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Abstract

In this thesis I will focus on “non-minimal” properties of the primordial
perturbation field; both analysing data, and assessing the constraining
power of novel probes. In particular, I will address the problem of finding
deviations from a power-law primordial power spectrum, the possibility
of better constraining compensated isocurvature perturbations, and
detect primordial non-Gaussianity in an ample range of scales.

I present a minimally parametric, model independent reconstruction
of the shape of the primordial power spectrum. We use a comprehensive
set of the state-of the art cosmological data: Planck observations of
the temperature and polarisation anisotropies of the cosmic microwave
background (CMB), WiggleZ and Sloan Digital Sky Survey Data Release
7 galaxy power spectra, and the Canada-France-Hawaii Lensing Survey
correlation function. This reconstruction strongly supports the evidence
for a power law primordial power spectrum with a red tilt and disfavours
deviations from a power law power spectrum including small-scale power
suppression such as that induced by significantly massive neutrinos. This
offers a powerful confirmation of the inflationary paradigm, justifying
the adoption of the inflationary prior in cosmological analyses.

We develop a linear perturbation theory for the spectral y-distortions
of the CMB. The y-distortions generated during the recombination epoch
are usually negligible because the energy transfer due to the Compton
scattering is strongly suppressed at that time, but they can be signifi-
cant if there is are compensated isocurvature perturbations with large
amplitude. Since y-distortions explicitly depend on the baryon density
fluctuations, they can be used to detect and constrain compensated
isocurvature perturbations (CIPs) models. We compute the cross corre-
lation functions of the y-distortions with the CMB temperature and the
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E-mode polarization anisotropies (T , E respectively). We investigate
how well measurements of y-anisotropies provided by a PIXIE-like and
a PRISM-like survey, LiteBIRD, and a cosmic variance limited (CVL)
survey, will constrain f ′ = ∆2

ζCIP/∆
2
ζζ , and find that the degradation

in constraining power due to the presence of Sunyaev Zel’dovich effect
from galaxy clusters will prevent detections unless the amplitude of CIP
is unnaturally high, with forecasted upper limits of, e.g., f ′ < 2 × 105

(68% C.L.) with LiteBIRD, and f ′ < 2 × 104 (68% C.L.) with CVL
observations.

Cross-correlations between CMB temperature and y-distortions ani-
sotropies have been previously proposed as a way to measure the local
bispectrum parameter f loc

NL in a range of scales much smaller than those
accessible to CMB primary anisotropies. Unfortunately, the primordial
y-T signal is strongly contaminated by the late-time correlation between
the Integrated Sachs Wolfe and Sunyaev-Zeldovich (SZ) effects. More-
over, SZ itself generates a large noise contribution in the y-parameter
map. We consider two original ways to address these issues: To remove
the bias due to the SZ-CMB temperature coupling, while also adding
new signal, we include in the analysis the y-E cross-correlation. In order
to reduce the noise, we propose to clean the y-map by subtracting a
SZ template, reconstructed via cross-correlation with external tracers.
We combine this SZ template subtraction with the previously adopted
solution of directly masking detected clusters. Our forecasts show that,
using y-distortions, a PRISM-like survey can achieve f loc

NL < 300 (68%
C.L.), while an ideal experiment will achieve f loc

NL < 130, with improve-
ments of a factor ∼ 3 from adding the y-E signal, and a further 20 ∼ 30%
from template cleaning. These forecasts are much worse than current
f loc

NL boundaries from Planck, but we stress again that they refer to
completely different scales.
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Introduction

All recent cosmological observations are in excellent agreement with the standard ΛCDM
model: a spatially flat cosmology model, with matter-energy density dominated by a
cosmological constant and cold dark matter, where neutrinos are effectively massless
and where the primordial perturbation field was adiabatic and Gaussian, with a power
spectrum that is a (almost scale invariant) power law. State-of-the art cosmological obser-
vations such as those of the Planck satellite [1], measuring cosmic microwave background
(CMB) temperature and polarization anisotropies (respectively T and E), provided us
with very precise measurements of the parameters of this standard cosmological model [2].
The same kind of observations strongly suggest that the primordial density perturbations
were adiabatic; this implies that the number densities of photons, baryons, cold dark
matter, and neutrinos fluctuate in the same way [2]. Moreover, the tightest constraints
on all parametrizations and models of primordial non-Gaussianity (NG), which also come
from Planck measurements, in this case of the bispectrum of the CMB anisotropies, are
all compatible with 0 [3].

However, does this allow us to be satisfied with our current understanding of the
Universe, or should this spur us to search for deviations from the established model, and
develop new test that might shed light on new physics? Moved by this second approach,
in this thesis I will focus on “non-minimal” properties of the primordial perturbation field;
both analysing data, and assessing the constraining power of novel probes. In particular,
I will address the problem of finding deviations from a power-law primordial power
spectrum, the possibility of further constraining compensated isocurvature perturbations,
and detecting primordial non-Gaussianity on an ample range of scales.

Most cosmological analyses assume a power-law primordial power spectrum with a
fixed spectral index, and deviations from this assumption are often in the form of a
“running” of the spectral index. A nearly scale invariant power spectrum is a generic
prediction of the simplest models of inflation, but there are models with (small) deviations
from this prediction (e.g., [4–7]). Indeed, small deviations from scale invariance constitute

1
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a critical and generic prediction of inflation. For this reason a model-independent
reconstruction of the primordial power spectrum (PPS) shape can be a powerful test of
inflationary models. In Section 3.1, which is based on the paper

A. Ravenni, L. Verde and A. J. Cuesta. “Red, straight, no bends: primordial
power spectrum reconstruction from CMB and large-scale structure”. JCAP
2016, no. 08 028. arXiv:1605.06637,

I will show the results of a minimally parametric reconstruction of the PPS using
smoothing spline interpolation in combination with cross validation.

Departure from adiabatic perturbations, such as isocurvature perturbations change the
CMB temperature angular power spectrum drastically, and they are therefore constrained
very tightly. However in a specific model is it possible to have the baryon isocurvature
perturbations cancel exactly with the cold dark matter ones — hence the name of
compensated isocurvature perturbations (CIPs) — at linear level in the CMB spectra [8].
The CIPs are less constrained compared to the observed adiabatic perturbations and the
other isocurvature perturbations, so it is in principle interesting to propose novel ways to
constrain them. In section Section 3.2 I will review the possibility of observing the CIPs
using CMB spectral distortion anisotropies as proposed in

T. Haga, K. Inomata, A. Ota, and A. Ravenni. “Exploring compensated
isocurvature perturbations with CMB spectral distortion anisotropies”. JCAP
2018, no. 08 036. arXiv: 1805.08773.

Current CMB data tightly constrain primordial non-Gaussianity, but leave completely
unanswered the question if there might have been one of more field driving cosmological
inflation. Multi-field Inflation in fact predicts a potentially detectable bispectrum of
the local type, peaking in the so-called squeezed-limit (i.e., on wavenumber triangles
with one side much smaller than the other two, indicating a correlation between large
and small wavelengths). In a futuristic scenario, the authors of [9] have considered the
cross-correlation between CMB temperature and µ-spectral distortion anisotropies as
a potentially very powerful probe of squeezed-type bispectra. While fascinating, this
scenario is out of reach not only with current experimental noise levels, but also taking into
account proposed ambitious next generation surveys, such as PRISM [10]. Nonetheless,
measurements of fNL via correlations between CMB temperature (polarization) and
CMB distortion anisotropies are interesting even before achieving such exquisite levels
of sensitivity, as they allow to test possible deviations of fNL from scale independence.
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In this respect, not only µ, but also y-distortions can provide useful and interesting
information, as pointed out in [10]. In Section 4.1, based on

A. Ravenni, M. Liguori, N. Bartolo, and M. Shiraishi. “Primordial non-
Gaussianity with µ-type and y-type spectral distortions: exploiting Cosmic
Microwave Background polarization and dealing with secondary sources”. JCAP
2017, no. 09 042. arXiv:1707.04759,

I will extend previous analyses by considering not only y-T , but also including the
cross-correlation with polarization, y-E, and by exploiting cross-correlations between SZ
and external tracers (CMB and galaxy lensing) in order to minimize foregrounds.
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Chapter 1.

The standard cosmological model

The need to develop a cosmological concordance model able to explain, and fit together,
a plethora of different observations [11] — we will discuss some of them in the following,
[12–18] is a non-exhaustive list — resulted in the conception of the ΛCDM model.

This model relies on few principles:

• There is no preferred spatial position in the Universe.

• The Universe is statistically isotropic.

• General Relativity is the correct description of gravity.

• The Universe is filled with photons, baryonic matter, neutrinos, cold dark matter,
and a cosmological constant, in proportions that are experimentally determined.

While the last three points can be tested, and have been indeed tested to high degrees of
accuracy, the first one is different in that it is a philosophy standpoint called Copernican
principle.

The Copernican principle, together with Universe isotropy, would guarantee spatial
homogeneity. Instead, everyday experience teaches us that the Universe is far from
isotropic and homogeneous, however, these conditions are restored on scales larger than
≈ 100 Mpc [19–21]

If we also assume the validity of GR, the metric that describes the universe is the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric that I will discuss in Section 1.1.

5



6 The standard cosmological model

Using the fourth ansatz we can write the Friedmann equations that describe the
evolution of the Universe expansion and of its content. Those will be discussed in
Section 1.2.

While not being technically included in the ΛCDM model, all the anisotropies and
inhomogeneities we observe today can be evolved within the ΛCDM framework from a
certain primordial perturbations field with 0 mean and power-law power spectrum. Such
a field can for example be generated by an inflationary model that we will discuss in
Section 1.4.

Apart from this caveats, the true power of the ΛCDM stands in the fact that is able
to be highly predictive, in the sense that it can fit (almost) all the physics of the universe
(at least on large scales) using only 6 free parameters

ωb, ωcdm, h, τreio, As, ns , (1.1)

related respectively with: the abundance of baryonic matter, and cold dark matter, the
local expansion rate, the optical depth to reionization, the amplitude, and tilt of the
primordial perturbations power spectrum. We will properly define all of those parameters
in the rest of this chapter.

1.1. The metric, the distances

In General Relativity, space-time is described by a manifold. The presence of a matter-
energy distribution gravitationally generates curvature in it and, reciprocally, space-time
curvature influences the trajectory of the matter-energy distribution, which is bounded to
follow the geodesics [22]. Therefore, gravitational interaction is described by the metric
tensor g, which, given a coordinate system {xα}, has components gµν .1

If T µν is the energy-momentum tensor of the matter-energy distribution, the metric
gµν and its evolution are described by Einstein equations

Rµν − 1
2gµνR = 8πGTµν . (1.2)

1Throughout the thesis we will use Greek letters to indicate 4-dimensional objects (µ = 0, 1, 2, 3), and
Latin letters to indicate the 3-dimensional spacial components (i = 1, 2, 3).
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The LHS is often referred to as the Einstein tensor. Here G is the Newton’s gravitational
constant, and Rµν and R are respectively the Ricci tensor and scalar, that are defined
contracting repeatedly the Riemann tensor, defined below, as Rµν ≡ Rα

µαν , R ≡ Rα
α.

Using the Christoffel symbols

Γ ρ
µν ≡ 1

2g
ρα
(
∂νgαµ + ∂µgαν − ∂αgµν

)
, (1.3)

the Riemann tensor can be written as

Rρ
σµν ≡ ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γ ρ

µαΓ
α
νσ − Γ ρ

ναΓ
α
µσ . (1.4)

In principle we should be able to derive the expression for the metric sourced by a
given energy momentum tensor solving the Einstein eq. (1.2), but this task is usually
too cumbersome. Often, a useful operational approach consists in building a suitable
metric based on the symmetries of the system. Since the cosmological principle ensures
that the background 3-dimensional space at fixed time is maximally symmetric, it can
been shown that, on large enough scales, space-time can be described by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric, which is characterized by the invariant line
element

ds2 = −(cdt)2 + a2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2θ dϕ2

)]
. (1.5)

Experimentally we observe that the FLRW metric applies at present time on scales
≥ 100 Mpc. The time dependence of the metric — which is in this case solely related to
the expansion of the universe — is enclosed in the scale factor a, quantity that we are
free to normalise to be unity today a(t0) = 1. Finally, the parameter k is the curvature
of the 3-dimensional spatial submanifold: for k > 0 the universe is closed, for k = 0 it
is flat, and for k < 0 it is hyperbolic. Current observations measure k compatible with
0 [14].

The scale factor relates the physical distance d between two point at a given time
with the comoving distance

d(t) = a(t)r . (1.6)
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Since physical distances increase with time as the Universe expand, photons directed
towards an observer get redshifted along their path. The wavelength λem of a photon
emitted by a source at time t scales as a, hence its wavelength at present time will be

λ0 = λem

a(t) . (1.7)

If we define the redshift as

z = λ0 − λem

λ0
, (1.8)

we get

1 + z(t) = 1
a(t) . (1.9)

Therefore, the redshift of a comoving object is only a function of the ratio of scale factors
of the times when the photons were emitted and detected.

In the special case of FLRW metric the information stored in the Einstein equation
can be usefully expressed in terms of the Friedmann equations that we will discuss in the
next section.

1.2. The background evolution

Isotropy and homogeneity ensure that in FLRW the Einstein tensor is invariant under
under diffeomorphism in the isometry group. Consequently the energy-momentum tensor
sourcing the FLRW metric has to be invariant under the same isometry group, hence it
can be shown that T 00 is a scalar and T ij ∝ gij .2 This means that the cosmological fluid
can be described by a relativistic perfect fluid, as we can identify T 00 with the energy
density ρ(t), and the proportionality constant in T ij = p(t)gij with the isotropic pressure.
The fluid peculiar velocity and anisotropic stresses are instead forced to be identically 0.
This argument, implicitly built upon choosing the frame comoving with the fluid, can be
generalized imposing that T µν has to transform as a tensor, to find the definition of the

2This descend from the fact that T 00, T 0i , and T ij are maximally symmetric tensors on the fixed time
3-dimensional spatial submanifold.
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cosmological fluid energy-momentum tensor valid in a generic frame

T µν = (ρ+ p)uµuν − pgµν , (1.10)

where uµ is the fluid 4-velocity.

Inserting the explicit expression of the FLRW metric and the perfect fluid energy-
momentum tensor in the Einstein eq. (1.2) one can easily derive the three Friedmann
equations [23,24].

The time-time component is equivalent to

H2 ≡ ȧ

a
= 8πG

3 ρ− k

a2 , (1.11)

while the trace is equivalent to

ä

a
= −4πG

3 (ρ+ 3p) , (1.12)

and using the conservation of the energy-momentum tensor, T µ
ν;µ = 0

ρ̇+ 3H(ρ+ p) = 0 . (1.13)

Here we have defined the Hubble parameter H ≡ ȧ/a. Usually it is parametrized as

H ≡ ȧ

a
= h

100 km s−1

Mpc , (1.14)

where h is the dimensionless reduced Hubble constant.

Only two of the three Friedmann equations are independent. This is a consequence of
the fact that the Bianchi identity

Rαβ[µν;ρ] = 0 (1.15)

guarantees that the LHS of Einstein’s equation is covariant conserved, so the energy-
momentum tensor is too.

Since only two of the Friedmann equations are linearly independent, it is necessary to
specify a third constraint in order to determine the time evolution of the universe energy
density, the pressure and the growth factor. To do so we specify the relation between the
energy density and the pressure, that is called the equation of state of the fluid. It can
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be parametrized as

ρ = w P . (1.16)

If we assume that the fluid is barotropic, w is a function of the sole energy density. Loosely
speaking −1 ≤ w ≤ 1 [25], and in general the value of w evolves broadly in time for the
cosmological fluid. However, each of its constituent that is of interest in the cosmological
context assume in practice only one discrete value:

w =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
3 for radiation

0 for a pressure-less fluid

−1 for the cosmological constant.

(1.17)

Both cold dark matter and baryons behave as a pressure-less fluid, with w = 0.

In the epochs we are interested in, the comoving number density of particles is
practically conserved, and the inter-species energy exchange is negligible. Therefore the
continuity equation eq. (1.13) can be applied separately to each species. Since, as we
have seen, for each species w is constant, we can integrate the equation analytically
finding

ρ = ρ∗

(
a

a∗

)−3(1+w)

, (1.18)

where ρ∗ and a∗ are respectively the species energy density and scale factor at an arbitrary
time t∗. It immediately follows that the energy density scales like ργ ∝ a−4 for radiation,
ρm ∝ a−3 for matter, and ρΛ ≡ constant for the cosmological constant, and that the
total energy density follows

ρ = ργ,0

a4 + ρm,0

a3 + ρΛ,0 . (1.19)

Here, and throughout the whole thesis, the subscript 0 indicates that the quantity is
evaluated today, e.g. ργ,0 ≡ ργ(t0).

It is useful to define the critical density ρc which is the total energy density in a flat
universe cfr. eq. (1.11)

ρc ≡ 3H2

8πG . (1.20)
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The critical density is used to express the energy density of each species α in terms of
the relative density and physical density parameters, respectively

Ωα ≡ ρα

ρc
, ωα ≡ Ωα h

2 . (1.21)

Using this definition in the first Friedmann eq. (1.11) we can rewrite it as

H = H0

√
Ωγ,0

a4 + Ωm,0

a3 + Ωk,0

a2 +ΩΛ,0 . (1.22)

and defining E(z) = H(z)/H0 we can write the critical density at a given redshift as
ρc = E2(z)ρc,0.

Using the third Friedmann equation we found how the energy density evolves as a
function of the scale factor. Now we will use the second Friedmann eq. (1.12) to calculate
the time evolution of the scale factor, and consequently of the energy density.

As before, for a single species with constant equation of state the solution is analytic

a =

⎧⎪⎨⎪⎩a∗

(
t
t∗

)2/[3(1+w)]
for w ̸= −1

a∗e
Ht for w = −1 .

(1.23)

It is worth noticing that for w = −1 the Universe undergoes an exponential expansion
called de Sitter stage.

1.3. Cosmological thermalization

Regardless of the specific model and the exact composition of the Universe, the direct
consequence of the Friedmann equations is that going backward in times, as the Universe
was smaller and smaller, it also had bigger and bigger energy density as we see from
eq. (1.18). This is the main underlying idea of the Hot Big Bang model (HBB) (see,
e.g., [26], [27]).

The whole thermal history of the Universe is basically characterized by the comparison
between the expansion timescale tH = H−1 and the interaction timescale tΓ = Γ−1,
where Γ is the rate of interaction, for different physical phenomena: if the interaction
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timescale exceed the expansion timescale

tΓ ≫ tH (1.24)

it means that the interaction has become ineffective, as the mean time between two
scatterings is of the order of the age of the universe. Generally speaking, in a hotter and
denser universe interaction were more likely, coupling the evolutions of different species.
As the universe became colder and colder with time, one interaction after the other
started freezing-out preventing certain particles from, for example, decay, or thermalize
with others.

To prove our point we use this very general argument. Consider a particle with
number density n, that has a self interaction with cross section σ. If the interaction is
mediated by a massless particle we can see, from dimensional analysis, that ⟨σL v⟩ ≈ α

2

T
2 ,

where v is the relative velocity of the interacting particles, α is the coupling constant,
and the brackets indicates the average over the velocity distribution. On the other hand,
if the mediator is massive, ⟨σH v⟩ ≈ α

2
T

2

m
4
M

, where mM is the mass of the mediator. Since
the particles numerical density scales like n ∝ T 3, the interaction rate scales like

Γ = ⟨σ v⟩n ∝

⎧⎪⎨⎪⎩
α2 T for light mediators
α

2
T

5

m
4
M

for heavy mediators .
(1.25)

The interaction rate has to be compared with the Hubble parameter, which scales like
H ≈ T

2

M
2
Pl

during radiation domination, when ρ ∝ T 4, . Therefore, it results that

tH ≈α2 M2
Pl

T
tΓL

≈ 10 × 1016 GeV
T

tΓL
,

tH ≈α2 M2
Pl T

5

m4
M

tΓH
.

(1.26)

This means that below the Planck scale (in the second equality of the first line we
assumed α ≈ 0.01) interactions mediated by light particles are effective. In the case of
interaction mediated by massive particles, when the temperature is below the mass of
the mediator, the interaction strength diminishes, fact that guarantees the decoupling at
late enough times.3

3Obviously, at energies much greater than the mass of the mediator its mass can basically be neglected,
and the interaction rate scales as in the case of massless mediator.
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redshift Event
1015 Electro-Weak phase transition
1012 QCD phase transition

? (Possible) Thermal dark matter freeze-out
6 × 109 Neutrino decoupling
2 × 109 Electron-positron annihilation
4 × 108 Big Bang nucleosynthesis
2 × 106 Double Compton freezes out; beginning of µ-distortions epoch
5 × 105 Compton freezes out; beginning of y-distortions epoch
5500 HeII recombination
3400 matter-radiation equality
1900 HeI recombination
1100 Hydrogen recombination

1000-1100 Photon decoupling
800 electron thermal decoupling

11-30 Reionization
0.4 Dark energy-matter equality

Table 1.1.: Main events in the thermal history of the universe. Based on [26], with additions
from [28] and [29].

Most phenomena happening in the early universe can be described in term of interac-
tions between different particles becoming or stopping to be effective, like the possible
decoupling of thermal dark matter, that might have set the abundance of dark matter
we observe today, or the decoupling of neutrinos. Here however we are mostly interested
in the phenomena directly effecting the photon field. In Table 1.1 we report a list of
the most important events in the Universe thermal history. We refer to [26] for a more
extensive description of every phenomena.

Since we are now convinced that in the primordial universe all species were thermalized,
we know that all particles distribution functions would follow a Bose-Einstein or Fermi-
Dirac distribution, and in particular the photons would have a Planck distribution. This
prediction has been experimentally proven in the early nineties by the measurements of
COBE/FIRAS: the CMB spectrum is completely compatible with a Planck spectrum
within experimental sensitivity, resulting to be the most perfect black-body known in
nature.
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As we already anticipated, the fact that CMB photons follow a black-body descends
from them being in thermal equilibrium in the early universe. However, this is not a
feature that we can take for granted, as it heavily relies on the effectiveness of scattering
processes able to create or destroy photons, and change their energy frequency. In fact,
after a generic interaction, the photon field will not follow a Planck distribution, even
if it was before. For example, let us consider an interaction in which some energy is
injected in the photon field, conserving the number of photons. Since in a black-body the
photon number density is completely determined by the energy density, an appropriate
number of photons needs to be added to the system to restore a Planckian. Moreover,
this is not in general enough: even if the photons have the right number density, they
still need to have their energies arranged suitably.

Photon thermalization in the early universe is therefore achieved thanks to three
different processes: Compton scattering (CS), double Compton scattering (DC) and
bremsstrahlung (BR) [30]. The last two processes do not conserve the photon number,
and are therefore essential to create or destroy photons after any energy injection or
subtraction, respectively. Interestingly enough, on average the extra photons are generated
at low frequencies, making even more obvious the need for a different process able to
rearrange the photon energy. Through multiple interactions with thermal electrons, the
Compton scattering can effectively change the photons occupation number, conserving
the total energy and number.

Around z = zµ ≡ 2 × 106, both double Compton and bremsstrahlung had freezed-out,
making energetically expensive to create new photons. As we will soon discuss properly,
the fact that photon gained an “effective” chemical potential µ, introduced a departure
from the black-body distribution, called µ-distortion. Loosely speaking, for any energy
injection happening before zµ the photon have time to properly thermalize and relax to
a black-body; afterwards any injection results in a distortion that we might in principle
detect today.

The µ-era ends around z = zy ≡ 5 × 105, when also the Compton scattering becomes
ineffective. Afterwards, the scatterings with, say, more energetic electrons leave an
imprint in the occupation number, since the up-scattered photons cannot thermalize.
This results in a so-called y-distortion, that can be seen in the CMB spectrum.
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To describe the evolution of the photon distribution function f [28], and properly
define µ- and y-distortions, we have to introduce the Boltzmann equation

df
dt = C[f ] . (1.27)

The term at LHS is called Liouville operator, and, loosely speaking, it is responsible
for the effect of gravity on the evolution of the distribution functions. This is clear in the
case of non interacting particles, for which the Boltzmann equation reads df

dt
= 0. On

the other hand, the collision term C[f ] takes into account both the self-interactions and
the interactions between different species. Since in all the cases relevant in cosmology
the interactions happen on very short scales and in very brief times, the collision term is
calculated in Minkowski space.

The explicit expression of the Liouville operator is

df
dt = ∂f

∂t
+ dx

dt · ∂f
∂x

+ dp
dt
∂f

∂p
+ dn̂

dt · ∂f
∂n̂

. (1.28)

Since we are interested in the homogeneous part of the distribution, the derivatives with
respect to the position and the propagation direction are identically zero. Moreover, the
derivative of the momentum is not affected by any density and gravitational potential
fluctuation, therefore we only have to account for the redshift due to cosmological
expansion [23], so we get

df
dt = ∂f

∂t
+H p

∂f

∂p
. (1.29)

The collision term takes into account all the interactions that affect the photon bath,
and therefore reads

C[f ] = C[f ]|CS + C[f ]|DC + C[f ]|BR , (1.30)

but as we already discussed, when the DC and BR terms are effective, the photon bath
eventually relax to a Planck distribution [28]. Therefore, the interesting limit is the one
in which only the CS term is present.

Consider a Compton scattering process

e−(p) + γ(k) −→ e−(p′) + γ(k′) . (1.31)
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The relative Compton collision term is [30,31]

C[f ]|CS = c
∫

d3p d2k̂
dσ
dΩ

{
fe(p′)f(k′)[1 + f(k)] − fe(p)f(k)[1 + f(k′)]

}
, (1.32)

where fe is the electron distribution function — a Maxwell-Boltzmann in the scope of
this thesis — and

dσ
dΩ = 3σT

16π
[
1 + (k̂ · k̂′)2

]
(1.33)

is the differential cross section. In the limit of small energy exchange the expression
further simplify, and it can be shown to be

C[f ]|CS = c σT Ne

θe

x2
∂

∂xe
x2

e

[
∂

∂xe
f + f(1 + f)

]
, (1.34)

where we introduced the two adimensional energy parameters θe = kBTe/mec
2 and

xe = hν/mec
2.

We can finally plug eq. (1.29) and eq. (1.34) into eq. (1.27), parametrize the time in
term of the optical depth dτ = c σT Ne dt, and express the momenta dependences in term
of the variable x = hν/kTγ where Tγ = T0(1 + z) to absorb the term −Hp∂f

∂p
and get

∂f

∂τ
= θe

x2
∂

∂x
x2
[
∂

∂x
f + Tγ

Te
f(1 + f)

]
, (1.35)

which is the Kompaneets equation [32]. Notice that the first term in the square brakets is
related to the Doppler effect, whereas the second accounts for the recoil effects.

µ-distortions. When the Compton scattering is efficient, in the period of time we
called µ-epoch, the photon distribution reaches a quasi-stationary solution df

dτ
≈ 0, hence,

from eq. (1.35), we get

∂

∂x
f + Tγ

Te
f(1 + f) ≈ 0 . (1.36)

Notice that if Te = Tγ the solution is a Planck distribution, as we would expect for
photons in thermal equilibrium. In general we can integrate it to get

f = 1
exe+µ0 − 1

, (1.37)
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where µ0 is an integration constant, that we can interpret as an effective chemical
potential.4 This do not conflict with the fact that massless particles should have 0
chemical potential because we are considering a system which is out of the equilibrium.

We now need to understand how the presence of a µ-distortion modifies the photon
distribution, i.e., we want to define the distortion frequency spectrum. Expanding the
distorted spectrum in eq. (1.37) for small values of µ0 we get

f = 1
exe − 1 − G(xe)

xe

µ0 + O(µ2
0) , G ≡ x ex

(ex − 1)2 , (1.38)

where is important to notice that G is the spectrum of a temperature shift

fPl(T +∆T ) = fPl(T ) + G∆T
T

+ O
(
∆T 2

T 2

)
. (1.39)

One might naively define the µ-distortion spectra as G/x, but that definition would
not satisfy the constrain on the fact that Compton scattering conserves the number of
photons: −

∫
x2 G/x dx ̸= 0. As it turns out a more sensible definition is [28]

M(x) = 1.401
(

π2

18ζ(3) − 1
x

)
G(x) , (1.40)

which also has the nice property that the relative change of photon energy density is
normalized to 1. The two terms in the parenthesis have important physical interpretations:
the 1/x term corresponds to the naive definition of the µ-distortion spectra we discussed
before, while the other, being proportional to G is a shift in the black-body temperature.
In practice, if energy is injected in the photon bath during the µ-epoch, part of it is
spent to create a new black-body with slightly higher temperature, and part is spent
to create a distortion as described in eq. (1.38). The photons that would be needed to
create the higher-temperature black-body exactly balance with those removed by the
distortion in its naive definition.

It will be useful for future reference to provide an approximate estimate of the amount
of µ-distortions generated in the primordial universe. We assume that the beginning and
end of the µ-epoch are abrupt transitions — thing that, in reality, is far from true, see [28].
In this regime, if some energy ∆ργ is injected in the photon field, it will completely

4Usually the proper chemical potential is defined with the opposite sign.
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converted in a µ-distortion such as

µ ≈ 1.401 ∆ργ

ργ

⏐⏐⏐⏐⏐
µ

. (1.41)

y-distortions. When the Compton scattering becomes inefficient, we can write the
response of a Planck distribution fPl to a scattering using again eq. (1.35)

∆f ≈ θe

x2
∂

∂x
x2
[
∂

∂x
fPl + Tγ

Te
fPl(1 + fPl)

]
∆τ

≈Y(x)y ,
(1.42)

where we have defined the y-distortion spectrum

Y(x) ≡ G(x)
(
x
ex + 1
ex − 1 − 4

)
, (1.43)

and the Compton-y parameter

y ≡
∫ τ

0
(θe − θγ) dτ ′ =

∫ t

0

kB(Te − Tγ)
mec

2 σTNec dt′ . (1.44)

For example, an important source of y distortions is the Sunyaev-Zeldovich effect [33,34].
When photons travel through clusters of galaxies they can interact with hot electrons that
can up-scatter them into higher frequencies through the mechanism we just described.

Assuming again abrupt transitions between the µ and y era, we can write the
approximate relation

y ≈ 1
4
∆ργ

ργ

⏐⏐⏐⏐⏐
y

. (1.45)

1.4. Inflation and the primordial perturbation field

Inflation is a period of accelerated expansion, that may have taken place before what
is usually considered the initial time in the HBB model. It was firstly invoked in the
early eighties of the last century to solve the main shortcomings of the standard HBB
model [35], namely the horizon problem, the flatness problem, and the absence of relics
(see for example [23]), but today the feature that is widely considered its biggest success
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is providing a mechanism that can set the primordial perturbation field which we will
define in the following [36,37].

The inflationary paradigm as a whole has some telltale signs, namely a certain
amount of primordial tensor modes being generated on the largest physical scales and of
non-Gaussianity in the primordial perturbation field.

Whereas the most vanilla model does not predict any other additional features, there
are huge classes of non-minimal models that can create a richer phenomenology [38].
Moreover, these non-minimal model are often the most natural to build from a particle
physics or string theory point of view. It is therefore important both to test the validity
of the inflationary paradigm as a whole, and to investigate which kind of model might
be the best description of the first instants of the Universe, shedding light over possible
fundamental physics implications.

1.4.1. The inflaton classical evolution

From the first Friedmann eq. (1.11) we know that to achieve a period of accelerated
expansion, the cosmic fluid have to satisfy p ≤ −ρ/3. For example, this relation is
satisfied if the energy density is dominated by the potential energy of a scalar field,
condition that is easily achieved in the presence of a slow rolling scalar field, as we will
discuss now discuss.

There are countless models that use a wide range of different mechanism to achieve
an inflationary phase. Here we will briefly review the simplest one: highlighting all the
simplifying assumption that might be broken in more general models.

The action of a single scalar field ϕ minimally coupled to the metric is

S =
∫

d4x
√
g

[
M2

Pl

2 R +DµϕD
µϕ+ V (ϕ)

]
. (1.46)

In general there might be multiple fields that are active during inflation and that drive
the accelerated expansion, and they might also be coupled with other spectator fields
that do not contribute to the inflation dynamics themselves, but might be crucial for
brief or later phases (see, e.g., [39–44] and references therein). Whereas scalar degrees
of freedom arise naturally from considerations related to the evident isotropy of our
universe, there are models that predict vector or tensor fields active during inflation (see,
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e.g., [45–50]). Finally, the inflaton can have a non-minimal coupling with the metric (see,
e.g., [51]), including some of the very first inflation models to be proposed [52,53].

Going back to our minimal model, eq. (1.46) leads to the Klein-Gordon equation

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2 = −Vϕ. (1.47)

To understand the inflation mechanics, it is convenient to separate the classical
background of the inflaton, i.e., its vacuum expectation value ϕ0(t) ≡ ⟨ϕ(x, t)⟩, and its
quantum fluctuations δϕ(x, t) ≡ ϕ(x, t) − ϕ0(t). The classical component is responsible
for the energy density of the universe, and controls the universe background evolution,i.e.,
its expansion history. The quantum fluctuation modulate spatially the time evolution of
the background (as we will explicitly see later), and are responsible of creating all the
inhomogeneities that are present in all the later stages of the Universe evolution.

For this homogeneous field the Klein-Gordon eq. (1.47) reduces to

ϕ̈0 + 3Hϕ̇0 = −Vϕ . (1.48)

Since we assumed that the inflaton is minimally coupled to the metric, calculating its
energy-momentum tensor is trivial

Tµν ≡−2
√
g

δS

δgµν

=∂µϕ ∂νϕ+ Lϕgµν .

