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Introduction in English

This Ph.D. thesis consists of four dependent chapters and is devoted to a sys-
tematic study of arbitrage opportunities, with particular attention to general and
incomplete market models with càdlàg semimartingales.

In Chapter 1, we state our motivation, and then briefly review the theory of no-
arbitrage, and the previous studies of arbitrage opportunities in the literature. We
introduce a general framework, which will be used throughout this dissertation.
We discuss no-arbitrage conditions, utility optimization problems and recall re-
sults from the literature. Finally, we state three research questions and summarize
new results.

Chapter 2 solves the problem of finding arbitrages when investors are hetero-
geneous in the sense that their beliefs correspond to non-equivalent probabilities.
Optimal arbitrage profit and the corresponding strategy are carefully investigated
by techniques of non-equivalent measure changes. We also discuss the financial
implications of this study and give some meaningful examples. In contrast to
typical Brownian models in which arbitrages (if exist) are fragile, some of our
arbitrage examples are shown to be robust if market’s frictions such as transaction
costs and model misspecification are taken into account.

In Chapter 3, we study the problem of optimal investment with the possibility
of intermediate consumption and stochastic field utility. We show that the no
unbounded profit with bounded risk condition suffices to establish the key duality
relations of utility maximization.

In Chapter 4, we investigate insider trading activities. Suppose that there exists
an insider, who has access to some private information at the beginning of trading.
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Chapter

Financial mathematics uses the terminology ”initial enlargement of filtration” to
explain this circumstance. We first consider the problem of logarithmic utility op-
timization for the insider. We are able to characterize the insider’s expected utility
by duality method and hence give a new sufficient condition for the condition no
unbounded profit with bounded risk. Thanks to the tools of non-equivalent mea-
sure changes in Chapter 2, we compute the superhedging price of any claim in the
view of the insider and examine the question of optimal arbitrage profit.
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Introduzione in Italiano

La presente tesi di dottorato è costituita da quattro capitoli tra loro dipendenti ed è
dedicata allo studio sistematico di opportunità d’arbitraggio, con particolare atten-
zione a modelli di mercato generali e incompleti, in presenza di semimartingale
cadlag.

Nel Capitolo 1 sono riportate le motivazioni al presente lavoro di ricerca, in-
sieme ad un breve riepilogo della teoria del non arbitraggio e della letteratura
riguardante le opportunità di arbitraggio. Introduciamo nozioni e concetti gen-
erali, che saranno utilizzati ovunque nella tesi. Discutiamo condizioni di non
arbitraggio e problemi di ottimizzazione dell’utilità, richiamando risultati noti in
letteratura. Infine, enunciamo tre problemi aperti e riassumiamo i risultati nuovi
ottenuti nella tesi.

Nel Capitolo 2 forniamo una soluzione al problema di determinare arbitraggi
quando gli investitori sono eterogenei, nel senso che le loro aspettative sono de-
scritte tramite misure di probabilità non equivalenti. Il profitto derivante da un
arbitraggio ottimale e la corrispondente strategia sono studiati attentamente per
mezzo di tecniche legate al cambio di misura non equivalente. Discutiamo inoltre
le implicazioni finanziarie di tale studio e forniamo alcuni esempi significativi.
Contrariamente a quanto accade nei modelli browniani, in cui gli arbitraggi (se es-
istono) sono “fragili”, alcuni degli arbitraggi forniti nei nostri esempi sono robusti
quando le frizioni del mercato, come i costi di transazione oppure l’errata specifi-
cazione del modello (“model misspecification”), sono presi in considerazione.

Nel Capitolo 3 studiamo il problema di investimento ottimale con possibilità
di consumo intertemporale. Mostriamo che la condizione ”no unbounded profit
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Chapter

with bounded risk” è sufficiente a stabilire le relazioni di dualità fondamentali per
la massimizzazione dell’utilità.

Nel Capitolo 4 analizziamo le attività di ”insider trading”. Supponiamo che
esista un insider, il quale ha accesso ad alcune informazioni private nel momento
in cui inizia l’attività di trading. In finanza matematica si utilizza la terminologia
”allargamento iniziale della filtrazione” per denotare questa circostanza. Consid-
eriamo innanzitutto il problema di ottimizzazione con utilità logaritmica per un
insider. Siamo in grado di caratterizzare l’utilità attesa dell’insider attraverso il
metodo di dualità e, quindi, di fornire una nuova condizione sufficiente per ”no
unbounded profit with bounded risk”. Grazie alle tecniche di cambio di misura
non equivalente presentate nel Capitolo 2, calcoliamo il prezzo ”superhedging”
per l’insider di qualsiasi prodotto derivato ed esaminiamo il profitto derivante da
un arbitraggio ottimale 1.

1Thanks to Andrea Cosso for his help on this translation
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Introduction en Français

Cette thèse de doctorat constituée de quatre chapitres dépendants est dédiée à
l’étude systématique des opportunités d’arbitrage dans les marchés financiers in-
complets modélisés par les semi-martingales générales.

Dans le Chapitre 1, nous énonçons nos motivations, puis faisons un bref rappel
de la théorie d’absence d’arbitrage et des précédentes études sur les opportunités
d’arbitrage dans la littérature. Nous présentons ensuite le cadre théorique général
de cette dissertation et les différentes conditions de non-arbitrage proposées dans
la littérature, ainsi que leur lien avec les problèmes d’optimisation d’utilité. Enfin,
nous formulons trois problèmes de recherche résolus dans cette thèse et donnons
un résume des résultats obtenus.

Chapitre 2 est consacré aux opportunités d’arbitrages apparaissant en présence
des investisseurs hétérogènes, dans le sens que leurs croyances correspondent à
des probabilités non-équivalentes. Le profit d’arbitrage optimal et la stratégie
correspondante sont étudiés par des techniques de changement de mesure non-
quivalent. Nous discutons également les implications financières de cette étude
et donnons quelques exemples pertinents. Contrairement aux modèles browniens
classiques, pour lesquels les arbitrages (s’ils existent) sont fragiles, nous montrons
que certains de nos exemples sont robustes en présence des frictions du marché,
comme les coûts de transaction et les erreurs de spécification de modéle.

Dans le Chapitre 3, nous étudions le problème d’investissement optimal avec
la possibilité de consommation intermédiaire. Nous montrons que la condition
”no unbounded profit with bounded risk” est suffisante pour établir les relations
de dualité classiques de maximisation d’utilité.
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Chapter

Dans le Chapitre 4, nous étudions les stratégies d’arbirtage des agents possedant
une information privée. Nous supposons qu’un agent initié a accès à une informa-
tion privée dès le début de trading. En termes mathématiques cette situation est
décrite par un grossissement initial de filtration (par opposition au grossissement
progressif, lorsque l’information privée devient disponible au fur et à mesure de
trading). Nous considérons d’abord le problème d’optimisation d’utilité logarith-
mique pour l’agent initié. La caractérisation de l’utilité espérée de l’initié par
la méthode de dualité nous permet de donner une nouvelle condition suffisante
pour la condition ”no unbounded profit with bounded risk”. Grâce aux outils de
changement de mesure non-équivalente du Chapitre 2, nous calculons le prix de
sur-couverture d’un actif contingent du point de vue de l’initié et examinons la
question de profit optimal d’arbitrage 2.

2Thanks to David Krief for his help on this translation
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Chapter 1

Review of literature and new results

1.1 Markets with heterogeneous investors

Financial mathematics literature typically assumes that all investors are homoge-
neous in the sense that they share the same set of information, the same level of
risk aversion, the same beliefs of market’s structure, etc. This assumption has
been the basis for fruitful development in finance. However, one can easily argue
that this homogeneous assumption is too restrictive if one wants to model realistic
markets. For example, it is common that people take different views on every-
thing, from very significant issues to very simple ones. Hence, a more satisfactory
model should take into account discrepancies among investors because it is a fact
of life.

Plenty of important phenomena (such as bubbles, arbitrages, speculation) can
be better perceived when all investors are not identical. Such formulations have
been introduced in literature a long time ago. For example, Harrison and Kreps
[1978] use heterogeneous expectation to explain the behavior of speculative in-
vestors, Scheinkman and Xiong [2003] propose a model in which each agent is
overconfident on the informativeness of her own signal to get an aspect of bub-
bles. An incomplete list of studies on the topic of heterogeneous investors in-
cludes: Jarrow [1980], Constantinides and Duffie [1996], Scheinkman and Xiong
[2003], Basak [2000, 2005], Jouini and Napp [2007], Nishide and Rogers [2011],
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Chapter 1.2. Overview of arbitrage pricing theory

Cvitanić et al. [2012], Larsson [2013], etc.

Models with heterogeneous investors can be classified into two main cate-
gories: heterogeneous beliefs and asymmetric information. In the first category,
investors form different (or opposite) views about the future performance of the
world and bet against each other. In the second category, investors differ in their
information. Some investors might know more than others, and even if all in-
vestors hear the same news from public announcements, they still might interpret
it differently.

Heterogeneity is a natural source of mispricings, which are documented in
some empirical studies. For example, Yadav and Pope [1994] provide evidence
on stock index futures and conclude that potential arbitrage opportunities are ex-
ploitable and economically significant. Financial literature studies optimal behav-
ior in the presence of mispricings, but says little on arbitrage opportunities. Our
objective is to continue along this path by developing a structural framework to
address fascinating questions of arbitrages.

1.2 Overview of arbitrage pricing theory

The concept of arbitrage plays a very crucial role in the theory of modern finance.
Informally speaking, an arbitrage opportunity is the possibility of making money
out of nothing without taking any risk. Clearly, such strategies should be excluded
in order to ensure market viability. The link between theories of no arbitrage and
asset pricing has a long history and was established through seminal works (with
no claim of being complete) of Black and Scholes [1973], Harrison and Kreps
[1979], Kreps [1981], Harrison and Pliska [1981], Dalang et al. [1990]... The first
rigorous formulation with general semimartingale models is given in Delbaen and
Schachermayer [1994, 1998]. The authors prove the equivalence between the
No Free Lunch with Vanishing Risk (NFLVR) condition and the existence of an
equivalent sigma-martingale measure, i.e. a new probability measure under which
the discounted asset price process is a sigma-martingale. We refer to the book of
Delbaen and Schachermayer [2006] for the notion of NFLVR and all results in

8



Chapter 1.2. Overview of arbitrage pricing theory

this theory.

The NFLVR condition provides a sound theoretical framework to solve prob-
lems of pricing, hedging or portfolio optimization. However, for some applica-
tions, requiring total absence of free lunches turns out to be too restrictive and it
seems reasonable to assume that limited arbitrage opportunities exist in financial
markets. This is one of the reasons why market models with arbitrage opportuni-
ties have appeared in the literature, starting with the three-dimensional Bessel pro-
cess model of Delbaen and Schachermayer [1995a]. Without relying on the con-
cept of equivalent martingale measure, Platen [2006], see also Platen and Heath
[2006], developed the Benchmark Approach, a new asset pricing theory in which
the physical measure becomes the main ingredient. In the context of Stochastic
Portfolio Theory [Karatzas and Fernholz, 2009], the NFLVR condition is not im-
posed and arbitrage opportunities arise in relative sense. These works suggest that
NFLVR condition can be replaced by another weaker notion while preserving the
solvability of the economics problems mentioned above.

Numerous studies are devoted to proposing some new notions of arbitrage.
We do not discuss all of these concepts here and refer to Fontana [2013] for
an overview. If one is interested in utility maximization, Karatzas and Kardaras
[2007] and Choulli et al. [2012] prove that the minimal no free lunch type condi-
tion making this problem well posed is the No Unbounded Profit with Bounded
Risk (NUPBR) condition. This condition has also been referred to as BK in Ka-
banov [1997] and it is also equivalent to the No Asymptotic Arbitrage of the 1st
kind (NAA1) condition of Kabanov and Kramkov [1994] taken with respect to a
fixed probability measure. It is known that the NFLVR is equivalent to NUPBR
plus the classical no arbitrage assumption (see Corollary 3.4 and Corollary 3.8 of
Delbaen and Schachermayer [1994] or Proposition 4.2 of Karatzas and Kardaras
[2007]). This means that markets satisfying only NUPBR may admit arbitrage
opportunities. It is naturally thought that the existence of arbitrage is inconsistent
with market’s viability. However, it is not the case because these riskless profits
are not scalable and arbitrageurs are financially constrained. In other words, ar-
bitrageurs face a certain amount of risk before making money so that they cannot
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Chapter 1.3. Studies of arbitrages in literature

invest into arbitrage positions as much as they want.

The starting point of this dissertation is the gap between NFLVR and NUPBR.
Assume a market only satisfies NUPBR, what conclusions could we make about
arbitrage opportunities? This thesis contributes to a better understanding of this
gap in some interesting situations.

1.3 Studies of arbitrages in literature

Delbaen and Schachermayer [1995a] discuss arbitrages and strict local martin-
gales in the three dimensional Bessel model. They show that with respect to
simple integrands, the three dimensional Bessel process satisfies the no-arbitrage
property. However, the process in its natural filtration permits arbitrage with re-
spect to general admissible integrands. It is very interesting to note that its inverse
process is a (strict) local martingale and hence is arbitrage free. The situation
where the inverse of an arbitrage-free asset admits arbitrage opportunities could
happen in foreign exchange markets. Let us recall the comments from their paper.
Assume that the price of one Euro in dollars is modeled by the inverse of three
dimensional Bessel process, which yields that there are no arbitrage opportunities
for European traders. However, there are such possibilities for American traders.
The reason is that the admissibility of investment strategies depends on which
currency is used as numéraire. It means that agents in one country can use some
strategies that agents in the other country cannot. Furthermore, in order to exclude
this circumstance, Delbaen and Schachermayer [1995c] give some criteria for the
stability of no arbitrage conditions under a change of numéraire.

The three dimensional Bessel model is further studied in Karatzas and Kar-
daras [2007]. Although the market permits arbitrage, it still viable in the sense
that one can find solutions for utility optimization problems. This property is then
connected with the weaker no arbitrage condition NUPBR. Unlike in Delbaen and
Schachermayer [1995a], where the presence of arbitrage relies on the predictable
representation property, the authors are able to construct an arbitrage strategy (see
Example 4.6 therein), which corresponds to a solution of a pricing PDE. Finally,
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Chapter 1.3. Studies of arbitrages in literature

optimal arbitrage is given in Ruf [2013] also by the PDE method. This is due to
the fact that the pricing equation in this situation has multiple solutions.

In the context of Stochastic Portfolio Theory, see Fernholz et al. [2009], two
portfolios define a relative arbitrage when one portfolio outperforms the other. In
Fernholz et al. [2005], relative arbitrage is linked with weak diversity, a market
property which means that no single stock is allowed to dominate the entire mar-
ket in terms of relative capitalization, or with volatility-stabilized markets as in
Fernholz and Karatzas [2005].

To benefit from potential arbitrage, one needs to characterize explicitly the ar-
bitrage strategy, and also to devise a method to compare different strategies, so as
to exploit the arbitrage opportunity in the most efficient way. An important step in
this direction was made in Fernholz and Karatzas [2010]. In this paper, the authors
introduce the notion of optimal relative arbitrage with respect to the market portfo-
lio and characterize the optimal relative arbitrage in continuous Markovian market
models in terms of the smallest positive solution to a parabolic partial differential
inequality. The idea is then extended in Fernholz and Karatzas [2011] by consid-
ering market models with uncertainty regarding the relative risk and covariance
structure of its assets, or in Bayraktar et al. [2012] when an investor wants to beat
the market portfolio with a certain probability. Optimal relative arbitrage turns
out to be related to the minimal cost needed to superhedge the market portfolio in
an almost sure way. In continuous diffusion settings, the problem of hedging in
markets with arbitrage opportunities is studied in detail in Ruf [2013]. That paper
shows in particular that delta hedging is still the optimal hedging strategy in con-
tinuous Markovian markets which admit no equivalent local martingale measure
but only a square-integrable market price of risk.

Arbitrages appear naturally in models of insider trading, in particular in en-
largement of filtration theory. The seminal work of Pikovsky and Karatzas [1996]
is devoted to analyzing the additional logarithmic utility for an insider when he
gains some private information from the beginning of trading. Imkeller [2003];
Imkeller et al. [2001] use Malliavin calculus to derive the preservation of the semi-
martingale property and construct explicit arbitrage strategies. In Imkeller [2002],
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Chapter 1.4. General settings of the thesis

Zwierz [2007], an insider possesses some additional knowledge which allows him
to stop at a random time τ which is not accessible to regular agents. The authors
show that for a class of random times, the market price of risk for the insider is
not square integrable on a set of positive measure and thus prove the existence
of arbitrage opportunities. In Fontana et al. [2014], explicit constructions of arbi-
trages are given if the market for regular agent is complete. Aksamit et al. [2013]
study various kinds of honest times and non honest times. Other studies focused
on arbitrage include: Elliott and Jeanblanc [1999], Grorud and Pontier [1998],
Grorud and Pontier [2001], Kohatsu-Higa [2007]; Kohatsu-Higa and Yamazato
[2008, 2011], etc.

1.4 General settings of the thesis

The notation in this section will be used throughout the dissertation. For the theory
of stochastic process and stochastic integration, we refer to Jacod and Shiryaev
[2002] and Protter [2003].

Let (Ω,F ,F,P) be a given filtered probability space, where the filtration F=

(Ft)t≥0 is assumed to satisfy the condition of right-continuity. For any adapted
RCLL process S, we denote by S− its predictable left-continuous version and
by ∆S := S− S− its jump process. For a d-dimensional semimartingale S and a
predictable process H, we denote by H ·S the vector stochastic integral of H with
respect to S. We fix a finite planning horizon T < ∞ (a stopping time) and assume
that after T all price processes are constant and equal to their values at T .

On the stochastic basis (Ω,F ,F,P), we consider a financial market with an
Rd-valued nonnegative semimartingale process S = (S1, ...,Sd) whose compo-
nents model the prices of d risky assets. The riskless asset is denoted by S0 and
we assume that S0 ≡ 1, that is, all price processes are already discounted. We
suppose that the financial market is frictionless, meaning that there are no trading
restrictions, transaction costs, or other market imperfections.

Let L(S) be the set of all Rd-valued S-integrable predictable processes. It is
the most reasonable class of strategies that investors can choose, but another con-
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Chapter 1.4. General settings of the thesis

straint, which is described below, is needed in order to rule out doubling strategies.

Definition 1.4.1. Let x ∈ R+. An element H ∈ L(S) is said to be an x-admissible
strategy if H0 = 0 and (H ·S)t ≥−x for all t ∈ [0,T ] P-a.s. An element H ∈ L(S) is
said to be an admissible strategy if it is an x-admissible strategy for some x ∈R+.

Remark 1.4.2. • We would like to emphasize that H ·S has to be understood
as the vector stochastic integral of H with respect to S, see the discussion of
this concept in Shiryaev and Cherny [2002]. The notion of vector stochastic
integral is a generalization of the notion of componentwise stochastic inte-
gral ∑

d
i=1 H i ·Si in order to obtain a closed space of stochastic integrals. It

should not to be confused with the notion of vector-valued stochastic inte-
gral (H1 ·S1, ...,Hd ·Sd).

• The vector-valued integral is introduced in Shiryaev and Cherny [2002]
without the assumption of completeness of the filtration. Moreover, Ap-
pendix A in Perkowski and Ruf [2013] argues that the completeness as-
sumption usually does not matter.

For x ∈ R+, we denote by Ax the set of all x-admissible strategies and by
A the set of all admissible strategies. As usual, Ht is assumed to represent the
number of risky asset held at time t. For (x,H) ∈R+×A , we define the portfolio
value process V x,H

t := x+(H · S)t . This is equivalent to requiring that portfolios
are only generated by self-financing admissible strategies.

Given the semimartingale S, we denote by Kx the set of all outcomes that one
can realize by x-admissible strategies starting with zero initial cost:

Kx := {(H ·S)T |H is x-admissible} (1.1)

and by Xx the set of outcomes of x-admissible strategies with initial cost x:

Xx := {x+(H ·S)T |H is x-admissible} .

Remark that all elements in Xx are nonnegative. The unions of Kx and all Xx

over all x ∈ R+ are denoted by K and X , respectively. All bounded claims
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Chapter 1.4. General settings of the thesis

which can be superreplicated by admissible strategies with zero initial cost are
contained in

C :=
(
K −L0

+

)
∩L∞.

1.4.1 No arbitrage conditions

Now, we recall some no-free-lunch conditions, which are studied in the works of
Delbaen and Schachermayer [1994], Karatzas and Kardaras [2007] and Kardaras
[2012].

Definition 1.4.3 (NA). We say that the market satisfies the No Arbitrage (NA)
condition with respect to general admissible integrands if

C ∩L∞
+ = {0} .

Definition 1.4.4 (NFLVR). We say that the market satisfies the No Free Lunch
with Vanishing Risk (NFLVR) property, with respect to general admissible inte-
grands, if

C ∩L∞
+ = {0} ,

where the bar denotes the closure in the supnorm topology of L∞.

We recall the concept of sigma-martingales.

Definition 1.4.5 (Sigma-martingale). A Rd-valued semimartingale X = (Xt)t∈R+

is called a sigma-martingale if there exists an Rd -valued martingale M and an M
-integrable predictable R+-valued process ϕ such that X = ϕ ·M.

Theorem 1.4.6 (Fundamental Theorem of Asset Pricing (FTAP), Delbaen and
Schachermayer [1994, 1998]). The asset S satisfies the NFLVR condition if and
only if there exists a probability measure Q∼ P such that S is a sigma-martingale
with respect to Q.

By FTAP, the NFLVR condition is equivalent to the existence of an equiva-
lent sigma-martingale measure, see Theorem 1.1 of Delbaen and Schachermayer
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[1998]. However, nonnegative sigma-martingales are local martingales, see for
example Exercise 41, page 241 of Protter [2003]. Thus, the limitation to non-
negative processes allows us to work with local martingales instead of sigma-
martingales.

If one is interested in utility maximization, it has been shown [Choulli et al.,
2012; Karatzas and Kardaras, 2007] that the minimal no free lunch type condition
making this problem well posed is the NUPBR condition.

Definition 1.4.7 (NUPBR). There is No Unbounded Profit With Bounded Risk
(NUPBR) if the set K1 is bounded in L0, that is, if

lim
c→∞

sup
H∈A1

P
[
V 0,H

T > c
]
= 0

holds.

This condition has also been referred to as BK in Kabanov [1997] and it is also
equivalent to the No Asymptotic Arbitrage of the 1st kind (NAA1) condition of
Kabanov and Kramkov [1994] taken with respect to a fixed probability measure
or to the condition No Arbitrage of The First Kind (NA1) of Kardaras [2012].

Definition 1.4.8 (NA1). An FT -measurable random variable ξ is called an arbi-
trage of the first kind if P[ξ ≥ 0] = 1,P[ξ > 0]> 0, and for all x > 0, there exists
H ∈ Ax such that V x,H

T ≥ ξ . If there exists no arbitrage of the first kind in the
market, we say that condition NA1 holds.

It is known that the NFLVR is equivalent to NUPBR plus the classical no arbi-
trage assumption (see Corollary 3.4 and Corollary 3.8 of Delbaen and Schacher-
mayer [1994] or Proposition 4.2 of Karatzas and Kardaras [2007]). This means
that markets satisfying only NUPBR may admit arbitrage opportunities.

The economic interpretation of no arbitrage type conditions above can be de-
scribed as follows. Classical arbitrage means that one can make something out of
nothing without risk. If there is a FLVR, starting with zero capital, one can find
a sequence of wealth processes such that the terminal wealths converge to a non-
negative random variable which is not identical to zero and the risk of the trading
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strategies becomes arbitrarily small. If an UPBR exists, one can find a sequence of
wealth processes with bounded (or indeed arbitrarily small) risk whose terminal
wealths are unbounded with a fixed probability.

Definition 1.4.9. An equivalent local martingale deflator (ELMD) is a nonnega-
tive process Z with Z0 = 1 and ZT > 0 such that ZV x,H is a local martingale for
all H ∈Ax,x ∈ R+.

In particular, an ELMD is a nonnegative local martingale. Fatou’s Lemma
implies that it is also a supermartingale and its expectation is less or equal to
one. Hence, if there exists an ELMD with constant expectation one, the NFLVR
condition holds. It is worth to remark that the situation when the ELMD is a strict
local martingale is very different from a market with a bubble. Indeed, an asset
price is said to be a bubble if it is a strict local martingale under the risk-neutral
measure, see Heston et al. [2007], Cox and Hobson [2005], Jarrow et al. [2007],
Jarrow et al. [2010], which means that the NFLVR condition is valid.

The following result has recently been proven in Kardaras [2012] in the one di-
mensional case. An alternative proof in the multidimensional case has been given
in Takaoka and Schweizer [2014] by a suitable change of numéraire argument in
order to apply the classical results of Delbaen and Schachermayer [1994], and in
Song [2013] by only using the properties of the local characteristics of the asset
process.

Theorem 1.4.10. The NUPBR condition is equivalent to the existence of at least
one ELMD.

As discussed, the condition NUPBR is the minimal requirement for market’s
viability. In this dissertation, it is always observed that our market models satisfy
this condition. In the next subsection, we will recall some optimization problems
which are important in theoretical as well as practical purposes.

1.4.2 Utility maximization

One can say that one of the most important problems in mathematical finance is
the utility maximization: an investor who wants to invest and consume in a way
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that maximizes his expected utility.
In the seminal work, Merton [1969] explicitly solved an optimal investment

problem via dynamic programing arguments. The notion of equivalent martin-
gale measures introduced martingale duality method for solving such optimiza-
tion problems. Karatzas et al. [1987] developed this method under the assumption
of complete markets. The difficult case with incomplete markets was studied in
Karatzas et al. [1991] for Brownian settings, and in Kramkov and Schachermayer
[1999, 2003] for general semimartingale settings. Karatzas and Žitković [2003]
and Žitković et al. [2005] obtain sufficient condition with the possibility of inter-
mediate consumption and stochastic utility for incomplete markets. An incom-
plete list of studies in this theory includes: Cvitanic, Schachermayer and Wang
(2001), Hugonnier and Kramkov (2004), Mostovyi [2015], etc.

Maximization of expected utility from terminal wealth

The agent’s preferences are described by a utility function: that is a concave and
strictly increasing function U : (0,∞) 7→ R. We define U(0) = U(0+) by conti-
nuity. Starting with initial capital x > 0, the investor wants to solve the following
problem

u(x) := sup
H∈Ax

E[U(V x,H
T )]. (1.2)

We use the usual convention E[U(V x,H
T )] = −∞ whenever E[(U(V x,H

T ))−] = ∞.
The optimization problem (1.2) makes sense only if u(x) < ∞. Also note that
u(x)>−∞ for every x > 0 because u(x)≥U(x). Among all possible utility func-
tions, an interesting one is probably the logarithmic utility function U(x) = logx.

Definition 1.4.11. An element V x,H log ∈Kx is called log-optimal portfolio if

E[logV x,H
T ]≤ E[logV x,H log

T ]

for all V x,H ∈Kx such that E[(logV 1,H)−T ]< ∞.

The log-optimal portfolio maximizes the instantaneous growth rate (defined
as the drift of a portfolio at log scale) among all portfolios. In long term, it will
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have higher growth rate than any other strategies. For more historical facts and
details about log-optimal portfolio, we refer to Christensen [2005].

Finding the log-optimal strategy is not always an easy task. When asset prices
are continuous, an explicit solution is possible. For example, for continuous dif-
fusion cases, the problem is much easier and was solved by Merton [1971]. The
optimal portfolio fraction turns out to relate to the market price of risk. This how-
ever cannot be extended to general cases with discontinuous assets. In Goll and
Kallsen [2003], the optimal solution is provided explicitly in terms of the semi-
martingale characteristics of the price process.

Definition 1.4.11 does not include the case with infinite expected growth rate.
The definition is then modified as follows in order to cover interesting cases in
which log-investor can trade to infinity but the modified definition is still well-
defined.

Definition 1.4.12. A portfolio Hgo is called growth-optimal portfolio (GOP) or
relatively log-optimal if

E

[
log

V 1,H
T

V 1,Hgo

T

]
≤ 0, ∀H ∈A1. (1.3)

If the log-optimal portfolio exists and finite, then GOP exists. Nevertheless,
the converse implication is not true and we will see it soon. The GOP enjoys
impressive properties of log-optimal portfolios as well as the so-called numéraire
property. The GOP is understood as the best investment decision that an investor
can make, so that other portfolios cannot dominate its performance. In terms of
mathematics, any portfolio is a supermartingale when discounted by GOP.

Now, we summarize some connections between the existence of solutions of
these optimization problems and no-arbitrage conditions. If the condition NFLVR
holds, then GOP and the log-optimal portfolio coincide, see for example in Propo-
sition 4.3 of Becherer [2001]. However, if only the condition NUPBR holds, the
gap between GOP and log-optimal portfolio appears: GOP coincides with the
relatively log-optimal portfolio, as in Proposition 3.19 of Karatzas and Kardaras
[2007], and the log-optimal portfolio does not necessarily exist. This point is
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illustrated in Example 4.3 of Christensen and Larsen [2007] with the three dimen-
sional Bessel process. In their example, the condition NUPBR holds (GOP exists)
but the log-investor can trade to infinite utility. Also in Example 20 of Karatzas
and Kardaras [2007], the classical log-utility optimization problem is not well-
posed (infinite utility) but NUPBR holds. To conclude, NUPBR condition does
not imply that the log-utility is finite.

