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Le teorie di campo conformi (CFT) in due dimensioni rappresentano un am-
bito di fecondo interscambio tra alcuni degli argomenti piu avanzati in fisica teo-
rica e in geometria algebrica. In particolare, lo studio delle funzioni di partizione
in teorie conformi appare strettamente legato all’analisi della corrispondenza tra
proprieta analitiche e proprieta algebriche delle superfici di Riemann chiuse. In
questa tesi, vengono considerati alcuni nuovi aspetti di questa corrispondenza,
in particolare quelli che emergono nelle teorie conformi associate a teorie di
stringa e superstringa. Piu precisamente, i parametri algebrici che determi-
nano la curva canonica associata ad una superficie di Riemann non-iperellittica
sono esplicitamente calcolati in termini di funzioni theta di Riemann valutate
su punti generici della curva. I metodi proposti vengono inoltre applicati allo
studio del locus singolare della funzione theta, anche in relazione all’approccio
di Andreotti-Mayer al problema di Schottky, e alla restrizione della misura di
Siegel allo spazio dei moduli delle curve canoniche.






Conformal field theories (CFT) represent a framework of fruitful interplay
between some of the most advanced topics in theoretical physics and algebraic
geometry. In particular, the investigation of the CFT partition functions is
closely related to the analysis of the correspondence between analytic and al-
gebraic properties of closed Riemann surfaces. In the present thesis, some new
aspects of this correspondence, in particular the ones arising in the CFTs asso-
ciated to string and superstring theories, are considered. More precisely, the
algebraic parameters, determining the canonical curve associated to a non-
hyperelliptic Riemann surface, are explicitly computed in terms of Riemann
theta functions, evaluated at generic points of the curve. Moreover, the tech-
niques here introduced are applied to the analysis of the singular locus of the
theta function, also considered with respect to the Andreotty-Mayer approach
to the Schottky problem, and to the restriction of the Siegel’s measure to the
moduli space of canonical curves.
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INTRODUCTION

Conformal field theories [8, 19, 27] have played an important role in several
areas of theoretical physics and mathematics in the last 25 years.

The most famous application has been to string theory, since the classical
and quantum theory of excitations of a string is described by a two-dimensional
CFT on the world-sheet of the string. Conformal field theories have also been
applied in statistical physics: in two dimensions for the Ising model and in
three dimensions to describe the critical points of second or higher order phase
transitions. Moreover, four dimensional CFT are supposed to play a role in
elementary particle physics models. A result by Nahm [50] implies that six
is the maximal number of dimensions for a unitary non-trivial conformal field
theory; recently, some hints of the existence of such six-dimensional CFT’s have
been given [63].

Conformal field theories are defined as field theories which are invariant
under the group of local conformal transformations, which, roughly speaking,
are symmetries preserving the angles but not the lengths. In particular, in
two dimensions, the Lie algebra associated to the conformal group is infinite
dimensional. The generators if such algebra correspond to an infinite number of
conserved charges and this implies that such theories are, in principle, exactly
solvable.

The choice of the conformal class for the metric on a two-dimensional mani-
fold is equivalent to the definition of a complex structure on the surface. There-
fore, amplitudes in CFT naturally depend on the analytic structure of the sur-
face, i.e. on the sheaf of holomorphic functions defined on the Riemann surface.
Such analyticity properties can be made explicit by splitting the CFT vertex
operator algebra in its chiral and anti-chiral part. On the other hand, one of
the most fascinating aspects of conformal field theories is its relationship with
some of the deepest results in algebraic geometry. This is just a facet of a
more general correspondence between classes of algebraic varieties, with regular
maps and sheaves, and classes of analytic spaces, with holomorphic mappings
and sheaves, known as the GAGA principle (from Serre’s Géométrie algébrique
et géométrie analytique, [58]).

Two manifestations of GAGA principle in conformal field theories will play
a prominent role in this thesis. As shown in chapter [1, a CFT assigns to each
closed surface of genus g a partition function, which is a section of a line bundle
on the moduli space M, of closed Riemann surfaces of genus g. In particular,
for the CFTs related to gauge fixed bosonic strings and superstrings (after
integration over odd supermoduli), each partition function defines a measure
on the corresponding moduli space. For bosonic strings, this is known as the
Polyakov measure, and it can be expressed, apart from a factor representing
the obstruction to the holomorphic factorization of the theory, as the square
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modulus of a holomorphic section of )\fw ® As. Here A, is, roughly speaking,
the line bundle whose fibre at the point C' € M, is the maximal external
product of the space of holomorphic n-differentials on the Riemann surface C.
Passing from the analytic to the algebraic data associated to Riemann surfaces,
it is well-known that M, admits a compactification (& la Deligne-Mumford)
M, that is the moduli space of stable curves of genus g. Mumford proved that
the line bundle A\;'® ® Ay on M, admits a unique (up to normalization) non-
vanishing holomorphic section, extending to a meromorphic section on M g With
poles at the boundary. Belavin and Knizhnik [7] proved that such a holomorphic
section is exactly the chiral factor in the Polyakov measure. The poles at the
boundary admit a physical interpretation as the amplitudes corresponding to
the propagation of the bosonic string tachyon for Riemann surfaces degenerating
to stable curves with nodes.

Another example of this interplay between analytic and algebraic data is
provided by CFTs on Riemann surfaces with Z,,-symmetry. Let us consider the
simplest case of hyperelliptic surfaces, corresponding to n = 2. Any hyperelliptic
surface of genus g > 2 can be described in terms of an affine curve C in C?,
defined by the polynomial equation

2g+2

w? = H(zfai),

=1

where (z,w) € C2. The restriction to C of the projection (z,w) + 2 defines a
meromorphic function z of degree 2 on the Riemann surface, which shows that
any hyperelliptic surface can be represented as a 2-fold branched covering of
the Riemann sphere. The pairwise distinct complex numbers (a1, ..., as512),
corresponding the position of the branching points on the sphere, represent
the coordinates of the universal parameter space of hyperelliptic curves; the
correspondent moduli space is the quotient of such a parameter space by the
3-parameters group of automorphisms of the sphere. In [42], a procedure has
been described to obtain a CFT partition function on a hyperelliptic Riemann
surface, from an amplitude in a “double” CFT with Zs-symmetry on the sphere.
Such an amplitude is characterized by the insertion of 2g+2 “twisted” operators
at the branching points ai,...,agg42, so that the dependence of the resulting
partition function on such algebraic parameters of the hyperelliptic curve is
explicit. Recently, such a procedure has been applied to a conjectural CFT [64,
28, [65], representing the holographic dual to a three-dimensional pure gravity
theory with negative cosmological constant, to prove that partition functions
on hyperelliptic Riemann surfaces can be consistently defined for all genera.

By computing the same partition functions in terms of the analytic data
of the theory, one obtains remarkable algebro-geometric identities. More pre-
cisely, to each surface one can attach the data of its Jacobian torus and the
corresponding theta functions (see appendix [B)). It is possible, in some cases, to
compute the same CFT amplitude in terms of theta functions. For a hyperellip-
tic Riemann surface, by equating the results of the computations, one obtains
the classical Thomae formula

0[6](0)® = (%)4 H(% —ai,)(aj, —aj,) .

(2mi)? k<l
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In this formula, § is an even theta-characteristic associated to a splitting of the
set of complex parameters in a disjoint union {a;,,...,a;,,, } U{a;j,...,a;,,,}
and A is a matrix of base change between bases of holomorphic abelian differ-
entials.

The procedure described above extends to the computation of partition func-
tions of n-fold coverings of the sphere. By applying the same reasoning to CFT
amplitudes on Riemann surfaces with Z,-symmetry, with n > 2, Bershadsky
and Radul [9] derived a generalization of Thomae formula, which has been suc-
cessively proved using standard algebro-geometric methods by Nakayashiki [51]
(see also [20] for further generalizations).

In this thesis, some new methods are described toward an explicit description
of this GAGA correspondence in the case of generic non-hyperelliptic Riemann
surfaces of genus higher than two. The examples reported above nicely de-
scribe the physical motivations for such an analysis. First of all, one of the
fundamental problems both in bosonic and in superstring theories is the defi-
nition of the measure on the moduli space M, for g higher than two. By the
Belavin-Knizhnik theorem in the bosonic string case and by analogous argu-
ments for superstrings, this is strictly related to the problem of deriving an
explicit formula for the Mumford form. In second instance, generalizations of
the techniques holding for theories with Z,-symmetry would be of great interest
for general CFTs.

There are two reasons for considering the space of non-hyperelliptic Riemann
surfaces for genus g > 3. Fist of all, such a space is dense in My, so that one
can hope to extend most of the results to the whole moduli space by continuity
arguments. This should be compared with the case of families of n-fold coverings
of the sphere, which are of positive codimension in the moduli space M, for g
greater than three. In particular, hyperelliptic surfaces enjoy several peculiar
properties, which are not shared by general Riemann surfaces. For instance,
in the case of the conjectural CFT dual to three-dimensional gravity proposed
n [64], the existence of consistent partition functions for all non-hyperelliptic
Riemann surface would be a considerably stronger signal of the existence of
the whole CFT, than just the hyperelliptic case. Another relevant example is
provided by the Polyakov measure on the locus of genus 3 non-hyperellipitc
Riemann surfaces, whose expression in terms of Riemann period matrices and
theta constants has been derived in [6]. Such an expression does not hold in
the hyperelliptic case; in fact, it is a non-trivial problem to check that such a
formula admits a regular limit as one approaches the hyperelliptic locus.

From a more technical point of view, another advantage in considering non-
hyperelliptic Riemann surfaces is that they admit an algebraic description in
terms of canonical curves. As explained in chapter [5, a non-hyperelliptic Rie-
mann surface of genus g > 3 can be embedded as a projective curve (a 1-
canonical or simply canonical curve) in PH?(Kc)* = P9~1, where H°(K¢)
is the space of holomorphic abelian differentials on the surface. A similar
construction enters in the definition of the Deligne-Mumford moduli space of
stable curves, which is based on an n-canonical embedding in PHO(KZ)* =
PCr=D(=D=1 for n > 3; the moduli space M, is defined by modding the pa-
rameter space of the n-canonical curves of genus g by the group PGL((2n —
1)(g — 1), C) acting on the projective space. In the case of (1-)canonical curves,
Petri’s theorem [52] assures that the graded ideal I(C) of homogeneous poly-
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nomials in IP;_; vanishing on the curve C' is generated, with few exceptions, by
its degree-2 component I>(C'), i.e. by quadrics (for trigonal curves and smooth
plane quintics, also the cubics are needed, see [3]). It follows that the parameter
space of the canonical curves can be given in terms of the coefficients of quadrics
and cubics; such coefficients play the same role of the parameters {a1, ..., azg42}
for the hyperelliptic curves.

In analogy with the Thomae formula, it should be possible to express the
parameters of the quadrics defining the canonical curve in terms of the analytic
data of the Jacobian torus associated to the Riemann surface and, more pre-
cisely, in terms of its period matrices and of the Riemann theta functions. Such
a problem is one of the main subjects of the present thesis, thus it is worth
explaining it in some more detail. The pair (J, Lg) composed by the Jacobian
torus J associated to a Riemann surface and the line bundle corresponding
to the theta divisor ©, defines a principally polarized abelian variety (ppav).
Torelli’s theorem assures that the map

it Mg — Ay,

where Ay is the moduli space of g-dimensional ppav’s, is an injection. Such
an injection is induced by the period-mapping of the Torelli space 7, into the
Siegel upper half-space $),, with M, = 7,/Sp(29,Z) and A, = §,/Sp(29,Z).
The expression of a CFT amplitudes in terms of theta functions is of great
interest: for example, the factorization formulae for theta functions, in the limit
of degenerating surfaces, are well-known and this allow non-trivial consistency
checks among amplitudes for different genera. In particular, several results
have been obtained for genus 2 and 3, a recent example being the expressions
for the two-loop measure and 4-points amplitudes in type II superstring theory
[12, 13, 14, 15} 17, 18]. Note that, whereas for genus 2 and 3, the image of M,
is dense in Ay, for genus g > 4 the locus of Jacobian tori is a sublocus (called
the Jacobian locus and denoted by J, = i(M,)) of positive codimension in A,.
The characterization of J; in A, is the Schottky problem.

Such a problem has been solved by Shiota [59], who proved a conjecture
by Novikov, characterizing the elements in the Jacobian locus in terms of the
Kadomtsev-Petviashvili (KP) equation for the Riemann theta function. How-
ever, this solution is quite implicit and not so useful for CFT and string-
theoretical computations.

It is worth mentioning at least another different approach to such a problem,
due to Andreotti and Mayer [2]. In their beautiful construction, Andreotti and
Mayer proposed to characterize the Jacobian locus in A, through the dimension
of the singular locus ©4 of the theta function, i.e. the locus of points in a ppav
where the theta function and all its first derivatives vanish. More precisely,
they showed that J, is an irreducible component of the variety Ny C A,
whose points satisfy dim©, > g — 4. A crucial point in the Andreotti-Mayer
construction is the proof that, if C is a trigonal curve, I5(C) is generated by
relations in the form

g
Z Qw(e)XZXJ =0 y
i,j=1

as e varies in ©,. Here, (X7 :...: X,) are the projective coordinates of P91

corresponding to a canonically normalized basis {w1,...,wy} of H*(K¢) (see
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appendix [B) and §;; denotes the second derivative of the theta function. Such
a result has received many remarkable generalizations, among which at least
two deserve citation: Arbarello and Harris [4] proved that the relations above
generate Io for general curves of genus g < 6 and that, for all g, they generate
all the quadrics of rank not greater than 4; finally, Green [29] proved that
such relations generate Io for all genera, so that, as a consequence, I can be
generated by quadrics of rank not greater than 4 only.

The relationship between the quadrics passing through a curve and the Jaco-
bian locus J, = 7,/5p(2g,Z) can be understood as follows. The cotangent T¢.7,
to the Torelli space 7, at the point representing the curve C' is naturally iden-
tified, via the Kodaira-Spencer map, with the space of holomorphic quadratic
differentials, which, after canonical embedding in P9~!, correspond to the vector
space of homogeneous polynomials of degree 2 on the projective curve. Such
a correspondence uniquely extends to an identification of the cotangent T,
to $, at (the Riemann period matrix of) C' with the space of homogeneous
polynomials of degree 2 on P9~!. Hence, the quadrics defining the canonical
curve C' correspond to the linear relations defining T¢,7; as a subspace of T¢.$,
(more details are given in chapter [7). Note that, once one fixes an Sp(2g,Z)-
invariant measure on )4, such linear relations for the cotangent spaces enter in
the restriction of such a measure to the moduli space M. An example, that
is relevant for string theory, is given by the Siegel measure, which, for genus
2 and 3, is proportional to the Polyakov measure times the square modulus of
a meromorphic modular form. For genus g > 4 the restriction of the Siegel
measure to the moduli space, derived in [44], is described in chapter [7.

The content of this thesis is mainly based on the papers [44} 45] [46]. In the
first chapter, we introduce an axiomatic definition of conformal field theories,
following Segal’s approach [57]. The main point is the definition of the CFT par-
tition function of genus g > 1 as a section of a tensor power of the determinant
line bundle on the moduli space M, . As shown in section (1.4, for gauge-fixed
bosonic strings, this result specializes to the Belavin-Knizhnik theorem, relating
the Polyakov measure on the moduli space to the Mumford form.

In chapter 2, upon introducing a powerful notation for symmetric tensor
products of vector spaces, two combinatorial lemmas [45] are proved, which
are of interest on their own and will be repeatedly applied in the subsequent
derivations.

In chapter [3, some useful propositions due to Fay [23| 24] are presented,
relating the determinants of holomorphic n-differentials to theta functions and
prime forms. In literature, such formulae have been applied to the computation
of string-theoretical multiloop amplitudes and, in particular, partition functions
[1, 61, 62]. By combining such propositions and the lemmas of chapter [2, an
explicit expression for the Mumford form for genus 2 in terms of theta constants
is explicitly derived.

Chapters 14, 5/ and 16/ constitute the core of the thesis. In chapter 4. dis-
tinguished bases of holomorphic n-differentials for non-hyperelliptic Riemann
surfaces are introduced. Such a definition resembles an analogous construction
introduced by Petri [52] to derive his theorem on ideals of canonical curves. The
crucial differences rely on the normalization of such bases and in their defini-
tion in terms of determinants, which, when combined with the propositions of
chapter [3| immediately leads to a proof of Fay’s trisecant identity [44]. Such
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bases are used in chapter 5l to fix some preferred projective coordinates for the
canonical curve. This leads to an explicit expression in terms of Riemann theta
functions, evaluated at general points of the surface, for the coefficients of a
minimal set of quadrics and cubics generating the ideal of the canonical curve
C. We notice that, even if the distinguished bases play a key role in the deriva-
tion of such formulae, the coefficients can be readily expressed in terms of an
arbitrary basis of holomorphic 1-differentials, or, equivalently, of an arbitrary
set of projective coordinates on P9~!. A crucial role in the derivation is played
by the combinatorial lemmas of chapter 2, which show that each quadric is es-
sentially equivalent to a determinantal relation among Riemann theta functions
on the curve [45]. The relationship between the quadrics derived in chapter 5
and the the quadrics related to singular points of the theta function is analyzed
in chapter 6. The main tool introduced in this chapter is the section K [46],
which encodes the data of the set of generators of the ideal of quadrics intro-
duced in the former chapter. The main results are Theorem 6.3, relating the
zeroes of such a section to points on the singular locus of the theta function and
Theorem 6.11, which describes the modular properties of K.

In chapter |7, the constructions of the former chapters are applied to derive
the volume form on the moduli space of canonical curves, induced by the Siegel
measure. Several equivalent expressions are derived. The first one follows from
the Wirtinger’s Theorem and its derivation heavily relies on the notation intro-
duced in chapter 2. The second formula is given in terms of the distinguished
bases defined in chapter [4. Such a formula is the direct consequence of the
description of the cotangent to Torelli space 7, as a subspace of the cotangent
to the Siegel upper half-space $;,. The linear equations defining such a sub-
space are in one to one correspondence with the quadrics described in chapter
5. Moreover, a remarkable relationship between the Siegel metric at the point
representing the curve C and the Bergman metric on C' is shown.

Finally, in chapter 8, the distinguished bases, the set of quadrics and the
section K are explicitly constructed for a particular family of genus 4 non-
hyperelliptic curves. Notice that a generalized Thomae formula has been re-
cently derived in [20] for this family of curves. In this thesis, we give an inde-
pendent derivation of the prime forms in term of the algebraic parameters of
the curve.



1. AXIOMATIC DEFINITION OF CONFORMAL FIELD
THEORY

In this chapter, we describe the main steps towards an axiomatic definition of
conformal field theory, as proposed by Segal [57]. Segal’s approach is based on
the path integral formalism of quantum field theory; in facts, the aim of such
an approach is to rigorously axiomatize CFT by, simultaneously, keeping clear
the geometric intuition of a “sum over stories” which is typical of path inte-
gral. (Several authors, however, point out that, in order to fix all the technical
subtleties and give a rigorous and complete mathematical treatment of Segal’s
definition, some concepts, such as the one of a 2-category, are required, which
are far from being “intuitive” from a physical point of view - see for example
[34, 35, 136],125]). This should be compared to other different approaches to CFT,
whose starting point is the algebra of operators on the Hilbert spaces of states
[8, 27].

One of the concepts we are most interested in is the definition of a genus
g partition function. We will show that, in a general CFT, this is the section
of a line bundle Det®? ®Ta®q, p,q € C, p—q € Z, on the moduli M, space
of closed Riemann surfaces of genus g. Some remarkable consequences of this
result are the Mumford isomorphism and, when applied to the CFT’s arising in
bosonic string theory, the Belavin-Knizhnik theorem [7], relating the Polyakov
string measure to the Mumford form.

1.1 Segal’s approach: motivations and axioms

In this section, we discuss the motivations and the problems related to an ax-
iomatic definition of a two-dimensional Conformal Field Theory based on the
path integral quantization of the classical theory, and then we propose the ax-
ioms along the lines described by G. Segal in [57].

1.1.1 Field theories and cobordisms

In order to justify the fundamental Segal’s axioms, let us first consider the gen-
eral features expected from the path-integral formulation of a two-dimensional
field theory and then specialize to the case of conformal theories.

We will only focus on theories whose main objects are closed oriented 1-
manifolds X (generalizations, for example to open string theories, theories is
conceptually analogous, but requires solving some technical issue). Note that
any such X is just the disjoint union of circles S'. Such a theory describes the
dynamics of a space of fields F(X) defined on X. Hence, F(X) represents the
space of classical configurations; correspondingly, a state in the quantum theory
is given by a vector ray in the Hilbert space L?(F (X)) of wave-functions ¢ (f)
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on the field space. Denote by X the 1-manifold X with reversed orientation. Let
Y be a 2-dimensional surface whose boundary is splitted in the disjoint union
Y = X, U X5 of components diffeomorphic to an “outgoing” 1-manifold Xo
and an “incoming” 1-manifold X; with reversed orientation. Let us call such a
surface Y a cobordism from X; to Xs. Depending on which kind of theory we
are considering (topological, conformal, gravitational,...), one can require that
additional structures are defined on such Y'; for example, one can require Y to
be a Riemannian manifold. The precise definition for a conformal field theory
will be given in Definition 1.1l

In the classical field theory, time evolution from a configuration of fields f;
on X to the fields fo on X5 can be described by a configuration of fields g on
the surface Y such that g;x, = fi, i = 1,2. Such a g must satisfy the classi-
cal equations of motion, i.e. must be a stationary point for a bounded-below
real functional S[g] (the action) defined of F(Y). In the quantum theory, one
postulates the existence of an integral operator K : L?(F(X1)) — L*(F(X2)),
which can be (formally) expressed as

(K6)(f2) = / K(for S0 (F1)[dF] -

fLeF(Xy)

where [df1] is some measure on the space F(X). In this expression, K (fa, f1) is
the sum over all the cobordisms Y from X; to X5 of the operators

Ky (f2, f1) 1:/ e~ *[dg] ,
geF(Y)
where the integration is over all the fields g € F(Y’) such that g x, = fi, i = 1,2.
More precisely, one should sum over a space of “classes” of such cobordisms,
where the equivalence relation defining such classes depends on the particular
kind of theory we are considering. Here, S[g] is the action and e~°l9[dg] is
assumed to be a well-defined measure on F(Y).

For each pair of cobordisms Y7 from X7 to X5 and Y5 from X5 to X3, one
can define the composition Y5 o Y7 as the cobordism from X; to X3 given by
“gluing” together Y7 and Y5 along X3. The precise definition of the process of
“gluing” requires fixing some subtleties in the case some additional structures
(for example, a metric) are defined on the surfaces. Locality of the theory
imposes that, for any such composition Y5 o Y7,

Kyyor, (f. f1) = / Ky, (s, f2) K, (for 1)

f2€F(X2)

Such a construction applies in general to any theory whose basic objects are
1-dimensional closed manifolds. The specialization to certain classes of theories
can be given by specifying some additional data and requirements. Let us
describe such data in the case of a conformal field theory:

1. Simmetries of the action. The characterizing feature of a CFT is that
the action S[g] depends on the conformal class of a metric h (with some
regularity conditions) defined on the surface Y. In other words, the action
is invariant under local conformal transformations, corresponding to local
diffeomorphisms and to local Weyl transformations

h(o) — e h(a) ,
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where h is the metric, o denotes some local coordinates on Y and w is a
real regular function with suitable boundary conditions.

2. Isomorphism classes of surfaces. In correspondence with such an invari-
ance of the action, one must consider 2-dimensional manifolds Y with a
fixed conformal structure. Equivalently, Y is a Riemann surface, and the
“classes” of cobordisms, one should sum over in the path integral, are
identified with isomorphism classes of Riemann surfaces.

3. Composition of cobordisms. The “gluing” process is naturally defined
among classes of diffeomorphic smooth 2-manifolds. However, given the
conformal structures on Y; and Y5, there are several inequivalent ways to
obtain a conformal structure on Yj o Y5.

Let us consider a simple example of the problem considered in point 3. Let Y
be a Riemann surface with the topology of a cylinder S! x [0, 1] with one ingoing
and one outgoing boundary circle. Any cylinder is conformally equivalent to an
annulus A, C C, given by

A ={ze€C|r<|z| <1},

for some suitable 0 < 7 < 1. Then, the moduli space of conformal structures on
a cylinder is parametrized by a unique real parameter r, 0 < r < 1.

Let us consider the process of gluing the ingoing and the outgoing boundary
together to obtain a 1-manifold with the topology of a torus. This amounts to
choose a diffeomorphism

f : Xout - in )

from the outgoing circle X,y := {|z| = 1} to the ingoing one X;, := {|z| =
r}. Different choices of f lead to diffeomorphic 2-manifolds, so that the gluing
process is well-defined from the purely topological point of view. Furthermore,
by gluing the conformal structures, such a torus can be naturally seen as a
Riemann surface. However, it is clear that such a conformal structure depends
on the choice of f: for example, the Riemann surface given by e'®f, for any
0 < a < 2m, is not isomorphic to the one given by f. It is also clear that there
is no canonical way, for general Riemann surfaces, to choose the gluing function
f.

This forces us to provide some additional information than just a conformal
structure on Y. It turns out that it is sufficient to fix a real-analytic parametriza-
tion for the boundary 9Y = X, L X, compatible with the complex structure
on Y and with the orientation of X;, and X,,:. That is, for each circle S! in
the boundary of Y, one should specify a map f from

S'={zeC|l]=1},
to OY, which extends to a holomorphic map f: A — Y, where
A::{ATE{ZE(C|T<Z|<1}, if X is outgoing ,
A, ={z€C|1<|z[<1/r}, if X is incoming ,

for some r € (0,1). Two Riemann surfaces Y; and Y2 with parametrized bound-
ary are isomorphic if there exists a biholomorphic function F': Y; — Y5 compat-
ible with parametrization, i.e. such that, for each circle S! in dY; parametrized
by f, the parametrization of F(S') is F'o f. This yields the following definition.
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Definition 1.1. In a 2-dimensional conformal field theory, a cobordism Y :
Xin ~ Xout between the closed 1-manifolds X;,, and X,,;, is an isomorphism
class of Riemann surfaces, with a real-analytic parametrization X;, X, — 0Y
of the boundary. On the space of cobordisms an involution and a composition
are defined:

Conjugation. For each cobordism Y : X; ~» X,, the conjugate cobordism
Y : X5 ~» X; corresponds to the complex conjugated Riemann surface,
with the same boundary parametrization.

Composition. The composition Y = Y] o Y5 (or gluing) of the cobordisms
Yl : Xl,in ~ X U Xl,out and }/2 XU Xgﬂ‘n ~ XQ,Out is the cobordism
Y : Xin U Xiin ~ Xoowt U Xooue such that there exist embeddings
¢; :Y; = Y, i=1,2, satisfying

e ¢, is bi-holomorphic as a map from Y; to ¢;(Y;) and is compatible with
parametrizations on each component of X ;, and X ous, 1 = 1,2.

o $1(Y1)Uga(Ya) =Y.
o ¢ (p1(Y1) Na(Y2)) = X.

e for each component of X, with parametrization f; with respect to
the morphism Y;, i = 1,2, ¢1 o fi = ¢ o f as functions on S?.

Note that the composition of cobordisms depends on the 1-manifold along
which the Riemann surfaces are glued (in this sense, the notation Y; o Y3 is
imprecise). The fourth condition in the definition of ¥ = Y7 o Y5 implies that
the function f : S' — Y given by f := ¢1 0 fi = ¢ o fo extends to a holo-
morphic function f : A — Y on an annulus A, with S ¢ A ¢ C. Tt follows
that the complex structure on Y is uniquely determined; furthermore, it is in-
dependent of the choice of the embeddings ¢1, ¢3. (This is true if X has only
one component; otherwise, there some subtleties related to permutations of the
components of X, which can be elegantly solved in the framework of 2-categories
[34, 135, 136, 25].) Finally, we observe that Definition [1.1l also makes sense for the
composition of two morphisms Y; and Y5 along an empty l-manifold X = &,
with Y7 0Y5 being the disjoint union Y7 UY5. The space of cobordisms is naturally
endowed with a topological structure; each connected component is the set of
cobordisms with a fixed topology and orientation of the boundary components
for the corresponding surface.

Proposition 1.1. Let C, be the space of morphisms with a given topology a.
If a has no closed components, then the tangent space at'Y € C,, is given by

Ty Cy := Vect(9Y)/ Vect(Y) ,

i.e. the space of deformations of the boundary parametrization mod the subspace
of deformations that extend holomorphically to Y .

Proof. Proposition follows since, if Y has no closed components, any morphism
Y sufficiently close to Y can be holomorphically embedded in Y (because Y is
a Stein manifold). Therefore, each deformation of ¥ corresponds to an element
Vect(9Y). On the other hand, ¥ and Y’ are isomorphic if and only if the
deformation of the boundary extends holomorphically to the whole Y. O
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Definition /1.1 also describes the category C whose objects are the cobordisms
and the morphisms are the identity, the conjugation ¥ — Y and the gluing
YUYy =Y, 0Y5.

1.1.2 Axiomatic definition and main properties

Let us consider the axiomatization of CF'T on lines proposed by Segal. Formally,
the basic object in such an axiomatization, is a functor from the category! S
whose objects are 1-dimensional manifolds and the morphisms are the cobor-
disms, to a category of vector spaces with linear operators as morphisms. More
precisely, we will consider topological vector spaces with a non-degenerate bi-
linear form and trace-class operators on such spaces, defined as follows.

Definition 1.2. Let E and F be complete topological spaces with a non-
degenerate bilinear form (-, ). An operator A : E — F is trace-class if it

can be written as
A= Zpi(eiv )fZ )
i€l
where T is a countable set of indices, {e;};cr and {f;}i;cr are orthonormal sets
in E and F, respectively, and p;, ¢ € I, are complex numbers such that

> lpil < oo

i€l

Definition 1.3. A conformal field theory is a projective functor from the cat-
egory S of closed oriented 1-manifolds and cobordisms to the category of topo-
logical vector spaces and trace-class operators, satisfying the following axioms:

1. To each closed smooth oriented 1-manifold X, a CFT associates a locally
convex complete topological vector space Hx with a non-degenerate bi-
linear form, in such a way that finite disjoint unions correspond to tensor
products. More precisely, there exists a canonical multilinear map

HX1I_I...I_IXn - ®HX7 )

which is required to be compatible with permutations of the components.

2. To each cobordism Y : X ~» X', we associate a ray in the space of trace-
class linear operators from Hx to Hx, such that

(a) under composition Y; o Y5 of cobordisms along X, the trace with
respect to H x induces the projective isomorphism Uy, oy, = Uy, oUy,;

(b) Uy varies continuously with respect to deformations of Y.

(c) fY" : X; ~ Xoue U X is obtained from Y : X, U X ~ X, by
reversing the orientation of the 1-manifold X, then Uy is mapped to
Uy through the canonical isomorphism Hom(Hx,, ® Hx,Hx,,,) —
Hom(Hx,,,Hx,,, ® H%), where the map Hx — H¥ is induced by
the bilinear form (-, -).

out

1 Strictly speaking, this is not a category, because the identity morphism is missing. This
issue can be fixed by letting S being a nuclear ideal in a larger category (see [10]), or admitting
degenerate cobordisms, such as annuli with zero width, among the morphisms.
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Here, for a complex topological vector space E, we denote by E its complex
conjugate and by E* its dual, i.e. the vector space of complex continuous linear
functionals on E.

Let us describe the basic properties and the direct consequences of this
axioms.

e Any closed oriented 1-manifold X is just a union of circles, so that the
vector space Hx is completely determined by specifying

H = Hsl .

e The first axiom implies that the empty manifold X = @ is associated to
He =C.

e By considering the disjoint union of cobordisms as a composition along
the empty set X = &, the second axiom gives the following rule:

Uviuy, = Uy, @ Uy, .

e Any closed Riemann surface Y is a cobordism Y : @ ~» &, so that the
corresponding Uy : C — C defines a continuous section Z, of a line bundle
on the moduli space M, of Riemann surfaces of genus g, for each g > 0.

e Axiom 2) describes a functor from the category C of cobordisms to 1-
dimensional vector spaces, together with a natural embedding Fy — Hay,
where Ey is the line associated to the cobordism Y.

A complex structure can naturally be defined on each component in the
space of morphisms.

Definition 1.4. A conformal field theory is holomorphic if for each holomorphic
family of cobordisms {Y} }pe, parametrized by the complex manifold B, the rays
{Uy, }»ep form a holomorphic bundle on B.

1.2 Spaces of cobordisms

By a basic result in the theory of Riemann surfaces, each cobordism is the
composition of cobordisms corresponding to disjoint unions of disks, cylinders
(that can be also understood as disks with one hole, or annuli) and pants (or
disks with two holes). Therefore, to completely determine the theory, it is
sufficient to consider the linear operators associated to such topologies and their
composition.

1.2.1 The space of disks D

Let D (resp., D) denote the set of disks with one outgoing (resp., incoming)
parametrized boundary. Any disk is conformally equivalent to the unit disc D.
There is a preferred parametrization of the unit disk D, given by the identity
map S! — 9D. Any other element of D corresponds to a different parametriza-
tion of the boundary, i.e. to an element of the group Diff,, (S!) of real-analytic
diffeomorphisms of the circle. Thus is a Lie group, whose Lie algebra we denote
by Vect(S!). A set of generators of the complexification Vectc(S!) is given by
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L, = ei"‘g%, The map Diff,,,(S*) — D is not Note that the group PSU(1,1,C)
of automorphisms of the unit disk, given by

az+b

P—

l_)z+a

Z jal* — o] =1,

is a subgroup of Diff,,,(S!). Two parametrizations that differ only by an element
of PSU(1,1,C) should be identified, so that

D = Diff *(S')/PSU(1,1,C) .
An analogous description holds for D, whose preferred element is given by
Do :={z€C]||z| > 1},

where C is the Riemann sphere.

1.2.2 The semigroup of annuli A

Let A denote the set of annuli with one incoming and one outgoing parametrized
boundary circles. Note that A has a natural structure of a semigroup under
composition. As stated before, any annulus is conformally equivalent to

A, ={zeC|r<|z| <1} (1.1)

for some r € (0,1). We identify A, with the element of A given by the
parametrizations z — z and z — rz of the outgoing and incoming circle, respec-
tively. Any element of A is determined by r € (0, 1) and by the parametrizations
of its boundary circles and the group of automorphisms of an annulus is given
by U(1), the group of rigid rotations, so that A is homeomorphic to

(0,1) x (Diff,,,(S") x Diff,,(S"))/U(1) .

More explicitly, to each triple (7, ¢,1)), we denote by ¢pA,4p~! € A the annulus
given by A,, with the parametrization ¢ and ¥~! of the outgoing and of the
incoming boundary circles, respectively.

The complex structure on A is provided by the following proposition.

