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Sommario
Questa tesi di dottorato raoglie i ontributi prinipali dell'attività di riera svoltadurante i tre anni del mio perorso di dottorato. Come suggerise il titolo, l'attivita'di riera ondotta in questo triennio è divisa in due parti prinipali. La primariguarda l'argomento di riera he ho seguito sin dall'inizio sui sistemi di downlinkMultiuser MIMO on feedbak limitato; è parte di un ampio �lone di riera �naliz-zato alla progettazione della quarta generazione di sistemi ellulari, e piu' in generaledi futuri sistemi di omuniazioni wireless on terminali mobili. In partiolare, i mieistudi si sono onentrati sui sistemi ellulari in ui le stazioni base sono provvistedi antenne multiple; la presenza di piu' antenne alla stazioni base fornise dei gradidi liberta' nelle omuniazioni di downlink, ovvero nelle omuniazioni dalla stazionibase ai terminali mobili, he possono essere utilizzati per servire piu' di un utentesimultaneamente e ottenere un rate piu' elevato rispetto al aso singola antenna.A tal �ne e' pero' neessario fornire alla stazioni base la onosenza dei anali didownlink per iasuno degli utenti he intende servire; tanto piu' �ne e' la stimadel anale in possesso della stazioni base, tanto maggiore e' il rate raggiungibile inquesto shema di downlink. La progettazione di strategie di feedbak, on ui i ter-minali trasmettono su un anale dediato informazioni sul anale di downlink allastazioni base e' quindi un aspetto di grande interesse, essendo il anale di feedbak arate limitato (dell'ordine di qualhe bit/simbolo). In partiolare, mi sono oupatadella selta del quantizzatore e delle strategie di feedbak he tenessero onto dellaorrelazione temporale del anale. All'inizio del triennio (gennaio 2007) la maggiorparte delle analisi teoria era stata sviluppata; di onseguenza, il mio lavoro è in-entrato sull'ottimizzazione dei parametri del sistema, tenendo onto delle limitaterisorse disponibili in uno senario realistio. I ontributi prinipali riguardano laprogettazione del anale di feedbak a rate limitato e algoritmi di sheduling subot-timi a bassa omplessità, sia per sistemi single arrier he in uno senario OFDM.In partiolare, i ontributi riguardanti la progettazione del anale di feedbak a1



2 List of Tablesrate limitato traggono vantaggio dalla orrelazione temporale del anale, utilizzandosistemi di quantizzazione on memoria. E' stato inoltre proposto un algoritmo disheduling a bassa omplessita', e si sono studiate le prestazioni in onfronto on iprinipali algoritmi presenti in letteratura. Tale onfronto evidenzia he a parita' diondizioni, l'algoritmo da noi proposto e' aratterizzato da prestazioni analoghe allealtre soluzioni e molto viine all'ottimo, sia in termini di throughput he di outagethroughput, ma on una minor omplessita'. La seonda e più reente parte della tesia�ronta l'argomento della stima di segnali vitali, ovvero la respirazione e il battitoardiao, attraverso un sistema remoto, dove non 'e' ontatto tra il sensore ed il tar-get a distanza. Questo argomento e' stato a�rontato, in ollaborazione on PhilipsResearh, Eindhoven (NL), dove sono stata ome Visiting Student da ottobre 2008 amaggio 2009. Ho studiato la tenologia ultra wide band per il rilevamento remoto deisegni vitali, on il vinolo di rispettare i limiti di potenza imposti dalla legislazionevigente. Lo studio e' stato ondotto sia analitiamente, he tramite simulazioni, edin�ne attraverso l'allestimento di una demo e la raolta di risultati sperimentali. Inpartiolare, ho proposto un modello generio per il segnale rievuto e desritto ana-litiamente la modulazione he i segnali vitali operano sui prinipali parametri delsegnale rievuto. Sulla base di questo modello, ho studiato le tenihe di rilevazionedel respiro e del uore periodi di battere; in partiolare, ho proposto un metodo distima del periodo a bassa omplessita', he migliora le prestazioni di altre soluzioniproposte in letteratura, sia in termini di errore quadratio medio he di omplessita'rihiesta. In�ne, è stato derivato lo stimatore maximum likelihood (ML), ed è statoveri�ato he il metodo proposto risulta da un'approssimazione del metodo ML.



Abstrat
This PhD thesis ollets the main ontribution of my researh ativity, performedduring my PhD program. As the title suggests, it is divided into two main parts.The �rst part ollets the researh I performed sine the beginning of my PhD onMultiuser multiple input multiple output (MIMO) downlink systems with limitedfeedbak; the topi is part of the wide researh work on the fourth generation ellularsystems. When I begun my researh, on January 2007, most of the theoretialanalysis had already been illustrated; therefore, my work foused on optimizingsystem parameters onsidering the limited resoures available in a realisti senario.The main ontributions are on the design of the low rate feedbak hannel, andsub-optimal, low omplexity sheduling algorithms, both in single arrier and in aorthogonal frequeny division multiplexing (OFDM) senario.The seond, and most reent part of the thesis deals with remote sensing of vitalsigns, i.e. respiration and heart rate; I have been addressing this topi sine Otober2008, in ooperation with Philips Researh, Eindhoven (NL), where I have beenvisiting student. We investigated the ultra wide band tehnology for remote sensingof vital signs. We propose a generi model for the reeived signal and desribed howvital sign modulates the main parameters of the reeived signal. Furthermore, wefoused on detetion tehniques of respiration and heart beating periods; we derivedthe ML period estimator of a zero mean signal with unknown shape, and we proposeda novel low omplexity approximated ML estimator. The proposed methods haveappliation in many areas where only the periodiity is required and the omplexity isan important issue. In partiular, we applied the proposed algorithms to the remoteheart rate estimation problem; both simulation and experimental results indiatethat the proposed method outperforms the state of the art methods in deteting theperiod of a signal with low signal to noise ratio like the heart beating, even with ashort observation of the periodi signal.Though the two parts of researh I performed during my PhD program seem to have3



4 List of Tableslittle in ommon, they an be investigated with the same analytial tools, partiularlyfor signal proessing and detetion tehniques.
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Main Abbreviations and NotationBF: beamforming;BFB: basi feedbak;BS: base station;
C: Codebook;CC: entroid ondition;CLS: omplex loations;CDI: hannel diretion information;CMUX: omplex multipliations;CQI: hannel quality information;CSI: hannel state information;CSIT: hannel state information at the transmitter side;CV: hannel vetor;DPC: dirty paper oding;
E[·]: expetation operator;EA: exhaustive algorithm;FB: feedbak signalling;FDD: frequeny division duplexing;LBG: generalized Linde, Buso, and Gray algorithm;7



8LTE: long term evolution;
M : number of BS antennas;MG: multiarrier greedy algorithm;MIMO: multiple input multiple output;MMSE: minimum mean square error;MSE: mean square error;MSUS: multiarrier semi orthogonal user seletion algorithm;MT: mobile terminal;MU: multiuser;NNC: nearest neighborhood onditionOFDM: orthogonal frequeny division multiplexing;PBG: projetion based greedy algorithm;PDF: probability density funtion;PFB: preditive feedbak;PFS: proportional fair sheduler;QEV: quantization of the error vetor;QoS: quality of servie;RB: resoure blok;RM: unitary rotation matrix;RVQ: random vetor quantization;SC: single arrier;SCM: spatial hannel model;SNIR: signal to noise plus interferene ratio;



9SPPBG: projetion based greedy with simpli�ed preseletion algorithm;SR: sum rate;SU: single user;TDD: time division multiplexingTS: training set;UD: updown feedbak;WSR: weighted sum rate;ZF: zero foring;
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Introdution
Next generation wireless ellular systems are expeted to support high quality mul-timedia servies; this motivates the interest in multi antenna (MIMO) systems,where both spatial diversity and multiplexing an be used to inrease the ahiev-able throughput. In fat, it has been shown that the downlink apaity of a MIMOsystem with perfet hannel state information (CSI) sales as a linear funtion ofthe number of transmit antennas [2℄. Although non linear dirty paper oding (DPC)sheme ahieves the system apaity, it has a high omputational ost [3℄, and sim-pler solutions have been investigated. Linear beamforming has been shown [4℄ toahieve a large part of DPC apaity; in partiular, zero foring (ZF) beamformingmathed to an opportunisti sheduling is widely used [4℄.However, bene�ts of MIMO are obtained only by a proper sheduling of trans-missions, whih opportunistially exploits hannel onditions in order to inreasethroughput, while ensuring quality of servie (QoS). Several sheduling tehniqueshave been proposed for MIMO single arrier (SC) systems on �at fading hannelsbased on various approahes, inluding lique searh [5℄, maximization of the Frobe-nius norm of the omposite hannel matrix [6, 7℄, user hannel orthogonality [8, 9, 10℄,single bit feedbak [11℄, water�lling [12℄, tree searh [13℄, evolutionary algorithm [14℄and greedy sheduling [15℄ extended to the ase of limited feedbak in [16℄. Insome ases, optimization of sheduling and power alloation are performed jointly[5, 6, 7, 11, 12, 14℄, while in other ases only sheduling is onsidered [8, 9, 10, 15℄.Moreover, QoS oriented multiuser sheduling and beamforming have been investi-gated in [17℄, in order to oniliate the request of high throughput with low paketdelays. An overview of researh on ross layer sheduling for multiuser MIMO SCsystems is given in [18℄. A similar problem to multiuser MIMO sheduling an befound in other transmission systems, suh as multiarrier ode-division multiple a-ess [19℄.In frequeny seletive hannels, SC modulation is often replaed by orthogonal fre-11



12queny division multiplexing (OFDM) due to its e�ieny in overoming multipathfading. In fat, the ombination of MIMO and OFDM tehnology is a good andi-date for future wireless ellular systems, as it has been proposed for downlink in thelong term evolution (LTE) release of 3GPP standard [20, 21℄. When MIMO OFDMis onsidered, sheduling beomes more omplex, as the number of resoures to bealloated, i.e. the number of subarriers, inreases and only suboptimal approahesare viable [13℄. Complexity is further inreased in a frequeny division duplexing(FDD) system, where CSI is provided to the base station (BS) by eah mobile ter-minal (MT) through a feedbak (FB) hannel. In fat, due to the limited FB rate,only a partial CSI is available at the BS and additional proessing is required toompensate the hannel unertainty. Some of the sheduling tehniques onsideredfor SC transmissions an be extended to OFDM. For example, in [22℄ a shedulingalgorithm has been proposed for MIMO OFDM systems whih extends the methodproposed in [15℄ for SC systems: the set of sheduled MTs on eah subarrier is builtin a greedy fashion, by adding one user at the time with the aim of maximizing aweighted sum rate (WSR). In [23℄ this approah has been further simpli�ed to avoidthe need of omputing a new beamforming matrix upon the insertion of a new an-didate in the set of sheduled MTs. A further sheduling simpli�ation is ahievedby exluding from the seletion proess MTs that would not ontribute to the WSR,by introduing a bound of their signal to noise plus interferene ratio [24℄.In this �rst part of the thesis, we propose e�ient and low omplexity strategiesfor multiuser MIMO downlink systems. We disuss the main parameters of a MIMOSC downlink systems, i.e. the beamforming, sheduling and feedbak signalling.Then we revise the sheduling tehniques proposed in the literature for multiuserMIMO OFDM system with limited feedbak and ompare them both in terms ofomputational and memory ost and in terms of ahieved throughput in a LTE3GPP senario.This part is organized as follows. In Chapter 1 we desribe the downlink MIMOSC system; in partiular we disuss beamforming tehniques and FB strategies. InChapter 2 we introdue the OFDM MIMO system, and we disuss the shedulingstrategies. Experimental results are illustrated in Chapter 3.In Chapter 4 we derive some onlusion of this �rst part of the thesis. Notation:bold upper and lower letters denote matries and vetors, respetively; (·)H denotesHermitian operation (transpose omplex onjugate), while (·)T denotes transpose;
‖ · ‖ is the vetor norm, and E [·] stands for expetation trae.



Chapter 1Multiuser MIMO SC DownlinkSystemIn multiuser MIMO downlink systems the BS requires hannel knowledge to ahievespatial multiplexing aross users. While in time division duplexing (TDD) systemsCSIT an be aquired from hannel estimation in the uplink, in FDD systems CSITan be obtained only by setting up an expliit FB hannel from eah user. Sinethe number of bits required to desribe the hannels grows as the produt of thenumber of transmit and reeive antennas, the hannel delay spread and the numberof users [25℄, only by a proper optimization of the FB signalling its impat on thenetwork throughput an be limited. In fat, if a reliable CSIT provides an highersystem throughput, on the other hand a low FB rate is neessary to guarantee anhigh payload.The tradeo� between CSI quality and FB rate has been reently addressed and var-ious aspets have been investigated inluding transmitter and reeiver design [26℄,[27℄, [28℄ and feedbak optimization in both single user (SU) and multiuser (MU)systems [29℄, [30℄, [31℄ [32℄.FB bits are mostly used to index a set of vetors (or odewords) in a odebook Cwhih is known to the transmitter and all reeivers. For example, b bits per feedbakinterval an be used to index a odebook with 2b vetors. For a transmitter, eahodeword in C is a multi-dimensional vetor that haraterizes the MIMO hannel forthat user or more generally provides information on the reonstrution of the user'shannel. A well-designed odebook will ontain odewords that e�etively span theset of MIMO hannels experiened by the users [30℄, [31℄.In SU systems it has been shown that only a few FB bits (roughly on the order of13



14 Chapter 1. Multiuser MIMO SC Downlink Systemtransmit antennas) are needed to ahieve near perfet-CSIT performane. On theother hand, in downlink hannels aurate hannel knowledge is essential to avoidmultiuser interferene and a severe degradation of the ahievable throughput [26℄.An opportunisti user seletion approah an inrease the performane of this sys-tem, leading to asymptotially optimum performane when the number of users goesto in�nity [29℄,[26℄,[28℄ . In [16, 33℄ the odebook is a set of vetors randomly ho-sen from an isotropi distribution on the unit hypersphere, in a spae having thedimension of the number of BS antennas. This tehnique is alled random vetorquantization (RVQ).In this hapter we fous on single-antenna mobile terminals and SC senario; in par-tiular, we investigate the beamformer design for a opportunisti downlink MIMOsystem, i.e. the transmission from the BS to a group of MTs, seleted by the BS,using the multiplexing properties of the MIMO system. The term opportunistiunderlines that the BS poliy of user seletion favors the MT with a good hannelquality.In Setion 1.2, we revise ZF beamforming and propose a new minimum mean squareerror (MMSE) beamformer under inomplete CSIT that takes into aount the quan-tization error of the hannel vetor [34℄. As shown in [35℄ under perfet CSIT, MMSEBF shows signi�ant performane improvements in ase of randomly seleted usersbut gives redued gains with respet to ZF BF in ase of opportunisti user sele-tion. In the seond part of the hapter, we propose various hannel quantizationtehniques and FB strategies based on the Lloyd-Max algorithm [36℄ that exploitboth spatial and time orrelation of the MIMO hannel. In partiular in Subsetion1.4.2 we derive a Up-or-Down (UD) FB approah where FB bits are aumulatedover multiple signalling intervals in order to index a muh larger odebook; this teh-nique has been proposed in [37℄, and then it has been extended to the multi antennareeiver senario with the name of hierarhial FB (HFB), e.g. [38, 39℄.Moreover we propose new preditive FB strategies where both BS and MTs pre-dit the evolution of the hannel vetor and users adjusts the predition by feedingbak a quantized version of the predition error to the BS [37, 34℄. Finally, wedesribe a preditive FB strategy with unitary rotation matrix, exploiting the geo-metri properties of unit norm CDI vetors; a similar tehnique has been proposedin [40℄ for a single user MIMO senario, and it is here generalized to the multiusersenario. In Setion 1.3 a general quantization sheme is desribed: the generalizedLinde, Buso, and Gray (LBG) algorithm is desribed in Setion 1.3.1, and used for



1.1. System Model 15odebook design in Subsetion 1.3.2; �nally, the quantization proess is desribed.In Setion 1.4 we introdue four di�erent FB strategies: i) Basi Feedbak (BFB),ii) UpDown Feedbak (UD), iii) Preditive Feedbak with quantization of the errorvetor (QEV), and iv) Preditive Feedbak with Unitary Rotation Matrix (RM). Anumerial omparison of the proposed strategies is given in Chapter 3.1.1 System ModelWe onsider the downlink of a ellular system where a BS has M transmit antennasandK MTs have one antenna eah. The symbol period is denoted as Ts, transmissionis performed in time slots of duration T and in eah time slot MTs feed bak a partialCSI, whih is used by the BS to shedule downlink transmissions.For slot n, let S(n) be the set of MTs sheduled for downlink transmissions, ls anatural number, and d(t) and y(t) be the olumn vetors of transmitted and reeivedsignals at time t = lsTs, respetively. We onsider a �at fading hannel desribed bythe omplex |S(n)| ×M matrix H(t) = [h1(t), . . . ,h|S(n)|(t)]
T .The disrete-time omplex baseband model is given by

y(t) = H(t)d(t) + n(t) , (1.1)where n(t) is a omplex Gaussian vetor noise with i.i.d. omponents having zeromean and unit variane.The transmit signal is subjet to the average power onstraint
E
[

‖d(t)‖2
]

≤ P , (1.2)where P is the available power. From (1.2) and noise assumptions, the averagesystem signal to noise ratio at the reeiver is SNR = P .The hannel matrix H(t) is not perfetly known at the BS while we assume thatMT k perfetly estimates the hannel vetor hk(t) one a slot. As in [33, 16℄ we adopta double FB information and eah MT feeds bak i) a hannel diretion information(CDI) of the diretion of hannel vetor (CV) at eah slot, namely
h̃k(n) =

hk(nT )

||hk(nT )||
(1.3)and ii) a hannel quality information (CQI), evaluated as

ξk ,
||hk||2|h̃H

k h̄k|2
1 + P

M
||hk||2(1− |h̃H

k h̄k|2)
, (1.4)



16 Chapter 1. Multiuser MIMO SC Downlink Systemwhere h̄k is the unit-norm reonstruted CVs of MT k. We fous here on the quan-tization and FB of the CDI. We assume that the FB hannel has a �nite rate of bbits per slot and allows zero-delay error free transmissions.The BS stores the partial CSI of seleted users into the matrix H̄(S(n)) =

[h̄s1(n), . . . , h̄s|S(n)|
(n)]T , with si ∈ S(n), ontaining the unit-norm reonstruted CVs.Based on the partial CSI, the BS evaluates the M × |S(n)| omplex beamformingmatrix G (S(n)) =
[

g1, . . . , g|S(n)|

], and vetor p enforing the power onstraint(1.2), i.e. [16℄
p =

P

|S(n)gk(n)|
. (1.5)One MTs have been seleted for downlink transmission, the transmitted vetor d(t)is obtained by beamforming, i.e.,

d(t) = G diag(p)1/2(S(n))u(t) nT ≤ t < (n+ 1)T , (1.6)where vetor u(t) = [u1(t), . . . , u|S(n)|(t)]
T ontains the MT data symbols for timeslot n, whih are assumed independent and identially distributed (i.i.d.) with zeromean and unit variane. The MT k signal to noise ratio (SNIR) is given by

SNIRk(t) =
pk|hk(t)gk(n)|2

1 +
∑

i∈S(n)\k pi|hk(t)gi(n)|2
. (1.7)1.2 Beamformer DesignIn this setion we brie�y review the ZF-BF design and derive a new MMSE-BF underinomplete CSI assumptions. For ease of notation we drop both the slot (n) and thetime (t) index.1.2.1 Zero-Foring BeamformingThe ZF approah aims at nulling the interferene at the MTs and the orrespondingtransmit matrix is the normalized version of the right pseudo-inverse of H̄. Aordingto ZF-BF, the beamformer an be written as

G(ZF )(S) = H̄(S)H
(

H̄(S)H̄(S)H
)−1

. , (1.8)Provided that eah MT feeds bak to the BS its urrent CQI value, an estimate ofthe SNIR for MT k has been derived in [16℄ as
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γ
(ZF )
k = ξkpk , (1.9)under the following assumptions: a) CV with i.i.d. omponents, eah Rayleighfading, b) equal power distribution among signals transmitted to MTs, c) |S| = M .1.2.2 MMSE BeamformingThe MMSE beamformer aims at minimizing the sum mean square error (MSE) ofthe reeived signals. To this end, we �rst deompose the CV relative to MT k intotwo orthogonal vetors fk and ǫk, parallel and orthogonal to h̄k, respetively, with

hk = ||hk|| (fk + ǫk) , (1.10)where fk = cosΘkh̄k and cosΘk = |h̃H
k h̄k|. Let also de�ne F = [f1, . . . , f|S|]

T and
E = [ǫ1, . . . , ǫ|S|]

T . We assume that MT k divides the reeived signal by β||hk||,where β is a power normalization oe�ient. In this ase, by de�ning the matrix
N = diag (||h1||, . . . , ||h|S|||

), the normalized reeived signal an be written as
y′ = β−1 (F+E)G(S)u+ β−1N−1n . (1.11)The MMSE-BF design aims at jointly optimizingG(S) and β in order to minimizethe MSE, i.e.,
G(MMSE)(S) = argmin

G(S),β

E
[

∣

∣

∣

∣y′ − u
∣

∣

∣

∣

2
] (1.12)under the power onstraint (1.2), without imposing equal power alloation amongMTs. The expetation in (1.12) is taken with respet to data, noise and the diretionof the error vetors ǫk, while from (1.10) we observe that ||ǫk||2 = sin2(Θk).The onstrained minimization is solved by the Lagrangian multipliers. We assumethat ǫk are statistially unorrelated and that the unit-norm vetor ǫ̃k = ǫk/||ǫk||assumes all diretions orthogonal to h̄k with equal probability.We derive here E

[

ǫ̃kǫ̃
H
k

] under the hypothesis: a) h̄H
k ǫ̃k = 0; b) ǫ̃

H
k ǫ̃k = 1; )

h̄H
k h̄k = 1; d) all diretion of ǫ̃k in the spae orthogonal to h̄k are equally probable.From vetor h̄k, by the orthonormalization proedure of Gram-Shmidt, we ob-tain a N ×N − 1 orthonormal matrix A, suh that h̄H

k Ak = 0 and ǫ̃k = Akxk, with
xk a N − 1-size unit-norm vetor. We also have

E[ǫ̃kǫ̃
H
k ] = AkE[xkx

H
k ]A

H
k . (1.13)



18 Chapter 1. Multiuser MIMO SC Downlink SystemThen, we an write [xk]q = | [xk]q |ejϕk,q . We assume that ϕk,q are i.i.d. uniformrandom variables in (0, 2π], while [|xk|]i are i.i.d. zero mean variables, so that
E[xpx

∗
q ] =

{

0 p 6= q

E[|[xk]p|2] p = q .
(1.14)We now write xk in hyper spherial oordinates as

|[xk]i| = cos(φi)
i−1
∏

p=1

sin(φp) , i = 1, 2, . . . , N − 2 ,

|[xk]N−1| =
N−2
∏

p=1

sin(φp) ,where φi, i = 1, 2, . . . , N − 2 are independent uniform random variables in the range
(0, 2π]. Hene we obtain E[|[xk]p|2] = 1

2p
, p < N − 1 and E[|[xk]p|2] = 1

2N−2 .Lastly, by de�ning R = E[EH
E], from the assumption that all vetors ǫk areindependent, from (1.17) we obtain

R = E[EH
E] =

|S|
∑

k=1

sin2(Θk)A
∗
kΞA

T
k , (1.15)where Ξ is a diagonal matrix with entries

[Ξ]p,p =
1

2p
, p < N − 1 , [Ξ]N−1,N−1 =

1

2N−2
, (1.16)

Ak is an N × (N − 1) matrix having as olumns a base of the spae orthogonal to
h̄k; from (1.13) and (1.14) we obtain also

E[ǫ̃∗kǫ̃
T
k ] = A

∗
kΞA

T
k . (1.17)Then, by de�ning the normalized matrix

Ḡ =

[

FHF+R+
σ2
N

P
I

]−1

FH (1.18)where σ2
N =

∑

i∈S
1

‖hi‖2
, and

β =

√

Ptrae (ḠHḠ
) (1.19)we obtain

G(MMSE) = βḠ . (1.20)