Conversely, if the log-utility problem is finite, what conclusion should we
make about the markets? It is proved in Proposition 4.19 of Karatzas and Kar-
daras [2007] that if the condition NUPBR fails, then u(x) = ∞ for all x > 0. The
converse implication means if there exists x > 0 such that u(x) is finite then the
condition NUPBR holds. We will often use this result in the dissertation.

1.5 Contributions of the thesis

In this thesis, we propose to analyze financial markets with two possible sources
of heterogeneity among agents: they may differ in their beliefs, or in their level
of information. In the following, we state three research questions, which will be
discussed in detail.

Question 1. Assume that the insider has been informed that a certain event
cannot happen. How could she extract profit from this private information in an
efficient way?

Question 2. Does the condition NUPBR suffice to establish the key duality
relations of the utility maximization problem?

Question 3. Assume that the insider knows the terminal value of the under-
lying asset, for example ST at time 0. Is there an optimal way to use this kind of
information? Can the insider make an arbitrage profit? What about the optimal
strategy?

In conjunction with literature, especially with Section 1.3, answering these
proposed questions will considerably improve our knowledge about arbitrages in
many directions. First, most previous studies about arbitrage focus on restrictive
settings. For example, one usually assumes that the market is complete or asset
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prices are continuous (Brownian settings), which makes things easier, see for ex-
ample Imkeller et al. [2001], Imkeller [2002], Fontana et al. [2014], Aksamit et al.
[2013] and others. Second, arbitrage opportunities often appear implicitly, in the
sense that one establishes the existence of such arbitrage profits without giving a
constructive way to exploit them. In rare special cases, one can use simple buy
and hold strategies to make profits, or may use market’s completeness or other fine
properties of the market to guess arbitrage strategies. Third, arbitrages found in
these ways are far from being optimal. In this thesis, we propose a systematic way
for exploiting optimal arbitrage profits and the corresponding strategies in fully
general semimartingale settings with particular attention to incomplete markets.
Finally, the positive answer of Question 2 will meaningfully improve the existing
results on optimization. More precisely, we show that the key conclusions of the
utility maximization theory hold under NUPBR in full generality.

1.5.1 Arbitrages arising when agents have non-equivalent be-
liefs

Chapter 2 of the thesis, based on Chau and Tankov [2015], aims at giving the
answer to Question 1. We consider an economy in which agents have different
beliefs about the world. For simplicity, assume that there are two agents acting in
the economy: an ordinary agent and an insider. The ordinary agent is assumed
to be risk neutral and choose investment on the probability basis (Ω,F,Q,S).
The insider, who has different belief about the market, makes her decisions on
(Ω,F,P,S), where P� Q. As in Larsson [2013], we employ the idea that het-
erogeneity in beliefs is pushed to an extreme degree: agents do not agree about
zero probability events, i.e. certain events are possible in the view of one agent
but not the other. In mathematical terms, we say that the measure P is absolutely
continuous with respect to Q but not equivalent to it. Let M be the density of P
with respect to Q

dP
dQ

∣∣∣∣
Ft

= Mt , t ∈ [0,T ].

The following theorem is the main result of this chapter.
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Theorem 1.5.1. If the density M does not jump to zero, then the insider satisfies
NUPBR condition. Furthermore, the superhedging price of a nonnegative claim
f for the insider equals to the superhedging price of the claim f 1MT>0 for the
ordinary agent.

Because P� Q, it may happen that some events have positive probability
under Q but zero probability under P. As a consequence, the insider does not
need to replicate the claim f on the events which are assigned measure zero (i.e
the event {MT = 0}). Obviously, the price of f for the insider is smaller than the
price of f for the ordinary agent. The theorem allows us to compute exactly the
price for the insider as the price of f 1MT>0 in the view of the ordinary agent. This
transformation is interesting because martingale pricing theory is applicable for
the ordinary agent. Furthermore, optimal hedging strategy for the insider is the
hedging strategy for the ordinary agent with the corresponding claim.

In particular, we provide some meaningful examples when the martingale M
is associated with a predictable stopping time, for example a default time, or a
hitting time of the asset’s volatility. We also comment about fragility/robustness
of arbitrages with respect to small transaction costs or model misspecification.
We show that arbitrages in some of our examples are robust, in contrast to models
satisfying conditions of Guasoni and Rásonyi [2015].

1.5.2 Optimal investment with intermediate consumption un-
der no unbounded profit with bounded risk

Chapter 3, based on joint work with Andrea Cosso, Claudio Fontana and Oleksii
Mostovyi, gives the positive answer to Question 2.

There are some papers which point out that the problem of utility maximiza-
tion from terminal wealth could be studied without relying on the existence of
equivalent local martingale measures. Indeed, Karatzas et al. [1991] studied this
problem in an incomplete Itô process setting under a finite time horizon and es-
tablished a duality theory which does not require the full strength of the NFLVR
condition. In a continuous semimartingale setting, the results of Kramkov and
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Schachermayer [1999] have been extended in Larsen [2009] by weakening the
NFLVR requirement. Finally, in a general semimartingale setting, Larsen and
Žitković [2013] have established a general duality theory for the problem of max-
imizing expected utility from terminal wealth (for a deterministic utility function)
in the presence of trading constraints without the full strength of the NFLVR con-
dition.

As discussed, the condition NUPBR cannot be relaxed in order to solve the
problem of utility maximization, see Proposition 4.19 of Karatzas and Kardaras
[2007]. In this chapter, we show that the key duality relations of the utility maxi-
mization theory hold under the minimal assumptions of NUPBR and of the finite-
ness of both primal and dual value functions. We adopt the setting of Mostovyi
[2015] which allows a stochastic field utility and intermediate consumption oc-
curring according to some stochastic clock in order to include certain classical
problems. The result does not rely on the asymptotic elasticity of the utility.

We fix a stochastic clock κ = (κt)t≥0 which is a nondecreasing, càdlàg adapted
process such that

κ0 = 0, P(κ∞ > 0)> 0 and κ∞ ≤ A, (1.4)

for some finite constant A. The stochastic clock κ represents the notion of time
according to which consumption occurs.

We consider a stochastic utility field U = U(t,ω,x) : [0,∞)×Ω× [0,∞)→
R∪{−∞} satisfying the following assumption (see Assumption 2.1 of Mostovyi
[2015])

Assumption 1.5.2. For every (t,ω) ∈ [0,∞)×Ω, the function x 7→U(t,ω,x) is
strictly concave, strictly increasing, continuously differentiable on (0,∞) and sat-
isfies the Inada conditions

lim
x↓0

U ′(t,ω,x) = +∞ and lim
x→+∞

U ′(t,ω,x) = 0,

with U ′ denoting the partial derivative of U with respect to its third argument.
By continuity, at x = 0 we have that U(t,ω,0) = limx↓0U(t,ω,x) (note this value
may be +∞). Finally, for every x≥ 0, the stochastic process U(·, ·,x) is optional.
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For a given initial capital x > 0, the associated value function is denoted by

u(x) := sup
c∈A (x)

E
[∫

∞

0
U(t,ω,ct)dκt

]
, (1.5)

where c = (ct)t≥0 is a nonnegative optional process representing the consumption
and A (x) is the set of all admissible consumption rates. The stochastic field V
conjugate to U is defined as

V (t,ω,y) := sup
x>0

(
U(t,ω,x)− xy

)
, (t,ω,y) ∈ [0,∞)×Ω× [0,∞).

We define the set of equivalent local martingale deflators (ELMD) as follows:

Z :=
{

Z > 0 : Z is a càdlàg local martingale such that Z0 = 1 and

ZX is a local martingale for every X ∈X
}
.

We also denote

Y (y) := cl
{

Y : Y is càdlàg adapted and

0≤ Y ≤ yZ (dκ⊗P)-a.e. for some Z ∈Z
}
,

where the closure is taken in the topology of convergence in measure (dκ⊗P) on
the space of real-valued optional processes. For y > 0, the value function of the
dual optimization problem is defined as

v(y) := inf
Y∈Y (y)

E
[∫

∞

0
V (t,ω,Yt)dκt

]
. (1.6)

We are now in a position to state the following theorem, which establishes a full
duality theory for a general optimal investment/consumption problem under the
condition NUPBR.

Theorem 1.5.3. Assume that conditions 1.4 and NUPBR hold true and let U be a
utility stochastic field satisfying Assumption 3.2.3. Suppose that

v(y)< ∞ for all y > 0 and u(x)>−∞ for all x > 0. (1.7)

Then the value function u and the dual value function v defined in (3.2) and (3.3),
respectively, satisfy the following properties:

23



Chapter 1.5. Contributions of the thesis

(i) u(x)<∞, for all x> 0, and v(y)>−∞, for all y> 0. Moreover, the functions
u and v are conjugate, i.e.,

v(y) = sup
x>0

(
u(x)− xy

)
, y > 0,

u(x) = inf
y>0

(
v(y)− yx

)
, x > 0;

(ii) the functions u and −v are continuously differentiable on (0,∞), strictly
concave, strictly increasing and satisfy the Inada conditions

u′(0) := lim
x↓0

u′(x) = +∞, −v′(0) := lim
y↓0
− v′(y) = +∞,

u′(∞) := lim
x→+∞

u′(x) = 0, −v′(∞) := lim
y→+∞

− v′(y) = 0.

Moreover, for every x > 0 and y > 0, the solutions ĉ(x) to (3.2) and Ŷ (y) to (3.3)
exist and are unique and, if y = u′(x), we have the dual relations

Ŷt(y)(ω) =U ′
(
t,ω, ĉt(x)(ω)

)
, dκ⊗P-a.e.,

and

E
[∫

∞

0
ĉt(x)Ŷt(y)dκt

]
= xy.

Finally, the dual value function v can be equivalently represented as

v(y) = inf
Z∈Z

E
[∫

∞

0
V (t,ω,yZt)dκt

]
, y > 0. (1.8)

1.5.3 Optimal arbitrage for initial filtration enlargement

Chapter 4, based on joint work with Prof. Peter Tankov and Prof. Wolfgang Rung-
galdier, investigates Question 3. Again, we suppose there are an ordinary agent
and an insider as in Chapter 2. Instead of having different probability measures,
the investors here are assumed to possess different levels of information. The or-
dinary agent chooses investments on the financial market (Ω,F,P,S) while the
insider decides hers on (Ω,G,P,S) where F ⊂ G. We assume that at time zero
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the insider knows the realization of a random variable G which is observed by the
ordinary agent only at the end of trading. This idea is formulated in mathematical
terms by Gt = Ft ∨σ(G) for all t ∈ [0,T ]. To begin, we recall some technical
assumptions.

Assumption 1.5.4. (Jacod’s Condition) For all t ∈ [0,T ), the regular conditional
distribution of G given Ft is absolutely continuous with respect to the law of G,
i.e. we have

P[G ∈ dx|Ft ](ω)� P[G ∈ dx], for all ω ∈Ω. (1.9)

Let (px
t )t∈[0,T ) be the densities extracted from the relation (1.9). Assumption

1.5.4 ensures a F-local martingale remains a G-semimartingales. The process px

plays an important role in the semimartingale decomposition, see in Proposition
4.2.3, and then in theory of initial enlargement of filtration. It is worth to notice
that our setting is different from previous studies in two directions.

First, we do not require the equivalence in (1.9), i.e. we weaken the following
assumption

P[G ∈ dx|Ft ](ω)∼ P[G ∈ dx], for all ω ∈Ω. (1.10)

which is used in most of previous discussion. An important message from the
stronger formulation (1.10) is that there exists a probability measure PG equiv-
alent to P such that under PG the sigma algebra Ft and σ(G) are independent.
Under (1.10), Amendinger [2000] shows martingale representation theorems for
the filtration G and deduce that in complete markets, there can be no free lunch
with vanishing risk and that the insider has no possibilities of exercising arbitrage.
Or in Amendinger et al. [2003a], utility indifference prices of the additional infor-
mation is computed for common utility functions.

Second, we do not even require the relation (1.9) holds at time T . Thus, the
process px is not well-defined at time T and things get much difficult. However,
we cannot avoid this issue in order to cover interesting cases, for example when
the insider knows the value of ST .

The following condition is crucial in our discussion, and its meaning is ex-
plained before Section 4.3.
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Assumption 1.5.5. For every x, the process px does not jump to zero.

We make use of techniques from nonequivalent measure changes and our con-
tributions in this chapter are:

• A representation of the expected log-utility of the insider by duality. It helps
us to explain an observed phenomenon that the insider’s utility is usually
infinite. Furthermore, it leads to a new sufficient condition to check NUPBR
for the insider.

• A tractable formula of superhedging prices for the insider and an explicit
approach for associated strategies even in quite general incomplete market
models with càdlàg semi-martingales. Hence, optimal arbitrage is obtained
in a systematic way.

More precisely, if G is a discrete random variable, the results read as the following.

Theorem 1.5.6. Under Assumption (1.5.5), the (G,P)-market satisfies NUPBR.
The expected log-utility of the insider is

sup
H∈A G

1

EP[logV 1,H
T ] =−

n

∑
i=1

P[G = gi] logP[G = gi],

+
n

∑
i=1

inf
Z∈ELMM(F,P)

EP
[

1G=gi log
1

ZT

]
.

For any claim f ≥ 0, the superhedging price of f for the insider is given by

xG,P
∗ ( f ) =

n

∑
i=1

xF,P∗ ( f 1G=gi)1G=gi,

and the associated hedging strategy on the event {G = gi} is HF,i1G=gi , where
HF,i is the suphedging strategy for f 1G=gi in the (F,P)-market, i.e.

xF,P∗ ( f 1G=gi)1G=gi +(HF,i1G=gi ·S)T ≥ f 1G=gi,P−a.s.

The result leads to some interesting consequences. First, it points out the key
factor which draws the insider’s profit to infinity. That is the additional term,
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involving the entropy of G, which appears in the duality result. In order to get
finite utility, the second term of the RHS (which depends on the market’s structure)
should compensate the first term of the RHS (which depends only on G, not the
market) in the duality relation. The insider’s utility is the sum of the two terms.
This hints at a way to understand the value of initial information: in some markets,
the information is more advantageous rather than in others. Second, superhedging
prices can be computed by tools of the ordinary agents. In this discrete case,
initial enlargement can be viewed as a combination of non-equivalent change of
measures.

The case when G is not a purely atomic is more difficult. We first show that if
the set of all equivalent local martingale measures for regular agents is uniformly
integrable, then the condition NUPBR always fails under G, i.e. the insider has
unbounded profits. Next, we turn to the case where the condition NUPBR holds
for the insider. We then approximate G by a sequence of increasing filtration
(Gn)n∈N so that each Gn is obtained by enlarging F with a discrete random vari-
able. Now, we apply Theorem 1.5.6 to the market with the filtration Gn and take
the limit as n tends to infinity. The main result is reported as follows.

Theorem 1.5.7. Under Assumption 1.5.5, and suppose that NUPBR holds for G,
the expected log-utility in the market with the filtration Gn tends to the expected
log-utility in the market with filtration G

lim
n→∞

sup
H∈A Gn

1

EP[logV 1,H
T ] = sup

H∈A G
1

EP[logV 1,H
T ].

For any claim f ≥ 0, the superhedging price of f in the market with the filtration
Gn tends to the superhedging price of f under G,

lim
n→∞

xG
n,P
∗ ( f ) = xG,P

∗ ( f ) := x∗.
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Chapter 2

Arbitrages arising when agents have
non-equivalent beliefs

Abstract: We construct and study market models admitting optimal arbitrage.
We say that a model admits optimal arbitrage if it is possible, in a zero-interest
rate setting, starting with an initial wealth of 1 and using only positive portfolios,
to superreplicate a constant c > 1. The optimal arbitrage strategy is the strategy
for which this constant has the highest possible value. Our definition of optimal
arbitrage is similar to that in Fernholz and Karatzas [2010], where optimal relative
arbitrage with respect to the market portfolio is studied. In this work we present a
systematic method to construct market models where the optimal arbitrage strat-
egy exists and is known explicitly. We then develop several new examples of
market models with arbitrage, which are based on economic agents views con-
cerning the impossibility of certain events rather than ad hoc constructions. We
also explore the robustness of arbitrage strategies with respect to small perturba-
tions of the price process and provide new examples of arbitrage models which
are robust in this sense.

Key words: optimal arbitrage, no unbounded profits with bounded risk, strict
local martingales, incomplete markets, robustness of arbitrage
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2.1 Introduction

The goal of this study is to propose a new methodology for building models ad-
mitting optimal arbitrage, with an explicit characterization of the optimal arbitrage
strategy. To do so, we start with a probability measure Q under which the NFLVR
condition holds. We then construct a new probability measure P, not equivalent
to Q, under which NFLVR no longer holds but NUBPR is still satisfied. This
procedure is not new and goes back to the construction of the Bessel process by
Delbaen and Schachermayer [1995a]. However, we extend it in two directions.

First, from the theoretical point of view, we provide a characterization of the
superhedging price of a claim under P in terms of the superhedging price of a
related claim under Q. This allows us to characterize the optimal arbitrage profit
under P in terms of the superhedging price under Q, which is much easier to
compute using the equivalent local martingale measures.

Second, from the economic point of view, we provide an economic intuition
for the new arbitrage model as a model implementing the view of the economic
agent concerning the impossibility of certain market events. In other words, if
an economic agent considers that a certain event (such as a sovereign default) is
impossible, but it is actually priced in the market, our method can be used to con-
struct a new model incorporating this arbitrage opportunity, and to compute the
associated optimal arbitrage strategy. Note that the presence of such heteroge-
neous beliefs is compatible with an economic equilibrium, as shown in a recent
paper [Larsson, 2013]. It may of course happen that the economic agent incor-
rectly believes that a certain event is impossible while in reality it has a non-zero
probability. This agent would then see an ’illusory’ arbitrage opportunity in the
market. In this case, the strategies given in this paper will lead to a loss if the
event deemed impossible by the agent is realized.

We then combine these two ideas to develop several new classes of examples
of models with optimal arbitrage, allowing for a clear economic interpretation,
with a special focus on incomplete markets. We also discuss the issue of ro-
bustness of these arbitrages to small transaction costs / small observation errors,
related to the notion of fragility of arbitrage introduced in Guasoni and Rásonyi
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[2015], and show that some of our examples are robust in this sense.
The chapter is organized as follows. In Section 2.2, we state the main assump-

tions and discuss about robustness/fragility of arbitrages. In Section 2.3, optimal
arbitrage profit is introduced and related to a superhedging problem. In Section
2.4, we use an absolutely continuous measure change to build markets with op-
timal arbitrage. Finally, several new examples built using this construction are
gathered in Section 2.5.

2.2 General setting

We recall the general setting in Chapter 1. The financial market consists of a
filtered probability space (Ω,F ,F,P) and a d-dimensional semimartingale S. The
following assumption is forced to be true throughout this chapter.

Assumption 2.2.1. The market satisfies the condition NUPBR under the physical
measure P.

Fragile and robust arbitrages. Assume that one has come up with a model
for the financial market which does not admit an equivalent local martingale mea-
sure and therefore admits unscalable arbitrage opportunities. The next step is to
exploit these unscalable arbitrage opportunities. Here, two situations may arise:

• The arbitrage is robust with respect to small perturbations of the price pro-
cess. This means that even if small market frictions are present, or the prices
are recorded with small observation errors, the arbitrage strategy will still
yield a profit with zero initial investment and no risk.

• The arbitrage is not robust with respect to small perturbations of the price
process. This means that in the presence of transaction costs or observa-
tion errors, however small, the risk-free profit may disappear. The arbitrage
strategy may still be attractive from the practical point of view, as it may
still generate a high profit with low risk, but it is no longer an arbitrage in
the mathematical sense of this word.
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It is clearly important to distinguish between the above two situations, although
both types of trading strategies may be of interest to practitioners. This type of
robustness was studied in Guasoni and Rásonyi [2015] and can be characterized
through the following two definitions.

Definition 2.2.2. For ε > 0, two strictly positive processes S, S̃ are ε-close if

1
1+ ε

≤ S̃t

St
≤ 1+ ε a.s. for all t ∈ [0,T ].

Definition 2.2.3 (Fragility/Robustness). We say that the (P,S)-market with arbi-
trage opportunities is fragile if for every ε > 0 there exists a process S̃, which is
ε-close to S, such that the (P, S̃)-market satisfies NFLVR. If the (P,S)-market is
not fragile we say that it is robust.

[Guasoni and Rásonyi, 2015, Theorems 1 and 2] show that in a diffusion mar-
ket model, if the coefficients of the log-price process are locally bounded, then
the market with arbitrages is fragile. For instance, when we introduce small fric-
tions in the Bessel process example of Delbaen and Schachermayer [1995a], the
arbitrage disappears.

Bender [2012] defines a simple obvious arbitrage as a buy and hold strategy,
which guarantees the investor a profit of at least ε > 0 if the investor trades at all.
It can be shown that if a market admits simple obvious arbitrage strategies, which
are in K (see (1.1)), then the market is always robust. Indeed, assume that there
exists a simple obvious arbitrage, i.e. there is a stopping time σ , an ε > 0 and an
Fσ -measurable random variable H such that P[σ < T ]> 0 and

P

[
{σ < T}∩{ sup

t∈[σ ,T ]
H(St−Sσ )< ε}

]
= 0.

Without loss of generality, one may assume that |HSσ |< N for some N < ∞ (we
do not trade when this condition is not fulfilled). Let S̃ be a process which is
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δ -close to S for some δ > 0. Then, on the event σ < T ,

sup
t∈[σ ,T ]

H(S̃t− S̃σ )

≥ 1H>0 sup
t∈[σ ,T ]

(
HSt

1+δ
−HSσ (1+δ ))+1H≤0 sup

t∈[σ ,T ]
(HSt(1+δ )− HSσ

1+δ
)

≥ 1H>0(
HSσ + ε

1+δ
−HSσ (1+δ ))+1H≤0((HSσ + ε)(1+δ )− HSσ

1+δ
)

≥ ε

1+δ
−2Nδ ≥ ε

2

for δ small enough.

2.3 Optimal arbitrage

It is well known that NFLVR holds if and only if both NUPBR and NA hold,
see Corollary 3.4 and 3.8 of Delbaen and Schachermayer [1994] or Proposition
4.2 of Karatzas and Kardaras [2007]. Moreover, Lemma 3.1 of Delbaen and
Schachermayer [1995b] shows that if NA fails then the market admits an arbitrage
created by a strategy either in A P

0 or in A P
x with x > 0. An arbitrage created by

a strategy H in A P
0 can be freely scaled to obtain the sequence of strategies

(nH) ⊂ A0 which produces arbitrarily large levels of profit. Therefore, from the
economic point of view it makes sense to exclude such scalable arbitrages by
imposing our Assumption 2.2.1. Thus, in our market, it is only possible to exploit
unscalable arbitrages, which are generated by strategies in the set A P

x with x > 0.
For a given line of credit, the gains from such an unscalable arbitrage are limited
and the question of optimal arbitrage profit arises naturally.

Definition 2.3.1. For a fixed time horizon T , we define

U(T ) := sup
{

c > 0 : ∃H ∈A P
1 ,V 1,H

T ≥ c,P−a.s
}
≥ 1.

If U(T )> 1, we call U(T ) optimal arbitrage profit.

The quantity U(T ) is the maximum deterministic amount that one can realize
at time T starting from unit initial capital. Obviously, this value is bounded from
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below by 1. This definition goes back to the paper of Fernholz and Karatzas
[2010]. In diffusion setting, these authors characterize the following value

sup

{
c > 0 : ∃H ∈A P

1 ,V 1,H
T ≥ c

d

∑
i=1

Si
T ,P−a.s.

}
,

which is the highest return that one can achieve relative to the market capitaliza-
tion.

2.3.1 Optimal arbitrage and the superhedging price

Definition 2.3.2. Given a claim f ≥ 0, we define

SPP
+( f ) := inf

{
x≥ 0 : ∃H ∈A P

x ,V x,H
T ≥ f ,P−a.s

}
,

that is the minimal amount starting from which one can superhedge f by a non-
negative wealth process.

Let us compare this definition with the usual definition of the superhedging
price found in the literature. The superhedging price of a given claim f is com-
monly defined using wealth processes which may be negative but are uniformly
bounded from below:

SPP( f ) := inf
{

x≥ 0 : ∃H ∈A P,V x,H
T ≥ f ,P−a.s

}
.

Clearly,

SPP( f )≤ SPP
+( f ). (2.1)

In markets that satisfy NA, SPP
+( f ) = SPP( f ). Indeed, if NA holds, for every

admissible integrand H we have ‖(H ·S)−t ‖∞≤‖(H ·S)−T ‖∞, see Proposition 3.5 in
Delbaen and Schachermayer [1994]. If x+(H ·S)T ≥ f then (H ·S)T ≥ f −x≥−x
so that ‖(H · S)−T ‖∞ ≤ x. This implies that ‖(H · S)−t ‖∞ ≤ x or (H · S)t ≥ −x, for
all t ∈ [0,T ].

On the other hand, in our market model with arbitrage, the inequality in (2.1)
may be strict. The difference between the two superhedging prices is discussed in
Khasanov [2013].

The following lemma is simple but useful to our problem.
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Lemma 2.3.3. U(T ) = 1/SPP
+(1).

Proof. Take any c > 0 such that there exists a strategy H which satisfies

• V 1,H
T = 1+(H ·S)T ≥ c,P−a.s.

• (H ·S)t ≥−1 for all 0≤ t ≤ T .

Scaling this strategy by a factor 1/c, we get an admissible strategy allowing to
superhedge 1 at cost 1/c, which shows that

U(T )≤ 1
SPP

+(1)
.

The converse inequality can be proved by the same argument.

The above lemma has two consequences. First, the knowledge of SPP
+(1) is

enough to find optimal arbitrage profit. Second, one should find the strategy to
superhedge 1 in order to realize optimal arbitrage.

Obviously, SPP
+(1)≤ 1. If SPP

+(1)< 1, there is optimal arbitrage. If SPP
+(1) =

1, optimal arbitrage does not exist, but arbitrages may still exist. In Example 9 of
Ruf [2011], the cheapest price to hold 1 is 1, but we can achieve a terminal wealth
larger than 1 with positive probability.

Remark 2.3.4. Under the NUPBR assumption, it is necessary that SPP
+(1) > 0.

Indeed, let x be a nonnegative number and assume that we can find a strategy
H ∈A P

x such that
x+(H ·S)T ≥ 1, P−a.s..

Multiplying both sides of the above inequality with an ELMD Z and using its
supermartingale property, we have that

x≥ E [ZT (x+(H ·S)T )]≥ E[ZT ]> 0.

The last inequality is due to the fact that ZT > 0,P− a.s.. Therefore, SPP
+(1) ≥

E[ZT ]> 0.
Furthermore, Khasanov [2013] shows that SPP

+(1) = supZ E[ZT ], where the
sup is taken over all ELMD. However, if we do not restrict ourselves to nonneg-
ative wealth processes, it may be possible to superhedge 1 at zero price, that is,
SPP(1) may be equal to zero.
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2.4 Constructing market models with optimal arbi-
trage

In this section we present a construction of market models with optimal arbitrage.
It works by starting with a probability measure Q under which the price process
satisfies NFLVR and making a non-equivalent measure change to construct a new
measure P allowing for arbitrage. Arbitrage opportunities constructed with an
absolutely continuous measure change have been studied in earlier works. The
first example of this kind of technique is the Bessel model, which is given in Del-
baen and Schachermayer [1995a]. This technique is generalized in Osterrieder
and Rheinländer [2006] and Ruf and Runggaldier [2013]. The same idea is used
in Kardaras et al. [2015], Pal and Protter [2010] for the construction of strict local
martingales. However, we push this idea further by characterizing the superhedg-
ing price under P in terms of the superhedging price under Q, which enables us to
describe optimal arbitrages as well as the corresponding optimal strategy (under
P).

2.4.1 A construction based on a nonnegative martingale

Let Q be a probability measure on the filtered measure space
(
Ω,F ,(Ft)t≥0

)
described in the beginning of Section 2.2, and assume that under Q, the following
are true:

• The risky asset process S satisfies NFLVR.

• There exists a nonnegative RCLL martingale M with M0 = 1,

Q[τ ≤ T ]> 0 and Q[{τ ≤ T}∩{Mτ− > 0}] = 0, (2.2)

where τ := inf{t ≥ 0 : Mt = 0} with the convention that inf /0 =+∞.

Since M is right-continuous, condition (2.2) means that M may only hit zero con-
tinuously on [0,T ]. Using M as a Radon-Nikodym derivative, we define a new
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probability measure via
dP
dQ

∣∣∣
Ft

:= Mt .

Then P is only absolutely continuous (but not equivalent) with respect to Q. In
fact, M can reach zero under Q but it is always positive under P (up to negligible
set), because P[τ ≤ T ] = EQ[MT 1τ≤T ] = 0.

