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Sommario

Negli ultimi anni, grande attenzione ¢ stata rivolta alle tecnologie fotoniche. La
fotonica, chiamata cosi in analogia con ’elettronica, ¢ divenuta una forza trainante
in diverse aree come le comunicazioni e il computing, le tecnologie dell’informazione
e anche le biotecnologie, grazie alle sue applicazioni nel campo dei sensori. 1 dispo-
sitivi fotonici offrono, infatti, una grande larghezza di banda unita alla mancanza di
emissioni e a una elevata immunita alle interferenze.

All’aumentare della velocita di trasmissione, le connessioni ottiche sono passate
dall’iniziale utilizzo come collegamento tra punti remoti (come nel caso delle dorsali
telefoniche) a usi su scala sempre piu locale (grandi reti aziendali, reti casalinghe,
connessione di periferiche al computer); adesso, sono allo studio collegamenti ottici
all’interno dei computer, fra chip diversi e all’interno dello stesso chip.

Dallo studio di collegamenti ottici all’'interno dei chip allo sviluppo di circuiti
interamente ottici, il passo € breve e diverse tecnologie sono allo studio per ottenere
tale risultato, mantenendo costi di produzione e livelli di integrazione comparabili
con quelli dei circuiti integrati elettronici.

Una delle tecnologie piu studiate negli ultimi anni é quella dei cristalli fotonici.
Tali metamateriali' offrono infatti la possibilita di controllare e modificare la propa-
gazione delle onde luminose. E possibile pensare ai cristalli fotonici come I’analogo
ottico dei normali cristalli: la periodicita nell’indice di rifrazione determina una strut-
tura di bande permesse e proibite in funzione del vettore d’onda della luce incidente
esattamente come avviene con le bande di conduzione e di valenza per gli elettroni

nei cristalli ordinari. Quando la propagazione ¢ inibita per ogni polarizzazione e ogni

1Si definisce metamateriale un materiale creato artificialmente con proprieta elettriche e mag-
netiche peculiari che lo differenziano dagli altri materiali. Le sue caratteristiche macroscopiche non

dipendono solo dalla sua struttura molecolare, ma anche dalla sua geometria realizzativa.



Figure 1: Un esempio di cristallo fotonico monodimensionale (a sinistra), bidimen-

sionale (al centro) e tridimensionale (a destra)|l].

direzione all’interno del cristallo si ha un bandgap fotonico completo. Proprio per
I’analogia con i cristalli ordinari, lo studio dei metamateriali si é avvantaggiato dei

risultati gia acquisiti dalla fisica dello stato solido.

La storia dei cristalli fotonici comincia nel 1987 con due lavori pionieristici di Eli
Yablonovitch [2] e Sajeev John [3]. In entrambi i lavori, il punto di partenza era la
fisica dello stato solido e come i fenomeni elettromagnetici si modificavano in presenza
di strutture dielettriche periodiche. A partire da quei lavori, é stato definito cristallo
fotonico qualsiasi sistema caratterizzato da una funzione dielettrica periodica in una
o pitt dimensioni. La Fig. 1 mostra dei cristalli fotonici in una, due e tre dimensioni,
a seconda della periodicita della funzione dielettrica . Il periodo della funzione é
chiamato costante reticolare, ancora una volta in analogia alla costante reticolare dei

reticoli cristallini nei cristalli naturali.

I cristalli fotonici offrono numerosi gradi di liberta in fase di progettazione e re-
alizzazione, per esempio il materiale di cui sono realizzati, le dimensioni fisiche e
la struttura della cella elementare. Infine é anche possibile inserire nella struttura
periodica delle irregolarita (difetti), per ottenere bande permesse in regioni in cui
precedentemente la propagazione della luce era inibita. A seconda del numero di
dimensioni del difetto e del cristallo, si possono ottenere effetti diversi di localiz-
zazione della luce; ad esempio, in un cristallo fotonico bidimensionale, un difetto
puntuale assume le caratteristiche di una cavita bidimensionale, mentre un difetto
lineare si comporta a tutti gli effetti come una guida d’onda, in cui la propagazione
puo avvenire non solo per riflessione interna totale, come in una fibra ottica, ma
anche per effetto della struttura a bande del cristallo.

La grande liberta nel design permette, quindi, di realizzare numerosi dispositivi,
sia attivi che passivi, come microcavita, guide d’onda, filtri e laser; tutto questo

andando a modificare solo alcuni dei parametri che caratterizzano il cristallo, in



funzione dell’applicazione desiderata.

Esiste, infine, un altro grande vantaggio dei cristalli fotonici rispetto ad altre
tecnologie fotoniche: la loro fabbricazione avviene, infatti, utilizzando gli stessi pro-
cessi produttivi gia usati nell’industria dell’elettronica, aprendo la via a una ipotetica
rivoluzione tecnologica senza gli elevati costi di riconversione.

Questo lavoro di tesi presenta alcuni nuovi risultati sulle proprieta ottiche e sugli
effetti del disordine sulla propagazione in guide d’onda a cristallo fotonico bidimen-
sionale. Lo studio parte dai concetti di base dei cristalli fotonici (Cap. 1), quali
la loro struttura a bande, fondamentali per comprendere appieno le proprieta dei
cristalli fotonici bidimensionali (Cap. 2).

Nel Cap. 3 sono approfondite le proprieta di propagazione della luce nelle guide
d’onda realizzate in cristalli bidimensionali, in particolare la loro tipica relazione
di dispersione e il regime di propagazione noto come regime di Luce Lenta (Slow
Light regime). Nello stesso capitolo, si introduce, inoltre, un modello teorico per
il Four-Wave Mixing, fenomeno non lineare solo recentemente osservato in questo
tipo di guide. II Cap. 4 introduce brevemente i processi di fabbricazione per questi
dispositivi; vengono quindi discussi i punti critici di tali processi, modellizzati come
disordine estrinseco, e I'impatto che questi hanno sulle proprieta di propagazione
della guida.

Gli ultimi due capitoli sono relativi alla parte sperimentale di questo lavoro.
Sono state infatti studiate due tecniche per la caratterizzazione delle guide d’onda a
cristallo fotonico. La prima ¢ la mappa di riflettanza tempo-lunghezza d’onda (Cap.
5), sviluppato presso Thales Research and Technology (Paris, France), che permette
di valutare le proprieta di propagazione della guida in funzione della lunghezza d’onda
e I'impatto della dispersione indotta dal disordine estrinseco della guida. La seconda
é la tecnica Heterodyne Pump-Probe, utilizzato presso il Dipartimento DTU Fotonik,
Copenhagen, in una serie di esperimenti atti a indagare il regime di luce lenta e i
ritardi ottenibili in tale regime.

La parte teorica di questa lavoro (Capitoli 1, 2 e 3) ¢ stata sviluppata presso
il Dipartimento di Ingegneria dell’Informazione dell’Universita di Padova, sotto la
supervisione del prof. Andrea Galtarossa, mentre la parte piu applicativa e sper-
imentale & stata svolta presso ’Advanced Photonics Lab di Thales Research and
Technology, Paris, in collaborazione con il dr. Alfredo de Rossi (Capitoli 4 e 5), e
presso il Department of Photonics, della Technical University of Denmark, sotto la
guida del prof. Mike van der Poel e del prof. Jesper Mgrk (Capitolo 6).






Introduction

In recent years a great deal of attention has been devoted towards photonic
materials. The technology of photons, named photonics in analogy with electronics,
has become the driving force for the advancement of areas such as communications
and computing, information technology and even biotechnology, for sensing devices.
This technology provides larger bandwidth, high interference immunity and lack of
emission. As the data transmission rate is increasing, the optical connection moves
from long range to enterprise network and it is entering the domain of chip-to-chip
and on-chip communication. This trend strengthens the demand of miniaturization
and integration of optical signal transmission components.

An answer to this demand can be photonic crystals (aka periodic photonic struc-
tures), which study is experiencing a notable growth due to the dramatic ways in
which such structures can control, modify and harvest the flow of light. They are the
optical analogous of ordinary crystals, since their periodicity in refractive index de-
termines a structure of allowed and forbidden bands for the light frequency dispersion
with respect to the wavevector inside the structure. When light propagation is in-
hibited for any polarization and any direction inside the crystal a complete photonic
bandgap is achieved. Due to the analogy between photonic and ordinary crystals, the
study of these artificial materials took advantage of concepts well known in solid state
physics, with the aim of investigating photonic band structure and optical spectra
and of realizing functional devices.

The story of photonic crystals starts in 1987, when two pioneering works of Eli
Yablonovitch [2] and Sajeev John [3] appeared on Physical Review Letters. Both
articles deal with modification of electromagnetic phenomena when considering peri-
odic dielectric structures. From those, photonic crystal has been the appellation for

any system characterized by a dielectric function ¢ that is periodic in one or more



Figure 2: An example of one-dimensional (left), two-dimensional (center), and three-

dimensional (right) photonic crystal [1]

dimensions. The classification into one-dimensional (1D), two-dimensional (2D), and
three-dimensional (3D) photonic crystals depends on whether ¢ is periodic in one,
two, or three dimensions, as shown in Fig. 2. The spatial period of the stack is called
the lattice constant, since it corresponds to the lattice constant of ordinary crystals

composed of a regular array of atoms.

The fact that photonic crystals are artificial materials opens infinite possibilities
on the choice of the dielectric pattern. Furthermore, by designing defects in the
otherwise periodic structure, it is possible to create defect states within the pho-
tonic band gap. According to the dimensionality of the defects itself and to the
dimensionality of the photonic band gap, various degrees of light localization can
be obtained [1|. For example, for a 2D photonic crystal, a point defect represents a

two-dimensional cavity, and a linear defect forms a planar waveguide.

This concept envisages that several optical components could be designed on a
single photonic crystal chip to process optical signals just a conventional electronic
chip. The recently past years have provided important results as regards theory and
experiments of passive photonic crystal blocks: micro-cavities, waveguides, filters,
and lasers.

The present work would like contribute to the research in this area, by offer-
ing some results on the optical properties, disorder and non-linear effects on wave
propagation in semiconductor-based two-dimensional photonic crystal waveguides.
The aim is to lead the reader from the basic concepts of photonic crystals (Chapter
1), up to the properties of a 2D photonic crystal (Chapter 2) and the defect line
induced waveguide in a 2D photonic crystal (Chapter 3). The propagation prop-
erties, the unusual dispersion relation, and the particular regime, known as Slow
Light regime, will be analyzed depthly. Particular attention is devoted to model the

extrinsic disorder induced by the fabrication process and its impact on the propaga-



tion properties of the waveguide (Chapter 4). In the last two chapters, the focus will
be on two techniques to characterize photonic crystal waveguides. The first tool is
the Time-Wavelength Reflectance Map (Chapter 5), developed with Thales Research
and Technology, Paris, France, that permits to evaluate the propagation properties
of the waveguide as function of the wavelength showing us a deep physical insight
for understanding the role of disorder induced scattering and how it is connected to
dispersion. In Chapter 6, a laboratory setup will be presented, based on the Hetero-
dyne Pump-Probe technique, used in a set of experiments at DTU Fotonik, with the
main objective to investigate on the Slow Light regime.

The part of the work that is more related to the fundamental research (Chapters
1, 2, 3) has been carried out mainly at the Department of Information Engineering,
Universita degli Studi di Padova (Padova, Italy), under the supervision of prof.
Andrea Galtarossa. Instead, the part that is more application oriented (Chapters 4,
5) has been accomplished in the Advanced Photonics Lab at Thales Research and
Technology (Paris, France) supervised by dr. Alfredo de Rossi, while the laboratory
part (Chapter 6) has been carried out at the Department of Photonics, Technical
University of Denmark (Copenhagen, Denmark), under the supervision of prof. Mike

van der Poel and prof. Jesper Mgrk.






Chapter

General Concepts on Photonic Crystals

The theoretical approach to photonic crystals is based on the rearrangement of
Maxwell’s equation in form of eigenvalue for the harmonic Fourier components of the
electric and magnetic fields. This formulation has been used to develop numerical
methods to predict their band structure from the geometric properties. For a more
complete theoretical description of photonic crystals properties the reader can refer

to the Sakoda [1] and Joannopoulos [1] books, on which this chapter is based.

1.1 Photonic Crystals

A photonic crystal (PhC) is characterized by a relative dielectric permittivity
&;(r) assumed to be periodic along N directions (with N = 1, 2 or 3) and invariant
along the other 3 — N orthogonal directions. Initially, we assume it extends infinitely
along all the directions. We can model it as a unit cell repeated in space according to
a well defined pattern. All of those can be reduced to the two mathematical concepts
of basis and lattice. The lattice defines the spatial arrangement of the unit cell, while
the basis specifies the content of the unit cell.

The lattice is generated by linear combination of the so-called primitive vectors a;,
where i € {1,..., N}, which are determined by the minimum translation that leaves
the dielectric function unchanged. Choosing a reference frame and placing a lattice
point at the origin of it, any other lattice point has a one-to-one correspondence with

a vector R, linear combination of a;:

N
i=1



10 General Concepts on Photonic Crystals

where n; are integers.
In mathematical terms, the lattice is defined by a vector space V, with basis {a;}.
The dimensionality of V is N. The unit cell of the crystal has the same dimension

of V and the space A. that occupies is determined by the primitive vectors:

‘a1|7 1D
Ae=q |ar X a, 2D (1.2)

|a1 ' (32 X a3)|7 3D.
The dielectric function of a photonic crystal has the property
e(r+R)=¢(r), VREeV, (1.3)

that means the photonic crystal is invariant for any discrete translation defined by
a vector R € V.

1.2 Maxwell’s equation for a photonic crystals

The propagation of an electromagnetic wave in a PhC free of charges and currents

is governed by Maxwell’s equations, which the more general form, in SI units, are

V-D(r,t) =0 V-B(r,t)=0

_ 9B(r,1) ~ OD(r, 1) (1.4)

V x E(r,t) = — VXH<r’t)_T

where E; D, B, H are respectively the electric field, the electric displacement, the
magnetic induction and the magnetic field.

The constitutive relation that relates E and D is

D(r,t) = egE(r,t) + P(r,t)

1.5
with  P(r,t) :50/Xe(r,r’,t,t’; E)E(r',¢")dr'dt’, (15)

where P is the polarization density and is expressed as a convolution in space and
time of the tensor electric susceptibility x.(r,t) and the electric field.
A similar one connects the magnetic filed H to the magnetic inductionB through

the tensor magnetic susceptibility xmn(r, ).



1.2 Maxwell’s equation for a photonic crystals 11

Assuming that the media composing the photonic crystals are isotropic, non-
dispersive, real and non-negative, and non magnetic, the constitutive relations be-

come:
(1.6)

where ¢ and pg are the electric permettivity and the magnetic permeability in free
space, and ¢,(r) is the relative permettivity, defined as €,(r) = (1 + x.(r)).
Using Eqs. 1.6, Maxwell’s equations are simplified to

V-e (r)E(r,t) =0
OH(r,t
V x E(r,t) = —uo#

V-H(r,t) =0
OE(r, t) (1.7)
ot

V x H(r,t) = goe,(r)

Thanks to the linearity of Maxwell’s equations, it is convenient to look for solu-

tions for harmonic fields
E(r,t) = E(r)e ™", H(r,t) = H(r)e ™" (1.8)

The general solution will be the superposition of harmonic modes. Substituting
the formulae 1.8 into Eqs. 1.7, it is possible to recast Maxwell equations in a closed

form for the magnetic or electric field

2

A IV x E(r,w)] = ‘C"—QE(r,w) (1.9)
V x gr(r,w)v xH(r,w)| = C—2H(r,w) (1.10)

where ¢ = 1/,/Eofig is the speed of light in free space. We define the wave number
k =w/c=2m/\ with X\ wavelength of light in free space.

The propagation equations (Eqs. 1.9 and 1.10) have to be considered as distribu-
tion, because include boundary conditions at the interfaces of the different materials
and the continuity of the tangential components of the electric and magnetic fields.

It is possible recast Eqs. 1.9 and 1.10 in the more compact form

OpE(r,w) = =E(r,w), (1.11)

—H(r,w), (1.12)
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where we introduced the operators @E and @H:

~

Op = gr(r’w)v x [Vx], (1.13)
Oy =V x L (rl w)VX] , (1.14)

so that the Maxwell’s equations are transformed in a eigenvalue problem, where
k* = w?/c? are the eigenvalues and the fields are the eigenfunctions.
While O is an operator for a generalized eigenvalue problem, Oy identify an

Hermitian positive definite operator [5]:
< F,OyF >=<OyF,F> VF, (1.15)

where <, > stands for the scalar product. This guarantees that eigenvalues are real
and non-negative, and a complete set of orthonormal eigenfunctions does exist.
The above consideration and the fact that the magnetic field is transverse (V- H
= 0) make more convenient to solve the problem using the Eq. 1.14; this is the choice
usually adopted by the research community and will be also used in this work.
Up to now, the derivation of the master equation is valid for any system for which

the initial assumptions are fulfilled, without further specifications.

1.3 The Bloch-Floquet Theorem

To solve the electromagnetic problem for a PhC, it is necessary to impose the
periodicity of the dielectric function given by Eq. 1.3. Photonic crystals are invariant
under discrete translational symmetry defined by any vector R defined in Eq. 1.1.
Being Tr the unitary operator associated with the discrete translation R, the rule

for transformation reads
5, = TOu Ty,
e = Treli?, (1.16)
H'(r) = (TrH)(T3'r),

where ¢ and H' are the transformed dielectric constant and the transformed field,

respectively.
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Since the PhC is invariant for this kind of transformation, the operator Oy and
the dielectric function € are left unchanged, and the rules become
éH - TRéHT§17
Ty (.17
H'(r) = (TrH)(T3'r),

The application of the operator Tg to the master equation yields a new eigenvalue
problem for the transformed H’, but the condition < Oy, Tx >= 0 implies that H'
must satisfy the same equation that holds for H:

w2

2
OyH="H s 6,TH="T:H (1.18)

c c
Such condition is fulfilled if H' is equal to H within a multiplication factor, which
implies that H is, in the most general form, a linear combination of degenerate

eigenfunctions of the operator Tr
TrH(r) = oH(r). (1.19)

The eigenfunctions of Tk are plane waves and the eigenvalues are complex num-

bers of unitary modulus:
fk(r) = fo@Zk.r TRfk(I‘) = €Zk.Rfk(I‘) o = 6_Zk.R, (120)

where f is the eigenfunction and k is the wave-vector. Notice that all the eigenfunc-
tions fis(r) and fi(r), with k' = k + G so that G- R = 2nm, are degenerate.
The condition
G- R =2nr (1.21)

defines the dual space G of the vector space V. If {a;} is the basis for V, the basis
for the dual space G is {g;}:

N
i=1
where [; are arbitrary integer numbers and d;; is Kronecker’s delta.
Two eigenfunctions fi/(r) and fi(r) are degenerate if k' —k € G.

The general solution of the master equation is therefore

Hy(r) = ) c(k+ G)fiicl(r). (1.23)
GeG
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The divergence condition V-Hy(r) = 0, that imposes that Hy is transverse, is
automatically fulfilled if (k + G) - fx1c(r) =0, i.e. fix c(r) is also transverse.

Since Hy(r) is also eigenfunction of Ty with the same eigenvalue o of fi(r), the
application of Tk to Hy(r) yields

TRHk<I'> = Hk(r — R) = G_Zk.RHk(I‘) (124)

The last equation represents the Bloch-Floquet theorem, that states that the gen-
eral solution of a master equation invariant under a translational symmetry operation
Tg is a periodic function uk(r) multiplied by a phase factor exp(ik - r). The period
of uy(r) is determined by the elementary translational operators Tai.

The operator formalism and the use of symmetry have helped in finding the
general form for the solution of Maxwell’s equation in a PhC. What has been derived
is also valid for the electric field, because the knowledge of one field determines the
other one by straightforward application of Maxwell’s equations.

From Eq. 1.24, it is evident that Hy/(r) = Hy(r) if k' — k € G, because of the
sum over the G vectors; different k' do not necessarily correspond different solutions
Hy(r). The physical meaning is that in a PhC the wave vector k is conserved within
a vector G, and so k is not a “good quantum number” for the system.

The wave vectors k span the reciprocal space K2, which is the dual space of the
Euclidean space R3. The reciprocal space can be divided into classes of equivalence
k], that we define as

k] ={(k,K) e K’ xK*: kK -~k € G}. (1.25)

Each class of equivalence [k] points to different Hy, where k is representative of
the class. The class of equivalence [k] of the momentum k is conserved in a photonic
crystal, and [k| is a good quantum number. The representative of each class [K] is
called the Bloch vector k. Even if the choice of the Bloch vectors is not unique, they
are a convenient working choice, lending themselves to a physical interpretation.

Usually the Bloch vector is taken as the smallest element of the class, in modulus,

and the ensemble of such vectors define the first Brillouin zone (BZ):

BZ = {k ckK® . |kl = min(|z|)} (1.26)

z€[K]

It is possible to define a unit cell in the reciprocal space. Correspondingly, there

will be a reciprocal lattice which determines how the unit cell tiles the reciprocal
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space. We can obtain the primitive vectors g; in the reciprocal space G from Eq.
1.22

a; X Jji
P S ok 3D; 1.27
g PPN (1.27)
a; X 0k
= 9rlim —2 " oD: 1.28
& Wéli%ai-(an(Sk)’ ’ ( )
g = oL 1D; (1.29)
|a |

where k gives the direction of the axis perpendicular to the plane in which there is
the crystal, and 4, j, k label the primitive vectors.

According the Eq. 1.26, the Brillouin zone is the region delimited by cutting the
reciprocal space with planes perpendicular to the primitive vectors having distance
|g;/2| from the origin. Thus, once the primitive vectors of the reciprocal lattice have
been calculated, the Brillouin zone can be easily drawn.

Before proceeding, it is worth to remark that the spectrum w can be classified by
considering also other symmetry properties for the PhC. For example, the invariance
of the master equation under time reversal yields w(k) = w(—k). This means that
we can reduce the study of the spectrum to the Brillouin zone with non-negative
Bloch vectors. There are also other symmetries that can held in spectrum calculation
simplification, as transformation with a fixed point (rotations, inversion, reflections),
gathered in the point group of the crystal. Thanks to them, we can reduce the set of
the points where the master equation has to be solved. This reduced set is called the
irreducible Brillouin zone, and can be much smaller than the whole Brillouin zone.

