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Abstract

L’argomento di questa tesi puó essere riassunto nella frase utilizzare il rumore
classico per generare un migliore rumore quantistico. In particolare questa
tesi riguarda da una parte la possibilitá di sfruttare il rumore classico per
trasmettere in modo efficace informazione quantistica, e dall’altra la mis-
urazione del rumore classico per generare una migliore casualitá quantistica.
Nel primo caso ci si riferisce all’inviare bit quantistici attraverso l’atmosfera
per creare trasmissioni allo scopo di distribuire chiavi crittografiche in modo
quantistico (QKD) e questo sará oggetto di Capitolo 1 e Capitolo 2. Nel
quadro delle comunicazioni quantistiche, la QKD caratterizzata da notevoli
difficoltá sperimentali. Infatti, in linea di principio la QKD offre sicurezza
incondizionata ma le sue realizzazioni pratiche devono affrontare tutti i lim-
iti del mondo reale. Uno dei limiti principali sono le perdite introdotte dai
canali di trasmissione. Le perdite causano errori e gli errori rendono il pro-
tocollo meno sicuro perch un avversario potrebbe camuffare la sua attivitá
di intercettazione utilizzando le perdite. Quando questo problema viene af-
frontato da un punto di vista teorico, si cerca di modellare l’effetto delle
perdite mediante trasformazioni unitarie che trasformano i qubits in media
secondo un livello fisso di attenuazione del canale. Tuttavia questo approccio
é in qualche modo limitante, perch se si ha ha un elevato livello di rumore
di fondo e le perdite si assumono costanti in media, potrebbe accadere che
il protocollo possa abortire o peggio ancora, non iniziare, essendo il quan-
tum bit error rate (QBER) oltre il limite (11%) per la distribuzione sicura.
Tuttavia, studiando e caratterizzando un canale ottico libero, si trova che il
livello di perdite é tutt’altro che stabile e che la turbolenza induce variazioni
di trasmissivitá che seguono una statistica log-normale. Il punto pertanto é
sfruttare questo rumore classico per generare chiave anche quando normal-
mente non sarebbe possibile. Per far ció abbiamo ideato uno schema adat-
tativo per la selezione in tempo reale (ARTS) degli istanti a basse perdite in
cui vengono istantaneamente rilevati picchi di alta trasmissivitá. A tal scopo,
si utilizza un fascio laser classico ausiliario co-propagantesi con i qubit ma
convenientemente inframezzato nel tempo. In questo modo la scintillazione
viene monitorata in tempo reale e vengono selezionati gli intervalli di tempo
che daranno luogo ad un QBER praticabile per una generazione di chiavi.
Verrá quindi presentato un criterio utile per la preselezione dell’intervallo di
QBER basso in cui un treno di impulsi intensi si propaga nello stesso per-
corso dei qubits, con i parametri scelti in modo tale che la sua oscillazione
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nel tempo riproduce quello della comunicazione quantistica. Nel Capitolo
2 presentiamo quindi una dimostrazione ed i risultati di tale protocollo che é
stato implementato presso l’arcipelago delle Canarie, tra l’isola di La Palma
e quella di Tenerife: tali isole essendo separate da 143 km, costituiscono un
ottimo teatro per testare la validitá del protocollo in quanto le condizioni di
distanza sono paragonabili a quelle satellitari e la gamma di scintillazione
corrisponde quella che si avrebbe in ambiente con moderato maltempo in
uno scenario di tipo urbano.

Per quanto riguarda il contenuto del Capitolo 3 descriveremo un metodo
innovativo per la generazione fisica di numeri casuali che si basa sulla con-
statazione che un fascio di luce coerente, attraversando un lungo percorso
con turbolenza atmosferica dá luogo ad immagini casuali e rapidamente vari-
abili. Tale fenomeno é stato riscontrato a partire dai diversi esperimenti di
comunicazione quantistica effettuati alle Isole Canarie, dove il fascio laser
classico utilizzato per puntare i terminali, in fase di ricezione presentava un
fronte d’onda completamente distorto rispetto al tipico profilo gaussiano. In
particolare ció che si osserva é un insieme di macchie chiare e scure che si
evolvono geometricamente in modo casuale, il cosiddetto profilo dinamico a
speckle. La fonte di tale entropia é quindi la turbolenza atmosferica. Infatti,
per un canale di tale lunghezza, una soluzione delle equazioni di Navier-
Stokes per il flusso atmosferico in cui si propaga il fascio é completamente
fuori portata, sia analiticamente che per mezzo di metodi computazionali.
Infatti i vari modelli di dinamica atmosferica sono basati sulla teoria statis-
tica Kolmogorov, che parametrizza la ripartizione dell’energia cinetica come
l’interazione di vortici d’aria di dimensioni decrescenti. Tuttavia, tali mod-
elli forniscono solo una descrizione statistica per lo spot del fascio e delle sue
eventuali deviazioni ma mai una previsione istantanea per la distribuzione
dell’ irraggiamento. Per tale motivo, quando un raggio laser viene inviato
attraverso l’atmosfera, quest’ultima puó essere considerato come un diffusore
volumetrico dinamico che distorce il fronte d’onda del fascio. All’interno del
Capitolo verranno presentati i dati sperimentali che assicurano che le immag-
ini del fascio presentano le caratteristiche di impredicibilitá tali per cui sia
possibile numeri casuali genuini. Inoltre, verrá presentato anche il metodo
per l’estrazione della casualitá basato sull’analisi combinatoria ed ottimale
nel contesto della Teoria dell’Informazione.

In Capitolo 5 presenteremo un nuovo approccio per quanto riguarda la gen-
erazione di bit casuali dai processi fisici quantistici. La Meccanica quantistica
é stata sempre considerata come la migliore fonte di casualitá, a causa della
sua intrinseca natura probabilistica. Tuttavia il paradigma tipico impiegato
per estrarre numeri casuali da un sistema quantistico assume che lo stato di
detto sistema sia puro. Tale assunzione, in principio comporta una gener-
azione in cui il risultato delle misure é complemente impredicibile secondo la
legge di Born. Il problema principale tuttavia é che nelle implementazioni re-
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ali, come in un laboratorio o in qualche dispositivo commerciale, difficilmente
é possibile creare uno stato quantico puro. Generalmente ció che si ottiene
é uno stato quantistico misto. Uno stato misto tuttavia potrebbe essere in
qualche modo correlato con un altro sistema quantistico in possesso, even-
tualmente, di un avversario. Nel caso estremo di uno stato completamente
misto, un generatore quantistico praticamente é equivalente ad un generatore
che impiega un processo di fisica classica, che in principio é predicibile. Nel
Capitolo, si mostrerá quindi come sia necessario passare da un estimatore di
casualitá classico, come l’ entropia minima classica Hmin(Z) di una variabile
casuale Z ad un estimatore che tenga conto di una informazione marginale
E di tipo quantistico, ovvero l’entropia minima condizionata Hmin(Z|E). La
entropia minima condizionata é una quantitá fondamentale perché consente
di derivare quale sia il minimo contenuto di bit casuali estraibili dal sistema,
in presenza di uno stato non puro. Abbiamo ideato un protocollo efficace
basato sul principio di indeterminazione entropica per la stima dell’entropia
min-condizionale. In generale, il principio di indeterminazione entropico con-
sente di prendere in considerazione le informazioni che sono condivise tra piú
parti in possesso di un sistema quantistico tri-partitico e, soprattutto, con-
sente di stimare il limite all’informazione che un partito ha sullo stato del
sistema, dopo che é stato misurato. Abbiamo adattato tale principio al caso
bipartito in cui un utente Alice, A, é dotato di un sistema quantistico che
nel caso in studio ipotizziamo essere preparato dall’avversario stesso, Eve E,
e che quindi potrebbe essere con esso correlato. Quindi, teoricamente Eve
potrebbe essere in grado di prevedere tutti i risultati delle misurazioni che
Alice esegue sulla sua parte di sistema, cioé potrebbe avere una conoscenza
massima della variabile casuale Z in cui si registrano i risultati delle misure
nella base Z. Tuttavia mostreremo che se Alice casualmente misura il sis-
tema in una base X massimamente complementare a Z, Alice puó inferire
un limite inferiore l’entropia per Hmin(Z|E). In questo modo per Alice, uti-
lizzando tecniche della crittografia classeica, é possibile espandere un piccolo
seme iniziale di casualitá utilizzato per la scelta delle basi di misura, in una
quantitá molto maggiore di numeri sicuri. Presenteremo i risultati di una
dimostrazione sperimentale del protocollo in cui sono stati prodotti numeri
casuali che passano i piú rigorosi test per la valutazione della casualitá.

Nel Capitolo 6, verrá illustrato un sistema di generazione ultraveloce di
numeri casuali per mezzo di variabili continue(CV) QRNG. Siccome numeri
casuali genuini sono una preziosa risorsa sia per l’Information Technology
classica che quella quantistica, é chiaro che per sostenere i flussi sempre cres-
centi di dati per la crittografia, é necessario mettere a punto generatori in
grado di produrre streaming con rate da Gigabit o Terabit al secondo. In
Letteratura sono riportati alcuni esempi di protocolli QRNG che potrebbero
raggiungere tali limiti. In genere, questi si basano sulla misura dele quadra-
ture del campo elettromagnetico che puó essere considerato come un infinito
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sistema quantistico bosonico. Le quadrature del campo possono essere mis-
urate con il cosiddetto sistema di rivelazione a omodina che, in linea di prin-
cipio, puó estrarre un segnale di rumore a banda infinita. Di conseguenza, la
banda del segnale casuale viene ad essere limitata solo dalla banda passante
dei dispositivi utilizzati per misurare. Siccome, rilevatori a fotodiodi lavorano
comunemente nella banda delle decine dei GHz, se il segnale é campionato
con un ADC sufficientemente veloce e con un elevato numero di bit di digital-
izzazione, rate da Gigabit o Terabit sono facilmente raggiungibili. Tuttavia,
come nel caso dei QRNG a variabili discrete, i protocolli che si hanno in Let-
teratura, non considerano adeguatamente la purezza dello stato quantistico
da misurare. Nel L’idea é di estendere il protocollo a variabile discreta del
capitolo precedente, al caso continuo. Mostreremo come nell’ambito CV, non
solo sia abbia il problema della purezza dello stato ma anche il problema rel-
ativo alla precisione delle misure utilizzate su di esso. Proporremo e daremo
i risultati sperimentali per un nuovo protocollo in grado di estrarre numeri
casuali ad alto rate e con un elevato grado di sicurezza.
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Abstract

The argument of this thesis might be summed up as the exploitation of the
noise to generate better noise. More specifically this work is about the pos-
sibility of exploiting classic noise to effectively transmit quantum informa-
tion and measuring quantum noise to generate better quantum randomness.
What do i mean by exploiting classical noise to transmit effectively quan-
tum information? In this case I refer to the task of sending quantum bits
through the atmosphere in order set up transmissions of quantum key dis-
tribution (QKD) and this will be the subject of Chapter 1 and Chapter
2. In the Quantum Communications framework, QKD represents a topic
with challenging problems both theoretical and experimental. In principle
QKD offers unconditional security, however practical realizations of it must
face all the limitations of the real world. One of the main limitation are
the losses introduced by real transmission channels. Losses cause errors and
errors make the protocol less secure because an eavesdropper could try to
hide his activity behind the losses. When this problem is addressed under
a full theoretical point of view, one tries to model the effect of losses by
means of unitary transforms which affect the qubits in average according a
fixed level of link attenuation. However this approach is somehow limiting
because if one has a high level of background noise and the losses are as-
sumed in average constant, it could happen that the protocol might abort or
not even start, being the predicted QBER to high. To address this problem
and generate key when normally it would not be possible, we have proposed
an adaptive real time selection (ARTS) scheme where transmissivity peaks
are instantaneously detected. In fact, an additional resource may be intro-
duced to estimate the link transmissivity in its intrinsic time scale with the
use of an auxiliary classical laser beam co-propagating with the qubits but
conveniently interleaved in time. In this way the link scintillation is mon-
itored in real time and the selection of the time intervals of high channel
transmissivity corresponding to a viable QBER for a positive key generation
is made available. In Chapter 2 we present a demonstration of this proto-
col in conditions of losses equivalent to long distance and satellite links, and
with a range of scintillation corresponding to moderate to severe weather.
A useful criterion for the preselection of the low QBER interval is presented
that employs a train of intense pulses propagating in the same path as the
qubits, with parameters chosen such that its fluctuation in time reproduces
that of the quantum communication.
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For what concern the content of Chapter 3 we describe a novel principle for
true random number generator (TRNG) which is based on the observation
that a coherent beam of light crossing a very long path with atmospheric
turbulence may generate random and rapidly varying images. To implement
our method in a proof of concept demonstrator, we have chosen a very long
free space channel used in the last years for experiments in Quantum Com-
munications at the Canary Islands. Here, after a propagation of 143 km at
an altitude of the terminals of about 2400 m, the turbulence in the path is
converted into a dynamical speckle at the receiver. The source of entropy is
then the atmospheric turbulence. Indeed, for such a long path, a solution
of the Navier-Stokes equations for the atmospheric flow in which the beam
propagates is out of reach. Several models are based on the Kolmogorov
statistical theory, which parametrizes the repartition of kinetic energy as the
interaction of decreasing size eddies. However, such models only provide a
statistical description for the spot of the beam and its wandering and never
an instantaneous prediction for the irradiance distribution. These are mainly
ruled by temperature variations and by the wind and cause fluctuations in
the air refractive index. For such reason, when a laser beam is sent across
the atmosphere, this latter may be considered as a dynamic volumetric scat-
terer which distorts the beam wavefront. We will evaluate the experimental
data to ensure that the images are uniform and independent. Moreover,
we will assess that our method for the randomness extraction based on the
combinatorial analysis is optimal in the context of Information Theory.

In Chapter 5 we will present a new approach for what concerns the gener-
ation of random bits from quantum physical processes. Quantum Mechanics
has been always regarded as a possible and valuable source of randomness,
because of its intrinsic probabilistic Nature. However the typical paradigm
is employed to extract random number from a quantum system it commonly
assumes that the state of said system is pure. Such assumption, only in
theory would lead to full and unpredictable randomness. The main issue
however it is that in real implementations, such as in a laboratory or in some
commercial device, it is hardly possible to forge a pure quantum state. One
has then to deal with quantum state featuring some degree of mixedness. A
mixed state however might be somehow correlated with some other system
which is hold by an adversary, a quantum eavesdropper. In the extreme
case of a full mixed state, practically one it is like if he is extracting random
numbers from a classical state. In order to do that we will show how it is
important to shift from a classical randomness estimator, such as the min-
classical entropy Hmin(Z) of a random variable Z to quantum ones such as
the min-entropy conditioned on quantum side information E.

We have devised an effective protocol based on the entropic uncertainty prin-
ciple for the estimation of the min-conditional entropy. The entropic uncer-
tainty principle lets one to take in account the information which is shared
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between multiple parties holding a multipartite quantum system and, more
importantly, lets one to bound the information a party has on the system
state after that it has been measured. We adapted such principle to the
bipartite case where an user Alice, A, is supplied with a quantum system
prepared by the provider Eve, E, who could be maliciously correlated to it.
In principle then Eve might be able to predict all the outcomes of the mea-
surements Alice performs on the basis Z in order to extract random numbers
from the system. However we will show that if Alice randomly switches from
the measurement basis to a basis X mutually unbiased to Z, she can lower
bound the min entropy conditioned to the side information of Eve. In this
way for Alice is possible to expand a small initial random seed in a much
larger amount of trusted numbers. We present the results of an experimen-
tal demonstration of the protocol where random numbers passing the most
rigorous classical tests of randomness were produced.

In Chapter 6, we will provide a secure generation scheme for a continuos
variable (CV) QRNG. Since random true random numbers are an invalu-
able resource for both the classical Information Technology and the uprising
Quantum one, it is clear that to sustain the present and future even growing
fluxes of data to encrypt it is necessary to devise quantum random num-
ber generators able to generate numbers in the rate of Gigabit or Terabit
per second. In the Literature are given several examples of QRNG proto-
cols which in theory could reach such limits. Typically, these are based on
the exploitation of the quadratures of the electro-magnetic field, regarded
as an infinite bosonic quantum system. The quadratures of the field can be
measured with a well known measurement scheme, the so called homodyne
detection scheme which, in principle, can yield an infinite band noise. Con-
sequently the band of the random signal is limited only by the passband of
the devices used to measure it. Photodiodes detectors work commonly in the
GHz band, so if one sample the signal with an ADC enough fast, the Gigabit
or Terabit rates can be easily reached. However, as in the case of discrete
variable QRNG, the protocols that one can find in the Literature, do not
properly consider the purity of the quantum state being measured. The idea
has been to extend the discrete variable protocol of the previous Chapter,
to the Continuous case. We will show how in the CV framework, not only
the problem of the state purity is given but also the problem related to the
precision of the measurements used to extract the randomness.
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Chapter 1

Introduction

Quantum Cryptography represents the first tangible application of Quantum Informa-
tion. At present time indeed Quantum Communication Networks implementing proto-
cols of quantum key distribution (QKD) can be found also outside the academic labo-
ratories. This result follows an almost twenty years long theoretical and experimental
effort, which involved major Quantum Information and Optics groups. This research
boosted and made it evolve the seminal idea of Charles Bennett and Gilles Brassard of
securing the exchange of cryptographic keys by means of Quantum Mechanics.

1.1 The BB84 protocol

At the present time Quantum Cryptography is a real and working solution that Quantum
Mechanics offers to a problem that appears to be still far in the future. Interestingly,
this problem is also caused by Quantum Mechanics: it is the possibility to break current
cryptographic protocols by means of a Quantum Computer. The security of the current
cryptographic protocols, e.g. RSA or AES, is based on the factual difficulty in solving
hard computational problems as the factorization of the product of two large prime
numbers on which modern cryptographic protocols are based. In particular this problem
would take an exponential time on a classic computer. On a quantum computer however
it runs on polynomial time as P. Shor found in 1994 [1].

The only protocol which has been proven to offer unconditional security is the one
time pad as demonstrated by C. Shannon, cfr.[2]: given a binary string of length L corre-
sponding to the binary version of the message m to encrypt, the so-called plaintext, the
encrypted message e, the ciphertext, is obtained taking the bitwise exclusive-or (XOR),
between m and another string k of the same length which is formed by randomly chosen
bits. This string corresponds to the key, and is combined with m in the following way

e = m⊕ k, (1.1)

where every bit of m is xored with the corresponding bit at the same position of k. The
one time pad is the most effective way to encrypt information since the only way an
eavesdropper has to decrypt the message, it is to get the key and to perform the inverse
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1. INTRODUCTION

operation m = e⊕k: assuming that the eavesdropper has the encrypted message, he can
try a brute force attack, that is to apply all the 2L keys, corresponding to all the possible
combinations of L bits, but the only result he will get is a set of plausible messages.
Naturally, the longer the length of the string message, the smaller the set would be, but
at this point the computational resources needed would make the attack infeasible.

If two users Alice and Bob aim to use the one-time-pad protocol to communicate
without being eavesdropped, they need to share the same key for the encryption of the
plain text and then the decryption of the cyphertext. The security of the protocol is
then guaranteed if the key is used just once and if the no information is leaked about
the key. This last point represents an issue because if Alice and Bob do not have any
mean to exchange directly the key, e.g. because their locations are distant, the whole
protocol can not be reliably applied. Indeed if Alice and Bob need to encrypt their
communications it is because they can not trust the channel they are using, e.g. they
assume an eavesdropper in between, the so called Eve, is wiretapping the channel itself.
If it is so, then the key cannot be exchanged on that same channel because Eve could
intercept it too. Alice and Bob then should meet directly and pre-share a key as the
messages they hypothesize to exchange in the future. All these difficulties make the
one-time-pad not practical, and this is the reason why asymmetric encryption protocol
were preferred.

The BB84 protocol, from the name of its inventors C. Bennet and G. Brassards who
published the work in 1984 [3], is a communication procedure which lets Alice and Bob
to obtain a shared secure key to be used for symmetric one time pad encryption, also if
they cannot meet directly.

The protocol indeed gives to Alice and Bob the power to detect an attack of Eve
while they are exchanging the key. The BB84 protocol involves the use of a quantum
channel in connection with a classical channel. Alice and Bob exchange qubits through
the quantum channel, i.e. bits encoded in some degree of freedom of a quantum system.
In the following example we are going to use the photon as the quantum system, and its
polarization as degree of freedom.

In the protocol Alice and Bob agree to encode the values of the bits, which will
compose the key, in non-orthogonal states belonging to mutually unbiased basis e.g. the
horizontal/vertical {|H〉, |V 〉} and the diagonal {| ↗〉, | ↖〉}, according the following
predetermined rules

Polarization basis Bit value 0 Bit 1

{|H〉, |V 〉} |H〉 |V 〉
{| ↗〉, | ↖〉} | ↗〉 | ↖〉

Once that Alice and Bob authenticated their identities to each other, they can start
the BB84 protocol, consisting then of four steps:

1. Alice uses a source of single photons: she prepares every photon in one of all the
four states swapping randomly between the four polarizations and she sends them
to Bob. Alice has then a string of random bits corresponding to the states she sent
to Bob;
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2. Bob measures the single photons swapping randomly between the two bases: Bob
obtains then a string of random bits according to the results of the measurements;

3. on a classical channel Alice and Bob disclose which bases they used to prepare and
measure the qubits respectively. Since the states are non-orthogonal, when the
two bases do not match, the bit value obtained by Bob is uncorrelated with the
one of Alice. Being the bases of Bob chosen randomly, only the 50% of the bits is
in average correct. Therefore they discard from their strings the bit corresponding
to unmatched bases. Besides, Alice discards also those bits which correspond to
photons which she sent but Bob did not receive. At the end of this process, the so
called sifting, Alice and Bob have two raw keys;

4. Alice and Bob then extract random sub-samples of the raw keys and check for the
presence of errors. In absence of errors the two keys are equal and can be safely
used to encrypt and decrypt messages. However, let’s suppose an eavesdropper,
Eve, tries to get the keys and then she measures the photons. Since she does not
know the preparation basis, she has to adopt the same strategy of Bob, i.e. to
choose between the two bases. Since the measurement destroys the photon, she
has to prepare the state as she measured it, and then to send it to Bob. If she
guesses correctly the basis, she resends the correct photon, however half of the
times, being the states non-orthogonal, she sends to Bob the wrong photon. The
joint probabilities of a wrong basis choice for Eve and Bob, cause Alice to find the
25% of bits wrong after the sifting, when they compare random sub-samples of
the raw keys. This enables to spot the action of the eavesdropper, Alice and Bob
discard the whole key and a new transmission is started. In the more general case
when the rate of errors is below the critical limit, post-processing techniques, the
so-called information reconciliation and privacy amplification cfr.[4], are applied on
the sifted keys to correct the errors and eliminate the possible information acquired
by Eve.

In the last 30 year the simple and effective idea of Bennett and Brassard evolved
under the theoretical and experimental effort which made it possible to evolution of this
idea into what could become the second quantum revolution after the first one of the
electronics based on semiconductor.

1.2 The need of long range optical communications

In 2008 a benchmark for the QKD level of maturity was given the experiment denom-
inated SECOQC, SEcure COmmunication based on Quantum Cryptography [5]. This
experiment was the result of an inter-European collaboration lasted four years with the
aim to demonstrate an operative integrated network. This network was set up in Vienna
and it was constituted by six trusted nodes. A peculiarity of QKD systems is indeed
that the communication can be established point-to-point, i.e. transmitter and receiver
are connected directly. In order then to connect two distant parties that cannot be

7



1. INTRODUCTION

linked directly, the SECOQC network enforced the hop-by-hop protocol: a classical key
is bounced from a node to next one being encrypted at every hop with another key
established via QKD between the two nodes.

The important point about the SECOQC network is that the six nodes were linked
with eight different quantum cryptographic systems which featured almost all the ex-
isting physical paradigms, in which QKD protocols were implemented up to the 2008:
i.e. plug and play systems [6], phase coding systems[7], continuous variable systems[8],
discrete variable systems, cfr.[4]. Another interesting fact that is that out of eight sys-
tems, only the system implemented by the group of the University Ludwig Maximillians
(LMU) of Muenchen, exchanged qubits in free space with a BB84 + decoy protocol (see
below). The remaining seven used protocols with the quantum channel realized with an
optical fiber. The maximum and minimum distances linked by the fiber systems were
of 85 km (with a Coherent One Way protocol 1 and 6 km (with a Continuous Variable
protocol2) respectively. The LMU system was used to connect the last node from the
rest of the network: the distance was of 80 meters.

Conversely to the conclusions which might be drawn from this example, in the com-
monly accepted future picture of Quantum Communications the largest distances will
be reached by free space optical links. What motivates this prediction is the fact that
optical fibers cannot be used for an extension over 400 km. At present time the length
record is of 250 km [9], for the Swiss link Geneva-Neuchatel. The main reason is due
to the non null attenuation, ranging typically from 0.2 to 0.35 dB/km: the longer the
channel, the higher the number of photons absorbed per packet and consequently the
higher the number of errors at the receiver. Additional limiting reasons are polarization
errors and mode dispersion, cfr. [10] and [4].

As the SECOQC example shows, an alternative to the fibers is to exchange the pho-
tons in free space. Indeed QKD protocols can be effectively implemented with photons
because their polarization is not affected during the propagation in the air and inter-
estingly, the wavelength dependent attenuation of the atmosphere is low for that range
of wavelengths where the quantum efficiency of single photon detectors is higher, i.e.
approximately 0.1 dB/km for λs between 750 and 850 nm.

It is worth stressing that to connect distant parties with the paradigm hop-by-hop
can somehow work only if the networks are small and the nodes are realized by a limited
amount of known parties, as in the case of demonstrative SECOQC network or the more
recent eight nodes Tokyo network [11]. For the security of the protocol it is necessary
that all the intermediate nodes, which encrypt and repeat the classical key, are indeed
trusted. Any given Alice and Bob in the network, who aim to securely share a key,
should control directly the repeaters in order to exclude any third party to have access
to them. For urban, regional, etc. networks with chains of intermediate nodes this task
becomes clearly not feasible.

An alternative way are quantum repeaters: these devices are based on quantum
entanglement and quantum swapping to directly propagate. This technology however is

1developed by the University of Geneva)
2developed by the consortium Univ. Libre de Bruxelles, CNRS and Thales
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still at the early stages of development cfr.[12].
In order to cover long distances to connected together small trusted networks, a

remaining solution, would be to employ direct optical links. However there are two main
drawbacks represented by

• the curvature of the Earth surface

• the likely presence of line of sights obstacles

• atmospheric induced losses

For example the line of sight from a 100 m tall building is roughly of 35 km1 before
being obstructed by the Earth surface itself. Naturally this is valid, in case of clear
visibility and in absence of other obstacles, conditions difficult to met in urban areas
densely populated and polluted. In addition, a very important point is that the closer
an horizontal path is to the ground, the higher are losses due to atmospheric turbulence
as consequence of the convective air flows.

With the current unavailability of quantum repeaters, the solution which has been
reputed the most viable to reach long distances is to use satellites. Besides, the large
field of view, a neat advantage of using satellites lies in the fact that for a vertical path,
the layer of atmosphere to cross is just about a tens of kilometers, so the impact of the
atmospheric losses is significantly less, roughly 30 - 40 db, with respect to horizontal
paths (e.g. 60 dB cfr. [13]).

Effective ways to employ satellites have been matter of study of several investigations
[13]. Among the many configuration, a simple and effective scheme involves satellites
in low Earth orbits (LEO), between 200 and 2000 km above the Earth, as transmitting
terminals towards receiving ground stations. Indeed the quantum beam signal results
less affected by the atmospheric losses if the atmosphere is crossed in the terminal phase
of its propagation, rather than at the beginning.

A satellite then can be regarded as a trusted node in the sky [14] and a key between
Alice and Bob, on two distant ground stations, can be shared in the following way: the
satellite establishes a quantum connection with Alice and they generate a first key; the
satellite then generates a second key with Bob and it encrypts the first key pre-shared
with Alice with this latter. The encrypted key of Alice is then sent on a classic channel
to Bob that decrypts it with the second key exchanged before. Naturally also in this
case there is the issue of trusting the satellite but the fact that the node is orbiting at
an average distance of 1000 km above the Earth, with speeds around 10000 km/s lowers
the possibility of manumission.

At the present time, the field of Quantum Communications is experiencing the so-
called Quantum Race to the Space [15] with the main research groups worldwide rushing
to set the milestone of the first QKD implementation between Earth and Space. On this
regard, in 2008 the first exchange of single photons from a LEO satellite was realized by
Villoresi et al. [16]. The experiment was performed by using the optical system of a laser

1assuming r = 6378 km the Earth radius, and h = 100 m the height of the building, the horizon falls
at a distance d = r tan

(
sec−1

(
1 + h

r

))
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ranging ground station (in Matera, Italy) to shine satellites carrying retro-reflectors. The
transmission was performed by suitably setting the repetition rate and the intensity of
the laser to match the atmospherical losses such that on the retro-reflector, there was
in average a single photon per pulse. The single photons were then back reflected and
detected by the same transmitting station. Another step towards the space frontier
was achieved again at the Matera laser ranging facility by Vallone et al. [17] with the
retro-reflection transmission of polarized single photons.

Long range quantum communications were and are still thoroughly tested also on the
terrestrial links because one can study and devise solutions to the issues which will likely
affect the protocols once that they will be implemented with satellites. In the following
Chapter, we will illustrate an experiment performed on a 143 km long free space channel
where we tested a transmission protocol which will enable communications with satellites
also in regimes of strong attenuations.
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Chapter 2

QKD: Adaptive Real Time
Selection

In this Chapter, an experiment will be presented which had the aim of testing a new
transmission protocol in free space for Quantum Key Distribution. This experiment
belongs to that research branch of Quantum Information and Quantum Communications
devoted to study and develop the tools necessary to build a worldwide quantum network,
for the secure exchange of cryptographic keys by means of QKD. The innovative element
of this protocol is the exploitation of the atmospherical turbulence, which is the main
limiting factor in a optical communication, to improve the key distribution itself.

2.1 Introduction

In order to understand the contribute of this work in the context of QKD, it is necessary
to present the main factors common to experimental realizations of QKD protocols which
can be detrimental to the security of the protocol itself. Indeed it is worth to stress that
although the ideal Quantum Cryptography is strong (= unconditionally secure) under
the theoretical point of view, practical implementations are challenging. On this regard,
most of the theoretical works are indeed about proof of security for protocols under
different set of non ideal conditions, e.g. finite keys, channel induced decoherence, high
losses, etc.

In the following we will introduce the two main experiment which were performed
on the same link we used to test our protocol.

For what concerns free space communications, experiments on terrestrial free space
optical (FSO) links represent a benchmark for the future protocols with satellites. A
link that in the last ten years served for different experiments is 143 km long between
the islands of La Palma and Tenerife at the Canary Islands (Spain), see Section 2.3.
The effectiveness of testing on the ground techniques that should work in the Space, lies
in the fact that the layer of atmosphere to cross is much longer than the vertical layer
(roughly 10 km) for a transmission with a satellite [13]. The paradigm is then that if
something works with the worst conditions, it has to work also in better conditions.
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2. QKD: ADAPTIVE REAL TIME SELECTION

In 2006 two seminal experiments at the Canary FSO paved the way to satellite
quantum communications being the first free space implementation of QKD protocols
on a distance of over 100 km, and overpassing by a factor of 6 the length of the previous
record of 23.4 km by Kurtsiefer et al. [18]. These two experiments were tested a decoy-
state BB84 protocol by T. Schmitt-Manderbach et al. [19] and an entanglement based
QKD protocol by R. Ursin et. al [20].

