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Abstract

As a result of deregulation of most power markets around the world electricity price
modeling and forecasting have obtained increasing importance in recent years. Large
number of models has been studied on a wide range of power markets, from linear
time series and multivariate regression models to more complex non linear models
with jumps, but results are mixing and there is no single model that provides con-
vincing superior performance in forecasting spot prices.
This study considers whether combination forecasts of spot electricity prices are
statistically superior to a wide range of single model based forecasts. To this end
we focus on one-day ahead forecasting of half-hourly spot data from the British
UK Power Exchange electricity market. In this work we focus on modeling data
corresponding to some load periods of the day in order to evaluate the forecasting
performance of prices representative of different moment of the day.
Several forecasting models for power spot prices are estimated on the basis of ex-
panding and/or rolling estimation windows of different sizes. Included are linear
ARMAX models, different specifications of multiple regression models, non linear
Markov switching regression models and time-varying parameter regression models.
One-day ahead forecasts are obtained for each model and evaluated according to
different statistical criteria as prediction error statistics and the Diebold and Mar-
iano test for equal predictive accuracy. Forecasting results highlight that no model
globally outperforms the others: differences in forecasting accuracy depend on sev-
eral factors, such as model specification, sample realization and forecasting period.
Since different forecasting models seem to capture different features of spot price
dynamics, we propose a forecasting approach based on the combination of forecasts.
This approach has been useful to improve forecasting accuracy in several empirical
situations, but it is novel in the spot electricity price forecasting context.
In this work different strategies have been employed to construct combination fore-
casts. The simplest approach is an equally weighted combination of the forecasts.
An alternative is the use of adaptive forecast combination procedures, which allows
for time-varying combination coefficients. Methods from Bates & Granger (1969)
are considered. Models entering the combination are chosen for each forecasting
season using the model confidence set method (MCS) described in Hansen et al.
(2003, 2005) and then screened with the forecasts encompassing method of Fair &
Shiller (1990). For each load period, our findings underline that models behave
differently in each season. For this reason we propose a combination applied at a
seasonal level. In this thesis some promising results in this direction are presented.
The combination results are compared with the best results obtained from the single
models in each forecasting period and for different prediction error statistics. Our
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findings illustrate the usefulness of the procedure, showing that combining forecasts
at a seasonal level have the potential to produce predictions of superior or equal
accuracy relative to the individual forecasts.



Riassunto

Con la liberalizzazione dei mercati dell’elettricità, il problema della modellazione e
previsione dei prezzi elettrici è diventato di fondamentale importanza. In letteratura
sono stati studiati e applicati ad un gran numero di mercati molti tipi di modelli,
come modelli per serie storiche, regressione lineare e modelli non lineari a salti molto
più complessi. I risultati però sono contrastanti e finora nessun modello ha mostrato
una capacità previsiva dei prezzi elettrici superiore rispetto agli altri.
L’obiettivo di questa tesi è capire se i modelli di combinazione di previsioni possano
dare risultati statisticamente superiori rispetto alle previsioni ottenute da singoli
modelli. In particolare, viene affrontato il problema della previsione dei prezzi elet-
trici del giorno dopo applicato al mercato elettrico britannico UK Power Exchange.
In questo mercato, i prezzi hanno frequenza semioraria: al fine di valutare il com-
portamento previsivo dei modelli, relativamente all’andamento dei prezzi nei diversi
momenti della giornata, sono state scelte specifiche fasce orarie.
I modelli usati per la previsione dei prezzi sono stati stimati sulla base di finestre di
dati espandibili e/o mobili di diverse misure fissate. I modelli considerati includono
modelli lineari di tipo ARMAX e diverse specificazioni di modelli di regressione
multipla. Inotre sono stati considerati modelli di regressione non lineare a regimi
Markov switching e modelli di regressione a parametri non costanti. Le previsioni a
un passo ottenute dai modelli specificati sono state confrontate secondo diversi cri-
teri statistici come le statistiche basate sull’errore di previsione e il test di Diebold
e Mariano.
Dai risultati emerge che, globalmente, nessun modello considerato supera gli altri per
abilità previsiva: vari fattori, tra cui specificazione del modello, realizzazione cam-
pionaria e periodo di previsione, influenzano l’accuratezza previsiva. Dal momento
che modelli di previsione diversi sembrano evidenziare caratteristiche diverse della
dinamica dei prezzi elettrici, viene proposto un approccio basato sulla combinazione
di previsioni. Questo metodo, finalizzato a migliorare l’accuratezza previsiva, si è
dimostrato utile in molti studi empirici, ma finora non è stato usato nel contesto
della previsione dei prezzi elettrici.
In questa tesi sono state usate diverse tecniche di combinazione. L’approccio più
semplice consiste nel dare lo stesso peso a tutte le previsioni ottenute dai singoli mod-
elli. Altre procedure di combinazione di previsioni sono di tipo adattivo, poiché uti-
lizzano coefficienti non costanti. In questo contesto, sono stati considerati i metodi
di Bates & Granger (1969). I modelli usati nella combinazione sono stati scelti, per
ciascuna stagione di previsione, con il metodo model confidence set (MCS) descritto
in Hansen et al. (2003, 2005) e successivamente ridotti con il metodo forecasts encom-
passing di Fair & Shiller (1990). Per ciascuna ora considerata, i risultati sottolineano
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che i modelli si comportano in modo diverso a seconda della stagione di previsione.
Questa caratteristica giustifica l’applicazione dei modelli di combinazione di previ-
sioni ad un livello stagionale. In questa tesi vengono presentati risultati promettenti
in questa direzione. Considerando le statistiche basate sull’errore di previsione, i
risultati delle combinazioni sono stati confrontati con i migliori risultati ottenuti dai
singoli modelli in ciascun periodo previsivo. Il vantaggio della procedura proposta
deriva dal fatto che combinando le previsioni ad un livello stagionale, si ottengono
previsioni di accuratezza superiore o uguale rispetto alle previsioni individuali.
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Chapter 1

Introduction

1.1 Overview

After the liberalization of the electricity market, electricity prices have changed
their behavior. Restructuring removes price controls and openly encourages market
entry. In this context producers, retailers and consumers interact through a market
in which the common target is to maximize their respective profits but new features
appeared in electricity price series as high volatility and the presence of unexpected
jumps. So, a new topic has emerged: developing forecasting models which can well
describe electricity price dynamics.
The question is not trivial because of the characteristics the price series show: among
them seasonality, heteroskedasticity and spikes. In literature many models have
been proposed: models derived directly from the statistical techniques of demand
forecasting are generally preferred like multivariate regression, time series models
and smoothing techniques. But in the last years also more complex models have
been tested for forecasting. Nonlinear models with jumps, Markov regime switching
and time-varying parameter models have been proposed. Despite this seemingly
large number of models and related empirical analysis on a wide range of power
markets, results are mixing and there is no single model that provides convincing
superior performance in forecasting spot prices.
In load forecasting some attempts of multiple modeling and combining were done
(Smith, 1989; Taylor and Majithia, 2000), but there is no research about the use of
combining techniques in electricity price forecasting. The reason for using combined
forecasts is the opinion that identifying the true statistical representation of the
time-series is elusive and that, statistically, more accurate forecasts can be obtained
through a combination of the outputs of several good, but quite different models.
In fact, different modeling strategies, even if applied with the same information set,
may capture different parts of the characteristics of the data. In electricity price
series, jump intensities are not constant over the time and a time-varying volatility is
present. It is difficult to model them exactly: model combining provides a potential
capability of better adaptation to such features.

This thesis considers whether combined forecasts of spot electricity prices are
statistically superior or equal to a wide range of single model based forecasts. To
this end the work focus on one-day ahead forecasting (since this is of greater concern
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when dealing with spot prices) of the half-hourly spot prices from the UK Power
Exchange electricity market.

This work consists of two parts. In the first part, a brief introduction to the
electricity market deregulation is presented, with a description of the electricity price
features (seasonality, non-normality, high volatility and jumps) and their formation
process. Chapter 3 reviews the relevant price forecasting techniques in literature,
with particular attention to statistical methods. Among others, articles about time
series techniques, Markov regime-switching and time-varying parameter models are
discussed.

The second part of the thesis includes the comparative study of different forecast-
ing models. In chapter 4 the UKPX market is described. The study is based on data
from April, 1st 2005 (after the inclusion in the market of Scotland) to September,
30th 2006. As it is customary, the 48 half-hourly time series are considered sepa-
rately: the modeling is focused on data corresponding to some periods of the day
in order to evaluate the forecasting performance of prices representative of different
moment of the day. The forecasting design is presented, in particular we choose
the period January-September 2006 for out-of sample forecasting. This period is
divided into three parts to best compare differences in forecasting accuracy caused
by different seasons.

In chapter 5, several forecasting models for power spot prices are estimated on the
basis of expanding and/or rolling estimation windows of different sizes. Included are
different specifications (based on different regressors) of multiple regression models,
non linear Markov switching regression models, time-varying parameter regression
models, and short (estimated on a short rolling window) linear ARMAX models.
The choice of developing these forecasting models was taken cause the different
characteristics of these models: the Markov regime-switching regression model al-
lows for discontinuities in pricing due to temporal irregularities, the time-varying
parameter regression model allows for a continuously adaptive price structure and
the short ARMAX can adjust rapidly to the fast changes in the market conditions.
The linear regression model is used as baseline comparison. One-day ahead forecasts
are obtained for each model and evaluated according to different statistical criteria,
as prediction error statistics and the Diebold and Mariano test for equal predictive
accuracy (Diebold & Mariano, 1995; Harvey et al., 1997).

Chapter 6 introduces the combination techniques. When we are dealing with
many forecasting models, the choice of the models to be included in the combina-
tion is an important issue. The models are selected using for each forecasting season
the model confidence set method method (MCS) described in Hansen et al. (2003,
2005), screened with the forecasts encompassing method of Fair & Shiller (1990).
The chosen models are combined with different techniques. The simplest approach
sets the combination to be the mean of the constituent forecasts and is, thus, an
equally weighted combination of the forecasts. An alternative is the use of adaptive
forecast combination procedures, which allows for time-varying combination coeffi-
cients. Methods from Bates & Granger (1969) are considered.
The combination results are then compared with the best results obtained from the
single models in each forecasting period and for different prediction error statistics.
The results illustrate the usefulness of the procedure, showing that the choice of
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combining forecasts at a seasonal level have the potential to produce predictions of
superior or equal accuracy relative to the individual forecasts. At the same time,
this technique allows to avoid the choice of a single model.

Chapter 7 concludes with some ideas for future research.

1.2 Contributions of the thesis

An overview of the original results presented in the thesis is listed below.

• An extensive review of the literature about the electricity price forecasting
issue is presented, with particular attention to time series models.

• The heart of the thesis is the systematic comparative forecasting study that is
conducted for four representative load periods: period 6 (2:30-3:00am), period
19 (9:00-9:30am), period 28 (13:30-14:00pm) and period 38 (18:30-19:00pm).
These periods are representative of different moments of the day, as the con-
trast between day and night and the working habits of the population. Three
sets of regressors are proposed. The difference among them is the specifica-
tion of the annual periodic component of the prices. On the basis of these
three regressor specifications, several forecasting models are estimated and
one-day ahead forecasts are calculated. The forecasting period is divided into
three parts, corresponding to different seasons: January-March, April-June
and July-September. The reason for doing this is to better compare forecast-
ing performances.

• Four different models are proposed for comparison: a multiple regression
model, a Markov regime-switching (r-s) model, a time-varying parameter re-
gression model and an ARMAX model. The usefulness of the Markov r-s
models for power market applications has been already recognized. In par-
ticular this kind of models are useful for modeling several consecutive price
jumps. However, their adequacy for forecasting has been only vaguely tested
(see Misiorek et al., 2006 and Karakatsani & Bunn, 2008b). In this thesis, the
parameters of this model were estimated using a daily expanding dataset and
rolling windows with fixed length of 3, 6 and 9 months (66, 132 and 186 days).
Time-varying parameter models are the most recent topic of research for elec-
tricity price forecasting, so it is interesting to compare forecasts obtained with
this kind of models with that obtained from other specifications. The ARMAX
model is estimated on rolling windows of fixed lengths, which depend on the
load period. In an in-sample study we compare specifications of AR, ARX,
ARMA and ARMAX models with two different exogenous variables and differ-
ent window lengths: the ARMAX model with ’margin’ as exogenous variable
has given the best results, so it has been used for out-of-sample forecasting.

• Forecasting results highlight that no model globally outperforms the others:
differences in forecasting accuracy depend on several factors, such as model
specification, sample realization and forecasting period. Since different fore-
casting models seem to capture different features of spot price dynamics, we
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propose a forecasting approach based on the combination of forecasts. This
approach has been useful to improve forecasting accuracy in several empirical
situations (see, for example, Becker & Clements, 2008; Sánchez, 2008), but it
is novel in the spot electricity price forecasting context.

• The choice of the models entering the combination is an important issue. We
choose the models for each forecasting season using the MCS method (Hansen
et al., 2005) and the forecasts encompassing method (Fair & Shiller, 1990).
For each load period, our findings underline that models behave differently in
each season. For this reason we propose a combination applied at a seasonal
level. This is a first study in this direction. Combination results highlight that
combinations made at seasonal level with few models produce better results
than combinations of all the 19 models. The reason is the high variability that
is introduced in the combinations using models that have poorly performance
in determined seasons.

• Combination results are compare also with the best results obtained from
the single models in each forecasting period and for different prediction er-
ror statistics. Results show that combination forecasts have the potential to
produce forecasts of superior or equal accuracy relative to the best individual
model.

To illustrate combination performance, in table 1.1 a summary of the results is
presented. For each load period, we compare, in terms of Mean Squared Percent-
age Error (MSPE) and of Mean Absolute Percentage Error (MAPE), the forecast
results obtained from the Bates and Granger combination model estimated on a
rolling window of 10 days, with the best MSPEs and MAPEs obtained using the
single 19 models. In the table, these relative measure statistics are called respec-
tively RMSPE and RMAPE. Rows of the table represent respectively the forecasting
periods January-March, April-June and July-September. The last row contains re-
sults of the whole period (January-September). Results show that the combination
model outperforms or matches the best model among the single ones. In particular,
over the whole forecasting period, improvements range from 4% to 21%. P-values
obtained with the Diebold-Mariano test for equal predictive accuracy (numbers in
parenthesis) underline the improvement of the combined models in comparison with
the best single models.
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Table 1.1: Summary of the combination results. Load periods 6, 19, 28 and 38
(F.P.= Forecasting Period).

Load period 6 Load period 19 Load period 28 Load period 38

F.P. RMSPE RMAPE RMSPE RMAPE RMSPE RMAPE RMSPE RMAPE

Jan-Mar 1.016 1.041 0.967 1.011 0.997 0.993 0.870 0.957
Apr-Jun 0.800 0.932 0.738 0.822 1.005 1.013 0.925 0.979
Jul-Sept 0.959 0.970 1.005 0.997 0.976 1.012 0.909 0.952

Whole 0.813 0.887 0.783 0.896 0.927 0.956 0.864 0.898
(0.012) (0.036) (0.045) (0.027) (0.232) (0.152) (0.036) (0.027)





Part I

Electricity price features and
literature review





Chapter 2

Electricity market liberalization
and characteristics of electricity
prices

Over the past twenty years the electric power industry has undertaken significant
restructuring. In many countries, the old concept of centralizing electric power in-
dustry seen as public service has been replaced by the idea that a competitive market
is the most appropriate mechanism to take energy to consumers with high reliability
and low costs. Restructuring removes price controls and openly encourages market
entry. In this context producers, retailers and consumers interact through a market
in which the common target is to maximize their respective profits. There is an ex-
tensive literature on the changes that have taken place and the main characteristics
of various competitive power markets, see among others Bunn (2004) and Weron
(2006).
Before deregulation, public commissions were in charge of the management of all the
electric sector, which included for example tariff designs and investment decisions.
Price change over time was minimal because tariffs were kept fixed for long periods
(for price dynamics after deregulation see section 2.1). The chain of electric energy
production was based on five principal components:

• generation of electricity through different technologies like hydroelectric sta-
tions, nuclear plants and steam power stations (activated with coal, natural
gas or oil);

• transmission networks that from generators transfer electricity for long dis-
tances, disguised as alternating current with very high voltage;

• distribution of low voltage electricity to homes and factories;

• system operations to monitoring the system and to synchronize production
and consumption to avoid electric grid blackouts;

• retail of electricity to consumers.

After deregulation, the two functions of generation and retail came out of the
monopoly system: generators, industrial consumers and retailers became part of
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organized markets in which electricity can be traded through a one-sided or a two-
sided auction. This did not happen for transmission, distribution and system oper-
ator components. Their particular structure and the fact that all competitors need
nondiscriminatory access to them are reasons to keep them into monopoly.
Out of the monopoly system, two main kind of market for electricity have been
emerged: power pools and power exchange (Weron, 2006). Power pools can be di-
vided into two categories: technical and economic. In technical pools, the power
plants are ranked on merit order. Generation costs and network constraints are the
determining factors to optimize generation with respect to cost minimization and
optimal technical dispatch. Economic pools are one-sided auction markets, in which
only generators can participate and participation is mandatory (indeed no trade is
allowed outside the pool). Generators bid based on the prices at which they are
willing to run their power plants. Then, the market clearing price, i.e. the price to
be paid by retailers and to be charged by producers, is established as the intersection
of the supply curve (constructed from aggregated supply bids) and the estimated
demand (market clearing volume).
Power exchanges, or wholesale electricity markets, are commonly launched on a pri-
vate initiative. Participants include generators, distribution companies, traders and
large consumers and the participation can be mandatory or voluntary (in this case
bilateral contracts are also allowed), depending on the market. Generally, the market
clearing price is established in the form of a conducted once per day two-sided auc-
tion. Among others, OMEL (Spain) and PJM (Pennsylvania-New Jersey-Maryland)
markets follow this scheme, whilst some markets trade electricity closer to the deliv-
ery through two-sided auctions conducted each period at a time: UK and Ontario
markets are two examples. Producers submit to the Market Operator production
bids that typically consist of a set of energy blocks and their corresponding minimum
selling prices for every hour (or half-hour) of the next day. Analogously, retailers
and large consumers submit consumption bids that consist of a set of energy blocks
and their corresponding maximum buying prices. Each hourly (half-hourly) market
clearing price is given by the Market Operator by the intersection of the supply
curve and the demand curve, constructed respectively from aggregated supply and
demand bids. Finally, the Independent System Operator checks if the schedule is
feasible or if it needs some changes. For the pricing rule, there are two relevant
variants. First, the uniform pricing provides the same price for every accepted bid,
i.e. buyers (suppliers) with bids (offers) above (below) or equal to the clearing price
are paid that price. In contrast, the transaction can be priced in a discriminatory
manner called pay-as-bid pricing: a supplier would be paid the price he bid for the
quantity transacted (as example, the UK market under NETA followed this pricing
procedure, see section 4.1).

With the introduction of these electricity market systems, producers, retailers
and large consumers need information gotten through day-ahead price forecasts to
optimally self-schedule and to derive its bidding strategy. For this reason, it is
very important to develop forecasting models which can good describe dynamics of
electricity prices both in the short and medium-term. Clearly, this is not trivial
to do, cause the complexities that these time series show. The main peculiarity is
high volatility. There are several elements that explain this characteristic. Probably
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the most important one is the non-storability of electricity. Electricity cannot be
physically stored in a direct way, and production and consumption have to be contin-
uously balanced. Therefore, supply and demand shocks cannot easily be smoothed
out and they will have a direct effect on equilibrium prices. This and other features
characterize the electricity price series, so that electricity price forecasting is up till
now a heated topic for researchers. In literature, many kinds of models have been
studied but there is not one forecasting technique that prevails against the others.
The next section describes the main characteristic factors of electricity prices and
how these complexities have been tackled in literature. Then, the main forecasting
models are presented (chapter 3), with particular attention to statistical techniques.

2.1 Electricity prices: formation process and fea-

tures

For proposing adequate modeling and forecasting methods, it is necessary to know
the features which characterize electricity price series and it is not a trivial aspect
how to capture them in the model. Despite a few distributional similarities, elec-
tricity prices are dramatically different from those found in the financial or other
commodity markets. Specifically, electricity prices display the following distinct
characteristics:

high frequency: price series have hourly or half-hourly frequency;

multi-scale seasonality (intra-day, weekly, annual): electricity price dynam-
ics are strongly influenced by human activities and by seasons;

calendar effects: demand is low in weekend days and holidays, and this influences
prices;

dependence on atmospherical factors: temperature is one factor strongly cor-
related with price dynamics. In very cold (hot) periods, electricity demand
increases cause heating (air-conditioned) systems;

non-normality: this feature manifests as leptokurtosis and positive skewness which
is more elevate when there is high variability in demand;

high volatility: orders of magnitude higher than other commodities and financial
assets. Electricity prices contain an inverse leverage effect: volatility tends to
rise more so with positive shocks than negative shocks (Knittel & Roberts,
2005);

presence of jumps: one of the characteristics of evolution of these jumps is that
the price does not stay in the new level, to which it jumps, but reverts to the
previous level rapidly (mean reversion).

Many of the presented features are shared by most electricity spot markets in the
world.
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2.1.1 Seasonality and calendar effects

The main factor affecting electricity price is the demand (load) dynamics. Electricity
demand is heavily influenced by economic and business activities and by the weather
conditions, so that electricity markets across the world exhibit three different types
of seasonality: daily, weekly and annual. The daily cycle refers to variations between
day and night and during the different moments of the day. This variation follows
the working habits of the population. For each day shown in figure 2.1, the daily
cycle is clear. During the night, the demand is very low, while in the morning and
in the evening there is a peak which reflects working activity and atmospherical
conditions.

Figure 2.1: Hourly forecasted demand in the California power exchange from
Wednesday 01/04/1998 to Tuesday 14/04/1998.
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The intra-week variability is also non-negligible. Saturday and Sunday load
profile is lower than during the weekdays. This feature is called “weekend effect”
and it is present also during national holidays (in this case it is called “calendar
effect”, see for example figure 4.1 for the effect in the prices).

Seasonal fluctuations (annual cycle) mostly arise due to the use of artificial light
and heating in winter and to the growing use of air conditioning in summer. Figure
2.2 shows the daily average electricity demand and the corresponding prices in the
Californian market during the first two years of activity (till April, 23th 2000). In
this market, the peaking season is the summer caused by high temperatures. This
reflects to the prices, but the relation demand-price is not simple. A very high
variability is present in the price series when demand is high (see section 2.1.3 for
an explanation of the problem). The other three seasons are characterized by mild
temperatures, so the mean demand is lower. Figure 2.3 shows another example of
demand and price annual behaviour. The market is the PJM and the series have
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hourly frequency. In this case the seasons with high demand are two: summer and
winter. Demand is very unstable especially during the summer season. The effect
on prices is evident: high peaks are characteristic of the high demand periods. In
general, electricity load and atmospheric temperature have a non-linear relationship:
very low and very high temperatures correspond to high levels of electricity demand
(see, for instance, figure 2.4).

Figure 2.2: Daily mean forecasted demand (MWh) and daily mean price ($/MWh)
in the California power exchange from April, 1998 to April 23th, 2000.
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A tool for modeling seasonal fluctuations is the sinusoidal approach with a lin-
ear trend, successfully applied by Pilipovic (1998) and Geman & Roncoroni (2006)
(see figure 2.5). The modeling of intra-week and intra-day seasonalities may be ap-
proached analogously or with other tools, like differencing technique to remove the
weekly seasonal component and the introduction of dummies for particular days.
To remove intra-day seasonality, it is possible to model each hour (half-hour) of the
day separately, like different commodities (see for example Ramanathan et al., 1997,
and Guthrie & Videbeck, 2002, for an intra-day approach). Many authors are agree
to assert that this approach can improve forecasts.

2.1.2 Non-normality of electricity prices

In general, like other financial asset returns, electricity price series are not normally
distributed. This feature emerges by the fact that the series manifest positive skew-
ness and leptokurtosis (or heavy-tailed character). As example, figure 2.6 shows
these price features in the European Energy Exchange (EEX), the spot market
in Germany (data are daily prices from June 2002 to May 2004). The histogram
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Figure 2.3: Hourly demand (MWh) and price ($/MWh) traded on the PJM market,
from April, 2002 to August, 2003.

Figure 2.4: Scatterplot between PJM daily mean demand (MWh) and atmospheric
temperature (F 0), from April, 2002 to August, 2003 (source: Fezzi, 2007a).
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Figure 2.5: Nord Pool market daily mean price from December 30th, 1996 until
March 26th, 2000. Superimposed on the plot is an approximation of the annual
seasonality by a sinusoid with a linear trend (source: Weron, 2005).

indicates that these particular prices may be well represented by a log-normal dis-
tribution. Knittel & Roberts (2005) underline that this kind of asymmetry suggests
the presence of an inverse leverage effect. Thus, positive shocks to prices amplify
the conditional variance of the process more so than negative shocks. Some au-
thors have studied how to model the leptokurtic behavior and which probability
distributions best describe the data. Weron (2005), for example, model electricity
prices with distributions from two heavy-tailed families: α-stable and generalized
hyperbolic distributions. In the case studied, heavy-tailed distributions, and the
α-stable in particular, show very good fitting performance not only visually but also
in terms of the goodness-of-fit statistics (just comparing the values obtained from
Anderson-Darling and Kolmogorov tests). This results suggest that a model, with
well-specified seasonal structure and which can control the intensity of the jumps,
amended with heavy-tailed innovations could lead to improve performance.

2.1.3 Jumps and volatility

An important aspect of electricity prices is the existence of high, time-varying volatil-
ity and volatility clustering. This is a direct consequence of the electricity market
liberalization, and it is one of the principal factors that make electricity prices mod-
eling and forecasting so important in the short term and so difficult at the same
time. One of the most popular approaches for modeling conditional volatility is
the GARCH model and its extensions, but, as Duffie et al. (1998) pointed out, the
application of these kind of models to electricity prices has its limitations, deriving
erroneous results. The presence of unanticipated extreme changes in prices called
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Figure 2.6: Normalized histogram (left) and quantile-quantile plot (right) of daily
averaged EEX spot market prices (source: Swider & Weber, 2007).

jumps or spikes are the cause of bias in the estimation of the GARCH process. Es-
cribano et al. (2002) show that one can improve GARCH models by working with
a model that simultaneously takes into account volatility behavior and jumps (see
section 3.1.1).
The feature of these spikes is that they are normally quite short-lived. When the
weather phenomenon or outage that caused the peak is over, prices fall back to a
normal level. Figure 2.7 shows an example of this characteristic from the Nord Pool
market (the Scandinavian power exchange). So, energy spot prices are in general
regarded to be mean reverting or anti-persistent. Among other financial time series
spot electricity prices are perhaps the best example of anti-persistent data. In Weron
& Przyby lowicz (2000) and Weron (2002) the R/S analysis, detrended fluctuation
analysis and periodogram regression methods were used to verify this claim. More-
over spikes intensity is bigger during on-peak hours (around 9h and 18h on business
days), and during high consumption periods (see for instance figure 4.2).

The volatile and spiky nature is a peculiar characteristic of electricity spot prices.
This is mainly due to the fact that electricity cannot be stored in an economic feasi-
ble way. Serati et al. (2007) assert that to manage the creation of electricity, water
reserves can be considered the only substitute method. This is explained by elec-
tricity price dynamics in that countries where reserves are abundant (in Scandinavia
and United States): peaks are lower than in other markets, due to the great flex-
ibility in the creation phase. Supply and demand must be balanced continuously
cause the instantaneous nature of electricity. Shocks occur when there are extreme
load fluctuations caused by severe weather conditions often in combination with
generation outages or transmission failures, and they can turn into extremely high
prices. The increase in demand is balanced using further power plants for electricity
production. During peak hours, power plants that utilize fossil fuels (coal, oil and
gas plants) are called to generate electricity with the more efficient nuclear or hydro
power plants that operate most of the time.
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Figure 2.7: Hourly prices for the spot market (Elspot) at the Nordic power exchange
Nord Pool from May, 1992 until December, 2004 (source: Weron, 2005).

Figure 2.8: Schematic marginal costs of production with two hypothetical demand
curves superimposed on it. Source: Weron et al. (2004b).
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Figure 2.8 show that when demand is high, a larger fraction of power comes from
expensive sources. This increases the marginal costs of production, and even a small
unexpected positive shock in consumption can force the prices to rise substantially,
hence we have a spike. Prices are therefore determined by the excess of capacity
available on the system, i.e. the amount of electricity that power plants are able to
produce in a specific hour or day (it is called “margin”). If demand is high, margin
diminishes and the price rises. So margin is a substantial feature that affect price
during peak hours and it is one of the reasons which may determine jumps.



