
Design and implementation of a modern
algebraic manipulator for Celestial Mechanics

Francesco Biscani

January 30, 2008

“Design and implementation of a modern algebraic manipulator for Celestial Me-
chanics”, by Francesco Biscani (bluescarni@gmail.com), is licensed under a
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License
(http://creativecommons.org/licenses/by/3.0/).

Copyright © 2007 by Francesco Biscani.

Created with LYX and X ETEX.

mailto:bluescarni@gmail.com
http://creativecommons.org/licenses/by/3.0/

Dedicata alla memoria di Elisa.

Summary¹
e goals of this research are the design and implementation of a modern and efficient algebraic
manipulator specialised for Celestial Mechanics. Specialised algebraic manipulators are funda-
mental tools both in classical Celestial Mechanics and in modern studies on the behaviour of
dynamical systems, and they are routinely employed in such diverse tasks as the elaboration of
theories of motion of celestial bodies, geodetical and terrestrial orientation studies, perturbation
theories for artificial satellites and studies about the long-term evolution of the Solar System.

Specialised manipulators for Celestial Mechanics are usually concerned with mathematical
objects known as Poisson series (see Danby et al. [1966]), which are defined as multivariate
Fourier series with multivariate Laurent series as coefficients:∑

i
Pi

(
cos
sin

)
(i1y1 + i2y2 + . . . + inyn) ,

where the Pi are multivariate polynomials. Poisson series manipulators have been developed
continuously since the ’60s and today there are many different packages available (an incomplete
list includes Herget and Musen [1959], Broucke and Garthwaite [1969], Jefferys [1970, 1972],
Rom [1970], Bourne and Horton [1971], Babaev et al. [1980], Dasenbrock [1982], Richardson
[1989], Abad and San-Juan [1994], Ivanova [1996], Chapront [2003b,a] and Gastineau and
Laskar [2005]). General manipulators, like Mathematica and Maple, are unsuitable for use in
actual problems because their genericity implies a very high impact on performance (for many
operations this slowdown can be estimated in three or four orders of magnitude). Many of the
existing specialised manipulators, on the other hand, are much too focused on specific problems,
and the general unavailability of the source code makes it hard to reuse and adapt existing ma-
nipulators for other problems. Besides, not always the data structures and the algorithms used
in existing computer algebra systems are fast, leading to sub-optimal performance.

We propose here Piranha, a Poisson series manipulation framework designed to be extended
and adapted for different purposes. It is written in C++ using template programming techniques
(see Vandevoorde and Josuttis [2002]), it is object-oriented and uses paradigms like multiple
inheritance, iterators, static polymorphism and operator overloading. Piranha is based on generic
programming techniques, which means that it is possible to use arbitrary classes to represent the
elements of Poisson series, as long as those classes behave in a predefined way (i.e., as long as they
provide a defined set of methods). In generic programming language we can say that Piranha
defines concept classes and that the actual implementation of such concepts are models (see
Gregor et al. [2006]).

Piranha uses modern data structures for the representation of Poisson series. In particular
hashing techniques are widely employed. e main hash function used in Piranha was con-
ceived originally to operate on strings in databases (see Ramakrishna and Zobel [1997]), and
has proved to be very effective for the representation of Poisson series. Piranha employs also the
multi_index_container class from the Boost C++ libraries, which provides a flexible and
efficient container class to store and order the terms of a series in multiple ways. Many other
facilities provided by the Boost libraries are used.

¹is section is intended just as a condensed summary, for a more thorough introduction please see Chapter 1.

v

Piranha introduces also a new methodology for the computation of cosines and sines of Pois-
son series, based on a expansion into Bessel functions of the first kind known as Jacobi-Anger
development (see Brown and Churchill [1993]). is kind of development allows to compute
cosines and sines of a wide class of Poisson series, whereas the Taylor expansions commonly
employed for this task in other manipulators are effective only for specific Poisson series.

Another original contribution, to the best of our knowledge, is the approach devised for the
multiplication of Poisson series, which is based on a technique derived from the Kronecker al-
gorithm and that we have called coded arithmetics, and which allows to speed up considerably the
manipulation of trigonometric multipliers during multiplication.

We then introduce Pyranha, a set of bindings to use Piranha from the Python programming
language (see Python). With Pyranha it is possible to leverage Piranha’s capabilities from a com-
fortable and easy to use interpreted language. is way, by means of enhanced Python interfaces
(like IPython), it is also possible to use Piranha interactively à la Mathematica or Maple, without
the need to code in C++ but retaining the speed of a compiled language.

We also present some examples of use cases for a Poisson series manipulator. We show how
Piranha can be used for the transformation of theories of motion and for the computation of the
harmonic development of the tide-generating potential.

Finally, we briefly discuss Piranha’s performance by comparing it to the well-known manipu-
lators TRIP and PARI. e benchmarks are encouraging and show that Piranha is on the right
track performance-wise. Optimizations and improvements for Piranha are then discussed, with
particular focus on cache memory optimizations and memory allocation, in light of the fact that
presently Piranha employs data structure implementations and memory allocators available in
the C++ standard library (which are hence not optimized for the specific tasks of the manipula-
tor). Beside performance improvements, also functionality extensions are also discussed, such as
the implementation of still missing manipulation capabilities.

vi

Riassunto

Introduzione
Gli scopi di questa ricerca sono il design e l’implementazione di un manipolatore algebrico spe-
cializzato per la Meccanica Celeste moderno ed efficiente. I manipolatori algebrici specializ-
zati sono strumenti fondamentali sia nella Meccanica Celeste classica che nei moderni studi sui
sistemi dinamici, e sono impiegati abitualmente in diversi campi: teorie del moto di corpi ce-
lesti, studi geodetici e di orientazione planetaria, teorie perturbative per satelliti artificiali e studi
riguardanti l’evoluzione a lungo termine del Sistema Solare.

Serie di Poisson
I manipolatori algebrici specifici per la Meccanica Celeste solitamente si occupano di oggetti
matematici noti come serie di Poisson (Danby et al. [1966]).

Le serie di Poisson sono definite come serie di Fourier multivariate con serie di Laurent mul-
tivariate come coefficienti:∑

i
Pi (x1, x2, . . . , xm)

(
cos
sin

)
(i1y1 + i2y2 + . . . + inyn) ,

dove le Pi (x1, x2, . . . , xm) sono polinomi multivariati a coefficienti complessi. In Meccanica
Celeste le serie di Poisson con coefficienti puramente numerici sono note anche come serie di
Fourier: ∑

i
Ci

(
cos
sin

)
(i1y1 + i2y2 + . . . + inyn) .

Le serie di Poisson formano un gruppo abeliano sotto le operazioni di addizione e sottrazione, ma
non sotto l’operazione di moltiplicazione. Non è infatti possibile, in generale, calcolare in forma
finita l’operazione di inversione di una serie di Poisson. La moltiplicazione di serie di Poisson è
svolta con l’ausilio delle elementari formule trigonometriche di Werner:

A cosα · B cosβ =
AB

2
cos (α− β) +

AB

2
cos (α+ β) ,

A cosα · B sinβ =
AB

2
sin (α+ β) −

AB

2
sin (α− β) ,

A sinα · B cosβ =
AB

2
sin (α− β) +

AB

2
sin (α+ β) ,

A sinα · B sinβ =
AB

2
cos (α− β) −

AB

2
cos (α+ β) .

Le serie di Poisson sono inoltre caratterizzate da una forma canonica che assicura la rappre-
sentabilità in maniera univoca con il numero minimo di termini.

Le serie di Poisson in Meccanica Celeste solitamente appaiono negli ambiti delle teorie per-
turbative, dove la loro introduzione permette di applicare i metodi standard della dinamica per-
turbativa, quali ad esempio il metodo di averaging. Tipicamente la forma di serie di Poisson è

vii

mantenuta in tutte le fasi dell’elaborazione di una teoria del moto, e anche le soluzioni finali sono
espresse in forma di serie di Poisson o serie di Fourier.

L’operazione di gran lunga più dispendiosa nella manipolazione di serie di Poisson, sia in ter-
mini di potenza di calcolo che di utilizzo della memoria, è la moltiplicazione. La complessità di
questa operazione è quadratica, O

(
n2
)
(mentre addizione e sottrazione hanno complessità lin-

eare, O(n)), e pertanto si rende necessaria l’adozione di metodologie di troncamento delle serie
per evitare la crescita esplosiva del numero di termini durante le moltiplicazioni.

Operazioni avanzate sulle serie di Poisson
In Meccanica Celeste tipicamente sono necessarie manipolazioni sulle serie di Poisson più com-
plicate rispetto alle operazioni fondamentali di somma e moltiplicazione. In particolare è neces-
sario poter calcolare l’inversione e la radice quadrata di serie di Poisson. Queste due operazioni
possono essere affrontate in maniera unificata ricorrendo al teorema binomiale generalizzato di
Newton (Arfken and Weber [2005]), che permette di ricondurre l’elevamento di una serie di
Poisson ad una potenza reale ad uno sviluppo in potenze naturali (e quindi a moltiplicazioni).
Questo approccio è appropriato in Meccanica Celeste perchè le serie soggette ad elevamento a
potenza reale rappresentano tipicamente le distanze dei corpi celesti, le quali, nella maggioranza
dei casi, sono costituite da un termine costante dominante (la distanza media) e da una coda
perturbativa.

Un’operazione utile nel contesto della manipolazione di teorie del moto esistenti è il calcolo del
coseno (o seno) di una serie di Poisson. Per effettuare questo calcolo proponiamo una procedura
che, per quanto abbiamo avuto modo di verificare, non è stata utilizzata in altri manipolatori.
Questa procedura è basta sullo sviluppo di Jacobi-Anger (Brown and Churchill [1993], Weisstein
[2007]), che permette di esprimere coseni e seni di coseni e seni come serie di Poisson in cui i
coefficienti sono funzioni di Bessel del primo tipo. Il vantaggio di questo approccio risiede nel
fatto che è molto più generale rispetto alla metodologia comunemente adottata (sviluppo in serie
di Taylor) che è applicabile solo a serie di Poisson con caratteristiche peculiari.

Le operazioni trigonometriche e l’elevamento a potenza reale permettono poi di calcolare fun-
zioni speciali di serie di Poisson, quali funzioni associate di Legendre e armoniche sferiche, utili
nel contesto della Meccanica Celeste. L’implementazione del teorema di rotazione delle ar-
moniche sferiche (Wigner [1931]), utile nel contesto della trasformazione di teorie del moto, è
discussa brevemente.

Design di un moderno manipolatore di serie di Poisson
Lo sviluppo di manipolatori di serie di Poisson comincia alla fine degli anni ’50, e nel corso
degli anni vari pacchetti software sono stati sviluppati (una lista incompleta include Herget and
Musen [1959], Broucke and Garthwaite [1969], Jefferys [1970, 1972], Rom [1970], Bourne
and Horton [1971], Babaev et al. [1980], Dasenbrock [1982], Richardson [1989], Abad and
San-Juan [1994], Ivanova [1996], Chapront [2003b,a] e Gastineau and Laskar [2005]).

I manipolatori generici, come ad esempio Maple e Mathematica, sono inadatti per l’utilizzo
nell’ambito della Meccanica Celeste perchè la loro genericità implica una consistente riduzione

viii

Figure 0.1: Schema di un boost::multi_index_container in cui sono definiti due or-
dinamenti differenti.

delle prestazioni, stimata in 3-4 ordini di grandezza. I software specializzati esistenti, d’altra
parte, sono spesso troppo specifici per la risoluzione di un determinato problema, e la gen-
erale impossibilità di ottenere il codice sorgente rende impossibile il riutilizzo e l’adattamento
di soluzioni esistenti. I linguaggi di programmazione normalmente impiegati, inoltre, sono di
carattere procedurale e rendono difficoltoso il riutilizzo del codice disponibile. Molti dei ma-
nipolatori esistenti, infine, usano strutture dati e algoritmi non ottimali.

Questi sono i motivi che hanno condotto all’ideazione di Piranha, un framework di manipo-
lazione per serie di Poisson. Piranha è scritto in C++ usando tecniche di programmazione gener-
ica tramite template (Vandevoorde and Josuttis [2002]) e programmazione a oggetti. Le librerie
C++ Boost (Boost) sono impiegate estensivamente.

Per quanto concerne algoritmi e strutture dati, Piranha fa un uso estensivo di tecniche di hash-
ing per l’identificazione dei termini, mentre per l’ordinamento delle serie vengono impiegati alberi
a ricerca binaria auto-bilancianti (self-balancing binary search trees). L’ordinamento delle serie è
necessario per l’implementazione efficiente di metodologie di troncamento da applicare durante
le moltiplicazioni. La struttura base di una serie di Poisson in Piranha è costituita da una classe
contenitore disponibile nelle librerie Boost, chiamata multi_index_container, che per-
mette di definire semantiche di accesso e ordinamenti multipli per gli elementi contenuti (vedi
Figura 0.1).

Piranha: architettura e dettagli di implementazione

Piranha è basato sulla programmazione generica tramite template. Ciò significa che gli elementi
della architettura del manipolatore (i termini delle serie, i coefficienti, le parti trigonometriche,
etc.) non sono prefissati: qualsiasi classe può essere utilizzata come elemento dell’architettura, a
patto che soddisfi certi requisiti. In gergo, si dice che l’architettura di Piranha definisce dei con-
cetti (Gregor et al. [2006]), mentre le implementazioni di tali concetti costituiscono un modello.
In C++ un concetto è definito implicitamente dalla richiesta dell’implementazione di un deter-
minato set di metodi e membri: se una classe non implementa un concetto, questa classe non può

ix

essere usata in altre classi e routine generiche che richiedono l’implementazione di tale concetto.
Il controllo sull’implementazione di un concetto in C++ avviene al momento della compilazione
(o, in altri termini, i concetti sono statici). Ciò permette al compilatore di effettuare efficaci
procedure di ottimizzazione ed evita qualsiasi tipo di overhead al runtime.

Attualmente l’architettura di Piranha definisce i concetti di:

• coefficiente,

• parte trigonometrica,

• termine.

Il concetto di coefficiente, ad esempio, richiede le operazioni di moltiplicazione per un altro
coefficiente e di divisione per un numero intero, al fine di implementare le formule trigonomet-
riche di Werner. Le parti trigonometriche, invece, devono implementare il concetto di somma e
differenza trigonometrica.

L’architettura di Piranha prevede la presenza di una classe base che contiene i termini delle serie
di Poisson. Questa classe viene ereditata da una classa specializzata che eredita in maniera mul-
tipla da altre classi, chiamate toolbox, le quali forniscono le implementazioni di funzioni avanzate
e specializzate per determinati tipi di serie (vedi Figura 0.2). La classe base, infatti, implementa
solo le operazioni fondamentali sulle serie di Poisson (I/O, inserimento termini, etc.). In un certo
senso questo modello può essere visto come la messa in pratica di un’idea espressa in Henrard
[1988] (per quanto abbiamo avuto modo di verificare, nessun altro manipolatore implementa
un’architettura a livelli di questo tipo).

La funzione di hash adottata in Piranha è stata ideata per l’uso nei database e proposta in Ra-
makrishna and Zobel [1997], e si è rivelata estremamente performante per l’uso nelle serie di
Poisson. Per aumentare le performance Piranha fa uso inoltre di istruzioni vettoriali, in partico-
lare delle istruzioni SSE2 dei moderni processori Intel.

Manipolazione di polinomi sparsi multivariati

Un altro contributo presentato in questo lavoro è l’implementazione di una procedura efficiente
per la moltiplicazione di polinomi multivariati sparsi e serie di Poisson, basata sull’algoritmo di
Kronecker. L’idea è quella di codificare i monomi (o le parti trigonometriche delle serie di Pois-
son) tramite il seguente schema, chiamato ordinamentom-variaton-lessicografico (questo esempio
si riferisce al caso n = m = 3):

x

Figure 0.2: Gerarchia delle classi nell’architettura di Piranha.

xi

x y z Codice

0 0 0 0
0 0 1 1
0 0 2 2
0 0 3 3

0 1 0 4
0 1 1 5
0 1 2 6
0 1 3 7

0 2 0 8
0 2 1 9
0 2 2 10
0 2 3 11

.
3 3 3 63

Si dimostra che, sotto certe condizioni, si può effettuare l’aritmetica degli esponenti diretta-
mente sui codici, abbassando quindi la complessità dell’operazione da O(m) a O(1). Inoltre il
codice costituisce anche una funzione di hash perfetta (nel senso che c’è una relazione biunivoca
fra ciascun set di esponenti e il rispettivo codice), e quindi la rappresentazione codificata si presta
bene per l’utilizzo in tabelle hash.

Pyranha: Piranha dentro Python

Per facilitare l’utilizzo di Piranha, abbiamo scritto uno strato software che permette di accedere al
manipolatore direttamente dal linguaggio Python (Python). Con Pyranha è possibile utilizzare
Piranha da un linguaggio interpretato di livello più alto rispetto al C++, senza però sacrificare le
performance di un linguaggio compilato.

È possibile utilizzare Pyranha da interfacce interattive Python avanzate, come IPython, che,
in congiunzione con librerie grafiche come matplotlib e di librerie GUI come PyQt, permettono
di lavorare in un ambiente grafico interattivo simile a quelli offerti da prodotti come Maple e
Mathematica (vedi Figura 0.3).

Applicazioni

In questo capitolo vengono discusse due applicazioni di Piranha a problemi diMeccanica Celeste.
La prima applicazione consiste nel calcolo dello sviluppo armonico del potenziale generatore

di marea (TGP) nel sistema Sole-Terra-Luna. La procedura è totalmente analitica e basata sulla
teoria lunare ELP2000, e si presta ad estensioni e miglioramenti tramite l’adozione di un modello
fisico più accurato che includa effetti di nutazione, perturbazioni planetarie e di figura, etc.

xii

Figure 0.3: Uno screenshot di Pyranha utilizzato con IPython, matplotlib e PyQt in ambiente
GNU/Linux.

xiii

La seconda applicazione è la trasformazione della teoria TASS (satelliti del sistema di Saturno)
in una forma adatta per l’utilizzo in una teoria analitica del moto di un satellite artificiale o di una
piccola luna. La complicata sequenza di operazioni da effettuare per ottenere la forma desiderata
è descritta, ed i limiti della teoria TASS in questo contesto sono menzionati.

Prestazioni e sviluppi futuri
Le prestazioni di Piranha sono comparate a quelle di software maturi, come il manipolatore per
la Meccanica Celeste TRIP e il manipolatore polinomiale Pari/GP. I benchmark indicano che
le prestazioni di Piranha sono comparabili e, in certi casi, migliori. Ricordiamo che Piranha è in
sviluppo da relativamente poco tempo, e una parte minina dello sviluppo è stata finora dedicata
all’ottimizzazione delle performance.

Gli sviluppi futuri di Piranha verteranno sull’ottimizzazione (in particolare verso un utilizzo
efficiente della memoria cache, verso l’adozione di strutture dati allo stato dell’arte, come il cuckoo
hashing, verso la parallelizzazione del codice e verso un utilizzo più pervasivo delle istruzioni
vettoriali dei moderni processori), e sull’implementazione di funzionalità di più alto livello ancora
mancanti.

Viene infine discussa la possibilità di collaborazione con altri progetti open-source di manipo-
lazione algebrica, in particolare con il progetto SAGE.

xiv

C

1 Introduction 1
1.1 Motivation . 1
1.2 Piranha . 2
1.3 Structure of the dissertation . 4

2 Poisson series and their manipulation 5
2.1 Poisson series . 5

2.1.1 Nomenclature and conventions . 6
2.1.2 Basic properties . 7
2.1.3 Canonical form . 7
2.1.4 Fourier series . 8

2.2 Poisson series in Celestial Mechanics . 8
2.2.1 Example: development of the disturbing function 9
2.2.2 Example: the ELP2000 lunar theory 10

2.3 Term insertion and basic operations on Poisson series 11
2.3.1 Complexity signatures and their effects 11

3 Nontrivial operations on Poisson series 13
3.1 Real powers . 13
3.2 Trigonometric operations . 16
3.3 Other special functions . 18

4 Designing a modern Poisson series manipulator 21
4.1 Why the need for specialized algebraic manipulators? 22

4.1.1 Why the need for another Poisson series manipulator? 22
4.2 Preliminary design considerations . 23

4.2.1 Generic programming . 24
4.2.2 Choosing a computer language . 25
4.2.3 e three lives of Piranha . 26

4.3 C++’s features used in Piranha . 27
4.3.1 Namespaces . 27
4.3.2 Classes . 28
4.3.3 Template classes . 29
4.3.4 Operator overloading . 30
4.3.5 Iterators . 31

4.4 e Boost libraries . 31

xv

Contents

4.5 Data structures for Poisson series . 32
4.5.1 Ordering of terms: binary search trees 32
4.5.2 Identification of terms: hash tables . 36
4.5.3 e boost::multi_index_container class 37

5 Piranha: architecture and implementation details 43
5.1 Main classes for Poisson series . 43

5.1.1 Example: basic Poisson series coefficient concept 44
5.2 Anatomy of the base series class . 45
5.3 Representation of arguments . 47
5.4 Toolboxes . 47

5.4.1 A note on the implementation of toolboxes 50
5.5 Series I/O . 50
5.6 Improving performance . 51

5.6.1 Use of temporary hash sets to speed up multiplications 52
5.6.2 Hash function . 52
5.6.3 Packed operations on integers and SIMD instructions 53
5.6.4 Memory management . 55
5.6.5 Improving evaluation speed . 55
5.6.6 Parallelization . 56

6 On the manipulation of sparse multivariate polynomials 61
6.1 Types of polynomials . 61

6.1.1 Dense polynomials . 61
6.1.2 Sparse polynomials . 62

6.2 Polynomials in Piranha . 63
6.2.1 A general-purpose polynomial class 63

6.3 A faster polynomial class: coded monomial arithmetics 64
6.3.1 Implementation of a sparse polynomial class with coded arithmetics . . 68

6.4 A mixed approach? . 69

7 Pyranha, the Python bindings for Piranha 71
7.1 Easing the utilisation of specific manipulators 72

7.1.1 Issues with existing approaches . 72
7.1.2 e Python programming language 73

7.2 Pyranha: brief overview . 73
7.2.1 An interactive graphical environment 74

8 Applications 79
8.1 Harmonic development of the TGP . 79
8.2 Perturbations in the Saturn planetary system 81

8.2.1 Elliptical orbital elements . 82
8.2.2 From elliptical orbital elements to radius 83

8.2.2.1 Eccentricity e . 83

xvi

Contents

8.2.2.2 Complex exponential ofM 84
8.2.2.3 Radius r . 84
8.2.2.4 Numerical results and limitations 85

9 Future work and performance remarks 87
9.1 Generalising coded arithmetics . 87
9.2 Benchmarks . 91

9.2.1 Fourier series . 91
9.2.2 Multivariate polynomials . 93

9.3 Future improvements . 95
9.3.1 A more generic architecture? . 95
9.3.2 Improving the implementations of data structures 96
9.3.3 SIMD instructions and parallelization 96
9.3.4 Pyranha improvements . 96
9.3.5 Interaction with other algebraic manipulators 97

9.4 Availability . 97

A Special functions commonly used in Celestial Mechanics 99

Bibliography 101

Nomenclature 109

Index 111

xvii

Contents

xviii

L  F
0.1 Schema di un boost::multi_index_container in cui sono definiti due

ordinamenti differenti. ix
0.2 Gerarchia delle classi nell’architettura di Piranha. xi
0.3 Uno screenshot di Pyranha utilizzato con IPython, matplotlib e PyQt in ambi-

ente GNU/Linux. xiii

3.1 Testing the precision of real exponentiation of a Fourier series. e blue line
represents the inversion of the evaluation of the ELP2000 series ELP3 over a
Julian year, the green line represents the absolute value of the difference between
the blue line and the evaluation of the inverted ELP3 series. 15

3.2 Testing the precision of the cosine of the Fourier series ELP2 (see explanation
in Figure 3.1). 19

3.3 Testing the precision of the associated Legendre function P1
2 of the lunar series

ELP2 (see explanation in Figure 3.1). 20

4.1 Binary search tree (unbalanced). 33
4.2 Balanced binary search tree. 34
4.3 A hash function operation on strings and outputting hexadecimal values. 36
4.4 A hash table storing strings. 37
4.5 Diagram of a boost::multi_index_container with two indices. . . . 38

5.1 Piranha’s hierarchy of fundamental classes for the representation of Poisson series. 44
5.2 Base Poisson series class members. 46
5.3 Relation between Piranha’s base classes and toolboxes. 49
5.4 Benchmark for three evaluation algorithms: dumb brute force (red), smarter

brute force (green) and complex exponential caching algorithm (blue). e series
being evaluated are taken from the TASS and ELP2000 theories. 57

5.5 Benchmark of parallelized evaluation. Timings for 300000 evaluations of a Fourier
series on two differentmulti-core system in serial and parallel mode are displayed,
and compared to the theoretical minimum running time in parallel mode. . . . 59

7.1 A screenshot of Pyranha used in conjunction with IPython and matplotlib in
GNU/Linux. e Python prompt is in the bottom-left corner, while on the
right the PyQt GUI is displaying the arguments currently defined in the session.
Arguments’ names can be rendered through a LATEX engine, if available. e
graph displays the precision of a series multiplication over a timespan, and it has
been produced directly from the IPython command line. e graph can be saved
in a variety of formats, a capability offered by the matplolib library. 77

xix

List of Figures

8.1 Titan’s orbital radius from TASS (blue line) is compared to its harmonic de-
velopment obtained through algebraic manipulations. e absolute value of the
difference is plotted in green. 86

9.1 Piranha’s performance benchmarked against TRIP in a Fourier series multipli-
cation. Piranha’s “plain” and “coded” multiplication algorithms are tested with
respect to two different versions of TRIP. Running time is expressed in seconds. 92

9.2 Piranha’s performance benchmarked against PARI/GP’s for a multivariate poly-
nomialmultiplication. Piranha is tested using both double precision and arbitrary-
size integer coefficients for the polynomials. Running time is expressed in sec-
onds. 94

xx

 I

A computer-assisted algebraic manipulation has been employed in many and di-
verse fields of physics and applied mathematics, its birth and first steps are closely con-
nected to Celestial Mechanics. Perturbative methods, in particular, are naturally fit to

be implemented with the aid of an algebraic manipulator, since they involve simple operations
(e.g., additions, multiplications, differentiations) on mathematical objects with a simple logical
structure (e.g., power series, Fourier series). Since the dawn of the computer era in the ’50s,
hence, a considerable amount of work in the field of Celestial Mechanics has been devoted to
the development of software systems for the automated manipulation of algebraic expressions¹.

is dissertation presents the results of our work on the design and implementation of an al-
gebraic manipulation software specialised for Celestial Mechanics. We refer to a specialised alge-
braic manipulator because its applicability is limited to those mathematical structures commonly
employed in perturbation theories, i.e., polynomials and Poisson series. By constrast general ma-
nipulation systems, like the well-known Maple and Mathematica packages, are built to handle
arbitrary mathematical expressions. In specialised manipulators such genericity is sacrificed in
favour of performance and lower memory consumption, and as a result their computational effi-
ciency is orders of magnitude better than that of the general systems. Specialised manipulators,
in other words, are designed for the solution of large scale problems that are out of reach for
general manipulators².

1.1 Motivation

We first came in touch with computer-assisted algebraic manipulation while working on the
harmonic development of the tide-generating potential (TGP) in the Earth-Moon-Sun system
(see Biscani [2004], Casotto and Biscani [2004a,b]). e initial version of our manipulator was
limited to computations on Fourier series, and it was developed because Mathematica turned out
to be inadequately slow for the task.