Theorem 2.4.1. Assume that the (Q,S)-market satisfies the condition NFLVR
and the condition (2.2) holds true. Then the (P,S)-market satisfies the condition
NUPBR, and for any FT -measurable claim f ≥ 0, we have

SPP
+( f ) = SPQ

+ ( f 1MT>0).

Corollary 2.4.2. Denote by ELMM(Q,S) the set of all equivalent local martin-
gale measures for the (Q,S)-market. Under the assumptions of the theorem let

sup
Q∈ELMM(Q,S)

EQ[1MT>0]< 1. (2.3)

Then the (P,S)-market admits optimal arbitrage and the optimal arbitrage strat-
egy is a multiple of the superhedging strategy of the claim 1MT>0 in the (Q,S)-
market, as shown in the proof of Lemma 2.3.3. The existence of the hedging strat-
egy for the claim 1MT>0 starting from the capital in (2.3) is given in Corollary 10
of Delbaen and Schachermayer [1995c].

Proof. By the standard super-replication theorem under absence of arbitrage (The-
orem 5.12 of Delbaen and Schachermayer [1998]) ,

SPQ
+ (1MT>0) = SPQ(1MT>0) = sup

Q∈ELMM(Q,S)
EQ[1MT > 0].

The first equality is due to the fact that NA holds with respect to Q. The optimal
arbitrage strategy is given as in Lemma 2.3.3.

Remark 2.4.3. The condition (2.3) is exactly the condition introduced in Propo-
sition 2.8 of Osterrieder and Rheinländer [2006] in order to obtain an arbitrage
opportunity under the new measure. However, our approach not only allows us to
show the existence of arbitrage opportunities, but also of an optimal arbitrage.
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Proof of Theorem 2.4.1. Let Q be a local martingale measure equivalent to Q, and
denote by Z its density with respect to Q.
Step 1: we prove that the (P,S)-market satisfies NUPBR by showing that Z/M is
an ELMD. The strategy of this step of the proof is similar to the proof of Theorem
5.3 in Fontana [2014]; for an analogous result, see also Proposition 2.3 of Carr
et al. [2014].

We define
τn := inf{t ≥ 0 : Mt <

1
n
}

with the convention inf /0 = +∞. Since, by condition (2.2), M does not jump to
zero, we have that Mt∧τn > 0 ∀t ≥ 0 Q-a.s.

We remark that Q� P on Ft∧τn . Indeed, take any A∈Ft∧τn such that P(A) =
0, we compute

Q[A] = EQ
[

1A
Mt∧τn

Mt∧τn

]
= EP

[
1A

1
Mt∧τn

]
= 0.

This means P is equivalent to Q on Ft∧τn .
By Corollary 3.10, page 168 of Jacod and Shiryaev [2002], to prove that a

process N is a P-local martingale with localizing sequence (τn), we need to prove
that (NM)τn is a Q-local martingale for every n≥ 1.

Let V be a P-admissible wealth process. Since P and Q are equivalent on
Ft∧τn , we obtain that V τn is a Q-admissible wealth process. Therefore, for each
n, we have that ZV τn and so also (ZV )τn is a Q-local martingale. This shows that
ZV
M is a local martingale under P.

Step 2: we prove the equality SPP
+( f ) = SPQ

+ ( f 1MT>0).

(≤) Take any x > 0 such that there exists a strategy H ∈A Q
x which satisfies VT =

x+(H · S)T ≥ f 1MT>0,Q− a.s. Since P� Q, Theorem 25, page 170 of Protter
[2003] shows that H ∈ L(S) under P as well and HQ ·S = HP ·S,P−a.s.. We also
see that x+ (H · S)t ≥ 0,P− a.s and x+ (H · S)T ≥ f 1MT>0 = f ,P− a.s. This
means that

SPP
+( f )≤ SPQ

+ ( f 1MT>0). (2.4)

(≥) For the converse inequality, take any x > 0 such that there exists a strategy
H ∈A P

x and VP
T = x+(H ·S)T ≥ f ,P−a.s. We will show that x≥ SPQ

+ ( f 1MT>0).
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Define Hn := H1t≤τn , then Hn is S-integrable and x-admissible under Q. From
Step 1, we see that τn ∧T ↗ T , P-a.s. and therefore V n

T := x+(Hn · S)T → VP
T ,

P-a.s. or V n
T 1MT>0 → VP

T 1MT>0 ≥ f 1MT>0, Q-a.s. The following convergence
holds

V n
T −V n

T 1MT=0 =V n
T 1MT>0→VP

T 1MT>0 ≥ f 1MT>0,Q−a.s.

The sequence V n
T − x−V n

T 1MT=0 = (Hn · S)T −V n
T 1MT>0 is in the set K − L0

+

(under Q) and uniformly bounded from below by −x. Because the (Q,S)-market
satisfies NFLVR condition, the set K −L0

+ is Fatou-closed (see Theorem 3.1 of
Kabanov [1997]) and we obtain VP

T 1MT>0−x ∈K −L0
+ or x≥ SPQ

+ ( f 1MT>0). In
other words,

SPP
+( f )≥ SPQ

+ ( f 1MT>0). (2.5)

From (2.4) and (2.5), the proof is complete.

Remark 2.4.4. If the martingale used to construct the probability measure P does
not satisfy condition (2.2), that is, may reach zero by a jump, the NUPBR property
may or may not hold under the measure P. More precisely, it is shown in Propo-
sition 5.4 of Fontana [2014] that when the martingale M with the predictable
representation property under Q is the price process itself, that is, Mt = St for
all t, the failure of the condition (2.2) implies that the condition NUPBR is not
satisfied under P. On the other hand, one can construct examples when M jumps
to zero yet the NUPBR property holds in the P-market. A trivial example of this
situation is when M and S are Q-independent. Another example (where M = S)
might be constructed in the spirit of Example 4.7 of Fisher et al. [2015] by com-
bining a Brownian motion with an independent jump. We leave a detailed study
of this question for further research.

Remark 2.4.5 (A connection with Föllmer’s exit measure for local martingales).
A number of authors [Carr et al., 2014; Delbaen and Schachermayer, 1995a;
Fernholz and Karatzas, 2010; Pal and Protter, 2010] analyze financial models
based on strict local martingales using Föllmer’s exit measure for supermartin-
gales [Föllmer, 1972; Meyer, 1972]. In particular, given a nonnegative local
martingale X under the measure P, there exists, under certain assumptions, a
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unique measure Q, such that 1/X is the density of P with respect to Q, and X
explodes under Q in finite time if and only if it is P-strict local martingale.

In the framework of Theorem 2.4.1, let Z be the density of an equivalent local
martingale measure. Then, as shown in the proof of this theorem, Z

M is a local
martingale under P and therefore, the equivalent martingale measure Q is the
Föllmer’s exit measure for ( Z

M ,P). In particular, Z/M is a true martingale under
P if and only if Q[MT/ZT = 0] = 0, in other words, M does not hit zero under the
original measure Q. Under our assumption Q[τ ≤ T ] > 0, therefore, Z/M is a
strict local martingale deflator for every ELMM Q.

If one assumes that ELMM(Q,S) is a singleton (contains only one measure
Q), then optimal arbitrage exists if and only if Q[MT > 0] < 1, or, equivalently,
Q[MT = 0]> 0. Therefore, in this context, optimal arbitrage exists whenever Z/M
is not a true martingale under P; in other words, either NFLVR holds under P or
there is an optimal arbitrage.

It is also possible to turn the construction around, that is, start with the prob-
ability P under which the financial market satisfies NUPBR and admits a strict
local martingale deflator M, and construct a “generalized martingale measure”
as the Föllmer’s exit measure for (1/M,P). This approach, which is taken for
example in Fernholz and Karatzas [2010], yields the optimal arbitrage profit di-
rectly in terms of Föllmer’s exit measure. However, this representation depends
crucially on the martingale representation property (Assumption A in Fernholz
and Karatzas [2010]); in our incomplete market setting one would have to con-
sider Föllmer’s exit measure with respect to every possible local martingale de-
flator, which makes this approach less appealing in general. It’s remarked that
in continuous Markovian models, this approach is still useful because only one
deflator has to be checked, even if the model is incomplete, see Proposition 3.1 of
Ruf [2013].

2.4.2 A construction based on a predictable stopping time

As before, we consider a measure Q on the space (Ω,F ,(F )t≥0). Let σ be a
stopping time such that Q(σ > T ) > 0. We define a new probability measure,
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absolutely continuous with respect to Q, by

dP
dQ

∣∣∣∣
Ft

=
Q [σ > T |Ft ]

Q [σ > T ]
= Mt . (2.6)

Under the new measure, P(σ > T ) = EQ (MT 1σ>T ) = 1.

This construction has the following economic interpretation. Consider an
event (E), such as the default of a company or a sovereign state, whose occur-
rence is characterized by a stopping time σ . Given a planning horizon T , we are
interested in the occurrence of this event (E) before the planning horizon. Sup-
pose that the market agents have common anticipations of the probability of future
scenarios, which correspond to the arbitrage-free probability measure Q, and that
under this probability, the event (E) has nonzero probabilities of occurring both
before and after the planning horizon. Consider now an informed economic agent
who believes that the event (E) will not happen before the planning horizon T . For
instance, the agent may believe that the company or the state in question will be
bailed out in case of potential default. Our informed agent may then want to con-
struct an alternative model P, in which the arbitrage opportunity due to mispricing
may be exploited and the arbitrage strategy may be constructed in a rigorous man-
ner.1 The following corollary provides a method for constructing such a model.

Corollary 2.4.6. Assume that the following conditions hold

• The risky asset process S satisfies NFLVR under Q.

• The filtration F is quasi-left continuous.

• σ is a predictable stopping time such that for any stopping time θ ,

EQ [1σ>T |Fθ ]> 0,Q−a.s. on {σ > θ} .
1The “informed agent” interpretation of our arbitrage construction hints at possible connections

with the research on arbitrage opportunities arising from enlargement of the underlying filtration
with additional information, see e.g. Fontana et al. [2014]; Imkeller et al. [2001] and section 7 of
Larsson et al. [2014] as well as the discussion at the end of Section 2.5.1 of the present chapter.
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Then the (P,S)-market satisfies NUPBR. Given a FT -measurable claim f ≥ 0,
we have

SPP
+( f ) = SPQ

+ ( f 1σ>T ).

In addition, if
SPQ

+ (1σ>T ) = sup
Q∈ELMM(Q,S)

EQ[1σ>T ]< 1,

then the (P,S)-market admits optimal arbitrage.

Proof. This result will follow from Theorem 2.4.1 after checking the condition
(2.2) on M. Let τ = inf{t > 0 : Mt = 0}. By construction, Mσ = 0 on {σ ≤ T}
and Mt > 0 for t < σ . This means that

τ =

{
σ , σ ≤ T

+∞, otherwise.

Since the filtration F is quasi left continuous and σ is a predictable stopping time,
M does not jump at σ (see Protter [2003], page 190). This means that

Q[{τ ≤ T}∩{Mτ− > 0}] = 0

and condition (2.2) is satisfied.

2.5 Examples

2.5.1 A complete market example

Let WQ be a Brownian motion and let F be its natural filtration. We assume that
the price of a risky asset evolves as follows

St = 1+WQ
t

and define a predictable stopping time by σ = inf{t > 0 : St ≤ 0}. Using the law
of infimum of Brownian motion, we get

Q[σ > T ] =Q[ inf
0≤t≤T

WQ
t >−1] = 1−2N

(
− 1√

T

)
> 0,
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where N denotes the standard normal distribution function.

Next, by the Markov property we compute

EQ[1σ>T |Ft ] =Q[ inf
0≤t≤T

WQ
t >−1|Ft ] =

{
0 on σ ≤ t

1−2N
(
− St√

T−t

)
> 0 on σ > t.

(2.7)

Hence, on {σ > t}, we obtain EQ[1σ>T |Ft ]> 0. This means that the construction
of Section 2.4.2 applies and we may define a new measure P via (2.6). Since the
(Q,S)-market is complete and ELMM(Q,S) = {Q}, the superhedging price of the
claim 1σ>T is

Q[σ > T ] = 1−2N

(
− 1√

T

)
< 1,

which means that the P-market admits optimal arbitrage.

Applying the Itô formula to (2.7), we get the martingale representation:

EQ[1σ>T |Ft ] =Q[σ > T ]+

√
2
π

σ∧t∫
0

1√
T − s

e−
S2
s

2(T−s) dWQ
s . (2.8)

Therefore,

Ht =

√
2
π

1√
T − t

e−
S2
t

2(T−t) 1t≤σ

is the optimal arbitrage strategy, that is, the hedging strategy for 1σ>T in the
(Q,S)-market as well as the hedging strategy for 1 in the (P,S)-market.

Let us now compute the dynamics of S under P. By Girsanov’s Theorem (see,
e.g., Theorem 41 on page 136 of Protter [2003]),

WP
t =WQ

t −
2

Q[σ > T ]
√

2π

σ∧t∫
0

1
Ms

e−
S2
s

2(T−s)
1√

T − s
ds
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is a P-Brownian motion. The dynamics of S under P are therefore given by

St = 1+WP
t +

2
Q[σ > T ]

√
2π

σ∧t∫
0

e−
S2
s

2(T−s)

Ms
√

T − s
ds (2.9)

= 1+WP
t +

√
2
π

σ∧t∫
0

1

1−2N
(
− Ss√

T−s

) e−
S2
s

2(T−s)

√
T − s

ds (2.10)

Fragility and robustness Now, let us discuss the robustness of the (P,S)-market
in this example in the sense of Guasoni and Rásonyi [2015]. The optimal arbitrage
constructed using the predictable stopping time σ = inf{t > 0 : St ≤ 0} is not ro-
bust. Indeed, from (2.9) we can write the dynamics of Xt := logSt as follows

dXt = e−Xt dWP
t +

[
2

Q[σ > T ]
√

2π
e−Xt

1
Mt

e−
S2
t

2(T−t)
1√

T − t
− 1

2
e−2Xt

]
dt (2.11)

Since in (2.11), the drift is locally bounded and the volatility is continuous and
nonsingular, by Theorem 2 of Guasoni and Rásonyi [2015], we conclude that the
(P,S)-market is fragile.

However, we can slightly modify the stopping time σ to construct an arbitrage
which is not destroyed by small perturbations of the price process as above. More
precisely, we choose the predictable stopping time σ as the first time when St hits
a line with positive slope, that is

σ = inf{t ≥ 0 : St ≤ αt}

with α > 0. By Proposition 3.2.1.1 in Jeanblanc et al. [2009],

Q[σ > T ] =Q
[

inf
0≤t≤T

(WQ
t −αt)>−1

]
= N

(
1−αT√

T

)
− e2αN

(
−1−αT√

T

)
∈ (0,1),

and we can define a measure P admitting optimal arbitrage via (2.6). We are
going to compute the dynamics of logS in this case and compare to the results of
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Guasoni and Rásonyi [2015]. By the Markov property and the law of infimum of
Brownian motion with drift, we compute the conditional probability

EQ[1σ>T |Ft ] =

{
0 if σ ≤ t

N
(

St−αT√
T−t

)
− e2α(St−αt)N

(
−St+2αt−αT√

T−t

)
if σ > t.

Denoting

Y 1
t =

St−αT√
T − t

, Y 2
t =
−St +2αt−αT√

T − t
and applying the Itô formula, we obtain the dynamics of the conditional law on
σ < t:

dEQ[1σ>T |Ft ] =

 1√
2π

e−
(Y 1

t )2

2
√

T − t
+

e2α(St−αt)
√

2π

e−
(Y 2

t )2

2
√

T − t
−N (Y 2

t )2αe2α(St−αt)

dWQ
t ,

and the dynamics of Mt :

dMt =
1

Q[σ > T ]

 1√
2π

e−
(Y 1

t )2

2
√

T − t
+

e2α(St−αt)
√

2π

e−
(Y 2

t )2

2
√

T − t
−N (Y 2

t )2αe2α(St−αt)

dWQ
t .

By Girsanov’s Theorem,

dWP
t = dWQ

t −
1

MtQ[σ > T ]

 1√
2π

e−
(Y 1

t )2

2
√

T − t
+

e2α(St−αt)
√

2π

e−
(Y 2

t )2

2
√

T − t
−N (Y 2

t )2αe2α(St−αt)

dt

is a P-Brownian motion. Finally, the dynamic of S under P is

dSt = dWP
t +

1
MtQ[σ > T ]

 1√
2π

e−
(Y 1

t )2

2
√

T − t
+

e2α(St−αt)
√

2π

e−
(Y 2

t )2

2
√

T − t
−N (Y 2

t )2αe2α(St−αt)

dt.

Applying Itô’s formula once again, we see that Xt = logSt satisfies

dXt = e−Xt dSt−
1
2

e−2Xt dt

=
e−Xt

MtQ[σ > T ]

 1√
2π

e−
(Y 1

t )2

2
√

T − t
+

e2α(St−αt)
√

2π

e−
(Y 2

t )2

2
√

T − t
−N (Y 2

t )2αe2α(St−αt)

dt

− 1
2

e−2Xt dt + e−Xt dWP
t . (2.12)
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The drift in (2.12) can be written as a function of (t,Xt), and it is not locally
bounded, for example, 1/M is unbounded in a neighborhood of (t, log(αt)). So
the result of Guasoni and Rásonyi [2015] breaks down. Hence, Theorem 2 of
Guasoni and Rásonyi [2015] cannot be applied.

It is easy to see that ST > αT , P-a.s. This allows to construct a simple buy-
and-hold arbitrage strategy.

• If αT > 1, buy one unit of S in the beginning and hold it until T . This
strategy yields a profit of αT −1 with probability 1.

• If αT ≤ 1, introduce the stopping time σ1 := inf{t > 0 : St =
αT
2 }. If σ1≤ T

2 ,
buy one unit of S at σ1 and hold it until T . Otherwise, do nothing. It is easy
to see that P[σ1 ≤ T/2] =Q[σ1 ≤ T/2,σ > T ]> 0, which means that this
strategy yields a profit ST −Sσ1 ≥ αT

2 with positive probability.

This strategy is always admissible and a simple obvious arbitrage in the sense of
Bender [2012], which means that the market is robust and not fragile (see discus-
sion at the end of section 2.2). Note however that the strategy which realizes the
optimal arbitrage is different from the robust buy-and-hold strategy. This means
that the profit from the strategy which realizes the optimal arbitrage may decrease
or even disappear after a small perturbation of the price process.

A connection with initial enlargement of filtrations. Let us consider again
the case σ = inf{t > 0 : St ≤ 0}. The ability to know that the asset is always
nonnegative under Q is similar to the knowledge of the FT -measurable random
variable L := 1inf0≤t≤T St>0 = 1σ>T at the beginning of trading. Motivated by this
observation, we investigate the enlarged market (Ω,G ,G,Q) where Gt = Ft ∨
σ(L).

Because L is a discrete random variable, Jacod’s condition is fulfilled and ev-
ery (F,Q)-semimartingale is also a (G,Q)-semimartingale, see for example The-
orem 10, page 363 of Protter [2003]. The conditional probability of the event
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{L = 1} given Ft is exactly given by (2.7). We define

p1
t :=

Q[σ > T |Ft ]

Q[σ > T ]
=

1σ>t

Q[σ > T ]

(
1−2N

(
− St√

T − t

))
,

p0
t :=

Q[σ ≤ T |Ft ]

Q[σ ≤ T ]
=

1σ>t

Q[σ ≤ T ]
2N

(
− St√

T − t

)
+

1σ≤t

Q[σ ≤ T ]
.

Using (2.8), we get

p1
t = 1+

1
Q[σ > T ]

√
2
π

σ∧t∫
0

1√
T − s

e−
S2
s

2(T−s) dWQ
s , (2.13)

p0
t = 1− 1

Q[σ ≤ T ]

√
2
π

σ∧t∫
0

1√
T − s

e−
S2
s

2(T−s) dWQ
s , (2.14)

and then pL
t = p1

t 1σ>T + p0
t 1σ≤T . Because WF,Q is a (F,Q)-martingale, we have

that

WG,Q
t =WF,Q

t −
t∫

0

d
〈

pL,WF,Q〉
s

pL
s

=WF,Q
t −1σ>T

t∫
0

1
p1

s

1
Q[σ > T ]

√
2
π

1√
T − s

e−
S2
s

2(T−s) ds

+1σ≤T

t∧σ∫
0

1
p0

t

1
Q[σ ≤ T ]

√
2
π

1√
T − s

e−
S2
s

2(T−s) ds

is a (G,Q)-martingale. To simplify notations, we denote

µ
G
t := 1σ>T

1
p1

s

1
Q[σ > T ]

√
2
π

1√
T − s

e−
S2
s

2(T−s)

−1σ≤T 1t≤σ

1
p0

t

1
Q[σ ≤ T ]

√
2
π

1√
T − s

e−
S2
s

2(T−s) .

The process µG is called the information drift corresponding to the insider infor-
mation G, see for example Imkeller [2003]. Thus, the evolution of S under the
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filtration G follows easily

SGt = 1+WG,Q
t −

t∫
0

µ
G
s ds. (2.15)

Let us make some comments. In this example, the initial enlargement of filtra-
tions argument can be interpreted as a combination of two absolutely continuous
measure changes.

• The martingale M used for the absolutely continuous change of measure in
(2.6) is exactly the density process pL in Jacod’s condition when restricted
on 1σ>T in (2.13).

• The evolutions for the asset price S in (2.9) and in (2.15) are the same,
although they are defined on different probability spaces: (F,P) and (G,Q),
respectively.

• The superhedging price of 1 can be found on each event {σ > T} and {σ ≤
T} separately . From (2.13) and (2.14) we have that

1 = 1σ>T

Q[σ > T ]+

√
2
π

σ∧t∫
0

1√
T − s

e−
S2
s

2(T−s) dSs


+1σ≤T

Q[σ ≤ T ]−
√

2
π

σ∧t∫
0

1√
T − s

e−
S2
s

2(T−s) dSs

 .

2.5.2 A robust arbitrage based on the Poisson process

Another way to ensure robustness of arbitrage with respect to small perturbations
is to introduce jumps into the price process dynamics. Let N be a standard Pois-
son process under Q and assume that F = FN , which is a quasi left-continuous
filtration. Then St = 1+Nt − t is a Q-martingale. We define a predictable stop-
ping time τ = inf{t > 0 : St ≤ 0} and a new probability measure P � Q via
dP|Ft = St∧τdQ|Ft . The (P,S)-market admits optimal arbitrage provided T > 1,
because in this case SPQ(1ST>0) =Q[ST > 0]< 1.
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Here, unlike the first example of this section or the Bessel process example
discussed in Guasoni and Rásonyi [2015], we can prove that the arbitrage is ro-
bust. Indeed, we fix a real number ε > 0 and construct a simple buy-and-hold
arbitrage strategy as follows:

• if S jumps on [0,ε] then we do nothing.

• if S does not jump on [0,ε], we buy one unit of S at ε and hold it until the
first jump time of S.

Assuming that 1 < T /∈ N , the process N must jump before T , because St > 0,P-
a.s. This means that this strategy generates a profit greater than ε with positive
probability. Therefore, this is a simple obvious arbitrage in the sense of Bender
[2012], and so the (P,S)-market is robust (see discussion at the end of section
2.2).

Let us compute the investment strategy realizing the optimal arbitrage in this
example. First, we have

Q[ST > 0|Ft ] =Q[NT −Nt > T −1−Nt |Nt ] = ∑
k≥0

(T − t)ket−T

k!
1k>T−1−Nt

Applying the Itô formula to the right hand side, we get:

Q[ST > 0|Ft ] =Q[ST > 0]−
∫ t

0
∑
k≥0

(T − s)kes−T

k!
1k+1>T−1−Ns≥kds

+ ∑
0≤s≤t:∆Ns 6=0

∑
k≥0

(T − t)ket−T

k!
1k+1>T−1−Ns−≥k

=Q[ST > 0]+
∫ t

0

(T − s)[T−1−Ns−]es−T

[T −1−Ns−]!
1T−1−Ns−≥0(dNs−ds).

Therefore, the investment strategy realizing the optimal arbitrage profit in this
case consists in investing the amount

Ht =
(T − t)[T−1−Nt−]et−T

[T −1−Nt−]!
1T−1−Nt−≥0
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into the risky asset at every date t ∈ [0,T ]. This strategy is not buy-and-hold, but
it is of finite variation, which means that a small perturbation of the price process
will correspond to a small modification of the arbitrage gain, showing that not
only the mere presence of the arbitrage is robust to frictions, but also the strategy
realizing the optimal arbitrage is robust.

The optimal wealth. In this example, the optimal wealth process can be com-
puted explicitly. By Markov property, we have

EQ [1τ>T |Ft ] = Q [St +Ns−λ s > 0,0≤ s≤ T − t] := h(t,St) .

Next, we denote τx = inf{t > 0 : Nt ≤−x+λ t} and the quantity h(t,x) becomes
Q [τx > T − t]. We observe that τx is a discrete random variable with values in{ x

λ
, x+1

λ
, ...
}

and its distribution is given below,

Q
[
τx =

x
λ

]
= Q

[
N x

λ
= 0
]
= e−λ

x
λ = e−x,

Q
[

τx =
x+1

λ

]
= Q

[
Nx+1

λ

= 1,N x
λ
= 1
]

= Q
[

Nx+1
λ

−N x
λ
= 0
∣∣∣N x

λ
= 1
]

Q
[
N x

λ
= 1
]

= Q
[
N 1

λ

= 0
]

Q
[
N x

λ
= 1
]
= e−λ

1
λ e−λ

x
λ λ

x
λ
= xe−x−1, ...

Remark 2.5.1. Arbitrage opportunities can be exploited by a differential-difference
equation. We consider the following function

h(t,x) = EQ [1{x+NT−t−λ (T−t)≥0}
]
=

∞

∑
k=0

e−λ (T−t) (λ (T − t))k

k!
1{x+k−λ (T−t)≥0}.

The function h is not continuous on the lines x+ k−λ (T − t) = 0. Outside these
lines, h is differentiable. The equation for h is

∂h
∂ t
− ∂h

∂x
λ +{h(t,x+1)−h(t,x)}λ = 0

h(T,x) = 1x≥0.
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We assume 1 < λT /∈ N to ensure that the trajectories (t,St) never lie on the
discontinuous lines of h, then we can apply Itô’s formula to h(t,St)

dh(t,St) =
∂h
∂ t

dt− ∂h
∂x1

λdt +{h(t,St)−h(t,St−)}dNt

= {h(t,St−+1)−h(t,St−)}(dNt−λdt) .

If we start with the initial money h(0,1) = Q [1+NT −λT ≥ 0]< 1 and hold the
amount of h(t,St−+1)−h(t,St−) on the risky asset, we will obtain the outcome
h(T,ST ) = 1 at terminal time T . However this arbitrage is not optimal.

2.5.3 Extension to incomplete markets

Assume that S is a nonnegative Q local martingale with only positive jumps start-
ing at 1. Suppose that the conditions in Corollary 2.4.6 are fulfilled.

Let a be a positive number such that aT/2 > 1 and define a predictable stop-
ping time by σ = inf{t > 0 : St ≤ at}. Suppose that market agents commonly
describe S in a way such that it can go below the line αt, for example 0 < Q[τ <

T ] < 1. Nevertheless, a trader believes this phenomena does not occur. He will
modify the common perspective by introducing his measure The measure P is
defined by

dP
dQ

∣∣∣∣
Ft

=
Q [σ > T |Ft ]

Q [σ > T ]
.

In his point of view, S is always above the line αt because P[τ = T ] = 1. From
the economic point of view, this arbitrage represents a bet that the asset price will
remain above the line αt. Then for any equivalent local martingale measure Q
such that S is a nonnegative Q local martingale, we have

Q[σ ≤ T ]≥Q[ST/2 ≤ aT/2] = 1−Q[ST/2 > aT/2]

≥ 1−
EQ[ST/2]

aT/2
≥ 1− 1

aT/2
.

The superhedging price is SPQ(1σ>T ) = supQQ[σ > T ] ≤ 1
aT/2 < 1. Therefore,

the (P,S)-market admits optimal arbitrage. Since ST > aT > 2,P−a.s., the pres-
ence of arbitrage is robust with respect to small perturbations of S.
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2.5.4 A variation: building an arbitrage from a bubble

Let S be a nonnegative Q local martingale with no positive jumps, satisfying S0 =
1 and St ≤ ε < 1, Q-a.s for t ≥ T . Because the process S is a strict local martingale
under Q (its expectation at time T is less than 1), the market admits a bubble.

We define σ = inf{t ≥ 0 : St > K} for K > 1. In this example, a trader believes
that the price of S may not exceed an upper bound K. As in previous examples, this
trader may construct an arbitrage model P as in (2.6), provided that the conditions
in Corollary 2.4.6 are fulfilled. Under any ELMM Q, Sσ∧t is a bounded Q local
martingale and hence a Q martingale. So we get

1 = EQ[Sσ∧T ] = KQ[σ ≤ T ]+EQ[ST 1σ>T ],

and therefore

Q[σ ≤ T ] =
1−EQ[ST 1σ>T ]

K
>

1− ε

K
.

The superhedging price of 1σ>T is

sup
Q∈ELMM(Q,S)

EQ[1σ>T ]< 1− 1− ε

K
< 1.

