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Sommario

Questa tesi propone un approccio probabilistico per quantificare la distribuzione

spaziale della connettività idrologica alla scala di rete dettata dalla variabilità

spazio-temporale dei deflussi. Le dinamiche spaziali dei deflussi sono definite sulla

base delle caratteristiche climatiche e morfologiche del bacino contribuente, inte-

grando un approccio fisicamente basato che descrive la stocasticità delle precipi-

tazioni, ed incorporando un modello di bilancio idrologico e un modello di deflusso

di recessione geomorfologica. La connettività idrologica lungo il reticolo idrografico

è valutata sulla base di soglie associate a tiranti idrici ecologicamente significativi.

Il modello proposto consente una descrizione quantitativa delle principali cause

idrologiche e delle conseguenze ecologiche delle dinamiche dei tiranti sperimentate

dalle reti fluviali. Le analisi condotte in questa tesi mostrano che la variabilità

spaziale della connettività idrologica alla scala locale dipende fortemente dalla dis-

tribuzione spaziale e temporale delle variabili climatiche. I risultati evidenziano

come la forma del reticolo connesso possa essere influenzata in modo cruciale dalle

dinamiche idrologiche sottostanti. L’approccio a scala di rete sviluppato in questo

lavoro fornisce importanti elementi per la comprensione dell’effetto del clima sulla

funzione ecologica dei corsi d’acqua naturali e offre una nuova prospettiva per la

definizione dei deflussi ecologici determinanti per lo sviluppo di politiche idriche

sostenibili.
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Abstract

This thesis proposes a probabilistic approach for the quantitative assessment of

reach- and network-scale hydrological connectivity as dictated by river flow space-

time variability. Spatial dynamics of daily streamflows are estimated based on

climatic and morphological features of the contributing catchment, integrating a

physically based approach that accounts for the stochasticity of rainfall with a

water balance framework and a geomorphic recession flow analysis. Ecologically

meaningful minimum stage thresholds are used to evaluate the connectivity of

individual stream reaches, and other relevant network-scale connectivity metrics.

The framework allows a quantitative description of the main hydrological causes

and the ecological consequences of water depth dynamics experienced by river net-

works. The analysis conducted in this thesis shows that the spatial variability of

local-scale hydrological connectivity strongly depends on the spatial and temporal

distribution of climatic variables. Depending on the underlying climatic settings

and the critical stage threshold, loss of connectivity can be observed in the head-

waters or along the main channel, thereby originating a fragmented river network.

The network-scale approach developed in this work provides important clues for

understanding the effect of climate on the ecological function of river corridors,

and offers a new perspective to define ecological flows for the development of sus-

tainable water policies.
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Chapter 1

Introduction

Motivation

River networks are key elements of the landscape, as they represent ecological cor-

ridors for biological species and contribute significantly to shape the hydrological

response of catchments [Rodriguez-Iturbe et al., 2009; Biswal and Marani, 2010;

Rinaldo et al., 2018]. In the large majority of existing theoretical and experimen-

tal works concerning propagation of waterborne diseases, ecological dispersion,

and catchment-scale biogeochemistry [Battin et al., 2003; Muneepeerakul et al.,

2008; Gatto et al., 2012; Bertuzzo et al., 2017; Rinaldo et al., 2017], river networks

are thought of as static connections between fixed nodes defined on the basis of

the topography of the terrain [Mark, 1988; Tarboton et al., 1991; Dietrich et al.,

1993; Montgomery and Foufoula-Georgiou, 1993]. However, empirical observations

suggest a dynamic behaviour of the flowing network, which is a reflection of the

underlying space-and-time variability of hydrological processes. The continuous

expansion and contraction of stream width and depth in response to time-variant

hydroclimatic forcing (e.g. rainfall) may create physical disconnections between

river segments [Godsey and Kirchner, 2014; Jaeger et al., 2014], as shown in Fig-

ure 1.1. Therefore, the ecological function of river networks can be significantly

reduced by unfavourable local hydraulic conditions that challenge the migration of

fishes, propagules and invertebrates, with notable implications for metacommuni-
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ties composition [Tetzlaff et al., 2008; Campbell et al., 2015; Lazzaro et al., 2017;

Sarremejane et al., 2017].

b)

a) Sagehen Creek (US)

Piave River (IT)

Figure 1.1: Dynamical nature of river networks. a) Results of the yearly mapping of

the drainage network in the Sagehen Creek, Colorado river [Godsey and Kirchner, 2014].

The comparison of the two maps shows the extent of river networks depending on the

hydrologic state of the system; b) Change in the hydrologic state of a river reach in the

Piave river (Borsoia creek) along the Summer of 2015. The same location is featured by

isolated pools (left), dry-bed (center) and flowing water (right).
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1. INTRODUCTION

Climate, vegetation and landscape properties determine the natural flow regime

of rivers upon which its ecological integrity depends [Poff et al., 1997; Allan and

Castillo, 2007; Botter et al., 2013]. In view of the role of rivers as ecological

corridors, conceptual models of species distribution have been developed address-

ing spatial and temporal biodiversity patterns in riverine systems [Muneepeerakul

et al., 2008, 2010]. However, these studies are based on static networks defined

solely on the basis of geomorphological features and, therefore, they cannot cap-

ture the effect of hydrological processes on the ecological function of rivers. The

intertwined link between reach-scale ecological processes and discharge variability

in rivers has received much attention in the literature [Camporeale and Ridolfi,

2006; Sabo and Post, 2008; Ceola et al., 2014; Bruno et al., 2015]. For instance,

several methods based on the physical simulation of habitats have been developed

to predict flow-based alteration of habitat characteristics [Vismara et al., 2001;

Parasiewicz and Dunbar, 2001; Vezza et al., 2014]. Nevertheless, the study of the

network-scale ecological implications of discharge dynamics is a relatively new dis-

cipline [Datry et al., 2014; Jaeger et al., 2014]. Most existing studies are focused

on individual river reaches and thereby neglect the spatial dimension of rivers.

According to the river continuum concept, rivers are hydrological continua where

ecological processes and species dynamics take place [Vannote et al., 1980]. Follow-

ing this pioneering concept and its successors [Ward and Stanford, 1983; Junk et al.,

1989], the riverscape paradigm offers a new perspective for integrating ecological

processes with spatial dynamics of hydrologic regimes [Fausch et al., 2002]. There

is growing recognition that river flow regimes control the magnitude of in-stream

processes [White et al., 2017], as well as the connectivity between source areas and

the catchment outlet, with important implications for biodiversity and ecological

functions of rivers across scales [Larned et al., 2010; Datry et al., 2014]. For in-

stance, empirical relationships between fluvial species activities and flow variability

have been recognized, in particular for what concerns fish and aquatic invertebrate

migration [Monk et al., 2006; Tetzlaff et al., 2008; Belmar et al., 2013; Ceola et al.,

2014]. Meanwhile, theoretical approaches have been developed to quantify how

the connectivity structure of habitat networks constrains or promotes ecological
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function of rivers [Cote et al., 2009; Eros et al., 2011; Samia et al., 2015]. However,

in all these studies a causal connection between river network connectivity and

first-order climatic and hydrologic drivers is missing, and little is known about the

role of hydrological drivers that shape the ecological function of stream networks.

Objectives and outline of this thesis

To fill the gap of knowledge about the role of space and time variability of stream-

flow regimes for river network connectivity, this thesis proposes a probabilistic

framework able to investigate quantitatively the principle of causality that drives

the link among the following cascade of processes: i) climatic driving forces (rainfall

and evapotranspiration), ii) the hydrological response of rivers, iii) the connectivity

of the network structure and iv) the fate of ecological species therein. This work

is based on a physically based analytical characterization of streamflow regimes

at network scale that explicitly accounts for the randomness of rainfall. The flow

regime is defined through the probability distribution of discharge, expressed as

a function of lumped parameters that embody long-term climatic and landscape

features of the contributing areas. Probability distributions of water stages are

consequently derived and used to predict the hydrological and ecological impacts

of hydro-climatic fluctuations by means of suitable stage and connectivity thresh-

olds.

The remainder of this work is organized as follows:

• Chapter 2 describes how the variability of streamflow regimes and water

stage dynamics can be quantified along the river network. A mathematical

framework to calculate connectivity measures is also introduce;

• Chapter 3 shows the effects of climate on network-scale connectivity. The

spatial variability of hydrologic variables driven by climatic patterns is also

presented;

• Chapter 4 investigates the spatial variability of habitats along the network,

and it presents the ecological effects of hydrological connectivity alterations;

• Chapter 5 describes the water management policy recently introduced in the
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1. INTRODUCTION

European Union, and it illustrates a new perspective to define ecological

flows allowing river connectivity and habitats protection.
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Chapter 2

Methods

2.1 Streamflow model

In this thesis, the seasonal probability distribution of streamflows is derived by

using a mechanistic analytical model which is based on a stochastic description of

catchment-scale water storage dynamics. The model has been introduced by Botter

et al. [2007] and further developments have been proposed by Botter et al. [2009]

and Doulatyari et al. [2017]. Figure 2.1 outlines the overall modeling approach for

estimating parameters of streamflow probability distribution at any site along the

river network. The description of the mathematical formulation of the model is

reported in the following sections.

