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3. Numéraire invariance 86

4. Option pricing 88

5. Expansions 89

6. Simultaneous calibration of the USD/EUR/JPY triangle 91

7. Conclusions 94

8. Appendix A: Proofs 94

9. Images and Tables 103

Chapter 5. The Wishart case 119

1. Basic definitions and assumptions 119

2. Wishart-based exchange model 119

3. Risk neutral probability measures 120

4. Features of the model 122

5. Option pricing 125

6. Expansions 126

7. Calibration to market data 128

8. Conclusions 129

9. Proofs 130

10. Images and Tables 138

Bibliography 143

Bibliography 147



Prefazione

I mercati finanziari sono caratterizzati da un crescente livello di complessità. Gli ultimi decenni hanno

visto la comparsa di nuove asset classes, come ad esempio le materie prime o la volatilità, e l’introduzione

di nuovi prodotti finanziari sempre più complessi. Questi nuovi strumenti sono caratterizzati o da dipen-

denze non banali dai movimenti di mercato di un singolo sottostante, oppure dalla dipendenza simul-

tanea da più titoli primari. Ciò evidenzia come il crescente grado di complessità nei mercati finanziari

sia ascrivibile a due fenomeni naturali: l’introduzione di nuovi strumenti volti a soddisfare le esigenze

di investitori via via più esperti, o il ruolo crescente giocato dal co-movimento di entità finanziarie. In

particolare, lo studio dei movimenti congiunti di entità finanziarie, con particolare riferimento alle re-

centi crisi finanziarie, risulta di particolare importanza. Le recenti turbolenze finanziarie possono essere

pensate anche come dei fallimenti nell’ambito del risk-management, dovuti prevalentemente ad un in-

sieme di pratiche di mercato prive di reale fondamento, che si sono tradotte spesso nella sottostima del

rischio implicito in determinate strutture complesse. Queste pratiche di mercato discutibili sembrano

prevalentemente di due tipi: sottostima della possibilità di osservare valori estremi di variabili aleato-

rie da una parte, studio carente dei movimenti congiunti delle variabili stesse dall’altra. Dal punto di

vista della gestione del rischio, i campi coinvolti sono la teoria dei valori estremi e le copule, si vedano

McNeil et al. (2005), Embrechts et al. (1997).

Se da un lato la crisi sottolinea determinate pratiche di mercato infondate applicate dall’industria fi-

nanziaria, dall’altro anche i ricercatori nell’ambito della finanza matematica dovrebbero trarre alcuni

insegnamenti dalla situazione attuale. Maggiore energia dovrebbe essere investita nella ricerca di mod-

elli in grado di descrivere portafogli di grandi dimensioni o fattori di rischio multi-fattoriali. Questa tesi

vuole rappresentare un passo in questa direzione.

In questo lavoro saranno introdotti nuovi e promettenti modelli, in un contesto multi-fattoriale o in pre-

senza di più sottostanti. Nell’opinione dell’autore questi modelli costituiscono dei candidati interessanti

per applicazioni a livello industriale. L’elevato grado di trattabilità analitica di questi modelli è dovuto

alla particolare classe di processi stocastici che si è scelto di impiegare che è quella dei processi (espo-

nenzialmente) affini, i quali costituiscono un insieme di processi Markoviani per i quali la funzione

caratteristica può essere scritta in una forma molto esplicita.

Verranno impiegati processi affini a valori in due spazi, lo spazio ”canonico” Rn≥0 × Rm, considerato

in Duffie et al. (2003), e il cono delle matrici d × d semidefinite positive, che è stato caratterizzato in

Cuchiero et al. (2009). La maggior parte dei modelli sarà sviluppata sotto quest’ultima assunzione sullo

spazio.

Il principale esempio che verrà considerato è il processo di Wishart, un processo puramente diffusivo a

valori in S+
d che può essere visto come l’analogo matriciale del classico processo square root abitual-

mente utilizzato nelle applicazioni finanziarie. Il processo di Wishart è stato introdotto in Bru (1991)

dove viene costruito a partire dal quadrato di moti Browniani matriciali e in seguito, nella sua forma più

generale, come quadrato di processi Ornstein-Uhlenbeck matriciali.
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x PREFAZIONE

Negli ultimi anni si è assistito all’introduzione di numerosi modelli basati su questo tipo di processo,

prevalentemente in quanto matrici semidefinite positive emergono naturalmente in finanza, ad esempio

sotto forma di matrici di varianze e covarianze, come nell’ambito dell’ottimizzazione di portafoglio. Al-

tri esempi di processi appartenenti a questa classe sono dei processi composti di Poisson aventi intensità

costante e distribuzione dei salti con supporto dato da S+
d . Nella presente tesi vengono proposti diversi

contributi alla letteratura sui processi affini e le loro applicazioni in finanza matematica.

Nel Capitolo 1 viene considerato il processo di Wishart e viene proposta una generalizzazione dei risul-

tati di Bru in merito alla trasformata di Fourier/Laplace del processo. Test numerici mostrano l’elevato

grado di accuratezza del nuovo approccio, che viene confrontato con gli approcci esistenti in letteratura.

La seconda parte della tesi è dedicata a modelli per il mercato dei tassi. Nel capitolo 2 viene presentato

un modello per il tasso a breve mosso dal processo di Wishart, inizialmente proposto da Grasselli and

Tebaldi (2008) e in seguito analizzato da Buraschi et al. (2008) e Chiarella et al. (2010) rispetto a

questioni quali i fatti stilizzati nell’ambito del mercato dei tassi e la scelta del premio al rischio. Il

contributo della tesi in questo ambito è duplice: viene introdotta una nuova formula per il prezzaggio

dei titoli di puro sconto e viene inoltre presentato un insieme di condizioni sufficienti tali da garantire che

il modello replichi determinate forme della struttura a termine dei tassi. La dimostrazione è ispirata alle

tecniche introdotte in Keller-Ressel and Steiner (2008), ottenute sotto l’assunzione che il tasso a breve

fosse descritto da un processo affine scalare. Il nuovo risultato non fornisce una tassonomia completa

delle curve che possono essere replicate, tuttavia può essere utile in sede di calibrazione del modello in

quanto è possibile specificare dei vincoli sullo stato iniziale del processo, tali che il modello replichi la

forma della curva osservata sul mercato. Viene infine proposta un’analisi dell’impatto dei parametri del

modello sulla struttura a termine dei tassi, fornendo un buon livello di intuizione.

Nel capitolo 3 viene esteso il modello di Keller-Ressel et al. (2009) per la valutazione di caps floors

e swaptions in un contesto multi-fattoriale. Ciò non implica semplicemente la proposizione di un

nuovo modello, bensı̀ di un’intera classe di possibili modelli, dal momento che la costruzione generale

dell’approccio può essere effettuata per qualsiasi processo a valori nel cono delle matrici strettamente

definite positive. Ciò significa che possono essere analizzati modelli Libor puramente diffusivi, pura-

mente a salti oppure diffusivi con salti. Per illustrare la metodologia, particolare attenzione è riservata al

modello Libor di Wishart. La nuova metodologia sembra interessante in quanto scevra dai problemi che

caratterizzano gli approcci tradizionali dei modelli di mercato Libor. A titolo di esempio si ricorda la ben

nota inconsistenza tra i modelli di mercato Libor e Swap. Dal momento che la grandezza di riferimento

è il rapporto di prezzi di titoli di puro sconto è possibile esprimere entrambi i problemi di valutazione

attraverso questo rapporto, evitando cosı̀ l’assunzione sin troppo semplicistica che il tasso swap sia

mosso da un processo scalare, che non tiene conto di rilevanti fenomeni correlazione. Grazie alla buona

trattabilità analitica dei dei processi affini in S++
d , viene presentata una formula di valutazione semi-

chiusa per i caplet. Per quanto concerne le swaptions, si mostra che è possibile applicare l’espansione di

Edgeworth come in Collin-Dufresne and Goldstein (2002) , che permette di approssimare le probabilità

di esercizio coinvolte nella formula di valutazione. Vengono presentati degli esperimenti numerici che

consistono nello studio delle superfici di volatilità generate dal modello Libor di Wishart, dando cosı̀

una prima dimostrazione delle potenzialità dell’approccio.

La terza e ultima parte della tesi è dedicata al mercato dei tassi di cambio. Si tratta di un mercato molto

liquido e di grandi dimensioni, dove la descrizione delle correlazioni è di fondamentale importanza dal

momento che il prodotto/la frazione di due tassi di cambio è ancora un tasso di cambio. Lo scopo

della terza parte è fornire un’estensione del modello classico di Garman and Kohlhagen (1983), per la
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valutazione di opzioni europee in presenza di volatilità stocastica. Vengono proposti due modelli: il

capitolo 4 introduce un modello di Heston multi-fattoriale teoricamente coerente con relazioni triango-

lari tra tassi di cambio. In primis il focus è sui tassi di cambio rispetto ad un numerario universale (che

potrebbe essere l’oro, a titolo di esempio), in seguito i tassi di cambio tra le valute sono costruiti come

rapporti o prodotti a partire da questi tassi di cambio base. Cosı̀ procedendo la struttura del modello è

modulare e consente pertanto la valutazione di un intero book di derivati sui tassi, indipendentemente

dal numero di valute coinvolte. Il modello di Heston multi-fattoriale è caratterizzato dalla presenza

di uno skew e da una matrice di varianze e covarianze entrambi stocastici. La presenza di più misure

risk-neutral, legate ai diversi paesi, richiede precise relazioni tra i parametri del modello nelle differenti

economie. Tale aspetto viene completamente chiarito. Nuovamente, grazie alle proprietà dei processi

affini, viene derivata una formula chiusa per la trasformata di Fourier/Laplace del tasso di cambio log-

aritmico. Inoltre, vengono presentate delle espansioni asintotiche che forniscono un’alternativa veloce

per la calibrazione del modello limitatamente a maturità basse. Il modello è stato calibrato con successo

contemporaneamente su tre superfici di volatilità di un triangolo di valute.

Il capitolo 5 presenta un’estensione del modello precedente, considerando il processo di Wishart al posto

di un vettore di processi square root. Di interesse è il fatto che tutte le proprietà del precedente modello

sono conservate. Quest’ultimo approccio potenzialmente si presta a descrivere fenomeni di correlazione

più complessi e pertanto sembra essere promettente nell’ambito della valutazione di derivati esotici

complessi.





Preface

Modern financial markets are deeply characterised by an incresing level of complexity. The last few

decades witnessed the appearence of new asset classes, such as commodities or volatility, and the emer-

gence of new and sophisticated financial instruments. These products may involve complex dependen-

cies on the market movements of a single reference underlying, or may depend on the price pattern of

more securities simultaneously. Thus we realize that complexity in financial markets arises from two

natural phenomena: the introduction of new instruments aiming at satisfying the qualified demand from

more and more sophisticated investors, or the increasing role played by the co-movement of financial

entities. In particular, co-movement is important, particularly with reference to the 2007-2009 financial

crisis. This recent turmoil which was observed on the market may be seen also as a major risk man-

agement failure, due also to a set of market-bad-practices, resulting in an underestimation of the risk

involved in complex structures. These market practices may be classified as misunderstanding of the

behaviour of extreme values, and joint movements of random variables. From a risk management per-

spective, the fields which are involved in this sense are extreme value theory and copulas, see McNeil

et al. (2005), Embrechts et al. (1997).

As the financial crisis stresses some critical bad practices in the financial industries, also researchers in

the field of mathematical finance should learn some lessons from the present situation. More energies

should be invested in the search for models which are able to describe larger portfolios or multifactor

sources of risk. The present thesis is an attempt towards this direction.

We will introduce new and powerful models, either in the multifactor or in the multiasset setting. These

models will be shown to exhibit a level of descriptive power and analytical tractability such that they

constitute in our opinion strong candidates for real life applications. The analytical tractability will

be ensured by the specific class of stochastic processes we decide to adopt. In particular, throughout

this thesis, we will be always working with affine processes, which constitute a class of stochastically

continuous Markov processes for which the characteristic function can be written in a very explicit form.

We will consider affine processes taking values on two different state spaces: the standard polyhedral

state space Rn≥0 × Rm, already considered in Duffie et al. (2003), and the cone of positive semidefinite

d× d matrices that we will denote by S+
d , which has been characterised in Cuchiero et al. (2009). Most

examples and models will be developed under this last general state space.

The most important stochastic process we will be working with is the Wishart process, which is a pure

diffusion stochastic process on S+
d and may be seen as a matrix analogue of the standard square root

process which is commonly applied in finance. The Wishart process has been introduced in Bru (1991)

where it is constructed first as a square of a matrix Brownian motion and then, in its general form, as the

square of a matrix Ornstein-Uhlenbeck process. The last few years have witnessed the introduction of

many models driven by this stochastic process, mainly because in finance positive semidefinite matrices

arise very naturally, an immediate example being given by the necessity to consider variance-covariance

xiii
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matrices e.g. for portfolio optimization purposes. Other examples include Poisson processes with con-

stant intensity and jump distribution with support on S+
d and then also jump-diffusion processes.

By working with these processes, in the present thesis we propose several contributions to the literature

on affine processes and their applications in mathematical finance. In Chapter 1 we consider the Wishart

process per se, and provide a generalization of a result due to Bru (1991), thus providing an alternative

explicit formula for the computation of the Fourier/Laplace transform of the Wishart process and its

time integral. Numerical tests show the high degree of accuracy of this approach.

The second part of the thesis is devoted to models for the fixed income market. In Chapter 2 we consider

the Wishart process as driving noise for a short rate model. This kind of short rate model has already

been considered in the literature: it was first hinted at in Grasselli and Tebaldi (2008), and then thor-

oughly analyzed in Buraschi et al. (2008) and Chiarella et al. (2010) with respect to issues like stylized

facts in the fixed income market and the impact of the specification of the risk premium. Our contri-

bution is concerned with the presentation of a new closed form solution for the prices of bonds under

the same conditions presented in Chapter 1. Moreover, for this short rate model we then derive a set

of sufficient conditions ensuring that the yield curve replicates a set of basic shapes. The derivation of

these sufficient conditions is inspired by the arguments due to Keller-Ressel and Steiner (2008), which

were obtained under the assumption that the short rate model is driven by a scalar affine process. This

result does not provide a full taxonomy of all possible shapes of the yield curve that can be attained,

however it is of interest in a calibration perspective, since we can provide a constraint on the initial state

of the process, such that the short rate model replicates some of the shapes of the curve that may be

observed on the market. Finally we also propose a simple analysis of the impact of the rich family of

model parameters on the yield curve, providing a good level of intuition.

In Chapter 3 we extend the methodology introduced by Keller-Ressel et al. (2009) for the evaluation of

caps floors and swaptions to the multifactor setting. In doing this we do not introduce a single model, but

a whole family of models, since the general construction of the model can be carried out for any process

on the interior of the cone S+
d : it means that we can think about pure diffusion Libor models driven by

a Wishart process, or we can treat compound Poisson processes or even jump-diffusions. To illustrate

the methodology, we concentrate on the Wishart Libor model. This approach is very interesting because

it provides a modelling framework which is free from some known problematic issues arising with

standard market models. To give an example we can name the well known inconsistency between the

Libor and the swap market model: since our reference quantity is a ratio of zero coupon bonds, we are

able to express both pricing problems in terms of this ratio, thus avoiding the oversimplifying assumption

that the swap rate is driven by a scalar process, which does not take into account all relevant correlation

effects. Thanks to the good analytical tractability of affine processes on S++
d , we derive a closed form

valuation formula for caplets. As far as swaptions are concerned, we find that it is possible to employ the

cumulant expansion introduced in Collin-Dufresne and Goldstein (2002) for the approximation of the

exercise probabilities appearing in the general (model-free) valuation formula. We perform numerical

experiments on caplet implied volatility surfaces generated by the Wishart Libor model, thus providing

a first view on the potential of this methodology.

The third and final part of the thesis is concerned with the foreign exchange market. This is a very

liquid and large market, where a precise description of correlations is a crucial point since suitable

ratios/products of exchange rates are still exchange rates. Our aim here is to provide an extension of the

standard Garman and Kohlhagen (1983) model, in order to evaluate European plain vanilla derivatives

in the presence of stochastic volatility. We propose two models: in Chapter 4 we outline an extension of
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the multi-Heston model which is theoretically coherent with triangular relations among exchange rates.

We look first at exchange rates with respect to a universal numeraire (which may be gold, just to provide

an example), and then construct exchange rates among currencies as ratios of these basic exchange

rates with respect to the universal numeraire. In this way the structure of the model is completely

modular and is thus able to provide a consistent valuation approach for a whole book of foreign exchange

derivatives, no matter the number of currencies involved. The very structure of the model is consistent

with triangular relations among currencies, which we observe since suitable products/ratios of exchange

rates are still exchange rates. Our FX multi-Heston model can account for a stochastic skew and for a

stochastic covariance matrix. The co-existence of many risk neutral measures on the market (one for

each country) requires a detailed discussion of the relation between the parameters of the model in the

different economies. We provide this discussion and provide a simple but effective condition on the

measure changes such that no arbitrage holds.

Again, thanks to the affine property, we derive a closed form formula for the Fourier/Laplace transform

of the log-exchange rate. After that, we propose some asymptotic expansions which may provide an

alternative and faster calibration of the model when we restrict our attention to short maturities. We

perform a calibration to the three volatility surfaces of a standard currency triangle and conclude that

we are in front of the first stochastic volatility model able to capture the shape of the three surfaces

simultaneously.

Finally, in Chapter 5 we propose an ambitious generalization of the setup introduced in Chapter 4, by

considering a Wishart process as driver for the stochastic volatility and replicate the procedure intro-

duced in Chapter 4. It is interesting to note that we are able to recover all the nice properties of the

previous approach, while we introduce a setting which has much more flexibility to describe complex

correlation phenomena. This last model is promising in view of the evaluation of complex exotic deriva-

tives written on multiple currencies.





Notations and General Results

Notations

Spaces of Matrices

Md Set of d× d square matrices.

Sd Cone of symmetric d× d matrices.

S+
d Cone of symmetric d× d positive semidefinite matrices.

S++
d Cone of symmetric d× d positive definite matrices.

S−d Cone of symmetric d× d negative semidefinite matrices.

S−−d Cone of symmetric d× d negative definite matrices.

Tr Trace operator.

� Partial order relation on S+
d . Given U, V ∈ S+

d we write

U � V if U − V ∈ S+
d .

Matrix Functions√
X Square root of the matrix X ∈ S+

d . We write X =

P⊤Diag(λ1, ..., λd)P , where λi, i = 1, .., d are the

eigenvalues of X and P is a unitary matrix. Then
√
X =

P⊤Diag(
√
λ1, ...,

√
λd)P .

eX Matrix exponential defined as: eX =
∑∞
k=0

Xk

k! .

sinh(X) eX−e−X

2 .

cosh(X) eX+e−X

2 .

Chapter 1

WISd(S0, α,M,Q) Law of the Wishart process of dimension d, initial state

S0, Gindikin parameter/matrix α, mean reversion matrix

M and volatility matrix Q.

ψ(t) Coefficient of the linear part of the cumulant generating

function of the process X .

φ(t) Constant part of the cumulant generating function of the

process X .

ψ′ A solution of the algebraic Riccati ODE.

xvii
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Chapter 2

ψ(τ,B) Coefficient of the linear part of the cumulant generating

function of the process X .

φ(τ,B) Constant part of the cumulant generating function of the

process X .

ψ̃(τ,B), ψ̃(τ) Coefficient of the linear component of the bond log-price.

φ̃(τ,B), ψ̃(τ) Constant component of the bond log-price.

σ(X) The set of the eigenvalues of the matrix X.

λ(X) An eigenvalue of the matrix X.

Chapter 3

Wisd (n,Q) Wishart distribution.

Wisd (n,Q,M) Non-central Wishart distribution.

βId(a, b) Beta type I distribution.

βIId (a, b) Beta type II distribution.

mFn Hypergeometric function of matrix argument.

Γd(a) Multivariate Gamma function.

Ψ(a; b;R) Confluent hypergeometric function.

General Results

For the reader’s convenience, we report here some results which may be found in Cuchiero et al. (2009),

which constitute the theoretical framework we will be working with. Let (Ω,F , (Ft)t≥0 ,P) be a filtered

probability space, with the filtration (Ft)t≥0 satisfying the usual assumptions. Let S+
d denote the cone

of positive semidefinite d× d matrices, endowed with the scalar product 〈x, y〉 = Tr [xy]. We consider

a Markov process X = (Xt)t≥0 with state space S+
d , transition probability pt(X0, A) = P(Xt ∈ A)

for A ∈ S+
d , and transition semigroup (Pt)t≥0 acting on bounded functions f ∈ S+

d :

DEFINITION 0.1. (Cuchiero et al. (2009) Definition 2.1) The Markov process X is called affine if:

(1) it is stochastically continuous, that is, lims→t ps(X0, ·) = pt(X0, ·) weakly on S+
d ∀t, X0 ∈

S+
d , and

(2) its Laplace transform has exponential-affine dependence on the initial state:

(0.1) Pte
−Tr[uX0] :=

∫

S+
d

e−Tr[uξ]pt(X0, dξ) = e−φ(t,u)−Tr[ψ(t,u)X0],

∀t and u,X0 ∈ S+
d , for some functions φ : R≥0 × S+

d → R≥0 and ψ : R≥0 × S+
d → S+

d .

Note that in the definition above we assumed that the process is stochastically continuous, a feature

that implies, according to Proposition 3.4 in Cuchiero et al. (2009), that the process is regular in the

following sense:

DEFINITION 0.2. (Cuchiero et al. (2009) Definition 2.2) The affine process X is called regular if the

derivatives

(0.2) F (u) =
∂φ(t, u)

∂t
|t=0+ , R(u) =

∂ψ(t, u)

∂t
|t=0+

exist and are continuous at u = 0.
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DEFINITION 0.3. (Cuchiero et al. (2009) Definition 2.3) Let χ : S+
d → S+

d be some bounded con-

tinuous truncation function with χ(ξ) = ξ in a neighborhood of 0. An admissible parameter set
(
α, b, βij , c, γ,m, µ

)
associated with χ consists of:

• a linear diffusion coefficient

(0.3) α ∈ S+
d ,

• a constant drift term

(0.4) b � (d− 1)α,

• a constant killing rate term

(0.5) c ∈ R+,

• a linear killing rate coefficient

(0.6) γ ∈ S+
d ,

• a constant jump term: a Borel measure m on S+
d \ {0} satisfying

(0.7)

∫

S+
d \{0}

(‖ ξ ‖ ∧1)m(dξ) <∞,

• a linear jump coefficient: a d×d matrix µ = (µij) of finite signed measure on S+
d \{0}, such

that µ(E) ∈ S+
d ∀E ∈ B(S+

d ) and the kernel

(0.8) M(x, dξ) :=
Tr [xµ(dξ)]

‖ ξ ‖2 ∧1

satisfies

(0.9)

∫

S+
d \{0}

Tr [χ(ξ)u]M(x, dξ) <∞,

∀x, u ∈ S+
d s.t. Tr [xu] = 0.

• a linear drift coefficient: a family βij = βji ∈ S+
d s.t. the linear map β : Sd → Sd of the

form

(0.10) β(x) =
∑

i,j

βijxij ,

satisfies

Tr [β(x)u]−
∫

S+
d \{0}

Tr [χ(ξ)u]M(x, dξ) ≥ 0(0.11)

∀x, u ∈ S+
d with Tr [xu] = 0.

The following theorem closes our survey on affine processes. It is a generalization of the result by

Duffie et al. (2003) to the state space S+
d . Denote by Sd the space of rapidly decreasing real valued

C∞-functions on S+
d (for their definition, see Cuchiero et al. (2009)) and letD(A) be the domain of the

generator of the process.
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THEOREM 0.1. (Cuchiero et al. (2009) Theorem 2.4) Suppose X is an affine process on S+
d . Then X is

regular and has the Feller property. Let A be its infinitesimal generator on C0(S
+
d ). Then Sd ⊂ D(A)

and there exists an admissible parameter set
(
α, b, βij , c, γ,m, µ

)
associated to the truncation function

ξ such that, for f ∈ Sd

Af(x) = 1

2

∑

i,j,k,l

Aijkl(x)
∂2f(x)

∂xij∂xkl
+

∑

i,j

(bij + βij(x))
∂f(x)

∂xij
− (c+ Tr [γx]) f(x)

+

∫

S+
d \{0}

(f(x+ ξ)− f(x))m(dξ)

+

∫

S+
d \{0}

(f(x+ ξ)− f(x)− Tr [χ(ξ)∇f(x)])M(x, dξ)(0.12)

where β(x) is defined by (0.10), M(x, dξ) by (0.8) and

(0.13) Aijkl(x) = xikαjl + xilαjk + xjkαil + xjlαik

Moreover, φ(t, u) and ψ(t, u) in Definition 0.1 solve the generalized Riccati differential equations, for

u ∈ S+
d ,

∂φ(t, u)

∂t
= F (ψ(t, u)), φ(0, u) = 0,(0.14)

∂ψ(t, u)

∂t
= R(ψ(t, u)), φ(0, u) = u,(0.15)

with

F (u) = Tr [bu] + c−
∫

S+
d \{0}

(

e−Tr[uξ] − 1
)

m(dξ),(0.16)

R(u) = −2uαu+ βT (u) + γ

−
∫

S+
d \{0}

(
e−Tr[uξ] − 1− Tr [χ(ξ)u]

‖ ξ ‖2 ∧1

)

µ(dξ),(0.17)

where βTij(u) = Tr
[
βiju

]
.

Conversely, let
(
α, b, βij , c, γ,m, µ

)
be an admissible parameter set associated to the truncation func-

tion ξ. Then there exists a unique affine process on S+
d with infinitesimal generator given by (0.12) and

such that the affine transform formula (0.1) holds for all (t, u) ∈ R≥0 × S+
d , where φ(t, u) and ψ(t, u)

are given by (0.14) and (0.15).
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Wishart processes





CHAPTER 1

The explicit Laplace transform of the Wishart process

1. Introduction

In this chapter we propose an analytical approach for the computation of the moment generating func-

tion for the Wishart process which has been introduced by Bru (1991), as an extension of square Bessel

processes (Pitman and Yor (1982), Revuz and Yor (1994)) to the matrix case. Wishart processes belong

to the class of affine processes and they generalise the notion of positive factor insofar as they are de-

fined on the set of positive semidefinite real d× d matrices, denoted by S+
d .

Given a filtered probability space (Ω,F ,Ft,P) satisfying the usual assumptions and a d × d matrix

Brownian motion B (i.e. a matrix whose entries are independent Brownian motions under P), a Wishart

process on S+
d is governed by the SDE

dSt =
√

StdBtQ+Q⊤dB⊤t
√

St +
(
MSt + StM

⊤ + αQ⊤Q
)
dt, S0 ∈ S+

d , t ≥ 0(1.1)

where Q ∈ GLd (the set of invertible real d × d matrices), M ∈ Md (the set of real d × d matrices)

with all eigenvalues on the negative real line in order to ensure stationarity, and where the (Gindikin)

real parameter α > d− 1 grants the positive semi definiteness of the process, in analogy with the Feller

condition for the scalar case (Bru (1991)). In the dynamics above
√
St denotes the square root in matrix

sense. We denote by WISd(S0, α,M,Q) the law of the Wishart process (St)t≥0. The starting point of

the analysis was given by considering the square of a matrix Brownian motion St = B⊤t Bt, while the

generalization to the particular dynamics (1.1) was introduced by looking at squares of matrix Ornstein-

Uhlenbeck processes (see Bru (1991)).

Bru proved many interesting properties of this process, like non-collision of the eigenvalues (when

α ≥ d + 1) and the additivity property shared with square Bessel processes. Moreover, she computed

the Laplace transform of the Wishart process and its integral (the Matrix Cameron-Martin formula using

her terminology), which plays a central role in the applications:

(1.2) EP
S0

[

exp

{

−Tr
[

wSt +

∫ t

0

vSsds

]}]

,

where Tr denotes the trace operator and w, v are symmetric matrices for which the expression (1.2)

makes sense. Bru found an explicit formula for (1.2) (formula (4.7) in Bru (1991)) under the assump-

tion that the symmetric diffusion matrix Q and the mean reversion matrix M commute.

Positive (semi)definite matrices arise in finance in a natural way and the nice analytical properties of

affine processes on S+
d opened the door to new interesting models which are able to overcome the short-

comings of previous affine models. In fact, the non linearity of S+
d is the key ingredient that allows

for non trivial correlations among positive factors, a feature which is precluded in classic (linear) state

space domains like Rn≥0 ×Rm (see Duffie et al. (2003)). Not surprisingly, the last years have witnessed

3
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the birth of a whole branch of literature on applications of affine processes on S+
d . The first proposals

were formulated in Gourieroux et al. (2005), Gourieroux and Sufana (2003), Gourieroux and Sufana

(2005), Gourieroux (2006) both in discrete and continuous time. Applications to multifactor volatility

and stochastic correlation can be found in Da Fonseca et al. (2008), Da Fonseca et al. (2007b), Da Fon-

seca et al. (2009), Da Fonseca et al. (2007a), Da Fonseca and Grasselli (2011), Buraschi et al. (2010),

and Buraschi et al. (2008) both in option pricing and portfolio management. These contributions con-

sider the case of continuous path Wishart processes. As far as jump processes on S+
d are concerned we

recall the proposals by Barndorff-Nielsen and Stelzer (2007), Muhle-Karbe et al. (2010) and Pigorsch

and Stelzer (2009). Leippold and Trojani (2010) and Cuchiero et al. (2009) consider jump-diffusions

models in this class, while Grasselli and Tebaldi (2008) investigate processes lying in the more general

symmetric cones state space domain, including the interior of the cone S+
d .

The main contribution of this chapter consists in relaxing the commutativity assumption made in Bru

(1991) and proving that it is possibile to characterize explicitly the joint distribution of the Wishart

process and its time integral for general (even not symmetric) mean-reversion and diffusion matrices

satisfying the assumptions above. The proof of our general Cameron Martin formula is in line with that

of theorem 2” in Bru and we will provide a step-by-step derivation.

The chapter is organized as follows: in section 2 we prove our main result, which extends the original

approach by Bru. In section 3 we briefly review some other existing methods which have been em-

ployed in the past literature for the computation of the Laplace transform: the variation of constant, the

linearization and the Runge-Kutta method. The first two methods provide analytical solutions, so they

should be considered as competitors of our new methodology. We show that the variation of constants

method is unfeasible for real-life computations, hence the truly analytic competitor is the linearization

procedure.

In Section 4 we provide two applications of our result to the setting of a matrix extension of the Heston

model, proposed in Da Fonseca et al. (2008) and to a stochastic correlation model, due to Da Fonseca

et al. (2007b). Finally, in the Appendix we extend our formula to the case where the Gindikin term

αQ⊤Q is replaced by a general symmetric matrix b satisfying b − (d − 1)Q⊤Q ∈ S+
d according to

Cuchiero et al. (2009).

2. The Matrix Cameron-Martin Formula

2.1. Statement of the result. In this section we proceed to prove the main result of this chapter.

We report a formula completely in line with the Matrix Cameron-Martin formula given by Bru (1991).

THEOREM 1.1. Let S ∈WISd(S0, α,M,Q) be the Wishart process solving (1.1), assume

M⊤ (
Q⊤Q

)−1
=

(
Q⊤Q

)−1
M,(2.1)

let α ≥ d+ 1 and define the set of convergence of the Laplace transform

Dt =
{

w, v ∈ Sd : EP
S0

[

exp

{

−Tr
[

wSt +

∫ t

0

vSsds

]}]

< +∞
}

.
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Then the joint moment generating function of the process and its integral is given by:

EP
S0

[

exp

{

−Tr
[

wSt +

∫ t

0

vSsds

]}]

= det
(

e−Mt
(

cosh(
√
v̄t) + sinh(

√
v̄t)k

))α
2

× exp

{

Tr

[(

Q−1
√
v̄kQ⊤

−1

2
−

(
Q⊤Q

)−1
M

2

)

S0

]}

,

where the matrices k, v̄, w̄ are given by:

k = −
(√

v̄ cosh(
√
v̄t) + w̄ sinh(

√
v̄t)

)−1 (√
v̄ sinh(

√
v̄t) + w̄ cosh(

√
v̄t)

)

,

v̄ = Q
(

2v +M⊤Q−1Q⊤
−1

M
)

Q⊤,(2.2)

w̄ = Q
(

2w −
(
Q⊤Q

)−1
M

)

Q⊤.

Moreover,

Dt =
{

w, v ∈ Sd :
√
v̄ cosh(

√
v̄t) + w̄ sinh(

√
v̄t), cosh(

√
v̄t) + sinh(

√
v̄t)k ∈ GLd

}

.(2.3)

REMARK 1.1. In the previous formulation we recognize the exponential affine shape with respect to the

state variable S:

EP
S0

[

exp

{

−Tr
[

wSt +

∫ t

0

vSsds

]}]

= exp {−φ(t)− Tr [ψ(t)S0]} ,

where the functions ψ and φ are given by:

ψ(t) =

(
Q⊤Q

)−1
M

2
− Q−1

√
v̄kQ⊤

−1

2
,(2.4)

φ(t) = −α
2
log

(

det
(

e−Mt
(

cosh(
√
v̄t) + sinh(

√
v̄t)k

)))

.(2.5)

REMARK 1.2. The derivation of Theorem 1.1 involves a change of probability measure that will be

illustrated in the sequel. This change of measure introduces a lack of symmetry which does not allow to

derive a fully general formula. However, under the assumption (2.1) we are able to span a large class

of processes. To be more precise, in the two dimensional case, let:

(
Q⊤Q

)−1
= A =

(

a b

b c

)

, M =

(

x y

z t

)

,(2.6)

then condition (2.1) can be expressed as:

bx+ cz = ay + tb,(2.7)

meaning that we can span a large class of parameters, thus going far beyond the commutativity assump-

tion QM =MQ for Q ∈ S+
d ,M ∈ S−d as in Bru (1991).

2.2. Proof of Theorem 1.1. We will prove the theorem in several steps. We first consider a simple

Wishart process with M = 0 and Q = Id, defined under a measure P̃ equivalent to P. The second step

will be given by the introduction of the volatility matrix Q, using an invariance result. Finally, we will

prove the extension for the full process by relying on a measure change from P̃ to P. Under this last

measure, the Wishart process will be defined by the dynamics (1.1).
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As a starting point we fix a probability measure P̃ such that P̃ ≈ P. Under the measure P̃ we consider a

matrix Brownian motion B̂ = (B̂t)t≥0, which allows us to define the process Σt ∈WISd(S0, α, 0, Id),

i.e. a process that solves the following matrix SDE:

dΣt =
√

ΣtdB̂t + dB̂⊤t
√

Σt + αIddt.(2.8)

For this process, relying on Pitman and Yor (1982) and Bru (1991), we are able to calculate the Cameron-

Martin formula. For the sake of completeness we report the result in Bru (1991), which constitutes an

extension of the methodology introduced in Pitman and Yor (1982).

PROPOSITION 1.1. (Bru (1991) Proposition 5 p.742) If Φ : R+ → S+
d is continuous, constant on

[t,∞[ and such that its right derivative (in the distribution sense) Φ
′
d : R+ → S−d is continuous, with

Φd(0) = Id, and Φ
′
d(t) = 0, then for every Wishart process Xt ∈WISd(S0, α, 0, Id) we have:

E

[

exp

{

−1
2
Tr

[∫ t

0

Φ
′′
d(s)Φ

−1
d (s)Xsds

]}]

= (detΦd(t))
α/2

exp

{
1

2
Tr

[
X0Φ

+
d (0)

]
}

,

where

Φ
+
d (0) := lim

tց0
Φ
′
d(t).

As a direct application we obtain the following:

PROPOSITION 1.2. Let Σ ∈WISd(S0, α, 0, Id), then

E

[

exp

{

−1
2
Tr

[

wΣt +

∫ t

0

vΣsds

]}]

= det
(
cosh

(√
vt
)
+ sinh

(√
vt
)
k
)α

2

× exp

{
1

2
Tr

[
Σ0

√
vk

]
}

,(2.9)

where k is given by:

k = −
(√
v cosh(

√
vt) + w sinh(

√
vt)

)−1 (√
v sinh(

√
vt) + w cosh(

√
vt)

)
.

PROOF. By Proposition 1.1 we have to solve the ODE:

Φ
′′
d(s) = vΦd(s) s ∈ (0, t) ,

Φ
′−
d (t) = −wΦd(t),

Φd(0) = Id.

The general solution to this ODE is given by Φd(s) = cosh (
√
vs) k1 + sinh (

√
vs) k. The condition

Φd(0) = Id implies k1 = Id. In order to determine k we look at the boundary condition on Φ
′−
d (t) and

hence write

√
v sinh

(√
vt
)
+
√
v cosh

(√
vt
)
k = −w

(
cosh

(√
vt
)
+ sinh

(√
vt
)
k
)
.

The value for k easily follows. Equipped with the value for k, we can proceed to compute the first

derivative of Φd:

Φ
′
d(s) =

√
v sinh

(√
vs

)
+
√
v cosh

(√
vs

)
k,

such that

lim
sց0

Φ
′
d(s) =

√
vk.

By noting that Φd(∞) = Φd(t) since Φd is constant on [t,∞), we obtain the claim. �
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Invariance under transformations. We proceed by introducing a volatility matrix in the Wishart

dynamics (2.8) via a transformation. The process is again considered with respect to the equivalent

measure P̃. We define the transformation St = Q⊤ΣtQ, which is governed by the SDE:

dSt =
√

StdB̃tQ+Q⊤dB̃⊤t
√

St + αQ⊤Qdt,(2.10)

where the process B̃ = (B̃t)t≥0 defined by dB̃t =
√
St
−1
Q⊤
√
ΣdB̂t is a Brownian motion under P̃.

We proceed to show this in detail.

LEMMA 1.1. The process B̃t :=
√
St
−1
Q⊤
√
ΣB̂t is a matrix Brownian motion.

PROOF. Recall that it is sufficient to prove that, for any α, β ∈ Rd, the following holds true:

Cov(B̃tα, B̃tβ) = E
[

(dB̃tα)(dB̃tβ)
⊤
]

= α⊤βIddt(2.11)

In our case, recalling that we defined St = Q⊤ΣtQ

E
[

(
√

St
−1
Q⊤

√

ΣtdB̂tα)(
√

St
−1
Q⊤

√

ΣtdB̂tβ)
⊤
]

E
[

E
[

(
√

St
−1
Q⊤

√

ΣtdB̂tα)(
√

St
−1
Q⊤

√

ΣtdB̂tβ)
⊤
∣
∣
∣Σt

]]

= α⊤βE
[√

St
−1
Q⊤

√

Σt
√

ΣtQ
√

St
−1

]

dt

= α⊤βE
[√

St
−1
Q⊤ΣtQ

√

St
−1

]

dt

= α⊤βE
[√

St
−1
St

√

St
−1

]

dt

= α⊤βE
[√

St
−1√

St
√

St
√

St
−1

]

dt

= α⊤βIddt(2.12)

�

From Bru (1991), we know the Laplace transform of this process (which was computed in the sim-

plest case by relying on the associated backward Kolmogorov equation). Upon the introduction of the

volatility matrix Q we have:

EP̃
S0

[

e−Tr[uSt]
]

= EP̃

(Q⊤)−1S0Q−1

[

e−Tr[uQ
⊤ΣQ]

]

= EP̃
Σ0

[

e−Tr[(QuQ
⊤)Σ]

]

=
(
det

(
Id + 2tQuQ⊤

))−α
2 ×

exp
{

−Tr
[

S0Q
−1

(
Id + 2tQuQ⊤

)−1
Qu

]}

.

Using the Taylor expansion (I +A)
−1

= I −A+A2 −A3 + ..., we have

Q−1
(
I + 2tQuQ⊤

)−1
Q = Q−1

(
Id − 2tQuQ⊤ + 4t2

(
QuQ⊤

) (
QuQ⊤

)
− . . .

)
Q

= Id − 2tuQ⊤Q+ 4t2
(
uQ⊤Q

) (
uQ⊤Q

)
− . . . ,

then, using Sylvester’s law of inertia,

det (Id +AB) = det (Id +BA) ,

we obtain

det
(
Id + 2tQuQ⊤

)
= det

(
Id − 2tuQ⊤Q

)
.
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Inclusion of the drift - Girsanov transformation. The final step consists in introducing a measure

change from P̃, where the process has no mean reversion, to the measure P that will allow us to consider

the general process governed by the dynamics in equation (1.1). We now define a matrix Brownian

motion under the probability measure P as follows:

Bt = B̃t −
∫ t

0

√

SsM
⊤Q−1ds = B̃t −

∫ t

0

Hsds.

The Girsanov transformation is given by the following stochastic exponential (see e.g. Donati-Martin

et al. (2004)):

∂P

∂P̃

∣
∣
∣
∣
Ft

= exp

{∫ t

0

Tr
[

H⊤dB̃s
]

− 1

2

∫ t

0

Tr
[
HH⊤

]
ds

}

= exp

{∫ t

0

Tr
[

Q−1⊤M
√

SsdB̃s

]

− 1

2

∫ t

0

Tr
[

SsM
⊤Q−1Q−1⊤M

]

ds

}

.

