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Sommario

Negli ultimi anni, grande attenzione è stata rivolta alle tecnologie fotoniche. La

fotonica, chiamata così in analogia con l'elettronica, è divenuta una forza trainante

in diverse aree come le comunicazioni e il computing, le tecnologie dell'informazione

e anche le biotecnologie, grazie alle sue applicazioni nel campo dei sensori. I dispo-

sitivi fotonici o�rono, infatti, una grande larghezza di banda unita alla mancanza di

emissioni e a una elevata immunità alle interferenze.

All'aumentare della velocità di trasmissione, le connessioni ottiche sono passate

dall'iniziale utilizzo come collegamento tra punti remoti (come nel caso delle dorsali

telefoniche) a usi su scala sempre più locale (grandi reti aziendali, reti casalinghe,

connessione di periferiche al computer); adesso, sono allo studio collegamenti ottici

all'interno dei computer, fra chip diversi e all'interno dello stesso chip.

Dallo studio di collegamenti ottici all'interno dei chip allo sviluppo di circuiti

interamente ottici, il passo è breve e diverse tecnologie sono allo studio per ottenere

tale risultato, mantenendo costi di produzione e livelli di integrazione comparabili

con quelli dei circuiti integrati elettronici.

Una delle tecnologie più studiate negli ultimi anni è quella dei cristalli fotonici.

Tali metamateriali1 o�rono infatti la possibilità di controllare e modi�care la propa-

gazione delle onde luminose. É possibile pensare ai cristalli fotonici come l'analogo

ottico dei normali cristalli: la periodicità nell'indice di rifrazione determina una strut-

tura di bande permesse e proibite in funzione del vettore d'onda della luce incidente

esattamente come avviene con le bande di conduzione e di valenza per gli elettroni

nei cristalli ordinari. Quando la propagazione è inibita per ogni polarizzazione e ogni

1Si de�nisce metamateriale un materiale creato arti�cialmente con proprietà elettriche e mag-

netiche peculiari che lo di�erenziano dagli altri materiali. Le sue caratteristiche macroscopiche non

dipendono solo dalla sua struttura molecolare, ma anche dalla sua geometria realizzativa.
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Figure 1: Un esempio di cristallo fotonico monodimensionale (a sinistra), bidimen-

sionale (al centro) e tridimensionale (a destra)[1].

direzione all'interno del cristallo si ha un bandgap fotonico completo. Proprio per

l'analogia con i cristalli ordinari, lo studio dei metamateriali si è avvantaggiato dei

risultati già acquisiti dalla �sica dello stato solido.

La storia dei cristalli fotonici comincia nel 1987 con due lavori pionieristici di Eli

Yablonovitch [2] e Sajeev John [3]. In entrambi i lavori, il punto di partenza era la

�sica dello stato solido e come i fenomeni elettromagnetici si modi�cavano in presenza

di strutture dielettriche periodiche. A partire da quei lavori, è stato de�nito cristallo

fotonico qualsiasi sistema caratterizzato da una funzione dielettrica periodica in una

o più dimensioni. La Fig. 1 mostra dei cristalli fotonici in una, due e tre dimensioni,

a seconda della periodicità della funzione dielettrica ε. Il periodo della funzione è

chiamato costante reticolare, ancora una volta in analogia alla costante reticolare dei

reticoli cristallini nei cristalli naturali.

I cristalli fotonici o�rono numerosi gradi di libertà in fase di progettazione e re-

alizzazione, per esempio il materiale di cui sono realizzati, le dimensioni �siche e

la struttura della cella elementare. In�ne è anche possibile inserire nella struttura

periodica delle irregolarità (difetti), per ottenere bande permesse in regioni in cui

precedentemente la propagazione della luce era inibita. A seconda del numero di

dimensioni del difetto e del cristallo, si possono ottenere e�etti diversi di localiz-

zazione della luce; ad esempio, in un cristallo fotonico bidimensionale, un difetto

puntuale assume le caratteristiche di una cavità bidimensionale, mentre un difetto

lineare si comporta a tutti gli e�etti come una guida d'onda, in cui la propagazione

può avvenire non solo per ri�essione interna totale, come in una �bra ottica, ma

anche per e�etto della struttura a bande del cristallo.

La grande libertà nel design permette, quindi, di realizzare numerosi dispositivi,

sia attivi che passivi, come microcavità, guide d'onda, �ltri e laser; tutto questo

andando a modi�care solo alcuni dei parametri che caratterizzano il cristallo, in



3

funzione dell'applicazione desiderata.

Esiste, in�ne, un altro grande vantaggio dei cristalli fotonici rispetto ad altre

tecnologie fotoniche: la loro fabbricazione avviene, infatti, utilizzando gli stessi pro-

cessi produttivi già usati nell'industria dell'elettronica, aprendo la via a una ipotetica

rivoluzione tecnologica senza gli elevati costi di riconversione.

Questo lavoro di tesi presenta alcuni nuovi risultati sulle proprietà ottiche e sugli

e�etti del disordine sulla propagazione in guide d'onda a cristallo fotonico bidimen-

sionale. Lo studio parte dai concetti di base dei cristalli fotonici (Cap. 1), quali

la loro struttura a bande, fondamentali per comprendere appieno le proprietà dei

cristalli fotonici bidimensionali (Cap. 2).

Nel Cap. 3 sono approfondite le proprietà di propagazione della luce nelle guide

d'onda realizzate in cristalli bidimensionali, in particolare la loro tipica relazione

di dispersione e il regime di propagazione noto come regime di Luce Lenta (Slow

Light regime). Nello stesso capitolo, si introduce, inoltre, un modello teorico per

il Four-Wave Mixing, fenomeno non lineare solo recentemente osservato in questo

tipo di guide. Il Cap. 4 introduce brevemente i processi di fabbricazione per questi

dispositivi; vengono quindi discussi i punti critici di tali processi, modellizzati come

disordine estrinseco, e l'impatto che questi hanno sulle proprietà di propagazione

della guida.

Gli ultimi due capitoli sono relativi alla parte sperimentale di questo lavoro.

Sono state infatti studiate due tecniche per la caratterizzazione delle guide d'onda a

cristallo fotonico. La prima è la mappa di ri�ettanza tempo-lunghezza d'onda (Cap.

5), sviluppato presso Thales Research and Technology (Paris, France), che permette

di valutare le proprietà di propagazione della guida in funzione della lunghezza d'onda

e l'impatto della dispersione indotta dal disordine estrinseco della guida. La seconda

è la tecnica Heterodyne Pump-Probe, utilizzato presso il Dipartimento DTU Fotonik,

Copenhagen, in una serie di esperimenti atti a indagare il regime di luce lenta e i

ritardi ottenibili in tale regime.

La parte teorica di questa lavoro (Capitoli 1, 2 e 3) è stata sviluppata presso

il Dipartimento di Ingegneria dell'Informazione dell'Università di Padova, sotto la

supervisione del prof. Andrea Galtarossa, mentre la parte più applicativa e sper-

imentale è stata svolta presso l'Advanced Photonics Lab di Thales Research and

Technology, Paris, in collaborazione con il dr. Alfredo de Rossi (Capitoli 4 e 5), e

presso il Department of Photonics, della Technical University of Denmark, sotto la

guida del prof. Mike van der Poel e del prof. Jesper Mørk (Capitolo 6).
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Introduction

In recent years a great deal of attention has been devoted towards photonic

materials. The technology of photons, named photonics in analogy with electronics,

has become the driving force for the advancement of areas such as communications

and computing, information technology and even biotechnology, for sensing devices.

This technology provides larger bandwidth, high interference immunity and lack of

emission. As the data transmission rate is increasing, the optical connection moves

from long range to enterprise network and it is entering the domain of chip-to-chip

and on-chip communication. This trend strengthens the demand of miniaturization

and integration of optical signal transmission components.

An answer to this demand can be photonic crystals (aka periodic photonic struc-

tures), which study is experiencing a notable growth due to the dramatic ways in

which such structures can control, modify and harvest the �ow of light. They are the

optical analogous of ordinary crystals, since their periodicity in refractive index de-

termines a structure of allowed and forbidden bands for the light frequency dispersion

with respect to the wavevector inside the structure. When light propagation is in-

hibited for any polarization and any direction inside the crystal a complete photonic

bandgap is achieved. Due to the analogy between photonic and ordinary crystals, the

study of these arti�cial materials took advantage of concepts well known in solid state

physics, with the aim of investigating photonic band structure and optical spectra

and of realizing functional devices.

The story of photonic crystals starts in 1987, when two pioneering works of Eli

Yablonovitch [2] and Sajeev John [3] appeared on Physical Review Letters. Both

articles deal with modi�cation of electromagnetic phenomena when considering peri-

odic dielectric structures. From those, photonic crystal has been the appellation for

any system characterized by a dielectric function ε that is periodic in one or more
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Figure 2: An example of one-dimensional (left), two-dimensional (center), and three-

dimensional (right) photonic crystal [1]

dimensions. The classi�cation into one-dimensional (1D), two-dimensional (2D), and

three-dimensional (3D) photonic crystals depends on whether ε is periodic in one,

two, or three dimensions, as shown in Fig. 2. The spatial period of the stack is called

the lattice constant, since it corresponds to the lattice constant of ordinary crystals

composed of a regular array of atoms.

The fact that photonic crystals are arti�cial materials opens in�nite possibilities

on the choice of the dielectric pattern. Furthermore, by designing defects in the

otherwise periodic structure, it is possible to create defect states within the pho-

tonic band gap. According to the dimensionality of the defects itself and to the

dimensionality of the photonic band gap, various degrees of light localization can

be obtained [1]. For example, for a 2D photonic crystal, a point defect represents a

two-dimensional cavity, and a linear defect forms a planar waveguide.

This concept envisages that several optical components could be designed on a

single photonic crystal chip to process optical signals just a conventional electronic

chip. The recently past years have provided important results as regards theory and

experiments of passive photonic crystal blocks: micro-cavities, waveguides, �lters,

and lasers.

The present work would like contribute to the research in this area, by o�er-

ing some results on the optical properties, disorder and non-linear e�ects on wave

propagation in semiconductor-based two-dimensional photonic crystal waveguides.

The aim is to lead the reader from the basic concepts of photonic crystals (Chapter

1), up to the properties of a 2D photonic crystal (Chapter 2) and the defect line

induced waveguide in a 2D photonic crystal (Chapter 3). The propagation prop-

erties, the unusual dispersion relation, and the particular regime, known as Slow

Light regime, will be analyzed depthly. Particular attention is devoted to model the

extrinsic disorder induced by the fabrication process and its impact on the propaga-



7

tion properties of the waveguide (Chapter 4). In the last two chapters, the focus will

be on two techniques to characterize photonic crystal waveguides. The �rst tool is

the Time-Wavelength Re�ectance Map (Chapter 5), developed with Thales Research

and Technology, Paris, France, that permits to evaluate the propagation properties

of the waveguide as function of the wavelength showing us a deep physical insight

for understanding the role of disorder induced scattering and how it is connected to

dispersion. In Chapter 6, a laboratory setup will be presented, based on the Hetero-

dyne Pump-Probe technique, used in a set of experiments at DTU Fotonik, with the

main objective to investigate on the Slow Light regime.

The part of the work that is more related to the fundamental research (Chapters

1, 2, 3) has been carried out mainly at the Department of Information Engineering,

Università degli Studi di Padova (Padova, Italy), under the supervision of prof.

Andrea Galtarossa. Instead, the part that is more application oriented (Chapters 4,

5) has been accomplished in the Advanced Photonics Lab at Thales Research and

Technology (Paris, France) supervised by dr. Alfredo de Rossi, while the laboratory

part (Chapter 6) has been carried out at the Department of Photonics, Technical

University of Denmark (Copenhagen, Denmark), under the supervision of prof. Mike

van der Poel and prof. Jesper Mørk.
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Chapter 1
General Concepts on Photonic Crystals

The theoretical approach to photonic crystals is based on the rearrangement of

Maxwell's equation in form of eigenvalue for the harmonic Fourier components of the

electric and magnetic �elds. This formulation has been used to develop numerical

methods to predict their band structure from the geometric properties. For a more

complete theoretical description of photonic crystals properties the reader can refer

to the Sakoda [4] and Joannopoulos [1] books, on which this chapter is based.

1.1 Photonic Crystals

A photonic crystal (PhC) is characterized by a relative dielectric permittivity

εr(r) assumed to be periodic along N directions (with N = 1, 2 or 3) and invariant

along the other 3−N orthogonal directions. Initially, we assume it extends in�nitely

along all the directions. We can model it as a unit cell repeated in space according to

a well de�ned pattern. All of those can be reduced to the two mathematical concepts

of basis and lattice. The lattice de�nes the spatial arrangement of the unit cell, while

the basis speci�es the content of the unit cell.

The lattice is generated by linear combination of the so-called primitive vectors ai,

where i ∈ {1, . . . , N}, which are determined by the minimum translation that leaves

the dielectric function unchanged. Choosing a reference frame and placing a lattice

point at the origin of it, any other lattice point has a one-to-one correspondence with

a vector R, linear combination of ai:

R =
N∑
i=1

niai, (1.1)
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where ni are integers.

In mathematical terms, the lattice is de�ned by a vector space V, with basis {ai}.
The dimensionality of V is N . The unit cell of the crystal has the same dimension

of V and the space Ac that occupies is determined by the primitive vectors:

Ac =


|a1|, 1D

|a1 × a2|, 2D

|a1 · (a2 × a3)|, 3D.

(1.2)

The dielectric function of a photonic crystal has the property

εr(r + R) = εr(r), ∀R ∈ V, (1.3)

that means the photonic crystal is invariant for any discrete translation de�ned by

a vector R ∈ V.

1.2 Maxwell's equation for a photonic crystals

The propagation of an electromagnetic wave in a PhC free of charges and currents

is governed by Maxwell's equations, which the more general form, in SI units, are

∇ ·D(r, t) = 0 ∇ ·B(r, t) = 0

∇× E(r, t) = −∂B(r, t)

∂t
∇×H(r, t) =

∂D(r, t)

∂t

(1.4)

where E, D, B, H are respectively the electric �eld, the electric displacement, the

magnetic induction and the magnetic �eld.

The constitutive relation that relates E and D is

D(r, t) = ε0E(r, t) + P(r, t)

with P(r, t) = ε0

∫
χe(r, r

′, t, t′; E) E(r′, t′)dr′dt′,
(1.5)

where P is the polarization density and is expressed as a convolution in space and

time of the tensor electric susceptibility χe(r, t) and the electric �eld.

A similar one connects the magnetic �led H to the magnetic inductionB through

the tensor magnetic susceptibility χm(r, t).
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Assuming that the media composing the photonic crystals are isotropic, non-

dispersive, real and non-negative, and non magnetic, the constitutive relations be-

come:

D(r, t) = ε0εr(r)E(r, t)

B(r, t) = µ0H(r, t),
(1.6)

where ε0 and µ0 are the electric permettivity and the magnetic permeability in free

space, and εr(r) is the relative permettivity, de�ned as εr(r) = (1 + χe(r)).

Using Eqs. 1.6, Maxwell's equations are simpli�ed to

∇ · εr(r)E(r, t) = 0 ∇ ·H(r, t) = 0

∇× E(r, t) = −µ0
∂H(r, t)

∂t
∇×H(r, t) = ε0εr(r)

∂E(r, t)

∂t

(1.7)

Thanks to the linearity of Maxwell's equations, it is convenient to look for solu-

tions for harmonic �elds

E(r, t) = E(r)e−ıωt, H(r, t) = H(r)e−ıωt. (1.8)

The general solution will be the superposition of harmonic modes. Substituting

the formulae 1.8 into Eqs. 1.7, it is possible to recast Maxwell equations in a closed

form for the magnetic or electric �eld

1

εr(r, ω)
∇× [∇× E(r, ω)] =

ω2

c2
E(r, ω) (1.9)

∇×
[

1

εr(r, ω)
∇×H(r, ω)

]
=
ω2

c2
H(r, ω) (1.10)

where c = 1/
√
ε0µ0 is the speed of light in free space. We de�ne the wave number

k = ω/c = 2π/λ, with λ wavelength of light in free space.

The propagation equations (Eqs. 1.9 and 1.10) have to be considered as distribu-

tion, because include boundary conditions at the interfaces of the di�erent materials

and the continuity of the tangential components of the electric and magnetic �elds.

It is possible recast Eqs. 1.9 and 1.10 in the more compact form

Θ̂EE(r, ω) =
ω2

c2
E(r, ω), (1.11)

Θ̂HH(r, ω) =
ω2

c2
H(r, ω), (1.12)
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where we introduced the operators Θ̂E and Θ̂H :

Θ̂E =
1

εr(r, ω)
∇× [∇×] , (1.13)

Θ̂H = ∇×
[

1

εr(r, ω)
∇×

]
, (1.14)

so that the Maxwell's equations are transformed in a eigenvalue problem, where

k2 = ω2/c2 are the eigenvalues and the �elds are the eigenfunctions.

While Θ̂E is an operator for a generalized eigenvalue problem, Θ̂H identify an

Hermitian positive de�nite operator [5]:

< F, Θ̂HF > = < Θ̂HF, F > ∀F, (1.15)

where <,> stands for the scalar product. This guarantees that eigenvalues are real

and non-negative, and a complete set of orthonormal eigenfunctions does exist.

The above consideration and the fact that the magnetic �eld is transverse (∇ ·H
= 0) make more convenient to solve the problem using the Eq. 1.14; this is the choice

usually adopted by the research community and will be also used in this work.

Up to now, the derivation of the master equation is valid for any system for which

the initial assumptions are ful�lled, without further speci�cations.

1.3 The Bloch-Floquet Theorem

To solve the electromagnetic problem for a PhC, it is necessary to impose the

periodicity of the dielectric function given by Eq. 1.3. Photonic crystals are invariant

under discrete translational symmetry de�ned by any vector R de�ned in Eq. 1.1.

Being T̂R the unitary operator associated with the discrete translation R, the rule

for transformation reads

Θ̂′H = T̂RΘ̂H T̂
−1
R ,

ε′ = T̂RεT̂
−1
R ,

H′(r) = (T̂RH)(T̂−1
R r),

(1.16)

where ε′ and H′ are the transformed dielectric constant and the transformed �eld,

respectively.
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Since the PhC is invariant for this kind of transformation, the operator Θ̂H and

the dielectric function ε are left unchanged, and the rules become

Θ̂H = T̂RΘ̂H T̂
−1
R ,

ε = T̂RεT̂
−1
R ,

H′(r) = (T̂RH)(T̂−1
R r),

(1.17)

The application of the operator T̂R to the master equation yields a new eigenvalue

problem for the transformed H′, but the condition < Θ̂H , T̂R >= 0 implies that H′

must satisfy the same equation that holds for H:

Θ̂HH =
ω2

c2
H ⇐⇒ Θ̂H T̂RH =

ω2

c2
T̂RH (1.18)

Such condition is ful�lled if H′ is equal to H within a multiplication factor, which

implies that H is, in the most general form, a linear combination of degenerate

eigenfunctions of the operator T̂R

T̂RH(r) = αH(r). (1.19)

The eigenfunctions of T̂R are plane waves and the eigenvalues are complex num-

bers of unitary modulus:

fk(r) = f0e
ık · r T̂Rfk(r) = eık ·Rfk(r) α = e−ık ·R, (1.20)

where f is the eigenfunction and k is the wave-vector. Notice that all the eigenfunc-

tions fk′(r) and fk(r), with k′ = k + G so that G ·R = 2nπ, are degenerate.

The condition

G ·R = 2nπ (1.21)

de�nes the dual space G of the vector space V. If {ai} is the basis for V, the basis
for the dual space G is {gi}:

ai ·gj = 2πδij G =
N∑
i=1

ligi (1.22)

where li are arbitrary integer numbers and δij is Kronecker's delta.

Two eigenfunctions fk′(r) and fk(r) are degenerate if k′ − k ∈ G.

The general solution of the master equation is therefore

Hk(r) =
∑
G∈G

c(k + G)fk+G(r). (1.23)
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The divergence condition ∇ ·Hk(r) = 0, that imposes that Hk is transverse, is

automatically ful�lled if (k + G) · fk+G(r) = 0, i.e. fk+G(r) is also transverse.

Since Hk(r) is also eigenfunction of T̂R with the same eigenvalue α of fk(r), the

application of T̂R to Hk(r) yields

T̂RHk(r) = Hk(r−R) = e−ık ·RHk(r). (1.24)

The last equation represents the Bloch-Floquet theorem, that states that the gen-

eral solution of a master equation invariant under a translational symmetry operation

T̂R is a periodic function uk(r) multiplied by a phase factor exp(ık · r). The period

of uk(r) is determined by the elementary translational operators T̂ai .

The operator formalism and the use of symmetry have helped in �nding the

general form for the solution of Maxwell's equation in a PhC. What has been derived

is also valid for the electric �eld, because the knowledge of one �eld determines the

other one by straightforward application of Maxwell's equations.

From Eq. 1.24, it is evident that Hk′(r) = Hk(r) if k′ − k ∈ G, because of the

sum over the G vectors; di�erent k′ do not necessarily correspond di�erent solutions

Hk(r). The physical meaning is that in a PhC the wave vector k is conserved within

a vector G, and so k is not a �good quantum number� for the system.

The wave vectors k span the reciprocal space K3, which is the dual space of the

Euclidean space R3. The reciprocal space can be divided into classes of equivalence

[k], that we de�ne as

[k] = {(k,k′) ∈ K3 ×K3 : k′ − k ∈ G}. (1.25)

Each class of equivalence [k] points to di�erent Hk, where k is representative of

the class. The class of equivalence [k] of the momentum k is conserved in a photonic

crystal, and [k] is a good quantum number. The representative of each class [k] is

called the Bloch vector k. Even if the choice of the Bloch vectors is not unique, they

are a convenient working choice, lending themselves to a physical interpretation.

Usually the Bloch vector is taken as the smallest element of the class, in modulus,

and the ensemble of such vectors de�ne the �rst Brillouin zone (BZ):

BZ =

{
k ∈ K3 : |k| = min

z∈[k]
(|z|)

}
(1.26)

It is possible to de�ne a unit cell in the reciprocal space. Correspondingly, there

will be a reciprocal lattice which determines how the unit cell tiles the reciprocal
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space. We can obtain the primitive vectors gi in the reciprocal space G from Eq.

1.22

gi = 2π
aj × jk

ai · (aj × jk)
, 3D; (1.27)

gi = 2π lim
δ→0

aj × δk
ai · (aj × δk)

, 2D; (1.28)

g1 = 2π
a1

|a1|
, 1D; (1.29)

where k gives the direction of the axis perpendicular to the plane in which there is

the crystal, and i, j, k label the primitive vectors.

According the Eq. 1.26, the Brillouin zone is the region delimited by cutting the

reciprocal space with planes perpendicular to the primitive vectors having distance

|gi/2| from the origin. Thus, once the primitive vectors of the reciprocal lattice have

been calculated, the Brillouin zone can be easily drawn.

Before proceeding, it is worth to remark that the spectrum ω can be classi�ed by

considering also other symmetry properties for the PhC. For example, the invariance

of the master equation under time reversal yields ω(k) = ω(−k). This means that

we can reduce the study of the spectrum to the Brillouin zone with non-negative

Bloch vectors. There are also other symmetries that can held in spectrum calculation

simpli�cation, as transformation with a �xed point (rotations, inversion, re�ections),

gathered in the point group of the crystal. Thanks to them, we can reduce the set of

the points where the master equation has to be solved. This reduced set is called the

irreducible Brillouin zone, and can be much smaller than the whole Brillouin zone.

Furthermore, to avoid solving the master equation for every point of the irre-

ducible Brillouin zone, it is often enough to do it along the symmetry lines, because

they correspond to higher degree of symmetry with respect to the internal points

and, for this reason, are more representative.

