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Featured Application: Density functional theory and docking studies applied to the understanding
of the chemical binding of the Mpro-inhibitor ebselen to the enzyme catalytic cysteine.

Abstract: The main protease (Mpro) of SARS-CoV-2 is a current target for the inhibition of viral replica-
tion. Through a combined Docking and Density Functional Theory (DFT) approach, we investigated
in-silico the molecular mechanism by which ebselen (IUPAC: 2-phenyl-1,2-benzoselenazol-3-one),
the most famous and pharmacologically active organoselenide, inhibits Mpro. For the first time, we
report on a mechanistic investigation in an enzyme for the formation of the covalent -S-Se- bond
between ebselen and a key enzymatic cysteine. The results highlight the strengths and weaknesses of
ebselen and provide hints for a rational drug design of bioorganic selenium-based inhibitors.
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1. Introduction

The main protease (Mpro) and papain-like protease (PLpro) of SARS-CoV-2 are suitable
targets for the pharmacological action against its viral replication [1]. Both enzymes are
Cysteine (Cys) proteases [2,3], and in the case of Mpro, the mechanism closely resembles
the well-studied mechanism of Serine protease. Mpro works via a catalytic dyad formed
by a nucleophilic Cysteine (Cys145) activated by a Histidine (His41) residue. After a
preliminary proton transfer from Cys145 to His41, through which the nucleophilic strength
of the former residue is strongly enhanced, Mpro preferentially attacks peptide bonds after
a glutamine residue [4], leading to a tetrahedral intermediate from which the actual peptide
bond cleavage occurs, due to the back-proton-transfer from His45 leading to a thioester
(Scheme 1a). After that, the thioester is hydrolyzed, regenerating the active enzyme.

EbSe is supposed to covalently inhibit SARS-CoV-2 Mpro via the formation of a selenyl-
sulfide (Se-S) adduct with Cys145 (Scheme 1b). The formation of a selenyl-sulfide bond
with Cys residues was also postulated five years ago in order to explain the antiviral
activity of EbSe against HIV [12]. However, to the best of our knowledge, the precise
chemical mechanism has never been investigated in protein and it might provide insight
into the rational engineering of existing organoselenides (e.g., diphenyl diselenide), ebselen
derivatives [13,14] or the design of new selenium-based antivirals.

In a recent preprint, Sancineto et al. [15] reported interesting results indicating that the
inhibitory capacity of organoselenium compounds towards Mpro is greatly reduced upon
dimerization to diselenides, and Ma et al. recently demonstrated that, under reducing
conditions, i.e., in the presence of 1,4-dithiothreitol (DTT) and/or glutathione (GSH),
EbSe is not able to effectively inhibit SARS-CoV-2 Mpro as well as a panel of other Cys
proteases [16,17]. Particularly, all the ebselen-like scaffolds investigated by Sancineto
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et al. were 1–2 orders of magnitude less efficient at inhibiting Mpro after dimerization to
diselenides. Moreover, the decrease in the inhibitory potency of EbSe in the presence of
DTT and GSH raises the problem of formation of ebselen-low-molecular mass thiol adducts
in vivo (i.e., adducts with free Cys and GSH). Further investigation is thus important to
understand the true antiviral potential of organoselenium compounds, starting from the
chemical mechanism, and then progressively moving to realistic biological conditions.
For this reason, we thoroughly analyzed, in silico, the chemical mechanism of Se-S bond
formation between EbSe and Cys145, which is at the basis of the protease inhibition, and
we extended our analysis to the Se-S bond formation starting from ebselen ethanthiolate
(EbSeS) (Scheme 2) as a model of the adduct of EbSe with endogenous thiol molecules.
In fact, since it is unlikely that the reactive N-Se bond of EbSe reaches Mpro unmodified,
EbSeS was taken as a general model of ebselen selenyl sulfides, which are expected to be
present in the biological environment. EbSe actually travels through the plasma bonded to
the free Cys of albumin and/or other low-molecular-containing thiol molecules (Cys and
GSH) [18,19]. Thus, EbSe is suitable for the description of in vitro inhibition and EbSeS is a
simplified model for the description of in vivo inhibition of Mpro.

Scheme 1. (a) Acylation step of the proteolysis catalysed by SARS-CoV-2 Mpro, [5], (b) Predicted
mechanism of the inhibition of SARS-CoV-2 Mpro by ebselen as investigated in this study.