Furthermore, to avoid solving the master equation for every point of the irre-
ducible Brillouin zone, it is often enough to do it along the symmetry lines, because
they correspond to higher degree of symmetry with respect to the internal points

and, for this reason, are more representative.

1.4 The Band Structure

The eigenfunctions of the master equation can be classified by means of the Bloch
vector k. As k varies in the Brillouin zone, the eigenvalues k? = ‘g—; obey to a certain
dispersion relation w = w(k). There is no one-to-one correspondence between the
Bloch vector and the solutions of the master equation. In fact, it is possible that

two solutions Hy(r) have the same Bloch vector, but different expansion coefficients
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c(k +B) in Eq. 1.24. There are infinite choices for ¢(k + B) yielding independent
linear combinations of the basis functions fi;g(r). This means that for each value
of k we expect an infinite set of modes with discretely spaced frequencies, which can
be labeled with a band index n

Hio(r) = Y ok + Glfiea(r),  w=w(k). (1.30)

A more intuitive view of the problem is possible considering the analogy with the
quantum mechanics problem of the electron in a box. Considering the eigenvalue
problem as restricted to a single unit cell of the PhC, it is similar to the restriction of
the eigenvalue problem for the electron to a finite volume that leads to a discretization
of the energy spectrum. To have some general prediction on the function w(k), we
can observe that k enter in the master equation only as parameter, so we expect the
frequency of each band for a given k to vary continuously as k varies. So, the modes
of a PhC are a family of continuous functions, w,(k), indexed in order of increasing
frequency by the band number n. The information contained in these functions is
called the band structure of the PhC.

In addition to the Bloch vector and the index n, there is also another impor-
tant degree of freedom that characterizes this solution of the master equation: the
polarization o. The magnetic field vector has three components, two of which inde-
pendent, because of the divergence equation. As a consequence, for each choice of
(k,n), there are two independent solutions with different polarization. In general,
the polarization is not independent of the Bloch vectors: o = o(k).

For this reason, it is convenient to include the polarization degree of freedom
in the band index n. Only in specific cases, where at least one polarization is in-
dependent of the Bloch vector, the index ¢ is used to label the eigenfunctions and
the eigenfrequencies. This is, for instance, the case for in-plane propagation in 2D

photonic crystals.

1.5 The Photonic Bandgap

A photon with frequency w propagates in a PhC, only if 3(k,n) : w = w,(k).
Thus the spectral region [wy,ws] for which Yw € [wy,ws] Blk,n) : w = w(k) is
called “photonic bandgap” and is characterized by a null density of states (DOS)
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Figure 1.1: Geometry of a 1D PhC.

p(w) defined [6] as
pw) =Y d(w—wa(k)). (1.31)

n keBZ

The DOS is another important quantity characterizing the PhC. Contrary to
the smooth DOS for an homogeneous medium, in a PhC DOS presents jumps with
peaks and dips around a mean value given by the effective medium theory [6][7].
The calculation of the DOS is an important check for the existence of a photonic
bandgap, because it accounts for all the Bloch vectors in the BZ, whereas the band

structure is often limited to the symmetry lines of the BZ.

In order to understand intuitively photonic bands and bandgaps, it is useful to
consider a simple structure, like a dielectric multilayer (1D PhC), with two layers
characterized by the dielectric constant €, and €5 and thickness [; and [o, respectively.
The optical properties of this structure are well-know [3]. We take the z axis in the
direction perpendicular to the surface of the dielectric layers as shown in Fig. 1.1. For
simplicity, we consider only electromagnetic waves propagating in the x direction and
linearly polarized in the y direction. The magnetic field is denoted by the complex

function H(z,t) for convenience.

The wave equation for H(x,t) is given by

¢ 0*H O°H
e (x) 02 o2

er(r) = (x4 a) (1.32)

where a = [; + [5 is the total length of two dielectric layers.

Because of the periodicity of &,(z), the function e !(x) is also periodic and, thus,
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expandable in a Fourier series

S = Y e (zzzmx), (1.33)

m=—00

where m € N and {k,,} are the Fourier coefficients.
Assuming ¢, (x) real, it holds k_,,, = Kk, *. We know that H(x,t) can be expressed

as a Bloch function
H(z,t) = Hy(x,t) = fi(x) exple(kz — wit)], fr() = fu(z +a), (1.34)

and, hence, can be expanded in a Fourier series, too:

o0

Hy(w,t) = Y Hyexp [z <k + 27””) - zwkt] , (1.35)

a

where {H,,} are the Fourier coefficients.
Assuming for simplicity that only the components with m = 0, &1 are dominant

in the expansion 1.33, it reads

2 2
e 1 (x) ~ Ko + K1 exp (zlm> + K_1exp (—zlx) : (1.36)
a a
and substituting Eqgs. 1.35 and 1.36 into the wave equation 1.32, we obtain
2m(m — 1)1 2 1]
K1 [/f + —W(W; )] Hpo1 + ko {k + —W(WZ+ )] Hppia
(1.37)
2 2 2
R~ [w—g—mo <k+ Wm)) ]Hm.
c a
For m = 0,
c? 21\ ° 21\ 2
Hy=———— k—— ) H_ | kE+— | Hyf. 1.38
0 w,%—liok%Q[Kl( a) 1Tk 1( +a) 1 (1.38)
For m = —1,
H c F- Y e (1.39)
= K - — o+ Ko : :
02— ko(k — 21 /a2 | a 2 1o

Therefore, if k ~ m/a, and if w} ~ rok?c?, Hy and H; are dominant in the
expansion 1.35, and we can neglect all the other terms and obtain the following

coupled equations:
(Wi — kok*c®)Hy — k1c*(k — 27 /a)?H_y =0

(1.40)
—Kk_ 1Pk Hy + [wi — ko(k — 27 /a)*c)H_; = 0,
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Figure 1.2: Dispersion relation for a 1D PhC (solid lines). The boundary of the BZ
is denoted by two vertical lines. The dispersion lines in the uniform material are
denoted by the dashed lines. They are folded into the BZ taking into account the
identity of wave vectors which differ from each other by a reciprocal vector lattice
G, in this case equal to 27 /a. When two dispersion lines cross, they repel each other

and a photonic bandgap appears.

which solutions are

e ac k1|
= — + |k | £ 2 — h? 1.41
ve =Tl o (- 5 (L)

where h = k — 7/a, as far as |h| << 7/a.

e e
;\/K/O—“ﬂ}l <w<;\/ /€0+|/€1| (142)

there are no modes. The gap, of course, disappears if k; = 0, i.e. when there is no

In the interval

spatial modulation in the dielectric function.

When the spatial modulation is small, the dispersion relation in the PhC is not so

far from w = vk, but it should be expressed with the wave vector in the BZ, [7/ 7 /al.

In addition, if two dispersion lines cross each other, a frequency gap appears. This
consideration are schematized in Fig. 1.2.

The group velocity of an eigenmode is given by the slope of the dispersion relation:

Ow(k)

V= g

(1.43)
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From Eq. 1.42, we can notice that for & — 7/a, h — 0, hence also v, — 0. This
means that eigenmodes near the BZ’s edge are standing waves.

As regards the first band, if £ — 0, then w — 0. This is the long-wavelength limit,
according to which the PhC can be treated as an effective homogeneous medium,
with a linear dispersion w = ck/neg| 1], where neg = |/Eenr is the effective refractive
index. For the dielectric multilayer used in our example, an analytical expression for

cer has been obtained [9]:

Eeoff = (61[1 + 8212)/&.

1.6 The scaling properties

One of the differences between photonic crystals and conventional crystals is that
photons do not have a fundamental length, contrary to electrons, which fundamental
length is the Bohr radius a,. This feature leads to the scaling invariance for the
macroscopic Maxwell’s equations. The PhC can be expanded or reduced via the

following transformation
g'(sr) = e(r), (1.44)

where s is the scaling factor. It is easy to show that the eigenfunctions and the eigen-
values of the master equation scale with e(r): H'(sr) = H(r) and o’ = w/s. This
means that the new mode profile and its corresponding frequency can be obtained by
simply rescaling the old mode profile and its frequency. The solution of the problem
at one length scale determines the solutions at all the other length scales. This prop-
erty is of particular interest, because it permits to develop a particular geometries
and then to tune the portion of the spectrum by changing only the lattice constant
of the PhC.

Just as there is no fundamental length scale, there is also no fundamental value

of the dielectric constant. If we use the following transformation
g'(r) = e(r)/s?, (1.45)

we find that the harmonic modes of the new system are unchanged, but the frequen-
cies are all scaled by a factor s, w' = sw. This implies that for a PhC made of two
media €1, €9, the eigenfrequencies depend only on the ratio &;/es.

Combining the above two relations, we can see that if we scale ¢ by s? and also

rescale the coordinates by s, the frequency w is unchanged.
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1.7 The plane wave expansion method

After almost two decades of research in photonic bandgap materials, several tech-
niques have been proposed for solving Maxwell’s equations [10], [11], [12], but the
standard de facto for computing the band structure of semiconductor-based photonic
crystals is the plane-wave expansion method, based on the truncation of the sum in
Eq. 1.23, that allows to reduce the master equation to a matrix eigenvalue problem.
The coefficients ¢, (k + G) and the eigenfrequencies w, (k) are obtained by standard
numerical diagonalization of the resulting Hamiltonian.

Since the basis functions fi(r) are plane waves, the Eq. 1.23 is explicitly written

as

Hi(r) = ) ) co(k+ G)f, e, (1.46)

GeG o
where 0 = o(k + G) represents the two polarizations of f,, with f, - (k+ G) = 0. By
truncating the index G € G to a cut-off K : |G| < K, Eq. 1.46 becomes a finite
expansion. The cut-off is the approximation imposed by the numerical method; in
fact, it would be impossible to store infinite arrays in the computer memory. Eq. 1.46
is the Fourier expansion of the magnetic field truncated to a cut-off and ¢,(k + G)
are its Fourier coefficients.

The next step is to rewrite the master equation 1.12 in the Fourier space by
calculating the matrix elements of the Hamiltonian operator Oy on the plane-wave

basis. The result is
2

Y Ko (k+ G = %ca(k +G), (1.47)

/ !
G0

where the Hamiltonian matrix is

/ £, £, —f,,-f
Hee =k +Gllk+G'lnga | 77 72 o 1.48
GG | | reXe! <_f01 'fa; £, 'fo'l ( )
and the matrix [ng.a/| = [eq.q/]™" is the inverse of the dielectric function Fourier
transform .
cea = — | e(r)eGC) rgr, (1.49)
) ‘/'C ‘/C

with V, is the volume occupied by the unit cell.
The matrix [H] is a square matrix with dimensions 20 x 20, while [n] and
[e] have dimensions M x M, with M the number of vectors G below the cut-off.

Likewise the operator Oy, also H is Hermitian with non-negative eigenvalues.
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The equation 1.48 is the eigenproblem for [H]. Standard numerical diagonal-
ization of [H] yields the eigenfrequencies w, (k) and, optionally, the coefficients
cn(k + G). For each diagonalization, the routine outputs a set w,(k), with n =
1,...,2M, corresponding to the energies of 2M bands for a fixed Bloch vector k. In
order to calculate the whole band structure, the operation has to be repeated for a
certain set of k vectors in the BZ, usually the edges of the irreducible BZ.

The truncation of the sum in Eq. 1.46 is the trick that allowed numerical solu-
tion of the master equation. In fact, the exact Fourier transform of the operator Oy
would be a matrix of infinite dimensions, whereas [H] is limited to 2M x 2M . For this
reason, the matrix eigenvalue problem is an approximation of Maxwell’s equations
and an error will occur in the calculated eigenfrequencies. Calling A, (k) the true
eigenvalue and )\gM)(k) the eigenvalue calculated with the numerical routine, the er-
ror committed in evaluating the band energies will be AELM)(k) = |[A\n(k) — /\%M)(k)|.
As M — oo, the matrix [H] approach the true Fourier transform of Oy and, conse-
quently, the band energies should converge to the true values.

The core of the problem is related to the Fourier transform of the dielectric
function ,(r), which is into the operator Oy as e,(r). Because of [1/e,]M) £
([e,]*)~1, due to the jump discontinuities of the dielectric function at the interfaces
among the media of the PhC, the convergence of the plane-wave expansion method
is not a trivial problem.

The correct choice for uniform convergence is [n] = [g,]7" [13], which is called
the inverse rule, because [g,]7! satisfied uniformly the boundary conditions for the
electromagnetic field, while [1/¢,] does it only non-uniformly. With this choice, for
2D PhC, the error A,(lM)(k) is below 1% already with M of the order of 100.

The plane-wave expansion method with the inverse rule is thus able to output
accurate eigenfrequencies with a moderate CPU time and a complexity of O(M?),

due to the standard diagonalization and inversion routines.



Chapter

Two-dimensional Photonic Crystals

In the precedent chapter, it has been shown that the electromagnetic problem
for a photonic crystal can be treated with the operator formalism, by recasting
Maxwell’s equations into a closed form for either the electric or the magnetic fields.
The translational symmetry of the dielectric function implies that the solutions have
to be Bloch waves. The frequency spectrum is organized in the band structure, with
the classification of the energy levels in terms of Bloch vectors k and band index
n. The band structure is obtained by numerical solution of the master equation by
means of the plane-wave expansion method. Now we will apply these concepts and
tools to the study of semiconductor-based two-dimensional photonic crystals and
then of two-dimensional photonic crystal slabs. The chapter is mainly based on the
works of L. C. Andreani and M. Agio [11].

2.1 2D Photonic Crystals

A 2D photonic crystal is characterized by a dielectric function periodic in a plane
and homogeneous in the direction perpendicular to it (see Fig. 2.1). In other word,
choosing a reference system xyz, the dielectric function is €, = ¢,(x,y). The discus-
sion will be focused on 2D photonic crystals with a triangular lattice of air holes in
a semiconductor material. The band structure is calculated only for in-plane propa-
gation, that is k = (k,, ky,0). Nevertheless, many results are valid for 2D photonic
crystals in general.

Figure 2.1 shows a top view of this photonic crystal and the correspondent BZ

and irreducible BZ delimited by the symmetry lines 7" and 3. The holes radius is
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Figure 2.1: On the left, top view of a 2D photonic crystal made of a triangular
lattice of period a, with air holes of radius r, in a dielectric medium with dielectric
function €. On the right, 2D reciprocal space and the hexagonal Brillouin zone with

symmetry points and lines. The gray shaded area is the irreducible Brillouin zone.

r, the lattice constant a and e, the background dielectric function. A choice for the

primitive vectors is

a = a- (1,0)
1 V3 (2.1)

=y g

V3
o
By using Eq. 1.29, the reciprocal-space primitive vectors are

and the area of the unit cell is A. = a? %

2 1
g=" (1)
a V3
o 9 (2.2)

g2=7'(07ﬁ)-

We can rewrite the Maxwell’s equations removing the dependence from z and

obtain two independent sets of equations:

0 0

ayEz(p, t) = —pog Help: 1)

0 0

- — [ — 2.3
asz(pa t) /JJOatHy(p7 t) ( )
0 0 0
%Hy(pa ZI}') - 6_yH:E(p7 t) - 505T(P>&Ez(/)a t>7
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and
%Hz(p,t) = go&,(p )gt (s 1)
S H.(p,1) = —coe () s Fy ) 2.9
%Ey(p, t) — (%Ex(p, t) = —Mo%Hz(% t),

where p = (z,y) denotes the 2D position vector. Mixing the two sets of equations
to eliminate H,, H, from Eq. 2.3, and £, and £, from Eq. 2.4, we obtain:

1[0 o 16
er-(p) {8952 + ayQ} E.(p,t) = E@Ez(ﬁ t) (2.5)
o 1 0 0 1 0 2
AU I YCREEAVEEDE 2.
{89&&( Yor | Byep )ay} (p:t) = 5o t:(p,1) (2.6)

As done in the general case, we seek for harmonic solution of these equations
E.(p,t) = E.(p,t)e ™", H.(p,t) = H.(p,t)e ™" (2.7)

Substituting these solutions into Eqs. 2.5 and 2.6, we obtain the master equation

for 2D photonic crystal given by

SeEA0) = 5 | 2 + s | B = B (28)
Outt () = | goa+ o ) = S, (29

The two eigenfunctions defined by Eqgs. 2.8 and 2.9 represent two different po-
larizations; the first is called transverse magnetic (TM) polarization, for which the
electric field is parallel to the 2 axis, while the second one is called transverse electric
(TE) polarization, for which the magnetic field is parallel to the z axis'.

Switching to the Fourier space of the plane-wave expansion, the master equation
is split into:

2
w
> (k+G): (k+G)gcco(k+G) == (k+G), TE modes,
c
@ ) (2.10)

Z k+ Gllk+ G'|ng.cco(k+ G') = i—zc@(k + G), TM modes,
G/

!The TE modes correspond to (E,, E,, H,), while TM modes to (E,, H,, H,), where the field
components are functions of x,y only; the other components are zero. The nomenclature used here
is the same of [1], but in literature, other nomenclatures are often found: H-modes for TE modes
and E-modes for TM modes [4]; also p-modes for TE modes and s-mode for TM-modes [6].
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Figure 2.2: Photonic bands of a 2D photonic crystal made of a triangular lattice of
air holes (r = 0.3a, in a dielectric medium (e, = 12). Solid (dashed) lines refer to
TE modes (TH modes).

that leads to two different band structures one for the TE modes and one for the
TM modes. Thus a 2D photonic crystal may show a bandgap just for only one

polarization or for both polarizations. In the last case, the bandgap is called complete.

2.1.1 The band structure

The band structure is calculated along the symmetry lines of the Brillouin zone:
I'-K,T'- M, and K - M. The G are constructed by linear combination of the

reciprocal-space primitive vectors g;. The result of the integral in Eq. 1.49 is

(Eair - 5diel)2ﬂJ1(Gr>a if G 7’é G/,

cc.a = A . (2.11)
feair + (1 = f)ediel, if G =G/,
where e,;; = 1 is the air dielectric constant, c4is = &, is the material dielectric

function, G = |G — G/|, Ji(z) is the first order Bessel function, and f = 7r?/A, is
the air filling factor.
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Figure 2.2 shows the photonic band structure calculated for air holes with radius
r = 0.3a, in a dielectric medium with &, = 12. The system exhibits a photonic
bandgap only for the TE modes (solid lines). For TM-modes (dashed lines), the
bandgap is closed by the second band. Notice that the first bands of both TE-modes
and TM-modes have linear dispersion for w — 0, that is the long wavelength limit.
The TE-modes and TM-modes dispersions have different slope for w — 0; this means
that the two modes have different effective dielectric function. The effective dielectric

function for TM-modes is given by the analytical formula

Eeft = [€air + (1 — f)edie = €a,q- (2.12)

The effective dielectric function for TE-modes does not have an analytic ex-

pression. Effective medium theory gives that its value is comprised between the

Maxwell—Garnett bOllIld
= 1+ (2 13)
Ee Edie s .
iid diel 1 -

where @ = (€air — €diel)/(€air + Ediel) i the depolarization factor, and the inverse
Maxwell-Garnett bound, obtained by interchanging the filling fractions, f and 1— f,
and the dielectric functions e,;, and cgiq in the Maxwell-Garnett bound.

The correct value can be calculated numerically [6][15][7]. Thus, in the long-
wavelength limit, a two-dimensional photonic crystal behaves like an homogeneous
uniaxial crystal?, where the optical axis is along the z direction and the dielectric
functions € and €, are the effective values for TM and TE modes respectively. For

two-dimensional photonic crystals e > e, always. The effective dielectric tensor

reads
gl 0 0
e=10 ¢ 0 (2.14)
0 0 €||

For finite frequencies the photonic crystal effects become important and the mean
field approximation is more complicated [6]. Nevertheless, it is still meaningful to
speak in terms of effective dielectric function as the zero-th term in a perturbative
expansion of the band structure [16].

Looking again at Fig. 2.2, it is found that TE-modes have a photonic band gap

also around wa/2mwc =~ 0.6. However, the band gaps lying at higher frequencies are

2That is true for the square and the triangular lattices. For lattices with a lower symmetry the
crystal is biaxial, with two effective dielectric functions for TE-modes [15].
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Figure 2.3: Gap map for a photonic crystal with triangular lattice from [I]. A
complete photonic band gap opens for 0.41a < r < 0.5a (yellow area).

more sensitive to disorder, contrary to the first band gap at wa/2mc ~ 0.25. Indeed,
for the higher bands, the coefficients ¢,(k + G) with large k + G vectors have a
stronger weight in the plane-wave expansion, contrary to what happens for the lower
bands.

Disorder primarily affects the coefficients with large k + G vectors, because they
correspond to plane waves with short wavelength, more sensitive to roughness and
other irregularities. Since disorder is practically unavoidable in real samples, it is
important to devise photonic crystals where the desired properties are robust [17].

It has been shown that the band structure of Fig. 2.2 exhibits band gaps only
for TE-modes. However, this is true only for particular choice of r and . It is
interesting to see what happens if one of the two parameters is varied. In theory,
one could change the dielectric function e, but in practice, its value is determined
by the choice of the material, which is the most important parameter. For the most
common semiconductor-based photonic crystals (Si, GaAs, InP), ¢ is within [11, 12].

For this reason, only the hole radius is considered as a free parameter.

2.1.2 Gap Maps

The existence of a complete photonic band gap is one of the most attracting

features of photonic crystals. If one wants to know whether a structure has a full
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band gap, or simply locates the band gaps for each polarization, it would be necessary
to examine a large number of band structures, one for a given value of the hole radius
r. It turns out, that is more convenient and clear to visualize only the edges of the
photonic band gap as a function of r in the the so-called gap map. Fig. 2.3 shows
the band gaps for the parameters of Fig. 2.2, with r/a varying from 0 to 0.5, which
corresponds to the closed-packed condition. There is a wide band gap for TE-modes
(solid lines) that opens for r > 0.17a and increases with the hole radius until it
reaches the maximum value for r ~ 0.45a. Another band gap for TE-modes occurs
for a smaller range of  and at higher frequencies. This is the second gap seen in the
band structure of Fig. 2.2, where r = 0.3a.