Proposition 1.2. Each element of A corresponds to a pair of holomorphic
functions fo : D — C and foo : Doo — C such that fo(O0D) N foo(0Dw) = &
and

fo(z2) =a1z4+asz® +... | zeD, (1.2)
foo(2) = (271 +boz724+..)7 1, 2€ Do . (1.3)

Proof. The functions fp and f. naturally determine an element of A, corre-
sponding to the annulus bounded by the curves fo(0D) and foo(0Dw) and
parametrizations given by fy and f., themselves. Conversely, fix A € A. The
composition Dy, 0 A o D with the disks D € D and Dy € D can be identified
with the Riemann sphere C. By Definition 1.1, such a composition of cobor-
disms corresponds to holomorphic embeddings of D, D, and A in C, we denote
by fo, foo and fa, respectively. Such functions are determined only up to au-
tomorphisms of (C, but the ambiguity can be fixed by requiring that f,(0) =0
and that fo.(c0) =0 = f. (00). Then, fy and fo satisfy the conditions of the
proposition and the corresponding element of A is identified with A by f4. O
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Note that the multiplicative semigroup
CZ ={ze€C*||z| <1},

is a sub-semigroup of A. In fact, to each ¢ € CZ,, one can associate the annulus
Ag given by the functions foo(2) = 2z and fo(z) = ¢z, and it is clear that
Ago Ay = Aqq. Such a definition restricts to Eq.(1.1) for ¢ = € R. On the
other hand, a semigroup homomorphism

A A—CZy

is canonically defined. Let A be the torus obtained by gluing the incoming and

the outgoing boundary components and let 7(A4) € H be its modular parameter;
then

)\(A) — 627ri7'(A) )
Note that A(A4,) = q.

1.2.3 Hilbert space structure on H and unitarity

Axiom 2 associates a ray of trace-class linear maps on the locally convex H =
Hs: to each A € A. In particular, it is possible to choose the operators U, :=
Ua,» 0 < [g| < 1, in such a way to obtain a genuine representation of the
semigroup CZ,. Let H be the union of the images of H under U,, r € R,
0 < r < 1. In general, the completion of the image of H under the natural
map H — H does not coincide with . However, since any cobordism Y can
be written as a composition with some U, as a component, it is clear that only
the subspace of H corresponding to completion of such an image is relevant
for the description of the CFT. Hence, it is natural to add to the axioms a
non-degeneracy assumption [56]:

Assumption 1.1. U, — 1 as r — 1, uniformly on compact subsets of H.

Such an assumption implies that , is dense in H. One can also define an
injective map with dense image H — H, where the elements of H are formally
defined as U7, 0 < r < 1, for some ¢ € H, with U71¢ = Uty in H if n = Us€.
Such a map assigns to each element 7 € H the formal element U, (U,n), for
some 0 < r < 1.

The definition readily generalizes to the spaces Hx and Hx for each 1-
manifold X = S' U... U S, by replacing each annulus A, by a disjoint union
A, U...xUA, of annuli.

Proposition 1.3. The spaces Hy and Hx are in natural duality.

Proof. The natural pairing between an element U,¢ of Hy and Us }77 of Hx,
0 <7 < s <1, is defined by considering the cobordism Y, /s : X UX — &, so
that the corresponding operator is U,./, : Hx ® Hg — C.

(Us_lnv UT&) = r/s(£®77) .

By construction, this is well-defined and independent of the choice of r,s. [
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With respect to such a duality, the operator Uy : H, — HY, corresponding
to the cobordism Y : X5 ~» X; is naturally identified with the transpose of
Uy : Hx, — Hx,, corresponding to ¥ : X ~» Xo.

Given an operator U on a complex vector space £, we denote by U complex
conjugate operator on E and, if F is a Hilbert space, by U the adjoint operator.

Definition 1.5. A conformal field theory is unitary is there is given a natural
isomorphism Hx — My, making Hx a pre-Hilbert space with Hx as its com-
pletion, and such that Uy = Uy. Equivalently, a CFT is unitary if Hy is a
Hilbert space and Uy = U; (reflection-positivity).

1.2.4 Representations of A and representations of Vect(S')

By axiom 2, the space H (and hence also Hx for all the 1-manidfolds X)
carries a projective representation of the semigroup A and, in particular, of
its sub-semigroup CZ,. In this section, we will show that such a represen-
tation induces a representation of two copies (one holomorphic and one anti-
holomorphic) of the algebra Vectc(S!), the complexification of the algebra of
generators of Diff,, (S!).

The relation between the semi-group A and the Lie group Diff,, (S') (and
its Lie algebra Vect(S!)) can be understood by noticing that the tangent space
at A of A is isomorphic to

TaA = (Vecte(S') @ Vecte(Sh))/ Vect(A) |

where each Vectc(S!) corresponds to the space of deformations of one of the
curves fo(0D) and foo(0Ds), whereas Vect(A) is the space of deformations
of such curves that extend to the whole A. In the limit A — S! of a thin
annulus, Vect(A) — Vectc(St), so that (Vectc(S!) @ Vectc(St))/ Vect(A) —
Vectc(S!). In this sense, one can think that the boundary of A contains some
“complexification” of Diff,,(S!) and, more generally of the group Diff(S!) of
smooth diffoemorphisms of S!. However, we notice that such a group, rigorously,
does not exists: the complexified algebra Vectc(S!) is not the Lie algebra of any
Lie group.

Let us consider the problem of analytically extending e representation of
Diff,,, (S'). It is useful to first consider to the sub-semigroup CZ; C A, that is
genuinely a complexification of the subgroup T C Diff,,, (S!) of rigid rotations.
Let the Hilbert space H carry a representation of T; then, H splits as a direct

sum
H=EPH:,

kEZ

where the element ¢’ € T acts on H; by multiplication by e**?.

Definition 1.6. The Hilbert space H carries a positive energy representation
of T if, for some fixed h € Z, k < h implies Hy = 0.

It is clear that only the positive energy representations of T can be holomor-
phically extended to a representation of CX;. Analogous considerations hold for
the group Diff,,,(S!) and the semigroup A, as shown in the following proposi-
tion. Note that each positive energy representation of Diff,, (S!) is necessarily
projective. We will restrict to representations of A such that the action of the
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subgroup CZ, is diagonalizable and induces a (positive energy) representation
of T.

Proposition 1.4. The projective positive energy representations of Diff,,,(S!)
are in 1-1 correspondence with projective holomorphic representations of A.
Moreover, the representation of Diff,, (S') is unitary if and only if the rep-
resentation of A is reflection-positive, i.e. Uz = UL.

Proof. We will only sketch the basic lines of the proof. Let ¢Av~! denote
the element of A corresponding to the annulus A with the parametrizations
of the incoming and outgoing circle modified by, respectively, the real-analytic
diffeomorphisms 1 and ¢. If A — Uy is a projective holomorphic representation
of A on the Hilbert space H, then we define ¢ — Uy, ¢ € Diff,,(S?), by
Ugp = U¢AUX1, which is densely defined in H. More precisely, we define Uy on
the dense subspace H by Ug(Ua &) := Uga €, for all Ua € € H.

Conversely, let ¢ — Uy be a positive-energy representation of Diff,, (S') on
‘H. Then, the representation of the subgroup T extends in a unique way to a
holomorphic representation of CZ; (U. A, acts by multiplication by q* on Hy,).
Since any element of A can be written as ¢pA,p~!, for suitable 0 < |¢| < 1 and
¢,v € Diff,,,(SY), we set Uy 1= U¢UAqU1;1. It is easy to prove that the map
A+ Uy, is holomorphic and determines a representation of A (see [57]).

Finally, if A = ¢A,0 ™!, then A = ¢ A;¢'; moreover, by diagonalizing Ua,,
it is easy to verify that Us, = U:[‘q, and the proposition follows. O

The proposition above implies that in a holomorphic CFT, the space H is
a positive energy holomorphic representation of Vectc(S!). In a general CFT,
the projective representation of A is not holomorphic, and H can be split into

a direct sum
D H.p- (1.4)
(a,b)eA

where A is a discrete subset of R x R, with (a — B) € Z, and H_ ; are finite-
dimensional. The element A, in the sub-semigroup CX; C A acts on H,; by

multiplication by ¢?g®. This implies H is a representation of two copies of the
algebra Vectc(S'), a holomorphic and an anti-holomorphic one. A particular
case is given by the rational conformal field theories (see, for example, [47]),
where the set of indices A is finite.

1.2.5 Pants and algebra of operators

A pant is a Riemann surface with the topology of a disk with two holes. It
is a basic result that any Riemann surface can be written as a finite union of
pants and disks. However, it is more useful in CFT to fix a pant P with two
incoming and one outgoing circles, and express any morphism as a composition
of morphisms given by disks, annuli and copies of P.

The axioms associate to such a P a ray Up which gives a map H® H — H.
Such a map defines a non-associative algebra on H, which is knows as the
operator product erpansion.
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1.3 Conformal anomaly and modular functors

The axioms define a CFT as a projective functor from the category of oriented
1-manifolds and (conformal classes with parametrized boundary) cobordisms to
the category of vector spaces and trace-class operators. This implies that each
vector space in the theory carries a projective representation of the semi-group
of annuli A.

In general, a projective representation of a group G can be conveniently seen
as a genuine representation of a central extension G of G. In the same spirit,
one can look for the definition of an extension of the category of 1-manifolds
and cobordisms. The morphisms of an extended category should be pairs (Y, \)
given by a cobordism and a complex number A € C, satisfying suitable properties
under composition.

It is useful to consider more general extension of such a category, in which the
morphisms are given by pairs (Y, Ey ), where Ey is a finite dimensional vector
space depending on Y. A correspondence which associates to each cobordism
Y a finite-dimensional vector space Ey must satisfy some compatibility condi-
tions with respect to composition of morphisms. Such conditions yield to the
definition of modular functor, and will be discussed in section [1.3.2.

The main motivation for considering categories extended by modular func-
tors is the description of the chiral part of the CFT, i.e. of the part depend-
ing analytically (or anti-analytically) on the moduli space parameters. In the
vertex-operators description of CFT, this corresponds to consider representa-
tions of the vertex-operator algebra of meromorphic fields. In Segal’s approach
the chiral part of CFT can be obtained as a weakly conformal field theory, i.e.
by applying the axioms of CF'T to the extension of the category of 1-manifolds
and cobordisms by a modular functor. This will be clarified in section [1.3.4.

1.3.1 Extensions of the semi-group A

A central extension G of a topological group G by C* can be given in terms of
a short exact sequence

T

1HC><4>G

- G -1,

of continuous homomorphisms, such that C* is mapped to the center Z(G)
of G and G G/CX. In particular, in view of the surjection 7 : G — G,
one can interpret G as a principal bundle on the base G with structure group
C*CcZz (é) Equivalently, an extension can be given in terms of the associated
line bundle on G. Note that, if L, and Lj, are the fibres at g,h € G, there is a

canonical isomorphism Ly, = Ly ® Lj, compatible with the action of C*.

Proposition 1.5. Holomorphic extensions of A by C* correspond to extensions
of Diff,,,(S) by C*.

Proof. The argument is analogous to the one used to prove Proposition 1.4l Fix
an extension A — L4 that associates a line L4 to each annulus A € A. This
determines a line Ly for each ¢ € Diff,,, (S'), given by Ly := Lya ® L%, for an
annulus A € A. The line Ly does not depend on A € A and gives an extension
of Diﬁ’an(Sl), since qug = L¢¢A ® LZ = LwtﬁA X L;A ® L¢A ® LZ = Lw X L¢.

Conversely, suppose that we have an extension ¢ — Ly of Diff,,,(S'). Then,
we can define an extension of A by setting L4, := Cand Lga,y = Ly®Ly. O
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Consider a projective representation of Diff,, (S!), corresponding to a gen-
uine representation of a central extension. This induces a representation of the
central extension of the complexified Lie algebra Vectc(S!) and one can choose
the representatives L,,, n € Z, satisfying the commutation relation

Zm(m? = D)o , (1.5)

LnaLm:. - Lmn
(L L) = i(m = )Ly +

where ¢ € R is the central charge of the representation.

Proposition 1.6. The extensions of Diff .,,(S') by C* are classified by (c,h) €
C x (C/Z), where c is the central charge and h is an eigenvalue of L.

Proof. We only sketch the main lines of the proof; a complete treatment can be
found in [55]. Consider an extension G of th topological group G as a principal
C*-bundle on G. The choice of a splitting gc = gc ® C of the extended Lie
algebra ¢ into the direct sum of the Lie algebras of G and C*, corresponds to a
splitting of the tangent space of G at its identity element into a vertical and a
horizontal space. Such a splitting extends uniquely as a G-left-invariant connec-
tion on the C*-bundle G. The curvature o of such a connection determines a
C-valued 2-form on G. Consider the case G = Diff,,,(S!), so that g = Vect(S?).
Upon suitably choosing the map gc & C — g, the images of the generators of g
form a commutator algebra given by (1.5), so that the curvature « corresponds
to the central term proportional to the central charge c.

Now, consider two extensions 7 : G — G and 7 : G’ — G with the same
central charge. Then, the “difference” extension is the quotient Gxa @ /C*,
where G x¢ G is the space of pairs (g,h) € G x G’ such that 7(g) = 7'(h),
and C* acts anti-diagonally u — (u,u™') on G xg &'. Such an extension
has ¢ = 0, so that the connection is flat and the bundle is determined by a
homomorphism 71 (G) — C*. But m1(Diff4,,(S!)) = 71(T) = Z, so that all such
homomorphisms are given by Z > n + 2™ for some h € C/Z, which is an
eigenvalue of Ly, the generator of T. It follows that the central charge ¢ and the
eigenvalue h completely determine the C*-bundle and, therefore, the extension
of Diff,,,(S!). O

Under the splitting (1.4), each H,, , is a representation of two central ex-
tensions of Diff,, (S'), corresponding to the holomorphic and anti-holomorphic
part of A, associated to two pairs (¢, h) and (¢, ﬁ) In fact, consistency of the
chiral and anti-chiral algebra of operators require that the pair of central charges
¢, ¢ is the same for all the representations H,, ;. The definition of the chiral (or
anti-chiral) part of the vertex operator algebra in a CFT requires the concept
of modular functor.

1.3.2 Modular functors

Let ® be a finite set of labels and consider the category Cs whose objects are
(not necessarily connected) Riemann surfaces with labeled and parametrized
boundary; the labeling is a continuous function ly : Y — & assigning a label
in the set ® to each boundary component of the Riemann surface Y. Two kind
of morphisms are defined:

1. a gluing morphism Y — Y is defined if Y is obtained from Y by gluing
two circles in Y with the same label,
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2. the involution Y — Y, is defined for each cobordism Y, where Y corre-
sponds to the complex conjugate Riemann surface, with the same bound-
ary parametrization and labeling.

Definition 1.7. A modular functor is a functor from the category Cs to the
category of finite dimensional vector spaces and injective linear maps, which
associates to each cobordism Y with labeled parametrized boundary a finite
dimensional vector space Fy, satisfying the following axioms:

1. there is a natural isomorphism Ey, .y, = Fy, ® Ey,.

2. if Y can be obtained from Y,, ¢ € ®, by gluing two circles of JY,, labeled
by ¢, then there is a natural isomorphism

Ey = P Ey, .

pED

3. dim Ege = 1.

4. For each holomorphic family {Y,}aep of cobordisms, the vector bundle
7 : Eg — B with fiber 771(a) & Ey, is a holomorphic vector bundle on
the base B.

Axiom 4) implies that, for each fixed topology «, the modular functor E
determines a holomorphic vector bundle on space C, of Riemann surfaces of
topology «, with labeled parametrized boundary. We made the non-degeneracy
assumption that for each ¢, there is a cobordism Y with a boundary component
labeled by ¢ such that Fy # 0.

Proposition 1.7. The following properties hold:

1. Let Dy, ¢ € ® be a disk with an outgoing circle labeled by ¢. There
exists a label, we denote by 1 € ®, such that dimEp, =1 if ¢ =1 and
dim Ep,=0 otherwise.

2. Let A,y be an annulus with one incoming and one outgoing circle, labeled,
respectively, by ¢ and . Then, dim Es,, =1 and Ea,, = 0 if ¢ # 1.
In particular, a modular functor determines an extension of A by C* for
each label .

3. Let Byy be an annulus with two outgoing circles labeled by ¢, € ®.
There is an involution ¢ +— @ in ® such that such that dim Ep_, =1 and

Ep,, =01 ¢ #¢.

Proof. Let us first prove 2). The matrix dy, := dim E4_, has non-negative
integer entries and, by applying axiom 2) in Definition [1.7 to a composition of
annuli, it follows that d> = d. By the non-degeneracy assumption, the only
possibility is dyy = dyy. To prove 3), notice that the matrices ey, := dim Ep,_,,
and €,y = dim E By where B denotes an annulus with two incoming circles,
are symmetric and invertible, since, by axiom 2) of Definition 1.7, ee = d = 1.
Note that the functoriality properties with respect to the involution ¥ — Y
give dim Fy = dim EYy-, since the composition of linear maps Fy — Ey — Ey
is the identity. In particular, dim Ep, = dim F D, and, since S? is obtained by
gluing disks with opposite boundary orientation, statement 1) follows. O
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Property 2) in the proposition above implies that modular functors deter-
mine a central extension by C* of the semigroup A for each label ¢ € ®, so that
it is meaningful to classify E by the central charges associated to its labels. In
fact, it can be proved that, in order for the modular functor to be consistently
defined, all the labels must correspond to the same central charge.

Proposition 1.8. Let E be a modular functor with central charge ¢ = 0 and
denote by E, the corresponding holomorphic vector bundle on the space C, of
cobordisms with a fized topology a. Then, a holomorphic flat connection, com-
patible with gluing, is canonically defined on E,, for each topology o with no
closed components.

Proof. Let Y € C, be a Riemann surface with a boundary circle labeled by
¢ € ®. The maps ¥ — Y o A,,, with A,, € A, correspond, through the
modular functor, to an action Ey — FEyoa,, = Ey of A on the fibre Ey.
In turn, this induces an action of the Lie algebra Vectc(S') on the fibre. By
considering all the boundary components of Y, a modular functor canonically
defines an action of Vectc(9Y) on the fibre at Y. Recall that, by proposition
1.1/ if the topology « has no closed components, the tangent space to C, at
Y is Vectc(9Y)/ Vecte(Y). The action of Vectc(dY) on the fibre induces a
representation of the subalgebra Vectc(Y'); however, it can be proven that the
only finite dimensional representation of Vect(Y') is the trivial one (see [57]).
Hence, one can canonically define a connection T M, 3 £ — D¢ on E, and this
is flat, because it comes from a Lie algebra action of Vect(9Y). Compatibility
with gluing follows by construction. O

Proposition 1.9. The extension of A associated to the label 1 € ® is classified
by a pair (¢, h), with h = 0.

Proof. Let A, be an annulus with both boundary circles labeled by 1 € .
Then, the relation A, o D = D implies that the action of A, is trivial. O

1.3.3 The determinant line bundle

Let E, F be Hilbert spaces. An operator B : E — F' is determinant-class if
B =1+ A, where A is trace-class (see Definition [1.2). Its determinant, defined

as
N

det(1 4+ A) := exp[Trlog(l+ A)] = H(l +pi)
i=1

is finite.

Definition 1.8. Let E, F be Hilbert spaces. A linear map T : E — F is a
Fredholm operator if there exists an operator P : F — E such that To P — 1
and P oT — 1 are finite rank operators.

It can be proven that a Fredholm operator T has finite-dimensional kernel
and cokernel, so that it makes sense to define the index of T'

ind7T := dimkerT — dim coker T .

Definition 1.9. For any Fredholm operator T : E — F, the determinant line
Detr is defined as follows:
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e IfindT = 0, then det T is the line whose points are the equivalence classes
of pairs (S, \), with S : E — F such that S — T is trace-class and X € C,
where the equivalence relation is

(SB,\) ~ (S,det BA) ,
where B : E — FE is determinant-class.

e If indT = n # 0, then Dety := Detyr, where T" =T ®0: FE — F o C" if
n>0and T'=T®0: EpC™™ — Fifn<O.

Definition 1.10. If T : E — F is Fredholm with indT = 0, the determinant
det(T) of T is the element [T, 1] of Detp. If ind T" = 0, then det(T") = 0 € Dety.

Proposition 1.10. det(T') # 0 if and only if T is invertible.

Proof. If ind T # 0, T is not invertible and det(7T") = 0 by definition. If ind T =
0, then there exists an invertible S such that A := S — T is trace-class. The
map A — (S, ) is an isomorphism C — Detp. If T' is invertible, than we can
choose S = T and det(T) =2 1 € C. If T is not invertible, then T = SB,
where B := 1 — S71A4 is determinant-class and non-invertible, so that det(T) =
(T,1) = (SB,1) ~ (S,det B) = 0. O

The following proposition provides an equivalent definition of Detp

Proposition 1.11. If T : E — F is Fredholm, with dimkerT = m and
dim coker T' = n, then there is canonical isomorphism

Detr = (A" kerT)* ® (A" cokerT') .

Proof. One can reduce to the case indT = n —m = 0. Let {a1,...,a,} and
{B1,...,0n} be bases for ker T* and coker T, respectively. Then, the isomor-
phism is given by

(T+> a®pi,1) = (a1 A Aom) @ (Br AL A Br) -

i=1
O

Proposition 1.12. Let {T, }.cp be a holomorphic family of Fredholm operators
T, : Ey — Fy, parametrized by the complex manifold B. Then, the lines Detr,
form a holomorphic line bundle on B.

Proposition 1.13. Let

0 - F' -E —FE' —0

T T T"

04>F’4>F4>F”4>0

where E,E',E" ,F,F',F" are Hilbert spaces and T,T',T" are Fredholm, be a
commutative diagram with exact horizontal arrows. Then,

Detr = Detpr ® Detpr .
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To each closed Riemann surface Y, one can associate an operator 9 : Q°(Y) —
0%1(Y), which maps smooth functions to (0, 1)-forms. If Y has a boundary, one
can define J as a map on the space Q°(Y,9Y) of smooth functions on Y that,
when restricted to the boundary, can be expressed as ) . a,e®™ on outgoing
circles and ) _q b,e™ on incoming circles. With such a choice, the operator
0 : Q%Y,0Y) — QY1(Y,0Y) is Fredholm and one can define the determinant
line

Dety := Dets = (Aker 0)* ® (A coker 9) .

By Proposition [1.12), this determines a holomorphic line bundle, called the de-
terminant line bundle, on the moduli space of Riemann surfaces for each fixed
topology. It is also obvious that

DetyluY2 = Detyl (9 Dety2 .

(Note, however, that such an isomorphism, in general, is invariant only up
to a sign under permutation of terms in the disjoint union; for example, the
group of permutations acting on the terms of S Ll ... S?, induces the sign
representation on Detgz ;| s2.) Hence, Y — Dety satisfies the axioms 1), 3)
and 4) in Definition [1.7] for a modular functor with one label. Axiom 2) is
satisfied thanks to the following proposition, which is proved in [57].

Proposition 1.14. Let Y be the Riemann surface obtained from Y by gluing
together an incoming and an outgoing circle in Y. Then, there is a canonical
isomorphism Dety = Dety .

By this proposition and by the above remarks, the following theorem follows.

Theorem 1.15. Any (even) tensor power Det®”, n € Z, of the determinant
line is a one-dimensional modular functor.

Rigorously, one should restrict to even tensor powers of Det, in order for
Det®™ to be invariant under permutations of components in disjoint unions. In
the following section, we will see that the tensor powers of the determinant line
are essentially the unique one-dimensional modular functors.

1.3.4 CFT from weak conformal field theories

A modular functor E associated to a set ® of labels determines an extension
Sg of the category S of oriented 1-manifolds and cobordisms. The objects of
Sg are oriented 1-manifolds labeled by an element of ® and morphisms are
the pairs (Y,n) where Y is cobordism with labeled boundary and n € Ey-.
Composition is defined between compatibly labeled cobordisms (Y7,n)o(Y3,&) =
(Y1 o Y5, p), where p is the image of n ® £ in Fy,oy, through the canonical
injections Ey, ® Ey, — FEy,uy, — Ev,0v,, defined, respectively, by axioms 2)
and 3) in Definition [1.7.

Definition 1.11. A weak conformal field theory is a functor from the category
Sg to the category of topological vector spaces with trace-class linear maps,
satisfying the axioms of Definition [1.3, with the following modifications:

e Isomorphisms in axioms 2a) and 2c) hold genuinely and not just projec-
tively.
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e U(y,) depends holomorphically on the morphism (V).

A weakly conformal field theory assigns a topological vector space H,, to the
circle S, for each label ¢ € ®, and a finite-dimensional subspace Ey, with a
natural injection By — H,, ®H,,, , to each labeled cobordism Y with n outgoing
(and no incoming) circles labeled by ¢1, ..., ¢,. This should be compared with
the definition of a CFT, where there is only one label and a cobordism with all
outgoing circles is associated to a 1-dimensional space, corresponding to the ray
of trace-class operators Uy : C — Hyy. Furthermore, for a general CFT, no
holomorphicity condition is required on the dependence of such a 1-dimensional
space on Y.

The idea behind the definition of a weakly conformal field theory is that it
should correspond to the chiral or to the anti-chiral part of a CF'T. Hence, one
expects to be able to construct a CFT by gluing two weakly conformal field
theory. This procedure is not clear in general, but it is described in [57] in case
the modular functor satisfies a unitarity condition. We closely follow Segal’s
definitions.

Definition 1.12. A modular functor EF is unitary if there is a positive non-
degenerate transformation

Ey@Ey—>|Dety‘c,

for each surface Y with labeled boundary such that the diagram

DEv. ©Bv. L Dty |°
]

Ey © Ey | Dety |

commutes.

Proposition 1.16. A pair of weakly conformal field theories corresponding to
the same unitary modular functor E with index set ® defines a conformal field
theory based on the space @, Hy ® My and the central extension | Det | of C.

Proposition 1.17. Any one-dimensional modular functor is determined by its
restriction to the semigroup A. More precisely, given two one-dimensional mod-
ular functors E' and E" with the same restriction to A and a normalizing iso-
morphism E7, = EY,, for an arbitrary disk D, there are canonical isomorphisms
E{ = EY{ for all the cobordismsY .

Proof. Axiom 2) of Definition 1.7 and property 2) of Proposition 1.7/ imply that
dim Er, for a torus T, equals the number of labels |®|. Hence, one-dimensional
modular functors have only one label. Let E and E” be one-dimensional modu-
lar functors with the same restriction to A and normalized so that E}, = E7) for
a fixed disk D. Then, F := E'® (E")* is a modular functor with trivial restric-
tion to A and Ep =2 C; we have to prove that there are canonical isomorphisms
Ey = C for all Y. Let M, be the space of surfaces of a given topology «, not
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containing any closed component. Since E has vanishing central charge, Propo-
sition 1.8 assures that there is a canonical flat connection on F,. It follows that
E,, corresponds to a one-dimensional representation of 71 (M,). Such a group is
generated by Dehn twists, as follows. Choose a closed curve v on Y € M, and
let A, 0 < r < 1, be an annulus, embedded in Y, containing . Then, Y can be
obtained by gluing both circles of A, to a surface Y'. Let Y;, t € [0, 1], be the
surface obtained by gluing both circles of the annulus Ay, q(t) := e2mitr to Y,
then, ¢ — Y; represents a non-trivial element (with base-point Y) in m1(M,).
It can be proved that m (M,) is generated by such elements; it follows that
the bundle E, is completely determined by the restriction of £ on A. But E
is trivial on A, so that we can canonically identify the fibres of E, for each a.
This implies that Fy depends only on the topology of Y.

On the other hand, if Y is obtained from Y’ by removing k disks, the isomor-
phism E(D) 2 C induces an isomorphism Ey = Ey:. Hence, E(Y) depends
only on the genus of YV, By = E,. In particular, the line bundle F, has a
canonical flat connection also for surfaces with closed components. Finally, let
Y, be a surface of genus g with two holes; then, one can glue the boundary
circles of Yy to obtain a surface Y41 of genus ¢ + 1, and axiom 2) of Definition
1.7/ implies that £, = F,,, and that such an isomorphism is compatible with
composition of cobordisms. O

The determinant line Y — Dety is a one-dimensional modular functor and
induces an extension of A classified by (¢, h) = (—2,0).

Corollary 1.18. The only one-dimensional modular functors are integral tensor
powers of the determinant line.

Corollary 1.19. The only central extensions of the category S of 1-manifolds
and cobordisms by C* are given by Y — (Dety)®? ® (Dety )®4, with p,q € C,
p—q€EZ.

Proof. We will only sketch the main lines of the proof. By Proposition 1.17,
such corollaries are equivalent to the claim that the only holomorphic central
extensions of A by C* that extend to a one dimensional modular functor are
classified by (c,0), with ¢ an even integer. The condition h = 0 follows by
Proposition 1.9. A holomorphic extension of A with central charge ¢ must
correspond to the one given by Det?. In order to be a modular functor, a line
bundle must be defined on each space of cobordisms C, of fixed topology «.
In particular, it must determine an element in H?(C,,Z), since the topological
classification of line bundles is given by the first Chern class. But it can be
proved that H?(C,,Z) = Z for genus high enough, and the Chern class of Det
is a generator. Hence, only integer powers of Det are well-defined. O

1.4 Axiomatic CFT and bosonic string theory

The axiomatic approach to CFT described in the previous sections can be ap-
plied to bosonic string theory. In this respect, two problems arise. Fist of all,
if the target space of string theory is not a compact manifold, the operators
Uy fail to be trace-class. This is a usual problem in quantum field theories in
infinite volume spaces. There are several standard ways to treat this issue, for
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example by considering a manifold with finite volume V and then taking the
limit V' — oo at the end of the calculations.

A more serious issue concerns to the fact that Segal’s axiomatization con-
siders Riemann surfaces with parameterized boundary, whereas no such a pa-
rameterization is defined in bosonic string theory. This is strictly related to
the problem of restrict the Hilbert space of states to obtain conformal invari-
ant amplitudes. As is well-known, the simple restriction to conformal invariant
states is a too strong condition. Instead, it is necessary to restrict to the BRST
cohomology. The definition of the BRST cohomology in axiomatic CFT has
been developed in [57]; we just notice that a consistency condition for such a
definition is that the total central charge of the theory is 0.

In this thesis, we will limit to show how Corollaries [1.18 and [1.19 can be
used to derive the partition functions related to closed Riemann surfaces of
genus g > 2. Such partition functions define the bosonic string measure on the
moduli space M, of genus g.

We recall that bosonic string theory is formally defined by a path integral
over the space of embeddings in a flat D-dimensional manifold M (the tar-
get spaces) and over the space of world-sheet metrics. The measure is given
by a conformal and diffeomorphisms invariant action on the world-sheet. Af-
ter gauge-fixing, we obtain a CFT with D real fields, corresponding to the
target space coordinates, and two copies (holomorphic and anti-holomorphic)
be system of weight 2. The resulting CFT does not admit holomorphic fac-
torization, the obstruction being related to the zero-modes of the operator 0.
Each amplitude can be written as an integration over the internal momenta
of a holomorphic times an anti-holomorphic contribution. For a finite volume
target space, such an integration is substituted by a discrete sum, which cor-
responds to the summation in Eq.(I.4). It is straightforward to see that the
one-dimensional modular functor giving the central extension of the category S
corresponds to (Detg, )©F ®@Det} , where 0, is the derivative operator acting on
n-differentials. By Proposition[1.18, such a modular functor must correspond to
an integral power of Det. Obviously Dets = Det; the relation between Detg
and Det is given by Mumford theorem, we state in terms of the dual bundles
Ap = Detgn7 for later reference.

Theorem 1.20 (Mumford). Let M, be the moduli space of Riemann surfaces
of genus g > 2. For each n > 1,

An 2 AT
where ¢, = 6n% — 6n + 1.

Such a theorem can be seen as a direct consequence of Corollary [1.18] once
one proves that the central extension of A induced by Dets has central charge
—2¢y,. In particular, since c3 = 13, we get Detg, = Det!®. Hence, the modular

functor associated to such a theory is Det%726; however, we recall that consis-
tency conditions in string theory, in particular the requirement of nilpotency of
the BRST charge, constrains the central charge of the modular functor to be 0.
This fixes the critical dimension D = 26.

The genus g partition function (or, equivalently, the string measure on M,),
must be given by integration over the internal momenta of the modulus square
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of a non-vanishing holomorphic section of Deté? ® Detp, = )\IIS ® Az. The only
such section is the Mumford form

(;51/\.../\(72535]_3

=F —_—
Ho2 0.21) (Wi Ao Awg)t3
where {¢1,...,¢34-3} is a basis of holomorphic quadratic differentials and
{w1,...,wy} is the canonical basis of holomorphic abelian differentials (see

section [B)). After integrating over internal momenta, we obtain the Belavin-
Knizhnik theorem [7] relating the bosonic string measure djug to the Mumford
form

F,5|?
d:ug:( |97| |¢1/\"'/\¢3973|2a

det Im 7)13
where Im 7 is the Riemann period matrix.
A more extensive treatment of the Mumford isomorphism and the derivation
of explicit expressions for the Mumford form for genera 2 and 3, are given in
chapter 3l



2. COMBINATORICS OF DETERMINANTS

Determinants of holomorphic quadratic differentials play a crucial role in our
construction. In particular, in the following chapters, we will construct bases of
H°(KZ%) in terms of two-fold products of holomorphic abelian differentials. In
this section, we will consider the purely combinatorial problem concerning the
determinants of a basis of a two-fold symmetric product of a finite dimensional
space of functions. We first introduce a very useful notation for symmetric
tensor products of vector space, which we will adopt all along the paper; then
we derive two lemmas on determinants which are of interest on their own.

2.1 Identities in symmetric products of vector spaces

Definition 2.1. For each n € Z~¢, set
I, ={1,...,n},

and let P, denote the group of permutations of n elements.

Let V' be a g-dimensional vector space and let

Mn = (g+n1) )
n

be the dimension of the n-fold symmetrized tensor product Sym™ V. We denote
by
Sym" Vo ng = Y Ney @0sy @ ... @0,
sEPy,
the symmetrized tensor product of an n-tuple (1, ...,7,) of elements of V.

Fix a surjection m : Iy x I, — In;, M := My = g(g + 1)/2, such that
m(i, ) = m(j,i) , (2.1)

i,j € I,. Such a surjection corresponds to an isomorphism C* — Sym? CY with
Em(i,j) 7 i €j-

A useful choice for such an isomorphism is considered in the following defi-
nition.
Definition 2.2. Let A : CM — Sym?CY, M = M, be the isomorphism
A(&;) == ey, - €,,, with {&;}s¢r,, the canonical basis of C* and

(i,1) 1<i<yg,
(1, 24) == (2,i—29+3), 20<i<39g—-3,

(g—Lé), i=g(g+.1)/2,
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so that 1,2, is the i-th element in the M-tuple (11,22,...,99,12,...,1g,23,...).
Similarly, let {é;}ier,,, be the canonical basis of CMs | and fix an isomorphism
A CMs — Sym®C9, My := g(g + 1)(g + 2)/6, with A(&;) := (e1,,e1,,€5,)s5,
whose first 6g — 8 elements are

(iy4,1) , I1<i<g,

(1,1,i—g+2), g+1<i<29-2,
(11, 21,3) 1= (2,2,i—2g+4), 2971§2.§3g74,
(1,2,i—3g—4), 3g—3<i<49—4,
(1,i—49g+6,i—49g+6), 49g—3<i<5g—6,
(2,i—59+8,i—5bg+8), bg—5<i<6g—38.

