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Sommario
Questa tesi di dottorato ra

oglie i 
ontributi prin
ipali dell'attività di ri
er
a svoltadurante i tre anni del mio per
orso di dottorato. Come suggeris
e il titolo, l'attivita'di ri
er
a 
ondotta in questo triennio è divisa in due parti prin
ipali. La primariguarda l'argomento di ri
er
a 
he ho seguito sin dall'inizio sui sistemi di downlinkMultiuser MIMO 
on feedba
k limitato; è parte di un ampio �lone di ri
er
a �naliz-zato alla progettazione della quarta generazione di sistemi 
ellulari, e piu' in generaledi futuri sistemi di 
omuni
azioni wireless 
on terminali mobili. In parti
olare, i mieistudi si sono 
on
entrati sui sistemi 
ellulari in 
ui le stazioni base sono provvistedi antenne multiple; la presenza di piu' antenne alla stazioni base fornis
e dei gradidi liberta' nelle 
omuni
azioni di downlink, ovvero nelle 
omuni
azioni dalla stazionibase ai terminali mobili, 
he possono essere utilizzati per servire piu' di un utentesimultaneamente e ottenere un rate piu' elevato rispetto al 
aso singola antenna.A tal �ne e' pero' ne
essario fornire alla stazioni base la 
onos
enza dei 
anali didownlink per 
ias
uno degli utenti 
he intende servire; tanto piu' �ne e' la stimadel 
anale in possesso della stazioni base, tanto maggiore e' il rate raggiungibile inquesto s
hema di downlink. La progettazione di strategie di feedba
k, 
on 
ui i ter-minali trasmettono su un 
anale dedi
ato informazioni sul 
anale di downlink allastazioni base e' quindi un aspetto di grande interesse, essendo il 
anale di feedba
k arate limitato (dell'ordine di qual
he bit/simbolo). In parti
olare, mi sono o

upatadella s
elta del quantizzatore e delle strategie di feedba
k 
he tenessero 
onto della
orrelazione temporale del 
anale. All'inizio del triennio (gennaio 2007) la maggiorparte delle analisi teori
a era stata sviluppata; di 
onseguenza, il mio lavoro è in-
entrato sull'ottimizzazione dei parametri del sistema, tenendo 
onto delle limitaterisorse disponibili in uno s
enario realisti
o. I 
ontributi prin
ipali riguardano laprogettazione del 
anale di feedba
k a rate limitato e algoritmi di s
heduling subot-timi a bassa 
omplessità, sia per sistemi single 
arrier 
he in uno s
enario OFDM.In parti
olare, i 
ontributi riguardanti la progettazione del 
anale di feedba
k a1



2 List of Tablesrate limitato traggono vantaggio dalla 
orrelazione temporale del 
anale, utilizzandosistemi di quantizzazione 
on memoria. E' stato inoltre proposto un algoritmo dis
heduling a bassa 
omplessita', e si sono studiate le prestazioni in 
onfronto 
on iprin
ipali algoritmi presenti in letteratura. Tale 
onfronto evidenzia 
he a parita' di
ondizioni, l'algoritmo da noi proposto e' 
aratterizzato da prestazioni analoghe allealtre soluzioni e molto vi
ine all'ottimo, sia in termini di throughput 
he di outagethroughput, ma 
on una minor 
omplessita'. La se
onda e più re
ente parte della tesia�ronta l'argomento della stima di segnali vitali, ovvero la respirazione e il battito
ardia
o, attraverso un sistema remoto, dove non 
'e' 
ontatto tra il sensore ed il tar-get a distanza. Questo argomento e' stato a�rontato, in 
ollaborazione 
on PhilipsResear
h, Eindhoven (NL), dove sono stata 
ome Visiting Student da ottobre 2008 amaggio 2009. Ho studiato la te
nologia ultra wide band per il rilevamento remoto deisegni vitali, 
on il vin
olo di rispettare i limiti di potenza imposti dalla legislazionevigente. Lo studio e' stato 
ondotto sia analiti
amente, 
he tramite simulazioni, edin�ne attraverso l'allestimento di una demo e la ra

olta di risultati sperimentali. Inparti
olare, ho proposto un modello generi
o per il segnale ri
evuto e des
ritto ana-liti
amente la modulazione 
he i segnali vitali operano sui prin
ipali parametri delsegnale ri
evuto. Sulla base di questo modello, ho studiato le te
ni
he di rilevazionedel respiro e del 
uore periodi di battere; in parti
olare, ho proposto un metodo distima del periodo a bassa 
omplessita', 
he migliora le prestazioni di altre soluzioniproposte in letteratura, sia in termini di errore quadrati
o medio 
he di 
omplessita'ri
hiesta. In�ne, è stato derivato lo stimatore maximum likelihood (ML), ed è statoveri�
ato 
he il metodo proposto risulta da un'approssimazione del metodo ML.



Abstra
t
This PhD thesis 
olle
ts the main 
ontribution of my resear
h a
tivity, performedduring my PhD program. As the title suggests, it is divided into two main parts.The �rst part 
olle
ts the resear
h I performed sin
e the beginning of my PhD onMultiuser multiple input multiple output (MIMO) downlink systems with limitedfeedba
k; the topi
 is part of the wide resear
h work on the fourth generation 
ellularsystems. When I begun my resear
h, on January 2007, most of the theoreti
alanalysis had already been illustrated; therefore, my work fo
used on optimizingsystem parameters 
onsidering the limited resour
es available in a realisti
 s
enario.The main 
ontributions are on the design of the low rate feedba
k 
hannel, andsub-optimal, low 
omplexity s
heduling algorithms, both in single 
arrier and in aorthogonal frequen
y division multiplexing (OFDM) s
enario.The se
ond, and most re
ent part of the thesis deals with remote sensing of vitalsigns, i.e. respiration and heart rate; I have been addressing this topi
 sin
e O
tober2008, in 
ooperation with Philips Resear
h, Eindhoven (NL), where I have beenvisiting student. We investigated the ultra wide band te
hnology for remote sensingof vital signs. We propose a generi
 model for the re
eived signal and des
ribed howvital sign modulates the main parameters of the re
eived signal. Furthermore, wefo
used on dete
tion te
hniques of respiration and heart beating periods; we derivedthe ML period estimator of a zero mean signal with unknown shape, and we proposeda novel low 
omplexity approximated ML estimator. The proposed methods haveappli
ation in many areas where only the periodi
ity is required and the 
omplexity isan important issue. In parti
ular, we applied the proposed algorithms to the remoteheart rate estimation problem; both simulation and experimental results indi
atethat the proposed method outperforms the state of the art methods in dete
ting theperiod of a signal with low signal to noise ratio like the heart beating, even with ashort observation of the periodi
 signal.Though the two parts of resear
h I performed during my PhD program seem to have3



4 List of Tableslittle in 
ommon, they 
an be investigated with the same analyti
al tools, parti
ularlyfor signal pro
essing and dete
tion te
hniques.
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Main Abbreviations and NotationBF: beamforming;BFB: basi
 feedba
k;BS: base station;
C: Codebook;CC: 
entroid 
ondition;CLS: 
omplex lo
ations;CDI: 
hannel dire
tion information;CMUX: 
omplex multipli
ations;CQI: 
hannel quality information;CSI: 
hannel state information;CSIT: 
hannel state information at the transmitter side;CV: 
hannel ve
tor;DPC: dirty paper 
oding;
E[·]: expe
tation operator;EA: exhaustive algorithm;FB: feedba
k signalling;FDD: frequen
y division duplexing;LBG: generalized Linde, Buso, and Gray algorithm;7



8LTE: long term evolution;
M : number of BS antennas;MG: multi
arrier greedy algorithm;MIMO: multiple input multiple output;MMSE: minimum mean square error;MSE: mean square error;MSUS: multi
arrier semi orthogonal user sele
tion algorithm;MT: mobile terminal;MU: multiuser;NNC: nearest neighborhood 
onditionOFDM: orthogonal frequen
y division multiplexing;PBG: proje
tion based greedy algorithm;PDF: probability density fun
tion;PFB: predi
tive feedba
k;PFS: proportional fair s
heduler;QEV: quantization of the error ve
tor;QoS: quality of servi
e;RB: resour
e blo
k;RM: unitary rotation matrix;RVQ: random ve
tor quantization;SC: single 
arrier;SCM: spatial 
hannel model;SNIR: signal to noise plus interferen
e ratio;



9SPPBG: proje
tion based greedy with simpli�ed presele
tion algorithm;SR: sum rate;SU: single user;TDD: time division multiplexingTS: training set;UD: updown feedba
k;WSR: weighted sum rate;ZF: zero for
ing;
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Introdu
tion
Next generation wireless 
ellular systems are expe
ted to support high quality mul-timedia servi
es; this motivates the interest in multi antenna (MIMO) systems,where both spatial diversity and multiplexing 
an be used to in
rease the a
hiev-able throughput. In fa
t, it has been shown that the downlink 
apa
ity of a MIMOsystem with perfe
t 
hannel state information (CSI) s
ales as a linear fun
tion ofthe number of transmit antennas [2℄. Although non linear dirty paper 
oding (DPC)s
heme a
hieves the system 
apa
ity, it has a high 
omputational 
ost [3℄, and sim-pler solutions have been investigated. Linear beamforming has been shown [4℄ toa
hieve a large part of DPC 
apa
ity; in parti
ular, zero for
ing (ZF) beamformingmat
hed to an opportunisti
 s
heduling is widely used [4℄.However, bene�ts of MIMO are obtained only by a proper s
heduling of trans-missions, whi
h opportunisti
ally exploits 
hannel 
onditions in order to in
reasethroughput, while ensuring quality of servi
e (QoS). Several s
heduling te
hniqueshave been proposed for MIMO single 
arrier (SC) systems on �at fading 
hannelsbased on various approa
hes, in
luding 
lique sear
h [5℄, maximization of the Frobe-nius norm of the 
omposite 
hannel matrix [6, 7℄, user 
hannel orthogonality [8, 9, 10℄,single bit feedba
k [11℄, water�lling [12℄, tree sear
h [13℄, evolutionary algorithm [14℄and greedy s
heduling [15℄ extended to the 
ase of limited feedba
k in [16℄. Insome 
ases, optimization of s
heduling and power allo
ation are performed jointly[5, 6, 7, 11, 12, 14℄, while in other 
ases only s
heduling is 
onsidered [8, 9, 10, 15℄.Moreover, QoS oriented multiuser s
heduling and beamforming have been investi-gated in [17℄, in order to 
on
iliate the request of high throughput with low pa
ketdelays. An overview of resear
h on 
ross layer s
heduling for multiuser MIMO SCsystems is given in [18℄. A similar problem to multiuser MIMO s
heduling 
an befound in other transmission systems, su
h as multi
arrier 
ode-division multiple a
-
ess [19℄.In frequen
y sele
tive 
hannels, SC modulation is often repla
ed by orthogonal fre-11



12quen
y division multiplexing (OFDM) due to its e�
ien
y in over
oming multipathfading. In fa
t, the 
ombination of MIMO and OFDM te
hnology is a good 
andi-date for future wireless 
ellular systems, as it has been proposed for downlink in thelong term evolution (LTE) release of 3GPP standard [20, 21℄. When MIMO OFDMis 
onsidered, s
heduling be
omes more 
omplex, as the number of resour
es to beallo
ated, i.e. the number of sub
arriers, in
reases and only suboptimal approa
hesare viable [13℄. Complexity is further in
reased in a frequen
y division duplexing(FDD) system, where CSI is provided to the base station (BS) by ea
h mobile ter-minal (MT) through a feedba
k (FB) 
hannel. In fa
t, due to the limited FB rate,only a partial CSI is available at the BS and additional pro
essing is required to
ompensate the 
hannel un
ertainty. Some of the s
heduling te
hniques 
onsideredfor SC transmissions 
an be extended to OFDM. For example, in [22℄ a s
hedulingalgorithm has been proposed for MIMO OFDM systems whi
h extends the methodproposed in [15℄ for SC systems: the set of s
heduled MTs on ea
h sub
arrier is builtin a greedy fashion, by adding one user at the time with the aim of maximizing aweighted sum rate (WSR). In [23℄ this approa
h has been further simpli�ed to avoidthe need of 
omputing a new beamforming matrix upon the insertion of a new 
an-didate in the set of s
heduled MTs. A further s
heduling simpli�
ation is a
hievedby ex
luding from the sele
tion pro
ess MTs that would not 
ontribute to the WSR,by introdu
ing a bound of their signal to noise plus interferen
e ratio [24℄.In this �rst part of the thesis, we propose e�
ient and low 
omplexity strategiesfor multiuser MIMO downlink systems. We dis
uss the main parameters of a MIMOSC downlink systems, i.e. the beamforming, s
heduling and feedba
k signalling.Then we revise the s
heduling te
hniques proposed in the literature for multiuserMIMO OFDM system with limited feedba
k and 
ompare them both in terms of
omputational and memory 
ost and in terms of a
hieved throughput in a LTE3GPP s
enario.This part is organized as follows. In Chapter 1 we des
ribe the downlink MIMOSC system; in parti
ular we dis
uss beamforming te
hniques and FB strategies. InChapter 2 we introdu
e the OFDM MIMO system, and we dis
uss the s
hedulingstrategies. Experimental results are illustrated in Chapter 3.In Chapter 4 we derive some 
on
lusion of this �rst part of the thesis. Notation:bold upper and lower letters denote matri
es and ve
tors, respe
tively; (·)H denotesHermitian operation (transpose 
omplex 
onjugate), while (·)T denotes transpose;
‖ · ‖ is the ve
tor norm, and E [·] stands for expe
tation tra
e.



Chapter 1Multiuser MIMO SC DownlinkSystemIn multiuser MIMO downlink systems the BS requires 
hannel knowledge to a
hievespatial multiplexing a
ross users. While in time division duplexing (TDD) systemsCSIT 
an be a
quired from 
hannel estimation in the uplink, in FDD systems CSIT
an be obtained only by setting up an expli
it FB 
hannel from ea
h user. Sin
ethe number of bits required to des
ribe the 
hannels grows as the produ
t of thenumber of transmit and re
eive antennas, the 
hannel delay spread and the numberof users [25℄, only by a proper optimization of the FB signalling its impa
t on thenetwork throughput 
an be limited. In fa
t, if a reliable CSIT provides an highersystem throughput, on the other hand a low FB rate is ne
essary to guarantee anhigh payload.The tradeo� between CSI quality and FB rate has been re
ently addressed and var-ious aspe
ts have been investigated in
luding transmitter and re
eiver design [26℄,[27℄, [28℄ and feedba
k optimization in both single user (SU) and multiuser (MU)systems [29℄, [30℄, [31℄ [32℄.FB bits are mostly used to index a set of ve
tors (or 
odewords) in a 
odebook Cwhi
h is known to the transmitter and all re
eivers. For example, b bits per feedba
kinterval 
an be used to index a 
odebook with 2b ve
tors. For a transmitter, ea
h
odeword in C is a multi-dimensional ve
tor that 
hara
terizes the MIMO 
hannel forthat user or more generally provides information on the re
onstru
tion of the user's
hannel. A well-designed 
odebook will 
ontain 
odewords that e�e
tively span theset of MIMO 
hannels experien
ed by the users [30℄, [31℄.In SU systems it has been shown that only a few FB bits (roughly on the order of13



14 Chapter 1. Multiuser MIMO SC Downlink Systemtransmit antennas) are needed to a
hieve near perfe
t-CSIT performan
e. On theother hand, in downlink 
hannels a

urate 
hannel knowledge is essential to avoidmultiuser interferen
e and a severe degradation of the a
hievable throughput [26℄.An opportunisti
 user sele
tion approa
h 
an in
rease the performan
e of this sys-tem, leading to asymptoti
ally optimum performan
e when the number of users goesto in�nity [29℄,[26℄,[28℄ . In [16, 33℄ the 
odebook is a set of ve
tors randomly 
ho-sen from an isotropi
 distribution on the unit hypersphere, in a spa
e having thedimension of the number of BS antennas. This te
hnique is 
alled random ve
torquantization (RVQ).In this 
hapter we fo
us on single-antenna mobile terminals and SC s
enario; in par-ti
ular, we investigate the beamformer design for a opportunisti
 downlink MIMOsystem, i.e. the transmission from the BS to a group of MTs, sele
ted by the BS,using the multiplexing properties of the MIMO system. The term opportunisti
underlines that the BS poli
y of user sele
tion favors the MT with a good 
hannelquality.In Se
tion 1.2, we revise ZF beamforming and propose a new minimum mean squareerror (MMSE) beamformer under in
omplete CSIT that takes into a

ount the quan-tization error of the 
hannel ve
tor [34℄. As shown in [35℄ under perfe
t CSIT, MMSEBF shows signi�
ant performan
e improvements in 
ase of randomly sele
ted usersbut gives redu
ed gains with respe
t to ZF BF in 
ase of opportunisti
 user sele
-tion. In the se
ond part of the 
hapter, we propose various 
hannel quantizationte
hniques and FB strategies based on the Lloyd-Max algorithm [36℄ that exploitboth spatial and time 
orrelation of the MIMO 
hannel. In parti
ular in Subse
tion1.4.2 we derive a Up-or-Down (UD) FB approa
h where FB bits are a

umulatedover multiple signalling intervals in order to index a mu
h larger 
odebook; this te
h-nique has been proposed in [37℄, and then it has been extended to the multi antennare
eiver s
enario with the name of hierar
hi
al FB (HFB), e.g. [38, 39℄.Moreover we propose new predi
tive FB strategies where both BS and MTs pre-di
t the evolution of the 
hannel ve
tor and users adjusts the predi
tion by feedingba
k a quantized version of the predi
tion error to the BS [37, 34℄. Finally, wedes
ribe a predi
tive FB strategy with unitary rotation matrix, exploiting the geo-metri
 properties of unit norm CDI ve
tors; a similar te
hnique has been proposedin [40℄ for a single user MIMO s
enario, and it is here generalized to the multiusers
enario. In Se
tion 1.3 a general quantization s
heme is des
ribed: the generalizedLinde, Buso, and Gray (LBG) algorithm is des
ribed in Se
tion 1.3.1, and used for
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odebook design in Subse
tion 1.3.2; �nally, the quantization pro
ess is des
ribed.In Se
tion 1.4 we introdu
e four di�erent FB strategies: i) Basi
 Feedba
k (BFB),ii) UpDown Feedba
k (UD), iii) Predi
tive Feedba
k with quantization of the errorve
tor (QEV), and iv) Predi
tive Feedba
k with Unitary Rotation Matrix (RM). Anumeri
al 
omparison of the proposed strategies is given in Chapter 3.1.1 System ModelWe 
onsider the downlink of a 
ellular system where a BS has M transmit antennasandK MTs have one antenna ea
h. The symbol period is denoted as Ts, transmissionis performed in time slots of duration T and in ea
h time slot MTs feed ba
k a partialCSI, whi
h is used by the BS to s
hedule downlink transmissions.For slot n, let S(n) be the set of MTs s
heduled for downlink transmissions, ls anatural number, and d(t) and y(t) be the 
olumn ve
tors of transmitted and re
eivedsignals at time t = lsTs, respe
tively. We 
onsider a �at fading 
hannel des
ribed bythe 
omplex |S(n)| ×M matrix H(t) = [h1(t), . . . ,h|S(n)|(t)]
T .The dis
rete-time 
omplex baseband model is given by

y(t) = H(t)d(t) + n(t) , (1.1)where n(t) is a 
omplex Gaussian ve
tor noise with i.i.d. 
omponents having zeromean and unit varian
e.The transmit signal is subje
t to the average power 
onstraint
E
[

‖d(t)‖2
]

≤ P , (1.2)where P is the available power. From (1.2) and noise assumptions, the averagesystem signal to noise ratio at the re
eiver is SNR = P .The 
hannel matrix H(t) is not perfe
tly known at the BS while we assume thatMT k perfe
tly estimates the 
hannel ve
tor hk(t) on
e a slot. As in [33, 16℄ we adopta double FB information and ea
h MT feeds ba
k i) a 
hannel dire
tion information(CDI) of the dire
tion of 
hannel ve
tor (CV) at ea
h slot, namely
h̃k(n) =

hk(nT )

||hk(nT )||
(1.3)and ii) a 
hannel quality information (CQI), evaluated as

ξk ,
||hk||2|h̃H

k h̄k|2
1 + P

M
||hk||2(1− |h̃H

k h̄k|2)
, (1.4)



16 Chapter 1. Multiuser MIMO SC Downlink Systemwhere h̄k is the unit-norm re
onstru
ted CVs of MT k. We fo
us here on the quan-tization and FB of the CDI. We assume that the FB 
hannel has a �nite rate of bbits per slot and allows zero-delay error free transmissions.The BS stores the partial CSI of sele
ted users into the matrix H̄(S(n)) =

[h̄s1(n), . . . , h̄s|S(n)|
(n)]T , with si ∈ S(n), 
ontaining the unit-norm re
onstru
ted CVs.Based on the partial CSI, the BS evaluates the M × |S(n)| 
omplex beamformingmatrix G (S(n)) =
[

g1, . . . , g|S(n)|

], and ve
tor p enfor
ing the power 
onstraint(1.2), i.e. [16℄
p =

P

|S(n)gk(n)|
. (1.5)On
e MTs have been sele
ted for downlink transmission, the transmitted ve
tor d(t)is obtained by beamforming, i.e.,

d(t) = G diag(p)1/2(S(n))u(t) nT ≤ t < (n+ 1)T , (1.6)where ve
tor u(t) = [u1(t), . . . , u|S(n)|(t)]
T 
ontains the MT data symbols for timeslot n, whi
h are assumed independent and identi
ally distributed (i.i.d.) with zeromean and unit varian
e. The MT k signal to noise ratio (SNIR) is given by

SNIRk(t) =
pk|hk(t)gk(n)|2

1 +
∑

i∈S(n)\k pi|hk(t)gi(n)|2
. (1.7)1.2 Beamformer DesignIn this se
tion we brie�y review the ZF-BF design and derive a new MMSE-BF underin
omplete CSI assumptions. For ease of notation we drop both the slot (n) and thetime (t) index.1.2.1 Zero-For
ing BeamformingThe ZF approa
h aims at nulling the interferen
e at the MTs and the 
orrespondingtransmit matrix is the normalized version of the right pseudo-inverse of H̄. A

ordingto ZF-BF, the beamformer 
an be written as

G(ZF )(S) = H̄(S)H
(

H̄(S)H̄(S)H
)−1

. , (1.8)Provided that ea
h MT feeds ba
k to the BS its 
urrent CQI value, an estimate ofthe SNIR for MT k has been derived in [16℄ as
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γ
(ZF )
k = ξkpk , (1.9)under the following assumptions: a) CV with i.i.d. 
omponents, ea
h Rayleighfading, b) equal power distribution among signals transmitted to MTs, c) |S| = M .1.2.2 MMSE BeamformingThe MMSE beamformer aims at minimizing the sum mean square error (MSE) ofthe re
eived signals. To this end, we �rst de
ompose the CV relative to MT k intotwo orthogonal ve
tors fk and ǫk, parallel and orthogonal to h̄k, respe
tively, with

hk = ||hk|| (fk + ǫk) , (1.10)where fk = cosΘkh̄k and cosΘk = |h̃H
k h̄k|. Let also de�ne F = [f1, . . . , f|S|]

T and
E = [ǫ1, . . . , ǫ|S|]

T . We assume that MT k divides the re
eived signal by β||hk||,where β is a power normalization 
oe�
ient. In this 
ase, by de�ning the matrix
N = diag (||h1||, . . . , ||h|S|||

), the normalized re
eived signal 
an be written as
y′ = β−1 (F+E)G(S)u+ β−1N−1n . (1.11)The MMSE-BF design aims at jointly optimizingG(S) and β in order to minimizethe MSE, i.e.,
G(MMSE)(S) = argmin

G(S),β

E
[

∣

∣

∣

∣y′ − u
∣

∣

∣

∣

2
] (1.12)under the power 
onstraint (1.2), without imposing equal power allo
ation amongMTs. The expe
tation in (1.12) is taken with respe
t to data, noise and the dire
tionof the error ve
tors ǫk, while from (1.10) we observe that ||ǫk||2 = sin2(Θk).The 
onstrained minimization is solved by the Lagrangian multipliers. We assumethat ǫk are statisti
ally un
orrelated and that the unit-norm ve
tor ǫ̃k = ǫk/||ǫk||assumes all dire
tions orthogonal to h̄k with equal probability.We derive here E

[

ǫ̃kǫ̃
H
k

] under the hypothesis: a) h̄H
k ǫ̃k = 0; b) ǫ̃

H
k ǫ̃k = 1; 
)

h̄H
k h̄k = 1; d) all dire
tion of ǫ̃k in the spa
e orthogonal to h̄k are equally probable.From ve
tor h̄k, by the orthonormalization pro
edure of Gram-S
hmidt, we ob-tain a N ×N − 1 orthonormal matrix A, su
h that h̄H

k Ak = 0 and ǫ̃k = Akxk, with
xk a N − 1-size unit-norm ve
tor. We also have

E[ǫ̃kǫ̃
H
k ] = AkE[xkx

H
k ]A

H
k . (1.13)
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an write [xk]q = | [xk]q |ejϕk,q . We assume that ϕk,q are i.i.d. uniformrandom variables in (0, 2π], while [|xk|]i are i.i.d. zero mean variables, so that
E[xpx

∗
q ] =

{

0 p 6= q

E[|[xk]p|2] p = q .
(1.14)We now write xk in hyper spheri
al 
oordinates as

|[xk]i| = cos(φi)
i−1
∏

p=1

sin(φp) , i = 1, 2, . . . , N − 2 ,

|[xk]N−1| =
N−2
∏

p=1

sin(φp) ,where φi, i = 1, 2, . . . , N − 2 are independent uniform random variables in the range
(0, 2π]. Hen
e we obtain E[|[xk]p|2] = 1

2p
, p < N − 1 and E[|[xk]p|2] = 1

2N−2 .Lastly, by de�ning R = E[EH
E], from the assumption that all ve
tors ǫk areindependent, from (1.17) we obtain

R = E[EH
E] =

|S|
∑

k=1

sin2(Θk)A
∗
kΞA

T
k , (1.15)where Ξ is a diagonal matrix with entries

[Ξ]p,p =
1

2p
, p < N − 1 , [Ξ]N−1,N−1 =

1

2N−2
, (1.16)

Ak is an N × (N − 1) matrix having as 
olumns a base of the spa
e orthogonal to
h̄k; from (1.13) and (1.14) we obtain also

E[ǫ̃∗kǫ̃
T
k ] = A

∗
kΞA

T
k . (1.17)Then, by de�ning the normalized matrix

Ḡ =

[

FHF+R+
σ2
N

P
I

]−1

FH (1.18)where σ2
N =

∑

i∈S
1

‖hi‖2
, and

β =

√

Ptra
e (ḠHḠ
) (1.19)we obtain

G(MMSE) = βḠ . (1.20)