We concentrate on the stochastic integral term, which may be rewritten as:

∫ t

0

Tr
[(
Q⊤Q

)−1
M

√

SsdB̃sQ
]

which, under the parametric restriction (2.1) can be expressed as:

1

2

∫ t

0

Tr
[(
Q⊤Q

)−1
M

(√

SsdB̃sQ+Q⊤dB̃⊤s
√

Ss

)]

and then we can write:

1

2

∫ t

0

Tr
[(
Q⊤Q

)−1
M

(
dSs − αQ⊤Qds

)]

.

In summary, the stochastic exponential may be written as:

∂P

∂P̃

∣
∣
∣
∣
Ft

= exp

{(
Q⊤Q

)−1
M

2

(
St − S0 − αQ⊤Qt

)
− 1

2

∫ t

0

Tr
[

SsM
⊤Q−1Q−1⊤M

]

ds

}

.

Mayerhofer (2012) shows that under the assumption α ≥ d+1 (which is a sufficient condition ensuring

that the process does not hit the boundary of the cone S+
d ) the stochastic exponential is a true martingale.

Derivation of the Matrix Cameron-Martin formula. We finally consider the process under P:

dSt =
√

StdBtQ+Q⊤dB⊤t
√

St +
(
MSt + StM

⊤ + αQ⊤Q
)
dt.

For the reader’s convenience, we would like to summarise the procedure we are adopting. Recall that

we know the Cameron Martin formula for the Wishart process when M = 0 and Q = Id. We are

proceeding in two separate steps in order to treat the general version of the process by considering the

invariance under transformation property and a change of probability measure. Recall that under P̃, we

have:

dSt =
√

StdB̃tQ+Q⊤dB̃⊤t
√

St + αQ⊤Qdt,

then Σt = Q−1⊤StQ
−1 solves:

dΣt =
√

ΣtdB̂t + dB̂⊤t
√

Σt + αIddt.
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We are now ready to apply the change of measure along the following steps:

EP
S0

[

exp

{

−1
2
Tr

[

wSt +

∫ t

0

vSsds

]}]

= EP̃
S0

[

exp

{

−1
2
Tr

[

wSt +

∫ t

0

vSsds

]

− α

2
tT r [M ]

− Tr
[(
Q⊤Q

)−1
M

2
S0

]

+ Tr

[(
Q⊤Q

)−1
M

2
St

]

−1
2

∫ t

0

Tr
[

SsM
⊤Q−1Q−1⊤M

]

ds

}]

= exp

{

−α
2
tT r [M ]− Tr

[(
Q⊤Q

)−1
M

2
S0

]}

× EP̃
S0

[

exp

{

−1
2
Tr

[(

w −
(
Q⊤Q

)−1
M

)

St

+

∫ t

0

(

v +M⊤Q−1Q−1⊤M
)

Ssds

]}]

.

But St = Q⊤ΣtQ, then:

EP
S0

[

exp

{

−1
2
Tr

[

wSt +

∫ t

0

vSsds

]}]

= exp

{

−α
2
tT r [M ]− Tr

[(
Q⊤Q

)−1
M

2
S0

]}

× EP̃

Q⊤−1S0Q−1

[

exp

{

−1
2
Tr

[

Q
(

w −
(
Q⊤Q

)−1
M

)

Q⊤Σt

+

∫ t

0

Q
(

v +M⊤Q−1Q−1⊤M
)

Q⊤Σsds

]}]

.

The expectation may be computed via a direct application of formula (2.9) and after some standard

algebra we get the result of Theorem 1.1, with the obvious substitutions v → 2v and w → 2w.

3. Alternative existing methods

3.1. Variation of Constants Method. Since the process is affine, it is possible to reduce the PDE

associated to the computation of (1.2) to a non linear (matrix Riccati) ODE.

PROPOSITION 1.3. Let St ∈WISd(S0, α,M,Q) be the Wishart process defined by (1.1), then

EP
S0

[

exp

{

−Tr
[

wSt +

∫ t

0

vSsds

]}]

= exp {−φ(t)− Tr [ψ(t)S0]} ,

where the functions ψ and φ satisfy the following system of ODE’s.

dψ

dt
= ψM +M⊤ψ − 2ψQ⊤Qψ + v ψ(0) = w,(3.1)

dφ

dt
= Tr

[
αQ⊤Qψ(t)

]
φ(0) = 0.(3.2)

PROOF. See Cuchiero et al. (2009). �
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The idea underlying the variation of constants method is that in order to compute the solution of the

system of matrix ODE’s (3.1), (3.2), it is sufficient to find a particular solution to the equation for ψ,

since the solution for φ will be obtained via direct integration. We will therefore proceed in two steps:

first, we will solve the equation for v = 0 and then provide the most general form. To this aim, we first

introduce the following lemma.

LEMMA 1.2. Let ψ′ ∈ Sd be a symmetric solution to the algebraic Riccati equation:

ψ′M +M⊤ψ′ − 2ψ′Q⊤Qψ′ + v = 0,(3.3)

then the function Z(t) = ψ(t)− ψ′ solves the following matrix ODE:

dZ

dt
= Z(t)M ′ +M ′⊤Z(t)− 2Z(t)Q⊤QZ(t),(3.4)

with Z(0) = w′, w′ = w − ψ′, M ′ =M − 2Q⊤Qψ′.

PROOF. We replace ψ by Z(t) + ψ′ in equation (3.1) and obtain:

dZ

dt
= (Z(t) + ψ′)M +M⊤ (Z(t) + ψ′)− 2 (Z(t) + ψ′)Q⊤Q (Z(t) + ψ′) + v

= Z(t)






M ′

︷ ︸︸ ︷

M − 2Q⊤Qψ′




+






M ′⊤

︷ ︸︸ ︷

M⊤ − 2ψ′Q⊤Q




Z(t)− 2Z(t)Q⊤QZ(t)

+ ψ′M +M⊤ψ′ − 2ψ′Q⊤Qψ′ + v
︸ ︷︷ ︸

=0

.

From Z(t) = ψ(t)− ψ′, we obtain Z(0) = w − ψ′. �

The next step is the computation of the solution for Z(t), which is given by the following:

LEMMA 1.3. The solution to the equation (3.4) is given by:

Z(t) = eM
′⊤t

(

w′
−1

+

∫ t

0

eM
′sQ⊤QeM

′⊤sds

)−1

eM
′t.

PROOF. Consider the function f(t) defined by Z(t) = eM
′⊤tf(t)eM

′t. By differentiating this

expression we get:

dZ

dt
=M ′⊤Z(t) + Z(t)M ′ + eM

′⊤t df(t)

dt
eM

′t.

A comparison with (3.4) gets

eM
′⊤t df(t)

dt
eM

′t = −2eM ′⊤tf(t)eM
′tQ⊤QeM

′⊤tf(t)eM
′t,

which implies

df(t)

dt
= −2f(t)eM ′tQ⊤QeM

′⊤tf(t) f(0) = w′

−f(t)−1 df(t)

dt
f(t)−1 = 2eM

′tQ⊤QeM
′⊤t.

From Faraut and Korànyi (1994) we know that this is equivalent to

df(t)−1

dt
= 2eM

′tQ⊤QeM
′⊤t f(0) = w′

−1

.

Direct integration of this ODE and substitution of the solution in the identity defining Z yields the

desiderd result. �
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If we combine the two lemmas above, we obtain the solution for the functions ψ and φ. This is stated in

the following proposition.

PROPOSITION 1.4. The solutions for ψ(t), φ(t) in Proposition 1.3 are given by:

ψ(t) = ψ′ + e(M
⊤−2ψ′Q⊤Q)t

[

(w − ψ′)−1

+ 2

∫ t

0

e(M−2Q⊤Qψ′)sQ⊤Qe(M
⊤−2ψ′Q⊤Q)sds

]−1

e(M−2Q⊤Qψ′)t,

φ(t) = Tr

[

αQ⊤Q

∫ t

0

ψ(s)ds

]

,

where ψ′ is a symmetric solution to the algebraic Riccati equation (3.3).

REMARK 1.3. In this subsection we followed closely Gourieroux and Sufana (2005), who solved the Ric-

cati ODE (3.1) by using the variation of constants method (see also Gourieroux et al. (2005), Gourieroux

and Sufana (2003), Gourieroux and Sufana (2005)). This is also equivalent to the procedure followed

by Ahdida and Alfonsi (2010) and Mayerhofer (2010) who found the Laplace transform of the Wishart

process alone (i.e. corresponding to v = 0 in (1.2)). The variation of constants method represents the

first solution provided in literature for the solution of the matrix ODE’s (3.1) and (3.2), and despite its

theoretical simplicity, it turns out to be very time consuming, as we will show later in the numerical

exercise.

3.2. Linearization of the Matrix Riccati ODE. The second approach we consider is the one

proposed by Grasselli and Tebaldi (2008), who used the Radon lemma in order to linearize the matrix

Riccati ODE (3.1) (see also Levin (1959), Jong and Zhou (1999) and Anderson and Moore (1971)). As

usual we are interested in the computation of the moment generating function of the process and of the

integrated process, hence we look at the system of equations (3.1) and (3.2).

PROPOSITION 1.5. The functions ψ(t), φ(t) in Proposition 1.3 are given by

ψ(t) = (wψ12(t) + ψ22(t))
−1
(wψ11(t) + ψ21(t)) ,

φ(t) =
α

2
Tr

[
log (wψ12(t) + ψ22(t)) +M⊤t

]
,

where (

ψ11(t) ψ12(t)

ψ21(t) ψ22(t)

)

= exp

{

t

(

M 2Q⊤Q

v −M⊤

)}

.

PROOF. We begin by writing

(3.5) ψ(t) = F (t)−1G(t),

for F (t) ∈ GL(d) and G(t) ∈Md, the set of d× d matrices. Then we can write the time derivative as

d

dt
[F (t)ψ(t)]− d

dt
[F (t)]ψ(t) = F (t)

d

dt
[ψ(t)]

and this implies that

d

dt
[F (t)ψ(t)]− d

dt
[F (t)]ψ(t) =F (t)ψ(t)M + F (t)M⊤ψ(t)

− 2F (t)ψ(t)Q⊤Qψ(t) + F (t)v.(3.6)
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From (3.5) we immediately obtain G(t) = F (t)ψ(t). Using this fact we can obtain a system of ODE’s

for F and G by recognizing the remaining terms in ψ(t) in Equation (3.6).

(3.7)
d

dt
G(t) = G(t)M + F (t)v, G(0) = w,

(3.8)
d

dt
F (t) = −F (t)M⊤ + 2G(t)Q⊤Q, F (0) = Id.

which is solved by

(G(t), F (t)) = (w, Id)

(

ψ11(t) ψ12(t)

ψ21(t) ψ22(t)

)

,

where
(

ψ11(t) ψ12(t)

ψ21(t) ψ22(t)

)

= exp

{

t

(

M 2Q⊤Q

v −M⊤

)}

.

Consequently, the solution for ψ(t) is given by:

(3.9) ψ(t) = (wψ12(t) + ψ22(t))
−1
(wψ11(t) + ψ21(t)) ,

since we have ψ(0) = w. As usual, a direct integration of (3.2) allows us to derive the solution for φ(t):

(3.10) φ(t) =

∫ t

0

Tr
[
αQ⊤Qψ(s)

]
ds.

It turns out that this integral is quite cumbersome, hence we adopt the strategy in Da Fonseca et al.

(2008), which allows us to avoid this numerical integration. We notice that equation (3.8) may be

written as

1

2

(
d

dt
F (t) + F (t)M⊤

)
(
Q⊤Q

)−1
= G(t),

then, from (3.5), we have:

ψ(t) =
1

2

(

F (t)−1 d

dt
F (t) +M⊤

)
(
Q⊤Q

)−1
.

We substitute this last expression in (3.2) and use the properties of the trace operator, so that we can

write:

dφ(t)

dt
=
α

2
Tr

[

F (t)−1 d

dt
F (t) +M⊤

]

,

which is solved by

(3.11) φ(t) =
α

2
Tr

[
log (F (t)) +M⊤t

]
.

Equations (3.9) and (3.11) represent the solution to the system of ODE we were looking for, hence we

are able to compute the joint Laplace transform in Proposition 1.3. �
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3.3. Runge-Kutta Method. The Runge-Kutta method is a classical approach for the numerical

solution of ODE’s. For a detailed treatment, see e.g. Quarteroni et al. (2000). If we want to solve

numerically the system of equations (3.1) and (3.2), the most commonly used Runge-Kutta scheme is

the fourth order one:

ψ(tn+1) = ψ(tn) +
1

6
h (k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + h,

k1 = g(tn, ψ(tn)),

k2 = g(tn +
1

2
h, ψ(tn) +

1

2
hk1),

k3 = g(tn +
1

2
h, ψ(tn) +

1

2
hk2),

k4 = g(tn + h, ψ(tn) + hk3),

where the function g is given by:

g(tn, ψ(tn)) = g(ψ(tn)) = ψ(tn)M +M⊤ψ(tn)− 2ψ(tn)Q
⊤Qψ(tn) + v.

3.4. Comparison of the methods. A formal numerical analysis of the various methods is beyond

the scope of this paper. Anyhow, we would like to stress some important points, which we believe are

sufficient to highlight the importance of our new methodology. First of all we compare the results of the

four different methods. We consider different time horizons t ∈ [0, 0.3] and use the following values for

the parameters:

S0 =

(

0.0120 0.0010

0.0010 0.0030

)

; Q =

(

0.141421356237310 −0.070710678118655
0 0.070710678118655

)

;

M =

(

−0.02 −0.02
−0.01 −0.02

)

; α = 3;

v =

(

0.1000 0.0400

0.0400 0.1000

)

; w =

(

0.1100 0.0300

0.0300 0.1100

)

.

The value forQwas obtained along the following steps: given a matrixA ∈ S+
d such thatAM =M⊤A,

we compute its inverse and let Q be obtained from a Cholesky factorization of this inverted matrix.

Table (1) shows the value of the moment generating function for different values of the time horizon

t. The four methods lead to values which are very close to each other, and this constitutes a first test

proving that the new methodology produces correct results.

The next important point that we should consider is the execution speed. In order to obtain a good

degree of precision for the variation of constants method, we were forced to employ a fine integration

grid. This results in a poor performance of this method in terms of speed. In Figure (3) we compare the

time spent by the three analytical methods for the calculation of the moment generating function. As t

gets larger, the execution time for the variation of constants method grows exponentially, whereas the

time required by the linearization and the new methodology is the same.
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The Runge-Kutta method is a numerical solution to the problem, so the real competitors of our method-

ology are the variation of constants and the linearization method. As we saw above, the variation of

constant method is quite cumbersome. This is because in order to implement the variation of constants

methods we have to solve numerically an algebraic Riccati equation, then we have to perform a first

numerical integration in order to determine ψ and another numerical integration to compute φ. The

above procedure is obviously time consuming, hence we believe that this method is not suitable for

applications, in particular in a calibration setting.

Finally, we would like to compare the linearization of the Riccati ODE to the new methodology. In terms

of precision and execution speed the two methodologies seem to provide the same performance, up to

the fourteenth digit. This shows that, under the parametric restriction of Theorem 1.1 our methodology

represents a valid alternative.

FIGURE 1. In this image we plot the value of the joint moment generating function

of the Wishart process and its time integral for different time horizons τ . All four

methods are considered. It should be noted that the variation of constants method

requires a very fine integration grid in order to produce precise values that can be

compared with the results of the other methods.
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FIGURE 2. In this case we exclude the variation of constants method and treat a larger

time horizon.

FIGURE 3. In this image we plot the time spent by the three analytical methods to

compute the joint moment generating function of the Wishart process and its time

integral for different time horizons.
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FIGURE 4. We restrict the previous comparison of execution times to the linearization

method and the Cameron-Martin formula.
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Time Horizon Lin. C.-M. Var. Const. R.-K.

0 0.998291461216988 0.998291461216988 0.998291461216988 0.998291461216988

0.1 0.997303305375919 0.997303305375919 0.997306285702955 0.997271605593416

0.2 0.996253721242885 0.996253721242885 0.996258979717961 0.996190498718109

0.3 0.995143124879428 0.995143124879428 0.995142369361912 0.995048563313279

0.4 0.993971944944528 0.993971944944528 0.993956917727425 0.993846234580745

0.5 0.992740622447456 0.992740622447456 0.992703104707601 0.992583959952442

0.6 0.991449610496379 0.991449610496380 0.991381426685627 0.991262198836806

0.7 0.990099374042951 0.990099374042951 0.989992396217013 0.989881422361235

0.8 0.988690389623073 0.988690389623073 0.988536541704748 0.988442113110838

0.9 0.987223145094070 0.987223145094070 0.987014407067708 0.986944764863693

1.0 0.985698139368470 0.985698139368470 0.985426551402640 0.985389882322825

1.1 0.984115882144609 0.984115882144608 0.983773548640023 0.983777980845113

1.2 0.982476893634278 0.982476893634278 0.982055987194167 0.982109586167352

1.3 0.980781704287638 0.980781704287638 0.980274469607849 0.980385234129674

1.4 0.979030854515581 0.979030854515582 0.978429612191836 0.978605470396549

1.5 0.977224894409802 0.977224894409802 0.976522044659620 0.976770850175581

1.6 0.975364383460752 0.975364383460752 0.974552409757698 0.974881937934301

1.7 0.973449890273708 0.973449890273707 0.972521362891742 0.972939307115188

1.8 0.971481992283166 0.971481992283166 0.970429571748981 0.970943539849112

1.9 0.969461275465768 0.969461275465768 0.968277715917132 0.968895226667421

2.0 0.967388334051965 0.967388334051964 0.966066486500228 0.966794966212865

2.1 0.965263770236630 0.965263770236631 0.963796585731653 0.964643364949586

2.2 0.963088193888842 0.963088193888842 0.961468726584740 0.962441036872358

2.3 0.960862222260992 0.960862222260992 0.959083632381238 0.960188603215284

2.4 0.958586479697485 0.958586479697484 0.956642036397998 0.957886692160160

2.5 0.956261597343174 0.956261597343174 0.954144681472186 0.955535938544691

2.6 0.953888212851758 0.953888212851759 0.951592319605355 0.953136983570760

2.7 0.951466970094322 0.951466970094322 0.948985711566685 0.950690474512938

2.8 0.948998518868209 0.948998518868209 0.946325626495722 0.948197064427429

2.9 0.946483514606424 0.946483514606425 0.943612841504911 0.945657411861629

3.0 0.943922618087738 0.943922618087738 0.940848141282233 0.943072180564490

TABLE 1. This table visualizes in more detail the numerical values for the joint mo-

ment generating function plotted in Figure (1).
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Time horizon Lin. C.M. R.-K.

0 0.998291461216988 0.998291461216988 0.998291461216988

0.1 0.997303305375919 0.997303305375919 0.997271605593416

0.2 0.996253721242885 0.996253721242885 0.996190498718109

0.3 0.995143124879428 0.995143124879428 0.995048563313279

0.4 0.993971944944528 0.993971944944528 0.993846234580745

0.5 0.992740622447456 0.992740622447456 0.992583959952442

1.0 0.985698139368470 0.985698139368470 0.985389882322825

2.0 0.967388334051965 0.967388334051964 0.966794966212865

3.0 0.943922618087738 0.943922618087738 0.943072180564490

4.0 0.915938197508059 0.915938197508059 0.914862207389661

5.0 0.884120166104796 0.884120166104796 0.882852196560219

10.0 0.691634000576684 0.691634000576684 0.689897813632122

100.0 0.000001636282753 0.000001636282753 0.000001629036716

TABLE 2. In this table we do not include the results for the variation of constants

method. This allows us to look at a longer time horizon and appreciate the precision

of the new methodology also in this case.

4. Applications

4.1. A stochastic volatility model. In this subsection we consider the model proposed in Da Fon-

seca et al. (2008) and show that it is possible to derive the explicit Laplace transform of the log-forward-

price using our new methodology. As a starting point, we report the dynamics defining the model:

dFt
Ft

= Tr
[√

St

(

dWtR
⊤ + dBt

√

Id −RR⊤
)]

,

dSt =
(
αQ⊤Q+MSt + StM

⊤) dt+
√

StdWtQ+Q⊤dW⊤
t

√

St,

where Ft denotes the forward-price of the underlying asset, and the Wishart process acts as a multifactor

source of stochastic volatility. W and B are independent matrix Brownian motions and the matrix R

parametrizes all possible correlation structures preserving the affinity. This model is a generalization

of the (multi-)Heston model, see Heston (1993) and Christoffersen et al. (2009), and it offers a very

rich structure for the modelization of stochastic volatilities as the factors governing the instantaneous

variance are non-trivially correlated. It is easy to see that the log-forward-price Y is given as

dY = −1
2
Tr [St] dt+ Tr

[√

St

(

dWtR
⊤ + dBt

√

Id −RR⊤
)]

.

We are interested in the Laplace transform of the log-price, i.e.:

ϕ(τ) = E
[
e−ωYT |Ft

]
, τ := T − t.

This expectation satisfies a backward Kolmogorov equation, see Da Fonseca et al. (2008) for a detailed

derivation. Since the process S = (St)0≤t≤T is affine, we make a guess of a solution of the form

ϕ(τ) = exp {−ω lnFt − φ(τ)− Tr [ψ(τ)St]} .
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By substituting it into the PDE, we obtain the system of ODE’s:

dψ

dτ
= ψ

(
M − ωQ⊤R⊤

)
+

(
M⊤ − ωRQ

)
ψ − 2ψQ⊤Qψ − ω2 + ω

2
Id,(4.1)

ψ(0) = 0,(4.2)

dφ

dτ
= Tr

[
αQ⊤Qψ(τ)

]
,(4.3)

φ(0) = 0.(4.4)

If we look at the first ODE, we recognize the same structure as in (3.1): instead of M and v we have

respectively M − ωQ⊤R⊤ and −ω2+ω
2 Id. This means that we can rewrite the solution for ψ, using

Remark 1.1, as:

ψ(τ) =

(
Q⊤Q

)−1 (
M − ωQ⊤R⊤

)

2

− Q−1
√
v̄kQ⊤

−1

2
,

φ(τ) = −α
2
log

(

det
(

e(M−ωQ
⊤R⊤)τ

(

cosh(
√
v̄τ) + sinh(

√
v̄τ)k

)))

,

v̄ = Q

(

2

(

−ω
2 + ω

2
Id

)

+
(
M⊤ − ωRQ

)
Q−1Q⊤

−1 (
M − ωQ⊤R⊤

)
)

Q⊤,

w̄ = Q
(

−
(
Q⊤Q

)−1 (
M − ωQ⊤R⊤

))

Q⊤,

k = −
(√

v̄ cosh(
√
v̄τ) + w̄ sinh(

√
v̄τ)

)−1 (√
v̄ sinh(

√
v̄τ) + w̄ cosh(

√
v̄τ)

)

.

Once the Laplace transform of the log-forward price is computed, one can easily perform the Fast

Fourier transform in order to price options.

4.2. A stochastic correlation model. In this subsection we consider the model introduced in

Da Fonseca et al. (2007b). In this framework we consider a vector of forward prices together with

a stochastic variance-covariance matrix:

dFt = Diag(Ft)
√

St

(

dWtρ+
√

1− ρ⊤ρdBt
)

,

dSt =
(
αQ⊤Q+MSt + StM

⊤) dt+
√

StdWtQ+Q⊤dW⊤
t

√

St,

where now the vector Brownian motion Z = Wtρ+
√

1− ρ⊤ρBt is correlated with the matrix Brow-

nian motion W through the correlation vector ρ. Using exactly the same arguments as before, we

are able to compute the joint conditional Laplace transform of the vector of the log-forward prices

YT = log(FT ):

ϕ(τ) = EQ
[

e−ω
⊤YT |Ft

]

, τ := T − t.

As in the previous model, we have that the expectation corresponds to a PDE, see Da Fonseca et al.

(2007b) for more details. Again the affine property allows us to write the associated system of matrix
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Riccati ODE’s, which is given as:

dψ

dτ
= ψ

(
M −Q⊤ρω⊤

)
+

(
M⊤ − ωρ⊤Q

)
ψ − 2ψQ⊤Qψ

− 1

2

(
d∑

i=1

ωieii + ω⊤ω

)

Id,(4.5)

ψ(0) = 0,(4.6)

dφ

dτ
= Tr

[
αQ⊤Qψ(τ)

]
,(4.7)

φ(0) = 0.(4.8)

We recognize again the same structure as in Equations (3.2) and (3.1) where instead of M and v, we

now have M − Q⊤ρω⊤ and − 1
2

(
∑d
i=1 ωieii + ω⊤ω

)

Id respectively. Consequently, using Remark

1.1, we can compute the solution as:

ψ(τ) =

(
Q⊤Q

)−1 (
M −Q⊤ρω⊤

)

2

− Q−1
√
v̄kQ⊤

−1

2
,

φ(τ) = −α
2
log

(

det
(

e(M−Q
⊤ρω⊤)τ

(

cosh(
√
v̄τ) + sinh(

√
v̄τ)k

)))

,

v̄ = Q

(

2

(

−1
2

(
d∑

i=1

ωieii + ω⊤ω

)

Id

)

+
(
M⊤ − ωρQ

)
Q−1Q⊤

−1 (
M −Q⊤ρω⊤

)

)

Q⊤,

w̄ = Q
(

−
(
Q⊤Q

)−1 (
M −Q⊤ρω⊤

))

Q⊤,

k = −
(√

v̄ cosh(
√
v̄τ) + w̄ sinh(

√
v̄τ)

)−1 (√
v̄ sinh(

√
v̄τ) + w̄ cosh(

√
v̄τ)

)

.

5. Conclusions

In this chapter we derived a new explicit formula for the joint Laplace transform of the Wishart process

and its time integral based on the original approach of Bru (1991). Our methodology leads to a truly

explicit formula that does not involve any additional integration (like the highly time consuming vari-

ation of constants method) or blocks of matrix exponentials (like the linearization method) at the price

of a simple condition on the parameters. We showed some examples of applications in the context of

multivariate stochastic volatility. There is ample room of future research in different domains, including

portfolio management, interest rates and option pricing. In fact, we believe that our result can be useful

for speeding up some numerical procedure and mostly for the computation of sensitivities in option

pricing.

6. A generalization of the Wishart process

Affine processes on positive semidefinite matrices have been classified in full generality by Cuchiero

et al. (2009). In this reference, a complete set of sufficient and necessary conditions providing a full

characterization of this family of processes is derived. These conditions are the S+
d analogue of the con-

cept of admissibility for the state space Rn≥0×Rm, which has been studied by Duffie et al. (2003) under

the assumption of regularity of the process, and by Keller-Ressel (2008), who proved that regularity is a

consequence of the stochastic continuity requirement in the definition of affine process. Cuchiero et al.

(2009) showed that an admissible drift can be considerably different from the one considered in (1.1).
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In particular, the Gindikin condition α > d−1 can be generalized, thus leading to a generalized Wishart

process with dynamics1 with respect to P:

dSt =
√

StdBtQ+Q⊤dB⊤t
√

St +
(
MSt + StM

⊤ + b
)
dt, S0 = s0 ∈ S+

d ,(6.1)

where the symmetric matrix b satisfies

b− (d− 1)Q⊤Q ∈ S+
d .(6.2)

We will denote by WISd(s0, b,M,Q) the law of the Wishart process (St)t≥0 that satisfies (6.1).

In this Appendix we will find the explicit Cameron Martin formula for the more general specification

(6.1). We will first characterize the distribution function of the process WISd(s0, b, 0, Id) at a fixed

time through the Laplace transform and then we will proceed with the analogue of Theorem 1.1.

6.1. Laplace transform of WISd(Σ0, b̃, 0, Id). We fix a probability measure P̃ such that P̃ ≈ P.

Under the measure P̃ we consider a matrix Brownian motion B̂ = (B̂t)t≥0 that will allow us to define

the process Σt having law WISd(Σ0, b̃, 0, Id), b̃ ∈ S+
d , that is a process which solves the following

SDE:

dΣt =
√

ΣtdB̂t + dB̂⊤t
√

Σt + b̃dt, Σ0 ∈ S+
d ,

where the drift term b̃ satisfies the following condition:

b̃− (d− 1) Id ∈ S+
d .

We may characterize the distribution of this process by means of its Laplace Transform.

THEOREM 1.2. Let Σ be a generalized Wishart process in WISd(Σ0, b̃, 0, Id), then the distribution of

Σt, for fixed t, under P̃, is given by its Laplace transform:

EP̃
Σ0

[

e−Tr[uΣt]
]

= det

(

eb̃ log(Id+2tu)−
1
2

)

e−Tr[(Id+2tu)−1uΣ0],

for all u ∈ Sd such that (Id + 2tu) is nonsingular.

PROOF. We know that this process belongs to the class of affine processes on S+
d , which means

that we may write the Laplace Transform in the following way:

ϕ(t,Σ0) = EP̃
Σ0

[

e−Tr[uΣt]
]

= exp {−φ(t)− Tr [ψ(t)Σ0]} .

We proceed along the lines of Bru (1991) and look for the solution for the Laplace transform by means

of the associated backward Kolmogorov equation.

d

dt
ϕ(t,Σ0) = Tr

[
bDϕ(t,Σ0) + 2Dϕ(t,Σ0)

2
]
, ϕ(0,Σ0) = e−Tr[uΣ0],

where D denotes the matrix differential operator whose ij-th element is given by

∂

∂Σij
.

1Cuchiero et al. (2009) consider a matrix jump diffusion dynamics with a more general structure for the drift parameter

involving a linear operator that cannot be written a priori in the matrix form MSt +StM
⊤. In this appendix we restrict ourselves

to the continuous path version with the usual matrix drift. We also emphasize that in view of applications the specification (1.1)

is highly preferable since it is more parsimonius in terms of parameters: this is a delicate and crucial issue when calibrating any

model.
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Upon substitution of the exponentially affine guess we obtain the following system of ODE’s, which is

a simplified version of (3.1), (3.2):

dψ

dt
= −2ψ(t)2, ψ(0) = u,

dφ

dt
= Tr

[

b̃ψ(t)
]

, ψ(0) = 0.

The solution for ψ(t) is:

ψ(t) = (Id + 2tu)
−1
u,

while the solution for φ(t) is obtained via direct integration:

φ(t) = Tr

[

b̃

∫ t

0

(Id + 2su)
−1
uds

]

= Tr

[

b̃
1

2
log (Id + 2tu)

]

.

Noting that

e−φ(t) = det

(

eb̃ log(Id+2tu)−
1
2

)

,

we obtain the result. �

6.2. Cameron Martin formula for the process WISd(s0, b,M,Q). We now consider, under the

measure P, the process governed by the SDE

dSt =
√

StdBtQ+Q⊤dB⊤t
√

St +
(
MSt + StM

⊤ + b
)
dt, S0 = s0 ∈ S+

d ,

with b ∈ S+
d satisfying (6.2).

In this subsection we compute the joint moment generating function of the process and its time integral.

THEOREM 1.3. The joint Laplace transform of the generalized Wishart process S ∈WISd(s0, b,M,Q)

and its time integral is given by:

EP
s0

[

exp

{

−Tr
[

wSt +

∫ t

0

vSsds

]}]

= exp {−φ(t)− Tr [ψ(t)s0]} ,

where the functions φ and ψ are given by:

ψ(t) =

(
Q⊤Q

)−1
M

2
− Q−1

√
v̄kQ⊤

−1

2
,

φ(t) = Tr

[

b

(
Q⊤Q

)−1
M

2

]

t

+
1

2
Tr

[(
Q⊤

)−1
b (Q)

−1
log

(√
v̄
−1

(√
v̄ cosh(

√
v̄t) + w̄ sinh(

√
v̄t)

))]

,

with k given by:

k = −
(√

v̄ cosh(
√
v̄t) + w̄ sinh(

√
v̄t)

)−1 (√
v̄ sinh(

√
v̄t) + w̄ cosh(

√
v̄t)

)

and v̄, w̄ are defined as follows:

v̄ = Q
(

2v +M⊤Q−1Q⊤
−1

M
)

Q⊤,

w̄ = Q
(

2w −
(
Q⊤Q

)−1
M

)

Q⊤.
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The Laplace transform is defined for allw, v ∈ Sd such that the matrix
(√
v̄ cosh(

√
v̄t) + w̄ sinh(

√
v̄t)

)

is non singular.

PROOF. The proof will be based on the previous discussion in Theorem 1.1 on the standard process

with a scalar Gindikin parameter. First of all we have that the invariance under transformation may still

be used.

We consider the process Σt ∈ WISd(Σ0,
(
Q⊤

)−1
bQ−1, 0, Id), i.e. a process solving the following

matrix SDE:

dΣt =
√

ΣtdB̂t + dB̂⊤t
√

Σt +
(
Q⊤

)−1
bQ−1dt.

We define the following quantities: St = Q⊤ΣtQ, Σt =
(
Q⊤

)−1
StQ

−1. Under this transformation

the process under P̃ is governed by the SDE:

dSt =
√

StdB̃tQ+Q⊤dB̃⊤t
√

St + bdt,

where the process B̃ = (B̃t)t≥0 defined by
√
St
−1
Q⊤
√
ΣtdB̂t is a matrix Brownian motion under P̃.

From Bru (1991) we have:

EP̃
s0

[

e−Tr[uSt]
]

= EP̃

(Q⊤)−1s0Q−1

[

e−Tr[uQ
⊤ΣtQ]

]

= EP̃
Σ0

[

e−Tr[(QuQ
⊤)Σt]

]

.

Again, by relying on a Taylor expansion and Sylvester’s rule of inertia, we obtain the following closed-

form formula for the Laplace transform:

ϕ(t, s0) = det

(

e(Q
⊤)
−1
bQ−1 log(Id+2tuQ⊤Q)

−
1
2

)

e
−Tr

[

(Id+2tuQ⊤Q)
−1
us0

]

.

Now we consider the process under P:

dSt =
√

StdBtQ+Q⊤dB⊤t
√

St +
(
MSt + StM

⊤ + b
)
dt,

where dBt = dB̃t−
√
StM

⊤Q−1dt, with an associated Girsanov kernel satisfying (2.1) as before. The

system of Riccati ODE’s satisfied by the joint Laplace transform of the process St under P is given by:

dψ

dt
= ψM +M⊤ψ − 2ψQ⊤Qψ + v, ψ(0) = w,

dφ

dt
= Tr [bψ(t)] , φ(0) = 0.

We realize that the ODE for ψ is the same as in (3.1) , whose solution is known from Remark 1.1. We

can recover the solution also for φ upon a direct integration. We show the calculation in detail:

dφ

dt
= Tr [bψ(t)]

= Tr

[

b

((
Q⊤Q

)−1
M

2
− Q−1

√
v̄kQ⊤

−1

2

)]

.

Integrating the ODE yields

φ(t) = Tr

[

b

(
Q⊤Q

)−1
M

2

]

t− 1

2
Tr

[
(
Q⊤

)−1
bQ−1

√
v̄

∫ t

0

kds

]

.

We concentrate on the integral appearing in the second term:
∫ t

0

kds =

∫ t

0

−
(√

v̄ cosh(
√
v̄s) + w̄ sinh(

√
v̄s)

)−1 (√
v̄ sinh(

√
v̄s) + w̄ cosh(

√
v̄s)

)

ds.
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Define f(s) =
√
v̄ cosh(

√
v̄s) + w̄ sinh(

√
v̄s) and let us differentiate it:

df

ds
=

(√
v̄ sinh(

√
v̄s) + w̄ cosh(

√
v̄s)

)√
v̄,

hence we can write

− 1

2
Tr

[
(
Q⊤

)−1
bQ−1

√
v̄

∫ t

0

kds

]

=
1

2
Tr

[(
Q⊤

)−1
bQ−1

(

log
(√

v̄ cosh(
√
v̄t) + w̄ sinh(

√
v̄t)

)

− log
(√

v̄
))]

=
1

2
Tr

[(
Q⊤

)−1
bQ−1 log

(√
v̄
−1

(√
v̄ cosh(

√
v̄t) + w̄ sinh(

√
v̄t)

))]

and the proof is complete. �



Part 2

Fixed-income market





CHAPTER 2

The Wishart short rate model

1. Introduction

In the present chapter we focus on models where the short rate is given as

(1.1) rt = a+ Tr [BXt] ,

where a ∈ R≥0, B is a symmetric positive definite matrix and X = (Xt)t≥0 is a stochastic process

on the cone of positive semidefinite matrices. We will provide a fairly general pricing formula for

zero coupon bonds for this family of models. Then we will restrict to the Wishart short rate model.

This kind of model has been suggested in Grasselli and Tebaldi (2008), then Buraschi et al. (2008)

investigated the properties of this model with respect to many issues concerning the yield curve and

interest rate derivatives. An analysis of the impact of the specification of the risk-premium is provided

in Chiarella et al. (2010).

The contribution of this chapter is given by a new and explicit closed-form formula, which is based on

the theoretical framework we developed in Chapter 1. This allows the easy computation of Bond prices.

Moreover, we provide a set of sufficient conditions ensuring that this short rate model produces certain

shapes of the yield curve. Our analysis of yield curve shapes is inspired by the work of Keller-Ressel

and Steiner (2008), where a set of restrictions on the shapes of the yield curve is derived, under the

assumption that the driving process is affine in the sense of Duffie et al. (2003).

Affine processes have been applied in finance in many contexts, for an application to interest rates, see

Duffie and Kan (1996). More recently Duffie et al. (2003) and Keller-Ressel (2008) provided a full

characterization for the state space Rm≥0 × Rn. In Cuchiero et al. (2009), an analogous characterization

is provided for the state space S+
d . An alternative characterization is proposed in Grasselli and Tebaldi

(2008), where the concept of solvable affine term structure model is discussed, both for the state space

Rm≥0 × Rn and S+
d .

Affine processes on positive semidefinite matrices have witnessed an increasing importance in applica-

tions in finance. The first application is due to Gourieroux and Sufana (2003, 2005). Applications to

multi-factor stochastic volatility, and stochastic correlations may be found in Da Fonseca et al. (2008,

2007b, 2009, 2007a), Gourieroux et al. (2005) and Buraschi et al. (2010), for the pure diffusion case.

Leippold and Trojani (2010) introduce a class of jump diffusions where the intensity is an affine func-

tion of the state variable. Jump processes on S+
d are treated in Barndorff-Nielsen and Stelzer (2010);

Barndorff-Nielsen and Stelzer (2007), Mayerhofer et al. (2009), Muhle-Karbe et al. (2010) and Pigorsch

and Stelzer (2009).

The present chapter is organized as follows: first we introduce the general setup of affine processes on

the cone state space S+
d , thus providing the general setup for the pricing problem. Then we restrict

to the Wishart process and provide our new closed form formula for zero coupon bonds. Finally, by

assuming that the Wishart process lies in the interior of S+
d , we are also able to provide a set of sufficient

27
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conditions on the initial state of the process, which ensure that the model replicates certain shapes of the

yield curve.

1.1. Bond Prices. In this section we derive a fairly general pricing formula for zero coupon bonds.

Before this, we would like to spend a couple of words to recall an important fact concerning the risk

neutral measure that we will use for pricing purposes. From Björk (2004) we know that it is quite

tempting to consider the short rate as a traded asset and treat zero coupon bonds as derivatives written

on the short rate. Unfortunately, the short rate is not a traded asset, hence the bond market is arbitrage

free but not complete. This means that in general there exist many risk neutral measures. This implies

that the reference risk neutral measure Q will be inferred in general from market prices, and so will

result from a calibration procedure. Let B ∈ S+
d then, according to Definition 0.1, we have:

(1.2) EQ
[

e−Tr[BXt]
]

= e−φ(t,B)−Tr[ψ(t,B)x].

More generally, for t, s,> 0:

(1.3) EQ
[

e−Tr[BXt+s]|Ft
]

= e−φ(s,B)−Tr[ψ(s,B)xt].

In what follows, by defining τ = T − t, we will see that a similar formula holds for the price of a zero

coupon bond which is computed, when the short rate is given as in (1.1), via the following expectation:

(1.4) Pt(τ) := EQ
[

e−
∫ T

t
a+Tr[BXu]du|Ft

]

.

