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Abstract 

Abstract 

Collagen VI is an extracellular matrix (ECM) molecule dynamically expressed in a 

variety of tissues, including peripheral nerves and skin. However, the role of collagen 

VI in the peripheral nervous system (PNS) and hair follicle growth is yet unknown. 

The main focus of my PhD study was to investigate the role and the underlying 

mechanisms of collagen VI in peripheral nerve myelination and function, in PNS 

regeneration, as well as in wound-induced hair growth. 

During the first year of my PhD, I focused on investigating the phenotype of 

peripheral nerve myelination and function in collagen VI null (Col6a1
–/–

) mice. The 

data shows that Schwann cells, but not axons, contribute to collagen VI deposition in 

peripheral nerves. Lack of collagen VI in Col6a1
–/–

 mice leads to hypermyelination 

via multiple signaling pathways, disorganized C-fibers in the PNS, impaired nerve 

conduction velocity, and sensorimotor dysfunction. These findings indicate that that 

collagen VI is a critical component of PNS contributing to the structural integrity and 

proper function of peripheral nerves. 

The second part of my PhD work focused on investigating the role of collagen VI in 

PNS under pathological conditions using nerve crush injury models, and revealed a 

novel mechanism of this ECM protein in modulating macrophage function. The 

results show that collagen VI is critical for macrophage migration and polarization 

during peripheral nerve regeneration. Nerve injury induces a robust upregulation of 

collagen VI, whereas lack of collagen VI in Col6a1
–/–

 mice delays peripheral nerve 

regeneration. In vitro studies demonstrated that collagen VI promotes macrophage 

migration and polarization via AKT and PKA pathways. Col6a1
–/–

 macrophages 

exhibit impaired migration abilities and reduced anti-inflammatory (M2) phenotype 

polarization, but are prone to skewing towards pro-inflammatory (M1) phenotype. In 
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Abstract 

vivo, macrophage recruitment and M2 polarization are impaired in Col6a1
–/–

 mice 

after nerve injury. The delayed nerve regeneration of Col6a1
–/–

 mice is induced by 

macrophage deficits and rejuvenated by transplantation of wild-type bone marrow 

cells. These results identify collagen VI as a novel regulator for peripheral nerve 

regeneration by modulating macrophage function.  

In the last year of my PhD I moved my focus to skin homeostasis and investigated the 

role of collagen VI in wound-induced hair regrowth. The data shows that collagen VI 

is strongly deposited in hair follicles, and it is dramatically upregulated by skin 

wounding. Lack of collagen VI in Col6a1
–/–

 mice promotes wound-induced hair 

regrowth, but does not affect skin regeneration. Conversely, addition of purified 

collagen VI rescues the abnormal wound-induced hair regrowth in Col6a1
–/–

 mice. 

Mechanistic studies revealed that the increased wound-induced hair regrowth of 

Col6a1
–/–

 mice is triggered by upregulation of Keratin 79 and activation of the Wnt/-

catenin signaling pathway, and is abolished by inhibition of the Wnt/-catenin 

pathway. These findings highlight the essential relationships between ECM and hair 

follicle regeneration, and point at collagen VI as a potential therapeutic target for hair 

loss. 

Altogether, the data I obtained during my PhD studies strongly support a key role of 

collagen VI in peripheral nerves and wound-induced hair follicle growth, thus paving 

the way for future studies on ECM molecules in PNS and skin under physiological 

and pathological conditions. 
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Riassunto 

Riassunto 

Il collagene VI è una proteina della matrice extracellulare (MEC), espressa in 

un’ampia varietà di tessuti, inclusi i nervi periferici e la pelle. La funzione del 

collagene VI nel sistema nervoso periferico (SNP) e nel follicolo pilifero rimane 

tuttavia ancora sconosciuta. L'obiettivo principale del mio studio di dottorato è stato 

quindi, quello di indagare il ruolo del collagene VI nella mielinizzazione dei nervi 

periferici ed i meccanismi molecolari con cui ne regola la funzione e la rigenerazione 

in seguito a danno, così come nella rigenerazione pilifera indotta da ferita. 

Durante il primo anno di dottorato, mi sono concentrato sullo studio del processo di  

mielinizzazione e sulla funzione dei nervi periferici in topi Col6a1
–/–

, privi di 

collagene VI. I dati dimostrano che le cellule di Schwann, ma non il comparto 

neuronale, contribuiscono alla deposizione del collagene VI nei nervi periferici. In 

assenza della proteina, si osservano ipermielinizzazione, causata dalla dis-regolazione 

di diversi meccanismi di segnalazione molecolare, disorganizzazione delle fibre di 

tipo C, deficits nella velocità di conduzione nervosa e nelle funzioni sensoriali e 

motorie. Questi risultati indicano che il collagene VI è un componente critico nel  

SNP, che contribuisce alla integrità strutturale e al corretto funzionamento dei nervi 

periferici. 

La seconda parte del mio lavoro di dottorato è incentrata sullo studio del ruolo del 

collagene VI nel SNP in condizioni patologiche, sfruttando un modello di lesione 

nervosa. Ciò ha rivelato un nuovo ruolo di questa proteina della MEC nel modulare la 

funzione dei macrofagi. I risultati mostrano che il collagene VI è fondamentale per la 

migrazione e la polarizzazione dei macrofagi durante la rigenerazione dei nervi 

periferici. La lesione del nervo induce una notevole over-espressione del collagene VI, 

mentre in assenza della proteina, nei topi Col6a1
–/–

 si osserva un ritardo nella 

rigenerazione. Studi in vitro hanno dimostrato che il collagene VI promuove la 

migrazione e la polarizzazione dei macrofagi per mezzo di AKT e PKA. Macrofagi 

derivati da topi Col6a1
–/–

 presentano ridotte capacità di migrazione e di 

polarizzazione verso il fenotipo anti-infiammatorio (M2), mentre risultano inclini al 

fenotipo pro-infiammatorio (M1). Anche in vivo, il reclutamento dei macrofagi e la 

polarizzazione in senso M2 appaiono compromesse in topi Col6a1
–/– 

post-lesione. La 

rigenerazione dei nervi periferici è ritardata nei topi Col6a1
–/–

, a causa dei deficit a 
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carico dei macrofagi, ma è recuperata in seguito a trapianto di cellule wild-type del 

midollo osseo. Questi risultati identificano il collagene VI come componente 

fondamentale nella regolazione della rigenerazione del nervo periferico modulando la 

funzione dei macrofagi. 

Nell'ultimo anno del mio dottorato la mia attenzione si è focalizzata sull’omostasi 

della pelle, studiando il ruolo del collagene VI nella ricrescita del pelo in seguito a 

lesione. I dati mostrano che il collagene VI è depositato ampiamente nei follicoli 

piliferi, ed è drammaticamente up-regolato in seguito a lesione della pelle. In assenza 

di collagene VI, in topi Col6a1
–/–

, la ricrescita del pelo appare favorita in seguito a 

lesione, senza che vi sia alcuna influenza sulla rigenerazione della pelle. Inoltre 

l’iniezione in loco di collagene VI purificato, riduce l’anomala ricrescita del pelo 

post-lesione in topi Col6a1
–/–

. Studi meccanicistici hanno rivelato che l'aumento della 

ricrescita del pelo in assenza di collagene VI è innescato dall’up-regolazione della 

cheratina-79 e dall'attivazione della via di segnalazione di Wnt/-catenina, e 

l’inibizione esercitata dal collagne VI purificato, agisce sulla stessa via Wnt/-

catenina. Questi risultati evidenziano il rapporto essenziale tra la MEC e la 

rigenerazione del follicolo pilifero, e puntano al collagene VI come un potenziale 

bersaglio terapeutico per la perdita dei capelli. 

Complessivamente, i dati che ho ottenuto durante gli studi di dottorato sostengono con 

forza un ruolo chiave del collagene VI nei nervi periferici e nella rigenerazione del 

follicolo pilifero in seguito a lesione, aprendo così la strada a futuri studi su altri 

componenti della MEC nel SNP e nella pelle in condizioni fisiologiche e patologiche.
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Chapter 1: Literature review 

1.1 Collagens 

Collagens are a large family of extracellular matrix (ECM) proteins in animals that are 

widely distributed throughout the body (Kadler et al., 2007). So far, 28 collagen types 

have been identified in vertebrates (Exposito et al., 2010; Ferreira et al., 2012). 

According to the different structures and functions, collagens can be classified into 

distinct subgroups, including fibril-forming collagens (types I, II, III, V, XI, XXIV 

and XXVII) (Exposito et al., 2010), networking collagens (types IV, VI, VIII and X) 

(Gonzalez-Perez et al., 2013; Ricard-Blum and Ruggiero, 2005), fibril associated 

collagens with interrupted triple helices (types IX, XII, XIV, XVI, XIX, XX, XXI, 

XXII and XXVI) (Ricard-Blum and Ruggiero, 2005), transmembrane collagens (types 

XIII, XVII, XXIII and XXV) (Gonzalez-Perez et al., 2013; Ricard-Blum and 

Ruggiero, 2005; Franzke et al., 2005), and other collagens (types VII, XV, XVIII and 

XXVIII). Fibril-forming collagens are the most abundant and conserved types and 

they are produced by connective tissue cells, such as fibroblasts, osteoblasts and 

chondrocytes (Exposito et al., 2010). These collagens are typically made of -chains 

containing a large triple helical domain with about 1,000 amino acids, flanked by N- 

and C-terminal domains (Chernousov et al., 2008; Exposito et al., 2010). Fibril 

associated collagens interact with other ECM molecules, and play an essential role for 

the stabilization and integrity of ECM (Ricard-Blum and Ruggiero, 2005). 

Networking collagens are grouped due to their ability to form networks in the 

extracellular space, and they represent major basement membrane components 

integrating laminins, nidogen, perlacan and other ECM molecules into stable 

superstructural aggregates (Koopmans et al., 2009; Hudson et al., 1993). 

Transmembrane collagens contain a transmembrane domain, which allows them to 
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participate in the formation of cell-matrix interactions and in ECM remodeling 

(Franzke et al., 2005). 

Despite high structure and function diversities among different collagen types, all 

members of collagen family share some common characteristics (Koopmans et al., 

2009; Kadler et al., 2007). For instance, all collagens are made of three -chains 

capable to form triple helical conformations of variable lengths (Koopmans et al., 

2009; Kadler et al., 2007). Each chain is characterized by the presence of a 

collagenous domain containing repeated Gly-Xaa-Yaa amino acid triplets, where Xaa 

and Yaa are frequently proline and 4-hydroxyproline, respectively (Koopmans et al., 

2009; Kadler et al., 2007). Collagens can assemble as homotrimers containing three 

identical -chains, or as heterotrimers containing two or even three different-chains 

(Kadler et al., 2007). A large body of studies have shown that collagens exhibit a 

broad range of functions, including cell adhesion, migration and proliferation; 

angiogenesis, cancer development and progression; as well as tissue scaffolding, 

morphogenesis and repair (Kadler et al., 2007). 

1.2 Collagens and peripheral nerve myelination 

Myelination is an important physiological process in peripheral nerves, where it is 

provided by Schwann cells. Derived from the embryonic neural crest, Schwann cells 

differentiate into myelinating or non-myelinated cells (Jessen and Mirsky, 2005; Kidd 

et al., 2013). In the adult peripheral nerves, myelin is produced by myelinating 

Schwann cells, which envelop larger axons at a 1:1 ratio, whereas non-myelinating 

Schwann cells are linked to C-fibers (Chen et al., 2014; Murinson et al., 2005; Faroni 

et al., 2014). Abnormal myelination in the peripheral nervous system is related to a 

number of neurological disorders, such as hereditary neuropathy with liability to 

pressure palsies, Charcot-Marie-Tooth disease, Dejerine-Sottas syndrome, congenital 
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hypomyelinating neuropathy and adrenomyeloneuropathy (Pujol et al., 2002; Chance, 

1999; Sander et al., 1998; Warner et al., 1996; Timmerman et al., 2014). Thus proper 

myelination is critical for peripheral nerves and is tightly regulated by multiple signals, 

including ECM (Pereira et al., 2012; Kidd et al., 2013). Collagens are an essential 

component of Schwann cell ECM and play an important role in ECM assembly and 

peripheral nerve regeneration (Gao et al., 2013; Cerri et al., 2014). In vitro studies 

using primary cultures of Schwann cells and Schwann cell/dorsal root ganglion (DRG) 

co-cultures have demonstrated that the secretion of native collagens and the assembly 

of fibrillar and basement membrane ECM structures fail when cells are cultured 

without ascorbic acid, an essential factor for collagen post-translational modifications. 

Furthermore, addition of ascorbic acid promotes the deposition of ECM in Schwann 

cell plasma membrane (Chernousov et al., 1998; Chernousov et al., 2008) and is 

essential for in vitro myelination in Schwann cell/DRG co-cultures (Eldridge et al., 

1987; Olsen and Bunge, 1986). Sodium-dependent vitamin C transporter 2 (SVCT2) 

is necessary for the transport of ascorbic acid into Schwann cells (Gess et al., 2010) 

and into the brain (Angelow et al., 2003). Deficiency of SVCT2 leads to 

hypomyelination, as well as to impairments of nerve conduction velocities (NCVs) 

and sensorimotor function, by decreasing the deposition of ECM components such as 

collagen types IV, V and XXVIII (Gess et al., 2011). These findings highlight the 

contribution of collagens in peripheral nerve myelination and function, which is also 

supported by the evidence that collagens can stimulate signal transduction in Schwann 

cells. Schwann cells not only express and secrete multiple collagen molecules both in 

cell culture and in vivo (Chernousov et al., 2008; Chen et al., 2014; Chernousov et al., 

1999; Veit et al., 2006), but also express several types of collagen receptors 

(Chernousov et al., 2008; Chernousov et al., 1999; Erdman et al., 2002; Rothblum et 

al., 2004; Chernousov et al., 2006; Veit et al., 2006), and migrate on and adhere to 
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collagen substrates (Chernousov et al., 2008; Chernousov et al., 2001). By means of 

binding to their receptors on the cell surface, collagens play an important role in the 

regulation of Schwann cell function and myelination (Chernousov et al., 2008; Milner 

et al., 1997; Stewart et al., 1997; Pereira et al., 2012; Feltri et al., 2002). 

A number of studies demonstrated that several types of collagens (such as IV, V and 

XV) play an important role in regulating Schwann cell function, myelination and 

peripheral nerve function. For example, collagen IV can promote the attachment and 

spreading of Schwann cells through a mechanism that is mediated by 11 and 21 

integrins (Detrait et al., 1999), as well as enhance Schwann cell proliferation in vitro 

(Dreesmann et al., 2009). Moreover, in vivo findings obtained from Trembler-J mice, 

an animal model for Charcot-Marie-Tooth disease, demonstrate that these mice 

display alterations in Schwann cell structure and ECM organization of peripheral 

nerves. Interestingly, this animal model exhibits high levels of macrophage-derived 

matrix metalloproteinases, thus inducing the decrease of collagen IV deposition in 

nerves (Misko et al., 2002). In addition, clinical findings show that the expression of 

collagen IV is enhanced in the peripheral nerves of patients who were diagnosed as 

having myelin-related neuropathies, such as multiple sclerosis (Acar et al., 2004), 

Charcot-Marie-Tooth type 1 (Palumbo et al., 2002) and diabetic polyneuropathy 

(Bradley et al., 2000). Collectively, these findings suggest that collagen IV may 

function as an important regulator involved in modulating myelination, and may 

contribute to the onset of myelin-related peripheral neuropathies. 

Collagen V is a minor component of collagen fibrils that is composed of three 

polypeptide chains, 1(V), 2(V) and 3(V) (Niyibizi and Eyre, 1994; Mizuno and 

Hayashi, 1996). Some studies identified a collagen-like adhesive protein of 200 KDa 

(called p200) that binds with high affinity to the cell surface heparan sulfate 
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proteoglycan syndecan-3 and that is only found in the ECM surrounding Schwann 

cells-axon units of developing sciatic nerves (Chernousov et al., 1996; Chernousov et 

al., 1999). Subsequent work recognized p200 as a novel isoform of collagen V, named 

4(V) collagen (Chernousov et al., 2000), however further studies focused on the 

cloning of the same gene from mouse and human demonstrated that p200 corresponds 

to α3(V) collagen (Chernousov et al., 2008; Imamura et al., 2000). α3(V) collagen 

can promote the adhesion and spreading of Schwann cells (Chernousov et al., 1996), 

increase the migration of premyelinating Schwann cells and inhibit the outgrowth of 

axons from DRG (Chernousov et al., 2001). In mature myelinating Schwann cell-

axon units, 3(V) collagen and its receptor syndecan-3 are highly concentrated at the 

nodes of Ranvier, which are structures strongly regulated by myelinating glia 

(Melendez-Vasquez et al., 2005). Genetic studies also show that siRNA mediated 

suppression of 3(V) collagen significantly inhibits Schwann cell myelination in vitro 

(Chernousov et al., 2006). Altogether, these findings not only provide direct evidence 

supporting the role of 3(V) collagen in Schwann cell adhesion, spreading and 

migration, but also suggest the potential role of this protein in regulating peripheral 

nerve myelination. 

Collagen XV is widely distributed in the basement membranes of different tissues 

(Clementz and Harris, 2013; Li et al., 2000). Immunostaining studies demonstrated 

that collagen XV is deposited in the endoneurium and perineurium of adult peripheral 

nerves (Muona et al., 2002), and in the extrasynaptic and Schwann cell basement 

membranes of neuromuscular junction (Muona et al., 2002), suggesting a potential 

role for collagen XV in the development and functional properties of peripheral 

nerves. Indeed, genetic studies in Col15a1
–/–

 mice showed that lack of collagen XV 

causes polyaxonal myelination, loosely packed axons in C-fibers and less electron 
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dense cytoplasm in Schwann cells, suggesting an impairment of peripheral nerve 

maturation and C-fiber formation (Rasi et al., 2010). Moreover, ablation of collagen 

XV leads to defective basement membrane assembly (Rasi et al., 2010). 

Electrophysiological studies demonstrated that deficiency of collagen XV induces a 

decrease in NCVs, suggesting an impairment of sensory function in Col15a1
–/–

 mice 

(Rasi et al., 2010). Laminin-411, another component of the basement membrane of 

peripheral nerves, was shown to be involved in axon segregation and myelination in 

peripheral nerves (Wallquist et al., 2005; Yang et al., 2005). Lack of Laminin-411 in 

Lama4
–/–

 mice causes an impairment of motor and tactile sensory functions, which is 

exacerbated by the simultaneous deficiency of collagen XV, although the sole 

ablation of collagen XV does not affect the motor function in mice (Rasi et al., 2010). 

Taken together, these findings point at collagen XV as an essential factor regulating 

peripheral nerve maturation and C-fiber formation, as well as contributing to the 

modulation of another ECM molecule, laminin-411, that is involved in motor and 

sensory functions of peripheral nerves. 

1.3 Collagens and peripheral nerve regeneration 

Unlike the central nervous system, axons in the PNS have the ability to regenerate 

even after severe injury. The successful peripheral nerve regeneration is a process that 

requires the concerted interplay of glial cells, trophic factors, cell adhesion molecules 

and ECM molecules, as well as macrophage recruitment (Gonzalez-Perez et al., 2013; 

Horie et al., 2004). Among them, the switch of Schwann cell to a progenitor-like state, 

secretion of trophic factors, and production of ECM molecules are the key elements. 

ECM not only itself creates an environment for axon regeneration, but also exhibits 

trophic roles during the nerve regeneration (Gonzalez-Perez et al., 2013). 
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Collagens are among the prominent molecules abundantly deposited in the ECM of 

peripheral nerves, where they play a key role in the development of peripheral nerves 

and in the maintenance of normal nerve function during the adult life (Gonzalez-Perez 

et al., 2013; Hubert et al., 2009). Upon injury, peripheral nerves first initiate nerve 

degeneration, a process where the debris and myelin sheaths are removed by glial 

cells. However, the original basal lamina is not degraded within the columns of 

collapsed Schwann cells, termed bands of Bungner, which form regeneration tracks 

(Koopmans et al., 2009). During nerve regeneration, the regenerating axons grow 

within the bands of Bungner, and there is a long-lasting expression of collagens I, III 

and IV in the proximal nerve stumps. Axon reinnervation enhances the expression of 

collagen IV but does not affect collagens I and III (Siironen et al., 1992b; Siironen et 

al., 1992a; Seyer et al., 1977; Nath et al., 1997), suggesting different roles for distinct 

collagens in peripheral nerve regeneration. In consistent with this hypothesis, studies 

have shown that collagens I and III are able to provide mechanical support for axon 

regeneration (Koopmans et al., 2009), a finding that is also supported by experiments 

using bio-composite P(LLA-CL)/collagen I/collagen III scaffolds that promote 

peripheral nerve regeneration (Kijenska et al., 2012). Conversely, collagen IV 

exhibits an opposite effect, since inhibition of collagen IV deposition promotes axon 

regeneration (Stichel et al., 1999). Further studies demonstrated that excessive 

collagen synthesis can function as a mechanical barrier for regeneration, which in turn 

inhibits peripheral nerve regeneration (Koopmans et al., 2009). Although these 

findings indicate that collagens have an important function in peripheral nerve 

regeneration, additional studies will be needed to characterize the role of specific 

types of collagens in PNS regeneration. 

1.4 Collagens and hair follicle growth 
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Mammalian skin is a complex organ consisting of three epithelial compartments, 

including the interfollicular epidemis, sebaceous glands and hair follicles (Stenn and 

Paus, 2001). Hair follicle is the most prominent miniorgan in the skin and it is 

composed of concentric layers or sheaths of keratinocytes surrounding the hair shaft 

(Osorio et al., 2008). This miniorgan has a regenerative potential due to the fact that 

the outer root sheath contains hair follicle stem cells in bulge regions. Bulge cells 

regenerate the proliferating matrix progenitor cells, and then further differentiate into 

inner layers of the hair follicle and hair shaft (Osorio et al., 2008) (Figure 1A). Each 

hair follicle in adult mammals goes through cycles of anagen (growth), catagen 

(regression) and telogen (quiescence) phases that are synchronously orchestrated in 

mouse skin during youth and take about three weeks to complete (Osorio et al., 2008; 

Muller-Rover et al., 2001) (Figure 1B).  

Literature studies point at collagens as key ECM molecules providing a functional 

niche for hair follicle stem cells. For example, several genes encoding for collagen 

proteins, such as collagens I, IV, V, VI and XVIII, display higher expression levels in 

bulge cells than that in differentiated keratinocytes (Fujiwara et al., 2011). 

Immunohistochemical analysis showed that collagen I and III are deposited in the 

dermal sheath and papilla during all hair cycles, and collagen IV is expressed at the 

ECM of the dermal papilla and outer root sheath basement membranes of anagen and 

catagen follicles (Messenger et al., 1991). These findings suggest a potential role of 

collagens in modulation of hair follicle activities. Indeed, it has been shown that 

collagen XVII, a hemidesmosomal transmembrane protein, is highly expressed in hair 

follicle stem cells and is required for the maintenance of hair follicle stem cells and 

melanocyte stem cells. Moreover, lack of collagen XVII in Col17a1 null mice causes 

deficient stemness of hair follicle stem cells, premature hair graying and hair loss, as 

well as premature melanocyte stem cell differentiation with diminished TGF- 

12



Chapter 1 

signaling, and these defects can be rescued by the forced Col17a1 expression in basal 

keratinocytes, including hair follicle stem cells (Tanimura et al., 2011). Patients with 

collagen XXVII deficiency exhibit a characteristic premature hair loss with hair 

follicle atrophy (Darling et al., 1997; Hintner and Wolff, 1982), suggesting that this 

ECM molecule plays an essential role in hair follicle homeostasis and provides a 

functional niche for melanocyte stem cell. Although these findings support an 

important role of collagens in hair follicle homeostasis and activities, several open 

questions remain regarding the role of specific collagen types in this process and the 

underlying molecular mechanisms, as well as the role of collagens in hair follicle 

growth under pathological conditions, such as wound-induced hair regrowth. 

 

Figure 1. Hair follicle organization (A) and the hair cycle (B). The follicle cell 

layers are depicted in color and their respective protein markers are boxed. Stem cells 

are in the bulge and progenitor cells are in the matrix. Differentiated hair lineages: Ch, 

cuticle of hair shaft; Ci, cuticle of IRS; Co, cortex of hair shaft; Cp, companion cell 

layer; He, Henle’s layer; Hu, Huxley’s layer; IRS, inner root sheath; Me, medulla. 

Exogen is hair shaft loss. (Modified from Osorio et al., 2008). 

1.5 Collagen VI and its properties 

Collagen VI is an ECM protein composed of three major polypeptide chains – 1(VI), 
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2(VI) and 3(VI) – encoded by distinct genes (COL6A1, COL6A2 and COL6A3, 

respectively). The 1(VI) and 2(VI) chains have molecular weights of 140–150 kDa 

and extend for nearly 1,000 amino acids, whereas the 3(VI) chain is three times 

larger (250–300 kDa) with several alternatively spliced variants ranging between 

2,500 and 3,100 amino acids. Each chain is characterized by a short triple helical 

region flanked by large N- and C-terminal globular regions, which are composed of 

200 amino acid motifs sharing similarity with the von Willebrand factor type A(vWF-

A) module (Bernardi and Bonaldo, 2008). The 1(VI) and 2(VI) chains have one N-

terminal- (N1) and two C-terminal (C1 and C2) vWF-A modules, whereas the 3(VI) 

chain displays larger N- and C-terminal globular regions made of twelve vWF-A 

modules (N1 to N10, C1, C2) and three distinct C-terminal domains (C3-C5) 

(Bernardi and Bonaldo, 2008; Bonaldo et al., 1990). Interestingly, some studies 

indicate that 3(VI) undergoes proteolytic processing, leading to the release of the 

most C-terminal (C5) domain after collagen VI secretion (Aigner et al., 2002) (Figure 

2). Recent studies led to the identification of three other collagen VI subunits – 

4(VI), 5(VI) and 6(VI) – encoded by separate genes. These chains contain one N-

terminal region made of seven vWF-A modules, a collagen triple helical region that is 

similar to that of 3(VI), and a C-terminal region containing two or three vWF-A 

modules as well as one or two unique sequences  (Fitzgerald et al., 2008; Gara et al., 

2008; Sabatelli et al., 2011; Sabatelli et al., 2012) (Figure 2). 

The synthesis and secretion of collagen VI requires the association of 1(VI), 2(VI) 

and 3(VI) in equimolar ratios. At difference from other collagens, collagen VI has a 

peculiar multistep pathway of intracellular assembly, which also involves extensive 

disulfide bond interactions. Association of the distinct -chains allows the formation 

of triple-helical “monomers” (3 chains), followed by the assembly into “dimers" (6 
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chains) and “tetramers” (12 chains) before secretion (Bernardi and Bonaldo, 2008). 

Such tetramers are very large (more than 2,000 kDa) and once secreted they associate 

by non-covalent interactions, giving rise to characteristic “beaded” microfilaments 

that are deposited in the ECM (Bernardi and Bonaldo, 2008; Furthmayr et al., 1983). 

Recent studies suggested that the 4(VI), 5(VI) or 6(VI) chains may substitute for 

3(VI) during the synthesis and assembly of collagen VI, forming 

1(VI)2(VI)4(VI), 1(VI)2(VI)5(VI) and 1(VI)2(VI)6(VI) isoforms 

(Fitzgerald et al., 2008; Gara et al., 2008). After secretion, collagen VI regulates the 

properties of local microenvironment by forming a distinct network of beaded 

microfilaments (Chen et al., 2013; Bernardi and Bonaldo, 2008), that are able to 

interact with a number of cell surface receptors as well as with several ECM 

components. Collagen VI microfilaments not only provides structural support for cells 

and connective tissues, by fine-tuning the local stiffness (Urciuolo et al., 2013; 

Alexopoulos et al., 2009) and the size of collagen I fibrils (Izu et al., 2011), but also 

regulate important functions in different cell types, such as apoptosis in muscle fibers 

and neurons  (Irwin et al., 2003; Cheng et al., 2011; Cheng et al., 2009), proliferation 

in cancer cells (Iyengar et al., 2005), as well as angiogenesis and inflammation in 

endothelial cells and leukocytes, respectively (Park and Scherer, 2012). 

Collagen VI is widely distributed in several tissues, including peripheral nerves and 

skin (Allen et al., 2009; Bernardi and Bonaldo, 2008). In the PNS, collagen VI is 

produced by Schwann cells and endo-/perineurial cells (Allen et al., 2009; Vitale et 

al., 2001). Further evidence indicates that the Col6a1 gene is not expressed in 

immature Schwann cells, but expressed in mature Schwann cells which have 

undertaken myelination (Vitale et al., 2001). Interestingly, although activation of 

Col6a1 transcription in the peripheral nerves is part of the differentiation program of 
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Schwann cells from the neural crest cells stimulated by neuregulin, once the Schwann 

cell precursors have acquired the competence of transcribing the Col6a1 gene, 

transcriptional regulation becomes independent from neuregulins (Vitale et al., 2001). 

These findings indicate that activation of Col6a1 transcription is accounted for the 

molecular program underlying Schwann cell differentiation and is regulated by axonal 

signals. Furthermore, activation of the Col6a1 gene in sciatic nerves after birth is 

associated with the time of withdrawal of immature Schwann cells from the cell cycle, 

when they start to differentiate into myelinating Schwann cells (Vitale et al., 2001). 

Altogether, these findings highlight the contribution and underlying mechanisms of 

collagen VI expression in Schwann cell differentiation. In vivo evidence shows that 

collagen VI may interact with other ECM molecules to modulate peripheral nerve 

structure and function. For example, von Willebrand A domain-related protein 

(WARP) is an ECM molecule that interacts with collagen VI in peripheral nerves. 

Ablation of WARP severely reduces collagen VI deposition in peripheral nerves, 

which not only leads to compromised peripheral nerve structure, such as the fusion of 

adjacent Schwann cells basement membranes, but also causes an impairment of both 

motor and sensory functions (Allen et al., 2009). Altogether, these findings point at a 

role for collagen VI in PNS. However, further studies are still needed to provide the 

direct evidence showing the role and underlying molecular mechanisms of collagen 

VI in peripheral nerve myelination and function, as well as in peripheral nerve 

regeneration. In the skin, the expression levels of Col6a1 and Col6a2 in bulge cells 

are higher than in differentiated keratinocytes (Fujiwara et al., 2011), suggesting a 

potential role of collagen VI in regulating hair follicle stem cells. However, it is still 

completely unknown whether collagen VI contributes to hair follicle growth under 

both physiological and pathological conditions (such as wound-induced hair 

regrowth). 
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Figure 2. Schematic diagram of the primary structure of collagen VI chain. The 

most abundant form of collagen VI contains 1(VI), 2(VI), and 3(VI) chains. Each 

chain is made of a short collagenous (COL) region flanked by a variable number of 

vWF-A modules. The 3(VI) chain contains three additional domains at the carboxyl-

terminal end; the arrow marks the cleavage site that releases the most C-terminal 

domain, giving rise to the soluble ETP peptide. The vWF-A modules depicted in 

orange were shown to undergo alternative splicing. The lower part of the diagram 

shows the domain structure of the three novel collagen VI chains described recently, 

which share a high degree of similarity with 3(VI). In humans, the COL6A4 gene, 

coding for the 4(VI) chain, is split into two pieces due to a large chromosome 

inversion and represents a non-processed pseudogene. 
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Collagen VI regulates peripheral nerve myelination
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ABSTRACT Collagen VI is an extracellular matrix
protein with broad distribution in several tissues. Al-
though Col6a1 is expressed by Schwann cells, the role
of collagen VI in the peripheral nervous system (PNS)
is yet unknown. Here we show that Schwann cells, but
not axons, contribute to collagen VI deposition in
peripheral nerves. By using Col6a1-null mice, in which
collagen VI deposition is compromised, we demon-
strate that lack of collagen VI leads to increased myelin
thickness (P<0.001) along with 60–130% up-regulation
in myelin-associated proteins and disorganized C fibers
in the PNS. The hypermyelination of PNS in Col6a1�/�

mice is supported by alterations of signaling pathways
involved in myelination, including increase of P-FAK,
P-AKT, P-ERK1, P-ERK2, and P-p38 (4.15, 1.67, 2.47,
3.34, and 2.60-fold, respectively) and reduction of
vimentin (0.49-fold), P-JNK (0.74-fold), and P-c-Jun
(0.50-fold). Pathologically, Col6a1�/� mice display an
impairment of nerve conduction velocity and motor
coordination (P<0.05), as well as a delayed response to
acute pain stimuli (P<0.001), indicating that lack of
collagen VI causes functional defects of peripheral
nerves. Altogether, these results indicate that collagen
VI is a critical component of PNS contributing to the
structural integrity and proper function of peripheral
nerves.—Chen, P., Cescon, M., Megighian, A., Bon-
aldo, P. Collagen VI regulates peripheral nerve myeli-
nation and function. FASEB J. 28, 1145–1156 (2014).
www.fasebj.org

Key Words: extracellular matrix � peripheral nervous sys-
tem � Schwann cells

In the peripheral nervous system (PNS), myelin is
produced by Schwann cells and plays a crucial role for
the transmission of electric impulse. In the adult organ-
ism, myelinating Schwann cells envelop larger axons in
a myelin sheath at a 1:1 ratio (1, 2), whereas nonmyeli-

nating Schwann cells ensheath multiple smaller axons,
known as C fibers (3). Altered myelination in the PNS
is related to a variety of neurological disorders, such as
hypomyelination in hereditary neuropathy with liability
to pressure palsies (4), Charcot-Marie-Tooth disease
(5), Dejerine-Sottas syndrome and congenital hypomy-
elination (6), and hypermyelination in adrenomyelo-
neuropathy (7).