1.3. FB Codebook Design 19The SNIR relative to MT k 
an be written asSNIRk =
||hk||2|

(

h̄T
k cosΘk + ǫ̃

T
k sinΘk

)

gk|2
1 + ||hk||2

∑

i 6=k |
(

h̄T
k cosΘk + ǫ̃Tk sin Θk

)

gi|2
. (1.21)Negle
ting the se
ond term in the numerator of (1.21), i.e., ǫTk gk ≃ 0, and takingthe expe
tation with respe
t to the interferen
e term in the denominator of (1.21),we obtain the SNIR estimate

γ
(MMSE)
k =

||hk||2 cos2Θk|h̄T
k gk|2

1 + ||hk||2 cos2Θk

∑

i 6=k |h̄T
k gi|2 + ||hk||2 sin2Θk

∑

i 6=k g
H
i E [ǫ̃∗kǫ̃

T
k ] gi(1.22)Note that for the MMSE-BF design, the BS must know two CQIs beyond CDI:a) the 
hannel norm ||hk|| and b) the 
orrelation cosΘk.1.3 FB Codebook DesignWe introdu
e in this Se
tion the LBG quantization strategy, proposed in [37℄. Inparti
ular, in Subse
tion 1.3.1 we introdu
e the generalized LBG algorithm [41℄ asa pra
ti
al algorithm for the 
odebook design when the probability density fun
tion(PDF) is unknown. Based on LBG, the 
odebook design strategy is then des
ribedin 1.3.21.3.1 Generalized Quantization LBG AlgorithmWe �rst re
all here the generalized Lloyd algorithm for ve
tor quantization. Let

d(s, ci) be a distortion metri
 where s ∈ CM is the sour
e ve
tor and ci ∈ CM isa generi
 
odeword of 
odebook C. The generalized Lloyd algorithm [42℄, generatesthe optimum 
odebook that minimizes the average distortion,
min
Q[·]

E [d(s, cn)] (1.23)where cn = Q[s̃] is the quantized ve
tor at minimum distortion.The algorithm 
omprises two steps:
• Nearest neighborhood 
ondition (NNC). Given a 
odebook C = {c1, . . . , cN},the optimum partition region (Voronoi 
ell) Ri, i = 1, . . . , N of the 
odeve
torindexed by i satis�es

Ri = {s : d(s, ci) ≥ d(s, cℓ) , ∀ℓ 6= i} . (1.24)
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• Centroid 
ondition (CC). For given regions {Ri, i = 1, . . .N}, the optimumquantization 
ode-ve
tors ci satisfy

ci = argmin
cℓ∈CM

E[d(s, cℓ)∣∣ s ∈ Ri

] (1.25)for i = 1, . . . , N .These two steps are iterated until the distortion minimization 
riterion 
onverges.In parti
ular, we adopt the alternative approa
h led by Linde, Buso, and Gray (LBG),whi
h 
onsiders a large set of ve
tor realizations {sn} referred as training sequen
eand repla
e the statisti
al expe
tation E[d(s, ci)∣∣ s ∈ Ri

] by the sample average
1
mi

∑

sn∈Ri

d(sn, ci), where mi is the number of elements of training sequen
e inside Ri.We re
all that the LBG algorithm 
onverges to a minimum that is not guaranteedto be global, nevertheless it provides a pra
ti
al way for 
odebook design even whenthe PDF of the sour
e signal is not known or di�
ult to 
hara
terize.1.3.2 Codebook DesignFor the s
enario of CDI FB that we are 
onsidering, sin
e system performan
e ismeasured in terms of the a
hievable sum rate, a 
riterion of the 
odebook design isthe maximization of the estimated SNIR. For a ZF beamforming, maximization of theestimated SNIR is equivalent to the maximization of the average 
orrelation (1.28),sin
e it provides simultaneously the maximization of the numerator and minimizationof the denominator of (1.9). For a MMSE beamforming s
enario, the maximizationof the average 
orrelation (1.28) provides the maximization of the numerator of theestimated SNIR 1.22. Therefore, in both 
ases the 
riterion of the 
odebook designis
max

C
E [|h̃T

k c
∗
n|2
] (1.26)where c is the unit norm 
ode ve
tor from the 
odebook C at minimum 
hordaldistan
e from the 
hannel dire
tion h̃k.The generalized Lloyd algorithm [42℄ 
an be used to generate the optimum 
ode-book a

ording to (1.26), whi
h 
an be implemented by the LBG approa
h [43℄,where the expe
tation is evaluated as the average on a �nite training set (TS) ofCVs, randomly 
hosen a

ording to the 
hannel statisti
s.We 
onsider a variant of the LBG algorithm that pro
eeds iteratively by levelsin the 
odebook design, a

ording to the following steps:
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ompute the optimum 
odebook with two 
odeve
tors by theLBG algorithm;2. Split the TS into two subsets, where ea
h subset 
olle
ts all the CVs of the TSat minimum 
hordal distan
e from the 
orresponding 
odeve
tors;3. Re
ursively iterate steps 1) and 2) to ea
h of the subsets of TS.This binary 
onstru
tion pro
edure 
an be represented by a binary tree of B levels,having at level i the 
odewords of the optimal 
odebook with 2i elements.With the designed 
odebook, quantization 
an be performed with a binary sear
hon the tree, thus requiring a lower 
omputation 
omplexity than 
onventional quan-tization, at the expense of a larger memory.A binary representation (
odeword) of ea
h 
odeve
tor is obtained by asso
iatinga bit to ea
h of the two bran
hes exiting a node and identifying a node at level iwith the i bits on the bran
hes leading from the root. As a 
onsequen
e, all nodesof the subtree departing from a node at level i have the same i most signi�
ant bits.The 
odeword of i+ 1 bits asso
iated to a CV 
an be obtained by adding one bit tothe CV representation with i bits.Moreover, slight 
hanges of the 
hannel in subsequent time slots most probablylead to 
odewords with the same most signi�
ant bits. This feature is the key aspe
tin the UD signaling.1.3.3 QuantizationMT k quantizes the normalized CV h̃k into a 
odeve
tor ĉk, whose index of b bits isfed ba
k at ea
h slot. ĉk is sele
ted from a 
odebook of unit norm 
odeve
tors
C = {c1, . . . , cN} (1.27)with N = 2b. The quantization 
riterion is the minimum 
hordal distan
e (see e.g.[44℄ for a general de�nition), i.ê

hk = argmax
{c∈C}n=1,...,N

|h̃T
k c

∗| . (1.28)1.4 FB Signalling DesignIn this Se
tion we investigate di�erent te
hniques for FB signalling. Firstly, we in-trodu
e the basi
 te
hnique, whi
h 
onsists on transmitting the quantized version
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tual CV. Then, we propose di�erent FB strategies exploiting the 
hannel
orrelation in time domain, and in parti
ular: the UD FB approa
h where FB bitsare a

umulated over multiple signalling intervals in order to index a mu
h larger
odebook; predi
tive FB strategies where both transmitter and users predi
t theevolution of the 
hannel ve
tor and users feed ba
k a quantized version of the predi
-tion error to the transmitter; a predi
tive FB strategy with unitary rotation matrix,exploiting the geometri
 properties of unit norm CDI ve
tors.1.4.1 Basi
 FBThe simplest FB signalling 
an be performed by quantizing and transmitting dire
tlythe CDI; in other words, MT k quantizes h̃k to a unit norm ve
tor ĥk and sele
ts as
odeword ĉk = ĥk; the 
odebook index 
orresponding to ĉk is then sent to the BS.We denote this signaling te
hnique as basi
 FB (BFB). In BFB, the 
orrelation intime of the MIMO 
hannel is not exploited, and the FB signalling is redundant. Infa
t, if the 
hannel is 
hanging su�
iently slowly, and assuming that the 
odebook
omplies with the nearest neighbor 
ondition, des
ribed in Se
tion 1.3.1, the FBsignalling of MT k in two adja
ent slots di�ers only of few bits. Based on these
onsiderations we propose di�erent FB strategies, where the mobile CDI FB areaggregated over multiple FB intervals so that the aggregated bits index a larger
odebook. By aggregating the FB bits over multiple intervals, the 
odewords 
anindi
ate a variation w.r.t. the past CDIs.1.4.2 UD FB SignalingThe Up-or-Down (UD) FB signalling te
hnique is based on the tree des
ription of theve
tor quantizer and an in
remental FB strategy, exploiting the 
hannel 
orrelationin time domain.We assume that at slot n−1, both BS and MT k share the reprodu
ed CV h̄k(n−1),represented by a binary word of variable length Ls(n− 1).At slot n, MT k quantizes h̃k(n) into ĥk(n) and 
ompare the �rst Ls(n− 1) bitsof the binary representations of ĥk(n) and h̄k(n − 1). The 
omparison leads to two
ases, 
orresponding to a mat
h (Down 
ase) or no mat
h (Up Case) between thetwo sequen
es. Let ik(n) be the binary word of b bits fed ba
k by MT k at timeslot n. The �rst bit ik,1(n) denotes the Up or Down 
ase. The following bits aredetermined as follows:
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• Down Case. The CSI is re�ned by feeding ba
k further b − 1 bits of the B-bits 
ode word. These additional bits are obtained by going down by b − 1levels into the quantization tree. This is performed by feeding ba
k bits atposition Ls(n − 1) + 1, . . . , Ls(n − 1) + b − 1 of the 
odeword asso
iated to
ĥk(n). Moreover, Ls(n) = Ls(n− 1) + b− 1.

• Up Case. The CSI must be updated and the b− 1 bits Ls(n− 1)− 2(b− 1) +

1, . . . , Ls(n − 1) − b + 1 of the 
odeword asso
iated to ĥk(n) are fed ba
k toBS. Now, Ls(n) = Ls(n− 1)− b+ 1.The proposed algorithm 
an be easily generalized to a

ount for boundary 
on-ditions imposing that b − 1 ≤ Ls(n) < B. Thanks to this strategy we are able totra
k 
hannel variations at the 
ost of an overhead of one �ag bit. In this 
ase, thetransmitted binary word ik(n) has not a single relation to ĉk(n), be
ause it has beenderived from ĥk(n) and h̄k(n− 1).1.4.3 Predi
tive FB (PFB)The predi
tive FB (PFB) strategy is based on predi
tive ve
tor quantization [45℄.As depi
ted in Fig. 1.1, at slot n, both BS and MT obtain a predi
tion h
(p)
k (n)of the CV dire
tion h̃k(n), based on past reprodu
ed values {h̄k(m) , m < n}. Forexample, a simple �rst order linear predi
tor yields h(p)

k (n) = h̄k(n − 1) where onlythe previous CSI value is used for predi
tion. Next, ea
h MT quantizes the predi
tionerror ek(n) = h̃k(n)− h
(p)
k (n) and feeds ba
k to BS ik(n), a binary representation ofthe quantized ve
tor error êk(n) using b bits. Both BS and MT update the reprodu
edCV h̄k(n) by 
ombining the predi
ted ve
tor with the quantized predi
tion error, i.e.,

h̄k(n) =
h
(p)
k (n) + êk(n)

||h(p)
k (n) + êk(n)||

, (1.29)denoted as +/||.|| in Fig. 1.1.In this 
ase, the 
odebook of the predi
tion error quantizer is designed by the LBGalgorithm minimizing the MSE E[||ek − ci||2]. We follow the open loop approa
h,hen
e from a TS we �rst obtain the set of 
hannel predi
tions and 
hannel predi
tionerrors {ek(n)}, whi
h are then used to design of the 
odebook by the LBG algorithm.
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tive FB (RM)We propose a further FB te
hnique based on the quantization of the predi
tion error.In parti
ular, sin
e h(p)
k (n) and h̃k(n) are unit-norm ve
tors, we model the predi
tionerror as a rotation ve
tor from the predi
ted ve
tor h

(p)
k (n) to the true normalizedCV h̃k(n).In details, at slot n both MT k and BS derive in the 
omplex hyperspa
e CM×1of the MIMO 
hannel a unitary basis whose �rst element is given by the predi
tedve
tor h(p)

k (n). This is done by 
omputing the unitaryM×M matrixWk(n) obtainedby the Gram-S
hmidt orthogonalization pro
edure [36℄ applied to the 
olumns of
[h

(p)
k (n) IM ], where IM is the M × M identity matrix. With this de�nition the
omponents of h(p)

k (n) in the new basis are the 
onstant ve
tor u = Wk(n)
Hh

(p)
k (n) =

[1 0 . . . 0]T , while the predi
tion error ve
tor is de�ned as
ek(n) = WH

k (n)h̃k(n) . (1.30)Let êk(n) be the quantized version of ek(n) fed ba
k to the BS. The re
onstru
tedve
tor is de�ned as
h̄k(n) = Wk(n)êk(n) . (1.31)We note that ek(n) is expe
ted to lie with high probability in an hyper-
one 
en-tered around the 
onstant ve
tor u = [1, 0, . . . , 0]T and whose surfa
e area, althoughdepending on 
hannel time 
orrelation, is usually mu
h smaller than the 
ompletesurfa
e area of the unitary hyper-sphere des
ribed by h̃k(n). This suggests thatfor a target quantization distortion we need fewer 
odewords to quantize the pre-di
tion error ek(n) than what we would need to quantize h̃k(n) as in RVQ [33℄ orGrassmannian line pa
king [30℄.For 
odebook design we use the LBG algorithm minimizing the average distan
e

min
C

1

NTS

2b
∑

i=1

∑

h̃(n)∈Ri

d(ci, h̃(n)) , (1.32)where C = {c1, c2, . . . , cNc
}, Nc = 2b, is the generi
 
odebook and Ri is the partitionregion of the training set asso
iated to 
odeword ci.From (1.23) and (1.31) the distan
e to be minimized is given by

d(c, h̃(n)) = 1−
∣

∣

∣
h̃H(n)W(n)c

∣

∣

∣

2

= 1− cHWH(n)h̃(n)h̃H(n)W(n)c . (1.33)
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h, hen
e from a sequen
e of 
hannel ve
tors {h̃(n)}we derive the set of 
hannel predi
tions {h(p)(n)}, whi
h are used to 
ompute {W(n)}in (1.33).We noti
e that if we de�ne the M ×M 
omplex matrix relative to the partitionregion Ri of the training set
Ai =

∑

h̃(n)∈Ri

WH(n)h̃(n)h̃H(n)W(n), (1.34)from (1.23) and (1.33) we have that the optimum 
odeword for the partition region
Ri is the dominant eigenve
tor of matrix Ai normalized to unit norm.
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Chapter 2Multiuser MIMO OFDM DownlinkSystemsMIMO and OFDM are known to provide higher network throughput for the broad-
ast (downlink) 
hannel, provided that transmissions are suitably s
heduled. How-ever, s
heduling te
hniques proposed in Chapter 1 for MIMO SC systems [18, 17℄,are ex
eedingly 
omplex when used for OFDM systems, as the number of resour
esto be allo
ated in
reases signi�
antly [13℄. Complexity is further in
reased in FDDsystems, where a quantized version of the CSI is provided to the base station by ea
hMT through a FB 
hannel. Among existing e�
ient solutions we mention the iter-ative user sele
tion greedy algorithm, proposed for SC systems [15℄, whi
h requiresthe 
omputation of a beamforming matrix at ea
h iteration. We propose suboptimals
heduling algorithms, based on simpli�ed BF evaluation during the user sele
tionpro
ess. In Se
tion 2.1 the OFDM MIMO downlink system model is illustrated.Se
tion 2.2 addresses the tradeo� between an opportunisti
 approa
h in user sele
-tion, providing high average sum rate, and quality of servi
e (QoS) requirements: weintrodu
e a general multiuser s
heduling, the opportunisti
 maximum sum rate strat-egy, and the multi
arrier proportional fair s
heduling. In Se
tion 2.3 the SC greedyapproa
h is extended and re�ned. Three user sele
tion strategies are illustrated: i)multi
arrier greedy (MG), obtained by extending the SC greedy algorithm; ii) pro-je
tion based greedy algorithm (PBG), a re�ned greedy algorithm whi
h requiresa lower 
omplexity, and iii) multi
arrier semi orthogonal user sele
tion (MSUS). Afurther re�nement of PBG algorithm whi
h performs user sele
tion on a subset of
andidate users based on the CQI, is introdu
ed in Se
tion 2.4. Complexity analysisand memory requirements are evaluated for ea
h user sele
tion strategy in Se
tion27



28 Chapter 2. Multiuser MIMO OFDM Downlink Systems2.5. Part of this work has been published in [22, 23℄.2.1 System ModelWe 
onsider the downlink of a 
ellular system based on OFDM [46℄ with NC sub
ar-riers. The BS has M transmit antennas while K mobile terminals (MTs) have oneantenna ea
h. Transmission is performed in time slots of L OFDM symbols, whileFB signalling is performed on a time-frequen
y stru
ture 
alled resour
e blo
k (RB),a

ording to LTE. For ea
h time slot, we 
onsider in frequen
y domain N sets of NSadja
ent sub
arrier; the RB is de�ned as the 
ouple time slot, sub
arrier set. Forea
h RB, MTs feed ba
k a partial CSI, whi
h is used by the BS to s
hedule downlinktransmissions. In other words, for ea
h time slot ea
h MT feeds ba
k N partial CSI,instead of NC = N ·NS, and therefore both time and frequen
y 
hannel 
orrelationare exploited.At slot n, let Sc(n) =
{

u1,c(n), u2,c(n), · · · , u|Sc(n)|,c(n)
} be the set of |Sc(n)| MTs,

ui,c(n) ∈ {1, · · · , K}, s
heduled for downlink transmission on RB c ∈ {1, · · · , N}.We denote as stream the (MT,RB) pair (k, c). Let also P(n) be the set of streamss
heduled at slot n, i.e.
P(n) = {(k, c) |k ∈ Sc(n), c ∈ {1, · · · , N}} . (2.1)In our analysis we model the 
hannel as quasi stati
, i.e., it is 
onsidered invariantfor the duration of one OFDM symbol, and it has the same frequen
y response onall sub
arriers of ea
h RB.Hen
e, the frequen
y response of the MIMO 
hannel on RB c of OFDM symbol

t for all M transmit antennas and all |Uc(n)| MTs is des
ribed by the 
omplex
|Uc(n)| × M 
hannel matrix Hc(t) = [h1,c(t), . . . ,h|Sc(n)|,c(t)]

T , where the M × 1
olumn 
hannel ve
tor (CV) hk,c(t) 
olle
ts the gains between the M antennas of BSand stream (k, c).In general, for OFDM symbol t, dc(t,m), and yc(t,m) are, respe
tively, the M × 1and |Sc(n)| × 1 
olumn ve
tors of the transmitted and re
eived signals on sub
arrier
m of RB c. The dis
rete-time 
omplex baseband transmission model for sub
arrier
m of RB c is given by

yc(t,m) = Hc(t)dc(t,m) + nc(t,m) , m = 1, · · · , NS, (2.2)where nc(t,m) is a |Sc(n)|×1 
omplex Gaussian noise ve
tor with i.i.d. 
omponentshaving zero mean and unit varian
e. The transmit signal is subje
t to the average
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power 
onstraint E [∑N

c=1

∑NS

m=1 ‖dc(t,m)‖2
]

≤ P , where P is the available power.In order to exploit spatial diversity, the transmit signal is obtained from the |Sc(n)|×1data signal Uc(t,m) by applying the ZF BF matrix Gc

(

nL
), i.e.

dc(t,m) = Gc

(

nL
)diag{pc(nL)}1/2Uc(t,m), nL ≤ t < (n + 1)L , (2.3)where pc(nL) is the power normalization ve
tor whi
h enfor
es equal stream power,i.e.

PS = E
[

‖ dk,c(t,m) ‖2
]

=
P

∑N
c=1 |Sc(n)|

(2.4)and dk,c(t,m) is the kth entry of dc(t,m).2.1.1 FB InformationIn a FDD system, CSI is provided through a FB 
hannel; therefore, as in the SC 
ase,we assume that matrix Hc(t) is not perfe
tly known at the BS while MT k perfe
tlyestimates the CVs on
e at ea
h slot, i.e. t = nL, to obtain hk,c(nL), c = 1, 2, . . . , N .As in the SC s
enario, des
ribed in Chapter 1, we adopt a double FB informationfor all MT at ea
h slot. In parti
ular, at slot n MT k feeds ba
k for ea
h RB c: i) aCDI h̄k,c, whi
h ideally should tra
k the normalized CV h̃k,c(nL), namely
h̃k,c(nL) =

hk,c(nL)

||hk,c(nL)||
c = 1, . . . , N, (2.5)and ii) a CQI, based on the estimated SNIR at the re
eiver for M orthogonal s
hed-uled users evaluated as [16℄

ξk,c ,
||hk,c(nL)||2|h̃H

k,c(nL)h̄k,c(nL)|2

1 + P
M ·N

||hk,c(nL)||2(1− |h̃H
k,c(nL)h̄k,c(nL)|2)

. (2.6)We assume that the FB 
hannel has a �nite rate of Nb bits per slot and per MT andallows zero-delay error free transmission. The BS builds the matrix
H̄c(nL) = [h̄u1,c(nL), . . . , h̄u|Sc(n)|,c

(nL)]T , ui,c ∈ Sc(n) (2.7)
ontaining the unit-norm re
onstru
ted CVs h̄k,c(nL). Using the partial CSI, BSevaluates an estimate γk,c(n) of the SNIR of stream (k, c) as will be seen in Se
tion2.3. ZF beamforming with equal power distribution among streams is implementedfor ea
h RB, hen
e the BF matrix is
GZF

c (nL) = H̄H
c (nL)

(

H̄c(nL)H̄
H
c (nL)

)−1
. (2.8)



30 Chapter 2. Multiuser MIMO OFDM Downlink SystemsAn estimate of the normalized (with respe
t to the bandwidth) rate a
hieved bystream (k, c) ∈ P(n) at slot n is
Rk,c(n,P(n)) = log2(1 + γk,c(n)). (2.9)Notation Rk,c(n,P(n)) highlights the fa
t that rates a
hieved by di�erent streamsare mutually dependent, as i) more streams allo
ated simultaneously on the sameRBs yield interferen
e, and ii) the total power is distributed among a
tive streams.Performan
e is evaluated in terms of WSR

R (P(n)) =
∑

(k,c)∈P(n)

wk(n)Rk,c(n,P(n)) , (2.10)with wk(n) suitable weights that take into a

ount fairness and QoS 
onstraints.2.1.2 Exhaustive Sear
h S
hedulingAt ea
h slot, we aim at s
heduling the set of streams that maximizes WSR.This problem 
an be solved by 
onsidering all (∑M
i=1

K!
i!(K−i)!

)N possible sets andevaluating the WSR a
hieved by ea
h 
andidate set. Unfortunately, this exhaustivesear
h (EA) s
heduling has a high 
omputational 
ost whi
h be
omes infeasible foran in
reasing number of MTs and sub
arriers. Simpler and suboptimal s
hedulingmethods are investigated in Se
tion 2.3.2.2 Maximum Utility S
hedulerIn order to balan
e the opportunisti
 use of 
hannel resour
es with fairness amongMTs, we 
onsider a multiuser s
heduler. We �rst 
onsider in this se
tion general
riteria for the 
hoi
e of weights of the WSR and we derive the optimum maximumutility s
heduler weights for a general utility fun
tion. Then we spe
ialize the resultfor the maximum sum rate s
heduler and the proportional fair s
heduling.2.2.1 General Multiuser S
hedulingThe a
hievable rate asso
iated with MT k is
Rk(n,P(n)) =

N
∑

c=1

Rk,c(n,P)
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heduler 31. In the �rst slot, the average throughput a
hieved by MT k is
Tk(1) = 0 k = 1, 2, . . . , K. The estimate of the average throughput a
hieved by MT k 
an be updated as

Tk(n+ 1) =















(1− αk)Tk(n) + αkRk(n,P(n)) k ∈
N
⋃

c=1

Sc(n) ,

(1− αk)Tk(n) k /∈
N
⋃

c=1

Sc(n) ,

(2.11)where N
⋃

c=1

Sc(n) is the set of s
heduled MTs at slot n. If we aim at a
hieving anaverage throughput ρk for MT k, we 
an de�ne the normalized averaged throughputat slot n as
Bk(n) =

Tk(n)

ρk
. (2.12)In [47℄, the following 
on
ave and di�erentiable utility fun
tion has been proposedto design s
hedulers

Uk(Bk(n)) =
ρk(1− αk)

κ

αk

1

1− κ
(B1−κ

k (n)− 1) , (2.13)where κ ∈ [0, 1)∪ (∞) is a fairness parameter to be 
hosen a

ording to the desireds
heduling poli
y. For example, for K = 1, αk → 0, ρk = 1 and κ → 1 we obtain theproportional fair s
heduler (PFS). For κ = 0 we obtain the utility fun
tion of themaximum sum-rate s
heduler. When κ → ∞, (2.13) be
omes the utility fun
tion ofthe max-min s
heduler.We derive the s
heduler that maximizes the sum utility
K
∑

k=1

Uk(Bk(n)) . (2.14)Following the derivations of [47℄, the maximization of the sum utility (2.14) isa
hieved for
P(n) = argmax

I⊂Y

∑

k:(k,c)∈I

Uk

[

1

ρk
δk(I)αkRk(n, I) +

1

ρk
(1− αk)Tk(n)

] (2.15)where δk(I) = 1 if k ∈ I and δk(I) = 0 if k /∈ I. For all but the s
heduled MTs, the
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ated rate at slot n is zero, therefore we have
P(n) = argmax

I⊂Y





∑

k:(k,c)∈I

Uk

[

1

ρk
αkRk(n, I) +

1

ρk
(1− αk)Tk(n)

]

+

−
∑

k:(k,c)∈I

Uk

[

1

ρk
(1− αk)Tk(n)

]



 .

(2.16)
Under the assumption (1 − αk)Tk(n) ≫ αkRk(n, I), the following approximationholds

Uk

[

1

ρk
αkRk(n, I) +

1

ρk
(1− αk)Tk(n)

]

− Uk

[

1

ρk
(1− αk)Tk(n)

]

≈

≈ αkRk(n, I)
∂Uk(x)

∂x

∣

∣

∣

∣

(1−αk)Tk(n)/ρk

.