(1.49)

where g ≡ − det gµν . Therefore the inflaton energy density and its pressure are respec-
tively

ρϕ0 = 1
2 ϕ̇0

2 + V (ϕ0), (1.50)

pϕ0 = 1
2 ϕ̇0

2 − V (ϕ0), (1.51)

showing that if the energy density is dominated by the potential energy, i.e. if the inflaton
satisfy the slow-roll condition

V (ϕ0) ≫ ϕ̇0
2
, (1.52)
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the inflaton behave like a cosmological constant, with equation of state parameter w ≈ −1.
One might question how likely it is for a generic scalar field to respect the last condition.
The crucial point is that flat enough potentials (in a way that we will soon quantify)
actually constitute attractor solutions. In fact if the field is on the plateau it means that
the scalar energy density due to the potential is approximately constant as the Universe
expands. On the other hand using eq. (1.13) on the scalar field kinetic energy alone,
i.e. by neglecting the potential in eq. (1.51) and eq. (1.50), we see that the kinetic term
scales like a−6, ensuring the validity of the slow-roll condition.

During slow-roll, at sufficiently-late times, the evolution of the classical inflaton field
is driven by the friction term,

ϕ̈0 ≪ 3Hϕ̇0 , (1.53)

so eq. (1.48) reduces to

3Hϕ̇0 + Vϕ = 0 , (1.54)

whereas using eq. (1.52) in eq. (1.11), we get

H2 ≈ 8πG
3 V . (1.55)

We can employ these results to write the inflaton potential Taylor expansion in an handy
way: eq. (1.52) and eq. (1.53) are respectively equivalent to

ϵ ≡ M2
Pl

2

(
Vϕ

V

)2

≪ 1 , (1.56)

and

η ≡ M2
Pl
Vϕϕ

V
≪ 1 , (1.57)

where we defined the slow-roll parameters ϵ and η [54–56]. During the inflaton slow-roll
phase the two parameters are small and constant at first order; direct calculation shows
that ϵ̇, η̇ = O(ϵ2, η2). In particular, it is important to note that ϵ ≥ 1 implies the end
of the inflationary phase. This does not prevent however from building viable models
that briefly exit the inflationary phase before re-entering a “second” inflation, before
the inflaton reaches its true minimum. The theoretical constraints on η are even more
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relaxed, and it can, under certain conditions, exceed unity without stopping inflation
(see, e.g., [53, 57–61]).

Moreover some models display potentials with features that cannot easily be captured
by an expansion in slow-roll parameters, such as, for example, oscillations [62–64].

1.4.2. The inflaton quantum fluctuations and curvature
perturbations

We now want to quantize the inflaton field around its VEV ϕ0(t), and study the evolution
of its linear perturbations δϕ.

It is mathematically convenient to renormalize the amplitude of the inflaton field by
the scale factor. The renormalized field

δ̂ϕ = aδϕ (1.58)

can be expressed in terms of its Fourier transform

δ̂ϕ(x, τ) =
∫ d3k

(2π)3

[
uk(τ)ake

ix·k + u∗
k(τ)a†

ke
−ix·k

]
. (1.59)

We apply second quantization promoting the fields to operators that satisfy the
commutation relations

[ak, ak′ ] = 0,
[
ak, a

†
k′

]
= δ(3)(k − k′), (1.60)

and the normalization condition

u∗
ku

′
k − uk(u∗

k)′ = −i. (1.61)

We use the Bunch-Davies vacuum choice, i.e. the quantum fluctuations must reduce
to quantum field theory in flat space-time on very small physical scales

uk(τ) −−−→
k≫aH

eiτk

√
2ωk

. (1.62)
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However, even this choice is optional, as it can be argued, for example, that the initial
condition should rather be set at a finite time in the past, on finite dimension scales [65,66].

Metric perturbations. To consistently write the equation of motion of the inflaton
linear perturbations we also need to perturb the metric at linear order.

As we will discuss, it is convenient to organize the perturbations according to how
they transform upon spatial diffeomorphisms. Considering only linear perturbations we
can write the RW metric as [67,68]

ds2 = a2(t)
{
−(1 + 2Ψ) dτ 2 + wi dτ dxi +

[
(1 − 2Φ)gij + hij

]
dxi dxj

}
. (1.63)

By construction, since dτ 2, dτ dxi, dxi dxj are respectively a scalar, a vector and a tensor
under spacial transformation, Ψ and Φ are scalars, wi is a vector and hij is a traceless
symmetric tensor.

We can further decompose these quantities in objects with well-defined transformation
properties under spatial rotations exploiting Helmholtz theorem. wi can be written as

wi = ∂iw
∥ + wi , (1.64)

where the longitudinal component w∥ is a scalar, and the transverse component wi is a
solenoidal vector (i.e., ∂iwi = 0). Similarly

hij = Dijh
∥ + ∂(ih

⊥
j) + hTT

ij , (1.65)

where we introduced the differential operator Dij ≡ ∂i∂j − δij∂k∂
k/3 to decompose

hij in the longitudinal component h∥, the solenoidal vector component h⊥
i , and the

transverse-traceless tensor hTT
ij.

It can be shown that at linear level the evolution equations of scalar, vector, and
tensor perturbations are decoupled. Since in this thesis we will mainly be interested in
scalar quantities we will not consider the vector and tensor perturbations in the metric.
Moreover, we can always employ the Newtonian or Longitudinal gauge [69], in which
w∥ = h∥ = 0. Then we can rewrite the perturbed metric eq. (1.63) as

ds2 = a2(t)
[
−(1 + 2Ψ) dτ 2 + (1 − 2Φ)gij dxi dxj

]
. (1.66)
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Perturbed evolution equations. We are now ready to write the perturbed Klein-
Gordon equation (1.47)

δϕ′′ + 2Hδϕ′ − ∇2δϕ+ a2Vϕϕ δϕ+ 2ΨVϕ − ϕ′
0

(
Ψ ′ + 3Φ′ + ∇2ω∥

)
= 0 . (1.67)

In order to easily solve eq. (1.67), it is helpful to introduce the Mukhanov variable [70]

Q ≡ δϕ+ ϕ′
0

H
R , (1.68)

where R ≡ Φ+ h∥/3 is the perturbation in the intrinsic spatial curvature, and reduces
to R ≡ Φ in the Newtonian gauge we are working in. Contrary to R or δϕ, Q is a
gauge-invariant quantity. To get some insight on its physical interpretation, we can notice
that it is equivalent to the scalar field perturbations in the spatially flat gauge (Q = δϕ

for R = 0), or to the spatial curvature perturbation in the comoving gauge (Q = ϕ
′
0

H R
for δϕ = 0).

Using the fixed time 3-dimensional Fourier transform of aQ in a flat space, χk, the
different modes decouple and eq. (1.67) becomes

χ′′
k +

(
k2 − a′′

a
+ M2

ϕ a
2
)
χk = 0 , (1.69)

where we defined the effective mass term M2
ϕ = Vϕϕ − 8πGϕ2

0/H.

During slow-roll we can approximate the terms in the parenthesis in terms of ϵ and η

a′′

a
= 2
η

(1 + 3
2ϵ+O(ϵ2, η2)) , M2

ϕ

H2 = 3η − 6ϵ , (1.70)

that plugged into eq. (1.69) give

χ′′
k(τ) +

(
k2 − ν2 − 1/4

τ 2

)
χk(τ) = 0 , ν = 3

2 + 3ϵ− η . (1.71)

In the limit of constant ν, which is the case during slow roll, this equation is called Bessel
equation, and it has known solutions

χk(τ) =
√
π

2 ei(ν+ 1
2)π

2
√

−τH(1)
ν (−kτ) , (1.72)
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where H(1)
ν is the Hankel function of the first kind, and we already imposed the Bunch-

Davies vacuum choice eq. (1.62). We specify for future reference that the for small value
of its parameter — which, in this case, correspond to the super-horizon regime — the
Hankel function has the following asymptotic limit

H(1)
ν (x ≪ 1) ∼

√
2
π
e−i π

2 2ν− 3
2
Γ (ν)
Γ (3/2)x

−ν (1.73)

Curvature perturbations The inflaton fluctuations described here are the primordial
seeds of all inhomogeneities we observe in the Universe today. However they are quantistic
in nature, and generated on very small scales. During inflation a given perturbation mode
with wavelength λ is stretched outside of the horizon by the accelerated expansion. When
inflation ends a reheating phase takes place: when the inflaton field reaches the minimum
of its potential inflation stops and it start decaying, repopulating the universe with
matter and radiation. The fundamental point is that modes outside the horizon, being
not causally connected with the modes inside the horizon, are effectively freezed and do
not follow the same evolution. It can be shown that this difference in the evolution causes
a decorrelation that makes the quantum fluctuation classical upon horizon re-entry.

Translating the inflaton fluctuations in the energy density fluctuation we observe
today in various forms is not trivial either, as both are gauge-dependent quantities.

We can define another gauge-invariant variable, closely related to the Mukhanov
variable [67,71]

ζ ≡ R − Hδρ

ρ′ , (1.74)

which, in particular, during the slow-roll phase reduces to

ζ = −H
ϕ′Q . (1.75)

ζ has the useful property of being conserved on super-horizon scales, if the evolution
is adiabatic [67, 72]. Hence, the perturbation field that re-enters the horizon during
the radiation and matter dominated epoch is characterized by the amplitude of the ζ
perturbations evaluated upon horizon-exit.

In the super-horizon limit |kτ | ≪ 1 we can expand eq. (1.72) at first order in the
slow-roll parameter, remembering that the Fourier transform of the Mukhanov variable
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is Qk = χk/a. Hence we get

|ζk| = H2
√

2k3ϕ̇

(
k

aH

)η−3ϵ

, (1.76)

expression that, as we will see in the next section, is fundamental to understand the
generation of observable perturbations.

1.4.3. The primordial power spectrum

By construction, the curvature perturbations VEV is 0, but in general the n-points
correlation might have non-vanishing expectation value

⟨ζ(x1, t) · · · ζ(xn, t)⟩ ≠ 0 . (1.77)

It is convenient to work in terms of the Fourier transforms of the n-points correlators,
defining the power spectrum as the transform of the 2-points correlation function, the
bispectrum for the 3-point and so forth.

Explicitly writing the curvature perturbations in term of their Fourier transform in
the 2-points correlation function we get

⟨ζ(x1, t)ζ(x2, t)⟩ =
∫ d3k1

(2π)3 e
ik1x1

∫ d3k2

(2π)3 e
ik2x2⟨ζk1

ζk2
⟩ . (1.78)

⟨ζk1
ζk2

⟩ is in full generality a function of both k1 and k2. However, since we assume the
universe to be homogeneous and isotropic, we can require the LHS to be a function of
the sole correlation length,i.e., ⟨ζ(x1, t)ζ(x2, t)⟩ = f(|x1 − x2|). If this is the case, is
easy to see that ⟨ζk1

ζk2
⟩ must have the form δ(3)(k1 + k2) g(k1). Therefore we define the

primordial power spectrum P (k) through

⟨ζk1
ζ∗
k2

⟩ ≡ (2π)3 δ(3)(k1 − k2)P (k) . (1.79)

It is often convenient to express this quantity in terms of the dimensionless power
spectrum ∆2(k) defined as

∆2(k) ≡ k3

2π2P (k) . (1.80)
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Simple considerations about the symmetries of the Universe allowed us to understand
what is the functional form of ⟨ζk1

ζ∗
k2

⟩ and define the power-spectrum. Now we can
evaluate ⟨ζk1

ζ∗
k2

⟩ to compute the theoretical prediction of the power-spectrum from
(standard single-field models of) inflation. Working in the spatially flat gauge ζ = − H

ϕ
′
0
Q,

hence we can directly employ the expressions we introduced quantizing the inflaton field.

⟨ζk1
ζ∗
k2

⟩ =
(
H

ϕ′
0

)2

⟨ak1
a†
k2

⟩ = (2π)3 δ(3)(k1 − k2)|ζk1|2 , (1.81)

where we used eq. (1.60) in the first equality. Therefore, P (k) = |ζk1|2, i.e.,

∆2(k) =
(
H2

2πϕ̇

)2 (
k

aH

)2η−6ϵ

. (1.82)

If the slow roll parameters ϵ and η were constant throughout the whole inflationary
phase, then the primordial power-spectrum is a power-law. Small deviations can still be
parametrized choosing a pivot k and performing a Taylor expansion

∆2(k) = As

(
k

kp

)ns−1+ 1
2

dns
d ln k

ln(k/kp)+···

, (1.83)

where, for single-field slow-roll inflation, As =
(

H
2

2πϕ̇

)2⏐⏐⏐⏐
kp

, and ns − 1 = 2η − 6ϵ. The

most common approach used when fitting data is however the opposite [14, 73] the
“phenomenological” parameters As and ns are fit to data, and a posteriori the various
theoretical model parameters are mapped in As and ns.

1.4.4. The primordial bispectrum

As we have discussed in the previous section, the primordial power spectrum is closely
related to the value of the potential and its derivatives along the inflaton trajectory, and
as such it is a powerful probe of the inflationary physics. We can however argue that it
is basically insensitive to the interactions that affected the inflaton, and to the physics
that shaped the inflaton potential in the form it has. Therefore, completely different
inflationary models can lead to very similar primordial power spectra.

Non-Gaussianity of the primordial perturbation field instead naturally arises from
interactions of the field(s) driving inflation and therefore contains crucial information
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about the physics that was operative at the time. Therefore, detecting primordial non-
Gaussianity would arguably be the most powerful probe of fundamental physics during
inflation [74–78].

In the single field slow-roll inflation with canonic kinetic term and Bunch-Davies
vacuum, that we have described before, the perturbations are very close to Gaussian
[79–81]. However, most of the various deviations from this minimal model that we
enumerated generate some amount of non-Gaussianity that can be detected measuring
higher order correlators [75–77]. In particular, here we will discuss about the primordial
bispectrum, i.e., the Fourier transform of the 3-point correlation functions. It is defined
in a similar fashion to the primordial power spectrum eq. (1.79)

⟨ζk1
ζk2

ζk3
⟩ ≡ (2π)3 δ(3)(k1 + k2 + k3)B(k1, k2, k3) , (1.84)

and likewise the Dirac delta reflects the translation invariance, and B depending only by
the norms of the wave-vector reflects the statistical isotropy of the universe.

It is important to notice that different classes of models generate signals that peak in
different bispectrum configurations, i.e., for different shapes of the triangle formed by
k1, k2, k3. Multi-field inflation generates large values of the bispectrum in the squeezed
configuration (k1 ≈ k2 ≫ k3) [82–90]. Non-canonical kinetic terms (i.e., kinetic terms
with higher-than-second-order derivatives) produce equilateral bispectrum configurations
k1 ≈ k2 ≈ k3 [65, 91]. Folded shape bispectrum (k1 ≈ k2 ≈ 2k3) is generated, e.g., by
vacuum choices different from Bunch-Davies [92,93].

Local non-Gaussianity. Among the models that predict sizeable non-Gaussianity,
the simplest and probably the most studied is the local model [94–97], which is built by
expanding the perturbation field in real space as a Taylor series in terms of its Gaussian
part

ζ(x) = ζG(x) − 3
5f

loc
NL

[
ζ2

G(x) − ⟨ζ2
G(x)⟩

]
+ . . . , (1.85)

where f loc
NL is a dimensionless constant that quantifies the deviation from Gaussianity at

the second order in the perturbations.

The interest in this model lies in the fact that it acts as a proxy for models that
generate the local bispectrum shape, that can be derived from eq. (1.85) with easy



The standard cosmological model 29

calculations

Bloc(k1, k2, k3) = −6
5f

loc
NL [P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)] , (1.86)

which strongly peaks on squeezed configurations. The importance of this shape comes
also from the fact that, for any single field inflation model, a consistency relation holds
in the squeezed limit [80, 98].5

B(k1, k2, k3 → 0) → (1 − ns)P (k1)P (k2) . (1.87)

which is of the local type (in the squeezed limit). Therefore, a detection of a local signal
higher than this bound would automatically rule out all single field models in one go.

Up to now, the tightest constraints on this crucial parameter, f loc
NL has been set by

the Planck satellite studying the CMB anisotropies bispectrum (see Section 2.3.2) [3]:
f loc

NL = 0.8 ± 5 (68% C.L.). While impressive, this constraints is far from reaching the
bound set by the consistency relation, and far from giving definitive answers in the search
for non-Gaussianity.

Noticeably, Planck has set tight constraints also on the amplitude of many other
bispectrum shapes, among which the equilateral and the orthogonal shape that we
mentioned earlier. Respectively, the best fits are f eq

NL = −4 ± 43 and f ortho
NL = −26 ± 21

(68% C.L.).

1.5. The perturbed Universe

1.5.1. CMB anisotropies

The CMB displays anisotropies that are closely related with the primordial perturbation
field. A crucial feature of the CMB, object of a large number of observations, is the
presence of small fluctuations in its average intensity, when we look in different directions
in the sky. We often refer to them as the temperature anisotropies T (n̂), with the
understanding that we are assuming that in each direction the CMB follows a Planck
distribution with temperature T (n̂). Talking in these terms, it is useful to consider the

5see also [99,100] and refs therein for further discussions on this consistency relation and its link to
observations.
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temperature fluctuations with respect to the average temperature

Θ(η,x,n) = T (η,x,n) − T̄ (z)
T̄ (z)

. (1.88)

As we anticipated in Section 1.3, the CMB anisotropies are generated by small
inhomogeneities of the metric and energy density that are present during the whole
history of the universe, before, during, and after recombination.

Once the initial conditions are set, the evolution of the photon field is determined
by its direct interaction with the baryons and the metric, which is in turn coupled with
all the other species: dark energy, dark matter, baryons and radiation. Therefore, in
order to describe the photon anisotropies, we need a set of evolution equations for every
element in the universe. This is provided by a set of coupled Boltzmann equations

df
dt = C[f ] , (1.89)

where fi(t,x, p n̂) is the distribution function of the species i. The difference with respect
with Section 1.3, is that in this case we are interested to the spatially varying part rather
then the homogeneous component alone.

To make its solution manageable, eq. (1.89) is usually expanded in perturbations up
to a suitable order. In this thesis we will mainly deal with first order quantities, but we
will also consider phenomena happening at second order. The theory of second order
perturbations is well established [101–107] but its full analytical treatment is long and
complex and beyond the scope of this work. In some of our applications, we will make
use of second order analytical results, for specific numerical implementations. In such
cases, we will refer the reader to the relevant literature, for the full analytical derivation.
The aim of this section is mostly that of clarifying some useful general concepts at the
basis of the full detailed treatment of CMB anisotropies. Therefore, for such illustrative
purposes, it will suffice to keep the analytical treatment at first order.

For analogous reasons we will not derive all the equations for all the species, as they
are well known from the literature (see [23] for a clear derivation). We will just focus on
the Boltzmann equation for the photons, both because it provides a good explanatory
example, and because in Section 3.2 we will generalize the standard treatment outlined
here in order to take into account the generation of spectral distortions.
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The Liouville operator. Like we did when treating the inflaton perturbation, we
need to specify a perturbed metric and choose a gauge. We will work again in the
Newtonian gauge eq. (1.66).

If we consider again the explicit expression of the Liouville operator eq. (1.28), and
restrict ourselves to consider first order perturbations, we can drop the last term at RHS,
as it is the product of two intrinsically first order quantities.

The logarithmic derivative of the momentum reads [69]

1
p

dp
dt = −H − ∂Φ

∂t
− n̂ · ∇ψ. (1.90)

It is important to notice for future reference that this quantity is p-independent for
massless particles. Therefore, the Liouville operator for massless particles, valid at first
order in the perturbations reads

df
dt = ∂f

∂t
+ n̂

a
· ∇f − p

∂f

∂p

(
H + ∂Φ

∂t
+ n̂ · ∇Ψ

)
. (1.91)

Since the deviations from a black-body spectrum and the anisotropies are small, we
can perturb the distribution function around its zero-order Planck value

f(t,x, pn̂) = 1
exp

{
p

T (t)[1+Θ(t,x,n̂)]

}
− 1

+∆f(t,x, pn̂) , (1.92)

where∆f is a generic deviation from the direction-dependent Planck spectrum. Neglecting
it, we can expand f in powers of Θ

f(t,x, pn̂) ≈ f (0)(t, p) − p
∂f (0)(t, p)

∂p
Θ + · · · , (1.93)

where the zeroth order distribution is an homogeneous Planck distribution with tempera-
ture T (t),

f (0)(t, p) ≡ 1
exp [p/T (t)] − 1 , (1.94)

and we used the property T∂f (0)/∂T = −p∂f (0)/∂p.
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Plugging eq. (1.93) in eq. (1.91), and noticing that

p
∂

∂t
p
∂f (0)

∂p
Θ = +p∂f

(0)

∂p

∂Θ

∂t
− pΘ

dT
T dt

∂

∂p
p
∂f (0)

∂p
(1.95)

we can rewrite the Liouville operator as

df
dt = − p

∂f (0)

∂p

(
dT
T dT + ∂Θ

∂t
+ n̂

a
· ∇Θ +H + ∂Φ

∂t
+ n̂ · ∇Ψ

)

− pΘ
∂

∂p
p
∂f (0)

∂p

(
dT
T dt +H

)
.

(1.96)

In a moment we will show that the second line is zero, therefore all the frequency
dependence is factorized in the common factor p∂f

(0)

∂p
and we can fully describe the

evolution of anisotropies with the frequency-independent variables Θ, Ψ, Φ. This is not
the case if we consider second order perturbations of the primordial field [101], or if we
consider non-negligible energy exchange in the interaction between photons and matter,
as we will discuss in Section 3.2.

The collision operator. As we showed in Section 1.3, the collision operator contains
all the possible interaction terms. However, Thomson scattering, i.e, the Compton
scattering in the limit of zero energy exchange, is in practice the only one which is
relevant for the generation of CMB anisotropies. In this limit the collision term reads [23]

CT[f ] = ne σT

[
f0 − f + n̂ · vb

(
−p∂f

(0)

∂p

)
− 1

2P2f2

]
, (1.97)

and, similarly to the Liouville terms, using eq. (1.93), it can be massaged into

CT[f ] = ne σT

(
Θ0 −Θ + n̂ · vb − 1

2P2Θ2

)(
−p∂f

(0)

∂p

)
. (1.98)

Here we introduced the baryonic velocity vb, and we also defined the ℓ-th multipole
moment of a field X as

Xℓ = 1
(−i)ℓ

∫ dµ
2 Pℓ(µ)X(θ) . (1.99)
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where we defined µ = n̂ · v̂b.6

Zeroth and first order Boltzmann equation for the photons We now have all
the quantities we need to write the explicit expression of eq. (1.89), that we can divide by
perturbation order. Since the collision term accounts for interactions, it is intrinsically a
first order contribution, as we can directly see in eq. (1.98). Therefore, the zeroth order
equation is

dT
T dT + da

a dt = 0 (1.100)

Hence T (t) = T0/a(t), as we anticipated in Section 1.3. This result guarantees that the
second line of eq. (1.96) is identically zero, and we can completely drop the frequency
dependence from the first order Boltzmann equation. Doing that it reads

∂Θ

∂t
+ n̂

a
· ∇Θ + ∂Φ

∂t
+ n̂ · ∇Ψ = ne σT

(
Θ0 −Θ + n̂ · vb − 1

2P2Θ2

)
. (1.101)

Solving the Boltzmann equation The same approach we have outlined here can be
applied to all the other species to derive all the Boltzmann equations. Then they can be
solved alongside the linearised Einstein equation.

The first step is to write the Boltzmann equations in Fourier space. The Fourier
transform of the real space linear Θ can be defined as

Θ(t,k, n̂) ≡
∫

d3xe−ik·xΘ(t,x,n) , (1.102)

and, switching from proper time to conformal time, we get

Θ′ + ikµΘ + Φ′ + ikµ Ψ = −τ ′
(
Θ0 −Θ + µvb − 1

2P2Θ2

)
, (1.103)

where we defined the optical depth7

τ(η) ≡
∫ η0

η
dη′neσTa . (1.104)

6Strictly speaking, this is not always true, but it holds if the baryon velocity is irrotational, thing that
we assume here for simplicity.

7To avoid awkward notation here we use η instead of τ to indicate the conformal time.
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A possible approach would be to decompose it in a hierarchy of coupled differential
equations for each multipole moment. Since with current experiment resolution we can
easily probe angular scale up to ℓ ≫ 1000 this might still prove to be infeasible to the
required accuracy in a time short enough to be used in a MCMC for parameter estimation
(see Section 2.2).

A smarter approach is to use the formal integral solution of eq. (1.103) and solve
a very limited number of hierarchy equations to obtain its source function [108]. The
line-of-sight solution of eq. (1.103), conveniently evaluated at η = η0 is

Θ(η0) =Θ(ηin)eikµ(ηin−η0)e−τ(ηin)

+
∫ η0

ηin

dη
[
−Φ̇− ikµΨ − τ̇

(
Θ0 + µvb − 1

2P2Θ2

)]
eikµ(η−η0)e−τ(η) .

(1.105)

Provided that the initial condition are set early enough, the first line in the RHS is
vanishingly small, since it exponentially suppressed by the extremely large optical depth.
For the same reason the second term can be arbitrarily extended from ηin to the origin
of time, hence

Θ(η0,k, n̂) =
∫ η0

0
dη

[
−Φ̇− ikµΨ − τ̇

(
Θ0 + µvb − 1

2P2Θ2

)]
eikµ(η−η0)e−τ(η) . (1.106)

We are almost ready to decompose this expression in multipoles, but for one detail:
the terms in the square brakets have some dependence on µ. However, thanks to the
exponential, we can replace every power of µ with a derivative with respect to η and
integrate by parts, getting

Θ(η0,k, n̂) =
∫ η0

0
dη eikµ(η−η0)S(k, η) , (1.107)

S(k, η) = −Φ̇e−τ(η) + g(η)Θ0 + g(η) 1
4Θ2 − d

dη

(
Ψ e−τ(η) − g(η)µvb

i k

)
− d2

dη2
3 g(η)Θ2

4 k2 ,

(1.108)

where g(η) ≡ −τ̇ e−τ is the visibility function.

Since, as we already discussed, perturbation are sourced by the primordial perturbation
field ζk we can define a source function ∆(k, η) “renormalized” to the amplitude of the
primordial perturbations

S(k, η) = ∆(k, η)ζk . (1.109)
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Now we can decompose the line of sight solution in multipoles using the definition
eq. (1.99), and since it holds

∫ dµ
2 Pℓ(µ)eikµ(η−η0) = (−i)ℓ jℓ[k(η0 − η)] , (1.110)

we get

Θℓ(k, η0) = Tℓ(k) ζk . (1.111)

where we defined the transfer functions

Tℓ(k) =
∫ η0

0
dη ∆(k, η) jℓ[k(η0 − η)] . (1.112)

It is somewhat useful to point out that we can rewrite eq. (1.108) as

Θ(η0,k, n̂) =
∑

ℓ

(−i)ℓ (2ℓ+ 1)Pℓ Tℓ(k) ζk . (1.113)

In general, eq. (1.111) can be evaluated numerically using Boltzmann codes such as
CLASS [109]. However an approximated analytical discussion can give us some insights
on its properties.

Since the visibility function is strongly peaked around recombination, we can eval-
uate all functions multiplied by it at η = ηrec. Moreover we can use vb ≈ −3iΘ1 at
recombination, and integrate that term by part. With some massaging, we get

Θℓ(k, η0) ≈ [Θ0(k, ηrec) + Ψ(k, ηrec)] jℓ[k(η0 − ηrec)]

+ 3Θ1(k, ηrec)
{
jℓ−1[k(η0 − ηrec)] − (ℓ+ 1) jℓ[k(η0 − ηrec)]

k(η0 − ηrec)

}

+
∫ η0

0
e−τ

[
Ψ̇(k, η) − Φ̇(k, η)

]
jℓ[k(η0 − η)] .

(1.114)

The first line of the RHS is the value of the “effective” monopole at recombination on
a scale k. The physical monopole is side by side with the potential Ψ because photons
that were in a potential well at recombination had to climb out of it before propagating
to us. Each mode k is then projected by the spherical Bessel function on the sphere
taking into account the distance that separate us from the last scattering surface η0 −ηrec.
As a zeroth order approximation a perturbation of wavelength k is projected onto an
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angular scale with ℓ ≈ k(η0 − ηrec) − 1/2 , with smaller contribution to larger angular
scales too [110]. It can be shown that the monopole is constant on large scales, that
were outside of the horizon at recombination, and equal to the Newtonian potential
Θ0(k, ηrec) + Ψ(k, ηrec) ≈ −Φ(k, ηrec)/3. This behaviour gets the name of Sachs-Wolfe
effect (SW). On smaller scales the monopole displays an oscillatory behaviour, that
is due to the plasma acoustic oscillations in the gravitational wells before and during
recombination.

The second line describes the contribution due to the local dipole at recombination,
which account for the bulk motion of the plasma. Like the monopole on small scales,
it follows an oscillatory pattern, which is out of phase with the monopole oscillations.
This means that its main effect is to increase the power in the troughs of the monopole
oscillation.

The third line accounts for the integrated effect of the evolution of the potential on
the photon propagation along the line of sight, the integrated Sachs-Wolfe effect (ISW).
If a photon traverse a potential well that evolves in time, it gets redshifted of blueshifted
by the well becoming deeper or shallower while the photon is in it.

Temperature anisotropies harmonic decomposition It is useful, mainly for ob-
servational purposes, to express the anisotropies of the 2-dimensional projection of a field,
as seen from our position in space and time, in harmonic coefficients. They are defined as

aℓm ≡ aℓm(x0, η0) =
∫

d2n̂Y ∗
ℓm(−n̂)Θ(η0,x0, n̂) =

=
∫ d3k

(2π)3 e
ik·x

∫
d2n̂Yℓm(−n̂)Θ(η0,k, n̂)

(1.115)

where the minus sign in the spherical harmonics is due to the fact that looking in the
direction −n̂ we can detect photons travelling along n̂. Using the eq. (1.113) and the
identity (A.9) we get

aℓm = 4π iℓ
∫ d3k

(2π)3 ζk Tℓ(k)Yℓm(k̂) . (1.116)

By construction the harmonic coefficients have ensemble average equal to 0. Instead,
their variance, far from being negligible, is one of the most important observables we
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Figure 1.1.: CMB Temperature power spectrum as measured by Planck. Taken from [14].

have at our disposal in cosmology. As we will discuss in more length in Section 2.3 it is

⟨aℓm aℓ
′
m

′⟩ = δℓℓ
′δmm

′Cℓ , (1.117)

where Cℓ is the Temperature power spectrum. As we can see in Figure 1.1, it displays all
the features we discussed before: a plateau on larger angular scales given by the SW and
ISW, and acoustic peaks with non-vanishing troughs given by the combined contribution
of monopole and dipole oscillations.

1.5.2. Large scale structures

The second family of phenomena that, alongside the CMB anisotropies, can give us
information about the primordial perturbation field is the 3-dimensional distribution of
matter. It can be probed through a huge variety of tracers, such as gravitational lensing,
Sunyaev-Zeldovich, and direct detection of galaxy clusters and their peculiar velocities.
Here however we are not interested in discussing the properties of the specific tracers, but
rather to sketch how the primordial perturbations evolve into the density perturbations
we observe today. As usual we will make a number of simplifying assumptions that allow
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solving the problem analytically. The same Boltzmann codes used to calculate the CMB
anisotropies offer a solid tool to numerically solve the complete problem.

On larger scales the evolution of the perturbations is linear and therefore quite well
understood. We will start by describing them during the matter domination epoch.

On smaller scales, non linearities become more and more important, and they need
to be accounted for with more sophisticated methods. A viable approach is to expand
perturbations at some higher perturbation order. Otherwise one can resort to different
approximate non-perturbative methods, such as the halo model, that we will here apply
to galaxy clusters to calculate the angular power spectrum of the Sunyaev-Zeldovich
effect.

Evolution of the linear perturbation in matter domination

A convenient way to parametrize density fluctuations is to define the fractional over-
density with respect to the background

δ(τ,x) ≡ ρ(τ,x) − ρ̄(τ)
ρ̄(τ) . (1.118)

Is implicit in the definition, as we are treating ρ as a classical field, that the local density
is smoothed over some typical scale 1/k. In this section we are interested only to scales
large enough to guarantee that δ ≪ 1 and in particular small enough to be effectively
described using linear perturbations [68–70]. k ≤ klin ≡ 0.1 Mpc−1 is a safe assumption.

The set of equations describing the evolution of the perturbations can be derived
perturbing the Einstein equations, in a similar fashion as it can be done with background
quantities. In Section 1.4.2, we already described the linear metric perturbation in the
conformal gauge. With long, but straightforward calculations, one can use the eq. (1.63)
to calculate the perturbed Einstein tensor (see e.g. [101] for the explicit calculation and
expression).
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The energy-momentum tensor can be perturbed in the same way. Its component, in
the longitudinal gauge are [69]

δT 0
0 = − ρ̄ δ , (1.119)

δT 0
i = −δT i

0 =(ρ̄+ p̄)vi , (1.120)

δT i
j = − c2

sρ̄ δ δ
i
j +Σi

j . (1.121)

Where vi is the fluid velocity field, Σi
j
∥ is the anisotropic shear perturbation, a traceless

symmetric tensor. As discussed before, vi and Σij can be decomposed according with how
they transform under spatial rotations thanks to the Helmholtz theorem. Considering
scalar perturbations we can neglect the vector and tensor components and just consider
the longitudinal components.