Chapter 3

The electricity price forecasting
issue in literature

In literature many different approaches have been presented to resolve the forecasting
problem for electricity prices. A great part of these has been used at the beginning for
load forecasting with good results. Forecasting electricity prices is not a trivial topic:
prices are similar to loads in the sense that both series show seasonality and are
dependent on atmospherical factors, but prices show more difficulties. Unanticipated
jumps and high volatility are two examples. So, it is necessary to be very careful
with the model to use, in fact there are many aspects to consider.

The most studied models to analyze and predict the behavior of electricity prices
belong to two main classes: statistical methods and artificial intelligent-based mod-
els. Artificial intelligence-based (AI-based) techniques model price processes via
non-parametric tools such as artificial neural networks (ANNs), expert systems,
fuzzy logic and support vector machines. AI-based models tend to be flexible and
can handle complexity and non-linearity. This makes them promising for short-term
predictions. Many authors have reported their excellent performance in short-term
price forecasting (Catalão et al., 2007; Pino et al., 2008; Vahidinasab et al., 2008),
but the advocated models have generally been compared only to other AI-based
techniques or very simple statistical methods. For instance, Arciniegas & Arcin-
iegas Rueda (2008) used a Takagi-Sugeno-Kang (TSK) fuzzy inference system in
forecasting the one-day ahead real-time peak price of the Ontario Electricity Mar-
ket. Comparison with time series (ARMAX) and ANN models showed that their
model was the more accurate in terms of forecasting. In the other hand, Conejo et al.
(2005a) compared different methods for forecasting electricity prices for a day-ahead
pool-based electric energy market: three time series specifications (transfer function,
dynamic regression and ARIMA), a wavelet multivariate regression technique and a
multilayer perceptron with one hidden layer. From results, the ANN technique was
the worst out of the five tested models. The last example indicates that there might
be serious problems with the efficiency of ANNs and AI-based methods if compared
with more sophisticate methods. This is still topic of research.
Statistical approaches are in general preferred for finding the optimal model for
electricity prices in terms of its forecasting capabilities. The efficiency and useful-
ness of some of these methods, like multivariate regression, time series models and
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smoothing techniques, in financial markets is often questioned. On the contrary, in
power markets these methods do stand a better chance, because of the seasonality
prevailing in electricity price processes during non-spiky periods. This makes the
electricity prices more predictable than those of very randomly fluctuating financial
assets. To enhance their efficiency many of the statistical approaches incorporate
fundamental factors, like loads or fuel prices. In the next section the use of statistical
models for electricity forecasting purpose is discussed in detail.

3.1 Statistical models

One important feature of electricity prices is the presence of jumps. This behavior
can be captured by introducing a Poisson process as in a jump-diffusion model. Its
main drawback is that it ignores another fundamental characteristic of electricity
prices: the mean reversion to the normal regime. When a jump occurs, the price
does not stay in the new level, but reverts to the previous level rapidly. Instead in the
jump-diffusion model, if a price spike occurs, the new price level would be assumed
as a normal event. The model would proceed randomly via continuous diffusion
process with no consideration of the prior price level, and a small chance of returning
to the pre-spike level. So, mean-reverting models (arithmetic Ornstein-Uhlenbeck
processes) with or without jumps were introduced. Some examples of mean-reverting
jump-diffusion models can be find in Deng (2000), Lucia & Schwartz (2002) and
Cartea & Figueroa (2005). Deng (2000) studied three models with additional non-
linearities, such as regime-switching and stochastic volatility. These aspects allow
richer dynamics to emerge, although they are not captured simultaneously in a single
specification. His work has been drawn on in the article written by Escribano et al.
(2002). The suggested model takes into account the possibility of mean-reversion,
volatility clustering (in the form of GARCH effects), jumps (with the possibility of
time-dependent intensity) and seasonality (deterministic). The last one is an aspect
whose importance is emphasized by Lucia & Schwartz (2002).

In spite of the advantages of introducing jumps in the model there are some
limitations in modeling electricity prices by jump-diffusion processes. In fact in this
kind of models it is assumed that all the shocks affecting the price series die out at
the same rate. Simple economic intuition would argue that this is not a likely case.
Larger shocks are push back quite fast by forces of demand and supply, while, when
shocks are smaller it is more likely that prices will revert slowly to the previous level
due to the existence of adjustment costs. Jump diffusion process tends to capture
the smallest and more frequents jumps in the data. As emphasised by Huisman
& Mahieu (2003), stochastic jump-models do not disentangle mean-reversion from
the reversal of spikes to normal levels. Furthermore, the jump-diffusion modeling
approach does not capture the fact that jumps will probably appear in periods
of small excess capacity. So, model assumptions for jump intensity (constant or
seasonal) are convenient for simulating the distribution of prices over several periods
of time, but restrictive for actual short-term predictions for a particular time. For
this reason, Escribano et al. (2002) introduced in their model jumps with time-
dependent intensity. To capture the rapid decline of electricity prices after a spike,
Weron et al. (2004b) postulated that a positive jump should always be followed by a
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negative jump of approximately the same size. When analyzing average daily prices,
spikes typically do not last more than a day so this approach seems to be a good
approximation. Using this approach for hourly (or half-hourly) prices is not a good
idea. The models developed for daily average prices cannot directly be applied to
describe dynamics in hourly prices. For example, if hourly prices revert to an hourly
specific mean prices level, then the daily average model with a daily mean will not
suffice.

Regime-switching is a good alternative model to jump-diffusion (see also section
3.1.2). This model may be more suitable for actual price forecasting, in fact this
can replicate the price discontinuities, observed in practice, and could detach the
effects of mean-reversion and spike reversal, aliased in jump-diffusion. To resolve the
problems of jump-diffusion approaches described above, Huisman & Mahieu (2003)
suggested a model that allows an isolation of the two effects of jumps assuming
three market regimes: a regular state with mean-reverting price, a jump regime
that creates the spike and finally, a jump reversal regime that ensures with certainty
reversion of prices to their previous normal level. This regime-transition structure
is however restrictive, as it does not allow for consecutive irregular prices. This
constraint is relaxed in de Jong & Huisman (2002) and de Jong (2006). The two-
state model proposed assumes a stable mean-reverting regime and an independent
spike regime of log-normal prices. Regime independence allows for multiple consec-
utive regimes, closed-form solutions and translates to a Kalman Filter algorithm in
the implementation stage. De Jong (2006) found also that regime-switching models
are better able to capture the market dynamics than a GARCH model or a Pois-
son jump-model. Regime-switching models with two regimes are also developed in
Weron et al. (2004a) and Bierbrauer et al. (2004), who coped with the heavy-tailed
nature of spike severities allowing log-normal and Pareto distributed spike regimes.

3.1.1 Time series models

Models derived directly from the statistical techniques of load forecasting are gener-
ally preferred to predict electricity prices. This is because what is an advantage
of stochastic models in derivatives evaluation, such as simplicity and analytical
tractability, in forecasting electricity prices it becomes a serious limitation. Just
for their simplicity, this kind of models do not take into account a specific feature
of electricity prices: time correlations between prices.

In the engineering context the standard model that takes into account the ran-
dom nature and time correlations of the phenomenon under study is the autoregres-
sive moving average (ARMA) model. In the ARMA model the current value of the
process (say, the price) is expressed linearly in terms of its past values (autoregres-
sive part) and in terms of previous values of the noise (moving average part). The
ARMA modeling approach assumes that the time series under study is (weakly)
stationary. If it is not, then a transformation of the series to the stationary form
has to be done first. This can be performed by differencing. The resulting ARIMA
model contains autoregressive as well as moving average parts, and explicitly in-
cludes differencing in the formulation. If differencing is performed at a larger lag
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than 1 then the obtained model is known as seasonal ARIMA or SARIMA.
The forecasting ability of these particular models have been studied in many articles.
Conejo et al. (2005a) compared different techniques, which include time series anal-
ysis (comprised ARMA), neural networks and wavelets. Using data from the PJM
Interconnection in the year 2002, time series techniques reveal themselves as more
efficacious than wavelet-transform or neural network techniques, but among time
series techniques, the dynamic regression and transfer function algorithms are more
effective than ARIMA models. In a subsequent article, Conejo et al. (2005b) pro-
posed a novel technique to forecast day-ahead electricity prices based on the wavelet
transform and ARIMA models. The price series is decomposed into three parts us-
ing a discrete wavelet transform: the resulting series are modeled with ARIMA
processes to obtain 24 hourly predicted values. Then the inverse wavelet transform
is applied to yield the forecasted prices for the next 24 hours. The authors concluded
that their techniques outperforms the direct use of ARIMA models.

Crespo Cuaresma et al. (2004) studied autoregressive models and autoregressive-
moving average models (including ARMA with jumps). They concluded that speci-
fications, where each hour of the day is modeled separately present uniformly better
forecasting properties than specifications for the whole time-series. Moreover, the
inclusion of simple probabilistic processes for the arrival of extreme price events
seems to lead to improvements in the forecasting abilities of univariate models for
electricity spot prices. In this article the arrival of shocks is modeled using a bino-
mial process. This implies that the shock arrival process is constant over time (over
days at a given hour for the models treating with 24 time series). This choice, made
for simplicity, is not so pertinent. In fact, many studies on the dynamics of jumps
have underlined that spikes have not constant intensity.
In a related study, Weron & Misiorek (2005) observed that an AR model, where each
hour of the day is modeled separately, perform better than a single for all hours,
but large (S)ARIMA specification proposed by Contreras et al. (2003). From these
results it seems pertinent to underline that modeling each hour of the day separately
improves forecasts.

ARIMA-type models relate the signal under study to its own past and do not
explicitly use the information contained in other pertinent time series. Electricity
prices are not only related to their own past, but may also be influenced by the
present and past values of various exogenous factors. These includes for example:

• historical and forecasted loads: load fluctuations translate into variations in
electricity prices;

• time factors: the time of the year, the day of the week and the hour of the
day influence price patterns;

• fuel prices: in the short-term horizon, the variable cost of power generation is
essentially just the cost of the fuel.

So, we can generalizing ARMA model to an autoregressive moving average model
with exogenous variables or ARMAX. Time series models with exogenous variables
have been extensively applied to short-term price forecasting (see Nogales et al.,
2002; Contreras et al., 2003; Knittel & Roberts, 2005; Weron & Misiorek, 2005 and
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Misiorek et al., 2006, for some examples) and it is demonstrated that the inclusion
in the model of exogenous variables improves forecasts.

Another important characteristic of electricity prices that we cannot ignore is
heteroskedasticity. This is one of the non-linearities presented in these series, that
show a non-constant conditional variance and clustering of large shocks. Generalized
autoregressive conditional heteroskedastic GARCH models consider the moments of
a time series as variant (i.e. the error term, real value minus forecasted value, does
not have zero mean and constant variance as with an ARIMA process). The error
term is now assumed to be serially correlated and can be modeled by an Auto Re-
gressive (AR) process. Thus, a GARCH process can measure the implied volatility
of a time series due to price spikes. In literature, this model is often used coupled
with autoregression (or a more general (S)AR(I)MA model) but there are cases
when modeling prices with GARCH models is advantageous and cases when it is
not. For example, Guirguis & Felder (2004) utilized GARCH method to forecast the
electricity prices in two regions of New York: New York City and Central New York
State. The model is compared to dynamic regression, transfer function models, and
exponential smoothing in terms of forecasting accuracy. They found that account-
ing for the extreme values and the heteroskedactic variance in the electricity price
time-series can significantly improve the accuracy of the forecasting. On the other
hand, Misiorek et al. (2006) found that models with the additional GARCH com-
ponent (AR/ARX-G), fail to outperform in point forecasting the relatively simple
ARX approach. Knittel & Roberts (2005) evaluated an AR-EGARCH specification
on data of California. They found it superior to five other models during the crisis
period (May 1, 2000 to August 31, 2000), whereas it yielded the worst forecasts of
all models examined during the pre-crisis period. In another article (Garcia et al.,
2005), an ARIMA-GARCH model and a general ARIMA model are compared. The
GARCH model outperforms the ARIMA model, but only when volatility and price
spikes are present.
So, it seems that GARCH models work good in spiky periods, but it is necessary to
be careful. As Duffie et al. (1998) pointed out, this kind of models derive erroneous
results for electricity prices due the bias introduced by extreme values. These com-
plications are indeed resolved in the presence of a richer price specification with a
jump component. The most general one (Escribano et al., 2002) postulates mean-
reversion, jump-diffusion and seasonality both in the deterministic price component
and the jump intensity. The coexistence of jumps and GARCH dynamics recovers
the desired stationarity of the volatility process, as small jumps are often captured
by the GARCH components (instead of dominating the estimation of the jump pro-
cess). Karakatsani & Bunn (2004) resolved the limitations of GARCH models due
to extreme values using a regression model with the assumptions of an implicit jump
component for prices and a leptokurtic distribution for innovations.
Recently, Bowden & Payne (2008) compared ARIMA, ARIMA-GARCH and ARIMA-
GARCH-M models examining in- and out-of-sample forecasting performances. The
last specification, that considers also the impact of conditional volatility upon the
mean electricity prices, produced better out-of-sample forecasts, but in-sample no
one model dominated the others.
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3.1.2 Regime switching models

The presence of jumps in electricity price series suggests that there exist a non-
linear mechanism switching between normal and high-price state or regimes. For
this reason, research suggests the study of regime switching models. The available
specifications of regime switching models differ in the way the regime evolves over
the time. The regime can be determined in two main ways: by an observable variable
or by an unobservable, latent variable. The variety of this kind of models is due to
the possibility of choosing both the number of regimes and the different stochastic
process for the price in each regime. Especially for the spike regime it may be
interesting to choose alternative distributions, like heavy-tailed distributions (this
is because spikes happen very rarely but usually are of great magnitude).

The most prominent member of the first class is the threshold autoregressive TAR
model with its generalizations due to the presence of exogenous variables (TARX
model) or to allowing for specifications of the threshold variable or a gradual tran-
sition between the regimes (smooth transition AR model).
Weron & Misiorek (2006) studied various time series specifications, including TAR
and TARX (with the system-wide load as exogenous variable) models, and evalu-
ated their predictive capabilities in the California power market. Considering out-
of-sample forecasting, the regime-switching approach provides only moderate results
during normal (calm) periods, while, during spiky periods TAR-type models per-
form better but well below acceptable levels as well. In a related study, Misiorek
et al. (2006) expanded the range of tested threshold variables. They found that
the threshold variable equal to the difference in mean prices for yesterday and eight
days ago lead to a much better forecasting performance. The resulting threshold
autoregressive models give the best overall results. Both for point and interval fore-
casting the model outperform most of its competitors and is the best in several of
the considered criteria.

Non-linear regime-switching time series models might provide us with good mod-
els of electricity price dynamics. However, it is not simple to understand which
process governs the regime-switching mechanism. The spot electricity price is the
outcome of a vast number of variables including fundamentals (like loads and net-
work constraints) but also the unquantifiable psycho- and sociological factors that
can cause an unexpected and irrational buy-out of certain commodities or contracts
leading to pronounced price spikes. For this reason, the Markov regime-switching
models, where the regime is determined by an unobservable, latent variable, have
been studied.

In the literature, mean-reverting processes with Gaussian innovations are typ-
ically suggested for the regimes (Huisman & Mahieu, 2003). Other model speci-
fications are also possible and straightforward. The usefulness of Markov regime-
switching models for power market applications has been already recognized, in
particular their capability of modeling several consecutive price jumps or spikes as
opposed to jump-diffusion models. However, their adequacy for forecasting has been
only vaguely tested. Only recently this issue has been tackled in the literature. Mi-
siorek et al. (2006) investigated the forecasting power of various time series models,
a non-linear Markov regime-switching model with AR(1)-type processes and thresh-
old regime-switching models (TAR and TARX). The models were tested on a time
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series of hourly system prices and loads from the California power market. The best
results were obtained using a non-linear TARX model and a relatively simple ARX
model, with the day-ahead load forecast as exogenous/fundamental variable, while
the Markov regime-switching model, failed to outperform the relatively simple ARX
approach.
Haldrup & Nielsen (2006a) developed a regime switching model which can generate
long memory (fractional integration) in each of the regime states (ARFIMA). The
model was adapted to data for the Nordic electricity spot market: electricity spot
prices in Nordic countries are characterized by a high degree of long memory, be-
cause of the use of hydropower. They found that regime switching and long memory
are empirically relevant to co-exist, because of the presence or absence of bottlenecks
in electricity transmission that changes the price behaviour. Moreover, from Monte
Carlo forecasting results, the regime switching model appears to be especially at-
tractive in forecasting relative prices.
Markov regime-switching models are also considered in the work of Kosater & Mosler
(2006) and compared with ordinary linear autoregressive specifications. The ob-
tained results of the forecast study suggest that there is a benefit by taking the
non-linear model at least for long-run forecasting.

3.1.3 Time-varying parameter models

In a recent paper, Granger (2008) discussed about the increasing use of time-varying
parameter linear models in econometrics. As the author pointed out, the reason of
this success is that time-varying parameter linear models can approximate any non-
linear model and they have the advantage to be more readily interpretable and to
easily produce multi-step forecast. In recent years, the use of this kind of models
has been tested also in the electricity context.
Pedregal & Trapero (2007) proposed a univariate dynamic harmonic regression
model set up in a state space framework for forecasting prices in the PJM and
Spanish markets. Their results highlighted the rapid adaptability of the model to
changes in the data and the competitive forecast performance of their method with
respect to other results published in the literature by means of ARIMA models.
Karakatsani & Bunn (2008b) studied the forecasting performance of various specifi-
cations of time-varying parameter regression models. Their findings underlined that
is important to include in the model the time-varying effect of market fundamentals
on the electricity price formation. The authors found that this kind of models exhib-
ited the best predictive performance for day-ahead horizons and intra-day trading
periods among various alternatives, including autoregressive models with similar
coefficient dynamics.

In the light of the advantages that time-varying parameter models show, es-
pecially the high adaptability to price structure changes, and the importance of a
regime-switching specification, that allows for changes in the price level, some at-
tempts have been done to merge these methods. A recent paper written by Mount
et al. (2006) shows that a stochastic regime-switching model with time-varying pa-
rameters can capture the type of volatile price behavior observed in many deregu-
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lated spot markets for electricity. The structure of the model is very flexible: the
mean prices in the two regimes and the two transition probabilities are functions
of the load and/or the implicit reserve margin. Correct market information allow
to predict price spikes. However, the authors underlined that the accuracy of the
prediction is sensitive to the accuracy of the explanatory variables. Following this
work, Kanamura & Ōhashi (2008) analyzed the transition probabilities of regime
switching in electricity prices by explicitly incorporating the demand/supply struc-
ture. In contrast with the usual assumption of constant transition probabilities,
their findings show that the transition probabilities depend on both the current de-
mand level relative to the supply capacity and the trends of demand fluctuation.
These results open a new issue of research.
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Half-hourly price forecasting of
the UK electricity market





Chapter 4

Data Analysis of the UKPX
electricity market

4.1 The UK market

The UK electricity market is the oldest organized market for wholesale electricity in
Europe. It started the operations in 1990 when, after the reform, the England and
Wales Electricity Pool was established and three companies were created. Only two
of these companies, National Power (50% of share) and Powergen (30%) were able
to set the price, while the third company (Nuclear Electric) was providing baseload,
nuclear power which is price-taking. The pool was a compulsory day-ahead one-
sided auction market where the electricity was bought and sold on a half-hourly
basis.
In march 2001, the pool was replaced by fully liberalized bilateral contracting and
voluntary spot trading with the introduction of the New Electricity Trading Ar-
rangements (NETA). Subsequently, three independent power exchanges, the UK
Power Exchange (UKPX), the UK Automated Power Exchange (APX UK) and the
International Petroleum Exchange (IPE, today called Intercontinental Exchange,
ICE) began operations. At the beginning the UKPX was an electricity futures mar-
ket as IPE, but at the closure of the Electricity Pool it added a spot market that
traded half-hourly spot contracts. The APX UK launched a spot market too and
in 2003 it was acquired by the Dutch APX. A year later, UKPX and Dutch APX
merged into the APX Group.
The UK market, that includes Scotland from March 2005, is currently fully com-
petitive, and perhaps the most mature market in the world. As Karakatsani &
Bunn (2008a) and Karakatsani & Bunn (2008b) pointed out studying the market
during the period June 2001 - April 2002, there is a strong linkage between price
and market fundamentals. In our research we take into account this characteristic:
to improve forecasting accuracy all the proposed models are based on important
market outcomes (see section 4.3).
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4.2 Preliminary data analysis

All the models proposed in this work are empirically estimated on UK Power Ex-
change half-hourly market data. This study focuses on the period from 1st of April
2005 to 30th of September 2006: the starting date is important because it refers
to the market that included also Scotland from March 2005. All weekend days
and Bank holidays were removed from the data (see table 4.1), yielding 380 days
for each load period. Each day consists of 48 load periods: period 1 is defined as
00:00-00:30am, period 2 as 00:30-01:00am, and similarly the other periods up to 48
(23:30-00.00pm).

Table 4.1: Bank holidays removed from the dataset

02 May 2005 Early May Bank Holiday
30 May 2005 Spring Bank Holiday

29 August 2005 Summer Bank Holiday
26 December 2005 Boxing Day
27 December 2005 Bank Holiday

02 January 2006 New Year’s Day
14 April 2006 Good Friday
17 April 2006 Easter Monday
01 May 2006 Early May Bank Holiday
29 May 2006 Spring Bank Holiday

28 August 2006 Summer Bank Holiday

As pointed out in chapter 2.1.1, the reason for removing weekend days and Bank
holidays is the different profile that these days show. Figure 4.1 is an example that
highlights this characteristic: during non-working days the electricity demand is
very low and this affects prices. This feature could affect price forecasting increasing
noise and inducing a worsening in the prediction accuracy. Moreover, dropping the
weekends from the analysis, the weekly cycle is eliminated with no significant loss
of information. This approach has been implemented, for instance, in Ramanathan
et al. (1997) and in Karakatsani & Bunn (2008b).

In figure 4.2 price and day-ahead forecasted demand are compared. The two
graphs show the respective values for all the 48 load periods during the whole analysis
interval, from April 2005 to September 2006. From the demand profile the daily cycle
appears clear. During the central hours of the day the demand is higher than during
the night, reflecting human activities. In particular we observe a point of very high
demand (peak hour) at about 17:00-19:00pm, corresponding to load periods 35-38:
this peak is more evident during the winter season. The reason of this increase in
the electricity demand is the night lighting. During the winter, sunset occurs earlier
so the night lighting coincides with the last working hours of the day.
The seasonal cycle is evident too (see also figure 4.5). The load peak occurs during
the winter that corresponds to low temperatures and therefore higher electricity
demand for heating purpose.
The prices strongly reflect the demand features with very high peaks in winter and
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Figure 4.1: Half-hourly mean price of working days from the 31st of May to the 3rd
of June 2005 (straight line) and half-hourly price during the Spring Bank Holiday
of the 30th May 2005 (line with markers).
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summer, especially during high demand load periods. As explained in chapter 2.1.3,
this spiky behaviour is strictly connected with supply shocks: the same quantity
of electricity can reach very different prices when the available capacity is not the
same. To attain a more stable variance, logarithmic transformations of the price
series are studied in this work.

Figure 4.3 show the distribution of the 48 half-hourly price logarithms. It is im-
mediately clear that not only the level of the prices but also their variability depends
on the corresponding load period. This comment can be extended to other markets
since it is a consequence of the instantaneous effect of demand on price. Power mar-
kets are organized so that low marginal cost generators are operative during all the
day, while flexible plants, typically with high marginal cost, are used only during
peak hours. Consequently prices show an extremely high volatility on daily basis.
This observation induced authors to consider electricity traded in different hours
as different commodities. The firsts were Ramanathan et al. (1997), who applied
the method for demand forecasting. Owing to their work, this approach became
rather established in load and price modeling and forecasting, as Bunn (2000) and
Bunn & Karakatsani (2003) pointed out. The improvement in fitting and predic-
tion accuracy is a result of the increase in homogeneity of the hourly (half-hourly)
time series in comparison with the complete one. In particular, in the case of the
next-day price forecasting issue, 24 (48) one-step-ahead forecasts that are calculated
everyday contain less noise than 24 (48) forecasts with prediction horizons varying
from 1 to 24 (48).
In the light of these considerations, in our work models were estimated separately
for each load period. In particular, we used four representative periods of the day:
period 6 (2:30-3:00am), period 19 (9:00-9:30am), period 28 (13:30-14:00pm) and pe-
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Figure 4.2: Electricity prices and demand forecasts for the 48 load periods during
the analysis interval.
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Figure 4.3: Boxplots of price logarithms for the 48 load periods.
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riod 38 (18:30-19:00pm). As figure 4.4 shows, the considered price series are linked
by a clear annual trend connected with the variation of the demand (see figure 4.5),
with an increase in pricing during the winter season. Differently from the other pe-
riods, load period 6 seems more stable but it is still complex to model. In the other
three periods volatility is very high, with sudden peaks during winter and summer
in both 2005 and 2006. This is because load period 6 is a baseload hour, while
the others are peak hours, characterized by supply shocks and high cost generation
units.
Unit root tests (Augmented Dickey-Fuller e Phillips-Perron) for prices across this
four periods, after adjusting for annual seasonality, rejected the unit root null hy-
pothesis at the 5% significance level. In the same way, KPSS stationarity test cannot
reject the null hypothesis at the 5% significance level. A descriptive analysis of these
load periods is presented in section 4.4.

4.3 Analysis of the market outcomes

With electricity prices, we considered also the following variables:

Demand Forecast (DemF ). This is the national day-ahead demand forecast pub-
lished by the system operator.
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Figure 4.4: Electricity price logarithms for period 6 (2:30-3:00am), period 28 (13:30-
14:00pm), period 19 (9:00-9:30am) and period 38 (18:30-19:00pm) from 1 April 2005
to 30 September 2006.
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Indicated Margin (Margin). It is the available capacity margin and it is defined
as the difference between the sum of the maximum export limits nominated by
each generator prior to each trading period, as its maximum available output
capacity, and the demand forecast (DemF ).

Fuel Prices. Our dataset included three different fuel price series:

• daily UK natural gas one-day forward price (GasF ), from the main Na-
tional Balancing Point (NBP) hub;

• the Daily Steam Coal Europe-ARA (Amsterdam, Rotterdam and Antwerp)
Index (Coal);

• the London Brent Crude Oil Index (Oil).

For the last two price series we took into account the US dollar to UK sterling
exchange rate.

Carbon Emission Price (Co2). In this study it was used EEX-EU daily emission
price (we took into account the EURO to UK sterling exchange rate).

All the series are considered with the logarithmic scale (the logarithmic trans-
formation is underlined by writing the variable names in small letters).
Figure 4.5 shows the dynamics of all the time series described above. From the
graphs of the demand forecast, in each load period it is clear the annual seasonality,
feature that affects price series. However, demand dynamics do not explain the high
variability and jumps showed by prices. The attention must dwell upon the margin
series and the gas price series. The gas price trend is very interesting during the
winter season: prices are higher than during the rest of the year with jumps reaching
values about six times larger than the base price. This is the effect of the increase
in gas demand: gas prices are seasonal since demand is very much dependent on
temperature. The price series reflect the gas price dynamics, especially in the peak
hours. In addition to this relation, connection with margin must be considered.
Comparing margin and price, a negative correlation is evident (see also figure 4.7).
A decrease in margin induces an increase in prices and sudden positive price peaks
appear to be consequence of negative margin jumps.

The variables coal, oil and co2 were omitted from this study: unit root tests and
stationary test (Said & Dickey, 1984; Phillips & Perron, 1988; Kwiatkowski et al.,
1992) showed the non-stationary nature of these series (see table 4.2) caused by a
stochastic trend, while regression fitting showed the spurious relation between price
series and these variables.
We followed a different approach for the variable gasF . Despite it showed the
same characteristics of the other fuel prices, its trend is not of stochastic nature.
The strong relation with price series, especially during winter spikes, induced us to
include it into the models. This is in accord with Serletis & Shahmoradi (2006)
findings: the relation between gas and electricity price is strong, non only on the
mean but also on the variance. To avoid possible wrong specification of the models,
the gasF series was decomposed into two components: the annual trend (super)
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Figure 4.5: Half-hourly forecasted demand and indicated margin, UK Power Ex-
change market, load period 6, 28 and 19, 38. Daily Uk natural gas one-day forward
(National Balancing Point), steam coal (Europe-ARA index), London brent crude
oil and carbon emission (EEX-EU) prices. Time span: 01/04/2005-30/09/2006
working days only.
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Table 4.2: Unit root tests results for fuel price series and carbon emission prices
(logarithmic scale).