As we will see, we do not need the explicit expression of A(¢;) for 6g — 8 <
i < Ms. In general, one can define an isomorphism A : CM» — Sym"CY, with

A(&;) = (ey,,...,en,), by fixing the n-tuples (1;,...,n;), ¢ € Ip, , in such a way
that 1; <2, <... <n,.
For each vector u := *(uy,...,uy) € CY and matrix B € M,(C), set
WUy = H Um; (BB)Z] = Z H Bmis(m)j )
» times me{1,...,n} n times S€P, me{1,...,n}

1,j € In,,, where the product is the standard one in C. In particular, let us

define .
xi=x = H( > 5kmi>! =(6--0)ii ,
}

k=1 “me{1,...,n

i € I, (we will not write the superscript (n) when it is clear from the context)
where § denotes the identity matrix, so that, for example,

X§2) =1 + 5l112i ’ X§3) = (1 + 6lq,2i + 52137)(1 + 517‘,31') .

Such a single indexing satisfies basic identities, repeatedly used in the following.

Lemma 2.1. Let V be a vector space and f an arbitrary function f: 17 —V,
where 1) := I, X ... x Iy (n times). Then, the following identity holds

g M,
S flini) =Y x> Fs@i o s)) . (22)

i1yeyin=1 i=1 $E€P,
that, for f completely symmetric, reduces to

g

> fliy,. . in —n'ZXl (Liyeymy) (2.3)

i1, yin=1

Proof. Use
J (i is,)
Z fliv,... in) = Z Z 812’:7(85 0w
i1ein=1 in>..>i1=1sEPy, k=1 (D ki )!
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Note that u®” =4 ® ... ®u is an element of Sym" CI = CM» for each u € CY.
By (2.2), the following identities are easily verified

~ -1 > ~ 5
= in wewié; ,  (Bu)® Z X; X] YB---B)iju---ujé;
= 1,7=1

where CM» 3 &, > ¢-..¢; € Sym™ CY, i € I,. Furthermore,
ZX_I (B---B)ij(C---C)jr. = (BC) - (BC))ix (2.4)

where B,C are arbitrary g x g matrices. This identity yields, for any non-
singular B

M,

DX NGB B)y (BT BT e = (80 0axy, = (2.5)
j=1

and then
detij ((B oo B)sz]_l) detij ((371 . Bil)ijxj_l) =1. (26)

Also observe that
M, g n
l_qulzl_[u,;7 " (2.7)
i=1 k=1

where the product and the exponentiation are the standard ones among complex
numbers; in particular,

In the following we will denote the minors of (B--- B) by

|B-- - BJ’ = det (BB)U ,

J1 jm ici i
LEUL, st megy i

Uyeeeslmy J1s-- -y dm € In,, with m € Iy .
Definition 2.3. Fix g,n € Z~(. Set
Iy, D138 .= fic Iy |1,=2;=...=n;} .
Fix [ < g and a,a1,...,a; € I; and define the following subsets of Iy,

Iﬁ::{iGIMn|1i:a\/2i:a\/...\/ni=a},

ay...a; .__ ag
R U S

kel
ajaz ,__ ydiag ayas
142 = e g ez

7l
Ipg, =1, .
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2.2 Combinatorial lemmas

Fix a surjection m : Iy x I, — In;, M := g(g + 1)/2, such that
m(i,j) = m(j,i) ,

i,j € I4. Such a surjection corresponds to an isomorphism CM — Sym>CY with
Em(ig) > (€i ® €j)s.

For each morphism s : Ip; — Iy consider the g-tuples d*(s), k € I 41,
where

di(s) = d ' (s) = sm(ig) » (2.8)

i < j € I;. Note that if s is a monomorphism, then each g-tuple consists of
distinct integers, and each ¢ € I; belongs to two distinct g-tuples.
Consider P§*! = Py x --- x Py and define s : PIT! x Iy — Ip, depending
. .

g+1 times
on m, by -
Som(ig) (17T = m(rf, ) (2.9)
i < j €Iy, where (r',...,r97") € PI*1. Note that
diGe(rt, o I = @ et ) = m(ed, T

i < j € I;. Consider the subset of Ij; determined by
Ingn = {m(i, )i € Loy j € I},

n € I,, with the ordering inherited from Is, and denote by
L:i=M-(g—n)(g—n+1)/2,

its cardinality. The elements sq(r!,...,79%1), | € Iy, are independent of 77,
with n+1 <4,j < g, and » can be generalized to a function » : Ip;, x P9™ —
Ing , where P97 := Pr x P+ by

si(Fh, P =g (et ) (2.10)

i € Ingp, (F1,...,79FY) € P9 where 1/ € P,, j € I 41, are permutations
satisfying r/ = #, j € I,,, and rf = ff, i€ l,,n+1<j<g. Furthermore, if
{56(Ft, ..., 7 ) }ier,,.,, consists of distinct elements, then it is a permutation
of Inrn. By a suitable choice of the surjection

m(j, i) =m(i,j) =M = (g —j)(g—Jj—1)/2+1, (2.11)

j <€ lgy, we obtain Ips, = Ir as an equality between ordered sets.

Consider the maps s : I — I, where I is any ordered subset of Iy; if s is
bijective, then it is a permutation of I. We define the function €(s) to be the
sign of the permutation if s is bijective, and zero otherwise.

Let F' be a commutative field and S a non-empty set. Fix a set f;, i € I,
of F-valued functions on S, and z; € S, i € I;. Set

ffm(i,j) = fz‘fj )
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i,j € Iy, and
det f(zas(s)) 1= detir fr (g () -

J € Ig41, where z; € S, @ € Ipy. Furthermore, for any ordered set I C Iy, we
denote by

dety ff(xla o 'axCard(I)) ’

the determinant of the matrix (f fm (2:))iercaracr) -

mel
Lemma 2.2. Choose n € I, and L points x; in S, i € Ir,. Fiz g —n points
pi €5, n+1<i< g and g F-valued functions f; on S, i € 1,. The following
g(g — n) conditions

filpj) = bij (2.12)
1<i<j,n+1<j<g, imply
det]Mm ff(:El, e ,IL)
1 n g+1
= Ci Z 6(5) H detf(xdj(s)) H detf(‘rd’f(s)a s axdﬁ(s)vpn-‘rlv e apg)
9N sePL j=1 k=n+1
(2.13)
where .
g+

Com = > I e)eCe(, .. 7t ) (2.14)

(71 ’H_ﬂ:g+1)€75g,n k=1

In particular, forn =g

g+1
codet ff(z1,...,xm) = Z e(s) H det f(24i(s)) » (2.15)
SEPM j=1

where

Cqi=Cgq = Z H e(rF) e(se(rt, ... 19)) .

rl, . r9tlep, k=1

Proof. It is convenient to fix the surjection m as in (2.11), so that Ins, = Ir.
Next consider

cgndety, ff(z1,...,20) =cgn Z e(s)ffi(zs,) - ffo(zs,) . (2.16)

sePL

Restrict the sums in (2.14) to the permutations (7!,...,79) € PI" i € I,,,
such that e(s(F!, ..., 7971)) #£ 0, and set s’ := s o0 3(F!,...,791) so that

ffl(mh)"'fflz(st) - ffkl(xs’l)"'ff%L(xs’L) )

where s is to be understood as s (71,...,79%1). Note that VI € Iy, there is
a unique pair 4,j € I, i < j, such that | = m(4, 5), and by (2.8) and (2.9) the
following identity

) = fr; ('Td;'.(s’))frg*l (dengl(S,)) )

m(i,j)
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holds V (rt,...,r9%1) € Pg“. On the other hand, if [ € I, then i < n and by
Bq.(2.10)

ff1($81)...ffL(xSL) =

g+1

I f@ayoy) - fr @ason) 1T Fri@aggon) - g (@0, 0) - (217)
=1

j=n+1

3

The condition f;(p;) = d;5, ¢ < j, implies

Z 6(7:j)f7~:{ (xdal'(sl)) e fr,"«{, (xd?,;/(sl)) = detf(xd{(s’)? s 7xd¥1’(sl)7pn+l7 s 7pg) )

7 EP,

n+1<j<g+ 1. Hence, Eq.(2.13) follows by replacing the sum over s with
the sum over s’ in (2.16), and using

e(s) = e(s') e(z(, ..., 79T .
Eq.(2.15) is an immediate consequence of (2.13]). O

Remark 2.1. The summation over Py in Eq.(2.15) yields a sum over (g + 1)!
identical terms, corresponding to permutations of the g+ 1 determinants in the
product. Such an overcounting can be avoided by summing over the following
subset of Py

Pui={sE€Pum, st. s1=1, 55 <s3<...<8g, $2<8;, g+1<i<29—1},
and by replacing ¢, by ¢4/(g + 1)L
It can be verified that

cg1=9g", cgo=g"(g—1!2g—1), c2=6, c3=360, c4=302400.
(2.18)
The only non-trivial computation is ¢g4 2, which is more interesting case for the
following constructions. The computation of its value is reported in section
2.2.1l For g =2, ¢g/(g+1)! =1and P),;_; = {(1,2,3)}, so that

det ff(xl, o, J)3) = det f(xl, 1‘2) det f(l‘l, 1‘3) det f(l‘g, xg) . (219)

A crucial point in proving Lemma 2.2 is that if s¢; (7!, ..., 79%1) i € Ipp,
are pairwise distinct elements in Ips, then they belong to Ins, C Ip, with s
a permutation of such an ordered set. For a generic ordered set I C I, one
should consider s as a function over g+ 1 permutations 7, i € I, 1, of suitable
ordered subsets of I,. In particular, 7#* should be a permutation over all the
elements j € I, such that m(s,5) € I, for j > ¢, or m(i — 1,5) € I, for j < i.
However, the condition that the elements »;(7!,...,7971), i € I, are pairwise
distinct does not imply, in general, that they belong to I and Lemma 2.2/ cannot
be generalized to a determinant of products ff;, i € I. On the other hand, the
subsets

I:=1Iy,U{m(i,j)}, (2.20)

satisfy such a condition for n < 4,7 < g and yield the following generalization
of Lemma 2.2.
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Lemma 2.3. Choosen € I, and L+ 1 points x; in S, i € I,. Fiz g —n points
pi €5, n+1<4< g and g F-valued functions f; on S, i € Iy, satisfying the
g9(g —n) conditions (2.12). For each fized pair i,j, n < i,j < g, the following
relation

detjff(a:l,...,xL+1) = N (2.21)

g,n

! Z 6(8) detf(xd’1‘+1(s)v . ~axdzi}(s)apn+1a vy Diy e 7pg)

SEPL+1
~detf(gcdn+z(8), . 7xdn+2(s)7pn+17...,15j, o3 Dg)

g+1

Hdetf xdk(s) H detf xdl (s)r - &dl (s) pn+17"'7p9)7
l=n+3

holds, where

g+1

Com = Z He Fe(s(F, .. 79T

(71,...,F9+1)ePl i=1
P! =Py x Piyy x P, and I is defined in (2.19).
Proof. A straightforward generalization of the proof of Lemma 2.2l O
2.2.1 Computation of cg o

Let us choose the definition (2.11)) for m(i, ), so that, in particular,

m(li) =i, ie€ly, m2j)=j+g, jel\{1}.

Definition (2.14)), for n = 2, can be written as

cg72— Z Z Hetl s)e(x(r, s, t2, ..., t9)) ,

L tIEPy 1,5€Py 1=2

where s(r,s,t%,...,17) is a (29 — 1)-tuple of elements in Io,_1, whose i-th ele-

ment is given by applying m to the i-th element of
(r(1)s(1),2(1)r(2),...,t9(1)r(9), *(2)5(2), ..., 17(2)s(9)) - (2.22)

In other words, e((r,s,t2,...,t9)) vanishes if the elements in (2.22) are not

pairwise distinct; otherwise, (2.22) is necessarily given by a permutation of
(11,12,...,19,22,23,...,2¢g) ,

and €(s(r, s,t2,...,19)) is the sign of such a permutation.

Denote by e and p the identity element and the non-trivial permutation of
Py. Fixt?,...,t9 € Py and let k, 0 < k < g— 1, be the number of permutations
in this set which do not correspond to the identity element e € Ps. Then,
15 €(t?) = (—)%. We can reorder

2,9 =2 (2.23)
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in such a way that

T L T e

g

For each choice of r,s, one can apply the reordering (2.23) to r(2),...,7r(g)
and to s(2),...,s(g), while keeping r(1) and s(1) fixed, to obtain two new
permutations 7, 5. Then, it is readily verified that

e(r)e(s)e(s(r,s,t%, ..., 19)) = e(F)e(8)e(s(7, 5,12, ...,19)) = e(F)e(8)e(r, 5, k) ,

where
e(r,s, k) :=e(s(r,s, e,....e ,p,....,D)) .
——
g—1—k times k times
It follows that
-1

cg@:gEj(—)’“(g;l) S en)els)elr s, k)

k=0 7,5€P,

where (g ;1) are all the different ways to choose the k non-trivial permutations

among t2,...,t9. Let us consider the dependence of the product e(r)e(s)e(r, s, k)
on r € Py, for a fixed k. For each fixed r(1), such a product only depends on
the splitting of I, \ {71} into the disjoint union of two subsets, given by

I\ {m}={re, .., gkt U{rg—kt1,..., g} -

In particular, two different permutations r and 7 such that ry = 7y and such
that

{T27~ .. 7rg7k} = {'FQ,. . .,'I:g,k} R
{Tg—k+17 cet ,7"9} - {rg—k+17 . 'arg} )

give the same contribution to the summation. The conditions above determine
an equivalence relation, depending on k, between elements in P, each equiva-
lence class corresponding to k!(g — k — 1)! elements. The same considerations
apply to the permutation s, so that

cgr = () (9 ; 1> Blg— k-1 > e(r)e(s)e(r, s, k) .

k=0 r1,81=1 [T]’[S]e(gzl)wj .

Here, the notation Z[T] e(s;) mmeans that we are summing the equivalence
k )y

classes corresponding to a fixed k and r1. A representative for each class can be
chosen by imposing, for example, 70 < ... < rg_f and 7441 < ... < rg; this
will be our ususal choice in the following.

Let us consider the sums over r; and s;. If both r; and s; are greater
than 2, then €(r,s, k) = 0. If r; = s1, then e(r,s,k) # 0 if and only if r = s
as permutations (so that e(r)e(s) = 1). In this case, it is easy to check that
e(r,s,k) = (—)*. Then,

EQI Yo er)els)e(r s, k) = 2<g; 1)(—>k .

=1 [r],[s]e (")

The other cases for which €(r, s, k) is non-vanishing are:
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rpr =1, s =4 > 1. Let n,m be the integers such that r, = i and
$m = 1. Then, to obtain a non-vanishing e(r, s, k), a necessary condition
is n,m > g — k; we can choose representatives r,s of the equivalence
classes, in such a way that rg_p41 = 7,8g—p41 = 1l and 72 < ... < rg_p,
Tg—kt+2 < ... < 74 and analogous ordering for s. Then, €(r,s, k) # 0 if
and only if 7 = s; for all I ¢ {1,g — k + 1} and, in this case, we have
e(r,s,k) = (—)*. It follows that

> Y Aot = 0§70
=2 119 (%),

Here, the factor (Zj) is the number of different ways to choose r4_j 42 <
... <rg in the set I, \ {1,7} and the factor g — 1 is due to the sum over

S1 = 1.

r1 =14 > 1, s; = 1. In this case the conditions for ¢(r, s, k) # 0 are ro = 1,
sy =1, and r; = s; for all [ > 2, and again €(r, s, k) = (—)¥, so that

DR GECEC R R i IS
=21 lsle (), ,

i,

The factor (g ;2) is to the number of different ways to choose rg_j41 <
. <rgin Iy \ {1,}.

ry = 2, s1 = 1 > 2. The contribution is

-

Il
w

> etk = =27 )
IA(75 ),

K2

where the factor g — 2 comes from the sum over s; =i > 2.

— 81 =2, 71 =1 > 2. The contribution is

-

Il
w

S el)elr s k) = (g-2 (7 ) (-)k
[7‘],[5]6(921)_ ) (k 1)

T

(2

To summarize, we have

€o.2 :f’f (g i 1) k(g — k — 1)1

k=0

) ()G
Z;J(le)ngl)k!(gkl)!r

=29 —)gllg—D'* = (29 — Dgl(g—1)! .
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2.2.2 Examples of the combinatorial lemmas

We now show some examples of the combinatorial construction described in the
last subsection. Set g = 4, so that M = g(g + 1)/2 = 10. Fix a surjection
m: Iy x Iy — I1g with m(4, j) = m(j, 1), for example by setting m(i, j) = [m];,
with [m] the symmetric matrix

1 2 3 4
] = 2 5 6 7
3 6 8 9
4 7 9 10

For each function s : I;g — Ijg, the 4-tuples d'(s), i = 1,...,g +1 = 5, are
determined by
i _ g+l _
dj(s) = d(8) = Sm(i)
i < j € 14, so that, with the above choice of m,

d'(s) = (s1, 52, 83,54) ,
d*(s) = (s1, 85,56, 57)
d3(s) = (s2, 55, 58, 59)
d*(s) = (s3, 56, 58, 510)
d5(s) (84, 87,59, 810) -

Let P, be the group of permutations of g elements. The function s : P x Ig —
Iy is defined by

Sy (s r7) = m(rj,rf"_l) , (2.24)
i <j €I, where (r',...,r°) € P}. For example, fix
=(3,4,1,2) ,
=(1,2,4,3)
= (2,4,1,3) ,
=(1,2,3,4)
o —( 4,1,3) .
To determine s (r!,...,r%), note that 1 = m(1,1), so that, by definition,

%7,1(171)(7"17 o ,r5) = m(r%,r%) =m(3,1)=3.
As a further example note that 2 = m(1,2) = m(2, 1), so that
Hm(1,2) (rt, . ) =m(ry,rd) =m(4,2) =7,

(observe that Eq.(2.24), which defines s, holds only for ¢ < j). The 4-tuples
d'(s(ry,...,r5)) are

d'(») = (3,7,1,5) ,
d*(») = (3,7,7,9) ,
d3(») = (7,7,3,3) ,
d*(») = (1,7,3,9) ,
d®(%) = (5,9,3,9) .
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It is readily verified the general relation

. i+1 5 i +1

d;(%(rl, o)) = ngr (e(rt, ... 1)) = m(r;-,?"fr ),
i < j € I,. Note that if s(r!,...,7%) : Iy — Lo, for some fixed 7',...,7%, is a
monomorphism, then it determines a permutation of I1y5. Hence, we can define
the function e(»(r!,..., 7)) to be the sign of the permutation »(r',...,7%) if

it is a monomorphism, and zero otherwise.
Consider the subset

IM,n - {m(lv]) ‘ 1€ Inv] € Ig} )

for some n € I;. s can be generalized to a function from PIn x [ M,n, Where
Pom =Py x PI="+1 into In;. As an example, consider s : P42 x T2 — To,
where 102 = {1,2,3,4,5,6,7} (the precise form of I1 2 depends on the choice
of m). Fix (71,...,7°) € P42 = P? x P3, e.g. by

i=(3,4,1,2),

i =(1,2,4,3) ,

i =(2,1),

=(1,2),

M =(1,2) .
As a specific case, say g, note that 6 = m(2,3) = m(3,2) and set

Hm(am (P 70) = m(F3,73) =m(4,2) =T .

For general choices of 7!,... 7°, s(7,...,7) : I;9o — I10 may not be a
monomorphism. It can be verified that if the image s(7',...,7°)(I10.2) € I10,2,
then (7! ... 7°) is not a monomorphism. Therefore, if s(7!,...,7) is a
monomorphism, then it determines a permutation of 119 2. Hence, we can define
the function e(s(7!,...,75)) to be the sign of »(7!,...,7) if it is a monomor-

phism, and zero otherwise.
Let us apply Lemma 2.2 to the previous examples. Consider four linearly
independent functions fi,..., fy : C — C, and set

fFma(2) = fi(2)fi(2) -

Next, fix x1,...,210 € C and consider
fhi(z) ... ffio(z1) fite)fi(@) oo fa(zr) fa(za)
det : . : =det : :
ffi(zwo) ... ffio(z1o) fi(xio)fi(z1i0) .. fa(w1o) fa(z10)

so that m(i,j) determines the column where f;f; appears. It is easily verified
that the above determinant is proportional to

> €(s) det filzas)) det fi(zaz(s)) det fi(was(s)) det fi(241(5)) det fi(zgs(s)) -
s€Pio
(2.25)
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This expression, after expanding each determinant, consists of a summation
over products of twenty factors f;(x;), where each z;, appears twice. After
skew-symmetrization of the xy’s, this expression is necessarily proportional to
the original determinant.

In Lemma [2.2] it is also considered the more general case of determinants
made up of functions ff;, where ¢ varies in a subset Ip;,, C Ipf of L < M

elements. For example, let us consider the subset I1g2 = {1,...,7} and fix the
points z1,...,z7 € C. We are interested in the determinant
fhi(z) oo ffr(z) filz) filz) oo fa(@r) fa(zr)
det : : = det : :
fhxr) . ffa(xr) filen) filxr) .. fazr) fazr)
(2.26)

By repeating the above construction, this determinant can be expressed as (a
sum over) products of two determinants of 4 x 4 matrices times three determi-
nants of lower-dimensional 2 x 2 matrices

D els)dety, filzays)) dety, fi(wa2(s)) detu, fi(zas(s))

s€Pio
detr, fi(zas(s)) detr, fi(zaz(s)) »

where dety, fi(z;) := detjer, fi(z;). In order to obtain products of five deter-
minants of 4 x 4 matrices in the form similar to Eq.(2.25), one has to impose
some conditions on the functions f;. In particular, it is sufficient to require that
there exist two points, p3,ps € C, such that

Jilp)) = fo(pi) =0,  i=3,4,

f3(pa) = fa(ps) =0,
f3(p3) = fa(pa) =1
In this case, the following identity
fi(e)  fo(wr)  fs(@1)  fa(ar)
dot (f1(x1) f2(l’1)) _ gt | frl@2) folza)  fa(wz)  fala)
fi(z2)  fa(z2) filps)  fo(ps)  fa(ps) fa(ps) |~
fi(pa)  fa(ps)  fs(pa)  fa(pa)
holds and the determinants in (2.26) are proportional to
> els)det f; (a1 (s)) det fi(zaz(s)) det f(2a3(5)s Tag(s): P3, P4) (2.27)
seEP7
~det f(zqi(s), Tas(s) P3: Pa) det f(Zas(s), Tag(s), P3,P1)
where det f(z1,...,21) := det;jer, fi(2;). Lemma 2.2 generalizes such a result

to any g and n. Proportionality of Egs.(2.20) and (2.27) can be understood as
follows. Upon expanding the determinants in (2.27) and using the conditions
on f;, this expression corresponds to a summation of products of the form

Nfafsfa- fifafsfa- fifa- fifa- fife s (2.28)
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with the f;’s evaluated at z1,...,27 (each x; appears twice). Such a product
can be re-arranged as

ffh (xl)ffw(mQ) s ff747(m7) )

for some iy, ...,i7y € I19. After skew-symmetrization over the variables x;, only
the products with distinct 4y, ...,47 contribute. But this implies i1,...,i7 €
I10,2, since the only possibility to construct seven different functions f; f; out of
the fourteen functions in Eq.(2.28) is

FE(@1) fifo(@2) f1f3(x3) f1 fa(xa) £3(25) fo f3(26) fo fa(7) (2.29)

up to permutations of the x;’s. This is strictly related to the observation that
if 5(f!,...,7°) is a monomorphism, then it corresponds to a permutation of
Iip2. The skew-symmetrization of (2.29) with respect to z1,...,x7 is exactly
the determinant we were looking for.

Note that Lemma 2.2l may not be generalized to the case of determinants of
matrices with rows ff;,,..., ffi,, when I := {i1,...,ir} is a generic subset of
Ip. One can always define a generalization of the s function as s(7!,...,75):
I — Iy, with 7#!,...,75 in some suitable subset of P;. However, the necessary
condition for the generalization of Lemma 2.2! is that if s is a monomorphism,
then »(I) = I. Such a condition is verified, for example, if I = I¢,, as showed
before for I1g2. The condition still holds when I = I, U {j}, for all the
elements j € I10\I10,n, which is the content of Lemma[2.3l An example for which
the analog of Lemma 2.2] does not exist is for I = {1,5,8,10}, corresponding to
determinants of matrices with rows f2, f3, f, f7. Actually, defining a formula
similar to (2.25) in order to obtain terms in the form f2(x1)f3(w2) f3(x3) f7(24),
some unwanted terms, such as fi fa(z1) faf3(x2) f3 fa(xs) faf1(x4), do not cancel
in the RHS.
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3. DETERMINATS OF HOLOMORHPIC DIFFERENTIALS
AND THETA FUNCTIONS SURFACES

After reminding some basic facts about theta functions, we investigate the divi-
sor structures of the theta function and its derivatives that will be used in the
subsequent chapters.

3.1 Determinants in terms of theta functions

Set g
00> pi —v)

o)1 EGop) 3.1)

S(p1+ ..+ ) =

Y,P1,---,Dg cC.

Lemma 3.1. For all py,...,py € C, S(p1+ ...+ py) is independent of y. For
each fited d € Cy_1, consider the map mq : C — Cy, mq(p) := p+ d. The
pull-back 73S vanishes identically if and only if d is a special divisor; if d is not
special, then 73S is the unique (up to a constant) holomorphic 1/2-differential
such that [(75S) + d] is the canonical divisor class.

Proof. If p1 + ... + py is a special divisor, the Riemann Vanishing Theorem
implies S = 0 identically in y; if p1 + ... 4+ py is not special, S is a single-
valued meromorphic section in y with no zero and no pole. It follows that, in
any case, S is a constant in y. This also shows that S(p1 + ... +py) = 0 if
and only if p; + ... + py is a special divisor. Hence, if d € Cy_; is a special
divisor, S(p + d) = 0 for all p € C. On the contrary, if d is not special, then
R (Kc®@O(—d)) =1, and S(p+d) = 0 if and only if p is one of the zeros of the
(unique, up to a constant) holomorphic section of H°(K¢c ® O(—d)), and this
concludes the proof. O

Proposition 3.2 (Fay, [23, 24]). Fizn € Ny, set N, := (2n—1)(g — 1) + 61
and let {¢}}Yicry, be arbitrary bases of HO(KQ). There are constants k[¢"]
depending only on the marking of C and on {7 }ic1y, such that

H[¢1] _ det ¢11 (pj)
ST pi) [T o) [T1-; Bwispy)

and

Kl — det ¢7' (p;) 3.3
- 0( 1" pi) [T o) 11 E(pispy) (33

forn >2, for ally,p1,...,pn, €C.
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Proof. k[¢™] is a meromorphic function with empty divisor with respect to
Y,P1,---,PN, - O

For each set {¢7}iery, C HY(KE), consider the Wronskian
W[o"|(p) = det 3" 67" (p) -

If W[¢™](p) does not vanish identically, then, for each {¢? }ie Iy, C HY(K(),
we have the constant ratio

/

KoM _ deté™ (pr,....pn,) _ W™ ()
Klo™]  det¢™(py,....pn,)  Wiem(p)

for arbitrary p,p1,...,pn, € C.

(3.4)

3.2 Relations among higher order theta derivatives and
holomorphic differentials

By Riemann Vanishing Theorem it follows that
Q(np + Cg—n — y)

n € Iy, as a function of y, has a zero of order n at p for all the effective divisors
cg—n of degree g —n. In particular,

D 0i(p+ cga)wilp) =0 . (3.5)
Proposition 3.3. Fiz zq,...,x4-1 € C. The following relations hold
Z 91‘(1‘1 4+ ...+ {L‘gfl)wi(l'l) =0,

Z Gij(xl + ...+ xg_l)wi(xl)wj(zg) =0 3
4,J

S byt rgwi (21) e wi, (@, ) =0

B1yeeylg—1

Proof. Without loss of generality, we can assume distinct x1,...,24—1; the gen-
eral case follows by continuity arguments. The first relation is just Eq.(3.5).
Let us assume that the equation

Z Oiy i (@1 + .o+ xg1)wi, (z1) ... wi, (xn) =0,
7;17---71.71

holds, for all n € In_1, with 1 < N < g — 1. Then by taking its derivative with
respect to z,41 one obtains the subsequent relation. O
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Corollary 3.4. Fizp € C and a set of effective divisors ci, k € I, of degree
k. The following relations hold

Z 0i(p + cg—a2)wi(p) =0,

(3

Z 0:5(2p + cg—3)wiw;(p) =0,

2%

Y b9 = D) -, () = 0.

T1yeeylg—1

We denote by A := {A1,..., A} a partition of length |A| := [ of some integer
d > 0, that is

l
> xi=d, M>...>N>0.
=1

On the set of the partitions of an integer d, a total order relation can be defined
by setting

D e
N>XA e 3, 0<i<min{|A,N]}, st {i;>;ﬂ’ Isj<t,

With respect to such a relation, the minimal and the maximal partitions A\™"
and \™%* of d, are

AP == AT =1, AP =

Also observe that A™™ and A™%" have, respectively, the maximal and minimal
lengths [\ = d, |\™**| = 1.
For a general holomorphic d differential 7, let n(z) be its trivialization around
a point p € C, with respect to some local coordinate z and let us define

o™

nOp) =nz), ™ (p):= n®),  n>0.

Theorem 3.5. Fiz d € I;_1, a point p € C and a effective divisor cy_q of
degree g — d. Then, for each partition A of d, there exists ¢(\) € Z independent
of C,p,cg—aq, such that

g
Y O a((d=Dp+ g a)wi ™V wlM Y (p) (3.6)
B1yeeeyt]
g
=c(A) Y 05 5,((d=Dp+ coa)wj, -+ wj, (D) (3.7)
J1s-esdd

where [ := ||
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Proof. The theorem is just an identity for A = ™" with c(\"™") = 1. Let us
consider a partition A > A™" of d, and set I := [A| < d (|]A\| = d necessarily
implies A = A™"). Fix c =1 + ... + 4_1, with 21,...,24-1 € C, and apply

the derivative operator
PO (L)M (i)Al
T \day dx; ’

0(c—A)=0. (3.8)

to the identity

Upon taking the limit x1,...,x; — p, we obtain a sum, such that each term can
be associated to a partition A of d and written as

g
" A =1
Z ail...il/(lp"_cgflfl _A)wz(l)\l Y ”'wgl/l )(p) )

D1 yeenylys

with I’ := || and ¢y—1—; = @41 +...+x4—1. The sum is over a set of partitions
N satisfying A < X and I’ > [, so that A is the maximal partition appearing.
Thus, the sum can be rearranged as

3 Onir(lp+ eV w0 (p) (3.9)
i1,..00
[ A, —1
=S 0N) Y b+ )T 0 ) (3410
A< D1 yeeeydys

for some coefficients b(A,\') € Z. If the only non-vanishing contribution to
the RHS corresponds to A’ = A", the theorem follows after taking the limit

Tii1,...,Tq—1 — p. Otherwise, for each X > A™" one can obtain a further
identity by applying the operator D) to the identity (3.8) and taking the limit
Z1,...,xy — p. This procedure leads to an expression for

Aj-1 A—1
Z Oiy...i,, (I'p + Cg—l—l’)wz(l N ‘WEI/L )(P) )

21,...,il/

analogous to Eq.(3.9), where the RHS is a sum of terms corresponding to par-
titions A\ < A’. This expression can be used to replace the term corresponding
to A in Eq.(3.9), considered in the limit x;41,...,2y — p, with a sum over a
set of partitions \” < X. After a finite number of steps, the RHS of Eq.(3.9)
reduces to a term corresponding to A" times an integer coefficient

MNAN <N Ao
The arguments of the #-functions on both sides are

l/p — Cg—1-1' — A )

where I’ is the length of the minimal partition ) > A™" appearing in any
intermediate step of the procedure. Therefore, I’ < d — 1 and the theorem
follows. (Actually, with some more effort, it can be proved that the bound d — 1
cannot be improved). O
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Corollary 3.6. Fiz d € I,_1, a point p € C and an effective divisor cg_q—1 of
degree g — d — 1. Then, for each partition A of d,

9
Z 0;,...i, (dp + cgfdfl)wfflfl) - 'Wz(;\lil)(p) =0,

D100y

where | :=|A|.

Proof. A trivial application of Eq.(3.6), with ¢y—q := p+ ¢4—4—1, and Corollary
3.4. O

3.3 Combinatorial lemmas and determinants of holomorphic
differentials

Applying Lemmas [2.2| and 2.3| to determinants of symmetric products of holo-
morphic 1-differentials on an algebraic curve C of genus g leads to combinatorial
relations. By Eq.(3.2) and (3.3), such combinatorial relations yield non trivial
identities among products of theta functions.

Proposition 3.7. The following identities

det nn(xy, o, x3) =det n(xy, x2) det n(xy, x3) det n(ws, x3) , g=2,
(3.11)
1 4
det nn(z1,. .., 26) =15 Z 6(5)Hdetﬁ(ﬂfdg(s)axdg(s),Idg(s)) o 9=3,
sEPg i=1
(3.12)
g+1
0= Z 6(8) Hdetn(xdl(s)) ) g=4,
SEPM i=1
(3.13)

where {n;}icr, is an arbitrary basis of H°(K¢) and x;, i € Iy, are arbitrary
points of C, hold. Furthermore, they are equivalent to

[T 025 & — 20 [T5 o ()

det nn (w1, xg, 23) = —kK[n]° : (3.14)
B % Hi<j E(z;,z;)
for g =2
Al 1
det(ay,...,m0) === [[ow)? (3.15)
=1

3 3
2 Q(Eizl Tak(s) — yk,s) Hi<j E(xd?(s)v xdj(s))

> ol

3
SEP} k=1 Hi:l E(yk,svxdf(s))a(ykﬁ)

)
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forg=3

g+l 9(2?:1 Lak(s) — Z‘Jlas) H§<j E($d§(3)7 md;?(s))

Z e(s) H g

SEP 1 i=1 E(yk,sﬂ:df(s))g(yk,S)

=0, (3.16)

for g >4, where y s, k € Ig11, s € Py, are arbitrary points of C.

Proof. Egs.(3.11)-(3.13) follow by applying Lemma 2.2/ to detnn(z1,...,zrm)
and noting that it vanishes for g > 4. Eqgs.(3.14)-(3.16) then follow by Eq.(3.2).
O

In [I5] D’Hoker and Phong made the interesting observation that for g = 2
det ww(z1, x2, 3) = det w(zy, x2) det w(xy, z3) detw(xg, x3) | (3.17)

that proved by first expressing the holomorphic differentials in the explicit form
and then using the product form of the Vandermonde determinant. Eq.(3.17)
corresponds to (3.11) when the generic basis 11,72 of H?(K¢) is the canonical
one. On the other hand, the way (3.11) has been derived shows that (3.17) is an
algebraic identity since it does not need the explicit hyperelliptic expression of
w1 and we. Eq.(3.17) is the first case of the general formulas, derived in Lemmas
2.2/ and 2.3 expressing the determinant of the matrix ff;(z;) in terms of a sum
of permutations of products of determinants of the matrix f;(z;). In particular,
by (3.12)), for g = 3 we have

4
1
detww(zq,...,x6) = 15 Z e(s) Hdetw(mdi(s)) :

s€P i=1

3.4 The Mumford isomorphism

Let C, —~ M, be the universal curve over M, and L,, = R’IT*(Kgq/Mq) the
vector bundle on M, of rank (2n — 1)(g — 1) + 0,1 with fiber HY(K2) at the
point of M, representing C. Let A, := det L,, be the determinant line bundle.
According to Mumford [49]

An 2 AP

where ¢, = 6n%2 — 6n + 1, which corresponds to (minus) the central charge of
the chiral b — ¢ system of conformal weight n [11]. The Mumford form

PLA AP

n:F n "
/’L.(L 9, [¢ ](wl/\~--/\wg)cn

)

where {¢} }icry, is a basis of HY(KZ), n > 2. is the unique, up to a constant,
holomorphic section of A, ® )\1_®c" nowhere vanishing on M.

