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Abstract

This thesis deals with three problems concerning the use of a multispectral imag-
ing spectrograph in applications of cultural heritage. The multispectral camera is
part of an instrument developed within the project “Shape&Color” (CARIPARO,
2003-2005), coupling the spectrograph with a 3D laser scanner. Although the is-
sues we have addressed arose from the characteristics of this specific instrument,
they can be regarded as general problems concerning multispectral imaging, and
are therefore of broader interest.

The first part relates on the characterization of the spectrograph performance
in measuring spectral reflectance under different illumination conditions. Four
different illumination setups have been used to acquire a set of colored calibrated
tiles. The system performance has been evaluated through a metrologically-
inspired procedure, using as descriptors the average error (AE) and the average
error standard deviation (AESTD), calculated by means of error propagation for-
mula. The best results have been obtained with a metallic iodide lamp and an
incandescence lamp used in a sequence, juxtaposing the spectral reflectance mea-
sured with the metallic iodide lamp in the 400-600 nm interval and that obtained
with the halogen lamp in the 600-900 nm interval.

The second presented issue concerns the problem of separating spectral il-
lumination and spectral reflectance from the acquired color signal (the global
radiation signal reflected by a target object). Since the latter can be considered
as the product of illumination and spectral reflectance, this is an ill-posed prob-
lem. Methods in the literature estimate the two functions apart from a scale
factor. The proposed solution attempts at the recovery of this scale factor using
a statistical-based approach. The core of the algorithm consists of the estimation
of the illumination intensity through a modification of the RANSAC algorithm,
using relations derived from the physical constraints of the illumination and the
spectral reflectance. The spectral reflectance is subsequently computed from the
measured color signal and the estimated illumination function. The algorithm
has been tested on four case studies, representing artworks of different pictorial
techniques, color characteristics and dimensions. The results are good in terms
of mean relative error, while the infinity norm of the relative error sometimes
assumes high values.

The last problem we have dealt with is that of using the multispectral images
acquired with the Shape&Color scanner to texturize uncalibrated 3D data. What
makes the problem worth addressing is that the spectral camera is not pinhole,
but can be classified as a cylindrical panoramic camera. In this thesis, the general
problem of estimating the extrinsic parameters of the camera from a known set of
3D-2D correspondences has been considered. The chosen approach is the classical
reprojection error minimization procedure. As the projection operator is nonlin-
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ear, the objective function has a very complicated structure. Due to this and
to the high dimensionality of the problem, the minimization results are strongly
sensitive to the choice of the initial parameter values. This work proposes a way
of finding a reliable initial point for the minimization function, so as to lower the
risk of being trapped into local minima.
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Sommario

La presente tesi affronta tre problematiche relative all’uso di uno spettrografo
per l’acquisizione di immagini multispettrali in applicazioni di beni culturali.
La camera multispettrale fa parte di uno strumento sviluppato all’interno del
Progetto “Forma&Colore” (CARIPARO, 2003-2005), che, oltre allo spettrografo,
comprende un laser scanner a tempo di volo. Sebbene le problematiche affrontate
siano sorte dalle specifiche caratteristiche di questo strumento, esse possono tut-
tavia essere considerate come problemi più generali relativi all’imaging multispet-
trale, e rivestono pertanto un interesse più ampio.

La prima parte della tesi riguarda la caratterizzazione delle prestazioni dello
spettrografo nel misurare riflettanze spettrali al variare delle sorgenti di illumi-
nazione. Un set di tavolette calibrate è stato acquisito usando quattro diversi
setup di illuminazione. Le prestazioni della ricostruzione della riflettanza sono
state valutate con un procedimento metrologico, usando come descrittori l’errore
medio e la sua deviazione standard, calcolata tramite formule di propagazione
degli errori. I migliori risultati sono stati ottenuti usando in sequenza una lam-
pada a ioduri metallici e una lampada ad incandescenza, ovvero giustapponendo
le riflettanze misurate con la lampada a ioduri metallici da 400 a 600 nm e quelle
misurate con la lampada ad incandescenza tra 600 e 900 nm.

Il secondo argomento presentato riguarda il problema di separare i contributi
di illuminazione e riflettanza spettrale dal segnale di colore (la radiazione globale
riflessa dall’oggetto acquisito). Essendo il segnale di colore dato dal prodotto di
illuminazione e riflettanza, quello affrontato è un problema mal posto. I metodi
presenti in letteratura separano i due contributi a meno di un fattore di scala. La
soluzione proposta in questa tesi stima il fattore di scala tramite un metodo statis-
tico. Il cuore dell’algoritmo consiste nella stima dell’intensità dell’illuminazione
tramite una modifica dell’algoritmo RANSAC, applicato a relazioni derivate dai
vincoli fisici a cui sono soggette illuminazione e riflettanza. La riflettanza spettrale
viene successivamente calcolata come rapporto tra il segnale di colore misurato
e l’illuminazione stimata. L’algoritmo è stato testato su quattro casi di studio
nell’ambito dei beni culturali, un affresco e tre dipinti. I risultati sono buoni
in termini di errore relativo medio, mentre la norma infinito dell’errore relativo
assume talvolta valori elevati.

L’ultima tematica affrontata riguarda l’utilizzo delle immagini multispettrali
per texturizzare modelli 3D non calibrati. L’interesse del problema risiede nel
fatto che la camera multispettrale non risponde al modello pinhole, ma va clas-
sificata come una camera panoramica cilindrica. In questa tesi, si è affrontato il
problema generale di stimare i parametri estrinseci della camera a partire da cor-
rispondenze 3D-2D. Il problema è stato formulato in maniera classica come quello
di minimizzare l’errore di riproiezione tra le corrispondenze. Poichè l’operatore
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proiezione è non lineare, la funzione obiettivo risultante ha una struttura partico-
larmente complessa. L’alta dimensionalità del problema comporta pertanto che
il risultato della minimizzazione sia estremamente sensibile alla scelta del valore
iniziale dei parametri. Il lavoro proposto consiste nella ricerca di valori iniziali
dei parametri che riducano la probabilità di rimanere intrappolati in un minimo
locale.
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Introduction

In the last fifteen years, multispectral imaging has gained increasing importance in
the Signal Processing community dealing with cultural heritage applications [1].
A first reason is that acquiring the spectral reflectance of an object is the most
reliable asset for faithful color reproduction, where faithfulness is measured in
terms of independence from illumination and acquisition devices. Indeed, tra-
ditional (R,G,B) representation depends both on the acquisition device and the
environmental conditions [2]. Independence from the former can be achieved by
means of device-independent color spaces but, in any case, the acquisition will be
influenced by the environment, mainly by lighting [3]. For this reason, a number
of cultural heritage institutions have carried out the construction of “digital mu-
seums” [3], i.e. the digitization of their collections, using multispectral sensors. A
second advantage of multispectral measurements is that they permit monitoring
of the conservation status of paintings. Indeed, multispectral color acquisition
is objective, hence repeatable and furthermore, digital images are virtually eter-
nal, since they do not degrade over time. A third important consideration is
that the non-visible parts of the spectrum can render valuable service both in
the non-invasive diagnosis of the conservation status of a work of art and in the
reconstruction of its history. For example, infrared (IR) reflectography has been
used for some decades for the detection of underdrawings in paintings, while ul-
traviolet (UV) fluorescence highlights former restoration interventions. Spectral
signatures of color pigments used in the painting process can also be found in the
non-visible spectrum. Unobtrusive diagnosis can therefore lead to virtual restora-
tion planning. The VASARI, MARC and CRISATEL projects were pioneering
projects funded by the European Commission which made use of multispectral
data for the acquisition and monitoring of paintings [4–21].

Despite its many advantages, multispectral imaging poses a number of tech-
nical challenges which have been only partially overcome. First of all, how many
and which bands one needs to acquire is still the subject of debate [3, 22] and,
clearly, depends on the application. IR reflectography calls for different illumi-
nation sources and sensors than visible spectroscopy or UV fluorescence. When
selecting the appropriate spectral window for a chosen cultural heritage applica-
tion, non-invasiveness issues must also be kept in mind, as it is notorious that
some illumination sources can damage the pictorial layer. Achieving indepen-
dence from the illumination is another non-trivial task. Multispectral imaging
sensors typically measure the color signal, that is, the global radiation reflected
by the object. This radiation is the product of very complex interactions between
the illumination source light and the object’s surface reflectance properties. The
spectral composition of the illumination, the orientation of the target surface
with respect to the illumination source and the observer, the surface material
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and color and the characteristics of the sensing device are all factors influencing
the composition of the color signal. Illumination independence in multispectral
imaging is generally achieved by subtracting a reference white signal from the
color signal. The reference white signal is mostly obtained by acquiring a refer-
ence white surface in the same position, and subject to the same illumination, as
the target object. It is worth noticing that the resulting spectral reflectance is
indeed independent of the spectral content of the illumination, but not from the
mutual positions of illumination, surface and observer.

All these technical challenges are amplified when dealing with multispectral
imaging for texturing 3D models. Extending multispectral imaging to 3D mod-
eling with multispectral textures seems rather natural. Indeed, all the above
mentioned advantages of multispectral acquisition can be imagined to be prof-
itably applied to inherently three-dimensional targets such as frescoed chapels,
statues, ornamented vases or ancient situlas. However, this extension to 3D poses
more challenging problems. As previously mentioned, multispectral acquisition
requires accurate control of illumination and of sensor setup in order to recover
the spectral reflectance from the raw data. The dependence of the color signal
on the geometry of the object, the illumination position and the point of view is
much more relevant when dealing with three-dimensional scenes. When acquiring
a painting, the multispectral sensor is usually kept normal to the painting sur-
face and acquisition is performed on small areas under uniform illumination [23].
These favorable conditions cannot always be reproduced when acquiring three-
dimensional objects of complex geometry. While controlling acquisition param-
eters to such a degree is still possible when handling small manufactures, it be-
comes really difficult when dealing, for example, with medium-sized architectural
volumes such as chapels or ancient buildings.

This thesis deals with three problems related to the use of a 3D scanner
coupling a time-of-flight laser scanner and a multispectral imaging sensor. The
instrument was built within the project “Forma e Colore” (Shape&Color) [24],
funded by CARIPARO, in 2003-2005. The ambitious aim of the project was that
of designing an instrument capable of acquiring 3D models of small architectural
volumes with multispectral textures for monitoring and conservation purposes.
The resulting scanner is one of the only two existing instruments (the other is
described in [25]) simultaneously acquiring 3D shape and multispectral textures.
While using the instrument in real-world cultural heritage applications, several
challenges have been revealed. This thesis presents and attempts a solution to
three of these problems. Although they are clearly related to the specific fea-
tures of the Shape&Color scanner, they can also be regarded as general problems
concerning multispectral imaging, and are therefore of broader interest.

The first presented problem concerns the choice of the best illumination setup
for faithfully acquiring spectral reflectances. As the nominal spectral window
of the imaging spectrograph is 400-1000 nm, an ideal illumination source should
have a flat spectrum across the whole of this band. Unfortunately, no such il-
lumination source exists. Three different lamps have therefore been used, alone
or combined, to find the best reconstruction results. The reconstruction perfor-
mance has been evaluated through a metrologically-inspired approach. A set of
calibrated colored tiles and a reference white tile have been acquired with multiple
independent measurements. The error has been defined as the difference between
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the tile tabulated spectra and the recovered spectral reflectances, considered as
a function of wavelength. The average mean error (the mean error over different
measurements averaged over the different tiles) has been one of the parameters
used to evaluate the reconstruction performance. The other parameter has been
chosen as the average error uncertainty (standard deviation), calculated from the
statistics of the input measured signals through error propagation formula.

The second presented issue concerns the problem of separating spectral illumi-
nation and spectral reflectance directly from the color signal, without acquiring a
reference white signal. In a simplified framework, the color signal can be consid-
ered as the product between spectral illumination and spectral reflectance. Sep-
arating the two components is therefore an ill-posed problem. The illumination-
reflectance separation problem has been studied in the literature, often as a means
of achieving color constancy. However, the proposed solutions avoid estimating
the scale factor of illumination and reflectance, and thus ultimately fail to solve
the ill-posed separation problem. In the presented thesis, a solution to estimate
this scale factor is proposed. The presented illumination-reflectance separation
problem is a simplified version of the most general case, as we can expect the illu-
mination spectral content to be constant over space. Therefore, the illumination
estimation coincides with the recovery of the illumination scale factor (intensity).
The proposed solution relies on a probabilistic approach, and exploits the long-
time known observation that illumination and spectral reflectance have a different
behavior over space. Specifically, the illumination is a slowly-varying signal, while
reflectance presents abrupt variations at the joints of different color patches. Our
algorithm starts by estimating the illumination intensity through a modification
of the RANSAC (Random Sample Consensus) algorithm [26], applied to a rela-
tion linking the maximum (over wavelength) of the color signal with the product
of the illumination coefficient and the maximum (over wavelength) of the spec-
tral reflectance. Spectral reflectance is subsequently recovered from the measured
color signal and the estimated illumination function. The estimated illumination
and spectral reflectance satisfy their physical constraints, without the need of
resorting to constrained estimation techniques. The algorithm has been tested
on real-world data of cultural heritage applications.

The last addressed problem is that of using the multispectral images acquired
with the Shape&Color scanner to texturize uncalibrated 3D models. What makes
the problem worth addressing is that the spectral camera is not pinhole, but can
be classified as a cylindrical panoramic camera [27]. This camera model has been
extensively considered in the literature, mostly as concerns stereo reconstruction
from panorama. An application to texture mapping has also been considered,
but the proposed approach is closely dependent on the specific application [28].
In this thesis, the general problem of estimating the extrinsic parameters of the
camera from a known set of 3D-2D correspondences has been considered. The
chosen approach is the classical reprojection error minimization procedure. As
the projection operator is nonlinear, the objective function has a very compli-
cated structure. Due to this and to the high dimensionality of the problem, the
minimization results are strongly sensitive to the choice of the initial parameter
values. This thesis proposes a way of finding reliable initial parameter values
for the minimization function, so as to lower the risk of being trapped into local
minima.
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The thesis is organized as follows. Chapter 1 describes the Shape&Color scan-
ner, focusing on the strengths and weaknesses which were most relevant to inspire
the following work. Chapter 2 relates on the characterization of the performance
of the imaging spectrograph under different illumination sources. Chapter 3 de-
scribes the proposed illumination-reflectance separation algorithm, the results of
which are presented in Chapter 4. Chapter 5 presents the extrinsic parameter
calibration problem for the multispectral camera. Lastly, some conclusions are
drawn.
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Chapter 1

Shape&Color: a 3D scanner
acquiring multispectral texture
information

This chapter describes the Shape&Color scanner, an instrument for the acquisi-
tion of 3D data and multispectral textures of small architectural volumes. The
first prototype of the instrument was developed as part of the project “Forma
& Colore”(Shape&Color), funded by CARIPARO, in 2003-2005. Some hardware
improvements have been recently performed [29]. The work of this PhD thesis
originated by some issues arisen while using the scanner in real-world applica-
tions. Therefore, we will review the instrument characteristics, focusing on its
strengths and weaknesses for its target application.

1.1 State-of-the art instrumentation for the

acquisition of cultural heritage artifacts

A major point of interest of the presented system is that at present there are
no commercial range finders for the joint acquisition of geometry and multispec-
tral textures for volumes of this size. To the authors’ knowledge, the only other
existing instrument acquiring 3D shape and multispectral textures is that devel-
oped by Mansouri et al. [25]. The instrument is a 3D multispectral scanner for
the acquisition of small objects such as pottery or small statues. It couples an
LCD projector with a camera equipped with a rotating wheel containing seven
interference filters and a free hole. The filters span the visible spectrum (380 nm
to 775 nm), while the free hole is used to acquire a monochromatic image of the
object. The system is spectrally calibrated by recovering the correspondence be-
tween the seven-valued vector of the filter outputs and the eighty-valued vector
of the current point spectral reflectance. The learning stage consists of the ac-
quisition of a series of known reflectances and the inverse problem of estimating
the input spectra from the camera output is solved by means of neural networks.
In this case, the independence from illumination and device is achieved only in
a pre-defined working volume and, each time the acquisition setup is changed,
the calibration procedure has to be repeated. The acquisition volume used to
illustrate the performance of the system was about 50 cm × 50 cm × 20 cm. This
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system was used for visualization purposes in order to acquire faithfully textured
3D models of a jug and of some small statues and to relight them with various
illuminants in a virtual museum application.

As for other state-of-the art acquisition systems, there exist commercial range
finders which acquire shape and trichromatic color data of small volumes, with
side up to a couple of meters. There also exist range finders which operate at
very large distances for topographic [30] or photogrammetric applications [31], but
these instruments only acquire geometric information. There are no commercial
products targeting small architecture volumes, i.e., of side 3-10 meters, although
such dimensions are of interest for many architectural environments. For instance,
in [32–34] the authors report on a robotized system for the automatic 3D modeling
of typical industrial architecture. Commercial devices for 3D modeling small
volumes are also available [35–38].

Several laser scanning methods are available for distance and displacement
measurements [39]. For medium distance ranges, the most common techniques
are geometric triangulation and time-of-flight laser scanning. Geometric trian-
gulation allows for good accuracy with simple and inexpensive implementations.
Any geometric triangulation system is based on the conversion of an angular mea-
surement into the desired distance information. Their performance is therefore
determined by the angular measurement absolute error, and the distance mea-
surement error increases with the target distance. As a consequence, while the
relative error grows linearly, the absolute error follows a square law [40].

Time-of-flight methods measure the time a light pulse emitted by a laser takes
to hit the target and return back to the receiver. If the target is at distance L
from the instrument and if ∆T denotes the time difference between transmitted
and received pulses, we have L = c · ∆T/2, where c denotes the speed of light.
Therefore, the absolute error of the distance measurement is constant. This
technique allows to achieve good and constant accuracy over a wide range of
distances [41]. These considerations concern the basic implementation schemes
and neglect the influence of propagation trough the atmosphere.