ADF PP KPSS
gasF -1.642 -2.475 1.1224∗

coal -2.036 -2.078 0.9027∗

oil -1.657 -1.860 4.0798∗

co2 -1.864 -2.469 0.8726∗

Note: ∗, ∗∗, ∗∗∗ represent respectively 1%, 5% and 10% significance level. ADF and
PP stand for augmented Dickey-Fuller test and Phillips-Perron test respectively. Lag
lengths are chosen following Ng & Perron (1995) method.

obtained from the gasF series with the Friedman’s Supersmoother (Friedman, 1984),
and the series of deviations from the annual trend (gasF.res). These series were
recalculated at every estimation step because the inclusion of new data (see figure
4.6).

Figure 4.6: Gas price logarithms one-day forward from 1 April 2005 to 30 Septem-
ber 2006 (line with markers), with the annual trend obtained with the Friedman’s
Supersmoother.
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Figure 4.7 show scatterplots between demand and price, and margin and price
during the in-sample period from April to December 2005 (see section 4.4 for details).
Since relations are not linear, we decided to introduce a quadratic polynomial for
both demand and margin, that appear to be the most adequate representation. To
resolve collinearity, at every estimation step we used to subtract the mean from
the variables demF and margin and then we calculated the quadratic components,
denoted as demF 2 and margin2.

Figure 4.7: Scatterplots demand-price and margin-price for load periods 6, 19, 28
and 38 over the period April-December 2005 (all the series are in the logarithmic
scale).
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To improve the models we included also the following variables:

Past Prices. Two past values of spot price logarithms were considered: price in
the same trading period on the previous day (pt−1), and price in the same
trading period and day in the previous week (pt−5, Bank holidays included to
avoid incorrect time lag).

Volatilities. An indicator of instability and risk was defined for electricity price log-
arithm series (priceV ol) and for demand forecast logarithm series (demV ol).
This is the coefficient of variation (standard deviation/mean) in a 5 days mov-
ing window.

Period Trend (superP ). We used the Friedman’s Supersmoother to obtain the
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annual trend of the price series. This series was recalculated at every estima-
tion step because the inclusion of new data.

4.4 Forecasting design and prediction error statis-

tics

In order to be able to make out-of-sample predictions, the last 189 observations of
the dataset were not considered for model building. Therefore, the sample period
can be divided in an in-sample period (April 1st 2005 - December, 31th 2005) and an
out-of-sample period (January 1st, 2006 - September 30th, 2006). In our analysis,
moreover, the out-of-sample period was divided also in three sub-periods, associated
to the different seasons (January-March, 64 data, April-June, 61 data and July-
September, 64 data). The scope was to compare performances also in each season
to better understand how much forecasting accuracy of each considered model is
influenced by a particular period of the year.

Table 4.3: Descriptive statistics for load periods 6, 19, 28 and 38 over the period
April-December 2005 (price logarithms).

Period 6 Period 19 Period 28 Period 38
mean 3.2704 3.7760 3.7358 3.8345

st.deviation 0.1899 0.3497 0.3580 0.5385
skewness 1.9190 1.3905 1.2263 1.2478
kurtosis 7.6259 4.2356 3.8107 3.9183

Table 4.4: Descriptive statistics for load periods 6, 19, 28 and 38 over the out-of-
sample period January-September 2006 (price logarithms).

Period 6 Period 19 Period 28 Period 38
mean 3.3666 3.8478 3.8580 3.8633

st.deviation 0.2775 0.3772 0.4410 0.5085
skewness 0.8484 1.1863 1.9106 1.4211
kurtosis 4.2165 4.6002 8.0285 5.0560

Table 4.3 displays some statistical moments of the logarithm transformed price series
for the considered four load periods in the fitting sample. For comparison, table 4.4
displays the summary statistics in the out-of-sample set. In both in-sample and out-
of-sample period, load period 6 has the lowest mean value, followed by load period
28, 19 and 38. This is reasonable considering that period 6 is an off-peak hour,
while the others are peak hours (super-peak in the case of period 38). Volatility
follows the same scheme, with periods 6 and 28 that reach the standard deviation
values of 0.28 and 0.44 respectively considering the year 2006. These increases in



40 Data Analysis of the UKPX electricity market

variance depend on the winter profile in the case of period 6, while for load period
28 the cause is the presence of very high jumps affecting prices during summer 2006.
The values of skewness and kurtosis show that all the period are characterized by
positive asymmetry and fat tails, even if values change a lot depending on the
sample: period 6 is the most skewed and fat-tailed in the fitting set, while in the
out-of-sample period load periods 28 and 38 deviate considerably from normality.

In general, from the preliminary analysis it is clear that this kind of data is
affected by a lot of complexities. For forecasting purpose the main difficulties are
the high volatility and jumps. Chapter 5 is dedicated to this issue: forecasting
results are presented for different classes of models.
In order to formulate on day t a price forecast for a certain trading period on day t+1,
the parameters of the models were estimated at each step from a daily expanding
dataset and/or from rolling windows of specified lengths. To compare forecasting
results we used 4 prediction error statistics:

MSE =
1

N

N∑

i=1

(Pi − Fi)
2

MSPE =
1

N

N∑

i=1

(
100 ×

Pi − Fi

Pi

)2
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1

N

N∑

i=1

|Pi − Fi|

MAPE =
1

N

N∑
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∣∣∣∣
Pi − Fi

Pi

∣∣∣∣ × 100

where N is the size of the forecasting period, Pi is the real price at time i and
Fi = exp(fi) is our forecast at time i.
The Mean Squared Error (MSE) is popular, largely because of its theoretical rel-
evance in statistical modeling. However, it is more sensitive to jumps than the
Mean Absolute Error (MAE). Percentage errors have the advantage of being scale-
independent and, in our case with very high spikes, this is important. If we have,
for instance, a normal price forecast and a peak price forecast that give the same
MSE value, in the case of the peak price the prediction could be more accurate.
This depends on the height of the spike. Statistics based on percentage errors can
distinguish between the two situations.



Chapter 5

Predictive models and forecasting
results

In this chapter, the forecasting performances provided by four different classes of
models are considered. The models are a constant parameter linear regression model
(LR), a time-varying parameter regression model (TVR), a Markov regime switching
model (MRS) and an ARMAX model. Different specifications of the models and
estimation schemes, i.e. expanding and/or rolling windows of different sizes, are
also compared. The set of model specifications that we studied includes 19 models.
Moreover, the comparison is conducted not only in the whole forecasting period, but
also in three sub-samples which reflect three seasons: winter, spring and summer.
The scope is to understand how the forecasting accuracy of these different models
changes on the grounds of the considered season and if there is a particular specifica-
tion (class of models, set of regressors and/or estimation window) that outperforms
the others in terms of predictive performance.
Forecasting performances will be compared both in terms of descriptive error statis-
tics and in terms of test (Diebold and Mariano test for equal predictive accuracy).

5.1 Multiple linear regression model

The first model that we have considered is a multiple linear regression (LR). This
simple model helps to elucidate the average characteristics of price formation and
will be the benchmark model in forecasting comparison. For a given load period j,
the model is specified as:

pjt = X′
jtβj + εjt, εjt ∼ i.i.d(0, σ2

j ) (5.1)

where pjt denotes the price logarithm on day t and load period j (t = 6, 7, ..., T,
j = 6, 19, 28, 38), βj a k × 1 vector of constant coefficients and εjt an i.i.d. error
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term. Xjt is a k × 1 vector of regressors defined as:

X1jt = (1, pj(t−1), pj(t−5), demFjt, demF 2
jt, marginjt, margin2

jt, gasF.rest,

demV oljt, priceV oljt, supert)
′

X2jt = (1, pj(t−1), pj(t−5), demFjt, demF 2
jt, marginjt, margin2

jt, gasF.rest,

demV oljt, priceV oljt)
′

X3jt = (1, pj(t−1), pj(t−5), demFjt, demF 2
jt, marginjt, margin2

jt, gasF.rest,

demV oljt, priceV oljt, superPj(t−1))
′ ,

where X1,X2,X3 are three different sets of regressors, referred to “model 1”, “model
2” and “model 3” respectively. The difference among them is mainly the specification
of the annual trend component. In model 1 the seasonal trend is given by super,
in model 3 by superP , while in model 2 the period trend is given by the forecasted
demand. The scope of using three sets of regressors is to understand if one of the
specifications gives better forecasts than the others because of the inclusion of the
annual trend profile. As pointed out in section 2.1.1, the sinusoidal approach is a
common technique used by many authors to capture the annual seasonality (see, for
example, Misiorek et al., 2006; Karakatsani & Bunn, 2008a). We preferred to not
use this approach. The reason is that this seasonal function has to be estimated
on historical data. Our data concern the UK market straight after the inclusion
of Scotland, so we do not have information about the seasonal component of this
new market. Our annual trend is calculated day by day using only the available
information by the gas or the price series, as explained in section 4.3.
Standard assumptions for model 5.1 that contains stochastic regressors include:

1. {pjt,Xjt} is jointly stationary and ergodic: regressors with stochastic trends
are not included;

2. the regressors are predetermined or exogenous: endogenous variables are ex-
cluded but the lagged response is allowed. The variables xt used in this analysis
are known to the market at time t − 1.

Under these assumptions, the OLS estimates are consistent and asymptotically nor-
mally distributed even under non-normal, i.i.d. errors.

Linear regression models were derived in-sample (period April-December 2005)
for trading periods 6, 19, 28 and 38 with stepwise backward techniques (AIC crite-
rion) and are as follow:
Period 6 (j = 6):

X1jt = (1, pj(t−1), marginjt, margin2
jt, gasF.rest, demV oljt, supert)

′

X2jt = (1, pj(t−1), demFjt, demF 2
jt, marginjt, margin2

jt, demV oljt)
′

X3jt = (1, pj(t−1), marginjt, margin2
jt, gasF.rest, demV oljt, superPj(t−1))

′ ;

Period 19 (j = 19):

X1jt = (1, pj(t−1), marginjt, margin2
jt, gasF.rest, supert)

′

X2jt = (1, pj(t−1), pj(t−5), demFjt, demF 2
jt, marginjt, margin2

jt, demV oljt, )′

X3jt = (1, demFjt, marginjt, margin2
jt, gasF.rest, superPj(t−1))

′ ;
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Period 28 (j = 28):

X1jt = (1, pj(t−1), demF 2
jt, marginjt, margin2

jt, supert)
′

X2jt = (1, pj(t−1), demFjt, demF 2
jt, marginjt, margin2

jt)
′

X3jt = (1, demFjt, demF 2
jt, marginjt, margin2

jt, superPj(t−1))
′ ;

Period 38 (j = 38):

X1jt = (1, pj(t−1), pj(t−5), marginjt, supert)
′

X2jt = (1, pj(t−1), demFjt, demF 2
jt, marginjt)

′

X3jt = (1, pj(t−1), marginjt, margin2
jt, superPj(t−1))

′ .

These final sets of regressors are used also for models 5.2 and 5.4.
For all these multiple regression models, the inspection of the variance inflation fac-
tors (VIF) doesn’t show collinearity problems. The graphs of the autocorrelation
function for the residuals don’t show any particular problem. Table 5.1 contains
estimation results for the three specificated models in each load period on the pe-
riod April-December 2005 (in-sample). From the results, models do not appear to
be misspecified (see the Durbin-Watson statistic values). Only for period 38, the
Ljung-Box statistic is not significative at 1% significance level: this underlines that
this trading period is very difficult to model with a linear regression. There is some-
thing that this kind of models cannot explain.
Regressor margin is significant in all the models and this underlines the impor-
tance of this factor in price formation. As expected from, the sign for the variable
is negative: the lower reserve margin, the higher the price becomes. This effect
is particulary evident during peak hours where the margin coefficient values are
higher (absolute values). The positive coefficient of demF reflects the demand-price
relationships from the increasing supply function. In general this regressor is not
present in models 1 and 3. Only in load periods 19 and 28, demF and superP are
both present. An explanation could be the absence of the lagged price p−1.
The adjusted R squared values range from 69% to 87%. It is interesting to observe
that for each load period the highest adjusted R squared values and the lowest stan-
dard deviations are obtained with model 3.

For each load period j and model specification, parameters βj are estimated at
every step from a daily expanding dataset, then out-of-sample one-day ahead spot
price forecasts are obtained as:

Fj(t+1) = exp(fj(t+1))

= exp(X′
j(t+1)β̂

t

j).

Tables 5.2, 5.3, 5.4 and 5.5 summarize the performance of the three models for period
6, 19, 28 and 38 respectively under the three forecasting periods (January-March,
April-June, July-September) and the whole period from January to September 2006.
From prediction results for the whole forecasting period, it is clear that even if model
3 gives best results in fitting, it gives in general worst results in forecasting. During
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Table 5.1: In-sample parameter estimates (April-December 2005) for the linear regression models (LR1=Linear Regression model 1,
etc.). Load periods 6, 19, 28 and 38.

Load period 6 Load period 19 Load period 28 Load period 38

LR1 LR2 LR3 LR1 LR2 LR3 LR1 LR2 LR3 LR1 LR2 LR3
intercept 2.289∗ 1.934∗ 2.718∗ 3.087∗ 2.085∗ 3.764∗ 3.076∗ 2.655∗ 3.706∗ 1.954∗ 2.278∗ 3.353∗

p−1 0.284∗ 0.386∗ 0.154∗∗ 0.179∗ 0.301∗ — 0.162∗ 0.257∗ — 0.355∗ 0.379∗ 0.121∗∗∗

p−5 — — — — 0.109∗∗ — — — — 0.140∗∗ — —
demF — 0.349∗ — — 1.796∗ 0.940∗ — 1.483∗ 1.022∗ — 0.688∗ —

demF 2 — 1.346∗ — — 12.02∗ — 7.534∗∗ 18.13∗ 4.510 — 5.914∗ —
margin −0.34∗ −0.17∗∗∗ −0.23∗ −0.42∗ −0.13∗ −0.20∗ −0.58∗ −0.35∗ −0.33∗ −0.51∗ −0.50∗ −0.33∗

margin2 1.210∗∗ 0.999∗∗ 1.260∗ 0.251∗ 0.438∗ 0.254∗ 0.403∗ 0.571∗ 0.264∗∗ — — 0.319∗∗

gasF.res 0.216∗∗ — 0.256∗ 0.200∗∗∗ — 0.327∗ — — — — — —
demV ol 13.60∗∗∗ 12.53∗∗∗ 11.75∗∗∗ — 46.37∗ — — — — — — —

super 0.192∗ — — 0.712∗ — — 0.538∗ — — 0.326∗ — —
superP−1 — — 0.701∗ — — 0.910∗ — — 0.807∗ — — 0.750∗

σε 0.096 0.100 0.091 0.131 0.145 0.128 0.184 0.197 0.177 0.247 0.245 0.225

AdjR2 0.748 0.727 0.772 0.860 0.828 0.865 0.732 0.691 0.752 0.788 0.792 0.824

D-W stat 1.874 1.928 1.808 2.049 2.037 1.894 1.936 1.966 1.850 1.806 1.745 1.797
J-B stat 392.8∗ 404.9∗ 83.27∗ 6.592∗∗ 7.933∗∗ 1.240 50.36∗ 36.00∗ 35.53∗ 172.5∗ 153.5∗ 98.23∗

Ljung-Box 15.86 19.58 15.91 20.27 21.54 19.21 35.98∗∗ 31.85∗∗∗ 27.32 48.84∗ 45.57∗ 43.52∗

Note: ∗, ∗∗, ∗∗∗ means significance at 1%, 5% and 10% level respectively. D-W stat represents Durbin-Watson statistic, while J-B
stat is the Jarque-Bera Normality test. Lag for the Ljung-Box statistics depends on the sample length: it is 10 log10(n) ≈ 22.
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the winter season it is difficult to obtain accurate predictions for all the considered
load periods, but it seems that model 1 gives better forecasts for periods 19, 28 and
38 while model 2 overcomes model 1 in load period 6. A possible explanation is
that peak hours are highly influenced by gas price and margin in this season, as
pointed out in section 4.3, so the variables super and margin help to forecast better
the spikes that characterize these load periods. Prediction error statistics values are
high also during summer for the peak hours because of very high spikes.

Table 5.2: Prediction error statistics for the multiple regression models (LRi=Linear
Regression model i, i = 1, 2, 3; F.P.=Forecasting Period), period 6.

F.P. Model MSE MSPE MAE MAPE
Jan-Mar LR1 60.72 231.78 5.02 11.17

LR2 47.97 174.55 4.48 10.01
LR3 55.01 302.96 5.39 13.23

Apr-Jun LR1 8.97 94.72 2.36 8.14
LR2 8.42 97.52 2.30 8.11
LR3 6.26 82.32 2.03 7.45

Jul-Sept LR1 7.16 162.27 2.00 8.93
LR2 5.20 132.04 1.72 7.79
LR3 5.28 131.03 1.69 7.62

Whole LR1 25.88 164.00 3.14 9.44
LR2 20.72 135.29 2.84 8.65

LR3 22.44 173.53 3.05 9.47

Note: in bold the better statistics for the whole forecasting period (from January to
September).

5.1.1 Tests for parameter stability

The time series regression model 5.1 assumes for each load period that the parame-
ters of the model, β, are constant over the estimation sample. A way to investigate
parameter constancy is to compute recursive estimates of the parameters. The
model is estimated by least squares recursively for t = 2, ..., T giving T −1 recursive
least squares (RLS) estimates. If β is really constant then the recursive estimates
β̂t should quickly settle down near a common value. If some of the elements in β

are not constant then the corresponding RLS estimates should show instability.
Starting from RLS, Brown et al. (1975) proposed two simple tests for parameter
instability. These tests are known as the CUSUM and CUSUMSQ tests. CUSUM
test is based on the cumulated sum of the standardized recursive residuals, while
the CUSUMSQ test is based on the cumulative sum of the squared standardized
recursive residuals. For both methods, Brown et al. (1975) gave approximate 95%
confidence bands: if CUSUM or CUSUMSQ value for some t lies outside of these
bands, then there is evidence of some form of parameter instability.
As Coutts et al. (1997) pointed out, the CUSUMSQ test have good properties against
heteroscedasticity. If the parameters of equation 5.1 are time varying but are es-
timated by OLS as being constant, then the residuals will be heteroscedastic: this
type of misspecification can be detected by the CUSUMSQ test.
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Table 5.3: Prediction error statistics for the multiple regression models (LRi=Linear
Regression model i, i = 1, 2, 3; F.P.=Forecasting Period), period 19.

F.P. Model MSE MSPE MAE MAPE
Jan-Mar LR1 423.25 526.47 11.95 16.86

LR2 491.10 736.07 13.71 20.12
LR3 426.06 730.57 13.11 19.35

Apr-Jun LR1 68.37 218.71 5.42 11.59
LR2 52.60 178.93 4.52 10.02
LR3 76.07 257.71 5.80 12.63

Jul-Sept LR1 385.80 489.33 8.63 15.55
LR2 387.43 412.85 8.26 14.26
LR3 499.10 1213.37 11.15 21.80

Whole LR1 296.03 414.56 8.72 14.72

LR2 314.47 446.80 8.90 14.88
LR3 337.83 741.44 10.09 18.01

Note: in bold the better statistics for the whole forecasting period (from January to
September).

Table 5.4: Prediction error statistics for the multiple regression models (LRi=Linear
Regression model i, i = 1, 2, 3; F.P.=Forecasting Period), period 28.

F.P. Model MSE MSPE MAE MAPE
Jan-Mar LR1 791.50 676.46 15.54 21.08

LR2 829.23 839.31 16.25 22.88
LR3 849.31 1222.28 17.39 26.01

Apr-Jun LR1 96.39 391.70 7.31 16.40
LR2 84.58 360.33 6.31 14.30
LR3 115.12 403.16 7.39 15.82

Jul-Sept LR1 614.51 576.32 12.67 19.31
LR2 693.97 585.29 13.18 18.95
LR3 1203.54 1026.22 17.25 26.16

Whole LR1 507.22 550.64 11.91 18.97
LR2 543.09 598.70 12.00 18.78

LR3 732.30 891.52 14.12 22.77

Note: in bold the better statistics for the whole forecasting period (from January to
September).



47

Table 5.5: Prediction error statistics for the multiple regression models (LRi=Linear
Regression model i, i = 1, 2, 3; F.P.=Forecasting Period), period 38.

F.P. Model MSE MSPE MAE MAPE
Jan-Mar LR1 2312.75 844.11 24.09 23.10

LR2 2231.77 1050.08 25.02 25.41
LR3 2011.45 1247.55 25.96 28.06

Apr-Jun LR1 49.56 256.81 5.00 12.76
LR2 55.31 306.48 5.37 13.73
LR3 62.59 310.78 5.39 13.52

Jul-Sept LR1 326.11 676.26 9.49 19.90
LR2 378.79 764.69 10.02 20.67
LR3 392.21 554.42 10.14 19.46

Whole LR1 909.58 597.72 12.99 18.68

LR2 901.85 713.44 13.60 20.04
LR3 834.14 710.49 13.96 20.46

Note: in bold the better statistics for the whole forecasting period (from January to
September).

Figure 5.1: Example of CUSUM and CUSUMSQ tests. Load period 28, model 2.
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We calculated RLS estimates of the parameters of the three model specifications
in each load period, and then we conducted the two tests for stability. Our find-
ings show that there is strong evidence of instability in the parameters for all the
models. Figure 5.1 is an example of the tests results for load period 28, model 2.
CUSUMSQ values lie out of the bands, underlining that residuals are affected by
heteroscedasticity. Even if the CUSUM values do not cross the bands, the trend and
the structural changes in the value series are effects of instability in the parameters.
Given our conclusions, it is important to model the form of parameter variation. We
choose to consider here two types of parameter variation: one in which the change
in the parameters is determined by a discrete variable which evolves according to
a Markovian process (Markov regime-switching model, see section 5.2) and one in
which the change is stochastic and assumed to be generated by a random walk
(time-varying multiple regression model, see section 5.3).

5.2 Markov regime-switching model

Markov regime-switching models are frequently discussed in the literature that deals
with electricity spot-prices. Even so, in the studies that have been done the focus
goes principally to the mere estimation. Forecasting ability of this kind of non-linear
models is an open issue tackled in literature only in the last years (see, for instance,
Kosater & Mosler, 2006; Misiorek et al., 2006; Karakatsani & Bunn, 2008b).
In this section, forecasting results obtained with different specification of Markov
regime-switching regression models are presented. Specifications include the use of
three different sets of regressors, as pointed out in section 5.1, and different sample
lengths for estimation.

The Markov regime-switching model (MRS) is defined as:

pjt = X′
jtβjSt

+ εjt, εjt ∼ N(0, σ2
jSt

), (5.2)

Pr(St = i|St−1 = h) = πih, ∀i, h ∈ S (5.3)

where pjt denotes the price logarithm on day t and load period j (t = 6, 7, ..., T,
j = 6, 19, 28, 38), St the latent regime at time t, S = {1, 2} the set of possible states
(say, base and peak), βjSt

a k × 1 vector of coefficients in regime St, Xjt a k × 1
vector of regressors (as specified in section 5.1), σ2

jSt
the error variance in regime St

and πih the transition probability between states i and h.
In this model maximum likelihood estimates of βjSt

and σ2
jSt

were calculated by the
EM algorithm while, to calculate smoothed inferences of regimes, Kim’s algorithm
was used (see Kim, 1994 and Hamilton, 1994, chap. 22 for a complete explanation
about the estimation procedure).
The model assumes that the market at each time point is in one of the 2 possible
states, indexed by an unobservable discrete variable, St, which evolves according
to a first-order, homogeneous Markovian process. At each time point the model
parameters are a function of the prevailing state St, so that each market regime
is characterized by a distinct regression price model. Prices are not classified into
regimes a priori, but endogenously through the latent state estimation and proba-
bilistic inference.
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Figure 5.2 shows an example of regime classification during the estimation of the
MRS model for load period 38 using the set of regressors X3. Each observation is
classified to be in the base regime or in the spike regime with a certain probability.
From the figure it appears that the model works well, in fact spikes are correctly
classified in the spike regime.
Tables 5.6 and 5.7 contain in-sample coefficients’ estimates for the Markov regime-

Figure 5.2: Example of regime classification with the Markov regime-switching model.
Load period 38, model 3.
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switching models in load periods 6, 19, 28 and 38. All variables had a statistically
significant effect in at least one regime (with the only exception of p−1 for period
38 model 3), but the magnitudes of their coefficients displayed great variation. The
Ljung-Box statistics shows an improvement respect to the linear regression model:
all the values are non significative. Also the adjusted R squared values confirm a
better adaptation of the model to data (84 − 93%).

Given the Markov r-s model and load period j, we calculated the price forecast
as the expected value, i.e. the linear combination of predicted price logarithm across
regimes weighted by predicted regime probabilities:

fj(t+1) =
2∑

i=1

f i
j(t+1) · P̂(St+1 = i|It)

=
2∑

i=1

f i
j(t+1) ·

[
2∑

h=1

(Pr(St+1 = i|St = h)Pr(St = h|It))

]
.
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Table 5.6: In-sample parameter estimates (April-December 2005) for the Markov
regime-switching models estimated on expanding dataset, load periods 6 and 19
(MRSi=Markov regime-switching model i, i = 1, 2, 3).

Load period 6

MRS1 MRS2 MRS3

base peak base peak base peak

(i = 1) (i = 2) (i = 1) (i = 2) (i = 1) (i = 2)
intercept 2.577∗ 2.898∗ 1.987∗ 4.148∗ 2.347∗ 3.169∗

p−1 0.214∗ 0.079 0.380∗ −0.22∗∗ 0.291∗ 0.016
p−5 — — — — — —

demF — — 0.289∗ 4.039∗ — —
demF 2 — — 0.941∗∗ −9.49∗ — —
margin −0.01 −0.75∗ −0.14∗∗∗ −2.15∗ 0.147∗ −0.34∗

margin2 0.224 1.490∗∗ 0.143 −1.61∗∗∗ 0.954∗ 0.530
gasF.res 0.054 0.413∗ — — 0.127∗∗∗ 0.297∗

demV ol −5.99 29.35∗∗ 4.633 −53.8∗ −14.6∗ 15.85∗∗

super 0.121∗ 0.254∗ — — — —
superP−1 — — — — 0.236∗ 1.060∗

σε 0.049 0.106 0.073 0.044 0.035 0.086
πii 0.844 0.817 0.964 0.482 0.582 0.751

Pr(S = i) 0.539 0.461 0.935 0.065 0.373 0.627

AdjR2 0.838 0.863 0.872

Ljung-Box 17.23 11.41 18.74

Load period 19

MRS1 MRS2 MRS3

base peak base peak base peak

(i = 1) (i = 2) (i = 1) (i = 2) (i = 1) (i = 2)
intercept 2.149∗ 3.362∗ 1.728∗ 3.928∗ 3.791∗ 3.735∗

p−1 0.424∗ 0.106∗∗∗ 0.416∗ −0.13∗ — —
p−5 — — 0.104∗∗ −0.06 — —

demF — — 1.803∗ 0.315∗∗∗ −0.714∗∗ 2.081∗

demF 2 — — 9.830∗ 37.90∗ — —
margin −0.39∗ −0.41∗ −0.21∗ 0.151∗ −0.36∗ −0.10∗

margin2 0.274∗ 0.335∗ 0.460∗ 1.077∗ 0.330∗ 0.365∗

gasF.res −0.90∗ 0.471∗ — — −0.46∗ 0.839∗

demV ol — — 28.05∗∗ 140.3∗ — —
super 0.412∗ 0.778∗ — — — —

superP−1 — — — — 1.221∗ 0.627∗

σε 0.029 0.132 0.119 0.041 0.098 0.099
πii 0.237 0.807 0.910 0.539 0.649 0.684

Pr(S = i) 0.202 0.798 0.836 0.164 0.474 0.526

AdjR2 0.888 0.904 0.933

Ljung-Box 22.13 25.47 17.73

Note: ∗, ∗∗, ∗∗∗ means significance at 1%, 5% and 10% level respectively. πii is the
probability of remaining in the same regime in the next time step, and Pr(S = i) is
the unconditional probability of being in regime i (ergodic probability). Lag for the
Ljung-Box statistics depends on the sample length: it is 10 log10(n) ≈ 22.
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Table 5.7: In-sample parameter estimates (April-December 2005) for the Markov
regime-switching models estimated on expanding dataset, load period 28 and 38
(MRSi=Markov regime-switching model i, i = 1, 2, 3).

