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Le teorie di campo conformi (CFT) in due dimensioni rappresentano un am-
bito di fecondo interscambio tra alcuni degli argomenti più avanzati in fisica teo-
rica e in geometria algebrica. In particolare, lo studio delle funzioni di partizione
in teorie conformi appare strettamente legato all’analisi della corrispondenza tra
proprietà analitiche e proprietà algebriche delle superfici di Riemann chiuse. In
questa tesi, vengono considerati alcuni nuovi aspetti di questa corrispondenza,
in particolare quelli che emergono nelle teorie conformi associate a teorie di
stringa e superstringa. Più precisamente, i parametri algebrici che determi-
nano la curva canonica associata ad una superficie di Riemann non-iperellittica
sono esplicitamente calcolati in termini di funzioni theta di Riemann valutate
su punti generici della curva. I metodi proposti vengono inoltre applicati allo
studio del locus singolare della funzione theta, anche in relazione all’approccio
di Andreotti-Mayer al problema di Schottky, e alla restrizione della misura di
Siegel allo spazio dei moduli delle curve canoniche.





Conformal field theories (CFT) represent a framework of fruitful interplay
between some of the most advanced topics in theoretical physics and algebraic
geometry. In particular, the investigation of the CFT partition functions is
closely related to the analysis of the correspondence between analytic and al-
gebraic properties of closed Riemann surfaces. In the present thesis, some new
aspects of this correspondence, in particular the ones arising in the CFTs asso-
ciated to string and superstring theories, are considered. More precisely, the
algebraic parameters, determining the canonical curve associated to a non-
hyperelliptic Riemann surface, are explicitly computed in terms of Riemann
theta functions, evaluated at generic points of the curve. Moreover, the tech-
niques here introduced are applied to the analysis of the singular locus of the
theta function, also considered with respect to the Andreotty-Mayer approach
to the Schottky problem, and to the restriction of the Siegel’s measure to the
moduli space of canonical curves.
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INTRODUCTION

Conformal field theories [8, 19, 27] have played an important role in several
areas of theoretical physics and mathematics in the last 25 years.

The most famous application has been to string theory, since the classical
and quantum theory of excitations of a string is described by a two-dimensional
CFT on the world-sheet of the string. Conformal field theories have also been
applied in statistical physics: in two dimensions for the Ising model and in
three dimensions to describe the critical points of second or higher order phase
transitions. Moreover, four dimensional CFT are supposed to play a role in
elementary particle physics models. A result by Nahm [50] implies that six
is the maximal number of dimensions for a unitary non-trivial conformal field
theory; recently, some hints of the existence of such six-dimensional CFT’s have
been given [63].

Conformal field theories are defined as field theories which are invariant
under the group of local conformal transformations, which, roughly speaking,
are symmetries preserving the angles but not the lengths. In particular, in
two dimensions, the Lie algebra associated to the conformal group is infinite
dimensional. The generators if such algebra correspond to an infinite number of
conserved charges and this implies that such theories are, in principle, exactly
solvable.

The choice of the conformal class for the metric on a two-dimensional mani-
fold is equivalent to the definition of a complex structure on the surface. There-
fore, amplitudes in CFT naturally depend on the analytic structure of the sur-
face, i.e. on the sheaf of holomorphic functions defined on the Riemann surface.
Such analyticity properties can be made explicit by splitting the CFT vertex
operator algebra in its chiral and anti-chiral part. On the other hand, one of
the most fascinating aspects of conformal field theories is its relationship with
some of the deepest results in algebraic geometry. This is just a facet of a
more general correspondence between classes of algebraic varieties, with regular
maps and sheaves, and classes of analytic spaces, with holomorphic mappings
and sheaves, known as the GAGA principle (from Serre’s Géométrie algébrique
et géométrie analytique, [58]).

Two manifestations of GAGA principle in conformal field theories will play
a prominent role in this thesis. As shown in chapter 1, a CFT assigns to each
closed surface of genus g a partition function, which is a section of a line bundle
on the moduli space Mg of closed Riemann surfaces of genus g. In particular,
for the CFTs related to gauge fixed bosonic strings and superstrings (after
integration over odd supermoduli), each partition function defines a measure
on the corresponding moduli space. For bosonic strings, this is known as the
Polyakov measure, and it can be expressed, apart from a factor representing
the obstruction to the holomorphic factorization of the theory, as the square
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modulus of a holomorphic section of λ−13
1 ⊗ λ2. Here λn is, roughly speaking,

the line bundle whose fibre at the point C ∈ Mg is the maximal external
product of the space of holomorphic n-differentials on the Riemann surface C.
Passing from the analytic to the algebraic data associated to Riemann surfaces,
it is well-known that Mg admits a compactification (à la Deligne-Mumford)
M̄g that is the moduli space of stable curves of genus g. Mumford proved that
the line bundle λ−13

1 ⊗ λ2 on Mg admits a unique (up to normalization) non-
vanishing holomorphic section, extending to a meromorphic section on M̄g with
poles at the boundary. Belavin and Knizhnik [7] proved that such a holomorphic
section is exactly the chiral factor in the Polyakov measure. The poles at the
boundary admit a physical interpretation as the amplitudes corresponding to
the propagation of the bosonic string tachyon for Riemann surfaces degenerating
to stable curves with nodes.

Another example of this interplay between analytic and algebraic data is
provided by CFTs on Riemann surfaces with Zn-symmetry. Let us consider the
simplest case of hyperelliptic surfaces, corresponding to n = 2. Any hyperelliptic
surface of genus g ≥ 2 can be described in terms of an affine curve C in C2,
defined by the polynomial equation

w2 =
2g+2∏

i=1

(z − ai) ,

where (z, w) ∈ C2. The restriction to C of the projection (z, w) 7→ z defines a
meromorphic function z of degree 2 on the Riemann surface, which shows that
any hyperelliptic surface can be represented as a 2-fold branched covering of
the Riemann sphere. The pairwise distinct complex numbers (a1, . . . , a2g+2),
corresponding the position of the branching points on the sphere, represent
the coordinates of the universal parameter space of hyperelliptic curves; the
correspondent moduli space is the quotient of such a parameter space by the
3-parameters group of automorphisms of the sphere. In [42], a procedure has
been described to obtain a CFT partition function on a hyperelliptic Riemann
surface, from an amplitude in a “double” CFT with Z2-symmetry on the sphere.
Such an amplitude is characterized by the insertion of 2g+2 “twisted” operators
at the branching points a1, . . . , a2g+2, so that the dependence of the resulting
partition function on such algebraic parameters of the hyperelliptic curve is
explicit. Recently, such a procedure has been applied to a conjectural CFT [64,
28, 65], representing the holographic dual to a three-dimensional pure gravity
theory with negative cosmological constant, to prove that partition functions
on hyperelliptic Riemann surfaces can be consistently defined for all genera.

By computing the same partition functions in terms of the analytic data
of the theory, one obtains remarkable algebro-geometric identities. More pre-
cisely, to each surface one can attach the data of its Jacobian torus and the
corresponding theta functions (see appendix B). It is possible, in some cases, to
compute the same CFT amplitude in terms of theta functions. For a hyperellip-
tic Riemann surface, by equating the results of the computations, one obtains
the classical Thomae formula

θ[δ](0)8 =
( detA

(2πi)g

)4 ∏

k<l

(aik
− ail

)(ajk
− ajl

) .
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In this formula, δ is an even theta-characteristic associated to a splitting of the
set of complex parameters in a disjoint union {ai1 , . . . , aig+1} t {aj1 , . . . , ajg+1}
and A is a matrix of base change between bases of holomorphic abelian differ-
entials.

The procedure described above extends to the computation of partition func-
tions of n-fold coverings of the sphere. By applying the same reasoning to CFT
amplitudes on Riemann surfaces with Zn-symmetry, with n > 2, Bershadsky
and Radul [9] derived a generalization of Thomae formula, which has been suc-
cessively proved using standard algebro-geometric methods by Nakayashiki [51]
(see also [20] for further generalizations).

In this thesis, some new methods are described toward an explicit description
of this GAGA correspondence in the case of generic non-hyperelliptic Riemann
surfaces of genus higher than two. The examples reported above nicely de-
scribe the physical motivations for such an analysis. First of all, one of the
fundamental problems both in bosonic and in superstring theories is the defi-
nition of the measure on the moduli space Mg for g higher than two. By the
Belavin-Knizhnik theorem in the bosonic string case and by analogous argu-
ments for superstrings, this is strictly related to the problem of deriving an
explicit formula for the Mumford form. In second instance, generalizations of
the techniques holding for theories with Zn-symmetry would be of great interest
for general CFTs.

There are two reasons for considering the space of non-hyperelliptic Riemann
surfaces for genus g ≥ 3. Fist of all, such a space is dense in Mg, so that one
can hope to extend most of the results to the whole moduli space by continuity
arguments. This should be compared with the case of families of n-fold coverings
of the sphere, which are of positive codimension in the moduli space Mg for g
greater than three. In particular, hyperelliptic surfaces enjoy several peculiar
properties, which are not shared by general Riemann surfaces. For instance,
in the case of the conjectural CFT dual to three-dimensional gravity proposed
in [64], the existence of consistent partition functions for all non-hyperelliptic
Riemann surface would be a considerably stronger signal of the existence of
the whole CFT, than just the hyperelliptic case. Another relevant example is
provided by the Polyakov measure on the locus of genus 3 non-hyperellipitc
Riemann surfaces, whose expression in terms of Riemann period matrices and
theta constants has been derived in [6]. Such an expression does not hold in
the hyperelliptic case; in fact, it is a non-trivial problem to check that such a
formula admits a regular limit as one approaches the hyperelliptic locus.

From a more technical point of view, another advantage in considering non-
hyperelliptic Riemann surfaces is that they admit an algebraic description in
terms of canonical curves. As explained in chapter 5, a non-hyperelliptic Rie-
mann surface of genus g ≥ 3 can be embedded as a projective curve (a 1-
canonical or simply canonical curve) in PH0(KC)∗ ∼= Pg−1, where H0(KC)
is the space of holomorphic abelian differentials on the surface. A similar
construction enters in the definition of the Deligne-Mumford moduli space of
stable curves, which is based on an n-canonical embedding in PH0(Kn

C)∗ ∼=
P(2n−1)(g−1)−1 for n ≥ 3; the moduli space Mg is defined by modding the pa-
rameter space of the n-canonical curves of genus g by the group PGL((2n −
1)(g− 1),C) acting on the projective space. In the case of (1-)canonical curves,
Petri’s theorem [52] assures that the graded ideal I(C) of homogeneous poly-
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nomials in Pg−1 vanishing on the curve C is generated, with few exceptions, by
its degree-2 component I2(C), i.e. by quadrics (for trigonal curves and smooth
plane quintics, also the cubics are needed, see [3]). It follows that the parameter
space of the canonical curves can be given in terms of the coefficients of quadrics
and cubics; such coefficients play the same role of the parameters {a1, . . . , a2g+2}
for the hyperelliptic curves.

In analogy with the Thomae formula, it should be possible to express the
parameters of the quadrics defining the canonical curve in terms of the analytic
data of the Jacobian torus associated to the Riemann surface and, more pre-
cisely, in terms of its period matrices and of the Riemann theta functions. Such
a problem is one of the main subjects of the present thesis, thus it is worth
explaining it in some more detail. The pair (J,LΘ) composed by the Jacobian
torus J associated to a Riemann surface and the line bundle corresponding
to the theta divisor Θ, defines a principally polarized abelian variety (ppav).
Torelli’s theorem assures that the map

i : Mg → Ag ,

where Ag is the moduli space of g-dimensional ppav’s, is an injection. Such
an injection is induced by the period-mapping of the Torelli space Tg into the
Siegel upper half-space Hg, with Mg

∼= Tg/Sp(2g,Z) and Ag
∼= Hg/Sp(2g,Z).

The expression of a CFT amplitudes in terms of theta functions is of great
interest: for example, the factorization formulae for theta functions, in the limit
of degenerating surfaces, are well-known and this allow non-trivial consistency
checks among amplitudes for different genera. In particular, several results
have been obtained for genus 2 and 3, a recent example being the expressions
for the two-loop measure and 4-points amplitudes in type II superstring theory
[12, 13, 14, 15, 17, 18]. Note that, whereas for genus 2 and 3, the image of Mg

is dense in Ag, for genus g ≥ 4 the locus of Jacobian tori is a sublocus (called
the Jacobian locus and denoted by Jg

∼= i(Mg)) of positive codimension in Ag.
The characterization of Jg in Ag is the Schottky problem.

Such a problem has been solved by Shiota [59], who proved a conjecture
by Novikov, characterizing the elements in the Jacobian locus in terms of the
Kadomtsev-Petviashvili (KP) equation for the Riemann theta function. How-
ever, this solution is quite implicit and not so useful for CFT and string-
theoretical computations.

It is worth mentioning at least another different approach to such a problem,
due to Andreotti and Mayer [2]. In their beautiful construction, Andreotti and
Mayer proposed to characterize the Jacobian locus in Ag through the dimension
of the singular locus Θs of the theta function, i.e. the locus of points in a ppav
where the theta function and all its first derivatives vanish. More precisely,
they showed that Jg is an irreducible component of the variety N4 ⊂ Ag,
whose points satisfy dim Θs ≥ g − 4. A crucial point in the Andreotti-Mayer
construction is the proof that, if C is a trigonal curve, I2(C) is generated by
relations in the form

g∑

i,j=1

θij(e)XiXj = 0 ,

as e varies in Θs. Here, (X1 : . . . : Xg) are the projective coordinates of Pg−1

corresponding to a canonically normalized basis {ω1, . . . , ωg} of H0(KC) (see
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appendix B) and θij denotes the second derivative of the theta function. Such
a result has received many remarkable generalizations, among which at least
two deserve citation: Arbarello and Harris [4] proved that the relations above
generate I2 for general curves of genus g ≤ 6 and that, for all g, they generate
all the quadrics of rank not greater than 4; finally, Green [29] proved that
such relations generate I2 for all genera, so that, as a consequence, I2 can be
generated by quadrics of rank not greater than 4 only.

The relationship between the quadrics passing through a curve and the Jaco-
bian locus Jg

∼= Tg/Sp(2g,Z) can be understood as follows. The cotangent T ∗CTg

to the Torelli space Tg at the point representing the curve C is naturally iden-
tified, via the Kodaira-Spencer map, with the space of holomorphic quadratic
differentials, which, after canonical embedding in Pg−1, correspond to the vector
space of homogeneous polynomials of degree 2 on the projective curve. Such
a correspondence uniquely extends to an identification of the cotangent T ∗CHg

to Hg at (the Riemann period matrix of) C with the space of homogeneous
polynomials of degree 2 on Pg−1. Hence, the quadrics defining the canonical
curve C correspond to the linear relations defining T ∗CTg as a subspace of T ∗CHg

(more details are given in chapter 7). Note that, once one fixes an Sp(2g,Z)-
invariant measure on Hg, such linear relations for the cotangent spaces enter in
the restriction of such a measure to the moduli space Mg. An example, that
is relevant for string theory, is given by the Siegel measure, which, for genus
2 and 3, is proportional to the Polyakov measure times the square modulus of
a meromorphic modular form. For genus g ≥ 4 the restriction of the Siegel
measure to the moduli space, derived in [44], is described in chapter 7.

The content of this thesis is mainly based on the papers [44, 45, 46]. In the
first chapter, we introduce an axiomatic definition of conformal field theories,
following Segal’s approach [57]. The main point is the definition of the CFT par-
tition function of genus g ≥ 1 as a section of a tensor power of the determinant
line bundle on the moduli space Mg. As shown in section 1.4, for gauge-fixed
bosonic strings, this result specializes to the Belavin-Knizhnik theorem, relating
the Polyakov measure on the moduli space to the Mumford form.

In chapter 2, upon introducing a powerful notation for symmetric tensor
products of vector spaces, two combinatorial lemmas [45] are proved, which
are of interest on their own and will be repeatedly applied in the subsequent
derivations.

In chapter 3, some useful propositions due to Fay [23, 24] are presented,
relating the determinants of holomorphic n-differentials to theta functions and
prime forms. In literature, such formulae have been applied to the computation
of string-theoretical multiloop amplitudes and, in particular, partition functions
[1, 61, 62]. By combining such propositions and the lemmas of chapter 2, an
explicit expression for the Mumford form for genus 2 in terms of theta constants
is explicitly derived.

Chapters 4, 5 and 6 constitute the core of the thesis. In chapter 4, dis-
tinguished bases of holomorphic n-differentials for non-hyperelliptic Riemann
surfaces are introduced. Such a definition resembles an analogous construction
introduced by Petri [52] to derive his theorem on ideals of canonical curves. The
crucial differences rely on the normalization of such bases and in their defini-
tion in terms of determinants, which, when combined with the propositions of
chapter 3, immediately leads to a proof of Fay’s trisecant identity [44]. Such
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bases are used in chapter 5 to fix some preferred projective coordinates for the
canonical curve. This leads to an explicit expression in terms of Riemann theta
functions, evaluated at general points of the surface, for the coefficients of a
minimal set of quadrics and cubics generating the ideal of the canonical curve
C. We notice that, even if the distinguished bases play a key role in the deriva-
tion of such formulae, the coefficients can be readily expressed in terms of an
arbitrary basis of holomorphic 1-differentials, or, equivalently, of an arbitrary
set of projective coordinates on Pg−1. A crucial role in the derivation is played
by the combinatorial lemmas of chapter 2, which show that each quadric is es-
sentially equivalent to a determinantal relation among Riemann theta functions
on the curve [45]. The relationship between the quadrics derived in chapter 5
and the the quadrics related to singular points of the theta function is analyzed
in chapter 6. The main tool introduced in this chapter is the section K [46],
which encodes the data of the set of generators of the ideal of quadrics intro-
duced in the former chapter. The main results are Theorem 6.3, relating the
zeroes of such a section to points on the singular locus of the theta function and
Theorem 6.11, which describes the modular properties of K.

In chapter 7, the constructions of the former chapters are applied to derive
the volume form on the moduli space of canonical curves, induced by the Siegel
measure. Several equivalent expressions are derived. The first one follows from
the Wirtinger’s Theorem and its derivation heavily relies on the notation intro-
duced in chapter 2. The second formula is given in terms of the distinguished
bases defined in chapter 4. Such a formula is the direct consequence of the
description of the cotangent to Torelli space Tg as a subspace of the cotangent
to the Siegel upper half-space Hg. The linear equations defining such a sub-
space are in one to one correspondence with the quadrics described in chapter
5. Moreover, a remarkable relationship between the Siegel metric at the point
representing the curve C and the Bergman metric on C is shown.

Finally, in chapter 8, the distinguished bases, the set of quadrics and the
section K are explicitly constructed for a particular family of genus 4 non-
hyperelliptic curves. Notice that a generalized Thomae formula has been re-
cently derived in [20] for this family of curves. In this thesis, we give an inde-
pendent derivation of the prime forms in term of the algebraic parameters of
the curve.



1. AXIOMATIC DEFINITION OF CONFORMAL FIELD
THEORY

In this chapter, we describe the main steps towards an axiomatic definition of
conformal field theory, as proposed by Segal [57]. Segal’s approach is based on
the path integral formalism of quantum field theory; in facts, the aim of such
an approach is to rigorously axiomatize CFT by, simultaneously, keeping clear
the geometric intuition of a “sum over stories” which is typical of path inte-
gral. (Several authors, however, point out that, in order to fix all the technical
subtleties and give a rigorous and complete mathematical treatment of Segal’s
definition, some concepts, such as the one of a 2-category, are required, which
are far from being “intuitive” from a physical point of view - see for example
[34, 35, 36, 25]). This should be compared to other different approaches to CFT,
whose starting point is the algebra of operators on the Hilbert spaces of states
[8, 27].

One of the concepts we are most interested in is the definition of a genus
g partition function. We will show that, in a general CFT, this is the section
of a line bundle Det⊗p⊗Det

⊗q
, p, q ∈ C, p − q ∈ Z, on the moduli Mg space

of closed Riemann surfaces of genus g. Some remarkable consequences of this
result are the Mumford isomorphism and, when applied to the CFT’s arising in
bosonic string theory, the Belavin-Knizhnik theorem [7], relating the Polyakov
string measure to the Mumford form.

1.1 Segal’s approach: motivations and axioms

In this section, we discuss the motivations and the problems related to an ax-
iomatic definition of a two-dimensional Conformal Field Theory based on the
path integral quantization of the classical theory, and then we propose the ax-
ioms along the lines described by G. Segal in [57].

1.1.1 Field theories and cobordisms

In order to justify the fundamental Segal’s axioms, let us first consider the gen-
eral features expected from the path-integral formulation of a two-dimensional
field theory and then specialize to the case of conformal theories.

We will only focus on theories whose main objects are closed oriented 1-
manifolds X (generalizations, for example to open string theories, theories is
conceptually analogous, but requires solving some technical issue). Note that
any such X is just the disjoint union of circles S1. Such a theory describes the
dynamics of a space of fields F(X) defined on X. Hence, F(X) represents the
space of classical configurations; correspondingly, a state in the quantum theory
is given by a vector ray in the Hilbert space L2(F(X)) of wave-functions ψ(f)
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on the field space. Denote by X̄ the 1-manifold X with reversed orientation. Let
Y be a 2-dimensional surface whose boundary is splitted in the disjoint union
∂Y ∼= X̄1 t X2 of components diffeomorphic to an “outgoing” 1-manifold X2

and an “incoming” 1-manifold X1 with reversed orientation. Let us call such a
surface Y a cobordism from X1 to X2. Depending on which kind of theory we
are considering (topological, conformal, gravitational,...), one can require that
additional structures are defined on such Y ; for example, one can require Y to
be a Riemannian manifold. The precise definition for a conformal field theory
will be given in Definition 1.1.

In the classical field theory, time evolution from a configuration of fields f1

on X1 to the fields f2 on X2 can be described by a configuration of fields g on
the surface Y such that g|Xi

= fi, i = 1, 2. Such a g must satisfy the classi-
cal equations of motion, i.e. must be a stationary point for a bounded-below
real functional S[g] (the action) defined of F(Y ). In the quantum theory, one
postulates the existence of an integral operator K : L2(F(X1)) → L2(F(X2)),
which can be (formally) expressed as

(Kψ)(f2) =
∫

f1∈F(X1)

K(f2, f1)ψ(f1)[df1] ,

where [df1] is some measure on the space F(X). In this expression, K(f2, f1) is
the sum over all the cobordisms Y from X1 to X2 of the operators

KY (f2, f1) :=
∫

g∈F(Y )

e−S[g][dg] ,

where the integration is over all the fields g ∈ F(Y ) such that g|Xi
= fi, i = 1, 2.

More precisely, one should sum over a space of “classes” of such cobordisms,
where the equivalence relation defining such classes depends on the particular
kind of theory we are considering. Here, S[g] is the action and e−S[g][dg] is
assumed to be a well-defined measure on F(Y ).

For each pair of cobordisms Y1 from X1 to X2 and Y2 from X2 to X3, one
can define the composition Y2 ◦ Y1 as the cobordism from X1 to X3 given by
“gluing” together Y1 and Y2 along X3. The precise definition of the process of
“gluing” requires fixing some subtleties in the case some additional structures
(for example, a metric) are defined on the surfaces. Locality of the theory
imposes that, for any such composition Y2 ◦ Y1,

KY2◦Y1(f3, f1) =
∫

f2∈F(X2)

KY2(f3, f2)KY1(f2, f1) .

Such a construction applies in general to any theory whose basic objects are
1-dimensional closed manifolds. The specialization to certain classes of theories
can be given by specifying some additional data and requirements. Let us
describe such data in the case of a conformal field theory:

1. Simmetries of the action. The characterizing feature of a CFT is that
the action S[g] depends on the conformal class of a metric h (with some
regularity conditions) defined on the surface Y . In other words, the action
is invariant under local conformal transformations, corresponding to local
diffeomorphisms and to local Weyl transformations

h(σ) 7→ eω(σ)h(σ) ,
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where h is the metric, σ denotes some local coordinates on Y and ω is a
real regular function with suitable boundary conditions.

2. Isomorphism classes of surfaces. In correspondence with such an invari-
ance of the action, one must consider 2-dimensional manifolds Y with a
fixed conformal structure. Equivalently, Y is a Riemann surface, and the
“classes” of cobordisms, one should sum over in the path integral, are
identified with isomorphism classes of Riemann surfaces.

3. Composition of cobordisms. The “gluing” process is naturally defined
among classes of diffeomorphic smooth 2-manifolds. However, given the
conformal structures on Y1 and Y2, there are several inequivalent ways to
obtain a conformal structure on Y1 ◦ Y2.

Let us consider a simple example of the problem considered in point 3. Let Y
be a Riemann surface with the topology of a cylinder S1× [0, 1] with one ingoing
and one outgoing boundary circle. Any cylinder is conformally equivalent to an
annulus Ar ⊂ C, given by

Ar := {z ∈ C | r ≤ |z| ≤ 1} ,

for some suitable 0 < r < 1. Then, the moduli space of conformal structures on
a cylinder is parametrized by a unique real parameter r, 0 < r < 1.

Let us consider the process of gluing the ingoing and the outgoing boundary
together to obtain a 1-manifold with the topology of a torus. This amounts to
choose a diffeomorphism

f : Xout → Xin ,

from the outgoing circle Xout := {|z| = 1} to the ingoing one Xin := {|z| =
r}. Different choices of f lead to diffeomorphic 2-manifolds, so that the gluing
process is well-defined from the purely topological point of view. Furthermore,
by gluing the conformal structures, such a torus can be naturally seen as a
Riemann surface. However, it is clear that such a conformal structure depends
on the choice of f : for example, the Riemann surface given by eiαf , for any
0 < α < 2π, is not isomorphic to the one given by f . It is also clear that there
is no canonical way, for general Riemann surfaces, to choose the gluing function
f .

This forces us to provide some additional information than just a conformal
structure on Y . It turns out that it is sufficient to fix a real-analytic parametriza-
tion for the boundary ∂Y ∼= X̄in tXout, compatible with the complex structure
on Y and with the orientation of Xin and Xout. That is, for each circle S1 in
the boundary of Y , one should specify a map f from

S1 ≡ {z ∈ C | |z| = 1} ,

to ∂Y , which extends to a holomorphic map f̃ : A → Y , where

A :=

{
Ar ≡ {z ∈ C | r < |z| < 1} , if X is outgoing ,

A∞1/r := {z ∈ C | 1 < |z| < 1/r} , if X is incoming ,

for some r ∈ (0, 1). Two Riemann surfaces Y1 and Y2 with parametrized bound-
ary are isomorphic if there exists a biholomorphic function F : Y1 → Y2 compat-
ible with parametrization, i.e. such that, for each circle S1 in ∂Y1 parametrized
by f , the parametrization of F (S1) is F ◦f . This yields the following definition.
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Definition 1.1. In a 2-dimensional conformal field theory, a cobordism Y :
Xin Ã Xout between the closed 1-manifolds Xin and Xout, is an isomorphism
class of Riemann surfaces, with a real-analytic parametrization X̄intXout → ∂Y
of the boundary. On the space of cobordisms an involution and a composition
are defined:

Conjugation. For each cobordism Y : X1 Ã X2, the conjugate cobordism
Ȳ : X2 Ã X1 corresponds to the complex conjugated Riemann surface,
with the same boundary parametrization.

Composition. The composition Y ≡ Y1 ◦ Y2 (or gluing) of the cobordisms
Y1 : X1,in Ã X t X1,out and Y2 : X t X2,in Ã X2,out is the cobordism
Y : X1,in t X1,in Ã X2,out t X2,out such that there exist embeddings
φi : Yi → Y , i = 1, 2, satisfying

• φi is bi-holomorphic as a map from Yi to φi(Yi) and is compatible with
parametrizations on each component of Xi,in and Xi,out, i = 1, 2.

• φ1(Y1) ∪ φ2(Y2) = Y .

• φ−1
i (φ1(Y1) ∩ φ2(Y2)) = X.

• for each component of X, with parametrization fi with respect to
the morphism Yi, i = 1, 2, φ1 ◦ f1 = φ2 ◦ f2 as functions on S1.

Note that the composition of cobordisms depends on the 1-manifold along
which the Riemann surfaces are glued (in this sense, the notation Y1 ◦ Y2 is
imprecise). The fourth condition in the definition of Y = Y1 ◦ Y2 implies that
the function f : S1 → Y given by f := φ1 ◦ f1 = φ2 ◦ f2 extends to a holo-
morphic function f̃ : A → Y on an annulus A, with S1 ⊂ A ⊂ C. It follows
that the complex structure on Y is uniquely determined; furthermore, it is in-
dependent of the choice of the embeddings φ1, φ2. (This is true if X has only
one component; otherwise, there some subtleties related to permutations of the
components of X, which can be elegantly solved in the framework of 2-categories
[34, 35, 36, 25].) Finally, we observe that Definition 1.1 also makes sense for the
composition of two morphisms Y1 and Y2 along an empty 1-manifold X = ∅,
with Y1◦Y2 being the disjoint union Y1tY2. The space of cobordisms is naturally
endowed with a topological structure; each connected component is the set of
cobordisms with a fixed topology and orientation of the boundary components
for the corresponding surface.

Proposition 1.1. Let Cα be the space of morphisms with a given topology α.
If α has no closed components, then the tangent space at Y ∈ Cα is given by

TY Cα := Vect(∂Y )/ Vect(Y ) ,

i.e. the space of deformations of the boundary parametrization mod the subspace
of deformations that extend holomorphically to Y .

Proof. Proposition follows since, if Y has no closed components, any morphism
Y ′ sufficiently close to Y can be holomorphically embedded in Y (because Y is
a Stein manifold). Therefore, each deformation of Y corresponds to an element
Vect(∂Y ). On the other hand, Y and Y ′ are isomorphic if and only if the
deformation of the boundary extends holomorphically to the whole Y .
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Definition 1.1 also describes the category C whose objects are the cobordisms
and the morphisms are the identity, the conjugation Y → Ȳ and the gluing
Y1 t Y2 → Y1 ◦ Y2.

1.1.2 Axiomatic definition and main properties

Let us consider the axiomatization of CFT on lines proposed by Segal. Formally,
the basic object in such an axiomatization, is a functor from the category1 S
whose objects are 1-dimensional manifolds and the morphisms are the cobor-
disms, to a category of vector spaces with linear operators as morphisms. More
precisely, we will consider topological vector spaces with a non-degenerate bi-
linear form and trace-class operators on such spaces, defined as follows.

Definition 1.2. Let E and F be complete topological spaces with a non-
degenerate bilinear form ( · , · ). An operator A : E → F is trace-class if it
can be written as

A =
∑

i∈I

ρi(ei, · )fi ,

where I is a countable set of indices, {ei}i∈I and {fi}i∈I are orthonormal sets
in E and F , respectively, and ρi, i ∈ I, are complex numbers such that

∑

i∈I

|ρi| < ∞ .

Definition 1.3. A conformal field theory is a projective functor from the cat-
egory S of closed oriented 1-manifolds and cobordisms to the category of topo-
logical vector spaces and trace-class operators, satisfying the following axioms:

1. To each closed smooth oriented 1-manifold X, a CFT associates a locally
convex complete topological vector space HX with a non-degenerate bi-
linear form, in such a way that finite disjoint unions correspond to tensor
products. More precisely, there exists a canonical multilinear map

HX1t...tXn →
⊗

HXi ,

which is required to be compatible with permutations of the components.

2. To each cobordism Y : X Ã X ′, we associate a ray in the space of trace-
class linear operators from HX to HX′ , such that

(a) under composition Y1 ◦ Y2 of cobordisms along X, the trace with
respect toHX induces the projective isomorphism UY1◦Y2

∼= UY1◦UY2 ;

(b) UY varies continuously with respect to deformations of Y .

(c) If Y ′ : Xin Ã Xout t X̄ is obtained from Y : Xin t X Ã Xout by
reversing the orientation of the 1-manifold X, then UY is mapped to
UY ′ through the canonical isomorphism Hom(HXin ⊗HX ,HXout) →
Hom(HXin ,HXout ⊗ H∗X), where the map HX → H∗

X is induced by
the bilinear form ( · , · ).

1 Strictly speaking, this is not a category, because the identity morphism is missing. This
issue can be fixed by letting S being a nuclear ideal in a larger category (see [10]), or admitting
degenerate cobordisms, such as annuli with zero width, among the morphisms.
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Here, for a complex topological vector space E, we denote by Ē its complex
conjugate and by E∗ its dual, i.e. the vector space of complex continuous linear
functionals on E.

Let us describe the basic properties and the direct consequences of this
axioms.

• Any closed oriented 1-manifold X is just a union of circles, so that the
vector space HX is completely determined by specifying

H := HS1 .

• The first axiom implies that the empty manifold X ≡ ∅ is associated to
H∅ = C.

• By considering the disjoint union of cobordisms as a composition along
the empty set X = ∅, the second axiom gives the following rule:

UY1tY2
∼= UY1 ⊗ UY2 .

• Any closed Riemann surface Y is a cobordism Y : ∅ Ã ∅, so that the
corresponding UY : C→ C defines a continuous section Zg of a line bundle
on the moduli space Mg of Riemann surfaces of genus g, for each g ≥ 0.

• Axiom 2) describes a functor from the category C of cobordisms to 1-
dimensional vector spaces, together with a natural embedding EY → H∂Y ,
where EY is the line associated to the cobordism Y .

A complex structure can naturally be defined on each component in the
space of morphisms.

Definition 1.4. A conformal field theory is holomorphic if for each holomorphic
family of cobordisms {Yb}b∈B, parametrized by the complex manifold B, the rays
{UYb

}b∈B form a holomorphic bundle on B.

1.2 Spaces of cobordisms

By a basic result in the theory of Riemann surfaces, each cobordism is the
composition of cobordisms corresponding to disjoint unions of disks, cylinders
(that can be also understood as disks with one hole, or annuli) and pants (or
disks with two holes). Therefore, to completely determine the theory, it is
sufficient to consider the linear operators associated to such topologies and their
composition.

1.2.1 The space of disks D
Let D (resp., D̄) denote the set of disks with one outgoing (resp., incoming)
parametrized boundary. Any disk is conformally equivalent to the unit disc D.
There is a preferred parametrization of the unit disk D, given by the identity
map S1 → ∂D. Any other element of D corresponds to a different parametriza-
tion of the boundary, i.e. to an element of the group Diffan(S1) of real-analytic
diffeomorphisms of the circle. Thus is a Lie group, whose Lie algebra we denote
by Vect(S1). A set of generators of the complexification VectC(S1) is given by
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Ln := einθ d
dθ , The map Diffan(S1) → D is not Note that the group PSU(1, 1,C)

of automorphisms of the unit disk, given by

z 7→ az + b

b̄z + ā
, |a|2 − |b|2 = 1 ,

is a subgroup of Diffan(S1). Two parametrizations that differ only by an element
of PSU(1, 1,C) should be identified, so that

D ≡ Diff+(S1)/PSU(1, 1,C) .

An analogous description holds for D̄, whose preferred element is given by

D∞ := {z ∈ Ĉ | |z| > 1} ,

where Ĉ is the Riemann sphere.

1.2.2 The semigroup of annuli A
Let A denote the set of annuli with one incoming and one outgoing parametrized
boundary circles. Note that A has a natural structure of a semigroup under
composition. As stated before, any annulus is conformally equivalent to

Ar := {z ∈ C | r < |z| < 1} (1.1)

for some r ∈ (0, 1). We identify Ar with the element of A given by the
parametrizations z 7→ z and z 7→ rz of the outgoing and incoming circle, respec-
tively. Any element of A is determined by r ∈ (0, 1) and by the parametrizations
of its boundary circles and the group of automorphisms of an annulus is given
by U(1), the group of rigid rotations, so that A is homeomorphic to

(0, 1)× (Diffan(S1)×Diffan(S1))/U(1) .

More explicitly, to each triple (r, φ, ψ), we denote by φArψ
−1 ∈ A the annulus

given by Ar, with the parametrization φ and ψ−1 of the outgoing and of the
incoming boundary circles, respectively.

The complex structure on A is provided by the following proposition.

Proposition 1.2. Each element of A corresponds to a pair of holomorphic
functions f0 : D → C and f∞ : D∞ → Ĉ such that f0(∂D) ∩ f∞(∂D∞) = ∅
and

f0(z) = a1z + a2z
2 + . . . , z ∈ D , (1.2)

f∞(z) = (z−1 + b2z
−2 + . . .)−1 , z ∈ D∞ . (1.3)

Proof. The functions f0 and f∞ naturally determine an element of A, corre-
sponding to the annulus bounded by the curves f0(∂D) and f∞(∂D∞) and
parametrizations given by f0 and f∞ themselves. Conversely, fix A ∈ A. The
composition D∞ ◦ A ◦D with the disks D ∈ D and D∞ ∈ D̄ can be identified
with the Riemann sphere Ĉ. By Definition 1.1, such a composition of cobor-
disms corresponds to holomorphic embeddings of D, D∞ and A in Ĉ, we denote
by f0, f∞ and fA, respectively. Such functions are determined only up to au-
tomorphisms of Ĉ, but the ambiguity can be fixed by requiring that f0(0) = 0
and that f∞(∞) = 0 = f ′∞(∞). Then, f0 and f∞ satisfy the conditions of the
proposition and the corresponding element of A is identified with A by fA.
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Note that the multiplicative semigroup

C×<1 := {z ∈ C× | |z| < 1} ,

is a sub-semigroup of A. In fact, to each q ∈ C×<1, one can associate the annulus
Aq given by the functions f∞(z) = z and f0(z) = qz, and it is clear that
Aq ◦ Aq′ = Aqq′ . Such a definition restricts to Eq.(1.1) for q = r ∈ R. On the
other hand, a semigroup homomorphism

λ : A → C×<1 ,

is canonically defined. Let Â be the torus obtained by gluing the incoming and
the outgoing boundary components and let τ(Â) ∈ H be its modular parameter;
then

λ(A) := e2πiτ(Â) .

Note that λ(Aq) = q.

1.2.3 Hilbert space structure on H and unitarity

Axiom 2 associates a ray of trace-class linear maps on the locally convex H ≡
HS1 to each A ∈ A. In particular, it is possible to choose the operators Uq :=
UAq , 0 < |q| < 1, in such a way to obtain a genuine representation of the
semigroup C×<1. Let Ȟ be the union of the images of H under Ur, r ∈ R,
0 < r < 1. In general, the completion of the image of Ȟ under the natural
map Ȟ → H does not coincide with H. However, since any cobordism Y can
be written as a composition with some Ur as a component, it is clear that only
the subspace of H corresponding to completion of such an image is relevant
for the description of the CFT. Hence, it is natural to add to the axioms a
non-degeneracy assumption [56]:

Assumption 1.1. Ur → 1 as r → 1, uniformly on compact subsets of H.

Such an assumption implies that Ȟ, is dense in H. One can also define an
injective map with dense image H → Ĥ, where the elements of Ĥ are formally
defined as U−1

r ξ, 0 < r < 1, for some ξ ∈ H, with U−1
r ξ ≡ U−1

rs η in Ĥ if η = Usξ.
Such a map assigns to each element η ∈ H the formal element U−1

r (Urη), for
some 0 < r < 1.

The definition readily generalizes to the spaces ȞX and ĤX for each 1-
manifold X = S1 t . . . t S1, by replacing each annulus Ar by a disjoint union
Ar t . . .× tAr of annuli.

Proposition 1.3. The spaces ȞX̄ and ĤX are in natural duality.

Proof. The natural pairing between an element Urξ of ȞX̄ and U−1
s η of ĤX ,

0 < r < s < 1, is defined by considering the cobordism Yr/s : X t X̄ → ∅, so
that the corresponding operator is Ur/s : HX ⊗HX̄ → C.

(U−1
s η, Urξ) := Ur/s(ξ ⊗ η) .

By construction, this is well-defined and independent of the choice of r, s.
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With respect to such a duality, the operator UY : H∗X2
→ H∗X1

corresponding
to the cobordism Y : X̄2 Ã X̄1 is naturally identified with the transpose of
UY : HX1 → HX2 , corresponding to Y : X1 Ã X2.

Given an operator U on a complex vector space E, we denote by Ū complex
conjugate operator on Ē and, if E is a Hilbert space, by U† the adjoint operator.

Definition 1.5. A conformal field theory is unitary is there is given a natural
isomorphism H̄X → HX̄ , making ȞX a pre-Hilbert space with HX as its com-
pletion, and such that UȲ

∼= ŪY . Equivalently, a CFT is unitary if HX is a
Hilbert space and UȲ = U†

Y (reflection-positivity).

1.2.4 Representations of A and representations of Vect(S1)

By axiom 2, the space H (and hence also HX for all the 1-manidfolds X)
carries a projective representation of the semigroup A and, in particular, of
its sub-semigroup C×<1. In this section, we will show that such a represen-
tation induces a representation of two copies (one holomorphic and one anti-
holomorphic) of the algebra VectC(S1), the complexification of the algebra of
generators of Diffan(S1).

The relation between the semi-group A and the Lie group Diffan(S1) (and
its Lie algebra Vect(S1)) can be understood by noticing that the tangent space
at A of A is isomorphic to

TAA ∼= (VectC(S1)⊕VectC(S1))/ Vect(A) ,

where each VectC(S1) corresponds to the space of deformations of one of the
curves f0(∂D) and f∞(∂D∞), whereas Vect(A) is the space of deformations
of such curves that extend to the whole A. In the limit A → S1 of a thin
annulus, Vect(A) → VectC(S1), so that (VectC(S1) ⊕ VectC(S1))/Vect(A) →
VectC(S1). In this sense, one can think that the boundary of A contains some
“complexification” of Diffan(S1) and, more generally of the group Diff(S1) of
smooth diffoemorphisms of S1. However, we notice that such a group, rigorously,
does not exists: the complexified algebra VectC(S1) is not the Lie algebra of any
Lie group.