(2.17)The derivative 
an be written as
∂Uk(x)

∂x

∣

∣

∣

∣

(1−αk)Tk(n)/ρk

=
ρk(1− αk)

−κ

αkρ
−κ
k

Tk(n)
−κ . (2.18)Hen
e, the set of MTs P(n) that maximizes (2.14) is

P(n) = argmax
I⊂Y

R (I) = argmax
I⊂Y

∑

(k,c)∈I

wk(n)Rk,c(n, I) , (2.19)with weights
wk(n) =

∑

c:(k,c)∈I

Rk,c(n, I)ρκk
(1− αk)κTk(n)κ

, (2.20)where Y = {(k, c) : k ∈ {1, · · · , K}, c ∈ {1, · · · , N}} is the set of all possible streams.Note that for K = 1, (2.20) boils down to the maximum utility s
heduler of [47℄.2.2.2 Maximum Sum Rate S
hedulerThemaximum sum rate s
heduler does not 
onsider the fairness among users (κ = 0),and simply aims at maximizing the a
hievable sum rate (SR), providing wk = 1, for
k = 1, · · · , K, and

P(n) = argmax
I⊂Y

R (I) = argmax
I⊂Y

∑

(k,c)∈I

Rk,c(n, I) . (2.21)
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heduling Strategies 332.2.3 Proportional Fair S
hedulingThe multiuser multi
arrier proportional fair s
heduling (MMPFS) algorithm [48℄ isan extension to the OFDM multi-user s
enario of the PFS algorithm.For MMPFS, the average throughput of MT k is updated as in (2.11) with αk = 1/τ ,where τ is a parameter related to the time over whi
h fairness should be a
hieved.In [49℄ it has been shown that proportional fairness, maximizing ∑k log2 Tk(n), isa
hieved by s
heduling MTs as
P(n) = argmax

I⊂Y

∑

(k,c)∈I

log2

(

1 +
Rk,c(n, I)

(τ − 1)Tk(n− 1)

)

. (2.22)We observe that for τ >> 1 we 
an approximate
log2

(

1 +
Rk,c(n, I)

(τ − 1)Tk(n− 1)

)

≈ Rk,c(n, I)
(τ − 1)Tk(n− 1)

(2.23)and MPFS (2.22) 
oin
ides with the maximization of the WSR (2.19) with weights(2.20), ρk = 1, αk = 1
τ
and κ = 1.2.3 Greedy S
heduling StrategiesIn the following we investigate sub-optimal solutions to the problem (2.19) for a fewMTs, i.e. small K, where the probability of having a fully loaded system is small.In fa
t, in this s
enario power distribution has an important role in sele
ting theoptimal MT set. In Se
tion 2.3.3 we will 
onsider the 
ase of a high number of MTs

K, and in this 
ase a simpli�
ation of s
heduling is possible. For ease of notation wedrop both slot (n) and OFDM symbol (t) index in the remaining of the Chapter.2.3.1 Multi
arrier Greedy (MG)In [15℄, a greedy s
heduling algorithm in a SC �at fading system has been proposed,where MTs are sele
ted one by one as long as the throughput in
reases and it hasbeen then extended to an OFDM system in [22℄ and denote here multi
arrier greedy(MG).The MG algorithm 
omprises Nstep steps, and at ea
h step we sele
t the streamthat maximizes the in
rease of WSR. Let S(i) be the set of streams s
heduled for



34 Chapter 2. Multiuser MIMO OFDM Downlink Systemstransmission at step i, (i = 1, · · · , Nstep), with the 
orresponding WSR R(S(i)).Initially we have S(0) = ∅. The stream sele
ted at step i+ 1, is
(

k̄, c̄
)

= arg max
(k,c)∈Y\S(i)

R
(

S(i) ∪ {(k, c)}
)

, (2.24)and we set S(i+1) = S(i) ∪ {(k̄, c̄)}. The WSR R
(

S(i)
) in
reases at ea
h step, sin
estream (k, c) is inserted under the 
ondition that

R
(

S(i) ∪ {(k̄, c̄)}
)

≥ R
(

S(i)
)

. (2.25)When (2.25) does not hold, the algorithm is stopped, Nstep = i and P = S(Nstep).Hen
e, Nstep is a random variable. Evaluation of the WSR in (2.24) for the 
urrentset of streams is based on the SNIR estimate [15℄ for stream (j, c) ∈ S(i) ∪ {(k, c)},with (k, c) ∈ Y \ S(i), i.e.
γ
(i+1)
j,c =

P

(i+ 1) · ||g(i)
j,c||2

ξj,c , (2.26)where ξj,c is given by (2.6) while g
(i)
j,c is the j-th 
olumn of the BF matrix G

(i)
c forMTs s
heduled at step i. Note that total power P has been divided by |S(i+1)| = i+1in order to obtain the per stream power PS.2.3.2 Proje
tion Based Greedy (PBG)A

ording to the MG algorithm, the introdu
tion of a new 
andidate stream (k̄, c̄)into the set S(i) at step i+ 1 de
reases the SNIRs (2.26) for two reasons:a) the power is redistributed among all streams;b) BF of streams already s
heduled on the same RB is modi�ed.Due to a), it is bene�
ial to perform s
heduling jointly among RBs rather thanseparately on ea
h RB. Due to b), a new BF matrix must be 
omputed for MTss
heduled on RB c̄ of the 
andidate stream. Hen
e, at ea
h step many BFs must bedesigned for ea
h RB to test (2.25) and only one 
andidate stream is then s
heduled.In order to redu
e the 
omputational 
omplexity, the proje
tion based greedy (PBG)algorithm [23℄ assumes that the insertion of a new stream does not signi�
antly alterthe SNIR of already s
heduled streams. Indeed, this assumption holds as long asthe CV of the 
andidate stream is almost orthogonal to CVs of previously s
heduled
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heduling Strategies 35streams. Therefore, we update the SNIR estimate of already s
heduled streams asfollows
γ(i+1)
p,q =

i

i+ 1
γ(i)
p,q (p, q) ∈ S(i) , (2.27)for i = 2, 3, · · · , Nstep − 1, while for the �rst step we set γ

(1)
p,q = ξp,q, (p, q) ∈ S(1).Furthermore, the evaluation of the SNIR for the 
andidate streams requires only the
omputation of ||g(i)

k,c||2 instead of the entire beamformer. In parti
ular, if we de�ne
ak,c(S(i)) =

1

||g(i)
k,c||2

, (2.28)from (2.26) we have
γ
(i+1)
k,c =

P

i+ 1
ξk,cak,c(S(i)) (k, c) ∈ Y \ S(i). (2.29)In order to 
ompute (2.28) and the 
orresponding SNIR (2.29) of the 
andidatestream (k, c), it 
an be observed that its BF ve
tor is obtained by the orthogonal-ization of h̄k,c with respe
t to the normalized CV of already s
heduled streams onthe same RB. Hen
e, an orthonormal basis Bc(i) =

{

b̄j,c

} is �rst 
onstru
ted for thespa
e generated by the 
hannel ve
tors {h̄p,c} of streams in S(i) on RB c. Then theBF ve
tor for stream (k, c) would be proportional to
g
(i)
k,c ∝ h̄k,c −

|Bc(i)|
∑

j=1

(

h̄k,c · b̄H
j,c

)

b̄j,c . (2.30)Now, by imposing G
(i)
c H̄c = I, the identity matrix, it is h̄H

k,cg
(i)
k,c = 1 and we have

ak,c(S(i)) =

∣

∣

∣

∣

∣

∣

1−
|Bc(i)|
∑

j=1

∣

∣h̄k,c · b̄H
j,c

∣

∣

2

∣

∣

∣

∣

∣

∣

2

. (2.31)By using (2.29) and (2.31), there is no need to determine a new BF in 
orresponden
eof ea
h 
andidate stream; instead, only the basis Bc(i) needs to be updated at ea
hstep, and this requires only few ve
tor multipli
ations. Note that the 
omputationof ak,c is based on the proje
tion of the 
andidate ve
tor on the basis, as from thea
ronym PBG. On
e all streams have been s
heduled, a BF is 
omputed to performtransmission.



36 Chapter 2. Multiuser MIMO OFDM Downlink Systems2.3.3 Greedy S
heduling Strategies in the High K S
enarioIf K ≫ M , multiuser diversity provides M orthogonal streams on ea
h RB withvery high probability, thus we will have almost always a fully loaded system, i.e.
|Sc| = M . In this 
ase, both MG and PBG algorithms 
an be simpli�ed withoutredistributing the available power at ea
h new insertion, and the per stream power(2.4) be
omes

PS =
P

N ·M . (2.32)S
heduling 
an then be simpli�ed by operating independently on ea
h RB.2.3.4 Multi
arrier Semi-Orthogonal User Sele
tion Algorithm(MSUS)The SUS s
heme [10℄ 
an be easily generalized to the OFDM s
enario and is heredenoted as multi
arrier SUS (MSUS). The generalization in
ludes also the maximiza-tion of the WSR instead of the SR as 
onsidered in [10℄. MSUS pro
eeds by steps,now applied separately on ea
h RB. For RB c, let A(1)
c = {1, · · · , K} be the initial set
ontaining the indexes of all MTs. The s
heduled stream at step 1 is 
hara
terizedby having maximum CQI, i.e.

k1 = argmax
k∈A

(1)
c

wk · log2(1 + ξk,c). (2.33)After sele
ting i streams, the (i+ 1)th stream ki+1 is 
hosen within the set
A(i+1)

c = {k ∈ A(i)
c \k(i), c : |ĥk,c, ĥ

H
kj,c,c

| ≤ ǫ, 1 ≤ j ≤ i} i = 2, · · · ,M (2.34)as
ki+1,c = argmax

k∈A
(i+1)
c

wk log2(1 + ξk,c) (2.35)where ǫ is a design parameter that sets the maximum 
orrelation allowed between thequantized 
hannel ve
tors of the sele
ted MTs. We note that in MSUS we apply NSC SUS in parallel, one for ea
h RB. Also in this 
ase the number of steps is randomas the algorithm ends when set A(i)
c is empty. On
e MTs have been s
heduled, thetotal power is equally distributed among s
heduled streams a

ording to (2.4).



2.4. Pre-Sele
tion Methods 372.4 Pre-Sele
tion MethodsIn the MG algorithm the WSR R
(

S(i)
) in
reases at ea
h step and using (2.9) and(2.10), 
ondition (2.25) be
omes

∑

(p,q)∈S(i+1)

wp log2(1 + γ(i+1)
p,q ) ≥

∑

(p,q)∈S(i)

wp. log2(1 + γ(i)
p,q) (2.36)From (2.26) we obtain that this 
ondition is satis�ed only if the SNIR is high enoughto 
ompensate for losses in
urred by the insertion of a new s
heduled stream, i.e.the power redistribution and the BF modi�
ation, as des
ribed by 
onditions a) andb) of Se
tion III.B. This observation suggests a further simpli�
ation of the PBGalgorithm, by a-priori ex
luding as 
andidate streams whose SNIR is below a 
ertainthreshold. Presele
tion te
hniques aim at providing simple methods for ex
ludingstreams with low SNIR. Indeed, as for ea
h 
andidate stream the SNIR (2.29) mustbe evaluated, by ex
luding streams that 
ould never be inserted, the s
hedulingpro
edure 
an be fastened [23℄.2.4.1 Presele
tion PBG (PPBG)We �rst observe from (2.31) that ak,c(S(i)) ≤ 1 and from (2.28) we obtain

γ
(i+1)
k,c ≤ ξk,c

P

i+ 1
. (2.37)Therefore, at step i of PBG there is a minimum value of ξk,c that satis�es (2.36),denoted Ak,c(i+ 1), and we 
onsider for s
heduling only streams having SNIR

ξk,c > Ak,c(i+ 1). (2.38)At high SNR we have
Ak,c(i+ 1) ≈ wk

√

√

√

√

∏

(p,q)∈S(i)

(

i+ 1

i

)wp (i+ 1)

P
. (2.39)Proof: We observe that 
ondition (2.36) is equivalent to

[

1 +
P

i+ 1
ξk,cak,c(S(i))

]wk
∏

(p,q)∈S(i)

[

1 + γ(i+1)
p,q )

]wp
>

∏

(p,q)∈S(i)

[

1 + γ(i)
p,q

]wp (2.40)where (k, c) is the generi
 
andidate stream.



38 Chapter 2. Multiuser MIMO OFDM Downlink SystemsIn the high SNR s
enario, with ξp,q >> 1, we have 1+γ
(i)
p,q ≈ γ

(i)
p,q and from (2.27),
ondition (2.40) be
omes

(

P

i+ 1
ξk,cak,c(S(i))

)wk
∏

(p,q)∈S(i)

(

P

i+ 1

)wp

>
∏

(p,q)∈S(i)

(

P

i

)wp

. (2.41)Hen
e from (2.41), (2.39) follows. We note that, in the high K s
enario, (2.40)be
omes
[

1 + PSξk,cak,c(S(i))
]wk

> 1 (2.42)and Ak,c(i) = 0.Then by 
onsidering only streams (k, c) satisfying (2.38), we de
rease the numberof 
omparisons and SNIR updates at ea
h step of PBG. In the high K s
enariopresele
tion te
hnique is not feasible; in fa
t, Ak,c(i) → 0 for K → ∞, and therefore(2.38) is veri�ed by all streams.We further note that Ak,c(i) is an in
reasing fun
tion of i; hen
e, streams whose CQIis below the threshold Ak,c(i) at step i 
an be negle
ted also in the next steps.2.4.2 Simpli�ed Presele
tion PBG (SPPBG)A further simpli�
ation in presele
tion is a
hieved by 
onsidering wk ≈ wp ≈ 1 in(2.39) to yield
Ak,c(i+ 1) ≈ (i+ 1)

P

(

i+ 1

i

)i

. (2.43)Within PBGmethods, we note that this approa
h be
omes optimal when the s
hedul-ing obje
tive 
oin
ides with the maximization of the SR. However, for the maximiza-tion of the WSR, S-PPBG is in general suboptimal.2.5 Complexity AnalysisWe analyze the worst 
ase 
omplexity of the various approa
hes, in terms of both
omputational 
omplexity and memory requirement.2.5.1 Computational ComplexityWe assume that a 
omparison yields a 
omputational 
omplexity equal to λ 
omplexmultipli
ations (CMUX), while the inversion of an M × M matrix performed by
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Gaussian elimination methods, has 
omplexity M · (M2 − 1)

3
CMUX. The BF and

‖ gk,c ‖2 evaluation has therefore 
omplexity
BFC = 2|Sc| ·M2 +

M · (M2 − 1)

3
+ |Sc| ·M. (2.44)We �rst observe that all 
onsidered algorithms sele
t one stream per step, until atmost M streams are allo
ated on ea
h RB, thus in general Nstep ≤ N ·M . At step i,

|Y\S(i)| = K ·N − i streams are 
onsidered for insertion in S(i+1). Furthermore, atea
h step, the per stream power PS is adapted, due to the insertion of a 
andidatestream in S(i+1). The inversion of an M × M matrix performed by the GuassianElimination method has 
omplexity M · (M2 − 1)

3
.MG 
omplexity. Complexity of the MG algorithm in the low K s
enario is givenby

CMG−lowK = λ ·N ·K +

Nstep
∑

i=2

(i− 1)+

+ (K − |S(i)
ζ(i−1)|) · (BFC + 2) + λ(K ·N − i+ 1) + λ

(2.45)where ζ(i− 1) denotes the RB of the stream sele
ted at step i− 1. The �rst term in(2.45) a

ounts for the sele
tion of the stream with maximum CQI. The remainingterms a

ount for steps 2 throughNstep, with a) update of SNIR estimate of the (i−1)already s
heduled streams, b) 
omputation of a new BF for ea
h of the (K−|S(i)
ζ(i−1)|)
andidate streams on sub
arrier ζ(i− 1), 
) evaluation of ‖ gk,ζ(i−1) ‖2, d) update ofthe SNIR estimates and e) evaluation of the WSR. Lastly, the algorithm determinesthe stream whi
h maximizes the WSR at step i and 
he
ks 
ondition (2.25).In the high K s
enario 
omplexity be
omes

CMG−highK = λ ·N ·K +N ·
M
∑

i=2

{(K − i+ 1) · (BFC + 2)+

λ · (K − i+ 1) + λ} ,
(2.46)sin
e now Nstep = M and no power update is ne
essary at ea
h step.PBG 
omplexity. Complexity of the PBG in the low K s
enario is

CPBG = λ ·N ·K +N · BFC +

Nstep
∑

i=2

{

(i− 1) + (K − |S(i)
ζ(i−1)|) · (M + 2)+

+|S(i)
ζ(i−1)|+ 2 ·M + λ · (K ·N − i+ 1) + λ

}

.

(2.47)



40 Chapter 2. Multiuser MIMO OFDM Downlink SystemsIn fa
t, the PBG algorithm for ea
h 
andidate stream on RB ζ(i − 1) performs a)the proje
tion of CV on the orthogonal basis and b) updates the SNIR estimate. Atea
h step, the basis is also updated a

ording to the CV of last s
heduled stream.At the end, the BF matrix is 
omputed a

ording to the set of s
heduled streams.In the high K s
enario we have
CPBG−highK = λ ·N ·K +N · BFC +N ·

M
∑

i=2

{(M + 2) · (K − i+ 1) + i

+2 ·M + λ · (K − i+ 1) + λ} ,
(2.48)sin
e s
heduling 
an be performed in parallel on all RBs.PPBG 
omplexity. The 
omplexity of the PPBG in the low K s
enario is givenby

CPPBG = λ ·N ·K +N · BFC +

Nstep
∑

i=2

{(i− 1)+

+(K − |S(i)
ζ(i−1)|) · (M + 2) + |S(i)

ζ(i−1)|+ 2 ·M + 1 + λ · (K ·N − i+ 1) + λ
}

.(2.49)It only di�ers from PBG in the evaluation of Ak,c(i+1) at ea
h step, sin
e it dependson the set of s
heduled streams. Similarly, in the high K s
enario we have
CPPBG−highK = λ ·N ·K +N · BFC +N ·

M
∑

i=2

{(M + 2) · (K − i+ 1)+

+i+ 2 ·M + 1 + λ · (K − i+ 1) + λ} ,
(2.50)SPPBG 
omplexity. Applying the S-PPBG algorithm, we have an additional 
ostdue to (2.38); on the other hand, on RB c, at ea
h step i we ex
lude a number ofstreams Qc(i) from the set of possible streams. Qc(i) takes into a

ount also thes
heduled streams. Then at step i we have Ji,c = K −

∑i
j=1Qc(i) 
andidate streamson RB c and in total Ji = |Y\S(i)| =∑N

c=1 Ji,c. Complexity be
omes
CSPPBG = λ ·N ·K +N · BFC +

Nstep
∑

i=2

{

(i− 1) +
(

Ji,ζ(i−1)+

−|S(i)
ζ(i−1)|

)

· (M + 2) + |S(i)
ζ(i−1)|+ 2 ·M + λ · (2Ji + 1)

}

.

(2.51)Note that Qc(i) is a random variables depending on the 
hannel realization. Inthe high K s
enario we still 
onsider power adjustment; otherwise, from (2.43), we
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ould never ex
lude streams, and then S-PPBG would be
ome PBG. Complexity ofS-PPBG in the high K s
enario be
omes
CSPPBG−highK = λ ·N ·K +N · BFC+

+ ·
Nstep
∑

i=2

{

(i− 1) + (Ji,ζ(i−1) − i+ 1|) · (M + 2)+

+i+ 2 ·M + λ · (2Ji + 1)} .

(2.52)The MSUS algorithm is equivalent to N SUS algorithms working in parallel. Weremind that at ea
h step SUS 
onsiders |A(i)
c | = K − i−

∑i
j=1Q(i) 
andidate MTs,where Q(i) is the number of MTs ex
luded at step i. It is

CMSUS = N · BFC+

+

N
∑

c=1

(

λ ·K +

M
∑

i=2

(|A(i−1)
c | · i+ λ · |A(i−1)

c |+ |A(i)
c |(λ+ 1))

)

.
(2.53)2.5.2 Asymptoti
 Complexity AnalysisA

ording to 
omplexities required by various s
heduling algorithms, we investigatetheir asymptoti
 behavior with respe
t to K as a fun
tion of K. For MG we have

CMG−∞ ≈ K[λ ·N +N(M − 1)(BFC + 2 + λ)] +O(K) (2.54)where O(K) indi
ates a term whi
h goes asymptoti
ally to 0 faster than K. ForPBG and PPBG we have
CPBG−∞ = CPPBG−∞ ≈ K[λ ·N +N(M − 1)(M + 2 + λ)] +O(K) (2.55)Both S-PPBG and MSUS perform the ex
lusion of worse streams. Let βi be theper
entage of streams ex
luded at step i, for S-PPBG it is Ji,c = (K − i) · (1 − βi)while for MSUS A(i)

c = (K − i) · (1− βi). Asymptoti
 expressions are
CSPPBG−∞ ≈ K[λ ·N +D · (M + 2) + λ · 2 ·D ·N ] +O(K), (2.56)and

CMSUS−∞ ≈ K [N · λ+B + λ · (M − 1) · C + (λ+ 1) ·D] +O(K) (2.57)where B =
∑M

i=2 i(1− βi−1) and C =
∑M

i=2(1− βi−1) and D =
∑M

i=2(1− βi).



42 Chapter 2. Multiuser MIMO OFDM Downlink Systems2.5.3 Memory O

upationLastly we investigate memory requirements of the s
heduling algorithms in terms of
omplex lo
ation (CLS) units. We �rst note that all algorithms store a) CDI andCQI of all streams, b) the set of sele
ted streams and 
) the �nal BFs; then a memoryo

upation of MCOMM = N ·M ·K +K ·N +N ·M2 +M ·N CLS is 
ommon toall algorithms. For MG we have
MMG = MCOMM +K ·N +M ·N +K +M2 ·K + 2 (2.58)sin
e MG stores a) γj,c (or, equivalently, ‖ gj,c ‖2), requiring K ·N CLS, b) per MTrates (N ·M CLS as worst 
ase), 
) new BF (K ·M2 CLS), d) total rate providedby ea
h 
andidate (K CLS), and e) 
urrent and last �nal rates (2 CLS). For PBGand PPBG we have

MPPBG = MPBG = MCOMM +K ·N +M ·N +K +M2 ·N + 2, (2.59)as PBG stores a) the value √
ak,c, b) total rate provided by ea
h 
andidate stream(K CLS) and 
) orthogonal basis (M2 ·N CLS).The S-PPBG memory requirement is given by

MSPPBG = MCOMM + ·K ·N +M ·N +K +M2 ·N + 2 +M ·N. (2.60)With respe
t to PBG, it needs to store also Ak,c(i) (M ·N CLS as worst 
ase).Finally, for MSUS we have
MMSUS = MCOMM +M ·N +N ·K + 1 +K ·N (2.61)as MSUS stores a) 
orrelations of 
andidate streams and last inserted stream (N ·KCLS), b) the value of ǫ (1 CLS) and 
) the set of total rates of ea
h 
andidate (K ·NCLS as worst 
ase).



Chapter 3Performan
e ResultsWe 
onsider a BS equipped with M = 4 antennas spa
ed by 10 wavelength at the
arrier frequen
y of 2 GHz. The 
hannel is modeled as time-variant, �at Rayleighfading, a

ording to the spatial 
hannel model (SCM) [50℄. All MTs are uniformlydistributed in a 
ell of radius 500 m, as in [51℄; the time slot duration is T = 0.5ms and ea
h MT transmits the FB on
e per slot. The 
odebook for predi
tive errorquantization is designed from a TS 
omposed of CVs of SCM for MT moving at 3,50 and 130 km/h with equal probability, a �rst order linear predi
tor is adopted andthe value 
hosen for the fairness parameter in PFS is τ = 0.1 s.3.1 Single Carrier S
enario ResultsWe de�ne the average sum rate (SR) as
SR = E







|S(n)|
∑

k=1

log2 [1 + SNIRk(t)]







, (3.1)where SNIRk(t) is the SNIR relative to MT k, de�ned in (1.7) as
SNIRk(t) =

pk|hk(t)gk(n)|2
1 +

∑

i∈S(n)\k pi|hk(t)gi(n)|2
. (3.2)3.1.1 Beamforming Performan
e ResultsIn Fig. 3.1 we set K = 20 and the average SNR to 15 dB. We 
ompare the BFB andPFB strategies in terms of SR as a fun
tion of the number of FB bits b for ZF-BF.43
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Figure 3.1: SR as a fun
tion of FB bits for various FB strategies, with MTs movingat 3 and 130 km/h. SNR = 15 dB.The proposed PFB signi�
antly outperforms BFB for any FB rate, sin
e it exploitsthe time 
orrelation of the 
hannel. The gain is more evident at a low MT speed,when, even with a low FB rate, the performan
e gets 
lose to that of perfe
t CSI(PCSI). Moreover, even with a highly time variant 
hannel, PFB is still preferableto BFB.In Fig. 3.2 we evaluate the SR for various FB strategies as a fun
tion of theaverage SNR. First of all, we note that at a low SNR, BFB with MT moving at130 km/h provides a higher SR than at 3 km/h be
ause with a higher speed PFSdoes not signi�
antly worsen the a
hievable throughput. On the other hand, at highSNR BFB with a MT moving at a lower speed gives better performan
e be
ause athigher velo
ity the beamformer designed at the beginning of ea
h slot gets outdatedfor the varying 
hannel 
onditions 
ausing multiuser interferen
e degradation. And
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Figure 3.2: SR as a fun
tion of SNR for various FB strategies and FB bits. MTsmoving at 3 and 130 km/h.this e�e
t be
omes dominant in the high SNR region where interferen
e dominatessystem noise. We observe that PFB strategy still highly improves BFB espe
iallyfor a low MT speed and with only b = 12 we get performan
e very 
lose to PCSI.For la
k of spa
e we did not in
lude the performan
e of the proposed FB strategiesusing MMSE-BF. Nevertheless with this opportunisti
 approa
h MMSE-BF does notprovide a gain with respe
t to ZF-BF be
ause the proposed greedy algorithm sele
tsMTs only if this is bene�
ial for the weighted throughput, thus limiting multiuserinterferen
e that MMSE-BF tries to 
ope with.Figg. 3.3 and 3.4 
ompare MMSE-BF and ZF-BF adopting both BFB and PFBand assuming MTs moving at 3 and 130 km/h, respe
tively; for both �gures, we
onsidered K = 4 dedi
ated 
hannels, i.e., in the absen
e of s
heduling, or with as
heduler sele
ting randomly the K = 4 MTs. In this s
enario, where the s
heduler
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Figure 3.3: SR as a fun
tion of SNR for various FB strategies and FB bits adoptingboth ZF-BF and MMSE-BF. MTs moving at 3 km/h.does not avoid multiuser interferen
e by a proper user sele
tion, MMSE-BF is prefer-able be
ause it better 
opes with multiuser interferen
e due to quantization errors,although it requires a double CQI FB. Nevertheless, we assumed also the 
ase of oneCQI FB, 
onsidering the mean value of cosΘk in BF design; also in this 
ase, weveri�ed that MMSE-BF still performs better than ZF-BF in a random s
hedulings
enario.3.1.2 FB Performan
e ResultsWe evaluate now the performan
e of FB strategies, as a fun
tion of SNR and of FBrate. Simulations are performed 
onsidering a set of K = 20 users.
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Figure 3.4: SR as a fun
tion of SNR for various FB strategies and FB bits adoptingboth ZF-BF and MMSE-BF. MTs moving at 130 km/h.We �rst evaluate LBG te
hnique in terms of average SR in the 
ondition of blo
kfading, where the 
hannel is �xed during the timeslot. Fig. 3.5 shows that forevery FB rate the average SR value in
reases of about 2 bits/s by using the LBGquantization method instead of the RVQ one. Of 
ourse, as the FB rate in
reasesthe average SR be
omes higher as well, sin
e the BS has a better CDI and then onaverage the a
hievable rate for users be
omes higher. Note that with the SCM model,where the 
hannel is not 
onstant during a timeslot both LBG an RVQ quantizationmethods provide a worse performan
e, sin
e the pre
oder designed at the beginningof the timeslot is not perfe
tly mat
hed with the a
tual 
hannel; however, the LBGs
heme still have an higher SR than the RVQ one.We now want to 
ompare the PFB strategy with the UD strategy and BFB. We
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Figure 3.5: Sum rate as a fun
tion of SNR using RVQ and LBG quantization methodsin 
ase of blo
k fading 
ondition and in 
ase of FB bit rate equal to 12 and terminalsmoving at speed of 130 Km/h
onsider a 
on�guration with 
hannel SNR=15 dB and plot the average SR as afun
tion of the number of FB bit sent by ea
h user. Fig. 3.6 shows that for lowspeed and low number of FB bits the UD feedba
k strategy highly improves theaverage SR with respe
t to both PFB and BFB. This improvement saturates as thenumber of FB bits be
omes higher than 4, so that with 4 FB bits we a
hieve thesame average SR as the BFB with 11 FB bits. On the other hand, as the number ofFB bits be
omes higher than 4, the PFB outperforms the UD strategy; in parti
ular,if b > 10, the a
hieved SR di�ers by only 0.8 bit/s from the one provided by theperfe
t CSIT on
e a timeslot. For an higher speed, however, the gap between thethree strategies be
omes thinner, as illustrated by Fig.3.8; at 50 km/h UD with 8 bitsprovides the same average SR value as BFB with 11 FB bits; lastly, for 130 km/h theBFB outperforms both UD and PFB with low FB bits , while opposite o

urs withmore than 6 FB bits, when the PFB provides the highest SR. For the UD strategy,this behavior is due to the fa
t that with high speed the CSI 
hanges rapidly, and
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enario Results 49then the user has to send nearly always the most signi�
ant b bits; in this 
ase, the
ontrol bit used by UD to indi
ate the meaning of the last b−1 bits does not provideuseful information and then the UD method provides a worse performan
e. For thePFB strategy, its behavior in presen
e of high speed is due to the 
rude quantizationof the predi
tion error, whi
h a�e
ts the dire
tion of the CSIT.
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PFB v=3 km/h
PFB v=130 km/h
PCSIFigure 3.6: Sum rate as a fun
tion of FB bits with terminals moving at speed of 3Km/hFig.3.7 illustrates the average SR a
hieved by BFB UD and PFB s
hemes with 4and 12 FB bits when MT speed is 3 km/h; note that with b = 4 FB bits UD s
hemeoutperforms both BFB and PFB s
hemes of about 10 bits/s and provides almostthe same average SR as the UD using b = 12 bit (the di�eren
e between the twois less than 0.5 bit/s). On the other hand, with b = 8 and b = 12 PFB providesthe highest average SR sin
e the quality of CSIT is not limited by the quantizationof the dire
tion of the 
hannel, as in UD and BFB; in fa
t, if we 
onsider UD andBFB with b = 12 and B = 16, we observe that a
hieved SR is higher than UD andBFB with b = 12 and B = 12. For high speed (130 km/h), however, UD and PFBprovide a little improvement (of about 1 bit/s for UD and 2 bit/s for PFB) with