In early 2020, a high-throughput screening discovered ebselen (EbSe, Scheme 2),
one of the most famous organoselenides, as a potent inhibitor of SARS-CoV-2 Mpro

(IC50 = 0.67 µM) [6]. EbSe is known to interact with a plethora of biologically relevant
cysteines [7–9], implying both pharmacological interest and toxicological concern. How-
ever, the low toxicity of EbSe, assessed in different experimental and clinical trials, makes
it an interesting scaffold on which to design multipurpose drugs [10,11].

Scheme 2. Ebselen (EbSe) and ebselen ethanthiolate (EbSeS).

In this work, we employ a joint molecular docking and density functional theory
(DFT) approach, in which the speed of docking is used to provide a reasonable guess of the
non-covalent complex between EbSe/EbSeS and Mpro, and DFT is used to investigate bond-
breaking and formation phenomena, which cannot be properly addressed without quantum
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mechanics. Lastly, we briefly discuss the thermodynamics of a possible evolution of the
-S-Se- adduct hypothesized on the basis of X-ray structures and mass spectrometry data in
a recent paper by Amporndanai et al. [20] who experimentally observed the breaking of
the Se-C bond of EbSe in Mpro, with subsequent release of the EbSe scaffold in the form of
a salicylanilide (IUPAC: 2-hydroxy-N-phenylbenzamide) (Scheme 3).

Scheme 3. Proposed hydrolysis (Amporndanai et al.) of Se-S adduct leading to salicylanilide release.

2. Materials and Methods

In this work, we have used a combination of flexible molecular docking and Density
Functional Theory (DFT) calculations. Docking methodologies were used to reasonably es-
timate the adduct between ebselen and Mpro. The mechanism was investigated employing
the so-called cluster approach [21], which is the fully quantum investigation of the enzyme
reactivity using only selected residues that reproduce the chemical features of the catalytic
pocket. Such a methodology was largely applied to the reactivity of highly different en-
zymes, spanning oxidoreductase [22], lyase [23] and serine [24] or metalloprotease [25]
enzymes. While the inclusion of the enzymatic environment at a Molecular Mechanics
level of theory (i.e., employing a QM/MM methodology such as the ONIOM scheme) [26])
is expected to have an impact on the reactions’ energetics, Morokuma and coworkers [27]
showed that the surrounding effect is rather weak when the catalytic pocket is exposed to
the solvent, as it is for SARS-CoV-2 Mpro. Thus, the environment is expected to affect the
energetics, but is unlikely to alter the mechanistic features of the reaction.

Molecular docking was carried out to simulate the binding pose of EbSe with Mpro

from SARS-CoV-2 (PDB ID 6LU7 [6]). AutoDock Vina software [28], which has a high
accuracy for binding mode predictions, was used [29]. For the Mpro structure preparation,
the waters, ions, ligands, and other molecules were removed, while the hydrogen atoms
were added using the CHIMERA program, followed by 100 steps of energy minimization
(amberff99SB) [30]. The catalytic dyad (Cys145 and His41) was considered neutral, as
highlighted in previous studies [31,32]. An adduct between EbSe and cysteine (EbSe-Cys)
was used in the docking simulations to mimic the putative metabolites of EbSe [33–35].
The tridimensional model of the ligands (EbSe and EbSe-Cys) were created with Avogadro
and MOPAC (PM6 method) [36,37]. The files were prepared for the docking, using the
AutoDock Tools 4.2 [38], with the flexible ligands. To consider the protein induced-fit effect
and to improve the interactions between ligands and Mpro, the flexible-flexible docking
method was applied, where EbSe, EbSe-Cys, and the side chain of His41, Met49, Asn142,
Cys145, Met165, Glu166, and Gln189 residues (from the active site) were considered flexible
during the simulations. The grid box was centered on the coordinates x = −14.04, y = 17.44,
and z = 66.22 (size = 25 × 25 × 25 Å), and an exhaustiveness of 50 was used. The complex
ligand-receptor with the most favorable binding free energy, and the best Se···S(Cys145)
orientation, was selected as a model of the binding pose and used to build the Mpro pocket
cluster for the DFT study.