The main difference between the two protocols lies in the source of photons: in the
experiment of Ursin et al., photons in an entangled state of polarization were used
to encode the qubits in order to enforce the protocol Ekert 91 (E91) [21]. In this
protocol Alice and Bob achieve a perfectly secret key by measuring respectively one
part of a binary quantum system in an entangled state of some degree of freedom, e.g.
photons entangled in polarization. Being the system entangled Alice and Bob get a
list of outcomes, i.e. the key, which are perfectly correlated (or anti- depending on the
state).

According to the protocol, the quantum system is distributed by a third party and the
check that none is eavesdropping the channel can be verified by estimating test of non-
locality with the measured outcomes, e.g. by observing the violation of Bell inequality.
The E91 protocol has two main advantages: it does not need a quantum random number
generator for the choice of the bases because the outcomes of the reduced party are
random by definition. Besides, a source of entangled photons (with a low probability
of double pair emission) is a the ideal single photon source required by the theory and
which offers the highest level of security.

The critical importance of the photon source for the protocol security, can be illus-
trated with the experiment of Schmitt-Manderbach et al., which employed faint laser
pulses. Given that single photon sources are yet not ready for QKD [12], protocols
such has BB84 or the B92 are implemented by means of weak coherent pulses (WCP)
obtained by strongly attenuating laser coherent radiation. A WCP has to feature an
average number of photon per pulse, µ, very low, typically µ ≈ 0.1. The reason of
this constraint is due to the fact that the photon emission of a coherent light source
is characterized by a Poissonian probability distribution, therefore one has a non null
probability to find more than one photon per pulse. This possibility represents a security
issue because an eavesdropper, Eve, monitoring the channel could intercept and store
the extra photon in a quantum memory, without being detected: when Alice announces
the bases, Eve measures correctly the photon discovering bits of the key. This attack,
the so called photon number splitting (PNS) represents the most powerful of the possible
Eve’s strategies [4]. The use of WCP then makes the secure key rate to scale as t2 being
t the transmissivity of the channel, whereas by using an ideal single photon sources the
rate would scale linearly with t. The discovery of the PNS strategy caused a kind of
stall at the beginning of 2000, because quadratic dependence of the rate on the link
transmissivity shortened the achievable distances. The situation was unblocked in the
first half of the 2000s, with the introduction of variations on the BB84 protocols, namely
the SARG04 [22] and the decoy protocol [23], which fixed the dependence of the key rate
to t3/2 and t respectively. Briefly, in a decoy protocol decoy signals with different µdecoys
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are randomly interleaved to the key signal: because Eve does know the attenuation for
the different decoys, she can not subtract photons adapting the attack for the different
attenuation, resulting in detectable modification of the photon statistics.

The effectiveness of this protocol can be understood by considering that without
decoy states, in the BB84 experiment a secure rate of key could not be achievable due
to the 30 dB of losses registered: with the used setup, losses at maximum of 20 dB were
tolerable to generate key. Indeed, the qubit error ratio (QBER), i.e. the ratio between
the erroneous sifted bits and the total number of sifted bits, allows to generate secure
keys only when is lower than the 11%. Since the photons scattered are not registered,
one has that the relative error increases in presence of strong losses, because the spurious
detections due to unfiltered stray light, afterpulses, thermal excitations, etc. [24], are not
compensated by correct detections. Losses and dark counts represent then the second
critical limiting factor in QKD experiments. The main drawback is that the larger the
QBER the lower the rate of secure bits generated. In the experiment of 2006 the source
was implemented by modulating at 10 MHz four diodes for the four polarizations, firing
randomly together two diodes for the decoy states. With losses for roughly 34 dB and a
QBER = 6.48%, the final bit rate was of 12.8 bit/s.

At present time, for the future of Quantum Communications, fast WCP sources seem
to be more easy to achieve rather than fast and low noise detectors [12]. For example,
by employing vertical-cavity surface emitting lasers (VCSEL) modulation frequencies up
to 1.5 GHz have been reported [25]. Besides, high rates can be achieved also indirectly
by using only a single CW laser whose output is coupled with polarization modulators
as in [26]. For what concerns single photon detectors, instead it is necessary to find
trade-off between efficiency, dark counts and dead-time. The latter is indeed the main
factor which limits the count rate. Detection rates up to the GHz were achieved with
InGaAs photodiodes (better efficiency for λ ∼ 1550) [27, 4]. However Si-APD (silicon
avalanche photo diodes) are preferred because they feature lower dark count rates in the
range 750nm < λ < 850nm) [25, 24].

The point worth to underline is that the possibility to success in sharing a secret
key between Alice and Bob depends on the interplay between an optimized setup and
the losses which characterize the free space optical channel. In an optimized setup, the
possible causes of dark counts can be attenuated for example by cooling the detectors,
or by using very narrow filters to reduce the stray light. However for a given level of
optimization, the second factor which raises the QBER are losses during the propagation
of the beam in atmosphere: one can divide the losses in two classes: geometric and
atmospherical.

2.1.1 Geometric Losses

To this class refer the losses caused by the optical setup. The main source of loss is
the beam divergence due to the aperture diffraction of the transmitting telescope. In
particular, the lower the ratio between the beam area at the receiver and its telescope
aperture, the smaller is the loss. In order then to improve the SNR, it is necessary
to design the telescopes to maximize the power coupling, i.e. the divergent beam at a
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given distance has to match at the best the aperture of the receiving telescope, cfr. [28]
(it has to be considered, that when the transmission is done in atmosphere, the beam
experiences additional divergence due to the turbulence, see below).

In this sense, also errors due to the pointing of the telescopes can be regarded as
losses: for a transmission involving one or both parties moving, this problem is of main
relevance. Tracking systems and telescopes collocated on gimbal mounts are then nec-
essary to keep the coupling between the parties. On this regard, notable examples are
given by the first ground-to-aircraft QKD protocol realized by Nauerth et al. [29] and
the already cited ground-to-satellite exchange of single photons. In the former case,
Nauerth et al. implemented a BB84 protocol between a receiving optical ground station
and a transmitting aircraft flying on round orbits such that the average distance was of
20 km. In the second case, the experiments with the photons retro-reflected by satel-
lites were made possible by the enhanced precision of the spatial and temporal tracking
systems of the Matera laser ranging ground station. Satellites on LEO and MEO or-
bits indeed have an average altitude of over 500 km and move with a velocity of over
7000 km/s. Consequently, on the ground very fast tracking systems with very limited
pointing errors are necessary, e.g. less than µrad, in order to minimize the losses due to
wrong aiming. Although we are dealing with geometric losses, it is worth to point out
that also temporal accuracy is required. Synchronization mechanisms, usually achieved
with temporal signals from GPS, are necessary in order to anticipate the motion of the
satellites and to compensate the trip time of the pulses. This should avoid to miss the
satellite in case of transmission from ground towards the space, and it should avoid to
anticipate or retard the acquisition in the opposite case [?].

As we will show, however, also with not moving parties is necessary to implement
tracking systems because atmosphere induces heavy drifts of the movement on the laser
beams.

2.1.2 Atmospheric Losses

Fundamentally when a coherent beam of light propagates in atmosphere, it undergoes a
process of attenuation and distortion. The addition of these two effects causes the losses
in the transmission of weak coherent pulses. In order to understand how these distortions
arise from the turbulent atmosphere we are going to briefly introduce a common physical
model for the atmosphere.

Atmosphere is a physical system whose dynamic is described by Fluid Mechanics.
As a fluid, also the atmospheric wind flow is characterized by laminar and turbulent
motion. When a fluid enters in a turbulent regime, its dynamics becomes unfeasible to
be described analytically, i.e. by resolving the Navier-Stokes equations which describe the
motion of a fluid. The problem of characterizing the fluctuations of the wind flow physical
parameters at two separate spatial coordinates, can be addressed by adopting a statistical
approach. An effective statistical model is the one introduced by A. Kolmogorov [30]
in 1941. The model considers that in a turbulent atmospheric regime originating by
the heating of the air close to the terrestrial surface, the air masses moving with the
wind speed can break into eddies of scale L, the so-called outer scale (the outer scale
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depends strictly on the environmental conditions, however typically it can range from
1 to 100 m). The eddies continue further to break into smaller eddies transferring the
initial kinetic energy, until the damping inner scale scale l0 is reached, (up to 1 mm).
For scales r << l0 the remaining energy is dissipated as heat and the eddies disappear.
Further, the model assumes that on spatial scales r such that l0 << r << L, the inertial
subrange, turbulence can be considered homogenous and isotropic. The effectiveness of
the Kolmogorov model lies in the fact that it allows to statistically quantify the spatial
correlation of fluctuating parameters, such as the wind speed v(r) or the air refractive
index n(r). In particular, these correlations can be expressed by means of the so-called
structure functions, e.g. D(v(r1), v(r2)): one can show that within the inertial subrange,
correlations depend only on the module of the vectors |r1−r2| connecting the two points
but not on its direction.

The Kolmogorov model is a powerful tool to analyze statistically the dynamic of
atmosphere but a deep analysis would require much more space and it would go also
beyond the interest of this experiment. Indeed most of the results which can be derived
applying the model to the optical propagation, are valid in a situation of weak turbulence,
cfr. [31]. On this regard it is worth stressing that the length of the optical link considered
for this experiment is such that we are in a regime of strong turbulence, as we will show
in Chapter 2, Section 3.2.

The eddies model turns out to be useful to give a qualitative idea of the losses
caused by beam distortions. These latter are caused by local non homogeneities of
the air refractive index which varies randomly in time. In particular the effects which
contribute mainly to the losses are:

• beam wandering: at the receiver side, the beam spot wanders around the ideal
optical axis of propagation. The cause of this movement can be ascribed to the
the motion of eddies whose scale is larger then the beam diameter. If w is the
diameter of the beam, and vt the transverse velocity of the wind flow with respect
to the optical axis, one has that the time scale of the this jitter is roughly given
by d/vt, cfr.[32]. To mitigate this effect closed loop feedback control system are
devised in order to automatically correct the wander of the beam and a method is
presented in Section 2.3.

• beam spreading: one observes a beam divergence which is larger than the diver-
gence one would observe after propagation in vacuum caused by the diffraction
at the transmitting telescope aperture. The cause of this broadening is are the
eddies with a scale smaller than the beam diameter. The detrimental effect of the
spreading is an enhanced power decoupling with the receiving telescope. In the
experiment of Manderbach et al. almost half of the whole losses were ascribed to
beam spreading.

The losses can be mitigated by using a large aperture receiver telescope in order
to collect the largest fraction possible of signal, e.g. the telescope used as receiver
in the Canary experiments has the aperture diameter of 1 meter (see Section 2.3).
In addition the design of the transmitting telescope aperture must be tailored in
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order to take in account also the additional atmospheric spreading.

The combined geometrical effects of wandering and spreading, summed to the varying
attenuation in time of the beam intensity due to the random inhomogeneities of the air
refractive index, give then rise to the so-called scintillation. More specifically scintillation
is the random variation of the irradiance of the beam which can be compared to the
twinkling of star light in the sky. In next Section we will show how it can be exploited
to generate secure key in a regime of high losses.

2.2 The ARTS method

In this work, we present a method that exploits strong atmospheric turbulence for secret
key generation, in conditions in which the long-time average QBER is too high for secure
communication.

This approach is made possible by the fact that the temporal profile of the trans-
missivity in a long and strongly turbulent channel has characteristic peaks lasting few
milliseconds, and following a lognormal distribution [33]. On these grounds, we will
introduce and demonstrate an adaptive real time selection (ARTS) scheme based on the
ideas introduced in [33]. The scheme is based on the estimation of the link transmissiv-
ity over its intrinsic time scale by an auxiliary classical laser beam, the so called probe,
co-propagating with the qubits, but conveniently interleaved in time. In this way, the
link scintillation is monitored in real time and only the high channel transmissivity inter-
vals corresponding to a viable QBER for a positive key generation rate, can be selected
because the transmissivity peaks are instantaneously detected.

We will present a demonstration of this protocol on the same optical link of Canary
Island, in loss conditions that are equivalent to satellite links, and with scintillation
range corresponding to moderate to severe weather.

2.3 Experimental setup

The free space optical link was set between the islands of La Palma and Tenerife at
the Canary Islands. On the island of La Palma and Tenerife, at an altitude of 2400
m are indeed available the observatories of the Astrophysical Institute of the Canary
(IAC) and of the European Space Agency (ESA). These facilities were set there because
of the atmospherical and meteorological conditions which make those spots particularly
suitable for astronomical observations. The fact that the two islands are separated
by 143 km, that the FSO features clear visibility and stable conditions, and that the
large telescope of the ESA Optical Ground Station (OGS) on Tenerife can be pointed
horizontally, made in the past this link the preferred testbench for many experiments of
Quantum Communications.

The overall link setup is reported in Figure 2.1. On the island of La Palma, Alice
sent on the same optical channel both a classical signal the atmospheric probe and the
quantum signal. On the island of Tenerife, Bob received both the signals: thanks to the
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Figure 2.1: Experimental setup: Alice, located at JKT observatory in La Palma, sends
qubits by using two 850 nm FPGA-controlled attenuated lasers with different polar-
ization. Qubit photons are combined with an atmospheric probe laser (30mW @ 808
nm) and transmitted through a suitably designed telescope. The Alice telescope is also
used to collect the beacon laser sent by Bob, located at the Optical Ground Station in
Tenerife, and required for tracking the pointing of the transmitter. Bob receives both
the signals through the OGS telescope (see Appendix): the probe is monitored by an
APD and the qubits are detected with two SPADs. FPGA: Field Programmable Gate
Arrays; HWP: half-wave plate; NPBS: non-polarizing beam splitters; PBS, polarizing
beam splitter; SPAD, single-photon avalanche photodiode; DM: dichroic mirror.
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probe he could discriminate the enhanced transmissivity peaks of the channel and then
acquire keys correspondingly.

In the following subsections, a detailed analysis of the apparatus will be given.

2.3.1 Alice

The transmitter telescope (Alice) was located on the roof top of the Jacobus Keptein
Telescope (JKT) observatory in the island of La Palma, at an altitude of 2360 m. The
telescope is an open structure of iron rods hold together by three steel flanges, see Figure
2.2. The first flange is mounted on a large xyz stage for a coarse pointing of the telescope.
The second flange is suspended above the ground by the rods and it carries all the optical
components. In the third last flange, a lens is encapsulated. This telescope was designed
in order to mitigate at the best the atmospherical abberations without using adaptive
optics. The first peculiarity is the lens which is a custom hand-made plano convex singlet
with a diameter of 230 mm. With such an aperture it is possible to achieve, after 143
km, a beam spot comparable to the dimensions of the primary mirror of the receiving
telescope in order to maximize the power transfer between the two parties (cfr. [34]
[35]). The second peculiarity of the telescope is the tracking system which enables to
compensate the beam wandering. The telescope does not only transmit the quantum
and the classical probe signal but also receives a beacon laser λ = 532 nm which is
sent by Bob. The beacon enters the telescope and it counter propagates along the same
optical path of the other two signals. The beam is then focused on the sensor of a camera
which periodically reads the position of the wandering spot. This information is used in
a feedback loop to correct accordingly the point source on the focal plane.

The system can be appreciated more in detail in Figure ??. The second flange is
collocated in a position close to the focal planes of the lens which, being chromatic, has
f = 2202 for λ = 810 nm and f = 2202 for λ = 532 nm. The flange has an aperture at
the center, where an optical cage system is fixed with

• a dichroic mirror which back reflects the quantum + probe signal (red dashed
line) towards the telescope aperture and transmits the beacon signal (red dashed
line). The position of the dichroic mirror was properly set in order to not have the
clipping of the beams.

• a mirror which directs the beacon signal toward the camera (green dashed line).

A XYZ movable platform is mounted on a breadboard attached at the basis of the
flange. This platform carries both the signal fiber and the CMOS camera such that
the movement of the platform affects both the systems. The platform is realized by
mounting on a stepped motor stage for the Z movement, a XY support controlled by
another pair of stepped motors.

On this support we have a cage system with the optics for the beacon and the
quantum + probe signal. For what concerns the latter, at the fiber output a f = 8 mm
IR coated lens collimates the beam, which is then refocused by another f = 18 mm. It is
worth noting that, having the quantum signal and the probe two different wavelengths,
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Figure 2.2: On the left the whole Alice telescope. On the right a detail of the focal plane
with the main components.

λ = 850 and λ = 808 respectively, they do not share the same focal plane. However, the
probe signal is classical and can sustain higher losses, instead the quantum signal has to
match the focal plane of the singlet in order to maximize it at the receiver side. For this
reason, once that the IR signal was properly aligned on the same path of the beacon1,
the point of focus was searched by firing the non attenuated 850 nm lasers and by finely
moving the Z stage according to the power readings from Bob. Once that the optimal
position was found, the position of the camera and of the beacon focusing doublet where
manually adjusted by moving directly the cage plates. In particular it was necessary to
obtain a beacon image enough small to appreciate the beam drifts on the sensor.

Every time, before starting the transmission protocol, the same procedure adopted

1this was done by setting the probe laser at maximum power and by moving the beam in order to
have the green and IR signal aligned as well in near as in the far field
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Figure 2.3: We report different statistical plot regarding the centroid distribution of the
beacon laser on the camera for the feedback control of the focal plane.

for the Z axis were repeated for the X and Y directions: once the position with the highest
power readings was found, the corresponding coordinates were saved in the system as
reference position. At this point the feedback procedure is started: the camera grabs
frames and a Matlab routine evaluates the deviations of the beacon centroid with respect
to the reference position, sending then corrections to the motor controllers. In Figure
2.3 the 1161 corrections data referring to almost four hours of acquisition are presented.
On the first column of the grid, top, a sort of random walk is reported which shows the
series of consecutive deviations from the reference position. Every point represents an
estimation of the centroid performed in average every 12 s: this parameter was optimized
according the observed stability of the link. Once that the instructions are sent to the
controllers, the stepping motors take in average 0.24 seconds to re-center the focal plane.
From the bottom density plot, one can see that the beam wander tends to visit positions
close to the center, being the centroid accumulated around the reference. This behavior
indicates that the link was sufficiently stable over the acquisition. However, this stability
was not symmetrical: if one considers the central column, the histograms of the difference
between centroids coordinates and the reference, show clearly that the drifts in the Y
direction were larger than those in X. More specifically, we had that within five pixels
from the center, there were the 96% of the X corrections, while the 74% for Y. The cause
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of this asymmetry could be addressed to the large eddies flowing with more intensity in
a direction rather the other one. This is also confirmed by the third column were the
absolute coordinates of the centroids are plotted for X and Y as function of the iteration.
Besides the larger values for Y, one can notice also an increase in the turbulence activity
starting approximately from the interaction 300: these deviations correspond to the
peripheral points in the plots of the first column. However this behavior did not represent
a problem because the system was designed to promptly correct even larger drifts.

Quantum and probe signals

The Alice module and the classic probe signal, as the computer operating the software for
the telescope correction where housed inside the observatory. The optical Alice module
was implemented on a breadboard, with two 850 nm attenuated lasers providing the
quantum signal. The polarization of the 850 nm lasers was set to the two different bases
by means of half wave plates and quarter wave plates. The encoding of the quantum
signal was then obtained by controlling the lasers with an FPGA. For what concerns
the transmitted qubits, in order to measure the QBER of the channel, we used the same
data structure of a recent free-space QKD implementation based on the B92 protocol [?,
?]. A raw key is composed into N packets of 2880 bits each, sent at the rate of 2.5
MHz; as regards the payload slots, Alice sends two qubits separated by 200 ns. Due to
communication with the FPGA, each packets is sent every 20 ms resulting in an average
sending rate of 150 kHz.

For the atmospheric probe for the estimation of the link transmissivity, a Thorlabs
LP808-SF30 fiber coupled diode laser λ = 808 nm laser was used. This laser was
controlled by a temperature and current driver Thorlabs ITC-4001, which provided
also the modulation of the signal. Classical and quantum lasers were coupled into single
mode fibers and injected into a fiber beam splitter. One of the two beam splitter output
was delivered toward to the telescope, cfr. Figure 2.2.

2.3.2 Bob

At the receiver part (Bob), in Tenerife, we used the 1 m aperture telescope of the ESA
Optical Ground Station to receive the signals. This telescope has the peculiarity that it
can be pointed horizontally. After the Coudé path, the collimated classical and quantum
beams were divided by a dichroic mirror.

The qubits were measured in two bases, using PBS and waveplates (cfr. Figure
2.1). The counts detected by the two single-photon avalanche photodiodes, Excelitas
SPCM-AQRH, were stored on a FPGA. The probe beam was detected by an high-
bandwidth APD (avalanche photodetector) and the voltage amplitude signal stored by
an oscilloscope.

The two FPGAs are synchronized every second by a pulse-per-second (pps) signal
equipped by two GPS receivers located in the two islands.
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Figure 2.4: Experimental occurrences of probe intensities (measured by photodiode volt-
ages) and lognormal fit.

2.3.3 The Log-normal distribution of the scintillation

Here we show the distribution of the measured voltages of the data used in Figure 2.5.
According to the theory [61, 59], they follow a log-normal distribution. In Figure 2.4
we show the experimental probabilities of occurrence of different photodiode voltages
corresponding to different probe intensities. We also show the corresponding log-normal
curve that fits the experimental data. In the figure we report the log-normal parameters
obtained in the fit.

2.4 Preliminary analysis

In order to test the ability of estimating the link transmissivity, we first sent on the same
free-space channel, two signals: the classical probe, detected with a fast photodiode at
the receiver, and a single strongly attenuated laser. The classical signal featured pulses
of 100 µs duration at 1 kHz repetition rate, while the attenuated laser at 850 nm was a
continuous beam. At the receiver, the quantum signal was detected by a Single Photon
Avalanche Photodiode (SPAD) and acquired in packets with duration of 1 ms.

We would like to test the correspondence between the intensity of the received clas-
sical beam and the photons received on the quantum channel. In Figure 2.5 we show,
for 11 s of acquisition time, the photon counts detected in each packet, compared to
the voltage registered by the fast photodiode. As it can be seen in the inset, there is a
strong correspondence between the two signals.

To demonstrate the correlation we performed the ARTS method, consisting in the
following procedure. Given a set of L packets (each of 1ms length), we let Vi be the
probe signal amplitude and Si the number of detected photons in the quantum signal
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Figure 2.5: Comparison between the counts detected by the SPAD (green line) and the
voltage measured by the fast photodiode at the receiver (red line). In the inset we show
a zoomed detail of the acquisition in order to better appreciate the correlation between
the quantum and classical signal.

for the i-th packet, respectively. We set a threshold value VT for the probe voltage and
post-select only those packets such that Vi > VT; in particular, we denote by I(VT) =
{i ∈ [1, L] : Vi > VT} the indexes of the packets for which the above condition holds
and by NP(VT) the corresponding number of packets, that is, NP(VT) = |{I(VT)}|.
Furthermore, we define the following quantities:

S(VT) =
∑

i∈I(VT)

Si, S(VT) =
S(VT)

NP(VT)
(2.1)

with S(VT) representing the total number of detected bits and S(VT) the mean number
of detection per packets after the post-selection performed with threshold VT.

The effect of the ARTS procedure can be clearly appreciated in Fig. 2.6, where S(VT)
(normalized to the mean counts obtained without thresholding) is plotted (green line)
as a function of the threshold: a higher threshold value corresponds to a larger mean
number of counts per packet. This demonstrates that the probe and quantum signals
are strongly correlated and one can significantly improve the signal-to-noise ratio (SNR)
by thresholding1. As side effect, we have that the pre-selection also decreases the overall

1Here we define the SNR as the ratio between the overall signal (true signal plus background) and
the background
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Figure 2.6: Mean counts per packet S(VT) (normalized to the mean counts obtained
without thresholding) and fraction of total count S(VT)/S(VT = 0) in function of the
probe threshold.

number of detections in the transmission S(VT) as can be noticed by considering the
ratio S(VT)/S(VT = 0) (blue line).

2.5 Application of ARTS method to QKD

We then apply the results previously described to a QKD experiment. In particular,
we will show that, increasing the SNR by thresholding gives, in some cases, benefits in
terms of the secret key length, even if the total number of sifted bits will decrease. In
fact, when the QBER is above 11%, the maximum QBER tolerable for standard QKD,
ARTS will reduce the QBER below this limit, allowing secure key generation. We point
out that at the receiver the beam has a mean photon number per pulse below 1, namely
it is the single photon level. However, at the transmitter side, due to the 30 dB average
attenuation of the channel we are not working in the single photon regime because the
pulses contain in average more than one photon. However, our aim was to simulate
a possible realistic scenario where one would employ fast (hundreds of MHz to GHz)
free-space QKD systems which are nowadays commonly available. Since our system has
a transmission rate of 2.5 MHz, the detected rate is comparable to the rate observable
with a transmitter emitting true single photon pulses with a repetition rate of about 1
GHz, considering fixed the amount of optical and atmospheric attenuation.

First, given the number of errors Ei in the i-th packet, we define the overall number
of errors E(VT) and the quantum bit error rate Q(VT) in the post-selected packets as

E(VT) =
∑

i∈I(VT)

Ei , Q(VT) =
E(VT)

S(VT)
. (2.2)

For evaluating the actual impact of the ARTS on the performance of a quantum key

24



2.5 Application of ARTS method to QKD

distribution system, it is then important to study how the two complementary effects
of thresholding: the increase of mean detected bits per packet S(VT) and the decrease
of total detections S(VT) influence the achievable secret key rate of the system, and the
optimal trade-off should be found.

Being the length of the output secret key dependent on the number of available sifted
bits and on their bit error rate, as a first step we need to derive an expression for both
of these quantities. As demonstrated in [59], the statistics of the transmission of a long
free-space channel follows a log-normal distribution. The measured probe voltage at the
receiver, being constant the transmitted intensity, follows the same distribution, given

by p(V ;mV , σ
2) = 1√

2πσ
1
V e
−[(ln V

mV
+ 1

2
σ2)]2/(2σ2)

. In the previous expression σ2 is defined

as functions of the mean mV and of the variance vV of the probe intensities distribution,

that is, σ2 = ln
(

1 + vV
m2
V

)
. As an example, we show in Appendix, the distribution of the

measured voltages of the data used in Figure 2.5, that, according to the theory [61, 59],
follows a log-normal distribution.

In the following analysis, we assume that the number of detected photons and the
probe intensity have completely correlated log-normal distributions [59]. This hypothesis
implies that both distributions have the same parameter σ2. Then, we can predict the
number of packets above threshold NP(VT) and the number of sifted bits surviving the
thresholding S(VT) in case of null background by S(VT)/S(0) =

∫ +∞
VT

V
mV

p(V ;mV , σ)dV

and NP(VT)/NP(0) =
∫ +∞
VT

p(V ;mV , σ)dV . By taking into account the background
clicks we get:

NP(VT) = NP(0)
1

2

[
1− erf

(
ln VT

mV
+ 1

2σ
2

√
2σ2

)]
.

S(VT) = nbNP (VT) +
1

2
[S(0)− nbNP (0)]

[
1− erf

(
ln VT

mV
− 1

2σ
2

√
2σ2

)]
,

(2.3)

where nb is the average background count per packet. In fact, the assumption of complete
correlation between the quantum and the probe signal, is not strictly verified in our
experiments and eq. (2.3) turns out to be an approximation of the experimental values.
Still, it allows to derive an effective post-selection threshold, as will be seen in the
following (e.g., in figure 2.7).

We now define a further predictive model for estimating the bit error rate on the
quantum channel as a function of the probe threshold. Let us assume that the average
bit error rate on the quantum channel is mQ and that the number of counts per packet
due to background noise is nb. Now, since background counts output a random result,
the corresponding bit error rate is 1/2, and we can write the predicted quantum bit error
rate Qth as a function of the threshold VT, namely,

Qth(VT) = mQ

(
1− nb

S(VT)

)
+

1

2

nb

S(VT)
(2.4)

where the predicted value for S(VT) = S(VT)
NP(VT) is obtained by using equation (2.3).

Given these quantities, the asymptotic key rate of a QKD system based on the BB84
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protocol[62] and the ARTS procedure (namely the probe thresholding mechanism) reads
as follows:

R(VT) =
S(VT)

S(0)
[1− 2h2 (Q(VT))] (2.5)

It is worth noting that to take into account the asymptotic rate instead of the finite-
length one [63, 64], may be considered a restrictive approach, especially because the
post-selection further reduces the number of available sifted bits. However, it is sufficient
to choose the size of the blocks to be fed as input to the key distillation procedure
(i.e., information reconciliation and privacy amplification) such that, without loss of
generality, the asymptotic bound provides a reasonable approximation of the actual
rate. It is worth to stress that the B92 protocol for a depolarizing channel has a higher
QBER with respect to the one of BB84 protocol. We used this approach however to
compare our results with other protocols being this experiment the first proof of principle
of this method. We are aware that this mismatch might imply a slight discrepancy with
respect a strong security analysis.

In Figure 2.7, we finally compare the theoretical (solid blue line) and the experimental
values (blue crosses) for the measured QBER and the asymptotic key rate as a function
of the probe intensity threshold in a data acquisition. The curves for the theoretical
QBER and for the key rate were obtained by substituting maximum likelihood estimates
for the log-normal parameters mV and σ2 in eq. (2.4) and in eq. (2.5). The other
two parameters, S(0) and NP(0), needed for predicting S(T ) and NP(T ), are directly
measured (they correspond to the total sifted bits and the total number of packets
received respectively).

The experimental data refer to an acquisition of 5 ·105 sifted bits in condition of high
background, simulated by a thermal light source turned on in the receiver laboratory.
The intensity of the background was chosen in order to obtain a mean QBER larger than
11%. In particular, we measured an average value of nb = 35.17 for the background clicks
per packet and we assume mQ = 5.6 · 10−2. As clearly shown in the figure, eq. (2.4)
provides a good approximation of the experimental curve.

As one can appreciate from the same Figure, we have a remarkable correspondence
between the shape of the theoretical rate, Rth, and the measured rate, Rexp. The fact that
the experimental points do not fit the expected curve can be ascribed to the discrepancy
in the empirical joint distribution of probe intensities and counts with respect to the
model; in particular, we measured the following fitting parameters for the normalized log-
normal distributions: σ2

V = 0.967 for the probe intensities and σ2
S = 0.716. However, the

derivation of the optimal threshold for maximizing the secret key length (magenta dashed
line) from the probe distribution yields the optimal VT also for the experimental data.

In particular, the optimal threshold inferred from the probe distribution is V
(th)
T,opt = 375

mV, and coincide with the one resulting from optimization on the experimental data,

yielding a rate of R(V
(th)
T,opt) = 5.55 · 10−2.

Also, we observe that for VT < 70 mV no key can be extracted, being the QBER higher
than the theoretical maximum (i.e., Q = 11%), whereas by increasing the threshold value
a non-zero secret key rate is achievable. With the optimal threshold value, the measured
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Figure 2.7: Experimental QBER (Qexp) and secure key rate (Rexp) in function of the
probe threshold (measured by the photodiode voltage). With solid lines with show the
corresponding theoretical predictions (Qth and Rth).

QBER is Q(V
(th)
T,opt) = 8.38 · 10−2; a significant gain with respect to the initial value,

Q(0) = 13.14 · 10−2 is therefore achieved. Finally, we observe that for increasing values

of VT > V
(th)
T,opt the QBER still decreases, but so does the rate, since the reduction in

the residual number of sifted bits does not compensate the advantage obtained from the
lower QBER. This result is of absolute practical relevance, as it shows that leveraging the
probe intensity information is an enabling factor for quantum key distribution, allowing
to distill a secret key.