1.3. FB Codebook Design 19The SNIR relative to MT k an be written asSNIRk =
||hk||2|

(

h̄T
k cosΘk + ǫ̃

T
k sinΘk

)

gk|2
1 + ||hk||2

∑

i 6=k |
(

h̄T
k cosΘk + ǫ̃Tk sin Θk

)

gi|2
. (1.21)Negleting the seond term in the numerator of (1.21), i.e., ǫTk gk ≃ 0, and takingthe expetation with respet to the interferene term in the denominator of (1.21),we obtain the SNIR estimate

γ
(MMSE)
k =

||hk||2 cos2Θk|h̄T
k gk|2

1 + ||hk||2 cos2Θk

∑

i 6=k |h̄T
k gi|2 + ||hk||2 sin2Θk

∑

i 6=k g
H
i E [ǫ̃∗kǫ̃

T
k ] gi(1.22)Note that for the MMSE-BF design, the BS must know two CQIs beyond CDI:a) the hannel norm ||hk|| and b) the orrelation cosΘk.1.3 FB Codebook DesignWe introdue in this Setion the LBG quantization strategy, proposed in [37℄. Inpartiular, in Subsetion 1.3.1 we introdue the generalized LBG algorithm [41℄ asa pratial algorithm for the odebook design when the probability density funtion(PDF) is unknown. Based on LBG, the odebook design strategy is then desribedin 1.3.21.3.1 Generalized Quantization LBG AlgorithmWe �rst reall here the generalized Lloyd algorithm for vetor quantization. Let

d(s, ci) be a distortion metri where s ∈ CM is the soure vetor and ci ∈ CM isa generi odeword of odebook C. The generalized Lloyd algorithm [42℄, generatesthe optimum odebook that minimizes the average distortion,
min
Q[·]

E [d(s, cn)] (1.23)where cn = Q[s̃] is the quantized vetor at minimum distortion.The algorithm omprises two steps:
• Nearest neighborhood ondition (NNC). Given a odebook C = {c1, . . . , cN},the optimum partition region (Voronoi ell) Ri, i = 1, . . . , N of the odevetorindexed by i satis�es

Ri = {s : d(s, ci) ≥ d(s, cℓ) , ∀ℓ 6= i} . (1.24)
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• Centroid ondition (CC). For given regions {Ri, i = 1, . . .N}, the optimumquantization ode-vetors ci satisfy

ci = argmin
cℓ∈CM

E[d(s, cℓ)∣∣ s ∈ Ri

] (1.25)for i = 1, . . . , N .These two steps are iterated until the distortion minimization riterion onverges.In partiular, we adopt the alternative approah led by Linde, Buso, and Gray (LBG),whih onsiders a large set of vetor realizations {sn} referred as training sequeneand replae the statistial expetation E[d(s, ci)∣∣ s ∈ Ri

] by the sample average
1
mi

∑

sn∈Ri

d(sn, ci), where mi is the number of elements of training sequene inside Ri.We reall that the LBG algorithm onverges to a minimum that is not guaranteedto be global, nevertheless it provides a pratial way for odebook design even whenthe PDF of the soure signal is not known or di�ult to haraterize.1.3.2 Codebook DesignFor the senario of CDI FB that we are onsidering, sine system performane ismeasured in terms of the ahievable sum rate, a riterion of the odebook design isthe maximization of the estimated SNIR. For a ZF beamforming, maximization of theestimated SNIR is equivalent to the maximization of the average orrelation (1.28),sine it provides simultaneously the maximization of the numerator and minimizationof the denominator of (1.9). For a MMSE beamforming senario, the maximizationof the average orrelation (1.28) provides the maximization of the numerator of theestimated SNIR 1.22. Therefore, in both ases the riterion of the odebook designis
max

C
E [|h̃T

k c
∗
n|2
] (1.26)where c is the unit norm ode vetor from the odebook C at minimum hordaldistane from the hannel diretion h̃k.The generalized Lloyd algorithm [42℄ an be used to generate the optimum ode-book aording to (1.26), whih an be implemented by the LBG approah [43℄,where the expetation is evaluated as the average on a �nite training set (TS) ofCVs, randomly hosen aording to the hannel statistis.We onsider a variant of the LBG algorithm that proeeds iteratively by levelsin the odebook design, aording to the following steps:



1.4. FB Signalling Design 211. From the TS, ompute the optimum odebook with two odevetors by theLBG algorithm;2. Split the TS into two subsets, where eah subset ollets all the CVs of the TSat minimum hordal distane from the orresponding odevetors;3. Reursively iterate steps 1) and 2) to eah of the subsets of TS.This binary onstrution proedure an be represented by a binary tree of B levels,having at level i the odewords of the optimal odebook with 2i elements.With the designed odebook, quantization an be performed with a binary searhon the tree, thus requiring a lower omputation omplexity than onventional quan-tization, at the expense of a larger memory.A binary representation (odeword) of eah odevetor is obtained by assoiatinga bit to eah of the two branhes exiting a node and identifying a node at level iwith the i bits on the branhes leading from the root. As a onsequene, all nodesof the subtree departing from a node at level i have the same i most signi�ant bits.The odeword of i+ 1 bits assoiated to a CV an be obtained by adding one bit tothe CV representation with i bits.Moreover, slight hanges of the hannel in subsequent time slots most probablylead to odewords with the same most signi�ant bits. This feature is the key aspetin the UD signaling.1.3.3 QuantizationMT k quantizes the normalized CV h̃k into a odevetor ĉk, whose index of b bits isfed bak at eah slot. ĉk is seleted from a odebook of unit norm odevetors
C = {c1, . . . , cN} (1.27)with N = 2b. The quantization riterion is the minimum hordal distane (see e.g.[44℄ for a general de�nition), i.ê

hk = argmax
{c∈C}n=1,...,N

|h̃T
k c

∗| . (1.28)1.4 FB Signalling DesignIn this Setion we investigate di�erent tehniques for FB signalling. Firstly, we in-trodue the basi tehnique, whih onsists on transmitting the quantized version



22 Chapter 1. Multiuser MIMO SC Downlink Systemof the atual CV. Then, we propose di�erent FB strategies exploiting the hannelorrelation in time domain, and in partiular: the UD FB approah where FB bitsare aumulated over multiple signalling intervals in order to index a muh largerodebook; preditive FB strategies where both transmitter and users predit theevolution of the hannel vetor and users feed bak a quantized version of the predi-tion error to the transmitter; a preditive FB strategy with unitary rotation matrix,exploiting the geometri properties of unit norm CDI vetors.1.4.1 Basi FBThe simplest FB signalling an be performed by quantizing and transmitting diretlythe CDI; in other words, MT k quantizes h̃k to a unit norm vetor ĥk and selets asodeword ĉk = ĥk; the odebook index orresponding to ĉk is then sent to the BS.We denote this signaling tehnique as basi FB (BFB). In BFB, the orrelation intime of the MIMO hannel is not exploited, and the FB signalling is redundant. Infat, if the hannel is hanging su�iently slowly, and assuming that the odebookomplies with the nearest neighbor ondition, desribed in Setion 1.3.1, the FBsignalling of MT k in two adjaent slots di�ers only of few bits. Based on theseonsiderations we propose di�erent FB strategies, where the mobile CDI FB areaggregated over multiple FB intervals so that the aggregated bits index a largerodebook. By aggregating the FB bits over multiple intervals, the odewords anindiate a variation w.r.t. the past CDIs.1.4.2 UD FB SignalingThe Up-or-Down (UD) FB signalling tehnique is based on the tree desription of thevetor quantizer and an inremental FB strategy, exploiting the hannel orrelationin time domain.We assume that at slot n−1, both BS and MT k share the reprodued CV h̄k(n−1),represented by a binary word of variable length Ls(n− 1).At slot n, MT k quantizes h̃k(n) into ĥk(n) and ompare the �rst Ls(n− 1) bitsof the binary representations of ĥk(n) and h̄k(n − 1). The omparison leads to twoases, orresponding to a math (Down ase) or no math (Up Case) between thetwo sequenes. Let ik(n) be the binary word of b bits fed bak by MT k at timeslot n. The �rst bit ik,1(n) denotes the Up or Down ase. The following bits aredetermined as follows:
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• Down Case. The CSI is re�ned by feeding bak further b − 1 bits of the B-bits ode word. These additional bits are obtained by going down by b − 1levels into the quantization tree. This is performed by feeding bak bits atposition Ls(n − 1) + 1, . . . , Ls(n − 1) + b − 1 of the odeword assoiated to
ĥk(n). Moreover, Ls(n) = Ls(n− 1) + b− 1.

• Up Case. The CSI must be updated and the b− 1 bits Ls(n− 1)− 2(b− 1) +

1, . . . , Ls(n − 1) − b + 1 of the odeword assoiated to ĥk(n) are fed bak toBS. Now, Ls(n) = Ls(n− 1)− b+ 1.The proposed algorithm an be easily generalized to aount for boundary on-ditions imposing that b − 1 ≤ Ls(n) < B. Thanks to this strategy we are able totrak hannel variations at the ost of an overhead of one �ag bit. In this ase, thetransmitted binary word ik(n) has not a single relation to ĉk(n), beause it has beenderived from ĥk(n) and h̄k(n− 1).1.4.3 Preditive FB (PFB)The preditive FB (PFB) strategy is based on preditive vetor quantization [45℄.As depited in Fig. 1.1, at slot n, both BS and MT obtain a predition h
(p)
k (n)of the CV diretion h̃k(n), based on past reprodued values {h̄k(m) , m < n}. Forexample, a simple �rst order linear preditor yields h(p)

k (n) = h̄k(n − 1) where onlythe previous CSI value is used for predition. Next, eah MT quantizes the preditionerror ek(n) = h̃k(n)− h
(p)
k (n) and feeds bak to BS ik(n), a binary representation ofthe quantized vetor error êk(n) using b bits. Both BS and MT update the reproduedCV h̄k(n) by ombining the predited vetor with the quantized predition error, i.e.,

h̄k(n) =
h
(p)
k (n) + êk(n)

||h(p)
k (n) + êk(n)||

, (1.29)denoted as +/||.|| in Fig. 1.1.In this ase, the odebook of the predition error quantizer is designed by the LBGalgorithm minimizing the MSE E[||ek − ci||2]. We follow the open loop approah,hene from a TS we �rst obtain the set of hannel preditions and hannel preditionerrors {ek(n)}, whih are then used to design of the odebook by the LBG algorithm.



24 Chapter 1. Multiuser MIMO SC Downlink System1.4.4 Unitary Rotation Matrix Preditive FB (RM)We propose a further FB tehnique based on the quantization of the predition error.In partiular, sine h(p)
k (n) and h̃k(n) are unit-norm vetors, we model the preditionerror as a rotation vetor from the predited vetor h

(p)
k (n) to the true normalizedCV h̃k(n).In details, at slot n both MT k and BS derive in the omplex hyperspae CM×1of the MIMO hannel a unitary basis whose �rst element is given by the preditedvetor h(p)

k (n). This is done by omputing the unitaryM×M matrixWk(n) obtainedby the Gram-Shmidt orthogonalization proedure [36℄ applied to the olumns of
[h

(p)
k (n) IM ], where IM is the M × M identity matrix. With this de�nition theomponents of h(p)

k (n) in the new basis are the onstant vetor u = Wk(n)
Hh

(p)
k (n) =

[1 0 . . . 0]T , while the predition error vetor is de�ned as
ek(n) = WH

k (n)h̃k(n) . (1.30)Let êk(n) be the quantized version of ek(n) fed bak to the BS. The reonstrutedvetor is de�ned as
h̄k(n) = Wk(n)êk(n) . (1.31)We note that ek(n) is expeted to lie with high probability in an hyper-one en-tered around the onstant vetor u = [1, 0, . . . , 0]T and whose surfae area, althoughdepending on hannel time orrelation, is usually muh smaller than the ompletesurfae area of the unitary hyper-sphere desribed by h̃k(n). This suggests thatfor a target quantization distortion we need fewer odewords to quantize the pre-dition error ek(n) than what we would need to quantize h̃k(n) as in RVQ [33℄ orGrassmannian line paking [30℄.For odebook design we use the LBG algorithm minimizing the average distane

min
C

1

NTS

2b
∑

i=1

∑

h̃(n)∈Ri

d(ci, h̃(n)) , (1.32)where C = {c1, c2, . . . , cNc
}, Nc = 2b, is the generi odebook and Ri is the partitionregion of the training set assoiated to odeword ci.From (1.23) and (1.31) the distane to be minimized is given by

d(c, h̃(n)) = 1−
∣

∣

∣
h̃H(n)W(n)c

∣

∣

∣

2

= 1− cHWH(n)h̃(n)h̃H(n)W(n)c . (1.33)



1.4. FB Signalling Design 25We follow the open loop approah, hene from a sequene of hannel vetors {h̃(n)}we derive the set of hannel preditions {h(p)(n)}, whih are used to ompute {W(n)}in (1.33).We notie that if we de�ne the M ×M omplex matrix relative to the partitionregion Ri of the training set
Ai =

∑

h̃(n)∈Ri

WH(n)h̃(n)h̃H(n)W(n), (1.34)from (1.23) and (1.33) we have that the optimum odeword for the partition region
Ri is the dominant eigenvetor of matrix Ai normalized to unit norm.
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Chapter 2Multiuser MIMO OFDM DownlinkSystemsMIMO and OFDM are known to provide higher network throughput for the broad-ast (downlink) hannel, provided that transmissions are suitably sheduled. How-ever, sheduling tehniques proposed in Chapter 1 for MIMO SC systems [18, 17℄,are exeedingly omplex when used for OFDM systems, as the number of resouresto be alloated inreases signi�antly [13℄. Complexity is further inreased in FDDsystems, where a quantized version of the CSI is provided to the base station by eahMT through a FB hannel. Among existing e�ient solutions we mention the iter-ative user seletion greedy algorithm, proposed for SC systems [15℄, whih requiresthe omputation of a beamforming matrix at eah iteration. We propose suboptimalsheduling algorithms, based on simpli�ed BF evaluation during the user seletionproess. In Setion 2.1 the OFDM MIMO downlink system model is illustrated.Setion 2.2 addresses the tradeo� between an opportunisti approah in user sele-tion, providing high average sum rate, and quality of servie (QoS) requirements: weintrodue a general multiuser sheduling, the opportunisti maximum sum rate strat-egy, and the multiarrier proportional fair sheduling. In Setion 2.3 the SC greedyapproah is extended and re�ned. Three user seletion strategies are illustrated: i)multiarrier greedy (MG), obtained by extending the SC greedy algorithm; ii) pro-jetion based greedy algorithm (PBG), a re�ned greedy algorithm whih requiresa lower omplexity, and iii) multiarrier semi orthogonal user seletion (MSUS). Afurther re�nement of PBG algorithm whih performs user seletion on a subset ofandidate users based on the CQI, is introdued in Setion 2.4. Complexity analysisand memory requirements are evaluated for eah user seletion strategy in Setion27



28 Chapter 2. Multiuser MIMO OFDM Downlink Systems2.5. Part of this work has been published in [22, 23℄.2.1 System ModelWe onsider the downlink of a ellular system based on OFDM [46℄ with NC subar-riers. The BS has M transmit antennas while K mobile terminals (MTs) have oneantenna eah. Transmission is performed in time slots of L OFDM symbols, whileFB signalling is performed on a time-frequeny struture alled resoure blok (RB),aording to LTE. For eah time slot, we onsider in frequeny domain N sets of NSadjaent subarrier; the RB is de�ned as the ouple time slot, subarrier set. Foreah RB, MTs feed bak a partial CSI, whih is used by the BS to shedule downlinktransmissions. In other words, for eah time slot eah MT feeds bak N partial CSI,instead of NC = N ·NS, and therefore both time and frequeny hannel orrelationare exploited.At slot n, let Sc(n) =
{

u1,c(n), u2,c(n), · · · , u|Sc(n)|,c(n)
} be the set of |Sc(n)| MTs,

ui,c(n) ∈ {1, · · · , K}, sheduled for downlink transmission on RB c ∈ {1, · · · , N}.We denote as stream the (MT,RB) pair (k, c). Let also P(n) be the set of streamssheduled at slot n, i.e.
P(n) = {(k, c) |k ∈ Sc(n), c ∈ {1, · · · , N}} . (2.1)In our analysis we model the hannel as quasi stati, i.e., it is onsidered invariantfor the duration of one OFDM symbol, and it has the same frequeny response onall subarriers of eah RB.Hene, the frequeny response of the MIMO hannel on RB c of OFDM symbol

t for all M transmit antennas and all |Uc(n)| MTs is desribed by the omplex
|Uc(n)| × M hannel matrix Hc(t) = [h1,c(t), . . . ,h|Sc(n)|,c(t)]

T , where the M × 1olumn hannel vetor (CV) hk,c(t) ollets the gains between the M antennas of BSand stream (k, c).In general, for OFDM symbol t, dc(t,m), and yc(t,m) are, respetively, the M × 1and |Sc(n)| × 1 olumn vetors of the transmitted and reeived signals on subarrier
m of RB c. The disrete-time omplex baseband transmission model for subarrier
m of RB c is given by

yc(t,m) = Hc(t)dc(t,m) + nc(t,m) , m = 1, · · · , NS, (2.2)where nc(t,m) is a |Sc(n)|×1 omplex Gaussian noise vetor with i.i.d. omponentshaving zero mean and unit variane. The transmit signal is subjet to the average



2.1. System Model 29
power onstraint E [∑N

c=1

∑NS

m=1 ‖dc(t,m)‖2
]

≤ P , where P is the available power.In order to exploit spatial diversity, the transmit signal is obtained from the |Sc(n)|×1data signal Uc(t,m) by applying the ZF BF matrix Gc

(

nL
), i.e.

dc(t,m) = Gc

(

nL
)diag{pc(nL)}1/2Uc(t,m), nL ≤ t < (n + 1)L , (2.3)where pc(nL) is the power normalization vetor whih enfores equal stream power,i.e.

PS = E
[

‖ dk,c(t,m) ‖2
]

=
P

∑N
c=1 |Sc(n)|

(2.4)and dk,c(t,m) is the kth entry of dc(t,m).2.1.1 FB InformationIn a FDD system, CSI is provided through a FB hannel; therefore, as in the SC ase,we assume that matrix Hc(t) is not perfetly known at the BS while MT k perfetlyestimates the CVs one at eah slot, i.e. t = nL, to obtain hk,c(nL), c = 1, 2, . . . , N .As in the SC senario, desribed in Chapter 1, we adopt a double FB informationfor all MT at eah slot. In partiular, at slot n MT k feeds bak for eah RB c: i) aCDI h̄k,c, whih ideally should trak the normalized CV h̃k,c(nL), namely
h̃k,c(nL) =

hk,c(nL)

||hk,c(nL)||
c = 1, . . . , N, (2.5)and ii) a CQI, based on the estimated SNIR at the reeiver for M orthogonal shed-uled users evaluated as [16℄

ξk,c ,
||hk,c(nL)||2|h̃H

k,c(nL)h̄k,c(nL)|2

1 + P
M ·N

||hk,c(nL)||2(1− |h̃H
k,c(nL)h̄k,c(nL)|2)

. (2.6)We assume that the FB hannel has a �nite rate of Nb bits per slot and per MT andallows zero-delay error free transmission. The BS builds the matrix
H̄c(nL) = [h̄u1,c(nL), . . . , h̄u|Sc(n)|,c

(nL)]T , ui,c ∈ Sc(n) (2.7)ontaining the unit-norm reonstruted CVs h̄k,c(nL). Using the partial CSI, BSevaluates an estimate γk,c(n) of the SNIR of stream (k, c) as will be seen in Setion2.3. ZF beamforming with equal power distribution among streams is implementedfor eah RB, hene the BF matrix is
GZF

c (nL) = H̄H
c (nL)

(

H̄c(nL)H̄
H
c (nL)

)−1
. (2.8)



30 Chapter 2. Multiuser MIMO OFDM Downlink SystemsAn estimate of the normalized (with respet to the bandwidth) rate ahieved bystream (k, c) ∈ P(n) at slot n is
Rk,c(n,P(n)) = log2(1 + γk,c(n)). (2.9)Notation Rk,c(n,P(n)) highlights the fat that rates ahieved by di�erent streamsare mutually dependent, as i) more streams alloated simultaneously on the sameRBs yield interferene, and ii) the total power is distributed among ative streams.Performane is evaluated in terms of WSR

R (P(n)) =
∑

(k,c)∈P(n)

wk(n)Rk,c(n,P(n)) , (2.10)with wk(n) suitable weights that take into aount fairness and QoS onstraints.2.1.2 Exhaustive Searh ShedulingAt eah slot, we aim at sheduling the set of streams that maximizes WSR.This problem an be solved by onsidering all (∑M
i=1

K!
i!(K−i)!

)N possible sets andevaluating the WSR ahieved by eah andidate set. Unfortunately, this exhaustivesearh (EA) sheduling has a high omputational ost whih beomes infeasible foran inreasing number of MTs and subarriers. Simpler and suboptimal shedulingmethods are investigated in Setion 2.3.2.2 Maximum Utility ShedulerIn order to balane the opportunisti use of hannel resoures with fairness amongMTs, we onsider a multiuser sheduler. We �rst onsider in this setion generalriteria for the hoie of weights of the WSR and we derive the optimum maximumutility sheduler weights for a general utility funtion. Then we speialize the resultfor the maximum sum rate sheduler and the proportional fair sheduling.2.2.1 General Multiuser ShedulingThe ahievable rate assoiated with MT k is
Rk(n,P(n)) =

N
∑

c=1

Rk,c(n,P)



2.2. Maximum Utility Sheduler 31. In the �rst slot, the average throughput ahieved by MT k is
Tk(1) = 0 k = 1, 2, . . . , K. The estimate of the average throughput ahieved by MT k an be updated as

Tk(n+ 1) =















(1− αk)Tk(n) + αkRk(n,P(n)) k ∈
N
⋃

c=1

Sc(n) ,

(1− αk)Tk(n) k /∈
N
⋃

c=1

Sc(n) ,

(2.11)where N
⋃

c=1

Sc(n) is the set of sheduled MTs at slot n. If we aim at ahieving anaverage throughput ρk for MT k, we an de�ne the normalized averaged throughputat slot n as
Bk(n) =

Tk(n)

ρk
. (2.12)In [47℄, the following onave and di�erentiable utility funtion has been proposedto design shedulers

Uk(Bk(n)) =
ρk(1− αk)

κ

αk

1

1− κ
(B1−κ

k (n)− 1) , (2.13)where κ ∈ [0, 1)∪ (∞) is a fairness parameter to be hosen aording to the desiredsheduling poliy. For example, for K = 1, αk → 0, ρk = 1 and κ → 1 we obtain theproportional fair sheduler (PFS). For κ = 0 we obtain the utility funtion of themaximum sum-rate sheduler. When κ → ∞, (2.13) beomes the utility funtion ofthe max-min sheduler.We derive the sheduler that maximizes the sum utility
K
∑

k=1

Uk(Bk(n)) . (2.14)Following the derivations of [47℄, the maximization of the sum utility (2.14) isahieved for
P(n) = argmax

I⊂Y

∑

k:(k,c)∈I

Uk

[

1

ρk
δk(I)αkRk(n, I) +

1

ρk
(1− αk)Tk(n)

] (2.15)where δk(I) = 1 if k ∈ I and δk(I) = 0 if k /∈ I. For all but the sheduled MTs, the



32 Chapter 2. Multiuser MIMO OFDM Downlink Systemsalloated rate at slot n is zero, therefore we have
P(n) = argmax

I⊂Y





∑

k:(k,c)∈I

Uk

[

1

ρk
αkRk(n, I) +

1

ρk
(1− αk)Tk(n)

]

+

−
∑

k:(k,c)∈I

Uk

[

1

ρk
(1− αk)Tk(n)

]



 .

(2.16)
Under the assumption (1 − αk)Tk(n) ≫ αkRk(n, I), the following approximationholds

Uk

[

1

ρk
αkRk(n, I) +

1

ρk
(1− αk)Tk(n)

]

− Uk

[

1

ρk
(1− αk)Tk(n)

]

≈

≈ αkRk(n, I)
∂Uk(x)

∂x

∣

∣

∣

∣

(1−αk)Tk(n)/ρk

.

