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“We can only see a short distance ahead,
but we can see plenty there that needs to be done.”

— Alan Turing



iv



Abstract

Range sensors are common devices on modern robotic platforms. They endow
the robot with information about distance and shape of the objects in the sensors
field of view. In particular, the advent in the last few years of consumer RGB-
D sensors such as the Microsoft Kinect, has greatly fostered the development of
depth-based algorithms for robotics. In fact, such sensors can provide a large
quantity of data at a relatively low price.

In this thesis three different calibration problems for depth sensors are tackled.
The first original contribution to the state of the art is an algorithm to recover the
axis of rotation of a 2D laser range finder (LRF) mounted on a rotating support.
The key difference with other approaches is the use of kinematics point-plane
constraints to estimate the pose of the LRF with respect to a static camera, and
screw decomposition to recover the axis of rotation. The correct reconstruction of
a small indoor environment after calibration validates the proposed algorithm.

The second and most important original contribution of the thesis is a fully
automatic two-steps calibration algorithm for structured-light depth sensors (e.g.
Kinect). The key novelty of this work is the separation of the depth error into two
components, corrected with functions estimated on a pixel-basis. This separation,
validated by experimental observations, allows to dramatically reduce the number
of parameters in the final non-linear minimization and, consequently, the time for
the solution to converge to the global minimum. The depth images of a test set
corrected using the obtained calibration parameters are analyzed and compared to
the ground truth. The comparison shows that they differ from the real ones just
for an unpredictable noise. A qualitative analysis of the fusion between depth and
RGB data further confirms the effectiveness of the approach. Moreover, a ROS
package for both calibrating and correcting the Kinect data has been released as
open source.

The third contribution reported in the thesis is a new distributed calibration
algorithm for networks composed by cameras and already-calibrated depth sensors.
A ROS package implementing the proposed approach has been developed and
is available for free as a part of a big open source project for people tracking:
OpenPTrack. The developed package is able to calibrate networks composed by a
dozen sensors in real-time (i.e., batch processing is not needed), exploiting plane-
to-plane constraints and non-linear least squares optimization.
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Sommario

I sensori di profondità sono dispositivi comuni sui robot moderni. Essi forniscono
al robot informazioni sulla distanza e sulla forma degli oggetti nel loro campo di
visione, permettendogli di agire di conseguenza. In particolare, l’arrivo negli ultimi
anni di sensori RGB-D di consumo come Microsoft Kinect, ha favorito lo sviluppo
di algoritmi per la robotica basati su dati di profondità. Di fatto, questi sensori
sono in grado di generare una grande quantità di dati ad un prezzo relativamente
basso.

In questa tesi vengono affrontati tre diversi problemi riguardanti la calibrazione
di sensori di profondità. Il primo contributo originale allo stato dell’arte è un
algoritmo per stimare l’asse di rotazione di un laser range finder (LRF) 2D montato
su un supporto rotante. La differenza chiave con gli altri approcci è l’utilizzo di
vincoli punto-piano derivanti dalla cinematica per stimare la posizione del LRF
rispetto ad una videocamera fissa, e l’uso di una screw decomposition per stimare
l’asse di rotazione. La corretta ricostruzione di una stanza dopo la calibrazione
valida l’algoritmo proposto.

Il secondo e più importante contributo originale di questa tesi è un algoritmo
completamente automatico per la calibrazione di sensori di profondità a luce strut-
turata (ad esempio Kinect). La chiave di questo lavoro è la separazione dell’errore
di profondità in due componenti, entrambe corrette pixel a pixel. Questa separa-
zione, validata da osservazioni sperimentali, permette di ridurre sensibilmente il
numero di parametri nell’ottimizzazione finale e, di conseguenza, il tempo neces-
sario affinché la soluzione converga al minimo globale. Il confronto tra le immagini
di profondità di un test set, corrette con i parametri di calibrazione ottenuti, e
quelle attese, dimostra che la differenza tra le due è solamente di una quantità ca-
suale. Un’analisi qualitativa della fusione tra dati di profondità e RGB conferma
ulteriormente l’efficacia dell’approccio. Inoltre, un pacchetto ROS per calibrare e
correggere i dati generati da Kinect è disponibile open source.

Il terzo contributo riportato nella tesi è un nuovo algoritmo distribuito per la
calibrazione di reti composte da videocamere e sensori di profondità già calibrati.
Un pacchetto ROS che implementa l’algoritmo proposto è stato rilasciato come
parte di un grande progetto open source per il tracking di persone: OpenPTrack.
Il pacchetto sviluppato è in grado di calibrare reti composte da una decina di
sensori in tempo reale (non è necessario processare i dati in un secondo tempo),
sfruttando vincoli piano-piano e un’ottimizzazione non lineare.
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Chapter 1

Introduction

At home as well as at work, robots have the potential to dramatically improve
the quality of our lives. They are rapidly evolving from mere production tools
to human-aware machines designed to interact with the surrounding environment.
One of the key capabilities that lets today’s robots pervade our human-centric
world is perception. Vision has been, and still is, one of the fundamental ways
for both humans and robots to gather what is happening around them, but while
humans are able to mix vision with experience to interpret what they see, robots
are not. For this reason, robots are typically equipped with other sensors rather
than cameras, that let them provide for the missing experience.

Currently, depth sensors are some of the most accurate, yet useful, percep-
tion devices for robots. Many different technologies exist for depth sensors and,
among them, many different sensor types have been developed and commercial-
ized. 2D laser range finders, for example, are depth sensors able to provide range
measurements up to 10-30 meters for the obstacles that intersect the scan plane.
In robotics, such sensors are typically used in simultaneous localization and map-
ping (SLAM) [14, 40, 68] and object/people tracking [17, 35, 46]. Unfortunately,
while being really accurate, these sensors are confined to measure ranges on a
plane. Actually, 3D scanners exist, however they have typically prohibitive costs1.
Therefore, if a 3D view of the environment is needed, a solution often exploited [8,
40, 41, 54] is to make the 2D laser range finder rotate, such that the whole scene
is scanned.

For what concerns 3D depth sensing, a breakthrough technology has been,
in 2010, the Microsoft Kinect. Initially commercialized for the Xbox game con-
sole, the complementary nature of the depth and visual information provided by
the Kinect opened up new opportunities to solve fundamental problems in both

1Only recently, with the automotive industry moving towards driver-less cars, 3D scanners
that cost less than 10,000$ started becoming available.
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robotics and computer vision [22]. In fact, for less that 150$, one can have a device
composed by a standard color camera and a structured-light depth sensor, that
provides images of 640× 480 pixels containing depth values of the framed scenes.
Unfortunately, Kinect depth measurements are much more noisy than those pro-
vided by more expensive depth sensors such as laser range finders. Moreover they
do not work outdoor.

In robotics, Kinect and similar devices are used, for example, in SLAM and 3D
reconstruction systems [26, 39, 64] as well as in people tracking applications [20,
32, 36]. Have a look at [22] for a comprehensive review of Kinect-based computer
vision algorithms and applications.

The common objective of the works presented in this thesis is to allow robots to
have an RGB-D view of the surrounding environment, i.e. a 3D view containing,
for each point, also the color information. To this end, three calibration problems
involving depth sensors are addressed. They all exploit one or more cameras to
correctly recover the desired parameters. The first problem is about recovering of
the axis of rotation of an actuated 2D laser range finder. The second problem, in-
stead, is the correction of the bias on the depth measurements of Kinect-like depth
sensors. Finally, the RGB-depth registration problem is addressed: a distributed
algorithm for estimating the poses of all the sensors in a network of cameras and
depth sensors is described.

1.1 Thesis Outline and Contributions
In Chapter 2 we give a first insight to the notation used throughout the thesis.

We also provide a brief introduction on the geometric concepts needed to under-
stand the work, and a quick description of the technologies behind cameras and
some depth sensors.

In Chapter 3, a novel calibration algorithm to recover the axis of rotation of
an actuated 2D laser range finder is described. The algorithm uses kinematics
point-plane constraints to have an initial estimate of the relative pose between the
sensor and a camera. Then an initial estimate for the rotational axis is obtained
performing a screw decomposition of the results of the first step. Finally, the
obtained values are refined within a non-linear optimization procedure.

In Chapter 4 we detail a new algorithm to correct the depth data provided by
Kinect-like depth sensors. First of all, an analysis of the error is made. Unlike
existing approaches, the depth error is separated into two components: local and
global. Then a novel automatic procedure to estimate a map able to recover the
local shape of the cloud is presented: it exploits the planarity of a wall framed
during the data acquisition step. Finally, a method to correct the global error
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exploiting a camera is described. In this case, the rigid transform between the
two sensors and the global correction map parameters, after an initial estimation,
are optimized together within a non-linear least squares optimization framework.
This allows us to calibrate the depth sensor against an external camera, operation
impossible in most of the similar works. Furthermore, a detailed analysis of the
calibration results on a test set is reported.

In Chapter 5 a new distributed package for calibrating networks composed
by both cameras and depth sensors is described. The calibration is performed
in real-time, that is, the pose of a sensor is estimated as soon as enough data are
available and refined with a non-linear optimization. To this end, the data analysis
procedure is distributed among the PCs of the network in order to reduce both
the bandwidth usage and the computational load on the main PC. An example of
how to configure and use this calibration package is reported in Appendix A.

Finally, in Chapter 6 some conclusions are drawn.

1.2 Publications
The work described in this thesis has also been presented in the publications
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Chapter 2

Preliminaries

The aim of this chapter is twofold: brush up on the part of geometry that is
mandatory to master in order to understand the thesis, and introduce the sensors
mostly used in our works. To this end, in Section 2.1 some fundamental notions
of 3D geometry are reported. In Section 2.2, perspective cameras and the pinhole
camera model are described, while in Section 2.3 some depth sensor technologies
are briefly introduced. Finally, since an established way to represent the afore-
mentioned concepts does not exist in literature, in Section 2.4 the notation used
throughout the thesis is well defined.

2.1 3D Geometry
The notion of rigid transformation in 3D space is fundamental to clearly com-

prehend the rest of the thesis. To help the reader to brush it up, key notions
such as the various representations for rotations in 3D space (Section 2.1.1), 3D
transformation matrices (Section 2.1.2) and the concept of reference frame and
how it relates to 3D transformations (Section 2.1.3) are reported.

2.1.1 Rotations
By definition, a rotation about the origin is an isometry that preserves the

origin and orientation. Rotations in three dimensions are generally not commuta-
tive, so the order in which rotations are applied is important, even about the same
point. Also, rotations about the origin have three degrees of freedom (DOF). A
3D rotation can be specified in a number of ways. The most usual methods are:

• rotation matrices;

• axis-angle representation;
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y

z

x

ωθ

Figure 2.1: Axis-angle representation of a rotation. Here ω is the axis of rotation and
θ is the magnitude of the rotation about the axis.

• unit quaternions.

Rotation Matrix

Rotations are linear transformations of R3 and can therefore be represented
by matrices once a basis of R3 has been chosen. They can be characterized as
orthogonal matrices with determinant 1: a square matrix R is a rotation matrix
if RT = R−1 and det(R) = 1. The set of all orthogonal matrices of size 3 with
determinant 1 forms a group known as the special orthogonal group SO(3).
Given a rotation matrix

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 ∈ SO(3) ,

to rotate a point x = (x, y, z)T ∈ R3 to a point y = (x′, y′, z′)T ∈ R3 it suffices to
left multiply x by the rotation matrix. That is,

y = R · x =

r11 r12 r13
r21 r22 r23
r31 r32 r33


xy
z

 .

Axis-Angle Representation

In mathematics, the axis-angle representation of a rotation parameterizes a
rotation in a three-dimensional space by two values: a unit vector ω indicating
the direction of the axis of rotation, and an angle θ describing the magnitude
of the rotation about the axis. The rotation occurs in the sense prescribed by



2.1 3D Geometry 7

the right-hand rule. The Rodrigues’ rotation formula is an efficient algorithm for
rotating a 3D point, given the rotation axis ω and the angle θ of rotation. That
is, let x = (x, y, z)T ∈ R3 be a point, the Rodrigues’ rotation formula to obtain
the rotated vector y is

y = cos θ · x + sin θ · (x× ω) + (1− cos θ) · (ωTx) · ω ,

where × denotes the cross product.
Given a vector ω = (ωx, ωy, ωz)T, the matrix for a rotation by an angle of θ about
ω is

Rω(θ) = cos θ · I3 + sin θ · [ω]× + (1− cos θ) · ωωT ,

where

[ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 .

Quaternions

Quaternions give a simple way to encode the axis-angle representation in four
numbers, and can be used to apply the corresponding rotation to a position vector,
representing a point relative to the origin in R3. Recalling that a vector such as
x = (x, y, z)T can be rewritten as xi + yj + zk where i, j, k are unit vectors
representing the three Cartesian axes, a rotation through an angle of θ around
the axis defined by a unit vector ω = (ωx, ωy, ωz)T can be represented using an
extension of Euler’s formula:

q = e
θ
2 (ωxi+ωyj+ωzk) = cos θ2 + (ωxi + ωyj + ωzk) sin θ2 .

It can be shown that the rotation defined by a quaternion q can be applied to an
ordinary vector x = (x, y, z)T = xi + yj + zk (considered as a quaternion with a
real coordinate equal to zero) by evaluating the conjugation of x by q, that is

y = qxq−1 ,

where
q−1 = e−

θ
2 (ωxi+ωyj+ωzk) = cos θ2 − (ωxi + ωyj + ωzk) sin θ2 .

Given a unit quaternion q = qw + qxi + qyj + qzk, the equivalent rotation matrix is

R(q) =

 1− 2q2
y − 2q2

z 2(qxqy − qzqw) 2(qxqz + qyqw)
2(qxqy + qzqw) 1− 2q2

x − 2q2
z 2(qyqz − qxqw)

2(qxqz − qyqw) 2(qyqz + qxqw) 1− 2q2
x − 2q2

y

 .
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Figure 2.2: Typical colors for a 3D reference frame.

2.1.2 Transformations
Let x = (x, y, z)T be a point in 3D space. For any non-zero real number w,

(xw, yw, zw,w)T is the set of homogeneous coordinates associated to the point x.
In particular, when w = 1, the resulting 4D vector x̃ = (x, y, z, 1)T is called the
normalized homogeneous form of x.

A rigid transformation in 3D space is represented by a linear transformation
T ∈ SE(3) on normalized homogeneous vectors

T =
(

R t
0T 1

)

where R ∈ SO(3) is the rotation matrix and t ∈ R3 the translation vector.
To transform a 3D point x it is sufficient to left-multiply its normalized homo-

geneous form x̃ by the transformation matrix T

ỹ = T · x̃ . (2.1)

The resulting vector ỹ is the normalized homogeneous form of the desired 3D point
y. This operation is equivalent to perform an affine transformation in R3

y = R · x + t .

2.1.3 Reference Frames
A reference frame F is a coordinate system used to represent and measure

position and orientation of objects. A transformation matrix TST from a source
reference frame S to a target frame T is a transformation matrix that allows to
convert the coordinates of a point from S to T .

Let, for example, x be a point and let Sx be its coordinates in S, x coordinates
in T , namely T x, can be computed as

T x̃ = T
ST · S x̃ .
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(a) Basler Pilot (b) PointGrey Flea 3

Figure 2.3: Two examples of commercially available perspective cameras.

When drawn, the x-axis of a reference frame is typically red, the y-axis is green
while the z-axis is blue, as shown in Figure 2.2.

2.2 Perspective Cameras
A camera (some professional cameras are shown in Figure 2.3) is a device

in which the 3D scene is projected down onto a 2D image. That is, let IC =
{0, 1, . . . , HC − 1} × {0, 1, . . . ,WC − 1} be a two dimensional index for images of
size WC ×HC. Then, a camera C provides a discrete representation of a scene by
means of an image {Ii}i∈IC , that maps each pixel (u, v) ∈ IC to a certain color space
W, i.e. I : IC →W.

For what concerns the projection onto the image of the 3D space, the most
commonly used projection in computer vision is 3D perspective projection. Section
2.2.1 describes perspective projection based on the pinhole camera model.

2.2.1 Pinhole Camera Model
Let C be a camera and C its reference frame. The pinhole model (see Figure 2.4)

describes the mathematical relationship between the coordinates of a 3D point and
its projection onto the image plane. The model assumes that the camera has 4
parameters [9], namely intrinsic parameters:

• (cx, cy)T is the principal point that is usually at the image center;

• fx, fy are the focal lengths expressed in pixel units;

usually arranged in a 3× 3 matrix KC

KC =

fx 0 cx
0 fy cy
0 0 1

 .
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The relationship between the coordinates of a 3D point Cx = (x, y, z)T and its
projection onto the image plane Ix = (u, v)T in pixels is

Ix̃ = KC ·
Cx
z

, (2.2)

at least theoretically. Unfortunately, real lenses usually have some distortion.
Therefore, the pinhole model is extended with a vector of distortion coefficients

dC = (k1, k2, p1, p2, k3, k4, k5, k6) ,

and a distortion function dC(·). Equation (2.2) thus becomes

Ix̃ = KC · dC

(Cx
z

)
, (2.3)

where
dC

(Cx
z

)
= dC

((
x

z
,
y

z
, 1
)T
)

= dC

(
(x̂, ŷ, 1)T

)
= (xd, yd, 1)T

and
xd

yd

 = 1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6

x̂
ŷ

+ 2x̂ŷ
p1

p2

+ 2
x̂p2

ŷp1

+ r2

p2

p1

 ,

r2 = x̂2 + ŷ2 .

In the following, given a camera C, the reprojection of a 3D point onto C’s image
plane, i.e. (2.3), will be denoted by the function rC(·), that is

Ix = rC
(
Cx
)
. (2.4)

Checkerboard Pose Estimation

LetB be an R×C checkerboard and let B be its reference frame. Let also C be a
camera with reference frame C, intrinsic parameters KC and distortion coefficients
dC. We can estimate the checkerboard pose CBT in the camera reference frame by
finding its corners in the image and solving the correspondent Perspective-n-Point
(PnP) problem [16].

That is, let IB = {1, . . . , R} × {1, . . . , C} be the corner indices, let also

BB =
{
Bbr,c

}
(r,c)∈IB
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Figure 2.4: Perspective projection based on the pinhole camera model.

be the checkerboard corners and
IB =

{
Ibr,c

}
(r,c)∈IB

the correspondent locations in the image. The checkerboard pose CBT can be esti-
mated by means of a function called solvePnP [9]

C
BT = solvePnP

(
KC,dC,

BB, IB
)
. (2.5)

It is the one that minimizes the reprojection error

erC

(
C
BT, BB, IB

)
=

∑
(r,c)∈IB

∥∥∥Ibr,c − rC
(
C
BT · Bbr,c

)∥∥∥2
. (2.6)

2.3 Depth Sensors
Depth sensors are active devices able to estimate the depth of obstacles in their

field of view. Many technologies have been developed in years. Among them, laser
scanners (Section 2.3.1) and time-of-flight cameras (Section 2.3.2) are based on
the known speed of light. On the contrary, structured-light depth sensors such as
the Microsoft Kinect (Section 2.3.3) estimate distances using triangulation.