Load period 28

MRS1 MRS2 MRS3

base peak base peak base peak

(i = 1) (i = 2) (i = 1) (i = 2) (i = 1) (i = 2)
intercept 2.781∗ 4.025∗ 2.732∗ 3.798∗ 3.511∗ 3.823∗

p−1 0.203∗ −0.06 0.208∗ −0.01 — —
p−5 — — — — — —

demF — — 0.296∗∗ 3.400∗ 0.247∗∗∗ 1.328∗

demF 2 15.33∗ 8.563∗∗∗ 20.39∗ 17.13∗ 18.42∗ −0.14
margin −0.27∗ −0.87∗ −0.22∗ −0.60∗ −0.20∗ −0.43∗

margin2 0.274∗ 0.235 0.332∗ 0.360∗∗ 0.380∗ 0.093
gasF.res — — — — — —
demV ol — — —- — — —

super 0.167∗ 0.719∗ — — — —
superP−1 — — — — 0.312∗ 0.899∗

σε 0.072 0.185 0.077 0.184 0.066 0.175
πii 0.744 0.731 0.753 0.711 0.668 0.686

Pr(S = i) 0.512 0.488 0.539 0.461 0.486 0.514

AdjR2 0.874 0.879 0886

Ljung-Box 14.12 13.14 18.02

Load period 38

MRS1 MRS2 MRS3

base peak base peak base peak

(i = 1) (i = 2) (i = 1) (i = 2) (i = 1) (i = 2)
intercept 2.167∗ 3.161∗ 2.265∗ 3.097∗ 3.822∗ 3.704∗

p−1 0.291∗ 0.176∗∗ 0.345∗ 0.192∗∗ −0.027 0.042
p−5 0.118∗ 0.022 — — — —

demF — — 0.716∗ 0.835∗∗ — —
demF 2 — — 7.234∗ 3.936∗∗ — —
margin −0.13∗ −1.10∗ −0.14∗ −0.99∗ −0.07∗ −0.82∗

margin2 — — — — 0.041 0.526∗∗∗

gasF.res — — — — — —
demV ol — — — — — —

super 0.473∗ 0.352∗ — — — —
superP−1 — — — — 0.749∗ 0.589∗

σε 0.076 0.270 0.072 0.269 0.070 0.250
πii 0.917 0.922 0.911 0.917 0.905 0.908

Pr(S = i) 0.483 0.517 0.483 0.517 0.491 0.509

AdjR2 0.868 0.868 0.889

Ljung-Box 23.89 25.32 29.93

Note: ∗, ∗∗, ∗∗∗ means significance at 1%, 5% and 10% level respectively. πii is the
probability of remaining in the same regime in the next time step, and Pr(S = i) is
the unconditional probability of being in regime i (ergodic probability). Lag for the
Ljung-Box statistics depends on the sample length: it is 10 log10(n) ≈ 22.
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We had also considered the predicted price from the regime with the highest pre-
dicted probability of occurrence as price forecast, i.e.

fj(t+1) = f i
j(t+1) where i = argmax

s∈{1,2}

[
P̂(St+1 = s|It)

]
,

but results were worst than those obtained with the expected values.
The spot price forecast is then calculated as

Fj(t+1) = exp(fj(t+1)).

Tables 5.8, 5.9, 5.10 and 5.11 summarize the one-day ahead forecasting perfor-
mance of the three Markov regime switching models estimated on daily expanding
dataset for period 6, 19, 28 and 38 respectively under the three forecasting periods
and the whole period from January to September 2006. Prediction error statistics
for load period 38 show an improvement in accuracy respect to the linear regression
models, probably because of the high variability that characterizes this hour. For
the other trading periods, comparisons are not so clear, but from period 6 we can see
that MRS models give better results than the respective LR models during spring
and summer (calm periods), and worst results during the winter season.

The parameters of the Markov regime-switching models were also estimated on
rolling windows with fixed length of 3, 6 and 9 months (66, 132 and 186 days). The
scope is to test if an MRS model estimated on a sliding window can produce bet-
ter forecasts than its expanding counterpart. Results are summarize in tables 5.12,
5.13, 5.14 and 5.15. For load period 6, it is clear an improvement during the winter
season (that affect prediction error statistics also on the whole period) especially
in MSE: some peaks are better forecasted. The same happen for load period 38,
in which improvements concern also the summer season with rolling windows of 6
and 9 months. A rolling window is helpful also to better predict the two high peaks
affecting load period 28 during summer.
In general, it seems that Markov regime-switching models estimated on rolling win-
dows can help to forecast during spiky periods.
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Table 5.8: Prediction error statistics for the Markov regime-switching regression
models estimated on a daily expanding dataset, period 6 (MRSi=Markov regime-
switching model i, i = 1, 2, 3; F.P.=Forecasting Period).

F.P. Model MSE MSPE MAE MAPE
Jan-Mar MRS1 69.61 251.45 5.31 11.75

MRS2 65.20 234.28 4.97 11.03
MRS3 73.92 316.23 5.53 12.80

Apr-Jun MRS1 8.11 80.97 2.22 7.59
MRS2 5.98 68.99 1.95 6.89
MRS3 4.50 62.81 1.63 6.09

Jul-Sept MRS1 5.34 133.78 1.70 7.69
MRS2 4.31 115.69 1.52 6.97
MRS3 4.55 111.35 1.50 6.68

Whole MRS1 28.00 156.58 3.09 9.03
MRS2 25.47 140.77 2.83 8.32

MRS3 28.02 165.06 2.91 8.56

Note: in bold the better statistics for the whole forecasting period (from January to
September).

Table 5.9: Prediction error statistics for the Markov regime-switching regression
models estimated on a daily expanding dataset, period 19 (MRSi=Markov regime-
switching model i, i = 1, 2, 3; F.P.=Forecasting Period).

F.P. Model MSE MSPE MAE MAPE
Jan-Mar MRS1 420.85 541.37 11.93 16.77

MRS2 432.22 623.61 13.41 19.38
MRS3 404.34 690.72 12.33 18.20

Apr-Jun MRS1 68.10 216.98 5.32 11.41
MRS2 47.63 157.23 4.30 9.42
MRS3 67.43 232.03 5.50 12.05

Jul-Sept MRS1 402.43 491.47 8.68 15.36
MRS2 364.86 528.30 8.71 15.60
MRS3 513.84 1239.14 10.15 19.32

Whole MRS1 300.76 419.78 8.70 14.56

MRS2 285.28 440.81 8.88 14.88
MRS3 332.68 728.39 9.39 16.59

Note: in bold the better statistics for the whole forecasting period (from January to
September).
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Table 5.10: Prediction error statistics for the Markov regime-switching regression
models estimated on a daily expanding dataset, period 28 (MRSi=Markov regime-
switching model i, i = 1, 2, 3; F.P.=Forecasting Period).

F.P. Model MSE MSPE MAE MAPE
Jan-Mar MRS1 814.78 616.46 15.08 19.78

MRS2 819.26 759.89 15.99 21.88
MRS3 811.24 864.71 15.86 22.19

Apr-Jun MRS1 99.29 394.82 7.41 16.59
MRS2 80.62 350.51 6.51 14.92
MRS3 111.02 388.52 7.24 15.60

Jul-Sept MRS1 998.07 521.68 13.82 18.44
MRS2 938.12 496.45 13.41 17.42
MRS3 1438.69 770.06 16.93 22.66

Whole MRS1 645.92 512.83 12.18 18.30
MRS2 621.11 538.56 12.06 18.12

MRS3 797.71 678.97 13.44 20.22

Note: in bold the better statistics for the whole forecasting period (from January to
September).

Table 5.11: Prediction error statistics for the Markov regime-switching regression
models estimated on a daily expanding dataset, period 38 (MRSi=Markov regime-
switching model i, i = 1, 2, 3; F.P.=Forecasting Period).

F.P. Model MSE MSPE MAE MAPE
Jan-Mar MRS1 2034.27 807.60 23.45 21.86

MRS2 2035.11 970.12 24.32 23.44
MRS3 1906.58 956.03 23.92 24.04

Apr-Jun MRS1 41.91 203.91 4.24 10.70
MRS2 47.27 241.04 4.64 11.61
MRS3 59.20 297.84 5.33 13.38

Jul-Sept MRS1 268.39 616.21 8.50 17.24
MRS2 302.99 723.69 8.76 17.54
MRS3 300.37 516.39 9.06 17.46

Whole MRS1 793.26 547.95 12.18 16.69

MRS2 807.00 651.36 12.70 17.63
MRS3 766.44 594.73 12.89 18.37

Note: in bold the better statistics for the whole forecasting period (from January to
September).
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Table 5.12: Prediction error statistics for the Markov regime-switching regression models estimated on fixed rolling samples, period
6 (MRSi=Markov regime-switching model i, i = 1, 2, 3, RSj= model estimated on fixed rolling samples of j = 3, 6, 9 months).

MRS1 MRS2 MRS3

Forecasting Period Model RS3 RS6 RS9 RS3 RS6 RS9 RS3 RS6 RS9
January-March MSE 55.41 59.50 65.37 58.31 49.91 57.09 52.53 55.57 67.11

MSPE 235.44 237.10 254.97 208.93 164.29 203.47 255.51 292.16 322.20
MAE 5.25 5.03 5.15 4.56 4.34 4.55 5.45 5.38 5.56

MAPE 12.29 11.42 11.60 10.17 9.50 10.02 12.91 12.91 13.11
April-June MSE 7.02 8.03 6.91 8.17 6.45 7.07 6.95 5.95 5.09

MSPE 102.93 111.11 75.23 114.22 85.17 90.89 105.72 88.40 78.90
MAE 2.12 2.29 2.10 2.12 2.05 2.08 1.95 1.94 1.83

MAPE 7.97 8.51 7.33 8.00 7.52 7.54 7.40 7.38 7.04
July-September MSE 6.30 8.12 8.92 4.99 7.40 5.89 4.81 7.57 6.35

MSPE 149.41 165.84 196.92 127.87 160.59 138.98 119.99 170.67 152.19
MAE 1.84 1.98 2.14 1.66 2.08 1.83 1.62 1.95 1.85

MAPE 8.18 8.71 9.51 7.55 9.14 8.18 7.31 8.73 8.30
Whole Period MSE 23.16 25.49 27.39 24.07 21.49 23.61 21.66 23.30 26.52

MSPE 163.54 172.31 177.30 150.92 137.50 145.30 161.28 185.26 186.11
MAE 3.09 3.11 3.15 2.79 2.84 2.83 3.02 3.11 3.10

MAPE 9.50 9.56 9.52 8.58 8.74 8.60 9.23 9.71 9.52

Note: in bold the better statistics for the whole forecasting period (from January to September), while the underlined numbers are
the better statistics for each model among different sample lengths.
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Table 5.13: Prediction error statistics for the Markov regime-switching regression models estimated on fixed rolling samples, period
19 (MRSi=Markov regime-switching model i, i = 1, 2, 3, RSj= model estimated on fixed rolling samples of j = 3, 6, 9 months).

MRS1 MRS2 MRS3

Forecasting Period Model RS3 RS6 RS9 RS3 RS6 RS9 RS3 RS6 RS9
January-March MSE 268.88 427.14 403.45 320.43 522.50 450.00 252.73 392.03 394.46

MSPE 546.51 500.75 499.90 650.70 706.06 646.97 599.54 694.56 736.00
MAE 11.45 11.62 11.68 13.05 13.87 13.45 11.51 12.72 12.50

MAPE 17.30 16.34 16.57 19.31 19.76 19.33 17.72 18.72 18.74
April-June MSE 78.06 62.59 68.04 62.78 67.76 49.54 66.51 93.30 86.40

MSPE 431.59 248.98 231.86 305.73 347.33 195.81 300.93 353.30 314.43
MAE 6.63 5.53 5.48 5.77 5.95 4.72 5.39 5.71 5.72

MAPE 16.18 12.75 12.09 13.48 14.48 10.89 12.60 12.85 12.70
July-September MSE 436.86 360.65 442.30 513.84 400.15 377.50 517.08 526.64 627.13

MSPE 689.78 750.81 720.97 1214.76 773.28 681.14 1346.80 1010.75 1800.28
MAE 9.41 9.63 10.13 11.35 10.09 10.22 11.27 10.39 12.06

MAPE 16.94 18.61 19.00 23.06 19.78 19.64 22.15 19.56 23.43
Whole Period MSE 264.18 286.97 308.35 302.77 334.30 296.20 282.14 341.20 373.82

MSPE 557.93 504.17 488.25 730.36 613.04 512.93 756.20 691.49 960.33
MAE 9.20 8.98 9.15 10.12 10.03 9.54 9.45 9.67 10.16

MAPE 16.81 15.95 15.95 18.70 18.07 16.71 17.57 17.11 18.38

Note: in bold the better statistics for the whole forecasting period (from January to September), while the underlined numbers are
the better statistics for each model among different sample lengths.
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Table 5.14: Prediction error statistics for the Markov regime-switching regression models estimated on fixed rolling samples, period
28 (MRSi=Markov regime-switching model i, i = 1, 2, 3, RSj= model estimated on fixed rolling samples of j = 3, 6, 9 months).

MRS1 MRS2 MRS3

Forecasting Period Model RS3 RS6 RS9 RS3 RS6 RS9 RS3 RS6 RS9
January-March MSE 869.79 870.54 811.71 875.41 831.80 841.50 842.99 829.70 810.58

MSPE 692.19 720.37 636.78 884.50 804.60 808.81 1000.62 1051.77 892.35
MAE 15.74 15.87 15.17 17.07 16.24 16.67 17.26 16.83 16.18

MAPE 20.56 21.07 20.03 23.75 22.39 22.81 24.19 24.26 22.77
April-June MSE 104.59 81.72 87.42 291.45 89.64 80.46 82.70 89.80 93.07

MSPE 492.3 506.56 399.85 1859.11 565.23 405.96 414.08 427.01 401.19
MAE 7.63 7.18 7.29 9.16 7.24 6.48 6.66 6.93 7.18

MAPE 18.05 18.06 16.85 23.19 18.25 15.19 16.13 16.40 16.26
July-September MSE 19337.17 388.75 460.66 386.87 424.81 332.73 590.43 580.21 513.27

MSPE 2267.31 550.96 602.51 734.48 1140.84 598.66 687.72 796.66 816.34
MAE 30.15 11.26 11.84 11.37 12.37 11.01 12.83 13.19 13.45

MAPE 25.08 18.92 19.93 20.50 22.47 19.29 20.63 21.44 22.80

Whole Period MSE 6876.33 452.80 459.07 521.50 454.45 423.59 512.08 506.41 478.33
MSPE 1161.05 594.00 548.71 1148.26 841.20 607.63 705.36 763.74 708.09
MAE 18.00 11.50 11.50 12.59 12.02 11.47 12.34 12.40 12.35

MAPE 21.28 19.37 18.97 22.47 21.08 19.16 20.39 20.77 20.68

Note: in bold the better statistics for the whole forecasting period (from January to September), while the underlined numbers are
the better statistics for each model among different sample lengths.
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Table 5.15: Prediction error statistics for the Markov regime-switching regression models estimated on fixed rolling samples, period
38 (MRSi=Markov regime-switching model i, i = 1, 2, 3, RSj= model estimated on fixed rolling samples of j = 3, 6, 9 months).

MRS1 MRS2 MRS3

Forecasting Period Model RS3 RS6 RS9 RS3 RS6 RS9 RS3 RS6 RS9
January-March MSE 2491.72 1646.25 2020.82 2005.19 2015.92 2019.74 1728.24 2000.17 1289.41

MSPE 932.10 715.27 831.94 801.92 845.43 985.49 972.05 1316.52 904.82
MAE 25.75 21.73 23.82 23.06 22.50 24.32 22.38 26.16 21.73

MAPE 24.35 21.00 22.46 22.72 22.04 23.57 23.27 28.34 23.09
April-June MSE 50.16 40.38 43.56 49.52 51.87 38.84 43.17 47.87 54.38

MSPE 307.08 259.24 253.22 333.66 361.39 214.43 264.74 259.47 297.94
MAE 5.26 4.76 4.43 4.80 5.48 4.20 4.93 5.17 5.21

MAPE 13.90 12.88 11.51 13.13 14.99 10.68 13.09 13.38 13.29
July-September MSE 449.28 326.28 288.98 455.27 335.72 254.98 392.10 339.68 282.77

MSPE 632.43 653.18 728.67 568.35 816.84 572.17 799.99 573.67 497.95
MAE 10.09 8.80 9.57 9.67 8.90 8.85 9.82 9.80 9.14

MAPE 19.35 17.19 20.21 17.53 17.80 18.39 18.93 19.30 18.28
Whole Period MSE 1012.08 680.98 796.21 849.15 813.06 782.81 731.93 807.78 549.93

MSPE 628.90 547.06 610.19 571.69 679.52 596.67 685.50 723.81 571.17
MAE 13.83 11.88 12.74 12.63 12.40 12.59 12.49 13.85 12.14

MAPE 19.28 17.09 18.17 17.87 18.33 17.66 18.52 20.45 18.29

Note: in bold the better statistics for the whole forecasting period (from January to September), while the underlined numbers are
the better statistics for each model among different sample lengths.
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5.3 Time-varying multiple regression model

In section 5.1.1 we underlined the presence of parameter instability. To model
parameters’ dynamics is important in this case because the response of price to
the various market fundamentals may change continuously. So, in our study we
considered also a time-varying parameter regression model (TVR).
It is specified as:

pjt = X′
jtβjt + εjt, εjt ∼ GWN(0, σ2

εj
), (5.4)

βj(t+1) = βjt + νjt, νjt ∼ GWNk(0,Hj), (5.5)

where pjt denotes the price logarithm on day t and load period j (t = 6, 7, ..., T,
j = 6, 19, 28, 38), βjt a k × 1 vector of coefficients on day t and Xjt the k × 1 vector
of regressors. εjt is the error term of the measurement equation, while νjt is the
error term vector of the transition equation, E(εjt, νjt) = 0 and Hj = diag{σ2

νjk
}.

Differently from linear regression model (5.1), here the regression coefficients are not
unknown constants but latent, stochastic variables that a follow random walk. The
estimation of this model was performed using state space methods and the Kalman
Filter (Hamilton, 1994 and Durbin & Koopman, 2001).
As state space model, the above formulation can be written as:

(
βj(t+1)

pjt

)
= Φjtβjt + µjt, (5.6)

where Φjt =

(
Ik

X′
jt

)
, µjt =

(
νjt

εjt

)
∼ Nk+1(0,Ωj) and Ωj =

(
Hj 0
0 σ2

εj

)
.

As initial values βj1 ∼ Nk(a,P). Since βjt is I(1) the initial state vector does not
have finite variance so the Kalman filter has to be initialized using a method called
diffuse priors. This procedure assigns very large initial value to the covariance ma-
trix while the initial values of the time varying coefficients are arbitrarily chosen.
We set a = 0 and P = κIk where κ is large (κ = 106).
Tables 5.16 and 5.16 show in-sample parameter estimates for the time-varying pa-
rameter regression models for each considered load period. Adjusted R squared
values range from 84% to 99% confirming the high adaptability to data that is
characteristic of time-varying models. It is interesting to note that the variables
margin and demF (or their corresponding squared versions) are important in the
adaptation of the models for all the load periods, showing a high variability in the
coefficient estimates on the fitting sample. Figure 5.3 is an example of time-varying
coefficients’ evolution, for load period 28 with the set of regressors X2. While the
intercept coefficient reaches a constant level, the other coefficients show a dynamical
evolution. In particular, the effects on price formation of the variables demF and
margin increase strongly, respectively with a positive and a negative impact, during
the winter season when prices are higher.
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Figure 5.3: Example of time-varying coefficients’ evolution. Estimations for load
period 28 model 2.

Note: from state 1 to 6 estimates of coefficients corresponding to intercept, pt−1,
demFt, margint, demF 2

t , margin2
t .
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Table 5.16: In-sample parameter estimates (April-December 2005) for the time-
varying regression models (TVRi=Time-Varying Regression model i, i = 1, 2, 3).
Load periods 6 and 19.

Load period 6

TVR1 TVR2 TVR3
σintercept 6.25 × 10−08 1.95 × 10−07 1.29 × 10−06

σp
−1

7.09 × 10−07 2.18 × 10−09 1.09 × 10−06

σp
−5

— — —
σdemF — 9.76 × 10−02 —

σdemF 2 — 7.42 × 10−01 —
σmargin 1.39 × 10−01 1.52 × 10−01 1.03 × 10−01

σmargin2 1.39 × 10−07 1.66 × 10−06 1.03 × 10−07

σgasF.res 4.76 × 10−07 — 3.13 × 10−16

σdemV ol 1.76 × 10−03 2.13 × 10−04 1.07 × 10−04

σsuper 9.95 × 10−02 — —
σsuperP

−1
— — 2.40 × 10−01

σε 0.067 0.077 0.068

AdjR2 0.938 0.901 0.933

Ljung-Box 21.77 15.67 22.72

Load period 19

TVR1 TVR2 TVR3
σintercept 2.71 × 10−07 3.21 × 10−07 9.78 × 10−03

σp
−1

4.41 × 10−03 7.40 × 10−03 —
σp

−5
— 3.34 × 10−14 —

σdemF — 3.78 × 10−01 1.89 × 10−01

σdemF 2 — 7.27 × 10−13 —
σmargin 1.18 × 10−10 1.61 × 10−09 1.79 × 10−06

σmargin2 4.15 × 10−02 3.59 × 10−02 3.67 × 10−02

σgasF.res 3.12 × 10−06 — 1.40 × 10−06

σdemV ol — 1.48 × 10−03 —
σsuper 6.35 × 10−02 — —

σsuperP
−1

— — 5.00 × 10−02

σε 0.115 0.118 0.114

AdjR2 0.928 0.931 0.922

Ljung-Box 9.646 12.40 10.66

Note: ∗, ∗∗, ∗∗∗ means significance at 1%, 5% and 10% level respectively. Lag length
for the Ljung-Box statistics depends on the sample length: it is 10 log10(n) ≈ 22.
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Table 5.17: In-sample parameter estimates (April-December 2005) for the time-
varying regression models (TVRi=Time-Varying Regression model i, i = 1, 2, 3).
Load periods 28 and 38.

Load period 28

TVR1 TVR2 TVR3
σintercept 2.54 × 10−06 3.00 × 10−02 7.93 × 10−03

σp
−1

1.15 × 10−03 3.14 × 10−07 —
σp

−5
— — —

σdemF — 5.63 × 10−12 3.18 × 10−04

σdemF 2 2.01 × 10−00 2.98 × 10−00 1.74 × 10−00

σmargin 1.05 × 10−01 7.52 × 10−02 4.09 × 10−03

σmargin2 1.00 × 10−30 7.73 × 10−06 8.36 × 10−02

σgasF.res — — —
σdemV ol — — —

σsuper 7.29 × 10−20 — —
σsuperP

−1
— — 4.14 × 10−02

σε 0.160 0.159 0.163

AdjR2 0.856 0.869 0.836

Ljung-Box 34.92∗∗ 28.04 32.20∗∗∗

Load period 38

TVR1 TVR2 TVR3
σintercept 1.98 × 10−06 1.91 × 10−06 1.83 × 10−06

σp
−1

1.87 × 10−02 2.87 × 10−02 3.24 × 10−03

σp
−5

3.14 × 10−08 — —
σdemF — 2.72 × 10−01 —

σdemF 2 — 4.00 × 10−00 —
σmargin 7.99 × 10−02 7.91 × 10−02 5.75 × 10−02

σmargin2 — — 8.49 × 10−02

σgasF.res — — —
σdemV ol — — —

σsuper 2.94 × 10−01 — —
σsuperP

−1
— — 4.15 × 10−02

σε 0.134 0.104 0.193

AdjR2 0.978 0.992 0.903

Ljung-Box 28.46 31.73∗∗∗ 49.19∗

Note: ∗, ∗∗, ∗∗∗ means significance at 1%, 5% and 10% level respectively. Lag length
for the Ljung-Box statistics depends on the sample length: it is 10 log10(n) ≈ 22.
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For each load period j and model specification, the out-of-sample one-day ahead
spot price forecasts are obtained as:

Fj(t+1) = exp(fj(t+1))

= exp(X′
j(t+1)β̂j(t+1|t)).

Tables 5.18, 5.19, 5.20 and 5.21 summarize the performance of the three models for
period 6, 19, 28 and 38 respectively under the three forecasting periods (January-
March, April-June, July-September) and the whole period from January to Septem-
ber 2006.
In general, the time-varying parameter models appear to outperform Markov regime-
switching models for all the load periods if we consider statistics based on absolute
errors. Even so, MRS models estimated on rolling windows predict better the jumps
that occur during winter and summer in load periods 19 and 28. Best results are
collected from TVR models also respect to the linear models, but it is interesting
to underline that during the summer season linear models 1 and 2 outperform the
time-varying models for load periods 19 and 28.

Table 5.18: Prediction error statistics for the time-varying parameter regression
models (TVRi=Time-Varying Regression model i, i = 1, 2, 3; F.P.=Forecasting Pe-
riod), period 6.

F.P. Model MSE MSPE MAE MAPE
Jan-Mar TVR1 45.78 230.52 4.69 11.25

TVR2 40.99 204.74 4.65 11.18
TVR3 46.84 245.78 4.88 11.83

Apr-Jun TVR1 5.54 79.53 1.90 7.08
TVR2 5.73 82.72 1.99 7.47
TVR3 6.04 77.47 1.93 6.97

Jul-Sept TVR1 5.44 127.79 1.65 7.40
TVR2 4.23 106.98 1.51 6.77
TVR3 5.57 133.21 1.68 7.58

Whole TVR1 19.14 147.00 2.76 8.60
TVR2 17.16 132.26 2.73 8.49

TVR3 19.7 153.34 2.84 8.82

Note: in bold the better statistics for the whole forecasting period (from January to
September).
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Table 5.19: Prediction error statistics for the time-varying parameter regression
models (TVRi=Time-Varying Regression model i, i = 1, 2, 3; F.P.=Forecasting Pe-
riod), period 19.

F.P. Model MSE MSPE MAE MAPE
Jan-Mar TVR1 460.44 492.14 11.92 15.78

TVR2 380.97 392.94 11.00 14.83
TVR3 388.15 569.51 12.19 17.19

Apr-Jun TVR1 46.18 176.58 4.49 10.21
TVR2 40.62 184.29 4.50 10.49
TVR3 47.83 170.12 4.23 9.49

Jul-Sept TVR1 441.23 624.15 9.18 15.31
TVR2 431.37 588.34 9.14 16.01
TVR3 450.81 909.46 10.23 18.75

Whole TVR1 320.23 435.00 8.59 13.82

TVR2 288.19 391.76 8.27 13.83
TVR3 299.53 555.72 8.96 15.23

Note: in bold the better statistics for the whole forecasting period (from January to
September).

Table 5.20: Prediction error statistics for the time-varying parameter regression
models (TVRi=Time-Varying Regression model i, i = 1, 2, 3; F.P.=Forecasting Pe-
riod), period 28.

F.P. Model MSE MSPE MAE MAPE
Jan-Mar TVR1 857.51 661.06 15.01 18.69

TVR2 762.68 573.55 14.21 18.14
TVR3 824.09 824.50 16.31 21.80

Apr-Jun TVR1 70.76 370.74 6.17 14.78
TVR2 66.11 355.08 6.06 14.61
TVR3 62.58 292.14 5.60 13.15

Jul-Sept TVR1 1154.99 531.59 13.88 18.05
TVR2 872.62 528.78 13.01 18.29
TVR3 1024.49 603.13 14.54 19.87

Whole TVR1 704.32 523.51 11.77 17.21
TVR2 575.09 487.88 11.17 17.05

TVR3 646.17 577.72 12.25 18.35

Note: in bold the better statistics for the whole forecasting period (from January to
September).
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Table 5.21: Prediction error statistics for the time-varying parameter regression
models (TVRi=Time-Varying Regression model i, i = 1, 2, 3; F.P.=Forecasting Pe-
riod), period 38.

