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“Human beings do not live forever, Reuven. We live less than the time it
takes to blink an eye, if we measure our lives against eternity. So it
may be asked what value is there to a human life. There is so much

pain in the world. What does it mean to have to suffer so much, if
our lives are nothing more than the blink of an eye?...I learned a
long time ago, Reuven, that a blink of an eye in itself is nothing; but
the eye that blinks, that is something. A span of life is nothing; but
the man who lives the span, he is something. He can fill that tiny
span with meaning, so its quality is immeasurable though its
quantity may be insignificant. A man must fill his life with meaning,
meaning is not automatically given to life. It is hard work to fill
one’s life with meaning- that, I do not think you understand yet. A
life filled with meaning is worthy of rest. I want to be worthy of rest

when I am no longer here.”

Chaim Potok, The Chosen, 1967






Abstract

Cancer is an extremely complex disease, both in terms of its causes and
consequences to the body. Cancer cells acquire the ability to prolifer-
ate without control, invade the surrounding tissues and eventually form
metastases. It is becoming increasingly clear that a description of tumors
that is uniquely based on molecular biology is not enough to understand
thoroughly this illness. Quantitative sciences, such as physics, mathe-
matics and engineering, can provide a valuable contribution to this field,
suggesting new ways to examine the growth of the tumor and to investi-
gate its interaction with the neighboring environment. In this dissertation,
we deal with mathematical models for avascular tumor growth. We eval-
uate the effects of physiological parameters on tumor development, with

a particular focus on the mechanical response of the tissue.

We start from tumor spheroids, an effective three-dimensional cell culture,
to investigate the first stages of tumor growth. These cell aggregates repro-
duce the nutrient and proliferation gradients found in the early stages of
cancer and can be grown with a strict control of their environmental condi-
tions. The equations of the model are derived in the framework of porous
media theory, and constitutive relations for the mass transfer terms and
the mechanical stress are formulated on the basis of experimental observa-
tions. The growth curves of the model are compared to the experimental
data, with good agreement for the different experimental settings. A new
mathematical law regulating the inhibitory effect of mechanical compres-
sion on cancer cell proliferation is also presented. Then, we perform a
parametric analysis to identify the key parameters that drive the system
response. We conclude this part by introducing governing equations for
transport and uptake of a chemotherapeutic agent, designed to target cell
proliferation. In particular, we investigate the combined effect of com-

pressive stresses and drug action. Interestingly, we find that variation in



tumor spheroid volume, due to the presence of a drug targeting cell pro-
liferation, depends considerably on the compressive stress level of the cell

aggregate.

In the second part of the dissertation, we study a constitutive law de-
scribing the mechanical response of biological tissues. We introduce this
relation in a biphasic model for tumor growth based on the mechanics of
fluid-saturated porous media. The internal reorganization of the tissue
in response to mechanical and chemical stimuli is described by enforcing
the multiplicative decomposition of the deformation gradient tensor asso-
ciated with the solid phase motion. In this way, we are able to distinguish
the contributions of growth, rearrangement of cellular bonds, and elastic
distortion, occurring during tumor evolution. Results are presented for a
benchmark case and for three biological configurations. We analyze the
dependence of tumor development on the mechanical environment, with

particular focus on cell reorganization and its role in stress relaxation.

Finally, we conclude with a summary of the results and with a discussion

of possible future extensions.

il



Sommario

Il cancro e una malattia estremamente complessa, sia per quanto riguarda
le sue cause che per i suoi effetti sul corpo. Le cellule del cancro acqui-
siscono la capacita di proliferare senza controllo, invadere i tessuti vicini
e infine sviluppare metastasi. Negli ultimi anni sta diventando sempre
piu chiaro che una descrizione dei tumori basata unicamente sulla bio-
logia molecolare non puo essere sufficiente per comprendere interamente
la malattia. A questo riguardo, scienze quantitative come la Fisica, la
Matematica e I'Ingegneria, possono fornire un valido contributo, sugge-
rendo nuovi modi per esaminare la crescita di un tumore e studiare la
sua interazione con l'ambiente circostante. In questa tesi ci occupiamo di
modelli matematici per la crescita avascolare dei tumori. Valutiamo gli ef-
fetti dei parametri fisiologici sullo sviluppo del tumore, con un’attenzione

particolare alla risposta meccanica del tessuto.

Partiamo dagli sferoidi tumorali, una cultura cellulare tridimensionale, per
studiare le prime fasi della crescita tumorale. Questi aggregati cellulari
sono in grado di riprodurre i gradienti di nutriente e proliferazione che si
ritrovano nei tumori avascolari. Inoltre, possono essere fatti crescere con
un controllo molto severo delle condizioni ambientali. Le equazioni del
modello sono derivate nell’ambito della teoria dei mezzi porosi dove, per
chiudere il problema, definiamo opportune relazioni costitutive al fine di
descrivere gli scambi di massa tra i diversi componenti del sistema e la
risposta meccanica di quest’ultimo. Tali leggi sono formulate sulla base
di osservazioni sperimentali. Le curve di crescita del modello sono quin-
di confrontate con dati sperimentali, con un buon accordo per le diverse
condizioni. Presentiamo, inoltre, una nuova espressione matematica per
descrivere gli effetti di inibizione della crescita da parte della compres-
sione meccanica sulle cellule cancerose. In seguito, eseguiamo uno studio
parametrico per identificare i parametri chiave che guidano la risposta del

sistema. Concludiamo infine questa parte introducendo le equazioni di



governo per il trasporto e il consumo di un agente chemioterapico, studia-
to per essere efficace sulle cellule proliferanti. In particolare, consideriamo
Ieffetto combinato di stress meccanici compressivi e di tale farmaco sullo
sviluppo del tumore. A questo proposito, i nostri risultati indicano che
una variazione di volume degli sferoidi tumorali, a causa dell’azione del
farmaco, dipende sensibilmente dal livello di tensione a cui e sottoposto

I’aggregato cellulare.

Nella seconda parte di questa trattazione, studiamo una legge costituti-
va per descrivere la risposta meccanica di tessuti biologici. Introduciamo
questa relazione in un modello bifasico per la crescita tumorale basato
sulla meccanica di mezzi porosi saturi. La riorganizzazione interna del
tessuto in risposta a stimoli meccanici e chimici e descritta attraverso la
decomposizione moltiplicativa del gradiente di deformazione associato con
il moto della fase solida del sistema. In questo modo, risulta possibile di-
stinguere i contributi di crescita, riarrangiamento dei legami cellulari e
distorsione elastica che prendono luogo durante ’evoluzione del tumore.
In seguito, presentiamo risultati per un caso di test e per tre configurazio-
ni di interesse biologico. In particolare, analizziamo la dipendenza dello
sviluppo del tumore dal suo ambiente meccanico, con un’attenzione par-
ticolare sulla riorganizzazione dei legami tra le cellule e il suo ruolo sul

rilassamento degli stress meccanici.

Infine, concludiamo la discussione con un breve riassunto dei risultati

ottenuti e un resoconto dei possibili sviluppi.

v
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Chapter 1

Motivation and thesis layout

1.1 Introduction

Cancer is the name that is currently given to a collection of related diseases. In
most of the different types of cancer, some cells in the body start to divide without
stopping, and eventually spread into surrounding tissues. In normal tissues, healthy
cells grow and divide according to the needs of the organism. When cells grow old
or become damaged, they are eliminated, and new cells take their place. However,
when cancer develops this carefully controlled process breaks down. As multiple
alterations accumulate, old or damaged cells survive when they should die, and new
cells form even if they are not needed. These extra cells divide uncontrolled and may
result in abnormal masses called tumors. Malignant cancerous tumors can spread
into surrounding tissues, displacing the neighboring healthy cells. In addition, as the
tumor develops, some cancer cells are able to detach from the original tumor mass
and travel to distant organs in the body through the circulation. Eventually, these
cancerous cells may form metastases, i. e. new tumors far from the original formation.

Nowadays, cancer figures among the leading causes of mortality worldwide, with
approximately 14 million new cases and 8.2 million cancer-related deaths in 2012
[173]. Despite new technological advances and significant efforts (projected national
expenditures for cancer care are expected to total nearly $157 billions in 2020 just in
the United States [118]), the initial hopes put in the war on cancer have been largely
disillusioned. Since the 50’s, age-adjusted cancer mortality rates have declined by
only 11% [50]. Prevention, screening and treatment success with some cancers have
saved millions of lives, but the prognosis for many with metastatic cancer is still as
gloomy as it was nearly 50 years ago.