Myelination in the PNS is regulated by extracellular
matrix (ECM) molecules in the basement membrane
that assembles at the surface of Schwann cell/axon
units (8, 9). Coculture of Schwann cells and neurons
demonstrated that basement membrane assembly is
required for Schwann cells myelination in vitro (10).
Genetic studies showed that basement membrane mol-
ecules and their receptors, such as �1 integrin (11) and
laminins (1, 12, 13), are essential for proper myelina-
tion and/or motor function in the PNS. Collagens, the
prominent components of ECM, also appear to be
involved in myelination. Genetic studies demonstrated
that lack of the �4(V) collagen subunit significantly
inhibits Schwann cell myelination in vitro (14), and
ablation of collagen XV in mice causes polyaxonal
myelination and hypomyelination in the PNS (8).

Collagen VI is a peculiar component of the collagen
superfamily made of 3 genetically distinct chains and
abundantly deposited in the basement membrane of a
variety of tissues, such as skeletal muscles (15, 16), skin
(17), and peripheral nerves (18). Collagen VI exerts a
neuroprotective activity in the central nervous system,
where it has been shown to inhibit the neurotoxicity of
A� peptides (19) and of ultraviolet irradiation (20).
Although our previous studies demonstrated that
Col6a1 is expressed by Schwann cells (21), the role of
collagen VI in the PNS remains largely unknown. Here,
we utilized Col6a1�/� mice, where a targeted inactiva-
tion of the gene coding for the �1(VI) chain prevents
the assembly and secretion of collagen VI in the ECM
(22, 23) to demonstrate that collagen VI is crucial for
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the structural integrity of PNS and for peripheral nerve
function.

MATERIALS AND METHODS

Animals

Col6a1�/� (wild-type) and Col6a1�/� mice in the C57BL/6
background (22, 23) were used in this study. Pregnant
Sprague-Dawley rats were purchased from Harlan Laborato-
ries (Udine, Italy). Native collagen VI was purified from
newborn mice as described previously (23). Animal proce-
dures were approved by the Ethics Committee of the Univer-
sity of Padova and authorized by the Italian Ministry of
Health.

Cell cultures

The RT4-D6P2T Schwann cell line was purchased from
American Type Culture Collection (LGC Standards S.r.l.,
Sesto San Giovanni, Italy) and cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM; Gibco, Paisley, UK) containing
10% fetal bovine serum (Gibco), 0.2 M l-glutamine (Invitro-
gen, Carlsbad, CA, USA), and 1:100 penicillin-streptomycin
(Invitrogen). RT4-D6P2T cells were treated with purified
collagen VI to analyze protein expression by Western blot.
Primary Schwann cell cultures were isolated from newborn
rat sciatic nerves as described previously (24, 25) and grown
for 48 h in DMEM/F12 medium (Life Technologies, Gaith-
ersburg, MD, USA) supplemented with 10% fetal calf serum
(Gibco) and 1:100 penicillin-streptomycin (Invitrogen). Cyto-
sine arabinoside (Ara-C; 10 �M) was added, and the treat-
ment was prolonged for further 48 h, resulting in Schwann
cell cultures that were 99% pure and were used for further
studies.

Histology

After mice were perfused with 4% paraformaldehyde (PFA),
sciatic nerves were dissected and postfixed in 2% glutaralde-
hyde for 24 h at 4°C. Samples were osmicated in 2% osmium
tetroxide for 2 h at room temperature, dehydrated in ascend-
ing acetone, and embedded in Epon E812 resin (Sigma, St.
Louis, MO, USA). Semithin sections (0.5 �m) were cut using
an Ultracut 200 microtome (Leica, Wetzlar, Germany), and
stained with alkaline toluidine blue. Axon numbers were
analyzed on 8 sections/sciatic nerve, and the g ratio of all
axons was measured using ImageJ software (U.S. National
Institutes of Health, Bethesda, MD, USA) as described previ-
ously (8). For electron microscopy, ultrathin sections (80 nm)
were cut, mounted on copper grids, and stained with uranyl
citrate and lead citrate. Grids were observed and photo-
graphed on a FEI Tecnai 12 transmission electron micro-
scope (FEI, Hillsboro, OR, USA). For the internodal length
measurement, sciatic nerves were dissected, fixed in 2%
glutaraldehyde for 1 h at room temperature, washed in 0.12
M sodium phosphate buffer 3 times, incubated in 1% osmium
for 2 h at room temperature, transferred into 66% glycerol
overnight at room temperature, and then transferred into
100% glycerol at 4°C. Nerves were teased using acupuncture
needles, and the images were obtained by light microscope
(Leica). The internodal length was measured using Image-
Pro Plus 6.0 software (Media Cybernetics, Rockville, MD,
USA).

Terminal deoxynucleotidyl transferase dUTP-mediated nick-
end labeling (TUNEL)

TUNEL assay was performed using the Dead End Fluoromet-
ric In Situ Apoptosis Detection System (Promega, Madison,
WI, USA). Cross-sections of sciatic nerves were permeabilized
in 100% methanol for 10 min at �20°C. Slides were dried,
washed in PBS 3 times, and incubated in proteinase K for 5
min at room temperature. After being washed 3 times in PBS,
samples were incubated with equilibration buffer for 10 min
and then incubated with a buffer containing fluorescent
nucleotides, terminal deoxynucleotidyl transferase (TdT),
and Hoechst for 1 h at 37°C. The reaction was then blocked
with SSC solution (300 mM NaCl, 30 mM sodium citrate).
After being washed 3 times in PBS, slides were mounted using
80% glycerol. TUNEL-positive cells were analyzed on 8 sec-
tions/sciatic nerve using ImageJ software.

Immunofluorescence

After mice were perfused with 4% PFA, sciatic nerves were
removed and postfixed for 4 h at 4°C. Tissues were then
transferred into 30% sucrose overnight for cryoprotection.
Cross and longitudinal sections of sciatic nerves at 10 �m
were cut in a cryostat (Leica). For nodal integrity analysis,
sciatic nerves were dissected and fixed in 4% PFA for 4 h at
4°C, washed in several changes of PBS, and then teased on
3-aminopropyltriethoxysilane (TESPA; Sigma)-coated slides.
After blocking with 10% goat serum for 1 h, sections were
incubated with primary antibodies (1:200) for 2 h at room
temperature or overnight at 4°C. Primary antibodies against
the following proteins were used: CD45, CD68 (rat monoclo-
nal; AbD Serotec, Raleigh, NC, USA); cleaved caspase-3
(rabbit polyclonal; Cell Signaling, Danvers, MA, USA); colla-
gen VI (rabbit polyclonal; Fitzgerald, Acton, MA, USA);
contactin-associated protein (Caspr; mouse monoclonal, a
kind gift of Elior Peles, Weizmann Institute of Science,
Rehovot, Israel); ezrin (rabbit polyclonal; Upstate, Lake
Placid, NY, USA); Kv1.1 (rabbit polyclonal; Alomone Labs,
Jerusalem, Israel.); myelin basic protein (MBP, rat monoclo-
nal; Abcam, Cambridge, MA, USA); Nav1.6 (rabbit poly-
clonal, a kind gift of James S. Trimmer, University of Califor-
nia, Davis, CA, USA); nerve growth factor receptor p75
(NGFR p75, rabbit polyclonal; Millipore; Billerica, MA);
neurofilament (mouse monoclonal; Covance, Chantilly, VA,
USA); peripherin (rabbit polyclonal; Novus, St. Charles, MO,
USA); S100 (rabbit polyclonal; Abcam). Guinea pig poly-
clonal �3(VI) collagen antibody (26) and rabbit polyclonal
AS-72 specific for murine collagen VI antibody (27) were
kindly provided by Raimund Wagener (Universität zu Köln,
Cologne, Germany) and Alfonso Colombatti (Centro di Rife-
rimento Oncologico di Aviano, Aviano, Italy), respectively. The
sections were then transferred to secondary antibodies (1:200)
and Hoechst 33258 (Sigma) for 1 h at room temperature. The
following secondary antibodies were used: anti-mouse CY3,
anti-rat CY3, anti-rabbit CY2, anti-rabbit CY3, anti-guinea-pig CY2
(Jackson Immunoresearch, West Grove, PA, USA); and anti-
rabbit IRIS5 (Cyanine Technologies, Turin, Italy). After being
washed 3 times in PBS, slides were mounted using 80% glycerol.

Western blotting

Mice were euthanized by cervical dislocation and sciatic
nerves were removed and frozen in nitrogen immediately.
The tissues were homogenized in lysis buffer (Millipore) with
phosphatases (Sigma) and proteases inhibitors (Roche, Basel,
Switzerland), using a dounce homogenizer (Sigma). Protein
concentration was determined by BCA assay (Thermo Sciem-
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tific, Rockford, IL, USA). Samples of 20 �g protein were
applied to SDS-PAGE gels (Invitrogen) and blotted onto
PDVF membrane (Millipore). Membranes were incubated
with primary antibodies (1:1000) overnight at 4°C. Primary
antibodies against the following proteins were used for West-
ern blot: collagen VI (rabbit polyclonal; Fitzgerald); �-III
tubulin, �-actin (mouse monoclonal; Sigma); neurofilament
(mouse monoclonal; Abcam); phospho-neurofilament (mouse
monoclonal; Covance); Bax, FAK, JNK, vimentin (rabbit
polyclonal; Santa Cruz Biotechnology, Santa Cruz, CA, USA);
phospho-JNK (mouse monoclonal; Santa Cruz); peripherin
(rabbit polyclonal; Novus); AKT, caspase-9, phospho-c-Jun,
CNPase, phospho-FAK (rabbit polyclonal; Cell Signaling);
MBP (rat monoclonal; Abcam); phospho-AKT, Bcl-2, Bcl-XL,
c-Jun, ERK, phospho-ERK, myelin-associated glycoprotein
(MAG), p38, and phospho-p38 (rabbit monoclonal; Cell
Signaling). After being washed 3 times with TBST, mem-
branes were incubated with horseradish peroxidase-conju-
gated secondary antibodies (1:1000; Amersham Bioscience,
Dübendorf, Switzerland) for 1 h at room temperature. Detec-
tion was by chemiluminescence (Pierce, Rockford, IL, USA).
Densitometric quantification was performed by Image-Pro
Plus 6.0 software (Media Cybernetics).

Electrophysiology

Electrophysiological measurements were performed as de-
scribed previously (28–30). Briefly, mice were anesthetized
with ketamine (100 mg/kg body weight) and xylazine (8
mg/kg body weight). The body temperature of mice was
adjusted to 37°C using a heating pad, which was continuously
monitored by the thermal probe of a Peltier warming system
(NPI, Tamm, Germany). Monopolar stainless steel needle
electrodes (28 gauge; Grass-Astromed, West Warick, RI, USA)
were used both as stimulating and recording electrodes. For
stimulation, a pair of stimulating electrodes was placed along
the nerve at the sciatic notch nerve (proximal stimulation),
and a second pair of electrodes was placed along the tibial
nerve above the ankle (distal stimulation). A recording elec-
trode was inserted in muscles in the middle of the paw, while
the reference electrode was subcutaneously inserted between
the first and second digits. Square pulses of fixed duration
(0.5 ms), delivered by a stimulator (Grass S88; Grass-As-
tromed) through a stimulus isolator unit (SIU 5; Grass-
Astromed), were used to stimulate the nerve. The intensity of
stimuli was adjusted to obtain supramaximal nerve stimula-
tion. The compound muscle action potential (CMAP), re-
corded from the paw muscles using electrodes, was amplified
using an extracellular amplifier (Grass P6; Grass-Astromed),
displayed on a digital oscilloscope (Tektronix, Beaverton,
OR, USA) for online view, and fed to a PC with an A/D
interface (Norton Instruments), for storage and offline anal-
ysis, using appropriate software (pClamp 9, Axon; WinEDR,
University of Strathclyde, Glasgow, Scotland). Nerve conduc-
tion velocities (NCVs) were calculated as the distance divided
by the difference between the proximal and distal stimulation
latencies.

Behavioral tests

The rotarod test was performed placing mice on a rotating
rod (Ugo Basile, Comerio, Italy) at a fixed speed of 30 rpm.
After three 2-min training trails for 2 d, the latency to fall off
the rotating rod was recorded. The ledged beam test was
performed by putting mice on a suspended 1 m long runway
with a 6 cm width at the starting point, then gradually
narrower to 0.5 cm. The distance from the start to the point
where first foot fault occurred was measured, and the total

number of hind foot faults was recorded. For the footprint
test, gait was examined by applying nontoxic paint to hind-
paws (green) and forepaws (black). Mice were placed on
white paper, and stride width, stride difference, and angles
were recorded. The stride difference was calculated by sub-
tracting the shortest stride from the longest stride, and angles
were measured between foot steps and walking direction. The
hotplate test was performed by placing mouse in a heated
hotplate chamber (55°C; Thermomix 1419; B. Braun Melsun-
gen AG, Melsungen, Germany). The latency to distressful
behavior, such as paw licking and squeaking, was recorded for
each mouse. The von Frey filament test was performed by
placing mouse in suspended plastic chambers with a perfo-
rated metal sheet for 0.5 h before testing. A series of
calibrated von Frey hairs (North Coast Medical, Morgan Hill,
CA, USA) was applied perpendicularly to the plantar surface
of the hindpaw. The pain threshold was determined as the
lower force that evoked a withdrawal response to 3 out of the
5 stimuli. The withdrawal threshold of each mouse was
expressed as the average threshold of left and right hindpaws.

Statistical analysis

Data are presented as means � se. Statistical analysis of data
was carried out using the Student’s t test, except for the
analysis of H reflex, where the �2 test was used. Values of P �
0.05 were considered significant.

RESULTS

Schwann cells contribute to collagen VI deposition in
sciatic nerve

To analyze the deposition of collagen VI in peripheral
nerves, we labeled murine sciatic nerves with specific
antibodies against collagen VI. Immunofluorescence
showed that collagen VI was abundant in the endoneu-
rium of sciatic nerve and located outside of myelin as
demonstrated by labeling for MBP, a major constituent
of Schwann cell myelin sheaths (Supplemental Fig.
S1A). Collagen VI was not colocalized with neurofila-
ments but partially colocalized with S100 (Schwann cell
marker) and NGFR p75 (nonmyelinating Schwann cell
marker), suggesting that collagen VI is produced by
Schwann cells but not by axons (Fig. 1A–C), as also
confirmed by collagen VI labeling in teased fiber
(Supplemental Fig. S1B). Immunofluorescence for
CD68, a marker for macrophages, the major type of
resident immune cells in the PNS, showed partial
colocalization with collagen VI (Fig. 1D), suggesting
that macrophages may also produce collagen VI in
sciatic nerve. Blood-derived macrophages are known to
express and secrete collagen VI depending on their
activation status and differentiation stage (31). How-
ever, the restricted number of macrophages present in
sciatic nerve is not activated under physiological condi-
tions, suggesting that macrophages have a limited con-
tribution on collagen VI deposition in sciatic nerve. We
then further examined the in vitro deposition of colla-
gen VI by Schwann cells. Both immunofluorescence
and Western blot showed that collagen VI was abun-
dantly produced by RT4-D6P2T Schwann cells (Fig. 1E,
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F) and primary Schwann cells (Fig. 1G, H). Taken
together, these data indicate that Schwann cells con-
tribute to collagen VI deposition in the sciatic nerve.

Lack of collagen VI leads to axon hypermyelination
in the sciatic nerve

To assess the function of collagen VI in peripheral
nerves, we utilized Col6a1�/� mice. Col6a1�/� sciatic
nerves did not show any labeling for collagen VI
(Supplemental Fig. S2), indicating that ablation of the
�1(VI) chain leads to loss of collagen VI in peripheral
nerves.

Light microscopy of sciatic nerves of 6- to 7-mo-old
mice after toluidine blue staining showed that the total
number of fibers (Fig. 2A, B) and the distribution of
various fiber types (Fig. 2A, C) were not affected by lack
of collagen VI. The myelin sheath of most collagen
VI-null fibers appeared thicker than that of control
fibers (Fig. 2A), and the mean g-ratio (i.e., the ratio
between axon diameter and the diameter of fiber
including myelin) of collagen VI-null fibers was signif-
icantly decreased when compared with controls (Fig.
2D). Interestingly, the g ratio of Col6a1�/� nerves was
decreased in all classes of fibers as indicated by the
analysis of g-ratio within classes of fibers binned for
their axonal diameter (Fig. 2E). The increased myeli-
nation of Col6a1�/� sciatic nerves was also supported
by electron microscopy (Fig. 2F, G) and by analyzing
myelin associated proteins. Indeed, immunofluores-
cence and Western blot showed that MBP levels were
significantly increased in Col6a1�/� nerves compared
with controls (Fig. 2H, I). Moreover, Western blot for
MAG and CNPase and immunofluorescence for S100
showed that the levels of all these proteins were mark-

edly increased in Col6a1�/� nerves compared with
controls (Fig. 2J and Supplemental Fig. S3A, B). Elec-
tron microscopy analysis of longitudinal section of
sciatic nerves showed that the myelin sheaths are uni-
formly hypermyelinated in Col6a1�/� mice (Fig. 2G).
To further examine whether collagen VI regulates
myelination in vitro, we cultured RT4-D6P2T Schwann
cells in the absence or in the presence of purified native
collagen VI, used as a coating substrate in the culture
dishes. Western blot showed that addition of collagen
VI reduced MAG expression in Schwann cells (Supple-
mental Fig. S3C). These data indicate that lack of
collagen VI leads to increased myelination and provide
the first evidence that collagen VI is a crucial factor in
peripheral nerve myelination.

We then examined whether the increased myelina-
tion of Col6a1�/� nerves was present at earlier time
points, during postnatal development. However, analy-
sis of 2- to 3-mo-old mice did not reveal significant
differences in myelin thickness between wild-type and
Col6a1�/� sciatic nerves (Supplemental Fig. S4).
Therefore, we chose 6- to 7-mo-old mice for following
studies. We next evaluated whether lack of collagen VI
induces any compensatory change in axons. Western
blot showed comparable �-III tubulin, neurofilament,
and phospho-neurofilament levels in wild-type and
Col6a1�/� sciatic nerves (Fig. 3A, B). �-III tubulin
immunofluorescence did not show any noticeable dif-
ference between wild-type and Col6a1�/� sciatic nerve
axons (Fig. 3C). When peripheral nerves are injured,
inflammatory cells, such as macrophages, are rapidly
recruited to the damage site (32). To further confirm
that axons were not damaged in Col6a1�/� mice, we
assessed the amount of inflammatory cells in sciatic
nerves. Immunofluorescence for markers of inflamma-

Figure 1. Schwann cells contribute to collagen VI deposition in sciatic nerve. A–D) Coimmunofluorescence labeling of collagen
VI (green) with neurofilament (red; A), NGFR p75 (red; B), S100 (red; C), or CD68 (red; D) in wild-type mouse sciatic nerve.
E) Immunofluorescence labeling of collagen VI (red) in RT4-D6P2T Schwann cells (SCs). F) Western blot for collagen VI in 2
replicate samples of RT4-D6P2T cells and sciatic nerves. G) Immunofluorescence labeling of collagen VI (red) in primary
Schwann cells. (H) Western blot for collagen VI in 4 replicate samples of primary Schwann cells. Nuclei were stained with
Hoechst (blue). Scale bars 	 10 �m (A–D); 20 �m (E, G). NF, neurofilament; MW, molecular weight.
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tory cells showed that the number of CD68� macro-
phages and CD45� inflammatory cells was not signifi-
cantly different between wild-type and Col6a1�/� sciatic
nerves (Fig. 3D, E), thus confirming that axons remain
intact in Col6a1�/� sciatic nerves.

Our previous studies indicated that lack of collagen
VI causes spontaneous apoptosis in muscles (23). We
therefore investigated apoptosis in the sciatic nerve of
both genotypes. Although the amounts of procaspase-9
and cleaved caspase-9 were increased, the protein levels
for Bcl-2, an antiapoptotic factor, were also increased in
Col6a1�/� sciatic nerve when compared with controls
(Fig. 4A, B). Interestingly, Bcl-XL and Bax protein levels
were not significantly affected by collagen VI ablation
(Fig. 4C, D). Moreover, immunofluorescence for
cleaved caspase-3 and TUNEL assay did not show any
significant difference between control and Col6a1�/�

nerves (Fig. 4E, F). Altogether, these findings indicate
that lack of collagen VI induces increased axon myeli-

nation but does not lead to spontaneous apoptosis in
the sciatic nerve.

Molecular signals involved in PNS myelination are
altered in Col6a1�/� nerves

To characterize the molecular basis of the abnormal
myelination of peripheral nerves caused by collagen VI
deficiency, we analyzed signaling pathways involved in
the regulation of PNS myelination and function. Acti-
vation of FAK (33), AKT (34–36), ERK (37, 38), and
p38 MAP kinase (39, 40) is required for axon myelina-
tion in the PNS. In agreement with the increased
myelination of Col6a1�/� sciatic nerves, collagen VI
deficiency was accompanied by higher phosphorylation
levels of FAK, AKT, ERK, and p38 (Fig. 5A–D). On the
other hand, myelination is negatively regulated by
vimentin (34), as well as by the JNK and c-Jun pathways
(41). Western blot for vimentin, phospho-JNK, and

Figure 2. Collagen VI-null nerves
are hypermyelinated. A) Repre-
sentative images of toluidine
staining in cross-sections of sci-
atic nerves from 6- to 7-mo-old
wild-type and Col6a1�/� mice.
Scale bar 	 20 �m. B, C) Mor-
phometric analysis of the total
axon number (B) and of the
percentage of axons with different
diameter (C) in the sciatic nerves
from wild-type and Col6a1�/�

mice (n	4). D) Mean g ratio of
total axons in wild-type and

Col6a1�/� mice. ***P � 0.001; n 	 3–4. E) Scatter plot indicating the g ratios of all fibers as a function of axon diameter
(n	938 axons from 3 wild-type mice; n	1269 axons from 4 Col6a1�/� mice). F) Representative electron micrographs of
cross sections of wild-type and Col6a1�/� sciatic nerves, showing a single fiber. G) Representative electron micrographs of
longitudinal sections of wild-type and Col6a1�/� sciatic nerves. Scale bar 	 2 �m. H) Immunofluorescence labeling for
MBP in sciatic nerves from wild-type and Col6a1�/� mice. Scale bar 	 50 �m. I) Top panel: Western blot for MBP in
wild-type and Col6a1�/� sciatic nerves. Bottom panel: densitometric quantification of MBP vs. actin, as determined by 3
independent Western blot experiments. Values for wild-type nerve were arbitrarily set to 1. *P � 0.05; n 	 3. J) Top panel:
Western blot for MAG in wild-type and Col6a1�/� sciatic nerves. Bottom panel: densitometric quantification of MAG vs.
actin, as determined by 3 independent Western blot experiments. Values for wild-type nerve were arbitrarily set to 1. *P �
0.05; n 	 5. WT, wild-type; m. myelin sheath; n.s., not significant.
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phospho-c-Jun showed that they were significantly de-
creased in Col6a1�/� nerves (Fig. 5E–G). To further
examine whether collagen VI impinges on Schwann
cell signals involved in the regulation of myelination,
we treated RT4-D6P2T Schwann cells with exogenous
collagen VI. Western blot showed that addition of
collagen VI rapidly promotes c-Jun phosphorylation in
Schwann cells (Fig. 5H), in agreement with the in vivo
finding of decreased levels of phospho-c-Jun in Col6a1�/�

nerves. These findings support the hypermyelinated
phenotype of collagen VI-deficient nerves, indicating
abnormal regulation of molecular pathways involved in
the control of myelination.

Col6a1�/� mice display defective nerve conduction
velocity and impaired motor coordination

To get insight into the functional significance of the
structural PNS defects observed in Col6a1�/� mice, we
performed electrophysiology experiments in sciatic
nerves. Representative traces of wild-type and Col6a1�/�

mice are shown in Fig. 6A. CMAP amplitudes were
slightly (albeit not significantly) reduced in Col6a1�/�

mice with respect to controls, both after proximal and
distal stimulation (Fig. 6B). Notably, Col6a1�/� mice

displayed a significant decrease of NCVs when com-
pared with wild-type mice (Fig. 6C). NCVs are influ-
enced by Schwann cell internodal length and nodal
integrity (42, 43). Thus, we examined whether inter-
nodal length and nodal integrity were changed in
collagen VI-null nerves. In agreement with the de-
creased NCVs, we found that the internodal length was
dramatically decreased in Col6a1�/� mice when com-
pared with controls (Fig. 6D). However, the nodal
integrity was not affected by the deficiency of collagen
VI (Fig. 6E). These results indicate that the abnormal
myelination of Col6a1�/� peripheral nerves is matched
by reduced NCVs and decreased internodal length,
pointing at functional deficits in collagen VI-deficient
mice.

Next, we analyzed the motor function of collagen
VI-deficient mice. Wild-type and Col6a1�/� mice showed
similar performances in the rotarod test (Fig. 7A),
suggesting no major impairment of the general motor
function in collagen VI-deficient mice. Conversely,
when subjected to the ledged beam-walking test, the
distance of first footslip was significantly decreased in
Col6a1�/� mice when compared with wild-type mice
(Fig. 7B). Moreover, the total number of hind footslips
was dramatically increased in Col6a1�/� mice (Fig. 7C),

Figure 3. Loss of collagen VI does not cause axon damage or inflammation in sciatic nerve. A) Left panel: Western blot for �-III
tubulin in wild-type and Col6a1�/� sciatic nerve. Actin was used as a loading control. Right panel: Densitometric quantification
of �-III tubulin vs. actin, as determined by 3 independent Western blot experiments, showing that ablation of collagen VI does
not affect �-III tubulin levels in sciatic nerve. Values for wild-type nerve were arbitrarily set to 1 (n	4). B) Left panel: Western
blot for neurofilament and phospho-neurofilament in wild-type and Col6a1�/� sciatic nerve. Actin was used as a loading control.
Middle and right panels: densitometric quantification of neurofilament vs. actin, phospho-neurofilament-H vs. neurofilament-H
as determined by 3 independent Western blot experiments, showing that ablation of collagen VI does not affect neurofilament
and phospho-neurofilament levels in sciatic nerve. Values for wild-type nerve were arbitrarily set to 1 (n	3–4). C)
Immunofluorescence labeling for �-III tubulin in longitudinal sections of sciatic nerves from wild-type and Col6a1�/� mice.
Nuclei were stained with Hoechst (blue). Scale bar 	 50 �m. D, E) Quantification of CD68� macrophages (D) and CD45�

inflammatory cells (E) in cross- and longitudinal sections of sciatic nerves from wild-type and Col6a1�/� mice (n	3–4). C,
cross-section; L, longitudinal section; NF-H, neurofilament heavy chain; NF-L, neurofilament light chain; NF-M, neurofilament
middle chain.
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suggesting that motor coordination and balance are
impaired in collagen VI-deficient mice. Footprint anal-
ysis showed no significant difference in the stride width
between wild-type and Col6a1�/� mice (Fig. 7D, E).
Nevertheless, the stride length variability of hindlimbs
was increased in Col6a1�/� mice (Fig. 7D, F), indicating
increased gait instability in collagen VI-deficient mice.
Furthermore, the angle between foot steps and walking
direction of hindlimbs was wider in Col6a1�/� mice
compared with wild-type mice (Fig. 7D, G), pointing at

an impairment of motor coordination in Col6a1�/�

mice. Taken together, these data demonstrate that
collagen VI deficiency leads to the impairment of
motor coordination and balance in mice.

Collagen VI-deficient mice display defective sensory
function

As shown by the electrophysiological analysis, we found
that a clear H reflex was elicited following both proxi-

Figure 4. Ablation of collagen VI does not affect apoptosis
in sciatic nerves. A) Left panel: Western blot for caspase-9
in sciatic nerves from wild-type and Col6a1�/� mice. Right

panel: relative protein levels, as determined by densitometric quantifications of 3 independent Western blot experiments.
Values for wild-type nerve were arbitrarily set to 1. **P � 0.01; n 	 3. B–D) Top panels: Western blot for Bcl-2 (B), Bcl-XL
(C), and Bax (D) in sciatic nerves from wild-type and Col6a1�/� mice. Bottom panels: relative protein levels, as determined
by densitometric quantifications of 3 independent Western blot experiments. Values for wild-type nerve were arbitrarily set
to 1. *P � 0.05; n 	 3. E) Left panels: immunofluorescence labeling for cleaved caspase-3 (red) in sciatic nerves from
wild-type and Col6a1�/� mice. Scale bar 	 50 �m. Right panel: relative quantification of cells with cleaved caspase-3 (n	3).
F) Left panels: TUNEL analysis in sciatic nerve sections from wild-type and Col6a1�/� mice. Scale bar 	 50 �m. Right panel:
relative quantification of TUNEL-positive cells (n	3).

Figure 5. Ablation of collagen VI alters myelination-related signaling pathways. A–G) Left panel: Western blot for total and
phosphorylated FAK (A), AKT (B), ERK1/ERK2 (C), p38 (D), JNK (F), and c-Jun (G), and for vimentin (E), in sciatic nerves
from wild-type and Col6a1�/� mice. H) Left panel: Western blot for total and phosphorylated c-Jun in RT4-D6P2T cells
following treatment with collagen VI (1 �g/ml) for indicated times. Right panel: densitometric quantifications, as determined
by 3 independent Western blot experiments, expressed as the ratio of phospho-FAK vs. total FAK, phospho-AKT vs. total AKT,
phospho-ERK1/ERK2 vs. total ERK1/ERK2, phospho-p38 vs. total p38, phospho-JNK vs. total JNK, phospho-c-Jun vs. total c-Jun
and vimentin vs. actin. Values for wild-type nerve were arbitrarily set to 1. *P � 0.05; **P � 0.01; n 	 3–5.

1151COLLAGEN VI IN PERIPHERAL NERVE

33



mal and distal stimulation in all 8 wild-type mice but
only in 1 out of 8 Col6a1�/� mice (Fig. 6A and Table 1),
indicating a sensory deficit in Col6a1�/� mice. More-
over, the sole Col6a1�/� mouse with H reflex response
showed enhanced latency when compared with con-
trols (Table 1).