2.1.1 Rainfall model

The catchment-scale water storage is controlled by the stochasticity of rainfall. In

this work the lumped formulation widely used in literature [Rodriguez-Iturbe et al.,

1999; Laio et al., 2001; Ceola et al., 2010; Müller et al., 2014; Park et al., 2014; Basso

et al., 2015; Doulatyari et al., 2015; Bertassello et al., 2018] has been extended by

implementing a spatio-temporal Poisson process for the stochastic generation of

daily rainfall. The occurrence of rain events is described by a counting process

{N(t,X), t ≥ 0} of rate λrain(t,X) > 0 [T-1L-2], which is a multidimensional

7



2.1. STREAMFLOW MODEL

Climatic
season 

Recession flow model

Estimation of recession 
exponent a

Estimation of recession 
coefficient K

Rainfall model

Generation of spatially 
distributed rainfall cells

Estimation of mean 
rainfall depth α

Water balance model

Generation of spatially 
distributed ET

Estimation of effective 
rainfall frequency λ 

Streamflow model

Estimation of seasonal 
streamflow pdf  p

Q
(q) 

incorporating the para-
meters obtained by 
previous models 

DEM
data

Figure 2.1: Overall work-flow of the modeling approach. The four main streamflow

model parameters are estimated at every point (i.e. every pixel along the river network)

as spatially-averaged quantities in the contributing catchment.

Poisson process representing the number of rain events occurring per unit time and

per unit area. The process is decoupled into two independent Poisson pocesses,

one in time (with rate λt [T-1]) and one in a 2D space (with rate λx λy [L-2]),

according to the equation:

λrain(t,X) = λt(t)λx(X)λy(X) . (2.1)

The marginal time-frequency of the process is obtained via a spatial integration of

equation (2.1), thereby incorporating information regarding the spatial density of

the events:

λrain(t) =

∫

Ω

λt(t)λx(X)λy(X) dX

= λt(t)N(Ω)

(2.2)
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2. METHODS

where N(Ω) is the number of points (i.e. events) in an arbitrary 2D domain (Ω)

contained in the study area. In order to define the position of the rain events

within the domain, the coordinates of the rain cells are assumed randomly located

in space according to the rate λx=λy=const. The model reproduces a precipitation

process in which rain events are made up by circular cells of constant duration (1

day) during which random rain depths occur. The radius of the cells is assumed

as an exponentially distributed independent random variable with the following

probability density function (pdf):

pr(r) = κ exp−κ r , (2.3)

where the parameter κ = 1/〈r〉 is the inverse of the mean radius. Likewise, rainfall

depth of each cell is an exponentially distributed independent random variable,

whose pdf is:

pζ(ζ) = µ exp−µ ζ , (2.4)

where the rate µ = 1/〈ζ(X)〉 is the inverse of the mean rain depth pertaining to

each cell centred in X = (x, y). Each rain cell has an independent random rainfall

depth that remains constant over the entire duration of the cell. Rainfall depth is

assigned to the domain’s points on the basis of the cell size. The amount of rainfall

is assumed to be uniform within the cell (Figure 2.2).

   =(x,y,ζ)

X

Y

0

∥  -ℤ∥<r

r

ℤ

X

X

Figure 2.2: Rainfall depth is uniform within the cell of given radius r.
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2.1. STREAMFLOW MODEL

The rainfall depth in a generic point Z at a given time depends on the location

of Z in relation to the rain cell: if the point Z is inside the cell of radius r (i.e.

‖X − Z‖ < r) the depth assigned to Z is the same of the center of the cell, oth-

erwise the depth is zero. It is worth to note that the size of each cell follows the

exponential distribution of equation (2.3) and does not depend on the position of

the cell in the domain.

Cells can overlap and the rainfall depth is the sum of the rainfall amount of all cells

active at given time. Figure 2.3 shows graphically the rainfall process framework.

Ω Ω Ω Ω

t

Figure 2.3: Spatio-temporal point process. Rainfall events are exponentially dis-

tributed in time t. Rainfall cells are uniformly distributed in space Ω. Cells size and

rainfall amount are exponentially distributed independent random variables.

Using such rainfall generation model, spatially-distributed rainfall scenarios are

derived to simulate different types of climate (i.e. dry, intermediate and wet [Whit-

taker, 1975]) and therefore estimate different spatially-averaged rainfall depths (α

[L]) and average rainfall frequency (λP [T-1]) along the river network. Further

details on the simulation set-up are described in Section 2.3.

2.1.2 Water balance model

The dynamics of specific streamflow at each node of the network is impacted

by positive increments corresponding to rainfall events filling the soil water deficit

caused by plant transpiration in the contributing catchment and producing drainage.

When the rainfall infiltrating into the hydrologically active layer (i.e. the layer of

10



2. METHODS

soil that actively contributes to the hydrological response, whose porosity and

depth are indicated as n and Zr, respectively) exceeds the critical saturation value

s1 (representing the water holding capacity), the excess of water becomes stream-

flows. Notice that in between rainfall events (whose frequency is λP [T
−1]) evap-

otranspiration, ET [LT−1], reduces the soil moisture to the wilting point sw (for

which ET = 0); hence, the maximum soil water storage capacity available to plants

is w0 = (s1−sw)nZr. Flow-producing rainfall events result from the buffering effect

operated by catchments during wetting-drying cycles and they are approximated

by a new marked Poisson process, whose frequency is λ < λP . The ratio φ = λ/λP

identifies the runoff coefficient (mean discharge scaled to the mean precipitation),

which defines the partition of the incoming rainfall into stramflows and ET. φ

is influenced by climate, soil and vegetation features according to the following

equation [Porporato et al., 2004; Botter et al., 2007; Doulatyari et al., 2015]:

φ =
DI γ

γ
DI e−γ

γ Γ(γ/DI , γ)
, (2.5)

where Γ(·, ·) is the lower incomplete Gamma function, DI is the Budyko’s dry-

ness index (the ratio between the mean potential evapotranspiration 〈PET 〉 and

the mean rainfall 〈P 〉), and γ is the maximum soil water storage capacity w0,

normalized to the mean rainfall depth in the contributing catchment, α.

2.1.3 Recession flow model

Excess rainfall (fraction of water storage exceeding s1) is released from the soil as

river streamflow following a nonlinear catchment-scale storage discharge relation

(i.e. Q ∝ V β) [Kirchner, 2009; Botter et al., 2009]. The resulting dynamic of daily

specific discharge (i.e. per unit catchment area) at-a-station is governed by the

following equation:

dq(t)

dt
= −Kq(t)a + ξt , (2.6)

where K and a are the recession coefficient and the recession exponent, respec-

tively, and ξt formally embeds the stochastic increments of q induced by effec-
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2.1. STREAMFLOW MODEL

tive rainfall pulses. A geomorphologic recession flow model is then used to esti-

mate the parameter describing the recession flow behaviour (a) resulting from the

drainage of the contributing catchment [Biswal and Marani, 2010]. The procedure

is grounded on the idea that the hydrological response is linked to the morpho-

logical properties of the hillslope-network system. Accordingly, the fraction of the

network that actively contributes to the flow is assumed to vary over time in re-

lation to the source links retirement (dq/dt is proportional to the number of the

active source links) in the network. Therefore, in this model the recession rate is

directly proportional to the distance of the farthest source from the outlet and the

recession flow is controlled by the shrinking of the active drainage network. Under

certain assumptions (see Biswal and Marani [2010]), the power law exponent of

the recession relation (2.6) is equivalent to the exponent of the geomorphologic re-

lation N(d) vs. L(d), where N(d) is the number of channel sources at a distance d

from the farthest channel heads and L(d) is the total length of the active drainage

network. These functions are derived from morfological data and the scaling expo-

nent (parameter a) is estimated through a least-squared regression of the functions

N and L. It is worth to note that specific morphological requirements are needed

to estimate the parameter a along the network (e.g. at least five junctions are

required upstream to each considered point). For further details the reader is di-

rected to Biswal and Marani [2010] and Doulatyari et al. [2015].

The recession coefficient K, which depends on both the network morphology and

the moisture of the catchment, is calculated as K = θ(αλ)1−a [Doulatyari et al.,

2015] where (αλ) is the mean specific discharge, a is the geomorphic recession

exponent and θ is the shrinking rate of the network in between rain events.

2.1.4 Probabilistic description of streamflows

The streamflow probability density function at network scale emerges directly as a

result of aggregation of spatial heterogeneity of climatic and geomorphic features in

the contributing areas of each channel site. This is captured by the proposed model

by calculating the parameters expressing the intensity and frequency of effective

rain events (λ and α) and the recession behaviour (K and a) for every point along

12



2. METHODS

the network, as spatially integrated quantities in the corresponding contributing

catchment. There are three different types of probability density functions (pdfs)

of streamflow, depending on the value of the exponent a which determines the rate

of decrease of q during recessions. The case a = 1 implies a linear storage-discharge

dynamic (dq/dt = −k q + ξt) in which the decay of flow between subsequent events

is exponential-like. The master equation associated with the runoff probability

distribution of the specific streamflow per unit catchment area, q, at time t reads

∂p(q, t)

∂t
=

∂[k q p(q, t)]

∂q
− λ p(q, t)

+
λ

αk

∫ q

0

p(q − z, t) e−
z
αk dz ,

(2.7)

The corresponding steady-state pdf of specific river discharge developed by Botter

et al. [2007] is shown here in nondimensional form:

pQ(q) =
Γ(λ/k)−1

α k

( q

α k

)
λ
k
−1

exp
(

−
q

α k

)

. (2.8)

Equation (2.8) represents a Gamma distribution with shape parameter λ/k and

rate parameter αk.