Looking at these premises, researchers from quantitative disciplines such as physi-

cists, mathematicians, and engineers have contributed to cancer research over the
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last years [155]. One contribution results from discoveries and technological devel-
opments, which have led to advances in medical imaging and radiation therapy for
the diagnosis and treatment of tumors. A second important contribution is brought
by bio-informatics, providing the tools to handle large datasets of genome sequences,
gene expression patterns and cell-signaling networks. Finally, a third contribution has
recently gained interest. This direction involves a more quantitative investigation of
the physical processes underlying the evolution of a tumor. Mathematical models for
tumor growth are part of this contribution, and constitute the framework in which
this thesis is set.

The aim of this dissertation is to develop mathematical tools that are able to
examine the complex interactions between solid tumors and their host microenviron-
ment. We explore the impact that such tools could have on identifying the factors
driving tumor evolution. The theoretical framework is also used to test hypotheses on
tumor dynamics, and the ensuing results suggest a series of experiments to validate
our conclusions.

In this thesis, we focus on two main aspects related to the growth of a tumor
mass. First, we analyze the case of a tumor grown in vitro, and then we compare
model predictions to experimental results. We extend the modeling framework to
include the effects of a chemotherapeutic agent on tumor development, and study the
influence of mechanical stress on drug efficacy. After that, we discuss a constitutive
relation for the tumor mechanical response, which is able to account for cellular
adhesion mechanisms. We model different cases of biological interest, investigating
the influence of the tumor external environment.

Among the innovative contributions of this research, we would like to highlight a

few results:
e we validate our equations with experimental data from tumor spheroids

e from these experiments, we obtain results that confirm and extend the validity

of previous findings reported in literature

e we suggest a new mathematical expression that is able to describe growth inhi-

bition by mechanical compression

e our theoretical results suggest a possible interaction between the tumor and its
mechanical environment that could influence tumor treatment with chemother-

apeutic agents
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e we adapt an existing model for the elasto-visco-plastic response of a tissue to our
framework, and investigate the effects of different healthy surrounding tissues

on tumor development

1.2 Outline of the thesis

The thesis is organized as displayed in Figure 1.1. Chapter 2 provides an introduction
about cancer biology. We discuss the current understanding of cancer initiation and
development. At the end of the chapter, we provide a brief review on mathematical
modeling in cancer.

Chapter 3 covers the modeling of in wvitro tumor growth. We report on exper-
iments concerning the evolution of tumor spheroids freely growing in the culture
medium and subjected to an external mechanical pressure. We compare the model
predictions with the experimental results, and suggest a new constitutive relation
that is able to describe the effect of growth inhibition by mechanical stress. Then,
we perform a parametric study of the model equations, to evaluate the influence of
key parameters on tumor evolution. Finally, we discuss the action of a drug on the
spheroid growth curves, and evaluate the possible implications of mechanical stresses
on therapy effectiveness.

Chapter 4 deals with the constitutive law for the tumor tissue. We present the
main assumptions in our framework and summarize the model equations. Then,
we investigate a sample problem to highlight the influence of plastic distortions on
the mechanical and fluid dynamic response of the tissue. We conclude the chapter
with three benchmarks from cases of biological interest, namely the growth of a
spherical tumor in culture medium, embedded in a host tissue, and in the presence
of a heterogeneous environment.

Finally, Chapter 5 draws the conclusions of the work and gives some hints for

future developments.
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Introduction to cancer biology

- biological aspects
- mathematical modeling of cancer

Models for tumor spheroids

- compression experiments
parametric study
anticancer agents

Constitutive law for tumor tissues

mathematical formulation
compression benchmark
biological cases

Conclusions and future developments

Figure 1.1: Outline of the thesis.



Chapter 2

Introduction to cancer biology

Cancer has been known since the first activities of human societies have been recorded.
One of the first evidences dates back to a transcription of a 2500 BC manuscript, con-
taining the teachings of an Egyptian physician. The author describes one of the cases
- among different pathological conditions - as a “bulging mass in the breast”, cool,
hard, dense and spreading insidiously under the skin [154]. In fact, he is giving a
vivid description of breast cancer. However, even if the illness is documented in such
early years, death by cancer was not so common in the past [100]. One of the main
reasons for this is that cancer appears as an aged-related disease. In ancient societies,
where a plethora of other illnesses destroyed many lives, people did not live enough
to take cancer. Now that infectious diseases have been controlled, the proportion of
the population at risk for cancer has increased dramatically. Although cardiovascular
diseases are still the main cause of death in the ageing population (at least in de-
veloped countries), cancer is a major problem. Nowadays, cancer control, and even
more cancer prevention, are main health issues. Nevertheless, cancer research has
a wider significance. Almost all multicellular organisms, animals as well as plants,
are affected by this illness. Cancer involves mainly alterations in cell proliferation,
differentiation and development, so that understanding the processes underlying the
disease can help to elucidate the basic mechanisms of life.

The astonishing diversity of the anatomical designs in living beings is allowed
by the cellular organization of tissues. Much of this variability can be endorsed to
the individual cells: these serve as building blocks for organ and tissue construction,
showing great autonomy and adaptability [192]. These features enable the cells to
contribute substantially to the maintenance of the whole organism, in terms of wound
healing or replacement of worn parts. At the same time, this autonomy poses a serious
danger, in that cells may assume roles that are unsuitable for normal tissue function-

ing. Actually, the information encoded in the genome is subjected to corruption by
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different mechanisms, diverting the cells to phenotypes which may show highly ab-
normal characteristics. Alterations in cell proliferation programs stand among these
inappropriate changes. Such alterations, in turn, may lead to large populations of
cells that no longer submit to the standard rules of the tissue. As normal cells are
carefully programmed to collaborate with their neighbors for the survival of the whole
organism, cancer cells appear to be focused on one single task: making more copies
of themselves [192].

In his monograph on cancer, published in 1838, Johannes Miiller provided a sys-
tematic analysis of the microscopic features of benign and malignant human tumors
[78]. He attributed cancer to formation of new cells inside a diseased organ, with a
potential to spread to other parts of the body. This early results served as a starting
point to the forthcoming research, devoted to characterize the tumor cells and iden-
tify the differences with their normal counterpart. Nowadays, we have access to a
wide array of information concerning cancer cells. Recent technological improvements
have provided huge datasets for the genetic sequences in the cancer genome, together
with their expressed proteins. The molecular pathways underlying the alterations in
tumors are becoming clearer, so that conceptual maps of the cell internal circuitry are
being sketched [80]. As our understanding of cancer genetics has improved, new drugs
and therapies have been introduced, improving the prognosis for certain treatments.
However, many cancers are still difficult to treat and conceptually appealing therapies
have proven only marginally effective for patient survival (to this regard, see [141] for
a critical review on the contrasting effects in nanotechnology-based therapies). More-
over, some of the questions asked by the early cancer pathologists are still lacking
an answer. As cleverly stated in [100], even the most advanced technology in cancer
research is not able to provide valuable results if it is not applied properly. That is,
now that almost anything seems technically possible, the real issue for researchers
is to identify the right questions to ask. As we gain better understanding of cancer
and its interactions with the host environment, we realize that cancer is a complex
problem that requires due consideration of all the factors to be solved.

In this thesis, we show mathematical and computational tools that are able to
analyze the interactions between solid tumors and their host environments. Through
these tools, we investigate the effects of such interactions on the development of the

tumor mass and we provide some insights into possible treatments.
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2.1 From normal cells to cancer

With a strong simplification, we may say that the rebel cells forming a tumor are the
result of normal development gone wrong [192]. Even though the organism is endowed
with extraordinary safety measures, cancer cells in some way learn to escape them and
prosper. Therefore, we begin this dissertation by examining the normal functioning
of cells and tissues, providing a small account for the different safeguards. Then, we

analyze how a failure in the cellular machinery can lead to cancer.