50 Chapter 3. Performan
e Results

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

su
m

 r
at

e 
[b

it/
s/

H
z]

 

 

SNR [dB]

BFB b=4
UD b=4
UD b=12
PFB b=4
PFB b=8
PFB b=12
PCSI

Figure 3.7: Sum rate as a fun
tion of SNR using RVQ and LBG quantization methodswith terminals moving at speed of 50 Km/hrespe
t to BFB only with b = 8, while with b = 4 BFB outperforms both UD andPFB,as illustrated in Fig.3.8; again note that with b > 4 PFB outperforms both UDand BFB for it provides the most a

urate 
hannel state information at the BS.3.2 OFDM S
heduling Te
hniques Performan
eWe 
ompare the s
heduling algorithms in terms of average SR and 
omplexity re-quirements. we 
onsider an average SNR of 15 dB per RB at the 
ell border andpath loss is in
luded in the 
hannel model. We assume also a realisti
 MIMO 
han-nel with time, frequen
y and spatial 
orrelation among the elements of Hc(t), asthe 
hannel is modeled as slowly time-variant, frequen
y sele
tive Rayleigh fading,a

ording the SCM [50℄ in a OFDM s
enario. A

ording to the LTE release, we settransmission bandwidth to 2.5 MHz, divided into N = 12 RBs and 
entered at the
arrier frequen
y of 2 GHz, and ea
h slot is 
omposed of 7 adja
ent OFDM symbols.CSI FB is performed with a variable number of bits using an optimized 
odebook,
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Figure 3.8: Sum rate as a fun
tion of SNR using RVQ and LBG quantization methodswith terminals moving at speed of 130 Km/has detailed in [34℄.We extend the de�nition of average SR provided for SC s
enario as
SR = E







∑

(k,c)∈S(n)

log2 [1 + SNIRk,c(t)]







, (3.3)where SNIRk,c(t) is the SNIR relative to steam (k, c), de�ned a

ording to (1.7) as
SNIRk,c(t) =

pk,c|hk,c(t)gk,c(n)|2
1 +

∑

i∈Sc(n)\k,c
pi|hk,c(t)gi,c(n)|2

. (3.4)where gk,c is the k-th 
olumn of matrix Gc(n). We �rst 
ompare the SR a
hieved byMG with ES s
heduling using as optimization 
riterion the maximum SR. For 
om-plexity reasons simulations have been limited to N = 4 RBs. To simplify simulationsin the ES method, results of both MG and ES in the highK s
enario, K = 18N, 20N ,refer to N = 1. In fa
t, we veri�ed that for high K the system is fully loaded with aprobability higher then 95%; in this s
enario the power granted to ea
h 
arrier is P
N
,and then user sele
tion 
an be performed independently on ea
h 
arrier. We 
onsiderboth the 
ase of perfe
t CSI at the transmitter and the 
ase of partial CSI obtained
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e Resultsby FB from the re
eiver, with a FB rate of 12 bit/user/RB/slot. We observe thatpartial CSI provides a loss on SR of 2 up to 3.5 bit/user/RB/slot, but it does nota�e
t the general behavior of the two algorithms. As we 
an see from Fig. 3.9, bothMG and ES have a very 
lose SR for all K. Hen
e, in the following we 
onsider MGas performan
e bound.Fig. 3.10 illustrates the average SR a
hieved by the s
heduling algorithms as afun
tion of the number of MTs K in the low K s
enario for a FB rate of 12bit/user/RB/slot. We note that there is not an appre
iable loss in performan
eof the simpli�ed, methods. Similarly, simulations in the high K s
enario show thatMG, PBG and S-PPBG a
hieve a SR of 16.40 bit/s/Hz, while MSUS provides 15.40bit/s/Hz. Overall we observe that the simpli�ed algorithms do not provide SR lossfor all K. This is mainly due to the fa
t that all s
heduling methods are based on anopportunisti
 approa
h, so they all aim at sele
ting the best set of orthogonal MTs.We also note that all algorithms always sele
t the same �rst stream, whose CV inturn determines the 
hoi
e of the other streams. We underline that the average SRof S-PPBG is very 
lose to that of PBG and MG; moreover, sin
e S-PPBG is an ap-proximation of PPBG, we dedu
e that also PPBG provide the same SR of S-PPBG.Fig. 3.11 
on�rms this behavior also with a PFS.We note also in Fig. 3.11 that presele
tion applied to PBG provides slightlybetter performan
e, despite the fa
t that it 
onsiders a lower number of 
andidatesets. In fa
t, presele
tion aims at ex
luding from s
heduling streams that wouldnot in
rease the WSR, and prevents the s
heduler from inserting them for fairnessreasons.Fig. 3.12 reports the average SR versus the FB rate; we observe that the simpli�edmethods are also robust to quantization error; in fa
t, for all 
onsidered values offeedba
k rate, PBG and S-PPBG provide the same SR of MG.3.2.1 Outage System Throughput ComparisonAt ea
h slot, the BS evaluates a s
heduled rate for ea
h stream; sin
e this evaluationis based on imperfe
t CSIT, the s
heduled rate may ex
eed the 
hannel 
apa
ity. Inthis 
ase, the Shannon theorem does not guarantee the existen
e of a 
ode allowing anerror rate below a given threshold; therefore, the information transmitted is a�e
tedby errors with a non-negligible probability.We 
onsider now the e�e
t of outage on the system throughput, both for thes
heduling pro
ess and for the performan
e metri
.



3.2. OFDM S
heduling Te
hniques Performan
e 53

0 5 10 15 20
6

8

10

12

14

16

18

K/N

av
er

ag
e 

su
m

 r
at

e 
(b

it/
s/

H
z)

 

 

EA
MG
EA 12 bit
MG 12 bitFigure 3.9: Average SR of MG and ES versus of total number of MTs K.



54 Chapter 3. Performan
e Results

10 20 30 40 50
9

10

11

12

13

14

15

K

av
er

ag
e 

su
m

 r
at

e 
[b

it/
s/

H
z]

 

 

S−PPBG

PBG

MG

MSUS

Figure 3.10: Average SR as versus the total number of MTs K.



3.2. OFDM S
heduling Te
hniques Performan
e 55

10 20 30 40 50
9

10

11

12

13

14

15

K

av
er

ag
e 

su
m

 r
at

e 
[b

it/
s/

H
z]

 

 

S−PPBG

PBG

MG

MSUS

Figure 3.11: Average SR versus the total number of MTs K with PFS.



56 Chapter 3. Performan
e Results

2 4 6 8 10 12
5

6

7

8

9

10

11

12

13

FB rate [bit/user/RB/slot]

av
er

ag
e 

su
m

 r
at

e 
[b

it/
s/

H
z]

 

 
S−PPBG

PPBG

MG

Figure 3.12: Average SR versus per stream FB rate.



3.2. OFDM S
heduling Te
hniques Performan
e 57

2 4 8 16 32 64 128 256 512 1024
10

2

10
3

10
4

10
5

10
6

10
7

K

av
er

ag
e 

co
m

pl
ex

ity
 [C

M
U

X
/s

lo
t]

 

 

S−PPBG

PBG

MG

MSUS

Figure 3.13: Complexity versus K.
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e ResultsAt ea
h slot, the s
heduling algorithm aims at sele
ting the set P of streams thatmaximizes the weighted system throughput under the 
onstraint that the averageprobability that the s
heduled rate ex
eeds 
hannel 
apa
ity, i.e. the average outageprobability, is pout. Ea
h MT k has an asso
iated weight wk, whi
h takes into a

ountfairness and QoS 
onstraints. In parti
ular, letting γk,c be the estimated SNIR ofstream (k, c), we aim at maximizing the weighted system throughput
R(P) =

∑

(k,c)∈P

wk log2(1 + ǫpoutγk,c) , (3.5)where the sum is taken over all streams (k, c) of P, and parameter ǫpout ∈ [0, 1]ensures an average per user outage probability not ex
eeding pout, [52℄.If a stream is a�e
ted by outage, i.e, if the allo
ated rate ex
eeds the maximumrate available for that stream, due to imperfe
t 
hannel state information, beam-forming and s
heduling, the 
orresponding rate is set to zero. Letting βk,c = 0when outage o

urs for stream (k, c), and βk,c = 1 otherwise, the average outagethroughput is de�ned as
T (P) =

∑

(k,c)∈P

βk,c log2(1 + ǫpoutγk,c) . (3.6)where the sum is taken over all streams (k, c) of P, and parameter ǫpout ∈ [0, 1]ensures an average per user outage probability not ex
eeding pout, [52℄.Fig. 3.14 shows the outage throughput T (P) as a fun
tion of the number of a
tiveMTs K with a 
ommon outage 
onstraint pout = 2%. We observe that PBG alwaysoutperforms MSUS with a gain of about 5%, with a limited in
rease of 
omplexity.Even the MG algorithm, whi
h provides a performan
e upper bound in terms of (3.5),is outperformed by the proposed PBG, sin
e also MG is a suboptimal algorithm.3.2.2 Complexity ComparisonFig. 3.13 shows 
omplexity versus K. For K = 2 to 64 the low K 
omplexityexpressions are used, while from K = 128 to 1024 we use the high K 
omplexityexpressions. We �rst observe that the 
omplexity ratio between the s
heduling al-gorithms is nearly the same both in the low K and high K regime. As expe
ted,MSUS and S-PPBG 
omplexity trend is not in�uen
ed by the value of K. From Fig.3.13 we note that for K = 5 ÷ 50, with 
orresponding fully load probability in therange from 1% to 95%, the 
omputational 
ost of MG is from 2.2 to 18.5 times the
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Figure 3.14: Average outage throughput versus the total number of MTs K withproportional fair s
heduling and 2% outage probability.
ost of PBG, with a fa
tor in
reasing in K; as expe
ted, the presele
tion te
hniquefurther redu
es 
omplexity by a fa
tor 1.2− 1.4 with respe
t to PBG. We note alsothat 
omplexity of S-PPBG is only 2.4 − 2.9 times the 
omplexity of MSUS. As
omplexity of PPBG is bounded between that of PBG and S-PPBG and these twoare very 
lose, we omitted to show PPBG in Fig. 3.13.In the high K s
enario, simulations 
on�rm the analysis; in fa
t, for K = 400 wehave CMG = 2.61·106, CPBG = 9.4·104, CMSUS = 3.49·104 and CSPPBG = 11.9·104.We underline that in the high K regime S-PPBG 
omplexity is higher than that ofPBG be
ause of the required power distribution; indeed simpli�
ation of presele
tiondoes not 
ompensate the need of redistributing the total power. On the other hand,we note that the high 
omplexity required by MG is mainly due to the evaluationsof BF at ea
h step.Memory requirements, investigated in Subse
tion 2.5.1, does not pre�gure large dif-feren
es between di�erent methods; for K = 400 memory required lo
ations are
35890 for MG, 29682 for PBG, 29730 for S-PPBG and 33841 for MSUS. Hen
e, thesimpli�ed te
hniques a
hieve a redu
tion of memory requirement with respe
t toexisting algorithms.
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Chapter 4Con
lusionsIn this �rst part of the thesis, we fo
used on MIMO downlink systems with limitedfeedba
k, both in SC and in the OFDM s
enario. In parti
ular, for a SC s
enario, weproposed various 
hannel quantization te
hniques and feedba
k strategies based onthe Lloyd-Max algorithm [36℄ that exploit both spatial and time 
orrelation of theMIMO 
hannel. We derived a UD feedba
k approa
h where FB bits are a

umulatedover multiple signalling intervals in order to index a mu
h larger 
odebook; moreoverwe proposed new predi
tive FB strategies where both transmitter and users predi
tthe evolution of the 
hannel ve
tor and users adjusts the predi
tion by feeding ba
ka quantized version of the predi
tion error to the transmitter. Furthermore, we de-s
ribed a predi
tive feedba
k strategy with unitary rotation matrix, exploiting thegeometri
 properties of unit norm CDI ve
tors. Finally, we have proposed a MMSEbeamformer that takes into a

ount imperfe
t CSI at the BS and a FB signallingbased on the predi
tion of CDI.From performan
e evaluation on SC s
enario we 
on
lude that predi
tive FB out-performs signi�
antly existing te
hniques in terms of SR and low FB rate; UD is apromising strategy as it provides improved SR with respe
t to basi
 FB and does notrequire 
hannel predi
tion at both transmitter and re
eiver side. MMSE-BF is usefulwhen dedi
ated 
hannels are set up in downlink, while when pure PFS is adopted itprovides similar performan
e to ZF-BF at the 
ost of an additional CQI parameter.In MIMO OFDM s
enario, we propose suboptimal s
heduling algorithms to fa
e thein
reased dimension of 
andidate streams set, based on simpli�ed BF evaluation dur-ing the user sele
tion pro
ess. We addressed the tradeo� between an opportunisti
approa
h in user sele
tion, providing high average sum rate, and quality of servi
e(QoS) requirements, by introdu
ing a general multiuser s
heduling, the opportunis-61
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lusionsti
 maximum sum rate strategy, and the multi
arrier proportional fair s
heduling.Furthermore, di�erent user sele
tion strategies are illustrated, and in parti
ular wepropose a re�ned greedy strategy (PBG) requiring a lower 
omplexity. As a furtherre�nement of PBG algorithm, we propose the presele
tion te
hnique, whi
h redu
esthe set of 
andidate users. Complexity analysis is evaluated for ea
h user sele
tionstrategy in Se
tion 2.5, both in terms of 
omputational 
omplexity and memoryrequirements. Simulation results show that the proposed suboptimal algorithm al-though requires a quarter of the 
omplexity of the 
omparison algorithm, providesalmost the same average sum rate and the same outage throughput. Furthermore,presele
tion te
hnique applied to the PBG algorithm halves the 
omputational 
om-plexity required to PBG by providing the same performan
e, at the 
ost of a verylittle in
rease of the memory requirements.
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Main Abbreviations and NotationsAMDF: amplitude maximum di�eren
e fun
tion;API: graphi
 interfa
e;AV: atrioventri
ular node;AWGN: additive white Gaussian noise;CIR: 
hannel impulse response;CORR: 
orrelation based estimator;CW: 
ontinuous wave;EIRP: e�e
tive radiated power;EN: end position for the s
an windowing;FCC: Federal Communi
ations Commission;HWI: hardware integration 
oe�
ient;IR: impulse radio;ISI:inter symbol interferen
e;LCML: low 
omplexity MLLOS: line of sight;LRS: lo
ally ri
h s
attering;MSE: mean square error;ML: maximum likelihood 65



66
Ls: number of samples in a s
an;PC: personal 
omputer;PMUSIC:Musi
 based dete
tion algorithm;PPS: pulses per sample;PRF: pulse repetition frequen
y;R: re
eiver;RF: radio frequen
y;SA: sinoatrial node;SNR: signal to noise ratio;ST: start position for the s
an windowing;SWI: software integration 
oe�
ient;T: transmitter;TD: time domainToA: time of arrival;TEM: transverse ele
tromagneti
 wave;
TP : pulse duration;
TS: pulse repetition period;UWB: ultra wide band;WEIGHTED: weighted auto
orrelation fun
tionWELCH: Wel
h based algorithm.



Introdu
tion
Remote vital signs dete
tion is an emerging topi
, whose aim is monitoring a patientvital parameters avoiding physi
al 
onta
t between the patient and the sensor. Infa
t, a remote monitoring system provides advantages in many s
enarios, su
h asbaby monitoring, home monitoring for 
hroni
 health diseases and sleep disorders.A remote sensor allows an easier patient monitoring also for long periods of obser-vation. In the last years, di�erent te
hnologies have been proposed with this aim,and in parti
ular: Ka Band, narrowband radar, whose high frequen
y provides anobservable Doppler e�e
t even for low vital signs speeds [53, 54℄, ultra wide band(UWB) radar [1, 55℄.In this work, we fo
us on radar te
hnologies; in fa
t, it provides a 
onta
tless sensor,easily adaptive to di�erent s
enarios. Radar te
hnologies have already been inves-tigated for vital signs dete
tion, for military appli
ation and res
ue of vi
tims ofnatural disasters; however, these s
enarios allow high values of the transmitted sig-nal, be
ause the remote sensor is used for a short period of time, and it must dete
ta living person even through walls (e.g., after an earthquake). Home monitoringappli
ations instead are supposed to be used for long periods in an indoor s
enario;therefore, for these appli
ations additional 
onstraints have to be taken into a

ount,and in parti
ular the transmitted power has to be limited.Among all radar te
hnologies, UWB radar provides key advantages, as it relies onultra-short (nanose
ond s
ale) waveforms that 
an be free of sine-wave 
arriers and donot require intermediate frequen
y (IF) pro
essing be
ause they 
an operate at base-band. The ultra-short duration of UWB pulses provide unique advantages both for
ommuni
ation and radar appli
ations: i) enhan
ed 
apability to penetrate throughobsta
les; ii) ultra high pre
ision ranging at the 
entimeter level; iii) potential forvery high data rates along with a 
ommensurate in
rease in user 
apa
ity; and iv)potentially small size and pro
essing power. This motivates the in
reasing interestof the s
ienti�
 
ommunity on the appli
ation of UWB radar for vital signs dete
-67



68tion [1, 56, 57℄. In the se
ond part of the thesis, we fo
us on vital signs dete
tionusing UWB radar in a indoor s
enario, and in parti
ular on the model des
ribing thein�uen
e of vital signs on the re
eived signal, and on dete
tion algorithms. At thebest of the author's knowledge, a 
omplete des
ription of the e�e
t of 
hest motionon the re
eived signal for a pulse UWB system is not available in the literature. Thistopi
 is addressed in Chapter 7, and a des
ription of the e�e
ts of vital signs onthe signal parameters are provided in Chapter 8. We 
onsider radar devi
e workingon the 3.1 − 5.3 GHz band, whi
h is available for 
onsumer appli
ations a

ordingto the Federal Communi
ations Commission (FCC) rules [58℄. In this s
enario weinvestigate analyti
ally the parameters of the re
eived signal and their time varia-tions due to vital signs. In parti
ular, we verify in Chapter 7 that the available banddoes not allow an e�
ient vital sign dete
tion based on time of arrival (ToA). Mostof the proposed dete
tion te
hniques are based on ToA variations; however, a largebandwidth is required to observe ToA variations due to heart beating. Moreover,dete
tion is made di�
ult by the non stationary nature of the heart beating and res-piration. Therefore, we investigate dete
tion of vital signs based on amplitude andphase modulation of the radar signal, and we propose a novel te
hnique in Chapter 9.The proposed dete
tion te
hnique requires short observation periods, where we 
anassume vital signs as stationary and periodi
. A novel periodi
ity based dete
tionalgorithm is proposed and 
ompared to the 
orrelation based dete
tion algorithm.Chapter 10 provides numeri
al results in ideal 
onditions and experimental results.Computational 
omplexity is also evaluated for the various algorithms.



Chapter 5Ultra Wide Band Radar Te
hnologyUWB radio is an emerging te
hnology inviting major advan
es in wireless 
ommu-ni
ations, networking, radar, imaging, and positioning systems. The basi
 idea ofUWB is to transmit a signal 
hara
terized by a very large bandwidth and a low powerspe
tral density. UWB is de�ned as a transmission systems with instantaneous spe
-tral o

upan
y in ex
ess of 500 MHz or a fra
tional bandwidth of more than 20%; thefra
tional bandwidth is de�ned as B/fC , where B denotes the −10 dB bandwidth,and fC is the 
enter frequen
y. Su
h systems rely on ultra-short (nanose
ond s
ale)waveforms that 
an be free of sine-wave 
arriers and do not require IF pro
essingbe
ause they 
an operate at baseband.In 2002, the Federal Communi
ations Commission (FCC) in the United States ofAmeri
a released a large bandwidth (3.1 − 10.6 GHz) for unli
ensed use providedemission levels are kept low (< −41.3 dBm/MHz). This new unli
ensed band, 
alledUWB, is the largest unli
ensed frequen
y band ever released. The large bandwidthand low power allows UWB radios overlaying 
oexistent radio frequen
y (RF) sys-tems to operate using low-power ultra-short information bearing pulses. Similarregulatory pro
esses are 
urrently in progress in many 
ountries worldwide; the re-sear
h 
ommunity is 
urrently targeting several UWB appli
ations, e.g. short-range,high-speed broadband a

ess to the Internet, lo
alization at 
entimeter-level a

u-ra
y, high-resolution ground-penetrating radar, through-wall imaging [57℄.Despite the re
ent renewed interest, UWB has a history as long as radio. In fa
t,the �rst radio 
ommuni
ation system, invented by Guglielmo Mar
oni more thana 
entury ago (1901), required enormous bandwidth as information was 
onveyedusing spark-gap transmitters. The �rst UWB radar te
hnology 
ame in the late1960s, when high sensitivity to s
atterers and low power 
onsumption motivated the69
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hnologyintrodu
tion of UWB radar systems [59℄. The ultra-short duration of UWB pulsesprovide unique advantages both for 
ommuni
ation and radar appli
ations: i) en-han
ed 
apability to penetrate through obsta
les; ii) ultra high pre
ision ranging atthe 
entimeter level; iii) potential for very high data rates along with a 
ommensu-rate in
rease in user 
apa
ity; and iv) potentially small size and pro
essing power.We denote as radar a system whose aim is to dete
t a target information hiddenin the environment by using ele
tromagneti
 (EM) waves. As a 
ommuni
ation sys-tem, a radar system is 
omposed by transmitting and re
eiving entities; the maindi�eren
e between 
ommuni
ation and radar systems is the aim of the transmission,and the lo
ation of the information sour
e. In fa
t, in a 
ommuni
ation system, theinformation sour
e is 
onne
ted to the transmitter side, whi
h sends a EM signalto the re
eiver side in order to 
ommuni
ate the 
urrent information symbols. There
eiver side has only a statisti
al knowledge of the transmitted signal, and re
eivesa signal 
orrupted by noise and 
hannel; from this signal the re
eiver performs anestimate of the transmitted information symbols. In a radar signal, both transmitterand re
eiver have a statisti
al knowledge of the information sour
e. The transmittersends a EM signal to the re
eiver, whi
h is perfe
tly known at the re
eiver side; inother words, the transmitted signal does not 
arry any information. The aim is nowthe observation, at the re
eiver side, of a hidden information sour
e on the basis ofthe re
eived signal. In fa
t, as the hidden information sour
e in�uen
es the 
hannelimpulse response, the hidden information sour
e 
an be observed by estimating the
hannel 
onditions. Therefore, the re
eiver performs an estimate of the 
hannel onthe basis of the distortion of the re
eived signal parameters, whi
h are due to both
hannel and noise.In this Chapter we dis
uss the UWB radar te
hnology and the motivation for itsappli
ation to health monitoring, and in parti
ular to human vital signs dete
tion.5.1 Resear
h MotivationHealth monitoring in general aims at dete
ting vital parameters of a target, andmay involve several appli
ations, e.g. medi
al instruments, patient home monitoringand presen
e dete
tion. For di�erent reasons, these appli
ation require some mainfeatures:
• Unobtrusiveness, i.e. the monitoring system should not interfere with the tar-get usual a
tivities; this feature is essential e.g. for appli
ations requiring long