After the docking, taking into account the closest Mpro residues (at 4.0 Å) from EbSe
and EbSeS, His41, Met49, Cys145, and Met165 were selected and removed from the Mpro

pocket, and the CH3CO and CH3NH groups were added to the N- and C-terminal regions,
respectively, to mimic the backbone peptide bonds. In fact, the His41, Met49, Cys145,
and Met165 residues were involved in many interactions with small molecules [39]. As
a general model of ebselen thiolates, the carboxyl and amino moieties of EbSe-Cys were
replaced with H atoms to create the ethanthiolate (EbSeS).
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All density functional theory calculations were performed, employing Gaussian16 [40].
The level of theory employed was based on previous mechanistic investigations in an en-
zyme whose catalysis is based on reactive Cys or Sec residues [41,42]. Thus, the B3LYP
hybrid functional [43,44], in combination with Grimme D3 dispersion correction and
the Becke–Johnson damping function [45,46] was used. All first and second period
atoms were described with the 6-311G(d,p) basis set, while for sulfur and selenium,
Dunning’s correlation consistent cc-pVTZ basis set was used. All structures were op-
timized in the gas phase and further solvation correction was taken into account as a
single point, employing the SMD solvation model at SMD-B3LYP-D3(BJ)/6-311G(d,p),
cc-pVTZ//B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ level of theory [47]. Diethyl ether was
used to mimic the low dielectric constant of the enzymatic environment, as described in
the literature [48]. Thermodynamic corrections at 298.15 K and 1 atm were computed by
means of a standard statistical mechanics relationship based on electronic energies and gas
phase frequency calculations, as implemented in the Gaussian software. All energies de-
scribed in the main text are Gibbs free energies corrected with the contribution of solvation.
The atoms from the backbone were kept constrained during all geometry optimizations.
Frequency calculations were performed to assess the nature of the optimized geometries:
all transition states have one imaginary frequency related to the normal mode connecting
reactants to products; all minima have no imaginary frequencies. For EbSe, starting from
TS1 and TS2, an intrinsic reaction coordinate (IRC) calculation was performed to verify
that the correct transition state was located [49].

3. Results and Discussion

The EbSe (Figure 1) and EbSeS binding poses were obtained from the molecular
docking, as described in the Computational Methods, and the adduct between EbSe and
EbSeS with the model catalytic pocket was reoptimized via DFT. The reactant complex (RC)
formed by the four amino acids cluster with docked EbSe was used as the starting point of
our mechanistic investigation.

Figure 1. (A) Docking simulations between Mpro and EbSe. For better visualization, only the side
chain of the main residues is shown. (B) Optimized Mpro cluster, with EbSe docked inside. For clarity,
only Cα, Hα and amino acids side chains are displayed, and it is oriented for optimal view. Level of
theory: B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ.

From our calculations, (Figure 2) the overall inhibition mechanism closely resembles
the acylation step of the fully functional Mpro shown in Scheme 1a,b. The presence of EbSe
does not impair the activation of Cys145, which is effectively deprotonated by His41 with an
activation energy of about 15.16 kcal mol−1 (TS1), a value close to that previously reported
for this step in a computational study on the functional enzyme (19.9 kcal mol−1) [5].

Notably, an Ion Pair (IP) between deprotonated cysteine (Cys-) and protonated His-
tidine (HIP) was not located on the potential energy surface (PES); in addition, after the
proton transfer, the cysteinate residue efficiently attacks the Se atom of EbSe, leading to an
adduct with an almost linear N-Se-S bond (three centers intermediate, TCI). While confor-
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mational freedom of the backbone might help in stabilizing an Ion Pair, which was located
in another Mpro mechanistic investigation [50], our results suggest that the cysteinate attack
to the Se-N bond occurs with a very low, if any, activation energy.

Figure 2. Energy profile for the inhibition mechanism of Mpro by EbSe. Activation energies of TS1 and TS2
are relative to the RC and TCI, respectively. Energies are reported in Table S2 (Supplementary Materials).
Level of theory: SMD-B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ//B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ.

The TCI is situated 3.41 kcal mol−1 above the RC; thus, the step is weakly endergonic.
After the formation of the TCI, full covalent inhibition is reached with the back proton
transfer from HIP to the N atom of EbSe, leading to the N-Se bond cleavage and to the
complete formation of the S-Se bond between Cys145 and EbSe. This step is exergonic; the
inhibited product (Pinhb) is almost 7 kcal mol−1 more stable than the RC. While the back-
proton transfer is predicted to have an activation energy of about 26 kcal mol−1, thus being
rate-determining for the whole process, the geometrical features of the transition state (TS2)
appear slightly distorted, due to the constraints imposed to His41 backbone. Therefore, the
activation energy of this process is likely overestimated in our model because of the limited
flexibility of the catalytic pocket. Indeed, in the acylation step of the functional Mpro, the
analogous step occurs with a definitively lower activation energy [5]. However, previous
investigations on enzymatic clusters [41,42] and on oversimplified models [51] based on
reactive Cys/Sec showed that while the barriers might be magnified in these last ones,
the relevant features of the mechanism can be correctly reproduced even in very reduced
systems, given that the relevant reactive residues are considered, as in our case. The Pinhb
obtained here presented a similar binding pose when compared with the EbSe from the
covalent docking, previously published [52].

