second column of Tab. 5.2.

Figure 5.4: Cooks distance vs leverage for a GAM fit of the CPb parameter. Data points
are labeled by the ID number.

These screening results were included into the base model and the forward and

backward selection in NONMEM was carried out. After forward inclusion and
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Figure 5.5: Cooks distance on each GAM term selected for the CPb parameter. Data points
are labeled by the ID Number.

backward, the full covariate model contained eight relations: β ∼ IBSL, X0 ∼
GBSL-IBSL, α ∼ GBSL-AGE, CPb ∼ AGE-GBSL-IBSL. The significant relations

identified by NONMEM were further examined for plausibility and relevance. Basal

glucose and insulin (GBSL-IBSL) were identified to be plausible explanatory factors

respectively for the parameters X0-α and β-X0-CPb. Regarding the influence of

AGE on α (negative relation) and on CPb (positive relation), biological explanations

can be given for these covariate relations in Basu et al [52] where it is claimed

respectively that basal concentration of C-peptide where higher in elderly men and

woman and that the dynamic response to glucose was lower in elderly men. The

two AGE relations though assumed very small values with respect to the other

and it was decided to left them out. The final parameter model is described in

Eq. 2 as in Eq. 5.11 where COV (all caps) is a covariate (IBSL, GBSL, etc.) and

∆COV represents the deviation of the covariate COV from its median value. The

optimal parameter values for the base and the final covariate model are reported

in Tab. 5.3, along with their precision. The drop of the objective function is

statistically significant (around 240 points). Moreover there is the expected drop in

the population variability that is evident looking at the omega matrix before and

after the insertion of the covariates. In particular, the X0 BSV moves from 54% to

42%, the β BSV from 41% to 34%, the α BSV from 75% to 72%, the CPb BSV

from 34% to 24% and finally the MTT BSV remains stable around 21% since it is
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the only parameter without covariate relationship. This drop in the BSV means

that the model has increased its descriptive capabilities and is able to explain a

portion of the BSV in a deterministic way rather than attributing it to random

differences among subjects. The clear trend between the individual etas and some

covariates that was observable in the base model (see Fig. 5.6) is dramatically

reduced as expected in the final covariate model.

Figure 5.6: Individual random effects of four parameters in the base model versus the final
selection of covariates after the forward and backward selection of NONMEM.
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β = θβe
θβ∼IBSL∆IBSL+ηβ

X0 = θX0e
θX0∼IBSL∆IBSL+θX0∼GBSL∆GBSL+ηX0

α = θαe
θα∼GBSL∆GBSL+ηα

CPb = θCPbe
θCPb∼GBSL∆GBSL+θCPb∼IBSL∆IBSL+ηCPb

MTT=θMTT e
ηMTT

(5.13)

Shrinkage of the final model was calculated and was below the generally accepted

upper threshold of 20 / 30% [53, 37]. In particular it ranges from a value of 1.2% of the

parameter β to a value of 14.5% relative to the parameter α. In Fig. 5.7 is presented

the basic goodness of fit plot. The population prediction compared to the one obtained

in the base modeled is improved: the higher observation are better predicted and there

is less underestimation. The individual prediction is satisfactory as in the base model.

As far as the residuals are concerned, both the individual and the population weighted

residuals behave well apart from few outliers.

To assess the ability of the model to capture the variability observed in the dataset,

a visual predictive check (VPC) [50] was performed with NONMEM and PsN [43] as

can be seen in Fig. 5.8 . The final population parameters were used to simulate 1000

replicates of the dataset, and the observations were stratified by percentiles for each time

point. The model performance of simulating profiles similar to the observed data is good

as it can be seen in Fig. 5.8 since the CI of the simulated percentiles follow well the

percentiles of the observed data.
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Table 5.3: Summary of parameter estimates obtained before (base model) and after (final
model) the covariates introduction. Typical values for parameters are in original units. Given
that between-subject variability is modeled as log normal, variance measures are reported
as approximate coefficients of variation (CV), whereas the covariance terms are in terms
of correlation. Coefficients for the covariates are in logarithmic units; therefore, as a first
approximation they can be interpreted as proportional changes in the minimal model parameter

per unit change of the covariate.
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Figure 5.7: Plot of the individual and population predictions (at the top) and residuals (at
the bottom)
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Figure 5.8: Visual predictive check of the final model.
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5.4 Discussion

This article is the natural extension of the Denti et al work [3] in an IVGTT data

rich protocol context where the sources of biological variability were investigated by

introducing the covariates on the glucose minimal model once the model was optimized.

The first part of the analysis consists on revising the CMM model by exploiting the

NLMEM potentials. We introduced a delay term that enables the model to be more

flexible in the first part of the data and to take into account the delay due to the glucose

signal. In particular it was delayed the first phase of secretion that corresponds to

stored amount of C-peptide immediately releasable after a glucose stimulus above basal

concentration. It is reasonable to think in fact that the glucose dose (330 mg/kg) given

from minute zero of the experiment can take a time of infusion and of distribution in

the body equal to the 2.5 minutes estimated that is the time before the first secretion of

insulin begins. Moreover in the between subject variability of the delay (MTT) are taken

into account also possible experimental mistakes during the infusion. The CMM base

model implemented with this new feature gives satisfactory results at both individual

and population level. In particular the individual fit describes well the observed data in

all the dynamics whereas the population prediction sometimes underestimates the peak

due to the fact that the delay parameter MTT in the population description is modeled

just as the fixed effect common to the entire set of subjects and in this way it loses

the flexibility in some subjects to catch the dynamic of the curve in the first temporal

window. Moreover the parameter individual information is characterized well enough to

allow a proper covariate search without leading to false parameter-covariate relations. It

is important to note that the Van Cauter parameters are constructed from each subject

anthropometric information that might bias the following covariate analysis. Remember

that the aim of this work was to implement through the population approach the already

validated C-peptide model in the single subject approach. Future work would be to try

to identify the model without the use of these kinetics priors if possible. if this is not

possible even by exploiting a powerful approach like the NLMEM it would be interesting

to identify the Van Cauter C-peptide kinetics data through a population approach and

then use this complete kinetics characterization as future priors in the C-peptide minimal

model.

Moving to the covariate analysis, the methodology used for the selection of the possible

covariate-parameter relations to test in NONMEM was the GAM fit supervised by an

influential individual analysis that helped to identify false relations caused by just few

influential subjects. This analysis did not changed dramatically the GAM fit results:

only the covariate relations identified for the parameters α and X0 are partially different
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whereas the remaining three parameters kept the same predictors with just some changes

in the suggested relations to test (from nonlinear to linear). The GAM analysis included

more predictors than the final ones selected by the following forward and backward

NONMEM analysis but even if it did not single out the most parsimonious model, it

still provided a very good guess, allowing dramatic reduction in time and improving the

efficiency of the covariate selection process.

The optimal model obtained after the NONMEM forward and backward selection includes

in the final model some covariates whose relations with their corresponding parameters

we will try now to describe through possible physiological explanations. In particular the

predictors of the basal level of the C-peptide are the basal levels of glucose and the basal

level of insulin. These two relations detected are positive. Insulin basal level obviously is

a positive predictor of the basal levels of the C-peptide since C-peptide is a cosecreted

substance with insulin. The basal glucose relation instead is a consequence of the glucose

basal higher levels in elderly subjects. In Basu et al [52] in fact was found that both the

fasting C-peptide and glucose levels (but not insulin levels) are higher in elderly women

and men. The parameter β has as a predictor the basal insulin with a positive relation

that means that subjects with higher IBSL have more insulin secretion. In other words

if two healthy subjects that have the same level of basal glucose undergo to the same

glucose load, the subject with higher insulin basal level produce more insulin because the

tissue are probably more insulin resistant and to absorb the same quantity of glucose it

takes more insulin than the other subject. The covariates selected for the parameter α is

basal glucose related in a negative way with the parameter. In particular the higher the

basal level of glucose the lower the insulin production which is a plausible relation since

the glucose stimulus is measured subtracting to the glucose signal the basal level. Finally

the covariate relations selected for the parameter X0 are the basal level of insulin and

glucose. The physiological explanation for these last two might bound to the meaning

of this parameter that represents respectively the insulin that is releasable because is

present at the basal conditions (IBSL) and because there is a change in glucose levels

(GBSL) so the smaller GBSL is the bigger the change is. We can conclude that the final

selection might be physiologically plausible even if further clinical study are necessary to

validate completely the work. If we look at the drop of BSV of each parameter in terms

of relative deviation, it turns out that only the covariates GBSL, IBSL on the parameter

CPb are able to explain more than 30% of between subject variability of CPb in the

model without covariates whereas the other predictors in the remaining four parameters

explain no more than the 22%. In particular the relative deviation for the parameter 0 is

22%, for β is 17% and for α is 5%.
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So far it was discussed the CMM capability to describe the real data variability but at

the same time it is important as well to check the model capability to simulate reasonable

C-peptide data. Looking at the VPC analysis that was made in the final covariate

model, the simulation performance of the model is on the whole satisfying: the CI of the

percentiles of simulated profiles follow the dynamics of the percentiles of the observed

data meaning that the simulated profiles are reasonable. We can conclude that for dataset

fast screening purposes or for sparse dataset turns to be more convenient take into the

analysis the relations discovered between the covariates and the parameters to reduce

the BSV and to help the estimation process.

5.5 Conclusions

In this study, a population PK analysis was performed on a C â peptide rich dataset

collected after an insulin modified IVGTT. The model that was used is a revision of the

already published CMM [19] made by exploiting the potentials of the population approach.

In particular a delay was introduced in the first part of the experiment to take into account

the time between the injection of the glucose dose and its distribution and the following

secretion of insulin. The results are satisfactory at both individual and population level so

this work paves the way for further studies that aim to further narrow down the protocol

in order to better deal with the typical data poor epidemiological study condition.

Furthermore, in this article, we suggest a population CMM that incorporates in its

estimates physiological information such as sex and age, easily measurable anthropometric

data such as height and weight, body fat amount and distribution, and information on

the basal levels of glucose and insulin. The introduction of the covariates underlines

the model parameters dependence on the basal levels of both glucose and insulin. Since

in clinical practice is easier to be in a data poor condition, this suggests that these

relations have to be taken into account to introduce additional information that can

improve the estimation process. At the same time our covariate model suffers from

several limitations like the use of the Van Cauter kinetics parameters as an individual

a priori knowledge that might blur the covariate analysis made. Another limitation

that was not taken into account into this analysis is the existence of more complex and

possibly nonlinear relationships between the covariates and the parameters that should be

investigated. Finally, since the amount of variability in the data is limited, and therefore

the possibility of statistical artifacts and model misspecification cannot be excluded, it

would be important to validate and corroborate our results by repeating the analysis on

different datasets.



An integrated model to describe the glucose and

insulin system during an IVGTT

6.1 Introduction

The glucose and insulin minimal models [17, 21] are widely used tools to study the

glucose insulin systems. The system in these two minimal models is decomposed in two

subsystems where glucose and insulin are respectively used as known input and output

or vice versa depending on which part of the system is chosen to be described. This

modeling choice was introduced in the metabolic field as a strategy to better identify the

minimal models. So far these models were both identified separately using the classic

weighted nonlinear least square (WNLS) that due to a posteriori identifiability problem

resorts often to Bayesian a priori knowledge to make the estimation step possible. In

this article we want to integrate the glucose and insulin minimal models by exploiting

the Nonlinear mixed effects approaches (NLMEM). Denti et al [2] showed already the

advantages of the NLMEM in the estimation of the glucose minimal model. The NLMEM

in fact resort to the population information spread in the collection of subjects that

creates a prior that facilitate the estimation process. In this way the NLMEM are able

to overcome some of the identifiabilty problem in the single subject approach and to deal

with individual data sparseness by borrowing the lack of information from the entire
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population.

In this case the NLMEM approach enables the integration of the two models that otherwise,

in the individual context, would be not feasible for the big number of parameters. The

rationale of the work was first to optimize from a populatin point of view the two minimal

models separated and once this is done move to the integration of the two models. As far

as the glucose minimal model is concerned this process was already done in chapter 4

with the two compartment glucose model formulation whereas the insulin minimal model

has to be implemented in a population context from scratch. The insulin minimal model

was implemented adding a delay term that describes, as in the IVGTT C-peptide minimal

model, the time that takes the glucose signal to activate the insulin secretion from the

beginning of its infusion. Moreover a second compartment was added to describe better

the insulin kinetics and the compartment of the model representing insulin in the β-cell

was deleted as it was unnecessary with this new formulation of the model. Finally an

allometric scaling was introduced also in the insulin model to explain in a deterministic

way part of the variability in the parameters. The main advantage of having an integrated

glucose insulin system implemented in NLMEM is to have the complete characterization

of the joint probability distribution of the parameters of an healthy population. From

this distribution the entire glucose and insulin system can be simulated unlike the two

minimal models where just a part of the system could be described by the simulation

while the other one is known.

6.2 Material and Methods

1. Data

The data, provided by the Clinical Research Center at the Mayo Clinic, Rochester,

MN, USA, originates from an insulin modified IVGTT protocol performed on 204

nondiabetic subjects (118 M /86 F, mean age 55.53 ± 21.66 mean BMI 26.62±
3.39 kg/m2) that underwent an intravenous injection of glucose (0.3 g/kg body

wt) followed by a square wave (from 20 to 25 min) of insulin infusion (0.02 U/kg

body wt). Blood samples were collected at -120, -30, -20, -10, 0, 2, 4, 6, 8, 10, 15,

20, 22, 25, 26, 28, 31, 35, 45, 60, 75, 90, 120, 180 and 240 min for measurement of

glucose, insulin and C-peptide concentrations. Different weight information were

collected to improve the parameter estimation process by adding some individual

information the so called covariate. In Tab. 6.1 are summed up the weight

descriptors characteristics.

2. The integrated model
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Covariate Name Units Mean Min 1stQ Median 3rdQ Max

BW Body weight kg 77.95 53 68.9 79 87 129
VAF Visceral abdominal fat cm2/CT slice 141.84 11.86 62.54 125.09 206.73 478.23
TAF Total abdominal fat cm2/CT slice 301.76 43.94 193.28 292.32 407.66 837.5
TBF Total body fat grams 23413.06 4884 17364 22520 28420 46986

%TBF percentage of total body fat % 32.41 7.3 25.8 31.6 39.75 56.7
LBM Lean body mass kg 49.53 30.1 38.5 51.84 58.68 74.58

Table 6.1: Continuous covariates for the glucose-insulin system measured in our 204 subject
database. Statistics include minimum and maximum value, 1st and 3rd quartiles, and mean

and median.