2.1.1 The structure and function of normal tissues

A tissue is a collection of similar cells sharing the same origin that together carry out
a specific function. We distinguish between four main tissue groups: the epithelium
is a tissue composed of specialized cells that line the surfaces of blood vessels and
organs throughout the body; the connective tissue supports, connects or separates
different types of tissues in the body. It contains the extracellular matrix and the
fibroblasts entrusted with its remodeling; the muscles in animal bodies are part of
the muscle tissue; and the nervous tissue makes up the bulk of the brain and the
nervous system. The term mesenchyme refers generally to all supporting tissues
collectively (including connective tissue, muscles and bone). On the other hand,
the epithelial cells responsible for the functional elements of an organ are termed
the parenchyme. The specific cells are grouped into organs, which share a standard
pattern (see Figure 2.1). There is a layer of epithelium, made of specialized cells
performing the actual organ function, supported by a layer of connective tissue -
the stroma. Blood vessels, nerves and lymphatic vessels pass through the stroma
and provide nutrients and nervous control for the specific tissue cells. A thin, semi-
permeable basement membrane separates the epithelium from the mesenchyme. In
normal development there is a controlled mechanism that allows individual organs
to reach a fixed size. If a tissue suffers an injury, the surviving cells in most organs
start to divide and replace the damaged cells. As soon as it is completed, this process
stops and the system returns to an equilibrium (termed homeostasis). To maintain
this complex structure in homeostasis, the number of each cell type must be carefully
controlled, so that cellular proliferation and apoptosis (i.e. controlled cell death) are
rigorously balanced. When a somatic (i.e. non-germline) stem cell senses the loss
of a differentiated cell, it divides either symmetrically into two new stem cells or
asymmetrically into a stem cell and a progenitor cell. The latter can further divide

or differentiate into the desired cell type, which has then to move to the correct
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Figure 2.1: Scanning electron micrograph of a chick corneal epithelium.
Adapted from [192].

position and assume its function. An involved system of biochemical signals (growth
factors) regulates this complex process. Cells secrete such factors and their response
to them is governed by the activation of certain receptors on the cell surfaces. When
the cell surface receptors are engaged, a cascade of biochemical signals activates or
deactivates the genes in the cell nucleus. Such environment-mediated changes to
gene expression are termed epigenetic events. The activated genes then govern the
production of proteins within the cell, which in the end are responsible for cell cycle
and function. It is becoming clear that the microenvironment influences dramatically
gene expression, so that the behavior of a cell is largely determined by its interactions
with the extracellular matrix, neighboring cells, and soluble local and systemic cues
(135, 2, 16].

2.1.2 The cell cycle

A cell reproduces by performing a highly regimented sequence of events in which
eventually duplicates its contents and then divides in two. This cycle of duplication
and division, known as the cell cycle, is the essential mechanism by which all living
things reproduce. Figure 2.2 shows a schematic for the different stages of the cycle.
Since many cells require much time to grow and double their mass of proteins and
internal structures, most cell cycles have gap phases to allow time for growth. During
the first of such gap stages of the cycle, G1, the cell physically grows, synthesizes

proteins and builds organelles, and prepares for DNA duplication. In the following
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Figure 2.2: The four phases of the cell cycle. Adapted from [2].

synthesis phase, S, the DNA is then copied and in the second gap phase, G2, the cell
undertakes the final preparations for DNA division. In the final mitosis phase, M,
two copies of the genetic material are separated into two daughter nuclei, and the
cytoplasm and organelles are divided into the two newborn cells.

The cyclin-dependent kinases (Cdks) are important components of the cell-cycle
control system. Their activities rise and fall as the cell progresses through the cycle,
leading to cyclical changes in the phosphorylation of intracellular proteins regulating
main events of the cell cycle [2]. These changes in Cdk activity are controlled by a
vast array of enzymes and other proteins. Among the different regulators, cyclins
are known to play a key role. Cdks are dependent on cyclins for their activity:
Cdk protein kinase activity (i.e. the ability of modifying other proteins by adding
phosphate groups to them) is possible only when Cdks are bound to a cyclin. The
assembly and activation of cyclin-Cdk complexes at specific stages of the cell cycle
results from cyclical changes in cyclin protein levels.

The different stages of the cell cycle are separated by numerous checkpoints. Each
of these cellular roadblocks is designed to check for critical errors or malfunctions in
the cell. The cell has the opportunity to repair damaged DNA and control the pro-
gression through the cycle. One of the most important checkpoints is the restriction
point (R) in the late G1 phase, where the cell either commits to division, entering
the S-phase, or exits the cycle [144]. Cells that exit the cycle rest in a quiescent
state, in a phase of the cycle termed G0O. Numerous checkpoints are present as well
in the S and G2 phases to control DNA damage and its repair. Since these check-
points are responsible for controlling cell progression into the cycle, they play a role

of paramount importance in cancer initiation and progression. Indeed, the failure
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of a checkpoint for DNA damage may lead to increased genetic instability and the

following acquisition of cell mutations.

2.1.3 Genes involved in carcinogenesis

Correct interpretation of the growth signals by the cells is fundamental to healthy tis-
sue development. Often, cells receive both growth promoting and inhibiting signals.
Their final behavior results from the balance between the contrasting stimuli and the
pattern of expressed genes. Genes that are critical for cancer can be grouped into
two major classes, according to whether the cancer risk arises from significant or poor
activity of the gene product. Genes of the first class, inducing a gain-of-function mu-
tation that can drive a cell towards cancer, are called proto-oncogenes. Their mutant
or overexpressed forms are called oncogenes. Genes of the second class, in which a
loss-of-function mutation can lead to cancer, are called tumor suppressor genes. For
both the cases, the mutation may drive the cell towards cancer directly, by causing the
cell to proliferate when it should not, or indirectly. This second case may happen for
mutations that cause genetic instability, that is induce high frequency of mutations
within the cell genome. In this way, the occurrence of other inherited changes is has-
tened, stimulating tumor progression. The genes whose alteration results in genomic
instability represent a subclass of cancer-critical genes that are sometimes denoted as
genome maintenance genes. Mutations in oncogenes and tumor suppressor genes can
have similar effects in promoting cancer development. Overproduction of a certain
signal for cell proliferation, for example, may result from either type of mutation.
Interestingly, the techniques that led to the discovery of these two gene categories
are quite different. In particular, the mutation of a single copy of a proto-oncogene
converting it into an oncogene has a dominant effect on a cell. Thus, an oncogene
can be identified by its effect when it is added to the genome of a suitable tester
cell. On the other hand, the cancer-causing alleles for the tumor suppressor genes
are generally recessive. Often, both copies of the normal gene have to be removed or
inactivated before an effect can be recorded. This behavior is schematized in Figure
2.3.

Normal cells can rely on different DNA repair mechanisms to cope with uncon-
trolled proliferation. Cycle checkpoints can detect errors in DNA replication and
halt the process, until the damage is repaired. If repair happens to be impossible,
the pathways for cell apoptosis are triggered. Tumor suppressor genes are known to

play key roles in these checkpoints, in particular in the one present at the transition
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Figure 2.3: Schematics for cancer-critical mutations, falling into domi-
nant and recessive cases. Adapted from [2].

between G2/M phases, right before mitosis. However, these genes can be damaged,

leaving the cell more vulnerable and subjected to additional genetic damage.

2.1.4 Possible causes of genetic damage

The genetic material in the cell is susceptible to damage by altering the chemical
bonds between the molecules or the molecules themselves. This can occur as a con-
sequence of exposure to chemicals reacting directly with the bases or the backbone of
the DNA. Also, high energy radiation interacting with the tissue may generate reac-
tive chemical species harmful to the genetic material. Chemical and physical agents
that are able to damage the DNA are generally termed carcinogens. One of the first
evidences of such substances dates back to 1915, when a Japanese pathologist and
his assistant induced tumors on the ears of rabbits using coal tar, demonstrating the
carcinogenic properties of the latter [192]. Several components of coal tar were later
identified, being common products of combustion. Some of these hydrocarbons were
subsequently found in the condensates of cigarette smoke as well.

One of the possible mechanisms of action for carcinogens may be through the
production of reactive oxygen species, following their metabolization. Such chemicals
can lead to formation of DNA adducts, where the radicals bind to the DNA. These

11
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substances can deform DNA, altering the sequence of the bases in ways that can-
not always be repaired. Other DNA damage may be caused by excess energy that
can alter the chemical bonds or introduce reactive species. This is the case of UV
radiation, which can induce some forms of skin cancer. Other radiations of shorter
wavelengths, such as X-rays, can penetrate deeply in the tissue and affect cells in
the lower layers. High energy photons damage DNA directly by double-strand DNA
breaks or, alternatively, alter the DNA base pairs distorting the DNA structure. A
third source of genome damage is given by pathogens. DNA viruses insert their own
genetic sequences into the host cells and alter cellular function. Sometimes, the in-
sertion of external sequences can lead to disabling of a tumor suppressor gene or
activation of an oncogene. Finally, some deficient genes may just be inherited, rather
than obtained from genetic lesions. Inheriting defective tumor suppressor genes may
lead, for example, to increased incidence of a particular type of cancer in certain

families.

