
University of Padova
Department of Information Engineering

Ph.D. School of Information Engineering

Information Science and Technology

XXIX class

3D data fusion from multiple sensors

and its applications

Giulio Marin

Supervisor:

Pietro Zanuttigh, Ph.D.

Ph.D. School director:

Prof. Matteo Bertocco

January 31, 2017





A Ilene, che mi è sempre vicina.





Abstract

The introduction of depth cameras in the mass market contributed to make

computer vision applicable to many real world applications, such as human interac-

tion in virtual environments, autonomous driving, robotics and 3D reconstruction.

All these problems were originally tackled by means of standard cameras, but the

intrinsic ambiguity in the bidimensional images led to the development of depth

cameras technologies. Stereo vision was first introduced to provide an estimate

of the 3D geometry of the scene. Structured light depth cameras were developed

to use the same concepts of stereo vision but overcome some of the problems of

passive technologies. Finally, Time-of-Flight (ToF) depth cameras solve the same

depth estimation problem by using a different technology.

This thesis focuses on the acquisition of depth data from multiple sensors and

presents techniques to efficiently combine the information of different acquisition

systems. The three main technologies developed to provide depth estimation are

first reviewed, presenting operating principles and practical issues of each family

of sensors. The use of multiple sensors then is investigated, providing practical

solutions to the problem of 3D reconstruction and gesture recognition. Data from

stereo vision systems and ToF depth cameras are combined together to provide

a higher quality depth map. A confidence measure of depth data from the two

systems is used to guide the depth data fusion. The lack of datasets with data from

multiple sensors is addressed by proposing a system for the collection of data and

ground truth depth, and a tool to generate synthetic data from standard cameras

and ToF depth cameras. For gesture recognition, a depth camera is paired with

a Leap Motion device to boost the performance of the recognition task. A set of

features from the two devices is used in a classification framework based on Support

Vector Machines and Random Forests.
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Sommario

L’introduzione di sensori di profondità nel mercato di massa ha contribuito a

rendere la visione artificiale applicabile in molte applicazioni reali, come l’interazione

dell’uomo in ambienti virtuali, la guida autonoma, la robotica e la ricostruzione 3D.

Tutti questi problemi sono stati originariamente affrontati con l’utilizzo di normali

telecamere ma l’ambiguità intrinseca delle immagini bidimensionali ha portato allo

sviluppo di tecnologie per sensori di profondità. La visione stereoscopica è stata la

prima tecnologia a permettere di stimare la geometria tridimensionale della scena.

Sensori a luce strutturata sono stati sviluppati per sfruttare gli stessi principi della

visione stereoscopica ma risolvere alcuni problemi dei dispositivi passivi. Infine

i sensori a tempo di volo cercano di risolvere lo stesso problema di stima della

distanza utilizzando una differente tecnologia.

Questa tesi si focalizza nell’acquisizione di dati di profondità da diversi sensori

e presenta tecniche per combinare efficacemente le informazioni dei diversi sistemi

di acquisizione. Per prima cosa le tre principali tecnologie sviluppate per fornire

una stima di profondità sono esaminate in dettaglio, presentando i principi di

funzionamento e i problemi dei diversi sistemi. Successivamente è stato studiato

l’utilizzo congiunto di sensori, fornendo delle soluzioni pratiche al problema della

ricostruzione 3D e del riconoscimento dei gesti. I dati di un sistema stereoscopico

e di un sensore a tempo di volo sono stati combinati per fornire una mappa di

profondità più precisa. Per ognuno dei due sensori sono state sviluppate delle

mappe di confidenza utilizzate per controllare la fusione delle mappe di profondità.

La mancanza di collezioni con dati di diversi sensori è stato affrontato proponendo

un sistema per la collezione di dati da diversi sensori e la generazione di mappe di

profondità molto precise, oltre ad un sistema per la generazioni di dati sintetici per

sistemi stereoscopici e sensori a tempo di volo. Per il problema del riconoscimento

dei gesti è stato sviluppato un sistema per l’utilizzo congiunto di un sensore di

profondità e un sensore Leap Motion, per migliorare le prestazioni dell’attività

riconoscimento. Un insieme di descrittori ricavato dai due sistemi è stato utilizzato

per la classificazione dei gesti con un sistema basato su Support Vector Machines e

Random Forests.
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Chapter 1

Introduction

Nowadays the two dimensional view of the world provided by standard cameras

has been extended to three dimensions thanks to the introduction of depth cameras.

These devices have expanded the possible applications usually provided by standard

cameras, accurately recognizing objects, inferring shape and size of the environment

and interacting with a virtual reality through gesture recognition. Applications

include, but are not limited to, virtual and augmented reality, autonomous driving,

security systems and robotics.

The first depth camera technology introduced in the market is the stereo vision

system. Stereo vision just requires two standard cameras to generate a depth map

of the scene framed by the two cameras. Despite its simplicity, stereo vision has

several well known drawbacks, such as the poor performance in uniform regions.

Structured light depth cameras were introduced to solve the problems of passive

technologies. However, even if recent research in this field has greatly improved

the quality of the estimated geometry, results are still not completely reliable and

strongly depend on scene characteristics. The last family of depth cameras includes

devices based on the the Time-of-Flight (ToF) technology. ToF depth cameras are

able to estimate in real time the 3D geometry of a scene but they are also limited

by a low spatial resolution and noisy measurements, especially for low reflective

surfaces. ToF depth cameras are also affected by the multipath effect for which no

definitive solutions have been proposed yet. Active depth cameras in general are

able to provide a higher quality depth maps compared with passive devices at the

cost of relying on an additional illuminator and particular infrared (IR) filters in

the optics, that make active devices less reliable in outdoor scenes.

Since the characteristics of different depth cameras are somehow complementary,

the problem of combining data from multiple sensors has attracted considerable

interest. This problem has numerous applications, for example in the field of
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2 CHAPTER 1. INTRODUCTION

autonomous driving the vision task is of fundamental importance and to provide

reliable information data fusion is frequently used. Applications of depth data are

not limited to 3D reconstruction. For example, virtual reality and other human-

machine interaction schemes require reliable gesture recognition approaches to make

humans able to interact with the virtual environment.

My research activity focused on the analysis of 3D data, including the acquisition

and processing of data from different sensors, and some related applications. This

thesis describes the technology behind current depth cameras, the 3D data processing

to best combine data produced by multiple sensors and finally some applications

where depth data provide significant contributions.

Chapter 2 reviews the operating principles of different depth camera families,

including stereo vision systems, structured light and ToF depth cameras. To study

the working principles of depth cameras I interned at Aquifi Inc, a startup located

in Palo Alto (CA), USA. During my period there I participated to the design and

development of a structured light camera. After a deep analysis on the available

technologies, I contributed to the design and optimization of the IR pattern used

in the illuminator of the structured light camera. I also developed a system to

simulate the acquisition of the pattern from a stereo camera, according to the

projection laws of the diffractive optical element (DOE) used in the illuminator, and

the standard pin-hole model for cameras. Then, I contributed to the development

of the pipeline to generate 3D data in real time from a pair of calibrated images. I

also developed algorithms of image processing to be used both as pre-processing

and post-processing of the depth map. Due to a non disclosure agreement this

thesis does not contain the detailed description of the algorithms developed during

the internship.

The fusion of depth data acquired from multiple sensors is described in Chapter

3, where depth data from multiple sensors are combined together to provide a higher

quality depth map. The approach that we developed [73] uses the depth maps

from a stereo system and a Time-of-Flight (ToF) camera for which the calibration

is known, and a set of confidence measures that we estimate from the acquired

data. The proposed approach extends a framework for cost aggregation called Local

Consistency [74], originally proposed for stereo systems, to use the depth maps and

confidence maps estimated. For the ToF sensor we developed a confidence measure

that models the received signal and the geometry of the scene. Another contribution

is the introduction of a new confidence metric for the stereo data. Typical confidence

measures already available in the literature do not consider the effects of the global

optimization performed by most of the best performing stereo algorithms. First

we analyzed the properties of the cost functions of the correspondence problem
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before and after the optimization. After the characterization of the behavior of

such functions in different conditions we proposed different models that combine

information of both the functions. One model in particular has been used for the

fusion of data with Local Consistency, with results that outperform the state of the

art if compared with traditional confidence measures.

Another problem for the data fusion from multiple sensors is the lack of datasets

in the literature that includes calibrated images of different sensors with the related

ground truth map. For this purpose we developed a system for the simultaneous

acquisition of data from different sensors, including stereo, ToF and structured

light depth cameras. For the acquisition of the ground truth we developed a system

based on line laser that allows one to obtain a detailed depth map of the scene. We

also developed a simulator of ToF and stereo systems that allows one to generate

synthetic views of a given 3D model as if they were acquired from real cameras. Such

a simulator also includes realistic models of the devices, allowing one to generate a

big amount of realistic data. Chapter 4 presents the framework developed for the

acquisition of the dataset with real cameras and the synthetic dataset.

For applications of depth data from multiple sensors I focused on two aspects

of gesture recognition presented in Chapter 5. The first one is classification of

different parts of the hand, while the second one involves the study of depth based

descriptors for the task of hand gesture classification. Some algorithms for gesture

recognition rely on palm detection as the first step, and for this task we proposed

a tridimensional based method, that analyzes the structure of the point cloud

acquired from a depth camera to classify fingers and palm [78]. For this approach

we based our analysis on the different geometry of fingers and palm, proposing a

density based clustering algorithm. This approach allowed us to correctly segment

the fingers from the palm also in challenging situations including occlusions.

For the task of gesture classification presented in Chapter 5, we extended

a method based on SVM, considering different descriptors both in the 2D and

3D domain. In particular, we developed descriptors that analyze the shape and

contour of the hand [30, 29]. The joint usage of data from multiple sensors has

been considered in a project for gesture recognition from a depth camera and

a Leap Motion, a portable device that provides the 3D position of the hand’s

skeleton. This topic was new in the literature, therefore we had to run many

preliminary experiments to assess the quality of the data and outline advantages

and disadvantages of both sensors. The goal of this project was to combine data

from a depth camera and a Leap Motion to provide a more robust estimate of the

gesture performed by the user [70, 72]. Data from Leap Motion are very precise

but in some configurations, that include occlusions and particular views, the errors
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can be very high and some measurements can be missing. Depth sensors instead

provide a higher number of 3D points but less accurate. A calibration of the two

system is first presented to jointly use the data from the two sensors, then an

SVM based approach with some descriptors typical of the two systems is proposed.

Experimental results show that such a system improves the performance of the two

systems considered independently.

The main topics faced during my research activity have been collected in a book

published by Springer [118], in collaboration with other students and professors, on

the technologies and working principles of depth sensors like ToF and structured

light. It also includes an overview on the calibration of such devices and applications

of depth cameras like gesture recognition, segmentation, 3D reconstruction and

pose estimation.

Some of the material in this thesis has been already published in conference

proceedings, journals and books, but some include works still under development.



Chapter 2

Depth acquisition systems

The acquisition of the geometric description of static or dynamic scenes has

traditionally been a challenging task. The synopsis of distance measurement

methods in Figure 2.1, derived from [8], offers a good framework to introduce

different solutions proposed for the acquisition of depth data. Among all the

possible methods that have been developed, in this thesis we will focus on the

three reflective optical methods highlighted in Figure 2.1, classified into passive

and active.

NON-CONTACT DISTANCE MEASUREMENT METHODS 

REFLECTIVE TRANSMISSIVE

NON-OPTICAL OPTICAL

STRUCTURED 
LIGHT

ACTIVE

STEREO STRUCTURE 
FROM MOTION

SHAPE FROM 
SILHOUETTE

TIME-OF-
FLIGHT

…

PASSIVE

TOMOGRAPHY

RADAR

PHOTOMETRIC 
STEREO

Figure 2.1: Taxonomy of distance measurement methods.

Passive range sensing refers to 3D distance measurement by way of radiation,

typically in the visible spectrum already present in the scene. Stereo vision systems

are a classical example of this family of methods. Active sensing refers instead to 3D

distance measurement obtained by projecting some form of radiation in the scene.

Two main families of devices belong to the active range sensing. The first family is

based on the active triangulation working principle and the other is based on the

5



6 CHAPTER 2. DEPTH ACQUISITION SYSTEMS

Time-of-Flight working principle. Cameras belonging to the active triangulation

family are usually called structured light depth cameras, while cameras belonging

to the second family are usually called matricial Time-of-Flight depth cameras, or

simply ToF depth cameras. These three families of acquisition systems are generally

referred to as depth cameras. The operation of stereo vision, structured light and

ToF depth cameras involves a number of different concepts about imaging systems,

ToF sensors and computer vision. These concepts are recalled in the next sections

of this chapter.

2.1 Stereo vision systems

A stereo vision system, is a framework made by two regular cameras, that relies

on the same principles of stereopsis adopted by humans, to provide an estimate of

depth distribution of the scene acquired by the two cameras. Stereopsis, also known

as binocular vision, is the process that allows our brain to extract information on

the tridimensional structure from a pair of slightly different images of the same

scene captured by the two eyes. The same concept can be applied to a pair of

cameras framing the same scene, separated by a certain distance. It is common

to call reference camera the left camera L, and target camera the right camera

R. Each camera is assumed to be calibrated, with matrix of intrinsic parameters

KL and KR for the L and R cameras respectively. Each camera has its own 3D

reference system, also called camera coordinate system (CCS), and 2D reference

systems, as shown in Figure 2.2. Namely, the L camera has CCS with coordinates

(xL, yL, zL), also called L-3D reference system, and a 2D reference system with

coordinates (uL, vL). The R camera has CCS with coordinates (xR, yR, zR), also

called R-3D reference system, and a 2D reference system with coordinates (uR, vR).

The two cameras may be different, but for the sake of clarity they are assumed to

be identical, with K = KL = KR, unless explicitly stated. A common convention is

to consider the L-3D reference system as the reference system of the stereo vision

system and to denote it as S-3D reference system

The 3D position of a point can be inferred by means of triangulation of corre-

spondent points. We consider the case of a calibrated and rectified stereo vision

system, i.e., a stereo vision system made by two identical standard cameras with

coplanar and aligned imaging sensors and parallel optical axes as shown in Figure

2.3. Consider now a 3D point P with coordinates P = [x, y, z] and the projections

pL = [uL, vL] and pR = [uR, vR] in the two camera image planes, left and right

respectively. Triangulation is the process of determining the coordinates of P ,
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Figure 2.2: Stereo vision system coordinates and reference systems.

pR

P

pL

zL

xL

zR

xR

b

z

f

uL uR

Figure 2.3: Triangulation with a rectified stereo system.

especially the depth coordinate z, given its projections pL and pR.

In rectified stereo vision systems points pL and pR have the same vertical

coordinates. Given the geometry depicted in Figure 2.3 and similar triangles

properties, the following equations can be derived

⎧⎪⎨⎪⎩
f

z
=

uL − cx
x

f

z
=

uR − cx
x− b

(2.1)

from which after some manipulation we obtain
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z =
b f

uL − uR

=
b f

d
(2.2)

In the previous equations, f is the focal length of the two cameras, b is the distance

between the two optical centers, also known as baseline and d = uL − uR is the so

called disparity associated to point pL, i.e. the difference between x coordinate of

the two corresponding points in left and right image planes. Equation (2.2) shows

how it is possible to retrieve the third component z when disparity and geometry

of the system are known.

From Equation (2.2), given the calibration parameters of the stereo vision system

one can also compute the depth resolution Δz as reported in [110]

Δz =
z2

bf
Δd (2.3)

where Δd is the disparity resolution. Equation (2.3) shows that the depth resolution

is quadratically dependent on the depth of the measured object (i.e., its z coordinate).

Disparity resolution Δd can be 1 in the case of pixel resolution or less than 1 in

the case of sub-pixel resolution. The relationship between depth and disparity of

Equation (2.2) and the theoretic depth resolution computed with Equation (2.3)

are important quantities to consider in the design process of a stereo rig.

While f and b can be estimated by the calibration of the system, the disparity

d requires to find corresponding points, also known as conjugate points, in the two

images. Given a point pL in the left image, the correspondent point pR in the right

image has to be found. We know that the two images are not so different since

they represent the same scene seen from slightly different point of views, however

the correspondent point could be at any pixel. A search of that point in the entire

image requires many operations, also because the most common similarity criterions

require to do operations in a window for every pixel. Fortunately, the search domain

can be limited to one dimension thanks to the epipolar constraint. A geometrical

analysis shows that the conjugate point of pL in the second image, must lie in a

straight line called epipolar line of pL. In a more realistic scenario the two cameras

are not perfectly aligned, however, after the image distortion due to the lens has

been compensated, it is always possible to rectify the two acquired images with a

linear transformation to simplify the task of correspondence selection.
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2.1.1 The correspondence problem

The triangulation procedure assumes the availability of a pair of conjugate points

pL and pR. This represents a delicate and tricky assumption for the triangulation

procedure, first of all because such a pair may not exist due to occlusions. Even

if it exists, it may not be straightforward to find it. Indeed, the correspondence

problem, i.e. the detection of conjugate points between the stereo image pairs, is

one of the major challenges of stereo vision algorithms. The methods proposed for

this task can be classified according to various criteria.

A first distinction concerns dense and sparse stereo algorithms. The former,

representing current trends [97], are methods aimed at finding a conjugate point

for every pixel of the left image, of course within the limits imposed by occlusions.

The latter are methods which do not attempt to find a conjugate for every pixels.

A second distinction concerns local and global approaches. Local methods

consider only local similarity measures between the region surrounding pL and

regions of similar shape around all the candidate conjugate points pR of the same

row. The selected conjugate point is the one which maximizes the similarity measure,

a method typically called winner takes all (WTA) strategy. Conversely, global

methods do not consider each couple of points on their own, but instead estimate

all of the disparity values at once, exploiting global optimization schemes. Global

methods based on Bayesian formulations are currently receiving great attention in

dense stereo. Such techniques generally model the scene as a Markov Random Field

(MRF), and include within a unique framework clues coming from local comparisons

between the two images and scene depth smoothness constraints. Global stereo

vision algorithms typically estimate the disparity image by minimizing a cost

function made by a data term representing the cost of local matches, similar to the

computation of local algorithms (e.g., covariance) and a smoothness term defining

the smoothness level of the disparity image by explicitly or implicitly accounting

for discontinuities [106].

There is a third class of stereo matching algorithms that lies in between local and

global approaches, the so called semi-global approaches. The Semi-Global Matching

(SGM) approach proposed by Hirschmuller [46] is an example of algorithms belonging

with this class. It explicitly models the 3D structure of the scene by means of a

point-wise matching cost and a smoothness term. Several 1D energy functions

computed along different paths are independently and efficiently minimized, and

their costs are summed up. For each point, the disparity corresponding to the

minimum aggregated cost is selected.

The algorithm is briefly described here since it will be used in the data fusion
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of Chapter 3. The matching cost in the original implementation is computed using

a mutual information based approach for compensating radiometric differences of

input images. Other implementations instead, use faster cost calculation techniques,

as the Birchfield and Tomasi [7] metric. Another valid alternative is the census

cost function, that gives the best overall results for different datasets and is rather

robust under adverse lighting conditions. The local cost CL(pL, d) for pixel pL is

defined for each disparity hypothesis d.

Cost aggregation is the real strength of this approach. Pixelwise cost CL(pL, d)

is generally prone to wrong matches, therefore an additional constraint is added

to the energy function to support smoothness and penalize changes of neighboring

disparities. By assuming that the observed surfaces are smooth, disparity shifts can

be penalized by setting an additional cost of assigning a depth to a pixel if it does

not agree with its neighbors. This means that when the algorithm tries to estimate

the disparity of a pixel having several possible matches, it will probably choose

the match which agrees more with the depth estimates of the neighboring pixels.

Instead of solving a 2D global optimization of the energy function, multiple 1D

optimization can be performed efficiently in polynomial time along 8 or 16 paths.

The final cost CG(pL, d) is defined as the summation of the energy function along

all the paths and the final disparity for each pixel is computed as the argument

that minimizes the global cost CG(pL, d).

2.1.2 Practical issues

The detection of pairs of conjugate pixels is the most complex part of the depth

map estimation. Correspondence problem relies on the main assumption that left

and right images are not too different from each other and they have to exhibit

a certain level of disparity while framing the same scene. Many problems afflict

correspondence detection, some are related to the geometry of the system and

some to the scene itself. The major issues related to correspondence selection are

described next.

Occlusions and discontinuities Due to discontinuities of the surfaces and par-

ticular displacement of the objects in the scene, some points in one image

may not be visible in the other image. For those points that do not have the

relative conjugate, disparity has no reason and meaning to be defined. This

is maybe the most known problem in stereo vision and can be observed by

looking at the edge of an object, the background close to the edge is visible

only from one of the two cameras. There exists a common procedure to detect

occlusions, called Left-Right consistency check, but no exact solutions exist
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to retrieve the disparity of such areas. A similar problem can be experienced

because of perspective projection. An object may assume different shapes in

the two images and some detail may be visible from one view but not in the

other.

Edge fattening Most of the stereo matching algorithms make use of appropriate

support windows surrounding the considered point, to find its corresponding

point on the other image. The use of a window instead of matching point to

point, make the matching problem more robust to noise in the images. The

main assumption when a window is considered is that all the points inside the

window have the same disparity. This is necessary otherwise the matching

window in the other image would contain points from a different portion of

the scene. An optimal support window should be large enough to capture

sufficient intensity variation for handling textureless regions. At the same

time, the window should be small enough not to include pixels with different

disparity. A small window leads to noisy disparity maps but larger windows

produce fatter edges near disparity discontinuities. In these regions indeed,

only the points in the foreground part of the scene match in the two images.

Points in the background instead have different disparities and so pixels in the

same relative location inside the window will have different intensity values,

since they correspond to different points of the scene. The effect is that the

same disparity value of the foreground points is associated to points in the

background next to depth discontinuities.

Radiometric distortion and noise For materials not perfectly lambertian, the

observed point can be different in the two images. Moreover due to the always

present noise, color and intensity of the two acquired scenes can be different,

increasing the complexity in the correspondence search.

Specular surfaces Similar to the previous issue, glossy materials may reflect

external lights directly into the camera. Due to different viewpoint of the two

cameras, a region in one image may be visible and the correspondent in the

other one may be overexposed. If the illumination of the scene does not come

from a direct spot light, the likelihood of having such overexposed regions

decreases.

Perspective foreshortening Because each stereo camera has a slightly different

view, the image of the surface is more compressed and occupies a smaller area

in one view. The more an object is horizontally slanted, the more pronounced

this effect is. Foreshortening causes problems especially to methods using



12 CHAPTER 2. DEPTH ACQUISITION SYSTEMS

fixed-size windows to aggregate costs, because they tacitly assume that objects

occupy the same extents in both images.

Transparent objects Objects with a certain transparency cause an intrinsic

ambiguity. Background that is visible through these objects actually would

be occluded by the object itself. This inevitably introduces uncertainty that

influences the results of both local and global methods.

Uniform regions Poorly textured areas still continue to plague stereo matching

systems. The ability to detect similar regions assumes that correlation or

other methods are able to detect a peak of some functions. If a uniform

region sufficiently large is considered, for example a white wall, neither local

or global methods can overcome this issue with sufficient certainty. Although

this is a common problem in all stereo matching methods, techniques that

propagate disparity cues are likely to assign a valid disparity also to these

regions.

Repetitive pattern Correspondence of regions without texture is difficult to find,

and so is the case of highly textured regions with periodic patterns. Without

a global knowledge of the scene, it is impossible to distinguish between the

correct correspondence or an erroneous translated version. A classic example

is provided by framing a checkerboard, in this case it is easily deductible that

the shape of the cost function for the points inside the checkerboard presents

a certain number of peaks. Also in this case, the ambiguity can be reduced

with the aid of global methods.

All these physical issues account for increasing the probability of false cor-

respondences. Some of them can be handled by means of image processing or

other techniques, but others, like occlusions, are physically impossible to manage.

Although specific stereo algorithms may have a considerable impact on the solution

of the correspondence problem, the ultimate quality of 3D stereo reconstruction

inevitably also depends on scene characteristics. This can be readily realized con-

sidering the case of a scene without geometric or color features, such as a straight

wall of uniform color. The stereo images of such a scene will be uniform, and since

no corresponding points can be detected from them, no depth information about

the scene can be obtained by triangulation.
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Figure 2.4: Active triangulation by a system made of a camera C and a light projector
A.

2.2 Structured light depth cameras

As previously noted, the reliability of the correspondences remains a critical step

of computational stereopsis. Structured light depth camera systems address this

issue and provide effective solutions. In triangulation or computational stereopsis

procedures, the main concept at the basis of triangulation is of geometric nature and

is shown in the triangle arrangement between rays PpL, PpR and pLpR in Figure

2.3. Since from a perspective geometry standpoint [43], image points are equivalent

to rays exiting a center of projection, any device capable of projecting rays between

its center of projection and the scene points is functionally equivalent to a standard

camera. Therefore, light projectors or illuminator devices in which each pixel pA

illuminates a scene point P by its specific light value thus creating a spatial pattern,

can be modeled as active pin-hole systems where light rays connecting the center

of projection and the scene point P through pixel pA (as shown in Figure 2.4) are

emitted, rather than received as in standard cameras. Triangulation also remains

applicable if one of the two cameras of the stereo system of Figure 2.2, is replaced by

a projector as in Figure 2.4, granted by triangle arrangement PpC , PpA and pCpA.

The active, rather than passive, nature of ray PpA does not affect the reasoning

behind the demonstration of triangulation. Such an arrangement made by a camera

C and a projector A as shown in Figure 2.4, is called structured light system.

Structured light systems have the same structural geometry of standard passive

stereo systems, thus calibration and rectification procedures [108] can also be applied

to them to simplify the depth estimation process. In the case of a rectified system,



14 CHAPTER 2. DEPTH ACQUISITION SYSTEMS

pixel pA with coordinates pA = [uA, vA]
T of the projected pattern casts a ray that

intersects the acquired scene at a certain 3D location PC = [xC , yC , zC ]
T . If both

the projective distortion of A and C are compensated, pC has coordinates

pC =

[
uC = uA + d

vC = vA

]
(2.4)

with disparity value d = uC − uA, defined exactly as in the standard passive stereo

system, apart from the different notation adopted for the coordinate system.

Since we have established that all triangulation expressions derived for a 2-

camera stereo system also apply to structured light systems made by an illuminator

and a single camera, let us now consider the advantages of the latter with respect

to the former. As previously noted, in passive stereo systems made by a pair of

cameras, the possibility of identifying conjugate points depends completely on the

visual characteristics of the scene. In particular, in the case of a feature-less scene,

like a flat wall of uniform color, a stereo system could not establish any point

correspondence between the image pair and could not give any depth information

about the scene. On the contrary, in the case of a structured light system the light

pattern pixel pA of the projector “colors” the scene point P to which it projects

with its radiant power. Assuming a straight wall without occlusions, the pixel

pC of the camera C where P is projected, receives from P the “color” of pA and

becomes recognizable among its neighboring pixels. This enables the possibility of

establishing a correspondence between conjugate points pA and pC . Structured light

systems can therefore also provide depth information in scenes without geometry

and color features where standard stereo systems fail to give any depth data.

It is also clear that a system with two cameras C1 and C2 and a projector

A, as shown in Figure 2.5, is a variation of a structured light system by which

the coordinates of point P in principle can be obtained by any of the types of

triangulation seen so far, or by a combination of them. Indeed, P can be computed

by triangulation upon knowledge of either conjugate points pC1 and pC2, points pC1

and pA, or points pC2 and pA.