As for the security of this post-selection approach as applied to a QKD system,
we conjecture that no advantage is delivered to a potential attacker in the true single
photon regime, being the thresholding nothing but a further sifting step on the received
bits [56, 57]. If the attacker tried to force Alice and Bob to post-select a particular bit,
in fact, she would alter the probe signal before the disclosure of the preparation bases
on the public channel, and, therefore, before she could actually know if her measured
bit is correct. On the other hand, altering the probe statistics or interrupting the probe
transmission would not yield any advantage to the attacker, as it would just break the
correlation between the quantum and the classical signal and would thus result in a
denial of service attack. The security analysis gets more involved if we allow photon
number splitting (PNS) attacks. In that case, the attacker may force Bob to receive just
the qubits for which the PNS attack was successful, i.e., only those pulses with multiple
photons. A decoy state protocol may counteract this strategy, but its effectiveness with
a turbulent free-space link has to be investigated.
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2.5.1 Comparison with other methods

The advantage of the ARTS with respect to other techniques, lies in the fact that it is a
real time and self-adapting procedure. On this regard, one can consider the CAD1 and
CAD2 distillation schemes discussed in [56]. These schemes represent a generalization of
Maurer’s advantage distillation technique [58]. They collect sequences of correct (pos-
sibly non consecutive) sifted bits, and distill one single secure bit out of each sequence.
The length of each sequence should be chosen according to a tradeoff. In fact, longer
sequences allow to distill keys with higher channel QBERs, but provide a lower key rate
in the case of low QBERs. However, in a turbulent, rapidly time-varying channel, its
effectiveness would be limited by the difficulty of choosing the suitable parameters of
the distillation strategy according to the varying QBER.

Another generalization of the advantage distillation in [58] is proposed in [57], where
parities for many pairs of bits are shared between Alice and Bob along the public channel
and those pairs with non matching parities are discarded, while the remaining ones
(over which the QBER is lower) are syndrome decoded. However, the above presented
distillation methods do not take advantage of the intrinsic QBER variability of the
channels, rather they rely on the assumption that the channel maintains its QBER
stable for long so that parameters can be optimized.

More similar to ARTS is the method introduced in [55]: it relies on detecting trans-
missivity peaks in the channel by observing variations of the sifted bit rate and can hence
be quite effective in dealing with turbulent channels. More precisely, a post-selection
is performed when the number of received sifted bits is above a given threshold, deter-
mined by the mean QBER of the channel. The post-selection is effective only when the
threshold is set in order to get at least several bits for coherence time of the channel
(typically of the order of few milliseconds): in fact, only in this condition it is possible
to post-select the correct instants of high transmissivity. In the case of very turbulent
channel and extreme environmental conditions (say mist or high humidity), the number
of received bits per coherence time of the channel can be lower (or of the order) than
10: in this case, the post-selection cannot be implemented and only the ARTS method
becomes effective.

We performed a simulation to compare the two techniques by assuming that the
probe and the signal statistic are perfectly correlated. The rate achievable in the two
cases are shown in Figure 2.8, demonstrating that the ARTS methods outperform the
post-selection on the received sifted bits when the number of mean sifted bits received
per coherence time of the channel are below ∼ 10 and the SNR is below 20.

2.6 Conclusions

We have presented a proof of principle demonstration of a method exploiting the at-
mospheric turbulence as a resource for QKD. The turbulence will implies a fluctuating
transmissivity of the channel used for quantum communication. The ARTS method,
easily integrable in current QKD systems, is based on the sampling of a classical beam
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Figure 2.8: Comparison between the rates achievable by the ARTS, the post-selection
and the standard QKD technique (no selection). We assumed that the channel QBER is
3% and the lognormal parameter is σ = 1, similar to the parameter we measured in the
tested free-space channel. The parameter µ is the mean sifted bits per coherence time
of the channel.

(probe signal) sent on the same channel of the quantum bits. By measuring the intensity
of the probe at the receiver, it is possible to select in real time the best time slots of
high channel transmissivity. We demonstrated that with the ARTS method we were
able to decrease the measured QBER; moreover, this method allows to extract secret
key in extreme conditions, namely when the initial average QBER is above the security
threshold of 11%.
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Chapter 3

A true random number generator
based on the optical turbulence.

What in the previous Chapter represented the noise, in this Chapter will be the the sig-
nal. We will describe a novel principle for a true random number generators TRNG based
on the observation that a coherent beam of light crossing a long path with atmospheric
turbulence may generate random and rapidly varying images. To implement our method
in a proof of concept demonstrator, we used the same free space optical link employed
for the QKD experiment at the Canary Islands. Here, after a propagation of 143 km at
an altitude of the terminals of about 2400 m, the turbulence in the path is converted
into a dynamical speckle at the receiver. In Section 3.1 we will present why it has been
hypothesize that atmospheric turbulence can be a suitable source of entropy. Section 3.2
is divided in two parts: in the first one we will give a characterization of the optical link
in order to individuate the optimal setting for the sampling of the turbulent physical
noise, in the second one we will present evidences that indeed the obtained samples (the
spatial coordinates of the speckles) are independent in time and uniformly distributed.
In Section 3.3 we will present the algorithm based on the combinatorial analysis to ex-
tract randomness from the images and we will show that is optimal in the context of
Information Theory. Section 3.4 will be devoted to the presentation of statistical tests
for randomness assessment while, in Section 3.5 the results will be discussed.

3.1 Introduction

This work was based on the observation that a laser beam propagating across a free
space optical channel, in addition to the beam wandering and beam spreading already
presented in the previous Chapter, at the end of the link features a speckled intensity
wavefront in presence of strong atmospheric turbulence. Practically, at the receiver side
one does not observe a gaussian intensity profile but collection of light and dark spots
varying in number, shape and position randomly, according the atmospheric turbulent
flow.

Under an abstract point of view aimed then to investigate whether the observed
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3. A TRUE RANDOM NUMBER GENERATOR BASED ON THE
OPTICAL TURBULENCE.

phenomenon could be a source of entropy and in the affirmative case the possibility of
extracting uniform and independently distributed random variables from it. Under a
more practical point of view we were interested to proof the feasibility of a TRNG based
on a macroscopic physical process to be in case employed in protocols of optical secure
communications.

The working principle of a TRNG consists of sampling a natural random process
and then to output an uniformly distributed random variable. The sources of entropy
mainly exploited are all microscopic and they include the amplification of electronic
noise [65], phase noise of semiconductor lasers [66], unstable free running oscillators
[67] and chaotic maps [68]. There are at least two issues with TRNGs. The first one
is theoretical and is about the fact that a chaotic physical system has a deterministic
evolution in time. More specifically, one has that the dynamic of a classical physical
system is written by its equations of the motion and the initial conditions of its degrees
of freedom: once that both are known, the future (as the past) states of the system can
be predicted. In general, the impossibility to know precisely the initial conditions of a
system leads to the unpredictability about its evolution (naturally there are different
degrees of unpredictability, according the system considered). In particular, a chaotic
system features an evolution which is sensitive to the initial conditions: although it
appears random, the dynamic is still deterministic and so, in principle, predictable.

An analysis of the physical system used to generate the numbers is then fundamental
for selecting those conditions which will not lead the system to some periodical, com-
pletely predictable trajectory [69, 70]. This selection can be performed by means of a
robust statistical model for the physical system. On this regard can be interesting to
cite the work of P. Diaconis et al. [71], where the authors were able to individuate a set
of initial conditions for an experimental device which flipped coins, such that the coin
landed showing always the same face.

The second problem deals with the unavoidable hardware non-idealities which spoil
the entropy of the source, e.g. temperature drifts modify the thresholds levels, or the
amplifier stages make spurious technical noise to leak inside the random signal. Most of
the TRNGs are then forced to include a final post-processing stage with the purpose of
increasing the entropy of the emitted bits.

In our case, we individuated the source of entropy in the atmospheric turbulence.
Atmospheric turbulence is characterized by a chaotic dynamic. These are mainly ruled by
temperature variations and by the wind, and cause inhomogeneities in the air refractive
index. Consequently, when a laser beam is sent across the atmosphere, this latter may
be considered as a dynamic macroscopic volumetric scatterer of different scales. These
scatterers, which are in motion according the turbulent flow of the air masses, affect
both the amplitude and the phase of the propagating field: basically one has that the
resultant field E(x, y, t) at a given space and time at the receiver, can be written in the
complex phase-space as a sum

E(x, y, t) = eiω0t
∑

n

En(x, y, t)eiφ(x,y,t) (3.1)

where the amplitudes En(x, y, t) and phases φ(x, y, t) depends on the single scatterer.
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Practically, the field undergoes a random walk in complex space: the observed speckle
pattern given by the square of the field depends on how the different random contribu-
tions add together, in particular they can add constructively or destructively according
the distribution of the relative phase and amplitude of the components.

The point is then that the observed optical noise is the product of a field which
along its 143 km path interacted with a number of moving scatterer very unfeasible to
determine and whose chaotic motion is very unfeasible to predict. Indeed the present
time models for atmospheric dynamic only provide a statistical description for the spot
of the beam and its wandering [72, 28, 73] and never an instantaneous prediction for the
irradiance distribution (which could be calculated by the Laplace demon only).

A beam of coherent light propagating along a random scatterer was studied in the
context of the random walk. Indeed, the complex field undergoes subsequent diffusion
process which according to the type of medium may be either described as a normal
random walk or as a Lévy flight [74], giving rise to a random distribution of the intensity
as consequence of the interference effects [75]. Static speckle patterns obtained by passing
a laser beam through volumetric scatterers [76, 77] have been already exploited for
the purpose of random number generation and as key element of physical un-clonable
functions [78]. However, these approaches are based on still scattering medium and
cannot be used for real time random number generation.

3.2 Characterization and sampling of the physical noise

We established a free space optical (FSO) link 143 km long by sending a λ = 810nm
laser beam between the Jacobus Kaptein Telescope (JKT) in the Island of La Palma, to
the ESA Optical Ground Station (OGS) in the Island of Tenerife (see Figure 3.1 for de-
tails) channel already employed in several experiments of Quantum Communications[20,
79, 80, ?]. The intensity of the laser was adjusted in order to conveniently exploit the
camera dynamic range to properly acquire the typical effects of beam propagation in
strong turbulence, including wandering, beam spreading and scintillation [72]. As seen
in the previous Chapter, the motion of eddies larger than the beam cross section, bends
it and causes a random walk of the beam center on the receiver plane. Whereas, small
scale inhomogeneities diffract and refract different parts of the beam which then con-
structively and destructively interfere giving rise to a speckle pattern on the telescope
pupil. Both the previous factors spread the beam beyond the inherent geometrical limit.
Furthermore, it is possible to observe scintillation, namely fluctuations in the irradiance
of the signal.

In free-space optical propagation, the speckle pattern formation can be addressed
to interplay between the degree of atmospheric turbulence and the optical beam prop-
agation length. The strength of the turbulence is quantified by the structure constant

C2
n (dimensions [L]−

2
3 ) which expresses the spatial fluctuation of the air refractive index

[72]. Typically, values for weak turbulence are in the order of 10−16 m−2/3 ∼ 10−18 m−2/3

whilst, for strong turbulence, C2
n = 10−13 m−2/3 ∼ 10−14 m−2/3. To estimate the tur-

bulence effects on a laser beam, it is necessary to evaluate the Rytov variance, defined
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Figure 3.1: Experimental setup. At the transmitter side in La Palma, a λ = 810nm
laser beam is collimated with a 230mm achromatic singlet, explicitly realized to limit
geometrical distortions, and then sent through a 143 km free space optical channel. At
the receiver side, at the OGS observatory in Tenerife, the pupil of the Ritchey-Chrétien
telescope (diameter of 1016mm) is illuminated by the distorted wave-front and imaged
on a high resolution CCD camera. This figure was produced by the authors.

as

σ2
R = 1.23k7/6C2

nL
11/6 (3.2)

where k is the modulus of the wave-vector and L the length of the path. Indicatively,
one has strong or weak effects for σ2

R > 1 or σ2
R < 1 respectively [81]. In particular,

significant beam wandering and intensity speckles are observed at the receiver when σ2
R

overtakes unity: the weaker is the level of turbulence, the longer has to be the link in
order to get a random optical dynamic. For the link between La Palma and Tenerife
we estimated a night-time average structure constant C2

n ≈ 3 · 10−17 m−2/3: this value
is consistent with the values obtained in other studies, i.e. [82]. Recently, in [32] a C2

n

oscillating between ≈ 5 ·10−16 m−2/3 and ≈ 4 ·10−17 m−2/3 has been reported. With the
estimated C2

n and L = 143 km, we had σ2
R ≈ 11 such that the condition for the speckle

pattern formation was always satisfied. This can be appreciated from Figure 3.2 where
σ2
R is plotted as function of L for different values of the structure constant, ranging from

weak turbulence C2
n = 10−17 m−2/3 to strong C2

n = 10−13 m−2/3. Practically, although
the Canary Island link is characterized by a weak - middle level of turbulence during
the night (green shaded area in the plot), thanks to the length of the channel we were
constantly working in a condition of large, i.e. > 1, Rytov variance. Moreover, from the
plot it is interesting to notice that speckles on shorter scales, could be observed only if
the strength of the turbulence would sufficiently high according the trends.
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Figure 3.2: Rytov parameter is plotted in function of the length, for different levels of
turbulence as measured by the structure constant. It is then possible to observe that
by increasing the length of propagation, the Rytov parameter reaches the level of strong
optical turbulence also in regimes of weak turbulence. In particular the shaded area
refers to the degree of turbulence we registered in the Canary Islands: for a path length
of 143 km we got a Rytov variance σ2

R ≈ 11, value which allowed us to observe the
speckle pattern.

3.2.1 Physical characterization of the link

As consequence of the turbulence and of the link length, at the pupil of the receiver
ESA telescope, we observed the continuous random speckle pattern moving according
the unpredictable flow of the atmosphere. Images where then acquired with a Thorlabs
DCC-1545 CMOS camera featuring a resolution of 1280 x 1024 pixels. A typical frame
is reported in Figure ??: since we were interested in evidencing the complex spatial
distribution of the speckle intensity, it was necessary to properly set the frame rate and
the acquisition in order to not smooth out the pattern and/or register correlated frames.
This can be the case if the sampling rate is too high with respect to the proper time
scale of the phenomenon (which we can relate to the time scale of the scintillation, see
below).

Setting an exposure times of 3 ms and a sampling rate of 12 and 25 fps was the
optimal choice in order to achieve a level of light sufficient to reveal the complexity of
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Figure 3.3: (top graph) Full intensity received by the telescope acquired with a pho-
todiode with sampling rate of 20kHz. (middle graph) Intensity pattern with all the
frequencies below 25Hz (frame rate of the camera) filtered. (bottom graph) Frequency
spectrum of the intensity. Green dashed line represents the maximum frame rate of the
camera (25Hz), while red dashed line represents the frequency (4kHz) above which the
noise becomes dominant (flat spectrum).

the intensity pattern while not blurring its structure. Moreover, the interval between
consecutive frames was set to be longer than 10 ms, which is the typical time scale of
the scintillation induced by the atmosphere. With such frame rates it was possible to
generate independent and uncorrelated speckle distributions.
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3.2 Characterization and sampling of the physical noise

More in detail, this can be understood considering the intensity of the received signal
integrated over all the telescope aperture and acquired with a photodiode at a sampling
rate of 20 kHz, as reported in Figure 3.3 (top). The signal is characterized by a sequence
of intense peaks spanning well above the average value, which is a common behavior
for beams along strong turbulence. Its dynamics extends in frequency well above our
maximum frame rate, as is shown in Fig. 3.3 (middle), in which the signal is filtered
leaving the components greater than 25 Hz: the relevant structure of the peaks is actually
preserved.

Equivalently, the spectral content of the scintillating signal that is shown in Fig. 3.3
(bottom), clearly attest that the 25 fps frame rate is not oversampling the scintillation
process. Indeed, if the integrated intensity is characterized by such dynamics, spatial
pattern of the intensity will present at least the same dynamics. Therefore consecutive
frames will freeze completely different realizations of the beam profile.

In Fig. 3.4 a plot is reported obtained by mapping the correlations in intensity
between the same pixels but on different frames. More precisely, for each pixel of the

sensor, we evaluated the serial correlation coefficient Ci =
n
∑
f I

i
f I
i
f+1−(

∑
f If)

2

n
∑
f I

2
f−(

∑
f If)

2 with

i ∈ [1, . . . , 1280× 1024] between the intensity values Iif cycling on the frames f , and we
assigned the evaluated coefficients to respective pixels. The Cis are expected to be null,
if the intensity values are uncorrelated, otherwise 1 or -1 for strong correlation or anti-
correlation respectively. The area of the telescope pupil was not completely available
due to the optical structure holding the secondary mirror: by observing Fig. 3.4 one
can notice that the regions of full correlation are those ones which are were reached by
the light. On the contrary, for the pupil active area we have an average correlation of
Cav = 0.16. Moreover, the analysis of the correlation was relevant also to exclude from
the active area those pixels constantly yielding the same intensity values, because they
were defective or because of additional optical obstructions.

3.2.2 Stability of the link

The optical link used for the experiment has been deeply studied and characterized
for the experiments of Quantum Communications of the last decade. In good weather
conditions, we measured an average attenuation of about 30 dB over 90 minutes of
acquisition. As one can observe from Fig. 3.5 the link transmission is stable for the
whole acquisition time. This feature has been observed also for longer time interval:
naturally in case of cloud activity, the link would suffer deep additional losses, which in
the worst case obstacle completely the channel.

3.2.3 Centroids: the center of mass of the speckles

Considering the logic scheme of a TRNG, once that the random noise is sampled, one
has to set a rule in order to extract the i.i.d random variable. In our case, the random
noise was the bi-dimensional nonhomogeneous, i.e. not gaussian, distribution of the laser
beam intensity. The samples were the images. However, before setting a rule we needed
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-1 1

Figure 3.4: In this plot the intensity correlation between pixels belonging to 336 consec-
utive frames is reported.

to associate a random variable to the sampled noise. For this purpose we processed the
frames in order to extract the coordinates of the different intensity spots.

Typical algorithms for image analysis which allow to compute several so-called dig-
ital moments were employed. More precisely, given E the number of bits used by the
acquisition software to encode the intensity (color) levels of monochromatic light on the
active area m · n of the sensor, we can consider the recorded image as a two variables
function I(x, y) where x ∈ {0, . . . ,m}, y ∈ {0, . . . , n} and I(x, y) ∈ {0, . . . , 2E}. The
(j, k)th moment of an image is then defined as

M jk =

m∑

x=1

n∑

y=1

I(x, y)xjyk . (3.3)

The center of gravity C, the so-called centroid, of an image is then located at position
(x̂, ŷ) where the coordinates are accordingly given by

x̂ =
M10

M00
, ŷ =

M01

M00
(3.4)
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Figure 3.5: Power intensity received and the corresponding attenuation, measured across
the 143 kilometers long optical link: the average measured attenuation is 30 dB.

We applied then a technique for instance used in Biology to count the number of cells
in biological samples. Indeed in images composed by distinguishable components (as
coloured cells on a uniform background), it is possible to locally calculate the centroids
Ci of those components, by binarizing the intensity level, i.e. by setting E = 1, and then
evaluating the moments on the closed subsets Si = {(x, y)|I(x, y) = 1}, that is

Mjk(Si) =
∑

(x,y)∈Si

I(x, y)xjyk (3.5)

where the index i runs on the different elements of the image.

To extract more randomness from the geometrical pool of entropy, the intensity
profile of the frames has been partitioned into eight different sub-levels. We treated
separately every different intensity level, L, as a source of spots; more specifically then
we generated sets SL,i out of the L ∈ {1, . . . , 8} levels. For a given L and a spot i the
coordinates of a centroids are then

x̂L,i =
1

Ai,L

∑

x∈Si,L

x ŷL,i =
1

Ai,L

∑

y∈Si,L

y (3.6)

where Ai,L simply the area of the spot, that is the total number of pixels which compose
that spot. In order to remove edge effects due to the shape irregularities of the pupil,
pixels close to irregular edges were removed.
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Figure 3.6: On the left, the distances dfintra between closest neighboring centroids are
evaluated inside the same frame f . On the right, the centroids of the frame f are
brought to next frame f + 1 (dashed circles) and then the distances df−f+1

inter between the
time-shifted closest neighbouring centroids are evaluated.
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Figure 3.7: Distribution of the experimental ratios
〈df−f+1
inter 〉
〈dfintra〉

.

The analysis follows with some techniques we applied in order to evaluate the tempo-
ral independence of the centroids position, and their identical distribution on the active
area of the sensor.

In order to quantify the topological correlation between centroids of consecutive
frames, we applied the following procedure. Given a frame f , we evaluated the dis-
tances dfintra between closest neighboring centroids, and its average 〈dfintra〉. Then by
transferring the centroid coordinates of this frame to the next one, f + 1, we evalu-
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3.3 Extraction rule: the lexicographic index

ated the average distance 〈df−f+1
inter 〉 between the centroids of the frame f and the closest

neighboring centroids belonging to the frame f + 1, see Figure 3.6.

The ratio
〈df−f+1
inter 〉
dfintra〉

is then plotted in Figure 3.7: considering the tri-dimensional

distribution, i.e. sensor area on more frames, one has that the ratios would be null,
if the centroid positions did not evolve in time. Moreover, if consecutive frames were
highly correlated, their coordinates would not feature a significant difference from to
frame. In other words, in presence of strong correlation the movement of each centroid

is lower than the typical distance between centroids and the ratios
〈df−f+1
inter 〉
dfintra〉

would attain

a value close to zero.

On the contrary, one can notice that the ratios are of the order of 1 or higher,
and when the number of centroids decreases in a transition f → f + 1, the ratio be-
comes greater than 1: this means that the relative positions between centroids changes
from frame to frame. The number of centroids varies as well: the increasing (decreas-
ing) trends in the plotted ratios, indicates that the spatial distribution becomes sparser
(denser), i.e. also the number of centroids fluctuates following the scintillation.

For what concerns the spatial uniformity, in Figure 3.8 a stacked plot of the centroid
distribution on the sensor active area is given, acquired at 12 fps. As one can notice, the
centroids spread homogeneously without avoiding any region of the detector (the white
removed areas are optical obstacles of the telescope pupil, where centroids do not fall
in).

3.3 Extraction rule: the lexicographic index

With the random variables corresponding to the centroids coordinate of every frame,
eventually we could implement the third stage in the logic scheme of a generator, i.e.
apply a rule to extract random numbers.

The CCD relevant pixels are labelled sequentially with an index s, s ∈ {1, . . . , N}
and the nf speckle centroids of the frame f are elaborated (for details on the centroid
extraction see Methods, subsection A). By considering then the pixels where a centroid
fall in, an ordered sequence Sf = {s1, s2, . . . , snf } with s1 < s2 < · · · < snf , can be
formed. In this way the pixel grid can be regarded as the classical collection of urns -
the pixel array - where the turbulence randomly throws in balls - the speckle centroids:
a given frame f “freezes” one Sf out of the

Tf =
N !

(N − nf )!nf !
(3.7)

possible and equally likely sequences of nf centroids. Among all of them, a given Sf can
be univocally identified with its lexicographic index I(Sf )

I(Sf ) =

nf∑

k=1

(
N − sk

nf − k + 1

)
(3.8)
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Figure 3.8: As the time flows, the speckle centroids fill homogeneously the sensor active
area. Blank areas correspond to optical obstacles in pupil of the telescope, which prevent
the light to be detected by the detector.

with 0 ≤ I(Sf ) ≤ Tf − 1. Basically, (3.8) enumerates all the possible arrangements
which succeed a given centroids configuration and the TRNG distillates randomness by
realizing the correspondence Sf ⇐⇒ I(Sf ). Indeed, as an uniform RNG is supposed
to yield numbers identically and independently distributed (i.i.d.) in a range [X,Y ], as
this method generates a random integer in the range [0, Tf − 1]. In order to obtain
formula (3.8) we need to enumerate the combination of nf balls contained in N urns.
The positions of the ball are identified with the integers s1 < s2 < · · · < snf . The

number of possible combinations is Tf =
(
N
nf

)
.

Let’s first calculate the number of combinations that precede the given combination.
This can be obtained by summing all the possible combinations in which the first ball
falls in the positions s′1 with s′1 < s1, namely

∑s1−1
m=1

(
N−m
nf−1

)
, plus all the combination

in which the first ball is in s1 and the second ball is in s′2 with s1 < s′2 < s2, namely∑s2−1
m=s1+1

(
N−m−1
nf−2

)
, plus all the combination in which the first ball is in s1, the second
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in s2 and the third ball is in s′3 with s2 < s′3 < s3 and so on. This number is given by

p(Sf ) =

nf−1∑

k=0

sk+1−1∑

m=sk+1

(
N −m

nf − k − 1

)
(3.9)

where we defined s0 = 0. From
∑n

k=0

(
k
j

)
=
(
n+1
j+1

)
, it can be shown that

∑sk+1−1
m=sk+1

(
N−m
nf−k−1

)
=

(
N−nk
nf−k

)
−
(N−nk+1+1

nf−k
)

so that p(Sf ) =
(
N
nf

)
−∑nf

k=1

(
N−sk
nf−k+1

)
− 1. The number of combi-

nation that succeed Sf can be easily computed by

I(Sf ) =

(
N

nf

)
− 1− p(Sf ) =

nf∑

k=1

(
N − sk

nf − k + 1

)
(3.10)

where 0 ≤ I(Sf ) < Tf . The number Tf − 1 represents then the upper bound to the
uniform distribution of arrangement indexes which can be obtained by all the possible
arrangements of nf centroids: the largest index, that is I(Sf ) = Tf−1, is obtained when
all the centroids occupy the first urns of the grid.

To be conveniently handled, a binary representation bIf of the random integers I(Sf )
must be given. The simpler choice is to transform the integer I(Sf ) in binary base,
obtaining a sequence with LTf = blog2 Tfc bits. However, only if Tf mod 2i = 0 for
i ∈ N, every frame f would theoretically provide strings LTf bits long. In general this
is not the case and hence, all the frames with log2 I(Sf ) ≥ LTf should be accordingly
discarded to avoid the so-called modulo bias. This issue, which clearly limits the rate
of generation, can be solved by adopting the encoding function E : bIf → E

[
bIf
]
≡ b′If

developed by P. Elias [83]. With this approach, a string longer than LTf is mapped into
a set of shorter sub-strings with equal probability of appearance. To convert the integer
I(Sf ), uniformly distributed in the interval [0, Tf −1], into an unbiased sequence of bits,
we may first consider the binary expansion of Tf

Tf = 2L + αL−1 · 2L−1 + · · ·+ α0 · 20 (3.11)

where L = blog2 Tfc and αk = 0, 1. Random bit strings are associated to I(Sf ) according
to the following rule: find the greatest m such that

I(Sf ) <

L∑

k=m

αk2
k (3.12)

and extract the first m bits of the binary expansion of I(Sf ). By this rule, when I(Sf ) <
2L, L bits can be extracted; when 2L ≤ I(Sf ) < 2L + αL−12L−1, L − 1 bits can be
extracted and so on; when I(Sf ) = Tf − 1 and α0 = 1 (namely when m = 0) no string is
assigned. It can be easily checked that this method, illustrated in Figure 3.9, produces
unbiased sequences of bits from integers uniformly distributed in the interval [0, Tf − 1].

This approach is optimal: the positions of nf centroids in N pixels can be seen as a
biased sequence of N bits, with nf ones and N − nf zeros. The content of randomness
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Figure 3.9: We report two sample frames, with the centroids of the brightest speckles
evaluated. It is worth to stress that for illustrative purposes the image has been simpli-
fied: in the real implementation centroids are evaluated on different intensity levels and
every cell corresponds to a pixel. To illustrate the method, let’s consider 20 urns (the
pixels) and 4 balls (the centroids) as in top figure. The total number of combinations
is T =

(
20
4

)
= 4845 with L = blog2 T c = 12. The ball positions are defined by the

sequence S ≡ {s1, s2, s3, s4} = {2, 9, 13, 19} that corresponds to the lexicographic index
I(S) = 3247. Since I(S) < 2L it can be expressed with L = 12 bits, i.e. the binary
expansion of I(S) “110010101111”, can be extracted from S. A similar procedure is used
for the bottom figure with 8 balls in 20 urns giving I(S) = 112477. We have L = 16 and
I(S) ≥ 2L: in this case less than 16 bits can be extracted. The method explained in the
main text allows to extract the sequence b′(I) = 11011101011101.

of this biased sequence is h2(q) = −q log2 q − (1 − q) log2(1 − q) with q =
nf
N . By the

Elias method it is possible to unbias the sequence in an optimal way: it can be shown

that the efficiency η =
〈Lb′ 〉
N , the ratio between the average length of b′If and N , reaches

the binary entropy h2(q) in the limit of large N , limN→∞ η = h2(q). In this way it has
been possible to preserve the i.i.d. hypothesis for the set [0, 1] maximizing the rate of
the extraction.

The combinatorial approach here introduced allows a general approach compared
to other techniques used to convert into random numbers the pixel coordinates of a
detector. For example, in [76], bi-dimensional random number arrays are obtained by
converting in bits the position of those active pixels whose thresholds were adjusted in
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order to get the desired bivariate random distribution when illuminated with an uniform
speckle pattern (i.e. to get an uniform distribution would be necessary to have half of the
pixels over threshold and half below). With respect to the direct conversion approach,
our method is more resilient, because by extracting the maximal entropy for a given
frame, we do not need to constantly adjust the detector thresholds in function of the
speckle pattern to get an uniform distribution of 0s and 1s.

By implementing the technique of the previous Section with different configurations
of masks and centroids, we were able to reach a maximum average rate of 17 kbit/frame
(with a grid of 891000 urns and an average of 1600 centroids per frame). Theoretically,
having used a frame rate of 25 frame/s this method could provide a rate of 420 kbit/s
using a similar camera and it could further increase by using a larger sensor. It is worth
to stress that, for the present proof of principle, the distillation of random bits has been
done off-line so one should consider the possibility of providing the image grabbing setup
with a dedicated hardware, e.g. FPGA, to extract the lexicographic index and apply the
Elias coding. Another point worth remarking is that the extraction speed is in any case
limited by the acquisition rate that has not to overcome the physical time scale of the
phenomenon, cfr. Section 3.2 in order to not introduce correlation between the images.

3.4 Analysis of the extracted bits

The analysis that has been done so far had a double purpose: on one hand we had the
necessity to study whether the physical process was suitable to generate randomness; on
the other hand, verified said suitability, it was necessary to find a method to handle the
random variables without spoiling the randomness, e.g. to fix opportunely the frame rate
or to not introduce digital bias. In the field of physical randomness generation, these are
the two methodological stages which attains to the a priori characterization the source
of entropy and the sampling of the source. More precisely, they define the so called
statistical model of the generator, i.e. the set of experimental and technical conditions
which should guarantee the generation of identically and independently distributed bits.

The last stage of the analysis consists then in checking whether the generated bits are
random or not. This is a sort of a posteriori characterization which is important to detect
deviations from the condition of i.i.d. bits. Typically, if the experimental conditions
required by the statistical model are matched during the generation, deviations can be
caused by the fact that the statistical model itself is wrong or incomplete, or they are
caused by hardware defects or software errors. In particular the latter cause is common
for TRNG exploiting e.g. electronic noise and the signal must be processed by several
devices.