2.1.5 A bit of nomenclature

Cancer cells are characterized by two main features: they reproduce in spite of the
normal restraints on cell growth and division, and they invade regions of the organ-
ism usually restricted to other cells. An abnormal cell that proliferates out of control
will give rise to a neoplasm, i.e. a new and abnormal growth. As long as the cells
from the neoplasm have not become invasive, the tumor is said to be benign. For
these types of tumors, removing or destroying the mass is usually enough for a com-
plete cure. A true cancer arises when the tumor becomes malignant, that is, when
its cell acquire the ability to invade the surrounding tissues. Invasive cancer cells
are able to enter the blood and lymphatic vessels, and form secondary tumors called
metastases. Generally, the more widely the cancer spreads, the harder it becomes to
eradicate. In fact, metastases are what kills the patient in general. A classification
for different cancers is given traditionally according to the tissue and cell type of
origin. For example, carcinomas are cancers that arise from epithelial cells. This
type of tumor is the most common among human cancers, accounting for about 80%
of the cases [2]. Among carcinomas there are tumors arising from the epithelial cell
layers of the gastrointestinal tract, as well as the skin, mammary gland, pancreas,
liver, lung, ovary, prostate and urinary bladder. The remainder of malignant tumors
arise from nonepithelial tissues. The first major class of nonepithelial cancers derive

from connective tissues. These tumors, called sarcomas, constitute about 1% of the

12



Chapter 2 2.1 From normal cells to cancer

tumors in the clinic. The second group of nonepithelial cancers arise from cells be-
longing to blood-forming tissues - hematopoietic - including the cells of the immune
system. Leukemias and lymphomas are included in this class. Finally, the third ma-
jor grouping of nonepithelial tumors arises from cells that form the components of
the central and peripheral nervous system. Included here are gliomas, glioblastomas,
neuroblastomas, schwannomas and medulloblastomas. Even if they comprise only
1.3% of all diagnosed cancers, these are responsible for about 2.5% of cancer-related
death [192]. Together with the set of names for malignant tumors, there is a related
nomenclature for benign ones: for example, an adenoma is a benign epithelial tumor
with a glandular organization; the corresponding type of malignant tumor is called
adenocarcinoma. Most cancers have features that reflect their origin. It is the case of
basal-cell carcinoma, where tumor cells derive from keratinocyte stem cells in the skin
and generally continue to synthesize cytokeratin intermediate filaments. Cells from
a melanoma, instead, originate from pigment cells in the skin and often continue to
make pigment granules. Note that cancers originating from different cell types behave
generally very differently. Regarding the two previous examples, basal-cell carcino-
mas are only locally invasive and metastasize rarely. On the other hand, melanomas

can become highly malignant and often form metastases.

2.1.6 Some insights into carcinogenesis

Even after the cancer has metastasized, it is usually possible to trace its origin back
to a single primary tumor, in a specific organ. Primary tumors are thought to derive
by cell division from a single cell that initially experienced some heritable change.
Afterwards, additional alterations accumulate in some of its descendants, allowing
them to outgrow their neighbors. Notably, by the time of its first detection, a typical
human cancer will have been developing for already many years, containing a billion
cancer cells or more [2]. Strange as it may seem, many lines of evidence suggest that
most cancer cells originate from a single aberrant cell. Then, if this is the case, the
abnormal cell needs to pass on its abnormality to its progeny, the aberration being
heritable. Therefore, development of cancer cell clones has to depend on genetic
changes. As previously anticipated, tumor cells contain somatic mutations, that is
they display one or more alterations in their DNA sequence that distinguish them from
the normal cells surrounding the tumor. Cancers may also be driven by epigenetic
changes, i.e. persistent, heritable changes in gene expression that happen without
alteration of the DNA sequence. Somatic mutations that alter DNA sequence appear

to be frequent in different cancers, and cancer is in this sense a genetic disease.
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An estimated 10'¢ cell division occur in a normal human body in the course of a
typical lifetime [2]. Even in an environment free of mutagens (agents causing genetic
mutations), mutations would occur spontaneously at an estimated rate of about 107°
mutations per gene per cell division. This estimate is due to the existing limitations
on the accuracy of DNA replication and repair. Therefore, during a typical lifetime,
every single gene has possibly undergone mutation on about 10'° separate occasions.
Among the resulting mutated cells, a large number will sustain deleterious mutations
in genes regulating cell growth and division, which may cause the cells to disobey
the normal restrictions on proliferation. Given these estimates, it seems reasonable
to ask ourselves why cancer occurs so rarely. A possible explanation is based on the
fact that a single gene mutation is not likely enough to convert a healthy cell into a
cancerous one. The development of a cancer typically requires a substantial number
of independent, rare genetic and epigenetic alterations to occur in the lineage deriving
from a single cell. The observed incidence of cancer as a function of age is a clear in-
dication of this behavior. In fact, for most types of cancers the incidence rises steeply
with age, as it would be expected if cancer was caused by a progressive accumulation
of a set of mutations in a single lineage of cells. These indirect arguments have now
been confirmed by sequencing of the genomes of tumor cells from cancer patients
and characterizing the mutations that they contain. The progressive accumulation of
mutations in a number of different genes helps to explain the phenomenon of tumor
progression, in which an initial mild disorder of cell behavior evolves gradually into
an actual cancer (see Figure 2.4 describing cancer progression in the uterine cervix).
Thus, tumor progression involves a large element of chance and usually takes many
years. At each stage of progression, some individual cell acquires an additional muta-
tion or epigenetic change that, said with the language of natural selection, provides a
selective advantage over its neighbors. The new abilities gained by the cell may ease
its thriving in the tumor environment, which is usually characterized by harsh condi-
tions (such as low levels of oxygen or poor nutrient concentrations). The offspring of
the best-adapted cells continue to divide, eventually giving rise to the dominant clones
in the growing mass. Since new mutations arise continuously within the tumor mass,
different subclones may gain advantage and predominate. These may be overtaken
in turn and outgrown by their own sub-subclones. The increasing genetic diversity
encountered in cancer progression is one of the main factors that makes treatment

difficult.
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Figure 2.4: Stages of progression in the development of cancer of the
epithelium of the uterine cervix. Adapted from [2].

2.1.7 Distinctive traits of cancer cells

A large cell population number creates the opportunity for mutations to occur, but the
driving force for cancer development resides in the selective advantages possessed by
the abnormal cells. A mutation or epigenetic change can confer a significant advantage
by increasing the rate at which a cell clone proliferates or by enabling it to continue
proliferating despite the controlling signals. Cancer cells grown in culture typically
display a transformed phenotype, showing an altered shape, motility, and response to
growth factors. Contrary to normal cells, which do not divide unless attached firmly
to the substrate, transformed cells often divide even if held in suspension. Moreover,
normal cells are inhibited from moving and duplicating when the culture reaches
confluence - i.e. cells reach a high density. Instead, transformed cells continuously
move and divide even after confluence, piling up in layers in the culture dish. What
is observed in culture gives a hint of the possible misbehaviors happening in a tumor
growing into a host tissue. However, cancer cells in the body show additional features
that mark them out even more from normal cells.

In general, when sufficient oxygen is present, normal tissue cells fully oxydize
almost all the carbon in the glucose they uptake to obtain COs, subsequently lost
as a waste product by the body. Growing tumors need lots of nutrients to obtain
the building blocks for new macromolecules. Indeed, most tumors have a metabolism

which is more similar to the one of a growing embryo, than to that of an adult tissue.
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In particular, tumor cells consume glucose greedily, importing this substance from
the blood at a rate much higher than neighboring normal cells. Only a small fraction
of this imported glucose is used for ATP production by oxidative phosphorylation.
Instead, a significant quantity of lactate is produced, with many of the remaining
carbon atoms derived from glucose that are diverted for use as raw materials needed
by the growing tumor cells. This tendency for exaggerated glucose consumption and
altered energy metabolism observed in cancer cells is called the Warburg effect, from
Otto Warburg observation in 1924 [188]. Remarkably, the abnormally high glucose
uptake allows to image tumors selectively by whole-body scans (employing techniques
such as PET and using suitable contrast agents), providing a way to monitor cancer
progression.

As mentioned in the previous sections, powerful safety mechanisms guard against
the troubles caused by deranged cells. Some of these mechanisms operate to halt
cell proliferation, leading eventually to apoptosis. Cancer cells require additional mu-
tations to elude these defenses against cellular misconduct. Such mutations drive
the cell into an abnormal state, unbalancing metabolic processes and production of
cell components. To thrive, cancer cells must accumulate mutations that disable the
normal safeguard mechanisms, which would otherwise induce such cells to commit
suicide. Note that, even if cancer cells fail to undergo apoptosis, this does not mean
that they rarely die. In fact, the interior of large solid tumors is characterized by
massive cell death. This results from extremely difficult living conditions, with severe
competition among cancer cells for nutrients. Typically, cells die due to necrosis, al-
lowing the tumor to grow only if the cell birth rate outpaces the death one. According
to this explanation, tumor double in size over a timescale that can be much slower
than the doubling time for cell proliferation.

Most of normal human cells display a limit to the number of times they can
divide when stimulated to proliferate in culture. After a certain number of population
doublings, they stop dividing. This internal counting mechanism is termed replicative
cell senescence and it generally depends on progressive shortening of the telomeres -
a telomere is a region of repetitive nucleotide sequences at each end of a chromosome
[80]. The replication of telomere DNA during the S phase depends on the enzyme
telomerase, which maintains a special telomeric sequence protecting chromosome ends
from deterioration. Since many proliferating human cells are deficient in telomerase,
their telomeres shorten with every division, their protective action deteriorates, and a
DNA damage signal is eventually created. The altered chromosome ends can trigger

a permanent cell-cycle arrest, causing a normal cell to die. Remarkably, cancers cells
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are able to avoid replicative senescence in different ways. They can keep telomerase
active as they proliferate, so that their telomeres do not shorten; otherwise, they can
evolve alternate mechanisms for elongating their chromosome ends. Regardless of the
strategy adopted, the striking result is that the deranged cells continue proliferation

under conditions in which normal cells would instead stop.