Let us consider the problem of analytically extending e representation of
Diffan(S1). It is useful to first consider to the sub-semigroup C×<1 ⊂ A, that is
genuinely a complexification of the subgroup T ⊂ Diffan(S1) of rigid rotations.
Let the Hilbert space H carry a representation of T; then, H splits as a direct
sum

H =
⊕

k∈Z
Hk ,

where the element eiθ ∈ T acts on Hk by multiplication by eikθ.

Definition 1.6. The Hilbert space H carries a positive energy representation
of T if, for some fixed h ∈ Z, k < h implies Hk = 0.

It is clear that only the positive energy representations of T can be holomor-
phically extended to a representation of C×<1. Analogous considerations hold for
the group Diffan(S1) and the semigroup A, as shown in the following proposi-
tion. Note that each positive energy representation of Diffan(S1) is necessarily
projective. We will restrict to representations of A such that the action of the



18 1. Axiomatic definition of CFT

subgroup C×<1 is diagonalizable and induces a (positive energy) representation
of T.

Proposition 1.4. The projective positive energy representations of Diffan(S1)
are in 1-1 correspondence with projective holomorphic representations of A.
Moreover, the representation of Diffan(S1) is unitary if and only if the rep-
resentation of A is reflection-positive, i.e. UĀ = U†

A.

Proof. We will only sketch the basic lines of the proof. Let φAψ−1 denote
the element of A corresponding to the annulus A with the parametrizations
of the incoming and outgoing circle modified by, respectively, the real-analytic
diffeomorphisms ψ and φ. If A 7→ UA is a projective holomorphic representation
of A on the Hilbert space H, then we define φ 7→ Uφ, φ ∈ Diffan(S1), by
Uφ := UφAU−1

A , which is densely defined in H. More precisely, we define Uφ on
the dense subspace Ȟ by Uφ(UAs

ξ) := UφAs
ξ, for all UAs

ξ ∈ Ȟ.
Conversely, let φ 7→ Uφ be a positive-energy representation of Diffan(S1) on

H. Then, the representation of the subgroup T extends in a unique way to a
holomorphic representation of C×<1 (UAq acts by multiplication by qk on Hk).
Since any element of A can be written as φAqψ

−1, for suitable 0 < |q| < 1 and
φ, ψ ∈ Diffan(S1), we set UA := UφUAqU

−1
ψ . It is easy to prove that the map

A 7→ UA is holomorphic and determines a representation of A (see [57]).
Finally, if A = φAqψ

−1, then Ā = ψAq̄φ
−1; moreover, by diagonalizing UAq ,

it is easy to verify that UAq̄ = U†
Aq

, and the proposition follows.

The proposition above implies that in a holomorphic CFT, the space H is
a positive energy holomorphic representation of VectC(S1). In a general CFT,
the projective representation of A is not holomorphic, and H can be split into
a direct sum ⊕

(a,b̃)∈Λ

Ha,b̃ , (1.4)

where Λ is a discrete subset of R × R, with (a − b̃) ∈ Z, and Ha,b̃ are finite-
dimensional. The element Aq in the sub-semigroup C×<1 ⊂ A acts on Ha,b̃ by

multiplication by qaq̄b̃. This implies H is a representation of two copies of the
algebra VectC(S1), a holomorphic and an anti-holomorphic one. A particular
case is given by the rational conformal field theories (see, for example, [47]),
where the set of indices Λ is finite.

1.2.5 Pants and algebra of operators

A pant is a Riemann surface with the topology of a disk with two holes. It
is a basic result that any Riemann surface can be written as a finite union of
pants and disks. However, it is more useful in CFT to fix a pant P with two
incoming and one outgoing circles, and express any morphism as a composition
of morphisms given by disks, annuli and copies of P .

The axioms associate to such a P a ray UP which gives a map H⊗H → H.
Such a map defines a non-associative algebra on H, which is knows as the
operator product expansion.
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1.3 Conformal anomaly and modular functors

The axioms define a CFT as a projective functor from the category of oriented
1-manifolds and (conformal classes with parametrized boundary) cobordisms to
the category of vector spaces and trace-class operators. This implies that each
vector space in the theory carries a projective representation of the semi-group
of annuli A.

In general, a projective representation of a group G can be conveniently seen
as a genuine representation of a central extension G̃ of G. In the same spirit,
one can look for the definition of an extension of the category of 1-manifolds
and cobordisms. The morphisms of an extended category should be pairs (Y, λ)
given by a cobordism and a complex number λ ∈ C, satisfying suitable properties
under composition.

It is useful to consider more general extension of such a category, in which the
morphisms are given by pairs (Y, EY ), where EY is a finite dimensional vector
space depending on Y . A correspondence which associates to each cobordism
Y a finite-dimensional vector space EY must satisfy some compatibility condi-
tions with respect to composition of morphisms. Such conditions yield to the
definition of modular functor, and will be discussed in section 1.3.2.

The main motivation for considering categories extended by modular func-
tors is the description of the chiral part of the CFT, i.e. of the part depend-
ing analytically (or anti-analytically) on the moduli space parameters. In the
vertex-operators description of CFT, this corresponds to consider representa-
tions of the vertex-operator algebra of meromorphic fields. In Segal’s approach
the chiral part of CFT can be obtained as a weakly conformal field theory, i.e.
by applying the axioms of CFT to the extension of the category of 1-manifolds
and cobordisms by a modular functor. This will be clarified in section 1.3.4.

1.3.1 Extensions of the semi-group A
A central extension Ĝ of a topological group G by C× can be given in terms of
a short exact sequence

1 C× Ĝ G 1- - -π - ,

of continuous homomorphisms, such that C× is mapped to the center Z(Ĝ)
of Ĝ and G ∼= Ĝ/C×. In particular, in view of the surjection π : Ĝ → G,
one can interpret Ĝ as a principal bundle on the base G with structure group
C× ⊆ Z(Ĝ). Equivalently, an extension can be given in terms of the associated
line bundle on G. Note that, if Lg and Lh are the fibres at g, h ∈ G, there is a
canonical isomorphism Lgh

∼= Lg ⊗ Lh compatible with the action of C×.

Proposition 1.5. Holomorphic extensions of A by C× correspond to extensions
of Diffan(S1) by C×.

Proof. The argument is analogous to the one used to prove Proposition 1.4. Fix
an extension A 7→ LA that associates a line LA to each annulus A ∈ A. This
determines a line Lφ for each φ ∈ Diffan(S1), given by Lφ := LφA ⊗ L∗A, for an
annulus A ∈ A. The line Lφ does not depend on A ∈ A and gives an extension
of Diffan(S1), since Lψφ = LψφA ⊗ L∗A ∼= LψφA ⊗ L∗φA ⊗ LφA ⊗ L∗A ∼= Lψ ⊗ Lφ.

Conversely, suppose that we have an extension φ 7→ Lφ of Diffan(S1). Then,
we can define an extension of A by setting LAq := C and LφAqψ := Lφ⊗Lψ.
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Consider a projective representation of Diffan(S1), corresponding to a gen-
uine representation of a central extension. This induces a representation of the
central extension of the complexified Lie algebra VectC(S1) and one can choose
the representatives Ln, n ∈ Z, satisfying the commutation relation

[Ln, Lm] = i(m− n)Lm+n +
c

12
m(m2 − 1)δm,−n , (1.5)

where c ∈ R is the central charge of the representation.

Proposition 1.6. The extensions of Diffan(S1) by C× are classified by (c, h) ∈
C× (C/Z), where c is the central charge and h is an eigenvalue of L0.

Proof. We only sketch the main lines of the proof; a complete treatment can be
found in [55]. Consider an extension Ĝ of th topological group G as a principal
C×-bundle on G. The choice of a splitting ĝC ∼= gC ⊕ C of the extended Lie
algebra ĝ into the direct sum of the Lie algebras of G and C×, corresponds to a
splitting of the tangent space of G̃ at its identity element into a vertical and a
horizontal space. Such a splitting extends uniquely as a Ĝ-left-invariant connec-
tion on the C×-bundle Ĝ. The curvature α of such a connection determines a
C-valued 2-form on G. Consider the case G ≡ Diffan(S1), so that g ≡ Vect(S1).
Upon suitably choosing the map gC⊕C→ ĝC, the images of the generators of g
form a commutator algebra given by (1.5), so that the curvature α corresponds
to the central term proportional to the central charge c.

Now, consider two extensions π : Ĝ → G and π′ : Ĝ′ → G with the same
central charge. Then, the “difference” extension is the quotient Ĝ ×G Ĝ′/C×,
where Ĝ ×G Ĝ′ is the space of pairs (g, h) ∈ Ĝ × Ĝ′ such that π(g) = π′(h),
and C× acts anti-diagonally u → (u, u−1) on Ĝ ×G Ĝ′. Such an extension
has c = 0, so that the connection is flat and the bundle is determined by a
homomorphism π1(G) → C×. But π1(Diffan(S1)) ∼= π1(T) ∼= Z, so that all such
homomorphisms are given by Z 3 n 7→ e2πihn for some h ∈ C/Z, which is an
eigenvalue of L0, the generator of T. It follows that the central charge c and the
eigenvalue h completely determine the C×-bundle and, therefore, the extension
of Diffan(S1).

Under the splitting (1.4), each Hh,h̃ is a representation of two central ex-
tensions of Diffan(S1), corresponding to the holomorphic and anti-holomorphic
part of A, associated to two pairs (c, h) and (c̃, h̃). In fact, consistency of the
chiral and anti-chiral algebra of operators require that the pair of central charges
c, c̃ is the same for all the representations Hh,h̃. The definition of the chiral (or
anti-chiral) part of the vertex operator algebra in a CFT requires the concept
of modular functor.

1.3.2 Modular functors

Let Φ be a finite set of labels and consider the category CΦ whose objects are
(not necessarily connected) Riemann surfaces with labeled and parametrized
boundary; the labeling is a continuous function lY : ∂Y → Φ assigning a label
in the set Φ to each boundary component of the Riemann surface Y . Two kind
of morphisms are defined:

1. a gluing morphism Y → Y̌ is defined if Y̌ is obtained from Y by gluing
two circles in ∂Y with the same label;



1.3. Conformal anomaly and modular functors 21

2. the involution Y → Ȳ , is defined for each cobordism Y , where Ȳ corre-
sponds to the complex conjugate Riemann surface, with the same bound-
ary parametrization and labeling.

Definition 1.7. A modular functor is a functor from the category CΦ to the
category of finite dimensional vector spaces and injective linear maps, which
associates to each cobordism Y with labeled parametrized boundary a finite
dimensional vector space EY , satisfying the following axioms:

1. there is a natural isomorphism EY1tY2
∼= EY1 ⊗ EY2 .

2. if Y̌ can be obtained from Yϕ, ϕ ∈ Φ, by gluing two circles of ∂Yϕ labeled
by ϕ, then there is a natural isomorphism

EY̌
∼=

⊕

ϕ∈Φ

EYϕ
.

3. dim ES2 = 1.

4. For each holomorphic family {Yα}α∈B of cobordisms, the vector bundle
π : EB → B with fiber π−1(α) ∼= EYα is a holomorphic vector bundle on
the base B.

Axiom 4) implies that, for each fixed topology α, the modular functor E
determines a holomorphic vector bundle on space Cα of Riemann surfaces of
topology α, with labeled parametrized boundary. We made the non-degeneracy
assumption that for each φ, there is a cobordism Y with a boundary component
labeled by φ such that EY 6= 0.

Proposition 1.7. The following properties hold:

1. Let Dϕ, ϕ ∈ Φ be a disk with an outgoing circle labeled by ϕ. There
exists a label, we denote by 1 ∈ Φ, such that dim EDϕ = 1 if ϕ = 1 and
dim EDϕ = 0 otherwise.

2. Let Aϕψ be an annulus with one incoming and one outgoing circle, labeled,
respectively, by φ and ψ. Then, dim EAϕϕ = 1 and EAϕψ

= 0 if ϕ 6= ψ.
In particular, a modular functor determines an extension of A by C× for
each label ϕ.

3. Let Bϕψ be an annulus with two outgoing circles labeled by ϕ, ψ ∈ Φ.
There is an involution ϕ 7→ ϕ̄ in Φ such that such that dim EBϕϕ̄ = 1 and
EBϕψ

= 0 if ψ 6= ϕ̄.

Proof. Let us first prove 2). The matrix dϕψ := dim EAϕψ
has non-negative

integer entries and, by applying axiom 2) in Definition 1.7 to a composition of
annuli, it follows that d2 = d. By the non-degeneracy assumption, the only
possibility is dϕψ = δϕψ. To prove 3), notice that the matrices eϕψ := dimEBϕψ

and ēϕψ := dim EB̄ϕψ
, where B̄ denotes an annulus with two incoming circles,

are symmetric and invertible, since, by axiom 2) of Definition 1.7, eē = d ≡ 1.
Note that the functoriality properties with respect to the involution Y → Ȳ
give dim EY = dim EȲ , since the composition of linear maps EY → EȲ → EY

is the identity. In particular, dim EDϕ = dim ED̄ϕ
and, since S2 is obtained by

gluing disks with opposite boundary orientation, statement 1) follows.
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Property 2) in the proposition above implies that modular functors deter-
mine a central extension by C× of the semigroup A for each label φ ∈ Φ, so that
it is meaningful to classify E by the central charges associated to its labels. In
fact, it can be proved that, in order for the modular functor to be consistently
defined, all the labels must correspond to the same central charge.

Proposition 1.8. Let E be a modular functor with central charge c = 0 and
denote by Eα the corresponding holomorphic vector bundle on the space Cα of
cobordisms with a fixed topology α. Then, a holomorphic flat connection, com-
patible with gluing, is canonically defined on Eα, for each topology α with no
closed components.

Proof. Let Y ∈ Cα be a Riemann surface with a boundary circle labeled by
ϕ ∈ Φ. The maps Y → Y ◦ Aϕϕ, with Aϕϕ ∈ A, correspond, through the
modular functor, to an action EY → EY ◦Aϕϕ

∼= EY of A on the fibre EY .
In turn, this induces an action of the Lie algebra VectC(S1) on the fibre. By
considering all the boundary components of Y , a modular functor canonically
defines an action of VectC(∂Y ) on the fibre at Y . Recall that, by proposition
1.1 if the topology α has no closed components, the tangent space to Cα at
Y is VectC(∂Y )/ VectC(Y ). The action of VectC(∂Y ) on the fibre induces a
representation of the subalgebra VectC(Y ); however, it can be proven that the
only finite dimensional representation of Vect(Y ) is the trivial one (see [57]).
Hence, one can canonically define a connection TMα 3 ξ 7→ Dξ on Eα and this
is flat, because it comes from a Lie algebra action of Vect(∂Y ). Compatibility
with gluing follows by construction.

Proposition 1.9. The extension of A associated to the label 1 ∈ Φ is classified
by a pair (c, h), with h = 0.

Proof. Let Aq be an annulus with both boundary circles labeled by 1 ∈ Φ.
Then, the relation Aq ◦D = D implies that the action of Aq is trivial.

1.3.3 The determinant line bundle

Let E,F be Hilbert spaces. An operator B : E → F is determinant-class if
B = 1 + A, where A is trace-class (see Definition 1.2). Its determinant, defined
as

det(1 + A) := exp[Tr log(1 + A)] =
N∏

i=1

(1 + ρi) ,

is finite.

Definition 1.8. Let E,F be Hilbert spaces. A linear map T : E → F is a
Fredholm operator if there exists an operator P : F → E such that T ◦ P − 1
and P ◦ T − 1 are finite rank operators.

It can be proven that a Fredholm operator T has finite-dimensional kernel
and cokernel, so that it makes sense to define the index of T

indT := dim kerT − dim cokerT .

Definition 1.9. For any Fredholm operator T : E → F , the determinant line
DetT is defined as follows:
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• If ind T = 0, then det T is the line whose points are the equivalence classes
of pairs (S, λ), with S : E → F such that S − T is trace-class and λ ∈ C,
where the equivalence relation is

(SB, λ) ∼ (S, detBλ) ,

where B : E → E is determinant-class.

• If ind T = n 6= 0, then DetT := DetT ′ , where T ′ ≡ T ⊕ 0 : E → F ⊕ Cn if
n > 0 and T ′ ≡ T ⊕ 0 : E ⊕ C−n → F if n < 0.

Definition 1.10. If T : E → F is Fredholm with ind T = 0, the determinant
det(T ) of T is the element [T, 1] of DetT . If ind T = 0, then det(T ) = 0 ∈ DetT .

Proposition 1.10. det(T ) 6= 0 if and only if T is invertible.

Proof. If ind T 6= 0, T is not invertible and det(T ) = 0 by definition. If ind T =
0, then there exists an invertible S such that A := S − T is trace-class. The
map λ 7→ (S, λ) is an isomorphism C → DetT . If T is invertible, than we can
choose S ≡ T and det(T ) ∼= 1 ∈ C. If T is not invertible, then T = SB,
where B := 1−S−1A is determinant-class and non-invertible, so that det(T ) =
(T, 1) = (SB, 1) ∼ (S, detB) = 0.

The following proposition provides an equivalent definition of DetT

Proposition 1.11. If T : E → F is Fredholm, with dimker T = m and
dim cokerT = n, then there is canonical isomorphism

DetT
∼= (∧m kerT )∗ ⊗ (∧n cokerT ) .

Proof. One can reduce to the case ind T = n − m = 0. Let {α1, . . . , αn} and
{β1, . . . , βn} be bases for ker T ∗ and cokerT , respectively. Then, the isomor-
phism is given by

(T +
n∑

i=1

αi ⊗ βi, 1) 7→ (α1 ∧ . . . ∧ αn)⊗ (β1 ∧ . . . ∧ βn) .

Proposition 1.12. Let {Tx}x∈B be a holomorphic family of Fredholm operators
Tx : Ex → Fx, parametrized by the complex manifold B. Then, the lines DetTx

form a holomorphic line bundle on B.

Proposition 1.13. Let

0 E′ E E′′ 0

0 F ′ F F ′′ 0

- -

?
T ′

-

?
T

-

?
T ′′

- - - -

where E, E′, E′′, F, F ′, F ′′ are Hilbert spaces and T, T ′, T ′′ are Fredholm, be a
commutative diagram with exact horizontal arrows. Then,

DetT
∼= DetT ′ ⊗DetT ′′ .
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To each closed Riemann surface Y , one can associate an operator ∂̄ : Ω0(Y )→
Ω0,1(Y ), which maps smooth functions to (0, 1)-forms. If Y has a boundary, one
can define ∂̄ as a map on the space Ω0(Y, ∂Y ) of smooth functions on Y that,
when restricted to the boundary, can be expressed as

∑
n>0 aneiθn on outgoing

circles and
∑

n<0 bneiθn on incoming circles. With such a choice, the operator
∂̄ : Ω0(Y, ∂Y ) → Ω0,1(Y, ∂Y ) is Fredholm and one can define the determinant
line

DetY := Det∂̄
∼= (∧ ker ∂̄)∗ ⊗ (∧ coker ∂̄) .

By Proposition 1.12, this determines a holomorphic line bundle, called the de-
terminant line bundle, on the moduli space of Riemann surfaces for each fixed
topology. It is also obvious that

DetY1tY2
∼= DetY1 ⊗DetY2 .

(Note, however, that such an isomorphism, in general, is invariant only up
to a sign under permutation of terms in the disjoint union; for example, the
group of permutations acting on the terms of S2 t . . . t S2, induces the sign
representation on DetS2t...tS2 .) Hence, Y 7→ DetY satisfies the axioms 1), 3)
and 4) in Definition 1.7 for a modular functor with one label. Axiom 2) is
satisfied thanks to the following proposition, which is proved in [57].

Proposition 1.14. Let Y̌ be the Riemann surface obtained from Y by gluing
together an incoming and an outgoing circle in ∂Y . Then, there is a canonical
isomorphism DetY̌

∼= DetY .

By this proposition and by the above remarks, the following theorem follows.

Theorem 1.15. Any (even) tensor power Det⊗n, n ∈ Z, of the determinant
line is a one-dimensional modular functor.

Rigorously, one should restrict to even tensor powers of Det, in order for
Det⊗n to be invariant under permutations of components in disjoint unions. In
the following section, we will see that the tensor powers of the determinant line
are essentially the unique one-dimensional modular functors.

1.3.4 CFT from weak conformal field theories

A modular functor E associated to a set Φ of labels determines an extension
SE of the category S of oriented 1-manifolds and cobordisms. The objects of
SE are oriented 1-manifolds labeled by an element of Φ and morphisms are
the pairs (Y, η) where Y is cobordism with labeled boundary and η ∈ EY .
Composition is defined between compatibly labeled cobordisms (Y1, η)◦(Y2, ξ) =
(Y1 ◦ Y2, ρ), where ρ is the image of η ⊗ ξ in EY1◦Y2 through the canonical
injections EY1 ⊗ EY2 → EY1tY2 → EY1◦Y2 , defined, respectively, by axioms 2)
and 3) in Definition 1.7.

Definition 1.11. A weak conformal field theory is a functor from the category
SE to the category of topological vector spaces with trace-class linear maps,
satisfying the axioms of Definition 1.3, with the following modifications:

• Isomorphisms in axioms 2a) and 2c) hold genuinely and not just projec-
tively.
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• U(Y,ξ) depends holomorphically on the morphism (Y, ξ).

A weakly conformal field theory assigns a topological vector space Hϕ to the
circle S1, for each label ϕ ∈ Φ, and a finite-dimensional subspace EY , with a
natural injection EY → Hϕ1⊗Hϕn , to each labeled cobordism Y with n outgoing
(and no incoming) circles labeled by ϕ1, . . . , ϕn. This should be compared with
the definition of a CFT, where there is only one label and a cobordism with all
outgoing circles is associated to a 1-dimensional space, corresponding to the ray
of trace-class operators UY : C → H∂Y . Furthermore, for a general CFT, no
holomorphicity condition is required on the dependence of such a 1-dimensional
space on Y .

The idea behind the definition of a weakly conformal field theory is that it
should correspond to the chiral or to the anti-chiral part of a CFT. Hence, one
expects to be able to construct a CFT by gluing two weakly conformal field
theory. This procedure is not clear in general, but it is described in [57] in case
the modular functor satisfies a unitarity condition. We closely follow Segal’s
definitions.

Definition 1.12. A modular functor E is unitary if there is a positive non-
degenerate transformation

ĒY ⊗ EY → |DetY |c ,

for each surface Y with labeled boundary such that the diagram

⊕
ϕ

ĒYϕ ⊗ EYϕ |DetY |c

ĒY ⊗ EY |DetY |c
?

-

?
-

commutes.

Proposition 1.16. A pair of weakly conformal field theories corresponding to
the same unitary modular functor E with index set Φ defines a conformal field
theory based on the space

⊕
ϕ H̄ϕ ⊗Hϕ and the central extension |Det |c of C.

Proposition 1.17. Any one-dimensional modular functor is determined by its
restriction to the semigroup A. More precisely, given two one-dimensional mod-
ular functors E′ and E′′ with the same restriction to A and a normalizing iso-
morphism E′

D
∼= E′′

D, for an arbitrary disk D, there are canonical isomorphisms
E′

Y
∼= E′′

Y for all the cobordisms Y .

Proof. Axiom 2) of Definition 1.7 and property 2) of Proposition 1.7 imply that
dim ET, for a torus T, equals the number of labels |Φ|. Hence, one-dimensional
modular functors have only one label. Let E′ and E′′ be one-dimensional modu-
lar functors with the same restriction to A and normalized so that E′

D
∼= E′′

D for
a fixed disk D. Then, E := E′⊗ (E′′)∗ is a modular functor with trivial restric-
tion to A and ED

∼= C; we have to prove that there are canonical isomorphisms
EY

∼= C for all Y . Let Mα be the space of surfaces of a given topology α, not



26 1. Axiomatic definition of CFT

containing any closed component. Since E has vanishing central charge, Propo-
sition 1.8 assures that there is a canonical flat connection on Eα. It follows that
Eα corresponds to a one-dimensional representation of π1(Mα). Such a group is
generated by Dehn twists, as follows. Choose a closed curve γ on Y ∈Mα and
let Ar, 0 < r < 1, be an annulus, embedded in Y , containing γ. Then, Y can be
obtained by gluing both circles of Ar to a surface Y ′. Let Yt, t ∈ [0, 1], be the
surface obtained by gluing both circles of the annulus Aq(t), q(t) := e2πitr, to Y ′;
then, t 7→ Yt represents a non-trivial element (with base-point Y ) in π1(Mα).
It can be proved that π1(Mα) is generated by such elements; it follows that
the bundle Eα is completely determined by the restriction of E on A. But E
is trivial on A, so that we can canonically identify the fibres of Eα for each α.
This implies that EY depends only on the topology of Y .

On the other hand, if Y is obtained from Y ′ by removing k disks, the isomor-
phism E(D) ∼= C induces an isomorphism EY

∼= EY ′ . Hence, E(Y ) depends
only on the genus of Y , EY

∼= Eg. In particular, the line bundle Eα has a
canonical flat connection also for surfaces with closed components. Finally, let
Yg be a surface of genus g with two holes; then, one can glue the boundary
circles of Yg to obtain a surface Yg+1 of genus g + 1, and axiom 2) of Definition
1.7 implies that Eg

∼= Eg+1 and that such an isomorphism is compatible with
composition of cobordisms.

The determinant line Y 7→ DetY is a one-dimensional modular functor and
induces an extension of A classified by (c, h) = (−2, 0).

Corollary 1.18. The only one-dimensional modular functors are integral tensor
powers of the determinant line.

Corollary 1.19. The only central extensions of the category S of 1-manifolds
and cobordisms by C× are given by Y 7→ (DetY )⊗p ⊗ (DetY )⊗q, with p, q ∈ C,
p− q ∈ Z.

Proof. We will only sketch the main lines of the proof. By Proposition 1.17,
such corollaries are equivalent to the claim that the only holomorphic central
extensions of A by C× that extend to a one dimensional modular functor are
classified by (c, 0), with c an even integer. The condition h = 0 follows by
Proposition 1.9. A holomorphic extension of A with central charge c must
correspond to the one given by Det

c
2 . In order to be a modular functor, a line

bundle must be defined on each space of cobordisms Cα of fixed topology α.
In particular, it must determine an element in H2(Cα,Z), since the topological
classification of line bundles is given by the first Chern class. But it can be
proved that H2(Cα,Z) ∼= Z for genus high enough, and the Chern class of Det
is a generator. Hence, only integer powers of Det are well-defined.

1.4 Axiomatic CFT and bosonic string theory

The axiomatic approach to CFT described in the previous sections can be ap-
plied to bosonic string theory. In this respect, two problems arise. Fist of all,
if the target space of string theory is not a compact manifold, the operators
UY fail to be trace-class. This is a usual problem in quantum field theories in
infinite volume spaces. There are several standard ways to treat this issue, for
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example by considering a manifold with finite volume V and then taking the
limit V →∞ at the end of the calculations.

A more serious issue concerns to the fact that Segal’s axiomatization con-
siders Riemann surfaces with parameterized boundary, whereas no such a pa-
rameterization is defined in bosonic string theory. This is strictly related to
the problem of restrict the Hilbert space of states to obtain conformal invari-
ant amplitudes. As is well-known, the simple restriction to conformal invariant
states is a too strong condition. Instead, it is necessary to restrict to the BRST
cohomology. The definition of the BRST cohomology in axiomatic CFT has
been developed in [57]; we just notice that a consistency condition for such a
definition is that the total central charge of the theory is 0.

In this thesis, we will limit to show how Corollaries 1.18 and 1.19 can be
used to derive the partition functions related to closed Riemann surfaces of
genus g ≥ 2. Such partition functions define the bosonic string measure on the
moduli space Mg of genus g.

We recall that bosonic string theory is formally defined by a path integral
over the space of embeddings in a flat D-dimensional manifold M (the tar-
get spaces) and over the space of world-sheet metrics. The measure is given
by a conformal and diffeomorphisms invariant action on the world-sheet. Af-
ter gauge-fixing, we obtain a CFT with D real fields, corresponding to the
target space coordinates, and two copies (holomorphic and anti-holomorphic)
bc system of weight 2. The resulting CFT does not admit holomorphic fac-
torization, the obstruction being related to the zero-modes of the operator ∂̄.
Each amplitude can be written as an integration over the internal momenta
of a holomorphic times an anti-holomorphic contribution. For a finite volume
target space, such an integration is substituted by a discrete sum, which cor-
responds to the summation in Eq.(1.4). It is straightforward to see that the
one-dimensional modular functor giving the central extension of the category S
corresponds to (Det∂̄1

)⊗
D
2 ⊗Det∗̄∂2

, where ∂̄n is the derivative operator acting on
n-differentials. By Proposition 1.18, such a modular functor must correspond to
an integral power of Det. Obviously Det∂̄1

≡ Det; the relation between Det∂̄n

and Det is given by Mumford theorem, we state in terms of the dual bundles
λn := Det∗̄∂n

, for later reference.

Theorem 1.20 (Mumford). Let Mg be the moduli space of Riemann surfaces
of genus g ≥ 2. For each n > 1,

λn
∼= λ⊗cn

1 ,

where cn := 6n2 − 6n + 1.

Such a theorem can be seen as a direct consequence of Corollary 1.18, once
one proves that the central extension of A induced by Det∂̄n

has central charge
−2cn. In particular, since c2 = 13, we get Det∂̄2

∼= Det13. Hence, the modular
functor associated to such a theory is Det

D
2 −26; however, we recall that consis-

tency conditions in string theory, in particular the requirement of nilpotency of
the BRST charge, constrains the central charge of the modular functor to be 0.
This fixes the critical dimension D = 26.

The genus g partition function (or, equivalently, the string measure on Mg),
must be given by integration over the internal momenta of the modulus square
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of a non-vanishing holomorphic section of Det13∂1
⊗Det∗∂2

≡ λ−13
1 ⊗λ2. The only

such section is the Mumford form

µg,2 ≡ Fg,2[φ]
φ1 ∧ . . . ∧ φ3g−3

(ω1 ∧ . . . ∧ ωg)13
,

where {φ1, . . . , φ3g−3} is a basis of holomorphic quadratic differentials and
{ω1, . . . , ωg} is the canonical basis of holomorphic abelian differentials (see
section B). After integrating over internal momenta, we obtain the Belavin-
Knizhnik theorem [7] relating the bosonic string measure dµg to the Mumford
form

dµg =
|Fg,2|2

(det Im τ)13
|φ1 ∧ . . . ∧ φ3g−3|2 ,

where Im τ is the Riemann period matrix.
A more extensive treatment of the Mumford isomorphism and the derivation

of explicit expressions for the Mumford form for genera 2 and 3, are given in
chapter 3.



2. COMBINATORICS OF DETERMINANTS

Determinants of holomorphic quadratic differentials play a crucial role in our
construction. In particular, in the following chapters, we will construct bases of
H0(K2

C) in terms of two-fold products of holomorphic abelian differentials. In
this section, we will consider the purely combinatorial problem concerning the
determinants of a basis of a two-fold symmetric product of a finite dimensional
space of functions. We first introduce a very useful notation for symmetric
tensor products of vector space, which we will adopt all along the paper; then
we derive two lemmas on determinants which are of interest on their own.

2.1 Identities in symmetric products of vector spaces

Definition 2.1. For each n ∈ Z>0, set

In := {1, . . . , n} ,

and let Pn denote the group of permutations of n elements.

Let V be a g-dimensional vector space and let

Mn :=
(

g + n− 1
n

)
,

be the dimension of the n-fold symmetrized tensor product Symn V . We denote
by

Symn V 3 η1 · η2 · · · ηn :=
∑

s∈Pn

ηs1 ⊗ ηs2 ⊗ . . .⊗ ηsn ,

the symmetrized tensor product of an n-tuple (η1, . . . , ηn) of elements of V .

Fix a surjection m : Ig × Ig → IM , M := M2 = g(g + 1)/2, such that

m(i, j) = m(j, i) , (2.1)

i, j ∈ Ig. Such a surjection corresponds to an isomorphism CM → Sym2 Cg with
ẽm(i,j) 7→ ei · ej .

A useful choice for such an isomorphism is considered in the following defi-
nition.

Definition 2.2. Let A : CM → Sym2Cg, M ≡ M2, be the isomorphism
A(ẽi) := e1i · e2i , with {ẽi}i∈IM

the canonical basis of CM and

(1i, 2i) :=





(i, i) , 1 ≤ i ≤ g ,
(1, i− g + 1) , g + 1 ≤ i ≤ 2g − 1 ,
(2, i− 2g + 3) , 2g ≤ i ≤ 3g − 3 ,

...
...

(g − 1, g) , i = g(g + 1)/2 ,
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so that 1i2i is the i-th element in the M -tuple (11, 22, . . . , gg, 12, . . . , 1g, 23, . . .).
Similarly, let {ẽi}i∈IM3

be the canonical basis of CM3 , and fix an isomorphism
A : CM3 → Sym3Cg, M3 := g(g + 1)(g + 2)/6, with A(ẽi) := (e1i

, e2i
, e3i

)S ,
whose first 6g − 8 elements are

(1i, 2i, 3i) :=





(i, i, i) , 1 ≤ i ≤ g ,

(1, 1, i− g + 2) , g + 1 ≤ i ≤ 2g − 2 ,

(2, 2, i− 2g + 4) , 2g − 1 ≤ i ≤ 3g − 4 ,

(1, 2, i− 3g − 4) , 3g − 3 ≤ i ≤ 4g − 4 ,

(1, i− 4g + 6, i− 4g + 6) , 4g − 3 ≤ i ≤ 5g − 6 ,

(2, i− 5g + 8, i− 5g + 8) , 5g − 5 ≤ i ≤ 6g − 8 .

As we will see, we do not need the explicit expression of A(ẽi) for 6g − 8 <
i ≤ M3. In general, one can define an isomorphism A : CMn → SymnCg, with
A(ẽi) := (e1i

, . . . , eni
), by fixing the n-tuples (1i, . . . , ni), i ∈ IMn

, in such a way
that 1i ≤ 2i ≤ . . . ≤ ni.

For each vector u := t(u1, . . . , ug) ∈ Cg and matrix B ∈ Mg(C), set

u · · ·ui︸ ︷︷ ︸
n times

:=
∏

m∈{1,...,n}
umi , (B · · ·B︸ ︷︷ ︸

n times

)ij :=
∑

s∈Pn

∏

m∈{1,...,n}
Bmis(m)j

,

i, j ∈ IMn , where the product is the standard one in C. In particular, let us
define

χi ≡ χ
(n)
i :=

g∏

k=1

( ∑

m∈{1,...,n}
δkmi

)
! = (δ · · · δ)ii ,

i ∈ IMn , (we will not write the superscript (n) when it is clear from the context)
where δ denotes the identity matrix, so that, for example,

χ
(2)
i = 1 + δ1i2i , χ

(3)
i = (1 + δ1i2i + δ2i3i)(1 + δ1i3i) .

Such a single indexing satisfies basic identities, repeatedly used in the following.

Lemma 2.1. Let V be a vector space and f an arbitrary function f : In
g → V ,

where In
g := Ig × . . .× Ig (n times). Then, the following identity holds

g∑

i1,...,in=1

f(i1, . . . , in) =
Mn∑

i=1

χ−1
i

∑

s∈Pn

f(s(1)i, . . . , s(n)i) , (2.2)

that, for f completely symmetric, reduces to

g∑

i1,...,in=1

f(i1, . . . , in) = n!
Mn∑

i=1

χ−1
i f(1i, . . . , ni) . (2.3)

Proof. Use
g∑

i1,...,in=1

f(i1, . . . , in) =
g∑

in≥...≥i1=1

∑

s∈Pn

f(is1 , . . . , isn)∏g
k=1(

∑n
m=1 δkim)!

.
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Note that u⊗n ≡ u⊗ . . .⊗ u is an element of SymnCg ∼= CMn , for each u ∈ Cg.
By (2.2), the following identities are easily verified

u⊗n ∼=
Mn∑

i=1

χ−1
i u · · ·uiẽi , (Bu)⊗n ∼=

Mn∑

i,j=1

χ−1
i χ−1

j (B · · ·B)iju · · ·uj ẽi ,

where CMn 3 ẽi
∼= e · · · ei ∈ SymnCg, i ∈ IMn

. Furthermore,

Mn∑

j=1

χ−1
j (B · · ·B)ij(C · · ·C)jk = ((BC) · · · (BC))ik , (2.4)

where B, C are arbitrary g × g matrices. This identity yields, for any non-
singular B

Mn∑

j=1

χ−1
j χ−1

k (B · · ·B)ij(B−1 · · ·B−1)jk = (δ · · · δ)ikχ−1
k = δik , (2.5)

and then

detij

(
(B · · ·B)ijχ

−1
j

)
detij

(
(B−1 · · ·B−1)ijχ

−1
j

)
= 1 . (2.6)

Also observe that
Mn∏

i=1

u · · ·ui =
g∏

k=1

u
n
g Mn

k , (2.7)

where the product and the exponentiation are the standard ones among complex
numbers; in particular,

M∏

i=1

uui =
g∏

k=1

ug+1
k .

In the following we will denote the minors of (B · · ·B) by

|B · · ·B|i1...im
j1...jm

:= det
i∈i1,...,imj∈j1,...,jm

(B · · ·B)ij ,

i1, . . . , im, j1, . . . , jm ∈ IMn , with m ∈ IMn .

Definition 2.3. Fix g, n ∈ Z>0. Set

IMn ⊃ Idiag
n := {i ∈ IMn | 1i = 2i = . . . = ni} .

Fix l < g and a, a1, . . . , al ∈ Ig and define the following subsets of IMn

Ia
n := {i ∈ IMn | 1i = a ∨ 2i = a ∨ . . . ∨ ni = a} ,

Ia1...al
n :=

⋃

k∈Il

Iak
n ,

Ia1a2
N := Idiag

2 ∪ Ia1a2
2 ,

IMn,l := I1...l
n .
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2.2 Combinatorial lemmas

Fix a surjection m : Ig × Ig → IM , M := g(g + 1)/2, such that

m(i, j) = m(j, i) ,

i, j ∈ Ig. Such a surjection corresponds to an isomorphism CM → Sym2Cg with
ẽm(i,j) 7→ (ei ⊗ ej)S .

For each morphism s : IM → IM consider the g-tuples dk(s), k ∈ Ig+1,
where

di
j(s) = dj+1

i (s) = sm(i,j) , (2.8)

i ≤ j ∈ Ig. Note that if s is a monomorphism, then each g-tuple consists of
distinct integers, and each i ∈ IM belongs to two distinct g-tuples.

Consider Pg+1
g ≡ Pg × · · · × Pg︸ ︷︷ ︸

g+1 times

and define κ : Pg+1
g × IM → IM , depending

on m, by
κm(i,j)(r1, . . . , rg+1) = m(ri

j , r
j+1
i ) , (2.9)

i ≤ j ∈ Ig, where (r1, . . . , rg+1) ∈ Pg+1
g . Note that

di
j(κ(r1, . . . , rg+1)) = dj+1

i (κ(r1, . . . , rg+1)) = m(ri
j , r

j+1
i ) ,

i ≤ j ∈ Ig. Consider the subset of IM determined by

IM,n := {m(i, j)|i ∈ In, j ∈ Ig} ,

n ∈ Ig, with the ordering inherited from IM , and denote by

L := M − (g − n)(g − n + 1)/2 ,

its cardinality. The elements κl(r1, . . . , rg+1), l ∈ IM,n, are independent of rj
i ,

with n+1 ≤ i, j ≤ g, and κ can be generalized to a function κ : IM,n×P̃g,n →
IM , where P̃g,n := Pn

g ×Pg−n+1
n , by

κi(r̃1, . . . , r̃g+1) := κi(r1, . . . , rg+1) , (2.10)

i ∈ IM,n, (r̃1, . . . , r̃g+1) ∈ P̃g,n, where rj ∈ Pg, j ∈ Ig+1, are permutations
satisfying rj = r̃j , j ∈ In, and rj

i = r̃j
i , i ∈ In, n + 1 ≤ j ≤ g. Furthermore, if

{κi(r̃1, . . . , r̃g+1)}i∈IM,n
consists of distinct elements, then it is a permutation

of IM,n. By a suitable choice of the surjection

m(j, i) = m(i, j) := M − (g − j)(g − j − 1)/2 + i , (2.11)

j ≤ i ∈ Ig, we obtain IM,n = IL as an equality between ordered sets.
Consider the maps s : I → I, where I is any ordered subset of IM ; if s is

bijective, then it is a permutation of I. We define the function ε(s) to be the
sign of the permutation if s is bijective, and zero otherwise.

Let F be a commutative field and S a non-empty set. Fix a set fi, i ∈ Ig,
of F -valued functions on S, and xi ∈ S, i ∈ IM . Set

ffm(i,j) := fifj ,
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i, j ∈ Ig, and
det f(xdj(s)) := detik fk(xdj

i (s)
) ,

j ∈ Ig+1, where xi ∈ S, i ∈ IM . Furthermore, for any ordered set I ⊆ IM , we
denote by

detI ff(x1, . . . , xCard(I)) ,

the determinant of the matrix (ffm(xi))i∈ICard(I)
m∈I

.