Concerning the other polarization (dashed lines), the lowest frequency band gap
is located around r = 0.45a, with a steep profile that covers the frequency range
wa/2mc ~ 0.35 — 0.6. Smaller band gaps appear at higher frequencies for r ~ 0.4a.
The map of the complete band gap is determined by the intersection of the TE-
modes band gaps with the TM-modes band gaps. This happens only for » > 0.41a
in the frequency window wa/2m¢ ~ 0.35 — 0.55 (gray shaded area). It is worth to
mention that the gap edges shift towards higher frequencies as the radius increases,
in accordance to the reduction of the effective dielectric constants ¢ and ¢ .

In order to obtain a complete photonic band gap in this system, it is necessary
to have a high air fraction. Such condition might be critical from the experimental
point of view, because of intrinsic limits in the fabrication process. In fact, it would
be difficult to reach high aspect ratios with hole walls as thin as membranes. The
alternative is to release the requirement of a full band gap and to work with a partial
band gap using polarized light. For a two-dimensional photonic crystal of air holes
in a semiconductor one finds convenient to exploit the wide band gap given for TE-

polarization.

2.2 2D Photonic Crystal Slab

A two-dimensional photonic-crystal slab is made of a planar dielectric waveguide
that is deeply etched according to a two-dimensional pattern. In other words, the
dielectric function is periodic in the x — y plane and is a step-wise function in the
vertical direction z: VR € V, Vz € R, ¢,(x+ R,2) = ¢.(x,2), with x = (z,v)
and V is the vector space associated to the two-dimensional lattice. The number of

parameters involved in the characterization of these systems is large: the structure of
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the planar waveguide (layers, thicknesses, dielectric functions), the two-dimensional
photonic crystal (lattice and unit cell) and the etch depth. Nevertheless, there are few
representative cases that are able to address all the important features pertaining to
two-dimensional photonic-crystal slabs. Since the attention is focused on the effects
due to the planar waveguide, the photonic crystal pattern is chosen una tantum as a
triangular lattice of air holes. At this stage, the etch depth is considered as infinite,

the cladding layers above and below the core are equal.

Fig. 2.4 gives examples of planar waveguides patterned with a triangular lattice
of air holes. The thickness of the core layer is d, whereas the cladding layers are
considered as semi-infinite. The low panels display three types of planar waveguide:
(d) a dielectric self-standing membrane, also known as air bridge, (e) waveguide
based on a semiconductor heterostructure, for instance a GaAs/AlGaAs system, (f)
waveguide with strong asymmetry, like a silicon-on-insulator wafer. The air bridge
is a typical strong-confinement waveguide, while the GaAs/AlGaAs system belongs

to the weak confinement case; both waveguides are symmetric.

The photonic band structure of these systems is more complicated than for ideal
two-dimensional photonic crystals, because of the finite-height of the two-dimensional
pattern. For symmetric waveguides, the modes are still even or odd with respect to
the mid-plane of the core layer. However, they are not TE-modes or TM-modes
anymore, because the fields are also function of the z coordinate. Nevertheless, it
makes sense to call them TE-like modes or TM-like modes. For asymmetric waveg-
uides such separation breaks down and the band structure has to be calculated by
solving the master equation with all the transverse field components. However, the
main complication with respect to two-dimensional photonic crystals consists of the
so-called light-line problem and of the existence of Bloch modes with a cut-off. In
fact, these structures support two kinds of modes. If the waveguide thickness is not
too small, guided modes exist whose energies lie below the light line of the cladding
material (or light lines, if the waveguide is asymmetric). An example of a band

structure for these kind of systems is displayed in figure 2.5.

The modes below the light line are true stationary Bloch modes and, ideally, they
are not subject to propagation losses. Above the light line of the cladding material,
the spectrum becomes a continuum of states with resonances called quasi-guided
modes. Since these modes lie within the leaky modes of the waveguide, they exhibit
intrinsic propagation losses due to out-of-plane diffraction. Moreover, the planar

waveguide can be single mode or multi-mode in the frequency region of interest. If
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Figure 2.4: Upper panels: (a) slab photonic crystal of thickness h patterned with a
square lattice of dielectric rods, (b) slab photonic crystal of thickness h patterned
with a triangular lattice of air holes. Lower panels: (c¢) strong-confinement symmetric
waveguide, i.e. patterned self-standing dielectric membrane (air bridge), (d) weak-
confinement symmetric waveguide (e.g. patterned AlGaAs-GaAs-AlGaAs system),
(e) patterned asymmetric waveguide (e.g. silicon-on-insulator). The values of the
dielectric function given here are reasonable, because for typical semiconductor, ¢ is
within [11,12)].

the waveguide is multi-mode, there will be Bloch waves with a cut-off corresponding
to the onset of a higher-order mode in the planar waveguide. All of these concepts

appear in the photonic band structure.

There are mainly four numerical methods that solve Maxwell’s equations for
two-dimensional photonic-crystal slabs: the plane-wave expansion method, with a
super-cell in the vertical direction that accounts for the waveguide [18|, the finite-
difference time-domain (FDTD) method [19], the scattering matrix method [20], and
magnetic field expansion method [14]. Each one has its advantages and its flaws. In
particular, the plane-wave expansion method with the super-cell is limited to energies
below the light line; the finite-difference time-domain method is time consuming and
less accurate than frequency-domain methods; the scattering matrix method does
not directly outputs the band structure; in the last one, the photonic band structure
is calculated by expanding the magnetic field in the basis of guided modes of the

planar waveguide, where each layer is taken to have an average dielectric function.
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Figure 2.5: Projected band diagram for a photonic crystal slab of air holes in dielec-
tric. The gray shaded region is the light cone: the projection of all states that can
radiate in air. Black/gray lines denote guided modes (confined to the slab) that are
even/odd with respect to the horizontal mirror plane of the slab, whose polarization
is TE-like/ TM-like, respectively. The bandgap is present only for the TE-like modes.

The approach goes beyond the nearly-free approximation of Ochiai [21], since no
perturbative assumption is required, and it is valid also for strong modulation of the

dielectric function.

2.2.1 The Band Structure

The photonic band structure of photonic-crystal slabs is characterized by the
light-line problem, which discriminates between guided modes and quasi-guided
modes. This is one of the main novelties with respect to conventional photonic
crystals. Moreover, it has been mentioned that there can exist Bloch waves with
a cut-off, which depends on the waveguide geometry. The structure of the dielec-
tric matrix [g] is the origin of propagation losses in photonic crystal slabs. When a

guided mode is folded, it crosses the air light line and enters the leaky mode region.
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Figure 2.6: Photonic bands for an air-bridge structure, with hole radius » = 0.24a.
(a) Waveguide thickness d = 0.3a; (b) waveguide thickness d = 0.6a; (c) ideal 2D
case. Solid (dashed) lines represent modes that are even (odd) with respect to the
xy mirror plane. The dotted lines in (a) and (b) refer to the light lines in air and in

the effective waveguide material.

However, the mode remains truly guided, because the coupling with leaky modes
is null, since the dielectric tensor of the effective waveguide is diagonal. Below the
light line, the photonic band structure is made of guided Bloch states, which may
form a photonic band gap. Once the Bloch mode has crossed the light line, even
if it is calculated as a state with zero line-width, in fact, it becomes a resonance,
due to the non-zero off-diagonal elements of the dielectric matrix [¢], which couple
the Bloch mode to the external field. Therefore, these states are subject to intrinsic
propagation losses. The physical process that causes losses, is thus diffraction, since
states with different G vectors are coupled by the off-diagonal elements of [¢], and
the origin of diffraction is the periodicity of the dielectric function.

The spectrum is a continuum of states and the photonic band picture seems to
break down. However, assuming that above the light line, the dispersion relation
of photonic crystal slabs is not a mere continuum of states, but it is organized in
resonances, with central frequency and width well defined, the photonic band picture
is still valid. In summary, the photonic bands lying below the light line represent the
dispersion of guided modes, while those above the light line represent the dispersion
of resonances. The photonic band picture is valid also for modes above the light line,

provided that the structure is properly designed [22].
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Figure 2.7: Photonic bands for an SOI structure, with hole radius r = 0.24a. (a)
Waveguide thickness d = 0.3a; (b) d = 0.6a; (¢) d = 1.0a. Solid (dashed) lines
represent modes that are even (odd) with respect to the xy mirror plane. The

dotted lines refer to the light lines in the effective core and cladding materials.

The concept of photonic band gap needs to be redefined in a 2D photonic crystal
slab, because if we consider states just the guided modes it is not characterized by
a null density of states. In Eq. 1.31 the sum is performed over the whole Brillouin
zone, which includes the leaky mode region, so considering that above the light line
the states are organized in resonances, we can define the photonic band gap as the
spectral region [wi, wy] for which Yw € [wi,ws], P (k,n) : w = &, (k), where @, (k) is

either a guided mode or a resonance.

2.2.2 Vertical Confinement Effects

Going back to the structures of Fig. 2.4, it is important to study the two most
representative systems: the strong confinement waveguide (air bridge, Fig. 2.4¢) and
the weak confinement waveguide (AlGaAs/GaAs/AlGaAs, Fig. 2.4d). The pattern
is a triangular lattice of air holes (Fig. 2.4b). The aim is to see the dependence of
the photonic band structure on the waveguide thickness d and on the hole radius r
for both weak and strong confinement cases. The band structure is calculated along
the symmetry lines of the two-dimensional Brillouin zone. Since these systems are

symmetric, the bands are classified in TE-like modes and TM-like modes.
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Bands

Fig. 2.6 shows the photonic band structure of the air bridge for a hole radius
r = 0.24a and waveguide thickness d = 0.3a, 0.6a, compared with the ideal two-
dimensional case. The bands of the two-dimensional system, Fig. 2.6c, exhibit a
photonic band gap between the first and second band for even modes (TE-modes).
The bands of the photonic crystal slab fall partly in to the guided mode region, where
they agree with those calculated by Johnson, S. C., et at. (1999), and partly in the
leaky mode region, where they must be viewed as resonances. For thickness d = 0.3a
(see Fig. 2.6a), the lowest bands are qualitatively similar to their two-dimensional
counterpart, but they are also strongly blue-shifted due to field confinement in the
z direction. The gap in the TE modes opens between wa/2mc ~ 0.29 — 0.34, while it
is located between 0.2 and 0.23 in the two-dimensional case. The confinement effect
is stronger for odd modes. In the long-wavelength limit, the waveguide behaves
as a uniaxial medium, with ¢ = €.,, given by Eq. 2.12 and being larger than
€1 = Egp = €4y, approximated by Eq. 2.13. In the two-dimensional case, odd modes
have the electric field along 2 and feel the largest dielectric constant ): hence they
are better confined in the waveguide and have a larger blue-shift compared to even
modes.

The six photonic modes at the point I' in each polarization can be interpreted as
the fundamental waveguide mode at the lowest non-zero reciprocal lattice vectors,
folded in the Brillouin zone and split by the dielectric matrix. Notice that the in
the photonic crystal slab with d = 0.3a, the modes up to wa/2mwc ~ 0.57 can be put
in one-to-one correspondence with the bands of the two-dimensional case, indicating
that the waveguide is single mode. A second-order waveguide mode appears above
wa/2mc ~ 0.57. Analogous considerations hold for the case of waveguide thickness
d = 0.6a, where the field confinement is less pronounced. Moreover, a second-order
waveguide mode starts at wa/2mc ~ 0.3 and the bands at higher frequencies become
more complex.

The example allows to discuss the trend with waveguide thickness with fixed
hole radius r = 0.24a. For a small value of d/a, the waveguide is single mode in a
wide frequency range and the photonic bands can be interpreted as two-dimensional
bands blue-shifted by the field confinement. The confinement is stronger for odd
modes. By increasing the ratio d/a, the blue-shift is reduced and a second-order
waveguide mode occurs with decreasing cut-off frequency. For d > 0.6a, the second-

order mode falls into the gap of even modes. When defects are present in the band



36 Two-dimensional Photonic Crystals

07 07 r y 07 - y —
05 - 0.5 0.5 :
04 F 04 04
g 8 g
o1 - $ [T [ S— B S g [ [ E— u S— SRS SR
(a)da=03 : ®) da=0.6 ©2
0 i i 0 1 i i 0 L I L
3] 02 0.3 04 0.5 0.1 02 0.3 04 05 0.1 0.2 0.3 0.4 0.5
hole radius rfa hole radius r/a hole radius r/a
(a) (b) (c)

Figure 2.8: Gap maps for the air bridge structure. (a) Waveguide thickness d = 0.3q;
(b) waveguide thickness d = 0.6a; (c) ideal 2D case. Solid (dashed) lines represent
the edges of photonic bands that are even (odd) with respect to the zy mirror plane.

The dotted line in (b) refers to the cut-off of the second-order waveguide mode[l4].

gap, the presence of the second-order mode will contribute to losses. Concerning
low-loss wave propagation , it is better to have structures that are single mode in
the frequency range of interest. For the air bridge system, small values of d/a are
more favorable.

Fig. 2.7 displays the photonic bands for an SOI structure (Fig. 2.4d) for three
values of waveguide thickness. Due to the small dielectric contrast between core
and cladding, there are no truly guide modes and all photonic modes lie in the
radiative region. The dispersion of quasi-guided modes is very similar to the two-
dimensional case of Fig. 2.6c and the blue-shift is much less than for the air bridge.
However, it is noticeable that the gap in the even modes is increased compared to
the two-dimensional case. The three patterned waveguides are single mode for the
shown frequency range, except for d = a, where a second-order mode occurs for
wa/2mc ~ 0.65. Like for the strong confinement case, the results of Fig. 2.7 suggest
that, in order to maximize the even gap, it is more convenient to use small values of

waveguide thickness.

Gap Maps

It is also interesting to see the trends of the band gaps with the hole radius. Fig.
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Figure 2.9: Gap maps for the SOI structure. (a) Waveguide thickness d = 0.3a; (b)
d = 0.6a; (c¢)d = 1.0a. Solid (dashed) lines represent the edges of photonic bands

that are even (odd) with respect to the zy mirror plane[l4].

2.8 displays the gap maps as a function of hole radius for the air bridge structure of
Fig. 1.9d with waveguide thickness d = 0.3a, 0.6a and in the two-dimensional case.
The purpose of Fig. 2.8c is to set a reference for the gap maps in a photonic crystal
slab. The gap map of the two-dimensional case has already been discussed in Sec.
2.2.2. From Fig. 2.8a,b, it is possible to see that there are no gaps in the odd modes
(dashed lines) for any hole radius and, therefore, no complete band gap. The band
gap for even modes (solid lines) occurs at higher frequencies than in two-dimensions,
because of the vertical confinement. It has to be remarked that the upper edge of the
gap lies in the radiative region for a hole radius larger than about 0.4a so that the
even gap is formed partly in the guided mode region and partly in the leaky mode
region.

Fig. 2.9 shows the gap maps for the SOI structure, with photonic crystal thickness
d = 0.3a,0.6a,a. They are rather similar to the two-dimensional case, because the
confinement effect is much less important than for the air bridge. It has to be pointed
out that a weak-confinement structure, as SOI structure, has no truly guided modes
in the considered range of crystal thicknesses: all modes are resonances and the
photonic band gap lies entirely in the radiative region. Notice that, on decreasing
the thickness, the gap for odd modes opens at smaller values of the hole radius; the

same happens for the even gap. Contrary to the strong confinement waveguide, as
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a membrane, full band gap common to both polarizations still exists and it occurs

even for hole radii of the order of 0.3a, if waveguide widths d ~ 0.3a are used.

2.2.3 Conclusions

The concept of photonic band structure and of photonic band gap have been
extended, in order to account for the existence of quasi-guided modes in the radiative
region. For strong-confinement waveguides (air bridge), the photonic modes exhibit
a large blue-shifted with respect to the two-dimensional case.

The gap maps of the air bridge display only a gap for even modes. The even gap
remains large even for small waveguide thickness, while it is closed by a second-order
waveguide mode when the thickness reaches d = 0.6a. In the weak confinement
waveguide (GaAs/AlGaAs system), the bands are similar to the two-dimensional
case. However, the single gaps and the complete band gap open for smaller values of
the hole radius. Another difference between strong and weak confinement waveguides
regards the nature of photonic modes. While strong confinement waveguides support
both guided and quasi-guided modes, weak confinement waveguides has practically
only quasi-guided modes. These modes are subject to propagation losses, because of
the coupling to the external field. Understanding and quantifying out-of-plane losses
is very important, since they may preclude the use of photonic crystal slabs towards
integrated photonic crystals circuits. One would like to know which is the optimal
waveguide design that accounts for minimal out-of-plane losses, ease of fabrication
with lithographic methods and appropriate band gap properties. An air bridge sys-
tem allows to operate with truly guided modes; on the other hand, it is more difficult
to fabricate.

Two-dimensional photonic crystals embedded in weak confinement waveguides
possess a band structure that is more similar to the two-dimensional case and they
can be obtained with top-down processes much easily than suspended membranes.
These features make weak confinement systems more promising than the strong

confinement counterpart, provided they exhibit “small” propagation losses [23].



Chapter

Two-dimensional Photonic Crystal

Waveguides

The photonic band gap is so much attracting because of the capability to control
wave propagation, but it is possible to create energy levels within it by designing
defects. Considering the plane of periodicity of two-dimensional photonic crystals,
a point defect corresponds to a resonant cavity, while a linear defect corresponds to
a waveguide. Resonant cavities and waveguides are among the building blocks of

photonic integrated circuits.

In this chapter, we will focus on waveguides realized as linear defects in a two
dimensional photonic crystal. A linear defect preserves the periodicity in one di-
mension, yielding a one dimensional Brillouin zone and a Bloch vector k. Therefore,
these defect states will obey to a dispersion relation w = w,, (k), where m is the order

of the guided mode.

The simpler way to realize a linear defect [1][24] is to remove N adjacent rows
of holes in a photonic crystal made of a triangular lattice of air holes in a dielectric
material. The so-called WN waveguide, where N is the number of removed rows,
is usually created along the I' — K direction, rather than the I' — M, because the
waveguide walls are smoother. The width of a WN waveguide is w = av/3(N +1)/2.
The guides with odd N (W1,W3,...) have symmetric boundaries, while those with
even N (W2, W4, ...) have boundaries shifted by a/2 with respect to each other
[25]. Usually, waveguides with odd N are used, because they are symmetric with

respect to their axis.

The presence of the waveguide breaks the periodicity along I' — M. Nevertheless,
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the system remains periodic along [I' — K, with lattice constant a, so that the Bloch
theorem applies. There are several efficient numerical techniques for calculating the
dispersion relation of the guided modes. In the next sections, we will present the
two ones that will be used in this work: the super-cell method [25] and the Finite-
Difference Time-Domain (FDTD) method [26].

3.1 The Super-Cell Method

Consider a WN waveguide. For simplicity we do not consider the height dimen-
sion. A unit cell of the waveguide is a section of the waveguide with a length equal to
the period a of the photonic crystal along the propagation direction and unlimited
along the other direction. The super-cell method consists of assuming a periodic
array of waveguides, spaced by bulk photonic crystal, whose unit cell corresponds to
the one just mentioned, but limited along the direction perpendicular to the Bloch
vector (see the right panel of Fig. 3.3). The spacing is determined by the width of
the super cell. A guided mode is characterized by an evanescent field in the direction
perpendicular to the Bloch vector. For this reason, if the super-cell is sufficiently
large, the guided modes of adjacent unit cells will not overlap (no interaction) and the
dispersion relation will be like that one of a single waveguide. The array of waveg-
uides is characterized by two primitive vectors a;, a;. Even if the Brillouin zone
is two-dimensional, only the Bloch vector along the waveguide axis represents the
true guided-mode wave-vector. Given the unit cell, the reciprocal primitive vectors
and the Bloch vector, the dispersion relation is calculated by the usual plane-wave
expansion method.

While the primitive vectors are easily found by looking at the super cell:
a; =a-(1,0), ay = aV/3(0,(N +1)/2 + K), (3.1)

where N is for WN and 2K + 1 is the number of photonic-crystal rows between
two waveguide channels, the dielectric matrix ||e|| of the unit cell is more difficult to

calculate. The dielectric function inside the super cell can be written as
£(x) = €diet + (Eair — Ediet) Z O(jx —v|—r), X € unit cell, (3.2)

where 7 is the hole radius, x = (z,y), v are the displacement vectors, and 6(z) is

the Heaviside function. Using this expression, the Fourier transform of the dielectric
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function can be expressed as the bulk Fourier transform multiplied by a structure

factor,
S(G — G/)F(Z-ZaiT, Ediels T G), if G 7& G/,
£G,G' = ) (33)
flgair + (1 — f/)gdieh if G = Gl?
where f’ is the super-cell filling factor and G, G’ are the reciprocal vectors of the
super-cell lattice, and G = |G — G/|.
The two function
2mr

jélc—Gjl(GT'), (34)

S(G) = AJAY 'SV, Fleair aiety 7, G) = (Sair — Ediel)
v
with A the area of the super cell and A. the area of the bulk crystal unit cell, are
the structure factor and the atomic factor, corresponding to the dielectric-function
Fourier transform of the bulk photonic crystal, respectively.

Once that the dielectric matrix has been calculated, Egs. 2.10 can be used to
find the dispersion relation of guided TE-modes and guided TM-modes, respectively.
Since the waveguide is symmetric with respect to its axis, the guided modes can be
further classified as even or odd with respect to a reflection plane o,,, where x is the
waveguide axis and z is the vertical direction.

3.2 The FDTD Method

Finite-difference time-domain (FDTD) method dates back to the work of Yee [27],
who proposed an algorithm for solving the time dependent Maxwell’s curl equations,
that transforms the differential operators in finite differences in space and time. It is
considered easy to understand and easy to implement in software. Since it is a time-
domain method, solutions can cover a wide frequency range with a single simulation
run.

Considering the Maxwell’s differential equations:

V x E(r,t) = — %H(r,t), V x H(r,t) = a%E(r,t), (3.5)

we can see that the change in the E-field in time (the time derivative) is dependent
on the change in the H-field across space (the curl). This results in the basic FDTD
time-stepping relation that, at any point in space, the updated value of the E-field
in time is dependent on the stored value of the E-field and the numerical curl of the

local distribution of the H-field in space.
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Figure 3.1: Illustration of a standard Cartesian Yee cell used for FDTD, about which
electric and magnetic field vector components are distributed. Visualized as a cubic
voxel, the electric field components form the edges of the cube, and the magnetic
field components form the normals to the faces of the cube. A three-dimensional
space lattice is comprised of a multiplicity of such Yee cells. An electromagnetic
wave interaction structure is mapped into the space lattice by assigning appropriate
values of permittivity to each electric field component, and permeability to each

magnetic field component.