Soon we learnt about the ubiquity of specialised manipulators in Celestial Mechanics and
their central role in the formulation of analytical theories of motion. We also learnt about the
limitations that afflict the manipulators that have been developed in the last forty years, and
which we have identified as follows:

¹When automated calculators were not available, the accurate application of perturbation methods to specific as-
trodynamical problems could easily take years (see, for instance, Brown’s tables of the motion of the Moon -
Brown [1919] - or Doodson’s harmonical expansion of the tide-generating potential - Doodson [1922]). After
the introduction of the first computers, the same taks could instead be performed in a matter of hours.

²Studies on the long-term stability of the Solar System, for instance, need to manipulate Poisson series of millions
of terms (see, for instance, Kuznetsov and Kholshevnikov [2004]).

1

1 Introduction

• early manipulators were tied to specific hardware and software architectures and they are
unusable on today’s computers;

• some of the existing manipulators are much too specific: they are written for a limited scope
and it is nearly impossible to adapt them to new needs;

• many of the existing manipulators use sub-optimal data structures for the representation
of mathematical objects, leading to unsatisfying performance. Performance is crucial and
one the raison d’être of specialised manipulators;

• source code is generally unavailable, thus it is impossible to re-use existing code or incor-
porate it in a new software;

• computer languages commonly used for specialised manipulators (FORTRAN and C,
mainly) are limiting for the flexibility and reusability of existing code.

e system we have designed and implemented aims at addressing all these points.

1.2 Piranha
e software system we have implemented is called Piranha, and it is built to deal principally
with objects known as Poisson series. Poisson series can be defined as multivariate Fourier series
with multivariate power series as coefficients, and can hence be expressed by the following general
formula: ∑

i
Pi (x1, x2, . . . , xm)

(
cos
sin

)
(i1y1 + i2y2 + . . . + inyn) , (1.1)

where x and y are literal quantities, i = (i1, i2, . . . , in) is a vector of integer values and Pi a mul-
tivariate polynomial. Poisson series naturally arise during the application of classical perturbative
methods for Celestial Mechanics. e Poisson series form is important because it represents the
spectral decomposition of the gravitational disturbing potential, and it allows the application of
standard methods for the solution of the equations of motion. A Poisson series manipulator
is expected to be able to add, subtract, multiply, differentiate and perform more complicated
manipulations on Poisson series while preserving their form.

In designing Piranha our main focus has been the search of a fine equilibrium point between
performance and genericity. On one hand we wanted to reach top-notch speed of execution
(which, as we mentioned earlier, is a major concern in specialised algebraic manipulators); on
the other hand we did not want to develop a system which cannot be used for purposes other
than those envisioned by the original authors. Most importantly, we wanted Piranha to be easily
extendible and adaptable by other researchers and developers.

To reach these goals we have drawn from modern computing idioms, data structures and al-
gorithms, thus marking a departure from the programming conventions traditionally associated
with algebraic manipulation in Celestial Mechanics. In particular, Piranha, which is written in
C++, adopts a fully object-oriented (OO) architecture which heavily relies on template program-
ming and meta-programming facilities. is approach is sometimes called modern C++ (a term

2

1.2 Piranha

first popularized by Alexandrescu [2001]), and today it constitutes an active area of research in
computer science.

e adoption of an OO design, coupled with the flexibility of generic programming through
templates, has allowed us to approach the problem of the manipulation of Poisson series from
an abstract point of view without any negative impact on performance. e result is that Pi-
ranha is not a manipulator: it is a manipulation framework that allows its users to define their
own manipulators or to extend or modify the already implemented ones with minimal effort³.
We see this approach (which was envisioned in a well-known paper by Jacques Henrard - see
Henrard [1988]) as a way to address the shortcomings related to the limited scope of the existing
manipulators.

Beside the definition of an abstract manipulation framework, with Piranha we have also iden-
tified and implemented new methodologies for the manipulation of Poisson series and polyno-
mials. In particular, we have:

• verified that hashed data structures deliver good performance in the context of the manip-
ulation of Poisson series⁴,

• tested and implemented a new andmore generalmethodology for the calculation of circular
functions of Poisson series (based on the Jacobi-Anger developments),

• identified and implemented a methodology for the multiplication of sparse multivariate
polynomials and Poisson series which is based on the Kronecker algorithm and whose
performance in practice is promising. As far as we were able to verify from the literature,
it is the first time that the Kronecker algorithm is applied to the manipulation of Poisson
series.

We have also verified that Piranha can compete, performance-wise, on the same level of more
mature and optimized software, hence showing that the level of abstractness allowed by the
framework is not detrimental for performance.

In designing Piranha we have strived to employ as much as possible existing libraries and
solutions for common computational problems. e implementations of the basic data structures
used in Piranha, for instance, are those available in the standard C++ library. As result, Piranha
is built on a stack of Free Software libraries, and in particular it relies heavily on the facilities
provided by the Boost C++ libraries (see Boost). is choice has proven to be effective, since
from the beginning we could rely on a very solid starting point without the need to “reinvent the
wheel”. Although the standard implementations of algorithms and data structures have proven
to be adequate, there is always the possibility to re-implement them in a more optimized way if
necessary. anks to the generic nature of C++ template programming, implementations can be
swapped out without the need to change any other part of the code.

Piranha has been presented in various international meetings dedicated to Celestial Mechan-
ics, both as the main subject (Biscani and Casotto [2006], Casotto and Biscani [2007, 2008]) and
in the context of other works (Casotto and Biscani [2005]). We expect that, as its capabilities

³ At the time of this writing Piranha implements 12 different manipulators in ∼12000 lines of code.
⁴Hashed containers are strangely uncommon in the landscape of specific manipulators for Celestial Mechanics,

although their use is more widespread in other fields.

3

1 Introduction

grow, Piranha will acquire an increasingly relevant role in our research projects, especially in the
context of methods for perturbation theories.

Work on Piranha will continue towards the implementation of the functionalities still missing
and towards the optimization of the existing algorithms. Piranha will soon be made available
under a Free Software license and we will try to build a community of users and developers
around it.

1.3 Structure of the dissertation
In the first part of this dissertation (Chapters 2 and 3) we introduce Poisson series by showing
where they arise from in Celestial Mechanics and providing a formal definition. We introduce
the concept of canonical form for Poisson series and show the basic mathematical operations that
can be performed on them. We also show how we can perform common nontrivial operations
on Poisson series (e.g., circular functions, real powers) by means of truncated expansions.

In Chapter 4 we introduce the preliminary design considerations for Piranha that stem from
the analysis of the Poisson series structure described earlier and from the study of the literature.
We explain the choice of the C++ programming language and introduce template programming.
We then procede to describe C++’s features used in Piranha and the Boost libraries. We also
introduce the concepts of binary search trees and hash tables, and show how they can be efficiently
used in the manipulations of Poisson series.

Chapter 5 examines in deeper detail the manipulation framework defined by Piranha. C++
concepts and models are introduced, and the main classes of the framework are briefly described.
e concept of toolbox is also explained, and some techniques to speed up Piranha during the
most demanding operations are presented.

Chapter 6 deals with the manipulation of sparse multivariate polynomials. It is shown how
these entities can be treated similarly to Fourier series. An application of the Kronecker algorithm
to speed up the multiplication of sparse multivariate polynomials is presented and explained.

In Chapter 7 Pyranha, the Python bindings for Piranha, are presented. With Pyranha it
is possible to access Piranha’s capabilities from the popular Python language without sacrificing
performance. It is also shown how Pyranha can be used to provide an interactive graphical access
to Piranha.

InChapter 8 two real-world applications of Piranha are presented. e first one shows how the
tide-generating potential in the Sun-Earth-Moon system can be harmonically decomposed with
the help of Piranha; the second one shows how to transform the theory of motion for Saturn’s
satellites, TASS, from one coordinate system to another.

Finally, in Chapter 9, Kronecker’s algorithm is applied also to Poisson series, and Piranha
is benchmarked against two popular manipulation packages. Our tests show how Piranha can
compete with more mature and optimized software. Future work is also presented.

4

 P   


P series (Danby et al. [1966]) have a central role in both classical and modern Celes-
tial Mechanics. In a sense it could be said that Poisson series constitute one of the basic
mathematical building blocks of perturbation theories: they unify polynomials, which

typically arise from Taylor expansions, and Fourier series, which are the logical choice when deal-
ing with time-periodic phenomena. In this chapter we will define Poisson series, show where
they arise from in Celestial Mechanics and illustrate the basic operations that can be performed
on them.

2.1 Poisson series
For the purpose of this dissertation we will adopt the definition of Poisson series given in San-
Juan and Abad [2001]:

Definition Poisson series are multivariate Fourier series with multivariate Laurent series as co-
efficients.

We recall here the definition of Laurent series:

Definition Laurent series are power series with complex coefficients which include terms of
negative degree.

Although in Celestial Mechanics Poisson series originate from infinite series, in practice these
series are truncated to include a finite number of terms. From now on when referring to Poisson
series, hence, we will mean “finitely truncated multivariate Fourier series with finitely truncated
multivariate Laurent series as coefficients”.

e formula of a Poisson series is then:∑
i

∑
j
Mj (x1, x2, . . . , xm)

(
cos
sin

)
(i1y1 + i2y2 + . . . + inyn) . (2.1)

i and j are vectors of integers whose sizes are n andm respectively, so that

i = (i1, i2, . . . , in) : ik ∈ Z∀k ∈ [1,n] , (2.2)
j = (j1, j2, . . . , jm) : jk ∈ Z∀k ∈ [1,m] . (2.3)

5

2 Poisson series and their manipulation

Mj is a multivariate monomial in the literal quantities (x1, x2, . . . , xm) with integer exponents
and complex numerical coefficient Cj:

Mj = Cjx
j1
1 x

j2
2 . . . xjm

m . (2.4)

It is important to note that in eq. (2.1) it is implied that every i vector has its own set of j vectors,
so that the quantity

Pi (x1, x2, . . . , xm) =
∑

j
Mj (x1, x2, . . . , xm) (2.5)

is a complex multivariate polynomial with integer exponents, and eq. (2.1) can be rewritten more
compactly as

∑
i
Pi (x1, x2, . . . , xm)

(
cos
sin

)
(i1y1 + i2y2 + . . . + inyn) . (2.6)

e literal quantities (x1, x2, . . . , xm) are known as the polynomial arguments of the Poisson series,
while the literal quantities (y1,y2, . . . ,yn) are known as the trigonometric arguments.

2.1.1 Nomenclature and conventions

From now on we will adopt the following conventions (with reference to eqs. (2.1) and (2.6)):

• n will be referred to as the trigonometric width of the series,

• m will be referred to as the polynomial width of the series,

• the number of terms of a Poisson series will be called the length of the series,

• the quantities Pi (x1, x2, . . . , xm) and(
cos
sin

)
(i1y1 + i2y2 + . . . + inyn)

will be referred to respectively as the polynomial part (or, more generally, coefficient) and
trigonometric part of the terms of a Poisson series,

• except when explicitly stated otherwise, in order to make the notation less cumbersome the
appereance of “cos” inside the formula of a Poisson series will mean that the trigonometric
function can be either cosine or sine.

Additionally, we will keep referring to the indices vectors of trigonometric and polynomial ar-
guments as the i-vectors and j-vectors respectively. e elements of the i-vectors will also be
referred to as trigonometric multipliers, while the elements of the j-vectors will also be referred to
as polynomial exponents.

6

2.1 Poisson series

2.1.2 Basic properties
It is trivial to show that the set of Poisson series constitutes an abelian group under the operations
of addition (+) and subtraction (−), and whose identity element is the null Poisson series with
the following characteristics:

• the number of polynomial and trigonometric arguments is zero,

• there is just one term in the series and this term has a numerical coefficient Cj equal to
zero.

Additionally, the set of Poisson series is closed under the operation of multiplication (·) and
partial derivation with respect to polynomial and trigonometric arguments. When multiplying
two Poisson series the products of trigonometric parts are reduced to combinations of cosines
and sines through Werner’s trigonometric formulas:

A cosα · B cosβ =
AB

2
cos (α− β) +

AB

2
cos (α+ β) ,

A cosα · B sinβ =
AB

2
sin (α+ β) −

AB

2
sin (α− β) ,

A sinα · B cosβ =
AB

2
sin (α− β) +

AB

2
sin (α+ β) ,

A sinα · B sinβ =
AB

2
cos (α− β) −

AB

2
cos (α+ β) .

(2.7)

Poisson series, however, do not constitute an abelian group under the operation of multiplication,
since, in general, the inverse of a Poisson series cannot be expressed as another Poisson series in
finite terms (a procedure to compute the approximated inverse of a Poisson series is illustrated in
§3.1).

2.1.3 Canonical form
e notion of a canonical form for Poisson series, while not strictly necessary from a mathemati-
cal point of view, is extremely helpful for the representation of Poisson series in computer algebra
systems.

Definition A Poisson series is said to be in canonical formwhen the following conditions are met:

1. the first non-zero element of all the i-vectors is strictly positive¹,

2. the set of i-vectors contains no duplicate elements,

3. there are no terms with Cj = 0,

4. there are no terms with sine trigonometric part and null i-vector.

¹is is just a convention, since an equally useful canonical form could be defined with all the first non-zero elements
being strictly negative.

7

2 Poisson series and their manipulation

is canonical form ensures that the number of terms needed to represent a Poisson series is kept
to the minimum, and allows to simplify the algorithms employed in the manipulations. From
now on it will be assumed that all the Poisson series, unless otherwise specified, are in canonical
form.

2.1.4 Fourier series

A useful subset of Poisson series which typically appears in the solutions of the theories of motion
of celestial bodies is the one characterized by a null polynomial width:∑

i
Ci cos (i1y1 + i2y2 + . . . + inyn) . (2.8)

e polynomial parts of the terms, in other words, have all degree 0 and are hence purely nu-
merical. is kind of Poisson series is often referred to in the literature as Fourier series. In this
dissertation we will adopt the same convention.

Additionally, since Piranha was initially conceived for the manipulation of Fourier series and
because Poisson series can be treated with the same techniques adopted for Fourier series, we
will often use Fourier series in examples and benchmarks.

2.2 Poisson series in Celestial Mechanics
Poisson series in Celestial Mechanics arise in the early stages of the formulation of a theory of
motion², and can be seen as one of the fundamental mathematical building blocks of perturbative
methods. e Poisson series form is sought after and maintained throughout the machinery of
perturbation theories because it provides the spectral decomposition of the disturbing gravita-
tional potential. is kind of decomposition is fundamental because it allows to discriminate the
type of perturbation and hence to apply the standard methods of solution of the equations of
motion.

A researcher interested in the long-period evolution of the Solar System, for instance, is typ-
ically interested in the secular (i.e., slowly varying) perturbative terms of the disturbing function
and discards the high-frequency terms assuming that their contribution over a sufficiently long
time span averages to zero. In Murray and Dermott [2000], Chapter 6, for instance, it is shown
how this approach, an application of the averaging principle, allows to devise an analytical descrip-
tion of the long-time evolution of Jupiter’s orbital elements in good accordance with numerical
integrations. More generally, the spectral decomposition of the disturbing potential allows to
classify the perturbative contributions and keep only those which are relevant to the particular
problem being considered.

Not only the Poisson series form is kept throughout the calculations of perturbative theories:
theories of motion themselves are expressed as Poisson series. High precision analytical theories
like VSOP87 (Bretagnon and Francou [1988]) for the planets of the Solar System, ELP2000
(Chapront-Touzé andChapront [1988]) for the Earth-Moon system, TASS (Vienne andDuriez

²We recall that the term theory of motion in this context refers to an analytical formula expressing the evolution in
time of the position of a celestial body.

8

2.2 Poisson series in Celestial Mechanics

[1995]) for Saturn’s main satellites and theories of lunar libration (e.g., Moons [1982]) are all
expressed as Poisson series. e Poisson series form of these theories allows them to be used as
starting points for other studies, as seen for instance in Casotto and Biscani [2004a] to achieve
the harmonic decomposition of the tide-generating potential.

2.2.1 Example: development of the disturbing function
One of the first steps in the formulation of a theory ofmotion is the development of the disturbing
function, i.e., the gravitational attraction exercised by the secondary bodies in a system of self-
gravitating masses dominated by the gravitational pull of one massive primary body. Following
the procedure and the notation of Murray and Dermott [2000], Chapter 6, the disturbing func-
tion R on the internal secondary in a three-body coplanar system is first expanded into Legendre
polynomials Pl:

R ∝ 1
r ′

∞∑
l=2

(r
r ′

)l

Pl (cosψ) , (2.9)

where r and r ′, with r < r ′, are the two secondaries’ distances from the primary and ψ is their
angular separation. Legendre polynomials can be expressed as natural powers of their arguments
cosψ, which in turn can be expressed in terms of the secondaries’ true anomalies and longitudes
of periapsis, f, f ′,ϖ andϖ ′ respectively:

cosψ = cos
(
f ′ − f+ϖ ′ −ϖ

)
. (2.10)

e cosines and sines of the true anomalies can then be extracted from cosψ through elementary
trigonometric formulas, and expanded using the well-known elliptic expansions (see Murray and
Dermott [2000], Chapter 2)

cos f = −e+
2
(
1 − e2

)
e

∞∑
s=1

Js (se) cos sM, (2.11)

sin f = 2
√

1 − e2
∞∑

s=1

1
s

d

de
Js (se) sin sM, (2.12)

where e and M have the usual meanings of eccentricity and mean anomaly, and Js are Bessel
functions of the first kind (see Abramowitz and Stegun [1964]). If the Bessel functions are ex-
pressed as power series, their derivatives calculated and the quantities 1/e and

√
1 − e2 expanded

through a MacLaurin development, the Poisson series form is achieved. For instance, the ex-
pansion for cos f up to the fourth order in eccentricity is

cos f = cosM+ e (cos 2M− 1) +
9
8
e2 (cos 3M− cosM)

+
4
3
e3 (cos 4M− cos 2M)

+ e4
(

25
192

cosM−
225
128

cos 3M+
625
384

cos 5M
)

. (2.13)

9

2 Poisson series and their manipulation

is is a Poisson series in non-canonical form with trigonometric and polynomial widths equal
to one. It is then possible to expand in a similar fashion the quantities 1/r ′ and r/r ′ in eq. (2.9)
and obtain again Poisson series in polynomial variables e and e ′ and trigonometric variablesM
and M ′. Since the set formed by Poisson series is closed under the operations of addition and
multiplication, the expression for the disturbing function R is again a Poisson series.

We would like to point out the fast growth of the number of Poisson series terms resulting
even from this simple calculation. By taking into account a non-coplanar physical model, by
pushing the developments to higher orders and through the successive manipulations that are
usually performed on the disturbing function, the lengths of the series being manipulated grow
explosively. Modern studies on the long-term evolution of planetary systems employ series of
millions of terms (see, for instance, Kuznetsov and Kholshevnikov [2004]).

2.2.2 Example: the ELP2000 lunar theory
e ELP2000 lunar theory (see Chapront-Touzé and Chapront [1988]) provides an accurate
analytical description of themotion of the Earth-Moon system around the Sun which, in its most
complete form, is characterised by an accuracy comparable to that of numerical integrations (see,
for instance, Chapront and Chapront-Touzé [1981]). As an illustrative example, we reproduce
here the first terms of the solution of the main problem³ of the lunar theory for the distance of
the Moon from Earth’s barycenter:

Amplitude (km) D l ′ l F

385000.52719 0 0 0 0
−20905.32206 0 0 1 0
−3699.10468 2 0 −1 0
−2955.96651 2 0 0 0

.

is table translates into the Fourier series

385000.52719 − 20905.32206 cos l+
− 3699.10468 cos (2D− l) − 2955.96651 cos 2D+ . . . (2.14)

e first term, a constant, is roughly equivalent to the mean lunar distance and represents an
unpertrubed circular motion. e following terms express the deviation from the circular orbit.
e literal quantitiesD, l ′, l and F are calledDelaunay arguments, and they are expressed as power
series in time according to the general formulation:

λ = λ(0) + λ(1)t+ λ(2)t2 + λ(3)t3 + λ(4)t4, (2.15)

where the λ(i) have known numerical values. To compute the lunar distance at a certain time t0
it is sufficient to evaluate the Delaunay arguments at t = t0, substitute such numerical evaluation

³e term main problem of the lunar theory designates a simplified dynamical model in which Earth, Sun and Moon
are considered point masses subject only to their mutual gravitational attraction (see Brown [1960]).

10

2.3 Term insertion and basic operations on Poisson series

into eq. (2.14) and evaluate the trigonometric functions and the summation of the terms of the
series.

e full solution for the Earth-Moon-Sun system provided by the ELP2000 theory includes
figure perturbations, planetary perturbations, tidal effects and relativistic perturbations, and is
comprised of approximately 37000 terms.

2.3 Term insertion and basic operations on Poisson series

As stated in §2.1.2, the Poisson series set is closed under the operations of addition/subtraction
and multiplication. Both addition/subtraction and multiplication are performed through the
fundamental operation on Poisson series, i.e., the insertion of a term. Series addition, indeed,
is merely an insertion of all the terms of one series into the other one (a sign change is required
when performing a subtraction), while series multiplication is the insertion into an empty series
of terms generated using Werner’s trigonometric formulas.

Term insertion, in turn, is built upon the capability of identifying a term in the series. In order
to preserve the canonical form of the series, indeed, it is necessary to be able to discern if a term
with the same trigonometric part of the term being inserted already exists in the series. If this
is the case, then the term won’t be inserted in the series: its coefficient will instead be added
(or subtracted) to the one belonging to the term already existing in the series. We refer to this
operation as term packing.

e algorithm for the insertion of a term T into a Poisson series is then the following:

1. if T ’s coefficient is zero, discard the term;

2. if T ’s i-vector is null and the trigonometric part is a sine, discard the term;

3. if T ’s i-vector’s first non-null element is less than zero, invert the sign of all the elements
of the vector. Invert also the sign of the coefficient if the trigonometric part is a sine;

4. identify T ’s trigonometric part among the terms of the series: if there exists a match, update
the matching term’s coefficient by adding (or subtracting) T ’s, otherwise append T to the
series;

5. if a coefficient update took place, verify that the modified coefficient is not zero. If it is,
delete the corresponding term from the series.

is algorithm will preserve the canonical form of Poisson series.

2.3.1 Complexity signatures and their effects

Given two Poisson series P1 and P2, with lengths respectively l1 and l2, it is evident that both
the addition and subtraction of P1 and P2 require

min [l1, l2] (2.16)

11

2 Poisson series and their manipulation

term insertions. e resulting series will have a maximum length of

l1 + l2 (2.17)

terms (the actual length will depend on the packing ratio of P1’s terms with respect to P2’s). Using
the big O notation (see Knuth [1998a]) we can say that Poisson series addition and subtraction
have O(min [l1, l2]) runtime complexity and O(l1 + l2) memory storage requirement. In other
words, the complexity signatures are linear both in processing power and memory utilization.

By contrast, the multiplication operation is much more demanding, and requires

2l1l2 (2.18)

term insertions (the factor of two appearing because for each term-by-term multiplication two
terms are generated as per eqs. (2.7)) and the same number of coefficient multiplications. e
size of the resulting series will also be in the order of 2l1l2. e complexity signatures for series
multiplication are hence quadratic, or O(l1l2).

ese complexity signatures lead to two very important considerations:

1. series multiplication is by far the most demanding operation to be performed in the ma-
nipulation of Poisson series, both with respect to processing power and memory usage. An
efficient Poisson series manipulator is fast at performing series multiplications;

2. it is necessary to be able to truncate series during multiplications.

To have an idea of the problems related to the quadratic growth in the number of terms when
multiplying Poisson series it is sufficient to see what happens with three series with 1000 terms
each: after their multiplication a series with a maximum number of 4 billions terms will be
generated. It is then necessary to implement truncation methodologies in the multiplication of
Poisson series. Such methodologies will depend on the problem being considered and on the
type of series being manipulated. For instance:

• when manipulating Fourier series it is convenient to adopt a truncation criterion based on
the absolute value of the coefficients (which, by definition, are purely numerical);

• when dealing with manipulations in perturbation theories the usual truncation criterion is
based on the degree of the polynomial coefficients or on the degree of one particular literal
symbol.

Whatever methodology is chosen, the need to truncate typically translates into the need to es-
tablish an ordering on the terms of a Poisson series which allows to skip all term-by-term mul-
tiplications from a certain point onward.

ese considerations are crucial in the design of an efficient Poisson series manipulator, and
impose certain constraints and requirements on the data structures to be employed in such a
software.

12

 N   P


I Celestial Mechanics we are typically interested in performing mathematical operations on
Poisson series which are less trivial than those described in the previous chapter. Some
examples include:

• trigonometric functions (complex exponential, sin and cos),

• real powers, particularily inversion and square root,

• differential operators.

On top of such nontrivial operations other capabilities can be built, like special functions relevant
to Celestial Mechanics (e.g., Legendre polynomials and Legendre functions, spherical harmon-
ics, rotation and translation theorems for spherical harmonics – see Appendix A) having Poisson
series as arguments.

For the purposes described in §2.2 we are interested in maintaining the Poisson series form
throughout the calculations. However we have seen that the set formed by Poisson series is
closed only under the operations of addition/subtraction, multiplication and partial derivation
with respect to the arguments. It follows then that we will need to express the desired nontriv-
ial manipulations on Poisson series in terms of additions and multiplications, typically through
truncated series expansions.

In this chapter we are going to show some of the series expansions we can use to perform
nontrivial operations on Poisson series. e capabilities described here are thoroughly used in
the applications shown in Chapter 8.

3.1 Real powers

Real powers, and especially inversion and square root, are used thoroughly in the context of
Celestial Mechanics. Typically they arise from the dependence of the gravitational force from
the inverse of the square of the distance.

In Piranha we have implemented exponentiation to real powers for Poisson series through
the application of the binomial theorem (Abramowitz and Stegun [1964], Arfken and Weber

13

3 Nontrivial operations on Poisson series

[2005]):∑
i,j
Ci,j · xj1

1 x
j2
2 · . . . · xjm

m ·
(
cos
sin

)
(i · a)

α

=

= (A+ X)α =
∞∑

k=0

(
α

k

)
XkAα−k =

= Aα

∞∑
k=0

(
α

k

)(
X

A

)k

, (3.1)

where in our case A is the leading term of the series and X represents the rest of the series. In
order to be raised to a real power a Poisson series must respect such constraints:

1. the leading term must lend itself to real exponentiation (as we need to calculate 1/A and
Aα, as shown in eq. (3.1)),

2. the leading term’s coefficient must outweight all other coefficients combined together.

e first condition is always met when dealing with Fourier series, while in the case of polynomial
coefficients the binomial theorem can be applied recursively to calculate 1/A andAα. e second
condition is needed both to make sure that there are no singularities in the resulting series when
calculating negative powers and to respect the convergence criterion of the binomial theorem. If
this condition is met, the series’ evolution in time is an oscillation around the value of the leading
coefficient, and the series never evaluates to zero. A variant of this technique has been described
in Broucke [1971]. Since α ∈ <, the generalized formulation for the binomial coefficient must
be used in eq. (3.1):(

α

k

)
=
α(α− 1)(α− 2) · . . . · (α− k+ 1)

k!
=

(α)k

k!
, (3.2)

where (·)k is the notation for the Pochhammer symbol, also known as “falling factorial” (see
Knuth [1992]). e error Δ introduced by stopping the development at order n0 is then

Δ = Aα

∞∑
k=n0+1

(
α

k

)(
X

A

)k

. (3.3)

Δ is then strictly dependent upon X/A: the smaller X is with respect to A, the faster the devel-
opment converges.

e constraints forced by the application of the binomial theorem are typically not limiting in
Celestial Mechanics, since inversion and square roots will most likely be applied to the radii of
actual perturbed orbits in which singularities are not considered.