2.3.1 Laser Scanners
While for detecting intensity/color information of a scene a passive sensor like a

camera is sufficient, when 3D information about the scene is needed active sensors
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(a) Sick LMS100 (b) Hokuyo UST-
10LX

(c) Velodyne HDL-64E

Figure 2.5: Some examples of commercially available 2D (a-b) and 3D (c) laser scan-
ners.

are mandatory. A first type of active sensors to retrieve depth information is the
laser scanner (sometimes called LiDAR).

A time-of-flight laser scanner is an active scanner that uses laser light to probe
the scene. At the heart of this type of scanner is a time-of-flight laser range finder.
The laser range finder estimates the distance of a surface by timing the round-trip
time (rtt) of a pulse of laser light. Since the speed of light c is known, the rtt
determines the travel distance of the light. That is, let t be the rtt, then distance
d is equal to

d = c · t
2 .

The laser range finder only detects the distance of one point in its direction of
view. Thus, to probe the distance in its entire field of view, the scanner scans one
point at a time by changing its direction of view with a system of rotating mirrors.

Range scanners can be divided into two categories: 2D and 3D scanners (Fig-
ure 2.5); examples of the data produced by such sensors is shown in Figure 2.6.
2D scanners are simpler and less expensive than 3D scanners, and are typically
used in robotics applications like SLAM. 2D scanners can also be used to simulate
a 3D one by making them rotate with, for example, a pan-tilt unit. With respect
to a real 3D scanner, however, an actuated 2D scanner is slower and less precise,
while being tremendously cheaper.

If we know the 3D location of a scanner center (typically the point to which
range measurements are referred), we can estimate the 3D location of a scanner
measurement by simple trigonometry. Supposing to deal with a 2D scanner, given
the angle θ of a light beam and the returned range d, the 3D location of the point
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(a) 2D scan (b) 3D scan

Figure 2.6: Example of 2D (a) and 3D (b) laser scanner output.

x, with respect to the laser center L, is

Lx = (d · cos θ, d · sin θ, 0)T .

2.3.2 Time-of-Flight Cameras

Other examples of depth sensors based on the time-of-flight principle are time-
of-flight (ToF) cameras. In contrast to laser scanning systems, in a time-of-flight
camera no mechanical moving parts are needed, nevertheless they are able to
measure the distances within a complete scene with a single shot, providing a
depth value for each pixel of the image. The entire scene can be captured with
each light pulse, as opposed to point-by-point with a laser beam such as in scanning
LiDAR systems [25].

A ToF camera can be thought as a matricial organization of a multitude of
single devices, each one made by an emitter and a co-positioned receiver. In
practice, this configuration is not possible, thus some emitters are positioned on
the sensor in order to mimick the presence of a single emitter co-positioned with
the center of a matrix of receivers, which are implemented as CCD/CMOS lock-in
pixels [12].

With respect to standard cameras, ToF cameras usually provide lower reso-
lution images, e.g. 176 × 144 pixels for the Mesa SR-4500 (Figure 2.7(a)) and
512× 424 pixels for the Kinect v2 (Figure 2.7(b)). Note that the Kinect v2 device
also contains a perspective RGB camera.
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(a) Mesa SR-4500 (b) Microsoft Kinect v2

Figure 2.7: Some examples of commercially available ToF cameras.

(a) Infrared image acquired by the infrared
camera. The projected pattern is clearly vis-
ible.

(b) Depth image provided by the sensor in
false colors, from white (closer) to blue (far-
ther).

Figure 2.8: Example of a depth map computed by a Microsoft Kinect (b) starting from
an image of the projected pattern (a).

2.3.3 Structured-Light Depth Sensors

The last class of range sensors we describe is not based on the time-of-flight
principle but on triangulation. A structured-light depth sensor is a 3D scanning
device for measuring the three-dimensional shape of an object using a projected
light pattern and a camera [19]. A defined light pattern is projected in the infrared
portion of the spectrum and the camera is used to analyze it. The way that the
pattern deforms when striking surfaces allows vision systems to calculate the depth
and surface information of the objects in the scene. An example of the pattern
projected by a Microsoft Kinect is visible in Figure 2.8. The device compares the
pattern of acquired image (Figure 2.8(a)) with the one expected, and estimates a
depth value for all the visible points (Figure 2.8(b)).
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(a) Asus Xtion Pro Live (b) Microsoft Kinect v1

(c) Internal view of a Kinect

Figure 2.9: RGB-D sensors based on depth technology developed by PrimeSense.

PrimeSense Devices: Microsoft Kinect and Asus Xtion Pro Live

In 2010, Microsoft released a device, called Kinect, in an attempt to broaden
Xbox 360’s audience beyond its typical gamer base. This device was build on range
camera technology developed by PrimeSense. Later, Asus teamed up with Prime-
Sense and release a very similar device, called Xtion Pro Live, to let developers
create motion-sensing PC applications. The two devices (shown in Figure 2.9) and
are commonly called RGB-D sensors.

They are composed by:

• an RGB camera with VGA resolution (640×480 pixels) that provides images
at a frequency of 30 Hz;

• a structured-light depth sensor (infrared projector + camera) that provides
depth images at the same resolution and frequency;

• an array of 4 microphones.

A view of the internal components of a Kinect is shown in Figure 2.9(c). For what
concerns the RGB and depth images, in Figure 2.10 the output of the sensors is
displayed.

The main drawback of these depth sensors is that they do not work if there are
other sources of infrared light in the environment: the projected pattern becomes
impossible to see, thus the depth cannot be estimated. For this reason, it is almost
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(a) RGB image (b) Depth image

Figure 2.10: Examples of RGB and depth images provided by a Kinect. The depth
image has been transformed according to some internal parameters to well register to
the RGB image.

impossible to use Kinect depth sensors outdoor. Also, when using two or more of
Kinects together, care must be taken to avoid the projected patterns to overlap.

Anyway, thanks to their low price (when compared to other depth sensor types)
and thanks to the quantity of data they are able to provide (RGB + depth), they
have become some of the most widely used devices for mobile robotics applica-
tions.

2.3.4 Depth Data
Similarly to a color camera, a structured-light depth sensor (and even a ToF

camera) D provides a discrete representation of the scene by means of an image
{Ji}i∈ID of size WD × HD, that maps a pixel (u, v) to its depth value d ∈ R, i.e.
J : ID → R.

While the data provided by a depth sensor is typically an image, the intrinsic
parameters of the pinhole camera that composes the depth sensor let us estimate,
for each pixel (u, v), the corresponding 3D point Dx = (x, y, z)T. According to the
pinhole camera model (see Section 2.2.1), Dx can be computed as

Dx = K−1
D · d · J x̃ ,

where KD is the intrinsic parameters matrix of the depth sensor’s camera.
Therefore, we can express the data provided by the depth sensor as a point

cloud {Ci}i∈ID , C : ID → R3 that maps each pixel (u, v)T to the corresponding 3D
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point Dx = (x, y, z)T. In the rest of the thesis we will typically use point clouds
to represent depth data.

2.4 Notation
We use non-bold characters x to represent scalars, bold lower case letters x to

represent vectors, and bold upper case letters M to represent matrices. Then, we
use sans-serif, upper case letters to denote indexed sets S, that is S = {si}i∈I for
some index I ⊂ Nk, k > 0, and S(i) = si. Examples of indexed sets are images,
where pixel coordinates are used to reach the color of the pixels, and checkerboards,
where the corner locations are indexed by the pair row-column.

The reference frame of a body B is in calligraphic style B. The coordinates of
an entity e with respect to the reference frame F are denoted by Fe. According
to this notation, the pose of a body B in F’s coordinate system F is denoted as
FB and the relative homogeneous transformation matrix is FBT.

Finally, to improve readability, in the following:

• the homogeneous notation of Section 2.1.2 will be dropped, considering y =
T · x equivalent to ỹ = T · x̃.

• with an abuse of notation, coordinate system transformations of any entity
e will be expressed as a left multiplication by the desired transformation
matrix. That is,

T e = T
ST · Se .



18 2. Preliminaries



Chapter 3

Calibration of a Rotating 2D
Laser Range Finder

Laser range finders (LRF) are used extensively in mobile robots for many tasks,
including localization, mapping, and obstacle avoidance. 2D LRFs, such as the
SICK LMS-100 and the Hokuyo UTM-30LX, have proved to be popular due to
their low costs, although the range measurement data are confined to a single plane.
3D LRFs such as the Velodyne HDL-64 are commercially available, but they are
not as widely employed due to their high costs. Affordable 3D range sensors such
as time-of-flight/phase-shift cameras (e.g. Swiss Ranger SR-4500) and structured-
light cameras (e.g. Microsoft Kinect) have recently became available, but they
have limited range and are usually confined to indoor use.

An economical method for obtaining 3D range data from a 2D LRF is to rotate
the LRF, by using a stepper motor or a pan-tilt device. To combine the LRF range
data obtained at different angles into a single coordinate frame, the axis of rotation
relative to the mirror center inside the laser ranger finder is required. As shown
in Figure 3.2, this rotational axis is a line in 3D space with 4 degrees of freedom.

In this paper, we propose a method to recover the parameters of this axis by
scanning several large planar checkerboard patterns with the LRF and imaging the
checkerboards with a static camera. In particular, we use only correspondences
between lines in the laser scans and planes in the camera images, which can be
established easily even for non-visible lasers.

Essentially, the proposed calibration procedure consists of three main steps.
First, static camera-LRF calibration is performed at two different rotational angles.
Although there already exists numerous solutions to this problem in the literature,
we propose instead to model the calibration problem using kinematics point-plane
constraints. This allows us to use the minimum number of calibration planes,
reducing the amount of time for data acquisition and processing.
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In the second step, we obtain an initial estimate for the rotational axis by
performing a screw decomposition of the relative LRF motion estimated in the
first step.

In the final step, starting with an initial estimate of the parameters of the
rotational axis, a nonlinear minimization is performed to recover its precise values.
For the cost function, instead of the perpendicular point-to-plane distance that is
commonly used, we propose to minimize the “line-of-sight” errors, which directly
models the noise in the LRF range measurements.

3.1 Related Work
Several methods have been proposed to calibrate a static 2D LRF with a static

camera [31, 34, 62, 69]. The most commonly-used solution is the one given by
Zhang [69], which uses correspondences between lines in a laser scan and planes in
a camera image, as we do in this paper. In [62] and [31], correspondences between
a point in the laser scan and a line in a camera image are used. For calibration
between a static 3D LRF and a static camera, Unnikrishnan [58] gives a solution
similar to Zhang’s that uses correspondences between planes in a laser scan and
planes in a camera image. As we will explain in Section 3.4, all of these methods
can be cast as point-plane constraints problems. All of these work aim to find the
transformation between the coordinate frames of a LRF and a camera.

On the other hand, our current work is focused on locating the axis of rotation
of an articulated 2D LRF. The solution used by one of the earliest system is to have
the supporting bracket precisely machined so that the axis of rotation is aligned
with the mirror center of the LRF [54, 55]. If this is not the case, mechanical
drawings and hand measurement are used to manually locate the offset distance
[2]. For the rotating 2D LRF described in [45], a more elaborate method described
by Weingarten [63] is used, which involves scanning a cuboid room measured by
hand. In all of these methods, the axis of rotation is assumed to be perfectly
aligned with one of the primary axis of the LRF, and only the offset distance is
determined. In this paper, by modeling the axis of rotation with 4 degrees of
freedom, we allow for rotational misalignment to occur.

In [41], Pradeep et al. describes a general calibration method for sensors on
an articulated kinematic chain. This has been implemented as a package for the
Robot Operating System (ROS) [42] for the PR-2 robot. Their work is similar to
ours, but it relies on establishing correspondences between point features in the
laser scans and the camera image. To do so, they use the reflectance values of
the laser scan points to locate the checkerboard corners in the laser scans. How-
ever, reflectance values can be greatly affected by scanning geometry and ambient



3.2 Geometric Model 21

Figure 3.1: Coordinate frames and transforms used in calibration.

lighting, making checkerboard detection difficult. Furthermore, the checkerboard
corners are likely to lie in between laser scan points, and attempting to account
for such localization errors in the laser scans will make the minimization relatively
complicated. Instead, by using only the range values in the laser scans, the noise
in the calibration data can be easily modeled by minimizing the “line-of-sight”
errors, as described in Section 3.6.

3.2 Geometric Model

3.2.1 Coordinate Frames
We attach a coordinate frame L to the mirror center of the LRF (Figure 3.1).

The LRF rotates around a rotational axis (green line in Figure 3.1) that is parallel
to ω and passes through a point u with respect to the origin of L. We denote the
rotation angle of the LRF around the rotational axis by θ, and index it by i. The
LRF coordinate frame after a rotation to θi is denoted by Li.

The laser beam of the LRF sweeps out the LX -LY plane. We denote the angle
of the laser beam from the LX -axis by φ and indexed it by j. When the LRF is at
rotation angle θi , a range measurement ρij at beam azimuth angle φij corresponds
to a point with coordinates Lixij = (ρij cosφij, ρij sinφij, 0)T with respect to Li.

We attach a coordinate frame C to the camera center, which does not move
during calibration. We index the checkerboards used in the calibration by k, and
denote them as Bk, attaching a coordinate frame B at each of their origin. The
plane of the checkerboards are denoted as πk, with normal nk and distance dk
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Figure 3.2: Coordinate frames of the rotational device and the LRF. The axis of
rotation of a rotating LRF relative to its mirror center has 4 degrees of freedom: 2 for
the offset distance uâĹŮ = (0, u∗y, u∗z)T in the X -Y plane of the LRF, and 2 for the unit
vector ω in the direction of the rotational axis.

with respect to the camera coordinate frame. Note that the plane equation is:
nT
kx− dk = 0.

3.2.2 Rotational Transformation of Coordinate Frames
To combine the LRF range data obtained at different rotational angles θi, all of

the points xij should be converted to a common coordinate frame. A simple choice
is to use the first LRF coordinate frame L0. After a rotation of ∆θ = θi − θ0, the
transformation of the LRF coordinate frame is

L0
LiT =

(
Rω(∆θ) (I3 −Rω(∆θ)) u

0T 1

)
. (3.1)

Alternatively, we can attach a coordinate frame R on the rotational axis. If
the RX -axis is aligned with the rotational axis, two degrees of freedom remain for
the transformation from L0 to R – a translation along the rotational axis, and a
rotation about the rotational axis. In order to fix R unambiguously, we place its
origin to lie in the LY-LZ plane, and its orientation is chosen as the one having
the minimal rotation from L0, as shown in Figure 3.2.

Thus, given the direction ω = (ωx, ωy, ωz)T and a point u = (ux, uy, uz)T on
the rotational axis with respect to L0, the transformation from R to L0 is

R
L0T =

(
Ra(φ)T −Ra(φ)Tu∗

0T 1

)
, (3.2)
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where

u∗ = u− ux
ωx
· ω =

(
0, uy −

ux
ωx
· ωy, uz −

ux
ωx
· ωz

)T

a = i× ω

||i× ω||
= 1√

ω2
y + ω2

z

(0,−ωz, ωy)T

φ = arccos(iTω) = arccos(ωx) ,

and, consequently,

Ra(φ) =


ωx −ωy −ωz
ωy ωx + ω2

z · 1−ωx
ω2
y+ω2

z
−ωyωz · 1−ωx

ω2
y+ω2

z

ωz −ωyωz · 1−ωx
ω2
y+ω2

z
ωx + ω2

y · 1−ωx
ω2
y+ω2

z

 .

After a rotation of ∆θ = θi − θ0, the transformation from R to Li is thus

R
LiT = R

L0T ·
L0
LiT =

(
Ra(φ)TRω(∆θ) −Ra(φ)Tu∗

0T 1

)
. (3.3)

3.2.3 Representation of the Rotational Axis

In (3.1), the rotational axis is represented by a point u and a direction ω,
giving a total of 5 DOF. However, since u is a vector from the origin of L to any
point on the rotational axis, another point u′ = u + λω for any λ ∈ R can also be
used. In (3.2) and (3.3), u is replaced by u∗ = (0, u∗y, u∗z)T, a point constrained to
LY-LZ plane, leaving it with only 2 DOF.

Another way to represent the rotational axis is to make use of the vector
product v = ω×u, known as the moment of the line, which is invariant under the
choice of u, since v′ = ω × (u + λω) = ω × u = v. The pair of vectors (ω,v) are
known as the Plücker coordinates of the line [47]. The two vectors must satisfy
the constraint ωTv = 0 and are defined up to scale, so (λω, λv) for any λ 6= 0
defines the same line; thus, there are 4 DOF within the six parameters of ω and
v.

Given the Plücker coordinates (ω,v) of a line, we can go back to the point and
direction representation by finding a point u on the line, which can be obtained
simply as [47]

u = v× ω

||ω||2
.
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Figure 3.3: Calibration setup: 3 or more planar calibration patterns are scanned by
the rotating LRF and imaged by a static camera.

3.3 Overview of Calibration Procedure

3.3.1 Data Acquisition
In our proposed calibration procedure, the data acquisition consists of placing

K ≥ 3 planar checkerboard patterns Bk in front of the rotating LRF to be
calibrated, as shown in Figure 3.3. A single image of all the checkerboards is
captured to determine their poses CBkT relative to the camera coordinate frame
C. The LRF is rotated to N ≥ 2 different angles θi, at each of which a scan
Si = {xij} of the checkerboards are made. The set of points in each scan Si
belonging to checkerboard Bk is denoted by Si,k = {xij : xij ∈ Bk}.

Instead of using K different checkerboards and scanning them all at once, one
single checkerboard can be scannedK times at different poses, giving an equivalent
set of scan points {Si,k}.

3.3.2 Data Processing
The objective of the calibration is to estimate the parameters of the rotational

axis, (ω,v). In order to do so, we propose a calibration procedure with the three
steps outlined below.

1. Initial static camera-LRF calibration: using scan S0, determine the pose CL0T
of the LRF at the initial rotation angle θ0 with respect to the camera.

2. Initial estimate of the rotational axis (ω,v).
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(a) Estimate the final LRF pose CLNT: sing scan SN , determine the pose of
the LRF at the final rotation angle θN .

(b) Extract (ω,v) from L0
LNT using the screw decomposition.