In recent years, the acquisition of multispectral images of paintings has be-
come quite popular in the imaging community dealing with cultural heritage
applications [1]. A first reason is that acquiring the spectral reflectance is the
most reliable asset for faithful color reproduction, where faithfulness is measured
in terms of independence from illumination and acquisition devices. Indeed,
(R,G,B) representation depends both on the acquisition device and the environ-
mental conditions [2]. Independence from the former can be achieved by means
of device-independent color spaces but, in any case, the acquisition will be influ-
enced by the environment, mainly by lighting [3]. For this reason, a number of
cultural heritage institutions have carried out the construction of “digital muse-
ums” [3], i.e. the digitization of their collections, using multispectral sensors. A
second advantage of multispectral measurements is that they permit monitoring
of the conservation status of paintings. Indeed, multispectral color acquisition
is objective, hence repeatable and furthermore, digital images are virtually eter-
nal, since they do not degrade over time. A third important consideration is
that the non-visible parts of the spectrum can render valuable service both in
the non-invasive diagnosis of the conservation status of a work of art and in the
reconstruction of its history. For example, infrared (IR) reflectography has been
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used for some decades for the detection of underdrawings, while ultraviolet (UV)
fluorescence highlights former restoration interventions. Spectral signatures of
color pigments used in the painting process can also be found in the non-visible
spectrum. Unobtrusive diagnosis can therefore lead to virtual restoration plan-
ning. The VASARI, MARC and CRISATEL projects were pioneering projects
funded by the European Commission which made use of multispectral data for
the acquisition and monitoring of paintings [4–21].

VASARI and MARC considered the multispectral acquisition of paintings in
order to derive reliable CIELAB coordinates [6, 9].

A remarkable multispectral imaging project involving the CRISATEL scan-
ner is the “Mona Lisa project”. In 2004, an unprecedented number of techniques
were applied to the analysis of the Mona Lisa [42]. The methodologies adopted
included radiography, X ray fluorescence, Raman spectrometry, digital photog-
raphy under raking light, infrared reflectography, multispectral imaging and 3D
reconstruction. The study was aimed at assessing and recording the conservation
status of the painting and at gaining an insight into Leonardo’s pictorial tech-
nique. Multispectral digitization was performed by the French Center of Museum
Research with the camera developed within the CRISATEL project [43]. This
multispectral camera comprises 13 filters with a bandwidth of 40 nm spanning
the spectrum from 380 nm to 1050 nm. Multispectral measurements were used to
identify the various colors of the painting through luminance and color segmenta-
tion, to relight the painting with different illuminants and to identify restorations
from the most superficial layers (near UV) to the deepest ones (near IR).

Generally speaking, two different non-invasive reflectance spectroscopy tech-
niques are currently employed for cultural heritage applications: Fiber Optics
Reflectance Spectroscopy (FORS) and Imaging Spectroscopy (IS) [44]. The for-
mer uses fiber optics to convey light (typically exiting a monochromator) to the
target object. Reflectance information is recovered in two possible ways: when a
dual-beam approach is used, the incident light beam is split before being directed
onto the object, and the unreflected beam is used as a reference to calculate the
reflection coefficient. In the single-beam approach, the absolute reflected light
intensity is measured. In this case, reflectance can be calculated after acquiring
a reference white object. Dual-beam fiber optics spectrometers are very accurate
but not easily portable. On the contrary, single-beam fiber optics spectrometers
are more compact and easily transportable, but can lead to greater measurement
errors.

FORS instrumentation operates in a point-wise fashion. On the contrary, IS
determines spectral reflectance data for each pixel in a spatial image. Imaging
spectrometers can be divided into two classes according to the way multispectral
information is recovered. A first approach consists in putting a set of filters in
front of the detector [4, 43, 45–47]. The number of filters used in state-of-the-art
solutions varies from 7 to 32, and the spectral resolution from 10 nm (narrow-
band filters) to 40 nm (wide-band filters) [1]. Another approach consists in using
a dispersive element to separate the different light components, which are then
detected by a sensor (typically a CCD). In this case, higher spectral resolution
(<1 nm) can be achieved, but the received signal intensity is considerably lower
than in the filter-based approach.

Imaging spectroscopy allows the recovery of the spectral reflectance of the

27



whole target object (or parts of it). Therefore, not only a faithful color repro-
duction of the object can be achieved, but also more interesting tasks, such as
the comparison of the spectral content of different parts of the object or im-
age segmentation based on spectral features, can be performed. IS methods are
generally less accurate than FORS ones, but allow a more exhaustive inspection
of the spectral content of the target. It could be claimed that IS methods are
sufficiently accurate if they allow the detection of significant spectral features in
certain spots of an object, to which more accurate analysis can be restricted. In
this logic, IS and FORS can be considered as complementary. The reliability
of the spectral content analysis clearly depends on the accuracy of the spectral
reflectance reconstruction, which in turn is determined by several factors, such as
the instrument’s spectral resolution, the measurement noise and the choice of the
illumination source. The Shape&Color scanner features an imaging spectrograph
by SPECIM, the Imspector V10 (400-1000 nm).

Extending multispectral imaging to 3D modeling with multispectral textures
seems rather natural. Indeed, all the above mentioned advantages of multispec-
tral acquisition can be imagined to be profitably applied to inherently three-
dimensional targets such as frescoed chapels, statues, ornamented vases or ancient
situlas. However, this extension to 3D poses some challenging problems. Multi-
spectral acquisition requires accurate control of illumination and of sensor setup
in order to recover the spectral reflectance from the raw data. Indeed, the light
reflected by an object depends on the geometry of the object, on the materials it
is made of and on the light illuminating it. The situation is further complicated
by the fact that the light reflected by the object varies with both the illumination
angle and the point of view. When acquiring a painting, the multispectral sensor
is usually kept normal to the painting surface and acquisition is performed on
small areas under uniform illumination [23]. These favorable conditions cannot
always be reproduced when acquiring three-dimensional objects of complex ge-
ometry. While controlling acquisition parameters to such a degree is still possible
when handling small manufactures, it becomes really difficult when dealing, as
in our case, with medium-sized architectural volumes such as chapels or ancient
buildings.

The acquisition instrument we present fills a current instrumental gap, since
it collects geometry information with millimetric precision in the volume range of
3-10 meter side by a time-of-flight range finder (Section 1.3), and spectral infor-
mation in the range 400-1000 nanometers by an imaging spectrograph integrated
with the range finder. The imaging spectrograph will be presented in Section 1.2,
and further discussed in Chapter 2. The complete instrument and the mutual
calibration of the two scanners will be described in Section 1.4.

The 3D modeling procedure will be presented in Section 1.5. The ambitious
aim of the Shape&Color project was that of providing the instrument with a fully
automated 3D modeling procedure, so as to allow repeatable acquisitions (and
hence monitoring over time), and ease of use for non-technical personnel.

Some experimental results are presented in Section 1.6, while Section 1.7
discusses some strengths and weaknesses of the instrument.
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Figure 1.1: The SPECIM Imspector V10 spectrograph.

1.2 The imaging spectrograph

As mentioned in section 1.1, the imaging spectrograph is the SPECIM Imspector
V10. ImSpector is a direct sight imaging spectrograph provided with a disper-
sive element that can be quickly combined with a broad range of industrial and
scientific monochrome area cameras to form a spectral camera. Compared to
conventional color cameras and other filter-based imaging systems, ImSpector
produces full contiguous spectral information with high quality spectral and spa-
tial resolution. It can cover a broad spectral range over which it enables flexible
wavelength selections via software.

A schematic drawing of the imaging spectrograph is shown in Fig. 1.1. The
objective lens focuses the image of the target to be acquired on the plane of the
input slit of the spectrograph. The light coming from a rectangular narrow strip
conjugated with the slit enters into the spectrograph, is dispersed by a dispersive
element (prism or grating) and focused on the plane of the 2D detector. With
reference to Fig. 1.1, the horizontal axis of the camera is the spatial axis, while
the vertical axis is the spectral axis. The light coming from the same point on
the target but with different wavelengths is focused on the sensor on the same
column (i.e. the same spatial position) but in different rows (i.e. different spectral
positions). A 2D spectral image can be recovered using a series of monochromatic
images of a 2D region on the target obtained by scanning it in the direction
perpendicular to the slit [48]. The choice of the objective focal length is imposed
by the required field-of-view (FOV) in the direction parallel to the slit. Several
objectives are currently available. We normally use a Canon f=16 mm, f/# 1.4,
that matches the f/number of the spectrograph, or a Canon f=25 mm, f/# 1.4
objective. The nominal spectral window of the spectrograph is 400 to 1000 nm.
The entrance slit size is 9.8 mm × 25µm. The sensor is the Hamamatsu C8484-
05G. It is a progressive scan interline CCD with micro-lenses, 1024 (spectral) ×
1344 (spatial) pixel format, 6.45µm × 6.45µm pixel size, 6.6 mm × 8.7 mm active
area. The CCD is moderately cooled to reduce the thermal noise and increase the
sensitivity. The camera has 10 e-rms readout noise, dynamic range of 1800:1 and
quantum efficiency in the 0.35-0.70 range in the 400-750 nm spectral interval. Its
performances are definitely higher than a conventional TV camera, as that used
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Figure 1.2: Spectral calibration curve.

in the first prototype [24]. The FOV in the direction parallel to the slit is limited
by the number of pixels in the spatial direction. A spatial sampling of 2 mm gives
a FOV of 2.7 m at a distance of about 5 m with the f=16 mm objective. The
scanning in the direction perpendicular to the slit is performed by a rotation of
the spectrograph by means of a rotating stage (Physik Instrumente M-062). To
illuminate the target, several lamps can be chosen. This aspect will be further
discussed in Chapter 2. The spectral reflectance of the target for any pixel Rm,n

is calculated by

Rm,n =
Sm,n −Dm,n

Wm,n −Dm,n

(1.1)

where m,n are the coordinates of the pixel within the sensor, Smn is the actual
signal, Dmn is the dark signal of the camera and Wmn is the standard white signal.

1.2.1 Spectral calibration

The spectral calibration of an imaging spectrograph consists in determining the
correspondence between pixel indexes and wavelengths. The calibration was per-
formed by measuring the spectra of low pressure gas lamps which emit very
narrow spectral lines characteristic of the gas in the lamp. The correspondence
between pixels and wavelengths has been found to be nearly linear (see Fig. 1.2).
The spectral dispersion is 72.1 nm/mm and the spectral resolving element is 0.465
nm/pixel.
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Figure 1.3: The time-of-flight method.

1.3 The Laser scanner

As mentioned in Section 1.1, the most used techniques in the field of medium
range laser scanning are geometric triangulation and time-of-flight scanning. Ge-
ometric triangulation allows high accuracy for small distances, but the measure-
ment error increases with distance. On the contrary, time-of-flight laser scan-
ning exhibit a measurement error independent of the target distance. For these
reasons, triangulation-based scanners are generally used to scan relatively small
objects, such as handmade objects, ceramics and statues, with high precision. On
the contrary, time-of-flight techniques are widely used for large volumes, such as
monuments, buildings and walls.

Given the large range of operation of the instrument (2-20 m), the large area
to be scanned (up to 10 m2 in a single scan) and the constant accuracy over the
whole volume (∼ 1 mm independently of target distance), we chose to use a time-
of-flight system. We recall that time-of-flight distance measurement is based on
the measure of the time that a light pulse emitted by a laser takes to hit the target
and return back to the receiver (see Fig. 1.3). Namely, if the target is at distance
L from the instrument and T denotes the time difference between transmitted
and received pulse, it is L = c · T/2, where c denotes the speed of light. In
this way, the absolute error of the distance measurement is constant. The laser
scanner perform a distance calculation on a single point, so the laser beam has to
be deflected by a suitable system to scan the whole area to be acquired. This is
usually performed by rotating mirrors. In particular, our scanner has to acquire
shape data on the same area that is simultaneously acquired by the spectrograph,
i.e. a narrow strip parallel to the entrance slit. A single rotating mirror performs
such operation.

The core of the scanner is the Noptel CM2-30 rangefinder. The pulsing rate
can be up to 6 kHz depending on the device version, baud rate and processor
capacity. A 4 KHz pulsing rate has been commonly employed in on-field applica-
tions. The single-shot precision of the range-finder is 520 mm rms, which is too
bad for our purposes. Precision has therefore been improved by averaging several
measurements. The plot of precision vs. number of averaged measurements is
shown in Fig. 1.4 for a white target placed at a distance of 3.5 m. These mea-
surements have been repeated for different distances and we observed that the
average over 10-20 points gives a precision better than 2 mm rms.

Furthermore, a set of measurements has been carried out in order to quan-
tify the resolution of the range-finder, i.e. the minimum displacement that is
detectable. A white target has been placed on a motorized translation stage and
moved at known distances from the range-finder. For each distance, the target
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Figure 1.4: Precision vs. number of averaged measurements. The target is a
white tile placed at a distance of 3.5 m.

Figure 1.5: Resolution vs. number of averaged samples with the target placed at
a distance of 2 m: a) average over N = 10; b) average over N = 20; c) average
over N = 100; d) rms error (mm) vs. N .

has been moved in 21 positions with a constant step of 500µm, resulting in a
total translation of 10 cm around the actual distance. We show in Fig. 1.5 some
plots obtained with the samples placed at a distance of 2 m. As expected, the
higher the number of averaged samples, the higher the resolution.
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1.3.1 Laser calibration procedure

A calibration procedure has been carried out to take into account the variability of
target surfaces. In fact, one of the main problems of a time-of-flight rangefinder is
that the amplitude of the received signal greatly varies depending on the measure-
ment distance and the reflectivity and orientation of the target, with a dynamic
range that can be up to 1:1000 or even more. If the amplitude of the received
pulse changes, a walk error ∆t is generated due to the change in the timing of
the stop signal. In order to reduce this error, sophisticated techniques such as
automatic gain control on a received pulse or constant fraction discriminator have
been developed [49]. In these methods, the timing point is generated by compar-
ing an attenuated pulse and a delayed pulse, so that their crossing point defines
a constant fraction of the pulse. The timing point (i.e. the crossing point) is then
insensitive to variations in the amplitude of the signal.

The accuracy of the range-finder, i.e. the absolute difference between the mea-
sured and real distance, is very good for highly reflective targets, but gets worse
when the reflected signal intensity decreases. The measurements have thus to
be corrected on the basis of the target’s reflectivity and distance. The Noptel
rangefinder includes an amplitude pulse proportional output that can be used
to improve measurement accuracy. In the following, we will briefly describe the
procedure scheme that has been included in the acquisition software. The pa-
rameters of the correction have been calculated using six reference samples with
different reflectivity in the 0.03-0.90 range (i.e. six colored tiles from black into
white through a grey scale) placed at several distances ranging up to 15 m. At
each sampled distance, the signal from the six tiles has been acquired. Since
the detected intensity changes with the target reflectivity, the acquired distance
measurements were not constant. As a general rule of thumb, it can be assessed
that the higher the signal, the more precise the distance measurement. Then,
the “true” distance can be identified as that measured from the white tile, whose
reflectance is close to unity. The other measurements can be thus corrected ac-
cordingly.

By repeating this procedure for several distances, a look-up table has been
obtained to correct the actual measurements of the range-finder. The input values
for this table are the distance and intensity measured by the range-finder, the
output is the correction of the distance. The outcome of the calibration procedure
reveals that:

1. measurements are affected by a systematic error for targets with different
reflectivity placed at distance lower than 10 m; the error for a 3% reflecting
target can be as high as 10 cm;

2. for target distances higher than 10 m, no correction is needed.

It can be concluded that the presented range-finder has an accuracy better than
1 mm rms over the whole 1-20 m interval.

1.4 System architecture

The acquisition instrument integrates the 2D imaging spectrograph of Section 1.2
and the laser range-camera of Section 1.3 on the same platform, as shown by the
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Figure 1.6: Schematic (a) and picture (b) of the instrument.

scheme of Fig. 1.6(a), so that they can simultaneously measure the multispectral
color and geometry information of a scene.

As shown in Fig. 1.6(a), the imaging spectrograph is mounted on a horizontal
rotating stage with the entrance slit oriented along the vertical direction. The
range-finder is positioned on top of the spectrograph so that the vertical sweep
of the range-finder coincides with a vertical line of the spectrograph . Scanning
along the horizontal direction is performed by jointly rotating both instruments
around the vertical axis using the rotating stage. Fig. 1.6(b) shows a picture
of the instrument. The system is mounted on a support that can be manually
rotated around a horizontal axis to point the optical axis of the instrument (that
is the axis of the spectrograph) at any inclination between 0 and 90 degrees with
respect to the horizontal plane. In such a way, it is easy to acquire images both
from walls and from ceilings or vaults.

As previously said, the acquisition instrument simultaneously produces a
cloud of N points P = (X, Y, Z)T and a multispectral image S(x, y, λ), where
each P position in space corresponds to a Q = (x, y)T position in the multi-
spectral image coordinate system. Wavelength λ is generally sampled using 112
spectral values, corresponding to a spectral resolution of 5 nm/pixel.

The registration between texture data and geometry data is based on the fact
that each point P = (X, Y, Z)T of a given vertical line X imaged by the range
finder corresponds to the point (x, y) of the imaging spectrograph according to
the following relationship:

[
y′

w

]
=

[
f
lx

cx
0 1

] [
r11 r12 t1
r21 r22 t2

] Y
Z
1

 , (1.2)

where the y coordinate can be found as y = y′/w, since eq. (1.2) is in homoge-
neous coordinates. Parameters f , lx and cx are the focal length of the camera,
the x size of the CCD pixel in mm and the horizontal coordinate of the central
point, respectively. rij and ti (with j = {0, 1}, i = {0, 1} ) are the elements of
the two-dimensional roto-translation between the reference systems of the laser
scanner and that of the spectrograph. Eq. (1.2) accounts for the fact that the
relationship between coordinates x and X is trivial because of the vertical align-
ment of the two instruments; w is a scale factor. The calibration parameters
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Figure 1.7: Spectral scanner and 3D scanner.

(ax = f/lx, cx, r1, r2, t) can be computed from the correspondences obtained by
acquiring a number of spots projected by the laser scanner on a given surface with
the spectrograph. Since there are five degrees of freedom, at least 5 correspon-
dences are needed by the DLT algorithm [50]. Clearly, the more correspondences
are given, the better the calibration parameters are estimated. In this case, the
calibration has been generally obtained by projecting 15 range-finder spots over
the same surface in different positions.

The spectrograph and the range finder are positioned at a distance of 99 mm,
therefore in principle some regions can be seen from the spectrograph but not
from the range-finder, and viceversa (see Fig. 1.7). However, dealing with wall
surfaces, the potential parallax problem does not create any trouble, since the two
scanners are positioned very close (only few centimeters apart) when compared
to the size of the imaged surfaces (several meters). In any case this problem, if
present, can be solved by performing several acquisitions in different positions.