It is possible to demonstrate the complete functional equivalence between the

various structured light systems configurations, namely the single camera, the two

cameras and the so called space-time stereo systems [24, 59]. The generalization of

this idea leads to the so called camera virtualization, i.e., a procedure hinted in [24],

by which a structured light depth camera made by a single camera and an illuminator

operates equivalently to a structured light depth camera made by two rectified

cameras and an illuminator. In the case of a single camera, the system is equivalent
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Figure 2.5: Structured light system with two cameras and a projector

to a stereo vision system with a real camera and a “virtual” camera co-positioned

with the projector. Camera virtualization plays a fundamental conceptual role

since it decouples the structured light system geometry from the algorithms used

on them: in other words, standard stereo algorithms can be applied to structured

light systems whether they have one or two cameras, unifying algorithmic methods

for passive and active methods independently from the geometric characteristics of

the latter.

2.2.1 Illuminator design approaches

The objective of structured light systems is to simplify the correspondence

problem through projecting effective patterns by the illuminator A. This section

reviews current pattern design methodologies. The characteristics of the projected

patterns are fundamental for the solution of the correspondence problem and for

the overall system performance. In addition, the specific design of the illuminator

as well as its implementation are at the core of all structured light depth cameras.

The illuminators mainly belong to two families, namely, static illuminators, which

project a static pattern/texture into the scene, and dynamic illuminators, which

project a pattern/texture that varies in time. In general, active techniques are

slower and more expensive than passive methods but much more accurate and

robust. The structure of the projected pattern can be either in the form of a pattern

characterized by dots (e.g., Primesense cameras [90]), in the form of a continuous
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texture (e.g., Intel RealSense R200 [51]) or in the form of a striped pattern (e.g.,

Intel RealSense F200 [50]).

A code word alphabet can be implemented by a light projector considering

that it can produce nP different illumination values called pattern primitives (e.g.,

nP = 2 for a binary black-and-white projector, nP = 28 for a 8-bit gray-scale

projector, and nP = 224 for a RGB projector with 8-bit color channels). The

local distribution of a pattern for a pixel pA is given by the illumination values

of the pixels in a window around pA. If the window has nW pixels, there are nnW
P

possible pattern configurations on it. From the set of all possible configurations, N

configurations need to be chosen as code words. What is projected to the scene and

acquired by C is the pattern resulting from the code words relative to all the pixels

of the projected pattern. Let us assume that the projected pattern has NA
R ×NA

C

pixels piA, i = 1, . . . , NA
R × NA

C where NA
R and NA

C are the number of rows and

columns of the projected pattern, respectively.

The concept of pattern uniqueness is an appropriate starting point to introduce

the various approaches for designing illuminator patterns. Consider an ideal system

in which images IC and IC′ are acquired by a pair of rectified cameras C and

C ′ (whether C ′ is real or virtual is immaterial for the subsequent discussion) and

assume the scene to be a fronto-parallel plane corresponding to disparity 0 at

infinity and infinite reflectivity. Since the cameras are rectified, points of IC and

IC′ corresponding to the same 3D point P , are characterized by coordinates with

the same v-component and u-components differing by disparity d: p = [u, v]T ,

p′ = [u′, v′]T = [u − d, v]T . The correspondences matching process searches the

conjugate of each pixel p in IC , by allowing d to vary in the range [dmin, dmax] and

by selecting the value d̂ for which the local configuration of IC around p is most

similar to the local configuration of IC′ around p− [d, 0]T according to a suitable

metric.

Images IC and IC′ can carry multiple information channels, for instance encoding

data at different color wavelengths (e.g., R, G, B channels) or at multiple timestamps

t = 1, . . . , N with N being the timestamp of the most recent frame acquired by

cameras C and C ′. The local configuration in which the images are compared

is a cuboidal window W (p) made by juxtaposing windows centered at p in the

different channels. If there is only one channel (with respect to time), the system is

characterized by an instantaneous behavior and is called a spatial stereo system,

according to [24]. On the contrary, if the matching window is characterized by a

single-pixel configuration in the image (e.g., the window is only made by the pixel

with coordinate p) and by multiple timestamps, the system is called a temporal

stereo system. If the matching window has both a spatial and temporal component,
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the system is called spacetime stereo. A standard metric to compute the local

similarity between IC in the window W (p) and IC′ in the window W (p′) is the

Sum of Absolute Differences (SAD) of the respective elements in the two windows,

defined as

SAD[IC(W (p)), IC′(W (p′))] �
∑

q∈W (p),q′∈W (p′)

|IC(q)− IC′(q′)|. (2.5)

rewritten for simplicity just as SAD(p, d). For each pixel p one selects the disparity

that minimizes the local similarity as d̂(p) = argminSAD(p, d). A pattern is said to

be unique if in an ideal system, i.e., a system without any deviation from theoretical

behavior, for each pixel p in the lattice of IC , the value of the SAD metric of the

actual estimated disparity d∗ coincides with minimum d̂(p) = argminSAD(p, d),

which is unique. The uniqueness U of a pattern is defined as

U � min
p∈ΛC

U(p) (2.6)

where U(p) is computed as the second argmin of the SAD metric, excluding the

first argmin d̂(p) and the values within one disparity value from it, i.e.,

d ∈ {dmin, . . . , dmax}� {d̂(p)− 1, d̂(p), d̂(p) + 1}. (2.7)

For each pixel in the image IC the uniqueness map U(p) is computed as the cost

of the non-correct match that gives the minimum matching error. The higher such

cost is, the more robust the pattern is against noise and and other practical issues.

The minimum uniqueness value across the entire pattern is selected to obtain a

single uniqueness value for the entire pattern.

This concept of uniqueness is a function of the number of color channels, the

range of values in the image representation, and the shape of the matching window,

which may have both a spatial and temporal component. Following the framework

of [96], different choices of these quantities lead to different ways to encode the

information used for correspondences estimation, typically within the following four

signal multiplexing families:

• wavelength multiplexing;

• range multiplexing;

• temporal multiplexing;

• spatial multiplexing.
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Each multiplexing technique performs some kind of sampling in the information

dimension typical of the technique, limiting the reconstruction capability in the

specific dimension [118].

2.2.2 One and two cameras setups

Although the presence of a second physical camera may seem redundant, given

the complete operational equivalence between single camera and double camera

systems, in practice it leads to several system design advantages. The usage

of two cameras leads to better performance because it simplifies the handling

of many manufacturing imperfection and practical issues, such as the distortion

of the acquired pattern with respect to the projected one due to camera and

projector imperfections and to their relative alignment. Furthermore, to benefit

from the virtual camera methodology, the projected pattern should maintain the

same geometric configuration at all times. This requirement can be demanding

for camera systems with an illuminator based on laser technology, because the

projected pattern tends to vary with the temperature of the projector. For this

reason, an active cooling system is used in the Primesense single camera system

design, while it is unnecessary in the two cameras Intel RealSense R200.

Another fundamental weakness of single camera systems is that any ambient

illumination at acquisition time leads to a difference between the appearance of the

acquired representation and that of the reference representation. This effect is most

evident in outdoor scenarios where the sunlight interferes with the pattern. To

cope with the mentioned illumination issues, single camera structured light systems

adopt a notch optical filter on the camera lenses with a band-pass bandwidth tightly

matched to that of the projected pattern. Moreover, in the case of extremely high

external illumination in the projector’s range of wavelengths, a double camera

structured light depth camera can be used as a standard stereo system, either by

neglecting or switching off the contribution of the active illuminator A.

The difference between one and two cameras can be exemplified by the following

simulation with a test scene made by a flat wall textured by an image, e.g., the

standard “Cameraman” of Figure 2.6. This scene offers a straightforward depth

ground truth which is a constant value everywhere if the structured light system is

positioned in a fronto-parallel situation with respect to the wall (i.e., if the optical

axis of the rectified system cameras and projector are assumed orthogonal to the

wall). With respect to the above scene, let us computationally simulate a structured

light system projecting the Primesense pattern with a single acquisition camera, like

in commercial products, and a structured light system projecting the Primesense
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pattern but carrying two acquisition cameras instead of just one. For simplicity we

will call S1 the former and S2 the latter.

As a first approximation, the scene brightness can be considered proportional

to the reflectance and illumination made by a uniform component (background

illumination) and by a component due to the Primesense pattern. In the case of S1,

to mimic camera virtualization we consider only one acquisition of a shifted version

of “Cameraman”, and compare it with respect to the actually projected pattern. In

S2 to simulate the acquisition from two cameras we consider two acquisitions of a

shifted version of “Cameraman”. The acquisitions with S1 and S2 are repeated using

versions of the “Cameraman” images corrupted by independent additive Gaussian

noise with different standard deviations.

Determining which of the two systems performs a better disparity estimation

can be easily ascertained from the percentage of non constant, i.e., wrong depth

values (in this case produced by a block-matching stereo algorithm with window

size 9 × 9) as a function of the independent additive Gaussian camera noise, as

shown in Figure 2.6. The performance of the depth estimation procedure of S1

(red) is worse than the one of S2 (blue), especially for typical camera noise values

(black line).

Performance of system S1 in Figure 2.6 has an interesting behavior as the

image noise increases. Let us recall that with S1 the disparity map is estimated by

comparing the image of the noisy scene acquired by the camera, with the image

of the pattern stored in the camera. The intensity of the acquired image can be

divided into two components: the projected pattern and the texture already present

in the scene. When the level of noise is low, the component due to the texture in

the scene has more impact in the process of matching windows. Indeed, a window

in the image storing the reference pattern contains only the component related to

the pattern itself, while a window in the acquired image contains also the texture of

the scene. When the noise increases, the component due to the texture in the scene

becomes less strong, as the noise corrupts uniformly the image, and so the number

of wrong disparities decreases. Although counterintuitive, the noise makes the

underneath texture look more uniform, not corrupting much the projected pattern.

When the noise increases more, the uniqueness of the pattern decreases and so the

number of wrong disparities increases again. For system S2 instead the behavior is

the same as the one of passive stereo, the percentage of wrong disparities increases

with image noise. For system S2 the texture of the scene helps the selection of

matching points in stereo algorithms, since the matching windows are sought in

images of the same scene.
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Figure 2.6: Simulation of the performance of a single camera structured light system
projecting the Primesense pattern (S1) and of a double-camera structured
light system projecting the Primesense pattern (S2) for a flat scene textured
by the “Cameraman” image at various noise levels.
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2.2.3 Structured light systems non-idealities

Structured light depth cameras are affected by a number of imperfections,

independent from the actual implementation. Some of these issues are related to

fundamental properties of optical and imaging systems, e.g., camera and projector

thermal noise. A list of the most important issues is presented next.

1. Perspective distortion. Since the scene points may have different depth

values z, neighboring pixels of the projected pattern may not be mapped to

neighboring pixels of IC . In this case the local distribution of the acquired

pattern becomes a distorted version of the relative local distribution of the

projected pattern (see the first row of Figure 2.7).

2. Color or gray-level distortion due to scene color distribution and reflectivity

properties of the acquired objects. The projected pattern undergoes reflection

and absorption by scene surfaces. The ratio between incident and reflected

radiant power is given by the scene reflectance, generally related to the scene

color distribution. In the common case of IR projectors, the appearance of

the pixel pC on the camera C depends on the reflectance of the scene surface

at the IR frequency used by the projector. For instance, a high intensity pixel

of the projected pattern at pA may undergo strong absorption because of the

low reflectance value of the scene point to which it is projected, and the values

of its conjugate pixel pC on IC may consequently appear much darker. This is

an extremely important issue, since it might completely distort the projected

code words. The second row of Figure 2.7 shows how the radiometric power

of the projected pattern may be reflected by surfaces of different color.

3. External illumination. The color acquired by the camera C depends on the

light falling on the scene’s surfaces, which is the sum of the projected pattern

and of scene illumination, i.e., sunlight, artificial light sources, etc. This

second contribution with respect to code word detection acts as a noise source

added to the information signal of the projected light (see third row of Figure

2.7).

4. Occlusions. Because of occlusions, not all the pattern pixels are projected to

3D points seen by camera C. Depending on the 3D scene geometry, there may

not be a one-to-one association between the pattern pixels pA and the pixels

of the acquired image IC . Therefore, it is important to correctly identify the

pixels of IC that do not have a conjugate point in the pattern, to discard

erroneous correspondences (see fourth row of Figure 2.7).
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5. Projector and camera non-idealities. Both projector and camera are not ideal

imaging systems. In particular, they generally do not behave linearly with

respect to the projected and the acquired colors or gray-levels.

6. Projector and camera noise. The presence of random noise in the projection

and acquisition processes is typically modeled as Gaussian additive noise in

the acquired image or images.

From the list of imperfections just presented, one can notice that some of the

problems corresponds to the practical issues of passive stereo systems presented

in Section 2.1.2. Occlusions and perspective distortion, typical of stereo systems

remain a problem also for structured light depth cameras.

2.2.4 Comparison of structured light depth cameras

After this introduction of theoretical and practical facts on structured light

depth cameras, we now review the actual implementations of the presented design

concepts by the most diffused structured light depth cameras in the market, namely,

the Primesense camera, used in the KinectTM v1, the Intel RealSense F200, and

the Intel RealSense R200.

The Primesense camera (KinectTM v1)

The Primesense camera, known to be used in the KinectTM v1, is a less compact

and more powerful system not suited for integration into mobile devices or computers

when compared to the Intel RealSense F200 and R2001. As shown in Figure 2.8, the

Primesense system generally comes with a color camera and a structured light depth

camera made by an IR camera C and an IR projector A. While the IR camera of

the Primesense system is a high-resolution sensor with 1280×1024 pixels, the depth-

map produced by the structured light depth camera is 640× 480. In spite of the

nominal working depth range being 800− 3500 [mm], the camera produces reliable

data up to 5000 [mm] and in some cases even at greater distances. The temporal

resolution is up to 60 [Hz]. The resolution downscaling not only reduces the sensor

acquisition noise by aggregating more pixels, but also improves the effective spatial

resolution of the estimated disparity map. The horizontal Field-of-View (FoV) of

the Primesense structured light depth camera is approximately 58◦ and the vertical

FoV is 44◦, with a focal length in pixels of approximately 600 [pxl] The presence of

1For completeness, one should recall that the design of the Primesense Capri targeted integration
into mobile devices and computers, but it never reached production. This section focuses on the
Primesense Carmine, the only product which was commercialized.
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Figure 2.7: Examples of different artifacts affecting the projected patter. In the depth
maps, black pixels correspond to locations without a valid depth measure-
ment. First row : projection of the IR pattern on a slanted surface and
corresponding depth map. Second row : Primesense pattern projected on a
color checker and corresponding color image. Third row : a strong external
illumination affects the acquired scene. Fourth row : the occluded area be-
hind the stuffed toy is visible from the camera but not from the projector’s
viewpoint, consequently, the depth of this region cannot be computed.
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Figure 2.8: Primesense system components: color camera and depth camera made by
an IR camera C and an IR projector A.

a high resolution IR camera in the Primesense structured light depth camera gives

better performance with respect to the Intel RealSense F200 and R200 in terms of

range, spatial resolution, noise, and robustness against external illumination.

The baseline between the IR camera C and the IR projector A is approximately

75 [mm]. Figure 2.9 shows the depth resolution of the Primesense depth camera,

without sub-pixel interpolation and also with an estimated sub-pixel interpolation

of 1/8, according to [58], as a function of the measured depth, according to (2.3)

given the baseline and the focal length in pixels2.

The projector is the most interesting component: it is a static projector that

produces a pattern made by collimated dots, as shown in Figure 2.10. The collimated

dots pattern appears to be subdivided into 3× 3 tiles characterized by the same

projected pattern up to holographic distortion. Collimated dots favor long-distance

performance. Each tile of the pattern is characterized by a very bright dot at its

center, usually called 0-th order, which is an artifact of the collimated laser going

through a diffractive optical element.

The pattern of the Primesense depth camera has been thoroughly reverse

engineered [58]. A summary of the major findings is reported next. A binary

representation of the projected pattern is shown by Figure 2.11. Each one of the

3× 3 tiles is made by 211× 165 holographic orders (equivalent in diffractive optics

to the concept of pixels in standard DLP projectors), hence the overall tiled pattern

is made by 633× 495 = 313335 holographic orders. For each tile only 3861 of these

orders are lit (bright spots), for a total of 34749 lit orders in the tiled pattern.

2Even though depth resolution with practical sub-pixel interpolation is reported only for the
Primesense structured light depth camera, it is expected to be also present in the Intel RealSense
F200 and R200 structured light depth cameras. The practical sub-pixel interpolation value is
theoretically better for the Primesense structured light depth camera than for the Intel RealSense
F200 and R200 because of the higher resolution of its IR camera.
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Figure 2.9: Primesense depth resolution without sub-pixel interpolation and with 1/8
sub-pixel interpolation.

Figure 2.10: Pattern projected by the Primesense illuminator and acquired by a high-
resolution camera.



26 CHAPTER 2. DEPTH ACQUISITION SYSTEMS

Figure 2.11: Binary pattern projected by the Primesense camera reverse engineered by
[58]. In this representation, there is a single white pixel for each dot of the
projected pattern.

Therefore, on average, there is approximately one lit order for each 3× 3 window

and approximately 9 of them in a 9× 9 window.

The uniqueness of the Primesense pattern can be computed according to (2.6).

We recall that it is possible to compute a uniqueness value for each pixel and that

the overall uniqueness is the minimum of such uniqueness values. The plot of

the minimum uniqueness in the pattern, i.e., what has been defined as pattern

uniqueness in (2.6), and of the average uniqueness are shown in Figure 2.12, together

with the uniqueness map that can be computed pixel-by-pixel for a squared matching

window of size 9× 9. This figure shows how the Primesense pattern is a “unique

pattern” if one uses a window of at least of 9× 9 pixels.

The Primesense pattern only exploits spatial multiplexing without any temporal

or range multiplexing. The fact that there is no temporal multiplexing ensures that

each frame provides an independent depth estimate. The lack of range multiplexing,

as well as the presence of collimated dots, enhances the system’s ability to estimate

depth at far distances. The adopted spatial multiplexing technique leads to a

reduced spatial resolution, i.e., the localization of depth edges is reduced.

The Intel RealSense F200

The Intel RealSense F200 has a very compact depth camera that can either be

integrated in computers and mobile devices or used as a self-standing device. The

Intel RealSense F200 generally comes with an array of microphones, a color camera,
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Figure 2.12: Plot of the minimum and average uniqueness of the Primesense pattern as
a function of the window size (left) and uniqueness map for a 9× 9 window
(right).
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Figure 2.13: Intel RealSense F200 under the hood.

and a depth camera system, made by an IR camera and an IR projector.

The spatial resolution of the depth camera of the Intel RealSense F200 is VGA

(640×480), the working depth range is 200−1200 [mm], and the temporal resolution

is up to 120 [Hz]. The horizontal Field-of-View (FoV) of the Intel RealSense F200

depth camera is 73◦ and the vertical FoV is 59◦, with a focal length in pixels of

approximately 430 [pxl]. Such characteristics are well suited to applications such

as face detection or face tracking, gesture recognition, and to applications that

frame a user facing the screen of the device. The letter “F” in the name hints at

the intended “Frontal” usage of this device.

Figure 2.13 shows the positions of the three most important components of the

structured light depth camera, i.e., the IR camera, the IR projector plus a color

camera. The presence of a single IR camera indicates that the Intel RealSense F200

exploits the concept of a virtual camera.

Note that the baseline between the IR camera C and the IR projector A

is approximately 47 [mm]. Figure 2.14 shows the depth resolution of the Intel
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Figure 2.14: Depth resolution without sub-pixel interpolation vs. measured depth
distance of Intel RealSense F200.

Figure 2.15: Patterns projected by the projector of the Intel RealSense F200 camera.

RealSense F200 depth camera, without sub-pixel interpolation, as a function of the

measured depth, according to (2.3) given the baseline and the focal length in pixels.

The projector of the Intel RealSense F200 is the most interesting component

of the depth camera itself. It is a dynamic projector, which projects vertical light

stripes of variable width at three different brightness or range levels, an approach

similar to Gray code patterns. According to the adopted terminology, the Intel

RealSense F200 depth camera uses both temporal and range multiplexing.

The impressively high pattern projection frequency in the order of 100 [Hz] makes

reverse engineering complex. Figure 2.15 shows the pattern projected by the Intel

RealSense F200 obtained by a very fast camera operating at frame rate 1200 [Hz].

Figure 2.15 clearly shows that there are at least six layers of independent projected

patterns at three range levels, leading to 36 = 729 possible pattern configurations

for a set of six frames. Since the number of different configurations is an upper
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Figure 2.16: Example of pixel-wise independent depth measurements obtained by the
Intel RealSense F200 depth camera. The edges of the framed hand are pixel-
precise and do not present edge jaggedness typical of spatial multiplexing
techniques.

bound for the maximum measurable disparity (corresponding to the closest mea-

surable distance), this characteristic is functional to avoid limitations on the closest

measurable depth and to reliably operate in close ranges. Since the Intel RealSense

F200 projector does not use spatial multiplexing, there is no spatial sampling and

the depth camera operates at full VGA spatial resolution. Figure 2.16 shows that

the edge jaggedness typical of spatial multiplexing is not exhibited by the image

captured by the Intel RealSense F200 due to its pixel-precise spatial resolution.

Conversely, the data produced by Intel RealSense F200 exhibit artifacts typical

of temporal multiplexing when the scene content moves during the projection of

the set of patterns needed for depth estimation. An example of these artifacts

is the ghosting effect shown by Figure 2.17. Moreover, the combination of the

characteristics of the illuminator design, of the fact that the illuminator produces

stripes and not dots, and of the virtual camera approach makes the Intel RealSense

F200 depth camera highly sensitive to the presence of external illumination. In

fact, as indicated by the official specifications, this structured light system is meant

to work indoors, as the presence of external illumination leads to a considerable

reduction of its working depth range.

The above analysis suggests that the design of the Intel RealSense F200 depth

camera is inherently targeted to a limited depth range allowing for pixel-precise,

fast, and accurate depth measurements, particularly well suited for frontal facing

applications with maximum depth range of 1200 [mm].
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Figure 2.17: Artifacts in the depth estimate of a moving hand acquired by the Intel
RealSense F200 depth camera. The depth of the moving hand should
only be the brightest silhouette, however a shadowed hand appears in the
estimated depth map.

The Intel RealSense R200

Like the Intel RealSense F200, the Intel RealSense R200 has a very compact

depth camera that can either be integrated in computers and mobile devices or

used as a self-standing device. The Intel RealSense R200 generally comes with a

color camera and a depth camera system, made by two IR cameras and not only

one like the Intel RealSense F200, and by an IR projector.

The spatial resolution of the structured light depth camera of the Intel RealSense

R200 is VGA (640× 480), the working depth range is 510− 4000 [mm], and the

temporal resolution is up to 60 [Hz]. The horizontal Field-of-View (FoV) of the

Intel RealSense R200 depth camera is approximately 56◦ and the vertical FoV is

43◦, with a focal length in pixels of approximately 600 [pxl]. Such characteristics

are very well suited for applications such as people tracking and 3D reconstruction,

and in general for applications that frame the portion of the world behind the rear

part of the device. The letter “R” in the name hints at the intended “Rear” usage

of this device.

Figure 2.18 shows the Intel RealSense R200’s most important components,

namely, the two IR cameras and the IR projector plus the color camera. Since the

Intel RealSense R200 carries a pair of IR cameras, there is no need for a virtual

camera. The baseline between the left IR camera and the IR projector is 20 [mm]

and the baseline between the two IR cameras is 70 [mm]. Figure 2.19 shows the

depth resolution of the Intel RealSense R200 depth camera (without sub-pixel

interpolation) as a function of the measured depth, according to (2.3) given the

baseline and the focal length in pixels.



2.2. STRUCTURED LIGHT DEPTH CAMERAS 31

10 [mm]

Color camera

IR laser projector A

Imaging processor

IR camera IR camera 

Figure 2.18: Intel RealSense R200 under the hood.
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Figure 2.19: Depth resolution without sub-pixel interpolation vs. measured depth
distance of Intel RealSense R200.
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Figure 2.20: Texture projected by the illuminator of the Intel RealSense R200 camera,
framed at different zoom levels: (left) the full projected pattern; (center) a
pattern zoom; (right) a macro acquisition.

Figure 2.21: Missing depth estimates, “black holes”, in the data produced by the Intel
RealSense R200 camera in the aquisition of a planar surface.

Also in this case, the projector of the Intel RealSense R200 is the most interesting

component of the depth camera itself. Here, it is a static projector providing

texture to the scene. Differently from the Primesense camera, the pattern of the

Intel RealSense R200’s projector is not made by collimated dots. Compared to

other cameras, the projector dimensions are remarkably small. In particular, the

box length along the depth axis, usually called Z-height, is about 3.5 [mm], a

characteristic useful for integration in mobile platforms.

Figure 2.20 shows the pattern projected by the IntelRealSense R200 camera.

These images show how the texture is uncollimated and made by elements of

different intensity and without a clear structure. The purpose of this texture is to

add features to the component of the different reflectance elements of the scene

to improve uniqueness. Since the projected texture is not collimated, it does not

completely dominate the scene uniqueness, with the consequence of possibly missing

depth estimates, i.e., of undefined depth values called “black holes” in some areas

of the framed scene, as exemplified by Figure 2.21

The Intel RealSense R200 projects constant illumination that does not vary in
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Figure 2.22: The Intel RealSense R200 camera depth estimation process is based on
spatial multiplexing, leading to coarse edges, as clearly shown from the
depth map of the leaves of the framed plant.

time, hence the system is characterized only by range and spatial multiplexing. There

is no temporal multiplexing. The estimated depth-maps are therefore characterized

by full temporal resolution with an independent depth estimate provided for each

acquired frame, and by a subsampled spatial resolution, i.e., the localization of

edges in presence of depth discontinuities is bounded by the size of the correlation

window used in the depth estimation process. This subsampled spatial resolution

leads to coarse estimation of the depth edges, as shown in Figure 2.22.

The above analysis suggests that the Intel RealSense R200 structured light depth

camera is designed to target rear-facing applications, such as objects or environment

3D modeling. The Intel RealSense R200 has an illuminator which projects a texture

meant to aid scene reflectance, making this depth camera suitable for acquisitions

both indoors and outdoors under reasonable illumination, within nominal range

500− 4000 [mm]. Since the projected texture is not made by collimated dots, the

depth estimates may exhibit missing measurements, especially outdoors when the

external illumination affects the contribution of the projected texture, and indoors

when the scene texture is inadequate to provide uniqueness.

2.3 Time-of-Flight depth cameras

Time-of-Flight depth cameras (or simply ToF cameras) are active sensors capable

of acquiring 3D geometry of a framed scene at video rate. ToF and Light Detection

And Ranging (LIDAR) devices operate on the basis of the Radio Detection And

Ranging (RADAR) principle, which rests on the fact that the electro-magnetic
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Figure 2.23: Scheme of principle of ToF measurement.

radiation travels in air at light speed c ≈ 3 × 108[m/s]. Hence, the distance ρ

[m] covered at time τ [s] by an optical radiation is ρ = cτ . Figure 2.23 shows the

typical ToF measurement scheme: the radiation sE(t) emitted at time 0 by the ToF

transmitter (or illuminator) TX on the left travels straight towards the scene for a

distance ρ. It is then echoed or back-reflected by a point on the scene surface and

travels a distance ρ. At time τ it reaches the ToF receiver (or sensor) RX, ideally

co-positioned with the transmitter, as signal sR(t). Since at time τ the path length

covered by the radiation is 2ρ, the relationship between ρ and τ is

ρ =
cτ

2
(2.8)

which is the basic expression of a ToF camera’s distance measurement.