1.4 The Band Structure

The eigenfunctions of the master equation can be classi�ed by means of the Bloch

vector k. As k varies in the Brillouin zone, the eigenvalues k2 = ω2

c2
obey to a certain

dispersion relation ω = ω(k). There is no one-to-one correspondence between the

Bloch vector and the solutions of the master equation. In fact, it is possible that

two solutions Hk(r) have the same Bloch vector, but di�erent expansion coe�cients
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c(k + B) in Eq. 1.24. There are in�nite choices for c(k + B) yielding independent

linear combinations of the basis functions fk+G(r). This means that for each value

of k we expect an in�nite set of modes with discretely spaced frequencies, which can

be labeled with a band index n

Hk,n(r) =
∑
G∈G

cn(k + G)fk+G(r), ω = ω(k). (1.30)

A more intuitive view of the problem is possible considering the analogy with the

quantum mechanics problem of the electron in a box. Considering the eigenvalue

problem as restricted to a single unit cell of the PhC, it is similar to the restriction of

the eigenvalue problem for the electron to a �nite volume that leads to a discretization

of the energy spectrum. To have some general prediction on the function ω(k), we

can observe that k enter in the master equation only as parameter, so we expect the

frequency of each band for a given k to vary continuously as k varies. So, the modes

of a PhC are a family of continuous functions, ωn(k), indexed in order of increasing

frequency by the band number n. The information contained in these functions is

called the band structure of the PhC.

In addition to the Bloch vector and the index n, there is also another impor-

tant degree of freedom that characterizes this solution of the master equation: the

polarization σ. The magnetic �eld vector has three components, two of which inde-

pendent, because of the divergence equation. As a consequence, for each choice of

(k, n), there are two independent solutions with di�erent polarization. In general,

the polarization is not independent of the Bloch vectors: σ = σ(k).

For this reason, it is convenient to include the polarization degree of freedom

in the band index n. Only in speci�c cases, where at least one polarization is in-

dependent of the Bloch vector, the index σ is used to label the eigenfunctions and

the eigenfrequencies. This is, for instance, the case for in-plane propagation in 2D

photonic crystals.

1.5 The Photonic Bandgap

A photon with frequency ω propagates in a PhC, only if ∃(k, n) : ω = ωn(k).

Thus the spectral region [ω1, ω2] for which ∀ω ∈ [ω1, ω2] @(k, n) : ω = ω(k) is

called �photonic bandgap� and is characterized by a null density of states (DOS)
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Figure 1.1: Geometry of a 1D PhC.

ρ(ω) de�ned [6] as

ρ(ω) =
∑
n

∑
k∈BZ

δ(ω − ωn(k)). (1.31)

The DOS is another important quantity characterizing the PhC. Contrary to

the smooth DOS for an homogeneous medium, in a PhC DOS presents jumps with

peaks and dips around a mean value given by the e�ective medium theory [6][7].

The calculation of the DOS is an important check for the existence of a photonic

bandgap, because it accounts for all the Bloch vectors in the BZ, whereas the band

structure is often limited to the symmetry lines of the BZ.

In order to understand intuitively photonic bands and bandgaps, it is useful to

consider a simple structure, like a dielectric multilayer (1D PhC), with two layers

characterized by the dielectric constant ε1 and ε2 and thickness l1 and l2, respectively.

The optical properties of this structure are well-know [8]. We take the x axis in the

direction perpendicular to the surface of the dielectric layers as shown in Fig. 1.1. For

simplicity, we consider only electromagnetic waves propagating in the x direction and

linearly polarized in the y direction. The magnetic �eld is denoted by the complex

function H(x, t) for convenience.

The wave equation for H(x, t) is given by

c2

εr(x)

∂2H

∂x2
=
∂2H

∂t2
, εr(x) = εr(x+ a) (1.32)

where a = l1 + l2 is the total length of two dielectric layers.

Because of the periodicity of εr(x), the function ε−1
r (x) is also periodic and, thus,
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expandable in a Fourier series

ε−1
r (x) =

∞∑
m=−∞

κm exp

(
ı
2πm

a
x

)
, (1.33)

where m ∈ N and {κm} are the Fourier coe�cients.

Assuming εr(x) real, it holds κ−m = κm∗. We know that H(x, t) can be expressed

as a Bloch function

H(x, t) ≡ Hk(x, t) = fk(x) exp[ı(kx− ωkt)], fk(x) = fk(x+ a), (1.34)

and, hence, can be expanded in a Fourier series, too:

Hk(x, t) =
∞∑

m=−∞

Hm exp

[
ı

(
k +

2πm

a

)
x− ıωkt

]
, (1.35)

where {Hm} are the Fourier coe�cients.

Assuming for simplicity that only the components with m = 0,±1 are dominant

in the expansion 1.33, it reads

ε−1
r (x) ≈ κ0 + κ1 exp

(
ı
2π

a
x

)
+ κ−1 exp

(
−ı2π

a
x

)
, (1.36)

and substituting Eqs. 1.35 and 1.36 into the wave equation 1.32, we obtain

κ1

[
k +

2π(m− 1)

a

]2

Hm−1 + κ−1

[
k +

2π(m+ 1)

a

]2

Hm+1

≈

[
ω2
k

c2
− κ0

(
k +

2πm)

a

)2
]
Hm.

(1.37)

For m = 0,

H0 =
c2

ω2
k − κ0k2c2

[
κ1

(
k − 2π

a

)2

H−1 + κ−1

(
k +

2π

a

)2

H1

]
. (1.38)

For m = −1,

H1 =
c2

ω2
k − κ0(k − 2π/a)2c2

[
κ1

(
k − 4π

a

)2

H−2 + κ−1k
2H0

]
. (1.39)

Therefore, if k ≈ π/a, and if ω2
k ≈ κ0k

2c2, H0 and H1 are dominant in the

expansion 1.35, and we can neglect all the other terms and obtain the following

coupled equations:

(ω2
k − κ0k

2c2)H0 − κ1c
2(k − 2π/a)2H−1 = 0

−κ−1c
2k2H0 + [ω2

k − κ0(k − 2π/a)2c2)H−1 = 0,
(1.40)
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Figure 1.2: Dispersion relation for a 1D PhC (solid lines). The boundary of the BZ

is denoted by two vertical lines. The dispersion lines in the uniform material are

denoted by the dashed lines. They are folded into the BZ taking into account the

identity of wave vectors which di�er from each other by a reciprocal vector lattice

G, in this case equal to 2π/a. When two dispersion lines cross, they repel each other

and a photonic bandgap appears.

which solutions are

ω± =
πc

a

√
κ0 ± |κ1| ±

ac

π|κ1|

(
κ2

0 −
|κ1|2

2

)
h2, (1.41)

where h = k − π/a, as far as |h| << π/a.

In the interval
πc

a

√
κ0 − |κ1| < ω <

πc

a

√
κ0 + |κ1| (1.42)

there are no modes. The gap, of course, disappears if κ1 = 0, i.e. when there is no

spatial modulation in the dielectric function.

When the spatial modulation is small, the dispersion relation in the PhC is not so

far from ω = vk, but it should be expressed with the wave vector in the BZ, [π/ π/a].

In addition, if two dispersion lines cross each other, a frequency gap appears. This

consideration are schematized in Fig. 1.2.

The group velocity of an eigenmode is given by the slope of the dispersion relation:

vg =
∂ω(k)

∂k
. (1.43)
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From Eq. 1.42, we can notice that for k → π/a, h→ 0, hence also vg → 0. This

means that eigenmodes near the BZ's edge are standing waves.

As regards the �rst band, if k → 0, then ω → 0. This is the long-wavelength limit,

according to which the PhC can be treated as an e�ective homogeneous medium,

with a linear dispersion ω = ck/ne�[4], where ne� =
√
εe� is the e�ective refractive

index. For the dielectric multilayer used in our example, an analytical expression for

εe� has been obtained [9]:

εe� = (ε1l1 + ε2l2)/a.

1.6 The scaling properties

One of the di�erences between photonic crystals and conventional crystals is that

photons do not have a fundamental length, contrary to electrons, which fundamental

length is the Bohr radius a◦. This feature leads to the scaling invariance for the

macroscopic Maxwell's equations. The PhC can be expanded or reduced via the

following transformation

ε′(sr) = ε(r), (1.44)

where s is the scaling factor. It is easy to show that the eigenfunctions and the eigen-

values of the master equation scale with ε(r): H′(sr) = H(r) and ω′ = ω/s. This

means that the new mode pro�le and its corresponding frequency can be obtained by

simply rescaling the old mode pro�le and its frequency. The solution of the problem

at one length scale determines the solutions at all the other length scales. This prop-

erty is of particular interest, because it permits to develop a particular geometries

and then to tune the portion of the spectrum by changing only the lattice constant

of the PhC.

Just as there is no fundamental length scale, there is also no fundamental value

of the dielectric constant. If we use the following transformation

ε′(r) = ε(r)/s2, (1.45)

we �nd that the harmonic modes of the new system are unchanged, but the frequen-

cies are all scaled by a factor s, ω′ = sω. This implies that for a PhC made of two

media ε1, ε2, the eigenfrequencies depend only on the ratio ε1/ε2.

Combining the above two relations, we can see that if we scale ε by s2 and also

rescale the coordinates by s, the frequency ω is unchanged.
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1.7 The plane wave expansion method

After almost two decades of research in photonic bandgap materials, several tech-

niques have been proposed for solving Maxwell's equations [10], [11], [12], but the

standard de facto for computing the band structure of semiconductor-based photonic

crystals is the plane-wave expansion method, based on the truncation of the sum in

Eq. 1.23, that allows to reduce the master equation to a matrix eigenvalue problem.

The coe�cients cn(k + G) and the eigenfrequencies ωn(k) are obtained by standard

numerical diagonalization of the resulting Hamiltonian.

Since the basis functions fk(r) are plane waves, the Eq. 1.23 is explicitly written

as

Hk(r) =
∑
G∈G

∑
σ

cσ(k + G)fσe
ı(k+G) · r, (1.46)

where σ = σ(k + G) represents the two polarizations of fσ, with fσ · (k + G) = 0. By

truncating the index G ∈ G to a cut-o� K : |G| < K, Eq. 1.46 becomes a �nite

expansion. The cut-o� is the approximation imposed by the numerical method; in

fact, it would be impossible to store in�nite arrays in the computer memory. Eq. 1.46

is the Fourier expansion of the magnetic �eld truncated to a cut-o� and cσ(k + G)

are its Fourier coe�cients.

The next step is to rewrite the master equation 1.12 in the Fourier space by

calculating the matrix elements of the Hamiltonian operator Θ̂H on the plane-wave

basis. The result is ∑
G′,σ′

H
σ,σ′

G,G′cσ′(k + G′) =
ω2

c2
cσ(k + G), (1.47)

where the Hamiltonian matrix is

H
σ,σ′

G,G′ = |k + G||k + G′|ηG,G′
(

fσ2 · fσ′2 −fσ2 · fσ′1
−fσ1 · fσ′2 fσ1 · fσ′1

)
(1.48)

and the matrix [ηG,G′ ] = [εG,G′ ]
−1 is the inverse of the dielectric function Fourier

transform

εG,G′ =
1

Vc

∫
Vc

ε(r)eı(G−G′) · rdr, (1.49)

with Vc is the volume occupied by the unit cell.

The matrix [H] is a square matrix with dimensions 2M × 2M , while [η] and

[ε] have dimensions M ×M , with M the number of vectors G below the cut-o�.

Likewise the operator Θ̂H , also H is Hermitian with non-negative eigenvalues.
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The equation 1.48 is the eigenproblem for [H]. Standard numerical diagonal-

ization of [H] yields the eigenfrequencies ωn(k) and, optionally, the coe�cients

cn(k + G). For each diagonalization, the routine outputs a set ωn(k), with n =

1, . . . , 2M , corresponding to the energies of 2M bands for a �xed Bloch vector k. In

order to calculate the whole band structure, the operation has to be repeated for a

certain set of k vectors in the BZ, usually the edges of the irreducible BZ.

The truncation of the sum in Eq. 1.46 is the trick that allowed numerical solu-

tion of the master equation. In fact, the exact Fourier transform of the operator Θ̂H

would be a matrix of in�nite dimensions, whereas [H] is limited to 2M×2M . For this

reason, the matrix eigenvalue problem is an approximation of Maxwell's equations

and an error will occur in the calculated eigenfrequencies. Calling λn(k) the true

eigenvalue and λ(M)
n (k) the eigenvalue calculated with the numerical routine, the er-

ror committed in evaluating the band energies will be ∆
(M)
n (k) = |λn(k)− λ(M)

n (k)|.
As M →∞, the matrix [H] approach the true Fourier transform of Θ̂H and, conse-

quently, the band energies should converge to the true values.

The core of the problem is related to the Fourier transform of the dielectric

function εr(r), which is into the operator Θ̂H as εr(r). Because of [1/εr]
(M) 6=

([εr]
(M))−1, due to the jump discontinuities of the dielectric function at the interfaces

among the media of the PhC, the convergence of the plane-wave expansion method

is not a trivial problem.

The correct choice for uniform convergence is [η] = [εr]
−1 [13], which is called

the inverse rule, because [εr]
−1 satis�ed uniformly the boundary conditions for the

electromagnetic �eld, while [1/εr] does it only non-uniformly. With this choice, for

2D PhC, the error ∆
(M)
n (k) is below 1% already with M of the order of 100.

The plane-wave expansion method with the inverse rule is thus able to output

accurate eigenfrequencies with a moderate CPU time and a complexity of O(M3),

due to the standard diagonalization and inversion routines.



Chapter 2
Two-dimensional Photonic Crystals

In the precedent chapter, it has been shown that the electromagnetic problem

for a photonic crystal can be treated with the operator formalism, by recasting

Maxwell's equations into a closed form for either the electric or the magnetic �elds.

The translational symmetry of the dielectric function implies that the solutions have

to be Bloch waves. The frequency spectrum is organized in the band structure, with

the classi�cation of the energy levels in terms of Bloch vectors k and band index

n. The band structure is obtained by numerical solution of the master equation by

means of the plane-wave expansion method. Now we will apply these concepts and

tools to the study of semiconductor-based two-dimensional photonic crystals and

then of two-dimensional photonic crystal slabs. The chapter is mainly based on the

works of L. C. Andreani and M. Agio [14].

2.1 2D Photonic Crystals

A 2D photonic crystal is characterized by a dielectric function periodic in a plane

and homogeneous in the direction perpendicular to it (see Fig. 2.1). In other word,

choosing a reference system xyz, the dielectric function is εr = εr(x, y). The discus-

sion will be focused on 2D photonic crystals with a triangular lattice of air holes in

a semiconductor material. The band structure is calculated only for in-plane propa-

gation, that is k = (kx, ky, 0). Nevertheless, many results are valid for 2D photonic

crystals in general.

Figure 2.1 shows a top view of this photonic crystal and the correspondent BZ

and irreducible BZ delimited by the symmetry lines T and Σ. The holes radius is
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Figure 2.1: On the left, top view of a 2D photonic crystal made of a triangular

lattice of period a, with air holes of radius r, in a dielectric medium with dielectric

function ε. On the right, 2D reciprocal space and the hexagonal Brillouin zone with

symmetry points and lines. The gray shaded area is the irreducible Brillouin zone.

r, the lattice constant a and εr the background dielectric function. A choice for the

primitive vectors is

a1 = a · (1, 0)

a2 = a · (1

2
,

√
3

2
),

(2.1)

and the area of the unit cell is Ac = a2 ∗
√

3
2
.

By using Eq. 1.29, the reciprocal-space primitive vectors are

g1 =
2π

a
· (1,− 1√

3
)

g2 =
2π

a
· (0, 2√

3
).

(2.2)

We can rewrite the Maxwell's equations removing the dependence from z and

obtain two independent sets of equations:

∂

∂y
Ez(ρ, t) = −µ0

∂

∂t
Hx(ρ, t)

∂

∂x
Ez(ρ, t) = µ0

∂

∂t
Hy(ρ, t)

∂

∂x
Hy(ρ, x)− ∂

∂y
Hx(ρ, t) = ε0εr(ρ)

∂

∂t
Ez(ρ, t),

(2.3)
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and
∂

∂y
Hz(ρ, t) = ε0εr(ρ)

∂

∂t
Ex(ρ, t)

∂

∂x
Hz(ρ, t) = −ε0εr(ρ)

∂

∂t
Ey(ρ, t)

∂

∂x
Ey(ρ, t)−

∂

∂y
Ex(ρ, t) = −µ0

∂

∂t
Hz(ρ, t),

(2.4)

where ρ = (x, y) denotes the 2D position vector. Mixing the two sets of equations

to eliminate Hx, Hy from Eq. 2.3, and Ex and Ey from Eq. 2.4, we obtain:

1

εr(ρ)

[
∂2

∂x2
+

∂2

∂y2

]
Ez(ρ, t) =

1

c2

∂2

∂t2
Ez(ρ, t) (2.5)[

∂

∂x

1

εr(ρ)

∂

∂x
+

∂

∂y

1

εr(ρ)

∂

∂y

]
Hz(ρ, t) =

1

c2

∂2

∂t2
Hz(ρ, t). (2.6)

As done in the general case, we seek for harmonic solution of these equations

Ez(ρ, t) = Ez(ρ, t)e
−ıωt, Hz(ρ, t) = Hz(ρ, t)e

−ıωt. (2.7)

Substituting these solutions into Eqs. 2.5 and 2.6, we obtain the master equation

for 2D photonic crystal given by

Θ̂EEz(ρ) =
1

εr(ρ)

[
∂2

∂x2
+

∂2

∂y2

]
Ez(ρ) =

ω2

c2
Ez(ρ) (2.8)

Θ̂HHz(ρ) =

[
∂

∂x

1

εr(ρ)

∂

∂x
+

∂

∂y

1

εr(ρ)

∂

∂y

]
Hz(ρ) =

ω2

c2
Hz(ρ). (2.9)

The two eigenfunctions de�ned by Eqs. 2.8 and 2.9 represent two di�erent po-

larizations; the �rst is called transverse magnetic (TM) polarization, for which the

electric �eld is parallel to the z axis, while the second one is called transverse electric

(TE) polarization, for which the magnetic �eld is parallel to the z axis1.

Switching to the Fourier space of the plane-wave expansion, the master equation

is split into:∑
G′

(k + G) · (k + G′)ηG,G′cσ1(k + G′) =
ω2

c2
cσ1(k + G), TE modes,

∑
G′

|k + G||k + G′|ηG,G′cσ2(k + G′) =
ω2

c2
cσ2(k + G), TM modes,

(2.10)

1The TE modes correspond to (Ez, Ey, Hz), while TM modes to (Ez, Hx, Hy), where the �eld

components are functions of x, y only; the other components are zero. The nomenclature used here

is the same of [1], but in literature, other nomenclatures are often found: H-modes for TE modes

and E-modes for TM modes [4]; also p-modes for TE modes and s-mode for TM-modes [6].
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Figure 2.2: Photonic bands of a 2D photonic crystal made of a triangular lattice of

air holes (r = 0.3a, in a dielectric medium (εr = 12). Solid (dashed) lines refer to

TE modes (TH modes).

that leads to two di�erent band structures one for the TE modes and one for the

TM modes. Thus a 2D photonic crystal may show a bandgap just for only one

polarization or for both polarizations. In the last case, the bandgap is called complete.

2.1.1 The band structure

The band structure is calculated along the symmetry lines of the Brillouin zone:

Γ - K, Γ - M , and K - M . The G are constructed by linear combination of the

reciprocal-space primitive vectors gi. The result of the integral in Eq. 1.49 is

εG,G′ =

(εair − εdiel) 2πr
AcG

J1(Gr), if G 6= G′,

fεair + (1− f)εdiel, if G = G′,
(2.11)

where εair = 1 is the air dielectric constant, εdiel = εr is the material dielectric

function, G = |G −G′|, J1(x) is the �rst order Bessel function, and f = πr2/Ac is

the air �lling factor.
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Figure 2.2 shows the photonic band structure calculated for air holes with radius

r = 0.3a, in a dielectric medium with εr = 12. The system exhibits a photonic

bandgap only for the TE modes (solid lines). For TM-modes (dashed lines), the

bandgap is closed by the second band. Notice that the �rst bands of both TE-modes

and TM-modes have linear dispersion for ω → 0, that is the long wavelength limit.

The TE-modes and TM-modes dispersions have di�erent slope for ω → 0; this means

that the two modes have di�erent e�ective dielectric function. The e�ective dielectric

function for TM-modes is given by the analytical formula

εe� = fεair + (1− f)εdiel = εG,G′ . (2.12)

The e�ective dielectric function for TE-modes does not have an analytic ex-

pression. E�ective medium theory gives that its value is comprised between the

Maxwell-Garnett bound

εe� = εdiel

(
1 +

2fα

1− fα

)
, (2.13)

where α = (εair − εdiel)/(εair + εdiel) is the depolarization factor, and the inverse

Maxwell-Garnett bound, obtained by interchanging the �lling fractions, f and 1−f ,
and the dielectric functions εair and εdiel in the Maxwell-Garnett bound.

The correct value can be calculated numerically [6][15][7]. Thus, in the long-

wavelength limit, a two-dimensional photonic crystal behaves like an homogeneous

uniaxial crystal2, where the optical axis is along the z direction and the dielectric

functions ε|| and ε⊥ are the e�ective values for TM and TE modes respectively. For

two-dimensional photonic crystals ε|| > ε⊥ always. The e�ective dielectric tensor

reads

ε =

ε⊥ 0 0

0 ε⊥ 0

0 0 ε||

 (2.14)

For �nite frequencies the photonic crystal e�ects become important and the mean

�eld approximation is more complicated [6]. Nevertheless, it is still meaningful to

speak in terms of e�ective dielectric function as the zero-th term in a perturbative

expansion of the band structure [16].

Looking again at Fig. 2.2, it is found that TE-modes have a photonic band gap

also around ωa/2πc ≈ 0.6. However, the band gaps lying at higher frequencies are

2That is true for the square and the triangular lattices. For lattices with a lower symmetry the

crystal is biaxial, with two e�ective dielectric functions for TE-modes [15].
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Figure 2.3: Gap map for a photonic crystal with triangular lattice from [1]. A

complete photonic band gap opens for 0.41a < r < 0.5a (yellow area).

more sensitive to disorder, contrary to the �rst band gap at ωa/2πc ≈ 0.25. Indeed,

for the higher bands, the coe�cients cσ(k + G) with large k + G vectors have a

stronger weight in the plane-wave expansion, contrary to what happens for the lower

bands.

Disorder primarily a�ects the coe�cients with large k + G vectors, because they

correspond to plane waves with short wavelength, more sensitive to roughness and

other irregularities. Since disorder is practically unavoidable in real samples, it is

important to devise photonic crystals where the desired properties are robust [17].

It has been shown that the band structure of Fig. 2.2 exhibits band gaps only

for TE-modes. However, this is true only for particular choice of r and ε. It is

interesting to see what happens if one of the two parameters is varied. In theory,

one could change the dielectric function ε, but in practice, its value is determined

by the choice of the material, which is the most important parameter. For the most

common semiconductor-based photonic crystals (Si, GaAs, InP), ε is within [11, 12].

For this reason, only the hole radius is considered as a free parameter.

2.1.2 Gap Maps

The existence of a complete photonic band gap is one of the most attracting

features of photonic crystals. If one wants to know whether a structure has a full
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band gap, or simply locates the band gaps for each polarization, it would be necessary

to examine a large number of band structures, one for a given value of the hole radius

r. It turns out, that is more convenient and clear to visualize only the edges of the

photonic band gap as a function of r in the the so-called gap map. Fig. 2.3 shows

the band gaps for the parameters of Fig. 2.2, with r/a varying from 0 to 0.5, which

corresponds to the closed-packed condition. There is a wide band gap for TE-modes

(solid lines) that opens for r > 0.17a and increases with the hole radius until it

reaches the maximum value for r ≈ 0.45a. Another band gap for TE-modes occurs

for a smaller range of r and at higher frequencies. This is the second gap seen in the

band structure of Fig. 2.2, where r = 0.3a.

Concerning the other polarization (dashed lines), the lowest frequency band gap

is located around r = 0.45a, with a steep pro�le that covers the frequency range

ωa/2πc ≈ 0.35 − 0.6. Smaller band gaps appear at higher frequencies for r ≈ 0.4a.

The map of the complete band gap is determined by the intersection of the TE-

modes band gaps with the TM-modes band gaps. This happens only for r > 0.41a

in the frequency window ωa/2πc ≈ 0.35 − 0.55 (gray shaded area). It is worth to

mention that the gap edges shift towards higher frequencies as the radius increases,

in accordance to the reduction of the e�ective dielectric constants ε‖ and ε⊥.