This expectation satisfies the following Kolmogorov backward equation:

(1.5)
∂Pt
∂τ

= AP − (a+ Tr [BX])P, P (0) = 1,

where the infinitesimal generator of the process X is reported in Theorem 0.1. We introduce an expo-

nentially affine guess given by the following:

Pt(τ) = exp
{

−φ̃(τ,B)− Tr
[

ψ̃(τ,B)X
]}

,(1.6)

so that:

(1.7)
∂Pt
∂τ

=

(

−∂φ̃
∂τ
− Tr

[

∂ψ̃

∂τ
X

])

Pt,

(1.8) Ae−φ̃(τ,B)−Tr[ψ̃(τ,B)X] = e−φ̃(τ,B)Ae−Tr[ψ̃(τ,B)X],

and (see always Theorem 0.1):

Ae−Tr[ψ̃(τ,B)X] =
(

−F (ψ̃(τ,B))− Tr
[

R(ψ̃(τ,B))X
])

e−Tr[ψ̃(τ,B)X]

=

{

−Tr
[

bψ̃(τ,B)
]

+

∫

S+
d \{0}

(

e−Tr[ψ̃(τ,B)ξ] − 1
)

m(dξ)

+ Tr

[(

2ψ̃(τ,B)αψ̃(τ,B)− β⊤(ψ̃(τ,B))

+

∫

S+
d \{0}

e−Tr[ψ̃(τ,B)ξ] − 1 + Tr
[

χ(ξ)ψ̃(τ,B)
]

‖ ξ ‖2 ∧1 µ(dξ)

)

X











× e−Tr[ψ̃(τ,B)X].(1.9)
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In summary, we obtain:

− ∂φ̃

∂τ
− Tr

[

∂ψ̃

∂τ
X

]

= −Tr
[

bψ̃(τ,B)
]

+

∫

S+
d \{0}

(

e−Tr[ψ̃(τ,B)ξ] − 1
)

m(dξ)

+ Tr

[(

2ψ̃(τ,B)αψ̃(τ,B)− β⊤(ψ̃(τ,B))

+

∫

S+
d \{0}

e−Tr[ψ̃(τ,B)ξ] − 1 + Tr
[

χ(ξ)ψ̃(τ,B)
]

‖ ξ ‖2 ∧1 µ(dξ)

)

X





− (a+ Tr [BX]) .(1.10)

Identify terms to obtain the system of (matrix) ODE’s:

∂φ̃

∂τ
= F

(

ψ̃(τ,B)
)

= Tr
[

bψ̃(τ,B)
]

−
∫

S+
d \{0}

(

e−Tr[ψ̃(τ,B)ξ] − 1
)

m(dξ) + a,(1.11)

∂ψ̃

∂τ
= R

(

ψ̃(τ,B)
)

= −2ψ̃(τ,B)αψ̃(τ,B) + β⊤(ψ̃(τ,B))

−
∫

S+
d \{0}

e−Tr[ψ̃(τ,B)ξ] − 1 + Tr
[

χ(ξ)ψ̃(τ,B)
]

‖ ξ ‖2 ∧1 µ(dξ) +B.(1.12)

We have thus proven the following:

PROPOSITION 2.1. Let X be a conservative affine process on S+
d under the risk neutral probability

measure Q. Let the short rate be given as:

(1.13) rt = a+ Tr [BXt] ,

then the price of a zero-coupon bond is given by:

Pt(τ) : = EQ
[

e−
∫ T

t
a+Tr[BXu]du|Ft

]

= exp
{

−φ̃(τ,B)− Tr
[

ψ̃(τ,B)Xt

]}

,(1.14)

where φ̃ and ψ̃ satisfy the following ODE’s:

∂φ̃

∂τ
= F

(

ψ̃(τ,B)
)

= Tr
[

bψ̃(τ,B)
]

−
∫

S+
d \{0}

(

e−Tr[ψ̃(τ,B)ξ] − 1
)

m(dξ) + a,

φ̃(0, B) = 0,(1.15)

∂ψ̃

∂τ
= R

(

ψ̃(τ,B)
)

= −2ψ̃(τ,B)αψ̃(τ,B) + β⊤(ψ̃(τ,B))

−
∫

S+
d \{0}

e−Tr[ψ̃(τ,B)ξ] − 1 + Tr
[

χ(ξ)ψ̃(τ,B)
]

‖ ξ ‖2 ∧1 µ(dξ) +B,

ψ̃(0, B) = 0.(1.16)
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REMARK 2.1. In summary, with respect to the case where we are interested in the Laplace transform

of the process (Theorem 0.1), we notice that when we consider the integrated process we have the

following:

F(u) := F (u) + a,(1.17)

R(u) := R(u) +B.(1.18)

In the next sections, we will be working repeatedly with the functions F(u) and R(u) defined above.

They will permit us to characterize in a very precise way the asymptotic behavior of the yield curve

for large maturities and they will be a key ingredient to derive our sufficient conditions concerning the

shapes of the curve.

2. The Wishart short rate model

2.1. Some Properties of the Matrix Exponential. We recall some background on the matrix ex-

ponential, which will be useful in the sequel. First, we provide the following:

DEFINITION 2.1. Let A be a matrix with entries in C, then we define:

(2.1) eAτ :=
∞∑

k=0

Akτk

k!
.

In the sequel we will look at the asymptotic behavior of the yield curve, so the following lemma will be

useful:

LEMMA 2.1. Let A ∈Md. Assume ℜ(λ(A)) < 0, ∀λ ∈ σ(A), then:

(2.2) lim
τ→∞

eAτ = 0 ∈Md×d.

PROOF. We follow Damm (2009). Assume that A = SJS−1 is the Jordan form. Then

eAτ = S







eJ1τ

. . .

eJmτ






S−1.(2.3)

It suffices to understand what is eJτ for a Jordan block:

J = λI +N, N =









0 1
. . .

. . .

0 1

0









.(2.4)

Notice that:

N2 =











0 0 1
. . .

. . .

0 1

0 0

0











, ..., Nν =











0 0 0 1
. . .

. . .

0 0

0 0

0











, Nν+1 = 0,(2.5)

thus we have:

τk

k!
Jk =

τkλk

k!
I +

τkλk−1

(k − 1)!
N +

τkλk−2

2(k − 2)!
N2 + ...+

τkλk−ν

ν!(k − ν)!N
ν(2.6)
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and

∞∑

k=0

τk

k!
Jk = eτλI + τeτλN + τ2eτλN2 + ...

= eτλ













1 τ τ2

2 . . . τν

ν!

. . .
...

. . .
...

. . . τ

1













.(2.7)

Now if ℜ (λ) < 0, then
∣
∣eλττν

∣
∣ < Meγτ , for some M > 0 and 0 > γ > ℜ (λ), hence the same holds

for eAτ , if σ(A) ∈ C−. Now let τ →∞ and the result follows. �

This fact allows us to determine the asymptotic behavior of the following functions:

LEMMA 2.2. Let O ∈ S+
d , define:

sinh(Oτ) =
eOτ − e−Oτ

2
, cosh(Oτ) =

eOτ + e−Oτ

2
(2.8)

and

tanh(Oτ) = (cosh(Oτ))
−1
sinh(Oτ), coth(Oτ) = (sinh(Oτ))

−1
cosh(Oτ),(2.9)

then

lim
τ→∞

tanh(Oτ) = lim
τ→∞

coth(Oτ) = Id.(2.10)

PROOF.

lim
τ→∞

tanh(Oτ) = lim
τ→∞

(
Id + e−2Oτ

)−1 (
Id − e−2Oτ

)
= Id.(2.11)

The second equality follows along the same lines. �

2.2. Closed-Form Pricing Formulae in the General Diffusion Model. In this section we con-

sider a diffusion model for the short rate. The driving process we use was first considered in the seminal

paper by Bru (1991), however, in the present dissertation, following the standard literature on Wishart

process, we will be dealing with a slight generalization. Using the terminology of Bru, we assume

that the law of Xt is WISd(x0, α,M,Q) under the risk neutral measure Q. Xt is the solution of the

following SDE:

dXt =
(
b+MXt +XtM

⊤) dt+
√

XtdWtQ+Q⊤dW⊤
t

√

Xt,(2.12)

where M,Q ∈ GL(d), b = αQ⊤Q. We further assume1 α ≥ d + 1 and x0 ∈ S++
d . These last

assumptions, according to Theorem 2.2 in Mayerhofer et al. (2009), allow us to claim that there exists a

strong solution to (2.12) on the interval [0, τ0), where the stopping time τ0 is defined as:

τ0 = inf {t ≥ 0|detXt = 0} .(2.13)

1The assumption on α implies that the process lies in the interior of the cone S+
d

, that we denote by S++
d

. This more

restrictive assumption is required in order to derive the conditions on the shapes of the yield curve. All bond pricing formulae that

we outline in the sequel hold true also for α > d− 1. For more details, see Bru (1991).
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Moreover, we have τ0 = +∞ a.s. Finally, we notice that, in full analogy with the scalar square root

process, the term −αQ⊤Q is related to the long term matrix X∞ via the following Lyapunov equation:

−αQ⊤Q =MX∞ +X∞M
⊤,(2.14)

so that, for the rest of this chapter, we make the following standard assumption in order to grant the

mean reverting feature of the process Xt.

ASSUMPTION 2.1. We require ℜλ < 0, ∀λ ∈ σ(M). This requirement implies the convergence of

the improper integral α
∫∞
0
eMsQ⊤QeM

⊤sds, which satisfies the equation. We further assume that

∀τ ∈ R≥0 ∪ {∞} the matrix M − 2Q⊤Qψ̃(τ) has negative real eigenvalues.

For this driving process, the price of a zero coupon bond is computed as follows. We use the shorthand

notation φ̃(τ,B) = φ̃(τ) and ψ̃(τ,B) = ψ̃(τ).

PROPOSITION 2.2. Let the short rate be given as in (1.1), for a processXt with lawWISd(x0, α,M,Q).

Let B ∈ S++
d and set τ = T − t. Then the price of a zero coupon bond is given by:

EQ
Xt

[

exp

{

−aτ − Tr
[
∫ T

t

BXsds

]}]

= exp
{

−φ̃(τ)− Tr
[

ψ̃(τ)Xt

]}

,(2.15)

where ψ̃(τ) and φ̃(τ) solve the following system of ODE’s:

(2.16)
∂φ̃

∂τ
= Tr

[

αQ⊤Qψ̃(τ)
]

+ a, φ̃(0) = 0,

∂ψ̃

∂τ
= ψ̃(τ)M +M⊤ψ̃(τ)− 2ψ̃(τ)Q⊤Qψ̃(τ) +B, ψ̃(0) = 0.(2.17)

PROOF. Same arguments as in Proposition 2.1, given that (2.15) corresponds to the bond price in

(1.14). �

REMARK 2.2. In the present setting we have:

R
(

ψ̃(τ)
)

= ψ̃(τ)M +M⊤ψ̃(τ)− 2ψ̃(τ)Q⊤Qψ̃(τ) +B(2.18)

F
(

ψ̃(τ)
)

= Tr
[

αQ⊤Qψ̃(τ)
]

+ a(2.19)

Moreover, a direct substitution of the terminal condition ψ̃(0) = 0 implies:

R
(

ψ̃(0)
)

= B.(2.20)

The solution of the system of ODE’s above may be computed by relying on the different approaches

outlined in Chapter 1.

PROPOSITION 2.3. The system of ODE’s (2.16), (2.17) admits the following solutions:

• Matrix Cameron Martin approach (See Remark 1.1)

φ̃(τ) = −α
2
log det

(

e−Mτ
(

cosh(
√
v̄τ) + sinh(

√
v̄τ)k

))

+ aτ,(2.21)

ψ̃(τ) = −Q
−1
√
v̄kQ⊤

−1

2
+

(
Q⊤Q

)−1
M

2
,(2.22)
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k = −
(√

v̄ cosh(
√
v̄τ) + w̄ sinh(

√
v̄τ)

)−1 (√
v̄ sinh(

√
v̄τ) + w̄ cosh(

√
v̄τ)

)

,

v̄ = Q
(

2B +M⊤Q−1Q⊤
−1

M
)

Q⊤,

w̄ = Q
(

−
(
Q⊤Q

)−1
M

)

Q⊤.

• Variation of constant approach (See the proof of Proposition 1.4)

ψ̃(τ) = ψ′ + e(M
⊤−2ψ′Q⊤Q)τ

[

(−ψ′)−1

+ 2

∫ τ

0

e(M−2Q⊤Qψ′)sQ⊤Qe(M
⊤−2ψ′Q⊤Q)sds

]−1

e(M−2Q⊤Qψ′)τ ,(2.23)

φ̃(τ) = Tr

[

αQ⊤Q

∫ τ

0

ψ̃(s)ds

]

+ aτ.(2.24)

• Linearization approach (See the proof of Proposition 1.5)

(2.25) ψ̃(τ) = D(τ)−1E(τ), E(0) = 0, D(0) = Id

with

(2.26)
(

E(τ) D(τ)
)

=
(

E(0) D(0)
)

exp

{

τ

(

M 2Q⊤Q

B −M⊤

)}

.

(2.27) φ̃(τ) =
α

2
Tr

[
log (D(τ)) +M⊤τ

]
+ aτ.

As in Chapter 1, by ψ′ we denote a solution to the algebraic Riccati equation (3.3). A direct consequence

of the result above is the following:

COROLLARY 2.1.

lim
τ→∞

ψ̃(τ) = ψ′.(2.28)

PROOF. Since λ
(
M − 2Q⊤Qψ′

)
< 0 by assumption, we know that the integral in the solution for

ψ̃ is convergent, moreover, from Lemma 2.1, we know that e(M−2Q⊤Qψ′)τ ց 0 as τ → ∞, hence the

proof is complete. �

This last corollary tells us that the function ψ̃ tends to a stability point of the Riccati ODE. This allows

us to claim that, as τ →∞, we haveR
(

ψ̃(τ)
)

ց 0.

3. Yield Curve Shapes

In this section we perform an investigation on the shapes of the yield curve produced by the Wishart

short rate model. We will derive a set of sufficient conditions ensuring that certain shapes are attained.

We will work with the general diffusion model and show how to replicate, normal, inverse or humped

curves. In the appendix we will repeat the same analysis in a simpler version of the model where there

will be further limitations on the possible shapes one can obtain. We use the standard dotted notation to

represent derivatives w.r.t. time dimensions.



34 2. THE WISHART SHORT RATE MODEL

3.1. Monotonicity of ψ̃(τ) and asymptotic behavior of the Yield Curve. Here we report a result

concerning the monotonicity of the function ψ̃(τ), which may be found in Buraschi et al. (2008). First

we recall a result from control theory (see Brockett (1970)).

PROPOSITION 2.4. (Matrix variation of constants formula) If Φ1(t, t0) is the transition matrix of ẋ(t) =

A1(t)x(t) and Φ2(t, t0) is the transition matrix for ẋ(t) = A⊤2 (t)x(t), then the solution of

(3.1) Ẋ(t) = A1(t)X(t) +X(t)A2(t) + F (t),

with the initial state vector X(t0), is given by:

(3.2) X(t) = Φ1(t, t0)X(t0)Φ
⊤
2 (t, t0) +

∫ t

0

Φ1(t, t0)F (s)Φ
⊤
2 (t, t0)ds.

PROPOSITION 2.5. LetX = (Xs)t≤s≤T be the stochastic process defined by the dynamics (2.12). Then

ψ̃(τ) is monotonically increasing in τ , i.e., for τ2 ≥ τ1, we have that ψ̃(τ2) � ψ̃(τ1).

PROOF. First, we differentiate (2.17), so as to obtain the following:

(3.3)
¨̃
ψ(τ) =

˙̃
ψ(τ)M +M⊤ ˙̃

ψ(τ)− 2
˙̃
ψQ⊤Q(τ)ψ̃(τ)− 2ψ̃(τ)Q⊤Q ˙̃

ψ(τ).

Next we define V (τ) =M − 2Q⊤Qψ̃(τ). Then we may write:

(3.4)
¨̃
ψ(τ) =

˙̃
ψ(τ)V (τ) + V ⊤(τ) ˙̃ψ(τ),

which is solved by:

(3.5)
˙̃
ψ(τ) = Φ(τ, 0)

˙̃
ψ(0)Φ⊤(τ, 0),

for a state transition matrix Φ(τ, 0) of the system matrix V (τ), solving Φ̇(τ, 0) = V ⊤(τ)Φ(τ, 0),

Φ(0, 0) = Id. Substitution of the initial condition
˙̃
ψ(0) = B yields (see Remark 2.2 and recall from

(1.12) that we have
˙̃
ψ(τ) = R(ψ̃(τ))):

(3.6)
˙̃
ψ(τ) = Φ(τ, 0)BΦ

⊤(τ, 0).

This derivative is positive semidefinite for B ∈ S+
d , upon integration on the interval (τ1, τ2) we obtain:

(3.7) ψ̃(τ2)− ψ̃(τ1) =
∫ τ2

τ1

˙̃
ψ(u)du.

Therefore ψ̃ is an increasing function of τ . �

As a consequence, we can derive the following useful corollary concerning the function R, defined in

Remark 2.2.

COROLLARY 2.2. ∀τ ∈ [0,∞) we have:

R
(

ψ̃(τ)
)

∈ S+
d for B ∈ S+

d ,(3.8)

R
(

ψ̃(τ)
)

∈ S++
d for B ∈ S++

d .(3.9)

PROOF. From equation (3.6) we know that:

(3.10)
˙̃
ψ(τ) = Φ(τ, 0)BΦ

⊤(τ, 0)

But R
(

ψ̃(τ)
)

=
˙̃
ψ(τ). This shows that R

(

ψ̃(τ)
)

is a congruent transformation of B. According to

Sylvester’s law of inertia the signs of the eigenvalues are unchanged under congruent transformations,

hence the claim. �
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We now proceed to show the behavior of the yield curve as τ → 0 and τ →∞. First of all we provide

the following:

DEFINITION 2.2. The zero coupon yield Y (τ,Xt) : R≥0 × S+
d → R≥0 is defined as:

(3.11) Y (τ,Xt) =
φ̃(τ)

τ
+
Tr

[

ψ̃(τ)Xt

]

τ
.

For fixed Xt we call the function Y (τ) = Y (τ,Xt) the yield curve.

Then we show the following:

PROPOSITION 2.6. LetX = (Xs)t≤s≤T be the stochastic process defined by the dynamics (2.12). Then

the following relations hold true:

(3.12) lim
τ→0

Y (τ) = rt,

(3.13) lim
τ→∞

Y (τ) = F(ψ′),

with F as in (2.19).

PROOF. We start with (3.12). By using l’Hospital rule we may write the following:

(3.14) lim
τ→0

φ̃(τ)

τ
= lim
τ→0

F(ψ̃(τ)) = lim
τ→0

Tr
[

bψ̃(τ)
]

+ a = a,

lim
τ→0

Tr
[

ψ̃(τ)Xt

]

τ
= lim
τ→0

Tr
[

R(ψ̃(τ))Xt

]

= lim
τ→0

Tr
[(

ψ̃(τ)M +M⊤ψ̃(τ)− 2ψ̃(τ)Q⊤Qψ̃(τ) +B
)

Xt

]

= Tr [BXt] .(3.15)

Putting together the two terms we obtain the result since rt = a+ Tr [BXt]. To show (3.13), we notice

that since ψ̃(τ) → ψ′ as τ → ∞, we have that R(ψ̃(τ)) → 0. So using again l’Hospital rule and

recalling (2.19) we have:

(3.16) lim
τ→∞

Y (τ) = lim
τ→∞

F(ψ̃(τ)) = F(ψ′),

so that basically the one dimensional result in Keller-Ressel and Steiner is confirmed also in the present

setting. �

3.2. Yield Curve Shapes in the General Diffusion Model. In this section we present a set of

sufficient conditions, ensuring that the Wishart short rate model produces certain yield curve shapes.

Due to the more general structure of the state space, arguments inspired by the scalar case allow us to

derive only sufficient conditions, ensuring the attainability of certain yield curve shapes. The absence of

a total order relation on S+
d does not allow us to rule out other possibilities (i.e. more complex shapes).

In spite of this we believe that this result is interesting since, e.g. in a calibration setting, we are then

able to put ex-ante some constraints to ensure that the model reproduces the yield curve shape observed

on the market.
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3.2.1. Statement of the main result. We begin with a definition:

DEFINITION 2.3. Let the Yield curve be defined as in Definition 2.2. We say that the yield curve is:

• normal if Y is a strictly increasing function of τ ,

• inverse if Y is a strictly decreasing function of τ ,

• humped if Y has a local maximum and no minimum on [0,∞).

We will see that for our particular choice of the model, the arguments employed in Keller-Ressel and

Steiner (2008) may be easily extended, with some adjustments due to the different state space. As in

their setting, we report this lemma.

LEMMA 2.3. A strictly convex or a strictly concave real function on R intersects an affine function in at

most two points. In the case of two intersection points p1 < p2, the convex function lies strictly below

the affine function on the interval (p1, p2); if the function is concave it lies strictly above the affine

function on (p1, p2).

Before we present the main result, we would like to recall some facts concerning the solution of a class

of matrix equations (Wimmer (2009) Theorem 1.29):

THEOREM 2.1. Let A ∈ Cn×n, B ∈ Cm×m, then we have the following:

• ∀ D ∈ Cm×n the equation

XA+BX = D(3.17)

has a unique solution if and only if α+ β 6= 0, ∀α ∈ σ(A), β ∈ σ(B).
• If ℜ(α + β) < 0 ∀α ∈ σ(A), β ∈ σ(B) then the following improper integral is convergent

and solves the equation:

X = −
∫ ∞

0

eBsDeAsds.(3.18)

If B = A⊤ and D = −Q for Q ∈ S+
d , we have the following corollary:

COROLLARY 2.3. ℜ (λ (A)) < 0↔ A⊤X +XA = −Q X,Q ∈ S+
d

Now, we report our main result on the shapes of the yield curve:

THEOREM 2.2. Consider a short rate model in which the risk neutral dynamics of the short rate is

driven by the process Xt, defined by the dynamics (2.12). Let B ∈ S++
d . Define M⋆ :=M − 2Q⊤Qψ′

and:

bnorm := α

∫ ∞

0

eM
⋆sQ⊤QeM

⋆⊤sds, binv := α

∫ ∞

0

eMsQ⊤QeM
⊤sds.(3.19)

Then the following holds:

• The yield curve is normal if Xt ≺ bnorm.

• The yield curve is inverse if Xt ≻ binv .

• The yield curve is humped if bnorm ≺ Xt ≺ binv .
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3.2.2. Proof of Theorem 2.2. We define the functionH(τ) : R≥0 → R by

H(τ) := Y (τ,Xt)τ = φ̃(τ) + Tr
[

ψ̃(τ)Xt

]

.(3.20)

Recalling the system of equations satisfied by φ̃ and ψ̃, given by equations (2.16) and (2.17), we can

compute the derivatives of this function. For the first derivative we have:

H′(τ) = Tr
[

αQ⊤Qψ̃(τ)
]

+ a

+ Tr
[(

ψ̃(τ)M +M⊤ψ̃(τ)− 2ψ̃(τ)Q⊤Qψ̃(τ)
)

Xt

]

,(3.21)

whereas for the second we have:

H′′(τ) = Tr
[

αQ⊤QR
(

ψ̃(τ)
)

+
(

R
(

ψ̃(τ)
)

M +M⊤R
(

ψ̃(τ)
)

− 2R
(

ψ̃(τ)
)

Q⊤Qψ̃(τ)

−2ψ̃(τ)Q⊤QR
(

ψ̃(τ)
))

Xt

]

.(3.22)

Now, notice the following:

Tr
[

M⊤R
(

ψ̃(τ)
)

Xt

]

= Tr
[

R
(

ψ̃(τ)
)

XtM
⊤
]

,

T r
[

−2R
(

ψ̃(τ)
)

Q⊤Qψ̃(τ)Xt

]

= Tr
[

−2ψ̃(τ)Q⊤QR
(

ψ̃(τ)
)

Xt

]

.

The second equality being justified since the matrices involved are symmetric. This means that we may

rewriteH′′(τ) as follows:

H′′(τ) = Tr




R

(

ψ̃(τ)
)






=:k(τ)
︷ ︸︸ ︷

αQ⊤Q+MXt +XtM
⊤ − 4Q⊤Qψ̃(τ)Xt











= Tr
[

R
(

ψ̃(τ)
)

k(τ)
]

.(3.23)

Finally, we can equivalently work with a symmetrization of the function k(τ):

H′′(τ) = Tr
[

R
(

ψ̃(τ)
)

k(τ)
]

= Tr

[

R
(

ψ̃(τ)
) k(τ) + k⊤(τ)

2

]

(3.24)

= Tr







R

(

ψ̃(τ)
)








=:k̃(τ)
︷ ︸︸ ︷

αQ⊤Q+
(

M − 2Q⊤Qψ̃(τ)
)

Xt +Xt

(

M⊤ − 2ψ̃(τ)Q⊤Q
)















= Tr
[

R
(

ψ̃(τ)
)

k̃(τ)
]

.

To start the derivation of the sufficient conditions for the shapes of the yield curve we look atH′′(0). A

sufficient condition forH′′(0) = 0 is k̃(0) = 0, i.e.:

MXt +XtM
⊤ = −αQ⊤Q.(3.25)

The solution to this equation is given, according to Theorem 2.1, by:

(3.26) binv = α

∫ ∞

0

eMsQ⊤QeM
⊤sds.
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Recalling that the eigenvalues of M are negative (see Assumption 2.1) we have that:

if Xt ≻ binv thenH′′(0) < 0,(3.27)

if Xt ≺ binv thenH′′(0) > 0.(3.28)

Recall that binv above is defined as the solution of the Lyapunov equation resulting from k̃(τ) when

τ = 0, by noting that ψ̃(0) = 0. Then consider the equation:

αQ⊤Q+
(

M − 2Q⊤Qψ̃(τ)
)

Xt +Xt

(

M⊤ − 2ψ̃(τ)Q⊤Q
)

= 0.(3.29)

By recalling that ψ̃(τ)ր ψ′ as τ →∞, we have exactly a solution at infinity if Xt solves:

αQ⊤Q+
(
M − 2Q⊤Qψ′

)
Xt +Xt

(
M⊤ − 2ψ′Q⊤Q

)
= 0.(3.30)

The solution to the equation above is:

bnorm = α

∫ ∞

0

e(M−2Q⊤Qψ′)sQ⊤Qe(M
⊤−2ψ′Q⊤Q)sds.(3.31)

In the sequel we will prove that this is the crucial level ensuring the presence of a zero for H′′(τ). The

next lemma establishes an order relation between binv and bnorm.

LEMMA 2.4. binv ≻ bnorm.

PROOF. Consider the function k̃(τ). It is easy to see that:

• if Xt = binv , then k̃(τ) = −2Q⊤Qψ̃(τ)binv − 2binvψ̃(τ)Q
⊤Q,

• if Xt = bnorm, then

k̃(τ) = 0− 2Q⊤Q
(

ψ̃(τ)− ψ′
)

bnorm − bnorm
(

ψ̃(τ)− ψ′
)

Q⊤Q2 ∈ S+
d ,(3.32)

since ψ′ ≻ ψ̃(τ) ∀τ .

This shows that k̃(τ)|Xt=bnorm
≻ k̃(τ)|Xt=binv

. Notice now that, by expliciting the dependence of k̃(τ)

on Xt we have

k̃(τ,Xt) = αQ⊤Q+
(

M − 2Q⊤Qψ̃(τ)
)

Xt +Xt

(

M⊤ − 2ψ̃(τ)Q⊤Q
)

,(3.33)

where M − 2Q⊤Qψ̃(τ) has negative eigenvalues by Assumption 2.1. It thus follows that binv ≻
bnorm. �

Let us now prove the following:

LEMMA 2.5. If Xt ≻ binv , thenH′′(τ) < 0, ∀τ ∈ (0,∞).

PROOF. Let Xt = binv + C, C ∈ S+
d , then:

k̃(τ) = −2Q⊤Qψ̃(τ)binv − binvψ̃(τ)Q⊤Q2

+
(

M − 2Q⊤Qψ̃(τ)
)

C + C
(

M⊤ − ψ̃(τ)Q⊤Q2
)

(3.34)

This means that k̃ is symmetric with negative eigenvalues (see Assumption 2.1), ∀τ ∈ [0,∞), but then,

beingR(ψ̃(τ)) ∈ S++
d , it follows thatH′′(τ) < 0. �

Next, we prove an existence result for τ⋆ ∈ (0,∞) s.t. H′′(τ⋆) = 0.

LEMMA 2.6. If binv ≻ Xt ≻ bnorm, then ∃τ⋆ ∈ (0,∞) s.t. H′′(τ⋆) = 0.
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PROOF. Let Xt = bnorm + C, C ∈ S+
d s.t. Xt ≺ binv . Then:

k̃(τ) = αQ⊤Q+
(

M − 2Q⊤Qψ̃(τ)
)

(bnorm + C)

+ (bnorm + C)
(

M⊤ − 2ψ̃(τ)Q⊤Q
)

.(3.35)

But this allows us to claim that:

lim
τ→∞

k̃(τ) =
(
M − 2Q⊤Qψ′

)
C + C

(
M⊤ − 2ψ′Q⊤Q

)
.(3.36)

This matrix is symmetric with negative eigenvalues. Recall that since binv ≻ Xt ≻ bnorm, we have that

k̃(0) ∈ S++
d . Then we observe that k̃(τ) is a continuous function of τ , meaning that there must exist a

τ ′ s.t., for τ > τ ′, the eigenvalues of k̃(τ) are negative. We can now look atH′′(τ). We recall that:

H′′(τ) = Tr
[

R
(

ψ̃(τ)
)

k̃(τ)
]

.

From Corollary 2.2 we have R
(

ψ̃(τ)
)

∈ S++
d . We notice also that H′′ is a continuous function of

τ . Furthermore, we have H′′(0) > 0 because binv ≻ Xt, see (3.28). From the previous discussion

regarding k̃(τ) we have that, for τ > τ ′, the second derivative is of the form:

H′′(τ) = Tr
[

R
(

ψ̃(τ)
)

(−K)
]

,(3.37)

where K is a symmetric matrix with negative eigenvalues. This means that the second derivative will be

negative. By recalling the positiveness of the starting value and the continuity property w.r.t. τ , thanks

to the mean value theorem, we can argue that there must exist a τ⋆ s.t. H′′(τ) = 0 as we wanted. �

Along the same lines we can prove the following:

LEMMA 2.7. If Xt ≺ bnorm, then ∄τ⋆ ∈ (0,∞) s.t. H′′(τ⋆) = 0.

We finally prove a a result allowing us to conclude that the zero ofH′′(τ) is unique.

LEMMA 2.8. k̃(τ) is monotonically decreasing i.e., for τ2 > τ1, we have k̃(τ2)− k̃(τ1) ∈ S−d .

PROOF. Differentiate k̃(τ), so as to obtain:

˙̃
k(τ) = −2Q⊤QR

(

ψ̃(τ)
)

Xt − 2XtR
(

ψ̃(τ)
)

Q⊤Q.(3.38)

Then we can write:

k̃(τ2)− k̃(τ1) = −2
∫ τ2

τ1

(

Q⊤QR
(

ψ̃(s)
)

Xt +XtR
(

ψ̃(s)
)

Q⊤Q
)

ds.(3.39)

Since the RHS is a symmetric matrix with negative eigenvalues, we have the claim. �

Now, since k̃(τ) is monotonically decreasing, we obtain that if there exists a value for τ s.t. k̃(τ) = 0,

then this point in time must be unique.

By relying on Lemmas 2.4, 2.5, 2.6, 2.7 and 2.8 and the condition on the sign of H′′(0) in (3.28) and

(3.27), we can argue the following:

• if Xt ≺ bnorm, thenH is strictly convex on (0,∞).

• if bnorm ≺ Xt ≺ binv , thenH is strictly convex on (0, τ⋆) and strictly concave on (τ⋆,∞).

• if Xt ≻ binv , thenH is strictly concave on (0,∞).
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We use these findings on the convexity of H to determine our conclusions on the convexity of the yield

curve. We consider the equation

H(τ) = cτ, τ ∈ [0,∞) ,(3.40)

for some fixed c ∈ R. SinceH(0) = 0 (see (3.20)), this equation has at least one solution, i.e. τ0 = 0.

Now if Xt ≻ binv , then H is strictly concave on [0,∞), and according to Lemma 2.3, equation (3.40)

has at most one additional solution, τ1. When the solution exists,H(τ) crosses cτ from above at τ1.

If Xt ≺ bnorm, thenH(τ) is strictly convex on [0,∞) and again has at most one additional solution τ2.

If the solution exists,H(τ) crosses cτ from below at τ2.

In the final case, i.e. if bnorm ≺ Xt ≺ binv , there exists a τ⋆, the zero of H′′(τ), such that H(τ) is

strictly convex on (0, τ⋆) and strictly concave on (τ⋆,∞). This implies that there can exist at most two

additional solutions τ1, τ2 to (3.40), with τ1 < τ⋆ < τ2, such that cτ is crossed from below at τ1 and

from above at τ2. By definition, every solution to (3.40), τ0 = 0 excluded, is also a solution to:

Y (τ,Xt) = c, τ ∈ (0,∞) ,(3.41)

with Xt fixed. The properties of crossing from above/below are preserved since τ is positive. This

means that:

• if Xt ≻ binv , then (3.41) has at most a single solution, i.e. every horizontal line is crossed by

the yield curve in at most a single point. If it is crossed, it is crossed from above, hence we

conclude that Y (τ,Xt) is a strictly decreasing function of τ , meaning that the yield curve is

inverse.

• Xt ≺ bnorm, then again (3.41) has at most a single solution. If the solution is crossed, it is

crossed from below, hence we conclude that Y (τ,Xt) is a strictly increasing function of τ ,

meaning that the yield curve is normal.

• In the last case, i.e. if bnorm ≺ Xt ≺ binv , then we have at most two additional solutions. If

they are crossed, the first is crossed from below and the second from above. This allows us to

conclude that the yield curve is humped.

In Figure (1) we plot a visualization of the results of the theorem.
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FIGURE 1. Yield curve shapes for different values of Xt
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4. Discussion on the parameters

In this section we provide some intuition on the impacts of the parameters on the shape of the yield

curve. As a starting point we use the following values for the parameters of the model:

X0 =

(

0.21 0.003

0.003 0.7

)

, M =

(

−1.4 0.1

0.1 −1.3

)

,

Q =

(

1 0.2

0.3 0.5

)

, α = 3.1,

B =

(

0.01 0.005

0.005 0.02

)

.(4.1)

With these values, a numerical implementation shows that the yield curve is normal. In the following

experiments we will perturbate single elements of the matrices and look at the impact on the yield curve.

(A) M11 (B) M12

(C) M21 (D) M22

FIGURE 2. In this figure we show the effect of a perturbation of the single elements

of the matrix M . We use a sequence of numbers η = 0.01 : 0.01 : 0.1 and add ηi to

one of the elements of M while leaving the other elements unchanged. When we add

ηi to the elements on the main diagonal the YC is shifted upwards. The same happens

with off-diagonal elements.

In Figure (2), we perturbate the matrix M , by introducing a sequence η = 0.01 : 0.01 : 0.1. and we add

the values of ηi to the single entries of the matrix. It turns out that in all cases we have an upward shift

of the yield curve.



4. DISCUSSION ON THE PARAMETERS 43

(A) Q11 (B) Q12

(C) Q21 (D) Q22

FIGURE 3. In this figure we show the effect of a perturbation of the single elements

of the matrix Q. We use a sequence of numbers η = 0.01 : 0.01 : 0.1 and add ηi to

one of the elements of Q while leaving the other elements unchanged. When we add

ηi to the elements on the main diagonal the YC is shifted upwards. The same happens

with off-diagonal elements.

The impact that we obtain when we perturbate the elements of the matrix Q is similar: we obtain again

an upward shift. We would like to perform a more interesting experiment. To this end, we will consider

now a larger (w.r.t. the partial order relation on S+
d ) value for X0, more precisely:

X0 =

(

0.3780 0.0054

0.0054 1.2600

)

.(4.2)

With this starting value, we have that the yield curve is humped. We perform the same perturbations as

before and notice that this time the impact is more varied. When we look at the impact of perturbations

of M we notice shapes ranging from nearly normal (M11 and M21) till humped shapes (M12 and M22).

Anyhow we notice that the impact on the shape of the yield curve is quite strong.

Finally, we work with Q. It turns out that the effect of the diffusion matrix is very relevant. Recall that

with our starting value for the factor process, we have a humped curve. Figure (5) clearly shows that by

performing perturbation on this matrix we are able to recover normal, inverse, or even humped curves. Q

seems to be best suited in determining large impacts on the shape of the yield curve, whereas M seems

to be suitable for smaller adjustments. Another fact that should be kept in mind, is that the interplay

between the parameters is influenced by the different choice of the starting value of the process.
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(A) M11 (B) M12

(C) M21 (D) M22

FIGURE 4. We increase the starting value of the process so as to get a humped yield

curve. In this figure we show the effect of a perturbation of the single elements of the

matrix M . We use a sequence of numbers η = 0.01 : 0.01 : 0.1 and add ηi to one of

the elements of M while leaving the other elements unchanged. When we add ηi to

the elements on the main diagonal the YC is shifted upwards. The same happens with

off-diagonal elements.
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(A) Q11 (B) Q12

(C) Q21 (D) Q22

FIGURE 5. We increase the starting value of the process so as to get a humped yield

curve. In this figure we show the effect of a perturbation of the single elements of the

matrix Q. We use a sequence of numbers η = 0.01 : 0.01 : 0.1 and add ηi to one of

the elements of Q while leaving the other elements unchanged. When we add ηi to

the elements on the main diagonal the YC is shifted upwards. The same happens with

off-diagonal elements.

5. Conclusions

In this chapter we provided a new pricing formula for a zero coupon bond when the short rate is driven

by a Wishart process. The formula turns out to be very explicit. Moreover, we proved a set of sufficient

conditions ensuring that the Wishart short rate model produces certain yield curve shapes. In particular

we are able to ensure that the yield curve is normal, inverse or humped. In the appendix it is also shown

that when we consider a very simple Wishart process it is not possible to replicate inverted curves. We

believe that this set of sufficient conditions may be of interest in a calibration setting, since we now

know the constraints we should impose in order to replicate the shape of the yield curve that we observe

on the market. A further line of research may be given by the study of yield curve shapes in the fully

general model that was presented in Section 1.

6. Appendix: the Basic Diffusion Model

6.0.3. Wishart Processes and the Cameron-Martin formula. Now we introduce a simpler example

of a diffusion process on S+
d . This process was first analyzed by Bru (1991), (eq. 3.2). We assume here

that b is a scalar satisfying the relation b ≥ d + 1. Wt will denote a matrix Brownian motion, i.e. a

matrix whose entries are independent Brownian motions, and
√
Xt will denote the square root in matrix
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sense. The dynamics are given by the following matrix SDE:

(6.1) dXt = bIddt+
√

XtdWt + dW⊤
t

√

Xt,

which corresponds to the dynamics (2.12) for M = 0 and Q = Id. Under this modelling assumptions,

the system of Riccati ODE’s defining the price of the zero coupon bond looks as follows:

(6.2)
∂φ̃

∂τ
= Tr

[

bψ̃(τ)
]

+ a, φ̃(0) = 0,

∂ψ̃

∂τ
= −2ψ̃(τ)2 +B, ψ̃(0) = 0.(6.3)

We now report the pricing formula for a zero coupon bond in this setting, which constitutes a particular

case of Proposition 2.2.

PROPOSITION 2.7. Let the short rate be given as in (1.1), for X ∈WISd (x0, b, 0, Id). Set τ = T − t.
Then the price of a zero coupon bond is:

EQ

[

exp

{

−Tr
[
∫ T

t

a+BXsds

]}

|Ft
]

= e−φ̃(τ,B)−Tr[ψ̃(τ,B)Xt],(6.4)

where:

φ̃ =
b

2
log

(

det cosh
√
2Bτ

)

+ aτ,(6.5)

ψ̃ =

√
2B

2
tanh

√
2Bτ.(6.6)

Equipped with an explicit formula for the function ψ̃ and recalling (2.11), we immediately obtain the

following:

LEMMA 2.9.

lim
τ→∞

ψ̃(τ,B) =

√
2B

2
.(6.7)

If we now recall the ODE satisfied by ψ̃, we realize that
√

2B
2 is a stability point of this ODE. So, in the

basic diffusion model, the function ψ̃ tends asymptotically to the stability point of the Riccati ODE.

6.0.4. Yield Curve Shapes in the Basic Model. We repeat the analysis that we already performed

for the general diffusion model. We will see that due to the absence of flexibility in the drift, it is not

possible to replicate inverse yield curves.

THEOREM 2.3. Consider a short rate model where the risk neutral dynamics of the short rate is driven

by the process Xt, defined by the dynamics (6.1). Let B ∈ S++
d . Define:

X⋆ =

∫ ∞

0

e−
√

2Bsbe−
√

2Bsds(6.8)

Then the following holds:

• The yield curve cannot be inverse.

• If Xt ≺ X⋆ then we can reproduce a normal yield curve.

• If Xt ≻ X⋆ then we can reproduce a humped yield curve.
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PROOF. In order to prove our claim, we follow step by step the approach in Keller-Ressel and

Steiner (2008). First of all we define the functionH(τ) : R≥0 → R by

H(τ) := Y (τ,Xt)τ = φ̃(τ) + Tr
[

ψ̃(τ)Xt

]

.(6.9)

The study of the second derivative of this function will allow us to derive the results for the yield curve.

Recalling the system of equations satisfied by φ̃ and ψ̃, given by equations (6.2) and (6.3), we can

compute the derivatives of this function. For the first derivative we have:

H′(τ) = Tr
[

bψ̃ (τ)
]

+ a+ Tr
[(

−2ψ̃ (τ)2 +B
)

Xt

]

,(6.10)

whereas for the second we have:

H′′(τ) = Tr
[

bR
(

ψ̃ (τ)
)]

+ Tr
[(

−2ψ̃ (τ)R
(

ψ̃ (τ)
)

− 2R
(

ψ̃ (τ)
)

ψ̃ (τ)
)

Xt

]

.(6.11)

Since all matrices involved are symmetric, we may commute inside the trace operator, and then we

obtain:

H′′(τ) = Tr
[

R
(

ψ̃ (τ)
)(

bId − 4ψ̃ (τ)Xt

)]

.(6.12)

Define now k(τ) := bId − 4ψ̃ (τ)Xt. The previous expression is equivalent to:

Tr

[

R
(

ψ̃ (τ)
) k(τ) + k(τ)⊤

2

]

= Tr
[

R
(

ψ̃ (τ)
)

k̃(τ)
]

,(6.13)

where k̃(τ) = bId− 2ψ̃ (τ)Xt− 2Xtψ̃ (τ). We are interested in the convexity of the functionH, hence

in the zeros ofH′′. Due to the structure of the state space and the presence of only a partial order relation

between matrices, using the arguments employed in the scalar case allows us to derive only sufficient

conditions. A sufficient condition for H′′(τ) = 0 is k̃(τ) = 0. Now, we try to establish if the function

has a zero for some value of Xt. We notice that:

k̃(0) = bId,(6.14)

meaning that k̃(0) ∈ S++
d ∀Xt. We will see that this implies that it is not possible to reproduce strictly

decreasing i.e. inverted yield curves in the present setting.