Analysis is performed by applying the theory of hypothesis testing. We will briefly
introduce here, the rationale behind statistical test of randomness. Fundamentally, a test
studies a given property of a bit string and it evaluates if this property is compatible
with the hypothesis that the analyzed string is random. More precisely, by applying a
test on a set of random variable, e.g. bits, another random variable T with outcome τ ,
the so-called test statistic is obtained.
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According to a given test, T follows a given probability distribution. For example,
if one wants to check whether the 0s and 1s are identically distributed in a n bit long
string, i.e. P (bi = 0) = P (bi = 1) with i = 1, . . . , n, a frequency test can be applied:

let’s define τfreq = (n0−n1)2

n , then Tfreq is distributed according the χ2 distribution with
one degree of freedom. Consequently, the outcome of a test of randomness is not a
yes/no response but a probability value, the so called p-value P. Namely, the P is the
probability to obtain a test statistic τ ′ equal or worse, i.e. more extreme, with respect
to the one observed τ , given the i.i.d. hypothesis holding true.

More formally, if we consider the frequency test Pfreq = P (Tfreq = τ ′freq ≥ τfreq):
for example τfreq = 3.481 then one obtains Pfreq = P (τ ′freq ≥ 3.841) = 0.05. If the
i.i.d holds true, then one is expected to have a τfreq < 3.841 for the 95% of the tested
strings. The lower the p-value, the lower the probability that an ideal RNG yields the
same or a worse result: so for a given string, the i.i.d. hypothesis is rejected if it is
very unlikely to get the same result if the bits are i.i.d.. For what concerns RNG tests,
unlike results are typically considered those ones yielding P < 0.01 or P < 0.001, i.e.
for P ≥ 0.01 and P ≥ 0.001 the i.i.d. hypothesis is not rejected with a confidence level
of 99% and 99.9% respectively. However because there are probabilities of α = 0.01 and
α = 0.001 respectively of an erroneous rejection of the hypothesis (the so called error of
type 1)1 for a correct application of a test one should apply it on an enough large set
of string, e.g. for a significance level α = 0.01 one is expected to obtain a test statistic
with P < 0.01 roughly once every 100 strings tested. In the following analysis, for a
given level of confidence, we will say that a test is passed if the i.i.d. hypothesis is not
rejected, otherwise we will say that the test is not passed.

It is worth specifying that do not exist tests for all the possible deviation from the
condition of i.i.d.: for example a 2000 bit string having the first 1000 bits equals to 0s
and the remaining bits equal to 1s, would pass a frequency test but it would not pass
e.g. a 4 bit serial test, which check the uniform distribution of all the words with four
bits.

The common procedure to test a generator, it is then to carry out several tests in
order to check different features. We applied this method to the numbers generated by
joining strings obtained from the frames. The test strategy was then to use software
suites of statistical tests which cover many possible issues random numbers can have.
However before employing the large suites, in order to have a first feedback on the quality
of the numbers we run on the strings some tests which are generally failed by TRNG, as
consequence of hardware defects or wrong coding. Indeed for a TRNG it is more likely to
fail those tests regarding low-level bit problem as frequency tests or the autocorrelation
test, rather than those tests regarding the non uniformity in multidimensional spaces,
typical issues of PRNGs. The theory of these tests is reviewed in Appendix C. In the
following they will be briefly introduced in order to illustrate the preliminary results.

As first result of the statistical analysis, we present the outcomes of two tests, the
frequency and the autocorrelation test respectively [84]. While, the frequency test checks

1it is worth notice that when a the limits for the p-values are very low, there are chances to accept
the hypothesis also for strings that are not i.i.d.
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the uniformity of the single bit words, the autocorrelation test is of particular importance
in order to verify whether the bits features some dependencies from the neighboring bits
up to 64 positions.

The results of both the tests are reported in the first two rows of Table 3.1. From the
frames we extracted and analysed 1483 strings 20 000 bits long (this string size has been
selected for two main reasons: the first one in order to have a string sample large enough
to comply the significance level both α = 0.01 (at least 100 elements) and α = 0.001 (at
least 1 000). The second reason is because this string size is commonly used in standard
tests suits such as FIPS-140-1 and AIS31, cfr. ??, such that by passing or failing the
above tests helps to understand the odds to pass also deeper statistical tests). The
total number of test statistics obtained is reported in the second column of Table 3.1,
while in the third and in the fourth columns there is the number of tests statistics which
not passed with confidence level of 99% and 99.9% respectively. For a given level of
confidence the value between parenthesis is the critical tolerable number of failure: as
one can see the number of strings which not passed the tests are inside the critical limits,
confirming the uniformity and the absence of correlations of the numbers.

The second type of tests we applied are the so-called serial tests: the feature checked
is the uniform distribution of multi-bits words, i.e. 2-bits, 2-bits overlapped and three
3-bits words. The aim of these tests is to verify whether the generator is distributing
with the same probability not only the single bits but also the different patterns e.g. 00,
000, 01, etc.. Practically the strings are the divided into groups of two or three bits and
the relative frequencies are evaluated. In particular the 2-bits overlapped test check also
the uniform distribution of the possible choices: e.g. given the pair bibi+101, is evaluated
the probability to get bi+1bi+2 = 10 or bi+1bi+2 = 11. The results are reported in the last
three rows of Table 3.1 and also in this case the number of failures is inside the limits.

Test Statistics P < 0.01 P < 0.001

Autocorrelation Test 94912 921 (1042) 80 (124)
Frequency test 1483 20 (26) 1 (5)

Serial 2 bits 1483 18 (26) 1 (5)
Serial 2 bits over. 1483 17 (26) 1 (5)

Serial 3 bits 1483 17 (26) 1 (5)

Table 3.1: In table, for every test (first column) the overall number of tests statistics
(second column) obtained from videos recorded in different conditions are reported. The
number of failures are listed in the third and fourth columns. These numbers can be
compared with the theoretical number of failures (inside the parentheses) which are
expected when the i.i.d. hypothesis hold true. As it can be seen for all the tests the
failures are inside the limits both for the 99% and 99.9% confidence levels.

It is interesting to consider the results of the 8-bits serial test, i.e. the test which
evaluates the uniform distribution of bytes. A visual evidence that an overall uniformity
is preserved during the whole acquisition time, it is given in Figure 3.10 where the
distribution of 1.4 · 106 bytes obtained from a 671 frames video sample is plotted. If
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Figure 3.10: (Left) The histogram represents the relative frequencies of byte occurrences,
obtained from 1.4 · 106 bytes corresponding to 671 fraes. The distribution is uniform, as
demonstrated by the chi-square test on the frequency giving a P-val = 0.77. (Right)
Zoom of the histogram: the frequencies randomly distribute at the sides of the expected
mean value (green line). Furthermore, the maximal byte frequency (corresponding to
the byte 216) it is fully compatible with its expected value fM (red solid line) and the
±σ limits (red dashed lines).

the bytes were used for cryptographic purposes, it is meaningful to consider the binary
min-entropy hmin = maxi[− log2(pi)] where pi is the measured appearance probability
of the byte i ∈ [0, 255]. A value of h′min = 7.936 bits per byte has been measured
and this is compatible with the expected min-entropy for a sample of that size, that is
Hmin = 7.946± 0.007. This experimental value is thus in agreement with the expected
value from the theoretical prediction on uniform distribution, assessing an eavesdropper
has no advantage with respect to random guessing (see Appendix A for a derivation of
the expected min-entropy Hmin).

The numbers were tested to cover other possible issue with three state-of-the-art
batteries of tests which are presented in Appendix B. The suites were selected because
the tests that implement are a particularly suited to detect defective in physical TRNG.
The results on the bit strings are presented in Table C.1. The parameters of the tests were
tailored for the bit length of the strings in order to make the tests effective. Problems
were not detected being all the results outside the critical limits of P-val ≤ 10−3 or
P-val ≥ 0.990. From this analysis, where the more stringent and effective tests were
applied and passed, the i.i.d. hypothesis resulted confirmed and strengthened.
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3.5 Conclusions

As pointed out above, we are here addressing the two issues of introducing a method to
extract good random numbers from random images and of generating these images from
light propagating through the atmosphere. In particular, we exploited the propagation
of the light over 143km of turbulent atmosphere, giving rise to random speckle patterns
at the receiver. The advantages of the method above presented in comparison with other
TRNG resides in exploiting a good entropy source and in an efficient method to convert
this entropy in a string of random bits. Indeed, when the conditions for strong optical
turbulence are met, the scintillation images are resulting from a process that cannot
be predicted, providing to a significant amount of entropy that may be extracted. In
particular, the analytical models that are presently known to describe the dynamic of
a turbulent fluid are not able to provide the evolution of the instantaneous intensity
distribution. Moreover, if such models will be conceived, it is very presumable that they
would require an extreme computational power to model the outcome of the propagation
and still, according to the principle of the underlying nonlinear dynamics, maintaining
the peculiar sensitivity on the initial conditions.

Other types of generators rely on small scale chaotic processes, such as sampling of
laser intensity noise, but they must be carefully tuned in order to avoid the physical
system to end in periodic trajectories and predictable outputs during the operation [88].
In particular, we can compare our method with the one proposed in [89] and realized
in [90] where random numbers are obtained by sampling a detector illuminated with
speckles produced by passing a laser beam between two rotating diffusers: such an
approach however, as stressed by the authors themselves, could lead to periodicity due
to the possibility that the same pattern repeats itself. Our TRNG is more resilient
because we can safely exclude any periodicity of the speckle pattern.

A further advantage in exploiting optical beam propagation in turbulence is the
fact that the physical process and the hardware are less prone to be influenced and
controlled by an attacker, as is the case of generators which operate at the noise level
limit. For example, generators based on measuring low amplitude voltage fluctuations in
a resistor caused by the electronic thermal noise, can be easily influenced by modifying
the environmental temperature [91].

We now give two examples of application of our method. Our method could be
directly applied in situations involving similar optical links, such as long range quantum
communication experiments that require the generation of random numbers [19, 92]. The
second case is to apply the method by reducing the scale of the generator. The problem is
then to individuate physical processes which can give rise to a speckle pattern randomly
evolving in time. Different techniques, such as the dynamic light scattering, exploit
speckle pattern analysis to infer a characterization of the diffusers, typically ranging
from turbid media to organic tissues [93, 94]. Such diffusers could be valid candidates
for the purpose of continuous random number generation. By illuminating a colloidal
suspension with a coherent light, random numbers could be extracted from the randomly
evolving speckle pattern caused by the Brownian motions of the particles [95].
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Concerning our extraction technique, the algorithm here devised can be applied to
any image from which it is possible to distill a spatial distribution of points. For example
the lexicographic algorithm could be easily embedded in device which have a camera as
mobile phones [96] (cleary it would be necessary to investigate the possibility of finding
a suitable kind of images to be taken with the phone camera from which i.i.d. random
variables can be obtained). As last point we want to stress that the data obtained passed
the most sensitive tests for TRNGs. The fact that here the randomness is generated
without the need of any post-processing technique demonstrates the effectiveness of the
present method.

50



Chapter 4

State of the art about true
quantum randomness

In the following a brief introduction to the field of quantum random number generator
(QRNG) will be given. The purpose of this introduction is to present the state of the
art in order to understand the contribute brought by this work.

Quantum Mechanics has been always regarded as the ultimate source of true ran-
domness because of its intrinsic probabilistic nature. A random number generator based
on Classic Physics indeed could be intended as a deterministic generator where the al-
gorithm corresponds to the equations of motion and the seed corresponds to the initial
conditions of the degrees of freedom. Fundamentally, when Newtonian Physics is in-
volved, variables associated to the physical processes appear “random” because of the
ignorance about the system. This point can be illustrated by citing the words of P.S.
Laplace while describing in 1814 what would be later called Laplace’s Demon:

“We may regard the present state of the universe as the effect of its past
and the cause of its future. An intellect which at a certain moment would
know all the forces that set nature in motion, and all positions of all items of
which nature is composed, if this intellect were also vast enough to submit
these data to analysis, it would embrace in a single formula the movements of
the greatest bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the past would
be present before its eyes.”

(op. cit. P.S. Laplace, A Philosophical Essay on Probabilities, [97]).

The fact that quantum physical processes could have been a resource for the gen-
eration of random numbers has been clear since the 70s with the first concepts and
prototypes typically based on radioactive processes[98] [99] [100]. This kind of generator
never found a widespread use considered the difficulties in handling radioactive elements.
With the evolution of microelectronics, the interest shifted more towards noise of chaotic
origin, being easily embeddable in digital devices.
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4.1 Optical QRNGs

A true academic interest for QRNG started with the advent of the experimental QKD
implementations in the mid 1990s, when increased the need of true sources of randomness
for the choice of the polarization bases. The first theoretical work dates back to 1994,
where Rarity et al. [101] presented possibel designs of optical QRNGs. However only
in the year 2000, arrived the first experimental prototypes with the work of Jennewein
et al. [102] and Stefanov et al. [103], (see below). It was the beginning of what can be
defined the era of the optical QRNG, which we are going to briefly review.

In the last fifteen years quantum optical randomness was exploited in several paradigms.
Two main categories can be individuated both chronologically and physically. The first
prototypes to be introduced were based on discrete variables (DV-QRNG), i.e. they
process pulses corresponding to single photon detection. To the second category belong
continuous variables generators (CV-QRNG): introduced towards the end of 2000s, they
process fluctuating analog signals obtained by employing photodiodes rather then single
photon detector. This is a relevant point because photodiodes with respect to single pho-
ton detectors which are affected by dead time, feature larger bandwidth which enables
to reach generation rate of the order of Gbit/s compared to the Mbit/s of the discrete
variable QRNG.

4.1.1 Discrete Variables QRNG

This class of generator can be further divided into two sub-categories: the welcher-weg
(which way) generators and the time-interval generators.

Welcher-Weg QRNG. To this category belong those generators which exploit two
characteristic features of the quantum world: the indivisibility of the single quanta and
the outcome unpredictability of a pure state projected onto a non orthogonal subspace
with respect of the preparation one. The first two QRNGs already mentioned, [103] and
[102] were based on a scheme of [101]: the value 0 or 1 is associated to a bit according to
which way a photon takes after interacting with a beam splitter. At the two outputs of
the beam splitter are indeed placed single photon detectors whose clicks are electronically
processed to generate random strings.

The paradigm was implemented both with unpolarized photons in front of a 50:50
beam-splitter, and with diagonal polarized photons and a polarizing beam splitter, sep-
arating horizontal and vertical polarizations. In these two examples, photons were gen-
erated by attenuated light emitting diodes. In 2004 with the work of Hai-Qiang et al.
[104] single photons were generated by employing a parametric down conversion source,
with a photon of the entangled pair measured by a beamsplitter and the other heralding
the emission. Another generator based the photon polarization is the one presented by
Fiorentino et al. [105] which will be analyzed in the next Chapter.

Time-Interval QRNG: to this class of generator belong those devices which extract
random numbers on the time of arrival of photons. With respect to the previous class,
they usually employ just a single photon counter which simplifies the setup avoiding the
problem of unbalanced beam splitter or unbalanced detector with different efficiencies.
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An example is the one presented by Stipcevic et al. [106] where a Light Emitting
Diode (LED) sends photons directly on a single photon detector, then the time between
consecutive detections is measured. The way to do it consists in counting the number
of periodic pulses of an high speed quartz oscillator whose frequency is higher than
the rate of photon detections. In correspondence of every event the clock is stopped
and then restarted: a comparison rule is applied on adjacent intervals, so if the first
interval contains a number of clock pulses higher than the next one, a 0 is extracted,
otherwise a 1. In this way every three detections, a bit can be produced, with a rate
of 1 Mbit/s. A faster generator, 50 Mbit/s, is the one introduced in 2010 by Furst
et al. [107]: the source of randomness is again a LED which shines a single photon
detector. The LED is strongly attenuated in order to obtain Poissonian photon detection
distribution. The generator then continuously counts how many photons are detected
in a fixed time interval: if the number of detection is even, a bit 0 is emitted otherwise,
for an odd number, the output is a bit 1. Remarkably the generator does not feature
any post-processing stage. An even faster generator is the one of Wahl et al. [108].
The working principle of this generator is based also on the time statistical properties of
photon detections. In particular, the Poissonian probability distribution of the photon
detection process is characterized by an exponential distribution of the time intervals
between the detection events. Random bits are then obtained by converting in binary
digits the intervals registered between consecutive events. According the data sheet this
QRNG has a nominal rate of 150 Mbit/s. A post-processing stage is necessary in order
to remove bias inevitably introduced by the dead time of the the detectors.

4.1.2 Continuous Variables QRNG

Also this class of generators can be sub-divided into two sub-categories: the quadrature
generators and the optical noise generators. These generators are based on the sampling
of field gaussian state quadratures detected by with homodyne scheme: in 2010 was
realized the first QRNG based on this paradigm by Gabriel et al. [109]. The working
principle of these generators will be presented in Chapter 6. It is worth to stress that
the name continuous variable QRNG usually refers just to this kind of generator.

Optical Noise Generators: a wide set of generators belongs to this class which
where developed in the last recent years. To this class belong also the record for the
fastest generation rates (theoretical and real)1. We included these generator in the con-
tinuous variable class because, as for the quadrature generators, random numbers are
generated by sampling a current signal produced, in this case, by one or more photodi-
odes illuminated by an intensity varying laser signal. We are going to introduce some of
the most relevant examples, starting with the generators which employ the laser phase
noise. In 2010 Guo et al. [110] introduced a generator to generate the numbers by sam-
pling the intensity fluctuations of a VCSEL laser beam which passes through a kind of
Mach-Zender interferometer (MZI). In this configuration called, self-delayed homodine,

1Most of the time the analog to digital converter used to sample the signal have a limited amount
of memory, so the number must be extracted offline from a sampled and stored signal. The theoretical
rate is then the maximal rate achievable if it would be possible to run the generator continuously.
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the delay line of the interferometer is set in order to make the laser to interfere with
itself as consequence field phase fluctuations of quantum origin due to the spontaneous
emission of the photons. This generator was the first of this kind featured a generation
rate of 20 Mbit/s. Contemporarily, also Qi et al. [111] proposed a generator based on an
interferometric scheme, which was later improved in the 2012 by the same group [112],
with a phase noise from a distributed feedback laser (DFB). This generator has a rate
of 6 Gbit/s and notably, it features a sound analysis of the physical process. Besides
this generator feature a dedicated work by Ma et al. [113] featuring the correct post-
processing of the numbers. Another pair of works about the same generator, worth to
mention are by Jofre et al. [114] of 2011 and Abellan et al. [115] of 2014, where phase
fluctuations were obtained by interfering pulses with random phases from a high rate a
DFB laser. This QRNG features a remarkable rate of 43 Gb/s.

It is worth to stress that contemporarily to the presented prototypes, many setups
were proposed based on laser relaxation oscillations, e.g. [88][116][66][117]. However
these generators are commonly regarded as classical because the dynamic of the relax-
ations is chaotic, cfr. [115].

4.2 Device Independent Randomness protocols

The important point worth to stress is that typically in the QRNG of the previous
Section, randomness is handled classically, e.g. in [118]. Indeed, the raw random bits
generated after the direct measurement of a quantum process, more or less characterized,
are analyzed and post-processed as if the bits were extracted from a classical random
number generator. More specifically, the approach is to apply statistical tests of random-
ness and then, in case of failure, treat the bits with classical post-processing algorithms
until the tests were passed. Such post-processing techniques are aimed to remove bit
bias and correlations generally caused by a measuring hardware not properly calibrated
for the process (e.g. dead time of the detectors, too high sampling rate etc.). In some
cases, also for commercial quantum random number generators the employed technique
was still the one introduced by John Von Neumann at the dawn of Monte Carlo methods.
Besides that, it is worth specifying that does not exist any a posteriori test of randomness
which can establish the independent and identical distribution of the bits. Indeed, for
any test which assesses the uniformity of a given statistical feature, another test can be
conceived which can discover the lack of uniformity for another feature.

The drawback of this paradigm lies in the fact that if the purity of the state cannot be
enforced or if the post-processing techniques are not properly chosen, the quantumness
and its intrinsic unpredictability are lost and a QRNG could become comparable to a
classical random number generator, e.g. a dice or a coin.

A complete shift in the paradigm arrived with the work of R. Colbeck [119] which
introduced the basis for the development of devices independent randomness. In this
context, Quantum Theory itself is questioned, in the sense that one accounts for the
possibility of Quantum Mechanics to be a deterministic theory, numbers are certified to
be random only if one is able to rule out the Local Hidden Variables theories.
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In the early years of Quantum Mechanics, doubts were cast about its probabilis-
tic description of the Nature. More specifically, it was hypothesized that there could’ve
been some unknown parameter which, once discovered, could’ve explained the apparently
intrinsic randomness. Otherwise stated, Quantum Mechanics is a deterministic theory
which is explained in terms of probabilities only because there is lack of knowledge about
some hidden parameter. Theories which could provide a deterministic interpretation of
Quantum Mechanics are called local hidden variables theories. The existence of such
theories was questioned by John Bell who, in 1964, provided a tool to rule out hidden
variables from Quantum Mechanics. Indeed Bell proved that given a local causal struc-
ture of the space time, if hidden variables theories exist, then the correlations between
events separated by space-like intervals should satisfy a set of inequalities. However,
when two parties of a bipartite quantum system (e.g. two photons or two electrons) in
an entangled state of some degree of freedom (e.g. polarization or spin) are suitably
measured, the outcomes of such measurements feature non-local correlations which vi-
olate these inequalities. The violation then can be experimentally observed in presence
of quantum non-locality but it cannot be reproduced by hidden variable theories.

The theoretical framework comprehends a pair of black boxes that can receive two
inputs and emits two outputs: according within the DI framework, no assumption is
made on the internal working of the boxes and therefore one checks whether correlations
between input/output variable distributions can be explained in terms of non-locality.

In 2010 with a seminal experiment of Pironio et al. [120], numbers were certified
to be true after being generated in a setup where Bell inequality in the CHSH form
was violated by using trapped ions. In this experiment roughly 6000 raw random bits
were generated in a month. With a protocol based on the resolution of semi-definite
programming, which relates the amount of CHSH violation to the probability of guessing
correctly the output of the generator, the authors were able to distil 42 bits true, i.e.
non-deterministic, random bits.

This experiment paved the way to a series of theoretical works which were produced in
the following years. Indeed in this first experiment, a protocol of randomness expansion
was realized: to violate properly the Bell inequality, the inputs of the black boxes must
be select with a private seed of perfect random bits1. The generation rate is positive
because the seed is expanded quadratically and part of the new bits can be used to
determine the next choices for the inputs. However the protocol has the drawback that
in order to achieve Bell certified expansion, initial perfect randomness is needed2.

The turning point arrived in 2012 with the work of R. Colbeck and R. Renner [121]
who introduced a protocol for randomness amplification. The authors demonstrated
that by using chained Bell inequalities, true randomness can be obtained also if the
seed is not perfect in a given measure. Although amplification has not yet been proved
experimentally, this work represented a milestone having deep implications for what

1I the experiment was assumed also that the two black boxes were not interacting (although they
were not separated by a space-like interval)

2In the experiment, the seed was obtained by mixing together physical and pseudo-random numbers,
both deterministic sources
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concerns the problem of the free choice: for the first time a method was available the
generation of random variables that cannot be the result of any pre-determined scheme.
More specifically, numbers obtained applying this protocol would not be random only if
the whole Universe could be explained in terms of a super-deterministic theory.

In 2013 the amplification protocol was extended by Gallego et al. [122] in order to
make it possible to amplify any seed with an arbitrarily small, but not null, content of
randomness.

The argument of randomness expansion and amplification in the last two years gave
rise to many other works of the main theoretical groups not only of Quantum Information
Theory but also of Computer Science. However, the main issue with these protocols lies
in the fact that the experimental conditions and setups are extremely demanding. For
example, randomness amplification requires several black-boxes enforcing loophole free
Bell violations. But at present time none has been yet be able to violate Bell inequalities
with all the loophole closed. It is worth to mention that in 2013, the expansion protocol
was implemented again with super-efficient detector which made it possible to improve
by several orders of magnitude the generation rate [123].

4.3 New protocols to certify only quantum randomness

The benefit caused by these works, was that they brought attention to the problem
of randomness characterization under a quantum and post-quantum perspective, and
the possible degrees of ability an adversarial system can have in guessing correctly the
generator outcomes. In the last year, there has been a growing interest in finding methods
to certify randomness in a framework where Quantum Mechanics is assumed to hold.
Therefore no-locality experiments are not necessary and QRNG setup can be greatly
simplified. However, conversely to the first QRNGs, these protocols shield the generation
not only from classical noise but also from quantum side information.

In these new frameworks, true quantum randomness can be distilled if the QRNG
user is able to carefully quantify the percentage of bits which can be guessed by an
eavesdropper carrying out the best guessing strategy based on quantum side information,
i.e. the eavesdropper holds a quantum system correlated with the QRNG.

In the next Chapters we are going to present the protocols and the experimental
realization of QRNG where we exploited a quantum informational tool of recent discov-
ery, the entropic uncertainty principle in presence of quantum memories, to estimate the
amount of true quantum random bits extractable from a quantum process.
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Chapter 5

Secure quantum random bits
from the uncertainty principle

As explained in the previous Chapter, the typical issue with generators employing quan-
tum physical processes as source of randomness is that the question whether the numbers
are truly quantum unpredictable or not, is poorly addressed. In particular one has that
if the system is not prepared in a pure state or it has undergone a process of deco-
herence, it could be correlated with some other system, i.e. there could be some side
information available for the eavesdropping of the generator. More generally, if the state
of the system is mixed, one would get only unpredictable randomness in the quantum
sense, in the measure that system is pure. The remaining fraction of randomness can be
regarded as classical. In this Chapter then we will introduce a protocol of randomness
generation which distills only bits of quantum origin and secure against any classical or
quantum side information, and we will present also the results of an experiment where
we tested our protocol. In Section 5.1 the definition of true randomness, inherited by
the protocols of randomness amplification, will be introduced. Besides, we will show
that the correct randomness quantifier in presence of quantum side information is the
conditional min-entropy. In Section 5.2 the Quantum Informational tool that we used
for the estimation of conditional min-entropy, the entropic uncertainty principle, will be
presented. Examples of the application of the principle for randomness generation will
be given in in Section 5.3. The experiment we performed to test the validity of the new
method will be presented in Section 5.4 with the respective results. The final conclusions
will be given in Section 5.5.

5.1 Introduction

In a mathematical context, random numbers are associated to a variable X which is
independently and identically distributed. The requirement that X has to feature an
identical distribution catches the idea the outcomes x must have the same probabil-
ity of appearance. The requirement of independence is instead related to the idea of
unpredictability of a given x.
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Out of the works abut device independent randomness, a whole set of useful tools
can be exploited in order to define a formal consistent framework where to present our
results. Device independent protocols relate the certification of randomness with the
violation of Bell inequalities. A fundamental prerequisite is to assume the validity of the
no-signalling principle. Basically the no-signalling principle states that information can
not be transferred instantaneously and then this requirement set a local causal structure
for the evolution of the system one is considering. So, if non-local correlations are (truly)
observed but signalling is assumed, this implies a deterministic structure of reality. This
is the case of the Bohm theory where non-local correlations can be explained within a
full deterministic theory which does not admit randomness.

So, in this work

• we assume a local causal structure arising from relativistic space-time or even more
generally a causal structure where information cannot travel with an infinite speed;

• because non-local correlations are not involved, we assume the results of quantum
events not to be deterministically explained in terms of a Local Hidden Variable
theory.

The first requisite is necessary in order to give a definition of true randomness, the
second requisite is functional to the first one because no-signalling without non-locality
does not rule out LHV theories.

True Randomness. Given a causal space-time structure, the concept of true ran-
domness is linked to the one of causality by considering that a random variable X is
generated in a spatio-temporal frame of reference such that it is possible to associate
to X a space coordinate to its generation place and a time coordinate to its generation
instant. In this framework, a variable X is perfectly true random if it is uniformly dis-
tributed conditioned on any other variable which does not belong to the future light-cone
of X. In other words, one requires the variable X to be uncorrelated with any other
variable E which does not belong to the future of X. This can be formally expressed
by introducing the trace distance between two probability distribution PY and QY of a
random variable Y is defined as

D(PY , QY ) =
1

2

∑

y

|PY (y)−QY (y)| = 1

2
||PY −QY ||1 (5.1)

two probability distribution for Y are then indistinguishable if D(PY , QY ) = 0. By
considering the set E of the random variables inside the same causal structure of X
but outside its future light cone, and PX̄(x) = 1

|X| the uniform distribution on X, the
requirement for perfect randomness can be restated as

D(PX|E=E , PX̄) = 0 . (5.2)

Practically the probability distribution of X conditioned on some variable E must be
indistinguishable from PX̄ : this is the case when the X and E are independent such that
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the joint distribution PXE=E can be expressed just as product of the side distributions,
i.e.

D(PX|E=E , PX̄) =
1

2
||PXE=E − PE=E × PX ||1 = 0 . (5.3)

If the requirement of perfect true randomness is relaxed, one can introduce the concept
of ε-true randomness that is PX|E=E and PX̄ are indistinguishable to a small factor ε

D(PX|E=E , PX̄) =
1

2
||PXE=E − PE=E × PX ||1 = ε . (5.4)

This last case is of relevance because usually there is just the condition to obtain an
ε−true random variable from a generator and then one aims to reduce the distance, i.e.
to reduce ε to ε′ with ε′ < ε.

Quantum Random Number Generator Assumed the absence of LHV theories,
a generator of true random numbers can be realized in the following way: given a d-level
quantum system A prepared in a pure state ρA, the random variable Z is obtained by
measuring the state ρA with a d outcome measurement Z: each outcome z is obtained
with a given probability PZ(z), where PZ(z) = Tr[ZρA] is given by the Born rule. A
classical example is a qubit, a d = 2 system, prepared in the state ρA = |+〉〈+| and
measured with σZ , then one has that PZ(0) = PZ(1) = 1

2 . To the outcome of Z then
can be associated a classical binary variable, a bit. The extractable randomness from
the process of measuring a given quantum system can be quantified in terms of entropy.
In particular, a relevant quantity is the minimal amount of true random bits that can
be extracted per measurement, which correspond to the classical min-entropy

H∞(Z) = −max
z

[log2 PZ(z)] (5.5)

and practically it quantifies the minimal degree of uncertainty that one can have about
the outcome of a measurement. For the previous example, when H∞(Z) is evaluated on
the classical post-measurement state ρZ ≡

∑
z PZ(z)|z〉〈z| (where z has been encoded in

an orthonormal basis {|z〉}), one has H∞(Z) = 1 bit of uncertainty which corresponds
to the maximal amount possible for a binary quantum system. Under an operational
point of view, it turns out to be useful to introduce also the guessing probability defined
as

pguess(Z) = 2−H∞(Z) (5.6)

which restates the idea of the uncertainty in terms of the probability to correctly guess
the outcome of a quantum state measurement. Again for the previous example one has
that the probability to guess Z is given by pguess(Z) = 1

2 . The guessing probability gives
also a reason of the “max” in the min-entropy definition: an eavesdropper willing to
predict the outcome does need to devise any elaborate plan because to bet on the most
probable event the best guessing strategy.