ToF systems made by a single transmitter and receiver, as schematically shown

in Figure 2.23, are typically used in range-finders for point-wise or 0D measurements.

ToF cameras estimate the scene geometry in a single shot by a matrix of NR ×NC

in-pixel ToF sensors where all the pixels independently but simultaneously measure

the distance of the scene point in front of them.

In stereo or structured light systems, occlusions are inevitable due to the presence

of two cameras, or a camera and a projector, in different positions. Additionally,

the distance between the camera positions (i.e. the baseline) improves the distance

measurement accuracy. This is an intrinsic difference with respect to ToF, in which

measurements are essentially occlusion-free, because the ToF measurement scheme

assumes the transmitter and receiver are collinear and ideally co-positioned. In

common practice such a requirement is enforced by placing them as close together

as possible. Another important characteristic of ToF systems which differs from

stereo and structured light systems is that the measurement accuracy is distance

independent, only depending on the accuracy of the time or phase measurement

devices.
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ToF depth cameras lend themselves to a countless variety of different solutions,

however, all the current implementations share the same structure shown in Figure

2.24 made by the following basic components:

• a transmitter made by an array of LEDs which generates a sinusoidal or

square wave modulating signal in the high HF or low VHF bands, in tens of

MHz, embedded in an optical NIR signal, in hundreds of THz;

• a suitable optics diffusing the optical signal generated by the transmitter to

the scene;

• a suitable optics collecting the NIR optical radiation echoed by the scene and

imaging it onto the receiver matricial ToF sensor. This component includes an

optical band-pass filter with center-band tuned to the NIR carrier frequency

of the transmitter to improve the SNR;

• a matricial ToF sensor of NR × NC pixels estimating simultaneously and

independently the distance between each ToF sensor pixel pT and the imaged

scene point P ;

• suitable circuitry providing the needed power supply and control signals to

transmitter and receiver.

The choice of modulation determines the basic transmitter and receiver functions

and structure. Although in principle many modulation types suit ToF depth cameras,

in practice, all current commercial ToF depth camera products [88, 48, 76, 77] adopt

only one type of CW modulation, namely homodyne amplitude modulation with

either a sinusoidal or square wave modulating signal mE(t). This is because current

microelectronic technology solutions for homodyne AM are more mature than others

for commercial applications. The advantages of AM modulation, besides its effective

implementability by current CMOS solutions, are that it uses a single modulation

frequency fm and does not require a large bandwidth. A major disadvantage is

that it offers little defense against multipath and other propagation artifacts (see

Chapter 5 of [91]).

Other modulation types than AM could be usefully employed in ToF depth

cameras and their implementation is being actively investigated [91]. Other can-

didate modulation types include pulse modulation and pseudo-noise modulation.

The former, as already mentioned, is the preferred choice for single transmitter and

receiver ToF systems. Although in principle it would be equally suitable for matrix

ToF sensors, in practice its application is limited by the difficulties associated
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Figure 2.24: Basic ToF depth camera structure

with implementing effective stop-watch at pixel level within matrix arrangements.

Current research approaches this issue in various ways (see Chapter 2 and 3 of

[91]). Pseudonoise modulation would be very effective against multipath, as other

applications such as indoor radio localization [23] indicate.

CW modulation itself offers alternatives to homodyne AM, such as heterodyne

AM or frequency modulation (FM) with chirp signals. Such properties, although

reported in ToF measurement literature, are still problematic for matrix ToF sensor

electronics. The remainder of this section considers the basic characteristics of ToF

depth camera transmitters and receivers assuming the underlying modulation is

Continuous Wave Amplitude Modulation (CWAM).

ToF depth camera transmitter basics

Lasers and LEDs are the typical choice for the light sources at the transmitter

since they are inexpensive and can be easily modulated by signals within the high

HF or low VHF bands up to some hundreds of MHz. The LED emissions typically

used are in the near infrared (NIR) range, with wavelength around λc = 850 [nm],
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Figure 2.25: Transmitter model of a ToF camera.

corresponding to

fc =
c

λc

= 3× 108
[m]

[s]

1

850× 10−9 [m]
∼= 352 [THz]. (2.9)

The transmitter illuminates the scene by an optical 2D wavefront signal which, for

simplicity, can be modeled as in Figure 2.25, where

sE(t) = mE(t) cos(2πfct+ ϕc) (2.10)

denotes the emitter NIR signal structured as the product of a carrier with NIR

frequency fc,of some hundreds of THz, and phase ϕc and a modulating signal

mE(t). Signal mE(t), in turn, incorporates AM modulation of either sinusoidal or

square wave type in current products with frequency fm, of some tens of MHz, and

ϕm. In current products there are two levels of AM modulation. The first is AM

modulation at NIR frequencies concerning the optical signal sE(t) used to deliver

the modulating signal mE(t) at the receiver. The second is AM modulation in the

high HF or low VHF bands embedded in mE(t), which delivers information related

to round-trip time τ to the receiver, either in terms of phase or time lag.

The current ToF camera NIR emitters are either lasers or LEDs. Since they

cannot be integrated, they are typically positioned in configurations mimicking

the presence of a single emitter co-positioned with the optical center of the ToF

camera. The geometry of the emitters’ position is motivated by making the sum

of all the emitted NIR signals equivalent to a spherical wave emitted by a single

emitter, called simulated emitter , placed at the center of the emitters constellation.

The LED configuration of the Mesa Imaging SR4000, shown in Figure 2.26, is an

effective example of this concept.

The arrangement of the actual emitters, such as the one of Figure 2.26, is only an

approximation of the non-feasible juxtaposition of single ToF sensor devices with

emitter and receiver perfectly co-positioned and it introduces a number of artifacts,

including a systematic distance measurement offset that is larger for close scene

points than far scene points.
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(a)

Emitter

Simulated emitter

Receiver

(b)

Figure 2.26: The NIR emitters of the MESA Imaging SR4000: (a) the actual depth
camera; (b) the emitters are distributed around the lock-in pixels matrix
and mimic a simulated emitter co-positioned with the center of the lock-in
pixel matrix.

ToF depth camera receiver basics

The heart of ToF camera receivers is a matricial sensor with individual elements,

called pixels because of their imaging role, individually and simultaneously capable

of independent ToF measurements. Each pixel independently computes the delay

between the departure of the sent signal sE(t) and the arrival of the signal sR(t)

back-projected by the scene point P imaged by the pixel. Currently there are

three main technological solutions (Chapter 1 of [91]) considered best suited for the

realization of such matricial ToF sensors, namely Single-Photon Avalanche Diodes

(SPADs) assisted by appropriate processing circuits, standard photo diodes coupled

to dedicated circuits and the In-Pixel Photo-Mixing devices. The latter technology

includes the lock-in CCD sensor of [65], the photonic mixer device [32, 115], and

other variations [3, 5]. Section 2.3 will only recall the main characteristics of the

In-Pixel Photo-Mixing devices, since so far it is the only one adopted in commercial

products [88, 48, 76, 77]. An in-depth treatment of such a technology can be found

in [65] and [91].

Figure 2.27 offers a systems interpretation of the basic functions performed by

each pixel of a sensor based on photo-mixing device technology, which are

a) photoelectric conversion

b) correlation or fast shutter

c) signal integration by charge storage on selectable time intervals

For analysis purposes it is useful to recognize and subdivide the various opera-

tions as much as possible. On the contrary, multifunctional components are the
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Figure 2.27: System interpretation of the operation of a single pixel of a sensor based
on In-Pixel Photo-Mixing devices technology.

typical choice for circuit effectiveness. This section presents ToF depth cameras

from a system perspective that it does not always coincide with the circuit block

description.

Each sensor pixel receives as input the optical NIR signal back-projected by the

scene point P imaged by the pixel itself, which can be modeled as

sR(t) = mR(t) cos(2πfct+ ϕ′
c) + nR(t) (2.11)

where mR(t) denotes the transformations of the modulating signal mE(t) actually

reaching the receiver, since direct and reflected propagation typically affect some

parameters of the transmitted signal mE(t) (for instance amplitude attenuation

is inevitable) and nR(t) is the background wide-band light noise at the receiver

input3.

The photoelectric conversion taking place at the pixel in the scheme of Figure

2.27 is modeled as a standard front-end demodulation stage (a) with a carrier

cos(2πfct+ϕ′
c) at NIR frequency fc followed by a low pass filter (LP). The input of

stage (a) is the optical signal sR(t) and the output is the baseband electrical signal

mR(t). Stage (b) represents the correlation between baseband signal mR(t) + n(t)

and reference signal gR(t). Stage (c) models the charge accumulation process as an

integrator operating on time intervals of selectable lengths ΔS starting at uniformly

spaced clock times iTs, i = 1, . . . where Ts is the sampling period.

2.3.1 ToF measurement methods

In spite of the conceptual simplicity of relationship (2.8), its implementation

presents tremendous technological challenges because it involves the speed of light.

3The phase ϕc of the carrier at the transmitter side is generally different from the phase ϕ′
c

at the receiver. Both ϕc and ϕ′
c

are usually unknown, especially in the case of a non-coherent
process. However, the system does not need to be aware of the values of ϕc and ϕ′

c
and it is

inherently robust to the lack of their knowledge.
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For example, since

c = 3× 108
[m]

[s]
= 2× 150

[m]

[ps]
= 2× 0.15

[mm]

[ps]
(2.12)

it takes 6.67 [ns] to cover a 1 [m] path and distance measurements of nominal

resolution of 1 [mm] need time measurement mechanisms with accuracy superior

to 6.67÷ 7 [ps], while a nominal resolution of 10 [mm] needs accuracy superior to

70 [ps].

The accurate measurement of round-trip time τ is the fundamental challenge

in ToF systems and can be solved by two approaches: direct methods, addressing

either the measurement of time τ by pulsed light or of phase ϕ with continuous

wave operation, and indirect methods deriving τ (or ϕ as an intermediate step)

from time-gated measurements of signal sR(t) at the receiver.

As anticipated in the previous section, all the current commercial depth cameras

adopt homodyne AM modulation with circuitry based on various solutions related

to In-Pixel Photo-Mixing devices [38, 65], simply called in-pixel devices. Figure 2.25

and 2.27 show a conceptual model of the operation of an homodyne AM transmitter

and receiver, which are co-sited in a ToF camera, unlike in typical communication

systems. Telecommunication systems convert the signal sent by the transmitter

into useful information. In contrast, ToF systems only estimate the round-trip

delay of the signal rather than the information encoded inside the signal.

Both sE(t) and sR(t) are optical signals and that the modulation schemes of

Figure 2.27 are an appropriate description for the operation of the transmitter

but not for the photoelectric conversion of the receiver. Indeed, the actual light

detection mechanism of the in-pixel devices is such that a baseband voltage signal

mR(t) is generated from the optical input sR(t), without direct demodulation as in

the transmitter side.

The electric modulating signal mE(t) can be either a sine wave of period Tm

mE(t) = AE[1 + sin(2πfmt+ ϕm)] (2.13)

with fm = 1/Tm, or a square wave of support Δm < Tm spaced by the modulation

period Tm

mE(t) = AE

∞∑
k=0

p(t− kTm + ϕm; Δm) (2.14)
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where

p(t; Δ) = rect

⎛⎜⎝t−
Δ

2
Δ

⎞⎟⎠ =

⎧⎨⎩1 0 ≤ t ≤ Δ

0 otherwise.
(2.15)

The pulse p(t; Δ) in (2.15) is modeled by a rectangle for simplicity, however, this is

only a nominal reference signal given the practical difficulty of obtaining sharp rise

and fall signals.

At the receiver, after the demodulation of the optical signal sR(t), the baseband

electrical signal mR(t), of shape similar to that of mE(t), is correlated with the

reference signal gR(t) with period Tm, obtaining

cR(t) =

Tm∫
0

mR(t)gR(t+ t′) dt′. (2.16)

The signal cR(t) is sampled according to the “natural sampling” paradigm by the

charge accumulator circuit at the back-end of the receiver and can be modeled as

a system which at each sampling time iTs, i = 0, 1, . . . , returns the integration of

cR(t) in the support ΔS

ciR =

iTS+ΔS∫
iTS

cR(t) dt. (2.17)

Clearly for designing ToF camera sensors there is a countless number of combinations

of mE(t), gR(t) and ΔS value choices. The two basic situations of sinusoidal and

square modulating signal mE(t) and related choices of gR(t) and ΔS will be discussed

next.

Sinusoidal modulation

In the case of sinusoidal modulation, the ToF camera transmitter modulates

the NIR optical carrier by a modulation signal mE(t) made by a sinusoidal signal

of amplitude AE and frequency fm, namely

mE(t) = AE[1 + sin(2πfmt+ ϕm)]. (2.18)

Signal mE(t) is reflected back by the scene surface within sE(t) and travels back

towards the receiver ideally co-positioned with the emitter.

The HF/VHF modulating signal reaching the receiver, due to factors such as

the energy absorption associated with the reflection, the free-path propagation

attenuation (proportional to the square of the distance), and the non-instantaneous



42 CHAPTER 2. DEPTH ACQUISITION SYSTEMS

propagation of IR optical signals leading to a phase delay Δϕ, can be written as

mR(t) = AR[1 + sin(2πfmt+ ϕm +Δϕ)] + BR

= AR sin(2πfmt+ ϕm +Δϕ) + (AR +BR)
(2.19)

where AR is the attenuated amplitude of the received modulating signal and BR is

due to the background light interfering with λc and to other artifacts. Figure 2.28

shows an example of emitted and received modulating signal. For simplicity we

will call AR simply A and AR +BR simply B/2, obtaining

mR(t) = A sin(2πfmt+ ϕm +Δϕ) +
B

2
. (2.20)

Quantity A is called amplitude, since it is the amplitude of the useful signal.

Quantity B is called intensity or offset, and it is the sum of the received modulating

signal, with a component AR due to the sinusoidal modulation component at fm,

and an interference component BR, mostly due to background illumination. It is

common to call A and B amplitude and intensity respectively, even though both A

and B are signal amplitudes (measured in [V ]).

If the correlation signal at the receiver is

gR(t) =
2

Tm

[1 + cos(2πfmt+ ϕm)] (2.21)
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Figure 2.28: Example of an emitted modulating signal mE(t) and a received modulating
signal mR(t).

and the output of the correlation circuit is

cR(t) =

Tm∫
0

mR(t
′)gR(t

′ + t) dt′

=
2

Tm

Tm∫
0

[
A sin(2πfmt

′ + ϕm +Δϕ) +
B

2

]
[1 + cos(2πfm(t

′ + t) + ϕm)] dt′

=
2

Tm

Tm∫
0

A sin(2πfmt
′ + ϕm +Δϕ) dt′ +

2

Tm

Tm∫
0

B

2
dt′+

+
2

Tm

Tm∫
0

A sin(2πfmt
′ + ϕm +Δϕ) cos(2πfm(t

′ + t) + ϕm) dt
′+

+
2

Tm

Tm∫
0

B

2
cos(2πfm(t

′ + t) + ϕm) dt
′

= A sin(Δϕ− 2πfmt) + B.

(2.22)

Note that since transmitter and receiver are co-sited, the modulation sinusoidal

signal (therefore including its phase ϕm) is directly available at the receiver side.
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The unknowns of (2.22) are A, B and Δϕ, where A and B are measured in Volts

[V ] and Δϕ as phase value is a pure number. The most important unknown is

Δϕ, since it can deliver distance ρ. Unknowns A and B will be shown later to be

important for SNR considerations.

To estimate the unknowns A, B and Δϕ, cR(t) must be sampled by an ideal

sampler, i.e. with ΔS → 0 in (2.17), at least 4 times per modulation period Tm

[65], i.e., Ts = Tm/4. For instance, if the modulation frequency is 30 [MHz], signal

cR(t) must be sampled at least at 120 [MHz]. Assuming a sampling frequency

FS = 4fm, given the 4 samples per period c0R = cR(t = 0), c1R = cR(t = 1/FS),

c2R = cR(t = 2/FS) and c3R = cR(t = 3/FS), the receiver estimates values Â, B̂ and

Δ̂ϕ as

(Â, B̂, Δ̂ϕ) = argmin
A,B,Δϕ

3∑
n=0

{
cnR −

[
A sin

(
Δϕ−

π

2
n
)
+B

]}2

. (2.23)

After some algebraic manipulations of (2.23) one obtains

Â =

√
(c0R − c2R)

2
+ (c3R − c1R)

2

2

B̂ =
c0R + c1R + c2R + c3R

4

Δ̂ϕ = atan2
(
c0R − c2R, c

3
R − c1R

)
.

(2.24)

The final distance estimate ρ̂ can be obtained as

ρ̂ =
c

4πfm
Δ̂ϕ. (2.25)

If one takes into account that the sampling is not ideal but actually made by a

sequence of rectangular pulses of width ΔS within the standard natural sampling

model, the estimates of A and B in this case become [81]

Â′ =
π

TS sin

(
πΔS

TS

)Â

B̂′ =
B̂

ΔS

Δ̂ϕ = Δ̂ϕ
′

(2.26)

showing that the phase shift Δϕ is independent from the size of the sampling

duration ΔS, that instead affects both the estimate of A and B. A typical value of
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ΔS is ΔS = Tm/4 = 1/(4fm).

Square wave modulation

In the case of square wave modulation the ToF camera transmitter modulates

the NIR optical carrier by a square wave mE(t) of amplitude AE and frequency

fm = 1/Tm in the HF/VHF band

mE(t) = AE

∞∑
k=0

p(t− kTm; Δm) (2.27)

where Δm ≤ Tm. The phase ϕm of mE(t) is not explicitly written for notational

simplicity. Because of the co-siting of transmitter and receiver, mE(t) is available

also at the receiver and the specific value of ϕm for practical demodulation purposes

is irrelevant.

The back-reflected HF/VHF modulating signal within sR(t) reaching the receiver

can be written as

mR(t) = A
∞∑
k=0

p(t− τ − kTm; Δm) + B (2.28)

where A is the attenuated amplitude of the received modulating signal, B is due

to the background light interfering with λc and τ is the round-trip time. Clearly,

AE is known and A, τ and B are unknown since the first two depend on target

distance and material NIR reflectivity and the latter on the background noise.

In the square wave modulation case there are many ways to estimate A, B and

τ , which will be introduced next with a few examples.

Let us first consider the situation exemplified by Figure 2.29 where mE(t) is defined

in (2.27), mR(t) is defined in (2.28) and

gR(t) =
∞∑
k=0

(−1)kp(t− 2kTS; 2TS). (2.29)

The following reasoning assumes τ < TS and TS = Tm/4 and it can be generalized

to mE(t) and mR(t) having pulses p(t; Δ) with a different support Δm.

For notational convenience, in Figure 2.29 the areas of the portions of the useful

signal of mE(t) falling respectively in the first, second and third sampling period
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mE (t )
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2TS 3TS Tm = 4TS t

mR (t )
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A +B

2TS 3TS Tm = 4TS t

W W W W
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τ

R Q Q −R

cR
3cR

2cR
1cR

0

TS

1

2TS 3TS Tm = 4TS t

−1

gR (t )

(a)

(b)

(c)

Figure 2.29: Example of one period of square wave signaling: (a) mE(t), (b) mR(t) and
(c) gR(t).
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are denoted as

R =(TS − τ)A

Q =TSA

Q−R =τA

(2.30)

while the area of the optical noise signal, modeled for simplicity as a constant

deterministic signal, in each sampling period is denoted as

W = BTS. (2.31)

In this case, from (2.16) and (2.17), again without considering the noise nR(t), the

outputs of the back-end integrator stage are

ciR =

iTS+ΔS∫
iTS

mR(t)gR(t) dt (2.32)

where ΔS = TS. As Figure 2.29 schematically indicates, they correspond to the

sum of the area of the two components of mR(t) in each sampling period TS equal

to

c0R = R +W = Q

(
1−

τ

TS

)
+W

c1R = Q+W

c2R = −[Q−R +W ] = −

[
Q

τ

TS

+W

]
c3R = −W.

(2.33)

From (2.33) it is straightforward to see that

τ̂ =
TS

2

(
1−

c2R + c0R
c1R + c3R

)
Â =

1

TS

(
c1R + c3R

)
B̂ =−

c3R
TS

.

(2.34)

Figure 2.30 shows an alternative scheme for the in-pixel receiver, typically

called differential, differing from the scheme of Figure 2.29 for the presence of two
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+
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∫
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cR2 (t)

mR(t)

Figure 2.30: Conceptual model of the differential scheme for the in-pixel receiver.

correlators with reference signal gR1(t) and gR2(t) respectively defined as

gR1(t) =
∞∑
k=0

p(t− (2k)2TS; TS)

gR2(t) =
∞∑
k=0

p(t− (2k + 1)2TS; TS)

(2.35)

which operate in parallel. The correlation stage is followed by a subsequent stage

where samples ciR1 and ciR2 are added and subtracted obtaining

si = ciR1 + ciR2

di = ciR1 − ciR2.
(2.36)

At a circuit level, the double correlation and integration stage of Figure 2.30 is

amenable to simple and effective solutions, such as a clock signal of sampling

period TS controlling that the incoming photons contribute to charge ciR1 when the

clock signal is high, and to charge ciR2 when the clock signal is low [3]. From area

relationships (2.36), which apply also in this case, and from Figure 2.31 it is readily

seen that

c0R1 = R +W c0R2 = 0 s0 = R +W d0 = R +W

c1R1 = 0 c1R2 = Q+W s1 = Q+W d1 = −[Q+W ]

c2R1 = Q−R +W c2R2 = 0 s2 = Q−R +W d2 = Q−R +W

c3R1 = 0 c3R2 = W s3 = W d3 = −W

(2.37)
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Figure 2.31: Example of one period of square wave signaling for the differential scheme
of the in-pixel receiver: (a) mE(t), (b) mR(t) and correlation reference
signals (c) gR1(t) and (d) gR2(t) defined in (2.35).
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from which the unknown parameters can be estimated as

τ̂ = TS

d1 + d0

d1 − d3
= TS

d3 + d2

d3 − d1

Â =
1

TS

(d3 − d1)

B̂ = −
1

TS

d3.

(2.38)

In this case both ciR1 and ciR2 have an intrinsic sampling period of 2TS, with ciR2

lagged by TS with respect to ciR1. Consequently, samples si and di of (2.36) carry

the same information, therefore unknown parameters τ̂ , Â and B̂ could also be

obtained from samples si instead of di with some sign changes.

As a final consideration let us note that if one was only interested in estimating

the two parameters τ and A, relying on theoretical or statistical considerations for

the noise estimate, the number of measurements per modulation period could be

halved. Within our model such a situation corresponds to B = 0 and would require

the assumptions τ < TS, ΔS < TS and TS = Tm/2, equivalent to two measurements

per modulation period Tm instead of four as in the previous cases. Our simple

model requires the assumption B = 0 to be extended to the case of two samples per

period, even though the noise component B cannot be zero and it can be estimated

not from the values of the sample ciR1 and ciR2 but from circuital considerations and

measurements. Practically, this can be the case in which B is considered constant

within the temporal scale of the receiver sampling period, hence B can be estimated

only once and then removed for a subsequent set of measurements.

2.3.2 Imaging characteristics

ToF depth cameras, in spite of their complexity due to the components listed above,

can be modeled as pin-hole imaging systems since their receiver has the optics (c)

and the sensor (d) made by a NR ×NC matrix of lock-in pixels. All the pin-hole

imaging system concepts apply to ToF depth cameras. The notation will be used

with subscript T to recall that it refers to a ToF depth camera. The CCS of the

ToF camera will be called the 3D − T reference system. The position of a scene

point P with respect to the 3D − T reference system will be denoted as PT and its

coordinates as PT = [xT , yT , zT ]
T . Coordinate zT of PT is called the depth of point

PT and the zT -axis is called the depth axis.

The coordinates of a generic sensor pixel pT of lattice ΛT with respect to the 2D-T

reference system are represented by vector pT = [uT , vT ]
T , with uT ∈ [0, . . . , NC ]

and vT ∈ [0, . . . , NR]. Therefore the relationship between the 3D coordinates
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uT 

vT 

xT 

yT 

zT 

Figure 2.32: 2D T -reference system with axes uT − vT and 3D T -reference system with
axes xT − yT − zT .

PT = [xT , yT , zT ]
T of a scene point PT and the 2D coordinates pT = [uT , vT ]

T of

the pixel pT receiving the NIR radiation echoed by PT is given by the perspective

projection equation, rewritten for clarity’s sake as

zT

⎡⎢⎣ uT

vT

1

⎤⎥⎦ = KT

⎡⎢⎣ xT

yT

zT

⎤⎥⎦ (2.39)

where KT is the ToF camera intrinsic parameters matrix.

Because of lens distortion, coordinates pT = [uT , vT ]
T of (2.39) are related to the

coordinates p̂T = [ûT , v̂T ]
T actually measured by the ToF camera by a relationship

of type

pT = Ψ−1(p̂T ) (2.40)

where Ψ(·) denotes the distortion transformation.

Anti-distortion model (2.41), also called the Heikkila model [44], has become popular

since it adequately corrects the distortions of most imaging systems and effective

methods exist for computing its parameters:[
uT

vT

]
= Ψ−1(p̂T ) =

[
ûT (1 + k1r

2 + k2r
4 + k3r

6) + 2d1v̂T + d2(r
2 + 2û2

T )

v̂T (1 + k1r
2 + k2r

4 + k3r
6) + d1(r

2 + 2v̂2T ) + 2d2ûT )

]
(2.41)

where r =
√

(ûT − cx)2 + (v̂T − cy)2, parameters ki with i = 1, 2, 3 are constants

accounting for radial distortion and di with i = 1, 2 accounts for tangential distor-

tion. A number of other more complex models, e.g. [15], are also available.

Each sensor pixel pT directly estimates the radial distance r̂T from its corre-
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sponding scene point PT as

r̂T =
√

x̂2
T + ŷ2T + ẑ2T =

∣∣∣∣∣∣[x̂2
T , ŷ

2
T , ẑ

2
T

]T ∣∣∣∣∣∣
2
. (2.42)

From radial distance r̂T measured at pixel pT with distorted coordinates p̂T =

[ûT , v̂T ]
T the 3D coordinates of PT can be computed according to the following

steps:

1. Given the lens distortion parameters, estimate the non-distorted 2D coordi-

nates pT = [uT , vT ]
T = Ψ−1(p̂T ), where Ψ−1(·) is the inverse of Ψ(·).

2. The estimated depth value ẑT can be computed from (2.39) and (2.42) as

ẑT =
r̂T∣∣∣∣∣∣K−1

T [uT , vT , 1]
T
∣∣∣∣∣∣

2

(2.43)

where K−1
T is the inverse of KT .

3. The estimated coordinates values x̂T and ŷT can be computed by inverting

(2.39), i.e., as ⎡⎢⎣ x̂T

ŷT

ẑT

⎤⎥⎦ = K−1
T

⎡⎢⎣ uT

vT

1

⎤⎥⎦ ẑT . (2.44)

Since amplitude Â, intensity B̂ and depth ẑT are estimated at each sensor pixel,

ToF depth cameras handle them in matricial structures, and return them as 2D

maps or depth maps. Therefore a ToF depth camera can in principle provide as

output the following types of data:

• an amplitude map ÂT , i.e., a matrix obtained by juxtaposing the amplitudes

estimated at all the ToF sensor pixels. It is defined on lattice ΛT and its

values, expressed in volts [V], belong to the pixel non-saturation interval.