Lemma 2.2. Choose n ∈ Ig and L points xi in S, i ∈ IL. Fix g − n points
pi ∈ S, n + 1 ≤ i ≤ g and g F -valued functions fi on S, i ∈ Ig. The following
g(g − n) conditions

fi(pj) = δij , (2.12)

1 ≤ i ≤ j, n + 1 ≤ j ≤ g, imply

detIM,n ff(x1, . . . , xL)

=
1

cg,n

∑

s∈PL

ε(s)
n∏

j=1

det f(xdj(s))
g+1∏

k=n+1

det f(xdk
1 (s), . . . , xdk

n(s), pn+1, . . . , pg)

(2.13)

where

cg,n :=
∑

(r̃1,...,r̃g+1)∈P̃g,n

g+1∏

k=1

ε(r̃k)ε(κ(r̃1, . . . , r̃g+1)) . (2.14)

In particular, for n = g

cg det ff(x1, . . . , xM ) =
∑

s∈PM

ε(s)
g+1∏

j=1

det f(xdj(s)) , (2.15)

where

cg := cg,g =
∑

r1,...,rg+1∈Pg

g∏

k=1

ε(rk) ε(κ(r1, . . . , rg)) .

Proof. It is convenient to fix the surjection m as in (2.11), so that IM,n = IL.
Next consider

cg,n detIL
ff(x1, . . . , xL) = cg,n

∑

s∈PL

ε(s)ff1(xs1) · · · ffL(xsL
) . (2.16)

Restrict the sums in (2.14) to the permutations (r̃1, . . . , r̃g+1) ∈ Pg,n, i ∈ In,
such that ε(κ(r̃1, . . . , r̃g+1)) 6= 0, and set s′ := s ◦ κ(r̃1, . . . , r̃g+1), so that

ff1(xs1) · · · ffL(xsL
) = ffκ1(xs′1) · · · ffκL

(xs′L) ,

where κi is to be understood as κi(r̃1, . . . , r̃g+1). Note that ∀ l ∈ IM , there is
a unique pair i, j ∈ Ig, i ≤ j, such that l = m(i, j), and by (2.8) and (2.9) the
following identity

ffκl(r1,...,rg+1)(xs′l) = ffm(ri
j ,rj+1

i )(xs′
m(i,j)

) = fri
j
(xdi

j(s
′))frj+1

i
(xdj+1

i (s′)) ,
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holds ∀ (r1, . . . , rg+1) ∈ Pg+1
g . On the other hand, if l ∈ IL, then i ≤ n and by

Eq.(2.10)

ff1(xs1) · · · ffL(xsL
) =

n∏

i=1

fr̃i
1
(xdi

1(s
′)) · · · fr̃i

g
(xdi

g(s′))
g+1∏

j=n+1

fr̃j
1
(xdj

1(s
′)) · · · fr̃j

n
(xdj

n(s′)) . (2.17)

The condition fi(pj) = δij , i ≤ j, implies
∑

r̃j∈Pn

ε(r̃j)fr̃j
1
(xdj

1(s
′)) · · · fr̃j

n
(xdj

n(s′)) = det f(xdj
1(s

′), . . . , xdj
n(s′), pn+1, . . . , pg) ,

n + 1 ≤ j ≤ g + 1. Hence, Eq.(2.13) follows by replacing the sum over s with
the sum over s′ in (2.16), and using

ε(s) = ε(s′) ε(κ(r̃1, . . . , r̃g+1)) .

Eq.(2.15) is an immediate consequence of (2.13).

Remark 2.1. The summation over PM in Eq.(2.15) yields a sum over (g + 1)!
identical terms, corresponding to permutations of the g +1 determinants in the
product. Such an overcounting can be avoided by summing over the following
subset of PM

P ′M := {s ∈ PM , s.t. s1 = 1, s2 < s3 < . . . < sg, s2 < si, g + 1 ≤ i ≤ 2g− 1} ,

and by replacing cg by cg/(g + 1)!.

It can be verified that

cg,1 = g! , cg,2 = g!(g − 1)!(2g − 1) , c2 = 6 , c3 = 360 , c4 = 302400 .
(2.18)

The only non-trivial computation is cg,2, which is more interesting case for the
following constructions. The computation of its value is reported in section
2.2.1. For g = 2, cg/(g + 1)! = 1 and P ′M=3 = {(1, 2, 3)}, so that

det ff(x1, x2, x3) = det f(x1, x2) det f(x1, x3) det f(x2, x3) . (2.19)

A crucial point in proving Lemma 2.2 is that if κi(r̃1, . . . , r̃g+1), i ∈ IM,n,
are pairwise distinct elements in IM , then they belong to IM,n ⊆ IM , with κ
a permutation of such an ordered set. For a generic ordered set I ⊆ IM , one
should consider κ as a function over g +1 permutations r̃i, i ∈ Ig+1, of suitable
ordered subsets of Ig. In particular, r̃i should be a permutation over all the
elements j ∈ Ig such that m(i, j) ∈ I, for j ≥ i, or m(i − 1, j) ∈ I, for j < i.
However, the condition that the elements κi(r̃1, . . . , r̃g+1), i ∈ I, are pairwise
distinct does not imply, in general, that they belong to I and Lemma 2.2 cannot
be generalized to a determinant of products ffi, i ∈ I. On the other hand, the
subsets

I := IM,n ∪ {m(i, j)} , (2.20)

satisfy such a condition for n < i, j ≤ g and yield the following generalization
of Lemma 2.2.
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Lemma 2.3. Choose n ∈ Ig and L + 1 points xi in S, i ∈ IL. Fix g− n points
pi ∈ S, n + 1 ≤ i ≤ g and g F -valued functions fi on S, i ∈ Ig, satisfying the
g(g − n) conditions (2.12). For each fixed pair i, j, n < i, j ≤ g, the following
relation

detIff(x1, . . . , xL+1) =
1

c′g,n

(2.21)

·
∑

s∈PL+1

ε(s) det f(xdn+1
1 (s), . . . , xdn+1

n+1(s)
, pn+1, . . . , p̌i, . . . , pg)

· det f(xdn+2
1 (s), . . . , xdn+2

n+1(s)
, pn+1, . . . , p̌j , . . . , pg)

·
n∏

k=1

det f(xdk(s))
g+1∏

l=n+3

det f(xdl
1(s)

, . . . , xdl
n(s), pn+1, . . . , pg) ,

holds, where

c′g,n :=
∑

(r̃1,...,r̃g+1)∈P̃I

g+1∏

i=1

ε(r̃i)ε(κ(r̃1, . . . , r̃g+1)) ,

P̃I := Pn
g × P2

n+1 × Pg−n−1
n , and I is defined in (2.19).

Proof. A straightforward generalization of the proof of Lemma 2.2.

2.2.1 Computation of cg,2

Let us choose the definition (2.11) for m(i, j), so that, in particular,

m(1, i) = i , i ∈ Ig , m(2, j) = j + g , j ∈ Ig \ {1} .

Definition (2.14), for n = 2, can be written as

cg,2 =
∑

t2,...,tg∈P2

∑

r,s∈Pg

g∏

i=2

ε(ti)ε(r)ε(s)ε(κ(r, s, t2, . . . , tg)) ,

where κ(r, s, t2, . . . , tg) is a (2g − 1)-tuple of elements in I2g−1, whose i-th ele-
ment is given by applying m to the i-th element of

(r(1)s(1), t2(1)r(2), . . . , tg(1)r(g), t2(2)s(2), . . . , tg(2)s(g)) . (2.22)

In other words, ε(κ(r, s, t2, . . . , tg)) vanishes if the elements in (2.22) are not
pairwise distinct; otherwise, (2.22) is necessarily given by a permutation of

(11, 12, . . . , 1g, 22, 23, . . . , 2g) ,

and ε(κ(r, s, t2, . . . , tg)) is the sign of such a permutation.
Denote by e and p the identity element and the non-trivial permutation of

P2. Fix t2, . . . , tg ∈ P2 and let k, 0 ≤ k ≤ g− 1, be the number of permutations
in this set which do not correspond to the identity element e ∈ P2. Then,∏g

2 ε(ti) = (−)k. We can reorder

t2, . . . , tg → t̃2, . . . , t̃g (2.23)
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in such a way that

t̃2, . . . , t̃g−k = e , t̃g−k+1, . . . , t̃g = p .

For each choice of r, s, one can apply the reordering (2.23) to r(2), . . . , r(g)
and to s(2), . . . , s(g), while keeping r(1) and s(1) fixed, to obtain two new
permutations r̃, s̃. Then, it is readily verified that

ε(r)ε(s)ε(κ(r, s, t2, . . . , tg)) = ε(r̃)ε(s̃)ε(κ(r̃, s̃, t̃2, . . . , t̃g)) = ε(r̃)ε(s̃)ε(r, s, k) ,

where
ε(r, s, k) := ε(κ(r, s, e, . . . , e︸ ︷︷ ︸

g−1−k times

, p, . . . , p︸ ︷︷ ︸
k times

)) .

It follows that

cg,2 =
g−1∑

k=0

(−)k

(
g − 1

k

) ∑

r,s∈Pg

ε(r)ε(s)ε(r, s, k) ,

where
(
g−1

k

)
are all the different ways to choose the k non-trivial permutations

among t2, . . . , tg. Let us consider the dependence of the product ε(r)ε(s)ε(r, s, k)
on r ∈ Pg, for a fixed k. For each fixed r(1), such a product only depends on
the splitting of Ig \ {r1} into the disjoint union of two subsets, given by

Ig \ {r1} = {r2, . . . , rg−k} t {rg−k+1, . . . , rg} .

In particular, two different permutations r and r̃ such that r1 = r̃1 and such
that

{r2, . . . , rg−k} = {r̃2, . . . , r̃g−k} ,

{rg−k+1, . . . , rg} = {rg−k+1, . . . , rg} ,

give the same contribution to the summation. The conditions above determine
an equivalence relation, depending on k, between elements in Pg, each equiva-
lence class corresponding to k!(g − k − 1)! elements. The same considerations
apply to the permutation s, so that

cg,2 =
g−1∑

k=0

(−)k

(
g − 1

k

)
[k!(g − k − 1)!]2

g∑
r1,s1=1

∑

[r],[s]∈(g−1
k )

r1,s1

ε(r)ε(s)ε(r, s, k) .

Here, the notation
∑

[r]∈(g−1
k )

r1

means that we are summing the equivalence

classes corresponding to a fixed k and r1. A representative for each class can be
chosen by imposing, for example, r2 < . . . < rg−k and rg−k+1 < . . . < rg; this
will be our ususal choice in the following.

Let us consider the sums over r1 and s1. If both r1 and s1 are greater
than 2, then ε(r, s, k) = 0. If r1 = s1, then ε(r, s, k) 6= 0 if and only if r = s
as permutations (so that ε(r)ε(s) = 1). In this case, it is easy to check that
ε(r, s, k) = (−)k. Then,

2∑

i=1

∑

[r],[s]∈(g−1
k )

i,i

ε(r)ε(s)ε(r, s, k) = 2
(

g − 1
k

)
(−)k .

The other cases for which ε(r, s, k) is non-vanishing are:
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– r1 = 1, s1 = i > 1. Let n,m be the integers such that rn = i and
sm = 1. Then, to obtain a non-vanishing ε(r, s, k), a necessary condition
is n, m > g − k; we can choose representatives r, s of the equivalence
classes, in such a way that rg−k+1 = i, sg−k+1 = 1 and r2 < . . . < rg−k,
rg−k+2 < . . . < rg and analogous ordering for s. Then, ε(r, s, k) 6= 0 if
and only if rl = sl for all l /∈ {1, g − k + 1} and, in this case, we have
ε(r, s, k) = (−)k. It follows that

g∑

i=2

∑

[r],[s]∈(g−1
k )1,i

ε(r)ε(s)ε(r, s, k) = (g − 1)
(

g − 2
k − 1

)
(−)k .

Here, the factor
(

g−2
k−1

)
is the number of different ways to choose rg−k+2 <

. . . < rg in the set Ig \ {1, i} and the factor g − 1 is due to the sum over
s1 = i.

– r1 = i > 1, s1 = 1. In this case the conditions for ε(r, s, k) 6= 0 are r2 = 1,
s2 = i, and rl = sl for all l > 2, and again ε(r, s, k) = (−)k, so that

g∑

i=2

∑

[r],[s]∈(g−1
k )

i,1

ε(r)ε(s)ε(r, s, k) = (g − 1)
(

g − 2
k

)
(−)k .

The factor
(
g−2

k

)
is to the number of different ways to choose rg−k+1 <

. . . < rg in Ig \ {1, i}.
– r1 = 2, s1 = i > 2. The contribution is

g∑

i=3

∑

[r],[s]∈(g−1
k )2,i

ε(r)ε(s)ε(r, s, k) = (g − 2)
(

g − 2
k

)
(−)k ,

where the factor g − 2 comes from the sum over s1 = i > 2.

– s1 = 2, r1 = i > 2. The contribution is

g∑

i=3

∑

[r],[s]∈(g−1
k )

i,2

ε(r)ε(s)ε(r, s, k) = (g − 2)
(

g − 2
k − 1

)
(−)k .

To summarize, we have

cg,2 =
g−1∑

k=0

(
g − 1

k

)
[k!(g − k − 1)!]2

·
[
2
(

g − 1
k

)
+ (2g − 3)

((
g − 2

k

)
+

(
g − 2
k − 1

))]

=
g−1∑

k=0

(2g − 1)
[(

g − 1
k

)
k!(g − k − 1)!

]2

=(2g − 1)g[(g − 1)!]2 = (2g − 1)g!(g − 1)! .
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2.2.2 Examples of the combinatorial lemmas

We now show some examples of the combinatorial construction described in the
last subsection. Set g = 4, so that M = g(g + 1)/2 = 10. Fix a surjection
m : I4 × I4 → I10 with m(i, j) = m(j, i), for example by setting m(i, j) = [m]ij ,
with [m] the symmetric matrix

[m] =




1 2 3 4
2 5 6 7
3 6 8 9
4 7 9 10


 .

For each function s : I10 → I10, the 4-tuples di(s), i = 1, . . . , g + 1 = 5, are
determined by

di
j(s) = dj+1

i (s) = sm(i,j) ,

i ≤ j ∈ Ig, so that, with the above choice of m,

d1(s) = (s1, s2, s3, s4) ,

d2(s) = (s1, s5, s6, s7) ,

d3(s) = (s2, s5, s8, s9) ,

d4(s) = (s3, s6, s8, s10) ,

d5(s) = (s4, s7, s9, s10) .

Let Pg be the group of permutations of g elements. The function κ : P5
4×I10 →

I10 is defined by
κm(i,j)(r1, . . . , r5) = m(ri

j , r
j+1
i ) , (2.24)

i ≤ j ∈ Ig, where (r1, . . . , r5) ∈ P5
4 . For example, fix

r1 = (3, 4, 1, 2) ,

r2 = (1, 2, 4, 3) ,

r3 = (2, 4, 1, 3) ,

r4 = (1, 2, 3, 4) ,

r5 = (2, 4, 1, 3) .

To determine κ1(r1, . . . , r5), note that 1 = m(1, 1), so that, by definition,

κm(1,1)(r1, . . . , r5) = m(r1
1, r

2
1) = m(3, 1) = 3 .

As a further example note that 2 = m(1, 2) = m(2, 1), so that

κm(1,2)(r1, . . . , r5) = m(r1
2, r

3
1) = m(4, 2) = 7 ,

(observe that Eq.(2.24), which defines κ, holds only for i ≤ j). The 4-tuples
di(κ(r1, . . . , r5)) are

d1(κ) = (3, 7, 1, 5) ,

d2(κ) = (3, 7, 7, 9) ,

d3(κ) = (7, 7, 3, 3) ,

d4(κ) = (1, 7, 3, 9) ,

d5(κ) = (5, 9, 3, 9) .
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It is readily verified the general relation

di
j(κ(r1, . . . , r5)) = dj+1

i (κ(r1, . . . , r5)) = m(ri
j , r

j+1
i ) ,

i ≤ j ∈ Ig. Note that if κ(r1, . . . , r5) : I10 → I10, for some fixed r1, . . . , r5, is a
monomorphism, then it determines a permutation of I10. Hence, we can define
the function ε(κ(r1, . . . , r5)) to be the sign of the permutation κ(r1, . . . , r5) if
it is a monomorphism, and zero otherwise.
Consider the subset

IM,n = {m(i, j) | i ∈ In, j ∈ Ig} ,

for some n ∈ Ig. κ can be generalized to a function from P̃g,n × IM,n, where
P̃g,n := Pn

g ×Pg−n+1
n , into IM . As an example, consider κ : P̃4,2× I10,2 → I10,

where I10,2 = {1, 2, 3, 4, 5, 6, 7} (the precise form of I10,2 depends on the choice
of m). Fix (r̃1, . . . , r̃5) ∈ P̃4,2 = P2

4 × P3
2 , e.g. by

r̃1 = (3, 4, 1, 2) ,

r̃2 = (1, 2, 4, 3) ,

r̃3 = (2, 1) ,

r̃4 = (1, 2) ,

r̃5 = (1, 2) .

As a specific case, say κ6, note that 6 = m(2, 3) = m(3, 2) and set

κm(2,3)(r̃1, . . . , r̃5) = m(r̃2
3, r̃

4
2) = m(4, 2) = 7 .

For general choices of r̃1, . . . , r̃5, κ(r̃1, . . . , r̃5) : I10,2 → I10 may not be a
monomorphism. It can be verified that if the image κ(r̃1, . . . , r̃5)(I10,2) 6⊆ I10,2,
then κ(r̃1, . . . , r̃5) is not a monomorphism. Therefore, if κ(r̃1, . . . , r̃5) is a
monomorphism, then it determines a permutation of I10,2. Hence, we can define
the function ε(κ(r̃1, . . . , r̃5)) to be the sign of κ(r̃1, . . . , r̃5) if it is a monomor-
phism, and zero otherwise.

Let us apply Lemma 2.2 to the previous examples. Consider four linearly
independent functions f1, . . . , f4 : C→ C, and set

ffm(i,j)(z) := fi(z)fj(z) .

Next, fix x1, . . . , x10 ∈ C and consider

det




ff1(x1) . . . ff10(x1)
...

. . .
...

ff1(x10) . . . ff10(x10)


=det




f1(x1)f1(x1) . . . f4(x1)f4(x1)
...

. . .
...

f1(x10)f1(x10) . . . f4(x10)f4(x10)




so that m(i, j) determines the column where fifj appears. It is easily verified
that the above determinant is proportional to

∑

s∈P10

ε(s) det fi(xd1
j (s)) det fi(xd2

j (s)) det fi(xd3
j (s)) det fi(xd4

j (s)) det fi(xd5
j (s)) .

(2.25)
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This expression, after expanding each determinant, consists of a summation
over products of twenty factors fi(xj), where each xk appears twice. After
skew-symmetrization of the xk’s, this expression is necessarily proportional to
the original determinant.

In Lemma 2.2 it is also considered the more general case of determinants
made up of functions ffi, where i varies in a subset IM,n ⊂ IM of L < M
elements. For example, let us consider the subset I10,2 = {1, . . . , 7} and fix the
points x1, . . . , x7 ∈ C. We are interested in the determinant

det




ff1(x1) . . . ff7(x1)
...

. . .
...

ff1(x7) . . . ff7(x7)


 = det




f1(x1)f1(x1) . . . f2(x1)f4(x1)
...

. . .
...

f1(x7)f1(x7) . . . f2(x7)f4(x7)


 .

(2.26)
By repeating the above construction, this determinant can be expressed as (a
sum over) products of two determinants of 4× 4 matrices times three determi-
nants of lower-dimensional 2× 2 matrices

∑

s∈P10

ε(s) detI4 fi(xd1
j (s)) detI4 fi(xd2

j (s)) detI2 fi(xd3
j (s))

detI2 fi(xd4
j (s)) detI2 fi(xd5

j (s)) ,

where detIn fi(xj) := detij∈In fi(xj). In order to obtain products of five deter-
minants of 4 × 4 matrices in the form similar to Eq.(2.25), one has to impose
some conditions on the functions fi. In particular, it is sufficient to require that
there exist two points, p3, p4 ∈ C, such that

f1(pi) = f2(pi) = 0 , i = 3, 4 ,

f3(p4) = f4(p3) = 0 ,

f3(p3) = f4(p4) = 1 .

In this case, the following identity

det
(

f1(x1) f2(x1)
f1(x2) f2(x2)

)
= det




f1(x1) f2(x1) f3(x1) f4(x1)
f1(x2) f2(x2) f3(x2) f4(x2)
f1(p3) f2(p3) f3(p3) f4(p3)
f1(p4) f2(p4) f3(p4) f4(p4)


 ,

holds and the determinants in (2.26) are proportional to

∑

s∈P7

ε(s) det fi(xd1
j (s)) det fi(xd2

j (s)) det f(xd3
1(s)

, xd3
2(s)

, p3, p4) (2.27)

· det f(xd4
1(s)

, xd4
2(s)

, p3, p4) det f(xd5
1(s)

, xd5
2(s)

, p3, p4) ,

where det f(z1, . . . , z4) := detij∈I4 fi(zj). Lemma 2.2 generalizes such a result
to any g and n. Proportionality of Eqs.(2.26) and (2.27) can be understood as
follows. Upon expanding the determinants in (2.27) and using the conditions
on fi, this expression corresponds to a summation of products of the form

f1f2f3f4 · f1f2f3f4 · f1f2 · f1f2 · f1f2 , (2.28)
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with the fi’s evaluated at x1, . . . , x7 (each xi appears twice). Such a product
can be re-arranged as

ffi1(x1)ffi2(x2) . . . ffi7(x7) ,

for some i1, . . . , i7 ∈ I10. After skew-symmetrization over the variables xi, only
the products with distinct i1, . . . , i7 contribute. But this implies i1, . . . , i7 ∈
I10,2, since the only possibility to construct seven different functions fifj out of
the fourteen functions in Eq.(2.28) is

f2
1 (x1)f1f2(x2)f1f3(x3)f1f4(x4)f2

2 (x5)f2f3(x6)f2f4(x7) , (2.29)

up to permutations of the xi’s. This is strictly related to the observation that
if κ(r̃1, . . . , r̃5) is a monomorphism, then it corresponds to a permutation of
I10,2. The skew-symmetrization of (2.29) with respect to x1, . . . , x7 is exactly
the determinant we were looking for.

Note that Lemma 2.2 may not be generalized to the case of determinants of
matrices with rows ffi1 , . . . , ffiL , when I := {i1, . . . , iL} is a generic subset of
I10. One can always define a generalization of the κ function as κ(r̃1, . . . , r̃5) :
I → I10, with r̃1, . . . , r̃5 in some suitable subset of P5

4 . However, the necessary
condition for the generalization of Lemma 2.2 is that if κ is a monomorphism,
then κ(I) = I. Such a condition is verified, for example, if I = I10,n, as showed
before for I10,2. The condition still holds when I = I10,n ∪ {j}, for all the
elements j ∈ I10\I10,n, which is the content of Lemma 2.3. An example for which
the analog of Lemma 2.2 does not exist is for I = {1, 5, 8, 10}, corresponding to
determinants of matrices with rows f2

1 , f2
2 , f2

3 , f2
4 . Actually, defining a formula

similar to (2.25) in order to obtain terms in the form f2
1 (x1)f2

2 (x2)f2
3 (x3)f2

4 (x4),
some unwanted terms, such as f1f2(x1)f2f3(x2)f3f4(x3)f4f1(x4), do not cancel
in the RHS.
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3. DETERMINATS OF HOLOMORHPIC DIFFERENTIALS
AND THETA FUNCTIONS SURFACES

After reminding some basic facts about theta functions, we investigate the divi-
sor structures of the theta function and its derivatives that will be used in the
subsequent chapters.

3.1 Determinants in terms of theta functions

Set

S(p1 + . . . + pg) :=
θ(

∑g
1 pi − y)

σ(y)
∏g

1 E(y, pi)
, (3.1)

y, p1, . . . , pg ∈ C.

Lemma 3.1. For all p1, . . . , pg ∈ C, S(p1 + . . . + pg) is independent of y. For
each fixed d ∈ Cg−1, consider the map πd : C → Cg, πd(p) := p + d. The
pull-back π∗dS vanishes identically if and only if d is a special divisor; if d is not
special, then π∗dS is the unique (up to a constant) holomorphic 1/2-differential
such that [(π∗dS) + d] is the canonical divisor class.

Proof. If p1 + . . . + pg is a special divisor, the Riemann Vanishing Theorem
implies S = 0 identically in y; if p1 + . . . + pg is not special, S is a single-
valued meromorphic section in y with no zero and no pole. It follows that, in
any case, S is a constant in y. This also shows that S(p1 + . . . + pg) = 0 if
and only if p1 + . . . + pg is a special divisor. Hence, if d ∈ Cg−1 is a special
divisor, S(p + d) = 0 for all p ∈ C. On the contrary, if d is not special, then
h0(KC ⊗O(−d)) = 1, and S(p+d) = 0 if and only if p is one of the zeros of the
(unique, up to a constant) holomorphic section of H0(KC ⊗ O(−d)), and this
concludes the proof.

Proposition 3.2 (Fay, [23, 24]). Fix n ∈ N+, set Nn := (2n− 1)(g − 1) + δn1

and let {φn
i }i∈INn

be arbitrary bases of H0(Kn
C). There are constants κ[φn]

depending only on the marking of C and on {φn
i }i∈INn

such that

κ[φ1] =
det φ1

i (pj)
S

(∑g
1 pi

) ∏g
1 σ(pi)

∏g
i<j E(pi, pj)

, (3.2)

and

κ[φn] =
det φn

i (pj)

θ
(∑Nn

1 pi

) ∏Nn

1 σ(pi)2n−1
∏Nn

i<j E(pi, pj)
, (3.3)

for n ≥ 2, for all y, p1, . . . , pNn ∈ C.
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Proof. κ[φn] is a meromorphic function with empty divisor with respect to
y, p1, . . . , pNn .

For each set {φn
i }i∈INn

⊂ H0(Kn
C), consider the Wronskian

W [φn](p) := det ∂j−1
p φn

i (p) .

If W [φn](p) does not vanish identically, then, for each {φn′
i }i∈INn

⊂ H0(Kn
C),

we have the constant ratio

κ[φn]
κ[φn′ ]

=
detφn′(p1, . . . , pNn

)
detφn(p1, . . . , pNn

)
=

W [φn′ ](p)
W [φn](p)

, (3.4)

for arbitrary p, p1, . . . , pNn ∈ C.

3.2 Relations among higher order theta derivatives and
holomorphic differentials

By Riemann Vanishing Theorem it follows that

θ(np + cg−n − y)

n ∈ Ig, as a function of y, has a zero of order n at p for all the effective divisors
cg−n of degree g − n. In particular,

∑

i

θi(p + cg−2)ωi(p) = 0 . (3.5)

Proposition 3.3. Fix x1, . . . , xg−1 ∈ C. The following relations hold

∑

i

θi(x1 + . . . + xg−1)ωi(x1) = 0 ,

∑

i,j

θij(x1 + . . . + xg−1)ωi(x1)ωj(x2) = 0 ,

...
∑

i1,...,ig−1

θi1...ig−1(x1 + . . . + xg−1)ωi1(x1) · · ·ωig−1(xig−1) = 0 .

Proof. Without loss of generality, we can assume distinct x1, . . . , xg−1; the gen-
eral case follows by continuity arguments. The first relation is just Eq.(3.5).
Let us assume that the equation

∑

i1,...,in

θi1...in(x1 + . . . + xg−1)ωi1(x1) . . . ωin(xn) = 0 ,

holds, for all n ∈ IN−1, with 1 < N ≤ g− 1. Then by taking its derivative with
respect to xn+1 one obtains the subsequent relation.
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Corollary 3.4. Fix p ∈ C and a set of effective divisors ck, k ∈ Ig−2 of degree
k. The following relations hold

∑

i

θi(p + cg−2)ωi(p) = 0 ,

∑

i,j

θij(2p + cg−3)ωiωj(p) = 0 ,

...
∑

i1,...,ig−1

θi1...ig−1((g − 1)p)ωi1 · · ·ωig−1(p) = 0 .

We denote by λ := {λ1, . . . , λl} a partition of length |λ| := l of some integer
d > 0, that is

l∑

i=1

λi = d , λ1 ≥ . . . ≥ λl > 0 .

On the set of the partitions of an integer d, a total order relation can be defined
by setting

λ′ > λ ⇐⇒ ∃i, 0 < i ≤ min{|λ|, |λ′|}, s.t.

{
λ′j = λj , 1 ≤ j < i ,

λ′i > λi .

With respect to such a relation, the minimal and the maximal partitions λmin

and λmax of d, are

λmin
1 = . . . = λmin

d = 1 , λmax
1 = d .

Also observe that λmin and λmax have, respectively, the maximal and minimal
lengths |λmin| = d, |λmax| = 1.
For a general holomorphic d differential η, let η(z) be its trivialization around
a point p ∈ C, with respect to some local coordinate z and let us define

η(0)(p) := η(z) , η(n)(p) :=
∂nη

∂zn
(z) , n > 0 .

Theorem 3.5. Fix d ∈ Ig−1, a point p ∈ C and a effective divisor cg−d of
degree g − d. Then, for each partition λ of d, there exists c(λ) ∈ Z independent
of C, p, cg−d, such that

g∑

i1,...,il

θi1...il
((d− 1)p + cg−d)ω

(λ1−1)
i1

· · ·ω(λl−1)
il

(p) (3.6)

= c(λ)
g∑

j1,...,jd

θj1...jd
((d− 1)p + cg−d)ωj1 · · ·ωjd

(p) , (3.7)

where l := |λ|.
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Proof. The theorem is just an identity for λ = λmin, with c(λmin) = 1. Let us
consider a partition λ > λmin of d, and set l := |λ| < d (|λ| = d necessarily
implies λ = λmin). Fix c = x1 + . . . + xg−1, with x1, . . . , xg−1 ∈ C, and apply
the derivative operator

D(λ) :=
( d

dx1

)λ1 · · ·
( d

dxl

)λl

,

to the identity
θ(c−∆) = 0 . (3.8)

Upon taking the limit x1, . . . , xl → p, we obtain a sum, such that each term can
be associated to a partition λ′ of d and written as

g∑

i1,...,il′

θi1...il′ (lp + cg−1−l −∆)ω(λ′1−1)
i1

· · ·ω(λ′
l′−1)

il′
(p) ,

with l′ := |λ′| and cg−1−l = xl+1+ . . .+xg−1. The sum is over a set of partitions
λ′ satisfying λ′ ≤ λ and l′ ≥ l, so that λ is the maximal partition appearing.
Thus, the sum can be rearranged as

∑

i1,...,il

θi1...il
(lp + cg−1−l)ω

(λ1−1)
i1

· · ·ω(λl−1)
il

(p) (3.9)

=
∑

λ′<λ

b(λ, λ′)
∑

i1,...,il′

θi1...il′ (lp + cg−1−l)ω
(λ′1−1)
i1

· · ·ω(λ′
l′−1)

il′
(p) , (3.10)

for some coefficients b(λ, λ′) ∈ Z. If the only non-vanishing contribution to
the RHS corresponds to λ′ = λmin, the theorem follows after taking the limit
xl+1, . . . , xd−1 → p. Otherwise, for each λ′ > λmin, one can obtain a further
identity by applying the operator D(λ′) to the identity (3.8) and taking the limit
x1, . . . , xl′ → p. This procedure leads to an expression for

∑

i1,...,il′

θi1...il′ (l
′p + cg−1−l′)ω

(λ′1−1)
i1

· · ·ω(λ′
l′−1)

il′
(p) ,

analogous to Eq.(3.9), where the RHS is a sum of terms corresponding to par-
titions λ′′ < λ′. This expression can be used to replace the term corresponding
to λ′ in Eq.(3.9), considered in the limit xl+1, . . . , xl′ → p, with a sum over a
set of partitions λ′′ < λ′. After a finite number of steps, the RHS of Eq.(3.9)
reduces to a term corresponding to λmin times an integer coefficient

c(λ) :=
∑

λ′<λ

∑

λ′′<λ′
. . .

∑

λ...

b(λ, λ′)b(λ′, λ′′) · · · b(λ..., λmin) .

The arguments of the θ-functions on both sides are

l′p− cg−1−l′ −∆ ,

where l′ is the length of the minimal partition λ′ > λmin appearing in any
intermediate step of the procedure. Therefore, l′ ≤ d − 1 and the theorem
follows. (Actually, with some more effort, it can be proved that the bound d−1
cannot be improved).
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Corollary 3.6. Fix d ∈ Ig−1, a point p ∈ C and an effective divisor cg−d−1 of
degree g − d− 1. Then, for each partition λ of d,

g∑

i1,...,il

θi1...il
(dp + cg−d−1)ω

(λ1−1)
i1

· · ·ω(λl−1)
il

(p) = 0 ,

where l := |λ|.

Proof. A trivial application of Eq.(3.6), with cg−d := p+ cg−d−1, and Corollary
3.4.

3.3 Combinatorial lemmas and determinants of holomorphic
differentials

Applying Lemmas 2.2 and 2.3 to determinants of symmetric products of holo-
morphic 1-differentials on an algebraic curve C of genus g leads to combinatorial
relations. By Eq.(3.2) and (3.3), such combinatorial relations yield non trivial
identities among products of theta functions.

Proposition 3.7. The following identities

det ηη(x1, x2, x3) = det η(x1, x2) det η(x1, x3) det η(x2, x3) , g = 2 ,

(3.11)

det ηη(x1, . . . , x6) =
1
15

∑

s∈P′6
ε(s)

4∏

i=1

det η(xdi
1(s)

, xdi
2(s)

, xdi
3(s)

) , g = 3 ,

(3.12)

0 =
∑

s∈PM

ε(s)
g+1∏

i=1

det η(xdi(s)) , g ≥ 4 ,

(3.13)

where {ηi}i∈Ig is an arbitrary basis of H0(KC) and xi, i ∈ IM , are arbitrary
points of C, hold. Furthermore, they are equivalent to

det ηη(x1, x2, x3) = −κ[η]3
∏3

i=1 θ(
∑3

j=1 xj − 2xi)
∏3

1 σ(xj)∏
i<j E(xi, xj)

, (3.14)

for g = 2

det ηη(x1, . . . , x6) =
κ[η]
15

4 6∏

i=1

σ(xi)2 (3.15)

∑

s∈P′6
ε(s)

4∏

k=1

θ
(∑3

i=1 xdk
i (s) − yk,s

)∏3
i<j E(xdk

i (s), xdk
j (s))∏3

i=1 E(yk,s, xdk
i (s))σ(yk,s)

,
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for g = 3

∑

s∈PM

ε(s)
g+1∏

k=1

θ
(∑g

i=1 xdk
i (s) − yk,s)

∏g
i<j E(xdk

i (s), xdk
j (s))∏g

i=1 E(yk,s, xdk
i (s))σ(yk,s)

= 0 , (3.16)

for g ≥ 4, where yk,s, k ∈ Ig+1, s ∈ PM , are arbitrary points of C.

Proof. Eqs.(3.11)-(3.13) follow by applying Lemma 2.2 to det ηη(x1, . . . , xM )
and noting that it vanishes for g ≥ 4. Eqs.(3.14)-(3.16) then follow by Eq.(3.2).

In [15] D’Hoker and Phong made the interesting observation that for g = 2

detωω(x1, x2, x3) = det ω(x1, x2) det ω(x1, x3) det ω(x2, x3) , (3.17)

that proved by first expressing the holomorphic differentials in the explicit form
and then using the product form of the Vandermonde determinant. Eq.(3.17)
corresponds to (3.11) when the generic basis η1, η2 of H0(KC) is the canonical
one. On the other hand, the way (3.11) has been derived shows that (3.17) is an
algebraic identity since it does not need the explicit hyperelliptic expression of
ω1 and ω2. Eq.(3.17) is the first case of the general formulas, derived in Lemmas
2.2 and 2.3, expressing the determinant of the matrix ffi(xj) in terms of a sum
of permutations of products of determinants of the matrix fi(xj). In particular,
by (3.12), for g = 3 we have

detωω(x1, . . . , x6) =
1
15

∑

s∈P′6
ε(s)

4∏

i=1

detω(xdi(s)) .

3.4 The Mumford isomorphism

Let Cg
π−→ Mg be the universal curve over Mg and Ln = Rπ∗(Kn

Cg/Mg
) the

vector bundle on Mg of rank (2n − 1)(g − 1) + δn1 with fiber H0(Kn
C) at the

point of Mg representing C. Let λn := det Ln be the determinant line bundle.
According to Mumford [49]

λn
∼= λ⊗cn

1 ,

where cn = 6n2 − 6n + 1, which corresponds to (minus) the central charge of
the chiral b− c system of conformal weight n [11]. The Mumford form

µg,n = Fg,n[φn]
φn

1 ∧ · · · ∧ φn
Nn

(ω1 ∧ · · · ∧ ωg)cn
,

where {φn
i }i∈INn

is a basis of H0(Kn
C), n ≥ 2. is the unique, up to a constant,

holomorphic section of λn ⊗ λ−⊗cn
1 nowhere vanishing on Mg.

Explicit expressions of the Mumford form were derived in [7, 5, 1, 61] and
[24]. In particular, in the following proposition, a modification of the expression
derived by Fay [24] is presented.
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Proposition 3.8 (Fay [24]). The Mumford form µg,n is given by

µg,n =
κ[ω](2n−1)2

κ[φn]
φn

1 ∧ · · · ∧ φn
Nn

(ω1 ∧ · · · ∧ ωg)cn
. (3.18)

Proof. We will only sketch the main lines of the proof; the details can be found
in [24]. Let us consider the Teichmüller space Tg of genus g; each point of Tg

corresponds to a Riemann surface C with marking. For each positive integer
n, consider the bundle L̃n of rank Nn, whose fiber at the point representing
C is H0(Kn

C). Since Tg is topologically trivial, the sheaf of sections of such a
bundle is freely generated by Nn global holomorphic sections. In particular, a
natural choice for L̃1, at the point representing the marked Riemann surface
C, is given by the canonical basis {ωi}i∈Ig

. The expression µg,n in Eq.(3.18)
determines a non-vanishing holomorphic section of the line bundle λ̃n ⊗ λ̃−⊗cn

1

on Tg, where λ̃n := ∧NnL̃n, n > 0. Now, the moduli space Mg is the quotient
of Tg by the mapping class group, and it is clear that a section of λ̃n ⊗ λ̃−⊗cn

1

on Tg corresponds to a section of λn⊗λ−⊗cn
1 on Mg if and only if it is invariant

under a change of marking. Any dependence of the basis {φn
i }i∈INn

on the
marking cancels in the ratio κ[φn]/φn

1 ∧ · · · ∧ φn
Nn

. Consider the definition (3.2)
and (3.3) of κ[ω] and κ[φn], respectively. Note that the number of functions σ in

the numerator and denominator of κ[ω](2n−1)2

κ[φn] is the same, so that, by Eq.(B.9),
they can be replaced by theta functions and prime forms. The transformations
of theta functions, prime forms and determinants of the canonical basis {ωi}i∈Ig

under the change of marking are well-known (see Eq.(B.10) and (B.11)), and
direct computation shows that, under a modular transformation,

κ[ω](2n−1)2

κ[φn]
φn

1 ∧ · · · ∧ φn
Nn

→ (det(Cτ + D))cn
κ[ω](2n−1)2

κ[φn]
φn

1 ∧ · · · ∧ φn
Nn

,

and the proposition follows.

The normalization of (3.18) is chosen so that the Polyakov bosonic string
measure on Mg is given by (see [24] and [15])

dµPol =
|Fg,2[φ]|2

(det Im τ)13
|φ1 ∧ . . . ∧ φN |2 .

The Mumford form extends as a meromorphic section to the Deligne-Mumford
compactification M̄g of the moduli space, with prescribed polar singularities at
the boundary. In particular, such a form have poles of order n(n − 1) in the
limit in which the genus g Riemann surface C degenerates a Riemann surface
with a node, separating it in lower genera components C1 and C2. From the
point of view of bosonic string theory, such poles correspond to the divergence
due to tachyon states propagating between the Riemann surfaces C1 and C2.
(For genus 2, the holomorphic section of λn ⊗ λ⊗cn

1 on M2 is unique only upon
prescribing such a behavior on the boundary of M̄2.)

In [6, 48] it has been shown that

F2,2[ωω] =
c2,2

Ψ10(τ)
, (3.19)
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with c2,2 a complex constant and Ψ10 the modular form of weight 10

Ψ10(τ) :=
∏

a,b even

θ [ab ] (0)2 ,

where the product is over the 10 even characteristics of g = 2. The derivation
simply follows by noting that F2,2 must be the inverse a modular form of weight
10, with the correct polar singularities at the boundary of M2. Since the genus
2 modular forms have been completely classified by Igusa [37], this is enough
to identify F2,2 up to the constant c2,2. This can be fixed by requiring that the
bosonic string measure correctly factorizes in the degeneration limits. In [15] it
has been proved that the correct normalization for the bosonic string measure
is given by c2,2 = 1/π12.

For what concerns the higher genus cases, it has been conjectured that [6, 48]

F3,2[ωω] =
c3,2

Ψ9(τ)
, (3.20)

with Ψ9(τ)2 ≡ Ψ18(τ)
Ψ18(τ) :=

∏

a,b even

θ [ab ] (0) ,

where the product is over the 36 even characteristics of g = 3 and c3,2 = 1/26π18

[16]. It is clear that such a derivation of the Mumford form can hardly be
generalized to higher genus cases, since, due to the Schottky problem, Fg,n, for
g ≥ 4, is not well defined on the whole Siegel upper half-space Hg, but only on
a 3g − 3-dimensional subspace.

Remarkably, Eq.(3.19) can be directly derived from Eq.(3.18), without ref-
erences to Igusa classification of modular forms. It is natural to ask whether
an analogous computation can be performed for genus 3. This is still an open
problem; however, the constructions presented in the following chapters pro-
vide a higher genus generalization to most of the steps involved in the genus 2
computation.