The model building strategy was first to focalize on the two subsystems separated

and then once the two minimal models were refined integrate them. The glucose

minimal model with the two compartments was implemented as in the chapter 4

whereas the insulin minimal model revision exploiting the population approach was

built from scratch. In particular we apply the NLMEM to the already published

model [21] estimated with the traditional approach WNLS and we revised it using

the potentials of the new approach. In the following two paragraphs are described

the final formulations of the two models.

The glucose minimal model (GMM)

The 2GMM [18] was revised by adding a delay term in the appearance of glu-

cose in plasma due to the infusion and distribution of the glucose in the body. In

particular a transit model was inserted in the original formulation of the model

by using a cascade of first order models with a single transfer rate ktr1. The final

model is described by the following equations:

Q′1(t) = −(SG +X(t)) ·Q1(t) + SG ·Q1b − k21 ·Q1(t) + k12 ·Q2(t)

+D ·BW · (ktr1 · t)n1

n1!
· e−ktr1·t Q1(0)=Gb·V

Q′2(t) = k21 ·Q1(t)− k12 ·Q2(t) Q2(0) =
k21

k12
·Gb · V

X ′(t) = −p2 ·X(t) + p2 · SI · (I(t)− Ib) X(0) = 0

(6.1)

where Q1 and Q2 is the glucose mass in plasma (mg) in the accessible and non

accessible pool of the glucose system, Gb is the basal glucose concentration (mg/dl),

I is insulin plasma concentration (pmol/l) and Ib is its basal value, X is insulin

action (min−1) and D is the dose (330 mg/kg). The parameters of the model

are the following: the glucose effectiveness SG (min−1), the insulin sensitivity SI
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(min−1 pmol−1 l), the insulin action p2 (min−1), the volume V (dl), the glucose

two compartment transfer rate k21 and k12 (min−1), the transit model transfer

rate ktr1 (min−1) and the number of compartments n1. Note that ktr1 can be

expressed as a function of n1 and of the mean transit time (MTT1) (min) or the

time of delay of the secretion in the following way:

ktr1 =
n1 + 1

MTT1
(6.2)

In this article we estimate n1 and MTT1. Note that the parameters SG, k21 and

k12 were expressed as clearances because by definition are more informative than

their corresponding transfer rates. Moreover between the accessible and the non

accessible compartment was supposed a diffusion process meaning that at the

equilibrium state the concentration are the same so as a consequence also the

clearance between those two compartments. To sum up the final set of unknown

parameters are p=[clSG , SI , V, p2, clk1, V2, n1, MTT1] where clSG (dl/min) is the

clearance of SG, clk1 (dl/min) is the clearance of the parameters that was supposed

to be equal in the two compartments due to the diffusion hypothesis and V2 (dl) is

the volume of the non accessible compartment. Note that the model compartments

were expressed in mass to have the parameters do not depend implicitly on weight

information and to be able to introduce this information through the allometric

scaling.

The insulin minimal model (IMM)

The IMM was revised and its final formulation is the following:

I ′1(t) = −n · I1(t) + Y (t) + k12 · I2(t)− k21 · I1(t) + U(t)

+X0 · VI ·
(ktr2 · t)n2

n2!
· e−ktr2·t I1(0)=Ib·VI

I ′2(t) = k21 · I1(t)− k12 · I2(t) I2(0) = Ib · VI2

Y ′(t) =



−α · (Y (t)− β · (G(t)−Gb) · VI − n · Ib · VI)

Y (0) = (n · Ib · VI) if β · (G(t)−Gb) · VI − n · Ib · VI ≥ 0

−α · (Y (t))

Y (0) = (n · Ib · VI) if β · (G(t)−Gb) · VI − n · Ib · VI < 0

(6.3)
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where I1 and I2 are the insulin accessible and non accessible pool mass in plasma

(pmol), U(t) is the squared infusion (pmol/min) and Y is the provision of new insulin

(pmol/min). The model parameters are the following: n is the rate constant of

insulin disappearance (min−1), k12 and k21 (min−1) are the rate transfer between

the accessible and the non accessible pool, VI (l) is the insulin distribution volume,

X0 (pmol/l) is responsible for the first insulin secretion, Ib (pmol/l) is the basal

insulin level, α (min−1) is a rate constant towards Y tends to a steady state value

that is linearly related to glucose concentration G (mg/dl) through the parameter

β (min−1 pmol dl l−1 mg−1) above the basal glucose threshold Gb (mg/dl). Note

that as in the IVGTT C-peptide the first insulin secretion is delayed through a

transit model that is implemented as a cascade of n2 first order models with a

single transfer rate ktr2. This delay takes into account the glucose signal time of

distribution in the body before it can activate the β-cell to secrete insulin. Note

that ktr2 can be expressed as a function of n2 and of the mean transit time or the

time of delay of the secretion in the following way:

ktr2 =
n2 + 1

MTT2
(6.4)

In this article we estimate n2 and MTT2. Note that the parameters n, k12 and

k21 are expressed as clearances and like in the glucose minimal model between the

accessible and the non accessible compartment was supposed a diffusion process

meaning that at the equilibrium state the concentration are the same so as a

consequence also the clearance between those two compartments. The final set of

unknown parameters are the following p=[cln, clk2, VI , VI2, X0, α, β, MTT2, n2,

Ib] where clk2 (l/min) is the clearance of the parameters that was supposed to be

equal in the two compartments due to the diffusion hypothesis and VI2 (l) is the

volume of the non accessible compartment.

Note that in the integrated model the forcing function for the GMM is substituted

with the estimated kinetic of the accessible insulin compartment (I1/VI) whereas

the IMM forcing function is substituted with the estimated glucose kinetic of the

accessible glucose compartment (Q1/V). Both the signals are fitted simultaneously.

Note also that the glucose and insulin basal values in the integrated model are

both estimated parameters. So the finalset of unknown parameters is the following

p=[clSG , SI , V, p2, clk1, V2, n1, MTT1, Gb, cln, clk2, VI , VI2, X0, α, β, MTT2, n2,

Ib].

3. Population modeling assumptions
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Nonlinear mixed effects models (NLMEM) are able to quantify both the population

and the individual parameters and to identify by a hierarchical approach the bio-

logical sources of intra-individual and inter-individual variability. More specifically,

in a first step, the data are described by:

yij = f(pi, xij) + εij 1 ≤ i ≤ m 1 ≤ j ≤ ni (6.5)

where yij are is the jth observation of the ith subject at some known time instant

xij . Here, m is the number of individuals and ni is the number of observation

of individual i. Pi is the vector of model parameters of the ith individual. The

variability due to measurement and model errors, better known as the residual

unknown variability (RUV), is explained through εij which is assumed to be

independently distributed with a zero mean and Gaussian distribution:

εij = N(0, (σpropyij + σadd)
2) (6.6)

The variance model is described for both the measures of glucose and insulin as a

combination of a proportional and an additive error model where σprop and σadd

are additional parameters to estimate. In a second step, the model parameters

are represented as function of some physiologically meaningful attributes that do

not vary across the population (θ, fixed effects, i.e. values that are common to

all subjects) and some others that do (ηi, random effects, i.e. values typical of a

specific subject). In our model we chose the function:

pki = θke
ηki (6.7)

where pki is the kth model parameter of the ith subject, θk is the typical value of

the kth parameter common to the entire population and ηki is the random effect of

the kth model parameter of the ith subject. The random effect ηi are assumed to

be independently distributed with a zero mean and Gaussian distribution:

ηi ∼ N(0,Ω) (6.8)

with Ω being a positive definite covariance matrix. With this formulation the

second stage of variability, better known as Between-Subject Variability (BSV), is

explained. The omega set up matrix for the integrated model is the following:
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Ω =



ω2
P2 ωP2−SI ωP2−cln ωP2−Ib ωP2−β ωP2−α 0 0 0 0 0 0 0 0 0 0

ωP2−SI ω2
SI

ωSI−cln ωSI−Ib ωSI−β ωSI−α 0 0 0 0 0 0 0 0 0 0

ωcln−P2 ωcln−SI ω2
cln

ωcln−Ib ωcln−β ωcln−α 0 0 0 0 0 0 0 0 0 0

ωIb−P2 ωIb−SI ωIb−cln ω2
Ib

ωIb−β ωIb−α 0 0 0 0 0 0 0 0 0 0

ωβ−P2 ωβ−SI ωβ−cln ωβ−Ib ω2
β ωβ−α 0 0 0 0 0 0 0 0 0 0

ωα−P2 ωα−SI ωα−cln ωα−Ib ωα−β ω2
α 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ω2
Gb

ωGb−X0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ωX0−Gb ω2
X0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ω2
SG

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ω2
V 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ω2
VI

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ω2
clk1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ω2
V2

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ω2
clk2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ω2
MTT1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ωMTT1−MTT2 ω2
MTT2


where the effort was to keep just the most explanatory terms of the Ω matrix. Note that

the omega matrix set up of the IMM when was first built alone was supposed diagonal

because the preliminary work of optimization is just a prerequisite of the integration. As

far as the GMM parameter description is concerned, the parameter n1 is not present in

the Ω matrix because is assumed constant in the population as described in the previous

chapter 4. As far as the IMM is concerned, the parameter n2 is fixed to a population

value big enough but not enormous (n2=200) to facilitate the computational process. The

value n2 was chosen as the smallest that through a simulation do not change dramatically

by visual inspection the insulin profiles. Moreover the volume of the non accessible

pool of insulin V2 was modeled simply as a fixed effect common to the entire population

because it adds no significant improvement in terms of drop of function.

4. Allometric scaling

An allometric scaling was introduced to explain in a deterministic way part of the BSV of

the model parameters through the use of different weight information and consequently

to reduce the estimated BSV. Note that all the model compartments were expressed in

mass to better deal with the introduction of weight information with allometric scaling in

the sense that the parameters do not depend implicitly on weight information. As far as

the GMM is concerned the same allometric scaling as in chapter 4 was used whereas for

the IMM the scaling was selected in the following way: a linear regression between the

volume parameter (only VI because it varies in the population) and the different weight

predictors (body weight, lean body mass, visceral abdominal fat...) of the dataset was

done due to the allometric linear relationship. For the clearance parameters the predictor

selected in the volume was introduced as a descriptor.

5. Algorithms

All the model estimation analysis were carried out using the software NONMEM 7.2.0
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[29] that implements the NLMEM approach which consists in obtaining the population

parameters by maximizing a likelihood function. Because of the computational infeasibility

of the exact solution, different approximations were proposed. Here we applied the First

Order Conditional Estimation (FOCE) approximation with INTERACTION coherently

with was found previously in literature [2] and in chapter 3.

6.3 Results

Firstly we focus on the insulin minimal model optimization. Note that with respect to the

model original formulation [21] a second insulin compartment of the non accessible pool

was added that contributes to a statistically significant drop of the objective function.

Moreover the compartment that in the original model represents the insulin amount in

the β-cell was deleted because its role with this final formulation through a simulation

analysis was seen to be irrelevant in the data description. In Fig. 6.1 are presented

two correlation graphs between the individual or the population predictions versus the

observations: on the whole the fit is good as we can see from the matching of the bisector

of the plane (black line) with the regression line (the red line). In Fig. 6.2 are presented

the individual (red line) and the population (blue dashed line) fits of some random

subjects.
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Figure 6.1: Scatterplot of the observation versus the IMM population prediction (left) and
the individual prediction (right).

In Fig. 6.3 are presented the individual weighted residuals and the conditional

weighted residuals [53] where we can see that the residuals in term of amplitude and pat-

tern are satisfactory apart from few observations. In particular note that the conditional

weighted residuals have a small trend at the end of the experiment but it is still well
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Figure 6.2: Individual profiles. IMM individual prediction (red line) and population predic-
tion (blue dashed line) versus time for some randomly selected subjects. Dots represent the

observed concentration.
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scorrelated and the residual amplitude is small.
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Figure 6.3: IMM individual and conditional weighted residuals.

The population estimates are all estimated precisely as it can be seen from Tab.

6.2 where are presented all the estimates with their relative standard error (RSE%).

An allometric scaling was introduced in the volume and clearances parameters. In

particular BW was the predictor with the strongest correlation with the parameter VI

in the regression analysis and so it was chosen as the predictors also for two clearances

parameters (cln and clk2). So the final model parameter formulation is the following:

clni = θcln · exp(ηclni) ·
(

BWi

BWmedian

)0.75

clK2i = θclk2 · exp(ηclk2i) ·
(

BWi

BWmedian

)0.75

VI i = θV i · exp(ηV I i) ·
(

BWi

BWmedian

)
VI2i = θV I2 ·

(
BWi

BWmedian

)
(6.9)

In Tab. 6.2 are presented the model parameter estimates with their relative standard

error and it is clear how the weight information in the final model helped to reduce the

parameter BSV by explaining it in a deterministic way. In particular the most important

BSV reductions are: VI BSV swift from 21.1% to 15.8% and the clk2 BSV moves from

45.2% to 38.9%. The drop of objective function is statistically significant and it is around

60 points.

In Fig. 6.4 is presented the VPC [43] of the insulin minimal model. The graph yields

that the model is able to catch the data variability as the CI of the percentiles of the

simulated profiles are on the whole able to follow the percentiles of the observed data.
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Table 6.2: Summary of the insulin minimal model parameter estimates obtained before (base
model) and after (final model) the allometric introduction. Typical values for parameters are
in original units. Given that between-subject variability is modeled as log normal, variance
measures are reported as approximate coefficients of variation (CV), whereas the covariance

terms are in terms of correlation.
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Figure 6.4: The VPC of the insulin minimal model.
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After the insulin minimal model has been improved by the NLMEM we focus on

the integration of the two subsystems. In Fig. 6.5 and in Fig. 6.6 are presented the

integrated model population and individual predictions of the glucose and the insulin

versus the observed data. For both the population and the individual predictions the

match between the regression line and the bisector of the plane is good.
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Figure 6.5: Scatterplots of the observation versus the glucose (left) and insulin (right)
integrated model population predictions.

