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Sommario

Questa tesi di dottorato raccoglie i contributi principali dell’attivita di ricerca svolta
durante i tre anni del mio percorso di dottorato. Come suggerisce il titolo, ’attivita’
di ricerca condotta in questo triennio é divisa in due parti principali. La prima
riguarda ’argomento di ricerca che ho seguito sin dall’inizio sui sistemi di downlink
Multiuser MIMO con feedback limitato; ¢ parte di un ampio filone di ricerca finaliz-
zato alla progettazione della quarta generazione di sistemi cellulari, e piu’ in generale
di futuri sistemi di comunicazioni wireless con terminali mobili. In particolare, i miei
studi si sono concentrati sui sistemi cellulari in cui le stazioni base sono provviste
di antenne multiple; la presenza di piu’ antenne alla stazioni base fornisce dei gradi
di liberta’ nelle comunicazioni di downlink, ovvero nelle comunicazioni dalla stazioni
base ai terminali mobili, che possono essere utilizzati per servire piu’ di un utente
simultaneamente e ottenere un rate piu’ elevato rispetto al caso singola antenna.
A tal fine €’ pero’ necessario fornire alla stazioni base la conoscenza dei canali di
downlink per ciascuno degli utenti che intende servire; tanto piu’ fine e’ la stima
del canale in possesso della stazioni base, tanto maggiore e’ il rate raggiungibile in
questo schema di downlink. La progettazione di strategie di feedback, con cui i ter-
minali trasmettono su un canale dedicato informazioni sul canale di downlink alla
stazioni base e’ quindi un aspetto di grande interesse, essendo il canale di feedback a
rate limitato (dell’ordine di qualche bit/simbolo). In particolare, mi sono occupata
della scelta del quantizzatore e delle strategie di feedback che tenessero conto della
correlazione temporale del canale. All'inizio del triennio (gennaio 2007) la maggior
parte delle analisi teorica era stata sviluppata; di conseguenza, il mio lavoro ¢ in-
centrato sull’ottimizzazione dei parametri del sistema, tenendo conto delle limitate
risorse disponibili in uno scenario realistico. I contributi principali riguardano la
progettazione del canale di feedback a rate limitato e algoritmi di scheduling subot-
timi a bassa complessita, sia per sistemi single carrier che in uno scenario OFDM.

In particolare, i contributi riguardanti la progettazione del canale di feedback a
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rate limitato traggono vantaggio dalla correlazione temporale del canale, utilizzando
sistemi di quantizzazione con memoria. E’ stato inoltre proposto un algoritmo di
scheduling a bassa complessita’, e si sono studiate le prestazioni in confronto con i
principali algoritmi presenti in letteratura. Tale confronto evidenzia che a parita’ di
condizioni, I’algoritmo da noi proposto e’ caratterizzato da prestazioni analoghe alle
altre soluzioni e molto vicine all’ottimo, sia in termini di throughput che di outage
throughput, ma con una minor complessita’. La seconda e piu recente parte della tesi
affronta 'argomento della stima di segnali vitali, ovvero la respirazione e il battito
cardiaco, attraverso un sistema remoto, dove non c¢’e’ contatto tra il sensore ed il tar-
get a distanza. Questo argomento e’ stato affrontato, in collaborazione con Philips
Research, Eindhoven (NL), dove sono stata come Visiting Student da ottobre 2008 a
maggio 2009. Ho studiato la tecnologia ultra wide band per il rilevamento remoto dei
segni vitali, con il vincolo di rispettare i limiti di potenza imposti dalla legislazione
vigente. Lo studio e’ stato condotto sia analiticamente, che tramite simulazioni, ed
infine attraverso I’allestimento di una demo e la raccolta di risultati sperimentali. In
particolare, ho proposto un modello generico per il segnale ricevuto e descritto ana-
liticamente la modulazione che i segnali vitali operano sui principali parametri del
segnale ricevuto. Sulla base di questo modello, ho studiato le tecniche di rilevazione
del respiro e del cuore periodi di battere; in particolare, ho proposto un metodo di
stima del periodo a bassa complessita’, che migliora le prestazioni di altre soluzioni
proposte in letteratura, sia in termini di errore quadratico medio che di complessita’
richiesta. Infine, é stato derivato lo stimatore maximum likelihood (ML), ed ¢é stato

verificato che il metodo proposto risulta da un’approssimazione del metodo ML.



Abstract

This PhD thesis collects the main contribution of my research activity, performed
during my PhD program. As the title suggests, it is divided into two main parts.
The first part collects the research I performed since the beginning of my PhD on
Multiuser multiple input multiple output (MIMO) downlink systems with limited
feedback; the topic is part of the wide research work on the fourth generation cellular
systems. When [ begun my research, on January 2007, most of the theoretical
analysis had already been illustrated; therefore, my work focused on optimizing
system parameters considering the limited resources available in a realistic scenario.
The main contributions are on the design of the low rate feedback channel, and
sub-optimal, low complexity scheduling algorithms, both in single carrier and in a
orthogonal frequency division multiplexing (OFDM) scenario.

The second, and most recent part of the thesis deals with remote sensing of vital
signs, i.e. respiration and heart rate; [ have been addressing this topic since October
2008, in cooperation with Philips Research, Eindhoven (NL), where I have been
visiting student. We investigated the ultra wide band technology for remote sensing
of vital signs. We propose a generic model for the received signal and described how
vital sign modulates the main parameters of the received signal. Furthermore, we
focused on detection techniques of respiration and heart beating periods; we derived
the ML period estimator of a zero mean signal with unknown shape, and we proposed
a novel low complexity approximated ML estimator. The proposed methods have
application in many areas where only the periodicity is required and the complexity is
an important issue. In particular, we applied the proposed algorithms to the remote
heart rate estimation problem; both simulation and experimental results indicate
that the proposed method outperforms the state of the art methods in detecting the
period of a signal with low signal to noise ratio like the heart beating, even with a
short observation of the periodic signal.

Though the two parts of research I performed during my PhD program seem to have
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little in common, they can be investigated with the same analytical tools, particularly

for signal processing and detection techniques.



Part 1

Multiuser MIMO Downlink Systems
with Limited Feedback






Main Abbreviations and Notation

BF: beamforming;

BFB: basic feedback;

BS: base station;

C: Codebook;

CC: centroid condition;

CLS: complex locations;

CDI: channel direction information;
CMUX: complex multiplications;
CQI: channel quality information;
CSI: channel state information;
CSIT: channel state information at the transmitter side;
CV: channel vector;

DPC: dirty paper coding;

E[]: expectation operator;

EA: exhaustive algorithm;

FB: feedback signalling;

FDD: frequency division duplexing;

LBG: generalized Linde, Buso, and Gray algorithm;



LTE: long term evolution;

M: number of BS antennas;

MG: multicarrier greedy algorithm;
MIMO: multiple input multiple output;
MMSE: minimum mean square error;
MSE: mean square error;

MSUS: multicarrier semi orthogonal user selection algorithm;
MT: mobile terminal;

MU: multiuser;

NNC: nearest neighborhood condition
OFDM: orthogonal frequency division multiplexing;
PBG: projection based greedy algorithm;
PDEF': probability density function;

PFB: predictive feedback;

PFS: proportional fair scheduler;

QEV: quantization of the error vector;
QoS: quality of service;

RB: resource block;

RM: unitary rotation matrix;

RVQ: random vector quantization;

SC: single carrier;

SCM: spatial channel model;

SNIR: signal to noise plus interference ratio;



SPPBG: projection based greedy with simplified preselection algorithm;
SR: sum rate;

SU: single user;

TDD: time division multiplexing

TS: training set;

UD: updown feedback;

WSR: weighted sum rate;

ZF: zero forcing;
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Introduction

Next generation wireless cellular systems are expected to support high quality mul-
timedia services; this motivates the interest in multi antenna (MIMO) systems,
where both spatial diversity and multiplexing can be used to increase the achiev-
able throughput. In fact, it has been shown that the downlink capacity of a MIMO
system with perfect channel state information (CSI) scales as a linear function of
the number of transmit antennas [2]. Although non linear dirty paper coding (DPC)
scheme achieves the system capacity, it has a high computational cost [3], and sim-
pler solutions have been investigated. Linear beamforming has been shown [4] to
achieve a large part of DPC capacity; in particular, zero forcing (ZF) beamforming
matched to an opportunistic scheduling is widely used [4].

However, benefits of MIMO are obtained only by a proper scheduling of trans-
missions, which opportunistically exploits channel conditions in order to increase
throughput, while ensuring quality of service (QoS). Several scheduling techniques
have been proposed for MIMO single carrier (SC) systems on flat fading channels
based on various approaches, including clique search [5], maximization of the Frobe-
nius norm of the composite channel matrix |6, 7|, user channel orthogonality |8, 9, 10],
single bit feedback [11], waterfilling [12], tree search [13|, evolutionary algorithm |14]
and greedy scheduling [15] extended to the case of limited feedback in [16]. In
some cases, optimization of scheduling and power allocation are performed jointly
[5, 6, 7, 11, 12, 14|, while in other cases only scheduling is considered |8, 9, 10, 15].
Moreover, QoS oriented multiuser scheduling and beamforming have been investi-
gated in [17], in order to conciliate the request of high throughput with low packet
delays. An overview of research on cross layer scheduling for multiuser MIMO SC
systems is given in [18]. A similar problem to multiuser MIMO scheduling can be
found in other transmission systems, such as multicarrier code-division multiple ac-
cess [19].

In frequency selective channels, SC modulation is often replaced by orthogonal fre-
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quency division multiplexing (OFDM) due to its efficiency in overcoming multipath
fading. In fact, the combination of MIMO and OFDM technology is a good candi-
date for future wireless cellular systems, as it has been proposed for downlink in the
long term evolution (LTE) release of 3GPP standard |20, 21|. When MIMO OFDM
is considered, scheduling becomes more complex, as the number of resources to be
allocated, i.e. the number of subcarriers, increases and only suboptimal approaches
are viable [13]. Complexity is further increased in a frequency division duplexing
(FDD) system, where CSI is provided to the base station (BS) by each mobile ter-
minal (MT) through a feedback (FB) channel. In fact, due to the limited FB rate,
only a partial CSI is available at the BS and additional processing is required to
compensate the channel uncertainty. Some of the scheduling techniques considered
for SC transmissions can be extended to OFDM. For example, in [22] a scheduling
algorithm has been proposed for MIMO OFDM systems which extends the method
proposed in [15] for SC systems: the set of scheduled MTs on each subcarrier is built
in a greedy fashion, by adding one user at the time with the aim of maximizing a
weighted sum rate (WSR). In [23] this approach has been further simplified to avoid
the need of computing a new beamforming matrix upon the insertion of a new can-
didate in the set of scheduled MTs. A further scheduling simplification is achieved
by excluding from the selection process MTs that would not contribute to the WSR,
by introducing a bound of their signal to noise plus interference ratio [24].

In this first part of the thesis, we propose efficient and low complexity strategies
for multiuser MIMO downlink systems. We discuss the main parameters of a MIMO
SC downlink systems, i.e. the beamforming, scheduling and feedback signalling.
Then we revise the scheduling techniques proposed in the literature for multiuser
MIMO OFDM system with limited feedback and compare them both in terms of
computational and memory cost and in terms of achieved throughput in a LTE
3GPP scenario.

This part is organized as follows. In Chapter 1 we describe the downlink MIMO
SC system; in particular we discuss beamforming techniques and FB strategies. In
Chapter 2 we introduce the OFDM MIMO system, and we discuss the scheduling
strategies. Experimental results are illustrated in Chapter 3.

In Chapter 4 we derive some conclusion of this first part of the thesis. Notation:
bold upper and lower letters denote matrices and vectors, respectively; (-)7 denotes
Hermitian operation (transpose complex conjugate), while (-)7 denotes transpose;

| - || is the vector norm, and E [-] stands for expectation trace.



Chapter 1

Multiuser MIMO SC Downlink
System

In multiuser MIMO downlink systems the BS requires channel knowledge to achieve
spatial multiplexing across users. While in time division duplexing (TDD) systems
CSIT can be acquired from channel estimation in the uplink, in FDD systems CSIT
can be obtained only by setting up an explicit FB channel from each user. Since
the number of bits required to describe the channels grows as the product of the
number of transmit and receive antennas, the channel delay spread and the number
of users [25], only by a proper optimization of the FB signalling its impact on the
network throughput can be limited. In fact, if a reliable CSIT provides an higher
system throughput, on the other hand a low FB rate is necessary to guarantee an
high payload.

The tradeoff between CSI quality and FB rate has been recently addressed and var-
ious aspects have been investigated including transmitter and receiver design [26],
[27], [28] and feedback optimization in both single user (SU) and multiuser (MU)
systems [29], [30], [31] [32].

FB bits are mostly used to index a set of vectors (or codewords) in a codebook C
which is known to the transmitter and all receivers. For example, b bits per feedback
interval can be used to index a codebook with 2° vectors. For a transmitter, each
codeword in C is a multi-dimensional vector that characterizes the MIMO channel for
that user or more generally provides information on the reconstruction of the user’s
channel. A well-designed codebook will contain codewords that effectively span the
set of MIMO channels experienced by the users |30], [31].

In SU systems it has been shown that only a few FB bits (roughly on the order of

13



14 Chapter 1. Multiuser MIMO SC Downlink System

transmit antennas) are needed to achieve near perfect-CSIT performance. On the
other hand, in downlink channels accurate channel knowledge is essential to avoid
multiuser interference and a severe degradation of the achievable throughput [26].
An opportunistic user selection approach can increase the performance of this sys-
tem, leading to asymptotically optimum performance when the number of users goes
to infinity [29],|26],[28] . In |16, 33] the codebook is a set of vectors randomly cho-
sen from an isotropic distribution on the unit hypersphere, in a space having the
dimension of the number of BS antennas. This technique is called random vector
quantization (RVQ).

In this chapter we focus on single-antenna mobile terminals and SC scenario; in par-
ticular, we investigate the beamformer design for a opportunistic downlink MIMO
system, i.e. the transmission from the BS to a group of MTs, selected by the BS,
using the multiplexing properties of the MIMO system. The term opportunistic
underlines that the BS policy of user selection favors the MT with a good channel
quality.

In Section 1.2, we revise ZF beamforming and propose a new minimum mean square
error (MMSE) beamformer under incomplete CSIT that takes into account the quan-
tization error of the channel vector |34]. As shown in [35] under perfect CSIT, MMSE
BF shows significant performance improvements in case of randomly selected users
but gives reduced gains with respect to ZF BF in case of opportunistic user selec-
tion. In the second part of the chapter, we propose various channel quantization
techniques and FB strategies based on the Lloyd-Max algorithm [36] that exploit
both spatial and time correlation of the MIMO channel. In particular in Subsection
1.4.2 we derive a Up-or-Down (UD) FB approach where FB bits are accumulated
over multiple signalling intervals in order to index a much larger codebook; this tech-
nique has been proposed in [37], and then it has been extended to the multi antenna
receiver scenario with the name of hierarchical FB (HFB), e.g. [38, 39|.

Moreover we propose new predictive FB strategies where both BS and MTs pre-
dict the evolution of the channel vector and users adjusts the prediction by feeding
back a quantized version of the prediction error to the BS [37, 34]. Finally, we
describe a predictive FB strategy with unitary rotation matrix, exploiting the geo-
metric properties of unit norm CDI vectors; a similar technique has been proposed
in [40] for a single user MIMO scenario, and it is here generalized to the multiuser
scenario. In Section 1.3 a general quantization scheme is described: the generalized
Linde, Buso, and Gray (LBG) algorithm is described in Section 1.3.1, and used for
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codebook design in Subsection 1.3.2; finally, the quantization process is described.
In Section 1.4 we introduce four different FB strategies: i) Basic Feedback (BFB),
ii) UpDown Feedback (UD), iii) Predictive Feedback with quantization of the error
vector (QEV), and iv) Predictive Feedback with Unitary Rotation Matrix (RM). A

numerical comparison of the proposed strategies is given in Chapter 3.

1.1 System Model

We consider the downlink of a cellular system where a BS has M transmit antennas
and K’ MTs have one antenna each. The symbol period is denoted as T, transmission
is performed in time slots of duration 7" and in each time slot MTs feed back a partial
CSI, which is used by the BS to schedule downlink transmissions.

For slot n, let S(n) be the set of MTs scheduled for downlink transmissions, /s a
natural number, and d(¢) and y(¢) be the column vectors of transmitted and received
signals at time t = [T}, respectively. We consider a flat fading channel described by
the complex |S(n)| x M matrix H(t) = [hy(t), ..., hisw) ()]

The discrete-time complex baseband model is given by
y(t) = H()d(t) + n(t), (1.1)

where n(t¢) is a complex Gaussian vector noise with i.i.d. components having zero
mean and unit variance.

The transmit signal is subject to the average power constraint
Eflda®|*] <P, (1.2)

where P is the available power. From (1.2) and noise assumptions, the average
system signal to noise ratio at the receiver is SNR = P.

The channel matrix H(¢) is not perfectly known at the BS while we assume that
MT k perfectly estimates the channel vector hy(t) once a slot. As in [33, 16] we adopt
a double FB information and each MT feeds back i) a channel direction information
(CDI) of the direction of channel vector (CV) at each slot, namely

~ hy(nT)
B = iy ()] -
and 7i) a channel quality information (CQI), evaluated as
o PP
1+ 37| hl[*(1 — [hi'hy|?)
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where hy, is the unit-norm reconstructed CVs of MT k. We focus here on the quan-
tization and FB of the CDI. We assume that the FB channel has a finite rate of 0
bits per slot and allows zero-delay error free transmissions.

The BS stores the partial CSI of selected users into the matrix H(S(n)) =
[h,, (n),..., Es‘s(n)‘ (n)]*, with s; € S(n), containing the unit-norm reconstructed CVs.
Based on the partial CSI, the BS evaluates the M x |S(n)| complex beamforming
matrix G (S(n)) = [gl, o ,g‘g(n)d, and vector p enforcing the power constraint

(1.2), i.e. [16]
P

P 1Sm)en(n)]

Once MTs have been selected for downlink transmission, the transmitted vector d(t)

(1.5)

is obtained by beamforming, i.e.,
d(t) =G diag(p)"/? (S())u(t) nT <t<(n+1)T, (1.6)

where vector u(t) = [ui(t), ..., wsm)(t)]" contains the MT data symbols for time
slot n, which are assumed independent and identically distributed (i.i.d.) with zero

mean and unit variance. The MT k signal to noise ratio (SNIR) is given by

prlhe(t)ge(n)[?
1+ ZieS(n)\k pilhy(t)gi(n)[?

SNIR(t) = (L.7)

1.2 Beamformer Design

In this section we briefly review the ZF-BF design and derive a new MMSE-BF under
incomplete CSI assumptions. For ease of notation we drop both the slot (n) and the

time (¢) index.

1.2.1 Zero-Forcing Beamforming

The ZF approach aims at nulling the interference at the M'Ts and the corresponding
transmit matrix is the normalized version of the right pseudo-inverse of H. According

to ZF-BF, the beamformer can be written as

-1

GUH(8) = H(S)! (H(S)H(S)T) ., (1.8)

Provided that each MT feeds back to the BS its current CQI value, an estimate of
the SNIR for MT k has been derived in [16] as



1.2. Beamformer Design 17

%(fZF) = &kPk » (1.9)

under the following assumptions: a) CV with i.i.d. components, each Rayleigh

fading, b) equal power distribution among signals transmitted to MTs, ¢) |S| = M.

1.2.2 MMSE Beamforming

The MMSE beamformer aims at minimizing the sum mean square error (MSE) of
the received signals. To this end, we first decompose the CV relative to MT £ into

two orthogonal vectors f;, and €, parallel and orthogonal to hy, respectively, with
hy, = [[hy[] (£ + €x) (1.10)

where f, = cos ©ih; and cos O = |f1ka1k| Let also define F = [fl,...,f‘s‘]T and
E = [e1,...,€s5]". We assume that MT k divides the received signal by f||hy]|,
where (8 is a power normalization coefficient. In this case, by defining the matrix

N = diag (||hu]], ..., [|hys|||), the normalized received signal can be written as
y ="' (F+E)G(S)u+ 5 'N'n. (1.11)

The MMSE-BF design aims at jointly optimizing G(S) and § in order to minimize
the MSE, i.e.,

GWMMSE)(S) = arg minE [Hy' - u}ﬂ (1.12)
G(5),8

under the power constraint (1.2), without imposing equal power allocation among
MTs. The expectation in (1.12) is taken with respect to data, noise and the direction
of the error vectors €, while from (1.10) we observe that ||e||> = sin*(©y).

The constrained minimization is solved by the Lagrangian multipliers. We assume
that € are statistically uncorrelated and that the unit-norm vector €, = €;/||€x|]
assumes all directions orthogonal to hy, with equal probability.

We derive here E [€,€//] under the hypothesis: a) hi’é, = 0; b) €€, = 1; ¢)
l_lkHl_lk = 1; d) all direction of €, in the space orthogonal to hy are equally probable.