Explicit expressions of the Mumford form were derived in [7, [5] [1, [61] and
[24]. In particular, in the following proposition, a modification of the expression
derived by Fay [24] is presented.
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Proposition 3.8 (Fay [24]). The Mumford form g, is given by

A2 D" T A AOR,
Rlo™] (Wi A Awg)er

Hgmn = (3.18)

Proof. We will only sketch the main lines of the proof; the details can be found
in [24]. Let us consider the Teichmiiller space 7, of genus g; each point of 7,
corresponds to a Riemann surface C' with marking. For each positive integer
n, consider the bundle L, of rank N,,, whose fiber at the point representing
C is HY(K2). Since 7T, is topologically trivial, the sheaf of sections of such a
bundle is freely generated by N,, global holomorphic sections. In particular, a
natural choice for Ly, at the point representing the marked Riemann surface
C, is given by the canonical basis {w;}ies,. The expression pg ., in Eq.(3.18)
determines a non-vanishing holomorphic section of the line bundle An ® 5\1_ ®cn
on 7, where A = AN L. n > 0. Now, the moduli space M, is the quotient
of 7, by the mapping class group, and it is clear that a section of A ® S\I@’C”
on 7, corresponds to a section of A\, ® )\1_®C” on M, if and only if it is invariant
under a change of marking. Any dependence of the basis {¢} }icry, on the
marking cancels in the ratio x[¢"]/¢7 A--- A ¢}, . Consider the definition (3.2)

and (3.3) of k[w] and k[¢"], respectively. Note that the number of functions o in
(2n—1)2

% is the same, so that, by Eq.(B.9)),

they can be replaced by theta functions and prime forms. The transformations

of theta functions, prime forms and determinants of the canonical basis {w; }sc1,

under the change of marking are well-known (see Eq.(B.10) and (B.11)), and

direct computation shows that, under a modular transformation,

the numerator and denominator of

K[W](anl)Z K[w](2n71)2
—————¢T N APy — (det(CT+ D))" ————dT A AN OPN
Ii[¢n] 1 Ny, ( ( )) Ii[(bn] 1 Ny,
and the proposition follows. O

The normalization of (3.18)) is chosen so that the Polyakov bosonic string
measure on M, is given by (see [24] and [15])

|[Fy,2[0]?

d,u,pol = (detImT)lS‘d)l AL /\¢N|2 .

The Mumford form extends as a meromorphic section to the Deligne-Mumford
compactification M ¢ of the moduli space, with prescribed polar singularities at
the boundary. In particular, such a form have poles of order n(n — 1) in the
limit in which the genus g Riemann surface C' degenerates a Riemann surface
with a node, separating it in lower genera components C; and Cs. From the
point of view of bosonic string theory, such poles correspond to the divergence
due to tachyon states propagating between the Riemann surfaces C; and Cs.
(For genus 2, the holomorphic section of A\, ® )\?C" on M is unique only upon
prescribing such a behavior on the boundary of Ms.)
In [0, 48] it has been shown that
C2,2

By oww] = Trolr) (3.19)
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with ¢z 2 a complex constant and ¥ the modular form of weight 10

Wio(7) = H 0151(0),

a,beven

where the product is over the 10 even characteristics of ¢ = 2. The derivation
simply follows by noting that F5 » must be the inverse a modular form of weight
10, with the correct polar singularities at the boundary of M. Since the genus
2 modular forms have been completely classified by Igusa [37], this is enough
to identify F5 o up to the constant cp 2. This can be fixed by requiring that the
bosonic string measure correctly factorizes in the degeneration limits. In [15] it
has been proved that the correct normalization for the bosonic string measure
is given by co 0 = 1/712.

For what concerns the higher genus cases, it has been conjectured that [6], 48]

C3,2
Wy(1)

F372[ww] = (320)

with \119(7')2 = \1118(7')
Vig(r):= [ 0[100),

a,beven

where the product is over the 36 even characteristics of g = 3 and ¢3 o = 1/20718
[16]. It is clear that such a derivation of the Mumford form can hardly be
generalized to higher genus cases, since, due to the Schottky problem, Fy ,, for
g > 4, is not well defined on the whole Siegel upper half-space $),, but only on
a 3g — 3-dimensional subspace.

Remarkably, Eq.(3.19) can be directly derived from Eq.(3.18)), without ref-
erences to Igusa classification of modular forms. It is natural to ask whether
an analogous computation can be performed for genus 3. This is still an open
problem; however, the constructions presented in the following chapters pro-
vide a higher genus generalization to most of the steps involved in the genus 2
computation.

The remainder of this section is devoted to the description of such a pro-
cedure (a similar derivation is presented in [15]). Let us consider Eq.(3.18) for
n=g=2
Ii[u]]g dT11 AN d’7'12 AN d7—22
Klow] (w1 Awg)'3

H22 =

With respect to the canonical basis of H°(K¢), Eq.(3.11), which follows by
Lemma 2.2 reads

A ‘d?t2 3wwi(zj) = detw(z1, 29) det w(za, 23) det w(z1, 23) ,
ij=1,2,

for all z1, z9, z3 € C', where
(wwhwwz,wws) = (w1w17w1w2,w2w2) .
Then, by Eq.(3.3)

det w(z1, 22) det w(zg, 23) det w(z1, 23)
0(21 + 22 + 23) [Tio; B2, 25) Tli—y 03(2)

Klww] = , (3.21)
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for arbitrary z1, 22,23 € C. Let us derive some useful identities which hold for
genus 2. By Eq.(3.2)

2
det w(p1,pa) = (=) klwlo(pi) Y O (pi)wn(ps—i) ,
k=1

,2, holds for all pi,ps € C. By integrating both hands along the cycle ¢,

1
j = 1,2, with respect to ps_;, we obtain

J =
w;j(pi) = (—)j”[WWSfj(Pz‘)U(pi) )

and, by taking the determinant of both sides with respect to the indices ¢ and
j, we get
detw(p1, po) = Klw]?c(p1)o(p2) dgt 0:(p;) - (3.22)

By comparing Eq.(3.22) and Eq.(3.2), it follows that

W] = 0(p1 + p2 — y)E(p1,p2)

a E(y,p1)E(y,p2)o(y)D(p1, p2) ) (3.23)

where
D(pl,pg) = det Oi(pj) .
By Egs.(3.21)(3.22)
Kklw]SD(21, 22) D (22, 23) D (21, 23)
0(21 + 22 + 23) [[1; Ezi,25) [To—y 0(21)

Klww] =

and by (3.23) it follows that

klw]? 021+ 22 + 23)0(21 + 22 — 23)0(21 + 23 — 22)0(22 + 23 — 21)

Klww] D(z1,29)2D(z1, 23)%D(22, 23)?
(3.24)
This expression holds for z7, z9, z3 arbitrary points in C. Let us recall that
any Riemann surface C' of genus 2 is necessarily hyperelliptic, i.e. it can be
defined by the equation

6
w? = H(z —ei),
i=1
(z,w) € C?, with ey,...,eq € C distinct complex numbers. Three of such

parameters can be fixed (a conventional choice is ey = 0,e3 = 1,e3 = o) by
a fractional linear transformation on C and the other three correspond to the
three complex moduli of the curve. Denote by p1,...,ps € C the branch points
p; = (e;,0),i=1,...,6. For each i € I,

dz
(z — ei)a ,

is a holomorphic Abelian differential with a double zero at the branch point p;.

Therefore, the divisor 2p; is canonical and v; = {5},} := I(p;) is a (necessarily
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odd) spin structure. The corresponding holomorphic 1/2-differential ¢,, is given
by

2 2
i - ron dz
124 _ Ze][yl](o)w] — e‘/rwi‘rvi-i-Zﬂzl/iV,-, Zej(pi)wj = NVi (Z — el)a ,
j=1 j=1

for all ¢ € I, where N, is a normalization constant. By evaluating the formula
(3.24)) at three branch points z; = p;, we obtain (note the exponential factors in
front of the thetas simplify)

9 4
/g[w] _ Q[V; —+ v +2V3] S (325)
klww]  [v1,ve)? v, va]? Ve, vs]
where
[v1,v0] := det _0;[v] .
3,j=1,2

The last tool needed to explicitly compute the Mumford form for genus 2, is
a g = 2 generalization of the Jacobi’s derivative formula which holds for g = 1
(see Appendix [B.2)). This is given by the Rosenhain’s formula [54] 32, [33]
6
[vi,v;] = £m? H Ovi +vj + v,

k=1
k#i,3

where v;,v; are arbitrary odd spin structures, ¢ # j. Similar extensions have
been proved up to genus 5 [26, 23] and a modified version is conjectured to hold
to all genera [40), [41].

By Rosenhain’s formula, Eq.(3.25)) gives

1 dT11 /\dTlg/\dTQQ
2P, (wl /\w2)13

;1,272 = 5 (326)

as expected.

For g = 3, no such a derivation is known. However, the formula (3.20) can
be used to derive a non-trivial expression for the constant x[w], considered in
the following Proposition. Higher genus generalizations of such an identity are
considered in section 6.5

Proposition 3.9. For g =3
4 3 3
26,18 Esepé e(s) [Thza [0 (i, Dak(s) = y) [T, E(pd;v(s)apdj.(s))]

Klw]® =
15%o(7)  0(30 pi) [To=y o (pi)o(w)* TTi—y E(y,p)* IT;-; E(isps)
(3.27)
Proof. By (3.15)
detww<pl7"'7p6) _ H? U(p1)2]
Klw]* 150 (y)* H?:l E(y,pi)?
4 3 3
> el [T pariey = 9) [ E@as () par ) -
SEP k=1 i=1 i<y
6 . 6
and (3.27) follows by the identity [] c(p;)™2 = s[w]® [T o(p:)3. O

=1 =1



4. DISTINGUISHED BASES OF HOLOMORPHIC
N-DIFFERENTTALS

One of the main tools in genus 2 calculations, both in bosonic string theories and,
more generally, in 2-dimensional Conformal Field Theories, is the hyperelliptic
representation, i.e. the representation of any Riemann surface C' of genus 2 by
an algebraic curve defined by the equation

w? = H(z—ei) ,

i

z,w € C, where e; are distinct points in C and the product is over 5 or 6
factors. For example, in the explicit calculation of the Mumford form, described
in section 3.4, several steps rely on such a representation.

One of the advantages in using the hyperelliptic representation is the possi-
bility explicitly define bases for abelian differentials in terms of of z, w. In turn,
this allows to derive explicit expressions for bases of holomorphic n-differentials,
for all the integer n > 1, in terms of n-fold products of such Abelian differentials.
In [15], formula (3.14) was proved with respect to such bases of construction
turned out to be a crucial point in the derivation of the Mumford form. Such a
problem is greatly simplified by the combinatorial relation between determinant
of Abelian differential and determinant of holomorphic n-differentials.

It is natural to ask whether a higher genus realization of such a construction
exists. The Max Noether’s theorem assures that, for g > 2, the natural map

W Sym" (H°(Kc)) — HY(Kg)

is surjective if and only if C' is not hyperelliptic. Hence, in the following, we will
only consider the case of non-hyperelliptic Riemann surfaces C'

A general procedure to define of a basis of holomorphic n-differentials in
terms of a distinguished basis of abelian differentials is provided by the Petri’s
construction [52]. This has been used to study the ideal of the smooth irreducible
algebraic curve, given by the canonical embedding of the Riemann surface C' in
P9~!. The main result of this approach is Petri’s theorem, we recall in section
5.3, The starting point of such a construction is the choice of g distinct points
P1,.-.,Pg on C in general position (the precise condition is given below); then,
one defines a a basis {01, ..., 04} of abelian differentials, such that o;(p;) = 0 for
all i # j, 1 <i,j < g. Such conditions determine the basis {o1,...,04} up to a
non-singular diagonal transformation. Such an ambiguity in the normalization
was not relevant for the aims of the original construction, but it is a crucial point
for the following derivations. In facts, since we are going to look at o1,...,04
as sections on a line bundle on the moduli space M, (more precisely, they
should be considered as sections on the space M, , of Riemann surfaces with g
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distinguished points), one needs to specify the dependence of the normalization
of each o; on the moduli.

In this chapter, we provide a suitable refinement of Petri’s basis, which
addresses such a issue.

4.1 Duality between N,-tuples of points and bases of H°(K2)

Let C be a canonical curve of genus g and let Cy, d > 0, be the set of effective
divisors of degree d. Consider the pair (p,\) given by a point p € C and an
element A\ € 771(p) in the fibre of the canonical bundle 7 : Ko — C at p. Such
a pair corresponds to an element of H°(K)*, given by

for all n € H°(K¢), where ¢ : Ky — U x C is an arbitrary trivialization of
the canonical bundle on a neighborhood U of p. Note that the definition is
independent of ¢. Similarly, (p, A) determines an element of H°(K%)*. Let
{¢i}icry, be a basis of HO(K{) and fix (p1,A1),..., (PN, AN, ). A necessary
and sufficient condition for {p1x,, ..., PN, ry, } t0 be a basis of HO(Kg)* is that
det; jery, pi[¢;] # 0 (here and in the following, we drop the notation of A; when
the meaning is clear). Note that such a condition only depends on the points
Di,-..,pn, and is independent of the choice of Aq,...,An, and of the basis
{@itiery, -

In the following, the notation

¢(p) = pl¢] := pald] ,
for an arbitrary ¢ € H°(K®), and

det¢(p1a'~'7pNn) = zjcéef?v ¢2(pj) )

is used, where the choice of A is understood.
Proposition 4.1. Fizn € Ny and let p1,...,pn, be a set of points of C' such
that

det (bn(pla v 7pNn) 7& 0 )

with {7 }Yicry, an arbitrary basis of HO(KE). Choose a class [c] of local triv-
ializations around each p;, i € Ny. Then, {7} }ie1y, , with

A () = det ¢"(p1,-..,Pi—1,%,Pit1,---,PN,)
o det 6" (p1,- .-, pn,)
is a basis of HO(KQ) which is independent of the choice of the basis {¢} }icry.

and on the classes of local trivializations up to a mon-singular diagonal trans-
formation.

7 (4.1)

Proof. Since the matrix ¢} (p,) is non-singular, by

Ny,
oF =)} (4.2)
j=1

iEIN7L,

it follows that +;",..., vy, are linearly independent. O
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Note that the basis {7 }ier,, of HY(K{) and the basis {p1,x,,-- PN, Ax,
of H°(K%)* depend on the choice of Ay, ..., Ay, in such a way that the relation
i (pi) = pin, (') = i (4.3)

i,j =1,..., Ny, hold for all the choices of \;, i € I, . In the following, we will
refer to {7j'}icry, and {p1,...,pn,} as dual bases, while keeping the choice of
A1, ..., Ay, understood.

More generally, the choice of p1,...,pn, (and corresponding Ai,...,An,)
also determines a basis of Sym”* H O(Kg) and of its dual space, for all £ > 0. In
the case of Sym?(H®(K(¢)), we will denote by p - ¢ € P(Sym?(H®(K¢))*) the
element corresponding to the symmetrized pair ((p, Ap), (¢, Aq)), defined by

(p-q) [in - pk) = (e ()pr(a) + mk(@)pr(p)) (4.4)

k

where 37, mx - pi. € Sym® HO(K¢).
For n = 1, for each choice of p1,...,p, € C with det n;(p;) # 0, we set

oi(z) ==7i(2), i€l (4.5)

so that

piloj] =6i . (p-pilo- o] = xxdwt (4.6)
i,j € Iy, k,l € Ing, where (p-p)k := ([Ip1,p1,) in the notation of section 2.1
For any pair of bases {¢; }icry, and {¢;}icry, of H'(K), we denote by

—1
=04,
the matrix of basis change
¢i = Z [;ﬁ]”% s
JEIN,

for all ¢+ € I, . Then, the proof of proposition 4.1 shows that, for all the bases
{¢1 }iGINn 5

n
(0], = ok (py) -
The results of chapter [3| can be used to derive an explicit expression for the

matrix [g] i with {w;}icr, the dual basis of the symplectic basis of Hy(C,Z).

Definition 4.1. For each fixed g-tuple (p1,...,py) € C9 let us define the fol-
lowing effective divisors

a::zpj, a; = a—p;, b::a_pl_p27
Jj€ely

i € I,. Define the subset of CY
A= A{(p1,-.-,pg) € C7 | detn(p;) = O} ,

with {n;}ies, an arbitrary basis of H(K¢).
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Fix g + 1 arbitrary points p1,...,ps,2 € C. By taking the limit y — z in
Eq.(3.2), we obtain

g9
detn(z p17"'7p17"'7pg)_/€ Z aZ (Ul HEpjupk‘ HUPJ )

i i
for all i € I,. Note that, by (4.7), the condition (p1,...,ps) € C9\ A implies
> 0(a)wi(pi) #0, (4.8)
J

for all ¢ € I,.
Proposition 4.2. Fiz (p1,...,py) € C9\ A, with A defined in[4.1. Then

Wl (s o1 _ o — 0; (a:)
[O’] ij i(ps) [w] i 72 i S O () won (1) (4.9)

1,j € Ig, so that

— ar+z— ; w Z pl
oi(z) = J(pi)e( tEamy-m) E(y, pi) H 1 [ E@irps)
(4.10)
and I g
o] = oy )H E(y, pi) (4.11)

a(a_y) 'L<] E(p“p])ng ( ) ’

for all z,y,z;,y; € C, i € Iy, with a,a; as in Definition 4.1. Furthermore, fiz
P1,..., PN, € C such that det ¢"(p1,...,pn,) # 0, with {¢} }icry, an arbitrary
basis of H*(K2). Then,

030" vy +2 =) IS B (2 p))
(1" py) H + E(pi, pj)

)2n 1

V(2) = olzpi ) (4.12)

1
kY] = . 4.13
= S o) T o T By (*.13)

i<j

Proof. The first identity of (4.9) follows by (4.2) and (4.5) and the second one
by (3.2) and (4.7). Egs.(4.10)(4.11) follow by (3.2) and by deto;(p;) = 1,
respectively. Similarly, (4.12)) follows by (4.1) and (3.3). Eq.(4.13) follows by
det i (p;) = 1. O

Corollary 4.3. Fiz (p1,...,pg) € C9\ A. Then

9] (a,») N
> Sty 1) =
J kel

Proof. Apply (4.9) to the identity del [ ] i [ﬂjk = 0jk- O
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4.2 Special loci in C9 and linear independence for holomorphic
differentials

There exist natural homomorphisms from Sym"(H°(K¢)) to H°(Kg), which,
for n = 2, we denote by

¢: Sym®(HO(K2)) — HO(K2)
nep np.

By Max Noether’s Theorem, if C is a Riemann surface of genus two or non-
hyperelliptic with g > 3, then % is surjective. Set

vii=Y(o-0); =0,,0,, , (4.14)
i € Ip, so that
51‘]‘ s 1 E Ig s
vi(p;) = 4.15
(v5) {0’ O (115)

Jj € I,. By dimensional reasons, it follows that for ¢ = 2 and g = 3 in the non-
hyperelliptic case, the set {v;}icr, is a basis of HO(K2) if and only if {o;}ics,
is a basis of H°(K¢). On the other hand, for ¢ > 3 in the hyperelliptic case,
there exist holomorphic quadratic differentials which cannot be expressed as
linear combinations of products of elements of H(K¢), so that vy,...,vy are
not linearly independent. The other possibilities are considered in the following
proposition.

Proposition 4.4. Fix the points p1,...,py € C, with C' non-hyperelliptic of
genus g > 4. If the following conditions are satisfied

i. detn;(p;) # 0, with {n;}ic1, an arbitrary basis of H*(K¢);
i. b:= Y7 4 p; is the greatest common dwisor of (01) and (02), with {o;}ic1,
defined in (4.5),
then {v;}icry is a basis of HO(KZ). Conversely, if there exists a set {6;}ier,
of holomorphic 1-differentials, such that
a. i # j=6,(p;) =0, foralli,j € Iy;
b. {0i}icry is a basis of HO(KZ2,), with ©; := 66;, 1 € Iy;

then i) and ii) hold.

Proof. To prove that i) and ii) imply that {v; }ier, is a basis of HO(K2), we first
prove that o; is the unique 1-differential, up to normalization, vanishing at ¢; :=
(0;) — b, i = 1,2. Any 1-differential o, € H°(K¢) vanishing at ¢; corresponds
to an element o’ /o; of H°(O(b)), the space of meromorphic functions f on C
such that (f)+ b is an effective divisor. Suppose that there exists a o} such that
o!/o; is not a constant, so that h°(O(b)) > 2. By the Riemann-Roch Theorem

h (Ko ® O(—b)) = h°(O(b)) —degh—1+¢g >3,

there exist at least 3 linearly independent 1-differentials vanishing at the sup-
port of b and, in particular, there exists a linear combination of such differentials
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vanishing at py,...,py. This implies that detn;(p;) = 0, with {7;}:cs, an arbi-
trary basis of H°(K¢), contradicting the hypotheses. Fix ¢;, (1, (2; € C in such

a way that
g g g
ZQO’? + ZCgiUlo'i + Z<1i0'20'i =0.
1=3 =1 =2

Evaluating this relation at the point p;, 3 < j < g yields ¢; = 0. Set

g g
tl = _ZCUJJ s t2 = ZCQJ‘O'J' s (416)
j=2 j=1

so that o1to = oaty. Since the supports of ¢; and ¢y are disjoint, ¢; must be
an element of H'(K¢o ® O(—c¢;)), i = 1,2 and then, by the previous remarks,
t1/0'1 = tg/O’g =(eC. By (4.16)

g g
401+Z<1j0j:0» ng—ZCszkZO,
k=1

Jj=2

and, by linear independence of oy,...,04, it follows that ¢ = (1; = (o = 0,
2<j<g kel

Let us now assume that a) and b) hold for some set {G;}icr,. Then {G;}icr,
is a basis of HY(K(¢) if and only if detn;(p;) # 0. If {6i}icr, is not a basis
of HY(K¢), the corresponding 9;, i € Iy, cannot span a N-dimensional vector
space. Then i) is satisfied and the basis {;}ics, corresponds, up to a non-
singular diagonal transformation, to the basis {0;}iec1,, defined in (4.5).

Without loss of generality, to prove i) we can assume that 6; = 0, ¢ € I,
and then ¥; = v;, ¢ € In. Suppose there exists p € C such that p+ b < (0;),
for all i € Iy. If p = p1 or p = po, then o;(p) = 0, for all i € I, and therefore
{oi}icr, would not be a basis, which contradicts b).

Suppose there exists i, 3 < ¢ < g, with p = p;. In this case, each vy,
j € In \ {i}, has a double zero in p;, whereas v;(p;) # 0; therefore, an element
of HY(KZ) with a single zero in p; (such as, for example, 0;0;, with 3 < j < g,
j # i) cannot be expressed as a linear combination of vy, ..., vy, in contradiction
with the assumptions.

Finally, suppose that p # p;, for all i € I;. In this case, there exists at least
one 0y, 3 <1 < g, with oy(p) # 0, since, on the contrary, {o;}ics, would not be
a basis of H(K¢). Suppose that o;(p) # 0 and o;(p) # 0 for some 3 < i,j < g,
i # j. Then o;0; cannot be expressed as a linear combination of vy, k € Iy.
In fact, o;0;(pr) = 0, for all k € I, would imply that o,0; = o1p1 + o2p2,
for some p1,py € H°(K¢); but this is impossible, since o1(p) = 0 = o2(p),
whereas 0;0;(p) # 0. Therefore, there should exist exactly one i € I, with
oi(p) # 0. It follows that o;(p) = 0 = o;(p;), for all j € I, \ {i}; then
hY(Ke @ O(—p — pj)) > g — 1 and, by Riemann-Roch Theorem, there exists
a non-constant meromorphic function on C, with only single poles in p and
pj. But this would imply that C' is hyperelliptic, in contradiction with the
hypotheses. O

The proof that i) and #) imply that {v;}iecr, is a basis is due to Petri [52]
(see also [3]). Tt can be proved that on a non-hyperelliptic curve there always
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exists a set of points {p1,...,py} satisfying the hypotheses of Proposition 4.4.
This is related to the classical result dim ©4 = g—4 for non-hyperelliptic surfaces
of genus g > 4, as will be shown in Corollary [4.11.

In view of Theorem 4.4 it is useful to introduce the following subset of

Ci=Cx...xC.
~———
g times

Definition 4.2. Let B be the subset of CY

B:={(p1,...,py) € CY | detn;(p;) =0V ged((a1), (02)) # b} ,
for an arbitrary basis {n; }ics, of H°(K¢).

Corollary 4.5. Fiz (p1,...,pg) € C?\ A such that the greatest common divisor
of (o1) and (o2) be b+ q1 + ...+ qn, for some q1,...,q, € C, n > 1. Then the
dimension r of the vector space generated by {v;}icry s =N —n.

Proof. Let us prove that n is the number (N —r) of independent linear relations
among vi,...,vn. Set d:=qi1+...+¢,. By detn;(p;) # 0, the quadratic differ-
entials 01-2, i € Iy, are linearly independent and independent of o109, 0103, 0203,
i € I, \ {1,2}. Therefore, all the independent linear relations have the form

O'1t2 = O'2tl 5 (417)

for some t1,ta € HY(K¢), with the condition t1(p;) = 0 in order to exclude
the trivial relation t; = o0;, ¢ = 1,2. Consider the effective divisors ¢y, ¢y of
degree g — n with no common points, defined by ¢; := (0;) —d— b, i = 1,2. By
detn;(p;) # 0, it follows that h°(Kc ® O(—b)) = 2, so that h°(Kc @ O(—b —
d)) = 2 too. This implies that o1/02 and o2/0; are the unique elements of
H°(O(2)) and H°(O(22)), respectively. Then, by Riemann-Roch Theorem, we
have h’(Kc ® O(—=¢;)) = n+1, i = 1,2. By Eq.(4.17), the divisors of ¢y, t2
satisfy
&1+ (t2) = &2 + (t1) ,

so that t; € H*(Kc ® O(—¢;)). In particular, a basis o1, a1, . .., a, of H*(Kc®
O(—¢1)) can be chosen in such a way that «;(p1) = 0, for all i € I,,. Hence, t; is
a linear combination of a4, ..., a, and there are at most n linearly independent
relations of the form (4.17). This implies N — r < n.

Let us now prove that such n linearly independent relations exist. By the
Riemann-Roch Theorem, since h’(K¢c @ O(—b — d)) = 2, we obtain h°(O(b +
d)) = n+ 1; a basis for H(O(b + d)) is given by aj/01,...,a,/01 and the
constant function. On the other hand, if o9, 31,. .., B, is a basis for H'(Kc ®
O(—22)), then 81/, ..., Bn/0o2 are n linearly independent elements of H(O(b+
d)). Hence, there exist n linearly independent relations

B ~  «
i J
— = E Cij— *+ Cio ,
g9 - g1
Jj=1

i € I, for some ¢;; € C, 0 < j < n. By multiplying both sides by o102, we
obtain
n
o168 = Z Cij020L + Cip0102 .
j=1
Therefore, N — r > n and the corollary follows. O
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Consider the holomorphic 3-differentials (with the notation defined in section
2.1)
Yi =000; = 0,,0,,03, , (4.18)

i € Ing,, with {0}ics, a basis of H?(K¢). By the Max Noether’s Theorem and
dimensional reasons, it follows that the first N3 := 5g—5 of such differentials are
a basis of H(K}) for g = 3 in the non-hyperelliptic case, whereas they are not
linearly independent for g > 2 in the hyperelliptic case. The other possibilities
are considered in the following proposition.

Proposition 4.6. Fiz the points p1,...,p, € C, with C' non-hyperelliptic of
genus g > 4. If the following conditions are satisfied for a fized i € I, \ {1,2}:

i. detn;(pr) # 0, with {n;}jer, an arbitrary basis of H°(K¢);
ii. b:=330_3p; is the greatest common divisor (gcd) of (01) and (02), with
{oj}je1, defined in (4.5);
1. pg s a single zero for o1, for allk #1, 3 <k <g;
then the set {¢;}jery, » U{pitsg—s} is a basis of HY(K). In particular, if i),
i) and
i1’ ps,...,pg are single zeros for o1,

are satisfied, then, for each i, 3 <i < g, the set {p;}jcry,  U{pit+sg-8} 15 @
basis of HO(KZ). Conversely, if for some fized i € I, \ {1,2} there exists a set
{6j}je1, of holomorphic 1-differentials, such that

a. j#k=6(pr) =0, forall j,k € I,;
b. {@j}j61N371 U{(ﬁi+5g_g} is a basis OfHO(K%), with (ﬁj = &&6j, je IM3,'
then i), i) and i) hold.

Proof. We first prove that if ), ) and i) hold for a fixed i, 3 < i < g, then
{@jtiern, s U{pitsg—s} is a basis of HO(KE). To this end it is sufficient to
prove that the equation

g
((j07 + (150107 + (12j010205) + 01 ju + 05V + (250207 =0,
—3

J

is satisfied if and only if ¢j,(15,C2i,C125 € C, 3 < j < g, and p,v € H'(K¢)
all vanish identically (no non-trivial solution). Evaluating such an equation at
p;j € C, 3 <j <g,gives (; = 0. Furthermore, note that, by condition i), for
each j #£1i,3<j <g, 010?- is the unique 3-differential with a single zero in p;,
so that ¢;; = 0. We are left with

g
<1i0'10'i2 + CQiO'QO'? + af,u + O'%I/ + Z<12j0'10'20'j =0. (419)
=3

By Riemann-Roch Theorem, for each k, 3 < k < g, h°(Kc ® O(=b —p)) > 1;
the condition 44) implies that h°(K¢c ® O(—b — px)) < 1, so that, in particular,
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there exists a unique (up to a constant) non-vanishing 3 in H°(Kc®O(—b—p;)).
Furthermore,

H (Ko © O(=b)) # || H' (Ko @ O(=b - ) ,
k=3

because the LHS is a 2-dimensional space and the RHS is a finite union of
1-dimensional subspaces; then, there exists a € H°(Kc ® O(—b)) such that
P3,-..,py are single zeros for a. Note that o and 3 span H°(Kc ® O(—Db))
and o?, 3% and aff span H°(KZ% @ O(—2b)). Hence, the existence of non-trivial
Cris C24, G124, v, p satisfying Eq.(4.19) is equivalent to the existence of non-trivial
v, w' € H(K¢) and (o, (s, Caps € C satisfying

g
Cao? + Cﬁﬁa? +a?uy + B+ Z CapjaBo; =0 .

Jj=3

Note that ao? is the unique 3-differential with a single zero in p;, so that ¢, = 0.
Condition ) implies that b is the greatest common divisor of () and (3).
Then a # 0 on the support of cg, where c¢g := (8) — b — p;. Hence, i/ €
H°(Kc®O(—cg)), which, by Riemann-Roch Theorem, is a 1-dimensional space,
so that p' = (], 3, for some ¢, € C. Since, by construction, § # 0, we have

g
Cpo? + CLaQ + B+ Z Capjoo; =0 .
=8

By evaluating such an equation at p; gives (g = 0. Furthermore, since 8 # 0
on the support of ¢,, where ¢, := (a) — b, it follows that v’ = {/«, for some
¢, € C. Since o # 0

g

(oot B+ Capio =0,

j=3

which implies that ¢, = (;, = (ap; = 0, for all 3 < j < g.
Conversely, suppose that a) and b) hold for some fixed ¢, with 3 < i < g, and
for some set {65} jer,. If detn;(px) = 0, then {6} er, is not a basis of H°(K¢)
and {Q;}jery, , cannot span a (N3 — 1)-dimensional vector space. Then 1)
is satisfied and the basis {6,};es, corresponds, up to a non-singular diagonal
transformation, to the basis {0 };er,, defined in (4.5).
Without loss of generality, we can prove i) and 444) for 6; = 0;, j € I; and then
(ﬁj = ¢;, j € Ing. Since the 3-differentials o1vj, j € In, are distinct elements
of a basis of H(K}), then v;, j € Iy, are linearly independent elements of
H°(K%) and, by Proposition 4.4, also condition i) is satisfied.
Finally, assume that there exists k # i, 3 < k < g, such that o; has a double
zero in pg. Then, apart from ¢y = o, which satisfies ¢y (py) # 0, all the other
3-differentials of the basis have a double zero in pg. Therefore, an element of
HOY(K}) with a single zero in pj, cannot be a linear combination of the elements
of such a basis, which is absurd. (An example of a holomorphic 3-differential
with a single zero in py is 0907, since, by condition i), o5 cannot have a double
zero in py). O
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4.2.1 Determinants of distinguished bases and Fay’s identity

In this sections, the combinatorial lemmas [2.2| and 2.3| are applied to the com-
putation of determinants of the distinguished bases introduced in (4.14). For
n < g, a necessary condition for Eq.(2.13) to hold is the existence of the points
pi, 3 < i < g, satisfying Eq.(2.12); in particular, Lemmas 2.2 and 2.3 can be
applied to the basis {0;}icr,, of H(K¢), defined in Eq.(4.5).

Theorem 4.7. Fiz the points pi,...,pg € C, and 6; € HO(KC) i €1y, in such
a way that 6;(p;) =0, for all i # j € I,. Define t; € H*(KZ), i € Iy, by

and let {n; }ic1, be an arbitrary basis of H°(K¢). Then, the following identity

N A1Ay 91 £ 4
det 0(p3, ..., pg,T1,. .., Tag—1) = (detm ) ) H (4.20)
(_)g-i-l
— Z e(s) det n(zq(s)) det n(zqz(s))
Cg 2
’ s€P2g_1
g+1
: H detn(‘rdi(s)a xd;(s)vpi% cee apg) )

i=3

holds for all z1,...,x24—1 € C, where, according to (2.18), cg2 = g'(g—1)!(29—
1), and for each i € I,

A= 6i(pi)

is a 1-differential in p;.

Proof. Assume that p, ..., p, satisfy the hypotheses of Proposition 4.1} so that
{6:}ic1, is a basis of H°(K¢) and 65(p;) # 0, for all i € I,. Since the points
D1, -..,Pg satisfying such a condition are a dense set in CY, it suffices to prove
Eq.(4.20) in this case and then conclude by continuity arguments. A relation
analogous to (4.15) holds

A28, iel,,
vi(pj) =4 7" T
0, g+1<i<M,
j € 14, so that
det 0(p3, ..., Pg, &1, .., Tag—1) = g“ HO’ Di) det G6(x1,...,T29-1) -
=3
By Lemma 2.2 for n = 2, dety,, , 66(x1,...,224—1) is equal to the RHS of (2.13)

divided by []¢_s A?~". Eq.(4.20) then follows by the identity

det 6,(z;) = Wdet A(p ):fmﬂAi.
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Remark 4.1. If detn;(p;) # 0, then Theorem 4.7 holds for ¢; = o;, so that
6i(pi) =1,7¢€ Ig, and 0; = v;, © € In.