In Figure 3.1 we have plotted a precision test for the inversion of the Fourier series ELP3
representing the lunar distance in the ELP2000 lunar theory performed with our manipulator,
Piranha (see Chapters 4 and 5). e blue line represents a historical series produced by inverting

14

3.1 Real powers

Figure 3.1: Testing the precision of real exponentiation of a Fourier series. e blue line repre-
sents the inversion of the evaluation of the ELP2000 series ELP3 over a Julian year,
the green line represents the absolute value of the difference between the blue line
and the evaluation of the inverted ELP3 series.

15

3 Nontrivial operations on Poisson series

the evaluation of ELP3 over a timespan of one Julian year, while the green line represents the
difference, in absolute value, between the blue line evaluation and the evaluation of the series
calculated with the application of the binomial theorem. e truncation threshold was set to
one part every ten millions. It can be noted how the application of the binomial expansion
method leads to an accurate representation for the inverse of ELP3 (the precision can be furtherly
improved by lowering the truncation threshold)¹.

3.2 Trigonometric operations
Another class of operations often performed on Poisson series (and especially on Fourier series)
is the one comprising trigonometric special functions. In Piranha cosine and sine of Poisson
series are expanded by applying the Jacobi-Anger developments on each term of the series (see
Brown and Churchill [1993] and Weisstein [2007]):

eix cosθ =
∞∑

n=0

(2 − δ0n) (−1)nJ2n(x) cos(2nθ) +

2i
∞∑

n=0

(−1)nJ2n+1(x) cos [(2n+ 1)θ] , (3.4)

eix sinθ =
∞∑

n=0

(2 − δ0n) J2n(x) cos(2nθ) +

2i
∞∑

n=0

J2n+1(x) sin [(2n+ 1)θ] , (3.5)

where the Jn are Bessel functions of the first kind, which can be expressed by the following power
series:

Jn(x) =
∞∑

l=0

(−1)l

22l+nl!(n+ l)!
x2l+n. (3.6)

By using these developments it is possible to express the complex exponential of a series as

ei
(∑

i,j Ci,j·x
j1
1 x

j2
2 ·...·xjm

m ·cos(i·a)
)

=∏
i,j

{ ∞∑
n=0

(2 − δ0n) (−1)nJ2n

(
Ci,j · xj1

1 x
j2
2 · . . . · xjm

m

)
cos [2n (i · a)] +

2i
∞∑

n=0

(−1)nJ2n+1

(
Ci,j · xj1

1 x
j2
2 · . . . · xjm

m

)
cos [(2n+ 1) (i · a)]

}
, (3.7)

where we have assumed that all terms are cosines for simplicity. By taking the real (resp. imagi-
nary) part of this product, the cosine (resp. sine) of a Poisson series can then be computed. We

¹We also note that this and the following graphs were produced interactively entirely from Pyranha, the Python
bindings for Piranha (see Chapter 7).

16

3.2 Trigonometric operations

note that, since we can express Bessel functions of the first kind as power series and remembering
that the set formed by Poisson series is closed under the operation of multiplication, the right
hand side of eq. (3.7) represents a Poisson series whose coefficients are polynomials with rational
coefficients.

By using the definition of Bessel functions and remembering the convergence properties of
infinite geometric series, an upper limit for the error resulting from the truncation of the infinite
Jacobi-Anger developments under certain conditions can be found. We start by noting that the
sums of the series in eqs. (3.4) and (3.5), by exhibiting alternating signs and because of the
presence of trigonometric parts in the terms, are always less than or equal to those of the series
whose terms are the absolute values of Bessel functions of even or odd order:

∞∑
n=0

|J2n(x)| , (3.8)

∞∑
n=0

|J2n+1(x)| . (3.9)

By remembering the definition of Bessel function of the first kind as power series, the following
(in)equalities are then easily found:

∞∑
n=0

|J2n(x)| =
∞∑

n=0

∣∣∣∣∣
∞∑

l=0

(−1)l

22l+2nl!(2n+ l)!
x2l+2n

∣∣∣∣∣ (3.10)

6
∞∑

n=0

∞∑
l=0

(
|x|

2

)2l+2n 1
l!(2n+ l)!

(3.11)

=
∞∑

l=0

(
|x|

2

)2l
[∞∑

n=0

(
|x|

2

)2n 1
l!(2n+ l)!

]
(3.12)

6
∞∑

l=0

(
|x|

2

)2l
[∞∑

n=0

(
|x|

2

)2n
]

(3.13)

=
∞∑

l=0

(
x2

4

)l ∞∑
n=0

(
x2

4

)n

. (3.14)

Similar relations hold for odd orders. For |x| < 2 the two geometric series in eq. (3.14) converge
to the well-known value,

4
4 − x2

, (3.15)

hence leading to the inequality
∞∑

n=0

|J2n(x)| 6
(

4
4 − x2

)2

. (3.16)

By replaying this procedure after substituting n with n + nf + 1 in the terms of the series, we
can find an upper bound for the error induced by the truncation of the series in the real parts of

17

3 Nontrivial operations on Poisson series

eqs. (3.4) and (3.5) at n = nf, which we call er
nf

:

∣∣er
nf

∣∣ 6 2
(
x2

4

)nf+1(4
4 − x2

)2

. (3.17)

A similar procedure leads to the following truncation error for the imaginary parts:

∣∣ei
nf

∣∣ 6 |x|

(
x2

4

)nf+1(4
4 − x2

)2

. (3.18)

We note here that in the context of CelestialMechanics the condition |x| < 2 is not limiting, since
in most cases the coefficients of Poisson series subject to complex exponentiation will be natural
powers of fractions of the eccentricity and/or sines of the inclination, and as such they will respect
this condition. As an example, we note here that the largest amplitude in the series expressing
the perturbation on the Moon’s longitude in the ELP2000 theory amounts to ∼ 0.11 rad.

Sine and cosine of Poisson series have already been implemented in some of the existing ma-
nipulators for Celestial Mechanics. However, to our knowledge, such operations have until now
been implemented using Taylor series, and hence assuming that the series are somehow sepa-
rable into a dominant contribution and a small parameter (e.g., Broucke [1970] and Chapront
[2003b,a]). By using the Jacobi-Anger developments it is instead possible to calculate the com-
plex exponential of a wider class of Poisson series.

Figure 3.2, analogously to Figure 3.1, shows a precision test on the cosine of the ELP2 se-
ries representing the lunar colatitude for the main problem of the lunar theory ELP2000. e
truncation level is set to one part every ten millions.

3.3 Other special functions
With the availability of complex exponentiation and real powers it is possible to have Poisson
series as arguments of other special functions. e most relevant in the context of Celestial
Mechanics are probably associated Legendre functions and spherical harmonics (see Appendix
A for definitions), which are used pervasively in the application of perturbative methods.

For the calculation of associated Legendre functions well known recurrence relations can be
used (see Abramowitz and Stegun [1964], for instance), while spherical harmonics and their
solid counterparts are calculated from Legendre functions multiplied by real powers and complex
exponentials of Poisson series.

Other useful applications in Celestial Mechanics involve the transformation of such special
functions, like addition, rotation and translation theorems for Legendre functions and spherical
harmonics.

Figure 3.3 shows a precision test for the calculation of the associated Legendre function of
degree two and order one of the ELP2000 series ELP2. e truncation level is set to one part
every 1010.

18

3.3 Other special functions

Figure 3.2: Testing the precision of the cosine of the Fourier series ELP2 (see explanation in
Figure 3.1).

19

3 Nontrivial operations on Poisson series

Figure 3.3: Testing the precision of the associated Legendre function P1
2 of the lunar series ELP2

(see explanation in Figure 3.1).
20

 D   P 

If you have four hours to cut down a tree, then you should pass the first three hours
sharpening your axe.

– Old Swedish saying

P series manipulators have been developed since the dawn of the computer era, and
as of today a great number of manipulators exists. Since Herget and Musen [1959] many
authors have developed their own algebraic manipulators, and it does not come as a sur-

prise that many of the first mainframes were bought by astronomy departments with algebraic
manipulation in mind.

Among the most important Poisson series manipulators, without claims of completeness, we
recall Broucke and Garthwaite [1969], Jefferys [1970, 1972], Rom [1970], Bourne and Hor-
ton [1971], Babaev et al. [1980], Dasenbrock [1982], Richardson [1989], Abad and San-Juan
[1994], Ivanova [1996], Chapront [2003b,a] and Gastineau and Laskar [2005]. Henrard [1988]
and Laskar [1990] have analyzed the data structures and the algorithms commonly employed in
Poisson series manipulators, and, despite their age, these papers still provide a good overview of
the issues to overcome to write a good manipulator. Specific manipulators for Celestial Mechan-
ics have been written also for mathematical entities different from Poisson series, like echeloned
Poisson series (see Ivanova [2001]) and Kinoshita series (see Navarro and Ferrándiz [March
2002]).

e sophistication of Poisson series manipulators has increased together with the exponential
growth of computing power in the last decades. While the first manipulators supported only el-
ementary operations on fixed-width series, today’s manipulators are extremely versatile and allow
to perform elaborate manipulations. At the same time the algorithms and data structures have
evolved, from the simple arrays and linked lists of the first manipulators, to the sophisticated
and high performing data structures employed today. Computer architectures have evolved as
well: cheap personal computers today support vectorized instructions, and they feature multi-
level cache memory architectures that must be carefully exploited in order to achieve maximum
performance. Not to mention the multi-core structure of modern CPUs, the widespread avail-
ability of clusters and grid architectures and the recent efforts towards the exploitation of graphics
processing units for computationally-intensive tasks (GPGPU - General Purpose Computing on
GPU, see Owens et al. [2007] for an overview).

Writing an algebraic manipulator that fully exploits the computer hardware is hence much
more difficult today than it was decades ago.

21

4 Designing a modern Poisson series manipulator

4.1 Why the need for specialized algebraic manipulators?
A legitimate question is whether or not the need for specific algebraic manipulators still exists
today. Software packages like Mathematica, Maple and even Matlab provide advanced symbolic
manipulation capabilities, and computer performance is order of magnitudes higher than twenty
or thirty years ago.

e answer depends on the task for which algebraic manipulations are employed. While it
is true that it is certainly possible to use the aforementioned packages to perform some tasks
previously the prerogative of specialized manipulators, it is at the same time true that the perfor-
mance gap between specialized and non-specialized manipulators has not narrowed at all with
the increase of hardware capabilities. Such performance gap is huge, and amounts to a factor
of 1000 – 10000 for the most computationally intensive tasks. General manipulators, by defini-
tion, can’t take advantage of prior knowledge about the mathematical entities being handled, and
hence they suffer an abstraction penalty which can severely limit their performance with respect
to specialised manipulators.

A performance gain of three or four order of magnitudes opens up the possibility of manip-
ulations unthinkable with general-purpose software. As it happens in every human activity, an
instrument, far from being just a mere device used to accomplish a goal, is a key element in the
definition of such goal. In this sense, specific algebraic manipulators, in our opinion, will always
have a prominent place in Celestial Mechanics.

e research field of algebraic manipulation for Celestial Mechanics is today very lively and
active, and we had the chance to meet at international conferences various researchers actively
involved with specific algebraic manipulators. All the major centres of studies on Celestial Me-
chanics and astrodynamics are actively working on computer algebra systems:

• in Spain the groups in Zaragoza and Barcelona working on dynamical systems develop
and use extensively specific algebraic manipulators;

• the Russian school has a long tradition in the field of computer algebra systems (see, for
instance, Babaev et al. [1980], Ivanova [1996, 2001]);

• in France researchers at the IMCCE (Institut deMécaniqueCéléste et deCalcul des Ephémérides)
extensively use the specialized manipulator TRIP, which has been initially written by
Jacques Laskar and is now being actively expanded and enhanced by Mickaël Gastineau.

4.1.1 Why the need for another Poisson series manipulator?

Another legitimate question is why we felt the need to write yet another Poisson series manipu-
lator, given the abundance of solutions available.

In the first place we decided to undertake this task because we neededmanipulation capabilities
which were not available in any other manipulator we knew of. Such capabilities were needed
in the expansion of the tide-generating potential in the Earth-Moon-Sun system (see Casotto
and Biscani [2004a]), a task which requires the ability to express cosines and sines of Fourier
series again as Fourier series. We had tried to perform these calculation using the general system
Mathematica, but quickly found out that the time needed to compute trigonometric functions of

22

4.2 Preliminary design considerations

the series of the ELP2000 theory (see Chapront-Touzé and Chapront [1988]) was in the order
of nine-ten hours for each expansion. e first version of our manipulator performed the same
calculation in seconds.

e research that led to this first manipulator allowed us to learn about the ubiquity of specific
manipulators in Celestial Mechanics: it became clear that a Poisson series manipulator is an
essential tool in this field of research. We also identified the issues that, in our view, affect the
available manipulators. In particular:

1. old manipulators are tied to specific hardware or software architectures and have significant
portability issues,

2. source code is generally unavailable,

3. existing manipulators are often written with specific problems in mind,

4. many of the existing manipulators use sub-optimal data structures for the representation
of Poisson series,

5. computer languages commonly used (FORTRAN and C, mainly) are limiting for the
genericity and reusability of existing code.

e unavailability of source code, combined with the specific nature of most existing manipu-
lators, is in our opinion a significant drawback: in order to adapt an existing manipulator for
other needs the source code should be available, since a mechanism which would allow for such
an adaptation at a higher level would invalidate the speed advantage of specific manipulators
over general-purpose packages. Additionally, the procedural languages, like FORTRAN and C,
commonly used to develop specific manipulators, are not suited for the reuse of existing source
code, because routines and data structures are often inextricably interleaved in such a manner
that it is very difficult to abstract an algorithm from the rest of the code and use it somewhere
else¹.

e weak points of existing Poisson series manipulators have hence become the focus of our
own Poisson series manipulation framework, which is written in C++ and we call Piranha².

4.2 Preliminary design considerations
e considerations expressed in Chapter 2 show that the manipulation of Poisson series, being a
task which can be approached from different angles, does not force particular constraints on the
actual implementation of a manipulator. As it is typical with computer algebra systems, a fine
point of balance between generality and performance must be found. e utopian goal is that of
conceiving a program that, while being effective in fulfilling the purpose it was written for in the
first place, can also be extended to a broader range of action in the future.

is is particularly true when dealing with Poisson series. As we saw in the last chapter, for
instance, there is a fundamental difference between the computer representations of generic Pois-
son series and Fourier series (see §2.1.4): it is clear that, for the representation of the coefficients,

¹is reason alone may explain the abundance of Poisson series manipulators.
²e name is a pun based on the fact that “poisson”, in French, means “fish”.

23

4 Designing a modern Poisson series manipulator

when dealing with Fourier series it will be sufficient to use one of the basic datatypes available
in every computer language (be it Fortran’s REAL or C/C++’s double). If we want to be able
to manipulate Poisson series with polynomial coefficients, instead, we will need to introduce a
new datatype for the representation of polynomials and a set of functions to manipulate it. Addi-
tionally, we may desire to be able to use non-standard datatypes also when dealing with Fourier
series: for example it may be useful for some applications to be able to represent the numerical
coefficients as rational numbers. It is evident that in these three cases there will be differences in
the manipulation of the coefficients, but the functions used for the manipulation of the trigono-
metric parts and for their interaction with the coefficients will not have to be changed.

In other words, if we want to achieve maximum code reusability and genericity, the program
should be written once and for all the different datatypes on which it is going to operate. In
computer science this datatype-independent paradigm of programming is known as generic pro-
gramming.

4.2.1 Generic programming

Generic programming (see Musser and Stepanov [1989], Dehnert and Stepanov [2000], Dos
Reis and Järvi [2005]) is a programming paradigm that focuses on finding commonality among
similar implementations of the same algorithm, then providing suitable abstractions in the form
of concepts so that a single, generic algorithm can realize many concrete implementations.

A simple example of generic programming in C++ can be seen in the following listing:

1 template <typename T>
2 T max(T x, T y)
3 {
4 if (x < y)
5 return y;
6 else
7 return x;
8 }

Here a maximum value function is defined. e input datatype is not specified, instead it
is declared through the template statement that the function will operate on a generic type
which will be known as T. When the function is used to find the maximum of, e.g., two integers,
the compiler will substitute T for int during compilation. In other words, for all the datatypes
for which the < operator is defined, this function can be used in a completely generic way. In
C++ generic functions are known as template functions.

Another popular example of generic programming is that of a sorting algorithm that can op-
erate on different data structures, like arrays and linked lists.

Generic programming is a feature which is found, under various denominations, in most mod-
ern computer languages. An incomplete list includes ADA, BETA, C++, Objective-C, D, Eiffel,
Java, ML, C# 2.0, Chrome 1.5, Visual Basic .NET 2005 and Haskell. Particularly with reference
to the C++ language, where it goes by the name template programming, generic programming is
today a very active field of research in the computer science community (see Vandevoorde and
Josuttis [2002] and Alexandrescu [2001]). A notable example of the power of template program-

24

4.2 Preliminary design considerations

ming can be seen in Veldhuizen [1995], where it is shown how a technique known as expression
templates is used to mimic the behaviour of FORTRAN arrays without introducing extensions
to the core language (see also Haney [1996]).

4.2.2 Choosing a computer language
Beside the availability of generic programming facilities, we chose to develop Piranha in C++ for
a number of other reasons, which are summarised below:

• C++ is a Object-Oriented (OO) language: although not all of the usual features of an OO
language are used inside Piranha, some concepts are extremely useful in the context of a
software project which aims to be extensible, modular and generic. A detailed list and a
brief explanation of C++’s features used in the manipulator are given in §4.3.

• Performance: C++ performance edge with respect to other OO programming languages
is twofold. First of all C++ is compiled to native code (unlike Python or Ruby – which
are interpreted languages). Native code delivers top performance, and as we saw earlier
performance is one of the primary concerns in a specific manipulator. Secondly, just like
its forefather C, C++ allows a very fine-grained control over the resources used by the
program, particularly (but not only) regarding memory management. Where other lan-
guages offer some kind of automatic memory management (or garbage collection) in C++
the programmer has to take care of allocating/deallocating memory areas. While this can
be cumbersome (but it can be made almost transparently in C++ – and there’s always the
possibility to use one of the many existing memory managers written in C++), on the other
hand it enables focused and efficient memory management strategies.

• Operator overloading: this features allows to redefine the meaning of mathematical oper-
ators in source code. I.e., given two series A and B it is possible to write A+=B instead of
A.add(B). is leads to compact and readable code, especially in scientific software. Op-
erator overloading is a notable feature missing in other languages (it’s not present in Java
and C, for instance).

• Popularity: C++ has been introduced more than two decades ago and today it is one of the
most popular languages. It has been used to write every kind of software, from operating
systems to office suites, from games to advanced scientific software packages. As result
there is an astounding number of high quality libraries written for many different purposes:
networking, database access, graphics, GUI (Graphics User Interface) programming, etc.
A software written in C++ can be extended at a later date in every unthought direction.
Additionally, for the same reason there are lots of high quality programming tools for C++,
like debuggers, profilers, code documentation tools, etc.

• e Standard Template Library (STL): the STL is a software library included in the C++
standard, providing many useful programming facilities like containers (vectors, linked
lists, sets, maps), algorithms, iterators and functors. e STL was created as the first
library of generic algorithms and data structures, with two main ideas in mind: generic
programming and abstractness without loss of efficiency (see Stepanov [2007]).

25

4 Designing a modern Poisson series manipulator

• e Technical Report 1 (TR1): TR1 is a draft document specifying additions to the C++
Standard Library such as regular expressions, smart pointers, hash tables, and random
number generators (see Austern [2005]). TR1 is not yet standardized, but it will likely be
part of the next official standard mostly as it stands now. e GCC compiler suite already
implements many parts of TR1.

• Portability: C++ compilers are available for almost any hardware platform, hence a C++
program that is written in a portable way (i.e., without using architecture-specific features)
will run without modifications almost everywhere. is is particularly true when using the
GNU C++ compiler, which (as of version 4.x) supports more than 20 different hardware
platforms.

To summarise, our choice was dictated mainly by the fact that C++ is the highest-level language
that does not compromise on pure performance³. Particularly, C++’s compile-time genericity (as
opposed to the powerful runtime dynamicity available, for instance, in Objective-C) is in our
opinion C++’s major selling point in the context of high-performance scientific software with
respect to other OO languages.

4.2.3 e three lives of Piranha

e current state of the Piranha is the result of a trial and error process, partly prompted by
the inevitable clash between early theoretical design decisions which were challenged by on-the-
field results and partly because of the author’s own need to get acquainted with a new language
(C++) and with the development of a medium-sized project like this one. e history of Piranha
consists of three phases:

1. initially Piranha was conceived as a set of routines in plain C. Memory management was
done throughmanualmalloc() and free() calls. Coefficients and trigonometric mul-
tipliers were stored in large separate arrays, and the pointers to these arrays were stored
inside data structures (struct, in C) which represented the Poisson series. Operations
on series were implemented as functions (e.g., psadd()) and the series could only have
numerical coefficients (i.e., only the manipulation of Fourier series was implemented).

2. e second phase saw the transition to an object-oriented paradigm. e struct con-
struct was replaced by the class construct, and operations on series were implemented
as methods. Apart from the change to OO programming, the internal algorithms re-
mained the same. Coefficients and trigonometric multipliers were still stored in manually
managed chunks of memory (but this time C++’s new and delete operators were used
instead of the malloc() and free() functions). Operator overloading was introduced
to perform operations among series.

³As a side note, we have often heard the remark that C is faster than C++ because it works at lower level. We frankly
find this statement rather strange, since, minor differences aside, C++ is a superset of C, and anything that can be
done in C can also be done in C++. ere is really no reason because of which the choice of C++ over C would
inherently lead to performance penalties.

26

4.3 C++’s features used in Piranha

3. e third rewrite of Piranha was a major enhancement which saw a radical change in the
representation of the series, the use of scoping for memory management, the employment
of more advanced data structures (instead of the plain arrays used previously) and the focus
on generic programming. Such a huge change was made possible largely thanks to the
adoption of a set of high-quality C++ libraries called Boost (see §4.4 for an overview). As
a result Piranha is now much lighter in terms of lines of code than it was before, it offers a
much more intuitive way of interacting with the series and can be extended to manipulate
new types of Poisson series in a very compact and easy way, without touching the core
source code.

We believe that the current design of Piranha, while certainly not perfect and susceptible to
improvements, establishes solid foundations, and enables future extensions in a seamless and
coherent way. It is expected that future work on Piranha will consist mostly of feature additions
and optimization work.

Currently Piranha compiles, runs and has been tested on GNU/Linux with GCC (GNU
Compiler Collection) versions 3.4.x and 4.x, on FreeBSD with GCC 3.4, and on Windows
XP using the MinGW port of GCC (currently version 3.4). It should run without modifications
on all Unixes where at least GCC 3.4 is available.

4.3 C++’s features used in Piranha
Piranha takes advantage of most of C++’s features. C++ is a feature loaded language, to the point
of resulting somehow confusing at times. ere is often more than one way of doing things in
C++, and hence particular care must be taken in the planning phase to minimize the effort by
choosing the most efficient way to solve a problem.

C++’s feature set is made of all the typical OO features, plus some welcome additions (like
operator overloading). In the following paragraphs we will recall some programming concepts
used in Piranha. For a more complete description of C++’s capabilities we suggest to refer to
Eckel [1995].

4.3.1 Namespaces

Namespaces are a relatively new addition to C++’s arsenal, and are best described as context
identifiers. Simply put, namespaces are abstract domains to which classes and functions are
associated. e main use of namespaces is that of being able to define functions (or classes)
which in that particular namespace have some meaning, while in another namespace they have
a different meaning. e purpose of associating objects to a domain is hence twofold:

1. to define functions with common and meaningful names (e.g., print(), load(), etc.)
avoiding name clashes with other libraries, and

2. to group logically related functions under a single identifier.

An example is probably the best way to explain namespaces:

27

4 Designing a modern Poisson series manipulator

1 namespace 3rd_party_library
2 {
3 void do_nothing();
4 }
5
6 namespace my_library
7 {
8 void do_nothing();
9 }

10
11 int main()
12 {
13 3rd_party_library::do_nothing();
14 my_library::do_nothing();
15 return 0;
16 }

Here we can see two namespaces, 3rd_party_library and my_library, each one
containing the declaration of a do_nothing() function. Because each function is positioned
inside a different namespace there are no conflicts, even if the functions share the same name. e
choice of which function to use ismadewhen the namespace specification (e.g., my_library::)
is prefixed to the function name. Namespaces feature also the possibility to use as default certain
functions from one namespace and other functions from other namespaces.

Placing a library’s functions and classes inside a namespace is good practice, since it prevents
potential conflicts with names in other libraries. In Piranha namespaces are used mainly with
organizational purposes, i.e. they are used to group all the functions and the classes used by the
manipulator. Piranha’s root namespace is named, unsurprisingly, piranha.

4.3.2 Classes
Classes are the single most important entity in OO programming, and they can be described as
advanced containers of heterogeneous data. Like a C struct a C++ class groups together
(combines, in computer science language) different data types into a composite one. Additionally,
a class can also:

• embed the functions (methods) used to communicate with its data,

• provide a public and a private interface to the data,

• relate to other classes in a parental relationship.

e third property means that classes can have children classes, i.e. classes that inherit their
parent’s properties but also add their own data and methods. A canonical example is that of the
class Vehicle and its child (or subclass) Car. Vehicle has a fuel property and a start()
method, which Car will inherit. Additionally Car also provides the wheels and brakes
properties, and thehonk()method. Car is a Vehicle, and it ismore than a Vehicle: the act

28

4.3 C++’s features used in Piranha

of deriving a class from another one is called inheritance. Inheritance promotes code reuse, since
for the subclasses the inherited methods won’t have to be rewritten. Additionally, it encourages
a structured thinking (and programming) model, in which objects are ordered hierarchically.

Classes accomplish two of the main goals of OO programming:

• modularity: classes are independent units that act on each other. ey have an autonomous
life, and can be re-used in other contexts;

• encapsulation: information on how the class works can be concealed inside the so-called
private methods of the class. A user of the class can be exposed to a public interface, the
unneeded implementation details being hidden. For example, a Car’s user knows that a
Car can honk(), but she won’t care about the (private) implementation details of that
method.

Classes are naturally fit to be used in scientific and mathematical problems, since they mimic
the kind of mutual interaction that is typical of mathematical entities. Each object has a set
of methods to interact with other objects, and each object groups methods and data in a single
package. In Piranha Poisson series are represented as classes, and they are manipulated through
methods.

Piranha does not make use of some other properties of classes, such as abstraction and dynamic
polymorphism. While these concepts are very appealing from a programming point of view, they
introduce performance penalties that can become too much combersome for a computationally-
intensive software. Instead Piranha uses a template programming design pattern known as Curi-
ously Recurring Template Pattern, or CRTP (see Coplien [1995]), which allows to achieve a form
of static polymorphism which does not incur in runtime performance penalties.

4.3.3 Template classes
In §4.2 we briefly introduced the concept of template function, i.e., a function that is written to
operate on generic datatypes instead of specific ones. In C++ this concept is extended to classes.

Let us suppose, for instance, to write an implementation of a linked list of integers in C++.
e linked list class will be called List_int. If, in a second stage, we need a linked list of real
numbers, without generic programming facilities we will probably copy and paste the implemen-
tation of List_int and substitute all the occurrences of the int keyword with double. is
strategy however is far from optimal, since:

• manual copy and paste is error-prone and

• if a bug is fixed in the original class it will be needed that all the copied classes receive the
same fix (which can become quite intricate and error-prone too).