From vector hy, by the orthonormalization procedure of Gram-Schmidt, we ob-
tain a N x N — 1 orthonormal matrix A, such that l_lkHAk =0 and €, = Apxy, with

x; a N — 1-size unit-norm vector. We also have

E[é €] = AE[z x| AL (1.13)
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Then, we can write [@], = | [@k], |e/?#s. We assume that ¢y, are i.i.d. uniform

random variables in (0, 27|, while [|x|]; are i.i.d. zero mean variables, so that

q_ )0 P#q
Elz,z;] = { Bz, p=q. (1.14)

We now write x; in hyper spherical coordinates as

|[&x)i| = cos(¢ Hsmgbp i=1,2,...,.N—2,

N-2
[[ze]n-1] = H sin(¢p) ,
p=1
where ¢;, 1 = 1,2,..., N — 2 are independent uniform random variables in the range

(0,27]. Hence we obtain E[|[z4],|*] = &, p < N — 1 and E[|[z4],]?] = 5v=-
Lastly, by defining R = E[E E|, from the assumption that all vectors €, are
independent, from (1.17) we obtain

5]
R =E[E"E] = Zsm (0,)A (1.15)

where = is a diagonal matrix with entries

[Elpp = o P N-1, [Ely-in1= SN2 (1.16)

Ay is an N x (N — 1) matrix having as columns a base of the space orthogonal to
hy; from (1.13) and (1.14) we obtain also

E[€;el] = AJEAT . (1.17)

Then, by defining the normalized matrix

-1
G = [FHF+R+ I] FY (1.18)

2 _ 1
where 0%, = > o T and

P
N A — 1.19
p trace (GHG) ( )
we obtain
GWMMSE) — 3G (1.20)
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The SNIR relative to MT k can be written as
||bg| %] (b cos O + €] sin Oy g|?
L+ {[hgef 2372 | (hf cos Oy, + €l'sin O) g;|*

Neglecting the second term in the numerator of (1.21), i.e., € g ~ 0, and taking

SNIR, = (1.21)

the expectation with respect to the interference term in the denominator of (1.21),
we obtain the SNIR estimate

7(MMSE) _ ||}£k| | cos” Oy g |?
‘ 1+ |[hy|[? cos? O 32, i gil* + [ |hy|[2 sin® ©4, 3, ., 8/ E [€:€] ] &
(1.22)
Note that for the MMSE-BF design, the BS must know two CQIs beyond CDI:

a) the channel norm ||hg|| and b) the correlation cos ©y.

1.3 FB Codebook Design

We introduce in this Section the LBG quantization strategy, proposed in [37]. In
particular, in Subsection 1.3.1 we introduce the generalized LBG algorithm [41] as
a practical algorithm for the codebook design when the probability density function
(PDF) is unknown. Based on LBG, the codebook design strategy is then described
in 1.3.2

1.3.1 Generalized Quantization LBG Algorithm

We first recall here the generalized Lloyd algorithm for vector quantization. Let
d(s, c;) be a distortion metric where s € C" is the source vector and ¢; € C¥ is
a generic codeword of codebook C. The generalized Lloyd algorithm [42], generates
the optimum codebook that minimizes the average distortion,
mink [d(s, c,)] (1.23)
Q]
where ¢,, = Q[8] is the quantized vector at minimum distortion.

The algorithm comprises two steps:

e Nearest neighborhood condition (NNC). Given a codebook C = {cy,...,cn},
the optimum partition region (Voronoi cell) R;, i =1,..., N of the codevector

indexed by ¢ satisfies

R;={s :d(s,c;) > d(s,c;), VYl #i} . (1.24)
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e Centroid condition (CC). For given regions {R;, i = 1,... N}, the optimum

quantization code-vectors c; satisfy

¢; = argmin E[d(s, c@)‘ s e RZ} (1.25)

cye cM

fori=1,...,N.

These two steps are iterated until the distortion minimization criterion converges.
In particular, we adopt the alternative approach led by Linde, Buso, and Gray (LBG),
which considers a large set of vector realizations {s,} referred as training sequence
and replace the statistical expectation E[d(s,ci)} s € Ri] by the sample average

m%_ ZR d(sp, ¢;), where m; is the number of elements of training sequence inside R;.
SnER;
We recall that the LBG algorithm converges to a minimum that is not guaranteed

to be global, nevertheless it provides a practical way for codebook design even when

the PDF of the source signal is not known or difficult to characterize.

1.3.2 Codebook Design

For the scenario of CDI FB that we are considering, since system performance is
measured in terms of the achievable sum rate, a criterion of the codebook design is
the maximization of the estimated SNIR. For a ZF beamforming, maximization of the
estimated SNIR is equivalent to the maximization of the average correlation (1.28),
since it provides simultaneously the maximization of the numerator and minimization
of the denominator of (1.9). For a MMSE beamforming scenario, the maximization
of the average correlation (1.28) provides the maximization of the numerator of the
estimated SNIR 1.22. Therefore, in both cases the criterion of the codebook design
is

max F [|ﬁ;~§c;;|2} (1.26)

where ¢ is the unit norm code vector from the codebook C at minimum chordal
distance from the channel direction flk.

The generalized Lloyd algorithm [42] can be used to generate the optimum code-
book according to (1.26), which can be implemented by the LBG approach [43],
where the expectation is evaluated as the average on a finite training set (TS) of
CVs, randomly chosen according to the channel statistics.

We consider a variant of the LBG algorithm that proceeds iteratively by levels

in the codebook design, according to the following steps:
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1. From the TS, compute the optimum codebook with two codevectors by the
LBG algorithm;

2. Split the TS into two subsets, where each subset collects all the CVs of the TS
at minimum chordal distance from the corresponding codevectors;

3. Recursively iterate steps 1) and 2) to each of the subsets of TS.

This binary construction procedure can be represented by a binary tree of B levels,
having at level i the codewords of the optimal codebook with 2¢ elements.

With the designed codebook, quantization can be performed with a binary search
on the tree, thus requiring a lower computation complexity than conventional quan-
tization, at the expense of a larger memory.

A binary representation (codeword) of each codevector is obtained by associating
a bit to each of the two branches exiting a node and identifying a node at level ¢
with the 7 bits on the branches leading from the root. As a consequence, all nodes
of the subtree departing from a node at level ¢ have the same ¢ most significant bits.
The codeword of 7 4 1 bits associated to a CV can be obtained by adding one bit to
the CV representation with ¢ bits.

Moreover, slight changes of the channel in subsequent time slots most probably
lead to codewords with the same most significant bits. This feature is the key aspect
in the UD signaling.

1.3.3 Quantization

MT k£ quantizes the normalized CV flk into a codevector ¢, whose index of b bits is

fed back at each slot. ¢; is selected from a codebook of unit norm codevectors
C={ci,...,cn} (1.27)

with N = 2°. The quantization criterion is the minimum chordal distance (see e.g.

[44] for a general definition), i.e

h, = argmax |hlc*|. (1.28)
{ceC}ln=1,...N

1.4 FB Signalling Design

In this Section we investigate different techniques for FB signalling. Firstly, we in-

troduce the basic technique, which consists on transmitting the quantized version
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of the actual CV. Then, we propose different FB strategies exploiting the channel
correlation in time domain, and in particular: the UD FB approach where FB bits
are accumulated over multiple signalling intervals in order to index a much larger
codebook; predictive FB strategies where both transmitter and users predict the
evolution of the channel vector and users feed back a quantized version of the predic-
tion error to the transmitter; a predictive FB strategy with unitary rotation matrix,

exploiting the geometric properties of unit norm CDI vectors.

1.4.1 Basic FB

The simplest FB signalling can be performed by quantizing and transmitting directly
the CDI; in other words, M'T k£ quantizes h; to a unit norm vector hy and selects as
codeword ¢ = flk; the codebook index corresponding to ¢ is then sent to the BS.
We denote this signaling technique as basic FB (BFB). In BFB, the correlation in
time of the MIMO channel is not exploited, and the FB signalling is redundant. In
fact, if the channel is changing sufficiently slowly, and assuming that the codebook
complies with the nearest neighbor condition, described in Section 1.3.1, the FB
signalling of MT k in two adjacent slots differs only of few bits. Based on these
considerations we propose different FB strategies, where the mobile CDI FB are
aggregated over multiple FB intervals so that the aggregated bits index a larger
codebook. By aggregating the FB bits over multiple intervals, the codewords can

indicate a variation w.r.t. the past CDIs.

1.4.2 UD FB Signaling

The Up-or-Down (UD) FB signalling technique is based on the tree description of the
vector quantizer and an incremental FB strategy, exploiting the channel correlation
in time domain.

We assume that at slot n— 1, both BS and MT & share the reproduced CV hy(n—1),
represented by a binary word of variable length Ls(n — 1).

At slot n, MT k quantizes hy(n) into hy(n) and compare the first Ly(n — 1) bits
of the binary representations of hy(n) and hy(n — 1). The comparison leads to two
cases, corresponding to a match (Down case) or no match (Up Case) between the
two sequences. Let ix(n) be the binary word of b bits fed back by MT k& at time
slot n. The first bit i ;(n) denotes the Up or Down case. The following bits are

determined as follows:
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e Down Case. The CSI is refined by feeding back further b — 1 bits of the B-
bits code word. These additional bits are obtained by going down by b — 1
levels into the quantization tree. This is performed by feeding back bits at
position Lg(n — 1) 4+ 1,...,Ls(n — 1) + b — 1 of the codeword associated to
hy(n). Moreover, Ly(n) = Ly(n —1) +b— 1.

e Up Case. The CSI must be updated and the b — 1 bits Ly(n —1) —2(b—1) +
1,....Lyn—1) —b+ 1 of the codeword associated to hy(n) are fed back to
BS. Now, Ls(n) = Ls(n—1) — b+ 1.

The proposed algorithm can be easily generalized to account for boundary con-
ditions imposing that b — 1 < Lg(n) < B. Thanks to this strategy we are able to
track channel variations at the cost of an overhead of one flag bit. In this case, the

transmitted binary word ix(n) has not a single relation to ¢(n), because it has been
derived from hy(n) and hy(n —1).

1.4.3 Predictive FB (PFB)

The predictive FB (PFB) strategy is based on predictive vector quantization [45].
As depicted in Fig. 1.1, at slot n, both BS and MT obtain a prediction h,(f)(n)
of the CV direction hy(n), based on past reproduced values {hy(m), m < n}. For
example, a simple first order linear predictor yields h,(cp ) (n) = hg(n — 1) where only
the previous CSI value is used for prediction. Next, each MT quantizes the prediction
error e, (n) = hy(n) — h,(f)(n) and feeds back to BS ix(n), a binary representation of
the quantized vector error é;(n) using b bits. Both BS and MT update the reproduced
CV hy(n) by combining the predicted vector with the quantized prediction error, i.e.,

. h{” (n) + &(n)
hp(n) =
M = ) + el

, (1.29)

denoted as +/||.|| in Fig. 1.1.

In this case, the codebook of the prediction error quantizer is designed by the LBG
algorithm minimizing the MSE El||e, — ¢;||?]. We follow the open loop approach,
hence from a TS we first obtain the set of channel predictions and channel prediction
errors {ex(n)}, which are then used to design of the codebook by the LBG algorithm.
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1.4.4 Unitary Rotation Matrix Predictive FB (RM)

We propose a further FB technique based on the quantization of the prediction error.
In particular, since h,(cp) (n) and hy,(n) are unit-norm vectors, we model the prediction
error as a rotation vector from the predicted vector h,(f )(n) to the true normalized
CV hy(n).

In details, at slot n both MT % and BS derive in the complex hyperspace CM*!
of the MIMO channel a unitary basis whose first element is given by the predicted
vector h,(gp) (n). This is done by computing the unitary M x M matrix Wy(n) obtained
by the Gram-Schmidt orthogonalization procedure [36] applied to the columns of
(0" (n) I,;], where I, is the M x M identity matrix. With this definition the
components of h"’ (n) in the new basis are the constant vector u = Wy (n)?h'" (n) =

[10 ... 0], while the prediction error vector is defined as
er(n) = WH(n)hy(n). (1.30)

Let éx(n) be the quantized version of ej(n) fed back to the BS. The reconstructed

vector is defined as
Bk(n) = Wy(n)ég(n). (1.31)

We note that ex(n) is expected to lie with high probability in an hyper-cone cen-
tered around the constant vector u = [1,0,...,0]” and whose surface area, although
depending on channel time correlation, is usually much smaller than the complete
surface area of the unitary hyper-sphere described by flk(n) This suggests that
for a target quantization distortion we need fewer codewords to quantize the pre-
diction error ej(n) than what we would need to quantize hy(n) as in RVQ [33] or
Grassmannian line packing [30].

For codebook design we use the LBG algorithm minimizing the average distance

S .
mclnN—TSZ > d(ci h(n)), (1.32)

i=1 h(n)eR;

where C = {cy, ¢y, ...,cn,}, N. = 2P, is the generic codebook and R; is the partition
region of the training set associated to codeword c;.

From (1.23) and (1.31) the distance to be minimized is given by

2

d(c,h(n)) = 1— |bf(n)W(n)c
= 1 —c"WH(n)h(n)h (n)W(n)c . (1.33)
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We follow the open loop approach, hence from a sequence of channel vectors {h(n)}
we derive the set of channel predictions {h")(n)}, which are used to compute {W(n)}
in (1.33).

We notice that if we define the M x M complex matrix relative to the partition

region R; of the training set

Ai= > W n)h(n)h" ()W (n), (1.34)

from (1.23) and (1.33) we have that the optimum codeword for the partition region

R; is the dominant eigenvector of matrix A; normalized to unit norm.
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Figure 1.1: Predictive FB (PFB).



Chapter 2

Multiuser MIMO OFDM Downlink

Systems

MIMO and OFDM are known to provide higher network throughput for the broad-
cast (downlink) channel, provided that transmissions are suitably scheduled. How-
ever, scheduling techniques proposed in Chapter 1 for MIMO SC systems |18, 17/,
are exceedingly complex when used for OFDM systems, as the number of resources
to be allocated increases significantly [13|. Complexity is further increased in FDD
systems, where a quantized version of the CSI is provided to the base station by each
MT through a FB channel. Among existing efficient solutions we mention the iter-
ative user selection greedy algorithm, proposed for SC systems [15], which requires
the computation of a beamforming matrix at each iteration. We propose suboptimal
scheduling algorithms, based on simplified BF evaluation during the user selection
process. In Section 2.1 the OFDM MIMO downlink system model is illustrated.
Section 2.2 addresses the tradeoff between an opportunistic approach in user selec-
tion, providing high average sum rate, and quality of service (QoS) requirements: we
introduce a general multiuser scheduling, the opportunistic maximum sum rate strat-
egy, and the multicarrier proportional fair scheduling. In Section 2.3 the SC greedy
approach is extended and refined. Three user selection strategies are illustrated: i)
multicarrier greedy (MG), obtained by extending the SC greedy algorithm; ii) pro-
jection based greedy algorithm (PBG), a refined greedy algorithm which requires
a lower complexity, and iii) multicarrier semi orthogonal user selection (MSUS). A
further refinement of PBG algorithm which performs user selection on a subset of
candidate users based on the CQI, is introduced in Section 2.4. Complexity analysis

and memory requirements are evaluated for each user selection strategy in Section

27
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2.5. Part of this work has been published in |22, 23].

2.1 System Model

We consider the downlink of a cellular system based on OFDM [46| with N subcar-
riers. The BS has M transmit antennas while K mobile terminals (MTs) have one
antenna each. Transmission is performed in time slots of L OFDM symbols, while
FB signalling is performed on a time-frequency structure called resource block (RB),
according to LTE. For each time slot, we consider in frequency domain NV sets of Ng
adjacent subcarrier; the RB is defined as the couple time slot, subcarrier set. For
each RB, MTs feed back a partial CSI, which is used by the BS to schedule downlink
transmissions. In other words, for each time slot each MT feeds back N partial CSI,
instead of No = N - Ng, and therefore both time and frequency channel correlation
are exploited.

At slot n, let Sp(n) = {uic(n),use(n), -+, ws,my(n)} be the set of [S.(n)| MTs,
ui.(n) € {1,---, K}, scheduled for downlink transmission on RB ¢ € {1,---,N}.
We denote as stream the (MT,RB) pair (k,c). Let also P(n) be the set of streams

scheduled at slot n, i.e.
P(n) ={(k,c)|k € Se(n),ce {1,--- ,N}}. (2.1)

In our analysis we model the channel as quasi static, i.e., it is considered invariant
for the duration of one OFDM symbol, and it has the same frequency response on
all subcarriers of each RB.

Hence, the frequency response of the MIMO channel on RB ¢ of OFDM symbol
t for all M transmit antennas and all [U.(n)| MTs is described by the complex
U.(n)| x M channel matrix H.(t) = [hy.(¢),...,hsm).(t)]", where the M x 1
column channel vector (CV) hy () collects the gains between the M antennas of BS
and stream (k, c).

In general, for OFDM symbol ¢, d.(t,m), and y.(t, m) are, respectively, the M x 1
and |S.(n)| x 1 column vectors of the transmitted and received signals on subcarrier
m of RB ¢. The discrete-time complex baseband transmission model for subcarrier

m of RB c is given by
ye(t,m) = H.(t)d.(t,m) + n.(t,m), m=1,--- Ng, (2.2)

where n.(t,m) is a |S.(n)| x 1 complex Gaussian noise vector with i.i.d. components

having zero mean and unit variance. The transmit signal is subject to the average
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power constraint E [Zivzl SN de(t, m)HQ} < P, where P is the available power.
In order to exploit spatial diversity, the transmit signal is obtained from the |S.(n)|x1
data signal U.(¢, m) by applying the ZF BF matrix G. (nL), ie.

d.(t,m) = Gc(nL)diag{pc(nL)}l/2Uc(t,m), nL<t<(n+1)L, (2.3)

where p.(nL) is the power normalization vector which enforces equal stream power,

l.e.
P

Po =Bl duelt:m) IF) = s oo

(2.4)

and dy .(t,m) is the kth entry of d.(t,m).

2.1.1 FB Information

In a FDD system, CSI is provided through a FB channel; therefore, as in the SC case,
we assume that matrix H.() is not perfectly known at the BS while MT & perfectly
estimates the CVs once at each slot, i.e. ¢ =nL, to obtain hy .(nL), c=1,2,..., N.
As in the SC scenario, described in Chapter 1, we adopt a double FB information
for all MT at each slot. In particular, at slot n MT k feeds back for each RB ¢: i) a
CDI hy,, which ideally should track the normalized CV flm(nL), namely

~ hkc(nL)
heo(nl) = —2A2) g N, 2.
) = )] € 29

and 7i) a CQI, based on the estimated SNIR at the receiver for M orthogonal sched-
uled users evaluated as [16]

[y o(nL)[[*[ by (nL) by o (n L)
1+ six hee(nD)|2(1 = [h(nL)hy(nL)[?)

Epe = (2.6)

We assume that the FB channel has a finite rate of IV, bits per slot and per M'T and
allows zero-delay error free transmission. The BS builds the matrix

H.(nL) = [h,, (nL),...,h (L), ui. € So(n) (2.7)

? U Se(n)] e

containing the unit-norm reconstructed CVs hy.(nL). Using the partial CSI, BS
evaluates an estimate v, .(n) of the SNIR of stream (k, c) as will be seen in Section
2.3. ZF beamforming with equal power distribution among streams is implemented
for each RB, hence the BF matrix is

GZF(nL) = A (nL) (H.(nL)H? (L))~ . (2.8)
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An estimate of the normalized (with respect to the bandwidth) rate achieved by
stream (k,c) € P(n) at slot n is

Rio(n,P(n)) =logy(1 + Yc(n)). (2.9)

Notation Ry .(n,P(n)) highlights the fact that rates achieved by different streams
are mutually dependent, as i) more streams allocated simultaneously on the same
RBs yield interference, and i) the total power is distributed among active streams.

Performance is evaluated in terms of WSR

R(P(n) = > wi(n)Ric(n,Pn)), (2.10)
(k,c)eP(n)

with wy(n) suitable weights that take into account fairness and QoS constraints.

2.1.2 Exhaustive Search Scheduling

At each slot, we aim at scheduling the set of streams that maximizes WSR.
M K|

i=1 (K —i)!
evaluating the WSR achieved by each candidate set. Unfortunately, this exhaustive

This problem can be solved by considering all (> )Y possible sets and

search (EA) scheduling has a high computational cost which becomes infeasible for
an increasing number of MTs and subcarriers. Simpler and suboptimal scheduling

methods are investigated in Section 2.3.

2.2 Maximum Utility Scheduler

In order to balance the opportunistic use of channel resources with fairness among
MTs, we consider a multiuser scheduler. We first consider in this section general
criteria for the choice of weights of the WSR and we derive the optimum maximum
utility scheduler weights for a general utility function. Then we specialize the result

for the maximum sum rate scheduler and the proportional fair scheduling.

2.2.1 General Multiuser Scheduling

The achievable rate associated with MT £ is

Ri(n, P(n)) = > Ri.(n,P)
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. In the first slot, the average throughput achieved by MT £ is

. The estimate of the average throughput achieved by MT k can be updated as

(1 —ap)Ti(n) + axRe(n,P(n)) ke C[JSC(n) :
Ti(n+1) = S (2.11)
(1 — ax)Ti(n) k¢ USe(n),

N
where | JS.(n) is the set of scheduled MTs at slot n. If we aim at achieving an
c=1

average throughput py for MT k, we can define the normalized averaged throughput

at slot n as

Byi(n) = - (2.12)

In [47], the following concave and differentiable utility function has been proposed

to design schedulers

pr(l—ap)" 1
(033 1—

U(Bk(n)) =

(B ()~ 1), (213)

where x € [0,1) U (00) is a fairness parameter to be chosen according to the desired
scheduling policy. For example, for K =1, a, — 0, pp = 1 and x — 1 we obtain the
proportional fair scheduler (PFS). For x = 0 we obtain the utility function of the
mazimum sum-rate scheduler. When k — oo, (2.13) becomes the utility function of
the maz-min scheduler.

We derive the scheduler that maximizes the sum utility

] =

Un(By(n)) . (2.14)

k=1

Following the derivations of [47|, the maximization of the sum utility (2.14) is

achieved for

1 1
P(n) = argmax » Uy {—5k(z)ak3k(n,z) + —(1 — ap)Tx(n) (2.15)
e k:(k,c)eZ Pk P

where 6,(Z) = 1if k € Z and 0,(Z) = 0 if k ¢ Z. For all but the scheduled MTs, the



32 Chapter 2. Multiuser MIMO OFDM Downlink Systems

allocated rate at slot n is zero, therefore we have

P(n) = arg max Z Uk [ arRi(n,T) + i(1 —ap)Tx(n)| +

Pk
(k,c)EL
< (2.16)

- > U L)k (1 — ap)T(n )}

k:(k,c)eT

Under the assumption (1 — oy)7T%(n) > aipRi(n,Z), the following approximation
holds
1
Uk {—akRk(n,I) +
Pk

- ak)Tk(n)} — Uy [ia —~ ak)Tk(n)] ~

o (;k Pk (2.17)
~ OékRk (TL,I) ) .
T - )/
The derivative can be written as
ou, 1—ay)™
5(‘C) L= )y (2.18)
T 1) Te(m)/on APy,
Hence, the set of MTs P(n) that maximizes (2.14) is
P(n) = argmax R (Z) = argmax Z wi(n)Ryo(n,I), (2.19)
Icy cy
(k,c)eT
with weights
Ryo(n, Z)pj
wr(n) = : ) 2.20
M= D (1 — ag)"Ti(n)" (2:20)

c:(k,c)eT

where Y = {(k,c): k€ {1,--- ,K},c € {1,---, N}}is the set of all possible streams.
Note that for K =1, (2.20) boils down to the maximum utility scheduler of [47].