In order to obtain a complete photonic band gap in this system, it is necessary

to have a high air fraction. Such condition might be critical from the experimental

point of view, because of intrinsic limits in the fabrication process. In fact, it would

be di�cult to reach high aspect ratios with hole walls as thin as membranes. The

alternative is to release the requirement of a full band gap and to work with a partial

band gap using polarized light. For a two-dimensional photonic crystal of air holes

in a semiconductor one �nds convenient to exploit the wide band gap given for TE-

polarization.

2.2 2D Photonic Crystal Slab

A two-dimensional photonic-crystal slab is made of a planar dielectric waveguide

that is deeply etched according to a two-dimensional pattern. In other words, the

dielectric function is periodic in the x − y plane and is a step-wise function in the

vertical direction z: ∀R ∈ V, ∀z ∈ R, εr(x + R, z) = εr(x, z), with x = (x, y)

and V is the vector space associated to the two-dimensional lattice. The number of

parameters involved in the characterization of these systems is large: the structure of
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the planar waveguide (layers, thicknesses, dielectric functions), the two-dimensional

photonic crystal (lattice and unit cell) and the etch depth. Nevertheless, there are few

representative cases that are able to address all the important features pertaining to

two-dimensional photonic-crystal slabs. Since the attention is focused on the e�ects

due to the planar waveguide, the photonic crystal pattern is chosen una tantum as a

triangular lattice of air holes. At this stage, the etch depth is considered as in�nite,

the cladding layers above and below the core are equal.

Fig. 2.4 gives examples of planar waveguides patterned with a triangular lattice

of air holes. The thickness of the core layer is d, whereas the cladding layers are

considered as semi-in�nite. The low panels display three types of planar waveguide:

(d) a dielectric self-standing membrane, also known as air bridge, (e) waveguide

based on a semiconductor heterostructure, for instance a GaAs/AlGaAs system, (f)

waveguide with strong asymmetry, like a silicon-on-insulator wafer. The air bridge

is a typical strong-con�nement waveguide, while the GaAs/AlGaAs system belongs

to the weak con�nement case; both waveguides are symmetric.

The photonic band structure of these systems is more complicated than for ideal

two-dimensional photonic crystals, because of the �nite-height of the two-dimensional

pattern. For symmetric waveguides, the modes are still even or odd with respect to

the mid-plane of the core layer. However, they are not TE-modes or TM-modes

anymore, because the �elds are also function of the z coordinate. Nevertheless, it

makes sense to call them TE-like modes or TM-like modes. For asymmetric waveg-

uides such separation breaks down and the band structure has to be calculated by

solving the master equation with all the transverse �eld components. However, the

main complication with respect to two-dimensional photonic crystals consists of the

so-called light-line problem and of the existence of Bloch modes with a cut-o�. In

fact, these structures support two kinds of modes. If the waveguide thickness is not

too small, guided modes exist whose energies lie below the light line of the cladding

material (or light lines, if the waveguide is asymmetric). An example of a band

structure for these kind of systems is displayed in �gure 2.5.

The modes below the light line are true stationary Bloch modes and, ideally, they

are not subject to propagation losses. Above the light line of the cladding material,

the spectrum becomes a continuum of states with resonances called quasi-guided

modes. Since these modes lie within the leaky modes of the waveguide, they exhibit

intrinsic propagation losses due to out-of-plane di�raction. Moreover, the planar

waveguide can be single mode or multi-mode in the frequency region of interest. If
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Figure 2.4: Upper panels: (a) slab photonic crystal of thickness h patterned with a

square lattice of dielectric rods, (b) slab photonic crystal of thickness h patterned

with a triangular lattice of air holes. Lower panels: (c) strong-con�nement symmetric

waveguide, i.e. patterned self-standing dielectric membrane (air bridge), (d) weak-

con�nement symmetric waveguide (e.g. patterned AlGaAs-GaAs-AlGaAs system),

(e) patterned asymmetric waveguide (e.g. silicon-on-insulator). The values of the

dielectric function given here are reasonable, because for typical semiconductor, ε is

within [11, 12].

the waveguide is multi-mode, there will be Bloch waves with a cut-o� corresponding

to the onset of a higher-order mode in the planar waveguide. All of these concepts

appear in the photonic band structure.

There are mainly four numerical methods that solve Maxwell's equations for

two-dimensional photonic-crystal slabs: the plane-wave expansion method, with a

super-cell in the vertical direction that accounts for the waveguide [18], the �nite-

di�erence time-domain (FDTD) method [19], the scattering matrix method [20], and

magnetic �eld expansion method [14]. Each one has its advantages and its �aws. In

particular, the plane-wave expansion method with the super-cell is limited to energies

below the light line; the �nite-di�erence time-domain method is time consuming and

less accurate than frequency-domain methods; the scattering matrix method does

not directly outputs the band structure; in the last one, the photonic band structure

is calculated by expanding the magnetic �eld in the basis of guided modes of the

planar waveguide, where each layer is taken to have an average dielectric function.
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Figure 2.5: Projected band diagram for a photonic crystal slab of air holes in dielec-

tric. The gray shaded region is the light cone: the projection of all states that can

radiate in air. Black/gray lines denote guided modes (con�ned to the slab) that are

even/odd with respect to the horizontal mirror plane of the slab, whose polarization

is TE-like/TM-like, respectively. The bandgap is present only for the TE-like modes.

The approach goes beyond the nearly-free approximation of Ochiai [21], since no

perturbative assumption is required, and it is valid also for strong modulation of the

dielectric function.

2.2.1 The Band Structure

The photonic band structure of photonic-crystal slabs is characterized by the

light-line problem, which discriminates between guided modes and quasi-guided

modes. This is one of the main novelties with respect to conventional photonic

crystals. Moreover, it has been mentioned that there can exist Bloch waves with

a cut-o�, which depends on the waveguide geometry. The structure of the dielec-

tric matrix [ε] is the origin of propagation losses in photonic crystal slabs. When a

guided mode is folded, it crosses the air light line and enters the leaky mode region.
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Figure 2.6: Photonic bands for an air-bridge structure, with hole radius r = 0.24a.

(a) Waveguide thickness d = 0.3a; (b) waveguide thickness d = 0.6a; (c) ideal 2D

case. Solid (dashed) lines represent modes that are even (odd) with respect to the

xy mirror plane. The dotted lines in (a) and (b) refer to the light lines in air and in

the e�ective waveguide material.

However, the mode remains truly guided, because the coupling with leaky modes

is null, since the dielectric tensor of the e�ective waveguide is diagonal. Below the

light line, the photonic band structure is made of guided Bloch states, which may

form a photonic band gap. Once the Bloch mode has crossed the light line, even

if it is calculated as a state with zero line-width, in fact, it becomes a resonance,

due to the non-zero o�-diagonal elements of the dielectric matrix [ε], which couple

the Bloch mode to the external �eld. Therefore, these states are subject to intrinsic

propagation losses. The physical process that causes losses, is thus di�raction, since

states with di�erent G vectors are coupled by the o�-diagonal elements of [ε], and

the origin of di�raction is the periodicity of the dielectric function.

The spectrum is a continuum of states and the photonic band picture seems to

break down. However, assuming that above the light line, the dispersion relation

of photonic crystal slabs is not a mere continuum of states, but it is organized in

resonances, with central frequency and width well de�ned, the photonic band picture

is still valid. In summary, the photonic bands lying below the light line represent the

dispersion of guided modes, while those above the light line represent the dispersion

of resonances. The photonic band picture is valid also for modes above the light line,

provided that the structure is properly designed [22].
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Figure 2.7: Photonic bands for an SOI structure, with hole radius r = 0.24a. (a)

Waveguide thickness d = 0.3a; (b) d = 0.6a; (c) d = 1.0a. Solid (dashed) lines

represent modes that are even (odd) with respect to the xy mirror plane. The

dotted lines refer to the light lines in the e�ective core and cladding materials.

The concept of photonic band gap needs to be rede�ned in a 2D photonic crystal

slab, because if we consider states just the guided modes it is not characterized by

a null density of states. In Eq. 1.31 the sum is performed over the whole Brillouin

zone, which includes the leaky mode region, so considering that above the light line

the states are organized in resonances, we can de�ne the photonic band gap as the

spectral region [ω1, ω2] for which ∀ω ∈ [ω1, ω2], @ (k, n) : ω = ω̃n(k), where ω̃n(k) is

either a guided mode or a resonance.

2.2.2 Vertical Con�nement E�ects

Going back to the structures of Fig. 2.4, it is important to study the two most

representative systems: the strong con�nement waveguide (air bridge, Fig. 2.4c) and

the weak con�nement waveguide (AlGaAs/GaAs/AlGaAs, Fig. 2.4d). The pattern

is a triangular lattice of air holes (Fig. 2.4b). The aim is to see the dependence of

the photonic band structure on the waveguide thickness d and on the hole radius r

for both weak and strong con�nement cases. The band structure is calculated along

the symmetry lines of the two-dimensional Brillouin zone. Since these systems are

symmetric, the bands are classi�ed in TE-like modes and TM-like modes.
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Bands

Fig. 2.6 shows the photonic band structure of the air bridge for a hole radius

r = 0.24a and waveguide thickness d = 0.3a, 0.6a, compared with the ideal two-

dimensional case. The bands of the two-dimensional system, Fig. 2.6c, exhibit a

photonic band gap between the �rst and second band for even modes (TE-modes).

The bands of the photonic crystal slab fall partly in to the guided mode region, where

they agree with those calculated by Johnson, S. C., et at. (1999), and partly in the

leaky mode region, where they must be viewed as resonances. For thickness d = 0.3a

(see Fig. 2.6a), the lowest bands are qualitatively similar to their two-dimensional

counterpart, but they are also strongly blue-shifted due to �eld con�nement in the

z direction. The gap in the TE modes opens between ωa/2πc ≈ 0.29− 0.34, while it

is located between 0.2 and 0.23 in the two-dimensional case. The con�nement e�ect

is stronger for odd modes. In the long-wavelength limit, the waveguide behaves

as a uniaxial medium, with ε|| ≡ εzz, given by Eq. 2.12 and being larger than

ε⊥ ≡ εxx ≡ εyy, approximated by Eq. 2.13. In the two-dimensional case, odd modes

have the electric �eld along z and feel the largest dielectric constant ε||: hence they

are better con�ned in the waveguide and have a larger blue-shift compared to even

modes.

The six photonic modes at the point Γ in each polarization can be interpreted as

the fundamental waveguide mode at the lowest non-zero reciprocal lattice vectors,

folded in the Brillouin zone and split by the dielectric matrix. Notice that the in

the photonic crystal slab with d = 0.3a, the modes up to ωa/2πc ' 0.57 can be put

in one-to-one correspondence with the bands of the two-dimensional case, indicating

that the waveguide is single mode. A second-order waveguide mode appears above

ωa/2πc ' 0.57. Analogous considerations hold for the case of waveguide thickness

d = 0.6a, where the �eld con�nement is less pronounced. Moreover, a second-order

waveguide mode starts at ωa/2πc ' 0.3 and the bands at higher frequencies become

more complex.

The example allows to discuss the trend with waveguide thickness with �xed

hole radius r = 0.24a. For a small value of d/a, the waveguide is single mode in a

wide frequency range and the photonic bands can be interpreted as two-dimensional

bands blue-shifted by the �eld con�nement. The con�nement is stronger for odd

modes. By increasing the ratio d/a, the blue-shift is reduced and a second-order

waveguide mode occurs with decreasing cut-o� frequency. For d > 0.6a, the second-

order mode falls into the gap of even modes. When defects are present in the band
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Figure 2.8: Gap maps for the air bridge structure. (a) Waveguide thickness d = 0.3a;

(b) waveguide thickness d = 0.6a; (c) ideal 2D case. Solid (dashed) lines represent

the edges of photonic bands that are even (odd) with respect to the xy mirror plane.

The dotted line in (b) refers to the cut-o� of the second-order waveguide mode[14].

gap, the presence of the second-order mode will contribute to losses. Concerning

low-loss wave propagation , it is better to have structures that are single mode in

the frequency range of interest. For the air bridge system, small values of d/a are

more favorable.

Fig. 2.7 displays the photonic bands for an SOI structure (Fig. 2.4d) for three

values of waveguide thickness. Due to the small dielectric contrast between core

and cladding, there are no truly guide modes and all photonic modes lie in the

radiative region. The dispersion of quasi-guided modes is very similar to the two-

dimensional case of Fig. 2.6c and the blue-shift is much less than for the air bridge.

However, it is noticeable that the gap in the even modes is increased compared to

the two-dimensional case. The three patterned waveguides are single mode for the

shown frequency range, except for d = a, where a second-order mode occurs for

ωa/2πc ' 0.65. Like for the strong con�nement case, the results of Fig. 2.7 suggest

that, in order to maximize the even gap, it is more convenient to use small values of

waveguide thickness.

Gap Maps

It is also interesting to see the trends of the band gaps with the hole radius. Fig.
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Figure 2.9: Gap maps for the SOI structure. (a) Waveguide thickness d = 0.3a; (b)

d = 0.6a; (c)d = 1.0a. Solid (dashed) lines represent the edges of photonic bands

that are even (odd) with respect to the xy mirror plane[14].

2.8 displays the gap maps as a function of hole radius for the air bridge structure of

Fig. 1.9d with waveguide thickness d = 0.3a, 0.6a and in the two-dimensional case.

The purpose of Fig. 2.8c is to set a reference for the gap maps in a photonic crystal

slab. The gap map of the two-dimensional case has already been discussed in Sec.

2.2.2. From Fig. 2.8a,b, it is possible to see that there are no gaps in the odd modes

(dashed lines) for any hole radius and, therefore, no complete band gap. The band

gap for even modes (solid lines) occurs at higher frequencies than in two-dimensions,

because of the vertical con�nement. It has to be remarked that the upper edge of the

gap lies in the radiative region for a hole radius larger than about 0.4a so that the

even gap is formed partly in the guided mode region and partly in the leaky mode

region.

Fig. 2.9 shows the gap maps for the SOI structure, with photonic crystal thickness

d = 0.3a, 0.6a, a. They are rather similar to the two-dimensional case, because the

con�nement e�ect is much less important than for the air bridge. It has to be pointed

out that a weak-con�nement structure, as SOI structure, has no truly guided modes

in the considered range of crystal thicknesses: all modes are resonances and the

photonic band gap lies entirely in the radiative region. Notice that, on decreasing

the thickness, the gap for odd modes opens at smaller values of the hole radius; the

same happens for the even gap. Contrary to the strong con�nement waveguide, as
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a membrane, full band gap common to both polarizations still exists and it occurs

even for hole radii of the order of 0.3a, if waveguide widths d ∼ 0.3a are used.

2.2.3 Conclusions

The concept of photonic band structure and of photonic band gap have been

extended, in order to account for the existence of quasi-guided modes in the radiative

region. For strong-con�nement waveguides (air bridge), the photonic modes exhibit

a large blue-shifted with respect to the two-dimensional case.

The gap maps of the air bridge display only a gap for even modes. The even gap

remains large even for small waveguide thickness, while it is closed by a second-order

waveguide mode when the thickness reaches d = 0.6a. In the weak con�nement

waveguide (GaAs/AlGaAs system), the bands are similar to the two-dimensional

case. However, the single gaps and the complete band gap open for smaller values of

the hole radius. Another di�erence between strong and weak con�nement waveguides

regards the nature of photonic modes. While strong con�nement waveguides support

both guided and quasi-guided modes, weak con�nement waveguides has practically

only quasi-guided modes. These modes are subject to propagation losses, because of

the coupling to the external �eld. Understanding and quantifying out-of-plane losses

is very important, since they may preclude the use of photonic crystal slabs towards

integrated photonic crystals circuits. One would like to know which is the optimal

waveguide design that accounts for minimal out-of-plane losses, ease of fabrication

with lithographic methods and appropriate band gap properties. An air bridge sys-

tem allows to operate with truly guided modes; on the other hand, it is more di�cult

to fabricate.

Two-dimensional photonic crystals embedded in weak con�nement waveguides

possess a band structure that is more similar to the two-dimensional case and they

can be obtained with top-down processes much easily than suspended membranes.

These features make weak con�nement systems more promising than the strong

con�nement counterpart, provided they exhibit �small� propagation losses [23].



Chapter 3
Two-dimensional Photonic Crystal

Waveguides

The photonic band gap is so much attracting because of the capability to control

wave propagation, but it is possible to create energy levels within it by designing

defects. Considering the plane of periodicity of two-dimensional photonic crystals,

a point defect corresponds to a resonant cavity, while a linear defect corresponds to

a waveguide. Resonant cavities and waveguides are among the building blocks of

photonic integrated circuits.

In this chapter, we will focus on waveguides realized as linear defects in a two

dimensional photonic crystal. A linear defect preserves the periodicity in one di-

mension, yielding a one dimensional Brillouin zone and a Bloch vector k. Therefore,

these defect states will obey to a dispersion relation ω = ωm(k), where m is the order

of the guided mode.

The simpler way to realize a linear defect [1][24] is to remove N adjacent rows

of holes in a photonic crystal made of a triangular lattice of air holes in a dielectric

material. The so-called WN waveguide, where N is the number of removed rows,

is usually created along the Γ − K direction, rather than the Γ −M , because the

waveguide walls are smoother. The width of a WN waveguide is w = a
√

3(N + 1)/2.

The guides with odd N (W1,W3,...) have symmetric boundaries, while those with

even N (W2, W4, . . .) have boundaries shifted by a/2 with respect to each other

[25]. Usually, waveguides with odd N are used, because they are symmetric with

respect to their axis.

The presence of the waveguide breaks the periodicity along Γ−M . Nevertheless,
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the system remains periodic along Γ−K, with lattice constant a, so that the Bloch

theorem applies. There are several e�cient numerical techniques for calculating the

dispersion relation of the guided modes. In the next sections, we will present the

two ones that will be used in this work: the super-cell method [25] and the Finite-

Di�erence Time-Domain (FDTD) method [26].

3.1 The Super-Cell Method

Consider a WN waveguide. For simplicity we do not consider the height dimen-

sion. A unit cell of the waveguide is a section of the waveguide with a length equal to

the period a of the photonic crystal along the propagation direction and unlimited

along the other direction. The super-cell method consists of assuming a periodic

array of waveguides, spaced by bulk photonic crystal, whose unit cell corresponds to

the one just mentioned, but limited along the direction perpendicular to the Bloch

vector (see the right panel of Fig. 3.3). The spacing is determined by the width of

the super cell. A guided mode is characterized by an evanescent �eld in the direction

perpendicular to the Bloch vector. For this reason, if the super-cell is su�ciently

large, the guided modes of adjacent unit cells will not overlap (no interaction) and the

dispersion relation will be like that one of a single waveguide. The array of waveg-

uides is characterized by two primitive vectors a1, a2. Even if the Brillouin zone

is two-dimensional, only the Bloch vector along the waveguide axis represents the

true guided-mode wave-vector. Given the unit cell, the reciprocal primitive vectors

and the Bloch vector, the dispersion relation is calculated by the usual plane-wave

expansion method.

While the primitive vectors are easily found by looking at the super cell:

a1 = a · (1, 0), a2 = a
√

3(0, (N + 1)/2 +K), (3.1)

where N is for WN and 2K + 1 is the number of photonic-crystal rows between

two waveguide channels, the dielectric matrix ‖ε‖ of the unit cell is more di�cult to

calculate. The dielectric function inside the super cell can be written as

ε(x) = εdiel + (εair − εdiel)
∑
v

θ(|x− v| − r), x ∈ unit cell, (3.2)

where r is the hole radius, x = (x, y), v are the displacement vectors, and θ(x) is

the Heaviside function. Using this expression, the Fourier transform of the dielectric
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function can be expressed as the bulk Fourier transform multiplied by a structure

factor,

εG,G′ =

S(G−G′)F (εair, εdiel, r, G), if G 6= G′,

f ′εair + (1− f ′)εdiel, if G = G′,
(3.3)

where f ′ is the super-cell �lling factor and G,G′ are the reciprocal vectors of the

super-cell lattice, and G = |G−G′|.
The two function

S(G) = Ac/A
∑
v

e ıG ·v, F (εair, εdiel, r, G) = (εair − εdiel)
2πr

AcG
J1(Gr), (3.4)

with A the area of the super cell and Ac the area of the bulk crystal unit cell, are

the structure factor and the atomic factor, corresponding to the dielectric-function

Fourier transform of the bulk photonic crystal, respectively.

Once that the dielectric matrix has been calculated, Eqs. 2.10 can be used to

�nd the dispersion relation of guided TE-modes and guided TM-modes, respectively.

Since the waveguide is symmetric with respect to its axis, the guided modes can be

further classi�ed as even or odd with respect to a re�ection plane σxz, where x is the

waveguide axis and z is the vertical direction.

3.2 The FDTD Method

Finite-di�erence time-domain (FDTD) method dates back to the work of Yee [27],

who proposed an algorithm for solving the time dependent Maxwell's curl equations,

that transforms the di�erential operators in �nite di�erences in space and time. It is

considered easy to understand and easy to implement in software. Since it is a time-

domain method, solutions can cover a wide frequency range with a single simulation

run.

Considering the Maxwell's di�erential equations:

∇× E(r, t) = −µ ∂
∂t

H(r, t), ∇×H(r, t) = ε
∂

∂t
E(r, t), (3.5)

we can see that the change in the E-�eld in time (the time derivative) is dependent

on the change in the H-�eld across space (the curl). This results in the basic FDTD

time-stepping relation that, at any point in space, the updated value of the E-�eld

in time is dependent on the stored value of the E-�eld and the numerical curl of the

local distribution of the H-�eld in space.
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Figure 3.1: Illustration of a standard Cartesian Yee cell used for FDTD, about which

electric and magnetic �eld vector components are distributed. Visualized as a cubic

voxel, the electric �eld components form the edges of the cube, and the magnetic

�eld components form the normals to the faces of the cube. A three-dimensional

space lattice is comprised of a multiplicity of such Yee cells. An electromagnetic

wave interaction structure is mapped into the space lattice by assigning appropriate

values of permittivity to each electric �eld component, and permeability to each

magnetic �eld component.

The H-�eld is time-stepped in a similar manner. At any point in space, the

updated value of the H-�eld in time is dependent on the stored value of the H-�eld

and the numerical curl of the local distribution of the E-�eld in space. Iterating the

E-�eld and H-�eld updates results in a marching-in-time process wherein sampled-

data analogs of the continuous electromagnetic waves under consideration propagate

in a numerical grid stored in the computer memory.

This description holds true for 1-D, 2-D, and 3-D FDTD techniques. When

multiple dimensions are considered, calculating the numerical curl can become com-

plicated. Yee [27] proposed spatially staggering the vector components of the E-�eld

and H-�eld about rectangular unit cells of a Cartesian computational grid so that

each E-�eld vector component is located midway between a pair of H-�eld vector

components, and conversely. This scheme, now known as a Yee lattice, has proven

to be very robust, and remains at the core of many current FDTD software con-

structs.

Furthermore, Yee proposed a leapfrog scheme for marching in time wherein the

E-�eld and H-�eld updates are staggered so that E-�eld updates are conducted mid-

way during each time-step between successive H-�eld updates, and conversely. This
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Figure 3.2: Yee lattice in 2D for the TE polarization.

explicit time-stepping scheme avoids the need to solve simultaneous equations, and

furthermore yields dissipation-free numerical wave propagation, but it mandates an

upper bound on the time-step to ensure numerical stability.

For simplicity, we will discuss in a deeper manner the FDTD method in two

dimensions. Before proceeding, it is convenient to de�ne the following notation for

the �nite di�erences. Time is discretized by division in uniform intervals ∆t. The

2D space is de�ned on a discrete uniform rectangular mesh x− y. A space point in

the mesh is denoted as

(i, j) = (i∆x, j∆y), (3.6)

where ∆x and ∆y are the lattice space increments in the x and y directions, respec-

tively, and i, j are integers.

A function f of space and time evaluated at a discrete point in the grid and at a

discrete point in time is denoted as

f(i∆x, j∆y, n∆t) = f‖ni,j. (3.7)

We can de�ne the partial space derivative of f at the �xed time tn = n∆t:

∂

∂x
f(i∆x, j∆y, n∆t) =

f‖n
i+ 1

2
,j
− f‖n

i− 1
2
,j

∆x
+O[(∆x)2]

∂

∂y
f(i∆x, j∆y, n∆t) =

f‖n
i,j+ 1

2

− f‖n
i,j− 1

2

∆y
+O[(∆y)2]

(3.8)

and the partial time derivative, evaluated at the grid point (i, j):

∂

∂t
f(i∆x, j∆y, n∆t) =

f‖n+ 1
2

i,j − f‖
n− 1

2
i,j

∆t
+O[(∆t)2], (3.9)
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where the ±1/2 increment in the several subscript of f represents a space or time

�nite di�erence. This notation is chosen to interleave the E and H components in

time and space for implementing the so-called leapfrog algorithm.