The general solution of the probability distribution function for the case a 6= 1, 2

is

pQ(q) = C∗ q−a exp
[

−
q 2−a

αK (2− a)
+

λ q 1−a

K (1− a)

]

, (2.9)

where C∗ is the normalization constant, such that
∫∞

o
pQ(q) dq = 1. Note that,

when a < 1 (i.e. the decay of discharge between two subsequent runoff events is

more rapid than an exponential-like function) there is an atom of probability in

q = 0 (equation (2.10)) that must be added to the continuous part of equation

(2.9), as the system tends to remain in a zero discharge state for some time before

experiencing a new jump [Botter et al., 2009].

po = C∗K

λ
δ(q) . (2.10)

13



2.1. STREAMFLOW MODEL

Moreover, the extension of the equation (2.9) to the case a = 2 is an inverse

Gamma [Deal et al., 2018]:

p(q) =

[

(

λ
K

)
1

αK
+1

Γ
(

1
αK

+ 1
)

]

q−2− 1
αK e

λ
K q , (2.11)

where the first term on the right-hand side expresses the normalization constant

in which Γ(·) is the Gamma function with argument (·).

All these equations were applied pointwise along all the streams of the test catch-

ment. Therefore, model parameters are the expression of climatic and landscape

attributes in the contributing catchment and vary in space along the network.

In this framework flow regimes can be classified based on the variability of river

flows [Botter et al., 2013], which results from the interplay between the frequency

of flow-producing rainfall events and the mean catchment response time. When

the mean inter-arrival of effective rainfall events is shorter than the duration of

the flow pulses delivered from the contributing catchment, a persistent supply of

water is guaranteed to the stream from catchment soils. This type of regime is

termed persistent as the coefficient of variability of streamflow (CVQ) is smaller

than 1 (Figure 2.4). On the contrary, when the mean inter-arrival between flow-

producing rainfall events is larger than the typical duration of the resulting flow

pulses, significant streamflow fluctuations are observed. In this case the prefer-

ential state of the system is typically lower than the mean and the flow regime

(termed erratic) is characterized by a pronounced flow variability (CVQ > 1).

14



2. METHODS

Figure 2.4: Typical behaviour of river flow dynamics in erratic and persistent regimes.

2.2 Stage dynamics and connectivity metrics

The temporal and spatial variability of streamflows affects patterns of hydraulic

variables (e.g. water depth, flow velocity and bottom shear stress), which influ-

ence communities distribution and species abundance in fluvial ecosystems [Ceola

et al., 2014]. In this framework river width, depth and velocity are assumed to in-

crease downstream according to the power-law relationship proposed by [Leopold

and Maddock, 1953]. Accordingly, site-specific probability distribution functions

of relevant flow variables can be derived from the corresponding streamflow dis-

tribution, pQ(q), using additional information on the geomorphic and hydraulic

properties of the river cross section. In this framework water depth (i.e. stage) is

assumed to scale with discharge as [Leopold and Maddock, 1953]:

h = h0 Q
δ = h0 (Aq) δ , (2.12)

15



2.2. STAGE DYNAMICS AND CONNECTIVITY METRICS

where A is the catchment area, h0 is the stage associated to the formative dis-

charge and δ is a dimensionless parameter experimentally found to be close to 0.3

for many rivers worldwide [Raymond et al., 2012; Ceola et al., 2014]. Notwithstand-

ing that equation (2.12) refers to the “at-a-station” stage-discharge relationship,

the parameter h0, which depends on the geometrical characteristic of the cross

section, is assumed equal to 0.04 [T δL1−3δ] in this study. For a given basin (Figure

2.5), the at-a-station storage-discharge relationship assumes that the parameter

h0 scales downstream (i.e. h = h0(i)Q
δat−a−station , where i is the considered node);

the downstream relationship, on the other hand, assumes that h0 is uniform down-

stream for a given frequency of discharge (i.e. h = h0Q
δdownstream). Since the slope

δat−a−station ≃ δdownstream, as demonstarted by Leopold and Maddock [1953], hence

h0(i) = h0 = const along the network.

A

A

A

B

B

B

C

C

C

at-a-station A

at-a-station B

at-a-station C

dow
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w
a

te
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p
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  l
o

g
(h

)
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B

C

i

Figure 2.5: Relation of depth to discharge, for selected cross sections (dashed lines)

and in downstream direction for given discharge frequencies (solid lines).

By coupling equations (2.9) and (2.12), the following analytical expression of the

stage probability distribution function is obtained:
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2. METHODS

pH(h) ∝
(h/ho)

(1−a)
δ

δ hA(1−a)
exp

[

−
1

αK (2− a)

((h/ho)
1/δ

A

)(2−a)

+

+
λ

K (1− a)

((h/ho)
1/δ

A

)(1−a)]

.

(2.13)

Water stage is a major control on the physical connection between two nodes of a

river network. For instance, large fish migrating towards headwater streams during

drought periods may find it difficult to reach their target in case where minimum

flow requirements are not guaranteed [Tetzlaff et al., 2005; Lazzaro et al., 2017].

Likewise, many ecological species could be particularly vulnerable to predation

during migration in shallow water [Jonsson et al., 2007]. Hence, low stages (asso-

ciated to low flows) can be seen as a physical barrier that decreases the chances of

completing migratory movements, with implications for the composition of struc-

tured metacommunities [Campbell et al., 2015]. In line with Lazzaro et al. [2017],

this thesis assumes here the existence of a minimum threshold stage, h∗, which is

necessary to trigger the movement of biological species. When h < h∗, the cor-

responding stream is assumed to be too dry to maintain the connection between

upstream and downstream sites. In general, h∗ is a function of the specific species

considered and its sensitivity to droughts. For instance, large fishes are likely to

be characterized by larger values of h∗ compared to bacteria and propagules.

Considering the connectivity as a categorical and instantaneous variable (con-

nected versus disconnected) is less informative than focusing on temporally inte-

grated quantities such as the frequency and duration of hydrological conditions

that allow for species migration (h ≥ h∗). Therefore, the connectivity of a given

reach is evaluated by considering the fraction of days within a season during which

hydrological conditions favourable to species movement are observed. The latter is

calculated as the exceedance probability of the stage threshold h∗. This probabil-

ity represents the probability of experiencing water stages that ensure a physical

connection between different sites of the network.

In this thesis, connectivity metrics are introduced to evaluate the overall connec-

tivity of the network. They are based on the mathematical structure of the graph
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2.2. STAGE DYNAMICS AND CONNECTIVITY METRICS

theory (Figure 2.6). In particular, branches of the river are seen as nodes, whereas

confluences are represented by links.

1

2
3

4
5

1

2

3

4

5

a) b)

Figure 2.6: a) A river network with five reaches. b) Spatial graph representation of

the river network.

The relational schema of the graph is undirected, assuming that ecological com-

munities in riverine landscapes can move either upstream or downstream. In this

work different connectivity measures are used:

• Local connectivity:

Clocal(n)
=

∫ +∞

h∗

pH(h)(n) dh , (2.14)

where pH(h)(n) is the stage density function for the n-th node. Clocal mea-

sures the passage probability through the node (n).

• Path connectivity:

Cpath(j,k)
=

∏

n∈j→k

Clocal(n)
, (2.15)
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where n includes the set of nodes belonging to the path that connects node

j to k. Cpath is calculated as the product of the Clocal of all nodes from j

to k and expresses the connection probability between pair of nodes, accord-

ing to the hydrological dynamics in all the reaches of the path connecting j

and k. In the calculation of Cpath, temporal correlation of flows are neglected.

• Node connectivity:

Cnode(k) =
1

N − 1

N
∑

j=1
k 6=j

Cpath(j,k)
, (2.16)

where N is the total number of nodes and j and k are generic nodes of the

network. Cnode is calculated as the average value of the connectivity of the

paths directed to the node k. Accordingly, it expresses the probability for a

single node to be connected with all the other nodes of the network.

• Network connectivity:

Cntw =
1

N

N
∑

n=1

Cnode(n)
. (2.17)

Cntw expresses the connection probability of all the possible pairs of nodes

within the entire river network; Cntw is the average value of the probability

to connect any site to all other sites in the network.

2.3 Simulation set-up

This section describes the estimation of the flow model parameters and the sim-

ulation set up to predict spatial patterns of the hydrological connectivity in a

theoretical case study. At first, rain cells are generated using the 3-dimensional

Poisson rainfall model. An example of the output is reported in Figures 2.7. Table

2.1 shows parameters ranges used to reproduce different climatic scenarios. Notice

that, in the proposed framework a periodic space domain is used to reduce bias
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from edge effects. Additionally, the integral scale of the generated rainfall fields is

smaller than the linear scale of the space domain.

Table 2.1: Model parameters for rainfall generation model

Parameter Symbol Value Units

Temporal frequency λt 1.5 ÷ 11 [1/d]

Spatial frequency along x direction λx 0.7 ÷ 1.2 [1/m]

Spatial frequency along y direction λy 0.7 ÷ 1.2 [1/m]

Mean rain cell depth 〈ζ〉 15 ÷ 4500 [mm]

Mean rain cell radius 〈r〉 1 ÷ 2 [km]

The average frequency of rainfall events along the network, λP , is estimated by

evaluating the fraction of rainy days (rain depth larger than 1 mm) during the

considered time period (e.g. a season of 100 days) occurring in the upstream con-

tributing area of each node. The mean rainfall depth, α, is calculated for each

realization of the rainfall model as the spatially-averaged rain intensity during wet

days (i.e., the intensity of rainfall is divided by the number of wet days and the

catchment area drained by each node).