2.2.2 Maximum Sum Rate Scheduler

The mazimum sum rate scheduler does not consider the fairness among users (k = 0),

and simply aims at maximizing the achievable sum rate (SR), providing wy = 1, for
k=1,--- K, and

P(n) = argmax R (Z) = arg max Z Ri.(n,T). (2.21)

cy
(k c)eT
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2.2.3 Proportional Fair Scheduling

The multiuser multicarrier proportional fair scheduling (MMPFES) algorithm [48] is
an extension to the OFDM multi-user scenario of the PFS algorithm.

For MMPFS, the average throughput of MT £ is updated as in (2.11) with oy, = 1/7,
where 7 is a parameter related to the time over which fairness should be achieved.
In [49] it has been shown that proportional fairness, maximizing >, log, Tj(n), is

achieved by scheduling MTs as

Rk c(n,I) )
P(n) = arg max lo 1+ ’ . 2.22
( ) %C)) (k%;I g2 < (7_ o 1)Tk(n o 1) ( )

We observe that for 7 >> 1 we can approximate

Rye(n,T) ) o~ Bre(nT) (2.23)

log, (1 + (1 —DTitn—1)) = (1 — )Ti(n — 1)

and MPFS (2.22) coincides with the maximization of the WSR (2.19) with weights
(2.20), pp =1, oy =L and K = 1.

2.3 Greedy Scheduling Strategies

In the following we investigate sub-optimal solutions to the problem (2.19) for a few
MTs, i.e. small K, where the probability of having a fully loaded system is small.
In fact, in this scenario power distribution has an important role in selecting the
optimal MT set. In Section 2.3.3 we will consider the case of a high number of MTs
K, and in this case a simplification of scheduling is possible. For ease of notation we
drop both slot (n) and OFDM symbol (¢) index in the remaining of the Chapter.

2.3.1 Multicarrier Greedy (MG)

In [15], a greedy scheduling algorithm in a SC flat fading system has been proposed,
where MTs are selected one by one as long as the throughput increases and it has
been then extended to an OFDM system in [22| and denote here multicarrier greedy
(MG).

The MG algorithm comprises Ny, steps, and at each step we select the stream
that maximizes the increase of WSR. Let S be the set of streams scheduled for
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transmission at step i, (i = 1,---, Nyep), with the corresponding WSR R(S®).
Initially we have S = @. The stream selected at step i + 1, is

k,c) = ar max R (SYU{(k,c)}), 2.24
(o) —arg | max RSV U{(k,0)}) (2.24)

and we set U = SO U {(k,c)}. The WSR R (S™) increases at each step, since

stream (k, c) is inserted under the condition that
R (S U{(k,2)}) >R (SY). (2.25)

When (2.25) does not hold, the algorithm is stopped, Ny, = i and P = SWster),
Hence, Ny, is a random variable. Evaluation of the WSR in (2.24) for the current
set of streams is based on the SNIR estimate [15] for stream (j,c) € SW U {(k, )},
with (k,c) € Y\ SY, i.e.

(i+1) P

7]'70 - . i €j7C ) (226)
(i +1) - llgjoll?

where &; . is given by (2.6) while g](’g is the j-th column of the BF matrix G for

MTs scheduled at step i. Note that total power P has been divided by |StV| = i1

in order to obtain the per stream power Ps.

2.3.2 Projection Based Greedy (PBG)

According to the MG algorithm, the introduction of a new candidate stream (k, ¢)
into the set S at step i 4+ 1 decreases the SNIRs (2.26) for two reasons:

a) the power is redistributed among all streams;
b) BF of streams already scheduled on the same RB is modified.

Due to a), it is beneficial to perform scheduling jointly among RBs rather than
separately on each RB. Due to b), a new BF matrix must be computed for MTs
scheduled on RB ¢ of the candidate stream. Hence, at each step many BFs must be
designed for each RB to test (2.25) and only one candidate stream is then scheduled.
In order to reduce the computational complexity, the projection based greedy (PBG)
algorithm |23| assumes that the insertion of a new stream does not significantly alter
the SNIR of already scheduled streams. Indeed, this assumption holds as long as
the CV of the candidate stream is almost orthogonal to CVs of previously scheduled
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streams. Therefore, we update the SNIR estimate of already scheduled streams as
follows .
it1) _ Y i i
%(,,q ) = H—l%(),?] (p,q) € SV, (2.27)
for i = 2,3, , Nsep — 1, while for the first step we set 7;(,,13 =& (p,q) € SW.

Furthermore, the evaluation of the SNIR for the candidate streams requires only the

computation of || g,(;)c||2 instead of the entire beamformer. In particular, if we define

; 1
g o(SW) = OIS (2.28)
JEsl
from (2.26) we have
i P ; .
Tt = P Ercano(SY) (k) € Y\ S, (2.29)

In order to compute (2.28) and the corresponding SNIR (2.29) of the candidate
stream (k, ¢), it can be observed that its BF vector is obtained by the orthogonal-
ization of l_lk,c with respect to the normalized CV of already scheduled streams on
the same RB. Hence, an orthonormal basis B.(i) = {Bj7c} is first constructed for the
space generated by the channel vectors {h, .} of streams in S® on RB c. Then the

BF vector for stream (k, ¢) would be proportional to

1Be(i)]
gl o hye— Y (hye-b) by, (2.30)

)

=1

) =1 and we have

.=

Now, by imposing GYH, = I, the identity matrix, it is BkH,ng

2
2

|Be(4)]
are(8V) = 1= Y [he - b

=1

(2.31)

By using (2.29) and (2.31), there is no need to determine a new BF in correspondence
of each candidate stream; instead, only the basis B.(i) needs to be updated at each
step, and this requires only few vector multiplications. Note that the computation
of ay. is based on the projection of the candidate vector on the basis, as from the
acronym PBG. Once all streams have been scheduled, a BF is computed to perform

transmission.
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2.3.3 Greedy Scheduling Strategies in the High K Scenario

If K > M, multiuser diversity provides M orthogonal streams on each RB with
very high probability, thus we will have almost always a fully loaded system, i.e.
|Sc| = M. In this case, both MG and PBG algorithms can be simplified without
redistributing the available power at each new insertion, and the per stream power

(2.4) becomes
P

Pg——
STN-M

(2.32)

Scheduling can then be simplified by operating independently on each RB.

2.3.4 Multicarrier Semi-Orthogonal User Selection Algorithm
(MSUS)

The SUS scheme [10] can be easily generalized to the OFDM scenario and is here
denoted as multicarrier SUS (MSUS). The generalization includes also the maximiza-
tion of the WSR instead of the SR as considered in [10]. MSUS proceeds by steps,
now applied separately on each RB. For RB ¢, let AW = {1,--+, K} be the initial set
containing the indexes of all MTs. The scheduled stream at step 1 is characterized

by having maximum CQ]I, i.e.

k1 = argmax  wy - logy(1 + &ke)- (2.33)
keAl)

After selecting i streams, the (i + 1)th stream k;;; is chosen within the set

Agi-i-l) _ {/{5 e Ag)\kf(z),c |flk,ca flg | <e 1<5< Z} 1=2,--- M (234)

j,crC

as

kit1,.=argmax wylogy(l+ &) (2.35)

keAlTY
where € is a design parameter that sets the maximum correlation allowed between the
quantized channel vectors of the selected MTs. We note that in MSUS we apply NV
SC SUS in parallel, one for each RB. Also in this case the number of steps is random
as the algorithm ends when set A s empty. Once MTs have been scheduled, the

total power is equally distributed among scheduled streams according to (2.4).
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2.4 Pre-Selection Methods

In the MG algorithm the WSR R (S®) increases at each step and using (2.9) and
(2.10), condition (2.25) becomes

Z wylog,y (1 +~5H)) > Z wy. logy (14 ~{)) (2.36)
(p,g)eSHFY (p.q) €SO

From (2.26) we obtain that this condition is satisfied only if the SNIR is high enough
to compensate for losses incurred by the insertion of a new scheduled stream, i.e.
the power redistribution and the BF modification, as described by conditions a) and
b) of Section IIL.B. This observation suggests a further simplification of the PBG
algorithm, by a-priori excluding as candidate streams whose SNIR is below a certain
threshold. Preselection techniques aim at providing simple methods for excluding
streams with low SNIR. Indeed, as for each candidate stream the SNIR (2.29) must
be evaluated, by excluding streams that could never be inserted, the scheduling

procedure can be fastened [23].

2.4.1 Preselection PBG (PPBG)
We first observe from (2.31) that ay.(S®) < 1 and from (2.28) we obtain

(i+1) o P
f}/kﬁ — €k7c’i _'_ 1

(2.37)

Therefore, at step i of PBG there is a minimum value of & . that satisfies (2.36),
denoted Ay (i + 1), and we consider for scheduling only streams having SNIR

Ere > Ape(i +1). (2.38)

At high SNR we have

Aei+ 1)~ | ] (itl)%(iﬂ). (2.39)

P
(p,g)eS®

Proof: We observe that condition (2.36) is equivalent to

P

14 -
1+ 1

Wk
gk,cak,c(:s@)] [T [+ > I [+ (2.40)

(p,q)eS™ (p,q)eS®

where (k, ¢) is the generic candidate stream.
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In the high SNR scenario, with £, , >> 1, we have 1+%(;f21 ~ 7,(}'21 and from (2.27),

)

condition (2.40) becomes

(oo} T () 1)

(p,q)eS®

Hence from (2.41), (2.39) follows. We note that, in the high K scenario, (2.40)

becomes
[1 4 P& et (ST > 1 (2.42)

and Ay (i) = 0.

Then by considering only streams (k, c¢) satisfying (2.38), we decrease the number
of comparisons and SNIR updates at each step of PBG. In the high K scenario
preselection technique is not feasible; in fact, Ay (i) — 0 for K — oo, and therefore
(2.38) is verified by all streams.

We further note that A .(7) is an increasing function of i; hence, streams whose CQIL

is below the threshold Ay .(7) at step i can be neglected also in the next steps.

2.4.2 Simplified Preselection PBG (SPPBG)

A further simplification in preselection is achieved by considering w;, ~ w, ~ 1 in
(2.39) to yield .
. (i+1) (i+1)'

Apc 1) = . 2.43

ke(t +1) D ; (2.43)

Within PBG methods, we note that this approach becomes optimal when the schedul-

ing objective coincides with the maximization of the SR. However, for the maximiza-
tion of the WSR, S-PPBG is in general suboptimal.

2.5 Complexity Analysis

We analyze the worst case complexity of the various approaches, in terms of both

computational complexity and memory requirement.

2.5.1 Computational Complexity

We assume that a comparison yields a computational complexity equal to A complex

multiplications (CMUX), while the inversion of an M x M matrix performed by
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M- (M? -1
Gaussian elimination methods, has complexity % CMUX. The BF and

| k. ||* evaluation has therefore complexity

M- (M?—1)
3

We first observe that all considered algorithms select one stream per step, until at

BFC = 2|S.|- M* + + |8, - M. (2.44)

most M streams are allocated on each RB, thus in general Ny, < N -M. At step ¢,
IV\S¥| = K - N — i streams are considered for insertion in SV, Furthermore, at
each step, the per stream power Ps is adapted, due to the insertion of a candidate
stream in SV, The inversion of an M x M matrix performed by the Guassian
M- (M? -1

Elimination method has complexity ¥

MG complexity. Complexity of the MG algorithm in the low K scenario is given
by

Nstep

Corrgotowrx = A N- K+ (i — 1)+

=2

)-(BFC+2)+AK-N—i+1)+\

(2.45)

(%)
+ (K =S¢5

where ((i — 1) denotes the RB of the stream selected at step ¢ — 1. The first term in
(2.45) accounts for the selection of the stream with maximum CQI. The remaining
terms account for steps 2 through N, with a) update of SNIR estimate of the (i—1)
already scheduled streams, b) computation of a new BF for each of the (K — |8§2_1) )
candidate streams on subcarrier ((i — 1), ¢) evaluation of || g ¢i—1) |*, d) update of
the SNIR estimates and e) evaluation of the WSR. Lastly, the algorithm determines
the stream which maximizes the WSR at step ¢ and checks condition (2.25).

In the high K scenario complexity becomes

M
CMG—m'ghK=>\-N~K—|—N-Z{(K—z’—|—1).(BFC+2)+ o1
=2 .

A (K —i+1)4+ A},
since now Ny, = M and no power update is necessary at each step.
PBG complexity. Complexity of the PBG in the low K scenario is

Nstep

Crsg=A-N-K+N-BFC+ Y {(i—1)+(K— S8 1) - (M +2)+ .
i=2 2.47

+|S§2._1)|+2-M+A-(K-N-z‘+1)+A}.
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In fact, the PBG algorithm for each candidate stream on RB ((i — 1) performs a)
the projection of CV on the orthogonal basis and b) updates the SNIR, estimate. At
each step, the basis is also updated according to the CV of last scheduled stream.
At the end, the BF matrix is computed according to the set of scheduled streams.

In the high K scenario we have

M
Crpcnighk =A-N-K+N-BFC+N-Y {(M+2)- (K—i+1)+i 2.48)
=2 .

+2- M+ XN (K—i+1)+ A},

since scheduling can be performed in parallel on all RBs.

PPBG complexity. The complexity of the PPBG in the low K scenario is given

by
Nstep
Cpppc=A-N-K+N-BFC+ Y {(i—1)+
=2
+(K—|8§2_1)\)-(M+2)+\Sé?i_l)\+2~M+1+/\-(K-N—z'+1)+A}.

(2.49)

It only differs from PBG in the evaluation of A .(i+1) at each step, since it depends
on the set of scheduled streams. Similarly, in the high K scenario we have

M

CPPBG—highKZ)\'N-K+N-BFC+N-Z{(M+2)-(K—z’+1)+ (2,50
i=2 :

Fit2-M A1+ A (K —i+1)+2},

SPPBG complexity. Applying the S-PPBG algorithm, we have an additional cost
due to (2.38); on the other hand, on RB ¢, at each step ¢ we exclude a number of
streams Q.(i) from the set of possible streams. Q.(i) takes into account also the
scheduled streams. Then at step ¢ we have J; . = K — Z;zl Q.(7) candidate streams
on RB ¢ and in total J; = [V\S@| = 3=V | J; .. Complexity becomes

Nstep

CSPPBG:A'N'K—FN'BFC—FZ{(i_1>+(Ji,C(i—1)+ ( )
— 2.51

_|S§2_1)|> (M 42) (S8 2 M A (2 + 1)}.

Note that Q.(7) is a random variables depending on the channel realization. In

the high K scenario we still consider power adjustment; otherwise, from (2.43), we
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could never exclude streams, and then S-PPBG would become PBG. Complexity of
S-PPBG in the high K scenario becomes

CsppG-highk = A+ N - K + N - BFC+
Nstep

+- Z {0 =)+ (Jica—ry — i+ 1) - (M +2)+ (2.52)

Fi+ 2 M4+ A (2] 4+ 1)}

The MSUS algorithm is equivalent to N SUS algorithms working in parallel. We
remind that at each step SUS considers |AY| = K — i — Z;Zl Q(i) candidate MTs,
where () is the number of MTs excluded at step . It is

Cusus = N - BFCH

N M , , , (2.53)
Y A KD (AT i A AT 4 JAD (A + 1) |

c=1 =2

2.5.2 Asymptotic Complexity Analysis

According to complexities required by various scheduling algorithms, we investigate

their asymptotic behavior with respect to K as a function of K. For MG we have
Crg-oo = KA\ N+ N(M —1)(BFC+2+ \)]+ O(K) (2.54)

where O(K) indicates a term which goes asymptotically to 0 faster than K. For
PBG and PPBG we have

CPBG—oo = CPPBG—oo =~ K[)\ - N + N(M — 1)(M + 2+ )\)] + O(K) (255)

Both S-PPBG and MSUS perform the exclusion of worse streams. Let 3; be the
percentage of streams excluded at step ¢, for S-PPBG it is J;. = (K — i) - (1 — ;)
while for MSUS A% = (K —1)- (1= ;). Asymptotic expressions are

CsprpBG-oo R KA\ N+D-(M+2)+X-2-D-N]+ O(K), (2.56)
and
Cusvs—o X K[N-A+B+X-(M—1)-C+ (A+1)- D]+ O(K) (2.57)

where B =" i(1 — ;1) and C = Y (1 — B;_1) and D = 322 (1 - B)).
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2.5.3 Memory Occupation

Lastly we investigate memory requirements of the scheduling algorithms in terms of
complex location (CLS) units. We first note that all algorithms store a) CDI and
CQI of all streams, b) the set of selected streams and c) the final BFs; then a memory
occupation of Mcoym =N -M-K+K-N+ N-M?+ M- N CLS is common to
all algorithms. For MG we have

Muyec=Mcoum+K-N+M-N+K+ M- K+2 (2.58)

since MG stores a) ;. (or, equivalently, || g;. ||?), requiring K - N CLS, b) per MT
rates (N - M CLS as worst case), ¢) new BF (K - M? CLS), d) total rate provided
by each candidate (K CLS), and e) current and last final rates (2 CLS). For PBG
and PPBG we have

Mpppe = Mppe = Mconm + K -N+M-N+ K+ M- N +2, (2.59)

as PBG stores a) the value ,/ay., b) total rate provided by each candidate stream
(K CLS) and c¢) orthogonal basis (M?- N CLS).
The S-PPBG memory requirement is given by

Msppse = Mcoyum +-K-N+M-N+K+M?*-N+2+M-N. (2.60)

With respect to PBG, it needs to store also Ay (i) (M - N CLS as worst case).
Finally, for MSUS we have

Muysvs = Mcomm +M-N+N-K+1+K-N (2.61)

as MSUS stores a) correlations of candidate streams and last inserted stream (N - K
CLS), b) the value of € (1 CLS) and c) the set of total rates of each candidate (K - N

CLS as worst case).
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Performance Results

We consider a BS equipped with M = 4 antennas spaced by 10 wavelength at the
carrier frequency of 2 GHz. The channel is modeled as time-variant, flat Rayleigh
fading, according to the spatial channel model (SCM) [50]. All MTs are uniformly
distributed in a cell of radius 500 m, as in [51]; the time slot duration is 7" = 0.5
ms and each MT transmits the FB once per slot. The codebook for predictive error
quantization is designed from a TS composed of CVs of SCM for MT moving at 3,
50 and 130 km /h with equal probability, a first order linear predictor is adopted and

the value chosen for the fairness parameter in PFS is 7 = 0.1 s.

3.1 Single Carrier Scenario Results

We define the average sum rate (SR) as

IS(n)]
SR=E{ Y log,[l+SNIR(t)] ¢, (3.1)

k=1
where SNITRy(t) is the SNIR relative to MT k, defined in (1.7) as

prlhe(t)gr(n)|?

SNIR.(t) = .
) = TS o D& )P

(3.2)
3.1.1 Beamforming Performance Results
In Fig. 3.1 we set K = 20 and the average SNR to 15 dB. We compare the BFB and

PFB strategies in terms of SR as a function of the number of FB bits b for ZF-BF.

43
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Figure 3.1: SR as a function of FB bits for various FB strategies, with MTs moving
at 3 and 130 km/h. SNR = 15 dB.

The proposed PFB significantly outperforms BFB for any FB rate, since it exploits
the time correlation of the channel. The gain is more evident at a low M'T speed,
when, even with a low FB rate, the performance gets close to that of perfect CSI
(PCSI). Moreover, even with a highly time variant channel, PFB is still preferable
to BFB.

In Fig. 3.2 we evaluate the SR for various FB strategies as a function of the
average SNR. First of all, we note that at a low SNR, BFB with M'T moving at
130 km/h provides a higher SR than at 3 km/h because with a higher speed PFS
does not significantly worsen the achievable throughput. On the other hand, at high
SNR BFB with a MT moving at a lower speed gives better performance because at
higher velocity the beamformer designed at the beginning of each slot gets outdated

for the varying channel conditions causing multiuser interference degradation. And
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40

T

=©=BFB (3 km/h, b=6)
=€ - BFB (130 km/h, b=6)
=%=BFB (3 km/h, b=12)
35 = p= BFB (130 km/h, b=12)
=©-PFB (3 km/h, b=6)
=€~ PFB (130 km/h, b=6)

PFB (3 km/h, b=12)

307| == PFB (130 km/h, b=12) o
{  PCSIT (3 km/h) o
PCSIT (130 km/h)
_25 -
N
I
2
2
=)
20
@
£
s e e T ammmm
(2] --

15 : s g P e aiptpte S >

10

0 5 10 15 20 25 30
SNR [dB]

Figure 3.2: SR as a function of SNR for various FB strategies and FB bits. MTs
moving at 3 and 130 km/h.

this effect becomes dominant in the high SNR region where interference dominates
system noise. We observe that PFB strategy still highly improves BFB especially
for a low MT speed and with only b = 12 we get performance very close to PCSI.
For lack of space we did not include the performance of the proposed FB strategies
using MMSE-BF'. Nevertheless with this opportunistic approach MMSE-BF does not
provide a gain with respect to ZF-BF because the proposed greedy algorithm selects
MTs only if this is beneficial for the weighted throughput, thus limiting multiuser
interference that MMSE-BF tries to cope with.