The various components of the linearised Einstein equation, conveniently expressed
in Fourier space, read

k2 Φ+ 3H(Φ′ + HΨ) = − 4π Ga2 ρ̄ δ , (1.122)

k2(Φ′ + HΨ) =4π Ga2(ρ̄+ p̄)θ , (1.123)

Φ′′ + H(Ψ ′ + 2Φ′) +
(

2a
′′

a
− H2

)
Ψ + k2

3 (Φ− Ψ) =4π
3 Ga2 c2

s ρ̄ δ , (1.124)

k2(Φ− Ψ) =12π Ga2(ρ̄+ p̄)σ . (1.125)

Here we defined the velocity divergence

θ ≡ ik · v , (1.126)

and the shear stress

(ρ̄+ p̄)σ ≡ −
(
kikj − 1

3δijk
2
)
Σi

j . (1.127)

From the conservation of the energy-momentum tensor — which we stress again is
not independent from the Einstein equations — we get instead

δ′ = − (1 + w)(θ − 3Φ′) − 3H(c2
s − w)δ , (1.128)

θ′ = − H(1 − 3w)θ − w′

1 + w
θ + k2 Ψ − k2 σ + w

1 + w
k2 δ . (1.129)
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These two relations are exact so they can be evaluated at any time. Here we are interested
in describing the evolution of the matter fluctuations, both baryonic and cold dark matter,
that on large scales contribute in the same way to the formation of structures. They are
well described by a collision-less fluid with w = c2

2 = 0, therefore, eq. (1.128) combined
with eq. (1.129) gives

δ′′
m + Hδ′

cdm = −k2Ψ + 3(Φ′′ + HΦ′) . (1.130)

Deep inside the Hubble radius the comoving gradient −k2Ψ dominates the source term.
In the absence of shear it can be approximate by −k2Φ thanks to eq. (1.125), and finally
using the Poisson eq. (1.122) we get

δ′′
cdm + Hδ′

cdm ≈ 4π Ga2 δρ . (1.131)

It is important to notice for later reference (see Section 3.1.2) that δρ is the total energy
density perturbation, i.e.,

δρ = δρrad + δρcdm + δρb + δρν + δρΛ + · · · =

= ρrad δrad + ρcdm δcdm + ρb δb + ρν δν + ρΛ δΛ + · · · .
(1.132)

For simplicity we will focus on the matter dominated epoch, and we will not consider
any exotic species. Neutrinos instead display an interesting behaviour: on scales larger
that their free-streaming scale kfs [111], they behave like normal matter. On smaller
scales instead their perturbations are completely smoothed out by the free-streaming
itself, hence δν ≪ δcdm. Therefore

δρ =

⎧⎪⎨⎪⎩(ρcdm + ρb + ρν)δcdm for k < kfs

(ρcdm + ρb)δcdm for kfs < k < klin .
(1.133)

Even though there could be both massive and massless neutrino, it is safe to assume
that ρν is dominated by the massive ones, so it scales just like matter energy density
a−3 [111]. Then we know that the quantity

fν = ρν

ρcdm + ρb + ρν

(1.134)

is approximately a constant.
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Solving eq. (1.12) for ρ ∝ a−3 we get a(τ) ∝ τ 2. Then eq. (1.131) is (cf. Ref. [111])

δ′′
cdm + 2

τ
δ′

cdm − 6
τ 2 (1 − fν)δcdm = 0 , (1.135)

that can be easily solved imposing the ansatz δcdm ∝ τ 2p: the two roots for p are

p =
−1 ±

√
1 + 24(1 − fν)

4 . (1.136)

so expanding at first order in fν , we get the result

δcdm = D+(τ) δi +D−(τ) δi ≈ D+(τ) δi , (1.137)

where we defined the linear growth functions

D+(τ) = a1− 3
5 fν , D−(τ) = a− 3

2 + 3
5 fν . (1.138)

During the matter domination, for scales bigger than the one typical of neutrino
relativistic to non-relativistic transition, the growth of cold dark matter perturbation is
damped by the presence of massive neutrino, as described in eq. (1.137).

Exactly as in the case of CMB temperature anisotropies, the matter fractional over-
density averages to 0 by construction. Therefore we can refer to its 2-points correlation
function to gain some insight on its physical properties, or to its Fourier transform, the
matter power spectrum, which is defined in a similar fashion to the primordial one (cf.
eq. (1.79))

⟨δk1,zδ
∗
k2,z⟩ ≡ (2π)3 δ(3)(k1 − k2)Pm(k, z) . (1.139)

It can be shown that the matter power spectrum can be related to the primordial one
through [23]

Pm(k, z) = 3
5

k4

Ω2
mH

4
0
Pζ(k)T 2

m(k)D2
+(z) . (1.140)

We will not discuss the details here, as they will not be relevant for the scope of this
thesis; we refer to [23] for an accurate explanation. Here we just want to point out that
varying the neutrino masses modify their total energy density, which in turn suppresses
the linear matter power spectrum on small scales, as we can infer from eq. (1.140) even
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Figure 1.2.: Matter power spectrum for different neutrino models. Taken from [111].

just through our very simplified analytic discussion, or as we can see in Figure 1.2 where
the exact equations have been solved numerically.

Halo distribution and Sunyaev-Zeldovich effect

Often, we are interested in describing processes that happen on scales similar to or
smaller than klin, the scale where the linear perturbation theory breaks down. One
way to describe this processes is using the halo model, an approximate non-perturbative
formalism that relies on the assumption that all matter in the universe resides in collapsed
halos, that can in principle span the whole spectrum of possible masses. The description
of physical processes is then divided in two. Since we will be interested in modelling the
Sunyaev-Zeldovich power spectrum we will talk of the electron pressure distribution in
the universe, that sources it. Instead of providing a full description in the whole universe,
we can use a model of how electrons behave inside the single halo, and then combine it
with the statistical distribution of halos with a given mass at a given time.

Halo mass function. When the over-density, which as we saw is a random field,
exceeds a certain threshold δc in a region, the gravitational forces prevail over the
universe expansion, and the region start collapsing. Therefore the gravitational collapse
can be described as a stochastic process, and the halo number density per mass interval,
called halo mass function (HMF) can be calculated in that framework.
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In [112], Press and Schechter (PS) derived analytically the functional forms of the
HMF that is (with some small adjustments) still in use. In a given point x we can
consider the density field smoothed over a radius R

δ(x, R) =
∫ d3k

(2π)3 δ(k)W (k,R) e−ik·x , (1.141)

where W is a window function. We can then define the variance of the over-density field

σ(R)2 ≡ ⟨δ2(x, R)⟩ =
∫

dk k
2

2π2Pm(k) |W (k,R)|2 . (1.142)

Notice that for R → ∞, δ(x, R) → 0 and also σ(R) → 0, and as R decreases, σ increases
monotonically. Therefore we can formally invert the relation and express R as a function
of σ.

Assuming Gaussian perturbations, for a given σ, the probability of δ(x, σ) > δc, i.e.,
the probability of starting the collapse on the scale σ, is

Pδ>δc
(σ) =

∫ ∞

δc

dδ 1√
2πσ

e
− δ

2

2σ
2 , (1.143)

resulting in the HMF

dn
dM = 1√

2π
ρ̄

3M2
δc

σ
e

− δ
2

2σ
2

(
−R

σ

dσ
dR

)
. (1.144)

The PS treatment has been corrected [113–115] and extended in various theoretical
works [116–118].

This huge theoretical effort over the course of 40 years has provided significant insight
on the physical mechanism of structure formation. However, theoretical calculation do not
provide sufficiently accurate fits to precise N-body simulations. Therefore, theoretically
motivated functional forms are directly fit to N-body simulations. Namely, using the
parametrization

dn
dM = ρ̄

M
f(σ)d ln σ−1

dM , (1.145)
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the Press and Schechter HMF would correspond to

f(σ) = 2 δc√
2πσ

e
− δc

2σ
2 , (1.146)

whereas the HMF fitted to N-body provided in [119], that we will use throughout the
thesis is

f(σ) = A

[(
b

σ

)a

+ 1
]
e

− c

σ
2 , (1.147)

where A, a, b, and c are redshift dependent free parameters.

Electron pressure profile. The SZ effect is sourced by hot electron that up-scatter
the CMB photons we observe. Most of these hot electrons reside inside the intra-cluster
medium (ICM) of each galaxy cluster that, according to the halo model, resides in
halos. We are therefore interested in describing the electron distribution inside the halos,
and to be precise, their pressure distribution that appears in the y-distortion definition
eq. (1.44).

The fully analytic approaches to the problem [120] usually rely on some modified NFW
profile for the matter density, and impose hydrodynamical equilibrium of the electrons
to compute the pressure profile. However, direct measurements [121] proved how this
simplistic models are disproved by data. Consequently different authors used different
techniques to numerically or semi-analytically add baryonic effect to the model [122,123].
A different approach is fitting the ICM to a sample of clusters [124], that however being
quite close and very massive might not be representative of the whole ensemble.

Sunyaev-Zeldovich angular power spectrum. To calculate the SZ power spectrum
we use a halo model approach, following [120, 125, 126]. We parametrize the density
of dark matter halos in terms of the matter overdensity distribution δ, using a halo
bias parameter bH(z,M), which depends on redshift and mass of the halo. The mass
distribution of halos is given in terms of the halo mass function dn

dM
(z,M). Since the SZ

is sensitive to the electron distribution rather than to the matter distribution, this has
to be convolved with the halo Compton y-parameter image

y3D(z,M, x) = σT

mec
2Pe(z,M, x) , (1.148)
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where x is the distance from the center of the halo.

The SZ powerspectrum is given by the sum of the one- and two-halo terms [125, 126],
which, in the Limber approximation, respectively read

C1h
ℓ =

∫
dz d2V

dz dΩ

∫
dM dn

dM (z,M)|ỹℓ(z,M)|2, (1.149)

C2h
ℓ =

∫
dz d2V

dz dΩD
2
+(z)Pm(k)

[ ∫
dM dn

dM (z,M)bH(z,M)ỹℓ(z,M)
]2⏐⏐⏐⏐⏐

k=
(

ℓ+1/2
χ(z)

) .
(1.150)

Here Pm(k) is the linear matter power spectrum, D+(z) is the growth factor, d2V/ dz dΩ =
cχ2(z)/H(z) is the comoving volume element per steradians and ỹℓ(z,M) is the 2D Fourier
transform of the projected y-parameter image of the halo

ỹℓ(z,M) = 4πrs,y

ℓ2
s,y

∫
dxx2j0

(
kx

ℓs

)
y3D(z,M, x), (1.151)

rs,y is the typical scale radius of the y-image of the halo and ℓs,y = a(z)χ(z)/rs,y. We
refer to the appendix of [126] for a clear derivation of these two formulae.
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Chapter 2.

Selected arguments of statistics and
data analysis

In this chapter we provide a short summary of selected topics in statistics, which will
be useful in the following. As it is customary in Cosmology we will take a Bayesian
approach. According to the Bayesian interpretation, the probability expresses the degree
of belief in a proposition.

From a more philosophical standpoint, this is the natural approach as cosmologists,
because this interpretation is useful as it circumvents some shortcoming of the Frequentist
approach, which is based on measuring the outcomes of repeated trials: in fact, it allows
to make quantitative assessments about non-repeatable events. However its true power
lies in the possibility to naturally address inverse probabilities using the Bayes theorem.
Generally speaking, as physicists we are not interested in assessing how probable data
are, given the true model of Nature, but rather in understanding how likely our model is,
given the data we collected. Bayes theorem allow us to easily do that — even though,
unfortunately, this interpretation is not exempt of possible critics.

From a practical standpoint, on the other hand, the Bayesian approach is linked to
useful applications, such as Markov Chain Monte Carlo, that allow an easy treatment
of nuisance parameters (via marginalization), and provides a consistent framework for
model comparison and selection.

Bayes theorem and parameter estimation Let us start by considering two random
events, A and B, with associated probability P (A) and P (B) — all the following also
holds for a probability density function (PDF) p(θ) of a continuous random variable θ.
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The joint probability of two events A and B is given by

P (A;B) ≡ P (A|B)P (B) , (2.1)

where we defined the conditional probability of A given B, P (A|B). Since P (A;B) =
P (B;A) we can infer that the conditional probability of A to be true, given that B was
already realized is

P (A|B) = P (B|A) P (A)
P (B) . (2.2)

This is the Bayes theorem, which the cornerstone of the Bayesian statistical approach.

In Physics, we often describe our model in terms of a set of parameters θ. We then
try to infer their value collecting some data x (see, e.g., [127] and references therein). In
the frequentist approach, this is done building an estimator θ̂ of the parameters, and
then quantifying how likely is that it lies a given range around the true value of θ. In the
Bayesian interpretation instead one uses the Bayes theorem to quantify how probable a
set of parameters θ is, given the data:

P (θ|x) = P (x|θ) P (θ)
P (x) . (2.3)

Let us discuss every term in this expression separately.

P (θ|x) is called the posterior probability, which usually is the relevant quantity we
are interested in, as discussed.

P (θ) is the prior probability of the model. It parametrizes all previous knowledge
we had about the model before performing the experiment. For example, it may carry
information about previous measures of a parameter, or restrict the allowed domain of
a parameter value (e.g., by requiring mass or intensities to be ≥ 0, or velocities to be
≤ c). In general, the choice of prior can bias the evaluation of the posterior, especially
if the prior is not chosen with care. As such, it is arguably the most criticized point
of Bayesian probability. Dwelling in a discussion about prior legitimacy and sensible
prior choices is outside the scope of this chapter, and we refer to [128] for a review of the
possible criticalities.
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P (x) is the evidence. In the scope of this thesis it can be treated a normalizing
constant that is irrelevant for all the discussed results. It is instead important e.g. to
deal with model selection [129].

Finally, P (x|θ) is the probability of collecting the measured data given the model.
Conversely to the posterior, this quantity can be in principle — often simplifying
assumptions need to be made — modelled and calculated knowing how the data have
been collected and given a good knowledge of the instrument used. Interpreted as
function of the sole model parameters, with the data evaluated on the one experimentally
measured, this quantity is called likelihood.

L(θ) ≡ p(x = xexp|θ) . (2.4)

Regardless of the prior, two different datasets can be combined and used together,
applying eq. (2.1) to the likelihood. Given two sets of data x and y, the likelihood of
the joint analysis is

L(x;y|θ) = L(x|y;θ) L(y|θ) = L(x|θ) L(y|θ) . (2.5)

The second equality holds only if the two datasets are independent (otherwise the
appropriate covariance have to be accounted for). In that case the likelihoods of the
two experiments can just be multiplied together. However, this operation cannot be
performed mindlessly: the likelihood is insensitive to the possibility that the data are
inconsistent with each other. If this is the case, the produced results are mathematically
well defined, but might be physically nonsensical. We will see an instance of this case in
Section 3.1.

One of the main goals in data analysis is that of finding a set of "best-fit" model
parameters, given our observed data.1 This is called the problem of "parameter estimation".
As mentioned, the approach to parameter estimation changes in a frequentist vs Bayesian
framework. Even though the focus here is on Bayesian statistical inference, we will
briefly discuss also the frequentist approach, as it allows us to introduce some important
concepts about likelihoods.

1the other being hypothesis testing, in a frequentist setting, or model selection, in a Bayesian scenario.
We do not discussed this here, as we never perform such tasks in the remainder of this thesis, and we
focus instead on parameter estimation and forecasting.
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Frequentist parameter estimation The general idea in the frequentist approach is
to use the data we possess x to build an estimate θ̂ of the parameters θ, whose true
value is θ0. The best estimate would be the one that is unbiased

⟨θ̂⟩ = θ0 , (2.6)

and minimizes the parameters variance

Var(θi) = ⟨θ̂2
i ⟩ − ⟨θ̂i⟩

2
. (2.7)

An estimator attaining this properties is said to be optimal.

In this optics, the maximum likelihood estimator (MLE) θML such that

L(θML) = max
θ

L(θ) (2.8)

is the best choice, whenever its explicit computation is possible. With best we mean that
MLE has the following two crucial properties [127]

1. The MLE is asymptotically the unbiased estimator with minimum variance.

2. If an unbiased estimator with minimum variance (i.e., the Cramér-Rao bound that
we will introduce in the next section) exist, it is equivalent to the MLE.

The first properties ensures that the MLE is the best estimate when dealing with a large
enough amount of data, whereas the second guarantees that if an optimal estimator exist,
than it can be found maximising the likelihood.

Bayesian parameter estimation In a Bayesian context one uses the posterior to
assess the probability, therefore one of the most sensible estimates is the posterior mean,
that coincides with the expectation value in the limit in which the posterior recover the
right parameter PDF

⟨θ⟩ =
∫

θ p(θ|x) dθ , (2.9)

Calculating the MLE or the posterior mean might appear as an harmless process
by the definition, but often, when the likelihood is a particularly complicated, or if
the problem has a large dimensionality, one has to resort to sophisticated numerical
approaches to get it (see Section 2.2).
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Estimates are meaningless without quantifying their errors. In a frequentist setting,
these are computed by sampling the likelihood distribution, and building suitable confi-
dence intervals. We do not discuss this here (see e.g. [127] for a comprehensive treatment)
and focus just on the Bayesian approach instead. In Bayesian statistics, confidence
regions (CR) (also called credible regions, to distinguish from the frequentist limits) are
defined in parameter spaces such that

∫
CR
p(θ|x) dθ = CL , (2.10)

where the confidence level CL is usually set to 68.3% or 95.4% (values chosen because
they respectively correspond to 1σ and 2σ fora a Gaussian distribution). There is some
arbitrariness in choosing the region that would satisfy eq. (2.10) [130]. Common choices
are selecting a region that is symmetric around the maximum likelihood, or selecting it in
such a way that P (θ|x) > P (θ′|x) ∀ θ ∈ CR ∧θ′ /∈ CR, but other criteria are often used.
Note that by construction the confidence region depend on the prior. In cases when it
is desirable to quote prior-independent results, the Likelihood ratio might get employed
instead. A set of parameters θ is compared with the maximum of the likelihood via

Z = −2 ln
[

L(θ)
Lmax

]
. (2.11)

The interpretation of Z is clear in the case of Gaussian likelihood as parameters deviating
z σ from the MLE have Z = z.2

More often than not, in multi-parameter analysis we are interested in providing
estimates and confidence regions for a single parameter, regardless of the value of the
others. For example we may want to remove some nuisance parameters needed to
represent foregrounds, or detector properties. Or we may want to study the bounds on a
single parameter out of the many required by our physical model of interest. In both
cases, in order to get the posterior of the parameters we are interested in (say θ1, · · · , θm)
we need to marginalize over “uninteresting” parameters (say θm+1, · · · , θn) integrating
the posterior over their whole parameter space.

p(θ1, · · · , θm|x) =
∫
p(θ1, · · · , θn|x) dθm+1 · · · dθn (2.12)

2In cosmology often the covariance depends on the model, therefore the normalization of the Gaussian
distribution depends on the model too. For this reason data may be Gaussian distributed and still
the χ2 and likelihood ratio analysis may give different results [131].
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As in the case of the CR selection, the marginalization is prior dependent. In general,
the location of the posterior mean before and after marginalization over some parameters
might not coincide. Which one of the two estimates is the most relevant one depends on
the specific circumstances of the problem, and shall be evaluated on a case-by-case basis.

In the case in which a flat prior (i.e., a box prior probability between some minimum
and maximum allowed parameter values) is used, the posterior probability is proportional
to the Likelihood. This means that the maximum of the posterior coincide with the
maximum of the Likelihood, and shares its properties. This is exactly the case in the
analysis we present in Section 3.1.

2.1. Fisher information matrix

If the likelihood is unimodal and smooth, its logarithm can be Taylor-expanded around
its maximum.

ln L = ln L(θML) + 1
2
∑
ij

(θi − θML,i)
∂2 ln L
∂θi∂θj

⏐⏐⏐⏐⏐
θML

(θj − θML,j) + ... (2.13)

If we can neglect the cubic and higher-order terms, the information about the parameters
(Co)variance is embedded in the Hessian of the likelihood. The Fisher information matrix
is defined as its expectation value

Fij = −
⟨
∂2 ln L
∂θi∂θj

⟩
(2.14)

therefore it is related to the covariance of the parameters through

Cov(θi, θj) ≡ ⟨θi θj⟩ − ⟨θi⟩⟨θj⟩ = [F−1]ij . (2.15)

In this context the expectation value has to be intended as the ensemble average over
the observational data we would gather if the Universe were described by the considered
fiducial model.

The usefullness of the Fisher matrix comes from the Cramér-Rao inequality [129]. It
states that for any unbiased estimator holds the relation

σ(θi) ≡
√

Var(θi) ≥
√

[F−1]ii . (2.16)
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The quantity defined at RHS is commonly referred to as marginal error, as it is the value
one would obtain marginalizing over all the other parameters θj, j ̸= i, if the likelihood
were Gaussian. It is worth noticing that it is greater or equal than the conditional error
1/

√
Fii, that is the error over θi assuming perfect knowledge of all the other parameters

true value. The two errors coincide if and only if the estimator θ̂i is uncorrelated with
the other parameters estimators, i.e., if F is block-diagonal.

It descends trivially from the property of the likelihood eq. (2.5) that the joint Fisher
matrix of two independent experiment is the sum of the Fisher matrices.

Besides allowing a rigorous definition of the information content of the data and of
estimator optimality, the Fisher matrix is also a crucial quantity for forecasting how well
an experiment might perform even before collecting data. It must be noted that, due to
the Cramér-Rao inequality, a Fisher matrix forecast is only an upper limit on what a
given survey might achieve in term of constraining power. However, the ability of quickly
assess at least the order of magnitude, is a valuable information when comparing many
different possible experimental design.

2.1.1. Fisher matrix for Gaussian likelihood

If we are willing to approximate the data distribution with a Gaussian, the definition of
the Fisher information matrix in eq. (2.14) can be massaged into a much more handy
expression [129], that we will use in the following chapters.

Let µ be the mean and D the data matrix

D = (x − µ)(x − µ)T . (2.17)

If the model is evaluated at the true value of the parameters θ, the mean coincides
with the data expectation value, and the expectation value of the data matrix is the
covariance, i.e.,

µ = ⟨x⟩ , ⟨D⟩ = Cov . (2.18)

Extracting the logarithm from the definition of a multivariate Gaussian

L = 1
(2π)n/2√det Cov

exp
[
−1

2(x − µ)Cov−1(x − µ)T
]
, (2.19)
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we get

2 ln L = ln det Cov + (x − µ)Cov−1(x − µ)T + n ln(2π)

= Tr
[
ln Cov + Cov−1D

]
.

(2.20)

Where, in the second line, we used the matrix identity ln det Cov = Tr[ln Cov] and we
dropped the irrelevant addend n ln(2π). Notice that in full generality both the mean and
the covariance matrix are functions of the model parameters θ.

It is straightforward to calculate the first and second derivatives of the likelihood
with respect to the model parameters θi and θj. They respectively read

2 ln L,i = Tr[Cov−1Cov,i − Cov−1Cov,iCov−1D + Cov−1D,i] , (2.21)

and

2 ln L,ij = Tr[ − Cov−1Cov,iCov−1Cov,j + Cov−1Cov,ij

+ Cov−1(Cov,iCov−1Cov,j +Cov,j Cov−1Cov,i)Cov−1D

− Cov−1(Cov,iCov−1D,j + Cov,j Cov−1D,i)

− Cov−1Cov,ijCov−1D + Cov−1D,ij] .

(2.22)

Taking the expectation value of eq. (2.21), and using the relations

⟨D,i⟩ = 0 , ⟨D,ij⟩ = µ,iµ
T
,j + µ,jµ

T
,i . (2.23)

we obtain

⟨L,i⟩ = 0 . (2.24)

On the ensemble average, the likelihood has an extreme on the true value of the parame-
ters. Since by definition the extreme point is the maximum likelihood, this shows the
unbiasedness of MLE.

We can now use eq. (2.22), (2.18), and (2.23) in the definition of the Fisher matrix
eq. (2.14). With some algebra we get

Fij = ⟨L,ij⟩ = 1
2 Tr[Cov−1Cov,iCov−1Cov,j + Cov−1(µ,jµ

T
,i )] , (2.25)
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This equation shows that the Fisher matrix depends on the physical model, and on
the characteristics of the hypothetical experiment that would collect the data, but do
not depends on data themselves. As mentioned earlier, this allows using a Fisher matrix
approach to quickly forecast the maximum expected performance of an experiment before
it is even operational.

2.2. Inference and Monte Carlo Markov Chains

The general goal, working in the Bayesain inference framework, is accurately sampling
the posterior distribution. Unless we are in very simple cases, the posterior can be very
complicated and in general not treatable analytically. Therefore it is necessary to resort
to numerical approaches to sample it.

Markov chain monte carlo (MCMC) [132, 133] are useful to map probabilities in high
dimensional parameter space in an efficient and accurate way. The evaluation time for
a grid of fixed spacing scales exponentially with the number of dimension and the grid
doesn’t adjust to get more precision where is needed. On the other hand MCMC scales
approximately linearly with the number of parameters and by construction has a larger
point density in places where the likelihood is bigger, thus giving more accuracy around
the maxima, which eventually are what we are interested in.

The goal is to generate a collection of points in parameters space, called steps,
distributed according to a desired PDF, in this case the posterior. The MCMC is a
method that uses the properties of Markov processes to do that. In particular, the
MCMC is purposely build to be a Markov process that asymptotically reaches a unique
stationary distribution πx(θ), proportional to the posterior p(θ|x).

A generic discrete-time stochastic process is a system in which a “time”-dependent
random variable Θ(t) exist [134].3 Given a set of times t0 ≤ t1 ≤ · · · ≤ tn, the stochastic
process is described by the joint probability of measuring the value θ(i) of Θ(t) at each
time ti

p
(
θ(n), tn;θ(n−1), tn−1;θ(n−2), tn−2; . . .

)
. (2.26)

3For explanatory purpose we refer here to a “time” in loose sense. In an MCMC it is replaced the
iteration index.
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Therefore, the probability of measuring θ(n+1) at time tn+1 conditional to the previous
evolution of the system is

p
(
θ(n+1), tn+1

⏐⏐⏐ θ(n), tn;θ(n−1), tn−1; . . .
)

=
p
(
θ(n+1), tn+1;θ(n), tn;θ(n−1), tn−1; . . .

)
p
(
θ(n), tn;θ(n−1), tn−1; . . .

) .

(2.27)

Markov processes are a subset of stochastic processes that satisfy the condition

p
(
θ(n+1), tn+1

⏐⏐⏐ θ(n), tn;θ(n−1), tn−1; . . .
)

≡ p
(
θ(n+1), tn+1

⏐⏐⏐ θ(n), tn
)
. (2.28)

The conditional probability at the time tn is completely determined by the knowledge of
the most recent condition alone, and p

(
θ(n+1), tn+1

⏐⏐⏐ θ(n), tn
)

can be interpreted as the
transition probability from state θ(n) to θ(n+1) at the time tn. One of the fundamental
properties of Markov processes that we will exploit is that they might admit a unique
stationary distribution π such that for any n > n̄ for some n̄

p(θ(n), tn|θ(n−1), tn−1) = π(θ) ⇒ p(θ(n+1), tn+1|θ(n), tn) = π(θ) , (2.29)

that also is the limiting distribution regardless of the Markov process initial conditions.

MCMC are generally constructed with algorithms that exploit this property. One
of the most widely spread, and easy to understand, is Metropolis-Hastings (MH). A
sufficient condition for a Markov process to admit a stationary solution πx is to satisfy
the detailed balance relation

πx
(
θ(n+1)

)
p
(
θ(n+1), tn+1

⏐⏐⏐ θ(n), tn
)

= πx
(
θ(n)

)
p
(
θ(n), tn

⏐⏐⏐ θ(n+1), tn+1

)
. (2.30)

MH builds a Markov process with transition probability that satisfies the detail balance
condition with πx(θ) = p(θ|x), as described.

The chain is initialized by selecting a random point in parameter space and adding it
to the chain. Then an iterative process takes place.

1. Start from the last step in the chain, a set of parameters θ(n), and it computes the
associated posterior probability pn ≡ p(θ(n)|x).

2. Select a random point θ′ in parameter space following a proposal distribution g
θ

(n)(θ).
The parameters describing the proposal distribution can in principle depend on the
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previous point θ(n), hence the lower-script. To give an example, in the application
we will describe in Section 2.2, it will be a multivariate Gaussian distribution.

3. Compute the new posterior in the proposed point p′ ≡ p(θ′|x).

4. Calculate the acceptance threshold

α(θ′,θ(n)) = min
(

1, p
′

pn

gθ′(θ(n))
g
θ

(n)(θ′)

)
(2.31)

5. Draw a uniform random number in [0, 1]. If it exceed the acceptance probability the
new proposed point is accepted in the chain: θ(n+1) ≡ θ′. Otherwise the previous
point is duplicated: θ(n+1) ≡ θ(n).

6. Iterate.

Using this algorithm eq. (2.30) is verified by construction. The transition probability
is in fact the product of the proposal distribution times the acceptance probability
p
(
θ(n+1), tn+1

⏐⏐⏐ θ(n), tn
)

= α(θ′,θ(n)) g
θ

(n)(θ(n+1)), hence

p
(
θ(n+1), tn+1

⏐⏐⏐ θ(n), tn
)

p
(
θ(n), tn

⏐⏐⏐ θ(n+1), tn+1

) = p(n+1)

p(n) . (2.32)

When running a chain we need to know when it has converged and if it has explored
the whole parameter space. Therefore, it is crucial to select a priori a convergence
criterion to tell when it is appropriate to stop the iteration.

One possible choice is the Gelman-Rubin method [135]. M chains are started in
different points in parameter space, and every of them collects 2N steps. The first N
points of each chain are discarded as burn in. Now we can refer to the i-th element of
the j-th chain as θ(i,j) with i = 1, . . . , N and j = 1, . . . ,M .

The mean of the j-th chain is

θ̄(j) = 1
N

N∑
i=1

θ(i,j) , (2.33)
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Figure 2.1.: Pictorial representation of the idea underlying the Gelman-Rubin criteria. On
the left side 3 chains that haven’t explored the parameter space properly. On
the right side the same chains when they begin to converge

and the mean of the sample is

θ̄ = 1
N M

N,M∑
i,j=1

θ(i,j) . (2.34)

Then the variance between the chains is

B = 1
M − 1

M∑
j=1

(θ̄(j) − θ̄)2 , (2.35)

and the mean of the variances within single chains

W = 1
M(N − 1)

M,N∑
i,j=1

(θ̄(i,j) − θ̄(j))2 . (2.36)

We can define the ratio between two estimates of the variance of the distribution

R =
N−1

N
W + (1 + 1

M
)B

W
. (2.37)

The numerator is an unbiased estimator of the variance if the distribution is stationary,
but is otherwise an overestimation. On the other hand the denominator underestimates
the variance if the individual sequences have not converged yet. In Figure 2.1 we give a
qualitative representation of the quantities used to compute R.

Before the sampling is performed, a threshold value of R is selected, and the iterations
are not stopped before the value of R is inferior to the threshold. R < 1.03 is generally
considered a good choice that guarantees proper convergence [136].
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Once the chain converge the burn-in are discarded and what is left is merged together.
By construction the density of the chains point in parameter space is proportional to the
posterior probability of said point. It is therefore trivial to deduce best fit parameters
and confidence levels: The posterior mean eq. (2.9) is

⟨θ⟩ ≈ 1
N

N∑
i=1

θ(i) , (2.38)

and the marginal probability for parameter for parameter θj in eq. (2.12) is constructed
by removing from each point of the chain the information about all θi with i ̸= j. What
is left, is N steps drawn from the θj parameter space with density proportional to
the marginal probability. All information about variance and confidence intervals are
therefore constructed building binning the marginal probability in an histogram.

The same marginalization procedure can be use to produce the 2D marginal probability
of a couple of parameters. The resulting data can be showed in a scatter plots to
describe the parameters correlations. The triangle plots that we will later show (e.g., in
Figure 3.13a) are an example.

MH is just one of many possible approaches to MCMC sampling. Other useful and
powerful methods are e.g. Gibbs sampling or Hamiltonian sampling, but which method
is best depends on the problem at hand. For a detailed discussion see e.g. [128].