Figure 6.6: Scatterplots of the observation versus the glucose (left) and insulin (right)
integrated model individual predictions.

In Fig. 6.7 and in Fig. 6.8 are presented the individual (absolute value) and the

conditional weighted residuals of both the glucose and insulin signals. The fit is reasonably

good if we consider the pattern and the amplitude of both the residuals. Looking at the

glucose and insulin conditional weighted residuals we can see an opposite trend at the

end of the experiment in the average line going respectively up for the glucose signal

and down for the other signal. In Fig. 6.9 is presented the individual (red line) and the
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population (blue dashed line) fit of some random subjects for both the insulin at the top

of the figure and glucose at the bottom of the figure. In Tab. 6.3 are presented the

Figure 6.7: The absolute value of the glucose (on the left) and insulin (on the right) integrated
model individual weighted residuals.

Figure 6.8: The integrated model glucose (on the left) and insulin (on the right) integrated
model conditional weighted residuals.

integrated model population parameter estimates with their relative standard error. All

the parameters are estimated with satisfactory precision apart from two correlations that

due to their small value are poorly estimated.

In Fig. 6.10 is presented the VPC of the glucose and the insulin profiles.The graph

yields that the model is able to catch the data variability as the CI of the percentiles of

the simulated profiles are on the whole able to follow the percentiles of the observed data.

In order to deal with the clear trend that is present in the conditional weighted

residuals at the end of the experiment we tried to model the basal levels of glucose and

insulin with a very simple and raw model but at the same time efficacious: a line model.
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Figure 6.9: Insulin (top figure) and glucose (bottom part of the figure) individual profiles.
Individual prediction (red line) and population prediction (blue dashed line) versus time for

some randomly selected subjects. Dots represent the observed concentration.
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Table 6.3: Summary of the parameter estimates obtained in the integrated model. Typical
values for parameters are in original units. Given that between-subject variability is modeled
as log normal, variance measures are reported as approximate coefficients of variation (CV),

whereas the covariance terms are in terms of correlation.
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Figure 6.10: The stratified VPC of the integrated model: glucose profiles(on the left) and
insulin profiles (on the right).

In particular we introduced two more parameters, the two slopes of the line models

(glucose and insulin), to the integrated model formulation. Note that the basal level

are the corresponding line intercepts. The trend in the residuals with this expedient

disappears as we can see in Fig. 6.11 and the drop of function due to the two parameters

introduction is statistically significant (around 25 points).

Figure 6.11: The conditional weighted residuals of glucose (on the left) and insulin (on the
right) of the integrated model with baseline modeled as a line.
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6.4 Discussion

Before integrating the insulin and glucose subsystems we decided to optimize the two

models on their own. Note that with optimization we intend the process of model building

exploiting the population approach that is a different context then from the individual

approach where these models were first built. The GMM was refined in chapter 4

whereas the IMM was implemented from a population point of view in this chapter.

As far as the IMM is concerned we did some changes in the model structure with respect

to the previously published insulin model [21]. In particular we added a delay term

through a transit model [41] consistently with the IVGTT C-cpeptide minimal model to

describe the delay of the insulin first secretion due to the glucose signal. Then we added

a second compartment that is a non accessible pool of insulin. The second compartment

meaning might be explained physiologically through a temporary binding of the insulin

hormone with its receptor as it is modeled in Wanant et al [54]. This binding step marks

the beginning of the insulin signaling pathways that will lead to mediate the glucose

uptake and metabolism. Finally we deleted from the original model formulation the

compartment of the insulin amount in β-cell. Note that no straight proper comparison

about the model structure can be made with the C-peptide minimal model (CMM)

although in the IMM was introduced similarly a delay term. In fact, firstly the IMM has

a protocol enriched with the insulin injection that enables a better parameters estimation

(the insulin disappearance) and the CMM does not. Secondly the CMM kinetics between

the two main compartments are fixed to prior knowledge [20] and the IMM kinetics are

not.The last step of the IMM analysis is the introduction of the covariates in the clearance

and volume parameters following the allometric scaling theory in order to reduce the

parameters variability. With these changes in the model structure the IMM is able to

catch the insulin kinetic in a satisfactory way at both individual and population levels

as the model fit and residuals show (Fig. 6.1, 6.2, 6.3). The VPC analysis (Fig. 6.4)

brings to the same conclusions: the model is able to describe the data variability as the

CIs of the simulated percentiles follow the percentiles of the observed data. These results

allow us to finally move towards the integration of the GMM with the IMM.

Although the big number of parameters the integrated model is able to estimates all

the parameters and to allow the calculation of the covariance step. In this way all the

precision of the estimates are present without the need to resort to any bootstrap. Is

important to note that the parameters, in particular the fixed effects, do not deviate

dramatically from the estimates obtained in the two separated subsystems meaning again

that the new integrated model formulation is stable. The reduction of the matrix was

necessary to furtherly stabilize the model estimation. To exclude the covariance terms
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first a model with a full matrix was run and only the more relevant terms were kept

in the final model. Both the glucose and insulin are fitted well as we can see from the

plots (Fig. 6.6, 6.5) and from the residuals (Fig. 6.7, 6.8). With respect to the fit

obtained with the two separated subsystems, the integrated model performance seems

to behave better. Looking for example at the integrated GMM conditional results with

respect to the results obtained in the GMM standalone, we can see that the conditional

weighted residuals are smaller and that the population prediction versus the observed

data are more centered with the bisector of the plane. Moreover the parameters BSV

decreases in the integrated model meaning that the parameters are less variable in the

parameter space. This is due to the fact that the model has increased its degree of

flexibility (e.g. the glucose basal now is modeled) and that the covariance matrix gives

the possibility at the two part of the system to interact in a proper way. The VPC

of the integrated model underlines the model capability of describing the variability in

the observed data. With respect to the VPCs of the corresponding minimal models

implemented as separated subsytems (see Fig. 4.8, 6.4)there is a clear improvement in

the integrated model VPC. In this case in fact the model is able to simulate both the

glucose and the insulin kynetics without the need of using forcing functions that might

be misleading during the simulation step of the VPC [44]. Finally is interesting to note

the opposite trend in the conditional weighted residuals in the glucose and insulin fit at

the end of the experiment that can be fixed modeling the insulin and glucose basal levels.

In fact the basal levels at time 0 with respect to the levels at time 240 are systematically

lower in the subjects and taking into consideration this feature clearly prevent the trend

in the residuals (Fig. 6.11). The physiological reasons for this lowering of the basal

levels needs to be investigated furtherly but might be due to the fact that the patient

is without food for the following four hours after the glucose intake or that maybe is

hydratate during the experiment.

6.5 Conclusions

In this study we propose an integrated model to study the insulin and glucose system

exploiting the NLMEM potentials. We come up with a model that is able to describe the

glucose and insulin kinetics at the same time without using Bayesian a priori information

and without the need of dividing the system in two subsystems for identifiability reason.

Moreover we add some modeling part that improved the model performance. We started

from optimizing separately the glucose and insulin minimal model and once this is done

we integrated the two. In this way we achieved a model that is able to simulate both the
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profiles without using forcing functions. The simulation step then is not dependent on any

observed data and is achievable simply knowing the population parameter distribution

and the measurement error. Moreover we came up with a complete characterization of a

healthy population parameter distribution during an IVGTT.



The MTT glucose minimal model on a synthetic

dataset

7.1 Introduction

The glucose-insulin regulatory system can be investigated by fitting an adequate math-

ematical model to data obtained following intravenous injection of a bolus of glucose,

e.g. during an intravenous glucose tolerance test (IVGTT) or after ingestion of glucose,

e.g. an oral glucose tolerance test (OGTT), or a mixed meal tolerance test (MTT).

Between the three different tolerance tests, the oral MTT perturbations are no doubt

more physiological as they are closer to mimic the usual modality and pathway to

introduce a glucose perturbation in the human body. However, MTT data require a

more complex mathematical model than IVGTT ones since the quantification of insulin

action during an oral protocol requires assessment of the systemic rate of appearance

of the ingested glucose. In particular, from MTT data, the model presented in [22] is

widely used to estimate insulin sensitivity (SI), i.e. one important metabolic index used

in clinical and epidemiological studies of diabetes and hyperglycemia, and the rate of

appearance of the glucose time curve (Rameal) (see reviews [12, 55]). This model requires

the estimation of eleven parameters, seven of which are used to describe the Rameal

through a piecewise linear model (PL). In this chapter we propose some new formulations
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of Rameal that will be compared to the well established PL. In particular, our effort is to

find a parametric function capable not only to perform comparably to the PL description

but also to be more conservative in terms of number of parameters. This because mainly

of the computational time burden and feasibility in the implementation. In data rich

pathophysiological studies the oral glucose minimal model (OGMM) is identified by

weighted nonlinear Least Squares (WNLS) applied on each single subject experimental

data. However in epidemiological studies, usually a data poor context, it is important

to estimate the parameters from the population data, though is useful to obtain the

description of the parameter distribution across the population. Here we exploit the

potential of the nonlinear mixed effects modeling (NLMEM) techniques [29] to identify

the OGMM and characterize a healthy population that underwent an MTT. Denti et al [2]

already explored the advantages of population technique analyzing the glucose minimal

model after an intravenous injection of glucose. This article faces a more challenging

problem: describe a less controlled test as the MTT with a more complex model that

characterize both the glucose and the Rameal profiles. The population approach allows

borrowing information across all subjects simultaneously, quantifying population features

directly and subsequently deriving individual parameter estimates. In this way the

WNLS parameter numerical unidentifiability due to sparse data (few and noisy data per

individual) can be circumscribed by resorting to the population knowledge that creates

a prior that facilitate the estimation process. In the NLMEM technique the individual

parameter is seen as a realization of a distribution that is characterized by a typical value,

the fixed effect, that is common to the entire population and by a certain variability, the

between subject variability (BSV), that explains the spread of the parameter individual

values among the population. Moreover in the NLMEM not only the parameter but also

the error, the residual unknown error (RUV), is modeled as a realization of a normal

distribution with zero mean. In this work we put into competition four different models

that describe the Rameal coupled with the minimal glucose model and then select the

best which simultaneously well describes the glucose data and Rameal and gives reliable

SI estimates. The rationale for this is that the PL has seven parameters. From a NLMEM

point of view, this is translated in the possible identification of both the fixed effect and

the random effect for each parameter which turns out to be a very time consuming task

and if the dataset is very sparse or even noisy the numerical identification might be not

successful because of overparameterization.
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7.2 Material and methods

Synthetic Data

The database consists of 144 synthetic nondiabetic subjects that were generated using

Dalla Man et al [56, 57, 58] healthy state MTT simulator. In particular, starting from the

204 nondiabetic subjects [52] (118 M /86 F, mean age 55.53±21.66 mean BMI 26.62±3.39

kg/m2) that underwent an MTT at the Clinical Research Center Mayo Clinic, Rochester,

MN, USA, the parameters of the joint probability distribution of the meal model were

reconstructed. From this joint probability, virtual subjects can be generated simply by

randomly sampling from the multivariate normal distribution and by adding on top some

measurement error. Simulated plasma samples are available at -120, -30, -20, -10, 0, 5,

10, 15, 20, 30, 40, 50, 60, 75, 90, 120, 150, 180, 210, 240, 260, 280, 300, 360, 420 min

for glucose, insulin and C-peptide concentrations with an MTT glucose dose of 1 ± 0.02

g/kg. Moreover also the Rameal flux is available.

Oral glucose minimal model (OGMM)

The model proposed by Dalla Man et al [22] is an extension of the classical IVGTT

glucose minimal model [17] by coupling to it a parametric function that describes the

glucose rate of appearance in plasma. The OGMM is described by:

Q′(t) = −(SG +X(t)) ·Q(t) + SG ·Qb +Rameal(p, t) Q(0) = Gb · V

X ′(t) = −p2 ·X(t) + p2 · SI · (I(t)− Ib) X(0) = 0
(7.1)

where Q (mg/kg) is the glucose mass in plasma and Qb (mg/kg) its basal value, Gb

(mg/dl) is the basal glucose concentration in plasma, I (µ U/ml) is insulin plasma concen-

tration and Ib (µU/ml) its basal value, X (min−1) is insulin action, Ra (mg/kg · min) is

the glucose unknown rate of appearance in plasma, V (dl/kg) is the volume distribution,

SG (min−1) is glucose effectiveness, SI (min−1 µU−1 ml) is insulin sensitivity and p2

(min−1) is an insulin action parameter. Note that Rameal is a parametric function

expressed as dependent of a vector of unknown parameters p; the number of parameters

depends on the parametric function chosen.

Note that the OGMM was also identified on its own by substituting in place of a para-

metric model the Rameal synthetic known flux. In this way the reference estimates (REF)

of the parameters SG, V, SI and p2 were obtained.

Rate of appearance models

In total four models with different number of parameters and complexity were evaluated.



100 The MTT glucose minimal model on a synthetic dataset

These models were identified also on their own using the synthetic Rameal data to obtain

the reference estimates (REF) for the parameters of the four models.

1. Piecewise Linear model (PL)

Rameal is described by a piecewise-linear function with a given number of break-

points. In particular, they were more concentrated at the first part of the experiment

where the signal varies more rapidly and more sparsely afterwards. The breakpoints

chosen are at 0, 10, 30, 50, 90, 120, 180 and 420 min. The expression for Rameal is

thus:

Rameal(p, t) =

αi−1 + αi−αi−1

ti−ti−1
· (t− ti−1), if ti−1 ≤ t ≤ ti

0, otherwise
(7.2)

where αi are the unknown parameters and ti are the breakpoints. Note that α2 is

was not estimated but derived using the following constraint on the area under the

curve of Rameal: ∫ ∞
0

Rameal(p, t) dt =
dose · f
BW

(7.3)

where dose is the dose expressed in mg, f is the fraction of the ingested dose (fixed

to 0.9) and BW (kg) is the subject weight.

2. Double exponential (DE)

This model is described by a rising and a falling curve. This model does not have

predefined breakpoints and it has just two unknown parameters: α, the rate of

the decaying exponential (the second part of Rameal) and β, the rate of the rising

exponential (first part of the curve Rameal). Rameal is given by:

Rameal(p, t) = D(α+ β)
α

β

[
e−αt(1− e−βt)

]
(7.4)

where α and β are the unknown parameters and D (mg/kg) is the MTT glucose

dose.