2.2 The stages of solid tumor growth

Once a tumor has established an outpost in the host tissue, it starts a stage of rapid
growth and becomes an in situ cancer. Further development of a solid tumor is
generally divided into three main phases, namely the (i) avascular, (ii) vascular, and

(ili) metastatic stages.

2.2.1 Avascular solid tumor growth

Said quite simply, avascular tumor growth is the growth of tumors in the absence
of blood vessels. As the tumor grows from a small cluster of initial cancer cells, it
interacts with the external environment of the host tissue. It mechanically displaces
and compresses the surrounding tissues, including the existing vasculature and lym-
phatics. The tumor degrades and remodels the extracellular matrix (ECM) both
biomechanically - by inducing strains in the matrix - and biochemically. This second
form of chemical remodeling is usually performed by the secretion of matrix degrading
enzymes (MDEs) such as matrix metalloproteinases (MMPs) [17]. MMPs degrade the
ECM that, in turn, can release ECM-associated growth factors that further fuel tumor
growth [80]. Moreover, ECM degradation by MDEs increases the tumor ability to
expand into the surrounding tissues, both by reducing the mechanical stiffness of the
matrix and by providing additional space for the growing mass [116]. Tissue invasion
results from the dual contribution of proliferation-induced pressure and proteolytic
degradation of the surrounding tissues. Such expansion forces sheets, or fingers, of
tumor cells along lines of least mechanical resistance in the neighboring regions [100].
Notably, there is supporting evidence that the tumor may induce epigenetic changes
in the adjacent stromal cells, fostering development of the cancer [80, 54]. Even the
action of cells from the immune system is affected by the presence of the tumor. The
immune cells operate in conflicting ways: tumor-antagonizing and tumor promot-
ing immune cells can be found, in different proportions, in many neoplastic lesions

(44, 80].
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In this early stage of cancer, the tumor has not yet established its own vascular
network. Thus, it must rely upon the host tissue for delivery of required substances
- such as oxygen, glucose or growth factors - via diffusion from the surrounding
vascularized tissues. Nutrients enter the tumor and are uptaken by proliferating
cancer cells. In particular, oxygen diffuses over distances of the order of 100-200 pm
into tissue, before dropping to levels insufficient for cellular metabolism [29]. When
the tumor radius exceeds this diffusion limit, oxygen can no longer reach the tumor
interior, and only cells at the tumor border still experience an adequate oxygen supply.
An hypoxic region is formed in the tumor center, contributing to the selection of more
aggressive cancer cells. At this stage, rapid cell proliferation in the outer regions is
still able to increase the overall tumor volume. However, as the tumor mass expands,
the size of the hypoxic regions increases and oxygen levels continue to drop in the
center. If the oxygen concentration drops to critically low levels, then hypoxic cells
start to die by necrosis. During this process, the contents of the cell - organelles and
biological chemicals - are released into the microenvironment and are slowly degraded
over time. The cellular water content eventually escapes through the interstitial space
in the tumor, together with degraded cellular material that is subsequently removed
by immune cells. The tumor starts to lose volume and, as the size of the necrotic
core grows, the rate of volume gain from proliferation eventually balances with the
rate of volume loss by necrosis. After some time, this leads to a steady tumor size,

with a characteristic diameter of about 1-2 mm.

2.2.2 Vascular tumor growth

The second stage of cancer development can be interpreted as a consequence to the
hypoxia and nutrient deprivation encountered during avascular tumor growth. The
ultimate response is tumor angiogenesis, a process in which the tumor induces en-
dothelial cells (ECs) to form a new vasculature, supplying the cancer cells with the
nutrients necessary for their proliferation. Actually, the observation that angiogenesis
occurs around tumors was made nearly 100 years ago, and the hypothesis that tumors
produce a diffusible angiogenic substance was put forward in 1968 [29].

Nowadays, it is known that hypoxia is able to trigger a number of biological
changes in most animal cells [194]. Hypoxia inducible-factors (HIFs) are present
within cells regardless of oxygen levels. However, under normoxic conditions, HIF-1a
(a member of the HIF family) results to be inactivated. On the contrary, when sta-

bilized by hypoxic conditions, HIF-1a upregulates several genes to promote survival
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in low-oxygen conditions. In particular, genes that increase cellular motility are ac-
tivated, and at the same time cells start to secrete tumor angiogenic growth factors
(TAFs), such as the vascular endothelial growth factor (VEGF) [29]. TAFs diffuse
outward from the hypoxic regions of the tumor and eventually reach the neighboring
blood vessels.

Healthy blood vessels are composed of tightly connected ECs, surrounded by a
basement membrane and other supporting cells - such as smooth muscle cells and
pericytes [102]. When the TAF gradient is detected by the ECs, they begin to secrete
matrix degrading enzymes that are able to break down the basement membrane and
the ECM. This allows the ECs to migrate from the original blood vessel towards
the TAF source in the tumor. The first migrating ECs are termed sprout tips and,
immediately behind them, other ECs start to divide and migrate. Eventually, they
align and form tubes of polarized ECs, surrounding a vascular lumen. These events

are represented schematically in Figure 2.5. The new vessels then link with the old
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Figure 2.5: Tumor-induced sprouting angiogenesis. Adapted from [102].
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ones and form a network of loops during a process called anastomosis. The resulting
neovasculature provides the tumor with a direct supply of oxygen and other nutrients.
Note that the final vasculature architecture is actually determined by the balance of
pro- and anti-angiogenic growth factors (competing in the so called angiogenic switch),
as well as by the mechanical stresses arising in the tumor and in the new blood vessels
[91].

Nourished by this new vascular network, cancer cells begin a stage of rapid prolif-
eration. However, even if critical for further tumor development, the tumor angiogenic
network is far from being efficient. Due to their pathological nature, tumor blood ves-
sels are often leaky, displaying large gaps between ECs. The newly formed vessels are
tortuous and the regular branching patterns observed in healthy tissues are almost
lost. In addition, the basement membrane outside the vessels may not be fully formed
and some of the newly born vessel walls may be composed of a mosaic of tumor cells
and ECs [89, 29, 92]. The resulting inefficiency hinders fluid flow and drug delivery in
tumors. Eventually, it gives rise to harsh conditions that select even more malignant

clones of cancer cells.

2.2.3 Tissue invasion and metastasis

Cancer cells spread and multiply at new sites in the body through a process called
metastasis. This aspect is what causes most of cancer related deaths, however it also
remains the least understood. Indeed, it is estimated that metastasis accounts for
90% of deaths from cancer [2]. After it had spread throughout the body, a cancer
becomes almost impossible to eradicate by surgery or radiation. Remarkably, metas-
tasis itself is a multistep process, which is often referred to as the invasion-metastasis
cascade [80]. During this stage of tumor development, cancer cells invade local tis-
sues and vessels, move through the circulation, leave the vessels, and then establish
new cellular colonies at sites far from the primary tumor (Figure 2.6). Each of these
events is a complex process, in which most of the underlying mechanisms are still not
clear. Cancer cells are able to build metastases after escaping the constraints that
keep normal cells in their proper places. Malignant tumors are indeed characterized
by a certain degree of invasiveness, showing disorganized patters of growth and irreg-
ular borders, with extensions into the surrounding tissues. Although the molecular
changes underlying this invasive behavior are still not understood, it is clear that
invasiveness requires a disruption of the mechanisms keeping cells tethered to their

proper neighbors and to the ECM. Moreover, it is becoming increasingly apparent
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that a crosstalk between the cancer cells and the tumor stroma is involved in acquir-
ing the capabilities needed for invasion. Malignant phenotypes do not seem to arise in
a strictly cell-autonomous manner, and their occurrence cannot be understood solely
by the analysis of tumor cell genomes.