Nonmyelinating Schwann cells always engulf C fibers,
which are high-threshold nociceptors. Thermal hot
pain is predominantly transduced by C fibers (44),
which transmit impulses from the periphery, through
dorsal root ganglia (DRGs), the primary sensory neu-
rons, into the dorsal horn of spinal cord (45). There-
fore we investigated the role of collagen VI on C-fiber
organization by transmission electron microscopy. C
fibers in Col6a1�/� nerves were disorganized, display-
ing larger axons than in wild-type nerves (Fig. 8A), thus
suggesting altered sensory function in Col6a1�/� mice.
Next, we evaluated the expression of peripherin, a
nociceptive neuron marker, in Col6a1�/� mice. West-
ern blot and immunofluorescence revealed that the
levels of peripherin were markedly reduced in the
sciatic nerves, in the DRGs, and in the superficial layers
of spinal cord of Col6a1�/� mice when compared with
the corresponding wild-type samples (Fig. 8B–D), indicating
that nociceptive signals are decreased in Col6a1�/�

mice. We then investigated the sensory function in
collagen VI-null mice using thermal and mechanical
stimuli as measured by hotplate and von Frey filament
test, respectively. The sensitivity to both thermal and
mechanical stimuli was significantly decreased in

Col6a1�/� mice compared with wild-type mice (Fig. 8E,
F), indicating a delay in nociception. These results
suggest that collagen VI is also required for peripheral
nerve function in stressful conditions.

DISCUSSION

In this study, we describe for the first time that collagen
VI contributes to the structural integrity and physiolog-
ical functions of peripheral nerve. We provide evidence
for histopathological and cellular phenotypes with in-
creased myelin thickness in the peripheral nerve of
Col6a1�/� mice, leading to a functional phenotype with
impairment of NCVs, motor coordination, and sensory
transduction. Furthermore, we show that collagen VI
regulates myelin thickness by modulating myelination-
related signaling pathways.

A proper thickness of myelin is required for the
correct transmission of electrical impulses along the
axons and for preservation of axonal integrity in PNS.
The increased myelination detected in Col6a1�/� mice
provides the first evidence that collagen VI is a crucial
factor in peripheral nerve myelination in vivo. Collagen
VI is an abundant ECM protein of peripheral nerves
(18, 46). Previous studies indicated that Col6 genes are
abundantly expressed by Schwann cells in peripheral
nerves (21, 47). In the current study, we provided both
in vivo and in vitro evidence that collagen VI is pro-
duced by Schwann cells and macrophages but not

Figure 6. Ablation of collagen VI reduces nerve conduction velocity and Schwann cell internodal length. A) Representative
traces of electrophysiological recordings of CMAP in paw muscles of wild-type and Col6a1�/� mice. Arrows indicate the artifact
following nerve stimulation (black arrow) and the elicited H reflex (red arrow). Calibration bar is the same for both traces. B)
Analysis of the CMAP amplitudes following proximal and distal stimulation (n	8). C) Analysis of NCV in wild-type and
Col6a1�/� sciatic nerves. *P � 0.01; n 	 8. D) Left panel: Representative images of teased nerve fiber of wild-type and Col6a1�/�

sciatic nerves. Arrowheads point at nodes of Ranvier. Scale bar 	 200 �m. Right panel: Quantification of intermodal length of
wild-type and Col6a1�/� sciatic nerves. ***P � 0.001; n 	 25–35 fibers/mouse, 4 mice/genotype. E) Immunofluorescence
staining of the nodal (Nav1.6 and ezrin), paranodal (Caspr), and juxtaparanodal (Kv1.1) regions of teased fibers isolated from
6- to 7-mo-old mice. Scale bar 	 10 �m.
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deposited by axons of sciatic nerves. Furthermore,
ablation of collagen VI does not induce any significant
change in axon and macrophage density in sciatic
nerves. These data suggest that the hypermyelination of
Col6a1�/� nerves is a Schwann cell-related defect and
point at collagen VI as an ECM molecule involved in
the regulation of Schwann cells myelination in vivo. On
the other hand, collagen VI is considered as a cell

prosurvival factor, since collagen VI deficiency induces
apoptosis in muscle (23) and enhances neuron death
on toxic treatments in the central nervous system (19,
20). Nevertheless, we did not find any difference be-
tween wild-type and Col6a1�/� mice in the incidence of
spontaneous apoptosis of peripheral nerves. This may
be explained considering that collagen VI forms differ-
ent structures in different tissues (17), thus exerting
potentially distinct functions. The underlying mecha-
nisms for the different prosurvival effects exerted by
collagen VI in different tissues will require further
investigations in the future.

Understanding the molecular machinery that regu-
lates myelination is crucial for developing new potential
strategies to control the proper myelination. Vimentin
is an intermediate filament protein that is expressed in
both Schwann cells and neurons and functions as a
negative regulator of peripheral nerve myelination
through the AKT pathway (34). In our study, we
observed increased AKT phosphorylation and de-
creased vimentin expression in Col6a1�/� nerves.
Hence, the increased myelination induced by collagen
VI deficiency is partly modulated by activation of AKT
signal pathway. C-jun and FAK are 2 important signals
in Schwann cells, which exert distinct roles in the
inhibition (41) or promotion (33) of myelination in
peripheral nerves, respectively. Interestingly, we found
that in Col6a1�/� nerves phospho-JNK is reduced,
whereas phospho-FAK is increased. These results high-
light the involvement of both positive and negative
myelination regulatory pathways in mediating collagen
VI deficiency-induced hypermyelination in peripheral
nerves. The function of ERK (32, 37, 38, 48) and p38
(39, 40, 49) signals in peripheral myelination is still
controversial. Our results show that ERK and p38
signals are activated in Col6a1�/� nerves, which sup-
port the concept that both signals positively regulate
myelination. The observed altered signaling pathways
in sciatic nerves of Col6a1�/� mice provide mechanistic
insight into the role of collagen VI in axonal myelina-
tion. Our findings in collagen VI-deficient mice, to-
gether with the fact that collagen VI is produced by
Schwann cells, suggest that the hypermyelination of
Col6a1�/� nerves is Schwann cell autonomous. Further
investigations using in vivo models with Schwann cell-
specific conditional deficiency of collagen VI will allow
addressing such mechanistic aspects in the future.

Abnormal myelin thickness is closely related with
motor dysfunction in animals and peripheral neuropa-

TABLE 1. Summary of H reflex presence and its stimulation
latency in wild-type and Col6a1�/� mice

Parameter Wild-type Col6a1�/�

H reflex 8/8 1/8**
Latency

Proximal 5.1 � 0.3 6.9
Distal 5.2 � 0.2 9.5

See Fig. 8. **P � 0.01; n	8.

Figure 7. Collagen VI-null mice show deficits in motor
coordination. A) Analysis of the average latency on the
rotarod of wild-type and Col6a1�/� mice (n	6–9). B, C)
Analysis of the average distance before the first footslip (B)
and of the number of total hind footslips (C) in wild-type and
Col6a1�/� mice. *P � 0.05; n 	 4. D–G) Footprint test,
showing representative walking tracks of wild-type and
Col6a1�/� mice (D; black, forepaws; green, hindpaws), quan-
tification of the stride width of forelimbs and hindlimbs (E),
quantification of stride variability of forelimbs and hindlimbs
(F), and measurement of foot-to-walk axis in wild-type and
Col6a1�/� mice (G). **P � 0.01; *P � 0.05; n 	 4.
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thies in human (4–7). Our results show that ablation of
collagen VI induces increased PNS myelination in vivo
with an impairment of motor coordination. This may
seem to be in contradiction with the general opinion
that myelin is required for the transmission of electric
impulse and that PNS demyelination is related to the
impairment of motor functions in animals (50) and
humans (4–6). However, myelin thickness needs to be
properly maintained and axonal hypermyelination can
increase the proportion of the surrounding wire vol-
ume, thus altering biophysical properties and axonal
functions (51). Indeed, hypermyelination was found
to be associated with defective axonal function in
several murine models. In a mouse model of adreno-
myeloneuropathy with inactivation of the X-ALD
gene, focal hypermyelination of sciatic nerve is ac-
companied by impaired motor coordination activity
and electrophysiological alterations in nerve conduc-
tion (7). Similarly, ablation of the ZPR1 zinc finger
protein induces focal hypermyelination in peripheral
nerves and motor function defects in mice (52).
Furthermore, clinical evidence showed that laminin
�2 chain deficiency-induced neuropathy is also re-
lated to nerve hypermyelination (53). These findings
strongly support our results that the increased myelina-
tion of collagen VI-deficient sciatic nerves is accompa-
nied by motor function alterations. Moreover, nerve

electrophysiology studies showed that the NCVs are
significantly reduced in Col6a1�/� mice, which on the
one hand supports the impairment of motor function,
whereas on the other hand may suggest a possible axon
damage induced by the increased myelination. How-
ever, our data indicate that there is no evidence for
axon damage or inflammation in collagen VI-null
nerves, thus excluding their contribution in the de-
creased NCVs of Col6a1�/� mice. NCVs are also influ-
enced by Schwann cell internodal length (42, 43). In
agreement with the decreased NVC, we found that the
internodal length is dramatically decreased in
Col6a1�/� sciatic nerves. Together, these results not
only point at collagen VI as an important factor for
axonal myelination and motor function but also sup-
port the concept that proper myelination is required
for the function of peripheral nerves.

The defective PNS function in Col6a1�/� mice is also
apparent in stressful conditions, such as in the hotplate
and von Frey filament tests, indicating that the acute
nociceptive response is delayed in collagen VI-deficient
mice. Our ultrastructural analysis shows that C fibers
are disorganized in Col6a1�/� sciatic nerve, a defect
paralleled by decreased expression of the C-fiber
marker peripherin in the sciatic nerves, DRGs and
superficial layers of spinal cord, as well as delayed pain
response in Col6a1�/� mice. These data suggest that

Figure 8. Sensory function is impaired in collagen VI-null mice.
Table 1 summarizes H reflex presence and its stimulation latency in
wild-type and Col6a1�/� mice. A) Representative electron micro-
graphs of C fibers in wild-type and Col6a1�/� sciatic nerve. Scale bar 	
1 �m. B) Top panel: Western blot for peripherin in wild-type and
Col6a1�/� sciatic nerves. Lower panel, densitometric quantification
of peripherin vs. actin, as determined by 3 independent Western
blot experiments. *P � 0.05; n 	 3. C) Immunofluorescence labeling
for peripherin in DRGs of wild-type and Col6a1�/� mice. Scale bar 	 50
�m. D) Immunofluorescence labeling for peripherin in the superfi-
cial layers of spinal cord in wild-type and Col6a1�/� mice. Scale bar 	
100 �m. E) Analysis of acute pain perception in wild-type and
Col6a1�/� mice by the hotplate test. Data are expressed as latency to
lick. ***P � 0.001; n 	 14–15. F) Evaluation of mechanical allodynia

in the hind limb of wild-type and Col6a1�/� mice by the von Frey filament test. Data are expressed as withdrawal threshold
to mechanical stimuli. ***P � 0.001; n	12–14.
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collagen VI is also required for the peripheral nerve
function in stressful conditions. Our findings of de-
creased motor and sensory functions in collagen VI null
mice indicate that collagen VI plays a critical role in the
PNS. Similar motor and sensory deficits were described
in mice lacking von Willebrand A domain-related pro-
tein (18), as well as in Col15a1�/�;Lama4�/� double-
knockout mice (8). Altogether, our findings support
collagen VI as a key regulator in peripheral nerve
function.

In summary, we found that lack of collagen VI
causes structural abnormalities in peripheral nerves,
leading to functional defects in NCVs, motor coordi-
nation, and nociception. This is the first evidence
demonstrating that collagen VI plays a pivotal role in
axonal myelination, C-fiber organization, and pe-
ripheral nerve function. Until now, collagen VI was
linked to different forms of genetic muscle diseases,
such as Ullrich congenital muscular dystrophy, Beth-
lem myopathy, and congenital myosclerosis (15).
Interestingly, a possible clinical implication for col-
lagen VI in the nervous compartment was indicated
by the evidence that collagen VI is significantly
increased in the endoneurium and perineurium of
peripheral nerves in diabetic neuropathy patients
(54, 55) and by a very recent study where a mutation
of the COL6A2 gene was found in a consanguineous
family affected by progressive myoclonus epilepsy
(56). Our results in the collagen VI-deficient mouse
model open the possibility that collagen VI may be
involved in the onset and/or progression of human
peripheral neuropathies and that it may represent a
novel target for the development of therapeutic
approaches for peripheral neuropathies.
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by macrophage deficits and rejuvenated by transplantation 
of wild-type bone marrow cells. These results identify col-
lagen VI as a novel regulator for peripheral nerve regenera-
tion by modulating macrophage function.

Keywords Collagen VI · Nerve regeneration · 
Macrophage · Migration · Polarization · Peripheral nerve

Introduction

Unlike the central nervous system, axons in the peripheral 
nervous system (PNS) have the ability to regenerate even 
after severe injury. Successful peripheral nerve regeneration 
is a process that requires the concerted interplay of glial cells, 
growth factors, cell adhesion molecules and extracellular 
matrix (ECM) proteins, as well as the recruitment of mac-
rophages [21]. Macrophages are critical for the inflammatory 
response, a process that needs to be tightly controlled to avoid 

Abstract Macrophages contribute to peripheral nerve 
regeneration and produce collagen VI, an extracellular 
matrix protein involved in nerve function. Here, we show 
that collagen VI is critical for macrophage migration and 
polarization during peripheral nerve regeneration. Nerve 
injury induces a robust upregulation of collagen VI, 
whereas lack of collagen VI in Col6a1−/− mice delays 
peripheral nerve regeneration. In vitro studies demonstrated 
that collagen VI promotes macrophage migration and 
polarization via AKT and PKA pathways. Col6a1−/− mac-
rophages exhibit impaired migration abilities and reduced 
antiinflammatory (M2) phenotype polarization, but are 
prone to skewing toward the proinflammatory (M1) phe-
notype. In vivo, macrophage recruitment and M2 polariza-
tion are impaired in Col6a1−/− mice after nerve injury. The 
delayed nerve regeneration of Col6a1−/− mice is induced 
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excessive tissue damage after injury [31]. Following PNS 
injury, macrophages not only contribute to debris clearance, 
growth factor production and ECM remodeling in the distal 
nerve, but also stimulate regeneration near the axotomized 
neuronal cell bodies [20, 32, 34]. Leukemia inhibitory fac-
tor (LIF), interleukin (IL)-1α, IL-1β and monocyte chemoat-
tractant protein-1 (MCP-1) have been identified as the major 
regulators for macrophage recruitment after peripheral nerve 
injury [36, 41, 45]. However, how these factors are modulated 
during macrophage recruitment remains elusive. Further-
more, additional factors for regulating macrophage migration 
after peripheral nerve injury need to be identified.

Macrophages exhibit remarkable plasticity and adopt 
pro- and antiinflammatory phenotypes (M1 and M2, 
respectively) in response to the stimulation of environmen-
tal signals [4, 5, 19]. Indeed, M1 and M2 macrophages 
exhibit distinct functions, where M1 macrophages stimu-
late an immune response, and M2 macrophages are immu-
nosuppressive cells promoting tissue repair and remodeling 
[4, 6, 18, 29]. Interestingly, macrophages can undergo 
dynamic changes between M1 and M2 phenotypes, a pro-
cess known as polarization skewing [32]. For example, 
when macrophages are stimulated with lipopolysaccharides 
(LPS) or interferon (IFN)-γ, they skew to an M1 pheno-
type characterized by high expression of inducible nitric 
oxide synthase (iNOS) and cyclooxygenase (COX)-2. Con-
versely, macrophages are polarized to an M2 phenotype 
upon stimulation with IL-4, IL-10 or IL-13, a condition 
characterized by high expression of mannose receptor C 
type 1 (MRC1/CD206), arginase I (Arg-1) and peroxisomal 
proliferator activated receptor gamma (PPARγ) [4]. Polari-
zation of macrophages toward the M2 phenotype in injury 
sites by local delivery of IL-4 promotes peripheral nerve 
regeneration [30]. However, the precise mechanisms gov-
erning macrophage polarization, especially in the periph-
eral nerve injury model, are still incompletely understood.

Collagen VI is a large ECM molecule made of three 
major genetically distinct chains, α1(VI), α2(VI) and 
α3(VI), which are encoded by Col6a1, Col6a2 and Col6a3 
genes, respectively [5]. Although our previous studies dem-
onstrated that collagen VI is an essential component of 
peripheral nerves required for proper nerve myelination 
and function [7], the role of collagen VI in peripheral nerve 
regeneration is completely unknown. M2 macrophages pro-
duce higher amounts of collagen VI than M1 macrophages 
[40]. Moreover, collagen VI enhances the adhesion of 
monocytes [40]. These findings raise the question whether 
collagen VI is required for macrophage activities, such as 
migration and polarization. Here, we show that collagen 
VI is critical for macrophage migration and M2 polariza-
tion via AKT and PKA pathways. As a result, peripheral 
nerve regeneration is strikingly impaired in collagen VI 
null (Col6a1−/−) mice, where a targeted inactivation of the 

Col6a1 gene blocks the assembly and secretion of collagen 
VI [2, 23]. These findings provide novel mechanistic data 
for macrophage activity and plasticity and demonstrate that 
collagen VI is a key regulator of PNS regeneration through 
modulation of macrophage function.

Materials and methods

Animals

Col6a1+/+ (wild-type) and Col6a1−/− mice in the C57BL/6 
background were used in this study [2, 23]. All in vivo 
experiments were performed in 6–7-month-old mice. 
Native collagen VI protein was purified from newborn 
mice as previously described [23]. Animal procedures were 
approved by the Ethics Committee of the University of 
Padua and authorized by the Italian Ministry of Health.

Surgical procedures

Mice were anesthetized with ketamine (100 mg/kg body 
weight) and xylazine (8 mg/kg body weight), and the right 
sciatic nerve was exposed and crushed with a liquid nitro-
gen-cooled Dumont forceps for 20 s, stopped for a 10 s 
interval and then subjected to a second crush at the same 
site. The crush site was about 45 mm from the tip of the 
third digit, which was labeled with India ink.

Macrophage depletion

Macrophages were depleted by intraperitoneal injection of 
clodronate liposome (ClodronateLiposomes.com) in mice 
as reported previously [16]. Briefly, clodronate liposome 
(200 μl/mouse) was injected at 1, 3, 5 and 8 days post-crush 
to obtain macrophage-depleted mice. Control mice received 
an equal volume of PBS liposome at the same time points.

Bone marrow transplantation

The bone marrow transplantation was performed as 
described previously [12]. Briefly, bone marrow was har-
vested from 6- to 8-week-old wild-type mice by flushing 
the femurs and tibias with 2 % fetal bovine serum in phos-
phate-buffered saline. Cells (2 × 106) were intravenously 
injected through the tail vein into lethally irradiated (10 Gy) 
4-month-old wild-type and Col6a1−/− mice. Sciatic nerve 
injury was performed 6 weeks after the transplantation.

Functional tests

Prior to and after crush, nontoxic paint was applied to the 
hindpaws, and the mice were allowed to walk on a white 
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paper. From the footprint gait, the parameters of print 
length (the distance between the heel and the third toe, 
abbreviated as PL) and toe spread (the distance from the 
first toe to the fifth toe, abbreviated as TS) from both the 
normal side (N) and experimental side (E) were recorded. 
The sciatic functional index (SFI) was calculated with the 
following formula: SFI = 118.9 [(ETS−NTS)/NTS] −51.2 
[(EPL−NPL)/NPL]  −7.5 as previously reported [22, 52]. 
Analysis of the toe spread reflex and toe pinch was carried 
out as previously described [43].

Histology

Prior to injury and at 7, 21 and 29 days following crush 
injury, 3 mice of each group were perfused with 4 % para-
formaldehyde, the 3-mm distal portion of sciatic nerves 
was dissected into 1-mm segments and postfixed in 2 % 
glutaraldehyde for 24 h at 4 °C. Samples (3 mm distal to 
the site of injury) were osmicated in 2 % osmium tetrox-
ide for 2 h at room temperature, dehydrated in ascend-
ing acetone and embedded in Epon E812 resin (Sigma). 
Semithin sections (0.5 μm) were cut using an Ultracut 200 
microtome (Leica) and stained with alkaline toluidine blue. 
Myelinated axon numbers were analyzed on eight sec-
tions per sciatic nerve. For electron microscopy, ultrathin 
sections (80 nm) were cut, mounted on copper grids, and 
stained with uranyl citrate and lead citrate. Grids were 
observed and photographed on an FEI Tecnai 12 transmis-
sion electron microscope. Phagocytic macrophages were 
identified by the “foamy” morphology, which is induced by 
the presence of end products of myelin/lipid degradation, 
as described in previous studies [26].

Matrigel plug assay

A total of 500 μl growth factor-reduced Matrigel (Gibco) 
supplemented with PBS, 2 % FBS, purified collagen 
VI (500 ng/ml), purified collagen I (Sigma, 500 ng/ml) 
or MCP-1 (ImmunoTools, 10 ng/ml) was injected sub-
cutaneously into wild-type and Col6a1−/− mice. After 
7 days, the Matrigel plug was harvested and processed for 
immunofluorescence.

Cell cultures

The J774 macrophage cell line was purchased from American 
Type Culture Collection and cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM, Gibco) containing 10 % fetal 
bovine serum (FBS, Gibco), 0.2 M l-glutamine (Invitrogen) 
and 1:100 penicillin-streptomycin (Invitrogen). J774 cells 
were treated with purified native collagen VI for further stud-
ies. Primary bone marrow-derived macrophages (BMDMs) 
and peritoneal macrophage (PMs) were isolated and cultured 

as previously described with minor modifications [8, 25, 52]. 
Briefly, for BMDM isolation and culture, 2–3-month-old 
mice were killed, and bone marrow cells collected by flushing 
both femurs and tibias with culture medium. Red blood cells 
were removed using a lysis buffer (150 mM NH4Cl, 0.1 mM 
Na2EDTA and 1 mM KHCO3, pH 7.2) for 10 min at room 
temperature. The remaining cells were then differentiated 
with 30 ng/ml M-CSF (ImmunoTools) in DMEM containing 
20 % FBS, 0.2 M l-glutamine and 1:100 penicillin-strepto-
mycin for 1 week until the cells reached confluence. For PM 
isolation and culture, 3 % thioglycolate broth (Sigma) was 
injected intraperitoneally to induce peritonitis in 2–3-month-
old mice. Three days later, peritoneal cells were collected 
and cultured in DMEM containing 10 % FBS, 0.2 M l-glu-
tamine and 1:100 penicillin-streptomycin. Two hours later, 
nonadherent cells were removed by washing with PBS, and 
adherent macrophages were used for further studies. BMDMs 
and PMs were differentiated into the M2 or M1 phenotype 
with 20 ng/ml IL-4 (ImmunoTools) or 5 ng/ml LPS (Sigma), 
respectively, for 24 h.

Migration assay

Macrophage migration was assessed using transwell inserts 
with 5-μm pores (Millipore). Briefly, J774 macrophages 
(2 × 104 cells per well) were seeded into the upper cham-
ber of a transwell filter with DMEM. The same culture 
medium and purified collagen VI (0.5 or 1 μg/ml), purified 
collagen I (1 μg/ml) or MCP-1 (10 ng/ml) were added to 
the lower chamber. When indicated, cells were treated with 
AKTi (Sigma, 10 μM) or H89 (Sigma, 30 μM). Cells were 
allowed to migrate for 8 h at 37 °C and 5 % CO2. After 
being fixed and stained with ethanol and 0.05 % crystal 
violet (Sigma), the migrated cells were counted in eight dif-
ferent areas under a light microscope.

Scratch assay

A wound was made in confluent monolayers of J774 cells 
grown on six-well cell culture plates by scraping with a 
sterile 200-μl pipette tip. The cells were gently rinsed with 
PBS and further cultured in the presence or absence of 
purified collagen VI (1 μg/ml), purified collagen I (1 μg/
ml), MCP-1 (10 ng/ml), AKTi (10 μM) or H89 (30 μM). 
Images of the cultures were taken immediately after 
scratching and after 8 h. The migration distances of the 
macrophages were measured and analyzed using Image-
Pro Plus 6.0 software (Media Cybernetics).

RNA isolation and real-time RT-PCR

Total RNA from mouse sciatic nerves (3 mm distal to injury 
site) was isolated using Trizol reagent (Life Technologies) 
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following the manufacturer’s instructions; 200 ng of total 
RNA was used to make cDNA using the Superscript II kit 
(Invitrogen). Quantitative PCR was carried out using the 
LightCycler 480 system (Roche). The expression level of 
each gene was calculated by comparing with the Gapdh 
housekeeping gene. Primers used in this study are shown in 
Supplementary Table 1.

Immunofluorescence

After mice had been perfused with 4 % paraformaldehyde, 
a 3-mm length of sciatic nerve distal to the crush site was 
removed and postfixed for 4 h at 4 °C. Tissues or Matrigel 
plugs were then transferred into 30 % sucrose overnight for 
cryoprotection. Samples of 10 μm were cut in a cryostat 
(Leica). After blocking with 10 % goat serum for 1 h, sec-
tions were incubated with primary antibodies (1:200 dilu-
tion) for 2 h at room temperature or overnight at 4 °C. Pri-
mary antibodies against the following proteins were used: 
α3(VI) collagen (guinea pig polyclonal, a gift of Raimund 
Wagener, Cologne, Germany) [15]; β-III tubulin (mouse 
monoclonal, Sigma); CD68, F4/80 (rat monoclonal, AbD 
Serotec); CD206 (rabbit polyclonal, Abcam); MAG (rabbit 
monoclonal, Cell Signaling). The samples were then trans-
ferred to secondary antibodies (1:200 dilution) and Hoechst 
33258 (Sigma) for 1 h at room temperature. The following 
secondary antibodies were used: anti-rat CY3, anti-rabbit 
CY3 and anti-guinea-pig CY2 (Jackson Immunoresearch). 
After washing three times in PBS, slides were mounted 
using 80 % glycerol.

Western blotting

Mice were killed by cervical dislocation, and sciatic 
nerves (3 mm distal to the crush site) were removed and 
frozen in nitrogen immediately. The tissues or cells were 
homogenized in lysis buffer (Millipore) with phosphatase 
inhibitors (Sigma) and protease inhibitors (Roche, Basel, 
Switzerland). The protein concentration was determined 
by BCA assay (Thermo Sciemtific). Samples of 20 μg 
protein were applied to SDS-PAGE gels (Invitrogen) and 
blotted onto a PDVF membrane (Millipore). Membranes 
were incubated with primary antibodies (1:1,000 dilution) 
overnight at 4 °C. Primary antibodies against the follow-
ing proteins were used for Western blot analysis: α1(VI) 
collagen, Arg-1, CD206, iNOS (rabbit polyclonal, Santa 
Cruz Biotechnology); β-actin (mouse monoclonal, Sigma); 
AKT, phospho-PKA, PKA (rabbit polyclonal, Cell Signal-
ing); phospho-AKT, COX-2, MAG, PPARγ (rabbit mono-
clonal, Cell Signaling); CD16 (rabbit monoclonal, Abcam); 
CD206 (rabbit polyclonal, Abcam); CD68 (rat monoclonal, 
AbD Serotec). After washing three times with TBST, mem-
branes were incubated with HRP-conjugated secondary 

antibodies (1:1,000 dilution; Amersham Bioscience) for 1 h 
at room temperature. Detection was by chemiluminescence 
(Pierce). The panels show representative images of two 
separate protein extracts derived from two different mice. 
Densitometric quantification was performed by Image-Pro 
Plus 6.0 software (Media Cybernetics).

Statistical analysis

Data are represented as mean ± SEM. Statistical analy-
sis of data was carried out using Student’s t test, except 
for the analysis of the toe spread reflex in PBS- and clo-
dronate-liposome-treated mice, where the chi-square test 
was used, and the analysis of collagen VI mRNA expres-
sion after injury, where one-way ANOVA followed by post 
hoc tests was used. P < 0.05 was considered as a significant 
difference.

Results

Expression of collagen VI is increased after sciatic nerve 
crush injury

To explore the role of collagen VI in PNS regeneration, we 
first examined whether collagen VI expression is upregu-
lated upon sciatic nerve crush injury in adult mice. Real-
time RT-PCR showed that the levels of Col6a1 and Col6a3 
transcripts were increased at 7 and 14 days post-injury, 
whereas the levels of Col6a2 transcripts started to increase 
within 3 days after sciatic nerve crush, and the expression 
of all three mRNAs reached a peak between 3 and 7 days 
post-injury (Fig. 1a–c). Western blot analysis for α1(VI) 
and α2(VI) chains (Fig. 1d) and immunofluorescence for 
α3(VI) chain (Fig. 1e, f) showed that the protein levels 
for collagen VI were also increased between 3 and 7 days 
post-injury. Taken together, these data indicate that crush 
injury of the sciatic nerve induces a robust upregulation of 
both mRNA and protein levels of collagen VI, pointing to 
a potential role for this molecule during PNS regeneration.

Collagen VI is required for peripheral nerve regeneration

Wallerian degeneration is a process that includes the break-
down of axons and phagocytosis of damaged axons and 
myelin debris after injury, which is strictly required for 
axon regeneration [36]. We therefore first examined Wal-
lerian degeneration in collagen VI-deficient mice. Tolui-
dine blue staining and electron microscopy showed that 
at 7 days post-injury sciatic nerves from wild-type mice 
had advanced signs of myelin breakdown and a high inci-
dence of phagocytic macrophages. However, both of 
these features were noticeably lower in Col6a1−/− mice 
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(Supplementary Fig. S1a, d). Quantitative analysis con-
firmed that Col6a1−/− nerves had more myelinated axons 
and fewer phagocytic macrophages than wild-type nerves 
at 7 days post-injury (Supplementary Fig. S1b, c). In keep-
ing with the concept that clearance of myelin debris from 
injured nerves is necessary for PNS regeneration [14, 47], 
more myelin was present in Col6a1−/− nerves than in wild-
type nerves at 7 days post-injury (Supplementary Fig. S1a, 
d). Axonal growth inhibitors, such as myelin-associated 
glycoprotein (MAG), are usually present in myelin debris 
after nerve injury [39, 51]. Immunofluorescence and 

Western blot analysis revealed that MAG reactivity was 
higher in Col6a1−/− nerves than wild-type nerves at 7 days 
post-injury (Supplementary Fig. S1e, f). These data support 
the potential role of collagen VI in Wallerian degeneration 
following injury.

We then performed experiments to assess whether the 
inhibited Wallerian degeneration of Col6a1−/− mice influ-
ences PNS regeneration. First, we measured the sciatic 
functional index to evaluate the recovery of sensory motor 
coordination [22] in mice of both genotypes. As shown in 
Fig. 2a, the sciatic functional index score was not different 

Fig. 1  Collagen VI expression is enhanced upon peripheral nerve 
crush. Real-time RT-PCR for Col6a1 (a), Col6a2 (b) and Col6a3 (c) 
in uninjured (0) or injured sciatic nerves at 3, 7 and 14 days post-
crush (n = 3–5). There was a statistically significant difference 
among groups as determined by one-way ANOVA analysis of Col6a1 
[F(3,13) = 3.739, P = 0.039], Col6a2 [F(3,13) = 3.506, P = 0.046] 
and Col6a3 [F(3,13) = 4.600, P = 0.021]. A post hoc test revealed 
that the relative levels of Col6a1 or Col6a3 were statistically signifi-
cantly increased in injured nerves at 7 dpi (3.46 ± 0.77, P = 0.035, 
or 4.15 ± 1.29, P = 0.004) and 14 dpi (3.76 ± 1.44, P = 0.018, or 
3.38 ± 0.68, P = 0.033), but not at 3 dpi (1.04 ± 0.05, P = 0.973, 
or 2.85 ± 0.17, P = 0.087), when compared to uninjured nerves, and 
the relative levels of Col6a2 were statistically significantly increased 
in injured nerves at 3 dpi (2.55 ± 0.35, P = 0.014) and 14 dpi 
(2.24 ± 0.68, P = 0.028), but not at 7 dpi (1.59 ± 029, P = 0.271), 

when compared to uninjured nerves. There was no statistically sig-
nificant difference among the 3-, 7- and 14-dpi groups for Col6a2 
(P = 0.415) and Col6a3 (P = 0.639). Col6a1 was significantly 
increased in injured nerves at 14 dpi compared to 3 dpi (P = 0.043), 
but no significant differences were seen between the 7- and 14-dpi 
(P = 0.758) and the 3- and 7-dpi (P = 0.072) groups. d Left panel 
Western blot analysis for α1/α2(VI) in uninjured sciatic nerves or 
injured nerves at 7 days post-crush. Right panel Densitometric quan-
tification of α1/α2(VI) vs. actin as determined by three independent 
Western blot experiments (n = 4; **P < 0.01). e Immunofluorescence 
for α3(VI) in longitudinal sections of uninjured sciatic nerves and 
injured nerves at 3 days post-crush. Scale bar 250 μm. f Immuno-
fluorescence for α3(VI) in cross sections of uninjured sciatic nerves 
and injured nerves at 3 and 7 days post-crush. Scale bar 50 μm. dpi 
days post-injury
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between wild-type and Col6a1−/− mice before nerve crush. 
In contrast, the sciatic functional index of Col6a1−/− mice 
was significantly lower than that of wild-type mice at 7 days 
after injury. This parameter remained significantly lower 
in collagen VI-deficient mice during the following time 
points, and a complete functional recovery was observed 
at 21 and 29 days post-injury in wild-type and Col6a1−/− 
mice, respectively (Fig. 2a). To measure sensory functions, 
we recorded the response to toe pinch in digits 3, 4 and 5 
of the crushed hindlimb because they are the main digits 
innervated by nerves for sensory functions [26]. The time 
to initial response to the stimuli after sciatic nerve crush 
was significantly longer in Col6a1−/− mice than wild-type 
mice (Fig. 2b). Next, we utilized the toe spread reflex to 
evaluate motor function and found that the time to initial 
toe extension after nerve injury was significantly increased 
in Col6a1−/− mice when compared to wild-type mice 
(Fig. 2c). Toluidine blue staining showed that the number 

of myelinated axons was significantly lower in Col6a1−/− 
nerves than in wild-type nerves at 21 days post-injury, 
whereas there was no difference between the two genotypes 
in uninjured conditions (Fig. 2d). In agreement with the sci-
atic functional index, the number of myelinated axons was 
almost completely restored at 21 days post-injury in wild-
type mice, while this required 29 days in Col6a1−/− mice 
(Fig. 2d). Altogether, these findings indicate that lack of col-
lagen VI delays peripheral nerve regeneration after injury.