2.3. Statistic of a statistically isotropic random field
on a sphere

Here we are interested in discussing the general properties of the projection on a sphere of
a statistically homogeneous and isotropic scalar random field, regardless of the underlying
physical properties. To fix the notation and help the interpretation, we consider here of
the concrete physical example of the CMB temperature anisotropy field here. Of course
all results can be directly applied or easily geenralized to any scalar field on the sphere
(e.g. CMB E and B polarization modes, the galaxy overdensity field in tomographic
spherical shells, etc.).
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Temperature anisotropies are represented by the coefficients aℓm of the spherical
harmonic expansion of the CMB sky

T (n̂) =
∑
ℓm

aℓmYℓm(n̂) . (2.39)

where

aℓm ≡
∫

dn̂T (n̂)Y ∗
ℓm(n̂) . (2.40)

To obtain the projection of a 3D field T (x) on the sphere, we ought to integrate the field
along the line of sight, in the required direction n̂. For temperature the leading order
term, as seen in 1.5.1 (cfr. [137]), has the form

T (n̂) =
∫ τ0

0
dτ
∫ d3k

(2π)3 e
ik·n̂χ∆(k, τ) ζk (2.41)

for some known source function ∆, and where χ = τ0 − τ is the comoving distance.
Plugging this equation in eq. (2.40), and using identity (A.7), it is straightforward to find

aℓm = 4π iℓ
∫ d3k

(2π)3 ζk Tℓ(k)Yℓm(k̂) , (2.42)

where we defined the transfer function Tℓ(k) as

Tℓ(k) ≡
∫ τ0

0
dτ ∆(k, τ) jℓ(kχ) . (2.43)

2.3.1. Angular power spectrum

The variance of the harmonic coefficients is

⟨aℓm a
∗
ℓ

′
m

′⟩ = (4π)2 iℓ−ℓ
′
∫ d3k

(2π)3

∫ d3k′

(2π)3 Tℓ(k) Tℓ
′(k′)Yℓm(k̂)Y ∗

ℓ
′
m

′(k̂′) ⟨ζkζk
′⟩

= δℓℓ
′ δmm

′
2
π

∫
dk k2 T 2

ℓ (k)P (k)

≡ δℓℓ
′ δmm

′ Cℓ ,

(2.44)

where, in the second line we used the statistical homogeneity and isotropy properties
of the random field ζk expressed in eq. (1.79), and in the third we defined the angular
power spectrum Cℓ.
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If we wish to estimate the power-spectrum from data (real or simulated) we can resort
to the MLE. Since in the rest of this thesis we will mainly be interested assessing future
detectability of physical effect through Fisher matrix analysis, in this chapter we will
consider a very idealized setting, assuming Gaussian likelihoods and without delving
into all the practical complications of e.g. correlated noise, systematics, foreground
contamination, partial sky coverage, etc. Under these assumptions the MLE is

Ĉℓ = 1
2ℓ+ 1

∑
m

|aℓm|2 . (2.45)

The power spectrum covariance computation is straightforward from the definition

Cov(Ĉℓ, Ĉℓ
′) = ⟨Ĉℓ Ĉℓ

′⟩ − ⟨Ĉℓ⟩⟨Ĉℓ
′⟩ . (2.46)

The first term reads

⟨Ĉℓ Ĉℓ
′⟩ = 1

(2ℓ+ 1)(2ℓ′ + 1)
∑

m,m
′
⟨aℓm a

∗
ℓm aℓ

′
m

′ a∗
ℓ

′
m

′⟩ =

1
(2ℓ+ 1)(2ℓ′ + 1)

∑
m,m

′

(
⟨aℓm a

∗
ℓm⟩⟨aℓ

′
m

′ a∗
ℓ

′
m

′⟩ + ⟨aℓm aℓ
′
m

′⟩⟨a∗
ℓm a

∗
ℓ

′
m

′⟩+

+⟨aℓm a
∗
ℓ

′
m

′⟩⟨aℓ
′
m

′ a∗
ℓm⟩ + ⟨aℓm a

∗
ℓm aℓ

′
m

′ a∗
ℓ

′
m

′⟩
c

)
≈Cℓ Cℓ

′ + δℓℓ
′
2Cℓ Cℓ

′

2ℓ+ 1 ,

(2.47)

where in the second equation we used the Wick theorem to expand the 4-points correlations
in its connected contributions, and in the third we used the weakly non-Gaussian
approximation to neglect the 4-points connected function. Hence

Cov(Ĉℓ, Ĉℓ
′) = δℓℓ

′
2Cℓ Cℓ

′

2ℓ+ 1 . (2.48)

In the weakly non-Gaussian approximation the Covariance matrix is diagonal, i.e., each
Cℓ is independent from the other coefficients with ℓ ̸= ℓ′.

Thanks to this property, it is trivial to generalize this treatment to the joint analysis
of multiple observables like CMB temperature and polarization. In full generality, the
covariance matrix for ([CT T

ℓ ]ℓ=1,··· ,ℓmax , [C
EE
ℓ ]ℓ=1,··· ,ℓmax) would be a 2ℓmax × 2ℓmax matrix



62 Selected arguments of statistics and data analysis

of the kind

Cov(ĈΞΞ
ℓ , ĈΞ

′
Ξ

′

ℓ ) =

⎛⎜⎝ ⟨aT
ℓm a

T ∗
ℓm a

T
ℓ

′
m

′ aT ∗
ℓ

′
m

′⟩ ⟨aT
ℓm a

T ∗
ℓm a

E
ℓ

′
m

′ aE∗
ℓ

′
m

′⟩

⟨aE
ℓm a

E∗
ℓm a

T
ℓ

′
m

′ aT ∗
ℓ

′
m

′⟩ ⟨aE
ℓm a

E∗
ℓm a

E
ℓ

′
m

′ aE∗
ℓ

′
m

′⟩

⎞⎟⎠, (2.49)

where Ξ = T,E. However, due to the decorrelation of different multipoles in the weekly
non-Gaussian limit, we can just analyse the power-spectrum ℓ by ℓ.

For instance, the one dimensional Fisher matrix for the angular power spectum
amplitude (that is, the detectability of the angular power spectrum itself) is

F ([CT T
ℓ ]ℓ=1,··· ,ℓmax , [C

EE
ℓ ]ℓ=1,··· ,ℓmax) =

ℓmax∑
ℓ=1

Fℓ(CT T
ℓ , CEE

ℓ ) ≡

≡
ℓmax∑
ℓ=1

2
2ℓ+ 1

⎛⎜⎝ CT T
ℓ

CEE
ℓ

⎞⎟⎠ ·

⎛⎜⎝ CT T
ℓ CT T

ℓ CT T
ℓ CEE

ℓ + 2(CT E
ℓ )2

CT T
ℓ CEE

ℓ + 2(CT E
ℓ )2 CEE

ℓ CEE
ℓ

⎞⎟⎠
−1⎛⎜⎝ CT T

ℓ

CEE
ℓ

⎞⎟⎠.
(2.50)

2.3.2. Angular bispectrum

The bispectrum is defined in a similar way, as the harmonic transform of the three point
correlation function

Bℓ1ℓ2ℓ3
m1m2m3 ≡⟨aℓ1m1aℓ2m2aℓ3m3⟩

=(4π)3 iℓ1+ℓ2+ℓ3

∫ d3k1

(2π)3

∫ d3k2

(2π)3

∫ d3k3

(2π)3 Tℓ1(k1) Tℓ2(k2) Tℓ3(k3) ×

×Yℓ1m1(k̂1)Yℓ2m2(k̂2)Yℓ3m3(k̂3) ⟨ζk1
ζk2

ζk3
⟩ =

=(4π)3 iℓ1+ℓ2+ℓ3

∫ d3k1

(2π)3

∫ d3k2

(2π)3

∫ d3k3

(2π)3 Tℓ1(k1) Tℓ2(k2) Tℓ3(k3) ×

×Yℓ1m1(k̂1)Yℓ2m2(k̂2)Yℓ3m3(k̂3) (2π)3 δ(3)(k1 + k2 + k3)Bζ(k1, k2, k3) =

=
( 2
π

)3 ∫
dk1 dk2 dk3 k

2
1 k

2
2 k

2
3 Tℓ1(k1) Tℓ2(k2) Tℓ3(k3)Bζ(k1, k2, k3) ×

×
∫

dx x2 jℓ1(k1x) jℓ2(k2x) jℓ3(k3x)
∫

d2x̂Yℓ1m1(x̂)Yℓ2m2(x̂)Yℓ3m3(x̂) .

(2.51)

Here in the second equation we used the definition of the primordial bispectrum eq. (1.84),
and to get the last equation we used the Rayleigh expansion of the Dirac delta eq. (A.8).
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The last integral over x̂, known as Gaunt integral can be expressed in terms of Wigner-3j
symbols as

Gℓ1ℓ2ℓ3
m1m2m3 ≡

∫
d2x̂Yℓ1m1(x̂)Yℓ2m2(x̂)Yℓ3m3(x̂) = hℓ1ℓ2ℓ3

⎛⎜⎝ ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞⎟⎠ , (2.52)

where in the second equality we used eq. (A.20), defining

hℓ1ℓ2ℓ3 ≡
√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)
4π

⎛⎜⎝ℓ1 ℓ2 ℓ3

0 0 0

⎞⎟⎠ . (2.53)

The fact that in eq. (2.51) the Gaunt integral carries all the information about the
azimuthal-m dependence is a direct consequence of the statistical isotropy of the random
field. Therefore, it is convenient to factor out the Gaunt integral from the bispectrum
and work with the reduced bispectum bℓ1ℓ2ℓ3 defined through

Bℓ1ℓ2ℓ3
m1m2m3 = Gℓ1ℓ2ℓ3

m1m2m3bℓ1ℓ2ℓ3 . (2.54)

Another quantity that is commonly used is the angle averaged bispectrum defined as

Bℓ1ℓ2ℓ3 =
∑

m1,2,3

⎛⎜⎝ ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞⎟⎠Bℓ1ℓ2ℓ3
m1m2m3 , (2.55)

and that is related to the reduced bispectrum via

Bℓ1ℓ2ℓ3 = hℓ1ℓ2ℓ3 bℓ1ℓ2ℓ3 . (2.56)

So, similarly to the case for the power-spectrum, it can be shown that the optimal
estimator of the bispectrum [138–140], assuming again statistically isotropic, Gaussian,
uncorrelated noise and full sky coverage, is

b̂ℓ1ℓ2ℓ3 ≡ 1
Nℓ1ℓ2ℓ3

∑
m1m2m3

Gm1m2m3
ℓ1ℓ2ℓ3

aℓ1m1 aℓ2m2 aℓ3m3 , (2.57)
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where Nℓ1ℓ2ℓ3 is the number of valid triangles that can be built for the triplet (ℓ1, ℓ2, ℓ3).
It is defined as

Nℓ1ℓ2ℓ3 ≡ (hℓ1ℓ2ℓ3)2 =
∑

m1m2m3

(Gm1m2m3
ℓ1ℓ2ℓ3

)2 , (2.58)

where in the second equality we exploited eq. (A.18).

From the definition of the bispectrum estimator eq. (2.57) we get

⟨b̂ℓ1ℓ2ℓ3 b̂ℓ4ℓ5ℓ6⟩ ≡ 1
Nℓ1ℓ2ℓ3 Nℓ4ℓ5ℓ6

∑
m1···m6

Gm1m2m3
ℓ1ℓ2ℓ3

Gm4m5m6
ℓ4ℓ5ℓ6

⟨aℓ1m1 aℓ2m2 · · · aℓ6m6⟩ . (2.59)

As before, the expression simplifies noticeably in the weakly non-Gaussian approximation,
and the covariance is just

Cov(b̂ℓ1ℓ2ℓ3 , b̂ℓ4ℓ5ℓ6) ≈ ⟨b̂ℓ1ℓ2ℓ3 b̂ℓ4ℓ5ℓ6⟩ ≈
∆ℓ1ℓ2ℓ3

Nℓ1ℓ2ℓ3

Cℓ1 Cℓ2 Cℓ3 δ
ℓ4
ℓ1
δ

ℓ5
ℓ2
δ

ℓ6
ℓ3
, (2.60)

where ∆ℓ1ℓ2ℓ3 is a coefficients that accounts for the multiplicity of the various configura-
tions:

∆ℓ1ℓ2ℓ3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
6 for equilateral configurations (ℓ1 = ℓ2 = ℓ3)

2 for the isosceles configurations (ℓ1 = ℓ2 ̸= ℓ3, or cycl.)

1 for the scalene configurations (ℓ1 ̸= ℓ2 ̸= ℓ3 ̸= ℓ1) .

(2.61)

As stated before, for the scope of this thesis we are less interested in extracting the
bispectrum from data, than to forecast detectability of various models. For explanatory
purpose, the one dimensional Fisher matrix for the amplitude of the bispectrum, in the
weakly non-Gaussian limit reads

Fij =
ℓmax∑

ℓ1≤ℓ2≤ℓ3

Nℓ1ℓ2ℓ3 b
2
ℓ1ℓ2ℓ3

∆ℓ1ℓ2ℓ3Cℓ1 Cℓ2 Cℓ3

(2.62)

Generalize this result to a joint analysis of multiple probes is a more complicated
task. In principle, the optimal estimator is found minimizing the log-likelihood, as it
is done in [138]. The estimator that is found simply applying this approach cannot be
computed easily either analytically or numerically. However it has been proven in [141]
that it is equivalent to the more manageable KSW estimator [142]. Therefore, we can
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easily calculate F as the expectation value of the KSW estimator

Fij =
∑

Ξ1Ξ2Ξ3

∑
Ξ

′
1Ξ

′
2Ξ

′
3

ℓmax∑
ℓ1≤ℓ2≤ℓ3

Nℓ1ℓ2ℓ3

∆ℓ1ℓ2ℓ3

∂b
Ξ1Ξ2Ξ3
ℓ1ℓ2ℓ3

∂θi

(C−1)Ξ1Ξ
′
1

ℓ1
(C−1)Ξ2Ξ

′
2

ℓ2
(C−1)Ξ3Ξ

′
3

ℓ3

∂b
Ξ

′
1Ξ

′
2Ξ

′
3

ℓ1ℓ2ℓ3

∂θi

(2.63)

where in the relative sums Ξi = T,E for i = 1, 2, 3.
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Chapter 3.

Testing the power spectrum

3.1. Features of the primordial power spectrum and
neutrino masses

Here we perform a minimally parametric reconstruction of the PPS using smoothing
spline interpolation in combination with cross validation. This approach follows [143–145].

The idea is simple: we choose a functional form that allows a great deal of freedom in
the shape of the deviations from a power-law. Because most models predict the PPS to
be smooth, among the possible choices we use a smoothing spline. The ensuing challenge
is to avoid over-fitting the data; a complex function that fits the data set extremely
well is of no interest if we are simply fitting statistical noise. To prevent over-fitting we
use cross-validation and a roughness penalty. The roughness penalty is an additional
parameter that penalises a high degree of structure in the functional form. By performing
cross-validation as a function of this penalty, we can judge the amount of freedom in the
smoothing spline that the data require, without fitting the noise.

The Planck collaboration has performed an analysis with the same goals in mind, but
with different methods [146], built upon [147–149]. They carried out both a parametric
search for deviations from a power law, using a set of theoretically motivated shapes for
the PPS, and a minimally parametric analysis to reconstruct the PPS. In all cases there
is no strong evidence for deviations from a power law.

Our analysis differs from that of the Planck collaboration and from others existing
in the literature (e.g. [150, 151]) in that we analyse jointly a comprehensive set of
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state-of-the-art experiments probing the matter power spectrum and the latest Planck
measurements.

Because we assume standard late-time evolution of density perturbations and consider
both early-time observables (CMB) and late-time ones (i.e., large-scale structure), our
reconstruction is also sensitive to late-time effects on structure formation. In particular a
non-negligible neutrino mass would suppress the growth of structures below the neutrino
free-streaming scale, inducing an “effective” loss of small scale power in our reconstructed
PPS. Reconstructing in a model-independent way a possible neutrino signature on the
shape of the matter power spectrum is of particular importance as [152–157] claims that
relatively large neutrino masses (Σν ≳ 0.4 eV) could solve the tension between CMB and
local measurements, whilst other studies [158–165] rule out this possibility.

The rest of the section is organised as follows: in Section 3.1.1 we briefly summarise
the methodology adopted, the data chosen and how they are analysed. In Section 3.1.2 we
show how our analysis will be able to give us information not only about the primordial
power spectrum, but also about late time effects. Then in Section 3.1.3 we present our
findings and we discuss them in Section 3.1.4.

3.1.1. Methodology and data overview

Spline reconstruction

We perform a minimally-parametric reconstruction of the primordial power spectrum
based on the cubic smoothing spline technique [166]. This method has been firstly applied
to this same problem in [143] and has been further refined in [144,145].

As we already anticipated, the goal is to recover a smooth function — in this case the
PPS — using as few assumptions about its functional form as possible. This approach
is complimentary to the usual fit to a theoretically motivated family of functions, that
is widely employed in the literature [73]. In the latter case, we make some a priori
assumptions about the function we are studying, and this allows us to test specific models,
eventually enhancing our understanding of the underlying physical mechanisms. Moreover,
if the chosen functional form is appropriate, the range of viable free parameters will be
tightly constraint, with respect to what we can achieve with a minimally parametric
reconstruction. However this does not mean that a minimally parametric approach is
un-interesting or un-informative. Firstly, it provides a useful, and blind, double check of
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the goodness of our theoretical prior about the commonly used functional form. Second,
it allows us to automatically understand if an unexpected deviation from the most
minimal model is significantly supported by the data, or if it is a byproduct of the
imposed prior. We anticipate here (it will be the topic of the next section) that using
this kind of blind approach over-fitting is a possibility, i.e., we might end up using an
unnecessarily over-complicated function to fit the data, that improves the likelihood,
but at the expense of fitting the noise. This would result in a less predictive model,
that would perfectly interpolate existing — noisy — data, but would miserably fail to
reproduce the underlying physical behaviour.

Summarizing, we want to let the data tell their story about what was the primordial
power spectrum, imposing the least possible amount of prior information, apart from
the fact that we require the PPS to be a smooth function, whereas avoiding to incur in
over-fitting the data. Our choice is to to use a cubic spline interpolation.

We can define a spline S(x) of degree k on a domain [a, b] as a function such that

1. S(x) is well defined on x ∈ [a, b].

2. S(x) and its derivatives S ′(x), S ′′(x), . . . , S(k−1)(x) are continuous for x ∈ [a, b].

3. For some n ≥ 2, ∃ x1, . . . , xn ∈ [a, b] such that a = x1 < · · · < xi < · · · < xn = b

and S(x) is a polynomial of degree at most k on [xi−1, xi] i = 1, . . . , n. The points
(xi, S(xi)) are called knots.

It could be shown that, among the C2 functions defined on a given domain that
interpolate a given set of knots, the cubic spline is the one minimizing the quantity
I[f ] ≡

∫
(f ′′(x))2dx in said domain [167].1 This is the reason why, since we are interested

in removing any jaggedness not actually required by the data, we choose to use a cubic
spline for our reconstruction.

Given n+ 1 knots, the cubic spline is defined by n polynomials of third degree, hence
in total 4n parameter have to be determined. 2n conditions are fixed by asking that
each cubic pass for the knots at the beginning and the end of the interval in which it
is defined. Other 2(n − 1) conditions come from the request of continuity of first and
second derivative. This leaves 2 extra degrees of freedom that have to be fixed with

1The integral is a measure of the total curvature of the function, and therefore can be intuitively
associate with the notion of how straight, rather than wiggly a curve is. In the following, to lighten
the notation we will generically describe a curve f as straight if I[f ] is small, and as wiggly if that
quantity is large. When needed we will leave aside qualitative adjectives and report proper numerical
values.
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some arbitrary choice. Multiple different possibilities are reasonable, depending on the
specific application one is considering [167]. Therefore, by specifying a set of knots, and
2 boundaries condition, the interpolating cubic spline is completely determined.

In our application we parametrize the PPS with a cubic spline, and we treat the value
of the spline on the knots S(xi) as the free parameters we wish to determine from the
data. Regarding the boundary conditions, we proceed as follows. As we will show later
(see Figure 3.3), the data we are considering span a finite set of scales, and that is where
the majority of the knots are located. However, to avoid computational inefficiencies we
will use splines with two extra knots at each of the spline ends. Since those two extra
knots are not directly involved in our simulation, and are indeed function of the other
knots, we will address to them as false knots in the following. Then the natural choice to
deal with the last two degrees of freedom a spline has is the not-a-knot condition, which
requires the jump in the third derivative across the first and last real knots to be forced
to zero. In this way the cubic polynomial pieces at the left and right of said knots are
made to coincide. The spline is constructed using C. de Boor’s algorithm defined in [167].

Cross-Validation

As we anticipated, when using blind tecniques to fit data, one should take extra care to
avoid the possibility of overfitting. To prevent this behaviour we add a roughness penalty
to the log-likelihood. The penalty function is built in such a way that it increases its
value as the spline gets more and more wiggly. Our choice is to use the integral of the
second derivative squared of the spline over its domain

log(L) = log(Lexp) − αp

∫ ln kn

ln k1

(
S ′′(ln k)

)2
d ln k (3.1)

where S ′′ denotes the second derivative of the spline with respect to ln k, ki and kf are
respectively the position of the first and of the last knots, αp is a weight that controls
the penalty, and Lexp is the likelihood given by the experiments.

The roughness penalty effectively reduces the degrees of freedom, disfavouring more
and more jagged functions as it increases. As αp goes to infinity, one effectively implements
linear regression; as αp goes to zero one is interpolating.

Cross-validation comes into play in selecting the appropriate value of αp [166]. In
generic applications of smoothing splines, cross-validation is a rigorous statistical tech-
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nique for choosing the optimal roughness penalty [166]. Cross-validation (CV) quantifies
the notion that if the PPS has been correctly recovered, we should be able to accurately
predict new independent data.

The idea is to divide available data in two groups, fit the first group with a chosen
value for αp and try to see how well the fit results approximates the other data group.
If the fit is correct it will predict in an accurate way the second group. Ideally the
most rigorous way to use cross-validation would be to remove one point at a time and
evaluate the discrepancy between the point and its prediction for each point. Each of
those errors are summed in a value called cross-validation score. The correct αp is the
one that minimizes the CV score.

In practice removing one point at a time implies repeating the analysis as many times
as the number of points, so it is too computationally expensive. To make the problem
computationally manageable, we follow [143]. We split the data set in two halves A and
B. A Markov chain Monte Carlo (MCMC) parameter estimation analysis (for a given
roughness penalty) is carried out on A, finding the best-fit model. We define the best-fit
as the point of the parameter space subset sampled by the MCMC that maximise the
likelihood in that subset. Then the − log likelihood of B given the best-fit model for A,
CVB|A, is computed and stored. This is repeated by switching the roles of the two halves,
obtaining CVA|B. The sum CVA|B + CVB|A, gives the CV score for that penalty weight.
With this construction, the smoothing parameter that best describes the entire data set
is the one that minimises the CV score.

In this way, using different combinations of experiments in A and B, we can not
only check if our reconstruction is right, but also if some experiments lead to a PPS
which is inconsistent with the others. Let’s say we got two compatible experiments 1, 2
and a third experiment 3 affected by some previously unknown systematics or physical
effects. We could arrange the experiments in the two cross-validation sets in various
configurations. What we would see is that every set of parameter fitted on 3 would fail
in predict the data in 1 and 2. Cross-validation score would be much bigger, giving a
warning that there is some newly introduced tension between the data. From there we
can draw our conclusion on the fact that the experiment 3 analysis is missing something.
Of course, simplistic examples aside, it won’t be possible to spot the "right" and the
"wrong" data, as it is entirely possible that 1 and 2 are biased instead.

The cross validation data sets are described below (see Table 3.1).
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In general, MCMC is not the best tool to find the multi-dimensional maximum
likelihood location and using MCMC to estimate the maximum likelihood introduces an
error in the procedure. A better technique would be a likelihood maximisation routine
which we have found to be very fragile in this application. However, in similar contexts
the MCMC approximation to the maximum likelihood has been used before, and in
those cases the error introduced was not large enough to invalidate the results. Here we
quantify this error (by comparing results from independent MCMCs) to be ∆ lnL ≲ 1,
which propagates into a CV score error ≲ 2. This is not large enough to invalidate our
findings.

We choose to use 5 knots equally spaced in log k between k = 1 × 105 Mpc−1

and k = 1 Mpc−1, i.e., (k1, k2, k3, k4, k5) = (1 × 10−5 Mpc−1, 1.78 × 10−4 Mpc−1,

3.16 × 10−3 Mpc−1, 5.62 × 10−2 Mpc−1, 1 Mpc−1) (see Figure 3.3 bottom panel for knots
placement visualisation). The number and position of the knots is fixed throughout the
analysis. As discussed in reference [144], beyond a minimum number of knots, there is a
trade-off between the number of knots and the penalty, and the form of the reconstructed
function does not depend significantly on the number of knots beyond this minimum
number. As the main goal of this work is to explore, in a minimally parametric way,
smooth deviations from a power law, a few (> 3) knots are sufficient.

The basic cosmological parameters, ωb = Ωbh
2, ωc = Ωch

2, h, and τreio — physical
baryonic matter density parameter, physical cold dark matter parameter, dimensionless
Hubble parameter and optical depth to last scattering surface — are varied in the MCMC
alongside the values fi of the reconstruction at the knots. A flat geometry is assumed so
that Ωm +ΩΛ = 1.

The prediction for cosmological observables, the calculation of the likelihood and
the MCMC parameter inference are implemented using the standard Boltzmann code
CLASS [168] and its MCMC sampler code, Monte Python (MP) [169], suitably modified
to use a given spline as primordial power spectrum and to factor the penalty in the
likelihood evaluation.23

As we will discuss in greater detail in Section 3.1.2, even though we reconstruct the
primordial power spectrum, we are sensitive to late-time cosmological effects. Indeed, one
of our main focus is on massive neutrinos: the presence of neutrinos with non-negligible

2http://class-code.net
3http://baudren.github.io/montepython.html

http://class-code.net
http://baudren.github.io/montepython.html
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mass would distort our reconstruction in a way that is predictable due to the linearity of
the growth functions [23].

Of course neutrino masses do not actually affect the physical PPS. But assuming
standard gravity, standard growth of structure, and massless neutrinos in the analysis,
would yield a reconstructed PPS with an artificial distortion, if neutrino masses were
not negligible. In fact a detectable signature of massive neutrinos in the real data would
appear as a power suppression in the reconstructed PPS. Of course a detection of such a
feature cannot be univocally interpreted as signature of neutrino masses; other particles
beyond the standard model could easily share the same properties of neutrinos when it
comes to damping perturbations or it could be a real feature in the PPS.

Working in logarithmic space

As we already discussed, the signal we try to recover is expected to be a small deviation
form a power-law. A power-law as in eq. (1.83) can be linearised by taking the logarithm
of both sides

log∆2(k) = logAs + (ns − 1)[log(k) − log(k0)]. (3.2)

Small deviations on the power-law translate into small deviation on this linearised
expression.

The advantage is that splines approximate way better the linearised expression than
the original one. It is really evident checking both Figure 3.1 where a spline is used to
approximate a power-law and Figure 3.2 where a little bump is added to a power-law.
Moreover, the same procedure has already been applied in literature, e.g. [143].

Datasets

We use a comprehensive set of CMB power spectra measurement by Planck and WMAP,
and large scale structure power spectra measurement, derived either from weak lensing
measurement performed by Planck and the Canada-France-Hawaii Lensing Survey, or
from galaxy maps, as it is the case for WiggleZ and Sloan Digital Sky Survey. Basically,
we consider in our work all current-generation experiments that probe a range of scales big
enough to give information on the actual shape of the PPS rather than its normalization
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Figure 3.1.: Splines interpolating mock knots placed alongside a power-law signal. On the
left the spline is a function of k taken in linear space, on the right in logarithmic
space. Notice the difference in the scale.

Figure 3.2.: Splines interpolating mock knots placed alongside a power-law signal with a
bump in it. On the left the spline is working in linear space, on the right in
Logarithm space. Notice the difference in the scale.
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on a small range of frequencies. In greater detail the datasets we use and the surveys
providing them are:

• Planck power spectra of temperature and polarisation of the CMB. The Planck
collaboration released in 2013 the temperature data from the first half of the
mission [170]. We complement the Planck 2013 data with the WMAP polarisation.
We refer to this as CMB13. In 2015 the results of the full analysis has been
released [171]. Temperature and E-mode polarisation power spectra (and their
cross-correlation) data and likelihoods come in two sets: a low ℓ from ℓ = 2 to
ℓ = 29, and the high ℓ angular power spectrum, that provides data up to ℓ = 2508
for TT and up to ℓ = 1996 for TE and EE. We use all these temperature and
polarisation data and we refer to them as CMB15.

• Beside the CMB power spectrum, Planck reconstructed the CMB lensing potential
[172], which contains information on the amplitude of large scale structure integrated
from recombination to present time. Such data are inferred from the study of the
four point function of temperature anisotropies (in the 2015 data release, both
temperature and polarization are included). We will refer to it as PlanckLens.

• The Canada-France-Hawaii Lensing Survey (CFHTLenS) [173] combined weak
lensing data processing with THELI [174], shear measurement with lensfit [175], and
photometric redshift measurement with PSF-matched photometry [176] to provide
the two point correlation function of the tomographic weak lensing signal, which we
use in our analysis. A full systematic error analysis of the shear measurements in
combination with the photometric redshifts is presented in [177], with additional
error analyses of the photometric redshift measurements presented in [178].

• The WiggleZ Dark Energy Survey (WiggleZ) has been a large scale galaxy survey
carried out at the Anglo-Australian Telescope in Siding Spring Observatory, New
South Wales. Measuring the position and redshift of 238,000 galaxies, it mapped a
volume of one cubic Gigaparsec over seven regions of the sky up to a redshift z ≲ 1.
The data has been used to calculate the galaxy power spectrum in 4 redshift bins
equally spaced between 0.1 < z < 0.9 [18], that we employ in our analysis.

• The Sloan Digital Sky Survey used its 2.5 m telescope based in Apache Point
Observatory, New Mexico, to collect 929,555 galaxy spectra. In data release 7, the
collaboration used a sample of luminous red galaxies to reconstruct the halo density
field and its power spectrum roughly between k = 0.02h/Mpc and k = 0.2h/Mpc [17].
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Figure 3.3.: Comoving scales covered by the experiments used in our analysis. The vertical
dashed line show the limit of the quasi-linear scales. The triangles show the
position of the knots. The leftmost one is not visible in the plot.

In Figure 3.3 we show the scales probed by each experiment along with the location
of the knots.

Runs set-up

We now describe the cross validation set up. In order to constrain both the shape of
the PPS and the cosmological parameters, we have to consider CMB primary data in
all CV runs. Because of time constraints CMB13 is used in the set up CV runs but
CMB15 is used in the final run. This choice is conservative, favouring slightly more
freedom (lower penalty) to the reconstructed PPS, and its validity will be discussed
at the end of this paragraph. Besides these two datasets, we consider 4 other surveys,
2 measuring weak lensing and 2 using galaxy catalogues. We perform 3 CV runs in
a pyramidal scheme as summarised in Table 3.1. We start performing in parallel two
different cross-validation analysis on two pairs of experiments where each pair is formed
by a weak lensing experiment and by a galaxy catalogue. The dependence of the CV
score on αp was mapped by sampling several αp values. The results of these preliminary
runs show no unexpected behaviour or tension, i.e., the reconstructed PPS shows no
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Run A B

1.1 CMB13, PlanckLens CMB13, SDSS DR7
1.2 CMB13, CFHTLenS CMB13, WiggleZ
2 CMB13, PlanckLens, SDSS DR7 CMB13, CFHTLenS, WiggleZ

Rec. CMB15, PlanckLens, SDSS DR7, CFHTLenS, WiggleZ

Table 3.1.: Cross-validation datasets A and B for the various runs. The reconstruction (Rec.)
involve all the experiments together.

significant deviation from a power-law, and the shape of the CV score is the same for
both run 1.1 and run 1.2. Knowing this, we then combine the large scale structure data to
have one weak lensing and one galaxy survey in each CV set. The best roughness penalty
found from this CV is used in the final run which includes all experiments (this is called
“Rec.” run in the Table 3.1). The penalty parameter value to use in the reconstruction
is determined by the CV score of run 2 alone: its dependence on αp is illustrated in
Figure 3.4. The fact that the shapes of the three CV scores — from run 1.1, 1.2, and 2 —
shown in Figure 3.4 are very similar, indicate robustness and that there are no significant
tensions between the datasets. To check the consistency of using CMB15 in the final run
despite having tuned the cross validation with CMB13, we coarsely re-sampled only the
run 2 CV curve using CMB15. The difference induced on the CV scores by this change
is consistent with the intrinsic noise of the MCMC sampling discussed in Section 3.1.1.

The CV score has a fairly well defined “wall” for high penalties , but is quite constant
under a certain threshold at αp ∼ 10. For high αp the penalty starts being the dominant
contribution to the likelihood, so the sharp increase in the limit of high αp is expected.
On the other hand, if small values of the penalty were to lead to overfitting, the CV
score should increase as αp decreases. This is not what we see and can be understood as
follows. CMB angular power spectra are always included in the analysis and in this limit,
it is the statistical power of these data (not the penalty) that drives the smoothness
of the reconstruction and therefore the CV score. In other words, for low values of the
penalty below αp ∼ 10, all datasets are well consistent with the Planck-inferred PPS
reconstruction: the CMB data alone disfavour unnecessarily wiggly shapes, even when
there is a low penalty.

Since there is not a well defined minimum for the CV score, we opt for presenting
two different cases. One is more conservative, in the sense that it has a stronger penalty
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Figure 3.4.: CV score as a function of αp for the different cross-validation runs. A different
arbitrary offset has been subtracted from each CV score. The noise in the CV
score curves, approximately ∆CV score ∼ 2 for run 2 and ∼ 1 for run 1, is due
to the fact that MCMC are used to find the best-fit point. The sharp increase in
CV score for αp > 10 is much larger than this error and is therefore considered
physical.

that allows only small deviations from the concordance power-law model. For this one
we choose αp = 1.

The other leaves more freedom to the data, as we choose a more relaxed penalty
αp = 0.01. A reconstruction with αp ≪ 0.01 is pretty much uninformative. In fact recall
that the free parameters in our MCMC runs are the physical baryon density ωb, the
physical cold dark matter density ωcdm, the rescaled Hubble parameter h, the optical
depth to reionization τreio, and the value of the five knots of the spline that we used to
parametrize the shape of the PPS. At such low penalty values the reconstruction transfers
in part the features of the radiation transfer function and the effect of the optical depth
to reionization into the PPS opening up degeneracies in parameter space.

3.1.2. Reconstruction sensitivity to non-primordial effects

Figure 3.5A.1–3.5R.2 visualises the concept — exploited here — that in the reconstructed
primordial power spectrum the effect of a non-zero neutrino mass is degenerate with
a power suppression. This is a good approximation especially on scales where the
evolution is linear or mildly non-linear, i.e., k < 0.2 h Mpc−1. To study quantitatively
this degeneracy we shall consider two toy models. First let us assume a ΛCDM universe
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∑
mν maximum damping maximum error

0.06 eV 3% 0.5%
0.1 eV 5% 0.8%
0.4 eV 20% 4%

Table 3.2.: Damping in the matter power spectrum induced by massive neutrino compared
with the maximum error in the reconstruction.

with massive neutrinos, where all the cosmological parameters are known and with a
power law PPS at the end of inflation (Figure 3.5A.1). From these initial conditions
we evolve the perturbations assuming massive neutrino (different values for the total
mass are shown). On small physical scales neutrino free streaming [111] suppresses power
(Figure 3.5A.2) yielding a resulting power spectrum shown in Figure 3.5R.1. Now we
can think of an alternative scenario that implement the neutrino power suppression
(Figure 3.5B.1) directly on the initial PPS as a deviation from a power law as shown in
Figure 3.5B.2. This initial power spectrum is then evolved assuming massless neutrinos.
The linearity of the perturbation evolution equations guarantees that the generated
matter and CMB power spectra would be the same as in the first case (Figure 3.5R.1).
In Figure 3.5R.2 we can appreciate the fact that discrepancies in the prediction made in
the two cases come from non-linearities.