(2.17)The derivative an be written as
∂Uk(x)

∂x

∣

∣

∣

∣

(1−αk)Tk(n)/ρk

=
ρk(1− αk)

−κ

αkρ
−κ
k

Tk(n)
−κ . (2.18)Hene, the set of MTs P(n) that maximizes (2.14) is

P(n) = argmax
I⊂Y

R (I) = argmax
I⊂Y

∑

(k,c)∈I

wk(n)Rk,c(n, I) , (2.19)with weights
wk(n) =

∑

c:(k,c)∈I

Rk,c(n, I)ρκk
(1− αk)κTk(n)κ

, (2.20)where Y = {(k, c) : k ∈ {1, · · · , K}, c ∈ {1, · · · , N}} is the set of all possible streams.Note that for K = 1, (2.20) boils down to the maximum utility sheduler of [47℄.2.2.2 Maximum Sum Rate ShedulerThemaximum sum rate sheduler does not onsider the fairness among users (κ = 0),and simply aims at maximizing the ahievable sum rate (SR), providing wk = 1, for
k = 1, · · · , K, and

P(n) = argmax
I⊂Y

R (I) = argmax
I⊂Y

∑

(k,c)∈I

Rk,c(n, I) . (2.21)



2.3. Greedy Sheduling Strategies 332.2.3 Proportional Fair ShedulingThe multiuser multiarrier proportional fair sheduling (MMPFS) algorithm [48℄ isan extension to the OFDM multi-user senario of the PFS algorithm.For MMPFS, the average throughput of MT k is updated as in (2.11) with αk = 1/τ ,where τ is a parameter related to the time over whih fairness should be ahieved.In [49℄ it has been shown that proportional fairness, maximizing ∑k log2 Tk(n), isahieved by sheduling MTs as
P(n) = argmax

I⊂Y

∑

(k,c)∈I

log2

(

1 +
Rk,c(n, I)

(τ − 1)Tk(n− 1)

)

. (2.22)We observe that for τ >> 1 we an approximate
log2

(

1 +
Rk,c(n, I)

(τ − 1)Tk(n− 1)

)

≈ Rk,c(n, I)
(τ − 1)Tk(n− 1)

(2.23)and MPFS (2.22) oinides with the maximization of the WSR (2.19) with weights(2.20), ρk = 1, αk = 1
τ
and κ = 1.2.3 Greedy Sheduling StrategiesIn the following we investigate sub-optimal solutions to the problem (2.19) for a fewMTs, i.e. small K, where the probability of having a fully loaded system is small.In fat, in this senario power distribution has an important role in seleting theoptimal MT set. In Setion 2.3.3 we will onsider the ase of a high number of MTs

K, and in this ase a simpli�ation of sheduling is possible. For ease of notation wedrop both slot (n) and OFDM symbol (t) index in the remaining of the Chapter.2.3.1 Multiarrier Greedy (MG)In [15℄, a greedy sheduling algorithm in a SC �at fading system has been proposed,where MTs are seleted one by one as long as the throughput inreases and it hasbeen then extended to an OFDM system in [22℄ and denote here multiarrier greedy(MG).The MG algorithm omprises Nstep steps, and at eah step we selet the streamthat maximizes the inrease of WSR. Let S(i) be the set of streams sheduled for



34 Chapter 2. Multiuser MIMO OFDM Downlink Systemstransmission at step i, (i = 1, · · · , Nstep), with the orresponding WSR R(S(i)).Initially we have S(0) = ∅. The stream seleted at step i+ 1, is
(

k̄, c̄
)

= arg max
(k,c)∈Y\S(i)

R
(

S(i) ∪ {(k, c)}
)

, (2.24)and we set S(i+1) = S(i) ∪ {(k̄, c̄)}. The WSR R
(

S(i)
) inreases at eah step, sinestream (k, c) is inserted under the ondition that

R
(

S(i) ∪ {(k̄, c̄)}
)

≥ R
(

S(i)
)

. (2.25)When (2.25) does not hold, the algorithm is stopped, Nstep = i and P = S(Nstep).Hene, Nstep is a random variable. Evaluation of the WSR in (2.24) for the urrentset of streams is based on the SNIR estimate [15℄ for stream (j, c) ∈ S(i) ∪ {(k, c)},with (k, c) ∈ Y \ S(i), i.e.
γ
(i+1)
j,c =

P

(i+ 1) · ||g(i)
j,c||2

ξj,c , (2.26)where ξj,c is given by (2.6) while g
(i)
j,c is the j-th olumn of the BF matrix G

(i)
c forMTs sheduled at step i. Note that total power P has been divided by |S(i+1)| = i+1in order to obtain the per stream power PS.2.3.2 Projetion Based Greedy (PBG)Aording to the MG algorithm, the introdution of a new andidate stream (k̄, c̄)into the set S(i) at step i+ 1 dereases the SNIRs (2.26) for two reasons:a) the power is redistributed among all streams;b) BF of streams already sheduled on the same RB is modi�ed.Due to a), it is bene�ial to perform sheduling jointly among RBs rather thanseparately on eah RB. Due to b), a new BF matrix must be omputed for MTssheduled on RB c̄ of the andidate stream. Hene, at eah step many BFs must bedesigned for eah RB to test (2.25) and only one andidate stream is then sheduled.In order to redue the omputational omplexity, the projetion based greedy (PBG)algorithm [23℄ assumes that the insertion of a new stream does not signi�antly alterthe SNIR of already sheduled streams. Indeed, this assumption holds as long asthe CV of the andidate stream is almost orthogonal to CVs of previously sheduled



2.3. Greedy Sheduling Strategies 35streams. Therefore, we update the SNIR estimate of already sheduled streams asfollows
γ(i+1)
p,q =

i

i+ 1
γ(i)
p,q (p, q) ∈ S(i) , (2.27)for i = 2, 3, · · · , Nstep − 1, while for the �rst step we set γ

(1)
p,q = ξp,q, (p, q) ∈ S(1).Furthermore, the evaluation of the SNIR for the andidate streams requires only theomputation of ||g(i)

k,c||2 instead of the entire beamformer. In partiular, if we de�ne
ak,c(S(i)) =

1

||g(i)
k,c||2

, (2.28)from (2.26) we have
γ
(i+1)
k,c =

P

i+ 1
ξk,cak,c(S(i)) (k, c) ∈ Y \ S(i). (2.29)In order to ompute (2.28) and the orresponding SNIR (2.29) of the andidatestream (k, c), it an be observed that its BF vetor is obtained by the orthogonal-ization of h̄k,c with respet to the normalized CV of already sheduled streams onthe same RB. Hene, an orthonormal basis Bc(i) =

{

b̄j,c

} is �rst onstruted for thespae generated by the hannel vetors {h̄p,c} of streams in S(i) on RB c. Then theBF vetor for stream (k, c) would be proportional to
g
(i)
k,c ∝ h̄k,c −

|Bc(i)|
∑

j=1

(

h̄k,c · b̄H
j,c

)

b̄j,c . (2.30)Now, by imposing G
(i)
c H̄c = I, the identity matrix, it is h̄H

k,cg
(i)
k,c = 1 and we have

ak,c(S(i)) =

∣

∣

∣

∣

∣

∣

1−
|Bc(i)|
∑

j=1

∣

∣h̄k,c · b̄H
j,c

∣

∣

2

∣

∣

∣

∣

∣

∣

2

. (2.31)By using (2.29) and (2.31), there is no need to determine a new BF in orrespondeneof eah andidate stream; instead, only the basis Bc(i) needs to be updated at eahstep, and this requires only few vetor multipliations. Note that the omputationof ak,c is based on the projetion of the andidate vetor on the basis, as from thearonym PBG. One all streams have been sheduled, a BF is omputed to performtransmission.



36 Chapter 2. Multiuser MIMO OFDM Downlink Systems2.3.3 Greedy Sheduling Strategies in the High K SenarioIf K ≫ M , multiuser diversity provides M orthogonal streams on eah RB withvery high probability, thus we will have almost always a fully loaded system, i.e.
|Sc| = M . In this ase, both MG and PBG algorithms an be simpli�ed withoutredistributing the available power at eah new insertion, and the per stream power(2.4) beomes

PS =
P

N ·M . (2.32)Sheduling an then be simpli�ed by operating independently on eah RB.2.3.4 Multiarrier Semi-Orthogonal User Seletion Algorithm(MSUS)The SUS sheme [10℄ an be easily generalized to the OFDM senario and is heredenoted as multiarrier SUS (MSUS). The generalization inludes also the maximiza-tion of the WSR instead of the SR as onsidered in [10℄. MSUS proeeds by steps,now applied separately on eah RB. For RB c, let A(1)
c = {1, · · · , K} be the initial setontaining the indexes of all MTs. The sheduled stream at step 1 is haraterizedby having maximum CQI, i.e.

k1 = argmax
k∈A

(1)
c

wk · log2(1 + ξk,c). (2.33)After seleting i streams, the (i+ 1)th stream ki+1 is hosen within the set
A(i+1)

c = {k ∈ A(i)
c \k(i), c : |ĥk,c, ĥ

H
kj,c,c

| ≤ ǫ, 1 ≤ j ≤ i} i = 2, · · · ,M (2.34)as
ki+1,c = argmax

k∈A
(i+1)
c

wk log2(1 + ξk,c) (2.35)where ǫ is a design parameter that sets the maximum orrelation allowed between thequantized hannel vetors of the seleted MTs. We note that in MSUS we apply NSC SUS in parallel, one for eah RB. Also in this ase the number of steps is randomas the algorithm ends when set A(i)
c is empty. One MTs have been sheduled, thetotal power is equally distributed among sheduled streams aording to (2.4).



2.4. Pre-Seletion Methods 372.4 Pre-Seletion MethodsIn the MG algorithm the WSR R
(

S(i)
) inreases at eah step and using (2.9) and(2.10), ondition (2.25) beomes

∑

(p,q)∈S(i+1)

wp log2(1 + γ(i+1)
p,q ) ≥

∑

(p,q)∈S(i)

wp. log2(1 + γ(i)
p,q) (2.36)From (2.26) we obtain that this ondition is satis�ed only if the SNIR is high enoughto ompensate for losses inurred by the insertion of a new sheduled stream, i.e.the power redistribution and the BF modi�ation, as desribed by onditions a) andb) of Setion III.B. This observation suggests a further simpli�ation of the PBGalgorithm, by a-priori exluding as andidate streams whose SNIR is below a ertainthreshold. Preseletion tehniques aim at providing simple methods for exludingstreams with low SNIR. Indeed, as for eah andidate stream the SNIR (2.29) mustbe evaluated, by exluding streams that ould never be inserted, the shedulingproedure an be fastened [23℄.2.4.1 Preseletion PBG (PPBG)We �rst observe from (2.31) that ak,c(S(i)) ≤ 1 and from (2.28) we obtain

γ
(i+1)
k,c ≤ ξk,c

P

i+ 1
. (2.37)Therefore, at step i of PBG there is a minimum value of ξk,c that satis�es (2.36),denoted Ak,c(i+ 1), and we onsider for sheduling only streams having SNIR

ξk,c > Ak,c(i+ 1). (2.38)At high SNR we have
Ak,c(i+ 1) ≈ wk

√

√

√

√

∏

(p,q)∈S(i)

(

i+ 1

i

)wp (i+ 1)

P
. (2.39)Proof: We observe that ondition (2.36) is equivalent to

[

1 +
P

i+ 1
ξk,cak,c(S(i))

]wk
∏

(p,q)∈S(i)

[

1 + γ(i+1)
p,q )

]wp
>

∏

(p,q)∈S(i)

[

1 + γ(i)
p,q

]wp (2.40)where (k, c) is the generi andidate stream.



38 Chapter 2. Multiuser MIMO OFDM Downlink SystemsIn the high SNR senario, with ξp,q >> 1, we have 1+γ
(i)
p,q ≈ γ

(i)
p,q and from (2.27),ondition (2.40) beomes

(

P

i+ 1
ξk,cak,c(S(i))

)wk
∏

(p,q)∈S(i)

(

P

i+ 1

)wp

>
∏

(p,q)∈S(i)

(

P

i

)wp

. (2.41)Hene from (2.41), (2.39) follows. We note that, in the high K senario, (2.40)beomes
[

1 + PSξk,cak,c(S(i))
]wk

> 1 (2.42)and Ak,c(i) = 0.Then by onsidering only streams (k, c) satisfying (2.38), we derease the numberof omparisons and SNIR updates at eah step of PBG. In the high K senariopreseletion tehnique is not feasible; in fat, Ak,c(i) → 0 for K → ∞, and therefore(2.38) is veri�ed by all streams.We further note that Ak,c(i) is an inreasing funtion of i; hene, streams whose CQIis below the threshold Ak,c(i) at step i an be negleted also in the next steps.2.4.2 Simpli�ed Preseletion PBG (SPPBG)A further simpli�ation in preseletion is ahieved by onsidering wk ≈ wp ≈ 1 in(2.39) to yield
Ak,c(i+ 1) ≈ (i+ 1)

P

(

i+ 1

i

)i

. (2.43)Within PBGmethods, we note that this approah beomes optimal when the shedul-ing objetive oinides with the maximization of the SR. However, for the maximiza-tion of the WSR, S-PPBG is in general suboptimal.2.5 Complexity AnalysisWe analyze the worst ase omplexity of the various approahes, in terms of bothomputational omplexity and memory requirement.2.5.1 Computational ComplexityWe assume that a omparison yields a omputational omplexity equal to λ omplexmultipliations (CMUX), while the inversion of an M × M matrix performed by
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Gaussian elimination methods, has omplexity M · (M2 − 1)

3
CMUX. The BF and

‖ gk,c ‖2 evaluation has therefore omplexity
BFC = 2|Sc| ·M2 +

M · (M2 − 1)

3
+ |Sc| ·M. (2.44)We �rst observe that all onsidered algorithms selet one stream per step, until atmost M streams are alloated on eah RB, thus in general Nstep ≤ N ·M . At step i,

|Y\S(i)| = K ·N − i streams are onsidered for insertion in S(i+1). Furthermore, ateah step, the per stream power PS is adapted, due to the insertion of a andidatestream in S(i+1). The inversion of an M × M matrix performed by the GuassianElimination method has omplexity M · (M2 − 1)

3
.MG omplexity. Complexity of the MG algorithm in the low K senario is givenby

CMG−lowK = λ ·N ·K +

Nstep
∑

i=2

(i− 1)+

+ (K − |S(i)
ζ(i−1)|) · (BFC + 2) + λ(K ·N − i+ 1) + λ

(2.45)where ζ(i− 1) denotes the RB of the stream seleted at step i− 1. The �rst term in(2.45) aounts for the seletion of the stream with maximum CQI. The remainingterms aount for steps 2 throughNstep, with a) update of SNIR estimate of the (i−1)already sheduled streams, b) omputation of a new BF for eah of the (K−|S(i)
ζ(i−1)|)andidate streams on subarrier ζ(i− 1), ) evaluation of ‖ gk,ζ(i−1) ‖2, d) update ofthe SNIR estimates and e) evaluation of the WSR. Lastly, the algorithm determinesthe stream whih maximizes the WSR at step i and heks ondition (2.25).In the high K senario omplexity beomes

CMG−highK = λ ·N ·K +N ·
M
∑

i=2

{(K − i+ 1) · (BFC + 2)+

λ · (K − i+ 1) + λ} ,
(2.46)sine now Nstep = M and no power update is neessary at eah step.PBG omplexity. Complexity of the PBG in the low K senario is

CPBG = λ ·N ·K +N · BFC +

Nstep
∑

i=2

{

(i− 1) + (K − |S(i)
ζ(i−1)|) · (M + 2)+

+|S(i)
ζ(i−1)|+ 2 ·M + λ · (K ·N − i+ 1) + λ

}

.

(2.47)



40 Chapter 2. Multiuser MIMO OFDM Downlink SystemsIn fat, the PBG algorithm for eah andidate stream on RB ζ(i − 1) performs a)the projetion of CV on the orthogonal basis and b) updates the SNIR estimate. Ateah step, the basis is also updated aording to the CV of last sheduled stream.At the end, the BF matrix is omputed aording to the set of sheduled streams.In the high K senario we have
CPBG−highK = λ ·N ·K +N · BFC +N ·

M
∑

i=2

{(M + 2) · (K − i+ 1) + i

+2 ·M + λ · (K − i+ 1) + λ} ,
(2.48)sine sheduling an be performed in parallel on all RBs.PPBG omplexity. The omplexity of the PPBG in the low K senario is givenby

CPPBG = λ ·N ·K +N · BFC +

Nstep
∑

i=2

{(i− 1)+

+(K − |S(i)
ζ(i−1)|) · (M + 2) + |S(i)

ζ(i−1)|+ 2 ·M + 1 + λ · (K ·N − i+ 1) + λ
}

.(2.49)It only di�ers from PBG in the evaluation of Ak,c(i+1) at eah step, sine it dependson the set of sheduled streams. Similarly, in the high K senario we have
CPPBG−highK = λ ·N ·K +N · BFC +N ·

M
∑

i=2

{(M + 2) · (K − i+ 1)+

+i+ 2 ·M + 1 + λ · (K − i+ 1) + λ} ,
(2.50)SPPBG omplexity. Applying the S-PPBG algorithm, we have an additional ostdue to (2.38); on the other hand, on RB c, at eah step i we exlude a number ofstreams Qc(i) from the set of possible streams. Qc(i) takes into aount also thesheduled streams. Then at step i we have Ji,c = K −

∑i
j=1Qc(i) andidate streamson RB c and in total Ji = |Y\S(i)| =∑N

c=1 Ji,c. Complexity beomes
CSPPBG = λ ·N ·K +N · BFC +

Nstep
∑

i=2

{

(i− 1) +
(

Ji,ζ(i−1)+

−|S(i)
ζ(i−1)|

)

· (M + 2) + |S(i)
ζ(i−1)|+ 2 ·M + λ · (2Ji + 1)

}

.

(2.51)Note that Qc(i) is a random variables depending on the hannel realization. Inthe high K senario we still onsider power adjustment; otherwise, from (2.43), we



2.5. Complexity Analysis 41ould never exlude streams, and then S-PPBG would beome PBG. Complexity ofS-PPBG in the high K senario beomes
CSPPBG−highK = λ ·N ·K +N · BFC+

+ ·
Nstep
∑

i=2

{

(i− 1) + (Ji,ζ(i−1) − i+ 1|) · (M + 2)+

+i+ 2 ·M + λ · (2Ji + 1)} .

(2.52)The MSUS algorithm is equivalent to N SUS algorithms working in parallel. Weremind that at eah step SUS onsiders |A(i)
c | = K − i−

∑i
j=1Q(i) andidate MTs,where Q(i) is the number of MTs exluded at step i. It is

CMSUS = N · BFC+

+

N
∑

c=1

(

λ ·K +

M
∑

i=2

(|A(i−1)
c | · i+ λ · |A(i−1)

c |+ |A(i)
c |(λ+ 1))

)

.
(2.53)2.5.2 Asymptoti Complexity AnalysisAording to omplexities required by various sheduling algorithms, we investigatetheir asymptoti behavior with respet to K as a funtion of K. For MG we have

CMG−∞ ≈ K[λ ·N +N(M − 1)(BFC + 2 + λ)] +O(K) (2.54)where O(K) indiates a term whih goes asymptotially to 0 faster than K. ForPBG and PPBG we have
CPBG−∞ = CPPBG−∞ ≈ K[λ ·N +N(M − 1)(M + 2 + λ)] +O(K) (2.55)Both S-PPBG and MSUS perform the exlusion of worse streams. Let βi be theperentage of streams exluded at step i, for S-PPBG it is Ji,c = (K − i) · (1 − βi)while for MSUS A(i)

c = (K − i) · (1− βi). Asymptoti expressions are
CSPPBG−∞ ≈ K[λ ·N +D · (M + 2) + λ · 2 ·D ·N ] +O(K), (2.56)and

CMSUS−∞ ≈ K [N · λ+B + λ · (M − 1) · C + (λ+ 1) ·D] +O(K) (2.57)where B =
∑M

i=2 i(1− βi−1) and C =
∑M

i=2(1− βi−1) and D =
∑M

i=2(1− βi).



42 Chapter 2. Multiuser MIMO OFDM Downlink Systems2.5.3 Memory OupationLastly we investigate memory requirements of the sheduling algorithms in terms ofomplex loation (CLS) units. We �rst note that all algorithms store a) CDI andCQI of all streams, b) the set of seleted streams and ) the �nal BFs; then a memoryoupation of MCOMM = N ·M ·K +K ·N +N ·M2 +M ·N CLS is ommon toall algorithms. For MG we have
MMG = MCOMM +K ·N +M ·N +K +M2 ·K + 2 (2.58)sine MG stores a) γj,c (or, equivalently, ‖ gj,c ‖2), requiring K ·N CLS, b) per MTrates (N ·M CLS as worst ase), ) new BF (K ·M2 CLS), d) total rate providedby eah andidate (K CLS), and e) urrent and last �nal rates (2 CLS). For PBGand PPBG we have

MPPBG = MPBG = MCOMM +K ·N +M ·N +K +M2 ·N + 2, (2.59)as PBG stores a) the value √
ak,c, b) total rate provided by eah andidate stream(K CLS) and ) orthogonal basis (M2 ·N CLS).The S-PPBG memory requirement is given by

MSPPBG = MCOMM + ·K ·N +M ·N +K +M2 ·N + 2 +M ·N. (2.60)With respet to PBG, it needs to store also Ak,c(i) (M ·N CLS as worst ase).Finally, for MSUS we have
MMSUS = MCOMM +M ·N +N ·K + 1 +K ·N (2.61)as MSUS stores a) orrelations of andidate streams and last inserted stream (N ·KCLS), b) the value of ǫ (1 CLS) and ) the set of total rates of eah andidate (K ·NCLS as worst ase).