Collagen VI stimulates macrophage migration in vitro 
and in vivo

In the PNS, macrophages are critical for the removal of 
debris and contribute to nerve regeneration [13, 51]. To 
determine whether collagen VI is critical for macrophage 
activities, we performed in vitro and in vivo experiments to 
analyze macrophage migration. Transwell assay showed that 

Fig. 2  Lack of collagen 
VI impairs peripheral nerve 
regeneration. a Quantification 
of sensory-motor function of 
wild-type and Col6a1−/− mice 
by analyzing the sciatic func-
tional index from the footprint 
track before crush and at 7, 
11, 14, 17, 21 and 29 days 
post-crush (n = 7; *P < 0.05; 
**P < 0.01). b Quantifica-
tion of sensory function of 
wild-type and Col6a1−/− mice 
after sciatic nerve crush by 
recording the initial response 
time (day post-injury) to the 
pinch using forceps in the digits 
3, 4 and 5 (n = 7; *P < 0.05; 
**P < 0.01). c Quantification 
of motor function of wild-type 
and Col6a1−/− mice after sciatic 
nerve crush by recording the 
initial extension time (day post-
injury) to toe spreading reflex 
(n = 7; *P < 0.05). d Repre-
sentative images of toluidine 
blue staining and morphometric 
analysis of the myelinated axon 
number in cross sections of 
sciatic nerves from wild-type 
and Col6a1−/− mice under 
uninjured conditions and at 21 
and 29 days post-crush (n = 3; 
**P < 0.01). Scale bar 40 μm. 
dpi days post-injury, WT wild 
type
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addition of purified collagen VI to the culture medium in the 
lower chambers at the concentration of 1 μg/ml significantly 
increased the number of macrophages that had migrated 
(Fig. 3a and Supplementary Fig. S2a). Scratch assay 
revealed that collagen VI promotes macrophage motility 
after scratching, as demonstrated by the markedly enhanced 
migration distance when macrophages were treated with col-
lagen VI (Fig. 3b and Supplementary Fig. S2b). To investi-
gate the in vivo chemoattractant ability of collagen VI, we 
used a Matrigel plug assay to examine macrophage density 
in the Matrigel implanted subcutaneously into wild-type 
mice. Immunofluorescence for CD68 and F4/80 showed that 
both these macrophage markers were markedly increased in 
wild-type mice treated with Matrigel plugs supplemented 
with purified collagen VI compared to mice treated with 
PBS-supplemented Matrigel plugs (Fig. 3c and Supplemen-
tary Fig. S2c). In addition, we utilized collagen I and MCP-1 
as negative and positive controls, respectively, and found 
that MCP-1, but not collagen I, significantly enhanced mac-
rophage migration in transwell, scratch and Matrigel plug 
assays (Fig. 3a–c and Supplementary Fig. S2a, b). Next, we 
used a different experimental setting, where Matrigel plugs 
supplemented with 2 % FBS were subcutaneously injected 
in wild-type and Col6a1−/− mice. Immunofluorescence for 
the F4/80 marker showed that the macrophage migration 
capability was dramatically impaired in Col6a1−/− mice 
compared to wild-type animals (Fig. 3d), suggesting that in 
addition to as a chemokine itself, collagen VI is required for 
other factors inducing macrophage migration.

It has been demonstrated that the AKT and PKA path-
ways are necessary for macrophage migration [10, 11]. We 
thus investigated whether collagen VI-induced macrophage 
migration is regulated by these signals. Western blot analy-
sis showed that the addition of collagen VI to in vitro mac-
rophages promoted AKT and PKA phosphorylation (Sup-
plementary Fig. S3a, b). Transwell assay demonstrated that 
the collagen VI-induced increase in the number of migrated 
macrophages was inhibited by pretreatment with AKT 
inhibitor (AKTi) or H89, a PKA inhibitor (Fig. 3a and Sup-
plementary Fig. S2a). Moreover, the scratch assay revealed 
that pretreatment with AKTi or H89 decreased the collagen 
VI-induced macrophage migration distance (Fig. 3b and 
Supplementary Fig. S2b). Taken together, these data indi-
cate that collagen VI promotes macrophage migration by 
regulating the AKT and PKA pathways.

Ablation of collagen VI leads to impaired macrophage 
recruitment to the injured nerve

Given the robust chemoattractant activity of collagen VI for 
macrophages, we further investigated whether the delayed 
myelin clearance and PNS regeneration are the result of 
impaired macrophage recruitment in Col6a1−/− injured 

nerves. Immunofluorescence showed that more CD68- and 
F4/80-positive macrophages were present in the injured 
nerves of wild-type mice than Col6a1−/− mice (Fig. 4a–c). 
Western blot analysis confirmed that although CD68 was 
enhanced in both genotypes at 7 days post-injury, the CD68 
levels of injured Col6a1−/− nerves were significantly lower 
than those of injured wild-type nerves (Fig. 4d). These data 
indicate that lack of collagen VI impairs macrophage accu-
mulation in injured nerves.

Chemokines and cytokines are important mediators of 
the immune response. Among them, IL-1β and MCP-1 are 
two prominent regulators of macrophage recruitment in 
injured peripheral nerves [36, 41, 45]. We therefore examined 
whether the impaired macrophage recruitment in Col6a1−/− 
mice after injury was paralleled by a lower abundance of these 
two inflammatory regulators. Real-time RT-PCR revealed 
that although the expression of IL-1β and MCP-1 mRNA 
was upregulated in both wild-type and Col6a1−/− nerves at 
1 day after crush, the levels of the two transcripts were sig-
nificantly lower in injured Col6a1−/− nerves compared to 
injured wild-type nerves (Supplementary Fig. S4a, b). These 
results suggest that in addition to its chemoattractant activ-
ity for macrophage migration, collagen VI also affects other 
inflammatory mediators in injured peripheral nerves.

Collagen VI is critical for macrophage polarization

Peripheral nerve regeneration not only depends on mac-
rophage density, but also requires macrophage polariza-
tion toward the M2 phenotype [30]. To investigate the 
potential role of collagen VI in macrophage polarization, 
we isolated primary BMDMs and PMs from wild-type and 
Col6a1−/− mice and differentiated them toward the M2 and 
M1 phenotypes with IL-4 and LPS, respectively. Western 
blot analysis for M2 markers showed that the protein levels 
of Arg-1, CD206 and PPARγ were increased in wild-type, 
but not in Col6a1−/− BMDMs upon stimulation with IL-4 
(Fig. 5a). Similar results were found in PMs, where Arg-1 
and PPARγ levels were upregulated in wild-type cells 
upon stimulation of IL-4, whereas this enhancement was 
prevented in Col6a1−/− cells (Fig. 5b). Furthermore, the 
defective response of Col6a1−/− PMs was reversed when 
cells were cultured in the presence of purified collagen VI 
(Fig. 5b). These results indicate that collagen VI is required 
for macrophage M2 polarization.

Since collagen VI expression is reduced when mac-
rophages are subjected to M1 stimuli [40], we hypothesized 
that this reduction may be essential for M1 polarization. 
Upon LPS stimulation, Col6a1−/− PMs displayed a marked 
enhancement of COX-2, a M1 marker, when compared to 
wild-type PMs (Fig. 5c). A similar response was found 
in BMDMs, since upon LPS stimulation Col6a1−/− cells 
exhibited higher enhancement of several M1 markers, 

49



104 Acta Neuropathol (2015) 129:97–113

1 3

such as iNOS, CD16 and COX-2, when compared to wild-
type cells (Fig. 5d, e). Of note, these enhancements in 
Col6a1−/− cells were partially rescued when cells were cul-
tured in the presence of purified collagen VI (Fig. 5d, e). 

These results indicate that collagen VI inhibits macrophage 
M1 polarization.

To further confirm the effect of collagen VI in mac-
rophage polarization, we cultured J774 macrophages and 

Fig. 3  Collagen VI promotes in vitro and in vivo macrophage migra-
tion. a Quantification of migrated J774 macrophages in transwell 
migration assays upon treatment with PBS (control), collagen VI (0.5 
or 1 μg/ml), collagen I or MCP-1. AKTi or H89 was added where 
indicated (n = 3–4; *P < 0.05; **P < 0.01). b Quantification of mean 
migration distances of J774 macrophages upon treatment with PBS 
(control), collagen VI (1 μg/ml), collagen I or MCP-1 and subjected 
to a scratch assay. AKTi or H89 was added where indicated. Cells 
were analyzed 8 h after the scratch (n = 3–4; *P < 0.05; **P < 0.01). 
c Left and middle panels Representative images of immunofluo-
rescence for F4/80 in growth factor-reduced Matrigel plugs supple-

mented with PBS, collagen VI, collagen I or MCP-1 subcutaneously 
injected into wild-type mice. Scale bar 100 μm. Right panel Quan-
titative analysis of migrated F4/80-positive macrophages in Matrigel 
plugs (n = 3; *P < 0.05; **P < 0.01). d Left and middle panels Rep-
resentative images of immunofluorescence for F4/80 in growth factor-
reduced Matrigel plugs supplemented with 2 % FBS subcutaneously 
injected into wild-type (left) and Col6a1−/− (middle) mice. Scale bar 
100 μm. Right panel Quantitative analysis of migrated F4/80-positive 
macrophages in Matrigel plugs (n = 3; ***P < 0.001). AKTi AKT 
inhibitor, Col I Collagen I, Col VI collagen VI, WT wild type
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wild-type PMs in the absence or presence of purified col-
lagen VI. Addition of collagen VI enhanced Arg-1 levels 
and reduced the levels of CD16 and iNOS in J774 mac-
rophages (Supplementary Fig. S5a–c). Moreover, Western 
blot analysis for Arg-1 and PPARγ in PMs showed that 
both of these M2 markers were significantly increased 
upon treatment with purified collagen VI (Supplemen-
tary Fig. S5d, e). Taken together, these findings indicate 
that collagen VI promotes macrophage M2 polariza-
tion and exhibits an inhibitory effect on macrophage M1 
polarization.

AKT and PKA are two key mediators of signaling path-
ways involved in macrophage polarization [3, 27, 38]. We 
thus evaluated whether collagen VI-induced macrophage 
polarization involves the activation of AKT and PKA sig-
nals. Western blot analysis showed that the phosphoryla-
tion of both AKT and PKA was increased upon stimulation 
with IL-4 in wild-type, but not in Col6a1−/− PMs (Sup-
plementary Fig. S6a). Addition of collagen VI to BMDMs 
enhanced CD206 levels, which were inhibited by AKTi 
and H89 (Supplementary Fig. S6b). Moreover, immuno-
fluorescence on J774 macrophages showed that collagen 

Fig. 4  Lack of collagen VI 
leads to impaired of mac-
rophage recruitment into injured 
nerves. a Immunofluorescence 
for CD68 in longitudinal sec-
tions of sciatic nerves from 
wild-type and Col6a1−/− mice 
under uninjured conditions and 
at 3 days post-crush. Scale bar 
250 μm. b Immunofluorescence 
for CD68 in cross sections of 
sciatic nerves from wild-type 
and Col6a1−/− mice under 
uninjured conditions and at 
7 days post-crush. Scale bar 
50 μm. c Immunofluorescence 
for F4/80 in cross sections of 
sciatic nerves from wild-type 
and Col6a1−/− mice under unin-
jured conditions and at 7 days 
post-crush. Scale bar 50 μm. d 
Left panel Western blot analysis 
for CD68 in sciatic nerves of 
wild-type and Col6a1−/− mice 
under uninjured conditions 
and at 7 days post-crush. Right 
panel Densitometric quanti-
fication of CD68 vs. actin as 
determined by three independ-
ent Western blot experiments. 
Values for uninjured wild-type 
nerves were arbitrarily set to 1 
(n = 4; *P < 0.05; **P < 0.01). 
dpi days post-injury, WT wild 
type
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VI-promoted PPARγ expression was attenuated by AKTi 
and H89 (Supplementary Fig. S6c). These data support a 
role for the AKT and PKA pathways in modulating colla-
gen VI-related macrophage M2 polarization.

Lack of collagen VI impairs macrophage M2 polarization 
in vivo after peripheral nerve injury

Next, we investigated the in vivo role of collagen VI in 
macrophage polarization in injured nerves. CD16 protein 

levels were higher in Col6a1−/− nerves than in wild-type 
nerves at 7 days post-crush (Fig. 6a). Furthermore, the 
expression of M2 marker genes Arg1 and Mrc1 was upreg-
ulated in wild-type nerves, but not in Col6a1−/− nerves at 
7 days after crush (Fig. 6b, c). Immunofluorescence for 
CD206 showed that the amount of M2 macrophages in 
Col6a1−/− nerves was dramatically lower than in wild-type 
nerves at 7 days post-injury (Fig. 6d). Western blot analy-
sis confirmed that the levels of CD206 were significantly 
increased in wild-type nerves, but not in Col6a1−/− nerves, 
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at 7 days after crush when compared to uninjured nerves 
(Fig. 6e). Finally, we normalized CD206 levels to CD68 
levels and found that the relative amounts of CD206-
positive M2 macrophages at 7 days post-injury were sig-
nificantly lower in Col6a1−/− nerves than in wild-type 
nerves (Fig. 6f). Taken together, these data point to an 
impairment of macrophage M2 polarization in injured 
Col6a1−/− nerves.

To assess the in vivo role of AKT and PKA pathways in 
modulating collagen VI-mediated macrophage M2 polari-
zation, we analyzed the activation of these two signals in 
injured wild-type and Col6a1−/− nerves. At 7 days post-
crush, phosphorylation of both AKT and PKA was mark-
edly enhanced in wild-type nerves, but not in Col6a1−/− 
nerves (Supplementary Fig. S7a, b). These findings support 
a role for the AKT and PKA pathways in the impaired 
macrophage M2 polarization and PNS regeneration of 
Col6a1−/− mice.

Collagen VI-regulated macrophage function contributes 
to PNS regeneration

To further confirm that the modulation of macrophage 
activities by collagen VI is crucial for PNS regeneration, 
we used macrophage-depleted in vivo models by injection 
of clodronate liposomes in wild-type and Col6a1−/− mice. 

Immunofluorescence for CD68 and F4/80 showed that 
injection of clodronate liposomes effectively depleted mac-
rophages in sciatic nerves after crush (Supplementary Fig. 
S8). In the control group treated with PBS liposomes, the 
sciatic functional index was lower in Col6a1−/− mice than 
in wild-type mice, as expected (Fig. 7a). Following mac-
rophage depletion by clodronate liposomes, the sciatic 
functional index was similarly reduced in wild-type and 
Col6a1−/− mice, thus indicating that the difference between 
the two genotypes was abolished after macrophage deple-
tion (Fig. 7a). Moreover, the response to toe pinching was 
similar between wild-type and Col6a1−/− mice after mac-
rophage depletion with clodronate liposomes, but was 
delayed when compared to control treatment with PBS 
liposomes (Fig. 7b). Similarly, analysis of the toe spreading 
reflex showed that depletion of macrophages significantly 
delayed the toe extension in both wild-type and Col6a1−/− 
mice, and it abolished the difference between the two gen-
otypes (Supplementary Table S2). Toluidine blue staining 
of sciatic nerve cross sections showed that in mice treated 
with PBS liposomes the number of myelinated axons was 
significant higher in wild-type nerves than in Col6a1−/− 
nerves at 21 days post-injury, as expected (Fig. 7c). How-
ever, when mice were treated with clodronate liposomes, 
the difference in myelinated axon number between the 
two genotypes was completely abolished (Fig. 7c). These 
results indicate that defective macrophage recruitment is 
the main cause for the delayed PNS regeneration of colla-
gen VI-deficient mice.

To directly investigate whether the delayed PNS regen-
eration of Col6a1−/− mice is due to the defects of colla-
gen VI-regulated macrophage activities, we transplanted 
wild-type bone marrow cells into lethally irradiated wild-
type mice (WT-WT) or collagen VI-deficient mice (WT-
Col6a1−/−). Functional studies showed that there were no 
significant differences between WT-WT and WT-Col6a1−/− 
mice in the sciatic functional index score (Fig. 8a), time to 
initial response to toe pinch in digits 3, 4 and 5 (Fig. 8b) 
and time to initial toe extension (Fig. 8c), indicating that the 
delayed PNS regeneration in Col6a1−/− mice is rescued by 
transplantation of wild-type bone marrow cells. Next, we 
investigated whether the transplanted wild-type cells were 
able to rescue the decreased macrophage recruitment and 
M2 polarization of Col6a1−/− mice after nerve crush injury. 
Immunofluorescence for CD68 and F4/80 showed com-
parable CD68- and F4/80-positive macrophages in sciatic 
nerves of WT-WT and WT-Col6a1−/− mice at 7 days post-
injury (Fig. 8d). Western blot analysis showed that CD206 
levels were similar between WT-WT and WT-Col6a1−/− 
mice at 7 days post-injury (Fig. 8e). Taken together, these 
findings provide evidence demonstrating that the delayed 
PNS regeneration in Col6a1−/− mice is induced by the defi-
cits in macrophage migration and M2 polarization.

Fig. 5  Effect of collagen VI on macrophage polarization. a Left 
panel Western blot analysis for Arg-1, CD206 and PPARγ in wild-
type and Col6a1−/− BMDMs under control conditions or follow-
ing induction with IL-4. Right panel Densitometric quantification 
of Arg-1 vs. actin, CD206 vs. actin and PPARγ vs. actin, as deter-
mined by three independent Western blot experiments. Values for the 
wild-type control group were arbitrarily set to 1 (n = 4; *P < 0.05; 
**P < 0.01; ***P < 0.001; n.s. not significant). b Left panel West-
ern blot analysis for Arg-1 and PPARγ in wild-type, Col6a1−/− and 
collagen VI-coated (5 μg/cm2) Col6a1−/− PMs under control condi-
tions or following induction with IL-4. Right panel Densitometric 
quantification of Arg-1 vs. actin and PPARγ vs. actin, as determined 
by three independent Western blot experiments. Values for the wild-
type control group were arbitrarily set to 1 (n = 3–4; *P < 0.05; 
**P < 0.01; ***P < 0.001; n.s. not significant). c Left panel West-
ern blot analysis for COX-2 in wild-type and Col6a1−/− PMs under 
control conditions or following induction with LPS. Right panel Den-
sitometric quantification of COX-2 vs. actin, as determined by three 
independent Western blot experiments. Only LPS-induced COX-2 
levels were calculated because of the extremely low COX-2 levels at 
baseline. Values for the wild-type LPS group were arbitrarily set to 1 
(n = 3; **P < 0.01). d Left panel Western blot analysis for iNOS and 
CD16 in wild-type, Col6a1−/− and collagen VI-coated (5 μg/cm2) 
Col6a1−/− BMDMs under control conditions or following induction 
with LPS. Right panel Densitometric quantification of iNOS vs. actin 
and CD16 vs. actin, as determined by three independent Western blot 
experiments. Values for the wild-type control group were arbitrarily 
set to 1 (n = 3–4; *P < 0.05; **P < 0.01; ***P < 0.001). e Immu-
nofluorescence for COX-2 in wild-type, Col6a1−/− and collagen VI-
coated (5 μg/cm2) Col6a1−/− BMDMs under control conditions or 
following induction with LPS. Scale bar 25 μm. Col VI collagen VI, 
WT wild type

◀
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Fig. 6  Ablation of collagen VI decreases macrophage M2 polariza-
tion after nerve injury. a Left panel Western blot analysis for CD16 
in sciatic nerves from wild-type and Col6a1−/− mice under unin-
jured conditions and at 7 days post-crush. Right panel Densitometric 
quantification of CD16 vs. actin, as determined by three independ-
ent Western blot experiments. Values for uninjured wild-type nerves 
were arbitrarily set to 1 (n = 4; *P < 0.05; n.s. not significant). 
Real-time RT-PCR analysis for Arg-1 (b) and CD206 (c) mRNA in 
sciatic nerves from wild-type and Col6a1−/− mice under uninjured 
conditions and at 7 days post-crush. Values for uninjured wild-type 
nerves were arbitrarily set to 1. GAPDH was used as a reference 
gene (n = 3–5; *P < 0.05; n.s. not significant). d Immunofluores-

cence for CD206 in cross sections of sciatic nerves from wild-type 
and Col6a1−/− mice at 7 days post-crush. Scale bar 25 μm. e Top 
panel Western blot analysis for CD206 in sciatic nerves from wild-
type and Col6a1−/− mice under uninjured conditions and at 7 days 
post-crush. Bottom panel Densitometric quantification of CD206 vs. 
actin as determined by three independent Western blot experiments. 
Values for uninjured wild-type nerves were arbitrarily set to 1 (n = 4; 
**P < 0.01; n.s. not significant). f Quantification of CD206 vs. CD68 
in sciatic nerves from wild-type and Col6a1−/− mice at 7 days post-
crush as determined by three independent Western blot experiments. 
Values for uninjured wild-type nerves were arbitrarily set to 1 (n = 4; 
**P < 0.05). dpi days post-injury, WT wild type
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Discussion

Our previous work demonstrated that collagen VI is 
required for muscle regeneration [46], suggesting a role 
in tissue repair. The results presented in this study show 
that collagen VI promotes PNS regeneration by regulating 
macrophage recruitment and polarization. Lack of colla-
gen VI in Col6a1−/− mice prevents macrophage recruit-
ment and phenotypic transition after sciatic nerve crush, 
which in turn inhibits PNS regeneration. Previous stud-
ies showed that macrophages play a pivotal function in 
Wallerian degeneration by clearing myelin debris and in 
axonal regeneration by secreting a variety of soluble fac-
tors [33]. However, the molecular mechanisms underlying 
macrophage recruitment into injured nerves are not well 

understood. It is well accepted that soluble factors secreted 
by the disrupted axon/Schwann cell nerve unit are responsi-
ble for macrophage recruitment following nerve injury [33, 
45]. Among these factors, IL-1β and MCP-1 are two major 
macrophage chemoattractants in injured peripheral nerves 
[36, 41, 45]. However, blockade of IL-1β and MCP-1 with 
function-blocking antibodies does not completely inhibit 
macrophage recruitment into injured peripheral nerves in 
vivo [36]. Similar effects were also displayed by in vitro 
experiments, where addition of MCP-1 neutralizing anti-
bodies to conditioned media from Schwann cell cultures 
and nerve segments does not completely block macrophage 
migration [45]. These findings indicate that other chemoat-
tractants are also secreted by the injured peripheral nerves. 
In the current study, we found that collagen VI promotes 

Fig. 7  Macrophage depletion 
leads to similar regenerative 
responses in wild-type and 
collagen VI-deficient periph-
eral nerves. a Quantification of 
the sensory-motor function of 
wild-type and Col6a1−/− mice 
under control conditions (PBS 
liposomes) and after mac-
rophage depletion (clodronate 
liposomes) by analyzing the 
sciatic functional index from 
footprint tracks before crush 
and at 7, 11, 14 and 17 days 
post-crush (n = 5–7; *P < 0.05 
and **P < 0.01, Col6a1−/− PBS 
vs. wild-type PBS; ^P < 0.05, 
^^P < 0.01 and ^^^P < 0.001, 
wild-type clodronate vs. 
wild-type PBS; #P < 0.05 and 
##P < 0.01, Col6a1−/− clo-
dronate vs. Col6a1−/− PBS).  
b Quantification of the sensory 
function of wild-type and 
Col6a1−/− mice under control 
conditions (PBS liposomes) 
and after macrophage deple-
tion (clodronate liposomes) by 
recording the initial response 
time to the pinch using forceps 
in the digits 3, 4 and 5 after 
sciatic nerve crush (n = 5–7; 
*P < 0.05; n.s. not significant). 
c Representative images of 
toluidine blue staining and mor-
phometric analysis of the myeli-
nated axon number in cross sec-
tions of injured sciatic nerves 
at 21 days post-crush from 
wild-type and Col6a1−/− mice 
that received PBS liposomes or 
clodronate liposomes. Scale bar 
40 μm (n = 3; ***P < 0.001; 
n.s. not significant). dpi days 
post-injury, WT wild type
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Fig. 8  Transplantation of wild-type bone marrow cells into 
Col6a1−/− host mice rejuvenates regeneration and macrophage activi-
ties after nerve injury. a Quantification of sensory-motor function of 
wild-type bone marrow cells transplanted into wild-type mice (WT-
WT) and of wild-type bone marrow cells transplanted into Col6a1−/− 
mice (WT-Col6a1−/−) by analyzing the sciatic functional index from 
footprint tracks before crush and at 7, 11, 14, 17 and 21 days post-
crush (n = 5–7). b Quantification of sensory function of WT-WT 
and WT-Col6a1−/− mice after sciatic nerve crush by recording the 
initial response time (day post-injury) to the pinch using forceps in 
the digits 3, 4 and 5 (n = 5–7; n.s. not significant). c Quantification 
of motor function of WT-WT and WT-Col6a1−/− mice after sciatic 
nerve crush by recording the initial extension time (day post-injury) 

to the toe spreading reflex (n = 4–6; n.s. not significant). d Immuno-
fluorescence for CD68 and F4/80 in cross sections of injured sciatic 
nerves from WT-WT and WT-Col6a1−/− mice at 7 days post-crush. 
Scale bar 50 μm. e Left panel Western blot analysis for CD206 in 
sciatic nerves from WT-WT and WT-Col6a1−/− mice at 7 days post-
crush. Right panel Densitometric quantification of CD206 vs. actin 
as determined by three independent Western blot experiments. Values 
for uninjured WT-WT contralateral nerves were arbitrarily set to 1 
(n = 4; **P < 0.01; ***P < 0.001; n.s. not significant). CL contralat-
eral, IL ipsilateral, WT-Col6a1−/− wild-type bone marrow cells trans-
planted into Col6a1−/− mice, WT-WT wild-type bone marrow cells 
transplanted into wild-type mice
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macrophage migration both in vitro and in vivo and that 
Col6a1−/− macrophages exhibit a reduced migration capa-
bility in the Matrigel plug assay. In the sciatic nerve crush 
model, macrophage recruitment was markedly impaired 
in Col6a1−/− nerves. Thus, we identified collagen VI as a 
novel chemoattractant that triggers macrophage recruit-
ment into injured nerves.

Our recent work demonstrated that in peripheral nerves 
collagen VI is abundantly deposited by Schwann cells and 
macrophages, but not by axons [7]. Upon injury in the 
PNS, Schwann cells dedifferentiate to a progenitor/stem 
cell-like state [35], expressing high levels of collagen VI 
[48]. In this study, we found that the expression of col-
lagen VI is significantly upregulated upon sciatic nerve 
injury. On the one hand, this enhancement is likely con-
tributed by the dedifferentiated Schwann cells; on the other 
hand, it is related to the increased number of macrophages 
after injury. In this regard, it is plausible that at the initial 
stage the dedifferentiated Schwann cells are responsible 
for increasing collagen VI deposition in injured nerves, 
which in turn promotes macrophage recruitment in a par-
acrine manner. Thereafter, both paracrine and autocrine 
effects may exist for the collagen VI contribution to mac-
rophage recruitment. Our findings demonstrate that the 
impaired macrophage recruitment in injured Col6a1−/− 
nerves is rescued by transplantation of wild-type bone 
marrow cells, highlighting the autocrine effect of colla-
gen VI in macrophage recruitment after peripheral nerve 
injury. Our data indicate that collagen VI acts as a chem-
oattractant for macrophages, a finding that is fully consist-
ent with previous studies showing that certain ECM pro-
teins, such as fibronectin, laminin and collagen IV, exhibit 
specific chemoattractant activities for different cells [1, 24, 
49]. In addition to directly exhibiting chemotactic activity, 
collagen VI also influence the expression of other chem-
oattractants. For example, we found in this study that the 
upregulation of IL-1β and MCP-1 induced by sciatic nerve 
crush injury is significantly impaired in Col6a1−/− mice, 
suggesting that collagen VI is able to promote the recruit-
ment of macrophages into the injured nerves through a 
variety of molecular mechanisms.

The function of macrophages in PNS regeneration is 
also related to their phenotype, where M2 macrophages 
stimulate regeneration [30]. Therefore, macrophage polari-
zation from the M1 to M2 phenotype is crucial for success-
ful PNS regeneration. It has been shown that acute periph-
eral nerve injury elicits an M2 macrophage response [50]. 
However, the mechanisms that trigger and modulate mac-
rophage polarization are not well understood. To date, it is 
known that macrophage polarization is largely controlled 
by a small group of signals and factors, such as nuclear fac-
tor κB (NF-κB), mammalian target of rapamycin (mTOR), 
signal transducer and activator of transcription 6 (STAT6), 

PPARγ, Kruppel-like factor 4 (KLF4), AKT and PKA [4, 
25, 27, 38]. In this study, we identified collagen VI as a 
novel factor regulating macrophage polarization. We found 
that addition of collagen VI promotes the J774 macrophage 
polarized toward the M2 phenotype. In the light of these 
findings, we isolated primary BMDMs and PMs from wild-
type and Col6a1−/− mice and stimulated their polarization 
into M1 and M2 phenotypes with LPS and IL-4, respec-
tively. Consistent with our hypothesis, deficiency of colla-
gen VI impairs macrophage M2 polarization and promotes 
macrophage M1 polarization, which can be reversed by 
addition of purified native collagen VI.

Our findings indicate that collagen VI plays a pivotal 
role in macrophage polarization. Although one recent 
in vitro work showed that some specific ECM compo-
nents, namely collagen I and fibronectin, are not needed 
for macrophage polarization [37], previous evidence sug-
gests that ECM plays a key role in this process. For exam-
ple, ECM-derived biologic scaffolds induce an in vivo 
constructive tissue remodeling by promoting an M2 mac-
rophage response [42]. In a myocardial infarction model, 
deficiency of matrix metalloproteinase 28 (MMP-28) was 
found to attenuate macrophage M2 polarization and reduce 
the expression of several ECM genes [28]. Among the dif-
ferent ECM molecules, collagen VI seemed to be the best 
candidate for regulating macrophage polarization. M2 mac-
rophages produce higher levels of collagen VI than M1 
macrophages [40]. Moreover, macrophages in the adipose 
tissue of insulin-resistant subjects are associated with col-
lagen VI deposition and exhibit M2 phenotype [44]. These 
indirect observations prompted us to investigate the role of 
this ECM molecule for macrophage polarization. In addi-
tion to in vitro data, we obtained direct in vivo evidence 
showing that collagen VI regulates macrophage polariza-
tion during PNS regeneration. We found that at 7 days post-
injury, the levels of M2 macrophages were decreased in 
Col6a1−/− nerves, indicating an impairment of macrophage 
skewing, which in turn inhibits PNS regeneration.