5.2. UWB Radar 71observations of vital parameters, and presen
e dete
tion. In order to a
hievethis goal, it is important to address to remote sensing systems, whi
h avoid thedire
t 
onta
t between the target and the sensor.
• Low power: FCC spe
tral masks pose a severe bound on the transmittingpower, whi
h is set on the same order of magnitude as the noise. Consequently,the monitoring system has to deal with low signal to noise ratio (SNR) s
enar-ios.
• High spatial resolution: this is a key feature to 
orre
tly lo
ate the target, toproperly separate the target from the 
hannel 
lutters, and to resolve di�erenttargets standing nearby.Dete
tion of human beings with radars is based on movement dete
tion. Heartbeating and respiratory motions 
ause 
hanges in frequen
y, phase, amplitude andarrival time of the ele
tromagneti
 wave re�e
ted by a human being. Both narrow-band and UWB te
hnologies 
an provide a time modulation of these parameters;however, UWB radar has several key advantages over narrowband wave radars, i.e.the high spatial resolution, allowing the resolution of multiple targets and the sepa-ration between targets and 
lutter, a better immunity against multipath interferen
eand interferen
e of 
oexisting narrowband systems with respe
t to narrowband te
h-nologies.5.2 UWB RadarUWB radar for human being dete
tion 
an be built based on di�erent UWB te
h-nologies, whi
h 
an be 
lustered into two families: 
ontinuous wave (CW) UWB,where the transmitted signal is 
ontinuous in time and impulse radio (IR) UWB,where the transmitted signal is a periodi
 repetition of a UWB pulse. We brie�y de-s
ribe their advantages and disadvantages, and motivate our 
hoi
e of impulse UWBradar for vital signs dete
tion.5.2.1 Continuous Wave UWB Versus Impulse Radio UWBAs the name suggests, 
ontinuous wave (CW) radar is a radar te
hnique based on a
ontinuous transmitted signal. The UWB nature of the signal 
an be obtained eitherin time or in frequen
y domain; di�erent strategies have been proposed in literature,
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hnologye.g. random noise CW radar [60℄, frequen
y modulated 
ontinuous wave (FMCW)radar and stepped-frequen
y 
ontinuous wave radar.The main features of CW radar are:
• the transmitted power is uniformly distributed in time;
• the modulation waveforms are not supposed to have short duration, sin
e thelarge bandwidth is provided by signal modulation;
• with a proper signal modulation, it is possible to 
over all the band allowed bythe FCC regulations.On the other hand, the simplest way to obtain a UWB transmitted signal is aperiodi
 repetition of a short pulse, where the repetition period is longer than the
hannel impulse response (CIR); also in this 
ase, pulse modulation 
an be performed.The main features of this transmitting system are:
• the transmitted power is 
on
entrated on a very short period;
• usually not all the FCC band is 
overed, be
ause generating a pulse of about
0.1 ns duration is not 
ost e�e
tive;

• CIR is easily obtained, as it is 
ompletely des
ribed in a pulse repetition period.5.2.2 IR -UWB RadarWe 
onsider an Impulse Radio - Ultra Wide Band (IR-UWB) system for the dete
tionof vital signs of a target in an indoor environment. The transmitted signal is
s(t) =

+∞
∑

n=−∞

p(t− nTS) cos(2πfCt+ φ0), (5.1)where p(t) is the UWB pulse wave with duration TP , fC is the 
entral frequen
yand TS is the pulse repetition period. The bandwidth BP is the inverse of TP , i.e.
TP = 1

BP
.Let h(t) be the 
hannel impulse response, whi
h in
ludes the indoor 
hannel paths,and the e�e
ts of target (attenuation, re�e
tions, movements, respiration and heartbeating); let also Pt be the power of the transmitted signal s(t) and η(t) be the
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η. At the re
eiver side, theresulting signal is

r(t) =

∫ +∞

−∞

s(t− τ)h(τ)dτ + η(t). (5.2)We suppose that the shape of the transmitted wave p(t) is perfe
tly known by there
eiver. Then the re
eiver signal r(t) provides an estimate ĥ(t) of the 
hannelimpulse response, under the following 
onditions:
• the pulse repetition period has to be equal to or higher than the pulse duration
TP , i.e. TS ≥ TP ;

• in order to guarantee a 
orre
t re
onstru
tion of the CIR, the sample theoremrequires the sampling frequen
y Fc to be equal to or higher than the systembandwidth, i.e. Fc ≥ BP , or Tc ≤ TP , where Tc is the sampling period;
• inter pulse repetition interval interferen
e (ISI) avoidan
e requires the 
hannelduration Tl = LTc is smaller than the pulse repetition period, i.e. LTc ≤ TS.
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Chapter 6Vital SignsIn this 
hapter we de�ne vital signs and 
hara
terize the intera
tion between theUWB signal and the target. In parti
ular, Se
tion 6.1 des
ribes vital signs, respi-ration and heart beating. In Se
tion 6.2, a model for thorax tissues is introdu
edand an analyti
al model for the signal re�e
ted by the target is dis
ussed. Finally,in Se
tion 6.3 a frequen
y domain 
hara
terization of thorax tissues is derived.6.1 Vital Signs Des
riptionWe denote as vital signs a set of biologi
al pro
esses, providing information on thestate of a living person (target); these signs are supposed to 
hara
terize all livinghuman beings, and their values or variation are supposed to des
ribe the state of thetarget.In general, the main pro
esses des
ribed by this de�nition are those derived byrespiration and heart beating, e.g. 
hest os
illation, periodi
 heart 
ompression andrapid 
hanges of pressure into veins and arteries. In parti
ular, we fo
us on thesubset of vital signs that 
an be inferred by their external e�e
ts. We des
ribe inthe following respiration and heart beating, and we dis
uss their 
orrelation.6.1.1 RespirationRespiration is a 
omplex physiologi
al pro
ess whose aim is to ensure both the properin
ome of oxygen and the disposal of dangerous gases, in parti
ular the 
arbon diox-ide, resulting from the respiration pro
ess at 
ellular level. The amount of oxygenrequired, and 
onsequently, of waste respiration produ
ts to be eje
ted, is deter-75
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onditions of the body: physi
al features (age, gender, weight, et
.)and 
urrent a
tivities and feelings (sport, fun, fear, relax). The frequen
y of therespiration 
y
le, denoted as respiration rate, and the deepness of breathing, i.e., theamount of air inhaled per 
y
le, is in�uen
ed by body 
onditions, but also by external
onditions (e.g., pressure of the air and its 
omposition), and by 
ons
ious 
ontrol,performed to temporarily adapt breathing to other a
tivities su
h as swimming, ortalking. In general, respiration is not a stationary pro
ess; in fa
t, parameters as du-ration, deepness, proportion inspiration/expiration periods, in general 
hange fromone respiration 
y
le to the next one. Therefore, we may be interested in either areal time estimate of the target respiration rate, or on an estimate of its average.6.1.2 Heart BeatingThe heart is a mus
ular organ responsible for pumping blood throughout the bloodvessels by repeated, rhythmi
 
ontra
tions. Blood is 
onveyed by the great vessels(pulmonary trunk, aorta, and superior vena 
ava) to and from body tissues. Theheart's rhythmi
 
ontra
tions o

ur spontaneously, although the rate of 
ontra
tionis in�uen
ed by nervous or hormonal a
tivity, exer
ise and emotions. The rhythmi
sequen
e of 
ontra
tions is 
oordinated by the sinoatrial (SA) and atrioventri
ular(AV) nodes. The sinoatrial node is lo
ated in the upper wall of the right atrium andis responsible for the wave of ele
tri
al stimulation that initiates atrial 
ontra
tionby 
reating an a
tion potential. The wave rea
hes then the AV node in the lowerright atrium, where it is delayed to allow enough time for all of the blood in the atriato �ll their respe
tive ventri
les, and then it propagates, leading to a 
ontra
tion ofthe ventri
les [61℄.Due to these ele
tri
al signals, atria and ventri
les alternately 
ontra
t and relax ina rhythmi
 
y
le; a single 
y
le begins and ends with atria and ventri
les relaxed.During the �rst stage, diastole, the blood �ows into the right and left atria; due to theopen valves between the atria and ventri
les, blood �ows through to the ventri
les.Ventri
les are then �lled with the atrial 
ontra
tion, due to the SA ele
tri
al signal.The se
ond stage is 
alled systole and represents the ventri
ular 
ontra
tion and theeje
tion of blood from the ventri
les to the vessels; in parti
ular, the right ventri
lesends blood to the lungs via the pulmonary artery, while the left ventri
le pumpsblood to the aorta. During this stage the valves between the atria and ventri
lesare 
losed. One 
omplete sequen
e of diastole/systole is 
alled a 
ardia
 
y
le, orheartbeat. The heart rate range is very wide: in fa
t, the lowest heart rate reported



6.2. Thorax Tissues Des
ription and Signal Propagation 77in literature for and adult target is 45 beats per minute (bpm), while the highest isabout 250.6.1.3 Correlation Between Respiration and Heart BeatingIn general, respiration in�uen
es the heart beating pro
ess [62℄; a 
lose nonlinear
oupling exists between the respiratory and 
ardiovas
ular systems. In addition tothis, we observe that both respiration and heart beating are in�uen
ed by the targeta
tivity; in other words, the state of the target introdu
es a 
orrelation between thetwo pro
esses. However, at the best of the author's knowledge, there is no simplemodel des
ribing the 
orrelation between the two pro
esses, and therefore in thefollowing we 
onsider respiration and heart beating as independent pro
esses.6.2 Thorax Tissues Des
ription and Signal Propa-gationIn a monitoring system, vital signs provide an appre
iable modulation of the moni-toring signal when it intera
ts with the target; 
learly, the modulation of a pro
esson the monitoring signal is not only due to the pro
ess itself, but it depends on thesystem used to observe it. This motivates the following investigation on the e�e
ts ofa radar pulse on human tissues; based on this model, a feasibility study is performedin Se
tion 7.4. We fo
us on thorax tissues, sin
e both respiration and heart beatinga�e
t mainly this region of the body. Furthermore, other regions of interest, like ne
kand abdomen, are 
hara
terized by the same external tissues, and, as it is shown inthe following, the UWB signal is in�uen
ed only by the outer tissues; then, from theradar system perspe
tive, their 
ontributions 
an be modeled in a similar way.We assume that
• the pulse is a Transverse Ele
tromagneti
 (TEM) wave;
• the pulse impa
ts the thorax with a normal in
iden
e angle;
• the target 
hest behaves as a single point re�e
tor;
• all interfa
es are planar.When a TEM plane wave propagating in a homogeneous medium 1 en
ounters aplanar interfa
e with a di�erent medium 2, a portion of the wave is re�e
ted from
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e while the remainder of the wave is transmitted. The re�e
ted andtransmitted waves 
an be determined by enfor
ing the fundamental ele
tromagneti
�eld boundary 
onditions at the media interfa
e. Sin
e the thorax tissues satisfy the
ondition of good diele
tri
 [63℄, we 
an use the approximated expressions for theamplitude attenuation. De�ning σ as the 
ondu
tivity of medium, ε as the diele
tri
permittivity and µ as the magneti
 permeability, the amplitude attenuation (inm−1)
an be written as
α̃ ∼=

σ
√
µ

2
√
ε
, (6.1)and the intrinsi
 impedan
e (in Ohm, Ω) is

η̃ ∼=
√

µ

ε
. (6.2)Under these assumptions, at the interfa
e between medium 1 and medium 2 a trans-mitted and a re�e
ted wave are generated, having the same wave shape of the in
identwave, and relative amplitude given by the amplitude transmission 
oe�
ient and theamplitude re�e
tion 
oe�
ient, respe
tively. Assuming that the in
ident wave is z-dire
ted and x-polarized, and that the planar media interfa
e is lo
ated on the x-yplane, the in
ident, transmitted and re�e
ted waves 
an be illustrated by Fig. 6.1.Let us indi
ate with ax, ay and az the unit ve
tors lying on dire
tion x,y, and z,respe
tively. We de�ne also E0 as the amplitude of the ele
tri
 �eld on the interfa
e(z= 0), t as the amplitude transmission 
oe�
ient and rc as the amplitude re�e
tion
oe�
ient. In parti
ular, the re�e
tion 
oe�
ient is given by

rc =
η̃2 − η̃1
η̃2 + η̃1

, (6.3)where η̃1,2 is the intrinsi
 impedan
e of medium 1, 2.The ratio between the re�e
ted power Pr and the transmitted power Pt is the re�e
tedpower ratio,
R = |rc|2. (6.4)Let PT,1 be the power of the wave in
ident on medium 1 and z1 be the thi
kness ofmedium 1. At the medium interfa
e the re�e
ted power is

P
(R)
1,2 = PT,1Re−2α̃1z1 (6.5)The refra
ted wave amplitude is given by the transmission 
oe�
ient

t =
2η̃2

η̃2 + η̃1
, (6.6)
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ription and Signal Propagation 79while the relative refra
ted power ratio is
T̃ = 1−R =

η̃1
η̃2
|t|2. (6.7)The power of the wave refra
ted in medium 2 is

P
(T )
1,2 = PT,1T̃ e

−2α̃z1 . (6.8)We observe that the relative transmitted and re�e
ted power have the same valuealso for a wave propagating from medium 2 to medium 1, providing a re�e
ted wavein medium 2 and a refra
ted wave in medium 1. The phasor �elds asso
iated withthe in
ident wave are
Ei = E0e

−α̃1zax

Hi =
E0

η̃1
e−α̃1zay,

(6.9)while for the transmitted wave we have,
Et = tE0e

−α̃2zax

Ht = t
E0

η̃2
e−α̃2zay,

(6.10)and for refra
ted wave we have,
Er = rcE0e

α̃1zax

Hr = rc
E0

η̃1
eα̃1zay.

(6.11)Denoting with f the frequen
y of the transmitted signal, the wavelength of thesignal propagating in medium 1 with refra
tion index n1 is
λ1 =

v1
f

=
c

n1f
=

λ0

n1

, (6.12)where λ0 is the wavelength of the signal propagation in va
uum, v1 indi
ates thewave speed in medium 1, and c is the speed of light in va
uum. Fig. 6.3 showsthe wavelength of a pulse in the tissues of thorax, a

ording to [64℄; in Fig. 6.2 therelative permittivity ǫr = ǫ/ǫ0 of these tissues is des
ribed as a fun
tion of frequen
y.We observe that in the UWB band both the relative permittivity and the wavelengthare not signi�
antly 
hanging. Therefore, in the following we des
ribe the power of
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Figure 6.1: Transmitted and re�e
ted waves generated by a planar interfa
e betweenmedium 1 and 2 when a TEM wave with polarization in x dire
tion is normallyin
ident on the interfa
e.
the signals re�e
ted by ea
h interfa
e 
onsidering only the frequen
y 4 GHz, whi
his the 
entral frequen
y of the operational band of our UWB devi
e.The thi
kness of the thorax tissue layers, where the pulse propagates, are givenin Tab. 6.1 from [1℄.We denote the interfa
es of tissues with numbers: air-skin interfa
e is interfa
e 1,skin-fat interfa
e is interfa
e 2, fat-mus
le is interfa
e 3, mus
le-
artilage is interfa
e
4, 
artilage-lung is interfa
e 5, up to lung-heart interfa
e 6; similarly, the parametersrelated to ea
h interfa
e are in the following denoted with the 
orresponding interfa
enumber, i.e. Ri for the re�e
ted power ratio and Ti for the 
orresponding refra
tedpower ratio. We indi
ate also the tissues by numbers, as des
ribed in Tab. 6.1 Air ismedium 0. By this notation, ea
h interfa
e has the number of the se
ond medium.Using the diele
tri
 properties of tissues at 4 GHz, we derive that ea
h mediainterfa
e provides a re�e
ted signal, whose power and delay depend on the tissuesthat 
rossed in its path. We assume that before the air-skin interfa
e 1 we havea signal whose power is P0; then, the power of the signal re�e
ted from interfa
e
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Figure 6.2: Permittivity of tissues from 1 GHz to 10 GHz [1℄.
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Figure 6.3: Wavelength of tissues from 1 GHz to 10 GHz [1℄.



82 Chapter 6. Vital SignsTissue Tissue number Thi
kness [
m℄Skin 1 0.1Fat 2 0.96Mus
le 3 1.35Cartilage 4 1.16Lung 5 0.578Table 6.1: Thi
kness of the inner tissues in the thorax [1℄.
i ∈ {0, · · · , 6} is

Pr,i = P0Ri

i
∏

k=1

[

Tke
(−2α̃k(f)zk)

]2
= P0Ri

i
∏

k=1

[

(1−Rk)e
(−2α̃k(f)zk)

]2
. (6.13)Therefore, we 
an de�ne the re
eived to in
ident power ratio (RIPR) Γi of the re-�e
ted signal of interfa
e i at the target 
hest surfa
e as

Γi =
Pr,i

P0

= Ri

i
∏

k=1

[

(1−Rk)e
(−2α̃k(f)zk)

]2
. (6.14)This parameter represents the gain (with Γi < 1) of the signal from the transmitterto the re
eiver. Ideally, Γi is the power level of the signal provided by interfa
e i seenby a on body re
eiver when P0 = 0 dB. As des
ribed in Fig. 6.4 for a transmittedsignal of frequen
y 4 GHz, at the re
eiver we get

• a signal with RIPR of −2.8977 dB and a delay of 6.67 ns, due to the air-skininterfa
e;
• a signal with RIPR of −13.08 dB and a delay of 6.67 ns, due to the skin-fatinterfa
e;
• a signal with RIPR of 17.47 dB and a delay of −6.8 ns, due to the fat-mus
leinterfa
e.The signals re�e
ted by mus
le-
artilage, 
artilage-lung and lung-heart interfa
e are
hara
terized by a lower RIPR, namely −57.38 dB, −72.20 dB and −74.59 dB, andtherefore they 
an not be dete
ted by the re
eiver.The diele
tri
 properties of the tissues in [1℄ refer to a narrowband signal; by 
onsid-ering the UWB pulse as a sum of narrowband signals, we dedu
e that the re
eived
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Figure 6.5: Re�e
ted pulses from the target thorax tissues at a 
entral frequen
y of
60 GHzsignal has not the same shape as the transmitted one, sin
e the tissues introdu
e afrequen
y sele
tivity on the re�e
ted signal. We also note that we are not able todistinguish all these signals sin
e the 
orresponding delays di�er only by about 0.1ns, requiring a minimum bandwidth of about 10 GHz to resolve them.Finally, weshow in Fig. 6.5 the average RIPR of the signals re�e
ted by tissues for a signalin the Ka band, at 60 GHz; we note that at those frequen
ies, and with a severe
onstraint on transmitting power we are not able to dete
t that signals ex
ept theone re�e
ted from the skin interfa
e, whose RIPR is 6.4 dB).6.3 Frequen
y Domain Chara
terization of Tissuesfor a UWB SystemWe introdu
e a frequen
y domain 
hara
terization of thorax tissues for a UWBsystem, in order to 
hara
terize the re�e
tion provided by the se
ond interfa
e. Inparti
ular we fo
us on the fat tissue, sin
e from Se
tion 6.2 we don't expe
t to re
eive
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terization of Tissues for a UWB System 85repli
as from inner tissues. In parti
ular, to validate the analysis performed till now,we investigate
• the wavelength of the signal propagating on the fat tissue as a fun
tion offrequen
y. In fa
t, the wavelength a�e
ts the propagation speed, and if thisparameter depends on frequen
y, the re
eived pulse would be a�e
ted by dis-tortion; in other words, we are verifying if the re
eived repli
a is a UWB pulseas the transmitted one;
• the re
eived to in
ident power ratio of the inner and outer re�e
tion (fat-mus
leand skin interfa
es, respe
tively) as a fun
tion of the frequen
y, in order to stateif there is a frequen
y sele
tivity due to propagation and re�e
tion on 
hesttissues.6.3.1 Wavelength of Signal Propagating in the Fat TissueThe wavelength of the signal propagating in the fat tissue λfat as a fun
tion offrequen
y has been measured and results are reported in [1℄. Fig. 6.6 shows themeasured wavelength behavior, a linear approximation and a hyperboli
 approxima-tion of the measured data, i.e. λ(f) ≈ λ(fC)fC

f
. We see that the hyperboli
 fun
tionprovides a good approximation of the real fun
tion, with a mean square error MSEof 5.5e − 8. This motivates the appli
ation of this approximation to evaluate thepropagation speed as a fun
tion of frequen
y, providing

v(f) = f · λ(f) ≈ λ(fC)fC . (6.15)By the hyperboli
 approximation of the wavelength in fat tissue we expe
t thepropagation speed to be approximately 
onstant in the fat tissue, and therefore theinner re�e
ted signal is not a�e
ted by distortion due to a frequen
y sele
tivity ofthe time of arrival (ToA). The outer re�e
tion propagates only on the air, where thepropagation speed is approximately the light speed in va
uum, c.6.3.2 Re
eived to In
ident Power Ratio of the Inner and OuterRe�e
tionsIn a UWB system, also the RIPR de�ned in (6.14) is in general a fun
tion of thefrequen
y, as it depends on the impedan
e of the media. The expression of the RIPR
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Figure 6.6: Wavelength of a signal propagating in the fat tissue as a fun
tion offrequen
y.
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Figure 6.7: Re
eived to in
ident power ratio of the inner re�e
tion.of the inner re�e
ted signal 
an be written from (6.14) as
Γ3(f) =

[

(1− R1)e
(−2α̃1(f)z1)(1− R2(f))e

(−2α̃2(f)z2)
]2
R3(f), (6.16)while for the outer re�e
tion we have

Γ1(f) = R1(f). (6.17)We don't 
onsider here the signal provided by the skin-fat interfa
e, Γ2, as it has thesame ToA of the air-skin interfa
e signal and it is 13 dB weaker. Figs. 6.7 and 6.8show the RIPR for the inner and outer re�e
tion as a fun
tion of frequen
y of theradar pulse.We observe from Fig. 6.8 that the RIPR of the outer signal is about +2.9 dBon the band of interest of our UWB devi
e (3-5 GHz), while the inner re�e
tedsignal shows in Fig. 6.7 a stronger dependen
e on the frequen
y. However, the UWB
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Figure 6.8: Re
eived to in
ident power ratio of the outer re�e
tion.



6.3. Frequen
y Domain Chara
terization of Tissues for a UWB System 89system is not able to resolve the two signals, and the outer signal is supposed to beabout 14 dB stronger than the inner one; therefore, it is reasonable to assume thatthe global re
eived signal is not a�e
ted by distortion due to frequen
y sele
tivityof the body. On the other hand, in the last paragraph we observed that also thepropagation speed on the fat tissue 
an be approximated as a 
onstant in the bandof interest. Therefore, we will assume that the re
eived signal re�e
ted by a points
atterer is an UWB pulse with the same shape of the transmitted pulse.
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Chapter 7Channel ModelIn the following, we des
ribe the indoor 
hannel model for a UWB signal; in Se
tion7.1 we introdu
e the 
omponents of the indoor 
hannel model in presen
e of a target.The e�e
ts of the presen
e of a living target as a s
atterer are investigated in detailin Se
tion 6.2. Based on this, we derive a model des
ribing how the re
eived signalis modulated by the vital signs in Se
tion 7.3.7.1 Indoor Channel Des
riptionWe assume an indoor environment with a single still target. We assume that the tar-get is situated at a random distan
e dt uniformly distributed in the range [dmin, dmax],i.e. dt ∈ U [dmin, dmax] from the transmitter, while the re
eiver is at distan
e r fromthe transmitter. Both transmitting and re
eiving antennas are supposed to be om-nidire
tional, then the signal propagates isotropi
ally.As illustrated in Fig. 7.1, the 
hannel impulse response is 
omposed by di�erentelements, i.e.
• henv(t), the indoor environment impulse response;
• hT (t), the dire
t target path;
• hT,env(t), the impulse response of non-dire
t paths due to the target
• hm(t), the impulse response due to little target motions.

h(t) = henv(t) + hT (t) + hT,env(t) + hm(t). (7.1)91
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Figure 7.1: S
enario of a UWB radio transmitting in a room with a targetIn the following we des
ribe ea
h of these elements and dis
uss their 
ontributionon the dete
tion of vital signs.7.1.1 Dire
t Target PathThe set of dire
t paths is denoted as hT (t); 
hannel paths 
omposed by the transmit-ter, the target and the re
eiver belong to hT (t). The delay of these paths is limitedto a range whi
h depends on the round trip distan
e. By performing a Dopplerestimation analysis as des
ribed in Se
tion 8.1.1, hT (t) provides information aboutheart beating and respiration rate. However, hT (t) may also be a�e
ted by spuriousDoppler e�e
ts, indu
ed by target motions, su
h as spee
h and movements of handsand head, in the same delay range; these Doppler 
omponents may be modeled inorder to 
ompensate their e�e
ts.The main features of this 
omponent of the 
hannel impulse response are:
• time variant
• �xed range of delays.7.1.2 Environment

henv(t) is the traditional indoor 
hannel impulse response; it takes into a

ount thee�e
ts of the environment without the presen
e of the target. It is a stationary
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ription 93pro
ess with a long 
oheren
e period, and involves 
ross talk path, and multipathdue to the room. Sin
e it does not involve the target, it is not useful to the vitalsigns dete
tion; we model it as the sum of a 
onstant and a Rayleigh fading indoor
hannel model. The main features of henv(t):
• time invariant
• large range of delays.In the following, we assume that the re
eiver is able of perfe
tly estimating and
an
eling all the repli
as referring to the stati
 part of the 
hannel; s
ienti�
 literatureprovides algorithms aiming at the ba
kground subtra
tion, e.g. [65, 66℄.7.1.3 Multipath Involving the Target

hT,env(t) 
ontains the non dire
t paths involving the target. This paths are 
hara
ter-ized by an higher delay and attenuation w.r.t. the dire
t path hT (t). As for all pathsinvolving the target, we 
an re
ognize it by the presen
e of Doppler 
omponents, asthe presen
e of vital signs introdu
es a time variation on the main parameter of there
eived signal. The main features of hT,env(t) are:
• time variant
• a range of delays larger then the dire
t path
• higher attenuation 
ompared to the dire
t path.7.1.4 Target MotionsBesides the vital signs, with high probability the target introdu
es variations on there
eived repli
as due to little movements (e.g. moving the head, 
oughing, movingthe hands...). The e�e
ts of the spurious target motions (small movements) are takeninto a

ount by hm(t). This 
hannel 
omponent is 
hara
terized by i) time variation,and ii) by delays in general not in
luded in the dire
t target path delay range. Notein fa
t that in general little movements involve peripheral parts of the body, e.g. thehead and the limbs, while the 
hest is involved with a lower probability.
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 Channel ModelWe 
onsider in the following only the dire
t target path, and how it is in�uen
ed bythe vital signs. We assume the target as a point, ideal re�e
tor. Therefore, we do not
onsider the e�e
t of the target motion and multiple re�e
tions involving the target.As stated previously, the other 
hannel 
omponents di�er from the dire
t path forsome parameter, and in parti
ular time varian
e, and delay range. Ba
kgroundsubtra
tion allows the 
an
ellation of the stati
 
omponents, while a windowing onthe delays of the 
hannel impulse response allows fo
using only on the dire
t pathdelay range. Considering only the outer re�e
tion, the re
eived signal is given by
rT (t) = hT (t)p(t− τ(t)) cos(2πfCt+ φ0) + η(t), (7.2)where τ(t) =

d(t)

c
is the delay of the target path, d(t) is the round trip distan
e(transmitter-target-re
eiver) and c is the speed of the light in the air. In the following,we des
ribe d(t), and we dis
uss on the e�e
ts of vital signs on the amplitude, delayand phase of the re
eived signal.7.2.1 Round Trip Distan
e d(t)We �rst 
onsider the signal re�e
ted by the air/skin interfa
e; this signal is a�e
tedby the 
hest surfa
e os
illations, due to both respiration and heartbeat. In Fig. 7.2 adetail of the target 
hest motion is des
ribed; the two paths between the transmitter(T ) and the re
eiver (R) indi
ate the wave path in two di�erent times through thetarget, O (average 
hest position) and A (generi
 
hest position). In parti
ular, thepath −−−→

TOR has length d(t) = Rtx,0+Rrx,0 under the 
ondition of de�ated lungs, whilethe path −−−→
TAR has length d(t) = Rtx(t) +Rrx(t) at a generi
 instant t.We model the 
hest motion as the sum of the os
illation due to respiration, xr(t),and the weaker os
illation due to the heart beating, xh(t), i.e.