Chapter 3Performane ResultsWe onsider a BS equipped with M = 4 antennas spaed by 10 wavelength at thearrier frequeny of 2 GHz. The hannel is modeled as time-variant, �at Rayleighfading, aording to the spatial hannel model (SCM) [50℄. All MTs are uniformlydistributed in a ell of radius 500 m, as in [51℄; the time slot duration is T = 0.5ms and eah MT transmits the FB one per slot. The odebook for preditive errorquantization is designed from a TS omposed of CVs of SCM for MT moving at 3,50 and 130 km/h with equal probability, a �rst order linear preditor is adopted andthe value hosen for the fairness parameter in PFS is τ = 0.1 s.3.1 Single Carrier Senario ResultsWe de�ne the average sum rate (SR) as
SR = E







|S(n)|
∑

k=1

log2 [1 + SNIRk(t)]







, (3.1)where SNIRk(t) is the SNIR relative to MT k, de�ned in (1.7) as
SNIRk(t) =

pk|hk(t)gk(n)|2
1 +

∑

i∈S(n)\k pi|hk(t)gi(n)|2
. (3.2)3.1.1 Beamforming Performane ResultsIn Fig. 3.1 we set K = 20 and the average SNR to 15 dB. We ompare the BFB andPFB strategies in terms of SR as a funtion of the number of FB bits b for ZF-BF.43
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Figure 3.1: SR as a funtion of FB bits for various FB strategies, with MTs movingat 3 and 130 km/h. SNR = 15 dB.The proposed PFB signi�antly outperforms BFB for any FB rate, sine it exploitsthe time orrelation of the hannel. The gain is more evident at a low MT speed,when, even with a low FB rate, the performane gets lose to that of perfet CSI(PCSI). Moreover, even with a highly time variant hannel, PFB is still preferableto BFB.In Fig. 3.2 we evaluate the SR for various FB strategies as a funtion of theaverage SNR. First of all, we note that at a low SNR, BFB with MT moving at130 km/h provides a higher SR than at 3 km/h beause with a higher speed PFSdoes not signi�antly worsen the ahievable throughput. On the other hand, at highSNR BFB with a MT moving at a lower speed gives better performane beause athigher veloity the beamformer designed at the beginning of eah slot gets outdatedfor the varying hannel onditions ausing multiuser interferene degradation. And
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Figure 3.2: SR as a funtion of SNR for various FB strategies and FB bits. MTsmoving at 3 and 130 km/h.this e�et beomes dominant in the high SNR region where interferene dominatessystem noise. We observe that PFB strategy still highly improves BFB espeiallyfor a low MT speed and with only b = 12 we get performane very lose to PCSI.For lak of spae we did not inlude the performane of the proposed FB strategiesusing MMSE-BF. Nevertheless with this opportunisti approah MMSE-BF does notprovide a gain with respet to ZF-BF beause the proposed greedy algorithm seletsMTs only if this is bene�ial for the weighted throughput, thus limiting multiuserinterferene that MMSE-BF tries to ope with.Figg. 3.3 and 3.4 ompare MMSE-BF and ZF-BF adopting both BFB and PFBand assuming MTs moving at 3 and 130 km/h, respetively; for both �gures, weonsidered K = 4 dediated hannels, i.e., in the absene of sheduling, or with asheduler seleting randomly the K = 4 MTs. In this senario, where the sheduler
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Figure 3.3: SR as a funtion of SNR for various FB strategies and FB bits adoptingboth ZF-BF and MMSE-BF. MTs moving at 3 km/h.does not avoid multiuser interferene by a proper user seletion, MMSE-BF is prefer-able beause it better opes with multiuser interferene due to quantization errors,although it requires a double CQI FB. Nevertheless, we assumed also the ase of oneCQI FB, onsidering the mean value of cosΘk in BF design; also in this ase, weveri�ed that MMSE-BF still performs better than ZF-BF in a random shedulingsenario.3.1.2 FB Performane ResultsWe evaluate now the performane of FB strategies, as a funtion of SNR and of FBrate. Simulations are performed onsidering a set of K = 20 users.
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Figure 3.4: SR as a funtion of SNR for various FB strategies and FB bits adoptingboth ZF-BF and MMSE-BF. MTs moving at 130 km/h.We �rst evaluate LBG tehnique in terms of average SR in the ondition of blokfading, where the hannel is �xed during the timeslot. Fig. 3.5 shows that forevery FB rate the average SR value inreases of about 2 bits/s by using the LBGquantization method instead of the RVQ one. Of ourse, as the FB rate inreasesthe average SR beomes higher as well, sine the BS has a better CDI and then onaverage the ahievable rate for users beomes higher. Note that with the SCM model,where the hannel is not onstant during a timeslot both LBG an RVQ quantizationmethods provide a worse performane, sine the preoder designed at the beginningof the timeslot is not perfetly mathed with the atual hannel; however, the LBGsheme still have an higher SR than the RVQ one.We now want to ompare the PFB strategy with the UD strategy and BFB. We
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Figure 3.5: Sum rate as a funtion of SNR using RVQ and LBG quantization methodsin ase of blok fading ondition and in ase of FB bit rate equal to 12 and terminalsmoving at speed of 130 Km/honsider a on�guration with hannel SNR=15 dB and plot the average SR as afuntion of the number of FB bit sent by eah user. Fig. 3.6 shows that for lowspeed and low number of FB bits the UD feedbak strategy highly improves theaverage SR with respet to both PFB and BFB. This improvement saturates as thenumber of FB bits beomes higher than 4, so that with 4 FB bits we ahieve thesame average SR as the BFB with 11 FB bits. On the other hand, as the number ofFB bits beomes higher than 4, the PFB outperforms the UD strategy; in partiular,if b > 10, the ahieved SR di�ers by only 0.8 bit/s from the one provided by theperfet CSIT one a timeslot. For an higher speed, however, the gap between thethree strategies beomes thinner, as illustrated by Fig.3.8; at 50 km/h UD with 8 bitsprovides the same average SR value as BFB with 11 FB bits; lastly, for 130 km/h theBFB outperforms both UD and PFB with low FB bits , while opposite ours withmore than 6 FB bits, when the PFB provides the highest SR. For the UD strategy,this behavior is due to the fat that with high speed the CSI hanges rapidly, and



3.1. Single Carrier Senario Results 49then the user has to send nearly always the most signi�ant b bits; in this ase, theontrol bit used by UD to indiate the meaning of the last b−1 bits does not provideuseful information and then the UD method provides a worse performane. For thePFB strategy, its behavior in presene of high speed is due to the rude quantizationof the predition error, whih a�ets the diretion of the CSIT.
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PCSIFigure 3.6: Sum rate as a funtion of FB bits with terminals moving at speed of 3Km/hFig.3.7 illustrates the average SR ahieved by BFB UD and PFB shemes with 4and 12 FB bits when MT speed is 3 km/h; note that with b = 4 FB bits UD shemeoutperforms both BFB and PFB shemes of about 10 bits/s and provides almostthe same average SR as the UD using b = 12 bit (the di�erene between the twois less than 0.5 bit/s). On the other hand, with b = 8 and b = 12 PFB providesthe highest average SR sine the quality of CSIT is not limited by the quantizationof the diretion of the hannel, as in UD and BFB; in fat, if we onsider UD andBFB with b = 12 and B = 16, we observe that ahieved SR is higher than UD andBFB with b = 12 and B = 12. For high speed (130 km/h), however, UD and PFBprovide a little improvement (of about 1 bit/s for UD and 2 bit/s for PFB) with
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Figure 3.7: Sum rate as a funtion of SNR using RVQ and LBG quantization methodswith terminals moving at speed of 50 Km/hrespet to BFB only with b = 8, while with b = 4 BFB outperforms both UD andPFB,as illustrated in Fig.3.8; again note that with b > 4 PFB outperforms both UDand BFB for it provides the most aurate hannel state information at the BS.3.2 OFDM Sheduling Tehniques PerformaneWe ompare the sheduling algorithms in terms of average SR and omplexity re-quirements. we onsider an average SNR of 15 dB per RB at the ell border andpath loss is inluded in the hannel model. We assume also a realisti MIMO han-nel with time, frequeny and spatial orrelation among the elements of Hc(t), asthe hannel is modeled as slowly time-variant, frequeny seletive Rayleigh fading,aording the SCM [50℄ in a OFDM senario. Aording to the LTE release, we settransmission bandwidth to 2.5 MHz, divided into N = 12 RBs and entered at thearrier frequeny of 2 GHz, and eah slot is omposed of 7 adjaent OFDM symbols.CSI FB is performed with a variable number of bits using an optimized odebook,
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Figure 3.8: Sum rate as a funtion of SNR using RVQ and LBG quantization methodswith terminals moving at speed of 130 Km/has detailed in [34℄.We extend the de�nition of average SR provided for SC senario as
SR = E







∑

(k,c)∈S(n)

log2 [1 + SNIRk,c(t)]







, (3.3)where SNIRk,c(t) is the SNIR relative to steam (k, c), de�ned aording to (1.7) as
SNIRk,c(t) =

pk,c|hk,c(t)gk,c(n)|2
1 +

∑

i∈Sc(n)\k,c
pi|hk,c(t)gi,c(n)|2

. (3.4)where gk,c is the k-th olumn of matrix Gc(n). We �rst ompare the SR ahieved byMG with ES sheduling using as optimization riterion the maximum SR. For om-plexity reasons simulations have been limited to N = 4 RBs. To simplify simulationsin the ES method, results of both MG and ES in the highK senario, K = 18N, 20N ,refer to N = 1. In fat, we veri�ed that for high K the system is fully loaded with aprobability higher then 95%; in this senario the power granted to eah arrier is P
N
,and then user seletion an be performed independently on eah arrier. We onsiderboth the ase of perfet CSI at the transmitter and the ase of partial CSI obtained



52 Chapter 3. Performane Resultsby FB from the reeiver, with a FB rate of 12 bit/user/RB/slot. We observe thatpartial CSI provides a loss on SR of 2 up to 3.5 bit/user/RB/slot, but it does nota�et the general behavior of the two algorithms. As we an see from Fig. 3.9, bothMG and ES have a very lose SR for all K. Hene, in the following we onsider MGas performane bound.Fig. 3.10 illustrates the average SR ahieved by the sheduling algorithms as afuntion of the number of MTs K in the low K senario for a FB rate of 12bit/user/RB/slot. We note that there is not an appreiable loss in performaneof the simpli�ed, methods. Similarly, simulations in the high K senario show thatMG, PBG and S-PPBG ahieve a SR of 16.40 bit/s/Hz, while MSUS provides 15.40bit/s/Hz. Overall we observe that the simpli�ed algorithms do not provide SR lossfor all K. This is mainly due to the fat that all sheduling methods are based on anopportunisti approah, so they all aim at seleting the best set of orthogonal MTs.We also note that all algorithms always selet the same �rst stream, whose CV inturn determines the hoie of the other streams. We underline that the average SRof S-PPBG is very lose to that of PBG and MG; moreover, sine S-PPBG is an ap-proximation of PPBG, we dedue that also PPBG provide the same SR of S-PPBG.Fig. 3.11 on�rms this behavior also with a PFS.We note also in Fig. 3.11 that preseletion applied to PBG provides slightlybetter performane, despite the fat that it onsiders a lower number of andidatesets. In fat, preseletion aims at exluding from sheduling streams that wouldnot inrease the WSR, and prevents the sheduler from inserting them for fairnessreasons.Fig. 3.12 reports the average SR versus the FB rate; we observe that the simpli�edmethods are also robust to quantization error; in fat, for all onsidered values offeedbak rate, PBG and S-PPBG provide the same SR of MG.3.2.1 Outage System Throughput ComparisonAt eah slot, the BS evaluates a sheduled rate for eah stream; sine this evaluationis based on imperfet CSIT, the sheduled rate may exeed the hannel apaity. Inthis ase, the Shannon theorem does not guarantee the existene of a ode allowing anerror rate below a given threshold; therefore, the information transmitted is a�etedby errors with a non-negligible probability.We onsider now the e�et of outage on the system throughput, both for thesheduling proess and for the performane metri.
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58 Chapter 3. Performane ResultsAt eah slot, the sheduling algorithm aims at seleting the set P of streams thatmaximizes the weighted system throughput under the onstraint that the averageprobability that the sheduled rate exeeds hannel apaity, i.e. the average outageprobability, is pout. Eah MT k has an assoiated weight wk, whih takes into aountfairness and QoS onstraints. In partiular, letting γk,c be the estimated SNIR ofstream (k, c), we aim at maximizing the weighted system throughput
R(P) =

∑

(k,c)∈P

wk log2(1 + ǫpoutγk,c) , (3.5)where the sum is taken over all streams (k, c) of P, and parameter ǫpout ∈ [0, 1]ensures an average per user outage probability not exeeding pout, [52℄.If a stream is a�eted by outage, i.e, if the alloated rate exeeds the maximumrate available for that stream, due to imperfet hannel state information, beam-forming and sheduling, the orresponding rate is set to zero. Letting βk,c = 0when outage ours for stream (k, c), and βk,c = 1 otherwise, the average outagethroughput is de�ned as
T (P) =

∑

(k,c)∈P

βk,c log2(1 + ǫpoutγk,c) . (3.6)where the sum is taken over all streams (k, c) of P, and parameter ǫpout ∈ [0, 1]ensures an average per user outage probability not exeeding pout, [52℄.Fig. 3.14 shows the outage throughput T (P) as a funtion of the number of ativeMTs K with a ommon outage onstraint pout = 2%. We observe that PBG alwaysoutperforms MSUS with a gain of about 5%, with a limited inrease of omplexity.Even the MG algorithm, whih provides a performane upper bound in terms of (3.5),is outperformed by the proposed PBG, sine also MG is a suboptimal algorithm.3.2.2 Complexity ComparisonFig. 3.13 shows omplexity versus K. For K = 2 to 64 the low K omplexityexpressions are used, while from K = 128 to 1024 we use the high K omplexityexpressions. We �rst observe that the omplexity ratio between the sheduling al-gorithms is nearly the same both in the low K and high K regime. As expeted,MSUS and S-PPBG omplexity trend is not in�uened by the value of K. From Fig.3.13 we note that for K = 5 ÷ 50, with orresponding fully load probability in therange from 1% to 95%, the omputational ost of MG is from 2.2 to 18.5 times the
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Figure 3.14: Average outage throughput versus the total number of MTs K withproportional fair sheduling and 2% outage probability.ost of PBG, with a fator inreasing in K; as expeted, the preseletion tehniquefurther redues omplexity by a fator 1.2− 1.4 with respet to PBG. We note alsothat omplexity of S-PPBG is only 2.4 − 2.9 times the omplexity of MSUS. Asomplexity of PPBG is bounded between that of PBG and S-PPBG and these twoare very lose, we omitted to show PPBG in Fig. 3.13.In the high K senario, simulations on�rm the analysis; in fat, for K = 400 wehave CMG = 2.61·106, CPBG = 9.4·104, CMSUS = 3.49·104 and CSPPBG = 11.9·104.We underline that in the high K regime S-PPBG omplexity is higher than that ofPBG beause of the required power distribution; indeed simpli�ation of preseletiondoes not ompensate the need of redistributing the total power. On the other hand,we note that the high omplexity required by MG is mainly due to the evaluationsof BF at eah step.Memory requirements, investigated in Subsetion 2.5.1, does not pre�gure large dif-ferenes between di�erent methods; for K = 400 memory required loations are
35890 for MG, 29682 for PBG, 29730 for S-PPBG and 33841 for MSUS. Hene, thesimpli�ed tehniques ahieve a redution of memory requirement with respet toexisting algorithms.
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Chapter 4ConlusionsIn this �rst part of the thesis, we foused on MIMO downlink systems with limitedfeedbak, both in SC and in the OFDM senario. In partiular, for a SC senario, weproposed various hannel quantization tehniques and feedbak strategies based onthe Lloyd-Max algorithm [36℄ that exploit both spatial and time orrelation of theMIMO hannel. We derived a UD feedbak approah where FB bits are aumulatedover multiple signalling intervals in order to index a muh larger odebook; moreoverwe proposed new preditive FB strategies where both transmitter and users preditthe evolution of the hannel vetor and users adjusts the predition by feeding baka quantized version of the predition error to the transmitter. Furthermore, we de-sribed a preditive feedbak strategy with unitary rotation matrix, exploiting thegeometri properties of unit norm CDI vetors. Finally, we have proposed a MMSEbeamformer that takes into aount imperfet CSI at the BS and a FB signallingbased on the predition of CDI.From performane evaluation on SC senario we onlude that preditive FB out-performs signi�antly existing tehniques in terms of SR and low FB rate; UD is apromising strategy as it provides improved SR with respet to basi FB and does notrequire hannel predition at both transmitter and reeiver side. MMSE-BF is usefulwhen dediated hannels are set up in downlink, while when pure PFS is adopted itprovides similar performane to ZF-BF at the ost of an additional CQI parameter.In MIMO OFDM senario, we propose suboptimal sheduling algorithms to fae theinreased dimension of andidate streams set, based on simpli�ed BF evaluation dur-ing the user seletion proess. We addressed the tradeo� between an opportunistiapproah in user seletion, providing high average sum rate, and quality of servie(QoS) requirements, by introduing a general multiuser sheduling, the opportunis-61



62 Chapter 4. Conlusionsti maximum sum rate strategy, and the multiarrier proportional fair sheduling.Furthermore, di�erent user seletion strategies are illustrated, and in partiular wepropose a re�ned greedy strategy (PBG) requiring a lower omplexity. As a furtherre�nement of PBG algorithm, we propose the preseletion tehnique, whih reduesthe set of andidate users. Complexity analysis is evaluated for eah user seletionstrategy in Setion 2.5, both in terms of omputational omplexity and memoryrequirements. Simulation results show that the proposed suboptimal algorithm al-though requires a quarter of the omplexity of the omparison algorithm, providesalmost the same average sum rate and the same outage throughput. Furthermore,preseletion tehnique applied to the PBG algorithm halves the omputational om-plexity required to PBG by providing the same performane, at the ost of a verylittle inrease of the memory requirements.
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Main Abbreviations and NotationsAMDF: amplitude maximum di�erene funtion;API: graphi interfae;AV: atrioventriular node;AWGN: additive white Gaussian noise;CIR: hannel impulse response;CORR: orrelation based estimator;CW: ontinuous wave;EIRP: e�etive radiated power;EN: end position for the san windowing;FCC: Federal Communiations Commission;HWI: hardware integration oe�ient;IR: impulse radio;ISI:inter symbol interferene;LCML: low omplexity MLLOS: line of sight;LRS: loally rih sattering;MSE: mean square error;ML: maximum likelihood 65
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Ls: number of samples in a san;PC: personal omputer;PMUSIC:Musi based detetion algorithm;PPS: pulses per sample;PRF: pulse repetition frequeny;R: reeiver;RF: radio frequeny;SA: sinoatrial node;SNR: signal to noise ratio;ST: start position for the san windowing;SWI: software integration oe�ient;T: transmitter;TD: time domainToA: time of arrival;TEM: transverse eletromagneti wave;
TP : pulse duration;
TS: pulse repetition period;UWB: ultra wide band;WEIGHTED: weighted autoorrelation funtionWELCH: Welh based algorithm.



Introdution
Remote vital signs detetion is an emerging topi, whose aim is monitoring a patientvital parameters avoiding physial ontat between the patient and the sensor. Infat, a remote monitoring system provides advantages in many senarios, suh asbaby monitoring, home monitoring for hroni health diseases and sleep disorders.A remote sensor allows an easier patient monitoring also for long periods of obser-vation. In the last years, di�erent tehnologies have been proposed with this aim,and in partiular: Ka Band, narrowband radar, whose high frequeny provides anobservable Doppler e�et even for low vital signs speeds [53, 54℄, ultra wide band(UWB) radar [1, 55℄.In this work, we fous on radar tehnologies; in fat, it provides a ontatless sensor,easily adaptive to di�erent senarios. Radar tehnologies have already been inves-tigated for vital signs detetion, for military appliation and resue of vitims ofnatural disasters; however, these senarios allow high values of the transmitted sig-nal, beause the remote sensor is used for a short period of time, and it must deteta living person even through walls (e.g., after an earthquake). Home monitoringappliations instead are supposed to be used for long periods in an indoor senario;therefore, for these appliations additional onstraints have to be taken into aount,and in partiular the transmitted power has to be limited.Among all radar tehnologies, UWB radar provides key advantages, as it relies onultra-short (nanoseond sale) waveforms that an be free of sine-wave arriers and donot require intermediate frequeny (IF) proessing beause they an operate at base-band. The ultra-short duration of UWB pulses provide unique advantages both forommuniation and radar appliations: i) enhaned apability to penetrate throughobstales; ii) ultra high preision ranging at the entimeter level; iii) potential forvery high data rates along with a ommensurate inrease in user apaity; and iv)potentially small size and proessing power. This motivates the inreasing interestof the sienti� ommunity on the appliation of UWB radar for vital signs dete-67



68tion [1, 56, 57℄. In the seond part of the thesis, we fous on vital signs detetionusing UWB radar in a indoor senario, and in partiular on the model desribing thein�uene of vital signs on the reeived signal, and on detetion algorithms. At thebest of the author's knowledge, a omplete desription of the e�et of hest motionon the reeived signal for a pulse UWB system is not available in the literature. Thistopi is addressed in Chapter 7, and a desription of the e�ets of vital signs onthe signal parameters are provided in Chapter 8. We onsider radar devie workingon the 3.1 − 5.3 GHz band, whih is available for onsumer appliations aordingto the Federal Communiations Commission (FCC) rules [58℄. In this senario weinvestigate analytially the parameters of the reeived signal and their time varia-tions due to vital signs. In partiular, we verify in Chapter 7 that the available banddoes not allow an e�ient vital sign detetion based on time of arrival (ToA). Mostof the proposed detetion tehniques are based on ToA variations; however, a largebandwidth is required to observe ToA variations due to heart beating. Moreover,detetion is made di�ult by the non stationary nature of the heart beating and res-piration. Therefore, we investigate detetion of vital signs based on amplitude andphase modulation of the radar signal, and we propose a novel tehnique in Chapter 9.The proposed detetion tehnique requires short observation periods, where we anassume vital signs as stationary and periodi. A novel periodiity based detetionalgorithm is proposed and ompared to the orrelation based detetion algorithm.Chapter 10 provides numerial results in ideal onditions and experimental results.Computational omplexity is also evaluated for the various algorithms.



Chapter 5Ultra Wide Band Radar TehnologyUWB radio is an emerging tehnology inviting major advanes in wireless ommu-niations, networking, radar, imaging, and positioning systems. The basi idea ofUWB is to transmit a signal haraterized by a very large bandwidth and a low powerspetral density. UWB is de�ned as a transmission systems with instantaneous spe-tral oupany in exess of 500 MHz or a frational bandwidth of more than 20%; thefrational bandwidth is de�ned as B/fC , where B denotes the −10 dB bandwidth,and fC is the enter frequeny. Suh systems rely on ultra-short (nanoseond sale)waveforms that an be free of sine-wave arriers and do not require IF proessingbeause they an operate at baseband.In 2002, the Federal Communiations Commission (FCC) in the United States ofAmeria released a large bandwidth (3.1 − 10.6 GHz) for unliensed use providedemission levels are kept low (< −41.3 dBm/MHz). This new unliensed band, alledUWB, is the largest unliensed frequeny band ever released. The large bandwidthand low power allows UWB radios overlaying oexistent radio frequeny (RF) sys-tems to operate using low-power ultra-short information bearing pulses. Similarregulatory proesses are urrently in progress in many ountries worldwide; the re-searh ommunity is urrently targeting several UWB appliations, e.g. short-range,high-speed broadband aess to the Internet, loalization at entimeter-level au-ray, high-resolution ground-penetrating radar, through-wall imaging [57℄.Despite the reent renewed interest, UWB has a history as long as radio. In fat,the �rst radio ommuniation system, invented by Guglielmo Maroni more thana entury ago (1901), required enormous bandwidth as information was onveyedusing spark-gap transmitters. The �rst UWB radar tehnology ame in the late1960s, when high sensitivity to satterers and low power onsumption motivated the69



70 Chapter 5. Ultra Wide Band Radar Tehnologyintrodution of UWB radar systems [59℄. The ultra-short duration of UWB pulsesprovide unique advantages both for ommuniation and radar appliations: i) en-haned apability to penetrate through obstales; ii) ultra high preision ranging atthe entimeter level; iii) potential for very high data rates along with a ommensu-rate inrease in user apaity; and iv) potentially small size and proessing power.We denote as radar a system whose aim is to detet a target information hiddenin the environment by using eletromagneti (EM) waves. As a ommuniation sys-tem, a radar system is omposed by transmitting and reeiving entities; the maindi�erene between ommuniation and radar systems is the aim of the transmission,and the loation of the information soure. In fat, in a ommuniation system, theinformation soure is onneted to the transmitter side, whih sends a EM signalto the reeiver side in order to ommuniate the urrent information symbols. Thereeiver side has only a statistial knowledge of the transmitted signal, and reeivesa signal orrupted by noise and hannel; from this signal the reeiver performs anestimate of the transmitted information symbols. In a radar signal, both transmitterand reeiver have a statistial knowledge of the information soure. The transmittersends a EM signal to the reeiver, whih is perfetly known at the reeiver side; inother words, the transmitted signal does not arry any information. The aim is nowthe observation, at the reeiver side, of a hidden information soure on the basis ofthe reeived signal. In fat, as the hidden information soure in�uenes the hannelimpulse response, the hidden information soure an be observed by estimating thehannel onditions. Therefore, the reeiver performs an estimate of the hannel onthe basis of the distortion of the reeived signal parameters, whih are due to bothhannel and noise.In this Chapter we disuss the UWB radar tehnology and the motivation for itsappliation to health monitoring, and in partiular to human vital signs detetion.5.1 Researh MotivationHealth monitoring in general aims at deteting vital parameters of a target, andmay involve several appliations, e.g. medial instruments, patient home monitoringand presene detetion. For di�erent reasons, these appliation require some mainfeatures:
• Unobtrusiveness, i.e. the monitoring system should not interfere with the tar-get usual ativities; this feature is essential e.g. for appliations requiring long