Notably, the different nerve regeneration response of wild-
type and Col6a1−/− mice is abolished by in vivo macrophage 
depletion. Moreover, our data demonstrate that the defec-
tive PNS regeneration of Col6a1−/− mice, and the defective 
injury-induced macrophage migration and polarization, are 
rescued by transplantation of wild-type bone marrow cells. 
Together, these findings highlight the mechanistic insight of 
collagen VI regulation of macrophage activities as a critical 
player for PNS regeneration. In addition, we provide evi-
dence showing that the AKT and PKA pathways contribute 
to collagen VI-regulated macrophage function. Addition of 
collagen VI to cultured macrophages promotes the activation 
of AKT and PKA, whereas collagen VI ablation abolishes 
IL-4-induced activation of both signals. Blockade of AKT 
and PKA by their inhibitors abrogates collagen VI-induced 
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macrophage migration and polarization. Furthermore, our in 
vivo data indicate that the increased activation of AKT and 
PKA in injured nerves is completely inhibited by collagen 
VI ablation. Our results on the one hand support the concept 
that AKT and PKA pathways are necessary for macrophage 
migration and polarization [3, 10, 11, 27, 38] and axonal 
regeneration [9, 17]; on the other hand, they provide insights 
into the downstream targets of collagen VI-regulated mac-
rophage function in PNS regeneration.

In summary, we demonstrate in this study that colla-
gen VI is a pivotal factor for macrophage function. In this 
context, besides providing novel molecular understand-
ing for macrophage migration and polarization, our study 
points out potentially broad implications for collagen VI in 
inflammatory diseases. These data also provide evidence 
for a beneficial impact of collagen VI on peripheral nerve 
regeneration via modulation of macrophage activities. In 
addition to contributing to the understanding of the roles of 
collagen VI in the experimental setting of PNS regenera-
tion, our findings might have useful implications for clini-
cal study. For example, it is reasonable that application of 
collagen VI as a coating substrate for the artificial nerve 
guide conduits may be beneficial for improving the periph-
eral nerve functional recovery in patients. Future studies 
will allow testing this possibility and evaluating the effec-
tiveness of such regenerative approaches.
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Supplementary Figure S1
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Supplementary Figure S1. Wallerian degeneration is inhibited in injured Col6a1–

/– nerves. (a) Representative images of toluidine blue staining in cross-sections of 

injured sciatic nerves at 7 days post-crush from wild-type and Col6a1–/– mice. Arrows 

indicate phagocytic macrophages. Scale bar, 40 m. (b,c) Quantification of the 

number of fibers with intact myelin sheaths (b) and of phagocytic macrophages (b) in 

cross-sections of sciatic nerves at 7 days post-crush from wild-type and Col6a1–/– 

mice. (n = 4; **, P < 0.01; ***, P < 0.001). (d) Left panels, representative electron 

micrographs of sciatic nerves from wild-type and Col6a1–/– mice at 7 days post-crush. 

Right panels, higher magnification images showing the areas marked in left panels. 

Arrows indicate phagocytic macrophages. Scale bar, 10 m (left panels) or 4 m 

(right panels). (e) Immunofluorescence for MAG in cross-sections of sciatic nerves 

from wild-type and Col6a1–/– mice at 7 days post-crush. Scale bar, 25 m. (f) Left 

panel, western blot for MAG in sciatic nerves from wild-type and Col6a1–/– mice 

under uninjured conditions and at 7 days post-crush. Right panel, densitometric 

quantification of MAG vs actin, as determined by three independent western blot 

experiments. Values for uninjured wild-type nerve were arbitrarily set to 1 (n = 4; *, P 

< 0.05; **, P < 0.01). dpi, days post-injury; WT, wild-type.
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Supplementary Figure S2
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Supplementary Figure S2. Collagen VI promotes in vitro macrophage migration. 

(a) Representative images of migrated J774 macrophages in transwell migration 

assays upon stimulation with PBS (control), collagen I, MCP-1 or collagen VI in the 

absence or presence of AKTi or H89. The red arrows indicate the migrated 

macrophages. Scale bar, 50 m. (b) Representative images of J774 macrophages 

migrating into the wounded area when treated for 8 h with PBS (control), collagen I, 

MCP-1 or collagen VI in the absence or presence of AKTi or H89, and subjected to a 

scratch assay. The red dotted lines indicate the migration front of macrophages. Scale 

bar, 500 m. (c) Left and middle panels, representative images of 

immunofluorescence for CD68 in growth factor-reduced Matrigel plugs supplemented 

with PBS (left) or purified collagen VI at 0.5 g/ml (middle) subcutaneously injected 

into wild-type mice. Scale bar, 100 m. Right panel, quantitative analysis of migrated 

CD68-positive macrophages in Matrigel plugs (n = 3; ** P < 0.01). AKTi, AKT 

inhibitor; Col I, collagen I; Col VI, collagen VI.
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Supplementary Figure S3

Supplementary Figure S3. Collagen VI activates AKT and PKA pathways in 

macrophages. (a,b) Top panels, western blot for total and phosphorylated AKT (a) 

and for total and phosphorylated PKA (b) in J774 macrophages following treatment 

with collagen VI (1 g/ml) for the indicated times. Densitometric quantifications, as 

determined by three independent western blot experiments, are shown in bottom 

panels and expressed as the ratio of phospho-AKT vs total AKT or of phospho-PKA 

vs total PKA. Values for cells without collagen VI treatment were arbitrarily set to 1 

(n = 3; *, P < 0.05; **, P < 0.01). Col VI, collagen VI.
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Supplementary Figure S4

Supplementary Figure S4. Lack of collagen VI causes impaired cytokine 

production after injury. (a,b) Real-time RT-PCR analysis for IL-1 (a) and MCP-1 

(b) mRNAs in sciatic nerves from wild-type and Col6a1–/– mice under uninjured 

conditions and at 1 day post-crash. Values for uninjured wild-type nerve were 

arbitrarily set to 1. GAPDH was used as a reference gene (n = 3-5; *, P < 0.05; **, P 

< 0.01 and ***, P < 0.001). dpi, days post-injury; WT, wild-type.
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Supplementary Figure S5
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Supplementary Figure S5. Collagen VI promotes macrophage M2 polarization, 

but inhibits M1 polarization. (a-c) Western blot for Arg-1 (a), CD16 (b) and iNOS 

(c) in J774 macrophages upon treatment with BSA (control) or with purified collagen 

VI (1 g/ml) for 24 h. (d,e) Western blot for PPAR (d) and Arg-1 (e) in PMs upon 

treatment with BSA (control) or with purified collagen VI (1 g/ml) for 24 h. 

Densitometric quantifications, as determined by three independent western blot 

experiments, are shown on the right (a) or in the bottom (b-e) panels and expressed as 

the ratio of each protein vs actin. Values for control cells were arbitrarily set to 1 (n = 

4; *, P < 0.05; **, P < 0.01). Col VI, collagen VI.
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Supplementary Figure S6
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Supplementary Figure S6. Collagen VI promotes macrophage M2 polarization 

via AKT and PKA pathways. (a) Left panel, western blot for total and 

phosphorylated AKT, and for total and phosphorylated PKA in wild-type and Col6a1–

/– PMs under control conditions or following induction with IL-4. Right panel, 

densitometric quantification of phospho-AKT vs total AKT or of phospho-PKA vs 

total PKA, as determined by three independent western blot experiments. Values for 

wild-type cells without IL-4 treatment were arbitrarily set to 1 (n = 3; **, P < 0.01; 

n.s., not significant). (b) Left panel, western blot for CD206 in BMDMs under control 

conditions or following treatment for 24 h with purified collagen VI (1 g/ml), in the 

absence or presence of AKTi (10 M) or H89 (30 M). Right panel, densitometric 

quantification of CD206 vs actin, as determined by three independent western blot 

experiments. Values for cells without collagen VI treatment were arbitrarily set to 1 (n 

= 4; *, P < 0.05; **, P < 0.01). (c) Immunofluorescence for PPAR  in J774 

macrophages under control conditions or following treatment for 24 h with purified 

collagen VI (as a coating substrate at 5 g/cm2), in the absence or presence of AKTi 

(10 M) or H89 (30 M). Scale bar, 100 m. AKTi, AKT inhibitor; Col VI, collagen 

VI; WT, wild-type.
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Supplementary Figure S7

Supplementary Figure S7. Lack of collagen VI impairs AKT and PKA activation 

upon sciatic nerve crush injury. (a,b) Left panels, western blot for total and 

phosphorylated AKT (a) and for total and phosphorylated PKA (b) in sciatic nerves 

from wild-type and Col6a1–/– mice under uninjured conditions and at 7 day post-

crush. Right panels, densitometric quantification of phospho-AKT vs total AKT or of 

phospho-PKA vs total PKA, as determined by three independent western blot 

experiments. Values for uninjured wild-type nerves were arbitrarily set to 1 (n = 4; *, 

P < 0.05; **, P < 0.01; n.s., not significant). dpi, days post-injury; WT, wild-type.
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Supplementary Figure S8

Supplementary Figure S8. Clodronate liposomes deplete macrophages in sciatic 

nerves after crush. Immunofluorescence for CD68 and F4/80 in cross-sections of 

sciatic nerves from wild-type mice at 7 days post-injury and receiving PBS liposomes 

or clodronate liposomes. Scale bar, 50 m.
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Supplementary Table S1. RT-PCR primer sequences.

Protein Gene Primer sequence

1(VI) Col6a1
Forward: 5’– TGCCCTGTGGATCTATTCTTCG –3’

Reverse: 5’– CTGTCTCTCAGGTTGTCAATG –3’

2(VI) Col6a2
Forward: 5’– CTACTCACCCCAGGAGCAGGAA –3’

Reverse: 5’– TCAACGTTGACTGGGCGATCGG –3’

3(VI) Col6a3
Forward: 5’– AACCCTCCACATACTGCTAATTC –3’

Reverse: 5’– TCGTTGTCACTGDCTTCATT –3’

IL-1 Il1b
Forward: 5’– ACCTGTGTCTTTCCCGTGGAC –3’

Reverse: 5’– GGGAACGTCACACACCAGCA –3’

MCP-1 Ccl2
Forward: 5’– GAGAGCTACAAGAGGATCACCA –3’

Reverse: 5’– GTATGTCTGGACCCATTCCTTC –3’

Arg-1 Arg1
Forward: 5’– GAACACGGCAGTGGCTTTAAC –3’

Reverse: 5’– TGCTTAGCTCTGTCTGCTTTGC –3’

CD206 Mrc1
Forward: 5’– GGGCAATGCAAATGGAGCCG –3’

Reverse: 5’– TCCACACCAGAGCCATCCGT –3’

GAPDH Gapdh
Forward: 5’– GGGAAGCCCATCACCATCTT –3’

Reverse: 5’– GCCTTCTCCATGGTGGTGAA –3’

Supplementary Table S2. Macrophage depletion leads to similar toe spread 

reflex responses in wild-type and collagen VI-deficient mice. 

          dpi

Groups 7 11 15 17

WT PBS 2/5 3/5 5/5 5/5

Col6a1–/– PBS 0/6 1/6 2/6 * 5/6

WT clodronate 0/5 0/5 1/5 ^^ 2/5 ^

Col6a1–/– clodronate 0/6 n.s. 0/6 n.s. 0/6 n.s. 1/6 # n.s.

*, P < 0.05, Col6a1–/– PBS vs wild-type PBS; ^, P < 0.05 and ^^, P < 0.01, wild-type 

clodronate vs wild-type PBS; #, P < 0.05, Col6a1–/– clodronate vs Col6a1–/– PBS; n.s., 

not significant, Col6a1–/– clodronate vs wild-type clodronate. dpi, days post-injury; 

WT, wild-type.
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Lack of collagen VI promotes wound-induced hair growth

Abstract

Collagen VI is an extracellular matrix molecule abundantly expressed in the skin. 

However, the role of collagen VI in hair follicle growth is unknown. Here, we show 

that collagen VI is strongly deposited in hair follicles, and dramatically upregulated 

by skin wounding. Lack of collagen VI in Col6a1–/– mice promotes wound-induced 

hair regrowth, but not affects skin regeneration. Conversely, addition of purified 

collagen VI rescues the abnormal wound-induced hair regrowth in Col6a1–/– mice. 

Mechanistic studies revealed that the increased wounding-induced hair regrowth of 

Col6a1–/– mice is triggered by upregulation of Keratin 79 and activation of the Wnt/-

catenin signaling pathway, and is abolished by inhibition of the Wnt/-catenin 

pathway. These findings highlight the essential relationships between extracellular 

matrix and hair follicle regeneration, and suggest that collagen VI could be a potential 

therapeutic target for hair loss and other skin-related diseases.
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Introduction

Mammalian skin is a complex organ that contains three epithelial compartments, 

including the interfollicular epidemis, sebaceous glands and hair follicles (Stenn and 

Paus, 2001). Each hair follicle in adult mammals goes through cycles of anagen 

(growth), catagen (regression) and telogen (quiescence) phases, a process which rely 

on a group of stem cells, including bulge cells and secondary hair germ (Greco et al., 

2009; Myung and Ito, 2012). In addition, hair follicles play an important role in early 

epidermal repair following skin wounding (Ito et al., 2005), where they regenerate de 

novo in adult mice in a manner similar to embryonic hair follicle development (Ito et 

al., 2007). Remarkably, the expression pattern of epithelial stem cells in hair follicles 

around wound regions, and the signals coordinating the growth and activation of 

follicular epithelial cells, are similar to that in embryonic hair development (Ito and 

Kizawa, 2001; Millar, 2002). These findings suggest that characterization of the 

molecular signals governing the wound-induced hair regrowth may reveal the general 

understanding of hair growth. The central pathway that mediates wound-induced hair 

follicle regeneration is Wnt/-catenin  (Ito et al., 2007; Myung et al., 2013; Gay et al., 

2013). However, it is currently unclear how Wnt/-catenin signaling is regulated 

during hair follicle regeneration.

It has been shown that the onset of epithelial stem cell development is triggered by 

environmental signals, defined as niche (Fuchs et al., 2004). Extracellular matrix 

(ECM) is an important hair follicle stem cell niche, which regulates bulge cell 

behavior and hair development (Gattazzo et al., 2014). Collagen VI is a major ECM 

component made of three genetically chains encoded by distinct genes (Col6a1, 

Col6a2, Col6a3) and abundantly deposited in a variety of tissues, including skin 

(Chen et al., 2014b; Chen et al., 2014a; Chen et al., 2013). Our recent work 

demonstrated that collagen VI is a key component of adult muscle stem cell niche 

required for proper muscle regeneration after injury (Urciuolo et al., 2013). These 

findings suggest that collagen VI may play critical functions in stem cell niches in 

tissues, thus affecting tissues homeostasis and regeneration. Microarray studies 

showed that the expression levels of Col6a1 and Col6a2 genes in mouse bulge cells 

are higher than in differentiated keratinocytes (Fujiwara et al., 2011). However, it is 
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still completely unknown whether collagen VI contributes to hair follicle growth and 

regeneration. 

Here we show that collagen VI is abundantly deposited in hair follicles and 

upregulated by skin wounding. By using collagen VI null (Col6a1–/–) mice, where a 

targeted inactivation of the Col6a1 gene prevents the assembly and secretion of 

collagen VI in the ECM (Chen et al., 2014b; Bonaldo et al., 1998; Irwin et al., 2003), 

we demonstrate that lack of collagen VI promotes wound-induced hair regrowth by 

regulating Keratin (K) 79 and Wnt/-catenin signaling pathway.

Materials and Methods

Animals. Col6a1+/+ (wild-type) and Col6a1–/– mice in the C57BL/6 background 

(Bonaldo et al., 1998; Irwin et al., 2003) were used in this study. The in vivo 

experiments were performed in 2-3 month-old mice. Native collagen VI protein was 

purified from newborn mice as previously described (Irwin et al., 2003). Animal 

procedures were authorized by the Ethics Committee of the University of Padova and 

by the Italian Ministry of Health.

Surgical procedure. Mice were anesthetized with xylazine (8 mg/kg body weight) 

and ketamine (100 mg/kg body weight), and the dorsal hair was shaved. Skin wounds 

were made by excising a 1 cm2 square of full-thickness dorsal skin (utilized for 

investigating wound healing and hair regrowth) or by cutting three 6-mm wounds (1 

midline and 2 on each side of the midline).

Histology. After perfusion with 4% paraformaldehyde, the dorsal skin of healthy and 

wounds from wild-type and Col6a1–/– mice was removed and postfixed for 4 h at 4 

°C. Tissues were transferred into 30% sucrose overnight for cryoprotection, and then 

cut at 10 m using cryostat (Leica). Samples were stained with H&E to determine the 

hair follicle length using Image-Pro Plus 6.0 software (Media Cybernetics).
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RNA isolation and real-time RT-PCR. Total RNA from mouse dorsal skin of 

healthy and wounds from wild-type mice, was isolated using Trizol reagent (Life 

Technologies) following the manufacturer’s instructions. 200 ng of total RNA was 

used to make cDNA using Superscript II kit (Invitrogen). Quantitative PCR was 

carried out using LightCycler 480 system (Roche). The expression level of each gene 

was calculated by comparing with the Gapdh housekeeping gene. Primers used in this 

study are shown in Table 1.

Immunofluorescence. Immunofluorescence was performed on frozen sections (10 

µm) of healthy and wounds from wild-type and Col6a1–/– mice. After blocking with 

10% goat serum for 1 h, sections were incubated with primary antibodies (1:200 

dilution) overnight at 4 °C. Primary antibodies against the following proteins were 

used: -catenin, Notch1 (rabbit monoclonal, Abcam); collagen VI (rabbit polyclonal; 

Fitzgerald); DKK-1, 1(VI) collagen (rabbit polyclonal, Santa Cruz Biotechnology); 

3(VI) collagen (guinea pig polyclonal, a gift of Raimund Wagener, Cologne, 

Germany) (Lettmann et al., 2014); K15 (mouse monoclonal, Thermo Scientific). The 

samples were then transferred to secondary antibodies (1:200 dilution) and Hoechst 

33258 (Sigma) for 1 h at room temperature. The following secondary antibodies were 

used: anti-rabbit CY2, anti-guinea-pig CY2 and anti-mouse CY3 (Jackson 

Immunoresearch). After washing three times in PBS, slides were mounted using 80% 

glycerol.

Western blotting. Mice were sacrificed by cervical dislocation and dorsal skin of 

healthy and wounds from wild-type and Col6a1–/– mice were removed and frozen in 

nitrogen immediately. The tissues were homogenized in lysis buffer (Millipore) with 

protease inhibitors (Roche, Basel, Switzerland) and phosphatase inhibitors (Sigma). 

Protein concentration was determined by BCA assay (Thermo Scientific). Samples of 
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20 g protein were applied to SDS-PAGE gels (Invitrogen) and blotted onto PDVF 

membrane (Millipore). Membranes were incubated with primary antibodies (1:1000 

dilution) overnight at 4 °C. Primary antibodies against the following proteins were 

used for western blot: 1/2 and 3 (VI) collagens; K79 (goat polyclonal, Santa Cruz 

Biotechnology); -actin (mouse monoclonal, Sigma); -catenin and Notch1. After 

washing three times with TBST, membranes were incubated with HRP-conjugated 

secondary antibodies (1:1000 dilution; Amersham Bioscience) for 1 h at room 

temperature. Detection was conducted using chemiluminescence (Pierce). 

Densitometric quantification was performed by Image-Pro Plus 6.0 software (Media 

Cybernetics).

Statistical analysis. Data are represented as mean  SEM. Statistical analysis of data 

was carried out using the Student's t-test. A P value < 0.05 was considered as a 

significant difference.

Results

Collagen VI is expressed in hair follicles and regulated by skin wounding

To analyze the deposition of collagen VI in hair follicles, we labeled murine skin with 

different antibodies against collagen VI chains. Immunofluorescence analysis showed 

that collagen VI is abundantly deposited in different regions of the hair follicle, 

including bulge, sebaceous gland, hair germ and dermal papilla (Figure 1a). Double 

immunofluorescence showed partial colocalization of 1(VI) and 3(VI) chains with 

the bulge stem cell marker K15, suggesting that bulge stem cells may contribute to 

collagen VI deposition in the hair follicle (Figure 1b and c). Together with previous 

microarray data showing that the expression levels of Col6a1 and Col6a2 genes in 
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bulge stem cells are higher than in differentiated keratinocytes (Fujiwara et al., 2011), 

these findings suggest a potential role for collagen VI in hair follicle.

To explore the role of collagen VI in skin regeneration and wound-induced hair 

regrowth, we first examined whether skin wounding impinges on collagen VI 

expression in adult mice. Real-time RT-PCR showed that the levels of Col6a1, 

Col6a2 and Col6a3 transcripts were increased at post-wound day 4 and 8 (Figure 2a-

c). Western blot showed that the protein levels of 1/2(VI) were first decreased at 

post-wound day 2 and 4 and then increased at post-wound day 8, whereas 3(VI) 

levels were increased as early as at post-wound day 2 (Figure 2c and d). Taken 

together, these data indicate that the expression of collagen VI is strongly regulated 

upon skin wounding, pointing at a potential role for this molecule during skin 

regeneration and wound-induced hair regrowth.

Lack of collagen VI promotes wound-induced hair regrowth

Although collagen VI is highly expressed in hair follicles, we did not find any 

difference in hair growth between wild-type and Col6a1–/– mice at various ages under 

physiological conditions (Figure 3). To explore the role of collagen VI in wound 

healing, full-thickness incisional wounds (1 cm2 square) were made on the shaved 

dorsal skin of wild-type and Col6a1–/– mice, and wound areas were monitored for two 

weeks. Surprisingly and unexpectedly, we found that although the wound healing was 

similar in two genotypes, the wound-induced hair regrowth was dramatically 

accelerated in Col6a1–/– mice (Figure 4a and b). To further confirm these results, we 

performed another skin injury model where mice were subjected to three 6-mm 

incisional wounds. The results demonstrated that the wound-induced hair regrowth in 

this injury model was also significantly promoted in Col6a1–/– mice when compared 

to wild-type mice (Figure 4c). Haematoxylin and eosin (H&E) staining showed that 
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the length of hair follicle in Col6a1–/– mice was significantly higher than that in wild-

type mice at post-wound day 8 (Figure 4d). Altogether, these findings indicate that 

lack of collagen VI facilitates wound-induced hair regrowth.

Lack of collagen VI upregulates K79 and activates Wnt/-catenin pathway

K79-positive cells are a population of migratory epithelial cells that initiate hair 

regeneration (Veniaminova et al., 2013). We thus investigated whether wound-

induced hair regrowth in Col6a1–/– animals is regulated by upregulation of K79. 

Western blot analysis showed that although ablation of collagen VI attenuated K79 

expression under physiological conditions, K79 protein levels in skin wounds of 

Col6a1–/– mice were higher than those of wild-type mice at post-wound day 8 (Figure 

5a), suggesting the contribution of K79-positive cells in the enhanced wound-induced 

hair regrowth of Col6a1–/– mice. 

Wnt/-catenin signaling is a key signaling pathway in wound-induced hair regrowth 

(Ito et al., 2007). To determine whether Wnt/-catenin signaling contributes to the 

enhanced wound-induced hair regrowth of collagen VI deficient mice, we performed 

a thorough investigation of this pathway in skin wounds of wild-type and Col6a1–/– 

mice. Western blotting showed that although -catenin levels were decreased upon 

skin wounding in both genotypes, -catenin levels in skin wounds of Col6a1–/– mice 

were significantly higher than those of wild-type mice at post-wound day 8 (Figure 

5b). Immunofluorescence analysis confirmed that -catenin labeling in hair follicles 

was much stronger in Col6a1–/– mice than wild-type mice at post-wound day 8 

(Figure 5c). Furthermore, immunofluorescence for the Wnt inhibitor dickkopf-related 

protein 1(DKK-1) at post-wound day 8 showed lower labeling in the hair follicles of 

Col6a1–/– mice than in those of wild-type mice (Figure 5d). These findings indicate 
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that Wnt/-catenin signaling is involved in the enhanced wound-induced hair 

regrowth of Col6a1–/– mice. 

Notch signaling is involved in embryonic and postnatal hair homeostasis, whereas 

inactivation of Notch results in hair loss (Vauclair et al., 2005). Thus, we investigated 

whether Notch signaling is involved in mediating the increased wound-induced hair 

regrowth of Col6a1–/– mice. Western blot and immunofluorescence analysis at post-

wound day 8 showed that the levels and reactivity of Notch1 in skin wounds of 

Col6a1–/– mice were similar to those of wild-type mice (Figure 6a and b). Taken 

together, these data indicate that upregulation of K79 and activation of Wnt/-catenin 

pathway contributing to the enhanced wound-induced hair regrowth in Col6a1–/– 

mice.

The increased wound-induced hair regrowth of Col6a1–/– mice is abolished by 

addition of collagen VI or by inhibition of Wnt/-catenin pathway

To confirm the role of collagen VI in wound-induced hair regrowth and the 

underlying molecular mechanism involving modulation of the Wnt/-catenin 

signaling pathway, we treated Col6a1–/– mice with purified native collagen VI or with 

the Wnt/-catenin inhibitor ICG-001 after skin wounding. Notably, the enhanced hair 

regrowth of Col6a1–/– mice was rescued by addition of purified collagen VI protein 

(Figure 7a) and by treatment with ICG-001 (Figure 7b), suggesting that the 

inhibitory effect of collagen VI in wound-induced hair regrowth is regulated by the 

Wnt/-catenin pathway. Furthermore, western blot showed that addition of purified 

collagen VI or of ICG-001 blocked the wound-induced upregulation of K79 and -

catenin in Col6a1–/– mice (Figure 7c). Altogether, these data indicate that the 

enhanced wound-induced hair regrowth of Col6a1–/– mice is regulated by the 

activation of Wnt/-catenin signaling pathway.
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Discussion

Previous microarray studies showed that the expression levels of Col6a1 and Col6a2 

in bulge stem cells are higher than in differentiated keratinocytes, suggesting that 

collagen VI may contribute to bulge function and hair development. However, a direct 

evidence for such a role was still lacking (Fujiwara et al., 2011). In this study, we 

showed that collagen VI has a distinct distribution in hair follicles and responds to 

skin wounds, and demonstrated that lack of collagen VI in Col6a1–/– mice has a strong 

impact on wound-induced hair regrowth.

Skin is normally able to regenerate hair follicles during wound healing in rodents (Ito 

et al., 2007; BREEDIS, 1954). However, wound healing sometimes results in 

inadequate tissue regeneration by fibrosis or scarring, especially for the cutaneous 

wounds in adult humans (Gay et al., 2013). The underlying mechanisms controlling 

wound scarring and tissue regeneration are not yet fully understood (Nelson et al., 

2013). It has been well established that ECM molecules play an important role in skin 

wound healing (Olczyk et al., 2014). Given our previous studies showing that 

collagen VI is essential for muscle regeneration by modulating satellite cell activities 

(Urciuolo et al., 2013), and for peripheral nerve regeneration by modulating 

macrophage function (Chen et al., 2014c), we originally predicted that the Col6a1–/– 

mice may have deficits in skin regeneration. However, we found that lack of collagen 

VI in Col6a1–/– mice does not affect skin wound healing (Lettmann et al., 2014). 

Interestingly, a previous study demonstrated that lack of collagen VI in Col6a1–/– 

mice improves cardiac function, structure and remodeling after myocardial infarction 

(Luther et al., 2012). These findings suggest that this ECM molecule plays different 

roles in distinct tissues during regeneration, which may be due to the specific context 

of each tissue. Further studies will be needed to understand the detailed underlying 
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mechanisms involved in the specific functions of collagen VI during regeneration in 

different organs.

Similarly to the previous unexpected finding that Col6a1–/– mice have improved 

cardiac function after myocardial infarction (Luther et al., 2012), in this study we 

found that lack of collagen VI unexpectedly promotes wound-induced hair regrowth. 

We speculate that ablation of collagen VI does not alter the hair follicle activities per 

se, because we did not find any difference about hair growth between wild-type and 

Col6a1–/– mice under physiological conditions. These findings suggest that the 

wound-induced hair regrowth elicited by lack of collagen VI should be regulated by 

wounding-related cell components and/or signals. 

K79-positive cells are a recently identified population of epithelial cells, which is 

essential for initiating hair canal morphogenesis and regeneration independently of 

Notch signaling pathway (Veniaminova et al., 2013). Interestingly, our data show 

higher immunolabeling for K79, but not for Notch1, in skin wounds of Col6a1–/– mice 

than those of wild-type mice. These data suggest that regulation of K79-positive cells 

serves as a wound-induced mechanism governing the increased hair regrowth in 

Col6a1–/– mice independently of Notch signaling.

The Wnt/-catenin pathway plays a central role in regulating embryonic and adult 

hair follicle growth under both physiological and pathological conditions. For 

example, it has been shown that activation of Wnt/-catenin signaling is essential for 

the initiation of embryonic hair follicle development (Andl et al., 2002; Zhang et al., 

2009; Huelsken et al., 2001). Wnt/-catenin signaling is also required for wound-

induced hair neogenesis, where overexpression of Wnt7a in mouse epidermis 

enhances wound-induced hair follicle growth, while development of new hair follicles 

after wounding is blocked by overexpression of DKK-1 or by ablation of -catenin 
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(Ito et al., 2007). Interestingly, in this study we found that the enhanced wound-

induced hair regrowth of Col6a1–/– mice was associated with higher -catenin levels 

at 8 days post-wound, whereas under physiological conditions -catenin levels were 

slightly (albeit not significantly) lower in the skin of Col6a1–/– mice with respect to 

wild-type mice. These findings are consistent with previous studies which showed 

that collagen VI is able to stabilize and activate -catenin in cancer cells (Iyengar et 

al., 2005), pointing at a potential positive regulation between collagen VI and Wnt/-

catenin signaling. In this context, it must be underlined that Wnt/-catenin signaling is 

dynamically regulated dependent on distinct microenvironments. For example, during 

the initiation of hair follicle development Wnt/-catenin signaling is first enhanced 

uniformly in the upper dermis and then focally in both the underlying dermal 

condensate and the epithelial hair follicle placode (Zhang et al., 2009; Chen et al., 

2012; Myung et al., 2013). In agreement with this concept, previous studies showed 

that lack of collagen VI inhibits tumor growth by destabilizing and inactivating -

catenin signals (Iyengar et al., 2005), whereas here we show that ablation of collagen 

VI promotes wound-induced hair regrowth by activation of the Wnt/-catenin 

pathway. The contribution of Wnt/-catenin signals in wound-induced hair regrowth 

of Col6a1–/– mice is also supported by the pharmacological treatment with the Wnt/-

catenin inhibitor ICG-001. Our results show that ICG-001 blocks the increased 

wound-induced hair regrowth and enhanced K79 expression in Col6a1–/– mice, thus 

providing further evidence that the increased wound-induced hair regrowth of 

Col6a1–/– mice relies upon activation of Wnt/-catenin signals. Although further 

studies aimed elucidating in detail the link between collagen VI, skin wounds and 

Wnt/-catenin signaling are needed to obtain a thorough understanding of the 

mechanisms governing hair follicle development and wound-induced hair regrowth, 
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the present findings reveal a novel and unanticipated role for collagen VI in wound-

induced hair regrowth.

The reasons why hair growth is induced by wounding are not yet fully understood 

(Stenn and Paus, 2001). In the current study, we demonstrate that collagen VI is 

mainly deposited in hair follicles and is regulated by skin wounding, which in turn 

regulates hair regrowth by modulation of K79 and Wnt/-catenin signaling. 