C++’s solution to this problem is to provide a template class, i.e. a class whose datatypes are not
specified until compile time:

1 template <class T>
2 class List

29

4 Designing a modern Poisson series manipulator

3 {
4 implementation details;
5 }
6
7 int main()
8 {
9 List<int> int_list;

10 List<double> real_list;
11 return 0;
12 }

Here we can see a conceptual example of a List template class. List is declared as a regu-
lar class, except for the single line template <class T> prefixed to the declaration. is
lines specifies that the following class declaration will use an unspecified datatype which will
be called T. e methods of the class will be in turn template functions, i.e., they will oper-
ate on the generic datatype T. In the main body of the program two objects, int_list and
real_list, are created: they are two different instantiations of the same template class List,
one instantiated for integer numbers, the other for real numbers. Note that the T type is not
limited to built-in datatypes, it can be any valid C++ class. Additionally, implementations of
the List class specialised for specific types (e.g., strings) can be used to override the default
template implementation in a procedure known as template specialisation.

e advantage of using templates is clear especially when dealing with classes whose behaviour
is datatype-independent. In the case of linked lists (and of data containers in general) generic
programming is a particularly appropriate programming paradigm. What matters is the interface
with the container, hence the methods used to insert and erase elements, which will not vary
according to the content. What is contained is of secondary importance, and the dull job of
generating appropriate code for each version of the template class is delegated to the compiler.

In Piranha template classes are used to design Poisson series whose coefficients are arbitrary
entities: they can be real numbers, arbitrary precision numbers, polynomials, arbitrary algebraic
expressions, etc. e only prerequisite is that the coefficients’ types support a set of properties
that define a concept (see §5.1).

4.3.4 Operator overloading

Operator overloading, strictly speaking, does not introduce new features to C++, and it is prob-
ably best described as syntactic sugar. Operator overloading simply allows to use familiar math-
ematical (but not only) operators instead of explicit calls to methods. Let’s assume for instance
that it is needed to add two Poisson series, P1 and P2. Without operator overloading the code
is something like

P2.add_to(P1)

With operator overloading it is possible to wrap the add_to()method inside the + operator,
and simply write

P1+P2

30

4.4 e Boost libraries

Nothing has changed, the add_to() method is still called to perform the actual operation.
However the notation in the source code is certainly more familiar. Operator overloading hence
leads to a much more compact and readable code, easing both the identification of software bugs
and the acquaintance with the source code of an external developer. Operator overloading is used
extensively in Piranha.

4.3.5 Iterators
Iterators can be see as a generalisation of C pointers. ey are objects which allows a program-
mer to traverse through all the elements of a collection, regardless of its specific implementation.
Iterators, just like C pointers, can be dereferenced through the * operator, and they can be incre-
mented through the ++ operator. An iterator for an array-like container, for instance, is simply
a pointer, and the ++ operator simply increases the pointer value using pointer arithmetics. An
iterator for a linked list, instead, will overload the ++ operator so that it will wrap the linked list
method to reach the next node of the list.

e combination of iterators and operator overloading allows to write generic algorithms that
will work regardless of whether the underlying data structure is an array-like or a list-like con-
tainer⁴.

4.4 e Boost libraries
Boost (http://www.boost.org) is a set of C++ libraries created by a community of develop-
ers led by some of the members of the C++ Standards Committee. From the website homepage:

“Boost provides free peer-reviewed portable C++ source libraries.
We emphasize libraries that work well with the C++ Standard Library. Boost

libraries are intended to be widely useful, and usable across a broad spectrum of
applications. e Boost license encourages both commercial and non-commercial
use.

We aim to establish ”existing practice” and provide reference implementations so
that Boost libraries are suitable for eventual standardization. Ten Boost libraries
are already included in the C++ Standards Committee’s Library Technical Report
(TR1) as a step toward becoming part of a future C++ Standard. More Boost libraries
are proposed for the upcoming TR2.”

(emphasis added). Boost is highly regarded in the free-software programming community, and
it has been adopted by many commercial software developers as well. e Boost libraries are
used, among others, by Adobe (Photoshop CS2 and Indesign), Real, McAfee, DataSolid GmbH
Germany (CADdy++ Mechanical Design) and Dimesion 5 (Miner3D).

Initially the introduction of Boost in Piranha was prompted by a specific feature, the multi-
index container which will be introduced shortly (see §4.5.3). However soon it became clear
that Boost could provide many other interesting features, and as time passed Piranha began to

⁴Of course this feature will not exempt the developer from being aware of the different performance characteristics
of arrays and linked lists.

31

http://www.boost.org

4 Designing a modern Poisson series manipulator

rely on other facilities provided by Boost (e.g., string handling, n-tuples, iterators management,
multi-threaded programming, etc.).

In order to ensure efficiency and flexibility, Boost makes extensive use of templates and tem-
plate programming. Boost is a source of extensive work and research into generic programming
and metaprogramming in C++.

4.5 Data structures for Poisson series
Piranha’s design concepts stem from the analysis of Poisson series manipulation developed in
Chapter 2. In this section the fundamental conclusions of that analysis will be recalled and we
will show which programming devices, in our opinion, are best suited to the software modelling
of a Poisson series. Such software constructs, described briefly in the following subsections, are
analyzed thoroughly in Knuth [1998b] and Cormen et al. [1990].

4.5.1 Ordering of terms: binary search trees
Aswe have seen in §2.3.1 it is necessary to introduce an ordering in a Poisson series. is ordering
is used in multiplications, when it is typically needed to truncate the series to limit the quadratic
growth of the number of terms.

In the previous incarnations of Piranha, series were ordered only when needed (i.e., only during
multiplications), whereas during addition/subtraction terms were inserted at the end of the series
in a sequential fashion. is strategy had two disadvantages:

• series’ ordering was generally undefined,

• each time an ordering was required, a full reordering of the series was needed.

Multiplications are very frequent operations, and form the basis of more advancedmanipulations.
Sorting algorithms typically perform in O(n logn) time, hence it is clear that frequent complete
sortings can become a bottleneck when dealing with many multiplications and long series.

e current version of Piranha improves the situation with the introduction of self-balancing
binary search trees. A self-balancing binary search tree (SBBST) is a special case of a data structure
known as binary search tree (BST), which in turn is a kind of binary tree.

Definition A binary tree is a tree data structure in which each node has at most two children.
Typically the child nodes are called left and right.

Definition A binary search tree is a binary tree which has the following properties:

• Each node has a value.

• A total order is defined on these values.

• e left subtree of a node contains only values less than the node’s value.

• e right subtree of a node contains only values greater than or equal to the node’s value.

32

4.5 Data structures for Poisson series

Figure 4.1: Binary search tree (unbalanced).

Definition A self-balancing binary search tree is a binary search tree that attempts to keep its
height, or the number of levels of nodes beneath the root, as small as possible at all times,
automatically.

A simple example of an unbalanced BST can be seen in Figure 4.1. e same binary search tree
is displayed in Figure 4.2 after being height-balanced.

An important property of BSTs is that they keep the data ordered: a new node is added to the
tree by traversing (or walking) the tree node by node until a suitable position is found. If the new
element is greater than or equal to the current node then it is directed towards the next node in
the right subtree, otherwise it is directed to the next node in the left subtree. If there are no next
nodes, the new element is appended where the next node should be.

e advantage of SBBSTs over plain BSTs is that insertion, look-up and removal of elements
are all performed in O(logn) time, where n is the number of nodes of the tree, and that this
complexity is guaranteed for worst cases. Unbalanced BSTs, instead, have average O(logn)
complexity, but in the worst case (when all nodes have only left – or right – children) the BST
resembles an ordered linked list, and as such has O(n) complexity. If BSTs are not kept balanced
they quickly degrade into ordered linked list-like trees as nodes get added. In SBBSTs, hence,
once a series is ordered it is relatively cheap to insert new elements in subsequent manipulations.
SBBSTs are kept balanced by algorithms that at key times re-arrange the tree so that its height

33

4 Designing a modern Poisson series manipulator

Figure 4.2: Balanced binary search tree.

is minimized.
In Piranha series terms are stored as nodes of a SBBST in which the ordering is established by

a property of the terms’ coefficients. In the case of Fourier series, for instance, ordering is based
upon the coefficients’ absolute value. Multiplication begins from the leading term of the series,
and the binary tree is traversed in descending order until the end of the series (or the truncation
level) is reached. is kind of tree traversal of a BST is called in-order tree traversal, and it is just
one of the ways a tree can be explored. Without going into much detail, we’ll just mention that
in-order tree traversal is a recursive algorithm which starts from the root node (i.e., the topmost
node) and consists of these steps:

1. for the current node check whether it has a left child. If that’s the case then go to step 2
or else step 3.

2. Repeat step 1 for this left child.

3. e next node is found.

4. For the current node check whether it has a right child. If that’s the case then go to step
5.

5. Repeat step 1 for this right child.

By applying this algorithm to the tree in Figure 4.2 at each iteration we find the following se-
quences:

• 7-4-3-1

• 3

• 4

34

4.5 Data structures for Poisson series

• 5

• 6

• 5-4-7

• 13-10

• 13

• 14

Note how the last numbers of each iteration form an ascending sequence. is sequence can
be reversed by simply changing the ordering criterion of the tree or by traversing right-to-left
instead of left-to-right.

In C++ SBBSTs are usually implemented as template classes, so that the nodes can contain any
type of data, and they offer a convenient interface that hides the intricacies of their management.
In-order traversal, for example, is implemented using iterators. In the following listing we can
see a SBBST class Bst which provides a begin() method:

1 template <class T>
2 class Bst
3 {
4 implementation details;
5 }
6
7 int main()
8 {
9 Bst<int> bst_int;

10 iterator iter=bst_int.begin();
11 // iter is augmented by one
12 ++iter;
13 // iter now points to the second
14 // biggest element of bst_int,
15 // and it can be used to retrieve
16 // the information stored in
17 // that node.
18 return 0;
19 }

e begin() method returns an iterator to the top value of the tree. e ++ operator has
been overloaded for iterator objects to implement the in-order traversal to the next node in a way
that is transparent to the programmer.

Template implementation of SBBSTs are available in the STL (the set and map classes).

35

4 Designing a modern Poisson series manipulator

Figure 4.3: A hash function operation on strings and outputting hexadecimal values.

4.5.2 Identification of terms: hash tables

As we saw in §2.3 the fundamental operation performed on Poisson series is the insertion (or
deletion) of a term. We also introduced the concept of term packing, and stressed the importance
of being able to identify existing terms in Poisson series in order to preserve the canonical form.

A possible way to identify a term in a Poisson series is to use a BST: terms are nodes of the
tree, and the ordering criterion is lexicographic on the elements of the i-vectors. A binary search
on the tree can then be performed in O(w logn) time, where n is the length of the series andw
its trigonometric width.

A more efficient solution is to employ a hash table (also known a hash map or dictionary). Hash
tables are unsorted containers which use a particular function (called hash function) to establish
a mapping between an object and its position in an array-like container. is function provides
a way of creating a small digital fingerprint (called hash value) from the data (see Figure 4.3).
e hash value is commonly represented as a short string of binary data but for the use in hash
tables it is typically converted into an unsigned integer value through a range-hashing function to
determine the position (or the index) of the data in an array-like structure (see Figure 4.4).

is way it is possible to establish if an object is present in a data set simply by computing its
hash value, go to the corresponding position in the array and see whether the slot is taken or not.
e hash value however typically cannot be unique (since in most circumstances one is interested
in having a fingerprint significantly smaller that the object it maps to) and hence there will be
collisions in the hash tables (i.e., slots in the hash tables that will contain more than one element).
A common solution is to have singly-linked list in every slot that will store the elements that map
to that slot (an approach called separate chaining). An ideal hash function minimizes the need
for collision resolution by randomizing the mappings to slots. Once many slots are taken (i.e.,
the load factor of the hash table grows near one) the container is usually resized, so that slots are
re-assigned in a randomized fashion and collisions decrease in number.

Technicalities aside, we can assume in this context that finding an object in a hash table involves

36

4.5 Data structures for Poisson series

Figure 4.4: A hash table storing strings.

a constant number of mathematical operations, and as such the operation is performed in average
O(1) time. is is amarked improvement with respect to the logarithmic complexity of the BST-
based solution. In the case of Poisson series, the hash value is computed from the i-vectors, which
can be thought of as fixed-size strings. We are not interested in the hash values of coefficients,
since we need to identify terms only according to their trigonometric parts.

Writing a good hash table can be tricky, and the following issues can lead to disastrous per-
formance drops:

• poor hash function,

• poor strategy of collision resolution,

• poor range-hashing function.

e multiplicative hashing function advocated in Knuth [1998b], for instance, has notoriously
poor clustering behaviour.

Nevertheless, hash tables are widely used in diverse fields of information technology, and, when
correctly implemented, offer the best performance as far as unordered containers are concerned
(see, for instance, the analysis inHeinz et al. [2002]). We discuss inmore detail the characteristics
of the hash function used in Piranha in §5.6.2.

4.5.3 e boost::multi_index_container class
In §4.5.1 and §4.5.2 we have identified two data structures that efficiently fulfill the require-
ments for the manipulation of Poisson series. SBBSTs and hash tables should be combined in a
container which provides a twofold access semantic: we will need a hash table for fast term iden-
tification, and a SBBST to keep the series ordered and apply a truncation methodology during
series multiplication.

37

4 Designing a modern Poisson series manipulator

Figure 4.5: Diagram of a boost::multi_index_container with two indices.

Initially we had implemented this double container class by hand, using a combination of the
ordered and hashed containers available in the STL and in the TR1. e current implementation
of Piranha uses, instead, the more flexible and powerful solution provided by the Boost class
multi_index_container. is class enables the construction of containers maintaining
one or more indices with different sorting and access semantics. is means that:

1. it is possible to sort generic objects (and keep them sorted) in more than one way and with
respect to more than one of their properties. is concept is displayed graphically in Figure
4.5;

2. it is possible to access the data in the container using different algorithms (at the mo-
ment binary search, hashed search, unsorted linked list traversal and random access are
implemented).

boost::multi_index_container is based around the concept of index. An index is an
interface that provides a viewport on the data stored in the container. As such the index specifies:

1. the ordering (i.e., whether the viewport is sorted or not and according to which properties
of the data the sorting takes place) and

2. the access semantics of the viewport (i.e., how the data is accessed).

As an example let’s suppose that we want to create a list of employee objects, each one contain-
ing a name and an ID field. We want to be able to sort employees with respect to their names and
their IDs. is can be done through the following instantiation of amulti_index_container
(which has been split on several lines to increase readability):

1 typedef multi_index_container<
2 employee,
3 indexed_by<
4 ordered_unique<identity<employee> >,

38

4.5 Data structures for Poisson series

5 ordered_non_unique<member<employee,std::string,&employee::
name> >

6 >
7 >
8 employee_set;

Let’s take a look line by line:

• on the first line the typedef directive specifies an alias for the complicated datatype that
follows, which will be called employee_set (as specified on the last line). is is a type
def inition and it is used to give short familiar names to complicated object types used in
the source code;

• on the second line we specify that the containers will store objects of type employee;

• on the third line we declare that the container is indexed in two different ways:

1. the first (line 4) is a unique sorting in which the sorting criterion is the “<” opera-
tor⁵, which has somewhere been overloaded for the employee object to mean that an
employee is less than another one if its ID is smaller. e identity function,
in other words, means that the order is decided by the default function for compar-
isons, which is the “<” operator. is sorting is unique because there cannot be two
employees with the same ID.

2. e second (line 5) is a non-unique sorting based on the name member of the em-
ployee object, which is of type std::string (the standard string definition of
C++). e & syntax means that we are passing the pointer to employee’s name
member instead of the member itself and is just a C++ technicality. e ordering is
established by the action of operator “<” on strings, which in C++ means alphabetical
order. is sorting is not unique because two employees can have the same name.

Please note that the declaration of this multi_index_container involves template func-
tions and template classes used as parameters of other template functions and classes. Template
programming in C++ can indeed become quite complicated.

Now the employee_set class we just defined can be accessed in two different ways. We
can declare a viewport on the ID index (the first one defined), and access it like this (assuming
that an employee_set called es has been instantiated and filled with elements previously):

1 const employee_set::nth_index<0>::type& ID_index=es.get<0>();
2 employee first_employee=(*ID_index.begin());
3 first_employee.print_name();

On the first line a viewport called ID_index is defined. e const keyword and the &
symbol declare that this kind of object is a constant reference, which is reached by the get()
method of employee_set. is method is called with the integer parameter 0 meaning that
we are requesting a viewport on the first index (in C/C++ the first element of a collection is given

⁵e “<” operator is not to be confused with the angle brackets “<>”, which, as seen in §4.3.3, are used in the
declaration of templates. In these listings “<” is never used as an operator.

39

4 Designing a modern Poisson series manipulator

0 as index). On the second line an employee object is defined by copying the first employee
of our viewport (reached through the begin() method – the * symbol being another C++
technicality). is means that first_employee is the employee with the lowest ID (since
it is placed at the beginning of the ID index). Finally on line 3 employee’s print_name()
method is used to display first_employee’s name.

By simply changing get<0> with get<1> it is possible to access the other index, the one
based on the employees’ names:

1 const employee_set::nth_index<1>::type& name_index=es.get<1>();
2 employee first_employee=(*nameindex.begin());
3 first_employee.print_ID();

is time first_employee is the first employee in alphabetical order, and on line 3 its ID
gets printed.

Beside the possibility of multiple sorting, of yet higher importance for Piranha is the ability
of having more than one access semantics to the data. Let’s take a look at this slightly modified
employee_set declaration:

1 typedef multi_index_container<
2 employee,
3 indexed_by<
4 hashed_unique<member<employee,int,&employee::id_num> >,
5 ordered_non_unique<member<employee,std::string,&employee::

name> >
6 >
7 > employee_set;

e only difference with respect to the previous declaration is on line 4, where the ID sorted
index is replaced with a hashed index. is index requires the definition of a functor that com-
putes the hash value of the integer id_num member of the employee class, which must be
provided by the developer. Now the hashed viewport honours the access semantics of unsorted
hashed containers, and as such it features O(1) search time performance. For instance:

1 const employee_set::nth_index<0>::type& ID_index=es.get<0>();
2 employee first_employee=(*IDindex.find(1));

Here we use the hashed viewport ID_index to search for the employee whose ID is 1 in
O(1) time. If the ID_index viewport had been defined as a sorted index this same search
would have been performed in O(logn) time instead.
boost::multi_index_container solves the recurrent need for different access inter-

faces to a container, and as such is a testimony of C++’s power and expressiveness. While usual
data containers (arrays, sets, maps, hashed containers) are commonly found in most program-
ming languages (either built-in or provided by external libraries – in C++ they are provided by
the STL), to our knowledge C++ is the only one which provides such a powerful construct.

In Piranha boost::multi_index_container is used as a container for the terms of a
Poisson series. Two indices are defined by default, one ordered according to the coefficients, the
other one being a hashed index on the terms’ i-vectors. As seen in the above sample declarations

40

4.5 Data structures for Poisson series

it is very easy to add new indices and access semantics. When dealing with perturbing functions,
for instance, it may be useful, with the task of term classification in mind, to have an index
ordered according to the frequencies of the trigonometric parts. To achieve this it is enough to
add a single line of code to the series definition and a function of few lines to implement the
comparison of frequencies. Another possibility is the use of an array-like random access index
to be used when parallelizing the code (most parallelization techniques require random access to
the elements of a container).

41

4 Designing a modern Poisson series manipulator

42

 P:  
 
Experience is what you get when you were expecting something else.
– Unknown

I Chapter 4 we introduced the basic ideas upon which our Poisson series manipulator, Pi-
ranha, is built. In this chapter we will discuss in more detail the implementation of such
ideas. It is not our intention to cover all Piranha’s source code; instead we will focus on the

most important aspect of the architectural design, in order to provide an overview of its most
relevant features. We will also discuss in deeper detail how certain operations, critical for the
efficiency and speed of a Poisson series manipulator, are performed.

5.1 Main classes for Poisson series
In Figure 5.1 the classes used in Piranha to represent Poisson series are shown. Starting from the
bottom, we can see that the base series class contains a collection of instantiations of term classes
(i.e., a series is a container of terms). e term class, in turn, is a composition of a coefficient class
and a trigonometric part class.

We refer to a base series class because such class is not meant for direct use. e base series
class, instead, implements a small set of primitive manipulation methods that will be used to
compose higher level operations (i.e., those operations which are meant to be employed by the
end user) in a derived series class. is way the base series class will not be littered with specialised
methods which will be instead implemented in the derived classes. We see this approach as an
implementation of the schema envisioned in Henrard [1988], where a separation between base
and specialised manipulators is hoped for and advocated.

e term class is a simple container for the pair formed by coefficient and trigonometric part.
e term class is a template class, which means (as we recall from §4.3.3) that the class types
representing the coefficient and the trigonometric part are not fixed, but they are decided at
compile-time. Obviously, not any type can be used as a coefficient or as a trigonometric part;
inside the base series class and the term class, indeed, certain methods from the coefficient and
trigonometric class will be called: if such methods are not present, a compile error will be emit-
ted¹. In the jargon of the modern C++ programming paradigm, it is said that the base series class
and the term class implicitly define a concept (see Gregor et al. [2006]) for the representation of
coefficients and trigonometric parts.

¹is is analogue to the template function example shown in §4.2.1, where it is requested that the generic type T
supports the “<” operator.

43

5 Piranha: architecture and implementation details

Figure 5.1: Piranha’s hierarchy of fundamental classes for the representation of Poisson series.

Definition In the context of C++ generic programming, we refer to concept as a set of properties
(methods, operators, data members, typedefs, etc.) that a class must expose in order to be
used in other specified generic classes or functions.

Definition In the context of C++ generic programming, a model is defined as a class that fulfills
the requirements of a specific concept.

It is important to stress that the adherence of a class to a concept is a compile-time check which
does not incur in any overhead at runtime.

5.1.1 Example: basic Poisson series coefficient concept

As an illustrative example, we report here some of the methods required by the concept defining
the coefficient of a Poisson series. In order to be used as a coefficient in the base series class, a
class must implement, among others,

• constructors from C++’s numerical “plain old types” (i.e., int and double),

• a constructor from a standard C++ string (to be used when reading series from file),

• an empty constructor which will initialise the coefficient to zero,

• a copy constructor,

• printing methods for output to screen or file,

44

5.2 Anatomy of the base series class

• a norm() method which returns the absolute value of the coefficient,

• an evaluation() method for the numerical evaluation of the coefficient at a certain
time,

• a swap() method for swapping content with another coefficient,

• an invert_sign() method,

• add() and subtract() methods,

• a divide_by() method,

and so on. e definition of such a concept comes both from mathematical necessities (e.g., the
coefficient must know how to divide by two in order to implement the basic Werner trigono-
metric formulas) and from efficiency considerations (e.g., a swap()method is not really neces-
sary for Fourier series, where the coefficients are lightweight numerical types and copying them
around is cheap, but it can considerably improve performance when dealing with polynomials if
implemented through direct pointer manipulation).

More advanced coefficient concepts can be defined. e application of the Jacobi-Anger ex-
pansion for the calculation of circular functions of Poisson series, for instance, requires the ca-
pability to calculate Bessel functions of the first kind of the coefficients (see §3.2). We can then
define a trigonometric coefficient concept that inherits all the characteristics of the basic coeffi-
cient concept and adds a besselJ() member for the calculation of Jn.

Defining a concept is mainly a matter of craftsmanship, and requires a great deal of actual
work on the source code. Great care and attention should be put into this task. e rewards of
such a work are the rigorous definition of the software architecture and the minimization of the
effort needed to create new models. In our experience with Piranha, the formal specification of
concepts (which is a work in progress since not all the relevant classes of the framework explicitly
adhere to a standarized concept yet), being intimately entwined with the coding process, has been
one of the major, most time-consuming tasks.

5.2 Anatomy of the base series class
As we hinted near the end Chapter 4, the core of the base class used to represent Poisson series in
Piranha is a boost::multi_index_container class (see §4.5.3) which acts as a container
for terms. As we already explained, two indices are present by default:

1. a sorted index which keeps the terms ordered according to some property of the coeffi-
cients,

2. a hashed index in which the hash value is computed from the trigonometric multipliers.

e sorting criterion depends on the characteristics of the coefficient class, and more indices can
be added, since the index specifier is a template parameter of the base series class. It could be

45

5 Piranha: architecture and implementation details

Figure 5.2: Base Poisson series class members.

46

5.3 Representation of arguments

interesting, for instance, to define an additional sorted index on the trigonometric parts with an
ordering on the frequencies of the terms.

In Figure 5.2 the data members of the base Poisson series class are shown. It can be seen how
the only members added with respect to a plain multiindex container are two vectors of pointers
to the series arguments, whose sizes define the coefficient and trigonometric widths of the series.
e representation and management of arguments are described in the next section.

5.3 Representation of arguments
Series arguments in Piranha are managed globally by a static class². Such manager class wraps a
list of instantiations of the psymbol class, which serves as representation of the arguments of a
Poisson series. e psymbol class is a simple structure which encapsulates two data members:

1. the name of the argument, represented as a standard C++ string,

2. the time dependence of the argument, represented as a C++ vector of double precision
values.

e vector of double precision values can have an arbitrary size, and it contains the coefficients
of the expansion in natural powers of time of the time-dependence of the argument. is means
that the vector

(v0, v1, v2, . . . , vn)

maps to the time dependence

v0 + v1t+ v2t2 + . . . + vnt
n.

For trigonometric arguments this means that v0 is the phase of the argument, while v1 is its
frequency.

When a new psymbol is created, the constructor registers the argument in the manager.
If no other argument with the exact same name exists, a copy of the newly-created psymbol
is appended to the list of known arguments, otherwise the time-dependence vector of the new
psymbol replaces that of the corresponding argument in the manager’s list.

As hinted earlier, base series classes do not store psymbol instances directly, instead they
store vectors of pointers to existing arguments provided by the argument manager class. is
way the weight of arguments in series classes is minimized and arguments consistency between
series is ensured.

5.4 Toolboxes
In §5.1 we explained how the base series class, by implementing primitive operations on Poisson
series, is not meant to be used directly, and that it is intended to be inherited by a derived class

²By static class we mean a class whose data members are static, which in turn means that its members are initialised
when the program starts and that their existence does not depend upon any instantiation of the class.

47

5 Piranha: architecture and implementation details

which will implement higher level manipulations. While this approach ensures a clean archi-
tecture and a high degree of extendibility, it is also true that it places on the user’s shoulders
the burden of implementing the desired manipulation methods. It is also true that certain ma-
nipulation features are extremely convenient and can be generalised effectively: we are thinking,
for instance, about operator overloading for common operations (addition, subtraction, etc.) or
about those methods specific to the manipulation of series with complex coefficients (e.g., take
the real/imaginary part of the series, calculate its complex conjugate).