The regions acquired by the two sensors depend on the angle spanned by the
range-finder deflector and on the viewing angle of the spectrograph. The two
areas cannot be exactly the same, since their relative position changes according
to the distance from the target. The viewing angle of the spectrograph cannot
be modified, once the objective has been chosen (16 mm or 25 mm in our case).
Therefore, the measurement angle of the range-finder has been usually set to
cover an area slightly wider than that seen by the spectrograph at a representative
measurement distance. In this way, some portions of the acquired 3D views may
not have a multispectral texture counterpart. However, new acquisitions above
or below such scans can cover all the region of interest.
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1.5 3D modeling procedure

In this Section we will summarize the procedure to build a textured 3D model
from the single textured scans. The author gave no original contribution to the
modeling procedure, so it will be only briefly outlined. For further details, see [24].

The algorithm to integrate multiple textured scans into a single 3D model is
described in Algorithm 1.

Input:
a set of textured 3D scans;
Output:
an integrated textured 3D model;
begin

automatic detection of a common region between overlapping 3D views
by a variation of the method of textured spin-images [51];
pairwise registration by the method of [52];
global registration by the methods of [53];
multispectral texture construction by an extension of the method
of [24, 54];
surface fusion by the method of [55];

end

Algorithm 1: The 3D modeling pipeline

1.6 Acquisition results: an example

We present here some experimental results relative to the deployment of the
multispectral range camera in the Chapel of Charity, a frescoed lateral chapel
in the Church of S. Francesco in Padua (Italy). The walls and the ceiling were
frescoed by Girolamo Tessari in 1523-1526 with stories of the life of Virgin Mary.
The chapel is approximately 5 m (width) × 3 m (depth) × 8 m (height). Two
images of the frescoes are shown in Fig. 1.8.

Two pictures of the acquisition set-up are shown in Fig. 1.9. Two metallic
iodide lamps have been used to illuminate the chapel. The 400-800 nm visible
range has been acquired in 45 spectral bands with 0.1 s exposure time. Simulta-
neously, the 3D shape data have been acquired. The reference spectrum to be
used in eq.(1.1) for the normalization has been acquired for each scan by placing
a white screen in front of the frescoed walls. The acquisition of the whole vault
required 25 scans of area (1.5-2.5 m) × (3-6 m) and took approximately 15 hours.
Figs. 1.10 and 1.11 show an example of the output of the spectrograph and of the
range-finder while acquiring the chapel vault. Fig. 1.12 shows the overall output
of the multi-spectral range camera, i.e. the intensity and the (R,G,B) renditions
of the associated multispectral image registered together in a multispectral 3D
view. Other examples are shown in Fig. 1.13.
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(a) (b)

Figure 1.8: Images of two episodes from the cycle of Stories of Mary on the lateral
walls of the Chapel of Charity (Church of S. Francesco, Padua): (a) presentation
to the Temple; (b) marriage of Mary.

(a) (b)

Figure 1.9: Set-up for the acquisition of the images in the Chapel of Charity:
(a) view of the chapel; (b) picture of the instrument (center) and the two lamps
(side) during a scan of the central wall.
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Figure 1.10: Multi-spectral image of the vault (mean spectral reflectance).

Figure 1.11: 3D scan of the vault.

Figure 1.12: Multispectral image of Fig. 1.10 registered on the 3D scan of Fig.
1.11.

1.7 Discussion

To the author’s knowledge, no commercial instruments currently exist for the
joint acquisition of geometry and multispectral texture information for small ar-
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Figure 1.13: Multispectral 3D images of the walls.

chitectural volumes.

The automation of the 3D modeling procedure guarantees procedural repeata-
bility, and is therefore particularly suitable for monitoring purposes. Moreover,
it makes the modeling procedure accessible to non technical personnel. How-
ever, as observed in [56], the 3D modeling of complex environments often forces
a choice between automation and reconstruction precision. In all on-field appli-
cations, manual adjustments were always necessary to obtain the final textured
3D model.

As for practical issues, the acquisition procedure is not very fast as com-
pared with the performance of state-of-the-art commercial 3D scanners (30 kHz).
However, the acquisition of multispectral data partially compensates for this dis-
advantage.

The joint acquisition of geometry and spectral reflectance offers an improve-
ment in the analysis of frescoed surfaces, highlighting the interrelation between
wall and painting modifications over time. Another strong point of the pro-
posed methodology is that it is completely non-invasive. Multispectral textures
not only permit to recover a faithful reproduction of a fresco’s color, but also
potentially allow to monitor its conservation status by analyzing the infrared
content of its spectral reflectance. Unfortunately, chemical elements are usu-
ally identified by analyzing their spectral signatures in the near or mid infrared
spectrum [44], that is at longer wavelengths that those detected by the Specim
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Imspector V10(λ > 1000 nm). We have recently undergone a collaboration with
the Chemistry Department of the University of Padova to study what kind of
information on the composition and conservation status of the pictorial layer can
be extracted from our current spectral window.

An instrument such as the Shape&Color scanner can really fulfil its purpose
only if metrological guarantees are given on the acquired geometry and reflectance
data. As discussed in Chapter 2, the illumination setup used in the presented
on-field validations cannot guarantee sufficient precision across the 400-1000 nm
interval. Other illumination setups have thus been investigated.

Another critical point is that the acquisition of the white signal gives unsat-
isfactory results for illumination subtraction both in uneven areas (where it is
impossible to reproduce subtle changes in illumination and shadows) and in top-
most areas (where the white signal cannot be acquired, and the database white
signals poorly reproduce illumination conditions in such complex environments).
The method described in Chapter 3 was conceived to try to overcome these prob-
lems, separating reflectance and illumination contributions directly from the color
signal.

Another weak point of the proposed acquisition method is that it does not
account for reflectance variations with the viewing and illumination angles (see
Section 3.1). This may not be a problem when acquiring diffuse surfaces that
approximately exhibit a Lambertian behavior, but certainly becomes so when
dealing with specular patches such as the golden parts of a fresco. In this case,
significant comparisons between subsequent acquisitions can be obtained only by
placing the instrument and the illumination sources in matching positions.
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Chapter 2

Performance characterization of
the imaging spectrograph

During the first acquisitions with the Shape&Color scanner (see Chapter 1), it
was soon realized that the (R,G,B) colors computed from the measured spectral
reflectances looked darker and slightly distorted with respect to the originals. A
spectral validation of the instrument performance had been performed (see [24])
by acquiring a set of calibrated tiles of known reflectance. However, quantitative
results had been given only for the (L∗,a∗,b∗)coordinates [57] of the tabulated
and measured reflectance values. We believed that this performance character-
ization procedure, though commonly accepted in the color science community,
was not fit for an instrument whose aim was to faithfully reproduce spectral re-
flectance data. Therefore, we have re-acquired the calibrated tiles and evaluated
the system performance under different illumination sources, so as to select the
best illumination setup for our acquisitions. We have defined the measurement
error as a function of wavelength, and calculated the error uncertainty with a
metrology-inspired procedure.

2.1 Reflectance measurement

We recall that our imaging spectrograph measures absolute light intensities, there-
fore it is necessary to acquire a reference white signal under the same illumination
conditions as the target object in order to calculate its spectral reflectance. In
our experimental trial, the reference white signal has been obtained by acquir-
ing a Labsphere white tile with a flat 80% spectral reflectance over the interval
250-2500 nm [58].

The reflectance of the target for any pixel Rm,n has been then calculated as:

Rm,n = 0.8 ∗ Sm,n −Dm,n

Wm,n −Dm,n

, (2.1)

where m = 1, . . . , 1024 and n = 1, . . . , 1344 are the coordinates of the pixel
within the sensor, Sm,n is the acquired signal, Dm,n is the dark signal of the
camera and Wm,n is the white signal. The subtraction of the dark signal accounts
for the presence of the dark current signal in the CCD. The dark current signal is
constant (apart from a random noise term) for a given temperature and exposure
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Figure 2.1: Spectrum of the lamps used in our study: (a) metallic iodide lamp
(b) halogen lamp (c) incandescence lamp.

time. Therefore, it can be measured by acquiring a dark frame at the same
exposure time and in the same temperature conditions as the actual frame [59].

Looking at eq. (2.1), it is clear that the spectral reflectance at a spatial point
m on the target can be obtained as:

Rm = [Rm,n]n=1,...,1344, (2.2)

with the corresponding wavelength array λ = [λn]n=1,...,1344 given by the spectral
calibration procedure.

2.2 The experimental trial

The light reflected by an object depends both on the object’s surface reflectance
characteristics and on the composition of the light illuminating the object. An
ideal illumination source for the measurement of an object’s spectral reflectance
should thus exhibit a uniform spectrum over the whole desired wavelength range.
Unfortunately, no existing illumination apparatus satisfies this condition over
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the visible and near-infrared spectrum, so that sub-optimal solutions must be
adopted.

Moreover, other considerations concerning the spectral emission of a lamp
should be taken into account. For example, when acquiring a painting or fresco, it
is often unadvisable to use lamps with a strong emission in the infra-red spectrum
as their heating may cause damages to the pictorial layer. As our spectral camera
was primarily conceived for the acquisition of frescoed environments (see Chapter
1), we usually utilized metallic iodide lamps due to their low emission both in the
NIR and UV spectra. However, as the instrument can be employed in situations
where such precautions may not be necessary, in the presented study we have
looked for other kinds of lamps that would provide a sufficiently strong emission
in the long-wavelength visible and NIR spectrum. Three different lamps have
been used in our experiments:

1. a Disano 250 W metallic iodide lamp (with the spectrum shown in Fig.
2.1(a));

2. a Cixi Zhongfa Lamps 500 W halogen lamp (Fig. 2.1(b));

3. an Osram 60 W incandescence lamp (Fig. 2.1(c)).

It can be observed that the metallic iodide lamp has strong emission in the
blue-green region, while the halogen and incandescence lamps mainly emit in the
red-NIR spectrum. However, it can easily be seen that the emission of all the
lamps definitively drops around 850-900 nm. Therefore, all reflectances have been
calculated in the 400-900 nm interval.

Our experimental trial has consisted in the acquisition of known reflectance
objects under different illumination conditions. Four lamp configurations have
been used:

1. Metallic iodide lamp alone. We have chosen this setup as it is the only
one which may be extended to the acquisition of painted surfaces; as the
metallic iodide lamp has low emission in the red-NIR region, a correction
function has been derived for the measured spectral reflectances.

2. Metallic iodide lamp together with halogen lamp. This setup has the ad-
vantage of combining the emissions of the two lamps without doubling the
acquisition time.

3. Metallic iodide lamp and halogen lamp in a sequence. The reflectance mea-
surement has been obtained by juxtaposing the spectral reflectance mea-
sured with the metallic iodide lamp in the 400-600 nm interval and that
obtained with the halogen lamp in the 600-900 nm interval.

4. Metallic iodide lamp and incandescence lamp in a sequence, obtaining the
spectral reflectance as in the previous case. The incandescence lamp has
been used instead of the halogen lamp because it has a slightly stronger
emission in the NIR spectrum and because its spectrum is smoother.

The acquired target has been the Labsphere Pastel Color Standard set [58].
This set is made of eight highly diffusive tiles with colors spanning the visible
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spectrum. Their spectral reflectance is tabulated between 380 nm and 830 nm.
No quantitative error evaluation has therefore been possible in the 830-900 nm
interval.

For each target acquisition, five measurements have been done to average down
measurement noise. The camera exposure time has been set so as to maximize
the white signal dynamic without saturating the camera (saturation value is 4000
counts).

2.3 Performance evaluation

A way of characterizing the accuracy of reflectance measurements could be that
of calculating the CIELAB distances [57] between tabulated and measured re-
flectances [23]. However useful this approach may be for colorimetry applications,
it does not account for accuracy variations with wavelength. Therefore, we have
chosen to characterize our system’s performance by the error and the error stan-
dard deviation calculated as functions of wavelength and averaged over the tile
set.

Remembering eqs.(2.1) and (2.2), we have that the mean reflectance for each
tile can be calculated as:
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m), (2.3)

where i = 1, . . . , 8 is the tile index and j = 1, . . . , 5 the acquisition index. From
now on, we shall drop the pixel index m, with the understanding that we will
consider the central pixel of each tile.

The reflectance error for each of the eight colors is therefore:

ei(λ) = Ri(λ)−Ri
tab(λ), (2.4)

where Ri
tab(λ) is the tabulated spectrum of the i-th tile.

We now want to calculate the variance of the error from the variances of the
experimentally observed variables {X i,j}j=1,...,5, X ∈ {S,W,D}. The latter can
be estimated as [60]:

σ2
Xi(λ) =

1

4

5∑
j=1

(X i,j(λ)− X̄ i(λ))2, (2.5)

with the understanding that each observation is given by X i,j(λ) = X̃i(λ) +
wi,j(λ), where X̃i(λ) is the “true” spectrum and wi,j(λ) the realization of a random
noise.

The variance of the derived variable ei(λ) can be calculated as (see [60]):
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where X1 = S, X2 = W, X3 = D, σXi
k,X

i
l

is the covariance between the variables

X i
k and X i

l , σ
2
Rtab

the variance of the tabulated reflectance, and the dependence
by λ has been omitted for the sake of clarity. As the variance of the tabulated
reflectance is less than 2.5 · 10−5 [58], it will be neglected in the following.

Looking at eq. (2.3), the partial derivatives can be easily calculated as:

∂f
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, (2.7)
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Once we have obtained the error and error variance for each tile, we can
average them over the eight tiles to obtain the average error (AE) and the average
error variance as:

e(λ) =
1

8

8∑
i=1

ei(λ), σ2
e(λ) =

1

8

8∑
i=1

σ2
ei(λ). (2.9)

However, as the standard unit of uncertainty is standard deviation [60], we
have eventually used the average error standard deviation (AESTD) instead of
the variance. The AESTD is given by:

σe(λ) =
1

8

8∑
i=1

σei(λ), (2.10)

which is close to, but does not coincide with the square root of the variance
expressed in eq.(2.9).

2.4 Results

2.4.1 Metallic iodide lamp

The AE and AESTD of the spectral reflectances acquired using the metallic
iodide lamp can be seen in Fig. 2.2(a). It can be noted that the AE greatly
increases (in absolute value) after 750 nm, in correspondence with the drop in the
lamp emission. On the contrary, the AESTD increases (up to 0.08 between 400
and 420 nm. The reason is that there are great differences in the reconstructed
reflectances in the blue region. Namely, the measured reflectances for the red,
yellow and orange tiles are zero over most of this interval. The reason is that in
these cases three different phenomena combine: a drop in the lamp emission, a
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Figure 2.2: (a) average error (AE) and average error standard deviation
(AESTD) using the metallic iodide lamp (b) correction function for the spectra
(c) AE and AESTD after the correction (d) AE and AESTD with the metallic
iodide lamp and the halogen lamp used together (e) AE and AESTD with the
metallic iodide lamp and the halogen lamp used in a sequence (f) AE and AESTD
with the metallic iodide lamp and the incandescence lamp used in a sequence.

drop in the CCD sensitivity and a drop in the material reflectance. As a result,
the measured reflected signal falls below the dark signal.

For the reasons stated in section 2.2, we have tried to correct the measured
spectra defining a mean correction function. To do so, we have considered the ra-
tio between measured and tabulated spectra, which should be one over the entire
spectrum for perfectly reconstructed reflectances. We have then defined a con-
tinuous piecewise linear function approximating the global reflectance behavior
in the least-square sense, and have used it to correct each reflectance. As can be
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seen in Fig. 2.2(b), there is indeed a global trend in the ratios, with the notable
exception of violet in the red-NIR region. The AE and AESTD of the corrected
reflectances can be seen in Fig. 2.2(c). It can be observed that, although slightly
improved, the error still reaches -0.2 in the NIR region.

2.4.2 Metallic iodide lamp in combination with halogen
lamp

As can be seen in Fig. 2.2(d), the combined use of the metallic iodide and halogen
lamps has brought an improvement in the red-NIR region, but has also caused a
decrease in the reconstruction performance in the blue region. The reason is that
in order to use the two lamps simultaneously we have had to halve the camera
exposure time with respect to the previous case, so as to avoid camera saturation.
This has meant that in the spectral regions where just one of the two lamps has
strong emission (the blue and red-NIR regions), we have obtained an “average”
performance between the two lamps, rather than the best of the two. This has
suggested using the two lamps in a sequence, instead of illuminating the target
with both at the same time.

2.4.3 Metallic iodide lamp and halogen lamp in a sequence

We recall that in this case the resulting spectral reflectance has been obtained
by juxtaposing the spectral reflectance measured with the metallic iodide lamp
between 400 and 600 nm, and that acquired with the halogen lamp between 600
and 830 nm. Looking at Fig. 2.2(e), one can see that the AE is indeed reduced
to less than 0.05 in absolute value. However, confronting Figs. 2.2(a) and 2.2(e),
it can be observed that the metallic iodide lamp outperforms the halogen lamp
between 600 and 750 nm. Rather than changing the juxtaposition threshold to a
less intuitive value than the center of the considered spectrum, we have decided
to try another light source emitting in the red-NIR region.

2.4.4 Metallic iodide lamp and incandescence lamp in a
sequence

Using the incandescence lamp instead of the halogen lamp (Fig. 2.2(f)), the AE is
reduced to less than 0.02 (in absolute value), with an AESTD of about 0.01 over
the whole 420-830 nm spectrum (for the 400-420 nm interval the considerations
done in subsection 2.4.1 still hold). Moreover, the AE is more uniform than in
the previous case.

2.5 Conclusions

We have assessed the performance of our spectral camera in the measurement
of spectral reflectance in the 400-830 nm interval by acquiring a set of colored
calibrated tiles under different illumination conditions. We have used a metallic
iodide lamp, the metallic iodide lamp together with a halogen lamp, the metallic
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iodide and halogen lamps one after the other, and the metallic iodide and incan-
descence lamp in a sequence. In the last two cases, we have obtained spectral
reflectances as a juxtaposition of the reflectance measured with the metallic io-
dide lamp from 400 to 600 nm and that acquired with the other lamp from 600 to
830 nm. To evaluate the system performance, we have defined the error as a func-
tion of wavelength and used a metrological procedure to infer the uncertainty of
the computed error from the statistics of the measured variables. To describe the
reflectance measurement performance, we have used the average error (AE) and
the average error standard deviation (AESTD), calculated for each illumination
setup and averaged over the eight-tile set. The best results have been obtained
with the metallic iodide and the incandescence lamps used in a sequence. In
this case, the absolute AE is less than 0.02 over the whole spectrum, and the
AESTD less than 0.01 between 420 and 830 nm and less than 0.08 between 400
and 420 nm. The proposed methodology can be generalized to quantify the effects
of other influence quantities (e.g. the surface material) onto the accuracy of re-
flectance measurements, and can also be extended to other types of multispectral
sensors.