Using the same approach, (Figure 3) the inhibition mechanism by EbSeS has been
explored (energies are reported in Table S3 (Supplementary Materials)). As seen for EbSe,
in this case, the inhibitor does not impair Cys145 activation, which occurs with an even
lower activation energy of 8.83 kcal mol−1 (TS1). However, this is almost certainly related
to the closer proximity of Cys145 and His41 residues in the cluster (the distance between
S and N atoms is 3.46 Å; conversely, in the cluster docked with EbSe, the corresponding
distance is 4.61 Å).

After TS1, the mechanism of EbSeS displays important differences with respect to
that of EbSe. Particularly, a strongly destabilized IP (9.62 kcal mol−1) was located on
the PES, from which the proton dislocated on HIP might be shuttled to Cys145, leading
back to the RC. In addition, different pathways might be suitable for the nucleophilic Cys-

attack to the Se atom of EbSeS. First, the deprotonated Cys might attack the Se-S bond of
EbSeS, leading to a TCI that has been previously identified in vacuo and in water in model
molecular systems [53]. In our case, the TCI is located only 1.25 kcal mol−1 above the RC.
Wiberg bond indexes analysis [54] of this intermediate in the gas phase (Table 1) revealed a
behaviour similar to that computed for the small molecular model presenting a -S-Se-S-
bond, whose coordinates were taken from Bortoli et al [53].
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Figure 3. (A) Docking simulations between Mpro and EbSeS. The carboxyl and amino moieties of
EbSe-Cys were replaced with H atoms to create the ethanthiolate (EbSeS), as a general model of
EbSe-thiol adduct/metabolite. For better visualization, only the side chain of the main residues is
shown. (B) Optimized Mpro cluster, with EbSeS docked inside. For clarity, only Cα, Hα and amino
acid side chains are displayed, Met165 is not shown and the cluster is oriented for optimal view.
Level of theory: B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ.

Table 1. Wiberg indexes for S1-S2-S3 1 and S1-Se-S3 1 TCIs, with EbSeS and a sulfur analogue, and
for two previously described minimal models. Level of theory: B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ.

EbS(e)S CH3S(S/SeCH3)SCH3
2

S1–S2 0.190 3 0.450
S2–S3 0.833 3 0.610
S1–Se 0.325 0.535
Se–S3 0.703 0.537

1 TheTCI atoms’ numbering scheme is defined for the three chalcogens of the TCI. For EbSeS S1 is the Mpro-Cys
sulfur, Se the selenium atom of ebselen, and S3 the sulfur atom of ethanethiolate. For the sulfur analogue EbSS,
the central Se is substituted with S2. The same numbering scheme is defined for the minimal model with Se/S2
being the central chalcogen, and S1 and S3 the two marginal sulfur atoms. 2 Computed on structures taken
from [53]; 3 In the sulfur analogue of EbSeS (EbSS), the TCI presents strongly asymmetric Wiberg indexes (0.19
and 0.83) in the gas phase, suggesting a more “reactant complex”-like nature. This is in agreement with the shift
in reactivity towards an SN2 behavior after inclusion of solvation (in our case, the enzymatic cluster environment)
described in [53].

For our TCI, the indexes are consistent with two asymmetric S-Se bonds, as is rea-
sonable given the different sizes of the two thiolates bonded to Se, ethanethiolate and
an enzymatic cysteinate, with respect to the two symmetric thiolates of [53]. Further
re-optimization of the TCI in diethyl ether (see Computational Methods) does not signif-
icantly affect the geometry, confirming the stability of this intermediate in a non-polar
environment, such as the enzymatic pocket.

Such a structure might spontaneously loose ethanethiolate (EtS-), leading to the
desired thiolate exchange and the EbSe-S-Cys(Mpro) adduct. However, this process is
computed to be endergonic (+5.20 kcal mol−1 with respect to the RC), and the back proton
transfer from HIP to EtS- is required for the overall inhibition process to become exergonic
(−1.78 kcal mol−1 with respect to the RC). Whether such a back proton transfer happens
directly from the IP (leading to the concerted breaking of the EbSeS Se-S bond and to the
formation of Cys-Se bond, bypassing the formation of a TCI) or at a later mechanistic stage
(e.g., at the TCI itself) was not investigated, since such analysis is expected to be strongly
influenced by the nature of the thiolate, by cavity rearrangements and by the presence of
explicit water molecules, which can assist with the thiol exchange mechanism. Thus, we
require further molecular dynamics investigation to understand how the evolution of the
binding site can affect ebselen inhibition. However, the overall thermodynamic feasibility
of the inhibition process seems to be less favorable with respect to the same process for EbSe
(−1.78 and −6.86 kcal mol−1, respectively). Since the chalcogenolate exchange between a
thiolate and a diselenide was previously computed to be less thermodynamically favorable
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(in the condensed phase) with respect to the thiolate exchange between a thiolate and a
selenyl sulfide [53], the same trend in thermodynamics can be expected to hold true when
comparing EbSe to its diselenide, in agreement with the findings of Sancineto et al. [15].