F.P. Model MSE MSPE MAE MAPE
Jan-Mar TVR1 1700.77 679.66 20.82 20.15

TVR2 1888.24 823.23 21.91 20.94
TVR3 1710.29 786.49 21.68 20.90

Apr-Jun TVR1 38.78 245.41 4.77 12.79
TVR2 35.70 223.91 4.33 11.65
TVR3 40.52 237.57 4.60 12.06

Jul-Sept TVR1 254.76 415.04 8.14 15.46
TVR2 227.48 427.67 8.18 16.38
TVR3 149.25 492.79 7.34 15.66

Whole TVR1 674.71 449.90 11.34 16.19

TVR2 727.95 495.85 11.59 16.40
TVR3 642.76 509.87 11.31 16.27

Note: in bold the better statistics for the whole forecasting period (from January to
September).

5.4 Short ARMAX models

We decided to consider also the time series modeling approach. Following Fezzi
(2007b), we conducted a study comparing AR, ARX, ARMA and ARMAX models
in day-ahead forecasting, estimated using different sample lengths (we called these
models “short” because they are not estimated on expanding dataset, but on short,
rolling windows). Our scope was to find the best model and the best sample length
to forecast our data.

In the AutoRegressive Moving Average ARMA(p, q) models, made popular by
Box & Jenkins (1976), the current value yt of the time series under study is expressed
linearly in terms of its p past values (autoregressive part) and in terms of q previous
values of the noise (moving average part):

φp(B)yt = θq(B)εt, εt ∼ GWN(0, σ2), (5.7)

where εt is the error term. In the formula 5.7, yt is a stationary time series, B is
the backward shift operator, i.e. Bhyt = yt−h, φp(B) = 1 − φ1B − · · · − φpB

p and
θq(B) = 1 + θ1B + · · · + θqB

q. For q = 0 the model reduces to an autoregressive
AR(p) model.
In the ARMA models the only information used to forecast is the one embedded
in the past values of the series itself. Nevertheless, the information contained in
other pertinent time series might be important in shape characteristic dynamics.
Exogenous variables can be included in the models, giving ARMAX models. A
general formula for the ARMAX(p, q, m1, ..., mk) model can be compactly written
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as:

φp(B)yt = θq(B)εt +
k∑

i=1

βi(B)vi
t, εt ∼ WN(0, σ2), (5.8)

where v1, ..., vk are the exogenous variables and βi(B) = βi
0 + βi

1B + · · · + βi
mi

Bmi ,
with the βi

j’s and mi’s being the corresponding coefficients and orders, respectively.
In our forecasting study, yt denotes the first difference of the price logarithms on
day t and load period j (t = T − l + 1, ..., T, j = 6, 19, 28, 38). The forecasting
performances of each model are evaluated producing 90 one step ahead forecasts
over the period 24th August 2005 - 30th December 2005 (in-sample). At every
step, the models are estimated on rolling samples of fixed lengths (l = 10, 11, ..., 90),
then the forecasting performances are evaluated using the MSE and MAE prediction
error statistics. The forecasting models considered are AR, ARMA, ARX1, ARX2,
ARMAX1 and ARMAX2 where the exogenous variable is the forecasted demand
change (X1) or the margin change (X2).

For comparison, figure 5.4 show forecasting performances for all the models with
orders equal to 1 and with different sample lengths for load periods 6, 19, 28 and
38. All the models reach an equilibrium level when the sample length increases.
For periods 6, the stabilization of the models occurs earlier: this is because period
6 is less volatile than the other models, so it needs a smaller sample to produce
good forecasts. Among all the models, the ARMAX2 shows the best forecasting
performances, followed by the ARX2 model. It is clear that the variable margin is
determinant for shaping price dynamics. In period 28, also the forecasted demand
has an important role: the ARMAX1 model comes off from the group with the worst
performances clearly respect to, for example, period 6. In general, the introduction
of an exogenous factor (see the difference among AR, ARX1 and ARX2 and among
ARMA, ARMAX1 and ARMAX2) and of the moving average part (see the difference
between ARX1 and ARMAX1 and between ARX2 and ARMAX2) improves the
forecasts.
For our dataset the selected model was the ARMAX2(1,1) (we will call this model
ARMAX for simpliciy): this model is then used to forecast one day ahead the out-
of-sample period from January 2006 to the end of September 2006. The model is
estimated at every step on a rolling window of length 37 for period 6, 44 for period 19,
58 for period 28 and 45 for period 38: these are the points where the model reaches
the lowest values (we decided these points after an evaluation between RMSE values
and MAE values). ARMAX model can be written as:

△pjt = φj△pj(t−1) + εjt + θjεj(t−1) + βj△vjt, εjt ∼ WN(0, σ2
j ), (5.9)

where vjt is the exogenous factor (margin change). For each load period j, the
out-of-sample one-day ahead spot price forecasts are obtained as:

Fj(t+1) = exp(fj(t+1))

= exp(△̂pj(t+1) + pjt).

Forecasting performances for spot prices are shown in table 5.22.



67

Figure 5.4: MSE and MAE for different models and for different values of sample
length. Load Period 6, 19, 28 and 38.
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Table 5.22: Prediction error statistics for the ARMAX2 model, period 6, 19, 28 and
38.

Load period 6

Forecasting Period MSE MSPE MAE MAPE
January-March 37.66 211.12 4.70 11.53

April-June 7.25 82.94 2.09 7.35
July-September 5.29 126.71 1.69 7.51

Whole Period 16.88 141.17 2.84 8.82

Load period 19

Forecasting Period MSE MSPE MAE MAPE
January-March 372.01 462.10 11.43 15.62

April-June 34.84 157.89 4.20 9.75
July-September 488.06 758.41 9.71 16.48

Whole Period 302.48 464.25 8.51 14.02

Load period 28

Forecasting Period MSE MSPE MAE MAPE
January-March 719.39 595.04 14.04 17.96

April-June 81.90 432.40 7.10 17.09
July-September 1264.31 1225.73 16.96 25.85

Whole Period 698.16 756.11 12.79 20.35

Load period 38

Forecasting Period MSE MSPE MAE MAPE
January-March 1846.12 736.35 20.09 19.07

April-June 41.07 253.69 4.66 12.43
July-September 320.56 650.23 9.31 19.10

Whole Period 746.95 551.41 11.46 16.93

From the results, it appears that the ARMAX model has similar predictive per-
formance as the time-varying regression model on the whole forecasting period. A
thorough analysis highlights a particular behaviour: compared to the TVR models,
the ARMAX model gives better results in terms of MSE during the winter season
(periods 6, 19 and 28), while it gives worst forecasts during spring for all the load
periods. A possible explanation could be the impact of variable margin on price
formation. Prices are linked to this market fundamental particularly in high demand
periods during the year if we consider the singular hours. Winter is a high demand
season, spring not.
Comparing the ARMAX model with the Markov regime-switching models, in gen-
eral the former gives better results if we consider absolute error statistics, but it
cannot forecast the high peaks as MRS models estimated on rolling samples do (es-
pecially during summer for load period 28). In period 6, ARMAX outperforms MRS
models in MSE because of the very good performance in winter.
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5.5 The Diebold-Mariano test for equal predic-

tive accuracy

Suppose that a pair of h-steps ahead forecasts have produce errors (e
(1)
t , e

(2)
t ) with

t = 1, ..., n. The accuracy of each forecast is measured by a particular loss function
L(e

(i)
t ) for i = 1, 2. Some popular loss functions are

• squared error loss: L(e
(i)
t ) = (e

(i)
t )2,

• absolute error loss: L(e
(i)
t ) = |e

(i)
t |.

Then, the null hypothesis of the equality of expected forecast performance is

E[L(e
(1)
t ) − L(e

(2)
t )] = 0.

Defining
dt = L(e

(1)
t ) − L(e

(2)
t ) t = 1, ..., n, (5.10)

it is natural to base the Diebold and Mariano test (see Diebold & Mariano, 1995)
on the observed sample mean:

d̄ = n−1
n∑

t=1

dt

A difficulty is that the series dt is likely to be autocorrelated. Indeed, for optimal
h-steps ahead forecasts, the sequence of forecast errors follows a moving average
process of order (h − 1). This result can be expected to hold approximately for
any reasonably well-conceived set of forecasts. Therefore, in what follows it will be
assumed for h-steps ahead forecasts that all autocorrelations of order h or higher of
the sequence dt are zero. In that case, it can be shown that the variance of d̄ is,
asymptotically,

V (d̄) ≈ n−1

[
γ0 + 2

h−1∑

k=1

γk

]
, (5.11)

where γk is the kth autocovariance of dt. This autocovariance can be estimated by

γ̂k = n−1
n∑

t=k+1

(dt − d̄)(dt−k − d̄). (5.12)

The Diebold-Mariano test statistic is then

DB =
d̄√

(V̂ (d̄))
, (5.13)

where V̂ (d̄) is obtained by substituting the estimates (5.12) in (5.11). Under the
null hypothesis, this statistic has an asymptotic standard normal distribution.
Harvey et al. (1997) proposed a modification of the Diebold and Mariano test, ex-
plaining that in general the original test was found to be quite seriously over-sized
for moderate numbers of sample observations or in the case of two-steps ahead (or
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more) prediction. In our case, the modified Diebold and Mariano test gave results
that substantially are not different than those obtained with the original test. This
is because we are considering one-step ahead forecasting in a sample of 189 obser-
vations that is a quite large sample. Diebold & Mariano (1995) reported that for
moderately large samples, the test performance was satisfactory in a wide range
of situations, including contemporaneously correlated and autocorrelated forecast
errors, and heavy-tailed as well as normal error distributions. For these reasons in
our forecasting accuracy study the original test is used.

Tables 5.24-5.31 show results of the Diebold and Mariano test for equal predic-
tive accuracy applied to the forecasts obtained with the 19 models on the whole
forecasting period (January-September 2006). The test was carried out for both
squared error and absolute error loss functions following formula (5.13), where e(1)

is the forecasting error series of models placed in the rows of the tables, while e(2)

is the forecasting error series of models placed in the columns. Missing values in
tables can be obtained considering that the tables are symmetric respect to the di-
agonal unless the sign that is opposite. The sign of the statistic values is important
because it gives information about which model between the two is more accurate
(even if the improvement could be non significative). A negative sign means that
the first model gives better forecasts, while a positive sign means that the second
model outperforms the first one.

5.6 Comments on the forecasting results

From the comparison study conducted in the previous sections, it seems that globally
no model outperforms the others. This consideration is supported also by results
obtained with the Diebold and Mariano test. In fact, test results in tables 5.24-5.31
highlight that not only globally but also in each load period there is not a model
that produce significant better forecasts respect to all the other models. Examining
results in load period 6, for TVR and ARMAX models compared with the others,
there is an improvement in predictive accuracy: this can be deduced from the sign
of the test statistic values. In particular, for TVR model 2 the improvement is sig-
nificative at 10% significance level in most of the comparisons considering a squared
error loss function. It is interesting also to note that the group of MRS models 2
(estimated on expanding and fixed rolling samples with X2) performs better than
linear models and than the group of MRS models 1 in terms of absolute errors.
In load period 19, TVR and ARMAX models presents significative better results
compared to MRS models 2 and 3. Markov regime-switching models 2 estimated on
rolling windows are not very effective: linear models 1 and 2 beat them.
Linear regression model 3 is the worst in load period 28, while in period 38 all the
linear models do not produce good forecasts. On the contrary, time-varying param-
eter models and ARMAX model outperform significatively the others in most of the
cases.
The foregoing comments regard model predictive accuracy on the whole forecasting
period from January to September 2006, considering three seasons together. From
the previous sections, considering each season separately gives more information
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Table 5.23: Models with the best prediction error statistics at each forecasting pe-
riod (F.P.= forecasting period, J-M=January-March, A-J=April-June, J-S=July-
September). Load periods 6, 19, 28 and 38.

Load period 6

F.P. MSE MSPE MAE MAPE

Jan-Mar ARMAX MRS2RS6 MRS2RS6 MRS2RS6
Apr-Jun MRS3 MRS3 MRS3 MRS3
Jul-Sept TVR2 TVR2 MRS3 MRS3

Whole ARMAX TVR2 TVR2 MRS2

Load period 19

F.P. MSE MSPE MAE MAPE

Jan-Mar MRS3RS3 TVR2 TVR2 TVR2
Apr-Jun ARMAX MRS2 ARMAX MRS2
Jul-Sept MRS1RS6 LR2 LR2 LR2

Whole MRS1RS3 TVR2 TVR2 TVR2

Load period 28

F.P. MSE MSPE MAE MAPE

Jan-Mar ARMAX TVR2 ARMAX ARMAX
Apr-Jun TVR3 TVR3 TVR3 TVR3
Jul-Sept MRS2RS9 MRS2 MRS2RS9 MRS2

Whole MRS2RS9 TVR2 TVR2 TVR2

Load period 38

F.P. MSE MSPE MAE MAPE

Jan-Mar MRS3RS9 TVR1 ARMAX ARMAX
Apr-Jun TVR2 MRS1 MRS2RS9 MRS2RS9
Jul-Sept TVR3 TVR1 TVR3 TVR1

Whole MRS3RS9 TVR1 TVR3 TVR1

about the forecasting performance of the models, but it does not resolve the main
issue of the study: which forecasting model specification performs better?
Table 5.23 shows the models with the best prediction error statistics at each forecast-
ing period. It is clear that the answer to the question is that no model outperforms
all the others. Differences in forecasting accuracy depend on several factors, such as
model specification, sample realization and forecasting period. Since different fore-
casting models seem to capture different features of spot price dynamics, we propose
a forecasting approach based on the combination of forecasts. This approach has
been useful to improve forecasting accuracy in several empirical situations (see, for
example, Becker & Clements, 2008 and Sánchez, 2008), but it is novel in electricity
price forecasting. In chapter 6 a first study in this direction is presented.
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Table 5.24: Diebold-Mariano statistic values with squared error loss function. Load
period 6.

e1 ↓ e2 → LR1 LR2 LR3 MRS1 M1RS3 M1RS6 M1RS9 MRS2 M2RS3
LR1 — — — — — — — — —
LR2 ∗-3.05 — — — — — — — —
LR3 -0.83 0.47 — — — — — — —

MRS1 0.92 ∗∗2.09 1.04 — — — — — —
M1RS3 -1.75 1.39 0.31 -1.31 — — — — —
M1RS6 -0.31 ∗∗2.05 0.84 -1.07 1.02 — — — —
M1RS9 0.64 ∗∗2.11 1.05 -0.49 1.32 0.98 — — —
MRS2 -0.13 1.35 0.51 -1.00 0.57 -0.01 -0.76 — —

M2RS3 -0.63 1.33 0.29 -1.08 0.27 -0.39 -0.87 -0.49 —
M2RS6 ∗-6.25 0.74 -0.24 ∗∗-2.21 -0.76 ∗∗-2.11 ∗∗-2.24 -1.36 -1.27
M2RS9 -1.03 1.25 0.22 -1.31 0.13 -0.62 -1.16 -0.79 -0.26
MRS3 0.69 ∗∗2.33 1.25 0.02 ∗∗2.11 1.25 0.57 ∗∗∗1.68 1.01

M3RS3 -0.99 0.24 -0.49 -1.11 -0.49 -0.91 -1.10 -0.61 -0.44
M3RS6 -0.54 0.58 0.56 -0.79 0.04 -0.50 -0.75 -0.33 -0.12
M3RS9 0.16 1.42 1.33 -0.32 1.12 0.28 -0.20 0.21 0.44
TVR1 -1.22 -0.32 -1.36 -1.35 -1.34 -1.31 -1.37 -0.86 -0.69
TVR2 ∗∗∗-1.65 -0.80 ∗∗∗-1.79 ∗∗∗-1.65 ∗∗∗-1.89 ∗∗∗-1.71 ∗∗∗-1.71 -1.18 -1.07
TVR3 -1.10 -0.20 -1.01 -1.19 -1.04 -1.12 -1.19 -0.75 -0.61

ARMAX -1.54 -0.74 ∗∗∗-1.78 -1.50 -1.49 -1.53 -1.54 -1.08 -1.01

e1 ↓ e2 → M2RS6 M2RS9 MRS3 M3RS3 M3RS6 M3RS9 TVR1 TVR2 TVR3
LR1 — — — — — — — — —
LR2 — — — — — — — — —
LR3 — — — — — — — — —

MRS1 — — — — — — — — —
M1RS3 — — — — — — — — —
M1RS6 — — — — — — — — —
M1RS9 — — — — — — — — —
MRS2 — — — — — — — — —

M2RS3 — — — — — — — — —
M2RS6 — — — — — — — — —
M2RS9 1.22 — — — — — — — —
MRS3 ∗3.01 1.63 — — — — — — —

M3RS3 0.04 -0.35 -1.32 — — — — — —
M3RS6 0.38 -0.05 -0.98 0.61 — — — — —
M3RS9 1.30 0.61 -0.47 1.15 1.22 — — — —
TVR1 -0.45 -0.67 -1.40 -1.37 -1.65 ∗∗∗-1.56 — — —
TVR2 -0.88 -1.03 ∗∗∗-1.72 ∗∗-2.27 ∗∗∗-1.73 ∗∗∗-1.71 -1.08 — —
TVR3 -0.33 -0.58 -1.20 -1.46 -1.20 -1.27 0.34 1.36 —

ARMAX -0.81 -0.95 -1.60 ∗∗∗-1.76 ∗∗∗-1.78 ∗∗∗-1.68 -1.27 -0.16 ∗∗∗-1.83

Note: M1RS3 in the table stands for MRS1RS3, etc. ∗, ∗∗, ∗∗∗ before a number
represent significance at 1%, 5% and 10% level respectively.
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Table 5.25: Diebold-Mariano statistic values with absolute error loss function. Load
period 6.

e1 ↓ e2 → LR1 LR2 LR3 MRS1 M1RS3 M1RS6 M1RS9 MRS2 M2RS3
LR1 — — — — — — — — —
LR2 ∗-2.60 — — — — — — — —
LR3 -0.40 1.14 — — — — — — —

MRS1 -0.41 1.49 0.16 — — — — — —
M1RS3 -0.30 1.50 0.15 -0.02 — — — — —
M1RS6 -0.19 1.56 0.28 0.16 0.14 — — — —
M1RS9 0.05 ∗∗∗1.71 0.42 0.66 0.30 0.27 — — —
MRS2 ∗∗-1.91 -0.09 -1.10 ∗∗∗-1.66 -1.48 -1.46 ∗∗∗-1.88 — —

M2RS3 ∗∗∗-1.71 -0.34 -1.21 -1.32 ∗∗∗-1.85 -1.35 -1.46 -0.23 —
M2RS6 ∗∗-2.21 -0.04 -1.10 -1.42 -1.42 ∗∗∗-1.72 ∗∗∗ -1.81 0.06 0.30
M2RS9 ∗∗-2.20 -0.10 -1.17 -1.42 -1.54 -1.64 ∗∗∗-1.76 0.02 0.27
MRS3 -1.08 0.34 -1.21 -0.97 -0.94 -1.06 -1.31 0.50 0.56

M3RS3 -0.50 0.93 -0.22 -0.25 -0.30 -0.35 -0.47 0.93 1.26
M3RS6 -0.14 1.41 0.51 0.08 0.12 -0.01 -0.16 1.32 1.54
M3RS9 -0.18 1.19 0.36 0.03 0.06 -0.06 -0.21 1.29 1.38
TVR1 -1.57 -0.38 -1.49 -1.25 ∗∗-1.91 -1.47 -1.49 -0.28 -0.13
TVR2 -1.72 -0.57 -1.61 -1.36 ∗∗-2.17 -1.58 -1.56 -0.43 -0.31
TVR3 -1.20 0.02 -1.12 -0.87 -1.17 -0.99 -1.06 0.07 0.24

ARMAX -1.20 -0.02 -0.96 -0.91 -1.16 -1.01 -1.11 0.04 0.22

e1 ↓ e2 → M2RS6 M2RS9 MRS3 M3RS3 M3RS6 M3RS9 TVR1 TVR2 TVR3
LR1 — — — — — — — — —
LR2 — — — — — — — — —
LR3 — — — — — — — — —

MRS1 — — — — — — — — —
M1RS3 — — — — — — — — —
M1RS6 — — — — — — — — —
M1RS9 — — — — — — — — —
MRS2 — — — — — — — — —

M2RS3 — — — — — — — — —
M2RS6 — — — — — — — — —
M2RS9 -0.07 — — — — — — — —
MRS3 0.37 0.42 — — — — — — —

M3RS3 0.85 0.92 0.68 — — — — — —
M3RS6 1.40 1.38 1.52 0.58 — — — — —
M3RS9 1.25 1.30 ∗∗∗1.65 0.42 -0.14 — — — —
TVR1 -0.34 -0.31 -0.65 -1.46 ∗∗∗-1.81 -1.57 — — —
TVR2 -0.52 -0.48 -0.77 ∗∗∗-1.70 ∗∗∗-1.89 -1.62 -0.33 — —
TVR3 0.04 0.06 -0.25 -1.21 -1.39 -1.08 0.63 0.88 —

ARMAX 0.00 0.03 -0.28 -0.89 -1.23 -1.06 0.50 0.66 -0.05

Note: M1RS3 in the table stands for MRS1RS3, etc. ∗, ∗∗, ∗∗∗ before a number
represent significance at 1%, 5% and 10% level respectively.
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Table 5.26: Diebold-Mariano statistic values with squared error loss function. Load
period 19.

e1 ↓ e2 → LR1 LR2 LR3 MRS1 M1RS3 M1RS6 M1RS9 MRS2 M2RS3
LR1 — — — — — — — — —
LR2 0.83 — — — — — — — —
LR3 0.97 0.46 — — — — — — —

MRS1 1.16 -0.62 -0.86 — — — — — —
M1RS3 -0.49 -0.74 -1.16 -0.55 — — — — —
M1RS6 -0.35 -0.79 -1.07 -0.48 0.30 — — — —
M1RS9 1.60 -0.28 -0.66 1.04 0.68 0.78 — — —
MRS2 -0.46 -1.53 -1.22 -0.59 0.38 -0.05 -0.95 — —

M2RS3 0.10 -0.18 -0.51 0.03 1.42 0.20 -0.08 0.31 —
M2RS6 1.16 0.66 -0.05 0.97 0.77 1.60 0.79 1.26 0.35
M2RS9 0.01 -0.97 -1.00 -0.18 0.53 0.34 -0.52 1.28 -0.11
MRS3 0.77 0.31 -0.33 0.67 1.01 0.84 0.48 0.92 0.42

M3RS3 -0.17 -0.37 -0.98 -0.23 0.39 -0.06 -0.32 -0.04 -0.41
M3RS6 1.01 0.49 0.08 0.92 1.28 0.89 0.73 1.10 0.65
M3RS9 1.01 0.69 0.76 0.95 1.29 1.05 0.84 1.12 0.82
TVR1 1.22 0.22 -0.42 1.01 0.83 0.93 0.63 1.30 0.25
TVR2 -0.43 -1.25 -1.15 -0.71 0.38 0.03 -1.31 0.14 -0.24
TVR3 0.10 -0.36 ∗∗-2.20 -0.04 0.66 0.32 -0.25 0.47 -0.06

ARMAX 0.22 -0.35 -0.93 0.06 0.72 0.33 -0.21 0.54 -0.01

e1 ↓ e2 → M2RS6 M2RS9 MRS3 M3RS3 M3RS6 M3RS9 TVR1 TVR2 TVR3
LR1 — — — — — — — — —
LR2 — — — — — — — — —
LR3 — — — — — — — — —

MRS1 — — — — — — — — —
M1RS3 — — — — — — — — —
M1RS6 — — — — — — — — —
M1RS9 — — — — — — — — —
MRS2 — — — — — — — — —

M2RS3 — — — — — — — — —
M2RS6 — — — — — — — — —
M2RS9 -1.07 — — — — — — — —
MRS3 -0.02 0.73 — — — — — — —

M3RS3 -0.49 -0.19 -0.95 — — — — — —
M3RS6 0.10 0.89 0.21 0.97 — — — — —
M3RS9 0.41 0.99 1.27 ∗∗∗1.65 0.56 — — — —
TVR1 -0.38 0.87 -0.27 0.47 -0.43 -0.73 — — —
TVR2 -1.25 -0.36 -0.90 0.08 -1.15 -1.12 -1.99 — —
TVR3 -0.60 0.11 -1.36 0.32 -1.04 -1.36 -0.62 0.35 —

ARMAX -0.60 0.19 -0.79 0.32 -1.02 -1.17 -0.70 0.69 0.11

Note: M1RS3 in the table stands for MRS1RS3, etc. ∗, ∗∗, ∗∗∗ before a number
represent significance at 1%, 5% and 10% level respectively.
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Table 5.27: Diebold-Mariano statistic values with absolute error loss function. Load
period 19.

e1 ↓ e2 → LR1 LR2 LR3 MRS1 M1RS3 M1RS6 M1RS9 MRS2 M2RS3
LR1 — — — — — — — — —
LR2 0.32 — — — — — — — —
LR3 ∗∗2.15 1.46 — — — — — — —

MRS1 -0.17 -0.37 ∗∗-2.30 — — — — — —
M1RS3 0.75 0.39 -1.01 0.73 — — — — —
M1RS6 0.65 0.11 -1.55 0.64 -0.35 — — — —
M1RS9 ∗∗∗1.69 0.42 -1.36 1.64 -0.08 0.58 — — —
MRS2 0.31 -0.07 -1.67 0.35 -0.47 -0.17 -0.51 — —

M2RS3 ∗∗2.01 ∗∗∗1.89 0.04 ∗∗∗1.93 1.36 1.46 1.33 ∗∗2.31 —
M2RS6 ∗∗2.18 ∗∗∗1.99 -0.06 ∗∗2.18 0.92 ∗∗1.96 1.61 ∗∗1.97 -0.11
M2RS9 1.60 ∗∗∗1.90 -0.81 1.64 0.46 0.97 0.70 ∗2.72 -1.06
MRS3 1.16 0.59 ∗-3.75 1.24 0.22 0.61 0.36 0.69 -0.84

M3RS3 0.91 0.56 -0.99 0.90 0.36 0.59 0.35 0.68 -0.91
M3RS6 1.56 1.00 -0.95 1.62 0.56 1.08 0.78 1.25 -0.56
M3RS9 ∗∗∗1.85 1.25 0.16 ∗∗∗1.92 1.02 1.41 1.25 1.37 0.04
TVR1 -0.31 -0.47 ∗∗-2.42 -0.28 -0.89 -0.70 -1.36 -0.53 ∗∗-2.06
TVR2 -1.07 -1.15 ∗-2.93 -1.07 -1.41 -1.38 ∗∗-2.10 -1.47 ∗-2.92
TVR3 0.48 0.09 ∗-2.59 0.54 -0.36 -0.04 -0.37 0.15 -1.60

ARMAX -0.42 -0.59 ∗∗-2.46 -0.39 -1.01 -0.75 -1.23 -0.65 ∗∗-2.32

e1 ↓ e2 → M2RS6 M2RS9 MRS3 M3RS3 M3RS6 M3RS9 TVR1 TVR2 TVR3
LR1 — — — — — — — — —
LR2 — — — — — — — — —
LR3 — — — — — — — — —

MRS1 — — — — — — — — —
M1RS3 — — — — — — — — —
M1RS6 — — — — — — — — —
M1RS9 — — — — — — — — —
MRS2 — — — — — — — — —

M2RS3 — — — — — — — — —
M2RS6 — — — — — — — — —
M2RS9 -0.88 — — — — — — — —
MRS3 -0.71 -0.21 — — — — — — —

M3RS3 -0.53 -0.11 0.11 — — — — — —
M3RS6 -0.42 0.22 0.63 0.34 — — — — —
M3RS9 0.12 0.70 ∗∗2.13 1.22 0.85 — — — —
TVR1 ∗∗-2.19 ∗∗∗-1.70 -1.37 -1.05 ∗∗∗-1.75 ∗∗-2.02 — — —
TVR2 ∗-2.85 ∗-3.05 ∗∗∗-1.85 -1.54 ∗∗-2.32 ∗∗-2.30 -0.94 — —
TVR3 -1.37 -1.15 -1.06 -0.79 ∗∗∗-1.66 ∗∗-1.96 0.88 ∗∗∗1.77 —

ARMAX ∗∗-2.05 ∗∗∗-1.83 -1.54 -1.32 ∗∗∗-1.75 ∗∗-2.37 -0.21 0.75 -0.99

Note: M1RS3 in the table stands for MRS1RS3, etc. ∗, ∗∗, ∗∗∗ before a number
represent significance at 1%, 5% and 10% level respectively.
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Table 5.28: Diebold-Mariano statistic values with squared error loss function. Load
period 28.