3. the lagtime model(LAG)

This model is derived from Nerella et al [59] where the absorption phase is modeled

taking into account a delay. Rameal is described as follows:

Rameal(p, t) =
D ·Ka ·Kel

Ka −Kel

[
e−Kel·(t−tlag) − e−Ka·(t−tlag)

]
(7.5)

where Kel and Ka are the unknown parameters that describe respectively the

falling and the rising parts of the Rameal curve, tlag is the unknown parameter that
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represents the delay in the absorption of glucose and D (mg/kg) is the MTT glucose

dose. Note that, if the delay parameter is not considered in Eq. 7.5, Rameal

corresponds to the leaving flux of the second compartment of a two compartments

model that has a first compartment with a costant rate Ka and a dose injection D

and a second compartment with a constant elimination rate Kel.

4. The Mix Piecewise and Exponential model (LAG)

The fourth model is a combination of the piecewise linear model and a decreasing

exponential. There are two absorption phases: the first more rapid that produces

the peak of the curve and the second slower that contributes to the tail of the curve.

In order to better describe the first part of the curve a piecewise linear model was

chosen. Five breakpoints were used at the following time: 0, 20, 30, 40 and 50 min.

They were more concentrated with the first points of the curve. To describe the

second part of the curve a decreasing exponential was chosen. Rameal is given by:

Rameal(p, t) =

αi−1 + αi−αi−1

ti−ti−1
· (t− ti−1), if ti−1 ≤ t ≤ ti i = 1, ..., 4

B · e−βt, otherwise
(7.6)

where α1 , α2 , α3 and α4 are the unknown parameters relative to the piecewise

model and β is the unknown parameters of the exponential model. Note that B is

constrained to be equal to B = α4

e−β·50
.

Nonlinear mixed effects modeling

Nonlinear mixed effects models (NLMEM) are able to quantify both the population and

the individual parameters and identify by a hierarchical approach the biological sources

of intra-individual and inter-individual variability. More specifically, in a first step, the

data are described by:

yij = f(pi, xij) + εij 1 ≤ i ≤ m 1 ≤ j ≤ ni (7.7)

where yij are is the jth observation (in our case glucose concentration) of the ith subject

at some known time instant xij . Here, m is the number of individuals and ni is the

number of observation of individual i. Pi is the vector of model parameters of the ith

individual. The variability due to measurement and model errors, better known as the

residual unknown variability (RUV), is explained through εij which is assumed to be

independently distributed with a zero mean and Gaussian distribution:

εij = N(0, (σyij)
2) (7.8)
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The variance model is described as a proportional error model where σ is an additional

parameter to estimate. In a second step, the model parameters are represented as function

of some physiologically meaningful attributes that do not vary across the population

(θ, fixed effects, i.e. values that are common to all subjects) and some others that do

(ηi, random effects, i.e. values typical of a specific subject). In our model we chose the

function:

pki = θke
ηki (7.9)

where pki is the kth model parameter of the ith subject, θk is the typical value of the kth

parameter common to the entire population and ηki is the random effect of the kth model

parameter of the ith subject. The random effect ηi are assumed to be independently

distributed with a zero mean and Gaussian distribution:

ηi ∼ N(0,Ω) (7.10)

with Ω being a positive definite diagonal covariance matrix. With this formulation

the second stage of variability, better known as Between-Subject Variability (BSV), is

explained. The omega set up for all the models implementation was diagonal. Moreover

the PL final omega set up was further reduced since η relative to α4 and to α5 were

negligible. This was dataset dependent. We suggest to test all the variability in each

η before removing any term. To obtain the population parameters the joint likelihood

function is maximized. Because of the computational nonfeasibility of the exact solution,

different approximations are proposed. Here, on the basis also of the results obtained

in chapter 3 and in Denti et al [2], we used the First Order Conditional Estimation

(FOCE) approximation with INTERACTION implemented in NONMEM 7.2.0 [29]. The

estimation process was facilitated with the introduction of some priors in the parameters

SG, V and p2 that were fixed to their population values respectively LN(0.0055,1.76),

LN(2.03,0.0115) and LN(0.0111,0.273). For further information see the appendix.

Performance indices

In order to compare the four different OGMM Rameal parametric model coupling perfor-

mances, the NLMEM approach potentials were exploited by analyzing both the individual

and the population results.

As far as the individual information is concerned, the following aspects were considered:

the whiteness of the individual weighted residuals, the Rameal individual prediction, the

Akaike Criterion (AIC=WRSS+2M where M is the number of parameters), the individ-

ual estimates and their precisions. The Rameal individual prediction was evaluated by
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comparing the medians of the pharmacokinetics descriptors calculated on the individual

predictions (peak, time to peak, half-life and AUC) with the median of the descriptors

calculated on the synthetic data curves. The individual estimates SG, Vol, SI and p2

were evaluated by comparing them with the REF individual estimates. In particular was

compared the median of the relative deviations of the individual estimates from the REF

individual estimated parameters. The relative deviations were calculated in the following

way:

δp =
(pREF − pEST )

pEST
(7.11)

As far as the Rameal individual estimates are concerned it was decided for comparison

reason among the four Rameal models coupled with the OGMM to average for each

model the absolute values of the medians of the relative individual deviations of the

Rameal parameters from the REF estimates. Note that the REF estimates of the Rameal

parameters were obtained fitting the models on only the Rameal synthetic data. In

addition the individual estimates were compared to the reference values by Pearson

correlation analysis.

As far as the population is concerned, the following aspects were taken into consideration

using either the population predictions or the population estimates: the whiteness of the

population weighted residuals calculated using the population predictions, the population

Bayesian information Criterion (BIC), the Rameal population prediction, the population

estimates and their precision and finally the RUV. To evaluate the population estimates

it was considered the relative deviations of the population estimated parameters from the

population REF estimates as in Eq. 7.11. Note that the analysis focus on SI and not

on SG, V and p2, because it is the only parameter, except from the Rameal population

parameters, that is free to vary in the parameter space whereas the others are fixed

to their prior value. Note that for comparison reason among the four Rameal models

coupled with the OGMM were averaged for each model the absolute values of the relative

deviations of the Ra population parameters. Note that the REF values for the Rameal

parameters of each of the four model were obtained fitting the four models on only the

Rameal synthetic data. To evaluate the Rameal population prediction the root of the sum

of the squared residuals (RRSS) was taken into consideration. In the following formula

the RRSS for subjects i=1,..,m with samples j=1,...,ni of the i-th subject were evaluated:

RSSS =

√√√√ m∑
i=1

ni∑
j=1

(Raij −Raij(j,p))2 (7.12)
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Note that since the measurement error is equal for all the four couplings model, the RUV

estimate assume the meaning of a measure of the model misspecifications.

7.3 Results

All the analysis were carried out using the software NONMEM 7.2.0 [29]. All the run

minimized successfully with their own covariance step and the estimated parameter

observed the imposed distribution. The histograms of the logarithm of the individual

REF estimates are presented in Fig. 7.1: the gaussianity of the distributions is respected.

Figure 7.1: Histograms of the logarithm of the individual REF estimates

Individual results

1. Model fit

The goodness of the model fit was evaluated by inspection of the weighted individual

residuals obtained from each subject and after averaged. Fig. 7.2 shows the average

of the weighed individual residuals and the standard deviation for the four rate
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of appearance Rameal models in the 0-240 min time interval where the signal

varies the most. All the four models present a reasonably good fit: the average

individual weighted residuals did not show systematic deviations from zero even

if they were not always within the range [-1 +1]. On the basis of the AIC, the

most parsimonious model is the OGMM coupled with the DE (median AIC value

24.05) and immediately after the OGMM with the LAG (median AIC value 28.054)

whereas the OGMM coupled with PL and MPLE clearly underperform (median

AIC value of respectively 44.02 and 36.03).

Figure 7.2: Mean (blue line) ± standard deviation of individual glucose weighted residuals
in the 0-240 time interval.

2. Rameal individual prediction

The individual predicted rate of appearance kinetics has been summed up by four

features, i.e. the value of the peak, the time to peak, the half-life and the area

under the curve (AUC). In Tab. 7.1 the medians of these indexes for each model

are reported together with the median reference values (REF) obtained from the
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synthetic Rameal data.

model cmax [mg kg−1 min−1] tmax [min] t 1/2 [min] AUC

REF 7.68 30 89 962.46
PL 6.99 20 107 1004.30
DE 5.63 40 162.5 1022.72

LAG 6.31 20 139.5 1021.96
MPLE 6.72 30 52.5 795.87

Table 7.1: Medians of some pharamcokinetic indexes for each Rameal model calculated on
the predicted kinetics and on the Rameal synthetic data.

From the results the best performances is when the OGMM is matched with the

PL. The OGMM coupled with the MPLE and the OGMM with the LAG model

performance is comparable. Instead the worst characterization is from the OGMM

coupled with the DE that is not able to describe the kinetics of the curve.

3. Individual estimates and their precision

The medians of the relative deviations of the individual estimates from the REF

individual estimates for the four OGMM parameters (SG, V, SI , p2) are presented

as percentages in Tab. 7.2. In the same table are presented also the averaged

values of the medians of relative deviations of the parameters for each Rameal

model. The OGMM matched with the LAG is the couple that performs better

in average. Moreover in Fig. 7.3 are shown the correlation plots between the SI

REF estimates and the SI individual estimates obtained with the OGMM coupled

with four Rameal models. The OGMM coupled with DE seems to perform slightly

better than the LAG and PL ( RDE = 0.92, RLAG = 0.91, RP L = 0.91 p < 0.01).

The OMM coupled with the MPLE perform the worst (RMPLE = 0.85) but still

has an acceptable value.

model ∆ SG ∆ V ∆ SI ∆ p2 ∆ Ra

PL 4.24% -0.98% -10.96% 17.37% 7.77%
DE 13.13% 0.40% -12.35% -1.51% 15.48%

LAG 6.47% -0.98% -7.88% -0.87% 21.32%
MPLE 37.87% 0.17% 7.35% 8.44% 14.81%

Table 7.2: Medians of the relative deviations of the individual estimates from the REF
estimates.

Remembering that Vol, SG and p2 are parameters constrained to the prior informa-

tion while SI is not, the parameter that is estimated in all the models with more
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Figure 7.3: Correlation plots between the REF individual SI estimates and the individual SI
estimates obtained with the four Rameal models coupled with the OGMM.

precision is Vol with median values of coefficient of variation (CV) around 10%. SG

is the most poorly estimated parameter and PL and LAG models seem to estimate

it with more precision than the other models (73-74%). SI and p2 are estimated

with highest precision in the LAG with median CV respectively equal to 15% and

20% and with little less precision in DE and PL (median values respectively of 17%

and 20% and for PL 17% and 23%). The median CV of the Rameal parameters

were averaged in each of the four Rameal models to compare their performance.

The CV averaged values of the four models are all in all comparable ranging from a

28% of both the LAG and the DE parameters to a 40% of the MPLE parameters.

Population results

1. Model fit

The ability of the model OGMM to fit when different rate of appearance models

are assumed was evaluated by BIC and by inspection of the population weighted

residuals. Fig. 7.4 shows the mean and the standard deviation of the population

weighed residuals in a time interval of 0-240 min where the signal varies the most.

Note that the OGMM coupled with the PL has a different scale. All the four
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models present a reasonably good fit: the population weighted residuals did not

show systematic deviations from zero and the amplitude is relative small. As far

as the BIC analysis is concerned the DE is the model that stands out with a BIC

value of 30.61. The BIC for the LAG model is 37.15, while PL and MPLE instead

perform worst with BIC values of respectively 62.96 and 49.78.
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Figure 7.4: Mean ± standard deviation of population glucose weighted residuals in the 0-240
time interval.

2. Rate of appearance model prediction

The rate of appearance prediction was evaluated by means of root of the sum

squared residuals (RRSS) as explained in the performance indexes section (Eq.

7.12). The OGMM coupled with the LAG performs best with an RRSS of 64

whereas the OGMM with the PL, DE and MPLE have a RRSS of respectively 68,
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69.5 and 71.2.

3. Population estimates and their precision

Tab. 7.3 shows the relative deviations reported as percentages of the SI parameter

and of the average of the absolute values of the population parameters for each

Rameal model in terms of both the fixed effect (θ) and BSV (Ω) from the REF

population estimates. The OGMM coupled with the DE behaves on the whole the

best: both the SI and the Ra parameters are close to their reference. The OGMM

coupled with the LAG and with the MPLE behave the worst.

model ∆ SI (θ) ∆ SI (Ω) ∆ Rameal (θ) ∆ Rameal (Ω)

PL -8.71% 0.29% 6.79% 84.82%
DE -5.66% -12.32% 13.90% 22.72%

LAG -14.16% -20.82% 24.02% 58.95%
MPLE 16.99% 7.04% 16.22% 142.87%

Table 7.3: The relative deviations of fixed effects (∆θ) and random effects (∆Ω) of the SI
and the Ramealpopulationparameters.

Tab. 7.4 shows the SI estimate relative standard error (RSE) and the average of

the population parameters RSE for each Rameal model in terms of both the fixed

effects (θ) and the BSV (Ω). The OGMM coupled with the LAG model and with

the DE produce estimate with the lowest relative standard error.

model SI (θ) SI (Ω) Rameal (θ) Rameal (Ω)

PL 5.2% 14.1% 7.5% 45.9%
DE 4.80% 13.1% 4.4% 22.7%

LAG 2.4% 14.9% 1.9% 26.3%
MPLE 5.3% 18.1% 7.3% 30.8%

Table 7.4: The SI and the average Rameal RSE for both the fixed effects (θ) and random
effects (Ω).

4. RUV Evaluation

As far as the RUV is concerned we present the estimated CV, the root of the RUV,

in the four models. The model that has the smallest value and possibly less model

specification is the PL (5.56%) model whereas the DE is the worst performing
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model (7.96%). The MPLE and the LAG have a RUV of respectively 6.78% and

7.45%.