This algorithm is stable if

∆t ≤ 1

c
√

1
(∆x)2

+ 1
(∆y)2

. (3.10)

The computational domain is simply the physical region over which the simula-

tion will be performed. The E and H �elds are determined at every point in space

within that computational domain. The material of each cell within the computa-

tional domain must be speci�ed. Similarly, source and boundary conditions must be

speci�ed.

The Yee algorithm is second-order accurate. The accuracy can be improved by

using smaller time and space increments. Even if the loop over the grid point is

a O(N2) process, where N is the number of lattice points in the mesh, the whole

algorithm is actually a O(N3) process, because the time stepping has to satisfy Eq.

3.10. For this reason, the three-dimensional version of the FDTD method is very

much time consuming, with four nested loops.

3.3 The W1 waveguide

Given a WN waveguide, the best choice for the number of rows to remove de-

pends on the device or application being developed. A narrow waveguide is likely to

be single-mode, but it possesses higher propagation losses with respect to a larger

waveguide, which, on the contrary, is likely to be multi-mode.

The W1 waveguide (one row removed) is the simplest linear defects waveguide

and it is the choice of waveguide used in this work. Fig. 3.3 shows a W1 waveguide,

which is created by removing one row of air holes along the Γ −K direction of the

triangular lattice, so that the width corresponds to w = a
√

3.

3.3.1 The Dispersion Relation

Fig. 3.4 shows the dispersion relation of the W1 channel waveguide of Fig. 3.3,

with w = a
√

3, r = 0.30a and εdiel = 12.25, only for the guided TE-modes. Thin

dotted lined correspond to the modes outside the photonic band gap (PBG) region,

and they are guided in the bulk PhC and hence are not con�ned to the line defect.
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(a) (b)

Figure 3.3: (a) A 2D photonic crystal waveguide along the Γ − K direction of a

triangular lattice of air holes in a dielectric material, w de�nes the width of the

waveguide, a is the lattice constant. (b) An example of super-cell for the calculation

of the waveguide band diagram.

The modes at frequencies inside the PBG region can be separated by their lateral

symmetry of magnetic �eld with respect to a plan along the propagation direction

and vertical to even and odd modes. The even mode of such waveguides can be

categorized with respect to their �eld distribution as index guided ν2 or gap guided

ν1. An index guided mode has its energy concentrated inside the defect and interacts

only with the �rst row of holes adjacent to the defect. Its behavior can be simply

represented by a dielectric waveguide with periodical corrugation. A gap guided

mode interacts with several rows of holes, thus it is dependent on the symmetry of

the PC and its PBG. The names index guided and gap guided don't specify exactly

the guidance mechanisms (in the PBG region all modes are gap guided) but mainly

describe the resemblance in terms of the modal �eld distribution. Any mode of

the periodical waveguide generally shows a small group velocity near the band edge

which eventually vanishes at the Brillouin zone edge.

If the waveguide is realized on a membrane, it is possible to see the same odd and

even modes observed in the PBG region, though the PBG region is moved at higher

frequencies. The main di�erence is the appearance of the radiation modes above the
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Figure 3.4: Dispersion relation for the photonic crystal waveguide of Fig. 3.3 with

w = a
√

3, r = 0.30a and εdiel = 12.25, TE polarization. The thick lines represent

the modes introduced by the line defect.

light line. These modes do not ful�ll completely the total internal re�ection condition

and are scattered vertically. Thus only the modes below the light line are available

in the slab structure for application.

3.3.2 Group velocity and slow light

The group velocity vg of light with frequency ω in a waveguide is given as

vg =
dω

dk
=

c

ng
, (3.11)

where k is the wave vector along the waveguide and ng the group index.

The group velocity in a PhC waveguide is strongly dependent on the frequency

as quanti�ed by the group velocity dispersion (GVD) parameter β2:

β2 =
d2k

dω2
=

1

c

dng
dω

. (3.12)

The group velocity is a function of structural parameters, that can change com-

pletely the dispersion relation of a photonic crystal waveguide, as it is possible to

see in the Fig. 3.5. The phenomenon of the low group velocity is called slow light.

The �atter is the dispersion relation of a mode, the smaller is the group velocity, the

slower is the light propagating into the waveguide.
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Figure 3.5: Group velocity as a function of wavevector for r = 0.275a for di�erent

waveguide widths. The inset show group velocity at the k-point k = 0.4888, where

the absolute value of vg has a minimum at W0.85. A bandwidth of constant group

velocity is obtained at W0.7 [28].

The exploitation of slow light phenomena opens perspectives for the realization

of very compact and massively integrated optical functions (delay lines, GVD com-

pensation, etc.) [29][30][31]. Very small values of group velocity have been reported

by several groups (vg ' c/200 [32]), however the waveguide length was very short

in that case, resulting into a moderate group delay. Longer structures, potentially

providing longer delays, are problematic, because the impact of propagation loss

increases dramatically.

It was also demonstrated [33] the possibility to tailor the dispersion properties

of the fundamental even mode. In this way , it is possible to obtain semi-slow light

having a group velocity in the range vg ∈ [c/15− c/100].

The photonic crystal waveguide with these properties is show in Fig. 3.6. It is

realized as silicon-on-insulator structure with an height of 338nm. The peculiarity is

that the holes of the �rst two rows have a radius r1 and r2, respectively, while all the

other holes have with radius r = 117nm. Fig. 3.7 shows ∼ 11nm bandwidth below

the silica-line with a nearly constant group velocity ∼ c/34 and relatively low and

positive group velocity dispersion with β2 on the order of 105 − 106ps2/km. Within
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Figure 3.6: Scanning electron micrograph of the perturbed photonic crystal waveg-

uide used in [33]. The radii r1, r2 have been decreased/increased compared to the

radius r of the bulk holes.

this bandwidth, the measured propagation loss is less than 20dB/mm and drops

below 5dB/mm for ∼ 2nm bandwidth.

3.4 Slow Light

In this section, we want to understand better the phenomenon of slow light, that

o�ers functionality to control the speed of light by structuring alone.

We can de�ne the slowdown factor as the ratio of the phase velocity over the

group velocity:

S =
vφ
vg
. (3.13)

If it is taken in account bandwidth and dispersion [34], the performance of slow

light devices scales as the refractive index contrast, so that an high refractive index

structure such as photonic crystals appears promising.

The nature of the delay in a photonic crystal waveguide is easily understood

by using the ray picture commonly used to describe light propagation in a dielectric

waveguide. Compared with total internal re�ection alone, however, photonic crystals

o�er two additional features that can lead to the formation of slow modes.

Backscattering Light is coherently backscattered at each unit cell of the crystal, so

the crystal acts as a one-dimensional grating (indicated by the vertical lines on

the left-hand side of Fig. 3.8. If the forward propagating and the backscattered
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Figure 3.7: Measured (black), 2D FDTD (blue) and 3D PWE (red) calculated group

index for the perturbed PhCWG of [33]. In green the measured propagation loss is

plotted.

Figure 3.8: Illustration of the two possible mechanisms for achieving slow light in

photonic crystal waveguides, namely coherent backscattering (left) and omni direc-

tional re�ection (right).

light agree in phase and amplitude (as they do at the Brillouin zone boundary

for k = π/a), a standing wave results, which can also be understood as a

slow mode with zero group velocity. If we move away from the Brillouin zone

boundary, we enter the slow light regime; the forward and backward traveling

components begin to move out of phase but still interact, resulting in a slowly

moving interference pattern: the slow mode. Further from the Brillouin zone

boundary, the forward and backward traveling waves are too much out of phase

to experience much interaction and the mode behaves like a regular waveguide

mode that is dominated by total internal re�ection. In Fig. 3.8, the slow

light regime is depicted by arrows pointing right and left, for the forward and
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backward traveling components, respectively. The forward arrows are longer,

because a slow forward movement is as three steps forward and two steps back.

This explanation suggests that the slow light e�ect is limited to the Brillouin

zone boundary. This is not true, however; the key point is that the optical

mode is close to a resonance with the structure. Other resonances may be

created, such as anticrossing points, where slow light e�ects also occur [28].

Therefore, by balancing multiple resonances carefully, one may induce a slow

light regime that spans a considerable fraction of the Brillouin zone.

Omni directional re�ection The other unique feature o�ered by the photonic

crystal environment is that there is no cut-o� angle; if a photonic bandgap is

present, light propagating at any angle is re�ected. Even light propagating at

or near normal incidence may therefore form a mode, as indicated by the steep

zigzag on the right of Fig. 3.8. In band structure terms, this corresponds to

propagation at or near the Γ point, i.e. k ≈ 0. It is obvious that such modes

have very small forward components, i.e. they travel as slow modes along the

waveguide, or for k = 0, form a standing wave.

These two e�ects also represent the two limiting cases for slow light propagation

in photonic crystal waveguides; the bandwidth is ultimately limited by the size of

the Brillouin zone. In order to achieve a group velocity of c/ng, with ng the group

index, the maximum bandwidth can then be determined as follows:

vg =
dω

dk
=

c

ng
⇒ ∆ν =

1

2π

c

ng

1

2

2π

a
=

c

2nga
(3.14)

As an example, for ng = 100 and a typical period of a = 400nm at 1.55µm wave-

length, the bandwidth will be ∆ν = 3.75THz. In practice, and subject to good design

and operation below the light line, it may be possible to achieve 20-30% of this band-

width, which corresponds approximately to 1THz. A value of ng = 100 corresponds

to a slowdown factor of S ≈ 50, given the typical phase index in a semiconductor

photonic crystal material of around 2. Recent papers have already shown structures

approaching this performance [28]. Please note that the above discussion holds for

symmetric structures, which indeed represent the majority of structures studied in

the literature; asymmetry may o�er additional design parameters, as shown in [35]

and [36].
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3.4.1 Slowdown factor and linear interactions

Any type of optical device, linear or nonlinear, operates on the basis of a relative

phase change, typically expressed as ∆kL. It is possible to rewrite this phase change

as ∆nk0L, with ∆n the refractive index change and k0 the wavevector in free space.

This refractive index change depends on two index: the material index nmat and the

e�ective modal index ne�.

Suppose to consider a given mode into a PhCWG. If the material index is changed

for some reasons, the mode moves accordingly, and the corresponding change in

frequency is proportional to the change in index, so ∆ω/ω ≈ ∆nmat/nmat. But if the

change is in the e�ective modal index, we have that ∆ne� = (c/ω)∆k. It is clear that

where the dispersion curve is �at, i.e. in the slow light regime, the ∆k and therefore

the ∆ne� is much larger than in the fast light regime where the dispersion curve is

steeper. So a slow mode experiences a larger change in e�ective index than a fast

mode, despite the fact that the change in material index ∆nmat is the same in both

the cases.

Since ∆k scales with the slope of the dispersion curve, it also scales with the

slowdown factor, which allows us to write the condition for switching as

∆kL = k0S∆nmatL, (3.15)

which now includes the slowdown factor. This highlights the fact that although the

slowdown factor is de�ned in terms of group velocity, the slow light regime o�ers

signi�cant bene�ts for devices operating on the basis of phase velocity or e�ective

index. A beautiful demonstration of this e�ect was recently provided by Vlasov in

[29], by demonstrating experimentally that a thermo-optically tuned Mach-Zehnder

modulator requires less energy when operating in the slow light regime than it does

when operating in the fast light regime.

3.4.2 Slowdown factor and intensity

If we assume a dispersion-free environment, i.e. one where the di�erent spectral

components of a pulse experience the same slowdown factor, a pulse will be spatially

compressed when entering the slow light regime. The front of the pulse, entering the

slow light regime �rst, will travel slower than the back of the pulse which therefore

catches up. The resulting pulse will occupy less space, i.e. it will be spatially com-

pressed without changing its properties in terms of time and spectrum. If we further
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assume that no energy is lost at the interface, the same amount of energy is concen-

trated in a smaller volume, so the intensity of the pulse increases. This e�ect can be

shown mathematically, using a Gaussian pulse as an example. The distribution of a

Gaussian pulse can be described by the following functional dependence:

I(x) = I0 exp(−Sx)2, (3.16)

where I0 is the peak intensity and S the slowdown factor, with x a spatial coordinate

normalized to the size of the pulse. The full width half maximum (FWHM) of such

a pulse scales inversely with S, which is the condition discussed above; a larger

slowdown factor results in a shorter pulse. Given that the total pulse energy does

not change, the integral over the pulse has to be a constant, which is achieved by

the following expression:∫ ∞
−∞

I0 exp(−Sx)2dx = I0

√
π

S
⇔

∫ ∞
−∞

I0
S√
π

exp(−Sx)2dx = I0. (3.17)

This shows that the peak intensity scales linearly with the slowdown factor and

inversely with the size of the pulse; as the pulse is spatially compressed, the peak

intensity increases by the same factor in order to satisfy energy conservation.

Overall, nonlinear interaction bene�ts twofold from the slowdown factor, namely

(a) via the enhanced phase change and (b) via the enhanced intensity, such that the

interaction in a Kerr-medium, for example, can be written as

nmode = n0 + n2I = n0 + S(n2IS). (3.18)

In general, the χ(3) nonlinearities scale with the square of the slowdown factor.

This favorable scaling law is unique to slow light devices based on dielectric structures

such as photonic crystals and ring resonators; while slow light based on material

resonances does not exhibit the same e�ect. Naturally, there are limitations. The

square scaling law assumes zero dispersion and no change of mode distribution.

If the dispersion is nonzero, pulses will broaden, with drastic consequences such

that the e�ect of dispersion may outweigh any bene�t of slow light compression [37].

It is therefore important to design waveguides with low second and higher order

dispersion. This has already been proposed by several authors [28] who adjusted the

dispersion curve of a W1-type waveguide, in particular the presence of an anticrossing

with the lattice modes, by adjusting its width and/or the diameter of the innermost

rows of holes. The second limitation arises from the assumption of unchanged mode
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Figure 3.9: Comparison of the shape of a guided mode in the fast and the slow

light regime, exempli�ed by the odd mode of the system. The odd mode was chosen

as it demonstrates the e�ect more dramatically than the fundamental mode. The

respective k values are indicated both in the mode pro�les and in the corresponding

band structure. As k approaches the Brillouin zone boundary, the mode slows down

and samples deeper into the photonic lattice.

shape. In photonic crystals, this assumption does not generally hold, as illustrated

in �gure 3.9. In the slow light regime, the mode samples more of the photonic lattice

and therefore assumes a di�erent shape. So even though the mode may compress in

propagation direction, the corresponding lateral spread dilutes some of the bene�t

one can expect. This leads to the conclusion that an enhancement proportional

to SP with 1 < P < 2 can be expected in reality, depending on how well the

above conditions on dispersion and mode shape are met. Nevertheless, even for a

modest slowdown factor of around 20, an overall enhancement of around 100 can

be expected for P = 1.5. So the size of a Kerr-type optical switch would drop

from centimeters to hundreds of micrometers, or the required switching power would

be reduced by two orders of magnitude. This is also equivalent to increasing the

nonlinear coe�cient (the n2 or the χ(3)) by two orders of magnitude, simply by

appropriately microstructuring the material.

3.5 Third Order Dispersion

It is possible to consider a PhCWG as a system with a well de�ned transfer

function:

H(ω) = exp(−(α(ω) + ıβ(ω))L) (3.19)

where α(ω) is the attenuation constant, β(ω) is the mode propagation constant, and

L is the length of the PhCWG. By neglecting attenuation, it is possible to rewrite
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Figure 3.10: Airy function

it as

H(ω) = e−ıβ(ω)L. (3.20)

As we already saw in Sec. 1.3, the propagation of light into a PhCWG is described

with Floquet-Bloch waves, and the dispersion relation is characterized by allowed and

prohibited bands (see Fig. 3.4).

The interval of frequencies that a pulse will excite depends on the width τp of the

pulse. If the pulse bandwidth is narrow enough, we can consider just the portion of

the dispersion relation relative to the waveguide modes, located in the PBG region.

They are denoted even and odd by their in-plane symmetry with respect to the

waveguide. Focusing only on the even mode, we can write the relative Bloch mode

as

Ẽ(z, ω) = Ẽ0(ω) exp(−ik0(ω)z) (3.21)

where Ẽ0(ω) and k0(ω) are the amplitude of the electric �eld and the wavevector of

the Bloch wave, respectively. In this equation, we focus our attention only on the z

direction.

We can approximate k0(ω) with a Taylor expansion around the central frequency

of the pulse ω0

k0(ω) =
∞∑
i=0

βi
i!

(ω − ω0)i (3.22)

where the coe�cients βi =
dik

dωi

∣∣∣∣
ω=ω0

.
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Figure 3.11: Real part of pulses modi�ed by di�erent order of dispersion. In red

(continuous line) the initial pulse E0; in black (dotted line) the pulse modi�ed by a

second order dispersion β2 = 1 · 10−20s2/m; in cyan (broken line) the pulse modi�ed

also by a TOD β3 = 1 · 10−33s3/m, and in cyan (broken dotted line) the pulse modi�ed

by the TOD, but supposing β2 = 0.

The evolution of the propagating electric �eld can be obtained from the inverse

Fourier transform of Eq. 3.21

E(z, t) = F−1
{
Ẽ(z, ω)

}
. (3.23)

If we consider a Gaussian pulse1 with intensity width τp centered at frequency ω0

and at time t = t0

E0(t) = E0 exp

(
−(t− t0)2

τ 2
p

+ ıω0t

)
, (3.25)

and the Taylor expansion of the dispersion stopped at the third order, we obtain

E(z, t) =
E0√
π
eı(ω0t−β0z)

∫ ∞
−∞

exp

(
iB1ω − (1 + iB2)ω2 − ıB3

3
ω3

)
dω, (3.26)

where B1, B2, and B3 are de�ned by

B1 = 2(t− β1z)/τp (3.27)

1In the frequency domain, the pulse becomes

Ẽ0(ω) =
E0τp√

2
exp

(
−
τ2
p

4
(ω − ω0)2 + ıωt0

)
. (3.24)
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Figure 3.12: Real part of pulses modi�ed by low values of TOD factor with β2 = 0.

B2 = 2β2z/τ
2
p (3.28)

B3 = 4β3z/τ
3
p . (3.29)

If B3 = 0, it is possible to rewrite the pulse in a simpler way:

E(z, t) =
E0√

1 + iB2

eı(ω0t−β0z) exp

[
− B2

1

4(1 + iB2)

]
=

τpE0√
τ 2
p − 2izβ2

eı(ω0t−β0z) exp

[
− (t− β1z)2

τ 2
p − 2izβ2

] (3.30)

If B3 6= 0, by changing the variable ω = B
−1/3
3 u + (ı − B2)/B3, and using some

properties of complex integration we can express E(z, t) as:

E(z, t) =
2E0

√
π

|B3|1/3
eı(ω0t−β0z)

× exp

(
2− 3B1B3 − 6B2

2

3B2
3

+ iB2
6− 3B1B3 − 2B2

2

3B2
3

)
× Ai[(1−B1B3 −B2

2 + 2iB2)B
−4/3
3 ],

(3.31)

where Ai( · ) is the Airy function (see Fig. 3.10). When the total second order
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dispersion vanishes, i.e. B2 = 0, we have

E(z, t) =
2E0

√
π

|B3|1/3
eı(ω0t−β0z)

× exp

(
2− 3B1B3

3B2
3

)
× Ai[(1−B1B3)B

−4/3
3 ].

(3.32)

In Fig. 3.11 and 3.12, pulses with di�erent values of B2 and B3 are shown.

Eq. 3.31 shows that the pulse shape for β
′′′

(ω0) < 0 is the same for β
′′′

(ω0) > 0

with time reversed at the time t = β
′
(ω0)z. From now on, we'll consider just the

case with β
′′′

(ω0) > 0.

3.5.1 E�ects of Third-Order Dispersion

Figures 3.12 shows the pulse shape for limited values of B3, when SOD vanishes,

calculated using the Eq. 3.32. We can see that the pulse is approximately Gaussian

with a shift of the peak in the positive B1-direction when B3 is positive and vice

versa. This means that the group velocity of the pulse change due to the TOD term.

The group velocity of the pulse is obtained by the condition ∂|E(z, t)|∂t = 0, that

can be written as:

− 1

B3

Ai
[
(1−B1B3 −B2

2 + 2iB2)B
−4/3
3

]
+

∂

∂B1

Ai
[
(1−B1B3 −B2

2 + 2iB2)B
−4/3
3

]
= 0.

(3.33)

Substituting x = (1−B1B3 −B2
2 + 2iB2)B

−4/3
3 , we get:

Ai(x) +B
2/3
3

∂

∂x
Ai(x) = 0, (3.34)

and resolving it numerically, it holds

v−1
g = v−1

g0 + f(B2, B3), (3.35)

where vg0 = 1/β1 = 1/β
′
(ω0) is the group velocity of the pulse when TOD does not

exist and f(B2, B3) is a function of B2 and B3, that the describes the changes of

group velocity. The Fig. 3.13 shows this change, and in the inset of the same �gure,

it is possible to observe that for B3 ≤ 0.3, the function f(B2, B3) shows a linear

trend. Using this hypothesis, Eq. 3.35 becomes:

v−1
g = v−1

g0 +
τp
4z

1−B2
2

1 +B2
2

B3. (3.36)
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Figure 3.13: Change in group velocity in function of B3. In the inset, it is shown the

linear behavior of the group velocity for small values of B3.

By considering the center of the pulse2 and by supposing that it is not very

sensitive to B2, we can model the position of the center of the pulse with the following

equation:

µ = µ0 + τp B3/8, (3.38)

where µ0 = β1z is the center of the pulse in a non-dispersive medium (β2 = 0).

In a similar manner, we consider the width of the pulse3 and we �nd, as shown

in Fig. 3.14, that for little values of B3, the width is constant to the value set by B2,

while when B3 grows up, the pulse width grows almost proportionally to B3.

2We de�ne the pulse center µ as follows:

µ =

∫∞
−∞ t · I(t)dt∫∞
−∞ I(t)dt

, (3.37)

where I(t) is the intensity of the pulse I(t) = |E(t)|2.
3We de�ne the pulse center W as follows:

W =

[
8 ln 2

∫∞
−∞(t− µ)2 · I(t)dt∫∞

−∞ I(t)dt

]1/2

, (3.39)

where I(t) is the intensity of the pulse I(t) = |E(t)|2.
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Figure 3.14: Width of the pulse calculated for di�erent values of B2.

3.6 Four-wave mixing equations in photonic crystal

waveguide

All the waveguides considered till now are passive ones, because they are based

just on the linear behavior of photonic crystal. To develop application involving a

time variable control on the �ow of light, it is necessary consider non-linear e�ects.

In particular, we consider cubic non-linearity due to third order susceptibility so that

we can derivate the Four-wave mixing equations for a photonic crystal waveguide.

Let us start from the Maxwell's equations in the time domain

∇× E(r, t) =− µ ∂
∂t

H(r, t)

∇×H(r, t) = ε(r)
∂

∂t
E(r, t),

(3.40)

where the permittivity is a spatially varying function, as usual in a photonic crystal

waveguide.

Let us suppose that four frequencies, satisfying the condition ω1 + ω2 = ω3 + ω4

are propagating in the same fundamental mode of the photonic crystal, i.e.:

E(r, t) =
4∑

k=1

Ek(r, t) =
4∑

k=1

Ake(r, ωk)e
ı(βkz−ωkt) + c.c.

H(r, t) =
4∑

k=1

Hk(r, t) =
4∑

k=1

Akh(r, ωk)e
ı(βkz−ωkt) + c.c.,

(3.41)
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where βk = β(ωk) are the mode propagation constants, Ak and e(r, ωk), h(r, ωk) are

the complex amplitudes and the electric and magnetic Bloch modes at ωk = 1, 2, 3, 4,

respectively.