To be sure that our reconstruction is accurate enough to be sensitive to the damp
we have tried to recover a known signal. We multiplied the damping ratio generated
with CLASS to a power-law signal as in Figure 3.5B.2. Then we tried to use a spline
to reconstruct it and we checked the difference. As it came out we have errors much
smaller than the effect of the damping. Figure Figure 3.6 shows the ratio of the spline
reconstruction to the signal for various neutrino masses. By comparing it with figure
Figure 3.5A.2 we can obtain the data shown in Table 3.2. As shown the error of the
reconstruction is always less than one fifth of the signal. After this preliminary test, we
are thus confident that we are able to retrieve a neutrino damping signal, if present in
the data and if the value of the mass is high enough. In fact here we have quantified
only the error due to the use of the spline, and not the errors due to the fit procedure.
Those will be know once the likelihood distribution is known. A discussion about errors
is carried when the results are shown in the Figure 3.1.3.

Another source of error that might contribute is given by the use of spline with a
limited number of knots. If the number of knots, or their position, is not suitably chosen,
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Figure 3.6.: Ratio of the spline reconstruction to the signal for various neutrino masses.

one could be unable to reconstruct a given signal. This is not our case, with our choice
of knots we have verified that we can reconstruct any neutrino power suppression with a
10−3 accuracy.

Interest in massive neutrinos The vanilla ΛCDM model assumes zero mass neutri-
nos. As we already pointed out it is fairly in good agreement with current data, but
since considering massive neutrinos is one of the more straightforward possible extension
of the ΛCDM model, cosmologists have always been interested in it. With oscillation
experiments results confirming that at least two neutrino states are massive, extending
the ΛCDM model was no more a speculation and became necessary. Even though flavour
oscillation experiments are really helpful in providing a lower bound on the mass sum,
they are clueless about determining the absolute mass scale, and the stringent upper
limit come from beta decay experiments. Quantitatively, relying on particle physics
experiments alone, one gets the constraints [111]

0.056 eV ≤
∑

mν ≤ 6 eV (95% C.L.). (3.3)

Luckily, cosmological observations allows to put a stricter upper bound, improving
the beta decay one by at least one order of magnitude. Such a constraint do not come
without caveats: there is an ongoing debate in the cosmological community on how to
interpret some tensions between measurements coming from different datasets. The topic
is of particular importance because it has been linked to a more general tension between
CMB and local measurements of H0 and σ8. The Hubble parameter has been measured
extrapolating up to today the best fit of the Planck CMB power spectra [2,158] and with
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Hubble telescope redshift measurements [16]. The two estimates differs by 2.5σ. On the
other hand, if inferring it from CMB data give the value σ8 = 0.8233 ± 0.0097 [158], local
measurement fluctuate around the value σ8 = 0.77 ± 0.02 [179].

Many recent studies claimed that some expansions in the neutrino sector of the ΛCDM
model could help solve the problem. Changes in the number of families, addiction of
sterile neutrinos, different sums of the masses and numbers of relativistic species have
been all considered as possible solutions of the tension on H0 [152] and σ8 [153–157].
Other works rejects those conclusions, favouring model with no sterile neutrinos and
lower masses [158–165].

What we are going to do then is to set CLASS so that in the Monte Carlo Markov
Chains neutrino masses are set to 0. If there were detectable massive neutrinos in the
real data, we would recover the damp feature in the primordial power spectrum, just as
we explained before.

3.1.3. Minimally parametric reconstruction

Here we present the results with the Planck 2015 likelihood and all the large scale structure
power spectrum data (Planck Lensing 2015, WiggleZ, CFHTLenS, and SDSS DR7), with
the two different roughness penalties (αp = 1 and αp = 0.01) justified above.

As discussed in refs. [158, 180–183] there is a tension between the inferred matter
power spectrum amplitude from CMB and from CFHTLenS, which may arise from
possible systematic errors in the photometric redshifts of CFHTLenS. For this reason we
present results first without and then with CFHTLenS.

Reconstruction omitting CFHTLenS

In Figure 3.7a and Figure 3.7b we show the reconstructed PPS for αp = 1 and αp = 0.01
respectively. The colour-bars on the upper side show the scales probed by each experiment
as in Figure 3.3, green for PlanckLens, red for WiggleZ, gold for SDSS DR7. CMB15
covers the whole plot. The best-fit reconstruction is shown in white and errors are shown
by plotting in dark blue (light blue) a random sample of 400 reconstructions chosen
among the 68.27% most likely points (points in the range 68.27% - 95.45%) in the MCMC.
The 95.5% confidence regions appear to almost coincide with the 68.3%: this is because
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Figure 3.7.: Reconstructed PPS. The best-fit reconstruction is shown in white. Errors are
shown by plotting in dark blue (light blue) 400 spline picked at random among
the 68.27% most likely points (points in the range 68.27% - 95.45%) in the
MCMC. The red (pale red) region shows the 68% (95%) confidence intervals for
Planck 2015 TT, TE, EE + Low P. The colour-bars on the upper side show the
scales probed by each experiment as in Figure 3.3, green for PlanckLens, red for
WiggleZ, gold for SDSS DR7. CMB15 covers the whole plot.

the reconstructed spectra are simply more wiggly, while a larger deviation of the overall
amplitude is disfavoured.

In the figure the red and pale red regions show the 68 and 95% confidence intervals
for the standard power law ΛCDM Planck 2015 TT, TE, EE + Low P analysis [2].

Note that for the more conservative choice of the penalty, errors of the reconstructed
PPS are comparable with errors from Planck parametric fit at all scales. For the less
conservative penalty this is also true on scales corresponding to ℓ > 30. This did not
happen with the previous generation of cosmological data (see [145]) where the PPS
reconstructed with the same approach was significantly less constrained than with a
power law fit.

The main difference between the “stiff” reconstruction, with αp = 1, and the more
flexible reconstruction, with αp = 0.01, is at low k (low ℓ) where the cosmic variance error
is large. Even if there was a feature at low ℓ, it is not significative enough to clearly ask
for a low αp. Even with a low penalty the reconstructed power spectrum does not show
features or deviations from a power law at high k, which is where we would expect to see
something if this analysis were to confirm some of the claims in the literature [152–157].
Instead the additional freedom in the PPS allowed by the lower penalty αp = 0.01 is
used on scales corresponding to low CMB multipoles ℓ < 30. As discussed, these scales
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Figure 3.8.: Reconstructed PPSs spectral index. The white line corresponds to the best-
fit reconstruction. Errors are shown by plotting in dark blue (light blue) 400
reconstructions randomly selected from the 68.27% most likely points (points in
the range 68.27% - 95.45%) in the MCMC. The red (pale red) region shows 68%
(95%) confidence intervals for the power law Planck 2015 TT, TE, EE + Low P
fit. The colour-bars on the upper side show the scales probed by each experiment
as in Figure 3.3, green for PlanckLens red for WiggleZ, gold for SDSS DR7.
CMB15 covers the whole plot. In the right figure, the grey line is n(k) ≡ 1, i.e.,
scale invariance.

are dominated by cosmic variance and are known to be lower than the standard ΛCDM
prediction e.g., [170,182–185] and refs therein.

In Figure 3.8a and Figure 3.8b we also show the reconstructed n(k) ≡ d lnP (k)/d ln k
(αp = 1 and αp = 0.01) for ease of comparison with the standard power law results.4

We find no evidence that any scale dependence of the power spectrum spectral slope is
necessary, which is in agreement with previous analyses. However with this new data
set we find that n = 1 is highly disfavoured by the data, in particular for αp = 1 the
significance of the departure from scale invariance is comparable with that obtained
when adopting the “inflation–motivated” power-law prior. Even for the more flexible
reconstruction, not even one point of the more than 4 × 105 MCMC points falls near
scale invariance.

The results shown in Figure 3.7 and Figure 3.8 offer a powerful confirmation of
the inflationary paradigm, justify the adoption of the inflationary prior in cosmological
analyses.

Finally in Figure 3.9a and Figure 3.9b we show the ratio of the reconstructed PPS to
the best-fit Planck 2015 (temperature, polarisation, and lensing) power law model.

4Recall that the quantity that was actually reconstructed using cross-validation to find the optimal
penalty is in reality the power spectrum.
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Figure 3.9.: Reconstructed PPS divided by the Planck 2015 TT, TE, EE + LowP + Lensing
power-law PPS best-fit using the same conventions as Figure 3.7 for the legend and
the reconstructed P (k). The red lines show the small-scales power suppression
effect due to massive neutrinos. The upper line is the Σmν = 0 eV theoretical
prediction based on the conditional best-fit to Planck 2015 TT, TE, EE +
Low P + Lensing + BAO + JLA + H0 data, the lower line is the same with
Σmν = 0.2 eV.

The reconstruction is fully compatible with the parametric fit. The figure also shows
the expected effect of small scale power suppression due to massive neutrino free-streaming
for two representative values of neutrino masses Σmν = 0 eV and 0.2 eV. The two models
are the conditional (i.e., keeping Σmν fixed at the required value) best-fit to the data
(Planck 2015 TT, TE, EE + Low P + Lensing + BAO + JLA + H0 data). Clearly
models with Σmν > 0.2 eV are highly disfavoured by the data even with this minimally
parametric reconstruction: not a single step of a 4 × 105 size MCMC goes near the
Σmν = 0.2 eV line. This of course does not exclude the — admittedly contrived — case
with a arbitrarily large neutrino mass inducing a small scale power suppression which
is cancelled by a compensating boost of the PPS on the same scales. Occam’s razor
disfavours this scenario.

Reconstruction with CFHTLenS

The reconstructed P (k), n(k) and P (k) relative to the power law best-fit are shown in
Figure 3.10, 3.11, and 3.12 using the same conventions as in Figure 3.7, 3.8, and 3.9.

Comparison with the results of Section 3.1.3 (in Figure 3.7, 3.8, 3.9) shows that
qualitatively the reconstructions are very similar, there is no strong evidence for deviations
from the power law behaviour and scale invariance is still excluded. However quantitatively
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Figure 3.10.: Reconstructed PPS. Refer to Figure 3.7 for explanation and colour code. In
addition, the purple line shows the scales covered by CFHTLenS.
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Figure 3.11.: Reconstructed PPSs spectral index. Refer to Figure 3.8 for explanation and
colour code. In addition, the purple line shows the scales covered by CFHTLenS.
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Figure 3.12.: Reconstructed PPS relative to Planck 2015 TT, TE, EE + LowP + Lensing
power-law PPS best-fit. Refer to Figure 3.9 for explanation and colour code.
In addition, the purple line shows the scales covered by CFHTLenS.
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Omitting CFHTLenS − ln Lmin = 6727.02
Param best-fit mean ±σ 95% lower 95% upper
100 ωb 2.226 2.229+0.015

−0.015 2.199 2.258
ωcdm 0.1194 0.1191+0.0011

−0.0011 0.1168 0.1214
h 0.6795 0.6815+0.0052

−0.0053 0.6712 0.6919
τ 0.0542 0.05982+0.0092

−0.013 0.04001 0.07955
10+9K1 2.788 2.736+0.11

−0.12 2.507 2.965
10+9K2 2.546 2.534+0.07

−0.07 2.395 2.673
10+9K3 2.307 2.32+0.043

−0.049 2.231 2.412
10+9K4 2.072 2.108+0.036

−0.053 2.028 2.194
10+9K5 1.872 1.9+0.047

−0.059 1.802 2.006
With CFHTLenS − ln Lmin = 6777.64

Param best-fit mean ±σ 95% lower 95% upper
100 ωb 2.244 2.236+0.015

−0.014 2.207 2.264
ωcdm 0.1182 0.1182+0.0011

−0.001 0.1161 0.1204
h 0.6867 0.6854+0.0048

−0.0051 0.6757 0.6953
τ 0.05239 0.05852+0.0087

−0.013 0.04001 0.07795
10+9K1 2.721 2.697+0.12

−0.12 2.463 2.931
10+9K2 2.512 2.504+0.069

−0.071 2.363 2.645
10+9K3 2.281 2.3+0.041

−0.048 2.213 2.389
10+9K4 2.065 2.098+0.035

−0.051 2.021 2.182
10+9K5 1.869 1.9+0.045

−0.058 1.802 2.003

Table 3.3.: Best-fit, mean and confidence intervals for the MCMC parameters in the recon-
struction with αp = 1

some differences may be appreciated. Adding the CFHTLenS datasets has the effect of
lowering the overall PPS normalisation (clearly visible by comparison with Figure 3.7).

The ratio with Planck power law best-fit in Figure 3.12 highlights how, independently
from our choice of datasets, high neutrino masses are disfavoured. Quantitatively the
Σmν > 0.2 eV bound is excluded at more than 95% confidence if we assume a power law
PPS, as discussed in Section 3.1.3.

For completeness we also report the recovered values and errors for all the model
parameters in Table 3.3 and Table 3.4 for the two penalties αp = 1 and αp = 0.01
respectively.
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Omitting CFHTLenS − ln Lmin = 6726.32
Param best-fit mean ±σ 95% lower 95% upper
100 ωb 2.239 2.226+0.016

−0.016 2.194 2.259
ωcdm 0.1173 0.1193+0.0013

−0.0012 0.1168 0.1218
h 0.6898 0.6806+0.0055

−0.006 0.6694 0.6922
τ 0.07136 0.05974+0.0088

−0.014 0.04 0.08061
10+9K1 1.968 2.351+0.67

−0.69 1.014 3.711
10+9K2 2.159 2.351+0.29

−0.3 1.769 2.934
10+9K3 2.272 2.31+0.059

−0.062 2.191 2.431
10+9K4 2.148 2.106+0.036

−0.056 2.024 2.198
10+9K5 1.933 1.923+0.073

−0.078 1.773 2.074
With CFHTLenS − ln Lmin = 6776.95

Param best-fit mean ±σ 95% lower 95% upper
100 ωb 2.235 2.234+0.015

−0.016 2.203 2.266
ωcdm 0.1179 0.1182+0.0012

−0.0011 0.116 0.1205
h 0.686 0.6853+0.0052

−0.0054 0.6749 0.6958
τ 0.06203 0.05911+0.0085

−0.014 0.04 0.07976
10+9K1 2.241 2.42+0.67

−0.69 1.09 3.784
10+9K2 2.294 2.373+0.28

−0.31 1.787 2.962
10+9K3 2.28 2.292+0.056

−0.063 2.176 2.414
10+9K4 2.106 2.1+0.035

−0.055 2.019 2.189
10+9K5 1.899 1.919+0.071

−0.08 1.772 2.071

Table 3.4.: Best-fit, mean and confidence intervals for the MCMC parameters in the recon-
struction with αp = 0.01

The degeneracies among the parameters for the PPS value at the knots can be
appreciated in the triangle plots of Figure 3.13a for αp = 1 and Figure 3.13b for
αp = 0.01. Correlations with and among the cosmological parameters not shown are
negligible. As expected, higher penalty induce correlations among the knots which are
stronger between neighbouring ones.

Interestingly the only cosmological parameter that correlates with the knots is τreio,
which show degeneracy with the knots at higher k (Figure 3.13c and 3.13d). This
behaviour is however not unexpected. The τreio parameter only affects the CMB and in
particular its main effect is to suppress the temperature power spectrum at multipoles
ℓ ≳ 80. With our choice for the location of the knots, the most affected knots are
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Figure 3.13.: Triangular plots for the run with all the datasets combined. We refer to the
value of the spline function evaluated at the i-th knot as Ki.
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therefore K4 and K5. Improved polarisation data at low ℓ should reduce this degeneracy.
The figure excluding the CFHTLenS dataset is qualitatively very similar and thus is not
shown here.

3.1.4. Implication for cosmological models

The analysis of the latest cosmological data [2] indicates a highly significant deviation
from scale invariance of the primordial power spectrum (PPS) when parameterized
by a power law or by a spectral index and a “running”. This offers a powerful tool
to discriminate among theories for the origin of perturbations and among inflationary
models. In fact, the deviation from scale invariance of the PPS is a critical prediction of
inflation and is the only signature that is generic to all inflationary models. It is therefore
a vital test of the inflationary paradigm.

One may wonder if a strong theoretical prior on the form of the power spectrum, such
as the power law prescription, can lead to artificially tight constraints or even a spurious
detection of a deviation from scale invariance, if the adopted model were not a good fit
to the data.

Here we have built on the work of [143,144] to reconstruct the PPS with a minimally
parametric approach, using the cross-validation technique as the smoothness criterion.
We consider a comprehensive set of state-of-the art cosmological data including probes of
the Cosmic Microwave Background, and of large scale structure via gravitational lensing
and galaxy redshift surveys. While the spline reconstruction used here is best suited for
smooth features in the PPS, it is also sensitive to sharp features if they have high enough
signal-to-noise.

We find that there is no evidence for deviations from a power law PPS, and that
errors of the reconstructed PPS are comparable with errors obtained with a power law
fit. These results should be compared with those presented in [145], to appreciate the
increase in statistical power brought about by the latest generation of experiments.
In fact with current data a scale-invariant power spectrum is highly disfavoured even
with this minimally parametric reconstruction. In particular for our conservative choice
of smoothness penalty parameter values the significance of the departure from scale
invariance is comparable with that obtained when adopting the “inflation-motivated”
power-law prior. Constraints no longer relax significantly when generic forms of the PPS
are allowed.
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Because of its flexibility, our reconstruction would be able to detect the tell-tale
signature of small scale power suppression induced by free streaming of neutrino if they
are sufficiently massive. Of course in reality the suppression happens in the late-time
power spectrum, not in the primordial one. But as we do not include the effect of neutrino
masses in the matter transfer function, the reconstruction would recover an “effective”
small scale damping. Our reconstruction detects no such signature, ruling out a model
with a power law PPS and sum of neutrino masses of 0.2 eV or larger.

Our results, which recover in a model independent way a power law power spectrum
with a small but highly significant red tilt, offer a powerful confirmation of the inflationary
paradigm, justifying adoption of the inflationary prior in cosmological analyses.
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3.2. Compensated isocurvature perturbations

The observation of the cosmic microwave background (CMB) strongly suggests that
the primordial density perturbations were adiabatic [2]. Departure from adiabatic
perturbations, such as additional isocurvature perturbations on top of the adiabatic ones,
change the CMB temperature angular power spectrum drastically, therefore they are
tightly constrained. However, the isocurvature perturbations of the single species can be
combined in such a way that they leave no imprint on the linear CMB power spectrum.
In this case they are called compensated isocurvature perturbations (CIPs) [8]. This kind
of configuration could possibly be related to the curvaton model [186] or to spontaneous
baryogenesis [187]. At the level of linear CMB anisotropies there is an exact degeneracy
between baryon isocurvature perturbations and CDM ones [8]. The linearised continuity
equations for the baryons and the photons differ only because the baryon sector has
additional terms proportional to the sound velocity squared c2

s. During the recombination
period, we approximately have c2

s ≈ ρ̄γ/ρ̄b ≈ (Tγ/mp) ≈ 10−9 with Tγ and mp being
the temperature of photon at recombination and the proton mass, respectively [188].
Therefore, the fluctuations of each sector follow the exact same equations before the
sound horizon entry, and hence we cannot make a clear distinction between these two
isocurvature modes. For the temperature angular power spectrum, the relative Jeans scale
corresponds to the multipole ℓ∼ 106, where the anisotropies are exponentially suppressed
due to Silk damping, preventing a clear detection. Thus studying linear anisotropies, we
can only constrain the neutrino and the total matter isocurvature perturbations, but not
baryonic and CDM perturbations separately.

The current upper bounds on CIPs are given by looking at the secondary modulation of
the baryon (electron) distribution in the presence of CIPs at recombination [186,188–191].
The amplitude of the dimensionless CIP power spectrum ∆2

rms has been constrained with
the Planck data using different methodologies, such as looking for modifications of the
CMB angular power spectrum due to second order contributions, or through the analysis
of the CMB trispectrum. The most recent upper limit have been given, for example,
in [189], ∆2

rms < 5.0 × 10−3 (68% C.L.); in [191] ∆2
rms < 1.2 × 10−2 (95% C.L.); and [192]

∆2
rms < 1.1 × 10−2 (95% C.L.). As pointed out in Refs. [186, 190], further understanding

is expected from the data analysis of a cosmic variance limited (CVL) CMB-polarization
survey, such as CMB-S4 [193]. There are also studies about the effects of CIPs on the
baryon acoustic oscillation [194,195]. Another possibility is to see directly the spatial
electron distribution by observing the redshift of 21 cm line of the neutral hydrogen
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hyperfine structure [196]. While most studies so far only provided upper limit to the
existence of CIPs, the author in Ref. [191] has instead recently reported a 2σ detection
of the CIPs as the result of a full parameter estimation of Planck data, providing a hint
that a sizable amount of CIPs might exist. Therefore, it is interesting to pursue this trail
using future cosmological data, and to find novel probes of CIPs signatures.

In this section, we explore the possibility of observing the CIPs using CMB spectral
distortion anisotropies. The spectrum of the CMB has been measured with great precision
by COBE/FIRAS, and within experimental accuracy it perfectly follows a (direction
dependent) Planck distribution. However, it is actually non trivial that the deviation
from the isotropic blackbody spectrum can be described solely by the local temperature
parameter since the early universe is out of thermal equilibrium at redshifts z∼ O(103)
as discussed in Section 1.3. Since there was some energy transfer between photons and
electrons during this period, the CMB spectrum was no more at equilibrium. Such
an energy transfer can be characterized by Te/me with Te and me being the electron
temperature and electron mass. This correction is so tiny that it is usually ignored in the
standard cosmological perturbation theory, but it would be non negligible if a considerable
amount of CIP is present. Distribution functions for non equilibrium systems are highly
non trivial, but it is known that in the regime of inefficient Compton scattering the
photon distribution has a characteristic shape described by the y-distortion we defined
in eq. (1.44).

We consider the linear modulation of the y-distortions due to the electron density
fluctuations in the presence of CIPs. The vital point is that linear anisotropies of
the y-distortions can resolve the degeneracy between CDM and baryon isocurvature
perturbation, even though the signal is tiny because the energy transfer is suppressed
as we mentioned above. Here, we investigate the spectral distortion anisotropies by
employing a systematic formulation proposed in Refs. [197–199]. The idea of using
spectral distortions has been originally proposed in Ref. [200], but it was shown that the
quadratic spectral distortions from Silk damping are insensitive to the CIPs. Instead in
this article we consider the linear modulation of the Background spectral distortions.

The discussion is organized as follows. In Section 3.2.1 we derive the linear y-distortion
collision terms for the Compton scattering by using a set of frequency basis, obtain the
Boltzmann equation, and estimate the linear y anisotropies by using the Boltzmann
code CLASS [201]. Then, in Section 3.2.2 we show the y-distortions anisotropies cross
correlations with T and E, and we discuss the dependence with the CIPs parametrization
we employ. A Fisher matrix analysis about the possibility of constraining the CIPs
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with future surveys is given in Section 3.2.3, and finally we draw our conclusions in
Section 3.2.4.

3.2.1. Linear order spectral distortions anisotropies

In Section 1.5.1 we showed how at leading order it is possible to factor out the frequency
dependence from the photon Boltzmann equation, and transform it into eq. (1.101). The
same cannot trivially be done if we consider energy exchange between electrons and
photons. Therefore we develop a momenta expansion for the CMB energy spectrum.

Beyond the Thompson scattering limit

Let us go beyond the Thomson scattering limit, that is, we consider the collision processes
of the Compton scattering, which, contrary to the Thompson scattering limit, allow
energy transfer between photons and electrons. Though the Thomson collision effect
does not have the homogeneous part at the zeroth order, this is not the case if we include
the Compton scattering correction as explicitly shown below [202]:

(neσTa)−1C
(0)
CS [f ] =

Te

me

(
p2∂

2f (0)

∂p2 + 4p∂f
(0)

∂p

)
+ p(1 + z)

me

(
2f (0)p

∂f (0)

∂p
+ p

∂f (0)

∂p
+ 4f (0)2 + 4f (0)

)
.

(3.4)

As it evident, the frequency dependence cannot be factorized as we did in the Thompson
limit.

The linear order collision term for the Compton scattering is more complicated since
we need to expand the collision terms up to the cubic order in the electron velocity. The
statistical average of the electron momentum cube can be divided into a thermal part
that goes like Te/me × v and a bulk velocity part such as v3, which we drop for simplicity.
We can drop the second order terms such as v2 due to the Gaussian initial condition we
assume. This point will be discussed later. The expression was first derived in Ref. [31]
and rederived in Ref. [199], and has the form

(neσTa)−1C(1)
CS [f ]

= p(1 + z)
me

[
2p∂f

(0)

∂p
f (1)(p) + 4f (0)f (1)(p) + 2f (1)(p)
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where f (1) implies the linear fluctuations of the photon distribution function, which
cannot be expressed solely in terms of temperature perturbation as we will see below.
Obviously, frequency dependence for the linear Compton collision term cannot be treated
in a simple manner. This clearly shows that our local equilibrium ansatz eq. (1.93) is no
more applicable, and we only have the effective temperature perturbation

Θ(η,x,n) →Θ(η,x, pn) . (3.6)

In principle we have to solve an infinite number of equations for each (η,x,n). This
would be time consuming and requires tough numerical simulations. In the next section,
we solve this problem by employing a moment expansion, which was introduced in
Refs. [197–199].

CMB energy spectrum momenta expansion

Ref. [199] found out that the following three basis functions would be minimum to handle
the frequency dependence of the Te/me → 0 limit Boltzmann equation up to cubic order
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in the primordial fluctuations:

G ≡
(

−p ∂
∂p

)
f (0), (3.7)

Y ≡
(

−p ∂
∂p

)2

f (0) − 3G, (3.8)

K ≡
(

−p ∂
∂p

)3

f (0) − 3Y − 9G. (3.9)

The following relations for the basis functions will be useful throughout this section:

p2 ∂
2

∂p2f
(0) = Y + 4G,

p3 ∂
3

∂p3f
(0) = −K − 6Y − 20G.

(3.10)

On the other hand, Te/me corrections make the problem more complicated in principle,
but we newly found that adding the following frequency function is a minimal revision
for the present linear case:

U ≡ p2

T 2
ref

(
−p ∂

∂p

)
f (0). (3.11)

Using the above frequency basis, let us consider the following ansatz:

f = f (0) +ΘG + yY + κK + uU . (3.12)

We will justify this ansatz in the later calculations. As we already stated, the temperature
perturbation is comparable to the order of the primordial fluctuation that is denoted by
δ: Θ = O(δ). On the other hand, the other coefficients would be the first order in both
the energy transfer ε = O(Te/me) and δ: {y, κ, u} = O(δε).

The homogeneous component

Before going to the main discussion, we comment on the homogeneous part of the
Compton scattering. It is well known that eq. (3.4) can be recast into a simple form:

(neσTa)−1C(0)
CS [f ] = Te − Tγ

me
Y , (3.13)
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where we have defined the physical temperature of photons as Tγ ≡ Tref(1 + z). Note
that we used eq. (3.10) with the following relations:

f (0)(1 + f (0)) = Tref

p
G,(

−p ∂
∂p

)
f (0)(1 + f (0)) = Tref

p
(Y + 4G),(

−p ∂
∂p

)2

f (0)(1 + f (0)) = Tref

p
(K + 5Y + 16G).

(3.14)

eq. (3.13) implies that y has O(ε) contribution

y =
∫
dηneσTa

Te − Tγ

me
+ · · · . (3.15)

However, this term is not what we want. We consider the CIPs, which produce the linear
anisotropies of the spectral distortions, and hence we ignore this contribution.

The linear component

In addition to eq. (3.5), we include the electron number density fluctuation on the top
of homogeneous y-distortion in the previous subsection. This is done by replacing the
electron temperature and the number density as

Te →Te(1 +Θe), ne →ne(1 + δne), (3.16)

where δne is the ionized electron number density perturbation and Θe is the electron
temperature perturbation. We also solve the perturbed recombination for the evolution
of δne and Θe following the equations in Ref. [203].5 Note that the equations for δne and
Θe in Ref. [203] are valid only up to reionization and the precise calculation of δne and
Θe during reionization is beyond the scope of this calculation.6

Here, we comment on the initial conditions for the perturbed recombination. We set
δne = δb (δb: baryon density perturbation) and Θe = Θ0 since we consider the photon
baryon plasma to be in equilibrium state in the very early universe. Note that Θe = δb/3
is not necessarily established in the very early universe if we do not start with adiabatic
perturbations. For example, in the case of baryon isocurvature perturbations, δb depends

5 The perturbed recombination is discussed also in Refs. [204–207].
6 We have confirmed that the reionization effect on y-distortions is subdominant at least in our setup.
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on not only Θe but also the chemical potential, and the spatial fluctuation of the chemical
potential corresponds to the baryon isocurvature perturbations. Therefore Θe = δb/3 is
not established in the case of the baryon isocurvature perturbations.

From eq. (3.5) and the modification eq. (3.16), we obtain the following collision terms
for the Compton scattering:

(neσTa)−1C(1)
CS [f ] =

Te(Θe + δne)
me

(
p2∂

2f (0)

∂p2 + 4p∂f
(0)

∂p

)

+
p(1 + z)δne

me

(
2f (0)p

∂f (0)

∂p
+ p

∂f (0)

∂p
+ 4f (0)2 + 4f (0)

)

+ p(1 + z)
me

[
2p∂f

(0)

∂p
f (1)(p) + 4f (0)f (1)(p) + 2f (1)(p)

+4f (0)f
(1)
0 + p

∂f
(1)
0
∂p

+ 2f (1)
0 + 2f (0)p

∂f
(1)
0
∂p

+(v̂ · n)
⎛⎝24

5 if
(0)f

(1)
1 + 12

5 if
(1)
1 + 12i

5 f (0)p
∂f

(1)
1
∂p

+ 6i
5 p

∂f
(1)
1
∂p

⎞⎠
+(v · n)

(
−8f (0)2 − 8f (0) − 7

5p
2∂

2f (0)

∂p2 − 14
5 f

(0)p2∂
2f (0)

∂p2 − 31
5 p

∂f (0)

∂p
− 62

5 f
(0)p

∂f (0)

∂p

)

+P2

⎛⎝−2f (0)f
(1)
2 − f

(1)
2 − f (0)p

∂f
(1)
2
∂p

− 1
2p
∂f

(1)
2
∂p

⎞⎠
+P3

⎛⎝−3i
5 f

(1)
3 − 6i

5 f
(0)f

(1)
3 − 3i

5 f
(0)p

∂f
(1)
3
∂p

− 3i
10p

∂f
(1)
3
∂p

⎞⎠⎤⎦
+ Te

me

[
(v · n)

(
−7

5p
3∂

3f (0)

∂p3 − 47
5 p

2∂
2f (0)

∂p2 − 15
2 p

∂f (0)

∂p

)
+

(v̂ · n)
⎛⎝6i

5 p
2∂

2f
(1)
1

∂p2 + 24i
5 p

∂f
(1)
1
∂p

+ 6i
5 f

(1)
1

⎞⎠+ P2

⎛⎝−1
2p

2∂
2f

(1)
2

∂p2 − 2p∂f
(1)
2
∂p

+ 3f (1)
2

⎞⎠
+P3

⎛⎝− 3i
10p

2∂
2f

(1)
3

∂p2 − 6i
5 p

∂f
(1)
3
∂p

+ 6i
5 f

(1)
3

⎞⎠+ p2∂
2f

(1)
0

∂p2 + 4p∂f
(1)
0
∂p

⎤⎦ . (3.17)

The above expression is tedious but can be expanded in the four frequency basis
functions eq. (3.7) to (3.11). Since eq. (3.17) is already ordered in terms of the Legendre
polynomials, we easily obtain the multipole components of the Compton scattering for
the Boltzmann hierarchy equation:
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(neσTa)−1C(1)
CS 0[f ] =

[
Te

me
(δne +Θe) − Tγ

me
(δne +Θ0)

]
Y + Te − Tγ

me
Θ0K , (3.18)

(neσTa)−1C(1)
CS 1[f ] =

[
Tγ

me

(
− 1

15Θ1 − 14
45iv

)
+ Te

me

(
−2

5Θ1 + 7
15iv

)]
K

+
[
Tγ

me

(2
5Θ1 + 1

5iv
)

+ Te

me

(
−1

3iv
)]

Y

+
[
Tγ

me

(28
15Θ1 − 28

45iv
)

+ Te

me

(
−2

5Θ1 − 7
10iv

)]
G

+
[
Tγ

me

( 7
15Θ1 − 7

45iv
)]

U ,

(3.19)

(neσTa)−1C(1)
CS 2[f ] =

(
−2

5
Tγ

me
+ 1

10
Te

me

)
Θ2 K +

(
− 1

10
Tγ

me

)
Θ2 Y

+
(

6
5
Tγ

me
− 3

5
Te

me

)
Θ2 G +

(
3
10

Tγ

me

)
Θ2 U ,

(3.20)

(neσTa)−1C(1)
CS 3[f ] =

(
− 32

105
Tγ

me
− 3

70
Te

me

)
Θ3 K +

(
3
70

Tγ

me

)
Θ3 Y

+
(

146
105

Tγ

me
+ 6

35
Te

me

)
Θ3 G +

(
73
210

Tγ

me

)
Θ3 U ,

(3.21)

where C(1)
CS ℓ[f ] is zero for ℓ > 3 and we used eq. (3.10) and eq. (3.14) with the following

relations:
(

−p∂f
(0)

∂p

)2

= Tref

6p (K + 6Y + 20G − U) , (3.22)

p2 ∂
2

∂p2

(
−p ∂

∂p

)
f (0) = K + 4Y + 12G, (3.23)

p2 ∂
2

∂p2f
(0)(1 + f (0)) = Tref

p
(K + 6Y + 20G). (3.24)

On the other hand, the LHS of the Boltzmann equation is simpler. If one starts with
the new ansatz eq. (3.12), eq. (1.96) is modified to

df

dη
=
(
dΘ

dη
− d ln p

dη

)
G + dy

dη
Y + dκ

dη
K + du

dη
U + · · · , (3.25)

where dots imply the next-to-leading order corrections. Note that d ln p/dη = O(δ)
so that the time derivatives of the frequency basis become at least linear order in the
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primordial perturbations. As long as we consider Gaussian initial conditions, O(δ2)
can be dropped since these terms do not contribute to the cross correlations with the
linear perturbations in the following discussions. Though O(δ3) has potential to be
comparable to O(δϵ), we neglect these contributions for simplicity. Combining eq. (3.25)
with eq. (3.18) to (3.21), we find the 4 coefficient equations for each (η,x).