3. Non-linear refinement of CL0T and (ω,v). Given CL0T and (ω,v), the expected
scan data {S∗i,k} can be calculated. The task then is to find the optimal CL0T

∗

and (ω∗,v∗) which minimizes the differences between {Si,k} and {S∗i,k}.

Step 1 is equivalent to performing a calibration between a camera and a static
2D-LRF. This can be accomplished using any of the existing methods mentioned
in Section 3.1. However, as we will explain in Section 3.4, static camera-LRF cali-
bration can be modeled as a kinematics point-plane constraints problem. Doing so
allows us to use the minimum number of calibration boards, reducing the amount
time for data acquisition and processing.

Step 2 is used to obtain an initial estimate for the parameters of the rota-
tional axis (ω,v). First, the static calibration of step 1 is repeated, but with the
LRF at the final rotational angle θN . The rotational axis can then be extracted
using the screw decomposition, as we will explain in Section 3.5. An initial esti-
mate for (ω,v) can also be obtained through other means, such as using manual
measurement or mechanical drawings. In such cases, step 2 can be skipped.

In step 3, starting with initial value for CL0T and (ω,v), we use non-linear
optimization to find the optimal estimates CL0T

∗ and (ω∗,v∗) which minimizes the
errors between the actual scan data {Si,k} and the expected scan values {S∗i,k},
which we will describe in detail in Section 3.6.

3.4 Static Camera-LRF Calibration using Point-
Plane Constraints

3.4.1 Kinematics Point-Plane Constraints

In the point-plane constraints problem, n points xi on a rigid body B, with
reference frame B, are constrained to lie on n planes πi whose parameters are
known with respect to a ground coordinate frame G (Figure 3.4). The goal is to
recover all possible poses GBT of B with respect to G. This is a problem studied in
kinematics. In [48], Selig shows, using algebraic geometry, that with a minimum of
6 point plane constraints, up to 8 solutions can be obtained. In [59, 60], Wampler
shows equivalent results, along with numerical methods for obtaining the solutions.
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Figure 3.4: The kinematics point-plane constraints problem.

3.4.2 Modelling Static Camera-LRF Calibration

Treating the LRF as the body B and the camera coordinate frame as the
ground coordinate frame G, it is straightforward to see that the static camera-
LRF calibration problem can be modeled as a point-plane constraints problem.
The LRF is able to measure points xij with respect to its own coordinate frame L.
These points are known to lie on a checkerboard plane πk imaged by the camera.
Thus, the plane parameters (nk, dk) are known with respect to the camera coordi-
nate frame C. Each checkerboard pattern scanned by the LRF and imaged by the
camera gives one line-on-plane constraint, which is equivalent to two independent
point-on-plane constraints, as any other point on the same line will give a redun-
dant point-on-plane constraint. With 3 checkerboards, we obtain the minimum
number of n = 6 to solve the point-plane constraints problem.

3.4.3 Numerical Solution

For a point xij in the body coordinate frame B, it lies on a plane πk with
normal nk at a distance dk from the origin in G if

nT
k (Rxij + t)− dk = 0 . (3.4)

Here, R ∈ SO(3) and t ∈ R3 are the rotation and translation of the transformation
G
BT from G to B.

Using quaternion coefficients q = (qw, qx, qy, qz)T to represent a rotation as
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R = 1
qTqR(q), (3.4) can be rewritten as

Fijk(q, t) = nT
kR(q)xij−qTq ·dk+qTq ·nT

k t = qTMijk ·q+qTq ·nT
k t = 0 . (3.5)

Here, the quaternion q is a homogeneous vector and not necessarily a unit vector
as is commonly employed. This was done to avoid the need to impose a quadratic
constraint. As a result, the scalar product qTq appears in the denominator to
normalize the quaternion. Mijk is a 4×4 symmetric matrix containing the elements
of xij, nk, and dk.

Given n point-plane constraints, a system of n equations in the form of (3.5)
is obtained, which is quadratic in q and linear in t. The linear terms qTq · t can
be eliminated through Gaussian elimination, leaving n− 3 equations in q. For the
minimum case of n = 6, we obtain a system of 3 quadratic polynomials in the 3
free variables of q, which gives up to 8 solutions. This can be solved using Gröbner
bases [11]. In [59, 60], Wampler gives a eigenvalue-based numerical solution, which
he calls “numerical Gröbner bases”.

For n > 6, we can find a unique solution by solving subsets of the n constraints
and find the common solution among them. However, if there is noise in the
data, there will be no solution that can simultaneously satisfy all the constraint
equations. Instead, Wampler gives linear solutions for the separate cases of n = 7,
8 ≤ n < 12, and n ≥ 12. In the following, we give a brief review of the solution
for 8 ≤ n < 12. The reader is referred to Wampler’s papers [59, 60] for further
details.

Equation (3.5) can be rewritten in a linear form in terms of the 2nd degree
monomials of q, that is

Fijk(q, t) = Cijk · q̃ + qTq · nT
k t . (3.6)

Here, Cijk is a 1 × 10 vector with rearranged entries of Mijk, and q̃ is a 10 × 1
vector with the 2nd degree monomials of q in lexicographical ordering:

q̃ = (q2
w, qwqx, qwqy, qwqz, q

2
x, qxqy, qxqz, q

2
y , qyqz, q

2
z)T .

With n points on n planes, we can stack the constraints of (3.6) to get a system
of equations

F (q, t) = C · q̃ + qTq ·Nt . (3.7)
Here, C is a n× 10 matrix, and N is a n× 3 matrix containing the normal vectors
nT
k . To solve this system, we need to have rank(N) = 3, meaning that the normal

vectors of the planes should span 3-space.
Pre-multiplying (3.7) with N⊥, a (n−3)×n matrix spanning the left null space

of N, we reduce the system to a set of n− 3 homogeneous quadratic polynomials
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Table 3.1: Minimum LRF-scan and image pairs required by the different method
compared.

Method Correspondences Scan-Image Pairs
Original Point-Plane *

Zhang [69] line-on-plane 5 3 (4)
Wasielewski [62] point-on-image-line 9 6 (7)

Li [31] point-on-image-line 5 3 (4)
* number in brackets indicate pairs required for unique solution.

in q, i.e.
F (q) = N⊥C · q̃ . (3.8)

This can be minimized using SVD, with the solution q̃ being the right singular
vector corresponding to the smallest singular value. The rotation R(q) is extracted
from q and substituted back in (3.7) to recover the translation t.

3.4.4 Minimal Conditions
In the camera-LRF calibration method given by Zhang [69], a linear solution is

given to obtain an initial estimate for the camera to LRF transformation CLT. Each
line-on-plane correspondence gives two independent equations in nine unknown
parameters, so a minimum of 5 LRF scan and image pairs are needed.

In Wasielewski’s calibration method [62] using LRF point on image line cor-
respondences, each set of correspondence gives one constraint equation in nine
unknown parameters, so a minimum of 9 LRF scan and image pairs are needed.
In Li’s method [31] which uses a calibration target giving two image lines, a min-
imum of 5 LRF scan and image pairs are needed.

As mentioned above, a line-on-plane correspondence can be modeled as two
point-plane constraints. As we describe in [51], a point-on-image-line correspon-
dence can also be modeled as a point-plane constraint, where the plane passes
through the camera center and the image line. Table 3.1 shows a summary of the
minimum number of LRF-scan and image pairs required by the different methods,
as well as the minimum conditions when modeled using point-plane constraints.

Although usually it is preferable to use more laser scans and image pairs to
provide redundant data to reduce the effects of noise, leading to more accurate cal-
ibration results. However, we use the fact that we already have a lot of redundant
data from the scans {Si} at different rotational angles θi. Thus, we are motivated
to find the minimal solution for the initial static camera-LRF calibration step,
and instead rely on using redundant data over all the rotational angles θi in the
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final minimization described in Section 3.6 to reduce the effects of noise in the
calibration.

Although using point-plane constraints to model the different type of corre-
spondences reduces the minimal scan-image pairs required only very slightly, the
advantage of using point-plane constraints is that all types of correspondences can
be modeled uniformly and solved using a single method.

3.5 Initial Estimate of the Rotational Axis using
Screw Decomposition

Using the static camera-LRF calibration method described in Section 3.4, we
obtain an initial estimate for CL0T and CLNT for step 1 and step 2(a) respectively.
Composing the camera to LRF transforms, we obtain the relative LRF motion
between the two rotational angles θ0 and θN

L0
LNT = C

L0T
−1 · CLNT .

According to Chasles’s theorem, every spatial transformation can be decomposed
as a screw displacement – a rotation about a line together with a translation along
the same line [47], that is

L0
LNT =

(
Rω(∆θ) L0

LN t
0T 1

)
(3.9)

=
(

Rω(∆θ) ∆θ
2π · pω + (I3 −Rω(∆θ))u

0T 1

)
. (3.10)

Equation (3.10) is known as the “screw matrix” [33, 47], representing a rotation
of angle ∆θ around a line called the screw axis that has direction ω and passes
through the point u. p is the pitch of the screw motion, corresponding to the
translation along ω for every revolution around the screw axis. Compared with
(3.9), while the rotation matrix remains the same, the translation has been de-
composed into a translation along the rotational axis ∆θ

2π · pω, and a translation
perpendicular to the rotational axis (I3 −Rω(∆θ))u.

Given Rω(∆θ) and L0
LN t of the relative LRF motion from θ0 and θN , we can

recover the parameters of its equivalent screw displacement as

p = 2π
∆θ · ω

TL0
LN t (3.11)

u = (I3 −Rω(∆θ))†
(
L0
LN t− ∆θ

2π · pω
)

. (3.12)
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Since (I3 − Rω(∆θ))ω = 0, I3 − Rω(∆θ) is a singular matrix; thus, its pseudo-
inverse is used in (3.12) to recover u.

Ideally, the decomposition of the relative motion L0
LNT of the LRF from angle

θ0 to θN will give a screw displacement with zero pitch p = 0, and the screw
axis (ω,v) is the rotational axis of the LRF. Furthermore, if we repeat the static
camera-LRF calibration at another rotation angle θi and compute L0

LNT, the screw
decomposition should give the same screw axis (ω,v). However, with noise in the
calibration data, such ideal results will not be obtained. The task then remains
to finding the optimal rotational axis (ω∗,v∗) that minimizes some error function
which accounts for the noise in the calibration data.

3.6 Non-linear Refinement
The linear solution to the point-plane constraints problem given in Section 3.4.3

minimizes an algebraic error. To find the optimal calibration parameters, an opti-
mization that minimizes a meaningful geometric error should be performed. The
error function most commonly used in static camera-LRF calibration is the point-
to-plane distance epp(·), that is

arg min
C
LT

∑
j,k

e2
pp(Lxj, Cπk) =

∑
j,k

∥∥∥CnT
k

(
C
LR · Lxj + C

Lt
)
− dk

∥∥∥2

As shown in Figure 3.5, this is the perpendicular distance from the plane πk to the
point xj. However, if we assume that the points xj = f(φj, ρj) measured by the
LRF, contains only zero-mean Gaussian noise wL ∼ N (0, σ2

L) in its range values
ρj, so ρj = ρ∗j +wL, then instead of the point-to-plane errors epp(·), a better error
to minimize is the “line-of-sight” distance elos(·), as illustrated in Figure 3.5

arg min
C
LT

∑
j,k

e2
los(Lxj, Cπk) =

∑
j,k

∥∥∥Cx∗j − Cxj∥∥∥2
=
∑
j,k

∥∥∥ρ∗j − ρj∥∥∥2
. (3.13)

In (3.13), given plane πk : (nk, dk) for the kth plane, the ideal coordinates x∗j is
calculated as the intersection point of the plane πk with the line passing through
the LRF mirror center and the measured point xj. Using x̂j to denote xj

||xj || , we
obtain

Lx∗j = dk − CLtT · Cnk
Lx̂T

j · CLRT · Cnk
· Lx̂j .

Ignoring errors in πk, (3.13) gives a maximum likelihood estimate for R, t. To
account for errors in the pose of the checkerboard planes πk estimated by the cam-
era, assuming zero-mean Gaussian noise wC ∼ N (0, σ2

C) in the image coordinates
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πk

L

x∗j
xj

ρj

ρ∗j

elos

epp

Figure 3.5: Point-to-plane error epp vs. line-of-sight error elos.

Ibr,c of the checkerboard corners with 3D coordinates Bbr,c, the minimization can
be augmented with the image reprojection errors of the checkerboard corners, as
in the bundle adjustment approach [9], so

arg min
C
LT,CBT

1
σ2
L

∑
j,k

∥∥∥Lx∗j − Lxj∥∥∥2
+ 1
σ2
C

∑
r,c,k

∥∥∥Ibr,c − rC
(
C
BkR

Bbr,c + C
Bkt

)∥∥∥2
.

Here, CBT , {CBkT : 0 ≤ k ≤ K} and CBkT is the pose of the kth checkerboard with
respect to the camera. rC is the reprojection function defined in (2.4).

To estimate the optimal parameters (Cω∗, Cv∗) for the LRF rotational axis, we
perform the minimization with all points xij obtained over all rotational angles θi,
i = 0, . . . , N , that is

arg min
C
L0

T,CBT,Cω,Cv

1
σ2
L

∑
j,k

∥∥∥Lix∗ij − Lixij∥∥∥2
+ 1
σ2
C

∑
r,c,k

∥∥∥Ibr,c − rC
(
C
BkR

Bbr,c + C
Bkt

)∥∥∥2
.

(3.14)
In this optimization, only the pose of the LRF at the first rotational angle CL0T is
directly included as parameters; the pose of the LRF at the other rotational angles
C
LiT are calculated from (Cω∗, Cv∗).

3.7 Experimental Results
To test our calibration algorithm, we use the LRF (SICK LMS-100) mounted

on a pan-tilt unit (Directed Perception PTU-D46), as shown in Figure 3.6. Fig-
ure 3.7 shows the checkerboards setup for our calibration, with the checkerboard
patterns being automatically detected using OpenCV [9]. Instead of using the
minimum of 3 planes, which would give up to 8 solutions for the initial static
camera-LRF calibration, 4 planes are used to simplify the computation. As de-
scribed in Section 3.4, the normals of the checkerboard planes should span R3, so
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Figure 3.6: The 2D LRF mounted on a pan-tilt unit used in our calibration.

Figure 3.7: Checkerboard patterns extracted in camera image. As visible, not all the
checkerboards are vertical, this is just to assure that the extracted normals span R3.
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Figure 3.8: Results of the line-fitting procedure. Points in each laser scan belonging
to the checkerboards are extracted using RANSAC line-fitting.

Figure 3.9: Laser points with intensity values reconstructed after calibration, showing
a rough outline of the scanned checkerboard patterns.

care must be taken so that not all of the checkerboards are vertical. For example,
if only the vertical walls in a room are used, {nk} would only span R2, giving a
degenerate configuration.

Figure 3.8 shows a single laser scan, with points belonging to the checkerboards
identified by running RANSAC line-fitting over the scan data multiple times. For
the final optimization in (3.14), we used σL = 1.2 cm, corresponding to the statis-
tical error of the LMS-100 as given by the manufacturer, and σC = 0.5 px for the
image localization noise. The results of our calibration are tabulated in Table 3.2,
and checkerboards reconstructed using these parameters are shown in Figure 3.9.
The reconstruction of a small indoor environment after calibration is shown in
Figure 3.10.

The calibration results show a small change in the location and orientation of
the rotation axis, as well as a slight decrease in the line-of-sight errors. Although
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Figure 3.10: Indoor environment reconstructed after calibration.

Table 3.2: Calibration results.

Parameter Initial Final
Axis Translation Offset [cm] (0,−3, 16) (0,−2.76, 15.89)
Axis Rotational Offset [°] 0 10.14
Line-of-Sight Error [cm] 0.808 0.724
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the final parameters of the rotational axis differ only slightly from those obtained
using hand measurement, it accounts for all the degrees of freedom of the rotational
axis. Furthermore, although the reconstructed checkerboards show only modest
improvements, the importance of proper calibration will be more noticeable for
data with larger range, as well as when fusing the range data with image data.

3.8 Conclusions
In this chapter, we proposed a method for recovering the rotational axis of

a rotating 2D LRF. Instead of assuming that the rotational axis is aligned with
one of the primary axis of the LRF, we modeled it as a line in 3D space with 4
DOF. The calibration consists of performing static camera-LRF calibration at two
different rotational angles to obtain an initial estimate, followed by a non-linear
optimization to refine the results.

However, instead of using existing static camera-LRF calibration methods, we
modeled it as a kinematics point-plane constraints problem. This allows us to min-
imize the number of calibration planes that are needed, simplifying the calibration;
also, various types of correspondences can be handled in a uniform manner. Fur-
thermore, we described the minimization of the line-of-sight errors, which directly
models the noise in the range measurements of a LRF.
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Chapter 4

Depth Sensor Intrinsic
Parameters Calibration

Typical robotic tasks like SLAM, navigation, object recognition and many oth-
ers, highly benefit from having color and depth information fused together. While
color information is typically provided by RGB cameras, there are plenty of sen-
sors able to provide depth information: time-of-flight cameras, laser range scanners
and sensors based on structured light. Even if there are some devices able to pro-
vide both color and depth data (e.g. the Kinect), as far as we know, there are
no integrated sensors able to provide both color and depth information yet. In
this chapter we focus on Kinect-like devices (among others, the Asus Xtion Pro
Live). These sensors provide colored point clouds that suffer from a non accurate
association between depth and RGB data, due to a non perfect alignment between
the camera and the depth sensor. Moreover, depth images suffer from an irregular
geometric distortion and have, for increasing distances, an increasing bias (i.e., a
systematic error) in depth measurements.

These devices are factory calibrated, each one is sold with its own calibration
parameter set stored inside a non-volatile memory. Unfortunately, the quality of
this calibration is only adequate for gaming purposes: the depth distortion is not
modeled in the factory calibration. Thus, a proper calibration method for robust
robotics applications is needed.

In this chapter we propose a novel two-steps calibration method that employs
a simple data collection procedure that only needs a minimally structured environ-
ment and that does not require any parameters tuning or a great interaction with
the calibration software. Moreover, even if the principal targets of the method are
the Kinect-like devices mentioned above, it is thought to be used also with any
camera-depth sensor couples.

Given a calibrated camera and an uncalibrated depth sensor, the proposed
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method automatically infers the two correction maps for the depth sensor and, as
a “side effect”, the rigid body transformation that relates the two sensor frames.
Unlike most of the existing works, our calibration method works directly on the
depth images provided by the sensor: the (mostly unknown) relation between IR
images and depth images is not taken into account.