In a realistic scenario however H∞(Z) does not represent an appropriate quantity to
measure the content of true random bits can be extracted from a quantum process. As
first example we think about a scenario where an user Alice uses a QRNG of the kind
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presented before, to generate cryptographic keys and an eavesdropper Eve aims to knows
them. In order to get the keys, Eve exploits some classical side information W . Eve could
have been correlated with the QRNG in the past: she stole it from Alice, she analyzed
it and discovered that the photon source emits a fixed amount of qubits polarized in
{|H〉, |V 〉} basis instead of {|+〉, |−〉}. Eve could be correlated in the present: she stole
it from Alice and she embedded on it a device to change remotely in the {|H〉, |V 〉} the
photon polarization. In this last case Eve balances perfectly the fraction of vertical and
horizontal polarized photons, i.e. she provides a state ρA = 1

2(|H〉〈H| + |V 〉〈V |). Alice
is unaware of the presence of Eve, so when measures the min-classical entropy she gets
H∞(Z) = 1 and she is induced to believe that her QRNG is fully unpredictable. However,
this result for Alice is completely misleading because thanks to the side information W ,
for Eve pguess = 1. A proper measure of entropy must take in account for the side
information and indeed this is the case of the min entropy of Z conditioned on W

H∞(Z|W ) = − log2

(∑

w

PW (w) max
z

[PZ|W=w(z|w)]

)
. (5.7)

In the example, when Eve prepares the state in the H (V ) polarization, Alice measures
it with certainty: PZ|W=w(0|0) = 1 (PZ|W=w(1|1) = 1); moreover Eve prepares the two

state with the same probability PW (w) = 1
2 : one easily derives that indeed H∞(Z|W ) =

0.
In the just introduced scenario we were dealing with W classical side information.

However it results convenient to consider the more general case of quantum side in-
formation. One can consider the case where Eve provides to Alice a QRNG with a
quantum backdoor: we suppose that Eve holds two entangled photons in the state
|Φ〉 = 1√

2
(|HH〉 + |V V 〉) and sends to Alice one of the two photons as the system she

uses for the randomness extraction. If Alice measures in the {|H〉, |V 〉} basis she obtains
a perfect random bit from the point of view of the classical min-entropy, since the two
outcomes, |H〉 and |V 〉, are equally probable. However, due to the correlations in the
|Φ〉 state, Eve knows perfectly the outputs of Alice’s measurements: the “random” bit
held by Alice can be predicted with certainty by Eve. Again, what prevents Alice to
extract true random bits is the fact that the variable Z is not independent from the
variable E outside its future light cone originated at the spatio-temporal coordinate of
the measurement.

In this work, the issue of how to extract the numbers in such a user unfavourable
framework is addressed. However, it is worth stressing that thanks to this scenario we
can provide a solution also for a problem much more common and, at the same time,
fundamentally relevant. This problem is the practical inability to produce (or to keep)
pure quantum states in a QRNG. Indeed in the previous example, by tracing out Eve,
Alice holds a completely mixed state, i.e. a state that being just an incoherent sum of pure
states corresponds to a classical state. However a general case can account for a partial
degree of purity. Typically, the quantum system A may have a quantum correlation
with a generic system E, which may, or may not, be possessed by an adversary. In
particular, we can regard to the system E as a purification of A which encompasses all

60



5.1 Introduction

the side information. This is relevant because in most of the cases, when the presence
of an eavesdropper can be ruled out, E can be identified with the purifying system
”environment”.

Generally, when a state has not rank 1, i.e. it is mixed, only ε−true random bits can
be generated. The bit remaining fraction features just an accidental randomness, i.e.
randomness due to the ignorance about some side degrees of freedom, as in a classical
framework. If Alice had access to the purification of her mixed state, she would not
experience any accidental randomness. In principle then, if an eavesdropper is able to
retrieve this side information from a system correlated (in a quantum or classical way)
with the generator, then he would be able to predict the remaining fraction of bits. In
the worst scenario, this purification is already hold by the Eve as in the example of
before.

If we admit the presence of quantum side information, we need to consider the
classical-quantum state Alice gets after the measurement. In detail, given E a generic
system quantum correlated with the system A and given Z a random variable which
takes values z with probabilities PZ(z), let ρzE the density operator on HE conditioned
to Z = z. The post-measurement state is then given by

ρZE ≡
∑

z

|z〉〈z| ⊗ ρzE . (5.8)

Analogously to the classical case, on the state ρZE one can evaluate the conditional
min-entropy Hmin(Z|E), which corresponds (a formal definition will be given later) the
probability of guessing Z having access to the quantum system E

pguess(Z|E) = 2−Hmin(Z|E) . (5.9)

For instance, in the previous example with the entangled state |Φ〉, pguess(Z|E) = 1:
the system of Alice does not allow the generation of true random numbers. In general
then, pguess depends on the degree of purity and the ability to find an optimal strategy
to exploit E. It becomes then fundamental to answer the question: is it still possible to
get true random numbers from a partially pure state? The answer is yes by introducing
into the quantum framework the quantum version of randomness extractors. In classical
cryptography, a randomness extractor is an algorithmic post-processing which is applied
to a set of not identically distributed random numbers with the purpose to reduce the
statistical distance between the probability distribution of such numbers and the uniform
one. Basically then if one has a string s of n not uniformly distributed random bits,
applying the extractor function f to s, one gets a string f(s) of length n′ < n. The
string f(s) is shorter than the input one, however it features truly random bits. More
specifically, by properly calibrating the function f one can get that an output distribution
which is arbitrarily close to the uniform one.

In recent years Renner et al. were demonstrated how these techniques can be ex-
tended to the case of random variables associated with some quantum side information.
The quantity Hmin(Z|E) becomes a tool of paramount importance because it allows to
properly set the randomness extractors. With a properly set randomness extractor one
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can make the bits ε close to the uniform also in presence of quantum side information.
The conditional min-entropy is indeed equivalent to the the number of uniformly
random bits that can be extracted using an optimal extraction strategy. This
can be easily seen considering an extracting function f which maps Z on a bit string f(Z)
with length l perfectly uniform conditioned on the side information E: the probability
to correctly guess f(Z) given E is pguess = 1/2l so we get

Hmin(f(Z)|E) = l

In terms of quantum states, the condition of independence can be expressed as

1

2

∥∥ρZE − ρZ̄ ⊗ ρE
∥∥

1
≤ ε ,

with ρX̄ = 1
|X| id is the fully mixed density operator on X and ‖ · ‖1 = tr(| · |) is the trace

norm.

According to [124] and [125] one then can demonstrate the Generalized Leftover Hash
Lemma: given the class F of the so-called two universal hash functions, i.e. functions
from Z to {0, 1}l with the property that given z and z′ the collision probability P (f(z) =
f(z′)) ≤ 1/2l and given a classical quantum state ρZE then

1

2

∥∥ρF (Z)EF − ρZ̄ ⊗ ρEF
∥∥

1
≤ 2−

1
2

(Hmin(Z|E)−`) = ε′ ,

where

ρF (Z)EF =
∑

f∈F

1

|F|ρf(Z)E ⊗ |f〉〈f | .

and where ρZ̄ is the fully mixed density operator on the space encoding {0, 1}`.
The neat result of this lemma is then that by picking uniformly and independently a

function f from the set F , e.g. a linear map with Toeplitz matrices, such that the output
string f(Z) has length l, then f(Z) is ε′ = 2

1
2

(l−H(Z|E)) truly random. The importance
of estimating H(Z|E) lies in the fact that it provides the length the final string f(X)
needs to have in order to be indistinguishable from a string generated by measuring a
state uncorrelated from E with probability at most ε′ < 1.

5.1.1 Estimating the Min-Conditional Entropy

We will present a method, based on the Uncertainty Principle (UP), to estimate the
conditional min-entropy and then the amount of true randomness that can be obtained
by a given source. We will show and experimentally test that, by measuring the system
in conjugate observables Z and X, it is possible to obtain the following bound on the
conditional min-entropy

Hmin(Z|E) ≥ log2 d−H1/2(X) , (5.10)
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where d is the dimension of the Hilbert space and H1/2(X) the max-entropy of X out-
comes (see below). The measurement Z is used to generate the random sequence Z,
while the measurement X is used to quantify the amount of true-randomness contained
in Z. In our protocol we do not use any assumption on the source ρA: an adversary,
called Eve can have full control on the source and the environment E. The bound
(5.10) is achieved by only assuming trusted measurements device, meaning that Eve has
no access to it and that the device performs a given POVM that are only sensitive to
a subspace of dimension d. To prevent the possibility that an adversary controls the
detection efficiency, as reported in quantum hacking against detectors [145, 146, 147],
it is necessary to monitor all detector parameters, such as bias voltage, current, and
temperature [148]. The advantage of the presented method resides on its simplicity:
no Bell inequality violation is required but it is only necessary to measure the system
in two conjugate bases. With an initial seed of true randomness, our protocol is able
to expand the randomness by taking into account all possible side quantum information
possessed by Eve. In particular, with the trusted measurement assumption, we do not
need to bound the dimension of the Hilbert space, but we only need that the POVM
span a subspace of dimension d of the whole Hilbert space. E.g., if the measurement
device performs a projection into {|H〉, |V 〉} basis, and the photons have other degrees
of freedom, such extra degrees of freedom are completely ignored by the device and the
effective Hilbert space is 2.

5.2 The Uncertainty Principle for randomness generation

In this section we derive our main result (5.10). We first start by reviewing the uncer-
tainty relation for min- and max- conditional entropies introduced in [149, 150, 151].

5.2.1 Uncertainty principle

Let’s consider three quantum systems A, B and E and ρABE a tripartite state. Define
Z and X as two POVMs on A with elements {M̂z} and {N̂x}, and random outcomes
Z and X encoded in two orthonormal bases {|z〉} and {|x〉}. Then, the uncertainty
principle is written as

Hmin(Z|E)ρ +Hmax(X|B)ρ ≥ q , (5.11)

where the min-entropy and max-entropy (see Appendix D.1 and [144] for min- and max-
entropy definition) are evaluated on the post-measurement states ρZE ≡

∑
z |z〉〈z| ⊗

TrAB[M̂zρABE ], ρXB ≡
∑

x |x〉〈x| ⊗ TrAE [N̂xρABE ] and

q ≡ log2

1

c
, c ≡ maxz,x‖

√
M̂z

√
N̂x‖2∞ . (5.12)

The parameter c represents the maximum “overlap” between the two POVMs and q
quantifies the “incompatibility” of the measurements. If M̂z and N̂x are projective
measurements corresponding to Mutually-Unbiased bases in dimension d, then c = 1

d .
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5.2.2 Proof of the bound

In a QRNG, Alice measures its system ρA by using a POVM measurement Z ≡ {M̂z}1.
The state ρA is in general correlated with an external system E such that ρA = TrE [ρAE ].
The possible outcomes of the POVM can be encoded in an orthonormal basis {|z〉A}, such
that the post-measurement state is ρZE ≡

∑
z |z〉〈z| ⊗TrA[M̂zρAE ] =

∑
z Pz|z〉〈z| ⊗ ρzE

with normalized ρzE . Eve’s knowledge about the possible outcomes of the Z measure-
ments is given by the min-entropy Hmin(Z|E), evaluated over ρZE . If Alice sometimes
measures her system with a different POVM X, the UP allows to bound the min-entropy
Hmin(Z|E) and then the guessing probability by eq. (5.9). In fact, by using eq. (5.11)
and by considering the system B as a trivial space, the uncertainty relation becomes
Hmin(Z|E) ≥ q −Hmax(X), where the max-entropy must be evaluated on the state ob-
tained by the X measurement, namely ρX ≡

∑
x px|x〉〈x|, with px = TrAE [N̂xρAE ]. In

this case Hmax(X) = 2 log2 Tr[
√
ρX ] (see Appendix D.1 and [144]), i.e. the max-entropy

is equal to H1/2(X), the Rényi entropy 2 of order 1/2 of the classical outcome X.

Our result can be summarized as follows: the conditional min-entropy of the Z
outputs can be bounded by using the Rényi entropy of order 1/2 of the X outputs,
namely

Hmin(Z|E) ≥ q −H1/2(X) . (5.13)

that reduces to (5.10) in case of conjugate observables in d dimensions. We would like
to point out that, thanks to the inequality H1/2(X) + H∞(Z) ≥ q derived by Maassen
and Uffink [152], the bound q −H1/2(X) is always lower than the classical min-entropy
H∞(Z) evaluated on the probabilities Pz.

5.3 UP-certified QRNG

Let’s now evaluate the bound in two particular cases. Let’s consider the Z POVM as
projective measurements in the computational basis, {|0〉, |1〉, · · · , |d − 1〉} and the X
measurement chosen as its discrete-Fourier transform |x〉 = 1√

d

∑d−1
z=0 e

i xz
2πd |z〉 for which

q = log2 d. If the system A is prepared in the state |ψ〉A = 1√
d

∑
z |z〉, then H1/2(X) = 0

and (5.13) bounds Hmin(Z|E) to the classical min-entropy H∞(Z) = log2 d. The random
variable Z is then uniformly distributed and independent from any adversary. However,
in practical implementations of a QRNG, it is impossible to prepare the system A in
a perfect pure state |ψ〉A. When the state ρA is not pure, the entropies H∞(Z) and
Hmin(Z|E) can be different. Our result is thus particularly effective with real sources
(that cannot generate pure states) since it bounds the effective achievable randomness
without requiring any assumption on them. Even if Eve has complete control on the
source ρA, the bound given in (5.13) evaluates the amount of true random bits that

1We employed POVMs to present our method in a general framework, but projective measurements
not only are more suited for practical applications but they permit to reach the maximum overlap
c ≡ maxz,x|〈x||z〉|2 [126].

2We recall that the Rényi entropy of order α is defined as Hα(X) = 1
1−α log2

∑d−1
x=0 p

α
x .
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FIG. 1. Scheme of the QRNG. The source of randomness
is the state ⇢A that can be correlated with a larger system
E. An initial perfect random seed of length t(m) is used to

switch between the {M̂z} and {N̂x} POVMs, from which the
random variables Z and X are extracted. The variable Z is
used to generate the random sequence, while the variable X is
used to evaluate how many true random bits can be extracted
by Z. Y represents the final true random sequence.

result correctly predicts that the guessing probability can
reach unity and so no true random bits can be extracted
in this case.

In order to exploit the result of eq. (6) it is necessary to
estimate the max-entropy of the source ⇢A = TrE [⇢AE ].
However, since the POVM {M̂z} and {N̂x} are incom-
patible, it is not possible to measure them at the same
time. We then need to switch randomly between M̂z and
N̂x during the random bit generation (see Figure 1). The
measurements are chosen by using a seed of true random-
ness that our method is able to expand. From this point
of view, our method can be seen as a random number
expansion protocol.

We now show that the number of random extracted
bits is greater than the required seed. Let m the to-
tal number of measurements. We decide that, over m,
the number of measurements in the POVM {N̂x} will be
nX = dpme, namely the probability of measuring in the
X basis is approximately 1p

m
. To randomly choose nX

among m measurements we need a number of bits given
by t(m) = dlog2

m!
nX !(m�nX)!e. This is the length of the

random seed required for our randomness expansion.

The probabilities of outcomes in the X basis are given
by px = TrA[N̂x⇢A] and the asymptotic lower bound of
the min-entropy is Hmin(Z|E) � q � H1/2(X). From
the experimental point of view we need to estimate the
max-Entropy H1/2(X) by using the nX outcomes. If we
denote by nx the number of outcomes such that X = x,
we can estimate the max-entropy by using the Bayesian

estimator defined in [20]

eH1/2({nx}) = 2 log2[
�(nX + d)

�(nX + d + 1
2 )

d�1X

x=0

�(nx + 3
2 )

�(nx + 1)
] .

(7)
The Bayesian estimator has a lower variance with respect

to the frequentist estimator eHf
1/2 = 2 log2[

Pd�1
x=0

q
nx

nX
].

Moreover, for low max-entropies, the frequentist estima-
tor has a negative bias that overestimates the bound on
the min-entropy.

Then, given m measurements, the number of extracted
random bits are the outputs of the Z measurement,
given by m � nX : due to the bound (6), at least
(m�nX)(q �H1/2(X)) are true random bits. If we sub-
tract the number of bits t(m) required for the seed, we
can estimate the random bits generation rate per mea-
surement as

er({nx}) =
bsec

m
, (8)

where bsec is the number of generated true random bits :

bsec = (m � nX)[q � eHmax({nx})] � t(m) . (9)

It is worth noticing that, in the infinite size limit m !
+1, the seed length is given by t(m) ⇠ p

m log2

p
m,

the estimator eH1/2({nx}) ⇠ H1/2(X), and the rate ap-
proaches the asymptotic limit

er ��! r(Z) = q � H1/2(X) . (10)

Since the number of extracted random bits are quadrat-
ically larger than the initial seed bits, the generator can
work in loop: an initial seed is expanded, and part of the
extracted randomness is fed as a new seed.

Experimental realization - We have experimentally
tested our method with two di↵erent random number
generators implemented by photon pairs generated in the
|HV i state by spontaneous parametric down conversion
(SPDC). See Methods for details about the source. The
first generator is a single qubit QRNG, operated by an
heralded single photon source: in our SPDC source, one
photon of the pair, measured in the |Hi state, is used
as trigger, while the second represents the signal. By
measuring the signal photon in the Z = {|+i, |�i} bases
and in the X = {|Hi, |V i} basis, we generate the random
variables Z and X. Here we denote with |±i the diagonal
polarization states 1

2 (|Hi ± |V i). The second generator
is a 4-level system (ququart) QRNG, represented by the
pair of photons. In this case the Z and X bases are re-
spectively given by {| + +i, | + �i, | � +i, | � �i} and
{|HV i, |V V i, |HHi, |V Hi}.

We first analyze the qubit QRNG. By choosing di↵er-
ent values of m we performed nX = dpme measurements
in the X basis and nZ = m � nX measurements in the
Z basis, obtaining the sequences X and Z. The two se-
quences are used to evaluate the classical max-entropy

Figure 5.1: Scheme of the QRNG. The source of randomness is the state ρA that can
be correlated with a larger system E. An initial perfect random seed of length t(m) is
used to switch between the {M̂z} and {N̂x} POVMs, from which the random variables
Z and X are extracted. The variable Z is used to generate the random sequence, while
the variable X is used to evaluate how many true random bits can be extracted by Z.
Y represents the final true random sequence.

can extracted from Z. This randomness has complete quantum origin and no side
information can be used to predict the generated random bits.

Another important example is represented by the system described in the introduc-
tion: Eve sends to Alice one photon of a two-photon maximally entangled state, and
thus can perfectly predict the outputs of Alice’s measurements. In this case, Alice holds
a completely mixed state ρA = 1

2 Id2 and the max-entropy is H1/2(X) = 1. Thanks to
eq. (5.13) and (5.9), the bound on the min-entropy becomes trivial, Hmin(Z|E) ≥ 0 and
pguess(Z|E) ≤ 1: our result correctly predicts that the guessing probability can reach
unity and so no true random bits can be extracted in this case.

In order to exploit the result of eq. (5.13) it is necessary to estimate the max-
entropy of the source ρA = TrE [ρAE ]. However, since the POVM {M̂z} and {N̂x} are
incompatible, it is not possible to measure them at the same time. We then need to
switch randomly between M̂z and N̂x during the random bit generation (see Figure 5.1).
The measurements are chosen by using a seed of true randomness that our method is
able to expand. From this point of view, our method can be seen as a random number
expansion protocol.

We now show that the number of random extracted bits is greater than the required
seed. Let m the total number of runs. We decide that, over m, the number of runs in
the POVM {N̂x} will be nX = d√me, such that the probability of measuring in the X
basis is approximately 1√

m
. To randomly choose nX among m runs we need a number of

bits given by t(m) = dlog2
m!

nX !(m−nX)!e. This is the length of the random seed required
for the randomness expansion.

The probabilities of outcomes in the X basis are given by px = TrA[N̂xρA] and the
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asymptotic lower bound of the min-entropy is Hmin(Z|E) ≥ q − H1/2(X). From the
experimental point of view we need to estimate the max-Entropy H1/2(X) by using
the nX outcomes. If we denote by nx the number of outcomes such that X = x, we
can estimate the max-entropy by using the Bayesian estimator defined in [153] (with a
uniform prior distribution):

H̃1/2({nx}) = 2 log2[
Γ(nX + d)

Γ(nX + d+ 1
2)

d−1∑

x=0

Γ(nx + 3
2)

Γ(nx + 1)
] . (5.14)

The Bayesian estimator has a lower variance with respect to the frequentist estimator

H̃f
1/2 = 2 log2[

∑d−1
x=0

√
nx
nX

]. Moreover, for low max-entropies, the frequentist estimator

has a negative bias that overestimates the bound on the min-entropy.
Then, given m runs, the number of extracted random bits are the outputs of the Z

measurement, given by m−nX : due to the bound (5.13), at least (m−nX)(q−H1/2(X))
are true random bits. If we subtract the number of bits t(m) required for the seed, we
can estimate the random bits generation rate per measurement as

r̃({nx}) =
bsec

m
, (5.15)

where bsec is the number of generated true random bits :

bsec = (m− nX)[q − H̃max({nx})]− t(m) . (5.16)

It is worth noticing that, in the infinite size limit m → +∞, the seed length is given
by t(m) ∼ √m log2

√
m, the estimator H̃1/2({nx}) ∼ H1/2(X), and the rate approaches

the asymptotic limit r̃ −−→ r(Z) = q −H1/2(X). Since the number of extracted random
bits are quadratically larger than the initial seed bits, the generator can work in loop:
an initial seed is expanded and part of the extracted randomness is fed as a new seed.

5.4 Experimental realization

We wanted to give a proof of principle of the protocol with an experiment aimed to
demonstrate how the min-classical entropy is an inaccurate over-estimator the QRNG
randomness also for an optimized source of state in a controlled environment as a lab-
oratory. On the contrary the min-conditional entropy yields the correct estimation of
the true extractable random bits. It is worth to stress in a practical scenario, with a
QRNG realized in a compact device one has indeed to cope with an unavoidable amount
of preparation noise which arises not only from the non-ideality of the optical elements
used but also from the environment itself and the aging of the system.

5.4.1 Photon source

Photons used in experimental demonstration of the method were generated by sponta-
neous parametric down conversion (SPDC), as illustrated in Figure 5.2.
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Figure 5.2: (Color online) Scheme of the experimental setup generating the SPDC
photons. TDC=Time to digital converter; SPAD=single-photon avalanche diode;
PBS=polarizing beam splitter, λ/2=waveplates.

To generate the states we used a source of photon pairs generated by spontaneous
parametric down conversion (SPDC). We used a laser Coherent MIRA-HP with λ =
808 nm with pulse width of 130 fs and repetition rate of 76 MHz shining a BIBO crystal
for second harmonic generation at 404 nm. Then beam is then focused on a nonlinear
BBO crystal where pairs of photons are probabilistically emitted over two correlated
directions (channels). The bi-photon system features entanglement in polarization and

the BBO crystal is oriented in order to have a state |Ψ±〉 = |HV 〉±|V H〉√
2

, with |H〉 and

|V 〉 the horizontal and vertical polarized photon respectively (in the setup we have also
walk-off crystals in order to have time uncertainty and correct the relative phase).

In Figure 5.3, the results of a typical tomography for an optimized state the density
matrix |Ψ−〉 is reported, with an high fidelity of 0.975 and a purity of 0.962. The typical
coincidence rate for this source is of ≈ 3.5− 4 kHz.

It is worth stressing that for the experiment the entangled state was just the pre-
preparation stage. The entanglement was indeed destroyed when the photons were pre-
pared in a given polarization. Indeed, the advantage of using a bi-photonic system is
that we could easily test also the generator based on a 4 dimensional space, ququart. In
the two channels we placed a vertical and a horizontal polarizers respectively, in order
to generate the product state |HV 〉. The part up to the polarizers then can be regarded
as the preparation stage. The measure stage, was realized by collocating half-wave plates
λ/2 and polarizing beam-splitters (PBS) in both channels. The beam -plitters were
then coupled to fibers which brought the signals to the single photon detectors Exceli-
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Figure 5.3: Typical plot for the real and imaginary part for the density matrix of |Ψ−〉

tas. The detection signals were delivered to a time-to-digital converter (TDC) QuTools
QUTAU which allowed to store in a PC the time tags of the coincidence events.

As first try however, we implemented a qubit generator employing just one photon,
i.e. we used the pair as an heralded single photon source. The photon in |V 〉 basis
represented the signal, i.e.the state used to extract the random bits, while the photon
in the |H〉 state was used as trigger: with its detection heralded the presence of the |V 〉
photon.

The switching between the measurement basis Z and the check basis X was done
by manually operating the half-wave plates. More specifically, by measuring the signal
photon in the Z = {|+〉, |−〉} and X = {|H〉, |V 〉} bases, we generate the random variables
Z and X. Here we denote with |±〉 the diagonal polarization states 1√

2
(|H〉±|V 〉). From

the measurements in Z basis the random bits 0 and 1 were extracted and, in the ideal
case, expected to be in the same percentage (50:50). Instead from the measurements
in X basis it was expected to have detections only for the state |V 〉. The results of the
runs for the qubit are presented in Table 5.1. As one can see the state is not completely
pure, and the max-entropy evaluated on the data of the check basis let us to properly
estimate the true amount of random bits (see below).

Qubit (prepared in |V 〉)
Z (random basis) X (check basis)
P0 P1 PV PH

0.5020 0.4980 0.9973 0.0027

Table 5.1: The results for both the check and random bases for the qubit prepared in
the state in |V 〉. As one can see the s

The second generator was a 4-level system (ququart) QRNG, represented by the
whole pair of photons. In this case the Z and X bases are respectively given by {| +
+〉, |+−〉, |−+〉, |−−〉} and {|HV 〉, |V V 〉, |HH〉, |V H〉}. In Table 5.2 the values obtained
from the measurements are reported. As for the qubit, also the ququart presented some
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mixedness which caused a reduction of the percentage of true random bits extractable
per run, with respect to the simple classical min-entropy (evaluated on the random
basis).

Ququart (prepared in |HV 〉)
Z (random basis) X (check basis)

P00 P01 P10 P11 PHH PHV PV H PV V

0.2527 0.2412 0.2608 0.2453 0.00359 0.9937 0.00266 0.00005

Table 5.2: Results for the measurements of the ququart QRNG.

Concerning the rate of raw bits extraction, the source has a coincidence rate of 12
kHz: this rate was achieved by using multi-mode fibers in order to reduce the time
required to collect a reasonable amount of data to be tested effectively by the suite
test. It is worth stressing that the use of multimode fibers do not represent an issue
for what concerns side information: the detectors indeed are not sensitive to the spatial
mode. Besides we would like to point out that we were not interested in the speed of
the generator, but on the demonstration of the method here presented. However, it is
worth noticing that sources producing photon pairs at the rate of few MHz are currently
available [156, 157] (e.g. Sagnac sources).

5.4.2 Analysis of the results

We first analyze the qubit QRNG. By choosing different values of m we performed
nX = d√me measurements in the X basis and nZ = m − nX measurements in the Z
basis, obtaining the sequences X and Z. The two sequences are used to estimate the
classical max-entropy H̃1/2({nx}) and the rate r̃({nx}). For each m, in figure 5.4 we
show the average rate r̃ and its standard deviation experimentally evaluated over 200
different X sequences of nX bits (see Section 5.4.3 for the rate achieved, for each m,
by a single X sequence of nX bits). The experimental rates can be compared with the
predicted average rate 〈r̃〉 =

∑
{nx}Π({nx})r̃({nx}), obtained by averaging r̃({nx}) over

the multinomial distribution Π({nx}) = nX !
n0!n1!···nd−1!p

n0
0 pn1

1 · · · p
nd−1

d−1 . We also show the

classical min-entropy H̃∞(Z) evaluated on a sequence Z with nZ bits. The figure shows
a very good agreement between the experimental result and the theoretical prediction. It
is worth noticing that at least m > 150 measurements are necessary to obtain a positive
rate r̃, while with just m ' 106 the rate is very close to the asymptotic bound r(Z).
The difference between H∞(Z) and r̃ corresponds to the possible knowledge that an
adversary holding the system E may have. The limit H∞(Z) is often and erroneously
taken as the amount of true randomness used to calibrate the extractor: in this way, even
if the output string appears statistically good, possible side information held by Eve is
not completely erased. In our experimental analysis, since we are mainly interested in
demonstrating the physical principles, we did not use active switches to change between
the two bases (we first measured the Z sequence and afterwards the X sequence). For
practical applications, however, the QRNG should contain an active switch controlled
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by the seed t(m).
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Figure 5.4: (Color online) Average experimental rate for the qubit QRNG. Blue circles
represent the experimental average rate r̃ of true random bits per measurement, while
the continuous red line is the theoretical prediction with ρX =

∑1
x=0 px|x〉〈x| where

p0 = 0.9973 and p1 = 0.0027. Shaded red area represents the theoretical standard
deviation of the rate, while gray rectangles show the experimental standard deviation
of the rate. Green crosses show the classical min-entropy estimated on the Z random
variable. The asymptotic limit H∞(Z) is evaluated on the state ρZ =

∑1
z=0 Pz|z〉〈z|

with P0 = 0.5020 and P1 = 0.4980.

In figure 5.5 the results for the ququart QRNG, are presented. Also in this case, for
each m, the average rate r̃ and its standard deviation are experimentally obtained by
200 different X sequences of nX(m) bits. Again, there is a very good agreement between
the experimental results and the theoretical predictions and a positive (average) rate is
obtained for m > 70. As before, for m ' 106 the rate is very close to the asymptotic
bound r(Z): thanks to the larger Hilbert space, we can asymptotically obtain 1.685
bits per measurement, that should be compared with the value 0.8437 achieved with the
qubit QRNG. Our method shows then to be resilient also increasing the dimension of the
system: once that the state is checked in the d dimensional preparation basis the ideal
content of true random bits, i.e. 2, is correctly scaled according the degree of purity of
the state.

For the complete proof of our protocol, we performed the extraction on a long random
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Figure 5.5: (Color online) Average experimental rate for the ququart QRNG. See figure
5.4 for notations. In this case ρX =

∑3
x=0 px|x〉〈x| with p0 = 0.9937, p1 = 0.00359,

p2 = 0.00266 and p3 = 1 − p0 − p1 − p2 and ρZ =
∑3

z=0 Pz|z〉〈z| with P0 = 0.2527,
P1 = 0.2412, P2 = 0.2608 and P3 = 0.2453.

sequence Z and the results are presented in Section 5.4.5.

5.4.3 Analysis of the random bit generation rate

In this section we show the experimental rate obtained with a single control X sequence
for the rate achieved with the qubit QRNG. We here recall that, given m measurement
on the state ρA, we obtained two classical X and Z sequences with nX and nZ bits
respectively, whose lengths are respectively given by nX = d√me and nZ = m − nX .
The state of the system A after the measurement is given by ρZ =

∑1
z=0 Pz|z〉〈z| or

ρX =
∑1

x=0 px|x〉〈x|, depending on the used POVM.

Given m, we would like to evaluate the ”single shot” rate r̃ given by:

r̃(n0, n1,m) = (m− nX)(1− H̃1/2(n0, n1))− t(m) , (5.17)

with n0 and n1 the number of 0’s and 1’s in the X sequence.

For the single qubit QRNG, since n0 + n1 = nX , the single shot rate is function of
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only m and n1:

r̃(n1,m) =(m− nX)

{
1− 2 log2[

Γ(nX + 2)

Γ(nX + 5
2)

]

−2 log2[
Γ(nX − n1 + 3

2)

Γ(nX − n1 + 1)
+

Γ(n1 + 3
2)

Γ(n1 + 1)
]

}

− dlog2

(
m

nX

)
e .