Map ÂT can be modeled as realization of a random field AT defined on ΛT ,

with values expressed in volts [V] in the pixel non-saturation interval;

• an intensity map B̂T , i.e., a matrix obtained by juxtaposing the intensity

values estimated at all the ToF sensor pixels. It is defined on lattice ΛT and

its values, expressed in volts [V], belong to the pixel non-saturation interval.

Map B̂T can be modeled as the realization of a random field BT defined on

ΛT , with values (expressed in volts [V]) in the pixel non-saturation interval;
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• a depth map ẐT , i.e, a matrix obtained by juxtaposing the depth values

estimated at all the ToF sensor pixels. It is defined on lattice ΛT and its

values, expressed in [mm], belong to interval [0, rMAX = c/(2fm)). Map ẐT

can be considered as the realization of a random field ZT defined on ΛT , with

values (expressed in [mm]) in [0, rMAX).

Some of the commercial ToF depth cameras do not expose all the intermediate

data, however, in addition to the depth map ẐT , all the ToF depth cameras provide

at least either the intensity map ÂT or the amplitude map B̂T .

2.3.3 Practical implementation issues

The previous sections highlight the conceptual steps needed to measure the

distances of a scene surface by a ToF depth camera, but they do not consider

a number of issues which must be taken into account in practice. The major

contributions to imperfection are described next.

Phase wrapping

The first fundamental limitation of ToF sensors comes from the fact that the

estimate of Δ̂ϕ is obtained from an arctangent function, which has co-domain

[−π/2, π/2]. Therefore, the estimates of Δ̂ϕ can only assume values in this interval.

Since the physical delays entering the phase shift Δϕ can only be positive, it is

possible to shift the arctan(·) co-domain to [0, π] to have a larger interval available

for Δ̂ϕ. Moreover, the usage of atan2(·, ·) allows one to extend the co-domain

to [0, 2π]. From (2.25) it is immediate to see that the estimated distances are

within range [0, c/(2fm)]. If for instance fm = 30 [MHz], the interval of measurable

distances is [0− 5] [m].

Since Δ̂ϕ is estimated modulo 2π from (2.25) and the distances greater than

c/(2fm) correspond to Δ̂ϕ greater than 2π, they are incorrectly estimated. In

practice the distance returned by (2.25) corresponds to the remainder of the division

between the actual Δϕ and 2π, multiplied by c/(2fm), a well-known phenomenon

called phase wrapping since it refers to a periodic wrapping around 2π of phase

values Δ̂ϕ. Clearly, if fm increases, the interval of measurable distances becomes

smaller, and vice-versa. Possible solutions to overcome phase wrapping include the

use of of multiple modulation frequencies or of non-sinusoidal wave-forms (e.g., chirp

wave-forms), e.g. KinectTM v2. Other works such as [17] use only one frequency

and the amplitude image.
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Harmonic distortion

The generation of perfect sinusoids of the needed frequency is not straightforward.

In practice, actual sinusoids are obtained as low-pass filtered versions of square

waveforms emitted by LEDs [10]. Moreover, the sampling of the received signal is

not ideal, but it takes finite time intervals ΔS. The combination of these two factors

introduces an harmonic distortion in the estimated phase-shift Δ̂ϕ and consequently

in the estimated distance ρ̂. Such harmonic distortion leads to a systematic offset

component dependent on the measured distance. A metrological characterization

of this harmonic distortion effect is reported in [53] and [109]. Harmonic distortion

offset exhibits an oscillatory behavior which can be up to some tens of centimeters,

clearly reducing the accuracy of distance measurements. This systematic offset can

usually be fixed using a look-up-table to compensate for this offset, estimated with

a calibration procedure.

Material reflectivity

The amount of reflected light strongly depends on the reflectivity of the target

object, which leads to erroneous distance calculation. Materials can be divided

into two categories according to their reflection coefficient in the IR band of the

emitters.

For diffusely reflecting materials such as dull surfaces, the reflectivity coefficient

has values in the range [0, 1], where 0 means that all incoming light is absorbed

or transmitted, and 1 that all the incident rays are reflected. The reference value

of 1 is given by the case of a perfect Lambertian reflector, where all the light is

back-scattered with an intensity distribution that is independent of the observation

angle.

For directed reflecting materials such as glossy surfaces, the reflection coefficient

might be even ≥ 1 for specific angles at which the light is directly reflected into the

sensor. Camera measurements for such directed reflections might saturate, causing

errors in distance estimation. The same problem may be encountered in the opposite

condition, that is when the reflected ray points away from the camera, preventing

the sensor from capturing enough signal intensity to deliver valid measurements.

Authors of [109] proposed a method to correct the distance non linearities as well

as the integration time offsets for different reflectivity. They found that a difference

in amplitude as well as measured distance between the black and white targets are

attributed to the differences in reflectivity. In [41] it is shown that the systematic

error in depth measurement can be reduced using the object’s intensity. Depth

and inverse amplitude 1/A are compared, discovering that these two measures are
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correlated.

Angle of emission and incidence

Quality of the received signal also depends on the angle at which the light is

emitted, reflected and received. In [109], the model to correct distance nonlinearity

also considers a term related to the angle of emitted and received rays. The lenses

in front of the emitter do not distribute the light uniformly, resulting in a strong

vignetting effect. The lenses at the receiver also cause a light fall-off more or less

severe depending on the optical design and construction of the lens. Moreover,

materials with different reflection coefficient impact the measurement characteristics

of the camera in different ways. The best measure is given by the case of Lambertian

reflection of a 90◦ incident and received ray. Since a prior knowledge about objects

material composition and orientation in the scene is not available, modeling this

inaccuracy is a quite difficult task. The only information that is always known is

the angle associated to the emitted light rays. A general characterization of this

phenomenon is available in the datasheet of the actual camera. MESA SR4000, for

example, defines two measurement regions (Figure 2.33): the first region involves

central pixels while the second one involves pixels far away from the center point.

A larger error is associated to the outer region, and this is due to the larger angle of

the emitted light rays. This indication of the measurement accuracy is also known

as repeatability and is characterized by the spread σ of the measurement around

the mean value.

Figure 2.33: Measurement regions with different repeatability for the MESA SR4000.
Darker region in the center has higher repeatability.
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Photon-shot noise

Because of the light-collecting nature of the receiver, the acquired samples c0R,

c1R, c2R and c3R are affected by photon-shot noise, due to dark electron current and

photon-generated electron current as reported in [11]. Dark electron current can

be reduced by lowering the sensor temperature or by technological improvements.

Photon-generated electron current, due to light-collection, cannot be completely

eliminated. Photon-shot noise is statistically characterized by a Poisson distribution.

Since Â, B̂, Δ̂ϕ and ρ̂ are computed directly from the corrupted samples c0R, c1R,

c2R and c3R, their noise distribution can be computed by propagating the Poisson

distribution through (2.24-2.25). A detailed analysis of error and noise propagations

can be found in [81].

Quite remarkably, the probability density function of the noise affecting esti-

mate ρ̂, in the case of sinusoidal modulation, according to [11] and [81] can be

approximated by a Gaussian4 with standard deviation

σρ =
c

4πfmod

1

SNR
=

c

4πfmod

√
B/2

A
(2.45)

in which the SNR of the signal is measured as

SNR =
A√
B/2

. (2.46)

Standard deviation (2.45) determines the precision, or repeatability, of the distance

measurement and is directly related to fm, A and B. In particular, if the received

signal amplitude A increases, the precision improves. This suggests that the

precision improves as the measured distance decreases and the reflectivity of the

measured scene point increases.

Equation (2.45) also indicates that as the interference intensity B of the received

signal increases, precision worsens. This means that precision improves as the scene

background IR illumination decreases. Note that B may increase because of two

factors: an increment of the received signal amplitude A or an increment of the

background illumination. While in the second case the precision gets worse, in

the first case there is an overall precision improvement, given the squared root

dependence of B in (2.45). Finally, observe that B cannot be 0 as it depends on

carrier intensity A.

4An explicit expression of the Gaussian probability density function mean is not given in [11,
81]. However, the model of [81] provides implicit information about the mean which is a function
of both A and B, and contributes to the distance measurement offset. For calibration purposes
the non-zero mean effect can be included in the harmonic distortion.
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If modulation frequency fm increases, precision improves. The modulation

frequency is an important parameter for ToF sensors, since fm is also related to

phase wrapping and the maximum measurable distance. In fact, if fm increases, the

measurement precision improves, while the maximum measurable distance decreases

(and vice-versa). Therefore, there is a trade-off between distance precision and

range. Since fm is generally a tunable parameter, it can be adapted to the distance

precision and range requirements of the specific application.

Saturation and motion blur

Averaging over multiple periods is effective against noise but it introduces

dangerous side effects, such as saturation and motion blur. Saturation occurs when

the received quantity of photons exceeds the maximum quantity that the receiver

can collect. This phenomenon is particularly notable in presence of external IR

illumination (e.g., direct solar illumination) or in the case of highly reflective objects

(e.g., specular surfaces). The longer the integration time, the higher the quantity of

collected photons and the more likely the possibility of saturation. Specific solutions

have been developed to avoid saturation, i.e., in-pixel background light suppression

and automatic integration time setting [10, 11].

Motion blur is another important phenomenon accompanying time averaging.

It is caused by imaged objects moving during integration time, as in the case

of standard cameras. Time intervals of the order of 1 − 100 [ms] make object

movement likely unless the scene is perfectly still. In the case of moving objects,

the samples entering (2.49) do not concern a specific fixed scene point at subsequent

instants as is expected in theory, but different scene points at subsequent instants,

causing distance measurement artifacts. The longer the integration time, the higher

the likelihood of motion blur (but better the distance measurement precision).

Integration time is another parameter to set according to the characteristics of the

specific application.

Multipath error

In the model presented in Section 2.3.1, we assumed that the signal sE(t)

transmitted from the source is reflected back by the scene in a single ray. In a more

realistic scenario, the signal transmitted from the source will encounter multiple

objects in the environment that produce reflected, diffracted, or scattered copies

of the transmitted signal, as shown in Figure 2.34. These additional copies of the

transmitted signal, called multipath signal components, are summed together at the

receiver, leading to a combination of the incoming light paths and thus to a wrong



58 CHAPTER 2. DEPTH ACQUISITION SYSTEMS

Figure 2.34: Scattering effect.

distance estimation. Since the radial distance of a scene point P from the ToF

camera is computed from the time-length of the shortest path between P and the

camera, the multipath effect leads to over-estimation of the scene points’ distances.

Figure 2.34 shows an optical ray (red) incident to a non-specular surface reflected

in multiple directions (green and blue). The ideal propagation scenario with co-

positioned emitters and receivers, considers only the presence of the green ray of

Figure 2.34, i.e., the ray back reflected in the direction of the incident ray and

disregards the presence of the other (blue) rays. In practical situations, however,

the presence of the other rays may not always be negligible. In particular, the ray

specular to the incident ray direction with respect to the surface normal at the

incident point (thick blue ray) generally is the reflected ray with greatest radiometric

power.

All the reflected (blue) rays may first hit other scene points and then travel

back to the ToF sensor, therefore affecting distance measurements of other scene

points. For instance, as shown in Figure 2.35, an emitted ray (red) may be first

reflected by a point surface A with a scattering effect. One of the scattered rays

(orange) may then be reflected by another scene point B and travel back to the

ToF sensor. The distance measured by the sensor pixel relative to B is therefore a

combination of two paths, namely path to ToF camera-B-ToF camera and path

ToF camera-A-B-ToF camera. The coefficients of such a combination depend on

the optical amplitude of the respective rays.

There are multiple sources of the multipath effect, and most of them are related

to the properties of the scene. In general, all materials reflect incoming light in

all directions, so a normal scene will produce indirect reflections everywhere and

each camera pixel will measure the superposition of infinite waves. Fortunately,

most of the time the indirect reflections are order of magnitudes weaker than direct
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Figure 2.35: Multipath phenomenon: the incident ray (red) is reflected in multiple
directions (blue and orange rays) by the surface at point A. The orange
ray reaches then B and travels back to the ToF sensor.

reflections, and the camera can easily resolve the reflected signal. When the object

is highly reflective or transparent, however, the camera pixel will receive multiple

signals with different phase and attenuation, leading to incorrect measurements.

One of the most visible effects of multipath interference is relative to concave

corners, which often appear rounded in ToF depth maps. This happens because

each point belonging to one side of the corner will receive light reflected by any

point of the other side and reflects parts of it towards the camera, resulting in an

over-estimation of the distances of the points on the corner surface. The interference

of different waves is not necessarily related only to the scene; the optics and other

internal components of the ToF camera may scatter and reflect small amounts of

the received signal as well.

To model the multipath error, in the case of sinusoidal modulation we can

rewrite (2.22), by considering N incoming waves

sR(t) =
N∑
i=1

(a)isin(2πfmt+Δϕi) + Bi. (2.47)

Since the sum of sinusoidal functions is still a sinusoid, and it is difficult to estimate

the contribution of each independent ray, in practice only two components are

considered: a first direct signal, and a second indirect signal that takes into account

all the additional reflections. With these assumptions, (2.47) can be rewritten as

sR(t) = [Asin(2πfmt+Δϕ) + B] + [AMP sin(2πfmt+Δϕm) + Bm] (2.48)

where the second component takes into account the multipath signal.

In the literature, there are several works that propose solutions to multipath
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interference, e.g., [114] reviews current state of the art techniques used to correct

for this error. When a single frequency is used in the presence of multipath,

the relationship among modulation frequency, measured phase, and amplitude is

nonlinear. By exploiting modulation frequency diversity, it is possible to iteratively

reconstruct the original signal using two or more modulation frequencies [31, 57, 6],

and find a closed-form solution by using four modulation frequencies [37]. Another

solution to address multipath is to use coded waves [10, 52] where the signal in

(2.18) is replaced by a binary sequence or more particular custom codes, and the

received signal is estimated by means of sparse deconvolution. The general idea is

that the combination of pure sinusoidal signals is still a sinusoid and this creates a

unicity problem at the receiver. The use of different signals instead allows one to

recognize when the received signal has been corrupted by the scene.

Let us finally observe that ToF cameras can be considered as special Multiple-

Input and Multiple-Output (MIMO) communication systems, where the emitters

array is the input array and the lock-in matrix of the ToF receiver sensor the

output array. In principle, this framework would allow one to approach multipath

as customarily done in communication systems. However, the number of input

and output channels of a ToF camera vastly exceed the complexity of the MIMO

systems used in telecommunications, in which the number of inputs and outputs

rarely exceed the 10s of units. Even though the current multipath analysis methods

used for MIMO systems cannot be applied to ToF depth cameras, the application of

communications systems techniques for characterizing ToF depth cameras operations

and improving their performance appears an attractive possibility.

Flying pixels

Another problem similar to multipath is the flying pixel effect. Since the pixels

of any imaging sensor don’t have infinitesimal size but some physical size, as shown

in Figure 2.36, each pixel receives the radiation reflected from all the points of the

corresponding small scene patch and the relative distance information. If the scene

patch is a flat region with constant reflectivity, the approximation that there is a

single scene point associated with the specific pixel does not introduce any artifacts.

However, if the scene patch corresponds to a discontinuity of the scene reflectivity,

the values of ÂT (pT ) and B̂T (pT ) estimated by the correspondent pixel pT average

its different reflectivity values.

A worse effect occurs if the scene patch associated with pT corresponds to a depth

discontinuity. In this case, assume that a portion of the scene patch is at a closer

distance, called znear, and another portion at further distance, called zfar. The
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Figure 2.36: Finite size scene patch (right) associated with a pixel (left) of any imaging
sensor.

Figure 2.37: An example of flying pixels at the depth edge between a person and the
wall.

resulting depth estimate ẐT (pT ) is a convex combination of znear and zfar, where

the combination coefficients depend on the percentage of area at znear and at zfar

respectively reflected on pT . The presence of flying pixels leads to severe depth

estimation artifacts, as shown by the example of Figure 2.37, where foreground and

background are blended together.

The most effective solutions to this problem tackle the detection and eventual

correction of these points as shown in [95]. More recent works aim at providing a

confidence value for each pixel, based on analysis of intensity and amplitude of the

received signal [94].
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Other noise sources

There are several other noise sources affecting the distance measurements of

ToF sensors, notably flicker and kTC noise. The receiver amplifier introduces

a Gaussian-distributed thermal noise component. Since the amplified signal is

quantized to be digitally treated, this introduces another error source, customarily

modeled as random noise. Quantization noise can be controlled by the number of

used bits and it is typically neglectable with respect to the other noise sources. All

noise sources, except photon-shot noise, may be reduced by adopting high quality

components. A comprehensive description of various ToF noise sources can be

found in [65, 11, 81, 10].

Averaging distance measurements over several modulation periods Tm is a

classical provision to mitigate the noise effects. If N is the number of periods, in

the case of sinusoidal modulation the estimated values Â, B̂ and Δ̂ϕ become

Â =

√(
1

N
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(2.50)

This provision reduces but does not completely eliminate noise effects. The averaging

intervals used in practice are typically between 1 [ms] and 100 [ms]. For instance,

when fm = 30 MHz, where the modulating sinusoid period is 33.3× 10−9[s], the

averaging intervals concern a number of modulating sinusoid periods from 3× 104

to 3× 106. The averaging interval length is generally called integration time, and

its proper tuning is extremely important in ToF measurements. Long integration
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times lead to repeatable, reliable ToF distance measurements at the expense of

motion blur effects.

2.3.4 Comparison of ToF depth cameras

KinectTM v2

With the introduction of the Xbox One gaming device in November 2013,

Microsoft also presented a second version of the KinectTM, called KinectTM v2

for simplicity. KinectTM v2 with respect to KinectTM v1 is a completely different

product, since it employs a ToF depth camera while KinectTM v1 employed a

structured light depth camera. As with the KinectTM v1, the KinectTM v2 includes

the depth sensing element, a video camera and an array of microphones.

A high level description of the operating principles of KinectTM v2 can be found

in [77], while more details are given in Microsoft patents. The ToF depth camera

was developed from former products by Canesta, a ToF depth camera producer

acquired by Microsoft in 2010. Some innovative details introduced to overcome

some of the issues of Section 2.3.3 are worth noting. KinectTM v2 is able to acquire

a 512× 424 [pxl] depth map (the largest resolution achieved by a ToF depth camera

at the time of writing this thesis) at 50 [fps] with a depth estimation error typically

smaller than 1% of the measured distances. The emitted light is modulated by a

square wave (see Section 2.3.1) instead of a sinusoid as in most previous ToF depth

cameras. The receiver ToF sensor is a differential pixels array, i.e., each pixel has

two outputs and the incoming photons contribute to one or the other according to

the current state of a clock signal. The clock signal is the same square wave used

for the modulation of the emitter. Let us denote with U the signal corresponding

to the photons arriving when the clock is high and L the signal corresponding to

the low state of the clock. The difference (U − L) depends on both the amount of

returning light and on the time it takes to come back, and allows one to estimate

the time lag used to compute the distance. Square wave modulation helps against

harmonic distortion issues.

Another well-known critical trade-off is between precision and the maximum

measurable range given by (2.25) and (2.45), i.e., by increasing fm the measurement

precision increases but the measurable range gets smaller. KinectTM v2 deals

with this issue by using multiple modulation frequencies which are 17, 80 and

120 [MHz]. Multiple modulation frequencies allow one to extend the acquisition

range, overcoming limits due to phase wrapping. Indeed, the correct measurement

can be disambiguated by identifying the measurement values consistent with respect

to all three modulation frequencies, as visually exemplified by Figure 2.38.
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Figure 2.38: Disambiguation of phase wrapping errors by multiple modulation frequen-
cies. Notice how by looking at each single plot there are ambiguities on the
actual distance value (represented by the multiple dots), but by comparing
all the plots it is possible to disambiguate the various measurements.

Another improvement introduced by the KinectTM v2 is the capability of simul-

taneously acquiring two images with different shutter times, namely 100 [μs] and

1000 [μs] and selecting whichever one leads to the best pixel by pixel result; this is

made possible by the non-destructive pixel reading feature of its sensor.

MESA ToF depth cameras

MESA Imaging, which was founded in 2006, is a spin-off of the Swiss Center

for Electronics and Microtechnology (CSEM). It was one of the first companies

to commercialize ToF depth cameras and its main product, the SwissRanger, is

now in its 4th generation. Differently from the KinectTM v2, the SwissRanger is an

industrial grade product developed for measurement applications rather than for

interfaces or gaming. The SwissRanger uses CWAM with sinusoidal modulation

according to the principles presented in this chapter. For a detailed description see

[49]. The modulation frequency can be chosen among 14.5, 15, 15.5, 29, 30 and

31 [MHz]. Typical SwissRanger operation is in the [0, 5] [m] range with nominal

accuracy of 10 [mm] at 2 [m] and in the longer range of [0, 10] [m] with lower

accuracy of 15 [mm] at 2 [m]. Notably, one can use up to three SwissRanger
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(a) (b) (c)

Figure 2.39: Mesa Imaging ToF depth cameras: (a) MESA Imaging SR3000TM; (b)
MESA Imaging SR4000TM; MESA Imaging SR4500TM.

cameras together without interference issues.

PMD devices

PMD technologies is another early ToF depth camera producer. This spin-off

of the Center for Sensor Systems (ZESS) of the University of Siegen (Germany)

was founded in 2002. In 2005, it launched the Efector camera, its first commercial

product. The company then introduced the Efector 3D in 2008, a 64× 48 pixels

ToF depth camera developed for industrial use. In 2009 the company launched

the CamCube, a 204× 204 pixels ToF depth camera characterized by the highest

resolution ToF sensor until the introduction of KinectTM v2. The initial focus of

the company was on industrial applications but recently it entered other fields,

including automotive, gesture recognition and consumer electronics (it is taking part

in Google’s Project Tango). Recent products include the CamBoard, a 200× 200

single board 3D ToF depth camera, and the PhotonICs 19k-S3 chip for camera

developers and system integrators. PMD depth cameras operate according to the

CWAM modulation principles introduced earlier in this section.

ToF depth cameras based on SoftKinetic technology

SoftKinetic is a Belgian company, founded in 2007 and acquired by Sony in 2015,

which has produced two generations of ToF depth cameras, the DS311 and the newer

DS325. These ToF depth cameras are based on the company’s patented CMOS

pixel technology, called Current Assisted Photonic Demodulation (CAPD). This

technique uses a driving current to move electrons towards two different detecting
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(a) (b) (c)

Figure 2.40: PMD ToF depth cameras: (a) PMD PhotonICs; (b) PMD CamCube; (c)
PMD CamBoard pico.

(a) (b) (c)

Figure 2.41: SoftKinetic ToF depth cameras: (a) SoftKinetic DS311; (b) SoftKinetic
DS325; (c) Creative Senz3DTM.

junctions as a result of an alternating current, with a result similar to the differential

pixels of the KinectTM v2. SoftKinetic adopts CWAM modulation with a square

wave modulating signal similar to the KinectTM v2. The transmitter uses a laser

illuminator and the receiver has a resolution of 320× 240 pixels. The DS325 can

acquire data at up to 60 [fps] within a nominal range 150 [mm] - 1000 [mm], thus

being particularly suited for hand gesture recognition applications and computer

interfaces. It is possible to acquire data up to 4 [m], but the range increase decreases

the resolution or the frame rate. The accuracy is about 14 [mm] at 1 [m] and the

built-in calibration is not very accurate, making the DS325 more suited to gesture

recognition applications than to 3D reconstruction purposes. The camera is also

sold with different form factors like in the newer DS525, and from other vendors

like Creative under the Senz3DTM name. The DS325 and the Senz3DTM essentially

share same hardware with a different case and exterior appearance.



Chapter 3

Depth data fusion with confidence

measures

As discussed in the previous chapters, data provided by depth cameras have

several limitations. In particular, data from structured light or ToF depth cameras

are usually noisier and at a lower resolution than data from standard cameras,

because depth camera technology is still far from the maturity of standard camera

technology. This fact suggests that combining active depth cameras with standard

cameras may lead to more accurate 3D representations than those provided by

depth cameras alone, and that the higher resolution of standard cameras may be

exploited to obtain higher resolution depth maps. Furthermore, depth cameras

can only provide scene geometry information, while many applications, e.g., 3D

reconstruction, scene segmentation, and matting, also need the color information of

the scene.

ToF depth cameras are generally characterized by low spatial resolution, and

structured light depth cameras by poor edge localization, as seen in Chapter 2.

Therefore, a depth camera alone is not well suited for high-resolution and precise 3D

geometry estimation, especially near depth discontinuities. If such information is

desired, as is usually the case, it is worth coupling a depth camera with a standard

camera. In addition, it is possible to consider an acquisition system made by a

depth camera and a stereo system where both sub-systems are able to provide

depth information and take advantage of the depth measurements’ redundancy.

This solution can also reduce occlusion artifacts between color and 3D geometry

information and it may also be beneficial, for example, in 3D video production

and 3D reconstruction. In synthesis, the quality of acquired depth data can be

improved by combining high resolution color data, particularly in critical situations

typical of each family of depth cameras.

67
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There are several ways of combining standard cameras and depth data and

this chapter will focus on a framework for the fusion of depth data produced by

a ToF camera and stereo vision system. In the proposed approach, depth data

acquired by the ToF camera are upsampled by an ad-hoc algorithm based on image

segmentation and bilateral filtering. In parallel a dense disparity map is obtained

using the Semi-Global Matching stereo algorithm. Reliable confidence measures are

extracted for both the ToF and stereo depth data. In particular, ToF confidence

also accounts for the mixed-pixel effect and the stereo confidence accounts for the

relationship between the pointwise matching costs and the cost obtained by the

semi-global optimization. Finally, the two depth maps are synergically fused by

enforcing the local consistency of depth data accounting for the confidence of the two

data sources at each location. Experimental results show that the proposed method

produces accurate high resolution depth maps and outperforms the compared fusion

algorithms [73]. In this chapter all the building blocks of the proposed approach

will be further analyzed.

To motivate the benefit of combining depth data from multiple sensors, we show

in Figure 3.1 an example of point clouds produced with a stereo system, a ToF

depth camera and the proposed fusion approach. In the three pictures, annotations

with the same shape match portions of the scene, while colors indicate whether

the portion is correct in a given point cloud. Starting from the rectangular shape

framing a portion of the scene with a depth discontinuity, it is clear that while stereo

data do not present particular errors, ToF data have a substantial error originating

from the flying pixels problem typical of ToF depth cameras. The circular region

instead, framing a portion of the scene with a planar region, highlights the issues of

stereo system in regions with periodic pattern, being the planar surface the cover

of a book with a repetitive texture. ToF data instead seem to be correct in that

region, as it does not represent a problematic case for ToF depth cameras. In both

the highlighted regions, the proposed fusion approach instead is able to provide the

correct depth value.

3.1 Related Works

Matricial ToF range cameras have been the subject of several recent studies,

e.g., [42, 91, 118, 87, 53, 39]. In particular, [53] focuses on the various error sources

that influence range measurements while [39] presents a qualitative analysis of the

influence of scene reflectance on the acquired data.

Stereo vision systems have also been the subject of a significant amount of
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Stereo ToF Fusion

Figure 3.1: Examples of point cloud generated by a depth map from a stereo camera, a
ToF depth camera, and from the proposed approach to fuse data.

research, and a recent review on this topic can be found in [107]. The accuracy of

stereo vision depth estimation strongly depends on the framed scene’s characteristics

and the algorithm used to compute the depth map, and a critical issue is the

estimation of the confidence associated with the data. Various metrics have been

proposed for this task and a complete review can be found in [47].