For the depth sensor, we employ an error model that includes a pixel-based
distortion error along with a systematic error (in the following also called “global
error”). We propose to represent the undistortion map by means of a set of func-
tions, iteratively fitted to the acquired data during a first calibration stage. We
include the systematic error and alignment of the sensors in a second stage of the
calibration: at this point, we exploit the plane-to-plane constraints between color
and depth data to align the two sensors and to infer the systematic error inside a
non-linear optimization framework.

The main contributions of this chapter to the scientific community are the
following:

• a detailed analysis of the depth error of structured-light depth sensors such
as the Kinect;

• an easy-to-implement calibration protocol, that provides the input data used
for both the undistortion map and pose estimation processes;

• a spatial/parametric undistortion map that models in a compact and efficient
way the distortion effect of Kinect-like depth sensors;

• a novel optimization framework that aims to estimate the camera-depth sen-
sor alignment along with the parametric model that describes the systematic
error on the depth measurements.

Moreover, an exhaustive set of tests aimed at proving the soundness of the proposed
method is reported. The depth images of a test set corrected using the obtained
calibration parameters are analyzed and compared to the ground truth. Results
show that the calibration algorithm works as expected: the real depth is recovered
up to an unpredictable noise. Finally, some results of the fusion of RGB and depth
data are provided. Even in this case, the results are as good as expected, definitely
better than those obtainable with the factory-provided calibration parameters.

The chapter is structured as follows: in Section 4.1 the existing works on the
estimation of the depth sensor intrinsic parameters are reported and described. In
Section 4.2 the error on the depth values provided by the sensor is analyzed. Sec-
tion 4.3 gives a quick overview of the calibration procedure. The first calibration
step is detailed in Section 4.4, while Section 4.5 describes the second calibration
step. The results of the calibration procedure on a test for 3 different sensors
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are reported in Section 4.6 and details on the ROS implementation of the de-
scribed algorithm are given in Section 4.7. Finally, some conclusions are drawn in
Section 4.8.

4.1 Related Work
In recent years, many attempts to correct the Kinect depth data have been

proposed. In one of the first works on the Kinect, Smisek et al. [49] showed
that Kinect depth sensors are affected by a sort of radially symmetric distortions.
To correct such distortion, they estimated a z-correction image constructed as
the pixel-wise mean of the residuals of the plane fitted to the depth data. The
z-correction image was subtracted from the z coordinate of the cloud points to
obtain the real depth values.

Zhang et al. [67] proposed to treat the depth value z provided by the depth
sensor of the Kinect as a linear function of the real one z∗, that is z = µz∗+η. They
also detailed a method to estimate the parameters µ, η ∈ R within the calibration
algorithm.

In their papers, Herrera et al. [23, 24] described a calibration approach based
on checkerboards, big planes and a third high resolution camera. Their method
works on the raw data provided by the sensor (instead of on the metric data)
and, alongside the depth correction, estimates the camera-depth sensor relative
displacement. For what concerns the depth correction, they used a “spatially
varying offset that decays as the Kinect disparity increases,” i.e. they estimated
a coefficient for each pixel D(u, v) ∈ R and two global coefficients α0, α1 ∈ R such
that the real depth value d∗ can be computed as

d∗ = d+ D(u, v) · exp(α0 − α1 · d) .

Moreover, they used the 4 corners of the checkerboard plane as the initial guess
of the relative displacement between the cameras and the depth sensor. For short
distances their approach seems to work well as reported also in [52, 65].

An improvement over the work of Herrera et al. is the one presented by Raposo
et al. [43]. They proposed several modifications to the estimation pipeline that
allow their algorithm to achieve a calibration accuracy similar to [24] while using
less than 1/6 of the input frames and running in 1/30 of the time.

Canessa et al. [10], instead, proposed to estimate a second degree polynomial
for each pixel. In their work, authors first estimated the pose of a “virtual” depth
sensor with respect to the RGB camera using an incandescent lamp bulb to light
the checkerboard and make the depth map saturate in correspondence of the white
squares. Then, they positioned a Kinect in front of a plane with a checkerboard
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attached and acquired a set of images from 0.6 m to 2 m. Finally, they fitted a
second degree polynomial to the sample set of every pixel.

Teichman et al. [56] proposed a completely different calibration approach for
Kinect-like devices: the undistortion map is estimated by means of a SLAM frame-
work, in an unsupervised way. Their algorithm estimates 6 depth multipliers, at
0, 2, . . . , 10 meters, and corrects the depth measurements using a linear interpo-
lation: to the best of our knowledge, this is the only approach that proved to be
able to correct depth data at more than 5 meters. The main drawback of their
approach is the time it needs to reach a solution: the optimization procedure takes
hours to converge. Moreover, according to [65], it seems not to perform as well as
[24] for short distances. In fact, differently from our approach, close-range data
(less than 2 meters) are considered reliable and used in the SLAM pipeline to infer
the geometry of the scene.

Di Cicco et al. [13] even proposed an unsupervised calibration method. Their
algorithm estimates an undistortion map for the depth data using a machine learn-
ing approach. The best plane fitted to the data is used as reference, i.e., the average
depth is considered reliable.

Fiedler et al. [15] investigated a possible influence of thermal and environmental
conditions when calibrating Kinect. The experiment turned out that variations of
the temperature and air draft have a notable influence on Kinect images and range
measurements. Based on the findings, they derived temperature-related rules to
reduce errors in the calibration and measurement process of the Kinect.

In 2008, Kim et al. [28] presented a calibration approach for ToF cameras.
Even though the error pattern and bias of a ToF camera are completely different
from the ones of a Kinect, we have noticed that they used an approach very similar
to ours. They firstly analyzed the depth error, separated it into components, and
derived a way to correct each component.

4.2 Depth Error Analysis
The noise on the range values provided by Kinect-like depth sensors has been

described in many works [27, 66]. It is well known that, since the Kinect is essen-
tially a stereo camera (see Section 2.3.3), the depth resolution is proportional to
the square of the depth, while the error on the depth measurements is a combina-
tion of a noise component and a quantization error component introduced by the
hardware constraints.

To analyze the error on the depth measurements, we positioned three sensors,
rigidly mounted on a single support, in front of a flat wall at increasing distances.
For each position, we collected the sensors readings while measuring the real dis-
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(a) kinect47a – top (b) kinect51a – top

(c) asus – top (d) kinect51a – side

Figure 4.1: Top and side views of the point clouds generated by some different
projected-light depth sensors: two Kinects (kinect47a, kinect51a) and an Asus Xtion
Pro Live (asus). The gray lines represent the ground truth measured with the laser dis-
tance meters.
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tances (i.e., the ground truth) by means of two high precision laser distance meters
(we used both the laser readings to avoid the support to rotate around its vertical
axis). Some qualitative results of such analysis are reported in Figure 4.1. From
the images we immediately notice that:

1. the 3D surface defined by the points is not properly planar as it should be;

2. the average depth of the points is not correct and, sometimes, even the
average orientation is wrong;

3. the quantization error becomes not negligible for increasing distances;

4. each sensor has a different “distortion pattern” and this effect becomes more
accentuated for increasing distances (this is the myopic property defined in
[56]).

We call distortion the depth error that produces a local alteration of an object
shape and global error the systematic wrong estimation of the average depth. In
Figure 4.2 the global error for three different sensors, i.e. the difference between
the average depth of the acquired clouds and the ground truth, is reported. It
can be noticed that such error is super-linear with respect to the measured depth
values.

We also compared the measured point clouds with the planes that best fit to
them (some results are in Figure 4.3). In particular, for each incoming point cloud,
we computed the Root Mean Square (RMS) error on the (signed) distance between
the plane and the points. Also in this case, the error is clearly super-linear.

4.2.1 Error Correction Model
To model the effects of the errors introduced by depth sensors, as in [10, 13,

24, 56], we propose to estimate a depth correction function in a per-pixel basis.
That is, given a depth image J of size HD × WD, a pixel (u, v)T ∈ ID and the
corresponding depth value d, the real depth d∗ is computed as

d∗ = fu,v(d). (4.1)

Starting from the considerations made in Section 4.2, we express each fu,v(·) in
(4.1) as a composition of two functions: uu,v(·) that takes into account the local
distortion, and gu,v(·) that makes a global correction of the depth values. That is,
the real depth d∗ is estimated as

d∗ = fu,v(d) = (g ◦ u)u,v(d), (4.2)
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Figure 4.2: Error on the average distance point estimation, for three different depth
sensors. The error is computed, for each cloud, by averaging the depth of all its points
and comparing it to the ground truth computed with the two laser distance meters.
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Figure 4.3: RMS error caused by the distortion, for three different depth sensors. The
error is computed by fitting a plane to the depth data acquired in front of a flat wall
and computing the point-plane distance for all its points.
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or, alternatively, the real 3D point x∗ is estimated as

x∗ = fu,v(x) = (g ◦ u)u,v(x),

where
fu,v(x) = x · fu,v(d)

d
.

We define U as the map that associates a pixel (u, v)T ∈ ID to an undistortion
function u : R→ R, that is, U(u, v) = uu,v(·). In the same way, G(u, v) = gu,v(·).

4.3 Calibration Approach
As confirmed by the experimental evidence (Section 4.2), the error on the depth

measurements is a continuous function. Thus we can assume that given two close
3D points x and y along the same direction, i.e y = (1 + ε) · x with ε ' 0,

y∗ = f(y) = f((1 + ε) · x) ' (1 + ε) · f(x) = (1 + ε) · x∗.

where f(·) is the error correction function defined in (4.2). This means that, if we
know how to “correct” a point x (i.e. we know the correction function parameters
for this point), we can correct close points with a good approximation using the
same parameters.

This assumption is the basis of our algorithm to estimate both the undistortion
map U and the global error correction map G. Exploiting the fact that both
distortion and quantization error become more severe for increasing distances, we
introduce the idea to estimate the distortion error iteratively, starting from short
distances and estimating the error for greater distances using as initial guess the
current correction parameters.

The proposed calibration framework requires the depth sensor to be coupled
with an RGB camera that frames the same scene, the rigid body transformation
that relates the two sensors will be estimated while inferring the depth error cor-
rection function. It also requires the two sensors to collect data framing a scene
that includes a wall with a checkerboard attached on it, at different distances and
orientations.

The calibration is performed in two steps: in the first step the algorithm esti-
mates the undistortion map U; only a rough calibration between the camera and
the depth sensor is necessary during this step, the checkerboard is used just to
have an idea of the wall location. In the second step the global correction map G
is computed. Here the checkerboard poses estimated with the (calibrated) RGB
camera, are used as a ground truth. That is, the undistorted planes estimated in
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the first step are forced to match the ones defined by the checkerboard. To this
end, the real rigid displacement between the RGB camera C and the depth sensor
D needs to be known. Unfortunately, to estimate the pose of one sensor with
respect to the other, a good estimate of their intrinsic parameters is mandatory.
One way to satisfy this circular dependency is to estimate the global correction
map G and the rigid body displacement CDT simultaneously.

At this point a question arises: why the depth error is corrected in two steps?
Actually, the reason is simple. To guarantee the best results, the camera-depth
sensor transformation CDT and the global correction map G need to be refined
together within an optimization framework. Refine a map such as U, with a
different function every pixel, is not a feasible solution: at least 10 thousands
parameters are needed. G instead, whose scope is to transform planes into planes,
is an object much more simple to deal with in the optimization phase: as we will
see later, such map needs no more than a dozen parameters.

4.3.1 Pipeline
The algorithm is organized as in Figure 4.4. First of all, RGB images Ik are

analyzed and the checkerboard corners are extracted from the images. The corners,
IBk, the point clouds DCk and the initial camera-depth transform C

DT0 are the
inputs for the undistortion map estimation procedure. Once the undistortion map
U has been estimated, the point clouds are undistorted (DĈk) and passed to the
procedure that estimates both the global correction map G and the camera-depth
transformation CDT.

4.4 Undistortion Map Estimation
The proposed algorithm (Algorithm 4.1) estimates the undistortion map U tak-

ing as input a list (DC1,
DC2, . . . ,

DCM) of point clouds acquired when the depth
sensorD is pointing a planar surface (e.g. a wall) at different distances and orienta-
tions. It also requires the positions of the checkerboard corners (IB1,

IB2, . . . ,
IBM),

extracted from the images, and a rough estimate of the rigid-body transformation
that relates the two sensors CDT0.

Firstly (``. 1-2) the undistortion map U is initialized as an HD ×WD matrix
of identity functions 1 : R → R while the sample matrix EU is initialized as an
HD×WD matrix of empty sets (the matrix EU keeps in memory the samples to fit
the undistortion functions uu,v(·)). Then, the point cloud list (DC1,

DC2, . . . ,
DCM)

is sorted in ascending order according to the distance of the main plane (i.e.,
the plane with the checkerboard) from the sensor (`. 3), to exploit the continuity
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DĈk
IBk

GC
DT

Figure 4.4: Calibration algorithm pipeline. Double-lined arrows mean that a set of
data is passed from one block to the other.
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Algorithm 4.1 Undistortion Map Estimation
Input: (DC1,

DC2, . . . ,
DCM) . Depth point clouds

Input: (IB1,
IB2, . . . ,

IBM) . Checkerboard corners in the images
Input: CDT0 . Camera-depth sensors initial transformation
Output: U . Undistortion map
1: U← (1i)i∈ID
2: EU ← (∅i)i∈ID
3: (DCs1 ,

DCs2 , . . . ,
DCsM )← sort(DC1,

DC2, . . . ,
DCM)

4: for k ← 1, 2, . . . ,M do
5: for all (u, v) ∈ ID do
6: u← U(u, v)
7: Dx← DCsk(u, v)
8: DĈsk(u, v)← u(Dx)
9: end for
10: Isk ← selectWallPoints(DĈsk , IBsk ,

C
DT0)

11: Dπsk ← fitPlane(DCsk , Isk)
12: (U,EU)← updateMap(U,EU,

DCsk , Isk , Dπsk)
13: end for

described in Section 4.3.
The undistortion map is created iteratively: at each step only one point cloud

is analyzed. At step k, for example, the kth cloud in the list, DCsk , is undistorted
using the current estimation of U (``. 5-9). Then, the indices Isk ⊆ ID of the wall
points are extracted from the undistorted cloud DĈsk and used to fit a plane Dπsk
to the initial cloud DCsk (``. 10-11). Actually, to increase stability, instead of fitting
a plane to the whole original point cloud, only the pixels within a defined ray from
the image center are used, as reported in [13]. Finally (`. 12), the estimated plane
Dπsk is used to compute the undistortion map U. The procedure ends as soon as
the last cloud in the list has been processed.

4.4.1 Wall Points Selection
The selection of the wall point-indices is performed automatically, as opposed

to the manual selection of [24]. We take advantage of the RGB camera and the
checkerboard to select the right plane and extract its indices from the undistorted
cloud with a RANSAC-based approach [16, 44]. As shown in Figure 4.5, the
undistorted cloud let us always extract the correct points, while the original one
does not. In particular, points near the image corners are likely to be excluded
from the inliers when using the original cloud.
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(a) Wall points extracted from the original point cloud DCsk
.

(b) Wall points extracted from the undistorted point cloud DĈsk
.

Figure 4.5: Comparison between (a) the wall points extracted from the original point
cloud DCsk and (b) the ones extracted from the undistorted cloud DĈsk . As clearly
visible, in both cases the floor points are correctly discarded. In the former case, however,
the wall segmentation is wrong.
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4.4.2 Map Update
In the map update function (Algorithm 4.2), all the points Dx = (x, y, z)T of

the cloud are projected on the previously extracted plane Dπsk along their line-of-
sight (``. 3-4). That is, let nTx− d = 0 be the plane equation, and let lDx, l ∈ R,
be the points along Dx line-of-sight, then the line-of-sight projection of Dx onto
Dπsk , say Dxπ = (xπ, yπ, zπ)T, is

xπ = lx = dx
nTx

.

The pair (z, zπ) is used as a sample for the curve-fitting procedure (`. 5), and the
undistortion function U(u, v) is re-estimated by fitting a new curve to the sample
set EU(u, v) (`. 6).

Algorithm 4.2 Undistortion Map Estimation – Update Map
1: function updateMap(U,EU,

DC, I, Dπ)
2: for all (u, v) ∈ I do
3: Dx← DC(u, v)
4: Dxπ ← losProject(Dx, Dπ)
5: EU(u, v)← EU(u, v) ∪ {(z, zπ)}
6: U(u, v)← fitCurve(EU(u, v))
7: end for
8: return (U,EU)
9: end function

4.4.3 Implementation Details
Undistortion Map

To decrease the incidence of noise on the map estimation we reduce the number
of functions fitted to the data. That is, instead of estimating an undistortion
function for each pixel, similarly to [56], we discretize the map into bins. So,
let χU, ψU ∈ N be the bin size in pixels, along the image x- and y directions,
respectively.

Given a pixel (u, v)T ∈ ID, we define SU(u, v) as the set of 4 pixels surrounding
(u, v)T according to the sampling factors χU and ψU (see Figure 4.6). We also
define SU , {SU(u, v) : (u, v)T ∈ ID} as the set of all the surrounding pixels.

We estimate the undistortion function uu,v(·) only for the pixels in SU. For all
the others, instead, this function is computed as a linear combination of the func-
tions computed for the pixels set SU. That is, given a pixel (u, v)T, its undistortion
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ψU

HD

χU
WD

Pixel (u, v)T ∈ SU. For this pixel an undistortion function uu,v(·) has been
estimated.

Pixel (u, v)T ∈ ID. For this pixel the undistortion function uu,v(·) is a linear
combination of the functions of the pixels in SU(u, v).

Connection from a pixel (u, v)T ∈ ID to one in SU(u, v).

Figure 4.6: Visualization of an undistortion map U. Given two parameters, χU and
ψU, an undistortion function is estimated for all and only the pixels in SU. For all the
others, instead, the function is computed as a linear combination of the ones estimated
for the pixels in SU.

function U(u, v) is

U(u, v) =
∑

(s,t)∈SU(u,v)
wχU(u, s) · wψU(v, t) · U(s, t)

where

wχU(u, s) , 1− |u− s|
χU

, wψU(v, t) , 1− |v − t|
ψU

(4.3)

and ∑
(s,t)∈SU(u,v)

wχU(u, s) · wψU(v, t) = 1 .
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Curve Fitting

As shown in Section 4.2 (Figure 4.3), the distortion is super-linear, therefore
an appropriate correction function must be chosen. Moreover, as described in the
previous section, since we are not estimating a function for every pixel, the fitting
procedure is not straightforward.