The H-field is time-stepped in a similar manner. At any point in space, the
updated value of the H-field in time is dependent on the stored value of the H-field
and the numerical curl of the local distribution of the E-field in space. Iterating the
E-field and H-field updates results in a marching-in-time process wherein sampled-
data analogs of the continuous electromagnetic waves under consideration propagate

in a numerical grid stored in the computer memory.

This description holds true for 1-D, 2-D, and 3-D FDTD techniques. When
multiple dimensions are considered, calculating the numerical curl can become com-
plicated. Yee [27] proposed spatially staggering the vector components of the E-field
and H-field about rectangular unit cells of a Cartesian computational grid so that
each E-field vector component is located midway between a pair of H-field vector
components, and conversely. This scheme, now known as a Yee lattice, has proven
to be very robust, and remains at the core of many current FDTD software con-

structs.

Furthermore, Yee proposed a leapfrog scheme for marching in time wherein the
E-field and H-field updates are staggered so that E-field updates are conducted mid-

way during each time-step between successive H-field updates, and conversely. This
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Figure 3.2: Yee lattice in 2D for the TE polarization.

explicit time-stepping scheme avoids the need to solve simultaneous equations, and
furthermore yields dissipation-free numerical wave propagation, but it mandates an
upper bound on the time-step to ensure numerical stability.

For simplicity, we will discuss in a deeper manner the FDTD method in two
dimensions. Before proceeding, it is convenient to define the following notation for
the finite differences. Time is discretized by division in uniform intervals At. The
2D space is defined on a discrete uniform rectangular mesh z — y. A space point in

the mesh is denoted as
(4,7) = (iAz, jAy), (3.6)

where Ax and Ay are the lattice space increments in the x and y directions, respec-
tively, and ¢, j are integers.
A function f of space and time evaluated at a discrete point in the grid and at a

discrete point in time is denoted as
f(ihe, iy, nat) = 2 (37)

We can define the partial space derivative of f at the fixed time t, = nAt:

Az, = £y
(PR Lo 2
s + O[(Az)7]

9 flive, jdy,nat) =

n n 3.8
0 o Al (@8)
8—yf(Z x, jAy, nAt) = Ay + O[(Ay)”]
and the partial time derivative, evaluated at the grid point (¢, 5):
n—l—% . n—%
9 fine, jAg.nan =L big * = 7l +0[(At)Y, (3.9)

ot At
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where the +1/2 increment in the several subscript of f represents a space or time
finite difference. This notation is chosen to interleave the E and H components in
time and space for implementing the so-called leapfrog algorithm.

This algorithm is stable if

1
At < 1 —. (3.10)
¢\ BoE T Gy

The computational domain is simply the physical region over which the simula-
tion will be performed. The E and H fields are determined at every point in space
within that computational domain. The material of each cell within the computa-
tional domain must be specified. Similarly, source and boundary conditions must be
specified.

The Yee algorithm is second-order accurate. The accuracy can be improved by
using smaller time and space increments. Even if the loop over the grid point is
a O(N?) process, where N is the number of lattice points in the mesh, the whole
algorithm is actually a O(N?) process, because the time stepping has to satisfy Eq.
3.10. For this reason, the three-dimensional version of the FDTD method is very

much time consuming, with four nested loops.

3.3 The W1 waveguide

Given a WN waveguide, the best choice for the number of rows to remove de-
pends on the device or application being developed. A narrow waveguide is likely to
be single-mode, but it possesses higher propagation losses with respect to a larger
waveguide, which, on the contrary, is likely to be multi-mode.

The W1 waveguide (one row removed) is the simplest linear defects waveguide
and it is the choice of waveguide used in this work. Fig. 3.3 shows a W1 waveguide,
which is created by removing one row of air holes along the I' — K direction of the

triangular lattice, so that the width corresponds to w = av/3.

3.3.1 The Dispersion Relation

Fig. 3.4 shows the dispersion relation of the W1 channel waveguide of Fig. 3.3,
with w = av/3, r = 0.30a and ey = 12.25, only for the guided TE-modes. Thin
dotted lined correspond to the modes outside the photonic band gap (PBG) region,
and they are guided in the bulk PhC and hence are not confined to the line defect.
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(a) (b)

Figure 3.3: (a) A 2D photonic crystal waveguide along the I' — K direction of a
triangular lattice of air holes in a dielectric material, w defines the width of the
waveguide, a is the lattice constant. (b) An example of super-cell for the calculation

of the waveguide band diagram.

The modes at frequencies inside the PBG region can be separated by their lateral
symmetry of magnetic field with respect to a plan along the propagation direction
and vertical to even and odd modes. The even mode of such waveguides can be
categorized with respect to their field distribution as index guided vy or gap guided
v1. An index guided mode has its energy concentrated inside the defect and interacts
only with the first row of holes adjacent to the defect. Its behavior can be simply
represented by a dielectric waveguide with periodical corrugation. A gap guided
mode interacts with several rows of holes, thus it is dependent on the symmetry of
the PC and its PBG. The names index guided and gap guided don’t specify exactly
the guidance mechanisms (in the PBG region all modes are gap guided) but mainly
describe the resemblance in terms of the modal field distribution. Any mode of
the periodical waveguide generally shows a small group velocity near the band edge

which eventually vanishes at the Brillouin zone edge.

If the waveguide is realized on a membrane, it is possible to see the same odd and
even modes observed in the PBG region, though the PBG region is moved at higher

frequencies. The main difference is the appearance of the radiation modes above the
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Figure 3.4: Dispersion relation for the photonic crystal waveguide of Fig. 3.3 with
w = a\/g, r = 0.30a and e4 = 12.25, TE polarization. The thick lines represent
the modes introduced by the line defect.

light line. These modes do not fulfill completely the total internal reflection condition
and are scattered vertically. Thus only the modes below the light line are available

in the slab structure for application.

3.3.2 Group velocity and slow light
The group velocity v, of light with frequency w in a waveguide is given as

dw c
= =_ 3.11
Ug dk ng ( )
where k is the wave vector along the waveguide and n, the group index.
The group velocity in a PhC waveguide is strongly dependent on the frequency
as quantified by the group velocity dispersion (GVD) parameter [3s:
&’k ldn,

— = . 3.12
dw? ¢ dw ( )

3

The group velocity is a function of structural parameters, that can change com-
pletely the dispersion relation of a photonic crystal waveguide, as it is possible to
see in the Fig. 3.5. The phenomenon of the low group velocity is called slow light.
The flatter is the dispersion relation of a mode, the smaller is the group velocity, the

slower is the light propagating into the waveguide.
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Figure 3.5: Group velocity as a function of wavevector for r = 0.275a for different
waveguide widths. The inset show group velocity at the k-point k£ = 0.4888, where
the absolute value of v, has a minimum at W0.85. A bandwidth of constant group
velocity is obtained at W0.7 [28].

The exploitation of slow light phenomena opens perspectives for the realization
of very compact and massively integrated optical functions (delay lines, GVD com-
pensation, etc.) [29][30]|31]. Very small values of group velocity have been reported
by several groups (v, >~ ¢/200 [32]), however the waveguide length was very short
in that case, resulting into a moderate group delay. Longer structures, potentially
providing longer delays, are problematic, because the impact of propagation loss
increases dramatically.

It was also demonstrated [33] the possibility to tailor the dispersion properties
of the fundamental even mode. In this way , it is possible to obtain semi-slow light
having a group velocity in the range v, € [¢/15 — ¢/100].

The photonic crystal waveguide with these properties is show in Fig. 3.6. It is
realized as silicon-on-insulator structure with an height of 338nm. The peculiarity is
that the holes of the first two rows have a radius r; and ro, respectively, while all the
other holes have with radius » = 117nm. Fig. 3.7 shows ~ 11nm bandwidth below
the silica-line with a nearly constant group velocity ~ ¢/34 and relatively low and

positive group velocity dispersion with 3, on the order of 10° — 105ps? /km. Within
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Figure 3.6: Scanning electron micrograph of the perturbed photonic crystal waveg-
uide used in [33]. The radii r1, 79 have been decreased/increased compared to the
radius r of the bulk holes.

this bandwidth, the measured propagation loss is less than 20dB/mm and drops
below 5dB/mm for ~ 2nm bandwidth.

3.4 Slow Light

In this section, we want to understand better the phenomenon of slow light, that
offers functionality to control the speed of light by structuring alone.
We can define the slowdown factor as the ratio of the phase velocity over the
group velocity:
Yg
S=—. (3.13)

Ug
If it is taken in account bandwidth and dispersion [31], the performance of slow
light devices scales as the refractive index contrast, so that an high refractive index
structure such as photonic crystals appears promising.
The nature of the delay in a photonic crystal waveguide is easily understood
by using the ray picture commonly used to describe light propagation in a dielectric
waveguide. Compared with total internal reflection alone, however, photonic crystals

offer two additional features that can lead to the formation of slow modes.

Backscattering Light is coherently backscattered at each unit cell of the crystal, so
the crystal acts as a one-dimensional grating (indicated by the vertical lines on
the left-hand side of Fiig. 3.8. If the forward propagating and the backscattered
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Figure 3.8: Illustration of the two possible mechanisms for achieving slow light in
photonic crystal waveguides, namely coherent backscattering (left) and omni direc-

tional reflection (right).

light agree in phase and amplitude (as they do at the Brillouin zone boundary
for k = 7/a), a standing wave results, which can also be understood as a
slow mode with zero group velocity. If we move away from the Brillouin zone
boundary, we enter the slow light regime; the forward and backward traveling
components begin to move out of phase but still interact, resulting in a slowly
moving interference pattern: the slow mode. Further from the Brillouin zone
boundary, the forward and backward traveling waves are too much out of phase
to experience much interaction and the mode behaves like a regular waveguide
mode that is dominated by total internal reflection. In Fig. 3.8, the slow

light regime is depicted by arrows pointing right and left, for the forward and
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backward traveling components, respectively. The forward arrows are longer,
because a slow forward movement is as three steps forward and two steps back.
This explanation suggests that the slow light effect is limited to the Brillouin
zone boundary. This is not true, however; the key point is that the optical
mode is close to a resonance with the structure. Other resonances may be
created, such as anticrossing points, where slow light effects also occur [28].
Therefore, by balancing multiple resonances carefully, one may induce a slow

light regime that spans a considerable fraction of the Brillouin zone.

Omni directional reflection The other unique feature offered by the photonic
crystal environment is that there is no cut-off angle; if a photonic bandgap is
present, light propagating at any angle is reflected. Even light propagating at
or near normal incidence may therefore form a mode, as indicated by the steep
zigzag on the right of Fig. 3.8. In band structure terms, this corresponds to
propagation at or near the I' point, i.e. £ ~ 0. It is obvious that such modes
have very small forward components, i.e. they travel as slow modes along the

waveguide, or for k£ = 0, form a standing wave.

These two effects also represent the two limiting cases for slow light propagation
in photonic crystal waveguides; the bandwidth is ultimately limited by the size of
the Brillouin zone. In order to achieve a group velocity of ¢/n,, with n, the group

index, the maximum bandwidth can then be determined as follows:

dw ¢ LA 1 ¢12rm c
Vg = —F7 = — V= ———— =
7 dk  n, 2rng2 a  2ng4a

(3.14)

As an example, for n, = 100 and a typical period of a = 400nm at 1.55pum wave-
length, the bandwidth will be Av = 3.75THz. In practice, and subject to good design
and operation below the light line, it may be possible to achieve 20-30% of this band-
width, which corresponds approximately to 1THz. A value of n, = 100 corresponds
to a slowdown factor of S =~ 50, given the typical phase index in a semiconductor
photonic crystal material of around 2. Recent papers have already shown structures
approaching this performance [28]|. Please note that the above discussion holds for
symmetric structures, which indeed represent the majority of structures studied in

the literature; asymmetry may offer additional design parameters, as shown in [35]
and [36].
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3.4.1 Slowdown factor and linear interactions

Any type of optical device, linear or nonlinear, operates on the basis of a relative
phase change, typically expressed as AkL. Tt is possible to rewrite this phase change
as AnkoL, with An the refractive index change and kq the wavevector in free space.
This refractive index change depends on two index: the material index ny,,; and the
effective modal index neg.

Suppose to consider a given mode into a PhCWG. If the material index is changed
for some reasons, the mode moves accordingly, and the corresponding change in
frequency is proportional to the change in index, so Aw/w ~ Anmpat/Nmat. But if the
change is in the effective modal index, we have that Anes = (¢/w)Ak. It is clear that
where the dispersion curve is flat, i.e. in the slow light regime, the Ak and therefore
the Aneg is much larger than in the fast light regime where the dispersion curve is
steeper. So a slow mode experiences a larger change in effective index than a fast
mode, despite the fact that the change in material index Amny,,; is the same in both
the cases.

Since Ak scales with the slope of the dispersion curve, it also scales with the

slowdown factor, which allows us to write the condition for switching as
AkL = koSAngpa L, (3.15)

which now includes the slowdown factor. This highlights the fact that although the
slowdown factor is defined in terms of group velocity, the slow light regime offers
significant benefits for devices operating on the basis of phase velocity or effective
index. A beautiful demonstration of this effect was recently provided by Vlasov in
[29], by demonstrating experimentally that a thermo-optically tuned Mach-Zehnder
modulator requires less energy when operating in the slow light regime than it does

when operating in the fast light regime.

3.4.2 Slowdown factor and intensity

If we assume a dispersion-free environment, i.e. one where the different spectral
components of a pulse experience the same slowdown factor, a pulse will be spatially
compressed when entering the slow light regime. The front of the pulse, entering the
slow light regime first, will travel slower than the back of the pulse which therefore
catches up. The resulting pulse will occupy less space, i.e. it will be spatially com-

pressed without changing its properties in terms of time and spectrum. If we further
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assume that no energy is lost at the interface, the same amount of energy is concen-
trated in a smaller volume, so the intensity of the pulse increases. This effect can be
shown mathematically, using a Gaussian pulse as an example. The distribution of a

Gaussian pulse can be described by the following functional dependence:
I(x) = Iyexp(—Sz)? (3.16)

where [ is the peak intensity and S the slowdown factor, with x a spatial coordinate
normalized to the size of the pulse. The full width half maximum (FWHM) of such
a pulse scales inversely with S, which is the condition discussed above; a larger
slowdown factor results in a shorter pulse. Given that the total pulse energy does
not change, the integral over the pulse has to be a constant, which is achieved by

the following expression:

/ Iy exp(—Sz)*dr = Iog & / IO% exp(—Sz)?dr = . (3.17)
oo VT

—0
This shows that the peak intensity scales linearly with the slowdown factor and
inversely with the size of the pulse; as the pulse is spatially compressed, the peak
intensity increases by the same factor in order to satisfy energy conservation.
Overall, nonlinear interaction benefits twofold from the slowdown factor, namely
(a) via the enhanced phase change and (b) via the enhanced intensity, such that the

interaction in a Kerr-medium, for example, can be written as
Nmode = Mo + Mol = ng + S(HQIS) (318)

In general, the ¥® nonlinearities scale with the square of the slowdown factor.
This favorable scaling law is unique to slow light devices based on dielectric structures
such as photonic crystals and ring resonators; while slow light based on material
resonances does not exhibit the same effect. Naturally, there are limitations. The
square scaling law assumes zero dispersion and no change of mode distribution.

If the dispersion is nonzero, pulses will broaden, with drastic consequences such
that the effect of dispersion may outweigh any benefit of slow light compression [37].
It is therefore important to design waveguides with low second and higher order
dispersion. This has already been proposed by several authors [28] who adjusted the
dispersion curve of a W1-type waveguide, in particular the presence of an anticrossing
with the lattice modes, by adjusting its width and/or the diameter of the innermost

rows of holes. The second limitation arises from the assumption of unchanged mode
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Figure 3.9: Comparison of the shape of a guided mode in the fast and the slow
light regime, exemplified by the odd mode of the system. The odd mode was chosen
as it demonstrates the effect more dramatically than the fundamental mode. The
respective k values are indicated both in the mode profiles and in the corresponding
band structure. As k approaches the Brillouin zone boundary, the mode slows down
and samples deeper into the photonic lattice.

shape. In photonic crystals, this assumption does not generally hold, as illustrated
in figure 3.9. In the slow light regime, the mode samples more of the photonic lattice
and therefore assumes a different shape. So even though the mode may compress in
propagation direction, the corresponding lateral spread dilutes some of the benefit
one can expect. This leads to the conclusion that an enhancement proportional
to S with 1 < P < 2 can be expected in reality, depending on how well the
above conditions on dispersion and mode shape are met. Nevertheless, even for a
modest slowdown factor of around 20, an overall enhancement of around 100 can
be expected for P = 1.5. So the size of a Kerr-type optical switch would drop
from centimeters to hundreds of micrometers, or the required switching power would
be reduced by two orders of magnitude. This is also equivalent to increasing the
nonlinear coefficient (the ny or the x®) by two orders of magnitude, simply by

appropriately microstructuring the material.

3.5 Third Order Dispersion

It is possible to consider a PhCWG as a system with a well defined transfer

function:

H(w) = exp(—(a(w) +16(w))L) (3.19)

where a(w) is the attenuation constant, $(w) is the mode propagation constant, and
L is the length of the PhCWG. By neglecting attenuation, it is possible to rewrite
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it as
H(w) = e WL, (3.20)

As we already saw in Sec. 1.3, the propagation of light into a PhCWG is described
with Floquet-Bloch waves, and the dispersion relation is characterized by allowed and
prohibited bands (see Fig. 3.4).

The interval of frequencies that a pulse will excite depends on the width 7, of the
pulse. If the pulse bandwidth is narrow enough, we can consider just the portion of
the dispersion relation relative to the waveguide modes, located in the PBG region.
They are denoted even and odd by their in-plane symmetry with respect to the
waveguide. Focusing only on the even mode, we can write the relative Bloch mode

E(z,w) = Fy(w) exp(—iko(w)z) (3.21)

where Fy(w) and ko(w) are the amplitude of the electric field and the wavevector of
the Bloch wave, respectively. In this equation, we focus our attention only on the z
direction.

We can approximate kq(w) with a Taylor expansion around the central frequency

of the pulse wy
Fo(w) =Y = (w — wp)’ (3.22)

d'k
dw?

where the coefficients 3; =

w=wp
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Figure 3.11: Real part of pulses modified by different order of dispersion. In red
(continuous line) the initial pulse Ejy; in black (dotted line) the pulse modified by a
second order dispersion (3 = 1-1072°s?/m; in cyan (broken line) the pulse modified
also by a TOD 33 = 1-10733s3/m, and in cyan (broken dotted line) the pulse modified
by the TOD, but supposing 3 = 0.

The evolution of the propagating electric field can be obtained from the inverse

Fourier transform of Eq. 3.21
E(z,t) = 5! {E(z,w)} . (3.23)

If we consider a Gaussian pulse' with intensity width 7, centered at frequency wy
and at time ¢ = ¢,
(t — to)?

2

p
and the Taylor expansion of the dispersion stopped at the third order, we obtain

Eo(t) = Eyexp (— + zw0t> , (3.25)

E o B
E(z,t) = \/—S_Tez(wot_’goz) / exp (iBlw — (1 +iBy)w* — z??’uﬁ) dw, (3.26)

where By, By, and Bs are defined by

o0

By =2(t — (12)/7, (3.27)

'In the frequency domain, the pulse becomes

Fo(w) = BT T (o )? 4wt 3.24
o(w) = \/iexp 4(w wo)” + witg | . (3.24)
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Figure 3.12: Real part of pulses modified by low values of TOD factor with 3, = 0.

By = 2052/ 7, (3.28)
Bg = 4ﬁ32/7'5. (329)

If B3 =0, it is possible to rewrite the pulse in a simpler way:

Ey B?
E(z,t) = ———===e"0""%) ¢ {——1 ]
(=0 = T, PN By 530
9 .
_ QTpEO. ¢Hwot=502) oy {_ (7; - 512) }
VT — 21z Ty — 2i2[0

If Bs # 0, by changing the variable w = B3_1/3u + (1 — By)/Bs, and using some

properties of complex integration we can express E(z,t) as:

E(27 t) _ TEO‘\I//,;_Tez(wot—ﬁoz)
Bs
2 —3B1B; —6B2 6 —3B,B; — 2B2 (3.31)
B
X exp ( 3332) + 1Dy SB§
x Ai[(1 — B1Bs — B2 4 2iBy) By "],

where Ai(-) is the Airy function (see Fig. 3.10). When the total second order
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dispersion vanishes, i.e. By = 0, we have

2F,
E(z,t) = _|Boll¢/§ez<w0t—ﬁ(’z)
3
o exp [ 2= 35155 (3.32)
P\ 382
x Ai[(1 — B,B3)B; .

In Fig. 3.11 and 3.12, pulses with different values of By and B3 are shown.

Eq. 3.31 shows that the pulse shape for 3" (wy) < 0 is the same for 3" (wy) > 0
with time reversed at the time ¢ = 3 (wo)z. From now on, we’ll consider just the
case with 3" (wp) > 0.

3.5.1 Effects of Third-Order Dispersion

Figures 3.12 shows the pulse shape for limited values of B3, when SOD vanishes,
calculated using the Eq. 3.32. We can see that the pulse is approximately Gaussian
with a shift of the peak in the positive Bj-direction when Bj is positive and vice
versa. This means that the group velocity of the pulse change due to the TOD term.
The group velocity of the pulse is obtained by the condition 0|E(z,t)|0t = 0, that
can be written as:

1 .
- A (1= BiBy — B3 +2iB,) B, | +
3

5 (3.33)
7 Ai [(1 — BBy — B2+ 27;32)3;4/3} —0.
9B,
Substituting = = (1 — B1 By — B2+ 2iB,)B; **, we get:
5 0
Ai(z) + BY* = Ai(z) = 0, (3.34)
ox
and resolving it numerically, it holds
v, =, + f(B2,Bs), (3.35)

where v,0 = 1/8, = 1/3 (wp) is the group velocity of the pulse when TOD does not
exist and f(Bs, Bs) is a function of By and Bjs, that the describes the changes of
group velocity. The Fig. 3.13 shows this change, and in the inset of the same figure,
it is possible to observe that for B; < 0.3, the function f(Bs, Bs) shows a linear
trend. Using this hypothesis, Eq. 3.35 becomes:

o1, Tl B3
v, =V, + L1 B%Bg. (3.36)
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Figure 3.13: Change in group velocity in function of Bs. In the inset, it is shown the

linear behavior of the group velocity for small values of Bj.