48



Chapter 3

A statistical approach to the
illumination-reflectance
separation problem

3.1 Problem statement

The aim of this study is that of assessing a method for separating a color signal
into illumination and surface reflectance components. The light reflected by a
surface depends on many factors:

1. surface material (matte, glossy, translucent, transparent);

2. surface spectral reflectance (color);

3. surface geometry;

4. spectral distribution of the illumination;

5. position of the illumination with respect to the target surface;

6. interreflections by the environment;

7. geometry of the environment (shadows).

The problem of illumination-reflectance separation can be formulated as fol-
lows. Given the observation of the light reflected by an object (color signal),
sampled wrt wavelength in a certain number of values, we want to estimate the
surface spectral reflectance and the illumination that give rise to that spectrum.

The dependence of the color signal upon surface reflectance and illumination is
very complex. Even considering non-transparent, non-translucent materials, the
way an object reflects light at a certain point is a function of wavelength, angular
position of the observer and angular position of the light source. The function
expressing the dependence of an object reflectance upon these parameters is called
Bidirectional Reflectance Distribution Function (BRDF) [61] and will be indicated
as ρ(p,ωi,ωo, λ), where λ is wavelength and ωi and ωo are two-valued vectors
containing, respectively, the light and observer direction wrt the surface normal
at point p. Ramamoorthi and Hanrahan [62] have observed that, assuming no
shadowing and interreflections occur, and considering an homogeneous, isotropic
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material (with no texture), the light reflected by an object at point p can be
expressed as:

S(p,ωo, λ) =

∫
Ω

I ′(p,ωi, λ)ρ(p,ωi,ωo, λ)(ωi · n) dωi, (3.1)

where S is the reflected light, Ω is the unit hemisphere, I ′ the illumination and
(ωi · n) stands for the inner product between the surface normal at p and the
direction ωi. In other words, the reflected light is the result of a convolution
between illumination and BRDF in the angular domain.

Measuring the BRDF of a chosen material is a laborious and time-consuming
task. It requires to acquire spectral reflectance values (generally at least three
samples) for sampled ingoing and outgoing directions, each spanning the whole
hemisphere. BRDF measurement is mostly performed for computer graphics ap-
plications to increase photorealism [63,64]. In this case, the BRDF of a number of
significant materials (sand, stone, brick, grass, fabric) is measured using trichro-
matic sensors, and then used to render 3D scenes in a realistic manner. Another
important field of application is remote sensing, where BRDF is used to identify
surface constituents independently from the viewing and illuminating angles [65].
In both cases, a somewhat qualitative knowledge of BRDF is sufficient, whether
because only “perceptually right” results are pursued, or because few parameters
(e.g. peaks or minima) must be extracted from spectral reflectances.

The presented study concerns the measurements of spectral reflectance of
painted surfaces, such as paintings or frescoed walls. Measuring the BRDFs of
all the materials constituting these surfaces, in all possible conditions of tem-
perature, humidity and aging, is virtually impossible. Therefore, a number of
simplifications have been introduced. Let us assume all surfaces to be Lamber-
tian, i.e. having constant BRDF wrt the viewing angle. In this case, the light
reflected by the object surface only depends on the cosine of the angle between
illuminating direction and surface normal [61]. Eq.(3.1) changes as:

S(p, λ) = R(p, λ)

∫
Ω

I ′(p,ωi, λ) cos(θi)dωi, (3.2)

where R(p, λ) is the surface (spectral) albedo at point p and θi = arccos(ωi · n).
Let us now pose

I(p, λ) ,
∫

Ω

I ′(p,ωi, λ) cos(θi)dωi. (3.3)

I(p, λ) can be interpreted as the cumulative illumination resulting from the
presence of an extended light source, weighted according to direction. In the unre-
alistic assumption of dealing with a point source, and maintaining the assumption
of no interreflections, we would have I(p, λ) = I ′(p,ω0

i , λ) cos(θ0
i ), with ω0

i di-
rection of the source. From now on, we will refer to I simply as “illumination”.
With the position of eq.(3.3), eq.(3.2) finally becomes

S(p, λ) = I(p, λ)R(p, λ), p ∈ P, λ ∈ Λ, (3.4)

where P is a two-dimensional lattice and Λ is a discrete set of sampled wave-
lengths. We will call eq.(3.4) the illumination-reflectance separation equation.
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3.1.1 Ilumination-reflectance separation and color constancy

The task of separating illumination and reflectance from a color signal is some-
times referred to as color constancy in the literature [66, 67]. This expression
refers to a property of the human eye, which exhibits the capability of recogniz-
ing the color of objects independently of the illuminating light [68]. However,
we adopt Forsyth’s formulation [69], according to which color constancy involves
integrating the color signal multiplied by the sensitivity functions of a certain
number of receptors. The color constancy equation can therefore be expressed as:

Ek(p) =

∫
%k(λ)I(λ,p)R(λ,p)dλ =

=

∫
%k(λ)S(λ,p)dλ, k = 1, . . . , K, (3.5)

where Ek is the response of the k-th receptor at point p and %k(λ) is the sensitivity
function of the k-th receptor. Generally, one has three receptors corresponding
to the red, green and blue regions of the spectrum.

In its most general formulation, the aim of a color constancy algorithm is that
of recovering surface properties which are independent of the illumination [69].
Illumination-reflectance separation can be a specific solution to this problem,
but is certainly not the only one [69–72]. However, as illumination-reflectance
separation and color constancy are closely related problems, and as the former
has often been addressed as part of color constancy algorithms, we will review
some works concerning color constancy.

3.2 Related work

We will begin by reviewing the literature on spectral illumination-reflectance
separation algorithms, which most closely relate to our work.

Ho et al. [67] first addressed the problem of spectral illumination-reflectance
separation. The authors assumed reflectance and illumination to be a linear
combination of a finite number of basis functions, and formalized the estimation
problem as the minimization in the least-square sense of the difference between
the color signal and the product of illumination and reflectance. They proved
that if the functions obtained by multiplying in all possible combinations the
reflectance and illumination basis functions form an orthogonal set, it is possible
to recover the illumination and reflectance coefficients, under the assumption that
the first illumination coefficient is normalized to 1.

Chang and Hsieh [73] observed that Ho’s method has the drawback of pro-
ducing unfeasible solutions, such as negative reflectance values. They therefore
added some physical constraints to the minimization problem, forcing reflectance
functions to be within the [0, 1] interval and finding a similar constraint for the
illumination. They performed the minimization using an efficient implementation
of the simulated annealing algorithm [74] based on variable separation.

Ikari et al. [75] pointed out that Ho’s and Chang’s minimization methods are
affected by the problem of local minima. They attributed this to the fact that
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both methods rely on single points to separate illumination and reflectance com-
ponents. To overcome this problem, they proposed to use multiple points of equal
color illuminated by different illumination sources, or points of different colors il-
luminated by the same light, an approach that can also be found in the color
constancy literature [76]. They also proposed to separate the two components
using the dichromatic reflection model [?], an approach which can also be found
in physics-based color constancy algorithms [77].

Among color constancy algorithms, we would like to mention the early work
by Horn [78], where the author separates illumination and surface reflectance
contributions exploiting the observation that in real-world images, illumination
varies far more slowly than reflectance. Horn considers the logarithm of the color
signal, which can be expressed as the sum of the logarithms of illumination and
surface reflectance. He then proposes to take the Laplacian of the logarithm
image, and eliminate all edges whose intensity falls below a certain threshold.
In this way, he claims that the illumination contribution, which gives rise to
small intensity changes, can be eliminated. Horn’s assumption of slowly-varying
illumination will be used in our algorithm.

Another interesting approach found in the color constancy literature is that
of exploiting the correlation between output color signal and input illumination
to estimate the illumination. For example, Forsyth [69] observes that only a
subset of all possible colors can be observed under a reference light, and defines
color constancy as the problem of finding the (linear, diagonal) transformation
mapping the observed image gamut to the canonical one. His method, called
“Gamut mapping”, has been recently extended in [79], where a useful review of
similar illumination estimation methods can be found. All of them are founded
upon the assumption that, given an image, some illumination spectra can be
assumed to have produced the observed color gamut with greater probability
than others. Dealing with spectral functions, we have obviously not considered
color gamuts. However, we will infer assumptions on the spectral reflectance
dynamic of a pixel from the color signal in a somewhat similar approach.

3.2.1 Illumination-reflectance separation: the curse of the
scale factor

All the above mentioned illumination-reflectance separation algorithms have in
common that illumination and reflectance are estimated only up to a scale factor.
It is easy to see from the illumination-reflectance separation equation that if we
multiply reflectance and illumination by reciprocal constants, the resulting color
signal does not change. In other words, the illumination-reflectance separation is
an ill-posed problem, for which a unique solution cannot, in general, be found.

In [67, 73, 75], fixing the first illumination coefficient to one is equivalent to
defining a pixel-dependent scale factor equal to the first illumination coefficient.
The approach of dividing the illumination-reflectance separation equation by the
first illumination coefficient is also followed in the dichromatic-based color con-
stancy algorithms such as [?, 80], with the additional assumption that the first
illumination basis function is a constant multiple of the mean illumination.

In Horn’s algorithm, the scale factor has the form of an unknown additive
constant to the logarithm of the illumination and spectral reflectance. The au-
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thor proposes to solve this problem by assuming that the highest color signal
(“lightness” in the paper) value corresponds to 100% white. The same assump-
tion is also made in the original paper by Land on Retinex color theory [68, 81].
A generalization of this approach is that of supposing that a single reflectance
value in the image is known. In this case, it is sufficient to estimate the ratio
between all other pixels and the one of known color to recover the scale factors.
Another approach consists in assuming some statistic of the image reflectances
is known. For example, the “gray world hypothesis” [82] consists in assuming
the mean reflectance to be neutral. It is worth pointing out that assuming that
two pixels have the same color (or are illuminated by the same light), as in [75],
is not sufficient to recover the scale factor, as only the ratio between the pixel
illuminants (colors) can be recovered. This is also why the scale factor must be
estimated under the hypothesis of uniform illumination [67,78,82].

The main difference between our algorithm and the other illumination-re-
flectance separation methods present in the literature is that we try to recover
the illumination intensity without requiring any knowledge about the reflectance
of the image pixels, except that there are multiple reflectance materials in the
image. As we will see in Section 3.5, the illumination spectral content will be
assumed to be constant over the image. Similarly, we will not assume the illumi-
nation to be uniform, nor that some pixels have equal reflectance coefficients (this
hypothesis would rest upon color observation, where we want to measure spectral
reflectances). The only assumptions we will make are that the illumination varies
slowly with respect to reflectance, and that its intensity can be approximated
with a regular function of spatial coordinates.

3.3 Preliminary assumptions

Estimating illumination and spectral reflectance from a color signal is a very com-
plex problem, for which no present algorithm has a general solution. A number
of preliminary assumptions will therefore be introduced. Some of them are nec-
essary to simplify the illumination-reflectance separation equation, and are those
introduced in Section 3.1. They can be summarized as follows:

1. non-translucent, non-transparent materials (BRDF existence [61]);

2. no shadows;

3. no interreflections;

4. Lambertian materials.

Another set of assumptions is related to the physical nature of the problem:

5. spectral reflectance is never greater than one, nor less than zero:

0 ≤ R(p, λ) ≤ 1, ∀p ∈ P. (3.6)

6. Illumination is never less than the color signal, nor greater than a threshold
dependent on the sensor:

S(p, λ) ≤ I(p, λ) ≤ ξ, ∀p ∈ P. (3.7)
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These are very weak assumptions, commonly found in the literature [73].
The last set of assumptions is then related to our specific application:

7. the spectral content of the illumination is constant over space up to a spa-
tially changing scale factor. In other words,

I(p, λ) = k(p)I0(λ), k(p) ∈ R, ∀p ∈ R. (3.8)

8. All surfaces are flat.

9. There are multiple colors in each image.

Assumption 7 cannot generally be applied to the real world, but is satisfied to a
good extent in our case. This is due to the fact that in the presented applica-
tions, multispectral acquisitions have been performed under controlled illumina-
tion. The spectral content of lamp emissions strongly depends on the reflector
structure [83]. Roughly speaking, if the reflector is “good” the spectral composi-
tion of the light is not modified along the lamp emission solid. Eq.(3.8) has been
experimentally tested, and will be further discussed in Section 3.7.

Assumptions 8 and 9 are also related to the presented acquisition setup and
specific application.

3.4 Linear model approximation

The problem of illumination-reflectance separation is generally addressed by as-
suming that reflectance and illumination belong to a finite linear space. Linear
bases for both reflectance and illumination of real-world scenarios have been in-
vestigated. In our case, only reflectance linear spaces will be considered, as the
illumination is assumed to be multiple of a single basis function (see assumption
7 in Section 3.3). For illumination finite linear models, see for example [84].

Let us indicate with R the set of the actual measured reflectances. Assuming
that they belong to a finite-dimensional linear space means that is possible to
write

R(p, λ) =
M∑
i=1

ci(p)ri(λ), ci(p) ∈ R, ∀ R ∈ R, (3.9)

where {ri}i=1,...,N are some known basis functions. Estimating the reflectance is
thus equivalent to estimating the coefficients ci.

Several works have attempted to define the correct dimension and basis for
these spaces [85–89]. However, it is most likely that a unique answer does not
exist, and that the choice must be done according to the chosen application.
Among the factors influencing this choice, the considered spectral band, the target
material and the desired accuracy surely play a dominant role.

For our problem we have chosen to use Parkkinen’s eight basis functions [88].
They were obtained by performing the Karhunen-Loeve transform [90] on a total
of 1257 reflectance spectra from the Munsell color chips [91]. The authors found
that 98.4% of the spectra could be approximated using the first eight eigenvectors
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of the covariance matrix with an error less than 0.0021, and that the overall mean
error was 0.008. The eight basis vectors are plotted in Fig. 3.1.

From eqs.(3.4),(3.8) and (3.9), we have that the measured color signal at each
point p and wavelength λ can be expressed as:

S(p, λ) = k(p)I0(λ)
N∑
i=1

ci(p)ri(λ) =

=
N∑
i=1

ηi(p)I0(λ)ri(λ), (3.10)

where ηi(p) = k(p)ci(p) and N = 8.
We can observe that eq.(3.10) is linear in the parameters ηi. Therefore, they

can be estimated as the solution of a linear least-square problem of the form:

η̂(p) = arg min
η

∥∥∥∥∥S(p, λ)−
N∑
i=1

ηi(p)I0(λ)ri(λ)

∥∥∥∥∥
2

, ∀ p ∈ P (3.11)

where η = (ηi)i=1,...,N

One could wonder if there might be multiple solutions to this problem. Ho
et al. [67] observed that the solution is unique if the functions ti(λ) = I0(λ)ri(λ)
are linearly independent. This is always the case in our application.

Summarizing, our problem can be formulated as the estimation of a spa-
tially varying coefficient k(p) for the illumination, and of a set of coefficient
{ci(p)}i=1,...,N for reflectance, which satisfy:

S(p, λ) = k(p)I0(λ)
N∑
i=1

ci(p)ri(λ) (3.12)

s.t.

0 ≤
N∑
i=1

ci(p)ri(λ) ≤ 1 (3.13)

S(p, λ) ≤ k(p)I0(λ) ≤ ξ. (3.14)

3.5 Illuminant estimation

As we have seen in Section 3.2, it has often been observed that illumination
and reflectance are characterized by different behaviors with respect to spatial
frequency. Specifically, illumination has a low-pass behavior, i.e. is slowly-varying
in space, while reflectance has a marked high-pass content due to sudden changes
between adjacent colors. It can be noted that the assumption of slowly-varying
illumination is particularly fit to our application, where exclusively controlled
illumination is used, surfaces are flat and there are no shadows. Therefore, the
presented algorithm will exploit this different spatial frequency behavior to try
to separate the two components.

1The error was defined as the absolute difference between real and approximated spectra.
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Figure 3.1: Parkkinen’s basis vectors for reflectance.

Another useful observation is that the low-pass signal described by k(p) can be
approximated as a smooth surface. This surface is the projection of the emission
solid of the lamp onto the target surface, i.e. a plane. The emission solid of the
lamp is unknown. However, we can form an idea about its shape by observing the
reflector. For example, if we think the emission solid can be approximated as a
paraboloid, the intensity of the light irradiating a flat surface will be a paraboloid
too. In our case, due to the simple surface shape, we will assume the illumination
intensity to lie on a plane and we will try to fit a plane to an appropriate function
of the observed data.

3.5.1 The lower bound equation

Eq.(3.12) expresses a relation between functions of both spatial position and
wavelength. To separate the coefficients of reflectance and illumination, it would
be simpler to find a relation between functions of space only. To do so, we
reformulate condition (3.14) as:

S(p, λ)

I0(λ)
≤ k(p) ≤ ξ

I0(λ)
, ∀λ ∈ Λ, (3.15)

where we have assumed I0(λ) > 0 ∀λ.

As eq.(3.15) must hold for every wavelength, we can further rewrite it as

max
λ

S(p, λ)

I0(λ)
≤ k(p) ≤ min

λ

ξ

I0(λ)
=

ξ

maxλ I0(λ)
. (3.16)
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The lower bound for k(p) is therefore

max
λ

S(p, λ)

I0(λ)
. (3.17)

Using again eqs.(3.4),(3.8) we get:

L(p) , max
λ

S(p, λ)

I0(λ)
= max

λ

k(p)I0(λ)R(p, λ)

I0(λ)
=

= k(p) max
λ

R(p, λ) = k(p)χ(p), (3.18)

where
χ(p) , max

λ
R(p, λ). (3.19)

The equation we will use to estimate the illuminant will therefore be

L(p) = k(p)χ(p), (3.20)

and we will call it the lower bound equation. It can be noted that L(p) can
be easily computed from the input color signal and the known illuminant basis
vector.

3.5.2 Plane fitting

We would like to estimate the illumination intensity k(p) as the best plane fitting
our data in the least-square sense. The problem is that the illumination values
are available only multiplied by the variable χ(p), which satisfies the inequalities

0 ≤ χ(p) ≤ 1, ∀p ∈ P. (3.21)

Forgetting eq.(3.19), we model χ(p) as a random variable of some known
distribution. For example, in the simplest case, we could assume it to be a
uniformly distributed r.v., i.e.

χ(p) ∼ U(0, 1) ∀p ∈ P.

RANSAC [26] is a robust iterative algorithm to estimate the parameters of a
model from a set of data with many outliers. The procedure is summarized in
Algorithm 2.