For what concerns the former point, suppose the error is corrected by a second
degree polynomial, that is, U(u, v) = uu,v(z) = a + bz + cz2, for some a, b, c ∈ R.
To estimate the polynomial coefficients we solve a non-linear least squares problem
of the form

arg min
a,b,c

∑
(z,zπ)∈EU(u,v)

1
σ2(z)

∥∥∥a+ bz + cz2 − zπ
∥∥∥2

where σ(z) is the error on the depth measurements.
For what concerns the latter point, i.e. how to deal with the discretized undis-

tortion map, we slightly modify the sample set generation and the function fitting
procedure described in Algorithm 4.2. In the new algorithm (Algorithm 4.3), every
pixel (u, v)T contributes to the sample set of its four surrounding pixels SU(u, v)
with a weight calculated as in (4.3). That is, let

S−1
U (s, t) , {(u, v) ∈ ID : (s, t) ∈ SU(u, v)}

be the set of pixels which have (s, t) as one of their surrounding pixels. For each
cloud, the temporary sample set Ew(s, t) for a pixel (s, t) ∈ SU, is (``. 2-10)

Ew(s, t) ,
⋃

(u,v)∈S−1(s,t)
(w, z, zπ)

where
w , wχU(u, s) · wψU(v, t).

Ew(s, t) is used to generate the sample set for the aforementioned curve fitting pro-
cedure (``. 11-15). Basically, the pair (z̄, z̄π) is calculated as the weighted arithmetic
mean of the values in Ew(s, t), that is

W ,
∑

(w,z,zπ)∈Ew(u,v)
w,

z̄ ,
1
W

∑
(w,z,zπ)∈Ew(u,v)

w · z,

z̄π ,
1
W

∑
(w,z,zπ)∈Ew(u,v)

w · zπ,

and added to the sample set EU(s, t).
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Algorithm 4.3 Undistortion Map Estimation – Update Map Revised
1: function updateMap(U,EU,

DC, I, Dπ)
2: Ew ← (∅i)i∈ID
3: for all (u, v) ∈ I do
4: Dx← DC(u, v)
5: Dxπ ← losProject(Dx, Dπ)
6: for all (s, t) ∈ SU(u, v) do
7: w ← wχU(u, s) · wψU(v, t)
8: Ew(s, t)← Ew(s, t) ∪ {(w, z, zπ)}
9: end for
10: end for
11: for all (s, t) ∈ SU do
12: (z̄, z̄π)← weightedMean(Ew(s, t))
13: EU(s, t)← EU(s, t) ∪ {(z̄, z̄π)}
14: U(s, t)← fitCurve(EU(s, t))
15: end for
16: return (U,EU)
17: end function

4.5 Global Correction Map Estimation
Our original solution to deal with the global, systematic error was to have a

unique function, say g(·), to correct the wrong depth measurements after the undis-
tortion phase, i.e. G(u, v) = g(·), for all (u, v)T ∈ ID. Unfortunately, this solution
had one important limitation: in some cases the undistorted clouds were both
translated and rotated around a non-predictable axis. For this reason we moved to
a correction map G someway similar to the previously described undistortion map
U. The actual implementation of such map is described in Section 4.5.3. Our algo-
rithm takes as input a set of already undistorted point clouds (DĈ1,

DĈ2, . . . ,
DĈM),

the correspondent wall point indices (I1, I2, . . . , IM) and the checkerboard corners
extracted from the images, (IB1,

IB2, . . . ,
IBM). After an initialization step where

a rough estimate of the map G is computed (Section 4.5.1), the map is refined,
along with the camera-depth sensor transformation DCT, within a non-linear opti-
mization framework (Section 4.5.2).

4.5.1 Initial Estimation
The initial estimation of the map functions as well as the computation of

the rigid transform between the RGB and the depth sensor is reported in Al-
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gorithm 4.4. Firstly, the pose of one sensor with respect to the other is estimated,
that is, for each color-depth image pair both the plane defined by the checkerboard
in the image CπBk (in camera coordinates), and the one extracted from the point
cloud DπĈk

(in depth sensor coordinates) are computed from the given input data
(``. 1-6). The checkerboard pose is extracted from its corners IBk as described in
Section 2.2.1 (``. 2-3): the equation of the plane framed by the RGB camera is
hence computed taking 3 non-collinear corners (`. 4). The equation of the plane in
the depth image, instead, is computed using a SVD approach. Once all the planes
have been computed, the rigid displacement between the two sensors is estimated
(``. 7-9) using the plane-to-plane calibration method described in [58].

The plane equations extracted from the images are then represented w.r.t. the
depth sensor reference frames using the transformation matrices just computed.
These planes are used as reference locations for the curve fitting procedure (``. 10-
13), as we did with the undistortion map U in Algorithm 4.1.

Algorithm 4.4 Global Correction Map Initial Estimation
Input: (DĈ1,

DĈ2, . . . ,
DĈM) . Undistorted point clouds

Input: (I1, I2, . . . , IM) . Wall point indices
Input: (IB1,

IB2, . . . ,
IBM) . Checkerboard corners in the images

Output: G . Global error correction map
Output: DCT . Camera-depth sensor transformation matrix
1: for k ← 1, 2, . . . ,M do
2: C

BkT← solvePnP(KC,dC,
BB, IBk)

3: CBk ← C
BkT ·

BB
4: CπBk ← fitPlane(CBk)
5: DπĈk

← fitPlane(DĈk, Ik)
6: end for
7: ΠB ← (CπB1 ,

CπB2 , . . . ,
CπBM )

8: ΠĈ ← (DπĈ1
, DπĈ2

, . . . , DπĈM
)

9: DCT← estimateTransform(ΠB,ΠĈ)
10: for k ← 1, 2, . . . ,M do
11: DπBk ← D

CT · CπBk
12: (G,E)← updateMap(G,E, DĈk, Ik, DπBk)
13: end for

4.5.2 Non-linear Refinement
Once the global correction map G and the camera-depth sensor transformation

matrix DCT have been estimated, we refine them within a non-linear optimization
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framework. To take into account the error on the checkerboard poses estimation,
we follow the bundle-adjustment approach as described in [57]: we also refine all
the checkerboard poses CBkT, with k = 1, . . . ,M .
So, let define CTB ,

{
C
B1T,

C
B2T, . . . ,

C
BMT

}
as the set of checkerboard poses in

camera coordinates, estimated with the solvePnP function.
Formally, the results of the non-linear refinement is

(
G, DCT, CTB

)
= arg min

G,DC T,CTB

M∑
k=1

erepr(k) + epos(k) ,

where
erepr(k) ,

∑
(r,c)∈IB

1
σ2
C

·
∥∥∥rC (CBkT · BBk(r, c)

)
− IBk(r, c)

∥∥∥2

and

epos(k) ,
∑

(u,v)∈Ik

1
|Ik| · σ2

U(z) ·
∥∥∥pDπk (gu,v (DĈk(u, v)

))
− gu,v

(
DĈk(u, v)

)∥∥∥2
.

Here erepr takes into account the reprojection error of the checkerboard corners
onto the images and depends on the checkerboard poses only. The residuals are
weighted by the inverse of the variance of the corner estimation error σ2

C, where
σC = 0.2.

epos represents the error between the planes defined by the checkerboards and
the ones defined by the undistorted point clouds. Formally speaking, this error
is the distance between the cloud point DĈk(u, v) corrected with the current es-
timation of G and its line-of-sight projection onto the plane Dπk defined by the
checkerboard corner set DBk. Such set is computed as

DBk = D
CT · CBkT ·

BB .

Finally, each residual is weighted by the variance on the depth measurements after
the undistortion phase σ2

U(z), multiplied by the number of wall points, i.e. |Ik|.

4.5.3 Implementation Details
Global Correction Map

As mentioned before, the global correction map G is someway similar to the
undistortion map U, but more simple. In fact, G needs to transform planes into
planes and, recalling that a plane transformation has 3 degrees of freedom, we just
need 3 functions to satisfy the requirements. So, we end up with a discretized
map constructed as U but with χG = WD and ψG = HD, that is, only 4 pixels
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HD

WD

Pixel (u, v)T ∈ SG. For this pixel a correction function gu,v(·) has been esti-
mated.
Pixel (u, v)T ∈ SG. To guarantee planarity, for this pixel the correction function
gu,v(·) has been computed starting from the ones of the other 3 pixels in SG.

Pixel (u, v)T ∈ ID. For this pixel the correction function gu,v(·) is a linear com-
bination of the functions of the pixels in SG(u, v).

Connection from a pixel (u, v)T ∈ ID to one in SG(u, v).

Figure 4.7: Visualization of a global correction map G. A global correction function
is estimated for all and only the pixels in SG. For all the others, instead, the function is
computed as a linear combination of the ones estimated for the pixels in SG.

contain a correction function gu,v(·), for all the others, instead, such function is
computed as a linear combination of the ones of those 4 pixels. Actually, allowing
4 pixels to control the whole map usually leads to wrong results. Let suppose, for
example that 3 of such pixels contain an identity function and the fourth does not.
Clearly the resulting surface will not be a plane anymore. For this reason, only 3
of these pixels are actually computed, the fourth is instead estimated exploiting
the following invariant:

g0,0(d) + gWD,HD
(d)

2 = gWD,0(d) + g0,HD
(d)

2 . (4.4)

Suppose now that gWD,HD
(·) is the dependent function: gWD,HD

(·) can be estimated
by fitting a function on an adequate set of pairs (d, gWD,HD

(d)), where

gWD,HD
(d) = gWD,0(d) + g0,HD

(d)− g0,0(d)

is computed from (4.4). An example of the presented global correction map G is
visible in Figure 4.7.
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Figure 4.8: Structure we set up to acquire the data for both the test set and training
set. The two laser meters are located on the left and right of the structure to guarantee
that the sensor is correctly aligned.

Curve Fitting

Since the correction map G is constructed in the same way as the undistortion
map U, the considerations on the curve fitting procedure made in Section 4.4.3 are
still valid also in the global error case.

4.6 Experimental Evaluation

4.6.1 Setup
We validated the accuracy of our calibration method in a real-world scenario.

In particular we performed the calibration of two Microsoft Kinect (in the following
called kinect47a and kinect51a) and one Asus Xtion Pro Live (in the following
called asus) depth sensor.

We calibrated the RGB camera of each device using the calibration tool pro-
vided by the ROS libraries [42]: a good RGB camera calibration is an essential
requirement to have valuable results. Then, we mounted each sensor, one at a
time, on a structure composed by a tripod, two laser meters and a high resolution
PointGrey camera (see Figure 4.8). Finally, we attached a checkerboard on a big
wall, collecting two datasets for each device: a training set and a test set.

The training set contains views of the checkerboard from the device camera, the
depth sensor and the high resolution camera from different locations and orienta-
tion (e.g., see Figure 4.9). The test set, instead, has been acquired by positioning
the structure orthogonal to the wall at different distances and measuring such dis-
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tances with the two laser distance meters. An example of the data acquired for
the test sets is visible in Figure 4.10, the correspondent distances are reported in
Table 4.1 .

4.6.2 Undistortion Map
To evaluate the performances of our undistortion approach, we introduce a

metric called planarity error. For each cloud of the test set, we extract the wall
point indices I from its undistorted version as described in Section 4.4.1. Then,
we define the planarity error as

eplan =
√√√√ 1
|I|

∑
(u,v)∈I

‖nTC(u, v)− d‖2 ,

where C is a generic point cloud of the test set (we consider both the original and
the undistorted versions) and π is the plane with equation nTx − d = 0 fitted to
the wall points with indices in I.

Undistortion Map Functions

In the previous sections, we have always talked about “undistortion functions”
without providing many details about the nature of these functions. Actually,
analyzing the error on the plane estimation described in Section 4.2, and especially
the one in Figure 4.3, we evinced that such error is well described by a quadratic
polynomial.

Such hypothesis is further confirmed by the analysis of the sample sets used to
generate the undistortion map. Recalling that the sample sets are composed by
pairs (d, dπ), where d is the depth measurement provided by the sensor and dπ is
the depth value that the point should have to lay on the plane fitted to the cloud,
a comparison between quadratic and linear functions is reported in Figure 4.11. In
all our tests the quadratic functions outperformed the linear ones. We also tried to
fit higher degree polynomials to the sample sets, unfortunately, we did not obtain
any improvement over quadratic functions. In fact, as reported in Figure 4.12,
the fitted polynomials overlap. Actually, the difference is out of the training set
region: the 4th degree polynomials tend to overfit the training data and therefore
perform worse than lower degree polynomials.

To prove that our hypotheses are correct, we further evaluate the polynomial
functions from an undistortion quality point of view. For each cloud in the test
set, we computed the planarity error introduced above. The plot in Figure 4.13
clearly shows that all the super-linear functions provide better undistortion results
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Figure 4.9: Some images of the training set of kinect47a. The checkerboard is framed
from different locations and orientations from 1 to about 4 meters.

Figure 4.10: Some images of the test set of kinect47a. The checkerboard is framed
from different locations from 1 to about 4.5 meters, paying attention to always have a
zero rotation with respect to the wall plane.

Table 4.1: Distances from the sensor to the wall for the images of the test set reported
in Figure 4.10.

Test set wall distances
0.943 m 1.099 m 1.241 m 1.413 m
1.615 m 1.935 m 2.261 m 2.595 m
2.906 m 3.292 m 4.079 m 4.635 m
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Figure 4.11: Analysis of the sample set distribution for two different pixels. The
sample set composed by pairs (d, dπ), where d is the sensor-provided depth while dπ is
the depth the point should have to lay on the plane fitted to the whole cloud. The first
line shows the samples as well as a linear and a quadratic function that best approximate
the samples. The second line, instead, shows the difference between the y and x sample
values. Finally, in the third line, the residuals for the two functions are reported.
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Figure 4.12: Undistortion polynomial u(d) for two different pixels estimated varying
the maximum degree (from 2 to 4). For each polynomial, to better show the differences
among them, the difference with the identity function u(d) − 1(d) is plotted. The two
vertical, dashed lines, delimit the training data depth range (1-4.5 m). Analyzing the
images, it is clear that the 4th degree polynomials are not suitable for the map, since
they are likely to overfit the training data.

when compared to the linear functions. Therefore, all the tests presented in fol-
lowing sections have been performed using quadratic undistortion functions: in
our experience, this class of functions provides good undistortion results without
presenting overfitting problems.

Map Discretization

To select the most appropriate bin size values (i.e., χU and ψU, described in
Section 4.4.3), we evaluated the planarity error varying the two parameters. The
results are reported in Figure 4.14. Differently from what we expected, such pa-
rameters do not affect so much the results. Actually, up to a 8× 8 pixels size, the
planarity error is almost identical. Only with greater sizes, starting from 16× 16,
the error increases, especially close to the image corners. Even evaluating the
planes that result from the undistortion of a real cloud (Figure 4.15), there is not
much difference between them. Finally, a comparison between the generated maps
is reported in Figure 4.16. Looking at the maps in Figure 4.16, computed asso-
ciating to each pixel (u, v)T the value uu,v(d) − d for a given d, we immediately
notice that the maps becomes smoother as the bin size increases.

In our experience, we found that a bin size of 4 × 4 pixels represents a good
trade-off between computational efficiency and robustness. Actually, as mentioned
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Figure 4.13: Planarity error when varying the degree of the undistortion polynomials.
From the plot we can see that linear functions are not able to correctly model the
distortion introduced by the sensor. On the other hand, quartic functions tend instead
to overfit the training data (e.g., in the right part of the plot the error of the quartic
functions increases w.r.t. the errors of the quadratic and cubic functions).
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Figure 4.14: Planarity error of the wall points when changing the bin size. In the
plot it is visible that increasing the bin size also the error increases, but not as much
as expected. Actually, only with bin sizes staring from 16× 16 the error increase starts
being non-negligible.

1× 1 2× 2 4× 4 8× 8 16× 16 32× 32 64× 64 128× 96 160× 120

Figure 4.15: Top-view of the cloud of a planar surface undistorted using maps with
different bin sizes. Note how the resulting clouds are similar, especially the four on the
left.
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Figure 4.16: Undistortion map computed using different bin size, evaluated at a dis-
tance of 3 meters.
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Figure 4.17: Planarity error for the three tested sensors. As visible, the proposed
approach is able to drastically reduce the distance of the measured points from the
plane that best fits the data. Actually, the error curve after the undistortion phase is
mainly due to noise.

before, larger bins tend to fail close to the image corners, while in other experiments
we noticed that smaller bins tend to perform badly with small calibration datasets
because of the lack of data for some pixels.

Test Set Results

We finally tested our algorithm against the test sets acquired for the three
sensors. Results of the planarity error evaluation are reported in Figure 4.17. As
expected, the proposed method permits to drastically improve the planarity of the
depth data generated by the calibrated sensor. Looking at the plots one could
argue: why isn’t the error after the undistortion closer to zero? Actually, to the
best of our knowledge, the error curve calculated after the undistortion is mainly
due to the sensor noise and the quantization error. Therefore it is not possible to
further reduce the error.

In Figure 4.18 the estimated undistortion maps, evaluated at 4 defined depths,
are shown. Looking at the scales, we can see that the magnitude of the correction
is consistent with the planarity error of the original data. Then, in Figure 4.19
the results of the algorithm applied to the clouds of Figure 4.1 are reported. As
expected, the clouds are now planar but they are not in the correct positions yet.

4.6.3 Global Correction Map
In this section we report some results of the evaluation of the estimated global

correction map G. Recalling that the map is computed using the checkerboard as
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Figure 4.18: Maps generated for the three sensors. For each sensor the evaluation of
the respective map at 1, 2, 3, and 4 meters is reported. Note that each map has its own
scale and all values are in meters.
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(a) kinect47a – top (b) kinect51a – top

(c) asus – top (d) kinect51a – side

Figure 4.19: Top and side views of the point clouds of Figure 4.1 after the undistortion
phase. Again, the gray lines show the depth measured by means of the laser meters. As
we can see, the clouds are now more planar than the original ones, however, they are
not in the right position, not even correctly oriented.



4.6 Experimental Evaluation 67

the reference plane and that the map and the RGB camera-depth sensor trans-
formation are refined together, also the estimated transformation is taken into
account to evaluate the results. We estimate the error of the plane that results
after the global correction with respect to the plane defined by the checkerboard.

Firstly, the pose of the checkerboard with respect to the camera is estiamted
using the corners extracted from the image. Secondly, the checkerboard plane is
transformed into depth sensor coordinates. Finally, the average distance of the wall
points (extracted from the cloud) to the checkerboard-defined plane is computed.

Global Correction Map Functions

Before evaluating the global correction map G, as we did for the undistortion
map U, we analyze the sample sets generated to compute the map, i.e. EG, just to
evince the most appropriate function type to fit to the data. A first analysis of the
error has been reported in Section 4.2, in Figure 4.2. Such error was computed by
evaluating the difference between the average depth of a distorted point cloud and
the measurements provided by a laser distance meter. Our sample sets, instead,
contain pairs (d̂, dπB), where d̂ is the depth value after the undistortion phase,
and dπB is the expected depth, i.e. the depth of the pixel if it were laying on
checkerboard-defined plane πB. Thus, a novel investigation has to be performed.