The remainder of this section is devoted to the description of such a pro-
cedure (a similar derivation is presented in [15]). Let us consider Eq.(3.18) for
n = g = 2

µ2,2 =
κ[ω]9

κ[ωω]
dτ11 ∧ dτ12 ∧ dτ22

(ω1 ∧ ω2)13
.

With respect to the canonical basis of H0(KC), Eq.(3.11), which follows by
Lemma 2.2, reads

det
i,j=1,2,3

ωωi(zj) = det ω(z1, z2) det ω(z2, z3) det ω(z1, z3) ,

for all z1, z2, z3 ∈ C, where

(ωω1, ωω2, ωω3) ≡ (ω1ω1, ω1ω2, ω2ω2) .

Then, by Eq.(3.3)

κ[ωω] =
detω(z1, z2) det ω(z2, z3) det ω(z1, z3)

θ(z1 + z2 + z3)
∏3

i<j E(zi, zj)
∏3

i=1 σ3(zi)
, (3.21)
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for arbitrary z1, z2, z3 ∈ C. Let us derive some useful identities which hold for
genus 2. By Eq.(3.2)

detω(p1, p2) = (−)iκ[ω]σ(pi)
2∑

k=1

θk(pi)ωk(p3−i) ,

i = 1, 2, holds for all p1, p2 ∈ C. By integrating both hands along the cycle αj ,
j = 1, 2, with respect to p3−i, we obtain

ωj(pi) = (−)jκ[ω]θ3−j(pi)σ(pi) ,

and, by taking the determinant of both sides with respect to the indices i and
j, we get

detω(p1, p2) = κ[ω]2σ(p1)σ(p2) det
ij

θi(pj) . (3.22)

By comparing Eq.(3.22) and Eq.(3.2), it follows that

κ[ω] =
θ(p1 + p2 − y)E(p1, p2)

E(y, p1)E(y, p2)σ(y)D(p1, p2)
, (3.23)

where
D(p1, p2) := det θi(pj) .

By Eqs.(3.21)(3.22)

κ[ωω] =
κ[ω]6D(z1, z2)D(z2, z3)D(z1, z3)

θ(z1 + z2 + z3)
∏3

i<j E(zi, zj)
∏3

i=1 σ(zi)
,

and by (3.23) it follows that

κ[ω]9

κ[ωω]
= −θ(z1 + z2 + z3)θ(z1 + z2 − z3)θ(z1 + z3 − z2)θ(z2 + z3 − z1)

D(z1, z2)2D(z1, z3)2D(z2, z3)2
.

(3.24)
This expression holds for z1, z2, z3 arbitrary points in C. Let us recall that

any Riemann surface C of genus 2 is necessarily hyperelliptic, i.e. it can be
defined by the equation

w2 =
6∏

i=1

(z − ei) ,

(z, w) ∈ C2, with e1, . . . , e6 ∈ C distinct complex numbers. Three of such
parameters can be fixed (a conventional choice is e1 = 0, e2 = 1, e3 = ∞) by
a fractional linear transformation on Ĉ and the other three correspond to the
three complex moduli of the curve. Denote by p1, . . . , p6 ∈ C the branch points
pi := (ei, 0), i = 1, . . . , 6. For each i ∈ I6,

(z − ei)
dz

w
,

is a holomorphic Abelian differential with a double zero at the branch point pi.
Therefore, the divisor 2pi is canonical and νi ≡

[
ν′i
ν′′i

]
:= I(pi) is a (necessarily
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odd) spin structure. The corresponding holomorphic 1/2-differential φνi
is given

by

φ2
νi

=
2∑

j=1

θj [νi](0)ωj = eπiν′iτν′i+2πiν′iν
′′
i

2∑

j=1

θj(pi)ωj = Nνi
(z − ei)

dz

w
,

for all i ∈ I6, where Nνi
is a normalization constant. By evaluating the formula

(3.24) at three branch points zi ≡ pi, we obtain (note the exponential factors in
front of the thetas simplify)

κ[ω]9

κ[ωω]
=

θ[ν1 + ν2 + ν3]4

[ν1, ν2]2[ν1, ν3]2[ν2, ν3]2
, (3.25)

where
[ν1, ν2] := det

i,j=1,2
θi[νj ] .

The last tool needed to explicitly compute the Mumford form for genus 2, is
a g = 2 generalization of the Jacobi’s derivative formula which holds for g = 1
(see Appendix B.2). This is given by the Rosenhain’s formula [54, 32, 33]

[νi, νj ] = ±π2
6∏

k=1
k 6=i,j

θ[νi + νj + νk] ,

where νi, νj are arbitrary odd spin structures, i 6= j. Similar extensions have
been proved up to genus 5 [26, 23] and a modified version is conjectured to hold
to all genera [40, 41].

By Rosenhain’s formula, Eq.(3.25) gives

µ2,2 =
1

π12Ψ10

dτ11 ∧ dτ12 ∧ dτ22

(ω1 ∧ ω2)13
, (3.26)

as expected.

For g = 3, no such a derivation is known. However, the formula (3.20) can
be used to derive a non-trivial expression for the constant κ[ω], considered in
the following Proposition. Higher genus generalizations of such an identity are
considered in section 6.5.

Proposition 3.9. For g = 3

κ[ω]5 =
2−6π−18

15Ψ9(τ)

∑
s∈P′6 ε(s)

∏4
k=1[θ

(∑3
i=1 pdk

i (s) − y
) ∏3

i<j E(pdk
i (s), pdk

j (s))]

θ
(∑6

1 pi

)∏6
i=1 σ(pi)σ(y)4

∏6
i=1 E(y, pi)2

∏6
i<j E(pi, pj)

.

(3.27)

Proof. By (3.15)

detωω(p1, . . . , p6)
κ[ω]4

=
∏6

1 σ(pi)2]

15σ(y)4
∏6

i=1 E(y, pi)2

·
∑

s∈P′6
ε(s)

4∏

k=1

[θ
( 3∑

i=1

pdk
i (s) − y

) 3∏

i<j

E(pdk
i (s), pdk

j (s)) ,

and (3.27) follows by the identity
6∏

i=1

c(pi)−
3
2 = κ[ω]9

6∏
i=1

σ(pi)3.



4. DISTINGUISHED BASES OF HOLOMORPHIC
N -DIFFERENTIALS

One of the main tools in genus 2 calculations, both in bosonic string theories and,
more generally, in 2-dimensional Conformal Field Theories, is the hyperelliptic
representation, i.e. the representation of any Riemann surface C of genus 2 by
an algebraic curve defined by the equation

w2 =
∏

i

(z − ei) ,

z, w ∈ C, where ei are distinct points in C and the product is over 5 or 6
factors. For example, in the explicit calculation of the Mumford form, described
in section 3.4, several steps rely on such a representation.

One of the advantages in using the hyperelliptic representation is the possi-
bility explicitly define bases for abelian differentials in terms of of z, w. In turn,
this allows to derive explicit expressions for bases of holomorphic n-differentials,
for all the integer n > 1, in terms of n-fold products of such Abelian differentials.
In [15], formula (3.14) was proved with respect to such bases of construction
turned out to be a crucial point in the derivation of the Mumford form. Such a
problem is greatly simplified by the combinatorial relation between determinant
of Abelian differential and determinant of holomorphic n-differentials.

It is natural to ask whether a higher genus realization of such a construction
exists. The Max Noether’s theorem assures that, for g > 2, the natural map

ψ : Symn(H0(KC)) → H0(Kn
C) ,

is surjective if and only if C is not hyperelliptic. Hence, in the following, we will
only consider the case of non-hyperelliptic Riemann surfaces C.

A general procedure to define of a basis of holomorphic n-differentials in
terms of a distinguished basis of abelian differentials is provided by the Petri’s
construction [52]. This has been used to study the ideal of the smooth irreducible
algebraic curve, given by the canonical embedding of the Riemann surface C in
Pg−1. The main result of this approach is Petri’s theorem, we recall in section
5.3. The starting point of such a construction is the choice of g distinct points
p1, . . . , pg on C in general position (the precise condition is given below); then,
one defines a a basis {σ1, . . . , σg} of abelian differentials, such that σi(pj) = 0 for
all i 6= j, 1 ≤ i, j ≤ g. Such conditions determine the basis {σ1, . . . , σg} up to a
non-singular diagonal transformation. Such an ambiguity in the normalization
was not relevant for the aims of the original construction, but it is a crucial point
for the following derivations. In facts, since we are going to look at σ1, . . . , σg

as sections on a line bundle on the moduli space Mg (more precisely, they
should be considered as sections on the space Mg,g of Riemann surfaces with g
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distinguished points), one needs to specify the dependence of the normalization
of each σi on the moduli.

In this chapter, we provide a suitable refinement of Petri’s basis, which
addresses such a issue.

4.1 Duality between Nn-tuples of points and bases of H0(Kn
C)

Let C be a canonical curve of genus g and let Cd, d > 0, be the set of effective
divisors of degree d. Consider the pair (p, λ) given by a point p ∈ C and an
element λ ∈ π−1(p) in the fibre of the canonical bundle π : KC → C at p. Such
a pair corresponds to an element of H0(KC)∗, given by

pλ[η] :=
ϕ(η(p))
ϕ(λ)

,

for all η ∈ H0(KC), where ϕ : KU → U × C is an arbitrary trivialization of
the canonical bundle on a neighborhood U of p. Note that the definition is
independent of ϕ. Similarly, (p, λ) determines an element of H0(Kn

C)∗. Let
{φi}i∈INn

be a basis of H0(Kn
C) and fix (p1, λ1), . . . , (pNn , λNn). A necessary

and sufficient condition for {p1λ1 , . . . , pNnλNn
} to be a basis of H0(Kn

C)∗ is that
deti,j∈INn

pi[φj ] 6= 0 (here and in the following, we drop the notation of λi when
the meaning is clear). Note that such a condition only depends on the points
p1, . . . , pNn and is independent of the choice of λ1, . . . , λNn and of the basis
{φi}i∈INn

.
In the following, the notation

φ(p) ≡ p[φ] := pλ[φ] ,

for an arbitrary φ ∈ H0(Kn
C), and

detφ(p1, . . . , pNn) := det
i,j∈INn

φi(pj) ,

is used, where the choice of λ is understood.

Proposition 4.1. Fix n ∈ N+ and let p1, . . . , pNn be a set of points of C such
that

det φn(p1, . . . , pNn) 6= 0 ,

with {φn
i }i∈INn

an arbitrary basis of H0(Kn
C). Choose a class [αi] of local triv-

ializations around each pi, i ∈ Nn. Then, {γn
i }i∈INn

, with

γn
i (z) :=

det φn(p1, . . . , pi−1, z, pi+1, . . . , pNn)
det φn(p1, . . . , pNn)

, (4.1)

is a basis of H0(Kn
C) which is independent of the choice of the basis {φn

i }i∈INn

and on the classes of local trivializations up to a non-singular diagonal trans-
formation.

Proof. Since the matrix φn
i (pj) is non-singular, by

φn
i =

Nn∑

j=1

φn
i (pj)γn

j , (4.2)

i ∈ INn , it follows that γn
i , . . . , γn

Nn
are linearly independent.
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Note that the basis {γn
i }i∈INn

of H0(Kn
C) and the basis {p1,λ1 , . . . , pNn,λNn

}
of H0(Kn

C)∗ depend on the choice of λ1, . . . , λNn in such a way that the relation

γn
i (pj) ≡ pjλj (γ

n
i ) = δij , (4.3)

i, j = 1, . . . , Nn, hold for all the choices of λi, i ∈ INn
. In the following, we will

refer to {γn
i }i∈INn

and {p1, . . . , pNn} as dual bases, while keeping the choice of
λ1, . . . , λNn

understood.
More generally, the choice of p1, . . . , pNn (and corresponding λ1, . . . , λNn)

also determines a basis of Symk H0(Kn
C) and of its dual space, for all k > 0. In

the case of Sym2(H0(KC)), we will denote by p · q ∈ P(Sym2(H0(KC))∗) the
element corresponding to the symmetrized pair ((p, λp), (q, λq)), defined by

(p · q)[∑
k

ηk · ρk

]
:=

∑

k

(ηk(p)ρk(q) + ηk(q)ρk(p)) , (4.4)

where
∑

k ηk · ρk ∈ Sym2 H0(KC).
For n = 1, for each choice of p1, . . . , pg ∈ C with det ηi(pj) 6= 0, we set

σi(z) := γ1
i (z) , i ∈ Ig , (4.5)

so that
pi[σj ] = δij , (p · p)k[σ · σl] = χkδkl , (4.6)

i, j ∈ Ig, k, l ∈ IM , where (p · p)k := (
∏

p1k
p1k

) in the notation of section 2.1.

For any pair of bases {φi}i∈INn
and {ψi}i∈INn

of H0(Kn
C), we denote by

[φ
ψ

] ≡ [ψ
φ
]−1

,

the matrix of basis change

φi =
∑

j∈INn

[φ
ψ

]
ij

ψj ,

for all i ∈ INn . Then, the proof of proposition 4.1 shows that, for all the bases
{φi}i∈INn

,
[φn

γn
]
ij

= φn
i (pj) .

The results of chapter 3 can be used to derive an explicit expression for the

matrix
[σ
ω
]
ij

, with {ωi}i∈Ig the dual basis of the symplectic basis of H1(C,Z).

Definition 4.1. For each fixed g-tuple (p1, . . . , pg) ∈ Cg let us define the fol-
lowing effective divisors

a :=
∑

j∈Ig

pj , ai := a− pi , b := a− p1 − p2 ,

i ∈ Ig. Define the subset of Cg

A := {(p1, . . . , pg) ∈ Cg | det ηi(pj) = 0} ,

with {ηi}i∈Ig an arbitrary basis of H0(KC).
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Fix g + 1 arbitrary points p1, . . . , pg, z ∈ C. By taking the limit y → z in
Eq.(3.2), we obtain

det η(z, p1, . . . , p̌i, . . . , pg) = κ[η]
g∑

l=1

θl(ai)ωl(z)
∏

j,k 6=i
j<k

E(pj , pk)
∏

j 6=i

σ(pj) , (4.7)

for all i ∈ Ig. Note that, by (4.7), the condition (p1, . . . , pg) ∈ Cg \ A implies
∑

j

θj(ai)ωj(pi) 6= 0 , (4.8)

for all i ∈ Ig.

Proposition 4.2. Fix (p1, . . . , pg) ∈ Cg \ A, with A defined in 4.1. Then

[ω
σ
]
ij

= ωi(pj) ,
[σ
ω
]
ij

=
∮

αj

σi =
θj (ai)∑

k θk (ai) ωk(pi)
, (4.9)

i, j ∈ Ig, so that

σi(z) =
σ(z)
σ(pi)

θ(a + z − y − pi)
θ(a− y)E(z, pi)

E(y, pi)
E(y, z)

g∏

i=1

E(z, pi)∏
j 6=i E(pi, pj)

,

(4.10)
and

κ[σ] =
σ(y)

∏g
1 E(y, pi)

θ(a− y)
∏g

i<j E(pi, pj)
∏g

1 σ(pk)
, (4.11)

for all z, y, xi, yi ∈ C, i ∈ Ig, with a, ai as in Definition 4.1. Furthermore, fix
p1, . . . , pNn ∈ C such that det φn(p1, . . . , pNn) 6= 0, with {φn

i }i∈INn
an arbitrary

basis of H0(Kn
C). Then,

γn
i (z) = σ(z, pi)2n−1

θ
(∑Nn

1 pj + z − pi

) ∏Nn
j=1
j 6=i

E(z, pj)

θ
(∑Nn

1 pj

) ∏Nn
j=1
j 6=i

E(pi, pj)
, (4.12)

i ∈ INn , and

κ[γn] =
1

θ
(∑Nn

1 pi

) ∏Nn

1 σ(pi)2n−1
∏Nn

i,j=1
i<j

E(pi, pj)
. (4.13)

Proof. The first identity of (4.9) follows by (4.2) and (4.5) and the second one
by (3.2) and (4.7). Eqs.(4.10)(4.11) follow by (3.2) and by det σi(pj) = 1,
respectively. Similarly, (4.12) follows by (4.1) and (3.3). Eq.(4.13) follows by
det γn

i (pj) = 1.

Corollary 4.3. Fix (p1, . . . , pg) ∈ Cg \ A. Then
∑

i∈Ig

θj (ai)∑
l θl (ai)ωl(pi)

ωk(pi) = δjk ,

j, k ∈ Ig.

Proof. Apply (4.9) to the identity
∑

j∈Ig

[ω
σ
]
ij

[σ
ω
]
jk

= δjk.
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4.2 Special loci in Cg and linear independence for holomorphic
differentials

There exist natural homomorphisms from Symn(H0(KC)) to H0(Kn
C), which,

for n = 2, we denote by

ψ : Sym2(H0(K2
C)) → H0(K2

C)
η · ρ 7→ ηρ .

By Max Noether’s Theorem, if C is a Riemann surface of genus two or non-
hyperelliptic with g ≥ 3, then ψ is surjective. Set

vi := ψ(σ · σ)i = σ1i
σ2i

, (4.14)

i ∈ IM , so that

vi(pj) =

{
δij , i ∈ Ig ,

0 , g + 1 ≤ i ≤ M ,
(4.15)

j ∈ Ig. By dimensional reasons, it follows that for g = 2 and g = 3 in the non-
hyperelliptic case, the set {vi}i∈IN

is a basis of H0(K2
C) if and only if {σi}i∈Ig

is a basis of H0(KC). On the other hand, for g ≥ 3 in the hyperelliptic case,
there exist holomorphic quadratic differentials which cannot be expressed as
linear combinations of products of elements of H0(KC), so that v1, . . . , vN are
not linearly independent. The other possibilities are considered in the following
proposition.

Proposition 4.4. Fix the points p1, . . . , pg ∈ C, with C non-hyperelliptic of
genus g ≥ 4. If the following conditions are satisfied

i. det ηi(pj) 6= 0, with {ηi}i∈Ig an arbitrary basis of H0(KC);

ii. b :=
∑g

i=3 pi is the greatest common divisor of (σ1) and (σ2), with {σi}i∈Ig

defined in (4.5),

then {vi}i∈IN is a basis of H0(K2
C). Conversely, if there exists a set {σ̂i}i∈Ig

of holomorphic 1-differentials, such that

a. i 6= j ⇒ σ̂i(pj) = 0, for all i, j ∈ Ig;

b. {v̂i}i∈IN is a basis of H0(K2
C), with v̂i := σ̂σ̂i, i ∈ IN ;

then i) and ii) hold.

Proof. To prove that i) and ii) imply that {vi}i∈IN is a basis of H0(K2
C), we first

prove that σi is the unique 1-differential, up to normalization, vanishing at ci :=
(σi) − b, i = 1, 2. Any 1-differential σ′i ∈ H0(KC) vanishing at ci corresponds
to an element σ′i/σi of H0(O(b)), the space of meromorphic functions f on C
such that (f)+b is an effective divisor. Suppose that there exists a σ′i such that
σ′i/σi is not a constant, so that h0(O(b)) ≥ 2. By the Riemann-Roch Theorem

h0(KC ⊗O(−b)) = h0(O(b))− deg b− 1 + g ≥ 3 ,

there exist at least 3 linearly independent 1-differentials vanishing at the sup-
port of b and, in particular, there exists a linear combination of such differentials
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vanishing at p1, . . . , pg. This implies that det ηi(pj) = 0, with {ηi}i∈Ig
an arbi-

trary basis of H0(KC), contradicting the hypotheses. Fix ζi, ζ1i, ζ2i ∈ C in such
a way that

g∑

i=3

ζiσ
2
i +

g∑

i=1

ζ2iσ1σi +
g∑

i=2

ζ1iσ2σi = 0 .

Evaluating this relation at the point pj , 3 ≤ j ≤ g yields ζj = 0. Set

t1 := −
g∑

j=2

ζ1jσj , t2 :=
g∑

j=1

ζ2jσj , (4.16)

so that σ1t2 = σ2t1. Since the supports of c1 and c2 are disjoint, ti must be
an element of H0(KC ⊗ O(−ci)), i = 1, 2 and then, by the previous remarks,
t1/σ1 = t2/σ2 = ζ ∈ C. By (4.16)

ζσ1 +
g∑

j=2

ζ1jσj = 0 , ζσ2 −
g∑

k=1

ζ2kσk = 0 ,

and, by linear independence of σ1, . . . , σg, it follows that ζ = ζ1j = ζ2k = 0,
2 ≤ j ≤ g, k ∈ Ig.
Let us now assume that a) and b) hold for some set {σ̂i}i∈Ig . Then {σ̂i}i∈Ig

is a basis of H0(KC) if and only if det ηi(pj) 6= 0. If {σ̂i}i∈Ig is not a basis
of H0(KC), the corresponding v̂i, i ∈ IN , cannot span a N -dimensional vector
space. Then i) is satisfied and the basis {σ̂i}i∈Ig corresponds, up to a non-
singular diagonal transformation, to the basis {σi}i∈Ig , defined in (4.5).

Without loss of generality, to prove ii) we can assume that σ̂i ≡ σi, i ∈ Ig

and then v̂i ≡ vi, i ∈ IN . Suppose there exists p ∈ C such that p + b ≤ (σi),
for all i ∈ I2. If p ≡ p1 or p ≡ p2, then σi(p) = 0, for all i ∈ Ig, and therefore
{σi}i∈Ig would not be a basis, which contradicts b).

Suppose there exists i, 3 ≤ i ≤ g, with p ≡ pi. In this case, each vj ,
j ∈ IN \ {i}, has a double zero in pi, whereas vi(pi) 6= 0; therefore, an element
of H0(K2

C) with a single zero in pi (such as, for example, σiσj , with 3 ≤ j ≤ g,
j 6= i) cannot be expressed as a linear combination of v1, . . . , vN , in contradiction
with the assumptions.

Finally, suppose that p 6= pi, for all i ∈ Ig. In this case, there exists at least
one σi, 3 ≤ i ≤ g, with σi(p) 6= 0, since, on the contrary, {σi}i∈Ig would not be
a basis of H0(KC). Suppose that σi(p) 6= 0 and σj(p) 6= 0 for some 3 ≤ i, j ≤ g,
i 6= j. Then σiσj cannot be expressed as a linear combination of vk, k ∈ IN .
In fact, σiσj(pk) = 0, for all k ∈ Ig, would imply that σiσj = σ1ρ1 + σ2ρ2,
for some ρ1, ρ2 ∈ H0(KC); but this is impossible, since σ1(p) = 0 = σ2(p),
whereas σiσj(p) 6= 0. Therefore, there should exist exactly one i ∈ Ig with
σi(p) 6= 0. It follows that σj(p) = 0 = σj(pi), for all j ∈ Ig \ {i}; then
h0(KC ⊗ O(−p − pj)) ≥ g − 1 and, by Riemann-Roch Theorem, there exists
a non-constant meromorphic function on C, with only single poles in p and
pj . But this would imply that C is hyperelliptic, in contradiction with the
hypotheses.

The proof that i) and ii) imply that {vi}i∈IN
is a basis is due to Petri [52]

(see also [3]). It can be proved that on a non-hyperelliptic curve there always
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exists a set of points {p1, . . . , pg} satisfying the hypotheses of Proposition 4.4.
This is related to the classical result dim Θs = g−4 for non-hyperelliptic surfaces
of genus g ≥ 4, as will be shown in Corollary 4.11.

In view of Theorem 4.4, it is useful to introduce the following subset of
Cg ≡ C × . . .× C︸ ︷︷ ︸

g times

.

Definition 4.2. Let B be the subset of Cg

B := {(p1, . . . , pg) ∈ Cg | det ηi(pj) = 0 ∨ gcd((σ1), (σ2)) 6= b} ,

for an arbitrary basis {ηi}i∈Ig
of H0(KC).

Corollary 4.5. Fix (p1, . . . , pg) ∈ Cg \A such that the greatest common divisor
of (σ1) and (σ2) be b + q1 + . . . + qn, for some q1, . . . , qn ∈ C, n ≥ 1. Then the
dimension r of the vector space generated by {vi}i∈IN

is r = N − n.

Proof. Let us prove that n is the number (N−r) of independent linear relations
among v1, . . . , vN . Set d := q1 + . . .+qn. By det ηi(pj) 6= 0, the quadratic differ-
entials σ2

i , i ∈ Ig, are linearly independent and independent of σ1σ2, σ1σi, σ2σi,
i ∈ Ig \ {1, 2}. Therefore, all the independent linear relations have the form

σ1t2 = σ2t1 , (4.17)

for some t1, t2 ∈ H0(KC), with the condition t1(p1) = 0 in order to exclude
the trivial relation ti = σi, i = 1, 2. Consider the effective divisors ĉ1, ĉ2 of
degree g− n with no common points, defined by ĉi := (σi)− d− b, i = 1, 2. By
det ηi(pj) 6= 0, it follows that h0(KC ⊗ O(−b)) = 2, so that h0(KC ⊗ O(−b −
d)) = 2 too. This implies that σ1/σ2 and σ2/σ1 are the unique elements of
H0(O(ĉ1)) and H0(O(ĉ2)), respectively. Then, by Riemann-Roch Theorem, we
have h0(KC ⊗ O(−ĉi)) = n + 1, i = 1, 2. By Eq.(4.17), the divisors of t1, t2
satisfy

ĉ1 + (t2) = ĉ2 + (t1) ,

so that ti ∈ H0(KC⊗O(−ĉi)). In particular, a basis σ1, α1, . . . , αn of H0(KC⊗
O(−ĉ1)) can be chosen in such a way that αi(p1) = 0, for all i ∈ In. Hence, t1 is
a linear combination of α1, . . . , αn and there are at most n linearly independent
relations of the form (4.17). This implies N − r ≤ n.

Let us now prove that such n linearly independent relations exist. By the
Riemann-Roch Theorem, since h0(KC ⊗O(−b − d)) = 2, we obtain h0(O(b +
d)) = n + 1; a basis for H0(O(b + d)) is given by α1/σ1, . . . , αn/σ1 and the
constant function. On the other hand, if σ2, β1, . . . , βn is a basis for H0(KC ⊗
O(−ĉ2)), then β1/σ2, . . . , βn/σ2 are n linearly independent elements of H0(O(b+
d)). Hence, there exist n linearly independent relations

βi

σ2
=

n∑

j=1

cij
αj

σ1
+ ci0 ,

i ∈ In, for some cij ∈ C, 0 ≤ j ≤ n. By multiplying both sides by σ1σ2, we
obtain

σ1βi =
n∑

j=1

cijσ2αj + ci0σ1σ2 .

Therefore, N − r ≥ n and the corollary follows.
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Consider the holomorphic 3-differentials (with the notation defined in section
2.1)

ϕi = σσσi := σ1i
σ2i

σ3i
, (4.18)

i ∈ IM3 , with {σi}i∈Ig a basis of H0(KC). By the Max Noether’s Theorem and
dimensional reasons, it follows that the first N3 := 5g−5 of such differentials are
a basis of H0(K3

C) for g = 3 in the non-hyperelliptic case, whereas they are not
linearly independent for g ≥ 2 in the hyperelliptic case. The other possibilities
are considered in the following proposition.

Proposition 4.6. Fix the points p1, . . . , pg ∈ C, with C non-hyperelliptic of
genus g ≥ 4. If the following conditions are satisfied for a fixed i ∈ Ig \ {1, 2}:

i. det ηj(pk) 6= 0, with {ηj}j∈Ig
an arbitrary basis of H0(KC);

ii. b :=
∑g

j=3 pj is the greatest common divisor (gcd) of (σ1) and (σ2), with
{σj}j∈Ig

defined in (4.5);

iii. pk is a single zero for σ1, for all k 6= i, 3 ≤ k ≤ g;

then the set {ϕj}j∈IN3−1 ∪ {ϕi+5g−8} is a basis of H0(K3
C). In particular, if i),

ii) and

iii’. p3, . . . , pg are single zeros for σ1,

are satisfied, then, for each i, 3 ≤ i ≤ g, the set {ϕj}j∈IN3−1 ∪ {ϕi+5g−8} is a
basis of H0(K3

C). Conversely, if for some fixed i ∈ Ig \ {1, 2} there exists a set
{σ̂j}j∈Ig of holomorphic 1-differentials, such that

a. j 6= k ⇒ σ̂j(pk) = 0, for all j, k ∈ Ig;

b. {ϕ̂j}j∈IN3−1 ∪{ϕ̂i+5g−8} is a basis of H0(K3
C), with ϕ̂j := σ̂σ̂σ̂j, j ∈ IM3 ;

then i), ii) and iii) hold.

Proof. We first prove that if i), ii) and iii) hold for a fixed i, 3 ≤ i ≤ g, then
{ϕj}j∈IN3−1 ∪ {ϕi+5g−8} is a basis of H0(K3

C). To this end it is sufficient to
prove that the equation

g∑

j=3

(ζjσ
3
j + ζ1jσ1σ

2
j + ζ12jσ1σ2σj) + σ2

1µ + σ2
2ν + ζ2iσ2σ

2
i = 0 ,

is satisfied if and only if ζj , ζ1j , ζ2i, ζ12j ∈ C, 3 ≤ j ≤ g, and µ, ν ∈ H0(KC)
all vanish identically (no non-trivial solution). Evaluating such an equation at
pj ∈ C, 3 ≤ j ≤ g, gives ζj = 0. Furthermore, note that, by condition iii), for
each j 6= i, 3 ≤ j ≤ g, σ1σ

2
j is the unique 3-differential with a single zero in pj ,

so that ζ1j = 0. We are left with

ζ1iσ1σ
2
i + ζ2iσ2σ

2
i + σ2

1µ + σ2
2ν +

g∑

j=3

ζ12jσ1σ2σj = 0 . (4.19)

By Riemann-Roch Theorem, for each k, 3 ≤ k ≤ g, h0(KC ⊗O(−b− pk)) ≥ 1;
the condition ii) implies that h0(KC ⊗O(−b− pk)) ≤ 1, so that, in particular,
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there exists a unique (up to a constant) non-vanishing β in H0(KC⊗O(−b−pi)).
Furthermore,

H0(KC ⊗O(−b)) 6=
g⋃

k=3

H0(KC ⊗O(−b− pk)) ,

because the LHS is a 2-dimensional space and the RHS is a finite union of
1-dimensional subspaces; then, there exists α ∈ H0(KC ⊗ O(−b)) such that
p3, . . . , pg are single zeros for α. Note that α and β span H0(KC ⊗ O(−b))
and α2, β2 and αβ span H0(K2

C ⊗O(−2b)). Hence, the existence of non-trivial
ζ1i, ζ2i, ζ12j , ν, µ satisfying Eq.(4.19) is equivalent to the existence of non-trivial
ν′, µ′ ∈ H0(KC) and ζα, ζβ , ζαβj ∈ C satisfying

ζαασ2
i + ζββσ2

i + α2µ′ + β2ν′ +
g∑

j=3

ζαβjαβσj = 0 .

Note that ασ2
i is the unique 3-differential with a single zero in pi, so that ζα = 0.

Condition ii) implies that b is the greatest common divisor of (α) and (β).
Then α 6= 0 on the support of cβ , where cβ := (β) − b − pi. Hence, µ′ ∈
H0(KC⊗O(−cβ)), which, by Riemann-Roch Theorem, is a 1-dimensional space,
so that µ′ = ζ ′µβ, for some ζ ′µ ∈ C. Since, by construction, β 6= 0, we have

ζβσ2
i + ζ ′µα2 + βν′ +

g∑

j=3

ζαβjασj = 0 .

By evaluating such an equation at pi gives ζβ = 0. Furthermore, since β 6= 0
on the support of cα, where cα := (α) − b, it follows that ν′ = ζ ′να, for some
ζ ′ν ∈ C. Since α 6= 0

ζ ′µα + ζ ′νβ +
g∑

j=3

ζαβjσj = 0 ,

which implies that ζ ′µ = ζ ′ν = ζαβj = 0, for all 3 ≤ j ≤ g.

Conversely, suppose that a) and b) hold for some fixed i, with 3 ≤ i ≤ g, and
for some set {σ̂j}j∈Ig . If det ηj(pk) = 0, then {σ̂j}j∈Ig is not a basis of H0(KC)
and {ϕ̂j}j∈IN3−1 cannot span a (N3 − 1)-dimensional vector space. Then i)
is satisfied and the basis {σ̂j}j∈Ig corresponds, up to a non-singular diagonal
transformation, to the basis {σj}j∈Ig , defined in (4.5).
Without loss of generality, we can prove ii) and iii) for σ̂j ≡ σj , j ∈ Ig and then
φ̂j ≡ φj , j ∈ IM3 . Since the 3-differentials σ1vj , j ∈ IN , are distinct elements
of a basis of H0(K3

C), then vj , j ∈ IN , are linearly independent elements of
H0(K2

C) and, by Proposition 4.4, also condition ii) is satisfied.
Finally, assume that there exists k 6= i, 3 ≤ k ≤ g, such that σ1 has a double
zero in pk. Then, apart from ϕk ≡ σ3

k, which satisfies ϕk(pk) 6= 0, all the other
3-differentials of the basis have a double zero in pk. Therefore, an element of
H0(K3

C) with a single zero in pk cannot be a linear combination of the elements
of such a basis, which is absurd. (An example of a holomorphic 3-differential
with a single zero in pk is σ2σ

2
k, since, by condition ii), σ2 cannot have a double

zero in pk).
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4.2.1 Determinants of distinguished bases and Fay’s identity

In this sections, the combinatorial lemmas 2.2 and 2.3 are applied to the com-
putation of determinants of the distinguished bases introduced in (4.14). For
n < g, a necessary condition for Eq.(2.13) to hold is the existence of the points
pi, 3 ≤ i ≤ g, satisfying Eq.(2.12); in particular, Lemmas 2.2 and 2.3 can be
applied to the basis {σi}i∈Ig , of H0(KC), defined in Eq.(4.5).

Theorem 4.7. Fix the points p1, . . . , pg ∈ C, and σ̂i ∈ H0(KC), i ∈ Ig, in such
a way that σ̂i(pj) = 0, for all i 6= j ∈ Ig. Define v̂i ∈ H0(K2

C), i ∈ IN , by

v̂i := ψ(σ̂ · σ̂)i = σ̂1i
σ̂2i

,

and let {ηi}i∈Ig be an arbitrary basis of H0(KC). Then, the following identity

det v̂(p3, . . . , pg, x1, . . . , x2g−1) =
( Â1Â2

det ηi(pj)

)g+1
g∏

i=3

Â4
i (4.20)

· (−)
cg,2

g+1 ∑

s∈P2g−1

ε(s) det η(xd1(s)) det η(xd2(s))

·
g+1∏

i=3

det η(xdi
1(s)

, xdi
2(s)

, p3, . . . , pg) ,

holds for all x1, . . . , x2g−1 ∈ C, where, according to (2.18), cg,2 = g!(g−1)!(2g−
1), and for each i ∈ Ig

Âi := σ̂i(pi) ,

is a 1-differential in pi.

Proof. Assume that p1, . . . , pg satisfy the hypotheses of Proposition 4.1, so that
{σ̂i}i∈Ig is a basis of H0(KC) and σ̂i(pi) 6= 0, for all i ∈ Ig. Since the points
p1, . . . , pg satisfying such a condition are a dense set in Cg, it suffices to prove
Eq.(4.20) in this case and then conclude by continuity arguments. A relation
analogous to (4.15) holds

vi(pj) =

{
Â2

j δij , i ∈ Ig ,

0 , g + 1 ≤ i ≤ M ,

j ∈ Ig, so that

det v̂(p3, . . . , pg, x1, . . . , x2g−1) = (−)g+1

g∏

i=3

σ̂i(pi)2 det
IM,2

σ̂σ̂(x1, . . . , x2g−1) .

By Lemma 2.2 for n = 2, detIM,2 σ̂σ̂(x1, . . . , x2g−1) is equal to the RHS of (2.13)
divided by

∏g
i=3 Âg−1

i . Eq.(4.20) then follows by the identity

det σ̂i(zj) =
det ηi(zj)
det ηi(pj)

det σ̂i(pj) =
det ηi(zj)
det ηi(pj)

g∏

i=1

Âi .
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Remark 4.1. If det ηi(pj) 6= 0, then Theorem 4.7 holds for σ̂i ≡ σi, so that
σ̂i(pi) = 1, i ∈ Ig, and v̂i ≡ vi, i ∈ IN .

Corollary 4.8. Let b :=
∑g

i=3 pi be a fixed divisor of C and define v̂i, i ∈ IN ,
as in Theorem 4.7. Then for all x1, . . . , xN ∈ C

det v̂(x1, . . . ,xN ) = − F

cg,2

θ
(∑N

1 xi

)∏N
i=2g(σ(xi)3

∏i−1
j=1 E(xj , xi))

θ
(∑2g−1

1 xi + b
)∏g

i=3

∏2g−1
j=1 E(pi, xj)

2g−1∏

i=1

σ(xi)2

(4.21)

·
∑

s∈P2g−1

ε(s)S
( g∑
i=1

xsi

)
S

(2g−1∑
i=g

xsi

) g∏
i,j=1
i<j

E(xsi , xsj )
2g−1∏
i,j=g
i<j

E(xsi , xsj )

·
g−1∏

k=1

(
S(xsk

+ xsk+g
+ b)E(xsk

, xsk+g
)

g∏

i=3

E(xsk
, pi)E(xsk+g

, pi)
)

,

where F ≡ F (p1, . . . , pg) is

F :=
( σ̂1(p1)σ̂2(p2)

S(a)σ(p1)σ(p2)E(p1, p2)

)g+1

g∏

i=3

σ̂i(pi)4

σ(pi)5(E(p1, pi)E(p2, pi))g+1
∏g

j>i E(pi, pj)3
.

Proof. Apply Eq.(4.20) to

det v̂(x1, . . . , xN ) =
det ρ(x1, . . . , xN ) det v̂(p3, . . . , pg, x1, . . . , x2g−1)

det ρ(p3, . . . , pg, x1, . . . , x2g−1)
,

with {ρi}i∈IN an arbitrary basis of H0(K2
C). Eq.(4.21) then follows by Eqs.(3.2)

and (3.3).

In this section, we will use the bases introduced in section 4 to derive a
combinatorial proof of the Fay’s trisecant identity.

Theorem 4.9. The following are equivalent

a) Proposition (3.2) holds;

b) The Fay’s trisecant identity [22]

θ(w +
∑m

1 (xi − yi))
∏

i<j E(xi, xj)E(yi, yj)
θ(w)

∏
i,j E(xi, yj)

= ±detij
θ(w + xi − yj)
θ(w)E(xi, yj)

,

(4.22)
m ≥ 2, holds for all x1, . . . , xm, y1, . . . , ym ∈ C, w ∈ J0(C).

Proof. (a ⇒ b) Fix x1, . . . , xm, y1, . . . , ym ∈ C and w ∈ J0(C), with θ(w) 6= 0.
Choose y1, . . . , ym distinct, otherwise the identity is trivial. Set pi := yi, i ∈ Im,
and fix n ∈ N+, with d := Nn −m ≥ g, and pm+1, . . . , pNn ∈ C, in such a way
that

I(
Nn∑
1

pi) = w .
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By Jacobi Inversion Theorem, such a choice is always possible. Note that the
set of divisors pm+1 + . . . + pNn , such that pi = pj for some i 6= j ∈ INn , is the
set of points of a subvariety in the space of positive divisors of degree d. Then
the image of such a variety under the Jacobi map, which is analytic, corresponds
to a proper subvariety W of J0(C). Hence, the conditions θ(w) 6= 0 and

w − I(
m∑
1

yi) ∈ J0(C) \W ,

are satisfied for w a dense subset in J0(C). It is therefore sufficient to prove
Eq.(4.22) on such a subset and the theorem follows by continuity arguments.

Let us then choose the points pm+1, . . . , pNn
to be pairwise distinct and

distinct from y1, . . . , ym and fix a basis {φn
i }i∈INn

of H0(Kn
C). Since p1, . . . , pNn

are pairwise distinct and

θ(
Nn∑
1

pi) = θ(w) 6= 0 ,

it follows by Eq.(3.3) that det φn
i (pj) 6= 0. Therefore, by Proposition 4.1, one

can define the basis {γn
i }i∈INn

of H0(Kn
C) with the property γn

i (pj) = δij ,
i, j ∈ INn . On the other hand, note that

det γn(x1, . . . , xm, pm+1, . . . , pNn) = det
ij∈Im

γn
i (xj) ,

can be expressed either by means of Eq.(4.12)

m∏

i=1

σ(xi, yi)2n−1
Nn∏

j=m+1

E(xi, pj)
E(yi, pj)

∏m
i,j=1 E(xi, yj)∏m
i,j=1
i6=j

E(yi, yj)
det
ij

θ(w + xi − yj)
θ(w)E(xi, yj)

,

or by means of (3.3) and (4.13)

m∏

i=1

σ(xi, yi)2n−1
Nn∏

j=m+1

E(xi, pj)
E(yi, pj)

θ
(
w +

∑m
1 (xi − yi)

)∏m
i<j E(xi, xj)

θ(w)
∏m

i,j=1
i<j

E(yi, yj)
.