Figg. 3.3 and 3.4 compare MMSE-BF and ZF-BF adopting both BFB and PFB
and assuming MTs moving at 3 and 130 km/h, respectively; for both figures, we
considered K = 4 dedicated channels, i.e., in the absence of scheduling, or with a

scheduler selecting randomly the X' = 4 M'Ts. In this scenario, where the scheduler
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Figure 3.3: SR as a function of SNR for various FB strategies and FB bits adopting
both ZF-BF and MMSE-BF. MTs moving at 3 km /h.

does not avoid multiuser interference by a proper user selection, MMSE-BF is prefer-
able because it better copes with multiuser interference due to quantization errors,
although it requires a double CQI FB. Nevertheless, we assumed also the case of one
CQI FB, considering the mean value of cos ©; in BF design; also in this case, we
verified that MMSE-BF still performs better than ZF-BF in a random scheduling

scenario.

3.1.2 FB Performance Results

We evaluate now the performance of FB strategies, as a function of SNR and of FB

rate. Simulations are performed considering a set of K = 20 users.
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Figure 3.4: SR as a function of SNR for various FB strategies and FB bits adopting
both ZF-BF and MMSE-BF. MTs moving at 130 km /h.

We first evaluate LBG technique in terms of average SR in the condition of block
fading, where the channel is fixed during the timeslot. Fig. 3.5 shows that for
every FB rate the average SR value increases of about 2 bits/s by using the LBG
quantization method instead of the RVQ one. Of course, as the FB rate increases
the average SR becomes higher as well, since the BS has a better CDI and then on
average the achievable rate for users becomes higher. Note that with the SCM model,
where the channel is not constant during a timeslot both LBG an RV(Q quantization
methods provide a worse performance, since the precoder designed at the beginning
of the timeslot is not perfectly matched with the actual channel; however, the LBG
scheme still have an higher SR than the RV(Q one.

We now want to compare the PFB strategy with the UD strategy and BFB. We
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Figure 3.5: Sum rate as a function of SNR using RV(Q and LBG quantization methods
in case of block fading condition and in case of FB bit rate equal to 12 and terminals
moving at speed of 130 Km/h

consider a configuration with channel SNR=15 dB and plot the average SR as a
function of the number of FB bit sent by each user. Fig. 3.6 shows that for low
speed and low number of FB bits the UD feedback strategy highly improves the
average SR with respect to both PFB and BFB. This improvement saturates as the
number of FB bits becomes higher than 4, so that with 4 FB bits we achieve the
same average SR as the BFB with 11 FB bits. On the other hand, as the number of
FB bits becomes higher than 4, the PFB outperforms the UD strategy; in particular,
if b > 10, the achieved SR differs by only 0.8 bit/s from the one provided by the
perfect CSIT once a timeslot. For an higher speed, however, the gap between the
three strategies becomes thinner, as illustrated by Fig.3.8; at 50 km /h UD with 8 bits
provides the same average SR value as BFB with 11 FB bits; lastly, for 130 km /h the
BFB outperforms both UD and PFB with low FB bits , while opposite occurs with
more than 6 FB bits, when the PFB provides the highest SR. For the UD strategy,
this behavior is due to the fact that with high speed the CSI changes rapidly, and
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then the user has to send nearly always the most significant b bits; in this case, the
control bit used by UD to indicate the meaning of the last b— 1 bits does not provide
useful information and then the UD method provides a worse performance. For the
PFB strategy, its behavior in presence of high speed is due to the crude quantization
of the prediction error, which affects the direction of the CSIT.
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Figure 3.6: Sum rate as a function of FB bits with terminals moving at speed of 3
Km/h

Fig.3.7 illustrates the average SR achieved by BFB UD and PFB schemes with 4
and 12 FB bits when MT speed is 3 km /h; note that with b = 4 FB bits UD scheme
outperforms both BFB and PFB schemes of about 10 bits/s and provides almost
the same average SR as the UD using b = 12 bit (the difference between the two
is less than 0.5 bit/s). On the other hand, with b = 8 and b = 12 PFB provides
the highest average SR since the quality of CSIT is not limited by the quantization
of the direction of the channel, as in UD and BFB; in fact, if we consider UD and
BFB with b = 12 and B = 16, we observe that achieved SR is higher than UD and
BFB with b = 12 and B = 12. For high speed (130 km/h), however, UD and PFB
provide a little improvement (of about 1 bit/s for UD and 2 bit/s for PFB) with
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Figure 3.7: Sum rate as a function of SNR using RV(Q and LBG quantization methods
with terminals moving at speed of 50 Km/h

respect to BFB only with b = 8, while with b = 4 BFB outperforms both UD and
PFB,as illustrated in Fig.3.8; again note that with b > 4 PFB outperforms both UD

and BFB for it provides the most accurate channel state information at the BS.

3.2 OFDM Scheduling Techniques Performance

We compare the scheduling algorithms in terms of average SR and complexity re-
quirements. we consider an average SN R of 15 dB per RB at the cell border and
path loss is included in the channel model. We assume also a realistic MIMO chan-
nel with time, frequency and spatial correlation among the elements of H.(t), as
the channel is modeled as slowly time-variant, frequency selective Rayleigh fading,
according the SCM [50] in a OFDM scenario. According to the LTE release, we set
transmission bandwidth to 2.5 MHz, divided into N = 12 RBs and centered at the
carrier frequency of 2 GHz, and each slot is composed of 7 adjacent OFDM symbols.

CSI FB is performed with a variable number of bits using an optimized codebook,
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Figure 3.8: Sum rate as a function of SNR using RV(Q and LBG quantization methods
with terminals moving at speed of 130 Km/h

as detailed in [34].

We extend the definition of average SR provided for SC scenario as

SR=E{¢ Y log,[l+SNIR.(1)] . (3.3)
(k,c)eS(n)

where SNIRy .(t) is the SNIR relative to steam (k, ¢), defined according to (1.7) as

2
SNIR,.(t) = Pre/ B c(t)8r.e(n)]

1+ ZiESC(n)\k,C pilhi.c(t)gic(n)]*

where gy, . is the k-th column of matrix G.(n). We first compare the SR achieved by
MG with ES scheduling using as optimization criterion the maximum SR. For com-
plexity reasons simulations have been limited to N = 4 RBs. To simplify simulations
in the ES method, results of both MG and ES in the high K scenario, K = 18 N,20N,
refer to N = 1. In fact, we verified that for high K the system is fully loaded with a
probability higher then 95%; in this scenario the power granted to each carrier is %,
and then user selection can be performed independently on each carrier. We consider
both the case of perfect CSI at the transmitter and the case of partial CSI obtained

(3.4)
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by FB from the receiver, with a FB rate of 12 bit/user/RB/slot. We observe that
partial CSI provides a loss on SR of 2 up to 3.5 bit/user/RB/slot, but it does not
affect the general behavior of the two algorithms. As we can see from Fig. 3.9, both
MG and ES have a very close SR for all K. Hence, in the following we consider MG
as performance bound.

Fig. 3.10 illustrates the average SR achieved by the scheduling algorithms as a
function of the number of MTs K in the low K scenario for a FB rate of 12
bit/user/RB/slot. We note that there is not an appreciable loss in performance
of the simplified, methods. Similarly, simulations in the high K scenario show that
MG, PBG and S-PPBG achieve a SR of 16.40 bit/s/Hz, while MSUS provides 15.40
bit/s/Hz. Overall we observe that the simplified algorithms do not provide SR loss
for all K. This is mainly due to the fact that all scheduling methods are based on an
opportunistic approach, so they all aim at selecting the best set of orthogonal MTs.
We also note that all algorithms always select the same first stream, whose CV in
turn determines the choice of the other streams. We underline that the average SR
of S-PPBG is very close to that of PBG and MG; moreover, since S-PPBG is an ap-
proximation of PPBG, we deduce that also PPBG provide the same SR of S-PPBG.
Fig. 3.11 confirms this behavior also with a PFS.

We note also in Fig. 3.11 that preselection applied to PBG provides slightly
better performance, despite the fact that it considers a lower number of candidate
sets. In fact, preselection aims at excluding from scheduling streams that would
not increase the WSR, and prevents the scheduler from inserting them for fairness
reasons.

Fig. 3.12 reports the average SR versus the F'B rate; we observe that the simplified
methods are also robust to quantization error; in fact, for all considered values of
feedback rate, PBG and S-PPBG provide the same SR of MG.

3.2.1 Outage System Throughput Comparison

At each slot, the BS evaluates a scheduled rate for each stream; since this evaluation
is based on imperfect CSIT, the scheduled rate may exceed the channel capacity. In
this case, the Shannon theorem does not guarantee the existence of a code allowing an
error rate below a given threshold; therefore, the information transmitted is affected
by errors with a non-negligible probability.

We consider now the effect of outage on the system throughput, both for the

scheduling process and for the performance metric.
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At each slot, the scheduling algorithm aims at selecting the set P of streams that
maximizes the weighted system throughput under the constraint that the average
probability that the scheduled rate exceeds channel capacity, i.e. the average outage
probability, is py:. Each MT k has an associated weight wy, which takes into account
fairness and QoS constraints. In particular, letting -y, . be the estimated SNIR of

stream (k, c), we aim at maximizing the weighted system throughput

R(P) = Y wilogy(1+ € Yke) (3.5)
(k,c)eP

where the sum is taken over all streams (k,c) of P, and parameter ¢, , € [0,1]
ensures an average per user outage probability not exceeding pout, [52].

If a stream is affected by outage, i.e, if the allocated rate exceeds the maximum
rate available for that stream, due to imperfect channel state information, beam-
forming and scheduling, the corresponding rate is set to zero. Letting S, = 0
when outage occurs for stream (k,c), and ;. = 1 otherwise, the average outage

throughput is defined as

T(P)= > Brelogy(l+ €ppvie) - (3.6)

(k,c)eP

where the sum is taken over all streams (k,c) of P, and parameter ¢, , € [0,1]
ensures an average per user outage probability not exceeding po.¢, [52].

Fig. 3.14 shows the outage throughput 7 (P) as a function of the number of active
MTs K with a common outage constraint p,,; = 2%. We observe that PBG always
outperforms MSUS with a gain of about 5%, with a limited increase of complexity.
Even the MG algorithm, which provides a performance upper bound in terms of (3.5),

is outperformed by the proposed PBG, since also MG is a suboptimal algorithm.

3.2.2 Complexity Comparison

Fig. 3.13 shows complexity versus K. For K = 2 to 64 the low K complexity
expressions are used, while from K = 128 to 1024 we use the high K complexity
expressions. We first observe that the complexity ratio between the scheduling al-
gorithms is nearly the same both in the low K and high K regime. As expected,
MSUS and S-PPBG complexity trend is not influenced by the value of K. From Fig.
3.13 we note that for K = 5 =+ 50, with corresponding fully load probability in the
range from 1% to 95%, the computational cost of MG is from 2.2 to 18.5 times the
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Figure 3.14: Average outage throughput versus the total number of MTs K with
proportional fair scheduling and 2% outage probability.

cost of PBG, with a factor increasing in K'; as expected, the preselection technique
further reduces complexity by a factor 1.2 — 1.4 with respect to PBG. We note also
that complexity of S-PPBG is only 2.4 — 2.9 times the complexity of MSUS. As
complexity of PPBG is bounded between that of PBG and S-PPBG and these two
are very close, we omitted to show PPBG in Fig. 3.13.

In the high K scenario, simulations confirm the analysis; in fact, for K = 400 we
have Cy;q = 2.61-10%, Cppg = 9.4-10%, Cprs05 = 3.49-10* and Cgpppe = 11.9-10%
We underline that in the high K regime S-PPBG complexity is higher than that of
PBG because of the required power distribution; indeed simplification of preselection
does not compensate the need of redistributing the total power. On the other hand,
we note that the high complexity required by MG is mainly due to the evaluations
of BF at each step.

Memory requirements, investigated in Subsection 2.5.1, does not prefigure large dif-
ferences between different methods; for K = 400 memory required locations are
35890 for MG, 29682 for PBG, 29730 for S-PPBG and 33841 for MSUS. Hence, the
simplified techniques achieve a reduction of memory requirement with respect to

existing algorithms.
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Chapter 4
Conclusions

In this first part of the thesis, we focused on MIMO downlink systems with limited
feedback, both in SC and in the OFDM scenario. In particular, for a SC scenario, we
proposed various channel quantization techniques and feedback strategies based on
the Lloyd-Max algorithm [36] that exploit both spatial and time correlation of the
MIMO channel. We derived a UD feedback approach where FB bits are accumulated
over multiple signalling intervals in order to index a much larger codebook; moreover
we proposed new predictive FB strategies where both transmitter and users predict
the evolution of the channel vector and users adjusts the prediction by feeding back
a quantized version of the prediction error to the transmitter. Furthermore, we de-
scribed a predictive feedback strategy with unitary rotation matrix, exploiting the
geometric properties of unit norm CDI vectors. Finally, we have proposed a MMSE
beamformer that takes into account imperfect CSI at the BS and a FB signalling
based on the prediction of CDI.

From performance evaluation on SC scenario we conclude that predictive FB out-
performs significantly existing techniques in terms of SR and low FB rate; UD is a
promising strategy as it provides improved SR with respect to basic F'B and does not
require channel prediction at both transmitter and receiver side. MMSE-BF is useful
when dedicated channels are set up in downlink, while when pure PFS is adopted it
provides similar performance to ZF-BF at the cost of an additional CQI parameter.
In MIMO OFDM scenario, we propose suboptimal scheduling algorithms to face the
increased dimension of candidate streams set, based on simplified BF evaluation dur-
ing the user selection process. We addressed the tradeoff between an opportunistic
approach in user selection, providing high average sum rate, and quality of service

(QoS) requirements, by introducing a general multiuser scheduling, the opportunis-
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tic maximum sum rate strategy, and the multicarrier proportional fair scheduling.
Furthermore, different user selection strategies are illustrated, and in particular we
propose a refined greedy strategy (PBG) requiring a lower complexity. As a further
refinement of PBG algorithm, we propose the preselection technique, which reduces
the set of candidate users. Complexity analysis is evaluated for each user selection
strategy in Section 2.5, both in terms of computational complexity and memory
requirements. Simulation results show that the proposed suboptimal algorithm al-
though requires a quarter of the complexity of the comparison algorithm, provides
almost the same average sum rate and the same outage throughput. Furthermore,
preselection technique applied to the PBG algorithm halves the computational com-
plexity required to PBG by providing the same performance, at the cost of a very

little increase of the memory requirements.
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Main Abbreviations and Notations

AMDEF': amplitude maximum difference function;
API: graphic interface;

AV: atrioventricular node;

AWGN: additive white Gaussian noise;
CIR: channel impulse response;

CORR: correlation based estimator;

CW: continuous wave;

EIRP: effective radiated power;

EN: end position for the scan windowing;
FCC: Federal Communications Commission;
HWI: hardware integration coefficient;

IR: impulse radio;

[SL:inter symbol interference;

LCML: low complexity ML

LOS: line of sight;

LRS: locally rich scattering;

MSE: mean square error;

ML: maximum likelihood
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L,: number of samples in a scan;

PC: personal computer;

PMUSIC:Music based detection algorithm;
PPS: pulses per sample;

PREF: pulse repetition frequency;

R: receiver;

RF': radio frequency;

SA: sinoatrial node;

SNR: signal to noise ratio;

ST: start position for the scan windowing;
SWI: software integration coefficient;

T: transmitter;

TD: time domain

ToA: time of arrival;

TEM: transverse electromagnetic wave;
Tp: pulse duration;

Ts: pulse repetition period;

UWRB: ultra wide band,;

WEIGHTED: weighted autocorrelation function

WELCH: Welch based algorithm.



Introduction

Remote vital signs detection is an emerging topic, whose aim is monitoring a patient
vital parameters avoiding physical contact between the patient and the sensor. In
fact, a remote monitoring system provides advantages in many scenarios, such as
baby monitoring, home monitoring for chronic health diseases and sleep disorders.
A remote sensor allows an easier patient monitoring also for long periods of obser-
vation. In the last years, different technologies have been proposed with this aim,
and in particular: Ka Band, narrowband radar, whose high frequency provides an
observable Doppler effect even for low vital signs speeds [53, 54|, ultra wide band
(UWB) radar [1, 55].

In this work, we focus on radar technologies; in fact, it provides a contactless sensor,
easily adaptive to different scenarios. Radar technologies have already been inves-
tigated for vital signs detection, for military application and rescue of victims of
natural disasters; however, these scenarios allow high values of the transmitted sig-
nal, because the remote sensor is used for a short period of time, and it must detect
a living person even through walls (e.g., after an earthquake). Home monitoring
applications instead are supposed to be used for long periods in an indoor scenario;
therefore, for these applications additional constraints have to be taken into account,
and in particular the transmitted power has to be limited.

Among all radar technologies, UWB radar provides key advantages, as it relies on
ultra-short (nanosecond scale) waveforms that can be free of sine-wave carriers and do
not require intermediate frequency (IF) processing because they can operate at base-
band. The ultra-short duration of UWB pulses provide unique advantages both for
communication and radar applications: i) enhanced capability to penetrate through
obstacles; ii) ultra high precision ranging at the centimeter level; iii) potential for
very high data rates along with a commensurate increase in user capacity; and iv)
potentially small size and processing power. This motivates the increasing interest

of the scientific community on the application of UWB radar for vital signs detec-
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tion [1, 56, 57|. In the second part of the thesis, we focus on vital signs detection
using UWB radar in a indoor scenario, and in particular on the model describing the
influence of vital signs on the received signal, and on detection algorithms. At the
best of the author’s knowledge, a complete description of the effect of chest motion
on the received signal for a pulse UWB system is not available in the literature. This
topic is addressed in Chapter 7, and a description of the effects of vital signs on
the signal parameters are provided in Chapter 8. We consider radar device working
on the 3.1 — 5.3 GHz band, which is available for consumer applications according
to the Federal Communications Commission (FCC) rules [58]. In this scenario we
investigate analytically the parameters of the received signal and their time varia-
tions due to vital signs. In particular, we verify in Chapter 7 that the available band
does not allow an efficient vital sign detection based on time of arrival (ToA). Most
of the proposed detection techniques are based on ToA variations; however, a large
bandwidth is required to observe ToA variations due to heart beating. Moreover,
detection is made difficult by the non stationary nature of the heart beating and res-
piration. Therefore, we investigate detection of vital signs based on amplitude and
phase modulation of the radar signal, and we propose a novel technique in Chapter 9.
The proposed detection technique requires short observation periods, where we can
assume vital signs as stationary and periodic. A novel periodicity based detection
algorithm is proposed and compared to the correlation based detection algorithm.
Chapter 10 provides numerical results in ideal conditions and experimental results.

Computational complexity is also evaluated for the various algorithms.



Chapter 5

Ultra Wide Band Radar Technology

UWRB radio is an emerging technology inviting major advances in wireless commu-
nications, networking, radar, imaging, and positioning systems. The basic idea of
UWRB is to transmit a signal characterized by a very large bandwidth and a low power
spectral density. UWB is defined as a transmission systems with instantaneous spec-
tral occupancy in excess of 500 MHz or a fractional bandwidth of more than 20%; the
fractional bandwidth is defined as B/ fc , where B denotes the —10 dB bandwidth,
and fo is the center frequency. Such systems rely on ultra-short (nanosecond scale)
waveforms that can be free of sine-wave carriers and do not require IF processing
because they can operate at baseband.

In 2002, the Federal Communications Commission (FCC) in the United States of
America released a large bandwidth (3.1 — 10.6 GHz) for unlicensed use provided
emission levels are kept low (< —41.3 dBm/MHz). This new unlicensed band, called
UWRB, is the largest unlicensed frequency band ever released. The large bandwidth
and low power allows UWB radios overlaying coexistent radio frequency (RF) sys-
tems to operate using low-power ultra-short information bearing pulses. Similar
regulatory processes are currently in progress in many countries worldwide; the re-
search community is currently targeting several UWB applications, e.g. short-range,
high-speed broadband access to the Internet, localization at centimeter-level accu-
racy, high-resolution ground-penetrating radar, through-wall imaging [57].

Despite the recent renewed interest, UWB has a history as long as radio. In fact,
the first radio communication system, invented by Guglielmo Marconi more than
a century ago (1901), required enormous bandwidth as information was conveyed
using spark-gap transmitters. The first UWB radar technology came in the late

1960s, when high sensitivity to scatterers and low power consumption motivated the
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introduction of UWB radar systems [59]. The ultra-short duration of UWB pulses
provide unique advantages both for communication and radar applications: i) en-
hanced capability to penetrate through obstacles; ii) ultra high precision ranging at
the centimeter level; iii) potential for very high data rates along with a commensu-
rate increase in user capacity; and iv) potentially small size and processing power.
We denote as radar a system whose aim is to detect a target information hidden
in the environment by using electromagnetic (EM) waves. As a communication sys-
tem, a radar system is composed by transmitting and receiving entities; the main
difference between communication and radar systems is the aim of the transmission,
and the location of the information source. In fact, in a communication system, the
information source is connected to the transmitter side, which sends a EM signal
to the receiver side in order to communicate the current information symbols. The
receiver side has only a statistical knowledge of the transmitted signal, and receives
a signal corrupted by noise and channel; from this signal the receiver performs an
estimate of the transmitted information symbols. In a radar signal, both transmitter
and receiver have a statistical knowledge of the information source. The transmitter
sends a EM signal to the receiver, which is perfectly known at the receiver side; in
other words, the transmitted signal does not carry any information. The aim is now
the observation, at the receiver side, of a hidden information source on the basis of
the received signal. In fact, as the hidden information source influences the channel
impulse response, the hidden information source can be observed by estimating the
channel conditions. Therefore, the receiver performs an estimate of the channel on
the basis of the distortion of the received signal parameters, which are due to both
channel and noise.

In this Chapter we discuss the UWB radar technology and the motivation for its

application to health monitoring, and in particular to human vital signs detection.