The frequency of the effective rainfall, λ, is estimated considering the censoring

effect of the soil catchment that results in the reduction of flow-producing rate

controlled by evapotranspiration. To this aim, spatially distributed values of po-

tential evapotranspiration (i.e. PET (X)) are used. The runoff coefficient φ is

estimated using equation (2.5) considering the mean potential evapotranspiration

as a spatially-averaged value in the upstream contributing catchment. Table 2.2

shows literature values of porosity n, rooting depth Zr, soil moisture at saturation

s1 and wilting point sw, that are considered and incorporated in equation (2.5). λ

is then calculated as the product φλP for every node of the network.
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Figure 2.7: Simulation of rainfall scenarios: a) Dry climate; b) Wet climate
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Table 2.2: Water balance parameters

Parameter Symbol Value Units

Soil moisture at saturation s1 0.5 [-]

Wilting point sw 0.2 [-]

Porosity n 0.3 [-]

Rooting depth Zr 130 [mm]

Parameters defining the storage-discharge relations are then derived by river net-

work analysis as detailed in Section 2.1.3. The river network estimation is derived

from a representative DEM from which 8-flow direction and flow accumulation

maps are calculated to identify channel network, as shown in Figure 2.8. The DEM

analysis and the network structure definition are used to estimate the at-a-point

recession parameter a. Subsequently, considering both climatic and geomorphic

features of the catchment, the recession constant K is calculated as K = θ(αλ)1−a

using a constant value of θ equal to 0.2 d-1 [Doulatyari et al., 2015].

The streamflow distribution calculated pointwise using equation 2.9 is finally used

as input to derive the spatial and temporal variability of water depth by apply-

ing equation 2.12. The parameters of the nonlinear stage-discharge relation are

assumed to be constant along the river network, as discussed in section 2.2. Con-

nectivity metrics are then calculated using two sets of critical stages: i) low stages

(h∗= 50÷150 mm), that are assumed to be associated to smaller general species,

such as bacteria or microinvertebrates, requiring small amounts of water to dis-

perse; ii) medium to high stages (h∗= 200÷500 mm), that are representative of

fish species that need relatively high water stages for migration [Armstrong et al.,

2003].
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Figure 2.8: a) DEM of the representative case study; b) 8-flow direction map; c) Flow

accumulation map; d) Channel network. Estimated channel length is 72 km and the

catchment area is close to 87 km2.
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Chapter 3

Hydrological Connectivity

Rainfall frequency, intensity and amount are major drivers of the availability and

variability of streamflows, and thus they are likely to impact significantly the

hydrological connectivity of rivers. This chapter describes the hydroclimatic effects

on both the network-scale connectivity and the spatial variability of hydrological

variables.

3.1 Effects of climate on network connectivity

In this section, the network connectivity is studied considering three different rain-

fall frequencies (e.g. λP = 0.1 d−1, λP = 0.5 d−1 and λP = 1 d−1) under various

climatic scenarios in terms of mean precipitation 〈P〉 and mean potential evapo-

transpiration 〈PET〉 .

The network connectivity Cntw typically increases by increasing the mean precipi-

tation depth, if the frequency of the events is constant (Figure 3.1a). Moreover, in

wet climates (〈P〉 > 300 mm/season) connectivity also increases with increasing

λP when the precipitation amount is kept constant. For high frequencies of rain

events the soil moisture is often higher of the field capacity, thereby originating

persistent flow regimes (CVQ < 1) with relatively high flows. Conversely, in in-

termediate climates (〈P〉= 200÷300 mm/season) Cntw can increase also when the

rainfall frequency is reduced, as low frequency events have higher intensity (as the
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Figure 3.1: Network connectivity for increasing precipitation and different rainfall

frequencies assuming a) 〈PET〉= 3.5 mm/d; b) 〈PET〉= 0.5 mm/d.
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rainfall amount is constant). This circumstance reduces the buffering capacity of

the catchment and increases the mean streamflow and the mean stage along the

network. For low values of 〈PET〉 (0.5 mm/d, Figure 3.1b) the connectivity gen-

erally increases when: i) λP is kept constant and 〈P〉 increases; and ii) 〈P〉 is kept

constant and λP increases. The latter mechanism is particularly evident under

wet climatic conditions, during which large rainfall inputs inhibit the buffering

capacity of the soil leading to higher mean streamflows and higher connectivities

throughout the network.

Figure 3.2a shows how the network connectivity changes as a function of rainfall

frequency and for increasing values of 〈P〉, combined to a relatively high and uni-

form 〈PET〉 (3.5 mm/d). In particular, in the wet scenario where 〈P〉 is larger

than the 〈PET〉 , the connectivity increases with the frequency of rainfall due to

the higher mean streamflows associated to larger λP . This prevents significant soil

water deficits in between events, as confirmed by high values of the runoff coeffi-

cient in this case (blue dots in Figure 3.2b), and leads to persistent hump-shaped

flow regimes, especially in the downstream reaches of the network. Conversely,

when evapotranspiration is higher than the mean rainfall, the runoff coefficient

decreases as the rainfall frequency increases. This suggests that in dry scenarios

streamflow regimes could be erratic throughout the river network, with enhanced

network fragmentation for larger rainfall frequencies. When 〈PET〉 is reduced to

0.5 mm/d the connectivity systematically increases for higher rainfall frequencies,

regardless of the underlying precipitation amount. In these circumstances, the

runoff coefficient φ slowly decreases with λP , though maintaining relatively high

values under all climatic scenarios. This typically generates persistent flow regimes,

in which the variability of flows decreases as λP increases. The non-exceedance

probability of the critical stage h∗, P [h < h∗], is thus reduced and the network

connectivity increases.
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Figure 3.2: a) Normalized Cntw for increasing rainfall frequency with different mean

precipitation assuming uniform 〈PET〉= 3.5 mm/d; b) normalized φ for increasing rain-

fall frequency with different mean precipitation assuming uniform 〈ET〉= 3.5 mm/d;
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Further analysis is carried out by evaluating the effect of spatial patterns of evapo-

transpiration (namely N-S, S-N, E-W and W-E direction) on Cntw for each climate

scenario. Cntw shows similar values regardless of the dominant direction of evap-

otranspiration gradients. This means that spatial patterns of PET do not affect

the average connectivity at network scale.

3.2 Spatial variability of hydrological variables

The analysis of the spatial patterns of hydrological and ecological variables is here

performed focusing on a relatively dry climatic setting (i.e. 〈P〉= 150 mm/season

and spatially uniform 〈PET〉 = 3.5 mm/d). Three different values of the rainfall

frequency are investigated (e.g. λP = 0.1 d−1, λP = 0.5 d−1 and λP = 1 d−1).

Simulations indicate that the runoff coefficient, φ, plays a critical role in shaping

spatial patterns of connectivity. Under dry climates, φ generally exhibits a power-

law dependence on the drainage area (i.e. φ ∝ A−β). This is due to the reduction

of the mean rainfall intensity and the increase of precipitation frequency for larger

contributing areas (the larger the catchment area, the higher the occurrence prob-

ability of local rain events that involve only a small portion of the basin). Low

rain frequency (λP = 0.1 d-1) lead to high values of φ in downstream sites (Figure

3.3b). Hence, the intensity of the events is sufficient to generate persistent flow

regimes in most channel sites, thereby increasing Cntw. Conversely, frequent events

with reduced intensity (λP = 1 d-1) entail rather small and uniform values of φ

along the network, reducing Cntw significantly.

The mean water depth, 〈h〉 , generally increases with the drainage area, as a

byproduct of the scaling relation (equation (2.12)). However, 〈h〉 slightly increases

with A when λP = 1 d-1 as long as φ decreases with A as a power-law with an

exponent β close to 1 (Figure 3.4). Therefore, when β approaches 1 the mean

depth 〈h〉, which scales as [A1−β]δ, tends to remain constant throughout the net-

work. When 〈h〉 remains nearly uniform along the network, the connectivity is

affected by second-order moments of the stage pdf. In particular, for increasing λP

the coefficient of variation of the stage distribution decreases, and the hydrological
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connectivity becomes a function of the relationship between 〈h〉 and h∗.

Figure 3.5 shows the water stage pdfs for increasing frequencies of rainfall events,

assuming 〈P〉= 150 mm/season. For high rainfall frequency (Figure 3.5c), the pro-

nounced decrease of φ with A promotes high probabilities of relatively small water

stages (〈h〉 ≃ 150 mm) in downstream sites. This strongly reduces the connectivity

when h∗ >250 mm. Therefore, in most circumstances, the runoff coefficient repre-

sents a key factor governing the spatial patterns of the probability distribution of

water stage along the network, and the ensuing connectivity.