(5.18)

For different values of m we show in figure 5.6 the achieved rate: each point represents
the rate r̃ evaluated over a single X sequence of nX bits obtained by the measurement
in the X POVM. Each sequence is taken from a sample with the following property:

ρX =

1∑

x=0

px|x〉〈x| with p0 = 0.9973 , p1 = 0.0027. (5.19)

For perfect state preparation we would like to have p0 = 1 and p1 = 0: by this reason,
the number of 1 in the X sequence are defined as the ”number of errors” in the sequence.
The ”errors” can be caused by the presence of the eavesdropper, or by imperfections in
the preparation devices. Since p1 is very low, in Figure 5.6 it is possible to see that,
for m < 103, few sequences have 1 errors and the most have 0 errors. By increasing
m, the number of errors increases to follow the prediction n1 ∼ p1nX . For low m, the
possible rates are ”quantized”, since the rate is evaluated on integer values n0 and n1. In
figure 5.7 we show estimated max-entropy H̃1/2(X) in function of the number of errors
for the nX = 100 and nX = 1000 case. We also report the probability of obtaining n1

errors, given by Π(n1) =
(
nX
n1

)
pn0

0 pn1
1 . The figure shows that H̃1/2(X) has discrete values

corresponding to different values of n1.

5.4.4 Detailed comparison with Ref. [128]

Here we give a detailed comparison between our method and the result of Fiorentino et
al [128], where the conditional min-entropy of a qubit state is evaluated by measuring its
density matrix ρ = 1

2(Id +~r ·~σ) (σi’s are the Pauli matrices and ~r is a three-dimensional
vector such that |~r| ≤ 1). By extracting the random bits by measuring the qubit in
the computational basis Z = {|0〉, |1〉} such that rz = 〈0|ρ|0〉 − 〈1|ρ|1〉, the conditional

min-entropy was estimated to be Hmin(Z|E) = 1− log2(1 +
√

1− r2
x − r2

y) [128].

Our method estimates the min-entropy of the Z outcomes by measuring in the X =
{|±〉} basis giving the asymptotic bound of Hmin(Z|E) ≥ 1 − log2(1 +

√
1− r2

x). Our
result is a lower bound, since q −H1/2(X) = 1 − log2[1 +

√
1− r2

x]: the bound is tight
when ry = 0. If the state is pure, the result of [128] allows to achieve the upper limit
Hmin(Z|E) = H∞(Z). The advantage of our approach resides in the fact that it is not
necessary to measure the full density matrix but only measurements on two mutually-
unbiased basis. Indeed, in order to evaluate the density matrix, it is necessary to measure
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the system also in the X and Y = { 1√
2
(|0〉± i|1〉)} basis beside the basis chosen to obtain

the random sequence. Also in the case of [128], a random seed is needed to switch
between the tomography bases and the random sequence basis. As a final consideration,
the result of Fiorentino et al. applies only to qubit systems, while our result can be
applied to a general qudit systems, as we have demonstrated by analyzing the ququart
QRNG.

We now give a detailed comparison for finite m: let’s consider the following param-
eters rz = 0.9947 ± 0.001 and rx = 0.004 ± 0.002 corresponding to the experimental
measured parameter of our qubit QRNG. Since the norm of the vector ~r cannot be
greater that 1, it implies that |ry| ≤

√
1− r2

z − r2
x ≤ 0.1027 corresponding to a pu-

rity greater that Pmin = 0.9947. We recall that purity of the state ρ is defined as

P = Tr[ρ2] =
1+r2x+r2y+r2z

2 . The measurement in the Y basis will allow to determine the
ry parameter.

We performed the detailed comparison, in the finite m case (m is the total number of
measurements), between our method and Ref. [128]. To obtain a fair comparison we set
n∗X = n∗Y = d√m/2e as the number of measurements in the X and Y basis respectively
for the tomographic method of [128]. Then the number of measurements in the Z basis
is given by n∗Z = m− 2d√m/2e. From such measurements the rx and ry parameters are
estimated as (we used Bayesian estimators):

rx =
n0x − n1x

n0x + n1x + 2
ry =

n0y − n1y

n0y + n1y + 2
(5.20)

To randomly choose the X and Y measurements over the total number of measurements
m we need a number of bits given by t∗(m) = 2dlog2

m!
(2n∗X)!(m−2n∗X)!e.

In Fig. 5.9 we show the comparison between the two rates in case of perfect pure
state P = 1 and in the case of ry = 0, corresponding to P = 0.995: the figure show that
our results are slightly outperformed by the tomographic extractor only for high purity
states P > 0.995 and in the large m regime (m > 105). A maximum of 15% improvement
with respect to the results shown in Fig. 2 is expected if the generated state is pure
P = 1 and N > 108. However, to obtain such limited advantage, a complication in the
scheme, namely the measurement in the Y basis, is required.

5.4.5 Tests on the extracted random numbers

As a quantitative example for the complete proof of our method, we performed the
extraction on a long random sequence Z. For the qubit case we use a random sequence
Z of length nZ = 35.6·106 and a control sequenceX of length nX = 5967, requiring a seed
length t(m) = 83443. The estimated lower bound for the min-entropy is 1−H1/2(X) '
0.8437 giving an output random sequence Y of bsec ' 29.951 · 106 bits. For the qudit
case, we have nZ = 25.770 · 106 and nX = 5100 with a seed length t(m) = 70163.
The estimated lower bound for the min-entropy is 1.690, giving bsec ' 43.886 · 106 true
random bits. In both case, the initial Z strings are fed to an extractor by two-universal
hashing [158, 142] to obtain the Y strings.
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As we did in Chapter 3 we tested the strings with the most stringent tests [159] for
the statistical assessment of i.i.d. hypothesis for random bits. The results are presented
in Appendix : in Table E.1 and E.2 we report the results applied on the secure bits
extracted by measuring the qubit and the ququart respectively.

All the tests were passed, as expected when an extractor is properly calibrated with
the entropy. More specifically, the extractor is implemented by taking the matrix-vector
product (performed modulo 2 cfr. [142]) between strings n raw-bit long and a l × n
matrix of random bits1. To calibrate properly means that the ratio l/n is the same as
Hmin(Z|E)/ log2(d), i.e. the output strings have to be shorter than the input ones, in
proportion to content of randomness.

In order to make clear the contribute of this work, it is important to consider that
also calibrating the extractor using the classical min entropy lets one to pass all the
statistical tests. However those extra bits that Alice obtains with respect to the use
of the conditional min-entropy, could be in possess of Eve. In other words, the use of
statistical tests does not give information about the true content of randomness of the
numbers produced by a QRNG.

5.5 Conclusions

We provided a bound, given by equation (5.13), to directly compute the conditional min-
entropy Hmin(Z|E) of the random variable Z, by using the classical random variable X.
The variables Z and X are obtained by measuring the system in two mutually unbiased
bases. Hmin(Z|E) represents the amount of true randomness that can be extracted from
Z. No assumption is made on the source and/or the dimension of Hilbert space. Our
result is based on the fact the measurement device is trusted: we assumed that the
measurement system (waveplates and PBSs) works properly and the detector efficiency
is not dependent on the input state or on an external control. In order that detection
system is only sensitive to a well known and characterized finite dimensional subspace
of the total Hilbert space, photon number resolving detectors or the squashing model of
QKD [154, 155] can be implemented. It is important to stress that if the source does not
generate a perfect pure state (and this always happens in experimental realizations), the
randomness extracted by standard methods, namely by measuring the system in a single
basis, is not a true randomness: an eavesdropper can have (partial or full) information
about the generated random bits. We have also tested our bound with a qubit and a
ququart QRNG with good agreement between theory and experiment.

Our method can be extended by taking into account possible imperfections in the
measurement device, as illustrated in [142]. We believe that our method can be very
useful for the extraction of true randomness and can be applied in the framework of
practical high-speed QRNG [132, 134], since it guarantees protection against quantum
side information without the need of complex Bell violation experiment.

1For purpose of demonstration we used random matrix obtained by our software of analysis. In reality
how these matrix should be chosen and embed in a generator is matter of discussion. The important
point is however that the matrix can be chosen once and then used for all the bits [142].
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On this respect the whole UP protocol might be regarded as a dynamic quantum
extractor. Indeed, the typical scenario of QRNG use, as required by the certification
institutions such as the German BSI, one has to continuously or periodically check
if the physical source is emitting the so-called raw-random numbers with a degree of
independence and uniformity which would lead to the passing of statistical tests once
a given extractor is applied on them. On one hand, this approach is dynamic because
it evaluates in real time the goodness of the numbers and it varies on feedback the
parameters of the extractors in order to get more entropy or to eventually stop the
generator, but on the other hand it is not quantum because it is not able to identify the
origin of the randomness coming from the physical source.
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Figure 5.6: (Color online) Experimental rate for the qubit RNG. Blu circles represents
the experimental rate r̃ of true random bits per measurement, while continuous red line
represent the theoretical average prediction with ρX =

∑1
x=0 px|x〉〈x| where p0 = 0.9973

and p1 = 0.0027. Dashed lines represent the rate achieved with different number of
”errors” in the X sequence. Green crosses show the classical min-entropy estimated on
the Z random variable obtained from the state ρZ =

∑1
z=0 Pz|z〉〈z| with P0 = 0.5020

and P1 = 0.4980.
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Figure 5.7: (Color online) Extimated max-entropy H̃1/2(X) and error probability Π(n1).
Due to the low value of p1 = 0.0027, the Π(n1) is peaked around the low values of n1.
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Figure 5.8: (Color online) Comparison between the rate achievable by our bound (con-
tinuous blu line) and the rate achievable with the min-entropy estimation of Ref. [128]
(dotted green line) in the case of perfect pure state with purity P = 1.
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Figure 5.9: (Color online) Comparison between the rate achievable by our bound (con-
tinuous blu line) and the rate achievable with the min-entropy estimation of Ref. [128]
(dotted green line) in the case of slightly mixed state with purity P = 0.995.
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Chapter 6

Entropic Uncertainty Principle to
bound the randomness of a
Continuous Variable QRNG.

In the previous Chapter we showed how min-conditional entropy is a tool of paramount
importance in order to distil secure true random bits in presence of quantum side in-
formation. There the QRNG was based on a finite dimensional quantum system. In
this Chapter infinite dimensional quantum systems will be considered, i.e. we will work
on a continuous variable QRNG possibly quantum correlated with some other infinite
dimensional quantum system. The Chapter is structured as follows. In Section 6.1 we
will introduce the working scheme of a CV-QRNG based on Gaussian states of the elec-
tromagnetic field. In Section 6.2 the entropic uncertainty principle (EUP) for infinite
dimensional systems will presented: the CV-EUP is a very recent result of Quantum In-
formation Theory and it is the tool that let us to expand the results of previous Chapter
to the CV framework. In Section 6.2 we will adapt the principle to the case of secure
random number generation: in particular we will show how the fraction of true random
bits depends on the precision of the measurements and most importantly, we will ex-
plain how the EUP can be suitable for real CV-QRNG which are unavoidably affected
by electronic noise. In Section 6.4, the experimental realization of CV-QRNG will be
presented which let us the generate secure random bits at a rate of 5 Gbit/s. In Section
6.5 we will discuss the obtained results.

6.1 Introduction

A drawback of DV-QRNG working in the single photon regime is that they are limited
by the count rate of the single photon detectors which, at the present time, do not allow
to extract random numbers at a rate higher than tens of megabits per second. A way to
overcome this limit is by shifting the paradigm from discrete quantum variables, e.g. the
number of polarized photons which takes a given path in a beam-splitter, to continuous
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quantum variables, e.g. the quadrature amplitudes of the electromagnetic field modes.
CV-QRNGs are typically based on the process of measuring the quadrature fluctuations
of Gaussian states of the field. These quantum fluctuations are amplified by a strong
classical field, the so-called local oscillator, whose intensity is detected by photodiodes
in a homodyne scheme (see below). Photodiodes generate a current signal fluctuating
according the field quantum fluctuations. Random numbers are then generated by sam-
pling the difference current signal with an analog to digital converter (ADC). The key
point lies in the fact that the random signal has an infinite bandwidth and then can
be limited only by the bandwidth of the detectors. At present time, commercial pho-
todiodes feature operating bandwidths of tens of GHz. Therefore by combining large
bandwidth receivers with ultrafast ADC, generation rates of hundreds or Gigabit/s are
achievable.

The possibility to estimate the real entropy of a CV-QRNG is relevant because this
kind of generators seems to be a promising candidate

An N bosonic mode system corresponds to the N modes of a quantized electromag-
netic field. The Hilbert space of such a system is the tensor product H = ⊗Nk=1Fk where
Fk is an infinite dimensional Fock space spanned by a countable basis {|m〉k}m∈N, the
so-called Fock basis, where each |m〉k is an eigenstate of the number operator n̂ := â†â.
The operators â† and â associated to a bosonic mode are the so-called creation and
destruction operators respectively for which the commutation relation [â, â†] = 1 holds.
These operators are typically used to provide a quantization of a classical electromag-
netic field and indeed â is usually regarded as the quantized version of the field complex
amplitude. Starting from the creation and destruction operators, one can define the so-
called quadratures operators which correspond to in-phase and out-of-phase components
of the electric field amplitude of a mode q̂ = 2−

1
2 (â† + â) and p̂ = i(2)−

1
2 (â† − â) of the

electromagnetic field. A generic quadrature is expressed as q̂(ϕ) = 2−
1
2 (ei

ϕ
2 â† + e−i

ϕ
2 â):

note that p̂ = q̂(π). Practically the quadratures corresponds to real and imaginary part
of the complex amplitude â = 1/

√
2(q̂+ip̂). The quadrature operators are associated to

canonically conjugate observables because [q̂, p̂] = i, with ~ = 1. One then usually refers
to them as the momentum and position of field although they live in the complex phase
space, i.e. they do not measure the position and momentum of photons.

For position and momentum we have eigenvalues equations, q̂|q〉 = q|q〉 with q ∈
R and p̂|p〉 = p|p〉 with p ∈ R, where the sets of eigenvectors {|q〉}q∈R and {|p〉}p∈R
correspond to two mutually unbiased bases. This can be seen by considering that the
states belonging to the two bases are related by means of Fourier transforms

|q〉 =
1√
2π

∫
dpe−iqp |p〉 , |p〉 =

1√
2π

∫
dqeiqp |q〉 (6.1)

such that 〈q|p〉 = (2π)−1/2eiqp and so the condition for mutual unbiasedness |〈q|p〉|2 =
(2π)−1 holds. The eigenstates of the operators turn out to be useful to give momentum
and position representations of the field wave functions. In particular, for the wave
function corresponding to the lowest energy state of a mode and solution of the equation
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â|ψ0〉 = 0

ψ0(q) = 〈q|ψ0〉 = π−
1
4 e−q

2/2 (6.2)

ψ̃0(p) = 〈p|ψ0〉 = π−
1
4 e−p

2/2 (6.3)

By means of homodyne detection (see below), one collapses the wave functions into
some unpredictable quadrature eigenstate |p〉 or |q〉 (depending on whether momentum
of position is measured) relative to the eigenvalues p and q. Eigenvalues outcome are
random but do not have the same probability of being measured. Indeed, by taking
the modulus square of the wave functions one obtains that the outcome probability
distributions

P0(q) = |ψ0(q)|2 =
1√
π
e−q

2
(6.4)

P0(p) = |ψ0(q)|2 =
1√
π
e−p

2
(6.5)

are Gaussian functions. It is worth stressing that most of the experimental realizable
states of the electromagnetic field, e.g. coherent states (displaced vacuum states), ther-
mal states, squeezed states, etc., feature Gaussian probability distribution for their
quadrature outcome spectrum. It can be useful to introduce the Wigner functions
W (q, p), which correspond to quasi-probability distributions in the phase-space. Indeed
quadrature probability distributions can be derived as marginal probability distributions
of W (q, p). In particular, the vacuum state Wigner function one has

W0(q, p) = 1/π exp
(
−q2 − p2

)
(6.6)

such that P (q) =
∫ +∞
−∞ dpW0(q, p) and P (p) =

∫ +∞
−∞ dqW0(q, p).

Experimentally quadratures measurement are performed by means of homodyne de-
tection, according the scheme of Figure 6.1. A coherent electromagnetic field, the so
called local oscillator is mixed with the vacuum field entering from the unused port of a
50/50 beam-splitter. The local oscillator selects then one of the possible modes of the
vacuum field. With respect to the single photon DV approach, here the local oscillator
is intense such that it can be treated as a classical field with amplitude α = |α|eiθ,
playing the role of vacuum fluctuations amplifier. The mixed fields exiting from the
beamsplitter outputs are intercepted by a couple of large bandwidth photodiodes which
generate a current signal ∆I proportional to the light intensity hitting them. The two
currents are respectively subtracted, so that one is left with a signal whose fluctuations
are proportional to the quantum fluctuations of the field Fig.?? and in addition local
oscillator noise of classical origin, which would affect both the incoming beams, is in this
way eliminated.

In particular, if we label A and B the detectors intercepting the fields at the output
arms 3 and 4 respectively, we have that the output current of the setup is proportional
to the difference of photons numbers given by the homodyne measurement operator
∆̂ = n̂A − n̂B, where n̂A = â†3â3 and n̂B = â†4â4. By expressing the output operators in
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Detector A

Detector B

P(00) = 1/4

P(01) = 1/4
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P(11) = 1/4

Time

Current

Figure 6.1: Top: the basic scheme of a QRNG based on homodyne detection of the
vacuum state of the electromagnetic field is represented. Bottom: Because the out-
come probability of the quadrature measurement is a Gaussian function, outcomes do
not feature the same probability of appearance. In order then to make uniform such
probability, the range of the possible outcomes is divided into intervals with different
lengths in order that the integrated probability is equal.

function of the input ones and considering the local oscillator classically, explicitly one
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has

∆̂ = n̂A − n̂B (6.7)

=
1

2

(
(α∗ + â†1)(α+ â1)− (â†1 − α∗)(â1 − α)

)

=
1

2

(
(â†1α) + (â1α

∗)
)

=
1

2
|α|
(
â1e

iθ + â1e
−iθ
)

At this point it is easy to see that if the local oscillator is in- (out) phase, θ = 0
(θ = π/2), with the field entering at input 1 it is possible to measure its q (p) quadrature.
For example if θ = 0, and the input state at arm 1 is the vacuum, one will get a ∆I
proportional to ∆ =

√
2|α|q̂. Random numbers are then obtained by sampling with an

analog-digital converter (ADC) the ∆I signal. However, since the quadrature values are
normally distributed according equation (5.4) or (5.5), it is necessary to make equal the
appearance probability of every number. For this purpose, applying techniques from
CV-QKD [161], a post-processing algorithm splits in equal probability intervals the range
of possible current values, as in Fig. 6.1, and then outputs a given number according the
interval where the measured current value falls in. This approach for random number
generation was presented in [109] and for further details see [162].

6.2 The Entropic Uncertainty Principle for Continuous Vari-
ables systems

In the following, we will introduce and give a brief presentation of the main theoretical
tools necessary to understand the expansion of the EUP protocol to the CV framework.
In contrast with the discrete case, the authors of [163] give an algebraic approach required
fundamentally by the fact that one is dealing with states having an infinite number of
Bosonic modes: the reference objects are not the infinite dimensional Hilbert spaces but
the observables and their generated algebras. The main structures are then the Von
Neumann algebrasM which can be regarded as a full set of bounded linear operators on
a possibly infinite-dimensional Hilbert space: B(H)[164].

As in the discrete case, one has a multipartite system formed by three different quan-
tum subsystems A,B,C. To every subsystem a von Neumann algebra is associated, i.e.
MA,MB,MC acting on the same Hilbert space H and withMABC =MA∨MB ∨MC

the algebra of the composite system. The quantum state of the system is given ωABC
with ωABC ∈ MABC . In analogy with the discrete case, classical systems X,Z with
continuous degrees of freedom are used to encode the outcomes of the measurements
performed on the system A. In this framework one operates with continuous classi-
cal system, i.e. X = R. In general for a classical system, one introduces a proper
parametrization by considering the triplet (X,Σ, µ): X a measure space with σ-algebra
Σ, and measure µ. Formally then, according to the algebraic characterization, one has
that the von Neumann algebra is given by L∞(X) (that is the set of the essentially
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bounded functions) such that a classical state on X can be represented by the normal-
ized positive and normal functional on L∞(X). In particular, a classical state is given
by an element of L1(X) satisfying the condition

∫
X ωX(x)dµ(x) = 1, that is a classical

state can identified with a probability distribution on X.

A key concept of the EUP protocol are the post-measurement state one has after
the measurement on the system A and on which the entropies are evaluated. In [163],
according to the Heisenberg picture, measurements are regarded as maps on the ob-
servable algebra. More specifically one has that a measurement maps L∞(X) to a von
Neumann algebra MA, i.e. E : L∞(X) → MA and with Meas(X,MA) one identifies
the set of all the measurements E. Given a bipartite state ωAB of a bipartite system
MAB, if one measures the system A with a measurement EX ∈ Meas(X,MA) the post-
measurement state is given by the composition ωXB = ωAB ◦EX . Since X is a classical
system and B a quantum one, the post-measurement state is a classical-quantum state,
i.e. ωXB ∈ MXB = L∞(X) ∨MB

∼= L∞(X,MB), with L∞(X,MB) the space of es-
sentially bounded functions with values in MB and which represents the von Neumann
algebra for the classical-quantum system. Considering the previous characterization of a
classical state, one has that a classical-quantum state on MXB, which can be indicated
also by ωXB = (ωxB)x∈X , is given by normal, positive functionals on L∞(X,MB) and
specifically one has that it may be represented with an integrable function on X with
values in MB, i.e. L1(X,P(MB)), which satisfy the condition

∫
X ω

x
B(1I)dµ(x) = 1.

Basically, one has that in a real experiment a measurement on a continuous system
can be performed only with the finite precision δ of the used apparata. In other words,
one can performs only a coarse grained measurement. Formally, for a fixed δ one covers
the space X with a partition Pδ = {Ikδ }k∈Λ (Λ any countable index set) with Ik ∈ Σ
measurable intervals such that µ(Pδ) = δ. A coarse graining corresponds to a family
{Pδ}δ of partitions which have an order relation according to δ: in general then, a
classical system can parametrized by (X,Σ, µ, {Pδ}δ). In the following, we will consider
a given δ and we will denote as coarse graining the associated partition. Since we
are interested in measuring the observables associated to momentum and position of
the electromagnetic field, whose classical systems Q and P (the outcome distribution)
have range in the real line, we can consider as measure space Q = P = R. Fixed δq
and δp precisions for position and momentum respectively, we set Qδq = {Ikδq}k and

Pδp = {Jkδp}k. For Q and P , coarse graining can be implemented by using half-open

intervals Ikδq = (kδq, (k + 1)δq] and Jkδp = (kδp, (k + 1)δp] with k integer.

As last step, given a measurement EX ∈ Meas(X,MA), we consider its discretized
version EPδ ∈ Meas(XP ,MA) (with XP is the discretized classical system). In particular
for the position and momentum we have Qk = EQ(Ikδq) and P k = EP (Jkδp), with Qk and

P k which element of the POVMs {EQ}k and {EP }k respectively. Practically P k and
Qk correspond to measurements of q and p which project into intervals Ikδq and Jkδp
respectively.

The notions so far introduced, are just a basic framework in order to introduce the
EUP for infinite dimensional systems as in [163]. There the principle is demonstrated
in two versions, for finite and infinite precision. In particular, the first case is used as
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intermediary result to demonstrate the latter in the limit δ → 0. The EUP in case of
finite precision is however the one of interest because accounts for the precision of the
instruments. The discretized EUP finds its natural application in protocol of QKD and
indeed it was also applied in a experiment of CV-QKD with EPR states [165] of the
electromagnetic field.

As in the previous Chapter the scenario has three parties Alice A, Bob B, and
an adversary Eve, E, who share a tripartite quantum system ωABE . The tripartite
quantum state shared between the three parties generalizes the case of Alice and Bob
which aim to share an entangled state ωAB to establish a QKD protocol but because of
the presence of an eavesdropper, Eve or because the state suffered some decoherence, the
state is purified by ωAB = TrE [ωABE ]. Alice performs POVMs P k on her part storing
the outcomes into the classical system P (δp). Alice and Bob then aim to quantify
the uncertainty of Eve about the post-measurement state ωPδpE = ωABE ◦ P . This
uncertainty can expressed with the conditional min-entropy Hmin(P (δp)|E)ω and it can
be bounded by using the entropic uncertainty principle. Indeed if Alice measures an
observable of A complementary to previous one, i.e. Qk, and she stores the outcomes
in the classical system Q(δq), Eve’s quantum side information can be estimated by
evaluating the max-conditional entropy Hmax(Q(δq)|B)ω on the classical-quantum state
ωQδpB = ωABE ◦ B. The quantity Hmax(Q(δq)|B)ω quantifies indeed the information
Alice has to provide Bob to reconstruct Q: it is clear that the higher the correlation the
less the amount of information required. Therefore Eve’s knowledge can be bounded by
exploiting the upper bound to the sum of Hmin(P (δp)|E)ω and Hmax(Q(δq)|B)ω: the
sum must be smaller or equal to a quantity c(δq, δp) which depends on the degree of
observables complementarity and to the precision of the measurements. Practically the
entropic uncertainty principle merges together the monogamy of the entanglement and
the uncertainty principle for non commuting observables (if Alice and Bob are maximally
correlated, for Eve the post-measurement states are completely mixed).

Finally, we state the EUP as in Corollary 13 of [163] for finite precision measurements
of position and momentum:

Corollary 1. LetMABC = B(L2(R))⊗MBC withMBC a von Neumann algebra, and
consider position and momentum measurements with spacing δq > 0 and δp > 0 on
system A. Then, we have that

Hmax(Q(δq)|B)ω +Hmin(P (δp)|C)ω ≥ − log c(δq, δp) , (6.8)

where c(δq, δp) is given by

c(δq, δp) =
1

2π
δqδp · S(1)

0

(
1,
δqδp

4

)2

. (6.9)

with S00(1, ·) being the 0th radial prolate spheroidal wavefunction of the first kind.
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6.3 The EUP protocol for RNG

For what concerns random numbers generation, the tripartite scheme can be adapted by
setting trivial the party B. Alice has the quantum system A, i.e. the electromagnetic
field prepared in some given state ωA and she wants to measure one of the quadrature
in order to extract random numbers. Alice does not trust her system and two possible
scenarios are given. In the first one, which is also the most general, untrustedness
can be intended as mixedness of the state ωA, e.g. it has undergone a process of de-
coherence in the preparation stage (past with respect the space time coordinate of the
measurement) and now, is possibly correlated with some other purifying system E; in
this scenario Alice could have tried to forge the quantum state by herself or she could
have been provided of it by a neutral manufacturer. The second scenario is strictly
cryptographic: untrustedness corresponds to the case of Eve malicious manufacturer
who posses a quantum system E correlated to the QRNG she provides to Alice. In both
the cases Alice doubts the purity of her state and she hypothesize that ωA = TrE [ωAE ].
As in the discrete case then, Alice can use the EUP to estimate a lower bound on
the number of true random bits she can extract in the likely presence of quantum side
information E. The protocol runs in the following way:

• Alice chooses a quadrature to measure, let say the momentum; according to the
precision δP of her measurement apparatus, she fixes a coarse graining Pδp = {Jkδp}k
for the positive operators

P k =

∫ (k+1)δp

kδp
|p〉〈p|dp (6.10)

and consequently for the discrete classical system PδP . She applies the measure-
ment to the state ωAE obtaining the discrete classical outcomes pk ∈ PδP with
probability p(pk) = Tr[ωAP

k]. These values represent the raw random numbers
and P is then denoted as random basis;

• Alice chooses an observable maximally complementary of the random basis, i.e.
the position; according to the precision δQ of her measurement apparatus, she
fixes a coarse graining Qδq = {Ikδq}k for the positive operators

Qk =

∫ (k+1)δq

kδq
|q〉〈q|dq (6.11)

and consequently for the discrete classical system QδQ . She applies the measure-
ment to the state ωAE obtaining the discrete classical outcomes qk ∈ QδQ with

probability p(qk) = Tr[ωAQ
k]. These values represent the check numbers because

they are employed to check the purity of the state ωA and Q is then denoted as
check basis;
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• Alice lower bounds the number of true random bits achievable per measurements
by using

Hmin(PδP |E)ω ≥ − log
1

2π
δqδp · S(1)

0

(
1,
δqδp

4

)2

−Hmax(QδQ)ω (6.12)

where the Hmax(Q)ω, equivalent to the Renyi entropy of order 1/2, and for the
CV-discretized takes the form of

Hmax(QδQ) = 2 log2

∞∑

l=−∞

√∫ (l+1)δq

lδx
dq|ωA|2 . (6.13)

The idea of the protocol is reported in Figure 6.3: the state measured by Alice
corresponds to the vacuum state of the electromagnetic field whose Wigner function is
reported. Measuring the position and momentum quadratures with precisions δP and
δQ respectively, the two discretized probability distribution PδP and QδQ are obtained.
From the Figure one can better understand that the measurements in the Q basis are
necessary to check if the state one is measuring is the one which was supposedly prepared.
The estimation of Hmin(P |E) is a more adequate measurement of the actual content of
randomness than the Shannon classical min-entopy. But in addition to that, it is worth
stressing that the EUP can be considered as an universal measure of randomness for the
generator. Indeed with respect to the discrete case where the EUP accounts only for
the distance between a pure and a mixed state, in the CV framework the EUP accounts
also for the finite resolution of the measurement.

This can be appreciated in Figure 6.3, where the minimal amount of true random
bits extractable from a pure coherent state are plotted as function of the quadrature
measurement precision δ and estimated according the classical min-entropy H∞(P ) (red
line) and the quantum conditional min-entropy Hmin(P |E) (green line). Contrary to
the discrete case where one has equivalence between these two quantities, in the CV
discretized framework the same correspondence can be reached only by increasing the
precision. Otherwise, as one can see from the inset, for low precision H∞(P ) gives
a higher estimation of the real content of entropy associated to a measurement. It
is worth noting that the additional bits corresponding to the red shaded area, come
from a systematic uncertainty due to a measurement operator taken on a interval too
wide. Indeed the quantum state cannot be discriminate with enough resolution to make
possible to understand whether the measured distribution belongs to the expected state
or to something else. In particular, for δ−1 → 0 one has that H∞(P ) = 1 because only
two intervals are left I0 = (−∞, 0] and I1 = (0,∞) so for a symmetric gaussian state
one has the two outcomes probability both equal to 1/2.

Otherwise if Alice holds a mixed state, i.e. a thermal one, the conditional min-
entropy does not reach the level of the Shannon entropy also in the infinite precision
limit.
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Figure 6.2: The image represents how the protocol for the CV is intended: the top plot
represent the Wigner probability density function for the vacuum state. Position and
momentum are measured with precision δq and δp respectively. The outcomes of the
momentum measurement are employed for the number generation, while the outcomes
of the position are used to check the purity of the state.