x(t) = xr(t) + ξxh(t) (7.3)where ξ < 1 is an attenuation parameter whi
h underlines the weakness of the heartbeating signal on the 
hest with respe
t to the respiration signal.The os
illation x(t) 
overs the segment AO, i.e. the segment between the average
hest position O and the 
urrent 
hest position A, forming an angle θ with the TOsegment, as illustrated in Fig. 7.2, and in�uen
es both Rtx(t) and Rrx(t)
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RFigure 7.2: Detail of the target 
hest os
illation due to breathingThen we de�ne

∆tx(t) = Rtx(t)− Rtx,0 (7.4)and
∆rx(t) = Rrx(t)− Rrx,0. (7.5)Their value depends on the 
hest motion x(t) of (7.3), on the os
illation angle θ andon the angles αtx = T̂Oy and αrx = ŷOR, where y is the axis of the height of triangleTOR related to the segment TR. The dire
tion of the 
hest os
illation is indi
atedby the (blue) arrow, while the (magenta) 
ir
le indi
ates the maximum amplitude.Generi
 Bistati
 S
enarioWe 
onsider the generi
 bistati
 
on�guration, where the transmitter and the re-
eiver are two di�erent devi
es; an alternative 
on�guration is the monostati
, wherethe transmitter and the re
eiver are lo
ated in the same devi
e. By applying thetrigonometri
 rules to the triangle TOA we have

Rtx(t) =
√

R2
tx,0 + x2(t)− 2Rtx,0x(t) cos(θ); (7.6)similarly, observing that θr = 2π − αtx − αrx − θ we have

Rrx(t) =
√

R2
rx,0 + x2(t)− 2Rrx,0x(t) cos(θ + αrx + αtx). (7.7)



96 Chapter 7. Channel ModelWe derive here Rrx,0 from the other system parameters; then, we will �nd therange of angles des
ribing the target area for a given distan
e range. Referring toFig. 7.2, we assume to know the parameters:
• αtx and αrx are determined by the positions of T,R andO, and on the dire
tivityof antennas. In our s
enario, antennas are omnidire
tional;
• dtr = |−→TR| is �xed as part of the set up;
• h0 = d(O,

−→
TR) is the distan
e of the target to the transmitter-re
eiver segment.The following 
onstraints have to be satis�ed:

• Rtx,0 sin(αtx) = h0;

• Rrx,0 sin(αrx) = h0;

• Rtx,0 cos(αtx) +Rrx,0 cos(αrx) = dtr;then
Rtx,0 cos(αtx) +Rtx,0

sin(αtx)

sin(αrx)
cos(αrx) = dtr. (7.8)If αtx, αrx and dtr are �xed, the values of Rtx,0, Rrx,0 are given by

Rtx,0 =
dtr

| cos(αtx) + sin(αtx) cot(αrx) |
(7.9)and

Rrx,0 = Rtx,0

∣

∣

∣

∣

sin(αtx)

sin(αrx)

∣

∣

∣

∣

. (7.10)Then, for a given h0 and dtr, the set of possible angles is de�ned by the 
ondition
|cot(αtx) + cot(αrx)| =

dtr
h0

. (7.11)Monostati
 S
enarioIn the monostati
 s
enario, the same devi
e hosts both transmitter and re
eiver;therefore, αtx, αrx ≈ 0. This motivates the assumption of normal in
iden
e.We also observe that
• the distan
e between transmitter and re
eiver is little 
ompared to the distan
ebetween them and the target, i.e. TR ≪ TO, TR; this implies αtx+αrx ≪ π/2;
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• we assume normal in
iden
e of the wavelength on the 
hest tissue interfa
es.Sin
e we also assume normal in
iden
e of the transmitted and re�e
ted waveform,we have αtx + αrx ≈ 0 and θ ≈ π − αtx ≈ π, θr ≈ π − αrx ≈ π. By applying theassumptions 7.2.1 in the generi
 
on�guration

Rtx(t) =
√

R2
tx,0 + x2(t)− 2Rtx,0x(t) cos(θ) ≈ Rtx,0 + x(t); (7.12)and

Rrx(t) =
√

R2
rx,0 + x2(t)− 2Rrx,0x(t) cos(θ + αrx + αtx) ≈ Rrx,0 + x(t), (7.13)so that

d(t) ≈ Rtx,0 +Rrx,0 + 2x(t). (7.14)Sin
e now, we assume to be in the monostati
 
on�guration.7.3 Vital Sign Modulation on the Re
eived SignalThe time variations of the target 
hest position provide a modulation of the mainparameters of the re
eived repli
as, i.e. the attenuation ρ, the phase β and the ToA
d(t)
c
. We introdu
e here the parameters, for a generi
 signal with a 
entral frequen
yof 4 GHz; in the last of the 
hapter we des
ribe in detail the parameters, dependingon the nature of the transmitted signal.7.3.1 Attenuation Coe�
ient ModulationA

ording to far �eld assumptions, the re
eived signal power attenuation is inverselyproportional to the square of the path length, whi
h in our s
enario is a fun
tionof x(t); therefore, ρ(t) ∝ 1

(d(t))
. By assuming a path length of dmax = 2 m, and anos
illation amplitude of 5 
m, 
orresponding to a deep breath, we have a variationwhose maximum amplitude is about −38 dB, and therefore not relevant for vitalsign dete
tion, ρ(t) ≈ ρ0.7.3.2 Phase ModulationPath length variation modulates also the phase of the re
eived signal. In parti
ular,for the 
onsidered 
arrier frequen
y and bandwidth we veri�ed that a path lengthvariation of 2 
m is su�
ient to provide a phase shift of about π

2
.



98 Chapter 7. Channel Model7.3.3 Time of Arrival ModulationTo determine whether our system is able to dete
t the path distan
e variation by adelay variation, we need to spe
ify the system bandwidth B; in fa
t, the re
eivedsignal is now sampled with period Tc =
1
B
, then t = lTc l ∈ Z+; we underline thatwe 
an sample with a smaller period, in order to improve the SNR, but we are notable to extra
t more a

urate information about the CIR. We dedu
e then that theminimum path distan
e variation that we 
an dete
t is

∆dmin,s = c · Tc = 13.64 cm. (7.15)In Chapter 6 we evaluated the propagation speed in fat tissue, whose value for asignal propagating at 4 GHz is vfat ≈ 1.3 · 108, and therefore we have
∆dmin,f = vfat · Tc = 5.9 cm. (7.16)In our model we 
ould dete
t the path distan
e variation by a delay variation onlyif a) the air-skin interfa
e has an os
illation amplitude of about 7 
m, and/or b) the

∆fat(t) amplitude is about 3 
m. If the 
ondition a) 
ould be veri�ed in some 
ases,when the target takes a very deep breath, 
ondition b) is never veri�ed. Therefore,in general we are not able to dete
t the vital signs by variation on delays of targetpath.7.4 Vital Sign Signal PowerWe propose here a feasibility study for dete
ting vital signs, and in parti
ular theheart rate, using a UWB te
hnology under the 
omplian
e of FCC regulations witha monostati
 
on�guration, i.e. where the transmitter and the re
eiver of the radarsignal are lo
ated in the same devi
e, as des
ribed in Fig. 7.3. We aim at evaluatingthe range of distan
es d between the radar and the target where the re
eived poweris enough to allow the dete
tion of vital signs. A similar 
ase has been investigatedin [67℄, where the author evaluates the maximum distan
e allowed to see the signalre�e
ted by the heart, modeled as a spheri
al metalli
 re�e
tor, with a UWB radarsystem 
entered at 4.1 GHz. As illustrated in [63℄ and 
on�rmed in Chapter 6,the expe
ted re
eived signal on the 
hest surfa
e, i.e. when d = 0, is 
omposedby a pulse re�e
ted by the air skin interfa
e, with expe
ted SNR of −3 dB, and aweaker re�e
ted pulse at −17 dB, due to the fat-mus
le interfa
e. For this study,
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onsider only the �rst re�e
tion; the study 
an be extended also to 
onsider theinner re�e
tion, whi
h 
arries the same information of respiration, and a strongersignal for heart beating. We perform the analysis in far �eld region, as it providesa simple analysis; this approximation is not well veri�ed, due to both low distan
esand the presen
e of the interfa
e of the target tissue, whi
h violates the 
ondition offree spa
e propagation.We are interested on the variation of the 
hannel tap des
ribing the target 
hest;we denote this signal as the vital sign signal, be
ause it provides the desired infor-mation on target vital signs. The vital signal power Pu is then only a fra
tion DV Sof the re
eived power Pr, i.e.
Pu = PrDV S.In parti
ular, DV S represents the dynami
 of the vital sign, i.e. the ratio betweenthe power of the 
hannel variation, due to the 
hest os
illation x(t), and the re
eivedpower. We summarize here all the assumptions used in the following:

• far �eld propagation;
• only line of sight (LOS) wireless signal propagation;
• one re�e
tion due to the air-skin interfa
e;
• the target 
hest is modeled as a spheri
al re�e
tor whose radius is a = 15 
m
• the medium des
ribing the target is an homogeneous and ideal diele
tri
;
• sin
e we are interested in dete
ting both the respiration rate and the heartrate, and the latter is the weakest one, we expe
t the DV S parameter of theheart beat signal to be very small. Therefore, we assume the DV S parameterof heart beating as the worst 
ase s
enario, and we evaluate its expe
ted valuein the following.7.4.1 Power of the Re
eived SignalLet
• EIRP be the e�e
tive radiated power; FCC regulations imposes a bound, de-pending on the system bandwidth [58℄;
• d be the round trip distan
e;
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PSfrag repla
ements d

2 TargetFigure 7.3: Des
ription of the target 
hest with respe
t to the radar devi
e in amonostati
 
on�guration.
• σ be the radar 
ross se
tion (RCS);
• Ae =

λ2

4π
be the re
eiving antenna aperture;

• σ

4πd2
be the fra
tion of EIRP re�e
ted by the target 
hest;

• Ae

4πd2
be the fra
tion of the re�e
ted power re
eived by the re
eiving antennaaperture.The re
eived power is then given by [67℄

Pr = EIRP
σ

4πd2
Ae

4πd2
(7.17)7.4.2 Main Features of the Commer
ial UWB SystemWe 
onsider a Time Domain PulseOn210 system [68℄.We report the main parameters

• 
entral frequen
y fC = 4.2 GHz;
• system bandwidth B = 2.2 GHz;
• FCC power spe
tral density limit PSDFCC = −41.3 dBm/MHz.Due to the limits on the transmitted power, we have unitary antenna gain at thetransmitter (Gt = 1) and in our s
enario

EIRP |dBm = PSDFCC|dBm/MHz +B|dBMHz = −7.88dBm.
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tion EvaluationWe evaluate here the RCS of the target 
hest, seen as a spheri
al re�e
tor of ahomogeneous diele
tri
 medium. For a spheri
al re�e
tor, RCS is given by
σ = |AtgtRtgtGtgt| (7.18)where Atgt is the proje
ted area of the target seen by the radar, Rtgt is the re�e
tivityof the target and Gtgt is the antenna-like gain of the target. In the following weevaluate ea
h of these terms

AtgtThe proje
ted area of the target depends on the 
arrier frequen
y, and in parti
ularon the value of the parameter 2πa

λ
; in our 
ase, sin
e the 
ondition of the opti
alregion 2πa

λ
> 10 is veri�ed in the system band, we have Atgt ≈ πa2.

RtgtWe dis
ussed in Se
tion 6.2 the re�e
tivity of the target; sin
e we assume only the�rst and strongest re�e
tion, from the air skin interfa
e, the re�e
ted power ratio is
Rtgt(f) = R1(f) =

∣

∣

∣

∣

η̃1(f)− η̃0
η̃1(f) + η̃0

∣

∣

∣

∣

2

. (7.19)In general, η̃i is a fun
tion of the frequen
y, and in our s
enario its value is around-3 dB. This approximation has been derived with a widely used method [1, 63℄, andprovides a better insight with respe
t to the metalli
 sphere model.
GtgtWe assume the worst 
ase s
enario, where the target has no antenna-like gain, i.e.
Gtgt = 1.7.4.4 Maximum Dete
tion Distan
eIn our s
enario the desired signal power is given by
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Pu = PrDV S = DV SEIRP

σ

4πd2
Ae

4πd2
= DV SEIRP

σλ2

(4π)3d4
=

= DV SEIRP
λ2R1(f)πa

2

(4π)3d4
.

(7.20)The maximum distan
e dmax allowed to sense the heart beating is the distan
e dwhere Pu is equal to the re
eiver sensitivity Pu,min. We assume from [69℄ that Pu,min =

−85 dBm.From (7.20) we have then
Rmax = 4

√

DV SEIRPσλ
2

Pu,min(4π)3
=

= 4

√

DV SEIRPR1(f)πa
2c2

Pu,min(4π)3f 2
.

(7.21)At the best of our knowledge, there are not a

urate measurements of the amplitudeof the os
illation of the 
hest skin due to heart beating. However, we observe thatthis os
illation in general 
an not be dete
ted by the eye, while it 
an be dete
ted bytou
h. The maximum theoreti
al resolution of the eye, at its best a
uity, has beenestimated as 0.35 mm, while the minimum os
illation 
an be dete
ted by tou
h is onthe order of 10−5 m [70℄; we 
onsider then the worst 
ase os
illation amplitude of theskin ∆x on the order of 10µm, i.e. almost two orders of magnitude lower than theeye a
uity bound. This os
illation provides a variation on the ToA of the re
eivedpulse of ∆x/c, whi
h is too small to be dete
ted with our system; however, it willa�e
t the re
eived signal both in amplitude and phase. Then, the desired signal willbe related to the value 2πf2∆x/c ≈ 10−3, and then DV S ≈ 10−6. The resultingvalue of the dete
tion range is des
ribed in Fig. 7.4; as we 
an see, dete
ting heartbeating in the 
onsidered band is possible only for a distan
e lower than 25 
m.We 
an repeat the same study for the dete
tion of the respiration rate; it is easilyveri�ed that in this 
ase the signal dynami
 DV S ≈ 10−2. In this 
ase, the dete
tionrange is about 2.5 m.7.4.5 Signal to Noise Ratio (SNR) Optimization Using UWBRedundan
yWith the pulse UWB te
hnology, the pulse repetition period is very small with re-spe
t to the 
oheren
e time of vital signs; in the 
onsidered PulseOn appli
ation, the
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Figure 7.4: Maximum range as a fun
tion of frequen
yrepetition frequen
y is 10MHz, while vital signs have a rate of some Hz. By assumingthat the vital signs are 
onstant on a time period of 0.1 s, we have about 106 pulsesproviding the same sample of the vital sign pro
ess. We 
an use this redundan
yto in
rease the desired signal power Pu; theoreti
ally, we 
ould a
hieve a maximumgain of about 105 ÷ 106. However, hardware limitations usually prevent the systemfrom a
hieving the maximum gain; in parti
ular, the maximum gain a
hievable withthe PulseOn Time Domain devi
e is GUWB ≈ 103. Then the maximum range is
dmax = 4

√

GUWB
DV SEIRPσλ

2

Pu,min(4π)3
=

= 4

√

DV SEIRPR1(f)πa
2c2

Pu,min(4π)3f 2
.

(7.22)The 
orresponding dete
tion range is des
ribed in Fig. 7.5; we observe that withthis operation we are able to dete
t the heart beating in our band with a distan
eup to 8 m, whi
h is a reasonable value for an indoor s
enario. For the respiration,the dete
tion range is about 80 m. The operation of in
reasing the SNR is alreadyimplemented in the UWB devi
e as an averaging operation, whi
h is optimal for anadditive while Gaussian noise (AWGN) 
hannel.We 
on
lude this study with some 
onsiderations:
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Figure 7.5: Maximum range as a fun
tion of frequen
y 
onsidering the average gain.
• FCC 
omplian
e poses a severe limit for dete
tion of vital signs, and in parti
-ular for heart beating;
• the dete
tion range sensibly depends on frequen
y;
• signal to noise ratio (SNR) maximization is a key issue to address for remotesensing;
• UWB te
hnology provides a des
ription of the 
hannel with a detail higherthan ne
essary for our pro
esses, whi
h are very slow with respe
t to the pulserepetition duration; this redundan
y 
an be used to in
rease the vital signssignal power, and therefore also the maximum dete
tion range.



Chapter 8System Model
System model is a result of di�erent steps, with an in
reasing level of 
omplexity ofthe 
onsidered s
enario. In fa
t, as a �rst step in Se
tion 8.1 we derive a narrowbandmodel for a single s
attering s
enario; we derive for this model the Doppler analysisi.e., how the 
hest motion is related to the variations of the re
eived signal. These
ond step is to extend the model to a single s
attering, wideband model, modeledas a parallel of narrowband subsystems in Se
tion 8.2.1. The third step is to extendthe model to a multis
attering, wideband model, des
ribed in Se
tion 8.2.2; in this
ondition, two di�erent s
enarios are investigated: line of sight s
enario (LOS), whereall the re�e
tions are in phase, and lo
al ri
h s
attering s
enario (LRS) where all there�e
ted signals are not exa
tly in phase. Finally, we introdu
e the 
omplete 
hannelmodel, where we 
onsider the entire 
hannel impulse response, LRS s
enario and thepresen
e of two re�e
tions, inner and outer, from the target, in Se
tion 8.3. Part ofthis work has been published in [71℄.
8.1 Narrowband System ModelWe �rst dis
uss the vital signs modulation on the parameters of the re
eived signalfor a narrowband system, as the simple analysis des
ribing the narrowband s
enariois useful to des
ribe the wideband system. In a narrowband system, the transmittedpulse is a narrowband pulse pN(t). Let us suppose that we have only the re�e
tionby the air skin interfa
e of the target, without multipath. We 
onsider the target
hest as a point s
atterer. Then the re
eived signal for a single pulse 
an be written105
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r(t) = ρt

√

R1pN

(

t− d(t)

c

)

cos

(

2πfC

(

t− d(t)

c

)

+ φ0 + φt

)

+ η(t), (8.1)where φ0 is the initial phase, φt is the phase shift introdu
ed by the re�e
tion, ρt isthe propagation attenuation 
oe�
ient and R1 is the re�e
tion 
oe�
ient. There isno amplitude modulation, while the relationship between the instantaneous phase ofthe re
eived repli
a β(t) and d(t) is known, i.e.
β(t) = −2πfC

(

d(t)

c

)

+ φ0 + φt. (8.2)8.1.1 Doppler Estimation TheoryFrom (8.1), the instantaneous phase of r(t) is
β(t) = −2πfC

(

d(t)

λC

)

+ φ0 + φt, (8.3)and then the Doppler frequen
y is
fd ,

1

2π

∂φr(t)

∂t
= − 1

λC

∂d(t)

∂t
. (8.4)In general, if we 
onsider the presen
e of di�erent paths involving the target inmotion, we have d(t) =∑Nhop

i=1 di. Ea
h path is a�e
ted by Doppler whose frequen
yis
fd,m ,

1

2π

∂φr,m(t)

∂t
=

Nhop
∑

i=1

− 1

λi

∂ (di)

∂t
, (8.5)where Nhop is the number of re�e
tions whi
h o

ur from the transmitter to there
eiver, and λi is the wavelength of the signal propagating on the medium of path

i.8.2 Wideband System ModelThe narrowband Doppler analysis is not su�
ient to des
ribe an UWB s
enario; infa
t, all the parameters used in that analysis, su
h as the speed, the wavelength, theattenuation, depend on the frequen
y. However, the narrowband Doppler approa
hallows a simple model of the e�e
ts of vital signs on the re
eived signal. This moti-vates our suggestion of modeling the UWB system as a parallel of NB narrowband
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an apply the narrowband analysis to ea
h subsystem;the value of NB is 
hosen in order to have on ea
h sub-band a �at pulse frequen
yresponse, and a �at attenuation.We 
onsider now two s
enarios: in one 
ase, where the 
hest is still modeled as asingle s
atterer, while in the se
ond 
ase the 
hest is modeled as a set of s
atterers.
8.2.1 Single S
atterer S
enarioWemodel the signal r(t) as the sum of theNB re
eived signals of the narrowband sub-systems. For ea
h subsystem b, the 
entral frequen
y is fb = fI+b B

NB
, where fI is thelower bound of the UWB band. The 
orresponding equivalent pulse pb(τ) is assumedto be a 
onstant in frequen
y domain on sub-band b, i.e. Pb(f) = P (fb)rect(

f−fb
NB/2

),and therefore in time domain 
an be written as i.e.
pb(τ) = P (fb)sinc

(

B

NB

τ

)

. (8.6)Then, the re
eived signal 
an be written as
r(t) =

NB−1
∑

b=0

ρ0
√

R1pb

(

t− d(t)

c

)

cos

(

2π(fI + b
B

NB
)

(

t− d(t)

c

)

+ φ0 + φt

)

+

+ η(t) (8.7)where η(t) is the noise term. The equivalent baseband signal is
rBB(t) =

NB−1
∑

b=0

ρ0
√

R1pb

(

t− d(t)

c

)

e
−j2π(fI+b B

NB
)
d(t)
c

+φ0 + ηBB(t). (8.8)



108 Chapter 8. System ModelUnder the assumption of �at frequen
y fading of the narrowband pulses pb on theirsub-bands, i.e. P (b) ≈ P , and A = Pρ0
√
R1 exp(φ0) we have

rBB(t) ≈ Asinc

(

B

NB

(

t− d(t)

c

))NB−1
∑

b=0

e
−j2π

(

fI+b B
NB

)

d(t)
c + ηBB(t) =

= Ae−j2πfI
d(t)
c

NB−1
∑

b=0

[

e
−j2π B

NB

d(t)
c

]b

+ ηBB(t) =

= Asinc

(

B

NB

(

t− d(t)

c

))

e−j2πfI
d(t)
c

1−
[

e
−j2π B

NB

d(t)
c

]NB

1− e
−j2π B

NB

d(t)
c

+ ηBB(t) =

= Asinc

(

B

NB

(

t− d(t)

c

))

e−j2πfI
d(t)
c

e−j2πB
2

d(t)
c

e
−j2π B

2NB

d(t)
c

sin
(

2πB
2
d(t)
c

)

sin
(

2π B
2NB

d(t)
c

) + ηBB(t) =

= Asinc

(

B

NB

(

t− d(t)

c

))

e
−j2π

(

fC− B
2NB

)

d(t)
c ·

·
sin
(

2πB
2
d(t)
c

)

sin
(

2π B
2NB

d(t)
c

) + ηBB(t) (8.9)After some algebra we obtain α(t) = sin
(

2πB
2
d(t)
c

)

sin
(

2π B
2NB

d(t)
c

) , while β(t) = e
−j2π

(

fC− B
2NB

)

d(t)
c .In Fig. 8.1 the absolute value and phase modulation of the re
eived signal are shownfor a system whose bandwidth is 2.2 GHz, divided into NB = 106 subsystems, wherethe target is at distan
e of 1 m os
illating as a sinusoidal fun
tion with amplitude 2mm. We observe that the os
illation of the target modulates also the amplitude ofthe re
eived signal; in parti
ular, the modulation fun
tions of amplitude and phasehave the same frequen
y of the target os
illation and a phase shift of π/2.In general, we observe that the UWB signal is modulated by vital signs both inamplitude and phase; however, the modulation is not as simple as (8.9), sin
e thisformula has been derived under singe s
atterer and very short pulse assumptions.8.2.2 Ri
h S
attering S
enarioUntil now, we modeled the 
hest as a point re�e
tor; a more realisti
 approximationis to 
onsider the 
hest as a set of re�e
ting points, ea
h providing a re�e
ted signal
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eived signal in UWB singles
attering s
enario



110 Chapter 8. System Modelwith its phase shift and delay. In general, the 
hest se
tion 
an be seen as an ellipseexpanding and 
ontra
ting due to respiration and heart beating. Using the spheri
alwaves propagation model, it is easily shown that the re
eiver 
olle
ts the signalre�e
ted by a small area around the 
enter of the 
hest. In fa
t, the waves re�e
ted atthe borders don't rea
h the re
eiver in a monostati
 
on�guration. Therefore, we 
anapproximate the 
hest as a planar surfa
e, moving a

ording to a rigid translation;the re�e
ted waves di�er slightly in phase, be
ause of very little di�eren
es of pathlength from ea
h point of the surfa
e. Even if our system is not able to resolvethe di�eren
es in delay, if there are enough re�e
tions, we may observe also anamplitude modulation of the re
eived signal. The target 
hest, and in general theentire target body 
ould also behave as a set of s
atterers, ea
h of them with itsown in
iden
e angle, re�e
tion 
oe�
ient and phase. This hypothesis di�ers fromthe ri
h s
attering, 
onsidered for wireless 
ommuni
ations [2℄ be
ause in this 
aseall the s
atterers are 
on
entrated on a limited region of the spa
e, and then they arenot uniformly distributed w.r.t. the re
eiver. However, in general we assume thatthe amplitude and phase diversity provided by all the re
eived repli
as is su�
ientto 
ause a signi�
ant variation of the amplitude of the re
eived signal, together withits phase. This e�e
t is 
ombined with the UWB amplitude modulation, as seen inthe previous paragraph.Let us 
onsider Ns s
atterers; ea
h s
atterer ns is 
hara
terized by its own distan
efrom the radar dn(t).
rBB(t) =

Ns
∑

ns=1

NB−1
∑

b=0

ρ0
√

R1pb

(

t− dns
(t)

c

)

·

· e−j2π(fI+b B
NB

)
dns (t)

c
+φ0 + ηBB(t).