7.4 Discussion

OGMM requires to use as input function the rate of appearance of the meal dose into

the plasma pool. This flux is not trivial to be measured and requires the use of the

triple tracers technique [60]. A more attractive alternative is to use the OGMM with

a parametric model in order to estimate not only the parameters of the OGMM but

also the parameters that describe the rate of appearance. The present study attacks the

problem of defining the best match between the OGMM and different rate of appearance

parametric models. This implies finding the match that not only has the best fit glucose

data but also has the best prediction of Rameal time curve and the best estimates of SI.

Ideally the final choice should satisfies all these three criteria. Four different parametric

models were detected to describe the Rameal: the PL, the DE, the LAG and the MPLE.

First of all, it is interesting to discuss the peculiarity of each of these four models. The PL

has the disadvantage of having seven unknown parameters that means estimating seven

fixed effects and at least seven random effects. This large amount of parameters turns into

very time consuming run and problems during the estimation step. The DE instead has

the advantage of having just two unknown parameters that means a faster minimization

step and a straightforward successful estimation. At the same time, the model fails to

describe the Ra data as well as the others: the peak is always underestimated whereas

the tail is always well modeled, see Tab. 7.1. The LAG model has the advantage to

take into consideration the delay of the appearance of the glucose in plasma as it was

done in [59]. But this positive characteristic turns into a disadvantage too: during the

minimization process is frequently difficult to numerically identify the delay. In fact

the gradients of the optimization function are usually high and this makes the model

instable. Finally the mix of the piecewise and the exponential was thought to be the

best compromise between the piecewise ability to describe the first part of the curve

and the exponential decay ability to describe the tail of the curve. Merging this two

models allows to have less parameters than the piecewise and so less problems during the

minimization and the estimation step. Before looking at the individual analysis results,

it is important to underline that the shrinkage analysis that it often used to evaluate the

nonlinear individual mixed-effects results as written in Savic et al [37] is not reported

since by fixing some parameters we introduced some known misspecifications to the

original model. This turns into some relatively high shrinkage values (40%-50%) that
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anyway do not invalidate the analysis but corroborate the importance of having the most

correct priors as possible.

To sum up, from the individual analysis, we can conclude that there is not the best

model but depending on the modeler purpose there is one or more option to choose.

In particular, looking at the individual analysis, if the purpose is to model the glucose

individual data the best choice would be the OGMM coupled with the LAG. In fact, as

far as the weighted residuals are concerned the OGMM coupled with the DE behaves

badly (there are some systematic deviation from zero) whereas the other three behaves

comparably well. Looking at the AIC though, seems there is a difference in the remaining

three: the LAG is the best choice. Considering the Ra description, the OGMM coupled

with the PL seems to be the best performing model. Since the number of parameter

is big the LAG is the best compromise for a good fit and with a parsimonious number

of parameters whereas the DE model is not able to describe the kinetics of the curve.

Looking at the individual parameters relative deviation from the REF values and at

the individual estimates precision, the OGMM coupled with the LAG is the best choice.

Looking at the individual description of the SI and its correlation with the REF estimates

the best model is the OGMM coupled with the DE that precede the PL and the LAG

model with an RDE equal to 0.92 (p < 0.01).

Regarding the population results, if we consider the weighted residuals there is no model

that performs better than the others whereas looking at the BIC criterion the best model

is the DE. Regarding the Ra description the OGMM coupled with the LAG has the

best performance. Considering the SI and the Ra parameters population estimates and

its deviation from the REF estimates the OGMM coupled with the DE model is the

best performing model match. As far as the precision of the population estimates the

OGMM coupled with the DE and the LAG, the parametric models with less parameters,

have the RSE smaller than the other. The RUV, surprisingly, despite the possible

overparameterization, has a smaller value with PL meaning that the model error present

in PL is the smallest.

Finally in this chapter, we choose to do not present the VPC [43] analysis because of the

inappropriateness of this test in models like the OGMM [44]. In the simulation step there

are some observable mismatching between the observed and the simulated data. This can

be assigned to the presence of one input function in the model (the insulin data) that

when it comes to simulate from the population description does not interact properly

with the individual realizations. In particular, there is no additional information in the

model that can link the parameters distribution to the proper forcing function in order

to obtain always reasonable physiological outputs (for more details see chapter 9). By



112 The MTT glucose minimal model on a synthetic dataset

now what was done in this work was simply to avoid the use of this analysis as a tool to

study the performance of the four different models.

To conclude if the aim of the study is to get the SI individual estimates our suggestion is

to use the OGMM coupled with the DE whereas if the aim is to get the description of

the Ra or of the glucose level we suggest to use the OGMM coupled with the LAG.

7.5 Conclusions

In this study, a population PK analysis was performed on a glucose rich simulated dataset

produced using the Dalla Man simulator [57, 58]. This work is the natural extension

of Denti et al [3] as the potentials of NLMEM technique are exploited but this time in

a more complex context such as the MTT to better characterize the glucose minimal

model inter and intra subject variability. We relaborate Dalla man work [22] by testing

four different models. The aim was to find a more parsimonious model than the already

proposed PL model that can describe well the glucose and the Rameal data and that can

give satisfactory SI estimates. What comes up with this study is not an absolute best

model but a good answer for each sub problems whether the question concerns a focus on

the individual results or on the population results. Depending on the modeler purpose

the choice can be one of the four models presented: the PL, the DE, the LAG and the

MPLE coupled with OGMM. To describe the SI individually the fastest and at the same

easiest model to use would be the DE whereas to describe the Rameal kinetics both at

the individual and at the population level the best model would be the OGMM coupled

with the LAG. To describe individually the glucose data the OGMM coupled with the

LAG performs well whereas at the population level the OGMM coupled with the DE

is the best choice. To conclude, with this study, we characterize a healthy simulated

population that underwent an MTT resulting in a illustration of the pros and cons of

using different parametric model for Rameal description. This work paves the way to

move from an in sylico context to a real one in order to describe a real healthy population

adding the covariates information to characterize even better the estimates.

7.6 Appendix

The population priors for the parameter SG, V and p2 were obtained in the following

way. Firstly the population parameters SG, V and p2 were estimated using the OGMM

coupled with the Rameal known flux introduced as a forcing function. The distributions

of these parameters are then used as prior knowledge to the a posteriori population

identification of the OGMM coupled with the four parametric Rameal models. Note that
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these priors are crucial for the numerical identification since they strongly influence the

estimates.
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The MTT C-peptide minimal model

8.1 Introduction

The C-peptide minimal model (CMM) during a meal tolerance test (MTT) [24] is a

widely used tool to assess the pancreatic β-cell function. This is possible because insulin

secretion can be inferred from plasma C-peptide since: 1) C-peptide is secreted equimolar

with insulin, and 2) its extraction by the liver, at variance with insulin, is negligible.

Moreover it has been proved [61] its applicability on a reduced sampling scheme that

moves from a 21 samples protocol (7 hours) to a 7 samples one (2 hours). This result is

particularly appealing for epidemiological studies and large scale clinical trials where the

number of samples weight on the experiment expense. The CMM model so far has been

estimated with the classical weighted nonlinear least square (WNLS) approach applied

in each subject. Due to the complexity of the model, the parameters precision sometimes

can become not satisfactory in ”data poor” situations. In this optic it has been shown

[2] that the nonlinear mixed effects modeling technique can improve the estimates with

respect to the single subject technique not only in a rich data context but most of all

in a reduced sampling scheme. The NLMEM assume the subject as a realization of the

population and this assumption create a prior that improves the individual parameter

estimation especially when the individual information per se is not enough to identify

the parameter. The technique estimates both the individual and population parameters
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by assuming two levels of variability: the variability within each subject (intra individual

variability) due to model error or measurement error and the variability among the

subjects (inter individual variability). In this article we exploit the NLMEM to identify

the CMM in a rich and reduced protocol to characterize a healthy population. Moreover

we test the robustness of the NLMEM technique on furtherly reduced protocols, firstly,

by removing 25% and, then, by removing 50% of the original samples of the reduced

protocol. Finally we compare the derived indexes of the pancreatic β− cell function

obtained in a healthy population with the indexes obtained in a prediabetic population

and diabetic population.

8.2 Material and methods

Data

The healthy population data is formed by 203 nondiabetic subjects [52] (118 M /86

F, mean age 55.53 ± 21.66, mean weight 77.94 ± 13.24 kg) that underwent an MTT

(10 kcal/kg, 45% carbohydrate, 15% protein and 40% fat) consisting of scrambled eggs,

Canadian bacon, glucose Jell-O (containing 1.2 g/kg body weight dextrose) at the Clinical

Research Center Mayo Clinic, Rochester, MN, USA. The pre diabetic population data

are 44 subjects [62] (20 M/24 F, mean age 53.73±7.74, mean weight 91.01±18.4 kg)

that underwent an MTT of scrambled eggs, 55 g Canadian bacon and Jell-O containing

(75 g) at the Clinical Research Center Mayo Clinic, Rochester, MN, USA. The diabetic

population instead is made up of 28 subjects (F/M mean age 55.±.4, mean weight

93.73±17.04 kg) twelve of which [63] received an MTT of scrambled eggs, Canadian

bacon, 100 ml water, and Jell-O (1.2 g/kg body weight of glucose) and the other twelve

[64] an MTT of scrambled eggs, 55g of Canadian bacon, 240 ml of water, and Jell-O

containing 75 g glucose. All the patients were sampled at the Clinical Research Center

Mayo Clinic, Rochester, MN, USA. Plasma samples were all collected at 0, 5, 10, 15,

20, 30, 40, 50, 60, 75, 90, 120, 150, 180, 210, 240, 260, 280, 300, 360, 420 minutes and

plasma glucose, insulin and C-peptide were measured apart from the prediabetic dataset

that did not have samples at minute 260 and 420 and the diabetic dataset that miss the

sample at minute 420. These 21 samples constitute the full whereas samples at 0, 10, 20,

30, 60, 90 and 120 correspond to the reduced MTT protocol, respectively. Moreover the

samples drawn before the beginning of the experiment were averaged with the sample at

min 0 to form the basal values. In Tab. 8.1 are presented the main feature of the three

datasets and the systematically missing samples for each dataset.
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number of patients weight (kg) age dose missing samples

healthy 203 77.94±13.24 55.53±21.66 1.2 g/kg -
prediabetic 44 91.01±18.4 53.73±7.74 75 g 260-420

diabetic 28 93.73±17.04 55.1±9.4 75 g / 1.2 g/kg 420

Table 8.1: Summary of the main features of the three dataset and of their relative protocols.

The C-peptide oral minimal model

The C-peptide oral minimal (CMM) model is described by the following equations:

CP ′1(t) = −(k01 + k21) · CP1(t) + k12 · CP2(t) + SRn CP1(0) = 0

CP ′2(t) = −k12 · CP2(t) + k21 · CP1(t) CP2(0) = CPb · k21/k12

Y ′(t) =

−α · (Y (t)− β · (G(t)−Gb)) Y (0) = 0, if G(t)−Gb ≥ 0

−α · (Y (t)) Y (0) = 0, if G(t)−Gb < 0

(8.1)

where CP1 and CP2 (pmol/l) are C-peptide concentration in the accessible and periph-

eral compartments respectively. K01, k12 and k21 (min−1) are the C-peptide kinetic

parameters and they are fixed to population values following the method proposed in Van

Cauter [20]. Note that this formulation represents the deviation from the basal model.

SRn(t) = SRs(t) + SRd(t)

SRs(t) = Y (t)

SRd(t) =

k · dGdt , if dG
dt ≥ 0

, 0 if dG
dt < 0

(8.2)

SRn is the pancreatic secretion controlled by the sum of two components the glucose

concentration (static control SRs) and its rate of increase (the glucose dynamic control

SRd). The static secretion is supposed to be equal to Y (pmol l−1 min−1) that is the

provision of new insulin. The uniquely identifiable parameters of the model are: k (pmol

dl l−1 mg−1) , alpha (min−1) β ( min−1 pmol dl l−1 mg−1) and Cpb (pmol/l). Once

COMM parameters are estimated, three β-cell responsivity indexes can be derived: the

static sensitivity (Φs, 10−9 min−1) that measures the effect at steady state of a glucose

stimulus on β-cell secretion, the dynamic sensitivity (Φd, 10−9 unitless) that measures

the effect of the rate of change of glucose on secretion of the stored insulin and finally

the total sensitivity (Φt, 10−9 min−1) which measures the overall responsivity from Φs
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and Φd.

Φs = β

Φd = k

Φt = Φs +
Φd ·∆G∫∞

0 (G(t)−Gb) dt

(8.3)

where ∆G is the maximal excursion of glucose above basal.

Population modeling assumptions

Nonlinear mixed effects models (NLMEM) are able to quantify both the population and

the individual parameters and identify by a hierarchical approach the biological sources

of intra-individual and inter-individual variability. More specifically, in a first step, the

data are described by:

yij = f(pi, xij) + εij 1 ≤ i ≤ m 1 ≤ j ≤ ni (8.4)

where yij are is the jth observation (in our case glucose concentration) of the ith subject

at some known time instant Xij. Here, m is the number of individuals and ni is the

number of observation of individual i. Pi is the vector of model parameters of the ith

individual. The variability due to measurement and model errors, better known as the

residual unknown variability (RUV), is explained through εij which is assumed to be

independently distributed with a zero mean and Gaussian distribution:

εij = N(0, (σpropyij + σadd)
2) (8.5)

The variance model is described as a combination of a proportional and an additive error

model where σprop and σadd are additional parameters to estimate. In a second step,

the model parameters are represented as function of some physiologically meaningful

attributes that do not vary across the population (θ, fixed effects, i.e. values that are

common to all subjects) and some others that do (ηi, random effects, i.e. values typical

of a specific subject). In our model we chose the function:

pki = θke
ηki (8.6)

where pki is the kth model parameter of the ith subject, is the typical value of the kth

parameter common to the entire population and ηki is the random effect of the kth model

parameter of the ith subject. The random effect ηi are assumed to be independently
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distributed with a zero mean and Gaussian distribution:

ηi ∼ N(0,Ω) (8.7)

with Ω being a positive definite covariance matrix. With this formulation the second

stage of variability, better known as Between-Subject Variability (BSV), is explained.

The omega matrix set up is full.