5.1 Research Motivation

Health monitoring in general aims at detecting vital parameters of a target, and
may involve several applications, e.g. medical instruments, patient home monitoring
and presence detection. For different reasons, these application require some main
features:

e Unobtrusiveness, i.e. the monitoring system should not interfere with the tar-

get usual activities; this feature is essential e.g. for applications requiring long
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observations of vital parameters, and presence detection. In order to achieve
this goal, it is important to address to remote sensing systems, which avoid the

direct contact between the target and the sensor.

e Low power: FCC spectral masks pose a severe bound on the transmitting
power, which is set on the same order of magnitude as the noise. Consequently,
the monitoring system has to deal with low signal to noise ratio (SNR) scenar-

10s.

e High spatial resolution: this is a key feature to correctly locate the target, to
properly separate the target from the channel clutters, and to resolve different

targets standing nearby.

Detection of human beings with radars is based on movement detection. Heart
beating and respiratory motions cause changes in frequency, phase, amplitude and
arrival time of the electromagnetic wave reflected by a human being. Both narrow-
band and UWB technologies can provide a time modulation of these parameters;
however, UWB radar has several key advantages over narrowband wave radars, i.e.
the high spatial resolution, allowing the resolution of multiple targets and the sepa-
ration between targets and clutter, a better immunity against multipath interference
and interference of coexisting narrowband systems with respect to narrowband tech-

nologies.

5.2 UWB Radar

UWB radar for human being detection can be built based on different UWB tech-
nologies, which can be clustered into two families: continuous wave (CW) UWB,
where the transmitted signal is continuous in time and impulse radio (IR) UWB,
where the transmitted signal is a periodic repetition of a UWB pulse. We briefly de-
scribe their advantages and disadvantages, and motivate our choice of impulse UWB

radar for vital signs detection.

5.2.1 Continuous Wave UWB Versus Impulse Radio UWB

As the name suggests, continuous wave (CW) radar is a radar technique based on a
continuous transmitted signal. The UWB nature of the signal can be obtained either

in time or in frequency domain; different strategies have been proposed in literature,
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e.g. random noise CW radar [60|, frequency modulated continuous wave (FMCW)
radar and stepped-frequency continuous wave radar.

The main features of CW radar are:

e the transmitted power is uniformly distributed in time;

e the modulation waveforms are not supposed to have short duration, since the

large bandwidth is provided by signal modulation;

e with a proper signal modulation, it is possible to cover all the band allowed by
the FCC regulations.

On the other hand, the simplest way to obtain a UWB transmitted signal is a
periodic repetition of a short pulse, where the repetition period is longer than the
channel impulse response (CIR); also in this case, pulse modulation can be performed.

The main features of this transmitting system are:
e the transmitted power is concentrated on a very short period;

e usually not all the FCC band is covered, because generating a pulse of about

0.1 ns duration is not cost effective;

e CIR is easily obtained, as it is completely described in a pulse repetition period.

5.2.2 IR -UWB Radar

We consider an Impulse Radio - Ultra Wide Band (IR-UWB) system for the detection

of vital signs of a target in an indoor environment. The transmitted signal is

+oo

s(t) = Z p(t —nTys) cos(2m fot + ¢o), (5.1)

n=—oo

where p(t) is the UWB pulse wave with duration Tp, fc is the central frequency
and Ty is the pulse repetition period. The bandwidth Bp is the inverse of Tp, i.e.
Tp= 2.

Let h(t) be the channel impulse response, which includes the indoor channel paths,
and the effects of target (attenuation, reflections, movements, respiration and heart

beating); let also P, be the power of the transmitted signal s(t) and 7n(t) be the
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zero mean additive white Gaussian noise with power O’%. At the receiver side, the
resulting signal is

r(t) = /_ h s(t — 7)h(T)dT + n(t). (5.2)

We suppose that the shape of the transmitted wave p(t) is perfectly known by the
receiver. Then the receiver signal r(t) provides an estimate h(t) of the channel

impulse response, under the following conditions:

e the pulse repetition period has to be equal to or higher than the pulse duration
Tp, i.e. TS Z Tp,

e in order to guarantee a correct reconstruction of the CIR, the sample theorem
requires the sampling frequency F. to be equal to or higher than the system
bandwidth, i.e. F. > Bp, or T, < Tp, where T, is the sampling period;

e inter pulse repetition interval interference (ISI) avoidance requires the channel
duration 1) = LT, is smaller than the pulse repetition period, i.e. LT, < Tg.



74




Chapter 6

Vital Signs

In this chapter we define vital signs and characterize the interaction between the
UWRB signal and the target. In particular, Section 6.1 describes vital signs, respi-
ration and heart beating. In Section 6.2, a model for thorax tissues is introduced
and an analytical model for the signal reflected by the target is discussed. Finally,

in Section 6.3 a frequency domain characterization of thorax tissues is derived.

6.1 Vital Signs Description

We denote as wvital signs a set of biological processes, providing information on the
state of a living person (target); these signs are supposed to characterize all living
human beings, and their values or variation are supposed to describe the state of the
target.

In general, the main processes described by this definition are those derived by
respiration and heart beating, e.g. chest oscillation, periodic heart compression and
rapid changes of pressure into veins and arteries. In particular, we focus on the
subset, of vital signs that can be inferred by their external effects. We describe in

the following respiration and heart beating, and we discuss their correlation.

6.1.1 Respiration

Respiration is a complex physiological process whose aim is to ensure both the proper
income of oxygen and the disposal of dangerous gases, in particular the carbon diox-
ide, resulting from the respiration process at cellular level. The amount of oxygen

required, and consequently, of waste respiration products to be ejected, is deter-

)
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mined by the conditions of the body: physical features (age, gender, weight, etc.)
and current activities and feelings (sport, fun, fear, relax). The frequency of the
respiration cycle, denoted as respiration rate, and the deepness of breathing, i.e., the
amount of air inhaled per cycle, is influenced by body conditions, but also by external
conditions (e.g., pressure of the air and its composition), and by conscious control,
performed to temporarily adapt breathing to other activities such as swimming, or
talking. In general, respiration is not a stationary process; in fact, parameters as du-
ration, deepness, proportion inspiration/expiration periods, in general change from
one respiration cycle to the next one. Therefore, we may be interested in either a

real time estimate of the target respiration rate, or on an estimate of its average.

6.1.2 Heart Beating

The heart is a muscular organ responsible for pumping blood throughout the blood
vessels by repeated, rhythmic contractions. Blood is conveyed by the great vessels
(pulmonary trunk, aorta, and superior vena cava) to and from body tissues. The
heart’s rhythmic contractions occur spontaneously, although the rate of contraction
is influenced by nervous or hormonal activity, exercise and emotions. The rhythmic
sequence of contractions is coordinated by the sinoatrial (SA) and atrioventricular
(AV) nodes. The sinoatrial node is located in the upper wall of the right atrium and
is responsible for the wave of electrical stimulation that initiates atrial contraction
by creating an action potential. The wave reaches then the AV node in the lower
right atrium, where it is delayed to allow enough time for all of the blood in the atria
to fill their respective ventricles, and then it propagates, leading to a contraction of
the ventricles |61].

Due to these electrical signals, atria and ventricles alternately contract and relax in
a rhythmic cycle; a single cycle begins and ends with atria and ventricles relaxed.
During the first stage, diastole, the blood flows into the right and left atria; due to the
open valves between the atria and ventricles, blood flows through to the ventricles.
Ventricles are then filled with the atrial contraction, due to the SA electrical signal.
The second stage is called systole and represents the ventricular contraction and the
ejection of blood from the ventricles to the vessels; in particular, the right ventricle
sends blood to the lungs via the pulmonary artery, while the left ventricle pumps
blood to the aorta. During this stage the valves between the atria and ventricles
are closed. One complete sequence of diastole/systole is called a cardiac cycle, or

heartbeat. The heart rate range is very wide: in fact, the lowest heart rate reported
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in literature for and adult target is 45 beats per minute (bpm), while the highest is
about 250.

6.1.3 Correlation Between Respiration and Heart Beating

In general, respiration influences the heart beating process [62]; a close nonlinear
coupling exists between the respiratory and cardiovascular systems. In addition to
this, we observe that both respiration and heart beating are influenced by the target
activity; in other words, the state of the target introduces a correlation between the
two processes. However, at the best of the author’s knowledge, there is no simple
model describing the correlation between the two processes, and therefore in the

following we consider respiration and heart beating as independent processes.

6.2 Thorax Tissues Description and Signal Propa-
gation

In a monitoring system, vital signs provide an appreciable modulation of the moni-
toring signal when it interacts with the target; clearly, the modulation of a process
on the monitoring signal is not only due to the process itself, but it depends on the
system used to observe it. This motivates the following investigation on the effects of
a radar pulse on human tissues; based on this model, a feasibility study is performed
in Section 7.4. We focus on thorax tissues, since both respiration and heart beating
affect mainly this region of the body. Furthermore, other regions of interest, like neck
and abdomen, are characterized by the same external tissues, and, as it is shown in
the following, the UWB signal is influenced only by the outer tissues; then, from the
radar system perspective, their contributions can be modeled in a similar way.

We assume that

e the pulse is a Transverse Electromagnetic (TEM) wave;
e the pulse impacts the thorax with a normal incidence angle;
e the target chest behaves as a single point reflector;

e all interfaces are planar.

When a TEM plane wave propagating in a homogeneous medium 1 encounters a

planar interface with a different medium 2, a portion of the wave is reflected from
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the interface while the remainder of the wave is transmitted. The reflected and
transmitted waves can be determined by enforcing the fundamental electromagnetic
field boundary conditions at the media interface. Since the thorax tissues satisfy the
condition of good dielectric [63|, we can use the approximated expressions for the
amplitude attenuation. Defining o as the conductivity of medium, ¢ as the dielectric
permittivity and p as the magnetic permeability, the amplitude attenuation (in m™—")

can be written as

oV
NE (6.1)

and the intrinsic impedance (in Ohm, 2) is

ij = \/g (6.2)

Under these assumptions, at the interface between medium 1 and medium 2 a trans-

I

!

mitted and a reflected wave are generated, having the same wave shape of the incident
wave, and relative amplitude given by the amplitude transmission coefficient and the
amplitude reflection coefficient, respectively. Assuming that the incident wave is z-
directed and x-polarized, and that the planar media interface is located on the x-y
plane, the incident, transmitted and reflected waves can be illustrated by Fig. 6.1.
Let us indicate with a,, a, and a, the unit vectors lying on direction x,y, and z,
respectively. We define also Ej as the amplitude of the electric field on the interface
(z= 0), t as the amplitude transmission coefficient and r. as the amplitude reflection
coefficient. In particular, the reflection coefficient is given by

re=-2_ (6.3)

T2 +71h
where 7); o is the intrinsic impedance of medium 1, 2.

The ratio between the reflected power P, and the transmitted power P, is the reflected

power ratio,

R=r]* (6.4)

Let Pr; be the power of the wave incident on medium 1 and z; be the thickness of

medium 1. At the medium interface the reflected power is

PY = P Re 205 (6.5)

The refracted wave amplitude is given by the transmission coefficient
97
t=_"7_
T2 +Th

(6.6)
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while the relative refracted power ratio is

T=1-R=""D) 6.7)
T2
The power of the wave refracted in medium 2 is
P = pp Te %, (6.8)

We observe that the relative transmitted and reflected power have the same value
also for a wave propagating from medium 2 to medium 1, providing a reflected wave
in medium 2 and a refracted wave in medium 1. The phasor fields associated with

the incident wave are

E; = Eje” " ay,

Ey (6.9)
Hi = ~—0€_alzay,
m
while for the transmitted wave we have,
E, = tEye %*q,
Ey, _- (6.10)
Ht f— t~_0€—oa2zay’
2
and for refracted wave we have,
E, =r.Eye**a,
(6.11)

FEy -
H,. = rc~—oealzay.
M
Denoting with f the frequency of the transmitted signal, the wavelength of the

signal propagating in medium 1 with refraction index n; is

o c Ao
A= T (6.12)
where )y is the wavelength of the signal propagation in vacuum, v; indicates the
wave speed in medium 1, and c is the speed of light in vacuum. Fig. 6.3 shows
the wavelength of a pulse in the tissues of thorax, according to [64]; in Fig. 6.2 the
relative permittivity €, = €/€g of these tissues is described as a function of frequency.
We observe that in the UWDB band both the relative permittivity and the wavelength

are not significantly changing. Therefore, in the following we describe the power of
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Incident TEM wave:
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Ei Et
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y

Figure 6.1: Transmitted and reflected waves generated by a planar interface between
medium 1 and 2 when a TEM wave with polarization in x direction is normally

incident on the interface.

the signals reflected by each interface considering only the frequency 4 GHz, which

is the central frequency of the operational band of our UWB device.

The thickness of the thorax tissue layers, where the pulse propagates, are given
in Tab. 6.1 from [1].
We denote the interfaces of tissues with numbers: air-skin interface is interface 1,
skin-fat interface is interface 2, fat-muscle is interface 3, muscle-cartilage is interface
4, cartilage-lung is interface 5, up to lung-heart interface 6; similarly, the parameters
related to each interface are in the following denoted with the corresponding interface
number, i.e. R; for the reflected power ratio and 7; for the corresponding refracted
power ratio. We indicate also the tissues by numbers, as described in Tab. 6.1 Air is

medium 0. By this notation, each interface has the number of the second medium.

Using the dielectric properties of tissues at 4 GHz, we derive that each media
interface provides a reflected signal, whose power and delay depend on the tissues
that crossed in its path. We assume that before the air-skin interface 1 we have

a signal whose power is Fy; then, the power of the signal reflected from interface
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Figure 6.2: Permittivity of tissues from 1 GHz to 10 GHz [1].
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Figure 6.3: Wavelength of tissues from 1 GHz to 10 GHz [1].
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Tissue | Tissue number | Thickness [cm]
Skin 1 0.1
Fat 2 0.96
Muscle 3 1.35
Cartilage 4 1.16
Lung 5 0.578

Table 6.1: Thickness of the inner tissues in the thorax [1].
i€ {0,--,6)is

P, = PR H [The22WD=)])* = By R H [(1 = Ry)e2ax(D=))* (6.13)
k=1
Therefore, we can define the received to incident power ratio (RIPR) I'; of the re-

flected signal of interface 7 at the target chest surface as

P,

I =
Po

) H [(1 = Ry)el=2a(D=))* (6.14)
k=1

This parameter represents the gain (with I'; < 1) of the signal from the transmitter

to the receiver. Ideally, I'; is the power level of the signal provided by interface i seen

by a on body receiver when Fy = 0 dB. As described in Fig. 6.4 for a transmitted

signal of frequency 4 GHz, at the receiver we get

e a signal with RIPR of —2.8977 dB and a delay of 6.67 ns, due to the air-skin
interface;

e a signal with RIPR of —13.08 dB and a delay of 6.67 ns, due to the skin-fat

interface;

e a signal with RIPR of 17.47 dB and a delay of —6.8 ns, due to the fat-muscle

interface.

The signals reflected by muscle-cartilage, cartilage-lung and lung-heart interface are
characterized by a lower RIPR, namely —57.38 dB, —72.20 dB and —74.59 dB, and
therefore they can not be detected by the receiver.

The dielectric properties of the tissues in |1] refer to a narrowband signal; by consid-

ering the UWB pulse as a sum of narrowband signals, we deduce that the received
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Figure 6.4: Reflected pulses from the target thorax tissues at a central frequency of
4 GHz
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Figure 6.5: Reflected pulses from the target thorax tissues at a central frequency of
60 GHz

signal has not the same shape as the transmitted one, since the tissues introduce a
frequency selectivity on the reflected signal. We also note that we are not able to
distinguish all these signals since the corresponding delays differ only by about 0.1
ns, requiring a minimum bandwidth of about 10 GHz to resolve them.Finally, we
show in Fig. 6.5 the average RIPR of the signals reflected by tissues for a signal
in the Ka band, at 60 GHz; we note that at those frequencies, and with a severe
constraint on transmitting power we are not able to detect that signals except the
one reflected from the skin interface, whose RIPR is 6.4 dB).

6.3 Frequency Domain Characterization of Tissues
for a UWB System

We introduce a frequency domain characterization of thorax tissues for a UWB
system, in order to characterize the reflection provided by the second interface. In

particular we focus on the fat tissue, since from Section 6.2 we don’t expect to receive
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replicas from inner tissues. In particular, to validate the analysis performed till now,

we investigate

e the wavelength of the signal propagating on the fat tissue as a function of
frequency. In fact, the wavelength affects the propagation speed, and if this
parameter depends on frequency, the received pulse would be affected by dis-
tortion; in other words, we are verifying if the received replica is a UWB pulse

as the transmitted one;

e the received to incident power ratio of the inner and outer reflection (fat-muscle
and skin interfaces, respectively) as a function of the frequency, in order to state
if there is a frequency selectivity due to propagation and reflection on chest

tissues.

6.3.1 Wavelength of Signal Propagating in the Fat Tissue

The wavelength of the signal propagating in the fat tissue Asp as a function of
frequency has been measured and results are reported in [1]. Fig. 6.6 shows the
measured wavelength behavior, a linear approximation and a hyperbolic approxima-
tion of the measured data, i.e. A\(f) =~ % We see that the hyperbolic function
provides a good approximation of the real function, with a mean square error MSE
of 5.5e¢ — 8. This motivates the application of this approximation to evaluate the

propagation speed as a function of frequency, providing

u(f) =1 Af) = Alfe)fe. (6.15)

By the hyperbolic approximation of the wavelength in fat tissue we expect the
propagation speed to be approximately constant in the fat tissue, and therefore the
inner reflected signal is not affected by distortion due to a frequency selectivity of
the time of arrival (ToA). The outer reflection propagates only on the air, where the

propagation speed is approximately the light speed in vacuum, c.

6.3.2 Received to Incident Power Ratio of the Inner and Outer

Reflections

In a UWB system, also the RIPR defined in (6.14) is in general a function of the
frequency, as it depends on the impedance of the media. The expression of the RIPR
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Figure 6.6: Wavelength of a signal propagating in the fat tissue as a function of

frequency.
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Figure 6.7: Received to incident power ratio of the inner reflection.

of the inner reflected signal can be written from (6.14) as
Ty(f) = [(1 — Ry)el 2D (1 — Ry(f))e 2202 Ry(f),  (6.16)
while for the outer reflection we have

Iy(f) = Ba(f). (6.17)

We don’t consider here the signal provided by the skin-fat interface, I's, as it has the
same ToA of the air-skin interface signal and it is 13 dB weaker. Figs. 6.7 and 6.8
show the RIPR for the inner and outer reflection as a function of frequency of the
radar pulse.

We observe from Fig. 6.8 that the RIPR of the outer signal is about +2.9 dB
on the band of interest of our UWB device (3-5 GHz), while the inner reflected

signal shows in Fig. 6.7 a stronger dependence on the frequency. However, the UWB
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Figure 6.8: Received to incident power ratio of the outer reflection.
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system is not able to resolve the two signals, and the outer signal is supposed to be
about 14 dB stronger than the inner one; therefore, it is reasonable to assume that
the global received signal is not affected by distortion due to frequency selectivity
of the body. On the other hand, in the last paragraph we observed that also the
propagation speed on the fat tissue can be approximated as a constant in the band
of interest. Therefore, we will assume that the received signal reflected by a point

scatterer is an UWB pulse with the same shape of the transmitted pulse.
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Chapter 7

Channel Model

In the following, we describe the indoor channel model for a UWB signal; in Section
7.1 we introduce the components of the indoor channel model in presence of a target.
The effects of the presence of a living target as a scatterer are investigated in detail
in Section 6.2. Based on this, we derive a model describing how the received signal

is modulated by the vital signs in Section 7.3.

7.1 Indoor Channel Description

We assume an indoor environment with a single still target. We assume that the tar-
get is situated at a random distance d; uniformly distributed in the range [d,nin, dmaz],
i.e. dy € Uldmin, dmay] from the transmitter, while the receiver is at distance r from
the transmitter. Both transmitting and receiving antennas are supposed to be om-
nidirectional, then the signal propagates isotropically.

As illustrated in Fig. 7.1, the channel impulse response is composed by different

elements, i.e.

® Neny(t), the indoor environment impulse response;
e hp(t), the direct target path;
® hreny(t), the impulse response of non-direct paths due to the target

e h,,(t), the impulse response due to little target motions.

h(t) = heno(t) + hr(t) + hreno(t) + hun(t). (7.1)

91
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Figure 7.1: Scenario of a UWB radio transmitting in a room with a target

In the following we describe each of these elements and discuss their contribution

on the detection of vital signs.

7.1.1 Direct Target Path

The set of direct paths is denoted as hp(t); channel paths composed by the transmit-
ter, the target and the receiver belong to hr(t). The delay of these paths is limited
to a range which depends on the round trip distance. By performing a Doppler
estimation analysis as described in Section 8.1.1, hp(t) provides information about
heart beating and respiration rate. However, hr(t) may also be affected by spurious
Doppler effects, induced by target motions, such as speech and movements of hands
and head, in the same delay range; these Doppler components may be modeled in
order to compensate their effects.

The main features of this component of the channel impulse response are:
e time variant

e fixed range of delays.

7.1.2 Environment

heny(t) is the traditional indoor channel impulse response; it takes into account the

effects of the environment without the presence of the target. It is a stationary
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process with a long coherence period, and involves cross talk path, and multipath
due to the room. Since it does not involve the target, it is not useful to the vital
signs detection; we model it as the sum of a constant and a Rayleigh fading indoor

channel model. The main features of hep,(t):
e time invariant
e large range of delays.

In the following, we assume that the receiver is able of perfectly estimating and
canceling all the replicas referring to the static part of the channel; scientific literature

provides algorithms aiming at the background subtraction, e.g. [65, 66].

7.1.3 Multipath Involving the Target

hr eny(t) contains the non direct paths involving the target. This paths are character-
ized by an higher delay and attenuation w.r.t. the direct path hp(¢). As for all paths
involving the target, we can recognize it by the presence of Doppler components, as
the presence of vital signs introduces a time variation on the main parameter of the

received signal. The main features of Ay ¢, () are:
e time variant
e a range of delays larger then the direct path

e higher attenuation compared to the direct path.