2.5.5 A joint bet on an asset and its volatility

Let S and ξ be continuous Itô processes with dynamics,

dSt = ξtdWQ
t , S0 = 1,

dξt = a(t,ξt)ξtdt +b(t,ξt)ξtdWQ
t ,

where (WQ,WQ
) is a standard two-dimensional Brownian motion and the coef-

ficients a and b are such that the equation for ξ admits a strong solution and in
addition

K−1 < b(t,x)< K and a(t,x)< K

for all t, all x > 0 and some constant K > 1. We assume that the filtration F =

(Ft)0≤t≤T is given by Ft = FWQ
t ∨FWQ

t .
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Let ξ < ξ0 and define stopping times as follows:

σ1 := inf{t > 0 : St ≤ 0}, σ2 := inf{t > 0 : ξt ≤ ξ}, σ = σ1∧σ2.

This choice of the stopping time represents a bet that S will not hit 0 and its
volatility will stay above ξ up to time T .

Let us check the conditions in Corollary 2.4.6. Given that S and ξ are contin-
uous, the only nontrivial part is to show that for every stopping time θ ∈ [0,T ],

Q[σ > T |Fθ ] =Q[σ1 > T ,σ2 > T |Fθ ]> 0 (2.16)

on {σ > θ}.
By Theorem 3.2 in Pakkanen [2010], logξ has the FWQ

-conditional full sup-
port property, which implies (by Lemma 2.1 in the above reference), that the prob-
ability that logξ stays in a small ball around any continuous function between time
t and time T , conditional on FWQ

t is strictly positive. This in turn means that

Q[σ2 > T |FWQ

θ ]> 0

on {σ2 > θ}. Since WQ is independent from ξ , by Theorem 3.1 in the above ref-
erence, S has the conditional full support property also with respect to the filtration
Ft ∨σ(ξs,0≤ s≤ T ), i.e.

Q[σ1 > T |Fθ ∨σ(ξs,0≤ s≤ T )]> 0

on {σ > θ}. Together with the full support property of logξ , this implies (2.16),
i.e. on {σ > θ}

Q[σ1 > T,σ2 > T |Fθ ] = E [E[1σ1>T |Ft ∨σ(ξs,0≤ s≤ T )]1σ2>T |Fθ ]> 0.

Then, under any equivalent local martingale measure Q, we have

Q[σ ≤ T ] =Q[σ1 ≤ T,σ2 > T ]+Q[σ2 ≤ T ]

≥Q[ inf
0≤u≤ξ

2T
Bu ≤−1,σ2 > T ]+Q[σ2 ≤ T ]≥Q[ inf

0≤u≤ξ
2T

Bu ≤−1]> 0,
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where B is the Brownian motion such that

t∫
0

ξudWQ
u = B∫ t

0 ξ 2
u du

a.s. for all t ≥ 0. Thus, Q[σ ≤ T ] is bounded from below by the quantity
Q[inf0≤u≤ξ

2T Bu ≤−1]. This quantity is positive and does not depend on Q, since

B is a Brownian motion under Q. Therefore supQQ[σ > T ] is bounded away from
one and the superhedging price satisfies SPQ(1σ>T ) = supQQ[σ > T ]< 1.

2.5.6 A variation: betting on the square bracket

The construction in Example 2.5.5 can be modified as follows. Let S be a contin-
uous Q-local martingale with S0 = 1. We define

σ1 := inf{t > 0 : St ≤ 0}, σ2 := inf{t > 0 : [S]t ≤−a+bt}, σ = σ1∧σ2,

where a,b are positive constants. Suppose that the conditions in Corollary 2.4.6
are fulfilled (they can be checked under suitable assumptions using the conditional
full support property similarly to how this was done in the previous example).
Then under any ELMM Q, we compute

Q[σ ≤ T ] =Q[σ1 ≤ T,σ2 > T ]+Q[σ2 ≤ T ]

=Q[ inf
0≤u≤[S]T

Bu ≤−1,σ2 > T ]+Q[σ2 ≤ T ]≥Q[ inf
0≤u≤bT−a

Bu ≤−1]> 0,

where B is the Brownian motion such that St = B[S]t a.s. for all t ≥ 0. Thus the
superhedging price satisfies SPQ(1σ>T ) = supQQ[σ > T ]< 1.
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Chapter 3

Optimal investment with
intermediate consumption under no
unbounded profit with bounded risk

Abstract: We consider the problem of optimal investment with intermediate con-
sumption in a general semimartingale model of an incomplete market, with pref-
erences being represented by a utility stochastic field. We show that the key con-
clusions of the utility maximization theory hold under the assumptions of no un-
bounded profit with bounded risk (NUPBR) and of the finiteness of both primal
and dual value functions.

Key words: utility maximization, unbounded profit with bounded risk, arbi-
trage of the first kind, local martingale deflator, duality theory, semimartingale,
incomplete markets.

This chapter is based on joint work with Andrea Cosso, Claudio Fontana and
Oleksii Mostovyi.
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3.1 Introduction

Since the pioneering work of Harrison and Kreps [1979], equivalent local/sigma
martingale measures play a prominent role in the problems of pricing and portfolio
optimization. Their existence is equivalent to the absence of arbitrage in the sense
of no free lunch with vanishing risk (NFLVR) and this represents the crucial no-
arbitrage-type assumption in the classical duality approach to optimal investment
problems (see e.g. Karatzas and Žitković [2003]; Kramkov and Schachermayer
[1999, 2003]; Žitković et al. [2005]). In a general semimartingale setting, nec-
essary and sufficient conditions for the validity of the key assertions of the utility
maximization theory (with the possibility of intermediate consumption) have been
recently established in Mostovyi [2015]. More specifically, such assertions have
been proven in Mostovyi [2015] under the assumptions that the primal and dual
value functions are finite and that there exists an equivalent martingale deflator.
In particular, in a finite time horizon, the latter assumption is equivalent to the
validity of NFLVR.

In this chapter, we consider a general semimartingale setting in an infinite time
horizon where preferences are modeled via a utility stochastic field, allowing for
intermediate consumption. Building on the abstract theorems of Mostovyi [2015],
our main result shows that the standard assertions of the utility maximization the-
ory hold true as long as there is no unbounded profit with bounded risk (NUPBR)
and both primal and dual value functions are finite. In general, NUPBR is weaker
than NFLVR and can be shown to be equivalent to the existence of an equivalent
local martingale deflator. Our results give an affirmative answer to a widespread
conjecture in the mathematical finance community stating that the key conclusions
of the utility maximization theory hold under NUPBR.

The proofs rely on certain characterizations of the dual feasible set. Thus, in
Lemma 3.3.2 we give a polarity description, show its closedness under countable
convex combinations in Lemma 3.3.3, and demonstrate in Proposition 3.2.1 that
nonemptyness of the set that generates the dual domain is equivalent to NUPBR.
Upon that, we prove the bipolar relations between primal and dual feasible sets
and apply the abstract theorems from Mostovyi [2015]. As an implication of
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the bipolar relations, we also show how Theorem 2.2 in Kramkov and Schacher-
mayer [1999] can be extended to hold under NUBPR (instead of NFLVR), see
Remark 3.2.5 below for details.

Neither NFLVR, nor NUPBR by itself guarantee the existence of solutions to
utility maximization problems, see [Kramkov and Schachermayer, 1999, Exam-
ple 5.2] and [Christensen and Larsen, 2007, Example 4.3] for counterexamples.
This is why finiteness of the value functions is needed in the formulation of our
main result. However, it is shown in Choulli et al. [2015] that NUPBR holds if
and only if, for every sufficiently nice deterministic utility function, the problem
of maximizing expected utility from terminal wealth admits a solution under an
equivalent probability measure, which can be chosen to be arbitrarily close to the
original measure (see [Choulli et al., 2015, Theorem 2.8] for details). Besides,
no unbounded profit with bounded risk represents the minimal no-arbitrage-type
assumption that allows for the standard conclusions of the theory to hold for the
utility maximization problem from terminal wealth. Indeed, by [Karatzas and
Kardaras, 2007, Proposition 4.19], the failure of NUPBR implies that there exists
a time horizon such that the corresponding utility maximization problem either
does not have a solution, or has infinitely many. Our work complements these
papers by providing the convex duality results under NUPBR, also allowing for
stochastic preferences as well as intermediate consumption.

The problem of utility maximization without relying on the existence of mar-
tingale measures has already been addressed in the literature. In the very first pa-
per Merton [1969] on expected utility maximization in continuous time settings,
an optimal investment problem is explicitly solved even though an equivalent mar-
tingale measure does not exist in general in the infinite time horizon case. In an
incomplete Itô process setting under a finite time horizon, Karatzas et al. [1991]
have considered the problem of maximization of expected utility from terminal
wealth and established the existence results for an optimal portfolio via convex
duality theory without the full strength of NFLVR (see also [Fernholz et al., 2009,
Section 10.3] and [Fontana and Runggaldier, 2013, Section 4.6.3]). In particu-
lar, in view of [Kardaras, 2010, Theorem 4], Assumption 2.3 in Karatzas et al.
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[1991] is equivalent to the nonemptyness of the set of equivalent local martingale
deflators. Passing from an Itô process to a continuous semimartingale setting, the
results of Kramkov and Schachermayer [1999] have been extended by weakening
the NFLVR requirement in Larsen [2009] (note that [Larsen, 2009, Assumption
2.1] is equivalent to NUPBR). In a general semimartingale setting, Larsen and
Žitković [2013] have established convex duality results for the problem of max-
imizing expected utility from terminal wealth (for a deterministic utility func-
tion) in the presence of trading constraints without relying on the existence of
martingale measures. In particular, in the absence of trading constraints, the no-
arbitrage-type requirement adopted in Larsen and Žitković [2013] turns out to
be equivalent to NUPBR. Indeed, [Larsen and Žitković, 2013, Assumption 2.3]
requires the L0

+-solid hull1 of the set of all terminal wealths generated by admis-
sible strategies with initial wealth x, denoted by C (x), to be convexly compact2

for all x ∈ R and nonempty for some x ∈ R. In the absence of trading constraints,
[Kardaras, 2010, Theorem 2] shows that the boundedness in L0 of C (x) already
implies its closedness in L0, thus in such a framework the convex compactness of
C (x) holds if and only if the NUPBR condition does.

The chapter is structured as follows. Section 3.2 begins with a description of
the general setting (Subsection 3.2.1), introduces and characterizes the NUPBR
condition (Subsection 3.2.2) and then proceeds with the statement of the main
results (Subsection 3.2.3). Section 3.3 contains the proofs of our results.

1As usual, L0 denotes the space of equivalence classes of real-valued random variables on the
probability space (Ω,F ,P), equipped with the topology of convergence in probability; L0

+ is the
positive orthant of L0.

2See [Žitković, 2010, Definition 2.1] for the definition of convex compactness, a convenient
characterization of which is given by [Žitković, 2010, Theorem 3.1]: “a closed and convex subset
of L0

+ is convexly compact if and only if it is bounded in probability”.
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3.2 Setting and main results

3.2.1 Setting

Let (Ω,F ,(Ft)t∈[0,∞),P) be a complete stochastic basis, with F0 being the com-
pletion of the trivial σ -algebra, and S = (St)t≥0 an Rd-valued semimartingale 3,
representing the discounted prices of d risky assets. We fix a stochastic clock
κ = (κt)t≥0 which is a nondecreasing, càdlàg adapted process such that

κ0 = 0, P(κ∞ > 0)> 0 and κ∞ ≤ A, (3.1)

for some finite constant A. The stochastic clock κ represents the notion of time
according to which consumption occurs. By suitably specifying the clock process
κ , several different formulations of investment problems, with or without interme-
diate consumption, can be recovered from the present setting (compare e.g. with
[Žitković et al., 2005, Section 2.8] and [Mostovyi, 2015, Examples 2.5-2.9]).

A portfolio is defined by a triplet Π = (x,H,c), where x ∈ R represents an
initial capital, H = (Ht)t≥0 is an Rd-valued predictable S-integrable process rep-
resenting the holdings in the d risky assets and c = (ct)t≥0 is a nonnegative op-
tional process representing the consumption rate. The discounted value process
V = (Vt)t≥0 of a portfolio Π = (x,H,c) is defined as

Vt := x+
∫ t

0
Hu dSu−

∫ t

0
cu dκu, t ≥ 0.

We let X be the collection of all nonnegative value processes associated to port-
folios of the form Π = (1,H,0), i.e.,

X :=
{

X ≥ 0 : Xt = 1+
∫ t

0
Hu dSu, t ≥ 0

}
.

For a given initial capital x > 0, a consumption process c is said to be x-admissible
(written as c ∈ Ax) if there exists an Rd-valued predictable S-integrable process

3It’s remarked that the assumptions of this present chapter is slightly different from the general
setting introduced in Section 1.4.
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H such that the value process V associated to the portfolio Π = (x,H,c) is non-
negative. For brevity, we let A := A1. We remark that the set A in this present
chapter involves a property for consumption processes, not for strategies as in the
general setting in Section 1.4.

3.2.2 No unbounded profit with bounded risk

In this paper, we shall assume the validity of the following no-arbitrage-type con-
dition:

the set X (T ) :=
{

XT : X ∈X
}

is bounded in probability, for all T ≥ 0.
(NUPBR)

For each T ≥ 0, the boundedness in probability of the set X (T ) has been named
no unbounded profit with bounded risk in Karatzas and Kardaras [2007] and, as
shown in Proposition 1 of Kardaras [2010], is equivalent to the absence of arbi-
trages of the first kind on [0,T ]. Hence, condition NUPBR is equivalent to the
absence of arbitrages of the first kind in the sense of Definition 1 of Kardaras
[2014].

We define the set of equivalent local martingale deflators (ELMD) as follows:

Z :=
{

Z > 0 : Z is a càdlàg local martingale such that Z0 = 1 and

ZX is a local martingale for every X ∈X
}
.

The following result is already known in the one-dimensional case in finite
horizon (see e.g. [Kardaras, 2012, Theorem 2.1]). Since we could not find a
specific reference for our formulation in the multi-dimensional case in infinite
horizon, we provide a detailed proof in Section 3.3. The condition (NUPBR) in
infinite horizon is also discussed in Definition 2.1 and Remark 2.2 of Aksamit
et al. [2014].

Proposition 3.2.1. NUPBR holds if and only if Z 6= /0.

Remark 3.2.2. In Mostovyi [2015], it is assumed that the set

{Z ∈Z : Z is a martingale} 6= /0.
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In view of Proposition 3.2.1, the latter condition is stronger than NUPBR. A
classical example where NUPBR holds but {Z ∈ Z : Z is a martingale} = /0 is
provided by the three-dimensional Bessel process (see e.g. Delbaen and Schacher-
mayer [1995a] and Example 4.6 of Karatzas and Kardaras [2007]).

3.2.3 Optimal investment with intermediate consumption

We now proceed to show that the key conclusions of the utility maximization
theory can be established under condition (NUPBR). We assume that preferences
are represented by a utility stochastic field U =U(t,ω,x) : [0,∞)×Ω× [0,∞)→
R∪{−∞} satisfying the following assumption (see Assumption 2.1 of Mostovyi
[2015]).

Assumption 3.2.3. For every (t,ω) ∈ [0,∞)×Ω, the function x 7→U(t,ω,x) is
strictly concave, strictly increasing, continuously differentiable on (0,∞) and sat-
isfies the Inada conditions

lim
x↓0

U ′(t,ω,x) = +∞ and lim
x→+∞

U ′(t,ω,x) = 0,

with U ′ denoting the partial derivative of U with respect to its third argument.
By continuity, at x = 0 we have that U(t,ω,0) = limx↓0U(t,ω,x) (note this value
may be +∞). Finally, for every x≥ 0, the stochastic process U(·, ·,x) is optional.

To a utility stochastic field U satisfying Assumption 3.2.3, we associate the
primal value function, defined as

u(x) := sup
c∈Ax

E
[∫

∞

0
U(t,ω,ct)dκt

]
, x > 0, (3.2)

with the convention E[
∫

∞

0 U(t,ω,ct)dκt ] :=−∞ if E[
∫

∞

0 U−(t,ω,ct)dκt ] = +∞.
In order to construct the dual value function, we define as follows the stochas-

tic field V conjugate to U :

V (t,ω,y) := sup
x>0

(
U(t,ω,x)− xy

)
, (t,ω,y) ∈ [0,∞)×Ω× [0,∞).

61



Chapter 3.2. Setting and main results

We also introduce the following set of dual processes:

Y (y) := cl
{

Y : Y is càdlàg adapted and

0≤ Y ≤ yZ (dκ⊗P)-a.e. for some Z ∈Z
}
,

where the closure is taken in the topology of convergence in measure (dκ ⊗P)
on the space of real-valued optional processes. We write Y := Y (1) for brevity.
The value function of the dual optimization problem (dual value function) is then
defined as

v(y) := inf
Y∈Y (y)

E
[∫

∞

0
V (t,ω,Yt)dκt

]
, y > 0, (3.3)

with the convention E[
∫

∞

0 V (t,ω,Yt)dκt ] :=+∞ if E[
∫

∞

0 V+(t,ω,Yt)dκt ] = +∞.
We are now in a position to state the following theorem, which is the main

result of this chapter.

Theorem 3.2.4. Assume that conditions (3.1) and (NUPBR) hold true and let U
be a utility stochastic field satisfying Assumption 3.2.3. Suppose that

v(y)< ∞ for all y > 0 and u(x)>−∞ for all x > 0. (3.4)

Then the value function u and the dual value function v defined in (3.2) and (3.3),
respectively, satisfy the following properties:

(i) u(x)<∞, for all x> 0, and v(y)>−∞, for all y> 0. Moreover, the functions
u and v are conjugate, i.e.,

v(y) = sup
x>0

(
u(x)− xy

)
, y > 0,

u(x) = inf
y>0

(
v(y)− yx

)
, x > 0;

(ii) the functions u and −v are continuously differentiable on (0,∞), strictly
concave, strictly increasing and satisfy the Inada conditions

u′(0) := lim
x↓0

u′(x) = +∞, −v′(0) := lim
y↓0
− v′(y) = +∞,

u′(∞) := lim
x→+∞

u′(x) = 0, −v′(∞) := lim
y→+∞

− v′(y) = 0.
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Moreover, for every x > 0 and y > 0, the solutions ĉ(x) to (3.2) and Ŷ (y) to (3.3)
exist and are unique and, if y = u′(x), we have the dual relations

Ŷt(y)(ω) =U ′
(
t,ω, ĉt(x)(ω)

)
, dκ⊗P-a.e.,

and

E
[∫

∞

0
ĉt(x)Ŷt(y)dκt

]
= xy.

Finally, the dual value function v can be equivalently represented as

v(y) = inf
Z∈Z

E
[∫

∞

0
V (t,ω,yZt)dκt

]
, y > 0. (3.5)

Remark 3.2.5. A close look at the proof of Theorem 3.2.4 reveals that for κ cor-
responding to utility maximization from terminal wealth, the sets A and Y satisfy
the assumptions of Proposition 3.1 in Kramkov and Schachermayer [1999]. This
implies that for a deterministic utility U satisfying the Inada conditions and such
that AE(U)< 1 (in the terminology of Kramkov and Schachermayer [1999]), un-
der an additional assumption of finiteness of u(x) for some x > 0, the assertions
of Theorem 2.2 in Kramkov and Schachermayer [1999] hold under (NUPBR)
(and possibly without NFLVR). This is a consequence of “abstract” Theorem 3.1
in Kramkov and Schachermayer [1999].

3.3 Proofs

Proof of Proposition 3.2.1. Suppose that NUPBR holds. Then, for every n ∈ N,
the set Xn is bounded in L0 and, by [Takaoka and Schweizer, 2014, Theorem 2.6],
there exists a strictly positive càdlàg local martingale Zn such that Zn

0 = 1 (since
F0 is trivial) and the Rd-valued process ZnS is a sigma-martingale on [0,n]. As a
consequence of [Ansel and Stricker, 1994, Corollary 3.5] (see also [Choulli et al.,
2015, Remark 2.4]), it holds that ZnX is a local martingale on [0,n], for every
X ∈X and n ∈ N. For all t ≥ 0, let then n(t) := min{n ∈ N : n > t} and define
the càdlàg process Z = (Zt)t≥0 via

Zt :=
n(t)

∏
k=1

Zk
k∧t

Zk
(k−1)∧t

, t ≥ 0.
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We now claim that Z ∈Z . Since X ≡ 1 ∈X and in view of [Jacod and Shiryaev,
2002, Lemma I.1.35], it suffices to show that, for every X ∈X , the process ZX
is a local martingale on [0,m], for each m ∈ N. Fix m ∈ N. Consider an arbitrary
X ∈X and let {τn

k }k∈N be a localizing sequence for the local martingale ZnX on
[0,n], for each n ∈ {1, . . . ,m}. Let τ

j
k {τ j

k< j}
:= τ

j
k I{τ j

k< j}+∞I{τ j
k= j} (which is a

stopping time by [Jacod and Shiryaev, 2002, §I.1.15]), for j = 1, . . . ,m and k ∈N,
and define the stopping times

T m
k := min

{
τ

1
k {τ1

k <1}, . . . ,τ
m
k {τm

k <m},m
}
, k ∈ N.

Similarly as in [Fontana et al., 2015, proof of Theorem 4.10], it can be readily
verified that the stopped proces (ZX)T m

k is a martingale on [0,m], for all k ∈ N.
Since limk→+∞P(T m

k = m) = 1, this shows that ZX is a local martingale on [0,m].
By the arbitrariness of m, this proves the claim.

To prove the converse implication, note that, for any X ∈ X and Z ∈ Z ,
the process ZX is a supermartingale and, hence, for every T ≥ 0, it holds that
E[ZT XT ] ≤ 1. This shows that the set ZT XT is bounded in L1 and, hence, in
L0. Since the multiplication by the finite random variable ZT does not affect the
boundedness in L0, this implies that XT is bounded in L0, for all T ≥ 0.

Let us now turn to the proof of Theorem 3.2.4. Together with the abstract
results established in [Mostovyi, 2015, Section 3], the key step is represented by
the following lemma, which generalizes [Mostovyi, 2015, Lemmata 4.2 and 4.3]
by relaxing the no-arbitrage-type requirement into condition NUPBR.

As a preliminary, for a semimartingale S̃, let us denote by H (S̃) the set of all
admissible integrands, in the sense of [Delbaen and Schachermayer, 1994, Defi-
nition 2.7], and define the following sets of equivalent probability measures:

Mσ (S̃) :=
{
Q∼ P : S̃ is a Q-sigma-martingale

}
,

Mloc(S̃) :=
{
Q∼ P :

∫
H dS̃ is a Q-local martingale for every H ∈H (S̃)

}
,

Ms(S̃) :=
{
Q∼ P :

∫
H dS̃ is a Q-supermartingale for every H ∈H (S̃)

}
.
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Lemma 3.3.1. Let S̃ be a semimartingale. Then it holds that

Mσ (S̃)⊆Mloc(S̃)⊆Ms(S̃).

Moreover, if Ms(S̃) 6= /0, then Mσ (S̃) 6= /0 and the set Mσ (S̃) is dense in Ms(S̃)
with respect to the norm of L1(Ω,F ,P).

Proof. Since the class of sigma-martingales is stable with respect to stochastic in-
tegration (see [Jacod and Shiryaev, 2002, Proposition III.6.42]), the first inclusion
follows from [Ansel and Stricker, 1994, Corollary 3.5]. The second inclusion
follows from the fact that any local martingale bounded from below is a super-
martingale. Finally, the last assertion follows from [Delbaen and Schachermayer,
1998, Proposition 4.7], by noting that, if Ms(S̃) 6= /0, then S̃ satisfies NFLVR, so
that Mσ (S̃) 6= /0 by [Delbaen and Schachermayer, 1998, Theorem 1.1].

The following lemma provides a polarity characterization of attainable con-
sumption streams.

Lemma 3.3.2. Let c be a nonnegative optional process and κ a stochastic clock.
Under assumptions (3.1) and NUPBR, the following conditions are equivalent:

(i) c ∈A ;

(ii) supZ∈Z E[
∫

∞

0 ctZt dκt ]≤ 1.

Proof. If c ∈ A , there exists an Rd-valued predictable S-integrable process H
such that

1+
∫ t

0
Hu dSu ≥

∫ t

0
cu dκu ≥ 0, t ≥ 0.

We define Ct :=
∫ t

0 cu dκu, for t ≥ 0, and observe that C is an increasing process.
For an arbitrary Z ∈Z , the process (

∫ t
0 Cu− dZu)t≥0 is a local martingale and we let

{τn}n∈N be a localizing sequence such that (
∫

C− dZ)τn is a uniformly integrable
martingale, for all n ∈ N. Using the supermartingale property of Z(1+

∫
H dS),

we obtain for every n ∈ N

1≥ E
[

Zτn

(
1+

∫
τn

0
Hu dSu

)]
≥ E [ZτnCτn] = E

[∫
τn

0
Zu dCu +

∫
τn

0
Cu− dZu

]
,

65



Chapter 3.3. Proofs

where the last equality follows by integration by parts (see [Jacod and Shiryaev,
2002, Proposition I.4.49]). Since {τn}n∈N is a localizing sequence for

∫
C− dZ, it

holds that E[
∫

τn
0 Cu− dZu] = 0, for all n ∈ N. Hence:

1≥ E
[∫

τn

0
Zu dCu

]
, for all n ∈ N.

By the monotone convergence theorem, we get that 1 ≥ limn→∞E[
∫

τn
0 Zu dCu] =

E[
∫

∞

0 Zu dCu]. Since Z ∈Z is arbitrary, this proves the implication (i)⇒(ii).
Suppose now that supZ∈Z E[

∫
∞

0 ctZt dκt ]≤ 1. Take an arbitrary Z ∈Z and let
{ρn}n∈N be a sequence of stopping times increasing P-a.s. to infinity such that
Zρn is a uniformly integrable martingale, for all n ∈ N. By Lemma 3.3.1, it holds
that Mσ (Sρn) 6= /0, for all n ∈ N. For n ∈ N, let Q ∈Mσ (Sρn) and denote by
M = (Mt)t≥0 its density process (i.e., dQ|Ft = Mt dP|Ft , for all t ≥ 0). Letting
Z′ := MρnZ(Zρn)−1, the same arguments of [Stricker and Yan, 1998, Lemma 2.3]
imply that Z′ ∈ Z . For an arbitrary stopping time τ ∈ T (with T denoting the
set of all finite stopping times), it then holds that

EQ[Cτ∧ρn] = E[Mτ∧ρnCτ∧ρn] = E[Z′τ∧ρn
Cτ∧ρn]≤ 1,

where the last inequality follows from the assumption that supZ∈Z E[
∫

∞

0 ctZt dκt ]≤
1 by the same arguments used in the first part of the proof together with an appli-
cation of Fatou’s lemma. By the arbitrariness of Q∈Mσ (Sρn) and τ ∈T together
with the denseness of Mσ (Sρn) in Ms(Sρn) (see Lemma 3.3.1), it then follows that

sup
Q∈Ms(Sρn)

sup
τ∈T

EQ[Cτ∧ρn] = sup
Q∈Mσ (Sρn)

sup
τ∈T

EQ[Cτ∧ρn ]≤ 1.

[Föllmer and Kramkov, 1997, Proposition 4.2] (together with Examples 2.2 and
4.1 therein) then gives the existence of an adapted càdlàg process V n such that
V n

t ≥Ct∧ρn , for all t ≥ 0, and admitting a decomposition of the form

V n
t =V n

0 +
∫ t

0
Hn

u dSρn
u −An

t , t ≥ 0,

where Hn is an Rd-valued predictable Sρn-integrable process, An is an adapted in-
creasing process with An

0 = 0 and V n
0 = supQ∈Ms(Sρn),τ∈T EQ[Cτ∧ρn ]≤ 1. There-
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fore, for every n ∈ N, we obtain

1+
∫ t

0
Hn

u dSu ≥V n
0 +

∫ t

0
Hn

u dSu =V n
t +An

t ≥V n
t ≥Ct , 0≤ t ≤ ρn.

Let H̄n := HnI[[0,ρn]], for all n ∈ N. By [Föllmer and Kramkov, 1997, Lemma
5.2], we can construct a sequence of processes {Y n}n∈N, with Y n ∈ conv(1 +

H̄n · S,1+ H̄n+1 · S, . . .), n ∈ N, and a càdlàg process Y such that {ZY n}n∈N is
Fatou-convergent 4 to a supermartingale ZY , for every strictly positive càdlàg local
martingale Z such that ZX is a supermartingale for every X ∈X . Note that Yt ≥
Ct , for all t ≥ 0, and Y0 ≤ 1. Similarly as above, applying then [Föllmer and
Kramkov, 1997, Theorem 4.1] to the stopped process Y ρn , for n ∈ N, we obtain
the decomposition

Y ρn
t = Y0 +

∫ t

0
Gn

u dSρn
u −Bn

t , t ≥ 0,

where Gn is an Rd-valued predictable Sρn-integrable process and Bn is an adapted
increasing process with Bn = 0, for n ∈ N. Without loss of generality, we can
assume that GnI]]ρn,+∞[[ = 0, for all n ∈ N. Letting G := G1 + ∑

∞
n=1(G

n+1 −
Gn)I]]ρn,+∞[[ = G1 +∑

∞
n=1 Gn+1I]]ρn,ρn+1]], it follows that 1+

∫ t
0 Gu dSu ≥Ct , for all

t ≥ 0, thus establishing the implication (ii)⇒(i).