For carcinomas, the cellular tendency to move away from the original site re-
sembles the epithelial-mesenchymal transition (EMT), occurring in some epithelial
tissues during normal development. By co-opting a process involved in various steps
of embryonic morphogenesis and wound healing, carcinoma cells can concomitantly
acquire multiple features enabling invasion. The second step of metastasis, that is
the establishment of colonies in distant organs, begins with cell entry into the circu-
lation. To accomplish this, invasive cancer cells have to cross the walls of blood or
lymphatic vessels. The latter, displaying larger radii and more deformable walls than
blood vessels, allow cancer cells to enter in small clumps. Then, such clumps may
become trapped in lymph nodes, giving rise to lymphnode metastases. Cancer cells
entering blood vessels, instead, seem to do so singly. Modern techniques for sorting
cells according to their surface properties are able, in some cases, to detect these cir-
culating tumor cells (CTCs) in samples of blood from cancer patients [77]. This task

is extremely difficult, since CTCs are only a minute fraction of the total blood-cell
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Figure 2.6: Steps in the invasion-metastasis cascade. Adapted from [2].
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population. Only a small proportion of the cancer cells that enter circulation suc-
ceed in making its exit, settling in new sites. Very few cells manage to survive and
proliferate in the foreign environment, starting metastases. Experiments have shown
that fewer than one in thousands, perhaps one in millions, are successful in this se-
quence of events [2]. Note that the migrating cells may fail to survive in the alien
environment, or they may only thrive for a short period - forming a micrometastasis
- before dying out. Moreover, many cancers are discovered before forming metastatic
colonies and can be cured by removing the primary tumor. However, an undetected
micrometastasis can remain dormant for many years before revealing its presence by
forming a secondary tumor, long after the primary tumor has been removed.

To conclude this section, it is interesting to note that without the proper tumor-
host interaction, the destination microenvironment will not support the newly ar-
rived cancer cells and the following formation of metastases. In 1889 Stephen Paget,
an English surgeon, noticed that mechanical forces alone could not account for the
metastatic dissemination of a tumor [139]. Later work showed that, while CTCs are
found in the vasculature of multiple organs, only certain sites develop metastatic tu-
mor deposits. As reviewed in [142], some clinical findings in cancer patients show that
solid tumors have a propensity to set home preferentially to distinct organs, as it is
seen in metastasis of melanoma to the lung and brain. The metastatic cells behave like
seeds from certain plants, which thrive exclusively in distinct favorable ecosystems -
an idea which is known as the seed and soil hypothesis. Even though mechanical forces
are employed in delivering the tumor cells to secondary sites, successful colonization is
strongly dependent on a receptive microenvironment. Indeed, recent evidences show
that this distant microenvironment is arranged prior to cancer cell arrival, creating
a “landing site” for future metastatic growth. This modified microenvironment in a
distant host tissue is sometimes referred to as the pre-metastatic niche. Remarkably,
the existence of such a primed environment implies that metastases to a particular

organ are not a random occurrence, but rather an already determined event.

2.3 Mathematical models for cancer

As shown in the previous sections, cancer understanding is made difficult by a wide set
of problems. The involved spatial and temporal scales span from the biochemistry
of DNA mutation to grown tumors. Consequently, several mathematical modeling
approaches have been used to investigate these problems. Here we discuss a brief

history of mathematical models for cancer developed over the past years. For an
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extended discussion, we refer the reader to the reviews in [14, 10, 153, 33, 158, 24,
164, 3].

In general, statistical techniques can be applied to experimental data to reveal
correlations between observable phenomena. Then, it is necessary to postulate hy-
potheses to establish the reasons underlying these correlations, stating which physical
processes are involved and how they interact [24]. Biological experiments for testing
these hypotheses may be extremely time-consuming, expensive, or even impossible
with the current technologies. In such cases, mathematical modeling can play an
intermediate role, providing an independent check for the consistency of the hypothe-
ses. If a model derived from such hypotheses is not able to reproduce the observed
phenomena, then the original statements have to be modified before carrying on the
work. Moreover, mathematical models can improve the design of experiments by
highlighting which measurements are required to test a particular theory, or whether
supplementary information can be obtained by collecting additional data. Finally,
the parameters that feed the equations in the models can be varied over a large set,
providing a thorough characterization of the system. These ideas are summarized in
Figure 2.7, where the different stages involved in the formulation of the mathematical

model are represented. Actually, mathematical modeling is an iterative process and

experimental data model predictions

biological model solution and

hypotheses validation

Figure 2.7: Different stages involved in mathematical modeling.
Adapted from [24].

the success of its predictions relies on a continuous collaboration between experimen-

talists and theoreticians.
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2.3.1 Models for avascular tumor growth

One of the earliest models for cancer initiation was developed by Armitage and Doll
in 1954 [11]. The model is derived by the analysis of cancer mortality statistics,
comparing different cancer types. The theory states that the age distribution of a
cancer is proportional to a power of age, with an exponent related to the number
of changes needed for cancer progression. Although the theory provides an excellent
description for cancers of the colon, stomach and pancreas, it fails to describe some
of the others. In addition, the authors’ findings do not provide a mechanistic insight
into the functional changes responsible for the disease progression.

By the analysis of similar incidence statistics for retinoblastoma, Knudson pro-
posed that only two changes (or “hits”) are needed to cause the disease [101]. There-
fore, for children with familial retinoblastoma that are born with the first hit only
another mutation is required, increasing the chances of developing the tumor. No-
tably, the identification of the RB1 tumor suppressor gene in 1987 confirmed this
two-hit hypothesis.

Among the earliest spatio-temporal models for avascular tumor growth, Greenspan
describes how the size and structure of a spherical tumor change when different hy-
potheses on cell viability and proliferation are considered [73]. According to the
hypotheses that were used in this work and in similar ones, the tumor is assumed to
remain radially symmetric for all the discussion. Cell proliferation is regulated by a
single, diffusible growth factor that is supplied externally, such as oxygen. Growth
inhibiting factors can be produced internally and affect the mitotic rate of the cells.
Notably, the distribution of a growth factor in the tumor regulates its local dynam-
ics, with expansion occurring when cell growth exceeds death and regression in the
opposite case. The integration of these contributions over tumor volume leads to an
equation similar to the following one:

drR 1 (%
dat - R,

relating the time evolution of the tumor radius R(t) to c¢(t), the concentration of

F(c)r?dr,

growth factor in the spheroid. Here, F'(¢) models the influence of the growth factor
on the net cell growth rate at each point of the spherical tumor. If ¢ represents a
nutrient, for example, F' can be thought to increase as ¢ increases, and it will possibly
reach the maximum value for a large value of ¢. Then, the spatial distribution of ¢ is
determined by the solution of the following diffusion equation:
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where D represents the diffusion coefficient of the growth factor, and ¢ describes
its local rate of consumption. This latter function is specific for the growth factor
used and might depend on the proliferation state of the cells. Threshold values of
the growth factor can delineate regions of cell proliferation, quiescence or necrosis.
Then, the resulting distribution of cell populations can be compared with tumor
histologies. Interestingly, models of this form show good qualitative - and sometimes
also quantitative - agreement with experimental data. Typically, these models predict
an evolution of the tumor radius that is exponential with time for the first days, when
the concentration of the growth factor is high over the whole domain. After that, a
transient linear phase follows and finally the tumor reaches an equilibrium size at
which the rates of cell growth and death balance. Asymptotic techniques can be
applied for some physically relevant conditions, leading to analytical solutions. These
can be used to evaluate physical quantities of interest, such as the growth speed, in
terms of model parameters [189].

Due to the many simplifications, these early models have limited applicability. In
particular, the presence of a unique cell population is limiting, since the stochastic
appearance of different cell clones cannot be investigated. At the same time, cell
metabolism is controlled by a single diffusible species, whereas multiple metabolites
are actually involved. Extensions and modifications of these original models became
numerous during later years (see the reviews in [146, 10, 158] for a detailed account).
Significant developments include relaxing the hypothesis of radial symmetry and the
inclusion of different cell populations within the tumor. For example, in a subsequent
paper Greenspan used classical perturbation theory to predict how the boundary of
an invasive tumor develops, departing from spherical symmetry [74]. Cristini and
coworkers, on the other hand, employed sophisticated numerical methods to solve a
nonlinear system of equations and relate the irregular boundaries of the tumor to key
parameters of the model [41]. Interestingly, their findings show that highly vascu-
larized tumors remain compact in shape while growing, whereas those with limited
availability of nutrients tend to develop invasive protrusions, eventually leading to
tumor fragmentation.

Mechanical aspects were incorporated at later times, starting with equations for
cell movements depending on a cellular “pressure”. In the model of Greenspan [74],
for example, the cell culture is regarded as an incompressible fluid composed of cells
and cellular debris in which a distribution of sources and sinks is present (given by cell
proliferation and necrosis, respectively). Cell movement is due to pressure gradients

arising from the boundary of the tumor, where nutrient and pressure levels are high,
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towards the tumor center, where the nutrient and pressure levels are low. In addition,
surface tension or cell-cell adhesion are assumed to maintain a compact tumor shape,
countering the expansive forces due to growth. Remarkably, the analysis of the equa-
tions show that the strength of cellular adhesion influences tumor morphology. In
particular, strong adhesion yields radially symmetric tumors, whereas weak adhesion
leads to irregular tumor boundaries.