7.1.4 Target Motions

Besides the vital signs, with high probability the target introduces variations on the
received replicas due to little movements (e.g. moving the head, coughing, moving
the hands...). The effects of the spurious target motions (small movements) are taken
into account by h,,(t). This channel component is characterized by i) time variation,
and ii) by delays in general not included in the direct target path delay range. Note
in fact that in general little movements involve peripheral parts of the body, e.g. the

head and the limbs, while the chest is involved with a lower probability.
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7.2 Geometric Channel Model

We consider in the following only the direct target path, and how it is influenced by
the vital signs. We assume the target as a point, ideal reflector. Therefore, we do not
consider the effect of the target motion and multiple reflections involving the target.
As stated previously, the other channel components differ from the direct path for
some parameter, and in particular time variance, and delay range. Background
subtraction allows the cancellation of the static components, while a windowing on
the delays of the channel impulse response allows focusing only on the direct path

delay range. Considering only the outer reflection, the received signal is given by

ro(t) = hr(t)p(t — 7(t)) cos(2m fot + do) + (1), (7.2)

d(t) . . o
where 7(t) = —= is the delay of the target path, d(t) is the round trip distance
(transmitter-target-receiver) and c is the speed of the light in the air. In the following,
we describe d(t), and we discuss on the effects of vital signs on the amplitude, delay

and phase of the received signal.

7.2.1 Round Trip Distance d(t)

We first consider the signal reflected by the air/skin interface; this signal is affected
by the chest surface oscillations, due to both respiration and heartbeat. In Fig. 7.2 a
detail of the target chest motion is described; the two paths between the transmitter
(T) and the receiver (R) indicate the wave path in two different times through the
target, O (average chest position) and A (generic chest position). In particular, the
path m has length d(t) = Rtz 0+ Ry.0 under the condition of deflated lungs, while
the path TAR has length d(t) = Ry, (t) + R,.(t) at a generic instant ¢.

We model the chest motion as the sum of the oscillation due to respiration, x,(t),

and the weaker oscillation due to the heart beating, x,(t), i.e.

2(t) = 2, (t) + Exn(t) (7.3)

where ¢ < 1 is an attenuation parameter which underlines the weakness of the heart
beating signal on the chest with respect to the respiration signal.

The oscillation z(t) covers the segment AQ, i.e. the segment between the average
chest position O and the current chest position A, forming an angle 6 with the TO
segment, as illustrated in Fig. 7.2, and influences both R, (t) and R,.(t)
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Figure 7.2: Detail of the target chest oscillation due to breathing
Then we define

Atm (t) - Rtw (t) - Rtm,(] (74)

and
Ay (t) = Ryu(t) — Ry o (7.5)

Their value depends on the chest motion x(t) of (7.3), on the oscillation angle 6 and
on the angles oy, = TOy and «,, = yOR, where y is the axis of the height of triangle
TOR related to the segment T'R. The direction of the chest oscillation is indicated

by the (blue) arrow, while the (magenta) circle indicates the maximum amplitude.

Generic Bistatic Scenario

We consider the generic bistatic configuration, where the transmitter and the re-
ceiver are two different devices; an alternative configuration is the monostatic, where
the transmitter and the receiver are located in the same device. By applying the

trigonometric rules to the triangle TOA we have

Ry, (t \/Rm o+ 2%(t) — 2R 02(t) cos(0); (7.6)

similarly, observing that 6, = 27 — ay, — a,., — 0 we have

\/Rrx 0 + 12 - 2R7’x Ox( ) COS(Q + Qe + atx)- (77)
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We derive here R,,, from the other system parameters; then, we will find the
range of angles describing the target area for a given distance range. Referring to

Fig. 7.2, we assume to know the parameters:

e oy, and a,, are determined by the positions of T,R and O, and on the directivity

of antennas. In our scenario, antennas are omnidirectional;
® dy = |ﬁ| is fixed as part of the set up;
o hy=d(O, TT‘%) is the distance of the target to the transmitter-receiver segment.
The following constraints have to be satisfied:
i Rtx,O Sm(am) = ho;
o R, osin(a..) = ho;
o Riyocos(aiy) + Rypocos(ay,) = di;

then ()
SIN{ Oy
Rtw,O COS(Oétx) + Rtm,O.it

in(o.,)

If oy, oy and dy, are fixed, the values of Ry, o, Ry 0 are given by

cos( Q) = dyy. (7.8)

dtr
B — | 7.9
0 T cos(auy) + sin(agy) cot () | )
and . ( )
SIN{ Oy
R0 — Ry o |50000) | 7.10
0 0 sin (g ) (710)

Then, for a given hg and dy,., the set of possible angles is defined by the condition

dyr
|cot () + cot(ang )| = hi (7.11)
0
Monostatic Scenario

In the monostatic scenario, the same device hosts both transmitter and receiver;
therefore, ay,, o, =~ 0. This motivates the assumption of normal incidence.

We also observe that

e the distance between transmitter and receiver is little compared to the distance
between them and the target, i.e. TR < T'O, T R; this implies oy, + ., < 7/2;
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e we assume normal incidence of the wavelength on the chest tissue interfaces.

Since we also assume normal incidence of the transmitted and reflected waveform,
we have ay, + app ® O and @ = 7 — oy, = 7, 0, = T — ,, = w. By applying the

assumptions 7.2.1 in the generic configuration

R (t \/Rm o+ 22(t) — 2Rup 0t (t) cos(6) = Ruwo + 2(t); (7.12)

and

\/Rm o+ 22() — 2R, 0 02 (t) co8(8 + Qe + ps) & Rrno + (1), (7.13)

so that
d(t) = Ripo + Rrwpo + 22(1). (7.14)

Since now, we assume to be in the monostatic configuration.

7.3 Vital Sign Modulation on the Received Signal

The time variations of the target chest position provide a modulation of the main
parameters of the received replicas, i.e. the attenuation p, the phase § and the ToA
d(t . We introduce here the parameters, for a generic signal with a central frequency
of 4 GHz; in the last of the chapter we describe in detail the parameters, depending

on the nature of the transmitted signal.

7.3.1 Attenuation Coeflicient Modulation

According to far field assumptions, the received signal power attenuation is inversely
proportional to the square of the path length, which in our scenario is a function
of x(t); therefore, p(t) m.
oscillation amplitude of 5 ¢m, corresponding to a deep breath, we have a variation

By assuming a path length of d,,,, = 2 m, and an

whose maximum amplitude is about —38 dB, and therefore not relevant for vital

sign detection, p(t) = po.

7.3.2 Phase Modulation

Path length variation modulates also the phase of the received signal. In particular,
for the considered carrier frequency and bandwidth we verified that a path length

variation of 2 cm is sufficient to provide a phase shift of about 7.
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7.3.3 Time of Arrival Modulation

To determine whether our system is able to detect the path distance variation by a
delay variation, we need to specify the system bandwidth B; in fact, the received
signal is now sampled with period T, = %, then t =T, [ € Z"; we underline that
we can sample with a smaller period, in order to improve the SNR, but we are not
able to extract more accurate information about the CIR. We deduce then that the

minimum path distance variation that we can detect is
Adyin s =c-T, =13.64 cm. (7.15)

In Chapter 6 we evaluated the propagation speed in fat tissue, whose value for a

signal propagating at 4 GHz is v = 1.3 - 108, and therefore we have
Adpinf = Vfar - T = 5.9 cm. (7.16)

In our model we could detect the path distance variation by a delay variation only
if a) the air-skin interface has an oscillation amplitude of about 7 ¢m, and/or b) the
Ayq(t) amplitude is about 3 cm. If the condition a) could be verified in some cases,
when the target takes a very deep breath, condition b) is never verified. Therefore,
in general we are not able to detect the vital signs by variation on delays of target
path.

7.4 Vital Sign Signal Power

We propose here a feasibility study for detecting vital signs, and in particular the
heart rate, using a UWB technology under the compliance of FCC regulations with
a monostatic configuration, i.e. where the transmitter and the receiver of the radar
signal are located in the same device, as described in Fig. 7.3. We aim at evaluating
the range of distances d between the radar and the target where the received power
is enough to allow the detection of vital signs. A similar case has been investigated
in [67], where the author evaluates the maximum distance allowed to see the signal
reflected by the heart, modeled as a spherical metallic reflector, with a UWB radar
system centered at 4.1 GHz. As illustrated in [63] and confirmed in Chapter 6,
the expected received signal on the chest surface, i.e. when d = 0, is composed
by a pulse reflected by the air skin interface, with expected SNR of —3 dB, and a
weaker reflected pulse at —17 dB, due to the fat-muscle interface. For this study,
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we consider only the first reflection; the study can be extended also to consider the
inner reflection, which carries the same information of respiration, and a stronger
signal for heart beating. We perform the analysis in far field region, as it provides
a simple analysis; this approximation is not well verified, due to both low distances
and the presence of the interface of the target tissue, which violates the condition of
free space propagation.

We are interested on the variation of the channel tap describing the target chest;
we denote this signal as the wvital sign signal, because it provides the desired infor-
mation on target vital signs. The vital signal power P, is then only a fraction Dy g
of the received power P,, i.e.

P, = P, Dyg.

In particular, Dy g represents the dynamic of the vital sign, i.e. the ratio between
the power of the channel variation, due to the chest oscillation z(¢), and the received

power. We summarize here all the assumptions used in the following:
o far field propagation;
e only line of sight (LOS) wireless signal propagation;
e one reflection due to the air-skin interface;
e the target chest is modeled as a spherical reflector whose radius is @ = 15 cm
e the medium describing the target is an homogeneous and ideal dielectric;

e since we are interested in detecting both the respiration rate and the heart
rate, and the latter is the weakest one, we expect the Dy g parameter of the
heart beat signal to be very small. Therefore, we assume the Dy g parameter
of heart beating as the worst case scenario, and we evaluate its expected value

in the following.

7.4.1 Power of the Received Signal

Let

e EIRP be the effective radiated power; FCC regulations imposes a bound, de-
pending on the system bandwidth [58];

e d be the round trip distance;
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[V]ISH

Target

Figure 7.3: Description of the target chest with respect to the radar device in a

monostatic configuration.

e o0 be the radar cross section (RCS);

A2 ..
o A, = - be the receiving antenna aperture;

.
A7 d?

be the fraction of EIRP reflected by the target chest;

e

[ ]
4drrd?
aperture.

be the fraction of the reflected power received by the receiving antenna

The received power is then given by [67]

o A,

P, = EIRP
dd? A d?

(7.17)

7.4.2 Main Features of the Commercial UWB System

We consider a Time Domain PulseOn210 system [68].
We report the main parameters

e central frequency fo = 4.2 GHz;
e system bandwidth B = 2.2 GHz;
e FCC power spectral density limit PSDpec = —41.3 dBm/MHz.

Due to the limits on the transmitted power, we have unitary antenna gain at the

transmitter (G; = 1) and in our scenario

EIRP|apm = PSDpcclapmmn: + Blapyn. = —7.88dBm.
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7.4.3 Radar Cross Section Evaluation

We evaluate here the RCS of the target chest, seen as a spherical reflector of a

homogeneous dielectric medium. For a spherical reflector, RCS is given by
o = |Atgththtgt| (718)

where A, is the projected area of the target seen by the radar, R,y is the reflectivity
of the target and Gy is the antenna-like gain of the target. In the following we

evaluate each of these terms

Atgt

The projected area of the target depends on the carrier frequency, and in particular

a
on the value of the parameter ——; in our case, since the condition of the optical

A
2ma
region oY > 10 is verified in the system band, we have A, =~ Ta®.

Rt gt

We discussed in Section 6.2 the reflectivity of the target; since we assume only the

first and strongest reflection, from the air skin interface, the reflected power ratio is

Rige(f) = Ba(f) = | 7= (7.19)

In general, 7; is a function of the frequency, and in our scenario its value is around
-3 dB. This approximation has been derived with a widely used method [1, 63|, and

provides a better insight with respect to the metallic sphere model.

Gtgt

We assume the worst case scenario, where the target has no antenna-like gain, i.e.
Gtgt = ]_

7.4.4 Maximum Detection Distance

In our scenario the desired signal power is given by
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A, A2
7 e _ DygEIRP—22 =

P, = P.Dygs = DysEIRP —
Ve Ve A d? Amd? (4m)3d*

N Ry (fra? (7.20)

(4m)3d*

The maximum distance d,,,, allowed to sense the heart beating is the distance d

= DygsEIRP

where P, is equal to the receiver sensitivity P, ;. We assume from |69] that P, ., =
—85 dBm.
From (7.20) we have then

5 _ 4| DysEIRPoN®
e Pu,min(47r)3 B

(7.21)

B f/ DysEIRPR, (f)ma2c?

n Py min(47)3 f2
At the best of our knowledge, there are not accurate measurements of the amplitude
of the oscillation of the chest skin due to heart beating. However, we observe that
this oscillation in general can not be detected by the eye, while it can be detected by
touch. The maximum theoretical resolution of the eye, at its best acuity, has been
estimated as 0.35 mm, while the minimum oscillation can be detected by touch is on
the order of 107° m [70]; we consider then the worst case oscillation amplitude of the
skin Az on the order of 10um, i.e. almost two orders of magnitude lower than the
eye acuity bound. This oscillation provides a variation on the ToA of the received
pulse of Az/c, which is too small to be detected with our system; however, it will
affect the received signal both in amplitude and phase. Then, the desired signal will
be related to the value 27 f2Ax/c ~ 1073, and then Dyg =~ 107°. The resulting
value of the detection range is described in Fig. 7.4; as we can see, detecting heart
beating in the considered band is possible only for a distance lower than 25 cm.

We can repeat the same study for the detection of the respiration rate; it is easily

verified that in this case the signal dynamic Dy g ~ 1072, In this case, the detection

range is about 2.5 m.

7.4.5 Signal to Noise Ratio (SNR) Optimization Using UWB
Redundancy

With the pulse UWB technology, the pulse repetition period is very small with re-

spect to the coherence time of vital signs; in the considered PulseOn application, the
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Figure 7.4: Maximum range as a function of frequency

repetition frequency is 10 MHz, while vital signs have a rate of some Hz. By assuming
that the vital signs are constant on a time period of 0.1 s, we have about 10° pulses
providing the same sample of the vital sign process. We can use this redundancy
to increase the desired signal power P,; theoretically, we could achieve a maximum
gain of about 10° + 10°. However, hardware limitations usually prevent the system
from achieving the maximum gain; in particular, the maximum gain achievable with

the PulseOn Time Domain device is Gy s =~ 103. Then the maximum range is

Dy sEIRPo)?
P 4 R —
dmaﬂc B \/GUWB Pu,min(4ﬂ-)3

(7.22)

4/ DvsEIRPR,(f)ma*c?
N Pu,min (47T)3f2

The corresponding detection range is described in Fig. 7.5; we observe that with
this operation we are able to detect the heart beating in our band with a distance
up to 8 m, which is a reasonable value for an indoor scenario. For the respiration,
the detection range is about 80 m. The operation of increasing the SNR is already
implemented in the UWB device as an averaging operation, which is optimal for an
additive while Gaussian noise (AWGN) channel.

We conclude this study with some considerations:
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Figure 7.5: Maximum range as a function of frequency considering the average gain.

FCC compliance poses a severe limit for detection of vital signs, and in partic-

ular for heart beating;
the detection range sensibly depends on frequency;

signal to noise ratio (SNR) maximization is a key issue to address for remote

sensing;

UWB technology provides a description of the channel with a detail higher
than necessary for our processes, which are very slow with respect to the pulse
repetition duration; this redundancy can be used to increase the vital signs

signal power, and therefore also the maximum detection range.
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System Model

System model is a result of different steps, with an increasing level of complexity of
the considered scenario. In fact, as a first step in Section 8.1 we derive a narrowband
model for a single scattering scenario; we derive for this model the Doppler analysis
i.e., how the chest motion is related to the variations of the received signal. The
second step is to extend the model to a single scattering, wideband model, modeled
as a parallel of narrowband subsystems in Section 8.2.1. The third step is to extend
the model to a multiscattering, wideband model, described in Section 8.2.2; in this
condition, two different scenarios are investigated: line of sight scenario (LOS), where
all the reflections are in phase, and local rich scattering scenario (LRS) where all the
reflected signals are not exactly in phase. Finally, we introduce the complete channel
model, where we consider the entire channel impulse response, LRS scenario and the
presence of two reflections, inner and outer, from the target, in Section 8.3. Part of
this work has been published in |71].

8.1 Narrowband System Model

We first discuss the vital signs modulation on the parameters of the received signal
for a narrowband system, as the simple analysis describing the narrowband scenario
is useful to describe the wideband system. In a narrowband system, the transmitted
pulse is a narrowband pulse py(t). Let us suppose that we have only the reflection
by the air skin interface of the target, without multipath. We consider the target

chest as a point scatterer. Then the received signal for a single pulse can be written

105
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as

d(t d(t

7(t) = pev/ Rapy (t - %) cos (27ch (t - %) + ¢o + ¢t) +n(t), (8.1)
where ¢q is the initial phase, ¢; is the phase shift introduced by the reflection, p; is
the propagation attenuation coefficient and R; is the reflection coefficient. There is

no amplitude modulation, while the relationship between the instantaneous phase of

the received replica (t) and d(t) is known, i.e.

B(t) = =27 fc (@) + do + ¢r. (8.2)

8.1.1 Doppler Estimation Theory

From (8.1), the instantaneous phase of r(t) is

B(t) = —2r fo (%) + @0 + ¢, (8.3)

and then the Doppler frequency is

L 106,(t) 1 0d)
Ll i (8:4)

In general, if we consider the presence of different paths involving the target in
Nhop

motion, we have d(t) = >, "/" d;. Each path is affected by Doppler whose frequency
is

A 1 8¢r,m(t) _ o 1 a(di)
S ot =N Ot

fam (8.5)

where N, is the number of reflections which occur from the transmitter to the
receiver, and )\; is the wavelength of the signal propagating on the medium of path

i.

8.2 Wideband System Model

The narrowband Doppler analysis is not sufficient to describe an UWB scenario; in
fact, all the parameters used in that analysis, such as the speed, the wavelength, the
attenuation, depend on the frequency. However, the narrowband Doppler approach
allows a simple model of the effects of vital signs on the received signal. This moti-

vates our suggestion of modeling the UWB system as a parallel of N narrowband
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systems. By this model, we can apply the narrowband analysis to each subsystem;
the value of Np is chosen in order to have on each sub-band a flat pulse frequency
response, and a flat attenuation.

We consider now two scenarios: in one case, where the chest is still modeled as a

single scatterer, while in the second case the chest is modeled as a set of scatterers.

8.2.1 Single Scatterer Scenario

We model the signal (¢) as the sum of the Np received signals of the narrowband sub-
systems. For each subsystem b, the central frequency is f, = fﬁ—b]\%, where f7is the

lower bound of the UWB band. The corresponding equivalent pulse py(7) is assumed

to be a constant in frequency domain on sub-band b, i.e. P,(f) = P(fb)rect(]fvgl;’é),

and therefore in time domain can be written as i.e.
) B

po(T) = P(fp)sinc <N—T) : (8.6)
B

Then, the received signal can be written as

=3 T (1= 20 ) o (a2 (- 10 ) ¢

N
b=0 B

+n(t)

where 7(t) is the noise term. The equivalent baseband signal is

Np—1
d(t _ion B yd(®)
rpp(t) = Z poV Ripy (t - %) e IETUIHIRG) o0 nps(t). (8.8)

b=0
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Under the assumption of flat frequency fading of the narrowband pulses p, on their
sub-bands, i.e. P (b) = P, and A = Ppy\/ Ry exp(¢g) we have

Np—1
B o B\ d®)
rpp(t) = Asinc <N— <t — @)) E e 7 <f1+bN]'3B> © +nga(t) =

c
B b=0

Np—1

—_= Ae_j2ﬂf1@ E

b=0

d(t) b

‘ } +np5(t) =

1
9]
J
[\
3
=
9 ‘W

—jor- B d®) Ne
1— e Np ¢
a(t)
c

Np ¢

= Asinc eI

Sl
VRS
~
|

‘&
Q@F

—927
1—¢e”’

d(t)

dt))) g B sin (2rB40)
(& c

+n55(t) =
)

—I2ToNg e g _B_d(t)
e B ¢ Sin 27T2NB c

(8.9)

) : _ —j2ﬂ<fc—%> L
o ) while 5(t) = e B/ e,
2Np ¢

In Fig. 8.1 the absolute value and phase modulation of the received signal are shown

After some algebra we obtain «(t) =

for a system whose bandwidth is 2.2 GHz, divided into Np = 10°® subsystems, where
the target is at distance of 1 m oscillating as a sinusoidal function with amplitude 2
mm. We observe that the oscillation of the target modulates also the amplitude of
the received signal; in particular, the modulation functions of amplitude and phase
have the same frequency of the target oscillation and a phase shift of 7 /2.

In general, we observe that the UWB signal is modulated by vital signs both in
amplitude and phase; however, the modulation is not as simple as (8.9), since this

formula has been derived under singe scatterer and very short pulse assumptions.

8.2.2 Rich Scattering Scenario

Until now, we modeled the chest as a point reflector; a more realistic approximation

is to consider the chest as a set of reflecting points, each providing a reflected signal
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) X 10* absolute value

phase(r)

Figure 8.1: Modulation of amplitude and phase of the received signal in UWB single
scattering scenario
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with its phase shift and delay. In general, the chest section can be seen as an ellipse
expanding and contracting due to respiration and heart beating. Using the spherical
waves propagation model, it is easily shown that the receiver collects the signal
reflected by a small area around the center of the chest. In fact, the waves reflected at
the borders don’t reach the receiver in a monostatic configuration. Therefore, we can
approximate the chest as a planar surface, moving according to a rigid translation;
the reflected waves differ slightly in phase, because of very little differences of path
length from each point of the surface. Even if our system is not able to resolve
the differences in delay, if there are enough reflections, we may observe also an
amplitude modulation of the received signal. The target chest, and in general the
entire target body could also behave as a set of scatterers, each of them with its
own incidence angle, reflection coefficient and phase. This hypothesis differs from
the rich scattering, considered for wireless communications [2| because in this case
all the scatterers are concentrated on a limited region of the space, and then they are
not uniformly distributed w.r.t. the receiver. However, in general we assume that
the amplitude and phase diversity provided by all the received replicas is sufficient
to cause a significant variation of the amplitude of the received signal, together with
its phase. This effect is combined with the UWB amplitude modulation, as seen in
the previous paragraph.