One of Piranha’s core principles is code reuse and genericity, which, in this context, translates
in what we have called toolboxes. e idea is to use the ability of C++ to perform multiple in-
heritance, i.e. to inherit from more than one base class, and use generic methods-only classes
which provide common higher-level functionality. Such toolboxes are inherited by the derived
series class (which by definition already inherits from the base series class) to build a stack of
customizable features. Toolboxes can use the methods from the base series class and reference
its data members, and can also call methods from other toolboxes.

e introduction of toolboxes prompts for an update of the class diagram in Figure 5.1, which is
displayed in Figure 5.3. e figure shows how the derived series class inherits from both the base
series class and the toolboxes. It can be seen how toolboxes can be dependent upon each other,
as indicated by the dashed arrows. e dependencies between toolboxes can be used to define
toolbox concepts: the operators toolbox, for instance, needs the series addition andmultiplication
methods provided by the basic math toolbox; it could be then said that the operators toolbox
implicitly defines a concept of which the basic math toolbox is a model. is also means that is
is possible to write different implementations, for instance, of the basic math toolbox, without
the need to change other toolboxes depending on the math toolbox itself. is is useful when we
need to define different truncation methodologies for Fourier series coefficients (which are purely
numerical) and full-fledged Poisson series coefficients (which are multivariate polynomials).

Piranha already includes many ready-to-use toolboxes, including³:

• an operator overloading toolbox, for comfortable use of ordinary mathematical operators
(+,−, ·, etc.) in the manipulation of Poisson series,

• a basic math toolbox, implementing basic arithmetics,

• a trigonometric toolbox, implementing complex exponential, sine and cosine of Poisson
series,

• a complex toolbox, providing methods specific to the manipulation of series with complex
coefficients,

• a power toolbox, implementing the real exponentiation of series,

• a differential toolbox, implementing the partial derivation with respect to series arguments.

One of the design goals of Piranha is to encourage the development of extensions to the frame-
work by its users, and the toolbox system aims to achieve precisely this goal.

³Some of the mentioned toolboxes are at the moment specific to Fourier series only.

48

5.4 Toolboxes

Figure 5.3: Relation between Piranha’s base classes and toolboxes.

49

5 Piranha: architecture and implementation details

5.4.1 A note on the implementation of toolboxes

In order to reach maximum performance, the toolbox system is implemented in Piranha without
any use of the runtime polymorphism capabilities of the C++ language. e type of polymor-
phism used in Piranha is strictly static (i.e., accomplished at compile time) and heavily relies
on the design pattern known as Curiously-Recurring Template Pattern (or CRTP, see Coplien
[1995]). is means, in practice, that from the point of view of the resulting binary this ap-
proach leads to the same result as if the methods defined in the toolboxes had been specified
directly in the derived class by hand.

For the readers familiar with the Python programming language, the toolbox system can
be seen as a set of C++ static, template-based mixins. Moreover, since toolboxes can be re-
implemented and exchanged without changing other parts of the architecture, they can also be
seen as a form of policy-based design (see Alexandrescu [2001] for a description of policy-based
design patterns in C++).

5.5 Series I/O

In the typical use case of a Poisson series manipulator, series are stored as files on and loaded into
memory from a mass storage device, typically a hard disk. e file format for Poisson series in
Piranha is human readable and text-based. Basically, series are stored as a line-by-line sequence of
terms in which coefficients and trigonometric parts are separated by a field-separator (specifically,
a semicolon - “;”). A header, containing a description of the arguments of the series, is present at
the beginning of the file. Lines beginning with the character “#” are considered comments and
hence ignored.

e input routines try to be as fault-tolerant as possible: unknown entries in the header will
be reported and ignored, trigonometric parts with more multipliers than those specified by the
number of trigonometric arguments will be discarded, and so on. Here follows an example of
Fourier series file:

1 # Main problem, latitude
2 [trig_arg]
3 name=theta_g
4 poly_eval=0.000000000000000e+00;2.301216752957500e+05
5 [trig_arg]
6 name=W_1
7 poly_eval=3.810344430588300e+00;8.399684731773899e+03
8 [trig_arg]
9 name=D

10 poly_eval=5.198466741027400e+00;7.771377146812100e+03
11 [trig_arg]
12 name=l’
13 poly_eval=6.240060126971500e+00;6.283019551679999e+02
14 [trig_arg]
15 name=l

50

5.6 Improving performance

16 poly_eval=2.355555898265800e+00;8.328691426955400e+03
17 [trig_arg]
18 name=F
19 poly_eval=1.627905233371500e+00;8.433466158130799e+03
20 [data]
21 8.950339292435590e-02;0;0;0;0;0;1;s
22 4.897463209452490e-03;0;0;0;0;1;1;s
23 4.846686200080110e-03;0;0;0;0;1;-1;s
24 3.023578483150850e-03;0;0;2;0;0;-1;s
25 9.671312989818789e-04;0;0;2;0;-1;1;s
26 8.075797467865170e-04;0;0;2;0;-1;-1;s
27 5.685003279693080e-04;0;0;2;0;0;1;s
28 3.001592522082110e-04;0;0;0;0;2;1;s
29 1.617213843065370e-04;0;0;2;0;1;-1;s
30 1.539760978998670e-04;0;0;0;0;2;-1;s
31 1.433978997103700e-04;0;0;2;-1;0;-1;s
32 7.546779444939431e-05;0;0;2;0;-2;-1;s
33 7.331182800950011e-05;0;0;2;0;1;1;s
34 -5.863676028915500e-05;0;0;2;1;0;-1;s
35 4.299584675330350e-05;0;0;2;-1;-1;1;s
36 3.858588454719500e-05;0;0;2;-1;0;1;s
37 3.604531541407670e-05;0;0;2;-1;-1;-1;s
38 -3.263634801535500e-05;0;0;0;1;-1;-1;s
39 3.189889792501930e-05;0;0;4;0;-1;-1;s
40 ...

is series represents the lunar colatitude in the main problem of the ELP2000 theory. Since
this is a Fourier series, only trigonometric arguments will be present. e last element of each
term line is a letter (“c” or “s”) that specifies whether the term is cosine or sine.

Poisson series can of course be saved back in this same file format, but they can also be saved (or
displayed) in TEX tabular format for quick embedding into other documents or to be processed
and displayed as beautiful images in interactive sessions (currently, this is a work in progress).

5.6 Improving performance

In this section we are going to explain in greater detail how certain speed-critical parts of Piranha
work, and the kind of optimizations employed to speed up such sections of code. More substantial
performance optimizations (centered around the application of coded arithmetics techniques,
see Chapter 6) were conceived after we wrote this part of the dissertation, and as such they are
included in Chapter 9.

51

5 Piranha: architecture and implementation details

5.6.1 Use of temporary hash sets to speed up multiplications

In §2.3.1 we noted how multiplication is by far the most expensive mathematical operation on
Poisson series. In the previous sections (see §5.2) we also mentioned how the core of the series
classes is a multiindex container with two or more indices. e mandatory indices are a sorted
index and an hased index, whose performance profiles with respect to element insertion, lookup,
modification and deletion are O(logn) and O(1) respectively. is index layout creates a bottle-
neck during the sequence of operations performed during series multiplication, which we recall
is the following:

1. scan the term sequence for both series and perform term-by-term multiplications;

2. insert in the output series the pair of terms resulting from each term multiplication; term
insertion, as described in §2.3, relies on the ability to identify existing terms in the output
series and either pack the coefficients in an appropriate way or append the new terms.

e performance critical part is here step two: while, by using the hashed index, we can quickly
identify existing terms, when a term modification or insertion takes place the multiindex con-
tainer must either reposition the reference to an existing term in the binary search tree or establish
the placement of the newly-inserted term in the tree. Both such operations are characterized by
logarithmic complexity.

To overcome this bottleneck, for series multiplications Piranha uses temporary hash tables,
which, we recall, feature pure O(1) performance in virtue of the fact thath they do not maintain
any ordering on the elements. is is not a problem, since during multiplication we are interested
in identifying existing terms and pack them appropriately (the ordering is necessary in the factor
series for the implementation of truncation methodologies); series ordering happens at the end
of the multiplication when the terms are moved from the temporary hash table into the output
series.

Such strategy makes sense just in series multiplication, which is a quadratic-complexity oper-
ation. Series addition, by having linear complexity and because it can be performed directly by
modifying existing series, is not afflicted by the bottleneck described above.

In Piranha standard hashed containers, like<ext/hash_set> and<tr1/unordered_set>,
are used as temporary hash tables during series multiplication. Performance can most likely be
increased substantially by developing a custom hash table class specifically tailored on the specific
task at hand.

5.6.2 Hash function

In the previous susbsection we saw how in Piranha the efficiency of hash tables is critical for
overall performance. Hash tables performance depends substantially on two factors:

1. the speed and behaviour of the hash function,

2. the strategy of collision resolution.

52

5.6 Improving performance

We want to focus here briefly on the properties of the hash function used in Piranha. Ideally,
a hash function should produce values as randomized as possible. is means that a minimal
change of the element being hashed should lead to a hash value different as much as possible from
the original one. is ensures that elements are placed in the hashed container in a randomized
fashion, hence minimizing the chance of collision and clustering behaviour (clustering happens
when elements of the hashed container tend to group around specific positions). Moreover, a
hash function will be used extremely frequently when working with a hashed container, and
hence its speed becomes an important contributor to the overall performance of the program⁴.

e hash function used in Piranha is the one provided by the Boost libraries, which, in turn,
was taken directly from Ramakrishna and Zobel [1997]. is hash function was conceived for
the hashing of strings and, as shown in the cited paper, its performance in practice is very near to
the theoretical best for a wide range of use cases. Besides, such hash function is very fast because
it uses exclusively bit shift operations and integer additions, and it is so simple that is can be
rewritten here:

s⊕ [n+ 0x9e3779b9 + (s≪ 6) + (s≫ 2)] , (5.1)
where s is a seed value and n is the integer to be hashed. In this context ⊕ is the bitwise XOR
operator and ≪ and ≫ are the bit shift operators. 0x9e3779b9 is a hexadecimal value (cor-
responding to decimal −1640531527). In Poisson series eq. (5.1) is used recursively on the
members of the vectors of the trigonometric multipliers to build the hash value of such vector.
e initial seed value is given by the type of the term (cosine or sine), which is a boolean flag
(which, in C++, is a single-byte integer).

5.6.3 Packed operations on integers and SIMD instructions
Another common operation when dealing with hashed containers is the equality test for the
elements in the container. As we saw in §4.5.2, indeed, the equivalence of the hash values of
two objects does not imply the equivalence of the objects themselves, since there’s the possibility
of a hash collision. Hence, to establish if a term is already present in a series, a full-fledged
comparison is often needed. Other frequent operations on elements of a series include:

• copy operations,

• assignment operations,

• tests on trigonometric multipliers vectors to establish whether they are null or not (we
recall from §2.1.3 that in the case of a null sine trigonometric part the term is discarded
upon insertion).

ese operations (hashing, equality test, copy, assignment and null test on trigonometric parts)
share a common feature: they can be performed in groups of integers instead of integer by integer.

Typical modern workstations, indeed, feature either 32-bit or 64-bit hardware integers. In the
32-bit case this means that integers in the range

[−2 147 483 648,+2147 483 647]

⁴For a through discussion on the desired properties of hash function and hashed containers please refer to standard
textbooks of computer science, such as Knuth [1998b].

53

5 Piranha: architecture and implementation details

can be represented. is is typically an overkill in the case of trigonometric multipliers of Poisson
series, at least in the context of Celestial Mechanics. 16-bit or even 8-bit integers are all that’s
needed in most situations. A trick that can speed up many operations is then that of accessing
arrays of short integers as if they were arrays of long integers instead, thus increasing the number
of operations that can be performed during a single clock cycle. is technique is sometimes
called integer packing.

As a practical example, let’s take the case of null-testing an array of trigonometric multipliers:

(n1,n2, . . . ,nm) =? 0.

Using the plain method, we need to perform at worst m integer comparisons for the null test
itself, plus m integer additions and further m comparisons in the cycle that iterates over the
array. We can employ integer packing in this context, since if n1 = n2 = 0 then also the union
of these short integers results in a null long integer, whereas if n1 or n2 is not zero the resulting
long integer won’t be zero either. If the size of the short integer is half the size of the long integer
(e.g., packed 16-bit against unpacked 32-bit), then for the same null test half comparisons and
half integer additions will be needed with respect to the plain method. In the extreme case of
8-bit integers and a 64-bit workstation, an array of eight elements can be null-tested in a single
pass.

Such technique of integer packing is made portable by the Boost integer library, which allows
to define integers of arbitrary sizes independently of the hardware platform. Piranha, hence, will
use integer packing in an optimal way on both 32-bit and 64-bit architectures without the need
to change any line of code. According to our testing, the use of operations on packed integers in
Piranha leads to performance improvements estimated in the 20% - 40% range during common
operations on Poisson series.

e concept of integer packing can be extended also to those operations which are not natu-
rally suited for it. Most notably in this context we are interested in speeding up additions and
subtractions of trigonometric multiplier vectors, which are performed during series multiplica-
tions. Special vectorizing (or SIMD - Single Instruction, Multiple Data) instructions exist for
many architecures:

• MMX/SSE for Intel processors,

• Altivec for PowerPC processors,

• 3DNow! for AMD processors,

and so on. Typically these instructions allow to perform mathematical and logical operations
on vectors of integers (and also floats) at the cost of a single operation, with theoretically high
performance gains. In practice, the vectorizability of a problem depends on certain constraints
such as proper memory alignment, and it is also dependent upon the minimization of the cost of
packing/unpacking of data to/from the special registers used by SIMD extension.

In Piranha support for Intel’s SSE2 (Streaming SIMDExtensions 2) can be enabled at compile
time. SSE2 instructions are used during the multiplication of trigonometric parts, and from our
measurements they lead to a performance gain of about 10%. More substantial gains are expected
when SIMD instructions will be applied in the context of coded arithmetics (see §9.1).

54

5.6 Improving performance

5.6.4 Memory management

Memorymanagement is typically a critical area for software performance. is is particularly true
for Piranha, where multiindex containers are widely employed. Multiindex containers, indeed,
alongside with their effective payload (i.e., the terms of a series) must also mantain two or more
indices by using iterators (see §4.3.5) and tree-like structures. Iterators are typically small-sized
(few bytes), and hence it becomes important to be able to quickly allocate small sized objects
dynamically (i.e., on the heap).

Luckily, multiindex containers (as well as standard C++ containers like vectors, hash tables,
trees) allow to specify as optional template parameter a memory allocator different from the
predefined one. GCC’s C++ standard library (libstdc++) provides allocators tuned for specific
workloads; in particular in Piranha we use extensively the pool allocator provided by the <ex-
t/pool_allocator.h> header (see libstdc++ allocators). A pool allocator allocates large
chunks of memory which are then subdivided and provided upon request, whereas the standard
memory allocator typically performs one allocation per request. Pool allocators are hence suited
for those situations in which it is needed to allocate many objects of small and fixed size, just like
in multiindex containers.

rough the use of this pool allocator we were able to cut down the number of memory alloca-
tions during typical manipulations by at least an order of magnitude. Moreover, since libstdc++
is Free Software, we were able to incorporate the source code of the pool allocator (which is quite
small) into Piranha, and modify it so that it can allocate memory properly aligned for usage with
SSE2 instructions.

anks to the standardized interface of C++ memory allocators it is possible to write a cus-
tomized memory allocator that can be plugged inside Piranha’s architecture without changing
any line of code. A possible future optimization in Piranha is then the implementation of a pool
allocator heavily oriented towards use in Poisson series and polynomials.

5.6.5 Improving evaluation speed

An operation which is often performed in certain manipulations, especially on Fourier series, is
series evaluation. Series evaluation is the process of associating a numerical value to the series by
substitution of literal arguments with numerical values. Evaluation is used for instance to assess
the magnitude of terms during Taylor-like expansions, or to calculate the position of a body using
a theory of motion expressed as Fourier series.

e straightforward, brute-force, algorithm for series evaluation in Piranha is the direct sub-
stitution of time-evaluations of the psymbol objects inside the coefficients and trigonometric
parts of the series, the computations of cosines and sines, and the summation of the evaluations
of all the terms. is method is not optimal, performance-wise, because it forces many costly
calls to cosine and sine functions that can be avoided.

e strategy adopted in Piranha is to transform the trigonometric parts, during evaluation,

55

5 Piranha: architecture and implementation details

into products of complex exponentials, i.e.,{
cos
sin (n1a1,n2a2, . . . ,nmam) =

{
<

=

[
ei(n1a1,n2a2,...,nmam)

]
(5.2)

=
{

<

=

[
Πm

j=1einjaj
]
, (5.3)

so that it is possible to cache all the individual complex exponentiations inside a vector-like
structure and re-use them throughout the evaluation of all terms. is way the vast majority
of calls to cosine and sine functions are replaced with faster complex multiplications.

is approach leads to substantial improvements performance-wise, as shown in Figure 5.4.
e graph depicts three different evaluation tasks performed with three different algorithms:

1. the “dumb” brute-force algorithm (red),

2. a smarter brute-force algorithm that avoids calculating the contribution of null trigono-
metric multipliers (green),

3. the complex exponential caching algorithm (blue).

e first cluster of bars refers to the execution time for 200000 evaluations of the ELP3 lunar
series, which counts 702 terms. e second cluster of bars depicts the execution time of 1000
evaluations of a series (here called TASSR6) derived from the TASS theory for Saturn’s satellites
by Alain Vienne, representing Titan’s distance from Saturn and counting around 16000 terms
(more about that in Chapter 8). BIGSERIES is a precise squaring of the TASSR6 series (nu-
merical precision of 1 part every billion), it counts around 300000 terms and it is evaluated 100
times.

e caching algorithm leads to a speedup in the range of x1.5 - x3 with respect to the brute-
force algorithms, and hence it is a marked improvement. A yet more efficient approach is prob-
ably the one described in Babaev et al. [1980]: this algorithm groups in common radix fashion
the vectors of trigonometric multipliers (i.e., it places them in a trie-like structure – see Knuth
[1998b] for a description of the trie data structure), effectively caching complex exponentials of
entire linear combinations of trigonometric multipliers instead of complex exponentials of single
multipliers. is leads to a further reduction in the number of operations needed during evalu-
ation with respect to our caching algorithm. Such evaluation algorithm will be implemented in
the future also in Piranha.

5.6.6 Parallelization

Parallelization is the procedure of subdividing computational tasks between logical processing
units, so that such processing units can work simultaneously. Such processing units can be mul-
tiple cores inside a single physical processor, multiple processors in a single workstation and
multiple workstations connected in a network. Multi-core and multi-processor parallelization
are usually the simplest for to implement, since they can use shared memory, and require less
modifications to the source code with respect to network parallelization.

56

5.6 Improving performance

Figure 5.4: Benchmark for three evaluation algorithms: dumb brute force (red), smarter brute
force (green) and complex exponential caching algorithm (blue). e series being
evaluated are taken from the TASS and ELP2000 theories.

57

5 Piranha: architecture and implementation details

In Piranha we have started to implement multi-core/multi-processor parallelism using Intel’s
threading building blocks (TBB) library (see TBB). TBB, which was recently made available un-
der an open-source license, allows programming in modern C++ style (using idioms like template
classes, functors, etc.), and hides much of the complexity and minute details of multi-threaded
programming from the user. is is a marked advantage, in a C++ project like Piranha, with
respect to other solutions like low-level thread programming or OpenMP (see OpenMP), which
are based on C-style programming. With TBB it is possible to add parallelism with a very low
impact on the code base.

At the present time parallelism in Piranha is available only in the evaluation methods, which
are algorithmically quite simple and do not require locking techniques for access to shared re-
sources from different threads. A glimpse on the kind of performance improvements that can be
expected through parallelism is shown in Figure 5.5. e graph refers to the time-evaluation of a
series performed over a certain time-span with around 300000 samples over such time span. is
test was performed in serial (blue columns) and parallel (green columns) mode on a dual-core
64-bit laptop and on a 4-core (2 CPU x 2 cores) Xeon server, and compared to the theoretical
maximum performance achievable on such hardware (red columns), which equals to the serial
time divided by the number of logical processing units. As shown in the graph, on the dual-core
laptop the actual parallel performance is very near to the maximum theoretical performance (i.e.,
running time is divided almost by half). On the 4-way Xeon parallel performance is not so close
to the best theoretical performance (it is ~30% away), but a substantial speed boost is gained
nevertheless (we don’t know yet if this is due to some overhead due to TBB or to cache effects,
most likely a combination of the two - it can certainly be improved).

A current work in progress is the extension of parallelization to other algorithms in Piranha,
most notably to the cumbersomemultiplicationmethods. Parallelization is expected to bring sus-
btantial performance improvements, especially when used in conjunction with coded arithmetics
(see Chapters 6 and 9).

58

5.6 Improving performance

Figure 5.5: Benchmark of parallelized evaluation. Timings for 300000 evaluations of a Fourier
series on two different multi-core system in serial and parallel mode are displayed,
and compared to the theoretical minimum running time in parallel mode.

59

5 Piranha: architecture and implementation details

60

 O    
 

I the previous chapters we have focused mainly on the manipulation of Fourier series and of
the trigonometric parts of Poisson series. e reasons for this choice are essentially two: in
the first place, Piranha was conceived initially as a Fourier series manipulator, and secondly

sparse multivariate polynomials (the polynomials we are mostly concerned with – see §6.1.2)
can efficently be handled using idioms similar to those employed in the manipulation of the
trigonometric parts of Poisson series.

Many polynomial manipulators are available today, and projects like Pari and Singular (see
PARI/GP and Greuel et al. [2007]) provide featureful environments for mathematicians; such
manipulators are however often geared towards the resolution of theoretical problems, and as such
they often compromise on pure performance to allow more flexibility. As an illustrative example,
we cite the fact that manipulators geared towards number theory often employ arbitrarily-sized
integers for the representation of polynomial exponents. In Celestial Mechanics hardware inte-
gers are more than enough for the task.

Additionally, many of the advanced capabilities offered by specialised polynomial manipulators
are not used in Celestial Mechanics: the main goal is to perform simple operations on very large
polynomials as fast as possible.

6.1 Types of polynomials

In the context of computer algebra systems polynomials are classically subdivided into two groups:
dense polynomials and sparse polynomials.

Given a degree n, a polynomial is defined dense when it includes all (or almost all) the mono-
mials from degree 0 up to degree n. Conversely, a polynomial of degree n is defined sparse when
most of the monomials are null.

From a mathematical point of view, hence, there is no difference between dense and sparse
polynomials. Fundamental differences arise however in the representation and manipulation of
dense and sparse polynomials in computer algebra systems.

6.1.1 Dense polynomials

Dense polynomials can intuitively be represented efficiently by simple arrays. To represent a
univariate dense polynomial of degree n, for instance, it is enough an array of n + 1 elements
which stores the coefficients of the monomials; the position of each coefficient in the array will
also be the degree of the corresponding monomial:

61

6 On the manipulation of sparse multivariate polynomials

C0 C1 C2 . . . Cn

For the representation of multivariate dense polynomials, table-like or recursive representa-
tions are often used. Some existing computer algebra systems pre-compute tables of integers
(either at startup or on-demand) in which each row corresponds to a multiindex of exponents.
e position of the coefficient in an array gives implictly the row corresponding to the mono-
mial’s multiindex. is way the amount of data being manipulated is reduced, the exponents
multiindices can be shared between polynomials and the cache memory utilisation is optimized.
is approach is notably used in one of the possible polynomial representations of the algebraic
manipulator TRIP (see Gastineau and Laskar [2005]).

e manipulation of dense polynomials has been studied extensively in literature, and as a
result a considerable number of techniques is available when dealing with such objects. Both
polynomial long division and evaluation, for instance, can be performed using the well-known
Horner scheme (see Horner [1815]), which, as shown in Ostrowski [1954], is an optimal algo-
rithm for the evaluation of univariate polynomials.

Most notably, fast algorithms for dense polynomial multiplication have been developed. Poly-
nomial multiplication, like Poisson series multiplication, has O

(
n2
)
complexity when performed

straightforwardly (i.e., monomial-by-monomial multiplication). Karatsuba and Ofman [1963]
were the first to introduce an algorithmically faster multiplication methodology, which has a
complexity of O

(
nlog2 3

)
∼ O

(
n1.585

)
. A yet better approach, at least from a theoretical point

of view, is to use FFT-based multiplication methods, which have logarithmic complexity (see,
for instance, Brigham [1988] and Emiris and Pan [1999]).

Despite their theoretical advantages, the use of these multiplication methodologies in Celes-
tial Mechanics is however not very effective: Karatsuba and FFT methods are advantageous
from polynomial orders typically higher than those seen in Celestial Mechanics, since, for lower
polynomial orders, the implementation cost of these algorithms outweighs their lower big O
complexity (see Moenck [1976] for a thorough comparison of polynomial multiplication algo-
rithms).

Horner’s scheme, as well as Karatsuba and FFT multiplication, are suitable for use in univari-
ate polynomials, but they can be adapted to work also on multivariate polynomials through the
recursive representation of multivariate polynomials as univariate polynomials with multivariate
polynomials as coefficients.

6.1.2 Sparse polynomials

Although they can be applied also to sparse polynomials, the techniques mentioned in the pre-
vious subsection are often ineffective for such objects. e fast multiplication algorithms, for
instance, work best on the assumption that the polynomials being handled are dense, on the ba-
sis that the position of each monomial in the resulting polynomial is implicitly given in the dense
structure and hence all CPU time is spent in coefficient multiplication. As shown in Fateman
[2003], Karatsuba multiplications (and FFT likewise) on sparse polynomials typically implymore
coefficient multiplications than the straightforward method, since it will be needed to deal also
with the monomials missing in a sparse polynomial.

e focus on the manipulation of sparse polynomials shifts hence to the data structures used to

62

6.2 Polynomials in Piranha

represent them. In the following section we will discuss in more depth the design choices made
in Piranha regarding the manipulation of polynomials.

6.2 Polynomials in Piranha

Sparse multivariate polynomials are not much different from Poisson series when it comes to
algebraic manipulation. e issues arising for the efficient manipulation of polynomials are the
same analysed in §2.3.1, with the difference that instead of trigonometric terms we are dealing
with monomials, and hence a monomial-by-monomial multiplication generates a single mono-
mial (whereas trigonometric part multiplication leads to two terms being generated). e anal-
ogy between polynomials and Poisson series is so appropriate that in some existing Poisson series
manipulators the same data structures are used for polynomials and trigonometric parts, and
in certain cases Poisson series are represented as polynomials of complex exponentials (see, for
instance, the discussion in Cherniak [1970]).

In Piranha we chose to focus on sparse polynomials for the sake of generality. By this we mean
that we chose to provide two already implemented sparse polynomial classes: it is of course pos-
sible to leverage the infrastructure provided by Piranha’s architecture to write a dense polynomial
class and use it as coefficient in Poisson series (see the discussion in Chapter 5).

6.2.1 A general-purpose polynomial class

e first sparse polynomial class we implemented mirrors almost exactly the design of Poisson
series classes described in Chapter 4. In brief:

• monomials are classes containing a coefficient and an array of integers (i.e., the exponents),

• monomials are stored in a boost::multi_index_container class with a hashed-
sorted index,

• the hashed index¹ is based on the values of the exponents (see §5.6.2),

• the sorted index is based on the monomials’ degree,

• the same optimization techniques described in §5.6 for series multiplication are applied
for polynomial multiplication.

is polynomial class is generic in the sense that it does not impose hard limits, apart from those
fixed by the ranges of the types used in the representation: the number of monomials that can
be contained in a polynomial is arbitrary, and so is the value of the exponents.

¹We note here that hashing techniques, while common in more general polynomial manipulators (see for instance
Hall Jr. [1971] and Fateman [2003]), seem strangely uncommon in specific algebraic manipulators for Celestial
Mechanics.

63

6 On the manipulation of sparse multivariate polynomials

6.3 A faster polynomial class: coded monomial arithmetics

We have briefly mentioned in §6.1.1 that a common technique in the manipulation of polynomi-
als is to build tables of exponents and arrays of coefficients, and relate them through row numbers
and positions respectively. Such tables of exponents are usually built in lexicographic fashion and
grouping together rows with the same degree (a representation that is sometimes called total de-
gree lexicographic ordering, which, according to Bachmann and Schönemann [1998], was first
implemented in the Macaulay algebraic manipulator – see Grayson and Stillman [2007]).