e1 ↓ e2 → LR1 LR2 LR3 MRS1 M1RS3 M1RS6 M1RS9 MRS2 M2RS3
LR1 — — — — — — — — —
LR2 1.47 — — — — — — — —
LR3 ∗∗∗1.65 1.58 — — — — — — —

MRS1 1.40 1.14 -0.90 — — — — — —
M1RS3 1.03 1.03 1.01 1.01 — — — — —
M1RS6 -0.87 -1.11 -1.50 -1.23 -1.03 — — — —
M1RS9 -0.76 -1.01 -1.41 -1.37 -1.03 0.09 — — —
MRS2 1.25 1.03 -1.95 -0.31 -1.03 1.21 1.06 — —

M2RS3 0.16 -0.21 -1.01 -0.72 -1.02 0.99 0.81 -0.60 —
M2RS6 -0.72 -1.03 -1.44 -1.12 -1.03 0.04 -0.06 -1.13 -0.99
M2RS9 -1.12 -1.35 -1.54 -1.29 -1.04 -0.82 -0.50 -1.29 -1.53
MRS3 1.48 1.42 0.96 1.19 -1.01 1.40 1.35 1.59 1.03

M3RS3 0.07 -0.41 -1.29 -1.15 -1.02 0.60 1.01 -0.78 -0.09
M3RS6 -0.01 -0.48 -1.29 -1.04 -1.02 0.67 0.89 -0.81 -0.18
M3RS9 -0.52 -0.95 -1.46 -1.19 -1.03 0.44 0.37 -1.04 -0.59
TVR1 0.94 0.82 -0.23 0.30 -1.03 1.06 0.91 0.65 0.69
TVR2 0.52 0.27 -1.67 -0.48 -1.04 0.78 0.60 -0.66 0.29
TVR3 1.04 0.88 -1.37 0.00 -1.03 1.13 0.97 0.46 0.64

ARMAX 1.28 1.18 -0.72 0.45 -1.02 1.25 1.14 1.37 0.82

e1 ↓ e2 → M2RS6 M2RS9 MRS3 M3RS3 M3RS6 M3RS9 TVR1 TVR2 TVR3
LR1 — — — — — — — — —
LR2 — — — — — — — — —
LR3 — — — — — — — — —

MRS1 — — — — — — — — —
M1RS3 — — — — — — — — —
M1RS6 — — — — — — — — —
M1RS9 — — — — — — — — —
MRS2 — — — — — — — — —

M2RS3 — — — — — — — — —
M2RS6 — — — — — — — — —
M2RS9 -1.31 — — — — — — — —
MRS3 1.34 1.43 — — — — — — —

M3RS3 0.58 0.90 -1.27 — — — — — —
M3RS6 0.65 1.04 -1.24 -0.15 — — — — —
M3RS9 0.43 0.96 -1.36 -0.65 -0.98 — — — —
TVR1 1.02 1.11 -0.71 0.73 0.76 0.91 — — —
TVR2 0.75 0.90 -1.55 0.33 0.38 0.57 -1.48 — —
TVR3 1.08 1.21 -1.36 0.74 0.79 0.97 -0.64 1.47 —

ARMAX 1.21 1.33 -1.24 0.96 0.98 1.15 -0.06 1.63 1.27

Note: M1RS3 in the table stands for MRS1RS3, etc. ∗, ∗∗, ∗∗∗ before a number
represent significance at 1%, 5% and 10% level respectively.
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Table 5.29: Diebold-Mariano statistic values with absolute error loss function. Load
period 28.

e1 ↓ e2 → LR1 LR2 LR3 MRS1 M1RS3 M1RS6 M1RS9 MRS2 M2RS3
LR1 — — — — — — — — —
LR2 0.19 — — — — — — — —
LR3 ∗2.55 ∗∗2.17 — — — — — — —

MRS1 0.54 0.33 ∗∗-2.41 — — — — — —
M1RS3 1.15 1.14 0.80 1.16 — — — — —
M1RS6 -0.72 -0.57 ∗∗-2.33 -0.71 -1.19 — — — —
M1RS9 -0.73 -0.64 ∗∗-2.11 -0.78 -1.12 0.00 — — —
MRS2 0.22 0.12 ∗∗-2.31 -0.23 -1.23 0.57 0.52 — —

M2RS3 0.69 0.56 -0.99 0.32 -0.93 1.20 1.27 0.42 —
M2RS6 0.13 0.03 -1.53 -0.14 -1.07 0.72 0.59 -0.04 -0.70
M2RS9 -0.59 -0.71 ∗∗-1.96 -0.65 -1.17 -0.06 -0.05 -0.63 -1.42
MRS3 1.61 1.51 -1.46 ∗∗∗1.92 -0.97 1.49 1.45 ∗∗∗1.81 0.52

M3RS3 0.55 0.38 ∗∗∗-1.76 0.18 -1.00 0.88 1.22 0.26 -0.22
M3RS6 0.70 0.47 ∗∗∗-1.83 0.24 -1.00 1.23 1.38 0.34 -0.19
M3RS9 0.71 0.43 ∗∗-1.95 0.19 -1.02 1.40 1.38 0.30 -0.25
TVR1 -0.17 -0.24 ∗-2.71 -0.53 -1.36 0.28 0.21 -0.44 -0.56
TVR2 -1.00 -1.06 ∗-3.17 -1.28 -1.41 -0.41 -0.29 -1.57 -1.17
TVR3 0.42 0.30 ∗∗-2.48 0.11 -1.19 0.77 0.65 0.29 -0.25

ARMAX 1.25 1.22 ∗∗∗-1.64 1.06 -1.05 1.30 1.23 1.40 0.16

e1 ↓ e2 → M2RS6 M2RS9 MRS3 M3RS3 M3RS6 M3RS9 TVR1 TVR2 TVR3
LR1 — — — — — — — — —
LR2 — — — — — — — — —
LR3 — — — — — — — — —

MRS1 — — — — — — — — —
M1RS3 — — — — — — — — —
M1RS6 — — — — — — — — —
M1RS9 — — — — — — — — —
MRS2 — — — — — — — — —

M2RS3 — — — — — — — — —
M2RS6 — — — — — — — — —
M2RS9 -1.27 — — — — — — — —
MRS3 0.95 1.35 — — — — — — —

M3RS3 0.30 0.85 -0.96 — — — — — —
M3RS6 0.42 1.08 -0.90 0.11 — — — — —
M3RS9 0.40 1.17 -0.97 0.01 -0.17 — — — —
TVR1 -0.21 0.26 ∗∗∗-1.94 -0.45 -0.54 -0.54 — — —
TVR2 -0.95 -0.34 ∗∗-2.37 -1.02 -1.22 -1.31 -1.41 — —
TVR3 0.20 0.69 -1.52 -0.09 -0.16 -0.10 1.05 ∗∗2.11 —

ARMAX 0.69 1.27 -0.86 0.43 0.38 0.46 1.40 ∗∗2.73 0.9

Note: M1RS3 in the table stands for MRS1RS3, etc. ∗, ∗∗, ∗∗∗ before a number
represent significance at 1%, 5% and 10% level respectively.
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Table 5.30: Diebold-Mariano statistic values with squared error loss function. Load
period 38.

e1 ↓ e2 → LR1 LR2 LR3 MRS1 M1RS3 M1RS6 M1RS9 MRS2 M2RS3
LR1 — — — — — — — — —
LR2 -0.17 — — — — — — — —
LR3 -0.60 -0.73 — — — — — — —

MRS1 -1.26 ∗∗∗-1.76 -0.48 — — — — — —
M1RS3 1.44 1.10 1.05 1.47 — — — — —
M1RS6 -1.41 ∗∗∗-1.79 ∗∗-2.38 -1.30 -1.57 — — — —
M1RS9 -1.19 ∗∗∗-1.67 -0.46 0.27 -1.43 1.41 — — —
MRS2 -0.91 -1.26 -0.35 0.50 -1.22 ∗∗∗1.88 0.44 — —

M2RS3 -0.63 -0.83 0.29 0.65 -1.21 ∗∗∗1.76 0.63 0.49 —
M2RS6 -1.35 ∗∗-2.09 -0.21 0.39 ∗∗∗-1.70 1.16 0.31 0.09 -0.44
M2RS9 -1.07 -1.44 -0.64 -0.33 -1.31 1.57 -0.44 -1.49 -0.72
MRS3 -1.15 -1.51 -1.07 -0.50 -1.45 1.38 -0.56 -0.79 -0.98

M3RS3 -1.03 -1.26 ∗∗∗-1.69 -0.56 -1.30 1.09 -0.62 -0.81 -1.17
M3RS6 -0.68 -0.83 -0.48 0.16 -1.08 2.11 0.13 0.01 -0.45
M3RS9 -1.17 -1.31 -1.48 -1.06 -1.30 -0.87 -1.10 -1.24 -1.29
TVR1 -1.32 -1.55 ∗∗-2.12 -1.04 -1.45 -0.12 -1.09 -1.31 -1.55
TVR2 -1.13 -1.33 -1.49 -0.63 -1.34 0.67 -0.67 -0.83 -1.18
TVR3 -1.47 ∗∗∗-1.71 ∗∗-1.96 -1.42 -1.55 -0.60 -1.48 ∗∗∗-1.73 -1.52

ARMAX -1.27 -1.61 ∗∗-2.06 -0.58 -1.51 1.05 -0.62 -0.80 -1.45

e1 ↓ e2 → M2RS6 M2RS9 MRS3 M3RS3 M3RS6 M3RS9 TVR1 TVR2 TVR3
LR1 — — — — — — — — —
LR2 — — — — — — — — —
LR3 — — — — — — — — —

MRS1 — — — — — — — — —
M1RS3 — — — — — — — — —
M1RS6 — — — — — — — — —
M1RS9 — — — — — — — — —
MRS2 — — — — — — — — —

M2RS3 — — — — — — — — —
M2RS6 — — — — — — — — —
M2RS9 -0.42 — — — — — — — —
MRS3 -0.61 -0.34 — — — — — — —

M3RS3 -0.63 -0.57 -0.48 — — — — — —
M3RS6 -0.05 0.33 0.85 1.43 — — — — —
M3RS9 -1.01 -1.15 -1.09 -1.22 -1.44 — — — —
TVR1 -0.95 -1.14 -0.99 -0.82 -1.55 0.91 — — —
TVR2 -0.65 -0.62 -0.45 -0.05 -0.93 1.07 1.27 — —
TVR3 -1.19 ∗∗∗-1.64 -1.43 -1.12 -1.89 0.64 -0.61 -1.37 —

ARMAX -0.70 -0.51 -0.35 0.23 -1.12 1.04 1.09 0.33 1.29

Note: M1RS3 in the table stands for MRS1RS3, etc. ∗, ∗∗, ∗∗∗ before a number
represent significance at 1%, 5% and 10% level respectively.
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Table 5.31: Diebold-Mariano statistic values with absolute error loss function. Load
period 38.

e1 ↓ e2 → LR1 LR2 LR3 MRS1 M1RS3 M1RS6 M1RS9 MRS2 M2RS3
LR1 — — — — — — — — —
LR2 1.41 — — — — — — — —
LR3 1.38 0.46 — — — — — — —

MRS1 -1.44 ∗∗-2.13 ∗∗∗-1.81 — — — — — —
M1RS3 1.33 0.28 -0.16 ∗∗1.94 — — — — —
M1RS6 ∗∗∗-1.74 ∗-2.51 ∗-2.61 -0.62 ∗∗-2.35 — — — —
M1RS9 -0.43 -1.25 -1.27 ∗∗1.99 -1.33 ∗∗∗1.77 — — —
MRS2 -0.45 -1.54 -1.20 1.54 -1.18 1.43 -0.09 — —

M2RS3 -0.55 -1.57 ∗∗-2.11 0.50 -1.56 1.04 -0.11 -0.07 —
M2RS6 -0.89 ∗∗-1.94 -1.59 0.38 -1.49 0.95 -0.55 -0.58 -0.29
M2RS9 -0.60 ∗∗∗-1.69 -1.32 0.96 -1.31 1.30 -0.37 -0.36 -0.05
MRS3 -0.11 -0.80 -1.46 1.05 -1.06 ∗∗∗1.80 0.23 0.24 0.29

M3RS3 -0.47 -1.10 ∗∗-2.08 0.26 -1.28 0.67 -0.22 -0.17 -0.18
M3RS6 0.92 0.26 -0.19 ∗∗∗1.70 0.01 ∗2.57 1.19 1.11 1.34
M3RS9 -0.79 -1.42 ∗-2.14 -0.05 -1.35 0.33 -0.62 -0.54 -0.49
TVR1 ∗∗-2.12 ∗-2.76 ∗-3.60 -1.02 ∗-2.58 -0.90 ∗∗∗-1.64 -1.44 ∗∗∗-1.85
TVR2 ∗∗∗-1.90 ∗-2.63 ∗-3.21 -0.75 ∗∗-2.42 -0.46 -1.40 -1.24 -1.58
TVR3 ∗∗-1.93 ∗-2.44 ∗-3.09 -1.07 ∗∗-2.41 -0.79 ∗∗∗-1.78 -1.45 -1.37

ARMAX -1.63 ∗∗-2.13 ∗-2.89 -0.72 ∗∗-2.33 -0.51 -1.24 -1.11 -1.30

e1 ↓ e2 → M2RS6 M2RS9 MRS3 M3RS3 M3RS6 M3RS9 TVR1 TVR2 TVR3
LR1 — — — — — — — — —
LR2 — — — — — — — — —
LR3 — — — — — — — — —

MRS1 — — — — — — — — —
M1RS3 — — — — — — — — —
M1RS6 — — — — — — — — —
M1RS9 — — — — — — — — —
MRS2 — — — — — — — — —

M2RS3 — — — — — — — — —
M2RS6 — — — — — — — — —
M2RS9 0.35 — — — — — — — —
MRS3 0.56 0.38 — — — — — — —

M3RS3 0.08 -0.08 -0.44 — — — — — —
M3RS6 1.35 1.28 1.52 ∗∗∗1.82 — — — — —
M3RS9 -0.25 -0.47 -1.19 -0.44 ∗∗-2.43 — — — —
TVR1 -1.21 -1.42 ∗∗-2.20 -1.51 ∗-3.28 -1.22 — — —
TVR2 -0.98 -1.22 ∗∗∗-1.79 -1.16 ∗-2.76 -0.75 0.89 — —
TVR3 -1.09 -1.47 ∗∗-2.28 -1.47 ∗-3.03 -1.16 -0.05 -0.51 —

ARMAX -0.95 -1.10 ∗∗∗-1.66 -1.16 ∗-2.84 -0.81 0.25 -0.25 0.21

Note: M1RS3 in the table stands for MRS1RS3, etc. ∗, ∗∗, ∗∗∗ before a number
represent significance at 1%, 5% and 10% level respectively.





Chapter 6

Forecast combinations

Reid (1968, 1969) and Bates & Granger (1969) were the first to develop a general
analytical model specifically for combining forecasts in an optimal way and to apply
their techniques in real world situations. From their seminal works, forecast com-
bination methods have been intensely studied Bunn (1975, 1977, 1978) as reported
by the reviews of Clemen (1989), de Menezes et al. (2000) and more recently Tim-
mermann (2006).
The idea behind combining forecasting techniques is straightforward: no forecasting
model is appropriate for all situations. This means that single forecasting mod-
els may capture different parts of the characteristics of the data, i.e. they may
be optimal only conditional on a given sample realization, information set, model
specification or forecasting periods. By implementing a combination of forecasts
obtained by different models, we can compensate the weakness of the singular fore-
casting model under particular conditions.
Forecast combinations have frequently been found in empirical studies to produce
better forecasts, on average, than methods based on the ex-ante best individual
forecasting model (recent studies comprise, for instance, Altavilla & De Grauwe,
2006; Clark & McCracken, 2007; Clemens & Hendry, 1998 ;Riedel & Gabrys, 2005).
Although the theoretical literature suggests that appropriate combinations of in-
dividual forecasts often have superior performance, such methods have not been
exploited in the electricity price literature.
Based on empirical evidences and theoretical considerations, Chen & Yang (2007)
advocate the use of forecast combining when there is considerable instability in
model selection by testing procedures. From findings in chapter 5, this is our case.
In this chapter we applied forecast combination methods to electricity price data.
Our results underline that the application at a seasonal level of these techniques
produces significative improvements in prediction accuracy with respect to singular
models (see section 6.3).

6.1 Combining models

Let pt be the variable of interest at time t = 1, 2, ..., and let f
(1)
t , ..., f

(K)
t be the set

of K competing predictors of pt made with information available at time t− 1. The
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simplest way to obtain a combination of forecasts is to consider a linear combination:

pC
t =

K∑

k=1

ω
(k)
t f

(k)
t , (6.1)

for t = 1, 2, ..., where ω
(k)
t are suitable weights. When ω = (ω

(1)
t , ..., ω

(K)
t )′ is a vector

of constants, it can be estimated through the model:

pt = pC
t + eC

t =
K∑

k=1

ω(k)f
(k)
t + eC

t , (6.2)

where eC
t is an error term. In our study we considered the simplest approach with

constant weights that is the equally weighted combination of the forecasts, where
ω(k) = 1/K, so the combination is the mean of the constituent forecasts.
For time-varying weights Bates & Granger (1969) (see also Newbold & Granger,
1974) proposed several adaptive estimation schemes. They are based on the simple
idea to assign larger weights to models that performed best most recently. In our
work, we have tested one of the methods proposed by Bates and Granger with two
different specifications. Let e

(k)
t = pt − f

(k)
t the forecasting error of model k, the

Bates and Granger weights are:

ω
(k)
t =

(∑t−1
τ=t−l+1

(
e
(k)
τ

)2
)−1

∑K

j=1

(∑t−1
τ=t−l+1

(
e
(j)
τ

)2
)−1 , (6.3)

where 0 ≤ ω
(k)
t ≤ 1 and

∑K

k=1 ω
(k)
t = 1. This method uses a rolling window of the

most recent l observations based on the forecasting models’ relative performances.
A second specification is obtained when an expanding window is used, i.e. l = t.
Weights in (6.3) depend on the inverse of MSEs i.e. larger weights are given to
models with the smaller forecasting error.
Correlations between forecast errors are ignored in (6.3). Accounting for correla-
tions, the weights are estimated by

ω
(k)
t = Σ−1

t ι/
(
ι′Σ−1

t ι
)
, (6.4)

Σt[i, j] =
1

l

t−1∑

τ=t−l+1

e(i)
τ e(j)

τ , (6.5)

where ι is a vector of ones and Σ is the matrix of forecast error correlations esti-
mated using a rolling window of the most recent l observations. We also considered
correlations between forecast errors, but our findings underline a worsening of the
results. This is in line with the empirical findings in the literature on forecast com-
binations (see for instance, Bunn, 1985; Clemen & Winkler, 1986; Dunis et al., 2001;
Makridakis & Winkler, 1983; Newbold & Granger, 1974): combinations that do not
require estimating many parameters, such as that considered in our work, do better
than more sophisticated methods which require the estimation of weights depending
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on the full variance-covariance matrix of forecast errors.
In a recent paper, Smith & Wallis (2009) presented a formal explanation of this
behaviour. Following the works of West (1996) and Clark & West (2006), they
pointed out that the cause lies in the effect of finite-sample error in estimating the
combining weights. In particular, they showed that, in terms of MSE, a simple
mean of the forecasts is expected to be more accurate than a combination based
on estimated weights when the optimal combining weights are equal or closed to
equality. This explains for example the results of Gupta & Wilton (1987): they
found that equally weighted combinations depends strongly on the relative size of
the variance of the forecast errors associated with different forecasting methods.
When these are similar, equal weights perform well. In the case of instability in
the forecast errors variances, some time-variation or adaptive adjustment in the
weights can improve combination forecasting performance (Stock & Watson, 2004;
Winkler & Makridakis, 1983). For this reason, we decided to use Bates and Granger
method (formula (6.3)): Smith & Wallis (2009) provided with a firmer foundation,
based on an asymptotic approximation to the variance of the estimated weights, the
recommendation to neglect any covariances between the forecasting errors.

To obtain a first indication about the behaviour of combination with our data,
for each load period we calculated equally weighted combination (‘mean’) and Bates
and Granger combination with a rolling window of 10 data and an expanding window
(‘BG10’ and ‘BGExp’ respectively) with all the 19 models. To diminish forecast error
variability, combinations are carried out considering the logarithm transformation
of all the series and then the combination prediction is re-transformed with the
exponential function. With this method, we observed a little improvement in the
combination results.
Tables 6.1-6.4 contain results of the combinations expressed as relative measures
that are calculated for each forecasting period as the ratio between the combination
prediction error statistic and the best value of the statistic obtained among all the
singular models:

RMSE =
MSEC

MSEBest

RMSPE =
MSPEC

MSPEBest

RMAE =
MAEC

MAEBest

RMAPE =
MAPEC

MAPEBest

.

As Hyndman & Koehler (2006) pointed out, an advantage of these measures is their
interpretability. A value less than 1 means that the combination is better than the
best singular model, while a value greater than 1 means that the combination does
not outperform the best singular model.
Results are not very appealing. We obtained some slight improvement in forecasting
accuracy only considering the whole forecasting period. If we consider the subperi-
ods, combinations work better only during spring for load period 6, that is a very
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calm period. The reason of a so disappointing results is that using all the 19 models
we introduced too much variability in the combinations. This variability is given
by models that perform very poorly during particular seasons and/or for particu-
lar hours. In literature it has been established that rather than combining the full
set of forecasts, it is often advantageous to discard the models with the worst per-
formance (see, for instance, Aiolfi & Favero, 2005; Granger & Jeon, 2004). This is
called ‘trimming’. The works of Stock & Watson (2001, 2004) and Marcellino (2004)
opened a whole set of new issues concerning the number of models and the types of
forecasts entering the combination. This depends on the type of misspecification or
instability the model combination can hedge against.
In the next section, we propose a study conducted at a seasonal level to highlight
that few models, characterized by good forecasting accuracy in the considered sea-
son, can improve combination performances.

Table 6.1: Results of the combinations considering all the 19 models. Load period 6.

mean

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.257 1.140 1.008 1.044
April-June 0.934 0.902 0.989 0.977

July-September 1.080 1.088 1.051 1.062

Whole Period 1.122 0.916 0.929 0.924

BG10

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.257 1.158 1.021 1.061
April-June 0.919 0.913 0.993 0.987

July-September 1.063 1.072 1.041 1.052

Whole Period 1.119 0.921 0.935 0.930

BGExp

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.257 1.144 1.012 1.049
April-June 0.934 0.908 0.989 0.978

July-September 1.069 1.080 1.045 1.057

Whole Period 1.121 0.916 0.930 0.924

6.2 Selection of forecasting models

To select the models entering the combination, we used two procedures: the Model
Confidence Set (MCS) method (Hansen et al., 2005) is used to obtain in each sea-
son the set of models with best forecasting accuracy. Then, the chosen models are
screened with the forecasts encompassing method (Fair & Shiller, 1990) to deter-
mine which models contain useful information about the price dynamics during each
season. Results highlight that the set of models change with seasons, for this reason
we propose to apply combination methods at seasonal level. Our work represents a
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Table 6.2: Results of the combinations considering all the 19 models. Load period
19.

mean

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.337 1.177 0.985 1.049
April-June 1.253 0.952 0.928 0.922

July-September 1.117 1.505 1.074 1.141

Whole Period 1.003 1.060 0.959 0.982

BG10

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.342 1.115 0.964 1.013
April-June 1.167 0.891 0.906 0.900

July-September 1.107 1.404 1.057 1.099

Whole Period 0.996 0.995 0.940 0.949

BGExp

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.371 1.136 0.972 1.019
April-June 1.232 0.946 0.919 0.913

July-September 1.118 1.486 1.071 1.132

Whole Period 1.013 1.039 0.950 0.966

Table 6.3: Results of the combinations considering all the 19 models. Load period
28.

mean

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.046 1.066 1.044 1.098
April-June 1.135 1.067 1.096 1.077

July-September 1.263 1.006 0.981 1.031

Whole Period 0.992 0.977 0.949 1.016

BG10

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.048 1.043 1.038 1.082
April-June 1.090 1.047 1.061 1.047

July-September 1.139 0.954 0.939 1.002

Whole Period 0.958 0.946 0.927 0.993

BGExp

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.048 1.0306 1.029 1.070
April-June 1.124 1.0637 1.089 1.072

July-September 1.250 1.0017 0.978 1.028

Whole Period 0.989 0.961 0.941 1.004
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Table 6.4: Results of the combinations considering all the 19 models. Load period
38.

mean

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.386 0.979 1.061 1.068
April-June 1.090 1.004 1.031 1.033

July-September 1.991 1.097 1.161 1.059

Whole Period 1.306 0.990 1.017 0.989

BG10

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.381 0.948 1.056 1.053
April-June 1.067 0.997 1.020 1.029

July-September 1.927 1.058 1.123 1.011

Whole Period 1.296 0.961 1.004 0.966

BGExp

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.377 0.986 1.065 1.071
April-June 1.076 0.997 1.028 1.033

July-September 1.944 1.090 1.152 1.053

Whole Period 1.295 0.991 1.017 0.988

first study to understand if combining methods could be helpful for the electricity
price forecasting issue. Combination results are shown in section 6.3.

6.2.1 The MCS method (EPA test)

The model confidence set (MCS) is a method developed in Hansen et al. (2003) and
Hansen et al. (2005) that allows forecasting model selection. In fact the MCS is a
set of models constructed to contain the best models in terms of equal predictive
ability (EPA). Moreover, it is analogous to the confidence interval of a parameter in
the sense that it contains the best forecasting models with a certain probability.
The construction of an MCS requires an iterative procedure based on a sequence
of test for EPA. The procedure starts with the set of all the K models M0. At
each step the the worst performing model is deleted and the set of candidate models
M = {1, ..., m} with m ≤ K is trimmed. The models in the final set of the
MCS include the optimal models not significantly different in terms of forecasting
accuracy.
Each step begins with the computation of loss differentials between models i and j:

dij,t = L(e
(i)
t ) − L(e

(j)
t ) (6.6)

where i, j = 1, ..., m, t = 1, ..., T and L is the squared error or the absolute error
loss function (as explained in section 5.5). Then the EPA hypothesis

H0 : E(dij,t) = 0, ∀i > j ∈ M (6.7)
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is tested. To establish EPA, we used the two test statistics propose by Hansen et al.
(2005): a range statistic

Tr = max
i,j∈M

|d̄ij|√
v̂ar(d̄ij)

, (6.8)

and a semi-quadratic statistic

Tsq =
∑

i,j∈M
i<j

(d̄ij)
2

v̂ar(d̄ij)
. (6.9)

In the equations above d̄ij = 1
T

∑T

t=1 dij,t and v̂ar(d̄ij) is an estimate of var(d̄ij)
obtained from a block bootstrap procedure with constant block fully described in
Hansen et al. (2003) . At the core of the bootstrap procedure is the generation of
bootstrap replications of dij,t.

Both test statistics (6.8) and (6.9) indicate a rejection of the EPA hypothesis
for large values: p-values are obtained from the bootstrap distributions of the test
statistics. When H0 is rejected at the significance level α, the worst performing
model, identified by

i = argmax
i∈M

d̄i√
v̂ar(d̄i)

(6.10)

with d̄i = 1
m−1

∑
j∈M d̄ij, is removed and the process re-starts until non-rejection

occurs. The set of surviving models is the MCS, M̂∗
α. For a given significance level

α, M̂∗
α contains the best model from M0 with (1 − α) confidence. Despite the

testing procedure involving multiple hypothesis tests, Hansen et al. (2005) reported
a detailed discussion about the statistically correctness of this interpretation.
A very useful feature of the procedure is that it yields MCS p-values for all models
under consideration. Suppose that at the kth step model i is deleted from M: we
denote the (bootstrapped) p-value of the EPA test with (6.8) and (6.9) as p(k) (with
the convention p(K) = 1 for the model that survives all K − 1 tests). The MCS
p-value of model i is defined by

p̂i = max
j≤k

p(j). (6.11)

A model belongs to M̂∗
α (i.e. it belongs to the set of best forecast models) when its

MCS p-value exceeds α.
Tables 6.5-6.16 report the MCS results in each season (in our work, we used 5000

bootstrap replicates) of all the individual forecasts based on both squared error loss
and absolute error loss function, for load periods 6, 19, 28 and 38. The first row in
the tables represents the first model removed, down to the best performing model in
the last row. ‘p.r’ and ‘MCS.r’ denote respectively the p-value of the EPA test and
the MCS p-value with the range statistic. The use of the semi-quadratic statistic is
denoted with ‘sq’.
Results confirm the findings in the previous chapter: in general there is not only
one model with best forecasting accuracy. Nevertheless, rankings highlight relative
predictive performance of the models in each season. Moreover, with the MCS p-
values it is possible to select the set of models with better forecasting performance.
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We decided to not choose a particular significance level for trimming the sets of
models. The reason is that with a fixed α the risk is to obtain, in some cases, a
set containing all the models (if α is low) or only one model (if α is high), and we
wanted to avoid this situations. For each load period and each season, the choice of
the models has been done starting from the best model in the ranking and adding
models to the set, until a large decrease in the MCS p-value happens for at least
one of the statistics. This procedure was conducted for both the considered loss
functions: in this way we obtained two sets of models that have to be merge into
one. The scope is to insert in the sets the best models for both the loss functions.
The chosen models are highlighted in yellow.