Let us consider Ns scatterers; each scatterer ng is characterized by its own distance
from the radar d,,(t).

rop(t) = i Nil pov/ R, (t _ . (t)) .

C
ns=1 b=0
. d
92U 2O o

(8.10)

+ 7733(15).

Although the number and the distances of the scatterers are unknown, (8.10) sug-
gests that both () and §(t) are functions of time with the same periodicity features

of the chest oscillation function z(t).

8.3 UWB Model with Multiple Target Reflections

We consider now the most generic configuration, which includes multipath due to

the indoor scenario and multiple target reflections due to the multilayer nature of
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the chest, i.e. an indoor channel scenario with a discrete and finite number N, of

reflectors. Then the received signal becomes

rep(t) = Z spp(t — () hps(r:(t) + npp(t) (8.11)
where
spp(t) = ‘Z p(t — jTs)

is the baseband equivalent transmitted signal, 7;(¢) defines the ToA of the replica
reflected by reflector ¢, and hgp is the equivalent baseband channel impulse response.
Let us define N

layer

as the number of layers of path i, d;;(t) the length of layer [ of
path i, and v;; the speed of light in layer [ of path 7; then we have

NGO

layer
diy(t)
- 3
=1 b

, i.e., the ToA of the replica reflected by reflector i is the sum of the delays provided
by the propagation on medium layer [ with propagation speed v;;. We assume all
other reflectors as static and ideal conductive objects; they are described with only
one layer, and with a time-invariant distance. Furthermore, the analysis provided
in Chapter 6 suggests to model the target as two interfaces, each one reflecting the
transmitted signal with its attenuation and a phase shift of 7. We will indicate with
index 7" the target; we also indicate with the subscript 1 the outer interface (air-
skin-fat), and with 3 the inner one (fat-muscle), using the same notation introduced
in Chapter 6; the two interfaces are separated by z3 ~ 0.96 cm. We consider the
fat tissue as a rigid tissue; then, both the interfaces will have the same motion due
to respiration, modeled as x,.(t). The motion of the two interfaces due to the heart
beat takes into account the attenuation due to the tissues i.e., we expect the inner
interface to be more affected by the heart beat then the outer interface. For the inner
interface we have x, 3(t) while for the outer xz1(t); these two functions differ only
for the attenuation factor, which is higher for the outer reflection. By combining
the effect of respiration and heart beating we have that the round trip distances
for the two interfaces are dy(t) = Ry + x,.(t) + xp1(t) and ds(t) = di(t) + As(t) =
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() + 2ot — 2(zns(t) — zp1(t)). Then we can write
rps(t) =Y spp (t - %) his <%) + nss(t)+
+spp <t - dl(t)) hss (dl(t)) - (8.12)

+ $pp (t - (le(t) + Az;t))) hpg (dlc(t) + AZ;t)) .

Let us now indicate with r7;(¢) the first component of the signal; in the following

we will describe how we cancel it. We have

TBB(t) = ’/’T[(t) -+ TIBB(t)+

+spp |t — dl_(t) hpp dl_(t) N |
+ spp Et _ (dl(t)) N Ag((t))))hBB (dl(t) . Ag(t)) | (8.13)
c vy - iy

We recall here some results that we verified in the previous Chapters:

e in general, even using all the band allowed by FCC, we are not able to detect

the vital signs by variation on delays of target path;

e since z3 < 3 cm, the inner and outer paths are represented by the same time

sample, defined as 7r;

e the non aliasing condition is verified, 7, > 27T and then we don’t have aliasing

between adjacent pulses;

e the theoretical narrowband and wideband model described in Sections 8.1 and
8.2 suggests that the target replicas are modulated by vital signs both in am-
plitude and in phase.

An exact expression of modulation has been derived in Section 8.2, by considering
only the outer reflection; a similar analysis can be performed also for the inner
reflection, which provides its own amplitude and phase modulation to the received
signal. In general, we describe both amplitude and phase of the received replica as
functions of chest oscillation, i.e.

hs (dl(t)) = o (t)e~iP®

C

hBB <d3ct)) = Oé3(t)€_j6(t).

(8.14)
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In general, we observe that function §(t) is proportional to d(t), while there is not a
general analysis providing an expected behavior of oy and a3. The sampled received

signal expression becomes

’I“BB(ZTC) = T’T](ZTC) + SBB (ZTC — 7') [Oél (dl (ZTC))E_jB(dl(lTC))—I—
As(IT.) . —jB(dy(T.)+ 23T (8.15)
+as(dy(IT,) + %k I 4 e (IT,).
f
We remind now the properties of this signal: spp(IT.) is a periodic function
with repetition frequency equal to PRF. We also suppose that 2w 5= is a multiple
of 2. Then we divide the temporal axis into pulse repetition periods of duration

TrEp = PLRF with length KT, (larger then the CIR length), K = Tl}—’jp. We verified
that spp(IT.) = spp(IT. + Trep) = p(IT.). Then we write

IT. =nrppTrep + ngl, ng =0,--- ,K—l; Nrep € Z+, (816)
and the received signal is

ree(MrepTrep +nkT.) = rri(l1:) + p (IT. — 7) [oa (di(nrepTrEP + nK 1))
As(ngrepTrep + niTy)

vf

e~ IBdi(nrEPTREP+NKTC)) + ag(dl (nREPTREP + nKTc) +

).

; A3(nrppTrEP+KTC)
—jBldi(nrepTrEP+nKTe)+=3
€ °f +nee(MrepTrEPr + K1)

(8.17)

We observe that the coherence time of the observed processes is larger than both
T. and Tgrgp; in fact, f., f» < 10Hz < 9.611 MHz; we can then use the redundant
amount of samples to improve the SNR. We call slot a set of Ng successive symbols,
and we assume that the slot duration is lower than the coherence time of vital signs.
At the transmitter we modulate the transmitted pulses with a pseudonoise sequence;
then the receiver performs a despreading with a spreading factor of Ng.

To correctly reconstruct the vital sign signal, it is then sufficient a sample period
of Tsean = NsTrep; di(nrepTrep + ni1), ds(nrepTrepr + nx1e), As(nrepTrEp +
nkT,) are supposed to be constant in a slot. We have

BB (kTscan + nKTC) = TTI(”KTC> + p (nKTc - T) [051 (dl (kTscan))e_jB(dl (kTscan)) +
A?)(k;Tscan)
U

—jB(d1(kTscan)+ Ag(kTscan) )

+a3(dl(kTscan) + )6 vf + nBB(kTscan + nKTc)

(8.18)
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In the following we consider Ts.,, = 1 ms. The time scale nx T, represents the delays
of CIR. We observe that rr;(ngT.) does not depend on ng; in fact, in our model the
vital signs and the white noise are supposed to be the only time variant processes
in the channel. We can estimate this static part of the CIR and cancel it using a
background subtraction operation; one simple method to estimate it is taking the
average of rpp(kTscan + niT,) over k. After background subtraction from (8.18) we

obtain a noisy version of the target component

TT(kTscan + nKTc) =p (nKTc - 7’) [al (dl(kTscan))e—jB(dl(kTscan))_|_
A3(FTscan)
vf

—jB(d (kTscan)+ 231 scan) y (8.19)

+a3(d1(kTscan) + )6 f

Note that ry(ngT, + kTscan) is a time-varying signal since the round trip distance

from the air-skin interface dj(kTseqn) and from the fat-muscle interface dy (kT sean) +
Ag(kTscan)
vy
We then model the wide band system as a parallel of N narrowband systems.

depend on respiration and heart beating.

By this model, we can apply the Doppler analysis to each subsystem; furthermore,
we avoid to perform deconvolution with p(t), since on each subsystem the pulse

frequency response is supposed to be constant.

8.3.1 Combination of the UWB Signal at Each Scan to Max-
imize SNR

In Subsection 7.3.3 we verified that the delays of different points of the target chest
cannot be distinguished; therefore, in our assumptions and without noise, one value
of ng, corresponding to the target delay 7r, is sufficient to describe the received pulse,
with T'c = —. The presence of more then one values of nx where ro(ngT.+kTsean) 7
0 occurs if oversampling is performed. In fact, the presence of noise and distortion on
the received signal suggests to benefit from the oversampling factor to improve the
SNR, i.e. to find the best way to combine the samples describing the same channel
path and obtain the vital sign signal v(kTscq,). From the theoretical point of view,
in absence of ISI, the linear combination that maximizes the SNR is provided by the
match filter [41]. In absence of noise, the combination of all samples ro(ngT.+kTscan)

for each scan providing the maximum SNR is given by

V(T sean) = max, Arr* g1 (nkTe + kTscan) }- (8.20)
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where gy (t) = p*(—t) is the matched filter [41| and = is the convolution operator. By

assuming only the AWGN noise as disturb, performing the convolution described in
(8.20) we obtain

6(!{;Tscan) = 'U(nTscan) + w(nTscan)a (821)

where w(nTseq,) is the resulting noise component.
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We aim at detecting the heart rate and respiration rate of the target, based on the
knowledge of the noisy signal o(k) which collects the contribution of both phenomena.
As the convolution in (8.20) is a linear operator, the resulting signal 0(nTs..,) is a

zero mean signal affected by zero mean AWGN noise w(nTsean ), i-€.
(T sean) = V(T sean) + W(NTsean)- (9.1)

We verified that the shape of respiration and heart beating changes significantly with
many factors, e.g. angle of incidence, distance of the radar, position of the target.
Therefore, we cannot exploit any a priori information on the signal shape.

In general, v(k) is a non stationary signal, mainly because of the irregular nature
of the respiration process. Therefore, v(k) cannot be considered as a periodic signal
in strict sense; it is then assumed locally periodic, i.e. the periodicity of v(k) is
assumed to be slowly varying and constant in a range of samples of length N. In
the following, we will focus on the period estimation performed on a window of N
samples and therefore consider an observation of the signal v(k), k =1...N.

The choice of the number of observed samples N is dictated both by the desired
estimation time and by the fact that signal v(k) may be regarded as periodic only for a
limited time. This is the case of vital signs (heart beating and respiration rate), which
can be assumed periodic as long as the target conditions, including his movements,
speaking activity, etc., are not changing. The investigations on respiration and heart
beating allow us to consider two ranges Z,., Z,, of periods, suitable for respiration
and heart beating, respectively. In particular, for a healthy adult target we consider
Z, = [0.5s 10s], and Z;, = [0.3s 1.2s], corresponding to a heart rate range of 50 — 200

beats per minute (bpm). Since we can not make any assumption on the shape of v(k),

117
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we ignore correlation among samples within a period. In particular we model v(k) as
a white Gaussian process with unitary variance E [|v(k)|?] = 1 and zero mean within
the elementary period. Consequently, the column vector v = [v(1),--- ,v(N)]¥ is a

zero mean Gaussian vector with covariance matrix
. (P)=E [vw'], (9.2)

where we have highlighted its dependence on the period P, and ¥ denotes the Her-
mitian operator. Assuming that v(k) has period P, the entries of X (P) are

1, ifl=mPme Z\{0}
(2 (P)] (k,k+1) =E [o(k)v(k+1)"] =<1+ 02 if 1 =0, (9.3)

0 elsewhere

where in the last case the assumption of white process for v(k) is used.

9.1 Autocorrelation Based Period Detection

A significant amount of literature uses the correlation to estimate the period of the
signal v(k) [72], [73]. If the signal is ergodic, an estimate of the correlation is given
by

Z (I4+n)y), n=0...N—1, (9.4)

where the averaging is performed over N samples and the expression (a)y stands for
a mod N. The optimum value of N depends on the noise level and on the validity
of the assumption of ergodicity. In absence of noise, the real part of C'(n), ®[C(n)],
is periodic and reaches its maxima for n = mP. Hence, according to the correlation

based (CORR) algorithm, the period estimation is performed as
Pcorr = argmax,, R[C(n)]. (9.5)

The method in (9.4) does not take into account the presence of noise. The function
|C'(n)| is periodic and reaches its maxima if n is a multiple of the period P. The
same periodicity information provided by the autocorrelation function can be seen in
frequency domain through the periodogram; different algorithms have been proposed

to evaluate the periodogram of a function.
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9.2 Maximum Likelihood Period Detection

We propose the maximum likelihood (ML) period estimator for the considered signal.
Let f(v|n) be the conditioned probability density function (pdf) of v given that
P = n. Then, the log-likelihood function is

A(n) = log(f(v)) (9.6)

and the ML estimator is

Py, = argmax,, A(n) (9.7)

Reminding that the conditional pdf of the zero mean Gaussian vector v is

1 _1 HE 71( )
— Vi 9.8
fvin) = e s,y e ’ ©-8)

the log-likelihood function for a candidate period n is given by

! 1VHEV_I(TL)V. (9.9)

A(n) = log(f(v|n)) = log CnN2 [ 2. (n) 2] ~ 2

From (9.3) we observe that X,(n) is a Toeplitz matrix. Furthermore, if N is a
multiple of n, i.e. N = Ln, ¥,(n) is circulant, generated by vector ¢ = [1 +
on OF_ 1 05,05,

In the following we consider N > n, n € Zp, so that

Under this assumption, in the following we assume N as a multiple of n. If 02 # 0,

the inverse matrix is non singular, still circulant and its first row is

DR p—

= [(L-1 2 0 —1.0" 1,---.0]. 9.10
T LR , 0] (9.20)

wr Un—1> n—11
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The log-likelihood function becomes

1
Aln) =log [(%)Nﬂ = ||1/2] "

1 2 - 2 Y
T 902 (L 1 02) (((L— D +02)Y k)=

1 ! 2 3 v*(k)v
[lOg( (2 )N/z || Ev(n) ||1/2) QUa(L 030) (L—l—aw)kz:; (k;) (k) +
1 N N L1 (9.11)
202 (L + 02) <_ ; v (k)v(k) — ; 2 v*(k)v(k + mn))
1 1 N ,
= log {(27T)N/2 H Ev(n) ||1/2} - 203} ; |U(]€)‘ ) +
+202 L+a2 (;mZ:OU k+m”)N>

We assume that the first term as constant with respect to n. Neglecting additive
terms that do not depend on n, which are not involved in the maximization of the
log-likelihood function, we have

1 N L-1
PML = argmax,, m (Zl

L—-1

1
= argmax,, m Z_ C(mn)

(9.12)

9.2.1 Low Complexity Implementation of ML Detection

We propose a method that estimates the periodicity without initially estimating the

correlation. In fact, if v(k) describes a large number of periods, i.e. L > o2, we

w?

have

Pyp, = argmax  A(n) =

N L-1
= argmax m <Z C(mn)) - (9.13)

w

1
L+ o2

L1
= argmax E C'(mn) =~ argmax, e(n) = Preymr-
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For each candidate period n € Zp, we divide the signal v(l) in L blocks of length
n, with Ln < N, i.e. we make the change of variable [ = k +in with k =1...n
i=1...L. If the period P is correct, then v(k+jP) = v(k+iP), with 4, j the block
index. The function e(n) is a linear combination of the autocorrelation function

evaluated on multiple values of n, i.e.

(9.14)

e(n) = %Z )P neTp (9.15)

where

qr(l,n) = 17 v(l+mn), k=1,---,n. (9.16)

We denote this method as low complexity ML detection (LCML) method; in fact,
it allows a low complexity implementation of the ML strategy, as we discuss in Sec.
10.4.4. If the signal is periodic with period 7 and it has zero mean, the function e(n)
of (9.15) is periodic with the same period of the signal v(-). The intuition behind this
method is that the sum in (9.16) allows for an averaging of the noise thus reducing

the noise impact on the final estimate.

If all the processes are ergodic, we have

nggoqL(k’n) = Elv(k +in)] =

_ (9.17)
=v(k)d(n —mP), n€Zlp,me2Z,
where the expectation is done with respect to 2, and
e(n) =0y -6(n—mP), n€Ip,mc2Z. (9.18)

Asymptotically, the LCML estimation tends to a periodic delta function with period
equal to the period to be estimated.

As illustrated in Subsection 9.3.1, the average autocorrelation e(n) is affected by
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~ |gqm

a noise component with mean =2. Therefore, if an estimate of the noise power is
available, we can further refine the LCML method by removing the mean value of

the noise component, obtaining the LCML2 method

1 0!
Promie = argmax,,  — Z C(mn) — fn (9.19)

9.3 Vital Signs Period Estimation

Remote sensing of vital signs using UWB radar technology is a possible application
of the period estimation problem. We assume a monostatic configuration, where the
target chest is in front of the radar device in a line of sight configuration, and the
receiver perfectly estimates and cancels all the replicas referring to the static part
of the channel, using background subtraction techniques |65, 66|. At the receiver, a
filter matched to the UWB pulse is applied and after sampling we obtain a signal
v(k) as in (8.20). We verified that the shape of v(k) changes significantly with many
factors, e.g. the angle of incidence, the radar distance, the target position. In gen-
eral, v(k) is a non stationary signal, mainly because of the irregular nature of the
respiration process. Therefore, it can not be considered as a periodic signal in strict
sense. We instead model it as locally periodic on N samples.

Period estimation can benefit from the wide knowledge on heart beating and respi-
ration features provided by medicine. In fact, the human physiology provides upper
and lower bounds to the vital signs rate, depending on target parameters, e.g. age
and resting/activity of the target [61]. In particular, for a healthy adult target, the
ranges of the period durations are [0.5s; 10s| for respiration, and [0.3s; 1.2s] for heart
beating, corresponding to a heart rate range of 50 — 200 beats per minute (bpm).
We observe that ©(k) is a zero mean signal, since the average has been nulled by

background subtraction.

9.3.1 Theoretical SNR Evaluation

In this section, we analytically describe the statistical noise description for the func-
tions C'(n) and e(n), in order to investigate how the presence of noise affects the
methods CORR and LCML, respectively.
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9.3.2 Autocorrelation
By considering the presence of noise and finite /N, we have
1 & .
=% Z (I+n)y)=C(n)+
| N
NZ (L4 n)x) +wv* (1 +n)n)] + (9.20)
=1
| XN
+ % Z (L +n)n).

where

e C(n) = E[u(l)v*(l +n)] is the autocorrelation function;

o na(n) =1/NN [w)w*((I +n)n) +w(l)v*((I + n)y)] is the mixed noise and
signal term. To further elaborate this term, we denote with ng, n; the real and
imaginary part of 14, respectively. They are both Gaussian random variables

with zero mean and variance o2 /2. Then, we have

Z (I =n)y)w () +wv* (I +n)y)] =

l:l

Z (ITs)[v*((+n)n) +o((l —n)n)] + ()" (L4 n)n) —v((l = n)n)],
) (9.21)

in which the two terms inside the sum are independent, Gaussian, and zero
mean. The variance of the first term is 02 [202% + 2C(2n)]/2 while the variance
of the second one is ¢2[202 — 2C(2n)]/2. Therefore, na(n) is a zero mean

Gaussian random process with variance 20202 /N.

The last term ng(n) = 1/N Zfil w(l)*w((l +n)y) is the sum of random vari-
ables whose probability distribution is a modified Bessel function of null order

Ko(z) and statistical power ol.

Since w(-) are independent identically dis-
tributed (iid) random variables with zero mean, the statistical power of nz(n)

is o2 /N.

In the presence of a noisy observation of a signal, the conventional approach to esti-

mate the correlation is characterized by a noise contribution which can be separated
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in two terms. One has variance 20202/N and the other has variance o2 /N.
The signal to noise ratio of C'(P) is

__ ElCm)P] T
SNReorr = o T2 /N 1oLV ~ 3%02/N Tol/N (9.22)
9.3.3 Low Complexity ML

In order to obtain a low complexity ML (LCML) method we note that if L does not
approach infinity, (9.16) becomes

1

IL—
1 .
qr(k,n) = 7 ;v(k +in) +

~
—_

w(k+in), k=1--- n; (9.23)

I
Il
o

i

the term n;(k,n) = 1/L ZZ . w(k4-in) in (9.23) is a Gaussian random process with

zero mean and variance o7 (n) = 02 /L. We can then write

n L—1 L—1
1 1 1
e(n) = —Z (nl(k,n)+ZZv(k+zn)> (771 (k,n) + EZU* k+ jn) ) —
i i=0 =0
L | L1 L—1
= [\m(k,n)|2+ﬁ P v(k +in)v*(k + jn) + Lm (k,n Z (k +in)]
k=1 =0 j=0 1=0
L—1
i) Y lok + in)]| =
=0
| Lt
:773(n)+ﬁ C((i—g)n)+n2(n),
i=0 j=0
(9.24)
where
e The first term is
] — o2 & n(k,n) o?
= — ]{j 2 = —1 SN 2 — _lX 2
HZIm( e I e (9.25)

k=1
where X is a chi-square distributed random variable of order 2n x3.!. The

expected value and variance of 73 is

2
o3 5 Oy
QnE[X] =0 =7, (9.26)

!The order is the number of terms of the sum; in our case is 2n because 71 (k,n) is a complex

E [773]

number.
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4 4 4
2 01 2 01 _ O

w
0'7,]3 = WUX = " = % (927)
We notice how the mean of n3 can provide an estimate of the statistical power

o2. We observe that

e C((i—7)n) is an estimate of the autocorrelation function evaluated on (i — j)n;
the quality of the estimation increases with n. However, since the value of Ln
is constant, we observe from (9.24) that for low values of n the average on

multiple values of n is performed on a higher number of terms.

e m(n) = =57 2Re [m(k;,n) S vk + ln)} is obtained reminding that
A*B = (AB*)*, where A, B are complex numbers. Both the real and imaginary
part of 7; are Gaussian, while 9(-) is a deterministic process. Then, ny(n) is a

Gaussian random process with zero mean and statistical power

Z (k +In)|?

o) = gy >

(9.28)

where A(n) = [\ S ok + ln)\z] =1 L1 C(In); in particular, A(n) =
o2 if n =mP, m € Z. We note also that A(n) does not depend on k.