Boltzmann equation for the y-distortions

We write the Boltzmann hierarchy equations in Fourier space to solve the linear y
evolution. The Fourier integral of the real space linear y-distortions can be defined as

y(η,k,n) ≡
∫
d3xe−ik·xy(η,x,n). (3.26)

The Fourier space perturbations are linearly coming from the primordial perturbations.
The transfer functions y(I)

ℓ (η, k) can be then given as

y(η,k,n) =
∑

ℓ

(−i)ℓ(2ℓ+ 1)Pℓ(k̂ · n)
∑

I

y
(I)
ℓ (η, k)ξ(I)

k , (3.27)

where ξ(I) is the scalar random variables, i.e., ξ(I) = (ζ, Scγ, Sbγ, · · · ): ζ is the adiabatic
perturbation, and the isocurvature perturbations are defined as

Sαγ ≡ 1
1 + ωα

δρα

ρα

− 3
4
δργ

ργ

. (3.28)

Note that ωγ = ων = 1/3 and ωc = ωb = 0. We ignore the vector and the tensor
perturbations for simplicity, and the following relation is satisfied for CIPs:

Scγ = −Ωb

Ωc

Sbγ. (3.29)

The Liouville terms for the linear y-distortion can be given in the same form with the
temperature perturbations without metric perturbations. Then eq. (3.18) to eq. (3.21)
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yield

ẏ0 + ky1 = neσTa

[
Te

me
(δne +Θe) − Tγ

me
(δne +Θ0)

]
, (3.30)

ẏ1 + 2k
3 y2 − k

3y0 = −neσTay1 + neσTa

[
Tγ

me

(2
5Θ1 + 1

5iv
)

+ Te

me

(
−1

3iv
)]
, (3.31)

ẏ2 + 3k
5 y3 − 2k

5 y1 = − 9
10neσTay2 + neσTa

(
− 1

10
Tγ

me

)
Θ2, (3.32)

ẏ3 + 4k
7 y4 − 3k

7 y2 = −neσTay3 + neσTa

(
3
70

Tγ

me

)
Θ3. (3.33)

ℓ > 3 equations do not have collision effect and we simply obtain [23]

ẏℓ + ℓ+ 1
2ℓ+ 1kyℓ+1 − ℓ

2ℓ+ 1kyℓ−1 = −neσTayℓ (ℓ > 3). (3.34)

In the following we use the synchronous gauge when we perform numerical calculations.
Figure 3.14 shows the evolutions of |y0| and |y1|, which are calculated numerically using
CLASS. The rapid increases of values before z = 104 is due to the specification of an
initial time for integration. We have checked that the final results are not sensitive to
the choice of initial time as long as we start well before recombination. From the figures,
we can see that |y0| and |y1| grow only in the late epoch before recombination when
the discrepancy between Te and Tγ becomes manifest. This implies that the chemical
potential µ distortions are not generated in this way. After recombination, the sub-horizon
modes oscillate because the RHS of eq. (3.30) and eq. (3.31) is zero and so we have

ÿ0 − k2

3 y0 ≈ 0. (3.35)

Note that super-horizon evolution of the linear y-distortions does not violate causal-
ity. The super-horizon y-distortions only appear along the super-horizon primordial
fluctuations that already exist.

Line-of-sight formalism for the spectral distortion anisotropies

The remaining procedures to get the angular power spectra are exactly the same as for
the usual linear anisotropies. The angular power spectrum up to ℓ = 1000 requires us to
solve 1000 Boltzmann hierarchy equations, which is time consuming. Instead, we usually
use the integral solution and solve a very limited number of hierarchy equations to obtain
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Figure 3.14.: The redshift dependences of |y0| (left) and |y1| (right). Blue, green, yellow lines
show the case of adiabatic perturbations, CDM isocurvature perturbations, and
baryon isocurvature perturbations, respectively. In the solid (dotted) lines, we
take the wave number as k = 10−4 Mpc−1 (k = 10−2 Mpc−1). For example, blue
solid line shows the case of the adiabatic perturbation with k = 10−4 Mpc−1.

the source function for the integral solution [108]. The line-of-sight solution for the linear
y-distortion is

y(η0, k, λ) =
∫ η0

0
dη g

(
y0 − 1

2P2y2 + Sy

)
eikλ(η−η0), (3.36)

where the multipole coefficients for the source function are

Sy0 = Te

me
(δne +Θe) − Tγ

me
(δne +Θ0) , (3.37)

Sy1 = Tγ

me

(2
5Θ1 + 1

5iv
)

+ Te

me

(
−1

3iv
)
, (3.38)

Sy2 = − 1
10

Tγ

me
Θ2 , (3.39)

Sy3 = 3
70

Tγ

me
Θ3 . (3.40)

Note that the baryon isocurvature perturbation dependences of δne and Θe are different
from the CDM ones. This is essential to distinguish the baryon isocurvature perturbations
from the CDM ones, and therefore to observe the CIPs. This is specific to y-distortions;
Θ, κ and u do not have such a source and therefore we only focus on the y-distortion
linear anisotropies in this section. Note that the following form is more practical to use
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in CLASS:

yℓ(η0, k, λ) =
∫ η0

0
dη g

[
y0 + Sy0 + 3Sy1

(
∂

∂(kη0)

)

+
(

5Sy2 + 1
2y2

) 1
2

⎛⎝3
(

∂

∂(kη0)

)2

+ 1
⎞⎠

+7Sy3
1
2

⎛⎝5
(

∂

∂(kη0)

)3

+ 3
(

∂

∂(kη0)

)⎞⎠⎤⎦ jℓ[k(η0 − η)] . (3.41)

The anisotropies of X on the celestial sphere can be expanded in spherical harmonics as
follows:

X(η0,x = 0,n) =
∞∑

ℓ=0

ℓ∑
m=−ℓ

aX,ℓmYℓm(n), (3.42)

where Yℓm are the spherical harmonics and X = Θ, y and polarization E mode. The
harmonic coefficients are related to the primordial random fields as

aX,ℓm = 4π(−i)ℓ
∫ d3k

(2π)3Y
∗

ℓm(k̂)
∑

I

X
(I)
ℓ (η0, k)ξ(I)

k . (3.43)

The angular power spectrum is also defined as in the usual linear anisotropies case:

⟨aX,ℓma
∗
Z,ℓ

′
m

′⟩ = CXZ
ℓ δℓℓδmm

′ . (3.44)

Then, we find

CXZ
ℓ =

∑
II

′
4π
∫ dk

k
PII

′(k)X(I)
ℓ (η0, k)Z(I′)

ℓ (η0, k), (3.45)

where we defined the power spectra of the random variables as:

⟨ζkζk′⟩ = (2π)3δ(3)(k + k′)2π2

k3 Pζζ(k), (3.46)

⟨ζkSαγ,k′⟩ = (2π)3δ(3)(k + k′)2π2

k3 Pζα(k), (3.47)

⟨Sαγ,kSβγ,k′⟩ = (2π)3δ(3)(k + k′)2π2

k3 Pαβ(k). (3.48)
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Note that the baryon isocurvature power spectrum and the CDM isocurvature one are
not independent in the CIPs model: the relations

Pcc =
(
Ωb

Ωc

)2

Pbb, Pcζ = −Ωb

Ωc

Pbζ (3.49)

are always satisfied.

In this section, for simplicity, we assume that CIPs scales as the adiabatic perturbations.
Then CIPs can be parameterized by only two parameters, fbi and cos θ, which are defined
as

fbi ≡

√Pbb(k0)
Pζζ(k0)

, (3.50)

cos θ ≡ Pbζ(k0)√
Pbb(k0)Pζζ(k0)

, (3.51)

where k0(= 0.05 Mpc−1) is the pivot scale. While fbi measure the amplitude of CIPs
relative to the adiabatic perturbations, cos θ parametrize the degree of correlation between
the two kinds. As we will discuss at length, our analysis is sensitive not only to fbi,
like other methods developed in the literature, but also to cos θ. This would allow, in
principle, the possibility of discerning correlated and uncorrelated CIPs. Figure 3.15
shows CyT

ℓ , CyE
ℓ , and Cyy

ℓ in both cases of adiabatic perturbations and CIPs. From this
figure, we can see that CIPs affect CyT

ℓ , CyE
ℓ , and Cyy

ℓ and there is a possibility to detect
CIPs with the y-distortion anisotropies.

3.2.2. Detecting CIP using y-distortions anisotropies

In this section we will investigate how well future CMB survey will constrain CIP models,
exploiting the y-distortions anisotropies. To assess this we will produce Fisher forecasts
for a PIXIE-like experiment [208], a PRISM-like experiment [209], for LiteBIRD [210]
and for a Cosmic Variance Limited (CVL), very futuristic, experiment.

Before discussing the Fisher matrix analysis, we explain the fbi dependence of the
angular power spectra. For the CIPs, Θ(c)

ℓ Scγ +Θ
(b)
ℓ Sbγ ≈ 0 is satisfied so that angular
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Figure 3.15.: |CyT
ℓ |, |CyE

ℓ |, and |Cyy
ℓ | in the case of adiabatic perturbations and CIP with

cos θ = 1. Blue, orange, and green lines show |CyT
ℓ |, |CyE

ℓ |, and |Cyy
ℓ | and solid

and dotted lines show the case of fbi = 0 (corresponding to adiabatic) and
fbi = 1000 (corresponding to CIP), respectively. For example, the blue solid
line shows |CyT

ℓ | in the case of fbi = 0.

power-spactra do not have auto correlation of the CIPs in eq. (3.45) as follows:

CyT
ℓ ≈ 4π

∫ dk

k

(
Pζζ(k)y(ζ)

ℓ (η0, k)Θ(ζ)
ℓ (η0, k) + Pcζ(k)y(Sc)

ℓ (η0, k)Θ(ζ)
ℓ (η0, k)

+Pbζ(k)y(Sb)
ℓ (η0, k)Θ(ζ)

ℓ (η0, k)
)
, (3.52)

CyE
ℓ ≈ 4π

∫ dk

k

(
Pζζ(k)y(ζ)

ℓ (η0, k)E(ζ)
ℓ (η0, k) + Pcζ(k)y(Sc)

ℓ (η0, k)E(ζ)
ℓ (η0, k)

+Pbζ(k)y(Sb)
ℓ (η0, k)E(ζ)

ℓ (η0, k)
)
. (3.53)

Using the angular power spectra for the adiabatic perturbations Cℓ,ad and those for the
CIPs Cℓ,CIP at fbi cos θ = 1, the above expressions are simply written as

CyT
ℓ ≈ CyT

ℓ,ad + fbi cos θ CyT
ℓ,CIP, (3.54)

CyE
ℓ ≈ CyE

ℓ,ad + fbi cos θ CyE
ℓ,CIP. (3.55)

Thus, the angular power spectra linearly depend on the correlated CIPs. Figure 3.16
shows the fbi cos θ dependence of Cℓ − Cℓ,ad in ℓ = 2, ℓ = 300, and ℓ = 700. From
this figure, we can see that Cℓ − Cℓ,ad is indeed proportional to fbi cos θ. Since the
amplitudes of the CyT

ℓ,CIP and CyE
ℓ,CIP are proportional to the product of fbi and cos θ, our

analysis will not be independently sensitive to each of these parameters, but we can
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Figure 3.16.: fbi dependences of |CyT
ℓ − CyT

ℓ,ad| and |CyE
ℓ − CyE

ℓ,ad|. Blue and orange lines show
|CyT

ℓ − CyT
ℓ,ad| and |CyE

ℓ − CyE
ℓ,ad| and solid, dotted and dashed lines show the

case of ℓ = 2, ℓ = 300 and ℓ = 700, respectively. For example, the blue solid
line shows |CyT

ℓ − CyT
ℓ,ad| in the case of ℓ = 2. For comparison, we also plot

1 × 10−19fbi cos θ with a red line.

test f ′ ≡ fbi cos θ. On the other hand, Cyy
ℓ,CIP is quadratic in fbi but is dominated by

astrophysical contamination discussed below.

Fisher forecast

In the scope of our work, the Sunyaev-Zeldovich effect constitutes a foreground. Its
power spectrum adds an important contribution to the variance of the CIPs-generated
y-T and y-E cross correlation. We will show how masking resolved clusters [211, 212]
can greatly improve the constraining capabilities of all future surveys. Moreover, the
coupling of SZ effect with low redshifts sources of temperature (ISW) and polarization
anisotropies could in principle bias the measurements of y-TCIP y-ECIP, and therefore
needs to be properly accounted for [212]. Luckily, the spectral shapes of the signals
and of the spurious secondary sources are not much correlated. Therefore marginalizing
over them will not degrade the constraining power by much. As long as we consider the
Gaussian universe, other sources of y-distortions — such as reionization, Silk damping —
contribute negligibly to the total y-T and y-E cross correlations [212] therefore we will
not consider them here. In the case of primordial non-Gaussianity, it has been shown
that foregrounds can degrade the constraints obtained with naive Fisher forecast by a
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factor 5 ∼ 10 [213]. Given the similarity of our analysis with the search for primordial
non-Gaussianity, we might expect a similar effect. However, account properly for the
galactic foregrounds would be beyond the (path-finding) scope of this thesis. Therefore
we will neglect them completely in our analysis. For this reason our results will be one
order of magnitude too optimistic.

In this case, to calculate the Fisher information matrix defined in eq. (2.14), we can
use the eq. (2.25) that we report here for convenience

Fij = fsky
∑

ℓ

(Cov−1
ℓ )αβ

∂(Covℓ)βγ

∂pi

(Cov−1
ℓ )γδ

∂(Covℓ)δα

∂pj

, (3.56)

where fsky is the fraction of the sky covered by the survey, Covℓ is the covariance matrix
of the observables and repeated matrix indices (α, . . . , δ) are summed. We will first
discuss the results achieved considering only the cross correlation of y-distortions with
temperature anisotropies (the same applies also to polarization). The same approach will
be then extended to the joint analysis of the cross correlation with both temperature
and polarization anisotropies. The covariance matrix of (aT

ℓm, a
y
ℓm) reads

Covℓ = 1
2ℓ+ 1

⎛⎜⎝ CT T
ℓ CyT

ℓ + CSZT
ℓ

CyT
ℓ + CSZT

ℓ Cyy
ℓ + CSZSZ

ℓ + Cyy,N
ℓ

⎞⎟⎠ , (3.57)

where we have explicitly separated the primordial component of the y-distortions from
the signal coming from the SZ effect. We have also considered its instrumental noise
contribution Cyy,N

ℓ .

In principle all the six standard cosmological parameters and f ′ need to be considered
free parameters in the Fisher forecast. However the uncertainties on the cosmological
parameters are so small compared with the one of f ′ that we consider them fixed to their
true value when we calculate the temperature (and polarization) anisotropies. This is
a safe choice since f ′ is completely orthogonal to the changes in TT, TE and EE [8].
Uncertainties on H0, σ8, and Ωm have a much bigger impact on the SZ power spectrum.
Moreover, the halo mass bias b, which is the parameter that links the spectroscopic mass
of the halo with its true mass (lensing mass), introduces another source of uncertainty in
the SZ auto and cross-correlations. As discussed in [121,214–216], the effects of varying
these parameters are degenerate, and, on low ℓ (≲ 1000), can be parametrized as a shift
in the overall amplitude of the SZ power spectrum. Following [211], we will take into
account the combined effect of these parameters by simply introducing an unknown
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amplitude parameter α, in front of the SZ-spectra, and marginalizing over it. We will
calculate the SZ auto- and cross-correlation used here in the following section. Using
the covariance matrix eq. (3.57) in eq. (3.56) with eq. (3.54) , we can obtain the Fisher
matrix for the parameters (f ′, α)

Fij = fsky

ℓmax∑
ℓ=2

(2ℓ+ 1)

⎛⎜⎜⎝
(CyT

ℓ,CIP)2

C
T T
ℓ (CSZSZ

ℓ +C
yyN
ℓ )

C
SZT
ℓ C

yT
ℓ,CIP

C
T T
ℓ (CSZSZ

ℓ +C
yyN
ℓ )

C
SZT
ℓ C

yT
ℓ,CIP

C
T T
ℓ (CSZSZ

ℓ +C
yyN
ℓ )

(CSZT
ℓ )2

C
T T
ℓ (CSZSZ

ℓ +C
yyN
ℓ )

⎞⎟⎟⎠ . (3.58)

To get this result we assumed that (CSZT
ℓ )2 ≪ CSZSZ

ℓ CT T
ℓ , and Cyy

ℓ ≪ CSZSZ
ℓ . This

treatment can be trivially generalized to produce joint analysis of CyT
ℓ and CyE

ℓ , using
the appropriate covariance matrix for (aT

ℓm, a
E
ℓm, a

y
ℓm):

Covℓ = 1
(2ℓ+ 1)

⎛⎜⎜⎜⎜⎜⎝
CT T

ℓ CT E
ℓ CyT

ℓ + CSZT
ℓ

CT E
ℓ CEE

ℓ CyE
ℓ + CSZE

ℓ

CyT
ℓ + CSZT

ℓ CyE
ℓ + CSZE

ℓ Cyy
ℓ + CSZSZ

ℓ + Cyy,N
ℓ

⎞⎟⎟⎟⎟⎟⎠ . (3.59)

The temperature and polarization auto- and cross-correlation can be easily computed
with CLASS [109], whereas the SZ powerspectrum and cross correlation with temperature
and polarization anisotropies can be calculated using the halo model we reviewed in
Section 1.5.2, as we are going to do in the next section.

Sunyaev-Zeldovich

While CMB photons propagates towards us, their wavelength gets continuously blueshifted
and redshifted by the fact that they fall and climb up the gravitational potential wells.
In the Dark-Energy-dominated era gravitational potential inhomogeneities tends to
decay, so a photon exiting a potential well doesn’t get redshifted as much as it got
blue shifted when it entered it. Similarly, a photon that has to firstly climb and then
fall from a hill loses a net amount of energy in the process. It is then clear that this
effect, called integrated Sachs-Wolfe (ISW) strongly correlates with any tracer of the
gravitational potential inhomogeneity distribution, and in particular with tracers of the
galaxy clusters, that tend to form inside gravitational wells. The tracer we are interested
in is the (thermal) SZ effect. Photons can be up-scattered by hot electrons, that populate
mostly the intergalactic medium of galaxy clusters as we anticipated in Section 1.3. The
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correlation of those two observables has been studied in detail [125, 211,217], and it is a
cumbersome foreground for the signal generated by linear y-distortions.

To calculate the SZ we use a halo model approach as discussed in greater detail in
Section 1.5.2. We use the halo bias given in table 2 of [218], the halo mass function
of [119] with the updated parameters given in [218], and the halo Compton y-parameter
measured in [124]. We also follow the prescription given in [214], using a single definition
of mass (M500,c) and interpolate the bias and halo mass function to the correct value.
We remind the reader that the one- and two-halo terms, introduced in eq. (1.149) and
eq. (1.150) respectively read

C1h
ℓ =

∫
dz d2V

dz dΩ

∫
dM dn

dM (z,M)|ỹℓ(z,M)|2 , (3.60)

C2h
ℓ =

∫
dz d2V

dz dΩD
2
+(z)Pm(k)

[ ∫
dM dn

dM (z,M)b(z,M)ỹℓ(z,M)
]2⏐⏐⏐⏐⏐

k=
(

ℓ+1/2
χ(z)

). (3.61)

The SZ effect cross correlate with T through the late ISW effect, given by

∆T ISW

T
(n̂) = − 2

c2

∫
dzdϕ

dz (χ(z)n̂, z). (3.62)

In our numerical evaluation, we will use the full transfer functions, extracted from
CLASS [109], which of course encode the ISW contribution. It is useful to define real
space transfer functions [219,220]

T T
ℓ (χ) = 2

π

∫
dk k2T T

ℓ (k)jℓ(χk) , (3.63)

where T T
ℓ (k) is the full temperature transfer function. The multipolar coefficients can

then be expressed as

aT
ℓm =

∫
dχχ2T T

ℓ (χ)ζℓm(χ) , (3.64)

where ζℓm(χ) = (−i)ℓ

2π
2
∫

d3k ζ(k)jℓ(χk)Y m
ℓ (k̂).

Using the Poisson equation, δ(k, z) = 3
5(ΩMH

2
0 )−1 D(z)

a(z) Tm(k)k2ϕ(k, z = 0), to express
the overdensity contrast as a function of the gravitational potential we can write the
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temperature-SZ cross correlation:

CSZ-T
ℓ =

∫ c dz
H(z)

3
5
c2k2χ2(z)Tm(k)

ΩmH
2
0

D+(z)
∫

dM dn
dM (z,M)ỹℓ

(
z,M)bH(z,M) ×

× T T
ℓ (χ(z))Pζ(k)

⏐⏐⏐⏐⏐
k=
(

ℓ+1/2
χ(z)

). (3.65)

Notice that one can write the same quantity for polarization just replacing T → E in the
last two equations, i.e., using the appropriate transfer functions. In much smaller terms,
the SZ effect also correlates with E. The reason is that after reionization the universe
remains ionized and therefore free electrons generate polarization anisotropies even at
very low redshift. SZ is generated in the same epoch on similar scales, so this gives rise to
a non-vanishing y-E. This is expected to be a very small effect at low redshifts, but we
consider it as it might still constitute a sizeable bias if the primordial signal is small too.

Even though, practically, all the SZ signal comes from z < 4 [126], since E is sourced at
reionization we extend all the redshift integrations to z well above the time of reionization.
As expected, the contributions from z > 4 are negligible.

3.2.3. Bias, variance, and Fisher results

We now have all the ingredients to calculate numerically the Fisher matrix for T and E

(separately), eq. (3.58), and for the joint analysis of T and E, eq. (3.59).

All the results that we will present are obtained marginalizing over α, that is the
amplitude of the SZ-T and SZ-E cross correlations. However it is worth noticing that
marginalizing over α do not degrade the constraints on f ′ by much. To quantify this
statement we calculate the correlation between the two parameters. Those are[∑

ℓ
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(3.66)
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In the limit of 0 correlation, omitting fsky and considering only the temperature anisotro-
pies, the signal-to-noise ratio (SNR) for the parameter f ′ would have been

SNR(f ′) ≈

√∑
ℓ

(CyT
ℓ )2

CT T
ℓ (CSZSZ

ℓ + CyyN
ℓ )

. (3.67)

We are not using this approximate formula in the analysis, but it is useful to clarify
the methodology. Since we do not have any control over the signal, the only way
to increase the SNR is to try to minimize the noise. The temperature anisotropies
measurements are already dominated by cosmic variance up to very high multipoles.
The variance of the y-distortions is instead composed by two contributions: the cosmic
variance term and the instrumental noise. We consider different experimental setup
to understand what is the sensitivity needed by future experiments to reach the lower
limit imposed by cosmic variance. The noise term is Cyy,N

ℓ = 4π×N × eℓ
2
/ℓ

2
beam ; where

(N, ℓbeam) is (0,−) for the CVL survey, (4 × 10−18, 84) for PIXIE, (4 × 10−20, 100) for the
PRISM spectrometer (PRISM spec) and (4 × 10−20, 4000) for the PRISM imager, which
could be easily calibrated using the on-board spectrometer but is not bounded by low
angular resolution [10,212,221]. Since we are interested in differential measurements of y
distortions, the LiteBIRD satellite can also be employed [210]. Differential measurements
of small signals still rely on very precise inter-channel calibration of the instrument that
will probably be challenging if not unfeasible without a calibrator on board [221]. This
point is even more crucial if we consider that component separation will be required
to discern the foregrounds. As shown in [213], the calibration relative errors must
be of order 0.01% in order to recover the correct µ-T cross correlation. However,
assessing correctly the effect of inter-channel calibration error is beyond the scope
of this thesis. Instead, we use two different noise levels for LiteBIRD: an optimistic
estimate (Opt) assuming perfect inter-channel calibration (2 × 10−20, 200) and a more
conservative (Cons) estimate discussed below. From [213], we can assess that the ratio
of the PIXIE and LiteBIRD noise contribution (neglecting all foregrounds) to Cµµ

ℓ is
Cµµ, Noise, LiteBIRD

ℓ /Cµµ, Noise, PIXIE
ℓ = 0.06. Here we assume that the noise contribution to

Cyy
ℓ follows the same scaling for the two experiments. Therefore, the parameters we use

for LiteBIRD - Cons are (0.24 × 10−18, 200), though we acknowledge that this is a very
coarse, order-of-magnitude, estimate. However, any finer estimate would be beyond the
intrinsic uncertainties of a Fisher matrix analysis. Moreover, our result will not be very
sensitive to this parameter because it does not affect the other major contribution to the
noise: the SZ effect.
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Survey Clusters masked
Unmasked None
eROSITA M > 2 × 1014M⊙/h for z < 0.15
PRISM M > 1013M⊙h

−1

Table 3.5.: We assume to use each survey to mask all clusters with the given characteristics.

Since the dominant contribution to the SZ power spectrum is given by big galaxy
clusters at low redshift [121], masking resolved clusters is a viable way to reduce the
overall noise [126,211,212]. Following the procedure we outlined in Ref. [212], we consider
the use of two different sky masks based on two different full sky surveys that will produce
maps of galaxy clusters. We will present the forecasts based on the PIXIE-like and
LiteBIRD satellite both for the unmasked case and with a mask based on eROSITA [222]
expected performance. We will assume to mask all the clusters with mass greater than
2 × 1014M⊙/h at z < 0.15. The forecast for PRISM and the CVL instrument will similarly
involve the unmasked case, and a mask based on the expected PRISM cluster catalogue.
We will assume to mask all the clusters with mass greater than 1013M⊙h

−1. We chose
those regions of the mass-redshift plane because the eROSITA and PRISM catalogues are
expected to be complete in those respective areas. We summarize the mask boundaries
in Table 3.5.

In our analysis we account for the effect of masking the galactic plane and resolved
cluster according with eq. (3.56). For PIXIE, LiteBIRD, and PRISM, we assume to
use an fsky similar to the one used by Planck to calculate the SZ power spectrum [121],
namely fsky = 50% to remove the galactic plane. To account for the reduced sky area after
applying the eROSITA and PRISM mask, we reduce fsky to 35%. According with [212],
this is a conservative estimate for both cluster masks. In the case of the CVL survey we
show the results assuming fsky = 100%, since they have to be intended as upper limits
that might in principle be reached with other techniques that we are not investigating
here.

In Figure 3.17 we show the 1σ forecasted error bars on f ′ as a function of the max ℓ
considered. The same results are summarized in Table 3.6. There we assume the use
of all the multipoles available in each experimental configuration, i.e., to relate these
results with Figure 3.17 one has to take ℓmax ≫ ℓbeam. We notice that for the linearity
of CyT (E)

ℓ with respect to f ′, the forecasted error bars are independent from the chosen
f ′ fiducial value. As it is clear from Figure 3.17, none of the experimental setups is
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Figure 3.17.: Forecasted 1 σ error on f ′. We compare the different experimental setup, and
evaluate their performance both masking and not-masking the most massive
clusters in the y-distortions map. We consider the cross correlation with
temperature and polarization anisotropies, taken one at a time and analyzed
jointly. We consider the mask based on eROSITA for PIXIE and LiteBIRD,
and the one based on PRISM for PRISM itself and the CVL experiment.

bounded by raw detector sensitivity. The two main limiting factors are the SZ power
spectrum — more and more aggressive masks give better results — and the survey
beam. Since the primordial signal increases as ℓ increases, it is convenient to exploit the
higher multipoles to extract some degree of information. Trying to exploit relatively high
multipoles (ℓ ≈ few hundreds) is beneficial also for an instrument with higher detector
sensitivity than PIXIE. The PRISM imager has much higher angular resolution than the
on-board spectrometer. It is therefore possible to envision its use to make differential
measurements of the spectral distortion anisotropies up to small angular scales. In this
case uncertainties in the inter-channel calibration would not be a problem, since the
spectrometer can provide a reference spectrum. If we consider the use of the imager to
achieve higher angular resolution, PRISM will basically reach the limit set by cosmic
variance.
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Unmasked eROSITA mask
T E T ⊕ E T E T ⊕ E

PIXIE 11 × 105 8.6 × 105 5.3 × 105 9.1 × 105 7.1 × 105 4.2 × 105

LiteBIRD - Opt 4.3 × 105 4.0 × 105 2.9 × 105 2.5 × 105 2.4 × 105 1.7 × 105

LiteBIRD - Cons 4.8 × 105 4.5 × 105 3.2 × 105 3.1 × 105 2.9 × 105 2.0 × 105

Unmasked PRISM mask
PRISM - spec 5.1 × 105 4.6 × 105 3.3 × 105 9.5 × 104 8.5 × 104 5.5 × 104

PRISM - imager 4.1 × 105 3.6 × 105 2.8 × 105 7.0 × 104 6.7 × 104 4.7 × 104

CVL 2.8 × 105 2.5 × 105 1.9 × 105 3.0 × 104 2.9 × 104 2.2 × 104

Table 3.6.: 1σ forecasted error bars on f ′. T , E, and T ⊕ E indicate respectively the forecast
using temperature, polarization, and both. In all the forecasts we marginalize
over the amplitude of CSZT

ℓ and CSZE
ℓ .

3.2.4. Discussion

In this section, we provided a new framework to calculate the linear fluctuation of the
spectral y-distortions. It was shown that a solution to the Boltzmann equation for the
Compton scattering can be constructed from 4 parameters including the temperature
perturbation and the spectral y-distortion. Then we derived the evolution equation for
the y-distortion, which is sensitive to the baryon isocurvature perturbations. This implies
that it can resolve the degeneracy between baryon isocurvature perturbations and the
CDM ones in contrast to the standard linear perturbations such as the temperature
perturbations and the polarizations. We numerically estimated the transfer function
of the y-distortions based on CLASS and computed the auto and the cross correlations
with the temperature perturbations and the polarization E modes. The resulting Cℓ’s
completely resolve the degeneracy between baryon isocurvature perturbations and the
CDM isocurvature perturbations as we expected, and we found that only the correlated
CIPs contribute to them. The auto correlation of the spectral y-distortions is strongly
contaminated by SZ power spectrum and therefore we could not get any information on
the fbi parameter alone from it. Note that linear y anisotropies are not contaminated by
lensing effect in contrast to the previous methods based on the nonlinear modulation of the
CMB anisotropy. Then we produced a forecast for the upper bounds on correlated CIPs
for different future observational projects. While we carefully consider the contamination
induced by SZ effect in our analysis, we are neglecting other foregrounds, because properly
accounting for would go beyond the path-finding scope of this thesis; and because their
impact would highly depend on the various methods of component separation chose to
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analyze data. Even in the absence of foregrounds, none of the surveys we consider will
be able to set stringent constraints on CIPs. For instance, f ′ < 2 × 105 at 68% C.L. is
obtained for LiteBIRD, while f ′ < 5 × 104 for PRISM, and f ′ < 2 × 104 for a cosmic
variance limited survey. As we have shown, the fundamental limit is set by the noise
contribution due to the SZ power spectrum. However it is important to remember that
our method can resolve the degeneracy between the correlated and uncorrelated CIPs.
This implies that we can in principle distinguish the correlated and uncorrelated CIPs
by combining our analysis with the other methods discussed before. Our method would
be more useful if more powerful techniques were developed to remove the SZ-induced
noise term in the future.

We do not focus on the specific models that produce the CIPs in this section. As
discussed in Ref. [186], models based on the curvaton only produce CIPs as big as fbi < 16,
while the spontaneous baryogenesis in Ref. [187] does not generate the correlated CIPs.
Therefore, the known scenarios do not expect huge f ′, which we may observe in our
method; nevertheless, it would be interesting as the author in Ref. [191] reported the
possibility of sizeable CIPs. In other words, highly non trivial early universe physics
would be suggested if significant CIP were detected.

In our calculations we dropped O(δ3) terms for simplicity, but these may have compa-
rable contributions to the spectral distortions for the Gaussian adiabatic perturbations.
Therefore, cumbersome cubic order analysis would be required if the sizeable linear
y-distortions are really detected in the future. We did not discuss the κ distortion and
the u distortion, which is introduced for the first time in this section, because they do not
explicitly depend on the baryon isocurvature perturbations. Still it would be interesting
to consider the anisotropy of these new spectral distortions in different contexts. This
would be investigated in our future works.
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Chapter 4.