The idea of combining ToF sensors with standard cameras has been used in

several recent works, and recent surveys of this field can be found in [83, 118]. Some

work focused on the combination of a ToF camera with a single color camera [25,

117, 116, 101, 35, 27]. An approach based on bilateral filtering is proposed in [117]

and extended in [116]. The approach of [35] instead exploits an edge-preserving

scheme to interpolate the depth data produced by the ToF sensor. The recent

approach of [101] also accounts for the confidence measure of ToF data. The

combination of a ToF camera and a stereo camera is more interesting, because in

this case both subsystems can produce depth data [61, 39, 34, 56]. A method based

on a probabilistic formulation is presented in [21], where the final depth-map is

recovered by performing a ML local optimization to increase the accuracy of the

depth measurements from the ToF and stereo vision system. This approach has

been extended in [20] with a more refined measurement model which also accounts

for the mixed pixel effect and a global optimization scheme based on a MAP-MRF

framework. The method proposed in [120, 122] is also based on a MAP-MRF

Bayesian formulation, and a belief propagation based algorithm is used to optimize

a global energy function. An automatic way to set the weights of the ToF and stereo

measurements is presented in [121]. Another recent method [82] uses a variational

approach to combine the two devices. The approach of [22], instead, uses a locally

consistent framework [74] to combine the measurements of the ToF sensor with

the data acquired by the color cameras, but the two contributions are equally

weighted in the fusion process. This critical issue has been solved in the proposed

approach by extending the LC framework. Finally the approach of [33] computes
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the depth information by hierarchically solving a set of local energy minimization

problems. The setup with multiple cameras is not limited to stereo cameras only,

[80] presented a framework that uses multiple confidence measures to select among

multiple disparity hypotheses generated by a trinocular stereo system.

3.2 Proposed Method

We consider an acquisition system made of a ToF camera and a stereo vision

system. The goal of the proposed method is to provide a dense confidence map

for each depth map computed by the two sensors, then use this information to

fuse the two depth maps into a more accurate description of the 3D scene. The

approach assumes that the two acquisition systems have been jointly calibrated and

we consider the left camera of the stereo vision system to be the reference system.

The proposed algorithm is divided into three different steps:

1. The low resolution depth measurements of the ToF camera are reprojected

into the lattice associated with the left camera and a high resolution depth-

map is computed by interpolating the ToF data. The confidence map of ToF

depth data is estimated using the method described in Section 3.3.

2. A high resolution depth map is computed by applying a stereo vision algorithm

on the images acquired by the stereo pair. The confidence map for stereo

depth data is estimated as described in Section 3.4.

3. The depth measurements obtained by the upsampled ToF data and the stereo

vision algorithm are fused together by means of an extended version of the

LC technique [74] using the confidence measures from the previous steps.

3.3 ToF confidence estimation

Before describing how to compute the confidence map for ToF data we briefly

describe how we obtain a high resolution depth map from ToF data, from the point

of view of the left camera of the stereo vision system. Since stereo data typically

have higher resolutions than those of ToF cameras, the projection of ToF data on

the lattice associated with the left color camera produces a set of sparse depth

measurements that need to be interpolated. To obtain an accurate high resolution

map, especially in proximity of edges, we exploit the method of [22], combining

cross bilateral filtering with the help of segmentation. First, all the 3D points

acquired by the ToF camera are projected onto the left camera lattice Λl, obtaining
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a set of samples pi, i = 1, ..., N that does not include samples that are occluded

from the left camera point of view. The color image acquired by the left camera

is then segmented using mean-shift clustering [16], obtaining a segmentation map

used to guide an extended bilateral filter developed for the interpolation of the

pi samples. The output of the interpolation method is a disparity map defined

on the left camera lattice Λl. Since the fusion algorithm works in the disparity

space, the interpolated depth map is converted into a disparity map with the well

known relationship d = bf/z, where d and z are disparity and depth values, b is

the baseline of the stereo system and f is the focal length of the rectified stereo

camera.

As reported in Chapter 2, the reliability of the ToF measurements is affected by

several issues, e.g., the reflectivity of the acquired surface, the measured distance,

multi-path issues or mixed pixels in proximity of edges, and thus is very different

for each different sample. A proper fusion algorithm requires a reliable confidence

measure for each pixel. We propose a novel model for the confidence estimation of

ToF measurements, using both radiometric and geometric properties of the scene.

As described in the rest of this section, our model is based on two main clues

that can be separately captured by two metrics. The first one, PAI , considers the

relationship between amplitude and intensity of the ToF signal, while the second

one, PLV , accounts for the local depth variance. The two confidence maps PAI

and PLV consider independent geometric and photometric properties of the scene,

therefore, the overall ToF confidence map PT is obtained by multiplying the two

confidence maps together

PT = PAIPLV . (3.1)

Equation (3.1) implicitly assumes the independence of PAI and PLV . Given the

different nature of the two confidence maps, their independence, although it is not

proved here, is a reasonable assumption.

3.3.1 Confidence from amplitude and intensity values

ToF cameras provide both the amplitude and the intensity of the received signal

for each pixel. The amplitude of the received signal depends on various aspects, but

the two most relevant are the reflectivity characteristics of the acquired surfaces

and the distance of the scene samples from the camera. Intensity also depends

on these two aspects, but is additionally affected by the ambient illumination in

the wavelength range of the camera. A confidence measure directly using the

distance of objects in the scene could be considered, but distance strongly affects

the amplitude, and thus the proposed measure already implicitly takes the distance
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into account. The received amplitude strongly affects the accuracy of the measures

and a higher amplitude leads to a better signal-to-noise ratio and thus to more

accurate measurements [91]. Equation (2.45), reported here for convenience with

the notation of this chapter, shows that the distribution of the ToF pixel noise can

be approximated by a Gaussian with standard deviation

σz =
c

4πfmod

1

SNR
=

c

4πfmod

√
B/2

A
(3.2)

where fmod is the IR frequency of the signal sent by the ToF emitters, A is the

amplitude value at the considered pixel, B is the intensity value at the same location

and c is the speed of light. Note that since the data fusion is performed on the

upsampled disparity map, the confidence maps must be of the same resolution, but

amplitude and intensity images are at the same low resolution of the ToF depth

map. To solve this issue, each pixel pL in the left color image is first back-projected

to the 3D world and then projected to the corresponding pixel coordinates in the

ToF lattice pTOF
L .

From (3.2) it can be observed that when amplitude A increases, precision

improves, since the standard deviation decreases, while when intensity I increases,

the precision decreases. Intensity I depends on two factors: the received signal

amplitude A and the background illumination. An increase in the amplitude leads

to an overall precision improvement given the squared root dependence with respect

to I in (3.2), while in the second case precision decreases since A is not affected.

Before mapping σz to the confidence values, it is important to notice that the

proposed fusion scheme works on the disparity domain, while the measurement

standard deviation (3.2) refers to depth measurements. For a given distance z, if a

certain depth error Δz around z is considered, the corresponding disparity error Δd

also depends on the distance z, due to the inverse proportionality between depth

and disparity. If σz is the standard deviation of the depth error, the corresponding

standard deviation σd of the disparity measurement can be computed as:

2σd = |d1 − d2| =
bf

z − σz

−
bf

z + σz

= bf
2σz

z2 − σ2
z

⇒ σd = bf
σz

z2 − σ2
z

(3.3)

where b is the baseline of the stereo system and f is the focal length of the camera.

Equation (3.3) provides the corresponding standard deviation of the noise in the

disparity space for a given depth value. The standard deviation of the measurements

in the disparity space is also affected by the mean value of the measurement itself,

unlike the standard deviation of the depth measurement.

To map the standard deviation of the disparity measurements to the confidence
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values, we define two thresholds computed experimentally over multiple measure-

ments. The first is σmin = 0.5, corresponding to the standard deviation of a bright

object at the minimum measurable distance of 0.5 [m], while the second is σmax = 3,

corresponding to the case of a dark object at the maximum measurable distance of

5 [m] with the SR4000 sensor used in the experimental results dataset. If a different

sensor is employed, the two thresholds can be updated by considering these two

boundary conditions. Then, we assume that values smaller than σmin correspond to

the maximum confidence value, i.e., PAI = 1, values bigger than σmax have PAI = 0

while values in the interval [σmin, σmax] are linearly mapped to the confidence range

[0, 1], i.e.:

PAI =

⎧⎪⎨⎪⎩
1 if σd ≤ σmin

σmax−σd
σmax−σmin

if σmin < σd < σmax

0 if σd ≥ σmax

(3.4)

3.3.2 Confidence from local variance

One of the main limitations of (3.2) is that it does not take into account the

effect of the finite size of ToF sensor pixels, i.e., the mixed pixel effect [20]. To

account for this issue we introduce another term in the proposed confidence model.

When the scene area associated with a pixel includes two regions at different depths,

e.g. close to discontinuities, the resulting estimated depth measure is a convex

combination of the two depth values. For this reason, it is reasonable to associate a

low confidence to these regions. The mixed pixel effect leads to convex combinations

of depth values but this is not true for the multipath effect. These considerations

do not affect the design of the ToF confidence since the LV metric just assumes that

pixels in depth discontinuities are less reliable. If pixel pTOF
i in the low resolution

lattice of the ToF camera is associated with a scene area crossed by a discontinuity,

some of the pixels pTOF
j in the 8-neighborhood N (pTOF

i ) of pTOF
i belong to points

at a closer distance, and some other pixels to points at a farther distance. Following

this intuition the mean absolute difference of the points in N (pTOF
i ) has been used

to compute the second confidence term, i.e.:

DTOF
l =

1

|N (pTOF
i )|

∑
j∈N (pTOFi )

|zi − zj| (3.5)

where
∣∣N (pTOF

i )
∣∣ is the cardinality of the considered neighborhood, in this case

equal to 8, and zi and zj are the depth values associated with pixels pTOF
i and

pTOF
j , respectively. We use the mean absolute difference instead of the variance to

avoid assigning very high values to edge regions due to the quadratic dependence of
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the variance with respect to the local differences. For this term we used the depth

values and not the disparity ones because the same depth difference would lead to

different effects on the confidence depending if close or far points are considered.

This computation is performed for every pixel with a valid depth value. Notice

that some pTOF
j considered in an 8-connected patch may not have a valid value. To

obtain a reliable map, a constant value Kd = Th has been used in the summation

(3.5) in place of |zi − zj| for the pixels pTOF
j without a valid depth value. To obtain

the confidence information Dl on the left camera lattice, samples pi on this lattice

are projected on the ToF camera lattice and the corresponding confidence value is

selected after a bilinear interpolation.

Points with high local variance are associated with discontinuities, therefore, low

confidence should be assigned to them. Where the local variance is close to zero,

the confidence should be higher. To compute the confidence term we normalize

Dl to the [0, 1] interval by defining a maximum valid absolute difference Th = 0.3

corresponding to 30 cm and assigning higher likelihood values to the regions with

lower local variability:

PLV =

{
1− Dl

Th
if Dl < Th

0 if Dl ≥ Th

(3.6)

3.4 Stereo confidence estimation

The considered setup includes two calibrated color cameras, therefore an ad-

ditional high resolution disparity map Ds can be inferred by stereo vision. The

data fusion algorithm presented in the next section is independent of the choice of

the stereo vision algorithm, however, for our experiments we used the Semi-Global

Matching (SGM) algorithm [46] reviewed in Chapter 2. The goal of this algorithm

is to perform a 1D disparity optimization on multiple paths. Such an optimization

minimizes on each path an energy term made of point-wise or aggregated matching

costs C l and a regularization term. We used the pointwise Birchfield-Tomasi metric

over color data and 8 paths for the optimization, with window size of 7× 7, P1 = 20

and P2 = 100. The energy terms are summed up obtaining a global cost function

Cg that usually presents a very sharp peak at the minimum cost’s location. In the

rest of the section we analyze how the relationship between local cost C l and global

cost Cg can provide an effective confidence measure. The combination of local and

global cost functions was not used by any other confidence measure proposed in

the literature.
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Figure 3.2: Examples of cost curves: a) ideal cost function; b) ambiguous cost function.

3.4.1 Analysis of cost function

The cost value assigned to a disparity hypothesis d for a pixel (u, v) will be

denoted as C(d), without the explicit pixel coordinates label. Moreover, without

loss of generality, the cost range is considered normalized to the unit interval, i.e.

0 ≤ C(d) ≤ 1 (3.7)

The ideal cost curve for a pixel, as a function of disparity, is shown in Figure 3.2 a).

The ideal cost is 0 for the correct disparity and 1 for all the others. It is reasonable

to believe that if for a pixel the cost curve exhibits a behavior like the one of

Figure 3.2 b), the disparity estimation will be more ambiguous. This is due to the

presence of multiple local minima or multiple adjacent disparities with similar costs,

making exact localization of the global minimum hard and often uncertain.

Figure 3.2 b) also shows the terminology used to denote some point of interest.

The minimum cost for a pixel is denoted by C1 and the corresponding disparity

value by d1, i.e.

C1 = C(d1) = minC(d) (3.8)

where disparity d has sub-pixel resolution. The second smallest cost value which

occurs at disparity d2 is C2. For the selection of C2, disparity values that are too

close to d1 (i.e., |d2 − d1| ≤ 1) are excluded to avoid suboptimal local minima too

close to d1.

The reliability of the disparity map is affected by the content of the acquired

images, in particular by the texture of the scene. Uniform regions are usually the

most challenging since it is difficult to estimate corresponding image points reliably.

Global (or semi-global) methods tackle this problem by propagating neighbor values

enforcing a smoothness constraint at the cost of a higher uncertainty in the disparity
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Figure 3.3: Comparison of local (blue) and global (red) costs: a) Cost functions of a
repetitive pattern; b) Cost functions of a uniform region. The green line
represent the ground truth disparity value.

assignments. The globally optimized cost function typically has a very sharp peak,

often resulting from the enforced smoothness constraint, corresponding to the

propagated value even in areas where the data are not reliable. Current stereo

vision confidence estimation approaches analyzing the cost function [47] do not

account for the impact of global optimizations performed by most recent stereo

vision methods. We believe that an optimal confidence metric can only be obtained

by analyzing both cost functions. In the proposed approach this issue is handled

by introducing a novel confidence measure considering both the local cost function

C l and the globally optimized one Cg.

In our analysis, at each pixel location for each disparity hypothesis d, we consider

the point-wise local cost C l(d) and the global cost from the SGM algorithm Cg(d),

both scaled to the interval [0, 1]. Ideally the cost function should have a very

well-defined minimum corresponding to the correct depth value but, as expected,

in many practical situation this is not the case. Figure 3.3 shows two points in the

scene where the confidence should be low. In Figure 3.3a the region surrounding

the selected point has a periodic pattern and in Figure 3.3b the region surrounding

the selected point has a uniform color. However, the global cost function has a

sharp peak and conventional confidence measures based only on global cost analysis

would assign a high confidence to these pixels.

The proposed stereo confidence metric PS is the combination of multiple clues,

depending both on the properties of the local cost function and on the relationship

between local and global costs. In particular it is defined as the product of three

factors:
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PS =
ΔC l

C l
1

(
1−

min{Δdl, γ}

γ

)(
1−

min{Δdlg, γ}

γ

)
(3.9)

where ΔC l = C l
2 −C l

1 is the difference between the second and first minimum local

cost, Δdl = |dl2 − dl1| is the corresponding absolute difference between the second

and first minimum local cost locations, Δdlg = |dl1 − dg1| is the absolute difference

between the local and global minimum cost locations and γ is a normalization

factor.

The first term accounts for the robustness of the match, both the cost difference

and the value of the minimum cost are important, as the presence of a single strong

minimum with an associated small cost are usually sufficient conditions for a good

match. However, in the case of multiple strong matches, the first term still provides

a high score, e.g., in regions of the scene with a periodic pattern (see Figure 3.3b).

The second term is a truncated measure of the distance between the first two cost

peaks. It discriminates potentially bad matches due to the presence of multiple local

minima. If the two minimum values are close enough, the associated confidence

measure should provide a high value since the global optimization is likely to

propagate the correct value and to provide a good disparity estimation.

So far only the local cost has been considered so the last term accounts for

the relationship between the local and global cost functions, scaling the overall

confidence measure depending on the level of agreement between the local and

global minimum locations. If the two minimum locations coincide, there is a very

high likelihood that the estimated disparity value is correct, while on the other

hand, if they are too far apart the global optimization may have produced incorrect

disparity estimations, e.g. due to the propagation of disparity values in textureless

regions.

The constant γ controls the weight of the two terms and sets the maximum

distance of the two minimum locations, after which the estimated value is considered

unreliable. In our experiments we set γ = 10. Finally, if a local algorithm is used to

estimate the disparity map, the same confidence measure can be used by considering

only the first two terms.

3.5 Extended local consistency framework

Given the disparity maps and the confidence information for the ToF camera

and the stereo vision system, the final step combines the multiple depth hypotheses

available for each point by means of a technique that guarantees a locally consistent

disparity map. Our method extends the LC technique [74], originally proposed for



78 CHAPTER 3. DATA FUSION

stereo matching, to deal with the two disparity hypotheses provided by our setup

and modifies the original formulation to take advantage of the confidence measures

to weight the contributions of the two sensors.

In the original LC method, given a disparity map provided by a stereo algorithm,

the overall accuracy is improved by propagating, within an active support centered

on each point f of the initial disparity map, the plausibility Pf,g(d) of the same

disparity assignment made for the central point by other points g within the active

support. Specifically, the clues deployed by LC to propagate the plausibility of

disparity hypothesis d are the color and spatial consistency of the considered pixels:

Pf,g(d) = e−
Δf,g
γs · e−

Δ
ψ
f,g
γc · e−

Δ
ψ

f ′,g′

γc · e−
Δ
ω
g,g′

γt
(3.10)

where f, g and f ′, g′ refer to points in the left and right image respectively, Δf,g is

the Euclidean distance between f and g and accounts for spacial proximity, Δψ
f,g

(and similarly Δψ
f ′,g′) and Δω

g,g′ encode color similarity:

Δψ
f,g =

√ ∑
c∈R,G,B

(Ic(f)− Ic(g))
2 , Δω

g,g′ =

√ ∑
c∈R,G,B

(Ic(g)− Ic(g′))
2 (3.11)

where Ic(p) encodes the color intensity of point p. Parameters γs, γc and γt control

the behavior of the distribution (see [74] for a detailed description). For the

experimental results these parameters have been set to γs = 8, γc = γt = 4. The

overall plausibility Ωf(d) of each disparity hypothesis is given by the aggregated

plausibility for the same disparity hypothesis d propagated from neighboring points

within the active support A according to

Ωf (d) =
∑
g∈A

Pf,g(d). (3.12)

This aggregation is computed both on the left and the right image and then the

results are normalized over the plausibility at all disparity levels, obtaining Ωf (d)
L

and Ωf(d)
R respectively. To obtain a robust disparity estimation, after these

calculations, the cross-validation of the accumulated plausibility is computed

Ωf (d)
LR = Ωf (d)

L · Ωf (−d)R (3.13)
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and then the final disparity Df is obtained as

Df = argmin
d

Ωf (d)
LR (3.14)

Disparity propagation allows to overcome many of the problems typical of local

approaches, however the presence of wrong disparity hypothesis, e.g. due to

occlusions, may perturb the aggregated plausibility. A left-right consistency check

is useful to limit such undesired effects. The effectiveness of this algorithm is also

visible if a sparse disparity map is used as input. Disparity propagation acts like

an interpolating function, assigning valid disparity also to regions without original

values. It is worth to notice that the plausibility function defined on color and

range information ensures robustness to this approach at the cost of having multiple

parameters that require an empirical estimation.

The LC approach has been extended in [22] to allow the fusion of two different

disparity maps by adding a term to (3.12) to account for the two sensors

Ω′
f (d) =

∑
g∈A

(
δT (g)Pf,g,T (d) + δS(g)Pf,g,S(d)

)
(3.15)

where Pf,g,T (d) is the plausibility for ToF data and Pf,g,S(d) for stereo data. Ac-

cording to (3.15), for each point of the input image there can be 0, 1 or 2 disparity

hypotheses, depending on which sensor provides a valid measurement. The func-

tions δT (g) and δS(g) return 1 if the measurement of the relative sensor if available

at location g. Although [22] produces reasonable results, it has the fundamental

limitation that gives exactly the same relevance to the information from the two

sources without taking into account their reliability.

We propose an extension to (3.15) to account for the reliability of the mea-

surements of ToF and stereo described in Sections 3.3 and 3.4. To exploit these

additional clues we multiply the plausibility for an additional factor that depends

on the reliability of the considered depth acquisition system, computed for each

sensor in the considered point, as follows:

Ω′′
f (d) =

∑
g∈A

(
PT (g)Pf,g,T (d) + PS(g)Pf,g,S(d)

)
(3.16)

where PT (g) and PS(g) are the confidence maps for ToF and stereo data respectively.

The proposed fusion approach implicitly addresses the complementary nature

of the two sensors. In fact, in uniformly textured regions, where the stereo range

sensing is quite inaccurate, the algorithm should propagate mostly the plausibility

originated by the ToF camera. Conversely, in regions where the ToF camera is
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less reliable (e.g. dark objects), the propagation of plausibility concerned with the

stereo disparity hypothesis should be more influential. Without the two confidence

terms of (3.16), all the clues are propagated with the same weight, as in (3.15). In

this case an erroneous disparity hypothesis from a sensor could negatively impact

the overall result. Therefore, the introduction of reliability measures allows us to

automatically discriminate between the two disparity hypotheses provided by the

two sensors and thus improve the fusion results.

The adoption of the proposed model for the new plausibility is also supported

by the nature of the confidence maps, that can be interpreted as the probability

that the corresponding disparity measure is correct. A confidence of 0 means

that the disparity value is not reliable and in this case such hypothesis should not

be propagated. The opposite case is when the confidence is 1, meaning a high

likelihood that the associated disparity is correct. All the intermediate values will

contribute as weighting factors. This definition is also coherent when a disparity

value is not available, for example due to occlusions: the associated confidence

is 0 and propagation does not occur at all. An interesting observation on the

effectiveness of this framework is that Equation (3.16) can be extended to deal with

more than two input disparity maps, simply adding other plausibility terms for

the new disparity clues and an associated confidence measures. Other families of

sensors can be included as well, by simply devising proper confidence measures.

Both ToF and stereo disparity maps are computed at sub-pixel resolution, but

the original LC algorithm [74] only produces integer disparities, therefore we propose

an additional extension to handle sub-pixel precision. We consider a number of

disparity bins equals to the number of disparities to be evaluated multiplied by the

inverse of the desired sub-pixel resolution (i.e., we multiply by 2 if the resolution

is 0.5). Then, at every step the algorithm propagates the plausibility of a certain

disparity by contributing to the closest bin. With this strategy, the computation

time remains the same as in the original approach [74, 75] and only the final

winner-takes-all step is slightly affected.

3.6 Experimental Results

To evaluate the performance of the proposed algorithm, we used the dataset

provided in [20], that at the time of the writing is the largest available collection of

real world ToF and stereo data with ground truth. This dataset contains 5 different

scenes acquired by a trinocular setup made of a Mesa SR4000 ToF range camera and

two Basler video cameras. The ToF sensor has a resolution of 176×144 pixels while
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the color cameras one is 1032× 778 pixels, which is also the output resolution of the

proposed method. Calibration and ground truth information are also provided with

the dataset. The different scenes contain objects with different characteristics that

allow one to evaluate the proposed algorithm in challenging situations, including

depth discontinuities, materials with different reflectivity and objects with both

textured and un-textured surfaces. Scene 1 and 2 present piecewise smooth surfaces,

ideal for the implicit assumption of stereo matching, but also reflective materials

and textureless regions. Scene 3, 4 and 5 are more complex and also include curved

and fuzzy surfaces.

3.6.1 Evaluation of confidence metrics

Figure 3.4 shows the confidence maps that are used in the fusion process. For

each scene of the dataset we show the confidence maps associated to ToF and stereo

data. The first column shows the reference color images, the second, third and

fourth columns show the confidence maps associated to the ToF and the last column

shows the confidence maps of stereo data. For ToF data, we show the confidence

from amplitude and intensity values PAI , the confidence from local variance PLV

and their product PT = PAIPLV . The last column shows the confidence of the

stereo system, i.e., PS. As shown in the color map below, dark values correspond

to low confidence and bright values correspond to higher confidence values.

Starting from the ToF confidence, the amplitude and intensity related term

tends to assign lower confidence to the upper part of the table that is almost

parallel to the emitted rays. Therefore the amplitude of the received signal is

low, thus reducing the precision. This term also assigns a smaller confidence to

farther regions, reflecting another well known issue of ToF data. ToF confidence

is low for dark objects but measurement accuracy depends on the reflectivity of

the surface at ToF IR wavelengths and the reflectivity can be different for objects

looking similar to the human eye (i.e., the black plastic finger in scene 5 reflects

more IR light than the bear’s feet). In addition, the four corners of the image also

have lower confidence, in agreement with the lower quality of the signal in those

regions, affected by higher distortion and attenuation. Local variance instead, as

expected, contributes by assigning a lower confidence value to points near depth

discontinuities.

Stereo confidence has on average a lower value, consistently with the fact that

stereo data is less accurate (see Table 3.1) but locally reflects the texture of the

scene, providing high values in correspondence of high frequency content, and low

values in regions with uniform texture (the blue table) or periodic pattern (e.g., the
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Figure 3.4: Confidence maps for ToF and stereo disparity. Brighter areas correspond to
higher confidence values, while darker pixels are less confident.

green book). Scene 2 compared to scene 1 clearly shows the effect that textured

and untextured regions have in the confidence map. The map in the first scene is

able to provide enough texture to consider reliable the depth measurements in that

region. In the orange book on the left side, stereo confidence assigns high values

only to the edges and to the logo in the cover, correctly penalizing regions with

uniform texture. The teddy bear in scene 3, 4 and 5 has more texture than the

table or the books and the relative confidence value is higher overall.

To evaluate the effectiveness of the proposed confidence metrics we show in

Figure 3.5 the scattergram for ToF and stereo confidence metrics. The meaning of

this plot is to show the correlation between errors and confidence. Pixels with low

confidence should be associated to larger errors. Both in ToF and stereo metrics the

trend of the number of wrong pixels is decreasing as the confidence increase. The

stereo scattergram has a large number of pixels with low confidence corresponding to

large uniform regions on the table and the background. The proposed metrics have

been developed targeting the fusion of data from the two sensors, with particular
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Figure 3.5: Scattergram relating errors and confidence. Colors represent the number of
pixels at each location.

attention to the nature of the depth data. Confidence values close to 0 are associated

to stereo data in textureless regions, even if the estimated depth is correct. This

justifies the high number of pixels with low error and low confidence. Although

the proposed confidence metric for stereo systems is not as good as top performing

stereo metrics evaluated in [47] in terms of AUC (e.g., PKRN), it performs better

when used in our fusion framework. Indeed our goal is to propose a good confidence

metric for the stereo system in the context of data fusion, where low confidence

should be assigned to pixels belonging to textureless surfaces propagated by the

global optimization, since ToF data are more reliable there. This feature is well

captured by the proposed metric, but not by conventional stereo confidence metrics.