We are now in a position to complete the proof of Theorem 3.2.4, which gen-
eralizes the results of [Mostovyi, 2015, Theorems 2.3 and 2.4] to the case where
only (NUPBR) is assumed to hold. As a preliminary, we need the following result
on the set Z .

Lemma 3.3.3. Under (NUPBR), the set Z is closed under countable convex
combinations. If in addition (3.1) holds, then for every c ∈A , we have

sup
Z∈Z

E
[∫

∞

0
ctZt dκt

]
= sup

Y∈Y
E
[∫

∞

0
ctYt dκt

]
≤ 1. (3.6)

4See [Föllmer and Kramkov, 1997, Definition 5.2] for the definition of Fatou convergence of
stochastic processes.
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Proof. Let {Zn}n∈N be a sequence of processes belonging to Z and {λ n}n∈N a
sequence of positive numbers such that ∑

∞
n=1 λ n = 1. Letting Z := ∑

∞
n=1 λ nZn, we

need to show that Z ∈ Z . For each N ∈ N, define Z̃N := ∑
N
n=1 λ nZn. For every

X ∈X , {Z̃NX}N∈N is an increasing sequence of nonnegative local martingales
(i.e. Z̃N+1

t Xt ≥ Z̃N
t Xt , for all N ∈N and t ≥ 0), such that Z̃N

t Xt converges a.s. to ZtXt

as N→ +∞, for every t ≥ 0, and Z0X0 = 1. The local martingale property of ZX
then follows from [Klein et al., 2014, Proposition 5.1] (note that its proof carries
over without modifications to the infinite horizon case), whereas [Dellacherie and
Meyer, 1982, Theorem VI.18] implies that ZX is a càdlàg process. Since X ∈X

is arbitrary and X ≡ 1 ∈X , this proves the claim.
Finally, relation (3.6) follows by the same arguments used in [Mostovyi, 2015,

Lemma 4.3].

We denote by L0(dκ ×P) be the linear space of equivalence classes of real-
valued optional processes on the stochastic basis (Ω,F ,(Ft)t∈[0,∞),P), equipped
with the topology of convergence in measure (dκ ×P). Let L0

+(dκ ×P) be the
positive orthant of L0(dκ×P).

Proof of Theorem 3.2.4. It is clear that the sets A and Y are convex solid subsets
of L0

+(dκ × P). By definition, Y is closed in the topology of convergence in
measure (dκ ×P). As in [Mostovyi, 2015, part (i) of Proposition 4.4], a simple
application of Fatou’s lemma together with Lemma 3.3.2 allows to show that A

is also closed in the same topology. Moreover, by the same arguments used in
[Mostovyi, 2015, part (ii) of Proposition 4.4], Lemma 3.3.2 together with the
bipolar theorem of Brannath and Schachermayer [1999] implies that A and Y

satisfy the bipolar relations

c ∈A ⇐⇒ E
[∫

∞

0
ctYt dκt

]
≤ 1 for all Y ∈ Y , (3.7)

Y ∈ Y ⇐⇒ E
[∫

∞

0
ctYt dκt

]
≤ 1 for all c ∈A . (3.8)

Since X ≡ 1 ∈X and Z 6= /0, both A and Y contain at least one strictly positive
element. In view of Lemma 3.3.3, Theorem 3.2.4 then follows directly from the
abstract results of [Mostovyi, 2015, Theorems 3.2 and 3.3].
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Chapter 4

Optimal arbitrage for initial
filtration enlargement

Abstract: This chapter studies optimal trading for an insider who has some
additional information at the beginning of the trading. Using the technique of
non-equivalent measure change, we are able to provide a new criterion ensuring
that the market for the insider satisfies the condition No Unbounded Profit with
Bounded Risk (NUPBR), which excludes ’scalable’ arbitrages. Furthermore, if
the condition NUPBR holds, we present a systematic way to exploit optimal arbi-
trage opportunities.

Key words: No Unbounded Profits with Bounded Risk, optimal arbitrage,
initial enlargement of filtration, incomplete markets, hedging.

This chapter is based on joint work with Peter Tankov and Wolfgang Rung-
galdier.

Acknowledgement

Huy N. Chau’s work is supported by Natixis Foundation for Quantitative Re-
search.

71



Chapter 4.1. Introduction

4.1 Introduction

In financial mathematics, theory of filtration enlargement is often used to model
insider trading activities. This theory was developed in the seminal works of Itô,
Barlow, Jacod, Jeulin and Yor and we refer to the book of Mansuy and Yor [2006]
for an overview. By definition, an insider is a person who can access the private
information that others cannot. Consequently, the insider quickly incorporates
such information to her trading strategies. One of the first papers on this topic
is Pikovsky and Karatzas [1996], where the authors study the logarithmic utility
optimization problem for the insider, who is able to anticipate the future, i.e. the
terminal values of asset’s prices in Brownian settings. Whenever the logarithmic
utility maximization problem for the insider is finite, the authors are able to com-
pute it explicitly and give the optimal portfolio in closed form. Grorud and Pontier
[1998] also compute logarithmic utility of the insider with consumption and pro-
pose a statistical test whether or not a trader is an insider. Amendinger et al. [1998]
relate the insider’s additional expected logarithmic utility with a relative entropy.
This relation is then extended in Ankirchner et al. [2006]. For further references,
we refer to Elliott and Jeanblanc [1999], Amendinger et al. [2003b], Hillairet
[2005], Ankirchner et al. [2006], Ankirchner and Zwierz [2011], Danilova et al.
[2010]... and others.

Apart from portfolio optimization, the question of arbitrage has also received
considerable attention. Amendinger [2000] studies martingale representation prop-
erties in the larger filtration. Imkeller et al. [2001] and Imkeller [2003] make use
of Malliavin’s calculus in order to find semimartingale decompositions for some
classes of additional information which do not satisfy Jacod’s condition. In ad-
dition, they prove that arbitrage opportunities exist in dramatic manners, in the
sense that the so-called information drift has possibility of explosion. However,
we will see later that the exploding information drift violates NUPBR (no un-
bounded profit with bounded risk) condition. Recently, Acciaio et al. [2014] in-
vestigated the stability of NUPBR for the insider with infinite horizon settings.
They give a sufficient condition for the stability of NUPBR under initial filtration
enlargement. Basically, it is shown that if the risky asset and the density process

72



Chapter 4.1. Introduction

in Jacod’s condition do not jump at the same time, then the enlarged market sat-
isfies NUPBR. However, Jacod’s condition is required at all times in their results,
which cannot be always satisfied in finite horizon settings.

In this chapter, we focus on incomplete markets and examine the logarithmic
utility maximization problems by using duality approach, rather than using the
information drift or relative entropy as in all previous studies. By the technique
of non-equivalent measure change as in Chapter 2, we are able to give a new dual
representation for the insider’s expected log-utility in quite general market mod-
els. This duality result differs from classical results (see for example, Kramkov
and Schachermayer [1999]) as it contains an extra term involving the entropy of
the information. It is usually observed that the extra factor is the main reason
such that the insider’s expected utility blows up at the time when the private infor-
mation becomes public. This new finding allows us to introduce a new criterion
for checking the condition NUPBR in the enlarged market with finite horizon set-
tings. To do this, we first show that NUPBR always fails if the set of all martingale
densities for regular agents is uniformly integrable and an explicit construction of
unbounded profits is also given. Hence, the non-uniform integrability property is a
necessary condition for the finiteness of the insider’s expected log-utility. It helps
to compensate explosive profits coming from the additional information, which in
turn ensures NUPBR.

In the case NUPBR holds but not NFLVR, we present a new systematic ap-
proach to find optimal arbitrage for the insider. We first study the case with dis-
crete information, i.e. when the private information is given by a discrete random
variable. The case with continuous random variable is treated by an approximat-
ing procedure. Some illustrative examples are given.

The chapter is organized as follows. In Section 4.2, we provide some prelim-
inaries on initial enlargement of filtrations. Section 4.3 introduces the notion of
superhedging and optimal arbitrage. Section 4.4 computes log-utility and optimal
arbitrage when the information is given by a discrete random variable. Finally,
the same questions for the case with continuous random variables are discussed in
Section 4.5.
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4.2 Preliminaries on initial enlargement of filtrations

Assume that the filtration F models the public information based on which ordi-
nary agents make their decisions. We also suppose that the ordinary agents are
risk neutral, i.e. the (F,P)-market satisfies the condition NFLVR. The filtration
F is not necessarily the natural filtration of the stock prices. Suppose that there
is an insider who possesses from the beginning an additional information about
the value of some FT -measurable R-valued random variable G. In mathematical
terms, we model her knowledge by the enlarged filtration G= (Gt)t∈[0,T ] where

Gt :=
⋂
ε>0

(Ft+ε ∨σ(G)).

Note that we assume both that G is FT -measurable and that trading is possible
up to the terminal time T . This situation is known to be “difficult” (see e.g., the
introduction of Grorud and Pontier [1998]) and often leads to arbitrages of the
first kind Amendinger et al. [1998]; our aim is to explore this setting in detail and
identify the cases where the NUPBR holds and optimal arbitrage strategies may
be found.

Because the semimartingale property is widely accepted in financial modeling,
we first recall a condition of Jacod [1985] which ensures that a F-local martingale
remains a G-semimartingale. For all t ∈ [0,T ), let νt : Ω×R→ [0,1] be a regular
version of the Ft -conditional law of G and ν be the law of G. The following
assumption plays an important role in most studies in this theory.

Assumption 4.2.1. (Jacod’s Condition) For all t ∈ [0,T ), the regular conditional
distribution of G given Ft is absolutely continuous with respect to the law of G,
i.e. we have

νt � ν , P−a.s. (4.1)

In particular, this assumption implies that G /∈Ft for all t < T . We emphasize
that this is a “weak” version of Jacod’s condition in the following sense.

• The absolute continuity of the measure νt with respect to the law of G is
imposed only before the terminal time T . Of course, in our setting when
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G ∈FT the absolute continuity cannot hold at the terminal date. When G /∈
FT and νT � ν , the NUPBR property can often be shown by constructing
a local martingale deflator from the density process of νt with respect to ν ;
in our setting this method is not avaiable.

• Only absolute continuity is imposed, rather than equivalence. If νt ∼ ν for
all t ∈ [0,T ], then the density of νt with respect to ν is strictly positive
and one can show that NFLVR property holds by constructing an equiva-
lent martingale measure from the density process. See Grorud and Pontier
[1998], Theorem 3.2 of Amendinger [2000] or Föllmer and Imkeller [1993]
for details and related results. The situation when νt ∼ ν for t ∈ [0,T ) and
νT � ν is not fundamentally different from the situation when only absolute
continuity is imposed on [0,T ].

The density of νt with respect to ν in Assumption 4.2.1 plays an important
role in enlargement of filtration theory. Let O(F) be the F-optional sigma field on
Ω×R+. It is shown in Lemme 1.8 and Corollaire 1.11 of Jacod [1985] that we
can even choose a nice version of the densities extracted from (4.1).

Lemma 4.2.2. Under Assumption 4.2.1, there exists a nonnegative B⊗O(F)-
measurable function R×Ω×R+ 3 (x,ω, t) 7→ px

t (ω) ∈ [0,∞), càdlàg in t such
that

1. for every t ∈ [0,T ), we have νt(dx) = px
t (ω)ν(dx).

2. for each x ∈ R, the process (px
t (ω))t∈[0,T ) is a (F,P)-martingale.

3. The processes px, px
− are strictly positive on [0,τx) and px = 0 on [τx,T ),

where

τ
x := inf{t ≥ 0 : px

t− = 0 or px
t = 0}∧T.

Furthermore, if we define τG(ω) := τG(ω)(ω) then P[τG = T ] = 1.

The conditional density process pG is the key to find the semimartingale de-
composition of a F-local martingale in the enlarged filtration G.
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Proposition 4.2.3. Under Assumption 4.2.1, every F-local martingale X is a G-
semimartingale on [0,T ) with decomposition

Xt = XG
t +

t∫
0

d
〈
X , pG

.

〉F
s

pG
s−

(4.2)

where XG is a G-local martingale.

Passing a F-local martingale to the filtration G introduces a drift, i.e. a finite
variation term, in its semimartingale decomposition. This extra term measures the
difference of the information in the two filtrations.

Definition 4.2.4 (Information drift, Ankirchner et al. [2006]). Assume that S has
F-semimartingale decomposition S = M+α · 〈M,M〉. The G-predictable process
µ satisfying

M−µ · 〈M,M〉 is a G-local martingale

is called information drift of M in the filtration G with respect to the filtration F.

In order to better understand the insider’s activities, we also need to study her
strategies. The structure of G-optional and G-predictable processes is given in
Proposition 2.3.1 of Jeanblanc [2010], reproduced below (this result was estab-
lished in Jeulin [1980b] for discrete random variables and in Jeulin [1980a] for
progressive enlargement with a stopping time).

Proposition 4.2.5. Every G-optional process Y is of the form Yt(ω)= yt(ω,G(ω))

for some F⊗B(R)-optional process yt(ω,u).
Every G-predictable process Y is of the form Yt(ω) = yt(ω,G(ω)) where

(t,ω,u) 7→ yt(ω,u) is a P(F)⊗B(R)-measurable function.

Finally, we make the following technical assumption.

Assumption 4.2.6. For every x, the process px does not jump to zero, i.e.

P[τx < T, px
τx− > 0] = 0.
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This assumption is introduced in Kardaras et al. [2015] for a general construc-
tion of strict local martingales, in Ruf and Runggaldier [2013] for a construction
of markets with arbitrages and in Chapter 2 for the study of optimal arbitrage. Ac-
ciaio et al. [2014] also use this assumption to prove the preservation of NUPBR
under the enlarged market. Basically, it requires that the conditional density px

goes to zero continuously. The meaning of this assumption can be interpreted as
follows. Let us consider an event {G ∈ dx} for some x ∈ R. This information is
given for the insider at time zero, but not for regular agents, who can observe it
at time T . However, regular agents can estimate the possibility of its occurrence,
given their information. Hence, their perception is formulated by the density pro-
cess px

t = P[G ∈ dx|Ft ]/P[G ∈ dx]. If the process px jumps to zero at time τx,
it means that strictly before time τx, regular agents think that the event {G ∈ dx}
is possible but at time τx, they suddenly realize that they are totally wrong. In
the view of the insider, the event {G ∈ dx} is overestimated by regular agents and
hence, the insider could make a profit by trading against them. Conversely, if the
density px goes to zero continuously, regular agents realize that the probability of
the event {G ∈ dx} gets smaller and smaller. The insider may gain some profit
by trading against regular agents, however, the insider’s profit is not big (which
implies no unbounded profit) because regular agents have time to correct their
beliefs.

4.3 Optimal arbitrage

In Chapter 2, it is shown that optimal arbitrage is the inverse of the superhedging
price of the claim 1. However, in the present chapter, we will emphasize that there
is a little difference in these concepts. First, we slightly adapt the definition of
superhedging price.

Definition 4.3.1. Let H∈{F,G} and let f ≥ 0 be a given claim. A H0-measurable
random variable x∗( f ) is called the superhedging price of f with respect to H if
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there exists a H-predictable strategy H such that

x∗( f )+(H ·S)t ≥ 0, P−a.s,∀t ∈ [0,T ], (4.3)

x∗( f )+(H ·S)T ≥ f , P−a.s. (4.4)

and for each x ∈H0 which satisfies

x+(H ·S)t ≥ 0, P−a.s,∀t ∈ [0,T ],

x+(H ·S)T ≥ f , P−a.s,

one has x∗( f )≤ x,P−a.s.

In other words, the superhedging price of f is the minimal amount starting
from which one can superhedge f by a nonnegative wealth process. However, the
price can be a true random variable if H0 is nontrivial. The definition of optimal
arbitrage is given as follows, in conjunction with Lemma 2.3.3 of Chapter 2.

Definition 4.3.2 (Optimal arbitrage). We say that there is optimal arbitrage in
the market if x∗(1) ≤ 1 and P[x∗(1) < 1] > 0. If x∗(1) < 1,P− a.s., the optimal
arbitrage is strong.

The condition NUPBR implies that x∗(1) is strictly positive, see Remark 2.3.4.
The converse implication is not true. Indeed, we can find a market which satisfies
NA but not NUPBR, see Section 4 of Levental and Skorohod [1995]. Because
the condition NA implies that x∗(1) > 0, the fact x∗(1) > 0 does not imply that
NUPBR holds.

4.4 Initial enlargement with a discrete random vari-
able

Let us assume that G is a discrete random variable taking a finite number of values
{g1, ...,gn} with nonzero probability. This is a “classical” case of initial filtration
enlargement, studied, e.g., in Aksamit [2014]; Jeulin [1980a,b]; Meyer [1978].
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In particular, it is known that every F-local martingale is a G-semimartingale on
[0,T ] with decomposition

Xt = XG
t +

n

∑
i=1

1G=gi

∫ t

0

d〈X , pgi〉Fs
pgi

s−
,

where XG is a G-local martingale. Therefore, it is not necessary to impose Ja-
cod’s condition in this section. However, the additional assumption 4.2.6 will be
imposed unless stated otherwise.

When the insider is informed that G will take the value gi where i ∈ {1, ...,n},
she recognizes that all scenarios for the market’s evolution are contained in the
event {G = gi}. Consequently, she has no reason to keep using the original belief
(probability measure P) in order to determine her investment strategy. The insider
would like to update her belief by doing a measure change, i.e by dismissing all
scenarios contained in {G = g j} for all j 6= i. To make this more concrete, we
consider the following measure transformation

dQi

dP

∣∣∣∣
Ft

=
P[G = gi|Ft ]

P[G = gi]
:= pgi

t , i = 1, ...n. (4.5)

The measure Qi gives total mass to the event {G = gi} and is absolutely con-
tinuous with respect to P but not equivalent to it. We shall use the techniques
developed in Chapter 2 in this initial enlargement setting. In Section 4.4.1, we
compute the expected log-utility of the insider and then study under which cir-
cumstances, the market for the insider satisfies the condition NUPBR. Next, we
find superhedging prices for the insider in Section 4.4.2. In Section 4.4.3 we give
an example with a complete market where all computations are carried out. Sec-
tion 4.4.4 gives an incomplete market example.

4.4.1 NUPBR and log-utility maximization

In this section, we will compute the insider’s expected log-utility. First, we relate
the expected utility of the insider to the expected utility of regular agents when
restricted to an event {G = gi}.
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Lemma 4.4.1. The expected logarithmic utility for the insider can be represented
as follows

sup
H∈A G

1

EP[logV 1,H
T ] =

n

∑
i=1

sup
H∈A F

1

EP[logV 1,H
T 1{G=gi}]. (4.6)

Proof. The proof is easy and only requires representation of G-predictable pro-
cesses as in Proposition 4.2.5. We do not use Assumption 4.2.6 here.
(≤) Let HG ∈A G be a G-predictable strategy. By Proposition 4.2.5, the process
HG is of the form HG

t (ω) = ht(ω,G(ω)) where ht(ω,x) is a P(F)×B(R)-
measurable function. Then, HF,i = h(ω,gi) is F-predictable and HG1{G=gi} =

HF,i1{G=gi} a.s. Hence, we have that HG = ∑
n
i=1 HF,i1{G=gi} and therefore

∫ T

0
HG

t dSt =
n

∑
i=1

1{G=gi}

∫ T

0
HF,i

t dSt ,

where the equality follows from the fact that S is a G-semimartingale.
We then compute

EP[logV 1,HG

T ] =
n

∑
i=1

EP
[
1{G=gi} logV 1,HF,i

T

]
.

Taking the supremum over the set of all G-admissible strategies we obtain the
inequality (≤) in (4.6).
(≥) For all HF,i, the following inequality holds true

n

∑
i=1

EP
[
1{G=gi} logV 1,HF,i

T

]
= EP[logV 1,HG

T ]≤ sup
H∈A G

1

EP[logV 1,H
T ].

So, the proof is complete.

The usefulness of this lemma is that it transforms the insider’s maximization
problem to many problems of regular agents under measure changes as in (4.5),
up to a constant. As in the framework of NFLVR, it would be interesting to relate
the problem of maximizing log-utility under Qi to the problem of minimizing an
appropriate function of deflators by duality. However, the equivalence between P
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and Qi is not preserved and it is no longer true that the condition NFLVR holds
under Qi. The classical results, see for example Kramkov and Schachermayer
[1999, 2003], cannot be applied here. This is not really bad news because as soon
as Assumption 4.2.6 is valid, it can be proved that the (F,Qi)-market satisfies
the condition NUPBR and the duality approach is still applicable, see Chapter 3.
Nevertheless, coming back to the original measure P introduces an extra term, as
seen in the next lemma.

Lemma 4.4.2. Under Assumption 4.2.6,

sup
H∈A F

1

EP[1{G=gi} logV 1,H
T ] =−P[G = gi] logP[G = gi]

+ inf
Z∈ELMM(F,P)

EP
[

1{G=gi} log
1

ZT

]
, i ∈ {1, ...n}.

Proof. For each i ∈ {1, ...,n}, the (F,Qi)-market is obtained from the (F,P)-
market by an absolutely continuous measure change, see Equation (4.5). Fur-
thermore, the density process pgi does not jump to zero, by Assumption 4.2.6.
Theorem 2.4.1 in Chapter 2 shows that the (F,Qi)-market satisfies the condition
NUPBR and for any local martingale density Z ∈ ELMM(F,P), the process Z/pgi

is a local martingale deflator for the (F,Qi)-market (note that on {G= gi}, pgi
t > 0

for all t). Let us introduce the following subsets of L0
+

C (x) := {v ∈ L0
+ : 0≤ v≤ xV 1,HF

T , for some HF ∈A1},
D(y) :=

{
z ∈ L0

+ : 0≤ z≤ yZT , for some Z ∈ ELMM(F,P)
}
,

D i(y) :=
{

zi =
z

pgi
T
,z ∈D(y)

}
.

Because the (F,P)-market satisfies NFLVR, Proposition 3.1 of Kramkov and Schacher-
mayer [1999] implies that C and D are convex with the following properties

v ∈ C (1) ⇐⇒ EP[vz]≤ 1, for all z ∈D(1),

z ∈D(1) ⇐⇒ EP[vz]≤ 1, for all v ∈ C (1).
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These imply that

v ∈ C (1) ⇐⇒ EQi
[vzi]≤ 1, for all zi ∈D i(1),

zi ∈D i(1) ⇐⇒ EQi
[vzi]≤ 1, for all v ∈ C (1)

and thus the condition (3.1) of Mostovyi [2015] holds under the measure Qi. In
addition, C and D i contain at least one strictly positive element. For all y > 0, the
finiteness of the dual optimization

inf
zi∈D i(y)

EQi
[

log
1
zi

]
is deduced from infZ∈ELMM(F,P)EP[log(1/ZT )] < ∞. Furthermore, for all x >

0, we have that supv∈C (x)EQi
[logv] > −∞. An application of Theorem 3.2 of

Mostovyi [2015] shows that

sup
H∈A F

1

EQi
[logV 1,H

T ] = inf
Z∈ELMM(F,P)

EQi
[

log
pgi

T
ZT

]
and both sides of the equality are attainable. Hence,

sup
H∈A F

1

EP[1{G=gi} logV 1,H
T ] = inf

Z∈ELMM(F,P)
EP
[

1{G=gi} log
pgi

T
ZT

]
= inf

Z∈ELMM(F,P)
EP
[

1{G=gi} log pgi
T +1{G=gi} log

1
ZT

]
=−P[G = gi] logP[G = gi]+ inf

Z∈ELMM(F,P)
EP
[

1{G=gi} log
1

ZT

]
.

The proof is complete.

Remark 4.4.3. Because the (F,Qi)-market satisfies the condition NUPBR, one
can use the results in Chapter 3 for the log-utility optimization problem under
(F,Qi), i.e. the set of local martingale deflators of the (F,Qi)-market will be
concerned. However, we would like to represent the insider’s value function in
terms of ordinary agents’ martingale densities. So we use the abstract results of
Mostovyi [2015].
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Lemma 4.4.1 and Lemma 4.4.2 lead to a new characterization of the expected
log-utility of the insider in terms of the additional information G and the set of all
local martingale densities of the (F,P)-market.

Theorem 4.4.4. Under Assumption (4.2.6),

sup
H∈A G

1

EP[logV 1,H
T ] =−

n

∑
i=1

P[G = gi] logP[G = gi],

+
n

∑
i=1

inf
Z∈ELMM(F,P)

EP
[

1{G=gi} log
1

ZT

]
. (4.7)

It is remarked that whenever each optimization problem under Qi is attainable
then the optimization for the insider is also attainable. This theorem is useful for
several reasons. First, it shows how to compute the insider’s profit. Let us con-
sider the two components in the RHS of (4.7). The first component, which is the
entropy of G, always contributes to the profit of the insider and does not depend
on the structure of the (F,P)-market. The second component can be interpreted
as the value of G with respect to the (F,P)-market. The expected log-utility for
the insider is finite if each component is finite, or if the second component com-
pensates the first component. As a result, this theorem provides a tool to check
NUPBR under G.

Let us compare our results with the results in Amendinger et al. [1998]. The
additional expected log-utility of the insider is denoted by

∆(F,G) := sup
H∈A G

1

EP[logV 1,H
T ]− sup

H∈A F
1

EP[logV 1,H
T ].

In their approach, the quantity ∆(F,G) is represented by the information drift, see
Definition 3.6 in their paper, and in our approach, it can be expressed as

−
n

∑
i=1

P[G = gi] logP[G = gi]+
n

∑
i=1

inf
Z∈ELMM(F,P)

EP
[

1{G=gi} log
1

ZT

]
− inf

Z∈ELMM(F,P)
EP
[

log
1

ZT

]
. (4.8)
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If the market is complete, the two approaches end up with the same result: the
quantity in (4.8) reduces to the entropy of G, which is exactly what is stated in
Theorem 4.1 of Amendinger et al. [1998].

4.4.2 Superhedging and optimal arbitrage

In this section, we turn to the problem of superhedging for the insider. Under G,
we note that the initial capital is a G0-measurable random variable, which means
that we do not start with the same capital for all scenarios since G0 is not a trivial
sigma algebra. However, it is not surprising that the capital is constant on each
event {G = gi}.

Theorem 4.4.5. Under Assumption 4.2.6, the (G,P)-market satisfies NUPBR and
the superhedging price of a claim f in this market is given by

xG,P
∗ ( f ) =

n

∑
i=1

xF,P∗ ( f 1{G=gi})1{G=gi},

and the associated hedging strategy is HF,i1{G=gi}, where HF,i is the suphedging
strategy for f 1{G=gi} in the (F,P)-market, i.e.

xF,P∗ ( f 1{G=gi})1{G=gi}+(HF,i1{G=gi} ·S)T ≥ f 1{G=gi},P−a.s.

Proof. The first statement is proved by contradiction, noticing that NUPBR is
equivalent to NA1. Assume that there is an arbitrage of the first kind in the (G,P)-
market, i.e. we can find a FT -random variable ξ (because FT = GT ) such that
P[ξ ≥ 0] = 1,P[ξ > 0]> 0 and for all ε > 0, there exists a G-predictable strategy
HG,ε which satisfies

ε +(HG,ε ·S)T ≥ ξ ,P−a.s. (4.9)

Choose an index i such that P[{ξ > 0}∩{G = gi}]> 0. The inequality (4.9) still
holds true under Qi

ε +(HG,ε1{G=gi} ·S)T ≥ ξ ,Qi−a.s. (4.10)
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Let us look at the hedging strategy HG,ε1{G=gi} under Qi. Using the argument
as in the proof of Lemma 4.4.1, we have that HG,ε1{G=gi} = H̃F,i,ε1{G=gi}, where
H̃F,i,ε is a F-predictable strategy. Thus, (4.10) implies that ξ is an arbitrage of
the first kind in the (F,Qi)-market, which is equivalent to the failure of NUPBR.
However, by Theorem 2.4.1 of Chapter 2, the condition NUPBR holds for the
(F,Qi)-market, see the argument in the proof of Lemma 4.4.2. This contradiction
means that the first statement is proved.

For the second statement, we compute the superhedging prices of f under the
new measures Qi, i = 1..,n, again by using Theorem 2.4.1 of Chapter 2

xF,Q
i

∗ ( f ) = xF,P∗ ( f 1{G=gi}).

For each i, we denote by HF,i the F- strategy which superhedges f under the
(F,Qi)-market, that is

xF,Q
i

∗ ( f )+(HF,i ·S)T ≥ f ,Qi−a.s.

This inequality holds also under P when restricted on {G = gi}

xF,P∗ ( f 1{G=gi})1{G=gi}+(HF,i1{G=gi} ·S)T ≥ f 1{G=gi},P−a.s.

Summing up these inequalities we obtain(
∑

i
xF,P∗ ( f 1{G=gi})1{G=gi}

)
+

(
∑

i
HF,i1{G=gi}

)
·ST ≥ f ,P−a.s.

The hedging strategy
(
∑i HF,i1{G=gi}

)
is G-predictable.