The maximum number N of iterations is usually selected as that which guar-
antees that at least one set of n inliers has been selected with probability p. If
we denote by w the probability that any selected data point is within the error
tolerance of the model, one can prove that:

N =
log(1− p)

log(1− wn)
. (3.22)

Similarly, the threshold for the cardinality of the consensus set is chosen according
to the supposed percentage of inliers as:

tC = NDw, (3.23)
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Input:
data - a set of observations;
θ - a model that can be fitted to data;
n - the minimum number of data required to fit the model;
N - the maximum number of iterations allowed in the algorithm;
tθ - threshold to decide if a datum is an inlier;
tC - threshold to decide if there is a sufficient number of inliers for a model;
Output:
θ̂ - best model fitted to data;
Ĉ - best consensus set;
begin

iter = 0;
repeat

choose n random points from the data set;
compute the model parameters θ;
foreach point not part of the randomly chosen set do

if the distance of point from the fitted model is less than tθ then
add point to the consensus set C;

if |C| > |Ĉ| then

θ̂ = θ, Ĉ = C;
if |Ĉ| > tC then

break;

until iter ≥ N ;

end
iter = iter+1;

Algorithm 2: The original RANSAC algorithm

with ND cardinality of the dataset.
The model underlying the RANSAC algorithm is that of a signal corrupted

by an additive random noise, and therefore the algorithm cannot be used in its
original form in this application. We have then defined a variation of this method,
which is described in Algorithm 3, and discussed in the following.

The key difference between the classical RANSAC formulation and our prob-
lem is that in the latter case the model cannot be directly fitted to data. In fact,
the data that should be fitted are the values of k(p), which are not available.
Knowing the true values of χ(p), and therefore of k(p), would be equivalent to
having the solution of our problem. Therefore, the values for k(p) must be derived
from eq.(3.20) in some other way. For the moment, we give up the estimation
of reflectance and regard χ(p) as a multiplicative random noise corrupting the
signal k(p). We then produce a realization of this noise at each point p according
to its alleged distribution, and derive the supposed value for k(p) as:

k̂(p) =
L(p)

χ̂(p)
,

where χ̂(p) is a realization of the random variable. Looking at Algorithm 3, it is
possible to see that the problem of zero values for χ̂(p) is avoided by restricting
the interval to [ε, 1− ε], ε > 0. This assumption is quite weak, as it is rather safe
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Input:
data - a set of observations;
θ - a model that can be fitted to data;
n - a number greater than or equal to the minimum number of data
required to fit the model;
N - the maximum number of iterations allowed in the algorithm;
tθ - threshold to decide if a datum is an inlier;
tC - threshold to decide if there is a sufficient number of inliers for a model;
(rk)

K
k=1 - K uniform samples of the [ε, 1− ε] interval, ε > 0;

Output:
θ̂ - best model fitted to data;
Ĉ - best consensus set;
begin

subsample L(p);
iter = 0;
repeat

choose n random points (Ll)nl=1 from the subsampled data set;
choose n random values (χl)

n
l=1 between ε and (1− ε) according to a

known probability distribution;
compute kl , Ll/χl, l = 1, . . . , n;
compute the model parameters θ from (kl)

n
l=1;

define k̂(p) = θTp, p ∈ P;
compute χ̂(p) = L(p)/k̂(p);
if k̂(p) satisfies (3.14) ∀p ∈ P and χ̂(p) satisfies (3.13) ∀p ∈ P
then

foreach point of P not part of the randomly chosen set do
foreach rk do

if the distance of point from the fitted model multiplied
by rk is less than tθ then

add point to the consensus set C;

if |Ĉ| > tC then
break;

until iter ≥ N ;

end
iter = iter+1;

Algorithm 3: A variation of the RANSAC algorithm

to assert that no natural material has spectral reflectance which is everywhere 0,
or somewhere exactly 1.

A rather strong assumption is that the χ(p)s can be treated as independent
random variables. This is certainly not the case, as in real images reflectance
functions are correlated in space. In order to get closer to the fulfilment of this
assumption we therefore subsample the image L(p). As k(p) has a low-pass
behavior, this will not compromise its reconstruction. On the other hand, we will
decrease the correlation between the χ(p) values. We have usually subsampled
L(p) by a factor of 5 along both dimensions.
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At this point, we can fit our model to the supposed inliers. Note that in this
case a better definition of inlier would be that of a point k̂(p) which is close to
the real value k(p). In other words, it is the algorithm itself which creates the
outliers by guessing wrongly the maximum reflectance value at a certain point.

Once we have computed a candidate model, the first thing we need to do is
check whether it represents a valid solution to our problem. In other words, we
have to verify if it satisfies condition (3.14). Moreover, once we have a candidate
model we can also compute the candidate values for χ(p). Therefore, we also
need to check whether condition (3.13) holds.

We are now left with the problem of rating a fitted model. The problem is
always the same: we only have the illumination intensity data multiplied by the
corresponding maximum reflectance value. Intuitively, we could say that a good
model can be identified by considering the “cumulative” consensus set of all the
points that are close to the model when multiplied by some value between 0 and
1. This is also described in Algorithm 3. To find the cumulative consensus set
we sample the feasible interval for χ(p) with K values. We then multiply the
fitted model for each value, and define the k-th consensus set as formed by all the
points which differ from the scaled plane less than a given threshold. The final
consensus set will be given by the union of all the K partial consensus sets.

Unfortunately, it is difficult to define a suitable threshold, as the threshold is
part of the problem itself. This is easily seen by considering that if we knew k(p)
and χ(p), taking K uniformly spaced values of reflectance between ε and (1− ε)
would be equivalent to quantizing χ(p) with a certain step ∆. As all the error is
granular (see [92]), we would have that

|Q[χ(p)]− χ(p)| ≤ ∆

2
,

where Q[·] indicates the quantization operator. Therefore,

|k(p)Q[χ(p)]− L(p)| ≤ k(p)
∆

2
,

i.e. the true threshold is a function of the unknown values k(p). However, using
the physically-based inequality (3.14), we can say

|k(p)Q[χ(p)]− L(p)| ≤ k(p)
∆

2
≤ ξ

maxλ I0(λ)

∆

2
,

or in other words

tθ ,
ξ

maxλ I0(λ)

∆

2
. (3.24)

Another critical choice concerns the cardinality of the random sample set se-
lected to estimate a candidate model. Considering that our problem is severely
under-determined, it could seem advisable to choose a high number of samples
to make the estimate more robust. However, the probability of selecting feasi-
ble values for χ(p) quickly decreases with the number of selected points. If we
consider χ(p) as a uniform discrete r.v. taking values in the set {r1, . . . , rK̃}, we
have that the probability of selecting an inlier (i.e. choosing a feasible value for
χ(p)) is:

w =
1

K̃
.
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Therefore, with reference to equation (3.22), to be sure of selecting n inliers with
probability p we should iterate our algorithm for a number of iterations N given
by:

N =
log(1− p)

log(1− K̃−n)
.

With K̃ = 100, n = 3 (i.e. the minimum number of points to fit a plane) and
p = 0.9, we have that N is greater than 2 · 106. For the sake of efficiency, we will
thus choose a value for N which does not guarantee the presence of an all-inlier
set. Therefore, the resulting solution will possibly be sub-optimal.

As concerns the parameter tC , the definition (3.23) somewhat loses its mean-
ing. In our case, the true percentage of inliers should be 100%. Therefore, tC has
been considered as a tolerance value to be contented with. We have usually set
it to 90÷ 95% of the total number of points.

3.6 Reflectance recovery

Once we have estimated the best illumination coefficient k̂(p), recovering re-
flectance is almost trivial. Remembering Section 3.4, we can estimate the param-
eters

ηi(p) = k(p)ci(p)

for all points p and i = 1, . . . ,M (M is the number of basis functions) by a simple
linear least-square method. Therefore, the estimated reflectance coefficients can
be computed as:

ĉi(p) =
ηi(p)

k̂(p)
, i = 1, . . . ,M, p ∈ P. (3.25)

Note that due to the way the variation of the RANSAC algorithm has been
defined (Algorithm 3), the estimated coefficients ĉi(p) are guaranteed to satisfy
condition (3.13).

3.7 PCA of the illumination spectra

In order to find a suitable basis for the illumination, we have followed the classical
approach of performing Principal Component Analysis (PCA) [93] on a large
dataset of illumination spectra. PCA has been extensively used in Color Science
with a variety applications, such as data reduction, color estimation from mixtures
or confidence interval definition [94]. As observed by Lenz [95], a common practice
when dealing with color spectra (where “color” refers both to illumination and
reflectance) is to compute a basis for the space of spectral distributions using
the eigenvectors of the auto-correlation matrix. This is in contrast with the usual
version of the algorithm, which considers the auto-covariance matrix, i.e. the auto-
correlation of the spectra after the global mean has been subtracted. However,
as color spectra are always non-negative functions, the former approach seems
more reasonable. Moreover, Lenz has shown that if the mean of the dataset is
identical to a constant multiple of the first eigenvector, both algorithms result in
the same eigenfunctions [95]2.

2If this is not the case, nothing can be said about the relationship between the two bases.
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Figure 3.2: An example of illumination dataset.
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Figure 3.3: The first basis vector for the illumination.

Covariance-based PCA [96] is often formulated as the problem of finding the
orthogonal transformation which projects the dataset onto a reference system
where the coordinates are associated to directions of decreasing variance (the
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first coordinate is along the direction of maximum variance). The first principal
component is the unitary vector which satisfies the maximization problem:

b1 = arg max
b

var(X̃b), s.t. bTb = 1,

where X ∈ Rn×m is the dataset matrix, in which each row represents an observa-
tion and each column a variable, and the apex ·̃ indicates that each column has
been centered around its mean. It can be easily shown that the solution to this
problem is the eigenvector of the covariance matrix K = X̃T X̃ corresponding to
its largest eigenvalue (greatest singular value of X̃T ).

The subsequent principal components are the solutions of a problem of the
form:

bn = arg max
b

var(X̃b), s.t. bTb = 1, bTbi = 0, i = 1, . . . , n− 1.

If we substitute the covariance matrix with the correlation matrix, we can
regard the first principal component as the unitary vector transformation which
maximizes the squared norm of the dataset, i.e.

b′1 = arg max
b
||Xb||2, s.t. bTb = 1.

As ||Xb||2 = bTXTXb = bTCb, with C auto-correlation matrix, the problem
has a structure identical to the previous one, and b′1 is the eigenvector relative
to the greatest singular value of XT . As before, subsequent vectors can be found
as

b′n = arg max
b
||Xb||2, s.t. bTb = 1, bTb′i = 0, i = 1, . . . , n− 1.

Fig. 3.2 shows the illumination spectra of a portion of white paper acquired
with our imaging spectrograph under controlled illumination. It is quite evident
that all the spectra are more or less proportional to each other. This is confirmed
by PCA. Given the set of singular values of the dataset matrix (σ2

` )
L
`=1, where L

is the original number of variables (in this case, one for each of the 112 sampled
wavelengths), it is possible to evaluate the relative mean squared approximation
error as:

ε =

∑L
`=2 σ

2
`∑L

`=1 σ
2
`

. (3.26)

In this case, the error is 0.01%. This means that assumption 7 of Section 3.3 is
a very close approximation of the real illumination behavior.

As for the relation between the correlation-based and covariance-based ap-
proaches, we have computed the mean vector m of our dataset and calculated its
correlation coefficient with the first eigenvector of the correlation matrix as

ρ =
< b,m >

||b||||m||
, (3.27)

where b is the basis vector. We have found ρ = 1, which means that the two
vectors are exactly proportional to each other. The proportionality factor can be
found as [97]:

κ =

∑L
l=1 blml∑L
l=1 b

2
l

.
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We have found κ = 1.6617 · 106. The comparison between m and κb is shown
in Fig. 3.4. We can conclude that the mean vector and the first eigenvector are
indeed related by a constant multiplicative factor, and therefore that in this case
the correlation- and covariance-based approaches are equivalent.
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Figure 3.4: Proportionality between mean and first eigenvector of the illumina-
tion dataset.
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Chapter 4

Illumination-reflectance
separation on real data

We have tested our illumination-reflectance separation algorithm on four sets of
data. The first represents a portion of a fresco of the Castello del Buonconsiglio
in Trento (Italy). The other three have been obtained from three paintings by
two contemporary artists from Padova. The paintings present a wide range of
pictorial techniques and color dynamics. The acquisitions have been performed
according to the procedure described in Chapter 2, using as the reference white
a white panel with measured reflectance of 95%.

4.1 Case studies

4.1.1 “The dove”

The first presented case study is a portion of a fresco painted by Girolamo di
Romano, known as “Romanino”, in the Castello del Buonconsiglio in Trento
(Italy). Romanino was born in 1485 in Brescia (Italy), a city in which one of
the most important north Italian schools of Renaissance painting had developed.
During his youth, he fell under the spell of Venetian painting, especially that
of Giorgione and Titian, and of Milanese painting. As he matured, however,
he developed a very personal style, drawing inspiration especially from the very
dramatic pictorial style of German art, as demonstrated in the magnificent cycle
of paintings for Cremona cathedral (1519). Romanino was a versatile artist; he
painted on panels and on canvas, but he favoured the technique of fresco, the
means of expression which he found most congenial. In addition, Vasari counted
him among the most capable draughtsmen of his time. In 1531 he offered to
decorate the Castello del Buonconsiglio for the Prince Bishop of Trento, Bernard
Cles, and completed a large cycle of paintings, with secular themes, in the castle.

The acquired scene is a portion of a fresco representing a rest after the hunt,
with a servant (on the right) leaning towards his master, holding a dove on his
arm. We will call this acquired portion “The dove”. The fresco is situated
in a vault of the “Volto sotto la Loggia”, one of the rooms of Magno Palazzo,
and its dimensions are approximately 2 m×2 m. A picture of the acquisition
setup can be seen in Fig. 4.1. As mentioned in Chapter 1, the acquisition of
the white signal is particularly difficult when acquiring a vault. Besides, we
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Figure 4.1: Acquisition setup in the Castello del Buonconsiglio, Trento (Italy).

did not possess a sufficiently large white panel to cover the whole scanned area.
We therefore acquired the white signal in two different steps, placing the white
panel in different, but partially overlapping, positions. After calculating the
k(p) coefficients corresponding to both white areas, the final reference white was
obtained by fitting a plane to the obtained surfaces, and interpolating it to the
whole image plane. The estimated k coefficients for the two white panel positions
are shown in Fig. 4.2. It is clearly unrealistic to assume that these are the actual
illumination coefficients on the left part of the vault, which lies on on a different,
non-planar surface. However, as no paintings were present in that region, we gave
up the acquisition of the actual white signal for the presented study, and used one
single interpolated surface for the illumination coefficients. As the interpolated
white signal satisfies the physical constraints of eq.(3.15) on all its support, the
corresponding reflectance values are feasible, if not correct.

The (R,G,B) reconstruction of the acquired fresco can be seen in Fig. 4.3. The
coefficients obtained by projecting the acquired spectral reflectance functions onto
the space spanned by Parkkinen’s eight basis functions are shown in Fig. 4.4. The
least-square projection error is 2.7%.

4.1.2 “Tulips”

“Tulips” (oil on wood) is a painting by Matteo Massagrande. Matteo Mas-
sagrande (Padova, Italy, 1959) is a contemporary Italian painter and engraver.
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Figure 4.2: (a) k coefficient corresponding to the white panel in position 1; (b) k
coefficient corresponding to the white panel in position 2; (c) interpolated planar
surface for the coefficients k(p).

His interests lie in the study of ancient pictorial techniques, of engraving and in
the art of restoration. He frequently travels throughout as well as out of Europe,
and his journeys are often occasions to develop pictorial cycles and great com-
positions. His first exhibition dates back to 1973. Since then, he has exhibited
his artworks in several collective and personal exhibitions, and has been awarded
several prizes. He currently lives in Padova, and works between his study in
Padova and that in Haiós (Hungary) [98].

The (R,G,B) rendition of the painting, computed from the acquired spectral
reflectance, is represented in Fig. 4.5.

The coefficients obtained by projecting the illumination data into the space
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Figure 4.3: Acquired portion of “The Hunt”, painted by Romanino in the Castello
del Buonconsiglio in Trento (Italy).

spanned by the basis vector I0(λ) defined in Section 3.7 are shown in Fig. 4.7(a).
The mean relative error of the fit, defined as

e =
1

|P|
∑
p∈P

||k(p)I0(λ)− I(p, λ)||
||I(p, λ)||

, (4.1)

is 1.03%. Fig. 4.6(b) shows the best plane fitted to the true illumination coef-
ficients in the least-square sense. The mean relative error with respect to the
fitted surface I(p, λ), defined as in eq.(4.1), is 2.23%. The approximation of the
illumination intensity as a planar surface is therefore very good. This is due
to the choice of the acquisition setup, with the multispectral camera normal to
the surface and the illumination source at approximately 45◦ with respect to the
painting surface normal, so as to minimize the reflections [44].

The coefficients of the reflectance relative to Parkkinen’s basis functions are
shown in Fig. 4.7. The relative projection error is 2.82%.

4.1.3 “Peach”

We have acquired another painting by Matteo Massagrande, “Peach” (oil on
wood). The (R,G,B) reconstruction of the painting can be seen in Fig. 4.8.
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Figure 4.4: “The Dove”: reflectance coefficients for Parkkinen’s basis.

This painting was acquired using the same illumination setup as for “Tulips”.
Therefore, for the analysis of the illumination characteristics we refer to Subsec-
tion 4.1.2. The fitted reflectance coefficients can be seen in Fig. 4.9. The mean
fit error is 2.89%.

4.1.4 “Bull”

The last acquired painting was “Bull” (oil on canvas) by Vittorio Buzzanca,
another Italian contemporary painter, which can be seen in Fig. 4.10. The real
illumination coefficients and the best fitted plane can be seen in Fig. 4.11. The
mean fit error is 2.17%, so we can say that also in this case the planar assumption
works quite well.

The fitted reflectance coefficients for Parkkinen’s basis functions can be seen
in Fig. 4.12. The relative mean fit error was found to be 2.96%.
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Figure 4.5: “Tulips”, by Matteo Massagrande (oil on wood).
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Figure 4.6: “Tulips”: real coefficient for the illumination (a) and best fitted plane
(b).
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Figure 4.7: “Tulips”: reflectance coefficients for Parkkinen’s basis.

Figure 4.8: “Peach”, by Matteo Massagrande (oil on wood).
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Figure 4.9: “Peach”: reflectance coefficients for Parkkinen’s basis.