Also in this case we tried to fit polynomial functions with a different maximum
degree and evaluated which ones better represent the data. In Figure 4.20 we
report a comparison between quadratic and linear functions for two of the four
sample sets used to generate the global correction map. From the figure, it is clear
that linear functions are not suitable since they do not fit properly to the data. A
further confirmation of this fact is visible in Figure 4.21, where the results of the
calibration process varying the maximum degree of the polynomials from 1 to 4 is
reported.

Moving a cloud along the z-axis is the same as moving one of the sensors along
the same axis. For this reason, to avoid problems in the optimization phase (i.e.
one parameter can be increased and the other decreased of the same quantity and
the error evaluation does not change), for these polynomials the constant factor is
set to zero.

All the calibrations reported in the following were performed treating each
gu,v(·) as a quadratic function with the constant factor equal to zero.

Test Set Results

We finally estimated the global correction results on the acquired test set. For
each test cloud we evaluated the distances of the points of the main plane to
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Figure 4.20: Analysis of two of the sample sets used to estimate the global correction
map G. The sample set is composed by pairs (x, y) = (d̂, dB), where d̂ is the sensor-
provided depth while dB is the depth defined by the checkerboardB attached on the wall.
The plots at the top show the samples as well as a linear and a quadratic function that
best approximate them. The plots in the middle, instead, show the difference between
the samples’ y and x values, i.e. dB − d̂. Finally, in the bottom plots, the residuals for
the two functions are reported.
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Figure 4.21: Global error when varying the maximum degree of the global correction
polynomials. From the plot we can see that linear functions are not able to model (and
correct) the error on the average depth estimation.

the plane defined by the checkerboard and computed their mean. The plots in
Figure 4.22 show the results of such evaluation. The proposed error correction
approach is working as expected: all the points are correctly translated to the
right location, with respect to the checkerboard pose.

4.6.4 Final Results
The last set of tests are meant to evaluate the results of the proposed calibration

approach when dealing with real world data. To this aim, we first compare the
wall average depths obtained after the calibration with the measurements given
by the laser meters, then the transformations between the depth sensors and the
cameras are evaluated in terms of visual results and expected values.

Depth Calibration

The first plots we are going to analyze are those in Figure 4.23. They show a
quantitative evaluation of the depth error, i.e. the distance between the wall depth
measured by means of the laser meters and the average depth of the points after
both the undistortion and global correction phase. As clearly visible, in all the
tests, the resulting planes are within a couple of centimeters from the real ones.
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(a) Calibration using the device camera.
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Figure 4.22: Global error for the three tested depth sensors. The error is computed for
the original point cloud (Original), the cloud after the undistortion phase (Undistorted),
and the cloud after both the undistortion and the global error correction (Final). More-
over, to further assess the validity of the proposed approach, the results of the calibration
procedure when using the device camera (a) and the external high resolution camera (b)
are reported.



4.6 Experimental Evaluation 71

Table 4.2: Camera-depth sensor transform estimated for the three tested sensors when
calibrated using the device camera. Both the translation t = (tx, ty, tz)T and the rota-
tion, represented as a quaternion q = (qw, qx, qy, qz)T, are reported. The factory line
contains the factory-provided calibration parameters for the three devices.

tx [m] ty [m] tz [m] qx qy qz qw

factory 0.025 0 0 0 0 0 1
kinect47a 0.0237 0.0044 -0.0063 0.0034 0.0060 -0.0017 0.9999
kinect51a 0.0276 0.0024 -0.0036 0.0025 0.0007 -0.0010 0.9999
asus 0.0294 -0.0040 -0.0011 0.0048 0.0059 -0.0004 0.9999

These good results confirm the soundness of our choices.
We also evaluated how much the the resulting plane is rotated with respect to

the real one. To this aim we computed the angle between the normal of the plane
fitted to the corrected data, and the x- and y-axis of the wall plane, i.e. (1, 0, 0)T

and (0, 1, 0)T respectively. Let n be the fitted-plane normal and let a be the axis
with respect to which the error is computed, the rotation error, erot, is

erot = arccos(nTa)− π

2 .

Results of the error computation for sensor kinect51a are reported in Figure 4.24.
The figure shows that the rotation about the x-axis is completely corrected. For
what concerns the rotation about the y-axis, instead, the results are worse. The
reason for this fact is likely to be the error on the real depth estimation. In fact,
a difference of about 2 mm in the depth measures (note that this is the nominal
error of the two laser meters) leads to a rotation of about 0.5°.

A further confirmation that the proposed approach works properly, is shown
in Figure 4.25. The pictures report the clouds of Figure 4.1 after both the undis-
tortion phase (see Figure 4.19) and the global error correction. As expected, all
the clouds are now both planar and located correctly.

Camera-Depth Sensor Transform

Even if the camera-depth sensor transform D
CT estimated during the optimiza-

tion phase is a sort of “side effect” of the depth calibration, a good transformation
can be seen as a proof of the validity of the proposed approach. In Table 4.2
the transformations that resulted from the calibration of the sensors using their
device cameras, are reported. Moreover, to give a comparison metric, also the
factory-provided transformation is reported. The values obtained are similar to
those obtainable with other state-of-the-art calibration tools for RGB-D devices
[24, 52, 53, 67].
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(a) Results of the calibration using the device camera.
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(b) Results of the calibration using the external, high resolution
camera.

Figure 4.23: Distance between the real wall depth and the one estimated with the
calibration procedure. The error is computed for the original point clouds (Original) and
for the clouds after both the undistortion and the global error correction (Corrected).
Moreover, the distance of the wall from the color sensor estimated using the checkerboard
(Checkerboard) is reported. The error is computed using the device camera (a) as the
reference camera as well as using the external high resolution one (b). Note that there is
a fixed offset of less than 1 cm between the laser meters and the two Kinects (kinect47a
and kinect51a are closer to the wall) and about 9 cm between the laser meters and the
high resolution camera (the camera is farther).
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Figure 4.24: Rotation error for kinect51a sensor. Both the rotation about the x-
and y-axis are compared. The error is the angle estimated between the normal of the
plane fitted to the corrected data and the theoretical wall plane x-axis and y-axis.

Finally, the visual results of this camera-depth sensor calibration are shown in
Figure 4.26. Looking at the images, we can see that the data fusion obtained with
the transformation computed during the calibration process are definitely better
than the ones obtained with the default transformation.

4.7 ROS Package
The proposed algorithm has been implemented in C++ within the robotics

framework ROS [42]. To perform the calibration, the user is asked to capture
a training set using a tool provided in the package and then process the data
using a different executable. For what concerns the training data collection, it is
sufficient to attach a checkerboard on a large wall and get 50 to 100 images (for
both the camera and the depth sensor) from different locations and orientations.
Once executed, the program outputs 3 files. They contain, respectively:

• the undistortion map U;

• the global correction map G;

• the rigid displacement DCT between the two sensors.

Also a ROS node (and its threaded version, i.e. a ROS nodelet) to correct an input
cloud provided by the depth sensor has been implemented. This node can be in-
serted transparently in a ROS pipeline between the producer node (i.e. the sensor)
and the consumer node (i.e. the user program). In this way the user program does
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(a) kinect47a – top (b) kinect51a – top

(c) asus – top (d) kinect51a – side

Figure 4.25: Top and side views of the point clouds of Figure 4.1 after the undistortion
phase (Figure 4.19) and the global correction phase. Again, the gray lines show the depth
measured by means of the laser meters. As we can see, every cloud is now planar as well
as in the right position and correctly oriented.
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(a) Default transformation (b) Computed transformation

Figure 4.26: Colored point clouds resulting from the fusion of depth and RGB data.
For each cloud, the points are firstly transformed into camera coordinates, then projected
into the image and colored with the RGB color of the obtained pixel. As we can see, the
results obtained with the newly computed transformation (b) are definitely better than
those obtained with the default one (a).
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not need to be modified to take into account the calibration parameters.
The code is available as open source in a GitHub repository:

http://github.com/iaslab-unipd/rgbd_calibration.

Apart from ROS, its main dependencies are Eigen [21], OpenCV [9], PCL [44] and
Ceres Solver [1].

4.7.1 Performance
We tested both the calibration and the correction node in terms of the execution

time of the whole calibration procedure and the correction of a single input cloud,
respectively. For what concerns the calibration procedure, the data collection part
takes no more than 10 minutes for a hundred images. The data processing, instead,
lasts about 45 minutes on a high-end consumer laptop1. This duration refers to a
calibration that uses depth images of size 640× 480 pixels, i.e. the full resolution
ones. Clouds downsampled to the size of 320 × 240 pixels, let the calibration
procedure last no more than 5 minutes, nevertheless the accuracy of the resulting
parameters is not reduced.

On one side, the calibration is an operation that is performed once and so
the execution time is not critical. On the other side, the execution time of the
correction node is critical, since the data generated by a depth sensor, typically
with a frequency of 30 Hz, must be elaborated in real-time. For this reason, we
tested the performance of 3 different implementations of the correction algorithm:

• a standard CPU implementation;

• a parallel CPU implementation exploiting the OpenMP directives;

• a parallel GPU implementation using CUDA.

The results are reported in Figure 4.27. Clearly the GPU implementation out-
performs the CPU ones, but dedicated hardware is needed. Going deeper into
details, most of the time spent for elaborating the cloud on the GPU (about 95%)
is dedicated to the copy of the data to and from the GPU memory.
Anyway, all the implementations are able to correct the clouds in real-time.

4.8 Conclusions
In this chapter we presented a novel method to calibrate a structured-light

depth sensor. The proposed calibration procedure only requires the user to collect
1CPU: Intel Core i7-4700MQ, RAM: 16GB, SSD, GPU: NVidia GTX 750M.

http://github.com/iaslab-unipd/rgbd_calibration
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Figure 4.27: Time comparison between the 3 different implementations of the correc-
tion node. The red line indicates the time limit to elaborate point clouds at 30Hz.

data in a minimally structured environment (e.g., a wall with attached a checker-
board) and, afterwards, let the software process the data. We proposed to model
the depth sensor error by means of two different components, a distortion error and
a global, systematic error. The distortion error is modeled using a per-pixel para-
metric undistortion map, estimated in the first stage of the algorithm. The depth
systematic error along with the camera-depth sensor alignment are estimated in
the second stage of the algorithm, inside a robust optimization framework [1].

A detailed set of tests on both the input data and the results of the calibration
showed that the proposed approach is able to correctly recover the shape of the
framed scene. Moreover, the RGB clouds obtained from the the fusion of RGB
and depth data show that even the rigid-displacement between the two sensors
is correctly estimated. In fact, reported results show the possibility to improve
the accuracy of a low cost RGB-D sensor with a very simple, yet human-friendly,
procedure.

The main drawback of the proposed method is its high dependency on good
intrinsic parameters for the sensor used during the calibration procedure. We
noticed that bad parameters lead to estimate a wrong depth sensor-camera trans-
formation. In our tests, also the global correction functions, sometimes, did not
result as good as expected. Future work includes a better estimation of the depth
sensor intrinsics (focal lengths and central point) in the optimization procedure.
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Chapter 5

Calibration of a Depth
Sensor-Camera Network

Robotic systems and camera networks consist of many heterogeneous vision
sensors, mainly cameras and depth sensors. The estimation of the poses of all
such sensors with respect to a unique, consistent world frame, is a challenging and
well-known problem. As a matter of fact, a good calibration of these sensors can
be a useful starting point for several applications in the computer vision field (e.g.
3D mapping, people recognition and tracking [6, 36], microphone calibration for
audio localization [30]) as well as in many robotics applications (e.g. simultaneous
localization and mapping (SLAM) applications, grasping and manipulation).

However, even if most of the time a good calibration is mandatory for the
success of the application, there are still no tools that permit to easily calibrate
multiple vision sensors together in a uniform way. In fact, most of the existing
tools are for specific applications or specific sensors (e.g. stereo cameras); there are
only few methods developed to simultaneously calibrate an heterogeneous sensor
network. As stated by Le et al. [29], the most followed approach is to divide
the sensors into pairs and calibrate each pair independently, even using different
algorithms for each one.

Our idea, i.e., the one behind the development of this package, is to go beyond
this calibration technique, and develop an easy-to-use and easy-to-extend calibra-
tion package for ROS, such that users can add their own sensor types, their own
error functions and perform the calibration. Moreover, since calibration is a time-
consuming task, a fast procedure would be a very useful tool, especially when the
involved sensors need often to be moved – and therefore re-calibrated.

The package addresses the problem of calibrating networks composed by cam-
eras and depth sensors like the one in Figure 5.1. The approach we followed is
an extension of the classical single camera calibration procedure [70]: users are
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Figure 5.1: Example of sensors in a PC network that the proposed package aims to
calibrate.

asked to move a checkerboard pattern in front of each camera and depth sensor
and, as soon as any of the sensors see the checkerboard, the calibration starts.
Then, whenever the pattern is visible by at least two sensors simultaneously, a
constraint is added to the calibration problem. This process goes on until all the
sensors are connected to the others. At the end, all the data are processed inside
an optimization framework that improves the quality of the initial estimation.

The proposed package improves the state of the art in various ways. First of
all, differently from the rest of the existent tools, the calibration algorithm is dis-
tributed in the network. That is, part of the data process (the features extraction)
is performed on the PCs directly connected to the sensors, the remaining part (the
optimization), instead, is performed on a central PC. This results in a calibration
tool that can deal with a dozen sensors easily. In fact, the bandwidth usage is kept
very low since most of the data are elaborated locally instead of being transmitted
over the network.

Then, with respect to the state of the art, the calibration is computed us-
ing an established and reliable optimization framework: Ceres Solver [1]. This
framework allows to calibrate the network in an on-line fashion: the calibration is
performed/refined as soon as new data are acquired.

The remainder of the chapter is organized as follows. In Section 5.1 we review
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some of the existing works about the calibration of camera and depth sensor net-
works. We detail the proposed calibration approach for camera-only networks in
Section 5.2, while its extension to networks composed of both cameras and depth
sensors is described in Section 5.3. In Section 5.4 we define the package architec-
ture and show how to configure and use the provided nodes. In Section 5.5 we
report results of both simulations and real-world tests, while in Section 5.6 we give
a brief overview of an open source project, OpenPTrack. Finally, in Section 5.7,
we draw some conclusions.

5.1 Related Work
In the robot vision field, RGB cameras have been a key technology for the de-

velopment of visual perception. In the last few years, the introduction of RGB-D
sensors contributed deeply to the advancement of data fusion in practical appli-
cations. Auvinet et al. [3] proposed a new method for calibrating multiple depth
cameras for body reconstruction using only depth information. Their algorithm is
based on plane intersections and the NTP protocol for data synchronization. The
calibration achieves good results: even if the depth error of the sensor is 10 mm,
the reconstruction error with 3 depth cameras is, in the best case, less than 6 mm.
However, they have to manually select the plane corners and, above all, they only
deal with depth sensors.

Another approach to solve the calibration problem for a network of cameras
and depth sensors, is the one proposed by Le and Ng [29]: they proposed to jointly
calibrate groups of sensors. More specifically, the groups were composed by a set of
sensors able to provide a 3D representation of the world (e.g. a stereo camera, an
RGB camera and a depth camera, etc.). First of all they calibrated the intrinsics
of each sensor, secondly they calibrated the extrinsic parameters of each group,
then they calibrated the extrinsic parameters of each group with respect to all the
others. Finally the calibration parameters were refined in one optimization step.
Their experiments show that this method not only reduces the calibration error,
but also requires a little human intervention. An advantage of having groups that
output 3D data is that the same calibration object can be used to calibrate a
group with respect to all the others, regardless of the sensor type. Also, a joint
calibration does not accumulate errors like a calibration based on sensor pairs do.
The main drawback of their approach is that they always need to group sensors
beforehand in order to have 3D data outputs.

Finally, Furgale et al. [18], recently developed a similar ROS package, Kalibr1,
that tackles the spatio-temporal calibration of multi-sensor systems composed of

1https://github.com/ethz-asl/kalibr

https://github.com/ethz-asl/kalibr
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cameras and an IMU. To the best of our knowledge, this is the work most similar
to ours, even though it does not deal with depth sensors.

5.2 Camera-only Network Calibration
Definition 5.1 (Network Calibration). Let S = {S1,S2 . . .SN} be a set of sen-
sors in a network. The calibration problem consists in finding, for each sensor
Si ∈ S, i = 1 . . . N , its pose WSi with respect to a common reference frame W,
namely the world.

To solve the calibration problem (Definition 5.1) for a network composed by
cameras, we use a checkerboard pattern. Firstly, we estimate the camera poses with
respect to a common reference frame with a direct method. Then, these poses are
refined taking advantage of all the data acquired, in an optimization step.

5.2.1 Pose Estimation
So, let C1 and C2 be two different cameras, with reference frame C1 and C2

respectively. Let k ∈ N be an acquisition step, i.e., a progressive number that is
incremented each time the checkerboard is moved to a different location and an
acquisition for every camera is triggered at the same instant, and let WB T(k) be the
checkerboard pose at step k. Then, if both cameras see the checkerboard, we can
compute C1

B T(k) and C2
B T(k) using (2.5).

Starting from these two poses (and the fact the the checkerboard is in the same
location), we can estimate the pose of one camera with respect to the other C1

C2T
with a closed formula

C1
C2T = C1

C2T
(k) = C1

B T(k) · C2
B T(k)−1

. (5.1)

Then, recalling that affine transforms can be chained
B
AT = B

XT · XAT ,

and that
B
AT = A

BT−1 ,

we can find a solution to our calibration problem for a network composed by N
cameras: we just need to estimate (or set) the pose WCi T of one camera Ci with
respect to the world reference frame W and move the checkerboard around until
every camera pose is computed, using any of the aforementioned equations.

To estimate the pose of a camera Ci with respect to the world reference frame
W , first of all we must know whether we need to define a world reference frameW in
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the environment or not. Actually, if it really does not matter where such reference
frame is, any camera reference frame Ci can be set as the world, that isW = Ci (or
equally WCi T = I4) for one i ∈ {1, . . . , N}. Otherwise the pose can be set manually:
W
Ci T = W for some transformation matrix W and i ∈ {1, . . . , N}; or estimated by
moving the checkerboard to the desired position and setting WB T(k) = I4, for some
k ∈ N.

At this stage we have good estimates of the sensor poses, however, due to errors
in the measurements, usually

C1
C2T

(k) 6= C1
C2T

(l)

for two different steps k and l. Therefore we must perform an optimization step
to refine the estimated camera poses, such that the error is reduced as much as
possible.

