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Sommario

Questa tesi tratta 1'analisi automatica di immagini a colori del fondo dell'occhio. In
particolare, essa si focalizza sull’implementazione di software per l’analisi e la
valutazione quantitativa delle retinopatie, prevalentemente ipertensiva e diabetica su
soggetti adulti e retinopatia della prematurita (ROP) su soggetti nati prematuri.

Sia l'ipertensione che il diabete colpiscono, anche se con modalita e decorso
temporale differente, il microcircolo sanguigno. La retinopatia ¢ una delle conseguenze
di tale danno circolatorio. I vasi retinici sono assai sensibili a cambiamenti nella
microcircolazione: ¢ stato dimostrato che i singoli segni della retinopatia hanno un
alto valore prognostico per infarto, sclerosi carotidea e danno coronarico. Anche nel
caso di neonati altamente pretermine, nei quali la vascolarizzazione retinica &
inizialmente incompleta e puo svilupparsi succesivamente in modo anomalo, i segni
della retinopatia risultano importanti per una valutazione della sua gravita e per la
prevenzione di potenziali peggioramenti che possono compromettere le capacita visive
del soggetto. Inoltre, la retinopatia ¢ una malattia sociale, con una ricaduta
economica (diretta ed indiretta) elevata: la perdita o la diminuzione della capacita
visiva porta infatti ad una ridotta capacita lavorativa ed all’impossibilita di condurre
una vita indipendente.

Nonostante anche altri organi siano sensibili ad alterazioni del microcircolo
sanguigno, la retina ha il grande vantaggio di essere facilmente disponibile ad un
controllo non invasivo. Tale caratteristica suggerisce un modo efficiente ed efficace
per seguire il decorso di malattie locali e sistemiche associate alla retinopatia. Inoltre,
con riguardo alla prevenzione della perdita della vista, il riconoscimento della
retinopatia al suo insorgere ¢ il punto piu critico per evitare che degeneri in cecita.
Cio e particolarmente importante nella retinopatia diabetica in cui, allo stato attuale
della farmacologia, i danni alla retina non recedono con il trattamento farmacologico
o col controllo del diabete.

Sfortunatamente, le fasi iniziali della retinopatia, sia negli adulti che nei neonati,
sono quasi asintomatiche. Un programma di screening potrebbe evitare, alla maggior
parte della popolazione a rischio, lo sviluppo di retinopatie che minaccino la vista.
Allo stesso tempo, nel mondo occidentale non ci sono abbastanza risorse, sia in
termine di tempo e soprattutto in termine di disponibilta di oftalmologi esperti, per
organizzare uno screening di tal genere. E’ dunque forte il bisogno di strumenti che
valutino automaticamente la retina, per diagnosticare la presenza e la severita
dell'eventuale retinopatia.

Nell’ambito di questa tesi sono state prese in esame le features dell’apparato
vascolare: lidentificazione del reticolo dei vasi (arterie e vene), consente la
misurazione dei suoi principali descrittori geometrici (lunghezza, direzione, calibro,
presenza di biforcazioni, tortuosita, etc.); da questi vengono calcolati specifici indici di
rilievo diagnostico, che forniscono ai clinici informazioni sul grado complessivo di
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retinopatia del paziente, la cui significativita é molto importante per la diagnosi delle
patologie retiniche.

Lo strumento utilizzato per acquisire le immagini del fondo retinco é la fundus
camera, un microscopio a bassa potenza accoppiato con una fotocamera, progettato
per fotografare la superficie interna dell’occhio. L’acquisizione su pazienti adulti per
Iidentificazione o lo screening di retinopatia & solitamente effettuato con fundus
camere non portatili a contatto, che forniscono immagini ad alta risoluzione ad un
field of view (FOV) compreso tra i 30 e i 60 gradi. Diversamente, I'acquisizione su
neonati prematuri per lo screening di ROP viene fatta usando strumenti ad-hoc con
caratteristiche particolari. Ne & un esempio la fundus camera portatile NidekNM200D
(Nidek Co., Gamagori, Japan) che non richiede il contatto diretto con 1’occhio e che
produce immagini ad alta risoluzione e stretto field of view (30 gradi). Un’altra
fundus camera tipicamente usata per ’acquisizione di immagini su neonati & RetCam
(Clarity Medical System, Pleasanton, CA, USA), che fornisce immagini a bassa
risoluzione con field of view fino a 130 gradi. L’utilizzo di RetCam é generalmente
limitato ai neonati in virtu della minima opacita di cornea e cristallino e per ragioni
di qualita dell’immagine non é solitamente usata con soggetti adulti.

Le immagini acquisite su adulti e su neonati presentano diverse caratteristiche,
legate essenzialmente alle differenze anatomiche tra le due classi di soggetti, ai diversi
tipi di fundus camera usata e ai diversi protocolli di acquisizione. Di conseguenza,
algoritmi che risultano molto efficienti per I'analisi di immagini di soggetti adulti,
spesso si rivelano inadeguati se applicati a immagini di neonati. Per questo motivo,
allo scopo di garantire sempre una stima accurata e precisa dei parametri clinici
estratti, sono stati sviluppati algoritmi ad-hoc per i diversi tipi di immagini da
analizzare. In particolare in questa tesi vengono presentati tre sistemi, progettati
rispettivamente per l'analisi di immagini di soggetti adulti, immagini acquisite da
neonati con Nidek NM200D e immagini di neonati acquisite con RetCam.

Viene presentato un nuovo metodo per estrarre automaticamente la rete vascolare
su immagini di adulti, acquisite a diverse risoluzioni e field of view. Questo si basa su
una tecnica di ricerca multi-direzionale su grafi, per l'identificazione degli assi dei
vasi: dopo la ricerca sull’immagine di punti notevoli (seed points) i cammini a costo
minimo che connettono diversi seeds identificano gli assi dei vasi. . I bordi vengono
poi trovati applicando filtri matched monodimensionali efficienti: la direzione del
kernel & scelta perpendicolarmente agli assi trovati e la scala viene stimata mediante
un’analisi preliminare dei profili trasversali ai vasi.

A causa della grande variabilitd e la scarsa qualita delle immagini acquisite su
neonati con Nidek NM200D, é stato sviluppato un sistema semi-automatico ad-hoc
per tracciare singoli segmenti vascolari e valutarne le caratteristiche geometriche. I
vasi da analizzare vengono selezionati manulamente delineandone 1’asse
approssimativo. A partire da questa informazione a priori i bordi dei vasi vengono
trovati mediante tecniche di filtraggio basate sul metodo di Canny. I calibri e I'asse
preciso lungo il segmento analizzato vengono valutati associando opportunamente
coppie di punti appartenenti ai bordi opposti.
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Il tracciamento automatico dei vasi in immagini acquisite su neonati con RetCam é
un compito particolarmente complesso a causa della bassa risoluzione, dello scarso
contrasto, del field of view particolarmente ampio e della visibilitd dei vasi della
coroide. Per questo scopo viene presentata una tecnica innovativa. Questa si basa sul
miglioramento del contrasto tra strutture vascolari e sfondo utilizzando filtri matched
con diversi kernel orientabili e scalabili. Una sogliatura locale e operazioni
morfologiche vengono usate per 'estrazione degli assi della rete vascolare a partire dai
filtraggi precedentemente menzionati. L’ultimo passaggio consiste in una
classificazione supervisionata, basata su Support Vector Machines (SVM), allo scopo
di riconoscere e scartare i falsi vasi, generati da rumore, artefatti o dalla presenza dei
vasi della coroide sottostanti alla retina.

A partire dagli algoritmi sviluppati, sono stati progettati dei sistemi software allo
scopo di proporre ai clinici e ai ricercatori degli strumenti, pratici e intuitivi, per la
diagnosi e lo screening di retinopatie. In particolare, per l’analisi di immagini
acquisite su soggetti adulti é stato sviluppato AVRnet, un sistema web dotato di
un’interfaccia grafica user-friendly che permette di estrarre la rete vascolare e
calcolare a partire da essa gli indici CRAE (Central Retinal Arteriolar Equivalent),
CRVE (Central Retinal Venular Equivalent) e AVR (Arteriolar Venular Ratio)
secondo il metodo di Knudtson. Per I’analisi di immagini acquisite da neonati & stato
sviluppato ROPnet, un’applicazione web per la stima di indici clinici (come
lallargamento vascolare e la tortuosita) utili a definire la presenza e 1’eventuale
gravita della ROP. Il tool in questione & specifico per 'analisi di immagini acquisite
con Nidek NM200D e le analisi possono essere effettuate con un setup di tipo client-
server usando un web browser. Attualmente ¢ in fase di sviluppo un analogo
strumento specifico per lavorare su immagini ad ampio field of view acquisite con
RetCam.

Il software riguardante I’identificazione delle strutture vascolari retiniche su
immagini di adulti & stato testato su diversi datasets ed il confronto tra i risultati
automatici prodotti, contro i riferimenti manuali, ha evidenziato alte sensitivitad e
specificita. Il sistema in questione é al momento oggetto di valutazione clinica presso
il Department of Ophthalmology and Visual Sciences, University of Wisconsin, USA,
il cui Fundus Photograph Reading Center valutera la possibilitd di acquisire il
programma come standard per la determinazione di features diagnostiche.
Un’ulteriore collaborazione, con il Department of Twin Research & Genetic
Epidemiology, del King’s College London Division of Genetics and Molecular
Medicine, St Thomas' Hospital, UK, ha portato all’analisi con il sistema sviluppato di
pitu di 2000 immagini di fundus retinico per scopi clinici.

L’interfaccia e le funzionalita del tool web ROPnet sono state progettate in stretta
collaborazione con il Department of Ophthalmology del Children’s Hospital e dello
Scheie Eye Institute di Philadelphia, US, allo scopo di soddisfare le esigenze dei
clinici, sia per quanto riguarda l’usabilita sia per le prestazioni dello strumento.
L’accuratezza dei parametri estratti da ROPnet (calibro e tortuosita dei vasi) ¢ stata
confermata dall’elevata correlazione ottenuta confrontando i risultati automatici con
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quelli di riferimento, calcolati manualmente da esperti retinici. Inoltre I’applicazione
web é gia stata utilizzata per alcuni studi clinici preliminari e attualmente stiamo
indagando l'utilita e la validita di tali parametri nella diagnosi clinica e nella
classificazione della ROP.

Le specifiche del sistema per la valutazione di ROP in immagini acquisite con
RetCam sono state concordate direttamente con Clarity Medical Systems, la casa
produttrice della fundus camera in questione. Per questo recente progetto, come
risultati preliminari abbiamo ottenuto un’alta sensitivita e specificita relativamente
alla segmentazione automatica delle strutture vascolari, un problema particolarmente
complesso su questo tipo di immagini. Le tecniche per l'estrazione di indici clinici a
partire dalla morfologia dei vasi sono attualmente in fase di sviluppo.

In prospettiva, strumenti pratici e dalla facile distribuzione come quelli da noi
proposti potrebbero facilitare ampi programmi di screening delle retinopatie
ipertensiva, diabetica e della prematurita, oltre che il controllo nel tempo del
progredire della malattia. La loro utilia sarebbe triplice. In primo luogo, potrebbero
essere uno strumento diagnostico di aiuto alla pratica clinica. In secondo luogo, i
dettagli quantitativi sulla struttura vascolare della retina potrebbero essere utili nella
ricerca medica e per meglio caratterizzare gli sviluppi della retinopatia. Infine,
nell’ambito della ricerca farmaceutica, si renderebbe disponibile 1'utilizzo di una
misura quantitativa e riproducibile dell'evoluzione della retinopatia durante un
trattamento farmacologico.

I risultati conseguiti nelle sperimentazioni effettuate e le collaborazioni
internazionali in atto con gruppi clinici e di ricerca di rilievo c¢i rendono fiduciosi
riguardo la qualita delle metodologie sviluppate e i potenziali successi del loro
impiego, con 'auspicio che futuri miglioramenti possano ampliarne 'utilizzabilita.
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Abstract

This thesis deals with the automatic analysis of color fundus images and in partic-
ular with the development of image analysis algorithms and the implementation of
software applications for the evaluation of hypertensive and diabetic retinopathy in
adult subjects, and of retinopathy of prematurity (ROP) in newborns.

Microcirculation is affected, with different time courses, by both hypertension and
diabetes, and retinopathy is one of the consequences of such circulation damage. The
retinal vessels are very sensitive to changes in microvascular circulation, and it has
been demonstrated that single features of hypertensive retinopathy have a strong
prognostic value for stroke, carotid stiffness, and coronary disease. Also in premature
newborns, whose vasculature may be incomplete or may develop in an anomalous
way, the retinopathy signs turn out to be important for the assessment of the gravity
of the disease and for preventing possible future visual damages for the patients.
Moreover, it must be considered that retinopathy in general is a social burden, with
heavy direct and indirect costs: visual loss in fact reduces the capacity of working and
carrying on with an independent life.

Although the retina is not the only organ affected by microcirculation damage, its
clinical examination has the important advantage of being non invasive, therefore
enabling a cost-effective monitoring of the progression of the systemic diseases asso-
ciated with retinopathy. The early detection of retinopathy at its onset is crucial in
order to avoid blindness. This is particularly true in the case of diabetic retinopathy,
which at the present state of pharmacology does not recede with treatment.

Unfortunately, the first stages of retinopathy for both adults and infants are al-
most asymptomatic. It has been demonstrated that a screening program could save
most of the population at risk from developing sight-threatening retinopathy. In the
Western world, there are not enough resources, in terms of time and available expert
ophthalmologists, for carrying out an extensive screening program. Thus, reliable au-
tomatic tools for evaluating retinopathies are strongly needed.

This thesis concentrates on the automatic extraction and the analysis of the fea-
tures of the vascular apparatus: the vessel network identification (veins and arteries)
allows the assessment of its main geometrical characteristics (length, direction, cali-
ber, bifurcation, tortuosity, etc.). From these findings, specific indexes of diagnostic
relevance are computed, providing the clinicians with information regarding the pa-
tient’s retinopathy degree, whose significance is crucial for the diagnosis of retinal pa-
thologies.

The instrument used to acquire images of the retina is the fundus camera, a spe-
cialized low power microscope with an attached camera designed to photograph the
interior surface of the eye. The screening of the retina in adult patients for the diag-
nosis of retinopathies is commonly done with non-handled, contact fundus cameras,
which provide high resolution images with a field of view (FOV) between 30 and 60
degrees. The screening on premature infants for the detection of ROP, on the other
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side, is done with customized fundus cameras, presenting some peculiar features. One
of them is the Nidek NM200D (Nidek Co., Gamagori, Japan), a handled, non-contact
fundus camera that provides high resolution 30 degree images. Another fundus cam-
era commonly used for acquisition on infants is RetCam (Clarity Medical System,
Pleasanton, CA, USA), which provides low-resolution images for up to 120 degrees of
the ocular fundus. The use of RetCam is generally limited to children without media
opacity and for image quality reasons is not normally used in adults.

It is worth noticing that images acquired from adults and infants present different
characteristics: this is related to the anatomical variability between the two catego-
ries of subjects, but also to the different fundus cameras used for image acquisition
and to the diverse acquisition protocols. As a consequence, some algorithms perform
very well when analyzing adult retinal images, but turn out to be unsuitable with
newborns images. Therefore, we developed algorithms customized for the different
kinds of images to analyze, in order to achieve satisfactory performance regardless of
the varying attributes related to the acquisition system or to the patient age. In par-
ticular, in this thesis we present three systems, designed respectively for the analysis
of adult images, infant images acquired with Nidek NM200D and infant images ac-
quired with RetCam.

In order to automatically extract the retinal vasculature in adult images, acquired
at different resolutions and fields of view, we propose a novel method. This is based
on a multi-directional graph search approach for the detection of vessel centerlines:
after a seed-finding procedure, vessel axes are detected by connecting the seeds with
minimum cost paths. A fast 1-dimensional matched filter technique is employed for
the vessel caliber evaluation: the information of the vessel axis is exploited as prior to
determine the filter orientation, and the scale of the kernel filter is tuned with the
aim of ensuring the regularity of the segmented vessel borders.

Considering the great variability and the poor quality of infant images acquired
with Nidek NM200D, we developed a customized semi-automatic technique to track
singular vascular structures and consequently assess their geometrical features. Ves-
sels to be analyzed are selected by manually drawing an approximate centerline inside
their boundaries. Starting from this a priori information, the vessel edges are de-
tected by means of a filtering technique based on Canny method. Refined axis and
calibers along the vessel are then obtained by appropriately linking pairs of points on
opposite edges.

For the automatic tracking of vessels in infant images acquired with RetCam,
which is particularly challenging because of the low resolution, the poor quality, the
very wide field of view and the presence of choroidal structures, we propose an inno-
vative technique. As a first step vessel structures are enhanced by means of different
matched filtering techniques, and extracted from the background with a local thre-
sholding followed by morphological operations. The second step consists in a super-
vised classification of vessel structures based on SVM, in order to discard segments
originating from noise/artifacts or from choroidal vessels.
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Starting from the described algorithms for image analysis, we developed practical
and easy-to-use software systems, aimed at supporting the clinicians with the screen-
ing and the diagnosis of retinopathies. In particular we developed a web based appli-
cation for the analysis of retinal images of adult subjects. The tool is endowed with a
user-friendly interface and it allows the user to extract the vascular network and to
compute CRAE (Central Retinal Arteriolar Equivalent), CRVE (Central Retinal Ve-
nular Equivalent) and AVR (Arteriolar Venular Ratio) according to the Knudtson
method. For the analysis of infant retinal images we developed ROPnet, a web tool,
customized for the extraction of parameters related to ROP (such as vessel dilation
and tortuosity) in premature subjects screened with Nidek NM200D. With ROPnet,
vessel analysis can be performed by using a web browser with a client-server setup.
Moreover, we are currently developing a similar system for the analysis of the very
large field of view images acquired with RetCam.

The system for the identification of retinal vascular structures in adult images was
tested on different datasets and the comparison of the proposed automatic vessel
segmentation versus a manual ground truth showed high sensitivity and low false de-
tection rate. The proposed software is currently under clinical evaluation at the De-
partment of Ophthalmology and Visual Sciences, University of Wisconsin, USA, the
world leading center for clinical trial retinal image analysis, whose Fundus Photo-
graph Reading Center is considering the adoption of the proposed system as standard
tool for the extraction of diagnostic features. In addition, a recent collaboration with
the Department of Twin Research & Genetic Epidemiology, of the King’s College
London Division of Genetics and Molecular Medicine, St Thomas' Hospital, UK, has
involved the analysis of more than 2000 retinal fundus images with our software for
the estimation of clinical indexes in retinal vessels.

The interface and the functionality of ROPnet have been designed in collaboration
with the Departments of Ophthalmology of the Children’s Hospital and the Scheie
Eye Institute of Philadelphia, US, with the aim of meeting the requirements of the
clinicians for what concerns both the tool performance and usability. The accuracy of
parameters extracted by ROPnet (i.e. vessel width and tortuosity) was confirmed by
the high correlation obtained comparing automatic results with a ground truth ma-
nually provided by retina experts. Moreover, the web tool was already used for some
preliminary clinical study and we are currently investigating the reliability of ex-
tracted clinical indexes for the diagnosis and classification of ROP.

The system specifications for the analysis of ROP images acquired with RetCam
were discussed directly with Clarity Medical Systems, the manufacturer of the men-
tioned fundus camera. In this project, we obtained on a preliminary set of images
high sensitivity and specificity in the retinal vessel segmentation, which is a particu-
larly difficult task on RetCam infant images. The techniques for the extraction of
clinical parameters starting from the vessel morphology are currently under develop-
ment.

In perspective, practical and easily deployable tools such as those we propose
might significantly contribute to the mass-screening and the monitoring of the pro-
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gression of hypertensive/diabetic retinopathies and of ROP. Their usefulness will be
threefold: first of all, they will provide a diagnostic tool to aid clinical practice; se-
condly, they will provide quantitative details of the retinal vessel network, thus con-
stituting a useful tool for clinical research; finally, they will endow pharmaceutical re-
search with a quantitative and reproducible assessment of the disease evolution dur-
ing pharmacological treatment.

The results achieved in the preliminary trials, carried out in cooperation with rele-
vant international clinical research groups, attest the quality of the developed metho-
dologies and bode well for their future clinical adoption.
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Chapter 1

Introduction

Hypertensive retinopathy is associated with systemic arterial hypertension; retinal
vascular changes can be seen in both chronic and acute stages. It is likely that an in-
creasing number of patients in the future will suffer from hypertension, a pathology
ranked as one of the top-10 risk factors for burden of diseases in developed countries
by the World Health Organization. In this context, it must be noticed that ophthal-
mologists occupy a privileged, central position in the detection of the disease, and
consequently in the prevention of the visual loss it causes: indeed, a patient with un-
diagnosed malignant hypertension will probably consult first an ophthalmologist with
a complaint of visual loss.

An even more dramatic situation characterizes diabetes-related retinopathy. Di-
abetes is a growing epidemic in the world, due to population growth, aging, urbaniza-
tion and increasing prevalence of obesity and physical inactivity: it is estimated that
the population with diabetes will grow by 37% by 2030, and today it already counts
around 200 million people worldwide. Following the trend of diabetes, diabetic reti-
nopathy assumes an ever increasing importance as a cause of blindness: in the United
States it constitutes the first cause of blindness in subjects in working age, with all
the economic and social burdens this implies. The timely diagnosis and referral for
management of diabetic retinopathy can prevent 98% of visual loss. It is estimated
that the underlying cause of blindness in the majority of diabetic patients is not di-
abetic retinopathy per se but the misdiagnosis of diabetic retinopathy.

Another critical retinal disease is retinopathy of prematurity (ROP), which affects
premature babies. It can be mild with no visual defects, or it may become aggressive
with new blood vessel formation (neovascularization) and progress to retinal detach-
ment and blindness. The incidence of ROP in premature infants is inversely propor-
tional to their birth weight. More than 50% of premature infants weighing less than
1250 g at birth show evidence of ROP, and about 10% of the infants develop a se-
rious stage ROP. In general, as smaller and younger babies are surviving, the inci-
dence of ROP is increasing. Moreover an observational study from United Kingdom
outlined that larger and more mature infants seemed to be developing severe retino-
pathy of prematurity in less-developed nations. This suggests that individual coun-
tries need to develop their own screening programs with criteria suited to their local
population [1].

Currently, a periodic dilated direct ophthalmoscopic examination appears to be the
best approach for a screening (with different frequency and protocols according to the
age of the subjects) with near universal coverage of the population at risk, despite the
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proved low sensitivity of direct ophthalmoscopy [2], [3], [4]. However, the number of
ophthalmologists available is a limiting factor in initiating an ophthalmological
screening [5].

With the increasing availability of digital fundus cameras, there is a wide consen-
sus of opinion that an automatic analysis of such digital images might, at least par-
tially, relieve ophthalmologists of the burden of retinopathy screening.

1.1 Aims and Objectives

The aim of the work presented in this thesis is to develop a set of tools for the au-
tomatic analysis of retinal images.

The linchpin of this task is the identification of the retinal vessel network, and its
description in terms of geometrical properties. The morphology of the vascular struc-
ture can be affected by different abnormalities caused by acute pathologies, such as
ROP, or by early signs of certain systemic disease, such as diabetes and hypertension.
Ocular fundus images can provide important information about these signs and their
accurate analysis is necessary to improve clinical diagnosis of diseases. An automatic
and quantitative assessment of vessel morphological features, such as dilation and
tortuosity, can reveal important information on the mentioned diseases. To this aim,
the exact layout of all relevant vessels in the image must be extracted. A significant
issue in fundus images is that the contrast between vessels and background is often
very poor, especially for capillaries. Digital noise represents another critical aspect. In
addition, wider vessels often present a bright reflex at the center (the central reflex),
which causes their profile to be indistinguishable from the one belonging to two nar-
row parallel vessels. In addition, images acquired from preterm infants present highly
visible choroidal vessels, because of the very low retinal pigmentation, and in general
a lower quality, due to the critical acquisition conditions and to the lack of the pa-
tient cooperation.

The image analysis techniques proposed in this thesis consist in a sequence of in-
dependent modules aimed at maximizing the automation of the vessel extraction
process and of the clinical parameters estimation in different kind of images.

Starting from the extracted morphology of the vessel network, we concentrated on
the exploitation of the geometric characterization of the vascular network in order to
estimate tortuosity, caliber dilation, CRAE, CRVE, and AVR indexes as parameters
of clinical relevance for the diagnosis of retinal pathologies.

In order to provide some tool that may concretely help clinicians to diagnose or
quantitatively assess retinopathies gravity, two systems were created. One is a stan-
dalone application, organized as a client-server service, for the assessment of genera-
lized arteriolar narrowing in adult images; the second one is a web tool for the esti-
mation of vessel tortuosity and dilation in preterm newborns. The client-server archi-
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tecture of the proposed solutions and the user friendliness of the interfaces make the
tools available to a wide range of users, even in a telemedicine context.

1.2 Outline

Chapter 2 is introductory and describes retinal imaging. In particular the fundus
camera examination, the appearance of the retina in a fundus image, and the main
findings of hypertensive and diabetic retinopathy and retinopathy of prematurity will
be described.

In Chapter 3, the list of collected retinal image datasets is given, together with a
description of their peculiarity. Most of them have been provided by research and
clinical groups working in the field of ophthalmology.

In Chapters 4 and 5, a brief review of previously proposed methods will be fol-
lowed by a description of the vessel tracking system proposed in this thesis for the
analysis of images acquired from adult subjects. It is comprehensive of the modules of
preprocessing, seed finding, vessel tracing by means of a graph search approach, false
vessel detection, caliber extraction and refinement step.

Chapter 6 describes AVRnet, a client-server application developed starting from
the algorithms described in the previous chapters. The clinical usability of the system
is presented, particularly as regards the estimation of generalized arteriolar narrowing
indicators (CRAE, CRVE, and AVR).

In Chapter 7 a brief state of the art about the existing systems to assess retinopa-
thy of prematurity is presented. A new algorithm to analyze small FOV infant retinal
images is proposed. It consists in a semi automatic technique to compute the tortuos-
ity and width of vessels. Such clinical indexes can be estimated by using ROPnet,
which is the web based system developed starting from the mentioned algorithms. Its
architecture, functionality and validation are presented in Chapter 8.

Chapter 9 deals with the tracking of retinal vessels in very large FOV images (up
to 130°) acquired from newborns with RetCam. A brief overview of the existing me-
thods is presented, as well as a novel approach, and some preliminary results.

In Chapter 10 conclusion and final discussion are reported.
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Chapter 2

Fundus Imaging and its Findings

In this chapter, a brief review will be presented regarding what is seen in an image
from a fundus camera examination and all the most relevant lesions to be found in
the hypertensive/diabetic retinopathy and in retinopathy of prematurity.

2.1 Fundus Oculi Examination

The first instrument that allowed the direct examination of the retina was the di-
rect ophthalmoscope, which is still used today. It was first described by Helmholtz at
the end of the 19th Century, and since then it has not changed much. In its basic
form, it is composed by a light source and a set of lenses. The light is projected
through the dilated pupil onto the retina, and the lenses focus on so that the observer
can look at the retina. Its use is widespread in the clinical practice, but it has been
proved to provide poor sensitivity and results highly dependent on the observer's ex-
perience.

In the middle of the 20th Century, the first instrument able to acquire photo-
graphs of the retina appeared, i.e. a photographic 35mm back connected to an optic
system that focuses on the fundus oculi illuminated by a coaxial flash. This fundus
camera enables the photography of different portions of the retina with different
magnification ranges, from 10x to 60x. Around 1990, the first digital fundus camera
appeared. The optic system is no longer connected to a traditional camera, but to a
CCD, and the image is sent to a computer for visualization and storage.
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2.1.1 Fundus Oculi Appearance

Figure 2.1 An image of a normal fundus oculi. Papilla, fovea and vessel networks are
clearly visible.