For each frequency, Maxwell's equations yield

∇×
[
e(r, ωk)e

ıβkz
]

= ıµωkh(r, ωk)e
ıβkz

∇×
[
h(r, ωk)e

ıβkz
]

= − ıε(r)ωke(r, ωk)e
ıβkz,

(3.42)

that are exactly the equations that de�ne the Bloch modes of the waveguide.

Let us now consider a nonlinear perturbation of the Maxwell's equations:

∇× E(r, t) = − µ ∂
∂t

H(r, t)

∇×H(r, t) = ε(r)
∂

∂t
E(r, t) +

∂

∂t
PNL(r, t),

(3.43)

The nonlinear polarization due to the third order susceptibility can be described

by a third order tensor which shows a tensor character also in an isotropic material

(e.g. semiconductors). In this case, it reads as:

PNL = A (E ·E∗)E +
1

2
B (E ·E)E∗ (3.44)

with the de�nition: E(t) = 1
2
E(ω) exp(i ω t) + c.c.

The coe�cients A and B depend on the dominant nonlinear process. If the

non-resonant electronic contribution is dominant, then: B = A = 1
2
χ(3) [38].

When the nonlinearity is small, the (linear) mode structure (eqs. 3.42) is not

altered and the only modi�cation is that the complex amplitudes become slowly

varying in the z direction: Ak = Ak(z). Note that Ak is slowly varying with respect

to both eıβkz and the Bloch mode within the cell: e(r, ωk),h(r, ωk).

Among all terms generated by the cubic nonlinearity we retain here only those

accounting for self- and cross-phase modulation (SPM, XPM), that are always self-

phase matched e�ects, and those accounting for non degenerate four wave mixing

(FWM). The latter are considered in the hypothesis, to be later veri�ed, that they

are phase-matched. Phase-matching the non-degenerate FWM typically prevents

other nonlinear e�ects (e.g. third harmonic generation, other sum and di�erence

frequency generation) to occur.

Then, the nonlinear polarization consists of four terms only, each one oscillating
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at one of the selected frequencies ωk, k = 1, 2, 3, 4:

PNL
1 =

3

4
ε0χ

(3)(r)

[
(|E1|2 + 2

∑
l=2,3,4

|Ei|2)E1 + 2E3E4E
∗
2

]

PNL
2 =

3

4
ε0χ

(3)(r)

[
(|E2|2 + 2

∑
l=1,3,4

|Ei|2)E2 + 2E3E4E
∗
1

]

PNL
3 =

3

4
ε0χ

(3)(r)

[
(|E3|2 + 2

∑
l=1,2,4

|Ei|2)E3 + 2E1E2E
∗
4

]

PNL
4 =

3

4
ε0χ

(3)(r)

[
(|E4|2 + 2

∑
l=1,2,3

|Ei|2)E4 + 2E1E2E
∗
3

]
(3.45)

For simplicity let us consider eqs. (3.43) at one frequency only (ω4); the equations

for the other three frequencies can be obtained following the same guideline. Let

substitute the last of eqs. (3.45) into eqs. (3.43) also using eqs. (3.41):

∇×
[
A4e4e

ıβ4z
]

= ıµω4A4hie
ıβ4z

∇×
[
A4h4e

ıβ4z
]

= − ıε(r)ω4A4e4e
ıβ4z − ıω4

3

4
ε0χ

(3)(r)[(
|A4|2|e4|2 + 2

3∑
l=1

|Al|2|el|2
)
A4e4e

ıβ4z

+ 2A1A2A
∗
3e1e2e

∗
3e
ı(β1+β2−β3)z

]
,

(3.46)

where the following notation is also used for the sake of simplicity: e(r, ωk) =

ek,h(r, ωk) = hk, for k = 1, 2, 3, 4.

Calculating the curls explicitly and subtracting eqs. 3.42 from eqs. 3.46 yields:

∇A4 ×
[
e4e

ıβ4z
]

= 0

∇A4 ×
[
h4e

ıβ4z
]

= − ıω4
3

4
ε0χ

(3)(r)[(
|A4|2|e4|2 + 2

3∑
l=1

|Al|2|el|2
)
A4e4e

ıβ4z

+ 2A1A2A
∗
3e1e2e

∗
3e
ı(β1+β2−β3)z

]
.

(3.47)

Note that the latter equations are approximated, in the sense that the mode structure

was supposed to be not a�ected by the non linearity.
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From eqs. (3.47) the following can be derived:

∇A4 ×
[
e4e

ıβ4z
]
·h∗4e−ıβ4z = 0

∇A4 ×
[
h4e

ıβ4z
]
· e∗4e−ıβ4z = − ıω4

3

4
ε0χ

(3)(r)[(
|A4|2|e4|2 + 2

3∑
l=1

|Al|2|el|2
)
A4|e4|2

+ 2A1A2A
∗
3e1e2e

∗
3e
∗
4e
ı(β1+β2−β3−β4)z

]
.

(3.48)

By exploiting the cyclic permutation property of vector and scalar products and

by setting ∇A4 = ∂A4/∂z ẑ, one gets

∂A4

∂z
ẑ · (e4 × h∗4) = 0

∂A4

∂z
ẑ · (h4 × e∗4) = − ıω4

3

4
ε0χ

(3)(r)[(
|A4|2|e4|2 + 2

3∑
l=1

|Al|2|el|2
)
A4|e4|2

+ 2A1A2A
∗
3e1e2e

∗
3e
∗
4e
−ı∆βz] ,

(3.49)

where ∆β = β3 + β4 − β1 − β2 is the linear phase mismatch.

If the second of eqs. (3.49) is subtracted from the �rst and upon integration over

the volume V of the elementary cell of the photonic crystal waveguide, the following

relation is found

∂A4

∂z

∫
V

(e4 × h∗4 + e∗4 × h4) · ẑ dV '

' ıω4
3

4
ε0

∫
V

χ(3)(r)

[(
|A4|2|e4|2 + 2

3∑
l=1

|Al|2|el|2
)
A4|e4|2

+ 2A1A2A
∗
3e1e2e

∗
3e
∗
4e
−ı∆βz] dV

(3.50)

where ∂A4/∂z is considered a constant in the cell volume.

Yeh demonstrated in [39] that in photonic crystal waveguides the group and mean

energy velocity are equal:

vgk =∇βω(β) = vek =
1

4V

∫
V

(ek × h∗k + e∗k × hk) dV
1

4V

∫
V

(ε0εr(r)|ek|2 + µ0|hk|2) dV
. (3.51)

By projecting this relation along the z direction, we get (for k = 1, 2, 3, 4)

vgk · ẑ =∇βω(β) · ẑ = vek · ẑ =

∫
V

(ek × h∗k + e∗k × hk) · ẑ dV∫
V

(ε0εr(r)|ek|2 + µ0|hk|2) dV
. (3.52)
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Moreover, it is known (e.g. [40]) that the time-space average electric and magnetic

energies are equal for a Bloch mode:

Emagn =
1

4
µ0

∫
V

h ·h∗ =
1

4

∫
V

e ·d∗ = Eelec. (3.53)

The integral
∫
V

(ek × h∗k + e∗k × hk) · ẑ dV that appears in eq. (3.50) is a nor-

malization factor whose physical dimension is a length (m) as soon as the complex

amplitudes Ak are such that |Ak|2 = Pk is the mean active power transported in the

z direction within the cell.

Let us set: ∫
V

(ek × h∗k + e∗k × hk) · ẑ dV = 2a fk, (3.54)

It can be shown that the dimensionless factors fk are all equal to 2. In fact, let us

multiply eq. 3.54 on both sides by |Ak|2/(2V ):

2

V

∫
V

Re[Pk] · ẑ dV =
1

S
fk |Ak|2 (3.55)

where Pk = ek×h∗k/2 is the Poynting vector (power density) of the wave at frequency

ωk and S = V/a is the cell cross-section. The LHS is twice the mean active power

density �ux in the z direction contained in the cell and so

2S〈Re[Pk] · ẑ〉 = 2Pk = fk |Ak|2 (3.56)

which yields fk = 2, also in agreement with [41].

From eqs. (3.52), (3.53) and (3.54) the group velocity can be written as:

vgk =

∫
V

(ek × h∗k + e∗k × hk) · ẑ dV
2
∫
V
ε0εr(r)|ek|2 dV

=
2a∫

V
ε0εr(r)|ek|2 dV

=
2a

Wk

(3.57)
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Substituting eqs. 3.54 in eqs. 3.50 we get:

4a
∂A4

∂z
' ıω4

3

4
ε0

∫
V

χ(3)(r)

(
|A4|2|e4|2 + 2

3∑
l=1

|Al|2|el|2
)
A4|e4|2dV

+ ıω4
3

2
ε0

∫
V

χ(3)(r)A1A2A
∗
3e1e2e

∗
3e
∗
4e
−ı∆βzdV

' ıω4
3

4
ε0

[
A4

(
4a2|A4|2

∫
V
χ(3)(r)|e4|4 dV

v2
g4W

2
4

+ 2
3∑
l=1

4a2|Al|2
∫
V
χ(3)(r)|e4|2|el|2 dV

(vg4W4)(vglWl)

)

+ 2

√
(2a)4

(vg1W1)(vg2W2)(vg3W3)(vg4W4)(∫
V

χ(3)(r)e1e2e
∗
3e
∗
4 dV

)
A1A2A

∗
3e
−ı∆βz

]
.

(3.58)

The �rst two terms account for SPM and XPM and the third one for the FWM.

Note that in the �rst step the hypothesis that Ak are slowly varying (constant) in the

cell is used; regarding the mismatch term, e−ı∆βz, we are looking for nearly phase-

matched interactions and so it can be also considered as slowly varying (constant)

in the cell. Finally:

∂A4

∂z
' ı

3aω4ε0

4v2
g4W

2
4

(∫
V

χ(3)(r)|e4|4 dV
)
|A4|2A4

+ ı

3∑
l=1

3aω4ε0

2v2
g,4lW

2
4l

(∫
V

χ(3)(r)|e4|2|el|2 dV
)
|Al|2A4

+ ı
3aω4ε0

2v2
g,1234W

2
1234

(∫
V

χ(3)(r)e1e2e
∗
3e
∗
4 dV

)
A1A2A

∗
3e
−ı∆βz,

(3.59)

where we de�ned

v2
g,ijkl =

√
vg,ivg,jvg,kvg,l, (3.60)

v2
g,ij = vg,ivg,j, (3.61)

W 2
ijkl =

√
WiWjWkWl, (3.62)

W 2
ij = WiWj. (3.63)
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We are searching for FWM equations in a �standard� form [42]:

∂A4

dz
= ı

n2ω4

c

a

VSPM,4

|A4|2A4

+ 2
3∑
l=1

ı
n2ω4

c

a

VXPM,4l

|Al|2A4

+ 2ı
n2ω4

c

a

VFWM,4

A1A2A
∗
3e
−ı∆βz,

(3.64)

where the e�ective volumes are introduced in replacement of an e�ective area, that

is meaningless in a photonic crystal, where the cross section is not constant.

By comparing the last equation with eq. 3.59, we get:

n2

cVSPM,4

=
3

4

ε0

v2
g4W

2
4

∫
V
χ(3)(r)|e4|4 dV (3.65)

n2

cVXPM,4l

=
3

4

ε0

v2
g,4lW

2
4l

∫
V
χ(3)(r)|e4|2|el|2 dV (3.66)

n2

cVFWM,4

=
3

4

ε0

v2
g,1234W

2
1234

∫
V
χ(3)(r)e1e2e

∗
3e
∗
4 dV (3.67)

and recalling that [38]

n2

[
m2

W

]
=

3

4 εr ε0 c
χ(3), (3.68)

where χ(3) and εr are the values of the bulk, we �nally obtain the de�nition of the

e�ective volumes:

1

VSPM,4

=
c2

v2
g4

∫
V
εr

χ(3)(r)

χ(3) |e4|4 dV(∫
V
εr(r)|e4|2 dV

)2 (3.69)

1

VXPM,4l

=
c2

v2
g,4l

∫
V
εr

χ(3)(r)

χ(3) |e4|2|el|2 dV(∫
V
εr(r)|e4|2 dV

) (∫
V
εr(r)|el|2 dV

) (3.70)

1

VFWM,4

=
c2

v2
g,1234

∫
V
εr

χ(3)(r)

χ(3) e1e2e
∗
3e
∗
4 dV∏4

l=1

(∫
V
εr(r)|el|2 dV

)1/2
. (3.71)

In a similar manner, the coe�cients for all the other waves can be found as well.

We de�ne

γi =
n2ωia

cVSPM,i

, (3.72)

γil =
n2ωia

cVXPM,il

, (3.73)
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γFi =
n2ωia

cVFWM,i

, (3.74)

Pi = |Ai(0)|2, (3.75)

where i, l = 1, 2, 3, 4.

With these coe�cients, the general system of equations describing the four wave

mixing is:

∂A1

dz
=i

[
(γ1|A1|2 + 2

∑
k=2,3,4

γ1k|Ak|2)A1 + 2γF1A
∗
2A3A4e

i∆βz

]
∂A2

dz
=i

[
(γ2|A2|2 + 2

∑
k=1,3,4

γ2k|Ak|2)A2 + 2γF2A
∗
1A3A4e

i∆βz

]
∂A3

dz
=i

[
(γ3|A3|2 + 2

∑
k=1,2,4

γ3k|Ak|2)A3 + 2γF3A
∗
4A1A2e

−i∆βz

]
∂A4

dz
=i

[
(γ4|A4|2 + 2

∑
k=1,2,3

γ4k|Ak|2)A4 + 2γF4A
∗
3A1A2e

−i∆βz

]
(3.76)

This general system has [42] approximate solutions by �rst considering the evo-

lution of the pump �elds (A1, A2) assuming the transfer of energy to A3 and A4 is

negligible (undepleted pump approximation). The equations that govern the �eld

amplitudes in this case are

dA1

dz
=i(γ1P1 + 2γ12P2)A1,

dA2

dz
=i(γ2P2 + 2γ21P1)A2.

(3.77)

whose solutions are

A1(z) =
√
P1 exp[i(γ1P1 + 2γ12P2)z],

A2(z) =
√
P2 exp[i(γ2P2 + 2γ21P1)z],

(3.78)

Then Eqs. 3.76 give

dA3

dz
=ı2(γ31P1 + γ32P2)A3 + ı2γF3

√
P1P2A

∗
4e
−iΘz

dA∗4
dz

=− ı2(γ41P1 + γ42P2)A∗4 − ı2γ∗F4

√
P1P2A

∗
3e
iΘz,

(3.79)

where Θ = ∆β − (γ1 + 2γ21)P1 − (γ2 + 2γ12)P2.
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To solve these equations, we introduce

Bj = Aj exp[−2ı(γj1P1 + γj2P2)z], j = 3, 4 (3.80)

and we obtain

dB3

dz
=2ıγF3

√
P1P2e

−iηzB∗4

dB∗4
dz

=− 2ıγ∗F4

√
P1P2e

iηzB3

(3.81)

where

η = ∆β − (γ1 + 2γ21 − 2γ31 − 2γ41)P1+

− (γ2 + 2γ12 − 2γ32 − 2γ42)P2.
(3.82)

We can transform the system 3.81 in the following two second-order di�erential

homogeneous equations

d2B3

dz2
+ ıη

dB3

dz
− 4γF3γ

∗
F4P1P2B3 = 0 (3.83)

d2B∗4
dz2

− ıηdB
∗
4

dz
− 4γ∗F3γF4P1P2B

∗
4 = 0. (3.84)

Their general solution is in the form

B3(z) = (a4e
gz + b4e

−gz) exp(−ıηz/2) (3.85)

B∗4(z) = (a4e
gz + b4e

−gz) exp(ıηz/2) (3.86)

where aj, bj, j = 3, 4, depend from initial conditions, and

g =
√

4γF3γ∗F4P1P2 − (η/2)2. (3.87)

If we consider the degenerate case with one pump (ω1 = ω2, A1 = A2 and

consequently γ1 = γ2 = γ12 = γ21 = γp, and P1 = P2 = P/2), we �nd

η = ∆k − (3γp − 2γ3p − 2γ4p)P, (3.88)

g =
√
γF3γ∗F4P

2 − (η/2)2, (3.89)

G = 1 +
γF3γ

∗
F4

g2
P 2 sinh2(gL), (3.90)

where G is the ampli�cation factor and L the length of the waveguide.
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Chapter 4
Fabrication Process and Disorder

One of the most interesting similarities between real crystals and photonic ones

is the presence of disorder. We can de�ne disorder as anything breaking symmetry

properties of the lattice.

It can take many forms, but we usually can divide it into two group. The �rst

one is represented by any defect we deliberately introduce in the lattice and allow

the realization of photonic crystal based devices as waveguides, �lters, etc; it is also

called intrinsic disorder. Instead, the second group contains the defects due to noise

in the lattice and unit cell parameters introduced by the fabrication process and it

cause di�raction losses in the propagating �elds destroying the photonic con�nement

ability of the device; it is called extrinsic disorder. We will focus on this second type

of disorder, but before to study it in detail, it is important to have a clear prospect

about the fabrication process of a 2D photonic crystal device.

4.1 Fabrication of 2D Photonic Crystal Devices

Despite their geometry simplicity, the fabrication of a two dimensional photonic

crystal device is quite complicate and requires several full featured facilities.

The �nal application of the desired device determine the necessary starting ma-

terial; for example, Gallium Arsenide based substrates are most common for light

emitting devices, while Silicon is commonly used for waveguiding purposes. After

the decision about the material, the subsequent step is to purchase the substrate

wafer from a specialized company.

The core process of the device fabrication is lithography, from the Greek λιθoς,
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lithos, that means stone plus γραφω, graph, that means to write. It is the process of

transferring designed device patterns to the wafer, by selectively removing parts of

the bulk of the substrate.

A single iteration of lithography combines several steps in sequence (see Fig.4.1).

Cleaning and Preparation The wafer is initially heated to the temperature ade-

guate to drive o� any moisture that may be present on the surface. If other

contaminations are present on the wafer surface, they are removed by wet

chemical treatment.

Resist application The wafer is covered with a sensitive material, called photore-

sist, or simply resist, by spin coating. In some cases, a liquid or gaseous adhe-

sion promoter is applied to promote adhesion of the resist to the wafer. Then,

a viscous, liquid solution of resist is dispensed onto the wafer, and the wafer

is spun rapidly (between 1200 and 4800 rpm) for 30 to 60 seconds to produce

a layer of resist with a thickness between 0.5 and 2.5µm and a uniformity of

within 5 to 10 nm. The resist-coated wafer is then prebaked to drive o� excess,

typically at 90 to 100 ◦C for 30 to 60 seconds on a hotplate.

Exposure and developing After prebaking, the resist is exposed to a pattern of

intense light or an electron beam. This di�erence divide lithography into two

great families: serial lithography, where the pattern, drawn with the help of a

computer aided design (CAD) software, is directly plotted on the resist, and

parallel lithography, where the geometrical pattern is on masks that shadow the

incoming radiation and is transferred on the resist in one single shot. The most

known example of the �rst group is the Electron Beam Lithography (EBL),

consisting in exposing the resist layer through an electron beam which position

is controlled by a computer, while photolithography is the most common of

the second family and it is widely used in semiconductor industry. Two type

of resist exist. Positive one is the most common type and becomes soluble in

the basic developer when exposed; negative resist becomes insoluble in the (or-

ganic) developer. This chemical change allows some of the resist to be removed

by a special solution, called developer by analogy with photographic developer.

A post-exposure bake is performed before developing, typically to help reduce

standing wave phenomena caused by the destructive and constructive interfer-

ence patterns of the incident light. The develop chemistry is delivered on a

spinner, much like resist. The resulting wafer is then hard-baked typically at
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Figure 4.1: Diagram of a parallel lithography process.

120 to 180 ◦C for 20 to 30 minutes. The hard bake solidi�es the remaining

resist, to make a more durable protecting layer for the future steps.

Etching In etching, a liquid (wet) or plasma (dry) chemical agent removes the

uppermost layer of the substrate in the areas that are not protected by resist.

In semiconductor fabrication, dry etching techniques are generally used, as

they can be made anisotropic, in order to avoid signi�cant undercutting of the

resist pattern. This is essential when the width of the features to be de�ned

is similar to or less than the thickness of the material being etched (i.e. when

the aspect ratio approaches unity). Wet etch processes are generally isotropic

in nature, which is often indispensable for MEMS, where suspended structures

must be released from the underlying layer.

Ashing After resist is no longer needed, it must be removed from the substrate.

This usually requires a liquid resist stripper, which chemically alters the resist

so that it no longer adheres to the substrate. Alternatively, resist may be

removed by a plasma containing oxygen, which oxidizes it.

Since the typical size of the features of 2D photonic crystal is of the order of 100

nm, the required accuracy is about 10 nm or less, and the lithographic resolution
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Figure 4.2: (a) Straight photonic crystal waveguide de�ned on a membrane. (b)

Same object de�ned on a low-index cladding. (c) Same object de�ned in a buried

con�guration, the multilayer structure corresponding, for instance, to a standard

laser diode. The vertical mode pro�le is sketched[4].

has to be more or less of the same order, optical lithography results inadequate,

so that the most adequate method for the de�nition of photonic crystal patterns

in semiconductor substrates is the electron-beam (e-beam) lithography: a focused

electron beam, with a typical spot size below 10 nm, scans all the parts of the resist

which are to be dissolved. The possibility of using deep-ultraviolet (DUV) lithogra-

phy with the projection of a mask at a high resolution has also been demonstrated

recently [43]. This method should be preferred for mass production as its throughput

is an order of magnitude higher than with serial e-beam lithography. Further, this

method is undoubtedly in a position of bene�ting from the current advances in the

miniaturization of silicon microelectronics, where the size of the grids for transistor

gates is expected to fall well below 40 nm within the next few years. The X-Ray

Lithography is also a suitable tool for its good throughput and resolution, but needs

an intermediated mask to be duplicate on the �nal substrate using EBL. Finally,

the possibility of using laser holography has also been considered, above all for 3D

photonic crystals. This technique allows only the fabrication of uniform crystals, and

does not seem to be well-suited to the realization of periodicity defects in photonic
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crystals, which is essential for the implementation of genuine optoelectronic devices.

After having correctly de�ned the mask and the corresponding set of etching

steps, the three main possible implementations are represented in Fig. 4.2. A straight

photonic crystal waveguide has been chosen here as a visual example. It consists of

a line of missing holes along a direction of the photonic crystal.

The membrane (Fig. 4.2a) is apparently the simplest case, but its fabrication

process is quite complex from a technological point of view, because the presence of a

sacri�cial layer under the waveguide that has to be removed by chemical etching. The

case of a low index substrate is generally the simplest in terms of etching (Fig. 4.2b).

The case of a buried waveguide (Fig. 4.2c) is of great interest as regards technological

integration, but its implementation imposes very demanding requirements in terms

of deep etching.

4.2 Disorder in 2D photonic crystal waveguide

The extrinsic disorder collects all the random fabrication variations and repre-

sent one of the most critical hurdles facing the development of PhC and PhC-based

devices. In this work, we will focus on arbitrary PhC waveguides and we will use the

formalism introduced by Sakoda [4] and Hughes [44], that yields explicit formulae

for both the backscattered and total transmission loss due to disorder imperfections.

Because the fabrication process, the real structure di�ers from the ideal one. As

PC materials can be described entirely by their permittivity1 ε(r), we can introduce

the disorder function as the di�erence between the real and the ideal permittivity

∆ε(r) ≡ ε(r)− εi(r). (4.1)

We consider, moreover, that the ideal structure is periodic along the defect direc-

tion; we assume this direction as the x direction and the waveguides periodic along

it with period a

εi(r) = εi(r +max̂), (4.2)

where x̂ is the unit vector in the x direction, and m is an integer. Furthermore, we

indicate with L the length of the waveguides and V the volume of the unit cell; it is

bounded in the x direction by the period a and unbounded in the y and z directions.

The idea is to calculate the unperturbed �eld, solution of Maxwell equations for

the ideal structure, and then apply the Marcuse perturbation equations.

1We consider that permettivity is frequency independent: ε(r, ω) ≡ ε(r)



74 Fabrication Process and Disorder

By considering the Maxwell's equations in the frequency domain

∇ · ε(r)E(r, ω) = 0 (4.3a)

∇ ·B(r, ω) = 0 (4.3b)

∇× E(r, ω) = −ıωµ0H(r, ω) (4.3c)

∇×H(r, ω) = +ıωε0ε(r)E(r, ω). (4.3d)

we obtain the wave equation for the electric �eld

∇×∇× E(r, ω) =
ω2

c2
ε(r)E(r, ω), (4.4)

that can be written as

∇×∇× E(r, ω)− ω2

c2
εi(r)E(r, ω) =

ω2

c2
∆P(r, ω), (4.5)

with ∆P(r, ω) ≡ ∆ε(r)E(r, ω).