Eq.(4.22) then follows by observing that

m∏

i,j=1
i 6=j

E(yi, yj) = (−)m(m−1)/2
m∏

i,j=1
i<j

E(yi, yj)2 . (4.23)

(b ⇒ a) Fix p1, . . . , pNn ∈ C, n ≥ 2, in such a way that the hypothesis of

Proposition 4.1 is satisfied. Let {γn
i }i∈INn

be the corresponding basis of H0(Kn
C)

satisfying (4.3). det γn
i (zj) can be evaluated, for arbitrary z1, . . . , zNn ∈ C,

by expressing γn
i (zj) by means of (4.12). In particular, by using (4.22) with

m = Nn, xi = zi, yi = pi, i ∈ INn , and w = I(
∑Nn

1 pi), after a computation
analogous to the previous one, (3.3) follows, with κ[γn] given by Eq.(4.13).
Therefore, (3.3) holds for an arbitrary basis {φn

i }i∈INn
of H0(Kn

C), with κ[φn] =
κ[γn] det φn

i (pj). The same result holds for (3.2) by using (4.22) with w =
I(

∑g
1 pi − y).
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4.3 The function H and the characterization of the B locus

Proposition 4.1 shows that det ηi(pj) 6= 0, for an arbitrary basis {ηi}i∈Ig
of

H0
C(K), is a necessary and sufficient condition on the points p1, . . . , pg for the

existence of a basis of holomorphic 1-differentials {σ̂i}i∈Ig
, such that i 6= j ⇒

σi(pj) = 0, i, j ∈ Ig. By Eq.(3.2) and (3.1) it follows that the subset A ⊂ Cg,
for which such a condition is not satisfied, corresponds to the set of solutions of
the equation

S(a)
g∏

i<j

E(pi, pj) = 0 .

It is more difficult to characterize the locus B ⊂ Cg, whose elements are the
g-tuples of points p1, . . . , pg which do not satisfy the conditions of Proposition
4.4. The following theorems show that such a locus can be characterized as the
set of solutions of the equation H = 0 for a suitable function H(p1, . . . , pg).

Theorem 4.10. Fix g − 2 distinct points p3, . . . , pg ∈ C such that

{I(p + b)|p ∈ C} ∩Θs = ∅ , (4.24)

b :=
∑g

3 pi. Then, for each p2 ∈ C \ {p3, . . . , pg}, there exists a finite set
of points S, depending on b and p2, with {p2, . . . , pg} ⊂ S ⊂ C, such that,
for all p1 ∈ C \ S, the holomorphic 1-differentials {σi}i∈Ig , associated to the
points p1, . . . , pg by Proposition 4.1, is a basis of H0(KC) and the corresponding
quadratic differentials {vi}i∈IN is a basis of H0(K2

C). Conversely, if for some
fixed g − 2 arbitrary points p3, . . . , pg ∈ C, there exist p1, p2 ∈ C such that the
associated {σi}i∈Ig and {vi}i∈IN

are bases of H0(KC) and H0(K2
C), then (4.24)

holds.

Proof. Eq.(4.24) implies that h0(KC ⊗ O(−b − p)) = 1, for all p ∈ C. Hence,
h0(KC ⊗O(−b)) = 2 and, for each pair of linearly independent elements σ1, σ2

of H0(KC⊗O(−b)), the supports of (σ1)−b and (σ2)−b are disjoint. Fix p2 ∈
C \{p3, . . . , pg} and let σ1 be a non-vanishing element of H0(KC⊗O(−b−p2)).
Define the finite set S as the support of (σ1) or, equivalently, as the union of
{p2, . . . , pg} and the set of zeros of S(x + p2 + b). Then, for all p1 ∈ C \ S, fix
σ2 ∈ H0(KC ⊗O(−b − p1)) so that σ1 and σ2 are linearly independent. Then
p1, . . . , pg satisfy the conditions i) and ii) of Proposition 4.4, and {vi}i∈IN

, as
defined in (4.14), is a basis of H0(K2

C). Conversely, if I(p + b) ∈ Θs for some
p ∈ C, then, for each pair σ1, σ2 ∈ H0(KC ⊗ O(−b)), their greatest common
divisor satisfies gcd(σ1, σ2) ≥ p+b and the condition ii) of Proposition 4.4 does
not hold.

The classical result that the dimension of Θs is g− 4 for a non-hyperelliptic
Riemann surface of genus g ≥ 4, immediately gives the following corollary by
simple dimensional considerations.

Corollary 4.11. In a non-hyperelliptic Riemann surface C of genus g ≥ 4,
there always exist g points p1, . . . , pg ∈ C such that the corresponding {vi}i∈IN

is a basis of H0(K2
C).



66 4. Bases of holomorphic differentials

Proof. By Theorem 4.10, it is sufficient to prove that there exists b ∈ Cg−2

satisfying the condition (4.24). Suppose, by absurd, that this is not true. Then
Wg−2 = I(Cg−2) is a subset of Θs ª W1 := {e − I(p) | e ∈ Θs, p ∈ C}. The
corollary then follows by observing that Wg−2 has dimension g−2, whereas the
dimension of each component of ΘsªW1 is less than dim Θs+dim W1 = g−3.

Theorem 4.12. Fix p1 . . . , pg ∈ C. The function H ≡ H(p1, . . . , pg)

H :=
S(a)5g−7E(p1, p2)g+1

θ
(
b +

∑2g−1
1 xi

)∏2g−1
i=1 σ(xi)

g∏

i=3

E(p1, pi)4E(p2, pi)4
∏g

j>i E(pi, pj)5

σ(pi)

·
∑

s∈P2g−1

S
(∑g

i=1 xsi

)
S

(∑2g−1
i=g xsi

)
∏g

i=3 E(xsg
, pi)

g−1∏

i=1

S(xsi + xsi+g + b)∏g−1
j=1
j 6=i

E(xsi
, xsj+g

)
, (4.25)

is independent of the points x1, . . . , x2g−1 ∈ C. Furthermore, the set {vi}i∈IN
,

defined as in (4.14), is a basis of H0(K2
C) if and only if H 6= 0.

Proof. Consider the holomorphic 1-differentials

σ̂i(z) := A−1
i σ(z)S(ai + z)

g∏
j=1
j 6=i

E(z, pj) = A−1
i

g∑

j=1

θj(ai)ωj(z) ,

i ∈ Ig, with ai as in Definition 4.1 and A1, . . . , Ag non-vanishing constants. If
the points p1, . . . , pg satisfy the hypotheses of Proposition 4.1, then {σ̂i}i∈Ig

corresponds, up to a non-singular diagonal transformation, to the basis defined
in (4.5). Let {ρi}i∈IN

be an arbitrary basis of H0(K2
C). By (3.3) the following

identity

det ρ(p3, . . . , pg, x1, . . . , x2g−1) =κ[ρ]ε(s)
2g−1∏
i,j=1
i<j

E(xsi , xsj )
g∏

i=3

σ(pi)3
2g−1∏

i=1

σ(xi)3

θ
(2g−1∑

1
xi + b

) g∏
i,j=3
i<j

E(pi, pj)
g∏

i=3

2g−1∏

j=1

E(pi, xj) ,

holds for all s ∈ P2g−1. Together with Eq.(4.21) and the above expression for
σ̂i, it implies that

H = κ[ρ]cg,2(A1A2)g+1

g∏

i=3

A4
i

det v̂(p3, . . . , pg, x1, . . . , x2g−1)
det ρ(p3, . . . , pg, x1, . . . , x2g−1)

. (4.26)

Hence, H is independent of x1, . . . , x2g−1, and H 6= 0 if and only if {v̂i}i∈IN

is a basis of H0(K2
C). On the other hand the vector (v̂1, . . . , v̂N ) corresponds,

up to a non-singular diagonal transformation, to (v1, . . . , vN ), with vi, i ∈ IN ,
defined in (4.14).
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Remark 4.2. By (4.26)

κ[v̂] =
H(p1, . . . , pg)

cg,2(A1A2)g+1
∏g

i=3 A4
i

.

Furthermore, if (p1, . . . , pg) /∈ A, then one can choose

Ai = σ(pi)S(a)
g∏

j=1
j 6=i

E(pi, pj) =
g∑

j=1

θj(ai)ωj(pi) ,

to obtain σ̂i ≡ σi, i ∈ Ig, and

κ[v] =
H(p1, . . . , pg)

cg,2

∏2
i=1

(∑g
j=1 θj(ai)ωj(pi)

)g+1 ∏g
i=3

(∑g
j=1 θj(ai)ωj(pi)

)4 (4.27)

=
H(p1, . . . , pg)

cg,2S(a)6g−6
∏2

i=1

(
σ(pi)

∏g
j=1
j 6=i

E(pi, pj)
)g+1 ∏g

i=3

(
σ(pi)

∏g
j=1
j 6=i

E(pi, pj)
)4 .

Observe that A ⊂ B. Theorem 4.10 shows that if (p1, . . . , pg) /∈ A, a necessary
and sufficient condition for (p1, . . . , pg) to be in B is that there exists p ∈ C such
that I(b + p) ∈ Θs. Hence, B is the union of A together with the pull-back of
a divisor in Cg−2 by the projection Cg → Cg−2 which “forgets” the first pair
of points: (p1, . . . , pg) → (p3, . . . , pg). Such a divisor is characterized by the
equation K = 0, where K is defined in the following chapter.
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5. THE IDEAL OF A CANONICAL CURVE

Denote by φ̃n : H0(Kn
C) → CNn the isomorphism φ̃n(φn

i ) = ei, with {ei}i∈INn

the canonical basis of CNn . The isomorphism η̃ induces an isomorphism η̃ · η̃ :
Sym2(H0(K2

C)) → Sym2Cg. The natural map ψ : Sym2(H0(K2
C)) → H0(K2

C)
is surjective if C is canonical.

The choice of a basis {ηi}i∈Ig of H0(KC) determines an embedding of the
curve C in Pg−1 by p 7→ (η1(p), . . . , ηg(p)), so that the elements of {ηi}i∈Ig

correspond to a set of homogeneous coordinates X1, . . . , Xg on Pg−1. Each
holomorphic n-differential corresponds to a homogeneous n-degree polynomial
in Pg−1 by

φn :=
∑

i1,...,in

Bi1,...,inηi1 · · · ηin 7→
∑

i1,...,in

Bi1,...,inXi1 · · ·Xin ,

where X1, . . . , Xg are homogeneous coordinates on Pg−1. A basis of H0(Kn
C)

corresponds to a basis of the homogeneous polynomials of degree n in Pg−1 that
are not zero when restricted to C. The curve C is identified with the ideal
of all the polynomials in Pg−1 vanishing at C. Enriques-Babbage and Petri’s
Theorems state that, with few exceptions, such an ideal is generated by quadrics

M∑

j=1

Cη
ijXXj = 0 ,

N + 1 ≤ i ≤ M , where XXj := X1j X2j . Here, {Cη
i }N<i≤M , with Cη

i :=
(Cη

i1, . . . , C
η
iM ), is a set of linearly independent elements of P(Sym2 Cg) ∼= PM ,

each one defining a quadric. The isomorphism η̃ · η̃ induces the identification
P(Sym2(H0(KC))) ∼= PM , under which each quadric corresponds to an element
of kerψ ⊂ Sym2(H0(KC))

kerψ 3 ui :=
M∑

j=1

Cη
ijη · ηj ,

N + 1 ≤ i ≤ M , or, equivalently, to a relation among holomorphic quadratic
differentials

ψ(ui) ≡
M∑

j=1

Cη
ijηηj = 0 .

Canonical curves that are not cut out by such quadrics are trigonal or iso-
morphic to smooth plane quintic. In these cases, Petri’s Theorem assures that
the ideal is generated by the quadrics above together with a suitable set of
cubics.

This section is devoted to the study of such relations among quadratic and
cubic differentials.
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5.1 Relations among holomorphic quadratic differentials

In the following we derive the matrix form of the map ṽ ◦ ψ ◦ (σ̃ · σ̃)−1, with
respect to the basis {σi}i∈Ig constructed in the previous subsection. This will
lead to the explicit expression of kerψ. Set

ψ̃ij :=
κ[v1, . . . , vi−1, vj , vi+1, . . . , vN ]

κ[v]
. (5.1)

i ∈ IN , j ∈ IM .

Lemma 5.1. v1, . . . , vM satisfy the following (g− 2)(g− 3)/2 linearly indepen-
dent relations

vi =
N∑

j=1

ψ̃jivj =
N∑

j=g+1

ψ̃jivj , (5.2)

i = N + 1, . . . ,M .

Proof. The first equality trivially follows by the Cramer rule. The identities
(4.15) imply ψ̃ji = 0 for j ∈ Ig and i = N+1, . . . ,M , and the lemma follows.

Eq.(5.2) implies that the diagram

S H0(K2
C)

CM CN

-ψ

?

σ̃·σ̃

?

ṽ

-ψ̃

where ψ̃ : CM → CN is the homomorphism with matrix elements ψ̃ij and
Sym2Cg is isomorphic to CM through A, introduced in Definition 2.2, commutes.

Let ι : CN → CM be the injection ι(ei) = ẽi, i ∈ IN . The matrix elements
of the map ι ◦ ψ̃ : CM → CM are

(ι ◦ ψ̃)ij =

{
ψ̃ij , 1 ≤ i ≤ N ,

0 , N + 1 ≤ i ≤ M ,

j ∈ IM . Noting that (ι ◦ ψ̃)ij = δij , for all i, j ∈ IN , we obtain

M∑

i=1

(ι ◦ ψ̃)ji(ι ◦ ψ̃)ik =
N∑

i=1

(ι ◦ ψ̃)jiψ̃ik = (ι ◦ ψ̃)jk ,

j, k ∈ IM . Hence, ι ◦ ψ̃ is a projection of rank N and, since ι is an injection,

ker ψ̃ = ker ι ◦ ψ̃ = (id− ι ◦ ψ̃)(CM ) . (5.3)

Lemma 5.2. The set {ũN+1, . . . , ũM}, ũi := ẽi−
∑N

j=1 ẽjψ̃ji, N + 1 ≤ i ≤ M ,
is a basis of ker ψ̃.
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Proof. Since (id − ι ◦ ψ̃)(ẽi) = 0, i ∈ IN , by (5.3), the M − N vectors ũi =
(id−ι◦ψ̃)(ẽi), N < i ≤ M , are a set of generators for kerψ and, since dimkerψ =
M −N , the lemma follows.

Set ηηi := ψ(η · η)i, i ∈ Ig, and let Xη be the automorphism on CM in the
commutative diagram

S S

CM CM

-id

?

σ̃·σ̃

?

η̃·η̃

-Xη

whose matrix elements are

Xη
ji = χ−1

j

([σ
η
][σ

η
])

ij
=

([σ
η
]
1i1j

[σ
η
]
2i2j

+
[σ
η
]
1i2j

[σ
η
]
2i1j

)
(1 + δ1j2j

)−1 , (5.4)

i, j ∈ IM , so that

vi =
M∑

j=1

Xη
ji ηηj , (5.5)

i ∈ IM . Since ηηi, i ∈ IM , are linearly dependent, the matrix Xη
ij is not

univocally determined by Eq.(5.5). More precisely, an endomorphism Xη′ ∈
End(CM ) satisfies Eq.(5.5) if and only if the diagram

CM CN

CM CN

-ψ̃

?
Xη′

?
id

-Bη

where Bη := ψ̃ ◦ (Xη)−1, commutes or, equivalently, if and only if

(Xη′ −Xη)(CM ) ⊆ Xη(ker ψ̃) . (5.6)

Next theorem provides an explicit expression for such a homomorphisms. Con-
sider the following determinants of the d-dimensional submatrices of Xη

|Xη|j1...jd

i1...id

:= det




Xη
i1j1

. . . Xη
i1jd

...
. . .

...
Xη

idj1
. . . Xη

idjd


 ,

i1, . . . , id, j1, . . . , jd ∈ IM , d ∈ IM .

Theorem 5.3.
M∑

j=1

Cη
ijηηj = 0 , (5.7)

N + 1 ≤ i ≤ M , where

Cη
ij :=

M∑

k1,...,kN=1

|Xη|1 ... Ni

k1...kN j

κ[ηηk1 , . . . , ηηkN ]
κ[v]

, (5.8)
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are M −N independent linear relations among holomorphic quadratic differen-
tials. Furthermore, for all p ∈ C

W [v](p) =
M∑

i1,...,iN=1

|Xη|1 ... N

i1...iN

W [ηηk1 , . . . , ηηkN
](p) . (5.9)

Proof. By (5.2) and (5.5)

M∑

j=1

(Xη
ji −

N∑

k=1

ψ̃kiX
η
jk)ηηj = 0 ,

for all N + 1 ≤ i ≤ M , and by (5.1)

M∑

j=1

[ N∑

k=1

(−)k κ[vi, v1, . . . , v̌k, . . . , vN ]
κ[v]

Xη
jk + Xη

ji

]
ηηj = 0 .

By (5.5)

κ[vi1 , . . . , viN ]
κ[v]

=
M∑

k1,...,kN=1

|Xη| i1...iN

k1...kN

κ[ηηk1 , . . . , ηηkN ]
κ[v]

,

i1, . . . , iN ∈ IM , and we get (5.7) with

Cη
ij =

M∑

k1,...,kN=1

[ N∑

l=1

(−)lXη
jl |Xη|i 1...ľ...N

k1......kN

+ Xη
ji |Xη|1 ... N

k1...kN

]
κ[ηηk1 , . . . , ηηkN

]
κ[v]

,

which is equivalent to (5.8) by the identity

N∑

l=1

(−)lXη
jl |Xη|i 1...ľ...N

k1......kN

+ Xη
ji |Xη|1 ... N

k1...kN

= |Xη|i1 ... N

jk1...kN

.

Eq.(5.9) follows by (5.5).

The homomorphisms (Xη′ −Xη) ∈ End(CM ), satisfying (5.6), are the ele-
ments of a M(M −N) dimensional vector space, spanned by

(Xη′ −Xη)ij =
M∑

k=N+1

ΛjkCη
ki ,

i, j ∈ IM , with Λjk an arbitrary M×(M−N) matrix. An obvious generalization
of (5.2) yields

ηηi =
N∑

j=1

vjB
η
ji , (5.10)

i ∈ IM , implying that Bη
ij = κ[v1, . . . , vj−1, ηηi, vj+1, . . . , vN ]/κ[v], are the ma-

trix elements of the homomorphism Bη = ψ̃ ◦ (Xη)−1. Such coefficients can be
expanded as

Bη
ij =

M∑

k1,...,kN−1=1

(−)j+1|Xη|1...̌ ...N

k1... kN−1

κ[ηηi, ηηk1 , . . . , ηηkN−1 ]
κ[v]

. (5.11)
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Define Cη,ij
kl , 3 ≤ i < j ≤ g, k, l ∈ Ig, by

Cη,1m2m
1n2n

:= Cη
mn ,

m, n ∈ IM , m > N .
The following result is a direct consequence of the Petri-like approach. The

bound r ≤ 6 for the rank of quadrics is not sharp, however: M. Green proved
that the ideal of quadrics of a canonical curve is generated by elements of rank
4 [29].

Theorem 5.4. All the relations among holomorphic quadratic differentials have
rank r ≤ 6.

Proof. The statement is trivial for g ≤ 6, so let us assume g ≥ 7. Each relation
can be written as

0 =σiσj + Cσ,ij
12 σ1σ2 + Cσ,ij

1i σ1σi + Cσ,ij
1j σ1σj + Cσ,ij

2i σ2σi + Cσ,ij
2j σ2σj

+
∑

k 6=1,2,i,j

Cσ,ij
1k σ1σk +

∑

k 6=1,2,i,j

Cσ,ij
2k σ2σk ,

where 3 ≤ i < j ≤ g and Cη,1i2i
1j2j := Cη

ij . Set η1 ≡ σ1, η2 ≡ σ2, η3 ≡ σi,
η4 ≡ σj , η5 ≡

∑
k 6=1,2,i,j Cσ,ij

1k σk, η6 ≡
∑

k 6=1,2,i,j Cσ,ij
2k σk. Then the relations

can be written as
6∑

k<l

Cη,ij
kl ηkηl = 0 ,

for suitable Cη,ij
kl , and the theorem follows.

5.1.1 Consistency conditions on the quadrics coefficients

In the construction in chapter 4, the points p1 and p2 play a special role with
respect to p3, . . . , pg. Relations among holomorphic quadratic differentials can
be obtained by replacing p1 and p2 with pa and pb, a, b ∈ Ig, a < b, (a, b) 6= (1, 2).
In the following of this section, we will consider the relationships between the
coefficients Cσ obtained in section 4 and the analogous coefficients obtained
upon replacing (1, 2) by (a, b).

Proposition 5.5. There exist g distinct points p1, . . . , pg ∈ C such that

K(p1, . . . , p̌i, . . . , p̌j , . . . , pg) 6= 0 ,

for all i, j ∈ Ig, i 6= j.

Proof. Consider the function in Cg

F (p1, . . . , pg) :=
∏

i<j

K(p1, . . . , p̌i, . . . , p̌j , . . . , pg) ,

and set Z := {(p1, . . . , pg) ∈ Cg | F (p1, . . . , pg) = 0}. Note that

Z =
⋃

i<j

{(p1, . . . , pg) ∈ Cg | K(p1, . . . , p̌i, . . . , p̌j , . . . , pg) = 0} ,
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so that it is a finite union of varieties of codimension 1 in Cg and, in particular,
Z 6= Cg. Suppose that Cg \ (

⋃
i<j Πij) ⊆ Z, where Πij := {(p1, . . . , pg) ∈ Cg |

pi = pj}, 1 ≤ i < j ≤ g. Since Cg\(⋃i<j Πij) is dense in Cg, it would follow that
Z ≡ Cg, which is absurd. Hence, there exist pairwise distinct p1, . . . , pg ∈ C
such that F (p1, . . . , pg) 6= 0.

By Proposition 5.5 and Proposition 4.4, one can choose the points p1, . . . , pg

in such a way that

{v(ab)
i }i∈IN

:= {σ2
i }i∈Ig

∪ {σaσb} ∪ {σaσi, σbσi}i∈Ig\{a,b} ,

is a basis of H0(K2
C). Furthermore, one can obtain M −N independent linear

relations ∑

1≤k≤l≤g

(ab)ij
klσkσl = 0 , (5.12)

where i, j ∈ Ig \ {a, b}, i 6= j. The coefficients (ab)ij
kl are defined by setting

(ab)ij
ij := 1,

(ab)ij
kl :=

κ[v(ab)
1 , . . . , σ̌kσ̌l, σiσj , . . . , v

(ab)
N ]

κ[v(ab)
1 , . . . , v

(ab)
N ]

, (5.13)

if k 6= l and σkσl ∈ {v(ab)
i }i∈IN

, and (ab)ij
kl := 0 for all the other (k, l) ∈ Ig × Ig.

In this notation, the coefficients Cσ
ij defined in (5.8), with N < i ≤ M , j ∈

IM , correspond to (12)1i2i
1j2j

. Eqs.(5.12) and (5.13) can be derived by a trivial
generalization of the same construction considered in section 2 in the particular
case a = 1, b = 2.

Proposition 5.6. The coefficients (ab)ij
kl satisfy the following consistency con-

ditions

(ij)ab
kl =

∑

m≤n

(ij)ab
mn(ab)mn

kl =
∑

m≤n

(ij)ab
mn(ai)mn

kl =
∑

m≤n

(ij)ab
mn(aj)mn

kl (5.14)

=
∑

m≤n

(ij)ab
mn(bi)mn

kl =
∑

m≤n

(ij)ab
mn(bj)mn

kl , (5.15)

for all i, j, a, b ∈ Ig pairwise distinct, and for all k, l ∈ Ig.

Proof. Choose i, j, a, b ∈ Ig, with a < b < i < j, and consider the relations∑
k≤l(ij)

ab
klσkσl = 0 and

∑
k≤l(ab)ij

klσkσl = 0, that is

0 = (ij)ab
ij σiσj + σaσb + (ij)ab

aiσaσi + (ij)ab
ajσaσj + (ij)ab

bi σbσi (5.16)

+ (ij)ab
bj σbσj +

∑

k 6=a,b,i,j

(ij)ab
ikσiσk +

∑

k 6=a,b,i,j

(ij)ab
jkσjσk ,

(5.17)

0 = σiσj + (ab)ij
abσaσb + (ab)ij

aiσaσi + (ab)ij
ajσaσj + (ab)ij

biσbσi (5.18)

+ (ab)ij
bjσbσj +

∑

k 6=a,b,i,j

(ab)ij
akσaσk +

∑

k 6=a,b,i,j

(ab)ij
bkσbσk .

(5.19)
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Replace the differentials σiσk and σjσk, k 6= i, j, a, b, in Eq.(5.16) by

σiσk = −
∑

m≤n
(m,n) 6=(i,k)

(ab)ij
mnσmσn , k 6= i, j, a, b ,

and the analogous expression for σjσk. Then multiply Eq.(5.18) by (ij)ab
ij and

consider the difference between (5.16) and (5.18). We obtain

0 =
(
(ij)ab

ab −
∑

m≤n

(ij)ab
mn(ab)mn

ab

)
σaσb +

∑

k 6=a,b

(
(ij)ab

ak −
∑

m≤n

(ij)ab
mn(ab)mn

ak

)
σaσk

(5.20)

+
∑

k 6=a,b

(
(ij)ab

bk −
∑

m≤n

(ij)ab
mn(ab)mn

bk

)
σbσk . (5.21)

Since the holomorphic quadratic differentials appearing in Eq.(5.20) are linearly
independent, it follows that each coefficient vanishes, yielding the first identity
in (5.14), in the cases in which at least one between k and l is equal to a or b.
On the other hand, in the case k, l 6= a, b, the only non-vanishing term in the
sum

∑
m≤n(ij)ab

mn(ab)mn
kl is (ij)ab

kl (ab)kl
kl = (ij)ab

kl , and the first identity in (5.14)
follows. The other identities can be proved by applying the analogous procedure
to the relation

∑
k≤l(ij)

ab
klσkσl = 0 and one of the relations

∑
k≤l(ai)bj

klσkσl = 0,∑
k≤l(bi)

aj
kl σkσl = 0, and so on.

5.2 A correspondence between quadrics and θ-identities

Theorem 5.7. Fix (p1, . . . , pg) ∈ Cg\B with B defined in Definition 4.2. Then,
the associated holomorphic quadratic differentials vi, i ∈ IM , satisfy

vi =
M∑

j=1

Xω
ji ωωj , (5.22)

i ∈ IN , where

Xω
ij =

θ1j (a1i)θ2j (a2i) + θ1j (a2i)θ2j (a1i)
(1 + δ1j2j )

∑
l,m θl(a1i)θm(a2i)ωl(p1i)ωm(p2i)

, (5.23)

i, j ∈ IM , with ai as in Definition 4.1, correspond to the coefficients defined in
(5.4) for ηi ≡ ωi, i ∈ Ig. Furthermore, the M −N independent linear relations

M∑

j=1

Cω
ijωωj = 0 , (5.24)

N + 1 ≤ i ≤ M , hold, where

Cω
ij =

M∑

k1,...,kN=1

|Xω|1 ... Ni

k1...kN j

κ[ωωk1 , . . . , ωωkN
]

κ[v]
. (5.25)

correspond to the coefficients defined in (5.8).
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Proof. Eq.(4.9) implies that Eq.(5.23) is equivalent to (5.4), and the theorem
follows by Theorem 5.3.

Remark 5.1. Choose p1, . . . , pg as in Corollary 4.5, with n = 1 and set q := q1.
Then, there exists a non-trivial relation

aσ1t2 + bσ2t1 + cσ1σ2 = 0 ,

where a, b, c ∈ C. Without loss of generality, we can assume that t1(p1) = 0 and
t2(p2) = 0. Set

(σ1) = p2 + p3 + . . . + pg + q +
g−2∑

i=1

ri ,

and

(σ2) = p1 + p3 + . . . + pg + q +
g−2∑

i=1

si ,

for some ri, si ∈ C, i ∈ Ig−2. Then, (t1) > p1+
∑g−2

i=1 ri and (t2) > p2+
∑g−2

i=1 si,
so that

t1 ∼ − θ(p1 +
∑

i ri + z − y)
σ(y)E(y, z)E(y, p1)

∏
i E(y, ri)

σ(z)E(z, p1)
∏

i

E(z, ri)

∼ − θ(p2 + b + q + y − p1 − z)
σ(y)E(y, z)E(y, p1)

∏
i E(y, ri)

σ(z)E(z, p1)
g∏

i=3

E(z, ri)

=
g∑

i=1

θ∆,i(p2 + b + q − p1)ωi(z) ,

where, in the second line, we used I(
∑

i ri) = I(−p2 − b − q) in J0(C). An
analogous calculation yields

t2 ∼
g∑

i=1

θi(p1 + b + q − p2)ωi(z) .

(By the symbol ∼, we denote the equality up to a factor independent of z; such
a factor is not meaningful, since it can be compensated by a redefinition of the
constants a, b.)

Theorem 5.8. Let C be a canonical curve of genus g ≥ 4 and {ωi}i∈Ig the
canonically normalized basis of H0(KC), and fix the points (p1, . . . , pg) ∈ Cg\B.
Then, the following (g − 2)(g − 3)/2 independent relations

∑

s∈P2g

ε(s) det ω(xs1 , . . . , xsg ) det ω(xsg , . . . , xs2g−1) (5.26)

· detω(xs1 , xsg+1 , xs2g , p3, . . . , p̌i, . . . , pg)
· detω(xs2 , xsg+2 , xs2g , p3, . . . , p̌j , . . . , pg)

·
g−1∏

k=3

detω(xsk
, xsk+g

, p3, . . . , pg) = 0 ,

3 ≤ i < j ≤ g, hold for all xk ∈ C, 1 ≤ k ≤ 2g.
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Proof. Fix i, j, 3 ≤ i < j ≤ g, and choose p1, p2 in such a way that {σi}i∈Ig

is a basis of H0(KC). Observe that, due to Eq.(5.2), detI σσ(x1, . . . , x2g) = 0,
for all x1, . . . , x2g ∈ C, where I := IM,2 ∪ {m(i, j)}. Applying Lemma 2.3,
with n = 2, such an identity corresponds to Eq.(5.26) with the canonical basis
{ωi}i∈Ig

of H0(KC) replaced by {σi}i∈Ig
. Eq.(5.26) is then obtained by simply

changing the base.

The relations of Theorem 5.8 can be directly expressed in terms of theta
functions. (The conditions on the points p3, . . . , pg in Theorem 5.9 and Corollary
5.10 can be safely replaced by one of the equivalent conditions iv), v), vi), and
vii) of Theorem 6.2.)

Theorem 5.9. Fix p3, . . . , pg ∈ C in such a way that (p1, p2, p3, . . . , pg) /∈ B
for some p1, p2 ∈ C. The following (g − 2)(g − 3)/2 independent relations

Vi1i2(p3, . . . , pg, x1, . . ., x2g) := (5.27)

∑

s∈P2g

ε(s)

{
2∏

k=1

S(x̂k + x̂g+k + x̂2g + bik
)E(x̂k, x̂2g)E(x̂k+g, x̂2g)

E(x̂k, pik
)E(x̂k+g, pik

)E(x̂2g, pik
)

·
g−1∏

k=1

(
E(x̂k, x̂k+g)

g∏

j=3

E(x̂k, pj)E(x̂k+g, pj)
)

· S( g∑
k=1

x̂k

) g∏
k,j=1
k<j

E(x̂k, x̂j)S
(2g−1∑

k=g

x̂k

) 2g−1∏
k,j=g
k<j

E(x̂k, x̂j)

·
g−1∏

k=3

S(x̂k + x̂k+g + b)
g∏

j=3

E(x̂2g, pj)2
}

= 0 ,

3 ≤ i1 < i2 ≤ g, where x̂i := xsi , i ∈ I2g, bi := b − pi, 3 ≤ i ≤ g, hold for all
xi ∈ C, i ∈ I2g.

Proof. By (3.2) Vij(p3, . . . , pg, x1, . . . , x2g) is equivalent to (5.26).

Remark 5.2. Note that Vii 6= 0 for i = 3, . . . , g, since for i = j the LHS of
(5.26) is proportional to a determinant of 2g linearly independent holomorphic
quadratic differentials on C, evaluated at general points xi ∈ C, i ∈ I2g.

By a limiting procedure we derive the original Petri’s relations, now written
in terms of the canonical basis {ωi}i∈Ig of H0(KC) and with the coefficients
expressed in terms of theta functions.

Corollary 5.10. Fix p3, . . . , pg ∈ C in such a way that (p1, p2, p3, . . . , pg) /∈ B
for some p1, p2 ∈ C. The following (g−2)(g−3)/2 linearly independent relations

M∑

j=1

Cω
ijωωj(z) :=

κ[σ]
κ[v]

g+1

F (p, x)
V1i2i(p3, . . . , pg, x1, . . . , x2g−1, z)

θ
(∑2g−1

1 xj + b
) = 0 ,

(5.28)
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N + 1 ≤ i ≤ M , where

F (p, x) := c′g,2

∏g
j,k=3
j<k

E(pj , pk)g−4
∏g

j=3
j 6=1i

E(p1i
, pj)

∏g
j=3
j 6=2i

E(p2i
, pj)

∏2g−1
j=1 (σ(xj)

∏g
k=3 E(xj , pk)

∏2g−1
k=j+1 E(xj , xk))

,

hold for all z ∈ C. Furthermore, Cω
ij are independent of p1, p2, x1, . . . , x2g−1 ∈ C

and correspond to the coefficients defined in (5.8) (with ηi ≡ ωi, i ∈ Ig) or,
equivalently, in (5.25).

Proof. Consider the identity

detI σσ(x1, . . . , x2g−1, z)
det v(p3, . . . , pg, x1, . . . , x2g−1)

= 0 , (5.29)

I := IM,2 ∪ {i}, N + 1 ≤ i ≤ M . Upon applying Lemma 2.3, with n =
2, and Eq.(3.2) to the numerator and Eq.(3.3) to the denominator of (5.29),
Eq.(5.28) follows by a trivial computation. On the other hand, for arbitrary
points z, y1, . . . , yg−1 ∈ C,

S(y1 + . . . + yg−1 + z) =
∑g

i=1 θi(y1 + . . . + yg−1)ωi(z)

σ(z)
∏g−1

1 E(z, yi)
.

Consider V1i2i(p3, . . . , pg, x1, . . . , xg−1, z) and replace each term in of the form
S(dg−1+z) by its expression above, for any effective divisor dg−1 of degree g−1.
The dependence on z only enters through ωiωj(z) and the relations (5.28) can
be written in the form of Eq.(5.7).

To prove that Cω
ij are the coefficients in (5.8), with ηi ≡ ωi, i ∈ Ig, first

consider the identity

κ[ωωk1 , . . . , ωωkN ]
κ[v]

=
deti∈{k1,...,kN} ωωi(p3, . . . , pg, x1, . . . , x2g−1)

det v(p3, . . . , pg, x1, . . . , x2g−1)
,

then recall that

vi := σσi =
M∑

j=1

Xω
jiωωj ,

i ∈ IM , so that one obtains

M∑

k1,...,kN ,j=1

|Xω|1 ... Ni

k1...kN j

κ[ωωk1 , . . . , ωωkN ]
κ[v]

ωωj(z)

=
detI σσ(x1, . . . , x2g−1, z)

det v(p3, . . . , pg, x1, . . . , x2g−1)
,

as an algebraic identity (in the sense that it holds as an identity in Sym2(H0
C(K))

after replacing σiσj → σi·σj and ωiωj → ωi·ωj , i, j ∈ Ig). Hence, the coefficients
of ωωj(z) on the LHS, given by (5.8) or, equivalently, by (5.25) and the ones on
the RHS, given by (5.28), are the same.

Eq.(5.8) explicitly shows that the coefficients Cω
ij are independent of xi for

all i = 1, . . . , 2g − 1. By (5.28) it follows that they may depend on p1 and p2
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only through the term κ[σ]g+1/κ[v]. The dependence of κ[σ] and κ[v] on p1 and
p2 is due to the dependence of the basis {σi}i∈Ig and {vi}i∈IN on the choice
of p1, . . . , pg ∈ C. On the other hand, Eq.(6.4) implies that κ[σ]g+1/κ[v] is
independent of p1, p2 and the proof of the corollary is complete.

5.3 Relations among holomorphic cubic differentials

According to Petri’s Theorem, in the most general case the ideal of a canonical
curve C is generated by its ideals of quadrics together with the ideal of cubics.
As discussed in the introduction of this section, such cubics correspond to linear
relations among holomorphic 3-differentials on C; a generalization of the previ-
ous construction is necessary in order to explicitly determine such relations.

Fix p1, . . . , pg ∈ C satisfying the conditions i), ii) and iii) of Proposition 4.6
with respect to some fixed i, 3 ≤ i ≤ g, and let {ϕj}j∈IN3−1 ∪ {ϕi+5g−8} be the
corresponding basis of H0(K3

C). The kernel of the canonical epimorphism from
Sym3H0(KC) onto H0(K3

C) has dimension (g − 3)(g2 + 6g − 10)/6, and each
element corresponds to a linear combination of the following relations

σjσkσl =
∑

m∈IN3−1

Bjkl,mϕm + Bjkl,i+5g−8σ2σ
2
i , (5.30)

3 ≤ j, k, l ≤ g, j 6= k, and

σ2σ
2
j =

∑

m∈IN3−1

B2jj,mϕm + B2jj,i+5g−8σ2σ
2
i , (5.31)

3 ≤ j ≤ g, j 6= i, where Bjkl,m, B2jj,m ∈ C, are suitable coefficients. On the
other hand, a trivial computation shows that the relations (5.30) are generated
by (5.31) and by the relations among holomorphic quadratic differentials,

M∑

j=1

Cσ
kjσσj = 0 , (5.32)

k = N + 1, . . . , M . Therefore, relations among holomorphic 3-differentials,
modulo relations among holomorphic quadratic differentials, provide at most
g − 3 independent conditions on products of elements of H0(KC).

The relations (5.31) can be restated in terms of an arbitrary basis {ηj}j∈Ig

of H0(KC). Let Y η be the automorphism of CM3 , determined by

Y η
kj := χ−1

k ([η]−1[η]−1[η]−1)jk , (5.33)

j, k ∈ IM3 , so that

ϕj =
M3∑

k=1

Y η
kjηηηk ,

j ∈ IM3 . Consider the following determinants of d-dimensional submatrices of
Y η

|Y η|j1...jd

i1...id

:= det




Y η
i1j1

. . . Y η
i1jd

...
. . .

...
Y η

idj1
. . . Y η

idjd


 ,

i1, . . . , id, j1, . . . , jd ∈ IM3 , d ∈ IM3 .
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Proposition 5.11.
M3∑

j=1

Dη
kjηηηj = 0 , (5.34)

N3 ≤ k ≤ N3 + g − 3, k 6= i where

Dη
kj :=

M3∑

k1,...,kN3=1

|Y η|1...(N3−1) i k

k1 ... kN3 j

κ[ηηηk1 , . . . , ηηηkN3
]

κ[ϕ]
, (5.35)

j ∈ IM3 , are g−3 independent linear relations among holomorphic 3-differentials.

Proof. Without loss of generality, we can assume i = N3; such an assumption
can always be satisfied after a re-ordering of the points p3, . . . , pg. Fix N3 + 1
arbitrary points x1, . . . , xN3 , xN3+1 ≡ z ∈ C and consider the singular matrix
[ϕl(xm)]l∈I

m∈IN3+1
with I := IN3∪{k}, with N3 < k ≤ N3+g−3. By expressing the

determinant with respect to the column (ϕl(z))l∈I , the identity det ϕl(xm) = 0,
l ∈ I, m ∈ IN3+1, yields

M3∑
m=1

[ N3∑

l=1

(−)l+1 κ[ϕ1, . . . , ϕ̌l, . . . , ϕN3 , ϕk]
κ[ϕ]

Y η
ml − Y η

mk

]
ηηηm = 0 .

The proposition follows by combinatorial identities analogous to the proof of
Theorem 5.3.

Whereas for g = 4 the relations (5.34) are independent of the relation among
holomorphic quadratic differentials, for g ≥ 5, (5.34) are generated by (5.32)
in all but some particular curves. Set ψ̃1i2i,1j2j := ψ̃ij and Cσ

1i2i,1j2j
:= Cσ

ij ,
N + 1 ≤ i ≤ M , j ∈ IM . Consider the 3-differentials σiσjσk with 3 ≤ i < j <

k ≤ g (g ≥ 5). By Eq.(5.32) and by Cσ
ij = ψ̃ij − δij , N + 1 ≤ i ≤ M , j ∈ IM ,

σiσjσk =
2∑

m=1

g∑
n=3

ψ̃ij,mnσmσnσk + ψ̃ij,12σ1σ2σj ,

so that
2∑

m,p=1

g∑
q=3

( g∑
n=3
n 6=j

ψ̃ik,mnψ̃nj,pq

)
σmσpσq + ψ̃ik,12σ1σ2σk +

2∑
m=1

ψ̃ik,mjσmσ2
j

=
2∑

m,p=1

g∑
q=3

( g∑
n=3
n 6=i

ψ̃jk,mnψ̃ni,pq

)
σmσpσq + ψ̃jk,12σ1σ2σk +

2∑
m=1

ψ̃jk,miσmσ2
i .

The above equation yields

Cσ
ik,2jσ2σ

2
j =

2∑
m,p=1

g∑
q=3

( g∑
n=3
n 6=i

Cσ
jk,mnCσ

ni,pq −
g∑

n=3
n 6=j

Cσ
ik,mnCσ

nj,pq

)
σmσpσq

+ Cσ
jk,12σ1σ2σk − Cσ

ik,12σ1σ2σk + Cσ
jk,1iσ1σ

2
i

− Cσ
ik,1jσ1σ

2
j + Cσ

jk,2iσ2σ
2
i .
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If Cσ
ik,2j 6= 0 for some k, the above identity shows that the relation (5.31)

is generated by Eqs.(5.32). On the other hand, it can be proved [3] that if
Cσ

ik,2j = 0 for all 3 ≤ k ≤ g, k 6= i, j, the relation (5.31) is independent of the
relations among holomorphic quadratic differentials. This case occurs if and
only if the curve C is trigonal or a smooth quintic.