Using a fundus camera, an image of the fundus oculi is acquired. The visible part
consists of the retina with its vascular network, the macula, and the optic nerve head.
The choroid is the structure below the retina and is usually obscured by it (at least in
adult subjects).

The retina is a multilayered structure, transparent except for the deepest layer,
the pigmented epithelium which gives to the retina its reddish colour. More superfi-
cial than the pigmented epithelium is the sensorial retina, composed by the photore-
ceptor cells and by the gangliar cells.

The axons of the gangliar cells run to the papilla, also called optic disc or optic
nerve head, which is where the bundle of nervous fibers forms the optic nerve, and
leaves the optic bulb. From the center of the optic disc, the ophthalmic artery enters
into the optic bulb, and subsequently branches to provide vascularization to most of
the retina. From the capillary network the venous vessels originate, which flow into
the central retinal vein that exits the ocular bulb through the optic disc.

Topologically, the temporal vessel arcades delimit the posterior pole. At the center
of the posterior pole, there is the macula: its center is occupied by a small depression,
the fovea, that is the region most densely packed with photoreceptor of the retina
and is normally the center of vision. The macula is not fed by retinal vessels, but
takes its nutrients from the choroidal vessels below the retina.

Choroidal vessels are not usually visible in an image taken with a fundus camera,
but if the pigmented epithelium is very lightly pigmented, or in case of pathological
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depigmentation, the retina becomes almost transparent and the choroid becomes visi-
ble.

2.2 Main Vascular Abnormalities

2.2.1 Tortuosity

(a) (b)

Figure 2.2 Normal vessel course (a) and tortuous vessels (b).

In presence of high blood pressure, vessels may increase in length and vessel walls
may thicken. As a result, they become increasingly tortuous. This is at first seen in
arteries, while the veins are affected only in more severe stages of retinopathy.

2.2.2 Generalized Arteriolar Narrowing

The earliest fundus change due to hypertension is the thinning of the retinal arte-
rioles. The narrowing of the arterioles is usually proportional to the degree of eleva-
tion of blood pressure. However, retinal arteriolar narrowing is imprecisely quantified
from a clinical ophthalmoscopic examination, since the examiner should estimate the
normal vessel width prior to the narrowing, in order to be capable of evaluating the
severity of the latter.



Chapter 2

2.2.3 Focal Arteriolar Narrowing

Figure 2.3 A definite focal narrowing.

In severe hypertension states, irregularities in the caliber of blood vessels may ap-
pear. In arterioles, these are due to localized spasm and contractions of the wall.
They appear as a focal thinning of the blood column: the narrowing may increase un-
til the vessels become thread-like.

2.2.4 Bifurcation Abnormalities

Arterial diameters and topography at branch points are believed to conform to de-
sign principles that optimize circulatory efficiency and maintain constant shear stress
across the network [6]. It has been suggested that arterial diameters at a bifurcation
should conform to a power relationship, and arterial branches in various circulation
have been shown to obey to this design. It has been shown that bifurcation angles are
reduced with increasing hypertension, probably because the atheroma fibrosis of the
central artery displaces by contraction the arteries toward the disk. Although the me-
chanisms of bifurcation changes are not clear, both the branching angles and the val-
ue of the junction exponent seem to deviate from its optimal values with age [7].
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2.2.5 Crossing Abnormalities

Figure 2.4 Gunn’s sign - vein compression (a) and Salus’ sign — vein deflection (b).

The abnormal changes in arterio-venous crossings result from the thickening of the
wall of the arterioles due to hypertension and sclerosis, and associated changes in the
veins at the crossings. The first appearance of crossing abnormalities is the compres-
sion of the vein by the artery, which may vary in severity from a slight indentation
to the complete interruption of the vein where the artery crosses. When the sclerosis
in the artery extends to the adventitia of the vein, the blood column in the vein will
be partially obscured and appear tapered on each side of the crossing.

The constriction and compression of the veins may impede the blood return, so
that the veins become distended for some distance peripheral to the crossing: this is
the so-called 'Gunn’s sign'.

Arterial sclerosis may cause the detection of the vein from its normal course at the
point where the artery crosses. The vein may detect both vertically (dipping under
the artery or humping over it), or laterally. In the latter case, instead of crossing the
artery obliquely, the vein does so at right angles and appears S-shaped at the bend, —
a characteristic which has been referred to as the 'Salus’ sign'.
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2.3 Major Non-Vascular Findings

2.3.1 Microaneurysms and Red Dots

(a) (b)

Figure 2.5 Large microaneurysm with central reflex (a) and microaneurysm (b).

Retinal microaneurysms constitute the most characteristic lesions caused by di-
abetic retinopathy, but are present also in other pathologies that affect the microves-
sels. Micoraneurysms are small dilations of capillary walls. It is not clear whether re-
tinal microaneurysms are due to vessel wall damage or to the beginning of a neovas-
cularization. However, the visual consequence is the appearance of small saccular
structures, of approximate dimension between 10 um and 100 pum , which in the re-
tinal fluorescein angiography appear as bright hyperfluorescent spots, whereas in co-
lour fundus images appear as round, red spots. They are indistinguishable from small
hemorrhages of the same dimension, since they both are small round regions, with a
dark red colour. Therefore, both microaneurysms and hemorrhages smaller than the
major vein caliber at the optic disc margin, are considered red dots, and evaluated as
microaneurysms [8]. On the contrary, any red spot greater than that is considered an
hemorrhage, unless features as round shape, smooth margins and a central light reflex
suggest that it is probably a microaneurysm.

2.3.2 Hemorrhages

Retinal hemorrhages are blood deposits on the retina. Hemorrhages disappear as
the blood is reabsorbed with time.

They are due to the breaking of a vessel wall or of a microaneurysm, and the in-
crease in their presence is a clear sign of diffuse retinal damage. They have very dif-
ferent shapes, going from the round red spot with sharp margins, to the blot hemorr-
hage. As the blood is reabsorbed, hemorrhage margins fade and the characteristic red
colour turns to a faint grayish-red before disappearing completely.
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2.3.3 Hard Exudates

(a) (b) ()
(d) ()

Figure 2.6 Small hemorrhage (a), barely visible hemorrhage (b), flame hemorrhage
(d), large hemorrhage (d), and bright hemorrhage (e).

Hard exudates are small lipidic and proteinic deposits, which appear as white or
yellowish-white areas with sharp margins. They may be arranged as individual dots,
confluent patches or in partial or complete rings surrounding microaneurysms or
zones of retinal edema. In the more severe cases of hypertensive retinopathy, they
appear as a confluent ring around the macula (the macular star).

2.3.4 Cotton Wool Spots

(a) (b) () (d)

Figure 2.7 Different hard exudates.
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(a) (b) ()

Figure 2.8 Cotton wool spots.

Cotton wool spots are the consequence of retinal ischemic events, due to precapil-
lary arterioles stenosis. This causes a swelling of the nerve fiber layer, with local de-
posit of cytoplasmatic material. They are round or oval in shape, white, pale yellow-
white or grayish-white, with soft and feathery edges, which give their characteristic
aspect and their name. They usually appear along the major vessel arcades, parallel
to the nerve fibers, and are sometimes accompanied by the presence of microaneu-
rysms.

2.3.5 Drusen

Drusen are deposits associated with thinning or hypopigmentation of the retinal
pigment epithelium. They appear as deep, yellowish-white dots. A stereoscopic view
would help to distinguish drusen from hard exudates, since drusen appear very deep,
while hard exudates are slightly more superficial. In the protocol used in this thesis
the photographs are mono, therefore it is not easy to establish the difference between
hard exudates and drusen. Several other features help to distinguish drusen from
hard exudates. Drusen are usually scattered diffusely or scattered near the center of
the macula. They are usually round in shape, while hard exudates are usually irregu-
lar in shape. Finally, drusen often have a faint border of pigment.

2.4 Hypertensive Retinopathy Grading

The classification of hypertensive changes in the retina in a severity scale was first
proposed by Keith [9], in what is now currently known as the Keith-Wegener-Barker
grading system. It was subsequently modified by Scheie [10] so as to better separate
hypertensive from atherosclerotic abnormalities. In Table 2.1 the two classifications
for hypertensive retinopathy are shown. It is worth noting that recent literature chal-
lenges the prognostic significance of these classifications. The poor correlation with
the severity of hypertension variation at the onset and progression of the clinical
signs has suggested the use of a two-grade classification of retinopathies: non-

12
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malignant and malignant [11]. This is further confirmed by the fact that the density
of perifoveal capillaries and the capillary blood tow velocity analyzed with an angio-
graphic examination correlate more with a two-grade rather than with the classical
four-grade classification system. Nevertheless, the Keith-Wegener-Barker is still the
de facto standard in the evaluation of hypertensive retinopathy.

Keith-Wegener-Baker Scheie

Grade Features Grade Features

Mild generalized retinal ar-

I teriolar narrowing. Increased 1 Barely detectable arterial

arterial tortuosity flarrowing
Definite focal narrowing and Obvious arterial narrowing
II arterio-venous crossing ab- 2 with focal irregularities and
normalities light reflex changes
The above and retinal he- The above plus copper wir-
111 morrhages, exudates and 3 ing, and retinal hemorrhages
cotton wool spots and exudates

Severe grade III plus papil- Grade 3 plus silver wire and

v lar oedema, papillar oedema,

Table 2.1 Classification of hypertensive retinopathy as proposed in [9] and [10].

2.5 Diabetic Retinopathy

Two landmark clinical trials set the standard in grading diabetic retinopathy: the
Diabetic Retinopathy Study (DRS) [12] and the Early Treatment Diabetic Retinopa-
thy Study (ETDRS) [13]. The ETDRS severity scale was based on the Airlie House
classification of diabetic retinopathy and is used to grade fundus photographs. It has
been widely applied in research settings and publications, and it has shown satisfacto-
ry reproducibility and validity. Although it is recognized as the gold standard for
grading the severity of diabetic retinopathy in clinical trials, its use in everyday clini-
cal practice has not proven easy or practical. The first reason for this is that the pho-
tographic grading system has 90 levels, many more than what is necessary for clinical
care. Given the number of levels to consider, the detailed specific definitions of the
levels, and the necessary comparison with standard photographs, it is not surprising
that the ETDRS grading procedure is difficult to remember and apply in a clinical
setting.

Recently, simplified severity scales have been developed in an effort to improve
both the screening of patients with diabetes and communication among caregivers.
Yet, to overcome this proliferation of ad hoc grading scales, it has been proposed in
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[14] a Diabetic Retinopathy Disease Severity Scale, in which separate scales were
proposed to grade diabetic retinopathy (4 levels) and macular edema (5 levels). The

two scales are summarized in Table 2.2 and Table 2.3.

Disease Severity Level . . .
proposed in [14] Disease Severity Level proposed in [14]
No Apparent Retinopa- No abnormalities
thy
Mild non-proliferative Microaneurvsms onl
diabetic retinopathy Y Y
Moder.ate non More than just microaneurysm but less than se-
proliferative diabetic . . . . .
. vere non proliferative diabetic retinopathy
retinopathy
Any of the following: more than 20 intraretinal

hemorrhages in each of 4 quadrants; definite ven-
ous beading in 2 or more quadrants; prominent
intraretinal microvascular abnormalities in one or
more quadrant and no signs of proliferative di-
abetic retinopathy
One or more of the following: neo vascularization,
vitreous or preretinal hemorrhage

Severe non proliferative
diabetic retinopathy

Proliferative diabetic
retinopathy

Table 2.2 Classification of diabetic retinopathy as proposed in [14].

Disease Severity Level C 1 .
proposed in [14] Findings Observable on Dilated Ophthalmoscopy

No apparent retinal thickening or hard exudates
in posterior pole
Some retinal thickening or hard exudates in the

Diabetic macular oede-
ma apparently absent

Mild diabetic macular . )
posterior pole but distant from the center of the
oedema
macula
. . Retinal thickening or hard exudates approachin
Moderate diabetic ma- & . p p. &
the center of the macula but not involving the
cular oedema center

Retinal thickening or hard exudates involving

Severe diabetic macular
the center of the macula

oedema

Table 2.3 Classification of diabetic macular oedema proposed in [14]|. Hard exudates
are sign of current or previous macular oedema. Diabetic macular oedema is defined

as retinal thickening and requires a three-dimensional assessment.
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2.6 Retinopathy of Prematurity

Retinopathy of prematurity (ROP), is an eye disease that affects prematurely born
babies. It is thought to be caused by disorganized growth of retinal blood vessels
which may result in scarring and retinal detachment. ROP can be mild and may re-
solve spontaneously, but it may lead to blindness in serious cases.

2.6.1 Definition

Retinopathy of prematurity is characterized by abnormal retinal vascularization,
which can affect premature newborns. In these babies the growth of retinal blood ves-
sels does not reach the peripheral area of the retina. In fact, usually, blood vessels be-
gin their development, starting from the optic disc, during the 15™ gestation week,
continuing their growth and ramification until the 9™ month of pregnancy.

Several studies showed that retinal blood vessels grow starting from cells called
spindle cells which develop from the optic nerve through the ora serrata. Spindle cells
reach the ora serrata at 29"™ week of gestation, whereas the blood vessels develop later
and they reach the retinal periphery only during the last weeks of gestation. Conse-
quently, in premature newborns, the blood vessels accretion does not have the time to
reach all retinal areas and this leads to several kind of complications. Beyond that, a
relevant condition that allows the migration and maturation process of the spindle
cells is the hypoxic environment in the uterus (PaO2=25 mmHg). This hypoxic con-
dition strongly changes after birth and the PaO2 reaches values of 70mmHg or more,
negatively influencing the retinal blood vessels development. In fact the hyperoxige-
nated blood leads to formation of dangerous free radicals that decelerate the spindle
cells maturation process.

Retinopathy of prematurity is a complex disease caused by several factors and cir-
cumstances so the exact pathogenesis is not completely clear yet.

2.6.2 Causes and Risk Factors

Low birth weight (less than 1500 grams) and low gestation age (less than 32
weeks) are considered the two most important causes related to the development of
ROP. Generally, the more premature is the baby, the more severe is the sickness.

Retinal blood vessels begin to develop three months after conception and complete
their development at the time of normal birth. If an infant is born very prematurely,
eye development can be disrupted. The vessels may stop growing or grow abnormally
from the retina into the clear gel that fills the back of the eye. The vessels are fragile
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and can leak, causing bleeding in the eye. Scar tissue may develop and in severe cases
this can result in vision loss. In the past, routine use of excess oxygen to treat prema-
ture babies stimulated abnormal vessel growth. Currently, oxygen can be easily and
accurately monitored, so this problem is rare.

Today, the risk of developing ROP depends on the degree of prematurity. General-
ly, the smaller and sicker the premature babies, the higher the risk.

Typically all babies younger than 30 weeks gestation or weighing fewer than 1500
grams at birth are screened. Certain high-risk babies who are born after 30 weeks
should also be screened.

In addition to prematurity and low weight, other risks factors may include:

e Brief stop in breathing (apnea)

o Heart disease

e High carbon dioxide (CO2) in the blood
e Infection

e Low blood acidity (pH)

e Low blood oxygen

e Respiratory distress

e Slow heart rate (bradycardia)

e Transfusions

Luckily, the rate of ROP in moderately premature infants has decreased dramati-
cally with better care in the neonatal intensive care unit. However, this has led to
high rates of survival of very premature infants who would have had little chance of
survival in the past. Since these very premature infants are at the highest risk of de-
veloping ROP, the condition might actually become more common again.

2.6.3 Classification of ROP

The international ROP classification (ICROP), used to code correctly epidemiolog-
ical data, avails of a specific pattern to classify lesions. It was firstly realized in 1984
and then revised in 1987 and 2005 and it has been very useful in order to collect more
information about this disease and in order to improve the knowledge of its develop-
ment. ICROP classification is based on several essential observations aimed at de-
scribing the retinopathy, as the location, the extension, the stage, the blood vessels
conformation [15].
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2.6.3.1 Localization

Considering the localization, the ocular fundus has been subdivided in three con-
centric zones centered in the optic disc:

e Zone 1 is the posterior zone of the retina, defined as the circle with a radius
extending from the optic nerve to double the distance to the macula. Dis-
ease in zone 1 is more severe compared with disease limited to zones 2 or 3.

e Zone 2 is an annulus with the inner border defined by zone 1 and the outer
border defined by the radius that is the distance from the optic nerve to
the nasal ora serrata.

e Zone 3 is the residual temporal crescent of the retina.

2.6.3.2 Extension

The extension is evaluated basing on the horary localization as if the top of the eye
was 12 on the face of a clock, that is basing on the “number of hours” characterized
by pathology signs. As the observer looks at each eye, the 3-o’clock position is nasal
in the right eye and temporal in the left eye, and 9-o’clock position is temporal in the
right eye and nasal in the left eye.

12 12
-«——Clock Hours —»

Zone |l

ORA Serrata

RE LE

Figure 2.9 Localization and extension of ROP.
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2.6.3.3 Pathology Stages

There are five stages that are usually adopted to describe the abnormal vascular
response at the junction of the vascularized and avascular retina.

ROP stage 1: examining the premature newborns ocular fundus, the image shows a
peripheral area of the retina lacking of blood vessels, really well defined and bordered
by an evident demarcation line from the rest of the retina, which is well vascularized.
This line is a thin but definite structure that separates the avascular from the vascu-
larized retina.

ROP stage 2: the strong demarcation line that divides the two areas (one vascula-
rized, the other without blood vessels) can disappear during the following weeks, and
the blood vessels can develop in a normal way reaching also the peripheral area of the
retina. Nevertheless the pathology can also advance achieving the stage 2, in which
the demarcation line assumes the morphology of a ridge. The ridge is the hallmark of
stage 2 ROP. It arises in the region of the demarcation line but it has measurable
height and width and it extends above the plane of the retina. The ridge may change
from white to pink and vessels may leave the plane of retina posterior to the ridge to
enter it.

ROP stage 3: from ROP stage 2 the pathology can regress spontaneously but it al-
so may develop into an extraretinal blood vessels proliferation; in stage 3, extraretinal
fibrovascular proliferation or neovascularization extends from the ridge into the vi-
treous. This extraretinal proliferating tissue is continuous with the posterior aspect of
the ridge, causing a ragged appearance as the proliferation becomes more extensive.
The severity of a stage 3 lesion can be subdivided into mild, moderate, or severe de-
pending on the extent of extraretinal fibrovascular tissue infiltrating the vitreous.

ROP stage 3 plus: if the development of the disease is very fast and the posterior
vessels are characterized by tortuosity and dilation associated to retinal hemorrhages,
the pathology is classified as stage 3 plus which represents the point of no return for
this kind of disease, and the moment in which it is indispensable to consider the pos-
sibility of a surgery intervention. The ROP in stage 3 that requires treatment is
usually called threshold disease.

ROP stage 4: it is divided into extrafoveal (stage 4A) and foveal (stage 4B) partial
retinal detachments. Stage 4 retinal detachments are generally concave and most are
circumferentially oriented. The extent of retinal detachments depends on the number
of clock hours of fibrovascular traction and on their degree of contraction.

ROP stage 5: it is characterized by a total retinal detachment. Retinal detach-
ments are generally tractional and may occasionally be exudative.
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(e) (f)

Figure 2.10 Image examples for different ROP stages. (a) stagel, (b) stage2, (c) stage
3, (d) stage 3 — plus, (e) stage 4, (f) stage 5. (Courtesy of [15]).
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2.6.3.4 Plus Disease

Along with the changes described earlier at the leading edge of the abnormally de-
veloping retinal vasculature, additional signs indicating the severity of active ROP
may occur. These include increased venous dilation and arteriolar tortuosity of the
posterior retinal vessels and may later increase in severity to include iris vascular en-
gorgement, poor papillary dilatation and vitreous haze. This important constellation
of signs in the original classification was referred to as plus disease. Subsequent mul-
ticentered clinical trials have used a “standard” photograph to define the minimum
amount of vascular dilatation and tortuosity required to make the diagnosis of plus
disease. This definition has been further refined in the later clinical trials, in which
the diagnosis of plus disease can be made if sufficient vascular dilation and tortuosity
are present in at least 2 quadrants of the eye. Plus disease can be present at any
stage.

2.6.3.5 Pre-Plus Disease

Pre-plus disease is defined as the presence of vascular abnormalities of the post-
erior pole that are insufficient for the diagnosis of plus disease but that demonstrate
more arterial tortuosity and more venous dilation than normal. Over time, the vessel
abnormalities of pre-plus may progress to plus disease as the vessels dilate and be-
come more tortuous.

2.6.3.6 Aggressive Posterior ROP

An uncommon, rapidly progressing, severe form of ROP is designated as AP-ROP.
If untreated, it usually progresses to stage 5 ROP. The characteristic features of this
type of ROP are its posterior location, prominence of plus disease, and the ill-defined
nature of the retinopathy. Aggressive posterior ROP is observed most commonly in
zone 1, but it may also occur in posterior zone 2. Early in the development of AP-
ROP, the posterior pole vessels show increased dilation and tortuosity in all 4 qua-
drants and it is often difficult to distinguish between arterioles and venules because of
the significant dilation and tortuosity of both vessel types.
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Collected Datasets

This chapter provides a description of the features and the provenience of the da-
tasets used to train and test the developed software for the automatic analysis of the
retinal fundus.

We created a database of images combining a number of datasets, which have been
kindly shared in the Internet by researchers in the field of ophthalmology, with sets
of images we have gathered thanks to the collaboration with national and interna-

tional clinical centers.

3.1 The DRIVE Dataset

The photographs for the DRIVE database [16], [17] were obtained from a diabetic
retinopathy screening program carried out in The Netherlands. The images were ac-
quired using a Canon CR5 non-mydriatic 3CCD camera with a 45° field of view
(FOV). Each image was captured using 8 bits per color plane at 768 by 584 pixels.
The FOV of each image is circular with a diameter of approximately 540 pixels.

The set of 40 images has been divided into a training and a testing set, both con-
taining 20 images. The authors made available a single manual segmentation of the
vasculature for the training images, and two manual segmentations for the test case.
As far as the two testing manual segmentations are concerned, the authors suggest
using one as gold standard, while the other can be used to compare computer-
generated segmentations with those of an independent human observer. All human
observers that manually segmented the vasculature were instructed and trained by an
experienced ophthalmologist. They were asked to mark all pixels of which they were
at least 70% certain that they were vessel.

Thanks to the DRIVE database made publicly available to download at
http://www.isi.uu.nl/Research/Databases/DRIVE/, we could evaluate the perfor-
mances of our vessel tracking algorithm for adult images.
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3.2 The STARE Dataset

The STARE dataset [18] consists of twenty retinal fundus slides. The slides were
captured by a TopCon TVR-50 fundus camera at 35° field of view. Each slide was di-
gitalized to produce a 605x700 pixel image, 24-bits per pixel (standard RGB). Ten
images are from patients with no pathology (normal). Ten images contain pathologies
that obscure or confuse the blood vessel appearance in varying portions of the images
(abnormal). The authors explained that this selection was made for three reasons.
First, most of the referenced methods had only been demonstrated upon normal ves-
sel appearances, which are easy to discern. Second, some level of success with non-
normal vessel appearances must be established to recommend clinical usage. Third,
they desired to evaluate the performance differences (if any) of the algorithms on
normal and abnormal case.

Two human observers carefully labeled by hand each of these twenty images, to
produce ground truth vessel segmentation and a second observer’s reference. We used
the STARE dataset to evaluate the performance of the vessel tracking algorithm for
adult images proposed in this thesis. The STARE dataset can be downloaded from
the web page http://www.ces.clemson.edu/~ahoover/stare/.

3.3 University of Wisconsin Dataset

Twenty 30° color retinal images acquired during the DCCT study [19] and eigh-
teen acquired during the ETDRS study [20] were made available by the Department
of Ophthalmology and Visual Sciences, University of Wisconsin, USA (from now on,
called the “UoW dataset”). The images were saved in digital format, with a resolution
of 3.7 ym/pixel, resulting in 2346x2652 pixel images for the DCCT dataset and
2983x2344 pixel images for the ETDRS dataset.

Unlike the two previously mentioned datasets, this one is not accompanied by a
manual segmentation of the retinal structure. For each image, instead, expert clini-
cians have provided the AVR parameters as far as the ETDRS set is concerned, and
the AVR, CRAE, and CRVE parameters as far as the DCCT set is concerned.

We used the data kindly provided by the University of Wisconsin to assess the ca-
pability of our software, paired with the one proposed in [21], to accurately and re-
producibly describe the above mentioned clinical parameters, by means of a correla-
tion comparison with the measures obtained by trained and proved personnel (see
Chapter 6).
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3.4 King’s College Dataset

Twenty nine color fundus images were acquired with a commercial fundus camera
in normal healthy subjects, according to the NM-1 standard [22]: 50° field focused
centrally between the temporal margin of the optic disc and the center of the macula.
The image size is 1664x1664 pixels. Images were kindly provided by the Department
of Twin Research & Genetic Epidemiology, of the King’s College, London, Division of
Genetics and Molecular Medicine, St Thomas' Hospital, UK. This dataset is not ac-
companied by any manual ground truth. It was used to assess the inter- and intra-
grader analysis agreement for the software system proposed for the AVR, CRAE, and
CRVE parameters quantification in adult images (see Chapter 6).

3.5 DB60 Homemade Dataset

The images used to build this dataset were taken at the Ophthalmology Clinics of
the Universities of Padova, Udine and Trieste by experienced technicians.

The films were subsequently sent to the Department of Information Engineering of
the University of Padova, where they were digitized at 1360 dpi, 24 bits per pixel, us-
ing a Canon scanner. 1444 retinal images of various quality and retinopathy level
were digitalized, yielding images of the approximate size of 1400x1200 pixels. An ex-
pert ophthalmologist chose 60 images creating what will be called the DB60.

3.5.1 Image Collection

To provide a ground truth evaluation of the images chosen in the DB60, a stan-
dard report form has been set up, and it is shown in Figure 3.1 and Figure 3.2. The
first page of the report contains all the information relevant in the evaluation of the
retinopathy. The second page requires the ophthalmologist to sketch on the scheme
the approximate position of individual lesions (crossing abnormalities, focal arteriolar
narrowing, non-vascular lesions), on the scheme. The standard clinical evaluation for
hypertensive retinopathy is the Keith- Wegener-Barker grading scheme [9], or that
proposed by Scheie [10]. The single abnormality is evaluated usually as none, mild,
moderate or severe. Such qualitative evaluations provide a very rough assessment of
the pathology and of its constituting damages. In order to overcome this limitation,
the ophthalmologist was required to fill in for every abnormality a grading in a per-
cent scale, with percent intervals corresponding roughly to the none-mild moderate-
severe grading.
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The images in the DB60 were evaluated by two experienced ophthalmologists of
the Ophthalmology Department of the University of Padova. In the end, a manual
segmentation of the vessel network was provided by 3 technicians, opportunely
trained by the same ophthalmologists who validated their final work.

The DB60 dataset allowed the evaluation of the performance of the vessel tracking
algorithm for adult images proposed in the following chapters of this thesis.

Univerisita’ degli Studi di Padova - Dipartimento di Elettronica e Informatica
Biomedical Image Processing Group

Image ID
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Figure 3.1 Standard report form (front page).
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VASCULAR FEATURES

NON VASCULAR FEATURES

Figure 3.2 Standard report form (rear page).