Lastly, starting from the Pinhb obtained from EbSe, we investigated the mechanistic
hypothesis of Se-C bond-breaking depicted in Scheme 3. The reaction appears to proceed
as an aromatic nucleophilic substitution (SNAr), but no Meisenheimer intermediate was
located, and all attempted optimizations led back to either the reactants or to the products,
both in the gas and the condensed phases. Thus, in agreement with previous studies on
molecular models, the soft chalcogen-leaving group and the weakly activated aromatic ring
seem to favor a concerted SNAr mechanism [55]. Beside the level of theory used throughout
this work, some other density functionals (i.e., M06-2X [56], M11 [57] and B3LYP without
Grimme dispersion) were tested to assess the non-existence of a Meisenheimer intermediate,
as was done for model compounds in [55]. In all cases, the guess intermediate broke down.

Interestingly, the step described in Scheme 3 appears to be energetically favorable (all the
following energies are gas phase Gibbs free energies), leading to products (i.e., (Cys)-SSeH and
salicylanilide) that are located on the PES 12.33 kcal mol−1 below the Pinhb with the addition
of one water molecule. However, the mechanistic details of the Se-C bond-breaking of EbSe
should be carefully investigated to assess the kinetic feasibility of such a pathway and the
role of the catalytic pocket residues, especially as no evidence suggests the occurrence
of a similar reaction in solution. Such an extensive investigation is beyond the scope of
our work, which revolves around the preliminary well-documented Se-S bond formation.
However, due to the importance of the topic of the use of organoselenium compounds
as Mpro inhibitors, the preliminary computation of one of the possible transition states
involved in the process was carried out, i.e., for the attack of OH− to the aromatic ring,
with the other water proton located on His41 (HIP). This transition state is situated at a
rather high energy on the PES (+52.37 with respect to the Pinhb with the addition of a water
molecule). This suggests that it is unlikely that such a reaction would proceed in a biological
environment without the active participation of nearby residues, such as His41. Indeed, the
direct participation of His41 in the Se-C bond breaking event was hypothesized in [20].

4. Conclusions

In this work, we investigated the mechanistic details of S-Se bond formation between
EbSe and the catalytic Cys of Mpro, and a comparison was made with EbSeS. To the best of
our knowledge, our investigation provides, for the first time, the stationary points for the
covalent binding mechanism of Ebselen and one of its possible metabolites to an enzymatic
Cys, i.e., Mpro Cys145. Overall, the energetics computed for the metabolite suggest its
weaker inhibition potential with respect to EbSe, in agreement with the recent studies on
the activity of EbSe upon reduction to diselenide or in the presence of DTT/GSH. However,
we must stress that the nature of the leaving thiol might exert an important effect on the
thermodynamics of the whole reaction, especially since EbSe might reach the Mpro bonded
to an extremely bulky group, such as a whole protein. This prompts further studies based
on molecular dynamics with suitable accurate force-fields for the selenides, as well as a fine
experimental investigation of EbSe antiviral activity in biologically plausible conditions.
Moreover, we provide thermodynamic support to the hypothesis of Se-C bond-breaking
within Mpro [20], and we suggest a detailed mechanistic investigation to understand if and
how the direct participation of His residues of the catalytic pocket lowers the activation
energy of the process.