Figure 4.10: “Bull”, by Vittorio Buzzanca (oil con canvas).
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Figure 4.11: “Bull”: real coefficient for the illumination (a) and best fitted plane
(b).
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Figure 4.12: “Bull”: reflectance coefficients for Parkkinen’s basis.
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Figure 4.13: The function L(p), maximum lower bound for the illumination, for
“The dove”.
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Figure 4.14: “The dove”: variation of the mean error on the illumination ±
its standard deviation with the number of iterations of the modified RANSAC
algorithm 3.
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Figure 4.15: “The dove”: variation of the maximum error ± its standard devia-
tion on the illumination with the number of iterations of the modified RANSAC
algorithm 3.
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Figure 4.16: “The dove”: computational time for illumination estimation.

4.2 Illumination estimation results

4.2.1 “The dove”

As discussed in Section 3.5, we are going to estimate the illumination intensity
from the function L(p), given by

L(p) = k(p)χ(p) = k(p) max
λ

R(p, λ).
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Figure 4.17: “The dove”: number of valid solutions found in the modified
RANSAC algorithm 3.
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Figure 4.18: “The dove”: estimated illumination.

The image L(p) for “The dove” is represented in Fig. 4.13.

To estimate the illumination, we have followed the procedure described in
Algorithm 3. Two steps of the algorithm need further discussion, namely the
chosen probability distribution for χ(p) and the threshold tθ. The choice for tθ
as defined in 3.24 has proved to be too stringent, meaning that in many cases the
algorithm generates no valid solutions. We have therefore relaxed the definition
of tθ, fixing it to

tθ = ∆ξ = 400.
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As for the generation of χ̂(p) (the maximum value of spectral reflectance
at each point), we have exploited some observations regarding the specific color
palette of this fresco. As can be seen from Fig. 4.3, the color dynamic range of the
fresco is quite low. Pastel shades are predominant. No bright spots are present.
The predominant color is beige. Supposing χ̂(p) to assume all the values from
0.05 to 0.95, let alone with equal probability, seems therefore highly unrealistic.
We have chosen to model χ̂(p) as a Gaussian random variable with mean 0.3 and
standard deviation 0.1. We have preferred this solution to that of assuming a
uniform distribution for χ̂(p) because it would have been very difficult to choose
a priori an appropriate support for such a random variable. A Gaussian distri-
bution is not limited to any predefined interval, so that no candidate solution is
ruled out. It is worth pointing out that also unfeasible values for χ̂(p) can possi-
bly be generated (for example, values falling outside the [0,1] interval). However,
the corresponding candidate illumination functions are simply discarded as non
valid solutions by the algorithm. Choosing this procedure rather than trying to
generate only valid solutions, we have privileged computational efficiency (the
generation of χ̂(p) is very fast, and additional computations are needed only if a
valid solution is generated), at the expense of algorithmic efficiency (the rate of
valid solutions is low).

We have subsampled L(p) by a factor of 5 along both dimensions. At each
algorithm iteration, we have selected 30 points at random locations, associat-
ing them with 30 samples from the chosen Gaussian distribution χ̂(p). After
calculating the estimated illumination coefficient as

k̂(p) =
Ls(p)

χ̂(p)
, p ∈ I,

where Ls(p) is the subsampled version of L(p) and I is the set of randomly
selected points, we have computed the plane parameters θ̂ as

θ̂ = arg min
θ

∑
p∈I

||k̂(p)− θT p̃||2,

where ·̃ indicates homogeneous notation.
The consensus set has then been computed as

C =
⋃

rk∈QR

{p ∈ P : |L(p)− rkθT p̃| < tθ}, (4.2)

with QR = {0.15, 0.25, . . . , 0.65}. Higher values of reflectance have not been
considered in this case.

To evaluate the repeatability of our algorithm and its robustness with respect
to the number of iterations used, we have repeated the estimation for five times
using 1000,5000,10000 and 50000 iterations. We have defined the error as:

eill(p) =
|k̂(p)− k(p)|

k(p)
, (4.3)

for each p ∈ P.
Fig. 4.14 shows the average mean error, defined as

AEit
ill ,

1

5

5∑
rep=1

mit,rep
eill

, it ∈ {1000, 5000, 10000, 50000}, (4.4)
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with

mit,rep
eill

=
1

|P|
∑
p∈P

eit,repill (p),

and the relative standard deviation, defined as

AESTDit
ill =

√√√√1

4

5∑
rep=1

(mit,rep
eill − AEit

ill)
2. (4.5)

The global mean error, averaged over all the iterations, is 14.74 ± 2.87%.
We have also considered the maximum error, i.e. the infinity norm of the error,

expressed as:
Meill

= max
p∈P

eill(p). (4.6)

The average maximum error (AME) and its standard deviation (AMESTD), de-
fined similarly to eqs.(4.4) and (4.5), are plotted in Fig. 4.15. The global maxi-
mum error is 30.56 ± 4.04%. The maximum error standard deviation is approx-
imately twice as large as that of the mean error. Comparing Figs. 4.14 and 4.15,
it can be noted that both errors are quite stable with respect to the number of
algorithm iterations. However, it is interesting to point out that as the number
of iterations increases there is a slight increase in the mean illumination error,
while the infinity norm of the error slightly decreases.

Fig. 4.16 shows the computational time needed by our illumination estima-
tion algorithm. All simulations have been performed on a HP Pavillion dv4000
notebook, with a 1.83GHz Pentium M processor and 1GB RAM. Fig. 4.17 shows
the number of valid solutions generated by the algorithm. The percentage wrt
the number of iterations is decidedly low.

Fig. 4.18 shows the estimated illumination in the most representative case, i.e.
when the mean error is closest to the global mean (10000 iterations, repetition
3).
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Figure 4.19: L(p) for the painting “Tulips”.
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Figure 4.20: “Tulips”: L(p) histogram.
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4.2.2 “Tulips”

The image L(p) for the painting “Tulips” is represented in Fig. 4.19. The red
stripe on the left in the painting is the result of some measurement error, probably
due to the protective glass in front of the painting.

Looking at Fig. 4.5, it is easy to note that this painting is characterized by
a high color dynamic. White areas cover most of the painting, but also a rather
dark spot is present (top-right corner). The tulips are of a very full pink. While
looking for a suitable distribution for χ̂(p), we have moved from the observation
that not all the values of L(p) can be assumed to have been generated by any
value of χ(p) with equal probability. This issue has been raised in the literature
before, see for example [69], as concerns illumination and color gamut. Here we
have assumed that high reflectance values are more likely for high χ(p) values, and
that a low reflectance value can be expected where χ(p) is low. This assumption
is certainly not always satisfied in practice, especially for images with a low
reflectance dynamic such as “The dove”. However, it has been useful in practice
after suitable developments.

The assumption that high L(p) values are likely to be generated by high
reflectance values naturally leads to a segmentation of L(p) in an appropriate
number of regions. However, the decision on how to perform such a segmen-
tation might not be immediate. Looking at the histogram in Fig. 4.20, it is
possible to see that the distribution of L(p) is far from being uniform. Assum-
ing that the distribution of L(p) were equal to that of k(p) would be equivalent
to supposing maxλR(p, λ) constant over the image, which we certainly cannot
do. Therefore, uniform quantization does not seem the best choice. Another
option would be that of using µ-law quantization [92], a technique employed in
digital telecommunication systems to reduce the dynamic of a signal in order to
improve its signal-to-quantization noise ratio. However, we have found the re-
sults extremely sensitive to the choice of the quantization parameter µ. We have
therefore preferred a third option, that is to perform histogram equalization [99]
before segmenting L(p).

Let us indicate as Ls(p) the subsampled and equalized version of L(p). We
have segmented Ls(p) into five regions. The centers of the clusters have been
chosen as

Ci = min
p
L(p) + i

∆′

2
,

with i = 1, . . . , 5 and ∆′ = maxp L(p)−minp L(p)

5
. Ls(p) and the resulting segmenta-

tion are represented in Fig. 4.21.
At each algorithm iteration, we have randomly chosen 10 points from each

region, and generated values for χ̂(p) according to a Gaussian distribution with
standard deviation 0.1 and mean µ chosen in A = {0.1, 0.2, 0.4, 0.6, 0.75}, accord-
ing to the region index (i.e., choosing µ = 0.1 for i = 1 and µ = 0.75 for i = 5).
The choice of a Gaussian distribution is motivated by similar reasons than those
outlined in Subsection 4.2.1. As for this particular case, note that the generated
values for χ are not bounded to any pre-defined interval, but are only generated
with higher probability around their mean. Also note again that χ̂ may assume
non-valid values (for example, it might get negative). If that be the case, the
corresponding plane is simply not selected as a valid one.

The definition of the consensus set is the same as in eq.(4.2).
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Figure 4.21: “Tulips”: Ls(p) (top left) and its five segments.
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Figure 4.22: “Tulips”: variation of the mean error on the illumination ± its stan-
dard deviation with the number of iterations of the modified RANSAC algorithm
3.

The average mean and maximum error on the illumination, together with their
standard deviations, have been defined as in Subsection 4.2.1. Note that, although
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Figure 4.23: “Tulips”: variation of the maximum error ± its standard devia-
tion on the illumination with the number of iterations of the modified RANSAC
algorithm 3.

in this case the true illumination was available, we have defined the estimation
error with respect to the linear space approximation for the illumination, and
not to the measured illumination spectra. As noted by Ho et al. [67], this is
more correct, as our algorithm rests upon the finite-dimensional linear space
approximation assumption.

The illumination estimation results can be seen in Figs. 4.22 and 4.23. The
global mean error is 14.04% ± 3.08%, while the global maximum error is 35.81%
± 6.94%. It can be seen that the infinity norm of the illumination estimation error
is a little less stable than its mean. Besides, both the mean and maximum errors
are slightly higher with 50000 iterations than they are when using the 5000-10000
iterations. The maximum error standard deviation is again approximately twice
as large as the mean error standard deviation.

Fig. 4.24 shows the computational time needed by our algorithm, while Fig.
4.25 shows the number of valid solutions generated by the algorithm. The per-
centage wrt the number of iterations is again rather low.

Fig. 4.26 shows the estimated illumination in the most representative case, i.e.
when the mean error is closest to the global mean (10000 iterations, repetition
3).
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Figure 4.24: “Tulips”: computational time for illumination estimation.
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Figure 4.25: “Tulips”: number of valid solutions found in the modified RANSAC
algorithm 3.
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Figure 4.26: “Tulips”: estimated illumination.
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Figure 4.27: L(p) for the painting “Peach”.

4.2.3 “Peach”

The image L(p) for the painting “Peach” can be seen in Fig. 4.27. For this
painting the same observations made for “Tulips” hold: the color dynamic is very
high, with white highlights and dark regions. We have therefore used the modi-
fied version of the algorithm described in Subsection 4.2.2, comprising histogram
equalization followed by a segmentation of L(p) into five regions. The histogram
is represented in Fig. 4.28. It can be noted that also in this case the histogram
is markedly non-uniform. The five segmented regions can be seen in Fig. 4.29.

The illumination estimation results can be seen in Figs. 4.30 and 4.31. In
this case, 1000 iterations were too few to obtain at least two valid solutions,
therefore that datum has been omitted. The mean error on the illumination is
stable wrt the number of iterations, while the maximum error shows a peak for
5000 iterations. The global mean illumination error is 18.29 ± 3.97 %, while
the maximum error is 41.65 ± 12.57%. The maximum error on the illumination
is larger in this case than for the previous ones. The maximum error standard
deviation is in this case three times larger than the mean error standard deviation,
probably because of the small value the latter assumes for 5000 iterations.
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Figure 4.28: “Peach”: L(p) histogram.

The simulations for the painting “Peach” were carried out on different comput-
ers, therefore no data regarding the algorithm computational time are presented.
The dependence of the number of valid solutions on the number of iterations is
shown in Fig. 4.32.

The estimated illumination in the most representative case (50000 iterations,
repetition 2), defined as in Subsection 4.2.1, is shown in Fig. 4.33.
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Figure 4.29: “Peach”: Ls(p) (top left) and its five segments.
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Figure 4.30: “Peach”: variation of the mean error on the illumination ± its stan-
dard deviation with the number of iterations of the modified RANSAC algorithm
3.
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Figure 4.31: “Peach”: variation of the maximum error± its standard deviation on
the illumination with the number of iterations of the modified RANSAC algorithm
3.

1000 5000 10000 50000
0

5

10

15

20

25

iter

nu
m

be
r 

of
 v

al
id

 s
ol

ut
io

ns

Figure 4.32: “Peach”: number of valid solutions found in the modified RANSAC
algorithm 3.
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Figure 4.33: “Peach”: estimated illumination.
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Figure 4.34: L(p) for the painting “Bull”.

4.2.4 “Bull”

Fig. 4.34 shows L(p) for the painting “Bull”. Looking at Fig. 4.10, one can see
that the same considerations done for “Tulips” and “Peach” apply. Therefore, we
have deployed the procedure described in Subsection 4.2.2. The histogram of L(p)
is plotted in Fig. 4.35. Once again, the histogram is not uniform, therefore we
have performed histogram equalization before segmentation. The segmentation
output can be seen in Fig. 4.36.

The mean error on the illumination estimations is represented in Fig. 4.37.
The maximum illumination error is shown in Fig. 4.38. Apart from the value for
5000 iterations, no great variation can be detected wrt the number of iterations.
The global mean error is 11.6 ± 4.11%, while the global infinity norm of the error
is 35.23 ± 13.81. Again, the maximum error standard deviation is approximately
three times as large as that of the mean error.

The computational time needed by the algorithm is shown in Fig. 4.39, while
the number of valid solutions is represented in Fig. 4.40. Fig. 4.41 shows the es-
timated illumination in the most representative case (10000 iterations, repetition
1).
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Figure 4.35: “Bull”: L(p) histogram.

Figure 4.36: “Bull”: Ls(p) (top left) and its five segments.
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Figure 4.37: “Bull”: variation of the mean error on the illumination± its standard
deviation with the number of iterations of the modified RANSAC algorithm 3.
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Figure 4.38: “Bull”: variation of the maximum error ± its standard deviation on
the illumination with the number of iterations of the modified RANSAC algorithm
3.
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Figure 4.39: “Bull”: computational time for illumination estimation.
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Figure 4.40: “Bull”: number of valid solutions found in the modified RANSAC
algorithm 3.
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Figure 4.41: “Bull”: estimated illumination.
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Figure 4.42: “The dove”: variation of the mean error on the reflectance with the
number of iterations of the modified RANSAC algorithm 3.
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Figure 4.43: “The dove”: variation of the maximum error on the reflectance with
the number of iterations of the modified RANSAC algorithm 3.

4.3 Reflectance estimation results

4.3.1 “The dove”

The results for reflectance estimation relative to the experimental trial described
in Subsection 4.2.1 are shown in Figs. 4.42 and 4.43. We recall that, once the
illumination has been estimated, the coefficients of the reflectance are simply
found by dividing the coefficients ηi(p) by k(p), as described in Section 3.6. We
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Figure 4.44: “The dove”: true (top) and estimated (bottom) reflectance coeffi-
cients 1,2,3.
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Figure 4.45: “The dove”: true (top) and estimated (bottom) reflectance coeffi-
cients 4,5,6.

have defined the reflectance estimation error as:

eref (p) =
||
∑M

i=1 ci(p)ri(λ)−
∑M

i=1 ĉi(p)ri(λ)||
||
∑M

i=1 ci(p)ri(λ)||
. (4.7)

The average mean reflectance estimation error has been defined as

AEit
ref ,

1

5

∑
rep

mit,rep
eref

, it ∈ {1000, 5000, 10000, 50000}, (4.8)

with

mit,rep
eref

=
1

|P|
∑
p∈P

eit,repref (p).
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Figure 4.46: “The dove”: true (top) and estimated (bottom) reflectance coeffi-
cients 7,8.

The average error standard deviation has been found as

AESTDref =

√
1

4

∑
rep

(mit,rep
eref − AEit

ref )
2. (4.9)

As for the illumination, we have also considered the infinity norm of the re-
flectance estimation error, defined by

Meref
= max

p∈P
eref (p). (4.10)

Comparing Figs. 4.42 and 4.43 with Figs. 4.14 and 4.15, one can see that
corresponding errors exhibit the same behavior, but that such behavior is am-
plified for the reflectance error. It is worth pointing out that the propagation of
the relative error on k(p) to that on the reflectance functions cannot be easily
modeled. Looking at eq.(3.25), it is easy to see that

dci(p)

ci(p)
= −dk(p)

k(p)
. (4.11)

In other words, the relative error on each reflectance coefficient ci(p) is equal (in
absolute value) to that on the illumination. However, looking at eq.(4.7), one
gets that

eref (p) =
||
∑8

i=1 dci(p)ri(λ)||
||
∑8

i=1 ci(p)ri(λ)||
. (4.12)

The relative error on the reflectance thus involves the linear combination of the
coefficients and the coefficient errors multiplied by the reflectance basis functions.
The resulting amplification factor is therefore highly variable, and not a priori
computable.

The global mean error on reflectance estimation is 19.33 ± 5.67%. The overall
maximum error is 44.59 ± 10.55%. Also for reflectance, the standard deviation
of the infinity norm of the error is twice as large as that on the mean error. The
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(a)

(b)

Figure 4.47: “The dove”: (R,G,B) representation from true (a) and estimated
(b) reflectance data.

comparison between the true and estimated reflectance coefficients in the most
representative case (it = 1000, repetition 3) is represented in Figs. 4.44,4.45 and
4.46. Fig. 4.47 shows the perceptive comparison between the true reconstructed
(R,G,B) image and that obtained from the estimated reflectance functions, i.e.

R̂(p, λ) =
8∑
i=1

ĉi(p)ri(λ). (4.13)
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Figure 4.48: “Tulips”: variation of the mean error on the reflectance with the
number of iterations of the modified RANSAC algorithm 3.
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Figure 4.49: “Tulips”: variation of the maximum error on the reflectance with
the number of iterations of the modified RANSAC algorithm 3.

4.3.2 “Tulips”

The results for reflectance estimation relative to the experimental trial described
in Subsection 4.2.2 are shown in Figs. 4.48 and 4.49. We have defined the re-
flectance estimation error as in Subsection 4.3.1.