Finally, we prove that the initial capital ∑i xF,P∗ ( f 1{G=gi})1{G=gi} is exactly the
superhedging price of f in the (G,P)-market. Assume that y is a G0-measurable
random variable such that

y+(HG ·S)T ≥ f ,P−a.s.

where HG is a G-predictable strategy. Hence,

y1{G=gi}+(HG1{G=gi} ·S)T ≥ f 1{G=gi},P−a.s.
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and because Qi� P with Qi[G = gi] = 1, we obtain

y+(HG1{G=gi} ·S)T ≥ f ,Qi−a.s.

By using the same argument as in the proof of the first statement, we can replace
HG by a F-predictable strategy H̃F,i and then

y+(H̃F,i ·S)T ≥ f ,Qi−a.s.

By definition, the superhedging price of f under Qi is smaller than y. We conclude
that ∑i xF,P∗ ( f 1{G=gi})1{G=gi} ≤ y,P−a.s..

It could also be useful to stress that, while Theorem 4.4.5 guarantees that under
Assumption 4.2.6, the (G,P)-market satisfies NUPBR, it does not exclude that
this market also satisfies NFLVR. However, if the insider could exploit arbitrage
opportunities, then her riskless profits are deduced immediately from Theorem
4.4.5.

Corollary 4.4.6. If there exists an index i such that xF,P∗ (1{G=gi}) < 1, then the
insider has an optimal arbitrage on the event {G = gi}. If xG,P

∗ (1) < 1,P− a.s.
then the insider has strong optimal arbitrage.

4.4.3 A complete market example

Let us assume that the risky asset is a geometric Brownian motion

dSt = StdWt , t ∈ [0,1], S0 = 1

and the public information F is the natural filtration generated by the Brownian
motion W . The insider knows at time t = 0 whether W1 will be above or below
a real number c. In mathematical terminology, the additional information of the
insider is given by the discrete random variable G = 1[c,∞)(W1). This example is
considered in Pikovsky and Karatzas [1996] and we further study it by applying
our results.
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We first check Jacod’s condition. Because G takes only two possible values, it
is easy to see that the conditional laws of G given Ft are given by

p1
t =

P[G = 1|Ft ]

P[G = 1]
, p0

t =
P[G = 0|Ft ]

P[G = 0]
.

Let us denote by Φ(u) =
u∫
−∞

1√
2π

e
−x2

2 dx the standard normal distribution function.

The densities p1, p0 can be computed explicitly for all t ∈ [0,1)

p1
t =

1
1−Φ(c)

1√
2π(1− t)

∞∫
c

exp
(
−(u−Wt)

2

2(1− t)

)
du =

1
1−Φ(c)

Φ

(
Wt− c√

1− t

)
,

(4.11)

p0
t =

1
Φ(c)

1√
2π(1− t)

c∫
−∞

exp
(
−(u−Wt)

2

2(1− t)

)
du =

1
Φ(c)

Φ

(
c−Wt√

1− t

)
(4.12)

At time 1, we have

p1
1 =

1{W1≥c}
P[W1 ≥ c]

, p0
1 =

1{W1<c}
P[W1 < c]

.

Here, the conditional law of G is absolutely continuous w.r.t the law of G for
t ∈ [0,1] and equivalent to the law of G only for t ∈ [0,1). Applying Itô’s formula
to (4.11) and (4.12) gives the dynamics of p1 and p0

d p1
t =

1
1−Φ(c)

1√
2π(1− t)

e−
(c−Wt )2

2(1−t) dWt , (4.13)

d p0
t =−

1
Φ(c)

1√
2π(1− t)

e−
(c−Wt )2

2(1−t) dWt . (4.14)

Let us denote

αt =


1

Φ

(
Wt−c√
(1−t)

) 1√
2π(1−t)

exp
(
− (c−Wt)

2

2(1−t)

)
, W1 ≥ c,

− 1

Φ

(
c−Wt√
(1−t)

) 1√
2π(1−t)

exp
(
− (c−Wt)

2

2(1−t)

)
, W1 < c.

(4.15)
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The process α is taken from the martingale representation of pG, that is d pG
t =

pG
t αtdWt . Proposition 4.2.3 implies that α is the information drift of G with re-

spect to F,
d
〈

pG,W
〉

t

pG
t

= αtdt.

Assumption 4.2.6 is satisfied because p1, p0 are continuous. Hence, by Theorem
4.4.5, the insider’s market satisfies the NUPBR condition.

We now compute the expected log-utility of the insider. Because the (F,P)-
market is complete with the unique martingale density Z ≡ 1, this quantity may
be deduced from Theorem 4.4.4,

sup
H∈A G

1

EP[logV 1,H
1 ] =−P[W1 ≥ c] logP[W1 ≥ c]−P[W1 < c] logP[W1 < c]

+EP
[

1{W1≥c} log
1
Z1

]
+EP

[
1{W1<c} log

1
Z1

]
=−P[W1 ≥ c] logP[W1 ≥ c]−P[W1 < c] logP[W1 < c].

Next, by applying Theorem 4.4.5 and the standard superreplication theorem (see
Theorem 5.12 of Delbaen and Schachermayer [1998]), we compute the superhed-
ing price of 1 under G as follows

xG,P
∗ (1) = 1W1≥cxF,P∗ (1{W1≥c})+1{W1<c}x

F,P
∗ (1W1<c)

= 1W1≥cP[W1 ≥ c]+1W1<cP[1W1<c].

Now, we turn to hedging strategies. The wealth processes that replicate the two
claims 1{W1≥c} and 1{W1<c} in the (F,P)-market are respectively given by

E[1W1≥c|Ft ] = P[W1 ≥ c]E
[
p1

1|Ft
]
= P[W1 ≥ c]p1

t ,

E[1W1<c|Ft ] = P[W1 < c]E
[
p0

1|Ft
]
= P[W1 < c]p0

t .

From (4.13) and (4.14), it is deduced that

1{W1≥c}p
1
t = 1{W1≥c}

1+
t∫

0

p1
uαudWu

 , 1{W1<c}p
0
t = 1{W1<c}

1+
t∫

0

p0
uαudWu

 .
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Thus, the insider needs to follow the wealth processes p1 or p0 to exploit optimal
arbitrage,

1{W1≥c}P[W1 ≥ c]p1
t +P[W1 < c]1{W1<c}p

0
t = 1{W1≥c}

P[W1 ≥ c]+P[W1 ≥ c]
t∫

0

p1
uαu

Su
dSu


+1{W1<c}

P[W1 < c]+P[W1 < c]
t∫

0

p0
uαu

Su
dSu

 .

(4.16)

Remark 4.4.7. We cannot exploit arbitrage before 1. The process 1/pG is a G-
strict local martingale on [0,1] and a G-martingale on [0,1). For a fixed t ∈ [0,1),
we can define an ELMM Q such that

dQ
dP

∣∣∣∣
Gt

=
1

pG
t
,

and so the NFLVR condition holds before time 1.

Remark 4.4.8 (PDE characterization). The approach with PDE is still relevant
here. In this example, the dynamics of S under G are dSt = St(dWG

t +αtdt).
Theorem 4.1 of Ruf [2013] suggests that the pricing equation for the claim 1 is

∂h
∂ t

+
1
2

x2 ∂ 2h
∂x2 = 0

h(1,x) = 1. (4.17)

From (4.11) and (4.16) we observe that on the set {W1 ≥ c}, the portfolio process
corresponding to the optimal arbitrage is

p1
t

p1
1
= Φ

(
lnSt +

1
2t− c

√
1− t

)
.

Now, we check whether the function g(t,x) :=Φ

(
lnx+ 1

2 t−c√
1−t

)
satisfies (4.17). Straight-
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forward calculations show

∂g
∂ t

= Φ
′

(
lnx+ 1

2t− c
√

1− t

)[
1

2
√

1− t
+

1
2

lnx+ 1
2t− c

(1− t)3/2

]
,

∂g
∂x

= Φ
′

(
lnx+ 1

2t− c
√

1− t

)
1

x
√

1− t
,

∂ 2g
∂x2 = Φ

′′

(
lnx+ 1

2t− c
√

1− t

)
1

x2(1− t)
−Φ

′

(
lnx+ 1

2t− c
√

1− t

)
1

x2
√

1− t
,

=−Φ
′

(
lnx+ 1

2t− c
√

1− t

)
lnx+ 1

2t− c
√

1− t
1

x2(1− t)
−Φ

′

(
lnx+ 1

2t− c
√

1− t

)
1

x2
√

1− t
.

It is then easy to see that the function g satisfies (4.17). The case {W1 < c} is
computed similarly. We note that the drift does not fulfill the condtion (A1) of Ruf
[2013] at time T = 1 and so we cannot apply Theorem 4.7 therein.

Remark 4.4.9 (Multiplicity of solutions). The equation (4.17) has a trivial solu-
tion h(t,x) = 1. Intuitively, two distinct solutions which exactly replicate a payoff
at different costs will generate an arbitrage. Hence, the multiplicity of solutions is
easily observed if there exist relative arbitrages or classical arbitrages. In asset
pricing theory with bubbles, the multiplicity of solutions is discussed in Cox and
Hobson [2005], Heston et al. [2007], Ekström and Tysk [2009] and others.

4.4.4 An incomplete market example

Suppose that N1 and N2 are two independent standard Poisson processes. We
consider a financial market with the risky asset St = eN1

t −N2
t whose dynamics is

given by

dSt = St−
(
(e−1)dN1

t +(e−1−1)dN2
t
)
, S0 = 1, t ∈ [0,T ].

The public information F is generated by the two Poisson processes N1,N2. The
(F,P)-market satisfies the NFLVR condition, and any martingale density Z is of
the form

dZt = Zt−
(
(α1

t −1)(dN1
t −dt)+(α2

t −1)(dN2
t −dt)

)
, (4.18)
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where α1,α2 are positive and α1
t = e−1α2

t in order for ZS to be a local martingale.
Let us define Nt := N1

t −N2
t and assume that the insider possesses the knowledge

of NT , and hence ST , at the beginning of trading. The insider’s filtration is Gt =

Ft ∨σ(NT ) = Ft ∨σ(ST ). Because the random variable NT takes values in Z,
Jacod’s condition is satisfied. An easy computation shows that for all t ∈ [0,T ),

px
t =

P[NT = x|Ft ]

P[NT = x]
=

∑k≥0 e−(T−t) (T−t)k

k! e−(T−t) (T−t)k+x−Nt

(k+x−Nt)!
1k+x−Nt≥0

∑k≥0 e−T T k

k! e−T T x+k

(x+k)!

> 0

and for t = T

px
T =

1{NT=x}

∑k≥0 e−T T k

k! e−T T x+k

(x+k)!

.

The filtration F is quasi-left continuous, which means that the density px does not
jump to zero at the predictable stopping time T and thus Assumption (4.2.6) is
fulfilled.
NUPBR and the expected log-utility. Theorem 4.4.5 allows us to conclude that
the (G,P)-market satisfies NUPBR and the expected log-utility of the insider is

sup
H∈A G

1

EP[logV 1,H
T ] =−∑

x∈Z
P[NT = x] logP[NT = x]

−∑
x∈Z

sup
Z∈ELMM(F,P)

EP [1{NT=x} logZT
]
.

Because the first term of the RHS in the above equation is explicit, we need to
compute the second term, i.e. supZ∈ELMM(F,P)EP [1{NT=x} logZT

]
for each x ∈ Z.

Using the general formula of Z in (4.18) and taking the conditional expectation
with respect to G0, we have that

EP[1{NT=x} logZT ] = EP

1{NT=x}EP

 2

∑
i=1

T∫
0

logα
i
t dNi

t − (α i
t −1)dt

∣∣∣∣∣∣G0


= EP

1{NT=x}

2

∑
i=1

T∫
0

(
λ
G,i
t logα

i
t − (α i

t −1)
)

dt

 , (4.19)
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where λG,1,λG,2 are intensities of N1,N2 under G, respectively. In order to maxi-
mize this term, we substitute α2

t = eα1
t and differentiate with respect to α1 to find

the equation for optimal candidate

1
α1

t
(λG,1

t +λ
G,2
t ) = e+1.

This equation gives us a solution α1
t = λ

G,1
t +λ

G,2
t

e+1 . Plugging the solution into the
expectation (4.19), we obtain

sup
Z∈ELMM(F,P)

EP [1{NT=x} logZT
]

= EP

1{NT=x}

T∫
0

(
log

(
λ
G,1
t +λ

G,2
t

e+1

)
(λG,1

t +λ
G,2
t )−λ

G,1
t +2

)
dt

 .
(4.20)

Now we need to compute the intensities λG,1 and λG,2 explicitly. To do this, we
introduce a further larger filtration Ht = Ft ∨σ(N1

T ,N
2
T ). Under H, we obtain

that

dN1
t −

N1
T −N1

t
T − t

dt, dN2
t −

N2
T −N2

t
T − t

dt (4.21)

are martingales under H, see Theorem 3, page 356 of Protter [2003]. Now, Lemma
5.0.14 implies that the processes

dN1
t −E

[
N1

T −N1
t

T − t

∣∣∣∣Gt

]
dt, dN2

t −E
[

N2
T −N2

t
T − t

∣∣∣∣Gt

]
dt (4.22)

are martingales under G. This implies that

λ
G,1
t = E

[
N1

T −N1
t

T − t

∣∣∣∣Gt

]
=

1
T − t

E[N1
T−t |N1

T−t−N2
T−t ].

On the event {N1
T−t−N2

T−t = y}, the random variable λG,1 becomes

λ
G,1
t =

1
T − t

E[N1
T−t |N1

T−t−N2
T−t = y] =

1
T − t

E[N1
T−t1{N1

T−t−N2
T−t=y}]

P[N1
T−t−N2

T−t = y]
.
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The computation can be done explicitly. For example, if y > 0, we compute

E[N1
T−t1{N1

T−t−N2
T−t=y}]

P[N1
T−t−N2

T−t = y]
=

∑k≥0(y+ k)P[N2
T−t = k]P[N1

T−t = y+ k]

∑k≥0P[N2
T−t = k]P[N1

T−t = y+ k]

=
∑k≥0(y+ k) (T−t)2k+y

k!(y+k)!

∑k≥0
(T−t)2k+y

k!(k+y)!

=
(T − t)Iy−1(2(T − t))

Iy(2(T − t))
,

where Iα(x) is the modified Bessel functions of the first kind 1. If y = 0,

E[N1
T−t1{N1

T−t−N2
T−t=0}]

P[N1
T−t−N2

T−t = 0]
=

∑k≥0 kP[N2
T−t = k]P[N1

T−t = k]

∑k≥0P[N2
T−t = k]P[N1

T−t = k]

=
(T − t)2

∑k≥0
(T−t)2k

k!(k+1)!

∑k≥0
(T−t)2k

(k!)2

=
(T − t)I0(2(T − t))

I0(2(Tt))
.

The case y < 0 is treated similarly. Finally, we have obtained explicit formulas for
the intensities λG,1,λG,2 and then the expectation in (4.20) can be computed by
numerical integration.

We remark that this argument only gives us the expected log-utility of the
insider. In the following, we study the optimal strategy by a different approach.
A direct computation of the expected log-utility. Let πG be a G-predictable
strategy and denote by V 1,πG

the corresponding wealth process whose dynamics
are

dV 1,πG

t

V 1,πG
t−

= π
G
t

dSt

St−
= π

G
t
(
(e−1)dN1

t +(e−1−1)dN2
t
)
.

The logarithm of V 1,πG
satisfies

d logV 1,πG

t = log
(

1+(e−1)πG
t

)
dN1

t + log
(

1+(e−1−1)πG
t

)
dN2

t

=
(

log
(

1+(e−1)πG
t

)
λ
G,1
t + log

(
1+(e−1−1)πG

t

)
λ
G,2
t

)
dt +martingale parts.

1The modified Bessel functions of the first kind is given by the series representation Iα(x) =

∑m≥0
1

m!(m+α)!

( x
2

)2m+α , for a real number α .
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Taking the expectation of both sides, we obtain that

EP
[
logV 1,πG

T

]
=EP

 T∫
0

(
log
(

1+(e−1)πG
t

)
λ
G,1
t + log

(
1+(e−1−1)πG

t

)
λ
G,2
t

)
dt

 .
Differentiating with respect to πG in the above formula, we get the equation

1
1+(e−1)πG

t
(e−1)λG,1

t +
1

1+(e−1−1)πG
t
(e−1−1)λG,2

t = 0

Solving this equation, we obtain

π
G
t =

λ
G,1
t (e−1)+λ

G,2
t (e−1−1)

(e−1)(1− e−1)(λG,1
t +λ

G,2
t )

and the solution also satisfies the constraint − 1
e−1 < πG

t < 1
1−e−1 for the positivity

of the wealth process. The expected log-utility for the insider is now computed by
using the formulas of λG,1 and λG,2 as above.
Optimal arbitrage. By Theorem 4.4.5, the superhedging price of 1 under G is

xG,P
∗ (1) = ∑

x∈Z
xF,P∗ (1{NT=x})1{NT=x}.

Now, we need to compute the quantity xF,P∗ (1{NT=x}) = supP∈ELMM(F,P)P[NT = x]
for every x ∈ Z in order to find optimal arbitrage.

Proposition 4.4.10. If x≤ 0, we have

xF,P∗ (1{NT=x}) = sup
P∈ELMM(F,P)

P[NT = x] = 1

and there is no arbitrage in the (G,P)-market. If x > 0, we have that

xF,P∗ (1{NT=x}) = sup
P∈ELMM(F,P)

P[NT = x] =
1
ex

and the optimal arbitrage strategy in the (G,P)-market is the strategy which buys
one unit of the risky asset and holds it until maturity.
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Proof. First, we consider the case x ≤ 0. Let us define τ := inf{t : Nt = x}. We
choose α1

t =m1t≤τ and denote by Pm the corresponding martingale measure. This
choice of α1 makes the Poisson processes N1 and N2 jump more frequently. How-
ever, when N1

t −N2
t = x, the two Poisson processes will not jump anymore. In

other words, the measure Pm concentrates on the event {NT = x}. For any m > 0,
we have the following inequality

sup
P∈ELMM(F,P)

P[NT = x]≥ EPm
[1{NT=x}] = Pm

[τ ≤ T ].

Under Pm, the intensities of N1 and N2 are α1 and α2. We use the fact that a
Poisson process with stochastic intensity λt can be viewed as a time change of a
standard Poisson process N t∫

0
λsds

and α2 = eα1, then

Pm
[τ ≤ T ] = P

[
inf

0≤t≤mT
(N1

t − Ñ2
t )≤ x

]
where Ñ2 is a Poisson process with parameter e. Letting m go to infinity and using
the Dominated Convergence theorem, we obtain

sup
P∈ELMM(F,P)

P[NT = x]≥ P
[

inf
t≥0

(N1
t − Ñ2

t )≤ x
]
= 1,

because N1
t − Ñ2

t →−∞ as t→ ∞. So, the first statement holds true. For the case
x > 0, we notice that e−x is an upper bound for the supremum. Indeed, for any
ELMM P, it holds that

P[NT = x]≤ P[ST ≥ ex]≤ EP[ST ]

ex ≤ 1
ex .

We repeat the computations as in the first case

sup
P∈ELMM(F,P)

P[NT = x]≥EPm
[1{NT=x}] =Pm

[τ ≤T ] =P

[
sup

0≤t≤mT
(N1

t − Ñ2
t )≥ x

]
.

It suffices to show that

P

[
sup
t≥0

(N1
t − Ñ2

t )≥ x

]
=

1
ex .
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Indeed, let us denote f (x) = P
[
supt≥0(N

1
t − Ñ2

t )≥ x
]
. Let τ1,τ2 be the first jump

times of N1 and Ñ2, respectively. Because τ1 ∼ Exp(1) and τ2 ∼ Exp(e) are
independent, the random variable τ1

eτ2
has the density 1

(1+t)2 , thanks to Lemma
5.0.12, and thus,

P[τ1 < τ2] = P
[

τ1

eτ2
<

1
e

]
=

1/e∫
0

1
(1+ t)2 dt =

1
1+ e

.

From its definition, we have f (0) = 1 and for x≥ 1 it then follows that

f (x) = P

[
sup
t≥0

(N1
t − Ñ2

t )≥ x|τ1 > τ2

]
P[τ1 > τ2]

+P

[
sup
t≥0

(N1
t − Ñ2

t )≥ x|τ1 ≤ τ2

]
P[τ1 ≤ τ2]

=
f (x−1)

1+ e
+

e f (x+1)
1+ e

.

Therefore, we obtain f (x+1)− f (x) = f (x)− f (x−1)
e and thus

f (x) = 1− (1− f (1))
1− e−x

1− e−1 .

Because limx→∞ f (x) = 0, we have that f (1) = e−1 and then f (x) = e−x.

Now, we show that the buy and hold strategy is optimal. Because the insider
knows the value of ST , the buy and hold strategy gives her the wealth process
which superreplicates the claim 1,

1
ST

+
1

ST

T∫
0

1dSu = 1.

It is clear that the insider needs the initial capital e−x on the event {NT = x}.
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4.5 Initial enlargement with a general random vari-
able

In this section, we investigate the finiteness of insider’s expected log-utility (then
NUPBR) and the question of optimal arbitrage when the FT -measurable random
variable G is not purely atomic by analogy with Section 4.4.

It is usually observed that in these settings, the value of logarithmic utility of
the insider is infinite, for example in Theorem 4.4 of Pikovsky and Karatzas [1996]
where the insider has exact information about at least one stock’s terminal price,
or in Amendinger et al. [1998] where the insider’s additional expected logarithmic
utility is related to the entropy of G. This difficulty appears at T , the time when the
conditional law of G given FT is a Dirac measure and hence Jacod’s condition
fails. Because NUPBR is the minimal condition for well-posed maximization
problems, Acciaio et al. [2014] give a sufficient condition so that NUPBR holds
under G in infinite time horizon settings. Their idea is that if the processes px and
S do not jump to zero at the same time, then one can construct an ELMD under
G. However, in finite horizon settings, it may happen that the process px is not
well-defined at T , making it impossible to define an ELMD because px appears in
the denominator of such an ELMD.

In Section 4.5.1, we show that if G is not atomic and the set of local mar-
tingale densities ELMM(F,P) is uniformly integrable then there always exists an
arbitrage of the first kind, and thus NUPBR fails. This negative message implies
that the non-uniform integrability of ELMM(F,P) is a necessary condition for
NUPBR under G. In Section 4.5.3, we introduce an approximation procedure
which allows us to use the techniques from the case with discrete information in
Section 4.4. In Section 4.5.4, we investigate the log-utility optimization prob-
lem in detail and give a new criterion for the validity of NUPBR for the insider
in incomplete markets. In Section 4.5.5, we study superhedging prices and opti-
mal arbitrage profit. Furthermore, some new examples are given to illustrate our
points.
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4.5.1 Arbitrage of the first kind

Assuming that the set ELMM(F,P) is uniformly integrable, we will give an easy
and explicit construction of arbitrages of the first kind in the next proposition. It
is worth noticing that we do not use Assumption 4.2.6 in the proof.

Proposition 4.5.1. (Arbitrage of the first kind) Assume that

• The law of G is not purely atomic,

• The set {ZT = dP
dP : P ∈ ELMM(F,P)} is uniformly integrable.

Then there exists an arbitrage of the first kind for the insider. In particular, if the
market (F,P) is complete, then NUPBR always fails under G.

Proof. Let us choose B ⊂ R such that B does not contain any atoms of G and
P[G ∈ B] = c > 0. For each n, we find a partition (Bn

i )1≤i≤n of B such that
P[G ∈ Bn

i ] = c/n and we show that 1{G∈B} is an arbitrage of the first kind as
follows. First, we can compute the superhedging price of 1{G∈Bn

i } and its associ-
ated hedging strategy HF,i in the (F,P)-market, see Corollary 10 of Delbaen and
Schachermayer [1995c],

sup
Z∈ELMM(F,P)

EP[ZT 1{G∈Bn
i }]+ (HF,i ·S)T ≥ 1{G∈Bn

i }.

Therefore,

n

∑
i=1

sup
Z∈ELMM(F,P)

EP[ZT 1{G∈Bn
i }]1{G∈Bn

i }+

(
n

∑
i=1

HF,i1{G∈Bn
i }

)
·ST ≥ 1{G∈B}.

(4.23)
Becasue the set of all local martingale densities {ZT : Z ∈ ELMM(F,P)} is uni-
formly integrable, for any ε > 0 there exists K > 0 such that

sup
Z∈ELMM(F,P)

EP[ZT 1{ZT>K}]≤ ε.

98



Chapter 4.5. Initial enlargement with a general random variable

Then the initial capital in in (4.23) can be estimated by

n

∑
i=1

sup
Z∈ELMM(F,P)

(
EP[ZT 1{Z>K}1{G∈Bn

i }]+EP[ZT 1ZT≤K1{G∈Bn
i }]
)

1{G∈Bn
i }

≤
n

∑
i=1

(ε +KP[G ∈ Bn
i ])1{G∈Bn

i }

=
n

∑
i=1

(
ε +K

c
n

)
1{G∈Bn

i }.

We can choose ε and n such that the initial capital in (4.23) is arbitrarily small
and thus the random variable 1{G∈B} is an arbitrage of the first kind, in the sense
of Definition 1.4.8.

Remark 4.5.2 (A comparison to Amendinger et al. [1998]). We recover their The-
orem 4.4 by using a different approach. More precisely, in that paper the authors
show that the insider’s additional expected logarithmic utility up to time T be-
comes infinite and then NUPBR fails. However, their results apply only to contin-
uous processes and require an even stronger condition than market completeness,
namely that the inverse of pG may be represented as a stochastic integral, see
condition (45) therein. In our result, we are able to construct unbounded profits
in general market settings. In particular, the following example shows that the
property of uniform integrability holds also for some incomplete market models.

An example with UI martingale densities in an incomplete market. We con-
sider a risky asset whose price evolves as

dSt = St−σ(t)(θdN1
t +(1−θ)dN2

t −dt)

where θ ∈ (0,1) and σ(t) is a non-constant continuous function. The filtration
F is generated by two independent standard Poisson processes N1 and N2. Any
martingale density has this form

ZT = E

(∫ T

0
(φ 1

t −1)(dN1
t −dt)

)
E

(∫ T

0
(φ 2

t −1)(dN2
t −dt)

)
,

99



Chapter 4.5. Initial enlargement with a general random variable

where φ 1 and φ 2 are positive predictable processes satisfying θφ 1
t +(1−θ)φ 2

t =

1,P−a.s. Therefore,

0≤ φ
1 ≤ 1

θ
, 0≤ φ

2 ≤ 1
1−θ

.

These inequalities lead to an upper bound for all martingale densities

ZT = e−
∫ T

0 (φ 1
t +φ 2

t −2)dt
N1

T

∏
i=1

φ
1
ti

N2
T

∏
j=1

φ
2
t j
≤C(θ)

1

θ N1
T

1

(1−θ)N2
T
≤C(θ)

1
min{θ ,1−θ}

where C(θ) is a constant depending on θ . As a result, the set of martingale den-
sities is uniformly integrable. Let (T 1

i )i≥1 and (T 2
j ) j≥1 be the jump times of N1

and N2 respectively. Because σ is a continuous function, the random variables
σ(T 1

i ),σ(T 2
j ) are continuous. This means that the information

G = ST = exp

− T∫
0

σ(s)ds

 N1
T

∏
i=1

(
1+θσ(T 1

i )
) N2

T

∏
j=1

(
1+(1−θ)σ(T 2

j )
)

is a nonatomic random variable and hence the market of the insider does not sat-
isfy the NUPBR condition.

In the following, we give an example in which the additional information is a
continuous random variable and the insider has no unbounded profit with bounded
risk. This example ensures that the questions of NUPBR and optimal arbitrage
make sense. The answers of these questions are introduced in Section 4.5.4 and
Section 4.5.5 by using an approximating procedure illustrated in Section 4.5.3.

4.5.2 An example with a Lévy process with two-sided jumps

The idea of this example comes from Kohatsu-Higa and Yamazato [2011]. Be-
cause of the presence of non-predictable jumps, stock prices incorporate higher
risks than that in Brownian motion, the optimal strategy of the insider is not highly
oscillating. Consequently, the utility of the insider may be finite.

We assume that the public information F is the natural filtration generated by a
Brownian motion W and two independent Poisson processes N1,N2 with intensity
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λ = 1. The risky asset is St = exp(Mt) where Mt =Wt +N1
t −N2

t is a F-martingale.
The dynamic of S under F is

dSt = St−

(
dWt +

1
2

dt +(e−1)dN1
t +(e−1−1)dN2

t

)
, S0 = 1.

Let HF be a F- self-financing strategy. We denote by πF the fraction of wealth
invested in the stock, that is πF

t := HF
t St

V HF
t

. The associated wealth can be expressed
as

dV πF
t

V πF
t−

= π
F
t

dSt

St−
, V πF

0 = v.

The strategy πF is admissible if for all t ∈ [0,T ] we have that V v,πF

t ≥ 0,P− a.s.
This requirement is equivalent to

− 1
e−1

< π
F
t <

1
1− e−1 .

