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Abstract

The field of fault–tolerant applications is surely among the most exciting and poten-
tially innovative modern research of the electrical motor where the design is freedom
and new solution can be explored. The cost of the permanent magnets and the drives
allow to develop new solution, in particular surface mounted permanent magnet ma-
chine with fractional–slot winding and reluctance motor assisted from the permanent
magnet. The reliability of these machines allows to apply these motors into critical
applications where the electrical or mechanical redundancy are required.
As regard this argument the literature compare the performance of different solution.
In this thesis I have applied a different approach, in particular a mathematical model
is combined with the finite element method. This approach allows to use the flexibil-
ity of the analytical model and the precision of the finite element method. The larger
part of my research activity has regarded the motors with fractional–slot winding and
the multi-phase machines. The final part of my thesis tells the activity developed
during the period spent in ABB Corporate Research Sweden. The aim of my research
was to design several solution of electric generators for wave energy, in particular
the aim was to design the optimal system that is a compromise among the different
component: generator, mechanical converter, inverter, etc..
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Sommario

L’ambito delle applicazioni ”fault-tolerant” é sicuramente tra i piú eccitanti e poten-
zialmente innovativi campi della ricerca moderna sui motori elettrici in quanto lascia
molta piú libertá nella progettazione e permette di esplorare nuove soluzioni. Il ridursi
del costo dei magneti permanenti e dei sistemi di controllo ha permesso di sviluppare
nuove soluzioni a magneti permanenti superfiaciali con avvolgimenti frazionari e mo-
tori a riluttanza assistiti dai magneti permanenti. L’affidabilitá di questi motori li
rende particolarmente adatti a quelle applicazioni in qui é richiesta una ridondanza
meccanica o elettrica. A differenza della letteratura che si basa sul confronto delle
prestazioni di alcune macchine specifiche, l’impostazione che si é voluto dare in questa
tesi é stata quella di determinare dei modelli matematici integrati con l’analisi agli
elementi finiti. Questo approccio permette di sfruttare la grande capacitá di calcolo
dei modelli analitici e la precisione numerica degli elementi finiti per le sole soluzioni
piú promettenti.
Tra le diverse strategie di progetto, si dato maggiormente spazio alle soluzioni di
motori con cave frazionarie e di motori multifase.
Nella parte finale della tesi viene descritta l’attiviá svolta durante la breve parentesi
all’ABB Corpoarte Research svedese. Questa mi ha permesso di affrontare le prob-
lematiche legate alla progettazione di generatori per energie rinnovabili, in particolare
per produrre energia elettrica dalle onde marine. In questa ricerca, l’attenzione é stata
rivolta alla progettazione dell’intero sistema, che ha richiesto un’ottimizzazione di piú
componenti e non del solo generatore elettrico.
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Chapter 1

Introduction

Fault-tolerant design refers to a method for designing a system so it will continue to
operate, possibly at a reduced level (also known as graceful degradation), rather than
failing completely, when some part of the system fails. That is, the system as a whole
is not stopped due to problems either in the hardware or the software.

Fault-tolerance or graceful degradation is the property that enables a system to
continue operating properly in the event of the failure of (or one or more faults
within) some of its components. If its operating quality decreases at all, the decrease
is proportional to the severity of the failure, as compared to a naively-designed system
in which even a small failure can cause total breakdown. Fault-tolerance is particularly
sought-after in high-availability or life-critical systems.

Fault-tolerance is not just a property of individual machines; it may also charac-
terize the rules by which they interact.

When the system detects that it has made an error, roll-forward recovery takes
the system state at that time and corrects it, to be able to move forward.

Within the scope of an individual system, fault-tolerance can be achieved by an-
ticipating exceptional conditions and building the system to cope with them, and, in
general, aiming for self-stabilization so that the system converges towards an error-
free state. However, if the consequences of a system failure are catastrophic, or the
cost of making it sufficiently reliable is very high, a better solution may be to use
some form of duplication.

1.1 Dependability

The original definition of dependability for a system gathers the following attributes
or non-functional requirements:

• Availability: readiness for correct service;

• Reliability: continuity of correct service;
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• Safety: absence of catastrophic consequences on the user(s) and the environ-
ment;

• Security: the concurrent existence of confidentiality and integrity.