We are also interested in the solution of the equation:

bId − 2ψ̃ (τ)Xt − 2Xtψ̃ (τ) = 0.(6.15)

Starting from this equation we would like to argue about different shapes of the yield curve as a function

of Xt. Recall that ψ̃(τ)ր 1
2

√
2B as τ →∞. This implies that we have exactly a zero at infinity if Xt

solves:

bId −
√
2BXt −Xt

√
2B = 0.(6.16)

By Theorem 2.1 the solution to this equation is given by:

X⋆ =

∫ ∞

0

e−
√

2Bsbe−
√

2Bsds.(6.17)

We argue that this level is the critical level which ensures the presence of a zero of H′′. Let us now

prove the following:

LEMMA 2.10. k̃(τ) is monotonically decreasing, i.e., for τ2 > τ1, k̃(τ2)− k̃(τ1) ∈ S−d .
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PROOF. The argument is similar the the one employed for ψ̃(τ). We differentiate k̃(τ) so as to

obtain:

˙̃
k(τ) = −2

(

R
(

ψ̃(τ)
)

Xt +XtR
(

ψ̃(τ)
))

.(6.18)

Then we can write:

k̃(τ2)− k̃(τ1) =
∫ τ2

τ1

˙̃
k(s)ds

= −2
∫ τ2

τ1

(

R
(

ψ̃(τ)
)

Xt +XtR
(

ψ̃(τ)
))

ds,(6.19)

which shows that the RHS is symmetric with negative eigenvalues, hence the claim. �

We will use the following result, which is proved e.g. in Zhang (1999):

LEMMA 2.11. Let A,B be two hermitian matrices s.t. λi(A) ∈ [0, a] and λi(B) ∈ [0, b], then λi(AB) ∈
[0, ab].

This will be useful to prove the next claim:

LEMMA 2.12. If Xt ≻ X⋆, then ∃τ⋆ ∈ (0,∞) such thatH(τ⋆)′′ = 0.

PROOF. Let Xt = X⋆ + C, for C ∈ S+
d , so that Xt ≻ X⋆. We look at the asymptotic behavior of

k̃(τ). We have:

k̃(τ) = bId − 2ψ̃(τ)Xt − 2Xtψ̃(τ)

= bId − 2ψ̃(τ)X⋆ − 2X⋆ψ̃(τ)− 2ψ̃(τ)C − 2Cψ̃(τ),(6.20)

then we have:

lim
τ→∞

k̃(τ) = −2
(√

2B

2

)

C − 2C
(√

2B

2

)

.(6.21)

According to Lemma 2.11, this matrix has negative eigenvalues. Recall that k̃(0) ∈ S++
d . Now we have

that k̃(τ) is a continuous function of τ , which by Lemma 2.10 is monotonically decreasing. This means

that there must exist a τ ′ such that, for τ > τ ′, the eigenvalues of k̃(τ) are negative.

Finally, we look atH′′(τ). Recall that:

H′′(τ) = Tr
[

R
(

ψ̃(τ)
)

k̃(τ)
]

.(6.22)

By assumption, we have thatR
(

ψ̃(τ)
)

∈ S++
d . We notice also that H′′(τ) is a continuous function of

τ . Furthermore, since (see (6.20)) k̃(0) = bId ∈ S++
d we have thatH′′(0) > 0 as Tr

[

R
(

ψ̃(0)
)

k̃(0)
]

=

bTr [BId]. From the previous discussion on k̃(τ) we have that for τ > τ ′ the second derivative is of the

form:

Tr
[

R
(

ψ̃(τ)
)

(−K)
]

,(6.23)

where K is a symmetric matrix with positive eigenvalues. This means that the second derivative will be

negative. By recalling the positiveness of the starting values and the continuity property w.r.t. τ , thanks

to the mean-value theorem, we can argue that there must exist a τ⋆ s.t. H′′(τ⋆) = 0 �

Along the same lines we get a second useful claim:

LEMMA 2.13. If Xt ≺ X⋆, then ∄ τ⋆ ∈ [0,∞) s.t. H(τ⋆)′′ = 0.
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In our investigation for a sufficient condition for H′′(τ) = 0, we obtained an existence result for a

value τ⋆ satisfying the condition. We are also able to show that this τ⋆ is unique. Now, since k̃(τ) is

monotonically decreasing, we obtain that if there exists a value for τ s.t. k̃(τ) = 0, then this point in

time must be unique.

By relying on lemmas 2.12, 2.13, 2.10, and the fact thatH′′(0) > 0, we can argue the following:

• if Xt ≻ X⋆, thenH is strictly convex on (0, τ⋆) and strictly concave on (τ⋆,∞)

• if Xt ≺ X⋆, thenH is strictly convex on (0,∞)

• the functionH can not be strictly concave ∀τ ∈ [0,∞): sinceH′′ is continuous andH′′(0) >
0, we have that ∃ǫ > 0 s.t. H′′(τ) ≥ 0 for τ ∈ [0, ǫ).

We use these findings on the convexity of H to determine our conclusions on the convexity of the yield

curve. We consider the equation

H(τ) = cτ, τ ∈ [0,∞) ,(6.24)

for some fixed c ∈ R. SinceH(0) = 0 (see (6.9)), this equation has at least one solution, i.e. τ0 = 0.

Now if Xt ≺ X⋆, then H is strictly convex and then by Lemma 2.3 there exists at most one additional

solution τ1 to (6.24) on (0,∞). If the solution exists, then cτ is crossed from below at τ1.

In the other case, i.e. if Xt ≻ X⋆, we have that there exists a τ⋆, the zero of k̃(τ), s.t. H is strictly

convex on (0, τ⋆) and strictly concave on (τ⋆,∞). Now there can exist at most two additional solutions

τ1 and τ2 to (6.24), with τ1 < τ⋆ < τ2, s.t. cτ is crossed from below at τ1 and from above at τ2.

Finally, since H is never strictly concave, there exists no additional solution τ1 to (6.24) on (0,∞) s.t.

cτ is crossed from above at τ1.

By definition ofH, we have that every solution to (6.24), excluding τ0 = 0, is also a solution to

Y (τ,Xt) = c, τ ∈ (0,∞) ,(6.25)

with Xt fixed. The properties of crossing from above/below are preserved since τ is positive. This

means that:

• if Xt ≺ X⋆, then equation (6.25) has at most a single solution, or equivalently that every

horizontal line, if it is crossed, is crossed from below by the yield curve. This shows that the

yield curve Y (τ) is an increasing function of τ , hence, according the terminology in Definition

(2.3), the yield curve is normal.

• If Xt ≻ X⋆, then equation (6.25) has at most two solutions τ1 and τ2, and if these two

solutions are crossed then τ1 is crossed from below and τ2 is crossed from above, meaning

that the yield curve is first increasing and then decreasing, i.e. the yield curve is humped.

• Since there exists no solution to (6.24) s.t. cτ is crossed from above, then there exists no

solution to (6.25) s.t. every horizontal line is crossed from above. So the function Y (τ) is not

strictly decreasing, i.e. the yield curve can not be inverse.

�

In summary, the results above show that the absence of the matrix M implies a restriction in the set

of yield curves since inverted curves can not be replicated by the model. The following images are a

visualization of the results of the theorem:
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FIGURE 6. Yield curve shapes for different values of Xt in the basic diffusion model.



CHAPTER 3

A flexible matrix Libor model with smiles

1. Introduction

In this chapter we present a unified framework for the valuation of caps, floors and swaptions. These

instruments are the most common derivative securities which are traded in a fixed income desk of a

financial institution (see e.g. Brigo and Mercurio (2006)). Practitioners usually price these products by

relying on Black-Scholes like formulae, which were first presented in Black (1976). The market conven-

tion of pricing caps and swaptions using the Black formula is based on an application of the Black and

Scholes (1973) formula for stock options by assuming that the underlying interest rates are lognormally

distributed. Remarkably, the use of this kind of formulae had no theoretical justification, since they in-

volved a procedure in which the discount factor and the Libor rates were assumed to be independent in

order to write the pricing formula as a product of a bond price and the expected payoff. The systematic

use of this market practice ignited the interest of academics aiming at providing a coherent theoretical

background.

In a series of articles, Miltersen et al. (1997), Brace et al. (1997), Jamshidian (1997) and Musiela

and Rutkowski (1997), provided these theoretical foundations, introducing the Libor and Swap Mar-

ket Model. Following these papers a stream of contributions appeared, trying to extend the basic model

to the case where the volatility of the underlying factor is stochastic. The most famous proposals on

this side can be found e.g. in Andersen and Brotherton-Ratcliffe (2001), Wu and Zhang (2006), Joshi

and Rebonato (2003), Andersen and Andreasen (2002), Piterbarg (2005a), Piterbarg (2005b). Other

approaches explored different dynamics for the driving process with respect to the CEV or displaced-

diffusion considered before for the Libor rate: for example Glasserman and Kou (2003), Eberlein and

Özkan (2005) introduced jump and more general Lévy processes, allowing for discountinuous sample

paths of the driving process. Another interesting approach is the one of Brigo and Mercurio (2003)

based on a mixture of lognormals. A common pitfall consists in the problematic form of the variance-

covariance matrix of the yields, which makes it difficult to perform a PCA analysis.

A typical problem in the previous approaches is that once the closed form solution for cap prices is

found, in order to obtain an analogous result for swaptions it is customary to assume that the underlying

(which is a coupon bond) behaves like a scalar process (typically again geometric Brownian motion).

This results in inconsistencies between the so-called Libor and Swap Market Models. Even more im-

portant, by assuming that the coupon bond is driven by a scalar process, we do not take into account

the correlation effects among the different coupons, a key feature of a swaption which may be viewed

also as a correlation product. This last remark is of paramount importance for practitioners (see e.g. the

introduction of Collin-Dufresne and Goldstein (2002)).

51
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In this chapter we consider a new approach based on the stochastic discount factor methodology, where

instead of modeling directly the Libor rate, one concentrates on quotients of traded assets (i.e. bonds).

It has been first introduced by Constantinides (1992) and then developed by Gouriéroux and Sufana

(2011) in a spot interest rate framework and by Keller-Ressel et al. (2009) in a Libor perspective. They

use affine processes on the state space Rd≥0 as driving processes and provide a full characterisation of

the model, which allows them to provide closed form solutions for caps and swaptions up to Fourier

integrals. This approach is very interesting and easily overcomes many difficulties which are to be faced

in the computation of Radon-Nikodym derivatives.

We provide a straightforward extension of this approach, by considering affine processes on the state

space S++
d , the set of positive definite symmetric matrices. This state space may seem akward at first

sight, but the processes belonging to this family admit a characterization in terms of ODE’s which re-

sembles the one found for standard affine models, an example being given by the famous Duffie and

Kan (1996) model. In fact, in Cuchiero et al. (2009) the authors extend to the set S+
d (the set of positive

semidefinite symmetric matrices) the classification of affine processes performed by Duffie et al. (2003)

for the state space Rd≥0 × Rn−d introduced by Duffie and Kan (1996). What is more, the state space

S++
d leads to stochastic factors which are non trivially correlated. The most famous example of process

defined in the set S++
d is the Wishart process, originally introduced by Bru (1991) and then extensively

applied in Finance by Gourieroux and Sufana (2003), Gourieroux and Sufana (2005), Gouriéroux and

Sufana (2011), Da Fonseca et al. (2008), Da Fonseca et al. (2007b), Da Fonseca et al. (2009), Da Fon-

seca and Grasselli (2011), among the others.

The interesting feature of our framework is the possibility to obtain semi-closed form solutions for

the pricing of swaptions in a multifactor setting, which is a well known challenging problem. In fact

the exercise probability involves a multi-dimensional inequality. There have been many approaches to

simplify the problem: for example, Singleton and Umantsev (2002) suggest an approximation of the

exercise boundary with a linear function of the state variables. However, the most efficient approach

seems to be the one of Collin-Dufresne and Goldstein (2002) which heavily uses the affine structure of

the model and is based on the Edgeworth expansion for the characteristic function in terms of the cu-

mulants. Since the cumulants decay very quickly the Edgeworth expansion for the exercise probability

turns out to be very accurate and fast.

The chapter is organised as follows. In Section 2 we introduce our framework by recalling some useful

definitions and results on affine processes. Section 3 investigates the case of the state space S++
d and

presents the technical results. In Section 4 we focus on the pricing problem of the relevant derivatives.

Caps and Floors are briefly treated since their pricing is now quite standard within the FFT methodology,

while we devote more attention to the pricing of swaptions by adopting the approach of Collin-Dufresne

and Goldstein (2002). Section 5 illustrates the flexibilty of our framework through a numerical exercise.

Section 6 concludes the chapter, and we gather in the technical Appendices proofs and some remarks

useful for implementation.
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2. Affine Processes on the set S++
d of strictly positive definite symmetric matrices

2.1. General results and notations. To outline the setup we will consider affine processes taking

values in the interior of the cone S+
d . We will use the notations ψt(u) = φ(t, u) and φt(u) = φ(t, u) so

as to be consistent with Keller-Ressel et al. (2009). We will be employing a property of the functions

defining the Laplace transform, that we report after the following

DEFINITION 3.1. (Cuchiero et al. (2009), Definition 2.1) Let (Ω,F , (Ft)t≥0 ,P) be a filtered probability

space with the filtration (Ft)t≥0 satisfying the usual assumptions. A Markov process Σ = (Σt)t≥0 with

state space S+
d , transition probability pt(Σ0, A) = P(Σt ∈ A) for A ∈ S+

d , and transition semigroup

(Pt)t≥0 acting on bounded functions f on S+
d is called affine process if:

(1) it is stochastically continuous, that is, lims→t ps(Σ0, ·) = pt(Σ0, ·)weakly on S+
d ∀t, x ∈ S+

d ,

and

(2) its Laplace transform has exponential-affine dependence on the initial state:

(2.1) Pte
−Tr[uΣ0] = E

[

e−Tr[uΣt]
∣
∣
∣F0

]

=

∫

S+
d

e−Tr[uξ]pt(Σ0, dξ) = e−φt(u)−Tr[ψt(u)Σ0],

∀t and Σ0, u ∈ S+
d , for some function φ : R≥0 × S+

d → R≥0 and ψ : R≥0 × S+
d → S+

d .

Having applications in mind, we will consider affine processes which are solvable in the sense of Gras-

selli and Tebaldi (2008) (who investigated affine processes on the more general symmetric cone state

space domain): this means that the state space that we will consider is the interior of S+
d , namely the

cone of strictly positive definite symmetric matrices, denoted by S++
d

1. Solvability is important, in

fact it ensures that the Riccati Ordinary Differential Equation associated to the Laplace transform (2.1)

through the usual Feynman-Kac argument has a regular globally integrable flow: this will be crucial in

order to outline our methodology (see e.g. the proof of Theorem 3.1 in the sequel).

The next property closes our survey on affine processes. It will be needed when we prove that the

structure of the model is preserved under changes of measure.

LEMMA 3.1. (Cuchiero et al. (2009) Lemma 3.2) Let Σ be an affine process on S+
d , then the functions

φ and ψ satisfy the following property:

φt+s(u) = φt(u) + φs(ψt(u)),

ψt+s(u) = ψs(ψt(u)).

2.2. Examples. The previous general framework may be quite abstract at a first sight, mostly be-

cause of the high technical level required to properly introduce the notion of admissibility and existence

for affine processes (see Chapter 2). In this subsection we provide some examples in order to show to

the unfamiliar reader some concrete applications. We start with the most important one, which will also

constitute our main object of study in the numerical illustrations.

2.2.1. The Wishart process. We suppose that the process Σ is governed by the following (matrix)

SDE:

(2.2) dΣt = (ΩΩ⊤ +MΣt +ΣtM
⊤)dt+

√

ΣtdWtQ+Q⊤dW⊤
t

√

Σt,

1By analogy, the set of negative (resp. strictly negative) definite symmetric d × d matrices will be denoted by S−
d

(resp.

S−−
d

).
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which was first studied by Bru (1991) and whose solution is known as Wishart process. We assumeM,Q

invertible and M negative definite in order to ensure stationarity of the process. Moreover we require

ΩΩ⊤ = κQ⊤Q for a real parameter κ ≥ d + 1 in order to grant solvability (or equivalently in order

to grant that Det(Σt) > 0 with probability 1). Under the solvability assumption Grasselli and Tebaldi

(2008) showed that the Riccati ODE corresponding to the characteristic function can be linearized and

therefore admits a closed form solution. This is important in view of possible applications since in this

case the functions φ and ψ in definition (3.1) are explicitly known:

PROPOSITION 3.1. Consider the process Σ = (Σt)0≤t≤T which solves the SDE (2.2). Then the condi-

tional Laplace transform is given by:

E
[

e−Tr[uΣT ]
∣
∣
∣Ft

]

= e−φτ (u)−Tr[ψτ (u)Σt],(2.3)

where τ := T − t. The functions φτ (u) and ψτ (u) satisfy the following system of ODE’s:

∂ψ

∂τ
= ψτ (u)M +M⊤ψτ (u)− 2ψτ (u)Q

⊤Qψτ (u), ψ0(u) = u,(2.4)

∂φ

∂τ
= Tr

[
κQ⊤Qψτ (u)

]
, φ0(u) = 0(2.5)

which is solved by

ψτ (u) = (uψ12,τ (u) + ψ22,τ (u))
−1
(uψ11,τ (u) + ψ21,τ (u)) ,(2.6)

where

(2.7)

(

ψ11,τ (u) ψ12,τ (u)

ψ21,τ (u) ψ22,τ (u)

)

= exp

{

τ

(

M 2Q⊤Q

0 −M⊤

)}

and

(2.8) φτ (u) =
κ

2
Tr

[
log (uψ12,τ (u) + ψ22,τ (u)) +M⊤τ

]
.

PROOF. See Grasselli and Tebaldi (2008). �

Notice that the proposition above also reports the linearization approach in Chapter 1. The Wishart

process constitutes the matrix analogue of the square root (Bessel) process. In fact we have that the

matrix M can be thought of as a mean reversion parameter: this is evident from the Lyapunov equation

defining the long-run matrix Σ∞, which is given by

−κQ⊤Q =MΣ∞ +Σ∞M
⊤.(2.9)

The second way to appreciate the analogies w.r.t the square root process is to look at the dynamics of

the entries of the matrix process Σ. Concentrating on the main diagonal, in the 2× 2 case we have:

dΣ11 =
(
κ
(
Q2

11 +Q2
21

)
+ 2 (M11Σ11 +M12Σ12)

)
dt

+ 2σ11
t

(
Q11dW

11
t +Q21dW

12
t

)
+ 2σ12

t

(
Q11dW21 +Q21dW

22
t

)
(2.10)

dΣ22 =
(
κ
(
Q2

22 +Q2
12

)
+ 2 (M21Σ12 +M22Σ22)

)
dt

+ 2σ12
t

(
Q12dW

11
t +Q22dW

12
t

)
+ 2σ22

t

(
Q12dW

21 +Q22dW
22
)

(2.11)

where we set
(

σ11 σ12

σ12 σ22

)

:=
√
Σ.(2.12)
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We refer to Da Fonseca et al. (2007a) for additional insights on the behavior of the Wishart process

when aggregating its parameters.

2.2.2. The pure jump OU process. The procedure we adopt in this chapter is general, meaning that

we can consider different examples of processes lying in the cone of positive definite matrices. In par-

ticular, we may consider the matrix subordinators proposed by Barndorff-Nielsen and Stelzer (2007), or

jump-diffusions like in Leippold and Trojani (2010). In what follows we provide some examples with

the calculations of the function φτ and ψτ .

Let us consider the SDE

dΣt =MΣt +ΣtM
⊤ + dLt,(2.13)

where M ∈ GL(d) is assumed as usual to be negative definite in order to grant stationarity, and Lt is a

pure jump process (compound Poisson Process) with constant intensity λ and jump distribution ν with

support on S++
d . The strong solution to this equation is given by:

Σt = eMtΣ0e
M⊤t +

∫ t

0

eM(t−s)dLse
M⊤(t−s).(2.14)

We are interested in the computation of the Laplace transform of this family of processes:

E
[

eTr[uΣT ]
∣
∣
∣Ft

]

= e−φτ (u)−Tr[ψτ (u)Σ0].(2.15)

The functions φτ and ψτ solve the following (matrix) ODE’s:

∂ψτ
∂τ

= ψτ (u)M +M⊤ψτ (u) ψ0(u) = u(2.16)

∂φτ
∂τ

= −λ
∫

S+
d \{0}

(

e−Tr[ψτ (u)ξ] − 1
)

ν(dξ) φ0(u) = 0.(2.17)

The solution for the first ODE is given by:

ψτ (u) = eM
⊤τueMτ ,(2.18)

so we can compute the Laplace transform by quadrature:

∂φτ
∂τ

= −λ
∫

S+
d \{0}

(

e
−Tr

[

eM⊤sueMsξ
]

− 1

)

ν(dξ).(2.19)

In the following we provide explicit computations by assuming some particular distribution ν(·) for

the jump size. The proofs of this formulae may be found in Gupta and Nagar (2000). For the sake of

clarity, we specify that the Wishart distribution that we consider in the next paragraphs are the classical

distributions arising in the context of multivariate statistics, which differ from the generalization of the

same distribution which is obtained when we consider the stochastic process in Chapter 1.

Wishart Distribution. Let J be the jump size. Consider the case J ∼Wisd (n,Q). Then we have

φτ (u) = −λ
∫ τ

0

det
(

Id + 2eM
⊤sueMsQ

)−n
2

ds+ λτ.(2.20)
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Non-Central Wishart Distribution. Let be J ∼Wisd (n,Q,M), then we have

φτ (u) = −λ
∫ τ

0

det (Q)−n
2 det

(

2eM
⊤sueMs +Q−1

)−n
2×

exp

{

Tr

[

−1
2
Q−1MM⊤ +

1

2
Q−1MM⊤Q−1

(

2eM
⊤sueMs +Q−1

)]}

ds

+ λτ.(2.21)

Beta type I distribution. Let be J ∼ βId(a, b), then

φτ (u) = −λ
∫ τ

0
1F1(a; a+ b;−eM⊤sueMs)ds+ λτ.(2.22)

Beta type II distribution. Let be J ∼ βIId (a, b), then

φτ (u) = −λ
∫ τ

0

Γd(a+ b)

Γd(b)
Ψ(a;−b+ 1

2
(d+ 1); eM

⊤sueMs)ds+ λτ,(2.23)

where mFn, Γd(a), andΨ(a; b;R) denote respectively the hypergeometric function of matrix argument,

the multivariate Gamma function and the confluent hypergeometric function, see e.g. Gupta and Nagar

(2000).

3. A Libor model on S++
d

In order to outline the general framework for Libor models, we start by considering a filtered measur-

able space (Ω,F ,Ft) and a family of probability measures (PTk
)1≤k≤N . Under the measure PTN

we

introduce a stochastic process Σ taking values on the cone state space S++
d . At this stage the process

may be a diffusion, a pure jump or a jump-diffusion process taking values on S++
d . Consider a discrete

tenor structure 0 = T0 ≤ T1 ≤ ... ≤ TN = T . We recall that the Libor rate is defined via quotients of

bonds:

L(t, Tk) :=
1

δ

(
B(t, Tk−1)

B(t, Tk)
− 1

)

,(3.1)

where δ is assumed to be constant and δ = Tk − Tk−1. The relation between the Libor rate and the

forward price is given by:

F (t, Tk−1, Tk) = 1 + δL(t, Tk).(3.2)

We proceed in full analogy with Keller-Ressel et al. (2009) by extending their results to processes taking

values on the cone of positive definite matrices. The intuition is simple: in order to build up a Libor

model with positive rates, quotients of bonds should be strictly greater than one. On the other hand, a

no-arbitrage argument (see e.g. Geman et al. (1995)) implies that quotients of bonds must be martin-

gales under the forward risk neutral measure indexed by the maturity of the denominator, so that the

key ingredient in the approach of Keller-Ressel et al. (2009) consists in the possibility of contructing

a family of martingales that stay greater than one up to a bounded time horizon. This will be possible

thanks to the affine structure of the model, since in this framework bond prices are exponentially affine

in the positive (definite) factors, as well as their quotients.
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3.1. Martingales strictly greater than one. Let us first define the set

IT :=
{
u ∈ Sd : E

[
e−Tr[uΣT ]

]
<∞,∀Σ0 ∈ S++

d

}
.

By the affine property of the process Σ we have

E
[

e−Tr[uΣt]
]

= e−φt(u)−Tr[ψt(u)Σ0],

φ : [0, T ]× IT → R,

ψ : [0, T ]× IT → Sd.(3.3)

Within this setting we are able to construct martingales that stay greater than one up to a bounded time

horizon T .

THEOREM 3.1. Let Σ be an affine process, and let u ∈ IT ∩ S−−d , then the process Mu defined by

(3.4) Mu
t = exp {−φT−t(u)− Tr [ψT−t(u)Σt]}

is a martingale and Mu
t > 1 a.s. ∀t ∈ [0, T ] .

PROOF. See Appendix. �

Equipped with this positivity result, we can proceed by considering a tenor structure of non negative Li-

bor rates L(0, Tk) for k = {1, ..., N − 1}. Standard arbitrage arguments (see e.g. Geman et al. (1995))

imply that discounted traded assets, in our case bonds, are martingales under the terminal martingale

measure:

(3.5)
B(∗, Tk)
B(∗, TN )

∈M (PTN
) ∀k ∈ {1, ..., N − 1} ,

whereM (PTN
) denotes the set of martingales with respect to the forward risk neutral probability PTN

.

The idea in Keller-Ressel et al. (2009) is then to model quotients of bond prices using the martingales

Mu defined as follows:

B(t, T1)

B(t, TN )
=Mu1

t(3.6)

...

B(t, TN−1)

B(t, TN )
=M

uN−1

t(3.7)

∀t ∈ [0, T1] , ..., t ∈ [0, TN−1] respectively. As a consequence, the initial values of the martingalesMuk
0

must satisfy the relation

(3.8) Muk
0 = exp {−φT (uk)− Tr [ψT (uk)Σ0]} =

B(0, Tk)

B(0, TN )
,

for all k ∈ {1, ..., N − 1}, so that it is possibile to set uN = 0 as we have MuN
0 = 1.

In the following proposition, we show that it is possible to fit (basically) any initial term structure of

bond rates. The state space we are considering offers a wide range of possibilities to perform this task.

However, since we are interested in applications, we adopt the simplest choice directly coming from the

scalar case and we focus on the particular (but realistic) case where all Libor rates are positive.



58 3. A FLEXIBLE MATRIX LIBOR MODEL WITH SMILES

PROPOSITION 3.2. Let L(0, T1), ..., L(0, TN ) be a tenor structure of positive initial Libor rates, and

let Σ be an affine process on S++
d . Define

(3.9) γΣ := sup
u∈IT∩S−−d

E
[

e−Tr[uΣT ]
]

.

If γΣ > B(0,T1)
B(0,TN ) then there exists a strictly increasing sequence of matrices (i.e. uk ≺ uk+1 if and only

if uk − uk+1 ∈ S−−d ) u1 ≺ u2 ≺ ... ≺ uN−1 ≺ 0 in IT ∩ S−−d and uN = 0 such that

(3.10) Muk
0 =

B(0, Tk)

B(0, TN )
, ∀k ∈ {1, ..., N} .

Conversely, let the bond prices be given by (3.6)-(3.7) and satisfy the initial condition (3.8). Then the

Libor rates L(t, Tk) are positive a.s. ∀t ∈ [0, Tk] and k ∈ {1, ..., N − 1} .

PROOF. See Appendix. �

3.2. A fully-affine arbitrage-free model. If we look at the definition of the Libor rate we realize

that it is quite natural to require quotients of bonds to be driven by an exponentially affine function of

the state: in fact, in this case also bond prices as well as forward prices will be affine functions. This is

also in line with the previous approaches of Constantinides (1992) and Gouriéroux and Sufana (2011)

based on the stochastic discount factor. In other words, the approach of Keller-Ressel et al. (2009) is

able to provide a fully affine structure2. In order to prove the affine structure or our model, we first show

that under (3.6)-(3.7), forward prices are of exponential-affine form under any forward measure. To do

this, first we notice that in this framework quotients of bonds are exponentially affine in the state factors,

so that also forward prices will be: for k = 1, ..., N − 1

B(t, Tk)

B(t, Tk+1)
=

B(t, Tk)

B(t, TN )

B(t, TN )

B(t, Tk+1)
=

Muk
t

M
uk+1

t

= exp {−φTN−t(uk) + φTN−t(uk+1)}
exp {Tr [(−ψTN−t(uk) + ψTN−t(uk+1)) Σt]}
=: exp {ATN−t(uk, uk+1) + Tr [BTN−t(uk, uk+1)Σt]} .(3.11)

With this result, we are able to show very easily that the model is arbitrage free, that is forward prices

are martingales with respect to their corresponding forward measures (see Geman et al. (1995)):

(3.12)
B(∗, Tk)
B(∗, TN )

∈M (PTN
) .

This comes from the fact that forward measures are related one another via the quotients of the martin-

gales Mu:

(3.13)
∂PTk

∂PTk+1

|Ft =
F (t, Tk, Tk+1)

F (0, Tk, Tk+1)
=
B(0, Tk+1)

B(0, Tk)

Muk
t

M
uk+1

t

,

∀k ∈ {1, ..., N}. Then L(∗, Tk) is a martingale under the forward measure PTk+1
since the successive

densities from PTk+1
to PTN

yield a telescoping product and PTN
martingale (see Keller-Ressel et al.

(2009)). More precisely:

(3.14) 1 + δL(∗, Tk) =
B(∗, Tk)
B(∗, Tk+1)

=
Muk

Muk+1
∈M

(
PTk+1

)

2This is the reason why we will be able to apply the approach by Collin-Dufresne and Goldstein (2002), who originally

started by an affine short rate in order to price swaptions: in fact, also in their framework bond prices are affine functions of the

state variables.
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since

(3.15)
Muk

Muk+1

N−1∏

l=k+1

Mul

Mul+1
=Muk ∈M (PTN

) .

Also, the density between the PTk
-forward measure and the terminal forward measure PTN

is given by

the martingale Muk as indicated by (3.6)-(3.7):

(3.16)
∂PTk

∂PTN

|Ft
=
B(0, TN )

B(0, Tk)

B(t, Tk)

B(t, TN )
=
B(0, TN )

B(0, Tk)
Muk
t =

Muk
t

Muk
0

.

In this arbitrage-free model with positive Libor rates, the affine structure is preserved: that is, it is

possible to extend to the state space S++
d the analogous result of Keller-Ressel et al. (2009).

PROPOSITION 3.3. Let the bond structure be defined through (3.6)-(3.7), where the process Mu. is

given by (3.4). Then forward prices are exponentially affine in the state variable Σ under any forward

measure.

PROOF. The result comes directly from formula (6.23) in Keller-Ressel et al. (2009) once the scalar

product is replaced by the trace operator. �

4. Pricing of Derivatives

We now focus on the pricing problem for vanilla options like Caps&Floors and for exotic options like

swaptions in the affine Libor model on S++
d introduced in the previous section. We shall see that the

pricing of Caps and Floors may be performed using standard Fourier pricing techniques as in Keller-

Ressel et al. (2009), whereas, for the case of swaptions, we will resort to a quasi closed form solution. In

fact, since the moments of the underlying affine process are known through its characteristic function,

we can expand the exercise probability via an Edgeworth developement, as shown in Collin-Dufresne

and Goldstein (2002). This approach will lead to an efficient approximation: what is more, it will avoid

the numerical problems underlying the computation of the exercise probability in Keller-Ressel et al.

(2009).

4.1. Caps and Floors. A Cap may be thought of as a portfolio of call options on the successive

Libor rates, named Caplets, whereas Floors are portfolios of put options named floorlets. These options

are usually settled in arrears, which means that the caplet with maturity Tk is settled at time Tk+1. The

tenor lenght ∆T is assumed to be constant. Since the two products are equivalent, we will focus on

Caps. A Cap with nominal capital N = 1 has a payoff given by the following:

(4.1) ∆T (L(Tk, Tk)−K)+ k = 1, ..., N − 1

We rewrite the payoff of caplets as in Keller-Ressel et al. (2009):

∆T (L(Tk, Tk)−K)+ = (1 +∆TL(Tk, Tk)− (1 + ∆TK))
+

=

(

Muk

Tk

M
uk+1

Tk

−K
)+

,(4.2)

with K := 1 + ∆TK.

Thus we see that the caplet is equivalent to an option on the forward price. In order to avoid the compu-

tation of expectations involving a joint distribution, each single caplet is priced under the corresponding
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forward measure:

C (Tk,K) = B(0, Tk+1)E
PTk+1





(

Muk

Tk

M
uk+1

Tk

−K
)+





= B(0, Tk+1)E
PTk+1

[(
eY −K

)+
]

,(4.3)

with:

Y := log

(

Muk

Tk

M
uk+1

Tk

)

= ATN−Tk
(uk, uk+1) + Tr [BTN−Tk

(uk, uk+1)ΣTk
] ,(4.4)

for ATN−Tk
(uk, uk+1), BTN−Tk

(uk, uk+1) defined as in (3.11). The pricing problem can be solved

via Fourier techniques through the Carr and Madan (1999) methodology. Hence we have the following

proposition, whose standard proof is omitted.

PROPOSITION 3.4. Let α > 0. The price of a caplet with strike K and maturity Tk is given by the

formula:

C (Tk,K) = B(0, Tk+1)
exp {−αc}

2π

×
∫ +∞

−∞
e−ivc

EPTk+1

[

ei(v−(α+1)i)(ATN−Tk
(uk,uk+1)+Tr[BTN−Tk

(uk,uk+1)ΣTk ])
]

(α+ iv) (1 + α+ iv)
dv,(4.5)

where:

c = log (1 + ∆TK) ,

ATN−Tk
(uk, uk+1) = −φTN−Tk

(uk) + φTN−Tk
(uk+1),

BTN−Tk
(uk, uk+1) = −ψTN−Tk

(uk) + ψTN−Tk
(uk+1).

In other words, pricing a Cap involves the computation of the moment generating function of the Wishart

process, which can be efficiently performed through the linearization of the associated Riccati ODEs as

explained in Proposition 3.1. The parameter α > 0 represents the damping factor introduced by the

Carr and Madan (1999) methodology. We report in the Appendix B the explicit expression of the

characteristic function involved in the pricing procedure.

4.2. Swaptions. The payoff of a receiver (resp. payer) swaption may be seen as a call (resp. put)

on a coupon bond with strike price equal to one. We consider a receiver swaption that starts at Ti with

maturity Tm, (i < m ≤ N). The time-Ti value is given by:

(4.6) STi(K,Ti, Tm) =

(
m∑

k=i+1

ckB(Ti, Tk)− 1

)+

where

(4.7) ck =

{

∆TK if i+ 1 ≤ k ≤ m− 1,

1 + ∆TK if k = m.

Unfortunately, we face some difficulties if we try to adopt the Fourier technique that we employed to

price a caplet. To see this we look at the proof of Proposition 7.2. in Keller-Ressel et al. (2009), which
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requires the computation of the Fourier transform of the payoff3:

f̃(z) =

∫

R
d(d+1)

2

eTr[izΣTi ]

(
m∑

k=i+1

cke
ATN−Ti

(uk,ui)+Tr[BTN−Ti
(uk,ui)ΣTi ] − 1

)+

dvech(ΣTi
),

(4.8)

where for a symmetric matrix A, vech(A) stands for the vector in Rd(d+1)/2 consisting in the columns

of the upper-diagonal part of A including the diagonal. The problem is given by the presence of the

positive part in the payoff function. To get rid of it, we should be able to find a value Σ̃ such that

(4.9)

m∑

k=i+1

cke
ATN−Ti

(uk,ui)+Tr[BTN−Ti
(uk,ui)Σ̃] = 1,

that is we should solve a single equation in d(d + 1)/2 unknowns (the elements of Σ̃), which is highly

non trivial when d > 1. Thus, pricing swaptions is challenging when we consider multiple factor affine

models: this is a well known problem, see e.g. Jamshidian (1989) and Collin-Dufresne and Goldstein

(2002). This is why Keller-Ressel et al. (2009) investigate the case d = 1, that is a Libor model driven

by a (univariate) CIR process like in Jamshidian (1987). However, swaptions are essentially correlation

products which are sensitive to changes in the movements of the yield curve, so that d should be neces-

sarily greater than one in order to take into account the multivariate nature of the yield curve.

In our approach we propose to follow the procedure suggested by Collin-Dufresne and Goldstein (2002)

in order to approximate the exercise probabilities for the swaption. We define the Ti-price of a coupon

bond, for i < m ≤ N , as follows:

(4.10) CB(Ti) =
m∑

k=i+1

ckB(Ti, Tk).

Let us derive the general form of the pricing formula for a receiver swaption, for 0 = T0 = t < Ti:

S0(K,Ti, Tm) = EQ
[

e−
∫ Ti
0 rsds (CB(Ti)− 1)

+
]

= EQ
[

e−
∫ Ti
0 rsds

(
CB(Ti)1(CB(Ti)>1) − 1(CB(Ti)>1)

)]

=
m∑

k=i+1

ckE
Q
[

e−
∫ Tk
0 rsds1(CB(Ti)>1)

]

− EQ
[

e−
∫ Ti
0 rsds1(CB(Ti)>1)

]

.

3B(Ti, Tk) =
B(Ti,Tk)
B(Ti,TN )

B(Ti,TN )
B(Ti,Ti)

=
M

uk
Ti

M
ui
Ti

= exp
{

ATN−Ti
(uk, ui) + Tr

[

BTN−Ti
(uk, ui)ΣTi

]}
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We switch to the forward measure as follows:

S0(K,Ti, TN ) =

m∑

k=i+1

ckB(0, Tk)E
Q

[

e−
∫ Tk
0 rsds

B(0, Tk)
1(CB(Ti)>1)

]

−B(0, Ti)EQ

[

e−
∫ Ti
0 rsds

B(0, Ti)
1(CB(Ti)>1)

]

=

m∑

k=i+1

ckB(0, Tk)E
PTk

[
1(CB(Ti)>1)

]

−B(0, Ti)EPTi

[
1(CB(Ti)>1)

]

=

m∑

k=i+1

ckB(0, Tk)PTk
[(CB(Ti) > 1)]

−B(0, Ti)PTi [(CB(Ti) > 1)] .

The exercise probabilities PTk
[(CB(Ti) > 1)] and PTi

[(CB(Ti) > 1)] do not admit in general a closed

form expression, so that we adapt to our setting the Edgeworth expansion procedure proposed by Collin-

Dufresne and Goldstein (2002). Intuitively, the moments of the coupon bonds admit a simple closed-

form expression in our affine framework, and these moments uniquely identify the cumulants of the

distribution. One can expand the characteristic function in terms of the cumulants and compute the

exercise probabilities by Fourier inversion.

Using the notation of Collin-Dufresne and Goldstein (2002) (formula (5)) for the q − th power of a

coupon bond we notice that, for i < m ≤ N :

(CB(Ti))
q
= (ci+1B(Ti, Ti+1) + ...+ cmB(Ti, Tm))

q

=
m∑

j1,...,jq=i+1

(
cj1 · ... · cjq

)
×

(
B(Ti, Tj1) · ... ·B(Ti, Tjq )

)
.(4.11)

Now in our framework we have (see also formula (7.9) in Keller-Ressel et al. (2009))

(4.12) B(Ti, Tjl) =
M

ujl

Ti

Mui

Ti

for l = 1, ..., q, meaning that we can rewrite the q − th power of the coupon-bond as follows:

(4.13) (CB(Ti))
q
=

m∑

j1,...,jq=i+1

(
cj1 · ... · cjq

)
×

(

M
uj1

Ti

Mui

Ti

· ... ·
M

ujq

Ti

Mui

Ti

)

.

Recall, from (3.4), that we have

(4.14) M
ujl

Ti
= exp {−φTN−Ti(ujl)− Tr [ψTN−Ti(ujl)ΣTi ]} ,

for l = 1, ..., q and

(4.15) Mui

Ti
= exp {−φTN−Ti

(ui)− Tr [ψTN−Ti
(ui)ΣTi

]} .
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In conclusion, the q − th moment under PTk
has the following expression:

EPTk [CB(Ti)
q]

=
m∑

j1,...,jq=i+1

(
cj1 · ... · cjq

)
× EPTk

[(

M
uj1

Ti

Mui

Ti

· ... ·
M

ujq

Ti

Mui

Ti

)]

=

m∑

j1,...,jq=i+1

(
cj1 · ... · cjq

)
×

EPTk

[

exp

{
q

∑

l=1

(

− φTN−Ti
(ujl)− Tr [ψTN−Ti

(ujl)ΣTi
]
)

+ q
(

φTN−Ti(ui) + Tr [ψTN−Ti(ui)ΣTi ]
)
}]

=

m∑

j1,...,jq=i+1

(
cj1 · ... · cjq

)
× exp

{(

−
q

∑

l=1

φTN−Ti(ujl)

)

+ qφTN−Ti(ui)

}

× EPTk

[

exp

{

Tr

[((

−
q

∑

l=1

ψTN−Ti
(ujl)

)

+ qψTN−Ti
(ui)

)

ΣTi

]}]

,(4.16)

where the functions φ and ψ are as usual the solutions of Riccati ODE’s of the form (2.4), (2.5). Once

the firstmmoments under the corresponding forward measures are exactly determined, we can estimate

the exercise probabilities PTk
[(CB(T0) > 1)] under each forward measure as in Collin-Dufresne and

Goldstein (2002), by relying on a cumulant expansion on PTk
[CB(T0)].