Corollary 4.8. Let b:=>"7 . p; be a fized divisor of C' and define v;, i € Iy,

as in Theorem 4.7. Then for all x1,...,xy € C
FO(S) @) Ty (o) TT- 1E<
detv(zy,...,zN) = =29 o(x;)?
( 1 N) 092 0( 29— 1$Z—|—b) 3H2g 1 ; H
(4.21)
g 29 1 9 291
Z e(s)S(Y =s,) H (s, 2s,) H E(zs,,xs,)
s€EP24-1 i=1 ’L =9 4J=1 ©i=g
g9 i<j i<j
g—1 g
: H (S(xsk + xskJrg + b)E(.’IZ‘Sk,.’I‘Sk+g) HE(xskapi)E(xsk+gapi)) )
k=1 i=3
where F = F(py,...,pg) is
Fo— ( 61(p1)Ga(p2) )9“
S(a)d(pl)d(pz)E(pl,pz)
H Uz(p )
L o) (E(pr, pi) E(p2, i) o TTfs, Bpis ps)?

Proof. Apply Eq.(4.20) to

det p(z1,...,oxn)det 0(ps, ..., Dy, T1,. .., T2g—1)
det p(p37 <oy Pgs L1y 7x2g—1)

det d(z1,...,zn) =

)

with {p; }iery an arbitrary basis of H?(K%). Eq.(4.21) then follows by Egs.(3.2)
and (3.3)). O

In this section, we will use the bases introduced in section 4 to derive a
combinatorial proof of the Fay’s trisecant identity.

Theorem 4.9. The following are equivalent
a) Proposition (3.2) holds;

b) The Fay’s trisecant identity [22)]

0w+ 37" (i —yi) [ L;cj E@i, x5) E(yi,y;) ~ 4 det, O(w + x; —y;)
O(w)[1; ; E(xi,y;) Y 0(w)E(xi,y;)
(4.22)

m > 2, holds for all x1,...,Zm,y1,---,Ym € C, w € Jo(C).

Proof. (a = b) Fix x1,...,Tm,Y1,..-,ym € C and w € Jo(C), with 6(w) # 0.
Choose y1, . - ., Ym distinct, otherwise the identity is trivial. Set p; :=y;, 7 € I,
and fix n € N4, with d := N,, —m > g, and pp,41,...,0n, € C, in such a way
that

1) =w.

1
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By Jacobi Inversion Theorem, such a choice is always possible. Note that the
set of divisors py,41 + ...+ pn,,, such that p; = p; for some i # j € I, , is the
set of points of a subvariety in the space of positive divisors of degree d. Then
the image of such a variety under the Jacobi map, which is analytic, corresponds

to a proper subvariety W of Jo(C). Hence, the conditions §(w) # 0 and

m

w =T m) € BN,

are satisfied for w a dense subset in Jo(C). It is therefore sufficient to prove
Eq.(4.22)) on such a subset and the theorem follows by continuity arguments.

Let us then choose the points pm+1,...,pn, to be pairwise distinct and
distinct from y, ..., ym and fix a basis {¢} }icry, of HO(K®). Since py,...,pnN,
are pairwise distinct and

Ny,

0> pi) = 0(w) # 0,

1

it follows by Eq.(3.3) that det ¢} (p;) # 0. Therefore, by Proposition [4.1, one
can define the basis {7]'}iery, of H°(Kg) with the property 77 (p;) = 6y,
1,J € In, . On the other hand, note that

det’y”(:pl, ooy Tmy PmA41y e - - 7pNT,,) = det %n(xj) )

1j€Lm

can be expressed either by means of Eq.(4.12)

m N, m
n— T FE Ti,Pi i)jzlE TiyYj 0 w+$2_ 1
HU(wi,yi)Z 1 H ( ;) 11 ( i) ( Y;)

D e ,
palet iz Blyipg) Ts=1 E(yiry;) 5 0(w)E(zi, y;)

or by means of (3.3) and (4.13)

N, m .
ﬁ0($¢7yi)2n_1 H E(wi,p)) 9(w + 200 (@ ;yl)) Hi<j E(xi,x5) .
=1 jomrn P ps) O(w) [Tv=1 E(yi, y;)

Eq.(4.22) then follows by observing that

m

m
11 BEwiy) = (=02 1] Ewiv)” - (4.23)
ij=1 ij=1
o i<

(b = a) Fix p1,...,pn, € C, n > 2, in such a way that the hypothesis of

Proposition4.1/is satisfied. Let {7/'}se1,. be the corresponding basis of H(K )
satisfying (4.3). det~](z;) can be evaluated, for arbitrary z1,...,2n, € C,
by expressing 7/ (z;) by means of (4.12). In particular, by using (4.22) with
m = Ny, & = %, ¥i =D, ¢ € Iny,, and w = I(Ziv" p;), after a computation
analogous to the previous one, (3.3) follows, with x[y"] given by Eq.(4.13).
Therefore, (3.3) holds for an arbitrary basis {¢} }iery, of H°(Kg), with [¢"] =
k[y"] det ¢ (pj). The same result holds for (3.2) by using (4.22) with w =
I pi —y)- O
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4.3 The function H and the characterization of the B locus

Proposition 4.1 shows that detn;(p;) # 0, for an arbitrary basis {n;}icr, of
HY(K), is a necessary and sufficient condition on the points pi,...,p, for the
existence of a basis of holomorphic 1-differentials {&;}ics,, such that i # j =
oi(pj) =0, 4,5 € I;. By Eq.(3.2) and (3.1) it follows that the subset A C C9,
for which such a condition is not satisfied, corresponds to the set of solutions of
the equation

g
S(a) [[ E@i,p;) =0
i<j
It is more difficult to characterize the locus B C CY9, whose elements are the
g-tuples of points p1,...,py which do not satisfy the conditions of Proposition
4.4. The following theorems show that such a locus can be characterized as the
set of solutions of the equation H = 0 for a suitable function H(p1,...,py).

Theorem 4.10. Fiz g — 2 distinct points ps,...,pq € C such that
{Ip+b)lpeCinB;, =0, (4.24)

b := >9p;. Then, for each po € C \ {ps,...,py}, there exists a finite set
of points S, depending on b and p2, with {p2,...,ps} C S C C, such that,
for all py € C'\'S, the holomorphic 1-differentials {o;}ic1,, associated to the
points pi, . ..,pg by Proposition 4.1}, is a basis of H°(K¢) and the corresponding
quadratic differentials {v;}icry is a basis of H'(K2). Conversely, if for some
fized g — 2 arbitrary points ps,...,ps € C, there exist p1,p2 € C such that the
associated {o;}icr, and {v;}iery are bases of H(K¢) and H°(KE), then (4.24)
holds.

Proof. Eq.(4.24) implies that h°(Kc ® O(=b —p)) = 1, for all p € C. Hence,
h°(Kc ® O(—b)) = 2 and, for each pair of linearly independent elements oy, oo
of H*(Kc® O(—b)), the supports of (1) — b and (o2) — b are disjoint. Fix py €
C\{ps,...,py} and let o1 be a non-vanishing element of H°(K¢c® O(—b—ps)).
Define the finite set S as the support of (1) or, equivalently, as the union of
{p2,...,py} and the set of zeros of S(x + ps + b). Then, for all p; € C'\ S, fix
o2 € H'(Kc ® O(—b — p1)) so that oy and o9 are linearly independent. Then
P1, ...,y satisfy the conditions i) and i) of Proposition 4.4, and {v;}icr, as
defined in (4.14), is a basis of H°(K2). Conversely, if I(p + b) € O, for some
p € C, then, for each pair 01,09 € H°(Kc ® O(—b)), their greatest common
divisor satisfies ged(o1,02) > p+ b and the condition 1) of Proposition 4.4 does
not hold. O

The classical result that the dimension of © is g — 4 for a non-hyperelliptic
Riemann surface of genus g > 4, immediately gives the following corollary by
simple dimensional considerations.

Corollary 4.11. In a non-hyperelliptic Riemann surface C' of genus g > 4,
there always exist g points p1,...,py € C such that the corresponding {v;}icry
is a basis of HO(K%).



66 4. Bases of holomorphic differentials

Proof. By Theorem 14.10, it is sufficient to prove that there exists b € Cy_s
satisfying the condition (4.24). Suppose, by absurd, that this is not true. Then
Wy_o = I(Cy_2) is a subset of O, 6 W7 :={e —I(p) | e € O5,p € C}. The
corollary then follows by observing that W,_, has dimension g — 2, whereas the
dimension of each component of © ,6W is less than dim ©,+dim Wy = g—3. 0O

Theorem 4.12. Fiz pi...,p, € C. The function H = H(p1,...,pg)

S(a) TE(p1,p2)oTt % E01,p)* E(p2, pi)* [1)<: E(pi,ps)°
(b + 229 ! 1) Hfi;l O'(in) i=3 J(pl)
Z S( : =17Ts; )S(Z?i;l ‘Tsi) ﬁ S(':Csz + zsi+g + b)

. — , (4.25)
$€P2g—1 Hzg::s E(.’L‘Sg ’ pi) i=1 H;;zll E(xsl ’ ijJrg)
is independent of the points x1,...,x94—1 € C. Furthermore, the set {v;}icry,
defined as in (4.14), is a basis of H°(KZ) if and only if H # 0.
Proof. Consider the holomorphic 1-differentials
g g
6i(2) = A7 o (2)S(a; + 2) [ [ B(zop) = A7) 05(ai)wy (=)
=1 =1
e
i € Iy, with a; as in Definition 4.1/ and A4, ..., A, non-vanishing constants. If

the points pi,...,p, satisfy the hypotheses of Proposition [4.1, then {6;}icr,
corresponds, up to a non-singular diagonal transformation, to the basis defined
n (4.5). Let {p;}ic1y be an arbitrary basis of H°(KZ). By (3.3) the following
identity

2g—1 g 2g—1
det p(p3, ..., Pg, 1, .., T2g—1) H E(zs,;, vy, H (p;)? H o(z)?
1<J] 1 =3 =1
2g 1 g g 2g—1
9( T; + b) H pl7pj H H E(piaxj) s
Pg= i=3 j=1

holds for all s € Pyg_1. Together with Eq.(4.21) and the above expression for
G;, it implies that

g9 ~
- detv(p37...,p,x1,...,x2 _1)

H = k[pleg 2(A1 A) T T Af Tt p(s p-q . 129 "k (4.26)
1. e Dy T Tog

Hence, H is independent of z1,... 2241, and H # 0 if and only if {0;}icry
is a basis of H?(KZ). On the other hand the vector (91,...,0x) corresponds,
up to a non-singular diagonal transformation, to (vy,...,vn), with v;, i € Iy,
defined in (4.14). O
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Remark 4.2. By (4.20)

/ﬂ)['ﬁ]: H(plw"apg)
Cg2(A1A2)9H [[_g A}

Furthermore, if (p1,...,pq) ¢ A, then one can choose

A; = o(pi)S(a) HE(Pi,Pj) = 0;(ai)w;(ps)

= =t
to obtain 6; = 0y, 7 € I, and
ko) = S Hipr, i gg) - . (4.27)
cg2 [Timy (521 05(ai)w;(pi) s (32921 05(ai)w; (pi)

H(ps,---,pg)
¢025(2)% Ty (0 (pi) Ty Bt p3)"" Tl (0) Ty Biss)

Observe that A C B. Theorem [4.10/ shows that if (p1,...,py) ¢ A, a necessary
and sufficient condition for (p1,...,py) to be in B is that there exists p € C such
that I(b+ p) € ©,. Hence, B is the union of A together with the pull-back of
a divisor in C972 by the projection C9 — C9~2 which “forgets” the first pair
of points: (p1,...,pg) — (P3,...,Pg). Such a divisor is characterized by the
equation K = 0, where K is defined in the following chapter.
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5. THE IDEAL OF A CANONICAL CURVE

Denote by ¢" : HY(K2) — CN» the isomorphism ¢™(¢) = e;, with {ei}icrn,
the canonical basis of CV». The isomorphism 7 induces an isomorphism 7 - 7 :
Sym?(H°(K2)) — Sym®C9. The natural map ¢ : Sym*(H°(K2)) — H°(K%)
is surjective if C' is canonical.

The choice of a basis {n;}ics, of H(K¢) determines an embedding of the
curve C' in Py_q by p — (m1(p),...,n4(p)), so that the elements of {n;}icr,
correspond to a set of homogeneous coordinates Xi,...,X, on P,_;. Each
holomorphic n-differential corresponds to a homogeneous n-degree polynomial
in Pg—l by

P = Z By, i iy - My Z B, .inXiy - X,
i i

yernsln Tyeerln

where Xi,..., X, are homogeneous coordinates on Py_;. A basis of HO(K2)
corresponds to a basis of the homogeneous polynomials of degree n in P,_; that
are not zero when restricted to C. The curve C is identified with the ideal
of all the polynomials in P;_; vanishing at C'. Enriques-Babbage and Petri’s
Theorems state that, with few exceptions, such an ideal is generated by quadrics

M
Y CIXX; =0,
j=1

N+1 < i< M, where XX; := X, X, . Here, {C]'}n<i<n, with C] :=
(Ch,...,CMh,), is a set of linearly independent elements of P(Sym® C9) = Py,
each one defining a quadric. The isomorphism 7 - 7 induces the identification

P(Sym?(H°(K¢))) 2 Py, under which each quadric corresponds to an element
of keryp C Sym?(H®(Kc))

M
ker¢ 3 u; = ZCZW “nj,
=1

N +1 < i< M, or, equivalently, to a relation among holomorphic quadratic
differentials

M
Ylui) = Clhm; =0
j=1

Canonical curves that are not cut out by such quadrics are trigonal or iso-
morphic to smooth plane quintic. In these cases, Petri’s Theorem assures that
the ideal is generated by the quadrics above together with a suitable set of
cubics.

This section is devoted to the study of such relations among quadratic and
cubic differentials.
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5.1 Relations among holomorphic quadratic differentials

In the following we derive the matrix form of the map ¥ o o (¢ - 5)~!, with
respect to the basis {0, }ic 1, constructed in the previous subsection. This will
lead to the explicit expression of ker . Set

Q&ij — Ii[’Ul,...,Ui_l,vj,vi+1,...,UN] - (51)

K[v]

iEIN,jEIIV[.

Lemma 5.1. vy,...,vp satisfy the following (g —2)(g — 3)/2 linearly indepen-

dent relations
N N
V; = Z’(/Jjﬂ}j = Z wjivj 5 (52)
=1

Jj=g+1
t=N+1,...,M.

Proof. The first equality trivially follows by the Cramer rule. The identities
(4.15) imply ¢;; =0for j € I and i = N+1,..., M, and the lemma follows. [

Eq.(5.2) implies that the diagram

S — HO(KZ)

Q
Q
<

cM cN

where ¢ : CM — CV is the homomorphism with matrix elements 1/;” and

Sym?C¥ is isomorphic to CM through A, introduced in Definition 2.2, commutes.
Let . : CN - CM be the injection t(e;) = é;, i € Iy. The matrix elements

of the map o) : CM — CM are

-y, 1<i<N,
(Low)“_{o, Nt+1<i<M,

j € Ins. Noting that (v o z/;)ij = §;5, for all ¢, j € In, we obtain

M N
Z(L ° &)ji(ﬁ © 1/;)11@ = Z(é © &)gﬂzm = (Lo @gk )
i=1 i=1

7,k € Ipr. Hence, to 1; is a projection of rank N and, since ¢ is an injection,

ker¢) = kers o) = (id — 1 0 9))(CM) . (5.3)

Lemma 5.2. The set {lin1,..., 0}, G = & — Ejil &itji, N+1<i< M,

is a basis of ker ).
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Proof. Since (id — ¢ o ¥)(&) = 0,4 € Iy, by (5.3), the M — N vectors i; =
(id—wot))(€;), N < i < M, are a set of generators for ker ¢ and, since dim ker ¢ =
M — N, the lemma follows. O

Set nm; = Y(n-n);, i € Iy, and let X7 be the automorphism on CM in the
commutative diagram
id

S

S

Qv
Qv
Sl
<

X"
cM ——cM

whose matrix elements are

X = (G D = ([, e, + [, [, ) 1+ 00,2) 70, (54)

1,7 € Ip7, so that
M
vi=Y_ X, (5.5)
j=1

i € Ip. Since nn;, @ € Iy, are linearly dependent, the matrix XZ- is not

univocally determined by Eq.(5.5). More precisely, an endomorphism X " e
End(CM) satisfies Eq.(5.5) if and only if the diagram

xn' id

where B" := 1) o (X")7!, commutes or, equivalently, if and only if
(X7 — X")(CM) C X" (ker1)) . (5.6)

Next theorem provides an explicit expression for such a homomorphisms. Con-
sider the following determinants of the d-dimensional submatrices of X"

X X
. . 1171 117d
(X7 =det |2
11...24 7'7 7'7
tqj1 tdjd
ily"'aidvjlw"ajd S IMa d S I]W~
Theorem 5.3.
M
> Chmm; =0, (5.7)
j=1
N+1<1i:< M, where
= 1. Ni K[nn Mk )
Cl = X N ke T 5.8
B D N e e (5.8)

ki,...,kn=1
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are M — N independent linear relations among holomorphic quadratic differen-
tials. Furthermore, for all p € C

M
Whip) = ) IX”\ W[nnkl,---,nnm](p)- (5.9)

i1, in=1

Proof. By (5.2)) and (5.5))

M N
Z(Xn Z Jk 77777 =0,

j=1 k=1

forall N+1<¢< M, and by (5.1

knvl,vl,...,vk,...,v]v] " " B
Z[Z K[0] X+ X5 mm; =0

By (5.5)
M
’%[Ui yeeey Uy ] i1...% F‘-/[Tlnk? yee s Mk ]
1 K[v] = Z |X7]‘k1.,.k]zvv 1 K[v] =
ki,...,kn=1

i1,...,in € Ipr, and we get (5.7) with

M N

i1 0N KMk s - - MMk

= 2 {Z(_)ZX?Z Xk + Xl |Xn| e K[v] o
ki, ky=1L1=1

which is equivalent to (5.8) by the identity

N ;
ppilo . N n vt o N il o N
;( ) l|X | ...... +Xﬂ X |k1...kN =X |jk1...kN'
Eq.(5.9) follows by (5.5). O

The homomorphisms (X" — X") € End(CM), satisfying (5.6), are the ele-
ments of a M (M — N) dimensional vector space, spanned by

(X7 = XM= Y AuCY

k=N+1

1,7 € Ing, with Ajy an arbitrary M x (M —N) matrix. An obvious generalization
of (5.2) yields

Z v;BY; (5.10)

i € Iy, implying that B?j = K[V1,...,Vj_1,MM, Vj+1, - .., UN]/K[v], are the ma-
trix elements of the homomorphism B" = 1) o (X™)~1. Such coefficients can be
expanded as

M

K s Yy _
kn—1 K[U]
ki,....kn—1=1
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Define C};7, 3 <i < j<g, k€I, by

Cmim2zm . — ON

1n2n mn ?

m,n € Ipy, m > N.

The following result is a direct consequence of the Petri-like approach. The
bound r < 6 for the rank of quadrics is not sharp, however: M. Green proved
that the ideal of quadrics of a canonical curve is generated by elements of rank
4 29].

Theorem 5.4. All the relations among holomorphic quadratic differentials have
rank r < 6.

Proof. The statement is trivial for g < 6, so let us assume g > 7. Each relation
can be written as

_ 0,1] 0,1 0,1 0.t 0.t
0 =040, + C37 0100 + CY} 7 0105 + Clj o105+ C5” o905 + CQj 020

o,i] o,1]
+ E Clkjalak + E C2kJ020k ,
k#1,2,,5 k#1,2,,5
. . M,1i2; . M — — —
where 3 < 7 < j < g and Cyz? = C’ij. Set m = 01, 2 = 09, 3 = 03
= 0. = a,] — T,1] .
n = 0j, N5 = Zk#gm Cli ok, ne = Zkﬂ’li’j C3? 0. Then the relations

can be written as
6

> CHm =0,
k<l

for suitable C,Z’l’ij , and the theorem follows. O

5.1.1 Consistency conditions on the quadrics coefficients

In the construction in chapter 4, the points p; and p, play a special role with
respect to ps,...,py. Relations among holomorphic quadratic differentials can
be obtained by replacing p; and ps with p, and py, a,b € I, a < b, (a,b) # (1,2).
In the following of this section, we will consider the relationships between the
coefficients C' obtained in section 4] and the analogous coefficients obtained
upon replacing (1,2) by (a,b).

Proposition 5.5. There exist g distinct points p1,...,pq € C such that
K(pla"'aﬁia"'aﬁjv"'vpg) #O )
foralli,jel,, i#7j.

Proof. Consider the function in CY

F(pla"'apg) ::HK(p1>~~'7ﬁi,"'apja"'7pg) )
1<j
and set Z := {(p1,...,pg) € C9 | F(p1,...,pg) = 0}. Note that

7 = U{(pl,...7pg)€C-‘7|K(pl,...,pi,...,ﬁj,...,pg):0}’
i<j
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so that it is a finite union of varieties of codimension 1 in C'Y and, in particular,
Z # C9. Suppose that C9\ (U,; IL;;) € Z, where IL;; := {(p1,...,py) € C7 |
pi=Dp;j}, 1 <i<j<g. Since C9\(|J,_IL;;) is dense in CY, it would follow that

i<j Tt
Z = (Y, which is absurd. Hence, there exist pairwise distinct p1,...,p, € C
such that F(p1,...,pq) # 0. O
By Proposition 5.5 and Proposition 4.4, one can choose the points pq,...,pg

in such a way that

{'Ui(ab)}ieIN = {U?}ielg U{oq0p} U {oq0i, Ubai}ielg\{a,b} )

is a basis of HY(K2). Furthermore, one can obtain M — N independent linear

relations -
> (ab)oror =0, (5.12)

1<k<I<g

where i,j € I, \ {a,b}, ¢ # j. The coefficients (ab)z are defined by setting
(ab)y} := 1,
(ab) (ab)]

Ii[’Ul ,...,5’kél,0i0'j,...,7}N

ab ab
KJ[U§ ),...,U§V )}

if k # 1 and o0y € {vi(ab)}ie[N, and (ab)z := 0 for all the other (k,I) € I, x I.
In this notation, the coefficients C7; defined in (5.8), with N < i < M, j €
In, correspond to (12)731. Eqgs.(5.12) and (5.13) can be derived by a trivial
generalization of the same construction considered in section 2 in the particular
casea=1,bb=2.

(ab)y, := : (5.13)

Proposition 5.6. The coefficients (ab)z satisfy the following consistency con-
ditions

(i5)i0 =Y (ig)eb,(ab)ii™ = Y (ig)b, (ai)py™ = > (ig)av,(aj)i™  (5.14)

m<n m<n m<n
= (i), bt = > (i), (bi)i" . (5.15)
m<n m<n

for alli,j,a,b € I, pairwise distinct, and for all k,l € 1.

Proof. Choose 4,j,a,b € I, with a < b < i < j, and consider the relations
e (@d)towor = 0 and Y7, (ab)yoror = 0, that is

0= (ij)?fcr,-aj + 0401 + (i) %0,0; + (ij)g;’»oaaj + (i) opo; (5.16)
+ (ij)gfabaj + Z (ij)%oion + Z (ij)?,gajak ,
k#a,b,i,j k#a,b,i,j
(5.17)
0=o0i0; + (ab)fiaaab + (ab)fiaaai + (ab)fljjaaaj + (ab)zaboi (5.18)
+ (ab)zgabaj + Z (ab)ﬂaaak + Z (ab)i@abak .
k#a,bi,j k#a,b,i,j

(5.19)
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Replace the differentials o;04 and o0k, k # 4, j, a, b, in Eq.(5.16) by

00k = — E (ab)%no—man ’ k 7é ivjvavb s
m<n

(mn)# (i k)
and the analogous expression for o;oy. Then multiply Eq.(5.18)) by (ij)g‘;’ and
consider the difference between (5.16) and (5.18). We obtain

0 =((i)eh = D2 i) @by oraon + 3 (i) = D (i) (@) ) 7

m<n k#a,b m<n

+ > (k= D )i (ab)ii )ovon (5.21)

k#a,b m<n

Since the holomorphic quadratic differentials appearing in Eq.(5.20) are linearly
independent, it follows that each coefficient vanishes, yielding the first identity
in (5.14), in the cases in which at least one between k and [ is equal to a or b.
On the other hand, in the case k,l # a,b, the only non-vanishing term in the
sum Y. (i5)% (ab)m™ is (if)20(ab)kt = (i)4?, and the first identity in (5.14)
follows. The other identities can be proved by applying the analogous procedure
to the relation Y-, - (ij)f/oxo; = 0 and one of the relations Zkgl(ai)%akal =0,

Zkgl(bi)Z{Ukaz =0, and so on. 0

5.2 A correspondence between quadrics and 0-identities
Theorem 5.7. Fiz (p1,...,py) € CI\B with B defined in Definition4.2. Then,
the associated holomorphic quadratic differentials v;, i € Ipr, satisfy

M
v; = ZX]“; wwj (5.22)
j=1

i € Iy, where

X = elj (a“li)elj (a’li) + elj (ali)ezj (ali)
* (1 + 61]‘2]‘) Zl,m el(ali)em(ali)wl (pli)wm(pzi) ’

(5.23)

1,7 € Ing, with a; as in Definition 4.1, correspond to the coefficients defined in
(5.4) for m; = w;, i € I,. Furthermore, the M — N independent linear relations

M
> Cruww; =0, (5.24)

j=1

N+1<1< M, hold, where
M 1 .. Ni Klww WWk ]
cw — xet o NV 2 Rk bt P 5.25
I Z | |k1--<k1vj K[v] (5:25)
K1yeey kn=1

correspond to the coefficients defined in (5.8).
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Proof. Eq.(4.9) implies that Eq.(5.23) is equivalent to (5.4), and the theorem
follows by Theorem 5.3. O

Remark 5.1. Choose p1,...,p, as in Corollary 4.5, with n = 1 and set ¢ := q;.
Then, there exists a non-trivial relation

aoity + bogty + co109 =0,

where a, b, ¢ € C. Without loss of generality, we can assume that ¢;(p1) = 0 and

tg(pg) = 0. Set
g—2

(01) =pa+ps+...+pg+a+ Y ri,
=1

and
g—2

(02) =m +P3+...+pg+q+zsz‘ )
i=1
for some r;,s; € C, i € I,_5. Then, (t;) > pl—i—Zf;f r; and (t3) > p2+2f;12 S,
so that
Opr+ > mi+2—y)
U(y)E(yaz)E(yvpl)Hz E(yvrz)

ty ~ —

J(Z)E(val) HE(Za Ti)

~ — O(p2+b+q+y—p1—2) oz z } 2.7
o(y)E(y, 2)E(y,p1) [1; E(y, m:) (2)E( ,pl)gE( )

g9
= ZeA,i(m +b+q—p1)wi(z) ,
i—1

where, in the second line, we used I(} ;) = I(—p2 — b —q) in Jo(C). An
analogous calculation yields

g
ta~ Y 0i(p1+ b+ q—pa)wi(z) -
=1

(By the symbol ~, we denote the equality up to a factor independent of z; such
a factor is not meaningful, since it can be compensated by a redefinition of the
constants a, b.)

Theorem 5.8. Let C' be a canonical curve of genus g > 4 and {w;}icq, the
canonically normalized basis of H*(K¢), and fix the points (p1,...,py) € CI\B.
Then, the following (g — 2)(g — 3)/2 independent relations

Z e(s)detw(zs,,...,vs,)detw(@s,,. .., Ts, ;) (5.26)
s€P2y
det W(Ts,, Ts,yys Togy D3y -+ Dis -5 Dg)
: detw(xSQ,xsg+2,a?32g,p3, s 7pj7 s apg)
g—1
: Hdetw(a:sk,xskﬂ,pg,...,pg) =0,
k=3

3<i<j<g, hold for all zj, € C, 1 <k < 2g.
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Proof. Fix 4,5, 3 <14 < j < g, and choose p1,py in such a way that {o;}ier,
is a basis of HY(K¢). Observe that, due to Eq.(5.2), det; oo (z1,...,224) = 0,
for all @1,...,299 € C, where I := Ip;o U {m(i,5)}. Applying Lemma 2.3
with n = 2, such an identity corresponds to Eq.(5.26) with the canonical basis
{wi}ier, of H°(K¢) replaced by {oi}ier,- Eq.(5.26) is then obtained by simply
changing the base. ' O

The relations of Theorem 5.8 can be directly expressed in terms of theta
functions. (The conditions on the points ps, . .., p, in Theorem5.9 and Corollary
5.10/ can be safely replaced by one of the equivalent conditions iv), v), vi), and
vig) of Theorem 16.2l)

Theorem 5.9. Fiz ps,...,py € C in such a way that (p1,p2,ps3,...,pg) ¢ B
for some p1,p2 € C. The following (g — 2)(g — 3)/2 independent relations

‘/'iliQ(p:S?‘"Jpg7x17"‘7x2g) = (527)

> (5){ 13[ S(@x + Egin + Fag + bi) B (@, F2g) Btsgs B2g)

el pie E(2r, pi) E(Zk+g, Pir ) E(Z2g, i)
g—1

. H (E(xk, $k+g) H E(ik;pj)E(i‘k+g7pj))

2g—1 2g—1

-S(i i) H E(ik,ij)S(kg i) H E(iy, &)

g—1 g
I Sk + kg + b) [[ Eizg. 1)) }_o,
k=3 j=3

3 <4 <ig < g, where &; := x5, 1 € Ing, by := b—p;, 3 <1 < g, hold for all
z; € C, 1€ Iy

Proof. By (3.2) Vij(ps,.-.,Pg, 21, ..,%2g) is equivalent to (5.26)). O

Remark 5.2. Note that V;; # 0 for ¢ = 3,...,g, since for ¢ = j the LHS of
(5.26)) is proportional to a determinant of 2g linearly independent holomorphic
quadratic differentials on C, evaluated at general points x; € C, i € 5.

By a limiting procedure we derive the original Petri’s relations, now written
in terms of the canonical basis {w;}ier, of H?(K¢) and with the coefficients
expressed in terms of theta functions.

Corollary 5.10. Fiz ps,...,ps € C in such a way that (p1,p2,p3,...,Pq) € B
for some p1,ps € C. The following (g—2)(g—3)/2 linearly independent relations

/fagH Vio, (D3y .-, Pgy T1y -y Tog—1, 2
Z wwj [ ] F(p,a?) lLZL( 2(].(]_1 g ) =0 ,
9( i xj+b)

(5.28)
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N+4+1<1i< M, where

Hgk:?’ E(pj7pk)gi4H‘Jg:3 E(plivpj)Hé']:S E(pzmpj)
i<k JFL; JF2;

F(p, Q:) = 6/72 29—1 So—1
! H]‘i1 (o(xy) Hg=3 E(xj,Pk)Hkin E(zj,xk))

hold for all z € C. Furthermore, C}; are independent of p1,p2, 1, - .., T2g—1 € C
and correspond to the coefficients defined in (5.8) (with n;, = w;, 1 € I,) or,
equivalently, in (5.25).

Proof. Consider the identity

det;oo(z1,. .., 2291, 2)

detv(ps, ..., pg, &1, .., T2g—1)

=0, (5.29)

I:=1IysU{i}, N+1 < i < M. Upon applying Lemma 2.3, with n =
2, and Eq.(3.2) to the numerator and Eq.(3.3) to the denominator of (5.29),
Eq.(5.28)) follows by a trivial computation. On the other hand, for arbitrary
points z,y1,...,yq—1 € C,

Sl 0y 4+ yg—1)wi(2) .
o() [T E(z.01)

Consider Vi,,,(ps3, ..., Pg, %1, -.,Tg-1, %) and replace each term in of the form
S(dg—1+2) by its expression above, for any effective divisor dy_1 of degree g—1.
The dependence on z only enters through w;w;(z) and the relations (5.28) can
be written in the form of Eq.(5.7).

Styr +... +yg-1+2) =

To prove that C7; are the coeflicients in (5.8), with 7; = w;, ¢ € I, first
consider the identity

RlWWky s« v oy WW ] _ deticiry,... kn} WWi(P3, -+ Dy, T1y- -+ T2g—1)
K[v] detv(ps,...,pg, T1,...,Tag—1)

)

then recall that

M
o — — w
V=00 = g Xﬂwwj ,
=1

i € Ipr, so that one obtains

M

Z |X“’|1 .. Ni ﬁ[wwkl,...,www]ww‘(@
k % j 1 klk‘Nj K/[’U] J
15--3RNJ=
_ det;oo(z1,...,x29-1, 2)
detv(pg,...7pg,$1,...,l'gg,1) ’

as an algebraic identity (in the sense that it holds as an identity in Sym?(H2(K))
after replacing 0,0, — 04-0; and w,w; — w;-wj, 1,5 € I,). Hence, the coefficients
of ww;(z) on the LHS, given by (5.8) or, equivalently, by (5.25)) and the ones on
the RHS, given by (5.28)), are the same.

Eq.(5.8) explicitly shows that the coefficients C}; are independent of z; for
alli=1,...,2g — 1. By (5.28)) it follows that they may depend on p; and py
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only through the term x[c]9*! /k[v]. The dependence of k[o] and x[v] on p; and
p2 is due to the dependence of the basis {o;}icr, and {v;}icry on the choice
of p1,...,py € C. On the other hand, Eq.(6.4) implies that x[c]9™!/k[v] is
independent of py,ps and the proof of the corollary is complete. O

5.3 Relations among holomorphic cubic differentials

According to Petri’s Theorem, in the most general case the ideal of a canonical
curve C is generated by its ideals of quadrics together with the ideal of cubics.
As discussed in the introduction of this section, such cubics correspond to linear
relations among holomorphic 3-differentials on C; a generalization of the previ-
ous construction is necessary in order to explicitly determine such relations.

Fix p1,...,pg € C satisfying the conditions 1), i) and #i1) of Proposition 4.6
with respect to some fixed i, 3 < i < g, and let {p;}jery, , U{pits5-s} be the
corresponding basis of H?(K?,). The kernel of the canonical epimorphism from
Sym*HY(K¢) onto H°(K2,) has dimension (g — 3)(¢9* 4+ 6g — 10)/6, and each
element corresponds to a linear combination of the following relations

000 = Z Bjkl,mgom + Bjkl,i+5978020'i2 R (530)
meln, —1
3<j,k,l<g,j#k, and
2 _ 2
UQUj = Z Bij,m‘Pm + B2jj,i+5g—80201 5 (531)
meEIN, —1

3<j<g,J #1, where Bjgi m, Bajjm € C, are suitable coefficients. On the
other hand, a trivial computation shows that the relations (5.30) are generated
by (5.31) and by the relations among holomorphic quadratic differentials,

M
Z Crio05 =0, (5.32)
j=1

k= N+4+1,...,M. Therefore, relations among holomorphic 3-differentials,
modulo relations among holomorphic quadratic differentials, provide at most
g — 3 independent conditions on products of elements of H°(K¢).