3.6 Scheie Eye ROP Width Dataset

This dataset includes eighteen vessels extracted from five images acquired at the
Departments of Ophthalmology of the Scheie Eye Institute of Philadelphia, with the
noncontact Nidek NM200D camera, in the neonatal intensive care unit. The images
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were acquired with a 30° field of view optic and saved in digital format with size of
1280x960 pixels. The average gestational age of the infants and average birth weight
were 26 weeks and 816 grams, respectively. Average post menstrual age (PMA) at
the time of fundus photography was 33 weeks. The vessels composing this dataset
were chosen in order to span a wide range of average widths. A manual segmentation
of the vessel segments was provided by a retinal expert. This dataset allowed the

evaluation of the performance of the vessel tracking algorithm for infant images ac-
quired with Nidek NM200D, proposed Chapter 7 and Chapter 8.

3.7 CHOP ROP Tortuosity Dataset

This dataset includes twenty vessels, extracted from ten images, acquired at the
Departments of Ophthalmology of the Children’s Hospital of Philadelphia with the
noncontact Nidek NM200D camera in the neonatal intensive care unit. The images
were acquired with a 30° field of view optic and saved in digital format with size of
1280x960 pixels. The average gestational age of the infants and average birth weight
were 26 weeks and 816 grams, respectively. Average post menstrual age (PMA) at
the time of fundus photography was 33 weeks. The vessels composing this dataset
were chosen in order to span a wide range of tortuosities. A manual ranking was pro-
vided by an expert ophthalmologist who ordered the 20 vessels by increasing per-
ceived tortuosity. This dataset allowed the evaluation of the performance of the ves-
sel tracking algorithm for infant images acquired with Nidek NM200D, proposed in
the following chapters of this thesis.

3.8 Clarity ROP Dataset

The images used to build this dataset were taken from infants at the Clarity Medi-
cal Systems, California, by experienced technicians. For each acquisition a video was
registered with the RetCam fundus camera and images were obtained by extracting
single frames presenting good quality. RetCam provides images at 120° field of view
with size of 640x480 pixels. Fifty one retinal images of various quality and ROP stage
were stored and a retina expert created this dataset by choosing twenty images
among the fifty one set. A manual segmentation of the vessel network was provided
by an expert and used to evaluate the performance of the vessel extraction algorithm
for infant images acquired with RetCam, proposed in Chapter 9.
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Vessel Tracking for Adult
Images

Most retinopathies, deriving e.g. from hypertension or diabetes, could be early di-
agnosed and treated if an accurate and objective analysis of symptoms at their initial
onset could be performed. The analysis should be accurate enough to detect minor
pathological signs, and objective enough to be able to compare results with accepted
clinical standards and with results obtained from the same patient at different times.
The latter requirement is of paramount importance when assessing the effect of estab-
lished therapeutic treatments and even more central when evaluating in a quantita-
tive way the efficacy of new drugs during their development.

Most of the early symptoms indicating the onset of retinopathies are related to
morphological features of the retinal vascular tree [7]. When no major signs of retinal
degeneration are present (such as cotton wool spots, hemorrhages, exudates), the clin-
ical diagnostic procedure for retinopathy always starts with a careful evaluation of
the main features of the network of retinal vessels, obtained from fundus camera im-
ages. The clinically most relevant signs taken into account by expert ophthalmolo-
gists are in general vessel tortuosity, vessel caliber and its distribution among differ-
ent vessels, presence of vessel caliber irregularities along the same vessel, and the so-
called Gunn and Salus signs, i.e., local caliber reduction or local deviation of vessel
direction at the crossings between artery and vein [23].

In order to detect and quantitatively describe these diagnostic signs, the informa-
tion, which has to be extracted from the vascular network, regards the layout and the
dimension of all the relevant vessels contained in the image. This task is relatively
easy for an expert ophthalmologist if performed at a qualitative level, but rather
cumbersome, highly subjective and error-prone if a set of measurements is required
[24], [25]. For this reason, a number of research projects have been carried out to de-
velop automatic computerized systems for the extraction of retinal vascular structure.

Here, a new system for the automatic extraction of the vascular structure in retin-
al images acquired in adult subjects is proposed. Such system is based on a sparse
tracking technique via a multi-directional graph search approach. We consider the
image as a weighted un-oriented graph with edges connecting adjacent pixels and as-
sume that vessels are minimum cost paths connecting remote nodes.

The first step consists of a preprocessing of the image. After the normalization of
contrast and luminosity provided by the method proposed in [26], a simple morpho-
logical operation is employed to get rid of arterial central reflexes. Then, a seed-
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finding algorithm based on fast 1-dimensional multi-scale matched filters is run over a
regular grid. Simultaneous best-first search graph explorations start from each seed:
when two search frontiers meet, the computed shortest path is recorded and exploited
for a new search starting from it. New paths are found by iterating the procedure,
until the entire vessel network is reconstructed. Then, in order to cover the unex-
plored region with low-contrast vessels and overcome the intrinsic inability of the al-
gorithm to find circular paths, a custom fixing procedure is run. Lastly, a false vessel
detection procedure evaluates, for each vessel, a “vesselness” value which is compared
with a hard threshold.

4.1 Brief Overview of Available Methods

Automatic techniques for vessel identification have been proposed for general angi-
ography, e.g. [27], [28], [29], and also for more specialized areas such as coronary an-
giography, e.g. [24], [25], [30], [31], [32], [33], [34], [35], [36], and retinal angiography,
e.g. [18], [37], [38], [39], [40].

In order to illustrate the methods proposed to identify vessels in retinal images, al-
gorithms have been grouped in five classes: local operators, matched filters, morpho-
logical processing and curvature estimation, pixel-based -classification and vessel
tracking. It must be noted that this categorization is only functional to a simpler
narrative, as most methods include several techniques belonging to different classes of
approach.

4.1.1 Local Vascular Segmentation

This set of approaches to vessel segmentation try to exploit the fact that, usually,
retinal vessels are darker than their surroundings. Global or local threshold and mor-
phological operators on the image have been proposed to identify the connected re-
gions that represent vessels.

More recently, the local gradient of the image has been used [41], [42] as a method
able to recognize the edge pairs that identify the vessels. The second derivative has
been used to evaluate the local candidate vessel orientation [43|, and then the pixels
have been classified as vessel or non-vessel based on the gradient distribution.
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4.1.2 Matched Filters

Matched filtering for the detection of the vasculature convolves a 2D kernel with
the retinal image. The kernel is designed to model some feature in the image at some
unknown position and orientation, and the matched filter response (MFR) indicates
the presence of the feature. Three primary characteristics determine properties of the
kernel. Vessels usually have a limited curvature and may be approximated by piece-
wise linear segments; the diameter of the vessels decreases as they move radially out-
ward from the optic disc; and the cross-sectional pixel intensity profile of these line
segments approximates a Gaussian curve.

A number of filter shapes have been investigated. The most proposed is a two-
dimensional linear kernel with a Gaussian profile for segmentation of the vasculature.
In [18], [37], |44] extruded and rotated Gaussian filters are used, together with filters
based on lines [42] and partial Gaussian [40].

The profile of the filter is designed to match that of a blood vessel, which typically
has a Gaussian or a Gaussian derivative profile. The kernel is typically rotated in 30—
45° increments to fit into vessels of different orientations. The highest response filter
is selected for each pixel and is typically thresholded to provide a vessel image. A
number of strategies have also been proposed to identify true vessels from the filter
response. A local entropy thresholding method has been proposed in [45]. In particu-
lar in [18] a strategy similar to a multi-resolution approach was proposed, iteratively
decrementing an initial threshold, and then checking the obtained connected compo-
nent for vessel likeliness.

As noted by several authors (Patton et al.[46], Heneghan et al. [47]) a MFR me-
thod is effective when used in conjunction with additional processing techniques.
However, the convolution kernel may be quite large and needs to be applied at sever-
al rotations resulting in a computational overhead which may reduce the performance
of the overall segmentation approach. In addition, the kernel responds optimally to
vessels that have the same standard deviation of the underlying Gaussian function
specified by the kernel. As a consequence, the kernel may not respond to vessels that
have a different profile. The retinal background variation and low contrast of the
smaller vessels also increase the number of false responses around bright objects such
as exudates and reflection artifacts. Other objects within the image such as the boun-
daries of the optic nerve and some hemorrhages and lesions, can exhibit the same lo-
cal attributes as vessels. There are also problems associated with detecting very fine
neo-vascularization partly due to image resolution. In addition, the use of an overly
long structuring element may cause difficulty in fitting into highly tortuous vessels.
Several authors have proposed refinements and extensions which address many of
these problems (Chaudhuri et al. [37]; Kochner et al. [48]; Hoover et al. [18]; Lowell
et al. [49]; Yang et al. [50]).
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4.1.3 Morphological processing and curvature
estimation

The basic morphology of the vasculature is known a priori to be comprised of con-
nected linear segments. Morphological operators have been applied to vasculature
segmentation (Zana and Klein [51]) and also to microaneurysm extraction. Morpho-
logical processing for identifying specific shapes has the advantage of speed and noise
resistance. Gregson et al. [52| utilize morphological closing to help identify veins in
the automated grading of venous beading by filling in any “holes” in the silhouette of
the vein created during the processing procedure.

The main disadvantage of exclusively relying upon morphological methods is that
they do not exploit the known vessel cross-sectional shape. In order to overcome this
limitation, Mendonca et al. [53] presented a hybrid algorithm that starts with the ex-
traction of vessel centerlines, which are used as guidelines for the subsequent vessel
filling phase. For this purpose, the outputs of four directional differential operators
are processed in order to select connected sets of candidate points to be further classi-
fied as centerline pixels using vessel derived features. The final segmentation is ob-
tained using an iterative region growing method that integrates the contents of sever-
al binary images resulting from vessel width dependent morphological filters.

4.1.4 Pixel-based classification

Several authors have investigated a number of classification methods for the seg-
mentation of the vessels.

Artificial neural networks have been extensively investigated for segmenting retinal
features such as the vasculature (Akita and Kuga [54], Gardner at al. [55]) making
classifications based on statistical probabilities rather than objective reasoning. These
neural networks employ mathematical “weights” to decide the probability of input da-
ta belonging to a particular output. This weighting system can be adjusted by train-
ing the network with data of known output typically with a feedback mechanism al-
lowing retraining.

Sinthanayothin et al. [56] preprocessed images with PCA to reduce background
noise by reducing the dimensionality of the data set and then applied a neural net-
work to identify the pathology. The result of the approach was compared with an ex-
perienced ophthalmologist manually mapping out the location of the blood vessels in
a random sample of seventy-three 20x20 pixel windows and requiring an exact match
between pixels in both images.

Other classifying methods have been proposed. Soares at al. [57| proposed a Baye-
sian classifier with class-conditional probability density functions (likelihoods) de-
scribed as Gaussian mixtures. Feature vectors are composed of the pixel's intensity
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and two-dimensional Gabor wavelet transform responses taken at multiple scales. The
Gabor wavelet proved to be capable of tuning to specific frequencies, thus allowing
noise filtering and vessel enhancement in a single step. The classifier employed
yielded a fast classification, while being able to model complex decision surfaces. The
probability distributions have been estimated based on a training set of labeled pixels
obtained from manual segmentations.

Ricci and Perfetti [58] employed a support vector machine classifier. A line detec-
tor, based on the evaluation of the average grey level along lines of fixed length, is
passed through every target pixel of the image at different orientations. Two segmen-
tation methods have been considered. The first used the basic line detector whose re-
sponse has been thresholded to obtain unsupervised pixel classification. As a further
development, two orthogonal line detectors have been employed along with the grey
level of the target pixel to construct a feature vector for supervised classification us-
ing a support vector machine.

Staal et al. [16] proposed a system based on extraction of image ridges, which are
the natural indicators of vessels centerlines. The ridges are then used to compose
primitives for the vessel in the form of line elements composed by ridge pixels which
belong to the same ridge. With the line elements an image is partitioned into patches
by assigning each image pixel to the closest line element. Every line element consti-
tutes a local coordinate frame for its corresponding patch. For every pixel, feature
vectors are computed by evaluating the properties of the patches and the line ele-
ments. The feature vectors are classified using a knn-classifier and sequential-forward
feature selection.

Although supervised classification methods have provided remarkable results, they
have a noteworthy disadvantage in the necessity for configuring the classifier with
training data or a ‘gold standard’. This gold standard data set consists of a number
of images whose vascular structure must be precisely marked by an ophthalmologist.
However, as noted by Hoover et al. [18] there is significant disagreement in the iden-
tification of vessels even amongst expert observers.

4.1.5  Vessel Tracking

Vessel tracking algorithms segment a vessel between two points. Unlike the pre-
viously described techniques for vasculature segmentation they work at the level of a
single vessel rather than the entire vasculature. They start from a point on a vessel
and move along it as far as possible by analyzing consecutive local areas, e.g. drawing
scan lines across the vessel. The centre of the longitudinal cross-section of vessel is
determined with various properties of the vessel including average width and tortuos-
ity measured during tracking.
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In order to identify the vessel profile along the scan line, matched filters are still
used [18], [27], [28], [30], [38], [40], together with derivative analysis [34], [35], morpho-
logical filters [29] or Fuzzy C-Mean classifiers [39).

The main advantage of vessel tracking methods is that they provide highly accu-
rate vessel widths, and can provide information about individual vessels that is usual-
ly unavailable using other methods.

Unfortunately, they require the starting point, and usually the end point, of a ves-
sel to be defined by a user and are thus, without additional techniques, of limited use
in fully automated analysis. In addition, vessel-tracking techniques may be confused
by vessel crossings and bifurcations (Frameet al. [19]). Teng et al. [20] address several
of these problems by proposing the use of matched filters.

4.2 Methods

The rationale of our method is to consider the image as a weighted un-oriented
sparse graph where each node represents a pixel. The graph edges describe the 8-
adjacency among pixels in the image. Under the assumption that vessels are mini-
mum cost paths connecting remote nodes, we employ a graph search approach in or-
der to identify them.

As a first step, luminance and contrast drifts are removed from the images using a
correction method previously developed [26]. This pre-processing also ensures uniform
and invariant inter-image contrast and luminosity. Then a simple grayscale opening
provides an appreciable reduction of the luminosity of the arterial central reflex,
whose presence would often hamper the correct tracking of large vessels. A seed point
extraction identifies a set of points used as starting nodes for simultaneous searches.
The most promising node to be expanded is selected at each iteration. When such
node resides also in the exploration frontier of another node, the shortest path con-
necting the two is recorded, and considered as starting point for a new search. A sub-
sequent refinement step connects the vessel segments with a custom fixing algorithm.
In order to locate the estimated axis at the very middle of the vessel, the transversals
symmetry along the axis is computed and its position is coherently adjusted. Lastly,
a false vessel detection procedure evaluates a ‘“vesselness” function in order to discri-
minate the true positive vessels from the ones which are to be discarded.

4.2.1 Preprocessing

Luminance and contrast drifts are removed using the iso-illumination method de-
scribed in [26]. This pre-processing step also ensures uniform inter-image contrast and
luminosity, therefore ensuring luminance and contrast invariance.
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A second preprocessing step consists in a grayscale opening. Such morphological
operation could be considered a naive approach, since the results of its application
depend only on geometrical information. However, in this specific instance, the pecu-
liar features of the graph search algorithm we employed have demonstrated to couple
optimally with this operation.

The main reason to employ a grayscale opening consists in the possible presence of
central reflex in the retinal arteries and arterioles. In some datasets only a few (if not
any) images show central reflexes (sometimes hardly appreciable), while certain data-
sets have almost all images with a marked central reflex. Namely, while STARE and
DRIVE datasets are composed of images in which arteries and veins look almost the
same, all the UoW Dataset images show a very marked central reflex in the arteries.
This feature alone could strongly hamper a vessel tracking strategy not designed to
tackle it. However, the consistency of a tracking algorithm able to track both a “nor-
mal vessel” and a vessel with a marked central reflex would come with an increased
complexness of the algorithm and the loss of efficiency in the tracking process.

The grayscale opening allows the “filling” of the central of the arteries reflex with a
relatively affordable drawback: it merges vessels that are closer than the dimension of
the structuring element used. As explained in Sec. 4.3 the false vessel detection easily
allows to get rid of those spurious tracked segments.

In grayscale morphology, images are functions mapping a Euclidean space or grid
E into RU{co, —}, where R is the set of reals, oo and —oo are elements respectively
larger and smaller than any real number. Grayscale structuring elements are also
functions of the same format, called "structuring functions". Opening is the dilation
of the erosion of an image f(x) by a structuring element b(z):

fob=(f©b)®b (4.1)

where © and @ denote erosion and dilation, respectively. In this application we
used a flat structuring element. Flat structuring functions are functions b(z) in the
form

0, X €EB

—oo, otherwise (4.2)

b(x) ={

where B € E. We are in a bounded, discrete case (F is a grid and B is bounded) so
the grayscale erosion of fby b is given by

(f OB = min (F(z—x)) (4.3)
while the grayscale dilation of f by b is given by

(f ®b)() = max (f(z—x)) (4.4)
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Since we can expect that the width of a central reflex is between 1 and 6 pixels,
depending on the ym/pixel ratio of the image, we conservatively chose the dimension
of the structuring element depending on the image dimension, namely a 2 pixel radius
disk in the DRIVE and STARE datasets, and a structuring element of 4 pixel radius
disk in the DB60 and UoW datasets.

Figure 4.1 shows the appearance of an example image after erosion and then after
dilation with different structuring element dimensions. Figure 4.2 shows an example
of both the advantages and the disadvantages that can be obtained by employing the
morphological operation.

(a) original image

(b) erosion with disk of radius 1 (c) opening with disk of radius 1

(d) erosion with disk of radius 2 (e) opening with disk of radius 2
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(f) erosion with disk of radius 3 (g) opening with disk of radius 3

(h) erosion with disk of radius 4 (i) opening with disk of radius 4

Figure 4.1 (a) original image and the image results of the erosion with a disk of radii
1, 2, 3, and 4 (left column), and a subsequently dilation with the same structuring
element (right column).
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(b)

Figure 4.2 (a) An example image from the UoW dataset; (b) after opening with a

disk of 4 disk radius. While the central reflexes become quite attenuated, some vessels
are erroneously merged.

4.2.2 Seed-Finding Procedure

An initial seed-finding algorithm, based on multi-scale matched filters over two
regular grids, is run (Figure 4.5).

The objective of this module is to extract a set of points (seeds) from which the
tracking step will start. Since the whole point of the sparse tracking procedure is to
ensure that even non-connected vessels can be tracked, these seed points should be as
spread-out as possible in the image. In order to do this, a number of lines of the im-
age are analyzed to search for candidate seed points. From each selected line the
gray-level profile p(x) is extracted and analyzed by means of a matched filter me-
thod, looking for patterns corresponding to candidate vessels. The convolution of the
profile with a discretized Laplacian of Gaussian function filter over multiple scales is
performed. The output of each filter is then normalized, and the maximum response
among the output results is considered (see Eq. 4.5 and Eq. 4.6).

The response of the convolution depends on the angle defined by a vessel and the
line, from which the profile is extracted, it crosses. As we would to maximize the dif-
ference of appearance in the profile between background and vessel, the aim is to de-
fine the grid lines as perpendicular as possible to the vessels.

We opted to design two regular grids: one of equally spaced rows and columns and
the other equal but rotated by 45°. As can be seen in Figure 4.3 and Figure 4.4, the
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two differently oriented grids allow locating seed points over differently oriented ves-
sels.

(b)

Figure 4.3 (a) regular grid of equally spaced rows and columns and (b) the

corresponding seeds found.
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Figure 4.4 (a) regular grid of equally spaced perpendicular lines, at an angle of
45° with the image coordinates; (b) the corresponding seeds found.
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Figure 4.5 The total set of seeds found by employing both the horizontal and

the inclined grids.
The 0-mean discrete filter used is described by the following equation:

-1, 1<x<sc
fse) =43 2, sc+1<x<2sc (4.5)
-1, 2sc+1<x<3sc

where x and the scale sc are discrete values. Given the profile p(x), the family of
filters fsc(x), and a set of scales SC, the final filter response is given by:

res(x) = max{p(x) ® f,.(x)|sc € SC} (4.6)

where ® is the operation of convolution. Looking at the most prominent local mi-
nima of res(x), we derive a set K = {k;, i = 1: N} of points on the profile suggesting
the possible presence of vessels in the corresponding points of the image. From now
on, S = Uy K is the entire set of detected seed points.

39



Chapter 4

T VA I e v
I B I
L
]
! ‘\

l

(c)
Figure 4.6 (a) seeds found in the image by analyzing the profile (b); (c¢) the profile re-
sulting from the matched filtering is compared with a threshold.
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Figure 4.7 (a) seeds found in the image by analyzing the profile (b); (c) the profile re-
sulting from the matched filtering is compared with a threshold.

It is worth noting that we gave more importance to the sensitivity of the seed find-
ing procedure (detected vessels over true vessels) than to its specificity (not detected
vessels over “non-vessel”). As explained in Sec. 4.2.4, the efficacy of our algorithm is
not undermined by the presence of wrong seed points but rather by their lack in crit-
ical regions of the image.
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4.2.3 Multi-directional Shortest Path Search
Idea

The image I is a 2-dimensional array of R rows and C columns; an undirected
graph G = (N,E) can be derived from it. Let each node i € N be associated to the
pixel I(r(i),c(i)) having gray level g(i). The edge (i,j) € E exists if [r(j) —r()| < 1
and |c(j) —c(i)| < 1. To each edge (i,j) € E, a cost is associated by a real-value
function f: E - R* which will be defined in Sec. 4.2.4.4. A path P in G is a sequence
of nodes that are sequentially connected by edges in E. A path P connecting the
nodes a,b € N is the shortest one if }; jyep f(i,j) is minimal among all paths connect-
ing a to b.

Given a graph G and a node s, the shortest path tree problem consists in finding a
spanning directed tree T* rooted at s such that the cost of all paths in T* from s to
all other nodes is minimal in G. Algorithms that compute T*have a common scheme:
starting from an initial tree T(0) € T, they iteratively update it until, at the itera-
tion n, T(n) = T"is found. The problem can be solved by the Dijkstra algorithm [59],
which can also be used for finding the shortest path from two single vertices by early
stopping the algorithm at the iteration n in which T(n) meets the target vertex
(without computing the entire T*). This latter problem can be solved by a bidirec-
tional search approach [60], which, for a running time profit, runs two simultaneous
searches: one from the initial state and one from the goal, and stops when the two
T(n) meet.

The specific problem we are dealing with, however, requires the connection of sev-
eral nodes. The scheme of the proposed algorithm is to run multiple shortest path
searches, each starting from the seeds found according to the procedure described in
Sec. 4.2.2. When two trees meet, they provide the shortest path connecting their
roots, but differently from the bidirectional approach, the algorithm does not stop.
Instead, the two trees merge into a single new tree, from which the search goes on in
successive iterations.

4.2.4  The Algorithm

4241 Initialization

Every s € S is considered as the root of a tree T,. A different identification tag is
assigned to each tree, so that for every explored node it is possible to trace which tree
it belongs to. Also, every node i € Ty carries two additional pieces of information: the
distance d; providing the total cost of the path from i to s, and the reference p; indi-
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cating the predecessor of i in Tg(n). At the first iteration (n = 0), every T4(0) coin-
cides with its root s and d is equal to zero for all s € S, whereas for all other nodes of
the graph d is assumed to be oo.

Algorithm 1 Initialization
1: function INITIALIZE(S, G)

2: for all s € S do > for all seeds
3: ds — 0 > distance from the source
4 tags «— s > tree to which the node belongs
5: ps — 0 > predecessor in the tree
6: states < leaf > exploration starts from leaves
7: end for

8:  for all n € N(G)\S do > for all other nodes
9: dy — ©

10: end for

11: end function

4.2.4.2 Search

At each iteration n, the leaf node i with the minimum distance, i.e. such that
i(n) = argmin;{d; | i € U leaves of all T(n) } (4.7)

is selected. The set J(n) of the nodes reached by the outgoing edges of i(n) is con-
sidered. If there is a node j € J that belongs to another search tree, then the two trees
are merged (See 4.2.4.3). Otherwise, all j € J are explored to expand the current T:
the cost function f, defined below, is computed and for each j such that f(i,j) < d;,
then d; and p; are respectively updated to f(i,j) and i.
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Algorithm 2 Multidirectional Graph Search

1: function MULTISEARCH(S, G)
2: INITIALIZE(S,G)

3: P~

4 repeat

5: i « argmin; {d; | state; = leaf,i € N(G)}
6: state; «— explored

7 for all j | (4,5) € A(G) do

8 if tag; # tag;, state; = explored then
9: P — P UMERGE(s, j,G)

10: else

11: state; < leaf

12: tag; < tag;

13: newdistance «— COSTFUNCTION(%, §)
14: if newdistance < d; then

15: d; < newdistance

16: pj — 1

17: end if

18: end if

19: end for
20: ec < EVALUATEENDCONDITION(P, G)
21: until ec
22: return P

23: end function

4.2.4.3 Merging

The merging operation consists of two steps. First, the minimum path is recon-
structed by exploiting the references p, i.e. step by step backward from the node i
and from the node j along their respective tree, until a seed point s € § is reached or
until a node belonging to a previously found path is reached. Second, the two explo-
ration trees are merged: all nodes belonging to the two touching trees have their
identification tag equaled. This operation allows the resulting merged tree to cohe-
rently interact with the others in succeeding iterations.
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Figure 4.8 Example of exploration of four manually deployed seeds. On the left
column the original image with the superimposed seeds and the identified paths. On
the right column, the images of the matrix where for each pixel i the distance value

d; is stored.

4.2.4.4 Cost Function

We defined the cost function associated to the edge (i,j) as described by eq. (4.8)
and (4.9), where g(i), recalling from Sec. 4.2.3, is the gray level of the pixel
represented by the node i.

fG,)) = d;i + kijw;; (4.8)
kij =g+ g — g()IP? (4.9)

where the weight w;; has the role of penalizing the exploration of the d-adjacent

pixels of i: w;; = 1 if i and j represent 4-adjacent pixels, otherwise w;; = V2 (Figure
4.9).

Figure 4.9 Starting from i, the weight w; ; has the role of penalizing the exploration
of the d-adjacent pixel as their distance is V2 times the distance of the 4-adjacent
pixels.

45



Chapter 4

The first term of the sum (4.9), g(i)P1, penalizes the exploration of brighter pixels,
while the second term, |g(i) — g(j)|P2, penalizes the transition from the inside to the
outside of the vessels and wvice versa. p; and p, are empirically chosen: however, we
noted that if both p; and p, are > 3, the performances provided by the algorithm
tend to be good and are qualitatively similar for every arbitrary chosen value.

4245 End Condition

It is worth noticing that, according to the defined f and the appearance of the re-
gions around the false positive seeds, the exploration starting from the latter tends to
be done at a later time than the one from the true positive seeds. Indeed, in the last
iterations only false positive seeds remain to be connected. An end condition has been
defined in order to exploit this feature, minimizing the occurrence of false vessels de-
tection.

In order to provide a more solid end condition, we defined it as a sequence of two
checks: when the first check is verified the second one is performed.

The rationale of the first check is to consider the degree of connectivity of the es-
timated vessel network after a cyclic number of iterations. We considered the esti-
mated vessel network as a set of trees in which the edges are the vessel segments, the
nodes correspond to the bifurcations among vessel segments, and the leaves of the
trees are the ends of the vessel segments. It is worth noticing that the trees men-
tioned in this circumstance have no relations with the search trees described in the
previous sub-sections, since they are defined at different conceptual levels and have
different purposes.