By considering the center of the pulse’ and by supposing that it is not very
sensitive to By, we can model the position of the center of the pulse with the following

equation:

1= po+ 7, Bs/8, (3.38)

where g = 1z is the center of the pulse in a non-dispersive medium (3 = 0).

In a similar manner, we consider the width of the pulse® and we find, as shown
in Fig. 3.14, that for little values of Bs, the width is constant to the value set by B,

while when B3 grows up, the pulse width grows almost proportionally to Bs.

2We define the pulse center u as follows:

[t I(t)dt
M:iﬁzﬂgaﬂ (3.37)

where I(t) is the intensity of the pulse I(t) = |E(t)|?.
3We define the pulse center W as follows:

[ = w2 1tydt]

W = [8In2
1 Joo I(t)dt ’

(3.39)

where I(t) is the intensity of the pulse I(t) = |E(t)|?.
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Figure 3.14: Width of the pulse calculated for different values of Bs.

3.6 Four-wave mixing equations in photonic crystal

waveguide

All the waveguides considered till now are passive ones, because they are based
just on the linear behavior of photonic crystal. To develop application involving a
time variable control on the flow of light, it is necessary consider non-linear effects.
In particular, we consider cubic non-linearity due to third order susceptibility so that
we can derivate the Four-wave mixing equations for a photonic crystal waveguide.

Let us start from the Maxwell’s equations in the time domain

V x E(r,t) = — M%H(r,t)
) (3.40)
V x H(r,t) za(r)aE(r,t),

where the permittivity is a spatially varying function, as usual in a photonic crystal
waveguide.
Let us suppose that four frequencies, satisfying the condition wy + wo = w3 + wy

are propagating in the same fundamental mode of the photonic crystal, i.e.:

4 4
E(r,t) = Z Ei(r,t) = Z Age(r, wy)e! =) e e,
e = (3.41)

4 4
H(r,t) = Z Hy(r,t) = Z Agh(r, wp)e! et e e
k=1 k=1
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where B = f(wg) are the mode propagation constants, Ay and e(r,wy), h(r,wy) are
the complex amplitudes and the electric and magnetic Bloch modes at w, = 1,2, 3,4,
respectively.

For each frequency, Maxwell’s equations yield

V x [e(r,wk)ew’“z} = wph(r, wy) e

3.42
V x [h(r,wy)e™] = —e(r)wie(r, wy)e*?, (3.42)

that are exactly the equations that define the Bloch modes of the waveguide.

Let us now consider a nonlinear perturbation of the Maxwell’s equations:

V x E(r,t) = — %H(r,t)

0 0
aE(r, t) + EPNL(I', t),

(3.43)
V x H(r,t) = &(r)

The nonlinear polarization due to the third order susceptibility can be described
by a third order tensor which shows a tensor character also in an isotropic material
(e.g. semiconductors). In this case, it reads as:

PYl = A(E-E"E + % B(E-E)E* (3.44)

with the definition: E(t) = 1E(w)exp(iwt) + c.c.

The coefficients A and B depend on the dominant nonlinear process. If the
non-resonant electronic contribution is dominant, then: B = A = 1y® [33].

When the nonlinearity is small, the (linear) mode structure (eqs. 3.42) is not
altered and the only modification is that the complex amplitudes become slowly
varying in the z direction: Ay = Ax(z). Note that Ay is slowly varying with respect
to both ¢*’** and the Bloch mode within the cell: e(r,wy), h(r,wy).

Among all terms generated by the cubic nonlinearity we retain here only those
accounting for self- and cross-phase modulation (SPM, XPM), that are always self-
phase matched effects, and those accounting for non degenerate four wave mixing
(FWM). The latter are considered in the hypothesis, to be later verified, that they
are phase-matched. Phase-matching the non-degenerate FWM typically prevents
other nonlinear effects (e.g. third harmonic generation, other sum and difference
frequency generation) to occur.

Then, the nonlinear polarization consists of four terms only, each one oscillating
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at one of the selected frequencies wy, k=1,2,3,4:

3 _ y

Py = 1ex () |(B1f+2 ) [EiP)E; + 2B B

L 1=2,34 .

3 _ y

Py = Jeox @) | (B +2 ) [E)E, + 2BE.E]
. 1=1,3,4 - (345)

3 *

P = Jeox () [(Bf* 42 3 [E:f)Bs + 2B B

L 1=1,2,4 .

3 _ y

Pt = Z;gox(g)(r) (s> +2 ) |[Ef*)Eqs + 2E,EoE;

L 1=1,2,3 .

For simplicity let us consider eqgs. (3.43) at one frequency only (wy); the equations
for the other three frequencies can be obtained following the same guideline. Let
substitute the last of eqs. (3.45) into eqgs. (3.43) also using eqgs. (3.41):

V x [A4e4elﬁ4z} = zuw4A4hie’ﬁ4z
3
V x [A4h461ﬁ4z} = — Ze(r)w4A4e4ezﬁ4z — 2%150){(3)(1“)

3
<|A4|2|e4|2 +2 Z |Al|2\el|2> Ayeyet:

=1
+ 2A1A2A§eleQe;‘;ez(ﬂl-FﬁQ—ﬁg)z} :

(3.46)

where the following notation is also used for the sake of simplicity: e(r,wy) =
eg, h(r,wy) = hy, for £ =1,2,3,4.
Calculating the curls explicitly and subtracting eqs. 3.42 from eqgs. 3.46 yields:

VA, % [e4elﬁ4z] =0

VA4 X [h4€l/84z] = — zw4§1€0x(3) (I')

3 (3.47)
<|A4|2|e4|2 +2) |Al|2|el|2> Ageget™

=1

Note that the latter equations are approximated, in the sense that the mode structure

was supposed to be not affected by the non linearity.
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From eqs. (3.47) the following can be derived:

VA % [ere™] -hje 7 = 0

3
VAg x [hye'™?] -eje™% = — quox(g)(r)

2 2 : 2 2 2 (348)
[Asl’leal® +2) AP lerf* | Asles|

=1
+ 2A1AQAgeleQG;)eZez(ﬂl+/32—53—64)z} .

By exploiting the cyclic permutation property of vector and scalar products and
by setting VA, = 0A,/0z z, one gets

0A, . .

6—242'(64 Xh4> =0

0A, . . 3

0_242 (hy xe}) = — 1w4150>((3)(r)

. (3.49)
(\A4|2|e4\2 +2) ]Al\delP) Ayles?

=1

+ 2A1A2A§e1e2e§e26_mﬁz} ,

where AB = (B3 + B4 — 1 — (2 is the linear phase mismatch.

If the second of eqs. (3.49) is subtracted from the first and upon integration over
the volume V of the elementary cell of the photonic crystal waveguide, the following
relation is found

04,
0z Jy

3
:zw4—50/ Y@ (r)
47 Jv

+ 2A1A2A§e1e2e§eZe’lAﬁZ] av

(es x hj+e) xhy) - 2dV ~

3
<|A4\2|e4|2+2Z|Az|2|el|2)A4\e4r2 (3.50)

=1

where 0A,/0z is considered a constant in the cell volume.
Yeh demonstrated in [39] that in photonic crystal waveguides the group and mean

energy velocity are equal:

1 [ (ex x hj + €} x hy)dV

Vo =Vaw(f) = Ve, = ) 3.51
VA =V = e Wled bV Y
By projecting this relation along the z direction, we get (for k = 1,2, 3, 4)
er X hi +ef xhg)-z2dV
Vor -2 =Vaw(B) 2 = Vep - 5 = Julex x bi + € x hy) - 2 (3.52)

Ji (e0er(r)ler|? + polhyl?) dV
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Moreover, it is known (e.g. [10]) that the time-space average electric and magnetic

energies are equal for a Bloch mode:
1 * 1 *
Smagn - _,LLO/ h h - _/ e d - gelec- (353)
4y 4 Jv

The integral [, (e, x hj + e; x hy)-2dV that appears in eq. (3.50) is a nor-
malization factor whose physical dimension is a length (m) as soon as the complex
2

amplitudes Ay are such that |Ag|* = P is the mean active power transported in the

z direction within the cell.

Let us set:

/(ek X hz + ez X hk) -z2dV = 2a fk, (354)
v

It can be shown that the dimensionless factors f; are all equal to 2. In fact, let us
multiply eq. 3.54 on both sides by |A|*/(2V):

2 . 1
v /v Re[Py]-2dV = S i | Akl? (3.55)

where Py = e xhj /2 is the Poynting vector (power density) of the wave at frequency
wig and S = V/a is the cell cross-section. The LHS is twice the mean active power

density flux in the z direction contained in the cell and so
25(Re[Py] - 2) = 2P, = fi. |As]? (3.56)

which yields fr = 2, also in agreement with [11].

From eqs. (3.52), (3.53) and (3.54) the group velocity can be written as:

Ji(ex x hj +e; x hy)-2dV
2 [, coer(r)|ex]? dV

B 2a _ 2a

 Jyeoen(r)|e]?dvV Wi

Vgl =

(3.57)
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Substituting eqs. 3.54 in eqs. 3.50 we get:

DA 3 -
da 8_24 2w4150/vX(3)(r) (‘A4‘2’e4|2+2;|Al|2|el|2) Ayle?av

3
+zw4—50/ ( JA1 Ax Asereqele)e —UABz Y
v

2
4a2| A (3) 1dv
~ Zw4§€o [A4 ( a | 4‘ fVXW |e4|
g4 4
) ) (3.58)
QZ 12| A2 [, X (x) ea[2ler]? AV
U94W4)(U91Wl)

) (2a)
(Vg1 W) (Vg2 W) (vg3W3) (Vs W)
(/ X(S) (I‘)eleQG;)eZ dV) AlAQA;;eZAIBZ] )
Vv

The first two terms account for SPM and XPM and the third one for the FWM.
Note that in the first step the hypothesis that Ay, are slowly varying (constant) in the

APz we are looking for nearly phase-

cell is used; regarding the mismatch term, e
matched interactions and so it can be also considered as slowly varying (constant)

in the cell. Finally:

8144 3&01450

3aw4sg (/ o) ) )
+ Z X |e4| |el| dV |Al| A4 (359)
= 2“3 aWi \Jv

3
+1 _ Jawito (/ X (r)ejeqese] dV) A1 Ay Aje —afE
v

27’9 1234W1234

where we defined

2
Vgijki = 4/ Vg,iVg,jVg,kVg,l; 3.60
2
Vgij = Vg,iVg,j, 3.61

3.62
3.63

Win= WW, W, W,

N TN N N
R N
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We are searching for FWM equations in a “standard” form [12]:

8A4 NoWy a

AP A
dz c VSPM4‘ i s

+ 22 et A A, (3.64)

XPM 41

n2w4

+ 2

Ay Ag A AP,

C FWMA4
where the effective volumes are introduced in replacement of an effective area, that
is meaningless in a photonic crystal, where the cross section is not constant.

By comparing the last equation with eq. 3.59, we get:

CV:PZMA N in W2 JoxP@leftdv (3.65)
#]32]\/[,4[ N iv“l W2 Ju X (x)lea*ler]? dV (3.66)
Viws i glggjoww JrxPEerescierdv (3.67)
and recalling that [38] ,
2 {mw} =7 giocx(?’), (3.68)

where Y and ¢, are the values of the bulk, we finally obtain the definition of the

effective volumes:

1 _ ? fv e et dV (3.69)
Vspaa v (fv er(r )]e4]2 dV)
I ¢ JyeSatlelel dv
Vxpaa - 02 ([, en(r)|eqf? dV) ([, er(r)]e]?dV) (3.70)
1 02 Jy X (3() )e1e293e4 av
VEw s N Vs 1234 I, ([, er(r)]ed]? dV)l/Q' 8.71)

In a similar manner, the coefficients for all the other waves can be found as well.
We define

NoWw;a
i = ) 3.72
i cVspri (3.72)
Now;a
g= 2 3.73
i CVXPM,z‘l ( )
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NoWw;a

VFi = (3.74)

Vewni
P= |A;(0)7, (3.75)

where ¢, [ = 1,2,3,4.
With these coefficients, the general system of equations describing the four wave

mixing is:
aA . | * A z_
d_l =1 (’}/1|A1|2 + 2 Z VlklAk|2)A1 + 27F1A2A3A46 Ap
< L k=2,3,4 J
aA . | * 7 z_
d_; =1 (72|A2|2 +2 Z 72k|Ak|2)A2 + 2y AT A3 Age AP
- E=lad - (3.76)
aA . * —1 z
d_3 =i | (sl 4s]” +2 D skl Akl*) As + 27r3 A5 Ay Age 2P
o L k=1,2,4 J
aA . | * —1 z_
d_z4 =1 (74|A4|2 +2 Z 74k|Ak|2)A4 + 27F4A3A1A26 AR
L k=1,2,3 J

This general system has [12] approximate solutions by first considering the evo-
lution of the pump fields (A;, Ay) assuming the transfer of energy to Az and A, is
negligible (undepleted pump approximation). The equations that govern the field

amplitudes in this case are

dA )
d—l =i(71 Py + 2712P2) Ay,
“ (3.77)

dAs .
d_; =i(Yo Py + 27791 P1) As.

whose solutions are

Ay(2) =v/ Prexpli(mi P + 2712P2) 2],

. (3.78)
Ay(z) =/ Prexpli(vo Py + 2991 P1) 2],
Then Eqgs. 3.76 give
dA3 * —iO®z
I =12(y51 Py + 32 P) As + 12yp3/ P Py Aje (3.79)
3.79
dA* * 10z
dz4 = - 22(741]31 + ’742P2)AZ - 127}4\/ P1P2A3€ © )

where © = Af — (71 + 27921)P1 — (72 + 2712) Pe.
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To solve these equations, we introduce
B; = Ajexp[=2u(vi 1 + 72 P2)2],  j=3,4 (3.80)

and we obtain

dB .
d_z3 :22’)/}73\/ P1P2€7“7ZBZ

I (3.81)
d 41— 22’)/}4\/ Plpgesz:;
z
where
n=AB— (v + 2y —2v31 — 2yn) P+ (3.82)

— (Y2 + 2712 — 27932 — 2742) Pa.

We can transform the system 3.81 in the following two second-order differential

homogeneous equations

d’Bs dBs .
22 + Z?]E — 47F37F4P1P2B3 =0 (383)
d*B; dBj
dz24 -m dz4 — dypsypaPL P2 By = 0. (3.84)
Their general solution is in the form
Bs(z) = (a4€9* + bye™9%) exp(—inz/2) (3.85)
Bi(z) = (a4e9% + bye™9%) exp(inz/2) (3.86)

where a;,0;,j = 3,4, depend from initial conditions, and

9=\ 4rrsviPL P2 — (1/2)2. (3.87)

If we consider the degenerate case with one pump (w1 = wse, Ay = Ay and

consequently 3 = 72 = Y12 = Y21 = Yp, and P, = P, = P/2), we find

n= Ak— (3% — 2y — 27) P, (3.88)
9= VP = (1/2)% (3.89)
G= 1+ %P? sinh?(gL), (3.90)

where G is the amplification factor and L the length of the waveguide.
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Chapter

Fabrication Process and Disorder

One of the most interesting similarities between real crystals and photonic ones
is the presence of disorder. We can define disorder as anything breaking symmetry
properties of the lattice.

It can take many forms, but we usually can divide it into two group. The first
one is represented by any defect we deliberately introduce in the lattice and allow
the realization of photonic crystal based devices as waveguides, filters, etc; it is also
called intrinsic disorder. Instead, the second group contains the defects due to noise
in the lattice and unit cell parameters introduced by the fabrication process and it
cause diffraction losses in the propagating fields destroying the photonic confinement
ability of the device; it is called extrinsic disorder. We will focus on this second type
of disorder, but before to study it in detail, it is important to have a clear prospect

about the fabrication process of a 2D photonic crystal device.

4.1 Fabrication of 2D Photonic Crystal Devices

Despite their geometry simplicity, the fabrication of a two dimensional photonic
crystal device is quite complicate and requires several full featured facilities.

The final application of the desired device determine the necessary starting ma-
terial; for example, Gallium Arsenide based substrates are most common for light
emitting devices, while Silicon is commonly used for waveguiding purposes. After
the decision about the material, the subsequent step is to purchase the substrate
wafer from a specialized company.

The core process of the device fabrication is lithography, from the Greek Aifog,
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lithos, that means stone plus ypa¢w, graph, that means to write. It is the process of
transferring designed device patterns to the wafer, by selectively removing parts of
the bulk of the substrate.

A single iteration of lithography combines several steps in sequence (see Fig.4.1).

Cleaning and Preparation The wafer is initially heated to the temperature ade-
guate to drive off any moisture that may be present on the surface. If other
contaminations are present on the wafer surface, they are removed by wet

chemical treatment.

Resist application The wafer is covered with a sensitive material, called photore-
sist, or simply resist, by spin coating. In some cases, a liquid or gaseous adhe-
sion promoter is applied to promote adhesion of the resist to the wafer. Then,
a viscous, liquid solution of resist is dispensed onto the wafer, and the wafer
is spun rapidly (between 1200 and 4800 rpm) for 30 to 60 seconds to produce
a layer of resist with a thickness between 0.5 and 2.5um and a uniformity of
within 5 to 10 nm. The resist-coated wafer is then prebaked to drive off excess,
typically at 90 to 100 °C for 30 to 60 seconds on a hotplate.

Exposure and developing After prebaking, the resist is exposed to a pattern of
intense light or an electron beam. This difference divide lithography into two
great families: serial lithography, where the pattern, drawn with the help of a
computer aided design (CAD) software, is directly plotted on the resist, and
parallel lithography, where the geometrical pattern is on masks that shadow the
incoming radiation and is transferred on the resist in one single shot. The most
known example of the first group is the Electron Beam Lithography (EBL),
consisting in exposing the resist layer through an electron beam which position
is controlled by a computer, while photolithography is the most common of
the second family and it is widely used in semiconductor industry. Two type
of resist exist. Positive one is the most common type and becomes soluble in
the basic developer when exposed; negative resist becomes insoluble in the (or-
ganic) developer. This chemical change allows some of the resist to be removed
by a special solution, called developer by analogy with photographic developer.
A post-exposure bake is performed before developing, typically to help reduce
standing wave phenomena caused by the destructive and constructive interfer-
ence patterns of the incident light. The develop chemistry is delivered on a

spinner, much like resist. The resulting wafer is then hard-baked typically at
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Figure 4.1: Diagram of a parallel lithography process.

120 to 180 °C for 20 to 30 minutes. The hard bake solidifies the remaining

resist, to make a more durable protecting layer for the future steps.

Etching In etching, a liquid (wet) or plasma (dry) chemical agent removes the
uppermost layer of the substrate in the areas that are not protected by resist.
In semiconductor fabrication, dry etching techniques are generally used, as
they can be made anisotropic, in order to avoid significant undercutting of the
resist pattern. This is essential when the width of the features to be defined
is similar to or less than the thickness of the material being etched (i.e. when
the aspect ratio approaches unity). Wet etch processes are generally isotropic
in nature, which is often indispensable for MEMS, where suspended structures

must be released from the underlying layer.

Ashing After resist is no longer needed, it must be removed from the substrate.
This usually requires a liquid resist stripper, which chemically alters the resist
so that it no longer adheres to the substrate. Alternatively, resist may be

removed by a plasma containing oxygen, which oxidizes it.

Since the typical size of the features of 2D photonic crystal is of the order of 100

nm, the required accuracy is about 10 nm or less, and the lithographic resolution



72 Fabrication Process and Disorder

(a) Membrane (b) On a low-index cladding
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Figure 4.2: (a) Straight photonic crystal waveguide defined on a membrane. (b)
Same object defined on a low-index cladding. (c) Same object defined in a buried
configuration, the multilayer structure corresponding, for instance, to a standard
laser diode. The vertical mode profile is sketched|4].

has to be more or less of the same order, optical lithography results inadequate,
so that the most adequate method for the definition of photonic crystal patterns
in semiconductor substrates is the electron-beam (e-beam) lithography: a focused
electron beam, with a typical spot size below 10 nm, scans all the parts of the resist
which are to be dissolved. The possibility of using deep-ultraviolet (DUV) lithogra-
phy with the projection of a mask at a high resolution has also been demonstrated
recently [13]. This method should be preferred for mass production as its throughput
is an order of magnitude higher than with serial e-beam lithography. Further, this
method is undoubtedly in a position of benefiting from the current advances in the
miniaturization of silicon microelectronics, where the size of the grids for transistor
gates is expected to fall well below 40 nm within the next few years. The X-Ray
Lithography is also a suitable tool for its good throughput and resolution, but needs
an intermediated mask to be duplicate on the final substrate using EBL. Finally,
the possibility of using laser holography has also been considered, above all for 3D
photonic crystals. This technique allows only the fabrication of uniform crystals, and

does not seem to be well-suited to the realization of periodicity defects in photonic
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crystals, which is essential for the implementation of genuine optoelectronic devices.

After having correctly defined the mask and the corresponding set of etching
steps, the three main possible implementations are represented in Fig. 4.2. A straight
photonic crystal waveguide has been chosen here as a visual example. It consists of
a line of missing holes along a direction of the photonic crystal.

The membrane (Fig. 4.2a) is apparently the simplest case, but its fabrication
process is quite complex from a technological point of view, because the presence of a
sacrificial layer under the waveguide that has to be removed by chemical etching. The
case of a low index substrate is generally the simplest in terms of etching (Fig. 4.2b).
The case of a buried waveguide (Fig. 4.2¢) is of great interest as regards technological
integration, but its implementation imposes very demanding requirements in terms

of deep etching.