5.2. UWB Radar 71observations of vital parameters, and presene detetion. In order to ahievethis goal, it is important to address to remote sensing systems, whih avoid thediret ontat between the target and the sensor.
• Low power: FCC spetral masks pose a severe bound on the transmittingpower, whih is set on the same order of magnitude as the noise. Consequently,the monitoring system has to deal with low signal to noise ratio (SNR) senar-ios.
• High spatial resolution: this is a key feature to orretly loate the target, toproperly separate the target from the hannel lutters, and to resolve di�erenttargets standing nearby.Detetion of human beings with radars is based on movement detetion. Heartbeating and respiratory motions ause hanges in frequeny, phase, amplitude andarrival time of the eletromagneti wave re�eted by a human being. Both narrow-band and UWB tehnologies an provide a time modulation of these parameters;however, UWB radar has several key advantages over narrowband wave radars, i.e.the high spatial resolution, allowing the resolution of multiple targets and the sepa-ration between targets and lutter, a better immunity against multipath interfereneand interferene of oexisting narrowband systems with respet to narrowband teh-nologies.5.2 UWB RadarUWB radar for human being detetion an be built based on di�erent UWB teh-nologies, whih an be lustered into two families: ontinuous wave (CW) UWB,where the transmitted signal is ontinuous in time and impulse radio (IR) UWB,where the transmitted signal is a periodi repetition of a UWB pulse. We brie�y de-sribe their advantages and disadvantages, and motivate our hoie of impulse UWBradar for vital signs detetion.5.2.1 Continuous Wave UWB Versus Impulse Radio UWBAs the name suggests, ontinuous wave (CW) radar is a radar tehnique based on aontinuous transmitted signal. The UWB nature of the signal an be obtained eitherin time or in frequeny domain; di�erent strategies have been proposed in literature,



72 Chapter 5. Ultra Wide Band Radar Tehnologye.g. random noise CW radar [60℄, frequeny modulated ontinuous wave (FMCW)radar and stepped-frequeny ontinuous wave radar.The main features of CW radar are:
• the transmitted power is uniformly distributed in time;
• the modulation waveforms are not supposed to have short duration, sine thelarge bandwidth is provided by signal modulation;
• with a proper signal modulation, it is possible to over all the band allowed bythe FCC regulations.On the other hand, the simplest way to obtain a UWB transmitted signal is aperiodi repetition of a short pulse, where the repetition period is longer than thehannel impulse response (CIR); also in this ase, pulse modulation an be performed.The main features of this transmitting system are:
• the transmitted power is onentrated on a very short period;
• usually not all the FCC band is overed, beause generating a pulse of about
0.1 ns duration is not ost e�etive;

• CIR is easily obtained, as it is ompletely desribed in a pulse repetition period.5.2.2 IR -UWB RadarWe onsider an Impulse Radio - Ultra Wide Band (IR-UWB) system for the detetionof vital signs of a target in an indoor environment. The transmitted signal is
s(t) =

+∞
∑

n=−∞

p(t− nTS) cos(2πfCt+ φ0), (5.1)where p(t) is the UWB pulse wave with duration TP , fC is the entral frequenyand TS is the pulse repetition period. The bandwidth BP is the inverse of TP , i.e.
TP = 1

BP
.Let h(t) be the hannel impulse response, whih inludes the indoor hannel paths,and the e�ets of target (attenuation, re�etions, movements, respiration and heartbeating); let also Pt be the power of the transmitted signal s(t) and η(t) be the



5.2. UWB Radar 73zero mean additive white Gaussian noise with power σ2
η. At the reeiver side, theresulting signal is

r(t) =

∫ +∞

−∞

s(t− τ)h(τ)dτ + η(t). (5.2)We suppose that the shape of the transmitted wave p(t) is perfetly known by thereeiver. Then the reeiver signal r(t) provides an estimate ĥ(t) of the hannelimpulse response, under the following onditions:
• the pulse repetition period has to be equal to or higher than the pulse duration
TP , i.e. TS ≥ TP ;

• in order to guarantee a orret reonstrution of the CIR, the sample theoremrequires the sampling frequeny Fc to be equal to or higher than the systembandwidth, i.e. Fc ≥ BP , or Tc ≤ TP , where Tc is the sampling period;
• inter pulse repetition interval interferene (ISI) avoidane requires the hannelduration Tl = LTc is smaller than the pulse repetition period, i.e. LTc ≤ TS.
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Chapter 6Vital SignsIn this hapter we de�ne vital signs and haraterize the interation between theUWB signal and the target. In partiular, Setion 6.1 desribes vital signs, respi-ration and heart beating. In Setion 6.2, a model for thorax tissues is introduedand an analytial model for the signal re�eted by the target is disussed. Finally,in Setion 6.3 a frequeny domain haraterization of thorax tissues is derived.6.1 Vital Signs DesriptionWe denote as vital signs a set of biologial proesses, providing information on thestate of a living person (target); these signs are supposed to haraterize all livinghuman beings, and their values or variation are supposed to desribe the state of thetarget.In general, the main proesses desribed by this de�nition are those derived byrespiration and heart beating, e.g. hest osillation, periodi heart ompression andrapid hanges of pressure into veins and arteries. In partiular, we fous on thesubset of vital signs that an be inferred by their external e�ets. We desribe inthe following respiration and heart beating, and we disuss their orrelation.6.1.1 RespirationRespiration is a omplex physiologial proess whose aim is to ensure both the properinome of oxygen and the disposal of dangerous gases, in partiular the arbon diox-ide, resulting from the respiration proess at ellular level. The amount of oxygenrequired, and onsequently, of waste respiration produts to be ejeted, is deter-75



76 Chapter 6. Vital Signsmined by the onditions of the body: physial features (age, gender, weight, et.)and urrent ativities and feelings (sport, fun, fear, relax). The frequeny of therespiration yle, denoted as respiration rate, and the deepness of breathing, i.e., theamount of air inhaled per yle, is in�uened by body onditions, but also by externalonditions (e.g., pressure of the air and its omposition), and by onsious ontrol,performed to temporarily adapt breathing to other ativities suh as swimming, ortalking. In general, respiration is not a stationary proess; in fat, parameters as du-ration, deepness, proportion inspiration/expiration periods, in general hange fromone respiration yle to the next one. Therefore, we may be interested in either areal time estimate of the target respiration rate, or on an estimate of its average.6.1.2 Heart BeatingThe heart is a musular organ responsible for pumping blood throughout the bloodvessels by repeated, rhythmi ontrations. Blood is onveyed by the great vessels(pulmonary trunk, aorta, and superior vena ava) to and from body tissues. Theheart's rhythmi ontrations our spontaneously, although the rate of ontrationis in�uened by nervous or hormonal ativity, exerise and emotions. The rhythmisequene of ontrations is oordinated by the sinoatrial (SA) and atrioventriular(AV) nodes. The sinoatrial node is loated in the upper wall of the right atrium andis responsible for the wave of eletrial stimulation that initiates atrial ontrationby reating an ation potential. The wave reahes then the AV node in the lowerright atrium, where it is delayed to allow enough time for all of the blood in the atriato �ll their respetive ventriles, and then it propagates, leading to a ontration ofthe ventriles [61℄.Due to these eletrial signals, atria and ventriles alternately ontrat and relax ina rhythmi yle; a single yle begins and ends with atria and ventriles relaxed.During the �rst stage, diastole, the blood �ows into the right and left atria; due to theopen valves between the atria and ventriles, blood �ows through to the ventriles.Ventriles are then �lled with the atrial ontration, due to the SA eletrial signal.The seond stage is alled systole and represents the ventriular ontration and theejetion of blood from the ventriles to the vessels; in partiular, the right ventrilesends blood to the lungs via the pulmonary artery, while the left ventrile pumpsblood to the aorta. During this stage the valves between the atria and ventrilesare losed. One omplete sequene of diastole/systole is alled a ardia yle, orheartbeat. The heart rate range is very wide: in fat, the lowest heart rate reported



6.2. Thorax Tissues Desription and Signal Propagation 77in literature for and adult target is 45 beats per minute (bpm), while the highest isabout 250.6.1.3 Correlation Between Respiration and Heart BeatingIn general, respiration in�uenes the heart beating proess [62℄; a lose nonlinearoupling exists between the respiratory and ardiovasular systems. In addition tothis, we observe that both respiration and heart beating are in�uened by the targetativity; in other words, the state of the target introdues a orrelation between thetwo proesses. However, at the best of the author's knowledge, there is no simplemodel desribing the orrelation between the two proesses, and therefore in thefollowing we onsider respiration and heart beating as independent proesses.6.2 Thorax Tissues Desription and Signal Propa-gationIn a monitoring system, vital signs provide an appreiable modulation of the moni-toring signal when it interats with the target; learly, the modulation of a proesson the monitoring signal is not only due to the proess itself, but it depends on thesystem used to observe it. This motivates the following investigation on the e�ets ofa radar pulse on human tissues; based on this model, a feasibility study is performedin Setion 7.4. We fous on thorax tissues, sine both respiration and heart beatinga�et mainly this region of the body. Furthermore, other regions of interest, like nekand abdomen, are haraterized by the same external tissues, and, as it is shown inthe following, the UWB signal is in�uened only by the outer tissues; then, from theradar system perspetive, their ontributions an be modeled in a similar way.We assume that
• the pulse is a Transverse Eletromagneti (TEM) wave;
• the pulse impats the thorax with a normal inidene angle;
• the target hest behaves as a single point re�etor;
• all interfaes are planar.When a TEM plane wave propagating in a homogeneous medium 1 enounters aplanar interfae with a di�erent medium 2, a portion of the wave is re�eted from



78 Chapter 6. Vital Signsthe interfae while the remainder of the wave is transmitted. The re�eted andtransmitted waves an be determined by enforing the fundamental eletromagneti�eld boundary onditions at the media interfae. Sine the thorax tissues satisfy theondition of good dieletri [63℄, we an use the approximated expressions for theamplitude attenuation. De�ning σ as the ondutivity of medium, ε as the dieletripermittivity and µ as the magneti permeability, the amplitude attenuation (inm−1)an be written as
α̃ ∼=

σ
√
µ

2
√
ε
, (6.1)and the intrinsi impedane (in Ohm, Ω) is

η̃ ∼=
√

µ

ε
. (6.2)Under these assumptions, at the interfae between medium 1 and medium 2 a trans-mitted and a re�eted wave are generated, having the same wave shape of the inidentwave, and relative amplitude given by the amplitude transmission oe�ient and theamplitude re�etion oe�ient, respetively. Assuming that the inident wave is z-direted and x-polarized, and that the planar media interfae is loated on the x-yplane, the inident, transmitted and re�eted waves an be illustrated by Fig. 6.1.Let us indiate with ax, ay and az the unit vetors lying on diretion x,y, and z,respetively. We de�ne also E0 as the amplitude of the eletri �eld on the interfae(z= 0), t as the amplitude transmission oe�ient and rc as the amplitude re�etionoe�ient. In partiular, the re�etion oe�ient is given by

rc =
η̃2 − η̃1
η̃2 + η̃1

, (6.3)where η̃1,2 is the intrinsi impedane of medium 1, 2.The ratio between the re�eted power Pr and the transmitted power Pt is the re�etedpower ratio,
R = |rc|2. (6.4)Let PT,1 be the power of the wave inident on medium 1 and z1 be the thikness ofmedium 1. At the medium interfae the re�eted power is

P
(R)
1,2 = PT,1Re−2α̃1z1 (6.5)The refrated wave amplitude is given by the transmission oe�ient

t =
2η̃2

η̃2 + η̃1
, (6.6)
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T̃ = 1−R =

η̃1
η̃2
|t|2. (6.7)The power of the wave refrated in medium 2 is

P
(T )
1,2 = PT,1T̃ e

−2α̃z1 . (6.8)We observe that the relative transmitted and re�eted power have the same valuealso for a wave propagating from medium 2 to medium 1, providing a re�eted wavein medium 2 and a refrated wave in medium 1. The phasor �elds assoiated withthe inident wave are
Ei = E0e

−α̃1zax

Hi =
E0

η̃1
e−α̃1zay,

(6.9)while for the transmitted wave we have,
Et = tE0e

−α̃2zax

Ht = t
E0

η̃2
e−α̃2zay,

(6.10)and for refrated wave we have,
Er = rcE0e

α̃1zax

Hr = rc
E0

η̃1
eα̃1zay.

(6.11)Denoting with f the frequeny of the transmitted signal, the wavelength of thesignal propagating in medium 1 with refration index n1 is
λ1 =

v1
f

=
c

n1f
=

λ0

n1

, (6.12)where λ0 is the wavelength of the signal propagation in vauum, v1 indiates thewave speed in medium 1, and c is the speed of light in vauum. Fig. 6.3 showsthe wavelength of a pulse in the tissues of thorax, aording to [64℄; in Fig. 6.2 therelative permittivity ǫr = ǫ/ǫ0 of these tissues is desribed as a funtion of frequeny.We observe that in the UWB band both the relative permittivity and the wavelengthare not signi�antly hanging. Therefore, in the following we desribe the power of
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Figure 6.1: Transmitted and re�eted waves generated by a planar interfae betweenmedium 1 and 2 when a TEM wave with polarization in x diretion is normallyinident on the interfae.
the signals re�eted by eah interfae onsidering only the frequeny 4 GHz, whihis the entral frequeny of the operational band of our UWB devie.The thikness of the thorax tissue layers, where the pulse propagates, are givenin Tab. 6.1 from [1℄.We denote the interfaes of tissues with numbers: air-skin interfae is interfae 1,skin-fat interfae is interfae 2, fat-musle is interfae 3, musle-artilage is interfae
4, artilage-lung is interfae 5, up to lung-heart interfae 6; similarly, the parametersrelated to eah interfae are in the following denoted with the orresponding interfaenumber, i.e. Ri for the re�eted power ratio and Ti for the orresponding refratedpower ratio. We indiate also the tissues by numbers, as desribed in Tab. 6.1 Air ismedium 0. By this notation, eah interfae has the number of the seond medium.Using the dieletri properties of tissues at 4 GHz, we derive that eah mediainterfae provides a re�eted signal, whose power and delay depend on the tissuesthat rossed in its path. We assume that before the air-skin interfae 1 we havea signal whose power is P0; then, the power of the signal re�eted from interfae
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Figure 6.2: Permittivity of tissues from 1 GHz to 10 GHz [1℄.
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Figure 6.3: Wavelength of tissues from 1 GHz to 10 GHz [1℄.



82 Chapter 6. Vital SignsTissue Tissue number Thikness [m℄Skin 1 0.1Fat 2 0.96Musle 3 1.35Cartilage 4 1.16Lung 5 0.578Table 6.1: Thikness of the inner tissues in the thorax [1℄.
i ∈ {0, · · · , 6} is

Pr,i = P0Ri

i
∏

k=1

[

Tke
(−2α̃k(f)zk)

]2
= P0Ri

i
∏

k=1

[

(1−Rk)e
(−2α̃k(f)zk)

]2
. (6.13)Therefore, we an de�ne the reeived to inident power ratio (RIPR) Γi of the re-�eted signal of interfae i at the target hest surfae as

Γi =
Pr,i

P0

= Ri

i
∏

k=1

[

(1−Rk)e
(−2α̃k(f)zk)

]2
. (6.14)This parameter represents the gain (with Γi < 1) of the signal from the transmitterto the reeiver. Ideally, Γi is the power level of the signal provided by interfae i seenby a on body reeiver when P0 = 0 dB. As desribed in Fig. 6.4 for a transmittedsignal of frequeny 4 GHz, at the reeiver we get

• a signal with RIPR of −2.8977 dB and a delay of 6.67 ns, due to the air-skininterfae;
• a signal with RIPR of −13.08 dB and a delay of 6.67 ns, due to the skin-fatinterfae;
• a signal with RIPR of 17.47 dB and a delay of −6.8 ns, due to the fat-musleinterfae.The signals re�eted by musle-artilage, artilage-lung and lung-heart interfae areharaterized by a lower RIPR, namely −57.38 dB, −72.20 dB and −74.59 dB, andtherefore they an not be deteted by the reeiver.The dieletri properties of the tissues in [1℄ refer to a narrowband signal; by onsid-ering the UWB pulse as a sum of narrowband signals, we dedue that the reeived
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Figure 6.5: Re�eted pulses from the target thorax tissues at a entral frequeny of
60 GHzsignal has not the same shape as the transmitted one, sine the tissues introdue afrequeny seletivity on the re�eted signal. We also note that we are not able todistinguish all these signals sine the orresponding delays di�er only by about 0.1ns, requiring a minimum bandwidth of about 10 GHz to resolve them.Finally, weshow in Fig. 6.5 the average RIPR of the signals re�eted by tissues for a signalin the Ka band, at 60 GHz; we note that at those frequenies, and with a severeonstraint on transmitting power we are not able to detet that signals exept theone re�eted from the skin interfae, whose RIPR is 6.4 dB).6.3 Frequeny Domain Charaterization of Tissuesfor a UWB SystemWe introdue a frequeny domain haraterization of thorax tissues for a UWBsystem, in order to haraterize the re�etion provided by the seond interfae. Inpartiular we fous on the fat tissue, sine from Setion 6.2 we don't expet to reeive



6.3. Frequeny Domain Charaterization of Tissues for a UWB System 85replias from inner tissues. In partiular, to validate the analysis performed till now,we investigate
• the wavelength of the signal propagating on the fat tissue as a funtion offrequeny. In fat, the wavelength a�ets the propagation speed, and if thisparameter depends on frequeny, the reeived pulse would be a�eted by dis-tortion; in other words, we are verifying if the reeived replia is a UWB pulseas the transmitted one;
• the reeived to inident power ratio of the inner and outer re�etion (fat-musleand skin interfaes, respetively) as a funtion of the frequeny, in order to stateif there is a frequeny seletivity due to propagation and re�etion on hesttissues.6.3.1 Wavelength of Signal Propagating in the Fat TissueThe wavelength of the signal propagating in the fat tissue λfat as a funtion offrequeny has been measured and results are reported in [1℄. Fig. 6.6 shows themeasured wavelength behavior, a linear approximation and a hyperboli approxima-tion of the measured data, i.e. λ(f) ≈ λ(fC)fC

f
. We see that the hyperboli funtionprovides a good approximation of the real funtion, with a mean square error MSEof 5.5e − 8. This motivates the appliation of this approximation to evaluate thepropagation speed as a funtion of frequeny, providing

v(f) = f · λ(f) ≈ λ(fC)fC . (6.15)By the hyperboli approximation of the wavelength in fat tissue we expet thepropagation speed to be approximately onstant in the fat tissue, and therefore theinner re�eted signal is not a�eted by distortion due to a frequeny seletivity ofthe time of arrival (ToA). The outer re�etion propagates only on the air, where thepropagation speed is approximately the light speed in vauum, c.6.3.2 Reeived to Inident Power Ratio of the Inner and OuterRe�etionsIn a UWB system, also the RIPR de�ned in (6.14) is in general a funtion of thefrequeny, as it depends on the impedane of the media. The expression of the RIPR
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Figure 6.6: Wavelength of a signal propagating in the fat tissue as a funtion offrequeny.
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Figure 6.7: Reeived to inident power ratio of the inner re�etion.of the inner re�eted signal an be written from (6.14) as
Γ3(f) =

[

(1− R1)e
(−2α̃1(f)z1)(1− R2(f))e

(−2α̃2(f)z2)
]2
R3(f), (6.16)while for the outer re�etion we have

Γ1(f) = R1(f). (6.17)We don't onsider here the signal provided by the skin-fat interfae, Γ2, as it has thesame ToA of the air-skin interfae signal and it is 13 dB weaker. Figs. 6.7 and 6.8show the RIPR for the inner and outer re�etion as a funtion of frequeny of theradar pulse.We observe from Fig. 6.8 that the RIPR of the outer signal is about +2.9 dBon the band of interest of our UWB devie (3-5 GHz), while the inner re�etedsignal shows in Fig. 6.7 a stronger dependene on the frequeny. However, the UWB
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Figure 6.8: Reeived to inident power ratio of the outer re�etion.



6.3. Frequeny Domain Charaterization of Tissues for a UWB System 89system is not able to resolve the two signals, and the outer signal is supposed to beabout 14 dB stronger than the inner one; therefore, it is reasonable to assume thatthe global reeived signal is not a�eted by distortion due to frequeny seletivityof the body. On the other hand, in the last paragraph we observed that also thepropagation speed on the fat tissue an be approximated as a onstant in the bandof interest. Therefore, we will assume that the reeived signal re�eted by a pointsatterer is an UWB pulse with the same shape of the transmitted pulse.



90



Chapter 7Channel ModelIn the following, we desribe the indoor hannel model for a UWB signal; in Setion7.1 we introdue the omponents of the indoor hannel model in presene of a target.The e�ets of the presene of a living target as a satterer are investigated in detailin Setion 6.2. Based on this, we derive a model desribing how the reeived signalis modulated by the vital signs in Setion 7.3.7.1 Indoor Channel DesriptionWe assume an indoor environment with a single still target. We assume that the tar-get is situated at a random distane dt uniformly distributed in the range [dmin, dmax],i.e. dt ∈ U [dmin, dmax] from the transmitter, while the reeiver is at distane r fromthe transmitter. Both transmitting and reeiving antennas are supposed to be om-nidiretional, then the signal propagates isotropially.As illustrated in Fig. 7.1, the hannel impulse response is omposed by di�erentelements, i.e.
• henv(t), the indoor environment impulse response;
• hT (t), the diret target path;
• hT,env(t), the impulse response of non-diret paths due to the target
• hm(t), the impulse response due to little target motions.

h(t) = henv(t) + hT (t) + hT,env(t) + hm(t). (7.1)91
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Figure 7.1: Senario of a UWB radio transmitting in a room with a targetIn the following we desribe eah of these elements and disuss their ontributionon the detetion of vital signs.7.1.1 Diret Target PathThe set of diret paths is denoted as hT (t); hannel paths omposed by the transmit-ter, the target and the reeiver belong to hT (t). The delay of these paths is limitedto a range whih depends on the round trip distane. By performing a Dopplerestimation analysis as desribed in Setion 8.1.1, hT (t) provides information aboutheart beating and respiration rate. However, hT (t) may also be a�eted by spuriousDoppler e�ets, indued by target motions, suh as speeh and movements of handsand head, in the same delay range; these Doppler omponents may be modeled inorder to ompensate their e�ets.The main features of this omponent of the hannel impulse response are:
• time variant
• �xed range of delays.7.1.2 Environment

henv(t) is the traditional indoor hannel impulse response; it takes into aount thee�ets of the environment without the presene of the target. It is a stationary



7.1. Indoor Channel Desription 93proess with a long oherene period, and involves ross talk path, and multipathdue to the room. Sine it does not involve the target, it is not useful to the vitalsigns detetion; we model it as the sum of a onstant and a Rayleigh fading indoorhannel model. The main features of henv(t):
• time invariant
• large range of delays.In the following, we assume that the reeiver is able of perfetly estimating andaneling all the replias referring to the stati part of the hannel; sienti� literatureprovides algorithms aiming at the bakground subtration, e.g. [65, 66℄.7.1.3 Multipath Involving the Target

hT,env(t) ontains the non diret paths involving the target. This paths are harater-ized by an higher delay and attenuation w.r.t. the diret path hT (t). As for all pathsinvolving the target, we an reognize it by the presene of Doppler omponents, asthe presene of vital signs introdues a time variation on the main parameter of thereeived signal. The main features of hT,env(t) are:
• time variant
• a range of delays larger then the diret path
• higher attenuation ompared to the diret path.7.1.4 Target MotionsBesides the vital signs, with high probability the target introdues variations on thereeived replias due to little movements (e.g. moving the head, oughing, movingthe hands...). The e�ets of the spurious target motions (small movements) are takeninto aount by hm(t). This hannel omponent is haraterized by i) time variation,and ii) by delays in general not inluded in the diret target path delay range. Notein fat that in general little movements involve peripheral parts of the body, e.g. thehead and the limbs, while the hest is involved with a lower probability.