6.3.1 Input: squeezed vacuum state

The interplay between a faithful estimation of the true extractable random bits and the
precision of measurements can be made more clear with squeezed states. The wavefunc-
tion of a squeezed vacuum state in position and momentum representation are given
by

|ψsq(q)〉 =
e

1
2(ζ−e2ζq2)

4
√
π

|ψsq(p)〉 =
e

1
2(ζ−e−2ζp2)

4
√
π
√
e2ζ

(6.14)

and a Wigner distribution

Wsque(q, p) =
e−e

−2ζp2−e2ζq2

π
(6.15)
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Figure 6.3: In the plot the green line represents the min-conditional entropy, Hmin(P |E),
while the red one is the min-classical entropy, H∞(P ), evaluated for a pure vacuum
state. When the precision of the measurement increases δ−1 → ∞, one has both the
estimators attain in the same value. However, for δ−1 → 0 classical min-entropy becomes
a not reliable entropy quantifier. Indeed the quantum state cannot be discriminate with
enough resolution to make possible to understand whether the measured distribution
belongs to the expected state or to something else. Accordingly Hmin(P |E) for low
precision is not meaningful.

The parameter ζ is the degree of squeezing: in Figure 6.3.1 Wsque(q, p) is reported

for ζ = 1/2, with the position quadrature squeezed σ2
q = e−2ζ

2 < 1
2 and the momentum

quadrature anti-squeezed σ2
p = e2ζ

2 > 1
2 , such that the product of the uncertainty is

anyway σ2
qσ

2
p ≥ 1

4 . In particular one has that for ζ = 0 we have again the vacuum state.

If this state is employed to generate random numbers, the optimal choice would be
to sample the anti-squeezed basis because one has a broader spectrum with outcome
probabilities higher with respect to the squeezed one. Therefore, for the following ex-
ample the check basis is the position, instead the random numbers are obtained from
the momentum. On this regard, in Figure 6.3.1 the dependence of the number of true
bits extractable as a function of the degree of squeezing ζ (left) and of the precision δ−1

(right) are reported. In the left plot we arbitrarily fixed the precision δ−1
Q = δ−1

P equal
to 2 and 5 respectively: the green and the red blue representing Hmin(PδP |E), while the
red and the purple representing the classical min-entropy Hmin(PδP ). One sees that for ζ
increasing, both classical and conditional entropies increase. However the classical min-
entropy, evaluated on the position, continues to increase with respect to the conditional
one which instead reaches an asymptotic constant value. The reason for this behavior is
that the higher the squeezing, the better the squeezed quadrature fits into the precision
interval δQ: when the state is inside just one bin the maximal information extractable
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Figure 6.4: The Wigner function of a squeezed vacuum state with ζ = 1/2. In particular
one has that the higher the degree of squeezing the better the state fit inside an interval
for a given precision, e.g. δQ. Correspondingly the state becomes anti-squeezed on the
other basis such that more random numbers can be generated.

with that precision is reached. The classical min entropy increases correspondingly be-
cause the antisqueezed quadrature becomes wider and then more number have a larger
outcome probability.

On the right plot instead, one can compare the estimation for a vacuum state and a
squeezed one with ζ = 1/2 as function of the precision. For what concerns the depen-
dence on the precision, the same considerations of the previous Section are valid. In this
case however from a squeezed vacuum a higher number of bits can be extracted being
wider than the simple one.

6.3.2 Input: thermal state

A single mode of the field at thermal equilibrium at temperature T , has mean number
of photons 〈n〉 = 1

e~ω/kBT−1
being ~ω the energy of the mode and kB the Boltzmann

constant, and the density matrix of the field ρtherm featuring a Bose-Einstein distribution
of the photon numbers

ρtherm =

(
1

1 + 〈n〉

) ∞∑

n=0

( 〈n〉
1 + 〈n〉

)n
|n〉〈n| . (6.16)
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Figure 6.5: On the right plot the min conditional and classical entropies are reported
as function of the degree of squeezing for two differnt precisions. On the right plot,
Hmin(P ) (red line) and Hmin(P |E) (green line) are reported as function of the precision
for a squeezed vacuum state with ζ = 1/2. The blue line is the conditional min-entropy
for a vacuum state

The corresponding Wigner function is given by

Wtherm(q, p) =
1

π(2〈n〉+ 1)
e
− q2+p2

2〈n〉+1 (6.17)

this function is still a Gaussian with a null average value for the position and momentum
but with variance σ2

P = σ2
Q = 1

2 + 〈n〉. A thermal state is practically a vacuum state
with a larger variance. The degree of mixedness is indeed related to the average number
of photons excited by the temperature. Therefore, given a thermal state the number of
extractable true random bits, will be always lower with respect to the quantity which
can extracted by a pure state, also if the resolution is increased. This can be appreciated
in Figure 6.3.2: on the left Hmin(PδP |E) is plotted as a function of the measurement
precision δQ for a thermal state with 〈n〉 = 2. Differently from the vacuum state, one can
notice how the classical min-entropy overestimates the real amount of randomness for
any value of the precision. On the right plot, the min-conditional entropy is reported as
function of the 〈n〉, for a fixed precision δ−1

Q = 10: the two entropy estimators reach the
same value (cfr. Figure 6.3) only for 〈n〉 = 0, as indeed expected for a pure vacuum state.
These results are relevant because, like in the discrete case of the previous Chapter, one
has that min-classical entropy does not account for possible side information.

The case of a malicious provider

In a hypothetical scenario, a malicious Eve, could provide Alice with a QRNG featuring
an engineered source of quantum states from which she can extract side information.
Eve could implement her evil plan by preparing a two mode squeezed vacuum state. This
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Figure 6.6: Hmin(P ) (red line) and Hmin(P |E) (green line) are reported as function of
the precision (left plot) and of the the mean number of photons of the thermal state
(right plot).

state is an approximate optical version of an EPR state: it is achieved by interfering two
squeezed vacuum states on a beam splitter as in Figure 6.3.2, where a beam is squeezed
in P and the other in Q. In particular one has that the Wigner function of the system
is given by

W (q1, q2,p1,p2) =
1

π2
exp

(
−(p1 − p2)2

2 exp(2ζ)
− (p1 + p2)2

2 exp(−2ζ)

)

exp

(
− (q1 − q2)2

2 exp(−2ζ)
− (q1 + q2)2

2 exp(2ζ)

) (6.18)

where the subscripts 1 and 2 refer to the two parties and ζ is the degree of squeezing.
Eve engineers the source in order that beam 1 is sent to her while Alice has to measure
beam 2.

This well known CV-QKD scheme works on the principle that the measurements
performed on each pair of the entangled system give (anti-) correlated outputs with high
probabilities. Eve is aware that by tracing out one of the system, Alice is left with a
thermal state ρAlice whose Wigner function is

WAlice(q2, p2) =
exp(−

(
p2

2 + q2
2

)
sech(2ζ))

π
√

cosh2(2ζ)
. (6.19)

When Alice projects, for example, in the P basis to extract the random numbers, she
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obtains an outcome probability distribution given by

pr(p2) = tr {|p2〉〈p2|ρAlice} (6.20)

=

∫ ∞

−∞
WAlice(q2,p2)dq2 (6.21)

=

√
sech(2ζ) exp

(
−p2

2 sech(2ζ)
)

√
π

.

One can easily check that pr(p2) is equivalent to the outcome distribution one would get
by measuring in the anti-squeezed basis a vacuum state squeezed by a factor

ζ ′ = −1

2
log(sech(2ζ)) . (6.22)

To recap then, Eve prepares an EPR state with a pair of ζ= 0.5 squeezed vacuums but
tells to Alice that the QRNG generates random numbers by measuring in the P basis a
vacuum state squeezed with ζ ′= 0.217 in the Q quadrature. Alice obtains a probability
distribution which is the same she expects and she evaluates the classical min-entropy
Hmin(P ). In Figure 6.3.2 (Left) the estimation of Hmin(P ) and of the min-conditional
entropy Hmin(P |E) is reported as function of the measurements precision inverse δ−1.
As expected the classical min-entropy over-estimates the amount of bits that can be
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Figure 6.7: Hmin(P ) (black line) and Hmin(P |E) (red line) are reported as function of
the precision (left plot) and of the degree of squeezing (right plot).

extracted and in particular one can see that Eve holds an amount of correlated bits which
asymptotically reach the value of ∆H = 0.6258 bits. It is worth to point out that for an
approximate EPR state, the higher the squeezing the stronger the level of correlation
between the two beams: in Figure 6.3.2 Hmin(P ) and Hmin(P |E) are plotted as function
of the squeezing for a fixed precision: by increasing ζ Eve gains more information about
Alice system and the conditional min-entropy accordingly decreases, while the classical
min entropy increases, giving clearly a wrong estimation of the true content of random
bits.
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6.3.3 EUP as a model to comprehend the technical noise of a QRNG

The issue of the precision and the consequent discretization of the measurements are
related to the practical implementation of the protocol in real life. Another fundamental
point however lies in the fact that, in a real life homodyne measurement, the process
of allocating a given quadrature outcome p or q into a specific discrete interval, is the
final result of a long signal processing chain. In theory, at end of this chain, one should
have currents iP and iQ featuring variances σ2

iP
and σ2

iQ
proportional to the measured

quadrature variance and to the intensity of the local oscillator. The currents then are
measured with the finite precision of a sampler and the outcome probability distributions
are formed. Actually, at every stage of the chain, unavoidable technical noise due to the
non-ideality of the experimental devices, leaks inside the quantum signal. The main
sources of noise are the local oscillator intensity noise iLOnoise , the detector dark noise
iDdark , detector thermal noise iDth , detector’s classical noise iDcl , sampler noise iADC . As
we will show in the next Section, in the realization of a QRNG, one can choose devices and
experimental conditions which minimize the impact of the noise. However the problem
is that, also if one one were able to individuate all the possible noise sources, it would
not be possible to eliminate their contribution from the random and check signals, being
these noises intrinsic to the devices themselves1. The fluctuations of the noise currents
add in quadrature to the original quantum signal, therefore at the end of the chain one
measures the variance σ′2iP = σ2

iP
+ σ2iDdark + σ2

iDth
+ σ2

iDcl
+ σ2

iADC
+ . . . . Since most of

these electronic noises do not depend on the local oscillator power or they scale differently
with respect to σ2

iP
(σ2
iQ

), one could think to increase the intensity in order to maximize
the SNR: this would help partially because detectors can sustain only a given amount
of power, usually not so high to make negligible the impact of the electronic noise. At
this point, it appears clear that the neat effect of the technical noise is to increase the
value of the measured variance. The result is then a wider probability distribution as if
we were measuring a thermal state. Practically also if the state is pure, the measured
outcome probability distribution results wider. For an effective implementation of the
EUP protocol we put forward the following model for a real QRNG. Model: because
the several noise factors can not be distinguished in the measured outcome probability
distribution and also if it was possible to discriminate them, anyway they could not be
eliminated, we model a QRNG as if the measurement part is ideal and the quantum
state is mixed. In this model the flaws of the measurement apparatus are adsorbed into
the input state which is made ”more mixed” with respect to the input one (which could
be also pure in absence of quantum side information). Within this model, the EUP can
be efficiently applied to account also for the technical noise which represents a source
of accidental randomness, i.e. randomness due to the ignorance about the degree of
freedom involved in the system. This is relevant because also the classical noise could be
exploited by an eavesdropper as a source of side information. Notably, our assumption
automatically puts Eve in control of an unprecedented set of resources, both classical

1The homodyne configuration indeed, by taking the difference of the two light signals, can get rid
only of the noise common to both the signals)
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and quantum that she can take advantage of to predict the outcome of the generator.
In both the cases with the EUP protocol one can distil true quantum bits.

6.4 Experimental realization

An experiment was set up in order to give a concept proof of the protocol and to
demonstrate the applicability of the method for a QRNG assembled by using off-the-
shelves and commercially available devices. This approach might fit a scenario where
QRNGs are compact devices of common use, manufactured on industrial scale with a
possibility of optimization far more limited than the one achievable in a laboratory.
Indeed a continuous calibration of the optical parts would be out of reach and the
generator would be unavoidably affected by the aging of the components. With the
model introduced in the previous Section, our protocol becomes relevant in order to
minimize the impact of classical noise contaminating the system and to filter the quantum
randomness left. It is worth to stress that said scenario could represent a case with a
trusted manufacturer Eve who directly manufactures generators which embed the EUP.
Otherwise, from another perspective, our experiment could also represent a case where
Alice does not trust Eve and then she opens the device in order to check whether the
amount of true quantum entropy is the one claimed by Eve. For the experiment we then
implemented the classical scheme of vacuum homodyne presented in the introduction of
this Chapter with the addition of the estimation of the min-conditional entropy. In this
proof of principle, a random subsamples of the measurements was extracted to represent
the measurements in the check basis, as if the phase of the Local oscillator was increased
of π

2 . The the validity of this approach lies in the fact that a vacuum state is still
Gaussian also after a process of decoherence.

In practical terms, since we were in the position to safely exclude the action of an
eavesdropper, the method adopted for this experiment was completely equivalent to the
random switching between the bases. The setup for the generator is reported in Figure
6.4 and as one can notice a full-fiber scheme was preferred to a free-space one. This
choice was motivated by two facts: the first one is that fibers are more functional in
the perspective of embedding the generator in a compact device; the second fact is the
availability, in the field of coherent communications, of very wide band fiber coupled
balanced detectors which represent promising candidate to expand in the future the
generation rate to the range of Terabit/s.

The local oscillator

As local oscillator was individuated a single mode fiber coupled laser diode Covega
- Single Frequency Laser (SFL) 1550S with a nominal of λ = 1549.8 nm and a
maximal output power of 50mW . This laser was selected on the basis of its ultra-
narrow spectrum of about 0.5 nm, cfr. Figure 6.4-Left, which is a relevant feature
under a theoretical point of view, because it limits the number of modes involved in the
generation. The laser diode has a standard 14 pins butterfly packaging, so it was mounted
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ADC
Oscilloscope

Figure 6.8: The experimental setup used to test the entropic uncertainty principle in the
continuous variable framework is reported. The generator was realized using all off the
shelves devices and all fiber-coupled. Using fibers, the generator takes a plug-and-play
configuration which eases the tuning of the setup.

into a socket LM14S2 driven by a Thorlabs ITC4001 laser driver which controlled
both current and temperature in feedback. Setting up this configuration was necessary
in order to guarantee a fine tuning of the lasing current and of the diode temperature.
Indeed, the laser operation is strictly dependent on these two parameters: on this regard
in Figure 6.4-Right a plot of the cavity side modes suppression ratio (SMSR) as function
of the injected current for fixed temperature, T = 24C is reported. In order to minimize
the leaking of sides modes into the main one, the best operating zone is approximately
in the range 210 − 250mA where one can achieve a suppression of 52 dB at 228.5mA
and it corresponds also to the linewidth reported on the Figure 6.4-Left. Practically,
one has several operating zone where single mode regime is granted depending on the
current and temperature. The driver was then set to feed the diode with a current of
228.5mA corresponding to an output power of approximately 31mW . The controller
was also set keep fixed the diode temperature to 24C in order to contrast the rapid
heating of the laser. It is worth to stress that to cool-off the device was necessary to
avoid the regime of multi-mode oscillation rather than to prevent damaging: e.g. one
has that an increase of 1 degree C, requires the current to be raised to 245mA (7.5%)to
re-establish the single mode operation.

Following the setup scheme, the APC fiber output of the laser is connected to a
Thorlabs VOA50-APC single mode fiber broadband variable attenuator. This device
is essential in order downscale the power reaching the balanced receiver because in the
laser single mode operating zone, the output power is a factor thee larger than its damage
threshold power. The laser power was then kept fixed, while the one to the detectors
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Figure 6.9: Left: The measured spectrum for the local oscillator. The lasing line is
centered at λ = 1549.8 nm, with a FWHM of about 0.5nm. Right: For a temperature
of 24 C, the side modes suppression ratio (SMSR) and the λ is plotted in function of the
diode current. The operating zone chosen for the experiment was at 210 mA

was adjusted by operating a screw of the attenuator. Basically in a cage at the middle
of the head fiber, the beam is sent in free air through a window connected to a screw
which varies the coupling efficiency with the tail fiber connected to the other end of the
cage. By means of this device it was possible to adjust easily the power in steps of 0.5
mW for the study of the linear response of the receiver.

The output of the attenuator was connected to an fiber beamsplitter APC Thorlabs
with a splitting ratio of 50:50. One output was sent to a power meter for the constant
monitoring of the laser power, while the other to one input of an identical beam-splitter
where formally the local oscillator was mixed with the vacuum entering the unused input.
Both the output were coupled with the APC input of a balanced receiver.

6.4.1 The photodiodes

The second main component of the optical part is the balanced receiver to which the
beamsplitter output were connected. In line with the off-the-shelves paradigm, a Thor-
labs PDB480C-AC with a nominal bandwidth of B = 1.6GHz was selected. The
first advantage of this device lies in the fact that both the photo-detectors, a couple
InGaAs PINs, and the amplifiers are included in a single self-contained packaging. This
monolithic configuration helps consistently to reduce the coupling with environmental
electromagnetic noise. The noise performances indeed and the bandwidth were the tech-
nical parameters considered in the process of selection of this device. Generally, in an
experiment of photon detection the sources of signal fluctuations are represented by

97



6. ENTROPIC UNCERTAINTY PRINCIPLE TO BOUND THE
RANDOMNESS OF A CONTINUOUS VARIABLE QRNG.

• Thermal noise current: iTh =
√

1
R4kBTB with T temperature and R load

resistor connected to the photodiode;

• Dark currents shot noise: iSD =
√

2eiDB with the iD the level of dark
currents.

How these two factors can be detrimental to the measurements, can be understood by
considering that, in vacuum homodyne, our main signal practically corresponds to the
shot-noise intrinsic to the process of photo-detection. Indeed, this scheme corresponds to
the so-called intensity noise eater configuration, because it eats off any classical spurious
noise affecting the LO, leaving only the noise which is not common to both the signals.
However, thermal and dark current noise are a sort of intrinsic noise of the two PIN
and so they do not cancels out by taking the difference of the signal. Because these two
noises are adds in quadrature to the quantum noise, it is of fundamental importance to
select a receiver with a low noise fingerprint in order to get a high SNR.

Another pivotal feature of the receiver is its efficiency in getting rid of the modes
which are common to both the arms of the detector. For a measurement involving
quantum noise, it is necessary that the diodes are highly matched in responsivity: the
more the diodes respond similarly, the smaller will be the amplitude difference of a
common signal. In particular this characteristic turns out to be useful when the LO is
affected by some spurious oscillation which would interfere in the measure of the quantum
noise. Our receiver features a common mode rejection ratio (CMRR) of over 30 dB, cfr.
Figure 6.4.1, in line with the performances of other receivers used in Literature for
CV-QRNG.

The final stage of the setup consisted of an oscilloscope Tektronix TDS6124C
featuring a bandwidth of 20 GHz and a maximum sampling rate of 40 GS/s which was
used as ADC. The oscilloscope was remotely controlled with a personal computer for
the logging of the waveforms which later analyzed to get the raw random numbers and
the check basis numbers to apply the EUP protocol.

6.4.2 Data pre-processing

In the following we will present the pre-digital processing we applied on the waveforms
acquired with the oscilloscope in order to get the raw random numbers. Indeed, although
the receiver has a bandwidth of 1.6 GHz, not the whole measured quadrature spectrum is
optimal to generate raw random numbers because of the presence of technical electronic
noise. The aim of the processing was then to select the so called quantum noise limited
region of spectrum.

When the diode difference signal is sampled, one expects to observe a flat power
spectral density (PSD) due to the infinite band of the vacuum shot noise, at most
limited by the cut-off frequency of the receiver or of the ADC sampler. However, an
actual spectrum presents a more elaborated structure with artifacts which are originated
by the physical limitations of the laser and the detectors themselves. More specifically
one can identify at least three regions:
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Figure 6.10: For a measurement involving quantum noise, the better the PINs are
matched in quantum efficiency and responsivity, the more balanced is the receiver. The
ability of eliminating common modes is fundamental in order to achieve the intensity
eater configuration, when one is left (mostly) only with quantum noise. The plot show
the typical common mode rejection ratio which is over 30 dB.
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Figure 6.11: The power spectral density function of the signals with no input (black line)
and with a LO power of 6 mW (blue line) is reported. The green shaded region identifies
the 1.250 GHz wide region of the spectrum which was considered for the extraction of
the raw random numbers. The signal has been downmixed with a sinusoidal carrier with
frequency f0 = 1.065 GHz and then it was filtered with a low-pass filter with 625 MHz
cut off frequency.
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• a region with several frequency peaks which is confined in the inferior part of the
spectrum

• a middle flat region

• a region of decreasing power in the terminal region of the spectrum.

The first region is a combination of the finite common mode rejection ratio of the detector
and the presence of relative intensity noise (RIN) of the laser. In Figure 6.4.2, the typical
PSD of the receiver output signal is reported. In particular the PSD for no input (black
trace) and an input of 6.0 mW (blue trace) is reported. Both the waveforms were
sampled at a rate of 10 GS/s. In order to filter out those regions of the spectrum which
were clearly affected by technical noise, we performed the digital equivalent of an analog
down-mixing and low-pass filtering. This is the principle at the basis of heterodyne and
it is a basic procedure in the field radio frequency (RF) processing. It consists in mixing
a target signal x(t) with a sinusoidal carrier with a given frequency f0: the mixed signal
x′(t) it is just a copy of the original signal but with the all the frequency components
downshifted of −f0, i.e. the frequency f0 of the original signal corresponds to the zero
frequency of x′(t). In our case, we considered a flat region 1.250 GHz wide, where we
found the optimal central frequency be at f0 = 1.065 GHz. The process of filtering
consisted in retaining the 625MHz sideband frequency spectrum applying a kind of
sharp low-pass filter which set to zero all the higher frequency components.

At this point the signal was not yet useful for number extraction because the sampling
rate was a factor 3.125 the Nyquist frequency (assuming a bandlimited signal at 1.6
GHz). Oversampling indeed was a necessary condition to get a faithful reconstruction
of the physical signal for the digital processing however, in this way, one is left with
a filtered signal which is highly self-correlated. This can be understood considering
that if the signal is sampled faster than the intrinsic time scale of the process (roughly
the inverse of the receiver bandwidth), one gets that consecutive samples show similar
values (typically, decreasing or increasing runs of values). The acquired signals need to
be properly downsampled, in order to obtain a raw random uncorrelated signal. More
formally, given x(t) a stationary signal, i.e. a signal whose mean value µ = 〈x(t)〉 and
variance σ = 〈(x(t)− µ)2〉 does not change in time, the autocorrelation depends only on
the difference τ = t2 − t1 between two times t2 and t1, that is

R(τ) =
〈(x(0)− µ) (x(τ)− µ)〉

σ2
; (6.23)

in our case the time interval τ is a multiple of the sampling interval Ts = 1/fS = 10−10

s i.e. τ(n) = nTs with n ∈ {0, 1, ..., L} and L the last sample of an acquired waveform.
Very basically, because Ts is a fixed variable, one can directly evaluate the autocorrelation
as function of n, i.e.

R(n) =
〈(x(0)− µ) (x(n)− µ)〉

σ2
, (6.24)

which measures then the degree of correlation between the samples separated by n time
intervals.
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Figure 6.12: The plot reports the experimenatl autocorrelation of the filtered data as
function of the temporal separation in multiple of the sampling interval TS . The corre-
lation is modulated according a sinc function. This is indeed the expected behavior once
that a signal is filtered by a low pass filter, top inset. By means of the Wiener-Kitchine
theorem one can analytically calculate the zeros of the autocorrelation and then the
corresponding down sampling frequency in order to achieve a null self-correlation.

The typical dependence of R(n) by n for the acquired waveforms is reported in Figure
6.4.2: one has that the measured autocorrelation values are distributed according a sinc
function (sinc(x) = sin(x)/x), a damped sinusoidal for n increasing, with the expected
maximum R(0) = 1 (correlation of the samples with themselves). Such a behavior for
R(n) was not surprising but perfectly in line with the fact that the signal is filtered with
an ideal low-pass filter whose PSD is given

PLP(f) =
1

2πf0
|f | ≤ f0

0 |f | > f0
(6.25)

indeed one has that by the Wiener-Kitchine theorem, cfr. [166], the Fourier transform
of the power density function is equivalent to the autocorrelation

R(τ) =

∫ ∞

−∞
ei2πfτPLP(f)df (6.26)
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Figure 6.13: Top: by downsampling the original waveforms of a factor of 8, i.e. taking
a sample every 8, the quadrature measurements become uncorrelated. Down: It is
interesting to notice that by downsampling with a factor even higher but not a multiple
of eight, e.g. 25, one can not achieve the same level of uncorrelation.

and because PLP(f) is a step function in the frequency domain, its Fourier transform
is given by R(τ) = sinc(2πf0τ) in time. The fact that it is not incidental that the
autocorrelation corresponds to a sinc function is relevant because lets one to find the
exact sampling interval to get uncorrelated raw random numbers. One then has R(τ) = 0
for τ = i/2f0 with i ∈ Z which implies that

n =
i

2f0TS
= 8i . (6.27)

From the inset in Figure 6.4.2, one can appreciate that the expected condition R(n =
8i) = 0 holds true for the measured autocorrelation. We then downsampled the wave-
forms picking one in eight samples, which corresponds to a sampling frequency f ′S =
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1.250 GS/s. After the downsampling the acquired waveforms presented a typical auto-
correlation of the kind reported in Figure 6.4.2: as one can notice, the residual correlation
not only decreases in average of two orders of magnitude but becomes incoherent in the
sense that there is not a phase relation between samples separated by a given time
interval.

As counter proof of the validity of the method adopted, it can be interesting to show
that applying the naive principle the rarest are the sample points the smallest is the
correlation, does not yield the same results as the one based on an accurate bandwidth
estimation: in Figure 6.4.2 the autocorrelation one would get by taking every 25-th
sample (fS = 400 MHz) is reported and as one can see there is in average an higher
correlation, especially for the samples temporally close.

Although the numbers would be later on processed with an extractor, this stage
of the processing was necessary to get as close as possible to the ideal condition of
independence of the measurements. It is worth stressing that the probability distribution
of the quadratures, in case of high correlation, is still a Gaussian distribution but with
the issue that given a measurement, the neighboring measurements yields outcome close
to the previous one. Among the works which deal with CV-QRNG, the problem of
correlations is explicitly addressed only by [167], while instead in [109] and [162] there
is not reference to this issue.

6.4.3 Application of the CV-EUP protocol

In a regime of quantum noise limited measurement, a linear relation between a the LO
power and the vacuum noise variance is expected. Citing directly [168]

A reliable measurement of the quantum noise should only be attempted
for situations which show a linear dependence of the measured noise level on
the optical power.

We studied whether it was possible to find such behavior in the filtered spectra. In
the present case however, assessing a linear increase of the noise fluctuations with the
laser power is an important procedure for at least four reasons:

• to check the validity of the previous digital processing

• to check the maximum power of the oscillator that can be used before entering in
a regime of non-linearity;

• verify the influence of noise of non-quantum origin which is represented as the
intercept of the fit line: indeed if the additional electronic noise were absent, for
zero level of power one would have a null intercept;

• convert the sampling interval, δADC of the ADC in δ of the quadrature: in this way
can establish a direct relationship between the voltage domain and the quadrature
domain.
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In Figure 6.4.3 can be considered a typical plot of the measured difference signal
variance as function of the total input power, i.e. every PIN of the receiver is reached
by half of the value reported in abscissa. The set of points {σ2

Vi
, PLOi} was obtained by

varying the LO power between 0.5 mW and 9 mW in steps of 0.5 mW and evaluating the
variance of the corresponding waveforms acquired with the oscilloscope. The relation
of linearity is clearly evident between 0.5 and 7.0 mW. After the threshold of 7.5 mW
one has that the variance level drops steeply. One can safely exclude that this loss of
linearity is due to some sort of PIN saturation, rather it can be ascribed to a regime of
saturation attained by the transimpendance amplifiers, cfr. [168] and [169].
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Figure 6.14: The plot shows the linear relation between the LO power and the measured
voltages variances. Between 0.5 mW and 7 mW we are in a QNL region whereas at
7.5 mW transimpendance amplifiers start to saturate with a not linear response of the
detectors, evidenced in the red shaded region on the right. The red shaded region below
represents the contribution of the technical noise.

If then one limits the region between 0.5 mW and 7 mW, by performing a linear fit
on the sample points one gets angular coefficient m = 0.1088±0.0002 V 2/W and intercept
of a = (2.573 ± 0.075) · 10−5 V 2. The presence of a not-null intercept is the signature
of an unavoidable noise having a non-quantum origin. At the base of the plot, the red
shaded area marks the region where technical noise is dominant. This noise can not be
eliminated and it ends up in the signal generating the raw random numbers, affecting
their security. Since the neat observed effect is a widening of the quadrature variance,
according to our model we do not discriminate whether the source of the extra noise
resides in the preparation or in the measurement stage: the input state is treated as an
imperfect state (not a completely vacuum pure state) detected by a perfect detector.

To convert the voltage measurements in absolute values of the quadrature oscillations,
a the conversion factor β can be derived by considering the relation between PLO and
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the variance of the difference signal σ2
V , given by

σ2
V =

1

2
ηPLO (6.28)

where the factor 1/2 is the quadrature value of the vacuum, according the present conven-
tion, amplified by the local oscillator and η a proportionality coefficient. By comparing
the angular coefficient m of a regression line of the kind presented before with eq.6.28,
one gets η = 2m such that

β =
1√

2mPLO
. (6.29)

In Figure 6.4.3, 121 quadrature variances are reported for an acquisition lasted over
3 hours: every point in the plot corresponds to an average sample size of 130 · 106

measurements acquired for 100 s being the transfer rate of about 1.3 · 106 sample per
second, in the proprietary file format of the oscilloscope data transfer protocol (every
points corresponds approximately to 1 GByte of raw data). These values were obtained
by multiplying the voltage data by β = 81.041/V with PLO = 6.9967 mW the average
value of the power during the data collection. By referring to Figure 6.4.3 one can see
that during the whole acquisition there was an overall power variation of approximately
the 0.3%, which could be addressed as to the laser itself, as to the fiber attenuator
or to the beamsplitters. The attenuator was indeed tuned in order to get a power 7
mW entering the last beamsplitter, because of the highest SNR still reachable in the
region of linearity, before the saturation regime of the amplifiers. We have then average
quadrature value of 〈σ2〉 = 0.654± 0.003, i.e. the 30.8% larger than the expected in the
ideal case.

As we explained in the previous Section, according the model perfect detector -
imperfect state we treated the fact that the variance is almost one third larger than 1/2,
as if our system did not introduce any noise but the input state was mixed, resulting
in a wider thermal state. It is worth specifying that the photodiodes efficiency is not
unitary, however this fact is

6.4.4 Estimation of the conditional min-entropy

The purpose of this proof of principle was to test the resiliency of the EUP protocol
as an active way to extract the maximal quantum randomness also in conditions where
the devices are introducing noise. Consequently, we exploited the advantage of the off
line analysis applying the protocol in the worst conditions, i.e. when we registered the
highest deviation of the quadrature variance from 1/2, marked with a red circled in Figure
6.4.3. By comparing the time tags relative to this set of data with the power meter logs,
one finds that said variance increment was during the time interval of lowest power
(circled red shaded area of Figure 6.4.3). It is worth noting that this correspondence
could be just incidental, considered that by studying the variance distribution it is hardly
recognizable some kind of correlation with the PLO. In general however, one has that the
higher the LO power, the higher the contrast between vacuum oscillations and classical
noise. In the following, the basis for the raw random numbers corresponds to P instead
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Figure 6.15: The plot shows the power meter logs before the last beam splitter. As
one can see the power readings show an overall increasing trend, although the relative
variation is less than 0.5%. It is worth to point out that power variation could be
addressed as to the laser, as to thermal/mechanical change of the combination optical
attenuator + beam splitter.