Testing the bispectrum

4.1. Primordial non-Gaussianity and spectral
distortions anisotropies

At present, the tightest constraints on all parametrizations and models of primordial non-
Gaussianity (NG) come from measurements of the bispectrum (Fourier transform of the
3-point function in configuration space) of Cosmic Microwave Background temperature
and polarization anisotropies (respectively T and E), made by the Planck satellite [3].

As we have already stated in Section 1.4.4, among many aspects and applications
of these constraints, a very important one is the possibility to set stringent bounds
on inflationary scenarios characterized by more than one field. Multi-field Inflation
in fact predicts a potentially detectable bispectrum of the local type, peaking in the
squeezed-limit. We recall that such bispectrum explicitly reads (cfr. eq. (1.86))

B(k1, k2, k3) = −6
5f

loc
NL [P (k1)P (k2) + 2 perm.] , (4.1)

where f loc
NL is the dimensionless local NG amplitude parameter, which is measured by

fitting the local shape to the data (since we will consider only local NG in the following, we
will omit the superscript “loc” from now on). Currently, Planck constrains fNL = 0.8 ± 5.0
(68% C.L.) [3]. A crucial threshold to fully distinguish single from multi-field scenarios
would be however fNL ∼ 1. This value is in fact a lower bound for a large class of multi-
field models (e.g. curvaton [83]). Unfortunately there are not enough modes in the CMB
temperature and polarization angular bispectra to achieve enough sensitivity for a clear
detection of fNL ∼ 1, even assuming a perfectly noiseless, ideal survey (see, e.g. [223]).
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Several new observational strategies will therefore have to be implemented in the future.
One of the most promising approaches in the near future involves measuring NG signatures
in the galaxy bias, using forthcoming Large Scale Structure surveys [224,225].

In a more futuristic scenario, the authors of [9] have considered the cross-correlation
between CMB temperature and µ-spectral distortion anisotropies as a potentially very
powerful probe of squeezed-type bispectra. An experiment producing cosmic-variance
limited T and µ maps could in principle be able to detect fNL ∼ 10−2, 10−3 (this argument
has been extended in different ways [10, 211,221,226–233], to take into account different
primordial bispectrum models and higher-order correlation functions). While fascinating,
this scenario is out of reach not only with current experimental noise levels, but also
taking into account proposed, ambitious next generation surveys, such as PRISM [10].

Nonetheless, measurements of fNL via correlations between CMB temperature (po-
larization) and CMB distortion anisotropies are interesting even before achieving such
exquisite levels of sensitivity, as they allow to test possible deviations of fNL from scale
independence. In this respect, not only µ, but also y-distortions can provide useful
and interesting information, as pointed out in [10]. Indeed, while Planck measured fNL

on the scales typical of CMB T , E anisotropies (k ≲ 0.15 Mpc−1), and µ-distortion
anisotropies can in principle probe it on much smaller scales (46 Mpc−1 ≲ k ≲ 104

Mpc−1), y-distortions allow probing the transition between those two regimes (0.15
Mpc−1 ≲ k ≲ 46 Mpc−1). The issue with using y-distortions is, however, that the total
signal is affected by contributions from secondary sources, which completely dominate
over the primordial component. The most important source of contamination is the
y-T signal generated by the correlation between the Integrated Sachs Wolfe (ISW) and
Sunyaev-Zeld’ovich (SZ) effects. This problem has been initially addressed for the y-T
cross-correlation in [211], where a cosmic-variance limited experiment was considered,
and the SZ contamination was reduced by masking detected clusters at low redshift.

In this section, we will extend previous analyses by considering not only y-T , but also
including the cross-correlation with polarization, y-E, and by exploiting cross-correlations
between SZ and external tracers (CMB and galaxy lensing). Aside from adding a new
signal, using polarization presents the clear advantage of giving a much less biased signal,
since the E-mode correlate less than T with the SZ effect. Nevertheless, in this case
we will have to worry about potential spurious contamination from reionization. An
explicit numerical evaluation, using second-order transfer functions from the Boltzmann



Testing the bispectrum 119

integrator SONG [234–236] will show that this is negligible.1 The correlation between SZ
and lensing can instead be used to estimate a template of the y-parameter map generated
by SZ, which can then be subtracted from the data, in order to partially remove spurious
SZ contributions from unresolved clusters and reduce the noise. We will consider a
PIXIE-like [208], PRISM-like [209] and an ideal, cosmic-variance limited experiment, and
show how including these new ingredients can lead to interesting improvements in the
final forecasts, by an overall factor between 2.5 and 4.4 depending on the experiment
and on the mask applied.

While we will focus mostly on y-distortions, we will also extend previous µ-distortions/
E-polarization cross-correlation analyses. Specifically, we will re-analyse in detail the
µ-E cross-spectrum initially discussed in [233], where only large scales and reionization
contributions to the CMB polarization transfer functions were included. In that case,
it was found that µ-E does not provide any further constraining power with respect to
µ-T . By considering all scales and using full transfer functions we will show that µ-E
performs slightly better than µ-T and combining the two leads to ∼ 30% improvement
in the final constraints.

Even though we are interested in a fNL = fNL(k1, k2, k3), which depends on scale,
we will follow [10, 211] to assume that the scale-dependence is such that fNL stays
approximately constant (separately) on both the y-scales (0.15 Mpc−1 ≲ k ≲ 46 Mpc−1)
and the µ-scales (46 Mpc−1 ≲ k ≲ 104 Mpc−1). As discussed in [10] the constraints on
fNL from y-distortions (µ-distortions) can then be interpreted as a constraint on fNL(k)
evaluated at the logarithmic mid-point value over the y (µ) scales: f y

NL ≡ fNL(7 Mpc−1)
and fµ

NL ≡ fNL(740 Mpc−1) respectively for y- and µ-distortions.

The section is organized as it follows: In subsection 4.1.1 we will calculate the
primordial contributions to the cross correlation of T and E with µ- and y-spectral
distortions. in subsection 4.1.2 we will calculate the secondary sources for the T and
E cross correlations with y — we recall that µ does not have cosmological secondary
sources. In subsection 4.1.3 and 4.1.4 we will forecast fµ

NL and f y
NL constraints, achievable

by a PIXIE-like, a PRISM-like, and by a cosmic-variance limited survey, considering all
sources of noise and contamination, different masks for resolved clusters (based on future
X-ray and CMB surveys) and different external tracers for unresolved contributions. In
subsection 4.1.5 we will summarize our conclusions.

1https://github.com/coccoinomane/song.

https://github.com/coccoinomane/song.
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4.1.1. Primordial contributions

In this subsection we review the calculation to obtain the cross-correlation of CMB
temperature and polarization anisotropies with µ- or yp-CMB-spectral-distortions anisot-
ropies, when primordial NG is present. Since secondary sources generate y-distortion in
the late universe we indicate with yp the primordial contribution to the total y.

As shown in eq. (1.116), that we repeat here for convenience, the primordial primordial
curvature perturbation ζ(k) and CMB fluctuations are linked via

aX
ℓm = 4πiℓ

∫ d3k

(2π)3 T X
ℓ (k)Y m∗

ℓ (k̂)ζ(k), (4.2)

where X = T,E indicate the temperature T or the E-mode polarization, and T X
ℓ is the

radiation transfer function. We will use the full transfer function generated by CLASS [109].
For Ξ = µ-, yp-type spectral distortions the analogous relation reads instead [221,232]

aΞ
ℓm = 4π(−i)ℓ

∫ d3k1

(2π)3
d3k2

(2π)3 d3k3δ
(3)(k1 + k2 + k3)

Y m∗
ℓ (k̂3)jℓ(k3rls)fΞ(k1, k2, k3)ζ(k1)ζ(k2),

fµ(k1, k2, k3) =2.3 W
(

k3

kD(zµy)

) [
e−(k2

1+k
2
2)/k

2
D(z)

]zµ

zµy

f y(k1, k2, k3) =0.4 W
(

k3

kD(zy)

) [
e−(k2

1+k
2
2)/k

2
D(z)

]zµy

zy

.

(4.3)

Here rls is the comoving distance to last scattering surface, W (x) = 3j1(x)/x, and kD is the
diffusion damping scale evaluated at the beginning of the µ-era kD(zµ) ≈ 12000 Mpc−1,
at the µ-y transition kD(zµy) ≈ 46 Mpc−1, and at the end of the y-era kD(zy) ≈
0.15 Mpc−1 [10]. As said, we consider fNL constant on µ- and y-scales: fNL(k) ≡ f y

NL for
0.15 Mpc−1 ≲ k ≲ 46 Mpc−1 and fNL(k) ≡ fµ

NL for 46 Mpc−1 ≲ k ≲ 12000 Mpc−1.

More accurate expressions for the transfer function have been discussed in [237]. We
will use the simpler approximations in eq. (4.3), but with two adjustments. We will
re-normalize the amplitude of the expected monopoles of µ- and y-distortion to the values
computed in [238], ⟨µ⟩ = 2.3 × 10−8 and ⟨y⟩ = 4.2 × 10−9 . Moreover we will add to the
cross correlation the factor exp[−15k2/(8k2

D(zrec))], where k2
D(zrec) is the damping scale

at recombination, which account the damping of power by photon diffusion, and which
was introduced in [237]. This “zero-order” approximation is accurate enough for a Fisher
forecast and allow a simple, direct comparison with other results in the literature.
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The cross-correlation can be found as:

⟨
aX

ℓma
Ξ∗
ℓ

′
m

′

⟩
=8 δℓ

′

ℓ δ
m

′

m

∫ k2 dk
2π2 T X

ℓ (k)jℓ
′(krls)e

− 15k
2

8k
2
D(zrec)

∫ q2
1q

2
2 dq1 dq2

2π2 fΞ(q1, q2, k)B(k, q1, q2)∫
x2 dxj0(q1x)j0(q2x)j0(kx).

(4.4)

In [231] it has been discussed how the generation mechanism for µ via acoustic
dissipation, encoded in the fµ(q1, q2, k) function, strongly selects squeezed configuration
k1 ≈ k2 ≫ k in the T -µ correlation. The same argument holds for the E-µ cross-
correlation. Since the diffusion damping scale of yp is much smaller than the µ one, the
same approximation is less accurate in the X-yp cross-correlations. However it should
be noted that the more accurate transfer function provided in [237] explicitly suppress
configuration with too different q1 and q2. This means that also when using y-distortions
we are allowed to take the squeezed limit k1 ≈ k2 ≫ k.

In the squeezed limit, eq. (4.4) reduces to

CXΞ
ℓ ≈ −4π12

5

∫ k2 dk
2π2 T X

ℓ (k)jℓ
′(krls)P (k)e

− 15k
2

8k
2
D(zrec)

∫ q2
1 dq1

2π2 fΞ(q1, q1, k)P (q1). (4.5)

Notice that the last integral in this equation is exactly the definition of the monopole of
the Ξ-type spectral distortion. Thus, renormalizing the ⟨µ⟩ and ⟨y⟩ to the right vale as
discussed above translate linearly into a renormalization of the Cℓ [10].

In figure 4.1 we show the cross-correlations between µ- or yp-distortion, and T or E
anisotropies. The prediction for µ-T is in good agreement with [231].2 Only the primordial
contribution to the cross-correlations is shown in the plot, even though other effects
contribute to the same signals. We are going to consider them in the next subsection,
since those secondary sources will constitute foregrounds to these primordial signal.

2The tiny differences come from the fact that in the present section we are using a different and
independent numerical implementation of the calculation. As a sanity check we verified that the
CT T

ℓ and CEE
ℓ calculated with the our code match the same CLASS results up to its accuracy.
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Figure 4.1.: Absolute value of the cross-correlations. The prediction for µ-T is in good
agreement with [231].

4.1.2. Secondary sources

In this subsection we will consider the main non-primordial contributions to the y-T and
y-E spectra, namely the cross-correlation between Sunyaev-Zeldovich and the integrated-
Sachs-Wolfe effect, for y-T , and the cross correlation between CMB polarization and the
quadratic Doppler effect, for y-E.

Sunyaev-Zeldovich

The cross-correlation of temperature and y-distortions is far from negligible even in the
Gaussian case. As discussed in Section 3.2.2, the SZ-ISW cross correlation constitute
an important foreground for this type of analysis that is always present. We use the
formalism described there to calculate the SZ power spectrum and cross correlation with
T and E. In this application we consider the bias given in table 2 of [218], the halo mass
function of [119] with the updated parameters given in [218], and the halo Compton
y-parameter computed in [122]. As a lower integration limit we choose z > 0.02; this
ensure that the redshift integrals do not get contributions from unphysical z = 0 objects.
We also integrate over the masses 1010M⊙h

−1 < M < 1016M⊙h
−1. We checked our

spectra against those shown in [126], changing our integration boundaries to match their
choices, and we are in very good agreement.
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As previously mentioned, one of the main goals of this section is to study the fNL

dependence in the y-E cross-correlation spectrum, which was not accounted for in
previous works [125,211,217] on the subject. One of the main advantages of using y-E
in place of, or in combination with, y-T , is that contamination from SZ is expected to
be strongly suppressed for y-E, therefore the main source of bias that afflicts y-T -based
measurements of fNL [211] would be eliminated. While much smaller than the y-T
contribution, a non-primordial y-E correlation is still present: after reionization the
quadrupole of free electrons still acts as a source of E. SZ is generated in the same epoch
on similar scales, so this gives rise to a non-vanishing y-E. This is expected to be a very
small effect at low redshifts. However, also the primordial yp-E signal we are after is very
small, therefore, it is important to explicitly compare the two effects.

y-distortion from reionization

Another source of contamination comes from the cross-correlation of E with the quadratic
Doppler effect (see [239,240] and references therein). Being proportional to the velocity
of the baryons squared, this observable tracks the primordial density squared yreio ∼ ζ(k)2.
It is then clear that its cross-correlation with first order CMB polarization anisotropies
is proportional to the primordial bispectrum C

yreio-E
ℓ ∝

⟨
ζ(k1)ζ(k2)ζ(k3)

⟩
. However, we

neglect this potential contribution to the signal here, leaving its study for future work,
and focus instead on spurious, non-primordial contamination, which need to be removed
from the primordial y-E contribution at recombination.

To simplify the notation we will omit “Cℓ” in defining cross-correlations (i.e., yreio-E ≡
C

yreio-E
ℓ ) and we will indicate the n-th order term of a quantity with an apex “(n)”, i.e.,

E(n).

Assuming perfectly Gaussian primordial perturbations, the leading term of the
quadratic Doppler effect-Polarization cross-correlation is of fourth order in the primordial
density perturbation: yreio-E = y

(2)
reio-E(2) + y

(3)
reio-E(1) + O(ζ6). We expect the second

addendum to be of the same order of the first. Calculating it would require developing
new formalism to describe higher-order-contributions to spectral distortions. Since, as
we anticipate, we found after a complete calculation that the first term is negligible, we
neglect the calculation of the second.
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The authors of [239] provide an analytic expression for y(2)
reio. The second order transfer

function for CMB polarization anisotropies can instead be obtained numerically, using
the publicly available code SONG [234–236].

Let’s consider a perturbation field X that can be written as an expansion over the
primordial density perturbation field ζ. Up to second order, in term of its linear T (1)

X ℓm

and second order T (2)
X ℓm transfer functions the field projection on the sphere can be

written as [236]

aX
ℓm(k) = T (1)

X ℓm(k)ζ(k) +
∫ d3q1 d3q2

(2π)3 δ(3)(k − q1 − q2)T (2)
X ℓm(q1, q2,k)ζ(q1)ζ(q2) + ...

(4.6)

In full generality, the cross-correlation of the second order contributions of two field X

and Y will be

⟨
a

X(2)
ℓm a

Y (2)
ℓ

′
m

′

⟩
=
∫ d3k1

(2π)3

∫ d3q1 d3q2

(2π)3 T (2)
X ℓm(q1, q2,k1)δ(3)(k1 − q1 − q2)

∫ d3k2

(2π)3

∫ d3p1 d3p2

(2π)3 T (2)
Y ℓ

′
m

′(p1,p2,k2)δ(3)(k2 − p1 − p2)

⟨ζ(q1)ζ(q2)ζ(p1)ζ(p2)⟩ .

(4.7)

Using Wick theorem, under the assumption that the primordial perturbation field is
Gaussian, and using the fact that this expression in symmetric in q1 ↔ q2 one gets

⟨ζ(q1)ζ(q2)ζ(p1)ζ(p2)⟩ = 2(2π)6δ(3)(q1 + p1)δ(3)(q2 + p2)P (q1)P (q2). (4.8)

⟨
aX

ℓma
Y
ℓ

′
m

′

⟩
= 2

∫ d3k1

(2π)3

∫ d3q1 d3q2

(2π)3 T (2)
X ℓm(q1, q2,k1)T (2)

Y ℓ
′
m

′(−q1,−q2,−k1)

δ(3)(k1 − q1 − q2)P (q1)P (q2).
(4.9)

If we assume rotational invariance we can rotate our reference system to match ẑ

with the direction of k. For the rest of the section we will write
∫

x ≡
∫

dx x2 to shorten
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the notation.

⟨
aX

ℓma
Y
ℓ

′
m

′

⟩
=2

∫ d3q1 d3q2

(2π)3

∫
k1

1
(2π)3

√
4π

(2ℓ+ 1)

√
4π

(2ℓ′ + 1)∑
m1m2

T (2)
X ℓm1

(q1, q2, k1)T (2)
Y ℓ

′
m2

(−q1,−q2, k1)

δ(3)(−q1 − q2 + k1ẑ)P (q1)P (q2)
∫

d2Ω(k̂1)(−1)ℓ
′

−m1Y
m

ℓ (k̂1) m2Y
m

′

ℓ
′ (k̂1) =

= 8π
2ℓ+ 1

∫ d3q1 d3q2

(2π)6

∫
k1

δ(3)(−q1 − q2 + k1ẑ)P (q1)P (q2)∑
m1

T (2)
X ℓm1

(q1, q2, k1)T (2)
Y ℓ

′
m1

(−q1,−q2, k1)(−1)l
′+m1−mδℓ

′

ℓ δ
m2
m1δ

−m
′

m .

(4.10)

In the first line we used the fact that the transfer functions transform under rota-
tions as spherical harmonics; and in the second

∫
d2Ω(k̂1) −m1Y

m
ℓ (k̂1) −m2Y

m
′

ℓ
′ (k̂1) =

(−1)m1+mδℓ
′

ℓ δ
−m2
m1 δ−m

′

m .

Now we specialize in the case we are interested in: X being the CMB polarization
and Y being the quadratic Doppler effect effect. To uniform our notation with [236] and
factor out the quantities that SONG actually calculates T , we perform the substitution

T (2)
X ℓm1

(q1, q2, k1) = (−1)m1

√
4π

2|m1| + 1T (2)
X ℓm1(q1, q2, k1)Y m1

|m1|(q̂1) (4.11)

⟨
aX

ℓma
Y
ℓ

′
m

′

⟩
=δℓ

′

ℓ δ
−m

′

m

8π
2ℓ+ 1

∫ d3q1 d3q2

(2π)6 P (q1)P (q2)
∑
m1

√
4π

2|m1| + 1(−1)ℓ
′+2m1−m

∫
k1

δ(3)(k1 − q1 − q2)T (2)
X ℓm1(q1, q2, k1)Y m1

|m1|(q̂1)T (2)
Y ℓ

′
m1

(−q1,−q2, k1).

(4.12)

For spectral distortion from reionization [239]

T (2)
Y ℓ

′
m1

(q1, q2, k1) =(2ℓ′ + 1)
[

−δ0
m1

3 I
(1)
ℓ

′ (q1, q2, k1) q̂1 · q̂2+

+ 11π
45 I

(2)
ℓ

′
,m1

(q1, q2, k1)
1∑

n=−1
αn,m1

(
Y

−m1−n
1 (q̂1)Y n

1 (q̂2)
)∗] (4.13)
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with

I
(1)
ℓ

′ (q1, q2, k1) =
∫ η0

ηreio

dη g(η)jℓ(k1r(η))F (q1, η)F (q2, η)

I
(2)
ℓ

′
,m1

(q1, q2, k1) =
∫ η0

ηreio

dη g(η)j(2,m1)
ℓ (k1r(η))F (q1, η)F (q2, η).

(4.14)

and

α0,m ≡
√

4 −m2 α± 1,m ≡
√

(2 ±m)(2 ±m− 1)/2. (4.15)

Here F (k, η) is the baryon velocity transfer function, defined as

vb(k, η) = −ik
k
F (k, η)ζ(k) , (4.16)

and g(η) is the visibility function.

Plugging everything back in, we can use the identity eq. (A.6) and the Rayleigh
expansion of the Dirac delta (A.8) to get

⟨
aX

ℓma
Y
ℓ

′
m

′

⟩
=δℓ

′

ℓ δ
−m

′

m

64π
2ℓ+ 1

∫ d3q1 d3q2

(2π)6

∫
k1

∫
x

∑
L

∑
L1M1

∑
L2M2

jL(xk1)jL1(xq1)jL2(xq2)

√
2L+ 1

4π (−1)L1+L2Y
M1∗

L1
(q̂1)Y M2∗

L2
(q̂2)iL+L1+L2hL1L2L

⎛⎜⎝L1 L2 L

M1 M2 0

⎞⎟⎠
∑
m1

√
4π

2|m1| + 1(−1)ℓ
′+2m1−mT (2)

X ℓm1(q1, q2, k1)Y m1
|m1|(q̂1)

(2ℓ′ + 1)
[

−δ0
m1

3 I
(1)
ℓ

′ (q1, q2, k1)
4π
3

1∑
m2=−1

Y
m2∗

1 (q̂1)Y m2
1 (q̂2)+

+ 11π
45 I

(2)
ℓ

′
,m1

(q1, q2, k1)
1∑

n=−1
αn,m1

(
Y

m1−n
1 (q̂1)Y n

1 (q̂2)
)∗]
P (q1)P (q2)
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⟨
aX

ℓma
Y
ℓ

′
m

′

⟩
=δℓ

′

ℓ δ
−m

′

m 64π2ℓ′ + 1
2ℓ+ 1

∑
L

∑
L1M1

∑
M2

√
2L+ 1

4π (−1)L1+1iL+L1+1hL1 1 L

⎛⎜⎝L1 1 L

M1 M2 0

⎞⎟⎠
∑
m1

√
4π

2|m1| + 1(−1)ℓ
′+2m1−m

∫
q1

∫
q2

∫
k1

1
(2π)6P (q1)P (q2)T

(2)
X ℓm1(q1, q2, k1)[

−δ0
m1

3 I
(1)
ℓ

′ (q1, q2, k1)
4π
3

1∑
m2=−1

(−1)m2δ
m2
M2

3√
4π
δ1

L1δ
−m2
M1

+

11π
45 I

(2)
ℓ

′
,m1

(q1, q2, k1)
1∑

n=−1
αn,m1hL1|m1|1

⎛⎜⎝ L1 |m1| 1

−M1 m1 −m1 + n

⎞⎟⎠
(−1)M1+m1−nδ−n

M2

] ∫
x
jL(xk1)jL1(xq1)j1(xq2)

(4.17)

where we defined

hL1L2L3 ≡
√

(2L+ 1)(2L1 + 1)(2L2 + 1)
4π

⎛⎜⎝L L1 L2

0 0 0

⎞⎟⎠ . (4.18)

The first term is further reduced to

1st =(−1)ℓ
′−m δℓ

′

ℓ δ
−m

′

m 64π
∫ q2

1 dq1q
2
2 dq2

(2π)6

∫
k2

1 dk1

∫
x2 dxj0(xk1)j1(xq1)j1(xq2)

T (2)
X ℓ,0(q1, q2, k1)

1
3I

(1)
ℓ

′ (q1, q2, k1)P (q1)P (q2)
(4.19)
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where we used the identity (A.21); whereas the second is

2nd =(−1)ℓ
′−mδℓ

′

ℓ δ
−m

′

m 64π
∫ q2

1 dq1q
2
2 dq2

(2π)6

∫
k2

1 dk1
∑
L

∑
L1

1∑
n=−1

∫
x2 dxjL(xk1)jL1(xq1)j1(xq2)

∑
m1

T (2)
X ℓm1(q1, q2, k1)

11π
45 I

(2)
ℓ

′
,m1

(q1, q2, k1)P (q1)P (q2)

(−1)L1+1iL+L1+1(−1)3m1
3(2L+ 1)(2L1 + 1)

4π αn,m1

⎛⎜⎝L1 1 L

0 0 0

⎞⎟⎠
⎛⎜⎝L1 1 L

n −n 0

⎞⎟⎠
⎛⎜⎝L1 |m1| 1

0 0 0

⎞⎟⎠
⎛⎜⎝L1 |m1| 1

−n m1 −m1 + n

⎞⎟⎠ .

(4.20)

The structure of the 4 three-j symbol that appear in the second term guarantees that
the sum over L,L1 is not infinite. In fact we found that their product is non zero only
for L < 4, L1 < 3.

As the integral over x, for both terms, has to be computed for small values of
the multipolar indices, therefore it is convenient to evaluate it analytically using the
identity (A.23) [241].

Wrapping up we get

y
(2)
reio-E(2) =(−1)ℓ

′−m64π
∫ q2

1 dq1q
2
2 dq2

(2π)3

∫ k2
1 dk1

(2π)3 P (q1)P (q2)δℓ
′

ℓ δ
−m

′

m[
T (2)

X ℓ,0(q1, q2, k1)
1
3I

(1)
ℓ

′ (q1, q2, k1)I(0, 1, 1, k1, q1, q2)+

+
4∑
L

3∑
L1

∑
m1

1∑
n=−1

(−1)L1+1iL+L1+1(−1)3m1
3(2L+ 1)(2L1 + 1)

4π αn,m1⎛⎜⎝L1 1 L

0 0 0

⎞⎟⎠
⎛⎜⎝L1 1 L

n −n 0

⎞⎟⎠
⎛⎜⎝L1 |m1| 1

0 0 0

⎞⎟⎠
⎛⎜⎝L1 |m1| 1

−n m1 −m1 + n

⎞⎟⎠
11π
45 I

(2)
ℓ

′
,m1

(q1, q2, k1)T
(2)
X ℓm1(q1, q2, k1)I(L,L1, 1, k1, q1, q2)

]
.

(4.21)

While the angular — moments independent — part can be computed analytically, the
integrals over q1, q2, and k1 have to be evaluated numerically. Luckily enough the structure
of these integrals is the same one finds when calculating the intrinsic bispectrum of
the CMB. Therefore [235] provides a good insight of what are the properties of the
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Figure 4.2.: The main components (primordial and secondary) of the y-T and y-E cross-
correlations. SZ-T is the only non-negligible contaminant to yp-T , but is four
orders of magnitude bigger, and correlates more with it. yp-E suffers the presence
of both SZ-E and yreio-E, but both secondary signals are proportionally smaller
and less correlated than SZ-T .

integrand. In fact we found that it oscillates both along k1, and along q1 and q2, however
the frequency of oscillation along k1 is one order of magnitude higher than the other.
For this reason we computed the k1 integral over a coarse grid of q1 and q2, and only
then we performed the integral of the now smoother function. Moreover the symmetry
q1 ↔ q2 allows us to pick only the configurations with q2 < q1 and double the result of
the integral in the end.

To calculate this signal we use the transfer function extracted from SONG with 10%
accuracy. Since the convergence of the tensor modes has not been tested by the authors
for more than 10% accuracy [236], using higher precision run would require extensive
testing of the code. Moreover, as the final y(2)-E(2) contribution will turn out to be
negligible, our results will not depend on this quantity, making accuracy improvements
not important for our purposes.

In figure 4.2 we compare the yp-E signal with the secondary sources of E-y. The SZ-E
cross-correlation is approximately 100 times bigger than the signal, while the yreio-E(2)

cross-correlation is 10-100 times smaller than the signal in the first 100 multipoles, and
their ratio decreases as ℓ increases. The slightly different slopes allow disentangling of the
signal from the secondary sources, as we will show in subsection 4.1.4. For comparison, the
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SZ-T cross-correlation in 104 bigger than the primordial signal. The same marginalization
over the foregrounds can be performed also in this case, but with worse results since
the shape of the primordial signal is more degenerate with the shape of the secondary
sources. This can be quantified calculating the correlation of the primordial signal with
the secondary signal:[∑

ℓ C
ypT

ℓ CSZT
ℓ

]
√[∑

ℓ

(
C

ypT

ℓ

)2
][∑

ℓ

(
CSZT

ℓ

)2
] = 0.92,

[∑
ℓ C

ypE

ℓ CSZE
ℓ

]
√[∑

ℓ

(
C

ypE

ℓ

)2
][∑

ℓ

(
CSZE

ℓ

)2
] = 0.64. (4.22)

4.1.3. fµ
NL forecast

As first considered in [233], we can try enhancing the fNL signal-to-noise ratio, extracted
using T -µ, by adding polarization to the analysis. In [233], simplified “Sachs-Wolfe”-limit
transfer functions were used both for temperature and polarization anisotropies, finding
no fNL-sensitivity improvements with the inclusion of polarization. However, we found
via explicit computation that the inclusion of full transfer functions does change this
picture at ℓ > 10, outside the limits of validity of the Sachs-Wolfe approximation.

As in Section 3.2.3 the Fisher matrix is

Fij =
∑

ℓ

(Cov−1
ℓ )αβ

∂(Covℓ)βγ

∂pi

(Cov−1
ℓ )γδ

∂(Covℓ)δα

∂pj

(4.23)

where Covℓ is the covariance matrix and repeated matrix indices (α, . . . , δ) are summed.

The fµ
NL Fisher matrix, when considering only T or only E, reads [9]

(
S

N

)2

= F =
ℓmax∑
ℓ=2

CµX
ℓ CµX

ℓ

(σµX
ℓ )2 , (4.24)

where we recall that X = T,E. For a PIXIE- or PRISM-like experiment it is expected
that CXµ

ℓ CXµ
ℓ ≪ (CXX

ℓ )obs(Cµµ
ℓ )obs, and (Cµµ

ℓ )obs ≈ (Cµµ
ℓ )N ≫ Cµµ

ℓ where “obs” stands
for observed and “N” for noise. Again, for PIXIE (PRISM) the expected noise is
Cµµ,N

ℓ = 4π× (1.4 × 10−8)2 × eℓ
2
/842

(Cµµ,N
ℓ = 4π× 10−18 × eℓ

2
/1002

) [10,221]. Here we do
not account for galactic foregrounds. In [242] it has been shown that the error on the
measurement of the spectral distortion monopole can degrade as much as one order of
magnitude with respect to earlier, more optimistic estimates. The spatially varying part
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Figure 4.3.: Minimum value of fµ
NL to reject fµNL = 0 at 1σ, as a function of the maximum

multipole. This value is calculated with a 1 parameter Fisher forecast using the
PIXIE level of noise. Adding polarization informations tightens the constrain
by a factor 1.28. The estimate achieved using temperature alone is in good
agreement with [237].

of these foregrounds will have to be modelled with more accuracy in order to give an
actual estimate of how much the estimates will degrade in our case.

Under those assumptions

(σµX
ℓ )2 ≈ CXX

ℓ Cµµ,N
ℓ

2ℓ+ 1 . (4.25)

Therefore, the signal-to-noise ratio is proportional to the µE contribution — which is
underestimated for ℓ > 10 using the “Sachs-Wolfe”-transfer function — and inversely
proportional to the square root of the polarization power spectrum, which peaks on the
first 10 multipoles (due to the reionization bump) and decreases afterwards. As a result
an explicit numerical evaluation shows that the fµ

NL signal-to-noise ratio from E-µ is
actually higher than the one obtained using T -µ, at ℓmax > 50, see figure 4.3.

We are finally interested in the joint estimate of fµ
NL, obtained combining both

observations:

F =
ℓmax∑

ℓ

(2ℓ+ 1)C
T T
ℓ (CµE

ℓ )2 + CEE
ℓ (CµT

ℓ )2 − 2CT E
ℓ CµT

ℓ CµE
ℓ

Cµµ,N
ℓ [CT T

ℓ CEE
ℓ − (CT E

ℓ )2]
(4.26)
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Survey T E T ⊕ E

1σ(fµ
NL) PIXIE 4200 3800 3300

PRISM 300 270 230
CVL 0.67×10−3 0.67×10−3 0.55×10−3

Table 4.1.: 1σ forecasted error bars on fµ
NL, calculated using the standard ΛCDM value of

⟨µ⟩ = 2.3 × 10−8. T ⊕ E indicates the joint forecast using both temperature and
polarization. We accounted for correlations between T -µ and E-µ using eq. (4.26).

as the covariance matrix is

Covℓ = 1
2ℓ+ 1

⎛⎜⎜⎜⎜⎜⎝
CT T

ℓ CT E
ℓ fµ

NLC
µT
ℓ

CT E
ℓ CEE

ℓ fµ
NLC

µE
ℓ

fµ
NLC

µT
ℓ fµ

NLC
µE
ℓ Cµµ,N

ℓ

⎞⎟⎟⎟⎟⎟⎠ . (4.27)

As expected for a PIXIE-like survey, the signal-to-noise ratio saturates for ℓ ≈ 100
[221]. We found that adding the polarization cross-correlation to the temperature cross-
correlation with the µ-spectral-distortion the constraint on fNL improves by a factor
1.28. In figure 4.3 we show the minimum value of fµ

NL that guarantees a 1σ rejection of
fµ

NL = 0, as a function of the maximum multipole. Our results are shown in table 4.1.
The estimate achieved using temperature alone appears to be slightly different from [237].
The shape of the CµT

ℓ used in [237], calculated in [221] deviate slightly from ours, and in
particular the first zero crossing is located at smaller ℓ with respect to our calculation.
Since the signal-to-noise ratio scales logarithmically with the ℓ [221], slightly bigger CµT

ℓ

at small ℓ guarantees more signal to noise with respect to bigger CµT
ℓ at higher ℓ. If

we were to use the same signal as the one provided in [221], we would be completely
consistent with [237].