3.6.2 Evaluation of disparity maps

The disparity maps of the proposed framework are compared with the estimates

of ToF and stereo system alone and with state of the art methods of [22], [117],

[120] and [20]. The method of [20] has been computed from the ToF viewpoint

at a different resolution, therefore we reprojected the data on the left camera

viewpoint to compare it with other methods. We re-implemented the methods

of [117] and [120] following the description in the papers. Figure 3.6 shows the

estimated disparity maps and results of other methods as well.

Figure 3.7 shows the absolute difference between the output disparity maps and

the ground truth, i.e., |Di −DGT |, where Di is the considered disparity map i for

the evaluation, and DGT is the ground truth. Figure 3.8 shows the squared error

map between the output disparity maps and the ground truth, i.e., (Di −DGT )
2.
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Figure 3.6: Disparity maps of the proposed fusion framework and comparison with other
methods.

With respect to the absolute difference, the MSE penalizes more larger errors and

less errors smaller than 1 pixel.

The average mean squared error (MSE) has been computed considering all the

five scenes, and the results are reported in Table 3.1. Since the output of the fusion

process is a disparity map, we computed the error in the disparity space. For
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Figure 3.7: Squared error map of the proposed approach and other methods.

a fair comparison, we computed the error on the same set of valid pixels for all

the methods, where a pixel is considered valid if it has a valid disparity value in

all the compared maps and in the ground truth data. We also consider the ideal

case obtained by selecting for each pixel the ToF or stereo disparity closer to the

ground truth. From the MSE values on the five different scenes, it is noticeable

how the proposed framework provides more accurate results than the interpolated

ToF data and the stereo measurements alone. Even if stereo data have typically

lower accuracy the proposed method is still able to improve the results of the ToF
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Figure 3.8: Squared error map of the proposed approach and other methods.

interpolation, especially by leveraging on the more accurate edge localization of

stereo data. The proposed approach also obtains a lower average MSE than all the

compared methods. The average error is about 24% lower than [22], which is the

best among the compared schemes. Conventional stereo confidence metrics of [47]

produce an higher MSE if compared with our stereo metric, e.g., by using PKRN

as confidence in the fusion framework the average MSE is 7.9. Our method has

better performance than that of the compared schemes for all scenes except the

very simple scene 2, in particular notice how it has a larger margin on the most
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complex scenes. This implies that our approach captures small details and complex

structures while many of the compared approaches rely on low pass filtering and

smoothing techniques which work well on simple planar surfaces but cannot handle

more complex situations.

Scene 1 2 3 4 5 Avg.

ToF Int. 9.83 10.33 14.43 8.68 15.12 11.67
Stereo 19.17 27.83 18.06 25.52 11.49 20.42
Fusion 7.40 9.33 6.92 6.30 8.39 7.67

[22] 7.43 9.27 12.60 7.99 13.01 10.06
[117] 8.49 9.92 11.44 9.88 15.19 10.98
[120] 9.04 10.04 13.04 9.52 14.03 11.13
[20] 10.98 13.19 9.83 13.93 13.10 12.21

Ideal 2.50 2.60 3.22 2.42 3.16 2.78

Table 3.1: MSE in disparity units with respect to the ground truth, computed only on
non-occluded pixels for which a disparity value is available in all the methods.





Chapter 4

Data collection from multiple

sensors

Any computer vision algorithm requires to be validated and compared with

other methods on a dataset. In the literature many datasets have been proposed

for different applications, including detection, classification, recognition, tracking,

segmentation, and multiview stereo. An exhaustive and updated list of datasets

can be found in [18, 1]. For depth estimation most of the publicly available datasets

include only stereo systems, such as the well known works of [36, 97, 99]. To verify

the correctness of the results it is required to have both the data acquired from the

sensors and the ground truth depth map.

Despite the large amount of datasets publicly available, none of them provides

calibrated data from multiple depth cameras and for those with multiple cameras

the ground truth depth map is missing. The only datasets publicly available for

stereo vision and ToF depth cameras are the ones from Dal Mutto et al. [22, 20]

that contain 3 and 5 scenes respectively acquired with two standard cameras and

a MESA SR4000 ToF depth camera. These datasets have been criticized for not

having enough variability in the different scenes. Recent works made available

additional datasets [33] but the ground truth is missing. Also the availability of

synthetic datasets is limited. An example of synthetic dataset with a stereo vision

system and a ToF depth camera is the HCIBOX depth evaluation dataset [82] that

only include data for one scene. A common solution to the lack of data from stereo

vision systems and ToF depth cameras is to use the datasets created for stereo

systems such as [36, 97, 99] and to subsample the ground truth depth map, add

noise and apply a 3D rotation to the point cloud to simulate the different camera

pose. Although this solution is widely used, it is only an approximation and does

not include many issues of real ToF depth cameras. In addition, this approximation
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may introduce artifacts in the generated data due to occlusions and reprojection.

In this chapter we propose two datasets developed for providing data from

multiple calibrated sensors, as well as the ground truth depth map. The first

dataset is made of real data acquired by consumer depth cameras, while the second

dataset contains data synthetically generated that include realistic camera models.

4.1 Real dataset

This section describes the system developed for the simultaneous acquisition

of data from different sensors, including stereo, ToF and structured light depth

cameras. Figure 4.1 shows a rendering of the acquisition system with the actual

displacement of the cameras. We decided to use consumer depth cameras as opposed

to expensive professional equipments. In particular the depth cameras used in the

collection are:

Stereo vision system We used the ZED camera from Stereolabs [104]. This

depth camera based on a passive stereo technology is equipped with two 4MP

cameras that provide images up to 2208× 1242 [pxl] at 15 fps. The sensor is

able to provide images up to 100 fps at a lower resolution. With a baseline

of 120 [mm] and a diagonal field of view of 110◦ this stereo system is able to

work in the range 0.7− 20 [m] providing 32-bits depth images. In our dataset

we only provide left and right images, and not the depth map provided by

the software that comes with the sensor.

ToF depth camera The best ToF consumer depth camera is the KinectTM v2.

Compared to other ToF cameras it provides a cleaner and denser depth map,

in addition to have the largest resolution. KinectTM v2 is able to acquire a

512× 424 [pxl] depth map at 30 [fps] with a depth estimation error typically

smaller than 1% of the measured distances and a diagonal field of view of

92◦. The depth camera is able to provide depth images up to 4 [m]. In

addition to the depth, KinectTM v2 also has an additional color camera with

the resolution of 1920× 1080 [pxl].

Structured light depth camera Given the range of the other two cameras we

decided to use the Intel RealSense R200 depth camera, an active stereo system.

The spatial resolution of the depth camera is 640 × 480 [pxl], the working

depth range is 510− 4000 [mm] and the temporal resolution is up to 60 [fps].

The diagonal field of view of the depth camera is approximately 70◦. Also
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Figure 4.1: Rendering of the multicamera acquisition system.

this sensor comes with an additional color camera providing color images at

1920× 1080 [pxl].

Figure 4.1 also shows the holder that has been designed and 3D printed to

guarantee that the position of the cameras remains fixed during the calibration

procedure and the subsequent data collection. The goal was to arrange the cameras

such as they were as close as possible, to reduce the artifacts during the reprojection

between different views and to limit the occlusions. In the rest of the section we

describe the calibration of the three systems and the procedure to generate a dense

ground truth depth map, and finally we show some example of acquired data.

4.1.1 Calibration

Color imaging instruments, such as photo and video cameras, and depth imaging

instruments, such as ToF and structured light depth cameras, require preliminary

calibration to be used for measurement purposes. Calibration must account both for

geometric and photometric properties, and should be accurate and precise for reliable

measurements. Geometric calibration accounts for the internal characteristics, called

intrinsic parameters, and the spatial positions of the considered instruments, called

extrinsic parameters. Photometric calibration accounts for the relationship between

the light emitted from a scene point and the light information acquired by the

sensor. We are not interested in the calibration of each internal single component

of ToF and structured light depth cameras, since we consider a depth camera as a

device providing depth information from a certain reference system.

The calibration process consists of estimating the following quantities for each

camera n:

• intrinsic parameters matrix Kn
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• distortion coefficients dn

• rotation matrix Rn and translation vector tn describing the roto-translation

between the camera and a reference system

The purpose of this calibration is not to compensate for photometric artifacts

of such depth cameras, rather to provide the necessary information to map data of

one camera to the others. Most of the time, structured light and ToF depth camera

calibration can be performed by the methods for standard camera calibration.

This is because if the depth cameras to be calibrated provide an image from the

depth camera viewpoint, then the problem of multiple depth camera calibration

corresponds to the N-view system calibration. The required images can be, for

example, the IR reference camera for structured light depth cameras, or signal

amplitude or intensity for ToF depth cameras, replacing the color image for standard

cameras.

We followed the approach of Zhang [119] for camera calibration with a regular

black and white checkerboard. This method requires to acquire images of the

planar checkerboard from different positions and orientations. Differently than

the single camera calibration, a setup including 7 different physical cameras is

more complicated to deal with. In this case each checkerboard is acquired from 7

cameras with different point of views without perfectly overlapping fields of view,

it is important to collect numerous images with the checkerboard visible on all the

cameras in this step. There must be also good checkerboard coverage separately

on all the cameras to estimate a good undistortion map (the undistortion of the

images is performed independently on the cameras). We decided to keep fixed the

acquisition system and to move the checkerboard at every acquisition. To avoid

misalignment and motion blurry we used a tripod for the checkerboard and waited

the checkerboard to be completely stable before acquiring. We also collected 20

images of the same scene for each acquisition, and averaged the images to reduce

the noise.

Depth cameras are usually pre-calibrated by proprietary algorithms, and the

calibration parameters are stored in the device during manufacturing and made

accessible to the user only by official drivers. Usually, the manufacturer’s calibration

does not completely correct depth distortion, and accuracy can be improved by

software procedures correcting camera output data. The correction, however, is

based on a specific calibration model whose parameters are identified during the

calibration process.

While passive devices such as passive stereo systems usually do not need addi-

tional precautions, studies show that ToF depth cameras need a time delay, usually
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referred to as pre-heating time, before providing reliable depth measurements [64,

66]to reduce the systematic errors in terms of accuracy. For KinectTM v2, for

example, the accuracy is reduced from 5 to 1 [mm] after 30 minutes from the

first acquisition. For longer acquisition times the temperature of the camera may

increase and affect the measurements, however, passive or active cooling systems

usually compensate for such temperature variation.

Another practical difference with respect to standard color cameras is that

to calibrate an IR camera with the procedure described in [119] it is necessary

to illuminate the scene by sources emitting light in the IR spectrum, as in the

case of sunlight or common incandescent light bulbs. Common fluorescent lamps

usually do not emit in the IR bands, therefore are not suited to structured light

depth cameras’ calibration. This practicality requires particular attention since

an accurate calibration requires proper illumination. A non uniform illumination

results in darker regions with consequently higher noise making the checkers corners

localization less precise.

For ToF depth cameras, amplitude images can be collected in two different ways,

either in the so called standard mode, i.e., with the ToF depth camera illuminators

active during the acquisition, or in the so called common mode, i.e., with ToF

camera illuminators off during the acquisition, namely, using the ToF camera as a

standard IR camera. The first solution is more direct as it does not require external

tools and generally produces better results, but it requires proper integration time

setting to avoid saturation and reduce noise. The second solution requires an

external auxiliary IR illumination system as for structured light depth cameras.

Figure 4.2 shows the images acquired from the three systems during the cal-

ibration process. For the stereo system only the two color images are available.

ToF depth camera provides the intensity of the received signal, the depth map

from the same camera and the color image. The structured light depth camera

provides the two IR images and the color image. In addition to the two IR images,

the structured light camera provides also the depth image, however, during the

calibration process we had to turn off the illuminator, and so the depth provided is

meaningless.

Once all the images have been collected we run a checkerboard detector on all

the images but the depth image from the ToF depth camera, obtaining for each

camera n and for each pose k a set of J points pj
nk. The calibration parameters are

estimated by minimizing the Euclidean distance between the planar positions of
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Stereo ToF Structured light

Figure 4.2: Images of the same checkerboard acquired from the three depth cameras
during calibration process.

the measured and the projected 3D points after anti-distortion, given by

min
Kn,dn,Rnk,tnk

N∑
n=1

M∑
k=1

J∑
j=1

δjnk‖p
j
nk − f(Kn,dn,Rnk, tnk,P

j)‖22 (4.1)

where p
j
nk is the projection of the 3D feature P j with coordinates Pj on the n-th

camera at the k-th pose of the checkerboard, δjnk is 1 if P j is visible by the n-th cam-

era at the k-th pose and 0 otherwise. The function f(Kn,dn,Rnk, tnk,P
j) accounts

for projection and distortion. The minimization of (4.1) is solved by nonlinear

optimization techniques such as the Levenberg-Marquardt method. Matrices Rnk

and tnk describs the k-th checkerboard pose with respect to the n-th camera. Given

that Rnm and tnm are the rotation and translation matrices relating cameras n and

m, the following relationships hold

Rmk = RnkRnm

tmk = Rnktnm + tnk.
(4.2)

from which one can retrieve the pose of a given camera with respect to the reference



4.1. REAL DATASET 95

camera.

Usually, single camera calibration is first performed on each camera in the system

to reduce the number of unknowns in (4.1) or at least provide a good estimate of

those parameters. It is important to constrain the minimization problem when

possible, as the number of unknowns grows with the number of cameras in the

system. If only data from two depth cameras are needed, it is convenient to calibrate

only the two systems, so the number of unknowns is reduced.

4.1.2 Ground truth generation

Different approaches have been developed to acquire a precise depth map of

a scene. Range scanners are usually very precise and do not require additional

hardware to use them, but the depth map obtained from an external scanner would

have a different reference system, and so the scanner needs to be calibrated as well.

For stereo vision it is common to use the system of [98], where a regular projector

is used to project a texture in the scene, in this case a Gray code pattern, and the

stereo pair is used to estimate a very accurate depth map. With this setup it is

not necessary to calibrate also the external projector. Following this rationale we

developed a system based on a line laser that allows one to obtain a detailed depth

map of the scene from the same point of view of one of the cameras used in the

acquisition. Also in this case we do not require the projector to be calibrated, since

we use the laser line only to facilitate the matching of correspondent points in the

two cameras. With our acquisition system where IR cameras are used, the system

of [98] cannot work with regular projectors, since they don’t emit enough light in

the portion of the spectrum where the IR filters of the cameras are set.

The algorithm developed to compute a dense depth map uses a stereo camera

to match corresponding pixels and estimate the disparity between them. Since

in our acquisition system we have two stereo cameras, one from the stereo vision

system and one from the structured light depth camera, we provide the ground

truth from both the cameras. However, since the camera of the structured light

system have IR filters that the standard cameras of the passive stereo system do

not have, we had to use two different line lasers, one with IR illuminator acquired

by the structured light depth caera, and one with a regular red illuminator visible

to humans, acquired by the passive stereo vision system.

The goal is to “paint” the scene with the line laser and for each acquisition

match corresponding lit points in the two images. Ideally we want to match only 1

point for each row of the image for each acquisition. Due to noise in the images

we update the estimated disparity for a given pixel, every time there is a new
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measurement, by accumulating all the values and keeping the median value. Figure

4.3 shows an example of images acquired by the structured light depth camera

(first row) and the stereo vision system (second row). The third column shows a

zoomed version of the acquired laser line in the two systems. From the images in

the third column it is visible that the line spans multiple columns in the image,

therefore we estimate the center of the line by computing the maximum value and

refining it using the parabola fit to obtain sub-pixel precision in the localization.

We want to keep the width of the laser line as small as possible to reduce errors.

The width of the laser line can be adjusted by operating on the lens system of the

laser itself but the quality of the images acquired by the cameras also depend on

the camera’s properties such as gain and exposure. For both the systems we collect

images of the line laser without external illumination to reduce the noise of the

acquired images and to increase the contrast of the line laser with respect to the

background illumination.

Left Right Zoom

Figure 4.3: Line laser acquired from left and right camera: of the structured light depth
camera (first row); of the stereo vision system (second row). The third
column shows a closeup of the line laser.

From Figure 4.3 it is visible the difference between the two systems, in the

structured light depth camera it is possible to control the exposure of the cameras

and so the saturation of the acquired line. With the stereo camera used in the

acquisition instead in was not possible to control the exposure of the cameras,

resulting in wider lines. In the structured light depth camera we set the gain to the

minimum value and adjusted the exposure such that the line laser was visible also

in dark regions of the scene. To avoid casting unwanted shadows in the scene, the

line laser should be kept as close as possible to the acquiring cameras. To control

the laser movement we used a servomotor controlled by an Arduino that makes the
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system fully automatic.

4.1.3 Acquired scenes

To validate the system we acquired 10 scenes of different nature, all including

static scenes in an indoor environment. The scenes have different complexity, ranging

from flat surfaces to more complex shapes like the leaves of a plant. We acquired

objects with different texture as well so it is possible to check the behavior of the

algorithms with different texture. Different scenes have materials with different

specularity, including reflective and glossy surfaces as well as rough material that

usually cause problems to active cameras. Figure 4.4 shows a reference color image

Color Ground truth Color Ground truth

Figure 4.4: Color images of the acquired scenes and relative depth map.

and the associated ground truth image for the 10 sequences. The color image comes
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from the color camera of the ToF depth camera while the ground truth is estimated

from the point of view of the structured light depth camera.

We acquired each scene with 4 different external illumination, to test the

robustness of the algorithms with different lightning conditions. Different levels of

illumination include an acquisition with no external light, one with regular lighting,

another one with stronger light and the last one with an additional incandescent

light to stress the active cameras. We added the last mode because the standard

illumination that we used for the first modes does not have an IR component, while

the spectrum of incandescent lights also include frequencies in the working range of

active depth cameras.

Figure 4.5 shows an example of acquisition with the structured light depth

camera in the three different lighting conditions. Each row represent a different

intensity of the illumination, starting from no illumination in the first row, followed

by regular indoor illumination in the second row and additional incandescent

illumination in the third row. Comparing the first two rows we can confirm that

the presence of fluorescent light in the scene does not affect the performance of the

structured light depth camera, this is because the spectrum of fluorescent lights

does not include emissions in the spectrum of the structured light depth camera.

The presence of additional light from an incandescent source causes a degradation

of the depth quality. This is a well known problem for active devices. From the IR

image in the third row we can notice that the structure projected by the illuminator

is attenuated, causing a reduction in the uniqueness and so a degradation of the

overall depth quality. This effect is stronger in slanted surfaces like the top of the

table, where the intensity of the projected pattern received by the camera is lower

due to the orientation of the table with respect to the camera.

4.2 Synthetic dataset

The acquisition of the dataset described in the previous section has several

limitations. First of all it provides only one acquisition for each scene, acquiring the

same scene from a different point of view would require to repeat the acquisition

from the sensors and the generation of the ground truth from the different point of

view. Although the process is automatic, it still requires some manual adjustment

to tune the line laser and most important it requires a substantial amount of time.

Furthermore, recent results obtained by machine learning suggest that deep learning

based approaches may be also used for the task of 3D data fusion. For example,

Convolutional Neural Networks (CNN) require a large labelled dataset to train the
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IR Depth

Figure 4.5: Effects of different external illumination on a structured light depth camera.

network, and for this task a simulator of ToF and stereo systems that allows one to

generate realistic synthetic views of a given 3D model is fundamental.

The simulation of the acquisition from standard cameras is a well studied

problem and many physical models to generate realistic acquisitions have been

proposed. In the context of stereo vision systems an example of realistic synthetic

dataset is “Tsukuba” proposed in [86]. This dataset provides 1800 stereo images of

an indoor scene with four different illuminations, as well as the true depth map

for each view. For ToF depth cameras, [54] proposes a framework to simulate a

ToF sensor but it is missing many fundamental components. In contrast to other

methods [100] focuses on the simulation of sensor hardware and do not handle

illumination or other fundamental aspects.

In this section we introduce a synthetic dataset for stereo vision and ToF depth



100 CHAPTER 4. DATA COLLECTION

cameras that can be easily extended also to structured light depth cameras. The

image acquisition process in synthetic datasets only consists of rendering a 3D

model on a computer and apply some post processing to take into account physical

properties of the acquisition system. In addition, a synthetic data generator allows

one to easily change the scene and lighting conditions as well as camera parameters.

The disadvantage of synthetic datasets is usually the lack of realism in the acquired

images. The goal of the proposed framework is to provide support to real datasets

and not to replace them. In addition, it provides an easy way of testing algorithms

under different aspects, from camera parameters, to scene geometry and lighting.

4.2.1 Scene rendering

The software to generate synthetic data is written in C++ and OpenGL, that

allows the system to automatically handle occlusions and interpolation between

vertexes of the 3D model. While CPUs apply single instructions sequentially to each

element, GPUs are highly optimized to efficiently process input data in parallel,

making the simulator able to generate data in real time.

The proposed framework requires in input:

• a 3D model with associated texture, such as a Wavefront obj file. Figure 4.6

shows some of the models available in the dataset. This framework is not

limited to work with the models currently available, but it just requires a 3D

model with associated texture to work;

• a calibration file with all the calibration information of each camera in the

system. Those information are for example intrinsic and extrinsic parameters

of each camera. The relative position of each camera in the acquisition system

is fixed;

• a list of positions of the camera from which the acquisition has to be performed.

Each entry specifies the camera position, where the camera is looking at and

the up position. Figure 4.7 shows an example of the trajectory generated for

an acquisition. In this example the camera is moving around the origin of

the reference system. Each entry specifies the position and orientation of the

reference camera, all the other cameras moves accordingly;

• a parameters file with all the settings required to generate specific data, such

as noise settings and illumination.

Given all these inputs, the simulator loads the 3D model, creates the virtual

cameras according to the parameters in the calibration file and generates the images
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Figure 4.6: Example of 3D models from [13, 103] used to generate synthetic data.

acquired by the virtual cameras. Figure 4.8 shows the data generated by the

simulator for the stereo vision system that include:

• left and right images acquired from the two cameras;

• ground truth depth or disparity map for the left and the right view. Since for

each pixel the depth is known, there are no pixels with invalid depth as in

the case of the real dataset.

For the ToF depth camera the generated data are shown in Figure 4.9 and include:

• the intensity map including the realistic models described in the next section;

• the depth map including the realistic models described in the next section;

• the ground truth depth map corresponding to the real depth before applying

any processing.

This framework can be extended to generate data for structured light depth

cameras by replacing the illumination function with the actual pattern of the

structured light illuminator, and use the same pipeline developed to generate stereo

data.
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Figure 4.7: Trajectory of the virtual cameras. Blue lines represent the position of the
cameras at different time, while red lines represent where the cameras are
looking at.

Figure 4.8: Data generated by the simulator for the stereo vision system. First row

show the color images for left and right cameras. Second row shows the
ground truth depth for left and right cameras.
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Figure 4.9: Data generated by the simulator for the ToF depth camera. The data are
the intensity map, the depth and the ground truth depth.
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Figure 4.10: Overview of the processing applied to color images.

4.2.2 Camera models

Generated data shown in Figure 4.8 and Figure 4.9 are the result of post

processing applied to the raw images of color and depth that OpenGL provides.

In addition to the parameters of the models, it is possible to specify additional

illumination in the scene that will affect the acquisition of the two systems. The

simulator replicates the major artifacts of stereo vision and ToF depth cameras as

explained in the next two sections.

Stereo vision system

Stereo vision system is made of two independent cameras, therefore the same

pipeline is run on both the color images independently. To simulate the acquisition

of a standard camera we decomposed the acquisition process according to the steps

in Figure 4.10.

The input to this pipeline is the color image from the OpenGL pipeline, that

is the rasterization of the input model according to the camera pose and camera

parameters. Since the pipeline just described works in a spatial domain that includes

neighboring pixels it runs on CPU, since the GPU architecture does not allow easily

to use information from neighboring pixels.

The first processing is performed to simulate the presence of the lens, resulting

in a defocusing of blurring of the input image. This is usually described with the

point spread function (PSF) describing the response of the imaging system to a

point source. We approximate the PSF with a Gaussian function with parametrized
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standard deviation and kernel size.

The next step includes the simulation of the shutter speed, encoded in the

exposure value (EV), that we implemented as a multiplication of the input image by

a parametrized factor representing the integration time. The idea is that acquisitions

with longer EV result in brighter images.

Images from real cameras are corrupted with noise at different stages of the

acquisition and until this point no noise has been introduced. The next step is the

simulation of shot noise, that we model as a random noise with Poisson distribution

with mean proportional to the intensity of the pixel (that is proportional to the

number of received photons). The intensity of the noise is parametrized and we

apply the noise independently in each of the three channels.

The next step is the simulation of the digital gain that consists in a multiplication

by a scalar applied to the images already corrupted by the shot noise. The effect is

that both the useful signal and the noise get amplified.

An additional source of noise in real cameras is the read noise, corresponding to

the amount of noise generated by electronics as the charge present in the pixels is

converted to voltage and amplified prior to digitization in the Analogue to Digital

Converter (ADC) of the camera. It is modeled as additive white Gaussian noise

(AWGN) with parametrized average and standard deviation.

The final step corresponds to the conversion of the image to 8-bit. This process

provides as output images in the range 0− 255 with integer pixel values.

ToF depth camera

ToF depth camera provides two different outputs that are an intensity map of

the signal and a depth map. Figure 4.11 shows the steps required to obtain the

two output images.

To obtain the output depth map we start from the ground truth depth generated

with OpenGL. First we model the flying pixel effect by applying a Gaussian blur

with parametrized standard deviation and kernel size to the input depth map. To

affect only depth edges we generate a mask of the edges, where a pixel is considered

an edge if the gradient computed in the depth map is above a certain threshold.

To simulate the multipath effect we apply the same blurring using another mask

computed using the normal vectors. For each point of the scene, in addition to the

depth value we also have the coordinates of the normal vector to the surface in

that position. The mask is valid where the orientation of the normal vectors in a

window surrounding the considered pixel has high variability. This approximation

does not take into account the difference between concave and convex angles and
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Figure 4.11: Overview of the processing applied to generate data of the ToF depth
camera: a) pipeline for the depth map; b) pipeline for the amplitude image.

need to be improved. Most complex models directly handle the multipath effect by

means of ray tracing techniques.

Then we add white Gaussian noise with parametrized average and standard

deviation to model the random noise affecting the circuitry that processes the

received signal. To make the noise dependent on the intensity of the signal we

scale the AWGN by the intensity map. In this way the distance measurement is

influenced by the total amount of received light. However, this is not a generic ToF

problem but only applies to some ToF based depth camera.

While the processing applied to the depth image is perform on CPU because

of the interaction with neighboring values, the generation of the amplitude signal

is performed entirely on the GPU. According to the OpenGL specification, the

fragment shader is responsible to assign a color value to the fragment generated by

the rasterization. The information available in the fragment shader for each point

is: the color of the associated point in the model, the normal vector to the surface

of the model in the considered point and the position of the point with respect to

the camera.

The first step involves the conversion of the color input value to intensity. Instead

of simply converting the color input to grayscale, we estimated the intensity I to be

I = R ∗ 0.677 +G ∗ 0.115 +B ∗ 0.208 (4.3)

where R, G and B are the three input channels red, green and blue. Those numbers

have been set by acquiring with a ToF camera three patches of different colors,

red, green and blue, and computing for each channel the transformation between

intensity provided by the IR camera and the associated RGB value.
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To simulate the physical interaction of the light with the model and the camera,

first we attenuate the input intensity by a factor proportional to the scalar product

between the normal of the point and the direction of the light. In the model

implemented the light is supposed to come from the optical center of the camera but

with a small modification it can be made more general and simulate the position of

the illuminator in a different position. For example for the MESA SR ToF depth

cameras the assumption that the illuminator is positioned in the center of the

camera is correct, but it is not true for the KinectTM v2, where the illuminator is

positioned with a certain horizontal disparity from the camera.