1.2 System Availability

System Availability is calculated by modeling the system as an interconnection of
parts in series and parallel. The following rules are used to decide if components
should be placed in series or parallel:

• If failure of a part leads to the combination becoming inoperable, the two parts
are considered to be operating in series.

• If failure of a part leads to the other part taking over the operations of the failed
part, the two parts are considered to be operating in parallel.

1.2.1 Availability in Series

As stated above, two parts X and Y are considered to be operating in series if failure
of either of the parts results in failure of the combination. The combined system is
operational only if both Part X and Part Y are available. From this it follows that the
combined availability is a product of the availability of the two parts. The combined
availability is shown by the equation below:

A = Ax ∗Ay (1.1)

The implications of the above equation are that the combined availability of two
components in series is always lower than the availability of its individual components.

P a r t  X P a r t  Y

Figure 1.1: Availability in Series

1.2.2 Availability in Parallel

As stated above, two parts are considered to be operating in parallel if the combination
is considered failed when both parts fail. The combined system is operational if either
is available. The combined availability is shown by the equation below:

A = 1− (1−Ax)(1−Ay) (1.2)
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P a r t  X

P a r t  Y

Figure 1.2: Availability in Series

1.2.3 Combined availability when the parts are operating in
parallel

The combined availability of two components in parallel, (see (1.2), is always much
higher than the availability of its individual components. Thus parallel operation
provides a very powerful mechanism for making a highly reliable system from low
reliability. For this reason, all mission critical systems are designed with redundant
components.

1.3 Reliability

Reliability is the resistance to failure of a device or system.
Reliability engineers rely heavily on statistics, probability theory, and reliabil-

ity theory. Many engineering techniques are used in reliability engineering, such as
reliability prediction, Weibull analysis, thermal management, reliability testing and
accelerated life testing. Because of the large number of reliability techniques, their
expense, and the varying degrees of reliability required for different situations, most
projects develop a reliability program plan to specify the reliability tasks that will be
performed for that specific system.

The function of reliability engineering is to develop the reliability requirements
for the product, establish an adequate reliability program, and perform appropriate
analysis and tasks to ensure the product will meet its requirements. These tasks are
managed by a reliability engineer, who usually holds an accredited engineering degree
and has additional reliability–specific education and training.

1.3.1 Reliability requirements

For any system, one of the first tasks of reliability engineering is to adequately spec-
ify the reliability requirements. Reliability requirements address the system itself,
test and assessment requirements, and associated tasks and documentation. Relia-
bility requirements are included in the appropriate system/subsystem requirements

—– p. 7—–



Michele Dai Prè — Ph.D. Thesis

specifications, test plans, and contract statements.

1.3.2 System reliability parameters

Requirements are specified using reliability parameters. The most common reliability
parameter is the mean–time–between–failure (MTBF), which can also be specified as
the failure rate or the number of failures during a given period. These parameters are
very useful for systems that are operated on a regular basis, such as most vehicles,
machinery, and electronic equipment. Reliability increases as the MTBF increases.
The MTBF is usually specified in hours, but can also be used with any unit of duration
such as miles or cycles.

In other cases, reliability is specified as the probability of ”mission success”. For
example, reliability of a scheduled aircraft flight can be specified as a dimensionless
probability or a percentage.

A special case of ”mission success” is the single–shot device or system. These
are devices or systems that remain relatively dormant and only operate once. Ex-
amples include automobile airbags, thermal batteries and power switch for electric
grid. Single–shot reliability is specified as a probability of success, or is subsumed
into a related parameter. Single–shot power switch for electric grid reliability may be
incorporated into a requirement for the probability of hit.

In addition to system level requirements, reliability requirements may be spec-
ified for critical subsystems. In all cases, reliability parameters are specified with
appropriate statistical confidence intervals.

1.4 Reliability modeling

This thesis doesn’t explain the reliability modeling model and test requirements but
in the following sections several concepts are shown.

Reliability modeling is the process of predicting or understanding the reliability
of a component or system. Two separate fields of investigation are common:

1. The physics of failure approach uses an understanding of the failure mechanisms
involved, such as crack propagation or chemical corrosion;

2. The parts stress modeling approach is an empirical method for prediction based
on counting the number and type of components of the system, and the stress
they undergo during operation.