However, hydrological connectivity is also strongly dependent of the stage thresh-

old h∗. Generally, low thresholds (h∗ = 50 mm) produce high connectivity ev-

erywhere along the network regardless of λP . Higher thresholds (h∗ = 250 mm),

instead, produce high connectivities in downstream sites (Clocal = 0.7 ÷1) only for

low frequency of rainfall (λP = 0.1 d-1). Conversely, very low connectivities are

observed throughout the network (Clocal < 0.1) for higher values of λP (λP = 1

d-1). Therefore, under the same mean precipitation and for different values of λP ,

different stage thresholds produce heterogeneous patterns of connectivity along the

network (Figure 3.6). Although the spatial variability of evapotranspiration does

not affect the average connectivity of the network, the impact of PET patterns

on stage pdfs and local connectivity in dry climatic conditions is noticeable. Fig-

ure 3.7 shows the probability distributions of water stages along the network for

three different evapotranspiration patterns. When 〈PET〉 is assumed to be spa-

tially uniform, 〈h〉 increases in downstream sites as driven by the increase of the

drainage area. If 〈PET〉 is assumed to increase downstream, 〈h〉 slightly decreases

along the network because the increase of spatially averaged PET from upstream

to downstream sites enhances the decrease of the runoff coefficient for increasing

contributing areas (Figure 3.7b). The increase of 〈h〉 for larger contributing areas

becomes less pronounced when 〈PET〉 is assumed to decrease downstream. Spatial

patterns of 〈PET〉 affect the tail of pH(h), which is a second-order control on con-

nectivity patterns. The probability of high water stages is reduced when 〈PET〉

is spatially variable (insets of Figure 3.7b and c), with a reduction of connectivity

especially in downstream sites. As a consequence, the same stage threshold used
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Figure 3.3: a) Pattern of Cntw for increasing rainfall frequency; b) Scaling relation of

the runoff coefficient φ; c) Scaling relation of the mean stage 〈h〉. All simulations refer

to a dry climatic settings (〈P〉= 150 mm/season and uniform 〈PET〉= 3.5 mm/d).
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Figure 3.4: The scaling exponent β of the runoff coefficient when 〈P〉= 150 mm/season

and λP = 1 d-1 is close to 1.

with different PET patterns produces different spatial distributions of hydrolog-

ical connectivity at local scale (Figure 3.8). Overall, the analysis indicates the

emergence of unexpected spatial patterns of connectivity induced by patterns of

evapotranspiration, especially under arid climatic conditions. High values of local

connectivity are observed not only in downstream sites (where the mean stage is

typically higher) but also in river reaches located in the middle of the network

(Figure 3.8b and c).
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Chapter 4

Habitat suitability

The spatial variability of streamflow regimes does not affect only river connectivity

(equations (2.14) - (2.17)), but it also influences habitat distributions in rivers

[Ceola et al., 2014; Jaeger et al., 2014; Santiago et al., 2017; Stamou et al., 2018].

This chapter describes the ecological function of river when habitat availability

and the hydrologic alteration of flow regime are simultaneously accounted for.

4.1 Habitat suitability distribution

The ecological function of rivers relies on the presence of a mosaic of different

habitats connected through the river network. However, the same ecological habi-

tat can be usable for different ecological functions (or not) depending on the local

streamflow availability. In this thesis, an empirical description of the ecological

relevance of each node of the network is included. In particular, a local habitat

suitability function that accounts for how the ecological functionality of a given

site varies in time with streamflow is considered (Figure 4.1). Habitat suitability

curves are a simple tool that describes species habitat preferences under different

flow conditions, summarizing the effect of environmental variables on species dis-

tribution in rivers [Jowett and Richardson, 1990; Vismara et al., 2001]. In this

work, an empirical gamma function is used to model the relation between fish

habitats and flow availability [Fabris et al., 2017]:
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4.1. HABITAT SUITABILITY DISTRIBUTION

HS(q) = C exp(−B q) qA−1 , (4.1)

where A, B and C are empirical parameters dependent on the channel morphology,

water temperature and species length. The average value of the habitat suitability,

〈HS〉, is then obtained as:

〈HS 〉 =

∫ ∞

0

HS(q) pQ(q) dq . (4.2)

Equation (4.2) quantifies the average ability of a given site to provide usable habi-

tats under time-variant flow conditions, taking into account the local flow regime.

Therefore, climatic and landscape variables affect, through pQ(q), both the con-

nectivity along the network (equations (2.14) - (2.17)) and the average habitat

suitability of each node (equation (4.2)).

HS(q)

q

Figure 4.1: Example of habitat suitability rating curve

In order to evaluate the ecological function of the hydrological connectivity the

habitat distribution is also included in the simulation via equation (4.1), with

specific reference to salmon migration towards the headwaters. Several studies

pertaining Atlantic salmons, based on experimental data and hydraulic models

[Tetzlaff et al., 2007; Fabris et al., 2017], have proposed a range of variability for

the parameters A, B and C in equation (4.1). The minimum and the maximum
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value for each parameter are reported in Table 4.1. In view of the uncertainty asso-

ciated to the parameters controlling habitat suitability distribution, which depends

on bed morphology, water quantity, water quality and size species, intermediate

values of literature ranges are considered. Parameters are here assumed constant

throughout the river network. Different parameters combinations were also tested

without significant changes in the results presented in this thesis.

Table 4.1: Minimum and maximum values of habitat distribution model. The param-

eter set used in the simulation is also reported in the table (penultimate column)

Parameter Min Max Assumed Units

A 0.9 1.1 1.0 [-]

B 2.5 12.0 5.6 [L T-1]

C 0.5 1.3 1.3 [T L-1]

4.2 Ecological value of hydrological connectivity

This section investigates how the habitat availability and the hydrological con-

nectivity interact in response to space-time variability of climatic attributes. As

a proof-of-concept, it is presented here the specific example of spawning sites for

Atlantic salmons, and their connectivity with the catchment outlet. The spatial

distribution of spawning sites for Atlantic salmons is modelled according to the

assumptions discussed in the previous section. Under these assumptions, the mean

habitat suitability 〈HS〉 is strongly dependent on mean precipitation and stream-

flow. For very arid climates (〈P〉 = 150 mm/season) downstream reaches are more

suitable for spawning, whereas under wetter climatic conditions the higher habitat

suitability is located in the headwaters (Figure 4.2).

To investigate the interaction between the spatial distribution of fish habitat suit-

ability and hydrological connectivity as driven by flow regimes, the concept of

outlet connectivity, which is a useful metric to evaluate the accessibility of spawn-
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Figure 4.2: Spatial variability of mean habitat suitability under a) dry climatic scenario

with 〈P〉 = 150 mm/season; b) a wet climatic scenario with 〈P〉 = 350 mm/season.

ing sites from the outlet in a river network is introduced. The outlet connectivity,

Cout, is calculated using equation (2.16) with specific reference to the outlet. Cout

expresses the probability for the outlet to be connected with all network nodes, as-

suming that each node represents a patch of suitable habitat where individuals can

reproduce and survive. Thus, direct connections between nodes are migration links

between patches. However, in order to preserve the ecological function of rivers,

the hydrological connectivity must be guaranteed especially in those nodes whose

ecological value is larger (in the example, the nodes where the habitat suitability is

larger). Thus, the ecological connectivity of the outlet, Ceco, can be calculated by

weighting each outlet-node path using a weight proportional to the mean habitat

suitability of the node:

Ceco =

∑N
n=1
n 6=out

C(n→out) 〈HS〉n
∑N

n=1
n 6=out

〈HS〉n
(4.3)

Then, a suitability index SI is used to assess the impact of hydrological dynamics

on ecological processes. SI is calculated as the ratio Ceco/Cout. If most ecologically
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suitable sites are located in nodes that are mostly connected with the outlet, SI

is larger than 1. On the other hand, SI < 1 when the most suitable sites are

less hydrologically connected with the outlet. Key results of the application of the

model under different climatic settings and connectivity thresholds are summarized

in Table 4.2.

Table 4.2: Outlet connectivity, ecological connectivity and suitability index for dry and

wet climatic setting as function of stage water thresholds.

Threshold Climate Cout Ceco SI = Ceco/Cout

[mm] [−] [−] [−]

h∗ = 50 Dry 0.80 0.80 1.00

Wet 0.85 0.70 0.80

h∗ = 250 Dry 0.05 0.07 1.40

Wet 0.50 0.20 0.40

Dry: 〈P〉 = 150 mm/season; λP = 0.5 d-1

Wet: 〈P〉 = 350 mm/season; λP = 0.5 d-1

Low stage thresholds produce high values of connectivity at local scale, both in

dry and wet climates, as the probability to observe water depths larger than 50

mm is relatively high everywhere in the network. Thus, the probability of the

outlet to be connected with the other nodes is high (Cout ≥ 0.80). In this case,

most suitable sites (that are located downstream when climate is dry or upstream

when climate is wet) are properly connected to the outlet, and SI values are close

to 1 under both climatic scenarios. With larger stage thresholds (h∗ = 250 mm),

the most connected stream reaches are generally located close to the outlet, where

the mean water stage is higher. In this case, the outlet connectivity is severely

reduced and Cout under the dry climate is ten times smaller than the value obtained

under the wet scenario. Although the outlet is insufficiently connected with the

entire network, when precipitation is low (dry scenario), the most suitable sites

are effectively connected to the outlet since they are located downstream (SI >

1). On the other hand, when precipitation is high, the most suitable reaches

are located in the headwaters, which are poorly connected to the outlet. Thus,
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even though the overall values of Ceco and Cout are higher than those obtained

in the dry scenario, SI is smaller than 1. This implies that, for relatively high

thresholds, spawning sites are less accessible under wet climatic conditions. This

simple example shows that, depending on the type of climate, the stage threshold

and the spatial distribution of habitats, the emerging patterns of connectivity can

either promote or limit ecological function of river networks.
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Chapter 5

Ecological flows

This chapter illustrates the innovative water policy approach recently introduced

in the European Union to manage water resource and its ecological function. The

aim is to use the results of this thesis to propose a new perspective on the selection

of a suitable methodology for ecological flows estimation in river systems.