As done in the previous subsection, we can define the SNR for the proposed method
for n = P as

LSS - )| 5

— w . 9.29
20202/N + o /(L?n) 20202/N + o /(L?n) ( )

SNR prop =

The SNR of the two methods are very close, cf. (9.22) with (9.29). However, the
distribution of the noise is different, and the shape of the the useful signal too. In
particular, by recalling (9.18), we notice that with the increase of L the useful signal
in the proposed method tends to be a delta function whose exact position can be
detected in a robust way. According to this analysis, we introduce a third method
LCML-2, which approximates the ML and is based on the function

e2(n) = e(n) — %” (9.30)
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9.3.4 Simulation Setup

The ML method is compared with the state of the art algorithms, i.e.

e the AMDF method, which minimizes the average magnitude of the difference

function between adjacent periods |74];

e the algorithm based on the weighed autocorrelation function (WEIGHT), which

has been shown to improve the autocorrelation based detection algorithm [75];

e the method based on the Welch periodogram (WELCH), which evaluates the
peak of the Welch periodogram [76];

e the Music based algorithm (PMUSIC) |77].

In the following, we show that the proposed LCML method outperforms the state
of the art algorithms, as expected since it represents a low complexity implementation
of the ML estimation strategy.
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Experiment Results

10.1 System Description

We consider a TD PulsON 210 IR-UWB system for the detection of vital signs of
a target in an indoor environment. As described in Section 5.2.2, the transmitted

wave p(t) is a Gaussian pulse, and then the transmitted signal is

_ ( (tfnTREp)2
(&

+oo 202
s(t) = _2_: N cos(27 fet + o), (10.1)

where Trpp is the pulse repetition period and o is the pulse variance, depending on
its bandwidth. The P210 Standard waveform has a 10 dB bandwidth B = 2.2 GHz,
and a central frequency fo = 4.2 GHz; in the following we indicate as f; = 3.1 GHz
the lower limit of the band. The duration of the impulse response is Tp = 1000 ps
(99.91% of the total energy), or Tp = 800 ps (99.3%).

We note that the maximum sample period verifying the sample theorem is T}, =
% = 454.5 ps; this is also the maximum resolution we can obtain on the channel
impulse response estimate. However, the sample theorem is not strictly verified.
Aliasing is introduced by the presence of real filters and non finite duration of the
impulse response. We set the value of the pulse repetition frequency (PRF) to 9.611
MHz.

We define a slot as a set of K transmitted pulses coded by a pseudo-noise sequence
v(k) k=1,---,K. We observe that the maximum channel impulse response (CIR)

length that can be included in a pulse period is % ~ 1us, and the correspond-

RF
ing distance of the farthest reflector is 15 m. In our scenario we assume that this
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condition is verified, and then for each pulse repetition period the receiver gets the
whole set of replicas generated by the corresponding pulse, and interference between
adjacent pulse repetition intervals (ISI) is absent.

According to the PulseOn notation, we define as waveform the set of received repli-
cas; in a ideal scenario, i.e. absence of ISI and distortion, and a discrete and finite
CIR, waveform is given by the convolution of the CIR with the transmitted pulse.
Based on the waveforms received in each slot, the receiver provides a waveform scan
by a weighted average of the received symbols. The packet transmission interval is 1
ms, i.e., two adjacent waveform scans refer to times ¢y, to+1 ms; we assume then that
the coherence period of vital sign processes is higher than 1 ms, i.e., the processing

of the received signal in a slot does not affect the vital signs detection.

10.1.1 Hardware Configuration

The PulseON 210 kit provides several utilities and programming examples both for
communication and sensing purpose. All the applications consist of two components:
an embedded side and a host side. The embedded component runs on the device
using the UWB Kernel included with the hardware. The host side runs on a PC,
where simulation parameters are set by the user through a graphic interface (API).
The embedded side and the host side are linked by a Ethernet connection and controls
the radio using the UWB Kernel included with the hardware. The host side runs
on a PC; and through the network sends commands to and receives status info and

radar scans from the embedded component.

10.1.2 Parameters Description

We describe in the following the main parameters of our experiment setup

Link Rate The Ethernet link connecting the embedded side on the device with
the host side on the PC has a rate LR of 600 kbps.

Pulse Repetition Frequency The PRF can be selected by the user; in our sce-
nario it has always been set to 9.6 MHz. Therefore, the pulse repetition period T
is about 0.1ps.
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Hardware Integration The hardware Integration (HWI) is the number of pulses
that are integrated to build a sample. HWI € {32,64, 128,256, 512}.

Software Integration The software Integration (SWI) is the number of samples
that are averaged at each step to form a single sample value, i.e., at each scan step,
SWI samples are summed to yield the current sample. SWI € {2,4, 8,16, 32,64}.

Pulses per sample Pulses per sample (PPS) is the number of UWB radio pulses
required for each scan sample: PPS = HWI - SWI.

Start position for the scan windowing (ST) : It denotes the start position of

the scan windowing, evaluated in feet [ft] or in bins [bins|.

Stop position of the scan windowing (EN) It denotes the stop position of the

scan windowing, evaluated in feet [ft| or in bins [bins].

Scan window The limited capacity of the Ethernet link L P = 600 kbps is a severe
bound on the received data rate. Furthermore, the high level of noise suggests to
set an high value of HWI and SW1I. Therefore, the scan is limited to a short
window around the position of the target, which is supposed to be known. From the
theoretical point of view, this operation is equivalent to taking the maximum scan
size, whose length is equal to the pulse repetition period, and applying the window
SW = EN — ST |[bins].

Step size The step size (STEP), provided in |bins|, or waveform resolution, is

equal or higher than %.

Number of samples in a scan The number of samples in a scan (Lg) is given

by Lg = SST%. It is a multiple of 32.

Pulse per waveform The number of pulses per waveform (PPW) is the number

of UWB radio pulses required for the entire waveform:

SW
PPW =PPS % Lg = HWI'SWI'ST@'
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Scan rate The scan rate (SR) is the number of scans per second: SR = 21, The

maximum scan rate is
maxPRF 9.6 - 10°

xR = T minSWI - minSW — 32.2.9 000 kbps <LR.

10.1.3 Practical Scheme

In Chapter 8 we described the theoretical receiving scheme, performed in ideal con-
ditions; a scheme of the theoretical approach is described in Fig. 10.1; we note that
the sampling of the received signal is performed at a frequency of U - B, where U is

the upsampling factor, and the corresponding sampling period is

1
STEP = T B
; then, for each slot, where vital signs are supposed to be a constant, our theoretical
scheme performs an averaging.
The practical scheme has to deal with a non ideal scenario and hardware constraint.
In particular, in our scenario, we have a limited capacity of the Ethernet link LP =

600 kbps, and limited complexity available.

%

%
r(t) r5B(t) MUX _J MUX
5 BB %l U
R C

Repgtition Slot
Period period

>
TS Tscan H@
nTscana )
=5
>
ECR

>

Figure 10.1: Theoretical receiving scheme.

For the considered hardware, the sampling of the received signal is not performed
with a period STEP. In fact, the device takes one sample for each pulse repetition
period, while the theoretic receiver saves all the Lg samples describing the waveform.
Therefore, the resulting device is simpler because the sampler period is P—}zF + U% ~
0.1us instead of the theoretical ;75 < 0.5 ns, i.e., 3 orders of magnitude slower; on
the other hand, the SNR of the resultlng scan is Lg times lower with respect to
the theoretical one. A key role on this simplicity to SNR loss ratio is given by the
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presence of the scan window; in fact, the device takes the samples only inside the
scan window, and neglects the other samples of the waveform. On the other hand,
this approach allow a better focus on the desired window, which can be described

with an high number of samples. This upsampling factor on the window

—
—> 5| BB
MUX MUX %@

)
l U — I —>
S —> — BB
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Scan Lengh
=C
—>
—>
BB
N~

Figure 10.2: Practical receiving scheme.
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10.1.4 Baseband Operation

After the pre processing operations performed by the PulseOn device, the received
signal (n, k) is a bandpass signal, function of variables n, index of the current scan,

and k, index of the current delay in the received signal of scan n,

r(n, k) = Z vi(n) cos(2m fok + ¢i(n))0(k — i) + n(n, k); (10.2)

In the practical scheme, as shown in Fig. 10.2, baseband operation is performed on
the k dimension; if foT,.., € Z, and if the low pass filter has a impulse response
shorter than the pulse repetition period, performing the baseband operation on each
waveform scan is equivalent to performing it before the sampling process. In fact, if
the sampling process complies the sampling theorem, it is equivalent to perform the
baseband operation before or after the sampler. Therefore, the baseband operation

performed in the theoretical scheme is

+o0
rep(lT.) = Z r(mTC)eﬂ”meTchp(ch —mT,), (10.3)

m=—0oQ
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where gpp(IT,) is the low pass filter. Then, by writing (T, = 1 Tscan + k1. and
mTc - anscan + kac

+oo +00
TBB(anscan + kfch) - Z Z T(anscan + kac)€j2ﬂfcansmn+kac'

Nm=—00 kyp=—00

' gLP(anscan + lec - anscan - kac) = (104)
+oo
= Z r(nm’ km)ej27rkamTchP(lec _ kac>;
km=—00

which is equivalent to the baseband operation performed on each waveform scan in
the practical scheme.

However, the presence of the window scan in the practical scheme provides only a
portion of the waveform to the low pass filter; therefore, in general the baseband
waveform evaluated with the practical scheme is not equivalent to the theoretical

baseband waveform.

10.2 Signal Processing

Both for theoretical and practical scheme, the receiver gets a complex matrix S,
whose rows are the baseband waveform scans; the i-th columns of S is the time
variation of the ¢ th sample of the scan window, sampled at period Tj..,. The
first step of signal processing is the background subtraction; it is performed as it is
described in the theoretical model, in Chapter 8. As described in Section 8.3.1, we
combine the samples describing each received replica, to determine the parameters

of the corresponding channel tap, i.e.
0(kTsean) = maxp, {rr*g (L. + kTscan)}- (10.5)

where ¢(t) is a generic filter. From the theoretical point of view, in absence of ISI,

the combination that maximizes the SNR is provided by the matched filter, i.e.
g1(k) = p*(=k + Ls/2). (10.6)

However, the practical scenario introduces some new condition on the combination
problem, and its solution. First of all, the scan window may include portions of
replicas; in fact, the sampling algorithm of the device suggests to have small scan

windows, in order to improve the averaging (HWI and/or SWI) with the same scan
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rate. Secondly, distortion may have occurred during transmission, due to the inter-
action with the human body, or to the presence of multiple scatterers whose delays
are closer then 1/B. For this reason, together with the theoretical math filter, we

consider the estimated matched filter, and the average filter.

Estimated matched filter The theoretical approach suggests as optimum combi-
nation the filter matched to the transmitted pulse in a AWGN scenario. We assume
the received baseband matrix S to be the result of a unknown transmitted pulse
propagated in an AWGN scenario; therefore, we assume all variations on the channel
behavior, including the variations due to vital signs, as a Gaussian white noise. We

estimate the pulse from the received baseband matrix S as

N
1 scan
(k) = ] 10.
pk) = 57— X_j S(j, k), (10.7)
and then the estimated matched filter is
g2(k) = p*(—=k + Ls/2). (10.8)

Average filter We propose as the simplest solution a rectangular filter, i.e.,

S25)

I (10.9)

g3(k) = rect (

Fig. 10.3 shows the impulse response of the three filters proposed; it has been
obtained in an ideal scenario, with periodic vital sign, AWGN channel, scan window
equal to a replica. We observe that the shape of the estimated pulse is very close to
the theoretical pulse.

The average SNR of the resulting sample as a function of the average SNR before
the combination is illustrated in Fig. 10.4; we can observe that the theoretical and
estimated matched filter provide the same SNR gain of 18 dB, corresponding to the
upsampling factor U = 64 used in our scenario. We also observe that the averaging

provides almost the same performance of the optimal approach.

10.3 Experimental Results on Signal Modulation

As a first experiment, we evaluate the SNR of the system; we verified that, if the
target breaths at a regular rate, the SNR is about 30 dB, while if the target holds
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Figure 10.5: Vital sign signal v(¢) obtained without the target

his breath the SNR is about 5 dB; the actual values of the SNR depend on many
factors;therefore these values are suggestive of the actual SNR. Fig. 10.5 shows the
absolute value and the phase of the v(¢) when the target is not present; we can see
that neither the absolute value nor the phase is modulated.

As a intermediate step we evaluate the normalized signal v(t) with a 5 cent coin
covered by a metallic film and oscillating at a known frequency of 2 Hz. As shown
by Fig. 10.6, in this case we can observe a remarkable phase modulation, while the
amplitude modulation is less pronounced. In fact, in this case the scattering surface
is very small, and then the phase modulation is the same for each scattering point.
In other words, the scatterer does not provide a sufficient phase diversity to provide
an amplitude modulation. However, the wide band nature of the signal provides a
slight amplitude modulation.

Finally, the experiment with the target was performed; the target was asked to
be still and to sit with the chest in front of the radar device. As illustrated in Fig.
10.7, in this case we can observe an evident modulation on both absolute value and
phase of v(t).

The theoretical analysis for a wideband signal performed for a 2.2 GHz system,
compliant with FCC rules, shows that the received signal is affected both in phase
and amplitude parameters by vital signs; simulation results validates the theoretical

analysis, showing that the amplitude modulation is due to both the wideband nature
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Figure 10.7: Normalized vital sign signal v(t) obtained with the target breathing.
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of the transmitted pulse, and to a multiple scattering effect provided by the chest

surface.

10.4 Detection Techniques

10.4.1 Theoretical Comparison

We first, consider the periodic signal v(k) = exp(j27kP), with £k =0,1,...1000 and
P =5, corrupted by an additive white Gaussian noise. The signal to noise ratio
is defined as SNR—1/02. To compare the two methods we evaluate the normalized

(with respect to the period) mean error (MSE) defined as
p=E{|P - P}/ P (10.10)

where P is the period estimate, e.g. Pcorr or Promr. We express this error in
terms of percentage of the period. The signal to noise ratio is defined as SNRzl/afz.
We note that in this scenario ML algorithm is not optimal; in fact, the signal v(k)
does not comply with the assumption of i.i.d. Gaussian signal. Still, this is a signal
of interest in many applications. Fig. 10.8 shows the normalized MSE as a function
of N/P for SNR=—5 dB. We observe that the proposed LCML method outperforms
the state of the art algorithms, as expected since it represents a low complexity
implementation of the ML estimation strategy. In particular, the knowledge of the
noise power exploited by LCML2 provides the best performance.

Fig. 10.8 shows the MSE as a function of N, represented in terms of number of
periods for SNR=-5 dB. We observe that the proposed LCML method outperforms
the state of the art algorithms, as expected since it represents a low complexity
implementation of the ML estimation strategy. In particular, the knowledge of the
noise power exploited by LCML2 provides the best performance.

Fig. 10.9 shows the same simulation results with an SNR=0dB. The results are
similar, as they still indicate an advantage of the proposed method with respect to
the state of the art algorithms. However, the advantage become less and less relevant

in terms of the envisioned application.

10.4.2 Experimental Comparison

The experiment is then performed with the target still and sitting at a distance of

approximately 30 cm from the radar and with the chest facing the radar device. As
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illustrated in Fig. 10.10, respiration rate can be easily detected by both the proposed
method and the autocorrelation function. Both functions have been evaluated with
an observation window of length N = 10s, for candidate periods n € Z,.
Furthermore, we observe that the proposed function e(n) has weaker peaks in
correspondence of a lower periods; there peaks are due to noise, to the non-periodic
nature of the signal, and to the heart beating signal. The peak in correspondence of
the lowest period is at about 0.85 s, which is the value of the target heart beating, 70
bpm. Although e(n) provides information about the heart beating, it is not possible
to distinguish the correspondent peak from spurious.
Therefore, in order to estimate the heart beating, we evaluate the functions with
a shorter observation window; i.e., the signal v(t) is divided into tokens of length
N = 2.2 s, and the heart beating period is evaluated for each token. The value of
N is the lowest window size allowing to detect the slowest heart beat for a healthy
target, i.e. 50 bps; in fact, the functions are evaluated for candidate periods n € Zj,.
Fig. 10.11 shows an example of the resulting functions e(n) and C(n). In this case,

the peak due to heart beating is clearly visible. By estimating the heart beating
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Figure 10.11: Normalized e(n) and Re[C(n)] functions obtained with the target
breathing with N = 2s.

period according to eq. (9.5) and (9.13), the MSE of the detection is about 56% for
the autocorrelation method, and 15% for the proposed method.

10.4.3 Detection Techniques Comparison

We consider a TD PulsON 210 IR-UWB system for the detection of vital signs of
a target in an indoor environment [68]. Besides the radar device, the experimental
setup is composed by the target, sitting in front of the radar in order to have a line
of sight (LOS) with the chest, and a on-body sensor measuring the heart rate. The
radar device faces the chest of the target who wears an on-body sensor detecting
the heart rate. The experiment is performed with the target still and sitting at a
distance of approximately 30 cm from the radar and with the chest facing the radar
device.

The received signal is the sum of the respiration signal and the heart beating signal,
which is weaker; although respiration rate can be easily detected, its unknown and

time variant shape does not allow a simple subtraction of this signal from the received
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signal. Therefore, a low complexity heart rate detection has to be performed on
the global signal. In order to estimate the heart beating, we consider a shorter
observation window; i.e., the signal v(k) is divided into tokens of length N from
2.2 to 4.4 s, and the heart beating period is evaluated for each token. In fact,
higher values of N would include a breathing period, which strongly modulates the
signal; furthermore, higher values of N would increase the detection delay, while we
are interested on the real time value of heart beating. The minimum value of N
corresponds to the lowest window size allowing to detect the slowest heart beat for a
healthy target, i.e. 50 bps; in fact, the functions are evaluated for candidate periods
n € 1y.

By estimating the heart beating period according to the proposed methods, we obtain
the MSE values shown in Fig. 10.12. We observe that, while the state of the art
algorithms are all affected by the periodicity of the respiration signal, which is the
strongest contribution, for small periods the proposed method provides the best
estimate of heart beating period. When longer tokens are considered, its estimation
accuracy deteriorates due to the presence of respiration periodicity on v(k), despite

the higher number of heart beat period considered.

10.4.4 Computational Complexity

We evaluate the computational complexities of both ML and LCML, and then com-
pare them with the complexity of the state of the art algorithms. Let p be the cost
of a complex multiplication and ~ be the cost of a complex sum. Let also M be the
dimension of Zp, i.e. the number of candidate periods n. For the correlation based

method the computational cost is

Ccorr = M[N’)/—l-N,U,]. (10.11)
For the LCML method and AMDEF method we have
N
— — - M 10.12
Cromr, = Camvpr ;(n—i-n)”y—ir s (10.12)
nelp

while for the ML method we have
Cur = Ccorr + 7M. (10.13)
For the WEIGHT method we have

Cwrient = Ccorr + Campr + N. (10.14)
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Complexity of the WELCH method depends on the algorithm implementation. The
input signal is divided into N,, overlapping segments of size L,,; each segment is then
windowed and processed by fast Fourier transform (FFT). The dominant component

of complexity is due to FFT, i.e.
Cwercu ~ p[Nlog2(Ly) + N] + [N log2(L,) + NJ. (10.15)

Similarly, complexity of PMUSIC algorithm depends on its implementation; however,
the main components are the evaluation of the autocorrelation function, the eigen

decomposition, and the pseudospectrum evaluation, i.e.
Crausic = Ccorr + #IN? + [N log 2(N)). (10.16)

The proposed method requires significantly less complex multiplications (L instead
of N) which are actually even less since they are used to calculate the absolute square
value. In our simple case, with N = 20 and candidate heart beating periods Zp =
0.6 : 0.1: 1.4 s, corresponding to the range 45— 120 bpm, we have Crcvr, = Campr =
220p + 220 while Coorr = 951 + 1207, Cwrigat = 3351 + 3407, Cwrrcn = 126 +
126y and Cpyusic = 601p + 226y. The proposed method requires approximately
half of the operations needed by the correlation based method; we note that the
simplicity of the proposed method is already appreciable for a simple application,

where the number of samples and the candidate periods are very small.

10.5 Conclusions

We derived analytically the optimal ML period estimator of a signal whose shape is
unknown. Furthermore, we have presented a novel low complexity implementation
of the ML estimator. The proposed method might have application in many areas
where only the periodicity is required and the complexity is an important parameter.
In particular, we applied the proposed algorithm to the remote heart rate estimation
problem; as expected, both simulation and experimental results indicate that the
proposed method outperforms the state of the art methods in detecting the period
of weak signal like the heart beating, even with a short observation of the periodic
signal.

By this period detection rule, if the target is breathing we will detect the respira-
tion rate; to detect the heart beating we could cancel from the signal the respiration

component. However, in the following we show that heart rate detection is possible
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using the proposed method without further signal processing. The main difference
between the proposed method and the correlation based technique is that in the first
approach the autocorrelation is evaluated with P averages while the latter approach

considers N averages.
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Conclusions

In this second part of the thesis we addressed the topic of remote sensing of vital signs
in an indoor scenario, onsidering a radar device working on the 3.1 — 5.3 GHz band,
which is available for consumer applications according to FCC rules. In particular
we focus on describing the received signal with respect to the vital sign signal, and
on detection techniques of respiration and heart beating rates. We have presented a
simple and general model of the received signal for a Pulse UWB system in a indoor
scenario with a human target; in particular, we described how the main parameters
of the received signal is related to the chest motion of the target due to breathing
and heart beating. A theoretical analysis for a wideband signal is performed for
a 2.2 GHz system, compliant with FCC rules, showing that the received signal is
affected both in phase and amplitude parameters by vital signs. Simulation results
validates the theoretical analysis, showing that the amplitude modulation is due to
both the wideband nature of the transmitted pulse, and to a multiple scattering
effect provided by the chest surface.

Furthermore, due to the large number of parameters influencing the shape of the vital
sign signal, we focus on blind detection techniques, which do not assume a defined
shape. We have presented a extremely simple novel method to estimate the period of
a periodic function. The analytical analysis and the simulation results indicate that
the proposed method performs better than the correlation based method in detecting

the period of weak signal like the heart beating.
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