5.2.2 Optimization
Taking a step back to the acquisition part, we can organize the calibration data

in a matrix, like the one in Figure 5.2. Following the bundle adjustment approach
[57], we refine both the camera poses WCi T, i = 1 . . . N and the checkerboard poses
W
B T(k), k = 1 . . . K. Indeed, even if we perfectly know the pose of every camera
with respect to the world, the pose of a checkerboard B estimated at step k using
two different cameras, say Ci and Cj, is likely to be different:

W
Ci T

(k) · CiBT(k) 6= W
CjT

(k) · CjB T(k) .

To achieve a satisfying solution, a good candidate to be minimized is the repro-
jection error defined in (2.6).

Suppose the error on the corner estimation in the images provided by each
camera Ci is distributed as a Gaussian N (0, σ2

Ci
); typical values for σCi are 0.5 or

1. Then, the complete error function EC that let us refine the sensor poses is

EC ,
K∑
k=1

N∑
i=1

uik ·
1
σ2
Ci

· erCi

(
W
Ci T

−1 · WB T(k), BB, IB(k)
i

)
(5.2)

=
K∑
k=1

N∑
i=1

uik ·
1
σ2
Ci

·
∑

(r,c)∈IB

∥∥∥Ib(k)
i,r,c − rCi

(
W
Ci T

−1 · WB T(k) · Bbr,c
)∥∥∥2

,

where uik is an indication function equal to 1 if camera Ci sees the checkerboard
at step k (otherwise it is 0).
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Figure 5.2: Matrix view of the calibration data. Each row is associated to a camera
Ci and contains both the camera parameters KCi and dCi , and the camera estimated
pose WCi T. The columns are instead associated to the steps and contain the poses of the
checkerboard at every step k, namely WB T(k). A cell (i, k) contains the corners locations
(in pixels) IB(k)

i of the checkerboard at step k in the image provided by camera Ci, if
the checkerboard is visible.

5.2.3 Additional Constraints

In one of our first applications of this calibration algorithm, OpenPTrack (see
Section 5.6), we needed to calibrate a camera network in a big room against the
floor, i.e. extract the floor equation and set the world frame somewhere on it.
We decided to estimate the floor coefficients during the calibration procedure,
exploiting the fact that positioning a checkerboard on the floor would have allowed
us to define the plane equation as well as the world reference frame. However, since
the room was quite big and the checkerboard far from every camera, the results
were not satisfactory: the plane had often a non-negligible rotation with respect
to the real one. To overcome this issue, printing a bigger checkerboard was not a
viable solution. Instead, we imposed that two or more checkerboards were lying
on the same plane and added the geometrical constraints to the error model. In
fact, if we fix the plane π on which a checkerboard can move, the checkerboard
pose can be defined by a 2D transform P

BT2 with respect to the reference frame of
plane π, namely P .

So, let define a plane by means of its reference frame WP T, such that PX and
PY are on the plane and PZ is its normal, as depicted in Figure 5.4. The pose of
a checkerboard lying on π at step k is

W
B T(k) = W

P T · PBT(k)
2 , (5.3)
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Figure 5.3: Matrix view of the calibration data with a plane constraint WP T. The
columns associated to the checkerboards constrained to lie on the plane now contain the
checkerboard pose with respect to the plane PBT(k)

2 .

where the 2D transform P
BT(k)

2 is wrapped into a 3D one to perform the matrix
multiplication

P
BT(k)

2 =


cos(θ) − sin(θ) 0 tx
sin(θ) cos(θ) 0 ty

0 0 1 0
0 0 0 1

 .

We can now substitute (5.3) into (5.2) to refine both the plane and the checker-
board pose. An overview of the data matrix with the constraint added is depicted
in Figure 5.3.

5.3 Extension to a Depth Sensor-Camera Net-
work

5.3.1 Pose Estimation
In Section 5.2 we have presented a calibration procedure for networks composed

of cameras. Such procedure works well with cameras, but how can we calibrate a
network composed by both cameras and depth sensors?

A depth sensor D provides a point cloud reflecting the shape of the scene in
the sensor field of view. Obviously, we cannot directly estimate the checkerboard
pose using the checkerboard corners (as we did for calibrating a camera network)
because they are not visible in the depth images. Instead, we can exploit the 3D
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Figure 5.4: Reference frames of the plane π and a checkerboard B lying on it.

data to extract the pattern plane and perform a plane-to-plane calibration [58].
Provided we have already estimated the checkerboard pose WB T(k) at step k, we

can define the checkerboard plane Wπ(k)
B using three non-collinear corners. We can

estimate also the pattern plane Dπ(k)
B from the point cloud, using a RANSAC-based

[16] plane fitting algorithm. Then, let {k1, . . . , kn}, with n ≥ 3, be the intersection
between the steps in which depth sensor D sees the checkerboard and those in
which the checkerboard pose has been computed, and let the plane equations be
of the form nT · x− d = 0. Following [58], we define

WN ,
(
Wn(k1)

B . . .Wn(kn)
B

)T Wd ,
(
Wd

(k1)
B . . .Wd

(kn)
B

)T

DN ,
(
Dn(k1)

B . . . Dn(kn)
B

)T Dd ,
(
Dd

(k1)
B . . . Dd

(kn)
B

)T

and compute the depth sensor pose

W
D T =

(
W
D R W

D t
0T 1

)
as

W
D t =

(
WNT · WN

)−1
· WNT ·

(
Wd− Dd

)
,

W
D R = V ·UT ,
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where U · S ·VT is the SVD decomposition of DNT · WN.

5.3.2 Optimization
For what concerns the error function, we calculate it as a sort of distance

between the plane defined by the checkerboard Wπ(k)
B at step k, and the plane

fitted to the checkerboard depth data of sensors Dj, j = 1, . . . ,M , i.e. Djπ(k)
B . So,

let pπ(x) be the line-of-sight projection of a point x onto plane π as described
in Section 4.4.1, and let the error on the depth measurements of sensor Dj be
distributed as a Gaussian N

(
0, σ2

Dj
(z)
)
with mean 0 and variance dependent on

the depth value z (see Chapter 4). We define the error function ED as

ED ,
K∑
k=1

M∑
j=1

ujk ·
∑

(r,c)∈IB

1
σ2
Dj

(
Djz

(k)
r,c

) · ∥∥∥∥Djb(k)
r,c − pDjπ(k)

B

(
Djb(k)

r,c

)∥∥∥∥2
(5.4)

where
Djb(k)

r,c = W
DjT

−1 · WB T(k) · Bbr,c ,

and ujk is an indication function equal to 1 if sensor Dj sees the checkerboard at
step k (otherwise it is 0), and Djz(k)

r,c is the z component of Djb(k)
r,c .

5.4 ROS Package
The presented calibration approach has been implemented in C++ within the

ROS framework [42] and is available with an open source license in a GitHub repos-
itory: https://github.com/iaslab-unipd/calibration_toolkit. An example
of how to install the package and perform a calibration is reported in Appendix A.
The calibration procedure is based on the assumption that all the sensors are al-
ready calibrated, i.e. all their intrinsic parameters are known. For what concerns
cameras, it just needs the intrinsic parameters to be passed together with the im-
ages. For what concerns depth sensors, instead, the package expects the data it
receives to be already corrected, since an established way of correcting the data
does not exist yet.

5.4.1 Architecture
The main purpose of the here-presented package is to allow the calibration of all

the sensors (for now cameras and Kinect-like depth sensors) within a ROS network,
no matter where they are. That is, suppose to have a set of sensors distributed in
a PC network as in Figure 5.1, the typical approach for the calibration procedure

https://github.com/iaslab-unipd/calibration_toolkit
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Figure 5.5: Typical approach of network calibration algorithms. All the driver nodes
are directly connected to a central node that performs the computation. The bandwidth
usage is high.

Figure 5.6: Our approach to the network calibration procedure. The data provided by
a device are elaborated by a node on the same PC and only the necessary calibration
features are sent to the calibration node. Here, the thin lines that connect the master
node and the device nodes mean that the quantity of data over the network is limited,
with respect to the quantity of data of the typical approach (Figure 5.14).

is to develop a calibration node that grabs the data generated by all the sensors,
elaborate them and then estimate the rigid displacement of the sensors in the scene
(Figure 5.14).

This approach is clearly non-scalable: more sensors means more bandwidth yet
more computational power needed. To overcome this problem, we propose a differ-
ent, distributed, architecture that allows to both drastically reduce the bandwidth
usage and distribute the computational cost over the network: we separate the
data analysis from the calibration procedure. As depicted in Figure 5.6, there are
now two sorts of calibration nodes: device nodes and the master node. A device
node is responsible for elaborating the data provided by its device; it extracts the
corners from every image, creates a message and sends it to the master node that
executes the calibration procedure.
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Recalling that ROS device drivers typically stream data at a defined frame-
rate, with the proposed architecture we are able to work in a request-reply way.
It is the master node that asks for new data when needed. Note that, since ROS
service calls are blocking, the communication relies on the actionlib stack.

5.4.2 Device Node
Node Parameters

A device node is responsible for getting the data from a device and, upon re-
quest, elaborate and send the results back to the master node. We first distinguish
between the word device and sensor : a device is an item that can be connected to
a PC, while a sensor is the item whose pose will be estimated in the calibration
procedure. For example, a Kinect is a device composed by two different sensors:
the RGB camera and the IR camera/depth sensor.

From a ROS perspective, a device node subscribes to the image and/or depth
topics of the device sensors and keeps listening to an action topic until a request
from the master node arrives. When a request is received, the last images/clouds
are processed and the extracted calibration features are packed into a message and
sent back to the master.

To explain how to configure and run a device node, suppose we have to create
a launch file for a Kinect v1. We first need to set the name of the device and its
serial in case two or more Kinects are launched on the same PC:

<?xml version ="1.0"?>
<launch >

<arg name=" device_name " default =" kinect1 " />
<arg name=" device_serial " default ="#1" />

Then, to avoid conflicts between nodes launched from different PCs, we group
everything inside the namespace $ROS_PC_NAME:

<group ns="$( env ROS_PC_NAME )">

Now we include the launcher for the Kinect driver. The argument camera let
us define the namespace for all the topics published by the driver as well as the
reference frames in the Kinect messages: here we add the _driver suffix just to
avoid confusion.

<include file="$( find openni_launch )/ launch / openni . launch ">
<arg name=" camera " value="$( arg device_name ) _driver " />
<arg name=" device_id " value="$( arg device_serial )" />
<arg name=" publish_tf " value="false" />

</ include >
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The last node we need to add is our device node. The package multisensor_cali-
bration already provides the node as a binary called device_node. So, we rename
it to match our current device, paying attention that, for communication reasons,
the node name needs the suffix _node.

<node pkg=" multisensor_calibration " type=" device_node "
name="$( arg device_name )_node" output =" screen ">

We then define the Kinect sensors that we want to calibrate. They have to be
defined within the ~device namespace, in particular:

name – sets the device name, only for logging purposes;

sensors – defines the list of sensors to calibrate, it is divided into:

intensity – the sensors that will be treated as pinhole cameras;
depth – the sensors that will be treated as depth sensors;

<sensor> – sets, for each sensor defined in sensors:

frame_id – its unique frame id;
error – the error polynomial σD(z) [depth sensors only], where:

min_degree/max_degree – the minimum and maximum degree of the
polynomial (in the example below σD(z) = c0 · z0 + c1 · z1 + c2 · z2);

coefficients – the polynomial coefficients ci;

transforms – defines the known transforms between the sensors:

<sensor> – the child sensor;
parent – the parent sensor, that is, the frame to which the transform

is defined;
translation – the translation between the two sensors;
rotation – the quaternion defining the rotation between the two sen-

sors.

<rosparam param=" device " subst_value ="true">
name: "$( arg device_name )"
sensors:

intensity: ["rgb"]
depth: ["depth"]

rgb:
frame_id: "/$( env ROS_PC_NAME )/$( arg device_name )/rgb"

depth:
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frame_id: "/$( env ROS_PC_NAME )/$( arg device_name )/
depth"

error:
min_degree: 0
max_degree: 2
coefficients: [0.0 , 0.0, 0.0035]

transforms:
depth:

parent: "rgb"
translation: {x: -0.025 , y: 0.0, z: 0.0}
rotation: {x: 0.0, y: 0.0, z: 0.0, w: 1.0}

</ rosparam >

Finally, we have to connect the device node to the topics published by the driver.
We use the remapping feature of ROS to set the sensor nodes listen to the right
topics. Both for depth sensors and cameras, the default topics they listen to are of
the form ~/device/<sensor>/<topic type>, where <topic type> is image for
either images or depth images, camera_info for the camera calibration parameters
and cloud for the point clouds:

<remap from="~ device /rgb/image"
to="$( arg device_name ) _driver /rgb/ image_color "/>

<remap from="~ device /rgb/ camera_info "
to="$( arg device_name ) _driver /rgb/ camera_info "/>

<remap from="~ device /depth/cloud"
to="$( arg device_name ) _driver /depth/ points " />

<remap from="~ device /depth/ camera_info "
to="$( arg device_name ) _driver /depth/ camera_info " /

>
</node >

</group >
</ launch >

5.4.3 Master Node
Node Parameters

Let’s take a look to the launch file for the master node to see the parameters
it needs to run. The launch file for the master node is simple:

<?xml version ="1.0"?>
<launch >

<arg name=" network_file " default ="$( find
multisensor_calibration )/conf/ network .yaml" />

<arg name=" checkerboard_file " default ="$( find
multisensor_calibration )/conf/ checkerboard .yaml" />

<group ns="$( env ROS_PC_NAME )">
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<node pkg=" multisensor_calibration " type=" master_node "
name=" master_node " output =" screen ">

<param name=" network_file " value="$( arg network_file )" />
<rosparam command ="load" file="$( arg checkerboard_file )"

/>
</node >

</group >
</ launch >

Firstly, we need to set the file containing the network description (network_file
parameter) to let the master node know which are the sensors that are being
calibrating. The network configuration is expected to be in a yaml file of the
form:

# Network configuration
network :

- pc: "<ROS_PC_NAME_1 >"
devices : ["<DEVICE_NAME_1 >", "<DEVICE_NAME_2 >"]

- ...
- pc: "<ROS_PC_NAME_N >"

devices : ["<DEVICE_NAME_1 >", ..., "<DEVICE_NAME_N >"]

typically stored in the multisensor_calibration/conf directory of the master
PC. Here, the pc parameters must match the names previously given to the PCs
via the export command (see Appendix A), while the strings in the devices array
are the device names. They have to match the first part of a device node, that is,
all but the suffix _node. Note that each device node is expected to be reachable
in the network using the PC name as a namespace. As an example, the device
node camera that runs in the PC named Gemini, is expected to be a node called
/Gemini/camera_node.

The second parameter is checkerboard_file. It must be a yaml file and
contain the checkerboard pattern specifications:

# Checkerboard configuration
checkerboard :

cols: <internal corners along the x dimension >
rows: <internal corners along the y dimension >
cell_width : <cell size along the x dimension in meters >
cell_height : <cell size along the y dimension in meters >

Because of symmetry (see Figure 5.7), it is mandatory that one of cols and rows
is odd and the other even, no matter which. Otherwise two different sensors
can assign to the same checkerboard two different reference frames, invalidating
the calibration procedure. In fact, according to our experience, the OpenCV [9]
corner detector starts enumerating the corners from one of the black corner-cells
(if present), in row-major order. We rely on this order to set the reference frame
of the checkerboard: the X -axis along the columns and the Y-axis along the rows.
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(a) A 5× 6 checkerboard.
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(b) A 5× 7 checkerboard.

Figure 5.7: The reference frame of a checkerboard is located internally with respect
to one of the black corner-cells (if present), according to the checkerboard size, that is,
with the X -axis along the columns and the Y-axis along the rows. (a) The reference
frame of a 5×6 checkerboard has only one possible location. (b) here, due to a rotational
symmetry, the reference frame of the 5×7 checkerboard can be positioned in two different
locations, leading to pose estimation problems.

Services and Messages

It is possible to interact with the master node with messages and services.
The most important topic the node is listening on is ~acquisition. Publishing a
message on such topic would result in a data acquisition. Note that, the message
queue on the node is set to 1, so even if the node receives multiple requests while
still elaborating previous data, only the last one will be taken into account. Note
also that rostopic pub permits to publish messages at a defined rate with the flag
-r <rate>. Users must pay attention to use such feature since the sensors may
be not perfectly synchronized. In fact, if the data are acquired while the pattern
is still moving, the resulting calibration might be wrong.

The node is also listening to an action topic named ~action. It is used to send
special calibration commands in form of strings. For now the only two commands
accepted are begin plane and end plane. The former command tells the cali-
bration algorithm that, from that instant on, the checkerboards are all lying on
the same plane (see Section 5.2.3). The latter, instead, makes the algorithm go
back to its standard behavior.

Finally, to get the results of the calibration, the master node offers a service
called ~get_results. It can be invoked with an empty request and returns a vector
of messages of type calibration_msgs/ObjectPose. In the future we envision to
improve this service with some options like:
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• ask for the poses of checkerboards and/or planes;

• set a fixed transform between the world and a sensor in the request, the
response will be filled with the poses transformed according to it.

5.5 Experiments
We tested our algorithm both in simulation and in real-world scenarios. In the

latter case, we also compared the results with those obtained with a state-of-the-art
calibration toolbox.

5.5.1 Simulation
We simulated two different scenarios:

1. N aligned Kinects (camera + depth sensor) at a fixed distance (Figure 5.8(a)).

2. N Kinects in a circle of a known radius (Figure 5.8(b)).

We supposed that the location of a corner b in an image is estimated with a
normally distributed error with mean µC = 0 and standard deviation σC = 0.5
pixels along both axes. For each pixel (u, v) in the depth image with a ground
truth depth value d, we assumed the error to be normally distributed with mean
µD = 0 and a standard deviation σC(z) = 0.0035 · z2 meters2.

At the end of every simulation we computed both the translation error

etra ,
1

2 ·N − 1

2·N∑
i=2
‖ti − t̂i‖ , (5.5)

and the rotation error

erot ,
1

2 ·N − 1

2·N∑
i=2

2 · arccos(|qi−1 · q̂i|) . (5.6)

ti and qi are respectively the estimated translation and rotation (expressed as a
quaternion) of sensor i while t̂i and q̂i are the real ones. All the sensor poses are
referred to sensor 1 that we considered the world reference frame. Recalling that
each Kinect is composed by a camera and a depth sensor, we had 2 ·N − 1 sensors
overall for which to calculate the two errors.

Figure 5.9 shows the translation error etra computed both varying the number
of sensors N and the distance d between them. As we expected, the closer the

2http://wiki.ros.org/openni_kinect/kinect_accuracy

http://wiki.ros.org/openni_kinect/kinect_accuracy
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(a) N aligned Kinects at a fixed distance.