A perfect binary tree of height h has a number of nodes n = 2"?! — 1 and a num-
ber of leaf nodes [ = 2". It can be easily seen that the I/n ratio tends to % as h tends
to infinite, and [/n*= % is the lower bound of each possible binary tree. The beha-
vior of the search algorithm can be qualitatively described as follows: in a first stage
seed points are connected in pairs, and only after a number of iterations the other
non-connected seed points are connected to the segments already found. In other
words, in the first stage of the processing the number of leaves (i.e. ends) is far larger
than the number of total nodes (i.e. ends plus bifurcations). However, the more the
iterations of the algorithm, the more the network becomes connected, approaching
towards the [/n* ratio. Of course we cannot expect that a retinal vessel network
geometry behaves like a perfect binary tree, but we empirically noticed that as the
best compromise between false vessel detection and true vessel network covering was

reached, log (%) = 1. This last threshold defines one of the two checks constituting
the end condition of the tracking algorithm. Since in the earliest iterations of the al-
gorithm the [/n ratio value could be very unstable, the check starts to be performed

after a short delay “of confidence”. The limit of such approach is that it can work on-
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ly under the assumption that the processed image is a processable image (in the other
case the whole proposed framework would not be able to provide the desired results).
The second check becomes active only when the first one is verified, i.e. when

log L) reaches the threshold value. From now on, every new path found is accepted
n

only if the average gray level of its pixels significantly differs from the local average
value of the preprocessed image. When three paths are consecutively discarded in this
way, the algorithm ends, since it is assumed that the remaining paths cannot be bet-
ter than those already found. It is worth noting that this step is effective only if it is
applied to images whose luminance and contrast drifts have been removed as pre-
viously mentioned [26].

4.2.5 Post-Processing

A fault of the proposed algorithm is that it allows to connect N given seed points
with at most only N-1 paths. Another drawback is the algorithm intrinsic inability to
find circular paths [61]. To overcome these limitations, we have developed a fixing
procedure that aims at finding possible missing branches in the vessel network recon-
structed up to this point.

The rationale is to consider every end-point of the current vessel network and try
to find an additional path that starts from it and proceeds beyond it to arrive at
another point of the network. The segment of the current network ending at the end-
point is smoothed, so as to provide a robust estimate of the perpendicular line at the
end-point, which identifies the “forward” region to be explored by the fixing proce-
dure.

The algorithm presented in Sec. 4.2.4 is then run once more, using all the end-
points as seeds and having the constraint to explore the “forward” region only, with-
out being allowed to backtrack along the vessel already traced. In this new instance
of the algorithm, the threshold value of the first check of the end condition is up-
dated to log(l/n) = 0.3.

4.3 False Vessel Detection

The tracking of false vessels, i.e. to consider something that is not vessel as vessel,
depends mainly on the position of false seed points located in darker regions of the
fundus image (such as in the fovea) or in hemorrhages.

In order to develop a false vessel detector that is able to perform well on the errors
of the tracking algorithm, we have to describe vessels with features as different as
possible if compared to the ones used in the tracking process. In this section we
present a binary classification method based on a measure of “vesselness” determined
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by the analysis of the eigenvectors of the Hessian matrix computed on the vessel axes
[62].

All vessels share the same feature: in their inside, along the axis, they show gray
scale uniformity, with only exceptions of in the case of a small gradient due to the
slow change of luminosity through the image and the possible appearance of central
reflexes. The rationale is to employ the information on the direction of the gray level
gradient along the estimated axis: if this proves constant and coherent with the axis
direction, we can assume that the estimation was correct. On the contrary, a fast and
casual variability in the gradient direction is characteristic of the background region.

The computation of the direction of the gray level gradient is easily obtainable
from the analysis of the eigenvalues and eigenvectors of the Hessian matrix

%L %L
0x2  9xdy

Hyy = 0L 021 (4.10)
dydx ay

whose elements are determined by the convolution of the image with the second-
order partial-derivatives of a two-dimensional Gaussian distribution G. In order to
keep the computational load low, the convolution is calculated only in correspondence
of the pixels covered by the estimated axes.

Once the convolutions have been performed, it is possible, for every pixel, to de-
termine the Hessian matrix. Since it is symmetric, its eigenvectors are orthogonal and
represent the main directions in which the local two-order structure is decomposed.
The two eigenvectors vt and v~, associated with the eigenvalues At and 17, indicates
respectively the direction of faster change (v*) and lower change in intensity.

For each pixel of the estimated axis, the difference d between the angles of the ves-
sel axis direction and the direction of v~ is computed. We can notice that as the es-
timated axis leaves a vessel, entering the background region, d becomes unstable.
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Figure 4.10 Simple scheme that highlights the usefulness of the second derivative of
the kernel G and the three obtained components.
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Figure 4.11 (a) Detail of a vessel and (b) the v~ corresponding to each pixel.
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Figure 4.12 (a) Partially false tracked vessel: the second half has been detected be-
cause of false seeds laying in the fovea; (b) image of the vessel composed by taking
into consideration the longitudinal profiles of the axis (displayed to provide a
straightforward view); (c) difference between the angles (in radians) of the vessel axis
directions and the directions of v~, along the estimated axis.
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(b)
Figure 4.13 (a) vessel axis manually drawn on the background; (b) difference between

the angles (in radians) of the vessel axis directions and the directions of v~, along the
estimated axis.

The rationale is to classify the pixel of the axis as false vessel pixel when the cor-
responding d goes outside an interval of confidence, which has been empirically set to
+0.2%. Since the value of d computed on a background region is casual, it could hap-
pen that, for a number of false vessel pixels, d falls in the confidence region. This is
the reason why after the pixel-wise classification provided by the thresholds we intro-
duced a further verification, which tests the “choppedness” of the true-classified pixel
along the axis. Simply put, a segment of axis is considered true vessel if it is com-
posed of more than 20 consecutive pixels whose d falls in the interval of confidence.

This described implementation for the false vessel detection reached an average
sensitivity of 63.8%, an average specificity of 91.9%, and a total average accuracy of
88.5 % on the DB60 dataset.

4.4 Results

The performance of the algorithm is compared with the human-labeled segmented
version of the 60 images of our DB60 dataset, of the 20 test images of the DRIVE da-
taset, and of the 20 images of the STARE dataset, all of them assumed as ground-
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truth reference. Those segments of the computer-estimated network that do not exist
in the ground-truth images (i.e., that exit from the vessel mask) are considered as
false vessels. Sensitivity has been evaluated as the percent fraction of the length of
correctly tracked vessels over the total length of the ground-truth vessels (skeletoni-
zation of the ground-truth vessel mask). False vessel detection has been evaluated as
the percent fraction of the length of the false vessels over the length of all estimated
vessels (not to be confused with the false detection rate). Results are summarized in
Table 4.1, Table 4.2, and Table 4.3 in terms of mean, standard deviation, maximum
and minimum of both sensitivity and false vessel detection over the whole data sets.

DB60 mean sd max min
sensitivity 85.86 4.72 98.31 76.58
false detection 5.18 2.11 10.71 0.98

Table 4.1 Results of the vessel estimation in the 60 images of the DB60 dataset (%).

DRIVE mean sd max min
sensitivity 71.37 6.09 86.29 55.83
false detection 4.82 2.36 8.04 1.47

Table 4.2 Results of the vessel estimation in the 20 test images of the DRIVE dataset

(%).

STARE mean sd max min
sensitivity 66.34 5.3 82.04 55.25
false detection 3.07 2.21 8.30 0.92

Table 4.3 Results of the vessel estimation in the 20 images of the STARE dataset
(%).

The average run time of the MatLab® prototype of the whole algorithm on a Intel
Pentium-M PC (1.8 GHz, 1 GB of RAM) is 60 seconds, while on a Intel Duo Core 2
PC (2.2 GHz, 4 GB of RAM) is 25 seconds.
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Figure 4.15 Example of vessel axis tracking results (DB60 dataset).
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Figure 4.16 Example of vessel axis tracking results on a pathologic image
(DB60 dataset).

Figure 4.17 Example of vessel axis tracking results (DRIVE dataset).

54



Vessel Tracking for Adult Images

Figure 4.18 Example of vessel axis tracking results (STARE dataset).

How it can be seen in Table 4.1, Table 4.2, and Table 4.3 the mean sensitivities of
the method are quite different in the three datasets. This different behavior can be
explained in term of the image features and the ground-truth manual labeling.

The images from different datasets have different field of view and resolution:
DB60- 50°, 1400x1200 pixels; DRIVE- 45°, 768x584 pixels; STARE: 35°, 605x700 pix-
els. In these last two datasets, the smallest capillaries manually segmented by human
observers are 1-2 pixels wide, while in DB60 the smaller capillaries manually seg-
mented are about 3-4 pixel wide. The proposed method has not proved to be able to
detect these very small vessels mainly because the seed finding procedure is not able
to detect them.

Still, the DB60 dataset is the one on which the algorithm presents the highest false
vessel detection, i.e. 5.18%, versus 4.82% and 3.07%. Even this behavior can be ex-
plained by the same considerations reported above. In fact, as we made the algorithm
more sensible towards the small vessel of the DRIVE and STARE images, small ca-
pillaries and spurious grains not present in the ground-truth mask of DB60 were
found. The false vessel detection step described in Sec. 4.3 has proved to be particu-
larly helpful in the post-processing of the DB60 images, while its contribution has
been minimal with the other two datasets.

An additional consideration can be made about the capillaries. The evaluated re-
sults are computed by comparing the length of the estimated vessel axes with the
length of the ground-truth vessel mask skeletonization. Therefore, wide and narrow
vessels are equivalent in the computation of the performance of the algorithm and the
missed detection of a large vein produces the same error as the missed detection of a
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narrow capillary with the same length. This is true of course also for the false vessel
detection.

4.5 Conclusion

This chapter describes a new automatic system to extract the vessel structure in
retinal images acquired from adult subjects, based on a multi-directional graph search
algorithm. In its present form the method has proved robust with respect to initial
false positive seeds and efficient in the tracking process. Its main drawbacks are the
difficulty of detecting small capillaries of 1-2 pixel diameter and the different behavior
with different datasets.

Our objective was to develop a vessel segmentation method able to find the central
axis of the retina vessels, leaving the detection of the vessel border to a successive
step. The partition of the segmentation process in two sequential and independent
tasks provides some advantages. Two considerations can be made on this issue.

First, we could use a tracking method that does not require to identify the longi-
tudinal cross-section of the vessel and thus to detect the vessel diameters, allowing us
to choose a technique that analyzes fewer pixels. The method proposed here uses the
Dijkstra’s algorithm, revised and expanded in order to connect multiple source points.
The Dijkstra’s algorithm has been widely studied, is well known, and its implementa-
tion can be highly optimized for both computational cost and memory occupancy.
Since it is at the core of the tracking algorithm, the whole system benefits from its ef-
ficiency. The average run time of our MatLab® implementation of the sole multi-
directional graph searching algorithm, ran on a single image is 30 seconds, using an
Intel Pentium-M PC (1.8 GHz, 1 GB of RAM), and 15 seconds using an Intel Duo
Core 2 PC (2.2 GHz, 4 GB of RAM).

The second consideration concerns the implementation of the edge detection algo-
rithm, which will be described in details in the forthcoming Chapter 5. The rationale
consists in employing an edge detection approach and using the vessel axis features as
prior information. As will be described in Sec. 5.2.2 and Sec. 5.2.3, each point of the
vessel axis is analyzed with a matched-filter technique, which exploits the information
of the vessel local direction and a roughly estimated scale to reduce the dimension of
the problem. Again, this approach allows sizable computational gain.

In conclusion, the satisfactory results obtained with this algorithm suggest the pos-
sibility of using it to identify the retinal vascular structures for clinical purposes.
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Vessel Diameter Estimation
Starting from Axes in Adult
Images

Ocular fundus images provide important information about retinal degeneration,
which may be related to acute pathologies or to early signs of systemic diseases. An
automatic and quantitative assessment of vessel morphological features, such as di-
ameters and tortuosity, can improve the clinical diagnosis and evaluation of retinopa-
thy.

This chapter provides the description of a method to accurately evaluate vessel di-
ameters and centerline starting from the estimated network of vessel axes. The algo-
rithm extracts points laying on the vessel borders by means of an efficient mono-
dimensional matched filtering approach. The orientation of the filter kernel is chosen
according to the information provided by the network and the appropriate scale is
computed by means of an initial diameter estimation performed on the vessels cross
section profiles before the filtering process.

(b)

Figure 5.1 (a) Starting network of vessel axes; (b) estimated calibers.

An adaptive correction step is then run to fix non consistent diameters, in order to
obtain a regular and continuous vessel morphology. Vessel border refinement finally
yields an accurate representation of the vascular structure.
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Average calibers were evaluated, for a set of vessel segments, both manually by an
expert and automatically by the proposed method. Comparative results show high
correlation. In addition, starting from the structures assessed by the algorithm, for
each processed image a binary mask has been drawn and compared with the manual
segmentations available for the DB60, DRIVE, and STARE datasets.

5.1 Introduction

The morphology of the vascular structure can be affected by different abnormali-
ties caused by acute pathologies or by early signs of certain systemic disease, such as
diabetes and hypertension. Ocular fundus images can provide important information
about these signs and their accurate analysis is necessary to improve clinical diagnosis
of diseases. An automatic and quantitative assessment of vessel morphological fea-
tures, such as diameters and tortuosity, can reveal important information on the ab-
ovementioned diseases. To this aim, the exact layout of all relevant vessels in the im-
age must be extracted. A significant issue in fundus images is the contrast between
vessel and background, which is often very poor, especially for capillaries. Digital
noise represents another critical aspect and, in addition, wider vessels often present a
bright reflex laying at the center (the central reflex), causing their profile to be indis-
tinguishable from the one belonging to two narrow parallel vessels.

Matched filters have been widely used, both in their two-dimensional or mono-
dimensional variant, to detect signals in presence of noise, because of the very high
signal-to-noise ratio (SNR) they provide [63]. However, when applied to retinal image
analysis, matched filtering requires precise knowledge of the blood vessel morphologi-
cal parameters, such as thickness, orientation and shape profile, which substantially
vary across the image. To circumvent this problem, multi-orientation and multi-scale
approaches have been proposed: the vessel image is convolved with a set of variously
oriented and scaled kernels, to get the best response.

The biggest drawback of this method is the computational time required to process
the image with a high number of filters [64]. An approach proposed in literature to
speed up the search for filter orientation is the use of steerable filters, such as Hessian
filters [65], which exhibits as a major drawback the possible overfitting of noise and of
nonvascular structures. A simple solution to the unknown thickness problem may be
that of choosing some effective scale that works sufficiently well for most of the vessel
widths. In this case however, small-scale filters might erroneously split a wide vessel
into two narrower structures. On the other hand, large-scale filters perform poorly on
narrow tubular structures and might merge narrow near vessels [62].

This chapter proposes a method to accurately evaluate vessel diameters and cen-
terline starting from an even roughly estimated vessel axis network. Each segment of
the network provides the approximate direction of a corresponding vessel axis. Start-
ing from the assumption that cross section vessel profiles can be approximated by a
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Gaussian shape [37|, the algorithm extracts points laying on the vessel borders by
means of an efficient matched filtering approach, using a discretized Laplacian of
Gaussian (LOG) function as kernel. Appropriate kernel orientation and scale are pre-
ventively evaluated, in order to improve the filter precision and efficiency. A self-
correcting step follows, where non-reliable border points are automatically fixed. To
evaluate the performance of the method, we considered 739 vessel segments. For
every segment, we compared the average caliber calculated by manual segmentation
and by our algorithm.

5.2 Methods

The system that evaluates vessel diameters and centerline is composed of several
modules. The first is the preprocessing-and-profile-extraction module (Sec. 5.2.1),
which initially performs image enhancement [26]. Cross section vessel profiles P are
then extracted along every branch of the vessel network orthogonally to the approx-
imate axis direction.

They are then preprocessed with a mono-dimensional shift-invariant Gaussian fil-
ter, to reduce noise.

For each profile P, the edge-point-detection module (Sec. 5.2.2) carries out two
tasks: a preliminary vessel width estimation is performed, which is used to set the
kernel scale for the second step, consisting in a mono-dimensional matched filtering.

When a couple of candidate border points is detected for each profile, the adap-
tive-correction module (Sec. 5.2.3) checks their reliability. To this aim, a statistic in-
dex M is computed on the whole set of diameters of the considered vessel. Calibers
that appear to be non-consistent with M are fixed by changing the matched filter
scale, or forced to a trustworthy value when a reliable diameter cannot be found.

The border-refinement module (Sec. 5.2.4) is finally aimed to extract from the set
of border points some regular curves delineating the final vessel edges.

In Figure 5.7 the output of the last three modules is displayed for a vessel segment
where a significant central reflex is present, along with a crossing.

5.2.1 Preprocessing and Profile Extraction

The green component is extracted from the images, since it allows the best con-
trast for retinal vessels. An initial enhancement process is then applied to the whole
image [26] with the aim of removing luminance and contrast drifts, to allow uniform
intra- and inter-image contrast and luminosity. The intensities of the image are final-
ly inverted so that the intensity of vessel pixels is higher, compared to the back-
ground.
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In order to perform vessel segmentation we start from the previously estimated
vessel network, whose branches approximate the axis direction for every vessel seg-
ment. Every segment s of the network can be expressed in curvilinear coordinates as
a curve Cg(i), i € [1,...,Ng]. At every i in [2,Ns — 1] we extract a profile P} orthogon-
al to the direction of s and centered in Cg(i). In order to limit digital noise, we build
P? as the mean of three adjacent profiles p{_;, p; and p;,, orthogonal to s and cen-
tered respectively in Cs(i — 1), Cs(i) and C4(i + 1). The length of every profile p; and
hence of Py, is fixed to a value large enough to contain the widest vessel cross section.
Finally, to improve the profile SNR ratio, a mono-dimensional version of the shift-
invariant Gaussian filter proposed in [66] is used. This version is a combination of
domain and range filtering techniques for edge-preserving smoothing. From now on
we will call PFf the profile P{ after this shift-invariant Gaussian filtering.
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Figure 5.2 (a) Detail of an original image with the given vessel axis (green dots), the

profile p; of the current axis point Cg(i) (yellow line), the two adjacent profiles p;_;

and p;,; (blue lines); (b) mean P} of the three profiles p;_;, p{ and p;,;; (¢) The shift
invariant Gaussian filtered profile PF}.
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5.2.2 Edge Point Detection

The task is aimed at extracting a couple of candidate border points for every pro-
file PF{ obtained as described in Sec. 5.2.1.

The first step consists in estimating (even roughly) the caliber of the analyzed ves-
sel. To this aim, the profile is initially processed with a high-pass filter to remove
possible drifts at low frequencies. The diameter is then estimated starting from the
maximum peak related to the center of the vessel and descending toward right and
left valleys. At each iteration two points move away from the peak; the left point in-
dex li; and a right one ri; are determined where the slope markedly decreases with
respect to its online average value.

If a central reflex is present, the vessel profile usually shows two peaks: one to the
left and one to the right of the vessel centerline. In this case li}, and ri; may stop on
a valley related to the central reflex; therefore, the caliber estimation would not be
correct. To overcome this problem, if the heights of lif and ri}, are too different from
each other, the highest point is moved toward the corresponding left or right terminal
point of the profile, in order to reach a deeper valley.

CH ) (©)

Figure 5.3 A profile PF processed for the diameter estimation. (a) The red dot indi-
cates the maximum peak related to the center; (b) the two dots indicates where the
slope markedly decreases by descending toward right and left valleys; (c) the
rightmost point is moved to a deeper valley, whose height is comparable to the left-
most one.

Finally, the estimated caliber ECy, centered on the k-th point of the s vessel seg-
ment, is given by the distance between liy and rij.

Starting from this result, candidate border points are computed by filtering the
profiles PF;, with a mono-dimensional matched filter. The caliber estimated as de-
scribed above is used to set the kernel scale. The matched filtering consists in the
convolution between PF;, and a kernel function kges(x). We chose a discretized LOG

function defined as:
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1, 1<x <EC}
—1, 2ECS +1 < x < 3ECS

where EC} is the previously estimated scale. The final filter response is given by:
PFM;(x) = PF§(x) ® ks (x) (5.2)

where @ is the operation of convolution. Since direction and scale are adaptively
computed for every single analyzed profile, we increased the matched filter efficiency.
We detect possible border points for the analyzed vessel by thresholding the filtered
profile PFMj;. Taking cue from [39|, we decided to determine the threshold with a
fuzzy 2-means clustering method, which has been preferred to the Otsu’s method be-
cause the first provided a more regular segmentation involving a smaller number of
subsequent correction and forcing operations (see Sec. 5.2.3).

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to
belong to two or more clusters [67]. This method is based on minimization of the fol-
lowing objective function:

Jn = ult - gl 1sm<oo (5.3)

where m is any real number greater than 1 (2 in our implementation), u;; is the
degree of membership of x; in the cluster j (see Figure 5.4), x; is the ith of d-
dimensional measured data, ¢; is the d-dimension center of the cluster, and |[+|| is any
norm expressing the similarity between any measured data and the center. Fuzzy
partitioning is carried out through an iterative optimization of the objective function
5.3, with the update of membership u;; and the cluster centers ¢; by:

_ 1 _ Zi\’=1 uZ'lxi
Ujj = 7z 5, (= —ZN um (54)
¢ (”xi_ci”)m_l =17
=kl

(k+1) (k)
ij W
criterion between 0 and 1, whereas k are the iteration steps. This procedure converges

This iteration will stop when max;; {|u } < g, where ¢ is a termination

to a local minimum or a saddle point of J,,.
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0.20-

Figure 5.4 Given a certain mono-dimensional data set, suppose to represent it as dis-
tributed on an axis. Two clusters (A and B) may be identified in proximity of the
two data concentrations. The datum shown as a red marked spot belongs more to the
B cluster rather than the A cluster. The value 0.2 of u indicates the degree of mem-
bership to A for such datum.

In our implementation we defined two clusters, namely “vessel” and “non-vessel”.
The threshold value is the minimum x belonging to the “vessel” cluster. The value of
m was set to 2, as it is usual in the literature. Using values closer to 1 would result in
crisper (i.e. non-fuzzy) partitions, while values greater than 2 would increase the fuz-
ziness of the membership. In order to speed the convergence of FCM, we initialized it
with initial cluster centers at the first and at the third quartiles of the profile. Typi-
cally, one to three iterations of FCM were adequate.

When the thresholding operation provides multiple disjoint “vessel” segments (typ-
ical when two parallel vessels with similar caliber are close - less probable but possi-
ble when a vessel with strong central reflex is filtered with an underestimated scale)
the edges are extracted by evaluating, among all “vessel” segments, the nearest to the
center of the profile.

63



r L r r L L r ]
0 5 10 15 20 2 20 £ ( C )

(d)

Figure 5.5 (a) The starting PF; profile, (b) the kernel function kgcs(x) centered in

x=0 and with EC; = 15 as estimated scale, and (c¢) the output of the matched filter,
with the threshold (dashed black) chosen by using a fuzzy 2-mean clustering. The red
stars represent the estimated caliber edges (c).

5.2.3 Adaptive Correction

As described in the previous sections, we processed vessel profiles averaged over
three consecutive cross sections (Sec. 5.2.1), hence the analysis performed on vessels
was almost local. The major drawback of this kind of approach is that it might fail in
regions where vessels are not clearly detectable with respect to the background. For
example, in fundus images there might be low-contrast regions, or areas where two
vessels cross or run one very near the other (or are even partially overlapped) at
some intervals. Also the presence of lesions, such as hemorrhages, could partially hide
vessels. In these situations, the local caliber estimation might be imprecise, causing
the matched filter to use an inaccurate scale, hence potentially yielding inexact vessel
border locations.

To overcome this issue, every vessel segment S is now considered at a higher level
as a tubular structure, whose calibers have to satisfy some continuity and regularity
constraints. The adaptive correction module checks every pair of border points (ex-
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tracted as described in Sec. 5.2.2) and compares their distance to a statistic index Mg
computed on the whole set of diameters evaluated for s. If the checked diameter is
considerably narrower than M, the profile is reanalyzed with a matched filter using a
larger scale (2 pixels larger); likewise, if the diameter is significantly wider than Mg
the filtering is performed at a smaller scale (2 pixels smaller — the minimum and max-
imum scales taken into consideration are respectively of 1 and 25 pixels). We there-
fore use for every profile the most suitable single-scale filter, while using a multiple-
scale filter only for critical profiles. In this way, we improve both the matched filter-
ing precision and efficiency. One more case is taken into account in this module,
when a reliable diameter cannot be found, even after scale adjustment. If the adjusted
diameter is still considerably different from the statistic index Mg, border points are
forced so that their distance match My itself. It should be noticed that this latter ap-
proach is taken for very critical situations only, when the transition pixels from the
vessel to the background cannot be locally distinguished, even after scale adjustment.

The use of the median as Mg allowed us to achieve accurate results and, at the
same time, to minimize the number of forced diameters.

The rationale of the adaptive correction module is represented in Figure 5.6.

¢ = distance of a pair of border points

Decrease kernel Increase kernel
scaleand diff(c, M) scale and
recomputec recomputec
YES YES

Yy
forcec= M, forcec= M,
» keepcurrentc |«

I

Figure 5.6 Schematic of the adaptive correction module applied to a pair of border
points having distance c.
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Figure 5.7  Border
points evaluated before
(top) and after (middle)
diameter correction, along
with the final vessel seg-
mentation (bottom). In
the middle image rhom-
bus points were success-
fully  corrected,  while
crosses were forced to the
median caliber of the ana-
lyzed vessel segment.
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5.2.4 Border Refinement

For each vessel segment s, the modules described in the previous sections provide
two sets of points B1° = {b1], i = 1:Nj,;} and B2% = {B2;,i = 1: N;;,} sampling the
two borders of the vessel. In some regions samples might be noisy or sparse, leading
to an irregular border description.

Regularity of vessel borders was achieved by means of an interpolation function.
The fact that vessels are continuous structures at least with their first derivative led
us to use a cubic smoothing spline interpolation. Hence two final curves C1°(x) and
C2%(x) laying on the vessel borders were computed. The vessel centerline VC*®(x) is
the curve computed by averaging C1°(x) and C2°(x) coordinates.

5.3 Results

5.3.1 Caliber Correlation

A set of 739 vessel segments, extracted from 3 color fundus images randomly cho-
sen from the DB60 dataset was analyzed to test the method. Every segment consi-
dered is a portion of vessel whose extrema belong to two of the following regions: a
natural vessel end point, a bifurcation, a branching, a cross. The considered vessels
were also manually segmented by an expert ophthalmologist, and the chosen seg-
ments span a wide range of structures: from the very wide vessels departing from the
optic disc to the thin peripheral capillaries.

Starting from the segments we obtained a vessel axis network by applying skeleto-
nization to the binary image resulting from manual segmentation. We then ran the
proposed method, to evaluate vessel diameters and centerline. The algorithm perfor-
mance was assessed by computing the correlation between automatic and manual
evaluation of the average caliber of the vessel segments. For the set of 739 vessel
segments we obtained a correlation p = 0.97. In Figure 5.8 the scatter plot of the av-
erage caliber values, from manual vs. automatic evaluation, is shown.
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Figure 5.8 Average caliber: scatter plot of manual vs. automatic estimations.

The whole evaluation required a total of 17,032 profile analyses; 4,758 of them
(27.9%) needed to be processed by the adaptive correction module, in order to find a
reliable diameter after the first iteration. 2,653 diameters were effectively recovered
(55.8% of the profiles processed by the adaptive correction module), while the re-
maining 2,105 were forced to the median caliber evaluated on the corresponding ves-
sel segment.