By introducing the operator2 Θ̂ = ∇×∇×, we obtain(
−ω

2

c2
εi(r) + Θ̂

)
E(r, ω) =

ω2

c2
∆P(r, ω). (4.6)

The solution of (4.4) is obtained from the implicit Lippmann-Schwinger equation

E(r, ω) = E0(r, ω) +

∫
D

←→
G (r, r′, ω) ·∆P(r′, ω)dr′ (4.7)

where the �rst term E0(r, ω) is referred to as the incident �eld, while the second one

is the scattered �eld obtained from the integration over the domain D, that is the

part of the volume V , where ∆P is non-zero.

To solve the Lippmann-Schwinger equation, we need to know the analytical so-

lution E0(r, ω) of the homogeneous equation

∇×∇× E0(r, ω)− ω2

c2
εi(r)E0(r, ω) = 0, (4.8)

and the associated Green dyadic de�ned by

∇×∇×
←→
G (r, r′, ω)− ω2

c2
εi(r)
←→
G (r, r′, ω) =

ω2

c2
δ(r− r′)

←→
I . (4.9)

2This operator is di�erent from the one de�ned in Eq. 1.11.
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It is di�cult to �nd the analytic form of (4.7) since E appears within the inte-

gration. Then, we suppose to work in condition of weak scattering, so that we can

consider the Born expansion

E(r, ω) = E0(r, ω)

+

∫
D

←→
G (r, r′, ω) ·∆ε(r′)E0(r′, ω)dr′

+

∫
D

∫
D

←→
G (r, r′, ω) ·

←→
G (r′, r′′, ω) ·∆ε(r′)∆ε(r′′)E0(r′′, ω)dr′′dr′

+ . . . .

(4.10)

We truncated the expansion after the �rst three terms because the volume D is

very small and the contribution of terms with order higher than (∆ε(r))2 is negligible.

4.2.1 Solution of the homogeneous equation

The propagating mode solutions are obtained from the eq. (4.8), which here we

rewrite by using the Θ̂ operator

1

εi(r)
Θ̂E0(r, ω) =

ω2

c2
E0(r, ω). (4.11)

The operator Θ̂ is a Hermitian operator3. Therefore, its eigenfunctions form an

orthogonal complete set. These eigenfunctions are classi�ed into transverse-wave

solutions ET
k (r) and longitudinal-wave solutions EL

k(r).

3The inner product of two periodic complex functions F1(r) e F2(r) is de�ned by

< F1(r),F2(r) >=
∫

V

F1
∗(r) ·F2(r)dr, (4.12)

where V is the volume on which the periodic boundary condition is imposed. Applying these

de�nitions to our case, we obtain

< Θ̂F1(r),F2(r) >=
∫

V

[∇× {∇× F1
∗(r)}] ·F2(r)dr. (4.13)

Using the following vector identity

∇ · (A×B) = (∇×A) ·B−A · (∇×B) (4.14)

the (4.13) becomes

< Θ̂F1(r),F2(r) >=
∫

S

[{∇ × F1
∗(r)} × F2(r)]dS

+
∫

V

{∇ × F1
∗(r)} · {∇ × F2(r)}dr

(4.15)
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The equations that characterize these solutions are

∇ · εi(r)ET
k (r) = 0, (4.17)

and

∇× EL
k(r) = 0. (4.18)

Note that ET
k (r) and EL

k(r) are not purely transverse nor longitudinal, because of

the spatial variation of εi(r), the terms are adopted because of when εi(r) is a con-

stant the equations become the usual relations de�ning transverse and longitudinal

waves, respectively.

For each transverse solution, we can write the associated equation

1

εi(r)
∇×∇× ET

k (r) =
ω2

k

c2
ET

k (r), (4.19)

where k and ωk are respectively the wavevector and the eigenvalue corresponding to

the eigenfunction Ek(r), while the eigenvalue of the longitudinal mode is zero.

Now, we normalize these wave functions as follows∫
V

εi(r)(Eα
k(r))∗ ·Eβ

k′(r)dr = δkk′δαβ, (4.20)

with α, β = T or L.

The completeness of the eigenfunctions [4] leads to

|εi(r)|
∑
k

[
ET

k (r)⊗ (ET
k (r′))∗ + EL

k(r)⊗ (EL
k(r′))∗

]
= δ(r− r′)

←→
I , (4.21)

where
←→
I is the unitary tensor, and we use |εi(r)| because of εi(r) ∈ C generically.

where S denotes the surface of the volume V . The surface integral is zero because of the periodic

boundary condition. Applying again the identity (4.14), we �nd

< Θ̂F1(r),F2(r) >=
∫

S

[F1
∗(r)× {∇× F2(r)}]dS

+
∫

V

F1
∗(r) · [∇× {∇× F2(r)}]dr

= < F1(r), Θ̂F2(r) >,

(4.16)

where we have again used the fact that the surface integral is equal to zero. The operator Θ̂ is,

therefore, Hermitian.
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Applying the Bloch's theorem to the eq. (4.11) and considering only the value of

k in the x direction so that k is scalar, we can express the eigenfunctions in terms

of Bloch function

ET
k (r) =

√
a

L
ek(r)e ıkx. (4.22)

We remember here that the Bloch functions have the following properties

ek(r) = ek(r + x̂ma), ek(r) = e∗−k(r), (4.23)

and we normalize them according to∫
V

εi(r)
[
e∗kn(r) · ekm(r)

]
dr = δnm. (4.24)

To set the homogeneous solution, we consider the dispersion relation ω(k) and

a �xed frequency ω0 and we suppose there to be multiple solutions to ω(k) = ω0,

and these solutions are kn, n ∈ [1, N0]. For di�erent ω, the value of N0 can change.

So we consider a function N(ω) that gives the number of solutions of the equation

ω(k) = ω0, N0 = N(ω0).

We set the homogeneous solution as the sum of all the forward propagating modes

at the frequency ω0

E0(r, ω0) ≡
√
a

L

N0∑
n=1

ekn(r)e ıknx. (4.25)

4.2.2 Green function tensor

The Green function can be expressed in terms of the eigenfunctions Ek in the

sum

←→
G (r, r′, ω) =

∑
k

ω2

ω2
k − (ω + ıδ)2

ET
k (r)⊗

(
ET

k (r′)
)∗

− ω2

(ω + ıδ)2

∑
k

EL
k(r)⊗

(
EL

k(r′)
)∗
,

(4.26)

where ⊗ denotes the dyadic product4 and δ is a positive in�nitesimal that assure the

causality of the solution of the eq. (4.5). Using (4.21), the Green function tensor

can be written as

←→
G (r, r′, ω) =

ω2

(ω + ıδ)2

(∑
k

ω2
k

ET
k (r)⊗

(
ET

k (r′)
)∗

ω2
k − (ω + ıδ)2

− δ(r− r′)

|εi(r)|
←→
I

)
. (4.29)

4The dyadic product A of two vectors, u = [u1, . . . , um]T and v = [v1, . . . , vn]T , is de�ned as
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It is possible to divide the last equation in three di�erent part. The �rst one

takes in the modes which propagate in the x direction and, then, have the associated

wavevectors written as a scalar quantity k

←→
G prop(r, r

′, ω) =
ω2

(ω + ıδ)2

∑
k

ω2
k

ω2
k − (ω + ıδ)2

ET
k (r)⊗

(
ET
k (r′)

)∗
. (4.30)

The second part,
←→
G rad, includes the radiative modes and the delta function term,

that comprises all the quasi-longitudinal modes and contributes only to the real part

of
←→
G at r = r′

←→
G =

←→
G prop +

←→
G rad. (4.31)

We can write explicitly
←→
G prop, by considering the Bloch functions

←→
G prop(r, r

′, ω) =
a

L

ω2

(ω + ıδ)2

∑
k

ω2
k

ω2
k − (ω + ıδ)2

ek(r)⊗ e∗k(r
′)e ık(x−x′), (4.32)

and by extending k as a continuous variable and by converting the sum over k into

an integral5, we obtain

←→
G prop(r, r

′, ω) =
L

2π

ω2

(ω + ıδ)2

∫ ∞
−∞

ET
k (r)⊗

(
ET
k (r′)

)∗
dk

=
a

2π

ω2

(ω + ıδ)2

∫ ∞
−∞

ω2(k)

ω2(k)− (ω + ıδ)2
ek(r)⊗ e∗k(r

′)e ık(x−x′)dk,

(4.33)

where ω(k) is the continuous dispersion relation.

Before to integrate this formula, we suppose there to be multiple solutions to

ω(k) = ω0, and these solutions are kn, n ∈ [1, N0]. Integrating and letting δ → 0, we

the matrix obtained by multiplying u as a column vector by v as a row vector

A = u⊗ v = u ·vT =


u1v1 . . . u1vn

...
. . .

...

umv1 . . . umvn

 (4.27)

Consider three vectors u,v,w with the same dimensions. We have this interesting property that

we use extensively:

(u⊗ v) ·w = (v ·w)u, (4.28)

where the result of the product v ·w is a scalar.

5The conversion is
∑

k →
L

2π
∫∞
−∞ dk



4.2 Disorder in 2D photonic crystal waveguide 79

obtain

←→
G prop(r, r

′, ω0) =

N0∑
n=1

ı
Lω0

2vg,n

[
ET
kn(r)⊗ (ET

kn(r′))∗Θ(x− x′)

+(ET
kn(r))∗ ⊗ ET

kn(r′)Θ(x′ − x)
]

= ı
aω0

2

N0∑
n=1

1

vg,n

[
ekn(r)⊗ e∗kn(r′)e ıkn(x−x′)Θ(x− x′)

+e∗kn(r)⊗ ekn(r′)e ıkn(x′−x)Θ(x′ − x)
]
,

(4.34)

where vg,n ≡ dω
dk

∣∣
k=kn

and Θ(x) is the Heaviside function.

4.2.3 The loss expressions

We consider the electric �eld at frequency ω0 as sum of all the modes6 of the

waveguide at the same frequency along the direction of propagation, as already

de�ned in Eq. 4.25:

E0(r, ω0) ≡
N(ω0)∑
n=1

ET
kn =

√
a

L

N(ω0)∑
n=1

ekn(r)e ıknx. (4.35)

To simplify the notation, from now on, we will neglect the prime T in the notation

of the mode. Besides, we will neglect the explicit dependence of the �elds from ω

except when it is important for a better comprehension.

We come back to consider Eq. 4.10. By using Eqs. 4.34 and 4.31, the electric

�eld that comes from the second term is:

E1(r) ≡
∫
D

←→
G (r, r′) ·∆ε(r′)E0(r′)dr′

=

N(ω)∑
n=1

ı
Lω

2vg,n
Ekn(r)

∫
D

∆ε(r′)E∗kn(r′) ·E0(r′)Θ(x− x′)dr′

+

N(ω)∑
n=1

ı
Lω

2vg,n
E∗kn(r)

∫
D

∆ε(r′)Ekn(r′) ·E0(r′)Θ(x′ − x)dr′

+

∫
D

←→
G rad(r, r

′) ·∆ε(r′)E0(r′)dr′

= Ep1(r) + Ep2(r) + Er(r)

(4.36)

6When we consider all the modes at a certain frequency, we have to consider not only the

propagating mode below the light line, but also the leaky modes above the light line.
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while the third term give us

E2(r) ≡
∫
D

∫
D

←→
G (r, r′) ·

←→
G (r′, r′′) ·∆ε(r′)∆ε(r′′)E0(r′′)dr′′dr′

=

N(ω)∑
n=1

ı
Lω

2vg,n
Ekn(r)

∫
D

∆ε(r′)E∗kn(r′) ·E1(r′)Θ(x− x′)dr′

+

N(ω)∑
n=1

ı
Lω

2vg,n
E∗kn(r)

∫
D

∆ε(r′)Ekn(r′) ·E1(r′)Θ(x′ − x)dr′

+

∫
D

←→
G rad(r, r

′) ·∆ε(r′)E1(r′)dr′

(4.37)

By combining the equations 4.10, 4.36 and 4.37, the electric �eld results:

E(r) = E0(r) + E1(r) + E2(r)

= E0(r) +

∫
D

←→
G rad(r, r

′) ·∆ε(r′) (E0 + E1) (r′) dr′

+

N(ω)∑
n=1

ı
Lω

2vg,n
Ekn(r)

∫
D

∆ε(r′)E∗kn(r′) · (E0 + E1) (r′) Θ(x− x′)dr′

+

N(ω)∑
n=1

ı
Lω

2vg,n
E∗kn(r)

∫
D

∆ε(r′)Ekn(r′) · (E0 + E1) (r′) Θ(x′ − x)dr′

= E0(r) +

N(ω)∑
n=1

ı
Lω

2vg,n
Ekn(r)

∫
D

A+
n (r′)Θ(x− x′)dr′

+

N(ω)∑
n=1

ı
Lω

2vg,n
E∗kn(r)

∫
D

A−n (r′)Θ(x′ − x)dr′

+

∫
D

←→
G rad(r, r

′) ·∆ε(r′) (E0 + E1) (r′) dr′

(4.38)

where the explicit form of A+
n , A

−
n are respectively:

A+
n (r′, ω) = ∆ε(r′)E∗kn(r′) · (E0(r′, ω) + E1(r′, ω)),

A−n (r′, ω) = ∆ε(r′)Ekn(r′) · (E0(r′, ω) + E1(r′), ω).
(4.39)

We can observe that the electric �eld is sum of the forward propagating mode (the

�rst two terms), the backward propagating mode (the third term) and the radiated

�eld (the last term). It is, therefore, possible to determine the transmission and

re�ection coe�cient, respectively,

T (ω) ≡ lim
x→∞

∣∣∣∣Eforw(r, ω)

E0(r, ω)

∣∣∣∣2 (4.40)
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and

R(ω) ≡ lim
x→−∞

∣∣∣∣Eback(r, ω)

E0(r, ω)

∣∣∣∣2 , (4.41)

where, we consider the �eld at two limits, x → ±∞ to obtain the re�ectivity and

transmittivity of the scattering region, because at ±∞ only guided modes (even if

backscattered) exist.

The transmitted part is

T (ω) = lim
x→+∞

∣∣∣∣Eforw(r, ω)

E0(r, ω)

∣∣∣∣2
= lim

x→+∞

∣∣∣∣∣1 +

∑N(ω)
n=1 ı Lω

2vg,n
Ekn(r)

∫
D
A+
n (r′, ω)Θ(x− x′)dr′

E0(r)

∣∣∣∣∣
2

=1 +

N(ω)∑
n=1

N(ω)∑
p=1

L2ω2

4vg,nvg,p

Ekn(r)E∗kp(r)

|E0(r)|2∫
D

∫
D

∆ε(r′)∆ε∗(r′′)
[
E∗kn(r′) ·E0(r′)

] [
Ekp(r

′′) ·E∗0(r′′)
]
dr′dr′′

+

N(ω)∑
n=1

Lω

vg,n
<
{
ıEkn(r)

∫
D
A+
n (r′, ω)dr′

E0(r)

}
.

(4.42)

4.2.4 The backscatter losses

The backscatter loss is the fraction of light intensity that is backscattered due

to imperfections captured by ∆ε and it is simply the re�ection coe�cient R(ω). We

have:

αback ≡R(ω) = lim
x→−∞

∣∣∣∣Eback(r, ω)

E0(r, ω)

∣∣∣∣2
= lim

x→−∞

∣∣∣∣∣
∑N(ω)

n=1 ı Lω
2vg,n

E∗kn(r)
∫
D
A−n (r′, ω)Θ(x′ − x)dr′

E0(r)

∣∣∣∣∣
2

=

N(ω)∑
n=1

N(ω)∑
p=1

L2ω2

4vg,nvg,p

Ekp(r)E∗kn(r)

|E0(r)|2
∫
D

∫
D

A−n (r′)
(
A−p (r′′)

)∗
dr′dr′′

=

N(ω)∑
n=1

N(ω)∑
p=1

L2ω2

4vg,nvg,p

Ekp(r)E∗kn(r)

|E0(r)|2∫
D

∫
D

∆ε(r′)∆ε∗(r′′) [Ekn(r′) ·E0(r′)]
[
E∗kp(r

′′) ·E∗0(r′′)
]
dr′dr′′,

(4.43)
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where we did the approximation A−n (r, ω) = ∆ε(r′)Ekn(r′) ·E0(r′, ω), because we

have only kept terms that are consistent with the truncation of the Born expansion

in Eq. 4.10 at the second order.

There are several ways in writing this relation, but we choose the representation

with correlation, because it permits to introduce correlation consideration about the

disorder as we will see in sec. 4.2.7.

We de�ne the intermodal losses between two modes with wavevectors kn and kp
as:

αkn,kp(ω) =
L2ω2

4vg,nvg,p

[
Ekp(r)E∗kn(r)

|E0(r)|2
∫
D

∫
D

∆ε(r′)∆ε∗(r′′)

[Ekn(r′) ·E0(r′)]
[
E∗kp(r

′′) ·E∗0(r′′)
]
dr′dr′′

+
Ekn(r)E∗kp(r)

|E0(r)|2
∫
D

∫
D

∆ε(r′)∆ε∗(r′′)[
Ekp(r

′) ·E0(r′)
] [

E∗kn(r′′) ·E∗0(r′′)
]
dr′dr′′

]
=

L2ω2

4vg,nvg,p
· 2<

{
Ekp(r)E∗kn(r)

|E0(r)|2
∫
D

∫
D

∆ε(r′)∆ε∗(r′′)

[Ekn(r′) ·E0(r′)]
[
E∗kp(r

′′) ·E∗0(r′′)
]
dr′dr′′

}
,

(4.44)

while in the particular case kn = kp, we have:

αkn(ω) =
L2ω2

4v2
g,n

[
|Ekn(r)|2

|E0(r)|2
∫
D

∫
D

∆ε(r′)∆ε∗(r′′)

[Ekn(r′) ·E0(r′)]
[
E∗kn(r′′) ·E∗0(r′′)

]
dr′dr′′

]
=
L2ω2

4v2
g,n

· <

{
|Ekn(r)|2

|E0(r)|2
∫
D

∫
D

∆ε(r′)∆ε∗(r′′)

[Ekn(r′) ·E0(r′)]
[
E∗kn(r′′) ·E∗0(r′′)

]
dr′dr′′

}
.

(4.45)

Using the latter de�nitions, we can recast Eq. 4.43 as:

αback(ω) = R(ω) =

N(ω)∑
n=1

αkn(ω) +

N(ω)∑
p=n+1

αkn,kp(ω)

 . (4.46)

4.2.5 The radiation losses

The radiation losses are the losses due to the fraction of light radiated out by the

waveguide:

Lrad(ω) = 1− T (ω)−R(ω), (4.47)
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and by using Eq. 4.42 and 4.43, we have:

αrad ≡ Lrad = −
N(ω)∑
n=1

N(ω)∑
p=1

L2ω2

vg,nvg,p |E0(r)|2∫
D

∫
D

∆ε(r′)∆ε∗(r′′)
[
<
{
Ekn(r)E∗kn(r′)

}
·E0(r′)

]
[
<
{

Ekp(r)E∗kp(r
′′)
}
·E∗0(r′′)

]
dr′dr′′

−
N(ω)∑
n=1

Lω

vg,n
<
{
ıEkn(r)

∫
D
A+
n (r′, ω)dr′

E0(r)

}
.

(4.48)

4.2.6 The single-mode case

In this section, we consider that the waveguide at frequency ω0 is single-mode,

that is the equation ω(k) = ω0 has only one solution, k0.

In this case, the homogeneous solution (cfr. 4.25) for the electric �eld is

E0(r) =

√
a

L
e ik0xek0(r),

while the associated Green dyadic is

←→
G prop(r, r

′
0) = ı

aω0

2vg

[
ek0(r)⊗ e∗k0(r

′)e ık0(x−x′)Θ(x− x′)

+e∗k0(r)⊗ ek0(r
′)e ık0(x′−x)Θ(x′ − x)

]
,

(4.49)

where vg ≡ dω
dk

∣∣
k=k0

.

Using the last two equations, Eq. 4.38 becomes

E(r) = E0(r)

+ E0(r)

∫
D

∆ε(r′)A(r′)Θ(x− x′)dr′

+ E∗0(r)

∫
D

∆ε(r′)B(r′)Θ(x′ − x)dr′

+

∫
D

∆ε(r′)
←→
G rad(r, r

′) ·C(r′)dr′

(4.50)
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where the explicit form of A, B and C are respectively:

A(r) = ı
aω

2vg
|ek(r)|2

− a2ω2

4v2
g

|ek(r)|2
∫
D

∆ε(r′)|e−k(r′)|2Θ(x− x′)dr′

− a2ω2

4v2
g

e−2ıkx [e∗k(r) · e∗k(r)]∫
D

∆ε(r′)e ı2kx
′
[ek(r

′) · ek(r′)] Θ(x′ − x)dr′

+ ı
aω

2vg
e−ıkxe∗k(r)

∫
D

∆ε(r′)e ıkx
′←→
G rad(r, r

′) · ek(r)dr′

(4.51)

B(r) = ı
aω

2vg
e 2ıkx [ek(r) · ek(r)]

− a2ω2

4v2
g

e 2ıkx [ek(r) · ek(r)]

∫
D

∆ε(r′)|e∗k(r′)|2Θ(x− x′)dr′

− a2ω2

4v2
g

|ek(r)|2
∫
D

∆ε(r′)e ı2kx
′
[ek(r

′) · ek(r′)] Θ(x′ − x)dr′

+ ı
aω

2vg
e ıkxek(r)

∫
D

∆ε(r′)e ıkx
′←→
G rad(r, r

′) · ek(r)dr′

(4.52)

C(r) = E0(r)

+ ı
aω

2vg

√
a

L
e ıkxek(r)

∫
D

∆ε(r′)|e∗k(r′)|2Θ(x− x′)dr′

+ ı
aω

2vg

√
a

L
e ıkxek(r)

∫
D

∆ε(r′)e ı2kx
′
[ek(r

′) · ek(r′)] Θ(x′ − x)dr′

+

√
a

L

∫
D

∆ε(r′)
←→
G rad(r, r

′) ·E0(r′)dr′.

(4.53)

We can now obtain the approximation of the re�ection coe�cient (cfr. Eq. 4.43)

as:

R(ω) ≡ lim
x→−∞

∣∣∣∣Eback(r)

E0(r)

∣∣∣∣2
=
L2ω2

4v2
g

∫
D

∫
D

B(r′) (B(r′′))
∗
dr′dr′′

=
a2ω2

4v2
g

∫
D

∫
D

∆ε(r′)∆ε∗(r′′)

[ek0(r
′) · ek0(r′)]

[
e∗k0(r

′′) · e∗k0(r
′′)
]

e 2ık0(x′−x′′)dr′dr′′,

(4.54)
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4.2.7 The disorder correlation

The several works, that have been done to study impact of imperfections on the

performance of a PhC, established quite generally that small randomness in PhC ge-

ometry and/or material constants lead to an overall reduction in a band gap size, as

well as an increased back-scattering and radiation losses, while stronger randomness

can lead to appearance of localized impurity states. Usually the disorder parame-

ters introduced above are scanned from small to large and conclusions are drawn

about their relative impacts. But propagation parameters can be sensitive functions

of disorder parameters. Thus, for a rigorous comparison of theoretical estimates

with experimental observations one has to be precise about the types and statistical

importance of realistic imperfections. Skorobogatiy and Bégin in [45] tried to under-

stand which are the statistical parameters of importance when describing disorder

in PC lattices, and then to characterize such parameters quantitatively by analyzing

high resolution experimental images of 2D planar slab PCs. They found that three

intuitive sets of parameters are necessary to create a comprehensive statistical model

of PC imperfections. First set of parameters describe coarse properties of features

such as radius, ellipticity and other low angular momenta components in a feature

shape. Such coarse variations of a shape can be either deliberately designed or re-

sult from an imperfect manufacturing process. Another set of parameters describe

roughness of feature edges on a nanometer scale, that is wall roughness, which is

ultimately determined by the random physical processes of electron scattering in a

resist, resist development and etching. A �nal set of parameters describes deviations

of feature centers from ideal periodic lattice.