Note that in this case no evident resemblance between the illumination and
reflectance errors is detectable. The mean error on reflectance is almost constant,
while the infinity norm of the error presents a peak for 5000 iterations. The
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Figure 4.50: “Tulips”: true (top) and estimated (bottom) reflectance coefficients
1,2,3.

global mean error is 15.27% ± 4.91%, while the global maximum error is 41.54%
± 13.9%. The comparison between the true and estimated reflectance coefficients
in the most representative case (it = 5000, repetition 2) is represented in Figs.
4.50,4.51 and 4.52. Fig. 4.53 shows the perceptive comparison between real and
estimated (R,G,B) renditions of the painting.
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Figure 4.51: “Tulips”: true (top) and estimated (bottom) reflectance coefficients
4,5,6.
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Figure 4.52: “Tulips”: true (top) and estimated (bottom) reflectance coefficients
7,8.
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(a)

(b)

Figure 4.53: “Tulips”: (R,G,B) representation from true (a) and estimated (b)
reflectance data.
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Figure 4.54: “Peach”: variation of the mean error on the reflectance with the
number of iterations of the modified RANSAC algorithm 3.
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Figure 4.55: “Peach”: variation of the maximum error on the reflectance with
the number of iterations of the modified RANSAC algorithm 3.

4.3.3 “Peach”

The reflectance estimation results relative to the experiment described in Sub-
section 4.2.3 are shown in Figs. 4.30 and 4.31. In this case, the behavior of the
reflectance errors is similar to that of the errors on the illumination. The global
mean error is 21.21 ± 2.93%. As for the illumination, the global maximum error
on reflectance is quite high: 53.35 ± 7.92%. The estimated coefficients in the
most representative case (it = 10000, repetition 1) can be seen in Figs. 4.56-
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Figure 4.56: “Peach”: true (top) and estimated (bottom) reflectance coefficients
1,2,3.

4.58. Fig. 4.59 shows the perceptive comparison between the true and estimated
reconstructed images.
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Figure 4.57: “Peach”: true (top) and estimated (bottom) reflectance coefficients
4,5,6.
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Figure 4.58: “Peach”: true (top) and estimated (bottom) reflectance coefficients
7,8.
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(a)

(b)

Figure 4.59: “Peach”: (R,G,B) representation from true (a) and estimated (b)
reflectance data.
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Figure 4.60: “Bull”: variation of the mean error on the reflectance with the
number of iterations of the modified RANSAC algorithm 3.

4.3.4 “Bull”

The mean and maximum errors on reflectance are shown in Figs. 4.60 and 4.61.
Also in this case, the reflectance error behavior is similar to that of the illumina-
tion error. The global mean error is 11.63 ± 2.78%, while the global maximum
error is 36.23 ± 7.77%. Figs. 4.62, 4.63, 4.64 show the estimated coefficients in
the most representative experiment (it = 1000, repetition 1). The corresponding
(R,G,B) rendition of the estimated image is compared in Fig. 4.65 with the true
reconstructed image.
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Figure 4.61: “Bull”: variation of the maximum error on the reflectance with the
number of iterations of the modified RANSAC algorithm 3.
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Figure 4.62: “Bull”: true (top) and estimated (bottom) reflectance coefficients
1,2,3.
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Figure 4.63: “Bull”: true (top) and estimated (bottom) reflectance coefficients
4,5,6.

c
7

 

 

−1

−0.5

0

0.5

c
8

 

 

−0.2

0

0.2

 

 

−1

−0.5

0

0.5

 

 

−0.2

0

0.2

Figure 4.64: “Bull”: true (top) and estimated (bottom) reflectance coefficients
7,8.
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(a)
(b)

Figure 4.65: “Bull”: (R,G,B) representation from true (a) and estimated (b)
reflectance data.
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AEill(%) AESTDill(%) Meill
(%) STDMeill

(%)

The dove 14.74 2.87 30.56 4.04
Tulips 14.04 3.08 35.81 6.94
Peach 18.29 3.97 41.65 12.57
Bull 11.6 4.11 35.23 13.81

Mean 14.67 3.51 35.81 9.34

Table 4.1: Summary of results on illumination estimation.

AEref (%) AESTDref (%) Meref
(%) STDMeref

(%)

The dove 19.33 5.67 44.59 10.55
Tulips 15.27 4.91 41.54 13.9
Peach 21.21 2.93 53.35 7.92
Bull 11.63 2.78 36.23 7.77

Mean 16.86 4.07 43.93 10.04

Table 4.2: Summary of results on reflectance estimation.

4.4 Conclusions

We have presented a statistical algorithm to separate the contributions of spec-
tral reflectance and illumination from a multispectral color signal. The algorithm
rests upon the finite linear space hypothesis for both reflectance and illumination,
i.e. assumes that both signals can be expressed as linear combinations of a finite
number of wavelength-dependent basis functions through spatially-dependent co-
efficients. Physical considerations related to the specific illumination setup allow
to reduce the number of illumination basis functions to one. The illumination is
therefore separable into the product of a spatially varying coefficient k(p) and
a known spectrally dependent basis function. Solving this formulation of the
problem requires the estimation of the scale factor (intensity) of the illumination,
a parameter which is left unestimated in the illumination-reflectance separation
algorithms present in the literature. Estimating this scale factor requires solving
an ill-conditioned problem, as the illumination and reflectance coefficients are
multiplied into the color signal.

The algorithm consists of two steps. The first is that of illumination estima-
tion. Based on the physical constraints that the illumination is subject to, we have
derived a relation linking the maximum (over wavelength) of the color signal with
the product of the illumination coefficient and the maximum (over wavelength)
of the spectral reflectance, at each spatial location. The illumination estimation
method is based on the observation that the illumination is a slowly-varying func-
tion of spatial coordinates, in opposition to reflectance. Therefore, the algorithm
fits a smooth surface (a plane, in this implementation) to the measured signal
L(p) through a modification of the RANSAC algorithm. In this context, the illu-
mination coefficient k(p) is regarded as the useful signal to be estimated, whereas
the maximum reflectance at p is seen as a multiplicative random noise, with val-
ues ranging in the [0,1] interval, which corrupts k(p), yielding the observed L(p).
The model of the underlying statistics for the multiplicative noise is part of the
solution to the problem, and is of crucial importance. The random noise has been
assumed to have independent, identically distributed samples. This hypothesis
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does not necessarily hold, as reflectance values are highly correlated in space, but
it allows for great generality and avoids the need of making further assumptions
on the sample correlation. The RANSAC algorithm has been modified according
to this formulation, changing the definitions of the thresholds and of the consen-
sus set. All candidate illuminations are checked for consistency with the physical
constraints, so that only feasible solutions are considered.

Once the illumination has been estimated, the reflectance coefficients are de-
rived from the linear coefficients ηi(p), found as the solution of a linear system.
The reflectance coefficients are simply computed as the ratio between ηi(p) and
k(p).

The presented algorithm proposes a solution to an otherwise ill-posed prob-
lem, formulating it as a parameter estimation problem. All the assumptions
made for the illumination are physically based, and have been previously sug-
gested in the literature. The assumption about the illumination coefficients lying
on a plane is not crucial, and can be easily generalized to other smooth sur-
faces (i.e. quadrics). The estimated reflectance and illumination functions satisfy
their physical constraints, without the need to resort to constrained minimiza-
tion techniques. A further development should certainly pertain the estimation
of the modified RANSAC algorithm parameters (specifically, the values assumed
by the multiplicative random noise) directly from the multispectral image. All
the assumptions made in the presented case studies are reasonable and do not
rest on the knowledge of the true reflectance functions, but they are nonetheless
highly subjective. As the algorithm performance has proved to be quite sensitive
to the choice of the parameters, automating their selection would certainly lead
to more repeatable results.

The algorithm has been tested on four case studies, representing artworks of
different pictorial techniques, color characteristics and dimensions. Tables 4.1
and 4.2 summarize the results. The mean relative error on both illumination
and reflectance is lower than 20%, and is only 2% higher for the latter. On the
contrary, the infinity norm of the reflectance error is 10% higher than that on the
illumination, reaching almost 44%. This suggests that the infinity norm of the
error is more sensitive to the effects of error propagation, and therefore that it
represents the most significant performance evaluation parameter to consider in
further research.
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Chapter 5

Multispectral camera calibration
for texturing uncalibrated 3D
data

This chapter presents a method for registering textures acquired with the multi-
spectral scanner described in Chapter 1 onto 3D data acquired by other systems
than the Shape&Color laser scanner. What makes the problem worth addressing
is that due to its structure (a linear camera mounted on a rotating stage), the
multispectral camera cannot be approximated with the pinhole model. Indeed,
the image plane of the traditional pinhole camera is transformed into a cylinder.
Moreover, the camera cannot even be classified as a central panoramic camera,
as the center of rotation does not coincide with the optical center. A camera
model which can be applied to our multispectral camera is the general cylindrical
panoramic camera, which has been extensively considered in the literature. In
this chapter, we will review this model with reference to our multispectral cam-
era, and consider its application to texture mapping of multispectral images onto
general, uncalibrated 3D data.

5.1 Multispectral camera model

Fig. 5.1, replicated here from Chapter 1 for the sake of readability, represents the
Shape&Color scanner architecture. Neglecting the spectral dimension, for exam-
ple considering one wavelength at a time, or the (R,G,B) rendition of an acquired
multispectral image, our multispectral camera behaves as a line-camera rotating
by means of a rotating stage. The rotating stage center does not coincide with the
optical center of the camera lens. Moreover, we cannot assume the optical axis
of the camera to be aligned with any radial direction of the stage. These features
lead to the classification of our multispectral camera as a cylindrical panoramic
camera. We will thus briefly review the characteristics of such model and describe
its parameters.

For a thorough review and classification of general cylindrical panorama sys-
tems the reader is referred to [100]. The structure of the camera model in the
(x, z) plane is represented in Fig. 5.2. The axes of the camera model are indicated
with the subscript O. The actual camera is a pinhole line-camera moving on a
rotation platform centered at O, with radius ρ. Therefore, our camera model has
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Figure 5.1: Schematic (a) and picture (b) of the instrument.

Figure 5.2: Model of the Multispectral camera in the (x, z) plane.

multiple projection centers and a cylindrical image plane. The multiple camera
optical centers Ci lie on a circle with radius ρ, representing their distance from

the rotating stage center. The angle between the z axis and the vector
−→
OC has

been denoted by α. With reference to our multispectral camera, α is a multiple
of the chosen angular step of the rotating stage. As previously mentioned, we
cannot assume the slit camera axis to be aligned with the radial direction of the
rotating platform, so a parameter ω must be introduced to represent the constant
rotation angle between this axis and the radial direction in the (x, z) plane.

In the following, we will often refer to the central camera reference system
and the multispectral line-camera reference system. The former, whose axes are
denoted with the subscript O, is defined as in Fig. 5.2. The latter is centered at
C, with the y axes parallel to YO, and the z axis aligned with the camera axis
(see Fig. 5.3). The coordinates expressed in this reference system will be denoted
by the subscript C . Image formation follows the traditional pinhole model along
the YC axis. The image formation model in the central camera coordinate system
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Figure 5.3: Central and camera-centered reference systems.

is more complicated for both the y and x coordinates, and will be discussed in
Section 5.3.

5.2 Related work

The camera model described in Section 5.1 has been extensively considered in
the literature [27,28,100–103]. In the following, we will review the most relevant
issues with respect to the presented work.

5.2.1 Intrinsic parameter calibration

For “intrinsic parameters”, we mean the effective focal length of the camera f , its
principal row v0, the off-axis radius ρ and the tilt ω. In [100], the authors correctly
point out that ρ and ω are extrinsic parameters wrt the line-camera. However,
as we will consider as a camera the whole system (rotating stage + line-camera),
we will regard ρ and ω as intrinsic parameters of the central camera. The focal
length f and the principal point v0 can be calibrated independently using one
of the classical calibration algorithms for pinhole cameras, such as [104–106]. In
[100], the authors propose an alternative method to estimate the two parameters.
Their algorithm uses only one image row at a time, and estimates the intrinsic
parameters with a least-square approach from at least five correspondences.

As for ρ and ω, the authors extensively discuss three different possible cali-
bration methods [100–102]: a point-based approach, a correspondence-based ap-
proach, and a line-based approach. The first approach is particularly relevant for
our work, as it involves defining the projection model for the cylindrical camera.
The method consists in estimating ρ and ω through a classical computer vision
technique, that is, minimizing the least-square norm of the reprojection error 1.
Considering the projections of reference 3D points implies including the 6 un-
known rototranslation parameters (3 for the rotation and 3 for the translation)

1The reprojection error is defined as the distance between the actual 2D correspondence
points and the projection of the 3D correspondence points onto the image plane.
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between world-centered and camera-centered reference systems into the objective
function expression. The total number of unknown parameters, considering also
a scale factor, is therefore nine2. The authors observe that the highly non-linear
nature of the projection operator (see Section 5.3) makes the objective function
rather complicated, and the minimization strongly dependent on the chosen initial
parameters. However, they do not further investigate the minimization procedure.
Their observations can be extended to the case of texture mapping. Although
the intrinsic parameters ρ and ω are in that case considered pre-calibrated, the
rototranslation parameters are included in non-linear functions through the pro-
jection operator. Without any prior knowledge of the extrinsic parameters, the
minimization of the reprojection error is therefore a very difficult task. The main
contribution of this chapter consists in indicating a way to compute a reliable
initial point for the minimization procedure, so as to reduce the risk of falling
into a local minimum.

The above-described approach to the estimation of ρ and ω has been ulti-
mately discarded by the authors due to its high error sensitivity (exponential
growth with noise level). The second considered approach to the problem is that
of estimating ρ and ω from the selection of corresponding points in two panora-
mas. This method has the advantage of avoiding the necessity to include the
rototranslation parameters into the minimization. Moreover, the objective func-
tion is linear in the (four) parameters, so that no initial value is needed. The
drawbacks are that only the ratio between ρ1 and ρ2 (the subscript identify the
two different panoramas) can be estimated, and that the error still grows expo-
nentially with the input noise level. It is also worth pointing out that from our
point of view, this method would not be applicable, as we do not have the chance
of modifying ρ.

The last approach to the problem of estimating ρ and ω exploits the parallel-
line based approach, which consists in exploiting geometrical features of lines
on known calibration objects (e.g. length or distances) to derive constraints for
the camera parameters. The authors explore two different kinds of constraints,
one requiring the knowledge of the lengths and distances between at least three
line pairs, the second exploiting orthogonal linear line triplets, that is triplets
of lines defining two orthogonal planes. Both approaches allow the derivation of
a single linear equation (for each line pair or line triplet, respectively) linking
the considered 3D geometric feature to the desired camera parameters. The
intrinsic paramters ρ and ω can be easily computed from the estimated equation
coefficients, and the authors prove that the error sensitivity wrt the input noise
level follows a linear relation.

5.2.2 Cylindrical panoramas for texture mapping

Although its main application area has been that of stereo reconstruction from
cylindrical panorama pairs [27, 28, 100, 103], the cylindrical camera model has
also been considered in relation to the problem of texturing 3D laser data with
cylindrical panoramas [28, 103]. The specific investigated problem has been that

2In [100–102], the authors erroneously claim that the total number of parameters is 14,
considering 12 parameters for the rototranslation. In fact, only 6 parameters are sufficient to
define a rototranslation matrix, while an additional parameter is the scale factor.
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of mapping cylindrical panorama textures onto 3D data obtained with a phase-
difference laser scanner whose functioning principle is very similar to that of a
cylindrical camera. The laser scanner acquires range data along a single line,
and a whole range image is obtained by performing a rotation of the laser in
the plane orthogonal to the scanning direction. The proposed algorithm starts
by calibrating the extrinsic parameters of the cylindrical camera and of the laser
scanner (possibly using multiple viewpoints) wrt a reference world coordinate
system using a photometric approach. This technique exploits the cylindrical
nature of the camera and laser data. Moreover, it requires the possibility to adjust
the tilt angle ω to different values. Namely, the extrinsic parameter calibration
procedure is derived for ω = 0. After the positions of the camera centers have
been computed, the authors suggest that the value of ω can be changed, and
re-calibrated using one of the approaches described in Subsection 5.2.1. Once the
range data and the camera centers have been transformed into a single reference
system, the correspondences between 3D points and 2D cylindrical panorama
coordinates can be easily recovered.

This approach cannot be extended to our case. First of all, we are considering
3D models obtained with generic 3D range scanners and already integrated. Most
of all, the extrinsic parameters estimation procedure proposed in [28,103] requires
fixing ω = 0, which we cannot do (obviously unless this was the value returned
by the intrinsic parameters estimation procedure). Therefore, we will consider a
more general formulation of the extrinsic parameter estimation problem, that is,
that of the minimization of the reprojection error.

5.3 Image formation model

5.3.1 (y, z) plane

As previously mentioned, the line-camera follows the 1D pinhole model along the
y axis. We thus have that a point P ′C = (YC , ZC)T , with coordinates expressed
in the camera-centered reference system, is projected onto the pixel coordinate y
given by:

y = f
YC
ZC

+ v0, (5.1)

where f is the effective focal length of the camera in pixel and v0 its principal
row [50] expressed in pixel. Eq.(5.2) can also be formulated in homogeneous
coordinates as: (

y
1

)
= K[0 I2×2 0]


XC

YC
ZC
1

 , (5.2)

with

K =

[
f v0

0 1

]
.

We now have to find the relationship between the two reference systems
(O,Xo, Yo, Zo) and (C,XC , YC , ZC). It is quite easy to see that the latter can
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Figure 5.4: Image formation in the (x, z) plane.

be obtained by performing a rotation of ω + α around the Yo axis, followed by a
translation of (ρ sinω, 0,−ρ cosω)T . In other words,

XC

YC
ZC
1

 =

[
Q(α) d

0 1

]
XO

YO
ZO
1

 , (5.3)

where

Q(α) =

 cos(ω + α) 0 − sin(ω + α)
0 1 0

sin(ω + α) 0 cos(ω + α)


and

d =

 ρ sinω
0

−ρ cosω

 .

Substituting this relation into eq.(5.2), we obtain that:

y =
fYO

XO sin(α + ω) + ZO cos(α + ω)− ρ cosω
+ v0. (5.4)

5.3.2 (x, z) plane

Modeling image formation in the (x, z) plane requires to determine the relation-
ship between points PO = (XO ZO)T and α. Fig. 5.4 illustrates the meaning of
the parameters considered in the following.

We can start by noticing that

α =
π

2
− β − θ. (5.5)

We can then derive β as

β = π − (π − ω)− γ = ω − γ, (5.6)
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where γ can in turn be computed applying the sine law to the triangle4(O,C,P′O):

ρ

sin γ
=

||P ′o||
sin(π − ω)

=
||P ′o||
sinω

⇒ γ = arcsin

(
ρ

||P ′o||
sinω

)
. (5.7)

Lastly, θ can be easily derived as

θ = arctan

(
Z0

X0

)
. (5.8)

Merging eqs.(5.5),(5.6),(5.7),(5.8), we finally get

α =
π

2
− ω + γ − θ =

π

2
− ω + arcsin

(
ρ

||P ′o||
sinω

)
− arctan

(
Z0

X0

)
. (5.9)

The variables α and x are related by the very simple equation (with this choice
of the reference system)

α = −x∆α, (5.10)

where ∆α is a constant and known angular step .