5.1 EU Water Framework Directive

Water legislation is one of the oldest and most developed areas of environmen-

tal policy in the European Union (EU) [Josefsson, 2012]. In the period between

1975 and 1980 (Figure 5.1), EU water policy focussed primarily on public health

by setting Water Quality Standards (WQS) for the protection of water resources.

They included Drinking Water Directive (Council Directive 80/778/EEC), a spe-

cific tool for drinking water abstractions from surface waters, as well as Directives

for bathing waters (Council Directive 76/160/EEC), fish waters (Council Direc-

tive 78/659/EEC) and shellfish waters (Council Directive 79/923/EEC). A new

phase of water legislation begun in 1991 with the adoption of the Urban Waste

Water Treatment Directive (Council Directive 91/271/EEC) and the Nitrates Di-

rective (Council Directive 91/676/EEC), restricting releases of pollutant into the

aquatic environment. Then, a Directive for the conservation of natural habitats

was adopted in 1992, addressing the maintenance of biodiversity, followed by a
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Directive for Integrated Pollution and Prevention Control (IPPC) adopted in 1996

and related to pollution from large industrial installations.

Bathing Water 

Directive

1976

Shellfish Water 

Directive

1979

Drinking Water 

Directive

1980

Fish Water 

Directive

1978

Urban Wastewater Treatment 

& Nitrates Directives

1991

IPPC Directive

1996

Habitats

Directive

1992

WFD

2000

1975-1980 1991 - 2000

Figure 5.1: EU eater policy evolution towards the WFD (1975-2000).

Although considerable progress had been made in tackling such individual issues,

the need to overcome fragmentary water policy and establish a single piece of

framework legislation emerged [Giakoumis and Voulvoulis, 2018]. In response to

this, the European Union adopted the Water Framework Directive (WFD) in De-

cember 2000, with the following key goals:

• expanding water protection goals to all EU water bodies, both surface waters

and groundwaters;

• achieving good status for all waters by a set deadline;

• adopting a river basin approach;

• developing an integrated water management system;

• granting public participation in water management;

• getting the prices right.

The WFD introduces a new framework for the management, protection and im-

provement of the quality of water resource and ensure its long-term and sustain-

able use across the European Union. The directive prescribes to Member States

to achieve good status in all surface waters and groundwaters by 2015. In the

case of grounds for derogation achievement of good status may be extended to
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2021 or by 2027 at the latest. The directive establishes an innovative approach for

water management based on river basins and sets specific deadlines for Member

States to protect aquatic ecosystems. The key milestones of the water directive are

listed below (Table 5.1). The implementation of the directive is achieved through

Table 5.1: Key milestones of Water Framework Directive

Year Issue Reference

2000 Directive entered into force Art. 25

2003 Identification of River Basin Districts and Authorities Art. 3

2004 Characterization of river basin: pressures and impacts Art. 5

2006 Establishment of monitoring network Art. 8

2008 Present draft river basin management plan Art. 13

2009 Finalize RBMP including programme of measures Art. 11, 13

2010 Introduce pricing policies Art. 9

2012 Make operational programme of measures Art. 11

2015 First management cycle ends Art. 4

2021 Second management cycle ends Art. 4, 13

2027 Third management cycle ends, final deadline for meeting

objectives

Art. 4, 13

river basin planning processes that involve public participation in a series of steps

shown in Figure 5.2. The river basin planning process started in 2004 with the

analyses of the pressures and impacts affecting waters in the river basin district.

The findings were used to define the environmental objectives end establish mon-

itoring programs for improving water environment. The reports on Significant

Water Management Issues (SWMIs) in 2007 were important steps leading towards

the production of the first River Basin Management Plan (RBMP) in 2008. The

directive requires via the RBMPs a Programme of Measures (PoM) to improve the

ecological quality of water bodies and achieve environmental objectives. The PoM

was published in December 2009 and was implemented by December 2012.
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Figure 5.2: The WFD river basin planning process [ETC/ICM, 2012].

One of the main goal of EU water policy is to ensure sufficient quantity of good

quality water for the environment and for people needs throughout Europe. Ac-

cording to the WFD, a good status is reached when certain standards have been

met for the ecology, chemistry, morphology and quantity of waters [ETC/ICM,

2012]. The directive provides the definition of the status as the state of the system

with minimal anthropogenic pressures or biological deviation from undisturbed

conditions [EC, 2015]. The directive defines ”good ecological status” and ”good

chemical status” in terms of healthy ecosystems as well as low levels of chemical

pollution. The ecological status is related to the quality of biological communi-

ties, supported by hydrological and morphological characteristics of water bodies.

Because of the ecological variability of different water types, which may be char-

acterized by distinct definitions of environmental metrics, good ecological status

cannot be defined across Europe using absolute standards. On the other hand, the

chemical status is based on the compliance with all the quality standards estab-

lished for chemical substances at European level.

In the last decades, climate change is posing a major challenge for water manage-
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ment across the European Union [EC, 2008]. In southern Europe, low rainfall and

high summer temperature are putting stress on environments with limited water

resources, increasing the risks of eutrophication in many rivers, lakes, and coastal

waters. On the contrary, more rain and a higher flood risk are observed especially

in northern countries. As a result, the ecological and chemical status of EU waters

is threatening, and the water ecosystems may become more vulnerable to extreme

events. Therefore, policies and actions need to be set up in order to prevent and

mitigate water scarcity and extreme situations, with the priority to move towards

a water-efficient and water-saving economy of good quality waters.

Rivers flow on through different countries to reach the sea and they do not obey

to national boundaries. A river basin (i.e. catchment) surrounds the entire river

system, from the sources to the mouth. Therefore, water quality and quantity

improvements cannot be reached at the local level without taking into account

what happens upstream and downstream. For this purpose, the water directive

proposes an integrated river basin management approach to protecting the whole

body of water.

The river basin is the basic, natural, geographical and hydrological unit to manage

water. Europe has more than 127 000 surface water bodies: 80% of them create

an extensive network of rivers and streams, 15% are lakes and 5% are coastal and

transitional waters [ETC/ICM, 2012]. The WFD divides the river basins and as-

sociated coastal areas into 110 river basin districts, 40 of which are international

and cross borders, covering about 60% of European continent (Figure 5.3).

The WFD implementation in the EU Member States takes place through river

basin management plans (RBMPs). The RBMPs identify measures to improve

water quality and achieve the objectives set for the river basin (ecological sta-

tus, quantitative status, chemical status and protected area objectives) within

the timetable required. For each river basin district, the plans define the bodies of

water not meeting the directive’s environmental targets and describe causing prob-

lems and risks. They contain also the actions to be carried out to maintain and
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Figure 5.3: Map of river basin districts and sea regions [ETC/ICM, 2012].
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improve the quality of the water. Member States are called to measure the health

of their surface waters and groundwater using national monitoring programmes.

The monitoring is designed to provide a coherent and comprehensive overview of

the health of European waters and shall permit a common classification of water

bodies. The directive sets a five-class scale (high, good, moderate, poor and bad

status) for surface waters and 2 classes (good and poor) for groundwater. The

monitoring network helps Member States to define the effective measures needed

to restore water bodies and achieve good status within each river basin. It is worth

to note that the directive sets a common approach for monitoring water quality

across all Member States but it does not specify the methods to be used. Indeed,

every Member State decides the best method based on local conditions and ex-

isting national approaches. The directive specifies three types of monitoring [EC,

2008]:

• Long-term surveillance monitoring, which provides a broad understanding of

the health of water bodies and assess long-term changes in natural conditions

and resulting from widespread anthropogenic activities;

• Operational monitoring, which focuses on water bodies identified as being at

risk of failing to meet their environmental objectives;

• Investigative monitoring, which aims to ascertain the magnitude and impacts

of accidental causes.

Nowadays, aquatic ecosystems health is a primary objective for European water

policy as previous legislation were mainly focused on chemical pollution. While

Member States have a great deal of experience in monitoring the chemical status

of their waters, measuring good ecological status is a new challenge. The WFD re-

quires that the national classification systems for assessing ecological status should

be intercalibrated. The aim of the intercalibration is to ensure that the good sta-

tus class given by each national assessment methods is comparable and consistent

with the directive. Given the wide range of ecosystems found across European

territory, using one single method to assess all water bodies is limiting. There-

fore, intercalibration provides a common scale across Europe to measure progress

towards healthy ecosystems. To date, eleven countries participate in the intercali-
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bration group for North-East Atlantic coastal and transitional waters, comparing

the ecosystems of seven different types of waters, from shallow coastlines to deep

northern fjords [EC, 2008].

The new water directive encourages active involvement of all interested parties

using public information and consultation in the process of water management.

The public participation is essential to gain knowledge and experience from stake-

holders and jointly develop solutions to environmental problems. This consultation

mechanism leads to shared decision-making in which stakeholders actively partic-

ipate in the development and implementation of river basin plans.

The directive introduces key economic principles for the management of Euro-

pean waters. Water services, such as supplying clean drinking water, irrigation

for agriculture, hydropower production and wastewater treatment facilities, must

be charged for the services provided. The prices paid by users should also cover

resource and environmental costs. For instance, environmental costs may include

damage to ecosystems by extracting water for anthropogenic uses and reducing

water levels in rivers. Recovering resource costs is especially important in river

basins where water is limited. Nowadays, water scarcity and droughts are a grow-

ing concern throughout Europe [EC, 2008]. Water scarcity, where demand exceeds

the sustainable use, affects over 10% of the EU’s population and almost 20% of

its territory. Moreover, the number of droughts due to low rainfall has increased

over the past 30 years and in 2003 they affected over 100 million people across Eu-

rope. The directive also states that water pricing should create incentives for the

efficient and sustainable use of water resources. The idea is that, if users pay the

real costs of used water they would certainly reduce water losses. Pricing would

be a powerful awareness-raising tool for consumers, as it combines environmental

with economic benefits.