Proposition 5.12. Fix g points p1, . . . , pg ∈ C satisfying the conditions of
theorem 4.6. The coefficients Y ω

ij , defined in Eq.(5.33) with η ≡ ω, are given by

Y ω
ij =

(1 + δ1j2j + δ2j3j )(1 + δ1j3j )
6

∏
m∈{1,2,3}

∑
l θl(ami)ωl(pmi)

∑

s∈P3

( ∏
m∈{1,2,3}

θs(m)j
(ami

)
)

, (5.36)

i, j ∈ IM .

Proof. The proposition follows immediately by the definition (5.33) and by
Eq.(4.9).
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6. THE SECTION K

6.1 Definition and fundamental properties

Definition 6.1. For all p3, . . . , pg, x1, . . . , x2g−1 ∈ C, set

K(p3, . . . , pg) :=
1

θ
(
b +

∑2g−1
1 xi

) ∏2g−1
1 σ(xi)

∏g
i=3 σ(pi)

(6.1)

·
∑

s∈P2g−1

S
(∑g

i=1 xsi

)
S

(∑2g−1
i=g xsi

)
∏g

i=3 E(xsg , pi)

g−1∏

i=1

S(xsi
+ xsi+g

+ b)∏g−1
j=1
j 6=i

E(xsi , xsj+g )
.

Theorem 6.1. For all p3, . . . , pg ∈ C, the following properties hold:

a. K ≡ K(p3, . . . , pg) is independent of x1, . . . , x2g−1 ∈ C.

b. For any p1, . . . , pg ∈ C such that det ηi(pj) 6= 0, the set {vi}i∈IN , defined
in (4.14), is a basis of H0(K2

C) if and only if K 6= 0.

c.
S(p1 + p2 + b) = 0 , ∀p1, p2 ∈ C =⇒ K = 0 . (6.2)

d. If p3, . . . , pg are pairwise distinct and K 6= 0, then there exist p1, p2 ∈ C
such that H 6= 0.

Proof. – a. The ratio

H

K
= S(a)5g−7E(p1, p2)g+1

g∏

i=3

(E(p1, pi)E(p2, pi))4
g∏

i,j=3
i<j

E(pi, pj)5 , (6.3)

is independent of x1, . . . , x2g−1, so that a) follows by Theorem 4.12 or,
equivalently, noticing that by Eqs.(4.11)(4.25)(4.27) and (6.3)

K(p3, . . . , pg) := (−)g+1cg,2
κ[v]

κ[σ]g+1

g∏
i,j=3
i<j

E(pi, pj)2−g

g∏

i=3

σ(pi)3−g . (6.4)

– b. By (3.2) and (6.3) the condition det ηi(pj) 6= 0 implies H/K 6= 0. In this
case K 6= 0 if and only if H 6= 0, and b) follows by Theorem 4.12.

– c. If S(p1+p2+b) = 0, for all p1, p2 ∈ C, then the numerators in each term of
the sum in (6.1) vanish for all x1, . . . , x2g−1 ∈ C. Since K is independent
of x1, . . . , x2g−1, it follows that the proof of point c) is equivalent to prove
that there exist x1, . . . , x2g−1 ∈ C such that the denominators in (6.1) do
not vanish. On the other hand, the possible zeros of such denominators
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are the ones corresponding of the zeros of the primes forms, which are
avoided by simply choosing p3, . . . , pg, x1, . . . , x2g−1 pairwise distinct, and
the ones of θ(b +

∑2g−1
1 xi). Fix an arbitrary y ∈ C and set w := I(b +∑2g−1

g+1 xi + y). Then

θ
(
b +

2g−1∑
1

xi

)
= θ

(
w +

g∑
1

xi − y
)

,

and, by the Jacobi Inversion Theorem, by varying the points x1, . . . , xg ∈
C one can span the whole Jacobian variety. Then, one can always choose
x1, . . . , x2g−1 pairwise distinct and distinct from p3, . . . , pg in such a way
that θ

(
w +

∑g
1 xi − y

) 6= 0, so that the denominator does not vanish and
c) follows.

–d. Since K 6= 0, by c) there exist p1, p2 ∈ C such that S(p1 + p2 + b) 6= 0.
By continuity arguments, it follows that there exist some neighborhoods
Ui ⊂ C of pi, i = 1, 2, such that S(x1+x2+b) 6= 0 for all (x1, x2) ∈ U1×U2.
Hence, we can choose p1, p2 so that S(p1 + p2 + b) 6= 0 and p1, . . . , pg are
pairwise distinct. Then, by Eq.(6.3), H/K 6= 0 and, since K 6= 0, we
conclude that H 6= 0.

In view of Eq.(6.4), it is useful to define

k(p3, . . . , pg) :=K(p3, . . . , pg)
g∏

i,j=3
i<j

E(pi, pj)g−2

g∏

i=3

σ(pi)g−3 (6.5)

=(−)g+1cg,2
κ[v]

κ[σ]g+1
,

which is a holomorphic (g − 3)-differential in each of its g − 2 arguments.

Theorem 6.2. Fix p1, . . . , pg ∈ C, with C non-hyperelliptic of genus g ≥ 4
and let {σ̂i}i∈Ig be a set of non-vanishing holomorphic 1-differentials such that
i 6= j ⇒ σ̂i(pj) = 0, for all i, j ∈ Ig. The following statements are equivalent

i) The conditions

i′) (p1, . . . , pg) /∈ A;

i′′) b :=
∑g

i=3 pi is the greatest common divisor of (σ1) and (σ2);

are satisfied;

ii) H(p1, . . . , pg) 6= 0, where H is defined in Eq.(4.25);

iii) {v̂i}i∈IN is a basis of H0(K2
C), with v̂i := σ̂σ̂i, i ∈ IM .

More generally, fix p3, . . . , pg ∈ C. The following statements are equivalent:

iv) p3, . . . , pg are pairwise distinct and {I(p + b)|p ∈ C} ∩Θs = ∅;

v) p3, . . . , pg are pairwise distinct and K(p3, . . . , pg) 6= 0, where K is defined
in Eq.(6.1);
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vi) There exist p1, p2 ∈ C such that p1, . . . , pg satisfy i), ii) and iii);

vii) For all p ∈ C, S(x + p + b) does not vanish identically as a function of x;
furthermore, for each p2 ∈ C \{p3, . . . , pg}, the points p1, . . . , pg satisfy i),
ii) and iii) if and only if p1 is distinct from p2, . . . , pg and from the g − 1
zeros of S(x + p2 + b).

Proof. i) ⇔ iii) is proved in Proposition 4.4 (in the direction i) ⇒ iii), only the
case of normalized 1-differentials σi(pi) = 1, for all i ∈ Ig is considered;
however, by the hypothesis i′), the general case can be reduced to this
choice by a non-singular diagonal transformation on {σ̂i}i∈Ig

);

ii) ⇔ iii) is proved in Theorem 4.12;

vii) ⇒ vi) is obvious;

iv) ⇔ vii) follows by first noting that S(x + p + b) identically vanishes as a
function of x if and only if I(p + b) ∈ Θs, and then by Theorem 4.10;
in particular, in such a theorem it is proved that for each fixed p2 ∈
C \{p3, . . . , pg}, the points p1, . . . , pg satisfy i) if and only if the conditions
p1 /∈ {p2, . . . , pg}, S(p1 + p2 + b) 6= 0 and iv) hold;

vi) ⇒ iv) also follows by Theorem 4.10, where it is proved that if iv) does not
hold, then i′′) cannot be satisfied;

v) ⇔ vi) follows by Corollary 6.1, where it is proved that i′) and v) are equiv-
alent to ii) and that if v) holds, then there exist p1, p2 ∈ C such that
p1, . . . , pg satisfy ii).

6.2 Zeros of K and the singular locus Θs

The function K(p3, . . . , pg) defined in Eq.(6.1), whose zero divisor is character-
ized in the theorem above, is the fundamental tool in the proof of the following
theorem. Such a result heavily relies on the properties of Θs in the case the
sublying ppav is the Jacobian torus of a canonical curve. By the Riemann
Singularity Theorem,

Θs = W 1
g−1 ≡ I(C1

g−1) ,

where C1
g−1 ⊂ Cg−1 is the subvariety of codimension 2 in Cg−1, whose elements

are the effective divisors of degree g − 1 with index of specialty greater than 1.
Note that each effective divisor d ∈ Cg−3 of degree g−3 canonically determines
an embedding

πd : C2 ↪→ Cg−1 ,

c 7→ c + d ,

of C2 as a subvariety of dimension 2 in Cg−1. Hence, by a simple dimensional
counting, we expect the intersection C1

g−1∩πd(C2) to have (in general) dimension
0. The following theorem shows that, in the general case in which such an
intersection does not contain any component of dimension greater than 0, C1

g−1∩
πd(C2) corresponds (set-theoretically) to a set of g(g−3)/2 points; furthermore,
a remarkable relation of such a set of points with the canonical divisor is given.
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Since the restriction of the Abel-Jacobi map to C2 is an injection (because C is
non-hyperelliptic), such points are in one to one correspondence with the points
in the intersection Θs ∩ I(πd(C2)).

Theorem 6.3. Let C be non-hyperelliptic of genus g ≥ 4 and fix an effective
divisor d ∈ Cg−3 of degree g − 3. Then, either:

a. For each point p ∈ C, there exists a point q ∈ C such that

I(p + q + d) ∈ Θs ;

or:

b. There exist k := g(g − 3)/2 effective divisors c1, . . . , ck ∈ C2 of degree 2,
such that

ei := I(ci + d) ∈ Θs , ∀i ∈ Ik . (6.6)

Moreover, in this case

k∑

i=1

ci + (g − 2)d = (g − 3)KC .

Proof. Set d :=
∑g

i=4 pi and consider K(z, p4, . . . , pg) as a function of z. It
vanishes at z ≡ p if and only if there exists a point q ∈ C such that I(p+q+d) ∈
Θs. Then, K = 0 for all z ∈ C if and only if statement a) holds.
Now, assume that K(z, p4, . . . , pg) does not vanish identically and consider

φ(z) := K(z, p4, . . . , pg)
g∏

i=4

E(z, pi)g−2σ(z)g−3 . (6.7)

By (6.4), φ is a holomorphic (g−3)-differential on C. Therefore, the divisor e of
K(z, p4, . . . , pg) is effective (K has no poles) of degree g(g− 3) and e + (g− 2)d
is the divisor of a (g− 3)-differential. It only remains to prove that e is the sum
of all the effective divisors of degree 2 satisfying Eq.(6.6). By the equivalence of
iv) and v) in Theorem 6.2, if c := q1 + q2 satisfies Eq.(6.6), then q1 and q2 are
both zeros of K. By construction, K(z, p4, . . . , pg) can be written as

K(z, p4, . . . , pg) = F (z, p4, . . . , pg, x1, . . . , x2g−1) det ϕi(xj) ,

with {ϕ1, . . . , ϕ2g−1} a set of generators (depending on z, p4, . . . , pg) of H0(K2
C⊗

O(−z−d)) and x1, . . . , x2g−1 arbitrary points in C; F is such that, by Corollary
6.1, K does not depend on x1, . . . , x2g−1. It is easy to verify that K vanishes
only if det ϕi(xj) = 0 for all x1, . . . , x2g−1 ∈ C; the multiplicity of such a zero is
2g− 1− r, where r := h0(K2

C ⊗O(−z− d)). The space H0(K2
C ⊗O(−z− d)) is

generated by elements σ1η, σ2ρ, as η, ρ vary in H0(KC); here, σ1, σ2 is a basis
for the 2-dimensional space H0(KC⊗O(−z−d)) (note that if there exists q ∈ C
such that h0(KC ⊗O(−q − d)) > 2, then K(z, p4, . . . , pg) identically vanishes).
Proposition 4.4 shows that K(z, p4, . . . , pg) 6= 0, that is r = 2g − 1, if and only
if h0(KC ⊗O(−q − z − d)) = 1 for all q ∈ C. Let q1 be a zero of K and denote
by n the maximal integer for which there exist n− 1 points q2, . . . , qn ∈ C such
that h0(KC ⊗O(−q1 − . . .− qn − d) = 2. By the considerations above, since q1
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is a zero, n ≥ 2; furthermore, q2, . . . , qn are zeros of K too. Corollary 4.5 shows
that

r ≡ h0(K2
C ⊗O(−q1 − d)) = h0(K2

C ⊗O(−q1 − . . .− qn − d)) = 2g − n ,

so that the multiplicity of each qi, i ∈ In, is 2g− 1− r = n− 1. Now, consider a
zero q′1 of K(z, p4, . . . , pg), distinct from q1, . . . , qn; by the same construction, if
q′1 has multiplicity n′−1, with n′ ≥ 2, then it is an element of a set of n′ (possibly
coincident) zeroes {q′1, . . . , q′n} with the same multiplicity. By repeating this
procedure, we obtain a finite number l of disjoint sets of zeroes; for each i ∈ Il,
the i-th set contains ni ≥ 2 zeroes, we denote by qi

1, . . . , q
i
ni

, each one with
multiplicity ni − 1. Therefore, we have

e =
l∑

i=1

ni∑

j=1

(ni − 1)qi
j =

l∑

i=1

ni∑

j,k=1
j<k

(qi
j + qi

k) ,

and, since h0(KC ⊗ O(−qi
j − qi

k − d)) = 2, each c := qi
j + qi

k satisfies Eq.(6.6);
conversely, it follows immediately that if an element of C2 satisfies Eq.(6.6),
then it is the sum of a pair of zeroes of K(z, p4, . . . , pg) in the same set.

Theorem 6.4. There exists a holomorphic section A on Θs × . . . × Θs ≡
ΘM−N

s , completely anti-symmetric in its M −N arguments and such that, for
all p3, . . . , pg ∈ C,

A(eN+1, . . . , eM ) =
deti,j=N+1,...,M

(∑g
k,l=1 θkl(ei)ωk(p1j )ωl(p2j )

)

k(p3, . . . , pg)
. (6.8)

Furthermore, the quadrics

g∑

ij=1

θij(ek)XiXj , (6.9)

k = N + 1, . . . ,M , generate the ideal I2 of quadrics of the canonical curve C if
and only if A(eN+1, . . . , eM ) 6= 0.

Proof. Let us first prove that the ratio on the right hand side of Eq.(6.8) does
not depend on p3, . . . , pg ∈ C. The numerator of such a ratio is the determinant
of a (M − N) × (M − N) matrix W , which can be expressed as the product
W = UV of a (M − N) × M matrix U and a M × (M − N) matrix V , with
entries

Uij := θ1j+N 2j+N
(ei+N ) , Vjk := χ−1

j (p · p)k+N [ωωj ] ,

i, k = 1, . . . ,M −N , j ∈ IM , where, by definition (4.4),

(p · p)k[ωωj ] = ω1j (p1k
)ω2j (p2k

) + ω1j (p2k
)ω2j (p1k

) .

The determinant det W is a holomorphic (g − 3)-differential in each pi, i =
3, . . . , g; furthermore, it is symmetric (for g even) or anti-symmetric (for g odd),
with respect to permutations of such arguments. Fix p4, . . . , pg ∈ C and consider
the divisor of detW with respect to p3. Define a local trivialization of KC and
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a local coordinate z on an open neighborhood of p4; with respect to such a
trivialization, in the limit p3 → p4, det W can be seen as a holomorphic function
in (p3, p4) ∈ U × U . Such a determinant is invariant under the replacement, in
the matrix W , of the column




∑
ij θij(eN+1)ωi(p3)ωj(pk)

...∑
ij θij(eM )ωi(p3)ωj(pk)

)


 ,

by the column



∑
ij θij(eN+1)(ωi(p3)− ωi(p4))ωj(pk)

...∑
ij θij(eM )ωi(p3)(ωi(p3)− ωi(p4))ωj(pk)


 ,

for all k = 5, . . . , g. It follows that each of these columns is of order z(p3)−z(p4)
in the limit p3 → p4. Then, consider the element

∑
ij θij(ek)ωi(p3)ωj(p4), for

each k = N +1, . . . ,M . Such a function vanishes at p3 = p4 due to the relations
(B.6); moreover, since it is symmetric with respect to the exchange p3 ↔ p4,
the first non-vanishing contribution in the limit p3 → p4 must be of order
(z(p3)− z(p4))2. It follows that det W has a zero of order g− 2 at p3 = p4 and,
by symmetry arguments, at p3 = pi for all i = 4, . . . , g.

Fix p3, . . . , pg ∈ C and suppose that there exists a point p ∈ C such that
ẽ := I(p + p3 + . . . + pg) is in Θs. Each point of Θs is associated to a relation
among holomorphic quadratic differentials by Eq.(B.6). On the other hand,
since at most M − N such relations can be linearly independent, there exist
some coefficients c̃, cN+1, . . . , cM ∈ C such that

c̃θij(ẽ) +
M∑

k=N+1

ckθij(ek) = 0 , (6.10)

for all i, j = 1, . . . , g. By Proposition 3.3,

g∑

i,j=1

θij(ẽ)ωi(pk)ωj(pl) = 0 ,

which, by (6.10), implies

M∑

n=N+1

cn

g∑

i,j=1

θij(en)ωi(pk)ωj(pl) = 0 ,

for all 3 ≤ k, l ≤ g, so that the rows of W are linearly dependent and detW = 0.
Hence, det W , considered as a holomorphic (g − 3)-differential in p3, has a

zero of order g − 2 at each pi, i = 4, . . . , g, and vanishes if there exists p ∈ C,
such that I(p + p3 + . . . + pg) ∈ Θs; it follows that the right hand side of (6.8)
is a meromorphic function of p3 with no poles, and then is a constant. By the
same arguments, it does not depend on pi, for all i = 3, . . . , g.

The condition that the quadrics (6.9) generate the ideal I2 of degree 2 of
C is equivalent to the matrix U having its maximal rank. Therefore, if such
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quadrics does not generate I2, then A(eN+1, . . . , eM ) = 0. Conversely, since
there always exist p3, . . . , pg ∈ C such that V has rank M −N , it follows that
if A(eN+1, . . . , eM ) 6= 0 then the matrix U has maximal rank.

Green [29] proved that the ideal I2 of degree 2 is generated by quadrics in the
form (6.9). Together with Theorem 6.4, this implies that A(eN+1, . . . , eM ) does
not vanish identically. Consider the coefficients Cω

ij , i = N + 1, . . . ,M , j ∈ IM ,
given by Corollary 5.10 for some suitable p3, . . . , pg ∈ C. The corresponding
quadrics (5.28) generate I2; it follows that each θij(ek), k = N + 1, . . . , M , can
be expressed as a linear combination

θ1j2j
(ek) =

M∑

i=N+1

ckiC
ω
ij ,

for all j ∈ IM , i = N +1, . . . , M , for some complex coefficients cki. By Eq.(6.8),
this implies that k(z3, . . . , zg), for arbitrary z3, . . . , zg ∈ C, is proportional to

k(z3, . . . , zg) ∼ det
i,j=N+1,...,M

M∑

k=1

[Cω
ik(ω1k

(z1j )ω2k
(z2j ) + ω1k

(z2j )ω2k
(z1j ))] .

The multiplicative constant does not depend on z3, . . . , zg; hence, by setting
zi ≡ pi, i = 3, . . . , g, and noting that

M∑

j=1

Cω
ijω · ωj =

M∑

j=1

Cσ
ijσ · σj ,

and

(p · p)k[
M∑

j=1

Cσ
ijσ · σj ] = δik ,

i, k = N + 1, . . . ,M , we obtain

k(z3, . . . , zg) = k(p3, . . . , pg) det
i,j=N+1,...,M

(z · z)j [
M∑

k=1

Cω
ikω · ωk] .

In particular,

k(z, p4, . . . , pg) = k(p3, . . . , pg) det
i,j=4,...,g

[
g∑

k=1

Cσ
3i,jkσk(z)] .

6.3 Quadrics from double points on Θs

Choose p3, . . . , pg ∈ C pairwise distinct and such that K(p3, . . . , pg) 6= 0. Let
C2 3 c := u + v, u, v ∈ C, be an effective divisor of degree 2, such that u is
distinct from p3, . . . , pg and

∑g
i=3 pi + c is special. Then there exists x ∈ C

such that (x, u, p3, . . . , pg) ∈ Cg \A (or, otherwise, K(p3, . . . , pg) would vanish);
let {σi}i∈Ig be the basis of H0(KC) associated to x, u, p3, . . . , pg by Proposition
4.1.

Let A(c) ⊂ Ig \ {1, 2} be the set

A(c) := {i ∈ Ig \ {1, 2} | σi(v) 6= 0} ,

and Ā(c) := {3, . . . , g} \A(c) its complement.
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Lemma 6.5. The set A(c) is independent of x, provided that (x, u, p3, . . . , pg) ∈
Cg \A. Furthermore, for each subset A′ ⊆ Ig \{1, 2}, the divisor

∑
i∈A′ pi +c is

exceptional if and only if A(c) ⊆ A′, and A(c) is the unique set satisfying such
a property.

Proof. An effective divisor d, with deg d ≤ g, is exceptional if and only if
h0(KC ⊗ O(−d)) > g − deg D. Consider the divisor d :=

∑
i∈A(c) pi + c of

degree deg d = a+2, where a is the cardinality of A(c). Since H0(KC⊗O(−d))
is generated by σ1 and by the elements of {σi}i∈Ā(c),

h0(KC ⊗O(−d)) = g − 1− a > g − 2− a = g − deg d ,

and d is exceptional. It follows that if A(c) ⊆ A′ ⊆ {3, . . . , g}, then
∑

i∈A′ pi +
c ≥ d is special.

Conversely, set d :=
∑

i∈A′ pi and suppose that d + c is exceptional. Note
that, since d + u is not exceptional,

h0(KC ⊗O(−d− u)) = g − deg d− 1 ≤ h0(KC ⊗O(−d− c)) ,

and by H0(KC ⊗O(−d− c)) ⊆ H0(KC ⊗O(−d− u)), it follows that H0(KC ⊗
O(−d− c)) = H0(KC ⊗O(−d− u)); in other words, each element of H0(KC ⊗
O(−d− u)) also vanishes at v. Now, H0(KC ⊗O(−d− u)) is generated by σ1

and by the elements of {σi}i∈Ā′ , where Ā′ := {3, . . . , g} \ A′. Then, σi(v) = 0
for all i ∈ Ā′, so that Ā′ ⊆ Ā(c) and then A(c) ⊆ A′.

Uniqueness follows by noting that if Ã satisfies the same property, then
Ã ⊆ A(c) (because

∑
i∈A(c) pi + c is special) and A(c) ⊆ Ã (because Ã ⊆ Ã

implies that
∑

i∈Ã pi + c is special).
Finally, by defining A(c) as the unique set satisfying such a property, it

follows that A(c) is independent of x.

Lemma 6.6. Suppose that Ā(c) 6= ∅ and fix i ∈ Ā(c) and j 6= i, 3 ≤ j ≤ g. Let
k + 1, with k ≥ 0, be the order of the zero of σ1 in pj. Then, the holomorphic
1-differential

λ
(c)
i (z) :=

∑

a,b∈Ig

θab(c +
∑

l 6=i

pl)ωa(pi)ωb(z) ,

has a zero of order n ≥ k in z = pj, and n > k if and only if j ∈ Ā(c).

Proof. Define the points x̃1, . . . , x̃g−2−k by

(σ1) =
g∑

l=3

pl + u + v + kpj +
g−2−k∑

l=1

x̃l ,

so that I(
∑g

l=3 pl + u + v + kpj +
∑g−2−k

l=1 x̃l) = b + τa, for some a, b ∈ Zg.
Consider the identities

∑

l∈Ig

θl(u + v +
g∑

m=3

pm − w)ωl(z)

∼ θ(
∑

m x̃m + kpj + w + z − y)E(z, pj)kE(z, w)
∏

l E(z, x̃l)σ(z)
E(y, z)E(y, w)E(y, pj)k

∏
l E(y, x̃l)σ(y)

∼ θ(y + u + v +
∑

m pm − w − z)E(z, pj)kE(z, w)
∏

l E(z, x̃l)σ(z)
E(y, z)E(y, w)E(y, pj)k

∏
l E(y, x̃l)σ(y)

,
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where ∼ denotes equality up to nowhere vanishing factors, which hold for arbi-
trary w, y ∈ C. Dividing by E(pi, w) and taking the limit w → pi one obtains

λ
(c)
i (z) =

e−2πitaI(z−y)E(z, pj)kE(pi, z)
∏

m E(z, x̃m)σ(z)
E(y, z)E(y, pi)E(y, pj)k

∏
m E(y, x̃m)σ(y)∑

l∈Ig

θl(y + u + v +
∑

m 6=i

pm − z)ωl(pi) ,

where we recovered the right phase. Since the right hand side does not depend on
y, the factor E(z, pj)k cannot be compensated by any factor in the denominator
and the 1-differential has a zero of order at least k in z = pj . Furthermore, such
a zero if of order strictly greater than k if and only if

∑

l∈Ig

θl(y + u + v +
∑

m∈A′
pm)ωl(pi) = 0 ,

for all y ∈ C, with A′ := {3, . . . , g} \ {i, j}. In particular, for y ≡ x, this implies
that the holomorphic 1-differential

∑

l∈Ig

θl(x + u + v +
∑

m∈A′
pm −∆)ωl(z) ,

vanishes at pi. Therefore, such a differential vanishes at x, u, v and pl, for all
l 6= j, 3 ≤ l ≤ g; hence, it is proportional to σj , which is the generator of
H0(KC ⊗ O(−u − x −∑

l 6=j pl)), and it must be σj(v) = 0, so that j ∈ Ā(c).
Conversely, if j ∈ Ā(c), then A(c) ⊆ A′ and, by Lemma 6.5, y+u+v+

∑
l∈A′ pl is

a special divisor for all y ∈ C. Then, for each y ∈ C, there exist q1, . . . , qg−2 ∈ C
such that I(y + u + v +

∑
l∈A′ pl) = I(pi +

∑
l ql), so that

∑

l∈Ig

θl(y + u + v +
∑

m 6=i,j

pm)ωl(pi) =
∑

l∈Ig

θl(pi +
∑
m

qm)ωl(pi) = 0 ,

for all y ∈ C, and the lemma follows.

Set
Λ(i)

jk (c) :=
∑

a,b∈Ig

θab(c +
∑
l 6=i

pl)ωa(pj)ωb(pk) , (6.11)

i, j, k ∈ Ig \ {1, 2}. Note that, if i ∈ Ā(c), then Λ(i)
jk (c) = 0 for j = k and for

j, k 6= i, and
Λ(i)

ij (c) = λ
(c)
i (pj) ,

j 6= i.

Theorem 6.7. Choose p3, . . . , pg ∈ C, C2 3 c := u+v and x ∈ C as above. Sup-
pose Ā(c) 6= ∅ and fix i ∈ Ā(c). If u is a single zero for K( · , p3, . . . , p̌i, . . . , pg),
then the holomorphic quadratic differentials σσk, k ∈ I1i

N (see Definition 2.3 for
notation), satisfy a unique linear relation

∑

k∈I1i
N

C̃
σ(i)
k (c)σσk = 0 ,
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where
C̃

σ(i)
k (c) =

∑

j∈Ii
2

j>N

Λ(i)
j (c)Cσ

jk ,

k ∈ I1i
N , with Λ(i)

j (c) := Λ(i)
1j2j (c), j ∈ IM , defined in Eq.(6.11).

Proof. By Theorem 6.3 and Corollary 4.5, since u is a single zero for the function
K( · , p3, . . . , p̌i, . . . , pg), then σσk, k ∈ I1i

N , span a (N − 1)-dimensional vector
space in H0(K2

C), and then satisfy a relation

∑

k∈I1i
N

C̃
σ(i)
k (c)σσk = 0 .

Such a relation determines, up to normalization, an element

kerψ 3 φ :=
∑

k∈I1i
N

C̃
σ(i)
k σ · σk ,

where ψ : Sym2 H0(KC) → H0(K2
C); by Theorem 5.3, kerψ is spanned by

{∑M
k=1 Cσ

ikσ · σk}N<i≤M , so that

∑

k∈I1i
N

C̃
σ(i)
k (c)σ · σk =

M∑

j=N+1

L
(i)
j (c)

∑

l∈IM

Cσ
jlσ · σl , (6.12)

for some complex coefficients L
(i)
j (c), N < j ≤ M . Note that, for all j, k,

with N < j, k ≤ M , Cσ
jk = δjk. Then, by applying (p · p)j (see Eq.(4.4)),

j = N + 1, . . . ,M , to both sides of (6.12), and by using Eq.(4.6), we obtain

L
(i)
j =

{
C̃

σ(i)
j (c) , for j ∈ I1i

N ,

0 , for j 6∈ I1i
N ,

N < j ≤ M .

Observe that if j ∈ I1i
N and j > N , then j ∈ Ii

2 (see Def. 2.3), that is, at least one
between 1j and 2j is equal to i; furthermore, the condition j > N implies 1j 6= 2j

and 1j , 2j 6= 1, 2. Therefore, it remains to prove that L
(i)
j (c) ≡ C

σ(i)
j = Λ(i)

1j2j (c)
for all j ∈ Ii

2, j > N , with respect to a suitable normalization of φ.
The vector φ can be expressed as

φ ≡
∑

k∈I1i
N

C̃
σ(i)
k (c)σ · σk = σ1 · η + σi · ρ + cσ1 · σi , (6.13)

for some η, ρ ∈ H0(KC), c ∈ C, so that the relation ψ(φ) = 0 corresponds to

σ1η + σiρ + cσ1σi = 0 . (6.14)

Note that, by the redefinition η → η + ασi, c → c− α, for a suitable α ∈ C, we
can assume η(pi) = 0. Applying pi · pj , 3 ≤ j ≤ g, j 6= i, to both sides of (6.13),
it follows that

L
(i)
ij (c) = pi · pj [φ] = ρ(pj) ,
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where L
(i)
1k2k

(c) = L
(i)
2k1k

(c) := L
(i)
k (c), N < k ≤ M . Define d ∈ Cg−2 in such a

way that
(σ1) = b + c + d ,

and observe that, by (6.14), ρ ∈ H0(KC ⊗ O(−d)) (since u is a single zero for
K( · , p3, . . . , p̌i, . . . , pg), it follows that the gcd of (σ1) and (σi) is c +

∑
k 6=i pk).

Furthermore, ρ cannot be a multiple of σ1, since, in this case, the only possibility
for Eq.(6.14) to hold would be φ = 0. Finally, L

(i)
ij (c) is invariant under the

redefinition ρ → ρ+aσ1, since σ1(pj) = 0 for all j = 3, . . . , g. Then, we can fix an
arbitrary y ∈ C \supp(σ1) and assume that ρ is an element of the 1-dimensional
space H0(KC ⊗ O(−d − y)). By using the relation I(b + c − y) = −I(d + y),
such an element can be expressed as follows

ρ(z) =
a(y)
A

∑
k∈Ig

θk(b + c− y)ωk(z)

E(y, pi)
, (6.15)

where the normalizing constant A can be arbitrarily fixed, and a is a function
such that

L
(i)
ij =

a(y)
A

∑
k∈Ig

θk(b + c− y)ωk(pj)

E(y, pi)
, (6.16)

3 ≤ j ≤ g, j 6= i, is independent of y. In other words, we assume that, under
the change

y → ỹ , y, ỹ ∈ C \ supp(σ1)
ρ → ρ̃ ,

ρ(pi) is equal to ρ̃(pi); this property, together with the fact that ρ̃ ∈ H0(KC ⊗
O(−d)), which is generated by σ1 and ρ, implies that

ρ̃ = ρ + f(y, ỹ)σ1 , (6.17)

for some function f . Though Eq.(6.15) only holds for y ∈ C \supp(σ1), the RHS
of Eq.(6.16) is a constant and can be continued to all y ∈ C and, in particular,
in the limit y → pi.

It is now sufficient to prove that a(pi) := limy→pi a(y) is finite and non-
vanishing (by Eq.(6.16) such a limit necessarily exists); in fact, in this case,
after fixing the normalization A ≡ a(pi), we obtain

L
(i)
ij = lim

y→pi

∑
k∈Ig

θk(b + c− y)ωk(pj)

E(y, pi)
= Λ(i)

ij (c) .

Then, to conclude, it remains to prove that limy→pi a(y) 6= 0,∞. Since L
(i)
ij and

Λ(i)
ij are finite, limy→pi a(y) = 0 would imply that L

(i)
ij = 0 for all j and then

that Eq.(6.13) is trivial, which is absurd.
In order to prove that limy→pi a(y) 6= ∞, let us choose j 6= i, 3 ≤ j ≤ g, in

such a way that, at the point pj , σ1 has a zero of order k + 1 and λ
(c)
i (z) has

a zero of order k, for some k ≥ 0. Suppose, by absurd, that such a j does not
exist. Then, by Lemma 6.6, σl(v) = 0, for all l ∈ Ig \ {2}. On the other hand,
such differentials also vanish at u, so that h0(KC ⊗O(−u− v)) = g− 1. By the
Riemann-Roch Theorem, this would imply that h0(O(u + v)) = 1 and then C
would be hyperelliptic, counter the hypotheses.
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As discussed above, the hypotheses of the theorem imply that the greater
common divisor of (σ1) and (σi) is c +

∑
m 6=i pm; in particular, if k > 0, then

pj is a single zero for σi. Hence, by Eq.(6.14), ρ(z) has a zero of order at least
k in pj . By expanding ρ(z) in the limit z → pj , we obtain

ρ(z) ∼ βζkdζ + o(ζk) ,

with respect to some coordinates ζ(z) centered in pj . Here, β does not depend
on y, since, by Eq.(6.17), ρ(z) depends on y only through a term proportional
to σ1(z), which is of order ζk+1.

By using Eq.(6.15), in the limit z → pj we have
∑

a∈Ig
θa(u + v +

∑g
m=3 pm − y)ωa(z)

E(pi, y)
∼ Aβ

a(y)
ζkdζ + o(ζk) .

In the limit y → pi, the LHS gives λ
(c)
i (z), which, by Lemma 6.6, has a zero of

order exactly k in z = pj . Therefore,

lim
y→pi

Aβ

a(y)
6= 0 ,

that concludes the proof.

A classical result known by Riemann is the relation
∑

a,b∈Ig

θab(e)ωaωb = 0 ,

which holds for an arbitrary e ∈ Θs. The connection of such a relation to the
ones considered in this paper is given by the following lemma.

Lemma 6.8. Choose p1, . . . , pg satisfying conditions i), ii) or iii) of Theorem
6.2. Then, for all e ∈ Θs, the relation

∑

a,b∈Ig

θab(e)ωaωb = 0 ,

is equivalent to
M∑

i=N+1

Ai(e)
∑

j∈IM

Cσ
ijσσj = 0 ,

where
Ai(e) :=

∑

a,b∈Ig

θab(e)ωa(p1i)ωb(p2i) ,

i ∈ IM .

Proof. Two relations are equivalent if they correspond to the same vector in
kerψ, up to normalization. Since kerψ is spanned by {∑M

k=1 Cσ
ikσ · σk}N<i≤M ,

then
∑

a,b∈Ig

θab(e)ωa · ωb =
M∑

i=N+1

Ai(e)
∑

j∈IM

Cσ
ijσ · σj ,

for some complex coefficients Ai(e), i ∈ IM . By applying p·pi, i = N +1, . . . , M ,
to both sides of this equation, and using Cσ

ij = δij , for N < i, j ≤ M , we
conclude.
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Theorem 6.9. Choose p3, . . . , pg ∈ C, C2 3 c := u+v and x ∈ C as above. Sup-
pose Ā(c) 6= ∅ and fix i ∈ Ā(c). If u is a single zero for K( · , p3, . . . , p̌i, . . . , pg),
then the linear relation ∑

k∈I1i
N

C̃
σ(i)
k (c)σσk = 0 ,

is equivalent to ∑

a,b∈Ig

θab(c +
∑

j 6=i

pj)ωaωb = 0 .

Proof. By construction, I(c +
∑

j 6=i pj) ∈ Θs. Then, use Theorem 6.7 and
Lemma 6.8, and note that

Ak(I(c +
∑

j 6=i

pj)) = Λ(i)
k (c) ,

k = N + 1, . . . , M .

Theorem 6.10. If C is a trigonal curve, then there exist 2g−4 pairwise distinct
points p3, . . . , pg, u3, . . . , ug ∈ C such that the following conditions are satisfied

i. K(p3, . . . , pg) 6= 0

ii. K(uj , p3, . . . , p̌i, . . . , pg) = 0 if and only if j 6= i, for all i, j ∈ Ig \ {1, 2}.
Furthermore, if, for each i ∈ Ig \ {1, 2}, the points uj, j ∈ Ig \ {1, 2, i}, are
single zeros for K( · , p3, . . . , p̌i, . . . , pg), then the following statements hold:

a. For each 3 ≤ j ≤ g, there exists a unique vj ∈ C such that

I(cj +
∑

k 6=i

pk −∆) ∈ Θs ,

for all i 6= j, 3 ≤ i ≤ j, where cj := uj + vj, 3 ≤ j ≤ g;

b. The relations ∑

k∈I1i
N

C̃
σ(i)
k (cj)σσk = 0 ,

3 ≤ i < j ≤ g, considered in Lemma 6.7, are linearly independent and
then generate the ideal I2 of quadrics in Pg−1 containing the curve C.

Proof. Since C is trigonal, there exists a unique (up to a fractional linear trans-
formation) meromorphic function f with three poles. Hence, for each p ∈ C,
f−1(f(p)) consists of three (possibly coincident) points; note that, trivially, the
sum of such three points (counting multiplicity) corresponds to the unique ef-
fective divisor of degree three which is special and containing p in its support.

Fix x4, . . . , xg ∈ C, and consider the function

Fx4,...,xg (p) :=
∏

x∈f−1(f(p)))

K(x, x4, . . . , xg) , p ∈ C .

Denote by [K]x4,...,xg ⊆ C and [F ]x4,...,xg the sets of zeros of K( · , x4, . . . , xg)
and Fx4,...,xg , respectively. Then, one of the following alternatives holds: if
K( · , x4, . . . , xg) is not identically vanishing, then both [K]x4,...,xg and

[F ]x4,...,xg =
⋃

x∈[K]x4,...,xg

f−1(f(x)) ,
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are finite sets; otherwise, both [K]x4,...,xg
and [F ]x4,...,xg

coincide with C.
For each n, 1 ≤ n ≤ g − 2, let N

(n)
xn+3,...,xg ⊆ Cn denote the set of n-tuples

(p3, . . . , pn+2) such that

F (n)
xn+3,...,xg

(p3, . . . , pn+2) :=
n∏

i=1

Fp3,...,p̌i,...,pn+2,xn+3,...,xg (pi) ,

is not zero. Note that F (1) ≡ F and N (1) = C \ [F ].
Now, assume that, for some m, 1 ≤ m < g − 2, the set N (n) is dense in Cn

for all n ≤ m. The set [F (m+1)]xm+4,...,xg
of zeros of

F (m+1)
xm+4,...,xg

(p3, . . . , pm+2, p) = Fp3,...,pm+2,xm+4,...,xg
(p)

m∏

i=1

Fp3,...,p̌i,...,pm+2,p,xm+4,...,xg (pi) ,

as a function of p, is given by

[F (m+1)]xm+4,...,xg =
m⋃

i=1

( ⋃

x∈f−1(f(pi))

[K]p3,...,p̌i,...,pm+2,x,xm+4,...,xg

)

∪ [F ]p3,...,pm+2,xm+4,...,xg .

If (p3, . . . , pm+2) ∈ N (m), then the functions

K( · , p3, . . . , pm+2, xm+4, . . . , xg) ,

and
K( · , p3, . . . , p̌i, . . . , pm+2, x, xm+4, . . . , xg) ,

for each i = 1, . . . , m, and x ∈ f−1(f(pi)), vanish identically on C (for example,
xm+3 is not a zero). Hence, [F (m+1)]xm+4,...,xg ⊆ C is a finite set and, therefore,
N

(m+1)
xm+4,...,xg is dense in Cm+1. We proved that if K( · , x4, . . . , xg) does not

identically vanish for some x4, . . . , xg ∈ C, then Nn
xn+3,...,xg

is dense in Cn for
all n, 1 ≤ n ≤ g−2. It follows that Ng−2, which does not depend on x4, . . . , xg,
is dense in Cg−2. Also note that the subset of Cg−2 for which

g⋃

i=3

f−1(f(pi)) ,

consists of pairwise distinct points is dense Cg−2. Hence, its intersection with
N (g−2) is not empty.

Let us choose (p3, . . . , pg) in such an intersection and fix ui ∈ f−1(f(pi)),
ui 6= pi, for all i ∈ Ig \{1, 2}. Then, the points p3, . . . , pg, u3, . . . , ug are pairwise
distinct and satisfy the condition

K(ui, p3, . . . , p̌j , . . . , pg) = 0 ⇔ i 6= j ,

for all i, j ∈ Ig \ {1, 2}. Furthermore, if ui, i ∈ Ig \ {1, 2}, is a single zero of
K( · , p3, . . . , p̌j , . . . , pg), for all j ∈ Ig \ {1, 2, i}, then there exists a unique point
vij such that vij + ui +

∑
k 6=j pk is special. Such a point satisfies necessarily
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f−1(f(pi)) = {pi, ui, vij}, so that it is independent of j, and the statement a.
follows.