5.3.2 Mask Comparison

The proposed system for the automatic tracking of the retinal vessel network was
evaluated on DB60 dataset as well as the DRIVE and STARE databases. To perform
the comparison with other retinal vessel segmentation algorithms, specificity, sensitiv-
ity and accuracy have been taken into consideration. Those three statistical measures
assess the performance of a binary classification test. Sensitivity measures the propor-
tion of vessel pixels that have been correctly identified as such, while specificity
measures the proportion of background pixels that have been correctly identified. Ac-
curacy is computed as the ratio of the number of correctly classified pixels (both ves-
sel and non-vessel) over the total number of image pixels. The ground truth refer-
ences for computing the performance measures was the manual segmentation result
provided together with each database image. Table 5.1, 5.2, and 5.3 present the aver-
age accuracy, sensitivity and specificity calculated DB60 dataset, the DRIVE dataset,
and the STARE dataset, respectively. In Table 5.2 and 5.3, performance of our me-
thod are also compared with the ones obtained by the authors who proposed the da-

68



Vessel Diameter Estimation Starting from Axes in Adult Images

tasets [17], [18] and with the performances obtained by a second human observer (the
first human observer segmentation is the ground truth reference).

Accuracy Sensitivity Specificity
96.18(0.54) 82.58 97.49

Our method

Table 5.1 Performance results of the proposed method on DB60 dataset

Method Accuracy Sensitivity Specificity
2" human observer [17| 94.73(0.48) 77.61 97.25
Staal et al. [16] 94.42(0.65) 71.94 97.73
Niemeijer et al. [17] 94.17(0.65) 68.98 97.96
Our method 93.56(0.69) 73.04 96.62

Table 5.2 Performance results on the DRIVE dataset.

Method Accuracy Sensitivity Specificity
2" human observer 93.54(1.71) 89.49 93.90
Hoover et al. [18] 92.67(0.99) 67.51 95.67
Staal et al. [16] 95.16(n.a.) 69.70 98.10
Our Method 94.01(1.60) 69.23 97.34

Table 5.3 Performance results on the STARE dataset.
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Figure 5.9 Example of segmentation result (DB60 dataset).

70



Vessel Diameter Estimation Starting from Axes in Adult Images

Figure 5.10 Example of segmentation result (DRIVE dataset).
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Figure 5.11 Example of segmentation result (STARE dataset).

As shown in tables, the mean accuracies of the method are different in the three
datasets. As already mentioned in Sec. 4.4, this behavior depends on the different im-
age features and the differences in the ground-truth manual labeling. Since the di-
ameter detection step operates on the vessel axis network provided by the algorithm
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described in Chapter 4, the results are somehow correlated with the sensitivity and
the specificity of the latter. However, the comparison between manual and automatic
masks takes into account the actual width of the tracked vessels, and not only the
detection of their presence (axis). As a direct consequence, the results are affected
more by the wider vessels than by the smaller ones. As far as the DB60 dataset is
concerned, the vessel axis detection shows a sensitivity of 85.86, while in the mask
comparison the sensitivity is 82.58. This could suggest that in such database the al-
gorithm missed more wide vessels than capillaries. In the other two datasets, the re-
sults are opposite: we have 71.37 and 66.34 of axis detection sensitivity and 73.04 and
69.23 of vessel classification sensitivity, respectively, for the DRIVE and STARE da-
taset.

The comparison between the automatic binary classification and the manual labe-
ling may not be the best method to evaluate the performance of the diameter estima-
tion step (and that is why we assessed also the diameter correlation in Sec. 5.3.1).
However, it enables the performance comparison among gold standard, second human
references and the performance of other algorithms (Table 5.2 and Table 5.3). In the
DRIVE dataset, our algorithm shows the worst accuracy and specificity (93.56 and
96.62), even if these measures are just ~1% lower than the others. The sensitivity is
~1-4% better than the other automated methods, while it is however lower than the
2" human observer by ~3.5%. In the STARE dataset, the performance of our algo-
rithm is right in the middle of the other automatic method results; both accuracy and
specificity, however, are slightly better than the ones obtained by the 2! human ob-
server.

5.4 Conclusion

This chapter describes the automatic system to extract vessel diameters from re-
tinal images, by means of an efficient matched filtering approach. The rationale of
the method consists in employing an edge detection approach that exploits the fea-
tures provided by the vessel axis as prior information. Indeed, the subdivision of the
segmentation process in two sequential and independent tasks has provided some sav-
ing in terms of computational load. Each point of the vessel axis is analyzed by
coupling a matched technique both with the information of the vessel local direction
and with a roughly estimated scale of the vessel diameter. Then, an adaptive correc-
tion step allows managing critical situations (presence of noise, lack of contrast,
ete...) in which the algorithm may fail to detect the correct diameters.

It is worth noting that the method proposed in this chapter strongly depends on
the quality of the initial axis network: if on one hand the vessel axis information pro-
vides a prior useful to fix the filter direction and keep low the number of used scales,
on the other hand a fragmented network will lead to a fragmented segmentation of
vessel segments. In this case, a linking procedure would be needed to reconstruct the
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complete vascular tree. A module for false vessel detection that takes into account di-
ameter information would be useful as well to discard possible recognized segments
that do not represent real vessels.

In order to assess the performance of the method, we provided two different ana-
lyses: in the first one we computed the correlation between true diameters and esti-
mated diameters in a set of highly accurate manual segmented vessels. 739 vessel
segments were analyzed to test the system, and the results were compared to the
labeling provided by a human expert. Calibers estimated with the proposed method
are highly correlated with those measured on the manually segmented images (p =
0.97). In the second analysis we assessed accuracy, sensitivity, and specificity of the
binary classification task by comparing the automatic segmentations of the vessel
network with the ground truth ones, from three different datasets. Although perfor-
mances slightly differ among the different datasets, overall the method provided ac-
curacy, sensitivity, and specificity that are comparable to the ones obtained by the
2" human observers, as well as the ones obtained by other algorithms.
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AV Rnet, a Software System for
the AVR Estimation

The Arteriolar-to-Venular diameter Ratio (AVR), a parameter derived from vessel
caliber measurements in a specific region of retinal images, is used as a descriptor of
generalized arteriolar narrowing, an eye fundus sign often seen in patients affected by
hypertensive or diabetic retinopathies.

The manual computation of the AVR is a tedious process, involving repeated
measurements of the diameters of all arterioles and venules in the region by human
graders. To facilitate large-scale clinical use, an accurate, rapid and efficient system
to compute AVR is required. To this aim a web-based system, named AVRnet, was
implemented. It is composed by a module for automatic vascular tracking, an interac-
tive editing interface to correct errors and set the required parameters of analysis,
and a module for the computation of clinical indexes. The system is based on the
procedure developed by Tramontan et al. |21]: at first the vessel network has to be
traced and their calibers estimated; then, in the region of interest for the estimation
of the AVR, vessels are classified as either arteries or veins and the CRAE, CRVE,
AVR parameters are computed.

AVRnet was organized as a client-server structure to allow clinicians and research-
ers from all over the world to work remotely with the system.

In order to assess the capability of our vessel tracking algorithm to provide useful
information for the estimation of the mentioned clinical parameters just mentioned,
we integrated it with the procedure described in [21].

The system has shown good performances in the 38 images of the UoW dataset
(DCCT and ETDRS). The provided results have been compared with the measures
obtained by the trained and proved personnel who have worked on the subject, re-
sulting in a good correlation.

6.1 Introduction

An early detection of serious cardiovascular diseases can be provided by the analy-
sis of microvasculature health status. The capillary network in the retina, an impor-
tant example of such microvasculature, can be readily imaged and assessed using a

normal fundus camera.
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In retinal images, a sign that has proved to be related to cardiovascular diseases is
the generalized arteriolar narrowing, usually expressed by the Arteriolar-to-Venular
diameter Ratio (AVR). The AVR is computed from the CRAE (Central Retinal Ar-
tery Equivalent) and CRVE (Central Retinal Venular Equivalent) values. These in
turn are derived from the individual arteriolar and venular calibers, which are meas-
ured in a standard area (ROI) centered on the optic disc (OD) and from half-disc to
one disc diameter from the OD margin [23]. The Knudtson formulas to calculate the
AVR parameter take into account only the six largest arteries and the six largest
veins inside the described ROI [68]. The manual procedure requires the long and
cumbersome measurement of the required vessel calibers (more than 15 minutes per
image on average). For this reason the AVR parameter is not commonly utilized in a
clinical context and difficulties are present also in a research context, because of the
lack of a fast, precise and accurate tool. To overcome this problem, computer-assisted
procedures have been proposed ([69], [70]), which require some degree of user assis-
tance. IVAN is the most popular software used for this purpose, but the time for the
analysis of a single image is about 20 minutes, too long to allows its use it in screen-
ing studies or to become a standard in clinical practice [23]. Moreover, IVAN needs
well trained graders, because some operations have to be manually performed: cor-
recting vessel traced profiles and classifying vessels in arteries and veins. In addition,
this tool has not been conceived to be used in a telemedicine context.

In this chapter we present a fast and accurate semi-automatic system that requires
minimal manual intervention. An additional benefit of the proposed system is that it
is designed as a client-server application: a client program interacts with a centralized
server application allowing to choose images, perform vascular tracking, manually set
parameters, and compute clinical indexes (AVR, CRAE, CRVE). In particular, clini-
cians and researchers interested in the measurement or validation of clinical indexes
will be able to work remotely with the system through an internet connection. Addi-
tional advantages are the possibility of exploiting multiple processors for parallel op-
erations, the availability in any operating system, and the centralized software up-
grade.

6.2 Methods

The procedure to derive the AVR index requires several steps to be performed.
The network of retinal vessel is traced using the method described in Chapter 4 and
Chapter 5, while the OD position and diameter have been manually identified. With
this information, the specific area in which caliber measurements have to be done is
identified. Inside this area, vessels are labeled as either arteries or veins and their ca-
libers are measured. In order to ensure the highest reproducibility for the assessment
of the parameters of interest [68|, the six arteries and the six veins with highest cali-
ber among all the tracked vessels are selected and considered along their length until
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a bifurcation occurs. Finally, caliber measurements are used to compute AVR, ac-
cording to the formula proposed in [68]. Other than the algorithm for the vascular
tracking, the proposed system is composed by three modules:

1) a main application interface that acts as external wrapper for the whole sys-
tem. This allows the user to choose the images to be analyzed, to launch the
automatic vessel tracking module, to activate the interactive editing interface
(see point 2) and to set up the results saving.

2) an interactive editing interface, which allows the user to set the required pa-
rameters of analysis, highlights critical situations, and, when necessary, helps
in the correction process;

3) the analysis algorithm, which takes into account the settings entered by the
user and, according to the vascular tracking information, computes the clinical

parameters.

The system was organized as a client-server structure.

6.2.1 Main Application Interface

When the application is launched the main interface, divided in two panels, is shown.
The leftmost panel includes commands to choose images from the file system and add
them to (or remove them from) the list that will be processed with the vascular
tracking algorithm. The rightmost panel includes a list of files relative to images that
were previously processed with the tracking algorithm. The user can choose a file
from the list and launch the interactive editing interface in order to set up the analy-
sis and extract the clinical parameters. The main interface is represented in Figure
6.1.

r 3
|| AVRnet l = ﬁj
File Help
Automatic Image Tracking AVR Estimation
%, Batch running...
Images to be processed Processed files to be analysed
04_test.tif 2010_11_11_13_19_2_01_test.itg
05_test.tif 2010_11_11_13_20_17_02_testitg
06_test.tif 2010_11_11_13_22 9 03_testitg
07_test.tif
08_test.tif
09_test.tif
10_test.tif
11_test.tif
12_test.tif
13_test.tif
| Add Images | | Remove Selected | | Browse... | |nts\Bi0ImIab\AVRnef\diego\itgprcd|
| Start Batch Analysis | | Analyze Selected |

Figure 6.1 The AVRnet main application interface.
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6.2.2 Interactive Editing Interface

The proposed system interacts with the user by means of the interface shown in
Figure 6.2 and Figure 6.3. It is composed by two panels. The first contains editing
commands and a display where useful information is shown (e.g. solutions proposed
by the system, helping information, results). The second shows the entire image or
zoomed parts of it.

itgpred\2009-12-10 1231 1 .. = e

"WELL DONE! e

R
E:
‘E:

alse vesse branch
split draw

Zoom reset ‘ Hide plot
Undo Pattern plot
Leave | Save

Figure 6.2 The first panel of the interactive editing interface. This includes editing
commands and a display where useful information is shown.

The interface was designed according to the following rationale:

1) to highlight critical situations (e.g. tracking errors);

[\

to propose possible solutions;

w

to limit the number of user operations;

=~

)
)

to allow fast and easy operation;
) y op ;
)

t

to allow editing any result.

The image display panel shows only vessels that do not cross completely the ROI
widthways, i.e. short vessels either not connected to other ones (and therefore proba-
ble false vessels) or vessels with tracking errors. Short vessels could also be branches
at a bifurcation: this situation is recognized and proposed to the user, who may con-
firm it or not. To correct tracking errors, the user can edit the results just by clicking
on the appropriate command: to eliminate a false vessel, to cut an erroneously
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tracked part of vessel, to split a vessel in two, or to link one vessel to another. Even-
tually, the user can even trace, with the aid of a custom tool, the vessel borders
themselves.

After the guided correction step, the entire image is displayed and the user can se-
lect the erroneously tracked vessels that have not been corrected yet, simply by click-
ing on them. In the final step the user can add those vessels that were not tracked at
all by the automatic procedure.

In the final step, the artery/vein classification is performed. The technique used for
the classification is described in the next paragraph. The classification result is shown
on the display panel, where arteries are shown in green and veins in yellow. If neces-
sary, the user can modify the class of a vessel by simply clicking on it.

Diameters, AVR=0.65002, CRAE=20.3152, CRVE=31.2534
= ¥ Erl
% >

Figure 6.3 The image panel shows the estimated vessel diameters for all the tracked
vessels in the area of interest. The 646 vessels used for the actual computation of pa-
rameters are labeled with small circles (green or yellow to identify arteries or veins).
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6.2.3 Artery/Vein Discrimination

As arteriolar and venular calibers need to be separately measured to derive the
AVR, each tracked vessel inside the ROI must be correctly labeled as being either an
artery or a vein. For this classification the red contrast is used, a parameter related
to the central reflex, which is more evident in arteries than in veins, and from it the
probability of the vessel to belong to the “vein” class is derived (the probability of be-
longing to the “artery” class is one minus the probability of belonging to the “vein”
class).

All the vessels whose probability of belonging to one of the two classes is less than
0.8 (and then more than 0.2 for the opposite class), and that have a diameter greater
than 45 ym, are considered “uncertain” and are consequently submitted to the user,

who confirms or rejects the proposed classification.

6.2.4 AVR Estimation

From the caliber estimated by our algorithm (Chapter 5) and the classification
provided by the method described above, the Central Retinal Artery Equivalent
(CRAE) and the Central Retinal Vein Equivalent (CRVE) parameters can be com-
puted, together with the AVR parameter

CRAE
CRVE

AVR = (10.1)

which provides a useful clinical measure as an indicator of generalized arteriolar
narrowing [23], [68].

The system displays results and the final image (with colored veins and arteries)
on the screen. At the same time the computed clinical indexes are automatically
saved in an text file and images are stored in a local folder.

6.2.5 Client-Server System Architecture

The system was implemented as a client-server application (Figure 6.4). The en-
crypted communication between the client-side programs and the server-side software
is obtained by interfacing JAVA and PHP technologies. When the application starts,
the user is required to authenticate, in order to enable a connection with a server (lo-
cated at the Department of Information Engineering, at the University of Padova)
and to setup data storage. For every user authenticated, a PHP session is created on
the server, with unique identification number for each visitor and the storage of va-
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riables is based on this ID. This allows to safely managing multiple simultaneous ac-
cesses. The user can select one or more retinal images from the local drivers, by
means of a JAVA graphical user interface that navigates the local file system: no
constrain on image resolution, format or acquisition source is present. Images are se-
quentially sent to the server, where they are stored and analyzed by a fully automatic
vascular tracking procedure. After the vessel tracking on each image is completed, the
server sends a message to the client, including a secure link to the address where
tracking results were stored and the client program automatically proceeds to down-
load the files to the user machine.

A second intuitive interface is installed on the client machine, which allows the us-
er to manually check and correct the vessel tracking results (see Sec. 6.2.2), in order
to obtain final clinical parameters estimation. This process does not need interaction
with the server.

CLIENT SIDE SERVER SIDE

Authentication and
uploading of images
to be analyzed

- ™
\P Data storage setup

and image storage
" J

v

s ™
Automatic vessel tracking,
saving results, and
sending message to client
N J

s ™
Downloading <_/

tracking results

v

Manual operations
and clinical indexes
computation

Figure 6.4 The client-server architecture of the software application for the AVR
estimation.

6.3 Results

The methodologies described in this chapter have been tested in two stages: the
first focused on the reliability of the tracking results while the second focused on the
efficiency of the whole process to assess the AVR parameters.
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In the first analysis (Sec. 6.3.1), in order to attain the best assessment as regards
the usability of the tracking algorithm, the graders were asked to edit the tracking
results only if major vessels were not identified. The user interaction session had to
focus on speed and the tracking imperfections (such as diameter under- or over-
estimations) were ignored. As far as artery/vein classification correction is concerned,
no correction limitation was enforced. The results have been compared with the
measures obtained by the trained personnel from the University of Wisconsin (UoW).

In a second analysis (Sec. 6.3.2), the graders were allowed to edit the tracking re-
sults at their will: in this case the human interaction session focused on providing the
best vessel segmentation, resulting in a more time-consuming process than the previ-
ous above mentioned. The correlations among UoW grading and the results obtained
by three graders who used our proposed framework have been computed, in order to
assess the measure repeatability of the whole system. Moreover, the inter- and intra-
grader analysis agreement was evaluated on the King’s College dataset.

6.3.1 Limited Intervention Setup

The reference values against which the computer estimations have been compared
were performed by the experts at the Department of Ophthalmology & Visual Sci-
ences, University of Wisconsin-Madison. As regards the ETDRS images, they sup-
plied us with the ARV parameters, while the DCCT set was accompanied with the
AVR, CRAE, and CRVE evaluations.

Table 6.1 reports the reference and the estimated CRAE, CRVE and AVR values,
for the 20 images composing the DCCT set. Their scatter plot with the corresponding
correlation is shown in Figure 6.5, Figure 6.6, and Figure 6.7.

Table 6.2 reports the reference and the estimated AVR values, for the 18 images of
the ETDRS set. Their scatter plot with the corresponding correlation is shown in
Figure 6.8.
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DCCT ground truth estimated ground truth estimated ground truth estimated

Image CRAE CRAE CRVE CRVE AVR AVR
1 158.16 145.76 238.23 235.69 0.66 0.62
2 144.23 142.34 248.19 241.22 0.58 0.59
3 146.59 147.64 248.83 242.09 0.59 0.60
4 136.41 128.16 250.87 251.02 0.54 0.51
5 161.00 148.01 243.81 236.01 0.66 0.63
6 161.35 147.38 217.40 208.91 0.74 0.71
7 156.03 139.00 202.00 195.05 0.77 0.71
8 156.03 151.42 216.86 223.36 0.72 0.68
9 145.20 143.44 197.64 197.96 0.73 0.72
10 124.58 126.79 176.45 177.86 0.71 0.71
11 151.32 141.67 199.98 198.03 0.76 0.71
12 171.73 156.38 226.80 228.69 0.76 0.68
13 164.98 169.99 256.76 248.28 0.64 0.68
14 160.37 157.37 218.49 228.51 0.73 0.69
15 137.19 134.41 208.64 204.42 0.66 0.66
16 179.24 170.54 241.75 229.25 0.74 0.74
17 176.88 170.19 254.35 256.55 0.70 0.66
18 156.88 152.23 238.43 227.04 0.66 0.67
19 155.48 154.69 189.28 184.55 0.82 0.84
20 147.48 144.58 246.64 248.50 0.60 0.58

Table 6.1 For each of the 20 DCCT images, both the reference and the estimated
CRAE, CRVE, and AVR values are listed.
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Figure 6.5 Scatter plot of the reference and estimated AVR values.
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Figure 6.6 Scatter plot of the reference and estimated CRVE values.
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Figure 6.7 Scatter plot of the reference and estimated CRAE values.

Image ground truth estimated

AVR AVR
1 0.64 0.67
2 0.51 0.55
3 0.68 0.65
4 0.71 0.72
5 0.82 0.85
6 0.71 0.71
7 0.69 0.71
8 0.53 0.52
9 0.60 0.62
10 0.66 0.64
11 0.71 0.72
12 0.55 0.58
13 0.74 0.67
14 0.45 0.52
15 0.60 0.61
16 0.64 0.65
17 0.54 0.53
18 0.75 0.76

Table 6.2 For each of the 18 ETDRS images, both the reference and the estimated
AVR value are listed.
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Figure 6.8 Scatter plot of the reference and estimated AVR values.

The AVR values estimated by the computer procedure are quite close to the ones
provided by the manual one.

The average running time of the Matlab® prototype on a Pentium-M PC (1.8
GHz, 1 GB of RAM) was about 60 seconds for the vessel tracking procedure and 90
seconds for the whole procedure of ROI selection, tracking correction, artery/vein
classification, and AVR estimation. The time is about six times shorter than the av-
erage time needed for a manual estimation of the AVR (roughly 15 minutes vs. 150
seconds).

This achievement, combined to good correlation attained, suggests the possible ap-
plication of the system to the AVR parameter estimation for clinical diagnostic pur-
poses.

6.3.2 Full Intervention Setup

In this second analysis, we have relaxed the tracking correction constraints, so that
the three graders (A, B, and C) could freely edit the vessel tracking mistakes, with
the aim of providing the best possible vessel segmentation.

We compared the correlation among the UoW grading and the results obtained by
the three graders on the DCCT dataset.

Table 6.3 reports the CRAE, CRVE and AVR values assessed by the UoW grader
as well as the three graders A, B, and C, for the 20 images of the DCCT dataset. At
the bottom of Table 6.3, the correlations among the four graders are provided.
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CRAE CRVE AVR

El(l]dcgz UoW Gr:der Gr%der Grz(ljder UoW Gr;der Gr%der Grz(ljder UoW Gr;der Grz};der Grz(a:der
1 158.16 | 137.96 | 143.91 | 14536 | 23823 | 230.06 230.6 236.59 0.66 0.60 0.62 0.61
2 144.23 | 138.86 | 138.30 137.3 24819 | 24029 | 230.58 | 248.96 0.58 0.58 0.59 0.55
3 146.59 | 142.69 | 149.91 | 146.66 | 248.83 | 244.65 | 245.89 253.8 0.59 0.58 0.59 0.57
4 136.41 | 12232 | 12349 | 13045 | 25087 | 243.38 | 24142 | 250.18 0.54 0.50 0.51 0.52
5 161.00 | 148.04 | 14238 | 14944 | 24381 | 23468 | 229.72 | 240.78 0.66 0.63 0.62 0.62
6 161.35 | 149.54 | 151.03 | 150.73 | 217.40 | 208.76 | 21827 | 216.58 0.74 0.72 0.69 0.7
7 156.03 | 13849 | 13543 | 137.51 | 202.00 | 19846 | 194.78 | 195.56 0.77 0.70 0.69 0.7
8 156.03 | 153.11 | 156.36 | 151.08 | 216.86 | 214.46 | 215.63 | 213.43 0.72 0.71 0.72 0.71
9 14520 | 143.15 | 14527 | 14288 | 197.64 | 198.61 | 19854 | 19821 0.73 0.72 0.73 0.72
10 124.58 | 12812 | 12580 | 128.58 | 176.45 | 179.45 | 17879 | 179.45 0.71 0.71 0.70 0.72
11 151.32 | 143.00 | 137.52 | 138.25 | 199.98 | 20091 | 198.68 | 201.32 0.76 0.71 0.69 0.69
12 171.73 | 144.26 | 149.34 | 15818 | 226.80 | 221.63 | 221.52 | 236.57 0.76 0.65 0.67 0.67
13 164.98 | 158.06 | 161.84 | 165.14 | 256.76 | 242.82 | 254.76 | 258.79 0.64 0.65 0.64 0.64
14 160.37 | 156.09 | 15470 | 153.90 | 21849 | 218.63 | 226.60 | 219.50 0.73 0.71 0.68 0.70
15 137.19 | 133.70 | 12813 | 127.47 | 207.00 | 20522 | 206.31 | 206.89 0.66 0.65 0.62 0.62
16 179.24 | 162.87 | 16343 | 163.95 | 241.75 | 241.29 | 239.54 | 243.10 0.74 0.67 0.68 0.67
17 176.8% | 167.63 | 169.68 | 171.64 | 254.35 | 250.61 | 256.04 | 254.90 0.70 0.67 0.66 0.67
18 156.88 | 14837 | 15227 | 14837 | 23843 | 23484 | 23365 | 224.61 0.66 0.63 0.65 0.66
19 15548 | 149.85 | 15027 | 150.24 | 189.28 | 186.64 | 183.53 | 181.64 0.82 0.80 0.82 0.83
20 14748 | 137.78 | 136.75 | 137.16 | 246.64 | 244.63 | 240.93 | 249.19 0.60 0.56 0.57 0.55

Grader | Grader | Grader Grader | Grader | Grader Grader | Grader | Grader
A B C A B C A B C
% UoW 0.85 0.84 0.91 UoW 0.99 0.97 0.98 UoW 0.92 0.91 0.92
O
3
< Grader | Grader | Grader Grader | Grader | Grader Grader | Grader | Grader
é A B C A B C A B C
oo || Grader 0.96 0.92 | Grader 0.97 098 | Grader 0.97 0.97
o A A A
8 Gr;der 0.96 0.96 Gr;der 0.97 0.96 Gr;der 0.97 0.98
Grzder 0.92 0.96 Grzder 0.98 0.96 Grzder 0.97 0.98

Table 6.3 CRAE, CRVE and AVR values assessed by the UoW, A, B, and C, graders
for the DCCT dataset. At the bottom, the correlations among the four graders are
provided.

The overall repeatability between users and with respect to the UoW grading was
assessed by the correlation coefficients. The correlation ranges between UoW grading
and the non-qualified users in our group are 0.85-0.91 for CRAE, 0.97-0.99 for CRVE,
and 0.91-0.92 for AVR. The correlation ranges between the each pair of users are
0.92-0.96 for CRAE, 0.96-0.98 for CRVE, and 0.97-0.98 for AVR.

A second test was performed in order to assess the reproducibility of the measures
provided by the system: three graders independently graded each of the 29 images of
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the King’s College dataset. On a subset of 10 images randomly chosen from the 29
each grader performed the analysis twice minding to avoid analyzing the same image
consecutively (in order to prevent memory effects on the results). Pearson’s correla-
tion coefficient was computed between each pair of graders and for the grade and re-
grade analysis of each grader in order to evaluate the inter- and intra-grader agree-
ment respectively (Table 6.4).

CRAE CRVE AVR
Grader | Grader | Grader Grader | Grader | Grader Grader | Grader | Grader
A B C A B C A B C
o0 grade grade grade grade grade grade grade grade grade
Z
o re-grade 0.97 0.95 0.98 re-grade 0.99 0.98 0.99 re-grade 0.96 0.96 0.99
[t}
[
<
— Grader | Grader | Grader Grader | Grader | Grader Grader | Grader | Grader
E A B C A B C A B C
o || Grader 0.84 0.85 || Grader 0.85 0.83 || Grader 0.87 0.84
@) A A A
© || Grader | 080 || Grader | g5 086 || Frader | g 0.86
B B B
Grader _ Grader . . Grader .
C 0.85 0.80 C 0.83 0.86 C 0.84 0.86

Table 6.4 CRAE, CRVE and AVR values assessed by the A, B, and C, graders for
the King’s College dataset. At the top the intra-grader correlations are provided,
while at the bottom the inter-grader correlations for each pair of users are displayed.

The correlation ranges for the intra-grader agreement are 0.95-0.98 for CRAE,
0.98-0.99 for CRVE, and 0.96-0.99 for AVR. The correlation ranges between each
pair of users (inter-grader agreement) are 0.80-0.85 for CRAE, 0.83-0.86 for CRVE,
and 0.84-0.87 for AVR.

For all the tests, the total time required to analyze one image was on average 5
min (range: 2-8 minutes).