Several authors have developed biomechanical models where the tumor is consid-
ered as a mixture of interacting components [21, 23, 58, 195]. Usually, the model is
composed of two main phases: tumor cells and interstitial fluid. Some of these mul-
tiphase models are based on porous media theory. Generally, in this kind of models
different balance equations regulate the exchange of mass and momentum among the
constituents [26, 159, 32, 6, 167, 8]. Since the mathematical models developed in this
dissertation belong to this second group, we discuss below some examples from these
categories.

In [195], the authors develop and simulate a diffuse interface continuum model for
multispecies tumor growth. The model is able to account for adhesive forces among
the cell species, introducing an adhesion energy from continuum thermodynamics.
Using an efficient numerical scheme, the authors are able to solve the equations for
the different cell populations and the substrate components. They present simulations
for unstable avascular tumor growth in two and three dimensions. Interestingly, the
tumors at the end of the simulations display complex shapes, dependent on different
cell adhesions.

In [6], Ambrosi and Preziosi report on a mathematical model for tumor growth
that accounts for adhesion mechanisms between tumor cells. The ECM is described
as an elastic compressible material, while the constitutive relationship between the
stresses and the strains within the cellular constituents is obtained via a multiplicative
decomposition of the deformation gradient tensor. This decomposition results in the
splitting of the total deformation into a growth, a plastic and an elastic part. On the
basis of biological considerations, a yield condition on the cellular mechanical stresses
is postulated, separating the elastic and dissipative regimes. Finally, numerical tests
display how mechanical stress is able to influence tumor growth, and where it is able
to generate cellular reorganization.

Sciume and coworkers [167] present a multiphase model for avascular tumor growth
based on porous media mechanics. They describe the tumor as composed by the ECM,
which constitutes the solid skeleton of the porous material, tumor cells, healthy cells

and interstitial fluid. Also, tumor cells are divided into proliferating and necrotic,
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whereas a nutrient is transported into the interstitial fluid. The model is able to
account for different interfacial tensions between cells and interstitial fluid, and dis-
tinct mechanisms for cell-ECM adhesion. They study three different cases, namely
the growth of a tumor spheroid, an avascular tumor embedded in a host tissue, and a
tumor cord model. When host cells are present, the relative difference in adhesion to
the ECM between the former and tumor cells drives tumor infiltration. Subsequently,
the model has been extended to account for different interfacial tensions between tu-
mor cells, healthy cells and interstitial fluid [165], for a deformable ECM [166], and
for the presence of TAF and ECs to model angiogenesis [160].

In [8], the authors develop a mathematical model for avascular tumor growth in the
brain. The tumor grows in a three dimensional setting, where the domains for the gray
and white matter and the cerebrospinal fluid are constructed from magnetic resonance
images. The tumor and the host tissue are modeled as biphasic porous materials, and
the effects of radiotherapy are also incorporated in the modeling framework. They
observe that the different mechanical properties and the spatial configuration of the
tissues surrounding the tumor affect its growth, resulting in strong spatial variation
of cellular proliferation and significant deformations of the host tissues.

Models like those presented above are termed continuum models, since they de-
scribe how cell populations change without distinguishing between individual cells.
In continuum models, the tumors are considered as continuous masses containing a
small number of different cell populations, usually neglecting subcellular phenomena.
This kind of models is suited for cases where the number of cells in the system is
very large, but it should be avoided when describing small clusters of cells, such as
metastases. When the number of cells is small, it is possible to use discrete models
that view the tumor as a collection of interacting cells. Each cell has assigned its set
of parameters and behavioral rules, allowing to study tumor invasion and emergence
of clonal subpopulations. The parameters governing cell behavior can be chosen using
measurable biological and physical quantities, such as the cell duplication times or
their membrane deformation in response to mechanical loading [130, 182, 3].

For example, Quaranta and coworkers [152] use cellular automata models to inves-
tigate the influence of the microenvironment, in particular the oxygen concentration,
on the development of a tumor. They show that for low oxygen levels the tumor
diverges from its initial phenotype and exhibits a large diversity in population, with
aggressive phenotypes becoming dominant.

Another example is given in the work by Kim and colleagues [97]. They develop a

hybrid model in which a continuum approach is used in regions with high cell density,
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whereas a discrete description is used for regions with a small number of cells. In
this way, the authors are able to analyze the effects of cellcell adhesion and variable
growth rates at the cellular level, even by maintaining some features of the continuum
description.

Recently, in [9] the authors integrate biological and computational approaches to
derive a hybrid cellular automata model for bone metastases arising from prostate
cancer. The model is able to account for the key players in disease progression,
reproducing the steps of invasion from prostate to bone. Notably, the temporal
evolution of the metastases is highlighted, and the application of clinically relevant
therapies to the computational model illustrates the potential of this approach in the

clinic.

2.3.2 Models for tumor angiogenesis

One of the first mathematical models for tumor angiogenesis was developed in 1985
by Balding and McElwain [12]. In this work, the authors present a simple model for
tumor angiogenesis to describe a set of experiments in which tumor cells stimulate the
migration of new blood vessels in the rabbit cornea. The model considers a generic
TAF, as well as capillary tips and vessels. Following their notation, we denote by ¢
the TAF concentration, and by p and n the capillary and tip densities, respectively.
They assume that the TAF, produced by the tumor cells, diffuses towards neighboring
vessels. In one dimension, with = representing the distance from the vasculature to
the tumor center, these assumptions lead to the following equation for c:

dc 0%

ot o
where D, denotes the TAF diffusion coefficient. Capillary tips are assumed to emanate
from existing vessels and tips at a rate that increases with the TAF levels. Moreover,
the tips move by chemotaxis along spatial gradients of TAF and form anastomoses.
Combining these effects, the authors derive this equation for the tip density:

on_ o o\,
at - ax nXax aOCp 2np7

where y is the chemotaxis coefficient, g is the rate of appearance of new tips, and
B is a death term for tips due to anastomosis. The capillary density is assumed to

increase only by tips movement so that:

op _ _ 9% _
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where ~; is a death term for capillaries. Numerical simulations of this model and its
extension [25] are able to reproduce several distinctive features of angiogenesis, such
as the peak in capillary density tips preceding a peak in the density of capillaries.
Interestingly, by altering the key parameters, the models have been used to compare
different tumor treatments. For example, by reducing the chemotaxis coefficient it is
possible to mimic the effect of a therapy that blocks EC chemotaxis. Alternatively,
adding a reaction term in the TAF equation can describe the effect of a particular
drug. Other models, based on similar equations, have been extended to include the
growth of the tumor during angiogenesis and the intake of nutrients from the new
vessels [140]. More detailed models have been developed by Levine et al. [109, 110],
taking into account more cell populations, chemical factors and their related receptors.
In particular, they include specific pro- and anti-angiogenic factors, together with the
interactions between the ECs lining the blood vessels and other cell types, such as
pericytes and macrophages.

Some of the following models have focused on the extension of the problem to two
and three dimensions (see, for example, [138]). Indeed, one dimensional models are
not able to account for the morphology of the vascular network, which plays a major
role in the delivery of the nutrients to the growing tumor. In addition, the remodeling
of the vessels and the effects of the blood flow on the evolving vasculature have been
usually neglected. To meet these requirements, a new class of hybrid models has
been developed. In general, these include reaction-diffusion equations for nutrient
transport and consumption (in a continuum approach), coupled to cellular automata
describing the interactions between normal and tumor cells (in a discrete framework).

For example, Stokes and Lauffenburger [176] couple a probabilistic equation de-
scribing the movement of ECs to a continuum distribution of TAF. Their results show
that vessels grow directed to the TAF source (i.e. the tumor) only if a chemotactic
response of the ECs is enabled. Moreover, a level of random motion is necessary in
the equations for EC movement, to produce vessel anastomosis and capillary loop for-
mation. Interestingly, the authors report that the predicted vessel extension rate and
network structure are quantitatively consistent with experimental observations of in
viwo angiogenesis. They suggest that the rate of vessel outgrowth is strongly dictated
by the EC migration rate. Therefore, in vitro migration assays, where this migration
rate can be carefully quantified, may constitute an useful tool for pre-screening of
possible tumor angiogenesis treatments. This result is noteworthy, since it highlights
the importance of mathematical modeling as a bridge between in vitro and in vivo

experiments.
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In another work, McDougall and colleagues present a model describing the ves-
sel network response to perfusion-related haemodynamic forces [123]. In contrast to
previous models where the effects of blood flow were neglected or evaluated a pos-
teriori, the blood perfusion generated by this approach has a direct impact during
capillary growth, inducing radial adaptations and network remodeling. A parametric
study is performed to test the influence of model parameters, and the delivery of a
chemotherapeutic drug is investigated. Notably, the model is used to identify possible
therapeutic targets that could improve tumor treatment.