Finally, note that A(cj) = pj and Ā(cj) = {pi | 3 ≤ i ≤ g, i 6= j}. Hence, by
Theorem 6.7, for each k, N < k ≤ M the coefficients C

σ(1k)
l (c2k

), l ∈ IM , are
given by

C
σ(1k)
l (c2k

) = Λ(1k)
k (c2k

)Cσ
kl ,

where Λ(1k)
k (c2k

) 6= 0. Linear independence of the C̃σ(i)(cj)’s, 3 ≤ i < j ≤ g,
follows by linear independence of the Cσ

k ’s.

6.4 The case of genus 4

Consider the case of a non-hyperelliptic curve C of genus 4. The identity (6.4)
reduces to

K(p3, p4) := −c4,2
κ[v]

κ[σ]5E(p3, p4)2σ(p3)σ(p4)
,

where c4,2 = 1008, and can be used to express Eq.(5.7) in terms of the function
K. For g = 4 Eq.(5.7) reduces to a unique relation

10∑

i=1

Cσ
i σσi = 0 .

It can be derived from the identity

deti,j∈I10 σσi(xj)
deti,j∈I9 vi(xj)

= 0 ,

by expanding the determinant at the numerator with respect to the column
corresponding to x10 ≡ z. One obtains

∑

i∈I10

(−)i
detj∈I10\{i}

k∈I9

σσj(xk)

detj,k∈I9 vj(xk)
σσi(z) = 0 ,

where the ratios of determinants do not depend on x1, . . . , x9 and correspond
to

detj∈I10\{i}
k∈I9

σσj(xk)

detj,k∈I9 vj(xk)
=

κ[σσ1, . . . , ˇσσi, . . . , σσ10]
κ[v]

.

Now, note that for 1i = 2i, κ[σσ1, . . . , ˇσσi, . . . , σσ10] = 0. This can be checked
by observing that all the elements in {σσj}j∈I10\{i} vanish at pi, so that it
cannot be a basis of H0(K2

C). Hence, we can restrict the summation over all
the i ∈ I10 with 1i 6= 2i. By a re-labeling of the points p1, . . . , p4, the relation
between κ[v] and K at genus four is

K(p1i , p2i) = (−)i+1c4,2
κ[σσ1, . . . , ˇσσi, . . . , σσ10]

κ[σ]5E(p1i , p2i)2σ(p1i)σ(p2i)
,

for all i, 5 ≤ i ≤ 10. Hence,

Cσ
i =

K(p1i , p2i)E(p1i , p2i)
2σ(p1i)σ(p2i)

K(p3, p4)E(p3, p4)2σ(p3)σ(p4)
=

k(p1i , p2i)
k(p3, p4)

, (6.18)
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5 ≤ i ≤ 10, with k defined in Eq.(6.5), whereas Cσ
i = 0 for i ≤ 4. Since

σσi =
∑10

j=1 Xjiωωj , it follows that

Cω
i =

10∑

j=5

Xω
ijC

σ
j ,

i ∈ I10, and we obtain

Cω
i = χ−1

i

4∑

k,l=1

k(pk, pl)
k(p3, p4)

θ1i(ak)θ2i(al)∑
m,n θm(ak)θn(al)ωm(pk)ωn(pl)

, (6.19)

i ∈ I10. Note that Ĉω
i := k(p3, p4)Cω

i is symmetric under any permutation of
p1, . . . , p4. On the other hand, Corollary 5.10 shows that Cω

i , and therefore also
Ĉω

i , are independent of p1, p2. We conclude that Ĉω
i , whose explicit form is

Ĉω
i = − χ−1

i

S(a)2
∏7

1 σ(xi)

·
4∑

k,l=1
k 6=l

[
θ1i(ak)θ2i(al)

θ
(
pk + pl +

∑7
1 xi

)
σ(pk)σ(pl)

∏
i 6=k,l

(
E(pk, pi)E(pl, pi)

)

·
∑

s∈P7

S
(∑4

i=1 xsi

)
S

(∑7
i=4 xsi

)

E(xsg , pk)E(xsg , pl)

3∏

i=1

S(xsi + xsi+4 + pk + pl)∏3
j=1
j 6=i

E(xsi , xsj+4)

]
,

does not depend on p1, . . . , p4, for all i ∈ I10.

Note that, at genus 4, the equivalent relations
∑

i∈IM

Cω
i ωωi = 0,

and ∑

i∈IM

Ĉω
i ωωi = 0 ,

must be proportional to Eq.(B.6), with e one of the two points in Θs; in other
words, Cω

i and Ĉω
i must be proportional to χ−1

i θ1i2i(e). Such a proportionality
is immediately derived by noting that Eq. (6.8), for genus 4, gives

k(p, q) ≡ K(p, q)E(p, q)2σ(p)σ(q) = A(e)−1
∑

a,b∈Ig

θab(e)ωa(p)ωb(q) , (6.20)

for all p, q ∈ C, where e one of the two points of Θs and A(e) is defined in
Eq.(6.8). By Eq.(6.18) and Eq.(6.20), it immediately follows that

Cσ
i =

∑
a,b∈Ig

θab(e)ωa(p1i)ωb(p2i)∑
a,b∈Ig

θab(e)ωa(p3)ωb(p4)
, (6.21)

for all i ∈ IM , and by Eq.(6.19)

Cω
i = χ−1

i

θ1i2i(e)∑
a,b∈Ig

θab(e)ωa(p3)ωb(p4)
, (6.22)
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for all i ∈ IM . Finally, we have

Ĉω
i =

θ1i2i
(e)

A(e)χi
,

for all i ∈ IM .

6.5 Modular properties of K(p3, . . . , pg)

For each n ∈ Z>0, let us consider the rank Nn vector bundle Ln on Mg, defined
in section 3.4, whose fiber at the point corresponding to a curve C is H0(Kn

C).
A general section s ∈ Lm

n , i > 1, admits the local expression on an open set
U ⊂Mg

s(p) =
∑

i1,...,im∈INn

si1...im(p)φi1 ⊗ φi2 ⊗ · · · ⊗ φim , p ∈ U ⊂Mg , (6.23)

with respect to a set {φi}i∈INn
of linearly independent local sections of Ln on

U .
For each non-hyperelliptic C of genus g ≥ 3, k(p3, . . . , pg) as defined in (6.5),

is a holomorphic (g − 3)-differential in each variable, and is symmetric (for g
even) or anti-symmetric (for g odd) in its g − 2 arguments. Hence,

k :=
∑

i1,...,ig−2∈INg−3

ki1...ig−2φi1 ⊗ · · · ⊗ φig−2 , (6.24)

can be naturally seen as an element of Eg, where

Eg :=

{
Symg−2 H0(Kg−3

C ) , g even ,∧g−2
H0(Kg−3

C ) , g odd ,

for a fixed basis {φi}i∈INg−3
of H0(Kg−3

C ). The definition can be extended in a
continuous way to hyperelliptic curves, by setting ki1...ig−2 ≡ 0 in this case. At
genus g = 3, k(p3) is a holomorphic function on C and therefore is a constant.
Furthermore, Eq.(6.5) also makes sense at genus g = 2; in this case, k is again
a constant. For g > 3, let us define Eg by

Eg :=

{
Symg−2 Lg−3 , g even ,∧g−2

Lg−3 , g odd .

In view of Eqs.(6.23) and (6.24), it is natural to seek for a section k ∈ Eg such
that, at the point pC ∈Mg corresponding to the curve C, it satisfies

Eg 3 k(p3, . . . , pg) ∼= k(pC) ∈ (Eg)|pC
,

under the identification (Eg)|pC
∼= Eg. On the other hand, k(p3, . . . , pg) is not

modular invariant, and then it does not correspond to a well-defined element of
Eg for each pC ∈Mg. The correct statement is given by the following theorem.

Theorem 6.11.

k := κ[ω]g−8k ⊗ (ω1 ∧ . . . ∧ ωg)12−g ,

is a holomorphic section of λ12−g
1 for g = 2, 3 and of Eg ⊗ λ12−g

1 for g > 3,
which vanishes only in the hyperelliptic locus for g ≥ 3.
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Proof. Let us derive the modular properties of

κ[ω]g−8k(p3, . . . , pg) .

Eq.(6.5) and the identity κ[σ] = κ[ω]/ det ωi(pj) yield

κ[ω]g−8k(p3, . . . , pg) = (−)g+1cg,2
κ[v]
κ[ω]9

(det ωi(pj))g+1 .

By Eq.(3.18), it follows that κ[v]/κ[ω]9 has a simple modular transformation

κ[v]
κ[ω]9

→ κ[v]
κ[ω]9

(det(Cτ + D))−13 ,

(
A B
C D

)
∈ Sp(2g,Z) ,

and, by using the modular transformation detωi(pj) → det ωi(pj) det(Cτ + D),
we obtain

κ[ω]g−8k → κ[ω]g−8k(det(Cτ + D))g−12 .

Hence, κ[ω]g−8k ⊗ (ω1 ∧ . . . ∧ ωg)12−g is modular invariant and determines a
section of Symg−2 Eg−3 ⊗ λ12−g

1 on Mg. Since κ[ω] 6= 0 for all C, k = 0
at the point corresponding to the C if and only if k(p3, . . . , pg) = 0 for all
p3, . . . , pg ∈ C, or, equivalently, if and only if C is hyperelliptic.

For g = 2 the section k corresponds to

k = κ[ω]6k(ω1 ∧ ω2)10 ,

and for g = 3
k = κ[ω]5k(ω1 ∧ ω2 ∧ ω3)9 .

Note that, for g = 2, 3, Eqs.(3.11) and (3.12) lead to the following relations

κ[v]
κ[σ]g+1

=
κ[ωω]

κ[ω]g+1
,

and, together with (3.19) and (3.20), we obtain the identification

k = 6π12κ[ω]6Ψ10 , g = 2 ,

k = 15 · 26κ[ω]5π18Ψ9 , g = 3 ,

recovering the results of Proposition 3.9.

Let C be a non-hyperelliptic curve of genus g = 4. In this case, k(p3, p4)
is a holomorphic 1-differential in both p3 and p4, symmetric in its arguments.
Then,

k(4) :=
det k(pi, pj)
(det ωi(pj))2

= det kij ,

is a meromorphic function on C in each pi, i ∈ I4.

Proposition 6.12. The function k(4) is a constant on C that depends only on
the choice of the marking. Furthermore, k(4) = 0 if and only if C is hyperel-
liptic or if C is non-hyperelliptic and admits a (necessarily even) singular spin
structure.
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Proof. Let us suppose that, for a suitable choice of p1, . . . , p4 ∈ C, {k(pi, z)}i∈I4

is a basis of H0(KC). Then, the determinant

det k(pi, zj)
detωi(zj)

,

does not depend on the points z1, . . . , z4 ∈ C. Hence, the ratio

det k(pi, zj)
detωi(zj) det ωi(pj)

,

is a non-vanishing constant on C. In particular, by taking pi = zi, it follows
that such a constant is k(4). On the contrary, if for all p1, . . . , p4 ∈ C, the
holomorphic 1-differentials k(pi, z), i ∈ I4, are linearly dependent, then k(4)

vanishes identically.
Such a construction shows that k(4) vanishes if and only if k(pi, z), i ∈ I4, are

linearly dependent for all p1, . . . , p4 ∈ C. If C is hyperelliptic, then k(pi, pj) = 0
for all pi, pj ∈ C and k(4) = 0. Assume that C admits a singular spin structure
α and let Lα be the corresponding holomorphic line bundle with L2

α
∼= KC . This

implies that Θs consists of a unique point of order 2 in the Jacobian torus. For
each p ∈ C, the holomorphic 1-differential k(p, z) is the square of an element
of H0(Lα); by varying p ∈ C, such 1-differentials span the image of the map
ϕ : Sym2H0(Lα) → H0(KC). If α is even, then h0(Lα) = 2 and Sym2 H0(Lα)
has dimension three, so that ϕ cannot be surjective and k(4) = 0. If α is odd,
then h0(Lα) = 3 so that, for each point p ∈ C, h0(Lα ⊗ O(−p)) ≥ 2; if h1, h2

span H0(Lα⊗O(−p)), then h1/h2 is a non-constant meromorphic function with
2 poles and C is hyperelliptic.

Suppose that C is non-hyperelliptic and does not admit a singular spin
structure. Then, Θs consists of 2 distinct points, e and −e. Let us first observe
that if there exist two points p, q ∈ C such that I(p − q) = 2e, then they are
unique. For, if I(p̃ − q̃) = 2e = I(p − q), then p + q̃ − p̃ − q is the divisor of
a meromorphic function on C. But, since C is non-hyperelliptic, the unique
meromorphic function with less that 3 poles are the constants and, since p 6= q
(because 2e 6= 0 in J0(C)), it follows that p̃ = p and q̃ = q.

Also, observe that K(z, z) is not identically vanishing as a function of z; since
C is compact, K(z, z) has only a finite number of zeros. Fix a point p1 ∈ C and
define x1, x2, y1, y2 ∈ C by

I(p1 + x1 + x2) = e , I(p1 + y1 + y2) = −e .

Then the divisor of k(p1, z) with respect to z is 2p1 +x1 +x2 +y1 +y2. Observe
that at least one between x1 and x2 is distinct from y1 and y2, since otherwise we
would have e = −e. We choose p1 in such a way that p1, x1, x2, y1, y2 are distinct
from the zeros of K(z, z) and from the points p, q such that I(p−q) = 2e (if they
exist). Note that such a condition can always be fulfilled, since it is equivalent
to require that p1 is distinct from the zeros of k(p, ·), k(q, ·) and k(w, ·) for each
w such that K(w,w) = 0. Then, the points for which such a condition is not
satisfied is a finite set.

Set p2 := x1 and p3 := y1. The divisor of k(p3, z) is (k(p3, z)) = 2p3 + p1 +
y2 + z1 + z2, where z1, z2 satisfy

I(p3 + z1 + z2) = e .
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Since the condition on the choice of p1 implies K(p3, p3) 6= 0, it follows that z1

and z2 are distinct from p3. Set p4 := z1, so that

det k(pi, pj) = k(p1, p4)2k(p2, p3)2 .

The identities

I(p1 + p2 + x2 − p3 − p4 − z2) = 0 , I(p4 + z2 − p1 − y2) = 2e ,

imply that p4 and z2 are distinct from p1, p2, x2 (for example, if p4 = x2, then
p1 +p2−p3−z2 is the divisor of a meromorphic function and C is hyperelliptic)
and from y2 (if p4 = y2, then I(z2−p1) = 2e, counter the requirement that p1 is
distinct from q and p). Therefore, k(p1, p4)k(p2, p3) 6= 0 and then k(4) 6= 0.

By Propositions 6.12 and 6.11, it follows that, for g = 4,

k(4) := κ[ω]−16 det kij(ω1 ∧ · · · ∧ ω4)34 ,

is a holomorphic section of λ34
1 vanishing only on the hyperelliptic locus, with

a zero of order 4[(3g− 3)− (2g− 1)] = 8, and on the locus of Riemann surfaces
with an even singular spin structure, with a zero of order 1. By Eq.(6.20), the
following relation holds

k(4) = A4 det
ij∈I4

θij(e) ,

where the constant A depends on the moduli. Recently, it has been shown that
the Hessian detij∈I4 θij(e) plays a key role in the analysis of the Andreotti-Mayer
loci at genus 4 and in the corresponding applications to the Schottky problem
[21][31]. Whereas no natural generalization of such a Hessian exists at genus
g > 4, the section k(4) is the g = 4 representative of a set of sections k(g) of a
tensor power of λ1 on Mg, defined for each even g ≥ 4.

Definition 6.2. Let C be a curve of even genus g ≥ 4. Fix Ng−3 = h0(Kg−3
C )

points p1, . . . , pNg−3 ∈ C and let {φi}i∈INg−3
be a basis of H0(Kg−3

C ). Set

k(g) :=
κ[φ]g−2

∑
s1,...,sg−2

∏g−2
i=1 ε(si)

∏Ng−3
j=1 k(ps1

j
, . . . , psg−2

j
)

Ng−3!κ[ω](2g−7)2(g−2)+(8−g)Ng−3
(
detφ(p1, . . . , pNg−3)

)g−2 (ω1∧· · ·∧ωg)dg

where dg := (12 − g)Ng−3 + (g − 2)[6(g − 3)(g − 4) + 1] and the sum in the
numerator runs over g − 2 permutations s1, . . . , sg−2 ∈ PNg−3 .

Proposition 6.13. For all the even g ≥ 4, k(g) does not depend on the points
p1, . . . , pNg−3 ∈ C and on the basis {φi}i∈INg−3

of H0(Kg−3
C ) and determines a

section of λ
dg

1 on Mg.

Proof. Choose (g − 2)Ng−3 points pi
1, . . . , p

i
Ng−3

∈ C, i ∈ Ig−2 and note that

∑

s1,...,sg−2∈PNg−3

g−2∏

i=1

ε(si)
Ng−3∏

j=1

k(pi
s1

j
, . . . , pi

sg−2
j

) , (6.25)
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is a product of g−3 differentials in each pi
j , i ∈ Ig−2, j ∈ INg−3 . Such a product

is completely anti-symmetric with respect to the permutations of each Ng−3-
tuple (pi

1, . . . , p
i
Ng−3

), for all i ∈ Ig−2, so that it must be proportional to the
determinant det φ(pi

1, . . . , p
i
Ng−3

). Therefore, the ratio of Eq.(6.25) and

∏

i∈Ig−2

detφ(pi
1, . . . , p

i
Ng−3

) ,

does not depend on the points pi
1, . . . , p

i
Ng−3

∈ C, i ∈ Ig−2; in particular, by
choosing, for each j ∈ INg−3 , p1

j ≡ p2
j ≡ . . . ≡ pg−2

j ≡ pj , where p1, . . . , pNg−3

are the points in the definition 6.2, it follows that k(g) is a constant as a func-
tion of CNg−3 . The proposition follows trivially by Theorem (6.11) and by the
expression (3.18) of the Mumford form, with n = g − 3.

Definition 6.2 and Proposition 6.13 make sense also at odd genera; however,
simple algebraic considerations show that, in this case, k(g) is identically null
on Mg. In general, there exist some non-trivial generalizations of k(4) at odd
genus, but they are not as simple as the ones at even g. An example at genus
g = 5 is

(ω1 ∧ · · · ∧ ω5)164κ[φ]4

κ[ω]84
(
detφ(p1, . . . , p12)

)4

∑
i,j,k,l∈P12

ε(i)ε(j)ε(k)ε(l)k(pi1 , pi2 , pi3)

· k(pi4 , pi5 , pj1)k(pi6 , pi7 , pk1)k(pi8 , pi9 , pl1)
· k(pi10 , pj2 , pj3)k(pi11 , pk2 , pk3)k(pi12 , pl2 , pl3)
· k(pj4 , pj5 , pj6)k(pj7 , pj8 , pk4)k(pj9 , pj10 , pl4)
· k(pj11 , pk5 , pk6)k(pj12 , pl5 , pl6)k(pk7 , pk8 , pk9)
· k(pk10 , pk11 , pl7)k(pk12 , pl8 , pl9)k(pl10 , pl11 , pl12),

which does not depend on the points p1, . . . , p12 ∈ C and corresponds to a
section of λ164

1 on M5.
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7. SIEGEL’S INDUCED MEASURE ON THE MODULI SPACE

In this section we derive the explicit expression of the metric ds2
|M̂g

on the

moduli space M̂g of genus g canonical curves induced by the Siegel metric. This
was previously known only for the trivial cases g = 2 and g = 3. By Wirtinger
Theorem, the explicit expression for the volume form on M̂g is also obtained.
A remarkable property of ds2

|M̂g
is that it is given by the Kodaira-Spencer map

of the square of the Bergman reproducing kernel (times 4π2). This is one of the
basic properties of the Bergman reproducing kernel derived in this section. Such
an approach will led to a notable relation satisfied by the determinant of powers
of the Bergman reproducing kernel. The results are a natural consequence of
the present approach, which also uses, as for the present derivation of ds2

|M̂g
,

the isomorphisms introduced in section 2.1.
The Torelli space Tg of smooth algebraic curves of genus g can be embedded

in Hg by the period mapping, which assigns to a curve C, with a fixed basis
of H1(C,Z), representing a point in Tg, the corresponding period matrix. The
period mapping has maximal rank 3g−3 on the subspace T̂g of non-hyperelliptic
curves and therefore a metric on Hg induces the pull-back metric on T̂g. It is
therefore natural to consider the Siegel metric on Hg [60]

ds2 := Tr (Y −1dZY −1dZ̄) , (7.1)

where Y := Im Z, Z ∈ Hg. Such a metric is Sp(2g,R) invariant, and since
M̂g

∼= T̂g/Γg, it also induces a metric on M̂g. The Siegel volume form is [60]

dν =
iM

2g

∧g
i≤j(dZij ∧ dZ̄ij)

(detY )g+1
. (7.2)

The explicit expression of the volume forms on M̂g induced by the Siegel
metric, which coincides with (7.2) for g = 2 and g = 3 non-hyperelliptic curves,
is given in Theorem 7.7. It is simply written in terms of the Riemann period
matrix τij and of the basis {dτij} of T ∗T̂g.

The Laplacian associated to the Siegel’s symplectic metric were derived, ten
years after Siegel’s paper [60], by H. Maass [43]

∆ = 4 Tr
(
Y

t
(
Y

∂

∂Z̄

) ∂

∂Z

)
. (7.3)

As we will see, as a byproduct of the present approach, and of the formalism
developed in section 2.1 in particular, both (7.2) and (7.3) are straightforwardly
derived.
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7.1 Derivation of the volume form and the Laplacian on Hg

Proposition 7.1. The Siegel metric (7.1) can be equivalently expressed in the
form

ds2 =
M∑

i,j=1

gS
ijdZidZ̄j , (7.4)

where

gS
ij(Z, Z̄) := 2

Y −1
1i1j

Y −1
2i2j

+ Y −1
1i2j

Y −1
2i1j

(1 + δ1i2i
)(1 + δ1j2j

)
= 2χ−1

i χ−1
j (Y −1Y −1)ij , (7.5)

i, j ∈ IM .

Proof. For n = 2 the identity (2.3) reads

g∑

i,j=1

f(i, j) =
M∑

k=1

(2− δ1k2k
)f(1k, 2k) ,

where we used the identity

2− δij =
2

1 + δij
.

Hence

ds2 =
g∑

i,j,k,l=1

Y −1
ij dZjkY −1

kl dZ̄li (7.6)

=
g∑

i,j=1

dZ̄ji

M∑
m=1

Y −1
i1m

Y −1
j2m

+ Y −1
i2m

Y −1
j1m

1 + δ1m2m

dZ1m2m

=
M∑

m,n=1

(2− δ1n2n)dZ̄1n2n

Y −1
1n1m

Y −1
2n2m

+ Y −1
1n2m

Y −1
2n1m

1 + δ1m2m

dZ1m2m

=
M∑

m,n=1

2χ−1
m χ−1

n (Y −1Y −1)nmdZmdZ̄n .

Let

ω :=
i

2

M∑

i,j=1

gS
ijdZi ∧ dZ̄j , (7.7)

be the (1, 1)-form associated to the Siegel metric on Hg, so that the volume form
on Hg is

1
M !

ωM =
( i

2

)M

det gS
ij

g∧

i≤j

(dZij ∧ dZ̄ij) .
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Proposition 7.2.

det gS
ij =

2M−g

(det Y )g+1
.

Proof. Since Y is symmetric and positive-definite, we have

PY −1P−1 = diag(λ1, . . . , λg) ≡ D ,

for some non-singular g × g matrix P and some positive λ1, . . . , λg. By (7.5)
and (2.6)

det gS
ij =2M detij

(Y −1Y −1)ij

χiχj

=2M detij
(PP )ij

χj
detij

(P−1P−1)ij

χj
detij

(Y −1Y −1)ij

χiχj
,

and by (2.4)

det gS
ij = 2M detij

(DD)ij

χiχj
= 2M detij

λλi(δδ)ij

χiχj
.

The proposition then follows observing that (δδ)ij = χjδij and that (2.7) yields

det gS
ij = 2M

M∏

i=1

λλiχ
−1
i = 2M−g

( g∏

k=1

λk

)g+1

.

Proposition 7.3. The Laplace-Beltrami operator acting on functions on Hg is

∆ =
1
2

M∑

i,j=1

(Y Y )ij
∂

∂Zi

∂

∂Z̄j
.

Proof. Just use the definition of ∆ and note that gS ij = (Y Y )ij/2.

7.2 The Siegel metric on the moduli space

The following theorem provides a modular invariant basis of the fiber of T ∗T̂g

at the point representing C.

Theorem 7.4. If p3, . . . , pg ∈ C are g − 2 pairwise distinct points such that
K(p3, . . . , pg) 6= 0, then

Ξi :=
M∑

j=1

Xω
jidτj , (7.8)

i ∈ IN , with Xω
ij, i, j ∈ IM , defined in Eq.(5.23), is a modular invariant basis

of the fiber of T ∗T̂g at the point representing C.
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Proof. Consider the Kodaira-Spencer map k identifying the space of quadratic
differentials on C with the fiber of the cotangent bundle of Mg at the point
representing C. Next, consider a Beltrami differential µ ∈ Γ(K̄C ⊗ K−1

C ) (see
[11] for explicit constructions) and recall that it defines a tangent vector at C
of Tg. The derivative of the period map τij : Tg → C at C in the direction of µ
is given by Rauch’s formula

dCτij(µ) =
∫

C

µωiωj .

It follows that
k(ωjωk) =

1
2πi

dτjk ,

j, k ∈ Ig, so that, by (5.22),

k(vj) =
1

2πi

M∑

k=1

Xω
kjdτk , (7.9)

j ∈ IN , where
dτi := dτ1i2i ,

i ∈ IM . It follows that the differentials

Ξj := 2πi k(vj) , (7.10)

j ∈ IN , are linearly independent. Furthermore, since by construction the basis
{vi}i∈IN

is independent of the choice of a symplectic basis of H1(C,Z), such
differentials are modular invariant, i.e.

Ξi 7→ Ξ̃i = Ξi , (7.11)

i ∈ IN , under (B.3).

Let ds2
|M̂g

be the metric on M̂g induced by the Siegel metric. Set

gτ
ij := gS

ij(τ, τ̄) = 2χ−1
i χ−1

j (Im τ−1Im τ−1)ij . (7.12)

Corollary 7.5.

ds2
|M̂g

=
N∑

i,j=1

gΞ
ijΞiΞ̄j , (7.13)

where

gΞ
ij :=

M∑

k,l=1

gτ
klB

ω
ikB̄ω

jl , (7.14)

and Bω is the matrix defined in (5.11) with ηi ≡ ωi, i ∈ Ig. Furthermore, the
volume form on M̂g induced by the Siegel metric is

dν|M̂g
=

( i

2

)N

det gΞ dw ∧ dw̄ , (7.15)

where

dw :=
M∑

iN >...>i1=1

Xω1 ... N

i1...iN

dτi1 ∧ · · · ∧ dτiN . (7.16)
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Proof. By (7.4) and (7.5)

ds2
|M̂g

=
M∑

k,l=1

gτ
ijdτidτ̄j . (7.17)

Furthermore, by applying the Kodaira-Spencer map to both sides of Eq.(5.10),
one obtains

dτi =
N∑

j=1

Bω
ji Ξj , (7.18)

i ∈ IM , and (7.13) follows. On the other hand, by (7.13)

dν|M̂g
=

( i

2

)N

det gΞ ∧N
1 (Ξi ∧ Ξ̄i) , (7.19)

and by Theorem 7.4 the proof is completed.

Applying the Kodaira-Spencer map to (5.24) yields the linear relations satisfied
by dτi, i ∈ IM .

Corollary 7.6. The (g − 2)(g − 3)/2 linear relations

M∑

j=1

Cω
ijdτj = 0 , (7.20)

N + 1 ≤ i ≤ M , where the matrices Cω are defined in (5.25), hold.

Set Im τ := Im τ and consider the Bergman reproducing kernel

B(z, w̄) :=
g∑

i,j=1

ωi(z)(Im τ)−1
ij ω̄j(w) ,

for all z, w ∈ C., and Set K(φψ̄) := k(φ)k̄(ψ), k̄(ψ̄) = k(ψ), for all φ, ψ ∈
H0(K2

C), where k is the Kodaira-Spencer map.

Theorem 7.7.
ds2
|M̂g

= 4π2K(B2) . (7.21)

Furthermore, the volume form on M̂g induced by the Siegel metric is

dν|M̂g
= iN

M∑

iN >...>i1=1
jN >...>j1=1

∣∣Im τ−1 Im τ−1
∣∣i1...iN

j1...jN∏N
k=1(1 + δ1ik

2ik
)(1 + δ1jk

2jk
)

N∧

l=1

(dτil
∧ dτ̄jl

) . (7.22)

Proof. Eq.(7.21) is an immediate consequence of Proposition 7.1 and of the
application of the Kodaira-Spencer map to the identity

M∑

i,j=1

ωωi(z)gτ
ijω̄ω̄j(w) = B2(z, w̄) . (7.23)
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Consider the (1, 1)-form ω defined in Eq.(7.7). By Wirtinger’s Theorem [30],
the volume form on a d-dimensional complex submanifold S is

1
d!

ωd ,

so that the volume of S is expressed as the integral over S of a globally defined
differential form on Hg. Note that

dν|M̂g
=

iN

2NN !

M∑

i1,...,iN=1
j1,...,jN=1

N∏

k=1

gτ
ikjk

N∧

l=1

(dτil
∧ dτ̄jl

)

=
iN

2NN !

M∑

iN >...>i1=1
jN >...>j1=1

∑

r,s∈PN

ε(r)ε(s)
N∏

k=1

gτ
ir(k)js(k)

N∧

l=1

(dτil
∧ dτ̄jl

) ,

and Eq.(7.22) follows by the identity

∑

r,s∈PN

ε(r)ε(s)
N∏

k=1

gτ
ir(ks)js(k)

= N ! |gτ |i1...iN

j1...jN
.

Fix the points z1, . . . , zN ∈ C satisfying the conditions of Proposition 4.1.
The basis {γi}i∈IN

of H0(K2
C), with γi ≡ γ2

i , i ∈ IN , defined by Eq.(4.1) in the
case n = 2, satisfies the relations

ωωi =
N∑

j=1

ωωi(zj)γj , vi =
N∑

j=1

vi(zj)γj ,

i ∈ IM . Set Γi := (2πi)−1k(γi) and [v]ij := vi(zj), i, j ∈ IN .

Corollary 7.8. Fix the points z1, . . . , zN ∈ C in such a way that detφi(zj) 6= 0,
for any arbitrary basis {φi}i∈IN of H0

C(K2). The metric on M̂g induced by the
Siegel metric is

ds2
|M̂g

=
N∑

i,j=1

B2(zi, z̄j)ΓiΓ̄j , (7.24)

and the volume form is

dν|M̂g
=

( i

2

)N

det B2(zi, z̄j)
∧N

1 (Γi ∧ Γ̄i) =
( i

2

)N det B2(zi, z̄j)
| det vi(zj)|2 dw ∧ dw̄ ,

(7.25)
where {vi}i∈IN is the basis of H0(K2

C) defined in Proposition 4.4 and dw is
defined in Eq.7.16.

Proof. Eq.(7.24), and therefore the first equality in Eq.(7.25), follows substitut-
ing

dτi =
N∑

j=1

ωωi(zj)Γj ,
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i ∈ IM , in (7.17) and then using the identity (7.23). Next, note that comparing
(7.24) and (7.13), and by Ξi =

∑N
j=1[v]ijΓj , i ∈ IN , yields

N∑

k,l=1

[v]kig
Ξ
kl[v̄]lj = B2(zi, z̄j) ,

which also follows by the definition (7.14) of gΞ and by Eq.(5.10), with ηi ≡ ωi,
i ∈ Ig, and Eq.(7.23). Hence

det gΞ =
detB2(zi, z̄j)
| det vi(zj)|2 , (7.26)

which also follows by det γi(zj) = 1 and

Ξ1 ∧ · · · ∧ ΞN = det vi(zj)Γ1 ∧ · · · ∧ ΓN ,

and the second equality in Eq.(7.25) follows.

7.3 Determinants of powers of the Bergman reproducing kernel

Corollary 7.8, in particular Eq.(7.25), implies that the ratio

detB2(zi, z̄j)
|det vi(zj)|2 ,

does not depend on zi, i ∈ IN , and therefore det B2(zi, z̄j) factorizes into a
product of a holomorphic times an antiholomorphic function of z1, . . . , zN . This
is a special case of a more general theorem.

Theorem 7.9. Fix n ∈ N+ and set

BA(z, w̄) :=
g∑

i,j=1

ωi(z)Aijω̄j(w) ,

where A is a complex g × g matrix. Then, for all zi, wi ∈ C, i ∈ INn ,

detBn
A(zi, w̄j) =

∣∣κ[φn]
∣∣−2 det φn(z1, . . . , zNn) det φ̄n(w1, . . . , wNn)Kn(A) ,

(7.27)
where {φn

i }i∈INn
is an arbitrary basis of H0(Kn

C) and

Kn(A) =
Mn∑

iNn>...>i1=1
jNn>...>j1=1

κ[ω · · ·ωi1 , . . . , ω · · ·ωiNn
] (7.28)

·
|A . . . A|i1...iNn

j1...jNn∏Nn

k=1 χik
χjk

κ̄[ω · · ·ωj1 , . . . , ω · · ·ωjNn
] .

Furthermore, for n ≥ 2

detBn
A(zi, z̄j) =

∣∣∣θ∆

( Nn∑
1

zi

) Nn∏

i<j

E(zi, zj)
Nn∏
1

σ(zi)2n−1
∣∣∣
2

Kn(A) . (7.29)
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Proof. Observe that

Bn
A(zi, w̄j) =

g∑

k1,...,kn=1
l1,...,ln=1

ωk1(zi) · · ·ωkn
(zi)Ak1l1 · · ·Aknln ω̄l1(wj) · · · ω̄ln(wj)

=
Mn∑

k,l=1

ω · · ·ωk(zi)
(A · · ·A)kl

χkχl
ω̄ · · · ω̄l(wj) ,

with the notation of section 2.1. Then

det Bn
A(zi, w̄j) =

Mn∑

k1,...,kNn=1
l1,...,ln=1

∑

s∈PNn

ε(s)
Nn∏

i=1

ω · · ·ωki
(zi)ω̄ · · · ω̄li(wsi

)
(A · · ·A)kili

χki
χli

,

and by defining msi
:= li, i ∈ IMn

, det Bn
A(zi, w̄j) becomes

Mn∑

k1,...,kNn=1
m1,...,mNn=1

|A . . . A|k1...kNn
m1...mNn∏Nn

i=1 χkiχmi

Nn∏

i=1

ω · · ·ωki(zi)ω̄ · · · ω̄mi(wi)

=
Mn∑

kNn >...>k1=1
mNn >...>m1=1

|A . . . A|k1...kNn
m1...mNn∏Nn

i=1 χkiχmi

∑

r,s∈PNn

ε(r)ε(s)
Nn∏

i=1

ω · · ·ωkri
(zi)ω̄ · · · ω̄msi

(wi)

=
Mn∑

kNn >...>k1=1
mNn >...>m1=1

|A . . . A|k1...kNn
m1...mNn∏Nn

i=1 χkiχmi

det
i=k1,...,kNn
j=1,...,Nn

ω · · ·ωi(zj) det
i=m1,...,mNn

j=1,...,Nn

ω̄ · · · ω̄i(wj).

By Eq.(3.4), for an arbitrary basis {φn
i }i∈INn

of H0(Kn
C)

det
i∈{k1,...,kNn}

j∈INn

ω · · ·ωi(zj) = det φn(z1, . . . , zNn)
κ[ω · · ·ωk1 , . . . , ω · · ·ωkNn

]
κ[φn]

,

leading to (7.27). Eq.(7.29) then follows by Eq.(3.3).



8. A GENUS 4 EXAMPLE: A 3-FOLD COVERING OF THE
SPHERE

In this chapter, the objects defined in the previous chapters, in particular the
distinguished basis {σi}i∈Ig of H0(KC), are explicitly obtained for a family of
non-hyperelliptic curves of genus 4, in terms of the algenraic parameters of the
family.

8.1 Definition and main properties

Let C be the non-hyperelliptic curve of genus 4 defined by

w3 = z(z − 1)(z − λ1)2(z − λ2)2(z − λ3)2 ,

(z, w) ∈ P1 × P1 and let

q0 =z−1(0) , q1 =z−1(1) ,

q∞ =z−1(∞) , pi =z−1(λi) , i ∈ I3 ,

be the branching points on C, all with branching number 1. Since

(z) = 3q0 − 3q∞ , (w) = q0 + q1 + 2p1 + 2p2 + 2p3 − 8q∞ ,

(dz) =2q0 + 2q1 + 2p1 + 2p2 + 2p3 − 4q∞ ,

a basis of H0(KC) is given by

ϕ1 :=
dz

w
, ϕ3 :=

[∏3
i=1(z − λi)

]
dz

w2
,

ϕ2 :=
zdz

w
, ϕ4 :=

z
[∏3

i=1(z − λi)
]
dz

w2
.

Note that ϕ1, ϕ2 generate U := H0(KC ⊗ O(−q0 − q1 − q∞)), whereas ϕ3, ϕ4

generate V := H0(KC ⊗ O(−p1 − p2 − p3)). Consider the automorphism φ of
C given by φ(z, w) := (z, ζw), where ζ := e2πi/3; then, the pull-back φ∗ is an
automorphism of H0(KC) and U and V are the eigenspaces corresponding to
the eigenvalues, respectively, ζ2 and ζ.

The Riemann surface C is a 3-fold covering of the sphere. Let us define the
j-th sheet, j = 0, 1, 2, as the one containing the line Im z = 0, arg w = j(2πi/3).
Let us fix a basis of H1(C,Z) as in the following figure.
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0 λ1 1 λ2

0

0

λ1

λ1

1

1

λ2

λ2

∞

∞

∞

λ3

λ3

λ3

α1

α3

α2

α4

β1

β1

β2

β2

β3

β3

β4

β4

sheet 0

sheet 1

sheet 2

Fig. 1.

∫

α1

η =
∫ λ1

0

η −
∫ λ1

0

φ∗η ,

∫

α2

η =
∫ λ2

1

η −
∫ λ2

1

φ∗η ,

∫

α3

η =
∫ λ1

0

φ∗η −
∫ λ1

0

φ∗2η ,

∫

α4

η =
∫ λ2

1

φ∗η −
∫ λ2

1

φ∗2η ,

∫

β1

η =
∫ ∞

λ1

η −
∫ ∞

λ1

φ∗2η ,

∫

β2

η =
∫ ∞

λ2

η −
∫ ∞

λ2

φ∗2η ,

∫

β3

η =
∫ ∞

λ1

φ∗η −
∫ ∞

λ1

φ∗2η ,

∫

β4

η =
∫ ∞

λ2

φ∗η −
∫ ∞

λ2

φ∗2η .

Let u1, u2 ∈ U and v1, v2 ∈ V the holomorphic 1-differentials satisfying
∫ λ1

0

u1 =
1
3

=
∫ λ1

0

v1 ,

∫ λ2

1

u1 = 0 =
∫ λ2

1

v1 ,

∫ λ1

0

u2 = 0 =
∫ λ1

0

v2 ,

∫ λ2

1

u2 =
1
3

=
∫ λ2

1

v2 ,

where the integration is above the cuts in the 0-sheet. Consistency requires
∫ ∞

λ3

u1 =
∫ ∞

λ3

u1 =
∫ ∞

λ3

u1 =
∫ ∞

λ3

u1 =
1
3

,
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where integration is along the cut in the 0-sheet. Then, it can be easily verified
that

ω1 := u1 + v1 , ω2 := u2 + v2 , ω3 := −ζ2u1 − ζv1 , ω4 := −ζ2u2 − ζv2 ,
(8.1)

is the canonical basis of H0(KC) associated to our choice of basis of H1(C,Z).
Furthermore, a lengthy but straightforward calculation yields

τ =




2a 2c a c
2c 2b c b
a c 2a 2c
c b 2c 2b


 ,

where

∫ ∞

λ1

ω1 = a ,

∫ ∞

λ1

ω2 = c ,

∫ ∞

λ1

ω3 = 0 ,

∫ ∞

λ1

ω4 = 0 ,

∫ ∞

λ2

ω1 = c ,

∫ ∞

λ2

ω2 = b ,

∫ ∞

λ2

ω3 = 0 ,

∫ ∞

λ2

ω4 = 0 ,

∫ ∞

λ3

ω1 =
2
3

,

∫ ∞

λ3

ω2 =
2
3

,

∫ ∞

λ3

ω3 =
1
3

,

∫ ∞

λ3

ω4 =
1
3

,

∫ ∞

0

ω1 =
2
3

+ a ,

∫ ∞

0

ω2 = c ,

∫ ∞

0

ω3 =
1
3

,

∫ ∞

0

ω4 = 0 ,

∫ ∞

1

ω1 = c ,

∫ ∞

1

ω2 =
2
3

+ b ,

∫ ∞

1

ω3 = 0 ,

∫ ∞

1

ω4 =
1
3

,

where the path of integration is along the cuts and along the arcs representing
part of the β-cycles in the 0-sheet (see the figure above).

The vector of Riemann constants with base point q∞ can be computed to
be

Kq∞ =




1/2 + a− 1/6 + c
1/2 + b− 1/6 + c
1/2 + a + 1/6 + c
1/2 + b + 1/6 + c


 =

1
3







1
1
2
2


 + τ




1
1
1
1





 .