Conversely to EbSeS, EbSe mechanism is straightforwardly similar to the canonical
mechanism of Cys proteases, and the Cys145 attack on the Se atom appears to proceed
without an appreciable activation energy. In addition, differently from the RC with EbSeS,
EbSe exhibits an almost linear arrangement of S-Se-N atoms of Cys145 and EbSe (157◦),
making it suitable for the SN2 process to occur without large structural rearrangements.
Notably, since SARS-CoV-2 PLpro employs a catalytic triad that also includes reactive Cys
and His residues, a similar mechanism is readily extendable to this and other viral Cys
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proteases, both for EbSe and EbSeS. Thus, efforts are prompted to design selenium-based
systems able to reach the target protein with the N-Se bond still intact. This requires a fine-
tuning of the N-Se bond, designing ad hoc molecular features [58] to prevent ring-opening
in the presence of free cysteines such as those present in the serum, preserving the ability
of N-Se bond activation in the target proteins.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/app11146291/s1, energies, Cartesian coordinates and figures of all the investigated structures,
Table S1: Coordinates (Å) energies (E, Hartree) and number of imaginary frequencies (Nimag) of
stationary points as computed at B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ level of theory, Table S2:
Electronic (∆E) and Gibbs (∆Gsolv) free energies (kcal mol−1) relative to the RC for Ebselen (EbSe)
mechanism, Table S3: Electronic (∆E) and Gibbs (∆Gsolv) free energies (kcal mol−1) relative to the
RC for Ebselen ethanethiolate (EbSeS) mechanism.
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15. Sancineto, L.; Mangiavacchi, F.; Dąbrowska, A.; Pacuła, A.; Obieziurska-Fabisiak, M.; Scimmi, C.; Lei, Y.; Kong, J.; Zhao, Y.;
Machado, K.d.S.; et al. Organoselenium Mild Electrophiles in the Inhibition of Mpro and SARSCoV-2 Replication. ChemRxiv 2020.
[CrossRef]

16. Ma, C.; Hu, Y.; Townsend, J.A.; Lagarias, P.I.; Marty, M.T.; Kolocouris, A.; Wang, J. Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib,
and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. ACS Pharmacol. Transl. Sci. 2020, 3, 1265–1277.
[CrossRef] [PubMed]

17. Sun, L.-Y.; Chen, C.; Su, J.; Li, J.-Q.; Jiang, Z.; Gao, H.; Chigan, J.-Z.; Ding, H.-H.; Zhai, L.; Yang, K.-W. Ebsulfur and Ebselen as highly
potent scaffolds for the development of potential SARS-CoV-2 antivirals. Bioorg. Chem. 2021, 112, 104889. [CrossRef] [PubMed]

18. Ullrich, V.; Weber, P.; Meisch, F.; von Appen, F. Ebselen-binding equilibria between plasma and target proteins. Biochem. Pharmacol.
1996, 52, 15–19. [CrossRef]

19. Wagner, G.; Schuch, G.; Akerboom, T.P.; Sies, H. Transport of ebselen in plasma and its transfer to binding sites in the hepatocyte.
Biochem. Pharmacol. 1994, 48, 1137–1144. [CrossRef]

20. Amporndanai, K.; Meng, X.; Shang, W.; Jin, Z.; Rogers, M.; Zhao, Y.; Rao, Z.; Liu, Z.-J.; Yang, H.; Zhang, L.; et al. Inhibition
mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat. Commun. 2021, 12, 3061. [CrossRef]

21. Siegbahn, P.E.M.; Himo, F. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions.
J. Biol. Inorg. Chem. 2009, 14, 643–651. [CrossRef]

22. Prabhakar, R.; Vreven, T.; Morokuma, K.; Musaev, D.G. Elucidation of the Mechanism of Selenoprotein Glutathione Peroxidase
(GPx)-Catalyzed Hydrogen Peroxide Reduction by Two Glutathione Molecules: A Density Functional Study. Biochemistry 2005, 44,
11864–11871. [CrossRef]

23. Parks, J.M.; Guo, H.; Momany, C.; Liang, L.; Miller, S.M.; Summers, A.; Smith, J. Mechanism of Hg−C Protonolysis in the
Organomercurial Lyase MerB. J. Am. Chem. Soc. 2009, 131, 13278–13285. [CrossRef]

24. Ngo, P.D.; Mansoorabadi, S.O.; Frey, P.A. Serine Protease Catalysis: A Computational Study of Tetrahedral Intermediates and
Inhibitory Adducts. J. Phys. Chem. B 2016, 120, 7353–7359. [CrossRef]

25. Hu, Q.; Jayasinghe-Arachchige, V.M.; Prabhakar, R. Degradation of a Main Plastic Pollutant Polyethylene Terephthalate by Two
Distinct Proteases (Neprilysin and Cutinase-like Enzyme). J. Chem. Inf. Model. 2021, 61, 764–776. [CrossRef] [PubMed]

26. Chung, L.W.; Sameera, W.M.C.; Ramozzi, R.; Page, A.J.; Hatanaka, M.; Petrova, G.P.; Harris, T.V.; Li, X.; Ke, Z.; Liu, F.; et al. The
ONIOM Method and Its Applications. Chem. Rev. 2015, 115, 5678–5796. [CrossRef] [PubMed]