For systems with a clearly defined failure time, the empirical distribution function
of these failure times can be determined. This is done in general in an accelerated
experiment with increased stress. These experiments can be divided into two main
categories:

1. Early failure rate studies determine the distribution with a decreasing failure
rate over the first part of the bathtub curve. Here in general only moderate
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stress is necessary. The stress is applied for a limited period of time in what is
called a censored test. Therefore, only the part of the distribution with early
failures can be determined.
In so–called zero defect experiments, only limited information about the failure
distribution is acquired. Here the stress, stress time, or the sample size is so
low that not a single failure occurs. Due to the insufficient sample size, only an
upper limit of the early failure rate can be determined. At any rate, it looks
good for the customer if there are no failures.

2. In a study of the intrinsic failure distribution, which is often a material property,
higher stresses are necessary to get failure in a reasonable period of time. Several
degrees of stress have to be applied to determine an acceleration model. The
empirical failure distribution is often parameterized with a Weibull or a log–
normal model.

1.4.1 Reliability test requirements

Because reliability is a probability, even highly reliable systems have some chance
of failure. However, testing reliability requirements is problematic for several rea-
sons. A single test is insufficient to generate enough statistical data. Multiple tests
or long–duration tests are usually very expensive. Some tests are simply impracti-
cal. Reliability engineering is used to design a realistic and affordable test program
that provides enough evidence that the system meets its requirement. Statistical
confidence levels are used to address some of these concerns. A certain parameter
is expressed along with a corresponding confidence level: for example, an MTBF of
1000 hours at 90% confidence level. From this specification, the reliability engineer
can design a test with explicit criteria for the number of hours and number of failures
until the requirement is met or failed.

The combination of reliability parameter value and confidence level greatly affects
the development cost and the risk to both the customer and producer. Care is needed
to select the best combination of requirements. Reliability testing may be performed
at various levels, such as component, subsystem, and system. Also, many factors
must be addressed during testing, such as extreme temperature and humidity, shock,
vibration, and heat. Reliability engineering determines an effective test strategy so
that all parts are exercised in relevant environments. For systems that must last many
years, reliability engineering may be used to design an accelerated life test.

—– p. 9—–
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Chapter 2

Theoretical basis

2.1 Base quantities and normalized parameters

For the sake of generality, the data are given in normalized values (small letters) re-
ferred to the base quantities defined in the following. In this way the results presented
here can be extended to motors of any rated power. Moreover, the use of normalized
values allows an easy comparison between different types of motor drive but with
equal FW performance. The value of torque, electrical angular frequency and voltage
exhibited under full load operation at the maximum speed of the constant torque
region have been defined as base torque Tb, base angular frequency Ωb and nominal
voltage Vb. As far as the motor parameters and current is concerned their base values
are fixed by considering the power balance

Tb
Ωb

p
=

3
2
VbIb (2.1)

Then it results a base current

Ib =
2TbΩb

3pVb
(2.2)

a base inductance

Lb =
3pV 2

b

2TbΩ2
b

(2.3)

a base flux linkage

Λmb = LbIb =
Vb

Ωb
(2.4)

The normalized quantities have been defined on the basis of these assumptions. With
given nominal values of the motor, the normalized values are expressed by

11
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t = T/Tb (2.5)
i = I/Ib (2.6)
v = V/Vb (2.7)
ω = Ω/Ωb (2.8)

λm = Λm/Λmb (2.9)
l = L/Lb (2.10)

(2.11)

With this normalized values, each combination of PM flux linkage λm, two axis in-
ductance ld and lq, then saliency ratio χ = ld/lq (ξ = lq/ld) and nominal current iN
satisfies:

the base torque tb = 1
at the base speed ωb = 1
with a nominal voltage vN = 1

By applying the proposed normalization to the actual parameters of AC motors,
their normalized value results within a typical range as illustrated in the following.
The REL motor is characterized by a saliency ratio χ = ld/lq, that strongly depends
on the rotor structure. Generally it ranges from 3 to 7 with the normalized ld varying
from 0.3 to 0.9 and iN from about 3.2 to 1.7. With an axially-laminated rotor a
saliency ratio χ up to 20 can be obtained.
The SPM motor has a large and uniform equivalent airgap, since the PM relative
permeability is close to unity. As a consequence the d- and q-axis inductances are
equal and quite low. Typical normalized parameters of an SPM motor are m = 10.95,
ld = lq = 0.05 − 0.15, iN = 1 − 1.1. The SPM has a large airgap as well, thus the
achievable saliency ratio χ = ld/lq is generally small and close to unity.
The IPM motor can exhibit two different rotor configurations: with circumferentially
and with radially magnetized PM. Their typical saliency ratios are χ = ld/lq =
1.5 − 2.5 and χ = 3 − 6 respectively. The PM flux linkage m can be chosen from 0
to 1 and consequently the inductances and current values vary from those of an REL
motor to an SPM motor.

2.1.1 General form of steady state motor drive equations

The steady state equations of the AC motor drive operation are studied with some
simplifying assumptions:

1. the winding resistance is neglected;

2. the iron permeability is considered infinite so that the saturation effects are not
taken into account;
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3. no cross-coupling is assumed between the two axis;

4. the iron losses are neglected;

5. the PM irreversible demagnetization caused by the stator reaction is not con-
sidered, assuming a PM material with an appropriate coercive force and/or
thickness.

The structure of an AC motor drive is shown in Fig. 2.1. It consists of a motor,
an inverter and a control system forcing the current waveforms. In a well designed
system, the rated motor current and voltage are within the inverter capabilities. Here
we suppose that the rated current and voltage of the motor coincide with the inverter
limits. Rated torque tb is the maximum torque which can be obtained with rated
current. The base angular frequency ωb (in electrical radians per second) is the speed
at which the drive delivers rated torque with rated voltage and current.

Figure 2.1: Electric drive scheme

2.1.2 Parameters to satisfy the base operating point

The first item yields a particular combination between the motor parameters [1]. In
particular the nominal current IN , and the d–axis and q–axis inductances Ld and Lq

can be expressed as a function of the PM flux linkage Λm and the saliency ratio ξ.
An example is reported in Fig. 2.2, according to ξ = 6, the values of IN and Lq are
reported as a function of Λm.

It is clear that the minimum value of nominal current is achieved with a PM
flux linkage approaching unity. Ideally the minimum current results in IN = 1 p.u.
corresponding to a PM flux linkage Λm = 1 p.u.
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Figure 2.2: Parameters and performance of an IPM motor with ξ = 6

2.1.3 Parameters to satisfy the flux–weakening operating point

In order to satisfy the second item, only some combinations of motor parameters
found above can be considered [1]. It has to be verified that the motor is able to
exhibit a constant–power up to the flux–weakening speed ωFW , that is, the output
power has to be no lower than 1 p.u. up to the speed ωFW . The flux–weakening
power PFW at ωFW is computed for the various combinations of motor parameters,
checking if PFW ≥ 1 p.u. is satisfied.

In the example of Fig. 2.2, the flux–weakening power PFW computed at the speed
ωFW = 3 p.u. is reported. It is worth noticing that a PFW ≥ 1 p.u. is achieved in
the range 0 < Λm < 0.434 p.u. As a consequence, the nominal current and the two
axis inductances are limited as well. In order to achieve the lower nominal current,
the higher flux linkage has to be selected, yielding a nominal current IN = 1.213 p.u.

2.2 The star of slots

The star of slots is the phasor representation of the main EMF harmonic induced
in the coil side of each slot. However, since it contains information of the winding
distribution harmonics, the star of slots can be also used to represent all EMF har-
monics induced in the coils and all MMF harmonics in the air–gap caused by the
stator currents [2]. Information can be got about (i) harmonic orders, (ii) winding
factor, and (iii) mutual inductance among the phases.

Let t be the machine periodicity, computed as the greatest common divisor (G.C.D.)
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between the number of slots Q and the number of pole pairs p, which is

t = G.C.D. {Q, p} (2.12)

The star of slots is characterized by Q/t spokes, each spoke containing t phasors.
The slot angle is αs = 2π/Q in mechanical radians and αe

s = pαs in electrical ra-
dians (superscript e identifies the electrical angles). The stator slots are numbered
consecutively and the corresponding phasors keep the same numeration. In order to
represent the main star of slot (representing the main harmonic, whose order is equal
to the pole pair), the consecutive phasors are drawn with an angular displacement
αe

s. Fractional–slot winding is feasible when the number of spokes is equal for each
phase, that is, when Q/t is a multiple of the number of phases m.