Analysis of the results and algorithms used

As a first step, we identify the CMM in the healthy population using the NLMEM

approach and we compared its performance with the one obtained with the traditional

WNLS estimation approach, referred to here as STS. Both the estimation were carried out

using the software NONMEM [29]. The model at this step does not estimate the basal of

the C-peptide coherently to what was done previously in literature [24] with the single

subject approach. In particular we looked at individual and population estimates the first

in terms of correlation and the second in terms of magnitude. Note that we calculated the

geometrical mean and variance of the WNLS individual estimates for comparison reason

with the NLMEM population estimates. Moreover eighteen subjects were excluded from

this step of analysis because they need Bayesian a priori information for the individual

estimation. Once we have shown the two techniques results comparability in a rich

protocol, we can carry on our analysis using just the population approach. In particular

we investigated the NLMEM potentials in a ”data poor” context by identifying the

CMM on the reduced protocol (R) and on the two furtherly discarded dataset obtained

by removing the 25% (R1) and the 50% (R2) of the C-peptide original samples of the

reduced protocol. In particular we looked at the percentages of discrepancy between

the estimated population parameters (fixed effects and square root of the BSVs) in the

reduced protocols and the ”true values” estimated in the full protocol (REF). Moreover

we evaluated the goodness of the individual estimates assessed by the square Root of the

Mean Square Error (RMSE):

RMSEk =

√√√√ m∑
i=1

(pki − p̂ki)2

m
(8.8)

where pki is the true parameter value (REF) for subject i (the parameter estimate

in the full protocol), p̂ki its estimate on a reduced protocol, and m is the number of

subjects involved in the analysis. For readability purposes, these values were indicated

as percentage of the true population mean of each parameter. Finally we looked at the
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derived indexes performance through a correlation analysis between each reduced dataset

and the full protocol. Pearson’s correlation was used to evaluate univariate correlation.

The samples removal was random and as a consequence some individual data profiles

were more affected than others. This is a common situation in pharmacokinetics and

pharmacodynamics studies where the information about some subjects might be very rich,

while for others the sampling might be so unsatisfactory that individual estimates are

impossible to obtain with the traditional estimation paradigm. The glucose concentration

data, used in the model as a forcing function, was not undersampled. While this situation

does not realistically reflect a practical experimental setting, where both glucose and C-

peptide would be undersampled, here our purpose is testing the potentials of the NLMEM

technique and we focus our attention mainly on the effect of sparse C-peptide sampling.

Finally we compare the derived indexes of the β-cell function of insulin secretion in the

three population: the healthy, the prediabetic and diabetic dataset. Analyses among

the three subgroups were made using Kruskal-wallis followed, where appropriate, by a

ranksum test. A P value of 0.05 was considered statistically significant. Note that all the

analysis were carried out using the software NONMEM 7.2.0 [29] that implements the

NLMEM approach which consists in obtaining the population parameters by maximizing

a likelihood function. Because of the computational infeasibility of the exact solution,

different approximations were proposed. Here we applied the First Order Conditional

Estimation (FOCE) approximation with INTERACTION coherently with was found

previously in literature [2] and in 3.

8.3 Results

As explained in the analysis of the results we firstly assessed the comparability of the new

NLMEM results with the traditional WNLS approach results. As far as the population

description is concerned using the full MTT dataset the BSV and the fixed effects are

comparable (Fig. 8.1). However the BSV obtained with FOCE is smaller than the one

obtained with STS method as previously reported in literature [26, 2].

At the individual level, the linear regression analysis between FOCE vs STS estimates

results having a highest correlation of R=0.98 and a lowest correlation of R=0.92 (Fig.

8.2). In Fig. 8.3 are presented the boxplots of the three derived individual indexes

for the two methods: is evident like in Fig. 8.1 the overestimation of the BSV using

the STS technique. All in all as for the two previous points, the matching between the

two estimation technique is good and this legitimize the transition to the population

technique for the next analysis.
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Figure 8.1: Bar plots of the population estimates using the individual (STS) and the
population approach (FOCE).

Figure 8.2: Correlation graphs of the individual parameters using the individual (STS) and
the population approach (FOCE).
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Figure 8.3: Boxplots of the derived secretion pancreatic indexes using the individual (STS)
and the population approach (FOCE).
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C-peptide minimal model
Model parameters Units population estimates RSE %

Fixed Effects

β 2.04 2.7%
α 0.0343 5.00%
K 34.4 3.20%
CPb 453 3.30%

Random effects
Interindividual Variability

ω β 33.30% 5.0%
ω α 59.80% 7.0%
ω K 37.00% 6.2%
ω CPb 37.70% 7.2%

correlation beta α -35.60% 22.9%
correlation β K 79.80% 5.8%

correlation β CPb 53.00% 18.2%
correlation α K 17.20% 42.6%

correlation α CPb -61.60% 11.1%
correlation K CPb 44.20% 19.3%
0.211 0.6049.9 3.20 Residual unknown variability

σprop 0.211 0.60%
σadd 49.9 3.20%

Table 8.2: Summary of the CMM parameters in the full protocol. Typical values for
parameters are in original units. Given that between-subject variability is modeled as log
normal, variance measures are reported as approximate coefficients of variation (CV), whereas

the covariance terms are in terms of correlation.

The second step now is to explore the NLMEM potentials in a data poor condition

but before doing so in Tab. 8.2 are briefly summarized the population parameters

description of the CMM after a 21 samples MTT. Note that we included the basal level

of the C-peptide as a parameter since it improve the fit significantly. All population

estimates were estimated with good precision: apart from the correlation between α and

k all the RSE% are below the 23%. η - Shrinkage values are under the limit of alarm

20-30% meaning that there is enough information in the data to estimate the parameters.

In particular the shrinkage values range from the 3.1% of the k parameter to the 5.9% of

the α parameter. Also the ε-shrinkage value is under the limit of alarm (5.8%) meaning

that no overfit is taking place.

In Fig. 8.4 are presented the individual and the population fit vs the observation:

the red line, the linear regression between the observation and the predictions, matches

pretty well the bisector of the plane. In Fig. 8.5 are presented the individual population

residuals and the population weighted residuals. The fit is reasonably good if we look at

the pattern and the amplitude.
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Figure 8.4: C-petide population (on the left) and individual (on the right) prediction versus
observation in the full protocol.

Figure 8.5: Individual weighted residuals (IWRES) on the left an population weighted
residuals (WRES) on the right in the full protocol.
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In Fig. 8.6 is presented the VPC of the CMM: The graph yields that the model is

able to catch the data variability as the CI of the percentiles of the simulated profiles are

on the whole able to follow the percentiles of the observed data apart from some clear

mismatching on the 5th percentile and on the 95th percentile.
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Figure 8.6: Vpc of the CMM in the full protocol.

As far as the CMM performance on the reduced protocols is concerned, the population

parameters discrepancy values yield that apart from α the other parameters are reasonably

close to the corresponding estimate in the full protocol (Tab. 8.3).

With the paucity of the data the discrepancy tend to become bigger apart from some

cases like for example the parameter CPb in the R2 dataset. This effect is a typical

feature of the population approach, especially in a poor data context. In fact when there

is not enough individual information (i.e. few samples per individual), a condition that

is merely tolerated by the individual approach, a sort of constraint is generated between

the individual estimates that tends to bring them together towards the population mean.

This phenomenon is known in literature as shrinkage. Note that the shrinkage increase

with the decreasing of the number of samples and that in particular it is close to the

alert value for the parameter α already from the R dataset (18%) meaning that most
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dataset β α K CPb
R dataset -4.4% 296.5% -22.4% -11.5%

(-11%) (60%) (0.1%) (-22%)
R1 dataset -5.4% 346.1% -23.3% -12.6%

(-12%) (46%) (-8%) (-20%)
R2 dataset -5.4% 471.4% -30.5% -11.7%

(-7%) (107%) (17%) (-16%)

Table 8.3: The distance of the estimated values for both the fixed effects and the square root
of the BSV (in brackets) from the true values are reported as percentage differences normalized

to the true values for the 3 datasets.

likely with the reduced sampling scheme there is not enough information in the data to

estimate the parameter well. Moving the attention to the individual results, the RMSE

present the same expected trend that is present in the population estimates: with the

decreasing number of samples the RMSE increase (Tab. 8.4).

dataset β α K CPb
R dataset 19.26% 459.81% 27.10% 25.63%

R1 dataset 20.91% 427.73% 29.88% 26.76%

R2 dataset 22.60% 541.42% 35.28% 27.81%

Table 8.4: Square root of the mean square error (RMSE) of the individual parameter
estimates expressed as percentage of the true population mean for the three reduced datasets.

Looking at the β-cell responsivity indexes, the correlation analysis between each

reduced dataset and the full protocol yields that there is a good match between the

two even if we are in a sparse dataset as R2. Obviously with the paucity of data, the

correlation decreases. In Fig. 8.7 are presented the correlation analysis for Φd and in

Tab. 8.5 are presented the correlation values expressed as R.

The last part of the analysis consists on comparing the three β-cell derived indexes

(Φs, Φd, Φt) among the three different categories (healthy-prediabetic-diabetic). The

geometrical average values are plotted in Fig. 8.8. From the statistical analysis all the three

indexes were significantly different in the three groups (healthy/ prediabetic/diabetic)

apart from one case where the Φs was not statistically different between the healthy and

the prediabetic patients.
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dataset Φs Φd Φt

R dataset 0.86 0.84 0.79
R1 dataset 0.92 0.92 0.86
R2 dataset 0.88 0.86 0.83

Table 8.5: R values from the correlation analysis between the derived indexes in the full
protocol and the derived indexes on the three reduced datasets.

Figure 8.7: Correlation graphs between the Φd obtained in the full protocol and the three
reduce dataset (R - R1 - R2).
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Figure 8.8: Bar graphs of the three β-cell indexes in the three categories .

8.4 Discussion

In this chapter we identify the CMM with the NLMEM approach in different populations.

To do so, first we show the continuity in moving from the traditional individual approach

to the population approach by comparing the results of the two techniques. Then we

show the NLMEM benefits in a data poor context that corroborate the usefulness of

applying the population approach instead of the traditional single subject estimation.

Finally, once the model is optimized, we use it in different populations to determine

whether is able to catch the different curve kinetics and distinguish among the groups.

Regarding the first part of the analysis, not only we proved the comparability of the

results of the technique but also we show the superiority of the NLMEM technique. In

particular during the single subject estimation (STS) eighteen patients were excluded

because an a priori Bayesian information was needed to estimate their parameters and

for comparison reason with the population approach, that does not use it, these subjects

were left out from the first part of the analysis. In fact in the population approach

this additive hint is not necessary because the lack of information is compensated by

the information that is spread in the set of subjects that works like a prior during the

estimation step. Note also that the population parameters variances in Fig. 8.1 and that

the outliers of the population φ indexes that are present in Fig. 8.3 are less widespread

than in the the individual approach. The results that we obtained on the comparison of
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the two techniques yield that the NLMEM can be successfully used and that the results

are coherent with what was previously found in literature and that this approach helps

to get estimates less widespread.

Not only the population approach helped us to avoid the use of an a priori Bayesian

information but also on the second part of the analysis we were able to estimate an

additional parameter that is the basal value of the C-peptide. With this final formulation

we identify the CMM on a full protocol and characterize a healthy population. At this

step, a covariate analysis would be helpful to identify in a deterministic way some sources

of the biological variability in the model. Some considerations have to be made on

the VPC (Fig. 8.6). The model on the whole seems to reproduce well the observed

data variability but at the same time has some problems in simulating the highest

concentrations. This can be assigned to the individual known input function in the

model (glucose) that does not always interact properly with the individual parameters

realization. In particular, there is no additional information in the model that can link

the set of individual parameters to the proper forcing function in order to obtain always

reasonable physiological outputs [44].

The CMM on the reduced dataset (R) and on the furtherly discarded dataset (R1 and R2)

behave reasonably well. It is important to point out that the CMM using the traditional

single subject estimation would not be able to be identified on the R1 and R2 dataset.

The most affected parameter by the poorer sampling is α that at the same time presents

also a value of shrinkage close to the limit of alert already from the R dataset meaning

that in the reduced sampling protocol there is not enough information in the data to

determine it well. The other parameters both at the individual and at the population

level are reasonably close to the true values and with the paucity of data this discrepancy

becomes bigger as expected. Is important to notice though that the parameters from

which the β-cell responsivity indexes are derived are less affected from the sampling

scheme and there is a good match between the indexes calculated on the full protocol

and the ones calculated on the reduced. In other words the CMM also in the reduced

sampling dataset is able to describe the β-cell function consistently with the full protocol.

Finally we apply the NLME CMM on different population and we found that the Φ

are statistically different in each population apart from Φs between the healthy and the

prediabetic patients. It is important to note that the size of the healthy population

(203) is really different from the diabetic (28) and prediabetic one (44). In order to

have a robust characterization of these last two population parameter distributions more

subjects need to be added in each dataset.
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8.5 Conclusion

In this article we implement the CMM by using the population approach. By doing so we

proved the comparability and at the same time the benefits of this technique with respect

to the traditional single subject approach. We proved the feasibility of the population

approach on severely discarded dataset. This paves the way to other studies that aim to

further narrow down the reduced protocol in order to better deal with the typical data

poor epidemiological study condition. Finally with the optimized C-peptide NLMEM

we proved that the CMM implemented on different populations is able to describe the

different kinetics and distinguish among the groups through the β -cell derived indexes.



The visual predictive check in model with forcing

functions

9.1 Introduction

The nonlinear mixed effects models (NLMEM) are well established modeling techniques

during drug development in PKPD analysis and epidemiological studies because they are

able to quantify not only the individual and population parameters but also to identify

the biological sources of inter-individual and intra-individual variability. Moreover the

nonlinear mixed-effects approach is particularly appealing in ”sparse dataset”, the typical

epidemiological study condition, where a complete statistical description is obtainable by

borrowing the lack of information from the entire population thus potentially reducing the

need for blood samples and invasive trials. In order to draw the correct clinical conclusions

on a study it is really important to use the correct diagnostic to evaluate the NLMEM

predictive performance. In these last two decades many sophisticated diagnostic tools

have been proposed that rely on a graphical assessment or on a statistical elaboration

of the model predictions compared with the observed dataset. These techniques are

based on the individual-population estimates and residual or are based on simulation or

numerical elaboration [53]. Recently a simulation based diagnostic has been particularly

used for its simplicity: the visual predictive check (VPC) [43]. The idea of the VPC is to
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assess by visual inspection whether the model is able to catch or not the variability of

the observed data. To do so multiple simulations are runned keeping the structure of the

observed dataset. Then the median of the 5th and the 95th percentiles of the simulated

datasets are compared to the corresponding percentiles of the original data. To make the

interpretation of the VPC less subjective the CI of the percentiles of the simulated data

are used instead of just the percentiles [65]. Many VPC adaptations have been proposed

by now [66, 67, 68] since the technique can be easily appreciated but still there are some

pitfalls that have to be explored for example during the simulation step. This step is

particularly critical because not always are simulated profiles that are consistent with

the original dataset. In fact when models with time varying known input function or

forcing functions (FF) are evaluated there is a potential mismatch between each set of

simulated parameters and the associated individual FF which can cause an incorrect

profile simulation.