(8.10)Although the number and the distan
es of the s
atterers are unknown, (8.10) sug-gests that both α(t) and β(t) are fun
tions of time with the same periodi
ity featuresof the 
hest os
illation fun
tion x(t).
8.3 UWB Model with Multiple Target Re�e
tionsWe 
onsider now the most generi
 
on�guration, whi
h in
ludes multipath due tothe indoor s
enario and multiple target re�e
tions due to the multilayer nature of
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tions 111the 
hest, i.e. an indoor 
hannel s
enario with a dis
rete and �nite number Ntap ofre�e
tors. Then the re
eived signal be
omes
rBB(t) =

Ntap
∑

i=1

sBB(t− τi(t))hBB(τi(t)) + ηBB(t) (8.11)where
sBB(t) =

∞
∑

j=−∞

p(t− jTS)is the baseband equivalent transmitted signal, τi(t) de�nes the ToA of the repli
are�e
ted by re�e
tor i, and hBB is the equivalent baseband 
hannel impulse response.Let us de�ne N
(i)
layer as the number of layers of path i, di,l(t) the length of layer l ofpath i, and vi,l the speed of light in layer l of path i; then we have

τi(t) =

N
(i)
layer
∑

l=1

di,l(t)

vi,l, i.e., the ToA of the repli
a re�e
ted by re�e
tor i is the sum of the delays providedby the propagation on medium layer l with propagation speed vi,l. We assume allother re�e
tors as stati
 and ideal 
ondu
tive obje
ts; they are des
ribed with onlyone layer, and with a time-invariant distan
e. Furthermore, the analysis providedin Chapter 6 suggests to model the target as two interfa
es, ea
h one re�e
ting thetransmitted signal with its attenuation and a phase shift of π. We will indi
ate withindex T the target; we also indi
ate with the subs
ript 1 the outer interfa
e (air-skin-fat), and with 3 the inner one (fat-mus
le), using the same notation introdu
edin Chapter 6; the two interfa
es are separated by z3 ≈ 0.96 
m. We 
onsider thefat tissue as a rigid tissue; then, both the interfa
es will have the same motion dueto respiration, modeled as xr(t). The motion of the two interfa
es due to the heartbeat takes into a

ount the attenuation due to the tissues i.e., we expe
t the innerinterfa
e to be more a�e
ted by the heart beat then the outer interfa
e. For the innerinterfa
e we have xh,3(t) while for the outer xh,1(t); these two fun
tions di�er onlyfor the attenuation fa
tor, whi
h is higher for the outer re�e
tion. By 
ombiningthe e�e
t of respiration and heart beating we have that the round trip distan
esfor the two interfa
es are d1(t) = RT + xr(t) + xh,1(t) and d3(t) = d1(t) + ∆3(t) =
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d1(t) + zfat − 2(xh,3(t)− xh,1(t)). Then we 
an write

rBB(t) =
∑

i 6=T

sBB

(

t− di
c

)

hBB

(

Ri

c

)

+ ηBB(t)+

+ sBB

(

t− d1(t)

c

)

hBB

(

d1(t)

c

)

+

+ sBB

(

t−
(

d1(t)

c
+

∆3(t)

vf

))

hBB

(

d1(t)

c
+

∆3(t)

vf

)

.

(8.12)
Let us now indi
ate with rTI(t) the �rst 
omponent of the signal; in the followingwe will des
ribe how we 
an
el it. We have

rBB(t) = rTI(t) + ηBB(t)+

+ sBB

(

t− d1(t)

c

)

hBB

(

d1(t)

c

)

+

+ sBB

(

t−
(

d1(t)

c
+

∆3(t)

vf

))

hBB

(

d1(t)

c
+

∆3(t)

vf

)

.

(8.13)We re
all here some results that we veri�ed in the previous Chapters:
• in general, even using all the band allowed by FCC, we are not able to dete
tthe vital signs by variation on delays of target path;
• sin
e z3 < 3 
m, the inner and outer paths are represented by the same timesample, de�ned as τT ;
• the non aliasing 
ondition is veri�ed, Tc > 2TP and then we don't have aliasingbetween adja
ent pulses;
• the theoreti
al narrowband and wideband model des
ribed in Se
tions 8.1 and8.2 suggests that the target repli
as are modulated by vital signs both in am-plitude and in phase.An exa
t expression of modulation has been derived in Se
tion 8.2, by 
onsideringonly the outer re�e
tion; a similar analysis 
an be performed also for the innerre�e
tion, whi
h provides its own amplitude and phase modulation to the re
eivedsignal. In general, we des
ribe both amplitude and phase of the re
eived repli
a asfun
tions of 
hest os
illation, i.e.

hBB

(

d1(t)

c

)

= α1(t)e
−jβ(t)

hBB

(

d3(t)

c

)

= α3(t)e
−jβ(t).

(8.14)
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tions 113In general, we observe that fun
tion β(t) is proportional to d(t), while there is not ageneral analysis providing an expe
ted behavior of α1 and α3. The sampled re
eivedsignal expression be
omes
rBB(lTc) = rTI(lTc) + sBB (lTc − τ)

[

α1(d1(lTc))e
−jβ(d1(lTc))+

+α3(d1(lTc) +
∆3(lTc)

vf
)e

−jβ(d1(lTc)+
∆3(lTc)

vf
)
]

+ ηBB(lTc).
(8.15)We remind now the properties of this signal: sBB(lTc) is a periodi
 fun
tionwith repetition frequen
y equal to PRF. We also suppose that 2π fC

PRF
is a multipleof 2π. Then we divide the temporal axis into pulse repetition periods of duration

TREP = 1
PRF

with length KTc (larger then the CIR length), K = TREP

Tc
. We veri�edthat sBB(lTc) = sBB(lTc + TREP ) = p(lTc). Then we write

lTc = nREPTREP + nKTc nK = 0, · · · , K − 1; nREP ∈ Z+, (8.16)and the re
eived signal is
rBB(nREPTREP + nKTc) = rTI(lTc) + p (lTc − τ) [α1(d1(nREPTREP + nKTc))·

·e−jβ(d1(nREPTREP+nKTc)) + α3(d1(nREPTREP + nKTc) +
∆3(nREPTREP + nKTc)

vf
)·

·e−jβ(d1(nREPTREP+nKTc)+
∆3(nREP TREP +nKTc)

vf
)
]

+ ηBB(nREPTREP + nKTc) (8.17)We observe that the 
oheren
e time of the observed pro
esses is larger than both
Tc and TREP ; in fa
t, fr, fh < 10Hz ≪ 9.611 MHz; we 
an then use the redundantamount of samples to improve the SNR. We 
all slot a set of NS su

essive symbols,and we assume that the slot duration is lower than the 
oheren
e time of vital signs.At the transmitter we modulate the transmitted pulses with a pseudonoise sequen
e;then the re
eiver performs a despreading with a spreading fa
tor of NS.To 
orre
tly re
onstru
t the vital sign signal, it is then su�
ient a sample periodof Tscan = NSTREP ; d1(nREPTREP + nKTc), d3(nREPTREP + nKTc),∆3(nREPTREP +

nKTc) are supposed to be 
onstant in a slot. We have
rBB(kTscan + nKTc) = rTI(nKTc) + p (nKTc − τ)

[

α1(d1(kTscan))e
−jβ(d1(kTscan))+

+α3(d1(kTscan) +
∆3(kTscan)

vf
)e

−jβ(d1(kTscan)+
∆3(kTscan)

vf
)
]

+ ηBB(kTscan + nKTc)(8.18)



114 Chapter 8. System ModelIn the following we 
onsider Tscan = 1 ms. The time s
ale nKTc represents the delaysof CIR. We observe that rTI(nKTc) does not depend on nK ; in fa
t, in our model thevital signs and the white noise are supposed to be the only time variant pro
essesin the 
hannel. We 
an estimate this stati
 part of the CIR and 
an
el it using aba
kground subtra
tion operation; one simple method to estimate it is taking theaverage of rBB(kTscan + nKTc) over k. After ba
kground subtra
tion from (8.18) weobtain a noisy version of the target 
omponent
rT (kTscan + nKTc) = p (nKTc − τ)

[

α1(d1(kTscan))e
−jβ(d1(kTscan))+

+α3(d1(kTscan) +
∆3(kTscan)

vf
)e

−jβ(d1(kTscan)+
∆3(kTscan)

vf
)
]

.
(8.19)Note that rT (nKTc + kTscan) is a time-varying signal sin
e the round trip distan
efrom the air-skin interfa
e d1(kTscan) and from the fat-mus
le interfa
e d1(kTscan) +

∆3(kTscan

vf
) depend on respiration and heart beating.We then model the wide band system as a parallel of NB narrowband systems.By this model, we 
an apply the Doppler analysis to ea
h subsystem; furthermore,we avoid to perform de
onvolution with p(t), sin
e on ea
h subsystem the pulsefrequen
y response is supposed to be 
onstant.8.3.1 Combination of the UWB Signal at Ea
h S
an to Max-imize SNRIn Subse
tion 7.3.3 we veri�ed that the delays of di�erent points of the target 
hest
annot be distinguished; therefore, in our assumptions and without noise, one valueof nK , 
orresponding to the target delay τT , is su�
ient to des
ribe the re
eived pulse,with Tc =

1

B
. The presen
e of more then one values of nK where rT (nKTc+kTscan) 6=

0 o

urs if oversampling is performed. In fa
t, the presen
e of noise and distortion onthe re
eived signal suggests to bene�t from the oversampling fa
tor to improve theSNR, i.e. to �nd the best way to 
ombine the samples des
ribing the same 
hannelpath and obtain the vital sign signal v(kTscan). From the theoreti
al point of view,in absen
e of ISI, the linear 
ombination that maximizes the SNR is provided by themat
h �lter [41℄. In absen
e of noise, the 
ombination of all samples rT (nKTc+kTscan)for ea
h s
an providing the maximum SNR is given by
v(nTscan) = maxnK

{rT ∗ g1 (nKTc + kTscan)}. (8.20)



8.3. UWB Model with Multiple Target Re�e
tions 115where g1(t) = p∗(−t) is the mat
hed �lter [41℄ and ∗ is the 
onvolution operator. Byassuming only the AWGN noise as disturb, performing the 
onvolution des
ribed in(8.20) we obtain
ṽ(kTscan) = v(nTscan) + w(nTscan), (8.21)where w(nTscan) is the resulting noise 
omponent.
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Chapter 9Dete
tion Te
hniquesWe aim at dete
ting the heart rate and respiration rate of the target, based on theknowledge of the noisy signal ṽ(k) whi
h 
olle
ts the 
ontribution of both phenomena.As the 
onvolution in (8.20) is a linear operator, the resulting signal ṽ(nTscan) is azero mean signal a�e
ted by zero mean AWGN noise w(nTscan), i.e.
ṽ(nTscan) = v(nTscan) + w(nTscan). (9.1)We veri�ed that the shape of respiration and heart beating 
hanges signi�
antly withmany fa
tors, e.g. angle of in
iden
e, distan
e of the radar, position of the target.Therefore, we 
annot exploit any a priori information on the signal shape.In general, v(k) is a non stationary signal, mainly be
ause of the irregular natureof the respiration pro
ess. Therefore, v(k) 
annot be 
onsidered as a periodi
 signalin stri
t sense; it is then assumed lo
ally periodi
, i.e. the periodi
ity of v(k) isassumed to be slowly varying and 
onstant in a range of samples of length N . Inthe following, we will fo
us on the period estimation performed on a window of Nsamples and therefore 
onsider an observation of the signal ṽ(k), k = 1 . . .N .The 
hoi
e of the number of observed samples N is di
tated both by the desiredestimation time and by the fa
t that signal v(k)may be regarded as periodi
 only for alimited time. This is the 
ase of vital signs (heart beating and respiration rate), whi
h
an be assumed periodi
 as long as the target 
onditions, in
luding his movements,speaking a
tivity, et
., are not 
hanging. The investigations on respiration and heartbeating allow us to 
onsider two ranges Ir, Ih of periods, suitable for respirationand heart beating, respe
tively. In parti
ular, for a healthy adult target we 
onsider

Ir = [0.5s 10s], and Ih = [0.3s 1.2s], 
orresponding to a heart rate range of 50− 200beats per minute (bpm). Sin
e we 
an not make any assumption on the shape of v(k),117
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tion Te
hniqueswe ignore 
orrelation among samples within a period. In parti
ular we model v(k) asa white Gaussian pro
ess with unitary varian
e E [|v(k)|2] = 1 and zero mean withinthe elementary period. Consequently, the 
olumn ve
tor v = [v(1), · · · , v(N)]H is azero mean Gaussian ve
tor with 
ovarian
e matrix
Σr(P ) = E

[

vvH
]

, (9.2)where we have highlighted its dependen
e on the period P , and H denotes the Her-mitian operator. Assuming that ṽ(k) has period P , the entries of Σv(P ) are
[Σv(P )] (k, k + l) = E

[

v(k)v(k + l)H
]

=











1, if l = mP,m ∈ Z \ {0}
1 + σ2

w if l = 0,

0 elsewhere (9.3)where in the last 
ase the assumption of white pro
ess for v(k) is used.
9.1 Auto
orrelation Based Period Dete
tionA signi�
ant amount of literature uses the 
orrelation to estimate the period of thesignal v(k) [72℄, [73℄. If the signal is ergodi
, an estimate of the 
orrelation is givenby

C(n) =
1

N

N
∑

l=1

v(l)v∗((l + n)N), n = 0 . . . N − 1, (9.4)where the averaging is performed over N samples and the expression (a)N stands for
a mod N . The optimum value of N depends on the noise level and on the validityof the assumption of ergodi
ity. In absen
e of noise, the real part of C(n), ℜ[C(n)],is periodi
 and rea
hes its maxima for n = mP . Hen
e, a

ording to the 
orrelationbased (CORR) algorithm, the period estimation is performed as

PCORR = argmaxn ℜ[C(n)]. (9.5)The method in (9.4) does not take into a

ount the presen
e of noise. The fun
tion
|C(n)| is periodi
 and rea
hes its maxima if n is a multiple of the period P̄ . Thesame periodi
ity information provided by the auto
orrelation fun
tion 
an be seen infrequen
y domain through the periodogram; di�erent algorithms have been proposedto evaluate the periodogram of a fun
tion.
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tion 1199.2 Maximum Likelihood Period Dete
tionWe propose the maximum likelihood (ML) period estimator for the 
onsidered signal.Let f(v|n) be the 
onditioned probability density fun
tion (pdf) of v given that
P = n. Then, the log-likelihood fun
tion is

Λ(n) = log(f(v)) (9.6)and the ML estimator is
PML = argmaxn Λ(n) (9.7)Reminding that the 
onditional pdf of the zero mean Gaussian ve
tor v is

f(v|n) = 1

(2π)N/2 ‖ Σv(n) ‖1/2
e−

1
2
vHΣv

−1(n)v, (9.8)the log-likelihood fun
tion for a 
andidate period n is given by
Λ(n) = log(f(v|n)) = log

[

1

(2π)N/2 ‖ Σv(n) ‖1/2
]

− 1

2
vHΣv

−1(n)v. (9.9)From (9.3) we observe that Σv(n) is a Toeplitz matrix. Furthermore, if N is amultiple of n, i.e. N = Ln, Σv(n) is 
ir
ulant, generated by ve
tor c = [1 +

σ2
w 0T

n−1 1 0T
n−1 · · ·0T

n−1].In the following we 
onsider N ≫ n, n ∈ IP , so that
⌊ N

max n
⌋max n ≈ ⌊ N

min n
⌋min n ≈ N.Under this assumption, in the following we assume N as a multiple of n. If σ2

w 6= 0,the inverse matrix is non singular, still 
ir
ulant and its �rst row is
[

Σv
−1(n)

]

1,·
=

1

σ2
w(L+ σ2

w)

[

(L− 1) + σ2
w, 0

T
n−1,−1, 0T

n−1,−1, · · · , 0
]

. (9.10)
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tion Te
hniquesThe log-likelihood fun
tion be
omes
Λ(n) = log

[

1

(2π)N/2 ‖ Σv(n) ‖1/2
]

+

− 1

2σ2
w(L+ σ2

w)

(

((L− 1) + σ2
w)

N
∑

k=1

|v(k)|2 −
N
∑

k=1

L−1
∑

m=1

v∗(k)v(k +mn)N

)

=

=

[

log(
1

(2π)N/2 ‖ Σv(n) ‖1/2
)− 1

2σ2
w(L+ σ2

w)
(L+ σ2

w)

N
∑

k=1

v∗(k)v(k)

]

+

− 1

2σ2
w(L+ σ2

w)

(

−
N
∑

k=1

v∗(k)v(k)−
N
∑

k=1

L−1
∑

m=1

v∗(k)v(k +mn)

)

= log

[

1

(2π)N/2 ‖ Σv(n) ‖1/2
]

− 1

2σ2
w

(

N
∑

k=1

|v(k)|2
)

+

+
1

2σ2
w(L+ σ2

w)

(

N
∑

k=1

L−1
∑

m=0

v∗(k)v(k +mn)N

)

(9.11)
We assume that the �rst term as 
onstant with respe
t to n. Negle
ting additiveterms that do not depend on n, whi
h are not involved in the maximization of thelog-likelihood fun
tion, we have

PML = argmaxn
1

2σ2
w(L+ σ2

w)

(

N
∑

k=1

L−1
∑

m=0

v∗(k)v(k +mn)N

)

=

= argmaxn
1

(L+ σ2
w)

L−1
∑

m=0

C(mn).

(9.12)
9.2.1 Low Complexity Implementation of ML Dete
tionWe propose a method that estimates the periodi
ity without initially estimating the
orrelation. In fa
t, if v(k) des
ribes a large number of periods, i.e. L ≫ σ2

w, wehave
PML = argmax Λ(n) =

= argmax
N

2σ2
w(L+ σ2

w)

(

L−1
∑

m=0

C(mn)

)

=

= argmax
1

L+ σ2
w

L−1
∑

m=1

C(mn) ≈ argmaxn e(n) = PLCML.

(9.13)
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tion 121For ea
h 
andidate period n ∈ IP , we divide the signal v(l) in L blo
ks of length
n, with Ln ≤ N , i.e. we make the 
hange of variable l = k + in with k = 1 . . . n,
i = 1 . . . L. If the period P is 
orre
t, then v(k+ jP ) = v(k+ iP ), with i, j the blo
kindex. The fun
tion e(n) is a linear 
ombination of the auto
orrelation fun
tionevaluated on multiple values of n, i.e.

e(n) =
1

n

n
∑

k=1

1

L2

L−1
∑

i=0

L−1
∑

j=0

v(k + in)v∗(k + jn) =

=
1

L

L−1
∑

m=0

C(mn).

(9.14)However, e(n) 
an also be 
omputed as
e(n) =

1

n

n
∑

l=1

|q(l, n)|2, n ∈ IP . (9.15)where
qL(l, n) =

1

L

L−1
∑

m=0

v(l +mn), k = 1, · · · , n. (9.16)We denote this method as low 
omplexity ML dete
tion (LCML) method; in fa
t,it allows a low 
omplexity implementation of the ML strategy, as we dis
uss in Se
.10.4.4. If the signal is periodi
 with period n̄ and it has zero mean, the fun
tion e(n)of (9.15) is periodi
 with the same period of the signal v(·). The intuition behind thismethod is that the sum in (9.16) allows for an averaging of the noise thus redu
ingthe noise impa
t on the �nal estimate.If all the pro
esses are ergodi
, we have
lim
L→∞

qL(k, n) = E[v(k + in)] =

= v(k)δ(n−mP̄ ), n ∈ IP , m ∈ Z,
(9.17)where the expe
tation is done with respe
t to i, and

e(n) = σw · δ(n−mP̄ ), n ∈ IP , m ∈ Z. (9.18)Asymptoti
ally, the LCML estimation tends to a periodi
 delta fun
tion with periodequal to the period to be estimated.As illustrated in Subse
tion 9.3.1, the average auto
orrelation e(n) is a�e
ted by
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tion Te
hniquesa noise 
omponent with mean σ2
w

L
. Therefore, if an estimate of the noise power isavailable, we 
an further re�ne the LCML method by removing the mean value ofthe noise 
omponent, obtaining the LCML2 method

PLCML2 = argmaxn
1

L

L−1
∑

m=0

C(mn)−
σ2
η

L
. (9.19)9.3 Vital Signs Period EstimationRemote sensing of vital signs using UWB radar te
hnology is a possible appli
ationof the period estimation problem. We assume a monostati
 
on�guration, where thetarget 
hest is in front of the radar devi
e in a line of sight 
on�guration, and there
eiver perfe
tly estimates and 
an
els all the repli
as referring to the stati
 partof the 
hannel, using ba
kground subtra
tion te
hniques [65, 66℄. At the re
eiver, a�lter mat
hed to the UWB pulse is applied and after sampling we obtain a signal

v(k) as in (8.20). We veri�ed that the shape of v(k) 
hanges signi�
antly with manyfa
tors, e.g. the angle of in
iden
e, the radar distan
e, the target position. In gen-eral, v(k) is a non stationary signal, mainly be
ause of the irregular nature of therespiration pro
ess. Therefore, it 
an not be 
onsidered as a periodi
 signal in stri
tsense. We instead model it as lo
ally periodi
 on N samples.Period estimation 
an bene�t from the wide knowledge on heart beating and respi-ration features provided by medi
ine. In fa
t, the human physiology provides upperand lower bounds to the vital signs rate, depending on target parameters, e.g. ageand resting/a
tivity of the target [61℄. In parti
ular, for a healthy adult target, theranges of the period durations are [0.5s; 10s] for respiration, and [0.3s; 1.2s] for heartbeating, 
orresponding to a heart rate range of 50− 200 beats per minute (bpm).We observe that ṽ(k) is a zero mean signal, sin
e the average has been nulled byba
kground subtra
tion.9.3.1 Theoreti
al SNR EvaluationIn this se
tion, we analyti
ally des
ribe the statisti
al noise des
ription for the fun
-tions C(n) and e(n), in order to investigate how the presen
e of noise a�e
ts themethods CORR and LCML, respe
tively.
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orrelationBy 
onsidering the presen
e of noise and �nite N , we have
C(n) =

1

N

N
∑

l=1

v(l)v∗((l + n)N) = C̃(n)+

+
1

N

N
∑

l=1

[ṽ(l)w∗((l + n)N) + w(l)v∗((l + n)N )]+

+
1

N

N
∑

l=1

w∗(l)w((l + n)N ).

(9.20)
where

• C̃(n) = E[v(l)v∗(l + n)] is the auto
orrelation fun
tion;
• ηA(n) = 1/N

∑N
l=1 [v(l)w

∗((l + n)N) + w(l)v∗((l + n)N)] is the mixed noise andsignal term. To further elaborate this term, we denote with ηR, ηI the real andimaginary part of ηA, respe
tively. They are both Gaussian random variableswith zero mean and varian
e σ2
w/2. Then, we have

ηA(n) =
1

N

N
∑

l=1

[v((l − n)N )w
∗(l) + w(l)v∗((l + n)N)] =

1

N

N
∑

l=1

ηR(lT s)[v
∗((l + n)N ) + v((l − n)N)] + ηI(l)[v

∗((l + n)N)− v((l − n)N)],(9.21)in whi
h the two terms inside the sum are independent, Gaussian, and zeromean. The varian
e of the �rst term is σ2
w[2σ

2
v + 2C(2n)]/2 while the varian
eof the se
ond one is σ2

w[2σ
2
v − 2C(2n)]/2. Therefore, ηA(n) is a zero meanGaussian random pro
ess with varian
e 2σ2

wσ
2
v/N .

• The last term ηB(n) = 1/N
∑N

l=1w(l)
∗w((l + n)N ) is the sum of random vari-ables whose probability distribution is a modi�ed Bessel fun
tion of null order

K0(x) and statisti
al power σ4
w. Sin
e w(·) are independent identi
ally dis-tributed (iid) random variables with zero mean, the statisti
al power of ηB(n)is σ4

w/N .In the presen
e of a noisy observation of a signal, the 
onventional approa
h to esti-mate the 
orrelation is 
hara
terized by a noise 
ontribution whi
h 
an be separated
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tion Te
hniquesin two terms. One has varian
e 2σ2
wσ

2
v/N and the other has varian
e σ4

w/N .The signal to noise ratio of C(P̄ ) is
SNRcorr =

E[|C̃(n)|2]
2σ2

wσ
2
v/N + σ4

w/N
=

σ4
w

2σ2
wσ

2
v/N + σ4

w/N
. (9.22)9.3.3 Low Complexity MLIn order to obtain a low 
omplexity ML (LCML) method we note that if L does notapproa
h in�nity, (9.16) be
omes

qL(k, n) =
1

L

L−1
∑

i=0

v(k + in) +
1

L

L−1
∑

i=0

w(k + in), k = 1, · · · , n; (9.23)the term η1(k, n) = 1/L
∑L−1

i=0 w(k+ in) in (9.23) is a Gaussian random pro
ess withzero mean and varian
e σ2
1(n) = σ2

w/L. We 
an then write
e(n) =

1

n

n
∑

k=1

(

η1(k, n) +
1

L

L−1
∑

i=0

v(k + in)

)(

η∗1(k, n) +
1

L

L−1
∑

j=0

v∗(k + jn)

)

=

=
1

n

n
∑

k=1

[

|η1(k, n)|2 +
1

L2

L−1
∑

i=0

L−1
∑

j=0

v(k + in)v∗(k + jn) +
1

L
η1(k, n)

L−1
∑

i=0

[v∗(k + in)] +

+
1

L
η∗1(k, n)

L−1
∑

i=0

[v(k + in)]

]

=

= η3(n) +
1

L2

L−1
∑

i=0

L−1
∑

j=0

C̃((i− j)n) + η2(n), (9.24)where
• The �rst term is

η3(n) =
1

n

n
∑

k=1

|η1(k, n)|2 =
σ2
1

n

n
∑

k=1

|η1(k, n)
σ1

|2 = σ2
1

2n
X (9.25)where X is a 
hi-square distributed random variable of order 2n χ2

2n
1. Theexpe
ted value and varian
e of η3 is

E[η3] =
σ2
1

2n
E[X ] = σ2

1 =
σ2
w

L
, (9.26)1The order is the number of terms of the sum; in our 
ase is 2n be
ause η1(k, n) is a 
omplexnumber.
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σ2
η3

=
σ4
1

4n2
σ2
X =

σ4
1

n
=

σ4
w

L2n
. (9.27)We noti
e how the mean of η3 
an provide an estimate of the statisti
al power

σ2
w. We observe that

• C((i−j)n) is an estimate of the auto
orrelation fun
tion evaluated on (i−j)n;the quality of the estimation in
reases with n. However, sin
e the value of Lnis 
onstant, we observe from (9.24) that for low values of n the average onmultiple values of n is performed on a higher number of terms.
• η2(n) = 1

Ln

∑n
k=1 2Re

[

η1(k, n)
∑L−1

l=0 v∗(k + ln)
] is obtained reminding that

A∗B = (AB∗)∗, where A,B are 
omplex numbers. Both the real and imaginarypart of η1 are Gaussian, while ṽ(·) is a deterministi
 pro
ess. Then, η2(n) is aGaussian random pro
ess with zero mean and statisti
al power
σ2
2(n) =

4

n2L2

σ2
1(n)

2

n
∑

k=1

E

[

|
L−1
∑

l=0

v∗(k + ln)|2
]

=

=
2

n
σ2
1(n)A(n)

(9.28)where A(n) = E
[

| 1
L

∑L−1
l=0 v(k + ln)|2

]

= 1
L

∑L−1
l=0 C(ln); in parti
ular, A(n) =

σ2
w if n = mP̄ , m ∈ Z. We note also that A(n) does not depend on k.As done in the previous subse
tion, we 
an de�ne the SNR for the proposed methodfor n = P̄ as

SNRprop =

∣

∣

∣

1
L2

∑L−1
i=0

∑L−1
j=0 C̃((i− j)n)

∣

∣

∣

2

2σ2
wσ

2
s/N + σ4

w/(L
2n)

=
σ4
w

2σ2
wσ

2
s/N + σ4

w/(L
2n)

. (9.29)The SNR of the two methods are very 
lose, 
f. (9.22) with (9.29). However, thedistribution of the noise is di�erent, and the shape of the the useful signal too. Inparti
ular, by re
alling (9.18), we noti
e that with the in
rease of L the useful signalin the proposed method tends to be a delta fun
tion whose exa
t position 
an bedete
ted in a robust way. A

ording to this analysis, we introdu
e a third methodLCML-2, whi
h approximates the ML and is based on the fun
tion
e2(n) = e(n)− σ2

w

L
. (9.30)
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tion Te
hniques9.3.4 Simulation SetupThe ML method is 
ompared with the state of the art algorithms, i.e.
• the AMDF method, whi
h minimizes the average magnitude of the di�eren
efun
tion between adja
ent periods [74℄;
• the algorithm based on the weighed auto
orrelation fun
tion (WEIGHT), whi
hhas been shown to improve the auto
orrelation based dete
tion algorithm [75℄;
• the method based on the Wel
h periodogram (WELCH), whi
h evaluates thepeak of the Wel
h periodogram [76℄;
• the Musi
 based algorithm (PMUSIC) [77℄.In the following, we show that the proposed LCML method outperforms the stateof the art algorithms, as expe
ted sin
e it represents a low 
omplexity implementationof the ML estimation strategy.