5. The Wishart Libor Model

The aim of this section is to illustrate a specific choice for the driving process Σ. As in the general

setup, we specify the process under the terminal probability measure PTN
. The example we choose is

the Wishart process, which was already presented in section 2.2.1:

(5.1) dΣt = (ΩΩ⊤ +MΣt +ΣtM
⊤)dt+

√

ΣtdW
TN
t Q+Q⊤dWTN⊤

t

√

Σt.

Here WTN
t denotes a matrix Brownian motion, i.e. a d × d matrix of independent Brownian motions

under the PN -forward probability measure. In the sequel we will write Wt for notational simplicity.

In this section we show the impact of the relevant parameters on the implied volatility surface generated

by vanilla options for a Libor model driven by a Wishart process. In order to investigate some complex

movements of the implied volatility surface, we first compute the covariation between the Libor rate and

its volatility: this covariation is a crucial quantity allowing for the so called skew effect on the smile, in

perfect analogy with the leverage effect for vanilla options in the equity market.

5.1. The skew of vanilla options. In order to compute the covariation between the Libor rate and

its volatility, we need to derive the dynamics of the Libor rate in the Wishart model. This may be done

along the following steps: using the shorthand

Bk := BTN−t(uk, uk+1) = −ψTN−t(uk) + ψTN−t(uk+1),(5.2)
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recall that we have:

1 + δL(t, Tk, Tk+1) =
B(t, Tk)

B(t, Tk+1)
= eAk+Tr[BkΣt].(5.3)

In differential form, after dividing both sides by L(t, Tk, Tk+1) we have

dL(t, Tk, Tk+1)

L(t, Tk, Tk+1)

=
1 + δL(t, Tk, Tk+1)

L(t, Tk, Tk+1)
([...]dt+ Tr [BkdΣt]) .(5.4)

To preserve analytical tractability, we freeze the coefficients and approximate as follows:

1 + δL(t, Tk, Tk+1)

L(t, Tk, Tk+1)
≈ 1 + δL(0, Tk, Tk+1)

L(0, Tk, Tk+1)
=: C.(5.5)

PROPOSITION 3.5. Under the assumption of frozen coefficients (5.5), the conditional infinitesimal cor-

relation between the Libor rate and its volatility cannot be negative and is given by

d 〈L(t, Tk, Tk+1), vol(L(t, Tk, Tk+1))〉

=
Tr

[
BkQ

⊤QBkQ⊤QBkΣ
]
dt

√

Tr
[
QBkΣB⊤k Q

⊤]
√

Tr [ΣBkQ⊤QBkQ⊤QBkQ⊤QBk]
.(5.6)

PROOF. See Appendix. �

From the previous formula we realize that the matrix Q is responsible for the shape of the skew. We

also have an indirect impact of the mean reversion speed matrix M coming from the term Bk which is

the difference of two solutions of the Riccati ODE’s (2.4) and (2.5). The presence of Σ suggests that in

the present framework the skew is stochastic. What is more, it can only have positive sign.

5.2. Numerical illustration with diagonal parameters. The dynamics above show that the Wishart

specification provides a very rich structure of the model. In order to get an understanding of the impact

of different parameters we will look first at the case where all matrices are diagonal, which basically

corresponds to a model driven by a two factor square root process (see e.g. Da Fonseca and Grasselli

(2011)).

We use the following set of parameters as a benchmark:

Σ0 =

(

3.75 0

0 3.45

)

, M =

(

−0.3125 ∗ 1.0e− 003 0

0 −0.5000 ∗ 1.0e− 003

)

,

Q =

(

0.034 0

0 0.0420

)

, β = 3.

The impact of the Gindikin parameter κ is quite easy to understand: the process acts by influencing the

overall level of the surface. This is due to the fact that the higher β the lower the probability that the

process Σ approaches 0. It is interesting to note that there is not only a level impact, but also a curvature

effect, as we can see in Figure (1).

Figure (1) here

Let us now look at the parameters along the diagonals of the matrices M and Q. The following claims

may be easily checked by looking at the SDE’s satisfied by the elements of Σ (see also Da Fonseca et al.

(2007a)). Note that we assumed all eigenvalues of M to lie in the negative real line.
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• For |M11| ր (ց) the surface is shifted downwards (upwards).

• For |M22| ր (ց) the surface is shifted downwards (upwards).

The impact is more evident for OTM caplets with short maturities. This is due to the fact that as the

process decreases (in matrix sense) the probability that caplets with short maturities are exercised is

lowered more than the analogous probability for longer term caplets.

Figure (2) here

We then consider the impact of Q11, Q22. We have the following:

• As Q11 ր (ց) the surface is shifted upwards (downwards). In particular if we multiply Q22

by a constant c > 1, then the increment in the short term is higher for OTM than for ITM

caplets. If c < 1 then the decrease is higher for short term OTM caplets, which is intuitive,

given the discussion above.

• The same impacts, with different magnitudes, is observed also for Q22.

Figure (3) here

5.3. The term structure of ATM implied volatilities for caplets.

5.3.1. Diagonal parameters. We proceed to consider the term structure of caplet implied volatili-

ties. When the matrix Σ0 is diagonal, the impact of the elements of Q is the same: an increase in the

absolute value of any element of Q will result in a steeper term structure of ATM caplet volatilities.

Figure (4) here

Considering a model where Σ0 is a full matrix does not influence this result in a significant way.

5.3.2. More complex adjustments: impact of off-diagonal elements. In order to appreciate the flexi-

bility of the Wishart framework, we focus now on the impact of the off-diagonal elements. We introduce

off-diagonal elements in M and Q and look at the relative change in the short term smile (4 months)

and the long term smile (32 months). We introduce a fully populated matrix Σ0 and look at the impact

of M12 and M21. Our experiments show that there is a symmetry between the sign of Σ0,12 (the initial

value of Σ12) and M12, M21. More precisely, the implied volatility changes are as in Table 1.

Σ0,12 > 0 Σ0,12 < 0

M12 > 0 Increase Decrease

M12 < 0 Decrease Increase

M21 > 0 Increase Decrease

M21 < 0 Decrease Increase

TABLE 1. Implied volatility changes: relation between Σ0,12 and M12,M21.

The reason for this symmetry is to be looked for in the drift part of the dynamics of the single elements

of the matrix process Σ.

Next we look at the impact of Q12 and Q21. To this end we model Q as a symmetric matrix and set

Q21 = Q12 = ρ
√
Q11Q22 for a real parameter ρ. Also in this case we recognize two main shapes of

the adjustment that we denote by S1, S2.
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Σ0,12 > 0 Σ0,12 < 0

ρ > 0 S1 S2

ρ < 0 S2 S1

TABLE 2. Implied volatility changes: relation between Σ0,12 and ρ.

We now proceed to perform other numerical tests which will show that our modelling framework has a

certain degree of flexibility. For these tests we set:

M =

(

−0.3125 ∗ 1.0e− 003 0

0 −0.5000 ∗ 1.0e− 003

)

,

Q =

(

0.02 ρ
√
Q11Q22

ρ
√
Q11Q22 0.0420

)

, β = 3,

so basically M is parametrized as before but Q is symmetric and equiped with a parameter ρ which

summarizes the information on the off-diagonal elements. We require Σ0 = Σ∞, where Σ∞ is given by

the solution of the Lyapunov equation (2.9). After that we perturbate Σ0 in order to include off-diagonal

elements and set Σ0,12 = Σ0,21 = 2. We have a good degree of control on the term structure of ATM

implied volatilities. In particular, we may have larger percentage shifts in the long-term w.r.t. the short-

term ATM implied volatility, or, for ρ = −0.6 we may even reproduce a situation where the short term

ATM implied volatility increases whereas the long-term ATM implied volatility decreases.

Figure (5) here

If we adopt the same kind of parametrization for the matrix M by introducing a second parameter ρ2,

then we have further flexibility because we can impose many different combinations of ρ, ρ2. For exam-

ple, Figure (9) shows that we are able to isolate an effect on the term structure of ATM implied volatility:

in fact we have a moderate change for ITM caplets while OTM caplets are practically unchanged, but

the shape of the term structure of ATM implied volatility is modified in a significant way.

Figure (9) here

Finally, just for illustrative purposes we report a prototypical Caplet volatility surface generated by the

model.

Figure (7) here

As far as Swaptions are concerned an example of ATM implied volatility surface for different expiries

and underlying swap lengths is given below.

Figure (8) here

6. The Pure Jump Libor Model

Finally, in this section, we would like to provide a second example for the driving process Σ, so as to

let the reader appreciate the degree of generality of this framework. As in the general setup, we specify
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the process under the terminal probability measure PTN
. The example we choose is a matrix compound

Poisson process, which was already presented in section 2.2.2:

dΣt =MΣt +ΣtM
⊤ + dL

PTN
t ,(6.1)

All assumptions presented in section 2.2.2 are in order. More specifically, we assume that L
PTN
t is a

compound Poisson process with constant intensity λ and jump distribution haveing support in S++
d . As

a specific example of jump distribution we choose the standard Wishart distribution. By recalling the

results in section 2.2.2 we have that the solution for the function ψτ (u) is

ψτ (u) = eM
⊤τueMτ ,(6.2)

whereas for φτ (u) we have

φτ (u) = −λ
∫ τ

0

det
(

Id + 2eM
⊤sueMsQ

)−n
2

ds+ λτ.(6.3)

In concrete pricing applications, the computation of the solution for φτ (u) implies a numerical integra-

tion with respect to the time dimension. This numerical integration has an impact on the performance

of the model which turns out to be slower than the Wishart Libor model. For illustrative purposes, we

report an example for an implied volatility surface for caplets generated by the compound Poisson Libor

model with central Wishart distributed jumps. The mean reversion matrix M and the jump intensity λ

are given by:

M =

(

−0.0550 0

0 −0.1760

)

,

λ = 0.1.

As far as the jump size distribution is concerned, the parameters are the following:

Q =

(

0.27 0

0 0.05

)

,

n = 3.1

Finally, the initial state of the process is

Σ0 =

(

1.875 0.6

0.6 1.275

)

.

(6.4)

7. Conclusions

In this chapter we presented an extension of the approach of Keller-Ressel et al. (2009) to the more

general setting of affine processes on positive definite matrices. We showed that their methodology

may be adapted to this state space in a straightforward way. What is more, it is possible to efficiently

price European swaptions in this multi-factor setting by means of a cumulant expansion due to Collin-

Dufresne and Goldstein (2002). In doing so we are in front of a setting which is potentially able to

capture correlation effects which can not be described by a single-factor setting. We provided numerical

examples for the Wishart Libor model, where the introduction of off-diagonal elements gives rise to new

possibilities in the control of the shape of the implied volatility surface. Our contribution may be seen

as a starting point for a description of market models in this state space, in consequence we believe that

there are many possible directions for future research. An example is given by the problem of calibrating
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this family of models to real market data. As the structure of the products in the fixed-income market

suggests, even in the plain vanilla case, we expect the objective function that should be minimized in

the calibration procedure to be quite involved. It will definitely lead to highly non trivial issues when

dealing with the implementation risk in the spirit of Da Fonseca and Grasselli (2011). For this reason

the calibration of our model, being a delicate issue, may constitute an interesting contribution by its

own. Once the model is calibrated on vanillas, one could then investigate the performance of the model

on more exotic structures, like e.g. Bermudan swaptions and barrier options.

8. Appendix A: proofs

8.1. Proof of Theorem 3.1. For all u ∈ IT we have

E [Mu
T ] = E

[

e−Tr[uΣT ]
]

<∞,

and by the affine property we obtain

E [Mu
T |Ft] = E [exp {−φT−T (u)− Tr [ψT−T (u)ΣT ]} |Ft]

= E [exp {−Tr [uΣT ]} |Ft]
= exp {−φT−t(u)− Tr [ψT−t(u)Σt]} =Mu

t ,

hence the process is a martingale. Now we show thatMu
t > 1. Recall that by assumption u ∈ IT ∩S−−d

and

Mu
t = E [exp {−Tr [uΣT ]} |Ft] ,

so that if −Tr [uΣT ] > 0 a.s. then we are done. We proceed as in Gourieroux and Sufana (2003) and

apply the singular value decomposition to the negative definite matrix u, i.e. u may be written as:

u =
n∑

i=1

λiuiu
⊤
i

where λi are the eigenvalues of u and ui are the eigenvectors. By assumption ΣT takes values in S++
d ,

hence

−Tr [uΣT ] = −Tr
[

n∑

i=1

λiuiu
⊤
i ΣT

]

= −
n∑

i=1

λiTr
[
uiu

⊤
i ΣT

]

= −
n∑

i=1

λiu
⊤
i ΣTui > 0(8.1)

as we wanted.

8.2. Proof of Proposition 3.2. We follow closely the proof in Keller-Ressel et al. (2009). By

assumption, initial Libor rates are strictly positive, then

(8.2)
B(0, T1)

B(0, TN )
>

B(0, T2)

B(0, TN )
> ... >

B(0, TN )

B(0, TN )
= 1.

Recall that we have

(8.3) E
[

e−Tr[u1ΣT ]
]

=Mu1
0 = exp {−φT (u1)− Tr [ψT (u1)Σ0]} =

B(0, T1)

B(0, TN )
.
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By the definition of γΣ in (3.9), we have that if γΣ =∞ then we are done, else we can claim that there

exists an ǫ > 0 such that γΣ − ǫ > B(0,T1)
B(0,TN ) . Then we can find a matrix ũ s.t.

(8.4) E
[

e−Tr[ũΣT ]
]

> γΣ − ǫ >
B(0, T1)

B(0, TN )
.

In analogy with Keller-Ressel et al. (2009) we introduce the function

f : [0, 1]→ R≥0

ξ → E
[

e−Tr[ξũΣT ]
]

(8.5)

and we want to show that f is continuous. First, since Σ ∈ S++
d and u ∈ S−−d we have that if u ≺ v

then −Tr [uΣT ] > −Tr [vΣT ], hence by monotone convergence we can conclude that f is increasing.

We now introduce an increasing sequence (an)n∈N ր 1 and apply Fatou’s lemma to obtain

lim inf
n→∞

E
[

e−Tr[anũΣT ]
]

≥ E
[

lim inf
n→∞

e−Tr[anũΣT ]
]

= E
[

e−Tr[ũΣT ]
]

,

implying that f is lower semi-continuous. Since f is also increasing we have that f is continuous. Now

f(0) = 1 and f(1) > B(0,T1)
B(0,TN ) , hence there exist some numbers 0 = ξN < ξN−1 < ... < ξ1 < 1 such

that

f (ξk) =Mξkũ
0 =

B(0, Tk)

B(0, TN )
, ∀k ∈ {1, ..., N} .

By setting uk = ξkũ (for k = 1, ..., N − 1) we obtain a sequence of matrices uk ≺ uk+1, uk −
uk+1 ∈ S−−d which allows us to fit the initial tenor structure of Libor rates as desired. Finally, we apply

Proposition 1 and Lemma 3.2 (ii) in Cuchiero et al. (2009) in order to obtain the last sentence of the

Proposition 3.2.

8.3. Proof of Proposition 3.5. In this section we proceed as in the proof of Proposition 4.1 in

Da Fonseca et al. (2008). Recall that Wt is a shorthand for WTN
t . From (5.4) it follows that

dL(t, Tk, Tk+1)

L(t, Tk, Tk+1)
= C



(...)dt+ 2
√

Tr
[
QBkΣB⊤k Q

⊤]



Tr

[

QBk
√
ΣdWt

]

√

Tr
[
QBkΣB⊤k Q

⊤]









:= C

(

(...)dt+ 2
√

Tr
[
QBkΣB⊤k Q

⊤]dW̃t

)

,(8.6)

where C was defined in (5.5) and the scalar noise driving the factor process may be derived as follows:

dTr
[
QBkΣtBkQ

⊤] =
(
Tr

[
QBkβQ

⊤QBkQ
⊤]+ 2Tr

[
QBkMΣtBkQ

⊤]) dt

+ 2Tr
[

QBk
√

ΣtdWtQBkQ
⊤
]

= (...)dt+ 2
√

Tr [ΣtBkQ⊤QBkQ⊤QBkQ⊤QBk]
Tr

[
QBkQ

⊤QBk
√
ΣtdWt

]

√

Tr [ΣBkQ⊤QBkQ⊤QBkQ⊤QBk]

:= (...)dt+ 2
√

Tr [ΣtBkQ⊤QBkQ⊤QBkQ⊤QBk]dZt.(8.7)
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The covariation between the noise of the Libor rate and its volatility is then given by

〈

dW̃t, dZt

〉

=

〈

Tr
[
QBk

√
ΣtdWt

]

√

Tr
[
QBkΣtB⊤k Q

⊤]
,

T r
[
QBkQ

⊤QBk
√
ΣtdWt

]

√

Tr [ΣtBkQ⊤QBkQ⊤QBkQ⊤QBk]

〉

=

(
∑

p,q,r,sQpqBqr
√
ΣrsdWsp

)(
∑

a,b,c,d,e,f,g QabBbcQ
⊤
cdQdeBef

√
ΣfgdWga

)

√

Tr
[
QBkΣB⊤k Q

⊤]
√

Tr [ΣBkQ⊤QBkQ⊤QBkQ⊤QBk]

=

∑

a,b,c,d,e,f,g,q,r BfeQ
⊤
edBcbQ

⊤
baQaqBqr

√
Σrg

√
Σgfdt

√

Tr
[
QBkΣB⊤k Q

⊤]
√

Tr [ΣBkQ⊤QBkQ⊤QBkQ⊤QBk]

=
Tr

[
BkQ

⊤QBkQ⊤QBkΣt
]
dt

√

Tr
[
QBkΣtB⊤k Q

⊤]
√

Tr [ΣtBkQ⊤QBkQ⊤QBkQ⊤QBk]
.

Now we turn on the positivity of the skew. With the notation in the proof of Proposition 3.2, from

ξk > ξk+1 we have uk ≺ uk+1 and then Bk ∈ S+
d . In all terms in the numerator and the denominator

we recognize congruent transformations of matrices in S+
d which leave the eigenvalues unchanged. The

self-duality of S+
d allows us to claim that all traces are positive, hence we are done.

9. Appendix B: the characteristic function

In order to price caplets, we need to have a more explicit form for the characteristic function appearing

in Proposition 3.4. Once we have this expression we can plug in the functions φτ (u) and ψτ (u) to obtain

a closed form solution. The pricing problem will be then solved via FFT. Recall that we are considering

the following expectation:

ϕ(v) = EPTk+1

[

ei(v−(α+1)i)(Ak+Tr[BkΣTk ])
]

= ei(v−(α+1)i)AkEPTk+1



exp






Tr



i (v − (α+ 1) i)Bk
︸ ︷︷ ︸

u

ΣTk













(9.1)

where

Ak := −φTN−Tk
(uk) + φTN−Tk

(uk+1);

Bk := −ψTN−Tk
(uk) + ψTN−Tk

(uk+1).(9.2)

As we computed the shape of the function φτ (u) and ψτ (u) under the PTN
-forward measure, we need

to switch from the PTk+1
to the PTN

-forward measure:

ei(v−(α+1)i)AkEPTk+1

[

eTr[uΣTk ]
]

= ei(v−(α+1)i)AkEPTN

[
∂PTk+1

∂PTN

eTr[uΣTk ]
]

= ei(v−(α+1)i)AkEPTN

[

M
uk+1

Tk

M
uk+1

0

eTr[uΣTk ]

]

,(9.3)
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where the last equation follows from (3.16). Let us focus on the expectation which becomes:

EPTN

[

exp
{

− φTN−Tk
(uk+1)− Tr [ψTN−Tk

(uk+1)ΣTk
]

+ φTN
(uk+1) + Tr [ψTN

(uk+1)Σ0] + Tr [uΣTk
]
}
]

= exp
{

− φTN−Tk
(uk+1) + φTN

(uk+1) + Tr [ψTN
(uk+1)Σ0]

}

× EPTN

[

eTr[(−ψTN−Tk
(uk+1)+u)ΣTk ]

]

= exp
{

− φTN−Tk
(uk+1) + φTN

(uk+1) + Tr [ψTN
(uk+1)Σ0]

− φTk

(

− ψTN−Tk
(uk+1) + u

)

− Tr
[

ψTk

(

− ψTN−Tk
(uk+1) + u

)

Σ0

]}

.(9.4)

Now, recalling the previous terms in front of the expectation in (9.3), we obtain the final expression

which is

exp

{

i(v − (α+ 1)i)
(

Ak
︷ ︸︸ ︷

−φTN−Tk
(uk) + φTN−Tk

(uk+1)
)

− φTN−Tk
(uk+1) + φTN

(uk+1)

−φTk

(

− ψTN−Tk
(uk+1) + i(v − (α+ 1)i)

(
Bk

︷ ︸︸ ︷

−ψTN−Tk
(uk) + ψTN−Tk

(uk+1)
)

︸ ︷︷ ︸

u

)

+Tr [ψTN
(uk+1)Σ0]

− Tr
[

ψTk

(

− ψTN−Tk
(uk+1) + i(v − (α+ 1)i)

Bk
︷ ︸︸ ︷
(

− ψTN−Tk
(uk) + ψTN−Tk

(uk+1)
)

︸ ︷︷ ︸

u

)

Σ0

]}

.
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10. Figures

FIGURE 1. Doubling β with respect to the basic case causes an upward shift of the

surface. The plot represents the two smiles (4 months and 32 months) for the basic

(β = 3) and the modified case (β = 6).

FIGURE 2. Impact of M11. M11 is negative and the present image shows the effects

on the two smiles (4 months and 32 months) we obtain when we multiply it by a

constant c = 1.8
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FIGURE 3. Impact ofQ11. Q11 is positive and the present image shows the effects on

the two smiles (4 months and 32 months) we obtain when we multiply it by a constant

c = 2

FIGURE 4. Impact of Q on the term structures of ATM implied volatilities. Here we

consider Q11 and multiply its value by a constant c = 1, 1.5, 2 so as to get the values

in the legend.
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FIGURE 5. The images above highlight the flexibility of the Wishart Libor model.

We are able to impose different patterns to the term structure of ATM implied volatil-

ity. On the top we have the smiles and on the bottom we observe the relative

changes of the smiles, i.e. for every point of the smiles we calculate the quantity
(

σimpfinal − σ
imp
initial

)

/σimpinitial. Notice in particular the situation on the left side, where

we observe around 5% (ATM) an increase of the short term smile and a decrease on

the long term.
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FIGURE 6. Impact on the implied volatility surface when both M and Q are

parametrized as symmetric matrices. Notice the level around 5%, corresponding to

ATM. This shows that if we parametrize both M and Q via ρ, ρ2 we have a flexible

setting which is controlled just by two parameters that allow us to perform different

combinations. In particular ρ and ρ2 have opposite impacts in the present example

(ρ > 0 whereas ρ2 < 0), meaning that we have a good degree of control.
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FIGURE 7. Caplet Implied Volatility Surface generated by the Wishart Libor model

FIGURE 8. ATM Swaption Implied Volatility Surface generated by the Wishart Libor model
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FIGURE 9. Caplet Implied Volatility Surface generated by the compound Poisson

Libor model with Wishart distributed jumps





Part 3

Foreign exchange market





CHAPTER 4

The multi-Heston case

1. Introduction

Derivatives with multiple underlying components have attracted in recent times an increasing amount of

attention, partly in form of public scrutiny and criticisms. Their popularity extends to the different asset

classes traded in the financial markets, ranging from basket options written on equity stocks and foreign

exchange rates, to CDO structures on various fixed income instruments and complex hybrid structures

combining the different underlying types (see e.g. Wystup (2006), Clark (2011), Esquı́vel et al. (2010)).

From a client perspective the appeal of such structures is clear and understandable: diversification re-

duces the exposure to individual components while the whole structure is cheaper to buy than multiple

single-underlying options, see Qu (2010). The correlations between the returns of the different com-

ponents are the key inputs in the determination of this rebate. Most often, however, these correlations

are not observable in the market; a fact that leads to material uncertainties and complications in the

valuation and risk management of, even rather standard, multi-component derivatives.

There is nevertheless a notable and mostly overlooked example, in which much can be said from the

market about the correlation structure. This is often the case of derivatives with multiple underlying

FX rates (see Esquı́vel et al. (2010)). Rather paradoxically, here we face the opposite problem: in-

stead of having little evidence on where correlations trade, the market gives many indications on their

structure, potentially more than any standard model, like a copula model, can handle. This information

can be extracted from the liquid vanilla markets and the fact that, differently from other asset classes,

appropriate multiplication/division of FX rates are still FX rates, and hence directly observable through

standard FX spot transactions. To capture the market correlation structure we need a model that is able

to price consistently vanilla options across different FX pairs (see e.g. Castagna (2010), Beneder and

Elkenbracht-Huizing (2003)). At the same time, given the high dimensionality of the problem, for any

possible practical application we seek to retain some kind of analytical tractability. In this paper, we

present a first proposal of such a model.

The focus of our analysis is on the simultaneous calibration of several FX vanilla surfaces. This is

indeed an important model prerequisite for pricing structures with multiple underlying FX rates. For

the sake of simplicity, let us consider as an example the FX market composed by three currencies: say

Euro (EUR), US dollar (USD), and Japanese Yen (JPY). All three currency pairs EUR/USD, USD/JPY,

and EUR/JPY are liquidly traded, both as FX spot transactions and vanilla FX options. Let Sd,f(t) be

the spot exchange rate at time t as the amount of domestic (d) currency for one unit of foreign currency

(f). As a consequence of the standard triangular relationship between the FX rates, e.g. SJPY,EUR(t) =

SJPY,USD(t)SUSD,EUR(t), the price of a multi-dimensional option on any of the two of the three pairs is

also implicitly sensitive to the volatility of the excluded pair. This fact is easily understood in the case

of no-skew. To fix ideas let us consider a basket option on EUR/USD and USD/JPY. The correlation

81
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between the two main FX rates ρEUR/USD−USD/JPY can be derived from the volatility of the cross via

the triangular relation (see e.g. Clark (2011) p. 228)

(1.1) ρEUR/USD−USD/JPY =
σ2

EUR/JPY − σ2
EUR/USD − σ2

USD/JPY

2σEUR/USDσUSD/JPY

.

By varying the cross volatility σEUR/JPY and keeping the main volatilities fixed, one can span over any

value of the correlation between -1 and 1, yielding significantly different values for the basket structure.

Similarly, if the volatility skew is included, the basket structure becomes sensitive to all three volatility

smiles. A good pricing model must be able to reproduce all three vanilla markets; theoretically, a very

challenging prerequisite.

The easiest way to proceed is to calibrate the volatility smiles of the two main currency pairs using typ-

ical unidimensional models and try to obtain the third from the correlation between them. If, however,

we stick to a simple mathematical modelling of the correlation, say either constant or time-dependent,

we face two problems. Firstly, a simultaneous calibration to all volatility smiles in the triangle is in gen-

eral difficult to obtain, as a constant correlation does not provide enough flexibility to match the smile

of the FX cross. Secondly, the model is not functionally symmetric with respect to which FX pairs we

choose to be the main ones and which one the cross. In other terms, the stochastic process of the cross

FX rate is functionally different from the processes of the main FX rates it is derived from.

This latter point, although theoretical at first sight, is of key practical importance. In principle we have

the freedom of choosing any of the currencies as our numéraire when pricing a multi-currency structure

(although some choices are more natural than others, e.g. the payout currency which is specified in the

contract). A model that is able to treat symmetrically all currencies must be therefore preferred. The

main purpose of this paper is to specify a model with this property in the class of multi-dimensional sto-

chastic volatility models. To achieve our goal, we need a paradigm change in the model specification.

We have to forgo the standard approach of leaving the task of matching the volatility skew of the cross

FX rate to the correlation between the main exchange rates. Instead of putting the currency pairs at the

basis of our model, we start from the observation that any exchange rate may be seen as a ratio between

two quantities, the value of the currencies with respect to some universal numéraire, and include this

feature in the specification of the model: this reflects the point of view of the Benchmark approach

in Heath and Platen (2006a) and Heath and Platen (2006b). In this way, our model does not change

qualitatively depending on which perspective is used. The benefits of this property are manifold: i) the

calibration is universal, i.e., it is independent on the exotic product being priced (due to the symmetry

of the numéraire currency), ii) the price of the exotic will not vary depending on which perspective

is chosen; moreover, iii) the model produces symmetric and consistent risk sensitivities with possibly

positive impacts on the way multi-dimensional option books can be risk managed.

The model we present in this paper is a multi-factor stochastic volatility model of Heston , see Heston

(1993), which extends the standard approach in Garman and Kohlhagen (1983). The Heston dynamics

leads to an affine model which is known to retain analytical tractability. We will provide a complete

discussion concerning the set of risk neutral measures and the rules to change between them. Rather

remarkably, as a consequence of the specific Heston-type dynamics, the model remains functionally

invariant, after parameter rescaling, when the risk-neutral measure is changed. This is the key feature

that allows us to obtain a universal calibration with reasonable computational effort. We will then test

the model on real market data and show how a joint calibration of the volatility smiles of EUR/USD/JPY
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triangle is possible. In- and out-of-sample calibration tests will be reported to comment on the robustness

of the parameter estimation.

The chapter is organized as follows: we present the model in Sect. 2, initially using the perspective

given by some kind of universal numéraire. We continue with the basic properties of the model, such

as the positivity of the instantaneous covariance matrix and the presence of stochastic skewness, before

presenting the invariance of the model and transformation rule of its parameters when the risk neutral

measure is changed in Sect. 3. The explicit formulae for the characteristic function and option prices

are given in Sect. 4 before turning to the small vol-of-vol expansions of the option prices and implied

volatilities in Sect. 5. Finally, the joint calibration to EUR/USD/JPY market volatility smiles is presented

in Sect. 6, together with a discussion of the procedure and the results, including the Feller condition and

moment explosion.

2. Multifactor Heston-based exchange model

We consider a foreign exchange market in which N currencies are traded between each other via stan-

dard FX spot and FX vanilla option transactions. We start by considering the value of each of these

currencies in units of a universal numéraire. We will see that the discussion is independent on the exact

specification of this numéraire. To fix the ideas, one can think of it as a precious metal, e.g. gold, or

the market portfolio like in the benchmark approach of Heath and Platen (2006a) and Heath and Platen

(2006b).

Let us work in the risk neutral measure defined by the universal numéraire and call S0,i(t) the value at

time t of one unit of the currency i in terms of our universal numéraire (note that S0,i(t) can itself be

thought as an exchange rate, between the universal numéraire and the currency i). We model each of the

S0,i(t) via a multi-variate Heston stochastic volatility model Heston (1993) with d independent Cox-

Ingersoll-Ross (CIR) components Cox et al. (1985), V(t) ∈ Rd, and an equivalent number of driving

noises, Z(t) ∈ Rd. The dimension d can be chosen according to the specific problem and may reflect a

PCA-type analysis. We further assume that these stochastic volatility components are common between

the different S0,i(t). Formally, we write

dS0,i(t)

S0,i(t)
= (r0 − ri)dt− (ai)⊤Diag(

√

V(t))dZ(t), i = 1, . . . , N ;(2.1)

dVk(t) = κk(θk − Vk(t))dt+ ξk
√

Vk(t)dWk(t), k = 1, . . . , d;(2.2)

where κk, θk, ξk ∈ R are standard parameters in a CIR dynamics. Diag(
√

V(t)) denotes the diagonal

matrix with the square root of the elements of the vector V(t) in the principal diagonal, this term is

multiplied with the linear vector a
i ∈ Rd (i = 1, . . . , N ); as a result, the dynamics of the exchange rate

is driven by a linear projection of the variance factor V(t) along a direction parametrized by a
i, namely

the total instantaneous variance is (ai)⊤Diag(V(t))aidt. In each monetary area i, the money-market

account accrues interest based on the deterministic risk free rate ri,

dBi(t) =riBi(t)dt, i = 1, . . . , N ;(2.3)

in our gold analogy r0 is the precious metal lease rate. Finally, we assume an orthogonal correlation

structure between the stochastic drivers

〈dZk(t)dWh(t)〉 = ρkδkhdt, k, h = 1, . . . , d,(2.4)

together with 〈dZk(t)dZh(t)〉 = δkhdt and 〈dWk(t)dWh(t)〉 = δkhdt.



84 4. THE MULTI-HESTON CASE

This concludes the description of our model.

The idea behind this approach is that each exchange rate is driven by several independent drivers dZk(t)

(k = 1, .., d), each with an independent stochastic variance factor Vk(t), to which dZk(t) is partially

correlated via ρk. The vectors a
i (i = 1, . . . , N ) describe by how much each of the different volatilities

contribute to the dynamics of S0,i(t) . This correlation structure is responsible for the appearance of

non-standard effects in the model, like a stochastic skewness, see subsection 2.3.

All in all, we have introduced a total number of parameters equal to NP = Nd+ 5d (Nd from the vec-

tors a
i and 5 for each CIR process, κk, θk, ξk, ρk and the initial value Vk(0)) to describe the volatility

skew of (N2 − N)/2 currency pairs. As rule of thumb, assuming that each currency pair can be ap-

proximately modeled by a standard one-dimensional Heston model, which is described by 5 parameters,

around 5(N2−N)/2 parameters are needed to fit all volatility surfaces; the value of d should be chosen

to produce approximately this number of parameters, if not less, to avoid instabilities due to overfitting.

Let us now turn our attention to the exchange rate Si,j(t) between two different currencies, say i and

j. We set by definition Si,j(t) := S0,j(t)/S0,i(t). By straightforward calculation, we obtain for i, j =

1, .., N :

dSi,j(t)

Si,j(t)
= (ri − rj)dt+ (ai − a

j)⊤Diag(V(t))aidt+ (ai − a
j)⊤Diag(

√

V(t))dZ(t).(2.5)

Note that at this stage we are still working under the risk neutral measure defined by the universal

numéraire. The additional drift term in (2.5) can be understood as a quanto adjustment between the

currency 0 and i.

PROPOSITION 4.1. The dynamics of the exchange rate (2.1) satisfies the triangular relation, namely for

all t ≥ 0 and i, j, l = 1, .., N :

dSi,j(t) =d
(
Si,l(t)Sl,j(t)

)
.(2.6)

PROOF. Straightforward application of Ito’s rule. �

This symmetry property is fundamental in order to have a model that yields universal calibration and

consistent pricing of exotic options. In the following subsections, we will analyze some additional

properties of the model and familiarize with the meaning of the different parameters.

2.1. Vectors a
i cannot be the canonical basis. A rather natural choice would be to set ai equal to

the canonical basis e
i (i.e. the i-th element of the canonical basis of RN , eil = δli, i, l = 1, .., N ), then

(2.5), for i 6= j, reads:

dSi,j(t)

Si,j(t)
= (ri − rj)dt+ V i(t)dt+

√

Vi(t)dZ
i(t)−

√

Vj(t)dZ
j(t),(2.7)

which in the 3-currency case leads to the 3-factor Heston model. The problem with this choice is that

the covariances (and thus the correlations) between different pairs are forced to be positive,
〈
dSi,j(t)

Si,j(t)
,
dSi,l(t)

Si,l(t)

〉

= V i(t)dt ≥ 0.(2.8)

As we need the flexibility to define negative correlation between FX rates, the vectors a
i cannot be taken

equal to the canonical basis. These additional parameters are needed to describe a multi-dimensional

FX market.
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2.2. Stochastic covariance matrix. By construction, the model (2.1) has a stochastic instanta-

neous (N − 1)× (N − 1) covariance matrix. We prove here that the specification of the model always

leads to a positive definite covariance matrix, a fundamental prerequisite for any well-posed multi-

dimensional model. For example, we consider the case of three currencies and the associated 2 × 2

candidate covariance matrix where we fix the point of view of currency i:

Covi(t) =







〈
dSi,j(t)

Si,j(t)

〉 〈
dSi,j(t)

Si,j(t)
,
dSi,l(t)

Si,l(t)

〉

〈
dSi,j(t)

Si,j(t)
,
dSi,l(t)

Si,l(t)

〉 〈
dSi,l(t)

Si,l(t)

〉






,(2.9)

where
〈
dSi,j(t)

Si,j(t)
,
dSi,l(t)

Si,l(t)

〉

=
(
a
i − a

j
)⊤

Diag(V(t))
(
a
i − a

l
)
dt.(2.10)

Variances, i.e., the diagonal terms in the covariance matrix, are clearly positive due to the positiveness

of Vk(t), k = 1, .., d. To prove that the whole covariance matrix is positive definite, it is sufficient to

introduce the (N − 1)× d matrix B defined as follows:

Bj,k := ajk − a1
k; k = 1, .., d; j = 2, . . . , N,(2.11)

where without loss of generality we can take the point of view of currency i = 1. With this notation the

(N − 1)× (N − 1) variance/covariance matrix Cov1(t) = Cov(t) is given by

Cov(t) = BDiag(V(t))B⊤,(2.12)

which is positive semidefinite since for all x ∈ Rd:

x
⊤Cov(t)x = (B⊤x)⊤Diag(V(t))B⊤x ≥ 0,

where the last inequality follows from the positive definiteness of the matrix Diag(V(t)).

In conclusion the variance-covariance matrix is well defined, and, as an important side effect, we have

the usual bound for the correlations, i.e. all correlations are bounded by one in absolute value.

2.3. Stochastic Skew. To shed some additional light on the meaning of the vectors a
i we calculate

the skewness ς for a given exchange rate Si,j , defined as the correlation between the log returns and the

stochastic variance:

ςi,j(t) =
〈Noise(logSi,j),Noise(Vol(logSi,j))〉t

√

〈(Noise(logSi,j))〉t
√

〈(Noise(Vol(logSi,j)))〉t
.(2.13)

Differently from standard single factor models, multifactor Heston models produce a stochastic skew-

ness. In fact, by straightforward calculation we obtain:

〈
d logSi,j , dVk

〉

t
=

〈
d∑

l=1

(

a
i
l − a

j
l

)√

VldZl, ξk
√

VkρkdZk

〉

t

=
(

aik − ajk
)

ξkVk(t)ρkdt i, j = 1, .., N ; k = 1, ..., d.(2.14)

Combining this term with

〈
d logSi,j , d logSi,j

〉

t
=

(
a
i − a

j
)⊤

Diag(V(t))
(
a
i − a

j
)
dt
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and 〈dVk, dVk〉t = ξ2kVk(t)dt, we obtain

ςi,j(t) =

∑d
k=1

(

aik − ajk
)

ξkVk(t)ρk
√

∑d
k=1 ξ

2
kVk(t)

√

(ai − aj)
⊤
Diag(V(t)) (ai − aj)

.(2.15)

This quantity is stochastic due to the presence of the variance factors Vk(t), k = 1, .., d Christoffersen

et al. (2009). The vectors a
i are directly related to the amount of skewness for each of the different

exchange rates.

3. Numéraire invariance

Up to now we have worked under the risk neutral measure defined by our (rather unspecified) universal

numéraire. In practical pricing applications, it is more convenient to change the numéraire to any of the

currencies included in our FX multi-dimensional system. Without loss of generality, let us consider the

risk neutral measure defined by the i-th money market account Bi(t) and derive the dynamical equa-

tions for the standard FX rate Si,j(t), its inverse Sj,i(t), and a generic cross Sj,l(t) for i, j, l = 1, .., N .

Under the assumptions of the fundamental theorem of asset pricing (cfr. e.g. Björk (2004), chapters 13

and 14), investing domestic money into any foreign currency money-market account cannot produce a

risk free return different from ri. In other terms, the ratio Si,j(t)Bj(t)/Bi(t)must be a local martingale

under the i-th risk free measure Qi, provided that such risk neutral measure exists. Hence,

d

(
Si,j(t)Bj(t)

Bi(t)

)

=
Si,j(t)Bj(t)

Bi(t)

(

(ai − a
j)⊤Diag(V(t))aidt+ (ai − a

j)⊤Diag(
√

V(t))dZ(t)
)

=
Si,j(t)Bj(t)

Bi(t)
(ai − a

j)⊤Diag(
√

V(t))dZQi

(t).(3.1)

In the last line we implicitly defined the new Brownian motion vector Z
Qi

(t) under the measure Qi

from the constraint of having a Qi-local martingale and by Girsanov theorem:

dZ(t)Q
i

= dZ(t) + Diag(
√

V(t))aidt, i = 1, .., N.(3.2)

If we denote Q0 the risk neutral measure associated with the universal numéraire, the Radon-Nikodym

derivative corresponding to the change of measure from Q0 to Qi reads

dQi

dQ0
|t = exp

(

−
∫ t

0

(
a
i
)⊤

Diag(
√

V(s))dZ(s)− 1

2

∫ t

0

(
a
i
)⊤

Diag(V(s))aids

)

,(3.3)

where we observe that the shift is performed only on the process Z(t).