6.4 Conclusion

The results shown in Sec. 6.3.1 and 6.3.2 allow concluding that the proposed com-
puterized system can be reliably used to quantitatively assess the vascular parameters
in retinal images from normal, hypertensive or diabetic subjects. It will allow clini-
cians to recover the quantitative estimation of these parameters in an objective, fast
and user-friendly way.

The first, totally automated phase performs image luminosity equalization and
contrast enhancement, tracing of the vascular network with vessel caliber estimation,
vessel classification as either arteries or veins. In the second phase, the user evaluates
the results provided and confirms them or applies the necessary corrections via a us-
er-friendly editing interface, which is capable of detecting the critical situations to be
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presented to the user for expert assistance. The vascular parameters are eventually
computed.

An additional benefit of the proposed system is the possibility of using it simply
through an internet connection: clinicians and researchers interested in the measure-
ment or validation of clinical indexes will be able to work remotely with the system,
and assessments will be possible even without the presence of physicians at the care
center unit. At present, a beta version of the system is hosted at the website
http://bioimlab.dei.unipd.it; it is under beta testing and will be soon publicly availa-
ble.

Accuracy and repeatability of the complete system were assessed by analyzing the
images kindly provided by the Dept. of Ophthalmology and Visual Sciences, Universi-
ty of Wisconsin, USA, and by the Department of Twin Research & Genetic Epidemi-
ology, of the King’s College London Division of Genetics and Molecular Medicine, St
Thomas' Hospital, UK.
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Chapter 7

Vessel tracking for small FOV
Infant Images

Many retinal diseases are characterized by changes to retinal vessels. A common
condition associated with retinopathy of prematurity (ROP) is the increase of vascu-
lar dilation and tortuosity.

In 1949 Owens |71] reported that retinal venous dilatation and arteriolar tortuos-
ity were indicators of ROP. Two decades later Baum [72] reported that “the earliest
detectable ophthalmoscopic signs of oxygen toxicity to the retina are considered to be
tortuosity and dilatation of the retinal vessels.” Such vascular changes were included
in several of the earlier classification schemes of acute phase ROP [73], [74], [75].
Saunders et al. [76] observed that if the posterior pole vasculature was normal (that
is, no venous congestion or increased arteriolar tortuosity) then there was less than
3% probability of there being ROP stage 3 or above [77]. In 1995 Capowski et al [7§]
reported arterial tortuosity to be a useful measure of ROP disease state, while Wal-
lace et al |79] and Freedman [80] demonstrated that vessel diameter and tortuosity
could be used to indicate the risk that ROP would progress to requiring treatment.
There is a need to identify and quantify signs of plus disease as early as possible be-
fore ROP has progressed to the point where outcome is compromised. The earliest
signs of plus disease are venous engorgement and increased arteriolar tortuosity
around the optic disc.

The growing use of digital imaging in ophthalmology has led to substantial de-
velopments in the field of computer assisted analysis of retinal vessel morphology.
Computer algorithms have now the potential to achieve high levels of accuracy and
objectivity in the quantitative measurement of retinal vascular parameters such as
diameter, branching patterns, and tortuosity.

Images acquired from newborn babies usually differ in appearance from those of
the adult in a number of aspects. Due to the lack of clarity of the eye media and the
technical difficulty of obtaining images from a preterm baby, images taken from a
baby’s eye are low-contrast, noisy, and sometimes blurred. Moreover the relative ab-
sence of choroidal pigmentation leaves the choroidal circulation clearly visible. These
aspects cause problems and are an obstacle to the identification of vessels. Algorithms
that have been successfully applied for adult retinal images usually do not work effec-
tively enough within these limitations.

A new semi-automatic vessel tracking system for Nidek NM200D infant images is
proposed. The method requires the user to manually select the vessels to be analyzed
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by placing some points on them. A cubic spline interpolates the points and approx-

imately identifies the vessel centerlines. The algorithm performs a tracking of the

vascular structure and computes its local and average width and the tortuosity.

7.1 Introduction

Retinopathy of Prematurity was already described in Sec. 2.6. In this chapter spe-
cific techniques for the analysis of images acquired with Nidek NM200D (Nidek Co.,
Gamagori, Japan) fundus camera from premature babies at risk of ROP are broaden.

7.1.1 Nidek NM200D Fundus Camera

The Nidek NM200D is a portable non-mydriatic and non-contact fundus camera

(Figure 7.1) designed for retinal image acquisition on both adult and preterm born in-

fants. It has a CCD sensor able to acquire 1.5 megapixels images at a 30 degrees field
of view. The main features of the Nidek NM200D are the following:

It has a compact lightweight body that makes it portable.

It is a cheap solution with respect to other more complex fundus cameras.

It provides a user friendly and comfortable usability, that makes it manageable
from both ophthalmologists and non ophthalmologist trained operators.

It provides a non-contact and non-mydriatic image acquisition and thus seda-
tion is not required when scanning infants retina.

The narrow field of view limits the acquisition of the premature infants retina
to the vascularized area, excluding the periphery. The 30 degrees FOV coupled
with the mid resolution sensor provides images where vessels appear as rela-
tively large structures with respect to other common fundus cameras having
larger FOV and higher resolution.

7.1.2 Existing Methods

Many systems for computer aided diagnosis (CAD) have been recently developed

to accurately measure and quantify retinal vascular dilation and tortuosity in prema-

ture

infant images. Analysis on the retinal images are wusually based on
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Figure 7.1 The Nidek NM200D portable fundus camera.

segmentation and tracking methods aimed at extracting the vascular network over
the image background.

For example, Heneghan et al. [47] presented a segmentation method based on the
analysis of the second derivative properties of vasculature, coupled with some pre-
and post- morphological processing. In a more recent work, Sukkaew et al. [82] pro-
posed a method to automatically extract the vessel structures based on a statistically
optimized LOG filter followed by thresholding and morphological techniques.

Unfortunately, fully automated techniques used for analysis in adult retinal images
show low efficiency when applied to images acquired from infants: the difficult illumi-
nation through small pupils, the cloudy media and the strong evidence of choroidal
vessels are some of the several aspects limiting the quality of images analyzed for
ROP. In response to these difficulties, a number of semi-automated methods have
been proposed for the analysis of preterm retina. They all require the user to limit
the region of interest (ROI) for the analysis around the optic disc and to manually
edit, delete or add some vessel after the first automatic tracking step. After this ma-
nual intervention, some method is used to evaluate tortuosity and width of selected
vascular structures.

Martinez-Perez et al. [83] developed a semi-automatic method for blood vessel
segmentation based on the scale space analysis of the first and second derivative of
the intensity image. Wilson et al. [84] proposed a semi-automatic ROP analysis tech-
nique that identifies the retinal vessels by using filtered detection measurements
based on maximum likelihood estimation of vessel parameters from an image. A third
system for the analysis of preterm retinas was developed by Wallace et al. [85]. It
performs segmentation of the selected vessels by means of a bidirectional ridge/valley
traversal technique.

All the methods proposed in literature for preterm retina images have provided in-
teresting results, yet none has shown to be free of weak points and outperform all the
others.
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7.2 Methods

This section presents a semi-automatic technique to perform vessel tracking and
to quantitatively assess vascular tortuosity and width. Vessels to be analyzed are se-
lected by manually drawing an approximate centreline laying inside them. Starting
from this a priori information, vessel axis and edges are detected using the constraint
that vessels present a tubular structure delimited by two parallel borders. After im-
age enhancement, all vessel edge points are extracted by means of a Canny filter. Re-
fined axis and calibers along the vessel are then identified by appropriately linking
pairs of points on opposite edges. From tracking results, vessel calibers and a tortuos-
ity index are computed.

7.2.1 Image Preprocessing

As a first step, the green channel is extracted from the original RGB retinal im-
age, since this provides the best quality and highest contrast for vessel structures
over the background. A vessel segment is manually chosen by the user and some
points are placed inside the segment. These points are automatically interpolated
with a cubic spline approximating the course of the vessel axis, as shown in Figure
7.2 (a). A region of interest (ROI) is extracted around the selected vessel and all the
subsequent processing will be limited to the ROI in order to reduce the computing
time. Initially the image is filtered with a two dimensional bilateral filter [66], which
is a combination of domain and range filtering technique for edge preserving smooth-
ing. Given an image I(z) the filter response O(z) is given by

0(x) =k 1(x) [°_[7 1(&)c(&x)r(1(§),1(x))dE (7.1)
where k is a normalization term defined as:
k(x) = [2 [% c(&x)r((§),1(x))dE (7.2)

c(&, x) is a closeness function between pixels defined as:

_o.s(&x)’
e = ) (7.3)
r(I &, 1 (x)) is the similarity function between pixels value defined as:

z(s)—z(x))z

r(1(®),1(x)) = e 05
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The geometric spread o, in the domain is chosen according to the desired amount
of low-pass filtering. The larger g; the more the blurring effect, since values from
more distant profile locations are combined. Similarly, the photometric spread o, in
the profile range is set to achieve the desired amount of combination of pixel values.
Pixels with values much closer to each other than o, are mixed together and values
much more distant than o, are not. For this specific application, we empirically set
o4 = 5 and g, = 0.05.

The adopted edge preserving smoothing technique reduces the noise and the gray
level artifacts inside the analyzed vessel and in the background, making the vessel
border extraction method described in the following section more robust.

7.2.2 Vessel Border Extraction

A set C of candidate edge points is provided by an edge detector algorithm based
on the Canny technique [86]. C usually includes points belonging to the borders of
the selected vessel, plus points belonging to the borders of other vessels present in the
ROI and points originating from noise or artefacts: the main purpose of the proposed
method is to identify two subsets, BPR ¢ C and BPL c C, of points that lay on the
two true edges of the selected vessel.

C'is split into two subsets, L and R, including points that lay on opposite sides
with respect to the vessel axis. An estimation g, of the average width for the selected
vessel is computed by averaging the distance between points in L and R that are
placed in a neighbourhood of the initial centerline.

The axis is divided into np parts along its length and the vessel is analyzed by
processing them in parallel. By iterating along the np axis segments, couples of bor-
der points bpl € L and bpr € R are searched inside two opposite circular regions NHB,
and NHB, respectively. The center of NHB, and NHB, is distant 0.5%g, from the cen-
terline and their radius is initially set to a value of 0.3%g,. When multiple points are
present inside a circular region, the one showing the strongest response to the Canny
filter is chosen.

After the generic j-th iteration, the average vessel width (0,y.) is updated by av-
eraging the distance between the j pairs of border points bpl and bpr:

Pave = 1=y d(bPL, bpr) (75)

where d(a , b) represents the Euclidean distance between two points a and b.

After the first np iterations, the initial value g, used as distance for the centers of
the circular regions NHB, and NHB, is replaced with g, and their radius is replaced
with 0.3%,v¢ This tends to favour a regular description of the vessel borders, penal-
izing the selection of anomalous calibers given by wrong pairs of border points. Ac-
cording to experimental results the parameter np was set to 4 because this value lim-
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its the number of unreliable diameters estimated that need a fixing post processing
step (see Sec. 7.2.2.1). An example of border points extracted is shown in Figure 7.2
(b-c).

7.2.2.1 Correction of Unreliable Diameters

In some critical region along the vessel (i.e. low contrast areas, or regions where
two vessels cross), borders might not be visible and the selected bpl and bpr might
not be placed over the vessel edges. The average width o, is used as basis of com-
parison to accept or reject border points: if

|d(bpl, bpr) — pave| <t * pave (7.6)

then the points are accepted, otherwise two more reliable points are searched after
widening the regions of search NHB, and NHB,. The parameter ¢t was empirically set
to 0.25. If borders are not visible and a reliable couple of border points cannot be
found, two points bpl and bpr are created so that their distance matches exactly 0,y¢
and the corresponding centerline position is estimated by averaging the centreline po-
sition of the adjacent reliable diameters. The border points after the diameter correc-
tion are shown in Figure 7.2 (d).

7.2.2.2 Vessel Border Regularization

For the selected vessel segment, the described steps provide two sets of points
BPR = {bpr;, i = 1: Ny} and BPL = {bpl;, i = 1: Ny} sampling the two borders of
the vessel. In some regions samples might be noisy or sparse, leading to an irregular
border description. Regularity of vessel borders was achieved by means of an interpo-
lation function. The fact that vessels are continuous structures at least with their first
derivative led us to use a cubic smoothing spline interpolation. Hence two final curves
CR and CL laying on the vessel borders were computed. The initial manually drawn
vessel centerline is now updated with the curve VC computed by averaging CR and
CL coordinates.

Local vessel width along the axis can be evaluated by measuring the distance be-
tween the curves CR(l) and CL(l) at a fixed curvilinear coordinate [ (see Figure 7.2

().
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(e) (f)

Figure 7.2 An example of vessel analysis with the proposed system: (a) the initial

axis manually inserted; (b) the whole set of edge points extracted with the Canny fil-
ter; (c) the pairs of points extracted from the whole set; (d) the pairs of points after
the correction step. Here the blue points were successfully corrected, while the red
ones were forced to the average caliber of the analyzed vessel; (e) regularized borders;
(f) vessel calibers locally evaluated along the axis.
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7.3 Vessel Tortuosity

A tortuosity index is evaluated for the selected vessel, starting from the curve
VC, by using an algorithm recently proposed by our group [87]. Some considerations
on the traditional tortuosity measures, along with the main properties of the pro-
posed tortuosity index, are presented in the following.

7.3.1 Tortuosity Properties

Vessel tortuosity measures do not have a formal clinical definition, but common
practice has outlined an evaluation of the tortuosity with some well-defined proper-
ties. In order to obtain a clinically meaningful vessel tortuosity measure, i.e. a meas-
ure that is able to match the ophthalmologist's evaluation, it is necessary to make
these properties explicit. Then, using a proper mathematical formulation of the tor-
tuosity functional, the proposed measure must be shown to satisfy these properties.

7.3.1.1 Affine transformations

A sound approach to extract properties of a non-formally defined index consists
in performing a preliminary study on the invariance properties of such index with re-
spect to the most relevant transformation in the domain space. In particular, we will
consider affine transformations of a vessel: translation, rotations and scaling. Transla-
tion and rotation transformations are not supposed to influence the perception of tor-
tuosity. In fact, these transformation are related to the geographical position and
orientation of the vessels in the retina, and do not alter in any way the clinical per-
ception of tortuosity. Scaling of the single vessels does not seem to affect the clinical
perception of tortuosity either. However, a warning flag must be raised in this con-
text, since different clinicians may have different opinions about this issue. The scal-
ing is particularly controversial when considering also the vessel caliber, but for the
purpose of evaluating single vessel tortuosity, its perception can be safely considered
invariant to scaling.

7.3.1.2 Composition

Composition properties deal with the behavior of tortuosity perception when two
vessel curves are merged into a single curve, or when various segments of the same
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vessel, in general with different tortuosity measures, build up to give the total vessel
tortuosity.

Given two adjacent continuous curves s; and s,, we define the combination of
the two as:

S3 = 51 @ SZ (77)

Since the two composing curves are supposed to belong to the same vessel, we
can assume the continuity of s; without loss of generality. In [67], an intuitive empir-
ical principle was proposed:

7(s1) < 1(sy) = 1(51) < 1(51 B 52) < 7(5,) (7.8)

which means that, when composing two curves, the resulting tortuosity is be-
tween those of the composing curves. The counterexample shown in Figure 7.3, top
panel, clearly shows that this statement cannot be accepted in conjunction with the
principle of invariance with respect to rotation and scale: two curves (e.g., L, and L)
perceived by themselves as almost non tortuous, when connected form an undoubted-
ly tortuous curve.

Therefore we propose a new composition property, such that a vessel s, combina-
tion of various segments s;, will not have tortuosity measure less than any of its
composing parts:

(s)<t(s;Ps, D... Dsy,), Vi=1,..,n|s;Ss (7.9)

7.3.1.3 Modulation

It is useful now to express a monotonic relationship with respect to two other
properties, which we will call ‘frequency modulation’ at constant amplitude and ‘am-
plitude modulation’ at constant frequency. It may be assumed that the greater the
number of changes in the curvature sign (twist) is, the more tortuous the vessel can
be considered. Similarly, the greater the amplitude (maximum distance of the curve
from the underlying chord) of a twist is, the greater is the tortuosity associated with
it. For two vessels having twists with the same amplitude, the difference in tortuosity
varies with the number of twists ¢:

@(s1) < @(s2) = 1(s1) < 7(52) (7.10)
and, conversely, for two vessels with the same number of twists (with the same

frequency), the difference in tortuosity depends on the difference in amplitude a of
the twists:
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a(sy) < a(sy) = t(sy) < 1(sy) (7.11)
7.3.2  Available Tortuosity Measures

Various tortuosity measures have been proposed in the literature, but all fail in
certain respects. In this section we will review the available methods for evaluating
retinal vessel tortuosity, presenting some counterexamples in which these methods
provide results that do not match with clinical perception.

7.3.2.1 Arc Length over Length Ratio

The simpler and most widely used measure of a vessel tortuosity is the ratio be-
tween its length and the length of the underlying chord [47], [67], [81], [83]. The idea
of using this ratio is that the greater the value of the ratio, the more distant the ves-
sel is from a straight line, i.e., the more tortuous it is. Unfortunately, being the sur-
face of the retina close to a semi-sphere, the non-tortuous paradigm should be the cir-
cle arc. In fact, every vessel that has a constant and small curvature, regardless of the
amplitude of the arc it describes (as for the main retinal vessels), will be regarded by
an ophthalmologist as characterized by negligible tortuosity. Moreover, it is shown in
Figure 7.3 that two vessels with very different tortuosity have the same arc length
over length ratio measure.

7.3.2.2 Measure Involving Curvature

Hart [81] presented a number of tortuosity measures that involve the use of the
integral of the absolute curvature or of the squared curvature. For a curve
(D) =[x, y(D]:D € R-> R?%s e CHR) , with | the curvilinear coordinate on it,
the curvature Cg(1) is:

@2W+y2 W)’
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Figure 7.3 The first two curves (top and middle panel) have very different tor-
tuosity but the same Length L and Chord Length y. The second and last curves
(middle and bottom panel) have the same average angular difference despite their dif-
ferent tortuosity. The curve in the bottom panel has a curvature integral of m/2 whe-
reas the one in the middle panel has curvature integral m, even if that in the bottom
panel is clearly perceived as more tortuous.

The idea behind this is that this integral should be a measure of the variability of
vessel direction. However, the example presented in Figure 7.3 shows that a smaller
curvature integral may correspond to a greater perceived tortuosity. In our opinion,
there are three main reasons for this result. The first is that curvature is non zero on-
ly along arcs, while it is negligible along straight or almost straight segments; but
straight segments together with arcs dramatically change the tortuosity appearance.
The second is that changes in convexity (curvature sign) of the curve are not taken
into account, while these are instead the features predominantly taken into account
by expert graders to assess tortuosity. Finally, integrating along domain, possibly dif-
ferent in dimension, yields to measures depending on the aforesaid dimension. The ra-
tios between the absolute curvature integral (or the squared curvature integral) and
chord length (or vessel length) have been proposed to circumvent the latter point,
but still the other two problems remain open with this definition of tortuosity.

101



Chapter 7

7.3.2.3 Mean Direction Angle Change

More recently, a measure of tortuosity based on local directional changes of the
vessel has been proposed [35]. It computes the average of the angles between sample
points describing the vessel. For each point i of the vessel, it computes the unit vec-
tors from the previous step point d;_g.p, and to the subsequent point d;_gep:

1
adg = ———Y  arccos (di_step . di_step) (7.13)

- Lc—2 step

In addition to the high sensitivity to noise, deriving from both from the digital
quantization and the vessel extraction technique, this suffers from the problems men-
tioned above. Even the simple example of Figure 7.3 shows that a vessel with con-
stant curvature, such as a semi-circumference, and a vessel formed by the juxtaposi-
tion of two arcs of circumference have the same average angle variation, despite their
difference in tortuosity. Moreover, also herein this case vessel segments with no varia-
tion in direction do not affect the tortuosity.

7.3.3 Vessel Representation

The theoretical mathematical description of the vessel is a curve in a two-

dimension space:
s(): D cR- R? (7.14)

The available description of the vessel is a sampled, quantized and noise cor-
rupted version of the theoretical curve:

s(k) = s(ly) (7.15)

where [, is a sequence of curvilinear coordinates that represent the sampling on
the original vessel.

The sampling of a vessel may lead to a very sparse vessel description. Sparse de-
scription of the vessel further leads to a poor description of its dynamics, which may
eventually fail to provide useful information on the vessel direction and on its deriva-
tives. Sampling can be taken care of by means of an interpolation function, which de-
scribes the vessel between sampling points, where no data are present. Physiological-
ly, vessels are structures continuous at least with their first derivative and this condi-
tion leads to the use of a cubic spline interpolation. Since the data are noisy, splines
also offer the opportunity of filtering by using cubic smoothing splines.

The resulting spline curve is obtained from the available data by regularization:
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§= argming[(l —Y)E;(8) + )/||§ — sq”] (7.16)

where E;(s) is what is called internal energy term, and represents the smoothness
of the curve; y is a weighting parameter, varying between 0 and 1, that sets the com-
promise between following the available data s; and having a 'smooth' behavior. For
y = 1 § is the least square linear fit of the data, whereas for y = 0 it is the variational
cubic spline interpolant of the data. In this study we used y = 0.005.

7.3.4  Tortuosity Calculation

When evaluating tortuosity, ophthalmologists integrate information about the
number of vessel twists (changes in convexity, or curvature sign), and the size of the
amplitude of each of the recognized twists. We would therefore decompose any curve
into a set of consecutive segments of constant curvature sign. Having defined the cur-
vature of a curve in (7.12), we define a subsegment s; as a turn curve if:

[C5,() =0, vIeD]V[C;,() <0, VIED] (7.17)

In real images, it is common to find small oscillations (changes of convexity with
very small amplitude) around the main vessel direction, due to the presence of noise.
These oscillations might affect the correct decomposition of the vessel, since they
would create a great number of artificial turn curves, which are not clinically signifi-
cant.

An hysteretic threshold on curvature was thus used to deal with these small vari-
ations, as shown in Figure 7.4. To evaluate tortuosity, we also need the Chord
Length L, of a curve, defined as the distance between the two extremes of the it:

Ls = |ls(max(D)) — s(min (D))l (7.18)

and the Curve Length L., defined as:

max(D) 3
L. = f 1l dl (7.19)

min(D) oL

An hysteretic threshold of 0.03 has been set for arteries and one of 0.01 for veins.
The two types of vessels have been kept separate, since ophthalmologists grade arte-
ries and veins differently. Due to the possible presence of turn curves with zero cur-
vature, the decomposition is not unique. Since the elimination of these turn curves
might lead to the situation in which an increase in amplitude with straight segments
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would not increase tortuosity, we chose to split the straight segments into two halves,
assigning one to the preceding and one to the following turn curve.
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Figure 7.4 Curvature value along a vessel. The dashed lines indicate the hysteret-
ic threshold for the convexity change.

7.3.4.1 Proposed Tortuosity Measure

Once a curve s(l) is divided into n turn curves

S;:s=5,DPs, D ... Dsy (7.20)

a measure of vessel tortuosity can be proposed as:

n
_ L,
7(s) =2 Li E [L; - 1] (7.21)
j=1 L 7%

This tortuosity measure has a dimension of 1/length and thus may be interpreted

as a tortuosity density, allowing its comparison on vessels of different length. It is
worth noting that when n is equal to 1 then 7 is equal to 0 and thus vessels with a
constant convexity have zero tortuosity. The proposed definition of tortuosity meets
all the properties described in Sec. 7.3.1. In particular, the composition property is
satisfied via the summation in (7.21), the amplitude modulation via the ratio of the
length over the chord length for every turn curve, and the frequency modulation is
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taken care of both implicitly by means of the curve splitting and explicitly through
the multiplicative term n-1 in (7.21).
A validation of the proposed tortuosity measure can be found in [65].

7.4 Results

To evaluate the reliability of vessel width estimation the set of 18 vessels belong-
ing to the Scheie Eye ROP Width Dataset was analysed. The width of the vessels
was computed with the proposed method and compared with the manual segmenta-
tion performed by a retinal imaging expert. For every vessel segment, a set of equally
spaced calibers along the axis was measured and averaged in order to get the average
vessel width. The performance of the algorithms was assessed by computing the cor-
relation between the computer-aided and manual evaluations of the average caliber of
the vessel segments. For the set of segments, we obtained a correlation p = 0.96. In
Figure 7.5 the scatterplot of the average caliber values, from manual reference vs
computer-aided evaluation, is shown.
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Figure 7.5 Scatter plot of the manual and computer-assisted diameters in pixels.

Similarly, the reliability of vessel tortuosity estimation was evaluated on the set
of 20 vessels composing the CHOP ROP Tortuosity Dataset. Vessels were previously
ordered by a retina specialist by increasing perceived tortuosity. The performance of
the proposed method was assessed by computing the correlation between the com-
puter-aided and manual ordering of the vessel tortuosity. Since we are considering
correlations among rankings, the Spearman correlation p, was used. For the set of 20

105



Chapter 7

analyzed vessels we obtained p, = 0.93. In Figure 7.6 the scatterplot of the tortuosity
rankings, from manual reference vs computer-aided evaluation, is shown.
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Figure 7.6 Scatter plot of the manual and computer-assisted tortuosity rankings.

7.5 Conclusion

Nidek NM200D is a portable non-mydryatic and non-contact fundus camera de-
signed for retinal image acquisition on both adult and preterm born infants. Because
of the anatomical characteristics of the infant retina and the peculiar technical fea-
tures of the mentioned fundus camera, the images provided by Nidek NM200D are
challenging to analyze and algorithms created for the analysis of adult images turn
out to be unsuitable for the tracking of vessels in infant images. In this chapter an
ad-hoc method was presented for the analysis of newborns images acquired with Ni-
dek NM200D. Because of the large variability and the poor quality of such images we
opted for a semi-automatic method to perform tracking on vessels and to quantita-
tively assess vascular tortuosity and width.

The most common semi-automatic methods in literature try an automatic track-
ing of the vascular network and then ask the user to manually correct the imperfec-
tions, by deleting or editing the extracted vessels, or by adding new segments that
were not identified [83], [84]. For the proposed technique we adopted an alternative
solution: the vessels to be analyzed are initially chosen by the user in an easy and fast
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way, and the final results are not manually modified. This approach is particularly
convenient with small FOV Nidek NM200D images, where few analyzable vessels are
usually visible.

In order to assess the performance of the method, we performed two analyses: in
the first one we computed the correlation between manually and computer-assisted
estimated diameters in a set of 18 vessel segments. Calibers estimated with the pro-
posed method were highly correlated with those measured manually (p = 0.96). In
the second analysis we assessed the reliability of vessel tortuosity estimation by com-
puting the correlation between the semi-automatic and the manual ranking of 20 ves-
sels that were ordered by increasing perceived tortuosity by a ROP specialist. The
two rankings showed high Spearman correlation (p, = 0.93), and the scatter plot in
Figure 7.6 shows that the rankings agreement is higher for more tortuous vessels
(whose characteristics are usually related to a pathological condition), while it is
slightly lower for less tortuous vessels (usually associated to a normal condition).

The method described has been used to implement ROPnet, a web based tool for
the remote evaluation of vessel dilation and tortuosity in infant NM200D images (see
Chapter 8).
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ROPnet, a web-system for
Vessel Caliber and Tortuosity
Estimation in ROP Retinal

Images

In the perspective of the previous considerations, we propose a new web-based
system to quantitatively assess vascular caliber and tortuosity from Nidek NM200D
non-contact camera retinal images in ROP patients. The tool is based on the algo-
rithm for semi-automatic vessel tracking described in Chapter 7 and it will allow cli-
nicians to recover a quantitative estimation of these parameters in an objective, fast
and user-friendly way.