The relations (5.31) can be restated in terms of an arbitrary basis {n;}e1,
of HY(K¢). Let Y be the automorphism of C*3 determined by

Y =G (W ) = il (5.33)
J. k € Ing,, so that
M3
0= Yo,
k=1

J € In,. Consider the following determinants of d-dimensional submatrices of
yn

n n
o 1j1 T Yiljd
Ji---Jd . .
Yot i=det |0 ]
11...2d ° °
n n
Yidjl Yidjd

ily"'aid7j17"'7.jd € IM37 de IM:}
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Proposition 5.11.
M;

> Dl =0, (5.34)
j=1

N3 <k < N3+g—3, k#i where

M3
(Na—1)ik Bk s+ s Nk, ]
DZ = Z ‘Yn‘ 3kN j : I{[ ] 2 ’ (535)
i, kg =1 s ®

j € I, are g—3 independent linear relations among holomorphic 3-differentials.

Proof. Without loss of generality, we can assume ¢ = Nj3; such an assumption
can always be satisfied after a re-ordering of the points ps,...,pq. Fix N3 +1
arbitrary points xi,...,2n,,ZN,+1 = 2 € C and consider the singular matrix
[gol(xm)]iféw with I := In,U{k}, with N3 < k < N3+g—3. By expressing the

3+1
determinant with respect to the column (¢;(z));er, the identity det ;(x,,) = 0,
lel, me In,y1, yields

M3 N3 ﬁ[@l @l on wk]
_l+1 goe e ey g ey 3 Yn _Yn :O.
mz::l |:lz_;( ) H[(p] ml mk | TTm

The proposition follows by combinatorial identities analogous to the proof of
Theorem 15.3. O

Whereas for g = 4 the relations (5.34) are independent of the relation among
holomorphic quadratic differentials, for g > 5, (5.34) are generated by (5.32))

in all but some particular curves. Set ¥y,5,,1,,; = ¥;; and C7, |, : CZ,

N+1<i< M, € Iy. Consider the 3-differentials 00,0, with 3 <i < j <
k <g(92>5). By Eq.(5.32) and by Cf; = bj; — 045, N +1<i <M, j € I,

2
000k = E E Vij mnOmOnOk + ;51201020 ,
m=1n=3
so that

2

9 g
7 7 7 7 2
Z(Z Vit mn¥nj.pg) OmOpOq + Yik 1201020% + Z Yik,mjOm0;

2
m,p=1qg=3 n=3 m=1
2

n#j

g g 2
7 ” 7. 7 2
Z(Z wjk,mnwni,pq)o-mo-paq + '(/)jk,120-10-20-k: + Z wjk:,mio'mo-i
m,p=1¢=3 n=3 m=1

The above equation yields

“‘32]020 - Z Z chk mn mpq Z %kmn anq)UWUPUq

3
m,p= lq 3 Z;ﬁ n#]

2
+ CY, k1201020 — C’fk 1201020k + C9, Tk 1i010;

Czk 1]010 + C7 ik, 21020
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If Cfo; # 0 for some k, the above identity shows that the relation (5.31)
is generated by Eqs.(5.32). On the other hand, it can be proved [3] that if
Choj=0forall3<k<g, k # 1, j, the relation (5.31)) is independent of the
relations among holomorphic quadratic differentials. This case occurs if and
only if the curve C' is trigonal or a smooth quintic.

Proposition 5.12. Fiz g points p1,...,py € C satisfying the conditions of
theorem [4.6. The coefficients Y%, defined in Eq.(5.33) with n = w, are given by

(1 + §1jzj + 5Zj3j)(1 + 51.731)

Ve = I1
6Hme{1,z,3} Zl el(ami)wl(pmi) sepy mE{1,2,3}

1j

es(m)j (ami)) ) (536)
i,7 € Ipy.

Proof. The proposition follows immediately by the definition (5.33) and by
Eq.(4.9). O
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6. THE SECTION K

6.1 Definition and fundamental properties

Definition 6.1. For all p3,...,pg, %1,...,229-1 € C, set

1
O(b+ 1 ) 1Y olas) [Ts o (pi)
S(C0 ws)S(5 2s) Sy S(ws, + @iy, + D)
3 ( )S( )H

5€P2g-1 f:3 E(ﬂng,pi) ?;11 E((ﬂsl ’ x5.7‘+g) .
JF#

K(ps,...,pg) == (6.1)

i=1
Theorem 6.1. For all ps,...,ps € C, the following properties hold:
a. K =K(ps,...,pq) is independent of x1,...,029—1 € C.
b. For any p1,...,pg € C such that detn;(p;) # 0, the set {v;}icry, defined
n (4.14), is a basis of HO(KZ) if and only if K # 0.
S(p1—|-p2+b):O,Vp1,p2€C - K=0. (62)

d. If p3,...,pg are pairwise distinct and K # 0, then there exist p1,p2 € C
such that H # 0.

Proof. — a. The ratio

H B g g
7 = @ TE(p1,p2)" [T(E®@1,p)E@2.p))* ] Ewip)® . (6.3)
=3 i
is independent of x1,...,294—1, so that a) follows by Theorem 4.12] or,

equivalently, noticing that by Eqgs.(4.11))(4.25) (4.27) and (6.3))

K(ps,...,pg) i= (_)g+1cg,2ﬂ[,:_5,lg]]+1 [T Eip* o [Low)® . (6.4)

—b. By (3.2) and (6.3) the condition detn;(p;) # 0 implies H/K # 0. In this
case K # 0 if and only if H # 0, and b) follows by Theorem 4.12.

—c¢. It S(p1+p2+b) =0, for all p1,py € C, then the numerators in each term of
the sum in (6.1) vanish for all z1,...,294—1 € C. Since K is independent
of z1,...,x24-1, it follows that the proof of point c) is equivalent to prove
that there exist x1,...,225—1 € C such that the denominators in (6.1) do
not vanish. On the other hand, the possible zeros of such denominators
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are the ones corresponding of the zeros of the primes forms, which are
avoided by simply choosing ps,...,pg, x1,...,T2g—1 pairwise distinct, and
the2 ories of 8(b+ Z?g_l x;). Fix an arbitrary y € C and set w := I(b+
>4 wi+y). Then

and, by the Jacobi Inversion Theorem, by varying the points z1,...,z4 €
C one can span the whole Jacobian variety. Then, one can always choose
Z1,...,%Ta9—1 pairwise distinct and distinct from ps,...,p, in such a way
that G(w + 3w — y) = 0, so that the denominator does not vanish and
¢) follows.

—d. Since K # 0, by c) there exist p1,ps € C such that S(p; + pa + b) # 0.

By continuity arguments, it follows that there exist some neighborhoods

U; C Cofp;,i=1,2,such that S(z1+x2+b) # 0 for all (x1,x2) € Uy xUs.

Hence, we can choose p1, p2 so that S(p1 + p2 + b) # 0 and p1,...,p, are

pairwise distinct. Then, by Eq.(6.3), H/K # 0 and, since K # 0, we
conclude that H # 0.

O

In view of Eq.(6.4), it is useful to define

k3
i

k(p37 e apg) ::K(p37 o apg)
K

g g
11 E@ip)) > [ otp?? (6.5)
3= i=3
__(_\9+1 [U]

=(-) 69’2/{[0]9*1 ’
which is a holomorphic (g — 3)-differential in each of its g — 2 arguments.

Theorem 6.2. Fiz pi,...,py € C, with C' non-hyperelliptic of genus g > 4
and let {0;}ic1, be a set of non-vanishing holomorphic 1-differentials such that
i#j = 6,(p;) =0, foralli,j € I,. The following statements are equivalent

i) The conditions

i) (p1,--5pg) & A

i"") b:=>"7 . p; is the greatest common divisor of (o1) and (02);
are satisfied;
i) H(p1,...,pq) # 0, where H is defined in Eq.(4.25);
i) {0;i}tiery 5 a basis of HO(KZ), with 0; :== 665, 1 € I
More generally, fix ps,...,py € C. The following statements are equivalent:
W) p3,...,pg are pairwise distinct and {I(p+ b)|lp € C} N O, = F;

V) p3,...,Dg are pairwise distinct and K(ps,...,pq) # 0, where K is defined
in Eq.(6.1);
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vi) There exist p1,ps € C such that p1,...,py satisfy i), i) and iii);

vit) For allp € C, S(x 4+ p+ b) does not vanish identically as a function of x;
furthermore, for each po € C\{ps,...,pg}, the points p1,...,py satisfy i),
i) and iii) if and only if p1 is distinct from pa,...,pg and from the g — 1
zeros of S(x + p2 + b).

Proof. i) < 1ii1) is proved in Proposition 4.4 (in the direction ) = 4ii), only the
case of normalized 1-differentials o;(p;) = 1, for all ¢ € I, is considered,;
however, by the hypothesis '), the general case can be reduced to this
choice by a non-singular diagonal transformation on {5 }ic1, );

i1) < ii1) is proved in Theorem 4.12;
vig) = vi) is obvious;

iv) < wvig) follows by first noting that S(x + p + b) identically vanishes as a
function of z if and only if I(p + b) € O, and then by Theorem [4.10;
in particular, in such a theorem it is proved that for each fixed py €
C\{ps,-..,py}, the points p,...,pg satisfy 7) if and only if the conditions
p1 ¢ {p2,...,pg}, S(p1 +p2 + b) # 0 and ) hold;

vi) = 4v) also follows by Theorem 4.10, where it is proved that if ) does not
hold, then i) cannot be satisfied;

v) < i) follows by Corollary 6.1, where it is proved that ') and v) are equiv-
alent to #) and that if v) holds, then there exist p1,ps € C such that

D1, - -, Dg satisfy ).
O

6.2 Zeros of K and the singular locus ©

The function K (ps, ...,py) defined in Eq.(6.1), whose zero divisor is character-
ized in the theorem above, is the fundamental tool in the proof of the following
theorem. Such a result heavily relies on the properties of ©4 in the case the
sublying ppav is the Jacobian torus of a canonical curve. By the Riemann
Singularity Theorem,

G)S = W;71 = I(C‘;fl) 5

where C’;f1 C Cy—1 is the subvariety of codimension 2 in Cy_;, whose elements
are the effective divisors of degree g — 1 with index of specialty greater than 1.
Note that each effective divisor d € Cy_3 of degree g — 3 canonically determines
an embedding

WdZCQ‘—>Cg,17
c—c+d,

of C as a subvariety of dimension 2 in Cy_;. Hence, by a simple dimensional
counting, we expect the intersection C;_;Nmq(C2) to have (in general) dimension
0. The following theorem shows that, in the general case in which such an
intersection does not contain any component of dimension greater than 0, C;_lﬂ
ma(Cy2) corresponds (set-theoretically) to a set of g(g—3)/2 points; furthermore,
a remarkable relation of such a set of points with the canonical divisor is given.
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Since the restriction of the Abel-Jacobi map to Cs is an injection (because C' is
non-hyperelliptic), such points are in one to one correspondence with the points
in the intersection O N I(myq(C2)).

Theorem 6.3. Let C be non-hyperelliptic of genus g > 4 and fix an effective
divisor d € Cy_3 of degree g — 3. Then, either:

a. For each point p € C, there exists a point q € C such that

I(p+q+d) €Oy ;

or:

b. There exist k := g(g — 3)/2 effective divisors ci,...,c, € Cy of degree 2,
such that
e; = I(ci—i—d)e@S R Vie I . (66)

Moreover, in this case
k
D a+(g—2)d=(9—-3)Kc .
i=1

Proof. Set d := Y7_, p; and consider K(z,p4,...,py) as a function of z. It
vanishes at z = p if and only if there exists a point ¢ € C such that I(p+q+d) €
Os. Then, K =0 for all z € C if and only if statement a) holds.

Now, assume that K (z,pa,...,py) does not vanish identically and consider
g
é(z) == K(2,p4,...,Dg) H E(z,p:)9 %0(2)973 . (6.7)
i=4

By (6.4), ¢ is a holomorphic (g — 3)-differential on C. Therefore, the divisor e of
K(z,p4,...,pg) is effective (K has no poles) of degree g(g — 3) and e+ (g —2)d
is the divisor of a (g — 3)-differential. It only remains to prove that e is the sum
of all the effective divisors of degree 2 satistying Eq.(6.6)). By the equivalence of
i) and v) in Theorem 6.2}, if ¢ := g1 + g2 satisfies Eq.(6.6)), then ¢; and g2 are
both zeros of K. By construction, K(z,pa,...,py) can be written as

K(va47~-~7pg) = F(Z7p4a'"apg7x17"'7z2g—1)det§0i(zj) )

with {¢1, ..., p25—1} aset of generators (depending on z,py, ..., p,) of H(KZ®
O(—z—d)) and 21, ..., x94—1 arbitrary points in C; F is such that, by Corollary
6.1, K does not depend on x1,...,294—1. It is easy to verify that K vanishes
only if det ;(x;) = 0 for all z1,...,294—1 € C; the multiplicity of such a zero is
29 —1—r, where r := h°(K2Z ® O(—z — d)). The space H(K2 ® O(—z —d)) is
generated by elements 017, o9p, as 0, p vary in H°(K¢); here, 01,09 is a basis
for the 2-dimensional space H?(K¢c® O(—z—d)) (note that if there exists ¢ € C
such that h%(K¢ @ O(—q — d)) > 2, then K(z,pa,...,p,) identically vanishes).
Proposition 4.4 shows that K (z,pa,...,pg) # 0, that is » = 2g — 1, if and only
if WO(Ke ® O(—q—2—d)) =1 for all ¢ € C. Let q; be a zero of K and denote
by n the maximal integer for which there exist n — 1 points g2, ..., ¢, € C such
that h°(Kc ® O(—q1 — ... — q, — d) = 2. By the considerations above, since ¢
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is a zero, n > 2; furthermore, ¢, ..., q, are zeros of K too. Corollary 4.5 shows
that

r=h"(KZ@0(—q —d) =" (KZ@O(—q1 — ... —qn—d)) =29 —n,

so that the multiplicity of each ¢;, i € I,,, is 29 —1 —r = n — 1. Now, consider a
zero ¢; of K(2,pa,...,pg), distinct from g1, . .., ¢,; by the same construction, if
¢} has multiplicity n’—1, with n’ > 2, then it is an element of a set of n’ (possibly
coincident) zeroes {qj,...,q,} with the same multiplicity. By repeating this
procedure, we obtain a finite number [ of disjoint sets of zeroes; for each i € I,
the i-th set contains n; > 2 zeroes, we denote by ¢i,... ,qf”, each one with
multiplicity n; — 1. Therefore, we have

I n; l ng
e=> Y (n -—1qj:ZZ 4 +4)

i=1 j=1 i—1

p;-“

and, since h°(K¢ ® (9(7(1;i — ¢t —d)) =2, each c:= q} + ¢} satisfies Eq.(6.6);
conversely, it follows immediately that if an element of Cy satisfies Eq.(6.06),
then it is the sum of a pair of zeroes of K(z,pa,...,py) in the same set. O

Theorem 6.4. There exists a holomorphic section A on O4 X ... X Oy =
OM=N_ completely anti-symmetric in its M — N arguments and such that, for
all ps,...,py € C,

det; j=N+1,..,Mm (Zi,lzl Ori(ei)wr (plj)wl (pzj))
k(p37"'7pg) .

A(€N+1,...,€M) = (68)

Furthermore, the quadrics

g

S bi(er) X X7 (6.9)

ij=1

k=N+1,...,M, generate the ideal Iy of quadrics of the canonical curve C if
and only if A(en41,...,enm) # 0.

Proof. Let us first prove that the ratio on the right hand side of Eq.(6.8)) does
not depend on ps,...,py € C. The numerator of such a ratio is the determinant
of a (M — N) x (M — N) matrix W, which can be expressed as the product
W =UV of a (M — N) x M matrix U and a M x (M — N) matrix V, with

entries

Uij = 91j+N2j+N (ei+N) ) ‘/jk = X]_l(p p)k+N[UJw]] )

i,k=1,...,M — N, j € I, where, by definition (4.4),

(P P)rlww;] = w; (Pr, )wa; (P2y) + way (Pay)ws; (Pay) -

The determinant det W is a holomorphic (g — 3)-differential in each p;, i =
3,...,g; furthermore, it is symmetric (for g even) or anti-symmetric (for g odd),
with respect to permutations of such arguments. Fix py4,...,p, € C and consider
the divisor of det W with respect to p3. Define a local trivialization of K¢ and
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a local coordinate z on an open neighborhood of p4; with respect to such a
trivialization, in the limit p3 — p4, det W can be seen as a holomorphic function
in (p3,p4) € U x U. Such a determinant is invariant under the replacement, in
the matrix W, of the column

> i Bij(ens1)wi(ps)w;(pr)

3245 big(ear)wi(ps)w; (pr))
by the column

> Oij(ent1)(wi(ps) — wi(pa))w; (k)

5 01 (enr)wis(ps) (wi(ps) — wi(pa) ) ()

forall k =5,...,g. It follows that each of these columns is of order z(p3) — z(p4)
in the limit p3 — ps. Then, consider the element ;. 6;;(ex)w;(ps)w;(pa), for
each k= N+1,..., M. Such a function vanishes at ps = p4 due to the relations
(B.6)); moreover, since it is symmetric with respect to the exchange p3 < p4,
the first non-vanishing contribution in the limit p3 — p4 must be of order
(2(p3) — z(p4))?. Tt follows that det W has a zero of order g — 2 at p3 = p, and,
by symmetry arguments, at pg = p; foralli =4,...,¢.

Fix p3,...,py € C and suppose that there exists a point p € C such that
e:=I(p+p3s+...+pg) is in ©,. Each point of O, is associated to a relation
among holomorphic quadratic differentials by Eq.(B.6). On the other hand,
since at most M — N such relations can be linearly independent, there exist
some coeflicients ¢, cy 41, ...,cp € C such that

M

0:;(€) + Z cebijler) =0, (6.10)
k=N+1

forall i,j =1,...,g9. By Proposition 3.3,

g

> 0i(@)wi(pr)w;(p) =0,

4,j=1

which, by (6.10), implies

ST en D Ouylen)ws(pi)es () =0

n=N+1 i,j=1

for all 3 < k,I < g, so that the rows of W are linearly dependent and det W = 0.

Hence, det W, considered as a holomorphic (g — 3)-differential in p3, has a
zero of order g — 2 at each p;, i = 4,...,g, and vanishes if there exists p € C,
such that I(p+ ps + ... +py) € Oy; it follows that the right hand side of (6.8)
is a meromorphic function of ps with no poles, and then is a constant. By the
same arguments, it does not depend on p;, for alli =3,...,g.

The condition that the quadrics (6.9) generate the ideal Iy of degree 2 of
C is equivalent to the matrix U having its maximal rank. Therefore, if such
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quadrics does not generate Io, then A(eny1,...,en) = 0. Conversely, since
there always exist ps,...,py € C such that V has rank M — N, it follows that
if Alen+1,---,enm) # 0 then the matrix U has maximal rank. O

Green [29] proved that the ideal I of degree 2 is generated by quadrics in the
form (6.9). Together with Theorem [6.4], this implies that A(en1,...,enr) does
not vanish identically. Consider the coefficients Cj, i = N +1,..., M, j € In,
given by Corollary [5.10/ for some suitable ps,...,p, € C. The corresponding
quadrics (5.28) generate I; it follows that each 6;;(ex), k=N +1,..., M, can
be expressed as a linear combination

M
elij (ek) = Z Ckicfj y
i=N+1
forall j € Ing, i = N+1,..., M, for some complex coefficients cx;. By Eq.(6.8),
this implies that k(zs,..., z4), for arbitrary zs,...,z, € C, is proportional to
M

k(zs,...,24) ~ Lj:Ndf;cwa ’;[Cﬁc(wlk (21 ) w2, (22;) + Wiy (22 ) w2, (22,))] -

The multiplicative constant does not depend on z3,...,z24; hence, by setting

zi =pi, 1 =3,...,9, and noting that

M M

E w L E a . )
Cl_jw : CUJ — Cljo- U] 3

j=1 j=1

and
M

(p- P> CHo - oj] = b,
j=1
i,k=N-+1,..., M, we obtain

M
k(zs,...,29) = k(ps,...,pg) i7j=Ndf1tw7M(z : Z)J[kz_:l Cirw - wy] -

In particular,

ij=d,...,

g
k('z)p4,"'apg) :k(p3a"'7pg) det q[zcgz,]kak(z)] .
k=1

6.3 Quadrics from double points on ©,

Choose p3,...,py € C pairwise distinct and such that K(ps,...,ps) # 0. Let
Co 3 ¢c:=u+wv, u,v € C, be an effective divisor of degree 2, such that u is
distinct from ps,...,p, and Zf:s p; + c is special. Then there exists x € C
such that (z,u,ps,...,py) € C9\ A (or, otherwise, K(ps,...,py) would vanish);
let {0;}ier, be the basis of H(K¢) associated to ,u, ps, . .., py by Proposition
4.1.

Let A(c) C I, \ {1,2} be the set

A(c) :={i € Ig\ {1,2} | o3 (v) # 0} ,
and A(c) :={3,...,9} \ A(c) its complement.
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Lemma 6.5. The set A(c) is independent of x, provided that (z,u,ps, ...,pg) €
CI\A. Furthermore, for each subset A" C I,\{1,2}, the divisor ), ,, p;i +c is
exceptional if and only if A(c) C A’, and A(c) is the unique set satisfying such
a property.

Proof. An effective divisor d, with degd < g, is exceptional if and only if
h'(Kc ® O(=d)) > g — deg D. Consider the divisor d := YicA(e)Pi + ¢ of
degree deg d = a+ 2, where a is the cardinality of A(c). Since H*(K¢c ® O(—d))
is generated by oy and by the elements of {0}, 4(.),

W(Ke®O(-d)=g—1-a>g—2—a=g—degd,
and d is exceptional. It follows that if A(c) C A" C {3,...,g}, then Y. ,, pi +
¢ > d is special.

Conversely, set d := Zie 4 pi and suppose that d + c is exceptional. Note
that, since d + u is not exceptional,

W (Ko ® O(—d—u)) =g—degd—1<h’(Kc®O(—d—c)) ,

and by H*(Kc ® O(—d—c¢)) C H* (K¢ ® O(—d —u)), it follows that H*(K¢ ®
O(—d—c)) = H(K¢ ® O(—d — u)); in other words, each element of H(K¢c ®
O(—d — u)) also vanishes at v. Now, H*(K¢c ® O(—d — u)) is generated by oy
and by the elements of {o;};c 4/, where A’ := {3,...,9} \ A’. Then, o;(v) =0
for all i € A’, so that A’ C A(c) and then A(c) C A

Unlqueness follows by noting that if A satisfies the same property, then
A C A(c) (because 2 icA(e) Pi + c is special) and A(c) € A (because A C A
implies that ), 7 p; + c is special).

Finally, by defining A(c) as the unique set satisfying such a property, it
follows that A(c) is independent of x. O

Lemma 6.6. Suppose that A(c) # @ and fivi € A(c) and j #1i,3 < j <g. Let
k+1, with k > 0, be the order of the zero of o1 in p;. Then, the holomorphic

1-differential
>\(C Z oab C"’Zpl Wa p1 Wb ) )

a,bely, l#1
has a zero of order n >k in z = p;, and n > k if and only if j € A(c).
Proof. Define the points Z1,...,Zg—2—k by

g—2—k

sz+u+v+kp]+ Z 7

so that (30 api +u+ v+ kp; + X022 % &) = b+ ra, for some a,b € Z9.
Consider the identities

ZHZ u+v+ me—

lel,
00>, Tm +kp; +w+ 2z —y)E(z, p])kE(z, w) [, E(z,&1)o(2)
E(y,2)E(y, w)E(y, p;)* [T, E(y, #1)o(y)
Oy tut v+ 3 pm —w— 2)E(z,p) Bz, w) [, B2, 81)0(2)
E(y, 2)E(y,w)E(y, pj)* [, E(y, #1)o (y) ’

~
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where ~ denotes equality up to nowhere vanishing factors, which hold for arbi-
trary w,y € C. Dividing by E(p;, w) and taking the limit w — p; one obtains

e_zmtaz(z—mE(z’pj)kE(pi, 2) 11, E(z,Zm)o(2)
E(y,2)E(y,pi)E(y,p;)* [ 1, E(y, Zm)o(y)
by +utv+ > pm—2)wlpi)

lely m#i

HOE

where we recovered the right phase. Since the right hand side does not depend on
y, the factor E(z, pj)’C cannot be compensated by any factor in the denominator
and the 1-differential has a zero of order at least k in z = p;. Furthermore, such
a zero if of order strictly greater than k if and only if

291(y+u4rv+ Z Pm)wi(pi) =0,

lel, meA’

forally € C, with A" := {3,...,¢9}\ {4,j}. In particular, for y = z, this implies
that the holomorphic 1-differential

b tutot Y pm—Awi(z),

€, meA’

vanishes at p;. Therefore, such a differential vanishes at z,u,v and p;, for all
I # j, 3 <1 < g; hence, it is proportional to o;, which is the generator of
H(Ke ® O(—u—x — 3_,,;p)), and it must be o;(v) = 0, so that j € A(c).
Conversely, if j € A(c), then A(c) C A’ and, by Lemma 6.5, yFutv+d o a0 pris
a special divisor for all y € C. Then, for each y € C, there exist q1,...,g4—2 € C
such that I(y +u+v+ 0 mi) = I(pi + 2, @), so that

DOy +utv+ > pa)wilp) =D 0pi+ > gm)wilp) =0,

lel, m#i,j lel, m
for all y € C, and the lemma follows. O
Set .
Ayk)(c) = Z Oap(c + gvpl)wa(pj)wb(pk) ; (6.11)
a,bel, g

i,5,k € I, \ {1,2}. Note that, if i € A(c), then Agzk)(c) = 0 for j = k and for
j, k # i, and
A (@) = A ()

ij

J#i.

Theorem 6.7. Chooseps,...,py € C, C2 3 c:=utv andz € C as above. Sup-
pose A(c) # @ and fizi € A(c). If u is a single zero for K( -, p3,...,Pis---,Pg),
then the holomorphic quadratic differentials ooy, k € I3} (see Definition2.3 for
notation), satisfy a unique linear relation

Z C’g(i)(c)aak =0,

kely}
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where ‘ ‘
) =S AP (e,
jEI}
>N
keI, with Aﬁi)(c) = A(lij),_j (c), j € I, defined in Eq.(6.11).
Proof. By Theorem 6.3 and Corollary 4.5] since u is a single zero for the function

K(-,p3,.- \Pis---,Dg), then ooy, k € I}}, span a (N — 1)-dimensional vector
space in HY(K2), and then satisfy a relation

Z C’Z(i)(c)oak =0.

kely}

Such a relation determines, up to normalization, an element

kery 3 ¢ := Z C’Z(i)a o

kely}

where ¢ : Sym® H(K¢) — H°(K2); by Theorem 5.3, kert is spanned by
{22/[:1 Cio - Jk}N<i§M, so that

M
Z C’Z(l)(c)a SO = Z Lgl)(c) Z C]{’lg oy, (6.12)
kely! j=N+1 =28V

for some complex coefficients L;i)(c), N < j < M. Note that, for all j,k,
with N < j,k < M, C%, = d;,. Then, by applying (p - p); (see Eq.(4.4)),
j=N+1,..., M, to both sides of (6.12), and by using Eq.(4.6)), we obtain

. ~0 (i) . 1i
LW — Cj (c) , forqefjl\(v N<j<M.
J 0, for j & I3},

Observe that if j € 5} and j > N, then j € I} (see Def. 2.3), that is, at least one
between 1; and 2; is equal to ¢; furthermore, the condition j > NN implies 1; # 2;
and 1;,2; # 1,2. Therefore, it remains to prove that L;i)(c) = C;(i) = Ag?zj (c)
for all j € I3, 7 > N, with respect to a suitable normalization of ¢.

The vector ¢ can be expressed as

b= Z C’Z(i)(c)o-crk:al-n+a¢-p+co'1-ai, (6.13)
kel

for some 1, p € H°(K¢), ¢ € C, so that the relation 1(¢) = 0 corresponds to
on+oip+coio; =0. (6.14)
Note that, by the redefinition n — n + ao;, ¢ — ¢ — «, for a suitable a € C, we

can assume 7(p;) = 0. Applying p; -p;, 3 <j < g, j # i, to both sides of (6.13),
it follows that

LY (¢) = pi - pjle] = p(py)
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where L1, (¢) = LY, (¢) == ng)(c), N < k < M. Define d € Cy_5 in such a
way that
(Ul) =b+c+d )

and observe that, by (6.14), p € H*(K¢ ® O(—d)) (since u is a single zero for
K(-,p3,...,Di,---,Dg), it follows that the ged of (o1) and (0;) is ¢+ Zk#pk).
Furthermore, p cannot be a multiple of o1, since, in this case, the only possibility
for Eq.(6.14) to hold would be ¢ = 0. Finally, Ll(;)(c) is invariant under the
redefinition p — p+aoy, since o1 (p;) = 0forall j = 3,...,g. Then, we can fix an
arbitrary y € C'\ supp(o1) and assume that p is an element of the 1-dimensional
space HY(Kc ® O(—d — y)). By using the relation I(b+c—y) = —1(d + y),
such an element can be expressed as follows

_a(y) Zkelg Or(b+ ¢ —y)wi(2)
Py Bl p) ’

(6.15)

where the normalizing constant A can be arbitrarily fixed, and a is a function
such that
@ aly) 2wer, Or(b+ c—y)wr(p;)
Ly =74 E(y, p: ’
(y,pi)
3<j<g,7j#1i,is independent of y. In other words, we assume that, under
the change

(6.16)

y—79, y§€C\supp(o1)

p—=p,
p(p;) is equal to j(p;); this property, together with the fact that p € H'(K® ®
O(—d)), which is generated by o1 and p, implies that

p=p+fy,9)o1, (6.17)

for some function f. Though Eq.(6.15) only holds for y € C'\supp(c1), the RHS
of Eq.(6.16) is a constant and can be continued to all y € C' and, in particular,
in the limit y — p;.

It is now sufficient to prove that a(p;) := lim,_,,, a(y) is finite and non-
vanishing (by Eq.(6.16) such a limit necessarily exists); in fact, in this case,
after fixing the normalization A = a(p;), we obtain

10 _ i > ker, Or(b+ ¢ —y)wi(p;) _ A9 .
Y E(y, pi) N

Then, to conclude, it remains to prove that lim,_,,, a(y) # 0, c0. Since LE;) and
AZ(-;-) are finite, lim,_,p, a(y) = 0 would imply that Lg;-) = 0 for all j and then
that Eq.(6.13)) is trivial, which is absurd.

In order to prove that lim,_.,, a(y) # oo, let us choose j #4,3 < j < g, in
such a way that, at the point p;, o1 has a zero of order k£ + 1 and )\l(-c)(z) has
a zero of order k, for some k > 0. Suppose, by absurd, that such a j does not
exist. Then, by Lemma 6.6, o;(v) = 0, for all [ € I, \ {2}. On the other hand,
such differentials also vanish at u, so that h’(Kc ® O(—u —v)) = g — 1. By the
Riemann-Roch Theorem, this would imply that h°(O(u + v)) = 1 and then C
would be hyperelliptic, counter the hypotheses.
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As discussed above, the hypotheses of the theorem imply that the greater
common divisor of (o1) and (o) is ¢+ Zm# Pm; in particular, if £ > 0, then
p; is a single zero for o;. Hence, by Eq.(6.14), p(z) has a zero of order at least
k in p;. By expanding p(z) in the limit z — p;, we obtain

p(z) ~ B¢RdC +o(¢F)

with respect to some coordinates ((z) centered in p;. Here, 5 does not depend
on y, since, by Eq.(6.17), p(z) depends on y only through a term proportional
to o1(z), which is of order ¢¥*1.

By using Eq.(6.15)), in the limit z — p; we have

Zae[g Oa(u+v+ an:z), Pm — Y)wa(2) N Ap
E(pi7 y) a’(y)

In the limit y — p;, the LHS gives )\EC)(Z), which, by Lemma 6.6, has a zero of
order exactly k in z = p;. Therefore,

¢td¢ +o(¢*)

. A
lim ——
y—pi a(y)

#0,

that concludes the proof. O

A classical result known by Riemann is the relation

Z Bap(€)wawp =0,

a,bely,

which holds for an arbitrary e € ©,. The connection of such a relation to the
ones considered in this paper is given by the following lemma.

Lemma 6.8. Choose pi,...,pg satisfying conditions i), i) or i) of Theorem
0.2. Then, for all e € Oy, the relation

Z Oup(e)wewp =0,

a,bel,

is equivalent to

M

Z A;(e) Z Cloo; =0,

i=N+1 GEIM
where
Ai(e) = Z Oab(€)wa(pr,)ws(p2,)
a,bel,

i€ Iy

Proof. Two relations are equivalent if they correspond to the same vector in
ker 1), up to normalization. Since ker 1 is spanned by {Zﬁil C.0 -0k tN<i<M,

then
M
Z Oap(€)wq - wp = Z A;(e) Z Clo-oj,
a,bely i=N+1 j€lnm
for some complex coefficients A;(e), i € Ip;. By applying p-p;, ¢ = N+1,..., M,
to both sides of this equation, and using C7; = 05, for N < i,5 < M, we
conclude. O
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Theorem 6.9. Chooseps,...,py € C, C3 3 c:=u+v andz € C as above. Sup-
pose A(c) # @ and fir i € A(c). Ifu is a single zero for K( - ,p3,...,Pis..,Dq),

then the linear relation o
> 7 (e)oar =0,

kely
s equivalent to
Z Oup(c+ ij)wawb =0.
a,bel, JFi

Proof. By construction, I(c + Zj# pj) € ©s. Then, use Theorem 6.7 and
Lemma 6.8, and note that

AnI(e+ > p)) =A0(0)
e
k=N+1,...,M. O

Theorem 6.10. If C is a trigonal curve, then there exist 2g—4 pairwise distinct
POINES P3,...,Pg, U3, ..., Ug € C such that the following conditions are satisfied

. K(p3a"'7pg) #O

. K(uj,p3,...,Di,--.,Dg) =0 if and only if j # 1, for all i,j € I\ {1,2}.
Furthermore, if, for each i € I, \ {1,2}, the points u;, j € I, \ {1,2,i}, are
single zeros for K(-,ps,...,Pi,-..,Pq), then the following statements hold:

a. For each 3 < j < g, there exists a unique v; € C such that

I(Cj+zpk_A) €0,,
ki

foralli#j, 3 <1< j, where ¢j :=u; +v;, 3< 7 < g;

b. The relations o
> i (ejoon =0,

kely}

3 <1< j <g, considered in Lemma 6.7, are linearly independent and
then generate the ideal Iz of quadrics in Py_1 containing the curve C.

Proof. Since C is trigonal, there exists a unique (up to a fractional linear trans-

formation) meromorphic function f with three poles. Hence, for each p € C,

F7Y(f(p)) consists of three (possibly coincident) points; note that, trivially, the

sum of such three points (counting multiplicity) corresponds to the unique ef-

fective divisor of degree three which is special and containing p in its support.
Fix z4,...,24 € C, and consider the function

Feyoey(p) = H K(z,z4,...,24) , peC.
zef~1(f(p)))

Denote by (K., ..., € C and [F]a, .., the sets of zeros of K(-,24,...,2)
and Fy, . .,, respectively. Then, one of the following alternatives holds: if
K(-,24,...,24) is not identically vanishing, then both [K],,.... », and

[F]$47---7Ig = U fﬁl(f(x)) )
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are finite sets; otherwise, both [K].,, .. ., and [F]., .. ., coincide with C.