The Qi risk neutral dynamics of the exchange rate Si,j(t) becomes

dSi,j(t) = Si,j(t)
(

(ri − rj)dt+ (ai − a
j)⊤Diag(

√

V(t))dZQi

(t)
)

,(3.4)

as desired.

Given our assumption on the correlation structure in (2.4), we can write the following standard factor-

ization under Q0

dWk(t) = ρkdZk(t) +
√

1− ρ2
kdZ

⊥
k (t), k = 1, ..., d.(3.5)

where Z
⊥(t) is a Brownian motion independent of Z(t). Hence the measure change has also an impact

on the variance processes, via the correlations ρk, k = 1, .., d,

dWQi

k (t) = dWk(t) + ρk
(
e
k
)⊤

Diag(
√

V(t))aidt.(3.6)



3. NUMÉRAIRE INVARIANCE 87

The component of dWk(t) which is orthogonal to the spot driver dZ(t) is not affected by the measure

change. This choice may seem arbitrary at first sight, but it turns out to be consistent with the market

practice. More importantly, Del Baño Rollin (2008) shows that this assumption constitutes a sufficient

condition ensuring that the foreign-domestic parity is satisfied. We finally obtain the dynamic equations

under the new measure. With an appropriate redefinition of the CIR parameters

ρQi

k =ρk,

κQi

k =κk + ξkρka
i
k,

θQi

k =θk
κk

κQi

k

,

we can recast the variance SDE in its original form

(3.7) dVk(t) = κQi

k (θ
Qi

k − Vk(t))dt+ ξk
√

Vk(t)dW
Qi

k (t).

We can now show that the Girsanov theorem used in (3.2) has been correctly applied.

PROPOSITION 4.2. The exponential local martingale (3.3) is a true martingale, that is EQ0
[
dQi

dQ0 |t
]

= 1.

PROOF. See the Appendix. �

In the Appendix we derive a proof of the previous result based on the Feller explosion test for diffusions

as in Wong and Heyde (2004) and Mijatović and Urusov (2011). In order to get a quick intuition, from

(3.3) we can check that the process V has the same behavior at the boundaries 0 and +∞ under both

measures Q0 and Qi. In fact the dimension of the process V and the boundary behavior at infinity are

the same (that is the Feller condition is unchanged and the probability of an explosion in finite time is

zero). As a consequence, the Radon-Nikodym derivative defined through (3.3) is a (true) martingale, so

that the Girsanov change of measure is allowed.

The invariance of the functional form of the model under measure change is an appealing feature of our

model; other specifications of the stochastic volatility will almost surely break this symmetry. Finan-

cially, it makes sense to enforce mean reversion of the variance, other than mean explosion, yielding a

condition on κQi

k > 0 or conversely on the original model parameters κk, ξk, ρk, and aik.

The inverse FX rate follows from Ito calculus

dSj,i(t)

Sj,i(t)
= Si,j(t)d

(
1

Si,j(t)

)
(3.8)

= [rj − ri + (aj − a
i)⊤Diag(V(t))(aj − a

i)]dt+ (aj − a
i)⊤Diag(

√

V(t))dZQi

(t),

which includes the self-quanto adjustment. Similarly, the SDE of a generic cross FX rate becomes

dSj,l(t)

Sj,l(t)
=
Si,j(t)

Si,l(t)
d

(
Si,l(t)

Si,j(t)

)
(3.9)

= [rj − rl + (aj − a
l)⊤Diag(V(t))(aj − a

i)]dt+ (aj − a
l)⊤Diag(

√

V(t))dZQi

(t).
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The additional drift term is the quanto adjustment as described by the current model choice. By applying

Girsanov theorem again, this time switching to the Qj risk neutral measure, the term is removed while

the CIR parameters become

κQj

k = κQi

k + ρkξk(a
j
k − aik),

θQj

k = θQi

k

κQi

k

κQj

k

,(3.10)

together with the invariant ρQj

k = ρQi

k and ξQj

k = ξQi

k . These are the fundamental transformation rules

for the model parameters.

4. Option pricing

Together with the invariance of the model specification with respect to the numéraire choice, a second

central feature of the model is the availability of a (semi)-analytical solution for all vanilla option prices.

The pricing formula itself is independent of the option underlying, once we work under the risk neu-

tral measure associated with one of the currencies in the option and the parameters are transformed via

(3.10).

Let us consider a call option C(Si,j(t),Ki,j , τ), i, j = 1, .., N, i 6= j, on a generic FX rate Si,j(t) =

exp(xi,j(t)) with strike Ki,j , maturity T (τ = T − t is the time to maturity) and face equal to one unit

of the foreign currency. We write for the CIR parameters κk = κQi

k , θk = θQi

k and so on, implicitly

assuming that they have been transformed via (3.10) in the i-th risk neutral measure Qi. Being an affine

model, the (generalized) characteristic function conditioned on the initial values

φi,j(ω, t, τ, x,V) = EQi

t [e
iωxi,j(T )|xi,j(t) = x,V(t) = V](4.1)

can be derived analytically (here i =
√
−1). Standard numerical integration methods can then be used

to invert the Fourier transform to obtain the probability density at T or the vanilla price via integration

against the payoff, with overall little computational effort. By applying standard arguments (see e.g.

Lewis (2000), Sepp (2003)) the value of a call option can be expressed in terms of the integral of the

product of the Fourier transform of the payoff and the generalized characteristic function of the log-asset

price1:

C(Si,j(t),Ki,j , τ) = e−r
iτ 1

2π

∫

Z
φi,j(−iλ, t, τ, x,V)Φ(λ)dλ,(4.2)

where

Φ(λ) =

∫

Z
eiλx

(
ex −Ki,j

)+
dx

is the Fourier transform of the payoff function and Z denotes the strip of regularity of the payoff,

that is the admissible domain where the integral in (4.2) is well defined. In other words, the pricing

problem is essentially solved once the (conditional) characteristic function of the log-exchange rate

is known. We recall the relationship between the characteristic function and the moment generating

function. In what follows we will derive the moment generating function Gi,j(ω, t, τ, x,V) (Laplace

tranform) from which the characteristic function is easily derived via a rotation in the complex plane

1Here we adopt the pricing method of Lewis (2000) who uses the characteristic function computed with a complex argument,

also called generalized characteristic function. The complex argument ω typically belongs to a strip of regularity for the function

φi,j in order to be able to integrate the payoff function. On the other hand, this method avoids the introduction of the damping

integrating factor required by the methodology of Carr and Madan (1999).
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φi,j(ω, t, τ, x,V) = Gi,j(iω, t, τ, x,V). It is therefore sufficient to determine the moment generating

function, as in the following proposition:

PROPOSITION 4.3. In the Multi-Heston model the conditional Laplace transform of the log-exchange

rate is given by:

Gi,j(ω, t, τ, x,V) = exp

[

ωx+
(
ri − rj

)
ω(τ) +

d∑

k=1

(

Ai,jk (τ) +Bi,jk (τ)Vk

)
]

,(4.3)

where for k = 1, .., d:

Ai,jk (τ) =
2κkθk
ξ2k

log
λ+
k − λ−k

λ+
k e

λ−k (τ) − λ−k eλ
+
k (τ)

;(4.4)

Bi,jk (τ) =

(
ω2 − ω

)

2

(

aik − ajk
)2 1− e−

√
∆kτ

λ+
k e
−
√

∆kτ − λ−k
;(4.5)

∆k =
(

−κk + ω
(

aik − ajk
)

ρkξk

)2

− ξ2k
(
ω2 − ω

) (

aik − ajk
)2

;(4.6)

λ±k =

(

−κk + ω
(

aik − ajk
)

ρkξk

)

±√∆k

2
.(4.7)

PROOF. See Appendix. �

In summary the call price is known once the characteristic function Gi,j is known explicitly, as in the

present framework.

5. Expansions

As we will see in the sequel, the calibration of our model can be performed by relying on a standard

non-linear least squares procedure, which will be employed to minimize the distance between the model

implied volatilities and market ones. Model implied volatilities are extracted from the prices produced

by the FFT routine. This procedure is quite demanding from a numerical point of view. An alternative

approach consists in fitting implied volatilities via a simpler function, for example by looking at a

possible relationship between the prices produced by the model, see (4.2), and the standard Black-

Scholes formula for a suitable volatility. The next result states that it is possible to approximate the

prices of options under the multi-Heston model, via a suitable expansion of the standard Black-Scholes

formula and its derivatives. The proof, which is reported in the appendix, relies on arguments which

may be found in Lewis (2000) and Da Fonseca and Grasselli (2011) (we drop all currency indices, it

is intended that we are considering the (i, j) FX pair). Define τ = T − t and let us define the real

deterministic functions B(0)
k ,B(1)

k ,B(2)
k ,B(3)

k , k = 1, .., d as

B(0)
k (τ) =

(

aik − ajk
)2 1− e−κkτ

κk
;(5.1)

B(1)
k (τ) =

(

aik − ajk
)3

ρkξk

(
1

κ2
k

− e−κkτ

κ2
k

− τe−κkτ

κk

)

;(5.2)

B(2)
k (τ) =

(

aik − ajk
)4 ξ2k

2κ2
k

(
1− e−2κkτ

κk
− 2τe−κkτ

)

;(5.3)

B(3)
k (τ) =

(

aik − ajk
)4

ρ2
kξ

2
k

(
1− e−κkτ

κ3
k

− τe−κkτ

κ2
k

− τ2e−κkτ

2κk

)

(5.4)
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and A(0)
k ,A(1)

k ,A(2)
k ,A(3)

k , k = 1, .., d as

A(0)
k (τ) =

(

aik − ajk
)2

θk

(

τ +
e−κkτ − 1

κk

)

;(5.5)

A(1)
k (τ) =

(

aik − ajk
)3

θkρkξk

(
τ

κk
+ 2

e−κkτ − 1

κ2
k

+
τe−κkτ

κk

)

;(5.6)

A(2)
k (τ) =

(

aik − ajk
)4

θkρ
2
kξ

2
k

(
τ

κk
+
e−κkτ − 1

κ3
k

+
τe−κkτ

κ2
k

−e
−κkτ − 1

κ2
k

+
τ2e−κkτ

2κk
− τe−κkτ

κk
+
e−κkτ − 1

κk

)

;(5.7)

A(3)
k (τ) =

(

aik − ajk
)4

θkρ
2
kξ

2
k

(
τ

κ2
k

+ 3
e−κkτ − 1

κ3
k

+ 2
τe−κkτ

κ2
k

+
τ2e−κkτ

2κk

)

.(5.8)

Finally, define the integrated variance as:

v = σ2τ =
d∑

k=1

(
A(0)
k (τ) + B(0)

k (τ)Vk
)
.(5.9)

PROPOSITION 4.4. Assume that all vol-of-vol parameters ξk, k = 1, .., d have been scaled by the

same factor α > 0. Then the call price C(S(t),K, τ) in the Multifactor Heston-based exchange

model can be approximated in terms of the scale factor α by differentiating the Black Scholes formula

CBS (S(t),K, σ, τ) with respect to the log exchange rate x(t) = lnS(t) and the integrated variance

v = σ2τ :

C(S(t),K, τ) ≈ CBS (S(t),K, σ, τ)

+ α
d∑

k=1

(

A(1)
k (τ) + B(1)

k (τ)Vk

)

∂2
xvCBS (S(t),K, σ, τ)

+ α2
d∑

k=1

(

A(2)
k (τ) + B(2)

k (τ)Vk

)

∂2
vvCBS (S(t),K, σ, τ)

+ α2
d∑

k=1

(

A(3)
k (τ) + B(3)

k (τ)Vk

)

∂3
xxvCBS (S(t),K, σ, τ)

+
α2

2

[
d∑

k=1

(

A(1)
k (τ) + B(1)

k (τ)Vk

)
]2

∂4
xxvvCBS (S(t),K, σ, τ) .(5.10)

PROOF. See Appendix. �

We can now state another formula, which does not involve the computation of option prices and consti-

tutes an approximation of the implied volatility surface for a short time to maturity. This formula may

constitute a useful alternative in order to get a quicker calibration for short maturities. The proof is again

provided in detail in the Appendix.
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PROPOSITION 4.5. For a short time to maturity the implied volatility expansion in terms of the vol-of-vol

scale factor α in the multifactor Heston-based exchange model is given by:

σ2
imp ≈ σ2

0 + α

(
d∑

k=1

ρkξk
2

(

aik − ajk
)4

Vk

)

mf

σ2
0

+ α2
m2
f

12 (σ2
0)

2





d∑

k=1

(
1 + 2ρ2

k

)
ξ2k

(

aik − ajk
)4

Vk −
15

4σ2
0

(
d∑

k=1

ρkξk

(

aik − ajk
)3

Vk

)2


 ,

where σ2
0 =

(
a
i − a

j
)⊤

Diag(V)
(
a
i − a

j
)

and mf = log
(
Si,je(ri

−rj)τ

Ki,j

)

denotes the forward log-

moneyness.

PROOF. See Appendix. �

6. Simultaneous calibration of the USD/EUR/JPY triangle

6.1. Setup. In this section we show an example of simultaneous calibration to three market volatil-

ity surfaces of options: we consider the implied volatility surfaces for USD/EUR, USD/JPY and EUR/JPY

as observed in the FX market on a typical day (data from 23rd July 2010), that is N = 3 with

i = USD; EUR; JPY. The volatility sample includes expiry dates ranging from 3 days to 5 years. The

quotes follow the standard Delta quoting conversion in the FX option market, we have quotes on DN,

25 Delta, 15 Delta, and 10 Delta2.

We try to fit simultaneously the three volatility surfaces using two stochastic drivers, d = 2. This choice

yields a total number of parametersNP = 16, comparable to the number of parameters in 3 independent

Heston models (15 parameters). This choice should not lead to overfitting instabilities. We work under

the USD risk neutral measure to derive the option prices of the pairs EUR/USD and USD/JPY and the

EUR measure for the EUR/JPY options, using (4.2). We calibrate the CIR parameters in the USD mea-

sure κUSD

k , θUSD

k , ξUSD

k , ρUSD

k , k = 1, 2. The parameters for the EUR/JPY are transformed to the EUR

measure through Eqs. (3.10) and the invariance property of correlation and vol-of-vol parameters.

The calibration is done via a standard non-linear least-squares optimizer that minimizes the total cali-

bration error in terms of the difference between calibrated and target implied volatities

Err =
∑

n

(

σimp
n,market − σ

imp
n,model

)2

.(6.1)

The use of a norm in price should be avoided as the numerical range for option prices may be large,

thus introducing a bias in the optimization (for a more detailed discussion, see Da Fonseca and Grasselli

(2011)).

2It is important to stress that in the forex market implied volatilities surfaces are expressed in terms of maturity and Delta

(see e.g. Wystup and Reiswich (2010), Clark (2011)): the market practice is to quote volatilities for strangles and risk reversals

which can then be employed to reconstruct a whole surface of implied volatilities via an interpolation method (see e.g. Wystup

and Reiswich (2010), Wystup (2006), Clark (2011)). Once we have the quotes in terms of Delta, to perform the calibration we

have to convert Deltas into strike prices. The procedure can be found e.g. in Beneder and Elkenbracht-Huizing (2003).
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6.2. Calibration results. In Table (1) we report the result of the calibration of the model. We

performed the optimization considering different sets of expiries. The expiries considered in the largest

sample are the following: 1, 2, 3, 6, 9 months and 1 year. The result for this particular choice of expiries

is reported on the first column on the left. Then we repeated the experiment by excluding the largest

expiry, 1 year. The result is reported in the second column. We proceed in this way by excluding

more and more expiries. The smallest sample is reported in the last column and considers only options

expyring in 1 and 2 months.

In Figs. 1, 2 and 3 we plot the market implied volatilities against those produced by the model. The

plots refer to the largest sample in Table 1. Market volatilities are denoted by crosses, model volatilities

are denoted by circles. The model yields a satisfactory fit of the market points. We are not aware of any

other stochastic volatility model that can achieve a simultaneous calibration of a three-currency triangle

with this accuracy.

The plots for the calibration on the sub-samples are completely analogous.

6.3. Parameters stability tests. In this subsection we comment on the stability of the parameters

via two different types of analysis. We first measure the impact on the parameters resulting from the

calibration procedure. Secondly, we fit the model parameters to a certain sample and then use these pa-

rameters to price an option which is not included in the sample. If the out-of-sample prices are close to

the market, the model gives a reasonable description of the joint underlying FX rates dynamics. More-

over, the calibration can be done on a limited set of expiries, reducing the computation effort of the

optimizer.

As far as the first analysis is concerned, we show in Table 2 the relative variations computed with respect

to the largest sample. With the exception of κ1 we can see that there is a good degree of stability of the

parameters across the sub-samples. Since κ1 is the only value which seems to fluctuate significantly,

we perform also a second calibration experiment, where we fix κk = 1, k = 1, 2. The results of this

experiment are outlined in Table 3. The relative variation of the parameters can be found in Table 4. We

notice that with this choice we get a good degree of stability, the most relevant fluctuation is now around

20% for θ1
3.

Let us now turn our attention to the out-of-sample exercise. In Tables 6, 7, 8 and 9 we show the

difference between the market and the out-of-sample volatility for all sub-samples. The differences are

always well below one volatility point, hence satisfactory.

6.4. Feller condition. It is well known, see e.g. Feller (1951); Andersen and Piterbarg (2007), that

for square root processes 0 represents an attainable state when the Feller condition is not satisfied, that

is when 2κkθk < ξ2k. In our modelling framework we have two volatility factors, hence we can perform

the check for each factor. In Table 5 we report the quantity Fk = 2κkθk − ξ2k, k = 1, 2. We observe

violations of the Feller condition, which constitutes a well-known fact in the FX derivative practice,

shared with the standard one-dimensional Heston model, see Clark (2011).

3We do not report, for the sake of brevity, the volatility surfaces arising from this last experiment, but the quality of the fit is

the same as before.
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6.5. Moment explosions. Another well established fact is that stochastic volatility models often

suffer of pathological moment explosions which might often impact the stability of the pricing tools, see

e.g. Andersen and Piterbarg (2007), Keller-Ressel (2011) and Glasserman and Kim (2011). The model

dynamics might lead to the explosion of moments, which become infinite in finite time.

Qualitatively, the present model shares with the Heston model the same type of singularities. Let us

define the explosion time of the n-th moment as:

T⋆(n) = sup
{
t > 0 : E

[
(Si,j(t))n

]
<∞

}
.(6.2)

In our 2-Heston model, the n-th moment mn(t) = E
[(
Si,j(t)

)n]
is computed by (4.3) as follows:

mn(t) =G
i,j(n, 0, t, x,V)(6.3)

=(Si,j(0))nen(ri−rj)t exp
{

Ai,j1 (t) +Bi,j1 (t)V1(0)
}

(6.4)

. exp
{

Ai,j2 (t) +Bi,j2 (t)V2(0)
}

(6.5)

where the functions Ai,jk (t), Bi,jk (t) are given in Proposition 4.3 with ω = n. Hence, the moments can

be decomposed in a product of one-dimensional moment generating functions. As a result, the moment

explosion properties follow directly from the known results of the one-dimensional Heston model.

In complete analogy with Keller-Ressel (2011) (Section 6.1), from the Riccati ODE (8.9) for each factor

k = 1, 2, we define the quantities ∆k(n) and χk(n) as follows:

∆k(n) =
(

κk − ω
(

aik − ajk
)

ρkξk

)2

− (ω2 − ω)
(

aik − ajk
)2

;(6.6)

χk(n) =− κk + ω
(

aik − ajk
)

ρkξk.(6.7)

We can then apply the moment explosion formula and obtain the following

PROPOSITION 4.6. In the multi-Heston model, T⋆(n) is given by:

(1) T⋆(n) = +∞, if ∆k(n) ≥ 0,∀k = 1, 2;

(2) T⋆(n) = infk

{

2√
−∆k(n)

(

arctan

(√
−∆k(n)

χk(n)

)

+ π1χk(n)<0

)}

, if ∆k(n) < 0, for some

k = 1, 2.

Then we can easily calculate the time of moment explosion for all currency pairs. In Table 14 we

consider moments up to order 20.

6.6. Implied risk-neutral distribution. As a result of our calibration procedure, we have a set of

model parameters allowing us to compute option prices which are in line with market data. The implied

risk neutral probability densities of the different FX rates can be derived from option prices (cfr e.g.

Breeden and Litzenberger (1978))

ϕt(S) = eri(T−t) ∂
2C(S(t),K, T )

∂K2

∣
∣
∣
∣
K=S

.(6.8)

The second derivative is approximated given a grid of option prices. We show the results in Figs. 10, 11

and 12. Notice that we plot the raw distribution resulting from prices, thus some numerical treatment

is required in order to get a smooth distribution. All distributions feature asymmetry and leptokurtosis,

features that are standard for returns in financial series.
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7. Conclusions

We have introduced a new multi-factor stochastic volatility Heston-based model that can provide an

accurate joint description of multiple FX vanilla options across different currency pairs. The empha-

sis in the model specification has been in the preservation of the specific symmetries of FX markets.

Differently from other asset classes, appropriate multiplications/divisions and inversions of FX rates

are still FX rates. Having a model that is functionally invariant with respect to these operations has

immediate benefits: the calibrations are by construction universal, i.e., independent on the choice of

the risk-free rate of the investor, leading to consistent prices and risk-sensitivities for multi-dimensional

exotic options.

The choice of the CIR dynamics for the stochastic variance is instrumental in achieving this symmetry.

We have indeed proven that our model is invariant with respect to the choice of the numéraire once the

model parameters are appropriately transformed. The model is always of affine-type independently on

which currency is used as risk free, leading to semi-analytical expression for all vanilla options between

any of two currencies. This property is crucial when it comes to calibrating the model. In a standard

global optimization algorithm we can consider together vanilla options in all currency pairs and achieve

a simultaneous fit to the different volatility surfaces with reasonable computational effort.

The model shares naturally several stylized facts with the Heston model. The Feller condition is of-

ten violated when fitting the model to FX volatility surfaces, a common observation in the practice.

Moreover, higher moments of the spot distribution explode at finite time; a property that might lead

to complications/instabilities in standard numerical pricing routines. Finally, like any pure stochastic

volatility model, our model cannot be expected to deliver a perfect calibration of the vanilla surfaces

across all Deltas and tenors, especially in the short end.

Having said that, the main result of the paper is a promising joint calibration of the model to the implied

volatilities smile of the EUR/USD/JPY FX triangle. The fit remains satisfactory across the currency

pairs, Deltas and tenors which were considered. Several in- and out-of-sample calibration studies in

fact have proven the robustness of the calibration, especially once the mean reversion speed κ has been

fixed. Asymptotic expansions of the implied volatility surface are also included as they shed light on

the meaning of the different model parameters and can help speeding up the calibration procedure.

The price to pay in order to obtain a consistent simultaneous calibration to all volatilities surfaces is that

the instantaneous volatilities of the currency pairs do not have single dedicated drivers. Their dynamics

is rather brought about by a linear combination of several hidden stochastic factors. As in any principal

component analysis, it is not easy to assign a financial meaning to each model parameter. As this study

has shown, this appealing feature has most likely to be traded away in order to capture the complex

phenomenology of the present global and widely interconnected FX markets.

8. Appendix A: Proofs

8.1. Proof of Proposition (4.2). We will apply Theorem 2.1 from Mijatović and Urusov (2011):

using their notation we have Yk = Vk and bk(x) = −ρkx1/2
k aik, where we recall that by independency

of the Vk processes the Radon-Nykodim derivative splits in a product and we can use a separability

argument.

If the Feller condition holds, that is when 2κkθk ≥ ξ2k, then conditions a) and c) in Theorem 2.1 of

Mijatović and Urusov (2011) hold, as from (3.7) we note that the boundary behavior of Vk is the same
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under both Q0 and Qi.

Suppose now that the Feller condition is violated. Condition a) still holds while condition c) does not,

but the boundary l = 0 is good. To see this let us compute the functions ρk(x), sk(x) (given by formulae

(16),(18) in Mijatović and Urusov (2011)) in our framework:

ρk(x) = αx
− 2κkθk

ξ2
k exp(

2κkx

ξ2k
) ,

where α denotes a positive constant, and

sk(x) =

∫ x

c

ρ(y)dy = α

∫ x

c

y
− 2κkθk

ξ2
k exp(

2κky

ξ2k
)dy ,

where c denotes another arbitrary constant. We can now confirm using (26) in Mijatović and Urusov

(2011), that 0 is good: in fact we have sk(0) > −∞ (by the assumption 2κkθk < ξ2k) and the function

(sk(x)− sk(0))b2k(x)
ρk(x)σ2

k(x)
= α(sk(x)− sk(0))x

2κkθk
ξ2

k exp(
2κkx

ξ2k
)

is locally integrable around 0 since sk(x) behaves like x
− 2κkθk

ξ2
k

+1
. Hence (26) holds and it follows that

the Radon-Nykodim derivative (3.3) is a true martingale.

8.2. Proof of Proposition (4.3). Recall that φ (ω, t, τ, x,V) = G(iω, t, τ, x,V), with xi,j(t) =

logSi,j(t). The functions φ,G represent resp. the characteristic function and the moment generating

function of the log-exchange rate. In order to determine these quantities, we first need to write the PDE

satisfied by G. First of all we write the dynamics of x = xi,j :

dx(t) =

(
(
ri − rj

)
− 1

2
(ai − a

j)⊤Diag (V(t))
(
a
i − a

j
)
)

dt

+
(
a
i − a

j
)⊤

Diag
(√

V(t)
)

dZQi

(t).(8.1)

We also compute the following covariation terms for k = 1, .., d:

d 〈x, Vk〉t =
〈(

a
i − a

j
)⊤

Diag
(√

V

)

dZQi

, ξk
√

VkρkdZ
Qi

k

〉

t

=
〈(

aik − ajk
)√

VkdZ
Qi

k , ξk
√

VkρkdZ
Qi

k

〉

t

=
(

aik − ajk
)

Vk(t)ξkρkdt.(8.2)

The Laplace transform G solves the following backward Kolmogorov equation (Karatzas and Shreve

(1991)):

∂G

∂t
+
1

2

∂2G

∂x2

(
a
i − a

j
)⊤

Diag (V)
(
a
i − a

j
)

d∑

k=1

∂2G

∂x∂Vk

(

aik − ajk
)

Vkξkρk +
1

2

d∑

k=1

∂2G

∂V 2
k

ξ2kVk

(
(
ri − rj

)
− 1

2

(
a
i − a

j
)⊤

Diag (V)
(
a
i − a

j
)
)
∂G

∂x

+

d∑

k=1

∂G

∂Vk
κk (θk − Vk) = 0(8.3)
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with terminal condition G (ω, T, 0, x,V) = eωx with ω ∈ R. In order to solve this problem we look for

an exponential affine solution of the form:

G (ω, t, τ, x,V) = exp

(

A(t, T ) +
d∑

k=1

Bk(t, T )Vk + C(t, T )x

)

,(8.4)

for some deterministic functions A,Bk, C that may depend on both t, T . Upon substitution of the guess

and recognition of the terms we obtain the following system of d+ 2 ODE’s:

∂A

∂t
+

d∑

k=1

Bk(t, T )κkθk +
(
ri − rj

)
C(t, T ) = 0;(8.5)

∂Bk
∂t

+
1

2
C2(t, T )

(

aik − ajk
)2

+ C(t, T )Bk(t, T )
(

aik − ajk
)

ρkξk

+
1

2
B2
k(t, T )ξ

2
k −

1

2

(

aik − ajk
)2

C(t, T )−Bk(t, T )κk = 0;(8.6)

∂C

∂t
= 0,(8.7)

with terminal conditions: A(T, T ) = 0, Bk(T, T ) = 0, C(T, T ) = ω for k = 1, .., d. From (8.7)

and its terminal condition, we deduce that C(t, T ) = ω for t ∈ [0, T ], so we can rewrite the system as

follows:

∂A

∂t
+

d∑

k=1

κkθkBk(t, T ) +
(
ri − rj

)
ω = 0;(8.8)

∂Bk
∂t

+
1

2
B2
k(t, T )ξ

2
k +

(

−κk + ω
(

aik − ajk
)

ρkξk

)

Bk(t, T )

+
ω2 − ω
2

(

aik − ajk
)2

= 0, k = 1, .., d.(8.9)

Now for d = 1, .., d we assume that Bk(t, T ) can be written by means of a function Ek(t, T ) and set:

Bk(t, T ) =
∂
∂tEk(t, T )
ξ2k
2 Ek(t, T )

,(8.10)

Now we proceed to solve (8.9) which is a Riccati ODE. Write the following:

∂Bk
∂t

=
∂2

∂t2Ek(t, T )
ξ2k
2 Ek(t, T )−

(
∂
∂tEk(t, T )

)2 ξ2k
2

(
ξ2k
2 Ek(t, T )

)2(8.11)

If we substitute (8.10) and (8.11) into (8.9) we obtain a second order ODE:

∂2Ek
∂t2

+
(

−κk + ω
(

aik − ajk
)

ρkξk

) ∂Ek
∂t

+
ξ2k

(
ω2 − ω

)

4

(

aik − ajk
)2

Ek(t, T ) = 0(8.12)

We look for a solution of the form Ek(t, T ) = eλ(T−t). Substitution of the guess yields the following:

λ2 − λ
(

−κk + ω
(

aik − ajk
)

ρkξk

)

+
ξ2k

(
ω2 − ω

)

4

(

aik − ajk
)2

= 0(8.13)

Now define:

∆k =
(

−κk + ω
(

aik − ajk
)

ρkξk

)2

− ξ2k
(
ω2 − ω

) (

aik − ajk
)2

(8.14)

λ±k =

(

−κk + ω
(

aik − ajk
)

ρkξk

)

±√∆k

2
(8.15)
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Notice that:

λ+
k − λ−k =

√

∆k(8.16)

λ+
k λ
−
k =

ξ2k
(
ω2 − ω

)

4

(

aik − ajk
)2

(8.17)

Hence:

Ek(t, T ) = C+e
λ+

k (T−t) + C−e
λ−k (T−t)(8.18)

Recalling that B(T, T ) = 0 we obtain that:

C+

C−
= −λ

−
k

λ+
k

(8.19)

so that

Ek(t, T ) = −λ−k eλ
+
k (T−t) + λ+

k e
λ−k (T−t)(8.20)

Recalling the guess for Bk(t, T ) with some algebra we get the solution for (8.9), which is:

Bk(t, T ) =

(
ω2 − ω

)

2

(

aik − ajk
)2 1− e−

√
∆k(T−t)

λ+
k e
−
√

∆k(T−t) − λ−k
.(8.21)

Equipped with the solution for Bk(t, T ) we can now compute A(t, T ) as follows:

A(T, T )−A(t, T ) =
∫ T

t

∂

∂u
A(u, T )du

A(t, T ) =

∫ T

t

d∑

k=1

κkθkBk(u, T ) +
(
ri − rj

)
ωdu

=
(
ri − rj

)
ω(T − t) +

d∑

k=1

κkθk

∫ T

t

Bk(u, T )du

=
(
ri − rj

)
ω(T − t) +

d∑

k=1

2κkθk
ξ2k

∫ T

t

∂
∂tEk(t, T )

Ek(t, T )
du,(8.22)

which implies that the solution for A(t, T ) is

A(t, T ) =
(
ri − rj

)
ω(T − t) +

d∑

k=1

2κkθk
ξ2k

log
λ+
k − λ−k

λ+
k e

λ−k (T−t) − λ−k eλ
+
k (T−t)

=
(
ri − rj

)
ω(T − t) +

d∑

k=1

Ak(t, T ),(8.23)

where the functions Ak(t, T ) are implicitly defined by the last equality for d = 1, .., d. Now we obtain

the statement of the proposition once we replace Bi,jk (τ) = Bk(t, T ), A
i,j
k (τ) = Ak(t, T ) with τ =

T − t.

8.3. Proof of Proposition (4.4). The starting point is given by the Riccati ODE (8.9) expressed in

terms of time-to-maturity τ = T − t and perturbed by introducing the vol-of-vol scale parameter α:

∂Bk
∂τ

=
1

2
B2
k(τ)α

2ξ2k +
(

−κk + ω
(

aik − ajk
)

ρkαξk

)

Bk(τ)

+
ω2 − ω
2

(

aik − ajk
)2

, k = 1, .., d.(8.24)
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We consider the following expansion in terms of α: Bk(τ) = Bk,0(τ) + αBk,1(τ) + α2Bk,2(τ). By

plugging in the expansion and upon recognition of terms we obtain the following system of ODE’s:

∂Bk,0
∂τ

= −κkBk,0(τ) +
ω2 − ω
2

(

aik − ajk
)2

;(8.25)

∂Bk,1
∂τ

= −κkBk,1(τ) + ω
(

aik − ajk
)

ρkξkBk,0(τ);(8.26)

∂Bk,2
∂τ

= −κkBk,2(τ) + ω
(

aik − ajk
)

ρkξkBk,1(τ) +
1

2
B2
k,0(τ)ξ

2
k.(8.27)

If we denote γ := ω2−ω
2 then the solutions are easily computed as:

Bk,0(τ) = Bk,0(0)
︸ ︷︷ ︸

=0

e−κkτ + e−κkτ

∫ τ

0

eκkuγ
(

aik − ajk
)2

du

= γB(0)
k (τ);(8.28)

Bk,1(τ) = Bk,1(0)
︸ ︷︷ ︸

=0

e−κkτ + e−κkτ

∫ τ

0

eκkuω
(

aik − ajk
)

ρkξkγB(0)
k (u)du

= ωγB(1)
k (τ);(8.29)

Bk,2(τ) = Bk,2(0)
︸ ︷︷ ︸

=0

e−κkτ + e−κkτ

∫ τ

0

eκkuω2γ
(

aik − ajk
)

ρkξkB(1)
k (u)du

+ e−κkτ

∫ τ

0

eκkuγ
ξ2k
2

(

B(0)
k (u)

)2

du

= ω2γB(3)
k (τ) + γ2B(2)

k (τ).(8.30)

Then we can write the function Bk(τ) as follows:

Bk(τ) = γB(0)
k (τ) + αωγB(1)

k (τ) + α2
(

ω2γB(3)
k (τ) + γ2B(2)

k (τ)
)

.(8.31)

A direct substitution of (8.31) into (8.8) allows us to express the function A(τ):

A(τ) = ω
(
ri − rj

)
τ +

d∑

k=1

κkθk

∫ τ

0

Bk(u)du

= ω
(
ri − rj

)
τ + γ

d∑

k=1

κkθk

∫ τ

0

B(0)
k (u)du

︸ ︷︷ ︸

:=A(0)
k (τ)

+ωγα
d∑

k=1

κkθk

∫ τ

0

B(1)
k (u)du

︸ ︷︷ ︸

:=A(1)
k (τ)

+ ω2γα2
d∑

k=1

κkθk

∫ τ

0

B(3)
k (u)du

︸ ︷︷ ︸

:=A(3)
k (τ)

+α2γ2
d∑

k=1

κkθk

∫ τ

0

B(2)
k (u)du

︸ ︷︷ ︸

:=A(2)
k (τ)

.(8.32)
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We consider then the price in terms of Fourier transform as in (4.2) by replacing the argument ω = iλ.

A Taylor-McLaurin expansion w.r.t. α gives the following:

C(S(t),K, τ) ≈ e−r
iτ

2π

∫

Z
e
iλ(ri−rj)τ+iλx+γ

∑ d
k=1

(

A(0)
k (τ)+B(0)

k (τ)Vk

)

Φ(λ)dλ

+ α
d∑

k=1

(

A(1)
k (τ) + B(1)

k (τ)Vk

)

× e−r
iτ

2π

∫

Z
γiλe

iλ(ri−rj)τ+iλx+γ
∑ d

k=1

(

A(0)
k (τ)+B(0)

k (τ)Vk

)

Φ(λ)dλ

+ α2
d∑

k=1

(

A(2)
k (τ) + B(2)

k (τ)Vk

)

× e−r
iτ

2π

∫

Z
γ2e

iλ(ri−rj)τ+iλx+γ
∑ d

k=1

(

A(0)
k (τ)+B(0)

k (τ)Vk

)

Φ(λ)dλ

+ α2
d∑

k=1

(

A(3)
k (τ) + B(3)

k (τ)Vk

)

× e−r
iτ

2π

∫

Z
γiλ2e

iλ(ri−rj)τ+iλx+γ
∑ d

k=1

(

A(0)
k (τ)+B(0)

k (τ)Vk

)

Φ(λ)dλ

+
α2

2

[
d∑

k=1

(

A(1)
k (τ) + B(1)

k (τ)Vk

)
]2

× e−r
iτ

2π

∫

Z
γ2
iλ2e

iλ(ri−rj)τ+iλx+γ
∑ d

k=1

(

A(0)
k (τ)+B(0)

k (τ)Vk

)

Φ(λ)dλ.

(8.33)

Recall now from (5.9) the definition of the integrated Black-Scholes variance. In the previous formula,

in the first term on the right hand side, we recognise the Black-Scholes price in terms of the characteristic

function when the integrated variance is v = σ2τ :

CBS (S(t),K, σ, τ) =
e−r

iτ

2π

∫

Z
eiλ(r

i−rj)τ+iλx+
(iλ)2−iλ

2 vΦ(λ)dλ,(8.34)

so that the price expansion is of the form:

C(S(t),K, τ) ≈ CBS (S(t),K, σ, τ)

+ α
d∑

k=1

(

A(1)
k (τ) + B(1)

k (τ)Vk

)

∂2
xvCBS (S(t),K, σ, τ)

+ α2
d∑

k=1

(

A(2)
k (τ) + B(2)

k (τ)Vk

)

∂2
vvCBS (S(t),K, σ, τ)

+ α2
d∑

k=1

(

A(3)
k (τ) + B(3)

k (τ)Vk

)

∂3
xxvCBS (S(t),K, σ, τ)

+
α2

2

[
d∑

k=1

(

A(1)
k (τ) + B(1)

k (τ)Vk

)
]2

∂4
xxvvCBS (S(t),K, σ, τ) .(8.35)
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From the previous expression we can deduce the relation defining the deterministic functionsB(h)
k ,A(h)

k , h =

0, ..., 3.

B(0)
k (τ) =

(

aik − ajk
)2 1− e−κkτ

κk
;(8.36)

B(1)
k (τ) =

(

aik − ajk
)

ρkξke
−κkτ

∫ τ

0

eκkuB(0)
k (u)du;(8.37)

B(2)
k (τ) =

ξ2k
2κk

e−κkτ

∫ τ

0

eκku
(

B(0)
k (u)

)2

du;(8.38)

B(3)
k (τ) =

(

aik − ajk
)

ρkξke
−κkτ

∫ τ

0

eκkuB(1)
k (u)du(8.39)

and

A(0)
k (τ) = κkθk

∫ τ

0

B(0)
k (u)du;(8.40)

A(1)
k (τ) = κkθk

∫ τ

0

B(1)
k (u)du;(8.41)

A(2)
k (τ) = κkθk

∫ τ

0

B(2)
k (u)du;(8.42)

A(3)
k (τ) = κkθk

∫ τ

0

B(3)
k (u)du.(8.43)

Computing the trivial integrals completes the proof.

8.4. Proof of Proposition (4.5). We follow the procedure in Da Fonseca and Grasselli (2011). We

suppose an expansion for the integrated implied variance of the form v = σ2
impτ = ζ0 + αζ1 + α2ζ2

and we consider the Black-Scholes formula as a function of the integrated implied variance and the

log exchange rate x = logS: CBS (S(t),K, σ, τ) = CBS

(
x(t),K, σ2

impτ, τ
)
. A Taylor-McLaurin

expansion gives us the following:

CBS

(
x(t),K, σ2

impτ, τ
)
= CBS (x(t),K, ζ0, τ) + αζ1∂vCBS (x(t),K, ζ0, τ)

+
α2

2

(
2ζ2∂vCBS (x(t),K, ζ0, τ) + ζ2

1∂
2
v2CBS (x(t),K, ζ0, τ)

)
.(8.44)

By comparing this with the price expansion (8.35) we deduce that the coefficients must be of the form:

ζ0 = v0;

(8.45)

ζ1 =

∑d
k=1

(

A(1)
k (τ) + B(1)

k (τ)Vk

)

∂2
xvCBS

∂vCBS

;

(8.46)

ζ2 =
−ζ2

1∂
2
vvCBS + 2

∑d
k=1

(

A(2)
k (τ) + B(2)

k (τ)Vk

)

∂2
vvCBS

2∂vCBS

+
2
∑d
k=1

(

A(3)
k (τ) + B(3)

k (τ)Vk

)

∂3
xxvCBS +

[
∑d
k=1

(

A(1)
k (τ) + B(1)

k (τ)Vk

)]2

∂4
xxvvCBS

2∂vCBS

,(8.47)
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where the Black-Scholes formula CBS

(
x(t),K, σ2

impτ, τ
)

is evaluated at the point (x,K, v0, τ). In

order to find the values of ζ1, ζ2, we differentiate (5.1)-(5.4) thus obtaining the following ODE’s:

∂B(0)
k

∂τ
= −κkB(0)

k (τ) +
(

aik − ajk
)2

;

∂B(1)
k

∂τ
= −κkB(1)

k (τ) +
(

aik − ajk
)

ρkξkB(0)
k (τ);

∂B(2)
k

∂τ
= −κkB(2)

k (τ) +
1

2
ξ2kB(0)

k (τ)2;

∂B(3)
k

∂τ
= −κkB(3)

k (τ) +
(

aik − ajk
)

ρkξkB(1)
k (τ).