8.1 Introduction

Retinopathy of prematurity (ROP) is a disease involving abnormal development
of retinal vasculature in premature infants, which can lead to retinal detachment and
visual loss [88]. Despite recent advances in management of disease and understanding
of its underlying pathophysiology, ROP continues to be a leading cause of childhood
blindness throughout the world.

The International Committee for the Classification of Retinopathy of Prematuri-
ty (ICROP) published in 1984 a classification system for ROP that was then revised
in 2005 [15]. In this document ROP is described by means of several parameters. The
most important are the retinal location involved, known as zone; the disease extent,
expressed as clock hour; the stage of the disorder at the junction of the vascularized
and avascular retina. The presence of plus disease is related to the severity of ROP: it
presents abnormal dilation and tortuosity of the arterioles and venules and it is diag-
nosed by the comparison with a standard photography used in the CRYO-ROP
study. The concept of pre-plus disease was introduced in 2005 to describe situations
where there is mildly to moderately abnormal dilation and tortuosity of the central
posterior retinal blood vessels (the case in between the normal condition and the plus
disease). Pre-plus seems to be in most cases precursor to plus-disease.



Chapter 8

Inter and intra-observer variability make very difficult, even for expert examin-
ers, to evaluate in an objective way ROP severity. The first is related to the inaccu-
racies in qualitative evaluation based on the comparison with a standard photograph;
while the second one is related to factors such as the type of ophthalmic lens used,
clarity of the image, pigmentation of the retina, etc.

In order to reduce the risk for premature infants and to possibly provide a
prompt therapy some regular checkups are needed in the first months after birth [89],
[90], [91]. International guidelines have been established for screening: in general, the
first examination takes place between 4 and 6 weeks of chronological age or between
31 and 33 weeks post-conceptional age. Subsequent examinations depend on the se-
verity of any ROP detected. Subjects with no ROP may have only one further ex-
amination 6 weeks later, whereas subjects with significant disease may require weekly
or even daily examinations, to assess if they have reached threshold disease [92], [93],
[94]. At present this screening process is carried out by ophthalmologists skilled in the
examination of infants’ eyes, but the necessity of retina experts at the neonatal inten-
sive care unit is conflicting with the decreasing number of ophthalmologists willing to
perform ROP examinations [85]. Also, the number of infants requiring ROP examina-
tions has increased thanks to improved survival of very low birth weight infants and
even many developing countries are facing an increasing number of surviving prema-
ture infants without an adequate number of ophthalmologists trained to screen and
treat ROP. Any system which can assist ophthalmologists in increasing the accuracy
of their screening, or which could allow less highly trained individuals to carry out
the screening (e.g., ophthalmic nurses) may be of clinical benefit. A possibility of
providing some automated assistance in this screening process lies in accurate com-
puter measurement of vessel width and tortuosity near the posterior pole of the reti-
na.

Many systems for computer aided diagnosis (CAD) have been recently developed
to accurately measure and quantify retinal vascular geometrical and morphological
properties in premature infant images. The first is Retinal Image multiScale Analysis
(RISA) developed by Martinez-Perez et al. [83]. It provides a semi-automatic tool for
the labeling of the skeleton trees followed by an automatic procedure for measure-
ment of vessel width, tortuosity and other geometrical indexes. Swanson et al. re-
ported that tortuosity measurements were found to be occasionally inconsistent when
compared to the vessel’s actual bowing, because of RISA’s insensitivity to the fre-
quency at which a vessel bows [96]. Computer-Aided Image Analysis of the Retina
(CAIAR), proposed by Wilson et al. [84] semi-automatically identifies the retinal ves-
sels, with provision for human pixel editing if any vessels are inappropriately
represented. It subsequently automatically measures the width and tortuosity of each
vessel found. In [84] CATAR readings, compared with five expert ophthalmologists’
grading of 75 vessels on 10 retinal images, provided moderate correlation for both tor-
tuosity (Spearman p = 0.673) and width (p = 0.415). ROPtool was developed by
Wallace et al. [85], it semi-automatically traces retinal blood vessels and it only pro-
vides measures for the tortuosity of each vessel. VesselMap is a semi-automatic soft-
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ware, developed by Imedos (Jena, Germany). It performs the tracking of principal
vessels and it only provides information about the mean vessel diameter. Only one
study was reported in literature, where retinal infant images were analyzed with such
software [106]. Even if the mentioned programs have provided interesting results,
none of them is easily accessible through the web and yet none has shown to be free
of weak points and outperform all the others.

This chapter presents a novel web-based tool, named ROPnet, which offers a
semi-automatic system to perform tracking on vessels and to extract a quantitative
assessment of vascular tortuosity and width. Vessel analysis can be performed by us-
ing a web browser with a client-server setup: an image is uploaded to the server, an
easy to use interface allows the client (i.e., user) to select a vessel to be analyzed. All
the subsequent processing is performed server-side and the client will get the results,
including the computed parameters, in few seconds. The segmentation strategy
adopted is based on some edge extractor filter coupled with a module checking for re-
gularity and smoothness typical of vascular structures (see Sec. 7.2). The tool was
developed in particular for analysis of images acquired with Nidek NM200D (Nidek
Co., Gamagori, Japan), which is a portable non-contact fundus camera presenting in-
teresting features such as ease of use, portability, non-invasive diagnosis and low cost.

8.2 Methods

ROPnet was developed by taking into account two main purposes: the accessibil-
ity, at any time, by users from all over the world, and the user-friendliness of the sys-
tem. The first goal was achieved by making the tool available through a web browser
over internet connection. The second goal was met by developing a graphical user in-
terface (GUI), to allow the client to intuitively interact with the server-based applica-
tion that performs analysis on uploaded retinal images.

The web-based system was developed by using Html, Javascript and PHP script-
ing and it consists in several modules that involve exchange of data between client
and server. The most important steps are client identification and image uploading,
image storing and preprocessing, user friendly input setting, server-side vessel track-
ing and parameters computing, displaying interactive output.

The client-server system architecture will be described in detail in Sec. 8.2.1,
while the vessel tracking methods along with tortuosity algorithm were described in
the previous chapter. In Sec. 8.2.2 the tool functionality is illustrated.
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8.2.1 Client-Server System Architecture

To enter the ROPnet analysis page, the user is required to login and access the
tool member area. For every user logged in, a PHP session is created: sessions work
by creating a unique identification number for each visitor and storing variables
based on this ID. This allows to safely managing multiple simultaneous accesses pre-
venting two users’ data from getting confused with one another.

Once logged in, the client is automatically redirected to the upload page, where it
is possible to browse the local drivers to choose a retinal image to be analyzed. The
selected image is sent to the server, where it is temporarily stored until the analysis
has not finished.

After image uploading and storing, a preprocessing algorithm aimed at enhancing
the image contrast (described in Sec. 7.2.1) is launched server-side as a background
process.

While preprocessing is running, the client is redirected to a web page displaying a
JAVA applet, which is a graphical user interface that allows the user to choose ves-
sels to be analyzed and to set important parameters needed for the subsequent analy-
sis (the user interface functionality will be described in detail in Sec. 8.2.2). The app-
let sends the information acquired from the client to the server, where image analysis
is launched. Analysis consists in vessel tracking and computation of clinical parame-
ters and it was described in Sec. 7.2.2. After the analysis is finished, the server sends
an answer to the quiescent applet, which redirects the user to a web page where re-
sults are displayed.

The estimated vessel centrelines and calibres, along with clinical indexes, are pre-
sented in an intuitive and user-friendly way with a new graphical interface realized as
a second JAVA applet that allows the user to interact with the displayed information
(see Sec. 8.2.2 for details). In the meanwhile, a text file storing a detailed report for
the current analysis session is updated, saved on the server and available for
download to the user, in order to keep track of the work done. A schematic diagram
of the whole system architecture is shown in Figure 8.1.

8.2.2 ROPnet functionality

After logging in to the ROPnet member area, the user is redirected to the upload
page where an image to be analyzed can be chosen from personal drivers and up-
loaded to the server. The only accepted format is jpeg, to reduce the downtime re-
lated to data transmission via the web connection. No constrain on image resolution
is present. .It is recommended to use images as obtained from the Nidek NM200D
fundus camera, without performing any digital preprocessing (i.e. geometrical or col-
our transformations) before the uploading. After image upload, a JAVA applet will
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start, which allows the user to choose the vessel to be analyzed (one per time) and
run the tracking algorithm (Figure 8.2). The graphical user interface allows the user
to perform different actions: the image can be displayed in RGB color format or in
green channel gray level; it is possible to manually outline the optic disc by clicking
on its center and dragging to define its circular contour. Along with the optic disc,
two lines dividing the image into four quadrants will be displayed. Lines can be ro-
tated in order to manually define the position of the quadrants.

The area of vessel analysis may be restricted by defining the radius of an annular
region centered in the optic disc. Zoom-in and zoom-out functions allow the user to
enlarge the area displayed or go back to the original visualization. Once visualization
has been set up, the user can select the vessel that will be analyzed. The vessel is
chosen on the image simply by clicking on its end-points; a number of additional in-
termediate points can then be added, to outline more precisely the vessel layout and
guide vessel tracking. An interpolating spline, connecting the inserted points, is
drawn and displayed over the vessel and updated every time a new point is added by
the user. Points can also be moved by dragging the mouse over them to correct the
spline position, until the whole curve lays inside the vessel. Finally, the user can

CLIENT SIDE SERVER SIDE Sow
(web browser)

Login to member
area and upload
the image to be
analyzed

Storing image and
sending a
customized Java
GUI to client

User friendly
vessel selection
and other input Vessel tracking

setting and computing
clinical
parametres

Sending Java GUI
for analysis of
results to client

Analysis of
resulting vessel
tortuosity and
width

Figure 8.1 Scheme of the ROPnet client-server architecture.
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define the vessel type by choosing between three possible options: artery, vein, or un-
known. The vessel delineation procedure can be reset at any time before launching
the processing algorithm and the analysis on the current image can be interrupted in
order to change image or exit the tool.

Once the user is done with the input steps and the spline describes the approx-
imate location of the vessel axis, automatic vessel tracking is performed over the se-
lected segment. The processing step requires only few seconds (5 s on average), after
which the client is automatically redirected to a new page, where results are dis-
played. A JAVA applet overlays the uploaded image with the tracking results, vessel
axis and calibers and by moving the mouse cursor over the vessel it is possible to dis-
play the vessel widths at different locations. The quantitative clinical parameters re-
turned are the vessel tortuosity index, the average caliber and its standard deviation
along the segment. The latter two values are expressed in arbitrary units, defined as
hundredths of length of the optic disc radius, or alternatively in pixels if the optic
disc was not defined at the beginning of the analysis. From the current page it is
possible to print results and to export them to a text file that can be downloaded on
the client machine. The user can finally choose to analyze a new vessel on the same
image, upload a new image, or log out from the ROPnet area (Figure 8.3).

oot | submit | Reset | Zoomout | ® Addpoint € Zoomin  InsenoD ¢ Rotate @

1
Vessel Type: Artery v| & RGB " G-Channel Radius factor: 4 m

Please insert another point Points used: 12 of 40
or press SUBMIT

Figure 8.2 The ROPnet graphical user interface to select the vessel to be ana-
lyzed and to set up other parameters for the analysis.
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Figure 8.3 The ROPnet graphical user interface for the display of results.

8.2.2.1 Standardized Method for ROPnet

In collaboration with clinicians at the Children Hospital of Philadelphia a stan-
dardized protocol for image analysis with ROPnet was proposed. It describes in detail
all the operations needed for the complete analysis of an image.

1. Upload image in JPG form
2. Draw the optic disc by choosing “Insert OD” radio button.
a. Identify longest diameter of optic disc. This may be along any meridian
and should not include the peripapillary area.
b. Identify midpoint of above axis.
3. Demarcate the optic disc by dragging from midpoint (step 2b) to edge of optic
disc along longest axis (step 2a).
a. If the optic disc is oval, the solid circle that is drawn may enclose peri-
papillary area along axes shorter than the longest diameter of the optic
disc.
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4. Define the field of analysis by selecting “Radius factor” from pull-down menu
so that the outer dotted line completely encompasses the entire image.

a. If the study procedure requires standardization of length measurements,
a radius factor of 3 is recommended.

5. Define quadrants by choosing “Rotate Q” radio button. Click and drag cross-
hairs so that quadrants are appropriately divided.

a. For each quadrant above, select the major artery and vein to analyze.
Arteries can be distinguished from veins as follows: (i) arteries are ligh-
ter/more orange in color relative to darker/reddish color of veins; (ii)
arteries generally have a smaller diameter than nearby veins;
(iii) arteries tend to have more curvature (tortuosity) than nearby
veins.

b. For quadrants with multiple arteries and/or veins, select the largest and
most tortuous vessel of each type.

c. For a vessel that crosses multiple quadrants, the designated quadrant
should enclose the longest segment of the vessel.

6. Visualize the desired vessel by choosing “Zoom In” radio button. Click and
drag on the image so that the box includes the beginning and end of the de-
sired vessel.

a. Analysis should begin in the first quadrant on the first vessel starting
clockwise from 12 o’clock.

7. Select “G-channel” radio button to better visualize vessel borders.

8. Track the vessel by selecting “Add point” radio button.

a. Place initial point on the inner dotted circle at the center of the se-
lected vessel. No points may be placed between the solid circle and the
inner dotted circle.

b. Place end point as far peripherally from the center of the optic disc that
is visible. This point should also be placed at the center of the vessel.
The end point must be within in the outermost dotted line.

c. Place additional points along the center of the vessel. After dots are
added, the solid blue line should appear centered within the vessel at all
times. All turns (tortuosity) should have a minimum of 4 points. Spac-
ing of the points depends on the total number of points desired, but in
general, tortuous segments should receive more points (closer spacing)
than straighter segments.

d. Regarding branch points, the wider (main) branch should be selected
for analysis. If branches have similar widths, select the vessel that
comes off at less acute again.

9. Select appropriate “Vessel type” from the pull-down menu.

a. Arteries can be distinguished from veins as described above (step 5).

b. If one cannot distinguish the type of vessel, select “Unknown” for vessel

type.
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10. Click “Submit”

a. After few seconds, the program will output an image showing measure-
ment locations and 3 results: Tortuosity index, Average caliber, and Ca-
liber standard deviation.

b. It is recommended to save the vessel image by using the “Print current
results” button on the left menu. As an alternative the image can be
saved by pressing Ctrl-Print Screen and copying to another document
for later identification of vessels.

11. Continue analysis on the next vessel by clicking “New Analysis on this Image.”
This allows analysis of the next vessel without changing the optic disc marker.

12. Repeat steps 6-10 for the largest and most tortuous artery and vein in each
quadrant.

13. Save results after all vessels for the image have been analyzed, but clicking

“Save Current Results.”

8.3 Results

In Chapter 7 we assessed the accuracy for the vessel width and the tortuosity in-
dex estimations provided by the proposed algorithm. The tool described in this chap-
ter includes a manual intervention by the user, therefore it was necessary to evaluate
the robustness of the system in terms of inter- and intra-user results repeatability. To
this aim, we used the Scheie Eye ROP Width Dataset (for the analysis of the vessel
width) and the CHOP ROP Tortuosity Dataset (for the analysis of the vessel tortu-
osity).

In order to assess the inter-grader reproducibility of the measures, we had three
graders use the system and independently grade each vessel of the two datasets.
Pearson’s correlation coefficient for each pair of graders and the p-value of a one-way
ANOVA test for the three graders measures were computed. The first provides a
measure of the linear association between each grader, while the latter checks that
the results provided by each grader are not biased. Since the two tests are comple-
mentary, they provide a good evaluation of the measure reproducibility.

Table 8.1 shows that the correlation between the three graders is at least 0.86 and
0.99 for the width and the tortuosity measurements respectively, indicating that the
three graders’ assessments are coherently associated. The p-values were 0.57 and 0.99
for the width and the tortuosity measurements respectively, indicating that the mean
of the distribution of the measures provided by the three graders are not significantly
different.
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Inter-grader Pearson’s correlation coefficient
Vessel Width Vessel Tortuosity
Grader | Grader | Grader Grader | Grader | Grader
A B c A B ¢
Grader Grader
3 [o]¢ [S]¢
A 0.87 0.86 A 0.99 0.99
Grader Grader
[S]¢ [S]¢
B 0.87 0.88 B 0.99 0.99
Grader Grader
) 09 09
c 0.86 0.88 c 0.99 0.99

Table 8.1 Inter-grader correlations for each pair of users for both vessel width and
tortuosity measurements.

In order to assess the intra-grader repeatability, for both the datasets the analyses
were repeated two times per vessel by the same user. Consecutive repetitions of ves-
sels in the same image were avoided to prevent memory effects. Pearson’s correlation
coefficient and the p-value of a paired t-test were computed for every grade-regrade
pair of measures.

Intra-grader (grade-regrade) test
Vessel Width Vessel Tortuosity
Grader A Grader B Grader C Grader A Grader B Grader C
Correlation 0.96 0.93 0.97 0.99 0.99 0.99
p-value 0.84 0.9 0.82 0.95 0.92 0.98
ICC (95% CIL) | 0.94 (0.85-0.98) 0.93 (0.82-0.97) 0.96 (0.90-0.98)  |[ 0.997 (0.993-0.998) | 0.995 (0.989-0.998) | 0.999 (0.997-0.999)

Table 8.2 Intra-grader correlations, p-values and ICC (with 95% CI) for grade-
regrade pair of measures, for both vessel width and tortuosity measurements.

Table 8.2 shows that the grade-regrade correlation is at least 0.93 and 0.99 for the
width and the tortuosity measurements respectively, indicating that the grade-
regrade graders’ assessments are coherently associated. The p-values were at least
0.82 and 0.92 for the width and the tortuosity measurements respectively, indicating
that the mean of the distribution of the grade-regrade measures provided by the three
graders are not significantly different.

To have one more estimation of the measures reproducibility, the intra-class corre-
lation coefficient (ICC) was computed among the three graders, (by using the average
grade-regrade measure for each grader, to evaluate inter-grader repeatability), and
between the grade-regrade measures of each grader (to evaluate intra-grader repeata-
bility). The ICCs obtained among the three graders were 0.86 (with 0,71-0.94 as 95%
CI) and 0.993 (with 0.985-0.997 as 95% CI) for the width and the tortuosity mea-
surements respectively. Besides, as shown in Table 8.2 the ICC for the grade-regrade
measures is at least 0.93 and 0.99 for the width and the tortuosity measurements re-
spectively. The ICC analysis confirmed the good reproducibility (both inter- and in-
tra-grader) of the system measures, as anticipated by the previously described tests.
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8.4 Conclusion

The web based tool proposed for vessel analysis allows extracting important clini-
cal parameters, such as vessel tortuosity and width, in a quantitative and reproduci-
ble way. These parameters are strongly related to the presence and severity of ROP.

An important initial step in validating a quantitative tool for assessing severity of
vessel changes in ROP is to establish its accuracy and reproducibility. Later steps
will examine whether the tool is accurate in its prediction of ROP in eyes at risk.

Several studies have examined quantitative measurement of retinal vessel width
and tortuosity from digital images of eyes at risk for ROP [47], 78], [80], [84], [95],
[96], [97], [98]. A few of these vessel analysis systems have examined the reliability of
width measurements [99], [100], but to our knowledge none have addressed the relia-
bility of tortuosity measurements.

In this work we evaluated both the accuracy of vessel width and tortuosity index
estimation (see Chapter 7), along with the inter- and intra-user analysis repeatability.
The system provides accurate measures of the clinical indexes, showing very high cor-
relations with the manual ground truth.

While ROPnet may introduce some variability on results, since vessel selection is a
manual choice, our results did not show any significant differences in the reproduci-
bility. Wallace et al. addressed a similar problem, in which their ROPtool program
was unable to consistently choose the most important vessels for each quadrant with-
out operator input [95], [98]. Operator input, and thus less automation may improve
the accuracy of quantifying vascular abnormalities, but it may also decrease reprodu-
cibility. A possible drawback of increased operator involvement is the lengthening of
the analysis time. The user-friendly interface provided in ROPnet makes it possible
to speed up the analysis, which usually takes less than one minute, therefore the
practical usability of the tool in clinical situations is not reduced.

In the current version, the system allows the analysis of one vessel per time and we
focused our attention on the reliability of the clinical indexes evaluated on the single
vessel segments. Future work will investigate if the parameters provided by the sys-
tem can actually be used to assess the state of the patients; to this aim, we will com-
bine information estimated from the single vessels to obtain a global clinical index for
the whole image.

The web-based solution and the user friendliness of the interface make the tool
available to a wide range of users. In this way, we overcome important problems re-
lated to ROP diagnosis, such as the necessity of a retina expert at the neonatal inten-
sive care unit. Moreover, the choice to run vessel analysis as a client-server applica-
tion allows us to easily provide users with the latest developed version of the algo-
rithms.
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At present, a beta version of the system is hosted at the website
http://bioimlab.dei.unipd.it; it is under beta testing and will be soon publicly availa-
ble.
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Chapter 9

Vessel Network Segmentation
for wide FOV Infant Images

Regional shortages in the availability of ophthalmologists to provide ROP diag-
nostic examinations are an important barrier to ensuring appropriate ROP care. One
potential solution is to decrease the number of indirect ophthalmoscopy examinations
by first screening with some other method. Retinal photography to evaluate ROP can
be considered an important alternative to indirect ophthalmology and different digital
retinal cameras that can be used in the NICU are commercially available. In general,
they can be categorized as wide-angle cameras (e.g., RetCam) and narrow-angle cam-
eras (e.g., Nidek NM-200D). Wide-angle cameras provide a greater view of the retina
(e.g., 120-130° field of view) than narrow-angle cameras (e.g., 30° field of view). The
RetCam fundus camera, a retinal wide-field digital imaging system, allows documen-
tation of large parts of the infant retina within minutes and several studies [101] have
evaluated the value of wide-field digital imaging in screening for ROP. On the oppo-
site side, the poor quality of wide field infant images makes the analysis quite chal-
lenging and not feasible with standard tracking algorithms for adult images.

In this chapter, some considerations are made about the analysis of RetCam im-
ages with the method presented in Chapter 4. The system settings turned out to be
unsuitable for working with infant images. In order to force the detection of the very
thin and low-contrast vessels we had to finely tune some parameters, but this led to
the extraction of an high percentage of false vessels generating from artifacts and
choroid. Since the rationale of the algorithm developed for adult images seems intrin-
sically unusable in this situation, a novel technique for the automatic vessel identifi-
cation in infant retinal images acquired with RetCam is presented. Initially the vessel
structures are enhanced by means of different matched filtering techniques, and ex-
tracted from the background with a local thresholding followed by morphological op-
erations. The second step consists in a supervised classification of vessel structures
based on SVM, in order to discard segments originating from noise/artifacts or from
choroidal vessels.
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9.1 Introduction

Before presenting, in Sec. 9.2, novel specific techniques for the analysis of wide
FOV infant images, the RetCam fundus camera and the features of the images it ac-
quires are shortly described in this section.

9.1.1 RetCam Fundus Camera

The RetCam fundus camera (Clarity Medical System, Pleasanton, CA, USA) has a
VGA sensor able to acquire videos at a resolution of 640 x 480 pixels with 120 or 130
degrees field of view. Single images are then extracted by selecting the video frames
that present the highest quality in term of vessel visibility.

Some hallmark of ROP can be located in the most peripheral area of the eye,
where retinal blood vessels grow during the last weeks of gestation. The digital tech-
nology of RetCam provides images that give information about the entire extension
of the lesion, because of the wide field of view. On the other side, the analysis of
RetCam images is a difficult, time consuming and subjective issue. The ophthalmolo-
gist has to evaluate a large number of images that may present pathology at different
severity.

The main drawbacks of RetCam infant images (if compared to images provided
by standard fundus cameras used for the screening of adult eyes) are:

e low contrast

e presence of interlacing artifacts since images are actually isolated video frames

e very narrow blood vessels, due to the very wide field of view coupled with a
small VGA sensor

e non uniform illumination in the wide captured field of view

e strong visibility of choroidal vessels (related to the lack of pigmentation of in-
fants choroid)

All these aspects make the automatic analysis of RetCam images quite challenging.
Traditional algorithms that successfully perform vessel tracking on standard fundus
images show poor performance on these images acquired from newborns and custo-
mized techniques are necessary. Two models of RetCam fundus camera are shown in
Figure 9.1.
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Figure 9.1 Two models of RetCam Clarity fundus camera: on the left RetCam II
and on the right RetCam 3.

9.2 Methods

The proposed analysis of RetCam infant images is aimed at automatically extract-
ing the retinal vessel network. Only the position of vessels (identified by their center-
line) is considered here and no effort is provided to evaluate vessel diameters, since
most of the structures of interest have a caliber ranging between 1 and 3 pixels in
this kind of images [96].

In this section some considerations are reported about the unsuitability of the me-
thod proposed in Chapter 4 for the analysis RetCam infant images. The multidirec-
tional graph search approach for the extraction of the vascular network was tried and
showed poor performance because of the low quality and the peculiar characteristics
of RetCam images. In Sec. 9.2.2 a novel automatic tracking technique is presented.
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9.2.1 Multidirectional Graph Search Approach in
RetCam Images

As mentioned above, the characteristics of the images acquired with RetCam make
their analysis challenging. Other than the anatomical aspects (such as the strong vi-
sibility of choroidal vessels) the morphological aspect of the vessels, related to the
technical features of the acquisition instrument, are critical. The very wide field of
view, coupled with the low resolution VGA sensor of RetCam, make the vessels to
appear as very thin structures, poorly contrasted and almost evanescent in some re-
gions. The method presented in Chapter 4 was tested with such images and its initial
performance turned out to be poor because of two main causes: a) the inability to
find an adequate number of reliable seed points and b) the difficulty to track vessels
as minimum path structures. Both the mentioned problems lead to a partial identifi-
cation of the network, where only few vessel segments can be extracted (Figure 9.2).
We tried to appropriately tune some parameters in order to adapt the method to the
RetCam images. In the seed finding procedure described in Sec. 4.2.2 the threshold to
select the candidate points was lowered: this produced the effect of increasing the
number of seeds extracted, but it also brought the unavoidable drawback of including
a lot of false positives points, originating from noise, artifacts or gray level variations
related to choroidal structures. In order to facilitate the evolution of the minimum
cost paths inside the vessels the preprocessing procedure described in Sec. 4.2.1 was
revised and the dimensions of the structuring elements used for the morphological op-
erations were modified according to the resolution and the size of RetCam images. In
this case the preprocessing is not aimed at removing the central reflex (not visible in
these images), but at emphasizing the dark regions related to the presence of retinal
vessels against brighter background pixels. Lastly, the false vessel detection module
described in Sec. 4.3 was unsuitable with RetCam images and could not be applied:
the eigenvector v~ is unstable because it is sensitive to noise, which sometimes has a
scale comparable with the very thin vessels. Thus it was not possible to identify an
interval of confidence to discriminate between values of d related to true or false ves-
sels.

Anyway, after tuning the algorithm as described above, we tested it on the 20 im-
ages belonging to the Clarity ROP Dataset. Vessels automatically detected were
compared with the ones manually traced in the ground-truth images. We obtained a
sensitivity of 0.75 and a false vessel detection of 0.33. Even if the sensitivity is good,
on average one third of the extracted segments are false vessels and this is not ac-
ceptable if we aim at using the segmentation to compute clinical diagnostic indexes to
assess the presence and/or the gravity of ROP. In Sec. 9.3 and 9.4 results presented
above will be discussed and compared with the ones obtained with the novel method
described in the following sections.
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Figure 9.2 Example of vessel axis tracking results with the multidirectional graph

search approach on a RetCam image (a) with the original algorithm for adult image
settings and (b) after tuning the algorithm.