The Water Blueprint highlights that preserving water is not only about environ-

mental protection, health and well-being, but it is also about economic growth

and prosperity. The Blueprint outlines actions for the implementation of current
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water legislation integrating policy objectives related to water quantity and effi-

ciency. A sufficient quantity of good quality water must be available for people’s

needs, the economy and the environment throughout the EU. In response of this,

water allocation needs to be improved on the basis of the amount of water re-

quired for the aquatic ecosystem to continue to thrive and provide the services we

rely upon [EC, 2015]. Fundamental to this is the recognition that water quality

and quantity are intimately related within the concept of good status demanded

from the directive. To achieve this, the Blueprint proposed the development of a

guidance document in the framework of the water directive (Common Implemen-

tation Strategy, CIS) that would provide an EU definition of ecological flows and

a common understanding of how it should be calculated.

5.2 From environmental flows to ecological flows

The concept of environmental flows was historically developed as a response to

the degradation of aquatic ecosystems caused by the overexploitation of water.

Terms such as minimum flows, instream flows and fish flows were introduced to

identify the requirement of a minimum amount of water that should continue

flowing along rivers to sustain biodiversity and ecosystem integrity, even in the

dry periods [Cavendish and Duncan, 1986; Milhous et al., 1989]. Environmental

flow is defined by the Brisbane Declaration [2007] as “the quantity, quality and

timing of water flows required to sustain freshwater ecosystems and the human

livelihoods and well-being that depend on these ecosystems”. The directive ac-

knowledges the critical role of water quantity and dynamics in supporting the

quality of aquatic ecosystems. It considers the ecological flow (Eflow) as “a hy-

drological regime consistent with the achievement of the environmental objectives

of the WFD in natural surface water bodies”. The hydrological regime plays a

primary role in determining physical habitats, which in turn determines the biotic

composition and sustainability of aquatic ecosystems [Junk et al., 1989; Poff et al.,

1997; Bunn and Arthington, 2002; Arthington et al., 2006; Poff and Zimmerman,

2010]. The assessment of the hydrological regime is explicitly required by the di-
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rective for the classification of ecological status related to all existing pressures, in

particular to hydrological ones. In water bodies affected by significant hydrological

pressures (i.e. land-use and drainage modification, water extraction and impound-

ments), the gap between the current flow regime and the ecological flow should

be assessed in order to set appropriate mitigation measures. Figure 5.4 shows in

detail the difference between the pressure analysis and the gap analysis. While the

pressure analysis (left) assess the hydrological alteration considering the deviation

of current flows from natural flows, Eflow gap analysis consists in assessing the

distance between current flows and ecological flows. This gap analysis requires an

estimation of the ecological flow taking into consideration the natural flow regime,

the morphology of the river and the ecosystems therein.

Figure 5.4: Pressure analysis and Eflow gap analysis [EC, 2015]

Several methods have been developed in the scientific field to inform the definition

of Eflows, mostly differing in terms of integration of biological aspects, scale, com-

plexity and volume of data requirement. These methodologies can be grouped in

three general categories: (1) Hydrological, (2) Hydraulic-Habitat, and (3) Holistic

methodologies [Tharme, 2003]. The following sections describe such methodolo-
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gies; the selection of the most appropriate method depends on resource availability

and on the severity of human pressures.

Hydrological methodologies

Hydrological methodologies rely primarily on the use of hydrological data, usu-

ally historical monthly or daily flow records, for regional assessments. From the

1970’s purely hydrological methods set minimum flow level to be maintained to

protect the aquatic resources [Tennant, 1976]. More recent applications are mov-

ing towards more comprehensive methodologies that recognize the importance of

natural flow variability and suggest bands of allowable alterations from natural con-

ditions, e.g. the Sustainability Boundary Approach (SBA, [Richter et al., 2012]).

These approaches allow to find flow levels that naturally occur in rivers and can

be considered allowable thresholds without compromising ecological health and

ecosystem services. With reference to Figure 5.4, they assume Eflows (green line

in right panel) overlaps to natural flows (blue line in left panel).

Hydrologically-based methods currently represent the most widely used approaches

for Eflows estimation because of their ease of use and low cost, since fieldwork is

not needed. However, these approaches do not directly include any ecological

and morphological characteristics of rivers nor any biological processes that occur

therein.

Hydraulic-Habitat methodologies

Because of the lack of sensitivity to individual rivers pertaining to hydrologi-

cal methods, hydraulic-rating methods are subsequently developed to describe

channel-discharge relationships by using field measurements. Though providing

river-specific data, these methodologies failed to explain the implication of changes

in the physical conditions for the aquatic biota. This led to the development of

habitat-rating approaches, the best known of which are the Instream Flow Incre-

mental Methodology IFIM [Bovee, 1982] and its cornerstone, the physical habitat

simulation model, PHABSIM [Milhous et al., 1989]. These models are grounded

on the idea that changes in fish habitat are due to changes in flow conditions.
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Hydraulic-habitat simulation consists of i) physical modelling of the river chan-

nel and ii) modelling of the biological associations with the physical environment.

The physical and biological models are combined to simulate how the variability

of physical habitats (e.g., the wetted area suitable for a target species) varies with

streamflow. For this reason, the habitat time series analysis is currently considered

a key component in the definition of Eflows with hydraulic-habitat methodologies

[Parasiewicz et al., 2013].

These approaches represent an earlier new scientific front to understand the eco-

logical consequences of environmental flows on habitats and biota, but it is worth

to note that the hydraulic-habitat simulation methods estimate only the amount

of habitat as a function of hydrological and morphological conditions at local scale.

Moreover, hydraulic-habitat methodologies require a significant amount of field-

work to collect both the hydro-morphological and biological data; thus, they can

be time consuming and expensive.

Holistic methodologies

Holistic methodologies aim to prescribe flows for the maintenance of the whole

riverine ecosystem [Zalucki and Arthington, 1998]. Holistic approaches are pro-

cesses that allow multi-disciplinary scientists (with various backgrounds including

hydrology, geomorphology, water quality and ecology) to integrate data and knowl-

edge for developing an understanding of the relationship between flow alteration

and environmental response. The output is a description of the altered flow regime

needed to achieve and maintain components of the river ecosystem, including so-

cietal and recreational uses. Indeed, these frameworks may also integrate social,

cultural and economic values within environmental protection goals (e.g. BBM

[Tharme and King, 1998]; DRIFT [King et al., 2003]; ELOHA [Poff et al., 2009]).

Such methodologies address the flow requirements of the entire riverine ecosystem,

based on explicit links between changes in flow regime and foreseen effects on the

biophysical environment connected to the river network.

Holistic methodologies are generally applicable for regional or river specific scales.

Depending on the depth of the evaluation, data collection, and the extent of ex-
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pert consultation, their applications can be time consuming and very expensive.

Though the principles on which they rely are robust, these workshops provide lit-

tle quantitative information and they are difficult to translate into the engineering

practice. Therefore, they are seldom applied for the design of water infrastructures

and the identification of operational management criteria.

5.3 A new perspective on the Eflows evaluation

Understanding whether deviations from the natural flow regime are acceptable or

not is a challenging problem. This thesis aims to stress out the importance of

an holistic perspective that integrates hydrological, hydraulic and physical habitat

analysis, within a modular framework, for establishing the environmental require-

ments of riverine ecosystems. In particular, this work proposes an innovative ap-

proach which is based on the probabilistic method for the identification of spatial

patterns of ecologic variables integrated in the long-term at network scale.

It is proposed that, in order to preserve flow regimes for supporting the aquatic

ecosystems, it would be convenient to take into account the network-scale func-

tion of the natural hydrologic regime. The spatially-integrated approach proposed

in this thesis considers individual local flow conditions, the associated habitat,

and their interconnections, thereby overlapping the multiple functions of river sys-

tems. Hydraulic conditions are relevant as they guarantee habitat integrity at local

scale. However, the key point is to ensure valuable habitats which are physically

reachable and hydrologically connected. This can be feasible considering physical

thresholds, which are embedded in the concept of the critical stage h∗, defined as

the minimum stage that allows species movement from one point to another within

the river network.

The results of this thesis demonstrate that temporal and spatial variability of

flows reflects in a variability of the hydrological connectivity, and thus might im-

ply seasons with a strongly reduced connectivity. These represent a barrier for

the movement of ecological species within the catchment, with associated environ-

mental concerns. Migrations are biologically constrained in time and physical dis-

55



5.3. A NEW PERSPECTIVE ON THE EFLOWS EVALUATION

connections between habitats during prescribed time windows might be extremely

harmful for fish communities. In the case of salmons upstream migration, recent

studies have demonstrated that the lack of hydrological connectivity can reduce

the number of immigrating salmons by up to 80 % of the potential value under

optimal hydrologic condition [Lazzaro et al., 2017].

Hydrologic variability controls both the existence of unique and relevant habi-

tats and the connectivity between these habitats along the river network. Thus,

these two aspects cannot be decoupled in the protection of aquatic communities.