With three variables and up to polynomial degree three, for instance, we may write the fol-
lowing table of exponents:

x y z

0 0 0

0 0 1
0 1 0
1 0 0

0 0 2
0 1 1
0 2 0
1 0 1
1 1 0
2 0 0

0 0 3
.
3 0 0

Please note that the monomials are sorted in ascending order with respect to the degree. e
monomial

5xz, (6.1)

for instance, is densely represented by the slot number 7 in the array of coefficients, which will
contain the value 5. A sparse representation may instead store the coefficient in a list-like struc-
ture alongside with a pointer to the appropriate multiindex row.

Building such tables takes time and, most importantly, they utilise a lot of memory storage.
is is not a problem for dense polynomials – since by definition they will comprise most or all
the possible monomials – but it becomes an issue for sparse polynomials.

An alternative is not to store explictly all the monomials and use instead some kind of codifi-
cation. For instance:

64

6.3 A faster polynomial class: coded monomial arithmetics

x y z Code

0 0 0 0

0 0 1 1
0 1 0 2
1 0 0 3

0 0 2 4
0 1 1 5
0 2 0 6
1 0 1 7
1 1 0 8
2 0 0 9

0 0 3 10
.

Since there is a bijective relation between each exponent multiindex and the corresponding
coded value, it will be enough to store the code alongside with the coefficient to represent a
monomial. e downside is that when manipulating such objects it will be typically needed to
decode the coded value, perform the operation, and re-encode the new monomial. Typically the
operations of (de)codification will involve combinatronics and will occupy a considerable amount
of CPU time (as shown, for instance, in Jorba [1998]).

Here we describe a polynomial class that takes advantage of the coded representation without
the need for (de)codification during basic algebraic operations (i.e., addition, subtraction and
multiplication).

Note We initially conceived this schema after we attended Prof. Gastineau’s lectures during a school on
specific algebraic manipulators in Barcelona (SAM07). Despite our attempts at locating precedent
descriptions of this technique in the literature, it was not until the days immediately preceding
the printing of this dissertation that we discovered that this procedure is a variant of the Kro-
necker’s algorithm, which is described, for instance, in Fateman [2005] and Moenck [1976]².
We apologize, hence, for calling here “coded arithmetics” a technique already known with another
name: due to the tight time constraints we could not alter too much the dissertation without the
risk of rendering it confusing.

e basic idea is to use a coded representation with different ordering with respect to the one
shown above. A 3-variate polynomial of degree three, for instance, is represented as follows:

²We are, however, reasonably sure that the application of Kronecker’s algorithm to Poisson series (which we outline
in §9.1) has not been described in any publication connected to algebraic manipulators specialised for Celestial
Mechanics.

65

6 On the manipulation of sparse multivariate polynomials

z y x Code

0 0 0 0
0 0 1 1
0 0 2 2
0 0 3 3

0 1 0 4
0 1 1 5
0 1 2 6
0 1 3 7

0 2 0 8
0 2 1 9
0 2 2 10
0 2 3 11
.
3 3 3 63

e order is still lexicographic, but the is no grouping of monomials with equal degree and
no ordering with respect to monomial degree. Please also note that the order of the columns
is inverted. We can call this representationm-variate n-lexicographic, where, in this case, n =
m = 3. e following features of such a representation are evident:

• it can represent all 3-variate polynomials of degree three,

• it can represent a subset of polynomials of degree greater than three.

In other words, this representation is less compact than the total degree lexicographic ordering,
which does not include monomials of degree greater than three. is representation, though, has
an interesting feature. If we consider, for instance, the monomialsM4 and M5, corresponding
to codes 4 and 5, we notice that the code corresponding to the monomial resulting from the
multiplication ofM4 andM5 corresponds to code 9 = 4 + 5. In other words:

M4 ·M5 → (0, 1, 0)︸ ︷︷ ︸
code 4

+(0, 1, 1)︸ ︷︷ ︸
code 5

= (0, 2, 1)︸ ︷︷ ︸
code 9

. (6.2)

is means that we can perform monomial multiplication on the coded values instead of the mul-
tiindices exponents. is way the complexity of exponent manipulation during the multiplication
of twom-variate monomials is reduced from O(m) to O(1), and, perhaps more importantly, we
can avoid the (de)codification step in polynomial multiplication. is technique works as long
as the monomial resulting from the multiplication can still be represented in the above table, or,
in other words, all the exponents of the resulting monomial are less than or equal to the degree
of the representation. If we try to multiply the monomials coded by the numbers 6 and 7, for
instance, the resulting monomial will feature an exponent greater than three and hence it will
not be able to be represented in the lexicographic table eq. (6.2) will not hold.

To generalize the above results, we give the following definitions.

66

6.3 A faster polynomial class: coded monomial arithmetics

Definition Given anm-variaten-lexicographic representation of a set of monomial multiindices

jk = (j0,k, j1,k, j2,k . . . , jm−1,k) , (6.3)

we call coding vector the integer vector

c =
(
1,n+ 1, (n+ 1)2 , . . . , (n+ 1)m−1

)
, (6.4)

and lexicographic code the dot product

hk = c · jk. (6.5)

Given three multiindices j1, j2 and j3 that can be represented in a m-variate n-lexicographic
representation and for which the relation

j1 + j2 = j3 (6.6)

holds, it is then evident that the same relation holds when both sides of the equation are dot-
multiplied by the constant coding vector c,

c ·
(
j1 + j2

)
= c · j3, (6.7)

hence leading to the equality of the corresponding lexicographic codes:

h1 + h2 = h3. (6.8)

It is fairly easy to show that the codes h1, h2 and h3 are unique in the representation, given an
appropriate coding vector.

Applying the coding vector to a multiindex can be seen as considering the elements of the mul-
tiindex as the digits of a number in base n+ 1, and transforming it into its decimal counterpart.
In the 3-variate example above, for instance, the last element of the table, 333, is decimal 63 in
base 4. In other words, wemap the vectorial space of the jk vectors to a subset of the non-negative
integers. Such mapping is a homomorphism which preserves the operation of addition.

Decoding back a lexicographic code into the corresponding multiindex is a matter of applying
multiple times the modulo operation (which we note with the C-style “%” symbol):

jk =

(
hk% (n+ 1)

(n+ 1)0
, hk% (n+ 1)2

(n+ 1)1
, . . . , hk% (n+ 1)m

(n+ 1)m−1

)
. (6.9)

We note that the last element of the vector can be simplified into

hk

(n+ 1)m−1 , (6.10)

since by definition
hk < (n+ 1)m ∀k. (6.11)

e advantages of this monomial representation are the following:

67

6 On the manipulation of sparse multivariate polynomials

• the exponent part of multivariate monomial multiplication is performed in O(1) (constant
time),

• it is not necessary any more neither to store explicitly the multiindices nor to employ cod-
ing/decoding functions during multiplication, and hence the memory footprint and CPU
utilization are drastically reduced.

e main disadvantage of this representation is that there is a limit in the number of non-negative
(or unsigned) integers that can be represented on a real computer. On a 32-bits machine the
unsigned integer interval [

0, 232 − 1 = 4 294 967 295
]

can be represented in hardware. e number of elements of a n-lexicographic representation for
m-variate monomials is easily calculated as

(n+ 1)m, (6.12)

which, for 32-bits architectures, means that n andm are bound by the following relation:

n 6 2
32
m − 1. (6.13)

To put this in perspective with an example, in the case of studies about dynamical systems, which
often employ 6-variate polynomials, this means that a maximum degree of 39 can be reached.
On 64-bits machines, the limit becomes degree 1624.

It is of course possible to use double-word unsigned integers to augment the range of the rep-
resentation. Doing so however has a noticeable negative impact on performance. An interesting
possibility would be to use a big integer library, like GMP, to represent the lexicographic codes
in case of sparse polynomials with a very high number of variables. is approach would likely
become advantageous as soon as the cost ofm integer additions became higher than a big integer
addition.

6.3.1 Implementation of a sparse polynomial class with coded arithmetics

e coding technique described in the previous section lends itself nicely for the representation
in hash tables (see §4.5.2 for an overview). Lexicographic codes, indeed, are themselves perfect
hash functions, in the sense that the mapping between a monomial and its lexicographic code is
univocal.

is leads to two additional advantages of the coded polynomial class over the general poly-
nomial class:

• the operations performed for lookup and insertion in a hash table are reduced in complexity
from O(m) to O(1),

• an optimized perfect hash table can be implemented.

68

6.4 A mixed approach?

e first point means that if we store monomials as coefficient-lexicographic code pairs in a hash
table, then the computation of the hash values is performed simply by reading the code value,
and the comparison between monomials is done simply by comparing the lexicographic codes.
By contrast, in the more general polynomial class described above the same operations involve
manipulations and comparisons on each of them exponents. is complexity reduction is very
beneficial for performance, since typically during polynomial multiplications a lot of time is spent
looking for elements in the hash table and updating them. Additionally, the reduced memory
footprint of the coded representation allows a better usage of cache memory.

Lexicographic codes can also be used as indices in an array (i.e., as in a lookup table). is
is clearly less compact than a hash table, since it requires the allocation of memory for all the
monomials admitted in the representation, but leads to higher performance since the overhead
related to the management of the hash table is avoided.

6.4 A mixed approach?
A possibility to retain the speed of the coded representation and the flexibility of the general
polynomial class is to implement the coded representation only when performing polynomial
multiplications. e overhead of this operation would be minimum, since the complexity sig-
nature would be linear O(n) (while, we recall, the complexity of polynomial multiplication per-
formed with the straightforward method is O

(
n2
)
). Once the multiplication is performed, the

result would be decoded back in the general polynomial class.
Additionally, the coded representation would be used only when possible (i.e., when the poly-

nomial degrees are small enough), otherwise the standard multiplication would be employed
instead.

With such an approach, finally, it would be possible to tailor the coding of the polynomi-
als on a case-by-case basis, which in practice would mean to enlarge the applicability of coded
arithmetics. e idea is to analyze the polynomials involved in the multiplication, establish the
exponents’ upper limits and use a customized coding vector which respects the exponents limits
(instead of the coding vector proposed above, which is a vectorial function of the sole polynomial
degree).

ese ideas are currently being tested and implemented in Piranha, and constitute a work in
progress. A procedure for the generalization of coded arithmetics on lexicographic representa-
tions is sketched in §9.1, where it is shown that such a technique can lead to substantial perfor-
mance benefits in the manipulation of Poisson series (see §9.2.1), and a flexible multiplication
algorithm for Poisson series based on coded arithmetics is presented.

69

6 On the manipulation of sparse multivariate polynomials

70

 P,  P  
P
Make simple things easy, and difficult things possible.
– Perl motto

P is designed as a C++ library, which means that to use it a C++ main() routine
has to be written. is routine, which will contain instantiations of Poisson series and all
kind of manipulations, will have to be compiled and run, and may look like this:

1 # i n c l u d e ” p i r a nh a . h ”
2
3 us ing namespace p i r a nh a ;
4 us ing namespace s t d ;
5
6 i n t main ()
7 {
8 np e l p3 (” e l p 3 . c s v ”) ;
9 np e l p 3 _ s q i n v = e l p 3 . pow (− . 5) ;

10 / / P r i n t t o s c r e e n t h e r e s u l t .
11 e l p 3 _ s q i n v . put () ;
12 / / Save t h e s e r i e s t o a f i l e .
13 e l p 3 _ s q i n v . s a v e _ t o (” e l p 3 _ s q i n v . c s v ”) ;
14 np e l p1 (” e l p 1 . c s v ”) ;
15 np e l p 1 _ c o s = e l p 1 . c o s i n e () ;
16 e l p 1 _ c o s . s a v e _ t o (” e l p 1 _ c o s . c s v ”) ;
17 / / Normal e x i t .
18 cou t << ” Ev e r y t h i ng �ok , � r e t u r n i n g . ” << end l ;
19 r e t u r n 0 ;
20 }

If we want to change the series of operation performed, we will have to change the source
code, recompile and re-run.

is workflow is evidently not very smooth and flexible:

• it requires the user of the software to know at least the basics of the C++ language,

• it involves frequent recompilations, which in turn require the availability of a development
environment and, especially in case of template programming, a lot of time and memory;

71

7 Pyranha, the Python bindings for Piranha

• the use of the manipulator is not interactive: if we need to change the manipulations to
be performed on series we cannot retain already computed results, and we have to start
from scratch. is can become quite a burden, especially when dealing with long, time-
consuming computations.

In this short chapter we will briefly present the solution adopted in Piranha to facilitate the access
to its manipulation capabilities.

7.1 Easing the utilisation of specific manipulators
For the reasons explained above, practically every Poisson series manipulator employs some kind
of high-level interface to its capabilities. In the early days of computer algebra higher level lan-
guages or language extensions which exposed the grammar of Poisson series manipulation were
built on top of FORTRAN or even in assembly. Example of these approaches can be seen,
for instance, in Brown [1966] and Bourne and Horton [1971]. More recently, many special-
ized manipulator typically offer some kind of interactive interface (often a command prompt)
and their own scripting language. is approach is also adopted in commercial general-purpose
manipulators, like Mathematica and Maple.

7.1.1 Issues with existing approaches

We believe that the approach adopted by existing manipulators (i.e., command prompt and pro-
prietary scripting language), while certainly fulfilling the goal of an easier and more flexible access
to the manipulation capabilities, has some flaws and can be improved. In our opinion the main
flaws are the following:

• custom languages are not “real” languages: by this we mean that, first of all, they are not
formalised. is becomes an issue especially in commercial, general-purpose manipula-
tors, where the syntax of the language often fluctuates between releases and there is not
a solid commitment to backwards compatibility. As a software package written in these
custom languages grows, the chance of introduction of incompatible changes in the lan-
guage grows as well, with the bleak perspective of ending up locked to a particular revision
of the manipulator. is is especially true in commercial manipulation packages, where a
vendor-controlled language may be used as a mean to “encourage” upgrades to the latest
version. Secondly, such languages are often tailored for the specific task of the manipula-
tor. As the manipulator grows and acquires new capabilities, a rudimentary language may
become a burden: writing a good programming language is an extremely difficult task;

• it won’t be possible to share the syntax of the language across manipulators, since each
software package will implement its own construct, keywords, grammar, etc. is limits
the possibility of interoperability between manipulators.

e solution we adopted, consistently with the commitment to openness and leverage of existing
solutions on which Piranha is based, is to expose Piranha’s capabilities in the Python program-

72

7.2 Pyranha: brief overview

ming language¹.

7.1.2 e Python programming language

Python (see Python) is a widely used high-level interpreted language, with a clean, powerful
syntax and a low learning curve; it is designed around a philosophy which emphasizes readability
and the importance of programmer effort over computer effort. Python core syntax and semantics
are minimalist, while the standard library is large and comprehensive. Python is a mature project
and it is used pervasively in various production and mission-critical environments.

It is possible towrap (or expose) C and C++’s routines and classes to make them accessible from
Python. is is not a translation from one language to another: the routines are still compiled
into binary code, but they can be invoked from Python. eir speed, hence, will be unaffected,
but their functionalities will be accessed by a higher-level interpreted language. is approach is
very flexible, since it allows to obtain the best of the two worlds: the speed of a low-level compiled
language and the flexibility of a high-level interpreted language.

ere are many solutions to wrap C++ classes into Python classes; among the most relevant we
recall SWIG and SIP. We settled however to use the Boost.Python libraries (see Boost.Python),
which deal brilliantly with the heavily-templated code of Piranha and do not require any other
interface file to work: a C++ compiler is all that is needed.

7.2 Pyranha: brief overview

We called the set of Piranha’s classes and methods which we exposed to Python Pyranha. To dif-
ferentiate between the available manipulator implementations (Fourier series, series with poly-
nomial coefficients, etc.) each manipulator is contained inside its own Python module. A Core
module contains settings and parameters common to all manipulator implementations, such as
the parameters for the output format when saving series to a file or printing them to screen, the
floating point representation (decimal or scientific), etc.

Piranha Poisson series exposed in Python are full-fledged classes, and thus interaction with
them happens through methods. is leads to a neat grouping (encapsulation) of the manipula-
tion capabilities that make sense on a specific type of series inside instantiations of such classes.
For instance, a series with complex coefficients will sport the methods real() and imag() to
retrieve the real and imaginary parts of the series, respectively:

r e a l _ p a r t = complex . r e a l ()
imag_pa r t = complex . imag ()

(Please note that in Python the type of variables is inferred from the signature of the methods,
and hence it is not necessary to specify that real_part is a real_series, as in C++). e
real_series type does not feature the real() and imag() methods, since they do not
make sense for series with purely real coefficients. Similarly, a complex_series won’t feature

¹Languages other than Python were initially considered, but in the end we settled with Python because is the
language whose object-oriented model resembles most closely C++’s. An almost 1:1 correspondence between
C++ and Python classes can hence be achieved.

73

7 Pyranha, the Python bindings for Piranha

a cosine method, since trigonometric functions on complex Poisson series are not supported in
Piranha (yet).

Operator overloading is supported in Python, so that it will be possible to add two Poisson
series objects with the familiar syntax

P1+=P2

Coherently with the object-oriented paradigm, unary mathematical operations are encapsu-
lated inside the classes, so that, for instance, to calculate the cosine and square root of a series we
can write:

P1_cos = P1 . c o s i n e ()
P1_ sq r t = P1 . s q r t ()

Since Python is, like C++, a multi-paradigm language, it is also possible to wrap common
mathematical functions in procedural calls, which may be more familiar:

P1_cos = co s (P1)
P1_ sq r t = s q r t (P1)

e power and cleanness of OO syntax, although, are, in our opinion, compelling reasons to
overcome its initial unfamiliarity.

Another interesting possibility whenmixingC++ and Python lies in the capability of extending
exposed C++ classes with pure Python methods. is way it is possible, for instance, to add a
plot()method to the series classes that will print a graphical representation of the series using
one of the available Python graphical libraries.

7.2.1 An interactive graphical environment

By itself, Pyranha makes available Piranha’s capabilities to Python. is means that, for instance,
it is possible to write high-level manipulations as Python scripts or functions leveraging the
lower-level manipulations provided by the Piranha’s engine.

e other interesting application is to use interactively Pyranha from a Python command
prompt. e default Python command prompt is usable, but rather spartan. More feature-
ful Python prompts have been developed, and among the many available ones we recommend
IPython.

is Python shell provides many interesting features, such as (taken from the project hom-
page):

• Dynamic object introspection. It is possible to access documentation strings, function
definition prototypes, source code, source files and other details of any object accessible to
the interpreter with a single keystroke.

• Completion in the local namespace, by typing TAB at the prompt. is works for key-
words, methods, variables and files in the current directory.

• Numbered input/output prompts with command history (persistent across sessions and
tied to each profile), full searching in this history and caching of all input and output.

74

7.2 Pyranha: brief overview

• User-extensible “magic” commands. A set of commands prefixed with “%” is available
for controlling IPython itself and provides directory control, namespace information and
many aliases to common system shell commands.

• Alias facility for defining your own system aliases.

• Complete system shell access. Lines starting with “!” are passed directly to the system
shell, and using “!!” captures shell output into python variables for further use.

• Background execution of Python commands in a separate thread. IPython has an internal
job manager called jobs, and a convenience backgrounding magic function called “%bg”.

• e ability to expand python variables when calling the system shell. In a shell command,
any python variable prefixed with “$” is expanded. A double “$$” allows passing a literal $
to the shell (for access to shell and environment variables like “$PATH”).

• Filesystem navigation, via a magic “%cd” command, along with a persistent bookmark
system (using “%bookmark”) for fast access to frequently visited directories.

• Automatic indentation (optional) of code as-you-type (through the readline library).

• Macro system for quickly re-executing multiple lines of previous input with a single name.

• Session logging.

• Session restoring: logs can be replayed to restore a previous session to the state in which it
was left.

• Verbose and colored exception traceback printouts.

• Auto-parentheses: callable objects can be executed without parentheses: “sin 3” is auto-
matically converted to “sin(3)”.

• Auto-quoting: using ’,’ as the first character forces auto-quoting of the rest of the line:
’my_function a b’ automatically becomes ’my_function(”a”,”b”)’.

• Extensible input syntax. You can define filters that pre-process user input to simplify input
in special situations. is allows, for example, pasting multi-line code fragments which
start with “> > >” or “...” such as those from other python sessions or the standard Python
documentation.

• Flexible configuration system.

• Embeddable. IPython can be called as a python shell inside other python programs. is
can be used both for debugging code or for providing interactive abilities.

• Profiler support.

75

7 Pyranha, the Python bindings for Piranha

One of the advantages of exposing Piranha’s capabilities in a language like Python is the avail-
ability of a vast set of free libraries which can considerably improve and enhance the usage of the
manipulator. We are mainly referring to graphics and GUI (Graphical User Interface) libraries,
which can be used to provide a user interface similar (potentially much superior, in our opinion)
to those offered by packages like Mathematica and Maple.

In Pyranha we use matplotlib (see matplotlib) to provide plotting support. At the moment
2D plotting is used to visualize Fourier series, to compare them term by term and to display
the results of precision tests. We also provide a minimal GUI through the PyQT libraries (see
PyQt), which is a set of Python bindings to the cross-platform GUI libraries Qt (see Qt). is
interface allows to set some parameters of the manipulator. Figure 7.1 is a screenshot of Pyranha
under GNU/Linux in which both the GUI and a graph produced with matplotlib are visible.

Both the GUI and the graphing capabilities are works in progress, and are expected to acquire
more features in the near future.

76

7.2 Pyranha: brief overview

Figure 7.1: A screenshot of Pyranha used in conjunction with IPython and matplotlib in
GNU/Linux. e Python prompt is in the bottom-left corner, while on the right the
PyQt GUI is displaying the arguments currently defined in the session. Arguments’
names can be rendered through a LATEX engine, if available. e graph displays the
precision of a series multiplication over a timespan, and it has been produced directly
from the IPython command line. e graph can be saved in a variety of formats, a
capability offered by the matplolib library.

77

7 Pyranha, the Python bindings for Piranha

78

 A

I this chapter we are going to present briefly a couple of illustrative examples of computational
tasks in the field of Celestial Mechanics that can be efficiently performed with the aid of a
specialised manipulator like Piranha.

ese examples involve the manipulation of Fourier series, and are related to the research
problems that initially spurred our interest towards specialised algebraic manipulators.

8.1 Harmonic development of the TGP
In the Earth-Moon system the lunar tide-generating potential (briefly, TGP) arises from the
force experienced by an observer in the non-inertial reference frame linked to the Earth’s surface
and generated by the Moon’s gravitational pull. It differs from the lunar gravitational potential
in an inertial reference frame by a corrective term which takes into account the non-inertiality of
the terrestrial reference frame, which itself is subject to the lunar gravitational force.

e classical formulation for the TGP in the simplified model in which the Earth and the
Moon are considered, dynamically, as point masses and the observer is assumed to lie on the
spherical surface defined by the mean radius of the Earth, is the following (see, for instance,
Doodson [1922] for a derivation):

UTGP ∝ 1
d

∞∑
n=2

(a
d

)n

Pn (cosψ) , (8.1)

where d is the Earth-Moon distance, a is Earth’s mean radius, Pn are Legendre polynomials
and ψ is the angular separation between the vectors connecting the centre of the Earth with the
Moon and with the observer.

e expression of the TGP is usually manipulated to separate the so-called astronomical con-
tribution (i.e., the time-varying part of eq. (8.1)) from the geographical contribution (which
depends only on the position of the observer on the Earth’s surface measured in the terrestrial
reference frame, and which is hence constant). e astronomical contribution is classically noted
as Bnm(t), and expressed as

Bnm(t) ∝ a
(

a

d (t)

)n+1

Ym
n (δ̄ (t) ,α (t))e−imθg(t), (8.2)

where Ym
n denotes a spherical harmonic (see AppendixA for its definition). e time dependence

is expressed by the spherical geographical coordinates of the Moon (d (t) , δ (t) ,α (t)) (distance,
equatorial latitude and right ascension) and by the angle θg (t), representing the Greenwich
mean sidereal time (which accounts for Earth’s rotation).

79

8 Applications

e astronomical contribution is then usually decomposed harmonically (or spectrally) into
single components (or tidal waves); such decomposition can be used in a variety of fields:

• calculation of the terrestrial nutation motion,

• calculation of the perturbations on the motion of artificial satellites,

• measurements of the terrestrial orientation,

• detection of the alleged oscillations of the terrestrial core.

To be useful in such contexts the harmonical decomposition of the TGP must be expressed in
the following form:

Bnm (t) =
∑
k
Ck cos (Θk) , (8.3)

where Θk is a linear combination of time-dependent arguments. is form is equivalent to a
Fourier series (as defined in §2.1.4).

e goal of the harmonic decomposition of the TGP is hence to obtain eq. (8.3) from eq.
(8.2). e decomposition can be carried out analitically using an analytical theory for the motion
of the Moon, such as the aforementioned ELP2000 theory (see Chapront-Touzé and Chapront
[1988]). is theory expresses as Poisson series the lunar spherical coordinates in an ecliptical
reference frame. For instance, for the main problem of the lunar theory, the formulas are:

ρ =
∑

i1,i2,i3,i4

Ri1,i2,i3,i4 cos
(
i1D+ i2l ′ + i3l+ i4F

)
, (8.4)

β =
∑

i1,i2,i3,i4

Mi1,i2,i3,i4 sin
(
i1D+ i2l ′ + i3l+ i4F

)
, (8.5)

λ =
∑

i1,i2,i3,i4

Li1,i2,i3,i4 sin
(
i1D+ i2l ′ + i3l+ i4F

)
+ω1. (8.6)

where (ρ,β, λ) are the ecliptical radius, latitude and longitude respectively, (R,M,L) are nu-
merical coefficients and (D, l ′, l, F,ω1) are linear combinations of the well-known Delaunay
arguments.

ese formulas, however, cannot be substituted directly inside eq. (8.2), since in that formula
the equatorial spherical coordinates appear, not the ecliptical ones. In order to achieve the desired
harmonical decomposition we will have then to perform the following steps:

1. transform the theory of motion, by applying a rotation, so that it can be used inside eq.
(8.2),

2. apply the spherical harmonic to the transformed theory.

e two steps can be combined together by directly rotating the spherical harmonic usingWigner’s
theorem for the rotation of spherical harmonics (see Appendix A for the formulation of the the-
orem), hence predisposing the spherical harmonic to accept the ecliptical coordinates instead of
the equatorial ones.

All these steps can be performed in Piranha, since they involve:

80

8.2 Perturbations in the Saturn planetary system

• elementary arithmetics on Poisson series;

• complex exponentiation of Poisson series;

• spherical harmonics of Poisson series;

• inversion of Poisson series (since in eq. (8.2) the inverse of the lunar distance appears).

Methods to compute all these operations have been described in Chapter 3¹.
is procedure can easily be extended to deal with amore accurate physicalmodel that includes:

• figure perturbations,

• planetary perturbations,

• precise modelling of nutation and precession effects,

all expressed analytically as Poisson series. Results of this work have been presented in Casotto
and Biscani [2004a], Casotto and Biscani [2004b] and Casotto and Biscani [2007].