Now, we study the market of an insider with the additional information given by
the final value of S, that is Gt =Ft∨σ(ST )=Ft∨σ(MT ). First, we check Jacod’s
condition. We compute by using the Markov property

P[MT ∈ dx|Ft ] = P[MT −Mt ∈ dx−Mt ]

= ∑
i≥0, j≥0

P[N1
T−t = i]P[N2

T−t = j]P[WT−t ∈ dx−Mt− i+ j]

= ∑
i≥0, j≥0

e−2(T−t) (T − t)i+ j

i! j!
1√

2π(T − t)
e−

(x−Mt−i+ j)2

2(T−t) dx,

P[MT ∈ dx] = ∑
i≥0, j≥0

e−2T T i+ j

i! j!
1√
2πT

e−
(x−i+ j)2

2T dx,

and hence,

px
t =

P[MT ∈ dx|Ft ]

P[MT ∈ dx]
=

∑i≥0, j≥0 e−2(T−t) (T−t)i+ j

i! j!
1√

2π(T−t)
e−

(x−Mt−i+ j)2

2(T−t)

∑i≥0, j≥0 e−2T T i+ j

i! j!
1√
2πT

e−
(x−i+ j)2

2T

.
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The Jacod condition is satisfied. Now, the public filtration is quasi left-continuous,
the F-martingale px is positive if t < T and it cannot jump at the predictable
stopping time T . Thus, Assumption 4.2.6 is fulfilled.

We will compute the dynamics of S under G and then study the logarith-
mic utility maximization problem for the insider, which will also allow us to
verify the NUPBR condition. First, we introduce a larger filtration Ht := Ft ∨
σ(WT ,N1

T ,N
2
T ). By Theorem 3, page 356 of Protter [2003], the processes

dWt−
WT −Wt

T − t
dt, dN1

t −
N1

T −N1
t

T − t
dt, dN2

t −
N2

T −N2
t

T − t
dt

are martingales under H. Lemma 5.0.14 shows that the processes

dWG
t := dWt−λ

W
t dt, dN1

t −λ
G,1
t dt, dN2

t −λ
G,2
t dt

are martingales under G, where

λ
W
t = E

[
WT −Wt

T − t

∣∣∣∣Gt

]
, λ

G,1
t = E

[
N1

T −N1
t

T − t

∣∣∣∣Gt

]
, λ

G,2
t = E

[
N2

T −N2
t

T − t

∣∣∣∣Gt

]
.

We rewrite the dynamic of S under G as the sum of local martingales and a finite
variation part

dSt =St−
(

dWG
t +(e−1)(dN1

t −λ
G,1
t dt)+(e−1−1)(dN2

t −λ
G,2
t dt)

)
+St−

(
1
2
+λ

W
t +(e−1)λG,1

t +(e−1−1)λG,2
t

)
dt.

For a self-financing strategy πG
t , which is defined as πF, the corresponding wealth

process is
dV πG

t

V πG
t−

= π
G
t

dSt

St−
, V πG

0 = v.

In the (G,P)-market, the jump sizes do not change, so a G-admissible strategy is
also bounded from above and from below,

− 1
e−1

< π
G
t <

1
1− e−1 .
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By Itô’s formula, we have

d logV πG
t = π

G
t

(
dWG

t +(e−1)(dN1
t −λ

G,1
t dt)+(e−1−1)(dN2

t −λ
G,2
t dt)

)
+π

G
t

(
1
2
+λ

W
t +(e−1)λG,1

t +(e−1−1)λG,2
t

)
dt

− 1
2
(πG

t )2dt +
(

log(1+(e−1)πG
t )− (e−1)πG

t

)
dN1

t

+
(

log(1+(e−1−1)πG
t )− (e−1−1)πG

t

)
dN2

t .

All admissible strategies are bounded and the expected logarithmic utility for an
insider is finite, because for any πG it holds that

E[logV πG
T ]≤ E

 T∫
0

|πG
t |
(

1
2
+λ

W
t +(e−1)λG,1

t +(e−1−1)λG,2
t

)
dt


+

1
2
E

 T∫
0

(πG
t )2dt

+E

 T∫
0

(
log(1+(e−1)πG

t )− (e−1)πG
t

)
λ
G,1
t dt


+E

 T∫
0

(
log(1+(e−1−1)πG

t )− (e−1−1)πG
t

)
λ
G,2
t dt

<+∞.

In conclusion, the (G,P)-market satisfies NUPBR. Furthermore, the insider has
arbitrage opportunities because she knows the final value of S. For example, she
could buy the asset S (with S0 = 1) and hold it until maturity if ST > 1 for a riskless
profit.

4.5.3 An approximation procedure

We have seen that the absence of uniform integrability is a necessary condition
for NUPBR under G. In the sequel, we introduce an approximation procedure to
compute the log-utility of the insider and then a sufficient condition for NUPBR.

Let {gn
i , i = 1, ...,n} be a finite increasing partition of R+ and denote

σ(Gn) = σ ({G ∈ gn
i }, i = 1, ...,n) .
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Motivated by the results in Section 4.4, we now approximate σ(G) by the increas-
ing sequence of sigma algebras σ(Gn)

σ(Gn)⊂ σ(Gn+1)⊂ ...σ(G) = σ

(⋃
n≥1

σ(Gn)

)
.

Now, we define an increasing sequence of filtrations Gn = (G n
t )t∈[0,T ], where

G n
t :=

⋂
ε>0 Ft+ε ∨σ(Gn). The information from G is revealed from coarser lev-

els to finer ones and we show how to use this additional information effectively at
each level. For each n, we then proceed as in Theorem 4.4.4 and Theorem 4.4.5 to
compute the log-utility value and superhedging prices under Gn, the information
of level n. Then, convergence results are applied to find solutions under G.

To begin, we prepare some preliminary results by showing that for any G-
predictable strategy HG, there exists a sequence of (Gn)-predictable strategies
(HGn

)n which converge to HG almost surely. The proof of this claim is broken
into several lemmas, for the purpose of clear presentation.

Lemma 4.5.3. Assume that HG is a simple bounded G-strategy. Then there is a
sequence of Gn-predictable strategies (HGn

)n such that HGn
converges uniformly

to HG a.s.

Proof. We assume that HG
t has the representation ∑

k
i=1 hTi1]Ti,Ti+1](t) where hTi are

bounded GTi-measurable random variables, i.e. |hTi| ≤ K, i = 1, ...,k . We define

HGn

t :=
k

∑
i=1

E[hTi|G
n
Ti
]1]Ti,Ti+1](t).

The process HGn
is Gn-predictable. Using Lévy’s ”Upward” Theorem (see The-

orem 50.3 of Rogers and Williams [1979]), we obtain E[hTi|G n
Ti
]→ hTi,P− a.s.

Because there are a finite number of indicator functions in the representation of
HG, we can choose n such that

sup
t∈[0,T ]

|HGn

t −HG
t | → 0,P−a.s., n→ ∞.

Thus, the proof is complete.
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Lemma 4.5.4. For any G-predictable strategy HG, there exists a sequence of Gn-
predictable admissible strategies HGn

such that for all t ∈ [0,T ]

HGn

t → HG
t , P−a.s.

Proof. We can find a sequence of bounded simple predictable processes (HG,n)n∈N
such that

∀t ∈ [0,T ], HG,n
t → HG

t ,P−a.s. (4.24)

For each n, Lemma 4.5.3 shows that there exists a sequence of Gm-strategies
Hn,Gm

such that

fn,m := sup
t∈[0,T ]

|Hn,Gm

t −HG,n
t | → 0,P−a.s. m→ ∞.

Applying Lemma 5.0.11 to the sequences fm,n and fn = f = 0, there exists a
sequence (mn)⊂ N such that

fn,mn = sup
t∈[0,T ]

|Hn,Gmn

t −HG,n
t | → 0,P−a.s. n→ ∞. (4.25)

Finally, (4.24 and (4.25) imply that Hn,Gmn

t → HG
t ,P−a.s. for all t ∈ [0,T ].

4.5.4 NUPBR and Log-utility

By analogy to the discrete case, we prove NUPBR under Assumption 4.2.6 using
the finiteness of log-utility. To begin with, we show the following result.

Lemma 4.5.5. Under Assumption 4.2.6, for every a < b, the F-martingale

p(a,b)t (ω) :=
P[G ∈ (a,b)|Ft ](ω)

P[G ∈ (a,b)]
=

1
P[G ∈ (a,b)]

b∫
a

px
t (ω)P[G ∈ dx]

does not jump to zero.
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Proof. The martingale p(a,b) is bounded by 1
P[G∈(a,b)] . Because lims↗t px

s(ω) =

px
t−(ω), and lims↗t p(a,b)s (ω) = p(a,b)t− (ω) the reverse Fatou lemma implies that

1
P[G ∈ (a,b)]

b∫
a

px
t−(ω)P[G ∈ dx]≥ 1

P[G ∈ (a,b)]
limsup

s↗t

b∫
a

px
s(ω)P[G ∈ dx]

= p(a,b)t− (ω).

We deduce that if p(a,b)t = 0 then we have that px
t = 0 for a.a. x except for a set

having measure zero w.r.t the measure induced by G. Furthermore, if p(a,b)t− > 0
then px

t− > 0 on some set J ⊂ (a,b) with positive measure (w.r.t the measure
induced by G). Thus, if p(a,b) jumps to zero then px jumps to zero for all x ∈ J.
On the other hand Assumption 4.2.6. requires px not to jump to zero for all x.
Hence, the process p(a,b) does not jump to zero.

Theorem 4.5.6. We have that

lim
n→∞

sup
H∈A Gn

1

EP[logV 1,H
T ] = sup

H∈A G
1

EP[logV 1,H
T ].

Proof. Let HG be an arbitrary G-strategy and ε be a positive number and (HGn
)n

be a sequence of Gn-predictable processes which tend to HG almost surely. We
denote

A(n,ε) := {ω : sup
t∈[0,T ]

|(HGn
·S)t− (HG ·S)t | ≤ ε}.

We now have the following estimation on A(n,ε)

(HGn
·S)t = (HG ·S)t +(HGn

·S)t− (HG ·S)t

≥ (HG ·S)t− ε, ∀t ∈ [0,T ]. (4.26)

Denoting τε
n := inf{t ∈ [0,T ] : 1+ 2ε +(HGn · S)t ≤ 0}, we see that the strategy

HGn

t∧τε
n

with initial capital 1+2ε is admissible. The following inequality holds

1+2ε +(HGn
·S)T ≥ 1A(n,ε)V

1,HG

T
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and so
EP
[
log
(

1+2ε +(HGn
·S)T

)]
≥ EP

[
1A(n,ε) logV 1,HG

T

]
or equivalently

EP
[

log
(

1+
1

1+2ε
(HGn

·S)T

)]
+ log(1+2ε)≥ EP

[
1A(n,ε) logV 1,HG

T

]
.

By construction, the stopped strategy HGn

·∧τε
n

is (1+ ε)-admissible. From that, the
strategy 1

1+2ε
HGn

·∧τε
n

is (1+ ε)/(1+ 2ε)-admissible and hence 1-admissible. We
deduce that

sup
H∈A Gn

1

EP [log(1+(H ·S)T )]+ log(1+2ε)≥ EP
[
1A(n,ε) logV 1,HG

T

]
By Dominated convergence theorem (see Theorem 32, page 174 of Protter [2003]),
there exists a number N(ε) such that for all n > N(ε), it holds that P[A(n,ε)] >
1− ε . Letting n tend to infinity, we obtain

lim
n→∞

sup
H∈A Gn

1

EP [log(1+(H ·S)T )]+ log(1+2ε)≥ EP
[
logV 1,HG

T

]
for any strategy HG and thus

lim
n→∞

sup
H∈A Gn

1

EP
[
logV 1,H

T

]
+ log(1+2ε)≥ max

H∈A G
1

EP[logV 1,H
T ].

The conclusion follows easily.

We will extend Theorem 4.4.4 in the next corollary.

Corollary 4.5.7. Assumption 4.2.6 holds. Let G be a random variable with con-
tinuous density f and finite entropy. The insider’s expected log-utility is

sup
H∈A G

1

EP[logV 1,H
T ] =−

∫
f (x) log f (x)dx

+ lim
n→∞

n

∑
i=1

(
− log |gn

i |P[G ∈ gn
i ]+ inf

Z∈ELMM(F,P)
EP
[

1{G∈gn
i } log

1
ZT

])
.

(4.27)
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Proof. Theorem 4.5.6 and Theorem 4.4.4 show that

sup
H∈A G

1

EP[logV 1,H
T ] = lim

n→∞

n

∑
i=1

(
−P[G ∈ gn

i ] logP[G ∈ gn
i ]+ inf

Z∈ELMM(F,P)
EP
[

1{G∈gn
i } log

1
ZT

])
(4.28)

Now we consider the first term in the RHS. Using mean value theorem, we have
that P[G ∈ gn

i ] = f (xn
i )|gn

i | for some xn
i ∈ gn

i . Thus,

−P[G ∈ gn
i ] logP[G ∈ gn

i ] =−P[G ∈ gn
i ] log( f (xn

i )|gn
i |)

=−P[G ∈ gn
i ] log f (xn

i )−P[G ∈ gn
i ] log |gn

i |
=− f (xn

i ) log f (xn
i )|gn

i |−P[G ∈ gn
i ] log |gn

i |.

Letting n tend to infinity, we get the result.

As a consequence, the insider’s log-utility problem is finite if G has finite
entropy and for every event {G ∈ gn

i }, there exists a martingale density ZT such
that the quantity EP[1{G∈gn

i } log(1/ZT )] can compensate the term − log |gn
i |P[G ∈

gn
i ]. In complete markets, it is impossible to find such a martingale density for each

event, implying that expected log-utility of the insider is infinite. In incomplete
markets, the result provides us with a new criterion for NUPBR under G.

Corollary 4.5.8. Under Assumption 4.2.6, if there exists a constant C < ∞ such
that for all a and all ε small enough,

sup
Z∈ELMM

E[1{G∈(a,a+ε)} logZT ]≥−P[G ∈ (a,a+ ε)] logP[G ∈ (a,a+ ε)]

−CP[G ∈ (a,a+ ε)] (4.29)

then the condition NUPBR holds under G.

Proof. The equation (4.28) is still valid. Now, we apply (4.29) to (4.28) and
obtain

sup
H∈A G

1

EP[logV 1,H
T ] = lim

n→∞

n

∑
i=1

(
−P[G ∈ gn

i ] logP[G ∈ gn
i ]+ inf

Z∈ELMM(F,P)
EP
[

1{G∈gn
i } log

1
ZT

])
≤ lim

n→∞

n

∑
i=1

CP[G ∈ gn
i ] =C.
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The expected log-utility of the insider is bounded and hence the condition NUPBR
holds under G.

A counterexample

Assumption 4.2.6 cannot be dropped. We will illustrate this point by an example.

Proposition 4.5.9. Let

St = 1+Y 10.5≤t , t ∈ [0,1]

where Y > −1 is a continuous random variable with bounded density 0 < m ≤
f (y)≤M and E[Y ] = 0. We assume that the support of f is (−1,L), where L > 1.
Then the criterion (4.29) holds. In this case, the insider with the information ST

has infinite expected utility.

Proof. Letting a ∈ (0,L+1) such that 1 /∈ (a,a+ ε), we choose

Z1 = A1Y∈(a−1,a−1+ε)+B1Y∈(b−1,b−1+ε)(Y )+δ1Y /∈(a−1,a−1+ε)∪(b−1,b−1+ε)

where 0< b< L+1, 1 /∈ (b,b+ε) and (a−1)(b−1)< 0. Now, we choose A,B,b,
0 < δ < 1 satisfying the following properties:

1) Z is a local martingale density, i.e. Z1 > 0, E[Z1] = 1 and E[Z1S1] = 1,

2) the inequality (4.29) holds for the chosen Z1.

Let us explain the meaning of this choice. Because the support of Y is (−1,L), the
support of Y under an equivalent local martingale measure is also (−1,L). This
means that Z1 is defined appropriately. Furthermore, under the local martingale
measure defined by Z1, the random variable Y concentrates at two points a−1 and
b− 1. This implies the quantity E[1S1∈(a,a+ε) logZ1] = E[1Y∈(a−1,a−1+ε) logA]
likely satisfies the condition (4.29) if A is big enough. Finally, the requirement
(a−1)(b−1)< 0 is for the martingale property of S1.
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We define

q1 := E[1Y∈(a−1,a−1+ε)], q2 := E[1Y∈(b−1,b−1+ε)],

k1 := E[Y 1Y∈(a−1,a−1+ε)], k2 := [Y 1Y∈(b−1,b−1+ε)].

The requirement i) for Z1 implies that

Aq1 +Bq2 +δ (1−q1−q2) = 1, Ak1 +Bk2 +δ (−k1− k2) = 0.

Solving these equations, we obtain

A =
k2(1−δ )

q1k2−q2k1
+δ , B =

−k1(1−δ )

q1k2−q2k1
+δ ,

which are positive. Indeed, there are two possible cases:

• if a> 1,b< 1, then q1 > 0,q2 > 0,k1 > 0,k2 < 0. We compute q1k2−q2k1 <

0 and hence A and B are positive.

• if a< 1,b> 1, it holds that q1 > 0,q2 > 0,k1 < 0,k2 > 0 and q1k2−q2k1 > 0.
Thus, A and B are positive.

We turn to the requirement ii). Because E[1S1∈(a,a+ε) logZ1] =E[1Y∈(a−1,a−1+ε) logA],
we will show that there exists a constant C such that for all a and all ε > 0 small
enough then

logA≥ log
1

P[Y ∈ (a−1,a−1+ ε)]
−C = log

1
eCP[Y ∈ (a−1,a−1+ ε)]

or equivalently, eCAP[Y ∈ (a− 1,a− 1+ ε)] ≥ 1. Using the formula of A, we
obtain the inequality

eCq1

(
k2(1−δ )

q1k2−q2k1
+δ

)
≥ 1.

It suffices to choose C such that

eC(1−δ )
q1k2

q1k2−q2k1
≥ 1.
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or equivalently

1− eC(1−δ )≤ q2k1

q1k2
≤ 1. (4.30)

For ε small enough, the mean value theorem implies that the condition (4.30) is
equivalent to

1− eC(1−δ )≤ f (b−1+ ε1)(a−1+ ε2) f (a−1+ ε2)

f (a−1+ ε3)(b−1+ ε4) f (b−1+ ε4)
≤ 1, (4.31)

where 0 ≤ εi ≤ ε, i ∈ {1,2,3,4}. The second inequality in (4.31) is satisfied be-
cause the quantity in the middle of (4.31) is negative when (a− 1)(b− 1) < 0.
Now, we consider the first inequality in (4.31). There are two possible cases.

• If 0 < a < 1,1 < b < L+1: in this case, we estimate

−2
M2

m2 ≤ (a−1+ ε2)
f (b−1+ ε1) f (a−1+ ε2)

f (a−1+ ε3) f (b−1+ ε4)
.

Thus, it suffices to choose C and b such that

(1− eC(1−δ ))(b−1+ ε4)≤−2
M2

m2 . (4.32)

If we choose C big enough then (4.32) is satisfied.

• If 1 < a < L+1,0 < b < 1: we estimate

L
M2

m2 ≥ (a−1+ ε2)
f (b−1+ ε1) f (a−1+ ε2)

f (a−1+ ε3) f (b−1+ ε4)
,

the condition (4.31) implies we will choose C such that

(1− eC(1−δ ))(b−1+ ε4)≥ L
M2

m2 .

This step can be done by choosing C big enough.

We conclude that the inequality (4.29) is satisfied. However, the condition NUPBR
fails because the insider gains unbounded profits by holding a large amount of S
if S1 > 1.
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4.5.5 Superhedging and optimal arbitrage

Let f ≥ 0 be a given claim. We recall that xF,P∗ ( f 1{G∈gn
i }) and HF,n,i are the

superhedging price and the associated superhedging strategy for the claim f 1G∈gn
i

under (F,P), i.e.

xF,P∗ ( f 1{G∈gn
i })+(HF,n,i ·S)T ≥ f 1{G∈gn

i },P−a.s.

It is important to note that xF,P∗ ( f 1{G∈gn
i }) and HF,n,i are computed under (F,P),

where NFLVR holds. An application of Theorem 4.4.5 shows that the superhedg-
ing price of f under Gn is

xG
n,P
∗ ( f ) = ∑

i
xF,P∗ ( f 1{G∈gn

i })1{G∈gn
i }

and the corresponding wealth process

xG
n,P
∗ ( f )+

(
∑

i
HF,n,i1{G∈gn

i }

)
·ST ≥ f ,P−a.s.

In particular, if f = 1 and if xF,P∗ (1{G∈gn
i })< 1 for some i, then the insider has an

arbitrage opportunity.
We observe that (xG

n,P
∗ ( f ))n is a nonincreasing sequence and bounded from

below by xG,P
∗ ( f ) := x∗. So the sequence converges to a limit and limn→∞ xG

n,P
∗ ( f )≥

xG,P
∗ ( f ). In the sequel, we will show that this limit is actually the G-superhedging

price.
Let HG be a superhedging strategy for f starting from x∗ in the (G,P)-market,

that is
x∗+(HG ·S)T ≥ f ,P−a.s.

By Lemma 4.5.4, there exists a sequence of Gn-predictable processes (HGn
)n

which tend to HG almost surely. Fixing ε > 0, we denote

A(n,ε) := {ω : sup
t∈[0,T ]

|(HGn
·S)t− (HG ·S)t | ≤ ε}

and Cn := A(n,ε)∩{E[x∗|G n
0 ] ≥ x∗− ε}. We now have the estimation (4.26) on

A(n,ε), that is

(HGn
·S)t ≥ (HG ·S)t− ε, ∀t ∈ [0,T ].
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Lemma 4.5.10. The following inequality holds true

2ε +E[x∗|G n
0 ]≥ xG

n,P
∗ ( f 1Cn) (4.33)

Proof. Denoting τε
n := inf{t ∈ [0,T ] : 2ε +E[x∗|G n

0 ]+(HGn ·S)t ≤ 0}, we see that
the strategy HGn

t∧τε
n

with initial capital 2ε +E[x∗|G n
0 ] is admissible. Furthermore,

we deduce from (4.26) that on Cn,

2ε +E[x∗|G n
0 ]+ (HGn

·S)t ≥ x∗+(HG ·S)t ≥ 0, ∀t ∈ [0,T ]. (4.34)

Thus τε
n = T on the set Cn (recall that by definition, τε

n ≤ T ). Now, from (4.34)
we have that

2ε +E[x∗|G n
0 ]+ (HGn

·S)T ≥ f 1Cn

By definition of superhedging price, we conclude that for every n, the inequality
in (4.33) holds true.

Lemma 4.5.11. Let f be a nonnegative claim satisfying

P[ f > 0]> 0, sup
Z

E[ZT f ]< ∞.

We fix ω and for each n, let i be the index such that ω ∈ {G ∈ gn
i }. There exists a

subsequence (nk)k≥1 such that

lim
k→∞

sup
Z

EP[ZT f 1{G∈g
nk
i }

1Cnk
] = lim

k→∞
sup

Z
EP[ZT f 1{G∈g

nk
i }

]. (4.35)

Proof. Obviously, the LHS of (4.35) is smaller than the RHS of (4.35) for any
subsequence. We now consider the reverse inequality. For any δ > 0, for all n,
there exists an equivalent local martingale density Zn such that

sup
Z

EP[ZT f 1{G∈gn
i }]−δ ≤ E[Zn

T f 1{G∈gn
i }]. (4.36)

In order to prove (4.35), we need to prove there exists a subsequence (nk)k≥1 such
that

lim
k→∞

E[Znk
T f (1{G∈g

nk
i }
−1{G∈g

nk
i }

1Cnk
)] = 0. (4.37)
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Indeed, if (4.37) holds true, then

E[Znk
T f 1{G∈gnk}]≤ E[Znk

T f 1{G∈gnk}1Cnk
]+δ , if k is big enough. (4.38)

From (4.36) and (4.38), we get

sup
Z

EP[ZT f 1{G∈g
nk
i }

]−δ ≤ E[Znk
T f 1{G∈g

nk
i }

]≤ E[Znk
T f 1{G∈gnk}1Cnk

]+δ

≤ sup
Z

E[ZT f 1{G∈gnk}1Cnk
]+δ , if k is big enough.

Letting k to infinity and using the arbitrariness of δ , we obtain (4.35).
Now, we prove (4.37). As n tends to infinity, Dominated convergence theorem

(see Theorem 32, page 174 of Protter [2003]) implies that

sup
t∈[0,T ]

|(HGn
·S)t− (HG ·S)t | → 0, in probability.

This means that there exists a subsequence, which is still denoted by (n), such
that supt∈[0,T ] |(HGn · S)t − (HG · S)t | → 0,a.s. On the other hand, Lévy’s ”Up-
ward” Theorem (see Theorem 50.3 of Rogers and Williams [1979]) shows that
E[x∗|G n

0 ]→ x∗,P− a.s. Therefore, for each ω , there exists a number N(ω) such
that ω ∈Cn, for all n > N(ω). Thus,

Xn := Zn
T f (1{G∈gn

i }−1{G∈gn
i }1Cn)→ 0, P−a.s.

Because 0≤E[Xn]≤E[Zn
T f ]≤ supZ[Z f ], for all n, Bolzano−Weierstrass theorem

shows that we can find convergent subsequences

lim
k→∞

E[Xnk ] := e1, and lim
k→∞

E[Znk
T f ] := e2. (4.39)

We observe that Xnk ≤ Znk
T f . Furthermore, by the property of f , we have that

supkE[Z
nk
T f ]< ∞. Komlós theorem, see Theorem 5.0.19, implies that there exists

a random variable Ẑ f such that 0 ≤ Ẑ f ∈ L1 and a subsequence, which is still
denoted by (nk) such that

1
k

(
Zn1

T + ...+Znk
T
)

f → Ẑ f , P−a.s. (4.40)
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From (4.39) and Lemma 5.0.15, we have that

lim
k→∞

1
k
E
[
Zn1

T f + ...+Znk
T f
]
= e2.

From (4.40) and Lemma 5.0.17, we obtain that E[Ẑ f ] = e2. By Lemma 5.0.15,
the sequence

(1
k ∑

k
i=1 Xni

)
k≥1 converges to zero almost surely. Applying the Ex-

tended dominated convergence theorem (see Theorem 5.0.18) to the sequences(1
k ∑

k
i=1 Xni

)
k≥1 and

(1
k ∑

k
i=1 Zni

T f
)

k≥1, we obtain

lim
k→∞

1
k

k

∑
i=1

E[Xni] = 0. (4.41)

From (4.39), (4.41) and Lemma 5.0.16, we deduce that e1 = 0 and hence (4.37)
holds true.

Theorem 4.5.12. Under Assumption 4.2.6, suppose that NUPBR holds for G. Let
f ≥ 0 be a given claim such that P[ f > 0]> 0 and supZ∈ELMM E[ZT f ]< ∞. Then
the following convergence holds

lim
n→∞

xG
n,P
∗ ( f ) = x∗,P−a.s. (4.42)

Proof. By Theorem 4.4.5, the quantity in the RHS of (4.33) and the quantity
xG

n,P
∗ ( f ) can be computed by the following formulas

xG
n,P
∗ ( f 1Cn)(ω) = ∑

i
1{G∈gn

i }(ω)sup
Z

EP[ZT f 1{G∈gn
i }1Cn], (4.43)

xG
n,P
∗ ( f )(ω) = ∑

i
1{G∈gn

i }(ω)sup
Z

EP[ZT f 1{G∈gn
i }]. (4.44)

Fixing ω , Lemma 4.5.10 and Lemma 4.5.11 imply that there exists a sequence
(nk) such that

2ε + lim
k→∞

E[x∗|G nk
0 ](ω)≥ lim

k→∞
xG

nk ,P
∗ ( f 1Cnk

)(ω) = lim
k→∞

xG
nk ,P
∗ ( f )(ω)≥ x∗(ω).

Applying Lévy’s ”Upward” Theorem again, we obtain

2ε + x∗(ω)≥ lim
k→∞

xG
nk ,P
∗ ( f )(ω)≥ x∗(ω).

By the arbitrariness of ε , this proves the result.
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This limiting procedure allows us to compute the superhedging price of the
claim f = 1 for the insider with tools from theory of martingale pricing. Theoret-
ically, if it happens that G(ω) = x, the insider needs to compute

lim
εn→0

sup
P∈ELMM(F,P)

EP[1{G∈(x−εn,x+εn)}]

for his initial capital in order to superhedge 1, and thus obtain optimal arbi-
trage. However, the corresponding strategy is more difficult to compute explic-
itly. From the practical point of view, a nearly optimal arbitrage is still good. For
example, the insider can use an initial capital supP∈ELMM(F,P)E

P[1{G∈(x−ε,x+ε)}]

for some ε small enough and the corresponding strategy HF which superhedges
1{G∈(x−ε,x+ε)} in the (F,P)-market:

sup
P∈ELMM(F,P)

EP[1{G∈(x−ε,x+ε)}]+ (HF ·S)T ≥ 1{G∈(x−ε,x+ε)}.

It is remarked that the strategy is computed under F, where NFLVR holds, and we
have tools to find such strategies.