We want to try to model the disorder function ∆ε(r) in a quite simple way, by

taking in account the imperfections introduced during the fabrication process. The

dominant imperfection is surface roughness appearing on the sidewalls of the holes.

It is due to random fabrication variations in the mask, that after etching translates

to vertical striations appearing on the sidewalls of the holes. It is reasonable to

assume perfect correlation in the vertical direction, so we need only address in-plane

variations. This is not completely true, because above all in SOI structure there is a

not perfect verticalness of the holes due to the etching process of the holes.

We consider a semiconductor membrane with a number of etched holes (α) with

radius r with centers located at the points Ci = (ρi, φi) in polar coordinates [44].

The vertical coordinate is z and the membrane height is h. An exact expression

for ∆ε(r) can be written in function of the roughness function ∆L, de�ned as the
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Figure 4.3: Confrontation between (a) measured and (b) calculated losses for a W1

waveguide. Image from [46]

distance between the true and the ideal structures:

∆L = ∆L(φ̃(C,Ci)), (4.55)

with

φ̃(C,Ci) = arctan(
ρ sinφ− ρi sinφi
ρ cosφ− ρi cosφi

). (4.56)

If we suppose that ∆L << r, we can write

∆ε(r) = (ε2 − ε1)Θ(h/2− |z|)
Nholes∑
i

∆L(φ̃(C,Ci))δ(r − |ρ− ρi|), (4.57)

where ε1(ε2) is the dielectric constant in the etched layer outside (inside) the air

holes.

Because the disorder function appears in each loss equation inside a double in-

tegral and assuming inter-hole disorder uncorrelated, we can consider the multiple-

scattering correlation function [47] of the ∆L function

< ∆L(φ̃)∆L(φ̃′) >= σ2e
−r ‖φ̃−φ̃

′‖
lp δαα′ , (4.58)

where φ̃′ = φ̃(C′,C′i), lp is the in-plane correlation length, and σ is the RMS rough-

ness length.

The model just introduced is quite simple, but it allows a basic evaluation of the

impact of disorder on propagation properties, as demonstrated in [46]. The authors,

in fact, use this model to evaluate the proportionality of backscattering losses to the
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inverse of the square of the group velocity. In Fig. 4.3, it was plotted the product

of the measured losses and calculated vg and v2
g for a W1 waveguide, while in Fig.

4.3b, there is the same plot but with calculated losses. The left side of the picture

demonstrates the (1/vg)
2 scaling for the losses, con�rming that when vg becomes

small, the backward scattering becomes important and indeed dominant. The right

side with the calculated data show a similar behavior, proving the validity of the

used model.
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Chapter 5
Time-Wavelength Re�ectance Maps of

PhCWGs

In the last chapter, we investigate the e�ects of disorder on the propagation of

light in PhCWGs. Several techniques have been proposed for measuring the critical

parameters of PhC waveguides, such as time resolved near �eld imaging (SNOM)

[32], phase-shift [48], time-of-�ight [49], time-domain transmission measurement [50]

and Fabry-Perot fringe analysis [51]. Each of these methods has its own advantages

and its own drawbacks, for instance, it is not straightforward to have a simple exper-

imental setup, able to measure very dispersive structures, in a short time, with min-

imal sensitivity to parasitic light. Recently, the optical low-coherence re�ectometry

(OLCR) technique was applied to the investigation of PhC structures, demonstrat-

ing its e�ectiveness to provide an accurate and reliable measurement of the group

delay, a good estimation of propagation losses and evidence of inter-mode coupling

induced by disorder [52].

In this chapter, we will discuss about phase-sensitive optical low-coherence re�ec-

tometry, that, combined with a suitable digital processing of the OLCR signal, shows

a considerable amount of information about disorder and permits to draw a complete

dispersion map, i.e., to divide the components of the re�ected signal corresponding

to di�erent wavelengths, but superposed in time [53].

We apply this technique to four 1 mm long PhC waveguides with suitable engi-

neered dispersion curves, that operate in a regime of semi-slow light (see Sec. 3.3.2),

a trade-o� between group velocity and propagation losses [33], because it is more

robust with respect to the strong losses induced by disorder.
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Figure 5.1: Simpli�ed scheme illustrating the principle of the OLCR measurement.

It is a �bered Michelson interferometer with the device under test in one arm. The

interference signal versus the delay is measured with high spatial accuracy.

All the material presented in this chapter has been developed at Advanced Pho-

tonics Lab of Thales Research and Technology, Paris, under the guidance of dr.

Alfredo de Rossi, and has been published in [53].

5.1 Optical Low Coherence Re�ectometry

OLCR is a nondestructive technique allowing the measurement of the backre-

�ected signal as a function of the position inside a passive or active photonic device.

It provides a very good spatial resolution and a large dynamical range [54]. It has

been shown [55], [56] that this technique can be used to extract all characteristic pa-

rameters relevant to complex structures such as Bragg gratings and ring resonators

coupled to waveguides (i.e., coupling coe�cients, propagation losses, and optical

cavity length L).

The OLCR setup is basically a Michelson interferometer illuminated with a broad-

band source (e.g., a 1520-1610 nm Er3+ super�uorescent source), which spectrum is

S(ω); the device under test in one arm, and a translating mirror in the other one

(see Fig. 5.1). The main idea is that the backre�ected signal coming back from the

sample after a delay t interferes with the signal coming back from the other arm

at the same time, within an interval ∆t, because of its limited temporal coherence.

Thus, the amplitude of the interference fringes is proportional to the signal backre-

�ected within a spatial region inside the sample, which depends on the position of

the other arm. When examining a waveguide or a photonic device entailing an input

and an output facet, the measured signal shows typically the �rst re�ection at the

device input facet and then the signatures of multiple round trips inside the device
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(Fig. 5.1). Moreover, a background originated by backscattering in the waveguide

is also detected. Ideally, the spatial resolution is related to the spectral width of

the source through a simple Fourier transform. Actually, this technique measures

a time, which is the propagation delay through the sample; consequently, the link

between the spectral band of the source and the accuracy in the measurement of

the delay appears formally as an uncertainty principle between time and frequency.

OLCR is demonstrated as a suitable technique for the measurement of propagation

and dispersion inside waveguides and, in particular, for slow light.

5.1.1 Phase-Sensitive OLCR

A standard OLCR equipment only measures the amplitude of the interference

fringes. However, valuable information is contained in the complete interferogram.

Indeed, the interferogram I(t) is connected to the complex re�ectivity r(ω) by the

inverse Fourier transform:

I(t) =

∫ +∞

−∞
S(ω)r(ω)e−ıωtdω. (5.1)

This suggests that the complex re�ectivity can be retrieved by Fourier transform

and normalization with respect to the source spectrum S(ω). However, a speci�c

experimental setup is required, with spatial accuracy in the submicrometer scale, in

order to resolve the interference fringes. This kind of setup has been developed at

TELECOM ParisTech, and the complete description can be found in [57]. Once the

complex re�ectivity is obtained, it is straightforward to extract the group delay from

the phase. This allows a complete characterization of a waveguide in term of complex

index, group delay, group velocity dispersion and birefringence. This technique was

initially proposed to characterize �ber Bragg gratings [58], micro-structured �bers,

or few-modes �bers [59].

5.2 PhC Waveguides

In this work we will focus on single mode PhC waveguides made on thin mem-

branes of gallium arsenide (GaAs). The scanning electron microscopy (SEM) of the

sample in Fig. 5.2 shows the typical structure which is fabricated by patterning a

silica hard mask through Electron-beam lithography, followed by reactive ion etching

(RIE) and �nal transfer into the semiconductor by high-density plasma etching [51].
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(a) (b)

Figure 5.2: (a) SEM image of a typical PhC membrane waveguide on GaAs. (b)

Detail of the sample.

The air-clad membrane of GaAs was obtained by removing an underlying sacri�cial

layer by wet etching. We have obtained a very high fabrication quality (Fig. 5.2b)

which allowed us to achieve a record Q factor of 700000 in III-V PhC cavities [60],

[61].

The four PhC waveguides used in our study are 1 mm long with the thickness of

the membrane is 265 nm.

1. Sample 1 has a lattice period a = 418 nm, the hole radius is r = 0.26a. The

waveguide consists of a single missing row of holes along the direction; the

normalized width is W = 1.057
√

3a. This value is used to optimize coupling

to PhC cavities. The corresponding band diagram, shown in Fig. 5.3, is

calculated using a 3D Finite Di�erences in Time Domain code with periodic

boundary conditions, in order to implement the Bloch's theorem. This code

permits to calculate accurately the leaky modes outside the light cone (dashed)

as well as the bound modes (solid). Two bands of TE modes appear within the

measurement spectral window. The TE even band reveals the typical behavior

of single line defect PhC waveguides [62]; the group velocity is almost constant

at high frequency and then decreases and vanishes at the band edge, which

is located at 1630 nm. The odd TE band has two minima, one is in the

leaky region. The dispersion of a TM mode is very close to an index-guided

waveguide, except for a small bandgap between 1537 nm and 1527 nm. The

group index of the TM mode is approximately constant and close to ng = 5,

which is quite a high value [63]. This is not surprising, however, and it is not

peculiar of photonic crystal. Rather, this is typical of tightly con�ned TM
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Figure 5.3: Calculated dispersion for the PhC waveguide (sample 1) revealing a TE

even mode with band edge at 1630 nm (E0), a TE odd mode with band edges at

the points k = kB/2 (EK
1 )and k = 0 (EΓ

1 ) which coincide at 1533 nm; the TM band

with a minigap in 1537 nm (M0) and 1527 nm (M1). The light line (red line) marks

the transition to leaky modes (E// at 1510 nm for TE even).

modes in very thin slabs, as it can easily be proven by e�ective index analysis.

2. Sample 2 is very similar to sample 1, except that the lattice period is a =

400 nm, the hole radius is r = 0.242a. In addition, sample 2 entails the well

known optimized L3 microcavity with loaded Q ≈ 10000 (intrinsic Q ≈ 40, 000)

and resonant frequency at 1555 nm, which is side-coupled to the waveguide.

The normalized width of W = 1.057
√

3a was chosen in order to optimize the

coupling with the cavity.

3. Samples 3 is characterized by a non uniform size of the holes along the trans-

verse axis of the waveguide [33].

4. Sample 4 is identical to sample 3, except for three localized defects. This

defects were deliberately inserted to test the e�ectiveness of OLCR.

5.2.1 Group Delay in PhC Waveguides
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Figure 5.4: (a) Measurement of the phase-sensitive OLCR signal from sample 1, TE

even polarization. (b) From this signal, the group delay is extracted. The solid thick

line represents the calculated delay.

Fig. 5.4a shows the re�ectogram for sample 1 in the TE polarization. We can see

the re�ection peaks corresponding to the input facet and to the �rst re�ection on the

rear facet of the waveguide. The re�ection on the rear facet appears to be strongly

broadened, compared to the re�ection at the input facet, due to the large dispersion

value of the PhC waveguide. Fig. 5.4b, instead, compares the Group Delay (GD)

obtained through a Fourier analysis on the second peak of the re�ectogram with the

value calculated from the simulated dispersion diagram (see Fig. 5.3). We analyze

the TE even case which better reveals the speci�c properties of PhC waveguides [52]

and we �nd a very good agreement between the two curves.

The transmission band of the PhC waveguide under test extends from the onset

of optical leakage, setting the high frequency limit (here 1520 nm), to the low-

frequency cuto� (1630 nm). As expected, the round-trip group delay increases �rst

slowly when moving to longer wavelengths and then increases very fast (∆τ ≈ 30 ps)

when approaching the cuto�, thus entering in the slow-light region (1600-1610 nm).

The results are consistent with phase-shift measurements made on similar samples,

which also reported similar group delay evolutions [48].
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Figure 5.5: 3-D time-wavelength re�ectance map of sample 2 extracted numerically

from the phase-sensitive re�ectogram which is also shown (black plot). Clearly visible

are (a) the re�ectance peaks from the input facet and (b)-(d) after multiple round

trips in the waveguide.

5.3 Time-Wavelength Re�ectance Maps

In an OLCR re�ectogram of a highly dispersive waveguide the contributions from

the whole spectra are superimposed (i.e., overlapping between the di�erent successive

re�ections on the rear facet). This is a major limitation when investigating strongly

dispersive structures such as photonic crystals. The obvious way to achieve a spec-

tral separation between fast and slow modes is to cascade an optical tunable narrow

bandpass �lter after the OLCR source [56]. In the absence of dispersive e�ects the

spatial resolution is determined by the coherence of the source. Therefore, consid-

ering the broadband source parameters (source bandwidth ∆λ = 80 nm and central

wavelength λ0 = 1565 nm), the expected resolution is about 10 µm, corresponding to

33 fs in time domain. However, a di�erence in �ber length between the two arms of

the interferometer and/or the optical �ltering of the source induces a residual disper-

sion that deteriorates the theoretical spatial resolution. Hence, practical resolution

is about 0.36 ps without �ltering and 1.1 ps with a 2 nm �ltering.
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Figure 5.6: The time-wavelength map as in Fig. 5.5 is represented as a 2D plot. The

re�ectivity peaks obtained with the optical �ltering, represented by circles, and the

calculated group delay (dotted curve) are superimposed. The signature of the side-

coupled cavity at λ = 1555 nm is denoted by the letter C. The left panel shows the

calculated dispersion (λ versus wave vector) for the corresponding TE even mode.

5.3.1 Interferogram Digital Processing

To overcome re�ection overlapping in re�ectograms, the best way to extract GD

properties is to apply a digital processing to the OLCR measurements. The numeri-

cal algorithm that exploits the phase-sensitive re�ectograms has been introduced in

[64]. The phase-sensitive re�ectogram similar to that shown in Fig. 5.4a is Fourier

transformed and we then apply a sliding numerical �ltering (Gaussian-shape �lter)

to the spectrum in order to treat in the spectral domain each wavelength separately.

The �lter bandwidth (typically 2 nm) is chosen as a trade-o� between the coherence

length of the �ltered source and the medium dispersion to optimize the spatial reso-

lution. The procedure is repeated by sweeping the �lter center frequency such that

a wavelength dependent re�ectogram is obtained.

Fig. 5.5 represents as a 3-D graph the time-wavelength map extracted from

the corresponding re�ectogram, also shown on the backside. The intensity of the

re�ected signal is reported as a function of the arrival time (after a round trip),

and of the wavelength. Each maximum in the signal amplitude corresponds to a
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strong re�ection, either on a facet or on defects inside the waveguide. We see four

maxima associated to the input facet, the rear facet, and two more round trips in the

waveguide. This �gure provides a clear understanding of the impact of losses and

dispersion on the shape of the re�ectogram; that is the broadening and the decrease

of the re�ectance peak after one or more round trips. The procedure is validated

by comparing the outcome with the results obtained by direct optical �ltering of

the OLCR source. The GD values obtained for di�erent values of selected frequency

are shown in Fig. 5.6. The two methods give self-consistent results concerning the

dispersion properties of the PhCs. Besides, the spectral signature (at 1550 nm)

of the resonance of an optimized L3 type side-coupled microcavity is revealed (the

horizontal vanishing line).

The quality of the measurement and the e�ciency of the numerical treatment

in preserving the information is remarkable. The measurement with the numerical

treatment is easier (only coupling of the �ber into the waveguide input facet is

required) to implement with respect to time-resolved techniques [32], that can be

considered complementary, or SNOM techniques. In addition, it is very fast (a few

seconds).

5.3.2 Re�ectance Maps versus High Resolution Transmission

It is enlightening to compare the time-wavelength map in Fig. 5.6 with the high-

resolution transmission spectra measured on sample 2 using a narrow linewidth (1

pm) laser tunable in the range 1500 to 1600 nm. This is shown in Fig. 5.7. The

transmission band of the cavity extends between 1520 nm and the waveguide cuto�,

which is beyond 1600 nm. The transmission band is characterized by regular and

well contrasted Fabry-Pérot fringes appearing from the light line limit to about 1575

nm. This corresponds to the almost ideal transmission of a single mode waveguide

with end faced re�ectivity equal to about 30%, which agrees well with the calculated

value [48]. Beyond this limit, the fringes become less regular and the contrast in-

creases. This is also the spectral region where the group velocity of the even TE mode

decreases while approaching the cuto�. The resonance of the side-coupled cavity ap-

pears as a deep dip (the cavity is overcoupled: Q/Qi ≈
√
Tmin/Tmax ≈ 0.2). The

lineshape is not Lorentzian due to inteference with waveguide Fabry-Pérot resonance.
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Figure 5.7: High-resolution transmission spectra of sample 2 (TE polarization, log

scale). The calculated value for the edge of the TE odd band (E1) is at 1520 nm

and corresponds to the strong decrease of transmission. Also visible is the signature

of the side-coupled cavity at 1555 nm (mark C), with Q ≈ 10000. Insets: enlarged

view showing regular Fabry-Pérot fringes (left) and isolated peaks near the band

edge (linear scale).

5.4 Disorder induced scattering

Imperfections, roughness and discontinuities break the translational symmetry in

optical waveguides and result into backscattering (coupling to the backward prop-

agating wave) or scattering to other waveguide modes. This also induces some de-

polarization, as TE and TM modes may be mixed by imperfections. The general

picture holds for PhC structures, however, their much richer band structure, entail-

ing strongly varying group velocity and minigaps (e.g., Fig. 5.3), has a strong impact

on the scattering losses. A theory speci�c to PhC waveguides has been developed

in Sec. 4.2 [44], which agrees very well with experiments on silicon PhC waveguides

[46]. Various mechanisms associated to disorder-induced scattering have been re-

vealed: backscattering, intermodal scattering and a peculiar channel of propagation

losses in which energy is scattered into a slow and leaky mode in the odd TE band.

Now, by using the re�ectance maps, we want to con�rm these observations and get

a deeper physical insight.
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Figure 5.8: Time-wavelength re�ectance maps for the sample 1, with dispersion

calculated in Fig. 5.3, for TE (top) and TM (bottom) polarizations. The plot in the

middle is extracted from the TE map following the trace of the �rst round trip. The

calculated group dispersion for the TM mode is superimposed (dotted). The arrows

denote the TM minigap (M0 and M1) and the band edges of the odd TE mode (EK
1 ,

EΓ
1 ).
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5.4.1 Propagation of Slow Modes

The theory developed for PhCs reveals that backscattering has an explicit de-

pendence on the inverse group velocity squared, therefore may become very strong

even if fabrication imperfections are minimal. A �rst evidence of the impact of the

disorder on slow modes is given by the high-resolution measurement shown in Fig.

5.7. The regular Fabry-Pérot fringes appearing from 1520 nm to about 1575 nm evi-

dence almost ideal propagation, so that scattering is negligible. The picture changes

sharply at longer wavelengths: the fringes become irregular and then change into iso-

lated peaks with no-ordered structure. The transmission is high at resonance (only

one half of its maximum value, Fig. 5.7). These peaks are likely to correspond to

extended resonant states generated by coherent backscattering which are reminis-

cent of what was observed in disordered opals [65]. Long group delays are associated

to resonances, instead, short group delays result from antiresonances. The OLCR

spectral map in Fig. 5.6 provides a complementary view of the phenomena. While

in the spectral region from 1520 nm up to 1575 nm the signature of the mode is

well de�ned and follows the calculated dispersion perfectly, at larger wavelengths

the signal is dispersed and comes at any time from zero to large values. This can be

understood knowing that the OLCR spectral map cannot resolve the alternation of

resonances and antiresonances, as the �lter was set to 2 nm. Those two independent

measurements show that disorder induces a drastic change in the propagation of the

slow modes. The OLCR map reveals that slow modes do not follow their theoret-

ical dispersion but, as the group index increases, the re�ection peak vanishes while

the backscattering appears. Within this propagation regime, which is dominated by

disorder, the energy does not escape from the mode, as the waveguide transmission

remains high, but the propagation time varies very fast with wavelength and may be

very large.

5.4.2 Intermodal Scattering and Propagation Losses

Disorder induces a transfer of energy from a mode to another with the explicit

dependence on the inverse of the product of the respective group velocities 4.2. It

follows that a high-order mode with slow group velocity may have a strong impact

on the fundamental mode. This was observed experimentally in Si waveguides for

the �rst time in [46], but only by using the time-wavelength re�ectance maps, it is

possible to obtain a very clear signature of the phenomenon. Let us consider sample
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Figure 5.9: Calculated dispersion for the sample 3. The two TE bands have edges

at 1590 nm (E0), 1460 nm (EK
1 ) and 1440 nm (EΓ

1 ). The TM band has a minigap

in 1530 nm (M0) and 1535 nm (M1). The red line also shown is the light line.

1 (Fig. 5.8) and focus on the TE polarization �rst. In addition to a clean trace of

the dispersion of the fundamental mode and to some backscattering originated in

a non-uniform manner along the waveguide, the map reveals the weakening of the

re�ected signal from 1540 nm, where it is particularly pronounced, towards lower

wavelengths. This is even more evident in the second round trip. The amplitude of

the OLCR signal taken along a path following the dispersion of the mode (Fig. 5.8)

provides further insight. In contrast with Fig. 5.6, there is no evidence of backscat-

tering enhancement in this spectral range which would explain the transmission loss.

Therefore, the overall re�ectivity signal (integrated over the time) is strongly de-

creased and this corresponds to a strong decrease of waveguide transmission.

The map relative to the TM polarization reveals the mini-gap, as predicted by

the FDTD modeling (see Fig. 5.3). The minigap is located between 1537 and 1527

nm. In this range, the re�ection at the input facet (delay is equal to zero) is increased

and no signal appears at positive delays, as expected.

Understanding the results in Fig. 5.8 requires the examination of the calculated

band diagram in Fig. 5.3. First of all, the onset of optical leakage of the fundamental

mode is expected at 1510 nm, therefore too far away to explain the result. The odd

TE band has two minima, one (EK
1 ) is at the edge of the Brillouin zone (point K)
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Figure 5.10: Time-wavelength re�ectance maps measured for sample 3, for TE (top)

and TM (bottom) polarizations. Corresponding dispersion is in Fig. 5.9. The arrows

denote the band edge of the even TE mode (E0). Note that the edge of the even

mode is at higher frequency than in the case reported in Fig. 5.8.
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and the other is at the center (point Γ). These two minima are very close (1533

nm). The spectral match between the TM minigap and the losses in TE mode would

suggest a possible impact of slow TM modes, therefore some polarization scattering.

However, polarization scattering requires that disorder breaks the symmetry of PhC

membrane, which was not observed on silicon-based structures [66]. On the other

hand, the e�ect could be attributed to the slow modes at the edge of the TE odd

band, which are in the same spectral range. A clear answer to the question is possible

by confronting this measurement with some measurements made on sample 3, which

dispersion (see Fig. 5.9) shows the odd TE mode is far away from the TM minigap.

In fact, the TE map (Fig. 5.10) shows no trace of the impact of disorder, which could

be associated to the TM minigap. Therefore, we conclude that the slow modes at the

edges of the TM minigap do not explain the dip in the transmission of the TE mode.

More generally, propagation losses, as we see in this case, cannot be attributed to

transfer of energy to another mode, as the re�ectance map clearly shows that the

energy escapes from the waveguide. We believe that the mechanism underlying these

losses is o�-plane scattering mediated by slow leaky modes in the odd TE band. This

was proposed and observed in [46]. Scattering from the fundamental (even) TE mode

to small-k modes near the Γ point light is peculiar, because these modes have a very

short lifetime. The e�ect is enhanced near the band edge because the group velocity

vanishes there, as predicted by the Green function theory. This picture is con�rmed

by the fact that, in the case of sample 3, the small-k band edge EΓ
1 = 1440 nm,

which is outside the measurement range and therefore cannot be seen. Indeed, no

transmission dip is seen in the measurements.