We consider a Taylor-McLaurin expansion in terms of τ :

B(0)
k (τ) =

(

aik − ajk
)2

τ − τ2

2
κk

(

aik − ajk
)2

;(8.48)

B(1)
k (τ) =

τ2

2

(

aik − ajk
)3

ρkξk −
2

3
τ3κk

(

aik − ajk
)3

ρkξk;(8.49)

B(2)
k (τ) =

τ3

6
ξ2k

(

aik − ajk
)4

;(8.50)

B(3)
k (τ) =

τ3

6

(

aik − ajk
)4

ρ2
kξ

2
k.(8.51)

Noting from (5.5)-(5.8) that A(i)
k are one order in τ higher than the corresponding B(i)

k , the following

approximations hold:

d∑

k=1

(

A(0)
k (τ) + B(0)

k (τ)Vk

)

=

d∑

k=1

(

aik − ajk
)

Vkτ + o(τ);(8.52)

d∑

k=1

(

A(1)
k (τ) + B(1)

k (τ)Vk

)

=
d∑

k=1

ρkξk

(

aik − ajk
)3

Vk
τ2

2
+ o(τ2);(8.53)

d∑

k=1

(

A(2)
k (τ) + B(2)

k (τ)Vk

)

=
d∑

k=1

ξ2k

(

aik − ajk
)4

Vk
τ3

6
+ o(τ3);(8.54)

d∑

k=1

(

A(3)
k (τ) + B(3)

k (τ)Vk

)

=
d∑

k=1

ρ2
kξ

2
k

(

aik − ajk
)4

Vk
τ3

6
+ o(τ3).(8.55)

We introduce two new variables: the log- forward moneyness mf := log
(
Se(ri

−rj)τ

K

)

and also V :=
(
a
i − a

j
)⊤

Diag(V)
(
a
i − a

j
)
τ . Then, from Lewis (2000), we consider the following ratios among

the derivatives of the Black-Scholes formula:

∂2
xvCBS (x,K, V, τ)

∂vCBS (x,K, V, τ)
=
1

2
+
mf

V
;(8.56)

∂2
vvCBS (x,K, V, τ)

∂vCBS (x,K, V, τ)
=

m2
f

2V 2
− 1

2V
− 1

8
;(8.57)

∂3
xxvCBS (x,K, V, τ)

∂vCBS (x,K, V, τ)
=
1

4
+
mf − 1

V
+
m2
f

V 2
;(8.58)

∂4
xxvvCBS (x,K, V, τ)

∂vCBS (x,K, V, τ)
=

m4
f

2V 4
+
m2
f (mf − 1)

2V 3
.(8.59)
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Upon substitution of (8.52)-(8.59) into (8.45)-(8.47), we obtain the values for ζi, i = 0, 1, 2 allowing us

to express the expansion of the implied volatility.

ζ0 =
(
a
i − a

j
)⊤

Diag(V)
(
a
i − a

j
)
τ ;(8.60)

ζ1 =

(
d∑

k=1

ρkξk
2

(

aik − ajk
)4

Vk

)

mf

(ai − aj)
⊤
Diag(V) (ai − aj)

τ ;(8.61)

ζ2 =
m2
f

(

(ai − aj)
⊤
Diag(V) (ai − aj)

)2 τ

[

1

12

(
d∑

k=1

ξ2k

(

aik − ajk
)4

Vk

)

+
1

6

(
d∑

k=1

ρ2
kξ

2
k

(

aik − ajk
)4

Vk

)

− 5

16

(
∑d
k=1 ρkξk

(

aik − ajk
)3

Vk

)2

(ai − aj)
⊤
Diag(V) (ai − aj)

]

.(8.62)

This completes the proof.
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9. Images and Tables

6 5 4 3 2

V1 0.0137 0.0137 0.0136 0.0137 0.0135

V2 0.0391 0.0365 0.0278 0.0293 0.0273

aUSD
1 0.6650 0.6713 0.6165 0.6371 0.6518

aUSD
2 1.0985 1.0531 0.9700 0.9795 0.9514

aEUR
1 1.6177 1.6222 1.5648 1.5804 1.6061

aEUR
2 1.3588 1.3208 1.2746 1.2797 1.2737

aJPY
1 0.2995 0.3151 0.2732 0.3035 0.3116

aJPY
2 1.6214 1.5922 1.5882 1.5858 1.5816

κ1 0.9418 1.1432 1.5138 1.7349 1.8685

κ2 1.7909 1.9998 1.9014 0.7142 0.7210

θ1 0.0370 0.0349 0.0329 0.0329 0.0297

θ2 0.0909 0.0839 0.0670 0.1236 0.1091

ξ1 0.4912 0.5138 0.5542 0.5847 0.5962

ξ2 1.0000 0.9997 0.8736 0.8318 0.8568

ρ1 0.5231 0.5118 0.4916 0.4727 0.4567

ρ2 -0.3980 -0.3956 -0.3943 -0.3902 -0.3728

Res. norm. 4.6996e-004 3.4244e-004 1.8618e-004 1.1145e-004 5.2514e-005

TABLE 1. This table reports the results of the calibration of the model. We concen-

trate on the two factor case. For each column, a different number of expiries, ranging

from 6 to 2, is chosen. More specifically, 6 means that the following expiries are con-

sidered: 1, 2, 3, 6, 9 months and 1 year, whereas 5 means that the longest maturity,

i.e. 1 year is excluded from the sample. We proceed analogously in the subsequent

columns by excluding the longest expiry date up to the point where we perform the

calibration on the 2-sample, where we fit the smile at 1 and 2 months. We consider

market data as of July 23rd 2010. The reference exchange rates are EURJPY=112.29,

EURUSD=1.2921 and USDJPY=86.90. Res. norm. is the residual of the objective

function for the given set of parameters.
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5 4 3 2

V1 0.1244% -0.2866% 0.0960% -1.1068%

V2 -6.5645% -28.9269% -25.0960% -30.0900%

aUSD
1 0.9368% -7.3035% -4.1928% -1.9883%

aUSD
2 -4.1309% -11.6957% -10.8309% -13.3918%

aEUR
1 0.2745% -3.2714% -2.3082% -0.7190%

aEUR
2 -2.7989% -6.1962% -5.8255% -6.2652%

aJPY
1 5.1809% -8.8010% 1.3206% 4.0245%

aJPY
2 -1.7985% -2.0460% -2.1910% -2.4522%

κ1 21.3845% 60.7349% 84.2055% 98.3943%

κ2 11.6649% 6.1715% -60.1213% -59.7402%

θ1 -5.6226% -11.1784% -11.0318% -19.7810%

θ2 -7.7145% -26.3082% 36.0430% 20.0453%

ξ1 4.6020% 12.8359% 19.0424% 21.3784%

ξ2 -0.0244% -12.6344% -16.8201% -14.3193%

ρ1 -2.1702% -6.0305% -9.6495% -12.7003%

ρ2 -0.6031% -0.9375% -1.9522% -6.3351%

TABLE 2. In this table we consider the calibration on the largest sample as a basic

case. We report the percentage difference between the model parameters resulting

from the subsamples
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6 5 4 3 2

V1 0.0438 0.0430 0.0405 0.0421 0.0412

V2 0.0465 0.0450 0.0408 0.0370 0.0335

aUSD
1 0.7201 0.7165 0.7086 0.7099 0.7082

aUSD
2 1.0211 1.0182 1.0095 0.9915 0.9685

aEUR
1 1.2517 1.2534 1.2603 1.2477 1.2538

aEUR
2 1.2624 1.2616 1.2619 1.2575 1.2589

aJPY
1 0.5159 0.5155 0.5093 0.5206 0.5142

aJPY
2 1.5053 1.5083 1.5223 1.5307 1.5372

θ1 0.1154 0.1169 0.1203 0.1391 0.1300

θ2 0.1344 0.1377 0.1350 0.1253 0.1081

ξ1 0.8892 0.8898 0.8992 0.9700 0.9925

ξ2 0.9338 0.9450 0.9458 0.9616 0.9659

ρ1 0.5226 0.5132 0.4950 0.4756 0.4591

ρ2 -0.4042 -0.4030 -0.4004 -0.3887 -0.3721

TABLE 3. This table reports the results of the calibration of the model. In this case

we are assuming κk = 1, k = 1, 2. For each column, a different number of expiries,

ranging from 6 to 2, is chosen. Res. norm. is the residual of the objective function for

the given set of parameters.

5 4 3 2

V1 -1.8915% -7.6930% -3.8971% -5.9284%

V2 -3.1003% -12.1687% -20.3324% -28.0033%

aUSD
1 -0.5056% -1.6003% -1.4171% -1.6497%

aUSD
2 -0.2832% -1.1348% -2.9033% -5.1535%

aEUR
1 0.1322% 0.6825% -0.3164% 0.1703%

aEUR
2 -0.0691% -0.0438% -0.3903% -0.2826%

aJPY
1 -0.0857% -1.2718% 0.9087% -0.3396%

aJPY
2 0.1994% 1.1235% 1.6872% 2.1131%

θ1 1.3740% 4.2649% 20.5911% 12.6966%

θ2 2.4412% 0.4181% -6.8073% -19.5908%

ξ1 0.0622% 1.1246% 9.0864% 11.6096%

ξ2 1.1985% 1.2881% 2.9747% 3.4434%

ρ1 -1.7994% -5.2886% -8.9844% -12.1501%

ρ2 -0.2922% -0.9392% -3.8297% -7.9304%

TABLE 4. In this table we consider the calibration on the largest sample as a basic

case, when κk = 1, k = 1, 2. We report the percentage difference between the model

parameters resulting from the subsamples
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6 5 4 3 2

k = 1 -0.1715 -0.1841 -0.2076 -0.2276 -0.2445

k = 2 -0.6745 -0.6640 -0.5086 -0.5153 -0.5768

TABLE 5. For all k = 1, 2 and for each sample we report the quantity 2κkθk − ξ2k. In

all cases the quantity is negative and its absolute value is a measure of the violation of

the Feller condition.

USD/EUR USD/JPY EUR/JPY

10DC -0.0006 -0.0002 -0.0027

15DC 0.0003 -0.0017

25DC -0.0012 0.0005 -0.0005

0 -0.0022 0.0009 0.0021

25DP -0.0008 0.0012 0.0042

15DP 0.0004 0.0031

10DP 0.0009 -0.0001 0.0011

TABLE 6. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year, when we calibrate the model to the previous 5

expiries. Blanks on the first column reflect missing market data for 15DC and 15DP.

USD/EUR USD/EUR USD/JPY USD/JPY EUR/JPY EUR/JPY

9m 1y 9m 1y 9m 1y

10DC -0.0031 0.0003 -0.0013 -0.0001 -0.0006 -0.0019

15DC -0.0007 0.0002 0.0008 -0.0012

25DC -0.0023 -0.0007 0.0004 0.0004 0.0021 -0.0006

0 -0.0021 -0.0021 0.0020 0.0006 0.0036 0.0012

25DP -0.0010 -0.0007 0.0011 0.0010 0.0028 0.0033

15DP -0.0008 0.0003 0.0004 0.0025

10DP -0.0006 0.0015 -0.0014 -0.0000 -0.0026 0.0007

TABLE 7. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year and 9 months, when we calibrate the model to the

previous 4 expiries. Blanks on the first two columns reflect missing market data for

15DC and 15DP.
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USD/EUR

6m 9m 1y

10DC -0.0060 -0.0023 0.0015

25DC -0.0034 -0.0019 0.0002

0 -0.0018 -0.0020 -0.0017

25DP -0.0006 -0.0010 -0.0005

10DP 0.0002 -0.0002 0.0019

USD/JPY

6m 9m 1y

10DC -0.0058 -0.0011 0.0000

15DC -0.0042 -0.0005 0.0002

25DC -0.0009 0.0005 -0.0000

0 0.0016 0.0020 0.0000

25DP 0.0004 0.0009 0.0007

15DP -0.0019 -0.0012 0.0002

10DP -0.0037 -0.0020 -0.0002

EUR/JPY

6m 9m 1y

10DC -0.0008 -0.0003 -0.0009

15DC 0.0011 0.0007 -0.0006

25DC 0.0031 0.0015 -0.0005

0 0.0041 0.0025 0.0006

25DP 0.0014 0.0018 0.0026

15DP -0.0022 -0.0004 0.0019

10DP -0.0053 -0.0032 0.0003

TABLE 8. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year, 9 and 6 months, when we calibrate the model to

the previous 3 expiries.
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USD/EUR

3m 6m 9m 1y

10DC -0.0062 -0.0043 -0.0006 0.0031

25DC -0.0027 -0.0022 -0.0007 0.0010

0 -0.0013 -0.0009 -0.0014 -0.0015

25DP -0.0006 0.0001 -0.0005 -0.0005

10DP 0.0008 0.0009 0.0003 0.0020

USD/JPY

3m 6m 9m 1y

10DC -0.0090 -0.0052 -0.0004 0.0007

15DC -0.0062 -0.0038 -0.0002 0.0003

25DC -0.0037 -0.0009 0.0003 -0.0006

0 0.0010 0.0014 0.0015 -0.0011

25DP -0.0004 0.0006 0.0009 0.0002

15DP -0.0022 -0.0014 -0.0008 0.0002

10DP -0.0039 -0.0029 -0.0013 0.0003

EUR/JPY

3m 6m 9m 1y

10DC -0.0045 -0.0003 0.0002 -0.0006

15DC -0.0021 0.0014 0.0009 -0.0007

25DC 0.0010 0.0030 0.0012 -0.0013

0 0.0030 0.0038 0.0019 -0.0008

25DP 0.0009 0.0014 0.0014 0.0016

15DP -0.0026 -0.0020 -0.0005 0.0013

10DP -0.0057 -0.0050 -0.0030 -0.0000

TABLE 9. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year, 9, 6 and 3 months, when we calibrate the model

to the previous 2 expiries.
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USD/EUR USD/JPY EUR/JPY

10DC 0.0058 0.0030 0.0046

15DC 0.0022 0.0035

25DC 0.0058 0.0009 0.0041

0 0.0035 0.0007 0.0019

25DP 0.0029 0.0024 0.0016

15DP 0.0027 -0.0012

10DP 0.0042 0.0029 -0.0044

TABLE 10. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year, when we calibrate the model to the previous 5

expiries and κk = 1, k = 1, 2. Blanks on the first column reflect missing market data

for 15DC and 15DP.

USD/EUR USD/EUR USD/JPY USD/JPY EUR/JPY EUR/JPY

9m 1y 9m 1y 9m 1y

10DC 0.0083 0.0092 0.0034 0.0052 0.0073 0.0090

15DC 0.0021 0.0042 0.0061 0.0078

25DC 0.0060 0.0092 0.0005 0.0029 0.0053 0.0079

0 0.0029 0.0066 -0.0000 0.0025 0.0024 0.0050

25DP 0.0033 0.0056 0.0026 0.0044 0.0025 0.0041

15DP 0.0034 0.0049 0.0006 0.0010

10DP 0.0062 0.0067 0.0041 0.0054 -0.0027 -0.0024

TABLE 11. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year and 9 months, when we calibrate the model to the

previous 4 expiries and κk = 1, k = 1, 2. Blanks on the first two columns reflect

missing market data for 15DC and 15DP.
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USD/EUR

6m 9m 1y

10DC 0.0073 0.0116 0.0131

25DC 0.0042 0.0091 0.0128

0 0.0010 0.0056 0.0100

25DP 0.0020 0.0058 0.0087

10DP 0.0056 0.0088 0.0099

USD/JPY

6m 9m 1y

10DC 0.0025 0.0048 0.0067

15DC 0.0009 0.0030 0.0053

25DC -0.0013 0.0008 0.0034

0 -0.0028 -0.0004 0.0023

25DP 0.0002 0.0027 0.0048

15DP 0.0013 0.0041 0.0057

10DP 0.0022 0.0053 0.0067

EUR/JPY

6m 9m 1y

10DC 0.0051 0.0114 0.0138

15DC 0.0036 0.0099 0.0123

25DC 0.0022 0.0085 0.0120

0 -0.0001 0.0048 0.0083

25DP 0.0017 0.0047 0.0071

15DP 0.0010 0.0028 0.0040

10DP -0.0016 -0.0003 0.0006

TABLE 12. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year, 9 and 6 months, when we calibrate the model to

the previous 3 expiries and κk = 1, k = 1, 2.
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USD/EUR

3m 6m 9m 1y

10DC 0.0057 0.0085 0.0125 0.0136

25DC 0.0023 0.0042 0.0086 0.0121

0 -0.0018 -0.0000 0.0041 0.0082

25DP -0.0008 0.0010 0.0043 0.0068

10DP 0.0025 0.0050 0.0077 0.0086

USD/JPY

3m 6m 9m 1y

10DC 0.0013 0.0026 0.0046 0.0063

15DC 0.0004 0.0003 0.0020 0.0040

25DC -0.0015 -0.0028 -0.0012 0.0010

0 -0.0033 -0.0051 -0.0033 -0.0010

25DP -0.0010 -0.0015 0.0005 0.0022

15DP -0.0004 0.0002 0.0025 0.0038

10DP -0.0002 0.0017 0.0043 0.0053

EUR/JPY

3m 6m 9m 1y

10DC 0.0002 0.0048 0.0106 0.0127

15DC -0.0009 0.0025 0.0082 0.0101

25DC -0.0026 -0.0001 0.0056 0.0086

0 -0.0038 -0.0035 0.0008 0.0037

25DP -0.0008 -0.0007 0.0016 0.0034

15DP -0.0010 -0.0007 0.0005 0.0012

10DP -0.0021 -0.0026 -0.0020 -0.0015

TABLE 13. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year, 9, 6 and 3 months, when we calibrate the model

to the previous 3 expiries and κk = 1, k = 1, 2.
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Order SUSD,EUR SJPY,USD SJPY,EUR

1 +∞ +∞ +∞
2 +∞ 12.1962 5.1612

3 +∞ 2.9537 2.0580

4 3.3968 1.7990 1.3763

5 2.0070 2.0819 1.0614

6 1.5057 1.9550 0.8736

7 1.2265 1.7030 0.7463

8 1.0427 1.5143 0.6534

9 0.9104 1.3715 0.5822

10 0.8099 1.2591 0.5256

11 0.7303 1.1676 0.4794

12 0.6656 1.0912 0.4409

13 0.6119 1.0260 0.4083

14 0.5664 0.9695 0.3803

15 0.5274 0.9199 0.3559

16 0.4935 0.8758 0.3346

17 0.4638 0.8363 0.3157

18 0.4376 0.8006 0.2988

19 0.4142 0.7681 0.2837

20 0.3932 0.7385 0.2701

TABLE 14. Times of moment explosions for moments up to order 5 for the three

currency pairs.
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FIGURE 1. Calibration of USD/EUR implied volatility surface.

FIGURE 2. Calibration of USD/JPY implied volatility surface.
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FIGURE 3. Calibration of EUR/JPY implied volatility surface.

FIGURE 4. 1-year out-of-sample performance, using parameters calibrated from the

5 expiries sub-sample
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FIGURE 5. 9-month and 1-year out-of-sample performance, using parameters cali-

brated from the 4 expiries sub-sample

FIGURE 6. 6-month, 9-month and 1-year out-of-sample performance, using parame-

ters calibrated from the 4 expiries sub-sample
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FIGURE 7. 6-month, 9-month and 1-year out-of-sample performance, using parame-

ters calibrated from the 4 expiries sub-sample

FIGURE 8. 6-month, 9-month and 1-year out-of-sample performance, using parame-

ters calibrated from the 4 expiries sub-sample
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FIGURE 9. 6-month, 9-month and 1-year out-of-sample performance, using parame-

ters calibrated from the 4 expiries sub-sample

FIGURE 10. Implied risk-neutral conditional distributions for the USD/EUR ex-

change rate inferred from option prices.
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FIGURE 11. Implied risk-neutral conditional distributions for the USD/JPY exchange

rate inferred from option prices.

FIGURE 12. Implied risk-neutral conditional distributions for the EUR/JPY exchange

rate inferred from option prices.



CHAPTER 5

The Wishart case

1. Basic definitions and assumptions

In this chapter we propose an extension of the previous approach to the setting of matrix stochastic

processes on the state space S+
d . We will see that all the good analytical properties of the previous

approach are preserved, while we allow for a more general dynamics. This increased freedom may be

of interest in the context of the evaluation of complex multi-currency derivatives.

2. Wishart-based exchange model

We present another model in which again N currencies are traded. As before, we start by considering

the value of each of these currencies in units of a universal numéraire. For applications and calibration

purposes we will focus on the case N = 3. We work under the risk neutral measure defined by the uni-

versal numéraire and call S0,i(t) the value at time t of one unit of the currency i in terms of our universal

numéraire (note that S0,i(t) can itself be thought as an exchange rate, between the universal numéraire

and the currency i). We model each of the S0,i(t) via a multifactor Wishart stochastic volatility model

of dimension d and a matrix Brownian motion, Zt ∈ Md. The dimension d can be chosen according

to the specific problem and may reflect a PCA-type analysis. We further assume that these stochastic

volatility components are common between the different S0,i(t). Formally, we write

dS0,i(t)

S0,i(t)
= (r0 − ri)dt− Tr

[

Ai
√

Σ(t)dZ(t)
]

, i = 1, . . . , N ;(2.1)

dΣ(t) = (ΩΩ⊤ +MΣ(t) + Σ(t)M⊤)dt+
√

Σ(t)dW (t)Q+Q⊤dW (t)⊤.(2.2)

We assume Ω,M,Q ∈ Md, W = (Wt)t≥0 ∈ Md is a matrix Brownian motion. In order to ensure the

typical mean reverting behavior of the process we assume that M is negative semi-definite, moreover

the matrix Ω satisfies the condition ΩΩ⊤ = βQ⊤Q, for β ≥ d− 1. This last condition ensures that the

boundary of the cone S+
d is not reached by the process. The diffusion term exhibits a structure which

is completely analogous to the one introduced in the previous chapter: in the present case we have that

the dynamics of the exchange rate is driven by a linear projection of the variance factor
√

Σ(t) along a

direction parametrized by the symmetric matrix Ai. In consequence the total instantaneous variance is

Tr [AiΣ(t)Ai] dt. We assume the existence of N basic traded asset (one for each monetary area) which

are called money-market accounts, the values of which are driven by deterministic ODE’s of the type:

dBj(t) =rjBj(t)dt.(2.3)

Finally, we assume a correlation structure between the two matrix Brownian motions Z(t) and W (t),

by means of a matrix R according to the following relationship:

W (t) =Z(t)R⊤ +B(t)
√

Id −RR⊤,(2.4)

119
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where B(t) is a matrix Brownian motion independent of Z(t). This is the basic setup of the model. We

denote by Si,j(t), i, j = 1, .., n the exchange rate between currency i and j. More precisely, we have

that Si,j(t) = S0,j(t)/S0,i(t) has the following dynamics:

dSi,j(t)

Si,j(t)
= (ri − rj)dt+ Tr[(Ai −Aj)Σ(t)Ai]dt+ Tr[(Ai −Aj)

√

Σ(t)dZ(t)],(2.5)

Note that at this stage we are still working in the risk neutral measure defined by the universal numéraire.

The additional drift term in (2.5) can be understood as a quanto adjustment between the currencies i and

j.

PROPOSITION 5.1. The dynamics of the exchange rate (2.5) satisfies the triangular relation, namely:

dSi,j(t) =d
(
Si,l(t)Sl,j(t)

)
.(2.6)

PROOF. See Section 9 �

3. Risk neutral probability measures

Up to now we have worked in the risk neutral measure defined by our (rather unspecified) universal

numéraire. In practical pricing applications, it is more convenient to change the numéraire to any of the

currencies included in our FX multi-dimensional system. Without loss of generality, let us consider the

risk neutral measure defined by the i-th money market accountBi(t) and derive the dynamical equations

for the standard FX rate Si,j(t), its inverse Sj,i(t), and a generic cross Sj,l(t).

The Girsanov change of measure that transfers to the Qi risk neutral measure (i.e. the risk neutral

measure in the i-th country) is simply determined by assuming that under Qi the drift of the exchange

rate Si,j(t) is given by ri − rj (or equivalently by the fact that the money market account Bf (t) is a

Qi-martingale once discounted by the interest rate ri). The associated Radon-Nikodym derivative is:

dQi

dQ0

∣
∣
∣
∣
Ft

=exp

(

−
∫ t

0

Tr[Ai
√

Σ(s)dZ(s)]− 1

2

∫ t

0

Tr[AiΣ(s)Ai]ds

)

.(3.1)

In Mayerhofer (2012), conditions ensuring that the stochastic exponential above is a true martingale are

provided. In the following, we proceed along the lines of the previous chapter. The possibility of buying

the foreign currency and investing it at the foreign short rate of interest, is equivalent to the possibility

of investing in a domestic asset with price process B̃(t). Assume i is the domestic economy and j is the

foreign economy then:

dB̃ij(t) = d
(
Bj(t)Si,j(t)

)

= Bj(t)Si,j(t)
(

(ri − rj)dt+ Tr[(Ai −Aj)Σ(t)Ai]dt+ Tr[(Ai −Aj)
√

Σ(t)dZ(t)]
)

+BjSi,j(t)rjdt

= B̃ij(t)
(

ridt+ Tr[(Ai −Aj)Σ(t)Ai]dt+ Tr[(Ai −Aj)
√

Σ(t)dZ(t)]
)

= B̃ij(t)
(

ridt+ Tr[(Ai −Aj)
√

Σ(t)dZQi

(t)]
)

,(3.2)

where the matrix brownian motion under Qi is given by.

dZQi

= dZ +
√

Σ(t)Aidt,(3.3)
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then the Qi-risk neutral dynamics of the exchange rate is of the form

dSi,j(t) = d

(

B̃ij(t)

Bj(t)

)

= Si,j(t)
(

(ri − rj)dt+ Tr
[

(Ai −Aj)
√

Σ(t)dZQi

(t)
])

.(3.4)

The measure change has however also an impact on the variance processes, via the correlation matrix

R. Recall that we have, from (2.4),

(3.5) dW (t) = dZ(t)R⊤ + dB(t)
√

Id −RR⊤.

The component of dB(t) which is orthogonal to the spot driver dZ(t) is not affected by the measure

change; this is a natural choice that is consistent with the foreign-domestic symmetry (see the discussion

in Chapter 4). We are now able to derive the risk neutral dynamics of the factor process Σ(t) governing

the volatility of the exchange rates under Qi, which is given as

(3.6) dWQi

(t) =
(

dZ(t) +
√
ΣAidt

)

R⊤ + dB(t)
√

Id −RR⊤.

From (2.2) and (3.5) we derive the Qi-risk neutral dynamics of Σ as follows:

dΣ(t) =

(ΩΩ⊤ +MΣ(t) + Σ(t)M⊤)dt

+
√

Σ(t)
((

dZ(t) +
√

Σ(t)Aidt
)

R⊤ + dB(t)
√

Id −RR⊤
)

Q

+Q⊤
(

R
(

dZ⊤t +Ai
√

Σ(t)dt
)

+
√

Id −RR⊤
⊤
dB⊤

)
√

Σ(t)

− Σ(t)AiR
⊤Qdt

−Q⊤RAiΣ(t)dt.

Now define:

MQi

:=M −Q⊤RAi,(3.7)

so that using (3.6) we can finally write

dΣ(t) = (ΩΩ⊤ +MQi

Σ(t) + Σ(t)MQi,⊤)dt
√

Σ(t)dWQi

(t)Q+Q⊤dWQi,⊤(t)
√

Σ(t)(3.8)

and so the relations between the parameters are:

RQi

= R,(3.9)

QQi

= Q,(3.10)

MQi

=M −Q⊤RAi.(3.11)

We observe that, like in the multi-Heston case, the functional form of the model is invariant under the

measure change between the 0 and the ith-risk neutral measure. The inverse FX rate under the Qi-risk

neutral measure follows from Ito calculus, recalling that Sj,i =
(
Si,j

)−1
:

dSj,i(t)

Sj,i(t)
= Si,j(t)d

(
1

Si,j(t)

)

(3.12)

=
(
rj − ri + Tr [(Aj −Ai)Σ(t)(Aj −Ai)]

)
dt+ Tr

[

(Aj −Ai)
√

Σ(t)dZQi

(t)
]

,
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which includes the self-quanto adjustment. Similarly, the SDE of a generic cross FX rate becomes

dSj,l(t)

Sj,l(t)
=
Si,j(t)

Si,l(t)
d

(
Si,l(t)

Si,j(t)

)

(3.13)

=
(
rj − rl + Tr [(Aj −Al)Σ(t)(Aj −Ai)]

)
dt+ Tr

[

(Aj −Al)
√

Σ(t)dZQi

(t)
]

.

The additional drift term is the quanto adjustment as described by the current model choice. By applying

Girsanov’s theorem again, this time switching to the Qj risk neutral measure, the term is removed while

the Wishart parameters become

RQj

= RQi

,(3.14)

QQj

= QQi

,(3.15)

MQj

=MQi −QQi,⊤RQi

(Aj −Ai).(3.16)

These are the fundamental transformation rules for the model parameters.

Previously, we mentioned that we assume that the component of dW (t), which is orthogonal to the spot

driver dZ(t), is not affected by the measure change. This assumption is in line with the procedure that

has been introduced in Chapter 4 and implies that the model is consistent with the foreign-domestic

parity as in Del Baño Rollin (2008).

4. Features of the model

4.1. Stochastic Skew. In the present framework we have a nice feature: the skew is stochastic. To

be more precise we define the skew as:

Corrt(Noise(d logS
i,j(t)), Noise(V ol(d logSi,j(t)))).(4.1)

By computing the volatility of Si,j

(4.2) d
〈
Si,j(t), Si,j(t)

〉

t
= Tr[(Ai −Aj)Σ(t)(Ai −Aj)]dt,

we obtain that the skew is then proportional to the quantity

(4.3) d
〈
Si,j(t), V ol(Si,j(t))

〉

t
∝ Tr

[
(Ai −Aj)Σ(t)(Ai −Aj)2Q⊤R

]
.

This proportionality may be appreciated once we compute the skew, which can be derived by proceeding

along the following steps. We assume that the matrices A are all symmetric. In Section 3 we have seen

that the Qi-risk neutral dynamics of Si,j is given as in the next relation. This allows us to express the

dynamics by means of a scalar Brownian motion B1.

dSi,j(t)

Si,j(t)
= (ri − rj)dt+ Tr

[

(Ai −Aj)
√

Σ(t)dZQi

(t)
]

= (ri − rj)dt+
√

Tr [(Ai −Aj)Σ(t)(Ai −Aj)]
Tr

[

(Ai −Aj)
√

Σ(t)dZQi

(t)
]

√

Tr [(Ai −Aj)Σ(t)(Ai −Aj)]
︸ ︷︷ ︸

=:dB1(t)

.
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The dynamics of the variance is given by:

dTr [(Ai −Aj)Σ(t)(Ai −Aj)]
=

(
Tr

[
(Ai −Aj)ΩΩ⊤(Ai −Aj)

]
+ 2Tr [(Ai −Aj)MΣ(t)(Ai −Aj)]

)
dt

+ 2Tr
[

(Ai −Aj)
√
ΣdWQi

(t)Q(Ai −Aj)
]

.(4.4)

In order to derive the shape of the scalar brownian motion driving this dynamics we compute the fol-

lowing covariation:

d 〈Tr [(Ai −Aj)Σ(t)(Ai −Aj)]〉

= 4
〈

Tr
[

(Ai −Aj)
√

Σ(t)dWQi

(t)Q(Ai −Aj)
]

, T r
[

(Ai −Aj)
√

Σ(t)dWQi

(t)Q(Ai −Aj)
]〉

= 4

〈
d∑

a,b,c,d,e=1

(Ai −Aj)ab
√

Σ(t)bcdW
Qi

cd (t)Qde(Ai −Aj)ea,

d∑

p,q,r,s,t=1

(Ai −Aj)pq
√

Σ(t)qrdW
Qi

rs (t)Qst(Ai −Aj)tp
〉

=
d∑

(Ai −Aj)ab
√

Σ(t)brQse(Ai −Aj)ea(Ai −Aj)pq
√

Σ(t)qrQst(Ai −Aj)tpdt

= 4Tr
[
(Ai −Aj)2Σ(t)(Ai −Aj)2Q⊤Q

]
dt.

(4.5)

Then we can express the dynamics of the variance as follows:

dTr [(Ai −Aj)Σ(t)(Ai −Aj)]

= (...) dt+ 2
√

Tr [(Ai −Aj)2Σ(t)(Ai −Aj)2Q⊤Q]
Tr

[

(Ai −Aj)
√
ΣdWQi

(t)Q(Ai −Aj)
]

√

Tr [(Ai −Aj)2Σ(t)(Ai −Aj)2Q⊤Q]
︸ ︷︷ ︸

=:dB2(t)

,

so that we can finally compute the covariation between the two noises. Notice that in the calculation

below we are assuming the invariance of the correlation with respect to the change of measure which
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was clarified in Section 3. The skew is computed as

Corrt(Noise(d logS
i,j(t)), Noise(V ol(d logSi,j(t))))

= d 〈B1, B2〉

=

〈
Tr

[

(Ai −Aj)
√

Σ(t)dZQi

t

]

√

Tr [(Ai −Aj)Σ(t)(Ai −Aj)]
,
T r

[

(Ai −Aj)
√

Σ(t)dWQi

(t)Q(Ai −Aj)
]

√

Tr [(Ai −Aj)2Σ(t)(Ai −Aj)2Q⊤Q]

〉

=

〈
Tr

[

(Ai −Aj)
√

Σ(t)dZQi

(t)
]

√

Tr [(Ai −Aj)Σ(t)(Ai −Aj)]
,
T r

[

(Ai −Aj)
√

Σ(t)dZQi

(t)R⊤Q(Ai −Aj)
]

√

Tr [(Ai −Aj)2Σ(t)(Ai −Aj)2Q⊤Q]

〉

=

∑d
(Ai −Aj)pq

√

Σ(t)
qr
dZQi

rp (t)(Ai −Aj)ab
√

Σ(t)
bc
dZQi

cd (t)R
⊤
deQef (Ai −Aj)fa

√

Tr [(Ai −Aj)Σ(t)(Ai −Aj)]
√

Tr [(Ai −Aj)2Σ(t)(Ai −Aj)2Q⊤Q]

=

∑d
(Ai −Aj)dq

√

Σ(t)
qc

√

Σ(t)
cb
(Ai −Aj)ba(Ai −Aj)afQ⊤feRed

√

Tr [(Ai −Aj)Σ(t)(Ai −Aj)]
√

Tr [(Ai −Aj)2Σ(t)(Ai −Aj)2Q⊤Q]
dt

=
Tr

[
(Ai −Aj)Σ(t)(Ai −Aj)2Q⊤R

]

√

Tr [(Ai −Aj)Σ(t)(Ai −Aj)]
√

Tr [(Ai −Aj)2Σ(t)(Ai −Aj)2Q⊤Q]
dt.(4.6)

This quantity represents the skew in Equation (4.1). By looking at the numerator we realize that the

proportionality relation (4.3) is satisfied.

4.2. A stochastic variance-covariance matrix. We would like to discuss the positive definiteness

of the variance-covariance matrix. For simplicity, we consider the case of three currencies, meaning that

we will have a 2× 2 candidate covariance matrix:




〈
dSi,j(t)
Si,j(t)

〉 〈
dSi,j(t)
Si,j(t) ,

dSi,l(t)
Si,l(t)

〉

〈
dSi,j(t)
Si,j(t) ,

dSi,l(t)
Si,l(t)

〉 〈
dSi,l(t)
Si,l(t)

〉



 .(4.7)

We know that:
〈
dSi,j(t)

Si,j(t)

〉

= Tr [(Ai −Aj) Σ(t) (Ai −Aj)] dt,(4.8)

〈
dSi,j(t)

Si,j(t)
,
dSi,l(t)

Si,l(t)

〉

= Tr [(Ai −Aj) Σ(t) (Ai −Al)] dt.(4.9)

We first look at (4.8). We recall that we assumedAi, Aj , Al ∈ Sd. Without loss of generality (otherwise

put V = −V ′ for V ′ ∈ S+
d ), let (Ai −Aj) ∈ S+

d . Recall that the cone S+
d is self dual, meaning that:

S+
d =

{
u ∈ Sd | Tr [uv] ≥ 0,∀v ∈ S+

d

}
.(4.10)

Let O be an orthogonal matrix, then we may write: (Ai −Aj) = OΛO⊤, where Λ is a Diagonal matrix

containing the eigenvalues of (Ai −Aj) on the main Diagonal. Then we have:

Tr [(Ai −Aj) Σ(t) (Ai −Aj)] = Tr
[
OΛO⊤Σ(t)OΛO⊤

]

= Tr
[
Σ(t)OΛ2O⊤

]
≥ 0,(4.11)

by self-duality. This shows that variances are positive. Now we would like to check that the variance-

covariance matrix is in S+
d . Now let

M(t) = (Ai −Aj)
√

Σ(t),(4.12)

N (t) = (Ai −Al)
√

Σ(t),(4.13)
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then, using the Cauchy-Schwarz inequality for matrices we have

Tr [(Ai −Aj) Σ(t) (Ai −Aj)]Tr [(Ai −Al) Σ(t) (Ai −Al)](4.14)

= Tr
[
M(t)M⊤(t)

]
Tr

[
N (t)N⊤(t)

]
(4.15)

≥ Tr
[
M(t)N⊤(t)

]2
(4.16)

= Tr [(Ai −Aj) Σ(t) (Ai −Al)]2 .(4.17)

This implies that the determinant of the instantaneous variance-covariance matrix is positive, so we

conclude that the variance-covariance matrix is well defined, and, as a side effect, we have the usual

bound for the correlations, i.e. all correlations are bounded by one (in absolute value).

5. Option pricing

As in the multi-Heston case, in this section we provide the calculation of the Laplace transform and

the characteristic function of xi,j(t) := logSi,j(t), which will be useful for option pricing purposes.

Let us consider a call option C(Si,j(t),Ki,j , τ), i, j = 1, .., N, i 6= j, on a generic FX rate Si,j(t) =

exp(xi,j(t)) with strike Ki,j , maturity T (τ = T − t is the time to maturity) and face equal to one unit

of the foreign currency. For ease of notation set: RQi

= R and QQi

= Q and the shorthand MQi

= M̃ .

We proceed to prove the following: Being an affine model, the characteristic function conditioned on

the initial values

φi,j(ω, t, τ, x,Σ) = EQi

t [e
iωxi,j(T )|xi,j(t) = x,Σ(t) = Σ](5.1)

can be derived analytically (here i =
√
−1). Standard numerical integration methods can then be used

to invert the Fourier transform to obtain the probability density at T or the vanilla price via integration

against the payoff, with overall little computational effort. In fact, from the usual risk-neutral argument,

the initial price of the call option can be written as (domestic) risk neutral expected value:

C(Si,j(t),Ki,j , τ) = e−r
iτEQi

t

[(

ex
i,j(T ) −Ki,j

)+
]

,

and by applying standard arguments (see e.g. Carr and Madan (1999), Bakshi and Madan (2000), Duffie

et al. (2000) and Sepp (2003)) it can be expressed in terms of the integral of the product of the Fourier

transform of the payoff and the characteristic function of the log-asset price:

C(Si,j(t),Ki,j , τ) = e−r
iτ 1

2π

∫

Z
φi,j(−iλ, t, τ, x,Σ)Φ(λ)dλ,(5.2)

where

Φ(λ) =

∫

Z
eiλx

(
ex −Ki,j

)+
dx

is the Fourier transform of the payoff function and Z denotes the strip of regularity of the payoff, that is

the admissible domain where the integral in (5.2) is well defined. In other words, the pricing problem is

essentially solved once the (conditional) characteristic function of the log-exchange rate is known. We

recall the relationship between the characteristic function and the moment generating function. If we

denote via Gi,j(ω, t, τ, x,Σ) the moment generating function, given by

Gi,j(ω, t, τ, x,Σ) = EQi

t [e
ωxi,j(T )|xi,j(t) = x,Σ(t) = Σ],(5.3)

we simply have φi,j(ω, t, τ, x,V) = Gi,j(iω, t, τ, x,Σ). Consequence, in our affine model, it is suffi-

cient to derive the Laplace transform, which is explicitly given by the following proposition:
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PROPOSITION 5.2. Assume that the family of matrices A is symmetric then, in the Wishart model, the

Laplace Transform of xi,j(t) := logSi,j(t) is given by:

Gi,j (ω, t, T, x,Σ) = exp [ωx+A(τ) + Tr [B(τ)Σ]] ,(5.4)

where:

A = ω
(
ri − rj

)
τ − β

2
Tr

[

logF(τ) +
(

M̃⊤ + ω (Ai −Aj)R⊤Q
)

τ
]

,(5.5)

B(τ) = B22(τ)
−1B21(τ)(5.6)

and B22(τ),B21(τ) are submatrices in:

(

B11(τ) B12(τ)

B21(τ) B22(τ)

)

= exp τ

[

M̃ + ωQ⊤R (Ai −Aj) −2Q⊤Q
ω2−ω

2 (Ai −Aj)2 −
(

M̃⊤ + ω (Ai −Aj)R⊤Q
)

]

.