4.6 Successive initial enlargement of filtrations

In this section, we will investigate the case when the insider receives informa-
tion successively at deterministic fixed times. The additional information is repre-
sented by a random time τ , which is assumed to be FT -measurable. This situation
can be considered a discrete version of the progressive enlargement of filtration
setting. We refer to the thesis Aksamit [2014] for a study of progressive enlarge-
ment of filtrations with random times. In her thesis, some arbitrage profits are
provided explicitly.

Let ∆n be a partition of [0,T ], that is ∆n := {0 = T0 ≤ T1 ≤ ...≤ Tn = T}. We
assume that the insider gains private information about τ only at Ti, for i = 1, ...n.
In other words, her filtration is G= (Gt)t , where

Gt := Ft ∨σ(1τ≤T0, ...,1τ≤Ti), t ∈ [Ti,Ti+1), i = 0, ...,n−1.
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We observe that at the end of each period, the insider receives more information
than what she has at the beginning of that period. This situation is slightly different
from initial enlargement of filtration setting. We also define a further larger fil-
tration Hn = (H n

t )t∈[0,T ], where H n
t := Ft ∨σ(1τ≤T0, ...,1τ≤Tn),∀t ∈ [0,T ]. The

filtration H is initially enlarged by the set of information {τ ≤ Ti, i= 0, ...,(n−1)}.
The study under the filtration H was developed in previous sections.

4.6.1 NUPBR and Log-utility

The following result is similar to Lemma 4.4.1. However, we only have an upper
bound for the expected log-utility of the insider.

Lemma 4.6.1. The expected log-utility of the insider under G is bounded by

sup
H∈A G

1

EP[logV 1,H
T ]≤

n

∑
i=0

sup
H∈A F

1

EP[1Ti<τ≤Ti+1 logV 1,H
T ].

Proof. First, we note that a G-strategy is of the form

HG
t = HF,1

t 1t≤T1 +(HF,2,1
t 1τ≤T1 +HF,2,2

t 1τ>T1)1T1<t≤T2 + ...

= (HF,1
t 1t≤T1 +HF,2,1

t 1T1<t≤T2 + ...)1τ≤T1

+(HF,1
t 1t≤T1 +HF,2,2

t 1T1<t≤T2 + ...)1T1<τ≤T2 + ...

= H̃F,1
t 1τ≤T1 + H̃F,2

t 1T1<τ≤T2 + ...+HF,n
t 1Tn−1<τ≤Tn + H̃F,n+1

t 1Tn<τ ,

where H̃F,i, i = 1...(n+ 1) are F-predictable. It means that a G-strategy is also a
H-strategy. The proof continues as in Lemma 4.4.1 for the part (≤).

Remark 4.6.2. The inverse inequality in Lemma 4.6.1 does not holds because in
general, a H-predictable strategy is not a G-predictable strategy. Hence, we do
not have the inverse inequality.

By analogy to Theorem 4.4.4, we obtain an upper bound for the expected log-
utility of the insider. Hence, if the upper bound is finite then the condition NUPBR
for the insider holds true.
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Proposition 4.6.3. Under Assumption (4.2.6), we have that

sup
H∈A G

1

EP[logV 1,H
T ]≤−

n

∑
i=0

P[Ti < τ ≤ Ti+1] logP[Ti < τ ≤ Ti+1]

+
n

∑
i=0

inf
Z∈ELMM(F,P)

EP
[

1Ti<τ≤Ti+1 log
1

ZT

]
. (4.45)

Proof. Using similar arguments as in Lemma 4.4.2, we obtain for i∈ {0, ...n} that

sup
H∈A F

1

EP[1Ti<τ≤Ti+1 logV 1,H
T ] = − P[Ti < τ ≤ Ti+1] logP[Ti < τ ≤ Ti+1]

+ inf
Z∈ELMM(F,P)

EP
[

1Ti<τ≤Ti+1 log
1

ZT

]
.

The proof is complete by using Lemma 4.6.1.

4.6.2 Superhedging

Unlike the case with initial information, the additional information here is re-
vealed progressively as time goes on. Thus, the insider has possibilities to update
his strategy when new information is available. We now find a way to compute the
superhedging price. Then, the concept of optimal arbitrage is defined in a similar
way to Definition 4.3.2.

The usual superhedging price at time s of a Gt-measurable claim ft is defined
as follows

xG∗,s,t( ft) := inf

x is Gs-measurable : ∃HG ∈A G
x : x+

t∫
s

HG
u dSu ≥ ft ,P−a.s.

 .

We first notice that the superhedging price can be computed by using backward
recursion. More precisely, in order to superhedge f at time Tn, we replicate the
capital needed for the claim f at time Tn−1, and so on. The following argument
works well in general, not only for the filtration G.

Lemma 4.6.4. It holds that xG∗,T0,Tn
( f ) = xG∗,T0,T1

(....(xG∗,Tn−1,Tn
( f ))), where f is a

GT -measurable claim.
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Proof. First, we find the initial capital and the corresponding strategy which are

used at time Tn−1 in order to hedge the claim f , i.e. xG∗,Tn−1,Tn
( f )+

Tn∫
Tn−1

HG
u du≥ f .

Next, we find the initial capital and the strategy to hedge the claim xG∗,Tn−1,Tn
( f ) at

the time Tn−2, i.e. xG∗,Tn−2,Tn−1
(xG∗,Tn−1,Tn

( f ))+
Tn∫

Tn−1

HG
u du≥ xG∗,Tn−1,Tn

( f ). We repeat

this argument and easily deduce that xG∗,T0,T1
(....(xG∗,Tn−1,Tn

( f )))≥ xG∗,T0,Tn
( f ).

For the converse inequality, let xG∗,T0,Tn
be the initial capital and HG be the

hedging strategy of f at time T0, i.e. xG∗,T0,Tn
( f )+

Tn−1∫
T0

HG
u dSu +

Tn∫
Tn−1

HG
u dSu ≥ f .

Therefore,

xG∗,T0,Tn
( f )+

Tn−1∫
T0

HG
u dSu ≥ xG∗,Tn−1,Tn

( f ).

We rewrite the inequality as follows

xG∗,T0,Tn
( f )+

Tn−2∫
T0

HG
u dSu +

Tn−1∫
Tn−2

HG
u dSu ≥ xG∗,Tn−1,Tn

( f ).

Repeating this argument leads to xG∗,T0,Tn
( f ) ≥ xG∗,T0,T1

(....(xG∗,Tn−1,Tn
( f ))) and we

get the result.

Lemma 4.6.4 gives us a dynamic way to compute superhedging prices. The
advantage of this approach is that it allows us to update our strategies at each pe-
riod. We now apply it to our successive enlargement setting with the discretization
∆n.

At time Tn−1, since τ is FT -measurable, we have no problem when computing
the superhedging price at time Tn−1 of the claim f . The insider is informed by
the random variables 1τ≤T1,1T1<τ≤T2, ...,1Tn−1<τ≤Tn−2 and 1Tn−1<τ . We define new
probability measures

dQi

dP

∣∣∣∣
Ft

=
P[Ti−1 < τ ≤ Ti|Ft ]

P[Ti−1 < τ ≤ Ti]
:= Mi

t , t ∈ [0,T ], i = 1, ...,n−1. (4.46)

dQn

dP

∣∣∣∣
Ft

=
P[Tn−1 < τ|Ft ]

P[Tn−1 < τ]
:= Mn

t t ∈ [0,T ].
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Theorem 4.4.5 gives us the price of f at time Tn−1

xG,P
∗,Tn−1,Tn

( f ) =
n−2

∑
i=1

xF,P∗,Tn−1,Tn
( f 1Ti−1<τ≤Ti)1Ti−1<τ≤Ti (4.47)

+ xF,P∗,Tn−1,Tn
( f 1Tn−2<τ≤Tn−1)1Tn−2<τ≤Tn−1 + xF,P∗,Tn−1,Tn

( f 1Tn−1<τ)1Tn−1<τ

where xF,P∗,Tn−1,Tn
( f 1Ti−1<τ≤Ti) = supP̃∈ELMM(F,P)E

P̃[ f 1Ti−1<τ≤Ti|FTn−1].
At time Tn−2, i.e. on the period [Tn−2,Tn−1), we need to super-replicate the

random variable xG,P
∗,Tn−1,Tn

( f ). This situation differs from the case of initial en-
largement in many aspects. First, the random variables 1τ≤T1,1T1<τ≤T2, ... and
1Tn−2<τ are not FTn−1-measurable. Second, the GTn−1-measurable random vari-
able 1τ≤Tn−1 (at the end of the period) is not measurable with respect to GTn−2

(the beginning of the period) and this implies our present setting is not the same
as in the initial enlargement case. Furthermore, the results in Section 4.4.2 al-
low us to superhedge the claims which are measurable with respect to FTn−1 ∨
σ(1τ≤T1, ...,1τ≤Tn−2)(GTn−1 and it is noticed that xG,P

∗,Tn−1,Tn
( f ) is GTn−1-measurable.

To conclude, the results in Section 4.4.2 can not be applied directly here and it is
necessary to find another way to get rid of this measurability issue.

Let fn−1 be the minimal random variable satisfying two conditions: it domi-
nates xG,P

∗,Tn−1,Tn
( f ) and has to be FTn−1 ∨σ(1τ≤T1, ...,1τ≤Tn−2)-measurable.

Lemma 4.6.5. We have that xG,P
∗,Tn−2,Tn−1

(
xG,P
∗,Tn−1,Tn

( f )
)
= xG,P
∗,Tn−2,Tn−1

( fn−1) .

Proof. The inequality (≤) is obvious because xG,P
∗,Tn−1,Tn

( f ) ≤ fn−1. For the con-
verse inequality (≥), let x be any GTn−2-measurable random variable such that
there exists a strategy HG satisfying

x+

Tn−1∫
Tn−2

HG
u dSu ≥ xG,P

∗,Tn−1,Tn
( f ).

We observe that the quantity in the LHS is FTn−1∨σ(1τ≤T1, ...,1τ≤Tn−1)-measurable
and it can not be smaller than fn−1,

x+

Tn−1∫
Tn−2

HG
u dSu ≥ fn−1.
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It implies that x≥ xG,P
∗,Tn−2,Tn−1

( fn−1) and the proof is complete.

Lemma 4.6.5 tells us that in order to compute the price at time Tn−2 of the
claim xG,P

∗,Tn−1,Tn
( f ), we need to compute the price at time Tn−2 of the claim fn−1.

The first (n−2) components in the RHS of ( 4.47) are FTn−1∨σ(1τ≤T1, ...,1τ≤Tn−2)-
measurable but not the two last components. The claim fn−1 takes the following
form

fn−1 =
n−2

∑
i=1

xF,P∗,Tn−1,Tn
( f 1Ti−1<τ≤Ti)1Ti−1<τ≤Ti + f̃ n−1

Tn−1
1Tn−2<τ (4.48)

:=
n−2

∑
i=1

f̃ i
Tn−1

1Ti−1<τ≤Ti + f̃ n−1
Tn−1

1Tn−2<τ (4.49)

where f̃ n−1
Tn−1

= max
(

xF,P∗,Tn−1,Tn
( f 1Tn−2<τ≤Tn−1),x

F,P
∗,Tn−1,Tn

( f 1Tn−1<τ)
)
.

Now, we compute the superhedging price of the claim fn−1 in (4.48) at time
Tn−2. This step is done by the same argument as the one used at time Tn−1

with small modifications, however, we will make a clear discussion because of
problems with measurability. To do so, we keep using the probability measure
Qi, i = 1, ...,(n− 2) and define a new probability measure which works for the
union of {Tn−2 < τ ≤ Tn−1} and {Tn−1 < τ},

dQ̃n−1

dP

∣∣∣∣
Ft

=
P[Tn−2 < τ|Ft ]

P[Tn−2 < τ]
:= M̃n−1

t , t ∈ [0,T ].

Proposition 4.6.6. The price of fn−1 at time Tn−2 is

xG,P
∗,Tn−2,Tn−1

( fn−1) =
n−2

∑
i=1

xF,P∗,Tn−2,Tn−1

(
f̃ i
Tn−1

1Mi
Tn−1

>0

)
1Ti−1<τ≤Ti

+ xF,P∗,Tn−2,Tn−1

(
f̃ n−1
Tn−1

1M̃n−1
Tn−1

>0

)
1Tn−2<τ .

Proof. Using techniques of non-equivalent measure changes, we compute the
price of fn−1 under the probability measures Qi, i = 1, ...,(n− 2) and Q̃n−1. For
i = 1, ...,(n− 2) and under Qi, the claim fn−1 becomes f̃ i

Tn−1
and its price is
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xF,Q
i

∗,Tn−2,Tn−1
( f̃ i

Tn−1
). The case with Q̃n−1 is computed similarly. Thus, repeating

the argument in the proof of Theorem 4.4.5, the price of fn−1 under G is

xG,P
∗,Tn−2,Tn−1

( fn−1) =
n−2

∑
i=1

xF,Q
i

∗,Tn−2,Tn−1
( f̃ i

Tn−1
)1Ti−1<τ≤Ti + xF,Q̃

n−1

∗,Tn−2,Tn−1

(
f̃ n−1
Tn−1

)
1Tn−2<τ .

By using Theorem 2.4.1 in Chapter 2, we obtain

xF,Q
i

∗,Tn−2,Tn−1

(
f̃ i
Tn−1

)
= xF,P∗,Tn−2,Tn−1

(
f̃ i
Tn−1

1Mi
Tn−1

>0

)
, i = 1, ...,(n−2) (4.50)

xF,Q̃
n−1

∗,Tn−2,Tn−1

(
f̃ n−1
Tn−1

)
= xF,P∗,Tn−2,Tn−1

(
f̃ n−1
Tn−1

1M̃n−1
Tn−1

>0

)
,

and the proof is complete.

Remark 4.6.7. Let us discuss the optimal superhedging strategy. Let HF,i be the
hedging strategy for the claim f̃ i

Tn−1
1Mi

Tn−1
>0 under P, that is

xF,P∗,Tn−2,Tn−1
( f̃ i

Tn−1
1Mi

Tn−1
>0)+

Tn−1∫
Tn−2

HF,i
u dSu ≥ f̃ i

Tn−1
1Mi

Tn−1
>0,P−a.s.

By Proposition 4.6.6, this hedging strategy is used on the event {Ti−1 < τ ≤ Ti},

1Ti−1<τ≤Ti

xF,P∗,Tn−2,Tn−1
( f̃ i

Tn−1
1Mi

Tn−1
>0)+

Tn−1∫
Tn−2

HF,i
u dSu

≥ f̃ i
Tn−1

1Mi
Tn−1

>01Ti−1<τ≤Ti

In order to superhedge the claim fn−1, we will prove that

f̃ i
Tn−1

1Mi
Tn−1

>01Ti−1<τ≤Ti = f̃ i
Tn−1

1Ti−1<τ≤Ti,P−a.s.

By the minimum principle for nonnegative supermartingales, see Proposition II.3.4
of Revuz and Yor [1999], if the martingale Mi reaches zeros at time s, then Mi

t = 0
for all t ≥ s and hence, 1Mi

Tn−1>0
1Mi

Tn>0 = 1Mi
Tn>0 = 1Ti−1<τ≤Ti . Therefore, the in-

sider will use the initial capital xF,P∗,Tn−2,Tn−1
( f̃ i

Tn−1
1Mi

Tn−1
>0) and the strategy HF,i in

order to hedge fn−1 on the event {Ti−1 < τ ≤ Ti},

1Ti−1<τ≤Ti

xF,P∗,Tn−2,Tn−1
( f̃ i

Tn−1
1Mi

Tn−1
>0)+

Tn−1∫
Tn−2

HF,i
u dSu

≥ f̃ i
Tn−1

1Ti−1<τ≤Ti.
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The following theorem is the main result of this section.

Theorem 4.6.8. The superhedging price of f at time zero is obtained by applying
Lemma 4.6.5 and Proposition 4.6.6 recursively.

4.6.3 An example with time of supremum on fixed time horizon

Assume that the risky asset is a geometric Brownian motion dSt = StdWt , t ∈ [0,T ]
with S0 = 1. We consider the random time τ = sup{t ≤ T : St = sup[0,t] Su}. Let
∆3 = {T0 = 0 < T1 < T2 < T3 = T} be a partition of the interval [0,T ]. The insider
will be informed about τ at T1 and T2. Her filtration is given by

Gt =


Ft , if 0≤ t < T1

Ft ∨σ(1τ≤T1), if T1 ≤ t < T2

Ft ∨σ(1τ≤T1,1τ≤T2), if T2 < t ≤ T3.

We denote

dQ1

dP

∣∣∣∣
Ft

=
P[τ ≤ T1|Ft ]

P[τ ≤ T1]
= M1

t ,
dQ2

dP

∣∣∣∣
Ft

=
P[T1 < τ ≤ T2|Ft ]

P[T1 < τ ≤ T2]
= M2

t ,

dQ3

dP

∣∣∣∣
Ft

=
P[T2 < τ|Ft ]

P[T2 < τ]
= M3

t , t ∈ [0,T ].

We compute the price of the claim f = 1 at time T2 using Theorem 4.4.5

xG,P
∗,T2,T (1) = xF,P∗,T2,T (1M1

T>0)1τ≤T1 + xF,P∗,T2,T (1M2
T>0)1T1<τ≤T2 + xF,P∗,T2,T (1M3

T>0)1T2<τ

= P[τ ≤ T1|FT2]1τ≤T1 +P[T1 < τ ≤ T2|FT2]1T1<τ≤T2 +P[T2 < τ|FT2 ]1T2<τ .

The price of xG,P
∗,T2,T (1) is computed backward by using the approach in Section

4.6.2. Let us denote

f2 = P[τ ≤ T1|FT2 ]1τ≤T1 +max(P[T1 < τ ≤ T2|FT2],P[T2 < τ|FT2])1T1<τ

and
dQ̃2

dP

∣∣∣∣
Ft

=
P[T1 < τ|Ft ]

P[T1 < τ]
:= M̃2

t , t ∈ [0,T ].
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The price of the claim 1 at time T1 can be computed by Proposition 4.6.6

xG,P
∗,T1,T2

( f2) = EP
[
P[τ ≤ T1|FT2]1M1

T2
>0|FT1

]
1τ≤T1

+EP
[
max(P[T1 < τ ≤ T2|FT2],P[T2 < τ|FT2])1M̃2

T2
>0|FT1

]
1T1<τ .

Finally, the price of the claim 1 at time 0 is

xG,P
∗,0,T ( f ) = EP

[
max

(
EP
[
P[τ ≤ T1|FT2]1M1

T2
>0|FT1

]
,

EP
[
max(P[T1 < τ ≤ T2|FT2],P[T2 < τ|FT2 ])1M̃2

T2
>0|FT1

])]
.

The computation can be made explicitly. For example, we have

P[τ > T1|FT2 ] = 1sup(T1,T2]
Su>sup[0,T1]

Su +1sup(T1,T2]
Su≤sup[0,T1]

SuP

[
sup
[T2,T ]

Su > sup
[0,T1]

Su

]

= 1sup(T1,T2]
Su>sup[0,T1]

Su +1sup(T1,T2]
Su≤sup[0,T1]

SuP

[
sup

[0,T−T2]

S̃u >
S∗T1

ST2

]
,

P[τ ≤ T1|FT2] = 1−P[τ > T1|FT2] = 1sup(T1,T2]
Su≤sup[0,T1]

Su

(
1−P

[
sup

[0,T−T2]

S̃u >
S∗T1

ST2

])
,

P[T1 < τ ≤ T2|FT2] = P[τ > T1|FT2]−P[τ > T2|FT2] = 1sup(T1,T2]
Su>sup[0,T1]

Su

+1sup(T1,T2]
Su≤sup[0,T1]

SuP

[
sup

[0,T−T2]

S̃u >
S∗T1

ST2

]
−P

[
sup

[0,T−T2]

S̃u >
S∗T2

ST2

]
,

= 1sup(T1,T2]
Su>sup[0,T1]

Su

(
1−P

[
sup

[0,T−T2]

S̃u >
S∗T2

ST2

])
,

P[τ > T2|FT2] = P

[
sup

[0,T−T2]

S̃u >
S∗T2

ST2

]
...

These conditional probabilities can be computed by using the law of drifted Brow-
nian motion in Section 3.2.2 of Jeanblanc et al. [2009] 2. Other quantities can be

2For x≥ 1, the law of drifted Brownian motion in Section 3.2.2 of Jeanblanc et al. [2009] gives
us

P

[
sup
[0,t]

Su > x

]
= P

[
sup
[0,t]

(
Wu−

1
2

u
)
> lnx

]
= N

(
− lnx− 1

2 t
√

t

)
− xN

(
− lnx+ 1

2 t
√

t

)
.
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computed similarly.
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Appendix

Definition 5.0.9 (Almost uniform convergence). Let (X ,B,µ) be a measurable
space. We say that a sequence of measurable functions fn converges to f almost
uniformly if for every ε > 0, there exists a measurable set E ∈ B of measure
µ(E)< ε such that fn converges uniformly to f on X\E.

If µ(X) is finite, then we have a nice result as below.

Theorem 5.0.10 (Egorov’s theorem). Let (X ,B,µ) be a measurable space so that
µ(X) < ∞. Let fn, f : X → R be measurable functions. Then fn converges to f
pointwise almost everywhere if and only if fn converges to f almost uniformly.

Lemma 5.0.11. Let (X ,B,µ) be a measurable space, let fn : X → R be a se-
quence of measurable functions converging pointwise almost everywhere as n→
∞ to a measurable limit f : X →R and for each n, let fn,m : X →R be a sequence
of measurable functions converging pointwise almost everywhere as m→ ∞ to
fn. If µ(X) is finite, there exists a sequence (mn)n≥1 such that fn,mn converges
pointwise almost everywhere to f .

Proof. Fixing ε > 0, we will find a sequence (mn) such that fn,mn converges to f
almost uniformly. Then we completes the proof by using Theorem 5.0.10.

Because fn converges to f pointwise almost everywhere, Theorem 5.0.10 im-
plies that fn converges to f almost uniformly. There exists a measurable set

127



Chapter

E ∈B,µ(E)< ε such that fn converges to f uniformly on X\E, i.e.

there exists Nε such that | fn(x)− f (x)|< ε, ∀n≥ Nε ,∀x ∈ X\E. (5.1)

For each n, since fn,m converges to fn pointwise almost everywhere, the same
argument shows that there exists En ∈B,µ(En)< ε/2n such that fn,m converges
to fn uniformly on X\En, i.e.

there exists Mn such that | fn,m(x)− fn(x)|< 1/n, ∀m≥Mn,∀x ∈ X\En.

(5.2)
Let us choose the sequence (Mn)n≥max{Nε ,1/ε} and a measurable set F such that

X\F = (X\E)∩
⋂

n≥max{Nε ,1/ε}
(X\En).

From (5.1) and (5.2), we have the following estimation

| fn,Mn(x)− f (x)| ≤ | fn,Mn(x)− fn(x)|+ | fn(x)− f (x)|
≤ 2ε, ∀n≥max{Nε ,1/ε}, ∀x ∈ X\F.

We now compute F = E ∪
(⋃

n≥max{Nε ,1/ε}En

)
and

µ(F)≤ µ(E)+ ∑
n≥max{Nε ,1/ε}

µ(En)≤ ε + ∑
n≥max{Nε ,1/ε}

ε/2n ≤ 2ε.

This implies that the sequence fn,Mn converges to f almost uniformly.

Lemma 5.0.12. Assume that X ,Y are two independent exponential random vari-
ables with parameters α,β , respectively. Then the random variable Z = αX

βY has
density 1/(1+ z)2.

Proof. For z > 0. we compute the cumulative distribution of Z

P[Z ≤ z] = P
[
Y ≥ αX

β z

]
=

∞∫
0

 ∞∫
(αx)/(β z)

βe−βydy

αe−αxdx

=

∞∫
0

e
−αx

z αe−αxdx =
z

1+ z
.
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The density of Z is obtained by taking derivative of the cumulative distribution of
Z with respect to z.

Definition 5.0.13 (Optional projection - Definition 5.2.1 of Jeanblanc et al. [2009]).
Let X be a bounded (or positive) process, and F a given filtration. The optional
projection of X is the unique optional process o which satisfies

E[Xτ1τ<∞] = E[oXτ1τ<∞]

for any F-stopping time τ.

The following result helps us to find the compensator of a process when pass-
ing to smaller filtrations.

Lemma 5.0.14. Let G,H be filtrations such that Gt ⊂Ht , for all t ∈ [0,T ]. Sup-

pose that the process Mt := Xt−
t∫

0
λudu is a H-martingale, where λ ≥ 0. Then the

process MG
t :=Xt−

t∫
0

oλudu is a G-martingale, where oλ is the optional projection

of λ onto G.

Proof. Since λu ≥ 0, the optional projection oλ exists and for fixed u, it holds that
oλu = E[λu|Gu] almost surely. If 0 ≤ s < t and H is bounded and Gs-measurable,
then, by Fubini’s Theorem

E[H(MG
t −MG

s )] = E[H(Xt−Xs)]−
t∫

s

E[HE[λu|Gu]]du

= E[H(Xt−Xs)]−
t∫

s

E[Hλu]du

= E[H(Mt−Ms)] = 0.

Hence MG is a G-martingale.

We provide some useful results which are used in the proof of Theorem 4.5.12.
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Lemma 5.0.15. If limn→∞ xn = x, then

lim
k→∞

1
k
(x1 + ...+ xk) = x.

Proof. For every ε > 0, there exists N such that |xn− x| ≤ ε, for all n ≥ N. We
have the following estimation for k > N∣∣∣∣1k (x1 + ...+ xk)− x

∣∣∣∣= 1
k

∣∣∣∣∣ N

∑
i=1

(xi− x)+
k

∑
i=N+1

(xi− x)

∣∣∣∣∣
≤ 1

k

∣∣∣∣∣ N

∑
i=1

(xi− x)

∣∣∣∣∣+ (k−N)

k
ε.

Let us choose K ≥ N such that 1
K

∣∣∑N
i=1(xi− x)

∣∣≤ ε then∣∣∣∣1k (x1 + ...+ xk)− x
∣∣∣∣≤ 2ε

for all k ≥ K. The proof is complete.

Lemma 5.0.16. If the sequence (xn)n≥1 has the following properties

• for every n, xn ≥ 0,

• limn→∞ xn = x∗1,

• limk→∞
1
k (x1 + ...+ xk) = x∗2.

Then we have x∗1 = x∗2.

Proof. First, we assume that x∗1 > x∗2. Because xn → x∗1, there exists a number
N > 0 such that xn ≥ (x∗1 + x∗2)/2, for all n≥ N. We estimate as follows if k > N

1
k
(x1 + ...+ xk)≥

1
k
(xN+1 + ...+ xk)≥

x∗1 + x∗2
2

(k−N)

k
.

It means that
lim
k→∞

1
k
(x1 + ...+ xk)≥

x∗1 + x∗2
2

> x∗2,

which is a contradiction.
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Second, we assume that x∗1 < x∗2. Because xn → x∗1, there exists a number N
such that xn≤ (x∗1+x∗2)/2 for all n≥N. The following estimation holds for k >N,

1
k
(x1 + ...+ xk) =

1
k
(x1 + ...+ xN)+

1
k
(xN+1 + ...+ xk)

≤ 1
k
(x1 + ...+ xN)+

(k−N)

k
(x∗1 + x∗2)

2
.

It means that

lim
k→∞

1
k
(x1 + ...+ xk)≤

x∗1 + x∗2
2

< x∗2,

which is also a contradiction. Finally, it holds that x∗1 = x∗2.

Lemma 5.0.17. Let (Xn) be a sequence of random variable such that Xn→ X ,a.s.
and limn→∞E[Xn] = x. Then we have E[X ] = x.

Proof. It is proved that convergence almost surely implies convergence in dis-
tribution. Let Fn and F be the cumulative distribution functions of the random
variables Xn and X . For every number t at which F is continuous, we have that
limn→∞ Fn(t) = F(t). Dominated convergence theorem implies

x = lim
n→∞

E[Xn] = lim
n→∞

∞∫
0

(1−Fn(t))dt =
∞∫

0

(1− lim
n→∞

Fn(t))dt

=

∞∫
0

(1−F(t))dt = E[X ].

Theorem 5.0.18 (The extended dominated convergence theorem). Let (Ω,F ,µ)

be a measure space and let fn,gn : Ω→ R be measurable functions such that
| fn| ≤ gn, a.e. for all n≥ 1. Suppose that

• gn→ g,a.e and fn→ f ,a.e.

• gn,g ∈ L1(Ω) and
∫
|gn|dµ →

∫
|g|dµ as n→ ∞.
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Then f ∈ L1(Ω),

lim
n→∞

∫
fndµ =

∫
f dµ, and lim

n→∞

∫
| fn− f |dµ = 0.

Proof. See Theorem 2.3.11 of Athreya and Lahiri [2006].

Theorem 5.0.19 (Komlós Theorem, Komlós [1967]). If (ξn) is a sequence of
random variables for which

liminf
n→∞

E[|ξn|]<+∞,

then there exists a subsequence (nk) and an integrable random variable η , for
which

1
k
(ξn1 +ξn2 + ...+ξnk)→ η , a.s.
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Žitković, G. (2010). Convex compactness and its applications. Mathematics and
Financial Economics, 3(1):1–12.
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