Table 6.5: MCS results for the forecasting period January-March 2006. Load period
6.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS1 0.217 0.217 0.157 0.157 LR3 0.020 0.020 0.058 0.058
MRS3 0.211 0.217 0.169 0.169 MRS3RS6 0.029 0.029 0.067 0.067

MRS1RS9 0.206 0.217 0.198 0.198 MRS3RS3 0.026 0.029 0.077 0.077
MRS3RS9 0.197 0.217 0.199 0.199 MRS3 0.051 0.051 0.105 0.105

LR1 0.189 0.217 0.213 0.213 MRS3RS9 0.047 0.051 0.127 0.127
MRS1RS6 0.275 0.275 0.226 0.226 MRS1RS3 0.043 0.051 0.169 0.169
MRS1RS3 0.260 0.275 0.235 0.235 MRS1 0.044 0.051 0.228 0.228

LR3 0.233 0.275 0.221 0.235 MRS1RS9 0.108 0.108 0.310 0.310
MRS2 0.215 0.275 0.208 0.235 LR1 0.102 0.108 0.339 0.339

MRS3RS6 0.210 0.275 0.247 0.247 MRS1RS6 0.136 0.136 0.480 0.480
MRS2RS9 0.184 0.275 0.228 0.247 MRS2 0.275 0.275 0.567 0.567
MRS3RS3 0.168 0.275 0.282 0.282 TVR3 0.849 0.849 0.853 0.853
MRS2RS3 0.546 0.546 0.507 0.507 TVR1 0.831 0.849 0.915 0.915
MRS2RS6 0.520 0.546 0.553 0.553 ARMAX 0.767 0.849 0.885 0.915

TVR3 0.436 0.546 0.450 0.553 TVR2 0.677 0.849 0.818 0.915
TVR1 0.581 0.581 0.588 0.588 MRS2RS9 0.548 0.849 0.685 0.915

LR2 0.700 0.700 0.598 0.598 MRS2RS3 0.732 0.849 0.696 0.915
TVR2 0.422 0.700 0.422 0.598 LR2 0.493 0.849 0.493 0.915

ARMAX —– 1.000 —– 1.000 MRS2RS6 —– 1.000 —– 1.000
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Table 6.6: MCS results for the forecasting period April-June 2006. Load period 6.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

LR2 0.426 0.426 0.485 0.485 LR2 0.053 0.053 0.421 0.421
MRS2RS3 0.433 0.433 0.531 0.531 MRS1RS6 0.051 0.053 0.436 0.436

LR1 0.413 0.433 0.545 0.545 LR1 0.046 0.053 0.448 0.448
MRS1RS6 0.407 0.433 0.600 0.600 MRS2RS3 0.046 0.053 0.470 0.470
MRS2RS9 0.629 0.629 0.653 0.653 MRS1RS3 0.042 0.053 0.490 0.490
MRS1RS3 0.608 0.629 0.672 0.672 MRS2RS9 0.036 0.053 0.525 0.525

MRS1 0.646 0.646 0.706 0.706 MRS2RS6 0.033 0.053 0.489 0.525
ARMAX 0.644 0.646 0.741 0.741 MRS1 0.031 0.053 0.456 0.525

MRS2RS6 0.623 0.646 0.711 0.741 ARMAX 0.030 0.053 0.438 0.525
MRS3RS3 0.582 0.646 0.678 0.741 LR3 0.027 0.053 0.365 0.525

LR3 0.559 0.646 0.693 0.741 TVR2 0.024 0.053 0.316 0.525
MRS1RS9 0.519 0.646 0.671 0.741 MRS1RS9 0.019 0.053 0.382 0.525
MRS3RS6 0.494 0.646 0.637 0.741 MRS3RS6 0.015 0.053 0.309 0.525

TVR3 0.635 0.646 0.672 0.741 TVR1 0.205 0.205 0.424 0.525
TVR2 0.545 0.646 0.637 0.741 MRS3RS3 0.379 0.379 0.443 0.525
MRS2 0.644 0.646 0.680 0.741 TVR3 0.366 0.379 0.431 0.525
TVR1 0.502 0.646 0.481 0.741 MRS2 0.242 0.379 0.343 0.525

MRS3RS9 0.423 0.646 0.423 0.741 MRS3RS9 0.133 0.379 0.133 0.525
MRS3 —– 1.000 —– 1.000 MRS3 —– 1.000 —– 1.000

Table 6.7: MCS results for the forecasting period July-September 2006. Load period
6.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS1RS9 0.098 0.098 0.134 0.134 MRS2RS6 0.253 0.253 0.138 0.138
MRS3RS6 0.094 0.098 0.158 0.158 MRS1RS9 0.252 0.253 0.178 0.178
MRS2RS6 0.088 0.098 0.168 0.168 MRS3RS6 0.429 0.429 0.233 0.233
MRS1RS3 0.083 0.098 0.172 0.172 LR1 0.412 0.429 0.256 0.256
MRS3RS9 0.079 0.098 0.199 0.199 MRS1RS3 0.402 0.429 0.284 0.284

LR1 0.073 0.098 0.220 0.220 MRS3RS9 0.383 0.429 0.300 0.300
MRS1RS6 0.069 0.098 0.231 0.231 MRS2RS9 0.355 0.429 0.342 0.342
MRS2RS9 0.069 0.098 0.248 0.248 MRS1RS6 0.333 0.429 0.401 0.401

TVR1 0.065 0.098 0.237 0.248 LR2 0.328 0.429 0.452 0.452
TVR3 0.276 0.276 0.287 0.287 TVR3 0.311 0.429 0.449 0.452

LR2 0.295 0.295 0.312 0.312 ARMAX 0.534 0.534 0.449 0.452
ARMAX 0.267 0.295 0.307 0.312 MRS1 0.593 0.593 0.460 0.456

MRS1 0.263 0.295 0.330 0.330 TVR1 0.532 0.593 0.429 0.456
LR3 0.231 0.295 0.301 0.330 LR3 0.474 0.593 0.471 0.471

MRS2RS3 0.180 0.295 0.274 0.330 MRS2RS3 0.396 0.593 0.467 0.471
MRS3RS3 0.541 0.541 0.572 0.572 MRS3RS3 0.670 0.670 0.645 0.645

MRS3 0.837 0.837 0.852 0.852 MRS2 0.991 0.991 0.989 0.989
MRS2 0.851 0.851 0.851 0.852 TVR2 0.922 0.991 0.922 0.989
TVR2 —– 1.000 —– 1.000 MRS3 —– 1.000 —– 1.000
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Table 6.8: MCS results for the forecasting period January-March 2006. Load period
19.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

LR2 0.395 0.395 0.492 0.492 MRS2 0.040 0.040 0.262 0.262
MRS2RS9 0.452 0.452 0.566 0.566 MRS2RS9 0.038 0.040 0.325 0.325
MRS2RS6 0.431 0.452 0.590 0.590 MRS2RS6 0.035 0.040 0.377 0.377

LR3 0.424 0.452 0.643 0.643 LR3 0.034 0.040 0.502 0.502
MRS2 0.405 0.452 0.648 0.648 LR2 0.630 0.630 0.656 0.656
TVR1 0.500 0.500 0.652 0.652 MRS3RS6 0.726 0.726 0.757 0.757
TVR3 0.778 0.778 0.673 0.673 MRS2RS3 0.697 0.726 0.795 0.795
MRS3 0.762 0.778 0.661 0.673 TVR3 0.647 0.726 0.827 0.827

LR1 0.748 0.778 0.654 0.673 MRS3RS9 0.695 0.726 0.846 0.846
MRS3RS6 0.725 0.778 0.654 0.673 MRS3 0.671 0.726 0.864 0.864
MRS3RS9 0.697 0.778 0.642 0.673 LR1 0.621 0.726 0.867 0.867
MRS1RS6 0.658 0.778 0.633 0.673 MRS1 0.576 0.726 0.878 0.878

MRS1 0.734 0.778 0.654 0.673 TVR1 0.519 0.726 0.861 0.878
MRS1RS9 0.871 0.871 0.683 0.683 MRS1RS9 0.844 0.844 0.919 0.919
ARMAX 0.814 0.871 0.705 0.705 MRS1RS6 0.791 0.844 0.902 0.919

TVR2 0.803 0.871 0.734 0.734 MRS3RS3 0.718 0.844 0.871 0.919
MRS2RS3 0.603 0.871 0.531 0.734 ARMAX 0.520 0.844 0.664 0.919
MRS1RS3 0.790 0.871 0.790 0.790 MRS1RS3 0.796 0.844 0.796 0.919
MRS3RS3 —– 1.000 —– 1.000 TVR2 —– 1.000 —– 1.000

Table 6.9: MCS results for the forecasting period April-June 2006. Load period 19.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS3RS6 0.006 0.006 0.117 0.117 MRS1RS3 0.000 0.000 0.031 0.031
MRS3RS9 0.006 0.006 0.109 0.117 MRS1RS6 0.000 0.000 0.036 0.036

LR3 0.006 0.006 0.100 0.117 MRS2RS6 0.000 0.000 0.049 0.049
MRS2RS6 0.006 0.006 0.096 0.117 LR3 0.022 0.022 0.077 0.077
MRS1RS3 0.006 0.006 0.119 0.119 MRS2RS3 0.021 0.022 0.081 0.081
MRS1RS6 0.005 0.006 0.113 0.119 MRS3 0.090 0.090 0.130 0.130

MRS3 0.005 0.006 0.118 0.119 MRS1RS9 0.080 0.090 0.160 0.160
MRS1RS9 0.005 0.006 0.120 0.120 MRS3RS9 0.076 0.090 0.164 0.164
MRS2RS3 0.005 0.006 0.106 0.120 MRS3RS6 0.070 0.090 0.189 0.189

LR1 0.018 0.018 0.219 0.219 MRS3RS3 0.107 0.107 0.239 0.239
MRS1 0.016 0.018 0.217 0.219 LR1 0.507 0.507 0.356 0.356

MRS3RS3 0.015 0.018 0.236 0.236 MRS1 0.485 0.507 0.447 0.447
LR2 0.013 0.018 0.240 0.240 MRS2RS9 0.543 0.543 0.622 0.622

MRS2RS9 0.595 0.595 0.594 0.594 LR2 0.705 0.705 0.797 0.797
MRS2 0.632 0.632 0.619 0.619 TVR2 0.629 0.705 0.823 0.823
TVR1 0.499 0.632 0.520 0.619 TVR1 0.931 0.931 0.906 0.906
TVR3 0.366 0.632 0.421 0.619 MRS2 0.966 0.966 0.964 0.964
TVR2 0.199 0.632 0.199 0.619 TVR3 0.956 0.966 0.956 0.964

ARMAX —– 1.000 —– 1.000 ARMAX —– 1.000 —– 1.000
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Table 6.10: MCS results for the forecasting period July-September 2006. Load period
19.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS2RS3 0.157 0.157 0.211 0.211 MRS3RS3 0.022 0.022 0.071 0.071
MRS3RS3 0.201 0.201 0.267 0.267 MRS3RS9 0.021 0.022 0.100 0.100
MRS3RS9 0.188 0.201 0.278 0.278 LR3 0.020 0.022 0.132 0.132

LR3 0.187 0.201 0.296 0.296 MRS2RS3 0.019 0.022 0.148 0.148
MRS3RS6 0.171 0.201 0.316 0.316 MRS3RS6 0.019 0.022 0.161 0.161
MRS1RS9 0.162 0.201 0.318 0.318 MRS2RS9 0.017 0.022 0.186 0.186

MRS3 0.423 0.423 0.364 0.364 MRS1RS9 0.015 0.022 0.263 0.263
ARMAX 0.412 0.423 0.373 0.373 TVR3 0.014 0.022 0.289 0.289

MRS1RS3 0.403 0.423 0.395 0.395 MRS3 0.200 0.200 0.420 0.420
TVR3 0.676 0.676 0.441 0.441 MRS2RS6 0.620 0.620 0.528 0.528
TVR1 0.619 0.676 0.466 0.466 ARMAX 0.600 0.620 0.568 0.568
TVR2 0.562 0.676 0.531 0.531 MRS1RS3 0.572 0.620 0.592 0.592
MRS1 0.741 0.741 0.677 0.677 MRS1RS6 0.491 0.620 0.586 0.592

MRS2RS6 0.676 0.741 0.736 0.736 TVR2 0.445 0.620 0.554 0.592
LR1 0.678 0.741 0.759 0.759 TVR1 0.357 0.620 0.630 0.630
LR2 0.544 0.741 0.676 0.759 MRS2 0.317 0.620 0.544 0.630

MRS2RS9 0.458 0.741 0.618 0.759 MRS1 0.673 0.673 0.638 0.638
MRS2 0.926 0.926 0.926 0.926 LR1 0.441 0.673 0.441 0.638

MRS1RS6 —– 1.000 —– 1.000 LR2 —– 1.000 —– 1.000

Table 6.11: MCS results for the forecasting period January-March 2006. Load period
28.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS2RS3 0.239 0.239 0.579 0.579 MRS2RS3 0.018 0.018 0.164 0.164
MRS1RS3 0.311 0.311 0.662 0.662 LR3 0.105 0.105 0.186 0.186
MRS1RS6 0.398 0.398 0.700 0.700 MRS3RS3 0.099 0.105 0.202 0.202
MRS2RS9 0.397 0.398 0.736 0.736 MRS3RS6 0.092 0.105 0.224 0.224

TVR1 0.359 0.398 0.739 0.739 MRS2RS9 0.211 0.211 0.265 0.265
LR3 0.356 0.398 0.708 0.739 MRS3RS9 0.192 0.211 0.274 0.274

MRS3RS3 0.374 0.398 0.741 0.741 LR2 0.369 0.369 0.292 0.292
MRS2RS6 0.335 0.398 0.721 0.741 TVR3 0.333 0.369 0.262 0.292

LR2 0.305 0.398 0.697 0.741 MRS1RS6 0.318 0.369 0.262 0.292
MRS3RS6 0.256 0.398 0.655 0.741 MRS2RS6 0.350 0.369 0.289 0.292

MRS2 0.356 0.398 0.724 0.741 MRS1RS3 0.321 0.369 0.261 0.292
TVR3 0.310 0.398 0.677 0.741 MRS3 0.278 0.369 0.283 0.292
MRS3 0.574 0.574 0.644 0.741 MRS2 0.422 0.422 0.313 0.313

MRS1RS9 0.541 0.574 0.620 0.741 LR1 0.540 0.540 0.339 0.339
MRS3RS9 0.506 0.574 0.543 0.741 MRS1RS9 0.528 0.540 0.402 0.402

LR1 0.699 0.699 0.551 0.741 MRS1 0.500 0.540 0.416 0.416
MRS1 0.629 0.699 0.518 0.741 TVR1 0.419 0.540 0.442 0.442
TVR2 0.357 0.699 0.357 0.741 TVR2 0.716 0.716 0.716 0.716

ARMAX —– 1.000 —– 1.000 ARMAX —– 1.000 —– 1.000
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Table 6.12: MCS results for the forecasting period April-June 2006. Load period 28.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS2RS3 0.153 0.153 0.148 0.148 MRS2RS3 0.049 0.049 0.167 0.167
LR3 0.145 0.153 0.149 0.149 MRS1RS3 0.047 0.049 0.172 0.172

MRS3 0.144 0.153 0.198 0.198 LR1 0.043 0.049 0.180 0.180
MRS1 0.142 0.153 0.247 0.247 MRS1 0.041 0.049 0.178 0.180

LR1 0.145 0.153 0.293 0.293 MRS1RS9 0.040 0.049 0.181 0.181
MRS1RS3 0.299 0.299 0.352 0.352 LR3 0.037 0.049 0.170 0.181
MRS3RS9 0.282 0.299 0.394 0.394 MRS2RS6 0.034 0.049 0.154 0.181
MRS2RS6 0.269 0.299 0.373 0.394 MRS3 0.029 0.049 0.186 0.186
MRS1RS9 0.256 0.299 0.393 0.394 MRS1RS6 0.026 0.049 0.163 0.186
MRS3RS6 0.237 0.299 0.381 0.394 ARMAX 0.023 0.049 0.149 0.186

LR2 0.217 0.299 0.333 0.394 MRS3RS9 0.220 0.220 0.236 0.236
MRS2 0.197 0.299 0.329 0.394 MRS3RS6 0.204 0.220 0.213 0.236

ARMAX 0.166 0.299 0.302 0.394 MRS3RS3 0.182 0.220 0.169 0.236
MRS3RS3 0.404 0.404 0.386 0.394 MRS2RS9 0.150 0.220 0.163 0.236
MRS2RS9 0.341 0.404 0.325 0.394 MRS2 0.115 0.220 0.154 0.236
MRS1RS6 0.348 0.404 0.387 0.394 LR2 0.081 0.220 0.124 0.236

TVR1 0.240 0.404 0.316 0.394 TVR1 0.050 0.220 0.070 0.236
TVR2 0.473 0.473 0.473 0.473 TVR2 0.105 0.220 0.105 0.236
TVR3 —– 1.000 —– 1.000 TVR3 —– 1.000 —– 1.000

Table 6.13: MCS results for the forecasting period July-September 2006. Load period
28.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS1RS3 0.254 0.254 0.253 0.253 ARMAX 0.100 0.100 0.191 0.191
ARMAX 0.254 0.254 0.255 0.255 LR3 0.091 0.100 0.314 0.314

LR3 0.382 0.382 0.296 0.296 MRS3 0.396 0.396 0.504 0.504
MRS3 0.375 0.382 0.322 0.322 MRS1RS3 0.395 0.396 0.606 0.606
MRS2 0.375 0.382 0.382 0.382 MRS3RS9 0.395 0.396 0.673 0.673
MRS1 0.374 0.382 0.385 0.385 TVR3 0.846 0.846 0.705 0.705

LR2 0.372 0.382 0.399 0.399 MRS3RS6 0.835 0.846 0.754 0.754
TVR3 0.359 0.382 0.413 0.413 LR2 0.790 0.846 0.744 0.754
TVR1 0.359 0.382 0.427 0.427 MRS1 0.768 0.846 0.750 0.754

LR1 0.359 0.382 0.441 0.441 TVR1 0.762 0.846 0.743 0.754
TVR2 0.349 0.382 0.455 0.455 MRS3RS3 0.753 0.846 0.768 0.768

MRS3RS9 0.348 0.382 0.515 0.515 MRS2 0.695 0.846 0.749 0.768
MRS3RS6 0.341 0.382 0.518 0.518 LR1 0.674 0.846 0.764 0.768
MRS3RS3 0.317 0.382 0.523 0.523 TVR2 0.621 0.846 0.749 0.768
MRS1RS9 0.310 0.382 0.583 0.583 MRS2RS6 0.566 0.846 0.726 0.768
MRS2RS6 0.276 0.382 0.457 0.583 MRS1RS9 0.921 0.921 0.909 0.909
MRS1RS6 0.651 0.651 0.615 0.615 MRS2RS3 0.899 0.921 0.922 0.922
MRS2RS3 0.392 0.651 0.392 0.615 MRS1RS6 0.838 0.921 0.838 0.922
MRS2RS9 —– 1.000 —– 1.000 MRS2RS9 —– 1.000 —– 1.000
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Table 6.14: MCS results for the forecasting period January-March 2006. Load period
38.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

LR2 0.260 0.260 0.253 0.253 MRS3RS6 0.003 0.003 0.142 0.142
MRS1RS3 0.253 0.260 0.278 0.278 LR3 0.044 0.044 0.226 0.226

LR3 0.251 0.260 0.305 0.305 MRS1RS3 0.384 0.384 0.345 0.345
MRS2RS9 0.253 0.260 0.333 0.333 LR2 0.419 0.419 0.383 0.383

MRS2 0.246 0.260 0.326 0.333 LR1 0.496 0.496 0.445 0.445
LR1 0.230 0.260 0.321 0.333 MRS3 0.477 0.496 0.458 0.458

MRS3RS6 0.226 0.260 0.346 0.346 MRS2 0.463 0.496 0.494 0.494
MRS2RS3 0.595 0.595 0.421 0.421 MRS2RS9 0.494 0.496 0.540 0.540

MRS1 0.566 0.595 0.418 0.421 MRS1RS9 0.620 0.620 0.604 0.604
MRS1RS9 0.538 0.595 0.420 0.421 MRS2RS3 0.607 0.620 0.666 0.666

TVR2 0.501 0.595 0.431 0.431 MRS1 0.567 0.620 0.708 0.708
MRS3 0.527 0.595 0.504 0.504 MRS3RS3 0.532 0.620 0.763 0.763

ARMAX 0.554 0.595 0.536 0.536 MRS2RS6 0.471 0.620 0.732 0.763
MRS2RS6 0.790 0.790 0.601 0.601 TVR2 0.431 0.620 0.661 0.763

TVR3 0.795 0.795 0.684 0.684 TVR3 0.746 0.746 0.808 0.808
MRS3RS3 0.706 0.795 0.633 0.684 MRS3RS9 0.821 0.821 0.786 0.808

TVR1 0.517 0.795 0.538 0.684 MRS1RS6 0.740 0.821 0.712 0.808
MRS1RS6 0.486 0.795 0.486 0.684 TVR1 0.606 0.821 0.606 0.808
MRS3RS9 —– 1.000 —– 1.000 ARMAX —– 1.000 —– 1.000

Table 6.15: MCS results for the forecasting period April-June 2006. Load period 38.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

LR3 0.004 0.004 0.062 0.062 MRS2RS6 0.007 0.007 0.111 0.111
MRS3 0.004 0.004 0.085 0.085 LR2 0.007 0.007 0.177 0.177

LR2 0.004 0.004 0.124 0.124 LR3 0.008 0.008 0.254 0.254
MRS2RS6 0.004 0.004 0.181 0.181 MRS3 0.007 0.008 0.276 0.276
MRS1RS3 0.165 0.165 0.257 0.257 MRS1RS3 0.007 0.008 0.294 0.294

LR1 0.157 0.165 0.267 0.267 MRS3RS6 0.007 0.008 0.310 0.310
MRS3RS9 0.238 0.238 0.329 0.329 LR1 0.006 0.008 0.323 0.323

MRS2 0.234 0.238 0.380 0.380 TVR1 0.377 0.377 0.505 0.505
MRS2RS3 0.342 0.342 0.433 0.433 MRS3RS9 0.455 0.455 0.531 0.531
MRS3RS6 0.422 0.422 0.584 0.584 MRS3RS3 0.439 0.455 0.575 0.575
MRS1RS9 0.654 0.654 0.790 0.790 MRS1RS6 0.404 0.455 0.640 0.640
MRS3RS3 0.592 0.654 0.793 0.793 MRS2RS3 0.359 0.455 0.713 0.713

MRS1 0.839 0.839 0.868 0.868 MRS2 0.311 0.455 0.677 0.713
ARMAX 0.793 0.839 0.817 0.868 ARMAX 0.583 0.583 0.754 0.754

MRS1RS6 0.698 0.839 0.732 0.868 TVR3 0.510 0.583 0.776 0.776
TVR3 0.693 0.839 0.689 0.868 MRS1RS9 0.402 0.583 0.684 0.776
TVR1 0.561 0.839 0.609 0.868 TVR2 0.942 0.942 0.939 0.939

MRS2RS9 0.532 0.839 0.532 0.868 MRS1 0.919 0.942 0.919 0.939
TVR2 —– 1.000 —– 1.000 MRS2RS9 —– 1.000 —– 1.000
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Table 6.16: MCS results for the forecasting period July-September 2006. Load period
38.

Squared Error Loss Absolute Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS3RS3 0.677 0.677 0.259 0.259 MRS1RS3 0.434 0.434 0.369 0.369
LR2 0.641 0.677 0.297 0.297 MRS3RS6 0.417 0.434 0.390 0.390

MRS2RS3 0.706 0.706 0.356 0.356 MRS1RS9 0.400 0.434 0.416 0.416
MRS2RS6 0.674 0.706 0.374 0.374 LR3 0.380 0.434 0.437 0.437
MRS1RS3 0.659 0.706 0.383 0.383 LR2 0.369 0.434 0.491 0.491

LR3 0.659 0.706 0.403 0.403 MRS2RS3 0.355 0.434 0.588 0.588
MRS3RS6 0.657 0.706 0.427 0.427 LR1 0.327 0.434 0.578 0.588

MRS2 0.639 0.706 0.410 0.427 ARMAX 0.291 0.434 0.626 0.626
MRS3 0.621 0.706 0.413 0.427 MRS3RS3 0.647 0.647 0.697 0.697

MRS1RS9 0.600 0.706 0.406 0.427 MRS3RS9 0.613 0.647 0.711 0.711
MRS1RS6 0.552 0.706 0.426 0.427 MRS3 0.649 0.649 0.752 0.752

LR1 0.488 0.706 0.396 0.427 MRS2RS9 0.602 0.649 0.781 0.781
MRS3RS9 0.434 0.706 0.374 0.427 MRS2RS6 0.858 0.858 0.804 0.804
MRS2RS9 0.385 0.706 0.360 0.427 MRS1RS6 0.879 0.879 0.780 0.804
ARMAX 0.512 0.706 0.361 0.427 MRS2 0.833 0.879 0.762 0.804

MRS1 0.413 0.706 0.329 0.427 MRS1 0.770 0.879 0.762 0.804
TVR1 0.290 0.706 0.311 0.427 TVR2 0.563 0.879 0.610 0.804
TVR2 0.486 0.706 0.486 0.486 TVR1 0.548 0.879 0.548 0.804
TVR3 —– 1.000 —– 1.000 TVR3 —– 1.000 —– 1.000

6.2.2 Forecasts encompassing

Even with the choice of subsets of models conducted with the MCS method, in
some cases the number of models is high. The idea behind forecast combinations
is that the less-performing forecasts may provide some marginal information that is
not contained in the better forecast. In such a case, the combination will perform
better then either forecast alone. The question is if all the selected models contain
useful information for improving combination results. For this reason, we applied
the forecasts encompassing method to screen the models in each set.
Let f

(1)
t and f

(2)
t be two competing predictors of the variable of interest. Assume

that one of the two sets, say f
(1)
t , performs better by some criteria. If f

(2)
t contains

no useful marginal information, than it is said that f
(1)
t encompasses f

(2)
t .

A simple methodology that helps to show up if a set of forecasts encompasses an
other one has been developed by Fair & Shiller (1990). The testing procedure is
based on the following equation:

pt − pt−1 = α + β1(f
(1)
t − pt−1) + β2(f

(2)
t − pt−1) + εt. (6.12)

The intuition behind this testing procedure is straightforward. If both forecasts con-
tain useful and independent information concerning pt, then the estimates of both
the slope coefficients β1 and β2 should be significant. In contrast, if the information
in one forecast is completely contained in the other, then the coefficient of the sec-
ond forecast should be nonzero while that of the first one should be zero.
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Applying this method on the sets of models obtained for each season with the MCS
method, we obtained the following reduced sets of models:
Period 6
- winter: ARMAX MRS2RS6;
- spring: MRS2 MRS3;
- summer: MRS2 MRS3 TVR2;
Period 19
- winter: MRS2RS3 MRS3RS3 TVR2;
- spring: MRS2 ARMAX;
- summer: LR1 LR2 MRS1;
Period 28
- winter: TVR2 ARMAX;
- spring: LR2 TVR3;
- summer: MRS1RS6 MRS2RS9;
Period 38
- winter: MRS1RS6 TVR1;
- spring: MRS1 MRS2RS9 TVR2 TVR3;
- summer: TVR1 TVR3.
It is interesting to note that now the larger set contains only four models. Each
load period is characterized by particular dynamics that change with the seasons.
This is underlined by the pattern of models that is not the same during the year.
Load period 38 is the more volatile one: its dynamics is predicted by the combined
action of models with changing regimes (MRS) and time-adaptive models (TVR).
Markov regime-switching models estimated on rolling windows are useful during
spiky periods, as summer for period 28 and during periods characterized by struc-
tural changes, as winter season for load periods 6 and 19. In general, estimation
based on moving window performs better than that based on expanding window if
there is dynamic evolution in the specification. If we consider the different sets of
regressors, it doesn’t appear that one specification is better than the others.
For each season, the forecasts obtained with the selected models are combined with
the methods described in section 6.1. The next section contains comments on the
combination results.