9.2.2 A novel approach

To overcome the problems described in the previous section, a novel method is
proposed for the automatic extraction of the vessel axis network in infant RetCam
images. The technique includes a preprocessing step to enhance the image quality.
The vessels are extracted by means of morphological operations and the vascular
segments are classified as true or false vessels using a Support Vector Machines
(SVM) supervised approach.

9.2.2.1 Preprocessing: Image Quality Enhancement

As previously mentioned, during the acquisition the RetCam fundus camera regis-
ters a video and the images are single frames, manually selected, presenting a good
contrast between vessels and background. Because of the motion of the eyes, such
frames are affected by interlacing artifacts and a deinterlacing algorithm is used to
limit this problem. Two sub-images I, and I; are extracted from the original image I.
They are made up respectively with the odd and the even horizontal lines of I. The
missing lines of I, and I; (i.e. the even and the odd lines respectively) are interpo-
lated, obtaining respectively I,' and I Finally I,' and I;' are aligned maximizing the
2D correlation coefficient and the final deinterlaced image I, is created by merging
the odd and even lines of 1" and I;' respectively. The effect of the described deinter-
lacing preprocessing can be appreciated in Figure 9.3.
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(a)
Figure 9.3 Particular of a RetCam image affected by the interlacing artifact (a) and
the result of the deinterlacing preprocessing (b).

(a) (b)

Figure 9.4 Example of application of the image enhancement preprocessing: (a) origi-

nal image green channel; (b) enhanced image.

The following steps are aimed at equalizing the illumination and emphasizing the
contrast between the vessel structures and the background.

The green channel is extracted from the RGB image and the local average intensi-
ty, computed inside N pixel sized blocks, is subtracted from the image, in order to
equalize the background illumination.

To increase the contrast, a histogram matching technique was adopted: the image
histogram is matched to a Gaussian function having mean p = 0.4 and standard dev-
iation 6 = 0.2 (in a 0-1 range of pixel intensity). This approach standardizes the gray
level distribution of the images that will be processed, by limiting the high intensity
variability of images acquired with RetCam. Moreover, the chosen ¢ ensures that a
consistent part of the gray level range is used and in most cases the original gray lev-
el range is stretched to match the target Gaussian function. The enhanced image is
decomposed in its directional components by applying a directional filter bank as de-
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scribed in [102]. Every component is processed with a median filter in order to limit
the noise originating from the histogram stretching and finally a new image is made
up by averaging the filtered directional components. In Figure 9.4 the effect of illu-
mination equalization and contrast enhancement is displayed.

9.2.2.2 Filtering

In order to identify the vessel structures in the image, two different filtering
techniques were applied. Both the techniques are based on the Laplacian of Gaussian
(LoG) kernel: the Laplacian is an isotropic measure of the 2'* spatial derivative of an
image; it highlights the regions of rapid intensity changes and it is therefore used for
edge detection [103]. Because the kernel approximates a second derivative measure-
ment, it is very sensitive to noise. To counter this fact, the image is often Gaussian-
smoothed before applying the Laplacian filter.

This step reduces the high frequency noise components before the differentiation
step. In practice, since the convolution operation is associative, the Gaussian smooth-
ing filter and the Laplacian filter can be convolved, creating the Laplacian of Gaus-
sian kernel.

The first filter used is based on a traditional LoG symmetric kernel, designed as:

H1 = Q xexp(—0.5 = (x? + y2) /5?) (9.1)

where o is the standard deviation that assumes different values according to the used
scale and @) is a normalizing factor defined as:

Q=A% —k*(2+y)/o?) (9.2)

with A = 1 and k = 0.5.
The second filter used is a directional version of the LoG and it uses a kernel
built starting from an asymmetric Gaussian function:

H2g = Ggx + Ggyy (9.3)

where Gg,, — dGe/ d’x, Go,, = dGo/ d’y and

1
0 = Jniz|i/2

exp (—0.5 * XpZ71X0) (9.4)

oy

0 o2

with X = [
y

l where o, assumes different values according to the filter scale and
c, = o,./3.
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Xo = [x,y] * Ry (9.5)

where Ry is the rotation matrix for the angle 6.

The LoG directional filter was evaluated at seven directions from 0 to 180° and
both symmetric and asymmetric filters were analyzed at six different scales. When
the scale (and direction for the asymmetric kernel) matches the size (and the direc-
tion) of the vessel, the filter response will be maximum. Therefore the final filter re-
sponse is computed in the following way:

e for the asymmetric filter, at every fixed scale the outputs from different direc-
tions are averaged.

e for both the symmetric and asymmetric case the highest response among all
scales is kept for every pixel of the image.

Both filters emphasize the vascular structures with different behaviors: the sym-
metric kernel provides a coarse description of vessels presenting higher responses with
larger structures, while the asymmetric kernel provides a finer description of thin
structures, highlighting low-contrast capillaries and maintaining details on thin ves-
sels laying one near another.

9.2.2.3 Extraction of the Axis Network

The filter outputs are characterized by bright vessel structures on a dark back-
ground. The segmentation of vessel structures is performed by applying a local thre-
shold to the filtered images. This provides binary masks, where pixels that belong to
vessels are set to 1 and everything else is set to 0. A morphological skeletonization is
used in order to thin all the identified structures and extract the network composed
by their axes. It is important to notice that two versions of vessel axis network are

now available: one coming from the symmetric LoG and another from the asymmetric
LoG filter.
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()

Figure 9.5 Example of filtering and extraction of the axis network applied to the im-

age displayed in Figure 9.4. Symmetric LoG filter: (a) output of the filter, (c) result
of the local thresholding and (e) axis network obtained with the skeletonization.
Asymmetric LoG filter: (b) output of the filter, (d) result of the local thresholding
and (f) axis network obtained with the skeletonization.
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9.2.2.4 Classification

The networks obtained so far include segments that correspond to axes of true
vessels and segments originating from noisy structures, artifacts and choroidal vessels.
A supervised classification procedure, based on Support Vector Machines (SVM) is
used to discriminate and discard segments that do not correspond to a true vessel
axis.

Support Vector Machines

SVM is a supervised learning method used for classification and regression. A
classification task usually involves separating data into training and testing sets.
Each instance in the training set contains one “target value" (i.e. the class labels) and
several “attributes" (i.e. the features or observed variables). The goal of SVM is to
produce a model (based on the training data) which predicts the target values of the
test data given only the test data attributes.

Given a training set of instance-label pairs (x;, v.), i = 1,...,l where x; € R" and y
€ {1, -1}, the support vector machines require the solution of the following optimiza-
tion problem:

. 1 .
miny o > wiw+C Y, & (9.6)

subject to y; WTp(x)) +b)=>1-¢&;, & =0

Here training vectors x; are mapped into a higher (possibly infinite) dimensional
space by the function @. SVM finds a linear separating hyperplane with the maximal
margin in this higher dimensional space. C > 0 is the penalty parameter of the error
term. Furthermore, K(x;, x;) = @(x)" &(x;) is called the kernel function. For this
work the Radial Basis Function (RBF) was used as kernel:

K (x;,x;) = exp (—V”xi - xj||2) (9.7)

where y > 0 is a parameter. This kernel nonlinearly maps samples into a higher di-
mensional space so that, unlike the linear kernel, it can handle the case where the re-
lation between class labels and attributes is nonlinear. Furthermore, the linear kernel
is a special case of RBF [104]. Another reason to choose this kernel is to limit the
complexity of the model, since for example the polynomial kernel has more hyperpa-
rameters than the RBF kernel. Finally, the RBF kernel has fewer numerical problems
[105].
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In order to use SVM, we proceeded with the following steps:

o We divided data in two sets: a training set and a testing set.

e From every vessel segment belonging to images in both sets we extracted and
scaled features used to train the classifier and to test the learned model.

e In the training phase, we used a cross-validation approach to find the model
(i.e., estimate the two parameters C and y) that provides the highest accuracy
for the classification.

We used the derived model to classify vessel segments that belongs to the testing set
into “vessel” or “non-vessel” classes.

Training and Testing Sets

We applied the preprocessing, the filtering techniques and the skeletonization op-
eration described above to the 20 RetCam images chosen as ground-truth, in order to
obtain for every image two possible vessel axis networks (one for the symmetric and
one for the asymmetric LoG filter).

We divided the 20 image set in two subsets. A training set including the axis
segments from six images was used to train the SVM (2792 segments obtained from
the asymmetric LoG filter and 1772 segments obtained from the symmetric LoG fil-
ter) and all the segments in the remaining 14 images were used to test the classifier.

Used Features

In order to train the SVM model (and to use it to classify vessels) every vessel
segment has to be described by some features capable to assign the segment to the
corresponding class.

Given a vessel segment and one of the two filter outputs (see Sec. 9.2.2.2), the se-
lected features are:

e The cross section average intensity profiles extracted from the filter output at
every used scale (six values).

e The cross section average intensity profile extracted from the final filter out-
put.

e The cross section average intensity profile extracted from the green channel of
the image.

e The average intensity level computed along the segment, evaluated separately
on the six filter scales, on the final filer output and on the green channel of the
image (eight values).
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e The standard deviation of the intensity level computed along the segment,
evaluated separately on the six filter scales, on the final filer output and on the
green channel of the image (eight values).

To define the average intensity profiles mentioned above, let us consider a vessel
segment that can be expressed in curvilinear coordinates as a curve S(i), i €
[1, ..., Ng]. For every i, we extract a profile P} orthogonal to the direction of S(i) and
centered in S(i). All the P profiles extracted for the segment are averaged to obtain
the average intensity profile P° .

The average intensity level along the segment is computed by averaging the in-
tensity values in S(i) and similarly for the standard deviation of the intensity level
along the segment. Given the output of a filter, all the described features are col-
lected for every vessel segment in the training set and used along with the known
segments class label to train the SVM model.

Two models M, and M, are estimated, using the data extracted from the output
of the symmetric and the asymmetric LoG filters respectively. Given an estimated
model M, and a new vessel segment T, the features extracted from T are used as in-
put to M, in order to obtain a classification for T as “vessel” or “non-vessel”.

As described in the following sections, predictions provided by the two models M,
and M, on new segments will be combined to obtain the final classification results.

Training the Models

There are two parameters to be estimated for an RBF kernel: C and y. It is not
known beforehand which C and y are best for a given problem; consequently, some
kind of model selection (parameter search) must be done. The goal is to identify good
(C, v) so that the classifier can accurately predict unknown data (i.e. testing data).
As discussed above, a common strategy is to separate the data set into two parts, of
which one is considered unknown. The prediction accuracy obtained from the “un-
known” set reflects the performance on classifying an independent data set. An im-
proved version of this procedure is known as cross-validation and it was applied dur-
ing the training phase in order to assess the accuracy of the learned model.

In vfold cross-validation, we first divide the training set into v subsets of equal
size. Sequentially one subset is tested using the classifier trained on the remaining v-1
subsets. Thus, each instance of the whole training set is predicted once, so the cross-
validation accuracy is the percentage of data which are correctly classified. Other
than providing a reliable classification accuracy for the trained model, the cross-
validation procedure can prevent the overfitting problem.

We set v = 5 and a grid-search on C and y using cross-validation was performed.
Various pairs of (C, y) values were tried and the one with the best cross-validation
accuracy was chosen. A coarse grid was first used for the two parameters
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(C=2°2% 222 .. 2%and y=2", 2" ..., 2°) and after identifying a “good”
region on the grid, a finer grid search on that region was used.

For the model M, (obtained using the symmetric LoG filter) we obtained a cross
validation accuracy of 82.7 % and for M, (obtained using the asymmetric LoG filter)
we obtained a cross validation accuracy of 85.1 %.

Combining the two Models to Classify new Data

After using the models M, and M, to classify unknown segments in the testing set,
we observed that both of them misclassified some true vessel as “non-vessel” and some
false vessel as “vessel”, but somehow the two models seemed to be complementary. So
we decided to combine the two predictions in order to get a more correct final classi-
fication for unknown segments.

Given an image I, let us define V, and V, the set of vessel segments belonging to
classified as “vessels” by M, and M, respectively. Let V,., = V, n V,, and
V,., = V, UV, Finally let V, be the set of all the segments extracted with both the
symmetric and asymmetric LoG filters on image 1.

V,+, contains the segments that are most likely to be “vessels” since they are con-
firmed by both the models. Starting from this, we created a new set V., by adding to
V,+, the segments belonging to {V,,, \ V,«} that touch some segment in V., at least
with one end-point. In this way, segments that are misclassified as “non-vessels” by
only one of the two models are recovered, as long as they are connected to the initial
network composed by the segments that are most likely “vessels”. At the same time,
the small and isolated segments, originating from noise or artifacts, that are misclas-
sified as “vessels” by one model, are eliminated.

Finally, we created a new set Vi, by adding to V., the segments in {V;\ V, .}
that touch some segment in V., with both end-points. In this way, segments that are
misclassified as “non-vessels” by both models are recovered, as long as they link dis-
connected vessels in the network previously extracted.

In Figure 9.6 the final tracking result is presented for a RetCam image. The im-
provement brought by the new proposed method (with respect to the multidirectional
graph search approach in RetCam images) can be qualitatively appreciated by com-
paring this image with Figure 9.2.
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Figure 9.6 The final tracking result on a RetcCam image after combining the clas-
sification of the two estimated SVM models.

9.3 Results

Vessels manually traced in the ground-truth images were compared with vessels
automatically detected by the proposed algorithm, in order to evaluate its sensitivity
and false vessel detection.

The sensitivity is defined as the fraction of the length of correctly detected vessels
over the total length of the ground-truth vessels. The false vessels detection is defined
as the fraction of the length of the false vessels over the length of all detected vessels.

In Table 9.1, average, maximum and minimum sensitivity and false vessel detec-
tion are reported for the complete set of 20 images:

AVERAGE MIN MAX

SENSITIVITY 0.7259 0.5455 0.9714
FALSE VESSEL

DETECTION 0.1971 0.0761 0.5216

Table 9.1: Average, maximum and minimum sensitivity and false vessel detection for
the complete set of 20 images.
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In Table 9.2, average, maximum and minimum sensitivity and false vessel detec-
tion rate are reported only for the 14 images belonging to the testing set:

AVERAGE MIN MAX
SENSITIVITY 0.7141 0.5455 0.9714
FALSE VESSEL ,
DETECTION 0.2106 0.0761 0.5216

Table 9.2: Average, maximum and minimum sensitivity and false vessel detection for
the testing set images.

The results obtained by the proposed method are satisfactory, as on average more
than 70% of the retinal vessels are correctly detected and only 20% of the detected
vessels are false detections.

The high variability of the results (e.g., see MIN vs MAX for the two performance
parameters) is a direct consequence of the high variability in the quality of the 20
images. In fact, the dataset includes images with different contrast between vessels
and background, different illumination and variable retinal transparency (leading to
variable visibility of choroidal vessels).

Since there is a minimal difference between the mean sensitivity and false vessel
detection values computed for the whole set of images and for the testing set only, we
can deduce that the six images chosen as training set represented a good sampling
set, able to summarize the features of the whole set of 20 ground truth images.

9.4 Conclusion

In order to automatically segment the vessel network in wide FOV infant images
we first tried the multidirectional graph search approach initially designed for the
analysis of good quality adult retina images. As described in Sec. 9.2.1 the algorithm
turned out to be unsuitable for RetCam infant images and we tried to tune some pa-
rameters in order to improve the tracking performance. Even in this case, in spite of
a good sensitivity (75%), the method provided a very high false vessel detection per-
centage (33%) that suggested moving toward a novel customized technique.

The proposed novel approach includes a preprocessing step to enhance the image
quality. Two LoG filters are applied and the vessels are extracted by means of mor-
phological operations. As a last step the vascular segments are classified as true or
false vessels using a Support Vector Machines (SVM) supervised approach. The sensi-
tivity of such method on the testing set is 71%, which is slightly lower than the sensi-
tivity obtained with the multidirectional graph search approach. On the other side,
the false vessel detection percentage is now 21%, which represents a significant im-
provement with respect to the multidirectional graph search approach.
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It is worth noticing that the tracking sensitivity obtained in RetCam images is
comparable to the sensitivity reached by algorithms tested on some publicly available
adult image datasets, such as DRIVE and STARE. However, to our knowledge, there
is no public image dataset of RetCam images, so at this time it is not possible to
compare the performance of the proposed technique against other methods presented
in literature.

Moreover, to our knowledge, not many tracking algorithms in literature were
tested on wide FOV infant images acquired with RetCam, and only a very few au-
thors reported quantitative performance. Namely, Heneghan et al. in [47]| reported
very high sensitivity and specificity, but they were computed on a very small 260 x
260 pixel selection of a typical wide FOV image.

A fundamental aim in the analysis of RetCam images acquired from newborns is to
obtain clinical indexes that can improve the diagnosis and follow-up of ROP. The re-
sults of this work are only the first step towards the more complete objective. Com-
putation of tortuosity of the blood vessels and classification of images into different
ROP severity categories will be the important future steps.

Moreover, in order to provide the clinicians with a tool that automatically provides
the value of parameters describing the real condition of the eye and the stage of the
disease, a further important step will be to deploy the software along with an intui-
tive and easy to use interface.
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Conclusions

10.1 Achievement of the Objectives

The aim of this project was to develop a set of algorithms for the automatic analy-
sis of the vessel network in different kind of retinal images and to implement intuitive
and easy to use software systems in order to help clinicians in the diagnosis and the
follow up of retinopathies.

Images acquired from adults and infants present different characteristics: this is re-
lated to the anatomical differences, but also to the different fundus cameras used for
image acquisition and to the various acquisition protocols. As a consequence, algo-
rithms designed to analyze adult retinal images usually turn out to be unsuitable
with newborns images. Therefore, we developed algorithms customized for the differ-
ent kinds of images to analyze and, in particular, in this thesis we presented three
systems, designed respectively for the analysis of adult images, small FOV infant im-
ages acquired with Nidek NM200D and wide FOV infant images acquired with Ret-
Cam.

Starting from the mentioned analysis methods we implemented two intuitive and
easy to use software systems for the extraction of geometrical parameters having clin-
ical relevance.

The achievements obtained will be summarized in the following sections.

10.1.1 Retinal Vessel Network Extraction in
Adult and Infant Images

Most of the early symptoms indicating the onset of retinopathies are related to
morphological features of the retinal vascular tree. In order to detect and quantita-
tively describe these diagnostic signs, the layout and the dimension of all the relevant
vessels contained in the image has to be extracted.

The rationale of our method for the analysis of adult images was to consider the
image as a weighted un-oriented sparse graph where each node represents a pixel.
The graph edges describe the 8-adjacency among pixels in the image. Under the as-
sumption that vessels are minimum cost paths connecting remote nodes, we employed
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a graph search approach in order to identify their axes (Chapter 4). Then the vessel
diameters are extracted by means of an efficient mono-dimensional matched filtering
approach. The orientation of the filter kernel is chosen according to the information
provided by the axis and the appropriate scale is computed by means of an initial di-
ameter estimation performed on the vessels cross section profiles before the filtering
process (Chapter 5).

Many automatic techniques for vessel identification have been proposed in the lite-
rature, with various degrees of complexity and accuracy (Sec. 4.1). The motivations
that lead to the development of a new method can be summarized in three points:
computational speed, robustness against non-connected vessels, flexibility to accom-
modate different magnification and resolution of retinal adult images.

These points were solved by using a tracking technique, which analyzes portion of
images only in the surrounding of already identified vessel points. This approach al-
lowed the evaluation of a small fraction of all image pixels. The tracking of non-
connected vessels, due to presence of retinal lesions or to focal decrease in image con-
trast, requires the tracking procedure to start from different points along a vessel.
This is achieved by using a sparse approach, in which a set of widespread starting
points (seeds) within an image is identified. These seeds provide the mean to track
every vessel even if not connected from the vessel tree, with reasonable chance. The
vessel caliber extraction provided by the matched filters and fuzzy c-means clustering
approach solves the problem of identifying contrast variation along a vessel, and of
tuning the algorithm parameters for different image sources. Appropriate kernel
orientation and scale are preventively evaluated, in order to improve the filter preci-
sion and efficiency. Then, an adaptive correction step allows managing critical situa-
tions (presence of noise, lack of contrast, etc...) in which the algorithm would fail to
detect the correct diameters.

In Chapter 7 an ad-hoc method is presented for the analysis of newborns images
acquired with Nidek NM200D. Because of the large variability and the poor quality
of such images we opted for a semi-automatic approach to perform tracking on ves-
sels and to quantitatively assess vascular tortuosity and width. Vessels to be analyzed
are selected by manually drawing an approximate centerline inside their boundaries.
Starting from this a priori information, the vessel edges are detected by means of a
filtering technique based on Canny method. Refined axis and calibers along the vessel
are then obtained by appropriately linking pairs of points on opposite edges.

To our knowledge there are not automatic methods in literature presenting results
on Nidek NM200D infant images. Some semi-automatic methods were presented and
all of them perform a first tracking procedure and then ask the user to manually cor-
rect and complete the identified vascular structures and to discard false vessels origi-
nating from noise or image artifacts (which can be a long and tedious task with this
kind of images). We tried to change this common procedure in order to make the
analysis more direct and efficient. As the first step the user is asked to manually
identify only the vessel portions considered important for the clinical evaluation and
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the method provides precise and objective information about every single vessel se-
lected.

In Chapter 9 a novel method is proposed for the automatic extraction of the vessel
axis network in RetCam images acquired from newborns. The technique includes a
preprocessing step to enhance the image quality. The interlacing artifacts are re-
moved with a deinterlacing algorithm and the vascular structures are emphasized by
means of LoG filters. The vessels are extracted by means of morphological operations
and the vascular segments are classified as true or false vessels using an SVM super-
vised approach. The algorithm performance in terms of sensitivity and false vessel de-
tection percentage can be considered promising but further steps will be necessary, in
order to exploit the geometrical characteristics of the network to compute a tortuosi-
ty clinical index and to classify images into different ROP gravity categories..

10.1.2 Tools for Clinical Use

With sustained hypertension, vessel walls are damaged and the morphology of the
vascular tree changes as a consequence of the increased hydrostatic pressure. This
damage and changes, lead to the appearance of specific signs as generalized narrowing
and vessel tortuosity. These signs usually appear long before any malignant hyper-
tensive retinopathy, and therefore all these vascular changes have to be identified and
evaluated, in order to provide a sensible and robust diagnostic and prognostic tool to
evaluate the retinopathy.

In Chapter 6, we described a computerized system to quantitatively assess the
CRAE, CRVE and AVR parameters in retinal images from normal, hypertensive or
diabetic adult subjects. Its purpose is to allow clinicians to recover the quantitative
estimation of these parameters in an objective, fast and user-friendly way. The first
phase performs the vascular network segmentation by means of the algorithm pro-
posed in Chapter 4 and Chapter 5, coupled with an artery/vein classifier. In the
second phase, the user evaluates the results provided and confirms them or applies
the needed corrections via a user-friendly editing interface, which is capable of detect-
ing the troubled situations to be presented to the user for expert assistance. The vas-
cular parameters are finally computed. Repeatability and accuracy of the complete
system were assessed by having three users independently analyze retinal images from
the database provided by the University of Wisconsin, whose analysis results were
used as reference for accuracy. The overall repeatability between users and accuracy
with respect to reference results were assessed by the correlation coefficients.

Retinopathy of prematurity (ROP) is a potentially blinding disease that occurs in
premature infants, and affects the postnatal maturation of the retinal blood vessels.
Many significant pathological signs have been identified for ROP, including an ab-
normal increase in vessel width and tortuosity. Expert screening by pediatric oph-
thalmologists or retina specialists for repeated exams to detect treatment-requiring
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disease according to the evolving definitions is crucial. Such screening is not always
directly available for the lack of experts at the neonatal intensive care units.

In Chapter 8 we proposed a web based system to objectively assess the vessel
width and tortuosity in retinal images acquired with Nidek NM200D in both normal
and diseased infants with ROP. The aim of the tool is to allow clinicians to estimate
the ROP signs in a quantitative and reproducible way, with a fast and easy to use in-
terface.

At the beginning of the procedure, the client can choose an image from the local
drivers and upload it to the server. After image submission, a GUI is automatically
loaded on client-side, to provide for manual input. The GUI allows the client to select
the vessel to be analyzed and to set up some parameters useful for the subsequent
analysis. As second step the selected vessels are segmented by the algorithm pre-
sented in Chapter 7, running server-side. The vascular parameters are finally com-
puted and displayed to the user’s browser by means of a second GUI. Repeatability
and accuracy of the complete system were assessed by having three users indepen-
dently analyze retinal vessels from the databases provided by the Scheie Eye Institute
and by the Children Hospital of Philadelphia. The overall repeatability between users
and accuracy with respect to reference results were assessed by the Pearson’s correla-
tion coefficients, the p-values from ANOVA and paired t-tests and the ICC analysis.

10.2 Final Summary and Collaborations

This thesis concentrated on the extraction and the analysis of the features of the
vascular apparatus: the vessel network identification (veins and arteries) will allow
the assessment of its main geometrical characteristics (length, direction, caliber, bi-
furcation, tortuosity, etc.). From these findings, specific indexes of diagnostic relev-
ance have been computed, providing the clinicians with information regarding the pa-
tient’s retinopathy degree, whose significance is crucial for the diagnosis of retinal pa-
thologies.

We developed algorithms customized for the different kinds of images to analyze,
in order to achieve satisfactory performance regardless of the varying attributes re-
lated to the acquisition system or to the patient age. In particular, in this thesis we
presented three systems, designed respectively for the analysis of adult images, infant
images acquired with Nidek NM200D and infant images acquired with RetCam.

Starting from the proposed algorithms for image analysis, we developed two easy-
to-use software systems, AVRnet and ROPnet, aimed at supporting the clinicians
with the screening and the diagnosis of retinopathies.

AVRnet was proposed for the analysis of adult retinal images and it is currently
the object of clinical evaluation at the Department of Ophthalmology and Visual
Sciences, University of Wisconsin, USA, the world leading center for clinical trial re-
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tinal image analysis, whose Fundus Photograph Reading Center is considering the
adoption of the system as standard tool for the extraction of diagnostic features.

In addition, a recent collaboration with the Department of Twin Research & Ge-
netic Epidemiology, of the King’s College London Division of Genetics and Molecular
Medicine, St Thomas' Hospital, UK, has involved the analysis of more than 2000 re-
tinal fundus images with our software for the estimation of clinical indexes in retinal
vessels.

The interface and the functionality of ROPnet have been designed in collaboration
with the Departments of Ophthalmology of the Children’s Hospital and the Scheie
Eye Institute of Philadelphia, US, with the aim of meeting the requirements of the
clinicians for what concerns both the tool performance and usability. The accuracy of
parameters extracted by ROPnet (i.e. vessel width and tortuosity) was confirmed by
the high correlation obtained comparing automatic results with a ground truth ma-
nually provided by retina experts. Moreover, the web tool was already used for some
preliminary clinical study and we are currently investigating the reliability of ex-
tracted clinical indexes for the diagnosis and classification of ROP.

The system specifications for the analysis of ROP images acquired with RetCam
were discussed directly with Clarity Medical Systems, the manufacturer of the men-
tioned fundus camera. In this project, we obtained on a preliminary set of images
high sensitivity and specificity in the retinal vessel segmentation, which is a particu-
larly difficult task on RetCam infant images. The techniques for the extraction of
clinical parameters starting from the vessel morphology are currently under develop-
ment.

In perspective, practical and easily deployable tools such as those we propose
might significantly contribute to the mass-screening and the monitoring of the pro-
gression of hypertensive/diabetic retinopathies and of ROP.

The results achieved in the preliminary trials, carried out in cooperation with rele-
vant international clinical research groups, attest the quality of the developed metho-
dologies and bode well for their future clinical adoption.
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