5.4.3 Scattering in Slow Modes

Fig. 5.10 also provides further insight on the slow modes of the TE even band

and completes the picture given by Fig. 5.6, because the cuto� is well within the

spectral band of the OLCR setup. First, the band edge is clearly identi�ed, as

for λ > 1595 nm the entire signal comes from the input facet. In other words,

the light cannot penetrate in the photonic crystal as expected, as it should be for

wavelength within the photonic bandgap. On the other hand, a relevant amount of

signal is originated from backscattering all along the waveguide. As the group delay

increases, the strength of the signal re�ected by the end facet decreases and becomes

even weaker than backscattering. Again, as it was for sample 1, backscattering is

even stronger when moving closer to the band edge. When looking at the properties
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Figure 5.11: Time-wavelength re�ectance maps for the sample 4. Curves (a), (b) and

(c) denote re�ectance peaks on defects inside the structure, while (c) corresponds to

the re�ection from the output facet of the waveguide.

of the TM transmission we notice that, �rst, the signature of the minigap is better

de�ned than in Fig. 5.8 and it is apparent that the re�ectance increases at the

input facet accordingly (no propagation inside the waveguide). Second, a stripe of

re�ectance signal between 1585 nm to 1600 nm denotes that, again, light propagates

in the waveguide in a disordered way and that the energy is dispersed over almost any

delay. In particular, this is the signature of a transfer of energy towards modes with

long lifetime. It is not possible to explain that based on the dispersion of the TM

mode, which is almost �at in this region. On the other hand, this region coincides

with the slow modes of the TE band. This suggests that TE-TM scattering is the

underlying mechanism in this case.

5.4.4 Signature of Slow Modes

Fig. 5.11 shows the time-re�ectance map for sample 4, that was designed with

three well localized defects. In the re�ectance map, the re�ection peaks generated

by three localized defects are well recognized; the �rst one a is situated at 0.1 mm

after the input facet, the second one (b) at 0.4 mm after the input facet and the

third one (c) at 0.85 mm. The peak corresponding to the re�ection at the output

facet is denoted by the letter (d). The dispersive behavior of scattering at the point

defects is apparent. Defect (a) produces a strong scattering between 1595-1608 nm,

defect (c) between 1550-1590 nm and takes over the re�ection at the end facet (d).
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The signatures of the defects are exploited in order to estimate the group index

of slow modes which are too strongly backscattered before reaching the end facet.

Let us look at the trace of the defect (b), follow it until the onset of the signature

of defect (a) and then continue on this latter until point (1). In this way we deduce

a group delay of 20 ps at 1607 nm, which translates into a group index of 60 (the

length is 0.1 mm).

5.5 Conclusion

Phase-sensitive OLCR is a powerful tool to explore the properties of PhC waveg-

uides, and to investigate dispersion and disorder induced scattering. The representa-

tion of the measurement as a time-wavelength map of the backre�ected signal gives a

tremendous physical insight for understanding the role of disorder induced scattering

and how it is connected to dispersion. We found that scattering depends strongly on

the group velocity, and in particular that backscattering tends to dominate as soon

as the group velocity decreases (thus con�rming theory).

Understanding the impact of disorder on the propagation of slow modes in PhC

structures is crucial in view of realizing devices exploiting the full potential of dis-

persion engineering inherent to photonic crystals, and we think that this technique

can give a large contribution.
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Chapter 6
Heterodyne Detection for PhCWGs

Characterization

The basic understanding of the dynamics into a 2D photonic crystal waveguide

is fundamental before to evaluate the potential photonic devices.

The work presented in this chapter was developed during two period at the Tech-

nical University of Denmark, department of Photonics, DTU Fotonik, under the

supervision of Prof. Mike van der Poel and Prof. Jesper Mørk. The aim was to

realize a series of experiment, with the collaboration of Ph.D. fellow Per L. Hansen,

to evaluate the delay e�ects of a 2D photonic crystal waveguide on a pulse in the

range of femtoseconds, by using the heterodyne detection technique with femtosec-

ond pulses. Unfortunately, it was not possible to get any useful result, so we will just

present the heterodyne principles, describing the heterodyne pump-probe set-up, and

the devices we used in the FemtoLab at DTU Fotonik.

6.1 The Heterodyne Measurement Technique

The word heterodyne is derived from the Greek roots hetero-, di�erent, and

dyn-, power. In radio and signal processing, heterodyning is the generation of new

frequencies by mixing, or multiplying, two oscillating waveforms. It is useful for

modulation and demodulation of signals, or placing information of interest into a

useful frequency range. The two frequencies are mixed in a vacuum tube, transistor,

diode, or other signal processing device. Mixing two frequencies creates two new

frequencies, according to the properties of the sine function: one at the sum of the
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two frequencies mixed, and the other at their di�erence. These new frequencies are

called heterodynes. Typically only one of the new frequencies is desired, usually the

higher one after modulation and the lower one after demodulation. The other signal

is �ltered out of the output of the mixer. The original heterodyne technique was

pioneered by Canadian inventor-engineer Reginald Fessenden, but was not pursued

very far because local oscillators were not very stable at the time. Frequency �lters

and the heterodyne detection in the radio makes it possible to closely space di�erent

radio channels in the frequency domain.

The essence of heterodyning is to measure the beating between two waves. This

waves can be acoustic, in the range of Hertz, as for example the beating between

a tuning fork and a not tuned music instrument, or it can be radio frequencies as

mentioned before. In our case, heterodyning will be done on optical waves, where the

carrier frequency is f ' 193THz. The detected heterodyne signal will be at 60kHz

and easily detectable by standard equipment.

The advantages of using a heterodyne detection scheme are multiple when it

is used to characterize waveguide components. The main one is the possibility to

measure changes not only in the amplitude transmission of the waveguide, but also in

the phase of the �eld after the propagation thought the component. The property to

selectively �lter the interested frequencies permits to distinguish optical �elds with

the same optical properties (polarization, wavelength, direction and position), by

shifting the central frequency of the �elds a few MHz from each other.

This powerful technique can be improved by using ultrashort optical pulses (in

the range of fs), because it enables the measurement of time-resolved transmission

and refractive index changes.

The idea of using a heterodyne detection technique together with a pump-probe

set-up was �rst presented by the group of E. Ippen at MIT in the early 1990's [67].

The �rst results on gain and index dynamics in semiconductor optical ampli�ers

on a subpicosecond time scale were presented in 1991-92 [68][69], while in 1996 a

similar setup was used to investigate four-wave mixing (FWM) at the Danish Telecom

Research facility (TDR) [70]. The theory for femtosecond pulses was developed at

the same time by A. Mecozzi and J. Mørk [71]. An improved detection scheme was

built in 1998 at the Technical University of Denmark (DTU) by P. Borri and W.

Langbein [72] to characterize FWM and gain dynamics in quantum dot waveguide

ampli�ers [73][74].
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6.1.1 The source

From a theoretical point of view, the source must give a train of pulses with a certain

repetition rate F , where each pulse is centered at the variable frequency ω0 and has

the desired pulse energy. Each pulse E0(t) should be considered a Gaussian pulse

with an intensity width τp in the subpicosend range.

Supposing E0(t) centered at t = t0, we have

E0(t) = E0 exp

(
−(t− t0)2

τ 2
p

+ ıω0t

)
. (6.1)

In frequency domain the pulse will be represented as

Ẽ0(ω) =
E0τp√

2
exp

(
−
τ 2
p

4
(ω − ω0)2 + ıωt0

)
. (6.2)

The train of pulses can be described as

E(t) =
∞∑

n=−∞

E0(t− t0 + nT ), (6.3)

where T = 1/F is the repetition rate and n is an integer.

To obtain all these features, a commercial laser system from Coherent Inc. is

used. The system consists of 5 separate systems

• Coherent Verdi V-5 (5W of continuous wave power);

• Coherent Verdi V-10 (10W of continuous wave power);

• Coherent MIRA 900 (Titanium-Sapphire modelocked oscillator);

• Coherent RegA 9000 (Titanium-Sapphire regenerative ampli�er);

• Coherent OPA (Optical parametric ampli�er).

The full system is shown in Fig. 6.1. The Verdi V-5 provides 5 W of power to

pump the Ti:Al2O3 (titanium:sapphire) crystal, which acts as the gain medium for

the MIRA. The Ti:Al2O3 gain peak is at 800 nm. The slit and the two dispersive

prisms P1 and P2 allow to obtain the modelocking of the cavity. The MIRA minimum

pulse width is ≈ 150 fs with ∼ 1.3 W of output power. The repetition rate is 80

MHz.



110 Heterodyne Detection for PhCWGs Characterization

Figure 6.1: Illustration of the Coherent Inc. laser system. The Verdi V-5 and V-10

pump respectively the MIRA and the RegA. The output pulses from the MIRA are

ampli�ed in the RegA. The 800 nm output pulses of the RegA are shifted to the

desired wavelength by optical parametric ampli�cation in the OPA.
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To obtain a variable wavelength of the pulse, coming from the Ti:Al2O3 based

system, the nonlinear process of optical parametric ampli�cation is used. This implies

that the MIRA output pulse needs to be ampli�ed.

For this regenerative process, it is used the Regenerative Ampli�er (RegA). It is

built around a Q-switched laser cavity. A Ti:Al2O3 crystal is pumped with 10 W

of power from the Verdi V-10 and an intra cavity acousto-optic de�ector (Q-switch)

induces the externally controllable loss (QS in Fig. 6.1). When the acousto-optic cell

is set to de�ect, the inversion in the Ti:Al2O3 crystal increases (stimulated emission

by the lasing mode of the cavity is prohibited). As the de�ection in QS is turned o�,

a pulse from MIRA is simultaneously coupled into the cavity using an other acousto-

optic cell, the cavity dumper (CD in Fig. 6.1). The pulse will now experience a

maximum gain from the Ti:Al2O3 crystal. The pulse travels through the cavity until

the gain is depleted and is then ejected using the cavity dumper again. Following

the ejection of the pulse, the Q-switch is again turned on as to prohibit lasing in

the RegA cavity. When the inversion has again accumulated, a new pulse from

the MIRA can be injected. The time to restore the inversion sets the limit of the

repetition rate of the RegA output, which becomes ∼147.5 kHz. This means, that

only every 540th MIRA pulse is injected into the RegA and ampli�ed. The average

output power from the RegA is also 1.3 W (same as for the MIRA), but now with

540 times more energy in the pulses. The several roundtrips the pulse does in the

cavity induce a broadening of the pulse that is compensated by a pulse-shaper before

the exit of the RegA, with a resulting pulse intensity-FWHM τp of ∼ 150 fs.

The output of the RegA is injected into the optical parametric ampli�er, the

Coherent OPA. In the OPA, 25% of the pulse energy is split o� to generate a white

light continuum, by using the self-focusing e�ect into a sapphire crystal. The result

is a very broad band spectrum from the ultra-violet to the infrared, around 800 nm.

The 75% of the RegA output is used for second harmonic generation of a 400 nm

pulse in a nonlinear crystal (SHG-BBO in Fig. 6.1).

Finally, the white light continuum is overlapped with the 400 nm pulse in a

second nonlinear crystal (OPA-BBO in Fig. 6.1), where a 400 nm photon is split

into a signal photon and an idler photon. The wavelength of the signal photon

and the idler photon depends on the angle of the nonlinear crystal, which can be

adjusted to get the wavelength of interest. The nonlinear crystal is passed two times

to maximize the conversion.

For the following experiments, only the idler is used and adjusted for operation
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in the region around 1550 nm.

6.1.2 The heterodyne pump-probe set-up

Figure 6.2: Illustration of the heterodyne pump-probe set-up.

Fig. 6.2 show a schematic illustration of the heterodyne pump-probe set-up.

The pulse that comes from the laser enters the pump AOM. An AOM consists

of fused silica with a piezoelectric transducer on the one side of the crystal. A

radio wave, generated by a driver, hits the silica and generates a traveling acoustic

wave in the silica. This generates an index grating on which the optical wave is

di�racted. Additionally, the optically di�racted �eld will be Doppler shifted by the

radio-frequency at which the AOM is driven (40 MHz). The power of the di�racted

beam, from here pump beam, is controlled by the power of the radio wave, which is

controllable from the driver.

The pump beam goes through a shutter and a delay line with a 250 ps span,

then is directed to the in-coupling microscope objective and, �nally, is coupled into

the component. The energy of the pump pulses at the microscope objective can be

varied over 4 orders of magnitude, with a maximum energy of ≈ 250 pJ.

The part of the beam not de�ected in the pump AOM enters the probe AOM.

Here the probe beam is divided in the probe beam and the reference beam. The

�rst one is the one de�ected and frequency shifted by 39 MHz, 1 MHz less than

the pump beam. It is overlapped with the pump beam in a 50/50 beam splitter, so
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that with the pump beam goes into the microscope objective and then is coupled

into the component. At that point, the pump and probe pulses can be distinguished

only from 1 MHz MHz in frequency. After propagation through the component the

pump-probe beam is collimated using the out coupling microscope lens. The lens

L1 with the small aperture A1 are used to clean the output mode, while the lens L2

recollimates it.

The heterodyne set-up for passive waveguides

Figure 6.3: Illustration of the heterodyne set-up for passive waveguide.

In Fig. 6.3, it is shown a schematic illustration of the heterodyne set-up in case

the experiment does not need any pump beam, as for instance the device under test

is passive. The main di�erence is that the pump AOM is removed so that the only

two beams that propagates are the reference and the probe ones. The probe AOM is

set to introduce a frequency shift of 40 MHz, as for the pump AOM in the precedent

scheme.

6.1.3 Detection

The heterodyne detection scheme is presented in Fig. 6.4. The center of the scheme

is the 50/50 beam splitter; it has two functions: it permits to overlap spatially the

pump and probe and the reference beam, already temporally overlapped through

the reference delay line, and it divides the beam in two for the balanced detector,

that measures the two quadratures from the beam splitter. The complete beam is

composed with the overlap of the non-shifted reference pulse, the 40 MHz frequency

shifted pump beam and the 39 MHz frequency shifted probe beam.



114 Heterodyne Detection for PhCWGs Characterization

Figure 6.4: Zoom of the heterodyne detection scheme. The reference pulse can be

delayed so that it overlaps the probe one. The probe and reference pulses are spatially

overlapped in the 50/50 beam splitter and the two quadratures are detected in the

balanced detector.

Writing the reference and pump (probe) �elds in terms of their slowly varying

envelope and phase component[75]

Er(t) = Ar(t) exp(ı(ωrt+ φr))

Ep(t) = Ap(t) exp(ı(ωpt+ φp)),
(6.4)

the �elds that arrive at the inputs A and B of the detector are:

EA =
1√
2

(Ar(t) exp(ı(ωrt+ φr)) + ıAp(t) exp(ı(ωpt+ φp)))

EB =
1√
2

(ıAr(t) exp(ı(ωrt+ φr)) + Ap(t) exp(ı(ωpt+ φp)))
(6.5)

where we ignored any possible phase change expect from the π/2 shift from the

re�ection. The resulting intensity measured by the detector are

IA =
cε0

4
(A2

p(t) + A2
r(t)− 2Ap(t)Ar(t) sin(φp − φr + (ωp − ωr)t))

IB =
cε0

4
(A2

p(t) + A2
r(t) + 2Ap(t)Ar(t) sin(φp − φr + (ωp − ωr)t)),

(6.6)

where the last term in each intensity is the beat signal, between pump (probe) and

reference.

The detector is balanced to reduce the common mode intensity noise �uctuations;

its output is an electric current proportional to the di�erence of the two signals, that

is proportional only to the beat signal

i(t) = α(IB − IA) = α cε0Ap(t)Ar(t) sin(φp − φr + (ωp − ωr)t), (6.7)
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Figure 6.5: Illustration (not to scale) of the mixed reference and pump (probe)

spectrum. Ω denotes the RF frequency driving the AOM, ωrep is the repetition rate

of the RegA, and ωbeat is the lowest beat frequency between the probe and reference

spectrum, that is detected by the lock-in ampli�er.

where α is a properly de�ned proportionality factor.

The spectrum of a laser pulse train consists of a series of sharp spectral lines

separated by the repetition rate, frep, so there exists a in�nite beat frequencies, as

shown in Fig. 6.5. Approximating the spectral lines with delta functions, the spectra

of the two �elds are

Er(ω) =
∑

Anδ(ω0 − nωrep − ω), n ∈ Z

Ep(ω) =
∑

Amδ(ω0 + Ω−mωrep − ω), m ∈ Z,
(6.8)

where Ω is the frequency driving the pump (probe) AOM, and ωrep = 2πfrep.

The beat frequencies are then

∆ωnm = (m− n)ωrep − Ω ≡ lωrep − Ω, l ∈ Z. (6.9)

The repetition rate of the train of pulses used in the experiment is 255 kHz , and

the driving frequencies of the two AOMs for pump and probe are 39 MHz and 40

MHz , respectively. In the case of the setup for passive devices, only the probe is

used and a driving frequency of the AOM of 40 MHz. In this case, the lowest beating

frequency between the two �elds is 35 MHz for l = 157, while the next lowest is 190

kHz.

The current of the balanced detector is sent to a lock-in ampli�er with a detectable

range from 0 to 100 kHz , so only the �rst one is detected. The lock-in ampli�er
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is referenced by down-mixing the sinusoidal RF frequency driving the AOM with

a square wave signal of the repetition rate of the train of pulses. Since the square

wave signal contains all higher harmonics of the repeon rate, the mixed frequencies

corresponds exactly to those in Eq. 6.9.

An important point of this technique is that the output signal current shows

changes of the electrical �eld of the pump (probe), and not of the intensity, and this

implies that is detectable all the information contained in amplitude and phase of

the output current.

6.2 The Device

Figure 6.6: Asymmetric Mach Zehnder Interferometer (aMZI), composed by two

arms, with the longest one containing a 10 µm long slow light PhCWG (surrounded

in red and expanded in Fig. 6.7). The physical di�erence of length of the two arms

introduces a delay τd between the pulses that propagates through the device of ∼
300 fs.

The aim of the experiment was to measure the delay induced by a 2DPhC on a

femtosecond pulse, that is to obtain information about the group index and the slow

or semi-slow light e�ect into a 2DPhC. To measure a delay, it is fundamental to have

a reference pulse to compare with the delayed pulse. For this reason, an integrated

asymmetric Mach Zehnder Interferometer was chosen as device under test. The

asymmetric Mach Zehnder Interferometer, shown in Fig. 6.6, is composed by two

arms: the �rst one is a simple silicon waveguide, while the second one is longer of

the �rst one and contains a photonic crystal waveguide.

For this experiment, a chip with several interferometers was designed and fabri-

cated in Silicon, with Silicon on Insulator technology (SOI) at DTU Fotonik. The
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Figure 6.7: Example of photonic crystal waveguide included in the device of Fig.

6.6.

chip contains two families of PhCWG, to investigate slow light and semi-slow light

phenomena, respectively. For each of these families, nine interferometers were re-

alized, with three di�erent lattice constants a (370 nm, 380 nm, and 390 nm) and

three di�erent lengths L (10 µm, 50 µm and 100 µm) of the waveguide.

The basic idea is quite simple. The pulse coupled into the device is split by

an integrated 50/50 beam splitter in a reference beam, that propagates in the sim-

ple straight waveguide, and in a probe beam, that propagates in the arm with the

photonic crystal waveguide. The PhCWG slows down the pulse introducing a delay

related to the wavelength of the pulse according the dispersion relation that describes

the behavior of the waveguide. After the propagation through the PhCWG the pulse

is overlapped spatially with the one coming from the simple arm by another inte-

grated beam splitter. The choice to use an asymmetric Mach Zehnder Interferometer,

with the arms with a di�erence of length equivalent to a delay τd of ∼ 300 fs, permits

to recognize the two pulses at the detector, even when the PhCWG operates as a

simple waveguide, that is the wavelength of the pulse is not in the bandgap of the

photonic crystal.
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Chapter 7
Conclusions

This thesis has concerned the propagation of light in semiconductor photonic

crystal waveguide structures with emphasis on propagation properties and disorder

e�ects. We have introduced the theory of photonic crystals, of which main peculiarity

is the dispersion relation that introduces a set of permitted and forbidden bands for

light propagation (Chapter 1). Then, we have focused on two-dimension photonic

crystal, analyzing the di�erence between a membrane structure and a structure on a

low-index cladding (Chapter 2). By introducing a linear defect in a photonic crystal,

we have seen that it is possible to obtain a waveguide with the same band diagram

of the original crystal, but few states (modes) in forbidden bands, that permit to

guide light (Chapter 3). These modes have a dispersion relation not merely linear or

parabolic, so it is recommended to take into account higher order dispersion. So, we

have focused on third order dispersion, by evaluating its e�ect on a pulse propagating

in the waveguide. By analyzing band for which group index is higher (sometime much

higher) than the usual refractive index (i.e. the velocity of light is signi�cantly smaller

than expected), we have introduced the concept of Slow Light phenomena. Finally,

by considering the third order susceptibility, we have theoretically investigated the

Four-Wave Mixing phenomenon in this waveguide. All these phenomena are always

in�uenced by the presence of the extrinsic disorder, due to fabrication process, so we

have developed a basic model to evaluate the e�ect of disorder on the backscattering

losses and out-of-plane losses (Chapter 4).

Several techniques have been studied and implemented to characterize experi-

mentally photonic crystal waveguides. In this work, we have introduced the Time-

Wavelenght Re�ectance Map and the Heterodyne Pump-Probe Technique. The �rst
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one (Chapter 5) has been developed with Thales Research and Technology (Paris,

France), and allows to evaluate the propagation properties of the waveguide as func-

tion of the wavelength showing a deep physical insight for understanding the role of

disorder induced scattering and how it is connected to dispersion. The second one

(Chapter 6) has been tested at DTU Fotonik (Copenhagen, Denmark) and detects

changes in amplitude and phase of an electromagnetic pulse propagated through a

photonic crystal waveguide allowing, theoretically, to evaluate group delay, distor-

tions and non-linear e�ects in Fast and Slow Light regime.

In the following, the results on each of the above topics are brie�y summarized.

Four Wave Mixing Equations We have considered cubic non-linearity due to

third order susceptibility and we have developed the Four-wave mixing equations for

a photonic crystal waveguide. In this model, we have considered also the Self Phase

Modulation and the Cross Phase Modulation. Di�erently from the �bers [42], these

terms are essential for a right evaluation of the phase change of the mixing waves.

To obtain the model, we have considered the dielectric function as space-dependent,

so we have replaced the e�ective area of the classical equations, meaningless in a

photonic crystal, with the e�ective volume, that we have found to be dependent

from group velocity and �eld shape of the di�erent waves. The result represents a

theoretical limit of the ampli�cation factor that is possible to obtain in a photonic

crystal waveguide.

Disorder e�ects We have developed a model based on Green function theory to

evaluate the impact of imperfections on the performance of a PhC. We already know

that small randomness in PhC geometry and/or material constants lead to an overall

reduction in a band gap size, as well as an increased back-scattering and radiation

losses, while stronger randomness can lead to appearance of localized impurity states.

With our model, we have found that back-scattering losses are proportional to the

inverse of the square of the group velocity. This means that when vg is small,

the backward scattering becomes important and indeed dominant, as con�rmed by

Time-Wavelength Re�ectance Map.

Time-Wavelenght Re�ectance Map Phase-sensitive OLCR is a powerful tool

to explore the properties of PhC waveguides, and to investigate dispersion and disor-

der induced scattering. We have experimentally con�rmed that scattering depends
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strongly on the group velocity, and in particular that backscattering tends to domi-

nate as soon as the group velocity decreases.

7.1 Outlook

Several topics related to the work presented in this thesis are worthy of further

investigation that will be possibly pursued in future work.

Slow light enhanced non-linear e�ects It is important to investigate the re-

lation between slow light and nonlinear e�ects such as self-phase modulation, two-

photon absorption and free carriers, through dispersion-engineered silicon photonic

crystal waveguides. We know that there could be an enhancement of non-linear ef-

fects due to slow light (Sec. 3.4.2), but it is not clear the process and how to control

it. A better understanding of this relation could open the possibility of developing

ultra-fast and/or ultra-small all-optical devices.

Pump-probe measurements The heterodyne pump-probe setup, explained in

Chapter 6, is a powerful tool to characterize photonic devices, because it may provide

also a useful insight of the carrier dynamics in waveguide structures, that are deeply

related to non-linear behavior. It could be very interesting to rearrange the setup

and start a new set of experiments on photonic crystal waveguides.

Quantum dot photonic crystal waveguide The photonic crystal waveguides

proved capable of delaying a pulse, but the delay is �xed by the frequency of the

pulse. Even if there are non-linear e�ects that may permit some new application, the

insertion of quantum dot into the waveguide could open a completely new �eld of

operation, achieving e�cient and variable control over pulse propagation in compact

semiconductor waveguides [76].
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