Interestingly, we found that the enhanced wound-induced hair regrowth in Col6a1–/– 

mice is abolished by treatment with purified collagen VI. Altogether, this study 

provides novel evidence on the role of specific ECM molecules in wound-induced 

hair regrowth, and sheds light on the potential therapeutic benefit in accelerating 

impaired hair growth by targeting collagen VI.
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Figure 1

Figure 1. Collagen VI is deposited in hair follicles. (a) Immunofluorescence for 

collagen VI in hair follicles of wild-type adult mice. (b and c) Co-

immunofluorescence labeling of K15 (red) with (VI) (green, b) and (VI) (green, 

c) in hair follicles of wild-type mouse. The dotted areas mark dermal papilla (DP), 

hair germ (HG) and sebaceous gland (SG) of hair follicle as indicated. Nuclei were 

stained with Hoechst (blue). Scale bar, 50 m. Bu, bulge.
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Figure 2
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Figure 2. Skin injury regulates collagen VI expression in wounds. (a-c) Real-time 

RT-PCR for Col6a1 (a), Col6a2 (b) and Col6a3 (c) transcripts in skin from wild-type 

mice under uninjured conditions (0) and at post-wound day 2, 4 and 8 (n = 5; *, P 

<0.05; **, P < 0.01; ***, P <0.001). (d and e) Left panels, western blot for 1/2(VI) 

and 3(VI) in skin from wild-type mice under uninjured conditions (0) and at post-

wound day 2, 4 and 8. Right panels, densitometric quantification of 1/2(VI) vs 

actin (d) and 3(VI) vs actin (e), as determined by three independent western blot 

experiments (n = 4-5; *, P <0.05; **, P < 0.01; ***, P <0.001). pwd, post-wound day.
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Figure 3 

 

Figure 3. Ablation of collagen VI does not affect hair growth under physiological 

conditions. Representative images showing the hair growth in wild-type and Col6a1–

/– mice under physiological conditions at different ages as indicated.
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Figure 4
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Figure 4. Lack of collagen VI does not affect wound healing, but promotes 

wound-induced hair regrowth. (a) Quantification of the percentage of initial wound 

areas in wild-type and Col6a1–/– mice after excising a 1 cm2 square of full-thickness 

dorsal skin (n = 3). (b and c) Wound-induced hair regrowth in Col6a1–/– mice is faster 

than in wild-type mice in the injury models obtained by excising a 1 cm2 square of 

full-thickness dorsal skin (b) or by excising three 6-mm wounds (c). Photographs 

were taken at post-wound day 14. (d) H&E staining in skin wounds from wild-type 

and Col6a1–/– mice at post-wound day 8. Scale bar, 200 m. The quantification of hair 

follicle lengths is shown in the right panel (**, P < 0.01; n = 3-4). pwd, post-wound 

day; WT, wild-type.
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Figure 5
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Figure 5. Ablation of collagen VI increases K79 expression and activates Wnt/-

catenin signaling after skin wounding. (a and b) Left panels, western blot for K79 

(a) or -catenin (b) in skin from wild-type mice and Col6a1–/– mice under uninjured 

conditions (0) and at post-wound day 2, 4 and 8. Right panels, densitometric 

quantification of K79 vs actin (a) or -catenin vs actin (b), as determined by three 

independent experiments. Values for uninjured wild-type skin were arbitrarily set to 1 

(n = 4;  *, P < 0.05; **, P < 0.01). (c and d) Co-immunofluorescence labeling of K15 

(red) with -catenin (green, c) or DKK-1 (green, d) in skin from wild-type and 

Col6a1–/– mice at post-wound day 8. Nuclei were stained with Hoechst (blue). Scale 

bar, 100 m. pwd, post-wound day; WT, wild-type.
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Figure 6

Figure 6. Lack of collagen VI does not affect Notch1 signaling after skin 

wounding. (A) Left panel, western blot for Notch1 in skin from wild-type and 

Col6a1–/– mice under uninjured conditions or at post-wound day 2, 4 and 8. Right 

panel, densitometric quantification of Notch1 vs actin as determined by three 

independent western blot experiments. Values for uninjured wild-type skin were 

arbitrarily set to 1 (n = 3). (B) Co-immunofluorescence labeling of K15 (red) with 

Notch1 (green) in skin wounds from wild-type and Col6a1–/– mice at post-wound day 

8. Nuclei were stained with Hoechst (blue). Scale bar, 100 m. pwd, post-wound day; 

WT, wild-type.
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Figure 7
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Figure 7. Treatment with purified collagen VI or Wnt/-catenin inhibitor 

abolishes the increased wound-induced hair regrowth of Col6a1–/– mice. (a and b) 

Representative images show the effect of purified collagen VI (3 mg/kg/day) or 

Wnt/-catenin inhibitor ICG-001 (5 mg/kg/day) on wound-induced hair regrowth of 

Col6a1–/– mice at post-wound day 14. Drugs were administered near the wounds at 

post-wound day 4. (c) Left panel, western blot for K79 and -catenin in skin wounds 

at post-wound day 8 from wild-type and from Col6a1–/– mice in the absence (Control) 

or in the presence of purified collagen VI  (3 mg/kg/day) or ICG-001 (5 mg/kg/day) 

starting at post-wound day 4. Right panel, densitometric quantification of K79 vs 

actin and -catenin vs actin, as determined by three independent experiments. Values 

for wild-type skin were arbitrarily set to 1 (n = 4; *, P < 0.05; **, P < 0.01). ColVI, 

purified collagen VI; PBS, phosphate buffered saline; WT, wild-type.

 

98



Chapter 4

 Table 

Table 1. RT-PCR primer sequences.

Protein Gene Primer sequence

1(VI) Col6a1
Forward: 5’– TGCCCTGTGGATCTATTCTTCG –3’

Reverse: 5’– CTGTCTCTCAGGTTGTCAATG –3’

2(VI) Col6a2
Forward: 5’– CTACTCACCCCAGGAGCAGGAA –3’

Reverse: 5’– TCAACGTTGACTGGGCGATCGG –3’

3(VI) Col6a3
Forward: 5’– AACCCTCCACATACTGCTAATTC –3’

Reverse: 5’– TCGTTGTCACTGDCTTCATT –3’

GAPDH Gapdh
Forward: 5’– GGGAAGCCCATCACCATCTT –3’

Reverse: 5’– GCCTTCTCCATGGTGGTGAA –3’
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Abstract In the peripheral nervous system, myelin is formed
by Schwann cells, which are surrounded by a basal lamina.
Extracellular matrix (ECM) molecules in the basal lamina
play an important role in regulating Schwann cell functions,
including adhesion, survival, spreading, and myelination, as
well as in supporting neurite outgrowth. Collagens are a major
component of ECM molecules, which include 28 types that
differ in structure and function. A growing body of evidence
suggests that collagens are key components of peripheral
nerves, where they not only provide a structural support but
also affect cell behavior by triggering intracellular signals. In
this review, wewill summarize the main properties of collagen
family, discuss the role of extensively studied collagen types
(collagens IV, V, VI, and XV) in Schwann cell function and
myelination, and provide a detailed overview of the recent
advances with respect to these collagens in peripheral nerve
function.

Keywords Collagen . Extracellular matrix . Myelination .

Peripheral nervous system . PNS function . Schwann cells

Introduction

Peripheral nerves are composed of three distinct layers or
compartments, corresponding to epineurium, perineurium,
and endoneurium. The epineurium is the outermost layer that
surrounds a thin lamellated perineurium composed of flat
perineurial cells and an outer layer of collagen fiber bundles

[1, 2]. The endoneurium is surrounded by perineurium, which
is made of Schwann cell-axon units, fibroblasts, and extracel-
lular matrix (ECM) [1]. ECM molecules are pivotal for both
providing structural support and triggering many intracellular
signals in peripheral nerves [2, 3].

Collagens are a major component of ECM in peripheral
nerves, which play a key role in the peripheral nerve devel-
opment and in the maintenance of normal nerve function
during adulthood [4, 5]. So far, 28 collagen types have been
identified in vertebrates [6, 7]. According to their different
structures and functions, collagens can be classified into dis-
tinct subgroups, including fibril-forming collagens (types I, II,
III, V, XI, XXIV, and XXVII) [6], networking collagens (types
IV, VI, VIII, and X) [2, 8], fibril-associated collagens with
interrupted triple helices (types IX, XII, XIV, XVI, XIX, XX,
XXI, XXII, and XXVI) [8], transmembrane collagens (types
XIII, XVII, XXIII, and XXV) [2, 8, 9], and other collagens
(types VII, XV, XVIII, and XXVIII). Fibril-forming collagens
are the most abundant and conserved types, and they are
produced by connective tissue cells, such as fibroblasts, oste-
oblasts, and chondrocytes [6]. These collagens are typically
made of α-chains containing a large triple-helical domain,
flanked by N- and C-terminal domains [3, 6]. Fibril-
associated collagens interact with other ECM molecules and
play an essential role for the stabilization and integrity of
ECM [8]. Networking collagens are grouped due to their
ability to form networks in the extracellular space and are
the most important basement membrane components integrat-
ing laminins, nidogen, perlecan, and other ECM molecules
into a stable superstructural aggregate [4, 10]. Transmembrane
collagens contain a transmembrane domain, which allows
them to participate in the formation of cell-matrix interactions
and in ECM remodeling [9]. Despite high structure and func-
tion diversities among different collagen types, all members of
collagen family share some common characteristics. For in-
stance, all collagens are made of three α-chains capable to
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form triple-helical conformations of variable lengths. Each
chain is characterized by the presence of a collagenous do-
main containing repeated Gly-Xaa-Yaa amino acid triplets,
where Xaa and Yaa are frequently proline and 4-hydroxypro-
line, respectively [4, 11]. Collagens can assemble as
homotrimers containing three identical α-chains or as
heterotrimers containing two or even three different α-
chains [11].

Myelination is an important physiological process in pe-
ripheral nerves that contributed by Schwann cells. Derived
from the embryonic neural crest, Schwann cells differentiate
into myelinating or nonmyelinating cells [12, 13]. In the adult
peripheral nerves, myelin is produced by myelinating
Schwann cells, which envelop larger axons at a 1:1 ratio,
whereas nonmyelinating Schwann cells are linked to C fibers
[14–16]. Abnormal myelination in the peripheral nervous
system is related to a number of neurological disorders,
such as hereditary neuropathy with liability to pressure
palsies, Charcot-Marie-Tooth disease, Dejerine-Sottas
syndrome, congenital hypomyelinating neuropathy, and
adrenomyeloneuropathy [17–21]. Thus, the proper
myelination is critical for peripheral nerves and is tightly
regulated by multiple signals, including ECM [13, 22]. Col-
lagens are an essential component of Schwann cell ECM and
play an important role in ECM assembly and peripheral nerve
regeneration [23, 24]. In vitro studies using primary cultures
of Schwann cells and Schwann cell/dorsal root ganglion
(DRG) co-cultures have demonstrated that the secretion of
native collagens and the assembly of fibrillar and basement
membrane ECM structures fail when cells cultured without
ascorbic acid, an essential factor for collagen posttranslational
modification. Furthermore, addition of ascorbic acid promotes
the deposition of ECM in Schwann cell plasma membrane [3,
25] and is essential for in vitro myelination in Schwann cell/
DRG co-cultures [26, 27]. Sodium-dependent vitamin C
transporter 2 (SVCT2) is necessary for the transport of ascor-
bic acid into Schwann cells [28] and into the brain [29].
Deficiency of SVCT2 leads to hypomyelination, as well as
to impairments of nerve conduction velocities (NCVs) and
sensorimotor function by decreasing the deposition of ECM
components including collagen types IV, V and XXVIII [30].
These findings highlight the contribution of collagens in pe-
ripheral nerve myelination and function, which is also sup-
ported by the evidence that collagens can stimulate signal
transduction in Schwann cells. Schwann cells not only express
and secrete multiple collagen molecules both in cell culture
and in vivo [3, 14, 31, 32] but also express several types of
collagen receptors [3, 31–35] and migrate on and adhere to
collagen substrates [3, 36]. By means of binding to their
receptors on the cell surface, collagens play an important role
in the regulation of Schwann cell function and myelination [3,
22, 37–39]. To better understand the contribution of collagens
in peripheral nerves, this review will summarize the main

properties of collagen types IV, V, VI, and XV that have been
extensively studied in peripheral nerves and discuss the re-
search findings with respect to their roles and underlying
molecular mechanisms in Schwann cell function and
myelination, as well as in peripheral nerve function.

Collagen IV

Collagen IV is a major component of basement membranes,
and it can be deposited in the ECM as distinct isoforms made
of up to six chains, α1(IV), α2(IV), α3(IV) α4(IV), α5(IV),
and α6(IV), encoded by genes COL4A1 to COL4A6, respec-
tively [40, 41]. These chains can assemble into three distinct
protomers, [α1]2α2(IV), α3α4α5(IV), and [α5α]2α6(IV)
[42, 43]. The α1(IV) and α2(IV) are considered as the “clas-
sical” collagen IV chains, which were first described. Both
chains are deposited in basement membranes of all tissues,
while the other four chains are deposited in restricted tissues
during the development. Mutations in the gene encoding for
either α1(IV) or α2(IV) lead to embryonic lethal phenotypes
[41], whereas mutations in any of the genes encoding for
α3(IV)–α5(IV) cause tissue-specific defects that are related
to different forms of the Alport syndrome [43, 44] and other
diseases [45, 46]. Each chain of collagen IV contains a long
triple-helical collagenous domain with frequent interruptions
of the Gly-Xaa-Yaa repeats, flanked by a short N-terminal
(7S) domain and a larger C-terminal globular (NC1) domain
[41, 43].

Unlike most members of the collagen family, collagen IV is
present only in the basement membranes of tissues [41].
Indeed, collagen IV is a major component of the Schwann
cell basement membrane in peripheral nerves [3, 47, 48],
suggesting its potential role in modulating the activity and
function of Schwann cells or nerves. In fact, collagen IV can
promote the attachment and spreading of Schwann cells
through a mechanism that is mediated by α1β1 and α2β1
integrins [49], as well as enhance Schwann cell proliferation
[50]. Moreover, collagen IV promotes peripheral axonal
growth mediated by the binding of α1β1 integrin to its NC1
domain [51]. These findings provided an in vitro evidence
supporting the contribution and underlying mechanisms for
collagen IV in the regulation of Schwann cell and peripheral
nerve functions. Furthermore, in vivo findings obtained from
Trembler-J mice, an animal model for Charcot-Marie-Tooth
disease, demonstrate that these mice display alterations in
Schwann cell structure and ECM organization of peripheral
nerves. Especially, these mice exhibit high levels of
macrophage-derived matrix metalloproteinases (MMPs), thus
inducing the decrease of collagen IV deposition in nerves
[52]. Moreover, it has been demonstrated that the expression
of PMP-22 in myelinating nerve fibers is associated with
collagen IV [53]. The other evidence from sciatic nerve
transected animals suggests that myelination and collagen IV
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deposition can be detected in concurrence with regenerated
fibers after receiving the treatment with electrospun tubes,
indicating the correlation between collagen IV and
myelination [54]. More importantly, collagen IV exhibits a
beneficial effect in regeneration after sciatic nerve injury [55].
In addition, clinical findings show that the expression of
collagen IV is enhanced in the peripheral nerves of patients,
who were diagnosed as having myelin-related neuropathies,
such as multiple sclerosis [56], Charcot-Marie-Tooth type 1
[57], and diabetic polyneuropathy [58]. The function of col-
lagen IV in peripheral nerve is also supported by the evidence
obtained from peripheral nerve sheath tumors. For example, it
has been found that collagen IV is strongly deposited in the
malignant peripheral nerve sheath tumor tissues [59–63], sug-
gesting its potential role in peripheral nerve sheath tumor
development. Collectively, these findings suggest that colla-
gen IV may function as an important regulator involved in
modulating myelination and may contribute to the onset of
myelin-related peripheral neuropathies and peripheral nerve
sheath tumors. However, further studies are still needed to
clarify the role of collagen IV in myelination and peripheral
nerve function using Schwann cell-specific deletion of colla-
gen IV genes.

Collagen V

Collagen V is a minor component of collagen fibrils playing
an important role in ECM organization [64, 65]. Collagen V
usually co-polymerizes with collagen I and regulates the di-
ameter of heterotypic collagen fibrils in lathyritic chicken [66]
and bone [67]. The protein is composed of three polypeptide
chains, α1(V), α2(V), and α3(V), encoded by distinct genes
(COL5A1, COL5A2, and COL5A3, respectively) [68, 69].
Collagen V is widely deposited in multiple tissues as
[α1(V)]2α2(V) heterotrimers [67, 70]. However, other forms,
such as [α1(V)]3 homotrimers and α1(V)α2(V)α3(V)
heterotrimers, have also been reported [67].

In addition to the three chainsmentioned above, a collagen-
like adhesive protein of 200 kDa (called p200) that binds with
high affinity to the cell surface heparan sulfate proteoglycan
syndecan-3 was isolated from the conditioned medium of
Schwann cells. Purified p200 promotes the adhesion and
spreading of Schwann cells, which is blocked by heparin,
indicating that heparan sulfate proteoglycans function as re-
ceptors for p200 [71]. Among the tissues, p200 is only
expressed in the ECM surrounding Schwann cell-axon units
of developing sciatic nerves. The protein is first detected in
mouse embryo between E15 and E18, and its deposition is
only detectable during the first 2–3 weeks of postnatal devel-
opment [31, 71], suggesting a unique role for p200 in periph-
eral nerve development. Subsequent studies identified p200 as
a novel isoform of collagen V, named α4(V) collagen [72].
Purified α4(V) collagen isolated from Schwann cell

condi t ioned medium promotes the migra t ion of
premyelinating Schwann cells and inhibits the outgrowth of
axons from DRG. Further studies suggested that the effects of
α4(V) collagen in promoting Schwann cell adhesion, spread-
ing, and migration are exerted by the binding of its
noncollagenous N-terminal domain to heparin [36], mediated
by syndecan-3 [33]. In addition, the noncollagenous N-
terminal domain of α4(V) collagen can be released constitu-
tively by Schwann cells both in vitro and in vivo. In peripheral
nerve tissues, this domain is found in the region of the outer
Schwann cell membranes. After secretion, it binds to
glypican-1 and perlecan, two proteins expressed on the cell
surface of Schwann cells, and to ECM heparan sulfate pro-
teoglycans, thus affecting Schwann cell behavior and function
[34]. In mature myelinating Schwann cell-axon units, α4(V)
collagen and its receptor syndecan-3 are highly concentrated
at the nodes of Ranvier, which are structures strongly regulat-
ed by myelinating glia [73]. Altogether, these findings not
only provide direct evidence supporting the role of α4(V)
collagen in Schwann cell adhesion, spreading, and migration
but also suggest the potential role of this protein in regulating
peripheral nerve myelination. In agreement with this hypoth-
esis, siRNA-mediated suppression of α4(V) collagen signifi-
cantly inhibits Schwann cell myelination in vitro [35]. It
should be pointed out that p200was first considered as a novel
collagen V isoform, named α4(V) collagen, due to the appar-
ent differences between the full-length rat sequence and partial
peptide sequence data from the humanα3(V) chain. However,
studies performing the cloning of the same gene from mouse
and human demonstrated that p200 appears to be α3(V)
collagen [3, 74]. Based on the findings mentioned above,
further studies using genetic approaches are still needed to
investigate in detail the in vivo effects of collagen V in
myelination and peripheral nerve function.

Collagen VI

Collagen VI is a large ECM component, which has been
shown to be abundantly expressed in several tissues [75,
76], including peripheral nerves [14, 77]. It is composed of
three distinct polypeptide chains,α1(VI),α2(VI), andα3(VI),
encoded by distinct genes (COL6A1 toCOL6A3, respectively)
[75, 78]. Recent studies identified three novel collagen VI
chains, called α4(VI), α5(VI), and α6(VI), which are coded
by separate genes (COL6A4 to COL6A6) and share a high
degree of similarity with α3(VI) [79, 80]. Each collagen VI
chain is characterized by a short triple helical domain, flanked
by large N- and C-terminal globular ends composed of repeat-
ed motifs that are similar to the von Willebrand factor type A
(vWF-A) module [75, 78, 79]. The α1(VI) and α2(VI) chains
contain one N-terminal (N1) and two C-terminal (C1 and C2)
vWF-A modules, whereas the α3(VI) chain contains ten N-
terminal (N1 to N10) and two C-terminal (C1 and C2) vWF-A
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modules, as well as three distinct domains (C3–C5) at the C-
terminal end [75, 78]. The novel chains contain one N-
terminal region composed of seven vWF-A modules and a
C-terminal region made of two or three vWF-A modules, as
well as one or two unique sequences [78–80]. It was demon-
strated that α3(VI) undergoes a proteolytic processing, which
leads to the release of the most C-terminal (C5) domain
following collagen VI secretion [81]. The human COL6A4
gene is disrupted into two pieces, due to a large chromosome
inversion during primate evolution leading to the generation
of a nonprocessed pseudogene that is not able to produce a
functional α4(VI) chain in humans [80].

The synthesis and secretion of collagen VI requires the
association of α1(VI), α2(VI), and α3(VI) in equimolar ra-
tios. The novel chains may substitute for α3(VI) during the
synthesis and assembly to form α1(VI) α2(VI)α4(VI),
α1(VI)α2(VI)α5(VI), and α1(VI)α2(VI)α6(VI) isoforms
[79, 80]. At difference from other collagens, collagen VI has
a peculiar multistep pathway of intracellular assembly, which
also involves extensive disulfide bond interactions. The asso-
ciation of distinct α-chains allows the formation of triple-
helical “monomers” (three chains), followed by the assembly
into “dimers” (six chains) and “tetramers” (12 chains) before
secretion [75]. Once secreted, the tetramers associate by
noncovalent interactions, giving rise to characteristic
“beaded” microfilaments that are deposited in the ECM [75,
82]. The secreted collagen VI can regulate the properties of
local microenvironment by interacting with a number of cell
surface receptors and several other ECM components. Colla-
gen VI microfilaments not only provide structural support for
cells and connective tissues, by fine-tuning the local stiffness
[83, 84] and the size of collagen I fibrils [85], but also regulate
intracellular functions, such as apoptosis [76, 86, 87], prolif-
eration [88], angiogenesis, and inflammation [89].

Given the important role of collagen VI in regulating cell
functions, increasing evidence has demonstrated that this mol-
ecule is also critical for Schwann cell activities in peripheral
nerves. Collagen VI expression is detectable in the mouse
embryo at E10.5 in different locations, then rapidly increases
in following days and remains at high levels during organo-
genesis, slowly decreasing after birth [90]. Collagen VI is
abundant in both embryonic and adult peripheral nerves [14,
77], where it is produced by Schwann cells and endoneurial/
perineurial cells, but not by neural crest cells or axons [14, 91].
Although collagen VI is broadly distributed in several tissues,
expression of the genes coding for collagen VI chains is
dynamically regulated and requires different cis-acting regu-
latory elements that confer proper levels of expression by
different cell types. In agreement with this, an enhancer region
located about 4.5 kb upstream the transcription start site of the
Col6a1 gene was shown to drive transcription in the periph-
eral nervous system [92]. Further studies suggest that Col6a1
gene is highly expressed by mature Schwann cells which have

undertaken myelination, but not by immature Schwann cells.
Activation ofCol6a1 transcription is part of the differentiation
program of Schwann cells from neural crest cells upon the
initial stimulation with neuregulin. Furthermore, activation of
this gene in sciatic nerves after birth is associated with the time
of withdrawal of immature Schwann cells from the cell cycle,
when they start to differentiate intomyelinating Schwann cells
[91]. Altogether, these findings highlight the contribution and
underlying mechanisms of collagen VI expression in
Schwann cell differentiation (Fig. 1).

In addition to involving in Schwann cell differentiation,
collagen VI contributes to Schwann cell myelination. Recent
findings demonstrated that addition of purified collagen VI to
Schwann cells decreases the expression of myelin-associated
glycoprotein, suggesting an inhibitory effect of collagen VI in
Schwann cell myelination in vitro [14]. In vivo work showed
that lack of collagen VI in Col6a1−/− mice, where targeted
inactivation of the gene coding for α1(VI) chain prevents
collagen VI assembly and secretion [86, 93], induces axon
hypermyelination in the sciatic nerves of adult mice [14].
Myelination in the peripheral nerve is tightly regulated by
specific signaling pathways. For instance, activation of FAK
[94], AKT [95, 96], ERK [97, 98], and p38 [99, 100] and
inhibition of vimentin [95], JNK, and c-Jun [101] signaling
pathways are required for axon myelination in peripheral
nerves. In agreement with the hypermyelination observed in
Col6a1−/− nerves, collagen VI ablation is accompanied by the
activation of FAK, AKT, ERK, and p38 signals and inhibition
of vimentin, JNK, and c-Jun signals [14], suggesting that
collagen VI affects peripheral nerve myelination by regulating
both positive and negative myelination regulatory pathways.

It is well established that myelin thickness in the peripheral
nerves should be properly maintained, and abnormal myelin
thickness is closely related to the dysfunction of nerves in
animals and humans [14, 17–21, 102]. For instance, axon
hypermyelination can enhance the proportion of the surround-
ing wire volume and cause axonal damage, thus altering
axonal functions [17, 103, 104]. In agreement with the
hypermyelination of collagen VI deficient nerves, electro-
physiological studies demonstrated that the NCVs are im-
paired in Col6a1−/− mice, with decreased Schwann cell inter-
nodal length. Moreover, behavioral studies demonstrated that
Col6a1−/− mice exhibit an impairment of sensorimotor func-
tion, suggesting that deficiency of collagen VI induces func-
tional deficits in peripheral nerves [14]. In addition to its direct
role in Schwann cells and myelination, collagen VI interacts
with other ECM molecules to modulate peripheral nerve
structure and function. For example, von Willebrand A
domain-related protein (WARP) is an ECM molecule that
interacts with collagen VI in peripheral nerves. Ablation of
WARP severely reduces collagen VI deposition in peripheral
nerves, which not only leads to compromised peripheral nerve
structure, such as the fusion of adjacent Schwann cells
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basement membranes, but also causes an impairment of sen-
sorimotor function [77]. Altogether, these findings support the
concept that collagen VI is not only involved in Schwann cell
differentiation and myelination via distinct molecular mecha-
nisms but also functions as an important factor for regulating
peripheral nerve function (Fig. 1).

Collagen XV

Collagen XV is a large nonfibrillar collagen made of α1(XV)
homotrimers and characterized by a highly interrupted triple-
helical domain and large N- and C-terminal noncollagenous
domains. This collagen has hybrid features of both collagens
and proteoglycans, and it was found to correspond to a chon-
droitin sulfate proteoglycan located in specialized basement
membranes [105, 106]. Collagen XV shows a high degree of
similarity with collagen XVIII, and these two proteins form a
distinct subgroup among the collagen family [40, 107–109].
In addition, both collagen XV and XVIII were shown to
undergo proteolytic processing at their C-terminal end, giving
rise to bioactive fragments of about 20 kDa, called
endostatins, which display potent inhibitory activities on an-
giogenesis and tumor growth [110–113].

Collagen XV is widely distributed in the basement mem-
brane zones of different tissues [105, 110]. Immunostaining
studies demonstrated that collagen XV expression is higher
during embryogenesis and it is abundant in several developing
tissues, such as the heart, kidney, and lung. On the other side, a

strong labeling for collagen XV is found in the endoneurium
and perineurium of adult peripheral nerves. In addition, col-
lagen XV is also deposited in the extrasynaptic and Schwann
cell basement membranes of neuromuscular junction [114].
This expression profile suggests a potential role for collagen
XV in the development and functional properties of peripheral
nerves. Indeed, genetic studies in Col15a1−/− mice showed
that lack of collagen XV causes polyaxonal myelination,
loosely packed axons in C fibers, and less electron dense
cytoplasm in Schwann cells, suggesting an impairment of
peripheral nerve maturation and C fiber formation. Moreover,
ablation of collagen XV leads to defective basement mem-
brane assembly. Electrophysiological studies demonstrated
that deficiency of collagen XV induces a decrease in NCVs,
suggesting an impairment of sensory function in Col15a1−/−

mice [115]. Laminin-411, another component of the basement
membrane of peripheral nerves, was shown to be involved in
axon segregation and myelination in peripheral nerves [116,
117]. Lack of laminin-411 in Lama4−/− mice causes an im-
pairment of motor and tactile sensory functions, which is
exacerbated by the simultaneous deficiency of collagen XV,
although the sole ablation of collagen XV does not affect the
motor function in mice [115]. Taken together, these findings
point at collagen XV as an essential factor regulating periph-
eral nerve maturation and C fiber formation, as well as con-
tributing to the modulation of another ECM molecule, lami-
nin-411, that is involved in motor and sensory functions of
peripheral nerves.

SC 
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Premyelinating
SC

Motor 
function

Sensory
function

Promyelinating
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Myelination

C-fibers

Col6a1

Col VI

Nonmyelinating
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Differentiation

Col VI

Col VI

Neuregulin 

FAK
AKT
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p38 

Vimentin
JNK

c-JUN

Proliferation

Col6a1

Fig. 1 The contribution of collagen VI in Schwann cell function, periph-
eral nerve myelination and function. Activation ofCol6a1 transcription is
required for Schwann cell differentiation through modulation of axonal
signal neuregulin and cell cycle. Lack of collagen VI in Col6a1−/− mice
induces hypermyelination in peripheral nerve regulated by the activation
of FAK, AKT, ERK, and p38 signals and inhibition of vimentin, JNK,

and c-Jun pathways. The increased myelin in Col6a1−/− mice results in
impaired motor functions. Furthermore, deficiency of collagen VI causes
the disorganization of C fibers, thus inducing an impairment of sensory
function. Thus, collagen VI is an important regulator for Schwann cell
differentiation, myelination, and peripheral nerve function. SC Schwann
cells, Col VI collagen VI
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Conclusions and Perspectives

Collagens are a prominent component of the ECM. Various
collagen types are abundantly deposited in the basement
membranes of Schwann cells and in the ECM of peripheral

nerves (Table 1), where they not only provide a structural
support but also affect Schwann cell behavior and nerve
function by triggering intracellular signals via binding to their
cell surface receptors. Several members of the collagen family,
such as collagens IV, V, VI, and XV, were shown to be key

Table 1 Expression and function of collagens in peripheral nerves and their related disorders

Collagen type Location Function Related disorders References

Collagens I and III Epineurium, perineurium,
and endoneurium

N.D. Charcot-Marie-Tooth [57]

Collagen II Schwann cells N.D. N.D. [118]

Collagen IV Basement membrane
of Schwann cells

Promoting Schwann cell
adhesion, migration and
proliferation, and axonal
growth

Charcot-Marie-Tooth,
multiple sclerosis, diabetic
polyneuropathy, and
peripheral nerve sheath
tumor

[3, 47–52, 55–63]

Collagen V Schwann cells Promoting Schwann cell
adhesion, migration
and myelination, and
inhibiting axonal growth

N.D. [31, 34–36, 71, 72]

Collagen VI Schwann cells, macrophages
and endoneurial/perineurial
cells

Involving in Schwann cell
differentiation and myelination
and modulation of motor and
sensory function

Peripheral nerve function
deficits

[14, 77, 91]

Collagen IX Posterior sclerotome Inhibiting sensory and motor
neurite outgrowth, and neural
crest cell migration

N.D. [119, 120]

Collagen XIII Dorsal root ganglia and nerves
of the developing mouse
fetus in mid-gestation

N.D. N.D. [121]

Collagen XV Endoneurium, perineurium,
and Schwann cell basement
membrane of neuromuscular
junction

Involving in nerve maturation,
C fiber organization, and sensory
function of peripheral nerves

Peripheral nerve function
deficits

[114, 115]

Collagen XVI Dorsal root ganglia N.D. N.D. [122]

Collagen XXVIII Nodes of Ranvier and
nonmyelinating
cells

N.D. Charcot-Marie-Tooth [123]

N.D. not determined

Collagens

Fibril-forming collagens

Networking collagens

Fibril associated collagens 
with interrupted triple helices

Transmembrane collagens

Other collagens

Schwann cell function

Myelination

PNS function

Type V

Types IV and VI

Type XV

Fig. 2 Schematic diagram summarizing the role of collagens in Schwann
cell function, peripheral nerve myelination and function. The diagram
shows that there are at least four types of collagens, including collagens
IV, V, VI, and XV, from three out of five collagen subgroups contributing

to Schwann cell function, peripheral nerve myelination and function. It is
still unknown whether other collagens are involved in these processes.
PNS peripheral nervous system
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regulators in the peripheral nerves, where they affect multiple
Schwann cell activities (such as adhesion, spreading, prolifer-
ation, differentiation, and myelination) and/or peripheral
nerve motor and sensory functions through distinct mecha-
nisms (Fig. 2 and Table 1). Moreover, dysfunction or defi-
ciency of collagens (such as collagens I, III, IV, VI, XV, and
XXVIII) in nerves is related to peripheral neuropathies
(Table 1). Collectively, these findings support the concept that
collagens play a critical role in peripheral nerve myelination
and function.