27. Prabhakar, R.; Vreven, T.; Frisch, M.J.; Morokuma, K.; Musaev, D.G. Is the Protein Surrounding the Active Site Critical for Hydrogen
Peroxide Reduction by Selenoprotein Glutathione Peroxidase? An ONIOM Study. J. Phys. Chem. B 2006, 110, 13608–13613. [CrossRef]
[PubMed]

28. Trott, O.; Olson, A.J. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New
Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef]

29. Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. J. Chem. Inf. Model. 2018, 58, 1697–1706.
[CrossRef]

30. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualiza-
tion system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef]

31. Awoonor-Williams, E.; Abu-Saleh, A.A.-A.A. Covalent and non-covalent binding free energy calculations for peptidomimetic
inhibitors of SARS-CoV-2 main protease. Phys. Chem. Chem. Phys. 2021, 23, 6746–6757. [CrossRef]

32. Suárez, D.; Díaz, N. SARS-CoV-2 Main Protease: A Molecular Dynamics Study. J. Chem. Inf. Model. 2020, 60, 5815–5831. [CrossRef]
33. Sies, H. Ebselen, a Selenorganic Compound as Glutathione Peroxidase Mimic. Free Radic. Biol. Med. 1993, 14, 313–323. [CrossRef]
34. Schewe, T. Molecular actions of Ebselen—An antiinflammatory antioxidant. Gen. Pharmacol. Vasc. Syst. 1995, 26, 1153–1169. [CrossRef]
35. Haenen, G.R.M.M.; De Rooij, B.M.; Vermeulen, N.P.E.; Bast, A. Mechanism of the Reaction of Ebselen with Endogenous Thiols:

Dihydrolipoate Is a Better Cofactor than Glutathione in the Peroxidase Activity of Ebselen. Mol. Pharmacol. 1990, 37, 412–422.
36. Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application

to 70 elements. J. Mol. Model. 2007, 13, 1173–1213. [CrossRef] [PubMed]
37. Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic

Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 1–17. [CrossRef]
38. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4:

Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [CrossRef]
39. Sepay, N.; Saha, P.C.; Shahzadi, Z.; Chakraborty, A.; Halder, U.C. A crystallography-based investigation of weak interactions for

drug design against COVID-19. Phys. Chem. Chem. Phys. 2021, 23, 7261–7270. [CrossRef]
40. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.;

Nakatsuji, H.; et al. Gaussian 16, Rev. C.01; Gaussian: Wallingford, CT, USA, 2016.
41. Dalla Tiezza, M.; Bickelhaupt, F.; Flohé, L.; Maiorino, M.; Ursini, F.; Orian, L. A dual attack on the peroxide bond. The common

principle of peroxidatic cysteine or selenocysteine residues. Redox Biol. 2020, 34, 101540. [CrossRef]

http://doi.org/10.1101/2020.08.30.273979
http://doi.org/10.1038/s41598-021-83229-6
http://doi.org/10.26434/chemrxiv.12994250.v1
http://doi.org/10.1021/acsptsci.0c00130
http://www.ncbi.nlm.nih.gov/pubmed/33330841
http://doi.org/10.1016/j.bioorg.2021.104889
http://www.ncbi.nlm.nih.gov/pubmed/33915460
http://doi.org/10.1016/0006-2952(96)00109-8
http://doi.org/10.1016/0006-2952(94)90150-3
http://doi.org/10.1038/s41467-021-23313-7
http://doi.org/10.1007/s00775-009-0511-y
http://doi.org/10.1021/bi050815q
http://doi.org/10.1021/ja9016123
http://doi.org/10.1021/acs.jpcb.6b04089
http://doi.org/10.1021/acs.jcim.0c00797
http://www.ncbi.nlm.nih.gov/pubmed/33534993
http://doi.org/10.1021/cr5004419
http://www.ncbi.nlm.nih.gov/pubmed/25853797
http://doi.org/10.1021/jp0619181
http://www.ncbi.nlm.nih.gov/pubmed/16821888
http://doi.org/10.1002/jcc
http://doi.org/10.1021/acs.jcim.8b00312
http://doi.org/10.1002/jcc.20084
http://doi.org/10.1039/D1CP00266J
http://doi.org/10.1021/acs.jcim.0c00575
http://doi.org/10.1016/0891-5849(93)90028-S
http://doi.org/10.1016/0306-3623(95)00003-J
http://doi.org/10.1007/s00894-007-0233-4
http://www.ncbi.nlm.nih.gov/pubmed/17828561
http://doi.org/10.1186/1758-2946-4-17
http://doi.org/10.1002/jcc.21256
http://doi.org/10.1039/D0CP05714B
http://doi.org/10.1016/j.redox.2020.101540