Another effect of ToF intensity signal is the illumination decay from the center

of the image as seen in Chapter 2. The quality of the received signal depends on

the angle at which the light is received and to model this effect we attenuate the

intensity from the previous step with a factor that depends on the scalar product

of the direction of the incoming ray and the direction of the camera.



Chapter 5

Gesture recognition with depth

camera and Leap Motion

Gesture recognition, either static or dynamic, can be framed as a family of

pattern recognition tasks including the extraction from the object of interest of one

or more feature sets describing relevant pattern properties, and the comparison of

features’ values with a classification model previously trained. The goal is detecting

the most likely entry from a given “gesture dictionary” that generated the actual

gesture. In this chapter we propose a framework for static gesture recognition

using a depth camera and a Leap Motion device. Chapter 2 already introduced the

technology of current depth cameras. The Leap Motion instead is a device targeted

to recognition and tracking of hands and fingers. The device provides the discrete

position of hands and fingers with high precision and tracking frame rate. The

Leap Motion controller uses two IR cameras and an IR diffuse illuminator. The

cameras have a field of view of about 150◦. The effective range of the Leap Motion

controller is between 25 and 600 [mm] above the device.

Depth cameras allow one to obtain a complete 3D description of the framed

scene while the Leap Motion sensor is a device explicitly targeted for hand gesture

recognition and provides only a limited set of relevant points. Since depth cameras

and the Leap Motion have quite complementary characteristics (e.g., a few accurate

and relevant keypoints against a large number of less accurate 3D points), it seems

reasonable to use them together for gesture recognition purposes. This chapter

presents a novel approach for the combined use of the two devices for hand gesture

recognition. An ad-hoc solution for the joint calibration of the two devices is

firstly presented. Then a set of novel feature descriptors is introduced both for the

Leap Motion and for depth data. Various schemes based on the distances of the

hand samples from the centroid, on the curvature of the hand contour and on the

107
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convex hull of the hand shape are employed and the use of Leap Motion data to

aid feature extraction is also considered. The proposed feature sets are fed to two

different classifiers, one based on multi-class SVMs and one exploiting Random

Forests. Different feature selection algorithms have also been tested to reduce the

complexity of the approach. Experimental results show that a very high accuracy

can be obtained from the proposed method. The current implementation is also

able to run in real-time.

5.1 Related Works

Hand gesture recognition from data acquired by consumer depth cameras is a

well studied problem. Gestures can be classified according to their dynamism into

static and dynamic. Static gestures are often characterized by the shape or the pose

assumed by the hand at a given instant, e.g., a gesture from the American Sign

Language alphabet. Dynamic gestures instead represent continuous and atomic

movements, e.g., raising an arm. Gestures are often characterized by the trajectory

followed by the hand’s center throughout the whole input sequence [12, 85], or by

its speed [67]. Most gesture recognition methods share a common pipeline. First,

the hand is identified in the framed scene and segmented from the background.

Then, relevant features are extracted from the segmented data and eventually the

performed gesture is identified from a set of predefined gestures, possibly exploiting

suitable machine learning techniques. In the case of non-static gestures, the general

pipeline also includes tracking features among multiple frames. In this chapter we

focus on static gesture recognition.

Many approaches have been presented for static gesture recognition, mostly

based on the standard scheme of extracting relevant features from the depth data

and then applying machine-learning techniques to the extracted features. In the

approach of [63], silhouette and cell occupancy features are extracted from the

depth data and used to build a shape descriptor. The descriptor is then used inside

a classifier based on action graphs. Other approaches, e.g., [105] and [112] are based

on volumetric shape descriptors. The two approaches both exploit a classifier based

on Support Vector Machines (SVM). The histograms of the distance of hand edge

points from the hand center are instead used in the approaches of [93] and [92].

Another approach based on an SVM classifier is [28], that employs 4 different types

of features extracted from the depth data.

Other approaches instead estimate the complete 3D hand pose from depth data.

Keskin et Al. [55] try to estimate the pose by segmenting the hand depth map into
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its different parts, with a variation of the machine learning approach used for full

body tracking in [102]. Multi-view setups have also been used for this task [4], since

approaches based on a single camera are affected by the large amount of occluded

parts, making the pose estimation rather challenging.

The use of Leap Motion data for gesture recognition systems has recently

attracted more interest [60, 26, 69]. A preliminary study on the usage of this device

for sign language recognition has been presented in [89]. The device has been used

for sign language recognition in [79]: in this work the data extracted from the

sensor is fed directly to two different machine learning classification algorithms, one

based on a Naive Bayes Classifier and one exploiting Multilayer Perceptron Neural

Networks. Another recent work [111] analyzes the trajectory of a finger returned by

the Leap Motion to recognize handwriting. The approach exploits Dynamic Time

Warping and a nearest neighbor search. The sensor has also been used for signature

recognition using features based on the optical flow and on the trajectories in a

recent work [84]. A gesture interface based on the Leap Motion has been presented

in [40], where the authors use the device to control a robot arm.

5.2 Problem Formulation

The general architecture of the approach presented in this chapter is shown in

Figure 5.1: there are two different feature extraction pipelines, one for the Leap

Motion data and one for depth data and finally a classification stage that takes in

input all the features and recognizes the performed gesture.

The the depth camera and the Leap Motion require a joint calibration before

combining their data. An ad-hoc approach for this critical step based on the

fingertips positions in the two reference systems is presented in Section 5.3. The

Leap Motion feature extraction pipeline, described in Section 5.4 exploits only

the data from this sensor and extracts 4 different types of features, i.e., fingertip

distances from the centroid of the hand, fingertip elevations from the palm plane,

the angles between the vectors connecting the fingertips with the palm center and

the 3D positions of the fingertips in the hand reference system. Before describing

the features extracted from the depth camera data, Section 5.5 and 5.6 describe

how to segment the hand and classify fingers and the palm region. This step is

required by the feature extraction pipeline, described in Section 5.7, mainly based

on the information extracted from the depth sensor. It extracts four different sets

of features based on the distances of the finger samples from the hand center, on

the local curvature of the hand contour, on the similarity between distance feature
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Figure 5.1: Pipeline of the proposed approach.

histograms and on the connected components in the convex hull of the hand shape.

Finally, the features are processed with the classification method based on Support

Vector Machines (SVM) presented in Section 5.8.

5.3 Calibration

Since the employed acquisition setup jointly exploits the 3D measures from two

different sensors, i.e, the Leap Motion device and the depth sensor (with optionally

a color camera rigidly attached to the depth one), it is necessary to jointly calibrate

the two devices to bring the measures of one sensor in the reference system of the

other. The proposed approach is independent from the relative position of the two

sensors, however notice that a set of practical limitations of the sensors limits the

choices in the setup construction:

• The Leap Motion must be placed under the hand, typically on the desk

looking up. Furthermore its operating range is limited.

• The depth sensor has typically a minimum working distance, below which it

does not provide depth estimates. This distance depends on the employed
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sensor, e.g., the KinectTM v1 we used for the results section has the limitation

that it cannot acquire objects closer than 500 [mm] to the sensor. The

maximum distance is instead typically bigger than the Leap Motion one.

• If the palm plane is roughly perpendicular to the optical axis of the depth

camera more depth samples are acquired for the hand leading to better

performances

• Inside the working range, also having the sensor closer to the hand leads to

more accurate data

Considering all the previous observations, we found that the setup that allows

to obtain the best performance is the one shown in Figure 5.2. As it is possible to

see from the figure, in the proposed setup the Leap Motion has to be put under the

performed gesture, while the depth sensor has been placed a little more forward,

facing the user, as in most gesture acquisition systems using this sensor.

Figure 5.2: Acquisition setup.

The aim of the calibration procedure is to estimate the extrinsic parameters of

the two devices, i.e., the coordinate system transformation between the reference

systems of the two devices, or equivalently the position of one sensor with respect

to the other one. Notice that our implementation for testing the algorithm uses the

KinectTM v1 sensor but the proposed calibration algorithm remains valid also for

other depth cameras. In particular, our approach does not require an additional

color stream. Furthermore, the two devices need also to be independently calibrated

to correctly locate points in the 3D space. The Leap Motion software already
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provides a calibration tool, while the KinectTM v1 requires an external calibration,

e.g., it is possible to use the approach of [45], in which both the color and the depth

map from the sensor are used to extract intrinsic and extrinsic parameters. Our

gesture recognition scheme requires to associate to each point in the scene a depth

value, therefore only the projection matrix of the depth camera will be used. Given

the two sensors independently calibrated, for every acquisition we get two sets of

data describing the scene. The Leap Motion provides a point cloud with up to

6 points, including one for the palm center and up to 5 for the fingertips. Data

retrieved from the KinectTM v1 consist instead in a full frame depth map with an

associated color image (the latter is not used in the proposed approach).

The standard procedure to find the roto-translation between the two sensors

requires to have the 3D coordinates of a set of points in the two coordinate systems.

From the description of Leap Motion data (Section 5.4), it naturally follows that

the only calibration clue that can be used is the hand itself. We decided to use the

open hand gesture as the calibration tool (i.e., gesture G9 of the results database,

see Figure 5.13). This is because the Leap Motion software is not able to provide

a one-to-one map between fingertips and real fingers, it just gives the positions

in a random fashion: when 5 fingers are detected, though, we are quite sure that

all the fingertips have been detected and with a few pre-processing they can be

ordered and then associated to the correct fingers. The same points then need to be

detected also from the depth camera. The two sets of points will then be used inside

the calibration algorithm. The proposed calibration of a Leap Motion and a depth

sensor allows to easily make the two devices working together, without the need

of external tools like checkerboards or other classic calibration devices. This is a

key requirement for a human-computer interaction system. Moreover, the proposed

approach allows to easily set up a gesture recognition system exploiting the two

devices, without the need of having them rigidly attached to a fixed structure.

Whenever one of the two devices is moved, the system re-calibration only requires

the acquisition of a couple of frames of the user’s open hand. Notice that a new

calibration is mandatory only if the devices are moved.

5.3.1 Extraction of fingertips position from Leap Motion

data

Starting from the hand orientation and the palm center estimated from the

Leap Motion, the palm plane can be extracted and the fingertips projected on it.

We decided to use the hand direction as a reference and then to associate to the

thumb the fingertip with the most negative angle between the principal axis and the
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projected fingertip, and to the other fingers the remaining fingertips by increasing

angular values, up to the fingertip with the greatest angular value associated to the

pinky. Section 5.4 presents a description of the data acquired from the sensor and

in particular provides more details on the angle computation. After this operation

we obtain a set of 5 points XL = X1
L, ...,X

5
L describing the fingertips in the Leap

Motion coordinate system.

5.3.2 Extraction of fingertip positions from depth data

For the depth sensor, instead, a more complex approach is required to extract

fingertip positions from the acquired depth image. In order for the calibration

process to be completely automatic, we decided to avoid the need to manually

selecting points, relying instead on an automatic fingertips extraction algorithm.

The idea is to extract the hand region from the acquired depth stream and then

to process the hand contour to detect fingertips. Notice that the hand extraction

scheme of Section 5.5 exploits also the Leap Motion data so it can not be directly

applied in this case. The extraction of the hand has instead been performed using

the approach of [28] where the hand center is initially estimated by using a Gaussian

filter on the samples density and then refined by fitting a circle on the palm. Finally

PCA is used for the computation of the hand orientation.

Then the hand contour is analyzed using the same approach used for the distance

features in Section 5.7. The distance d of each point X of the hand contour from

the palm center is computed, thus obtaining the function d(X). The fingertips are

assumed to be the points of the fingers at the maximum distance from the center.

Given the function d(X), its local maxima are the points X̄ where f ′(X̄) = 0 and

f ′′(X̄) < 0. Due to the inaccuracy in the depth image, the hand contour is usually

irregular and needs to be smoothed before searching for the local maxima. In

addition, only the 5 highest maxima are used and to avoid multiple detections

on the same finger a minimum distance between two candidates is guaranteed.

Figure 5.3 shows an example of function d(X) in blue, red circles show the detected

local maxima and the relative fingertips in the depth image. Once these points

have been detected, the correspondent values in the depth image are selected and

through the projection matrix of the depth camera they are back-projected in

the 3D space obtaining the 3D coordinates of the fingertips in the depth camera

coordinate system XD = {X1
D, ...,X

5
D}. It is worth noticing that the Leap Motion

API does not specify which actual point of the finger shape is returned as the

fingertip, therefore we decided to consider as fingertip the farthest point of the

finger.
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Figure 5.3: Hand contour and detected fingertips: a) distance of each point of the hand
contour, the red circles are the detected local maxima; b) projected local
maxima on the hand mask of the depth image.

5.3.3 Roto-translation estimation

The final step is the computation of the roto-translation that links the two

reference systems. To be more robust against noise we acquire several frames, even

if a single frame is theoretically sufficient. Let us denote with XL,f and XD,f the

sets of points acquired by the Leap Motion and the depth camera respectively,

each relative to each frame f = 1, ..., F . With the acquired fingertip 3D positions,

the goal is to find the roto-translation parameters R and t using a mean squared

error cost function that will best align all the considered fingertip points in the two

reference systems in all the acquired frames:

(R, t) = argmin
R,t

F∑
f=1

5∑
i=1

||RXi
L,f + t−Xi

D,f ||
2
2 (5.1)

i.e., to find the best roto-translation that brings the point cloud XL to the point

cloud XD (the point clouds XL and XD are the union of all the points clouds of

the considered frames). Since the corresponding set of equations corresponds to an

over-determined system and the measures are affected by noise, we used a RANSAC

robust estimation approach to solve it. From our tests we found out that the

assumption of considering as fingertip the extreme point of the finger is quite a

valid assumption and that the mean error obtained from the square root of (5.1)

for all the tested people is about 9 [mm].
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5.4 Feature extraction from the Leap Motion data

As already stated, the Leap Motion device provides only a limited set of relevant

points and not a complete description of the hand shape. The amount of information

is more limited if compared to the one provided by depth cameras, but on the

other side the device provides directly some of the most relevant points for gesture

recognition and allows to avoid complex computations needed for their extraction

from depth and color data. The Leap Motion sensor mainly provides the following

data (Figure 5.4):

• Number of detected fingers N ∈ [0, 5] that the device is currently seeing.

• Position of the fingertips Fi, i = 1, ..., N . Vectors Fi containing the 3D

positions of each of the detected fingertips. The sensor however does not

provide a mapping between the vectors Fi and the fingers.

• Palm center C that represents the 3D location roughly corresponding to

the center of the palm region in the 3D space.

• Hand orientation consists in two unit vectors representing the hand ori-

entation computed in the palm center C. The first vector, denoted with h,

points from the palm center to the direction of the fingers, while the second,

denoted with n, is the normal to the plane that corresponds to the palm

region pointing downward from the palm center.

• Hand radius r is a scalar value corresponding to the radius of a sphere that

roughly fits the curvature of the hand (it is not too reliable and it is not used

in the proposed approach).

Note that the accuracy is not the same for all the reported data vectors. The 3D

positions of the fingertips are quite accurate: according to a recent research [113]

the error is about 200 μm. This is a very good accuracy, specially if compared to

the one of depth data acquired by the KinectTM v1 and from other similar devices.

While the localization of the detected fingers is accurate, their recognition is not too

reliable. There are some situations in which the sensor is not able to recognize all

the fingers. Fingers folded over the hand or hidden from the sensor viewpoint are

not captured, furthermore fingers touching each other are sometimes detected as a

single finger. Even in situations where the fingers are visible and separated from the

hand and the other fingers it can happen that some fingers are lost, specially if the

hand is not perpendicular to the camera. Another typical issue of this sensor is that

protruding objects near the hand, like bracelets or sleeve edges, can be confused
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Figure 5.4: Data acquired by the Leap Motion device.

with fingers. These issues are quite critical and must be taken into account in

developing a reliable gesture recognition approach since in different executions of

the same gesture the number of captured fingers could vary. For this reason simple

schemes based on the number of detected fingers have poor performance.

As previously stated, the Leap Motion does not provide a one-to-one map

between fingers and fingertips detected. In the proposed approach we deal with

this issue by sorting the features on the basis of the fingertip angles respect to the

hand direction h. To this purpose, we consider the projection of the hand region

into the palm plane described by n and passing through C, as depicted in Figure

5.6. The plane is then divided into five angular regions Si, i = 1, ..., 5 as in Figure

5.5, and each captured finger is assigned to a specific region according to the angle

between the projection of the finger in the plane and the hand direction h. Note

that a unique matching between the sectors and the fingers is not guaranteed, i.e.,

some of the sectors Si could be associated to more than one finger and other sectors

could be empty. When two fingers lie in the same angular region, one of the two

is assigned to the nearest adjacent sector if not already occupied, otherwise the

maximum between the two feature values is selected.

In this work we analyze 4 different types of features computed from the Leap

Motion data and these will be described in the rest of this section:

• Fingertip angles: angles corresponding to the orientation of each fingertip

projected on the palm plane with respect to the hand orientation h.

• Fingertip distances: 3D distances of the fingertips from the hand center.
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• Fingertip elevations: distances of the fingertips from the palm region plane.

• Fingertip positions: x, y and z coordinates of the fingertips in the 3D

space.

To make the approach robust to people with hands of different size all the feature

values (except for the angles) are normalized in the interval [0, 1] by dividing the

values for the distance between the hand center and the middle fingertip length

S = ||Fmiddle −C||2, where Fmiddle is the position of the middle fingertip. The scale

factor S can be computed during the calibration of the system. Figure 5.6 depicts

a sample gesture acquisition and the related feature set.

5.4.1 Fingertip angles

The computation of this feature plays a key role also for the other features since

the angle is used as a metric to order the fingertips. The fingertip angle is defined

as:

Ai = ∠(Fπ
i −C,h), i = 1, ..., N (5.2)

where Fπ
i is the projection of Fi on the plane identified by n, and corresponds to

the orientation of the projected fingertip with respect to the hand orientation. The

estimated hand orientation h and consequently the fingertips angles are strongly

affected by the number of detected fingers. The obtained values Ai have been scaled

and the interval has been set to [0.5, 1] to better discriminate, in the classification

step, the valid values from the missing ones, that have been set to 0. These values

have also been used to assign each finger to the corresponding sector as described

before. Fingertip angles features are then collected into vector Fa.
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Figure 5.6: Considered Leap Motion features on a gesture example (sample of gesture
G8 from our dataset).

5.4.2 Fingertip distances

This feature represents the distance of each fingertip from the palm center.

Distances are defined as:

Di = ||Fi −C||2/S, i = 1, ..., N (5.3)

and they are ordered according to increasing angles. At most one feature value

is associated to each sector and the missing values have been set to 0. Fingertip

distances are collected into vector Fd.

5.4.3 Fingertip elevations

Another descriptor for a fingertip is its elevation from the palm plane. Elevations

are defined as:

Ei = sgn((Fi − Fπ
i ) · n)||Fi − Fπ

i ||2/S, i = 1, ..., N (5.4)

and thanks to the sign operator it describes also to which of the two semi-spaces,

defined by the palm plane, the fingertip belongs. As for the previous features, there

is at most one feature value for each sector and the missing values have been set to

0. Note that as for the fingertip angles, the values range has been scaled to the

interval [0.5, 1] and then collected into vector Fe.
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5.4.4 Fingertip 3D positions

This feature set represents the positions of the fingertips in the 3D space. As for

the previous features, firstly the fingertips have been ordered according to increasing

angles, then, since a reliable hand gesture recognition system must be independent

from the hand position and orientation inside the frame, it is necessary to normalize

the coordinates with respect to the hand position and orientation:

P x
i = (Fi −C) · (n× h)

P y
i = (Fi −C) · h

P z
i = (Fi −C) · n

(5.5)

It is worth noticing that the fingertip 3D positions can be seen as the compact

representation of the combination of angles, distances and elevations, i.e., of the

first three features. Fingertip 3D positions have been collected into vector Fp.

5.5 Hand segmentation using depth and Leap Mo-

tion data

In previous approaches [28] the extraction of the hand from color and depth data

was performed with a time-consuming procedure based on several steps. Firstly the

closest point was localized on the depth data. Then a multiple thresholding on the

depth values, on the distance from the closest point and on the color values with

respect to the skin color was used to obtain a first estimate of the hand samples.

The hand centroid was estimated in the subsequent step by finding the maximum

of the output of a Gaussian filter with a large standard deviation applied to the

estimated hand mask (this corresponds to assume that the densest region belongs

to the hand palm). A circle is then fitted on the hand palm to precisely locate its

center and to divide the hand into palm, wrist and fingers regions. Finally PCA is

exploited to compute the hand orientation. The details of this approach can be

found in [28], however it is clear that it is a quite complex operation as most of the

computation time of the entire pipeline of [28] was spent on this step. Moreover,

there is a couple of critical assumptions, i.e., that the closest point matching the

skin color correspond to the hand and that the palm is the densest region, that can

lead to wrong detections in particular situations. This typically happens in simple

settings with a user is in front of the computer, but limits the applicability of the

approach in more complex scenarios.

Since in the proposed approach the Leap Motion data are also available, this
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information can be exploited to make the identification of the hand position and

of its orientation faster and more reliable. Firstly the hand centroid computed by

the Leap Motion C can be expressed according to the depth camera coordinate

system using the calibration information. In this way, if the Leap Motion correctly

recognizes the hand, we can ensure that the hand is properly identified even if there

are objects of similar shape and color in the depth sensor acquisition. Moreover,

we can also avoid the use of color information thus making the approach faster

and allowing the use of depth sensors that do not have an associated color camera

(e.g., industrial ToF depth cameras like MESA or PMD devices). In this section we

will assume that the two devices have been jointly calibrated obtaining a rotation

matrix R and a translation vector t between the two reference systems. How to

perform the calibration will be the subject of Section 5.3. The location of the Leap

Motion hand centroid in the depth camera reference system will be denoted with

CD = RC + t and used as a starting point for the hand detection. A sphere of

radius rh is then centered on CD and the samples inside the sphere are selected, i.e:

H = {X : ‖X−CD‖
2 ≤ rh} (5.6)

where X is a generic 3D point acquired by the depth camera and rh is set on the

basis of the physical hand size (in the tests, rh = 100 [mm] has been used). The

points in the set H inside the sphere represent the initial hand estimate. This

allows to remove the assumption that the hand is the closest point to the sensor.

Furthermore, the thresholding in the color space can be avoided, as well as the

acquisition and processing of color data, making this step faster and simpler. The

centroid located by the Leap Motion is very reliably located in the hand region but

its localization is not too accurate, due to the uncertainty in the position estimated

from the Leap Motion. For this reason, its position is optimized with the circle

fitting scheme of [28]. A more refined scheme employing an ellipse in place of the

circle can also be used [71]. Let us denote with Cpalm the final circle and with r its

radius computed by the algorithm.

The hand orientation can also be extracted from the Leap Motion data (it

is given by the vectors h and n as discussed in Section 5.4), therefore also the

computation of the PCA can be avoided. Another critical aspect in the approach

of [28] is that with PCA the orientation was quite well estimated, but the direction

was supposed always pointing upward. With the proposed approach, instead, this

assumption can be removed, relying on the direction estimated by the Leap Motion.

Finally, the hand samples are subdivided into fingers, palm and wrist regions.

Palm samples (P) are the ones inside the circle of radius r centered on Cpalm; the
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finger samples set F contains the samples X outside Cpalm that satisfy (X−CD)·h >

r, i.e., the ones outside the circle in the direction of h; the remaining samples are

associated to the wrist region (W).

5.6 Hand segmentation using density based clus-

tering

Another possible approach to palm and finger segmentation is proposed in [78],

where we propose a density based clustering approach to divide the hand into palm

and fingers using a single depth map. The hand is firstly segmented from the rest

of the scene, then it is divided into palm and fingers regions. For this task we

employed a novel scheme that exploits the idea that fingers have a tubular shape

while the palm is more planar. Following this rationale we applied a contraction

guided by the normals to reduce the fingers into thinner structures that can be

identified by analyzing the changes in the point density. Density-based clustering is

then applied to classify the points into palm and fingers. Figure 5.7 shows all the

steps performed by the algorithm.

a) b) c) d)

Figure 5.7: Hand segmentation with normal guided contraction: a) Original point cloud
H; b) Contracted version of the point cloud Hc; c) Contracted cloud with
the labels after the first assignment; d) Final assignment after the refinement.
red samples are associated to fingers, black to the palm.

The input of this algorithm shown in Figure 5.7a is a point cloud H = {p1, ..., pn}

containing the hand samples. Figure 5.7b shows the result of the normal contraction,

in which a new point cloud Hc = {pc1, ..., p
c
n} is built by moving each point pi in

the direction opposite to the surface normal ni at that location, i.e.:

pci = pi − tni (5.7)

The offset t is set to a fixed value, corresponding approximately to the average radius

of a finger, to maximize the contraction of the fingers regions (for the experimental



122 CHAPTER 5. GESTURE RECOGNITION

results we used t = 9 [mm]). In this way the tubular surfaces are contracted into

thinner structures, while planar surfaces are just shifted of a small amount in the

direction perpendicular to the plane, keeping the same point density. The idea

is that after the contraction step, the high density regions are more likely to be

fingers while low density regions are associated to the palm.

The next step is the segmentation of the hand into the palm and fingers region.

This operation is simple in the case of raised fingers but becomes very challenging

when the fingers are bent over the palm. In our approach we intuitively associate the

samples of Hc within the high density regions to the fingers, the remaining points

belonging to the palm. A naive approach to divide the two clusters is to consider a

threshold on the number of points inside a spherical neighborhood of a given point

in the contracted cloud. Some regions of the palm showing an initial density greater

than the one of finger samples may however maintain a final high density even when

subject to a slight contraction. Instead, the number of misclassified points is greatly

reduced if, given a point, we consider its neighborhood and compare the original

spacing between samples in the point cloud H with the spacing in the contracted

point cloud Hc. To label the ith point in the cloud as finger F or palm P , we first

consider the set of its k closest points in the contracted cloud N c
i,k = {pcj1 , ..., p

c
jk
}

and compute their average distance from pci . We then consider the same neighbors

as they appears in the original cloud, that is Ni,k = {pj1 , ..., pjk}, and compute their

average distance from pi. The ratio between the average distances before and after

the contraction is then compared to the average of the same ratio computed in the

overall hand point cloud. Points with a ratio greater than the average are assigned

to the finger set F while the others are assigned to the palm set P , i.e,:

d̄i =

∑k

s=1‖pjs − pi‖

k

d̄ci =

∑k

s=1‖p
c
js
− pci‖

k

ri = d̄i/d̄ci

r̄ =

∑n

i=1 ri
n

(5.8)

ri < r̄ ⇒ pci ∈ P

ri ≥ r̄ ⇒ pci ∈ F
(5.9)

Figure 5.8 helps to better understand this step. Let us first consider a region

associated to fingers (shown in Figure 5.8a), the average spacing between a point
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and its neighbors in N c
i,k is much smaller than the one computed with respect to

Ni,k. In Figure 5.8b, an internal region of the palm is shown, where the spacing

does not decrease after the contraction, as the normals in this region are almost

parallel. Figure 5.8c shows instead a boundary region of the palm, where the spacing

decreases but not as significantly as in the fingers region. Here in fact, differently

from the fingers, there are more parallel normals or in general the curvature is less

pronounced. We decided to use the mean of all the ratios as threshold value, but of

course a different thresholding criteria can be used. Figure 5.7c shows the output

of this first raw assignment; notice how, by working with point clouds and using

densities in the 3D space, the proposed approach is invariant to rotations and to

the orientation of the hand.

a) b) c)

Figure 5.8: Difference of the density before and after the contraction for three particular
regions (best viewed in colors, blue points belong to the original point cloud
H, red points belong to the contracted point cloud Hc): a) Fingers region;
b) Palm region; c) Palm edge region.