Although the increasing number of findings showing the
contribution of collagens in peripheral nerve myelination and
function, much work remains to be done regarding the role of
different collagen molecules in these processes, as well as the
underlying mechanisms. For example, our current knowledge
regarding the role of the different members of the collagen
family in peripheral nerve myelination and function is mainly
restricted to few molecules, such as collagens IV, V, VI, and
XV (Fig. 2). Further studies are needed to clarify whether and
how other collagen types are involved. The contribution of
collagens in regulating cell functions (e.g., cell growth, differ-
entiation, and proliferation) and cell behaviors (e.g., adhesion
and migration) is mediated by surface receptors, such as
integrins, or by binding to an intermediary molecule that is
then recognized by surface receptors [124]. Giving the fact
that multiple classes of collagen receptors have been identified
[124] and that one specific collagen type does not usually
exhibit its cellular functions via a sole receptor, it would be of
great interest to identify the receptors or intermediary binding
molecules mediating the specific role of each collagen type in
peripheral nerves. On the other hand, although some
findings demonstrate that the expression profile of colla-
gens, such as types IV, V, and VI, is changed in peripheral
nerves of diabetic polyneuropathy and Charcot-Marie-
Tooth type 1 patients [57, 58], further studies are needed
to clarify the role and underlying molecular mechanisms
of collagens in peripheral nerves in the context of periph-
eral neuropathies. In addition to providing a better under-
standing of the molecular mechanisms involved in medi-
ating the effects of different collagens in peripheral nerve
myelination and function, further findings in this field
may provide novel evidence supporting collagens as key
players in the onset and/or progression of peripheral neu-
ropathies, thus providing novel targets for the therapy of
peripheral neuropathies.
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Review
Glossary

Angiogenesis: the formation of new capillary blood vessels from pre-existing

vessels.

Endotrophin (ETP): a soluble cleaved C5 fragment of the collagen a3(VI) chain

that is secreted by various cell types, especially adipocytes.

Epithelial–mesenchymal transition (EMT): the process by which epithelial cells

completely lose their epithelial traits, but acquire mesenchymal characteristics.

EMT induces the loss of cell adhesion, decrease of E-cadherin expression, and

increase of cell motility.

Extracellular matrix (ECM): the extracellular component in mammalian tissues

that provides structural support to cells but also exerts several other functions.

Field cancerization: a concept proposed by Slaughter et al. in 1953 [86,87], which

describes histologically abnormal epithelium surrounding oral squamous cell

carcinoma within the aerodigestive region in relationship to the exposure to

carcinogens. This concept now refers more broadly to describe multiple patches

of premalignant disease, a higher-than-expected prevalence of multiple local and

second primary tumors within the upper aerodigestive tract.
Collagen VI is a widely distributed extracellular matrix
protein highly expressed in a variety of cancers that
favors tumor growth and progression. A growing num-
ber of studies indicate that collagen VI directly affects
malignant cells by acting on the Akt–GSK-3b–b-catenin–
TCF/LEF axis, enhancing the production of protumori-
genic factors and inducing epithelial–mesenchymal tran-
sition. Moreover, it affects the tumor microenvironment
by increasing the recruitment of macrophages and en-
dothelial cells, thus promoting tumor inflammation and
angiogenesis. Furthermore, collagen VI promotes che-
motherapy resistance and can be regarded as a potential
biomarker for cancer diagnosis. Collectively, these find-
ings strongly support a role for collagen VI as an impor-
tant regulator in tumors and provide new targets for
cancer therapies.

Collagen VI and its main properties
The extracellular matrix (ECM; see Glossary) in the tumor
microenvironment is commonly deregulated and disorga-
nized, thus contributing to cancer progression both direct-
ly, by promoting cancer cell growth and metastasis, and
indirectly, by educating other microenvironment compo-
nents [1]. Collagen VI is a major ECM protein composed of
three major polypeptide chains – a1(VI), a2(VI), and
a3(VI) – encoded by distinct genes (COL6A1, COL6A2,
and COL6A3, respectively). The a1(VI) and a2(VI) chains
have molecular weights of 140–150 kDa and extend for
nearly 1000 amino acids, whereas the a3(VI) chain is three
times larger (250–300 kDa) with several alternatively
spliced variants ranging between 2500 and 3100 amino
acids. Each chain is characterized by a short triple helical
region flanked by large N- and C-terminal globular
regions, which are composed of 200 amino acid motifs
sharing similarity with the von Willebrand factor type
A (vWF-A) module [2]. The a1(VI) and a2(VI) chains have
one N-terminal (N1) and two C-terminal (C1 and C2) vWF-
A modules, whereas the a3(VI) chain displays larger N-
and C-terminal globular regions made of 12 vWF-A mod-
ules (N1–N10, C1, C2) and three distinct C-terminal
domains (C3–C5) [2,3]. Interestingly, some studies indi-
cate that a3(VI) undergoes proteolytic processing, leading
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to the release of the most C-terminal (C5) domain after
collagen VI secretion [4] (Figure 1).

Recent studies led to the identification of three other
collagen VI subunits – a4(VI), a5(VI), and a6(VI) – encoded
by separate genes. These chains contain one N-terminal
region made of seven vWF-A modules, a collagen triple
helical region that is similar to that of a3(VI), and a
C-terminal region containing two or three vWF-A modules
as well as one or two unique sequences [5–8] (Figure 1).

Collagen VI is widely distributed in several tissues,
including skeletal muscle, skin, lung, blood vessels, cornea,
and intervertebral discs [2], as well as peripheral nerves
[9], brain [10], myocardium [11], and adipose tissue [12].
Collagen VI contributes to the properties of the local ECM
microenvironment by forming a discrete network of beaded
microfilaments that interact with other ECM molecules
and provide structural support for cells [13]. Furthermore,
it triggers signaling pathways that regulate apoptosis [14],
autophagy [15], proliferation, angiogenesis [16], fibrosis,
and inflammation [16,17]. Given the role for collagen VI in
regulating a number of cell and tissue processes, it is worth
clarifying the molecular mechanism underlying the contri-
bution of collagen VI to tumor progression. In this review,
we summarize the current knowledge on the procarcino-
genic function of collagen VI during tumor progression and
discuss data indicating that collagen VI is a diagnostic
biomarker for cancer and a modulator of chemotherapy
MMTV-PyMT mice: a transgenic mouse strain with mammary gland-specific

PyMT expression controlled by the MMTV promoter, resulting in mammary

tumors as well as in metastatic lesions of the lung and lymph nodes.

Tumor metastasis: the spread of primary tumor from one organ to another

non-adjacent organ, or from one part to another part of the same organ.

Tumor microenvironment: the stromal components of tumor, which include

ECM, blood vessels, lymphatic vasculature, bone marrow-derived cells,

fibroblasts, and other cells.
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Figure 1. Schematic diagram of collagen VI domain structure. Usually, collagen VI contains a1(VI), a2(VI), and a3(VI) chains. Each chain is made of a short collagenous

(COL) region flanked by a variable number of von Willebrand factor type A (vWF-A) modules. The a3(VI) chain contains three additional domains at the carboxyl-terminal

end; the arrow marks the cleavage site that releases the most C-terminal domain, giving rise to the soluble endotrophin (ETP) peptide. The vWF-A modules depicted in

orange were shown to undergo alternative splicing. The lower part of the diagram shows the domain structure of the three novel collagen VI chains described recently,

which share a high degree of similarity with a3(VI). In humans, the COL6A4 gene, coding for the a4(VI) chain, was broken into two pieces due to a large chromosome

inversion and became a non-processed pseudogene [8].
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resistance, two important aspects with extensive clinical
applications.

The expression and function of collagen VI in tumors
Collagen VI is highly expressed in a variety of tumors.
Table 1 lists the current knowledge of the expression and
localization of collagen VI in human tumors. The expres-
sion of COL6A1, COL6A2, and COL6A3 transcripts and
the level of collagen VI protein in tumor tissues are much
higher than those of the corresponding normal tissues
[12,18–22]. Moreover, the cleaved C5 domain of collagen
a3(VI), recently defined as endotrophin (ETP), displays
markedly increased levels in biopsies from breast and colon
cancers [16]. These clinical observations are well supported
by experimental findings using different models. Collagen
VI expression in tumor tissues of the mammary tumor
virus-polyoma middle T antigen (MMTV-PyMT) transgen-
ic mouse model is significantly increased during tumor
progression [23]. A study on collagen a3(VI) in human
biopsies and cell lines derived from pancreatic ductal
adenocarcinoma (PDA), as well as in xenograft and trans-
genic mouse models for this aggressive cancer, showed a
significant upregulation of COL6A3, with a specific pattern
of alternative splicing [21]. Notably, tumor-specific a3(VI)
isoforms were identified in several cancers by genome exon
arrays, suggesting a dynamic process of tumor-specific
alternative splicing for several exons of stromal COL6A3.
Furthermore, the collagen VI ETP peptide is abundantly
expressed in tumor tissues of MMTV-PyMT mice [16].
11
Taken together, these findings strongly support a role
for collagen VI in tumorigenesis.

Several studies have demonstrated that collagen VI is
an antiapoptotic factor for different cell types, including
fibroblasts [24], muscle fibers [25], neurons [10,14], and
endothelial cells [26]. In agreement with this, collagen VI
exerts a potent effect in stimulating proliferation and
preventing apoptosis of MCF-7 breast cancer cells in vitro
(P. Bonaldo, unpublished). Notably, in vivo studies using
the MMTV-PyMT mouse model have shown that ablation
of collagen VI reduces proliferation and increases tumor
cell apoptosis, whereas the ETP peptide exerts the opposite
effect [16]. The antiapoptotic and prosurvival effects of
collagen VI contributes to its tumor promoting effects in
MMTV-PyMT transgenic and xenograft breast tumor mod-
els [12,16], and ETP reconstitution into collagen VI null
(Col6a1�/�) breast cancer cells rescues tumor growth,
strongly suggesting that the promoting effect of collagen
VI in breast tumorigenesis is exerted by ETP [16]. The in
vivo role of collagen VI in tumor growth is further sup-
ported by a study investigating B16F10 melanoma allo-
grafts in the brains of wild type and Col6a1�/�mice, which
showed that collagen VI ablation retards tumor growth by
inducing deficits in the vascular basal lamina [26].

Collagen VI is also involved in tumor metastasis. It is
highly expressed in human glioblastoma cells and has a
potent ability to promote the adhesion and spreading of
glioblastoma cells, thus enhancing the extension, penetra-
tion, and invasion of tumor cells in an autocrine manner
4112



Table 1. Expression and localization of collagen VI in human tumors

Tumor types Gene/protein Location Refs

Glioblastoma Collagen VI Adventitia of normal vessels and spindle

cell proliferations of pathological vessels

[34]

Cutaneous neurofibromas COL6A1 and COL6A2 Endothelial cells [33]

Melanoma Collagen VI Vascular area and tumor cells [78]

Ovarian cancer COL6A3 and collagen VI Tumor cells, extracellular and tumor-derived

ovarian epithelial cells

[61,88]

Lung cancer COL6A3 Tumor endothelium [18]

Esophageal cancer COL6A3 Tumor endothelium [18]

Astrocytomas COL6A1 N.D. [22]

Juvenile angiofibromas COL6A1, COL6A2, COL6A3, and collagen VI Tumor endothelium [19]

Pancreatic cancer COL6A3 and a3(VI) Desmoplastic stroma [21]

Breast cancer Collagen VI Tumor invasive front [20]

a3(VI) and its C-terminal domain Near the vicinity of the adipocytes [12]

Cleaved C5 domain (ETP) of a3(VI) N.D. [16]

Colon cancer COL6A3 Tumor endothelium [18]

Cleaved C5 domain (ETP) of a3(VI) N.D. [16]

N.D., not determined.
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[27]. The motility of malignant human lung epithelial
carcinoma cells is markedly upregulated by collagen VI
treatment [28], suggesting that collagen VI promotes tu-
mor metastasis, and quantitative secretome analysis
shows that collagen a1(VI) is a metastasis-associated pro-
tein in lung cancer cells. COL6A1 knockdown by RNA
interference suppresses the metastatic ability of lung can-
cer cells, whereas overexpression of COL6A1 has the op-
posite effect [29]. Furthermore, the ETP peptide enhances
pulmonary metastasis of breast cancer by inducing trans-
forming growth factor-beta (TGF-b)-dependent epithelial–
mesenchymal transition (EMT) in vivo [16].

Although both experimental evidence and clinical data
support the idea that collagen VI contributes to tumor
growth and metastasis, it should be noted that exceptions
to this pattern exist. For example, cells derived from several
spontaneous mesenchymal tumors, such as fibrosarcomas,
lack all three polypeptide chains required for the assembly
and secretion of functional collagen VI, which may contrib-
ute to tumorigenicity and invasiveness of mesenchymal
tumor cells. In the xenograft tumor model, fibrosarcoma
cells are unable to synthesize and secrete collagen VI and
the protein is not present in the tumor stroma [30]. Fur-
thermore, in a transgenic mouse model of familial adeno-
matous polyposis treatment with sulindac, a nonsteroidal
anti-inflammatory drug, reduces tumor mass by more than
80% and is accompanied by the upregulation of collagen VI
mRNA and protein levels [31]. The apparently contradictory
observations of opposite regulation of collagen VI are likely
to be due to the different tumors and tumor microenviron-
ments, and suggest that collagen VI may exert different
functions in various tumors. Although further studies are
needed to validate this hypothesis, these findings collective-
ly support the concept of personalized therapy/medicine by
targeting collagen VI in cancer therapy.

The role of collagen VI in tumor vascular networks
Angiogenesis, the new capillary blood vessels formed from
pre-existing vasculature, is a typical tumor hallmark, exert-
ing a pivotal role in cancer growth and metastasis [32]. In
most solid tumors, blood vessels are significantly increased
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during cancer progression, and this neoangiogenic process is
influenced by the tumor microenvironment, including ECM
proteins [1]. As shown in Table 1, expression of collagen VI is
mostly found in the tumor stroma, especially near or within
blood vessels [18,19,33,34]. The evidence from NG2 null
mice shows that tumor vasculature is aberrant, including
impaired interaction of pericytes with endothelial cells,
defective pericyte maturation, and vessel leakage, which
may due to the loss of collagen VI anchorage [35]. These
findings suggest a role for collagen VI in remodeling blood
vessels in cancers, and direct evidence of collagen VI in
remodeling tumor vessels has recently been provided by a
study using B16F10 mouse melanoma cells grown in the
brains of wild type and Col6a1�/� mice. It was shown that
collagen VI deficiency affects the function of blood vessels by
impairing pericyte maturation and inhibiting the sprouting
and survival of endothelial cells, thus resulting in blood
vessel leakage and inhibition of angiogenesis [26]. Several
angiogenic modulators are derived from ECM molecules
such as collagen IV and XVIII, including endostatin that
functions as a potent angiogenic inhibitor [1], suggesting the
value to identify collagen VI fragments potentially involved
in tumor angiogenesis. Collagen VI ETP peptide was shown
not only to function as a chemoattractant that recruits
endothelial cells into the tumor microenvironment but also
as a proangiogenic factor that significantly increases the
migration and tubule formation of endothelial cells in vitro,
and both functions can be abrogated by anti-ETP antibodies
[16]. These findings strongly suggest that collagen VI,
through ETP, plays a potent role in promoting angiogenesis
by increasing the recruitment, migration, and tubule for-
mation of endothelial cells. This hypothesis is further sup-
ported by the in vivo demonstration that ETP promotes
tumor angiogenesis through upregulation of CD31, vascular
endothelial growth factor receptor 2 (VEGFR2), and hypox-
ia-inducible factor 1 alpha (HIF1a), whereas anti-ETP anti-
bodies have opposite effects [16]. Altogether, these findings
highlight collagen VI as a key regulator involved in tumor
vascular remodeling, and further studies on the underlying
mechanisms will likely contribute to the design of more
effective drugs targeting the tumor vasculature.



Collagen VI
Cleaved 

ETP ETP mAb

TGFβ dependent

NG2/CSPG

Akt/GSK-3β/β-catenin

TCF/LEF

Transcrip�on

MT1F,
MT1E

TFs,
Kinases,

Angiogenic
factors

Tumor growth

Key:

TGFβ
mAb

TGFβ
independent

Chemoa�ract

TNFα,
IL6

CD31,
VEGFR2,

HIF1α

Inflamma�on

Angiogenesis

EMT

Tissue fibrosis

Cancer cell Macrophage Endothelial cell

Chemotherapy
resistance Tumor growth and progression

TRENDS in Molecular Medicine 

Figure 2. Schematic diagram of signaling pathways for collagen VI contributing to

tumor progression and chemotherapy resistance. Collagen VI is highly expressed

in tumors where it can act on tumor cells directly to promote tumorigenesis

through several pathways, including upregulation of transcription factors (TFs),

growth factors, protein kinases, and angiogenic factors, and activation of the Akt–

GSK-3b–b-catenin–TCF/LEF pathway; or induce chemotherapy resistance by

upregulation of metallothionein 1F/1E (MT1F/1E). The cleaved collagen VI ETP

peptide, on the one hand, targets tumor cells to induce epithelial–mesenchymal

transition (EMT) and fibrosis through the TGF-b-dependent pathway, and on the

other hand, it acts on the tumor microenvironment to initiate tumor inflammation

by recruiting macrophages and increasing TNF-a and IL-6 expression, or promote

tumor angiogenesis by recruiting endothelial cells and upregulating CD31,

VEGFR2, and HIF1a expression. Abbreviations: TCF/LEF, T cell factor/lymphoid

enhancer factor; ETP, endotrophin; TGF-b, transforming growth factor-beta; TNF-a,

tumor necrosis factor-alpha; IL-6, interleukin-6; VEGFR2, vascular endothelial

growth factor receptor 2; HIF1a, hypoxia-inducible factor 1 alpha.
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Collagen VI promotes tumor inflammation by recruiting
macrophages
Inflammation plays a significant role in both tumor devel-
opment and metastasis. The inflammatory tumor micro-
environment is characterized by a large number of
recruited inflammatory cells and activation of the inflam-
matory response [36]. Among the inflammatory cells, tu-
mor-associated macrophages (TAMs) are the most notable
cell type suppressing antitumor immunity and favoring
tumor angiogenesis, growth, and metastasis [37–39].
Macrophages exhibit a spectrum of phenotypes, ranging
from the classically activated (M1) phenotype to the alter-
natively activated (M2) phenotype which exhibit antitu-
mor activity and favor tumor malignancy, respectively [38–
41]. TAMs are mainly biased towards the M2 phenotype
[38]. Although the underlying molecular mechanisms by
which TAMs favor tumor development and metastasis are
not completely understood, TAMs may represent signifi-
cant new therapeutic targets.

Collagen VI is abundantly expressed by primary macro-
phages from humans [42] and mice, as well as by macro-
phage cell lines [43]. The synthesis and secretion of
collagen VI by macrophages depends on their activation
state, stage of differentiation, and cell density. M2 macro-
phages induced by TGF-b1, interleukin (IL)-4, IL-10, and
IL-13 produce much more collagen a3(VI) than M1 macro-
phages induced by lipopolysaccharides (LPS) and interfer-
on-gamma (INF-g) [43], suggesting TAMs as one of the key
providers for collagen VI in tumors. Notably, collagen VI
significantly enhances the in vitro adhesion of macro-
phages, which suggests a potential role for collagen VI
in macrophage recruitment [43]. These findings imply the
presence of a feedback loop between collagen VI expression
and macrophage recruitment/activation in tumors, which
would favor tumor growth and progression. This concept is
supported by the evidence that the collagen VI ETP pep-
tide is able to promote tumor inflammation by increasing
macrophage recruitment and upregulating the production
of inflammatory factors, such as IL-6 and tumor necrosis
factor-alpha (TNF-a), which is abrogated by anti-ETP
antibodies [16]. Taken together, these findings not only
indicate that collagen VI is a chemoattractant that pro-
motes tumor progression by inducing inflammation by
recruiting macrophages and increasing the production of
inflammatory factors but also provide evidence that colla-
gen VI contributes to tumor development and metastasis
by modulating the immune system. Thus, a combination of
targeted collagen VI inhibition with immunotherapy may
represent an effective strategy for cancer therapies.

Collagen VI stimulates signal transduction
Several putative receptors for collagen VI have been pro-
posed, such as b1-integrins and NG2/chondroitin sulfate
proteoglycan (NG2/CSPG) [44–46]. These receptors, which
are highly expressed in tumors and exert a potent role in
modulating tumor progression [35,47], are able to mediate
the effects of collagen VI on tumor growth and metastasis
through several different mechanisms (Figure 2). Binding
of collagen VI to NG2/CSPG in breast cancer cells triggers
activation of the T cell factor/lymphoid enhancer factor
(TCF/LEF) transcription factor downstream of the
11
Akt–GSK-3b–b-catenin pathway, thus enhancing tumor
growth [12,13]. The Akt–GSK-3b–b-catenin–TCF/LEF ax-
is is a prosurvival cascade with an important role in
tumorigenesis and progression [48,49]. Cyclin D1 is a
target of TCF/LEF, and it can be affected by GSK-3b

and b-catenin activity [12]. Collagen VI treatment of
MCF7 cells increases the expression and stability of cyclin
D1 through NG2/CSPG [12], suggesting that this may be
one mechanism underlying the role of collagen VI in tumor
cell proliferation. Moreover, collagen VI enhances the ex-
pression of other transcription factors, such as ETR101,
activating transcription factor (ATF)3, and ATF4, as well
as CDC28 protein kinases 1, VEGF, calpain 4, IL-8, and
angiopoietin-2 [12], which are known to promote tumor
growth and angiogenesis.

EMT is a highly conserved and fundamental process
that greatly contributes to the dissemination of single
tumor cells from primary tumors, leading to metastasis
[50]. EMT is considered as a biomarker for investigating
whether or how field cancerization contributes to tumor
development [51]. The collagen VI ETP peptide promotes
tumor growth and metastasis at least in part mediated by
enhanced TGF-b signaling, which contributes to EMT of
tumor cells [16]. Thus, collagen VI facilitates tumor growth
and metastasis by directly acting on tumor cells through
upregulation of factors that stimulate tumor growth and
metastasis, or by inducing EMT.
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As discussed above, collagen VI is expressed in various
tissues. Among them, adipose tissue is one of the most
abundant sources of collagen VI [52]. The expression of
collagen VI is upregulated in dysfunctional adipose tis-
sues in obese and diabetic states, which are highly corre-
lated with adipose tissue fibrosis, and ablation of collagen
VI in these conditions inhibits the development of fibrosis
[53,17], thus suggesting that collagen VI may be a link
between obesity and fibrosis. Obesity is a high risk factor
for breast cancer [54], and adipocytes are a major compo-
nent of the mammary tumor stroma [55]. Further studies
show that adipocyte-derived ETP promotes breast tumor
growth and progression by upregulating tumor tissue
fibrosis in a TGF-b-dependent manner [16]. These find-
ings highlight collagen VI/ETP as an adipocyte-derived
factor promoting breast tumor progression by enhancing
tissue fibrosis.

Inflammation and angiogenesis are two major hall-
marks of cancer [32]. The ETP peptide regulates to some
extent both tumor inflammation and angiogenesis by
recruiting macrophages and endothelial cells, as well as
upregulating inflammatory and proangiogenic factors [16].
In addition, collagen VI can interact with other ECM
components, such as collagen types I, II, IV, V, and XIV,
fibronectin, and tenascin [46,56–58], in the tumor micro-
environment. These ECM proteins are robustly expressed
in tumors, and extensively affect tumor development and
progression [1], suggesting that one potential mechanism
for collagen VI in promoting tumor progression involves its
binding and modulation of other ECM proteins. In vivo
studies demonstrate that ablation of collagen VI is able to
delay brain tumor progression due to deficits of vascular
basal lamina at least in part by decreasing the deposition of
collagen IV, collagen I, and laminin-11 in tumor vessels
[26,35]. Mechanistic studies indicate that the decreased
deposition of collagen VI elicited by ablation of collagen IV
in brain tumor is mediated by NG2 [35]. Altogether, these
findings throw light on the molecular mechanisms under-
lying the role of collagen VI in tumors and also provide
potential targets for cancer treatment.

Role of collagen VI in tumor chemotherapy resistance
Resistance to chemotherapy is a common phenomenon in
clinical treatment, and it is a major cause of death in cancer
patients. However, the molecular mechanisms underlying
this resistance are largely unknown. The ECM derived
from tumor cells, stromal cells, or their interaction, was
shown to inhibit the apoptosis induced by chemotherapeu-
tic agents, thus promoting chemotherapy resistance in
breast, lung, and pancreatic cancers by interactions with
integrin receptors [59,60]. In the context of ovarian cancer,
COL6A3 is one of the most highly upregulated genes that
are differentially expressed as a result of cisplatin resis-
tance. Furthermore, culturing cisplatin-sensitive cells in
the presence of collagen VI promotes in vitro resistance
[61].

Metallothioneins are known to play a critical role in the
promotion of cisplatin resistance [62], and collagen VI
treatment induces a significant upregulation of metal-
lothionein-1E and -1F in tumor cells [12], thus providing
a mechanistic link for collagen VI involvement in cisplatin
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resistance (Figure 2). Among the differentially expressed
genes in oxaliplatin-resistant versus oxaliplatin-sensitive
ovarian carcinoma cell lines, COL6A3 is the most highly
upregulated gene with a 62-fold increase in oxaliplatin-
resistant cells [63]. Taken together, these findings indicate
that collagen VI contributes to chemotherapy resistance in
an autocrine manner.

In addition to tumor cells, malignant solid tumors are
also rich in myeloid cells, which favor tumor growth and
metastasis [38,64,65]. Doxorubicin treatment in mouse
tumor models induces higher myeloid cell infiltration in
a C–C chemokine receptor type 2 (CCR-2)-dependent man-
ner, which in turn induces chemotherapy resistance [66].
Among myeloid cells, TAMs are the most prominent cell
type fostering tumor progression [39]. Interestingly, the
response of tumor cells to chemotherapy is partly regulated
by TAMs, as demonstrated by the fact that the combined
treatment of chemotherapy with macrophage infiltration
inhibition significantly decreases primary tumor growth
and metastasis [67,68]. Further studies show that chemo-
therapy using taxol in the context of breast cancer signifi-
cantly enhances macrophage infiltration, which protects
tumor cells from chemotherapy-induced death, thus blunt-
ing the chemotherapeutic response by upregulating and
activating cathepsin proteases [69]. Macrophage-induced
chemotherapy resistance in myeloma is regulated by the
interaction of P-selectin glycoprotein ligand-1 (PSGL-1)/
selectins and ICAM-1/CD18 [70]. Moreover, TAM-derived
milk-fat globule-epidermal growth factor 8 (MFG-E8)
endows cancer stem cells with the ability to promote
chemotherapy resistance [71]. MFG-E8 can directly target
collagens, and Mfge8�/� macrophages exhibit defective
collagen uptake [72]. One miRNA, miR-511 is robustly
expressed by macrophages [73] and downregulated in
human tumors [74,75], and strongly inhibits tumor cell
proliferation [76]. As discussed above, macrophages abun-
dantly express and secrete collagen VI [43], suggesting a
potential role for miRNA-511 in the regulation of collagen
VI expression. Indeed, overexpression of miRNA-511-3P,
encoded by the MRC1 gene and expressed in M2 macro-
phages, induces a significant downregulation of collagen VI
expression in TAMs and evokes a genetic program that
limits, rather than enhances, the protumoral function of
TAMs, inhibiting tumor growth [77]. Thus, collagen VI
may serve as an important link between TAMs and che-
motherapy resistance. These findings not only shed new
light on the molecular mechanisms underlying the ability
of TAMs to blunt the response to chemotherapy but also
provide novel targets for improving the efficacy of chemo-
therapy in patients. Thus, the combination of collagen VI
inhibition and chemotherapy should be considered as a
new potential promising strategy for cancer therapies.

Collagen VI as a potential serum biomarker for cancer
diagnosis
The diagnostic implication of collagen VI for cancer
patients is another interesting aspect that has been inves-
tigated in the context of melanoma and pancreatic cancer.
Collagen VI levels in the sera of primary cutaneous mela-
noma patients (stage I/II) and distant melanoma metastat-
ic patients (stage IV) is significantly increased compared
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Figure 3. The contribution of collagen VI to cancer hallmarks. The diagram shows

that collagen VI promotes tumorigenesis and progression by contributing to at

least five hallmarks of cancer, including tumor-promoting inflammation, inducing

angiogenesis, resisting cell death, activating invasion and metastasis, and

sustaining proliferative signaling. It is still unknown whether collagen VI

contributes to other hallmarks of cancer.

Box 1. Outstanding questions

� Among the different receptors for collagen VI, which one

mediates signals in tumors?

� Are a4(VI), a5(VI), and a6(VI) expressed in tumors and involved in

tumorigenesis and progression?

� How ETP peptide is cleaved from a3(VI) in tumors?

� In addition to ETP, can other domains of collagen VI promote

tumorigenesis and progression?

� In addition to macrophages and endothelial cells, can collagen VI

act on other bone marrow-derived cells?

� Can collagen VI serve as a critical link between malignant cells and

the tumor microenvironment?

� Does collagen VI contribute to all hallmarks of cancer?

� Does collagen VI inhibition in tumors have adverse effects?

� Can collagen VI serve as a biomarker and prognostic indicator in a

wide range of cancer types?

� Can we achieve successful clinical outcomes in cancer patients by

blocking or inhibiting collagen VI?
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with healthy donors, although there is no difference be-
tween patients with stage I/II disease and those with stage
IV [78]. Thus, collagen VI may be a potential serum
biomarker for diagnosing melanoma and may also be
applicable to pancreatic cancer patients. Indeed, collagen
a1(VI) level in the sera of pancreatic cancer patients is
dramatically increased compared with healthy controls
[79]. Both melanoma and pancreatic cancer are aggressive
malignant tumors and, unfortunately, patients who are
diagnosed with these two types of cancer are nearly always
at advanced stages, where the successes of radiation,
chemotherapy, or combinatorial therapies are largely an-
ecdotal. Therefore, the identification of serum biomarkers
for such tumors is particularly important. The upregula-
tion of collagen VI in the sera of melanoma and pancreatic
cancer patients is a useful finding for the ultimate goal of
developing serum diagnostic biomarkers in these aggres-
sive tumors.

Concluding remarks and future perspectives
Collagen VI is a prominent promoter of tumor growth that
is frequently overexpressed in human cancers. The actions
of collagen VI inside malignant cells to promote tumori-
genesis and progression are largely mediated by the Akt–
GSK-3-b–b-catenin–TCF/LEF pathway, which activates
transcription factors, growth factors, and kinases, leading
to EMT through TGF-b signaling and chemotherapy resis-
tance through upregulation of metallothioneins. Moreover,
collagen VI acts on components of the tumor microenvi-
ronment, such as macrophages and endothelial cells, to
promote inflammation and angiogenesis. Taken together,
these collective findings point at collagen VI as an impor-
tant regulator involved in tumor growth and progression.

Hanahan and Weinberg classified the pleiotropic
changes of cancer into a number of hallmarks shared by
most cancers and proposed that suppressing one or more
hallmarks of cancer is promising for the development of
new therapeutics and cancer therapies [32]. Collagen VI
promotes tumorigenesis and progression by enhancing the
proliferation, invasion, and metastasis of tumor cells, de-
creasing the apoptosis of tumor cells, as well as upregulat-
ing tumor angiogenesis and inflammation, therefore
contributing to at least five hallmarks of cancer
(Figure 3). Thus, blockade of collagen VI-regulated path-
ways or identification of negative mediators of collagen VI
signals may have valuable implications in the setting of
cancer therapies, with direct antitumor effects as well as
indirect effects on the tumor microenvironment.