(5.7)

PROOF. See Section 9. �

As we stated above, for ω = iλ, we obtain the characteristic function of the log exchange rate, hence

we can compute option prices as e.g. in Carr and Madan (1999) via:

(5.8)
exp {−αc}

2π

∫ +∞

−∞
e−ivcϕ(v)dv,

where:

ϕ(v) = e−r
i(T−t)G (i (v − (α+ 1) i) , t, T, x, V )

(α+ iv) (1 + α+ iv)
.(5.9)

6. Expansions

As in the previous chapter, we will perform in the sequel the calibration of our model, which can

be obtained by relying on a standard non-linear least squares procedure. This will be employed to

minimize the distance between model and market implied volatilities. The model implied volatilities

are extracted from the prices produced by the FFT routine. This procedure for the Wishart model is

more demanding from a numerical point of view than the analogous one for the multi-Heston case.

An alternative approach is to fit implied volatilities via a simpler function. A possibility is to find a

relationship between the prices produced by the model, and the standard Black-Scholes formula. The

next result states that it is possible to approximate the prices of options under the Wishart model, via a

suitable expansion of the standard Black-Scholes formula and its derivatives, analogously to what has

been done in the previous chapter. The proof, which is reported in the appendix, relies on arguments

which may be found in Lewis (2000) and Da Fonseca and Grasselli (2011) (we drop all currency indices,

it is intended that we are considering the (i, j) FX pair). Define τ := T − t and let us define the real

deterministic functions B̃0, B̃1, B̃20, B̃21 as follows:

B̃0 =

∫ τ

0

e(τ−u)M̃⊤

(Ai −Aj) e(τ−u)M̃du,(6.1)

B̃1 =

∫ τ

0

e(τ−u)M̃⊤
(

B̃0(u)Q⊤R (Ai −Aj) + (Ai −Aj)R⊤QB̃0(u)
)

e(τ−u)M̃du,(6.2)

B̃20 =

∫ τ

0

e(τ−u)M̃⊤

2B̃0(u)Q⊤QB̃0(u)e(τ−u)M̃du,(6.3)

B̃21 =

∫ τ

0

e(τ−u)M̃⊤
(

B̃1(u)Q⊤R (Ai −Aj) + (Ai −Aj)R⊤QB̃1(u)
)

e(τ−u)M̃du.(6.4)
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Moreover, the real deterministic scalar functions Ã0(τ), Ã1(τ), Ã20(τ), Ã21(τ) are given by:

Ã0(τ) = Tr

[

ΩΩ⊤
∫ τ

0

B̃0(u)du

]

,(6.5)

Ã1(τ) = Tr

[

ΩΩ⊤
∫ τ

0

B̃1(u)du

]

,(6.6)

Ã20(τ) = Tr

[

ΩΩ⊤
∫ τ

0

B̃20(u)du

]

,(6.7)

Ã21(τ) = Tr

[

ΩΩ⊤
∫ τ

0

B̃21(u)du

]

.(6.8)

Finally, let

v = σ2τ = Ã0(τ) + Tr
[

B̃0(τ)Σ
]

(6.9)

be the integrated variance.

PROPOSITION 5.3. Assume that the vol of vol matrix Q has been scaled by the factor α > 0. Then the

call price C(S(t),K, τ) in the Wishart-based exchange model can be approximated in terms of the vol

of vol scale factor α by differentiating the Black Scholes formula CB&S (S(t),K, σ, τ) with respect to

the log exchange rate x(t) = lnS(t) and the integrated variance v = σ2τ :

C(S(t),K, τ) ≈ CB&S (S(t),K, σ, τ)

+ α
(

Ã1(τ) + Tr
[

B̃1(τ)Σ(t)
])

∂2
xvCB&S (S(t),K, σ, τ)

+ α2
(

Ã20(τ) + Tr
[

B̃20(τ)Σ(t)
])

∂2
v2CB&S (S(t),K, σ, τ)

+ α2
(

Ã21(τ) + Tr
[

B̃21(τ)Σ(t)
])

∂3
x2vCB&S (S(t),K, σ, τ)

+
α2

2

(

Ã1(τ) + Tr
[

B̃1(τ)Σ(t)
])2

∂4
x2v2CB&S (S(t),K, σ, τ) ,(6.10)

PROOF. See Section 9 �

Finally, as in the multi-Heston case, we can state another formula, which does not involve the computa-

tion of option prices and constitutes an approximation of the implied volatility surface for a short time

to maturity. This formula may constitute a useful alternative in order to get a quicker calibration for

short maturities. The proof is again provided in detail in the appendix.

PROPOSITION 5.4. For a short time to maturity the implied volatility expansion in terms of the vol-of-vol

scale factor α in the Wishart-based exchange model is given by:

σ2
imp ≈ Tr [(Ai −Aj) Σ (Ai −Aj)] + α

Tr
[
(Ai −Aj)Q⊤R (Ai −Aj) Σ(t)

]
mf

Tr [(Ai −Aj) Σ(t) (Ai −Aj)]

+ α2
m2
f

Tr [(Ai −Aj) Σ(t) (Ai −Aj)]2

[

1

3
Tr

[
(Ai −Aj)Q⊤Q (Ai −Aj) Σ(t)

]

+
1

3
Tr

[ [
(Ai −Aj)Q⊤R (Ai −Aj) + (Ai −Aj)R⊤Q (Ai −Aj)

]

×Q⊤R (Ai −Aj) Σ
]

− 5

4

Tr
[
(Ai −Aj)Q⊤R (Ai −Aj) Σ

]2

Tr [(Ai −Aj) Σ(t) (Ai −Aj)]

]

.(6.11)

where, as in Chapter 4, mf = log
(
Si,j(t)e(ri−rj)τ

K

)

denotes the log-moneyness.
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PROOF. See Section 9 �

7. Calibration to market data

We perform the calibration along the same lines as in Chapter 4. This means that we will be minimizing

the squared distance between market and model implied volatilities. We perform the calibration experi-

ment on the same data set as in Chapter 4. To keep the exposition of the present chapter self-contained,

we report the details.

7.1. Description of the data. We consider implied volatility surfaces for USD/EUR, USD/JPY

and EUR/JPY. With these currencies we are able to construct a triangular relation between rates. We

consider market data as of 23rd July 2010. Our sample includes expiry dates ranging from 3 days to

5 years. It is important to stress that in the forex market implied volatilities surfaces are expressed in

terms of maturity and delta: the market practice is to quote volatilities for strangles and risk reversals

which can then be employed to reconstruct a whole surface of implied volatilities via an interpolation

method.

7.2. Calibration results. For the calibration of the model we use a non-linear least-squares opti-

mizer to minimize the following function:

∑

i

(

σimpi,mkt − σ
imp
i,model

)2

(7.1)

The choice of this norm constitutes the market practice. The use of a norm in price should be avoided

as the numerical range for option prices may be large, thus introducing a bias in the optimization. To

be more precise, the construction of the objective function is performed along the following steps. First

we consider a function implementing the Fourier/Laplace transform, i.e. formulas (5.4), (5.5), (5.6)

and (5.7). The Fourier/Laplace transform is then invoked by an FFT pricing routine which implements

the Carr-Madan methodology, thus returning a surface of prices for different moneyness and maturities,

finally we construct the implied volatility surface produced by the model by using this surface of prices

as input for a standard Black-Scholes implied volatility solver. For a more detailed discussion, see

Da Fonseca and Grasselli (2011).

We would like to provide some practical suggestions for the implementation of the calibration procedure,

which is more delicate in this case with respect to the multi-Heston model. In Algorithm 7.1, we provide

an excerpt of the procedure we employ to price options, which implements the Carr and Madan (1999)

methodology. A direct inspection of the vector ncf , defined in Algorithm 7.1, reveals that, for larger

maturities and for large values of v(j) (the point where the characteristic function is computed), this

quantity decays quickly. We can employ this fact to speed up the computation of the prices as follows:

we fix a threshold ǫ = 10−20, and stop the computation of the characteristic function as soon as the

absolute value of ncf(j) satisfies |ncf(j)| ≤ ǫ. This procedure has been adopted in Da Fonseca and

Grasselli (2011). Another issue that should be taken into consideration is the presence of some numerical

instabilities. According to Da Fonseca (2011), these numerical instabilities are observed when the value

of the characteristic function is small but the individual blocks of the matrix exponential are large. A

possible solution, adopted in Da Fonseca and Grasselli (2011), is to calculate the characteristic function

at the point where the instability is observed by relying on the Runge-Kutta method, (see e.g. Chapter

1). The alternative approach that we employ is trivial but faster: we simply approximate v(j) with

v(j − 1), which corresponds to a simple but effective interpolation approach.
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Algorithm 7.1: FFTPRICER(params)

ǫ = 1e− 20;

N = 4096;

η = 0.18;

λ = (2π)/(Nη);

v = 0 : η : ((N − 1)η);

b = (Nλ)/2;

ncf = zeros(1, length(v));

for j ← 1 to length(v)







ncf(j) = e−r(T−t)G (i (v(j)− (α+ 1)i) , t, T, x, V );(v(j))

if ABS(ncf(j)) ≤ ǫ

then

{

ncf(j + 1 : end) = 0;

break;

if isNaN(ncf(j)) == TRUE

then
{

ncf(j) = ncf(j − 1);

We report in Table 1 the parameters that we obtained by performing the calibration first on the whole

sample ranging from 1 month up to 1 year, and then on various subsamples obtained by excluding

more and more longer maturities. In all cases we are able to obtain a very good fit of market implied

volatilities. The result of the fit for the whole sample that we consider can be appreciated by looking

at Figures 1, 2 and 3. This is a result that we expected since the present model is a generalization of

the framework that we introduced in chapter 4. In Table 2 we report the relative change in the values of

the parameters when we consider the various sub-samples. Unfortunately, for some parameters, large

variations are observed. This suggests that the flexibility of the Wishart model is not justified if we

are only interested in calibrating vanilla prices, hence we strongly believe that the added value of our

approach should be expected in the context of the evaluation of more complex derivatives. Clearly, it is

possible to perform a calibration on a reduced form of the model, as we showed in Chapter 4. Anyhow

it is interesting to note that we are in front of a very general model, which is able to fit again three

FX implied volatility surfaces, while retaining a large amount of flexibility which may be employed to

capture other stylized facts concerning the market or some particular products.

8. Conclusions

In this chapter we showed that the multi-Heston model admits a generalization giving rise to the Wishart

FX model. The Wishart FX model retains the same level of analytical tractability of the multi-Heston

approach. In particular, we are still considering a model which is theoretically consistent with triangular

relationship among FX rates. The model is highly analytically tractable and is consistent with respect to

spot inversion. Finally, and more importantly, the model features clear a clear relationship between the

parameters under the various risk neutral measure coexisting on the market. Thanks to this relationship

we are able to perform again a simultaneous calibration of the model to three FX implied volatility

surfaces. The fit is again very satisfactory.
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9. Proofs

9.1. Proof of Proposition 5.1. Application of the Ito formula to the product Si,l(t)Sl,j(t) (using

the property Tr[dWA]Tr[dWB] = Tr[AB]) leads to (2.5). In formulas:

dSi,l(t)

Si,l(t)
= (ri − rl)dt+ Tr[(Ai −Al)Σ(t)Ai]dt+ Tr[(Ai −Al)

√

Σ(t)dZ(t)],

dSl,j(t)

Sl,j(t)
= (rl − rj)dt+ Tr[(Al −Aj)Σ(t)Al]dt+ Tr[(Al −Aj)

√

Σ(t)dZ(t)],

dSi,j(t) = dSi,l(t)tS
l,j
t + Si,l(t)tdS

l,j
t + d

〈

Si,l(t)t, S
l,j
t

〉

= Sl,jt Si,l(t)
(

(ri − rl)dt+ Tr[(Ai −Al)Σ(t)Ai]dt+ Tr[(Ai −Al)
√

Σ(t)dZ(t)]
)

+ Sl,jt Si,l(t)
(

(rl − rj)dt+ Tr[(Al −Aj)Σ(t)Al]dt+ Tr[(Al −Aj)
√

Σ(t)dZ(t)]
)

+
〈

Tr[(Ai −Al)
√

Σ(t)dZ(t)], T r[(Al −Aj)
√

Σ(t)dZ(t)].
〉

(9.1)

We concentrate on the covariation term:

〈

Tr[(Ai −Al)
√

Σ(t)dZ(t)], T r[(Al −Aj)
√

Σ(t)dZ(t)]
〉

=

〈
d∑

p,q,r=1

(Ai −Al)pq
√

Σ(t)qrdZ(t)rp,
d∑

s,t,u=1

(Al −Aj)st
√

Σ(t)tudZ(t)us

〉

=

d∑

p,q,r,s,t,u=1

(Ai −Al)pq
√

Σ(t)qrdZ(t)rp(Al −Aj)st
√

Σ(t)tudZ(t)usδr=uδp=sdt

=

d∑

s,q,u,t=1

(Ai −Al)sq
√

Σ(t)qu(Al −Aj)st
√

Σ(t)tudt

=
d∑

s,q,u,t=1

(Ai −Al)sq
√

Σ(t)qu
√

Σ(t)ut(A
⊤
l −A⊤j )tsdt.

(9.2)

By assuming that the matrices A are symmetric we get that:

〈

Tr[(Ai −Al)
√

Σ(t)dZ(t)], T r[(Al −Aj)
√

Σ(t)dZ(t)]
〉

= Tr [(Ai −Al)Σ(t)(Al −Aj)] .(9.3)

Finally, using the fact that terms in the trace commute we obtain:

dSi,j(t)

Si,j(t)
= (ri − rj)dt+ Tr[(Ai −Aj)Σ(t)Ai]dt+ Tr[(Ai −Aj)

√

Σ(t)dZ(t)]

(9.4)

as desired.

9.2. Proof of Proposition 5.2. Recall that φi,j (ω, t, τ, x,Σ) = Gi,j(iω, t, τ, x,Σ) where G was

defines as Gi,j (ω, t, τ, x,Σ) = EQi

t [eωxT ], xi,j(t) := logSi,j(t). These functions represent the char-

acteristic and the moment generating functions of the log-exchange rate. Following Da Fonseca et al.

(2008), in order to determine these quantities, we first write the PDE satisfied by G. First of all we
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compute the dynamics of x(t) = xi,j(t) under the measure Qi:

d logSi,j(t) =

(
(
ri − rj

)
− 1

2
Tr [(Ai −Aj) Σ(t) (Ai −Aj)]

)

dt

+ Tr
[

(Ai −Aj)
√

Σ(t)dZQi

(t)
]

,(9.5)

As before, the Laplace Transform solves the following PDE of backward Kolmogorov type in terms of

τ = T − t:
∂

∂τ
Gi,j = Ax,ΣGi,j .(9.6)

Gi,j(ω, T, 0, x,Σ) = eωx(9.7)

To solve this PDE we first determine the infinitesimal generatorAx,Σ. This will feature the contribution

of three terms: the process x, the Wishart process Σ and the mixed term which corresponds to the

coefficient of the term ∂2

∂x∂Σpt
and arises from the correlation structure. The first is trivial, the second is

known to us thanks to Bru (1991) and is of the form:

Tr
[(

ΩΩ⊤ + M̃Σ+ ΣM̃⊤
)

D + 2ΣDQ⊤QD
]

,(9.8)

where D is the differential operator:

Dpt =
∂

∂Σpt
.(9.9)

We calculate the mixed term. To this end we notice that under the measure Qi:

d
〈
logSi,j(t), dΣ(t)pt

〉

= 2

〈

Tr
[

(Ai −Aj)
√

Σ(t)dZQi

(t)
]

,
d∑

q,r,s=1

√

Σ(t)pqdZ
Qi

qr (t)R
⊤
rsQst

〉

= 2

〈
d∑

a,b,c,=1

(Ai −Aj)ab
√

Σ(t)bcdZ
Qi

ca ,
d∑

q,r,s=1

√
ΣpqdZ

Qi

qrR
⊤
rsQst

〉

δc=qδa=rdt

= 2

d∑

b,q,r,s=1

(Ai −Aj)rb
√

Σ(t)bq
√

Σ(t)pqR
⊤
rsQstdt

= 2
d∑

b,q,r,s=1

Σ(t)pb (Ai −Aj)br R
⊤
rsQstdt,

where we have used the fact that

2Tr
[
Σ (Ai −Aj)R⊤QD

] ∂

∂x
= 2

d∑

p,b,r,s=1

DtpΣpb (Ai −Aj)br R
⊤
rsQst

∂

∂x
(9.10)

and that D is symmetric. Now we can state the PDE satisfied by G:

∂G

∂τ
=

(
(
ri − rj

)
− 1

2
Tr [(Ai −Aj) Σ (Ai −Aj)]

)
∂G

∂x

+
1

2
Tr [(Ai −Aj) Σ (Ai −Aj)]

∂2G

∂x2

+ Tr
[(

ΩΩ⊤ + M̃Σ+ ΣM̃⊤
)

DG+ 2
(
ΣDQ⊤QD

)
G
]

+ 2Tr
[
Σ (Ai −Aj)R⊤QD

] ∂G

∂x
.(9.11)
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The Wishart process Σ belongs to the class of Affine Processes defined on the cone of positive semi-

definite matrices, meaning that we can make a guess of the following kind:

Gi,j (ω, t, τ, x,Σ) = exp [C(τ)x+A(τ) + Tr [B(τ)Σ]] ,(9.12)

with C,A ∈ R and B ∈ Sd s.t. the transform is well defined, moreover these functions satisfy the

following terminal conditions:

A(0) = 0 ∈ R,(9.13)

C(0) = ω ∈ R,(9.14)

B(0) = 0 ∈ Sd.(9.15)

We substitute the candidate (9.12) into (9.11) and then:

∂

∂τ
C(τ)x+ ∂

∂τ
A(τ) + Tr

[
∂

∂τ
B(τ)Σ

]

=

C(τ)
(
(
ri − rj

)
− 1

2
Tr [(Ai −Aj) Σ (Ai −Aj)]

)

+
1

2
Tr [(Ai −Aj) Σ (Ai −Aj)] C2(τ)

+ Tr
[(

ΩΩ⊤ + M̃Σ+ ΣM̃⊤
)

B(τ) + 2ΣB(τ)Q⊤QB(τ)
]

+ Tr
[
Σ (Ai −Aj)R⊤QB(τ)C(τ)

]
+ Tr

[
C(τ)B(τ)Q⊤RΣ (Ai −Aj)

]
.(9.16)

We identify terms and deduce that:

∂

∂τ
C(τ) = 0,(9.17)

hence: C(τ) = ω ∀τ . We also have the following (matrix) Riccati ODE:

∂

∂τ
B = B(τ)

(

M̃ + ωQ⊤R (Ai −Aj)
)

+
(

M̃⊤ + ω (Ai −Aj)R⊤Q
)

B(τ) + 2B(τ)Q⊤QB(τ)

+
ω2 − ω
2

(Ai −Aj)2(9.18)

and the final ODE which may then be solved upon direct integration of:

∂

∂τ
A = ω

(
ri − rj

)
+ Tr

[
ΩΩ⊤B(τ)

]
.(9.19)

It is possible to linearize (9.18). In fact, following Grasselli and Tebaldi (2008) and writing:

B(τ) = F−1(τ)G(τ),(9.20)

for F(τ) ∈ GL(d) and G(τ) ∈Md, then we have

∂

∂τ
[F(τ)B(τ)] = ∂

∂τ
[F(τ)]B(τ) + F(τ) ∂

∂τ
B(τ)

=
∂

∂τ
[F(τ)]B(τ)+

+ F(τ)
(

B(τ)
(

M̃ + ωQ⊤R (Ai −Aj)
)

+
(

M̃⊤ + ω (Ai −Aj)R⊤Q
)

B(τ)

+ 2B(τ)Q⊤QB(τ)
)

,(9.21)
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which gives rise to the following system of ODE’s

∂

∂τ
F = −F(τ)

(

M̃⊤ + ω (Ai −Aj)R⊤Q
)

− 2G(τ)Q⊤Q(9.22)

∂

∂τ
G = G(τ)

(

M̃ + ωQ⊤R (Ai −Aj)
)

+ F(τ)ω
2 − ω
2

(Ai −Aj)2 ,(9.23)

with F(0) = Id and G(0) = B(0). The solution of the above system is

(B(0), Id)
(

B11(τ) B12(τ)

B21(τ) B22(τ)

)

= (B(0), Id) exp τ
[

M̃ + ωQ⊤R (Ai −Aj) −2Q⊤Q
ω2−ω

2 (Ai −Aj)2 −
(

M̃⊤ + ω (Ai −Aj)R⊤Q
)

]

(9.24)

and so the solution for B(τ) is

B(τ) = (B(0)B12(τ) + B22(τ))
−1
(B(0)B11(τ) + B21(τ))(9.25)

and since B(0) = 0 we finally have: B(τ) = B22(τ)
−1B21(τ). What we need to do now is to compute

the solution of the last ODE. Instead of performing a direct integration we follow Da Fonseca et al.

(2008) and proceed as follows: we start from (9.22) and write:

−1
2

(
∂

∂τ
F + F(τ)

(

M̃⊤ + ω (Ai −Aj)R⊤Q
))(

Q⊤Q
)−1

= G(τ).(9.26)

We plug this into (9.20), then we insert the resulting formula for B(τ) into (9.19) and so we have:

∂

∂τ
A = ω

(
ri − rj

)
+ Tr

[

−β
2

(

F−1(τ)
∂

∂τ
F +

(

M̃⊤ + ω (Ai −Aj)R⊤Q
))]

hence the solution is:

A = ω
(
ri − rj

)
τ − β

2
Tr

[

logF(τ) +
(

M̃⊤ + ω (Ai −Aj)R⊤Q
)

τ
]

.(9.27)

9.3. Proof of Proposition 5.3. We proceed as in Chapter 4, Proposition 4.4. The matrix Riccati

ODE (9.18) may be rewritten as follows after replacing Q by a small perturbation αQ,α ∈ R:

∂

∂τ
B = B(τ)

(

M̃ + αωQ⊤R (Ai −Aj)
)

+
(

M̃⊤ + ωα (Ai −Aj)R⊤Q
)

B(τ)

+ 2α2B(τ)Q⊤QB(τ) + ω2 − ω
2

(Ai −Aj)2(9.28)

B(0) = 0.(9.29)

We consider now an expansion in terms of α of the form B = B0 + αB1 + α2B2. We substitute this

expansion and identify terms by powers of α. We obtain the following ODE’s.

∂

∂τ
B0 = B0(τ)M̃ + M̃⊤B0(τ) +

ω2 − ω
2

(Ai −Aj)2(9.30)

∂

∂τ
B1 = B1(τ)M̃ + M̃⊤B1(τ) + B0(τ)Q⊤R (Ai −Aj)ω

+ ω (Ai −Aj)R⊤QB0(τ)(9.31)

∂

∂τ
B2 = B2(τ)M̃ + M̃⊤B2(τ) + B1(τ)Q⊤R (Ai −Aj)ω

+ ω (Ai −Aj)R⊤QB1(τ) + 2B0(τ)Q⊤QB0(τ).(9.32)
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Let γ := ω2−ω
2 then these equations admit the following solutions:

B0(τ) =
ω2 − ω
2

∫ τ

0

e(τ−u)M̃⊤

(Ai −Aj)2 e(τ−u)M̃du

:= γB̃0(τ),(9.33)

B1(τ) = γω

∫ τ

0

e(τ−u)M̃⊤
(

B̃0(u)Q⊤R (Ai −Aj) + (Ai −Aj)R⊤QB̃0(u)
)

e(τ−u)M̃du

:= γωB̃1(τ),(9.34)

B2(τ) = γω2

∫ τ

0

e(τ−u)M̃⊤
(

B̃1(u)Q⊤R (Ai −Aj) + (Ai −Aj)R⊤QB̃1(u)
)

e(τ−u)M̃du

+ γ2

∫ τ

0

e(τ−u)M̃⊤

2B̃0(u)Q⊤QB̃0(u)e(τ−u)M̃du

:= γ2B̃20(τ) + γω2B̃21(τ).(9.35)

whereby we implicitly defined the matrices B̃0(τ), B̃1(τ), B̃20(τ), B̃21(τ). We can now write the func-

tion B(τ) as follows:

B(τ) = γB̃0(τ) + αγωB̃1(τ) + α2γ2B̃20(τ) + α2γω2B̃21(τ).(9.36)

A direct substitution of (9.36) into (9.19) allows us to express the function A(τ) as:

A(τ) = ω (ri − rj) τ + γTr

[

ΩΩ⊤
∫ τ

0

B̃0(u)du

]

+ αγωTr

[

ΩΩ⊤
∫ τ

0

B̃1(u)du

]

+ α2γ2Tr

[

ΩΩ⊤
∫ τ

0

B̃20(u)du

]

+ α2γω2Tr

[

ΩΩ⊤
∫ τ

0

B̃21(u)du

]

= ω (ri − rj) τ + γÃ0(τ) + αγωÃ1(τ) + α2γ2Ã20(τ) + α2γω2Ã21(τ),(9.37)

having again implicitly defined the functions Ã0(τ), Ã1(τ), Ã20(τ), Ã21(τ). We consider now the

pricing in terms of the Fourier transform, i.e. ω = iλ, as in (5.2). Let Z denote the strip of regularity of

the payoff as in Chapter 4. A Taylor-McLaurin expansion w.r.t. α gives the following:

C(S(t),K, τ) ≈ e−riτ

2π

∫

Z
eiλ(ri−rj)τ+iλx+γ(Ã0(τ)+Tr[B̃0(τ)Σ])Φ(λ)dλ

+ α
(

Ã1(τ) + Tr
[

B̃1(τ)Σ
])

e−riτ

2π

∫

Z
γiλeiλ(ri−rj)τ+iλx+γ(Ã0(τ)+Tr[B̃0(τ)Σ])F̂ (λ)dλ

+ α2
(

Ã20(τ) + Tr
[

B̃20(τ)Σ
])

× e−riτ

2π

∫

Z
γ2eiλ(ri−rj)τ+iλx+γ(Ã0(τ)+Tr[B̃0(τ)Σ])F̂ (λ)dλ

+ α2
(

Ã21(τ) + Tr
[

B̃21(τ)Σ
])

× e−riτ

2π

∫

Z
γiλ2eiλ(ri−rj)τ+iλx+γ(Ã0(τ)+Tr[B̃0(τ)Σ])F̂ (λ)dλ

+
α2

2

(

Ã1(τ) + Tr
[

B̃1(τ)Σ
])2

× e−riτ

2π

∫

Z
γ2
iλ2eiλ(ri−rj)τ+iλx+γ(Ã0(τ)+Tr[B̃0(τ)Σ])F̂ (λ)dλ.
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Recall now from (6.9) the definition of the integrated Black-Scholes variance. In the previous formula

in the first term we recognise the Black Scholes price in terms of the characteristic function when the

integrated variance is v = σ2τ :

CB&S (S(t),K, σ, τ) =
e−riτ

2π

∫

Z
eiλ(ri−rj)τ+iλx+

(iλ)2−iλ
2 vΦ(λ)dλ,(9.38)

so that the price expansion is of the form:

C(S(t),K, τ) ≈ CB&S (S(t),K, σ, τ) + α
(

Ã1(τ) + Tr
[

B̃1(τ)Σ
])

∂2
xvCB&S (S(t),K, σ, τ)

+ α2
(

Ã20(τ) + Tr
[

B̃20(τ)Σ
])

∂2
v2CB&S (S(t),K, σ, τ)

+ α2
(

Ã21(τ) + Tr
[

B̃21(τ)Σ
])

∂3
x2vCB&S (S(t),K, σ, τ)

+
α2

2

(

Ã1(τ) + Tr
[

B̃1(τ)Σ
])2

∂4
x2v2CB&S (S(t),K, σ, τ) ,(9.39)

which completes the proof.

9.4. Proof of Proposition 5.4. We follow the procedure in Da Fonseca and Grasselli (2011). We

suppose an expansion for the integrated implied variance of the form v = σ2
impτ = ζ0 + αζ1 + α2ζ2

and we consider the Black Scholes formula as a function of the integrated implied variance and the

log exchange rate x = logS: CB&S(S(t),K, σ, τ) = CB&S(x(t),K, σ
2
impτ, τ). A Taylor-McLaurin

expansion gives us the following:

CB&S(x(t),K, σ
2
impτ, τ) = CB&S(x(t),K, ζ0, τ) + αζ1∂vCB&S(x(t),K, ζ0, τ)

+
α2

2

(
2ζ2∂vCB&S(x(t),K, ζ0, τ) + ζ2

1∂
2
v2CB&S(x(t),K, ζ0, τ)

)
.(9.40)

By comparing this with the price expansion (9.39) we deduce that the coefficients must be of the form:

ζ0 = v0(9.41)

ζ1 =

(

Ã1(τ) + Tr
[

B̃1(τ)Σ
])

∂2
xvCB&S

∂vCB&S
(9.42)

ζ2 =
−ζ2

1∂
2
ξ2CB&S + 2

(

Ã20(τ) + Tr
[

B̃20(τ)Σ
])

∂2
v2CB&S

2∂vCB&S

+
2
(

Ã21(τ) + Tr
[

B̃21(τ)Σ
])

∂3
x2vCB&S +

(

Ã1(τ) + Tr
[

B̃1(τ)Σ
])2

∂4
x2v2CB&S

2∂vCB&S
,(9.43)

where the Black Scholes formula CB&S(x(t),K, σ
2
impτ, τ) is evaluated at the point (x,K, v0, τ). In

order to find the values of ζ1, ζ2, we differentiate (6.1)-(6.4) thus obtaining the following ODE’s:

∂

∂τ
B̃0 = B̃0(τ)M̃ + M̃⊤B̃0(τ) + (Ai −Aj)2 ,(9.44)

∂

∂τ
B̃1 = B̃1(τ)M̃ + M̃⊤B̃1(τ) + B̃0(τ)Q⊤R (Ai −Aj) + (Ai −Aj)R⊤QB̃0(τ),(9.45)

∂

∂τ
B̃20 = B̃20(τ)M̃ + M̃⊤B̃20(τ) + 2B̃0(τ)Q⊤QB̃0(τ),(9.46)

∂

∂τ
B̃21 = B̃21(τ)M̃ + M̃⊤B̃21(τ+)B̃1(τ)Q⊤R (Ai −Aj) + (Ai −Aj)R⊤QB̃1(τ).(9.47)
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We consider a Taylor-McLaurin expansion in terms of τ

B̃0(τ) ≈ (Ai −Aj)2 τ +
τ2

2

(

(Ai −Aj)2 M̃ + M̃⊤ (Ai −Aj)2
)

(9.48)

B̃1(τ) ≈ τ2

2

[

(Ai −Aj)2Q⊤R (Ai −Aj) + (Ai −Aj)R⊤Q (Ai −Aj)2
]

+
τ3

6

( [

(Ai −Aj)2Q⊤R (Ai −Aj) + (Ai −Aj)R⊤Q (Ai −Aj)2
]

M̃

+ M̃⊤
[

(Ai −Aj)2Q⊤R (Ai −Aj) + (Ai −Aj)R⊤Q (Ai −Aj)2
] )

+
τ3

6

( [

(Ai −Aj)2 M̃ + M̃⊤ (Ai −Aj)2
]

Q⊤R (Ai −Aj)

+ (Ai −Aj)R⊤Q
[

(Ai −Aj)2 M̃ + M̃⊤ (Ai −Aj)2
] )

(9.49)

B̃20(τ) ≈ τ3

6
4 (Ai −Aj)2Q⊤Q (Ai −Aj)2(9.50)

B̃21(τ) ≈ τ3

6

( [

(Ai −Aj)2Q⊤R (Ai −Aj) + (Ai −Aj)R⊤Q (Ai −Aj)2
]

×Q⊤R (Ai −Aj) + (Ai −Aj)R⊤Q×
[

(Ai −Aj)2Q⊤R (Ai −Aj) + (Ai −Aj)R⊤Q (Ai −Aj)2
] )

.(9.51)

Noticing from (6.5)-(6.8) that Ãi(τ) are one order in τ higher than the corresponding B̃i(τ), the follow-

ing approximations hold:

Ã0(τ) + Tr
[

B̃0(τ)Σ
]

= Tr
[

(Ai −Aj)2 Σ
]

τ + o(τ)(9.52)

Ã1(τ) + Tr
[

B̃1(τ)Σ
]

= Tr
[

(Ai −Aj)2Q⊤R (Ai −Aj) Σ
]

τ2 + o(τ2)(9.53)

Ã20(τ) + Tr
[

B̃20(τ)Σ
]

=
2

3
Tr

[

(Ai −Aj)2Q⊤Q (Ai −Aj)2
]

τ3 + o(τ3)(9.54)

Ã21(τ) + Tr
[

B̃21(τ)Σ
]

= Tr
[ (

(Ai −Aj)2Q⊤R (Ai −Aj)

+ (Ai −Aj)R⊤Q (Ai −Aj)2
)

Q⊤R (Ai −Aj) Σ
]τ3

3
+ o(τ3).(9.55)

We introduce two variables: the log-moneyness mf = log
(
Si,j(t)e(ri−rj)τ

K

)

and the variance V =

Tr [(Ai −Aj) Σ (Ai −Aj)] τ Then, from Lewis (2000), we consider the following ratios among the

derivatives of the Black-Scholes formula:

∂2
x,vCB&S (x,K, V, τ)

∂vCB&S (x,K, V, τ)
=
1

2
+
mf

V
;(9.56)

∂2
v2CB&S (x,K, V, τ)

∂vCB&S (x,K, V, τ)
=

m2
f

2V 2
− 1

2V
− 1

8
;(9.57)

∂3
x2,vCB&S (x,K, V, τ)

∂vCB&S (x,K, V, τ)
=
1

4
+
mf − 1
V

+
m2
f

V 2
;(9.58)

∂4
x2,v2CB&S (x,K, V, τ)

∂vCB&S (x,K, V, τ)
=

m4
f

2V 4
+
m2
f (mf − 1)
2V 3

.(9.59)
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Upon substitution of (9.52)-(9.59) into (9.42)-(9.43) we obtain the values for ζi, i = 0, 1, 2 allowing us

to express the expansion of the implied volatility.

ζ0 = Tr [(Ai −Aj) Σ (Ai −Aj)] τ,(9.60)

ζ1 =
Tr

[

(Ai −Aj)2Q⊤R (Ai −Aj) Σ
]

mfτ

Tr [(Ai −Aj) Σ (Ai −Aj)]
,(9.61)

ζ3 =
m2
f

Tr [(Ai −Aj) Σ (Ai −Aj)]2
τ

[

1

3
Tr

[

(Ai −Aj)2Q⊤Q (Ai −Aj)2 Σ
]

+
1

3
Tr

[ [

(Ai −Aj)2Q⊤R (Ai −Aj) + (Ai −Aj)R⊤Q (Ai −Aj)2
]

×Q⊤R (Ai −Aj) Σ
]

− 5

4

Tr
[

(Ai −Aj)2Q⊤R (Ai −Aj) Σ
]2

Tr [(Ai −Aj) Σ (Ai −Aj)]

]

.(9.62)

By plugging these expressions we obtain the result.
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10. Images and Tables

6 5 4 3 2

Σ(t)(1, 1) 0.0452 0.0422 0.0349 0.0394 0.0370

Σ(t)(1, 2) 0.0407 0.0400 0.0346 0.0343 0.0295

Σ(t)(2, 2) 0.0470 0.0480 0.0502 0.0387 0.0343

Aus(1, 1) 1.0106 0.7901 0.9145 0.8058 0.8760

Aus(1, 2) 0.1463 0.2991 0.3164 0.3896 0.3320

Aus(2, 2) 0.8406 0.7763 0.8187 0.6600 0.6796

Aeur(1, 1) 1.7852 1.7156 1.8698 1.7785 1.7894

Aeur(1, 2) -0.1293 -0.1821 -0.1576 -0.1856 -0.2456

Aeur(2, 2) 1.2319 1.3205 1.2576 1.1938 1.1811

M(1, 1) -0.3502 -0.3334 -0.2514 -0.3337 -0.3177

M(1, 2) -0.2927 -0.4266 -0.4628 -0.5200 -0.4575

M(2, 1) -0.0211 -0.0303 0.0638 0.0984 -0.0656

M(2, 2) -0.3692 -0.6085 -0.5257 -0.8810 -0.5317

β 1.0145 1.0003 1.0232 1.0141 1.0205

Q(1, 1) 0.2893 0.3404 0.3212 0.3573 0.3461

Q(1, 2) 0.2169 0.2795 0.2603 0.2682 0.2442

Q(2, 1) 0.2410 0.2075 0.1849 0.2308 0.2355

Q(2, 2) 0.2752 0.3126 0.3276 0.3466 0.3439

R(1, 1) 0.5720 0.5939 0.5210 0.5113 0.5116

R(1, 2) -0.1237 -0.0218 -0.0266 0.0520 0.0244

R(2, 1) 0.0059 -0.1274 -0.0125 0.0550 0.0151

R(2, 2) -0.3473 -0.4203 -0.4222 -0.3897 -0.3775

Ajpy(1, 1) 0.9653 0.8162 0.9316 0.9842 0.9585

Ajpy(1, 2) 0.0565 0.0334 0.0134 -0.0475 -0.0261

Ajpy(2, 2) 1.4183 1.4213 1.3948 1.4562 1.4369

TABLE 1. This table reports the results of the calibration of the Wishart model. For

each column, a different number of expiries, ranging from 6 to 2, is chosen.
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5 4 3 2

Σ(t)(1, 1) -6.7531% -22.729% -12.877% -18.22%

Σ(t)(1, 2) -1.7384% -14.944% -15.598% -27.397%

Σ(t)(2, 2) 2.0343% 6.6436% -17.714% -27.153%

Aus(1, 1) -21.815% -9.5083% -20.268% -13.313%

Aus(1, 2) 104.52% 116.31% 166.39% 127.03%

Aus(2, 2) -7.6501% -2.6065% -21.49% -19.152%

Aeur(1, 1) -3.8997% 4.7399% -0.37673% 0.2308%

Aeur(1, 2) 40.846% 21.945% 43.54% 89.987%

Aeur(2, 2) 7.2001% 2.0892% -3.0864% -4.1233%

M(1, 1) -4.8057% -28.198% -4.7105% -9.2728%

M(1, 2) 45.739% 58.123% 77.647% 56.299%

M(2, 1) 43.447% -402.23% -566.09% 210.63%

M(2, 2) 64.832% 42.397% 138.64% 44.036%

β -1.3909% 0.8582% -0.038535% 0.59754%

Q(1, 1) 17.648% 11.023% 23.491% 19.617%

Q(1, 2) 28.846% 20.012% 23.649% 12.576%

Q(2, 1) -13.922% -23.302% -4.2575% -2.2839%

Q(2, 2) 13.59% 19.051% 25.951% 24.965%

R(1, 1) 3.8164% -8.9239% -10.618% -10.569%

R(1, 2) -82.359% -78.485% -142.08% -119.73%

R(2, 1) -2243.8% -309.96% 824.57% 153.99%

R(2, 2) 21.031% 21.558% 12.204% 8.6949%

Ajpy(1, 1) -15.446% -3.4868% 1.9618% -0.69799%

Ajpy(1, 2) -40.995% -76.352% -183.97% -146.13%

Ajpy(2, 2) 0.21467% -1.6532% 2.673% 1.3154%

TABLE 2. In this table we consider the calibration on the largest sample as a basic

case. We report the percentage difference between the model parameters resulting

from the subsamples
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USD/EUR

6m 9m 1y

10DC -0.0005 0.0027 0.0033

25DC 0.0007 0.0040 0.0065

0 0.0007 0.0038 0.0069

25DP 0.0005 0.0029 0.0046

10DP -0.0001 0.0021 0.0020

USD/JPY

6m 9m 1y

10DC 0.0015 0.0039 0.0060

15DC 0.0010 0.0038 0.0064

25DC 0.0003 0.0033 0.0061

0 0.0000 0.0034 0.0064

25DP 0.0018 0.0049 0.0070

15DP 0.0015 0.0047 0.0064

10DP 0.0013 0.0046 0.0057

EUR/JPY

6m 9m 1y

10DC 0.0064 0.0132 0.0155

15DC 0.0068 0.0139 0.0163

25DC 0.0073 0.0146 0.0182

0 0.0061 0.0120 0.0154

25DP 0.0055 0.0087 0.0107

15DP 0.0026 0.0045 0.0050

10DP -0.0017 -0.0009 -0.0009

TABLE 3. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year, 9 and 6 months, when we calibrate the model to

the previous 3 expiries.
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FIGURE 1. Calibration of USD/EUR implied volatility surface.

FIGURE 2. Calibration of USD/JPY implied volatility surface.
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FIGURE 3. Calibration of EUR/JPY implied volatility surface.

USD/EUR USD/EUR USD/JPY USD/JPY EUR/JPY EUR/JPY

9m 1y 9m 1y 9m 1y

10DC 0.0044 0.0064 0.0030 0.0059 0.0076 0.0091

15DC 0.0031 0.0064 0.0085 0.0101

25DC 0.0062 0.0096 0.0031 0.0064 0.0096 0.0123

0 0.0053 0.0088 0.0040 0.0076 0.0082 0.0107

25DP 0.0029 0.0049 0.0059 0.0090 0.0059 0.0071

15DP 0.0057 0.0087 0.0019 0.0018

10DP 0.0007 0.0008 0.0055 0.0083 -0.0034 -0.0039

TABLE 4. This table reports the raw difference between the market implied volatility

and the implied volatility for 1 year and 9 months, when we calibrate the model to the

previous 4 expiries.
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