5.4 Estimation of the extrinsic parameters

The problem of estimating the rigid transformation between world-centered and
camera-centered systems can be formulated as follows. Given a set of correspon-
dences  Xw

Yw
Zw

↔ (
α
y

)
,

we want to recover the roto-translation aligning the world reference system to the
central camera reference system. The two coordinate systems are related by:

P̃O =

[
R t
0 1

]
P̃w, (5.11)

with

R =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 =

 rT1
rT2
rT3

 ∈ SO(3)

and

t =

 tx
ty
tz

 .

The problem of estimating the 6 parameters of the rotation and the translation
can be solved in a classical way by minimizing the reprojection error between
actual and estimated projections [50]. If we call

mi ,

(
αi
yi

)
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the actual coordinates of the correspondence points on the image, and

m̂i(p) ,

(
α̂i
ŷi

)
= P(Pw,i),

the projections of the correspondence 3D points (P(·) indicates the projection
operator), we want to estimate the parameter vector p as the solution to the
minimization problem

p̂ = arg min
p

n∑
i=1

‖mi − m̂i(p)‖2 , (5.12)

with n the number of correspondences.
The minimization of eq.(5.12) can be performed using nonlinear minimization

methods such as the Levenberg-Marquardt optimization algorithm. As observed
in [102], the nonlinear nature of the projection operator makes such objective
function quite complicated. The authors also observe that as a consequence, the
estimation accuracy highly depends on the chosen initial parameters. In this
chapter, we would like to outline a method for choosing suitable initial parame-
ters for the nonlinear minimization problem. To do so, we will assume that the
chosen set of correspondences is free from projection errors, and will estimate the
rototranslation parameters between world and camera-centered reference systems
from the available 3D-2D point pairs. This approach is similar to that followed,
for example, in [104].

In order to estimate the roto-translation parameters, we would like to exploit
as much as possible the projection equation along the y axis, since it is linear in
the parameters. Merging Eqs.(5.2),(5.3) and (5.11), we get:

(
y
1

)
= λK

[
0 1 0 0
0 0 1 0

] [
Q(α) d

0 1

] [
R t
0 1

]
P̃w, (5.13)

where λ is the unknown scale factor.
Expanding eq.(5.13), we find that(

y
1

)
= λKA = λK

[
aT1

aT2 (α)

]
P̃w, (5.14)

with

a1 =


R21

R22

R23

ty

 , (5.15)

a2(α) =


R11 sin(ω + α) +R31 cos(ω + α)
R12 sin(ω + α) +R32 cos(ω + α)
R13 sin(ω + α) +R33 cos(ω + α)

tx sin(ω + α) + tz cos(ω + α)− ρ cosω

 . (5.16)

K ∈ R2 can be inverted and the right term rewritten as:

K−1

(
y
1

)
= λ

[
P̃T
w 0

0 PT
w

]
[aT1 aT2 (α)]T =

= λM̃a(α) (5.17)
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with a ∈ R8×1, M̃ ∈ R2×8. The vector a has 6 degrees of freedom (3 for the
rotation and 3 for the translation). One more is given by the scale.

The extrinsic parameters of the camera can be recovered in two steps. The
first step consists in estimating a1 by considering the first row of the system of
equations represented by eq.(5.17), which can be rewritten as:

v1 = λPT
wa1, (5.18)

where v , K−1

(
y
1

)
and v1 is its first element. The four elements of b , λa1

can be estimated in the least-square sense by stacking at least four such equations
for different correspondence points. Once b has been estimated, we can recover
a first slot of extrinsic parameters by considering the following equalities:

b1 = λR21

b2 = λR22

b3 = λR23

b4 = λty. (5.19)

λ and r2 can be easily derived by {b1, b2, b3} using the fact that ||r2|| = 1:

λ =
√
b2

1 + b2
2 + b2

3 (5.20)

r2 =
1

λ

 b1

b2

b3

 . (5.21)

The translation component along the y axis can also be easily computed as:

ty =
b4

λ
. (5.22)

Looking at eq.(5.16), we can see that a similar approach cannot be used to
estimate a2(α), which depends upon the point itself. However, as a2(α) is a
linear combination of the estrinsic parameters, the second row of eq.(5.17) can
be rearranged as

v2 = λPT
w


M′



R11

R12

R13

R31

R32

R33

tx
tz


+


0
0
0

−ρ cos(α)





= λPT
w

M′a′2 +


0
0
0

−ρ cosω


 . (5.23)
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Figure 5.5: Snapshot of “The captain”.

where v2 is the second element of vector v and

M′ ,


cos(α+ ω) 0 0 sin(α+ ω) 0 0 0 0

0 cos(α+ ω) 0 0 sin(α+ ω) 0 0 0
0 0 cos(α+ ω) 0 0 sin(α+ ω) 0 0
0 0 0 0 0 0 cos(α+ ω)sin(α+ ω)


Developing eq.(5.23), we obtain

v2

λ
= PT

wM′a′2 − ρ cosω, (5.24)

and lastly

v′2 ,
v2

λ
+ ρ cosω = PT

wM′a′2. (5.25)

As v′2 and M′ are completely determined by the 3D-2D correspondences, the
intrinsic parameters and the so-far estimated extrinsic parameters, the vector a′2
can be estimated using at least eight correspondences, and the remaining extrinsic
parameters can be recovered. The estimated rotation matrix R will not be, in
general, belonging to SO(3). The best approximating rotation matrix has to be
extracted from it using, for example, the method cited in [104, Appendix C],
where it is proved that the matrix R′ ∈ SO(3) which is closest to R according
to Frobenius norm can be computed as R′ = UVT , where R = UΛVT is the
singular value decomposition of R.

5.5 Results

Our initial point estimation algorithm has been tested on synthetic data obtained
from the 3D model of a real object. The 3D model we have utilized is that of a
small statue called “The captain” (a snapshot can be seen in Fig. 5.5), which was
digitized using a structured light range camera. We have projected a subsam-
ple of its points according to two different cylindrical projections, whose intrinsic
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f [pixel] v0 [pixel] ρ [mm] ω [deg] ∆α [rad]
P1 3000 1024 100 0 10−4

P2 3000 1024 100 30 5 · 10−4

Table 5.1: Cylindrical projection parameters used in the experimental trial.

P1 P2

3σ [pixel] RT1 RT2 RT3 RT4 RT5 RT6 mean

0.5 0.0002 0.0006 0.0010 0.0007 0.0003 0.0009 0.0006
1 0.0002 0.0009 0.0010 0.0014 0.0008 0.0010 0.0009

1.5 0.0005 0.0003 0.0008 0.0018 0.0011 0.0002 0.0008
2 0.0014 0.0010 0.0012 0.0012 0.0021 0.0006 0.0013
3 0.0017 0.0012 0.0013 0.0008 0.0018 0.0046 0.0019
4 0.0002 0.0012 0.0015 0.0035 0.0029 0.0070 0.0027
5 0.0026 0.0011 0.0032 0.0075 0.0010 0.0012 0.0027

Table 5.2: Estimation results for the rotation matrix.

parameters are summarized in Table 5.1. We have subsequently applied three dif-
ferent rototranslations for each projection operator to the sampled 3D points, and
corrupted the 2D projection points with Gaussian noise of increasing standard
deviation. In conformity with [100], we have chosen 3σ ∈ {0.5, 1, 1.5, 2, 3, 4, 5}
pixels. We have then tried to estimate the extrinsic parameters using the pro-
cedure described in Section 5.4, that is, estimating the initial point for the min-
imization from the rototraslated 3D and noisy 2D correspondence points, and
then using the Levenberg-Marquardt minimization algorithm to find the optimal
parameters. Each time, we have used 100 correspondence points randomly chosen
in the point set. To evaluate the estimation results for the translation vector t,
we have used the Euclidean vector norm, defining the relative error on t, et, as

et =
||t− t̂||
||t||

, (5.26)

where ·̂ denotes an estimated parameter. As for the rotation, we have used the
second criteria proposed in [52], that is, we have considered the error defined as

eR = ||I3×3 −RR̂T ||, (5.27)

where I3×3 is the 3 × 3 identity matrix, and the norm ||M|| is computed as the
largest singular value of M.

The estimation results are summarized in Tables 5.2 and 5.3. The mean
estimation results are also shown in Figs. 5.6 and 5.7. In [100, 102], the authors
have claimed that the error sensitivity in the estimate of ρ and ω using the point-
based approach is exponential. Although the relative error on the translation
vector can be said to have a somewhat exponential behavior, there is a reasonable
point for defining it linear as well. The error on rotation is decidedly linear. More
extensive experimental results could clarify this point. As a general comment,
the estimation results are good even when the input noise level is high. The mean
error on translation is below 4%, while the maximum relative error is 11.3%; the
mean error on rotation is below 3·10−3, its maximum value being 7.5·10−3.

123



P1 P2

3σ [pixel] RT1 RT2 RT3 RT4 RT5 RT6 mean

0.5 0.3102 0.5635 1.3443 1.0848 0.2205 0.9123 0.7393
1 0.2658 0.7944 1.2617 1.8811 0.5085 0.7525 0.9107

1.5 0.8724 0.3671 0.9598 2.6822 0.6934 0.4856 1.0101
2 1.9488 1.0117 1.4843 0.8365 1.3775 0.6650 1.2206
3 2.5015 1.1089 1.8280 1.4579 1.1571 3.4476 1.9168
4 0.5042 1.0314 1.8733 4.5939 1.9197 6.2587 2.6968
5 4.0707 0.8808 4.0973 11.3066 0.7841 1.9986 3.8564

Table 5.3: Estimation results for the translation vector (%).
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Figure 5.6: Mean error on the rotation matrix as a function of noise level.

5.6 Conclusions

We have considered the problem of computing the extrinsic parameters of our
multispectral camera from a set of known 3D-2D correspondences, with the
aim of texturing uncalibrated 3D models with the acquired multispectral im-
ages. The Shape&Color multispectral camera can be regarded as a cylindrical
panoramic camera, a camera model which has been extensively studied in the
literature [27, 28, 100–103]. Previous work has concerned the formulation of the
projection function, the estimation of the intrinsic parameters, and the definition
of the epipolar geometry between pairs of panorama images, with the aim of per-
forming stereo panorama reconstruction. An application to texture mapping onto
laser 3D data has also been considered by other authors [28, 103], but the pro-
posed extrinsic parameter estimation procedure is very specific to the considered
application, and cannot be applied in our case.
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Figure 5.7: Mean error on the translation vector (%) as a function of noise level.

The extrinsic parameter estimation problem has been formulated in a classical
way as a reprojection error minimization problem. Due to the nonlinear nature of
the projection operator and the high dimensionality of the problem, the resulting
objective function can be expected to exhibit a very complicated behavior. As a
consequence, the minimization results are strongly dependent on the chosen ini-
tial values for the parameters, and the risk of being trapped in a local minimum
is high. We have proposed a way of computing a reliable initial point for the min-
imization procedure, in order to lower such risk. Our method follows a classical
approach, that is, that of computing the rototraslation parameters in the ideal
case, as if the 3D and 2D correspondence points were not affected by measure-
ment errors. The problem has been solved using uniquely the linear projection
operator along the y axis. The extrinsic rototranslation parameter estimation has
been performed in two steps via standard linear algebra computations. The pro-
posed approach has been tested on synthetic 3D-2D correspondences corrupted
by Gaussian random noise of increasing standard deviation. The estimation re-
sults are good. An increase of the estimation error with the input noise level has
been detected. The error behavior is nearly linear in the considered interval, but
more data are needed to extend this consideration to broader ranges.

As a last observation, we would like to point out that the proposed initial
parameter estimation method could be useful even when dealing with the prob-
lem addressed in [102], that is, estimating the intrinsic parameters of the circular
camera (ρ and ω) from 3D-2D correspondences. While no plausible initial values
for the rototranslation parameters can in general be figured out, reasonable initial
choices for the intrinsic parameters can easily be obtained by experimental mea-
surements on the central camera system. Therefore, the presented methodology
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can be leveraged to subsequently derive the corresponding initial rototranslation
estimation. Further work will concern the comparison of the circular camera
parameter estimation using the proposed extrinsic parameter estimation method
with those presented in [100–102].
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Conclusions

We have presented three problems concerning the use of a multispectral imaging
spectrograph in applications of cultural heritage. The multispectral camera is
part of an instrument developed within the project “Shape&Color” (CARIPARO,
2003-2005), coupling the spectrograph with a 3D laser scanner. Although the
issues we have addressed arose from the characteristics of this specific instrument,
they can be regarded as general problems concerning multispectral imaging, and
are therefore of broader interest.

First of all, we have assessed the performance of our spectral camera in the
measurement of spectral reflectance in the 400-830 nm interval by acquiring a set
of colored calibrated tiles under different illumination conditions. We have used a
metallic iodide lamp, the metallic iodide lamp together with a halogen lamp, the
metallic iodide and halogen lamps one after the other, and the metallic iodide and
incandescence lamp in a sequence. In the last two cases, we have obtained spec-
tral reflectances as a juxtaposition of the reflectance measured with the metallic
iodide lamp from 400 to 600 nm and that acquired with the other lamp from 600
to 830 nm. To evaluate the system performance, we have defined the error as a
function of wavelength and used a metrological procedure to infer the uncertainty
of the computed error from the statistics of the measured variables. To describe
the reflectance measurement performance, we have used the average error (AE)
and the average error standard deviation (AESTD), calculated for each illumi-
nation setup and averaged over the eight-tile set. The best results have been
obtained with the metallic iodide and incandescence lamps used in a sequence.
In this case, the absolute AE is less than 0.02 over the whole spectrum, and the
AESTD less than 0.01 between 420 and 830 nm and less than 0.08 between 400
and 420 nm. The proposed methodology can be generalized to quantify the effects
of other influence quantities (e.g. the surface material) onto the accuracy of re-
flectance measurements, and can also be extended to other types of multispectral
sensors.

We have then presented a statistical algorithm to separate the contributions
of spectral reflectance and illumination from a multispectral color signal. The al-
gorithm rests upon the finite linear space hypothesis for both reflectance and illu-
mination, i.e. assumes that both signals can be expressed as linear combinations
of a finite number of wavelength-dependent basis functions through spatially-
dependent coefficients. Physical considerations related to the specific illumina-
tion setup allow to reduce the number of illumination basis functions to one.
The illumination is therefore separable into the product of a spatially varying
coefficient k(p) and a known spectrally dependent basis function. Solving this
formulation of the problem requires the estimation of the scale factor (intensity)
of the illumination, a parameter which is left unestimated in the illumination-
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reflectance separation algorithms present in the literature. Estimating this scale
factor requires solving an ill-conditioned problem, as the illumination and re-
flectance coefficients are multiplied into the color signal.

The algorithm consists of two steps. The first is that of illumination estima-
tion. Based on the physical constraints that the illumination is subject to, we have
derived a relation linking the maximum (over wavelength) of the color signal with
the product of the illumination coefficient and the maximum (over wavelength)
of the spectral reflectance, at each spatial location. The illumination estimation
method is based on the observation that the illumination is a slowly-varying func-
tion of spatial coordinates, in opposition to reflectance. Therefore, the algorithm
fits a smooth surface (a plane, in this implementation) to the measured signal
L(p) through a modification of the RANSAC algorithm. In this context, the illu-
mination coefficient k(p) is regarded as the useful signal to be estimated, whereas
the maximum reflectance at p is seen as a multiplicative random noise, with val-
ues ranging in the [0,1] interval, which corrupts k(p), yielding the observed L(p).
The model of the underlying statistics for the multiplicative noise is part of the
solution to the problem, and is of crucial importance. The random noise has been
assumed to have independent, identically distributed samples. This hypothesis
does not necessarily hold, as reflectance values are highly correlated in space, but
it allows for great generality and avoids the need of making further assumptions
on the sample correlation. The RANSAC algorithm has been modified according
to this formulation, changing the definitions of the thresholds and of the consen-
sus set. All candidate illuminations are checked for consistency with the physical
constraints, so that only feasible solutions are considered. Once the illumination
has been estimated, the reflectance coefficients are derived from the linear coeffi-
cients ηi(p), found as the solution of a linear system. The reflectance coefficients
are simply computed as the ratio between ηi(p) and k(p).

The algorithm has been tested on four case studies, representing artworks of
different pictorial techniques, color characteristics and dimensions. The mean
relative error on both illumination and reflectance is lower than 20%, and is only
2% higher for the latter. On the contrary, the infinity norm of the reflectance
error is 10% higher than that on the illumination, reaching almost 44%. This
suggests that the infinity norm of the error is more sensitive to the effects of error
propagation, and therefore that it represents the most significant performance
evaluation parameter to consider in further research.

Lastly, we have considered the problem of computing the extrinsic parameters
of our multispectral camera from a set of known 3D-2D correspondences, with
the aim of texturing uncalibrated 3D models with the acquired multispectral im-
ages. The Shape&Color multispectral camera can be regarded as a cylindrical
panoramic camera, a camera model which has been extensively studied in the
literature. Previous work has concerned the formulation of the projection func-
tion, the estimation of the intrinsic parameters, and the definition of the epipolar
geometry between pairs of panorama images, with the aim of performing stereo
panorama reconstruction. An application to texture mapping onto laser 3D data
has also been considered by other authors, but the proposed extrinsic parameter
estimation procedure is very specific to the considered application, and cannot
be applied in our case.

The extrinsic parameter estimation problem has been formulated in a classical
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way as a reprojection error minimization problem. Due to the nonlinear nature of
the projection operator and the high dimensionality of the problem, the resulting
objective function can be expected to exhibit a very complicated behavior. As a
consequence, the minimization results are strongly dependent on the chosen ini-
tial values for the parameters, and the risk of being trapped in a local minimum
is high. We have proposed a way of computing a reliable initial point for the min-
imization procedure, in order to lower such risk. Our method follows a classical
approach, that is, that of computing the rototraslation parameters in the ideal
case, as if the 3D and 2D correspondence points were not affected by measure-
ment errors. The problem has been solved using uniquely the linear projection
operator along the y axis. The extrinsic rototranslation parameter estimation has
been performed in two steps via standard linear algebra computations. The pro-
posed approach has been tested on synthetic 3D-2D correspondences corrupted
by Gaussian random noise of increasing standard deviation. The estimation re-
sults are good. An increase of the estimation error with the input noise level has
been detected. The error behavior is nearly linear in the considered interval, but
more data are needed to extend this consideration to broader ranges.
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