94 Chapter 7. Channel Model7.2 Geometri Channel ModelWe onsider in the following only the diret target path, and how it is in�uened bythe vital signs. We assume the target as a point, ideal re�etor. Therefore, we do notonsider the e�et of the target motion and multiple re�etions involving the target.As stated previously, the other hannel omponents di�er from the diret path forsome parameter, and in partiular time variane, and delay range. Bakgroundsubtration allows the anellation of the stati omponents, while a windowing onthe delays of the hannel impulse response allows fousing only on the diret pathdelay range. Considering only the outer re�etion, the reeived signal is given by
rT (t) = hT (t)p(t− τ(t)) cos(2πfCt+ φ0) + η(t), (7.2)where τ(t) =

d(t)

c
is the delay of the target path, d(t) is the round trip distane(transmitter-target-reeiver) and c is the speed of the light in the air. In the following,we desribe d(t), and we disuss on the e�ets of vital signs on the amplitude, delayand phase of the reeived signal.7.2.1 Round Trip Distane d(t)We �rst onsider the signal re�eted by the air/skin interfae; this signal is a�etedby the hest surfae osillations, due to both respiration and heartbeat. In Fig. 7.2 adetail of the target hest motion is desribed; the two paths between the transmitter(T ) and the reeiver (R) indiate the wave path in two di�erent times through thetarget, O (average hest position) and A (generi hest position). In partiular, thepath −−−→

TOR has length d(t) = Rtx,0+Rrx,0 under the ondition of de�ated lungs, whilethe path −−−→
TAR has length d(t) = Rtx(t) +Rrx(t) at a generi instant t.We model the hest motion as the sum of the osillation due to respiration, xr(t),and the weaker osillation due to the heart beating, xh(t), i.e.

x(t) = xr(t) + ξxh(t) (7.3)where ξ < 1 is an attenuation parameter whih underlines the weakness of the heartbeating signal on the hest with respet to the respiration signal.The osillation x(t) overs the segment AO, i.e. the segment between the averagehest position O and the urrent hest position A, forming an angle θ with the TOsegment, as illustrated in Fig. 7.2, and in�uenes both Rtx(t) and Rrx(t)
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RFigure 7.2: Detail of the target hest osillation due to breathingThen we de�ne

∆tx(t) = Rtx(t)− Rtx,0 (7.4)and
∆rx(t) = Rrx(t)− Rrx,0. (7.5)Their value depends on the hest motion x(t) of (7.3), on the osillation angle θ andon the angles αtx = T̂Oy and αrx = ŷOR, where y is the axis of the height of triangleTOR related to the segment TR. The diretion of the hest osillation is indiatedby the (blue) arrow, while the (magenta) irle indiates the maximum amplitude.Generi Bistati SenarioWe onsider the generi bistati on�guration, where the transmitter and the re-eiver are two di�erent devies; an alternative on�guration is the monostati, wherethe transmitter and the reeiver are loated in the same devie. By applying thetrigonometri rules to the triangle TOA we have

Rtx(t) =
√

R2
tx,0 + x2(t)− 2Rtx,0x(t) cos(θ); (7.6)similarly, observing that θr = 2π − αtx − αrx − θ we have

Rrx(t) =
√

R2
rx,0 + x2(t)− 2Rrx,0x(t) cos(θ + αrx + αtx). (7.7)



96 Chapter 7. Channel ModelWe derive here Rrx,0 from the other system parameters; then, we will �nd therange of angles desribing the target area for a given distane range. Referring toFig. 7.2, we assume to know the parameters:
• αtx and αrx are determined by the positions of T,R andO, and on the diretivityof antennas. In our senario, antennas are omnidiretional;
• dtr = |−→TR| is �xed as part of the set up;
• h0 = d(O,

−→
TR) is the distane of the target to the transmitter-reeiver segment.The following onstraints have to be satis�ed:

• Rtx,0 sin(αtx) = h0;

• Rrx,0 sin(αrx) = h0;

• Rtx,0 cos(αtx) +Rrx,0 cos(αrx) = dtr;then
Rtx,0 cos(αtx) +Rtx,0

sin(αtx)

sin(αrx)
cos(αrx) = dtr. (7.8)If αtx, αrx and dtr are �xed, the values of Rtx,0, Rrx,0 are given by

Rtx,0 =
dtr

| cos(αtx) + sin(αtx) cot(αrx) |
(7.9)and

Rrx,0 = Rtx,0

∣

∣

∣

∣

sin(αtx)

sin(αrx)

∣

∣

∣

∣

. (7.10)Then, for a given h0 and dtr, the set of possible angles is de�ned by the ondition
|cot(αtx) + cot(αrx)| =

dtr
h0

. (7.11)Monostati SenarioIn the monostati senario, the same devie hosts both transmitter and reeiver;therefore, αtx, αrx ≈ 0. This motivates the assumption of normal inidene.We also observe that
• the distane between transmitter and reeiver is little ompared to the distanebetween them and the target, i.e. TR ≪ TO, TR; this implies αtx+αrx ≪ π/2;
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• we assume normal inidene of the wavelength on the hest tissue interfaes.Sine we also assume normal inidene of the transmitted and re�eted waveform,we have αtx + αrx ≈ 0 and θ ≈ π − αtx ≈ π, θr ≈ π − αrx ≈ π. By applying theassumptions 7.2.1 in the generi on�guration

Rtx(t) =
√

R2
tx,0 + x2(t)− 2Rtx,0x(t) cos(θ) ≈ Rtx,0 + x(t); (7.12)and

Rrx(t) =
√

R2
rx,0 + x2(t)− 2Rrx,0x(t) cos(θ + αrx + αtx) ≈ Rrx,0 + x(t), (7.13)so that

d(t) ≈ Rtx,0 +Rrx,0 + 2x(t). (7.14)Sine now, we assume to be in the monostati on�guration.7.3 Vital Sign Modulation on the Reeived SignalThe time variations of the target hest position provide a modulation of the mainparameters of the reeived replias, i.e. the attenuation ρ, the phase β and the ToA
d(t)
c
. We introdue here the parameters, for a generi signal with a entral frequenyof 4 GHz; in the last of the hapter we desribe in detail the parameters, dependingon the nature of the transmitted signal.7.3.1 Attenuation Coe�ient ModulationAording to far �eld assumptions, the reeived signal power attenuation is inverselyproportional to the square of the path length, whih in our senario is a funtionof x(t); therefore, ρ(t) ∝ 1

(d(t))
. By assuming a path length of dmax = 2 m, and anosillation amplitude of 5 m, orresponding to a deep breath, we have a variationwhose maximum amplitude is about −38 dB, and therefore not relevant for vitalsign detetion, ρ(t) ≈ ρ0.7.3.2 Phase ModulationPath length variation modulates also the phase of the reeived signal. In partiular,for the onsidered arrier frequeny and bandwidth we veri�ed that a path lengthvariation of 2 m is su�ient to provide a phase shift of about π

2
.



98 Chapter 7. Channel Model7.3.3 Time of Arrival ModulationTo determine whether our system is able to detet the path distane variation by adelay variation, we need to speify the system bandwidth B; in fat, the reeivedsignal is now sampled with period Tc =
1
B
, then t = lTc l ∈ Z+; we underline thatwe an sample with a smaller period, in order to improve the SNR, but we are notable to extrat more aurate information about the CIR. We dedue then that theminimum path distane variation that we an detet is

∆dmin,s = c · Tc = 13.64 cm. (7.15)In Chapter 6 we evaluated the propagation speed in fat tissue, whose value for asignal propagating at 4 GHz is vfat ≈ 1.3 · 108, and therefore we have
∆dmin,f = vfat · Tc = 5.9 cm. (7.16)In our model we ould detet the path distane variation by a delay variation onlyif a) the air-skin interfae has an osillation amplitude of about 7 m, and/or b) the

∆fat(t) amplitude is about 3 m. If the ondition a) ould be veri�ed in some ases,when the target takes a very deep breath, ondition b) is never veri�ed. Therefore,in general we are not able to detet the vital signs by variation on delays of targetpath.7.4 Vital Sign Signal PowerWe propose here a feasibility study for deteting vital signs, and in partiular theheart rate, using a UWB tehnology under the ompliane of FCC regulations witha monostati on�guration, i.e. where the transmitter and the reeiver of the radarsignal are loated in the same devie, as desribed in Fig. 7.3. We aim at evaluatingthe range of distanes d between the radar and the target where the reeived poweris enough to allow the detetion of vital signs. A similar ase has been investigatedin [67℄, where the author evaluates the maximum distane allowed to see the signalre�eted by the heart, modeled as a spherial metalli re�etor, with a UWB radarsystem entered at 4.1 GHz. As illustrated in [63℄ and on�rmed in Chapter 6,the expeted reeived signal on the hest surfae, i.e. when d = 0, is omposedby a pulse re�eted by the air skin interfae, with expeted SNR of −3 dB, and aweaker re�eted pulse at −17 dB, due to the fat-musle interfae. For this study,



7.4. Vital Sign Signal Power 99we onsider only the �rst re�etion; the study an be extended also to onsider theinner re�etion, whih arries the same information of respiration, and a strongersignal for heart beating. We perform the analysis in far �eld region, as it providesa simple analysis; this approximation is not well veri�ed, due to both low distanesand the presene of the interfae of the target tissue, whih violates the ondition offree spae propagation.We are interested on the variation of the hannel tap desribing the target hest;we denote this signal as the vital sign signal, beause it provides the desired infor-mation on target vital signs. The vital signal power Pu is then only a fration DV Sof the reeived power Pr, i.e.
Pu = PrDV S.In partiular, DV S represents the dynami of the vital sign, i.e. the ratio betweenthe power of the hannel variation, due to the hest osillation x(t), and the reeivedpower. We summarize here all the assumptions used in the following:

• far �eld propagation;
• only line of sight (LOS) wireless signal propagation;
• one re�etion due to the air-skin interfae;
• the target hest is modeled as a spherial re�etor whose radius is a = 15 m
• the medium desribing the target is an homogeneous and ideal dieletri;
• sine we are interested in deteting both the respiration rate and the heartrate, and the latter is the weakest one, we expet the DV S parameter of theheart beat signal to be very small. Therefore, we assume the DV S parameterof heart beating as the worst ase senario, and we evaluate its expeted valuein the following.7.4.1 Power of the Reeived SignalLet
• EIRP be the e�etive radiated power; FCC regulations imposes a bound, de-pending on the system bandwidth [58℄;
• d be the round trip distane;



100 Chapter 7. Channel Model
x

l

T
PSfrag replaements d

2 TargetFigure 7.3: Desription of the target hest with respet to the radar devie in amonostati on�guration.
• σ be the radar ross setion (RCS);
• Ae =

λ2

4π
be the reeiving antenna aperture;

• σ

4πd2
be the fration of EIRP re�eted by the target hest;

• Ae

4πd2
be the fration of the re�eted power reeived by the reeiving antennaaperture.The reeived power is then given by [67℄

Pr = EIRP
σ

4πd2
Ae

4πd2
(7.17)7.4.2 Main Features of the Commerial UWB SystemWe onsider a Time Domain PulseOn210 system [68℄.We report the main parameters

• entral frequeny fC = 4.2 GHz;
• system bandwidth B = 2.2 GHz;
• FCC power spetral density limit PSDFCC = −41.3 dBm/MHz.Due to the limits on the transmitted power, we have unitary antenna gain at thetransmitter (Gt = 1) and in our senario

EIRP |dBm = PSDFCC|dBm/MHz +B|dBMHz = −7.88dBm.



7.4. Vital Sign Signal Power 1017.4.3 Radar Cross Setion EvaluationWe evaluate here the RCS of the target hest, seen as a spherial re�etor of ahomogeneous dieletri medium. For a spherial re�etor, RCS is given by
σ = |AtgtRtgtGtgt| (7.18)where Atgt is the projeted area of the target seen by the radar, Rtgt is the re�etivityof the target and Gtgt is the antenna-like gain of the target. In the following weevaluate eah of these terms

AtgtThe projeted area of the target depends on the arrier frequeny, and in partiularon the value of the parameter 2πa

λ
; in our ase, sine the ondition of the optialregion 2πa

λ
> 10 is veri�ed in the system band, we have Atgt ≈ πa2.

RtgtWe disussed in Setion 6.2 the re�etivity of the target; sine we assume only the�rst and strongest re�etion, from the air skin interfae, the re�eted power ratio is
Rtgt(f) = R1(f) =

∣

∣

∣

∣

η̃1(f)− η̃0
η̃1(f) + η̃0

∣

∣

∣

∣

2

. (7.19)In general, η̃i is a funtion of the frequeny, and in our senario its value is around-3 dB. This approximation has been derived with a widely used method [1, 63℄, andprovides a better insight with respet to the metalli sphere model.
GtgtWe assume the worst ase senario, where the target has no antenna-like gain, i.e.
Gtgt = 1.7.4.4 Maximum Detetion DistaneIn our senario the desired signal power is given by
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Pu = PrDV S = DV SEIRP

σ

4πd2
Ae

4πd2
= DV SEIRP

σλ2

(4π)3d4
=

= DV SEIRP
λ2R1(f)πa

2

(4π)3d4
.

(7.20)The maximum distane dmax allowed to sense the heart beating is the distane dwhere Pu is equal to the reeiver sensitivity Pu,min. We assume from [69℄ that Pu,min =

−85 dBm.From (7.20) we have then
Rmax = 4

√

DV SEIRPσλ
2

Pu,min(4π)3
=

= 4

√

DV SEIRPR1(f)πa
2c2

Pu,min(4π)3f 2
.

(7.21)At the best of our knowledge, there are not aurate measurements of the amplitudeof the osillation of the hest skin due to heart beating. However, we observe thatthis osillation in general an not be deteted by the eye, while it an be deteted bytouh. The maximum theoretial resolution of the eye, at its best auity, has beenestimated as 0.35 mm, while the minimum osillation an be deteted by touh is onthe order of 10−5 m [70℄; we onsider then the worst ase osillation amplitude of theskin ∆x on the order of 10µm, i.e. almost two orders of magnitude lower than theeye auity bound. This osillation provides a variation on the ToA of the reeivedpulse of ∆x/c, whih is too small to be deteted with our system; however, it willa�et the reeived signal both in amplitude and phase. Then, the desired signal willbe related to the value 2πf2∆x/c ≈ 10−3, and then DV S ≈ 10−6. The resultingvalue of the detetion range is desribed in Fig. 7.4; as we an see, deteting heartbeating in the onsidered band is possible only for a distane lower than 25 m.We an repeat the same study for the detetion of the respiration rate; it is easilyveri�ed that in this ase the signal dynami DV S ≈ 10−2. In this ase, the detetionrange is about 2.5 m.7.4.5 Signal to Noise Ratio (SNR) Optimization Using UWBRedundanyWith the pulse UWB tehnology, the pulse repetition period is very small with re-spet to the oherene time of vital signs; in the onsidered PulseOn appliation, the
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Figure 7.4: Maximum range as a funtion of frequenyrepetition frequeny is 10MHz, while vital signs have a rate of some Hz. By assumingthat the vital signs are onstant on a time period of 0.1 s, we have about 106 pulsesproviding the same sample of the vital sign proess. We an use this redundanyto inrease the desired signal power Pu; theoretially, we ould ahieve a maximumgain of about 105 ÷ 106. However, hardware limitations usually prevent the systemfrom ahieving the maximum gain; in partiular, the maximum gain ahievable withthe PulseOn Time Domain devie is GUWB ≈ 103. Then the maximum range is
dmax = 4

√

GUWB
DV SEIRPσλ

2

Pu,min(4π)3
=

= 4

√

DV SEIRPR1(f)πa
2c2

Pu,min(4π)3f 2
.

(7.22)The orresponding detetion range is desribed in Fig. 7.5; we observe that withthis operation we are able to detet the heart beating in our band with a distaneup to 8 m, whih is a reasonable value for an indoor senario. For the respiration,the detetion range is about 80 m. The operation of inreasing the SNR is alreadyimplemented in the UWB devie as an averaging operation, whih is optimal for anadditive while Gaussian noise (AWGN) hannel.We onlude this study with some onsiderations:
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Figure 7.5: Maximum range as a funtion of frequeny onsidering the average gain.
• FCC ompliane poses a severe limit for detetion of vital signs, and in parti-ular for heart beating;
• the detetion range sensibly depends on frequeny;
• signal to noise ratio (SNR) maximization is a key issue to address for remotesensing;
• UWB tehnology provides a desription of the hannel with a detail higherthan neessary for our proesses, whih are very slow with respet to the pulserepetition duration; this redundany an be used to inrease the vital signssignal power, and therefore also the maximum detetion range.



Chapter 8System Model
System model is a result of di�erent steps, with an inreasing level of omplexity ofthe onsidered senario. In fat, as a �rst step in Setion 8.1 we derive a narrowbandmodel for a single sattering senario; we derive for this model the Doppler analysisi.e., how the hest motion is related to the variations of the reeived signal. Theseond step is to extend the model to a single sattering, wideband model, modeledas a parallel of narrowband subsystems in Setion 8.2.1. The third step is to extendthe model to a multisattering, wideband model, desribed in Setion 8.2.2; in thisondition, two di�erent senarios are investigated: line of sight senario (LOS), whereall the re�etions are in phase, and loal rih sattering senario (LRS) where all there�eted signals are not exatly in phase. Finally, we introdue the omplete hannelmodel, where we onsider the entire hannel impulse response, LRS senario and thepresene of two re�etions, inner and outer, from the target, in Setion 8.3. Part ofthis work has been published in [71℄.
8.1 Narrowband System ModelWe �rst disuss the vital signs modulation on the parameters of the reeived signalfor a narrowband system, as the simple analysis desribing the narrowband senariois useful to desribe the wideband system. In a narrowband system, the transmittedpulse is a narrowband pulse pN(t). Let us suppose that we have only the re�etionby the air skin interfae of the target, without multipath. We onsider the targethest as a point satterer. Then the reeived signal for a single pulse an be written105
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r(t) = ρt

√

R1pN

(

t− d(t)

c

)

cos

(

2πfC

(

t− d(t)

c

)

+ φ0 + φt

)

+ η(t), (8.1)where φ0 is the initial phase, φt is the phase shift introdued by the re�etion, ρt isthe propagation attenuation oe�ient and R1 is the re�etion oe�ient. There isno amplitude modulation, while the relationship between the instantaneous phase ofthe reeived replia β(t) and d(t) is known, i.e.
β(t) = −2πfC

(

d(t)

c

)

+ φ0 + φt. (8.2)8.1.1 Doppler Estimation TheoryFrom (8.1), the instantaneous phase of r(t) is
β(t) = −2πfC

(

d(t)

λC

)

+ φ0 + φt, (8.3)and then the Doppler frequeny is
fd ,

1

2π

∂φr(t)

∂t
= − 1

λC

∂d(t)

∂t
. (8.4)In general, if we onsider the presene of di�erent paths involving the target inmotion, we have d(t) =∑Nhop

i=1 di. Eah path is a�eted by Doppler whose frequenyis
fd,m ,

1

2π

∂φr,m(t)

∂t
=

Nhop
∑

i=1

− 1

λi

∂ (di)

∂t
, (8.5)where Nhop is the number of re�etions whih our from the transmitter to thereeiver, and λi is the wavelength of the signal propagating on the medium of path

i.8.2 Wideband System ModelThe narrowband Doppler analysis is not su�ient to desribe an UWB senario; infat, all the parameters used in that analysis, suh as the speed, the wavelength, theattenuation, depend on the frequeny. However, the narrowband Doppler approahallows a simple model of the e�ets of vital signs on the reeived signal. This moti-vates our suggestion of modeling the UWB system as a parallel of NB narrowband



8.2. Wideband System Model 107systems. By this model, we an apply the narrowband analysis to eah subsystem;the value of NB is hosen in order to have on eah sub-band a �at pulse frequenyresponse, and a �at attenuation.We onsider now two senarios: in one ase, where the hest is still modeled as asingle satterer, while in the seond ase the hest is modeled as a set of satterers.
8.2.1 Single Satterer SenarioWemodel the signal r(t) as the sum of theNB reeived signals of the narrowband sub-systems. For eah subsystem b, the entral frequeny is fb = fI+b B

NB
, where fI is thelower bound of the UWB band. The orresponding equivalent pulse pb(τ) is assumedto be a onstant in frequeny domain on sub-band b, i.e. Pb(f) = P (fb)rect(

f−fb
NB/2

),and therefore in time domain an be written as i.e.
pb(τ) = P (fb)sinc

(

B

NB

τ

)

. (8.6)Then, the reeived signal an be written as
r(t) =

NB−1
∑

b=0

ρ0
√

R1pb

(

t− d(t)

c

)

cos

(

2π(fI + b
B

NB
)

(

t− d(t)

c

)

+ φ0 + φt

)

+

+ η(t) (8.7)where η(t) is the noise term. The equivalent baseband signal is
rBB(t) =

NB−1
∑

b=0

ρ0
√

R1pb

(

t− d(t)

c

)

e
−j2π(fI+b B

NB
)
d(t)
c

+φ0 + ηBB(t). (8.8)



108 Chapter 8. System ModelUnder the assumption of �at frequeny fading of the narrowband pulses pb on theirsub-bands, i.e. P (b) ≈ P , and A = Pρ0
√
R1 exp(φ0) we have

rBB(t) ≈ Asinc
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∑
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) + ηBB(t) (8.9)After some algebra we obtain α(t) = sin
(

2πB
2
d(t)
c

)

sin
(

2π B
2NB

d(t)
c

) , while β(t) = e
−j2π

(

fC− B
2NB

)

d(t)
c .In Fig. 8.1 the absolute value and phase modulation of the reeived signal are shownfor a system whose bandwidth is 2.2 GHz, divided into NB = 106 subsystems, wherethe target is at distane of 1 m osillating as a sinusoidal funtion with amplitude 2mm. We observe that the osillation of the target modulates also the amplitude ofthe reeived signal; in partiular, the modulation funtions of amplitude and phasehave the same frequeny of the target osillation and a phase shift of π/2.In general, we observe that the UWB signal is modulated by vital signs both inamplitude and phase; however, the modulation is not as simple as (8.9), sine thisformula has been derived under singe satterer and very short pulse assumptions.8.2.2 Rih Sattering SenarioUntil now, we modeled the hest as a point re�etor; a more realisti approximationis to onsider the hest as a set of re�eting points, eah providing a re�eted signal
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Figure 8.1: Modulation of amplitude and phase of the reeived signal in UWB singlesattering senario



110 Chapter 8. System Modelwith its phase shift and delay. In general, the hest setion an be seen as an ellipseexpanding and ontrating due to respiration and heart beating. Using the spherialwaves propagation model, it is easily shown that the reeiver ollets the signalre�eted by a small area around the enter of the hest. In fat, the waves re�eted atthe borders don't reah the reeiver in a monostati on�guration. Therefore, we anapproximate the hest as a planar surfae, moving aording to a rigid translation;the re�eted waves di�er slightly in phase, beause of very little di�erenes of pathlength from eah point of the surfae. Even if our system is not able to resolvethe di�erenes in delay, if there are enough re�etions, we may observe also anamplitude modulation of the reeived signal. The target hest, and in general theentire target body ould also behave as a set of satterers, eah of them with itsown inidene angle, re�etion oe�ient and phase. This hypothesis di�ers fromthe rih sattering, onsidered for wireless ommuniations [2℄ beause in this aseall the satterers are onentrated on a limited region of the spae, and then they arenot uniformly distributed w.r.t. the reeiver. However, in general we assume thatthe amplitude and phase diversity provided by all the reeived replias is su�ientto ause a signi�ant variation of the amplitude of the reeived signal, together withits phase. This e�et is ombined with the UWB amplitude modulation, as seen inthe previous paragraph.Let us onsider Ns satterers; eah satterer ns is haraterized by its own distanefrom the radar dn(t).
rBB(t) =
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∑
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∑
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√
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·

· e−j2π(fI+b B
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)
dns (t)

c
+φ0 + ηBB(t).