Moreover, local drops of connectivity induced by anthropogenic pressures, such

as damming or water diversions contribute to the fragmentation of the overall

river network [Widder et al., 2014], disconnecting different type of habitats sup-

plied by the river system. Frequently, dams and diversions cause dramatic changes

in downstream flow regimes and might limit the access to fundamental habitats

hosted by upstream reaches. The impact of water infrastructures, superimposed to

flow regimes alterations induced by climate and landscape change [Botter, 2014],

can make considerable portions of the network unavailable to fishes and biomes

due to connectivity losses in critical nodes of the river network.

Many regions of the world are experiencing an increasing exploitation of riverine

water resources. Therefore, preserving the hydrological connectivity within a river

network and, consequently, preventing environmental concerns on biological com-

munities are becoming increasingly important tasks for water managers. Following

the recent water directive provisions, anthropogenic and environmental needs have

to be balanced, thereby requiring tools for a proper allocation of water resources

among contrasting goals. The comprehensive view of the river system proposed

with this thesis provides a clue for the identification of river flows that guarantee

the functioning of all major biotic components of ecosystems. Pure hydrological

methods seek to preserve the frequencies associated to all flow magnitude, ac-

cording to the natural flow regime paradigm. Habitat methods suggest classes of

“critical” environmental flows consistent with the ecological requirements of rivers,

which may be dependent on the species considered. As the habitat conservation is

a necessary but not sufficient condition to sustain river ecosystem function, in the
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definition of ecological flows, also river flows that ensure a sufficient connectivity

need to be accounted for. Figure 5.5 shows that habitat requirements in terms of

hydrological conditions may differ from connectivity requirements (panel a).
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Figure 5.5: a) Distribution of natural flows, with highlighted the frequency associ-

ated to flows that ensure ecological habitats for different species (orange and cyan) and

network connectivity (yellow); b) Distribution of natural flows, with highlighted the

frequency associated to flows that ensure the ecological flow.

The final choice to define ecological flow requirements is a multifacted process

that involves prioritization of water uses, knowledge of the replenishing water re-

sources and risk assessment efforts. Key decision variables are the presence of

habitats and the connectivity. These goals may compete when suitable habitats
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are not physically connected under certain flow conditions. In this context, multi-

objective optimization may be useful tools to address the evaluation of Eflows and

identify optimal trade-offs between the maximization of the ecological function of

water resources and the internal connectivity of networks.
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Chapter 6

Discussion

The ecological function of rivers is guaranteed by the physical connection between

network nodes, which is driven by hydrological processes. The results of this thesis

indicate that the spatial variability of reach-scale connectivity might be controlled

by the spatial and temporal distribution of climatic variables. Precipitation distri-

bution, in terms of rainfall frequency and intensity, and spatial patterns of evap-

otranspiration concur to define the fraction of the hydrological network available

for biological dispersion. Frequently, river networks in arid environments may be

hydrologically disconnected because of insufficient water flows in relevant portions

of the network. Moreover, spatial gradients of climatic properties influence the

hydrological response and the connectivity of catchments whose size is larger than

the integral scale of the relevant climatic heterogeneity. Therefore, spatial pat-

terns of climate are likely to alter existing scaling properties of drainage networks

inferred through purely geomorphological approaches [Rigon et al., 1993].

Although the general influence of the hydrological connectivity on fauna migra-

tory dynamics has been already documented in the literature [Tetzlaff et al., 2008;

Jaeger et al., 2014; Lazzaro et al., 2017], quantitative assessments of ecologically

relevant stage thresholds remain problematic. In this novel framework, a critical

connectivity threshold can be introduced to identify the likelihood of hydrological

conditions favourable to migratory movements. In particular, it shall assume that

two nodes with a local connectivity lower than a given threshold, C∗, are physically
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disconnected because the likelihood of hydrological conditions favourable to species

movement is too low. Lower values of C∗ are thus associated to greater efficiency

during migration. Simulations evidence that the shape of the connected network

might be significantly altered by the underlying hydrological processes. This is

represented in Figures 6.1 and 6.2, that show the shape of the connected network

under different scenarios, whenever all the reaches with Clocal < C∗ are removed

from the original network. During the dry season a low connectivity threshold

(C∗= 10-2) breaks the network into two disconnected parts. Larger portions of

the main river channel are progressively excluded by increasing the connectivity

threshold (Figure 6.1b and c). The shape of the network is also modified when dif-

ferent climatic conditions are considered (Figure 6.2b and c). Interestingly, under

a wet climate the headwaters are disconnected; conversely, in the dry scenario the

main channel, where the connectivity is lower, gradually disappears. This dynamic

behaviour of the flowing network might have a crucial impact on ecological mod-

els for species dispersion and propagation of waterborne diseases [Rinaldo et al.,

2018]. The proposed approach provides a quantitative framework that allows the

description of the main hydrologic causes and ecological consequences of hydro-

logical dynamics experienced by river networks in response to climatic forcing.

As such, the method could be integrated into network transport models currently

utilized in spatial ecology, allowing for the use of time-variant and locally discon-

nected network domains, of the type shown in Figures 6.1 and 6.2.

This work exploits a probabilistic framework for the characterization of the spa-

tial variability of streamflow regimes and water stage dynamics driven by external

climatic forcing. The method incorporates a number of hydrological models of

proven robustness and wide applicability [Porporato et al., 2004; Botter et al.,

2009; Biswal and Marani, 2010; Doulatyari et al., 2015, 2017]. Nevertheless, the

model relies on a number of simplifying assumptions. The hydrological model as-

sumes a one-to-one relationship between catchment storage and discharge, which

is here inferred solely from geomorphic data. Moreover, the developed framework

does not take into account space-time variations in the relationship between river

width and depth along the network. The constant nonlinear relation used to de-
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6. DISCUSSION
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Figure 6.1: Comparison between DEM-based network and hydrologically connected

networks. a) DEM-based network; b) Hydrologically connected network using connec-

tivity threshold C*= 0.01 in dry climatic conditions; c) Hydrologically connected network

using connectivity threshold C*= 0.1 in dry climatic conditions.
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Figure 6.2: Comparison between DEM-based network and hydrologically connected

networks. a) DEM-based network; b) Hydrologically connected network using connec-

tivity threshold C*= 0.1 in wet climatic conditions; c) Hydrologically connected network

using connectivity threshold C*= 0.1 in dry climatic conditions.

62



6. DISCUSSION

rive water stages from discharges is an assumption that could be relaxed only

whenever in-situ measurements of the geometry of cross-sections along the river

are available. River bed is also assumed impermeable and possible interactions

between the stream and the surrounding environment are neglected. Nevertheless,

the model is mathematically sound, has a reduced number of parameters with a

direct physical meaning, and it is computationally inexpensive. Therefore, the

approach represents an interesting prospect for eco-hydrological spatially-explicit

studies.
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Chapter 7

Conclusions

Natural flow regimes display pronounced variability at different spatial and tem-

poral scales. The magnitude, frequency and duration of streamflows are controlled

by climatic forces, such as rainfall and evapotranspiration. In turn, the chang-

ing quantity of water flowing in a river significantly influences the connectivity

among river stream reaches. This thesis proposes an analytical approach where

hydrological connectivity is explicitly linked to driving hydroclimatic variables and

catchment properties through the emergent spatial patterns of streamflow regimes

along river networks. The method is based on a stochastic generation of rainfall

able to reproduce different climatic scenarios in terms of rainfall frequency, inten-

sity and amount. Results confirm that precipitation regimes significantly impact

the connectivity of river networks. Network connectivity typically increases by

increasing the mean precipitation and the frequency of rainfall events. Under arid

climatic conditions, network connectivity is higher for rare but intense events, of

the type found in semi-arid regions.

Evapotranspiration is a key factor controlling the rate of decrease of the runoff

coefficient along river networks, with noticeable effects on mean water stages and

hydrological connectivity. A smooth decrease of the rainfall-runoff coefficient with

the contributing area generates increasing mean stages for larger drainage areas;

vice versa, when the reduction of the runoff coefficient with the contributing area is

faster (e.g. when rainfall events are frequent and when evapotranspiration is spa-
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tially variable, especially under arid conditions), the mean stage increases much

slower downstream, making the connectivity dependent on the interplay between

flow variability and the stage threshold h∗.

Model simulations show that spatial patterns of evapotranspiration strongly in-

fluence the variability of the hydrological connectivity along the network, without

impacting the mean network connectivity.

The proposed framework helps to identify the physical controls on hydrological

connectivity and their effect on ecological processes along river networks, as doc-

umented by the proof-of-concept pertaining to salmons migration discussed in

section 4.2. The analysis shows that depending on the climate and the spatial

variability of habitat suitability, the resulting connectivity patterns can either pro-

mote or limit the ecological function of river networks.

To provide a quantitative assessment of the impact of hydrological processes on

the shape and the extent of connected reaches, changes in the topological config-

uration of the river network, when all the streams with insufficient connectivity

are removed, are analysed. The analysis reveals that under arid climates the main

channel may become disconnected from tributaries, whereas under wet climates,

river networks tend to shrink from headwaters. Therefore, this thesis provides

quantitative evidence of the fact that the shape of connected networks can be sig-

nificantly impacted by the underlying hydrological dynamics.

The network-scale approach developed in this thesis offer an objective basis to

explicitly account for the climatic controls on river flow regimes, the hydrological

connectivity and the ensuing ecological consequences. The general mathematical

formulation proposed here encourages the application to different types of syn-

thetic networks (e.g. OCNs) and to real world case studies. The method offers

a robust basis to assess ecological impacts of streamflow variability in rivers, and

it is thus suited to be coupled with spatially-explicit ecological network models.

The approach can also help the definition of ecological flow requirements within

sustainable water policies.
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