8.2 Perturbations in the Saturn planetary system
It is easily shown (for a derivation see, for instance, Murray and Dermott [2000], Chapter 6)
that, in a system of self-gravitating bodies dominated by a massive primary body, the formula for
the TGP, eq. (8.1), is analogous to the expression for the perturbing gravitational potential UP

exerted on a test particle by the secondary bodies. In other words:

UP ∝
∑

i

∞∑
n=2

1
di

(
r

di

)n

Pn (cosψi) , (8.7)

where the summation over i is intended over all the secondary bodies, and r is now the distance
of the test particle from the primary’s centre of mass². If a theory of motion for the system is
available, it is then possible to use the procedure described in the previous section to calculate
the spectrum of the gravitational perturbation over a spacecraft or a small moon in a planetary
system.

e Saturn planetary system is a particularly interesting case, because of its rich dynamical
complexity and because of the presence of the Cassini probe since July 2004. e most accurate
theory of motion for the Saturnian planetary system is today the TASS theory (éorie Analy-
tique des Satellites de Saturne, Vienne and Duriez [1995]). In the next paragraphs we will show
how TASS must be transformed for use in the calculation of the spectrum of the gravitational
potential.

¹We note here that it took A.T. Doodson years of work to perform the calculations needed to obtain the first har-
monic expansion of the TGP in 1922, and the assistance of tens of human calculators. When we first implemented
this methodology, we employed the well-known generic algebraic manipulator Mathematica, which could execute
the calculations in around nine hours. With Piranha execution time is in the range of seconds.

²Eq. (8.7) holds when the test particle lies inside the orbits of all secondary bodies. When the particle lies outside,
a similar formula holds. We will consider here only the internal case.

81

8 Applications

8.2.1 Elliptical orbital elements
TASS is expressed in elliptical orbital elements; such formulation is common among theories of
motion, since classical orbital elements are undefined under certain conditions (zero inclination,
circular orbits, etc.). e elliptical orbital elements are defined as follows:

z = eeiϖ, (8.8)

ζ = sin
(
i

2

)
eiΩ, (8.9)

p =
n

N
− 1, (8.10)

λ = Nt− iq. (8.11)

Here e, i,ϖ, Ω andn have the usual meaning of eccentricity, inclination, longitude of pericenter,
longitude of ascending node and mean motion respectively. z and ζ are called Lagrange variables,
and, since they are complex quantities, they encapsulate four classical orbital elements. N is the
mean mean motion, so that the linear part of the mean longitude λ is exactly Nt. q is a purely
imaginary quantity representing the non-linear part of λ. p represents the deviation of the mean
motion n from the mean mean motion N.

By recalling the well-known definitions

n =
√
µ

a3
, (8.12)

λ = M+ϖ, (8.13)

where µ is the gravitational parameter of the system, a is the semi-major axis and M is the
mean anomaly, it is then easy to calculate the classical orbital elements from the elliptical ones.
Specifically:

a =
3
√
µ

[N(1 + p)]
2
3

, (8.14)

e = |z|, (8.15)
ϖ = arg z, (8.16)
i = 2 arcsin |ζ|, (8.17)

Ω = arg ζ, (8.18)
M = λ−ϖ. (8.19)

In TASS the elliptical orbital elements of Saturn’s major satellites are given as time-dependent
real and complex numerical series which, after some manipulations, can be brought into the form
of canonical Poisson series. TASS’ reference frame is centered on Saturn’s center of mass, and its
orientation is defined by the ecliptic plane in the J2000 system. Time is measured in Julian years
from J1980.0 (JD=2444240.0).

Mimas’ mean longitude λ1, for instance, is expressed in radians as

λ1 = 0.182 248 5 + 2 435.144 296 44 · t+ δλ1︸ ︷︷ ︸
λo1

+Δλ1, (8.20)

82

8.2 Perturbations in the Saturn planetary system

where δλ1 is a Poisson series representing long period perturbations andΔλ1 is the sine of another
Poisson series representing the short period perturbations. Moreover, λo1 itself is a trigonomet-
ric argument of the solutions for the other orbital elements, and it also appears in Δλ1. e
solutions given by TASS, hence, are not canonical Poisson series: they are expressed in the form
of trigonometrically nested Poisson series.

We can use Piranha in order to normalize TASS into a purely harmonical form (i.e., a form in
which the time dependence is exclusively inside the trigonometric arguments of a Poisson series).
We recall indeed that Piranha supports trigonometric operations on Poisson series through the
Jacobi-Anger expansion (see §3.2), and hence the substitution of a trigonometric argument for
a Poisson series is easily decomposed into products of Poisson series by the elementary trigono-
metric formulas

cos (a± b) = cosa cosb∓ sina sinb, (8.21)
sin (a± b) = sina cosb± cosa sinb. (8.22)

After the normalization into Poisson series, TASS is ready to be transformed into an expression
in spherical coordinates, suitable for use in the disturbing potential.

8.2.2 From elliptical orbital elements to radius

As an example of the manipulations involved in the expression of TASS in spherical coordinates
we are going to show how to calculate the radius from the elliptical orbital elements. is tasks
involves the transformation of elliptical orbital elements into classsical orbital elements, and the
resolution of Kepler’s equation.

8.2.2.1 Eccentricity e

According to eq. (8.15), e is equivalent to the absolute value of the elliptical orbital element z.
e formulation for z in TASS is a complex exponential series:

z =
∑

j
Cjei(j·a). (8.23)

z can hence be seen as a Poisson series with complex coefficients,

z =
∑

j

[
Cj cos (j · a) + iCj sin (j · a)

]
, (8.24)

and e can be calculated by means of two multiplications and one square root of Poisson series:

e = |z| =
√

< [z] · < [z] + = [z] · = [z]. (8.25)

Poisson series representing eccentricities are suitable for the application of the binomial expansion
for the calculation of real powers (see §3.1), since they are usually expressed by a constant leading
term representing the mean eccentricity and by a much smaller perturbative tail.

83

8 Applications

8.2.2.2 Complex exponential of M

From eq. (8.8):
eiϖ =

z

e
, (8.26)

and from eq. (8.19)
eiM = eiλ · e−iϖ. (8.27)

Hence the complex exponential ofM is easily found:

eiM = eiλ
(z
e

)∗
. (8.28)

e complex exponentiation of λ is performed through the aforementioned Jacobi-Anger ex-
pansion, while the inversion of the eccentricity can again be calculated through the binomial
expansion.

8.2.2.3 Radius r

r can be found from the eccentric anomaly E as

r = a (1 − e cosE) . (8.29)

We need to solve Kepler’s equation,

M = E− e sinE, (8.30)

to calculate the cosine of the eccentric anomaly. We can use the following well-known approxi-
mation for E:

E0 = 0,
E1 = M,

. . .
Ei+1 = M+ φi,

. . .

where we have defined
φi = e sinEi. (8.31)

en

cosEi+1 = cos (M+ φi) , (8.32)
e sinEi+1 = e sin (M+ φi) . (8.33)

In virtue of the definition of φi, eq. (8.31), we hence find:

φi+1 = e sinEi+1 = e sin (M+ φi) . (8.34)

us, to calculate cosE to a certain degree of precision, we must

84

8.2 Perturbations in the Saturn planetary system

1. iterate eq. (8.34) to find φ to the desired precision,

2. substitute it in eq. (8.32).

Radius r can then be calculated by the relation:

r = a (1 − e cosE) . (8.35)

e recursive manipulations for the resolution of Kepler’s equation involve trigonometric ele-
mentary functions, and as such can be handled by Piranha as described earlier.

8.2.2.4 Numerical results and limitations

e application of the method described here for the calculation of the harmonic expansion of
the radius of the orbits of Saturn’s satellites through TASS leads to good results. We were able,
for instance, to produce a Poisson series representing Titan’s orbital radius with an accuracy in
the order of ∼ 10 km with respect to the orbital radius calculated directly with the original TASS
series. In Figure 8.1 Titan’s orbital radius according to TASS is plotted in blue, while the green
line represents the absolute value of the difference with respect to the harmonic expansion of the
orbital radius obtained through algebraic manipulation with Piranha.

e results are not as good as they could because, as it was confirmed by TASS author Prof.
Alain Vienne in a private communication, TASS has been produced semi-analytically. is
means that many terms in the original series are associated to numerical frequencies and phases
that do not correspond to any combination of arguments. Such terms must be discarded because
they cannot be handled in an algebraic manner.

ese results, despite the limitations introduced by the use of a not completely analytical theory
of motion, do show that the methodology described for the transformation of theories of motion
is effective. e work towards the harmonic decomposition of the perturbing potential in the
Saturn planetary system has been described in Casotto and Biscani [2005].

85

8 Applications

Figure 8.1: Titan’s orbital radius from TASS (blue line) is compared to its harmonic development
obtained through algebraic manipulations. e absolute value of the difference is
plotted in green.

86

 F   


T chapter presents the future directions for the development of Piranha. Some of the
work described here is not “future” any more, having already been implemented while
drafting this dissertation.

We also present, as conclusive remarks, some preliminary benchmarks of Piranha against well-
known and established algebraic manipulators. Like all benchmarks, the tests reported here must
be taken with a grain of salt and by all means they are not intended to be absolute or conclusive.
e benchmarks we performed show that Piranha can compete, performance-wise, with the
existing specialised algebraic manipulators.

9.1 Generalising coded arithmetics
e technique of coded arithmetics was presented in §6.3 in the context of the manipulation
of multivariate sparse polynomials. In §6.4 we suggested a way to extend and generalise this
technique, which involves a tailored methodology for the codification of polynomials only during
multiplications. e generalisation we present here is also suitable for use in Poisson series.

e following table is a generalisation of them-variate n-lexicographic representation seen in
§6.3:

xm−1 . . . x1 x0 Code

em−1,min . . . e1,min e0,min 0
em−1,min . . . e1,min 1 + e0,min 1

.
em−1,min . . . e1,min e0,max e0,max − e0,min

em−1,min . . . 1 + e1,min e0,min 1 + e0,max − e0,min
em−1,min . . . 1 + e1,min 1 + e0,min 2 + e0,max − e0,min
em−1,min . . . 1 + e1,min 2 + e0,min 3 + e0,max − e0,min

.

e generalisation lies in the fact that each exponent¹ ek is bounded by two integer values:

ek,min 6 ek 6 ek,max, (9.1)

¹We call the ek exponents, but they could as well be trigonometric multipliers in a Poisson series.

87

9 Future work and performance remarks

where
k ∈ [0,m− 1] ∧ {ek,min, ek,max} ∈ Z. (9.2)

is representation, in other words, differs from from them-variaten-lexicographic one because
the exponents

• can have different ranges (i.e., the range is not [0,n] for all the exponents),

• they admit negative values.

If we define

e = (e0, e1, . . . , em−1) , (9.3)
emin /max =

(
e0,min /max, e1,min /max, . . . , em−1,min /max

)
, (9.4)

ck = 1 + ek,max − ek,min, (9.5)
c =

(
1, c0, c0c1, c0c1c2, . . . ,Πm−2

k=0 ck
)
, (9.6)

χ = c · emin, (9.7)

it is fairly easy to show that the lexicographic code of an exponent vector e in this generalised
lexicographic representation is

h = c · e − χ. (9.8)

Indeed, starting from x0’s column in the above table, we can intuitively see that each time we
move to the next column on the left, such column will feature the same value repeated as many
times as needed to cover the whole range of the previous exponent. is consideration leads to
the following recursive formula,

h = e0 − e0,min + (e1 − e1,min) (e0,max − e0,min + 1) +
(e2 − e2,min) (e1,max − e1,min + 1) (e0,max − e0,min + 1) + . . . =

e0 + e1c0 + e2c1c0 + . . . − e0,min − e1,minc0 − e2,minc1c0 − . . . =
c · e − c · emin, (9.9)

which is analogue to eq. (9.8). It follows then that when adding two exponent vectors e1 and e2,
provided that the result e3 can be represented in the same generalised lexicographic representa-
tion, we can write,

e3 = e1 + e2, (9.10)

and hence, by multiplying both sides by c and subtracting 2χ,

c · e3 − χ− χ = c · e1 − χ+ c · e2 − χ, (9.11)

i.e., by applying eq. (9.8),
h3 = h1 + h2 + χ. (9.12)

88

9.1 Generalising coded arithmetics

is is the generalised version of eq. (6.8). In fact, in the case of an m-variate n-lexicographic
representation,

emin = 0, (9.13)
ek,max = n∀k, (9.14)
ck = (n+ 1)∀k, (9.15)

c =
(
1,n+ 1, (n+ 1)2 , (n+ 1)3 , . . . , (n+ 1)m−1

)
, (9.16)

χ = 0, (9.17)

and eq. (9.12) simplifies to
h3 = h1 + h2. (9.18)

ese results are in accordance with those described in §6.3.
Since in this representation negative exponents are allowed, it also makes sense to define a

similar coded operation for exponents subtraction. e admissibility of subtraction make the
generalised lexicographic representation suitable for use also in the operations on trigonometric
parts of Poisson series. It is easily proved that, given the relation

e3 = e1 − e2, (9.19)

the corresponding relation on lexicographic codes holds:

h3 = h1 − h2 − χ. (9.20)

For the actual implementation of the schema described above in the manipulation of Poisson
series it is better to shift the lexicographic codes up by χ, and hence define:

h(s) = c · e,

h
(s)
3,± = h

(s)
1 ± h(s)

2 .
(9.21)

is way the calculation of the shifted lexicographic code h(s) (which can be used as a perfect hash
value in a hash table or an index in an array for the accumulation of terms during series mul-
tiplication - see §6.3.1) and the addition/subtraction of multiindices, which are the operations
performed most frequently during the multiplication of Poisson series, require a minimum num-
ber of clock cycles.

Regarding the range of the representation through generalised lexicographic codes, it must be
noted that, since negative codes are admitted through eqs. (9.21), it is not possible to rely on
unsigned integers. Signed integers must be employed instead, which means that, e.g., on 32-bits
machines, codes in the

[−2 147 483 648,+2147 483 647] (9.22)

range are admitted.
To establish whether a generalized lexicographic representation can be used during the multi-

plication of two series or not, it will be enough to analyse the two series’ trigonometric multipliers
and find their upper and lower limits, which can be used to establish the minimum and maximum

89

9 Future work and performance remarks

values of the resulting series’ multipliers; these minimum and maximum values, in turn, will be
used to build the coding vector. is analysis is performed in linear time, and hence it won’t
weigh significantly during series multiplication (whose complexity is quadratic). e only caveat
is to use arbitrary long integers² during the analysis to avoid trespassing the numerical limits of
hardware integers. Once the suitability of the representation is established, the coding vector can
be downcast to hardware integers.

For the decodification of generalised lexicographic codes, eq. (6.9) is readily generalised into

e =

((
h(s) − χ

)
%c0

1
+ emin,

(
h(s) − χ

)
% (c0c1)

c0
+ emin, . . .

. . . ,
(
h(s) − χ

)
%Πm−1

l=0 cl

Πm−2
l=0 cl

+ emin

)
. (9.23)

In Piranha coded arithmetics is currently used in a three-waymultiplication routine for Poisson
series, which will select and call one of these algorithms:

1. standard hash-table multiplication algorithm;

2. coded multiplication using hash tables;

3. coded multiplication using lookup tables.

e first algorithm is the straightforward one, described in §5.6.1: terms are multiplied one by
one and accumulated in a hash table. is algorithm is selected when the series to be multiplied
feature trigonometric multipliers whose coded representation exceeds the boundaries imposed by
the range of the longest hardware integer type available (typically 32 bits or 64 bits wide).

e second algorithm still uses hash tables, but it operates on the coded representations of
trigonometric multipliers. It operates faster than the first algorithm because, by working directly
on codes instead of multiplier-by-multiplier, the operations of addition/subtraction and local-
ization of the multipliers sets are performed in constant time instead of O(m) (where m is the
trigonometric width of the series), and memory usage is lower. is algorithm is selected when
the multipliers sets can be encoded into hardware integers but the representation in lookup tables
(see next paragraph) is too large to fit into RAM memory.

e third algorithm is the fastest: multipliers are coded, multiplied and stored in a lookup
table (which is essentially an array). e codes provide directly the position of the terms in the
lookup table, so that the overhead of the management of the hash table present in the second
algorithm is avoided. is representation requires a lot of memory, since in the lookup table
all the possible codes (even those who are not present in the series, which typically will be the
majority) have a unique slot. e multiplication routine falls back to the second algorithm if
memory consumption exceeds a user-configurable limit or the lookup table is much too sparse
(in this case the overhead of setting up the lookup table dominates over the actual multiplication).

is three-way method is completely transparent to the user, and ensures a higher degree of
flexibility with respect to other solutions in which the speed-memory tradeoff is hard-coded (i.e.,
the user has to select pre-emptively the data structures that will be used during multiplication).

²In Piranha the GMP libraries are used for this purpose.

90

9.2 Benchmarks

9.2 Benchmarks
9.2.1 Fourier series
e first benchmark we performed to investigate Piranha’s performance is a non-truncated mul-
tiplication of Fourier series. e series used in this test is the ELP3 series from the ELP2000
lunar theory (see Chapront-Touzé and Chapront [1988]), which was already introduced in the
previous chapters. is series consists of 702 terms, and the trigonometric width is six³.

e test involves the multiplication of ELP3 by itself, performed 20 times to minimize the
contribution of I/O and program startup. e resulting Fourier series consists of around 11670
terms⁴.

We have tested Piranha against TRIP (see Gastineau and Laskar [2005]), a mature algebraic
manipulator for Celestial Mechanics in use at the IMCCE in Paris. TRIP author, Prof. Mickaël
Gastineau, kindly agreed to perform the test himself using two versions of TRIP:

1. version 0.98, the “stable” version at the time of this writing (January 2008),

2. version 0.99, the “development” version, not released yet.

Piranha executed the test in two modes:

1. the “plain” mode, which does not use coded arithmetics,

2. the “coded” mode, which takes advantage of coded arithmetics (the codes for the multi-
plication performed in this test are suitable for use in a lookup table).

e results of this benchmark are presented in Figure 9.1. We caution that the last column on
the right is an (optimistic) estimation of the running time, since all the times are relative to Prof.
Gastineau’s workstation and Prof. Gastineau has not run the test on Piranha’s coded arithmetics
yet at the time of this writing.

e results show that Piranha can indeed compete with TRIP in this particular test. As ex-
pected, coded arithmetics provides a considerable speed boost with respect to the plain method.
If hashed coded artihmetic is forced in place of the lookup table (which is the method automat-
ically selected by the algorithm), Piranha’s performance is substantially equal to TRIP’s (v0.99).

We would like to stress again that the meaning of this benchmark is limited, and that in
our view its importance lies more in the fact that it hints that Piranha in on the right track,
performance-wise. In our opinion this is quite comforting, because:

• Piranha uses a different language and different data structures with respect to TRIP.
ese results strongly suggest that C++’s performance is adequate for the task, and that
the higher level of abstraction, with respect to languages like C or Fortran, does not nec-
essarily compromise execution speed. Moreover, the data structures employed in Piranha

³e original ELP3 series really has five trigonometric arguments, the sixth one was introduced by us during calcu-
lations involving the TGP (see §8.1).

⁴e number of terms is not exactly defined because it depends on the properties of the floating point multiplication
unit of the hardware on which the test is run and on the user-configurable threshold that establishes when a
floating point value is “zero”.

91

9 Future work and performance remarks

Figure 9.1: Piranha’s performance benchmarked against TRIP in a Fourier series multiplication.
Piranha’s “plain” and “coded” multiplication algorithms are tested with respect to two
different versions of TRIP. Running time is expressed in seconds.

92

9.2 Benchmarks

seem able to deliver adequate performance, even in the general-purpose implementations
provided with standard libraries (we are referring mainly to the hashed data structures,
which apparently are not used widely in specialised algebraic manipulators for Celestial
Mechanics – we know for sure they are not used in TRIP).

• Piranha is new and has seen little focus until now on optimization. e greatest part of
the time spent on Piranha has been, until now, focused on the architecure. We hope to
be able to increase performance in a variety of ways in the future (see §9.3). By contrast,
TRIP has been under active development until the end of the ’80s, and has been subject
to continuous optimizations.

9.2.2 Multivariate polynomials
e other benchmark we present is performed against PARI/GP (see PARI/GP), a polynomial
manipulator intended for number theories computations. e benchmark consists of the follow-
ing operation:

s · (s+ 1), (9.24)

where
s = (1 + x+ y+ t+ u)14 . (9.25)

e resulting polynomial consists of 35960 terms. Piranha has been benchmarked using coded
arithmetics on the exponents and in two modes:

1. “mpz” mode, where the coefficients of the polynomial are arbitrarily-long integers imple-
mented by the GMP libraries (see GMP),

2. “double” mode, in which the coefficients are double-precision floating point values.

For the benchmark we used PARI in the calculator mode (i.e., performing the test from the GP
command line). We recall here that PARI uses arbitrarily long numerical values (in this case
integers) for the representation of polynomial coefficients.

e results are displayed in Figure 9.2, and show that PARI is ~20% faster than Piranha when
operating on arbitrary-size integers. When Piranha uses floating point values the running time,
as expected, is considerably shorter. We note that for Celestial Mechanics applications it is often
not necessary to retain the absolute numerical precision brought by the use of arbitrary-size types,
and that, for the sake of performance, it can be appropriate to employ floating point types (or
other hardware numerical types) in such cases.

Regarding this benchmark we also note that:

• at this time coded arithmetics on polynomial does not use lookup tables, only hash tables
(performance will considerably improve once lookup tables will be implemented);

• PARI uses a recursive representation for multivariate polynomials, while Piranha uses a
“full” representation. is means that the result of eq. (9.25) in Piranha is a sequence of
single multivariate monomials, while in PARI it is represented as recursive multiplications
of univariate polynomials. If we take the time to spell out all the single monomials in

93

9 Future work and performance remarks

Figure 9.2: Piranha’s performance benchmarked against PARI/GP’s for a multivariate polyno-
mial multiplication. Piranha is tested using both double precision and arbitrary-size
integer coefficients for the polynomials. Running time is expressed in seconds.

94

9.3 Future improvements

PARI (i.e., we explicitly perform all the multiplications of univariate polynomials), PARI’s
running time is analogue to Piranha’s in mpz mode;

• cache memory utilization is not optimized. Once cache-blocking techniques are imple-
mented, performance (especially in mpz mode) is expected to improve.

9.3 Future improvements
Beside the widespread adoption of coded arithmetics, described earlier, we have in mind other
improvements for the future developments of Piranha. Some of these improvements are architecture-
oriented, others are intended to improve performance and extend features, and yet others aim to
offer a better interaction with the manipulator and to increase its usability.

9.3.1 A more generic architecture?
In Chapters 5 and 6 we mentioned how both the Poisson series class and the polynomial class
are based on the multiindex container from the Boost libraries. Although the two classes do not
share any code at the moment, it is quite evident that many operations performed on Poisson
series are very similar to those performed in polynomials (e.g., evaluation, term insertion, etc.):
a polynomial can indeed be seen as a Fourier series with different behaviour with respect to the
multiplication operation.

One of the tasks we are currently undertaking in Piranha is hence the merging of the concepts
of Poisson series and polynomial in a generic series structure. is way much code could be
shared between the two classes, and the implementation differences could be accounted for with
a system of toolboxes similar to the one described in §5.4.

Beyond this, another kind of generalization is sought after. e idea is to have two kind
of generic series classes, a named series class and an anonymous series class. Poisson series, for
instance, belong to the first type, since they encapsulate all the information regarding their ar-
guments (as explained in §5.2). Polynomials as stand-alone objects also belong to the first type.
However, when we are using polynomials as coefficients in Poisson series, we do not want such
polynomial coefficients to know about the arguments, since such information is already included
in the Poisson series class. We call this series type anonymous because it has no knowledge
about the literal arguments (when such information is needed, e.g., during evaluation, it should
be provided by the parent class).

Named and anonymous series could share much of the code, and they would allow to describe
a wider range of mathematical entities in a coherent framework. We are referring here mainly
to the so-called echeloned Poisson series, which are a superset of Poisson series described by the
following formula:∑

i,j
Pi (x1, x2, . . . , xm)Dj

(
cos
sin

)
(i1y1 + i2y2 + . . . + inyn) , (9.26)

where
Dj =

1∏
k (k · n)δk

, (9.27)

95

9 Future work and performance remarks

k is a vector of integer values, n is a vector of literal arguments and δk > 0. Such objects are
useful in problems where it is necessary to express the frequencies of trigonometric arguments
symbolically, such as in lunar theories (see, for instance, Ivanova [2001] and Rom [1971]).

9.3.2 Improving the implementations of data structures

As we have seen in Chapters 4 and 6, efficient data structures are crucial for high-performance
manipulation of Poisson series and polynomials. At the moment in Piranha we are using im-
plementations of data structures already available in standard libraries, which, as we saw in this
chapter, have proven to be adequately efficient.

Research on data structures however keeps moving forward, and recently there has been a
substantial step forward in the context of hashed data structures. We are referring to the so-
called cuckoo hashing (see Pagh and Rodler [2001] and Ross [2007]). is hashing technique is
noteworthy because it guarantees worst-case O(1) performance (whereas usual hash tables have
no such guarantee), and performs very well on modern processor by means of efficient utilization
of cachememory (see Zukowski et al. [2006]). Cuckoo hashing is still relatively unknown outside
academia, and at this time no implementation exist in standard libraries.

Speaking of cache memory efficient utilization, another possible improvement is the adoption
of cache-friendly algorithms, like cache-blocking techniques and partitioning schemes for hash
tables. Efficient usage of cache memory is crucial in modern processors, and can lead to very
substantial performance boosts.

9.3.3 SIMD instructions and parallelization

As we mentioned in §5.6 Piranha already uses to some extent the SIMD instructions of modern
processors (in particular Intel’s SSE2 instruction set) and already employs a parallelized algorithm
for series evaluation through the use of TBB. In the future we want to substantially increase usage
of SIMD instructions and TBB; in particular parallelization and vectorization techniques are
appealing for series multiplication. Coded arithmetics is particularly suitable for enhancement
with SIMD instructions because of the heavy usage of integer arithmetics.

In the more distant future we would like to investigate the possibility of leveraging cluster
environments. eBoost.MPI libraries (seeGregor andTroyer [2008]) are particularly appealing
for this task, since they allow to use the well-known MPI libraries for cluster computing in a
object-oriented way from C++.

9.3.4 Pyranha improvements

In our opinion a key point for Piranha’s future is the enhancement of the Python bindings.
Specifically we aim at:

• more graphical and GUI capabilities through tighter interaction with IPython and PyQt,

• exploitation of those capabilities of Python unavailable in C++ (introspection, powerful
runtime polymorphism),

96

9.4 Availability

• blending of Piranha’s data structures with Python native data structures (so that, e.g., series
can be accessed like Python dictionaries or lists).

In our intention Pyranha should become the preferred way of interacting with Piranha (although
no capability that can be implemented in C++ should be present in Pyranha only).

9.3.5 Interaction with other algebraic manipulators
One of the possibilities we are evaluating for the future of Piranha is to seek integration with
SAGE. SAGE (see SAGE) is an umbrella project whose goal is integration and interoperability
between algebraic manipulators. SAGE consists of a single frontend which can access a mul-
titude of manipulation engines (including PARI, Singular, Maxima, Magma, etc.). Currently
SAGE is lacking a specific Poisson series manipulator, and we think that Piranha could be a
good candidate to fill the gap. An interesting possibility brought by the integration with SAGE
would be the interoperability with a more general manipulator (like Maxima); this way it would
be possible to develop the first steps of an analytical theory of motion with a general manipulator
and then switch to Piranha when the Poisson series form is achieved and the need for high-speed
computations arises.

We are not seeking integration with commercial packages (like Maple or Mathematica), as
seen for instance in Abad and San-Juan [1997]. Piranha indeed is built on top of a stack of
entirely Free Software, and it is Free Software itself. We share the ideals of Freedom and trans-
parency expressed by the Free Software movement, and we believe that complete access to the
source code with no artificial restrictions is the only possibility in a scientific research context.