6.3 Results of the combinations

Tables 6.17-6.20 contains relative measure values for the combinations carried out
at a seasonal level. Results highlight significant improvements respect to the combi-
nations with all the models, in fact the combination models outperforms or matches
also in each season the best model among the single ones. In particular, over the
whole forecasting period, improvements range from 4% to 21%.
To better understand the increasing in forecasting accuracy obtained by combi-
nation models, we carried out for the whole forecasting period the procedure for
MCS considering all the singular models and the combination models. We used loss
functions based on squared errors, squared percentage errors, absolute errors and
absolute percentage errors. Rankings and MCS p-values shown in tables 6.21-6.24
underline that combinations are superior respect to the singular models. In particu-
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lar, combinations with the Bates and Granger weights estimates on a rolling window
of 10 observations results to be the best models in terms of forecasting accuracy for
load periods 19, 28 and 38. In load period 6 best results are obtained with the
equally weighted combination or the BG expanding model. The reason is that load
period 6 is a base hour with a more stable behaviour than the other periods. So,
reasonably the models involved in the combination have similar forecast error vari-
ances. The other load periods are characterized by high variability and unexpected
jumps. This produces instability in the variance of the forecast errors, so the little
time-variation in the weights of the BG10 model becomes important. This is in line
with comments in section 6.1.
Only for load period 38, combination models are not superior to the singular model
with the best MSE value, but this result is not significative as pointed out by the
test of Diebold and Mariano (table 6.25).
In the light of our findings, the use of forecast combinations can be a good solution
also for the electricity price forecasting issue. However, because of the strong link
between singular model predictive accuracy and forecasting period, we recommend
to develop these methods at a seasonal level.

Table 6.17: Results of the combinations considering the subsets of models. Load
period 6.

mean

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.030 0.977 0.965 1.018
April-June 0.872 0.814 0.992 0.968

July-September 0.897 0.935 0.942 0.957

Whole Period 0.929 0.792 0.886 0.883

BG10

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.037 1.016 0.981 1.041
April-June 0.811 0.800 0.939 0.932

July-September 0.925 0.959 0.957 0.971

Whole Period 0.931 0.813 0.887 0.887

BGExp

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.043 0.992 0.970 1.025
April-June 0.839 0.821 0.947 0.938

July-September 0.914 0.951 0.947 0.963

Whole Period 0.937 0.804 0.881 0.880
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Table 6.18: Results of the combinations considering the subsets of models. Load
period 19.

mean

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 0.876 1.025 0.957 1.041
April-June 0.962 0.764 0.826 0.829

July-September 1.067 1.038 0.999 1.013

Whole Period 0.818 0.817 0.904 0.914

BG10

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 0.906 0.967 0.947 1.011
April-June 0.887 0.738 0.816 0.822

July-September 1.070 1.005 0.997 0.997

Whole Period 0.826 0.783 0.897 0.896

BGExp

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 0.960 0.946 0.947 1.001
April-June 0.898 0.766 0.834 0.845

July-September 1.070 1.003 0.997 0.998

Whole Period 0.844 0.779 0.900 0.898

Table 6.19: Results of the combinations considering the subsets of models. Load
period 28.

mean

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.016 0.989 0.992 0.991

April-June 1.090 0.982 1.029 1.000
July-September 0.816 1.026 0.895 1.037

Whole Period 0.854 0.937 0.887 0.961

BG10

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.023 0.997 0.994 0.993

April-June 1.099 1.005 1.036 1.013
July-September 0.783 0.976 0.868 1.012

Whole Period 0.849 0.927 0.881 0.956

BGExp

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.018 0.993 0.993 0.992

April-June 1.091 0.992 1.030 1.004
July-September 0.796 1.019 0.878 1.029

Whole Period 0.849 0.938 0.882 0.960
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Table 6.20: Results of the combinations considering the subsets of models. Load
period 38.

mean

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.236 0.872 0.976 0.958

April-June 0.986 0.922 0.970 0.980

July-September 1.251 0.954 1.042 0.982

Whole Period 1.117 0.879 0.932 0.908

BG10

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.256 0.870 0.981 0.957

April-June 0.981 0.925 0.966 0.979

July-September 1.250 0.909 1.022 0.952

Whole Period 1.132 0.864 0.931 0.898

BGExp

Forecasting Period RMSE RMSPE RMAE RMAPE

January-March 1.240 0.901 0.982 0.969

April-June 0.985 0.915 0.959 0.968

July-September 1.262 0.971 1.046 0.987

Whole Period 1.121 0.898 0.936 0.912
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Table 6.21: MCS results for the whole forecasting period with the combinations. Load
period 6.

Squared Error Loss Squared Percentage Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS1RS9 0.169 0.169 0.072 0.072 MRS3RS6 0.002 0.002 0.007 0.007
MRS1RS6 0.163 0.169 0.073 0.073 MRS1RS9 0.002 0.002 0.007 0.007

LR1 0.158 0.169 0.074 0.074 LR3 0.002 0.002 0.007 0.007
MRS1 0.154 0.169 0.075 0.075 MRS1RS3 0.002 0.002 0.005 0.007

MRS1RS3 0.142 0.169 0.074 0.075 MRS3RS9 0.008 0.008 0.006 0.007
MRS3RS6 0.135 0.169 0.074 0.075 MRS1RS6 0.008 0.008 0.005 0.007

LR3 0.127 0.169 0.074 0.075 LR1 0.008 0.008 0.005 0.007
MRS2RS9 0.116 0.169 0.073 0.075 TVR3 0.007 0.008 0.005 0.007
MRS3RS9 0.113 0.169 0.074 0.075 MRS3RS3 0.008 0.008 0.005 0.007

MRS3 0.103 0.169 0.072 0.075 TVR1 0.007 0.008 0.006 0.007
MRS3RS3 0.102 0.169 0.071 0.075 MRS1 0.005 0.008 0.006 0.007
MRS2RS6 0.094 0.169 0.074 0.075 MRS2RS3 0.004 0.008 0.004 0.007

MRS2 0.087 0.169 0.078 0.075 MRS2RS9 0.004 0.008 0.003 0.007
MRS2RS3 0.081 0.169 0.078 0.078 MRS3 0.006 0.008 0.005 0.007

TVR3 0.079 0.169 0.072 0.078 ARMAX 0.004 0.008 0.001 0.007
TVR1 0.066 0.169 0.099 0.099 LR2 0.007 0.008 0.001 0.007

LR2 0.301 0.301 0.267 0.267 MRS2 0.024 0.024 0.004 0.007
TVR2 0.682 0.682 0.559 0.559 MRS2RS6 0.019 0.024 0.002 0.007

ARMAX 0.659 0.682 0.588 0.588 TVR2 0.017 0.024 0.010 0.010
BGExp 0.580 0.682 0.526 0.588 BG10 0.313 0.313 0.221 0.221

BG10 0.836 0.836 0.836 0.836 BGExp 0.191 0.313 0.191 0.221
mean —– 1.000 —– 1.000 mean —– 1.000 —– 1.000

Absolute Error Loss Absolute Percentage Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS1RS3 0.003 0.003 0.010 0.010 MRS3RS6 0.000 0.000 0.000 0.000
MRS3RS6 0.003 0.003 0.009 0.010 MRS1RS3 0.000 0.000 0.000 0.000
MRS1RS9 0.003 0.003 0.009 0.010 LR3 0.000 0.000 0.001 0.001

LR3 0.003 0.003 0.010 0.010 MRS3RS9 0.000 0.000 0.001 0.001
LR1 0.003 0.003 0.009 0.010 MRS1RS9 0.000 0.000 0.002 0.002

MRS1RS6 0.002 0.003 0.009 0.010 MRS1RS6 0.000 0.000 0.001 0.002
MRS3RS9 0.002 0.003 0.012 0.012 LR1 0.000 0.000 0.002 0.002

MRS1 0.002 0.003 0.011 0.012 MRS3RS3 0.000 0.000 0.001 0.002
MRS3RS3 0.002 0.003 0.010 0.012 TVR3 0.000 0.000 0.001 0.002
MRS2RS9 0.002 0.003 0.009 0.012 ARMAX 0.000 0.000 0.002 0.002

TVR3 0.008 0.008 0.011 0.012 MRS1 0.001 0.001 0.002 0.002
ARMAX 0.007 0.008 0.011 0.012 TVR1 0.001 0.001 0.001 0.002

LR2 0.006 0.008 0.010 0.012 MRS2RS9 0.003 0.003 0.003 0.003
MRS2RS6 0.006 0.008 0.006 0.012 LR2 0.022 0.022 0.004 0.004

MRS2 0.006 0.008 0.011 0.012 MRS2RS6 0.041 0.041 0.004 0.004
TVR1 0.005 0.008 0.006 0.012 MRS2RS3 0.049 0.049 0.004 0.004
MRS3 0.089 0.089 0.024 0.024 TVR2 0.037 0.049 0.009 0.009

MRS2RS3 0.071 0.089 0.021 0.024 MRS3 0.046 0.049 0.021 0.021
TVR2 0.052 0.089 0.039 0.039 MRS2 0.034 0.049 0.039 0.039
BG10 0.495 0.495 0.636 0.636 BG10 0.394 0.394 0.545 0.545
mean 0.687 0.687 0.687 0.687 mean 0.798 0.798 0.798 0.798

BGExp —– 1.000 —– 1.000 BGExp —– 1.000 —– 1.000



100 Forecast combinations

Table 6.22: MCS results for the whole forecasting period with the combinations. Load
period 19.

Squared Error Loss Squared Percentage Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

LR3 0.014 0.014 0.155 0.155 MRS3RS6 0.020 0.020 0.046 0.046
MRS3RS6 0.012 0.014 0.165 0.165 LR3 0.019 0.020 0.049 0.049
MRS3RS9 0.011 0.014 0.172 0.172 MRS3RS3 0.015 0.020 0.047 0.049

MRS3 0.011 0.014 0.186 0.186 MRS3RS9 0.015 0.020 0.041 0.049
MRS2RS6 0.009 0.014 0.190 0.190 MRS2RS6 0.014 0.020 0.036 0.049

TVR3 0.009 0.014 0.191 0.191 MRS2RS3 0.014 0.020 0.049 0.049
MRS1RS9 0.009 0.014 0.174 0.191 MRS1RS3 0.012 0.020 0.051 0.051

TVR1 0.007 0.014 0.156 0.191 MRS3 0.012 0.020 0.068 0.068
LR2 0.007 0.014 0.152 0.191 MRS2RS9 0.011 0.020 0.062 0.068

ARMAX 0.006 0.014 0.144 0.191 MRS1RS9 0.072 0.072 0.098 0.098
MRS1 0.006 0.014 0.125 0.191 TVR3 0.067 0.072 0.104 0.104

MRS2RS3 0.005 0.014 0.106 0.191 MRS1RS6 0.064 0.072 0.102 0.104
MRS2RS9 0.049 0.049 0.194 0.194 MRS2 0.052 0.072 0.107 0.107

TVR2 0.042 0.049 0.164 0.194 ARMAX 0.327 0.327 0.143 0.143
LR1 0.039 0.049 0.136 0.194 MRS1 0.305 0.327 0.126 0.143

MRS2 0.032 0.049 0.106 0.194 LR2 0.279 0.327 0.109 0.143
MRS1RS3 0.030 0.049 0.075 0.194 TVR1 0.244 0.327 0.100 0.143
MRS3RS3 0.134 0.134 0.227 0.227 LR1 0.209 0.327 0.080 0.143
MRS1RS6 0.589 0.589 0.517 0.517 TVR2 0.208 0.327 0.119 0.143

BGExp 0.612 0.612 0.621 0.621 mean 0.278 0.327 0.257 0.257
BG10 0.711 0.711 0.711 0.711 BG10 0.597 0.597 0.597 0.597
mean —– 1.000 —– 1.000 BGExp —– 1.000 —– 1.000

Absolute Error Loss Absolute Percentage Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

LR3 0.000 0.000 0.005 0.005 MRS3RS6 0.001 0.001 0.003 0.003
MRS3RS6 0.000 0.000 0.006 0.006 LR3 0.002 0.002 0.003 0.003
MRS2RS6 0.000 0.000 0.008 0.008 MRS2RS6 0.002 0.002 0.003 0.003
MRS3RS9 0.000 0.000 0.009 0.009 MRS3RS3 0.002 0.002 0.004 0.004
MRS2RS3 0.000 0.000 0.010 0.010 MRS3RS9 0.003 0.003 0.006 0.006
MRS2RS9 0.001 0.001 0.016 0.016 MRS2RS3 0.002 0.003 0.008 0.008

MRS3 0.007 0.007 0.023 0.023 MRS3 0.002 0.003 0.009 0.009
MRS1RS9 0.013 0.013 0.034 0.034 MRS2RS9 0.002 0.003 0.013 0.013
MRS3RS3 0.011 0.013 0.032 0.034 MRS1RS3 0.061 0.061 0.024 0.024
MRS1RS3 0.062 0.062 0.038 0.038 MRS1RS9 0.054 0.061 0.037 0.037

TVR3 0.054 0.062 0.045 0.045 MRS1RS6 0.050 0.061 0.044 0.044
MRS2 0.047 0.062 0.054 0.054 TVR3 0.042 0.061 0.053 0.053

MRS1RS6 0.133 0.133 0.069 0.069 MRS2 0.037 0.061 0.062 0.062
LR1 0.193 0.193 0.090 0.090 LR1 0.177 0.177 0.085 0.085
LR2 0.176 0.193 0.078 0.090 MRS1 0.196 0.196 0.085 0.085

ARMAX 0.150 0.193 0.077 0.090 LR2 0.162 0.196 0.092 0.092
MRS1 0.122 0.193 0.081 0.090 TVR2 0.141 0.196 0.098 0.098
TVR2 0.086 0.193 0.097 0.097 ARMAX 0.191 0.196 0.125 0.125
TVR1 0.168 0.193 0.173 0.173 TVR1 0.417 0.417 0.224 0.224
mean 0.760 0.760 0.711 0.711 mean 0.313 0.417 0.293 0.293

BGExp 0.536 0.760 0.536 0.711 BGExp 0.697 0.697 0.697 0.697
BG10 —– 1.000 —– 1.000 BG10 —– 1.000 —– 1.000
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Table 6.23: MCS results for the whole forecasting period with the combinations. Load
period 28.

Squared Error Loss Squared Percentage Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

MRS1RS3 0.099 0.099 0.118 0.118 LR3 0.009 0.009 0.010 0.010
LR3 0.099 0.099 0.122 0.122 MRS3RS6 0.009 0.009 0.014 0.014

MRS3 0.096 0.099 0.123 0.123 MRS2RS6 0.034 0.034 0.022 0.022
MRS1 0.096 0.099 0.126 0.126 MRS2RS3 0.031 0.034 0.027 0.027

LR2 0.093 0.099 0.119 0.126 MRS3RS9 0.027 0.034 0.034 0.034
MRS2 0.091 0.099 0.117 0.126 ARMAX 0.028 0.034 0.046 0.046

ARMAX 0.087 0.099 0.117 0.126 MRS3RS3 0.028 0.034 0.051 0.051
TVR3 0.085 0.099 0.114 0.126 MRS3 0.025 0.034 0.078 0.078
TVR1 0.085 0.099 0.111 0.126 MRS1RS3 0.023 0.034 0.094 0.094

MRS3RS6 0.085 0.099 0.101 0.126 MRS1RS6 0.020 0.034 0.093 0.094
MRS2RS3 0.078 0.099 0.083 0.126 MRS2RS9 0.018 0.034 0.117 0.117
MRS3RS9 0.062 0.099 0.100 0.126 LR1 0.016 0.034 0.108 0.117

LR1 0.056 0.099 0.084 0.126 MRS1RS9 0.021 0.034 0.165 0.165
MRS3RS3 0.054 0.099 0.066 0.126 TVR3 0.584 0.584 0.333 0.333
MRS2RS6 0.048 0.099 0.053 0.126 LR2 0.512 0.584 0.384 0.384

TVR2 0.060 0.099 0.080 0.126 MRS1 0.484 0.584 0.447 0.447
MRS1RS6 0.056 0.099 0.052 0.126 MRS2 0.570 0.584 0.494 0.494
MRS2RS9 0.045 0.099 0.039 0.126 TVR1 0.778 0.778 0.578 0.578
MRS1RS9 0.268 0.268 0.208 0.208 TVR2 0.702 0.778 0.606 0.606

mean 0.651 0.651 0.664 0.664 BGExp 0.786 0.786 0.748 0.748
BGExp 0.985 0.985 0.985 0.985 mean 0.553 0.786 0.553 0.748

BG10 —– 1.000 —– 1.000 BG10 —– 1.000 —– 1.000

Absolute Error Loss Absolute Percentage Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

LR3 0.010 0.010 0.052 0.052 LR3 0.002 0.002 0.004 0.004
MRS3 0.010 0.010 0.062 0.062 MRS2RS3 0.002 0.002 0.005 0.005

MRS1RS3 0.010 0.010 0.061 0.062 MRS3RS6 0.001 0.002 0.006 0.006
MRS3RS9 0.010 0.010 0.049 0.062 MRS3RS9 0.001 0.002 0.008 0.008
MRS3RS6 0.010 0.010 0.048 0.062 MRS2RS6 0.001 0.002 0.009 0.009
ARMAX 0.009 0.010 0.048 0.062 MRS3RS3 0.014 0.014 0.017 0.017

MRS3RS3 0.009 0.010 0.043 0.062 MRS1RS3 0.045 0.045 0.028 0.028
MRS2RS3 0.008 0.010 0.041 0.062 MRS3 0.039 0.045 0.025 0.028

LR1 0.008 0.010 0.053 0.062 MRS1RS6 0.035 0.045 0.027 0.028
LR2 0.007 0.010 0.046 0.062 ARMAX 0.035 0.045 0.036 0.036

MRS1 0.006 0.010 0.039 0.062 MRS1RS9 0.032 0.045 0.049 0.049
MRS2RS6 0.006 0.010 0.033 0.062 LR1 0.060 0.060 0.074 0.074

MRS2 0.027 0.027 0.048 0.062 MRS2RS9 0.074 0.074 0.116 0.116
TVR3 0.024 0.027 0.040 0.062 MRS1 0.343 0.343 0.175 0.175

MRS1RS6 0.021 0.027 0.030 0.062 LR2 0.364 0.364 0.190 0.190
MRS1RS9 0.019 0.027 0.030 0.062 TVR3 0.444 0.444 0.227 0.227
MRS2RS9 0.014 0.027 0.039 0.062 MRS2 0.387 0.444 0.322 0.322

TVR1 0.449 0.449 0.208 0.208 TVR2 0.446 0.446 0.447 0.447
TVR2 0.453 0.453 0.318 0.318 TVR1 0.800 0.800 0.676 0.676
mean 0.566 0.566 0.499 0.499 mean 0.767 0.800 0.737 0.737

BGExp 0.669 0.669 0.669 0.669 BGExp 0.605 0.800 0.605 0.737
BG10 —– 1.000 —– 1.000 BG10 —– 1.000 —– 1.000
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Table 6.24: MCS results for the whole forecasting period with the combinations. Load
period 38.

Squared Error Loss Squared Percentage Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

LR3 0.164 0.164 0.070 0.070 MRS3RS6 0.015 0.015 0.041 0.041
LR2 0.193 0.193 0.071 0.071 LR2 0.013 0.015 0.047 0.047

MRS2RS3 0.198 0.198 0.081 0.081 LR3 0.012 0.015 0.047 0.047
MRS1RS3 0.280 0.280 0.082 0.082 MRS3RS3 0.012 0.015 0.054 0.054
MRS3RS6 0.280 0.280 0.095 0.095 MRS1RS3 0.011 0.015 0.054 0.054

MRS2 0.260 0.280 0.093 0.095 LR1 0.022 0.022 0.076 0.076
LR1 0.250 0.280 0.094 0.095 MRS1RS9 0.021 0.022 0.072 0.076

ARMAX 0.249 0.280 0.107 0.107 MRS2RS6 0.019 0.022 0.072 0.076
MRS2RS6 0.239 0.280 0.115 0.115 MRS3 0.017 0.022 0.063 0.076
MRS2RS9 0.211 0.280 0.119 0.119 MRS2RS3 0.016 0.022 0.064 0.076
MRS1RS9 0.202 0.280 0.114 0.119 MRS2 0.155 0.155 0.104 0.104
MRS3RS3 0.193 0.280 0.111 0.119 MRS2RS9 0.149 0.155 0.096 0.104

TVR2 0.167 0.280 0.113 0.119 MRS3RS9 0.136 0.155 0.089 0.104
MRS3 0.216 0.280 0.147 0.147 ARMAX 0.215 0.215 0.112 0.112
MRS1 0.208 0.280 0.154 0.154 MRS1RS6 0.287 0.287 0.140 0.140
TVR1 0.203 0.280 0.192 0.192 MRS1 0.350 0.350 0.145 0.145

MRS1RS6 0.432 0.432 0.386 0.386 TVR3 0.288 0.350 0.151 0.151
BG10 0.602 0.602 0.526 0.526 TVR2 0.300 0.350 0.170 0.170
TVR3 0.484 0.602 0.505 0.526 TVR1 0.266 0.350 0.158 0.170

BGExp 0.398 0.602 0.463 0.526 BGExp 0.258 0.350 0.211 0.211
mean 0.551 0.602 0.551 0.551 mean 0.251 0.350 0.251 0.251

MRS3RS9 —– 1.000 —– 1.000 BG10 —– 1.000 —– 1.000

Absolute Error Loss Absolute Percentage Error Loss

Model p.r MCS.r p.sq MCS.sq Model p.r MCS.r p.sq MCS.sq

LR3 0.020 0.020 0.009 0.009 MRS3RS6 0.002 0.002 0.007 0.007
MRS3RS6 0.028 0.028 0.013 0.013 MRS1RS3 0.001 0.002 0.013 0.013
MRS1RS3 0.026 0.028 0.015 0.015 LR3 0.016 0.016 0.018 0.018

LR1 0.025 0.028 0.018 0.018 LR2 0.044 0.044 0.026 0.026
LR2 0.023 0.028 0.019 0.019 LR1 0.042 0.044 0.027 0.027

MRS2RS3 0.022 0.028 0.023 0.023 MRS3RS3 0.037 0.044 0.028 0.028
MRS3 0.020 0.028 0.026 0.026 MRS3 0.034 0.044 0.031 0.031
MRS2 0.018 0.028 0.024 0.026 MRS1RS9 0.034 0.044 0.035 0.035

MRS3RS3 0.017 0.028 0.021 0.026 MRS3RS9 0.030 0.044 0.036 0.036
MRS1RS9 0.042 0.042 0.029 0.029 MRS2RS3 0.027 0.044 0.054 0.054
MRS2RS6 0.040 0.042 0.024 0.029 MRS2RS6 0.024 0.044 0.065 0.065
MRS2RS9 0.044 0.044 0.034 0.034 MRS1RS6 0.022 0.044 0.073 0.073
MRS3RS9 0.042 0.044 0.033 0.034 MRS2RS9 0.131 0.131 0.092 0.092
MRS1RS6 0.036 0.044 0.056 0.056 MRS2 0.118 0.131 0.084 0.092

MRS1 0.196 0.196 0.091 0.091 ARMAX 0.108 0.131 0.063 0.092
TVR2 0.169 0.196 0.106 0.106 TVR2 0.085 0.131 0.063 0.092
TVR1 0.140 0.196 0.153 0.153 MRS1 0.108 0.131 0.089 0.092

ARMAX 0.424 0.424 0.291 0.291 TVR1 0.081 0.131 0.083 0.092
TVR3 0.522 0.522 0.382 0.382 TVR3 0.306 0.306 0.169 0.169

BGExp 0.552 0.552 0.624 0.624 BGExp 0.378 0.378 0.358 0.358
mean 0.829 0.829 0.829 0.829 mean 0.294 0.378 0.294 0.358
BG10 —– 1.000 —– 1.000 BG10 —– 1.000 —– 1.000
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Table 6.25: P-values obtained with the test of Diebold and Mariano with four loss
functions between the B-G combination (l = 10) and the best single model on the
whole forecasting period. Load periods 6, 19, 28 and 38.

SE SPE AE APE
Load period 6 0.518 0.012 0.018 0.036

Load period 19 0.021 0.045 0.016 0.027
Load period 28 0.031 0.232 0.204 0.152
Load period 38 0.608 0.036 0.079 0.027





Chapter 7

Conclusions and further research

During the last twenty years electricity price modeling and forecasting has become
a heated topic of research. Many techniques have been proposed from the use of
linear models to the developing of more complex nonlinear models with jumps and
time-varying parameters. Despite this seemingly large number of models and related
empirical analysis on a wide range of power markets, results are mixing and there is
no single model that provides convincing superior performance in forecasting spot
prices.
In our work a systematic comparative study of different forecasting techniques is
proposed. The scope is to evaluate the relative forecasting performance and to un-
derstand if there is a particular class of models that outperformes all the others.
Included in the study are linear ARMAX models, different specifications of multiple
regression models, non linear Markov switching regression models and time-varying
parameter regression models. One-day ahead forecasts are obtained for each model
and evaluated according to prediction error statistics and the Diebold and Mariano
test for equal predictive accuracy. Forecasting results in chapter 5 highlight that no
model globally outperforms the others. Different forecasting models capture differ-
ent features of spot price dynamics, so no model produce good forecasts in all the
situations. This is confirmed also by the Diebold and Mariano testing procedure
applied to the models in section 5.6.
So, we propose a forecasting approach based on the combination of forecasts (chap-
ter 6). The use of combination models is novel in the electricity price forecasting
context.
Methods from Bates & Granger (1969) and the equally weighted combination are
considered and applied to all the models. Results are not very appealing: too much
variability is introduced in the combinations because of models that perform very
poorly during particular seasons and/or for particular hours. In literature it has
been established that it is often advantageous to discard the models with the worst
performance. Considering each season separately, subsets of models are choosen
applying the model confidence set procedure (Hansen et al., 2005) and the forecasts
encompassing method (Fair & Shiller, 1990). In this way, poorly-performing mod-
els and models that do not contain useful information about price dynamics are
discarded. Findings highlight that each load period is characterized by particular
dynamics that change with the seasons and this reflect to the models’ forecasting
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performance. For this reason we propose a combination applied at a seasonal level.
Results highlight the usefulness of the procedure, showing that combining forecasts
at a seasonal level have the potential to produce predictions of superior or equal
accuracy relative to the best individual forecasts.
In the light of our findings, forecast combinations can work well also in the elec-
tricity price forecasting context if the forecasting period is considered. There is a
strong link between singular model predictive accuracy and forecasting period. Our
recommendation is to develop these methods at a seasonal level.

Aspects of further development are not absent. The articles of Mount et al.
(2006) and Kanamura & Ōhashi (2008) opened a new issue of research about regime
switching models with time varying parameters. It would be interesting to develop
this kind of models with both the parameters of the regimes and the transition
probabilities with a time-varying structure, and to applied them in the forecasting
context.
In the time-varying regression model developed in our work, we specified the parame-
ter process as a random walk. Other specifications are also possible: the parameters
can be specified as depending on an autoregressive process with some important
fundamentals as exogenous variables. Moreover, since the models are estimated
separately each hour of the day, it does not embed the possibility of intra-daily
effects among different hourly prices, especially in a market like in the UK, where
electricity is traded each period at a time.
Future research is also addressed to the study of different specifications of combi-
nation models. Yang (2004) proposed a combination for adaptation method called
Aggregated Forecast Through Exponential Re-weighting (AFTER). Sánchez (2008)
pointed out that this method is not adaptive in a nonstationary situation and in-
troduced a forgetting factor in the estimation of the weights of the combination. It
would be interesting to study the behaviour of this combination model applied to
electricity price data.
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