As a last example we consider the work in Frieboes and coworkers [61], where
the authors extend the diffuse interface model in [195] (previously mentioned for
nonlinear solid tumor growth). There are several extensions, including the tracking
of multiple viable cell species, the onset and aging of discrete tumor vessels, and
the incorporation of individual cell movements using a hybrid continuum-discrete
approach. It is shown that the module describing tumor growth is characterized by a
morphological instability. Depending on the conditions of the microenvironment, this
instability can lead to tumor invasion via individual cells. This intrinsic feature of
the tumor growth module is then enriched by the coupling with the vascular network,
which undergoes continuous remodeling. Blood vessels can shut down if subjected to a
sufficiently high cellular pressure, given by extensive proliferation. This phenomenon
affects the intake of nutrients dramatically, leading to hypoxic regions which in turn
trigger a higher release of angiogenic regulators.

Finally, note that this field of cancer modeling is currently very active and several
models are missing from this brief account. We refer the interested reader to the

reviews in [33, 162] for an extended report on the subject.

2.3.3 Models for cancer treatment

Mathematical models constitute a powerful tool to dissect the mechanisms regulat-
ing tumor growth. Moreover, mathematical modeling can contribute to the rational
design of optimal treatment protocols, involving surgery, chemotherapy and radio-
therapy. They can even aid the development of new therapies, suggesting strategies
for the cure (see the recent reviews in [45, 124]).

In 1988, Jain and Baxter [90] develop a continuum model to identify the causes
of poor drug distribution in vascular tumors. They find that the irregular blood
flow, arising in the angiogenic vascular network, hinders significantly the delivery of
a therapeutic agent. Moreover, it is shown that high interstitial fluid pressure in the

tumor interstitium plays a similar role, by reducing the extravasation of molecules and
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driving fluid radially outward from the tumor. These predictions have been verified
experimentally [19] and, remarkably, have stimulated the development of vascular
normalization therapies.

In the same period, several contributions towards mathematical modeling of can-
cer treatment response were brought forward. In particular, Norton and Simon [137]
study the growth kinetics of tumors during chemotherapy, finding that the tumor
grows following a sigmoidal curve. Starting from model results, they argue that
a certain class of tumors may require intensive treatment to achieve beneficial re-
sponse. This prediction was validated later, in a trial with patients affected by breast
cancer [39]. Coldman and Goldie [40] presented a stochastic model for chemotherapy
of tumors in 1986. The authors derive probabilistic equations for the cell dynamics,
studying cell resistance to therapy. They introduce a treatment with two drugs and
show how the model can be used to make deductions on the best scheduling ther-
apy. Remarkably, these early works have inspired several researchers to investigate
optimum administration schedules for various situations. For example, in [36] the
authors develop an evolutionary mathematical model incorporating data from cell
cultures. They investigate sensitive and resistant cancer cell dynamics under differ-
ent treatment schedules. The model predicts alternative therapeutic strategies that
could prolong the clinical benefit of current drugs against the resistant cells, delaying
the development of resistance.

Other approaches have focused on the response to radiotherapy using the linear-
quadratic law, an empirical formula that relates the proportion of cells that survive
exposure to a dose of radiation. For instance, Wheldon and colleagues [193] derive
an extension of this formula for radiation treatment schedules. In particular, they
extend the linear-quadratic model to account for exponential regrowth of the tumor
between treatments. Using analytical calculations, the authors are able to derive
expressions for the interval between treatments and the optimal radiation dose that
should be applied to maximize tumor cell death. Other mathematical studies of
radiation treatments have also included the effects of hypoxia [196], more complex
growth laws [122] and cellular heterogeneity [99]. An interesting approach is presented
in [156]. Here the authors incorporate the linear-quadratic law into a continuum
model of glioma cell density, describing cell invasion, proliferation and death due to
therapy. Using in vivo radiation dose schedules as a reference, the authors investigate
the spatio-temporal delivery of radiation dose, treatment response and recovery time
for different treatment schemes. Then, a recent study [106] used a mathematical

model for glioblastoma treatment response. The authors investigate the effects of
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cell differentiation on therapy outcomes. They find that enrichment in a resistant
stem-like cancer cell population could prolong survival by increasing the time to
disease recurrence. Their strategy was also validated with a randomized mouse trial,
showing significant improved survival in the optimized schedule group. As a last
example, Stiehl and colleagues [174] derive a mathematical model for patient survival
in acute myeloid leukemia. Model results support the evidence that proliferation and
self-renewal rates of leukemia stem-like cells have greater impact on the disease course
than the same rates in leukemia progenitor cells. By using patient-derived data, it is

possible to estimate prognostic factors that otherwise cannot be measured directly.

2.4 Conclusions

It is becoming increasingly clear that cancer is not a typical illness, whose causes can
be easily identified. Rather, it appears as a non-deterministic disease, which does
not progress as a fixed succession of specific mutations in some genes. There are
many molecular routes that lead to clinically identical cancers [125], and the final
development of the illness is driven by a multitude of factors, ranging from the tumor
microenvironmental details to ageing and lifestyle.

Like other phenomena occurring in living beings, a fundamental understanding of
cancer cannot arise from the bare characterization of all its components [125]. Actu-
ally, there is a need for a wider perspective than molecular biology alone would be able
to offer. This new angle of view may benefit from cross-disciplinary collaborations
between physicists, cancer biologists, mathematicians and engineers [155]. Theoreti-
cal and computational tools developed inside the framework of the physical sciences
can be used to disentangle the complex interactions underlying cancer progression.
Among these tools, mathematical models provide a valuable test bench for verify-
ing hypotheses, identifying key biological mechanisms, and optimizing experimental
protocols.

To date, most of the mathematical models that have been developed are focused
on a qualitative description of the phenomena they are addressing. Many approaches
are still descriptive, as detailed data on specific quantities of interest are missing. In
fact, as the predictive ability of a model strongly depends on its proper parameteri-
zation, it is essential to obtain accurate parameter estimates from in vitro or in vivo
systems or clinical trials [3]. This kind of information is still poor and a closer collabo-
ration between experimental researchers and theoreticians is highly encouraged. The

successful integration of these different approaches is crucial for the understanding of
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the complexities underlying cancer and, we hope, to devise effective strategies for a

cure.
In conclusion, there still might be a long way to go for finding effective treatments

for cancer, with great efforts and even some disillusions. However, the opportunity

to improve patients’ quality of life makes it a journey that it is worth to take.
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Chapter 3

Predicting the growth and drug
response of tumor spheroids

3.1 A model for multicellular spheroids

3.1.1 Introduction

Cancer is a complex disease involving primarily uncontrolled cell proliferation and
migration to distant regions of the body [113]. From the second half of the last
century the scientific community has become more and more aware of the difficulties
that arise when treating this illness. Nowadays it is clear that a combined effort from
all the physical sciences is necessary to advance our understanding of the disease and
promote the discovery of new cures [125, 106]. The pioneering works of Greenspan and
coworkers [73, 74] paved the way for the development of mathematical models that
could investigate the basic principles underlying cancer progression and predict the
outcome of therapies. Most continuum models, as the one presented in this work, deal
with the avascular phase of tumor growth. During this stage of cancer progression, a
small cluster of cancer cells arise in a healthy tissue due to mutations that alter their
biochemical pathways. This small region of abnormal cells grows at the expense of the
host counterpart, nourished by oxygen and nutrients that diffuse from the vasculature
nearby [89, 70]. At a certain point the external nutrients are not enough to sustain the
expansion of the growing mass, leading to the formation of cell proliferation gradients
starting from the outer regions of the tumor. As time passes by, cancer cells at the

center of the tumor experience severe hypoxia and critical conditions that lead to the

Section 3.1 of this chapter is based upon the work in: Mascheroni P, Stigliano C, Carfagna
M, Boso D P, Preziosi L, Decuzzi P, Schrefler B A (2016), “Predicting the growth of glioblas-
toma multiforme spheroids using a multiphase porous media model”, Biomechanics and Modeling
in Mechanobiology, 15(5), 1215-1228.
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death and consequent necrosis of some of them. Finally a steady state arises, where
cell proliferation at the tumor border balances cell death at the tumor center [55]. The
subsequent stage of cancer progression is termed the vascular phase, where tumor cells
recruit new blood vessels from the host vasculature through tumor angiogenesis. In
this second stage the cancer resumes its previous growth and eventually enters the last
stage of the illness, the metastatic phase, where malignant cells evade the tumor area
to form metastases at distant regions of the body. Since the study of the first stage
can be performed in a more controlled experimental setting, a large set of literature is
devoted to the analysis of avascular tumor growth in vitro. Experiments are usually
carried out on tumor spheroids, three dimensional aggregates of cancer cells that grow
in an approximately spherical shape [181, 96, 18