(b) N Kinects in a circle of a fixed radius.

Figure 5.8: The two scenarios we simulated for testing the calibration procedure. The
checkerboard was moved along a defined path and rotated of a random angle about a
random axis after each translation.
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Figure 5.9: Translation error etra computed both varying the number of sensors N
and the distance d between them. Continuous lines report results of tests with 60 · N
checkerboards, while dashed lines report results of tests with 30 ·N checkerboards.

sensors, the better the calibration. In fact, when the distance is small there are
more checkerboards in the overlapping field of view of neighboring sensors, and
therefore there are more (strong) constraints for the pose estimation.

In Figure 5.10, instead, the translation error etra of the sensor poses when
sensors are in a circle is shown. In this case, an increase in the number of sensors
makes the error decrease, while an increase in the radius of the circle makes the
error increase. Results about the rotation error are not reported as they are very
small, usually less than 0.1°.

5.5.2 Real Tests
Quantitative Results

To prove the validity of our approach, we also performed some tests in a real
scenario. We measured the real poses of the sensors by means of a motion capture
system (Figure 5.11) and compared these measures with the pose estimations ob-
tained with our package and with the ones obtained with a state-of-the-art Matlab
toolbox [61]: amcctoolbox. The comparison is made without taking into account
the depth sensors, since the amcctoolbox is not meant to deal with such kind
of sensors. Moreover it’s worth to notice that such package estimates both the
intrinsic and the extrinsic parameters of all the cameras, while our does not.

Results from 6 different test scenarios are provided in Table 5.1. Test 1, 2 and
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Figure 5.10: Translation error etra computed both varying the number of sensors N
and the radius r of the circle.

3 are grouped together since they have been performed on the same scene, same
for test 4 and 5.
For each test the table reports:

1. steps: The number of acquisition steps.

2. amcc: The average translation error (5.5) after the calibration with the
amcctoolbox.

3. our_d: The average translation error after the calibration with our algo-
rithm using as intrinsic parameters the default ones provided by ROS.

4. our_a: The average translation error after the calibration with our algo-
rithm using as intrinsic parameters the ones provided by amcctoolbox.

5. our_ba: The average translation error after the calibration with our algo-
rithm using as intrinsic parameters the best ones provided by amcctoolbox
(actually, the ones calculated during test 1).

6. mutual: The average translation error between the two calibrations with
the same intrinsic parameters.

Looking at the results, we can state that when using the same intrinsic parame-
ters, the camera poses estimated by the two algorithms do not differ that much,
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Figure 5.11: One of the test scenarios. Four markers are placed on each kinect in order
to recover their locations by means of a motion capture system.

Table 5.1: Comparison between the calibration parameters estimated with amcc-
toolbox and with our package. Highlighted are the best results obtained for each
configuration.

translation error [mm]
test steps amcc our_d our_a our_ba mutual
1 130 16.755 16.230 13.205 13.205 11.5761
2 106 10.371 17.592 16.493 13.542 7.5705
3 104 10.319 18.118 12.512 13.949 6.0740
4 112 45.938 29.029 50.483 32.269 11.0807
5 101 37.628 28.777 43.043 32.489 8.3238
6 101 26.739 22.744 26.253 27.474 7.4885
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Figure 5.12: The robotic platform used in our calibration test. At the bottom you can
see the laser range finder on the pan-tilt unit, at the top the omnidirectional camera.

the difference between the two is more or less 1 cm (mutual). Actually, the re-
sults highly depend on the intrinsic parameters estimation: keeping them constant
(our_d and our_ba) makes the results more stable.

What makes the difference between our algorithm and the others, is the compu-
tational time On a modern quad-core laptop3, we were able to perform the whole
calibration procedure during the data acquisition: 2 minutes in total. We spent
more than 20 minutes to perform the calibration with the amcctoolbox.

Qualitative Results

During the development of the toolbox, several real tests were made with dif-
ferent sensor types (Microsoft Kinect, Asus Xtion Pro Live, standard and omni-
directional cameras, etc.). One of the most challenging test we performed was
the calibration between an actuated laser range finder (see Chapter 3) and an
omnidirectional camera. We arranged a robotic platform (Figure 5.12) with a
Sick LMS-100 laser range finder mounted on a Directed Perception pan-tilt unit
(PTU46) and a omnidirectional camera above. We then performed our calibration
and obtained the results visible in Figure 5.13. Despite the number of images and

3CPU: Intel i7-4700MQ, RAM: 12 GB.
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(a) Omnidirectional image.

(b) 3D scan obtained from the actuated laser.

(c) Fusion of RGB and depth data.

Figure 5.13: Results of the calibration between a laser range finder and an omnidirec-
tional camera. RGB (a) and depth (b) data are fused together to form (c).
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Figure 5.14: The OpenPTrack logo.

3D scans was around 10, the results were really satisfactory.

5.6 OpenPTrack
OpenPTrack [38] is an open source project launched in 2013 to create a scalable,

multi-camera solution for person tracking.
With the advent of commercially available consumer depth sensors, and con-

tinued efforts in computer vision research to improve multi-modal image and point
cloud processing, robust person tracking with the stability and responsiveness nec-
essary to drive interactive applications is now possible at low cost. But the results
of the research are not easy to use for application developers.

The creation of OpenPTrack was sparked by the belief that a disruptive project
was needed for artists, creators and educators to work with robust real-time person
tracking in real-world projects.

OpenPTrack is developed in collaboration with UCLA REMAP4 and Open
Perception5. The project contains numerous state-of-the-art algorithms for RGB
and/or depth tracking, and has been created on top of ROS, to support the addi-
tion and removal of different sensor streams on-line.

The network geometry in OpenPTrack is estimated with a user-friendly calibra-
tion procedure based on the one presented in this chapter. The only difference with
the here-presented calibration is that only the intensity data is used to estimate
the sensor poses, i.e. the depth sensors are not calibrated.

This project can be seen as a testbed for both the software architecture and
algorithm we described in this chapter.

5.6.1 Calibration Procedure
The calibration procedure is meant to work in networks composed of Microsoft

Kinect (v1 and v2), Mesa SwissRanger and stereo cameras. Unlike Kinect, the
SwissRanger is not coupled with a color camera. For this reason, its intensity
images are used for the calibration. In Figure 5.15, color images from three Kinect

4http://remap.ucla.edu/
5http://www.openperception.org/

http://remap.ucla.edu/
http://www.openperception.org/
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Figure 5.15: Extrinsic calibration results for a network composed of three Kinect v1
(images on the left) and three SwissRangers SR-4500 (images on the right).

v1 and equalized intensity images from three SR-4500 are shown together with the
output of the network calibration procedure. The pose of every sensor is visualized
as a reference frame and is positioned with respect to the ground reference frame,
i.e. the world.

Another example of calibration performed using the OpenPTrack procedure is
visible in Figure 5.16. In this case the network is composed of ten sensors: seven
Kinect v1, two SR-4500 and a stereo pair.

5.7 Conclusions
We have presented a ROS package that lets users calibrate networks composed

by cameras and depth sensors. A checkerboard pattern is used to estimate the
relative poses between sensors and everything is optimized with a state-of-the-art
non-linear least squares solver [1]. The choice of using ROS as the developing
framework gives our implementation lots of advantages with respect to, for exam-
ple, Matlab-based toolboxes [61]. With ROS, the data provided by the sensors can
be used immediately to perform an online calibration and, especially, ROS allows
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Figure 5.16: Calibration results with ten sensors: seven Kinect v1, two SR-4500 and
a stereo pair.

the architecture to be easily distributed.
The proposed approach has been tested both in simulation and in real world

scenarios and, provided the intrinsic parameters of the sensors are well estimated,
the results are comparable to those given by a state-of-the-art toolbox. One of
the main drawbacks of the presented approach is that it highly depends on the
intrinsic parameters provided.

From the implementation point of view, we think that in the future, it will
be really useful to provide a tool to assess the quality of the obtained calibration,
in order to let users verify if the obtained results are reliable or not. Another
important improvement will be at code level. In our idea, the package will be part
of a calibration ecosystem for ROS, where contributors can implement their own
calibration algorithms or contribute to the existing ones by adding, for example,
new sensors. Hence, it will be necessary to define some standard interfaces be-
tween nodes and classes to lower the entry barrier for new developers and let the
ecosystem grow.
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Chapter 6

Conclusions

Robots are coming. What we – developers and researchers – can do, is to
enhance their reliability and world awareness by creating novel applications and
algorithms, and by improving the existing ones. In particular, since robots need to
interact with the environment and with people, they need to perfectly know where
they are and what is happening around them. To this end, applications like SLAM
and object/people tracking become fundamental. Such applications are typically
based on vision and depth sensors such as laser scanners and depth cameras: high
quality data is mandatory to have good results.

In Chapter 3 we proposed a novel, minimal solution to recover the axis of
rotation of an actuated 2D laser range finder. An actuated 2D laser scanner allows
us to have a reliable 3D view of the environment at a low cost. We showed that
4 checkerboards are sufficient to obtain a good 3D reconstruction of the scanned
scene and, in Chapter 5, that it is possible to combine these data with a color
image to obtain an RGB-D cloud of the whole scene.

In Chapter 4 we described a calibration procedure for Kinect-like depth sensors.
We firstly analyzed the error on the depth measurements of such kind of sensors
and then derived a two-step algorithm for reducing this error. In the first step, a
flat wall is used to compute, for each pixel, an undistortion function to recover the
real shape of the framed scene. In the second step, instead, an RGB camera and
a checkerboard are used in conjunction with the depth sensor to estimate both a
correction map for the wrong average depth and the relative pose between camera
and depth sensor. Tests against the real shape (a plane) and distance (measured by
means of two laser meters), showed that the described approach is able to correctly
deform a point cloud and make it match the expected one. Moreover, the results
of the pose estimation were coherent with the factory-provided information and
similar to those of other state-of-the-art approaches.

The main drawback of the presented approach is that a large flat wall is needed
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to compute the correction maps. As soon as possible we will compare our calibra-
tion results with the ones obtained with similar applications. In the future we can
envision to perform the calibration using natural scenes as in [56]. Finally, it is
worth to notice that the presented algorithm has been released as an open source
ROS package1.

In Chapter 5 a calibration package for networks of depth sensors and cam-
eras is described. The main novelties of this package are its distributed architec-
ture, that allows the calibration of a dozen sensors (at least) in real-time, and a
non-linear-optimization-based continuous refinement of the estimated sensor poses.
Real-world as well as simulation tests demonstrated that the presented approach
correctly estimates all the sensor poses. The main drawback is that camera and
depth sensor intrinsic parameters need to be estimated beforehand to let the sys-
tem work. The package has been released as open source in a GitHub repository2

and as part of a bigger project, OpenPTrack3, an open source project to create
a scalable, multi-camera solution for person tracking. At the moment, the pre-
sented application deals with standard cameras and Kinect-like depth sensors. In
the future we envision to improve its capabilities by adding new sensors: 2D laser
scanners (for which a new calibration algorithm has to be implemented), ToF
cameras and, why not, robot-specific sensors such as IMUs.

In conclusion we can state that the here-presented works have demonstrated
that it is possible to improve the data provided by depth sensors, even though
much needs to be done still.

1https://github.com/iaslab-unipd/rgbd_calibration
2https://github.com/iaslab-unipd/calibration_toolkit
3http://openptrack.org

https://github.com/iaslab-unipd/rgbd_calibration
https://github.com/iaslab-unipd/calibration_toolkit
http://openptrack.org
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Appendix A

Walk-through: Calibration of a
Depth Sensor-Camera Network

A.1 Package Dependencies

The calibration package is freely available cloning the GitHub repository:

https://github.com/iaslab-unipd/calibration_toolkit.

The package is developed in C++11 and apart from ROS [42], the main depen-
dencies of the software are Eigen 3.2 [21], OpenCV 2.4 [9], PCL 1.7 [44] and Ceres
Solver 1.10 [1], a library to solve non-linear least squares problems.

Most of these libraries are available in the Ubuntu 14.04 repositories and easily
installable. Unfortunately, Ceres Solver 1.10 is missing. Actually, in Ubuntu 14.04
it is possible to install version 1.8 of Ceres Solver, contained in the apt package
libceres-dev, however, because of some bugs (in the library), our code does not
compile. To overcome this issue, we have prepared a script to download the latest
tested version and install it. Just type

roscd calibration_toolkit /../ scripts
./ install_ceres .sh

on a terminal, and Ceres Solver as well as its dependencies will be installed on
your system.

Before beginning with the example, we need to recall that the algorithm as-
sumes that the intrinsic parameters of all the sensors have been already estimated,
and expects that each camera driver publishes its own calibration parameters
within a sensor_msgs/CameraInfo message.

https://github.com/iaslab-unipd/calibration_toolkit
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A.2 Environment Configuration
In order to allow communication between nodes in different computers, the

environment variable ROS_MASTER_URI on every client PC must be set to the IP
address of the PC where the master node is launched, namely the master PC.
Additionally, the ROS_IP and ROS_PC_NAME environment variables must be set.
This can be done temporarily by typing

export ROS_MASTER_URI =http ://< MASTER_IP >:11311/
export ROS_IP =<MACHINE_IP >
export ROS_PC_NAME =< MACHINE_NAME >

on a terminal. Note that the PC names assigned can be whatever the user wants,
not necessarily the real names of the PCs. To set them definitively, they can be
appended to the .bashrc file in the user’s home folder. As an example:

echo " export ROS_MASTER_URI =http ://192.168.1.1:11311/
export ROS_IP =192.168.1.5
export ROS_PC_NAME = Phoenix " >> ~/. bashrc

A.3 Calibration of a Network of Two Cameras
Suppose that all the PCs are configured as explained in Section A.2, and that

we want to calibrate a network of two cameras connected to two different PCs
that are called, respectively, Phoenix and Gemini. The multi-sensor calibration is
performed by running a master node in the master PC, in our case Lyra, and a
device driver in every PC attached to a device (one driver node for each device).
First of all, we have to run the ROS drivers for all our devices. As an example,
for a PointGrey camera, type on a terminal:

roslaunch pointgrey_camera_driver camera . launch

Then, we have to wrap these drivers in our calibration environment so that they
can communicate with the master node in Lyra. To this aim, we run on both
Phoenix and Gemini:

roslaunch multisensor_calibration camera_node . launch \
camera_name := camera image_topic :=/ camera /image \
camera_info_topic :=/ camera / camera_info

where image_topic and camera_info_topic are the real topics on which the
camera drivers publish their data. If everything is fine, we will see in our terminal:

[/ Gemini / camera_node ] All messages received .
[/ Gemini / camera_node / get_device_info ] Service started .
[/ Gemini / camera_node / extract_checkerboard ] Action server

started .
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At this point, Phoenix and Gemini are working as expected: we can move to
Lyra. We create a file called network.yaml in the directory multisensor_cal-
ibration/conf, open our favorite text editor, and fill the file with the names of
two PCs and the correspondent cameras as below:

# Network configuration
network :

- pc: " Phoenix "
devices : [" camera "]

- pc: " Gemini "
devices : [" camera "]

Then, we define the calibration pattern, i.e. the checkerboard, that we will use
during the calibration procedure. We create a file named checkerboard.yaml in
the directory multisensor_calibration/conf and fill it with our checkerboard
parameters:

# Checkerboard configuration
checkerboard :

cols: 6
rows: 5
cell_width : 0.12
cell_height : 0.12

We can now start the calibration procedure. We type:
roslaunch multisensor_calibration master_node . launch

on a terminal. If all the nodes are launched correctly we’ll have an output similar
to the one below:

[/ Lyra/ master_node ] Connected to [/ Phoenix / camera_node /
get_device_info ] service .

[/ Lyra/ master_node ] Connected to [/ Gemini / camera_node /
get_device_info ] service .

[/ Lyra/ master_node ] Connected to [/ Phoenix / camera_node /
extract_checkerboard ] action server .

[/ Lyra/ master_node ] Connected to [/ Gemini / camera_node /
extract_checkerboard ] action server .

[/ Lyra/ master_node ] Getting device infos ...
[/ Lyra/ calibration ] Sensor [/ Phoenix / camera ] added.
[/ Lyra/ calibration ] Sensor [/ Gemini / camera ] added.
[/ Lyra/ master_node ] Initialization complete .

We can then start the data acquisition phase: we take the checkerboard and move
it around letting all the sensors see it. To acquire the images from every sensor,
we publish an empty message on the topic /Lyra/master_node/acquisition:

rostopic pub /Lyra/ master_node / acquisition std_msgs /Empty -1
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Note that ROS let us publish a message at a fixed rate, we just need to substitute
-1 with the desired rate -r <rate>. In this case, we must pay attention not to
move the checkerboard too quickly, to avoid blur and calibration errors due to the
non perfect time-synchronization of the sensors.

We can monitor the whole calibration procedure via Rviz (Figure A.1). It is
sufficient to set the world frame as the fixed frame, add the tf view and a marker
view on topic /Lyra/master_node/markers and every time the checkerboard is
detected or a sensor pose is estimated we will see it on the screen. In Figure A.1
some screenshots acquired during the calibration are shown. Before terminating
the calibration, we position the checkerboard on the floor and publish:

rostopic pub /Lyra/ master_node / action std_msgs / String "begin
plane" -1

From now on, the calibration algorithm assumes that all the checkerboards are
lying on the same plane (see Section 5.2.3). We perform some acquisitions with
the checkerboard lying on the floor and then publish an end plane instruction:

rostopic pub /Lyra/ master_node / action std_msgs / String "end
plane" -1

Finally, to get the results of the calibration, we use the service get_results offered
by the master node. On a terminal we run:

rosservice call /Lyra/ master_node / get_results

and get the estimated poses, similar to the ones below:
poses:

- frame_id : "/world"
child_frame_id : "/ Gemini / camera "
pose:

position : {x: 0.0, y: 0.0, z: 0.0}
orientation : {x: 0.0, y: 0.0, z: 0.0, w: 1.0}

- frame_id : "/world"
child_frame_id : "/ Phoenix / camera "
pose:

position : {x: 1.12064 , y: 0.321081 , z: 0.565662}
orientation : {x: 0.0471913 , y: -0.377825 , z: -0.0340694 ,

w: 0.924046}
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(a) First sensor visualized in Rviz with the checkerboard.

(b) Second sensor visualized in Rviz with the checkerboard.

(c) Plane visualized in Rviz (the checkerboard is not visualized).

Figure A.1: Screenshots acquired during the calibration procedure. (a) As soon as one
sensor detects the checkerboard pattern, it becomes part of the tf tree and its pose is
published. (b) Then, every sensor that sees the checkerboard is added to the tree. (c)
If the program is asked to estimate a plane, its pose is published and can be visualized
using Rviz.
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