(8.10)Although the number and the distanes of the satterers are unknown, (8.10) sug-gests that both α(t) and β(t) are funtions of time with the same periodiity featuresof the hest osillation funtion x(t).
8.3 UWB Model with Multiple Target Re�etionsWe onsider now the most generi on�guration, whih inludes multipath due tothe indoor senario and multiple target re�etions due to the multilayer nature of



8.3. UWB Model with Multiple Target Re�etions 111the hest, i.e. an indoor hannel senario with a disrete and �nite number Ntap ofre�etors. Then the reeived signal beomes
rBB(t) =

Ntap
∑

i=1

sBB(t− τi(t))hBB(τi(t)) + ηBB(t) (8.11)where
sBB(t) =

∞
∑

j=−∞

p(t− jTS)is the baseband equivalent transmitted signal, τi(t) de�nes the ToA of the repliare�eted by re�etor i, and hBB is the equivalent baseband hannel impulse response.Let us de�ne N
(i)
layer as the number of layers of path i, di,l(t) the length of layer l ofpath i, and vi,l the speed of light in layer l of path i; then we have

τi(t) =

N
(i)
layer
∑

l=1

di,l(t)

vi,l, i.e., the ToA of the replia re�eted by re�etor i is the sum of the delays providedby the propagation on medium layer l with propagation speed vi,l. We assume allother re�etors as stati and ideal ondutive objets; they are desribed with onlyone layer, and with a time-invariant distane. Furthermore, the analysis providedin Chapter 6 suggests to model the target as two interfaes, eah one re�eting thetransmitted signal with its attenuation and a phase shift of π. We will indiate withindex T the target; we also indiate with the subsript 1 the outer interfae (air-skin-fat), and with 3 the inner one (fat-musle), using the same notation introduedin Chapter 6; the two interfaes are separated by z3 ≈ 0.96 m. We onsider thefat tissue as a rigid tissue; then, both the interfaes will have the same motion dueto respiration, modeled as xr(t). The motion of the two interfaes due to the heartbeat takes into aount the attenuation due to the tissues i.e., we expet the innerinterfae to be more a�eted by the heart beat then the outer interfae. For the innerinterfae we have xh,3(t) while for the outer xh,1(t); these two funtions di�er onlyfor the attenuation fator, whih is higher for the outer re�etion. By ombiningthe e�et of respiration and heart beating we have that the round trip distanesfor the two interfaes are d1(t) = RT + xr(t) + xh,1(t) and d3(t) = d1(t) + ∆3(t) =
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d1(t) + zfat − 2(xh,3(t)− xh,1(t)). Then we an write
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∑
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(8.12)
Let us now indiate with rTI(t) the �rst omponent of the signal; in the followingwe will desribe how we anel it. We have

rBB(t) = rTI(t) + ηBB(t)+
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(8.13)We reall here some results that we veri�ed in the previous Chapters:
• in general, even using all the band allowed by FCC, we are not able to detetthe vital signs by variation on delays of target path;
• sine z3 < 3 m, the inner and outer paths are represented by the same timesample, de�ned as τT ;
• the non aliasing ondition is veri�ed, Tc > 2TP and then we don't have aliasingbetween adjaent pulses;
• the theoretial narrowband and wideband model desribed in Setions 8.1 and8.2 suggests that the target replias are modulated by vital signs both in am-plitude and in phase.An exat expression of modulation has been derived in Setion 8.2, by onsideringonly the outer re�etion; a similar analysis an be performed also for the innerre�etion, whih provides its own amplitude and phase modulation to the reeivedsignal. In general, we desribe both amplitude and phase of the reeived replia asfuntions of hest osillation, i.e.
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(8.14)



8.3. UWB Model with Multiple Target Re�etions 113In general, we observe that funtion β(t) is proportional to d(t), while there is not ageneral analysis providing an expeted behavior of α1 and α3. The sampled reeivedsignal expression beomes
rBB(lTc) = rTI(lTc) + sBB (lTc − τ)

[

α1(d1(lTc))e
−jβ(d1(lTc))+

+α3(d1(lTc) +
∆3(lTc)

vf
)e

−jβ(d1(lTc)+
∆3(lTc)

vf
)
]

+ ηBB(lTc).
(8.15)We remind now the properties of this signal: sBB(lTc) is a periodi funtionwith repetition frequeny equal to PRF. We also suppose that 2π fC

PRF
is a multipleof 2π. Then we divide the temporal axis into pulse repetition periods of duration

TREP = 1
PRF

with length KTc (larger then the CIR length), K = TREP

Tc
. We veri�edthat sBB(lTc) = sBB(lTc + TREP ) = p(lTc). Then we write

lTc = nREPTREP + nKTc nK = 0, · · · , K − 1; nREP ∈ Z+, (8.16)and the reeived signal is
rBB(nREPTREP + nKTc) = rTI(lTc) + p (lTc − τ) [α1(d1(nREPTREP + nKTc))·

·e−jβ(d1(nREPTREP+nKTc)) + α3(d1(nREPTREP + nKTc) +
∆3(nREPTREP + nKTc)

vf
)·

·e−jβ(d1(nREPTREP+nKTc)+
∆3(nREP TREP +nKTc)

vf
)
]

+ ηBB(nREPTREP + nKTc) (8.17)We observe that the oherene time of the observed proesses is larger than both
Tc and TREP ; in fat, fr, fh < 10Hz ≪ 9.611 MHz; we an then use the redundantamount of samples to improve the SNR. We all slot a set of NS suessive symbols,and we assume that the slot duration is lower than the oherene time of vital signs.At the transmitter we modulate the transmitted pulses with a pseudonoise sequene;then the reeiver performs a despreading with a spreading fator of NS.To orretly reonstrut the vital sign signal, it is then su�ient a sample periodof Tscan = NSTREP ; d1(nREPTREP + nKTc), d3(nREPTREP + nKTc),∆3(nREPTREP +

nKTc) are supposed to be onstant in a slot. We have
rBB(kTscan + nKTc) = rTI(nKTc) + p (nKTc − τ)

[

α1(d1(kTscan))e
−jβ(d1(kTscan))+

+α3(d1(kTscan) +
∆3(kTscan)

vf
)e

−jβ(d1(kTscan)+
∆3(kTscan)

vf
)
]

+ ηBB(kTscan + nKTc)(8.18)



114 Chapter 8. System ModelIn the following we onsider Tscan = 1 ms. The time sale nKTc represents the delaysof CIR. We observe that rTI(nKTc) does not depend on nK ; in fat, in our model thevital signs and the white noise are supposed to be the only time variant proessesin the hannel. We an estimate this stati part of the CIR and anel it using abakground subtration operation; one simple method to estimate it is taking theaverage of rBB(kTscan + nKTc) over k. After bakground subtration from (8.18) weobtain a noisy version of the target omponent
rT (kTscan + nKTc) = p (nKTc − τ)

[

α1(d1(kTscan))e
−jβ(d1(kTscan))+

+α3(d1(kTscan) +
∆3(kTscan)

vf
)e

−jβ(d1(kTscan)+
∆3(kTscan)

vf
)
]

.
(8.19)Note that rT (nKTc + kTscan) is a time-varying signal sine the round trip distanefrom the air-skin interfae d1(kTscan) and from the fat-musle interfae d1(kTscan) +

∆3(kTscan

vf
) depend on respiration and heart beating.We then model the wide band system as a parallel of NB narrowband systems.By this model, we an apply the Doppler analysis to eah subsystem; furthermore,we avoid to perform deonvolution with p(t), sine on eah subsystem the pulsefrequeny response is supposed to be onstant.8.3.1 Combination of the UWB Signal at Eah San to Max-imize SNRIn Subsetion 7.3.3 we veri�ed that the delays of di�erent points of the target hestannot be distinguished; therefore, in our assumptions and without noise, one valueof nK , orresponding to the target delay τT , is su�ient to desribe the reeived pulse,with Tc =

1

B
. The presene of more then one values of nK where rT (nKTc+kTscan) 6=

0 ours if oversampling is performed. In fat, the presene of noise and distortion onthe reeived signal suggests to bene�t from the oversampling fator to improve theSNR, i.e. to �nd the best way to ombine the samples desribing the same hannelpath and obtain the vital sign signal v(kTscan). From the theoretial point of view,in absene of ISI, the linear ombination that maximizes the SNR is provided by themath �lter [41℄. In absene of noise, the ombination of all samples rT (nKTc+kTscan)for eah san providing the maximum SNR is given by
v(nTscan) = maxnK

{rT ∗ g1 (nKTc + kTscan)}. (8.20)



8.3. UWB Model with Multiple Target Re�etions 115where g1(t) = p∗(−t) is the mathed �lter [41℄ and ∗ is the onvolution operator. Byassuming only the AWGN noise as disturb, performing the onvolution desribed in(8.20) we obtain
ṽ(kTscan) = v(nTscan) + w(nTscan), (8.21)where w(nTscan) is the resulting noise omponent.
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Chapter 9Detetion TehniquesWe aim at deteting the heart rate and respiration rate of the target, based on theknowledge of the noisy signal ṽ(k) whih ollets the ontribution of both phenomena.As the onvolution in (8.20) is a linear operator, the resulting signal ṽ(nTscan) is azero mean signal a�eted by zero mean AWGN noise w(nTscan), i.e.
ṽ(nTscan) = v(nTscan) + w(nTscan). (9.1)We veri�ed that the shape of respiration and heart beating hanges signi�antly withmany fators, e.g. angle of inidene, distane of the radar, position of the target.Therefore, we annot exploit any a priori information on the signal shape.In general, v(k) is a non stationary signal, mainly beause of the irregular natureof the respiration proess. Therefore, v(k) annot be onsidered as a periodi signalin strit sense; it is then assumed loally periodi, i.e. the periodiity of v(k) isassumed to be slowly varying and onstant in a range of samples of length N . Inthe following, we will fous on the period estimation performed on a window of Nsamples and therefore onsider an observation of the signal ṽ(k), k = 1 . . .N .The hoie of the number of observed samples N is ditated both by the desiredestimation time and by the fat that signal v(k)may be regarded as periodi only for alimited time. This is the ase of vital signs (heart beating and respiration rate), whihan be assumed periodi as long as the target onditions, inluding his movements,speaking ativity, et., are not hanging. The investigations on respiration and heartbeating allow us to onsider two ranges Ir, Ih of periods, suitable for respirationand heart beating, respetively. In partiular, for a healthy adult target we onsider

Ir = [0.5s 10s], and Ih = [0.3s 1.2s], orresponding to a heart rate range of 50− 200beats per minute (bpm). Sine we an not make any assumption on the shape of v(k),117



118 Chapter 9. Detetion Tehniqueswe ignore orrelation among samples within a period. In partiular we model v(k) asa white Gaussian proess with unitary variane E [|v(k)|2] = 1 and zero mean withinthe elementary period. Consequently, the olumn vetor v = [v(1), · · · , v(N)]H is azero mean Gaussian vetor with ovariane matrix
Σr(P ) = E

[

vvH
]

, (9.2)where we have highlighted its dependene on the period P , and H denotes the Her-mitian operator. Assuming that ṽ(k) has period P , the entries of Σv(P ) are
[Σv(P )] (k, k + l) = E

[

v(k)v(k + l)H
]

=











1, if l = mP,m ∈ Z \ {0}
1 + σ2

w if l = 0,

0 elsewhere (9.3)where in the last ase the assumption of white proess for v(k) is used.
9.1 Autoorrelation Based Period DetetionA signi�ant amount of literature uses the orrelation to estimate the period of thesignal v(k) [72℄, [73℄. If the signal is ergodi, an estimate of the orrelation is givenby

C(n) =
1

N

N
∑

l=1

v(l)v∗((l + n)N), n = 0 . . . N − 1, (9.4)where the averaging is performed over N samples and the expression (a)N stands for
a mod N . The optimum value of N depends on the noise level and on the validityof the assumption of ergodiity. In absene of noise, the real part of C(n), ℜ[C(n)],is periodi and reahes its maxima for n = mP . Hene, aording to the orrelationbased (CORR) algorithm, the period estimation is performed as

PCORR = argmaxn ℜ[C(n)]. (9.5)The method in (9.4) does not take into aount the presene of noise. The funtion
|C(n)| is periodi and reahes its maxima if n is a multiple of the period P̄ . Thesame periodiity information provided by the autoorrelation funtion an be seen infrequeny domain through the periodogram; di�erent algorithms have been proposedto evaluate the periodogram of a funtion.



9.2. Maximum Likelihood Period Detetion 1199.2 Maximum Likelihood Period DetetionWe propose the maximum likelihood (ML) period estimator for the onsidered signal.Let f(v|n) be the onditioned probability density funtion (pdf) of v given that
P = n. Then, the log-likelihood funtion is

Λ(n) = log(f(v)) (9.6)and the ML estimator is
PML = argmaxn Λ(n) (9.7)Reminding that the onditional pdf of the zero mean Gaussian vetor v is

f(v|n) = 1

(2π)N/2 ‖ Σv(n) ‖1/2
e−

1
2
vHΣv

−1(n)v, (9.8)the log-likelihood funtion for a andidate period n is given by
Λ(n) = log(f(v|n)) = log

[

1

(2π)N/2 ‖ Σv(n) ‖1/2
]

− 1

2
vHΣv

−1(n)v. (9.9)From (9.3) we observe that Σv(n) is a Toeplitz matrix. Furthermore, if N is amultiple of n, i.e. N = Ln, Σv(n) is irulant, generated by vetor c = [1 +

σ2
w 0T

n−1 1 0T
n−1 · · ·0T

n−1].In the following we onsider N ≫ n, n ∈ IP , so that
⌊ N

max n
⌋max n ≈ ⌊ N

min n
⌋min n ≈ N.Under this assumption, in the following we assume N as a multiple of n. If σ2

w 6= 0,the inverse matrix is non singular, still irulant and its �rst row is
[

Σv
−1(n)

]

1,·
=

1

σ2
w(L+ σ2

w)

[

(L− 1) + σ2
w, 0

T
n−1,−1, 0T

n−1,−1, · · · , 0
]

. (9.10)



120 Chapter 9. Detetion TehniquesThe log-likelihood funtion beomes
Λ(n) = log

[

1

(2π)N/2 ‖ Σv(n) ‖1/2
]

+

− 1

2σ2
w(L+ σ2

w)

(

((L− 1) + σ2
w)

N
∑

k=1

|v(k)|2 −
N
∑

k=1

L−1
∑

m=1

v∗(k)v(k +mn)N

)

=

=

[

log(
1

(2π)N/2 ‖ Σv(n) ‖1/2
)− 1

2σ2
w(L+ σ2

w)
(L+ σ2

w)

N
∑

k=1

v∗(k)v(k)

]

+

− 1

2σ2
w(L+ σ2

w)

(

−
N
∑

k=1

v∗(k)v(k)−
N
∑

k=1

L−1
∑

m=1

v∗(k)v(k +mn)

)

= log

[

1

(2π)N/2 ‖ Σv(n) ‖1/2
]

− 1

2σ2
w

(

N
∑

k=1

|v(k)|2
)

+

+
1

2σ2
w(L+ σ2

w)

(

N
∑

k=1

L−1
∑

m=0

v∗(k)v(k +mn)N

)

(9.11)
We assume that the �rst term as onstant with respet to n. Negleting additiveterms that do not depend on n, whih are not involved in the maximization of thelog-likelihood funtion, we have

PML = argmaxn
1

2σ2
w(L+ σ2

w)

(

N
∑

k=1

L−1
∑

m=0

v∗(k)v(k +mn)N

)

=

= argmaxn
1

(L+ σ2
w)

L−1
∑

m=0

C(mn).

(9.12)
9.2.1 Low Complexity Implementation of ML DetetionWe propose a method that estimates the periodiity without initially estimating theorrelation. In fat, if v(k) desribes a large number of periods, i.e. L ≫ σ2

w, wehave
PML = argmax Λ(n) =

= argmax
N

2σ2
w(L+ σ2

w)

(

L−1
∑

m=0

C(mn)

)

=

= argmax
1

L+ σ2
w

L−1
∑

m=1

C(mn) ≈ argmaxn e(n) = PLCML.

(9.13)



9.2. Maximum Likelihood Period Detetion 121For eah andidate period n ∈ IP , we divide the signal v(l) in L bloks of length
n, with Ln ≤ N , i.e. we make the hange of variable l = k + in with k = 1 . . . n,
i = 1 . . . L. If the period P is orret, then v(k+ jP ) = v(k+ iP ), with i, j the blokindex. The funtion e(n) is a linear ombination of the autoorrelation funtionevaluated on multiple values of n, i.e.

e(n) =
1

n

n
∑

k=1

1

L2

L−1
∑

i=0

L−1
∑

j=0

v(k + in)v∗(k + jn) =

=
1

L

L−1
∑

m=0

C(mn).

(9.14)However, e(n) an also be omputed as
e(n) =

1

n

n
∑

l=1

|q(l, n)|2, n ∈ IP . (9.15)where
qL(l, n) =

1

L

L−1
∑

m=0

v(l +mn), k = 1, · · · , n. (9.16)We denote this method as low omplexity ML detetion (LCML) method; in fat,it allows a low omplexity implementation of the ML strategy, as we disuss in Se.10.4.4. If the signal is periodi with period n̄ and it has zero mean, the funtion e(n)of (9.15) is periodi with the same period of the signal v(·). The intuition behind thismethod is that the sum in (9.16) allows for an averaging of the noise thus reduingthe noise impat on the �nal estimate.If all the proesses are ergodi, we have
lim
L→∞

qL(k, n) = E[v(k + in)] =

= v(k)δ(n−mP̄ ), n ∈ IP , m ∈ Z,
(9.17)where the expetation is done with respet to i, and

e(n) = σw · δ(n−mP̄ ), n ∈ IP , m ∈ Z. (9.18)Asymptotially, the LCML estimation tends to a periodi delta funtion with periodequal to the period to be estimated.As illustrated in Subsetion 9.3.1, the average autoorrelation e(n) is a�eted by



122 Chapter 9. Detetion Tehniquesa noise omponent with mean σ2
w

L
. Therefore, if an estimate of the noise power isavailable, we an further re�ne the LCML method by removing the mean value ofthe noise omponent, obtaining the LCML2 method

PLCML2 = argmaxn
1

L

L−1
∑

m=0

C(mn)−
σ2
η

L
. (9.19)9.3 Vital Signs Period EstimationRemote sensing of vital signs using UWB radar tehnology is a possible appliationof the period estimation problem. We assume a monostati on�guration, where thetarget hest is in front of the radar devie in a line of sight on�guration, and thereeiver perfetly estimates and anels all the replias referring to the stati partof the hannel, using bakground subtration tehniques [65, 66℄. At the reeiver, a�lter mathed to the UWB pulse is applied and after sampling we obtain a signal

v(k) as in (8.20). We veri�ed that the shape of v(k) hanges signi�antly with manyfators, e.g. the angle of inidene, the radar distane, the target position. In gen-eral, v(k) is a non stationary signal, mainly beause of the irregular nature of therespiration proess. Therefore, it an not be onsidered as a periodi signal in stritsense. We instead model it as loally periodi on N samples.Period estimation an bene�t from the wide knowledge on heart beating and respi-ration features provided by mediine. In fat, the human physiology provides upperand lower bounds to the vital signs rate, depending on target parameters, e.g. ageand resting/ativity of the target [61℄. In partiular, for a healthy adult target, theranges of the period durations are [0.5s; 10s] for respiration, and [0.3s; 1.2s] for heartbeating, orresponding to a heart rate range of 50− 200 beats per minute (bpm).We observe that ṽ(k) is a zero mean signal, sine the average has been nulled bybakground subtration.9.3.1 Theoretial SNR EvaluationIn this setion, we analytially desribe the statistial noise desription for the fun-tions C(n) and e(n), in order to investigate how the presene of noise a�ets themethods CORR and LCML, respetively.



9.3. Vital Signs Period Estimation 1239.3.2 AutoorrelationBy onsidering the presene of noise and �nite N , we have
C(n) =

1

N

N
∑

l=1

v(l)v∗((l + n)N) = C̃(n)+

+
1

N

N
∑

l=1

[ṽ(l)w∗((l + n)N) + w(l)v∗((l + n)N )]+

+
1

N

N
∑

l=1

w∗(l)w((l + n)N ).

(9.20)
where

• C̃(n) = E[v(l)v∗(l + n)] is the autoorrelation funtion;
• ηA(n) = 1/N

∑N
l=1 [v(l)w

∗((l + n)N) + w(l)v∗((l + n)N)] is the mixed noise andsignal term. To further elaborate this term, we denote with ηR, ηI the real andimaginary part of ηA, respetively. They are both Gaussian random variableswith zero mean and variane σ2
w/2. Then, we have

ηA(n) =
1

N

N
∑

l=1

[v((l − n)N )w
∗(l) + w(l)v∗((l + n)N)] =

1

N

N
∑

l=1

ηR(lT s)[v
∗((l + n)N ) + v((l − n)N)] + ηI(l)[v

∗((l + n)N)− v((l − n)N)],(9.21)in whih the two terms inside the sum are independent, Gaussian, and zeromean. The variane of the �rst term is σ2
w[2σ

2
v + 2C(2n)]/2 while the varianeof the seond one is σ2

w[2σ
2
v − 2C(2n)]/2. Therefore, ηA(n) is a zero meanGaussian random proess with variane 2σ2

wσ
2
v/N .

• The last term ηB(n) = 1/N
∑N

l=1w(l)
∗w((l + n)N ) is the sum of random vari-ables whose probability distribution is a modi�ed Bessel funtion of null order

K0(x) and statistial power σ4
w. Sine w(·) are independent identially dis-tributed (iid) random variables with zero mean, the statistial power of ηB(n)is σ4

w/N .In the presene of a noisy observation of a signal, the onventional approah to esti-mate the orrelation is haraterized by a noise ontribution whih an be separated



124 Chapter 9. Detetion Tehniquesin two terms. One has variane 2σ2
wσ

2
v/N and the other has variane σ4

w/N .The signal to noise ratio of C(P̄ ) is
SNRcorr =

E[|C̃(n)|2]
2σ2

wσ
2
v/N + σ4

w/N
=

σ4
w

2σ2
wσ

2
v/N + σ4

w/N
. (9.22)9.3.3 Low Complexity MLIn order to obtain a low omplexity ML (LCML) method we note that if L does notapproah in�nity, (9.16) beomes

qL(k, n) =
1

L

L−1
∑

i=0

v(k + in) +
1

L

L−1
∑

i=0

w(k + in), k = 1, · · · , n; (9.23)the term η1(k, n) = 1/L
∑L−1

i=0 w(k+ in) in (9.23) is a Gaussian random proess withzero mean and variane σ2
1(n) = σ2

w/L. We an then write
e(n) =

1

n

n
∑

k=1

(

η1(k, n) +
1

L

L−1
∑

i=0

v(k + in)

)(

η∗1(k, n) +
1

L

L−1
∑

j=0

v∗(k + jn)

)

=

=
1

n

n
∑

k=1

[

|η1(k, n)|2 +
1

L2

L−1
∑

i=0

L−1
∑

j=0

v(k + in)v∗(k + jn) +
1

L
η1(k, n)

L−1
∑

i=0

[v∗(k + in)] +

+
1

L
η∗1(k, n)

L−1
∑

i=0

[v(k + in)]

]

=

= η3(n) +
1

L2

L−1
∑

i=0

L−1
∑

j=0

C̃((i− j)n) + η2(n), (9.24)where
• The �rst term is

η3(n) =
1

n

n
∑

k=1

|η1(k, n)|2 =
σ2
1

n

n
∑

k=1

|η1(k, n)
σ1

|2 = σ2
1

2n
X (9.25)where X is a hi-square distributed random variable of order 2n χ2

2n
1. Theexpeted value and variane of η3 is

E[η3] =
σ2
1

2n
E[X ] = σ2

1 =
σ2
w

L
, (9.26)1The order is the number of terms of the sum; in our ase is 2n beause η1(k, n) is a omplexnumber.
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σ2
η3

=
σ4
1

4n2
σ2
X =

σ4
1

n
=

σ4
w

L2n
. (9.27)We notie how the mean of η3 an provide an estimate of the statistial power

σ2
w. We observe that

• C((i−j)n) is an estimate of the autoorrelation funtion evaluated on (i−j)n;the quality of the estimation inreases with n. However, sine the value of Lnis onstant, we observe from (9.24) that for low values of n the average onmultiple values of n is performed on a higher number of terms.
• η2(n) = 1

Ln

∑n
k=1 2Re

[

η1(k, n)
∑L−1

l=0 v∗(k + ln)
] is obtained reminding that

A∗B = (AB∗)∗, where A,B are omplex numbers. Both the real and imaginarypart of η1 are Gaussian, while ṽ(·) is a deterministi proess. Then, η2(n) is aGaussian random proess with zero mean and statistial power
σ2
2(n) =

4

n2L2

σ2
1(n)

2

n
∑

k=1

E

[

|
L−1
∑

l=0

v∗(k + ln)|2
]

=

=
2

n
σ2
1(n)A(n)

(9.28)where A(n) = E
[

| 1
L

∑L−1
l=0 v(k + ln)|2

]

= 1
L

∑L−1
l=0 C(ln); in partiular, A(n) =

σ2
w if n = mP̄ , m ∈ Z. We note also that A(n) does not depend on k.As done in the previous subsetion, we an de�ne the SNR for the proposed methodfor n = P̄ as

SNRprop =

∣

∣

∣

1
L2

∑L−1
i=0

∑L−1
j=0 C̃((i− j)n)

∣

∣

∣

2

2σ2
wσ

2
s/N + σ4

w/(L
2n)

=
σ4
w

2σ2
wσ

2
s/N + σ4

w/(L
2n)

. (9.29)The SNR of the two methods are very lose, f. (9.22) with (9.29). However, thedistribution of the noise is di�erent, and the shape of the the useful signal too. Inpartiular, by realling (9.18), we notie that with the inrease of L the useful signalin the proposed method tends to be a delta funtion whose exat position an bedeteted in a robust way. Aording to this analysis, we introdue a third methodLCML-2, whih approximates the ML and is based on the funtion
e2(n) = e(n)− σ2

w

L
. (9.30)



126 Chapter 9. Detetion Tehniques9.3.4 Simulation SetupThe ML method is ompared with the state of the art algorithms, i.e.
• the AMDF method, whih minimizes the average magnitude of the di�erenefuntion between adjaent periods [74℄;
• the algorithm based on the weighed autoorrelation funtion (WEIGHT), whihhas been shown to improve the autoorrelation based detetion algorithm [75℄;
• the method based on the Welh periodogram (WELCH), whih evaluates thepeak of the Welh periodogram [76℄;
• the Musi based algorithm (PMUSIC) [77℄.In the following, we show that the proposed LCML method outperforms the stateof the art algorithms, as expeted sine it represents a low omplexity implementationof the ML estimation strategy.