For each n, 1 <n < g —2, let N3§213,...,wg C C™ denote the set of n-tuples
(p3a s 7pn+2) such that

n

(n) — _ )
Fwn+3,..,,mg (p?,, s 7pn+2) = FP37---,P1,-4-7Pn+271n+37---,1g (pl) )
=1

is not zero. Note that F() = F and N = C'\ [F].
Now, assume that, for some m, 1 < m < g — 2, the set N is dense in C™

for all n < m. The set [F(m+1)]xm+47___7mg of zeros of

Fag:_:;l,?..,zg (p3’ v apm+2ap) = Fps,---,pm+2,mm+47---,xg (p)

m
| IFp37"~)13’£>~~-7p7n+27p7w7n+4y~~7wg(pi) )
=1

as a function of p, is given by

m
[F(m+1)]w'rrb+4)“'7wg = U( U [K]pSy~~~7ﬁi7~~ypm+2y1;$'rrL+47~~;a3g)
i=1 zef=1(f(pi))
U [F}p37-~7p7n+27$7n+47--<7Ig .

If (p3, ..., Ppmyz2) € N™ | then the functions

K('7p37'"apm+2axm+47~'~7xg) 3
and

K('ap3a"'7pia" .,pm+2,$,$m+4,...,$g) )

for eachi =1,...,m, and = € f~1(f(p;)), vanish identically on C (for example,
Zm+3 1s not a zero). Hence, [F(m+1)]mm+47_”’xg C C is a finite set and, therefore,

N{™HD .z, is dense in C™T!. We proved that if K(-,z4,...,z,) does not

Tm+4,--

identically vanish for some zy4,...,24 € C, then N . “is dense in C" for
alln, 1 <n < g—2. It follows that N972, which does not depend on 24, ..., Zg,
is dense in C'9~2. Also note that the subset of C9~2 for which
g
Uruw)) .
i=3

consists of pairwise distinct points is dense Cy_». Hence, its intersection with
N=2) is not empty.

Let us choose (ps,...,py) in such an intersection and fix u; € f~(f(pi)),
w; # p;, for all < € I;\ {1,2}. Then, the points ps,...,pg, us, ..., uq are pairwise
distinct and satisfy the condition

K(uiap37"'apj7"'7pg):0 < Z?é]7

for all ¢,j € I, \ {1,2}. Furthermore, if u;, i € I, \ {1,2}, is a single zero of
K(-,p3,...,Dj,---,pg), forall j € I,\{1,2,i}, then there exists a unique point
vy; such that vg; + u; + Zk;ﬁj pi is special. Such a point satisfies necessarily
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I (f(pi)) = {pisui,vij}, so that it is independent of j, and the statement a.
follows.

Finally, note that A(c;) = p; and A(c;) = {p; | 3 <i < g,i# j}. Hence, by
Theorem (6.7, for each k, N < k < M the coefficients Clg(lk)(czk), l € Iy, are
given by

7 (e2) = AP (€2) R

where A% (¢,,) # 0. Linear independence of the C7()(¢;)’s, 3 < i < j < g,
follows by linear independence of the C7’s. O

6.4 The case of genus 4

Consider the case of a non-hyperelliptic curve C' of genus 4. The identity (6.4)

reduces to
K[v]

o?E(ps3, pa)?o(p3)o(ps) ’

where ¢4 2 = 1008, and can be used to express Eq.(5.7) in terms of the function
K. For g = 4 Eq.(5.7) reduces to a unique relation

10

el
g Cloo; =0.
i=1

It can be derived from the identity

K = —
(p37p4) 64725[

det; jen, 00i(z;)

= 0 s
det; jer, vi(z;)

by expanding the determinant at the numerator with respect to the column
corresponding to x19 = z. One obtains

detjer o\ (it UUj(CEk)

S ()i 00() =0,

det; ke, vj(k)

i€lo
where the ratios of determinants do not depend on x1,...,x9 and correspond
to
deti;if,;o\“} 00 (k) _ Klooy,...,004,...,0010]
det; ker, vi(xr) K[v] ’
Now, note that for 1, = 2;, k[oo1,...,00;,...,0010] = 0. This can be checked

by observing that all the elements in {00} cr,,\(;} vanish at p;, so that it
cannot be a basis of H?(K2). Hence, we can restrict the summation over all
the ¢ € I1p with 1; # 2;,. By a re-labeling of the points p1, ..., p4, the relation
between k[v] and K at genus four is

kloo1,...,004,...,0010]

K(py,,p.,) = —)itle = )
(o) = () e s ) oo (p2)

for all 4, 5 <1 < 10. Hence,

K(plmpzi)E(pli?pzi)Qo-(pli)o-(pzi) _ k(plmpzi)

“ = K(p3,ps)E(ps,pa)?c(p3)o(ps)  k(ps,pa)

(2

, (6.18)
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5 < 4 < 10, with k& defined in Eq.(6.5), whereas C7 = 0 for ¢ < 4. Since
oo; = 2}0:1 X wwj, it follows that
1) Vi b

10
Cy=> X7
j=5

i € 119, and we obtain

o1 N~ koep) s, (a0)0>, (ar)
=X 2 Ropn) S ety * (61

i € I1g. Note that C’;" = k(p3,p4)C¢ is symmetric under any permutation of
D1, .. .,Pp4. On the other hand, Corollary 5.10 shows that C{’, and therefore also
C¢, are independent of p;,ps. We conclude that Cy’, whose explicit form is

-1
Gy = Xi

b S@PI o)
4 917: (a‘k)eli (al)

‘ £71H:1 |:0(pk +p+ Z’i l’i)U(pk)U(pl) Hi#kJ (E(pk;pz)E(phpz))

b

7 3
. Z S(Z?:I zsi)S(Zi:4 1731;) H S(xsz T Ts,pa + Pk +pl)
3
sepy E(stgapk:)E(stgapl) i=1 H;;j E(.’Esi,.’ESj+4)

does not depend on pq, ..., py, for all i € I1g.
Note that, at genus 4, the equivalent relations

> Crww; =0,

i€l

Z Clww; =0,

i€l

and

must be proportional to Eq.(B.6), with e one of the two points in Og; in other
words, C¢ and Cy’ must be proportional to x; '9..,,(e). Such a proportionality
is immediately derived by noting that Eq. (6.8), for genus 4, gives

k(p,q) = K(p,))E(p,a)*0(p)a(q) = Ale) " Y bup(e)wa(p)wn(q) ,  (6.20)
a,bely,

for all p,q € C, where e one of the two points of ©4 and A(e) is defined in
Eq.(6.8). By Eq.(6.18) and Eq.(6.20), it immediately follows that

Za,belg Oap(€)wa (py; )wp (P2, )

o7 = 6.21
Za,beIg Oap(€)wa (p3)ws(pa) ( )
for all ¢ € Ips, and by Eq.(6.19)
0,
CyY =x;" e2:(0) (6.22)

>apet, Yav(€)wa(ps)ws(ps) '
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for all ¢ € Ips. Finally, we have

for all 1 € Iy;.

6.5 Modular properties of K(ps,...,p,)

For each n € Z+, let us consider the rank N,, vector bundle L,, on M, defined
in section 3.4, whose fiber at the point corresponding to a curve C is H O(Kg).
A general section s € L™, i > 1, admits the local expression on an open set

UcM,

sp)= Y. Snein Dby @b ®bi,, peUCM,, (623

i15eerim €N,

with respect to a set {¢;}icry, of linearly independent local sections of L, on
U.

For each non-hyperelliptic C' of genus g > 3, k(ps, . .., p,) as defined in (6.5),
is a holomorphic (g — 3)-differential in each variable, and is symmetric (for g
even) or anti-symmetric (for g odd) in its ¢ — 2 arguments. Hence,

k= Z Kiy.ign®iy @ - @ i, (6.24)
1 yeens ig_2€[Ng73
can be naturally seen as an element of F,, where

7o Sym? 2 HO(KZ% %), g even,
TOANTTEOKE) . godd,

for a fixed basis {Qbi}ielwg,S of H® (Kgf‘g). The definition can be extended in a
continuous way to hyperelliptic curves, by setting k;, _;,_, = 0 in this case. At
genus g = 3, k(ps) is a holomorphic function on C and therefore is a constant.
Furthermore, Eq.(6.5) also makes sense at genus g = 2; in this case, k is again
a constant. For g > 3, let us define E, by

E . Sym? 2 Ly_3, geven,
TN Ly s,  godd.

In view of Egs.(6.23) and (6.24), it is natural to seek for a section k € E, such
that, at the point pc € M, corresponding to the curve C, it satisfies

Eg > k(pi’n e apg) = k(pc) € (EQ)|PC )

under the identification (Ey),, = Ey. On the other hand, k(ps,...,p,) is not
modular invariant, and then it does not correspond to a well-defined element of
E, for each pc € M,. The correct statement is given by the following theorem.

Theorem 6.11.
ki=kw] Pk @ (w1 A .. Awy)2T9

is a holomorphic section of )&279 for g = 2,3 and of E; ® )\%279 for g > 3,
which vanishes only in the hyperelliptic locus for g > 3.
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Proof. Let us derive the modular properties of

K[w]9 B k(ps, . . . \Dg) -

Eq.(6.5) and the identity k[o] = k[w]/det w;(p;) yield

Kk, - py) = ()7 ey 21 (detuy(py))o+ |

Klw]®

By Eq.(3.18), it follows that [v]/k[w]? has a simple modular transformation

(det(CT + D))™19 , (é g) €Sp(20,2) ,

and, by using the modular transformation det w;(p;) — detw;(p;) det(Ct + D),
we obtain
K[w]9 8k — K[w]9Bk(det(CT + D))9 12 .

Hence, £[w]978k @ (w1 A ... Awy)'?79 is modular invariant and determines a
section of Sym? 2 E, 3 ® \]>"Y on M,. Since xlw] # 0 for all C, k = 0
at the point corresponding to the C' if and only if k(ps,...,py) = 0 for all
D3,...,pg € C, or, equivalently, if and only if C' is hyperelliptic. [

For g = 2 the section k corresponds to
k = kw]%k(w; Aw)'?,

and for g =3
k = k[w]’k(w1 Awy Aws)? .

Note that, for g = 2,3, Eqgs.(3.11) and (3.12) lead to the following relations

K[v] Klww]

Koo T~ Rl

and, together with (3.19) and (3.20), we obtain the identification

k=611 %k[w]) W0 , g=2,
kE=15-2%[w]’r®0y ,  g¢g=3,

recovering the results of Proposition 3.9

Let C' be a non-hyperelliptic curve of genus g = 4. In this case, k(ps3,p4)
is a holomorphic 1-differential in both p3 and p4, symmetric in its arguments.
Then,

det k(p;, pj
JACH - % = det k;j ,
(det wi(p;))

is a meromorphic function on C' in each p;, i € I,.

Proposition 6.12. The function k™ is a constant on C that depends only on
the choice of the marking. Furthermore, k¥ = 0 if and only if C is hyperel-
liptic or if C is non-hyperelliptic and admits a (necessarily even) singular spin
structure.
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Proof. Let us suppose that, for a suitable choice of py,...,ps € C, {k(pi, 2) }ier,
is a basis of H°(K¢). Then, the determinant
det k(pi, z;)

det w;(z;)

b

does not depend on the points z1,...,24 € C. Hence, the ratio

det k(pi7 Zj)
det wi(zj) det w; (pj) ’

is a non-vanishing constant on C. In particular, by taking p; = z;, it follows
that such a constant is *). On the contrary, if for all py,...,ps € C, the
holomorphic 1-differentials k(p;,z), i € I, are linearly dependent, then k()
vanishes identically.

Such a construction shows that k*) vanishes if and only if k(pi, 2), 1 € Iy, are
linearly dependent for all pq,...,ps € C. If C is hyperelliptic, then k(p;,p;) =0
for all p;,p; € C' and k™ = 0. Assume that C' admits a singular spin structure
a and let L, be the corresponding holomorphic line bundle with L2 = K. This
implies that ©, consists of a unique point of order 2 in the Jacobian torus. For
each p € C, the holomorphic 1-differential k(p, z) is the square of an element
of HY(L,); by varying p € C, such 1-differentials span the image of the map
@ : Sym?>H%(L,) — H°(K¢). If a is even, then h°(Ly) = 2 and Sym® H%(L,)
has dimension three, so that ¢ cannot be surjective and k¥ = 0. If « is odd,
then h°(L,) = 3 so that, for each point p € C, h%(L, ® O(—p)) > 2; if hy, hs
span H(L,®O(—p)), then h;/hs is a non-constant meromorphic function with
2 poles and C' is hyperelliptic.

Suppose that C is non-hyperelliptic and does not admit a singular spin
structure. Then, ©, consists of 2 distinct points, e and —e. Let us first observe
that if there exist two points p,q € C such that I(p — q) = 2e, then they are
unique. For, if I(p — §) = 2e = I(p — q), then p+ ¢ — p — ¢ is the divisor of
a meromorphic function on C. But, since C' is non-hyperelliptic, the unique
meromorphic function with less that 3 poles are the constants and, since p # g
(because 2e # 0 in Jy(C)), it follows that p = p and ¢ = q.

Also, observe that K(z, z) is not identically vanishing as a function of z; since
C' is compact, K (z, z) has only a finite number of zeros. Fix a point p; € C and
define z1,x9,y1,y2 € C by

Ilpr+z14+x2) =€, I(p1 +y1 +y2) = —e.

Then the divisor of k(p1, z) with respect to z is 2p; +x1 +x2 +y1 + y2. Observe
that at least one between 1 and x5 is distinct from y; and ys, since otherwise we
would have e = —e. We choose p; in such a way that py, 1, 2, y1, y2 are distinct
from the zeros of K(z, z) and from the points p, ¢ such that I(p—q) = 2e (if they
exist). Note that such a condition can always be fulfilled, since it is equivalent
to require that p; is distinct from the zeros of k(p, -), k(q,-) and k(w, -) for each
w such that K(w,w) = 0. Then, the points for which such a condition is not
satisfied is a finite set.

Set po := x1 and ps3 := y;. The divisor of k(ps, 2) is (k(ps3, z)) = 2ps + p1 +
Yo + 21 + 22, where 21, zo satisfy

I(p3+21+22):€.
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Since the condition on the choice of p; implies K (ps,ps) # 0, it follows that z;
and z9 are distinct from p3. Set pg := z1, so that

det k(pi,pj) = k(p1,p1)*k(p2, p3)?

The identities
Ipi+po+ao—p3s—ps—22) =0, I(ps+ 22 —p1 — y2) = 2e,

imply that py and 2y are distinct from py,ps, xo (for example, if py = x4, then
p1+Dp2 —p3 — 22 is the divisor of a meromorphic function and C' is hyperelliptic)
and from ys (if py = ya, then I(23 —p1) = 2e, counter the requirement that p; is
distinct from ¢ and p). Therefore, k(p1, pa)k(p2, p3) # 0 and then %) #£0. O

By Propositions 6.12 and [6.11}, it follows that, for g = 4,
K@ = k[w] 1 det Fij(wi A Awg)®

is a holomorphic section of A\3* vanishing only on the hyperelliptic locus, with
a zero of order 4[(3g — 3) — (29 — 1)] = 8, and on the locus of Riemann surfaces
with an even singular spin structure, with a zero of order 1. By Eq.(6.20), the
following relation holds
4 4
K= oy 05)

where the constant A depends on the moduli. Recently, it has been shown that
the Hessian det;;cr, 0;5(e) plays a key role in the analysis of the Andreotti-Mayer
loci at genus 4 and in the corresponding applications to the Schottky problem
[21][31]. Whereas no natural generalization of such a Hessian exists at genus
g > 4, the section k% is the g = 4 representative of a set of sections k9 of a
tensor power of A\; on My, defined for each even g > 4.

Definition 6.2. Let C be a curve of even genus g > 4. Fix N, 3 = hO(K% )
points p1,...,pn,_, € C and let {¢i}i61Nq_3 be a basis of HO(Ké_g). Set

WO Sar o TESE G TLE Rpig om0

9.
Ny_gilw]9-12(0-2+B=0No -3 (det d(p1, ..., pw, )" >

(wl/\ . ./\wg)d!]

where dg 1= (12 — g)Ng_3 + (9 — 2)[6(9 — 3)(g — 4) + 1] and the sum in the
numerator runs over g — 2 permutations s',...,s972 € PN, _s-

Proposition 6.13. For all the even g > 4, K9 does not depend on the points
P1y-- - PN,_5 € C and on the basis {gf)i}iel%i3 of HO(Kg*ii) and determines a

. d
section of A7 on M,.

Proof. Choose (g — 2)N,_3 points pi,... vaJ‘vg_;; € C, i € I;_» and note that

Z H€ H pijl_,---,pi?fz), (6.25)

sl ...,89— 26PN g i=1 j=1
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is a product of g — 3 differentials in each pé, i €1y 9,5 € In,_,. Such a product
is completely anti-symmetric with respect to the permutations of each IVj_3-
tuple (pi,... 7p§vg,3)7 for all 4 € I;_o, so that it must be proportional to the

determinant det ¢(pi, ... ,p?vgig)). Therefore, the ratio of Eq.(6.25) and

I detowi,....oN, ),

i€ly o
does not depend on the points pi,... ,pﬁ\,gi3 € C, i € I;,_o; in particular, by
choosing, for each j € Iy, ,, pj =p; = ... = p?_2 = p;, where p1,...,pn,_,

are the points in the definition 6.2, it follows that k9 is a constant as a func-
tion of CNs—3. The proposition follows trivially by Theorem (6.11) and by the
expression (3.18) of the Mumford form, with n = g — 3. O

Definition 6.2/ and Proposition [6.13 make sense also at odd genera; however,
simple algebraic considerations show that, in this case, k9 is identically null
on M,. In general, there exist some non-trivial generalizations of K% at odd
genus, but they are not as simple as the ones at even g. An example at genus
g=>5is

(Wi A= Aws)0k[g)*
Klw]® (det (py, ..., p1a))"

S tem, ORIk i, i)

“k(Diy» Piss P )k (Dig, Pins Pry ) K (Pig» Dig > D1, )
“k(Diro> Pjas Pis )k (Diry s Phos Phs )k (Pivas Ply» Pis )

“k(Pjss Piss Pje )k (Djz s Pis> Phea )k (Do Pjros PLs)

“k(Djyy s Phs s Pre ) K (Djras Piss Pio ) K (Phr s Phs > Pho)

“k(Phigs Phir s Pio ) (Phias Piss Pig )R (Pligs Pluys Plaa )

which does not depend on the points pq,...,p12 € C and corresponds to a
section of A\1% on M.
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7. SIEGEL’S INDUCED MEASURE ON THE MODULI SPACE

2

A A1,

moduli space M, of genus g canonical curves induced by the Siegel metric. This

was previously known only for the trivial cases g = 2 and g = 3. By Wirtinger

Theorem, the explicit expression for the volume form on M ¢ is also obtained.

A remarkable property of ds‘2 ot is that it is given by the Kodaira-Spencer map
g

In this section we derive the explicit expression of the metric ds on the

of the square of the Bergman reproducing kernel (times 472). This is one of the
basic properties of the Bergman reproducing kernel derived in this section. Such
an approach will led to a notable relation satisfied by the determinant of powers
of the Bergman reproducing kernel. The results are a natural consequence of
the present approach, which also uses, as for the present derivation of dS\QM ,
the isomorphisms introduced in section 2.1. ’

The Torelli space 7, of smooth algebraic curves of genus g can be embedded
in $, by the period mapping, which assigns to a curve C, with a fixed basis
of H1(C,Z), representing a point in 7, the corresponding period matrix. The
period mapping has maximal rank 3g—3 on the subspace ’ZZ of non-hyperelliptic
curves and therefore a metric on §), induces the pull-back metric on ’fg. It is
therefore natural to consider the Siegel metric on $4 [60]

ds* :=Tr (Y~ tdzy—tdZ) , (7.1)

where Y := ImZ, Z € $,. Such a metric is Sp(2¢,R) invariant, and since
M, =T, /T, it also induces a metric on M,. The Siegel volume form is [60]

AT (A2 A dZs)
1 1<j v] )
W=3 (det Y)9+1 : (7.2)

The explicit expression of the volume forms on Mg induced by the Siegel
metric, which coincides with (7.2) for ¢ = 2 and g = 3 non-hyperelliptic curves,
is given in Theorem [7.7. It is simply written in terms of the Riemann period
matrix 7;; and of the basis {dr;;} of T*7,.

The Laplacian associated to the Siegel’s symplectic metric were derived, ten
years after Siegel’s paper [60], by H. Maass [43]

A=4Tr (Yt (Y%) a%) . (7.3)

As we will see, as a byproduct of the present approach, and of the formalism
developed in section 2.1]in particular, both (7.2) and (7.3) are straightforwardly
derived.



106 7. Siegel’s induced measure on the moduli space

7.1 Derivation of the volume form and the Laplacian on $,

Proposition 7.1. The Siegel metric (7.1) can be equivalently expressed in the
form

Z 95dZ;dZ; (7.4)
1,7=1
where
_ Y~ Y 1 +Y ly-1
S Li 1i25 " 2415 -1, —1/yv—1v—1
C(Z4,7) = =2 Y'Y T, 7.5
9;(%,2) (1+51,iz,.)(1+5ljz,.) XX Ji (7.5)
1,7 € Ipy.

Proof. For n = 2 the identity (2.3) reads

g M
§ § 1kzk lknzk) )

ij=1 k=1

where we used the identity

2
2§y =
S R
Hence
g —
ds* = > YV;'dZyY, dZ (7.6)
iyg.kyl=1
g M Y_ —1 —|—Y_1Y-_1
_ Z dez Z ilm " J2m 12m = Jlm lemzm
i,j=1 1 + 5lm,lm,
M — — — —
= Z (2 — 0 )dZ 1/;wnimy;nllm + Ylnlzmylnim dz
m,n=1 e e 1+ 61m2m i
= Z 2o (Y Y Y),0d 2, d 2,
m,n=1
O
Let
i & _
=5 D 954Zi NdZ; (7.7)

i,j=1
be the (1,1)-form associated to the Siegel metric on )4, so that the volume form
on §), is
1

M (0
MW = (5) detgw /<\ dZ’L] A le]) .
)
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Proposition 7.2.
2M—g

S _

Proof. Since Y is symmetric and positive-definite, we have
PY'P7 ! =diag(\i,...,\y) =D,

for some non-singular g x ¢ matrix P and some positive A1,..., ;. By (7.5)
and (2.6))
(Y_ly_l)ij

det gfj =oM det; o
iXj

PP);: p-ip-1y,.
:2M detij ( ) J detij ( ) i 7
Xj Xj XiXj

and by (2.4)

det gl's; = 2”1 deti]‘ (X X)” = 2M detij /\A;((id)w .
iXJ iXj

The proposition then follows observing that (§6);; = x;d;; and that (2.7) yields

M - 1 M : g+l
detgisj =2 H)\)\ix; =2 _g(H )\k) .
k=1

i=1

O

Proposition 7.3. The Laplace-Beltrami operator acting on functions on §4 is

1 o 0
A=-S(vy), 22
22; Vi57, 02,
Proof. Just use the definition of A and note that g% = (YY);;/2. O

7.2 The Siegel metric on the moduli space

The following theorem provides a modular invariant basis of the fiber of T*7,
at the point representing C'.

Theorem 7.4. If p3,...,py € C are g — 2 pairwise distinct points such that
K(ps,...,pg) # 0, then

M
Eii= Y Xpdr; (7.8)
j=1

i € In, with X5, i,j € Iy, defined in Eq.(5.23), is a modular invariant basis

of the fiber of T*’ij at the point representing C'.
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Proof. Consider the Kodaira-Spencer map k identifying the space of quadratic
differentials on C' with the fiber of the cotangent bundle of M, at the point
representing C. Next, consider a Beltrami differential y € T'(Kc ® K;') (see
[11] for explicit constructions) and recall that it defines a tangent vector at C'
of 7,. The derivative of the period map 7;; : 7, — C at C' in the direction of u
is given by Rauch’s formula

dC’Tij(/J,) :/ ,uwiwj .
C

It follows that

1
k(ijk) 27”:d7'jk y
J. k € I, so that, by (5.22),
1M
k(v;) = i ;Xﬁjdﬁc ) (7.9)

7 € Iy, where
dry »=dry,,, ,

i € Ips. It follows that the differentials
Ej = 2mik(v;) , (7.10)

j € Iy, are linearly independent. Furthermore, since by construction the basis
{vi}tiery is independent of the choice of a symplectic basis of Hy(C,Z), such
differentials are modular invariant, i.e.

g - =5, (7.11)
i € Iy, under (B.3)). O
Let ds‘zM be the metric on Mg induced by the Siegel metric. Set
gij = g;sj(T, T)= 2X;1X;1(Im7_11m7_1)¢j . (7.12)
Corollary 7.5.
N
dsty, = > gLEE; (7.13)
i,j=1
where
M
95 = > guBiB; (7.14)
k=1

and BY is the matriz defined in (5.11) with n; = w;, © € I,. Furthermore, the
volume form on M, induced by the Siegel metric is

i\ NV = _
vy, = (5) det g= dw A dw | (7.15)

where

M
wl o N
dw := Z X - driy N+ NdTiy (7.16)

N> > =1
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Proof. By (7.4) and (7.5))

M
ds‘QMg = Z gi;dridTy . (7.17)
k=1

Furthermore, by applying the Kodaira-Spencer map to both sides of Eq.(5.10),

one obtains
N

dri =Y B5E; (7.18)

j=1
i € Ipg, and (7.13) follows. On the other hand, by (7.13)

[1h

i\ = _
dv g, = (5) det g= ANE A E)) (7.19)

and by Theorem (7.4 the proof is completed. O

Applying the Kodaira-Spencer map to (5.24) yields the linear relations satisfied
by dr;, © € Ip.

Corollary 7.6. The (g — 2)(g — 3)/2 linear relations
M
Y Cgdry =0, (7.20)
j=1

N +1<i< M, where the matrices C¥ are defined in (5.25), hold.

Set Im 7 := Im 7 and consider the Bergman reproducing kernel

B(z,w) := Z wi(z)(Im 7) ;5 @5 (w) |

for all z,w € C., and Set K(¢) = k(d)k(v), k() = k(z), for all ¢, €
HY(K%), where k is the Kodaira-Spencer map.

Theorem 7.7.
dsfMg = 47%K(B?) . (7.21)
Furthermore, the volume form on Mg induced by the Siegel metric is

M _1‘i1~~~iN N

v = JLIN N(dri, nd7,) . (7.22)
| Mg N i 7l
;Nii?:i Hk:l(l + 517:,C qu)(]- + 5l_j,€ Z_;’k) =1
N> 1=

’ImT‘l Imr

Proof. Eq.(7.21) is an immediate consequence of Proposition [7.1l and of the
application of the Kodaira-Spencer map to the identity

Z wwi(2)g];0w;(w) = B*(z,w) . (7.23)

ij=1
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Consider the (1,1)-form w defined in Eq.(7.7). By Wirtinger’s Theorem [30],
the volume form on a d-dimensional complex submanifold S is

L g

a”
so that the volume of S is expressed as the integral over S of a globally defined

differential form on $,. Note that

N

N M N
dV|Mg :2NN! Z H giTkjk /\(dTil A d/]_—jl)
i1 eemin=1 k=1 I=1

J1se-dN=1
<N

M N N
(3 T _
) k=1 1

Z:N>...>211i1 r,sEPN =
N> >51=1

and Eq.(7.22) follows by the identity

N
> em)els) [T a7 nion = NI
k=1

r,s€EPN

O

Fix the points z1,...,2zy € C satisfying the conditions of Proposition 4.1.
The basis {7; }icry of H'(K2), with v; =42, i € Iy, defined by Eq.(4.1) in the
case n = 2, satisfies the relations

N N
ww; = wai(zj)vj , vy = Zvi(zj)'yj ,
j=1 j=1

i € Ing. Set Ty := (2mi) ~Yk(7;) and [v]i; := vi(2), 4,j € In.

Corollary 7.8. Fix the points z1,...,zn € C in such a way that det ¢;(z;) # 0,
for any arbitrary basis {¢; }icry of HX(K?). The metric on M, induced by the
Siegel metric is

N
dS\QMg - Z B*(z;, 2Tl (7.24)
i,j=1

and the volume form is

dw A dw ,

(7.25)
where {v;}iery is the basis of H°(K2) defined in Proposition 4.4 and dw is
defined in Eq!7.16.

. I\ N 2 _ N = 7 NdetB2(zi,2j)
dv) x4, = (5) det B*(z;,z;) N\](Ii AT;) = (5) Taetui(z)P

Proof. Eq.(7.24), and therefore the first equality in Eq.(7.25)), follows substitut-
ing

N
dTi = wai(zj)l‘j 5
j=1
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1 € Iy, in (7.17) and then using the identity (7.23). Next, note that comparing
(7.24) and (7.13), and by Z; = 320 [v];;T;, i € Iy, yields

N

Z lkigh [0 = B (21, %)

k=1

which also follows by the definition (7.14) of ¢g= and by Eq.(5.10), with n; = w;,
i € Iy, and Eq.(7.23). Hence

= det B%(z;, %)

det g~ = Tdetoi(z ) (7.26)
which also follows by detv;(z;) =1 and
E1A--AENy =det vi(z;) 1A AT,
and the second equality in Eq.(7.25)) follows. O

7.3 Determinants of powers of the Bergman reproducing kernel

Corollary [7.8 in particular Eq.(7.25), implies that the ratio
det BQ(ZZ‘, Zj)
|detv;(z;)>

does not depend on z;, i € Iy, and therefore det B?(z;,%;) factorizes into a
product of a holomorphic times an antiholomorphic function of z1, ..., zx. This
is a special case of a more general theorem.

Theorem 7.9. Fizn € Ny and set

g
Z Ajwi(w)

where A is a complex g x g matrixz. Then, for all z;,w; € C, i € Iy

n’

det B (z;, ;) = |k[0"]| " det ¢" (21, .., 2w, ) det 6" (wr, . .., wn, ) Kn(A)

(7.27)
where {¢]' Viery., is an arbitrary basis of HO(KZ) and
M,
Ko(A)= Y kwwi,.wewiy (7.28)
Ny, > >01=1
INp > >g1=1
A Al
“Mﬁ[wwjmvwwﬂvn] .
[T Xi X
Furthermore, forn > 2
N, Nn N 2
det B7 (2, %) = ‘9A s z2) [[ Bz [ o Z—)%—l‘ Ka(A).  (1.29)
1 1<j 1
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Proof. Observe that

g
B(ziw;) = Y, wiy (20) Wk (20) Akt -+ A, @, (w5) - @, (w;)

Eiyeookn=1
Uyl =1
M,

= k(i) wi(w;)
hl=1 XkX1

with the notation of section 2.1. Then

@B = Y ¥ d H e ()3 )

ki,....,kn,, =1s€Pn,,
I, lp=1

and by defining my, :=1;, ¢ € I, , det B (z;, w;) becomes

M

.k
A Al T
Z H w - Zi wnzl (wz)

k1, kN, =1 Hz 1Xk Xmy =1

mi,...,mn, =1
A. .. A my
= > | [ 2 N er)els) [[w e wn,, (20)@ - @, (i)
kN, >..>k1=1 Hi:l Xki Xm; r,s€PN, i=1
mp,, >...>mi;=1
M, kN
A.. A my
Z | | o odet w--rwi(z) . det - wi(wy).
kn, >...>ki=1 Hi:l XkiXm; I?kl""’kN” PEIL TN,

=1,..,N, =1,...,N
o Smi j=1,...,Nn j=1,....;Np

By Eq.(3.4), for an arbitrary basis {¢!'}icr, of HO(K{)

H[w"'wkl,'“;w"'wkN ]
det coewi(z:) =det o™ (21, .., -
ie{kl,.e.).,an}w wi(;) etd" (= Znn) Ko7

Jj€IN,

leading to (7.27). Eq.(7.29) then follows by Eq.(3.3). O



8. A GENUS 4 EXAMPLE: A 3-FOLD COVERING OF THE
SPHERE

In this chapter, the objects defined in the previous chapters, in particular the
distinguished basis {0;}ic, of HY(K¢), are explicitly obtained for a family of
non-hyperelliptic curves of genus 4, in terms of the algenraic parameters of the
family.

8.1 Definition and main properties
Let C be the non-hyperelliptic curve of genus 4 defined by

w® = 2(z — 1)(z — M)%(z — Xa)?(2 — X3)?,

(z,w) € Py x Py and let

g =2"1(0) @ =2""(1),
Goo :Z_l(oo) ) Di :Z_l()‘i> ) (RS I3 )

be the branching points on C', all with branching number 1. Since

(2) =3¢0 —3¢oo , (W) =qo+q1 + 2p1 + 2p2 + 2p3 — 8¢
(dz) =2qo + 2q1 + 2p1 + 2p2 + 2ps — 44

a basis of HY(K¢) is given by

dz [Hf’:l(z —\;)]dz
SOl = Y 803 = 2 )
w w
zdz Z[Hle(z - \;)]dz
Y2 =, Y4 = 5 .
w w

Note that @1, generate U := H*(Kc ® O(—qyo — 1 — Goo)), Whereas 3, 04
generate V := H(Kc ® O(—p; — p2 — p3)). Consider the automorphism ¢ of
C given by ¢(z,w) := (2,C(w), where ¢ := ¢?™/3; then, the pull-back ¢* is an
automorphism of H°(K¢) and U and V are the eigenspaces corresponding to
the eigenvalues, respectively, (2 and (.

The Riemann surface C' is a 3-fold covering of the sphere. Let us define the
Jj-th sheet, j = 0,1,2, as the one containing the line Im z = 0, argw = j(27i/3).
Let us fix a basis of H;(C,Z) as in the following figure.
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sheet 0
B
aq
g
B2
sheet 1
Qs ay
Qy .
Ba

sheet 2

Az
Fig. 1.
)\1 )\1 >\2 )\2
/n=/ n— o', /n=/ n— »*n ,
a1 0 0 (D) 1 1
A1 A1 A2 A2
/ n= o*n — o**n / n= ¢*n — ™%,
ag 0 0 Qg 1 1
o0 oo o0 o0
/77=/ n— | ¢%n, /n=/ n— | ¢*n,
1 A1 A1 > A2 A2
oo o o0 oo
/ n=[ o¢n— | ¢*n, / n=[ o¢n— [ ¢n.
3 A1 A1 4 A Ao

Let uy,us € U and vy,vy € V' the holomorphic 1-differentials satisfying

A1 1 A1 Ao Ao
/ uy = g = / U1, / uy = 0= / U1,
0 0 1 1
A1 A1 Ag 1 A2
/ U2:0:/ V2, / Uzigi/ Vg,
0 0 1 1

where the integration is above the cuts in the O-sheet. Consistency requires

oo oo o oo 1
/ u1=/ u1:/ U1=/ Uy =5 >
Az A3 A3 Az 3
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where integration is along the cut in the 0-sheet. Then, it can be easily verified
that

wii=up v, wyi=up+vy, wyi=—Cup—Cur, wpi=—Cug —(ua

(8.1)
is the canonical basis of H°(K ) associated to our choice of basis of Hy(C,Z).
Furthermore, a lengthy but straightforward calculation yields

2a 2¢ a c

|2 2b ¢ b
“la ¢ 20 2c]|
c b 2 2b

w1 =a, / we =c, / w3 =0, / wg =0,
A1 A1 A1 A1
/ wp =c, / wy =0, / ws =0, / wyg =0,
A2 A2 A2 A2

w1 =3, w2 = 7, w3 =7, Wy =7,
s 3 s 3 As 3 As

w1 =3 a, w2 =C, w3 =3, Wy = )
0 3 0 0 3 0

oo oo oo oo 1

/ wp =2¢C, / WQ:*—Fb, / (,()320, / Wy =7,
1 1 3 1 1

where the path of integration is along the cuts and along the arcs representing
part of the (-cycles in the O-sheet (see the figure above).