4.2 Disorder in 2D photonic crystal waveguide

The extrinsic disorder collects all the random fabrication variations and repre-
sent one of the most critical hurdles facing the development of PhC and PhC-based
devices. In this work, we will focus on arbitrary PhC waveguides and we will use the
formalism introduced by Sakoda [1] and Hughes [14], that yields explicit formulae
for both the backscattered and total transmission loss due to disorder imperfections.

Because the fabrication process, the real structure differs from the ideal one. As
PC materials can be described entirely by their permittivity® e(r), we can introduce

the disorder function as the difference between the real and the ideal permittivity
Ae(r) = e(r) — &i(r). (4.1)

We consider, moreover, that the ideal structure is periodic along the defect direc-
tion; we assume this direction as the x direction and the waveguides periodic along
it with period a

gi(r) = &;(r + max), (4.2)

where X is the unit vector in the x direction, and m is an integer. Furthermore, we
indicate with L the length of the waveguides and V' the volume of the unit cell; it is
bounded in the z direction by the period a and unbounded in the y and z directions.

The idea is to calculate the unperturbed field, solution of Maxwell equations for

the ideal structure, and then apply the Marcuse perturbation equations.

'We consider that permettivity is frequency independent: e(r,w) = £(r)
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By considering the Maxwell’s equations in the frequency domain

V-e(r)E(r,w) =0 (4.3a)
V- B(r,w) =0 (4.3)
V x E(r,w) = —wpuoH(r,w) (4.3¢)
V x H(r,w) = +wepe(r)E(r,w). (4.3d)

we obtain the wave equation for the electric field

2

V x V x E(r,w) = %5(1«)153(1«,@, (4.4)
that can be written as
w? w?
VxVxE([rw)— ggi(r)E(r,w) = C—QAP(r,w), (4.5)

with AP(r,w) = Ae(r)E(r, w).
By introducing the operator? © = V x Vx, we obtain

w2

<_”_25i(r) n é) E(r,w) = — AP(r,w). (4.6)

c? c?

The solution of (4.4) is obtained from the implicit Lippmann-Schwinger equation

E(r,w) = Eo(r,w) + / G (v, w) AP(Y,w)dr’ (4.7)
D
where the first term Eg(r,w) is referred to as the incident field, while the second one
is the scattered field obtained from the integration over the domain D, that is the
part of the volume V', where AP is non-zero.

To solve the Lippmann-Schwinger equation, we need to know the analytical so-

lution Eg(r,w) of the homogeneous equation

2
V XV x Ey(r,w) — %ei(r)Eo(r,w) =0, (4.8)

and the associated Green dyadic defined by

v 6i(r)(5>(r,r’,w) = w—é(r -1 T, (4.9)

c2

V x V x Z)(r,r’,w)

c2

2This operator is different from the one defined in Eq. 1.11.
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It is difficult to find the analytic form of (4.7) since E appears within the inte-
gration. Then, we suppose to work in condition of weak scattering, so that we can

consider the Born expansion
E(r,w) = Ey(r,w)
/H(r v w) - Ae(r)Eo(r,w)dr’

(4.10)
// (r,r',w) G(r’,r”,w)-Ae(r’)Ae(r”)Eo(r",w)dr”dr’

We truncated the expansion after the first three terms because the volume D is

very small and the contribution of terms with order higher than (Ae(r))? is negligible.

4.2.1 Solution of the homogeneous equation

The propagating mode solutions are obtained from the eq. (4.8), which here we

rewrite by using the © operator

— Eo(r,w). (4.11)

The operator © is a Hermitian operator’. Therefore, its eigenfunctions form an
orthogonal complete set. These eigenfunctions are classified into transverse-wave

solutions E/ (r) and longitudinal-wave solutions EL(r).

3The inner product of two periodic complex functions Fy(r) e Fa(r) is defined by

< Fi(r),Fa(r) >= /VFl*(r) -Fa(r)dr, (4.12)

where V' is the volume on which the periodic boundary condition is imposed. Applying these
definitions to our case, we obtain

< OF(r),Fa(r) >= /V [V x {V x F1*(r)}] - Fa(r)dr. (4.13)
Using the following vector identity
V-(AxB)=(VxA)-B—A-(VxB) (4.14)
the (4.13) becomes

< OF, (1), Fa(r) >= /S[{v « F1* ()} x Fa(r)]dS
(4.15)

+ [ A9 <P 1)}V < Pae)
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The equations that characterize these solutions are
V-&(r)El(r) =0, (4.17)
and
V x E¢(r) = 0. (4.18)

Note that E/l(r) and EL(r) are not purely transverse nor longitudinal, because of
the spatial variation of ¢;(r), the terms are adopted because of when ¢;(r) is a con-
stant the equations become the usual relations defining transverse and longitudinal
waves, respectively.

For each transverse solution, we can write the associated equation

2
1 Wi T

5.(r)v x V x Ej(r) = EEk(r), (4.19)

where k and wy are respectively the wavevector and the eigenvalue corresponding to
the eigenfunction Ey(r), while the eigenvalue of the longitudinal mode is zero.

Now, we normalize these wave functions as follows

| )R B ) = duados (4.20)

with o, 6 =T or L.

The completeness of the eigenfunctions [1] leads to

&) > [EL(r) @ (BL ()" + BL(r) ® (BL(r))] = o — 1) T , (4.21)

A d
where [ is the unitary tensor, and we use |¢;(r)| because of €;(r) € C generically.

where S denotes the surface of the volume V. The surface integral is zero because of the periodic
boundary condition. Applying again the identity (4.14), we find

< OFy(r), Fa(r) >= /S[Fl*(r) % {V x Fy(r)}]ds
+/ Fy'(r) [V x {V x Fa(r)}dr (4.16)
14
= < Fl(I‘), @Fz(r) >,

where we have again used the fact that the surface integral is equal to zero. The operator 6 is,
therefore, Hermitian.
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Applying the Bloch’s theorem to the eq. (4.11) and considering only the value of

k in the z direction so that k is scalar, we can express the eigenfunctions in terms

El(r) = \/%ek(r)e’k’”. (4.22)

We remember here that the Bloch functions have the following properties

of Bloch function

ex(r) = ex(r + Xma), ex(r) = e ,(r), (4.23)

and we normalize them according to

/Vsi(r) le;, (r) - e, (r)] dr = .. (4.24)

To set the homogeneous solution, we consider the dispersion relation w(k) and
a fixed frequency wy and we suppose there to be multiple solutions to w(k) = wo,
and these solutions are k,,n € [1, Ny|. For different w, the value of Ny can change.
So we consider a function N(w) that gives the number of solutions of the equation
w(k) = wo, Nog = N(wp).

We set the homogeneous solution as the sum of all the forward propagating modes

at the frequency wy

Eo(r,wy) = % Z ey, (r)e™n®. (4.25)

4.2.2 Green function tensor

The Green function can be expressed in terms of the eigenfunctions Ey in the

suIn
2

Grrw=Y 5——El(r) e (ELr)

— Wi —2(w +16) (.26

a2 B @ (B)

where ® denotes the dyadic product® and § is a positive infinitesimal that assure the

causality of the solution of the eq. (4.5). Using (4.21), the Green function tensor

can be written as

—> , (ET( )) 5(1'_1‘/)(_)
G rrw) = w+@5 (Z “k w2— (w+10)?  |e(r)] I>' (4.29)

T

1The dyadic product A of two vectors, u = [ug,..., Uy’ and v = [v1,...,v,]T, is defined as
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It is possible to divide the last equation in three different part. The first one
takes in the modes which propagate in the x direction and, then, have the associated

wavevectors written as a scalar quantity k&

=4 / _ w? le T T/ A\*
GPTOP(I'J r 7”) - (w + 15)2 g w}% _ (w + M)QEk (I‘) & (Ek (I‘ )) : (4'30)

>
The second part, G ,.q4, includes the radiative modes and the delta function term,
that comprises all the quasi-longitudinal modes and contributes only to the real part
>
of G atr=r

> >
G = G pop+ G raa. (4.31)

>
We can write explicitly G ., by considering the Bloch functions

— a U)Q C()Q ’
G prop(r, T/ w) = — k E(r)e k@) 4.32
p p(r,r,w) L<W+Z5)2;wi—(w—f—léyek(r)@ek(r )e ) ( )

and by extending k as a continuous variable and by converting the sum over k into

an integral®, we obtain

= / L WQ > T T/. N\ *
G prop(r, ' W) =——— E,(r)® (Ek (r )) dk

Toam(wH16)? )
a w? 00 w2(/<:) I
27 (w +16)? /_OO w2(k) — (w + 25)2ek(r) ® ey (r')e dk,

(4.33)

where w(k) is the continuous dispersion relation.
Before to integrate this formula, we suppose there to be multiple solutions to

w(k) = wp, and these solutions are k,,n € [1, Ny|. Integrating and letting 6 — 0, we

the matrix obtained by multiplying u as a column vector by v as a row vector

U1V UL VUp,
A=uv=u-v= : : (4.27)

UV «-.  UmUp

Consider three vectors u, v, w with the same dimensions. We have this interesting property that
we use extensively:
(uv) - w=(v-wu, (4.28)

where the result of the product v-w is a scalar.

L
The conversion is ), — o = dk
m

— 00
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obtain

+(BL ()" @ B ()0 - )]
o (4.34)
S 205 L e, ) @ 6, (V)0 - )

2 n=1 Ug,n

+ezn (I‘) Q er, (rl)elkn(x’,x)@(x/ i x>i| 7

— dw

= % {k:k and ©(x) is the Heaviside function.

where v, ,,

4.2.3 The loss expressions

We consider the electric field at frequency wy as sum of all the modes® of the
waveguide at the same frequency along the direction of propagation, as already
defined in Eq. 4.25:

N(wo) 4 N(wo)
Eo(r,wy) = Z E, = ”Z Z ey, (r)e*n®. (4.35)
n=1 n=1

To simplify the notation, from now on, we will neglect the prime 7" in the notation
of the mode. Besides, we will neglect the explicit dependence of the fields from w
except when it is important for a better comprehension.

We come back to consider Eq. 4.10. By using Eqgs. 4.34 and 4.31, the electric

field that comes from the second term is:

E;(r) /Dﬁ(r,r’) -Ae(r')Eo(r')dr!

Lw (4.36)

7
20g p,

E; (r) /D Ae(r)Ey, (r') - Eo(r")O (2" — z)dr’

n=1
—i—/ <5>7q¢1d(1',1")-Ae(r')EO(r')dr’
D

= Ep(r) + Epa(r) + E, ()

When we consider all the modes at a certain frequency, we have to consider not only the
propagating mode below the light line, but also the leaky modes above the light line.
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while the third term give us

Es(r) E/D/D?(r,r’) : ﬁ(r’,r”) - Ae(r) Ae(r")Eo(r")dx" dr’
)

N(w
L
= Z z2vw Ekn(r)/ Ae(r')Ey; (x')-Ei(r)O(x — 2’)dr’
n=1 TON ¥ (4.37)
N@w) Lw
- 1 E; (r)/ Ae(r)Ey, (') - E ()0 (2" — z)dr’
n=1 21)97” ! D
—i—/ ﬁmd(r,r’)~A5(r')E1(r’)dr’
D
By combining the equations 4.10, 4.36 and 4.37, the electric field results:
E(r) = Bo(r) + Ey(r) + Ex(x)
—E = / / / /
= Ey(r) + / G raa(r,r') - Ae(r’) (Eg + Ey) (r) dr
D
(w) Lw
5 R () / Ae()E: (1) (Eo + Ey) (v)) O(x — o )dr’
n=1 21}9771 D !
N(w) Lo
+ E; (r) [ Ae(xE,, (') (Eg +E,) (r') ©(2' — x)dr’
> 15 B0 [ AR ) (B4 B () O i
N Lw
. 4t . /
= Eo(r) + ; ZQUgﬂEk"(r)/DAn (r')O(x — 2")dr
N(w) Lew
+ ; Z%Ezn(r) /DAn(r’)@(:c’ — x)dr’
<>
+ / G raa(r, ') - Ac(r)) (Eo + Ey) (v') dr’
D
where the explicit form of A}, A~ are respectively:
AT(r w) = Ae(r)E; (v') - (Eo(r',w) + E1 (1, w)),
(¥,10) = A B}, () (Bale' ) + Bi(e, ) )

AL (', w) = Ae(r)Eyg, (v') - (Eo(r',w) + E1 (1), w).

We can observe that the electric field is sum of the forward propagating mode (the
first two terms), the backward propagating mode (the third term) and the radiated
field (the last term). It is, therefore, possible to determine the transmission and
reflection coefficient, respectively,

2
T(w) = lim

‘Efw—(“’) (4.40)

Eo(r,w)
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and )
Eback (I‘, w)

—EO(I'7 o) | (4.41)

Rw)= lim ‘

where, we consider the field at two limits, x+ — +oo to obtain the reflectivity and
transmittivity of the scattering region, because at oo only guided modes (even if
backscattered) exist.

The transmitted part is

Eforw (I‘, CU) ?

T =1l
(w> xi{lkloo EO (I‘, w)
[ S B (1) fy ALY, w0 — ) |
= 111m
T—-+00 EO(I‘>
=1+ Z Z z -
n=1 p=1 4Ugnvgp ’Eo(r>|

/ / Ae(r)Ae*(x") [E, (v) - Eo(r)] [Eg, (v”) - Eg(r")] dr'dr”

< o I { Pl

4.2.4 The backscatter losses

The backscatter loss is the fraction of light intensity that is backscattered due
to imperfections captured by Ae and it is simply the reflection coefficient R(w). We

have:
. Eback(rvw) ?
awck =R =1 —_
pack (W) x—l>r—noo‘ Eo([‘ (.U)
w 2
= lim Zn(l) ZU " fD Oe — w)dr
N(w) N(w) 2 9
L E
=33 " Bilr / / (0 dr'd  (4.43)
1 40g Vg p |E0
N(w

= ) [z, Ekp(r)Ezn(r)

AgnVgp  [Eo(r) |2

n=1 p=1

[ [ ctae @) B, ) Balw) [E7, 07)- By(x") ] .
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where we did the approximation A_ (r,w) = Ae(r)Eg, (r') - Eo(r',w), because we
have only kept terms that are consistent with the truncation of the Born expansion
in Eq. 4.10 at the second order.

There are several ways in writing this relation, but we choose the representation
with correlation, because it permits to introduce correlation consideration about the
disorder as we will see in sec. 4.2.7.

We define the intermodal losses between two modes with wavevectors k,, and k,

12, [E E*
W e, (@) = —— [’“P / / Ae(r')Ac*(x")

as.

4vg 0 Vg |Eo(r)
B, () E < ) [B1, 0) B0 | dv'an”
Ey, (r)Ej (r) .
TEOF / JRSEISCS (44
[Ex, (r') - Eo(r')] [Ek (r") - Ej(x")] dr'dr"]

L2w? E E
= ~ -2%{ AL k //As YA (")
4vg.n Vg p |Eo(r)

B, (r')- Bo(r >] B, () By(r)| dr'ar” }

while in the particular case k,, = k,, we have:

E
g, (W) = — B, () //Ae JAe*(x")
4”g,n [Eo(r)[*
Eg, (r' E . D dr’dr”
» [Ey,, (r) - Eo(r)] [Ej, (r”) - Eg(r")] ] (4.45)
L E
AN B, () //As )Ae* (1)
A5 [Eo(r)[*
[Eg, (r') - Eq(r)] [Ezn(r”) -ES(I‘”)} dr’dr"} )
Using the latter definitions, we can recast Eq. 4.43 as:
N(w)
Qpack(w) = R(w) = Z g, (w Z W ey (W) | - (4.46)
n=1 p=n+1

4.2.5 The radiation losses

The radiation losses are the losses due to the fraction of light radiated out by the

waveguide:
Lrad(w> =1- T(W) - R(w>7 (447)
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and by using Eq. 4.42 and 4.43, we have:

N(w) N(w)

L2w?
= b= = 2 Z Vg |Bo(r)]
/D/DAa(r’)As*(r”) [?R {Ekn(r)Ezn(r')} 'Eg(r/)}

[3% {Ekp@)E;p(r")} . Eg(r")} dr'dr”

Lo { By, (r) fgﬁ) (x, w)dr’ } |

2

(4.48)

N(w)

n=1 /Ug7n

4.2.6 The single-mode case

In this section, we consider that the waveguide at frequency wy is single-mode,

that is the equation w(k) = wp has only one solution, k.

In this case, the homogeneous solution (cfr. 4.25) for the electric field is

la .
ED(I') = Zelkoﬂﬁeko (I‘),

while the associated Green dyadic is

C pron(r,1) =15 e, (1) @ e, ()e O (@ - )

20 (4.49)
+e]:0 (I‘) ® e, (r/)ezko(a:’,x)@(w/ _ .Z'):| :

— dw
where v, = o |k:k0.

Using the last two equations, Eq. 4.38 becomes

4.50
B [ Ac)BE)OG — a)ar (4.50)
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where the explicit form of A, B and C are respectively:

Afr) = zg—Zrek< )k

CL22

e \/Aa e k(') 20z — ')dr’

a2w2

RO (451)
/ Ae(r')e? [ep(r') - ex(r')] Oz — z)dr’
—|—22—Uge_”me*( )/DAe( r')ek <5>7,ad(1' r') - ey(r)dr’

B(r) = 15" [ei(r) - ex(r)]

Vg
a’w?

~ e fex(r) - ex(v)] /D Ac(r) e (') 20z — 2')dr’

y | (1)
— : lex(r)|? /D Ae(r')e® ™ [en(r') - en(r)] O (2" — )dr’
—i-z;—:;em e (r)/DAe(r')em/E)md(r,r’)-ek(r)dr’
C(r) = Ey(r)
—1—2;—;: %e”kxek(r)/DAE(I")\eZ(r’)F@(x —2')dr’
aw |a (4.53)
—1—22—% Ee””e (r )/DAS( r')e % [e,(r) - ex(r')] O(a' — x)dr’

_|_\/E/ A&?(r’)ﬁmd(r,r/)'Eo(r’)dr’.
L Jp

We can now obtain the approximation of the reflection coefficient (cfr. Eq. 4.43)
as:

R(w) = lim

r——00

L2 2
5 / / )" dr'dr”
A2 (4.54)

:T?jg/jj/DAa(r’)Aa*(r”)

[eko (I‘l) -ep, (I‘,)] [el:o (I‘”) _ezo (I‘”)] eszo(z/_a;u)dr/dr//’

‘Eback( ) 2
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4.2.7 The disorder correlation

The several works, that have been done to study impact of imperfections on the
performance of a PhC, established quite generally that small randomness in PhC ge-
ometry and/or material constants lead to an overall reduction in a band gap size, as
well as an increased back-scattering and radiation losses, while stronger randomness
can lead to appearance of localized impurity states. Usually the disorder parame-
ters introduced above are scanned from small to large and conclusions are drawn
about their relative impacts. But propagation parameters can be sensitive functions
of disorder parameters. Thus, for a rigorous comparison of theoretical estimates
with experimental observations one has to be precise about the types and statistical
importance of realistic imperfections. Skorobogatiy and Bégin in [15] tried to under-
stand which are the statistical parameters of importance when describing disorder
in PC lattices, and then to characterize such parameters quantitatively by analyzing
high resolution experimental images of 2D planar slab PCs. They found that three
intuitive sets of parameters are necessary to create a comprehensive statistical model
of PC imperfections. First set of parameters describe coarse properties of features
such as radius, ellipticity and other low angular momenta components in a feature
shape. Such coarse variations of a shape can be either deliberately designed or re-
sult from an imperfect manufacturing process. Another set of parameters describe
roughness of feature edges on a nanometer scale, that is wall roughness, which is
ultimately determined by the random physical processes of electron scattering in a
resist, resist development and etching. A final set of parameters describes deviations
of feature centers from ideal periodic lattice.

We want to try to model the disorder function Ae(r) in a quite simple way, by
taking in account the imperfections introduced during the fabrication process. The
dominant imperfection is surface roughness appearing on the sidewalls of the holes.
It is due to random fabrication variations in the mask, that after etching translates
to vertical striations appearing on the sidewalls of the holes. It is reasonable to
assume perfect correlation in the vertical direction, so we need only address in-plane
variations. This is not completely true, because above all in SOI structure there is a
not perfect verticalness of the holes due to the etching process of the holes.

We consider a semiconductor membrane with a number of etched holes (a) with
radius r with centers located at the points C; = (p;, ¢;) in polar coordinates [11].
The vertical coordinate is z and the membrane height is h. An exact expression

for Ae(r) can be written in function of the roughness function AL, defined as the
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Figure 4.3: Confrontation between (a) measured and (b) calculated losses for a W1

waveguide. Image from [10]

distance between the true and the ideal structures:

AL = AL($(C, Cy)), (4.55)

with

7 _ psing — p;sin ¢,
»(C,C;) = arCtan(pcosqS p—— ¢i). (4.56)

If we suppose that AL << r, we can write

Nhotes

Ae(r) = (62 —1)O(h/2 — |2]) Z AL($(C, C))é(r — |p — pil). (4.57)

where £1(e2) is the dielectric constant in the etched layer outside (inside) the air
holes.

Because the disorder function appears in each loss equation inside a double in-
tegral and assuming inter-hole disorder uncorrelated, we can consider the multiple-

scattering correlation function [17] of the AL function

_ =4l

< AL(Q)AL(Y) >=0c% " & baa, (4.58)

where ¢/ = ¢(C',C}), I, is the in-plane correlation length, and o is the RMS rough-
ness length.

The model just introduced is quite simple, but it allows a basic evaluation of the
impact of disorder on propagation properties, as demonstrated in [16]. The authors,

in fact, use this model to evaluate the proportionality of backscattering losses to the
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inverse of the square of the group velocity. In Fig. 4.3, it was plotted the product
of the measured losses and calculated v, and vg for a W1 waveguide, while in Fig.
4.3b, there is the same plot but with calculated losses. The left side of the picture
demonstrates the (1/v,)? scaling for the losses, confirming that when v, becomes
small, the backward scattering becomes important and indeed dominant. The right
side with the calculated data show a similar behavior, proving the validity of the

used model.
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Chapter

Time-Wavelength Reflectance Maps of
PhCWGs

In the last chapter, we investigate the effects of disorder on the propagation of
light in PhCWGs. Several techniques have been proposed for measuring the critical
parameters of PhC waveguides, such as time resolved near field imaging (SNOM)
[32], phase-shift [18], time-of-flight [19], time-domain transmission measurement |50]
and Fabry-Perot fringe analysis [71]. Each of these methods has its own advantages
and its own drawbacks, for instance, it is not straightforward to have a simple exper-
imental setup, able to measure very dispersive structures, in a short time, with min-
imal sensitivity to parasitic light. Recently, the optical low-coherence reflectometry
(OLCR) technique was applied to the investigation of PhC structures, demonstrat-
ing its effectiveness to provide an accurate and reliable measurement of the group
delay, a good estimation of propagation losses and evidence of inter-mode coupling

induced by disorder |52].