Although our knowledge of the role of collagen VI in
tumorigenesis has increased in the past few years, several
open questions remain regarding the molecular mecha-
nisms underlying the effects of collagen VI in the context of
tumors, as well as the value of this ECM molecule as a
therapeutic target, biomarker, or prognostic indicator (Box
1). For example, the growth-stimulatory and prosurvival
effects of collagen VI in breast cancer cells involve the NG2/
CSPG receptor [12]. However, collagen VI receptors, such
as integrins and NG2/CSPG, also serve as receptors for
other ECM proteins [80,81]. Moreover, NG2 may interact
with certain integrins, such as a4b1, to serve as a core-
ceptor facilitating signaling pathways involved in tumors
11
[82]. Thus, it is essential to identify the specific receptors
involved in mediating collagen VI effects in tumors of
different types and stages, and also extensively investigate
the underlying molecular mechanisms. Although current
knowledge indicates that collagen VI contributes to at least
five hallmarks of cancer (Figure 3), further studies are
needed to assess whether collagen VI is involved in others.
For example, integrins and NG2/CSPG are widely
expressed in immune cells, such as B lymphocytes [83],
macrophages [84,85], and neutrophils [85]; however, it is
largely unknown whether binding of collagen VI to these
receptors can mediate effects that modulate the immune
response to tumors. The detailed knowledge of biomarkers
and prognostic indicators will be highly valuable for clin-
icians in diagnosing tumors and prescribing cancer thera-
py. As discussed above, the serum levels of collagen VI in
melanoma and pancreatic cancer patients are higher than
4156



Review Trends in Molecular Medicine July 2013, Vol. 19, No. 7
those in healthy donors and the expression of collagen VI in
certain tumors is associated with tumor grades [22],
highlighting the potential value of collagen VI as a bio-
marker and prognostic indicator in tumors. Given the fact
that these findings are currently few in number and for
only some types of cancers, further studies are needed.

Altogether, our current understanding of the mecha-
nisms involved in the different effects mediated by collagen
VI is only partial; it is unmistakable that this ECM mole-
cule plays a key role on tumor growth and drug resistance.
Recent studies have provided valuable information on
collagen VI as a key regulator in tumors, and it can be
anticipated that in the future additional studies will grant
us a detailed understanding of the underlying molecular
mechanisms. In addition to increasing our knowledge of
cancer biology, these studies will likely provide novel
therapeutic targets for cancer treatment.
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Introduction

Autophagy is an evolutionarily conserved homeostatic path-
way that is widely occurring in eukaryotic cells.1 Induction of 
autophagy can generate lots of amino acids and other building 
blocks, which are required for cellular homeostasis. Moreover, 
autophagy is necessary for quality control for both organelles and 
proteins.2-4 Autophagy is induced upon stimulation by various 
extrinsic and intrinsic cellular stress conditions, such as reactive 
oxygen species (ROS), endoplasmic reticulum stress, bacterial 
infection, and hypoxia, in order to clear damaged organelles, 
protein aggregates, and intracellular pathogens. Thus, auto-
phagy is crucial for the maintenance of cellular homeostasis.2-4 
Based on different functions and mechanisms, 3 major forms 
of autophagy have been described.5,6 Microautophagy allows for 

the degradation of portions of the cytoplasm, which are directly 
enwrapped by the lysosomal membrane. Macroautophagy (here-
after referred to as “autophagy”) is responsible for the degrada-
tion of bulk cytoplasm, long-lived proteins, and entire organelles, 
through the formation of a double-membrane compartment, 
called an autophagosome, which is subsequently targeted to lyso-
somal digestion. In contrast to these 2 types of autophagy, which 
mediate both selective and nonselective degradation, chaperone-
mediated autophagy only degrades individual, unfolded soluble 
proteins in a selective manner.7

The autophagic process (Fig. 1) requires a set of evolu-
tionarily conserved proteins, most of which are known as 
autophagy-related (ATG) proteins, functioning at different 
steps.8 A kinase complex containing ULK1/ATG1, ATG13, 
RB1CC1/FIP200, and C12orf44/ATG101 is critical for auto-
phagy induction.9 A different set of complexes, which contain 
BECN1/Beclin 1, PIK3C3/VPS34, PIK3R4/VPS15, and either 
ATG14 and AMBRA1 (autophagy/Beclin 1 regulator 1), or 
UVRAG (UV radiation resistance associated) and SH3GLB1/
Bif-1 (SH3-domain GRB2-like endophilin B1) is required for 
the nucleation and expansion of the phagophore, the initial 
sequestering compartment.6,10 Autophagosome formation then 
requires 2 ubiquitin-like conjugation systems, ATG12–ATG5 
and LC3/Atg8–phosphatidylethanolamine (LC3-II/Atg8–PE). 
In yeast, these proteins are involved in elongation and matu-
ration of the phagophore. In mammals, there are 2 subfami-
lies of Atg8 proteins; the LC3 subfamily acts at the elongation 
stage, whereas the GABARAP proteins function later in auto-
phagosome maturation.11 Autophagy regulation is partly based 
on the phosphorylation and dephosphorylation of ATG pro-
teins. The major upstream actor in these intracellular pathways 
is the MTOR (mechanistic target of rapamycin) kinase, which 
inhibits autophagy by regulating mRNA and protein levels of 
critical components, and also by direct phosphorylation of the 
autophagy machinery. For example, MTOR can phosphorylate 
ATG13, thus inhibiting the activity of ULK1 and autophagy. 
Given its critical role as a sensor for nutrients, MTOR is able 
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autophagy activating kinase

Autophagy is a highly conserved homeostatic pathway 
that plays an important role in tumor development and pro-
gression by acting on cancer cells in a cell-autonomous mecha-
nism. However, the solid tumor is not an island, but rather an 
ensemble performance that includes nonmalignant stromal 
cells, such as macrophages. A growing body of evidence indi-
cates that autophagy is a key component of the innate immune 
response. In this review, we discuss the role of autophagy in 
the control of macrophage production at different stages 
(including hematopoietic stem cell maintenance, monocyte/
macrophage migration, and monocyte differentiation into 
macrophages) and polarization and discuss how modulating 
autophagy in tumor-associated macrophages (TAMs) may 
represent a promising strategy for limiting cancer growth and 
progression.
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to regulate translation by controlling 
the activity of some specific molecules 
involved in protein synthesis, such as 
EIF4EBP1/4E-BP1 (eukaryotic transla-
tion initiation factor 4E binding protein 
1) and RPS6KB/p70S6K (ribosomal 
protein S6 kinase, 70 kDa, polypep-
tide 1). MTOR plays a major role in 
regulating switches between anabolic 
and catabolic metabolism, in order to 
stabilize cell viability in energy stress 
conditions.12 MTOR is also regulated 
by some extracellular growth factors, 
such as IGF1 (insulin-like growth fac-
tor 1 [somatomedin C]), through class 
III phosphatidylinositol 3-kinase, AKT/
PKB (v-akt murine thymoma viral onco-
gene homolog 1), and AMPK (AMP-
activated protein kinase) pathways.5

A large amount of experimental data 
demonstrates that autophagy functions 
as a key mechanism for the regulation 
of biological activities in both physi-
ological conditions (e.g., cell/tissue 
homeostasis and development) and 
pathological conditions (e.g., cancer 
and neurodegenerative diseases), and 
autophagy dysfunction is associated 
with various diseases.3,4,13 The role of 
autophagy in cancer is extremely com-
plex. On the one hand, autophagy can 
act as a tumor suppressor by eliminating 
oncogenic protein substrates, unfolded 
proteins, and damaged organelles, 
and by preventing oxidative stress and 
genomic instability. On the other hand, 
autophagy can function as a tumor promoter in established can-
cers, by providing substrates that allow tumor cells to overcome 
nutrient limitation and hypoxia.6,14 Most studies investigating 
the role of autophagy in tumors have sampled cancer cells.6,14,15 
However, the solid tumor also includes nonmalignant resident 
stromal cells, such as cancer-associated fibroblasts, endothelial 
cells, and bone marrow-derived cells, all of which extensively 
affect tumor growth and progression.16,17 Recent studies have 
begun to unveil the significance of autophagy in the tumor 
microenvironment, a condition defined as the “autophagic 
tumor stroma.”18 In established tumors, the autophagic tumor 
stroma is able to provide essential nutrients to cancer cells, 
remodel other components of the tumor microenvironment, 
and increase DNA damage and genetic instability of cancer 
cells, as well as decrease cancer cell apoptosis, thus represent-
ing an important regulator for tumor growth and progression.18 
Moreover, it was recently demonstrated that autophagy and 
inflammation work synergistically in the tumor microenviron-
ment to facilitate tumor growth and metastasis.19 These find-
ings highlight the role of autophagy in inflammatory cells in 

affecting tumor progression, thus pointing at this process as a 
target for cancer therapies.

Among the inflammatory cells, macrophages are the most 
prominent cell type in the tumor microenvironment. Both 
experimental and clinical findings over the past decade dem-
onstrated that tumor-associated macrophages (TAMs) favor 
malignant progression by suppressing antitumor immunity, by 
stimulating angiogenesis, and by enhancing tumor cell prolif-
eration, migration, and invasion.16,20,21 Autophagy is an impor-
tant component of innate immunity by macrophages regulated 
by both toll-like receptors (TLRs) and intracellular pathogens. 
For example, lipopolysaccharide (LPS) can induce the forma-
tion of autophagosomes in macrophages, which is regulated 
through a TICAM1/TRIF (toll-like receptor adaptor molecule 
1)-dependent TLR4 signaling pathway.22 Listeria monocytogenes 
is an intracellular pathogen that can activate the autophagy path-
way in macrophages via a MAPK/ERK (mitogen-activated pro-
tein kinase)-dependent TLR2 and Nucleotide Oligomerization 
domain 2 (NOD2) signaling pathways.23 Increasing evidence 
demonstrates that autophagy can modulate the activity of 

Figure  1. Schematic diagram summarizing the regulation of autophagy in mammalian cells. 
Following stimulation by growth factors, such as IGF1, MTOR is activated, whereas this pathway 
is inhibited upon stress conditions, such as starvation. MTOR inhibition is required to activate the 
ULK complex, since MTOR is able to induce the phosphorylation of ATG13, leading to reduction of 
ULK1 activity. By sensing the activation of the ULK complex, the BeCN1 complex is activated leading 
to the nucleation of a phagophore. By means of 2 ubiquitin-like conjugation systems, generating 
ATG12–ATG5 and LC3-II, the membrane is elongated to form a double-membraned vesicle, the auto-
phagosome. Finally, the autophagosome fuses with the lysosome, forming an autolysosome, where 
the cargo is digested by lysosomal enzymes and the degraded material released into the cytoplasm 
for recycling by the cell.
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macrophages and their response to different stimuli,22,24,25 thus 
highlighting the connections among autophagy, macrophages, 
and cancer, and suggesting the potential to enhance an antitu-
mor response by modulating autophagy in macrophages. Given 
the major roles of macrophages and autophagy in tumor progres-
sion and their correlation in biological activities, it is valuable to 
clarify the contribution and underlying molecular mechanisms of 
autophagy-mediated regulation of macrophages, and their impli-
cations for cancer. In the next sections we will summarize the 
significance of autophagy in regulating macrophage production 
and polarization, and discuss the value of autophagy modulation 
with regard to the protumoral functions of TAMs.

Role of Autophagy in Macrophage Production

TAMs are a type of cells that have a short half-life and cannot 
proliferate in tumor tissues.26 In order to maintain high TAM 
levels, these cells require continuous replenishment throughout 
tumor growth and progression. TAMs are derived from bone 
marrow progenitor cells, a process that involves different steps, 
including the maintenance of hematopoietic stem cells (HSCs), 
the production of monocytes, the recruitment of monocytes into 
tumors, the differentiation of monocytes into macrophages, and 
the polarization of macrophages into TAMs.20,27 In this section, 
we discuss experimental evidence demonstrating that autophagy 
is necessary for macrophage production (Fig. 2), even in the 
absence of cancer.

Role of autophagy in hematopoietic stem cell 
maintenance

HSCs reside in the bone marrow niche and are gen-
erally in a quiescent state.28 However, HSCs undergo 
distinct programs in response to stimulation, including 
self-renewal and differentiation. The balance of quies-
cence, self-renewal, and differentiation is tightly regulated 
in HSCs in order to maintain their physiological func-
tions, and when this balance is not properly executed it 
may induce hematopoietic malignancies.29 Bone marrow 
that hosts HSCs is usually a hypoxic environment, where 
a low-oxygen niche limits ROS production, thus provid-
ing long-term protection of HSCs from ROS stress.30 ROS 
production and metabolic rate are increased when HSCs 
transit from a quiescent state to a proliferation/differen-
tiation state, a process that is mediated by the MTOR 
pathway.30,31 Activation of AKT, an upstream regulator 
of MTOR, decreases autophagy in HSCs and promotes 
myeloid proliferation,32 whereas deletion of Rptor/Raptor 

(regulatory-associated protein of MTOR, complex 1), encoding 
a component of MTORC1 (MTOR complex 1), enhances auto-
phagy and decreases this myeloid cell population (Table 1).33 
Moreover, HSC self-renewal can be restored by treatment with 
antioxidants or rapamycin.31,39 RB1CC1 is an important regulator 
of autophagy, and conditional ablation of Rb1cc1 in HSCs causes 
perinatal lethality and severe anemia, with a marked increase of 
HSC proliferation, ROS levels, and mitochondrial mass (Table 
1).34 These findings provide indirect evidence that autophagy is 
potentially involved in the maintenance of HSCs.

Notably, recent studies have provided direct evidence for the 
concept that autophagy functions as an important determinant 
for HSC fate. For example, a study demonstrated that autophagy 
is highly activated in HSCs in humans and that this process 
is required for the self-renewal and differentiation of HSCs.40 
Inhibition of autophagy by 3-methyladenine or by Atg5 siRNA-
mediated knockdown results in a complete blockade of the dif-
ferentiation and self-renewal of HSCs.40 Inhibition of autophagy 
in HSCs by conditional ablation of Atg7 impairs the production 
of lymphoid and myeloid progenitors, thus suggesting that Atg7 
is essential for HSC maintenance in a cell-autonomous fashion 
(Table 1).35,36 The effect of autophagy in HSC maintenance is 
also displayed under metabolic stress conditions, when auto-
phagy is robustly induced by a pathway regulated by FOXO3A 
to protect HSCs against apoptosis. Moreover, HSCs from aged 
mice have the ability to exhibit an intact FOXO3A-induced 
proautophagic gene program, and this ongoing autophagy is 

Figure 2. Schematic diagram of the roles of autophagy in macrophage produc-
tion. Autophagy is involved in the maintenance and differentiation of HSCs, as 
well as in the differentiation of monocytes into macrophages. It is not yet known 
whether autophagy also plays a role in mediating the differentiation of HSCs into 
monocytes (dotted line).

Table 1. Summary of studies related to the roles of autophagy in macrophage polarization using mouse models deficient in autophagic components

Mice Key findings Refs.

Rptor knockout Autophagy is enhanced, myeloid cell population is decreased 33

Rb1cc1 knockout in HSCs Increase of HSC proliferation, ROS levels, and mitochondrial mass 34

Atg7 knockout in HSCs Impaired production of lymphoid and myeloid progenitors 35, 36

Atg7 knockout CSF1-induced differentiation of monocytes into macrophages is significantly hampered 37, 38

Atg5 knockout M2-polarized macrophages are forced to produce a high level of M1-like cytokines 61, 62
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required for protecting HSCs against apoptosis and mitigating 
metabolic stress.41 Altogether, these findings highlight autophagy 
as a key mechanism for the maintenance and for the proper func-
tion of HSCs. However, it is also very important to consider that 
targeting of autophagy in HSCs may lead to several side effects 
including loss of HSC function, anemia, myeloproliferation and, 
ultimately, development of leukemia.29,35,36 Thus, manipulation 
of autophagy in HSCs should be treated with extreme caution.

Autophagy in the regulation of monocyte/macrophage 
recruitment

In most solid tumors, TAM density is significantly higher 
than in the surrounding normal tissues. Generally, TAMs first 
originate from monocytes that are recruited into tumors by che-
moattractants, including chemokines and cytokines released 
from both tumor cells and stromal cells. Among these che-
moattractants, CCL2 (chemokine [C–C motif] ligand 2) is the 
one exerting a prominent activity in recruiting monocytes into 
tumors.16 Conversely, CCL2 is able to protect monocytes against 
apoptosis in the tumor microenvironment, by upregulating anti-
apoptotic proteins and inhibiting CASP8/caspase-8 cleavage, 
and it also induces hyperactivation of autophagy in these cells,42 
thus suggesting a role of autophagy in CCL2-induced monocyte 
recruitment. Cucurbitacin IIa (CuIIa), a member of the cucur-
bitacin family, exerts a wide spectrum of pharmacological activi-
ties including anticancer and anti-inflammatory activities, which 
can inhibit macrophage proliferation and migration as well as 
enhance LPS-induced autophagy in macrophages, suggesting 
that enhancement of autophagy may contribute to the anti- 
inflammatory activity of CuIIa in vitro.43 However, further stud-
ies are needed to investigate the potential role of autophagy in 
regulating the anticancer activity of CuIIa by inhibiting in vivo 
macrophage recruitment. Although these data suggest a possible 
role of autophagy in monocyte recruitment, the connections of 
autophagy with regulation of monocyte recruitment by CCL2 
and antiinflammatory activity of CuIIa are still uncertain and 
represent an intriguing subject for future investigation.

Recombinant capsid viral protein 1 (rVP1) suppresses 
growth and metastasis of tumor cells by inducing apoptosis 
and by modulating CCL2 production.44 Furthermore, rVP1 
also acts on host immune cells and promotes macrophage 
migration by inducing autophagy in these cells.45 Mechanistic 
studies suggested that the phosphorylation levels of MAPK3/
ERK1 and MAPK1/ERK2 and the activity of MMP9 (matrix 
metalloproteinase 9 [gelatinase B, 92 kDa gelatinase, 92 kDa 
type IV collagenase]) are increased upon rVP1 treatment, lead-
ing to autophagy upregulation and macrophage migration by a 
mechanism dependent on WIPI1 (WD repeat domain, phos-
phoinositide interacting 1), WIPI2, ATG5, and ATG7, but not 
on BECN1.45 In the larval wound model, autophagy is required 
for the recruitment of blood cells into wound sites and for the 
spreading of macrophages.46 Taken together, these findings pro-
vide evidence demonstrating that autophagy is an important 
mechanism for mediating macrophage migration. However, 
further studies are needed to investigate how autophagy con-
tributes to monocyte/macrophage recruitment in the tumor 
microenvironment.

Role of autophagy on monocyte differentiation into 
macrophages

The half-life of monocytes in blood is very short, with approx-
imately 3 days in humans and 1 day in mice, where they are 
programmed to undergo apoptosis in the absence of stimula-
tion.47 However, when stimulated by inflammatory factors, they 
activate survival pathways, migrate into distinct tissues, and then 
differentiate into macrophages, dendritic cells, or osteoclasts.48 
CSF1 (colony stimulating factor 1 [macrophage]) is the main fac-
tor that can induce monocyte differentiation into macrophages 
and activate survival pathways.49 Several lines of data imply the 
involvement of autophagy in monocyte differentiation into mac-
rophages. When monocytes are stimulated to differentiate into 
macrophages, autophagy is induced via increased expression and 
phosphorylation of ULK1.37,38 Studies involving the inhibition 
of autophagy by pharmacological agents, siRNA approaches or 
Atg7 knockout mice show that the CSF1-driven differentiation 
of monocytes into macrophages is significantly hampered (Table 
1).37,38 CSF2/GM-CSF (colony-stimulating factor 2 [granulo-
cyte-macrophage]) is another important factor that can drive 
the differentiation of monocytes into macrophages, and it was 
demonstrated that autophagy is induced during monocyte dif-
ferentiation into macrophages triggered by CSF2 in vitro and 
by thioglycolate in vivo.47 Interestingly, CSF2 is able to promote 
monocyte survival and differentiation into macrophages by 
MAPK/JNK and by inducing the dissociation of BECN1 from 
BCL2 (B-cell CLL/lymphoma 2), thus stimulating autophagy, 
whereas blockade of autophagy has an inhibitory effect on CSF2-
induced monocyte differentiation into macrophages.47

CSF1-induced monocyte differentiation into macrophages is 
a process that requires the activation of CASP3/caspase-3 and 
CASP8 by modulating the AKT signaling pathway,50 suggesting 
a role for properly regulated apoptosis in monocyte differentiation 
into macrophages. Even if CASP8 may cleave specific substrates 
required for monocyte differentiation, explaining the require-
ment for its limited activation during differentiation, CASP8 
is considered as the upstream enzyme in the proteolytic caspase 
cascade whose activation is required for monocyte differentiation 
into macrophages.51 Several studies have demonstrated that there 
is a crosstalk between apoptotic and autophagic pathways. For 
example, BCL2 can bind to BECN1 to inhibit BECN1-mediated 
autophagy,52 whereas BECN1 can be cleaved by caspases, and 
its C-terminal fragment has the ability to amplify the apop-
totic response.53,54 Moreover, death stimuli can trigger calpain-
mediated cleavage of ATG5 to promote mitochondrial-mediated 
apoptosis.55 Altogether, these findings point at autophagy as an 
essential mechanism for monocyte differentiation, and they sug-
gest that inhibition of autophagy may be a promising strategy for 
impairing macrophage production in tumors.

Autophagy-Mediated Control  
of Macrophage Polarization

Macrophages are heterogeneous and can display divergent 
phenotypes and functions dependent on distinct tissue micro-
environments.16,56 For instance, macrophages can be divided into 
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classically activated (M1 phenotype) and alternatively activated 
(M2 phenotype), according to the T helper cell type (Th)1/
Th2 dichotomy.16,48 M1 macrophages stimulate a Th1 response 
against intracellular microorganisms and tumor cells by activat-
ing an immune response, whereas M2 macrophages are immu-
nosuppressive cells, which promote angiogenesis as well as tissue 
repair and remodeling.16,56,57

We have recently reviewed the findings suggesting that mac-
rophage polarization is triggered by polarization-related factors 
in the tumor microenvironment.16 By sensing the stimulation, 
several intracellular signaling pathways, such as NFKB (nuclear 
factor of kappa light polypeptide gene enhancer in B-cells) and 
MTOR, are thought to modulate this process.16 NFKB is a tran-
scriptional factor that can be regarded as a pivotal link between 
inflammation and cancer,58,59 and it also plays a central role in the 
regulation of macrophage polarization. It has been shown that 
both M1 and M2 macrophage polarization in the tumor micro-
environment require the NFKB pathway,60 and isolated TAMs 
from various tumors exhibit low NFKB activity.60,61 However, 
the molecular mechanisms by which NFKB is essential for M2 
macrophage polarization and is downregulated in TAMs remain 
to be investigated experimentally. Interestingly, recent studies 
have demonstrated that hepatoma-derived TLR2-related ligands 

Figure 3. Schematic diagram of signaling pathways for tumor-derived factors contributing to macrophage 
polarization via induction of autophagy. expression of IL6 and CCL2 in the tumor microenvironment is 
regulated in a reciprocal manner. Induction of autophagy triggered by binding of IL6 and CCL2 to IL6R 
(interleukin 6 receptor) and CCR2 (chemokine [C–C motif] receptor 2), respectively, is essential for mac-
rophage polarizaton to the M2 phenotype. Following binding to TLR2, the hepatoma-derived factors are 
able to stimulate macrophage polarization to the M2 phenotype by controlling NFKB homeostasis through 
selective autophagy. Moreover, M2 macrophages can be induced by autophagy triggered by LPS or bacte-
ria, which is modulated by the MTOR pathway via activation of TLR4.

are able to polarize macrophages 
toward the M2 phenotype by con-
trolling RELA/NFKB p65 (v-rel 
avian reticuloendotheliosis viral 
oncogene homolog A) through 
selective autophagy.62,63 Hepatoma-
derived TLR2 signals lead to the 
ubiquitination of RELA, thus 
forming aggresome-like structures 
in macrophages, which can be 
degraded by SQSTM1/p62-medi-
ated autophagy.62,63 Inhibition of 
autophagy through pharmaco-
logical and genetic approaches can 
rescue NFKB activity and force 
M2-polarized macrophages to pro-
duce a high level of M1-like cyto-
kines (Table 1).62,63 Furthermore, 
mechanistic studies demonstrated 
that TLR2 signals can promote 
the sustained phosphorylation 
of MAPK1 and MAPK3, thus 
stimulating autophagy-dependent 
NFKB regulation.62,63 These stud-
ies highlight that the role of NFKB 
in macrophage polarization is regu-
lated by SQSTM1/p62-mediated 
selective autophagy. However, it 
has been shown that the role of 
NFKB in regulating TAM polar-
ization and function is complex, 
which is exhibited in context-and 
gene-dependent manners.60 The 

specific role of NFKB with respect to the synthesis of tumor-
promoting genes and M2 macrophage polarization remains to be 
fully investigated.

MTOR is an evolutionarily conserved protein kinase regu-
lating autophagy,64,65 which is also critical in the regulation of 
monocyte polarization into TAMs. In LPS-stimulated mono-
cytes, inhibition of the MTOR pathway by rapamycin leads 
to polarization toward the M1 phenotype, whereas activation 
of this pathway by knockdown of the MTOR repressor TSC2 
(tuberous sclerosis 2) exerts the opposite effect.66 CCL2 and IL6 
(interleukin 6 [interferon, β 2]) are 2 abundant cytokines in 
the tumor microenvironment, and their expression in myeloid 
cells is induced in a reciprocal manner. CCL2 and IL6 have a 
potent effect in inducing autophagy and inhibiting apoptosis in 
macrophages, as well as in stimulating macrophage polarization 
toward the M2 phenotype. Inhibition of CASP8 is able to pro-
mote autophagy in macrophages and increase M2 macrophage 
polarization. Inhibition of autophagy under these circumstances 
attenuates M2 macrophage polarization, which directly indicates 
that autophagy plays a key role in macrophage polarization.67 
Sorafenib is an antiangiogenic agent that has been approved 
for cancer treatment. However, some studies also demonstrated 
that antiangiogenic drugs may, in some conditions, accelerate 
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cancer progression.68-70 Moreover, TAMs can be recruited when 
sorafenib is administered, thus promoting the progression of 
hepatocellular carcinoma.71 Interestingly, recent studies showed 
that sorafenib exerts a potent effect on macrophages by inducing 
autophagy and suppressing the expression of CD80, a marker of 
the M1 phenotype, suggesting the possible correlation between 
autophagy and macrophage polarization and highlighting the 
protumorigenic effect of sorafenib through modulation of mac-
rophage polarization by autophagy.72 Altogether, these findings 
support a key role of autophagy in the regulation of macrophage 
polarization in the tumor microenvironment (Fig. 3).

The Significance of Macrophage Autophagy  
for Cancer

Our current understanding of the contribution of autophagy 
in controlling macrophage production, polarization, and function 
in cancer remains limited. Nonetheless, as we discussed above, 
it is now well established that autophagy plays a crucial role in 
macrophage production by regulating HSC maintenance, mono-
cyte/macrophage recruitment, and monocyte differentiation into 
macrophages. Data obtained from patient biopsies indicate that 
TAM density is correlated with poor prognosis in most human 
cancers.16 Tumor angiogenesis and progression are also affected 
by macrophage density in animal cancer models. For instance, 
inhibition or enhancement of macrophage density in tumors by 
genetic and pharmacological approaches, respectively, inhibits 
or promotes tumor angiogenesis, growth, and progression.16,21 
These findings highlight the significance of autophagy-mediated 
macrophage production in promoting cancer progression. The 
induction of autophagy in macrophages is triggered by TLR 
ligands,22,63,73 suggesting the potential role of TLR signaling in 
modulating macrophage function by autophagy. Indeed, TLR2 
deficiency induces a significant reduction of autophagy and mac-
rophage infiltration in liver tissues, and promotes hepatocarcino-
genesis, suggesting a potential role of TLR2 in tumorigenesis 
by modulation of autophagy in macrophages.74 Future studies 
should aim at using genetic approaches that specifically inhibit 
or facilitate autophagy in macrophages or their precursors, thus 
helping to establish in detail the roles of autophagy in regulating 
macrophage production, tumor growth, and progression in vivo.

As discussed above, macrophages exhibit a spectrum of phe-
notypes including M1 and M2 phenotypes, which exert anti-
cancer activity and favor tumor progression, respectively.16,21,75,76 
TAMs are mainly polarized toward the M2 phenotype, that pro-
motes tumor angiogenesis, growth, and metastasis.16,21 However, 
it should be noted that some exceptions to this pattern exist. For 
instance, TAMs are biased toward the M1 phenotype in non-
progressing, regressing, and early-stage tumors,16,21,75,77 suggest-
ing that the phenotype of TAMs can be polarized by the local 
tumor microenvironment. Interestingly, recent studies demon-
strated that HRG (histidine-rich glycoprotein) inhibits tumor 
growth and metastasis by inducing TAM polarization toward 
the M1 phenotype through downregulation of PGF (placental 
growth factor).77 ADM/adrenomedullin(22–52), an antagonist 
of ADM receptors, suppresses tumor growth by skewing TAMs 

polarization to the M1 phenotype through downregulation 
of ADM in an autocrine-dependent manner.75 These findings 
suggest that the identification of potential targets that polarize 
TAMs toward the M1 phenotype should be a promising antican-
cer strategy. By sensing the stimulation from the tumor micro-
environment, macrophages are polarized to specific phenotypes 
through different signaling pathways, including the induction 
of autophagy.16 Several studies have shown that treatments tar-
geting autophagy can modify the activation states of macro-
phages.62,63,66,67,72 These findings should encourage studies to 
develop genetic and pharmacological approaches to skew TAM 
polarization to the M1 phenotype by targeting autophagy. For 
example, even if TLR2 deficiency causes a reduction of macro-
phage infiltration, this ablation also induces a significant sup-
pression of autophagy and a reduction in the expression of TNF/
TNFα (tumor necrosis factor), IFNG (interferon, gamma) and 
CXCL2 (chemokine [C–X–C motif] ligand 2) in liver tissues, 
indicating an increase of M2 macrophage polarization, which 
in turn promotes hepatocarcinogenesis.74 Notably, recent find-
ings highlight that activation of the MTOR-TSC2 pathway, a 
key regulator of autophagy, is critical for macrophage polariza-
tion toward the M2 phenotype to promote tumor angiogenesis 
and growth in mouse hepatocellular carcinoma models, whereas 
inhibition of this pathway exerts the opposite effects.66 Thus, the 
polarization of macrophages regulated by autophagy may repre-
sent a promising and effective strategy for liver cancer therapies. 
In this respect, it is important to consider that the role of auto-
phagy in cancer cells depends on different factors, such as tumor 
type, stage, and genetic context. Therefore, further studies are 
needed to assess whether and how these factors affect the func-
tion of autophagy modulation in macrophages.

Concluding Remarks and Future Perspectives

A number of studies indicate that autophagy extensively regu-
lates the response of macrophages to microenvironmental stim-
uli, and may modulate the function of TAMs in tumors. They 
also provide clear evidence that autophagy functions as a key 
determinant for macrophage production, by modulating HSC 
maintenance, monocyte differentiation into macrophages, and 
monocyte/macrophage recruitment, as well as for macrophage 
polarization. Macrophage production and polarization are 2 key 
events for the contribution of macrophages in promoting tumor 
growth and progression. Therefore, modulation of autophagy in 
macrophages by controlling these parameters represents a prom-
ising and effective strategy for anticancer therapies.

Although our knowledge of the role of autophagy in con-
trolling macrophages has increased in the last few years, several 
open questions remain to be addressed regarding the molecular 
mechanisms underlying the effects of autophagy in macrophage 
production and activation, and the effects of macrophage auto-
phagy in the context of tumors, as well as the value of macro-
phage autophagy as a target for anticancer therapies. Although 
autophagy is required for HSC maintenance and differentiation 
as discussed above, it remains to be defined whether autophagy 
is also required for HSC differentiation into monocytes, an 
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important stage for macrophage production. The role of auto-
phagy in the maturation of other types of hematopoetic cells has 
been clearly established. For instance, independent findings indi-
cate that autophagy is essential for the maturation of red blood 
cells by the clearance of mitochondria, and functional studies 
demonstrated that the impairment of mitochondrial autophagy 
by elimination of BNIP3L/Nix, ULK1, or ATG7 causes serious 
defects in the maturation and function of red blood cells.78-80 
Although a number of experiments indicate that autophagy is 
essential for macrophage production and activation, further stud-
ies are needed to validate this concept in the context of tumors 
in vivo by specifically targeting autophagy in TAMs. In addition 
to increasing the understanding of the mechanisms regulating 

macrophage autophagy during cancer progression, prospective 
findings in this field may provide novel therapeutic targets for 
cancer therapy.
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