Note that ϕ1, ϕ2 ∈ H0(KC ⊗ O(−q0 − q1 − q∞)) and ϕ1, ϕ3 ∈ H0(KC ⊗
O(−3q∞)), so that I(q0 + q1 + q∞) and I(3q∞) are in W 1

3 . Furthermore, I(q0 +
q1 − 2q∞) is not a period, so that Θs consists of two distinct points e1, e2

e1 = I(q0 + q1 + q∞ −∆) = −Kq∞ , e2 = I(3q∞ −∆) = Kq∞ .

By Proposition 6.12, k4 6= 0 for such a curve.

The points p1, p2, q0, q1 satisfy the condition of Proposition 4.1 with n = 1,
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and the corresponding basis of H0(KC) is

σp1 :=
3
√

λ1(λ1 − 1)(λ1 − λ2)2(λ1 − λ3)2

3(λ1 − λ2)
(z − λ2)dz

wdζλ1

,

σp2 :=
3
√

λ2(λ2 − 1)(λ2 − λ1)2(λ2 − λ1)2

3(λ2 − λ1)
(z − λ1)dz

wdζλ2

,

σq0 :=

(
3
√

λ1λ2λ3

)2

3λ1λ2λ3

(z − 1)(z − λ1)(z − λ2)(z − λ3)dz

w2dζ0
,

σq1 :=

(
3
√

(1− λ1)(1− λ2)(1− λ3)
)2

3(1− λ1)(1− λ2)(1− λ3)
z(z − λ1)(z − λ2)(z − λ3)dz

w2dζ1
,

where the argument a of each root is 0 ≤ a < 2πi/3 and ζλ1 , ζλ2 , ζ0, ζ1 are local
coordinates centered in p1, p2, q0, q1, respectively, such that

z(p) = λ1 + ζ3
λ1

(p) ,

w(p) = 3
√

λ1(λ1 − 1)(λ1 − λ2)2(λ1 − λ3)2ζ2
λ1

+ O(ζ3
λ1

) ,
for p ∼ p1 ,

z(p) = λ2 + ζ3
λ2

(p) ,

w(p) = 3
√

λ2(λ2 − 1)(λ2 − λ1)2(λ2 − λ1)2ζ2
λ2

+ O(ζ3
λ2

) ,
for p ∼ p2 ,

z(p) = ζ3
0 (p) ,

w(p) = 3
√

λ1λ2λ3ζ0 + O(ζ2
0 ) ,

for p ∼ q0 ,

z(p) = 1 + ζ3
1 (p) ,

w(p) = 3
√

(1− λ1)(1− λ2)(1− λ3)ζ1 + O(ζ2
1 ) ,

for p ∼ q1 ,

with the same convention as before for the third roots.
By using Eq.(4.9),

σp1 =
∑4

i θi(p2 + q0 + q1)ωi∑4
i θi(p2 + q0 + q1)ωi(p1)

, σp2 =
∑4

i θi(p1 + q0 + q1)ωi∑4
i θi(p1 + q0 + q1)ωi(p2)

,

σq0 =
∑4

i θi(p1 + p2 + q1)ωi∑4
i θi(p1 + p2 + q1)ωi(q0)

, σp2 =
∑4

i θi(p1 + p2 + q0)ωi∑4
i θi(p1 + p2 + q0)ωi(q1)

.

Note that σp1 , σp2 ∈ U , whereas σq0 , σq1 ∈ V , so that, by using the decomposi-
tion of the canonical basis under H0(KC) → U⊕V given by Eq.(8.1), we obtain
the following identities

0 =(θ1(p + q0 + q1)− ζθ3(p + q0 + q1))v1

+ (θ2(p + q0 + q1)− ζθ4(p + q0 + q1))v2 ,

0 =(θ1(q + p1 + p2)− ζ2θ3(q + p1 + p2))u1

+ (θ2(q + p1 + p2)− ζ2θ4(q + p1 + p2))u2 ,

for arbitrary p, q ∈ C. Since u1, u2, v1, v2 are linearly independent, we conclude
that

θ3(p + q0 + q1)
θ1(p + q0 + q1)

= ζ =
θ4(p + q0 + q1)
θ2(p + q0 + q1)

,

θ3(q + p1 + p2)
θ1(q + p1 + p2)

= ζ2 =
θ4(q + p1 + p2)
θ2(q + p1 + p21)

,
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for all p, q ∈ C. Hence,

σp1 =
∑2

i θi(p2 + q0 + q1)ui∑2
i θi(p2 + q0 + q1)ui(p1)

, σp2 =
∑2

i θi(p1 + q0 + q1)ui∑2
i θi(p1 + q0 + q1)ui(p2)

,

σq0 =
∑2

i θi(p1 + p2 + q1)vi∑2
i θi(p1 + p2 + q1)vi(q0)

, σp2 =
∑2

i θi(p1 + p2 + q0)vi∑2
i θi(p1 + p2 + q0)vi(q1)

.

Note that K(p1, p2) = 0 = K(q0, q1), so that

k4 =

(
det

(
k(p1, q0) k(p1, q1)
k(p2, q0) k(p2, q1)

))2

(
det ω(p1, p2, q0, q1)

)2 .

An alternative formula for k(p1, q0)

cg,2S(p1 + p2 + q0 + q1)4E(p1, q0)2E(p3, q∞)E(p3, p1)2E(q0, q∞)2E(q0, p1)4

E(p2, q1)3σ(p2)4σ(q1)4
(
E(p2, q∞)E(p2, p1)2E(q1, p3)E(q1, q0)2

)3

8.2 Computation of Kq∞ .

Set µ1 := 0 and µ2 := 1. Then, note that

∫

αi

η(x)
∫ x

q∞
ρ =

∫ λi

∞
η(x)

∫ x

∞
ρ +

∫ µi

λi

φ∗η(x)
∫ x

λi

φ∗ρ +
∫ ∞

µi

η(x)
∫ x

µi

ρ

+
(∫ µi

λi

φ∗η
)(∫ λi

∞
ρ
)
+

(∫ ∞

µi

η
)(∫ λi

∞
ρ +

∫ µi

λi

φ∗ρ
)

,

∫

αi+2

η(x)
∫ x

q∞
ρ =

∫

αi

φ∗η(x)
∫ x

q∞
φ∗ρ ,

i = 1, 2, for arbitrary η, ρ ∈ H0(KC). Consider the 4g-edged polygon obtained
by the canonical dissection of C along the chosen basis of π1(C, q∞). Let Ui, Vi,
i = 1, 2 be holomorphic functions on such a polygon such that ui = dUi and
vi = dV − i. By

Ui(αi(q∞))− Ui(q∞) ≡
∫

αi

ui =
1

1− ζ
,

Vi(αi(q∞))− Vi(q∞) ≡
∫

αi

vi =
1

1− ζ2
,

we obtain
∫

αi

ui(x)
∫ x

q∞
ui =

1
2

∫ αi(q∞)

q∞
dU2

i − Ui(q∞)
∫

αi

ui =
1

2(1− ζ)2
= −ζ2

6
,

and analogously ∫

αi

vi(x)
∫ x

q∞
vi = −ζ

6
.
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Let us compute

∫

αi

uk(x)
∫ x

q∞
vj =

∫ λi

∞
uk(x)

∫ x

∞
vj +

∫ µi

λi

uk(x)
∫ x

λi

vj +
∫ ∞

µi

uk(x)
∫ x

µi

vj

+ ζ2
(∫ µi

λi

uk

)(∫ λi

∞
vj

)
+

(∫ ∞

µi

uk

)(∫ λi

∞
vj + ζ

∫ µi

λi

vj

)

=− Vj(∞)
∫ λi

∞
uk − Vj(λi)

∫ µi

λi

uk

− Vj(µi)
∫ ∞

µi

uk + ζ2(Vj(λi)− Vj(∞))
∫ µi

λi

uk

+ (Vj(λi)− Vj(∞))
∫ ∞

µi

uk + ζ(Vj(µi)− Vj(λi))
∫ ∞

µi

uk

=(ζ2 − 1)(Vj(∞)− Vj(λi))
∫ λi

µi

uk + (ζ − 1)(Vj(µi)− Vj(λi))
∫ ∞

µi

uk

=(ζ2 − 1)
∫ λi

µi

uk

∫ ∞

λi

vj + (1− ζ)
∫ ∞

µi

uk

∫ λi

µi

vj ,

for all i, j, k = 1, 2. By an analogous calculation, or by noting that

∫

αi

uk(x)
∫ x

q∞
vj +

∫

αi

vj(x)
∫ x

q∞
uk

=
∫ αi(q∞)

q∞
d(UkVj)− Vj(q∞)

∫

αi

uk − Uk(q∞)
∫

αi

vj

=(Uk(q∞) +
∫

αi

uk)(Vj(q∞) +
∫

αi

vj)− Uk(q∞)Vj(q∞)

− Vj(q∞)
∫

αi

uk − Uk(q∞)
∫

αi

vj

=
∫

αi

uk

∫

αi

vj = (1− ζ)(1− ζ2)
∫ λi

µi

uk

∫ λi

µi

vj

=[(1− ζ) + (1− ζ2)]
∫ λi

µi

uk

∫ λi

µi

vj ,

one obtains

∫

αi

vj(x)
∫ x

q∞
uk = (ζ − 1)

∫ λi

µi

vj

∫ ∞

λi

uk + (1− ζ2)
∫ ∞

µi

vj

∫ λi

µi

uk ,
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for all i, j, k = 1, 2, 3. Hence,
∑

i6=1

∫
αi

ωi(x)
∫ x

q∞
ω1 is given by

∫

α2

u2(x)
(∫ x

q∞
u1 +

∫ x

q∞
v1

)
+

∫

α2

v2(x)
(∫ x

q∞
u1 +

∫ x

q∞
v1

)

− ζ2

∫

α1

φ∗u1(x)
(∫ x

q∞
φ∗u1 +

∫ x

q∞
φ∗v1

)
− ζ

∫

α1

φ∗v1(x)
(∫ x

q∞
φ∗u1 +

∫ x

q∞
φ∗v1

)

− ζ2

∫

α2

φ∗u2(x)
(∫ x

q∞
φ∗u1 +

∫ x

q∞
φ∗v1

)
− ζ

∫

α2

φ∗v2(x)
(∫ x

q∞
φ∗u1 +

∫ x

q∞
φ∗v1

)

=−
∫

α1

u1(x)
∫ x

q∞
u1 −

∫

α1

v1(x)
∫ x

q∞
v1 − ζ2

∫

α1

u1(x)
∫ x

q∞
v1 − ζ

∫

α1

v1(x)
∫ x

q∞
u1

+ (1− ζ2)
∫

α2

u2(x)
∫ x

q∞
v1 + (1− ζ)

∫

α2

v2(x)
∫ x

q∞
u1 ,

and we finally obtain

∑

i 6=1

∫

αi

ωi(x)
∫ x

q∞
ω1 =

ζ2

6
+

ζ

6
+

1− ζ

9
+

ζ2 − 1
9

+
1− ζ2

3
c +

ζ − 1
3

c =
1
6
− c ,

where c = τ12
2 = τ34

2 = τ14 = τ23. Similar computations yield

∑

i 6=2

∫

αi

ωi(x)
∫ x

q∞
ω2 =

1
6
− c ,

∑

i 6=3

∫

αi

ωi(x)
∫ x

q∞
ω3 = −1

6
− c ,

∑

i 6=4

∫

αi

ωi(x)
∫ x

q∞
ω4 = −1

6
− c ,

so that

Kq∞ =




1/2 + a− 1/6 + c
1/2 + b− 1/6 + c
1/2 + a + 1/6 + c
1/2 + b + 1/6 + c


 =

1
3







1
1
2
2


 + τ




1
1
1
1





 .

8.3 The prime form

Set

fi :=
[ (z − λ1)(z − λ2)(z − λ3)

w

]2−i

(dz)1/2 , i = 1, 2, 3 .

Note that f1, f2, f3 are meromorphic sections of the same line bundle L (since
fi/fj is a meromorphic function, for all i, j ∈ I3). Furthermore, since

(f1) = 2p1 + 2p2 + 2p3 − 3q∞ ,

(f2) = q0 + q1 + p1 + p2 + p3 − 2q∞ ,

(f3) = 2q0 + 2q1 − q∞ ,

and
I(2q0 + 2q1 − q∞) ∈ Z4 + τZ4 ,
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it follows that the sections of L are the single-valued 1/2-differentials corre-
sponding to the spin structure [00].

Now, consider the meromorphic function z(p) − z(q), (p, q) ∈ C × C. Its
divisor with respect to p is q + φ(q) + φ2(q)− 3q∞. Let us define

F (p, q) :=

∑
i∈I3

fi(p)f4−i(q)
3(z(p)− z(q))

,

It is a meromorphic section of π∗1L ⊗ π∗2L on C × C, where πi, i = 1, 2, is the
projection of C × C on the i-th component. Let us show that F (p, q) has only
a single pole at p = q. In facts, the only possible poles are q, φ(q), φ2(q). On
the other hand, by using w(φr(q)) = ζrw(q), r = 0, 1, 2, one obtains

∑

i∈I3

fi(p)f4−i(q)
p→φr(q)∼

√
dz(p)

√
dz(q)(ζ−r + 1 + ζr) ,

which vanishes if r = 1, 2.
For each non-singular even spin structure δ, define the Szegö kernel

Sδ(p, q) :=
θ[δ](p− q)

θ[δ](0)E(q, p)
.

This is a meromorphic section of π∗1Lδ ⊗ π∗2Lδ on C × C with a unique pole in
p = q, where the sections of Lδ are the 1/2-differentials with spin structure δ.
Set S(p, q) := S[00]

(p, q).

Proposition 8.1.
F (p, q) = S(p, q) .

Proof. Note that F (p, q) and S(p, q) are meromorphic sections of the same line
bundle π∗1L⊗π∗2L on C×C. Fix a point q ∈ C and a local coordinate ζ centered
in q. In the limit p → q, θ(p− q) ∼ θ(0) +O(ζ(p)2) so that, by considering the
expansion of E(q, p), we have

S(p, q)
p→q∼

√
dζ(p)

√
dζ(q)

ζ(p)
(1 +O(ζ2(p))) .

Let us consider the expansion of F (p, q) in the same limit. If q is distinct
from the branching points, then z is a good coordinate around q and we have

F (p, q)
p→q∼

√
dz(p)

√
dz(q)

z(p)− z(q)
(
1 +O(z(p)− z(q))2

)
.

On the contrary, if q coincide with a branching point, for example p1, let us
consider a local coordinate ζ on a neighborhood U of p1 such that z(p) =
λ1 + ζ3(p) for p ∈ U . Then dz(p) = 3ζ2(p)dζ(p) and

F (p, p1) =
f1(p)f3(p1)
3(z(p)− λ1)

p→p1∼
√

dζ(p1)
√

dζ(p)
ζ(p)

(1 +O(ζ2(p))) .

By comparing the expansions of S(p, q) and F (p, q) around their unique pole,
we conclude that

S(p, q)− F (p, q) ,
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is a holomorphic section of π∗1L ⊗ π∗2L. On the other hand, since [00] is even
and non-singular (the only singular points are K∞ and −K∞ and they are not
half-periods) it follows that h0(L) = 0 and then also h0(π∗1L⊗π∗2L) = 0. Hence,
S(p, q)− F (p, q) is the constant 0 and the proposition follows.
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APPENDIX





A. VARIETIES

A.1 Analytic and algebraic varieties

Definition A.1. An analytic variety in an open set U ⊆ Cn is a subset V ⊆ U
such that for each p ∈ U there exists an open neighborhood U ′ ⊆ U such
that U ′ ∩ V is the set of zeros of a finite collection {f1, . . . , fk} of holomorphic
functions on U ′.

A analytic variety V ⊂ U ⊆ Cn is

• irreducible if it cannot be written as the union V = V1 ∪ V2 of analytic
varieties V1, V2 ⊆ U , with V1, V2 6= V .

• smooth at p ∈ V if there exists a neighborhood U ′ ⊆ U such that U ′ ∩ V
is the set of zeroes of k holomorphic functions f1, . . . , fk on U ′, such that
the matrix ∂fi/∂zj , where z1, . . . , zn are coordinates in Cn, has rank k.

It can be proved that any analytic variety is the finite union of irreducible
components.

Definition A.2. A complex manifold is a differentiable manifold admitting an
open covering {Uα} and a collection of coordinate maps φα : Uα → Cn such
that φα ◦ φ−1

β is holomorphic on φβ(Uα ∩ Uβ) for all α, β.

A complex manifold of dimension 1 is a Riemann surface.
A holomorphic function on a complex manifold M is a function such that

f|Uα
◦ φ−1

α is a holomorphic function on φα(Uα) ⊂ Cn.
As a generalization of definition A.1, an analytic subvariety of a complex

manifold M is locally defined as the set of zeroes of a collection of holomorphic
functions.

An example of complex manifold is given by the complex projective space
Pn ≡ PCn+1, defined as the space of 1-dimensional subspaces of Cn+1. More
generally, we denote by PV the space of 1-dimensional subspaces of a vector
space V . Any complex homogeneous polynomial in n+1 variables is well defined
as a polynomial in Pn. Such homogeneous form a graded ring C[X0, . . . , Xn],
the grading being given by the degree of the polynomial.

Definition A.3. An algebraic variety is the locus of zeroes of a collection of
homogeneous polynomials in Pn.

An algebraic variety is obviously an analytic subvariety of Pn. The converse
is also true, by the following theorem.

Theorem A.1 (Chow’s Theorem). Any analytic subvariety of Pn is algebraic.

To each subvariety V of Pn, one cen attach the ideal I(V ) of homogeneous
polynomials in C[X0, . . . , Xn] whose zero locus contains V . Note that I(V )
inherits the grading from C[X0, . . . , Xn].



126 A. Varieties

A.2 Sheaves

Definition A.4. Let X be a topological space and C be a category. Then,
a C-valued pre-sheaf F on X is a controvariant functor from the category of
open sets on X with inclusion morphisms to the category C. In other words, a
presheaf is given by:

• to each open set U of X is associated an object F(U) of C.

• for each pair U, V of open sets of X, with V ⊆ U , a morphism (restriction
morphisms) rV,U : F(U) → F(V ) is defined, such that

– rU,U = idU for all open sets U ;

– for all the open sets W ⊆ V ⊆ U , rW,U = rW,V ◦ rV,U .

In general, one considers categories C of rings, groups or fields. For each
open subset U of X, the object F(U) is called the sections of F over U . If
C is a concrete category, i.e., roughly speaking, its objects are sets with some
additional structure and the morphisms are functions compatible with such a
structure, then each element of the set F(U) is called a section of F . Sections
of F on U are also denoted by Γ(U,F). In the following, we will only consider
concrete categories C.

Definition A.5. For each topological space X and a concrete category C, a
C-valued pre-sheaf F over X is a sheaf if it satisfies the following conditions:

• Normalization: F(∅) is the terminal object of C.

• Gluing : Let {Ui} be an arbitrary family of open subsets of X and fix a
section si of F on each Ui, in such a way that, for all the intersections
Ui ∩Uj , rUi∩Uj ,Ui(si) = rUi∩Uj ,Uj (sj). Then, there exists a unique section
s ∈ F(U), with U :=

⋃
i Ui, such that rUi,Us = si.

A.3 Curves and divisors

By a curve C, we mean a projective algebraic variety of dimension 1. We will
only consider smooth irreducible curves, which are in one-to-one correspondence
with Riemann surfaces. We denote by g its geometric genus, which corresponds
to half its first Betti number

g =
1
2

rankH1(C,Z) .

In the following we will identify invertible sheaves on C with line bundles and
freely-generated sheaves with vector bundles. For each sheaf of C-vector space
on the topological space V , we set

hi(V,F) := dimCHi(V,F) .

For sheaves FC on a smooth curve C, we will often use the shorthand notation

Hi(FC) := Hi(C,FC) .
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A divisor on C is a formal sum

d :=
∑

p∈C

n(p)p ,

where n(p) ∈ Z are non-zero for a finite number of points in C. On the set of
divisors on C is naturally the structure of abelian group Div C with respect to
the sum, with a grading given by the homomorphism

deg : Div C → Z
∑

p∈C

n(p)p 7→
∑

p∈C

n(p) .

A divisor d =
∑

p∈C n(p)p is effective or positive if n(p) ≥ 0 for all p ∈ C; in
this case, we write d ≥ 0. The divisor d is greater than d′, and we write d ≥ d′

if and only if d − d′ ≥ 0. The set of effective divisors inherits the structure
of abelian semigroup. The set of effective divisors of a given degree n ≥ 0 is
naturally identified with the space Cn := Symn C, which is the symmetrization
of the cartesian product Cn ≡ C × . . . × C; such a space is endowed with the
topology and complex structure induced by the Riemann surface C.

Any holomorphic function f defined on an open neighborhood U of p ∈ C
can always be written as f(z) = (z − z(p))ng(z), where z is a local coordinate
centered in p and g is a holomorphic function with g(z(p)) 6= 0. The integer n
is defined to be the multiplicity of f at p. Such a definition extends to the case
of holomorphic sections of line bundles, since the multiplicity does not depend
on the local trivialization. Then, to each section s is associated a divisor

(s) :=
∑

p

m(p)p ,

where m(p) is the multiplicity of s at p.
A meromorphic function f on C is defined locally as the ratio of two holo-

morphic functions. More precisely, given an open covering {Uα} of C, f is given
by a collection of holomorphic functions {hα, h′α} such that hα, h′α are relatively
prime and hα/h′α = hβ/h′β on Uα ∩ Uβ , for all α, β. Roughly speaking, the re-
striction of f to Uα should be identified with the ratio hα/h′α. The multiplicity
of f at p ∈ Uα is well defined as the difference of the multiplicities of hα and
h′α. The set M of meromorphic functions on C is a field and the map f 7→ (f)
which maps f ∈ M to its divisor is a homomorphism between M, seen as a
multiplicative group, and Div C. More generally, a meromorphic section of a
line bundle L on C is given by a collection of holomorphic functions {hα, h′α}
such that

hα/h′α = gαβhβ/h′β ,

on Uα ∩ Uβ , where {gαβ} are the transition functions of the line bundle L
with respect to the covering {Uα}. For each arbitrary L, the space M(L) of
meromorphic sections of L is non-empty (as a consequence of the Riemann-
Roch Theorem below) and is a one-dimensional vector space over the field M.

An element d ∈ Div C is a principal divisor if it is the divisor of a meromor-
phic function on C. For a compact Riemann surface C, the principal divisors
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have degree 0. Two elements d, d′ ∈ Div C are linearly equivalent if their differ-
ence is a principal divisor; the class of divisors in Div C linearly equivalent to d
is called the divisor class of d and is denoted by [d].

To each divisor d, one can attach the sheaf O(d) whose sections on the open
set U ⊂ C are given by

Γ(U,O(d)) := {f ∈ MU | (f) + d ≥ 0} ,

where MU denotes the field of meromorphic functions on U . One can always
choose a covering {Uα} and a collection of meromorphic functions {hα} such
that

d|Uα
= (hα) ,

where the restriction of a divisor d ≡ ∑
p∈C n(p)p to an open subset U ⊆ C is

a divisor on U given by dU :=
∑

p∈U n(p)p. Furthermore, we can require that
dUα∩Uβ

= 0 for all α, β. Therefore, the maps gαβ defined on Uα ∩ Uβ by

gαβ =
hα

hβ
,

are the transition functions of a line bundle L(d).
Conversely, given a line bundle L the choice of a meromorphic section s of

L determines an isomorphism H0(C,L)
∼=→ O((s)) by t 7→ t/s, t ∈ H0(C,L).

Therefore, any line bundle L can be written as L(d) for some d. Furthermore,
L(d) and L(d′) are isomorphic if and only if d is linearly equivalent to d′.

The degree deg(d) corresponds to the first Chern class of L(d), which we
also denote by degL(d)

c1(L(d)) ≡ degL(d) = deg(d) .

Let KC denote the canonical line bundle on C, whose sections are the holo-
morphic 1-differentials. Therefore, H0(KC) ≡ H0(C, KC) denotes the space
of holomorphic abelian differentials on C. The following fundamental theorem
holds.

Theorem A.2 (Riemann-Roch). For any line bundle L on a smooth curve C
of genus g

h0(L)− h0(KC ⊗ L−1) = degL − g + 1 .

Since the only holomorphic functions on a closed Riemann surface C are the
constants, it follows that h0(O) = 1, where O ≡ O(0). Then by the Riemann-
Roch Theorem, we have

h0(KC) = g .

By considering L ≡ KC , this implies

deg KC = 2g − 2 .

Let us define

l(d) := h0(O(d)) , i(d) := h0(KC ⊗O(−d)) ,

where i(d) is called the index of specialty of d. Then, the Riemann-Roch theorem
can be restated as

l(d)− i(d) = deg(d)− g + 1 .
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In the case of an effective divisor d =
∑

n(p)p, H0(KC ⊗ O(−d)) is the space
of holomorphic 1-differentials vanishing at each point p ∈ C with multiplicity
at least n(p) and H0(O(d)) is the space of meromorphic functions with poles of
order at most n(p) at each p ∈ C.

An effective divisor d is called special if i(d) > 0. The following relations
hold for any effective divisor d

i(d) = ≥ g − deg d for deg d < g

i(d) ≥0 for g ≤ deg d ≤ 2g − 2 ,

i(d) =0 for g > 2g − 2 .

Any effective divisor d, with deg d ≤ 2g−2, for which the disequalities above hold
in strict sense is called an exceptional special divisor. The subset of exceptional
special divisors of degree d is a subvariety of non-zero codimension in the space
Cd of effective divisors. In particular, the subvariety of divisors of degree d and
index of specialty i(d) = d − g + r, r ≥ 1 is denoted by Cr

d . By the Riemann-
Roch theorem, the condition i(d) = deg d − g + r corresponds to the existence
of r independent meromorphic functions with divisor greater than −d. It can
be proved that a meromorphic function with only one pole never exists on a
Riemann surface C of genus g > 0. Therefore, an effective divisor of degree 1 is
never exceptional.

Definition A.6. A Riemann surface C of genus g is called

• hyperelliptic if it admits a meromorphic function with two poles

• trigonal if it admits a meromorphic function with three poles (but not
less).

• more generally, n-gonal, n > 2, if it admits a meromorphic function with
n poles (but not less).

Any Riemann surface C of genus g admits a meromorphic function with g
poles. It follows that any Riemann surface of genus 2 is hyperelliptic. Fur-
thermore, any Riemann surface C of genus g > 3 always admit a meromorphic
function with g−1 poles. More precisely, the space of exceptional special divisors
C1

g−1 has dimension g − 3 if C is hyperelliptic and g − 4 otherwise.
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B. THETA FUNCTIONS ON RIEMANN SURFACES

Set AZ := Cg/LZ , LZ := Zg + ZZg, where Z belongs to the Siegel upper
half-space

Hg := {Z ∈ Mg(C)| tZ = Z, Im Z > 0} ,

and consider the theta function with characteristics

θ [ab ] (z, Z) : =
∑

k∈Zg

eπit(k+a)Z(k+a)+2πit(k+a)(z+b) (B.1)

= eπitaZa+2πita(z+b)θ
[
0
0

]
(z + b + Za, Z) , (B.2)

where z ∈ AZ , a, b ∈ Rg. It has the quasi-periodicity properties

θ [ab ] (z + n + Zm, Z) = e−πitmZm−2πitmz+2πi(tan−tbm)θ [ab ] (z, Z) ,

m, n ∈ Zg. Denote by Θ ⊂ AZ the divisor of θ(z, Z) := θ
[
0
0

]
(z, Z) and by

Θs ⊂ Θ the locus where θ and its gradient vanish. If δ′, δ′′ ∈ {0, 1/2}g, then
θ [δ] (z, τ) := θ

[
δ′
δ′′

]
(z, τ) has definite parity in z

θ [δ] (−z, τ) = e(δ)θ [δ] (z, τ) ,

where e(δ) := e4πitδ′δ′′ . There are 22g different characteristics for which θ [δ] (z, τ)
has definite parity. Note that, in particular, Θ = −Θ.

Geometrically θ [ab ] (z, Z) is the unique holomorphic section of the bundle
LΘab

on AZ defined by the divisor Θab = Θ + b + Za of θ [ab ] (z, Z). A suitable
norm, continuous throughout AZ , is given by

||θ||2 (z, Z) = e−2πt Im z(Im Z)−1 Im z̄|θ|2 (z, Z) .

Computing c1(LΘ) and using the Hirzebruch-Riemann-Roch Theorem, it can be
proved that θ is the unique holomorphic section of LΘ. It follows that (AZ ,LΘ)
is a principally polarized abelian variety (ppav). We denote by Ag := Hg/Γg

the moduli space of ppav’s.

B.1 Riemann theta functions and the prime form

Let {α, β} ≡ {α1, . . . , αg, β1, . . . , βg} be a symplectic basis of H1(C,Z) and
{ωi}i∈Ig the basis of H0(KC) satisfying the standard normalization condition∮

αi
ωj = δij , for all i, j ∈ Ig. Let τ ∈ Hg be the Riemann period matrix of C,

τij :=
∮

βi
ωj . A different choice of the symplectic basis of H1(C,Z) corresponds

to a Γg := Sp(2g,Z) transformation
(

α
β

)
7→

(
α̃

β̃

)
=

(
D C
B A

) (
α
β

)
,

(
A B
C D

)
∈ Γg ,
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τ 7→ τ ′ = (Aτ + B)(Cτ + D)−1 . (B.3)

Let us define the Abel-Jacobi map I(d) := (I1(d), . . . , Ig(d)), acting on 0-
degree divisors d on C, by

Ii(d) :=
n∑

j=1

∫ pj

qj

ωi ∈ J0(C) ,

where d :=
∑n

i=1 pi −
∑n

i=1 qi and J0(C) := Cg/Lτ is the Jacobian variety
associated to C. By Abel’s theorem, I(d) = 0 if and only if d is a principal
divisor (i.e. the divisor of a meromorphic function); hence, I is well defined as
a map acting on divisor classes. For each fixed p0 ∈ C, the map p 7→ I(p− p0)
is an embedding of C into the Jacobian; furthermore, by the Jacobi Inversion
Theorem, the map

Cg → J0(C)
d 7→ I(d− gp0) ,

is surjective.

For each Riemann surface C, one can consider the Riemann theta function
with characteristics θ [ab ] (z, τ) associated to the ppav J0(C). For each p ∈ C and
e ∈ J0(C), the Riemann theta function f(x) := θ(I(x−p)−e) ≡ θ(I(x−p)−e, τ)
is the section of a line bundle on C and has a well-defined divisor, which is
completely characterized by a theorem by Riemann.

Definition B.1. The vector of Riemann constants is

Kp
i :=

1
2

+
1
2
τii −

g∑

j 6=i

∮

αj

ωj

∫ x

p

ωi , (B.4)

i ∈ Ig, for all p ∈ C. For any p we define the Riemann divisor class ∆ by

I((g − 1)p−∆) := Kp , (B.5)

which has the property 2∆ = KC .

Theorem B.1 (Riemann Vanishing Theorem). For any p ∈ C and e ∈ J0(C)

i. if θ(e) 6= 0, then the divisor d of θ(I(x − p) − e), is effective of degree g,
with index of specialty i(d) = 0 and e = I(d− p−∆);

ii. if θ(e) = 0, then for some ζ ∈ Cg−1, e = I(ζ −∆).

In view of the Riemann Vanishing Theorem, it is convenient to consider the
following generalization the Abel-Jacobi map to divisors of general degree.

Definition B.2. For each divisor d :=
∑n

i=1 pi −
∑m

i=1 qi on C, with n,m
non-negative integers, define the map I(d) ≡ (I1(d), . . . , Ig(d)) ∈ J0(C) given
by

I(d)i :=
n∑

j=1

∫ pj

p0

ωi −
m∑

j=1

∫ qj

p0

ωi +
n−m

g − 1
Kp0 .

Such a map does not depend on p0 ∈ C and reduces to the Abel-Jacobi map if
n = m.
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By such a definition and by the Riemann Vanishing Theorem, Θ ≡ I(Cg−1).
In the following, we will use the notation

θ(d + e) := θ(I(d) + e) ,

for all e ∈ J0(C) and divisors d of C.
For each half-integer theta characteristic [δ] ≡

[
δ′
δ′′

]
and point p ∈ C, let dp

be the divisor of the Riemann theta function θ[δ](x− p). It corresponds to the
divisor of θ(x − p + δ′ + τδ′′), where δ′ + τδ′′ is a half-period. Hence, by the
Riemann vanishing theorem and by 2∆ = KC , it follows that dp−p corresponds
to the divisor class of a spin bundle Lδ, with L2

δ ' KC , which only depends on
δ (note that θ[δ](x−p)/θ[δ](x−q) is a single-valued meromorphic function in x,
so that dp−p and dq− q are equivalent divisors). In particular, ∆ is the divisor
class associated to L[00]

. In other words, the theta characteristic on a Jacobian
J0(C) are in one-to-one correspondence with the spin structures on C. There
are 2g−1(2g + 1) even and 2g−1(2g − 1) odd spin structures.

By Riemann’s Singularity Theorem it follows that the dimension of Θs for
g ≥ 4 is g − 3 in the hyperelliptic case and g − 4 if the curve is canonical.
Furthermore, the following basic relation is easily proved.

Proposition B.2 (Riemann). For all e ∈ Θs,
∑

i,j∈Ig

θij(e)ωiωj(z) = 0 , (B.6)

for all z ∈ C.

Let ν a non-singular odd characteristic. The holomorphic 1-differential

h2
ν(p) :=

g∑
1

ωi(p)∂ziθ [ν] (z)|z=0 , (B.7)

p ∈ C, has g − 1 double zeros. The prime form

E(z, w) :=
θ [ν] (w − z, τ)
hν(z)hν(w)

, (B.8)

is a holomorphic section of a line bundle on C×C, corresponding to a differential
form of weight (−1/2,−1/2) on C̃ × C̃, where C̃ is the universal cover of C. It
has a first order zero along the diagonal of C × C. In particular, if t is a local
coordinate at z ∈ C such that hν = dt, then

E(z, w) =
t(w)− t(z)√
dt(w)

√
dt(z)

(1 +O((t(w)− t(z))2)) .

Note that I(z + tαn + tβm) = I(z) + n + τm, m,n ∈ Zg, and

E(z + tαn + tβm, w) = χe−πitmτm−2πitmI(z−w)E(z, w) ,

where χ := e2πi(tν′n−tν′′m) ∈ {−1,+1}, m,n ∈ Zg.
We will also consider the multi-valued g/2-differential σ(z) on C with empty

divisor, that is a holomorphic section of a trivial bundle on C, and satisfies the
property

σ(z + tαn + tβm) = χ−geπi(g−1)tmτm+2πitmKz

σ(z) .
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Such conditions fix σ(z) only up to a factor independent of z; the precise def-
inition, to which we will refer, can be given, following [24], on the universal
covering of C (see also [22]). Furthermore,

σ(z, w) :=
σ(z)
σ(w)

=
θ(

∑g
1 xi − z)

θ(
∑g

1 xi − w)

g∏

i=1

E(xi, w)
E(xi, z)

, (B.9)

for all z, w, x1, . . . , xg ∈ C, which follows by observing that the RHS is a nowhere
vanishing section both in z and w with the same multi-valuedness of σ(z)/σ(w).

Under the modular transformations z → z′ = z(CZ + D)−1, Z → Z ′ = (AZ +
B)(CZ + D)−1 the theta characteristics transform as

(
a
b

)
→

(
ã

b̃

)
=

(
D −C
−B A

)(
a
b

)
,

G :=
(

A B
C D

)
∈ Γg, for all a, b, z ∈ Cg, and the theta functions transform as

θ[ab ](z, Z) → θ[a
′

b′ ](z
′, Z ′), with [37]

θ[a
′

b′ ](z
′, Z ′) = εG(det(CZ +D))

1
2 e2πi[φ[ab ](G)+ 1

2
tz(CZ+D)−1Cz]θ[ab ](z, Z) , (B.10)

where εG is an eighth root of 1 depending only on G,
(

a′

b′

)
:=

(
ã

b̃

)
+

1
2

(
diag (CtD)
diag (AtB)

)
,

and

2φ[ab ](G) := (ta tb)
(−tBD tBC

tBC −tAC

)(
a
b

)
+ diag(AtB) · (Da− Cb) .

Let ω(z, w) be the unique symmetric differential on C×C, with only a double
pole along z = w, satisfying

∮
αj

ω(z, w) = 0 and
∮

βj
ω(z, w) = 2πiωj , j ∈ Ig.

The latter conditions imply that under a modular transformation

ω̂(z, w) = ω(z, w)− 2πitω(z)(Cτ + D)−1ω(w) .

Since E(z, w) is the unique antisymmetric solution of ∂z∂w log E = ω(z, w)
which is consistent with the expansion of ω(z, w) for z ∼ w, it follows that

Ê(z, w) = E(z, w)eπi(Cτ+D)−1C
∫ w

z
ω·∫ w

z
ω , (B.11)

for all z, w ∈ C.

Lemma B.3 (Fay [24]). If {α, β} and {α̃, β̃} are two markings of C related by
(B.3) and Kq and Kq ′ denote the respective vectors of Riemann constants for
q ∈ C, then there are a0, b0 ∈ ( 1

2Z)g, depending on the markings, such that

a0 − 1
2
diag (CtD) ∈ Zg , b0 − 1

2
diag (AtB) ∈ Zg ,

Kq ′ = t(Cτ + D)−1Kq + τ ′a0 + b0 ∈ Cg ,
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and

θ(z′ +Kq ′ , τ ′) =ε′(det(Cτ + D))
1
2

eπi[t(z+Kq)(Cτ+D)−1C(z+Kq)−ta0τ ′a0−2t(Cτ+D)−1(z+Kq)]θ(z, τ) ,

for all z = t(Cτ + D)z′ ∈ Cg, with ε′ an eighth root of 1 depending on the
markings.

Theta functions and, in particular, Thetanullwerte, i.e. theta constants
θ[δ](0), with δ even characteristics, can be used to construct modular forms,
i.e. meromorphic functions on Hg which are invariant under modular trans-
formations. Some regularity conditions at infinity are also required for g = 1,
which are not necessary for g > 1 due to the Koecher principle. More generally,
one considers modular forms of weight k < 0, i.e. holomorphic functions f on
Hg which transform as

f(Z ′) = det(CZ + D)−kf(Z) , (B.12)

under modular transformations or other discrete subgroups of Sp(2g,R)/Z2, the
group of automorphisms of Hg.

The relationship between the Thetanullwerte and the Jacobi Nullwerte, i.e.
the space of theta derivatives θi[ν](0), with [ν] odd spin structures, is analyzed
in the following section.

B.2 Generalizations of Jacobi’s derivative identity

In this section, we consider the higher genus generalizations of the Jacobi’s
derivative formula

θ′ [11] (0) = −πθ [00] (0)θ′ [01] (0)θ′ [10] (0) ,

which holds for g = 1. For any Z ∈ Hg, g ≥ 1, and any g-tuple ν1, . . . , νg of odd
spin structures, let us define

[ν1, . . . , νg] := det
i,j

θi[νj ] .

The generalization of Jacobi’s identity is the expression of [ν1, . . . , νg] as a poly-
nomial in the theta constants θ[δ](Z), where δ are the even spin structures.
More details can be found in [41, 33].

For g = 2, such a problem was considered by Thomae and Weber. The
solution is given by the following theorem.

Theorem B.4 (Rosenhain’s formula, [54, 32]). For any Z ∈ H2 and any pair
of odd characteristics ν1, ν2

[ν1, ν2](Z) = ±π2
∏

ν odd
ν 6=ν1,ν2

θ[ν1 + ν2 + ν](Z) ,

where the sign does not depend on Z.
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Similar identities have been found by Frobenius for g = 3 and g = 4 [26]
and by Fay for g = 5 [23]; some cases up to genus 7 have also been studied by
Riemann [53].

The results valid for all g were firstly found by Igusa; in [39] it was shown
that the Jacobi Nullwerte is always a rational function of the Thetanullwerte. In
[38], the following general theorem has been proved, which holds for all genera.

For each theta characteristic α ≡ [
α′
α′′

]
, set e(α) := exp(4πiα′ · α′′). Then, a

sequence α1, . . . , αn of theta characteristic is defined to be azygetic if

e(αi)e(αj)e(αk)e(αi + αj + αk) = −1 ,

for all 1 ≤ i < j < k ≤ n and essentially independent if, for any choice of
1 ≤ i1 < . . . < i2k ≤ n, with k ≥ 1, we have

αi1 + . . . + αin 6= 0 mod 2 .

A fundamental system is an azygetic sequence of 2g+2 characteristics; a special
fundamental system is a fundamental system such that the first g characteristics
are odd and the other g + 2 are even.

Theorem B.5 (Igusa [38]). Let ν1, . . . , νg be g odd characteristics such that

[ν1, . . . , νg](Z) := det θi[νj ](0, Z) ,

Z ∈ H, does not identically vanish on H and is a polynomial in the theta con-
stants. Then, ν1, . . . , νg are azygetic and essentially independent. Furthermore,

[ν1, . . . , νg](Z) = πg
∑

±θ[δ1] · · · θ[δg+2] , (B.13)

where the sum is over all the sets {δ1, . . . , δg+2} of g+2 even theta characteristics
such that ν1, . . . , νg, δ1, . . . , δg+2 is a special fundamental system. In particular,
if Z is the Riemann period matrix of a hyperelliptic Riemann surface, then the
sum on the right hand side of Eq.(B.13) has exactly one non-vanishing term.

In fact, Fay in [23] proved that the formula (B.13) does not hold for g = 6;
together with Theorem B.5, this is enough to conclude that the determinant
[ν1, . . . , ν6] is never a polynomial in the theta constants. A generalized formula,
however, was proved by Igusa in [41].
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