In this chapter, we will discuss about phase-sensitive optical low-coherence reflec-
tometry, that, combined with a suitable digital processing of the OLCR signal, shows
a considerable amount of information about disorder and permits to draw a complete
dispersion map, i.e., to divide the components of the reflected signal corresponding
to different wavelengths, but superposed in time [53].

We apply this technique to four 1 mm long PhC waveguides with suitable engi-
neered dispersion curves, that operate in a regime of semi-slow light (see Sec. 3.3.2),
a trade-off between group velocity and propagation losses [33], because it is more

robust with respect to the strong losses induced by disorder.
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Figure 5.1: Simplified scheme illustrating the principle of the OLCR measurement.
It is a fibered Michelson interferometer with the device under test in one arm. The

interference signal versus the delay is measured with high spatial accuracy.

All the material presented in this chapter has been developed at Advanced Pho-
tonics Lab of Thales Research and Technology, Paris, under the guidance of dr.
Alfredo de Rossi, and has been published in [53].

5.1 Optical Low Coherence Reflectometry

OLCR is a nondestructive technique allowing the measurement of the backre-
flected signal as a function of the position inside a passive or active photonic device.
It provides a very good spatial resolution and a large dynamical range [54]. Tt has
been shown [55], [56] that this technique can be used to extract all characteristic pa-
rameters relevant to complex structures such as Bragg gratings and ring resonators
coupled to waveguides (i.e., coupling coeflicients, propagation losses, and optical
cavity length L).

The OLCR setup is basically a Michelson interferometer illuminated with a broad-
band source (e.g., a 1520-1610 nm Er** superfluorescent source), which spectrum is
S(w); the device under test in one arm, and a translating mirror in the other one
(see Fig. 5.1). The main idea is that the backreflected signal coming back from the
sample after a delay t interferes with the signal coming back from the other arm
at the same time, within an interval At, because of its limited temporal coherence.
Thus, the amplitude of the interference fringes is proportional to the signal backre-
flected within a spatial region inside the sample, which depends on the position of
the other arm. When examining a waveguide or a photonic device entailing an input
and an output facet, the measured signal shows typically the first reflection at the

device input facet and then the signatures of multiple round trips inside the device
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(Fig. 5.1). Moreover, a background originated by backscattering in the waveguide
is also detected. Ideally, the spatial resolution is related to the spectral width of
the source through a simple Fourier transform. Actually, this technique measures
a time, which is the propagation delay through the sample; consequently, the link
between the spectral band of the source and the accuracy in the measurement of
the delay appears formally as an uncertainty principle between time and frequency.
OLCR is demonstrated as a suitable technique for the measurement of propagation

and dispersion inside waveguides and, in particular, for slow light.

5.1.1 Phase-Sensitive OLCR

A standard OLCR equipment only measures the amplitude of the interference
fringes. However, valuable information is contained in the complete interferogram.
Indeed, the interferogram I(t) is connected to the complex reflectivity r(w) by the

inverse Fourier transform:

[(t):/_ OOS(w)r(w)e_mdw. (5.1)

o)

This suggests that the complex reflectivity can be retrieved by Fourier transform
and normalization with respect to the source spectrum S(w). However, a specific
experimental setup is required, with spatial accuracy in the submicrometer scale, in
order to resolve the interference fringes. This kind of setup has been developed at
TELECOM ParisTech, and the complete description can be found in [57]. Once the
complex reflectivity is obtained, it is straightforward to extract the group delay from
the phase. This allows a complete characterization of a waveguide in term of complex
index, group delay, group velocity dispersion and birefringence. This technique was
initially proposed to characterize fiber Bragg gratings [58], micro-structured fibers,

or few-modes fibers [59].

5.2 PhC Waveguides

In this work we will focus on single mode PhC waveguides made on thin mem-
branes of gallium arsenide (GaAs). The scanning electron microscopy (SEM) of the
sample in Fig. 5.2 shows the typical structure which is fabricated by patterning a
silica hard mask through Electron-beam lithography, followed by reactive ion etching

(RIE) and final transfer into the semiconductor by high-density plasma etching [51].
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(a) - (b)

Figure 5.2: (a) SEM image of a typical PhC membrane waveguide on GaAs. (b)
Detail of the sample.

The air-clad membrane of GaAs was obtained by removing an underlying sacrificial
layer by wet etching. We have obtained a very high fabrication quality (Fig. 5.2b)
which allowed us to achieve a record @ factor of 700000 in III-V PhC cavities [60],
[61].

The four PhC waveguides used in our study are 1 mm long with the thickness of

the membrane is 265 nm.

1. Sample 1 has a lattice period a = 418 nm, the hole radius is r = 0.26a. The
waveguide consists of a single missing row of holes along the direction; the
normalized width is W = 1.057v/3a. This value is used to optimize coupling
to PhC cavities. The corresponding band diagram, shown in Fig. 5.3, is
calculated using a 3D Finite Differences in Time Domain code with periodic
boundary conditions, in order to implement the Bloch’s theorem. This code
permits to calculate accurately the leaky modes outside the light cone (dashed)
as well as the bound modes (solid). Two bands of TE modes appear within the
measurement spectral window. The TE even band reveals the typical behavior
of single line defect PhC waveguides [62]; the group velocity is almost constant
at high frequency and then decreases and vanishes at the band edge, which
is located at 1630 nm. The odd TE band has two minima, one is in the
leaky region. The dispersion of a TM mode is very close to an index-guided
waveguide, except for a small bandgap between 1537 nm and 1527 nm. The
group index of the TM mode is approximately constant and close to n, = 5,
which is quite a high value [63]. This is not surprising, however, and it is not
peculiar of photonic crystal. Rather, this is typical of tightly confined TM
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Figure 5.3: Calculated dispersion for the PhC waveguide (sample 1) revealing a TE

even mode with band edge at 1630 nm (Ej)

, a TE odd mode with band edges at

the points k = kg/2 (Ef)and k = 0 (ET) which coincide at 1533 nm; the TM band
with a minigap in 1537 nm (My) and 1527 nm (M;). The light line (red line) marks
the transition to leaky modes (£, at 1510 nm for TE even).

modes in very thin slabs, as it can easily be proven by effective index analysis.

. Sample 2 is very similar to sample 1, except that the lattice period is a =
400 nm, the hole radius is » = 0.242a. In addition, sample 2 entails the well
known optimized L3 microcavity with loaded @ ~ 10000 (intrinsic ) ~ 40, 000)
and resonant frequency at 1555 nm, which is side-coupled to the waveguide.
The normalized width of W = 1.057v/3a was chosen in order to optimize the
coupling with the cavity.

. Samples 3 is characterized by a non uniform size of the holes along the trans-

verse axis of the waveguide [33].

. Sample 4 is identical to sample 3, except for three localized defects. This
defects were deliberately inserted to test the effectiveness of OLCR.

5.2.1 Group Delay in PhC Waveguides
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Figure 5.4: (a) Measurement of the phase-sensitive OLCR signal from sample 1, TE
even polarization. (b) From this signal, the group delay is extracted. The solid thick
line represents the calculated delay.

Fig. 5.4a shows the reflectogram for sample 1 in the TE polarization. We can see
the reflection peaks corresponding to the input facet and to the first reflection on the
rear facet of the waveguide. The reflection on the rear facet appears to be strongly
broadened, compared to the reflection at the input facet, due to the large dispersion
value of the PhC waveguide. Fig. 5.4b, instead, compares the Group Delay (GD)
obtained through a Fourier analysis on the second peak of the reflectogram with the
value calculated from the simulated dispersion diagram (see Fig. 5.3). We analyze
the TE even case which better reveals the specific properties of PhC waveguides [52]

and we find a very good agreement between the two curves.

The transmission band of the PhC waveguide under test extends from the onset
of optical leakage, setting the high frequency limit (here 1520 nm), to the low-
frequency cutoff (1630 nm). As expected, the round-trip group delay increases first
slowly when moving to longer wavelengths and then increases very fast (A7 & 30 ps)
when approaching the cutoff, thus entering in the slow-light region (1600-1610 nm).
The results are consistent with phase-shift measurements made on similar samples,

which also reported similar group delay evolutions [18].
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Figure 5.5: 3-D time-wavelength reflectance map of sample 2 extracted numerically
from the phase-sensitive reflectogram which is also shown (black plot). Clearly visible
are (a) the reflectance peaks from the input facet and (b)-(d) after multiple round

trips in the waveguide.

5.3 Time-Wavelength Reflectance Maps

In an OLCR reflectogram of a highly dispersive waveguide the contributions from
the whole spectra are superimposed (i.e., overlapping between the different successive
reflections on the rear facet). This is a major limitation when investigating strongly
dispersive structures such as photonic crystals. The obvious way to achieve a spec-
tral separation between fast and slow modes is to cascade an optical tunable narrow
bandpass filter after the OLCR source [56]. In the absence of dispersive effects the
spatial resolution is determined by the coherence of the source. Therefore, consid-
ering the broadband source parameters (source bandwidth A\ = 80 nm and central
wavelength \g = 1565 nm), the expected resolution is about 10 um, corresponding to
33 fs in time domain. However, a difference in fiber length between the two arms of
the interferometer and/or the optical filtering of the source induces a residual disper-
sion that deteriorates the theoretical spatial resolution. Hence, practical resolution

is about 0.36 ps without filtering and 1.1 ps with a 2 nm filtering.
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Figure 5.6: The time-wavelength map as in Fig. 5.5 is represented as a 2D plot. The
reflectivity peaks obtained with the optical filtering, represented by circles, and the
calculated group delay (dotted curve) are superimposed. The signature of the side-
coupled cavity at A = 1555 nm is denoted by the letter C. The left panel shows the

calculated dispersion (A versus wave vector) for the corresponding TE even mode.

5.3.1 Interferogram Digital Processing

To overcome reflection overlapping in reflectograms, the best way to extract GD
properties is to apply a digital processing to the OLCR measurements. The numeri-
cal algorithm that exploits the phase-sensitive reflectograms has been introduced in
[64]. The phase-sensitive reflectogram similar to that shown in Fig. 5.4a is Fourier
transformed and we then apply a sliding numerical filtering (Gaussian-shape filter)
to the spectrum in order to treat in the spectral domain each wavelength separately.
The filter bandwidth (typically 2 nm) is chosen as a trade-off between the coherence
length of the filtered source and the medium dispersion to optimize the spatial reso-
lution. The procedure is repeated by sweeping the filter center frequency such that
a wavelength dependent reflectogram is obtained.

Fig. 5.5 represents as a 3-D graph the time-wavelength map extracted from
the corresponding reflectogram, also shown on the backside. The intensity of the
reflected signal is reported as a function of the arrival time (after a round trip),

and of the wavelength. Each maximum in the signal amplitude corresponds to a



5.3 Time-Wavelength Reflectance Maps 97

strong reflection, either on a facet or on defects inside the waveguide. We see four
maxima associated to the input facet, the rear facet, and two more round trips in the
waveguide. This figure provides a clear understanding of the impact of losses and
dispersion on the shape of the reflectogram; that is the broadening and the decrease
of the reflectance peak after one or more round trips. The procedure is validated
by comparing the outcome with the results obtained by direct optical filtering of
the OLCR source. The GD values obtained for different values of selected frequency
are shown in Fig. 5.6. The two methods give self-consistent results concerning the
dispersion properties of the PhCs. Besides, the spectral signature (at 1550 nm)
of the resonance of an optimized L3 type side-coupled microcavity is revealed (the

horizontal vanishing line).

The quality of the measurement and the efficiency of the numerical treatment
in preserving the information is remarkable. The measurement with the numerical
treatment is easier (only coupling of the fiber into the waveguide input facet is
required) to implement with respect to time-resolved techniques [32|, that can be
considered complementary, or SNOM techniques. In addition, it is very fast (a few

seconds).

5.3.2 Reflectance Maps versus High Resolution Transmission

It is enlightening to compare the time-wavelength map in Fig. 5.6 with the high-
resolution transmission spectra measured on sample 2 using a narrow linewidth (1
pm) laser tunable in the range 1500 to 1600 nm. This is shown in Fig. 5.7. The
transmission band of the cavity extends between 1520 nm and the waveguide cutoff,
which is beyond 1600 nm. The transmission band is characterized by regular and
well contrasted Fabry-Pérot fringes appearing from the light line limit to about 1575
nm. This corresponds to the almost ideal transmission of a single mode waveguide
with end faced reflectivity equal to about 30%, which agrees well with the calculated
value [18]. Beyond this limit, the fringes become less regular and the contrast in-
creases. This is also the spectral region where the group velocity of the even TE mode
decreases while approaching the cutoff. The resonance of the side-coupled cavity ap-

pears as a deep dip (the cavity is overcoupled: Q/Q; ~ \/Tmin/Tmax =~ 0.2). The
lineshape is not Lorentzian due to inteference with waveguide Fabry-Pérot resonance.
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Figure 5.7: High-resolution transmission spectra of sample 2 (TE polarization, log
scale). The calculated value for the edge of the TE odd band (E;) is at 1520 nm
and corresponds to the strong decrease of transmission. Also visible is the signature
of the side-coupled cavity at 1555 nm (mark C), with @ ~ 10000. Insets: enlarged
view showing regular Fabry-Pérot fringes (left) and isolated peaks near the band

edge (linear scale).

5.4 Disorder induced scattering

Imperfections, roughness and discontinuities break the translational symmetry in
optical waveguides and result into backscattering (coupling to the backward prop-
agating wave) or scattering to other waveguide modes. This also induces some de-
polarization, as TE and TM modes may be mixed by imperfections. The general
picture holds for PhC structures, however, their much richer band structure, entail-
ing strongly varying group velocity and minigaps (e.g., Fig. 5.3), has a strong impact
on the scattering losses. A theory specific to PhC waveguides has been developed
in Sec. 4.2 [14], which agrees very well with experiments on silicon PhC waveguides
[16]. Various mechanisms associated to disorder-induced scattering have been re-
vealed: backscattering, intermodal scattering and a peculiar channel of propagation
losses in which energy is scattered into a slow and leaky mode in the odd TE band.
Now, by using the reflectance maps, we want to confirm these observations and get

a deeper physical insight.
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Figure 5.8: Time-wavelength reflectance maps for the sample 1, with dispersion
calculated in Fig. 5.3, for TE (top) and TM (bottom) polarizations. The plot in the
middle is extracted from the TE map following the trace of the first round trip. The
calculated group dispersion for the TM mode is superimposed (dotted). The arrows

denote the TM minigap (M, and M;) and the band edges of the odd TE mode (EX,
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5.4.1 Propagation of Slow Modes

The theory developed for PhCs reveals that backscattering has an explicit de-
pendence on the inverse group velocity squared, therefore may become very strong
even if fabrication imperfections are minimal. A first evidence of the impact of the
disorder on slow modes is given by the high-resolution measurement shown in Fig.
5.7. The regular Fabry-Pérot fringes appearing from 1520 nm to about 1575 nm evi-
dence almost ideal propagation, so that scattering is negligible. The picture changes
sharply at longer wavelengths: the fringes become irregular and then change into iso-
lated peaks with no-ordered structure. The transmission is high at resonance (only
one half of its maximum value, Fig. 5.7). These peaks are likely to correspond to
extended resonant states generated by coherent backscattering which are reminis-
cent of what was observed in disordered opals [65]. Long group delays are associated
to resonances, instead, short group delays result from antiresonances. The OLCR
spectral map in Fig. 5.6 provides a complementary view of the phenomena. While
in the spectral region from 1520 nm up to 1575 nm the signature of the mode is
well defined and follows the calculated dispersion perfectly, at larger wavelengths
the signal is dispersed and comes at any time from zero to large values. This can be
understood knowing that the OLCR spectral map cannot resolve the alternation of
resonances and antiresonances, as the filter was set to 2 nm. Those two independent
measurements show that disorder induces a drastic change in the propagation of the
slow modes. The OLCR map reveals that slow modes do not follow their theoret-
ical dispersion but, as the group index increases, the reflection peak vanishes while
the backscattering appears. Within this propagation regime, which is dominated by
disorder, the energy does not escape from the mode, as the waveguide transmission
remains high, but the propagation time varies very fast with wavelength and may be

very large.

5.4.2 Intermodal Scattering and Propagation Losses

Disorder induces a transfer of energy from a mode to another with the explicit
dependence on the inverse of the product of the respective group velocities 4.2. It
follows that a high-order mode with slow group velocity may have a strong impact
on the fundamental mode. This was observed experimentally in Si waveguides for
the first time in [16], but only by using the time-wavelength reflectance maps, it is

possible to obtain a very clear signature of the phenomenon. Let us consider sample
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Figure 5.9: Calculated dispersion for the sample 3. The two TE bands have edges
at 1590 nm (Ep), 1460 nm (Ef) and 1440 nm (E7). The TM band has a minigap
in 1530 nm (My) and 1535 nm (M;). The red line also shown is the light line.

1 (Fig. 5.8) and focus on the TE polarization first. In addition to a clean trace of
the dispersion of the fundamental mode and to some backscattering originated in
a non-uniform manner along the waveguide, the map reveals the weakening of the
reflected signal from 1540 nm, where it is particularly pronounced, towards lower
wavelengths. This is even more evident in the second round trip. The amplitude of
the OLCR signal taken along a path following the dispersion of the mode (Fig. 5.8)
provides further insight. In contrast with Fig. 5.6, there is no evidence of backscat-
tering enhancement in this spectral range which would explain the transmission loss.
Therefore, the overall reflectivity signal (integrated over the time) is strongly de-

creased and this corresponds to a strong decrease of waveguide transmission.

The map relative to the TM polarization reveals the mini-gap, as predicted by
the FDTD modeling (see Fig. 5.3). The minigap is located between 1537 and 1527
nm. In this range, the reflection at the input facet (delay is equal to zero) is increased

and no signal appears at positive delays, as expected.

Understanding the results in Fig. 5.8 requires the examination of the calculated
band diagram in Fig. 5.3. First of all, the onset of optical leakage of the fundamental
mode is expected at 1510 nm, therefore too far away to explain the result. The odd

TE band has two minima, one (EL) is at the edge of the Brillouin zone (point K)
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Figure 5.10: Time-wavelength reflectance maps measured for sample 3, for TE (top)
and TM (bottom) polarizations. Corresponding dispersion is in Fig. 5.9. The arrows
denote the band edge of the even TE mode (Ep). Note that the edge of the even
mode is at higher frequency than in the case reported in Fig. 5.8.
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and the other is at the center (point I'). These two minima are very close (1533
nm). The spectral match between the TM minigap and the losses in TE mode would
suggest a possible impact of slow TM modes, therefore some polarization scattering.
However, polarization scattering requires that disorder breaks the symmetry of PhC
membrane, which was not observed on silicon-based structures [66]. On the other
hand, the effect could be attributed to the slow modes at the edge of the TE odd
band, which are in the same spectral range. A clear answer to the question is possible
by confronting this measurement with some measurements made on sample 3, which
dispersion (see Fig. 5.9) shows the odd TE mode is far away from the TM minigap.
In fact, the TE map (Fig. 5.10) shows no trace of the impact of disorder, which could
be associated to the TM minigap. Therefore, we conclude that the slow modes at the
edges of the TM minigap do not explain the dip in the transmission of the TE mode.
More generally, propagation losses, as we see in this case, cannot be attributed to
transfer of energy to another mode, as the reflectance map clearly shows that the
energy escapes from the waveguide. We believe that the mechanism underlying these
losses is off-plane scattering mediated by slow leaky modes in the odd TE band. This
was proposed and observed in [16]. Scattering from the fundamental (even) TE mode
to small-k modes near the I' point light is peculiar, because these modes have a very
short lifetime. The effect is enhanced near the band edge because the group velocity
vanishes there, as predicted by the Green function theory. This picture is confirmed
by the fact that, in the case of sample 3, the small-k band edge F' — 1440 nm,
which is outside the measurement range and therefore cannot be seen. Indeed, no

transmission dip is seen in the measurements.

5.4.3 Scattering in Slow Modes

Fig. 5.10 also provides further insight on the slow modes of the TE even band
and completes the picture given by Fig. 5.6, because the cutoff is well within the
spectral band of the OLCR setup. First, the band edge is clearly identified, as
for A > 1595 nm the entire signal comes from the input facet. In other words,
the light cannot penetrate in the photonic crystal as expected, as it should be for
wavelength within the photonic bandgap. On the other hand, a relevant amount of
signal is originated from backscattering all along the waveguide. As the group delay
increases, the strength of the signal reflected by the end facet decreases and becomes
even weaker than backscattering. Again, as it was for sample 1, backscattering is

even stronger when moving closer to the band edge. When looking at the properties
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Figure 5.11: Time-wavelength reflectance maps for the sample 4. Curves (a), (b) and
(¢) denote reflectance peaks on defects inside the structure, while (c) corresponds to

the reflection from the output facet of the waveguide.

of the TM transmission we notice that, first, the signature of the minigap is better
defined than in Fig. 5.8 and it is apparent that the reflectance increases at the
input facet accordingly (no propagation inside the waveguide). Second, a stripe of
reflectance signal between 1585 nm to 1600 nm denotes that, again, light propagates
in the waveguide in a disordered way and that the energy is dispersed over almost any
delay. In particular, this is the signature of a transfer of energy towards modes with
long lifetime. It is not possible to explain that based on the dispersion of the TM
mode, which is almost flat in this region. On the other hand, this region coincides
with the slow modes of the TE band. This suggests that TE-TM scattering is the

underlying mechanism in this case.