After this operation, there could still be some isolated spots of erroneously

classified points, especially along the palm edges. A refinement process is therefore

needed. In particular, small spots labeled as fingers surrounded by larger areas

labeled as palm are very likely to be artifacts. For this reason we iteratively check

for each point the ratio between palm points and finger points in a neighborhood

of the point itself and update its label according to this ratio. To be more robust,

we define two thresholds δf and δp:

|N c
i,k ∩ F|

|N c
i,k ∩ P|

> δf ⇒ pci ∈ F

|N c
i,k ∩ P|

|N c
i,k ∩ F|

> δp ⇒ pci ∈ P

(5.10)

The two thresholds should be both larger than 1 (e.g. δf = 1.2 and δp = 1.5 in the

experimental results), to ensure that the assignment is changed only if the sample

is surrounded by a large set of samples in the other region. Different values however
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do not affect too much the results. From Figure 5.7c we can notice how the small

spots classified as fingers in the region of the palm by the first raw estimation are

then correctly classified, as shown in Figure 5.7d.

Figure 5.9 shows some results of the proposed method compared with the

method based on fitting a circle in the palm presented earlier [28].

Figure 5.9: Palm and finger segmentation: (first row) density based approach; (second

row) circle based approach [28].

5.7 Feature extraction from depth camera data

In the proposed approach, gestures are acquired with both a Leap Motion and

a depth camera. We used a KinectTM v1 for testing the algorithm but any other

depth camera can be used for this purpose. Feature extraction from depth data

requires two main steps: firstly the hand is extracted from the rest of the scene

using the acquired depth information, then, a set of features is computed from the

segmented region.

The first step is quite time-consuming if solved by using only the depth and

color data as done in previous works [30, 28]. In the proposed approach, the

Leap Motion information is used both to improve the accuracy and to reduce the

computation time of the hand detection and segmentation. Using this information,

the assumption that the hand is the closest object can be safely removed.

In the second step four different kinds of features are computed from the depth

data:

• Curvature features: analyze the hand contour shape to extract the partic-

ular shape description.

• Distance features: consider the distance of each point of the hand contour

from the palm center to describe the hand shape.
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• Correlation features: these are a measure of similarity between distance

features.

• Connected components features: exploiting the convex hull, compute

the size and the number of connected components in the hand silhouette.

5.7.1 Distance features

This feature set aims at capturing the profile of the hand contour to extract

informative description of the performed gesture. We start by considering each

point X in the hand contour, extracted from the hand mask in the depth image,

the distance d(X) with respect to the hand center Cpalm:

d(X) = ||X−Cpalm||2 (5.11)

Given the hand orientation, then, we are able to provide a coherent function

d(X) among different gestures and repetitions. For example we can set as starting

point X1 the intersection between the hand contour and the hand direction h,

and then proceed clockwise with the other points until the last one Xn. For each

acquisition, though, the number of points in the hand contour n is not fixed, as

it depends on the actual distance of the hand from the camera. Therefore, the

function d(X) is sampled to get 180 values that makes the descriptor independent

from the hand to camera distance. This value can be chosen even smaller without

excessively impacting the overall accuracy, but reducing the computation time. An

example of this function is shown in Figure 5.3a.

The distance function d(X) is then normalized by the length Lmax of the middle

finger to scale the values within the range [0, 1] and to account for different hand

sizes among people. The distance samples are collected into feature vector Fl.

Notice that this descriptor is different from the distance descriptors used in [28]: the

approach proposed in this work turned out to be simpler, faster and more accurate.

5.7.2 Correlation features

This feature set is based on the similarity between distance functions of sub-

section 5.7.1. For each considered gesture, a reference acquisition is selected and

the corresponding distance function is computed with the approach of Equation

(5.11), thus obtaining a set of reference functions drg(X), where g is the considered

gesture. The distance function of the acquired gesture d(X) is also computed and

the maximum of the correlation between the current histogram d(X) and a shifted

version of the reference histogram drg(X) is selected:
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Rg = max
Δ

[
ρ
(
d(X), drg(X+Δ)

)
, ρ
(
d(−X), drg(X+Δ)

)]
(5.12)

where g = 1, . . . , G and d(−X) is the flipped version of the distance function to

account for the possibility for the hand to have either the palm or the dorsum facing

the camera. The computation is performed for each of the candidate gesture, thus

obtaining a set Fρ containing a different feature value fρ
g for each of them. Note

how, ideally, the correlation with the correct gesture should have a larger value

than the others.

5.7.3 Curvature features

This feature set describes the curvature of the hand edges on the depth map. A

scheme based on on integral invariants [68, 62] has been used. The approach for

the computation of this feature is basically the same of [28]. The main steps of the

approach are here briefly recalled. The curvature feature extractor algorithm takes

as input the edge points of the palm and fingers regions and the binary mask Bhand

corresponding to the hand samples on the depth map. A set of circular masks with

increasing radius is then built on each edge sample (for the results S = 25 masks

with radius varying from 0.5cm to 5cm have been used, the radius correspond to

the scale level at which the computation is performed).

The ratio between the number of samples falling in Bhand for each circular mask

and the size of the mask is computed. The values of the ratios (i.e., curvatures)

range from 0 (extremely convex shape) to 1 (extremely concave shape), with 0.5

corresponding to a straight edge. The [0, 1] interval is quantized into N bins.

Feature values f c
b,s collects how many edge samples have a curvature of a value

inside bin b at scale level s. The values are finally normalized by the number of edge

samples and the feature vector Fc with B× S entries is built. For faster processing,

the circular masks can be replaced with simpler square masks and then integral

images can be used for the computation. This approximation, even if not perfectly

rotation invariant, is significantly faster and the performance loss is very small.

5.7.4 Connected components features

Another useful clue used for gesture recognition schemes [85] is the convex hull

of the hand shape in the depth map. The idea is to look for regions within the

convex hull of the hand shape but not belonging to the hand. These typically

correspond to the empty regions between the fingers and those are a good clue to

recognize the fingers arrangement. Let S = Chull(B) \ B be the difference between
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the convex hull and the hand shape (see Figure 5.10 a and b). Region S is made

of a few connected components Si. The size of each region Si is compared with a

threshold Tcc and the ones that are smaller than the threshold are discarded (this

allows to avoid considering in the processing small components due to noise, as the

one shown on the right of the hand in Figure 5.10 c). The output of this procedure

is the set Scc = {Si : Si > Tcc} (Figure 5.10 c and d).

The feature set is given by the ratios between the area of each connected

components and the convex hull area, i.e.:

f cc
i =

area(Si|Si ∈ Scc)

area(Chull(B)))
(5.13)

where the areas have been sorted according to the angle of their centroid with

respect to the hand direction (i.e., from the thumb to the pinky). These numbers

are then collected into vector Fcc.

a) b) c) d)

Figure 5.10: Areas of the connected components: a) and b): difference between the
convex hull and the hand shape; b) connected components in set Scc

highlighted in green.

5.8 Gesture classification

The approaches of Sections 5.4 and 5.7 produce eight different feature vectors,

four for the Leap Motion data and four for the depth data. Each vector describes

some relevant clues regarding the performed gesture and two different classification

schemes have been used to perform the recognition, one based on a multi-class

Support Vector Machine classifier and one based on Random Forests. There are 8

feature vectors grouped into the two sets Vleap = [Fa,Fd,Fe,Fp] that contains all

the features extracted from Leap Motion data and Vdepth = [Fl,Fρ,Fc,Fcc] that

collects the features computed from depth information. Feature vectors extracted

from the two devices are visually summarized in Figure 5.11. Each vector can

be used alone or together with any of the other descriptors. The combination of
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Figure 5.11: Feature vectors extracted from the two devices.

multiple feature descriptors can be obtained by simply concatenating the vectors

corresponding to the selected features. The target of the approach is to classify the

performed gestures into G classes, one for each gesture in the considered database.

The first classification scheme exploits a multi-class SVM classifier [14] based

on the one-against-one approach. In the employed scheme a set of G(G − 1)/2

binary SVM classifiers are used to test each class against each other. The output of

each of them is chosen as a vote for a certain gesture. For each sample in the test

set, the gesture with the maximum number of votes is selected as the output of

the classification. In particular a non-linear Gaussian Radial Basis Function (RBF)

kernel has been selected and the classifier parameters have been tuned exploiting

grid search and cross-validation on the training set. Let us consider a training

set containing data from M users. The space of parameters (C, γ) of the RBF

kernel is divided by a regular grid. For each couple of parameters the training set is

divided into two parts, one containing M − 1 users for training and the other with

the remaining user for validation and performance evaluation. The procedure is

repeated M times changing the user in the validation set. The couple of parameters

that gives the best accuracy on average is selected as the output of the grid search.

Finally the SVM has been trained on all the M users of the training set with the

optimal parameters.

Alternatively we also tested a second classification scheme exploiting Random

Forests (RF) [9]. Each tree has been trained on a random sampling of the training

set leaving out one third of the sampled vectors for the estimation of the out-of-bag

error. The only model parameter to optimize, differently from the pair for the RBF

kernel of SVM, is the size m of the feature subset in each node. The parameter

controls a trade-off between the tree correlation and the predictive “strength” of

each tree, and may be easily found by analyzing the out-of-bag error. The size of

the forest, is not a critical parameter since the classification error remains relatively

stable if a sufficient number of trees is used. In our case we trained a Random

Forest of 100 decision trees with a default value of m =
√

|F| with |F| the length

of the feature vectors in the dataset (|F| = 435 when all the considered features are
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used). The implementation of the Random Forest classifier provided by Matlab has

been used.

Finally, since the considered vectors contain a large number of elements we also

considered the use of feature selection schemes to reduce the number of features and

avoid the usage of useless or redundant descriptors. Three different feature selection

schemes have been tested. The first uses the F-score approach [19], i.e., the F-score

is computed for each feature and the most discriminative features according to this

measure are selected (i.e., the features with an F-score bigger than a pre-defined

threshold). Two different thresholds have been used to produce two subsets with

16 and 128 features.

The second scheme is based on the Forward Sequential Selection (FSS) algorithm

[2]. In this case, starting from the empty set, at each step a new feature is added to

the selected ones by choosing the one that allows to obtain the larger improvement

in the classification accuracy with respect to the previous step (the SVM classifier

previously described has been used to evaluate the classification accuracy).

Finally a third feature selection scheme exploiting Random Forests has been

tested. In this case a classification is performed with the approach of [9] and the

out-of-bag error is estimated. Then, to measure the importance of the various

features, the values of one of the features are permuted and the out-of-bag error is

estimated again. The procedure is repeated for each feature and the importance

of each feature is given by the normalized average increase of the out-of-bag error

after the permutation. This approach is detailed in [19]. The number of selected

features is the same of the previous cases to allow a fair comparison.

5.9 Experimental results

The results have been obtained using the setup depicted in Figure 5.2. A

Leap Motion device and a KinectTM v1 have been used to jointly acquire the

data relative to the performed gestures. Any other depth camera can be used in

the proposed approach. The two devices have been jointly calibrated using the

approach of Section 5.3 and synchronized in time. A software synchronization

scheme has been used: its precision is sufficient for the recognition of gestures based

on static poses like the ones considered in this chapter. The considered dataset

of gestures contains the 10 different gestures shown in Figure 5.13 executed by 14

different people. Each user has repeated each gesture 10 times for a total of 1400

different data samples. Up to our knowledge this is the first database containing

both depth data and Leap Motion data and it is available on our website at the
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url http://lttm.dei.unipd.it/downloads/gesture. To compute the results we

split the dataset in a train and a test set by using the leave-one-person-out approach

of Section 5.8, i.e., we placed in the training set the data from all the users except

one and in the test set the data from the remaining user. Since the amount of data

associated to a single user (100 samples) is not sufficient for a reliable assessment

of the performances we executed 14 completely independent tests changing each

time the person in the test set, i.e., as shown in Figure 5.12, in each test we used a

train set with 13 people and a test set with a single person that is the remaining

one. The results of the 14 tests have been averaged to obtain the final accuracy.

Note that this is a more challenging test than the standard leave-one-out approach,

since not only it guarantees that the data in the train set is different from the ones

in the test set as in the standard case, but also that the train set does not contain

any sample from the user in the test set. This means that the system should be

able to classify the data from the user in the test set from what it has learned from

users different from the one that is using it, a typical situation in real setups. This

approach has been used to train both classifiers, i.e., the Support Vector Machines

(SVM) one and the one exploiting Random Forests (RF) as explained in Section

5.8. In this section we will firstly report the performance that can be obtained by

using the SVM classifier (that is the better performing one) with the various feature

types of each of the two sensors alone. Then the results that can be obtained by

combining the two sensors will be presented. Finally we will show the accuracy

that can be obtained with various combinations of classifiers (SVM or RF) and of

feature selection strategies.

Figure 5.12: The results are the average of 14 independent tests each one performed by
placing a person in the test set and the remaining 13 in the train set.

Let us start from the Leap Motion device. Table 5.1 shows the accuracy obtained
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G1 G2 G3 G4 G5

G6 G7 G8 G9 G10

Figure 5.13: Gestures from the American Sign Language (ASL) contained in the database
that has been acquired for experimental results.

using the classification algorithm of Section 5.8 on the data from this sensor. The

3D positions of the fingertips give a very good representation of the arrangement

of the fingers and allow to obtain an accuracy of 81.5%. They allow to recognize

the majority of the gestures even if the recognition of some gestures is not always

optimal, as it is possible to see from the confusion matrix in Table 5.2. For example,

gestures G2 and G3 are sometimes confused with gesture G1. This is due mostly

to the false positives returned by the Leap Motion sensor that sometimes detects a

raised finger in gesture G1.

Feature set Accuracy
Fingertips 3D positions (Fp) 81.5%

Fingertips distances (Fd) 76.1%
Fingertips angles (Fa) 74.2%

Fingertips elevations (Fe) 73.1%
Fd + Fa + Fe 80.9%

Table 5.1: Performance with the Leap Motion data.

Fingertip distance features allow to obtain an accuracy of about 76%: they are

able to recognize most gestures but there are some critical issues, e.g. G2 and G3

are easily confused. A relevant issue for this descriptor is the limited accuracy of

the hand direction estimation from the Leap Motion that does not allow a precise

match between the fingertips and the corresponding angular regions (i.e., it is not

easy to recognize which finger has been raised if a single finger is detected). The

other two features have slightly lower performance. The angles allow to obtain an

accuracy of 74.2% and a similar result (73%) can be obtained from the elevations

alone. The last three features can be combined together since they capture different

properties of the fingers arrangement. Their combination leads to an accuracy of
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G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.893 0.021 0.064 0.021
G2 0.300 0.564 0.136
G3 0.143 0.093 0.700 0.043 0.021
G4 0.029 0.900 0.050 0.007 0.014
G5 0.050 0.050 0.029 0.021 0.757 0.014 0.021 0.021 0.036
G6 0.007 0.029 0.029 0.836 0.014 0.014 0.071
G7 0.014 0.036 0.079 0.814 0.029 0.007 0.021
G8 0.036 0.029 0.029 0.829 0.079
G9 0.007 0.007 0.014 0.971
G10 0.014 0.036 0.007 0.050 0.007 0.886

Table 5.2: Confusion matrix for the 3D positions from the Leap Motion data. Yellow

cells represent true positive, while gray cells show false positive with failure
rate greater than 5%.

almost 81%, better than any of the three features alone. This result is quite similar

to the performance of the 3D positions, consistently with the fact that the two

distances from the center and the plane, together with the angle can be viewed as

a different representation of the position of a point in 3D space.

Results from the Leap Motion data are good but not completely satisfactory.

Better results can be obtained from the depth data, that offers a more informative

description of the arrangement of the hand in 3D space. Depth data contain the

complete 3D structure of the hand but they also represent a lower-level scene

description and a larger amount of processing is needed to extract the features from

it.

Feature set Accuracy
Distance features (Fl) 94.4%

Correlations features (Fρ) 68.7%
Curvature features (Fc) 86.2%

Convex Hull features(Fcc) 70.5%
Fl + Fc 96.35%

Table 5.3: Performance with the depth data.

Table 5.3 shows the results obtained from the depth information acquired with

a Kinect. Distance features are the best performing descriptor and allow to obtain

an accuracy of 94.4%, much higher than the one that can be obtained from the

Leap Motion sensor. This descriptor alone allows to recognize all the gestures with

an high accuracy.

Correlation features have lower performance (68.7%). This descriptor is also

based on the distances of the hand samples from the hand centroid, but compared
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to the distances they contain a less informative description (the feature vector size

is also much smaller) that is not sufficient for an accurate recognition. However

thanks to the small descriptor size and very fast computation time they still can be

considered for applications where the running time and the memory footprint of

the descriptors are critical.

Another very good descriptor is the curvature of the hand contour. It allows

a correct recognition of 86.2% of the considered gestures. Only distance features

outperforms this descriptor. It has also the advantage that it does not rely on the

computation of the hand center and orientation, making it very useful in situations

where an estimation of these parameters is difficult. Finally, the convex hull features

have an accuracy of 70.5%, slightly better than the correlations even if not too

impressive. Again its small size and simple computation makes this descriptor

interesting when a trade-off between performance and accuracy is needed.

The combination of multiple descriptors allows to improve the performance,

e.g., by combining the two best performing descriptors, distances and curvatures a

quite impressive accuracy of 96.35% can be obtained as it is possible to see also

from the corresponding confusion matrix (Table 5.4). This is an indication that

the different descriptors capture different properties of the hand arrangement and

contain complementary information.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.971 0.021 0.007
G2 0.007 0.971 0.021
G3 0.007 0.986 0.007
G4 0.036 0.964
G5 0.007 0.986 0.007
G6 0.036 0.036 0.893 0.014 0.021
G7 0.014 0.986
G8 0.007 0.014 0.964 0.007 0.007
G9 0.007 0.007 0.986
G10 0.007 0.043 0.021 0.929

Table 5.4: Confusion matrix for the combined use of distance and curvature descriptors
from depth data. Yellow cells represent true positive.

Feature set Accuracy
Fl + Fc + Fp 96.5%

Table 5.5: Performance from the combined use of the two sensors.

Descriptors based on the Leap Motion data and on the depth data can also

be combined together. In the last test we combined the 3D positions from the
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Leap Motion with the two best descriptors from depth data, i.e., the distances

and the curvatures. The obtained accuracy is 96.5% as shown in Table 5.5. The

corresponding confusion matrix (Table 5.7) shows also how the recognition rate is

very high for all the considered gestures. The improvement with respect to depth

data alone is limited, as expected since the accuracy from the 3D positions of the

Leap Motion is much lower. However consider that Leap Motion data are used also

for the computation of the depth-based features (i.e., for the initial centroid and

hand orientation) and allow to reduce the computational time as it will be shown

at the end of this section. Furthermore Leap Motion data allow a more reliable

extraction of the hand in some complex settings, a feature that is not possible to

appreciate on the employed dataset. Finally the Leap Motion provides a few but

very relevant features and allows to obtain a good accuracy with a smaller number

of features with respect to the depth-based approach.

A comparison with [70], that presents an earlier version of this approach, shows

how the proposed algorithm clearly outperform the previous method (see Table 5.6).

By exploiting both sensors, the accuracy is 96.5% against 91.3% of the previous

scheme, a quite relevant improvement. This result is mostly due to the improvement

in the feature extraction scheme from depth data, that has an accuracy of 96.3%

instead of 89.7% of the previous scheme. This proves the reliability of the new

depth features extraction algorithm exploiting the Leap Motion data and a more

refined distance features extraction scheme.

Feature set Accuracy
Marin et Al. [70] Proposed method

Leap Motion features 80.9% 81.5%
KinectTM v1 features 89.7% 96.3%

Leap Motion + KinectTM v1 features 91.3% 96.5%

Table 5.6: Comparison between the performances of the proposed approach and of [70].

In Section 5.8 a second classification scheme based on Random Forests has been

presented. This approach is simple and fast and does not require the complex grid

search procedure for the optimization of the parameters. On the other side this

classifier has slightly lower performances than the SVM approach and with the

complete feature set is able to achieve an accuracy of 94.7%, a very good result but

about 2% lower than the one of the SVM classifier.

The proposed approach makes use of a large number of features, with the

complete feature set each vector has 435 elements. Furthermore there is also a

much larger number of feature values extracted from the KinectTM v1 data with

respect to the ones from the Leap Motion. For these reasons it is reasonable to
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G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.979 0.021
G2 0.014 0.964 0.021
G3 0.007 0.007 0.986
G4 0.029 0.971
G5 0.007 0.986 0.007
G6 0.029 0.043 0.886 0.007 0.036
G7 0.014 0.986
G8 0.014 0.014 0.957 0.007 0.007
G9 0.007 0.007 0.986
G10 0.007 0.029 0.014 0.950

Table 5.7: Confusion matrix for the combined use of Leap Motion and depth data.
Yellow cells represent true positive.

employ a feature selection scheme to reduce the number of features and to better

balance the information coming from the two sensors. As already described three

different feature selection strategies have been tested, i.e., F-Score, Sequential

Feature Selection and Random Forests. All the three methods have been tested

both with the SVM and the RF classifier. For each combination of feature selection

strategy and classifier we selected the 16 and 128 best features. The results are

presented in Table 5.8. The table shows how by properly selecting the best features

it is possible to greatly reduce the number of employed features with only a limited

impact on the performances.

The F-Score feature selection method is the simplest and fastest but also the

one leading to the worst results. In particular if the number of features is reduced

to 128 (about one third of the original number of features), this approach is still

able to achieve acceptable performances with a loss of about 2% on the accuracy of

the SVM classifier. If the number of features is further reduced to 16 this approach

is instead not able to properly select a good combination of features, mostly due to

the fact that it does not properly account for the correlation between the different

features. In this case there is a huge performance drop with an accuracy of 60%,

more than 36% less than the one obtained with all the features. If the F-Score

approach is used together with the Random Forests classifier the results are very

similar with losses on the accuracy of 2.1% (128 features) and of 37.2% (16 features).

The sequential feature selection algorithm is instead the best performing one

when the SVM classifier is used. The accuracy is very close to the original value

with both 128 and 16 features. Even by using only 16 features the accuracy is

only 0.7% less than the optimal value obtained by using all the features. This is a

quite impressive result and opens the way to several optimization and simplification
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strategies for the proposed approach. Results are very good also for the Random

Forest classifier, the loss in this case is 0.6% with 128 features and 4% with 16

features. Notice how in this case the reduction to 16 features has a more noticeable

impact.

Finally Random Forests can be used also for the feature selection. If they are

used together with the SVM classifier the performances are very good but slightly

worse than the ones of the sequential feature selection scheme, specially if 16 features

are used. In this case there is a loss of about 3%, much better than the F-score

but not so good as the sequential feature selection result. When, instead, Random

Forests are used for both the feature selection and the classification, results are very

similar to the sequential feature selection strategy (in fact even better although

with a very small difference), according to the idea that having the same approach

used for both steps also allows to simplify and speed-up the training procedure.

Concluding, the best solution for optimal performances is to use the Sequential

Feature Selection scheme together with the SVM classifier. The Random Forests

for both training and classification can be used when a simpler and faster training

phase is needed.

SVM RF
Feature selection strategy 435 128 16 435 128 16

F-Score
96.5

94.5% 60.1%
94.7

92.6% 57.5%
Sequential 95.9% 95.8% 94.1% 90.7%

Random Forests 95.8% 93.7% 94.2% 90.8%

Table 5.8: Performances with different combinations of classification algorithms and
feature selection strategies.

Finally, notice how the proposed approach is particularly suitable for real time

gesture recognition schemes. The current implementation in C++ (that has not

been fully optimized) has been tested on a not too performing desktop PC with

an Intel Q6600 processor and 4Gb of RAM and real-time performances have been

obtained. The initial hand detection phase, that took 46ms in the implementation

of the approach of [28] and that we used to start the development of this work

can now be completed in a few milliseconds thanks to the exploitation of the Leap

Motion centroid. Notice also that the processing of color data for the check on skin

color compatibility has also been removed in this work since it was used only in

the initial phase. The extraction of palm and fingers regions with the circle fitting

requires about 25ms. The orientation of the hand is also directly computed from

the Leap Motion data (this step took about 4ms in the old approach). Feature

extraction is quite fast, the most demanding ones are curvature descriptors that
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take about 28 ms to be computed while the other features are way faster to be

computed. Finally SVM classification is performed in just 1ms. This allows to

obtain a frame rate of about 15fps if depth data are used with respect to the 10fps

achieved by the previous approach on the same computer. Gesture recognition with

the Leap Motion data alone is very fast (just a few milliseconds) but performances

are also lower.





Chapter 6

Conclusions

This thesis provides an overview of the research carried out during the three

years of the Ph.D. program. The problem of fusing 3D data from multiple sensors

has been studied under different aspects, from the acquisition of the data to the

applications that are possible combining multiple sensors.

Chapter 2 describes the most common systems capable of producing depth

data, in particular stereo cameras, structured light cameras, and ToF cameras. The

operating principles and practical issues of these acquisition systems are described

to provide solid foundations to the methods for fusing their data. For ToF cameras

a unified framework is proposed by considering the internal components like a

telecommunication system, where the transmitter converts an electrical signal to

a NIR signal and the receiver correlates the demodulated signal to estimate the

distance of the framed scene.

Fusion of 3D data from multiple sensors is described in Chapter 3. In the

proposed approach data from a stereo vision system and a ToF depth camera are

combined to provide a more accurate depth map. A set of confidence measures

is computed for both stereo camera and ToF camera, the input depth maps are

then fuse together enforcing the local consistency of depth data accounting for

the confidence of the two systems at pixel level. Experimental results show the

effectiveness of the proposed approach comparing the performance with state of

the art methods. Another approach based on deep learning is currently under

investigation, where a CNN is trained to combine depth maps and raw images from

multiple sensors to produce a more accurate depth map.

The need of data from multiple sensors is of fundamental importance to the

development of algorithms that fuse their data. Chapter 4 describes the setup used

to collect data from a set of three different commercial acquisition systems: a stereo

camera, a ToF camera and a structured light camera. The three acquisition systems

139
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have been calibrated to provide the possibility of combining data from different

cameras. In addition to the raw images from the sensors, also the ground truth

depth map is estimated by using an ah hoc framework that computes the ground

truth depth map from the same point of view of one of the cameras, using a line

laser and the same cameras of the acquisition systems. In addition to real data

collection, Chapter 4 describes a synthetic data generator that includes realistic

models of color cameras and ToF cameras. When deep learning based approaches

are used, the need of a big amount of data is crucial, and the proposed simulator

fulfills this requirement by generating data that are comparable to those acquired

with a real camera.

The use of multiple sensors is not limited to 3D fusion, Chapter 5 describes how

to combine a depth camera with a Leap Motion device to boost the performance of

gesture recognition. A set of novel descriptors is introduced for both the devices

and a multi-class SVM classifier is trained to predict the performed gesture. A

novel scheme for extraction and identification of palm and fingers from a single

depth map is also presented. The density based clustering framework has been

tested in a challenging dataset showing the effectiveness of the proposed method

also in complex situations and in presence of occlusions.
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