0 20 40 60 80 100 120
0.648

0.650

0.652

0.654

0.656

0.658

0.660

0.662

Sample

V
ar

ia
n
ce

VarHQL = 0.661

Figure 6.16: In the plot the variances of the field quadratures are reported. These
values were obtained by converting in quadrature values the voltage readings acquired
with the oscilloscope in a total of three hours of acquisition. Every point corresponds
to an acquisition of 100 s. The red circled spot marks the measurement with the largest
variance that we used as reference for the estimation of the conditional min-entropy.
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Q is the check basis (this choice was arbitrary because, for the vacuum state, one has a
symmetric Wigner distribution).

Figure 6.17: The histograms refer to the data set featuring the largest variance and that
it was selected as sample set to extract the check measurement, i.e. the measurements
that in a real implementation would refer to Q quadrature. The different outcome
distributions are listed for precision varying from δ1 corresponding to 8 bit depth of
the ADC (256 bins), to δ8 corresponding to 1 bit (2 bits). For high precision, the
gaussian distribution of variThe distributions show how lowering the resolution make
not possible to discern what kind of state has been sent. However, the symmetry of the
of the histograms indicate that good experimental conditions were matched in order to
generate raw random numbers.

In this study then, for the reasons said before, the check basis measurements for the
estimation of Hmax(Q) were randomly extracted from the data set with the variance
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σ2
Q = 0.661. Although these measurements were chosen randomly and in small fraction

compared with the size of the set, a real implementation of the protocol in a QRNG
would obviously require the check measurements to be done uniformly and independently
during the whole process of data acquisition, rather than be confined in a given time
interval. If the presence of Eve is neglected, i.e. if we assume that the possibility of
existence of an elaborated mechanism to adapt the preparation of the state in order
to trick the entropy estimation, the method of randomly distributing in time the base
switching is still recommended because one makes small the chance of skipping anomalies
or defects in the operation of the generator (that is the opposite that was done in this
analysis).

We evaluated different bounds

Hmin(P (δj)|E) ≥ log2

(
2π

δ2
S00

[
1,
δ2

4

]−2
)
−Hmax(Q(δj)) (6.30)

as function of an interval δj = δqj = δpj of increasing width. More in detail, since the
highest precision δ8 of the ADC has a depth of 8-bits, the resolution was halved 7 times
in order to form intervals Ij with cardinality 2j and j ∈ {7, 6, 5, 4, 3, 2, 1} respectively.
Since Hmax is equivalent to the Renyi entropy of order 1/2, we expressed it considering
its bayesan estimator which provides

Hmax(Q(δj)) = 2 log2


 Γ

[
nQ + 2j

]

Γ [nQ + 2j + 1/2]

2j−1∑

k=0

Γ
[
njk + 3/2

]

Γ
[
njk + 1/2

]


 (6.31)

where njk is the number of measurements which fall inside the bin Ijk of the set Ij and

such that for every fixed j one has nQ =
∑

k n
j
k.

With this approach we were able to simulate ADC with lower bit resolution and
then study how the min-conditional entropy changes. The probability distributions Qδj
used in the previous relation are reported in Figure 6.4.4. The remarkable symmetry
of the histograms, which feature the expected bell Gaussian shape, is a proof that the
experimental conditions were properly set for the extraction of the raw numbers. Indeed,
it is worth stressing that this unbiasedness would be an advantageous starting point if
we aimed to implement a classic CV-QRNG. In particular, with the precision δ7, which
is equivalent to extract just a single bit per measurement having only two intervals left,
we registered a difference in the proportion of 0s and 1s of just 0.025%. This slight
deviation from uniformity implies a value of the min-classical entropy close to 1, i.e.
the distance between the raw bit distribution and an ideal is such that a randomness
extractor would compress the input strings of just 0.018%.

This example is interesting because it shows the limits of an approach which does
not takes in account the tomography of the state. This can be readily understood by
considering Figure 6.4.4 where the min-conditional entropies H(Pδj |E) are reported as
function of the precision. Since we were interested to study also the amount of check
measurements to get as close as possible to the exact value, we extracted from the worst
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Figure 6.18: Conditional entropies Hmin(P (δj)|E) for different sizes of the check
measurement sample set are reported as function of the measurement precision j ∈
{1, 2, 3, 4, 5, 6, 7}. The dashed purple line correspond to the value of classical min-
entropy. It is relevant to notice how the conditional min-entropy overestimates the
real amount of true random bits extractable from the measured quantum state. How-
ever it has to be pointed out that evaluating the Hmin(P (δj)|E) with a too low precision,
i.e. j ∈ {1, 2, 3, 4}, one has that the min-conditional entropy is not meaningful either
because the resolution is too low to distinguish the state.

data set random subsets of size nQ = {103, 104, 105, 106}. Each point in the plot is an
average on 200 entropy values estimated at every round on a different random subset.
By looking at the graph the following considerations can be drawn:

• Low Precision (δ5 → δ7): the conditional min-entropy is negative. This means
that the maximum amount of true random bits which can be extracted is zero,
giving the bound no-information about the real content of randomness. This is
a consequence of the fact that the precision is not enough sharp to accurately
distinguish the state, e.g. for δ7 inputting into the QRNG a symmetric tight
squeezed state or a broad thermal one would yield the same binary distribution.
The classical min-entropy (dashed purple line) attains, as expected, the unit value.
The unity is reached already with δ5 because with respect to the variance of the
input state such precision is too wide, i.e. the central intervals already comprise
most of the data points.

• High Precision (δ → δ4): increasing the precision one can extract an ever grow-
ing number of true random bits. It is interesting to observe that the less the number
of measurement performed in the check basis, the less the number of extractable
true random bits for a fixed precision. This fact can be interpreted always in terms
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of measure precision: if the resolution is high, a higher number of measurements is
needed to accurately reconstruct the state; for example, one can see that for δ4, the
distance between the estimated entropy values for different set sizes nQ is closer
than for δ. As expected, being the measured state comparable to a thermal one,
given the large variance, for high deltas we have that the conditional min-entropy
does not tend to the min-entropy. It is worth stressing that this gap is not a
measurement limitation: increasing the precision or the number of measure-
ments would not improve the number of true random bits, because the limit of
extractable randomness is given by the condition of non-purity of the quantum
state.

Following this analysis the final conclusion that can be drawn is that the classical
min-entropy is not a reliable quantity in order to evaluate the final length l of the
random string associated to the random variable P . As we have shown, the H(P ) always
overestimates the true amount of random bits: it can regarded just as a quantifier of
statistical randomness, i.e. accidental randomness + quantum randomness. However
it does not give information on which percentage they are given: for example we see
that for δ1 the statistical random bits extractable per measurement are 5.7 but out
of them only 4.7 are of quantum origin. If a QRNG has to be employed to generate
cryptographic keys, the use of min-entropy would be allowable only if quantum side
information could be ruled out, e.g by forging a pure state, and only if the measurement
operators/devices would not introduce any classical noise. Unfortunately, this represents
a hardly achievable condition especially if one aims to build QRNG for common use.

6.4.5 Rates

As said before, an implementation of the protocol in a generator requires the switching
between the two mutually unbiased basis during the whole generation. The instant
when the generator stops to measure in the P basis to collect a measurement in the Q
basis must be random in order to prevent that some state masking dynamic, malicious
or just fortuitous, to be synchronized with the check instant. In the countability of
the randomness then one has to take in account the number of bits necessary for the
switching. Also for the CV-QRNG, we set nQ =

√
m with m the total number of

measurements in both the bases. Out of the m measurements the check instants can be

chosen in

(
m
nQ

)
different ways. A given random combination then can be encoded in

a seed t(m) = dlog2
m!

nQ!(m−nQ)!e bits long. We evaluated then the secure generation rate,

i.e. the neat number of true random bits per measurement, according

rsec =
1

m
(m− nQ)[−c(δj)− H̃max(Qδj )]− t(m) (6.32)

varying the precision δj with j ∈ {1, 2, 3, 4} with the results are represented in Figure
6.4.5. As for the discrete case, the rates tend to the asymptotic value of r̃ −−→ r(Pδj ) =

−c(δj) − H̃1/2(Qδj ) for m → ∞. The red lines and the orange areas represent the
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expected average rate and the 3σ uncertainty respectively, obtained by simulating the
check measurement with a gaussian probability distribution having the same measured
variance σ2

Q = 0.661 of the sample set. Each blue point with 3σ error bar, corresponds
instead the to the averages of r̃, being every average evaluated on 200 random data set
of size

√
m with m ∈ {27, . . . , 241}. As one can see, there is a remarkable agreement

between the expected and the experimental values. For what concerns a real implemen-
tation of the protocol, an advantage in using the highest precision of the ADC, lies in
the fact that one would need much more measurements to reach a given rate value but
with a lower precision. The green shaded area in the plot marks the regions where the
distance to the asymptotic limit is less than the 5% and which starts at m = 2.1 · 109:
if a QRNG was provided with the equivalent of a squashed quantum state with this
same σ2

Q, with a sampling rate of 2 GS/s and a resolution of 8 bits, the generator could
provide a quantum secure rate of roughly 8.71 Gbit/s.

6.4.6 Statistical Randomness Assessment

For the post-processing of the numbers, we implemented the fast computable two-
universal hash function introduced in [125] which we used also for the DV-QRNG.
Given the total amount of measurements being m = 1604845568 we invested n =
dsqrtme ' 40000 bits to evaluate the min-conditional entropy, which was estimated
to be H(P (δp)|E) = 4.3394 bits in average per measurement and a corresponding rate
of r = 4.3385 bits. Considering that every measure was taken with an equivalent sam-
pling rate of 1.25 GS/s, we have a theoretical secure rate of 5.4 Gbit/s. The final neat
total amount of secure random bits amounted to 6.96 ·109 which were obtained by taking
the modulo sum 2 of the product between substrings n = 10000 bits long and a n× l ma-
trix with l = 5424 (corresponding to the ratio between H(P |E) and the binary encoding
of a single measurements, i.e. 8 bits). In this proof of principle, the hash matrix was
generated for every substring using the pseudo-random number generator of the pro-
cessing software: naturally a real implementation would require a seed of true random
numbers to be stored inside the generator. As we did in the previous Chapter we tested
the numbers with standard NIST statistical tests in order to assess the statistical quality
of the numbers: it is worth stressing that once the extractor is properly calibrated and
the hash matrix is truly random, the post-processed numbers are expected to pass the
tests, as explained in the previous Chapter. This was indeed the case as one can see
from Figure 6.4.6 where the results on 6 strings 109 bit longs are reported.

6.4.7 Comparisons with other CV-QRNG

At present time, CV-QRNG based on the vacuum state quadrature homodyne were
presented by Gabriel et al. [109], by Shen et. al [167] and by Symul et. al [162].

The purity of the state is assumed, in all the works. In particular, in [109] this
hypothesis is motivated explicitly by considering that the open arm of the beam splitter
was blocked so an adversary could not influence the state from that input. The treatment
of security is then completely classical with a characterization of the randomness based
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Figure 6.19: In Figure the theoretical and experimental rates, red lines and blue points
respectively, are reported for different precisions δj with j ∈ {1, 2, 3, 4} as function of
the total number of measurements m. For every m, theoretical lines were obtained
averaging 200 rate values calculated on simulated sample gaussian distributions with
the same variance of the used dataset, σ2

Q = 0.661. The orange shaded areas correspond
to expected the 3σ errors. The blue points are the averages of the rates evaluated on
200 random samples of size d√me. As one see there is a remarkable agreement between
experimental points and expected results. In particular one has that for m → ∞, the
rates tend to an asymptotic value equal to the min conditional entropy. The green dashed
line marks the regions where one has less than the 5% of distance from the asymptotic
value.
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Figure 6.20: The stacked plots represents the passing ratio for the NIST test suite SP-
800-22. Histograms correspond to six different strings 109 bit long. Each of the 16 tests
was applied on 1000 substrings 106 bits long and a bin represents the fraction of strings
which passed a given test. The red line corresponds to the critical passing ratio.
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only on the electronic noise. In [109] the quantum entropy is obtained by subtracting
the entropy of the electronic noise measured without signal inputs to the entropy of the
quadrature measurement. Randomness extractors (one way hash functions or the clas-
sical seedless extractors) are then calibrated on this value of entropy which corresponds
only to an upper bound. Indeed the authors employed the Shannon entropy instead of
the min-classical: as it is pointed out in [125] the use of this estimator did not guarantee
the independence from the noise.

In the other two works, the independence from noise is achieved by considering least
significative bits in the binary encoding of the measurements. This approach is adopted
in order to pass the statistical tests of randomness: regarded in the perspective of the
EUP protocol, with this approach one looses information about the real measured state.
The generation rates are of 6 Mbit/s for [109], 12 Mbit/s for [167] and from 25 Mbit/s
to 2 Gb/s according to the number of discarded bits for [162]. Compared with these
generators, the EUP method not only does not need the strong assumption of the purity
of the states, but it takes also into account also the electronic noise, filtering out any
non-quantum source of noise.

6.5 Conclusions

The considerations that can be done are similar to the one of the previous Chapter.
However here, not only we have demonstrated that the EUP protocol can be applied to
infinite dimensional quantum systems in order to extract the true content of random bits,
but we have also shown that the amount of extracted bits depend also on the precision
of the measurement. This point is relevant because CV-EUP protocol lets one then to
extract true randomness as function of the classical noise affecting the state and of the
resolution of the instrument employed. The CV-EUP protocol then can be regarded as
resilient dynamic extractor which can offer improved quantum security for the upcoming
generation of fast CV-QRNG.
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Chapter 7

Conclusions

Quantum Key Distribution and Quantum Random Number Generation are technolo-
gies which are becoming increasingly more common and in a not distant future will be
available in every day life. In this thesis different methods were presented to charac-
terize and exploit the noises affecting these protocols, in order to improve their future
implementation.

With the ARTS method of Chapter 2 we presented and demonstrated the validity of
a procedure which enables the exchange of secure bits also when the level of losses would
not permit it. This improvement is made possible by exploiting the optical turbulence
noise, i.e. the peaks of transmissivity due to the log-normal distribution. The point of
strength of ARTS, is the fact that it is a real time protocol and then it is resilient when
the losses of the channel are rapidly varying.

Clearly ARTS represents a resource for the upcoming satellite Quantum Communi-
cations, a scenario where the losses are high by default: the satellite will be available
above the two parties Alice and Bob only for a limited amount of time so it is vital to
take advantage of every single transmissivity window to generate the key.

Noise was also the subject of Chapter ?? and 6: in both the cases, noise corresponds
to the apparently random behavior of a physical quantum state which is not pure but
mixed. Here the method devised to improve the unpredictability in a strict quantum
sense, is to carefully quantify the amount of randomness which is extractable by employ-
ing a quantum mechanical tool, the entropic uncertainty protocol. Without any doubt
the main advantage of this protocol lies in the fact that a quantum information quantity,
the min-entropy conditioned on a quantum adversarial system E, is used for a quantum
information process. In the QRNG Literature, classical entropies are typically used to
estimate the content of randomness. Consequently also the post-processing methods
are classical. It is clear that with this classical approach all the advantages of using a
quantum random number generator are lost, because nothing certifies that the stream of
bits has still a quantum origin. With the EUP protocol instead, on one hand we address
the demanding security scenario of an adversary with quantum side information. On
the other hand we provide a method which can extract true randomness also in case
of a generator affected by noise as we did in 6. Also in this case we think that the
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7. CONCLUSIONS

QRNG methods presented in this thesis can be a resource to match the strict security
requirements for the generators to be employed in present and future Quantum Key
Distribution protocols.
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Appendix A

Min-entropy estimation

In this section we show how to estimate the expected min-entropy. In a sample with
L bytes, the single byte occurrence `i (i = 1, · · · 256) are random variables distributed
according the Poisson distribution with mean λ = L

256 . In order to estimate the expected
min-entropy we need the distribution of the maximum of the occurrences and we can
proceed as follow. Given a sample of n random variables X1, X2, . . . , Xn whose cumula-
tive distribution function (CDF) is D(x) and the probability density function (PDF) is
F (x), they can be re-ordered as Xπ(1) ≤ Xπ(2) ≤ · · · ≤ Xπ(n): the Xπ(k) is called statistic
of order k, such that min {X1, X2, . . . , Xn} = Xπ(1) and max {X1, X2, . . . , Xn} = Xπ(n).
In order to derive the distribution function of an order k statistic, given h the number
of Xi ≤ x, one can note that

Dk(x) = P (Xπ(k) ≤ x) = P (h ≥ k) =
n∑

i=k

P (h = i)

=
n∑

i=k

(
n

i

)
[D(x)]k[1−D(x)]n−k

(A.1)

Working with integer random variables the PDF is then obtained by

Fk(x) = Dk(x)−Dk(x− 1) (A.2)

Being interested in the byte frequencies maximal values, that is k = n, the previous
equation becomes

Fn(x) = [D(x)]n − [D(x− 1)]n (A.3)

In a sample with size L, the distribution of the maximum `M of the single byte occurrence
`i can be computed by using the previous equation with D(x) = e−λ

∑x
j=0

λ
j! , λ = L

256
and n = 256:

Π(`M ) = (e−λ
`M∑

j=0

λ

j!
)n − (e−λ

`M−1∑

j=0

λ

j!
)n

=

(
Γ(`M + 1, λ)

`M !

)n
−
(

Γ(`M , λ)

Γ(`M )

)n (A.4)
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The expected value and variance of the maximum of the `i’s, are then easily evaluated
by applying the definitions 〈`M 〉 =

∑∞
x=0 xΠ(x) and and σ2 = 〈`2M 〉−〈`M 〉2 respectively.

With a sample size of L = 1399852 bytes and n = 256, the theoretical reference values
are then evaluated to be 〈`M 〉 = 5678.4 ± 29.4 counts with corresponding expected

relative frequency fM = 〈`M 〉
L = (4.056 ± 0.021) · 10−3. This value corresponds to a

theoretical min-entropy of Hmin = − log2 fM = 7.946 ± 0.007 bits per byte. If the
obtained experimental min-entropy is compatible with the predicted theoretical value,
the sample can be considered as uniformly distributed.
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Appendix B

Statistical suites

B.0.1 NIST suite

The Statistical Test Suite developed by NIST [159] applies stringent tests in order to
check the reliability of PRNGs and TRNGs for cryptographic applications. This suite
is widely used to study in general the output of TRNGs and thus become a standard.

Statistical Test Suite v. 1.8
Test Defect Individuated

1 Frequency Deviation from uniform distribution of 0s and 1s.
2 Block Frequency Deviation from uniform distribution of 0s and 1s within a block
3 Cumulative Sums Deviation from uniform distribution at the beginning of the sequence.
4 Longest Runs Of Ones Deviation of the distribution of long runs of ones.
5

Runs
Large (small) total number of runs indicates
that the oscillation in the bit stream is too fast (too slow).

6
Rank

Deviation of the rank distribution from a corresponding
random sequence, due to periodicity.

7 Spectral Periodic features in the bit stream.
8 Non-overlapping Template Matchings Too many occurrences of non-periodic templates.
9 Overlapping Template Matchings Too many occurrences of m-bit runs of ones.
10 Universal Statistical Compressibility (regularity).
11

Random Excursions
Deviation from the distribution of the number of visits
of a random walk to a certain state.

12
Random Excursion Variant

Deviation from the distribution of the total number of visits
(across many random walks) to a certain state.

13 Approximate Entropy Non-uniform distribution of m-length words.
14 Serial Non-uniform distribution of m-length words.
15

Linear Complexity
Deviation from the distribution of the linear complexity
for finite length (sub)strings.

Table B.1: Descriptions of the tests implemented in the NIST suite.

In Table B.1 the tests implemented in the suite are listed. Test 1 and 2 control the
uniformity of the distribution of bits in the whole substring as in smaller blocks (128
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bit), respectively.

The NIST suite applies also tests based on the theory of random walks: given a
binary string of length n, the random walk Sn is defined as Sn =

∑n
i=1(2 · xi− 1) where

xi is the i-th bit in the string and S0 = 0. The random walk is then a function which
oscillates according to the distribution of underlying bits. Since the statistical properties
of random walks are well known, it is possible to study if these oscillations agree with
the theory. The test statistic of test 3 is the maximal value reached by Sn, that is the
absolute value of the largest partial sum of the random walk: the test is applied two
times to every string, calculating the sum starting from the beginning (forward mode)
and from the end (reverse mode); for a uniform distribution of bits the random walk
should not depart too much from the origin while, when the string is strongly biased,
the sum will reach large values, not in agreement with the null hypothesis. For test
10 the test statistics is given by the number of excursions (intervals between two zero
crossings) in which a given state of the walk (a partial sum Si, i < n) is visited: the test
is applied 8 times for the visits to the states between -4 and 4. The test 11 takes into
account the number of times a given state is visited during the entire walk (not only in
a single excursion): the test is applied 18 times for the states between -9 and 9.

Tests 4 and 5 use test statistics based on runs, uninterrupted sequences of 0s and 1s:
the first test checks for the total number of runs into the string, which under H′ should
correspond to half of the length, while the second one has the test statistic function of
the frequency of the longest runs of 1s into fixed blocks of the string. In particular, it
has been found that the test 4 more is sensitive with respect to the others since the test
statistic is more directly affected by bias and correlation: a highly anticorrelated string
tends to present many changes between 0 and 1, increasing the number of runs, while
in a correlated one the number of runs tends to be low.

Tests 7, 8, 13 and 14 check for the independence and uniformity of the distribution of
patterns, adopting the serial approach: test 7 has test statistics based on the frequencies
of non-overlapping aperiodic patterns (of length 9 for the following analysis) like i.e.
[01001101]; in 8, the test statics is a function of the frequency of the pattern [11111111],
which is searched in an overlapped way; test 13 is a serial overlap one but the test
statistics is redefined like an entropy function; test 14 is a simple serial overlap test on
16 bit words.

The spectral test, 6, employs a discrete Fourier transform on the bits in order to
reveal the presence of periodic features.

The Universal test to detect deviation from randomness, considers the bit length
separation between given bit patterns in a string and whether it is compatible or not
with the null hypothesis: a bit string is divided in Q + K not overlapped blocks of
length L. Then the first Q blocks are used for initialization. The K blocks are scanned
evaluating at every step the number Ai of blocks which separate the current i − th L
bit pattern from its last appearance in the bit string. [?] proofs that the test statistics
U = 1

K

∑K
i=Q+K lg2Ai is distributed according to the normal distribution and also an

expression for the variance is given: the NIST suite adopts expressly the original results
of Maurer which can be found also in [?]. However, in Coron adds some corrections
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improving the sensitivity of the test. This last version is implemented in the AIS31
suite. The interesting point about the Universal test is the fact that the average value of
the test statistics corresponds asymptotically to the entropy per-bit of the L bit word,
the application of the test gives also a measure of cryptographic strength of the string
analyzed.

The length of substrings chosen to run the suite is 10242 = 1′048′576 bits: this is
a common choice since it is the minimal length required by some tests (i.e. Universal
Test) to be applied in the proper way and it permits to limit the computational time
to few hours for all tests; generally, hundreds of substrings are tested, but some tests
(7,10,11) apply more variants: for example the Non-Overlapping Template Matchings
test is applied 147 times on every substring, as the number of non periodic patterns of 9
bits. The suite allows a great level of customization since it permits to change different
parameters for the tests: for the analysis the parameters were set according to the length
of substrings as suggested by the developers.

After the application of the tests, the suite prints a detailed report where, for every
test, the distribution of p-values calculated for every substring, a p-value on the uniform
distribution of the p-values, and the proportion of bit strings that passed the test, namely
those ones with a p-value ≥ 0.01, being set the significance level α = 0.01 are given.
This level of significance is a standard choice selected also in all the references studied
and it implies that at least 100 substrings has to be tested in order to make the test
meaningful (being expected 1 failure on 100). A test is not passed if: the proportion of
sub strings which do not pass the tests are below given a threshold calculated on the
base of the number of strings analyzed or if the distribution of p-values is not uniform,
more specifically if the p-value calculated the on the resulting p-values frequencies is
≤ 10−4: in the final report strong failures are flagged with an asterisk.

Between the two ways of failure, the last one is the most serious since it implies the
presence of persistent problems which affect every substring causing a non uniform dis-
tribution of p-values: this kind of failure does not necessarily cause a low rate of success
because the p-values can all be a little higher than 0.01 but it is usually accompanied
by the failure of other tests.

Differently, the failure of a test due to a rate of success smaller than that one predicted
by the theory is possible and more frequent when, due to chance or to some temporary
instability, a generator produces an excess of non-random strings: if the deviation from
the threshold is not very large the suite indeed does not flag the failure.

B.0.2 The AIS31 suite

The AIS31 [?] suite is a cryptographic suite developed by the BSI agency (Bundesamt
f“ur Sichereit in der Informationstechnik) on the basis of the theoretical work made
by W. Schindler in [170][171] in order to define and coding a reliable method for the
evaluation of TRNGs.

The tests individuated by Schindler are divided in two classes: the first class checks
that the random bit do not present conspicuous statistical features while the second
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class checks that they are practically impossible to determine even if the predecessors or
successors are known.

The first class comprises 6 tests: the first one is a preliminary test to check the pair-
wise disjointness of 48 bit long substring, while the other five (frequency, correlation,
longest run, runs, poker test) are based on the dismissed NIST requirements for ran-
domness testing [?]. These tests are applied 257 times on substrings 20000 bits long: the
expected rate of success is very high in presence since the failure is given when p-value
are smaller than 10−6.

The second class is expressly oriented for the testing of TRNGs since it checks that the
eventual presence of bit hardware induced bit dependencies are not strong to determine
an excessive cryptographic weakness of the strings. Indeed while the tests of the first
class can be applied on numbers produced after a postprocessing unit, the tests of the
second class must be applied directly on the raw data coming from the sampling of the
digitized noise signal. Three tests are given: the first one is a simple frequency test
(uniform distribution test); the second test checks the absence or, at least, the limited
presence of bit dependencies evaluating if the output takes with the same probability
the values 1 or 0 independently by the words of 2, 3 and 4 bits previously appeared
(comparative test for multinomial distributions). The last test is Universal Test in the
improved version of Coron (entropy test).

B.0.3 The Alphabit battery

The last suite of tests applied to the generator is the library of tests TESTU01 developed
by L’Ecuyer [160]. This suite is the most recent and comprises the largest spectrum of
tests at present time available.

Also if most of the tests are oriented for the analysis of PRNGs, the TESTU01
provides a specific battery, the Alphabit battery, ”designed primarily to test hardware
random bits generators”: this battery analyzes directly bits and applies tests sensitive
to the typical problems of bit uniformity and independence.

Tests are grouped in three categories:
Multinomial Bits Over Tests: serial overlap tests on patterns of length L =2, 4, 8

and 16;
Hamming Tests: two tests intended to check if the Hamming weights Hi, the number

of 1s, into adjacent blocks of length L =16 and 32 are independent: a test, HammingCorr,
evaluate the linear correlation between the weight in blocks of 32 bits, while the other
checks the uniform distribution of all the possible (L+ 1)2 ;

Random Walk Test: these tests compares the statistical properties of the random
walks built starting from the bit strings with their theoretical expectations.

Between the tests the most effective, without any doubt, are the Multinomial Bits
Over ones, which were the first to be failed and those ones which reached the extreme
p-values. These results confirmed then also the choice made to use the serial overlap
test on pair as main tool for the first level analysis.

Formally the suite signals the failure of a test if the resulting p-value (or one of
second order p-value) is out the interval [0.001,0.999]: L’Ecuyer however considers in
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[160] passed a test which not present any p-value out the range [10−10, 1− 10−10].
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Appendix C

Results of the suites for the
Turbo-RNG
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C. RESULTS OF THE SUITES FOR THE TURBO-RNG
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Appendix D

Min and Max-entropy

We here briefly review the definition of conditional min- and max- entropies introduced
in [144]. The conditional min-entropy of a bipartite quantum state ρAE is defined as:

Hmin(A|E)ρAE = max
σB

sup
{
λ ∈ R

∣∣∣ IdA ⊗ σE
2λ

≥ ρAE
}
, (D.1)

where σE is a normalized positive state.
The conditional max-entropy is the dual of the min-entropy. In fact, by using a

purification ρABC of ρAB, the max-entropy is defined by

Hmax(A|B)ρAB = −Hmin(A|C)ρAC , (D.2)

where ρAB = TrC [ρABC ] and ρAC = TrB[ρABC ]. We here recall that the purification of
a state ρAB is a pure state ρABC in the extended Hilbert space A ⊗ B ⊗ C, such that
TrC [ρABC ] = ρAB.

For the QRNG we need to evaluate the max-entropy for the state ρX ≡
∑d−1

x=0 px|x〉〈x|,
where the space B is a trivial space. By definition (D.2) we have:

Hmax(X)ρX = −Hmin(A|C)ρAC (D.3)

with ρAC a purification of ρX . A possible purification is given by

ρAC = |Ψ〉AC〈Ψ| , |Ψ〉AC =

d−1∑

x=0

√
px|x〉A ⊗ |vx〉C (D.4)

with {|vx〉} on orthonormal basis on the space C with dimension d. By (D.1) we have

Hmax(X)ρX = −Hmin(A|C)ρAC

= −max
σB

sup
{
λ ∈ R

∣∣∣ IdA ⊗ σC
2λ

≥ |Ψ〉〈Ψ|
}
,

(D.5)

The state σC that maximize min-entropy definition is σC = Id/d. The maximum λ
such that IdA ⊗ IdC ≥ d2λ|Ψ〉〈Ψ| is λ = − log2[

∑
x(
√
px)]2, such that

Hmax(X)ρX = log2[
∑

x

√
px]2 = 2 log2

∑

x

√
px = H1/2(X) (D.6)
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Appendix E

Statistical tests of randomness for
Qubit and Ququart
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E. STATISTICAL TESTS OF RANDOMNESS FOR QUBIT AND
QUQUART

Table E.1: (left) Summary of the results of selected tests of batteries particularly ef-
fective in detecting defects in TRNG. The Alphabit and Rabbit batteries belong to the
TESTU01: critical results are if P-val ≤ 10−3 or P-val ≥ 0.990. For tests which give
more than a p-values, the smallest is reported . For NIST SP-800-22 suite, the file was
partitioned in sub-strings 200 000 bits long for a total of 150 strings: this length was
chosen in order to obtain a sample sizes enough large such that it is likely to fail the
tests in case of poor randomness with a significance level of α = 0.01; a test is failed if
more than 6 strings fail it. In addition, a test is passed if the a chi-square test on the
distribution of p-values, gives it self a p-value P-val ≥ 10−5.
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Table E.2: Summary of the results of selected tests of batteries particularly effective in
detecting defects in TRNG. The Alphabit and Rabbit batteries belong to the TESTU01:
critical results are if P-val ≤ 10−3 or P-val ≥ 0.990. For tests which give more than a
p-values, the smallest is reported . For NIST SP-800-22 suite, the file was partitioned in
sub-strings 400 000 bits long for a total of 100 strings: this length was chosen in order
to obtain a sample sizes enough large such that it is likely to fail the tests in case of
poor randomness with a significance level of α = 0.01; a test is failed if more than 4
strings fail it. In addition, a test is passed if the a chi-square test on the distribution of
p-values, gives it self a p-value P-val ≥ 10−5.

131



E. STATISTICAL TESTS OF RANDOMNESS FOR QUBIT AND
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Bouda, W Boxleitner, Thierry Debuisschert, Eleni Diamanti, M Dianati, J F
Dynes, and Others. The SECOQC quantum key distribution network in Vienna.
New J. Phys., 11(7):75001, 2009.
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