Appl. Sci. 2021, 11, 6291 10 of 10

42. Bortoli, M.; Torsello, M.; Bickelhaupt, F.M.; Orian, L. Role of the Chalcogen (S, Se, Te) in the Oxidation Mechanism of the
Glutathione Peroxidase Active Site. ChemPhysChem 2017, 18, 2990–2998. [CrossRef] [PubMed]

43. Becke, A.D.; Johnson, E.R. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
[CrossRef]

44. Raghavachari, K. Perspective on “Density functional thermochemistry. III. The role of exact exchange”. Theor. Chem. Acc. 2000,
103, 361–363. [CrossRef]

45. Grimme, S. Density functional theory with London dispersion corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1,
211–228. [CrossRef]

46. Becke, A.D.; Johnson, E.R. A density-functional model of the dispersion interaction. J. Chem. Phys. 2005, 123, 154101. [CrossRef]
47. Marenich, A.V.; Cramer, C.J.; Truhlar, D. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of

the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [CrossRef]
48. Li, L.; Li, C.; Zhang, Z.; Alexov, E. On the Dielectric “Constant” of Proteins: Smooth Dielectric Function for Macromolecular

Modeling and Its Implementation in DelPhi. J. Chem. Theory Comput. 2013, 9, 2126–2136. [CrossRef]
49. Kenyon, R.L. EDITORIAL. Chem. Eng. News Arch. 1968, 46, 363–368. [CrossRef]
50. Ramos-Guzmán, C.A.; Ruiz-Pernía, J.J.; Tuñón, I. Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale

Methods. ACS Catal. 2020, 10, 12544–12554. [CrossRef]
51. Dalla Tiezza, M.; Bickelhaupt, F.M.; Flohé, L.; Orian, L. Proton Transfer and S N 2 Reactions as Steps of Fast Selenol and Thiol

Oxidation in Proteins: A Model Molecular Study Based on GPx. ChemPlusChem 2021, 86, 525–532. [CrossRef]
52. Nogara, P.A.; Omage, F.B.; Bolzan, G.R.; Delgado, C.P.; Aschner, M.; Orian, L.; Rocha, J.B.T. In silico Studies on the Interaction Between

Mpro and PLpro from SARS-CoV-2 and Ebselen, its Metabolites and Derivatives. Mol. Inform. 2021, 2100028, 1–13. [CrossRef]
53. Bortoli, M.; Wolters, L.P.; Orian, L.; Bickelhaupt, F.M. Addition–Elimination or Nucleophilic Substitution? Understanding the

Energy Profiles for the Reaction of Chalcogenolates with Dichalcogenides. J. Chem. Theory Comput. 2016, 12, 2752–2761. [CrossRef]
54. Wiberg, K. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to

bicyclobutane. Tetrahedron 1968, 24, 1083–1096. [CrossRef]
55. Rohrbach, S.; Murphy, J.A.; Tuttle, T. Computational Study on the Boundary Between the Concerted and Stepwise Mechanism of

Bimolecular SNAr Reactions. J. Am. Chem. Soc. 2020, 142, 14871–14876. [CrossRef] [PubMed]
56. Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncova-

lent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals
and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [CrossRef]

57. Peverati, R.; Truhlar, D. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. J. Phys. Chem.
Lett. 2011, 2, 2810–2817. [CrossRef]

58. Bortoli, M.; Madabeni, A.; Nogara, P.A.; Omage, F.B.; Ribaudo, G.; Zeppilli, D.; Rocha, J.B.T.; Orian, L. Chalcogen–Nitrogen Bond:
Insights into a Key Chemical Motif. Catalysts 2021, 11, 114. [CrossRef]

http://doi.org/10.1002/cphc.201700743
http://www.ncbi.nlm.nih.gov/pubmed/28837255
http://doi.org/10.1063/1.464913
http://doi.org/10.1007/s002149900065
http://doi.org/10.1002/wcms.30
http://doi.org/10.1063/1.2065267
http://doi.org/10.1021/jp810292n
http://doi.org/10.1021/ct400065j
http://doi.org/10.1021/cen-v046n004.p005
http://doi.org/10.1021/acscatal.0c03420
http://doi.org/10.1002/cplu.202000660
http://doi.org/10.1002/minf.202100028
http://doi.org/10.1021/acs.jctc.6b00253
http://doi.org/10.1016/0040-4020(68)88057-3
http://doi.org/10.1021/jacs.0c01975
http://www.ncbi.nlm.nih.gov/pubmed/32786763
http://doi.org/10.1007/s00214-007-0310-x
http://doi.org/10.1021/jz201170d
http://doi.org/10.3390/catal11010114

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