Chapter 10Experiment Results
10.1 System DesriptionWe onsider a TD PulsON 210 IR-UWB system for the detetion of vital signs ofa target in an indoor environment. As desribed in Setion 5.2.2, the transmittedwave p(t) is a Gaussian pulse, and then the transmitted signal is

s(t) =

+∞
∑

n=−∞

e
−

(

(t−nTREP )2

2σ2

)

√
2πσ

cos(2πfCt+ φ0), (10.1)where TREP is the pulse repetition period and σ is the pulse variane, depending onits bandwidth. The P210 Standard waveform has a 10 dB bandwidth B = 2.2 GHz,and a entral frequeny fC = 4.2 GHz; in the following we indiate as fi = 3.1 GHzthe lower limit of the band. The duration of the impulse response is TP = 1000 ps(99.91% of the total energy), or TP = 800 ps (99.3%).We note that the maximum sample period verifying the sample theorem is Tsamp =
1
B

= 454.5 ps; this is also the maximum resolution we an obtain on the hannelimpulse response estimate. However, the sample theorem is not stritly veri�ed.Aliasing is introdued by the presene of real �lters and non �nite duration of theimpulse response. We set the value of the pulse repetition frequeny (PRF) to 9.611MHz.We de�ne a slot as a set of K transmitted pulses oded by a pseudo-noise sequene
ν(k) k = 1, · · · , K. We observe that the maximum hannel impulse response (CIR)length that an be inluded in a pulse period is 1

PRF
∼ 1µs, and the orrespond-ing distane of the farthest re�etor is 15 m. In our senario we assume that this127



128 Chapter 10. Experiment Resultsondition is veri�ed, and then for eah pulse repetition period the reeiver gets thewhole set of replias generated by the orresponding pulse, and interferene betweenadjaent pulse repetition intervals (ISI) is absent.Aording to the PulseOn notation, we de�ne as waveform the set of reeived repli-as; in a ideal senario, i.e. absene of ISI and distortion, and a disrete and �niteCIR, waveform is given by the onvolution of the CIR with the transmitted pulse.Based on the waveforms reeived in eah slot, the reeiver provides a waveform sanby a weighted average of the reeived symbols. The paket transmission interval is 1ms, i.e., two adjaent waveform sans refer to times t0, t0+1 ms; we assume then thatthe oherene period of vital sign proesses is higher than 1 ms, i.e., the proessingof the reeived signal in a slot does not a�et the vital signs detetion.10.1.1 Hardware Con�gurationThe PulseON 210 kit provides several utilities and programming examples both forommuniation and sensing purpose. All the appliations onsist of two omponents:an embedded side and a host side. The embedded omponent runs on the devieusing the UWB Kernel inluded with the hardware. The host side runs on a PC,where simulation parameters are set by the user through a graphi interfae (API).The embedded side and the host side are linked by a Ethernet onnetion and ontrolsthe radio using the UWB Kernel inluded with the hardware. The host side runson a PC; and through the network sends ommands to and reeives status info andradar sans from the embedded omponent.10.1.2 Parameters DesriptionWe desribe in the following the main parameters of our experiment setupLink Rate The Ethernet link onneting the embedded side on the devie withthe host side on the PC has a rate LR of 600 kbps.Pulse Repetition Frequeny The PRF an be seleted by the user; in our se-nario it has always been set to 9.6 MHz. Therefore, the pulse repetition period TSis about 0.1µs.



10.1. System Desription 129Hardware Integration The hardware Integration (HWI) is the number of pulsesthat are integrated to build a sample. HWI ∈ {32, 64, 128, 256, 512}.Software Integration The software Integration (SWI) is the number of samplesthat are averaged at eah step to form a single sample value, i.e., at eah san step,SWI samples are summed to yield the urrent sample. SWI ∈ {2, 4, 8, 16, 32, 64}.Pulses per sample Pulses per sample (PPS) is the number of UWB radio pulsesrequired for eah san sample: PPS = HWI · SWI.Start position for the san windowing (ST) : It denotes the start position ofthe san windowing, evaluated in feet [ft℄ or in bins [bins℄.Stop position of the san windowing (EN) It denotes the stop position of thesan windowing, evaluated in feet [ft℄ or in bins [bins℄.San window The limited apaity of the Ethernet link LP = 600 kbps is a severebound on the reeived data rate. Furthermore, the high level of noise suggests toset an high value of HWI and SWI. Therefore, the san is limited to a shortwindow around the position of the target, whih is supposed to be known. From thetheoretial point of view, this operation is equivalent to taking the maximum sansize, whose length is equal to the pulse repetition period, and applying the window
SW = EN− ST [bins℄.Step size The step size (STEP), provided in [bins℄, or waveform resolution, isequal or higher than 1

B
.Number of samples in a san The number of samples in a san (LS) is givenby LS = SW

STEP
. It is a multiple of 32.Pulse per waveform The number of pulses per waveform (PPW) is the numberof UWB radio pulses required for the entire waveform:

PPW = PPS ∗ LS = HWI · SWI · SW

STEP
.



130 Chapter 10. Experiment ResultsSan rate The san rate (SR) is the number of sans per seond: SR = PRF
PPW

. Themaximum san rate is
maxSR =

maxPRF

minHWI ·minSWI ·minSW
=

9.6 · 106
32 · 2 · 2 = 586 kbps < LR.10.1.3 Pratial ShemeIn Chapter 8 we desribed the theoretial reeiving sheme, performed in ideal on-ditions; a sheme of the theoretial approah is desribed in Fig. 10.1; we note thatthe sampling of the reeived signal is performed at a frequeny of U ·B, where U isthe upsampling fator, and the orresponding sampling period is

STEP =
1

U · B; then, for eah slot, where vital signs are supposed to be a onstant, our theoretialsheme performs an averaging.The pratial sheme has to deal with a non ideal senario and hardware onstraint.In partiular, in our senario, we have a limited apaity of the Ethernet link LP =

600 kbps, and limited omplexity available.
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Figure 10.1: Theoretial reeiving sheme.For the onsidered hardware, the sampling of the reeived signal is not performedwith a period STEP . In fat, the devie takes one sample for eah pulse repetitionperiod, while the theoreti reeiver saves all the LS samples desribing the waveform.Therefore, the resulting devie is simpler, beause the sampler period is 1
PRF

+ 1
UB

≈
0.1µs instead of the theoretial 1

UB
< 0.5 ns, i.e., 3 orders of magnitude slower; onthe other hand, the SNR of the resulting san is LS times lower with respet tothe theoretial one. A key role on this simpliity to SNR loss ratio is given by the



10.1. System Desription 131presene of the san window; in fat, the devie takes the samples only inside thesan window, and neglets the other samples of the waveform. On the other hand,this approah allow a better fous on the desired window, whih an be desribedwith an high number of samples. This upsampling fator on the window
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Figure 10.2: Pratial reeiving sheme.
10.1.4 Baseband OperationAfter the pre proessing operations performed by the PulseOn devie, the reeivedsignal r(n, k) is a bandpass signal, funtion of variables n, index of the urrent san,and k, index of the urrent delay in the reeived signal of san n,

r(n, k) =

Ls
∑

i=1

γi(n) cos(2πfCk + φi(n))δ(k − i) + η(n, k); (10.2)In the pratial sheme, as shown in Fig. 10.2, baseband operation is performed onthe k dimension; if fCTscan ∈ Z , and if the low pass �lter has a impulse responseshorter than the pulse repetition period, performing the baseband operation on eahwaveform san is equivalent to performing it before the sampling proess. In fat, ifthe sampling proess omplies the sampling theorem, it is equivalent to perform thebaseband operation before or after the sampler. Therefore, the baseband operationperformed in the theoretial sheme is
rBB(lTc) =

+∞
∑

m=−∞

r(mTc)e
j2πfCmTcgLP (lTc −mTc), (10.3)



132 Chapter 10. Experiment Resultswhere gLP (lTc) is the low pass �lter. Then, by writing lTc = nlTscan + klTc and
mTc = nmTscan + kmTc

rBB(nlTscan + klTc) =

+∞
∑

nm=−∞

+∞
∑

km=−∞

r(nmTscan + kmTc)e
j2πfCnmTscan+kmTc·

· gLP (nlTscan + klTc − nmTscan − kmTc) =

=

+∞
∑

km=−∞

r(nm, km)e
j2πfCkmTcgLP (klTc − kmTc);

(10.4)
whih is equivalent to the baseband operation performed on eah waveform san inthe pratial sheme.However, the presene of the window san in the pratial sheme provides only aportion of the waveform to the low pass �lter; therefore, in general the basebandwaveform evaluated with the pratial sheme is not equivalent to the theoretialbaseband waveform.10.2 Signal ProessingBoth for theoretial and pratial sheme, the reeiver gets a omplex matrix S,whose rows are the baseband waveform sans; the i-th olumns of S is the timevariation of the i th sample of the san window, sampled at period Tscan. The�rst step of signal proessing is the bakground subtration; it is performed as it isdesribed in the theoretial model, in Chapter 8. As desribed in Setion 8.3.1, weombine the samples desribing eah reeived replia, to determine the parametersof the orresponding hannel tap, i.e.

ṽ(kTscan) = maxnK
{rT ∗ g (nKTc + kTscan)}. (10.5)where g(t) is a generi �lter. From the theoretial point of view, in absene of ISI,the ombination that maximizes the SNR is provided by the mathed �lter, i.e.

g1(k) = p∗(−k + LS/2) . (10.6)However, the pratial senario introdues some new ondition on the ombinationproblem, and its solution. First of all, the san window may inlude portions ofreplias; in fat, the sampling algorithm of the devie suggests to have small sanwindows, in order to improve the averaging (HWI and/or SWI) with the same san



10.3. Experimental Results on Signal Modulation 133rate. Seondly, distortion may have ourred during transmission, due to the inter-ation with the human body, or to the presene of multiple satterers whose delaysare loser then 1/B. For this reason, together with the theoretial math �lter, weonsider the estimated mathed �lter, and the average �lter.Estimated mathed �lter The theoretial approah suggests as optimum ombi-nation the �lter mathed to the transmitted pulse in a AWGN senario. We assumethe reeived baseband matrix S to be the result of a unknown transmitted pulsepropagated in an AWGN senario; therefore, we assume all variations on the hannelbehavior, inluding the variations due to vital signs, as a Gaussian white noise. Weestimate the pulse from the reeived baseband matrix S as
p̂(k) =

1

Nscan

Nscan
∑

j=1

S(j, k), (10.7)and then the estimated mathed �lter is
g2(k) = p̂∗(−k + LS/2). (10.8)Average �lter We propose as the simplest solution a retangular �lter, i.e.,

g3(k) = rect

(

k − LS/2

LS

)

. (10.9)Fig. 10.3 shows the impulse response of the three �lters proposed; it has beenobtained in an ideal senario, with periodi vital sign, AWGN hannel, san windowequal to a replia. We observe that the shape of the estimated pulse is very lose tothe theoretial pulse.The average SNR of the resulting sample as a funtion of the average SNR beforethe ombination is illustrated in Fig. 10.4; we an observe that the theoretial andestimated mathed �lter provide the same SNR gain of 18 dB, orresponding to theupsampling fator U = 64 used in our senario. We also observe that the averagingprovides almost the same performane of the optimal approah.10.3 Experimental Results on Signal ModulationAs a �rst experiment, we evaluate the SNR of the system; we veri�ed that, if thetarget breaths at a regular rate, the SNR is about 30 dB, while if the target holds
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Figure 10.5: Vital sign signal v(t) obtained without the targethis breath the SNR is about 5 dB; the atual values of the SNR depend on manyfators;therefore these values are suggestive of the atual SNR. Fig. 10.5 shows theabsolute value and the phase of the v(t) when the target is not present; we an seethat neither the absolute value nor the phase is modulated.As a intermediate step we evaluate the normalized signal v(t) with a 5 ent oinovered by a metalli �lm and osillating at a known frequeny of 2 Hz. As shownby Fig. 10.6, in this ase we an observe a remarkable phase modulation, while theamplitude modulation is less pronouned. In fat, in this ase the sattering surfaeis very small, and then the phase modulation is the same for eah sattering point.In other words, the satterer does not provide a su�ient phase diversity to providean amplitude modulation. However, the wide band nature of the signal provides aslight amplitude modulation.Finally, the experiment with the target was performed; the target was asked tobe still and to sit with the hest in front of the radar devie. As illustrated in Fig.10.7, in this ase we an observe an evident modulation on both absolute value andphase of v(t).The theoretial analysis for a wideband signal performed for a 2.2 GHz system,ompliant with FCC rules, shows that the reeived signal is a�eted both in phaseand amplitude parameters by vital signs; simulation results validates the theoretialanalysis, showing that the amplitude modulation is due to both the wideband nature
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Figure 10.6: Normalized vital sign signal v(t) obtained in the 5 ent experiment.
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138 Chapter 10. Experiment Resultsof the transmitted pulse, and to a multiple sattering e�et provided by the hestsurfae.10.4 Detetion Tehniques10.4.1 Theoretial ComparisonWe �rst onsider the periodi signal v(k) = exp(j2πkP ), with k = 0, 1, . . . 1000 and
P = 5, orrupted by an additive white Gaussian noise. The signal to noise ratiois de�ned as SNR=1/σ2

w. To ompare the two methods we evaluate the normalized(with respet to the period) mean error (MSE) de�ned as
ρ = E{|P − Pest|}/P (10.10)where Pest is the period estimate, e.g. PCORR or PLCML. We express this error interms of perentage of the period. The signal to noise ratio is de�ned as SNR=1/σ2

η.We note that in this senario ML algorithm is not optimal; in fat, the signal v(k)does not omply with the assumption of i.i.d. Gaussian signal. Still, this is a signalof interest in many appliations. Fig. 10.8 shows the normalized MSE as a funtionof N/P for SNR=−5 dB. We observe that the proposed LCML method outperformsthe state of the art algorithms, as expeted sine it represents a low omplexityimplementation of the ML estimation strategy. In partiular, the knowledge of thenoise power exploited by LCML2 provides the best performane.Fig. 10.8 shows the MSE as a funtion of N , represented in terms of number ofperiods for SNR=-5 dB. We observe that the proposed LCML method outperformsthe state of the art algorithms, as expeted sine it represents a low omplexityimplementation of the ML estimation strategy. In partiular, the knowledge of thenoise power exploited by LCML2 provides the best performane.Fig. 10.9 shows the same simulation results with an SNR=0dB. The results aresimilar, as they still indiate an advantage of the proposed method with respet tothe state of the art algorithms. However, the advantage beome less and less relevantin terms of the envisioned appliation.10.4.2 Experimental ComparisonThe experiment is then performed with the target still and sitting at a distane ofapproximately 30 m from the radar and with the hest faing the radar devie. As
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Figure 10.10: Normalized e(n) and Re[C(n)] funtions obtained with the targetbreathing.illustrated in Fig. 10.10, respiration rate an be easily deteted by both the proposedmethod and the autoorrelation funtion. Both funtions have been evaluated withan observation window of length N = 10s, for andidate periods n ∈ Ir.Furthermore, we observe that the proposed funtion e(n) has weaker peaks inorrespondene of a lower periods; there peaks are due to noise, to the non-periodinature of the signal, and to the heart beating signal. The peak in orrespondene ofthe lowest period is at about 0.85 s, whih is the value of the target heart beating, 70bpm. Although e(n) provides information about the heart beating, it is not possibleto distinguish the orrespondent peak from spurious.Therefore, in order to estimate the heart beating, we evaluate the funtions witha shorter observation window; i.e., the signal v(t) is divided into tokens of length
N = 2.2 s, and the heart beating period is evaluated for eah token. The value of
N is the lowest window size allowing to detet the slowest heart beat for a healthytarget, i.e. 50 bps; in fat, the funtions are evaluated for andidate periods n ∈ Ih.Fig. 10.11 shows an example of the resulting funtions e(n) and C(n). In this ase,the peak due to heart beating is learly visible. By estimating the heart beating
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Figure 10.11: Normalized e(n) and Re[C(n)] funtions obtained with the targetbreathing with N = 2s.period aording to eq. (9.5) and (9.13), the MSE of the detetion is about 56% forthe autoorrelation method, and 15% for the proposed method.10.4.3 Detetion Tehniques ComparisonWe onsider a TD PulsON 210 IR-UWB system for the detetion of vital signs ofa target in an indoor environment [68℄. Besides the radar devie, the experimentalsetup is omposed by the target, sitting in front of the radar in order to have a lineof sight (LOS) with the hest, and a on-body sensor measuring the heart rate. Theradar devie faes the hest of the target who wears an on-body sensor detetingthe heart rate. The experiment is performed with the target still and sitting at adistane of approximately 30 m from the radar and with the hest faing the radardevie.The reeived signal is the sum of the respiration signal and the heart beating signal,whih is weaker; although respiration rate an be easily deteted, its unknown andtime variant shape does not allow a simple subtration of this signal from the reeived



10.4. Detetion Tehniques 143signal. Therefore, a low omplexity heart rate detetion has to be performed onthe global signal. In order to estimate the heart beating, we onsider a shorterobservation window; i.e., the signal v(k) is divided into tokens of length N from
2.2 to 4.4 s, and the heart beating period is evaluated for eah token. In fat,higher values of N would inlude a breathing period, whih strongly modulates thesignal; furthermore, higher values of N would inrease the detetion delay, while weare interested on the real time value of heart beating. The minimum value of Norresponds to the lowest window size allowing to detet the slowest heart beat for ahealthy target, i.e. 50 bps; in fat, the funtions are evaluated for andidate periods
n ∈ Ih.By estimating the heart beating period aording to the proposed methods, we obtainthe MSE values shown in Fig. 10.12. We observe that, while the state of the artalgorithms are all a�eted by the periodiity of the respiration signal, whih is thestrongest ontribution, for small periods the proposed method provides the bestestimate of heart beating period. When longer tokens are onsidered, its estimationauray deteriorates due to the presene of respiration periodiity on v(k), despitethe higher number of heart beat period onsidered.10.4.4 Computational ComplexityWe evaluate the omputational omplexities of both ML and LCML, and then om-pare them with the omplexity of the state of the art algorithms. Let µ be the ostof a omplex multipliation and γ be the ost of a omplex sum. Let also M be thedimension of IP , i.e. the number of andidate periods n. For the orrelation basedmethod the omputational ost is

CCORR = M [Nγ +Nµ]. (10.11)For the LCML method and AMDF method we have
CLCML = CAMDF =

∑

n∈IP

(

N

n
+ n

)

γ +Mµ, (10.12)while for the ML method we have
CML = CCORR + γM. (10.13)For the WEIGHT method we have

CWEIGHT = CCORR + CAMDF +N. (10.14)



144 Chapter 10. Experiment ResultsComplexity of the WELCH method depends on the algorithm implementation. Theinput signal is divided into Nw overlapping segments of size Lw; eah segment is thenwindowed and proessed by fast Fourier transform (FFT). The dominant omponentof omplexity is due to FFT, i.e.
CWELCH ≈ µ[N log 2(Lw) +N ] + γ[N log 2(Lw) +N ]. (10.15)Similarly, omplexity of PMUSIC algorithm depends on its implementation; however,the main omponents are the evaluation of the autoorrelation funtion, the eigendeomposition, and the pseudospetrum evaluation, i.e.

CPMUSIC ≈ CCORR + µN2 + µ[N log 2(N)]. (10.16)The proposed method requires signi�antly less omplex multipliations (L insteadof N) whih are atually even less sine they are used to alulate the absolute squarevalue. In our simple ase, with N = 20 and andidate heart beating periods IP =

0.6 : 0.1 : 1.4 s, orresponding to the range 45−120 bpm, we have CLCML = CAMDF =

220µ+ 220γ while CCORR = 95µ+ 120γ, CWEIGHT = 335µ+ 340γ, CWELCH = 126µ+

126γ and CPMUSIC = 601µ + 226γ. The proposed method requires approximatelyhalf of the operations needed by the orrelation based method; we note that thesimpliity of the proposed method is already appreiable for a simple appliation,where the number of samples and the andidate periods are very small.10.5 ConlusionsWe derived analytially the optimal ML period estimator of a signal whose shape isunknown. Furthermore, we have presented a novel low omplexity implementationof the ML estimator. The proposed method might have appliation in many areaswhere only the periodiity is required and the omplexity is an important parameter.In partiular, we applied the proposed algorithm to the remote heart rate estimationproblem; as expeted, both simulation and experimental results indiate that theproposed method outperforms the state of the art methods in deteting the periodof weak signal like the heart beating, even with a short observation of the periodisignal.By this period detetion rule, if the target is breathing we will detet the respira-tion rate; to detet the heart beating we ould anel from the signal the respirationomponent. However, in the following we show that heart rate detetion is possible
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Figure 10.12: Normalized MSE of the estimated period as a funtion of N .
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10.5. Conlusions 147using the proposed method without further signal proessing. The main di�erenebetween the proposed method and the orrelation based tehnique is that in the �rstapproah the autoorrelation is evaluated with P averages while the latter approahonsiders N averages.
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ConlusionsIn this seond part of the thesis we addressed the topi of remote sensing of vital signsin an indoor senario, onsidering a radar devie working on the 3.1− 5.3 GHz band,whih is available for onsumer appliations aording to FCC rules. In partiularwe fous on desribing the reeived signal with respet to the vital sign signal, andon detetion tehniques of respiration and heart beating rates. We have presented asimple and general model of the reeived signal for a Pulse UWB system in a indoorsenario with a human target; in partiular, we desribed how the main parametersof the reeived signal is related to the hest motion of the target due to breathingand heart beating. A theoretial analysis for a wideband signal is performed fora 2.2 GHz system, ompliant with FCC rules, showing that the reeived signal isa�eted both in phase and amplitude parameters by vital signs. Simulation resultsvalidates the theoretial analysis, showing that the amplitude modulation is due toboth the wideband nature of the transmitted pulse, and to a multiple satteringe�et provided by the hest surfae.Furthermore, due to the large number of parameters in�uening the shape of the vitalsign signal, we fous on blind detetion tehniques, whih do not assume a de�nedshape. We have presented a extremely simple novel method to estimate the period ofa periodi funtion. The analytial analysis and the simulation results indiate thatthe proposed method performs better than the orrelation based method in detetingthe period of weak signal like the heart beating.
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