Chapter 10Experiment Results
10.1 System Des
riptionWe 
onsider a TD PulsON 210 IR-UWB system for the dete
tion of vital signs ofa target in an indoor environment. As des
ribed in Se
tion 5.2.2, the transmittedwave p(t) is a Gaussian pulse, and then the transmitted signal is

s(t) =

+∞
∑

n=−∞

e
−

(

(t−nTREP )2

2σ2

)

√
2πσ

cos(2πfCt+ φ0), (10.1)where TREP is the pulse repetition period and σ is the pulse varian
e, depending onits bandwidth. The P210 Standard waveform has a 10 dB bandwidth B = 2.2 GHz,and a 
entral frequen
y fC = 4.2 GHz; in the following we indi
ate as fi = 3.1 GHzthe lower limit of the band. The duration of the impulse response is TP = 1000 ps(99.91% of the total energy), or TP = 800 ps (99.3%).We note that the maximum sample period verifying the sample theorem is Tsamp =
1
B

= 454.5 ps; this is also the maximum resolution we 
an obtain on the 
hannelimpulse response estimate. However, the sample theorem is not stri
tly veri�ed.Aliasing is introdu
ed by the presen
e of real �lters and non �nite duration of theimpulse response. We set the value of the pulse repetition frequen
y (PRF) to 9.611MHz.We de�ne a slot as a set of K transmitted pulses 
oded by a pseudo-noise sequen
e
ν(k) k = 1, · · · , K. We observe that the maximum 
hannel impulse response (CIR)length that 
an be in
luded in a pulse period is 1

PRF
∼ 1µs, and the 
orrespond-ing distan
e of the farthest re�e
tor is 15 m. In our s
enario we assume that this127
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ondition is veri�ed, and then for ea
h pulse repetition period the re
eiver gets thewhole set of repli
as generated by the 
orresponding pulse, and interferen
e betweenadja
ent pulse repetition intervals (ISI) is absent.A

ording to the PulseOn notation, we de�ne as waveform the set of re
eived repli-
as; in a ideal s
enario, i.e. absen
e of ISI and distortion, and a dis
rete and �niteCIR, waveform is given by the 
onvolution of the CIR with the transmitted pulse.Based on the waveforms re
eived in ea
h slot, the re
eiver provides a waveform s
anby a weighted average of the re
eived symbols. The pa
ket transmission interval is 1ms, i.e., two adja
ent waveform s
ans refer to times t0, t0+1 ms; we assume then thatthe 
oheren
e period of vital sign pro
esses is higher than 1 ms, i.e., the pro
essingof the re
eived signal in a slot does not a�e
t the vital signs dete
tion.10.1.1 Hardware Con�gurationThe PulseON 210 kit provides several utilities and programming examples both for
ommuni
ation and sensing purpose. All the appli
ations 
onsist of two 
omponents:an embedded side and a host side. The embedded 
omponent runs on the devi
eusing the UWB Kernel in
luded with the hardware. The host side runs on a PC,where simulation parameters are set by the user through a graphi
 interfa
e (API).The embedded side and the host side are linked by a Ethernet 
onne
tion and 
ontrolsthe radio using the UWB Kernel in
luded with the hardware. The host side runson a PC; and through the network sends 
ommands to and re
eives status info andradar s
ans from the embedded 
omponent.10.1.2 Parameters Des
riptionWe des
ribe in the following the main parameters of our experiment setupLink Rate The Ethernet link 
onne
ting the embedded side on the devi
e withthe host side on the PC has a rate LR of 600 kbps.Pulse Repetition Frequen
y The PRF 
an be sele
ted by the user; in our s
e-nario it has always been set to 9.6 MHz. Therefore, the pulse repetition period TSis about 0.1µs.



10.1. System Des
ription 129Hardware Integration The hardware Integration (HWI) is the number of pulsesthat are integrated to build a sample. HWI ∈ {32, 64, 128, 256, 512}.Software Integration The software Integration (SWI) is the number of samplesthat are averaged at ea
h step to form a single sample value, i.e., at ea
h s
an step,SWI samples are summed to yield the 
urrent sample. SWI ∈ {2, 4, 8, 16, 32, 64}.Pulses per sample Pulses per sample (PPS) is the number of UWB radio pulsesrequired for ea
h s
an sample: PPS = HWI · SWI.Start position for the s
an windowing (ST) : It denotes the start position ofthe s
an windowing, evaluated in feet [ft℄ or in bins [bins℄.Stop position of the s
an windowing (EN) It denotes the stop position of thes
an windowing, evaluated in feet [ft℄ or in bins [bins℄.S
an window The limited 
apa
ity of the Ethernet link LP = 600 kbps is a severebound on the re
eived data rate. Furthermore, the high level of noise suggests toset an high value of HWI and SWI. Therefore, the s
an is limited to a shortwindow around the position of the target, whi
h is supposed to be known. From thetheoreti
al point of view, this operation is equivalent to taking the maximum s
ansize, whose length is equal to the pulse repetition period, and applying the window
SW = EN− ST [bins℄.Step size The step size (STEP), provided in [bins℄, or waveform resolution, isequal or higher than 1

B
.Number of samples in a s
an The number of samples in a s
an (LS) is givenby LS = SW

STEP
. It is a multiple of 32.Pulse per waveform The number of pulses per waveform (PPW) is the numberof UWB radio pulses required for the entire waveform:

PPW = PPS ∗ LS = HWI · SWI · SW

STEP
.
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an rate The s
an rate (SR) is the number of s
ans per se
ond: SR = PRF
PPW

. Themaximum s
an rate is
maxSR =

maxPRF

minHWI ·minSWI ·minSW
=

9.6 · 106
32 · 2 · 2 = 586 kbps < LR.10.1.3 Pra
ti
al S
hemeIn Chapter 8 we des
ribed the theoreti
al re
eiving s
heme, performed in ideal 
on-ditions; a s
heme of the theoreti
al approa
h is des
ribed in Fig. 10.1; we note thatthe sampling of the re
eived signal is performed at a frequen
y of U ·B, where U isthe upsampling fa
tor, and the 
orresponding sampling period is

STEP =
1

U · B; then, for ea
h slot, where vital signs are supposed to be a 
onstant, our theoreti
als
heme performs an averaging.The pra
ti
al s
heme has to deal with a non ideal s
enario and hardware 
onstraint.In parti
ular, in our s
enario, we have a limited 
apa
ity of the Ethernet link LP =

600 kbps, and limited 
omplexity available.
BB U

MUX

Period

MUX

Slot 
period

PSfrag repla
ements
r(t) rBB(t)

R C
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∑

∑

∑

∑

Repetition Tscan

r(nTscan, kTc)

Figure 10.1: Theoreti
al re
eiving s
heme.For the 
onsidered hardware, the sampling of the re
eived signal is not performedwith a period STEP . In fa
t, the devi
e takes one sample for ea
h pulse repetitionperiod, while the theoreti
 re
eiver saves all the LS samples des
ribing the waveform.Therefore, the resulting devi
e is simpler, be
ause the sampler period is 1
PRF

+ 1
UB

≈
0.1µs instead of the theoreti
al 1

UB
< 0.5 ns, i.e., 3 orders of magnitude slower; onthe other hand, the SNR of the resulting s
an is LS times lower with respe
t tothe theoreti
al one. A key role on this simpli
ity to SNR loss ratio is given by the
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ription 131presen
e of the s
an window; in fa
t, the devi
e takes the samples only inside thes
an window, and negle
ts the other samples of the waveform. On the other hand,this approa
h allow a better fo
us on the desired window, whi
h 
an be des
ribedwith an high number of samples. This upsampling fa
tor on the window
BB

BB

BB

U

MUX

Scan Lenght

MUX

PSfrag repla
ements
r(t)

R
LS

HWI · SWI

∑

∑

∑

∑

S(nTscan, kTc)

Figure 10.2: Pra
ti
al re
eiving s
heme.
10.1.4 Baseband OperationAfter the pre pro
essing operations performed by the PulseOn devi
e, the re
eivedsignal r(n, k) is a bandpass signal, fun
tion of variables n, index of the 
urrent s
an,and k, index of the 
urrent delay in the re
eived signal of s
an n,

r(n, k) =

Ls
∑

i=1

γi(n) cos(2πfCk + φi(n))δ(k − i) + η(n, k); (10.2)In the pra
ti
al s
heme, as shown in Fig. 10.2, baseband operation is performed onthe k dimension; if fCTscan ∈ Z , and if the low pass �lter has a impulse responseshorter than the pulse repetition period, performing the baseband operation on ea
hwaveform s
an is equivalent to performing it before the sampling pro
ess. In fa
t, ifthe sampling pro
ess 
omplies the sampling theorem, it is equivalent to perform thebaseband operation before or after the sampler. Therefore, the baseband operationperformed in the theoreti
al s
heme is
rBB(lTc) =

+∞
∑

m=−∞

r(mTc)e
j2πfCmTcgLP (lTc −mTc), (10.3)



132 Chapter 10. Experiment Resultswhere gLP (lTc) is the low pass �lter. Then, by writing lTc = nlTscan + klTc and
mTc = nmTscan + kmTc

rBB(nlTscan + klTc) =

+∞
∑

nm=−∞

+∞
∑

km=−∞

r(nmTscan + kmTc)e
j2πfCnmTscan+kmTc·

· gLP (nlTscan + klTc − nmTscan − kmTc) =

=

+∞
∑

km=−∞

r(nm, km)e
j2πfCkmTcgLP (klTc − kmTc);

(10.4)
whi
h is equivalent to the baseband operation performed on ea
h waveform s
an inthe pra
ti
al s
heme.However, the presen
e of the window s
an in the pra
ti
al s
heme provides only aportion of the waveform to the low pass �lter; therefore, in general the basebandwaveform evaluated with the pra
ti
al s
heme is not equivalent to the theoreti
albaseband waveform.10.2 Signal Pro
essingBoth for theoreti
al and pra
ti
al s
heme, the re
eiver gets a 
omplex matrix S,whose rows are the baseband waveform s
ans; the i-th 
olumns of S is the timevariation of the i th sample of the s
an window, sampled at period Tscan. The�rst step of signal pro
essing is the ba
kground subtra
tion; it is performed as it isdes
ribed in the theoreti
al model, in Chapter 8. As des
ribed in Se
tion 8.3.1, we
ombine the samples des
ribing ea
h re
eived repli
a, to determine the parametersof the 
orresponding 
hannel tap, i.e.

ṽ(kTscan) = maxnK
{rT ∗ g (nKTc + kTscan)}. (10.5)where g(t) is a generi
 �lter. From the theoreti
al point of view, in absen
e of ISI,the 
ombination that maximizes the SNR is provided by the mat
hed �lter, i.e.

g1(k) = p∗(−k + LS/2) . (10.6)However, the pra
ti
al s
enario introdu
es some new 
ondition on the 
ombinationproblem, and its solution. First of all, the s
an window may in
lude portions ofrepli
as; in fa
t, the sampling algorithm of the devi
e suggests to have small s
anwindows, in order to improve the averaging (HWI and/or SWI) with the same s
an
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ondly, distortion may have o

urred during transmission, due to the inter-a
tion with the human body, or to the presen
e of multiple s
atterers whose delaysare 
loser then 1/B. For this reason, together with the theoreti
al math �lter, we
onsider the estimated mat
hed �lter, and the average �lter.Estimated mat
hed �lter The theoreti
al approa
h suggests as optimum 
ombi-nation the �lter mat
hed to the transmitted pulse in a AWGN s
enario. We assumethe re
eived baseband matrix S to be the result of a unknown transmitted pulsepropagated in an AWGN s
enario; therefore, we assume all variations on the 
hannelbehavior, in
luding the variations due to vital signs, as a Gaussian white noise. Weestimate the pulse from the re
eived baseband matrix S as
p̂(k) =

1

Nscan

Nscan
∑

j=1

S(j, k), (10.7)and then the estimated mat
hed �lter is
g2(k) = p̂∗(−k + LS/2). (10.8)Average �lter We propose as the simplest solution a re
tangular �lter, i.e.,

g3(k) = rect

(

k − LS/2

LS

)

. (10.9)Fig. 10.3 shows the impulse response of the three �lters proposed; it has beenobtained in an ideal s
enario, with periodi
 vital sign, AWGN 
hannel, s
an windowequal to a repli
a. We observe that the shape of the estimated pulse is very 
lose tothe theoreti
al pulse.The average SNR of the resulting sample as a fun
tion of the average SNR beforethe 
ombination is illustrated in Fig. 10.4; we 
an observe that the theoreti
al andestimated mat
hed �lter provide the same SNR gain of 18 dB, 
orresponding to theupsampling fa
tor U = 64 used in our s
enario. We also observe that the averagingprovides almost the same performan
e of the optimal approa
h.10.3 Experimental Results on Signal ModulationAs a �rst experiment, we evaluate the SNR of the system; we veri�ed that, if thetarget breaths at a regular rate, the SNR is about 30 dB, while if the target holds
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Figure 10.5: Vital sign signal v(t) obtained without the targethis breath the SNR is about 5 dB; the a
tual values of the SNR depend on manyfa
tors;therefore these values are suggestive of the a
tual SNR. Fig. 10.5 shows theabsolute value and the phase of the v(t) when the target is not present; we 
an seethat neither the absolute value nor the phase is modulated.As a intermediate step we evaluate the normalized signal v(t) with a 5 
ent 
oin
overed by a metalli
 �lm and os
illating at a known frequen
y of 2 Hz. As shownby Fig. 10.6, in this 
ase we 
an observe a remarkable phase modulation, while theamplitude modulation is less pronoun
ed. In fa
t, in this 
ase the s
attering surfa
eis very small, and then the phase modulation is the same for ea
h s
attering point.In other words, the s
atterer does not provide a su�
ient phase diversity to providean amplitude modulation. However, the wide band nature of the signal provides aslight amplitude modulation.Finally, the experiment with the target was performed; the target was asked tobe still and to sit with the 
hest in front of the radar devi
e. As illustrated in Fig.10.7, in this 
ase we 
an observe an evident modulation on both absolute value andphase of v(t).The theoreti
al analysis for a wideband signal performed for a 2.2 GHz system,
ompliant with FCC rules, shows that the re
eived signal is a�e
ted both in phaseand amplitude parameters by vital signs; simulation results validates the theoreti
alanalysis, showing that the amplitude modulation is due to both the wideband nature
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Figure 10.6: Normalized vital sign signal v(t) obtained in the 5 
ent experiment.
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138 Chapter 10. Experiment Resultsof the transmitted pulse, and to a multiple s
attering e�e
t provided by the 
hestsurfa
e.10.4 Dete
tion Te
hniques10.4.1 Theoreti
al ComparisonWe �rst 
onsider the periodi
 signal v(k) = exp(j2πkP ), with k = 0, 1, . . . 1000 and
P = 5, 
orrupted by an additive white Gaussian noise. The signal to noise ratiois de�ned as SNR=1/σ2

w. To 
ompare the two methods we evaluate the normalized(with respe
t to the period) mean error (MSE) de�ned as
ρ = E{|P − Pest|}/P (10.10)where Pest is the period estimate, e.g. PCORR or PLCML. We express this error interms of per
entage of the period. The signal to noise ratio is de�ned as SNR=1/σ2

η.We note that in this s
enario ML algorithm is not optimal; in fa
t, the signal v(k)does not 
omply with the assumption of i.i.d. Gaussian signal. Still, this is a signalof interest in many appli
ations. Fig. 10.8 shows the normalized MSE as a fun
tionof N/P for SNR=−5 dB. We observe that the proposed LCML method outperformsthe state of the art algorithms, as expe
ted sin
e it represents a low 
omplexityimplementation of the ML estimation strategy. In parti
ular, the knowledge of thenoise power exploited by LCML2 provides the best performan
e.Fig. 10.8 shows the MSE as a fun
tion of N , represented in terms of number ofperiods for SNR=-5 dB. We observe that the proposed LCML method outperformsthe state of the art algorithms, as expe
ted sin
e it represents a low 
omplexityimplementation of the ML estimation strategy. In parti
ular, the knowledge of thenoise power exploited by LCML2 provides the best performan
e.Fig. 10.9 shows the same simulation results with an SNR=0dB. The results aresimilar, as they still indi
ate an advantage of the proposed method with respe
t tothe state of the art algorithms. However, the advantage be
ome less and less relevantin terms of the envisioned appli
ation.10.4.2 Experimental ComparisonThe experiment is then performed with the target still and sitting at a distan
e ofapproximately 30 
m from the radar and with the 
hest fa
ing the radar devi
e. As
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Figure 10.10: Normalized e(n) and Re[C(n)] fun
tions obtained with the targetbreathing.illustrated in Fig. 10.10, respiration rate 
an be easily dete
ted by both the proposedmethod and the auto
orrelation fun
tion. Both fun
tions have been evaluated withan observation window of length N = 10s, for 
andidate periods n ∈ Ir.Furthermore, we observe that the proposed fun
tion e(n) has weaker peaks in
orresponden
e of a lower periods; there peaks are due to noise, to the non-periodi
nature of the signal, and to the heart beating signal. The peak in 
orresponden
e ofthe lowest period is at about 0.85 s, whi
h is the value of the target heart beating, 70bpm. Although e(n) provides information about the heart beating, it is not possibleto distinguish the 
orrespondent peak from spurious.Therefore, in order to estimate the heart beating, we evaluate the fun
tions witha shorter observation window; i.e., the signal v(t) is divided into tokens of length
N = 2.2 s, and the heart beating period is evaluated for ea
h token. The value of
N is the lowest window size allowing to dete
t the slowest heart beat for a healthytarget, i.e. 50 bps; in fa
t, the fun
tions are evaluated for 
andidate periods n ∈ Ih.Fig. 10.11 shows an example of the resulting fun
tions e(n) and C(n). In this 
ase,the peak due to heart beating is 
learly visible. By estimating the heart beating
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Figure 10.11: Normalized e(n) and Re[C(n)] fun
tions obtained with the targetbreathing with N = 2s.period a

ording to eq. (9.5) and (9.13), the MSE of the dete
tion is about 56% forthe auto
orrelation method, and 15% for the proposed method.10.4.3 Dete
tion Te
hniques ComparisonWe 
onsider a TD PulsON 210 IR-UWB system for the dete
tion of vital signs ofa target in an indoor environment [68℄. Besides the radar devi
e, the experimentalsetup is 
omposed by the target, sitting in front of the radar in order to have a lineof sight (LOS) with the 
hest, and a on-body sensor measuring the heart rate. Theradar devi
e fa
es the 
hest of the target who wears an on-body sensor dete
tingthe heart rate. The experiment is performed with the target still and sitting at adistan
e of approximately 30 
m from the radar and with the 
hest fa
ing the radardevi
e.The re
eived signal is the sum of the respiration signal and the heart beating signal,whi
h is weaker; although respiration rate 
an be easily dete
ted, its unknown andtime variant shape does not allow a simple subtra
tion of this signal from the re
eived
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tion Te
hniques 143signal. Therefore, a low 
omplexity heart rate dete
tion has to be performed onthe global signal. In order to estimate the heart beating, we 
onsider a shorterobservation window; i.e., the signal v(k) is divided into tokens of length N from
2.2 to 4.4 s, and the heart beating period is evaluated for ea
h token. In fa
t,higher values of N would in
lude a breathing period, whi
h strongly modulates thesignal; furthermore, higher values of N would in
rease the dete
tion delay, while weare interested on the real time value of heart beating. The minimum value of N
orresponds to the lowest window size allowing to dete
t the slowest heart beat for ahealthy target, i.e. 50 bps; in fa
t, the fun
tions are evaluated for 
andidate periods
n ∈ Ih.By estimating the heart beating period a

ording to the proposed methods, we obtainthe MSE values shown in Fig. 10.12. We observe that, while the state of the artalgorithms are all a�e
ted by the periodi
ity of the respiration signal, whi
h is thestrongest 
ontribution, for small periods the proposed method provides the bestestimate of heart beating period. When longer tokens are 
onsidered, its estimationa

ura
y deteriorates due to the presen
e of respiration periodi
ity on v(k), despitethe higher number of heart beat period 
onsidered.10.4.4 Computational ComplexityWe evaluate the 
omputational 
omplexities of both ML and LCML, and then 
om-pare them with the 
omplexity of the state of the art algorithms. Let µ be the 
ostof a 
omplex multipli
ation and γ be the 
ost of a 
omplex sum. Let also M be thedimension of IP , i.e. the number of 
andidate periods n. For the 
orrelation basedmethod the 
omputational 
ost is

CCORR = M [Nγ +Nµ]. (10.11)For the LCML method and AMDF method we have
CLCML = CAMDF =

∑

n∈IP

(

N

n
+ n

)

γ +Mµ, (10.12)while for the ML method we have
CML = CCORR + γM. (10.13)For the WEIGHT method we have

CWEIGHT = CCORR + CAMDF +N. (10.14)



144 Chapter 10. Experiment ResultsComplexity of the WELCH method depends on the algorithm implementation. Theinput signal is divided into Nw overlapping segments of size Lw; ea
h segment is thenwindowed and pro
essed by fast Fourier transform (FFT). The dominant 
omponentof 
omplexity is due to FFT, i.e.
CWELCH ≈ µ[N log 2(Lw) +N ] + γ[N log 2(Lw) +N ]. (10.15)Similarly, 
omplexity of PMUSIC algorithm depends on its implementation; however,the main 
omponents are the evaluation of the auto
orrelation fun
tion, the eigende
omposition, and the pseudospe
trum evaluation, i.e.

CPMUSIC ≈ CCORR + µN2 + µ[N log 2(N)]. (10.16)The proposed method requires signi�
antly less 
omplex multipli
ations (L insteadof N) whi
h are a
tually even less sin
e they are used to 
al
ulate the absolute squarevalue. In our simple 
ase, with N = 20 and 
andidate heart beating periods IP =

0.6 : 0.1 : 1.4 s, 
orresponding to the range 45−120 bpm, we have CLCML = CAMDF =

220µ+ 220γ while CCORR = 95µ+ 120γ, CWEIGHT = 335µ+ 340γ, CWELCH = 126µ+

126γ and CPMUSIC = 601µ + 226γ. The proposed method requires approximatelyhalf of the operations needed by the 
orrelation based method; we note that thesimpli
ity of the proposed method is already appre
iable for a simple appli
ation,where the number of samples and the 
andidate periods are very small.10.5 Con
lusionsWe derived analyti
ally the optimal ML period estimator of a signal whose shape isunknown. Furthermore, we have presented a novel low 
omplexity implementationof the ML estimator. The proposed method might have appli
ation in many areaswhere only the periodi
ity is required and the 
omplexity is an important parameter.In parti
ular, we applied the proposed algorithm to the remote heart rate estimationproblem; as expe
ted, both simulation and experimental results indi
ate that theproposed method outperforms the state of the art methods in dete
ting the periodof weak signal like the heart beating, even with a short observation of the periodi
signal.By this period dete
tion rule, if the target is breathing we will dete
t the respira-tion rate; to dete
t the heart beating we 
ould 
an
el from the signal the respiration
omponent. However, in the following we show that heart rate dete
tion is possible



10.5. Con
lusions 145

1.5 2 2.5 3 3.5 4
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

N/P

ρ 
[d

B
]

 

 

CORR
LCML
LCML2
AMDF
WEIGHT
MUSIC
PWELCH
ML

Figure 10.12: Normalized MSE of the estimated period as a fun
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lusions 147using the proposed method without further signal pro
essing. The main di�eren
ebetween the proposed method and the 
orrelation based te
hnique is that in the �rstapproa
h the auto
orrelation is evaluated with P averages while the latter approa
h
onsiders N averages.
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Con
lusionsIn this se
ond part of the thesis we addressed the topi
 of remote sensing of vital signsin an indoor s
enario, onsidering a radar devi
e working on the 3.1− 5.3 GHz band,whi
h is available for 
onsumer appli
ations a

ording to FCC rules. In parti
ularwe fo
us on des
ribing the re
eived signal with respe
t to the vital sign signal, andon dete
tion te
hniques of respiration and heart beating rates. We have presented asimple and general model of the re
eived signal for a Pulse UWB system in a indoors
enario with a human target; in parti
ular, we des
ribed how the main parametersof the re
eived signal is related to the 
hest motion of the target due to breathingand heart beating. A theoreti
al analysis for a wideband signal is performed fora 2.2 GHz system, 
ompliant with FCC rules, showing that the re
eived signal isa�e
ted both in phase and amplitude parameters by vital signs. Simulation resultsvalidates the theoreti
al analysis, showing that the amplitude modulation is due toboth the wideband nature of the transmitted pulse, and to a multiple s
atteringe�e
t provided by the 
hest surfa
e.Furthermore, due to the large number of parameters in�uen
ing the shape of the vitalsign signal, we fo
us on blind dete
tion te
hniques, whi
h do not assume a de�nedshape. We have presented a extremely simple novel method to estimate the period ofa periodi
 fun
tion. The analyti
al analysis and the simulation results indi
ate thatthe proposed method performs better than the 
orrelation based method in dete
tingthe period of weak signal like the heart beating.
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