5.4.4 Signature of Slow Modes

Fig. 5.11 shows the time-reflectance map for sample 4, that was designed with
three well localized defects. In the reflectance map, the reflection peaks generated
by three localized defects are well recognized; the first one a is situated at 0.1 mm
after the input facet, the second one (b) at 0.4 mm after the input facet and the
third one (c¢) at 0.85 mm. The peak corresponding to the reflection at the output
facet is denoted by the letter (d). The dispersive behavior of scattering at the point
defects is apparent. Defect (a) produces a strong scattering between 1595-1608 nm,
defect (c) between 1550-1590 nm and takes over the reflection at the end facet (d).
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The signatures of the defects are exploited in order to estimate the group index
of slow modes which are too strongly backscattered before reaching the end facet.
Let us look at the trace of the defect (b), follow it until the onset of the signature
of defect (a) and then continue on this latter until point (1). In this way we deduce
a group delay of 20 ps at 1607 nm, which translates into a group index of 60 (the
length is 0.1 mm).

5.5 Conclusion

Phase-sensitive OLCR is a powerful tool to explore the properties of PhC waveg-
uides, and to investigate dispersion and disorder induced scattering. The representa-
tion of the measurement as a time-wavelength map of the backreflected signal gives a
tremendous physical insight for understanding the role of disorder induced scattering
and how it is connected to dispersion. We found that scattering depends strongly on
the group velocity, and in particular that backscattering tends to dominate as soon
as the group velocity decreases (thus confirming theory).

Understanding the impact of disorder on the propagation of slow modes in PhC
structures is crucial in view of realizing devices exploiting the full potential of dis-
persion engineering inherent to photonic crystals, and we think that this technique

can give a large contribution.
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Chapter

Heterodyne Detection for PhCWGs

Characterization

The basic understanding of the dynamics into a 2D photonic crystal waveguide
is fundamental before to evaluate the potential photonic devices.

The work presented in this chapter was developed during two period at the Tech-
nical University of Denmark, department of Photonics, DTU Fotonik, under the
supervision of Prof. Mike van der Poel and Prof. Jesper Mgrk. The aim was to
realize a series of experiment, with the collaboration of Ph.D. fellow Per L. Hansen,
to evaluate the delay effects of a 2D photonic crystal waveguide on a pulse in the
range of femtoseconds, by using the heterodyne detection technique with femtosec-
ond pulses. Unfortunately, it was not possible to get any useful result, so we will just
present the heterodyne principles, describing the heterodyne pump-probe set-up, and
the devices we used in the FemtoLab at DTU Fotonik.

6.1 The Heterodyne Measurement Technique

The word heterodyne is derived from the Greek roots hetero-, different, and
dyn-, power. In radio and signal processing, heterodyning is the generation of new
frequencies by mixing, or multiplying, two oscillating waveforms. It is useful for
modulation and demodulation of signals, or placing information of interest into a
useful frequency range. The two frequencies are mixed in a vacuum tube, transistor,
diode, or other signal processing device. Mixing two frequencies creates two new
frequencies, according to the properties of the sine function: one at the sum of the
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two frequencies mixed, and the other at their difference. These new frequencies are
called heterodynes. Typically only one of the new frequencies is desired, usually the
higher one after modulation and the lower one after demodulation. The other signal
is filtered out of the output of the mixer. The original heterodyne technique was
pioneered by Canadian inventor-engineer Reginald Fessenden, but was not pursued
very far because local oscillators were not very stable at the time. Frequency filters
and the heterodyne detection in the radio makes it possible to closely space different

radio channels in the frequency domain.

The essence of heterodyning is to measure the beating between two waves. This
waves can be acoustic, in the range of Hertz, as for example the beating between
a tuning fork and a not tuned music instrument, or it can be radio frequencies as
mentioned before. In our case, heterodyning will be done on optical waves, where the
carrier frequency is f ~ 193THz. The detected heterodyne signal will be at 60kHz
and easily detectable by standard equipment.

The advantages of using a heterodyne detection scheme are multiple when it
is used to characterize waveguide components. The main one is the possibility to
measure changes not only in the amplitude transmission of the waveguide, but also in
the phase of the field after the propagation thought the component. The property to
selectively filter the interested frequencies permits to distinguish optical fields with
the same optical properties (polarization, wavelength, direction and position), by

shifting the central frequency of the fields a few MHz from each other.

This powerful technique can be improved by using ultrashort optical pulses (in
the range of fs), because it enables the measurement of time-resolved transmission

and refractive index changes.

The idea of using a heterodyne detection technique together with a pump-probe
set-up was first presented by the group of E. Ippen at MIT in the early 1990’s [67].
The first results on gain and index dynamics in semiconductor optical amplifiers
on a subpicosecond time scale were presented in 1991-92 [68][69], while in 1996 a
similar setup was used to investigate four-wave mixing (FWM) at the Danish Telecom
Research facility (TDR) [70]. The theory for femtosecond pulses was developed at
the same time by A. Mecozzi and J. Merk [71]. An improved detection scheme was
built in 1998 at the Technical University of Denmark (DTU) by P. Borri and W.
Langbein [72]| to characterize FWM and gain dynamics in quantum dot waveguide

amplifiers [73][74].
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6.1.1 The source

From a theoretical point of view, the source must give a train of pulses with a certain
repetition rate F', where each pulse is centered at the variable frequency wy and has
the desired pulse energy. Each pulse Ey(t) should be considered a Gaussian pulse
with an intensity width 7, in the subpicosend range.

Supposing Ey(t) centered at t = to, we have

Ey(t) = Eyexp (—(t;—;())? + zwgt> . (6.1)

p

In frequency domain the pulse will be represented as

Fo(w) = E&;p exp (_ng(w )4 zwto) | (6.2)

The train of pulses can be described as
E(t)= Y Eo(t—to+nT), (6.3)

where T' = 1/F is the repetition rate and n is an integer.
To obtain all these features, a commercial laser system from Coherent Inc. is

used. The system consists of 5 separate systems

Coherent Verdi V-5 (bW of continuous wave power);

Coherent Verdi V-10 (10W of continuous wave power);

Coherent MIRA 900 (Titanium-Sapphire modelocked oscillator);

Coherent RegA 9000 (Titanium-Sapphire regenerative amplifier);

Coherent OPA (Optical parametric amplifier).

The full system is shown in Fig. 6.1. The Verdi V-5 provides 5 W of power to
pump the Ti:Al,O3 (titanium:sapphire) crystal, which acts as the gain medium for
the MIRA. The Ti:Al203 gain peak is at 800 nm. The slit and the two dispersive
prisms P; and P5 allow to obtain the modelocking of the cavity. The MIRA minimum
pulse width is ~ 150 fs with ~ 1.3 W of output power. The repetition rate is 80
MHz.
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Figure 6.1: Illustration of the Coherent Inc. laser system. The Verdi V-5 and V-10
pump respectively the MIRA and the RegA. The output pulses from the MIRA are
amplified in the RegA. The 800 nm output pulses of the RegA are shifted to the
desired wavelength by optical parametric amplification in the OPA.
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To obtain a variable wavelength of the pulse, coming from the Ti:Al,O3 based
system, the nonlinear process of optical parametric amplification is used. This implies
that the MIRA output pulse needs to be amplified.

For this regenerative process, it is used the Regenerative Amplifier (RegA). It is
built around a Q-switched laser cavity. A Ti:Al,Oj3 crystal is pumped with 10 W
of power from the Verdi V-10 and an intra cavity acousto-optic deflector (Q-switch)
induces the externally controllable loss (QS in Fig. 6.1). When the acousto-optic cell
is set to deflect, the inversion in the Ti:Al,Oj3 crystal increases (stimulated emission
by the lasing mode of the cavity is prohibited). As the deflection in QS is turned off,
a pulse from MIRA is simultaneously coupled into the cavity using an other acousto-
optic cell, the cavity dumper (CD in Fig. 6.1). The pulse will now experience a
maximum gain from the Ti:Al,O3 crystal. The pulse travels through the cavity until
the gain is depleted and is then ejected using the cavity dumper again. Following
the ejection of the pulse, the Q-switch is again turned on as to prohibit lasing in
the RegA cavity. When the inversion has again accumulated, a new pulse from
the MIRA can be injected. The time to restore the inversion sets the limit of the
repetition rate of the RegA output, which becomes ~147.5 kHz. This means, that
only every 540th MIRA pulse is injected into the RegA and amplified. The average
output power from the RegA is also 1.3 W (same as for the MIRA), but now with
540 times more energy in the pulses. The several roundtrips the pulse does in the
cavity induce a broadening of the pulse that is compensated by a pulse-shaper before
the exit of the RegA, with a resulting pulse intensity-FWHM 7, of ~ 150 fs.

The output of the RegA is injected into the optical parametric amplifier, the
Coherent OPA. In the OPA, 25% of the pulse energy is split off to generate a white
light continuum, by using the self-focusing effect into a sapphire crystal. The result
is a very broad band spectrum from the ultra-violet to the infrared, around 800 nm.
The 75% of the RegA output is used for second harmonic generation of a 400 nm
pulse in a nonlinear crystal (SHG-BBO in Fig. 6.1).

Finally, the white light continuum is overlapped with the 400 nm pulse in a
second nonlinear crystal (OPA-BBO in Fig. 6.1), where a 400 nm photon is split
into a signal photon and an idler photon. The wavelength of the signal photon
and the idler photon depends on the angle of the nonlinear crystal, which can be
adjusted to get the wavelength of interest. The nonlinear crystal is passed two times

to maximize the conversion.

For the following experiments, only the idler is used and adjusted for operation
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in the region around 1550 nm.

6.1.2 The heterodyne pump-probe set-up

Component
Incouplin lens
Pump delay line e Out COUP“”Q lens
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& o N
i )
& o ——e + |2
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f Heterodyne detection
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Figure 6.2: Illustration of the heterodyne pump-probe set-up.

Fig. 6.2 show a schematic illustration of the heterodyne pump-probe set-up.

The pulse that comes from the laser enters the pump AOM. An AOM consists
of fused silica with a piezoelectric transducer on the one side of the crystal. A
radio wave, generated by a driver, hits the silica and generates a traveling acoustic
wave in the silica. This generates an index grating on which the optical wave is
diffracted. Additionally, the optically diffracted field will be Doppler shifted by the
radio-frequency at which the AOM is driven (40 MHz). The power of the diffracted
beam, from here pump beam, is controlled by the power of the radio wave, which is
controllable from the driver.

The pump beam goes through a shutter and a delay line with a 250 ps span,
then is directed to the in-coupling microscope objective and, finally, is coupled into
the component. The energy of the pump pulses at the microscope objective can be
varied over 4 orders of magnitude, with a maximum energy of ~ 250 pJ.

The part of the beam not deflected in the pump AOM enters the probe AOM.
Here the probe beam is divided in the probe beam and the reference beam. The
first one is the one deflected and frequency shifted by 39 MHz, 1 MHz less than
the pump beam. It is overlapped with the pump beam in a 50/50 beam splitter, so
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that with the pump beam goes into the microscope objective and then is coupled
into the component. At that point, the pump and probe pulses can be distinguished
only from 1 MHz MHz in frequency. After propagation through the component the
pump-probe beam is collimated using the out coupling microscope lens. The lens
L1 with the small aperture Al are used to clean the output mode, while the lens L2

recollimates it.

The heterodyne set-up for passive waveguides
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Figure 6.3: Tlustration of the heterodyne set-up for passive waveguide.

In Fig. 6.3, it is shown a schematic illustration of the heterodyne set-up in case
the experiment does not need any pump beam, as for instance the device under test
is passive. The main difference is that the pump AOM is removed so that the only
two beams that propagates are the reference and the probe ones. The probe AOM is
set to introduce a frequency shift of 40 MHz, as for the pump AOM in the precedent
scheme.

6.1.3 Detection

The heterodyne detection scheme is presented in Fig. 6.4. The center of the scheme
is the 50/50 beam splitter; it has two functions: it permits to overlap spatially the
pump and probe and the reference beam, already temporally overlapped through
the reference delay line, and it divides the beam in two for the balanced detector,
that measures the two quadratures from the beam splitter. The complete beam is
composed with the overlap of the non-shifted reference pulse, the 40 MHz frequency
shifted pump beam and the 39 MHz frequency shifted probe beam.
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Figure 6.4: Zoom of the heterodyne detection scheme. The reference pulse can be
delayed so that it overlaps the probe one. The probe and reference pulses are spatially
overlapped in the 50/50 beam splitter and the two quadratures are detected in the

balanced detector.

Writing the reference and pump (probe) fields in terms of their slowly varying

envelope and phase component|75]

BL() = Ad(t) expa(w,t + 6,))

(6.4)
Ey(t) = Ap(t) exp(e(wpt + ¢y)),
the fields that arrive at the inputs A and B of the detector are:
Ex = (A1) explat + 7)) + 1, (1) expla(sy + )
1 (6.5)
Ep = — (A, (t) exp(s(wrt + ¢r)) + A,(t) exp(e(wpt + ¢,)))

V2

where we ignored any possible phase change expect from the 7/2 shift from the

reflection. The resulting intensity measured by the detector are

Iy= %(Ai(t) + A2(t) - 2A,() A, (t) sin(¢p — & + (wp — wy)t)) (6.6)
I = SO0 + 220 + 24, (DA (D) sin(0, — 6, + (wp—w)).

where the last term in each intensity is the beat signal, between pump (probe) and
reference.

The detector is balanced to reduce the common mode intensity noise fluctuations;
its output is an electric current proportional to the difference of the two signals, that

is proportional only to the beat signal

i(t) = a(lp — I4) = a cegA,(1) A, (1) sin(pp, — ¢ + (wp — wi)t), (6.7)
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Figure 6.5: Illustration (not to scale) of the mixed reference and pump (probe)
spectrum. (2 denotes the RF frequency driving the AOM, wyp, is the repetition rate
of the RegA, and wyeyy is the lowest beat frequency between the probe and reference
spectrum, that is detected by the lock-in amplifier.

where « is a properly defined proportionality factor.

The spectrum of a laser pulse train consists of a series of sharp spectral lines
separated by the repetition rate, frep, so there exists a infinite beat frequencies, as
shown in Fig. 6.5. Approximating the spectral lines with delta functions, the spectra
of the two fields are

E.(w) = Z A0 (wo — Nwyep — W), n €7z 68)
E,(w) :ZAm5(wo+Q—mwrep—w), m € Z, .
where Q is the frequency driving the pump (probe) AOM, and wyep = 27 frep-
The beat frequencies are then
Awpm = (M — n)wrep — Q= lwyep — €2, leZ. (6.9)

The repetition rate of the train of pulses used in the experiment is 255 kHz , and
the driving frequencies of the two AOMs for pump and probe are 39 MHz and 40
MHz , respectively. In the case of the setup for passive devices, only the probe is
used and a driving frequency of the AOM of 40 MHz. In this case, the lowest beating
frequency between the two fields is 35 MHz for [ = 157, while the next lowest is 190
kHz.

The current of the balanced detector is sent to a lock-in amplifier with a detectable

range from 0 to 100 kHz , so only the first one is detected. The lock-in amplifier
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is referenced by down-mixing the sinusoidal RF frequency driving the AOM with
a square wave signal of the repetition rate of the train of pulses. Since the square
wave signal contains all higher harmonics of the repeon rate, the mixed frequencies
corresponds exactly to those in Eq. 6.9.

An important point of this technique is that the output signal current shows
changes of the electrical field of the pump (probe), and not of the intensity, and this
implies that is detectable all the information contained in amplitude and phase of

the output current.

6.2 The Device

PBG 10UH SLOW -1@

Figure 6.6: Asymmetric Mach Zehnder Interferometer (aMZI), composed by two
arms, with the longest one containing a 10 pm long slow light PhCWG (surrounded
in red and expanded in Fig. 6.7). The physical difference of length of the two arms
introduces a delay 7, between the pulses that propagates through the device of ~
300 fs.

The aim of the experiment was to measure the delay induced by a 2DPhC on a
femtosecond pulse, that is to obtain information about the group index and the slow
or semi-slow light effect into a 2DPhC. To measure a delay, it is fundamental to have
a reference pulse to compare with the delayed pulse. For this reason, an integrated
asymmetric Mach Zehnder Interferometer was chosen as device under test. The
asymmetric Mach Zehnder Interferometer, shown in Fig. 6.6, is composed by two
arms: the first one is a simple silicon waveguide, while the second one is longer of
the first one and contains a photonic crystal waveguide.

For this experiment, a chip with several interferometers was designed and fabri-
cated in Silicon, with Silicon on Insulator technology (SOI) at DTU Fotonik. The
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Figure 6.7: Example of photonic crystal waveguide included in the device of Fig.
6.6.

chip contains two families of PhCWG, to investigate slow light and semi-slow light
phenomena, respectively. For each of these families, nine interferometers were re-
alized, with three different lattice constants a (370 nm, 380 nm, and 390 nm) and
three different lengths L (10 pm, 50 um and 100 pm) of the waveguide.

The basic idea is quite simple. The pulse coupled into the device is split by
an integrated 50/50 beam splitter in a reference beam, that propagates in the sim-
ple straight waveguide, and in a probe beam, that propagates in the arm with the
photonic crystal waveguide. The PhCWG slows down the pulse introducing a delay
related to the wavelength of the pulse according the dispersion relation that describes
the behavior of the waveguide. After the propagation through the PhCWG the pulse
is overlapped spatially with the one coming from the simple arm by another inte-
grated beam splitter. The choice to use an asymmetric Mach Zehnder Interferometer,
with the arms with a difference of length equivalent to a delay 74 of ~ 300 fs, permits
to recognize the two pulses at the detector, even when the PhCWG operates as a
simple waveguide, that is the wavelength of the pulse is not in the bandgap of the

photonic crystal.
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Chapter

Conclusions

This thesis has concerned the propagation of light in semiconductor photonic
crystal waveguide structures with emphasis on propagation properties and disorder
effects. We have introduced the theory of photonic crystals, of which main peculiarity
is the dispersion relation that introduces a set of permitted and forbidden bands for
light propagation (Chapter 1). Then, we have focused on two-dimension photonic
crystal, analyzing the difference between a membrane structure and a structure on a
low-index cladding (Chapter 2). By introducing a linear defect in a photonic crystal,
we have seen that it is possible to obtain a waveguide with the same band diagram
of the original crystal, but few states (modes) in forbidden bands, that permit to
guide light (Chapter 3). These modes have a dispersion relation not merely linear or
parabolic, so it is recommended to take into account higher order dispersion. So, we
have focused on third order dispersion, by evaluating its effect on a pulse propagating
in the waveguide. By analyzing band for which group index is higher (sometime much
higher) than the usual refractive index (i.e. the velocity of light is significantly smaller
than expected), we have introduced the concept of Slow Light phenomena. Finally,
by considering the third order susceptibility, we have theoretically investigated the
Four-Wave Mixing phenomenon in this waveguide. All these phenomena are always
influenced by the presence of the extrinsic disorder, due to fabrication process, so we
have developed a basic model to evaluate the effect of disorder on the backscattering

losses and out-of-plane losses (Chapter 4).

Several techniques have been studied and implemented to characterize experi-
mentally photonic crystal waveguides. In this work, we have introduced the Time-

Wavelenght Reflectance Map and the Heterodyne Pump-Probe Technique. The first
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one (Chapter 5) has been developed with Thales Research and Technology (Paris,
France), and allows to evaluate the propagation properties of the waveguide as func-
tion of the wavelength showing a deep physical insight for understanding the role of
disorder induced scattering and how it is connected to dispersion. The second one
(Chapter 6) has been tested at DTU Fotonik (Copenhagen, Denmark) and detects
changes in amplitude and phase of an electromagnetic pulse propagated through a
photonic crystal waveguide allowing, theoretically, to evaluate group delay, distor-
tions and non-linear effects in Fast and Slow Light regime.

In the following, the results on each of the above topics are briefly summarized.

Four Wave Mixing Equations We have considered cubic non-linearity due to
third order susceptibility and we have developed the Four-wave mixing equations for
a photonic crystal waveguide. In this model, we have considered also the Self Phase
Modulation and the Cross Phase Modulation. Differently from the fibers [12], these
terms are essential for a right evaluation of the phase change of the mixing waves.
To obtain the model, we have considered the dielectric function as space-dependent,
so we have replaced the effective area of the classical equations, meaningless in a
photonic crystal, with the effective volume, that we have found to be dependent
from group velocity and field shape of the different waves. The result represents a
theoretical limit of the amplification factor that is possible to obtain in a photonic

crystal waveguide.

Disorder effects We have developed a model based on Green function theory to
evaluate the impact of imperfections on the performance of a PhC. We already know
that small randomness in PhC geometry and /or material constants lead to an overall
reduction in a band gap size, as well as an increased back-scattering and radiation
losses, while stronger randomness can lead to appearance of localized impurity states.
With our model, we have found that back-scattering losses are proportional to the
inverse of the square of the group velocity. This means that when v, is small,
the backward scattering becomes important and indeed dominant, as confirmed by

Time-Wavelength Reflectance Map.

Time-Wavelenght Reflectance Map Phase-sensitive OLCR is a powerful tool
to explore the properties of PhC waveguides, and to investigate dispersion and disor-

der induced scattering. We have experimentally confirmed that scattering depends
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strongly on the group velocity, and in particular that backscattering tends to domi-

nate as soon as the group velocity decreases.

7.1 Outlook

Several topics related to the work presented in this thesis are worthy of further

investigation that will be possibly pursued in future work.

Slow light enhanced non-linear effects It is important to investigate the re-
lation between slow light and nonlinear effects such as self-phase modulation, two-
photon absorption and free carriers, through dispersion-engineered silicon photonic
crystal waveguides. We know that there could be an enhancement of non-linear ef-
fects due to slow light (Sec. 3.4.2), but it is not clear the process and how to control
it. A better understanding of this relation could open the possibility of developing

ultra-fast and/or ultra-small all-optical devices.

Pump-probe measurements The heterodyne pump-probe setup, explained in
Chapter 6, is a powerful tool to characterize photonic devices, because it may provide
also a useful insight of the carrier dynamics in waveguide structures, that are deeply
related to non-linear behavior. It could be very interesting to rearrange the setup

and start a new set of experiments on photonic crystal waveguides.

Quantum dot photonic crystal waveguide The photonic crystal waveguides
proved capable of delaying a pulse, but the delay is fixed by the frequency of the
pulse. Even if there are non-linear effects that may permit some new application, the
insertion of quantum dot into the waveguide could open a completely new field of
operation, achieving efficient and variable control over pulse propagation in compact

semiconductor waveguides [76].
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