The vector of Riemann constants with base point g, can be computed to
be

1/24+a—-1/6+4c¢ 1 1
1/24b-1/6+c| 1|[1 1

oo — —
K= =11ptvar1ere| "3 ||2] 7|1
1/24b+1/6+c 2 1

Note that ¢1,p2 € H' (Ko ® O(—qo — q1 — o)) and 1,93 € HY (Ko ®
O(—3¢w0)), so that I(go + q1 + goo) and 1(3¢s) are in W4. Furthermore, I(qo +
q1 — 2¢o) 1s not a period, so that Oy consists of two distinct points eq, eq

e1=1(qo+q1+ goo — A) = K" | ez = I(3¢oe — A) = K% .

By Proposition [6.12), k4 # 0 for such a curve.

The points p1,p2, qo, g1 satisfy the condition of Proposition 4.1l with n = 1,
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and the corresponding basis of HY(K¢) is

\/Al (A1 = DA = A2)? (M1 — A3)? (2 — A\g)dz

o 3(A1 = A2) wd(y,
o \/)\2 )\2 — 1)( )\1)2()\2 - )\1) (Z — )\1)d2’

bz ()\2 — )\1 ’U.)dC)\2

(A2R)? (2= 1)(z = A)(z — Xa)(z — Ag)dz

Tao T3 Doks w2dCo ’
YOI 0) 2z = M) (e = da) (2 = M)z

e 3(1 — )\1)(1 — )\2)(1 — )\3) ’U)2d<1 ’

where the argument a of each root is 0 < a < 27i/3 and (y,, (x,, Co, ¢1 are local
coordinates centered in p1, p2, qo, q1, respectively, such that

. forp~p1,
w(p) = YA 00 — DG — )20 — Aa)2, +0(3,) '
2(p) = X+ 3, (p) for pre p
= VM0 — 102 — A)200 — M2, +0(G3,) :
2(p) = G () for p~ ao
w(p) = VA A3l + O() ’
2(p) =1+ ¢ (p) , for p g
. ~dq1 ,
w(p) = /(1= A1 = X2)(1 = As)é1 + O(CR)
with the same convention as before for the third roots.
By using Eq.(4.9),
o = Z? 0i(p2 + qo + q1)wi _ Z? 0i(p1 + qo + q1)w;
7 Zf 0i(p2 + qo + q1)wi(p1) v Z? 0:(p1 + qo + 1 )wi(p2)
B Z? 0;(p1 + p2 + q1)w; B Zf 0;(p1 + p2 + qo)w;
UQO - Up2 -

Z? 0i(p1 + p2 + q1)wi(qo) ’ Zf 0i(p1 + p2 + qo)wi(q1) '
Note that o,,,0p, € U, whereas o4,,04, €V, so that, by using the decomposi-
tion of the canonical basis under H?(K¢) — U@V given by Eq.(8.1), we obtain
the following identities

=(01(p+q0+q1) —COs(p+ qo + q1))v1

+ (02(p + qo + q1) — COa(p + qo + q1))v2

=(01(q + p1 + p2) — ¢203(q + p1 + p2))us

+ (02(q + p1 + p2) — *04(q + p1 + p2))uz

for arbitrary p,q € C. Since uq, us,v1,v2 are linearly independent, we conclude
that

03(p + o + q1) —¢ = 0a(p + qo + q1)
O(p+aq+aq) °  blpta+aq)’
05(q + p1 + p2) _ 04(q + p1 + p2)
01(q +p1 + p2) 02(q + p1 +pal)
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for all p,q € C. Hence,

o S22 0i(pa + qo + q1)us _ S22 0:(p1 + qo + q1)ug
TS i a0+ a)wlp) T 0+ a0+ a)ui(p2) |
0o+ p2+ a)vi Y 0i(py + p2 + q0)vi

Jqo - p2 T

Zf 0;(p1 + p2 + q1)vi(qo) , Zf 0;(p1 + p2 + q0)vi(q1) .

Note that K(p1,p2) = 0= K(qo,q1), so that

k(p1,q0) k(p1,q1)
(det (k(p;,qg) (pz,q1))>
(detw(p1,p2,QO,CI1))2

ky =

An alternative formula for k(p1, qo)

cg.25(p1 + P2+ g0+ ¢1)*E(p1,90)*E(p3, 400 ) E(p3, p1)*E(q0, 40 ) * E(qo, p1)*
3
E(p2, q1)30(p2)*0(q1)* (E(p2, 4o ) E(p2, p1)2E(q1, p3) E(q1. q0)?)

8.2 Computation of K.

Set p1 := 0 and po := 1. Then, note that

Ain(x)/:p—/Ai /p+/m¢ )/I¢*p+/oon(x)/:p
o e
/ / = [ o [ o0,

i = 1,2, for arbitrary n, p € H°(K¢). Consider the 4g-edged polygon obtained
by the canonical dissection of C along the chosen basis of 7 (C, o). Let U;, Vi,
i = 1,2 be holomorphic functions on such a polygon such that u; = dU; and
v; =dV —i. By

we obtain

Ui (T Ui =5 i — Vil Ui= g A~ A
a; q 2 q a; 2(1 - <)2 6

o

and analogously
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Let us compute

/aiuk(:c)/q:vj:L;\iuk(x)/:vj+/)\jiuk(x)//:vj+/}:ouk(:c)/:vj
e[ (e wure[Cw)

Ai i
=—Vj<oo>/ uk—Vj(Ai)A w

Vi) [ 0500 = Viee)) [
F 0500 - Vitoe)) [ ok ) i) [

oo

i
#&—nmmm—w&m/ w+«—nwmm—w0m/ w

223 Hi
@0 [ w [ wra-0[ w [ .
i Ai i Hi

for all 7, j, k = 1,2. By an analogous calculation, or by noting that

/aiuzc(x)/q:vj-k/aivj(x)/q:ulc

(621 (QOO)
:/ M%W*%%Q/W*%@Q/w
q Qg (e73

oo

~(Uslaw) + [ w)Wilaw) + [ 05) = Unlaw)Vi(a)

623 23

—Vj(qoo)/ Uk_Uk(QOO)/ivj

=Lf%1;w;<r—oa—<%1ju@47w

%O—O+O—@HLT%ZTW,

one obtains

/aivj(x)/q:uk:(C—1)/,:ivjATuk+(1_C2)AmvjAjiuk7

i
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for all 4, j,k = 1,2,3. Hence, >, [, wilz) f; w; is given by

/aqu(x)(/q:ulJr/q:Ul)+/a21)2(x)</q:u1+/q:vl)

—<2/al ¢*u1<x>(/q: ¢*u1+/q: o0 —C/@l <z>*v1(x>(/q: <z>*u1+/q: =

¢ [ om@ ([ vus [ on) o[ cu@ ([ sus [ o)
:—/alul(x)/:ul—/alvl(x)/qivl—CQ/alul(x)/q:Ul—C/alvl(m)/q:ul

+<1—c2>L2u2<x>/zv1+<1—<>/a2v2<x>/xu17

oo oo

and we finally obtain

T e 1-¢ Gl 1-C (-1 1
;/{sz(m)/ T T T T Ty T @

=l
=
@
=
@
o
|
2
V]
|
&)
BN
|

T14 = To3. Similar computations yield

S [ o) [Cn=g-e,

22 7 o

Z/aiwi(l’)/q:w3éc,

i#£3

Z/{liwi(z)/xtm:—é—c,

i£4 doo

so that
1/24a—-1/6+c¢
1/2+b—-1/6+c¢ 1

DN DN = =
[

oo — _ =
K= =11ta+1/6+c| ™3 T
1/24+b+1/6+c
8.3 The prime form
Set \ \ B2
fi= (2= M)(z = 2)(z = 3)} (d=)"?, i=1,2,3.
w

Note that f1, fa, f3 are meromorphic sections of the same line bundle L (since
fi/ f; is a meromorphic function, for all 4, j € I3). Furthermore, since

(f1) = 2p1 + 2p2 + 2p3 — 3¢co
(fe) =qo+q +p1+p2+13— 200 ,
(f3) =2q0 +2q1 — oo »

and
I(2g0 + 21 — g0) € 7t + 17,
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it follows that the sections of L are the single-valued 1/2-differentials corre-
sponding to the spin structure [J].
Now, consider the meromorphic function z(p) — z(q), (p,q) € C x C. Its

divisor with respect to p is ¢ + ¢(q) + ¢%(q) — 3¢eo. Let us define

Zielg fi(p)fél—i(Q)

3(2(p) — 2(q))
It is a meromorphic section of 7L ® m5L on C x C, where 7;, ¢ = 1,2, is the
projection of C' x C on the i-th component. Let us show that F(p,q) has only

a single pole at p = ¢. In facts, the only possible poles are q, ¢(q), ¢*(¢). On
the other hand, by using w(¢"(¢)) = ("w(q), r = 0,1, 2, one obtains

SR famila) TR BV BT+ 14

i€ls

F(p,q) :=

which vanishes if r = 1, 2.
For each non-singular even spin structure §, define the Szegd kernel

0[0](p — q)
0[6](0)E(q,p)

This is a meromorphic section of 77 Ls @ 75 Ls on C' x C' with a unique pole in
p = ¢, where the sections of Ls are the 1/2-differentials with spin structure §.

Set S(p, q) = Spy(p, q)-
Proposition 8.1.

Ss(p,q) ==

F(p,q) = S(p,q) -

Proof. Note that F'(p,q) and S(p,q) are meromorphic sections of the same line
bundle 7 L7 L on C'x C. Fix a point ¢ € C and a local coordinate ¢ centered
in g. In the limit p — ¢, 8(p — q) ~ 0(0) + O(¢(p)?) so that, by considering the
expansion of E(q,p), we have

ﬂn@%qwmggwwu+w&@».

Let us consider the expansion of F(p,q) in the same limit. If ¢ is distinct
from the branching points, then z is a good coordinate around ¢ and we have

—q Vdz(p)\/dz(q
F(p,q)"~" 1+ 0(z(p) - 2(0))*) -
e )
On the contrary, if ¢ coincide with a branching point, for example pp, let us

consider a local coordinate ¢ on a neighborhood U of p; such that z(p) =
A1 + C3(p) for p € U. Then dz(p) = 3¢?(p)d¢(p) and

fl(p)fs(pl) p=p1 dC(p1)+/dC(p)
3(z(p) — A1) ¢(p)

By comparing the expansions of S(p,q) and F(p,q) around their unique pole,
we conclude that

F(p,p1) = (1+0(¢3(@)) -

S(paQ)_F(paQ) )
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is a holomorphic section of 7f L ® m3L. On the other hand, since [J] is even

and non-singular (the only singular points are K> and —K* and they are not
half-periods) it follows that h°(L) = 0 and then also h°(7; L& 73 L) = 0. Hence,
S(p,q) — F(p,q) is the constant 0 and the proposition follows. O
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A. VARIETIES

A.1 Analytic and algebraic varieties

Definition A.1. An analytic variety in an open set U C C™ is a subset V' C U
such that for each p € U there exists an open neighborhood U’ C U such
that U’ NV is the set of zeros of a finite collection {fi,..., fx} of holomorphic
functions on U’.

A analytic variety V C U C C" is

e irreducible if it cannot be written as the union V = V; U V4 of analytic
varieties Vi, Vo C U, with Vi, Vo £ V.

e smooth at p € V if there exists a neighborhood U’ C U such that U' NV
is the set of zeroes of k holomorphic functions fi,..., fx on U’, such that
the matrix df;/0z;, where z1,..., 2, are coordinates in C", has rank k.

It can be proved that any analytic variety is the finite union of irreducible
components.

Definition A.2. A complex manifold is a differentiable manifold admitting an
open covering {U,} and a collection of coordinate maps ¢, : U, — C™ such
that ¢, o ¢§1 is holomorphic on ¢g(U, NUpg) for all a, 5.

A complex manifold of dimension 1 is a Riemann surface.

A holomorphic function on a complex manifold M is a function such that
fiv. 0 ¢3! is a holomorphic function on ¢q (Uy) C C™.

As a generalization of definition [A.1, an analytic subvariety of a complex
manifold M is locally defined as the set of zeroes of a collection of holomorphic
functions.

An example of complex manifold is given by the complex projective space
P" = PC"*!, defined as the space of 1-dimensional subspaces of C**!. More
generally, we denote by PV the space of 1-dimensional subspaces of a vector
space V. Any complex homogeneous polynomial in n+1 variables is well defined
as a polynomial in P". Such homogeneous form a graded ring C[Xo, ..., X,],
the grading being given by the degree of the polynomial.

Definition A.3. An algebraic variety is the locus of zeroes of a collection of
homogeneous polynomials in P™.

An algebraic variety is obviously an analytic subvariety of P™. The converse
is also true, by the following theorem.

Theorem A.1 (Chow’s Theorem). Any analytic subvariety of P™ is algebraic.

To each subvariety V' of P, one cen attach the ideal I(V') of homogeneous
polynomials in C[Xy, ..., X,] whose zero locus contains V. Note that I(V)
inherits the grading from C[Xy, ..., X,].
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A.2 Sheaves

Definition A.4. Let X be a topological space and C be a category. Then,
a C-valued pre-sheaf F on X is a controvariant functor from the category of
open sets on X with inclusion morphisms to the category C. In other words, a
presheaf is given by:

e to each open set U of X is associated an object F(U) of C.

e for each pair U,V of open sets of X, with V' C U, a morphism (restriction
morphisms) ry,y: F(U) — F(V) is defined, such that

— ry,u = idy for all open sets U;

— for all the open sets W CV CU, rwuy =rwyv orvu.

In general, one considers categories C' of rings, groups or fields. For each
open subset U of X, the object F(U) is called the sections of F over U. If
C is a concrete category, i.e., roughly speaking, its objects are sets with some
additional structure and the morphisms are functions compatible with such a
structure, then each element of the set F(U) is called a section of F. Sections
of F on U are also denoted by I'(U, F). In the following, we will only consider
concrete categories C.

Definition A.5. For each topological space X and a concrete category C, a
C-valued pre-sheaf F over X is a sheaf if it satisfies the following conditions:

e Normalization: F (&) is the terminal object of C.

e Gluing: Let {U;} be an arbitrary family of open subsets of X and fix a
section s; of F on each U;, in such a way that, for all the intersections
UsNUj, ru,nu,,v, (i) = Tu,nu;,u, (55). Then, there exists a unique section
s € F(U), with U := |, U;, such that ry, ys = s;.

A.3 Curves and divisors
By a curve C, we mean a projective algebraic variety of dimension 1. We will
only consider smooth irreducible curves, which are in one-to-one correspondence

with Riemann surfaces. We denote by ¢ its geometric genus, which corresponds
to half its first Betti number

1
g= QrankHl(C,Z) .
In the following we will identify invertible sheaves on C' with line bundles and
freely-generated sheaves with vector bundles. For each sheaf of C-vector space
on the topological space V', we set
R (V,F) := dimc H'(V, F) .
For sheaves F¢- on a smooth curve C, we will often use the shorthand notation

HY(Fc) = H(C,Fc) .
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A divisor on C' is a formal sum
d:i="Y n(p)p,
peC

where n(p) € Z are non-zero for a finite number of points in C. On the set of
divisors on C' is naturally the structure of abelian group Div C' with respect to
the sum, with a grading given by the homomorphism

deg: DivC — Z

> npp— Y nlp) -

peC peC

A divisor d = 3 o n(p)p is effective or positive if n(p) > 0 for all p € C; in
this case, we write d > 0. The divisor d is greater than d', and we write d > d’
if and only if d — d > 0. The set of effective divisors inherits the structure
of abelian semigroup. The set of effective divisors of a given degree n > 0 is
naturally identified with the space C,, := Sym” C, which is the symmetrization
of the cartesian product C™ = C x ... x C; such a space is endowed with the
topology and complex structure induced by the Riemann surface C.

Any holomorphic function f defined on an open neighborhood U of p € C
can always be written as f(z) = (z — 2(p))"g(z), where z is a local coordinate
centered in p and g is a holomorphic function with g(z(p)) # 0. The integer n
is defined to be the multiplicity of f at p. Such a definition extends to the case
of holomorphic sections of line bundles, since the multiplicity does not depend
on the local trivialization. Then, to each section s is associated a divisor

(5):=> m)p,

where m(p) is the multiplicity of s at p.

A meromorphic function f on C' is defined locally as the ratio of two holo-
morphic functions. More precisely, given an open covering {U, } of C, f is given
by a collection of holomorphic functions {hq, k. } such that h,, k!, are relatively
prime and hq /hy, = hg/hjy on Uy N Ug, for all a, 3. Roughly speaking, the re-
striction of f to U, should be identified with the ratio hy/h.. The multiplicity
of f at p € U, is well defined as the difference of the multiplicities of h, and
hl,. The set 9 of meromorphic functions on C'is a field and the map f — (f)
which maps f € 9 to its divisor is a homomorphism between 91, seen as a
multiplicative group, and DivC. More generally, a meromorphic section of a
line bundle £ on C is given by a collection of holomorphic functions {h, h.,}
such that

hoc/h/a = gaﬁhﬁ/hlﬁ )

on U, N Ug, where {g.3} are the transition functions of the line bundle £
with respect to the covering {U,}. For each arbitrary £, the space MM(L) of
meromorphic sections of £ is non-empty (as a consequence of the Riemann-
Roch Theorem below) and is a one-dimensional vector space over the field 9.
An element d € Div C is a principal divisor if it is the divisor of a meromor-
phic function on C. For a compact Riemann surface C, the principal divisors
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have degree 0. Two elements d,d € Div C are linearly equivalent if their differ-
ence is a principal divisor; the class of divisors in Div C linearly equivalent to d
is called the divisor class of d and is denoted by [d].

To each divisor d, one can attach the sheaf O(d) whose sections on the open
set U C C are given by

LU, 0(d) :={f €My | (f) +d =0},

where 9ty denotes the field of meromorphic functions on U. One can always
choose a covering {U,} and a collection of meromorphic functions {h,} such
that

d‘Ua = (hOé) )

where the restriction of a divisor d = Zpec n(p)p to an open subset U C C' is
a divisor on U given by dy := ZpeUn(p)p. Furthermore, we can require that
dy.,nu, = 0 for all a, 3. Therefore, the maps gos defined on U, N Up by

he
gaﬂ = 7
hs

are the transition functions of a line bundle £(d).

Conversely, given a line bundle £ the choice of a meromorphic section s of
£ determines an isomorphism H(C,L£) = O((s)) by t — t/s, t € H(C, L).
Therefore, any line bundle £ can be written as £(d) for some d. Furthermore,
L(d) and £(d') are isomorphic if and only if d is linearly equivalent to d'.

The degree deg(d) corresponds to the first Chern class of £(d), which we
also denote by deg £(d)

c1(L£(d)) = deg L(d) = deg(d) .

Let K¢ denote the canonical line bundle on C, whose sections are the holo-
morphic 1-differentials. Therefore, H°(Ko) = HY(C, K¢) denotes the space
of holomorphic abelian differentials on C. The following fundamental theorem
holds.

Theorem A.2 (Riemann-Roch). For any line bundle £ on a smooth curve C

of genus g
RO(L) —h*(Kc® L7') =degL—g+1.

Since the only holomorphic functions on a closed Riemann surface C' are the
constants, it follows that h°(Q) = 1, where O = O(0). Then by the Riemann-
Roch Theorem, we have

h(Ke) =g .

By considering £ = K¢, this implies
deg Ko =29g—2.
Let us define
[(d) = h(O(d)) , i(d) = h(Kc ® O(=d)) ,

where i(d) is called the index of specialty of d. Then, the Riemann-Roch theorem
can be restated as
I(d) —i(d) =deg(d) —g+1.
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In the case of an effective divisor d = " n(p)p, H*(K¢c ® O(—d)) is the space
of holomorphic 1-differentials vanishing at each point p € C' with multiplicity
at least n(p) and H°(O(d)) is the space of meromorphic functions with poles of
order at most n(p) at each p € C.

An effective divisor d is called special if i(d) > 0. The following relations
hold for any effective divisor d

i(d) =>g—degd for degd < g
i(d) >0 for g < degd <2g—2,
i(d) = forg>2g—2.

Any effective divisor d, with deg d < 2¢g—2, for which the disequalities above hold
in strict sense is called an exceptional special divisor. The subset of exceptional
special divisors of degree d is a subvariety of non-zero codimension in the space
Cy of effective divisors. In particular, the subvariety of divisors of degree d and
index of specialty i(d) = d — g +r, r > 1 is denoted by C}. By the Riemann-
Roch theorem, the condition i(d) = degd — g + r corresponds to the existence
of r independent meromorphic functions with divisor greater than —d. It can
be proved that a meromorphic function with only one pole never exists on a
Riemann surface C of genus g > 0. Therefore, an effective divisor of degree 1 is
never exceptional.

Definition A.6. A Riemann surface C of genus g is called
e hyperelliptic if it admits a meromorphic function with two poles

e trigonal if it admits a meromorphic function with three poles (but not
less).

e more generally, n-gonal, n > 2, if it admits a meromorphic function with
n poles (but not less).

Any Riemann surface C' of genus g admits a meromorphic function with g
poles. It follows that any Riemann surface of genus 2 is hyperelliptic. Fur-
thermore, any Riemann surface C' of genus g > 3 always admit a meromorphic
function with g—1 poles. More precisely, the space of exceptional special divisors
C’;_l has dimension g — 3 if C is hyperelliptic and g — 4 otherwise.
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B. THETA FUNCTIONS ON RIEMANN SURFACES

Set Ay := C9/Ly, Ly := 79 + Z7Z9, where Z belongs to the Siegel upper
half-space
9y ={Ze€M,CO)|'Z=2,TmZ >0},

and consider the theta function with characteristics

a mwit a a it a)(z
a[b] (Z,Z) - Z e (k+a)Z(k+a)+2mi* (k+a)(z+b) (Bl)
keZ9
= ritaZat2miteGH0g 0] (2 4 b4 Za,Z) (B.2)

where z € Az, a,b € RY. It has the quasi-periodicity properties

0 [(Iﬂ (Z +n4+ Zm, Z) _ e*ﬂ”itmZm727ritmz+27ri(tan7tbm)9 [g] (Z, Z) ,
m,n € Z9. Denote by © C Ay the divisor of 6(z,2) := 0 [J] (z,Z) and by
©; C O the locus where 6 and its gradient vanish. If ¢’,6” € {0,1/2}9, then
016 (z,7):=0 [g:/} (z,7) has definite parity in z

010] (=z,7) = e(6)8[] (2, 7) ,

where e(8) := 490" There are 229 different characteristics for which 6 [8] (z, 7)
has definite parity. Note that, in particular, ® = —0.

Geometrically 6[¢](z,Z) is the unique holomorphic section of the bundle

Lo, on Az defined by the divisor ©4, = O + b+ Za of 0[] (z, Z). A suitable
norm, continuous throughout Az, is given by

—27tImz(Im Z) ' Imz
1017 (2, 2) = e7?7 I =m 25 Im2g2 (2, 7)

Computing ¢1 (L) and using the Hirzebruch-Riemann-Roch Theorem, it can be
proved that @ is the unique holomorphic section of Lg. It follows that (Az, Leo)
is a principally polarized abelian variety (ppav). We denote by A, = 9,/T,
the moduli space of ppav’s.

B.1 Riemann theta functions and the prime form

Let {a,0} = {a1,...,04,01,...,84} be a symplectic basis of Hq(C,Z) and
{wi}tier, the basis of H°(K¢) satisfying the standard normalization condition
fai wj = 045, for all 4,5 € I,. Let 7 € $, be the Riemann period matrix of C,

Tij = fﬁ_ w;. A different choice of the symplectic basis of Hy(C,Z) corresponds
to a I'y := Sp(2g,Z) transformation

(-GG DC) . (@b,
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T+ 1 = (AT + B)(Ct+D)™'. (B.3)

Let us define the Abel-Jacobi map I(d) := (I1(d),...,I4(d)), acting on 0-
degree divisors d on C, by

n Dj

I;(d) := Z/ wi € Jo(C),

j=1"4

where d := Y 1" p; — > ¢ and Jo(C) := C9/L; is the Jacobian variety
associated to C. By Abel’s theorem, I(d) = 0 if and only if d is a principal
divisor (i.e. the divisor of a meromorphic function); hence, I is well defined as
a map acting on divisor classes. For each fixed pg € C, the map p — I(p — po)
is an embedding of C' into the Jacobian; furthermore, by the Jacobi Inversion
Theorem, the map

Cy — Jo(C)
d— I(d—gpo) ,
is surjective.

For each Riemann surface C', one can consider the Riemann theta function
with characteristics 6 [¢] (2, 7) associated to the ppav Jy(C). For each p € C and
e € Jo(C), the Riemann theta function f(x) := 0(I(z—p)—e) = 0(I(z—p)—e, T)
is the section of a line bundle on C and has a well-defined divisor, which is
completely characterized by a theorem by Riemann.

Definition B.1. The vector of Riemann constants is
1 1 g x
/Cf:2+27'nz%jwj/p wi (B.4)

J#i e
i € Iy, for all p € C. For any p we define the Riemann divisor class A by
I((g—1)p—A):=K", (B.5)
which has the property 2A = K¢.
Theorem B.1 (Riemann Vanishing Theorem). For any p € C and e € Jo(C)

i. if 6(e) # 0, then the divisor d of O(I(x — p) — e), is effective of degree g,
with index of specialty i(d) =0 and e = I(d—p — A);

it. if 0(e) =0, then for some ¢ € Cy_1, e =1({ — A).

In view of the Riemann Vanishing Theorem, it is convenient to consider the
following generalization the Abel-Jacobi map to divisors of general degree.

Definition B.2. For each divisor d := > ;p; — Y iv; ¢ on C, with n,m
non-negative integers, define the map I(d) = (f1(d),...,I4(d)) € Jo(C) given

by
1= a3 [P e
R R . 0
@m0 [Tw= 3 [T e
j=1YPo j=17Po

Such a map does not depend on pg € C' and reduces to the Abel-Jacobi map if
n=nm.
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By such a definition and by the Riemann Vanishing Theorem, © = I(Cy_1).
In the following, we will use the notation

O(d+e):=0(I(d)+e),

for all e € Jo(C') and divisors d of C.

For each half-integer theta characteristic [0] = [g:,} and point p € C, let d,
be the divisor of the Riemann theta function 0[§](x — p). It corresponds to the
divisor of 8(x — p + &' + 76"”), where ¢’ + 76" is a half-period. Hence, by the
Riemann vanishing theorem and by 2A = K¢, it follows that d, —p corresponds
to the divisor class of a spin bundle Lg, with Lg ~ K¢, which only depends on
§ (note that 0[6](x — p)/0[6](x — q) is a single-valued meromorphic function in z,
so that d, —p and d, — ¢ are equivalent divisors). In particular, A is the divisor
class associated to L[g]. In other words, the theta characteristic on a Jacobian
Jo(C) are in one-to-one correspondence with the spin structures on C. There
are 2971(29 + 1) even and 2971(29 — 1) odd spin structures.

By Riemann’s Singularity Theorem it follows that the dimension of ©4 for
g > 4 is g — 3 in the hyperelliptic case and g — 4 if the curve is canonical.
Furthermore, the following basic relation is easily proved.

Proposition B.2 (Riemann). For all e € O,

D Oij(e)wiw;(z) =0, (B.6)

ijely
forall z € C.

Let v a non-singular odd characteristic. The holomorphic 1-differential

g

hi(p) =Y wi(p)d=,0 V] (2))._, » (B.7)

1

p € C, has g — 1 double zeros. The prime form

O] (w—z,7)

E(z,w) := T (Vo)

(B.8)
is a holomorphic section of a line bundle on C'x €, corresponding to a differential
form of weight (—1/2,—1/2) on C x C, where C' is the universal cover of C. It
has a first order zero along the diagonal of C' x C'. In particular, if ¢ is a local
coordinate at z € C' such that h, = dt, then

__tw) —t() o) — 1)
Blew) = s = (14 O(w) = )

Note that I(z + tan+Bm) = I(z) + n+ tm, m,n € Z9, and
E(Z + tom + tﬁm, ’U}) _ Xe—ﬂ'itme—%ritmI(z—w)E(Z’ w) \

where y := e2mi("V'n="2"m) ¢ {-1,+1}, m,n € Z9.

We will also consider the multi-valued g/2-differential o(z) on C with empty
divisor, that is a holomorphic section of a trivial bundle on C, and satisfies the
property

O’(Z + tan + tﬁm) — X—gem‘(g—1)tmrm+27riimICzO_<Z) .



134 B. Theta functions on Riemann surfaces

Such conditions fix o(z) only up to a factor independent of z; the precise def-
inition, to which we will refer, can be given, following [24], on the universal
covering of C (see also [22]). Furthermore,

_olz) _ O wi—
o(zw) = o(w) 0 Yz —w) H E ’

(B.9)

forall z,w,z1,...,24 € C, which follows by observing that the RHS is a nowhere
vanishing section both in z and w with the same multi-valuedness of ¢(z)/o(w).

Under the modular transformations z — 2’ = 2(CZ + D)™, Z — 7' = (AZ +
B)(CZ + D)~! the theta characteristics transform as

() -5 9)6)

G .= (é ZB;) € I'y, for all a,b,z € C9, and the theta functions transform as

0[7)(z, Z2) — 0[%1(#', Z"), with [37]
0[%1(2', Z') = ec(det(CZ + D))2 21 (@) +3"2(C2+ D) C2lgray . 7y (B.10)

where eg is an eighth root of 1 depending only on G,
a\ _ (a n 1 (diag (C'D)
b)) \b 2 \diag (A*B) ) ~

20[1(G) = (‘a 'b) (‘tijD B ACC) (Z) + diag(A'B) - (Da — CW) .

and

Let w(z, w) be the unique symmetric differential on C’ x C, with only a double
pole along z = w, satisfying f (z,w) = 0 and ﬁﬁ (2 w) = 2miw;, j € I,.
The latter conditions imply that under a modular transformation

O(z,w) = w(z,w) — 27i'w(2)(CT + D) tw(w) .

Since E(z,w) is the unique antisymmetric solution of 9,0, log E = w(z,w)
which is consistent with the expansion of w(z,w) for z ~ w, it follows that

E(z,w) = E(z,w)e”(CTJFD)flcfzw wllw (B.11)
for all z,w € C.

Lemma B.3 (Fay [24]). If {a, B} and {&, B} are two markings of C related by
(B.3) and K? and K denote the respective vectors of Riemann constants for
q € C, then there are ag, by € (%Z)g, depending on the markings, such that

1 1
ag — idiag (C'D) e 79, by — gdiag (A'B) e 729,

K1 =YCr+ D) 'K+ 7'ag + by € CY
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and

0(z' + K9, 7') =¢'(det(CT + D))?

em'[f(z+ic<1)(CT+D)*1c(z+;c‘1)—taof’a0—2‘(CT+D)*1(z+ic‘1)]9(z,T) 7
for all z = Y(Ct + D)2’ € CY, with ¢ an eighth root of 1 depending on the
markings.

Theta functions and, in particular, Thetanullwerte, i.e. theta constants
0[6](0), with § even characteristics, can be used to construct modular forms,
i.e. meromorphic functions on $), which are invariant under modular trans-
formations. Some regularity conditions at infinity are also required for g = 1,
which are not necessary for g > 1 due to the Koecher principle. More generally,
one considers modular forms of weight & < 0, i.e. holomorphic functions f on
$g which transform as

f(Z') =det(CZ + D) " f(2Z), (B.12)

under modular transformations or other discrete subgroups of Sp(2g, R)/Zs, the
group of automorphisms of §,.

The relationship between the Thetanullwerte and the Jacobi Nullwerte, i.e.
the space of theta derivatives 6;[](0), with [v] odd spin structures, is analyzed
in the following section.

B.2 Generalizations of Jacobi’s derivative identity

In this section, we consider the higher genus generalizations of the Jacobi’s
derivative formula

0" [11(0) = =76 [§] (0)6" [§] (0)¢" [3] (0) ,

which holds for g = 1. For any Z € §,, g > 1, and any g-tuple v, ...,v, of odd
spin structures, let us define

[V17"'5Vg] = (%ejtal[yj] .

The generalization of Jacobi’s identity is the expression of [v1, ..., 4] as a poly-
nomial in the theta constants 0[6](Z), where § are the even spin structures.
More details can be found in [41), [33].

For g = 2, such a problem was considered by Thomae and Weber. The
solution is given by the following theorem.

Theorem B.4 (Rosenhain’s formula, [54, [32]). For any Z € $2 and any pair
of odd characteristics vy, vy

[v1, 1](Z) = £n? H Olv1 +va +V)(Z)

v odd
v#v1,va

where the sign does not depend on Z.
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Similar identities have been found by Frobenius for ¢ = 3 and g = 4 [26]
and by Fay for g = 5 [23]; some cases up to genus 7 have also been studied by
Riemann [53].

The results valid for all g were firstly found by Igusa; in [39] it was shown
that the Jacobi Nullwerte is always a rational function of the Thetanullwerte. In
[38], the following general theorem has been proved, which holds for all genera.

For each theta characteristic o = [2‘,’,], set e(a) := exp(4mia’ - ). Then, a
sequence aq, . .., a, of theta characteristic is defined to be azygetic if

e(a;)e(ay)e(ar)e(a; +a; +ag) = —1,

for all 1 < ¢ < j < k < n and essentially independent if, for any choice of
1< <...<ig, < n, with k> 1, we have

oy ... +a;, #0 mod 2.

A fundamental system is an azygetic sequence of 2g+ 2 characteristics; a special
fundamental system is a fundamental system such that the first g characteristics
are odd and the other g + 2 are even.

Theorem B.5 (Igusa [38]). Let v1,...,v, be g odd characteristics such that
V1,...,v](Z) := det 0;[v;](0, Z) ,

Z € 9, does not identically vanish on $ and is a polynomial in the theta con-
stants. Then, vi,...,vy are azygetic and essentially independent. Furthermore,

1, 1) (Z) =79 0[]+ 0642] (B.13)

where the sum is over all the sets {1, ..., 0442} of g+2 even theta characteristics
such that vy, ...,vg,01,...,0q+2 @5 a special fundamental system. In particular,
if Z is the Riemann period matriz of a hyperelliptic Riemann surface, then the
sum on the right hand side of Fq.(B.13)) has ezactly one non-vanishing term.

In fact, Fay in [23] proved that the formula (B.13) does not hold for g = 6;
together with Theorem B.5, this is enough to conclude that the determinant
[1, ..., 6] is never a polynomial in the theta constants. A generalized formula,
however, was proved by Igusa in [41].
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