These kind of models are well-known in the metabolic field where FFs are introduced as

a strategy to better identify the glucose and C-peptide minimal models [17, 19, 22, 24]

by decomposing the system in two subsystems where the glucose and the C-peptide are

respectively used as known input (FF) and output or vice versa depending on which part

of the system is chosen to be described [12]. In PKPD modeling problems instead FFs

are used when there are no assumptions made on the PK model and usually when the

”data rich” conditions are satisfied. In this case just the PD is fitted using the PK data

as a known input function.

This study aims to overcome the VPC limitation on the simulation step by taking into

account a correlation term that bounds the set of simulated parameters with the most

appropriate FF. In particular we calculated for each set of simulated parameters (SIM) a

weighted distance (the normalized Euclidean distance (NED) or the Mahalanobis distance

(MD)) between the SIM and the previously estimated parameters (EST). This helped us

to find the vector of EST parameters that was closer to SIM and consequently to match

the EST corresponding FF to the SIM parameters in the simulation step. Moreover

we proposed another approach that has been developed in case of low FF variability

that is a common situation in PKPD experiments since the kinetics of the FF curves

are less variable if compared to the ones measured in metabolic studies. This method

adds an elaboration step before applying the MD. A clustering analysis detects the most

important FF kinetics that are used to simulate a new dataset whose parameters are

estimated, then the MD is applied. Note that this step is plausible because the FF main

kinetics detected by the clustering analysis are a good approximation of the FF variability

and as a consequence the population inter individual variability is not underestimated.
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We assessed the techniques on four nonlinear metabolic models (the IVGTT and the

ORAL glucose and C-peptide minimal models [17, 19, 22, 24]) and on a typical PKPD

example such as the Warfarin model [69, 70].

9.2 Material and methods

NED and MD VPC

This newly proposed technique addresses the problem of generating reasonable simulated

profiles from models with time varying known input function by better controlling the

VPC simulation step. The classical VPC approach in fact does not take into account the

relationship between the simulated parameters and the individual FF associated. NED

and MD VPC approach instead create an external bound that drives the simulation

firstly by calculating for each set of simulated individual parameters (SIM) a weighted

distance between the SIM and all the previously estimated set of individual parameters

(EST) on the observed data and then by searching for the minimum distance. When

the minimum distance is detected the corresponding FF of the set of EST parameters

can be associated to the set of SIM in the simulation step. The weighted distance used

are the normalized Euclidean distance or the Mahalanobis distance. By definition NED

and MD represent the distance between two random vectors X=[X1, X2, ..., XN ] and

Y=[Y1, Y2, ..., YN ] that belong to the same multivariate distribution with mean µ=[µ1,

µ2, ... , µN ] and covariance Σ. In other words E[X]= E[Y]= µ and Σ=cov(X)=cov(Y).

The covariance Σ matrix is diagonal when the NED is calculated whereas it takes into

account the terms out of the diagonal when the MD is applied. In formulae the MD can

be described as in the following equation:

∆2 = (X−Y)′Σ−1 (X−Y) (9.1)

Eq. 9.1 can be simplified in the following way (Eq. 9.2) when the NED is applied since

only the diagonal terms are taken into consideration:

∆2 =

N∑
i=1

(Xi − Yi)2

Σii
(9.2)

Note that with the NED or MD VPC approach the error during the association process of

the SIM with the FF is minimized but it is not completely removed. To avoid this kind of

error an agglomerative hierarchical cluster analysis was done on the FFs before applying

the MD or NED VPC. This cluster analysis has the purpose of detecting kinetically
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similar FFs curves according to a distance measure. The algorithm chosen was Ward’s

minimum variance method that minimize the total within cluster variance as a rule to

join two clusters. In particular it calculates the merging cost (∆w) of combining the

possible combination of clusters that is the sum of squares increase. In formulae the ∆w

of combining the clusters A and B:

∆w =
∑

i∈A∪B
‖xi −mA∪B‖2

2−
∑
i∈A
‖xi −mA‖2

2−
∑
i∈B
‖xi −mB‖2

2 =
nA · nB
nA + nB

‖xA −mB‖22

(9.3)

Where mY is the center of cluster Y, nY is the cardinality of Y and ‖ ‖2 is the

Euclidean distance. At the initial step, all clusters are singletons (clusters containing a

single point). Then each agglomeration occurs at a greater distance between clusters than

the previous agglomeration. We decided to stop clustering when the clusters are too far

apart to be merged using a threshold criterion. After having identified each FF cluster,

the cluster centroids are used instead of the individual FF to simulate a new dataset where

individual (EST) and population estimates are obtained. The MD or the NED VPC

approach then can be applied with smaller error of association than before. This approach

can be applied though under the hypothesis of having a model with FF with variability

relative small so that the kinetics detected in the cluster analysis are a good FF approxi-

mation and that the new generated dataset variability is consistent with the observed data.

APPLICATION

1. Metabolic Examples

The glucose and c-peptide IVGTT and ORAL models [17, 19, 22, 24] are well

known instruments to study the glucose insulin system. All these four models

present at least one known input function. In particular both the IVGTT models

have one FF whereas the two oral models present two FFs. The dataset consist of

120 healthy volunteers (71 males and 49 females age 62 ± 17.5 and bodyweight 79.2

± 13.5 kg) that underwent both an IVGTT and an MTT. The insulin modified

IVGTT consists on an administration of a dose of 330 mg/kg glucose at time 0

min and a dose of 0.02 units/kg of insulin at time 20 min. Blood samples are

collected at -120, -30, -20, -10, 0, 2, 4, 6, 8, 10, 15, 20, 22, 25, 26, 28, 31, 35, 45, 60,

75, 90, 120, 180 and 240 min for measurement of glucose, insulin and C-peptide

concentrations. The mixed meal (10 kcal/kg, 45% carbohydrate, 15% protein and

40% fat) contains 1 ± 0.02 g/kg glucose and plasma samples were collected at -120,

-30, -20, -10, 0, 5 10, 15, 20, 30, 40, 50, 60, 75, 90, 120, 150, 180, 210, 240, 260, 280,
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300, 360,420 min for the measurement of plasma glucose, insulin and C-peptide.

Note that these models were implemented in their original formulation as in their

corresponding articles. In particular the glucose IVGTT model is implemented

as in [2], the glucose MTT model is implemented as in [22] without modeling the

Rate of appearance, the C-peptide IVGTT is modeled as in [19] and finally the

C-peptide MTT is built as in [24].

2. PKPD Example (simulated data)

To demonstrate the approach feasibility on different fields apart from the metabolic

one, we applied the method on a well known PKPD example such as the Warfarin

model [69] where the PK of the drug is assumed to be the known input function and

the PD of the effect, the prothrombin, is the fitted data. In particular the dataset

is based on a simulation of 100 subjects obtained from the population estimates

of 32 healthy subjects that underwent an oral single dose of Warfarin [1.5 mg/kg]

[70, 71]. On these subjects 250 samples of Warfarin concentrations together with

232 samples of prothrombin complex activity (PCA) were measured. The model

was implemented as a turnover model to characterize Warfarin delayed effect with

an indirect mechanism of action due to the interaction between the drug and the

endogenous enzymes (the prothrombin) [71, 72].

SOFTWARE

All the estimation steps were done using NONMEM 7.2.0 [29] whereas all the simulation

steps were done using Matlab software [73].

9.3 Results

Metabolic Example

The following results are obtained using the glucose and C-peptide minimal models after

and an intravenous or an oral dose of glucose. The IVGTT minimal models have one

known input function whereas the MTT minimal models have two. In particular the

IVGTT glucose and C-peptide have respectively the insulin and the glucose profiles

as FF whereas the MTT glucose and C-peptide minimal models have respectively the

insulin and the rate of appearance of the glucose in plasma and the glucose and its first

derivative.

1. IVGTT glucose and C-peptide minimal model

In Fig. 9.1 we present the classical VPC of the Glucose and C-peptide minimal

model. We found implausible simulated curves and as a consequence the CI of the
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percentiles have some problems in following the reference percentiles calculated on

the observed data. Note that the VPC of the IVGTT glucose minimal model is

presented from min 8 since the models explains the dynamics of glucose from that

minute on.

Figure 9.1: The classical VPC of the IVGTT glucose (on the left) and C-peptide (on the
right) minimal models.

In Fig. 9.2 the VPC with NED and MD are presented applied both in the glucose

and C-peptide minimal model. The CI of the simulated percentiles follow better

the dynamic of the reference percentiles. There are no major differences in the

performance between the VPC with MD and the NED technique. Finally in Fig.

9.3 are presented the classical VPC and the VPC with MD using as observed data

the simulation with the FF obtained from the cluster analysis. In this way the

effect of the correction with MD in the simulation step is more evident since we

are testing the technique in a more controlled environment with less probability of

failing during the matching.

2. MTT glucose and C-peptide minimal model

In Fig. 9.4 we present the classical VPC of the Glucose and C-peptide minimal

model. The simulated profiles without the correction were sometimes not physio-

logical and as a consequence the CI of the percentiles do not match the reference

percentiles calculated on the observed data. This time the difference between the

simulated profiles and the observed one is more marked than the VPC on the

IVGTT data.
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Figure 9.2: VPC with NED and MD of the IVGTT glucose (on the top figure) and C-peptide
(on the bottom figure) minimal model.
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Figure 9.3: The classical VPC and with MD of the IVGTT glucose (on the top figure) and
C-peptide (on the bottom figure) minimal model using simulated data obtained with FF

resulted from a cluster analysis .
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Figure 9.4: The classical VPC of the MTT glucose (on the left) and C-peptide (on the right)
minimal model.

If we take into consideration in the step of simulation the MD or the NED (Fig.

9.5) the VPC performance is improved and consequently the conclusions that can

be drawn are different from the ones relative to the classical VPC. The CI of the

percentiles of the simulation better match with the percentiles of the observed

data and there are no main differences in the plots using the NED or the MD

correction. Finally in Fig. 9.6 we present the classical VPC and the VPC with

MD on the simulated dataset obtained using the FF from the cluster analysis. Also

with these models moving into a simulated context using a preliminary detection of

the main FF kinetics through a cluster analysis helps to test the efficiency of the

method despite an inevitable reduction of the variability population description

under analysis.

PKPD example

In Fig. 9.7 we present the classical VPC of the PD of the Warfarin model together with

the VPC both with NED and MD technique. The improvement due to the correction

obtained using the MD or NED step is observable from the graphs. Note that the graphs

are presented from hour 24 the time when the PCA is started to be measured. Moving

into a more controlled environment, the simulated PCA data using the profiles of the PK

identified by the cluster analysis, the same conclusions can be drawn by looking at Fig.

9.8. In particular if we take into consideration the MD step the CI of the percentiles

follow the simulated data percentiles more precisely.
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Figure 9.5: VPC with NED and MD of the MTT glucose (on the top) and C-peptide (on
the bottom) minimal model.
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Figure 9.6: The classical VPC and with MD of the MTT glucose (on the top figure) and
C-peptide (on the bottom figure) minimal model using simulated data obtained with FF

resulted from a cluster analysis .



142 The visual predictive check in model with forcing functions

Figure 9.7: The classical VPC (on the top) and the VPC with NED (on the bottom left)
and MD (on the bottom right) of the PD of the Warfarin model.
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Figure 9.8: The classical VPC and the VPC with MD of the PD of the Warfarin model
using simulated data obtained with FF resulted from a cluster analysis.

9.4 Discussion

During the model building process is fundamental to evaluate the model performance

with appropriate tools. In the PKPD area the VPC is a commonly used diagnostic

to test whether or not the model is able to reproduce the variability and the trend of

the data. However this diagnostic tool presents some pitfalls in the simulation step

when models with forcing functions (FF) are evaluated. In fact in this case there is a

mismatch between each set of simulated parameters and the associated individual FF

which can cause an incorrect profile simulation. This study aims to overcome this VPC

limitation by taking into account in the simulation step a correlation term using the

MD or NED that bounds the set of simulated parameters with the most appropriate

FF. The classical VPC in the various examples presents mismatches between the CI of

the percentiles and the percentiles of the observed data. This mismatch is more evident

in the metabolic examples relative to the MTT that is by definition a less controlled

experiment compared to the IVGTT since it includes the GI tract. The MTT produces

very variable profiles and as a consequence is more probable a wrong association of the

simulated parameters with the FF that it translates into an incorrect profile simulation.

Moreover there is a difference between the classic VPC of the MTT c-peptide and the

glucose model. This is due to the fact that the FF in the glucose minimal model are

two independent signals whereas in the c-peptide minimal model the FF are the signal

and its first derivative. The classical VPC relative to the IVGTT and to the Warfarin
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present less mismatch in the CI of the percentiles with the observed percentiles because

the profiles measured are less variable among the subjects. On the use of the MD or the

NED step from the corresponding VPC graphs no main differences are present even if

there should be an improvement in the VPC performance using the MD technique instead

of the NED when the estimated parameters have a multivariate distribution with a full

covariance matrix. For example the MTT c-peptide minimal model was implemented

and estimated supposing that the parameters come from a multivariate distribution with

a full covariance but no main advantages are evident from the graphs when using the

MD technique instead of the NED. As far as the simulated dataset is concerned that was

obtained using the FF identified by cluster analysis, the VPC with MD step on this more

controlled dataset helps to reduce the error in the association but in case of big variability

among the FF such as the MTT is not the best solution because the cluster analysis

might do a strong approximation of the FF kinetics and as a consequence it reduces the

estimated inter individual variability changing the characteristic of the population. This

kind of approach was thought to be useful in typical PKPD experiments where the level

of variability in the curves of the different subjects is smaller than the variability in the

FF curves obtained from for example an MTT experiment.