9.4 Availability
Although Piranha has been developed in-house until now, the intention from the beginning has
been to make the source code available to the public under a Free Software license. Piranha has
now a website, which is located at

http://piranha.tuxfamily.org.

e source code is in the process of being thoroughly documented with Doxygen, and it will
be released as soon as the documentation is complete.

97

http://piranha.tuxfamily.org

9 Future work and performance remarks

98

A S   
 C M

Basic definitions Associated Legendre functions:

Pm
n (µ) = (−1)m

(
1 − µ2

)m
2 ·

·
⌊n−m

2 ⌋∑
p=0

(−1)p 1
2pp!

(2n− 2p− 1)!!
(n−m− 2p)!

µn−m−2p, (A.1)

Pnm(µ) = (−1)mPm
n (µ). (A.2)

Non-normalized spherical harmonics:

Ym
n (θ,φ) = Pm

n (cos θ)eimφ. (A.3)

Non-normalized solid harmonics:

Rm
n (r, θ,φ) = rnYm

n (θ,φ), (A.4)
Imn (r, θ,φ) = r−n−1Ym

n (θ,φ). (A.5)

Normalized spherical harmonics:

nYm
n (θ,φ) =

√
2n+ 1

4π
(n−m)!
(n+m)!

Ym
n (θ,φ) (A.6)

= (−1)m

√
2n+ 1

4π
(n−m)!
(n+m)!

Pnm(cos θ)eimφ. (A.7)

Addition eorems Addition eorem for non-normalized spherical harmonics:

Pn(cosψ) =
n∑

m=−n

(−1)mYm
n (θ1,φ1) Y−m

n (θ2,φ2) , (A.8)

or, equivalently,

Pn(cosψ) = Re
[

n∑
m=0

(−1)m (2 − δ0m) Ym
n (θ1,φ1) Y−m

n (θ2,φ2)

]
. (A.9)

99

A Special functions commonly used in Celestial Mechanics

Addition eorem for normalized spherical harmonics:

Pn(cosψ) =
4π

2n+ 1

n∑
m=−n

nYm
n (θ1,φ1) nY−m

n (θ2,φ2) , (A.10)

or, equivalently,

Pn(cosψ) =
4π

2n+ 1
Re
[

n∑
m=0

(2 − δ0m) nYm
n (θ1,φ1) nY−m

n (θ2,φ2)

]
. (A.11)

Rotation eorems Wigner’s Rotation eorem for non-normalized spherical harmonics:

Ym
n (θ ′,φ ′) =

n∑
k=−n

Dn
km(α,β,γ)Yk

n(θ,φ), (A.12)

with

Dn
km(α,β,γ) = e−ik(α− π

2) dn
km(β) e−im(γ+π

2), (A.13)

dn
km(β) =

t2∑
t=t1

(−1)t (n− k)!(n+m)!
t!(n+ k− t)!(n−m− t)!(m− k+ t)!

·

(
cos β

2

)2n−(m−k+2t)

·
(
sin β

2

)m−k+2t

, (A.14)

t1 = max(0,k−m), (A.15)
t2 = min(n−m,n+ k). (A.16)

Wigner’s Rotation eorem for normalized spherical harmonics:

nYm
n (θ ′,φ ′) =

n∑
k=−n

nDn
km(α,β,γ)nYk

n(θ,φ), (A.17)

with

nDn
km(α,β,γ) = e−ik(α− π

2) ndn
km(β) e−im(γ+π

2), (A.18)

ndn
km(β) =

t2∑
t=t1

(−1)t

√
(n+ k)!(n− k)!(n+m)!(n−m)!

t!(n+ k− t)!(n−m− t)!(m− k+ t)!
·

(
cos β

2

)2n−(m−k+2t)

·
(
sin β

2

)m−k+2t

, (A.19)

t1 = max(0,k−m), (A.20)
t2 = min(n−m,n+ k). (A.21)

100

B
A. Abad and J. F. San-Juan. PSPC: a Poisson Series Processor Coded in C. In K. Kurzynska,

F. Barlier, P. K. Seidelmann, and I.Wyrtrzyszczak, editors,Dynamics andAstrometry ofNatural
and Artificial Celestial Bodies, page 383, 1994.

Alberto Abad and Felix San-Juan. PSPCLink: a cooperation between general symbolic and
Poisson series processors. Journal of Symbolic Computation, 24(1):113–122, 1997. ISSN 0747-
7171. doi: http://dx.doi.org/10.1006/jsco.1997.0116.

Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York, ninth dover printing, tenth gpo printing
edition, 1964. ISBN 0-486-61272-4.

Andrei Alexandrescu. Modern C++ design: generic programming and design patterns applied.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001. ISBN 0-201-
70431-5.

George B. Arfken and Hans J. Weber. MathematicalMethods for Physicists. Academic Press, sixth
edition, 2005. ISBN 0-120-59876-0.

Matt Austern. Draft Technical Report on C++ Library Extensions. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf, 2005.

I. O. Babaev, V. A. Brumberg, N. N. Vasil’Ev, T. V. Ivanova, V. I. Skripnichenko, and S. V.
Tarasevich. UPP - universal system for analytical operations with Poisson series. Astron. i
geod., Tomsk, No. 8, p. 49 - 53, 8:49–53, 1980.

Olaf Bachmann and Hans Schönemann. Monomial representations for gröbner bases compu-
tations. In ISSAC ’98: Proceedings of the 1998 international symposium on Symbolic and algebraic
computation, pages 309–316, New York, NY, USA, 1998. ACM. ISBN 1-58113-002-3. doi:
http://doi.acm.org/10.1145/281508.281657.

F. Biscani and S. Casotto. An Advanced Manipulator For Poisson Series With Numerical Co-
efficients. In AAS/Division on Dynamical Astronomy 37th Annual Meeting – Halifax (Canada),
June 2006.

Francesco Biscani. Sviluppo analitico del potenziale generatore di marea nel sistema Sole-Terra-
Luna. Master’s thesis, Università degli studi di Padova – Dipartimento di Astronomia, March
2004.

Boost. e Boost C++ Libraries, 2006. URL http://www.boost.org.

101

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.boost.org

Bibliography

Boost.Python. Seamless interoperability between C++ and the Python programming language.
http://www.boost.org/libs/python/doc/, 2007.

S. R. Bourne and J. R. Horton. e design of the Cambridge algebra system. In SYMSAC ’71:
Proceedings of the second ACM symposium on Symbolic and algebraic manipulation, pages 134–143,
New York, NY, USA, 1971. ACM. doi: http://doi.acm.org/10.1145/800204.806278.

P. Bretagnon and G. Francou. Planetary theories in rectangular and spherical variables - VSOP
87 solutions. Astronomy & Astrophysics, 202:309–315, August 1988.

E. Oran Brigham. e fast Fourier transform and its applications. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1988. ISBN 0-13-307505-2.

Roger A. Broucke. How to Assemble a Keplerian Processor. Celestial Mechanics and Dynamical
Astronomy, 2:9, 1970.

Roger A. Broucke. Construction of rational and negative powers of a formal series. Com-
mun. ACM, 14(1):32–35, 1971. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/362452.
362478.

Roger A. Broucke and K. Garthwaite. A programming system for analytical series expansions
on a computer. Celestial Mechanics and Dynamical Astronomy, 1(2):271–284, June 1969. ISSN
0923-2958. doi: 10.1007/BF01228844.

Ernest W. Brown. Tables of theMotion of theMoon. Yale University Press, New Haven CT, 1919.

Ernest W. Brown. An introductory treatise on the lunar theory. Dover Publications, 1960.

J. W. Brown and R. V. Churchill. Fourier series and boundary value problems. McGraw-Hill Book
Co., Inc., New York, fifth edition, 1993.

W. S. Brown. A language and system for symbolic algebra on a digital computer. In SYMSAC ’66:
Proceedings of the first ACM symposium on Symbolic and algebraic manipulation, pages 501–540,
New York, NY, USA, 1966. ACM. doi: http://doi.acm.org/10.1145/800005.807955.

S. Casotto and F. Biscani. A novel approach to the manipulation of Poisson series in Celestial
Mechanics. In Analytical Methods of Celestial Mechanics – St. Petersburg (Russia), July 2007.

S. Casotto and F. Biscani. e Tidal Potential of the Saturnian Satellite System. In Celmec IV -
A meeting on Celestial Mechanics – San Martino al Cimino, Viterbo (Italy), September 2005.

S. Casotto and F. Biscani. A fully analytical approach to the harmonic development of the tide-
generating potential accounting for precession, nutation, and perturbations due to figure and
planetary terms. In Bulletin of the American Astronomical Society, page 862, May 2004a.

S. Casotto and F. Biscani. A modern, analytical approach to the harmonic development of the
Tide-Generating Potential. In International Symposium on Earth Tides – Ottawa (Canada),
August 2004b.

102

http://www.boost.org/libs/python/doc/

Bibliography

S. Casotto and F. Biscani. A Poisson series manipulator for application to orbital mechanics.
In Symposium Honoring Byron Tapley’s 50 Years of Contributions to Aerospace Education, Research
and Service – Austin, TX (USA), February 2008.

J. Chapront and M. Chapront-Touzé. Comparison of ELP-2000 with a numerical integration
at the JPL. Astronomy & Astrophysics, 103:295–304, November 1981.

Jean Chapront. Colbert: Manipulateur de séries de Fourier à coefficients littéraux.
ftp://syrte.obspm.fr/pub/polac/4_programming_tools/2_colbert/
colbert.pdf, 2003a.

Jean Chapront. Gregoire: Manipulateur de séries de Poisson à coefficients numériques.
ftp://syrte.obspm.fr/pub/polac/4_programming_tools/1_gregoire/
gregoire.pdf, 2003b.

M. Chapront-Touzé and J. Chapront. ELP2000-85: a semianalytical lunar ephemeris adequate
for historical times. Astronomy & Astrophysics, 190(1-2):342–352, January 1988. ISSN 0004-
6361.

J. R. Cherniak. Techniques for manipulation of long Poisson series. Special Report 328, Smith-
sonian Astrophysical Observatory, 1970. 12 pp.

James O. Coplien. Curiously recurring template patterns. C++ Rep., 7(2):24–27, 1995. ISSN
1040-6042.

omas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
MIT Press/McGraw-Hill, 1990.

J. M. A. Danby, André Deprit, and A. R. M. Rom. e symbolic manipulation of Poisson series.
In SYMSAC ’66: Proceedings of the first ACM symposium on Symbolic and algebraic manipulation,
pages 0901–0934, New York, NY, USA, 1966. ACM Press. doi: http://doi.acm.org/10.1145/
800005.807970.

R. R. Dasenbrock. A FORTRAN-Based Program for Computerized Algebraic Manipulation.
Technical Report 8611, Naval Research Laboratory, 1982.

James C. Dehnert and Alexander A. Stepanov. Fundamentals of generic programming. In
Selected Papers from the International Seminar on Generic Programming, pages 1–11, London,
UK, 2000. Springer-Verlag. ISBN 3-540-41090-2.

A. T. Doodson. e harmonic development of the tide generating potential. Proceedings of the
Royal Society, 100:305–329, 1922.

Gabriel Dos Reis and Jaakko Järvi. What is generic programming? In LCSD’05: Library-Centric
Software Design - OOPLA Workshop, 2005.

Bruce Eckel. inking in C++. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995. ISBN
0-13-917709-4.

103

ftp://syrte.obspm.fr/pub/polac/4_programming_tools/2_colbert/colbert.pdf
ftp://syrte.obspm.fr/pub/polac/4_programming_tools/2_colbert/colbert.pdf
ftp://syrte.obspm.fr/pub/polac/4_programming_tools/1_gregoire/gregoire.pdf
ftp://syrte.obspm.fr/pub/polac/4_programming_tools/1_gregoire/gregoire.pdf

Bibliography

I. Z. Emiris and V. Y. Pan. Applications of FFT. In Mikhail J. Atallah and Susan Fox, editors,
Algorithms and eory of Computation Handbook, Boca Raton, FL, USA, 1999. CRC Press,
Inc. ISBN 0849326494. Produced by Suzanne Lassandro.

Richard Fateman. Comparing the speed of programs for sparse polynomial multiplication.
SIGSAMBull., 37(1):4–15, 2003. ISSN 0163-5824. doi: http://doi.acm.org/10.1145/844076.
844080.

Richard Fateman. Can you save time in multiplying polynomials by encoding them as integers?
http://www.cs.berkeley.edu/~fateman/papers/polysbyGMP.pdf, 2005.

M.Gastineau and J. Laskar. TRIP 0.98. http://www.imcce.fr/Equipes/ASD/trip/
trip.html, 2005.

GMP. GNU Multiple Precision Arithmetic Library. http://gmplib.org/, 2007.

Daniel R. Grayson and Michael E. Stillman. Macaulay 2, a software system for research in
algebraic geometry. http://www.math.uiuc.edu/Macaulay2/, 2007.

Douglas Gregor and Matthias Troyer. Boost.MPI documentation. http://www.osl.iu.
edu/~dgregor/boost.mpi/doc/, 2008.

Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis, and Andrew
Lumsdaine. Concepts: linguistic support for generic programming inC++. SIGPLANNot., 41
(10):291–310, 2006. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/1167515.1167499.

G.M. Greuel, G. Pfister, and H. Schönemann. Singular: a Computer Algebra System for Poly-
nomial Computations. http://www.singular.uni-kl.de, 2007.

Andrew D. Hall Jr. e Altran System for rational function manipulation – a survey. Commun.
ACM, 14(8):517–521, 1971. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/362637.
362644.

Scott W. Haney. Beating the abstraction penalty in C++ using expression templates. Computers
in Physics, 10(6):552–557, Nov/Dec 1996.

Steffen Heinz, Justin Zobel, and Hugh E. Williams. Burst tries: a fast, efficient data structure
for string keys. ACM Trans. Inf. Syst., 20(2):192–223, 2002. ISSN 1046-8188. doi: http:
//doi.acm.org/10.1145/506309.506312.

Jacques Henrard. A survey of Poisson series processors. Celestial Mechanics and Dynamical As-
tronomy, 45(1-3):245–253, March 1988. ISSN 0923-2958.

Paul Herget and Peter Musen. e calculation of literal expansions. e Astronomical Journal,
64:11, 1959. doi: 10.1086/107844.

W. G. Horner. A New Method of Solving Numerical Equations of all Orders, by Continuous
Approximation. Royal Society of London Proceedings Series I, 2:117, 1815.

104

http://www.cs.berkeley.edu/~fateman/papers/polysbyGMP.pdf
http://www.imcce.fr/Equipes/ASD/trip/trip.html
http://www.imcce.fr/Equipes/ASD/trip/trip.html
http://gmplib.org/
http://www.math.uiuc.edu/Macaulay2/
http://www.osl.iu.edu/~dgregor/boost.mpi/doc/
http://www.osl.iu.edu/~dgregor/boost.mpi/doc/
http://www.singular.uni-kl.de

Bibliography

IPython. An Enhanced Python Shell, 2007. URL http://ipython.scipy.org.

T. V. Ivanova. PSP: A new Poisson series processor. In S. Ferraz-Mello, B. Morando, and J. E.
Arlot, editors, IAU Symp. 172: Dynamics, Ephemerides, and Astrometry of the Solar System, page
283, 1996.

T. V. Ivanova. A New Echeloned Poisson Series Processor (EPSP). Celestial Mechanics and
Dynamical Astronomy, 80:167–176, July 2001.

III W. H. Jefferys. A FORTRAN-based list processor for Poisson series. Celestial Mechanics and
Dynamical Astronomy, 2:474–480, 1970.

III W. H. Jefferys. A Precompiler for the Formula Manipulation System Trigman. Celestial
Mechanics and Dynamical Astronomy, 6:117, 1972.

Àngel Jorba. A methodology for the numerical computation of normal forms, centre manifolds
and first integrals of hamiltonian systems. http://www.maia.ub.es/~angel/soft.
html, 1998.

A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic computers.
Translation in Physics-Doklady, 7:595–596, 1963.

Donald E. Knuth. Two notes on notation. Am. Math. Monthly, 99(5):403–422, 1992. ISSN
0002-9890. doi: http://dx.doi.org/10.2307/2325085.

Donald E. Knuth. e Art of Computer Programming, volume 1: Fundamental Algorithms.
Addison-Wesley, second edition, 1998a. ISBN 0-201-89683-4.

Donald E. Knuth. eArt of Computer Programming, volume 3: Sorting and Searching. Addison-
Wesley, second edition, 1998b. ISBN 0-201-89685-0.

E. D. Kuznetsov and K. V. Kholshevnikov. Expansion of the Hamiltonian of the Two-Planetary
Problem into the Poisson Series in All Elements: Application of the Poisson Series Processor.
Solar System Research, 38:147–154, March 2004. doi: 10.1023/B:SOLS.0000022825.93837.
7d.

J. Laskar. Manipulation des séries. In D. Benest and C. Froeschle, editors, Modern Methods in
Celestial Mechanics, page 89, 1990.

libstdc++ allocators. Documentation for libstdc++’s memory allocators. http://gcc.gnu.
org/onlinedocs/libstdc++/20_util/allocator.html, 2007.

matplotlib. Matplotlib homepage. http://matplotlib.sourceforge.net/, 2007.

Robert T. Moenck. Practical fast polynomial multiplication. In SYMSAC ’76: Proceedings of the
third ACM symposium on Symbolic and algebraic computation, pages 136–148, New York, NY,
USA, 1976. ACM. doi: http://doi.acm.org/10.1145/800205.806332.

M. Moons. Analytical theory of the libration of the moon. Moon and Planets, 27:257–284,
November 1982.

105

http://ipython.scipy.org
http://www.maia.ub.es/~angel/soft.html
http://www.maia.ub.es/~angel/soft.html
http://gcc.gnu.org/onlinedocs/libstdc++/20_util/allocator.html
http://gcc.gnu.org/onlinedocs/libstdc++/20_util/allocator.html
http://matplotlib.sourceforge.net/

Bibliography

Carl D. Murray and Stanley F. Dermott. Solar System Dynamics. Cambridge University Press,
February 2000.

David R. Musser and Alexander A. Stepanov. Generic programming. In ISAAC ’88: Proceedings
of the International Symposium ISSAC’88 on Symbolic and Algebraic Computation, pages 13–25,
London, UK, 1989. Springer-Verlag. ISBN 3-540-51084-2.

Juan Navarro and José Ferrándiz. A new symbolic processor for the earth rotation theory. Celes-
tial Mechanics and Dynamical Astronomy, 82:243–263(21), March 2002. doi: doi:10.1023/A:
1015059002683.

OpenMP. Open specifications for Multi Processing, 2007. URL http://www.openmp.
org.

A. M. Ostrowski. On two problems in abstract algebra connected with Horner’s rule. In Studies
in Math. and Mech. presented to Richard von Mises, pages 40–48. Academic Press, 1954.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E. Lefohn,
and Timothy J. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Lecture Notes in Computer Science,
2161:121, 2001.

PARI/GP. PARI/GP Development Headquarters. http://pari.math.u-bordeaux.
fr/, 2007.

PyQt. PyQt homepage. http://www.riverbankcomputing.co.uk/pyqt/, 2007.

Python. e Python Programming Language. e Python Software Foundation, 2007. URL
http://www.python.org.

Qt. Qt homepage. http://trolltech.com/products/qt, 2007.

M. V. Ramakrishna and Justin Zobel. Performance in practice of string hashing functions. In
Database Systems for Advanced Applications, pages 215–224, 1997.

D. L. Richardson. PARSEC: An Interactive Poisson Series Processor for Personal Computing
Systems. Celestial Mechanics and Dynamical Astronomy, 45:267, 1989.

A. Rom. Mechanized Algebraic Operations (MaO). Celestial Mechanics and Dynamical Astron-
omy, 1:301, 1970.

A. Rom. Echeloned Series Processor (ESP). Celestial Mechanics, 3:331–345, September 1971.
doi: 10.1007/BF01231805.

K. A. Ross. Efficient hash probes on modern processors. In ICDE 2007: Proceedings of the 23rd
IEEE International Conference on Data Engineering, pages 1297–1301, April 2007.

106

http://www.openmp.org
http://www.openmp.org
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://www.riverbankcomputing.co.uk/pyqt/
http://www.python.org
http://trolltech.com/products/qt

Bibliography

SAGE. SAGE: Open Source Mathematics Software. http://www.sagemath.org/,
2008.

Félix San-Juan andAlbertoAbad. Algebraic and symbolicmanipulation of Poisson series. Journal
of Symbolic Computation, 32(5):565–572, November 2001. ISSN 0747-7171. doi: http://dx.
doi.org/10.1006/jsco.2000.0396.

SIP. A tool for generating Python bindings for C and C++ libraries. http://www.
riverbankcomputing.co.uk/sip/index.php, 2007.

Alexander Stepanov. Short history of STL. InHOPL III: Proceedings of the third ACMSIGPLAN
conference onHistory of programming languages, New York, NY, USA, 2007. ACM Press. ISBN
978-1-59593-766-X.

SWIG. Simplified wrapper and interface generator. http://www.swig.org, 2007.

TBB. Intel threading building blocks 2.0 for open source. http://
threadingbuildingblocks.org/, 2008.

David Vandevoorde and Nicolai M. Josuttis. C++ Templates. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002. ISBN 0201734842.

Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June 1995. ISSN 1040-
6042. Reprinted in C++ Gems, ed. Stanley Lippman.

Alain Vienne and Luc Duriez. TASS1.6: Ephemerides of the major Saturnian satellites. As-
tronomy & Astrophysics, 297:588, May 1995.

Eric W. Weisstein. Jacobi-anger expansion. http://mathworld.wolfram.com/
Jacobi-AngerExpansion.html, 2007. From MathWorld – A Wolfram Web Re-
source.

Eugene Paul Wigner. Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atom-
spektren. F. Vieweg & Sohn Akt.-Ges., 1931.

Marcin Zukowski, Sándor Héman, and Peter Boncz. Architecture-conscious hashing. In Da-
MoN ’06: Proceedings of the 2nd international workshop on Data management on new hard-
ware, page 6, New York, NY, USA, 2006. ACM. ISBN 1-59593-466-9. doi: http:
//doi.acm.org/10.1145/1140402.1140410.

107

http://www.sagemath.org/
http://www.riverbankcomputing.co.uk/sip/index.php
http://www.riverbankcomputing.co.uk/sip/index.php
http://www.swig.org
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://mathworld.wolfram.com/Jacobi-AngerExpansion.html
http://mathworld.wolfram.com/Jacobi-AngerExpansion.html

Bibliography

108

N
IMCCE Institut de Mécanique Céléste et de Calcul des Ephémérides

SBBST Self-Balancing Binary Search Tree

SIMD Single Instruction, Multiple Data

SSE2 Streaming SIMD Extensions 2

TASS éorie Analytique des Satellites de Saturne

TBB Intel’s threading building blocks library.

TGP Tide-generating potential

VSOP87 Variations Seculaires des Orbites Planetaires

CRTP Curiously Recurring Template Pattern

GCC GNU Compiler Collection

GUI Graphical User Interface

OO Object-Oriented

STL C++ Standard Template Library

TR1 C++ Technical Report 1

109

Nomenclature

110

I

base series class, 43
Bessel functions of the first kind, 16
binomial theorem, 13
Boost libraries, 31

C++
class, 28
concept, 43
iterator, 31
model, 44
namespace, 27

coded arithmetics, 65
CRTP, 50
cuckoo hashing, 96

Delaunay arguments, 10
dense polynomial, 61
disturbing function, 9

echeloned Poisson series, 95
elliptical orbital elements, 82
ELP2000, 10

FFT multiplication, 62
Fourier series, 8

garbage collection, 25
generic programming, 24
Greenwich mean sidereal time, 79

hash table, 36
hash table collisions, 36
Horner scheme, 62

inheritance, 29
integer packing, 54

Jacobi-Anger developments, 16

Karatsuba multiplication, 62
Kepler’s equation, 84
Kronecker’s algorithm, 65

Lagrange variables, 82
Laurent series, 5
lexicographic code

shifted, 89
lexicographic ordering

m-variate, degree n, 66
total degree, 64

lexicographic representation
m-variate, degree n, 66
generalized, 88
total degree, 64

load factor, 36
lookup table, 69

multiindex container, 38

operator overloading, 25, 30

Pochhammer symbol, 14
Poisson series, 5

canonical form, 7
length, 6
polynomial arguments, 6
polynomial width, 6
trigonometric arguments, 6
trigonometric width, 6

polynomial exponents, 6
psymbol class, 47
Python, 73

self-balancing binary search tree, 32
separate chaining, 36
SIMD, 54

111

Index

sparse polynomial, 62
SSE2, 54
STL, 25

TASS, 81
TBB, 58
template class, 29
template function, 24
template programming, 24
template specialisation, 30
term packing, 11
theory of motion, 8
Tide-generating potential, 79
toolbox, 48
TR1, 26
tree traversal, 34
trigonometric multipliers, 6
truncation methodologies, 12

VSOP87, 8

Werner’s trigonometric formulas, 7

112

	Introduction
	Motivation
	Piranha
	Structure of the dissertation

	Poisson series and their manipulation
	Poisson series
	Nomenclature and conventions
	Basic properties
	Canonical form
	Fourier series

	Poisson series in Celestial Mechanics
	Example: development of the disturbing function
	Example: the ELP2000 lunar theory

	Term insertion and basic operations on Poisson series
	Complexity signatures and their effects

	Nontrivial operations on Poisson series
	Real powers
	Trigonometric operations
	Other special functions

	Designing a modern Poisson series manipulator
	Why the need for specialized algebraic manipulators?
	Why the need for another Poisson series manipulator?

	Preliminary design considerations
	Generic programming
	Choosing a computer language
	The three lives of Piranha

	C++'s features used in Piranha
	Namespaces
	Classes
	Template classes
	Operator overloading
	Iterators

	The Boost libraries
	Data structures for Poisson series
	Ordering of terms: binary search trees
	Identification of terms: hash tables
	The boost::multi_index_container class

	Piranha: architecture and implementation details
	Main classes for Poisson series
	Example: basic Poisson series coefficient concept

	Anatomy of the base series class
	Representation of arguments
	Toolboxes
	A note on the implementation of toolboxes

	Series I/O
	Improving performance
	Use of temporary hash sets to speed up multiplications
	Hash function
	Packed operations on integers and SIMD instructions
	Memory management
	Improving evaluation speed
	Parallelization

	On the manipulation of sparse multivariate polynomials
	Types of polynomials
	Dense polynomials
	Sparse polynomials

	Polynomials in Piranha
	A general-purpose polynomial class

	A faster polynomial class: coded monomial arithmetics
	Implementation of a sparse polynomial class with coded arithmetics

	A mixed approach?

	Pyranha, the Python bindings for Piranha
	Easing the utilisation of specific manipulators
	Issues with existing approaches
	The Python programming language

	Pyranha: brief overview
	An interactive graphical environment

	Applications
	Harmonic development of the TGP
	Perturbations in the Saturn planetary system
	Elliptical orbital elements
	From elliptical orbital elements to radius
	Eccentricity e
	Complex exponential of M
	Radius r
	Numerical results and limitations

	Future work and performance remarks
	Generalising coded arithmetics
	Benchmarks
	Fourier series
	Multivariate polynomials

	Future improvements
	A more generic architecture?
	Improving the implementations of data structures
	SIMD instructions and parallelization
	Pyranha improvements
	Interaction with other algebraic manipulators

	Availability

	Special functions commonly used in Celestial Mechanics
	Bibliography
	Nomenclature
	Index