4.1.4. fy
NL forecast

We will now come to the main point of this work, namely studying the effects of adding
y-distortions in the fNL analysis, including contributions from polarization and exploring
methods to clean SZ-contamination via SZ-lensing correlations.
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Figure 4.4.: Minimum value of fy
NL needed to reject fy

NL = 0 at 1σ, as a function of the maxi-
mum multipole. This value is calculated with a Fisher forecast after marginalizing
over all foregrounds and using the PRISM level of noise. We also show the same
value for fµ

NL for comparison. We compare the results obtained using no mask
and no template subtraction (y-T ⊕ E) and using the PRISM mask and the
template subtraction (y-T ⊕ E, clean + PRISM) described respectively in table
4.5 and subsection 4.1.4.

T -y forecast and cluster masking.

In our forecasts we have to keep into account theoretical uncertainties of the halo-model,
used to predict the correlations. Following [211], we will do this by simply introducing
an unknown amplitude parameter αT , in front of the spectra, and marginalizing over it.
This leads to the covariance matrix

Covℓ = 1
2ℓ+ 1

⎛⎜⎝ CT T
ℓ f y

NLC
yT
ℓ + αTC

SZT
ℓ

f y
NLC

yT
ℓ + αTC

SZT
ℓ Cyy,N

ℓ + C1h
ℓ + C2h

ℓ

⎞⎟⎠ . (4.28)

A PIXIE-like experiment is expected to have 5 to 10 better sensitivity to y than to µ.
Therefore the noise term is Cyy,N

ℓ = 4π× 4 × 10−18 × eℓ
2
/842

; the same holds for PRISM
for which Cyy,N

ℓ = 4π× 4 × 10−20 × eℓ
2
/842

[10,221]. We forecast f y
NL using temperature

alone, and marginalizing over the secondary source SZ-T .
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1σ(f y
NL)

Mask T E T ⊕ E T ⊕ E, clean.
Unmasked 12700 5500 3300 2900
eROSITA 8600 4800 2700 2300
PRISM 5500 4000 2200 2200
z > 0.3 5500 4200 2300 2300

Table 4.2.: 1σ forecasted error bars on fy
NL for PIXIE, calculated using the standard ΛCDM

value of ⟨y⟩ = 4.2 × 10−9. T ⊕E indicates the joint forecast using both temperature
and polarization. We accounted for correlations between T -y and E-y using the
covariance in eq. (4.31). In all the forecasts we marginalize over the amplitude of
every secondary source. z > 0.3 performs worse than PRISM mask because the
contribution to the total SZ signal coming from small (M < 1013 M⊙) clusters at
low (z < 0.3) redshift is smaller than that of bigger clusters at higher redshift.

1σ(f y
NL)

Mask T E T ⊕ E T ⊕ E, clean.
Unmasked 4900 3100 1700 1300
eROSITA 3200 1900 1100 680
PRISM 1000 630 380 300
z > 0.3 1700 1300 700 620

Table 4.3.: Same as table 4.2 but for PRISM.

In figure 4.4 we show our results as a function of ℓmax. It is clear not only that the
variance is completely dominated by the SZ power spectrum, but also that this effect
leads to very poor constraints on the primordial signal.

One way to tighten the constraints is to mask resolved clusters (see e.g [126, 211]),
eventually assuming the use of external surveys (e.g. X-ray surveys) to improve perfor-
mance. We will consider here eROSITA [222] as external survey, and also PRISM itself,
and investigate different types of masks, based on more or less futuristic scenarios, in
order to understand which level of masking guarantees a signal-to-noise ratio for f y

NL

similar to the one achieved for fµ
NL. Our results are summarized in table 4.2.

We model the effect of masking clusters by changing integration boudaries in the
SZ-SZ, SZ-T and SZ-E spectra, in order to exclude regions in the z-M plane where the
catalogue of a given experiment is complete [126]. This is a very conservative choice, as
in real catalogues a non-negligible part of resolved cluster actually sits in regions where
the catalogue is not complete. We have investigated 5 different masks:
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1σ(f y
NL)

Mask T E T ⊕ E T ⊕ E, clean.
Unmasked 2300 1400 1000 750
eROSITA 1700 1100 730 470
PRISM 400 220 160 130
z > 0.3 1000 710 470 400

Table 4.4.: Same as table 4.2 but for a cosmic-variance limited spectrometer instead of PIXIE,
and using ℓmax = 1000.
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Figure 4.5.: SZ power spectrum, for the different sky-masks defined in table 4.5. For com-
parison we also plot the PRISM noise level. PIXIE noise level is two orders of
magnitude bigger then the PRISM one.

• The vanilla “Unmasked” scenario.

• The one expected from the eROSITA predicted efficiency.

• The one expected from the PRISM predicted efficiency.

• A mask that cuts every cluster under z < 0.3 regardless of its size, used to compare
our results with [211], “z > 0.3”. This is also a futuristic scenario.

The adopted integration boundaries for the various cases are shown in table 4.5. In
figure 4.5 we compare the total (1-halo + 2-halo) SZ power spectra, obtained using
different masks. As shown, using PIXIE with the eROSITA mask, already guarantees a
f y

NL signal-to-noise ratio comparable with fµ
NL.
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Unmasked None
eROSITA M < 2 × 1014M⊙/h for z < 0.15
PRISM M < 1013M⊙h

−1

z > 0.3 z > 0.3

Table 4.5.: Integration boundaries that define the different masks we use.

Masking resolved clusters lowers the noise, but at the same time reduces the level
of sky coverage. We get a rough and conservative estimate of the available fraction of
the sky after cluster masking (fsky) in the following way. We consider the eROSITA and
estimate the number of masked clusters (< 1800) based on its expected performance [222].
We then assume that the redshift distribution of clusters is constant in redshift for
z ∈ [0.02, 0.15]; this is a conservative choice since the expected redshift distribution
increases rapidly with redshift in the considered range. Finally we assume that each
cluster has a size of 6 Mpc. This leads to a final estimate

fsky ≈ 1 − 1
0.13

∫ 0.15

0.02
dzπ(6 Mpc)2

4πD2
A(z)

× 1800 ≈ 0.7 , (4.29)

which will be included in our forecasts.

Adding polarization

We consider y-E contributions to the signal, by adapting equation (4.28) into:

Covℓ = 1
2ℓ+ 1

⎛⎜⎝ CEE
ℓ f y

NLC
yE
ℓ + αEC

SZE
ℓ + βEC

yreioE
ℓ

f y
NLC

yE
ℓ + αEC

SZE
ℓ + βEC

yreioE
ℓ Cyy,N

ℓ + C1h
ℓ + C2h

ℓ

⎞⎟⎠ .
(4.30)

The results we get after marginalizing over both αE and βE are shown in table 4.2.
For a PIXIE-like experiment, just replacing T with E tightens the constraints by more
than a factor 2. This comes from two effects. First, the signal-to-noise ratio for y-E is
intrinsically higher — just like, and for the same reason as µ-E. Second, marginalizing
over secondary signals do not degrades the constraint as much because the primordial
and the secondary signal are less correlated as shown in eq. (4.22).
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We now want to perform a joint analysis of y-T and y-E signals. In this case the
covariance is

(2ℓ+ 1)Covℓ =

=

⎛⎜⎜⎜⎜⎜⎝
CT T

ℓ CT E
ℓ f y

NLC
yT
ℓ + αTC

SZT
ℓ

CT E
ℓ CEE

ℓ f y
NLC

yE
ℓ + αEC

SZE
ℓ + βEC

yreioE
ℓ

f y
NLC

yT
ℓ + αTC

SZT
ℓ f y

NLC
yE
ℓ + αEC

SZE
ℓ + βEC

yreioE
ℓ Cyy,N

ℓ + C1h
ℓ + C2h

ℓ

⎞⎟⎟⎟⎟⎟⎠ .
(4.31)

The C
yreioE
ℓ contribution is very small and it has a very different slope than the

primordial signal, hence marginalizing over βE changes the final signal-to-noise ratio to a
percent level. For this reason in the joint forecast we fixed βE = 1. Moreover theoretical
uncertainties in the SZ-T and SZ-E correlations, which have been parametrized above
in terms of the amplitudes αT and αE, are entirely driven by errors in the prediction of
the y signal. Therefore, we can also assume α ≡ αT = αE and marginalize over α.

Our joint-analysis results are summarized in table 4.2 for PIXIE, in 4.3 for PRISM
and in 4.4 for an ideal cosmic-variance limited experiment. There we show how adding
polarization tightens the constraints both in the PIXIE and PRISM-like, and in the
cosmic-variance limited scenario by a factor between 2.1 and 3.8, depending on the
considered survey and mask.

Cross-correlation with external tracers

The dominant term in the variance, in all configurations and for both E and T , is the
SZ power spectrum. For this reason the only way to further enhance the signal-to-noise
ratio, at this stage, is to remove as much contamination from SZ as possible. Using
masks help significantly but, of course, cannot remove the significant contribution from
the background of unresolved clusters.

In order to lower the noise contribution coming from this unresolved background,
we consider here an approach based on statistical reconstruction of the SZ y-map, via
correlations with CMB and galaxy-lensing signals. To do this we adapt the method
studied in [243].
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In other words, the observed y-distortion is the sum of the primordial component,
the SZ component and the noise: yobs(n̂) = yp(n̂) + ySZ(n̂) + yN (n̂). Given the estimate
ŷSZ of ySZ, one can use yclean(n̂) ≡ yobs(n̂) − ŷSZ(n̂) in place of yobs(n̂).

We will start considering the CMB-lensing-potential, ϕ, as our SZ-tracer. Later we
will reapply the same procedure using the galaxy-lensing convergence field. The joint
probability density function of ySZ, ϕ, T, and E is

p(dℓ) = N (0,Aℓ), (4.32)

where N (µ,Cov) is the multivariate Normal distribution with mean µ and covariance
Cov, and we defined

Aℓ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CSZSZ
ℓ CSZϕ

ℓ CSZT
ℓ CSZE

ℓ

CSZϕ
ℓ Cϕϕ

ℓ CϕT
ℓ CϕE

ℓ

CSZT
ℓ CϕT

ℓ CT T
ℓ CT E

ℓ

CSZE
ℓ CϕE

ℓ CT E
ℓ CEE

ℓ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

⎛⎜⎝CSZSZ
ℓ Cℓ

CT
ℓ Bℓ

⎞⎟⎠ , dℓ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aSZ
ℓm

aϕ
ℓm

aT
ℓm

aE
ℓm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

⎛⎜⎝aSZ
ℓm

tℓm

⎞⎟⎠ .

(4.33)

The conditional probability distribution of the aSZ
ℓm given the measurement of ϕ, T , and

E is

p(aSZ
ℓm|tℓm) = N (CT

ℓ B−1
ℓ tℓm, C

SZSZ
ℓ − CT

ℓ B−1
ℓ Cℓ) . (4.34)

The expectation value of aSZ
ℓm then is

âSZ
ℓm = CT

ℓ B−1
ℓ tℓm . (4.35)

The probability distribution of aclean
ℓm = aobs

ℓm − âSZ
ℓm is

p(aclean
ℓm |tℓm) = N

(
−CT

ℓ B−1
ℓ tℓm, V ar(aobs

ℓm ) + V ar(âSZ
ℓm) − 2Cov(aobs

ℓm , â
SZ
ℓm)

)
. (4.36)

The covariance of aobs
ℓm and âSZ

ℓm can be computed using eq. (4.35) to write aSZ
ℓm in term of

the multipolar coefficients of the tracers. For our fiducial model fNL = 0 the only term
in aobs

ℓm that does contribute to the cross correlation is indeed aSZ
ℓm.

Note that the non-zero mean appearing in eq. (4.36) is due to the fact that we are
considering the probability of aclean

ℓm , conditional to the specific observed realization of tℓm
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in the sky. Of course, if one consider the expectation value over the ensemble of possible
realization, one recovers ⟨tℓm⟩ = 0 and therefore ⟨aclean

ℓm ⟩ = 0 as expected.

Note also that, neglecting temperature and polarization, eq. (4.35) simply becomes
âSZ

ℓm = (CϕSZ
ℓ /Cϕϕ

ℓ )aϕ
ℓm, as expected.

Using yclean(n̂) instead of yobs(n̂) leaves the numerator of eq. (4.31) unchanged. The
variance instead is modified, with the following replacement, which of course lowers the
overall SZ-noise contribution:

(C1h
ℓ + C2h

ℓ ) → ⟨(aSZ
ℓm − âℓm)2⟩ = (C1h

ℓ + C2h
ℓ ) − ⟨âSZ

ℓmâ
SZ
ℓm

′⟩. (4.37)

The structure of the 1-halo and 2-halo terms for the CMB lensing potential cross-
correlation with the SZ effect is the same as for the SZ power spectrum, reading [244]:

CSZϕ,1h
ℓ =

∫
dz d2V

dx dΩ

∫
dM dn

dM (z,M)|ỹℓ(z,M)ϕ̃ℓ(z,M)|

CSZϕ,2h
ℓ =

∫
dz d2V

dx dΩD
2
+(z)Pm(k)

[ ∫
dM dn

dM (z,M)b(z,M)a(z)ỹ3D(z,M, k)
]

×

×
[ ∫

dM dn
dM (z,M)b(z,M)a(z)ϕ̃3D(z,M, k)

]⏐⏐⏐⏐⏐
k=
(

ℓ+1/2
χ(z)

),
(4.38)

where ϕ̃3D(z,M, k) is the Fourier transform of the halo contribution to the projected
lensing potential,

ϕ̃ℓ(z,M) = 2
ℓ(ℓ+ 1)

4πrs,ϕ

ℓ2
s,ϕ

∫
dxx2j0

(
kx

ℓs

)
4πGχ(z)(χ∗ − χ(z))ρNFW(z,M, k)

c2χ∗(1 + z)
, (4.39)

rs,ϕ is the typical scale radius for ϕ̃3D(z,M, k) and ℓs,ϕ = a(z)χ(z)/rs,ϕ is the associated
multipole. One gets the CMB lensing potential power spectrum replacing the remaining
ỹℓ(z,M) with ϕ̃ℓ(z,M). We checked our spectra against those shown in [244], changing
our integration boundaries to match their choices, and we are in very good agreement
with them.

As discussed in [244] the correlation of SZ and ϕ is small (≈ 0.3 − 0.4) up to ℓ =
few × 103 so we might expect only a small improvement. As a zeroth-order approximation,
we can neglect T and E in eq. (4.35) and write âSZ

ℓm ≈ 0.4 × aSZ
ℓm. In this limit the relation
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in eq. (4.37) becomes

(C1h
ℓ + C2h

ℓ ) → (C1h
ℓ + C2h

ℓ ) − ⟨âSZ
ℓmâ

SZ
ℓm

′⟩ ≈ 0.84(C1h
ℓ + C2h

ℓ ). (4.40)

Therefore using CMB lensing as a tracer should provide a ≈ 10% improvement. Indeed the
numerical evaluation of the cross-correlations validates this back-of-the-envelope estimate.

The second tracer we investigate is the galaxy-lensing convergence field. Its cross
correlation with the SZ effect can again be computed by replacing, in eq. (4.38), ϕ̃ℓ(z,M)
with [245,246]

κ̃ℓ(z,M) = 4πrs,κ

ℓ2
s,κ

∫
dxx2j0

(
kx

ℓs,κ

)
4πGg(z)ρNFW(z,M, k)

c2(1 + z)
, (4.41)

where rs,κ is the typical scale radius of the lensing potential of the halo and ℓs =
a(z)χ(z)/rs,κ, and we defined

g(z) ≡
∫ ∞

χ(z)
dχ′χ(z)[χ′ − χ(z)]

χ′ pS(χ′), (4.42)

where pS is the redshift distribution of the sources. Again, one gets the power spectrum
replacing the remaining ỹℓ(z,M) with κ̃ℓ(z,M).

In this case, due to the higher correlation between the SZ effect and the galaxy
lensing, the cleaning procedure performs better than with the CMB lensing. However
the signal-to-noise ratio achieved with this procedure alone is still smaller than the S/N
achievable via direct cluster masking. The optimal way to proceed is therefore to adopt
the two approaches in combination. This can be done by reconstructing the ŷSZ(n̂) map
using tracers as discussed; then the resolved clusters can be masked in both the yobs(n̂)
and the ŷSZ(n̂) maps. The yclean(n̂) masked map is then obtained by difference.

We model this procedure in our forecast by changing the integration boundaries of
all the integrals involving at least one power of ỹℓ(z,M) as discussed in subsection 4.1.4.
The integrals involving only powers of κ̃ℓ(z,M) (e.g. the second square bracket in the
2-halo term, eq. (4.38)) are left unmodified as the mask is applied to the reconstructed
ŷSZ(n̂) map, and not to the input lensing map. The final results are shown in table 4.2,
for PIXIE, in table 4.3 for PRISM and in table 4.4, for an ideal survey.
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Considering PIXIE, the forecasted signal-to-noise ratio quickly saturate when using
more and more futuristic masks in combination with galaxy lensing, because the SZ
power spectrum becomes rapidly sub-dominant with respect to the PIXIE noise. In
the cosmic-variance limited case, however, SZ remains by far the dominant source of
noise, even after cleaning, and makes y-based constraints much worse than µ-based one.
Nonetheless it is important to stress again that y and µ probe very different scales, and
thus add complementary information.

The measurement of f y
NL that PRISM will achieve, contrary to PIXIE, will not

be significantly limited by instrumental noise. In fact the signal-to-noise ratio for
PRISM is effectively the same of a cosmic-variance limited experiment. This constraint
(1σ(f y

NL) = 260 for PRISM) might not appear significant compared with the current
bound set by Planck (fNL = 0.6 ± 5.0, 68% C.L.) at first glance. However if one consider
that fNL might have a running, its importance change considerably. For example, if we
consider a primordial bispectrum of the form [247]

B(k1, k2, k3) ∝ f ∗
NL

[
P (k1)P (k2)

(
k3

k∗

)nNG

+ 2 perm.
]
, (4.43)

and use 1σ upper bounds f ∗
NL = 5, nNG = 1, consistent with current observations [248],

we would expect f y
NL ≈ 700 on the y-scales, way above the detectability limit. It is worth

noticing that in [237] it has been shown that nNG ̸= 0 would also enhance the average
distortion and thus lead to an additional improvement of the sensitivity, making our point
even stronger. Even though the bispectrum in eq. (4.43) is theoretically well-motivated,
it has to be considered here just as a toy-model, because we made a choice of values
of the parameters that might be outside the range of validity of the model itself. The
point here is just to use a phenomenological, toy-model shape, just to show in a simple,
quantitative way how y-constraints are useful, even if they turn out 2 orders of magnitude
worse than current T , E bispectrum bounds.

Of course one may argue that the same holds, even more so, for fµ
NL on the µ-scales,

but to avoid pathologically large non-Gaussianity on the smallest scales, the increasing
trend has to stop somewhere. Therefore it is again important to study both the y- and
the µ-scales.
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4.1.5. Discussion

In this section we investigated in detail the effects of including CMB polarization in
NG studies of cross-correlation between CMB primary anisotropies and µ- and y-CMB-
distortions. Including the previously unaccounted y-E spectrum, besides adding new
signal, has the important advantage of making the primordial NG analysis more robust,
since it removes the large bias arising from the ISW-SZ contribution in the y-T spectrum.
Potential spurious contamination in the primordial y-E signal can come from reionization,
but this turned out to be negligible after a complete numerical analysis at second order
in the perturbations. In addition to considering y-E spectra, we also studied in detail
how to reduce SZ contamination, thus lowering the overall noise contribution, considering
two approaches. The former, already considered in previous works [126,211], consists in
masking low-redshift clusters, detected via X-ray surveys. To this, we add the exploitation
of cross-correlation with external tracers, namely CMB and galaxy lensing, as a way
to partially reconstruct the y contribution from unresolved clusters. The template
so-obtained is then used to clean the y-map from the remaining unresolved contribution.

Using this procedure, we obtain f y
NL forecasts for PIXIE, PRISM, and for an ideal

cosmic-variance limited experiment. In all cases we find that including y-E leads to
improvements in the f y

NL constraint by a factor between 2.1 and 3.8, depending on the
considered survey and mask. A further error bar improvement of order 25% is expected
from external-tracer cross-correlation and template cleaning. Our final forecasts are
then 1σ(f y

NL) = 2300 for PIXIE, 1σ(f y
NL) = 300 for PRISM and 1σ(f y

NL) = 130 for the
cosmic-variance limited case, thus improving the previous estimates by an overall factor
between 2.5 and 4.4.

It is clear that, even in the ideal scenario, fNL constraints based on y are very
poor when compared to current Planck bispectrum measurements. For the cosmic-
variance limited case, the errors achievable using µ, 1σ(fµ

NL) = 0.55×10−3, are also
orders of magnitude smaller than those achievable using y. This is due to residual
SZ contamination, still significant even after masking and template reconstruction and
cleaning. Nevertheless, two things are worth noticing: first, the constrains on f y

NL and
fµ

NL achievable with a realistic (not cosmic variance-limited) survey design (e.g. PIXIE,
PRISM) are comparable.

Second, and most important, the main goal we consider here is to test NG scale-
dependence. In this respect, f y

NL measurements are very interesting, even with all the
limitations imposed by SZ contamination, because they open a new window on an
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otherwise inaccessible range of scales: a simple example to illustrate this point is provided
by the bispectrum toy model, characterized by an fNL-running parameter, considered at
the end of Section 4.1.4.
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Conclusions

In this thesis I investigated various methods to determine the physical properties of the
primordial perturbation field, that might go beyond the most minimal model of Gaussian
adiabatic density perturbations with a power-law primordial power spectrum.

Primordial power spectrum reconstruction. In Section 3.1 we have built on the
work of [143,144] to reconstruct the PPS with a minimally parametric approach, using
the cross-validation technique as the smoothness criterion. The analysis is based on a
comprehensive set of state-of-the art cosmological data including probes of the Cosmic
Microwave Background, and of large scale structure via gravitational lensing and galaxy
redshift surveys.

We found that there is no evidence for deviations from a power law PPS, and that
errors of the reconstructed PPS are comparable with errors obtained with a power law fit.
In fact with current data a scale-invariant power spectrum is highly disfavoured even with
this minimally parametric reconstruction. Because of its flexibility, our reconstruction
would be able to detect the tell-tale signature of small scale power suppression induced by
free streaming of neutrino if they are sufficiently massive.3 However, our reconstruction
detects no such signature, ruling out a model with a power law PPS and sum of neutrino
masses of 0.2 eV or larger.

Overall our results, which recover in a model independent way a power law power
spectrum with a small but highly significant red tilt, offer a powerful confirmation of
the inflationary paradigm, justifying adoption of the inflationary prior in cosmological
analyses.

3Of course the suppression would happen in the late-time power spectrum, not in the primordial one.
However, since we do not include the effect of neutrino masses in the matter transfer function, the
reconstruction would recover an “effective” small scale damping.
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Compensated isocurvature perturbations. In Section 3.2 I discussed the viability
of using cross correlations of y-distortion anisotropies with primary anisotropies to
constrain compensated isocurvature perturbations. We provided a new framework to
calculate the y-distortions that arise at first order in perturbation theory, and derived its
evolution equation. As it turns out, it is directly proportional to baryon isocurvature
perturbations. This implies that, since it is not affected by cold dark matter isocurvature
perturbation, it can be in principle used to detect CIPs. We produced a forecast for
the upper bounds on correlated CIPs for different future observational projects, keeping
in consideration the contamination due to SZ effect, but neglecting other foregrounds.
Even in this idealized scenario, a signal can be detected only in the presence of CIPs
with unnaturally high amplitude. For instance, f ′ < 2 × 105 at 68% C.L. is obtained for
LiteBIRD, while f ′ < 5 × 104 for PRISM, and f ′ < 2 × 104 for a cosmic variance limited
survey. As we have shown, the fundamental limit is set by the noise contribution due to
the SZ powerspectrum.

Primordial non-Gaussianity. In Section 4.1 I developed a set of measures that can
be employed to use y-distortions to constrain primordial non-Gaussianity. I investigated
in detail the effects of including CMB polarization in NG studies of cross-correlation
between CMB primary anisotropies and µ- and y-CMB-distortions, that besides adding
new signal, has the important advantage of making the primordial NG analysis more
robust, since it removes the large bias arising from the ISW-SZ contribution in the
y-T spectrum. In addition to considering y-E spectra, we also studied in detail how
to reduce SZ contamination, thus lowering the overall noise contribution, masking low-
redshift clusters and exploiting cross-correlation with external tracers, to reconstruct
the y contribution from unresolved clusters, and remove it from the analysed maps.
Using this procedure, we obtain f y

NL forecasts for PIXIE, PRISM, and for an ideal
cosmic-variance limited experiment. Our final forecasts are then 1σ(f y

NL) = 2300 for
PIXIE, 1σ(f y

NL) = 300 for PRISM and 1σ(f y
NL) = 130 for the cosmic-variance limited

case, thus improving the previous estimates by an overall factor between 2.5 and 4.4.



Appendix A.

Useful mathematical relation
involving spherical functions

A.1. Spherical Harmonics

The spherical harmonics are an orthonormal basis of functions defined on the sphere.
They are usually defined as

Yℓm(n̂) ≡ Yℓm(θ, ϕ) ≡

√2ℓ+ 1
4π

(ℓ−m)!
(ℓ+m)!P

m
ℓ (cos θ)eimϕ , (A.1)

where Pm
ℓ (x) is the associate Legendre polynomial, defined through derivatives of the

Legendre polynomials as

Pm
ℓ (x) ≡ (−1)m(1 − x2)m/2 dm

dxmPℓ(x) . (A.2)

As anticipated, the spherical harmonics are orthonormal
∫

d2 n̂Yℓm(n̂)Y ∗
ℓ

′
m

′(n̂) = δℓℓ
′ δmm

′ , (A.3)

and have a definite parity for a given ℓ

Yℓm(−n̂) = (−1)ℓYℓm(n̂) , (A.4)
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and under rotations they transform with a spin-weighted spherical harmonics1

Yℓm(n̂′) =
ℓ∑

m
′=−ℓ

⎡⎣(−1)−m

√
4π

2ℓ+ 1 m
′Yℓ−m(α, β)e−im

′
γ

⎤⎦∗

Y m
′

ℓ (n̂) , (A.5)

where α, β and γ are the rotation Euler angles.

By explicit calculation of the right hand side we can show that

q̂1 · q̂2 = 4π
3

1∑
m2=−1

Y
m2∗

1 (q̂1)Y m2
1 (q̂2) . (A.6)

When dealing with the projection of 3D fields on a sphere, it is often useful to expand
plane waves as a sum of spherical harmonics using

eix·k = 4π
∑
ℓm

iℓjℓ(kx)Yℓm(k)Y ∗
ℓm(x) , (A.7)

and to express the Dirac delta the Rayleigh expansion, that immediately follows from
eq. (A.7)

δ(3)
(

n∑
i=1

ki

)
= (4π)n

∫
dx x2

∫
d2x̂

n∏
i=1

⎡⎣∑
ℓimi

jℓi
(kir)Yℓimi

(x̂)Y ∗
ℓimi

(k̂i)
⎤⎦ . (A.8)

∫
d2x̂Y ∗

ℓm(x̂)Pℓ
′(x̂ · k̂) = δℓℓ

′
4π

2ℓ+ 1Yℓm(k̂) . (A.9)

A.2. Wigner 3-j symbols

The Wigner 3-j symbols are defined in terms of Clebsch-Gordan as
⎛⎜⎝ ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞⎟⎠ = (−1)ℓ1−ℓ2−m3

√
2ℓ3 + 1

⟨ℓ1 m1 ℓ2 m2|ℓ3 −m3⟩ . (A.10)

1We do not define spherical harmonics here, as their analytic expression is not very illuminating. We
notice however that a spin 0 spherical harmonic is a normal spherical harmonic.
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This relation can be inverted to find

⟨ℓ1 m1 ℓ2 m2|ℓ3 m3⟩ = (−1)−ℓ1+ℓ2−m3
√

2ℓ3 + 1

⎛⎜⎝ ℓ1 ℓ2 ℓ3

m1 m2 −m3

⎞⎟⎠ . (A.11)

Selection rules The 3j-symbols are non-vanishing if and only if

|mi| ≤ ℓi i = 1, 2, 3 , (A.12)

m1 +m2 +m3 = 0 , (A.13)

|ℓ1 − ℓ2| ≤ ℓ3 ≤ |ℓ1 + ℓ2| . (A.14)

Symmetries The 3j-symbols are symmetric under even permutations of the columns
⎛⎜⎝ ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞⎟⎠ =

⎛⎜⎝ ℓ3 ℓ1 ℓ2

m3 m1 m2

⎞⎟⎠ =

⎛⎜⎝ ℓ2 ℓ3 ℓ1

m2 m3 m1

⎞⎟⎠ . (A.15)

whereas they gain a ± 1 factor under odd permutations of the column, as follows
⎛⎜⎝ ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞⎟⎠ = (−1)ℓ1+ℓ2+ℓ3

⎛⎜⎝ ℓ2 ℓ1 ℓ3

m2 m1 m3

⎞⎟⎠ , (A.16)

or if the m coefficients signs are reversed
⎛⎜⎝ ℓ1 ℓ2 ℓ3

−m1 −m2 −m3

⎞⎟⎠ = (−1)ℓ1+ℓ2+ℓ3

⎛⎜⎝ ℓ2 ℓ1 ℓ3

m2 m1 m3

⎞⎟⎠ , (A.17)

Orthogonality relations

∑
M1 M2

⎛⎜⎝ ℓ1 ℓ2 ℓ

M1 M2 m

⎞⎟⎠
⎛⎜⎝ ℓ1 ℓ2 ℓ′

M1 M2 m′

⎞⎟⎠ = δm
′

m δℓ
′

ℓ

2ℓ+ 1
{
ℓ1 ℓ2 ℓ3

}
, (A.18)
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where the triangular delta {ℓ1 ℓ2 ℓ3} = 1 if and only if the triangle condition |ℓ1 − ℓ2| ≤
ℓ3 ≤ |ℓ1 + ℓ2| holds, and is 0 otherwise.

∑
LM

(2L+ 1)

⎛⎜⎝ ℓ1 ℓ2 L

m1 m2 M

⎞⎟⎠
⎛⎜⎝ ℓ1 ℓ2 L

m1 m2 M

⎞⎟⎠ = δm
′
1

m1 δ
m

′
2

m2 (A.19)

Relation with spin weighted spherical harmonics∫
d2x̂ s1Yℓ1m1(x̂) s2Yℓ2m2(x̂) s3Yℓ3m3(x̂) =

=(−1)m1+s1

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

⎛⎜⎝ ℓ1 ℓ2 ℓ3

−s1 −s2 −s3

⎞⎟⎠
⎛⎜⎝ ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞⎟⎠
(A.20)

Useful relations

∑
m

(−1)ℓ−m

⎛⎜⎝ ℓ ℓ L

m −m 0

⎞⎟⎠ =
√

2ℓ+ 1δ0
L (A.21)

A.3. Wigner 6-j symbols

Wigner 6-j symbols are defined in term of sum of products of 3-j symbol
⎧⎪⎨⎪⎩
ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

⎫⎪⎬⎪⎭ =
∑

m1,··· ,m6

(−1)
∑

i
(ji−mi)

⎛⎜⎝ ℓ1 ℓ2 ℓ3

−m1 −m2 −m3

⎞⎟⎠
⎛⎜⎝ ℓ1 ℓ5 ℓ6

m1 −m5 m6

⎞⎟⎠ ×

×

⎛⎜⎝ ℓ4 ℓ2 ℓ6

m4 m2 −m6

⎞⎟⎠
⎛⎜⎝ ℓ4 ℓ5 ℓ3

−m4 m5 m3

⎞⎟⎠
(A.22)
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A.4. Spherical Bessel functions

It has been shown in [241] that

I(L1, L2, L3, q1, q2, k) ≡
∫
x2 dxjL1(xq1)jL2(xq2)jL(xk1) =

=πβ(∆)
4q1q2k

iL1+L2−L
√

2L+ 1
(
q1

k

)L
⎛⎜⎝L1 L2 L

0 0 0

⎞⎟⎠
−1

L∑
L=0

⎛⎜⎝2L

2L

⎞⎟⎠
1/2 (

q2

q1

)L∑
l

(2l + 1)

⎛⎜⎝L1 L− L l

0 0 0

⎞⎟⎠
⎛⎜⎝L2 L l

0 0 0

⎞⎟⎠
⎧⎪⎨⎪⎩
L1 L2 L

L L− L l

⎫⎪⎬⎪⎭Pl(∆) .

(A.23)

The triangular condition over the three momenta is enforced by β(x) = θH(1−x)θH(1+x),
where ∆ = q

2
1+q

2
2−k

2

2q1q2
and θH(x) is the modified Heaviside function.

In the case L1 = L2 = L = 0 the expression simplifies noticibly as we have

∫
dx x2j0(k1x)j0(k2x)j0(k3x) =

∫
dxsin(k1x) sin(k2x) sin(k3x)

k1k2k3x
=

= 1
4k1k2k3

∫
dx
{

sin[(k1 + k2 − k3)x]
x

+ sin[(k2 + k3 − k1)x]
x

+sin[(k3 + k1 − k2)x]
x

− sin[(k1 + k2 + k3)x]
x

}
=

=π (σ(k1 + k2 − k3) + σ(k2 + k3 − k1) + σ(k3 + k1 − k2) − σ(k1 + k2 + k3))
8k1k2k3

.

(A.24)

where σ(x) = x/|x| is the sign of x.



152



Colophon

This thesis was made in LATEX 2ε using the “hepthesis” class [249].
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