In general this new VPC correction is appealing because it preserves the dynamics of

the profiles in the time course keeping the characteristic of the easy visualization of

the classical VPC unlike other methods proposed [66, 67, 68] where the dynamics are

distorted. At the same time to apply this method the dataset under analysis has to be

big in the number of subjects and rich in sampling enough to guarantee respectively a

good characterization of the population and of the possible combination of the individual

set of parameters with the FF and rich in order to have FFs well defined.

9.5 Conclusion

This work proposes a refinement of the simulated based diagnostic VPC which is relevant

for a particular subset of models that present time varying known input (FF) like the

minimal models or the PKPD models where the PK is the FF. Despite the simplicity of

the method, the results show an evident improvement of the VPC that implies different

conclusion on the goodness of the model. The method is able to preserve the time

dynamic of the signal keeping the immediateness of diagnostic interpretation of the

well-known VPC but it requires at the same time a rich sampling dataset and a big

number of subjects.
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In this thesis is carried on the investigation of the glucose-insulin system started by Denti

et al by exploiting the potentials of the NLMEM technique. This technique is particularly

widespread in the epidemiological studies and pharmacokinetic and pharmacodynamic

(PKPD) experiments as it allows the parameter estimation in heavily discarded and

variable datasets and the quantification of the sources of variability of the system.

These two aspects mean a cost reduction of the trials, less invasive experiments and

more flexibility for the study designer thanks to the technique powerful statistical tools.

Despite all these advantages in the metabolic field the population approach is not yet

well known and used. This thesis aims to investigate the glucose-insulin system applying

the NLMEM technique.

In particular the glucose-insulin system was studied referring to the minimal models

that were developed so far using the traditional individual weighted linear least square

(WLS). These models were revised by adding some new modeling parts and by avoiding

Bayesian a priori information thanks to the fact that the NLMEM approach can handle

data sparseness or individual lack of information resorting from the entire population.

Moreover the models performance on discarded dataset was investigated paving the

way to other studies that aim to narrow down the protocol to deal with the typical

epidemiological study conditions. Note that all these improvements made on the minimal

models structure would not be feasible using the traditional individual approach. To sum
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up our contribution to the metabolic field with this thesis is:

• the minimal models revision by exploiting the NLMEM method that allows further

studies to introduce the covariate information and to reduce the experiment sampling

scheme;

• the covariate information integration in the C-peptide minimal model after an

intravenous glucose load that allows a personalized individual parameter estimation;

• the implementation of an integrated glucose insulin model after an intravenous

glucose load that allows to have a complete description of the system kinetic

without using forcing functions and a complete characterization of the population

distribution;

• the development of an extension of the Visual Predictive Check method to evaluate

the performance of models with forcing function.



147

Acknowledgments

I would like to thank Prof. Alessandra Bertoldo for all the fruitful discussions in these

three years.

I would like to thank Dr. Paolo Denti for giving me the possibility of joining the phar-

macometrics group at the University of Cape Town. I would like to thank him also for

all the useful discussions and for the advice on the NONMEM implementation of the

population models.



148 Conclusions



Bibliography

[1] International Diabetes Federation (IDF). http://www.idf.org/diabetesatlas/5e/Update2012.

[2] P. Denti, A. Bertoldo, P. Vicini, and C. Cobelli. Nonlinear mixed effects to improve

glucose minimal model parameter estimation: a simulation study in intensive and

sparse sampling. Biomedical Engineering, IEEE Transactions on, 56(9):2156–2166,

2009.

[3] P. Denti, A. Bertoldo, P. Vicini, and C. Cobelli. Ivgtt glucose minimal model covariate

selection by nonlinear mixed-effects approach. American Journal of Physiology-

Endocrinology And Metabolism, 298(5):E950–E960, 2010.

[4] P. Denti. Nonlinear mixed-effects modelling of glucose-insulin metabolism. 2009.

[5] R.C. Bonadonna. Il diabete mellito. Principi e pratica. Verduci Editore, 1997.

[6] C. Rugarli. Diabete mellito e ipoglicemiePatogenesi, chapter 64. Masson Editore,

2010.

[7] World Health Organization (WHO). http://www.who.int/diabetes/en/.

[8] American Diabetes association (ADA). http://www.diabetes.org/diabetes-

basics/?loc=GlobalNavDB.

[9] W.S. Cutfield, C.A. Jefferies, W.E. Jackson, E.M. Robinson, and P.L. Hofman.

Evaluation of homa and quicki as measures of insulin sensitivity in prepubertal

children. Pediatric diabetes, 4(3):119–125, 2003.

[10] R.A. DeFronzo, J.D. Tobin, and R. Andres. Glucose clamp technique: a method

for quantifying insulin secretion and resistance. American Journal of Physiology-

Endocrinology And Metabolism, 237(3):E214, 1979.

[11] C. Cobelli and A. Caumo. Using what is accessible to measure that which is not:

necessity of model of system. Metabolism, 47(8):1009–1035, 1998.



150 Bibliography

[12] C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. De Nicolao, and B.P. Kovatchev.

Diabetes: models, signals, and control. Biomedical Engineering, IEEE Reviews in,

2:54–96, 2009.

[13] G. Sparacino, C. Tombolato, and C. Cobelli. Maximum-likelihood versus maximum a

posteriori parameter estimation of physiological system models: the c-peptide impulse

response case study. Biomedical Engineering, IEEE Transactions on, 47(6):801–811,

2000.

[14] G. Pillonetto, G. Sparacino, and C. Cobelli. Numerical non-identifiability regions of

the minimal model of glucose kinetics: superiority of bayesian estimation. Mathe-

matical biosciences, 184(1):53–67, 2003.

[15] P. Magni, G. Sparacino, R. Bellazzi, G.M. Toffolo, and C. Cobelli. Insulin minimal

model indexes and secretion: proper handling of uncertainty by a bayesian approach.

Annals of biomedical engineering, 32(7):1027–1037, 2004.

[16] P. Magni, G. Sparacino, R. Bellazzi, and C. Cobelli. Reduced sampling schedule for

the glucose minimal model: importance of bayesian estimation. American Journal

of Physiology-Endocrinology And Metabolism, 290(1):E177–E184, 2006.

[17] R.N. Bergman, Y.Z. Ider, C.R. Bowden, and C. Cobelli. Quantitative estimation of

insulin sensitivity. American Journal of Physiology-Endocrinology And Metabolism,

236(6):E667, 1979.

[18] C. Cobelli, A. Caumo, and M. Omenetto. Minimal model sgoverestimation and siun-

derestimation: improved accuracy by a bayesian two-compartment model. American

Journal of Physiology-Endocrinology And Metabolism, 277(3):E481–E488, 1999.

[19] G. Toffolo, F. De Grandi, and C. Cobelli. Estimation of β-cell sensitivity from

intravenous glucose tolerance test c-peptide data: knowledge of the kinetics avoids

errors in modeling the secretion. Diabetes, 44(7):845–854, 1995.

[20] E. Van Cauter, F. Mestrez, J. Sturis, and K.S. Polonsky. Estimation of insulin

secretion rates from c-peptide levels: comparison of individual and standard kinetic

parameters for c-peptide clearance. Diabetes, 41(3):368–377, 1992.

[21] G. Toffolo, M. Campioni, R. Basu, R.A. Rizza, and C. Cobelli. A minimal model of

insulin secretion and kinetics to assess hepatic insulin extraction. American Journal

of Physiology-Endocrinology And Metabolism, 290(1):E169–E176, 2006.



Bibliography 151

[22] C. Della Man, A. Caumo, and C. Cobelli. The oral glucose minimal model: estimation

of insulin sensitivity from a meal test. Biomedical Engineering, IEEE Transactions

on, 49(5):419–429, 2002.

[23] C. Dalla Man, A. Caumo, R. Basu, R. Rizza, G. Toffolo, and C. Cobelli. Minimal

model estimation of glucose absorption and insulin sensitivity from oral test: vali-

dation with a tracer method. American Journal of Physiology-Endocrinology And

Metabolism, 287(4):E637–E643, 2004.

[24] E. Breda, M.K. Cavaghan, G. Toffolo, K.S. Polonsky, and C. Cobelli. Oral glucose

tolerance test minimal model indexes of β-cell function and insulin sensitivity.

Diabetes, 50(1):150–158, 2001.

[25] G. Toffolo, E. Breda, M.K. Cavaghan, D.A. Ehrmann, K.S. Polonsky, and C. Cobelli.

Quantitative indexes of β-cell function during graded up&down glucose infusion

from c-peptide minimal models. American Journal of Physiology-Endocrinology And

Metabolism, 280(1):E2–E10, 2001.

[26] M. Davidian and D. M. Giltinan. Nonlinear models for repeated measurement data.

Boca Raton, Fla.: Chapman Hall/CRC, 1998.

[27] J.L. Steimer, A. Mallet, J.L. Golmard, and J.F. Boisvieux. Alternative approaches

to estimation of population pharmacokinetic parameters: comparison with the

nonlinear mixed-effect model. Drug Metabolism Reviews, 15(1-2):265–292, 1984.

[28] R.J. Bauer, S. Guzy, and C. Ng. A survey of population analysis methods and

software for complex pharmacokinetic and pharmacodynamic models with examples.

The AAPS journal, 9(1):60–83, 2007.

[29] SL Beal and LB. Sheiner. NONMEM Users Guide. Ellicott City: GloboMax ICON

Development Solutions Press, 1989-2012.

[30] R. Bauer and S. Guzy. Monte carlo parametric expectation maximization (mc-pem)

method for analyzing population pharmacokinetic/pharmacodynamic data. Advanced

Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis Volume 3,

pages 135–163, 2004.

[31] E. Kuhn and M. Lavielle. Maximum likelihood estimation in nonlinear mixed effects

models. Computational Statistics & Data Analysis, 49(4):1020–1038, 2005.



152 Bibliography

[32] D.J. Lunn, N. Best, A. Thomas, J. Wakefield, and D. Spiegelhalter. Bayesian

analysis of population pk/pd models: general concepts and software. Journal of

pharmacokinetics and pharmacodynamics, 29(3):271–307, 2002.

[33] P. Vicini and C. Cobelli. The iterative two-stage population approach to ivgtt

minimal modeling: improved precision with reduced sampling. American Journal of

Physiology-Endocrinology and Metabolism, 280(1):E179–E186, 2001.

[34] O.F. Agbaje, S.D. Luzio, A.I.S. Albarrak, D.J. Lunn, D.R. Owens, and R. Hovorka.

Bayesian hierarchical approach to estimate insulin sensitivity by minimal model.

Clinical Science, 105(5):551–560, 2003.

[35] the RFPK team Univeristy of Washington. System for population kinetics (SPK).

http://spk.rfpk.washington.edu.

[36] P.H.R. Barrett, B.M. Bell, C. Cobelli, H. Golde, A. Schumitzky, P. Vicini, and

D.M. Foster. Saam ii: simulation, analysis, and modeling software for tracer and

pharmacokinetic studies. Metabolism, 47(4):484–492, 1998.

[37] R.M. Savic and M.O. Karlsson. Importance of shrinkage in empirical bayes estimates

for diagnostics: problems and solutions. The AAPS journal, 11(3):558–569, 2009.

[38] A. Caumo, P. Vicini, J.J. Zachwieja, A. Avogaro, K. Yarasheski, D.M. Bier, and

C. Cobelli. Undermodeling affects minimal model indexes: insights from a two-

compartment model. American Journal of Physiology-Endocrinology And Metabolism,

276(6):E1171–E1193, 1999.

[39] A. Caumo, P. Vicini, and C. Cobelli. Is the minimal model too minimal? Diabetologia,

39(8):997–1000, 1996.

[40] C. Cobelli, F. Bettini, A. Caumo, and M.J. Quon. Overestimation of minimal model

glucose effectiveness in presence of insulin response is due to undermodeling. Amer-

ican Journal of Physiology-Endocrinology And Metabolism, 275(6):E1031–E1036,

1998.

[41] R.M. Savic, D.M. Jonker, T. Kerbusch, and M.O. Karlsson. Implementation of

a transit compartment model for describing drug absorption in pharmacokinetic

studies. Journal of pharmacokinetics and pharmacodynamics, 34(5):711–726, 2007.

[42] BJ Anderson and NHG Holford. Mechanism-based concepts of size and maturity in

pharmacokinetics. Annu. Rev. Pharmacol. Toxicol., 48:303–332, 2008.



Bibliography 153

[43] N. Holford. The visual predictive check: superiority to standard diagnos-

tic (rorschach) plots, inpopulation approach group in europe, page 14. 2005.

www.pagemeeting.org/?abstract=738.

[44] A. Largajolli, A. Bertoldo, and C. Cobelli. Visual predictive check (vpc) in models

with forcing functions, in population approach group in europe, page 21. 2012. In

Abstr. www.pagemeeting.org/?abstract=2556.

[45] G. Toffolo, W.T. Cefalu, C. Cobelli, et al. Beta-cell function during insulin-modified

intravenous glucose tolerance test successfully assessed by the c-peptide minimal

model. Metabolism: clinical and experimental, 48(9):1162, 1999.

[46] R. Basu, E. Breda, A.L. Oberg, C.C. Powell, C. Dalla Man, A. Basu, J.L. Vittone,

G.G. Klee, P. Arora, M.D. Jensen, et al. Mechanisms of the age-associated deterio-

ration in glucose tolerance contribution of alterations in insulin secretion, action,

and clearance. Diabetes, 52(7):1738–1748, 2003.

[47] M.D. Jensen, J.A. Kanaley, J.E. Reed, and P.F. Sheedy. Measurement of abdominal

and visceral fat with computed tomography and dual-energy x-ray absorptiometry.

The American journal of clinical nutrition, 61(2):274–278, 1995.

[48] J.W. Mandema, D. Verotta, and L.B. Sheiner. Building population pharmacokinet-

icpharmacodynamic models. i. models for covariate effects. Journal of Pharmacoki-

netics and Pharmacodynamics, 20(5):511–528, 1992.

[49] R Development Core Team. R: A Language and Environment for Statistical Com-

puting. http://www.r-project.org/.

[50] E.N. Jonsson and M.O. Karlsson. Xposeâan s-plus based population pharmacoki-
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