An example is represented in Fig. 2.3 referring to a 24–slot 20–pole machine. The
machine periodicity is t = 2: the star of slots has 12 spokes of 2 phasors each. The
first 12 slots are in the same magnetic position of the following 12 slots.

Figure 2.3: The star of slots of a 24–slot 20–pole machine

It is also useful to define:

• the adjacent phasors, such as the phasors 1 and 6 of Fig. 2.3. The angular
displacement between them corresponds to the angle between two spokes:

αph = tαs (2.13)

• the superimposed phasors, such as the phasors 1 and 13 of Fig. 2.3. The
difference between their reference number is equal to the number of spokes Q/t.

• the opposite phasors that are π radians out of phase, such as the phasors 1
and 7 of Fig. 2.3.

It is possible to demonstrate [2] that:
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1. when Q/t is even the adjacent phasors are odd and even alternatively, and the
superimposed phasors are all odd or all even.

2. when Q/t is odd the superimposed phasors are odd and even alternatively.

3. the opposite phasors (that exist only if Q/t is even) are both even or both odd,
when Q/(2t) is even, while they are one even and the other odd, when Q/(2t)
is odd.

These properties have important implications on the magnetic performance of the
machine, as will be described in the following.

2.3 From double– to single–layer winding

Non–overlapped coil single–layer windings are proposed for fault–tolerant applications
[3], in order to achieve a physical separation between the coils. Each coil is wound
around a single tooth and separated from the others by a stator tooth, so that the
phase–to–phase fault is very improbable.

From the design point of view, the single–layer winding can be achieved from
a double–layer winding. The transformation from double– to single–layer winding is
sketched in Fig. 2.4 referring to a 12–slot 10–pole surface–mounted PM (SPM) motor.
Every one coil of the double–layer winding is removed and re–inserted into the stator
according to the position of the coils of the same phase.

The star of slots of the double–layer winding 12–slot 10–pole SPM motor has 12
spokes of one phasor each (i.e. the first 12 phasors of the 24–slot 20–pole motor of
Fig. 2.3). After the transformation into a single–layer winding all even phasors of the
star of slots are removed, while only the odd phasors remain [4].
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Figure 2.4: The basic idea of the transformation from double– to single–layer winding

2.3.1 Transformation constraints

The transformation is possible only if some geometrical and electrical constraints are
satisfied [2].

As regards the geometrical constraints

1. the number of slots Q must be even;

2. the slot throw yq must be odd (of course, in concentrated coil winding, in which
yq = 1, this constraint is inherently satisfied).

As regards the electrical constraints, once the machine periodicity t is computed
as in (2.12), then

1. if t is even, the transformation is always possible. The machine exhibits different
performance depending on the ratio Q/t is even or odd. Details will be given
later.

2. if t is odd, the transformation is possible only if the ratio Q/t is even. In fact
the number of coils that change their position has to be even.
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Two examples of double– and single–layer fractional slot– winding are shown in Fig.2.5
and Fig.2.6. Other examples of this solutions are reported in [5–8].

Figure 2.5: Three–phase 12–slot 8–pole PM motors with double– and single–layer
winding.

Figure 2.6: Three–phase 12–slot 10–pole PM motors with double– and single–layer
winding.

2.4 Presence of MMF harmonics and their order

The fractional–slot winding motors are characterized by harmonic contents in the ar-
mature MMF distribution higher than that of the corresponding integer–slot winding
motors. They can cause vibrations, when the MMF harmonic order matches the PM
flux density harmonic order, and rotor losses [9]. Here, let us focus on the harmonic
contents in the armature MMF distribution according to the star of slots theory and
the choice of the number of slots Q and pole pairs p.

Various combinations are reported in Table 2.1. The upper part refers to double–
layer windings, while the lower part refers to single–layer windings, which are obtained
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by means of the transformation from the corresponding double–layer winding as de-
scribed above.

Table 2.1 highlights the harmonic order (HO) of the armature MMF distribution.
At first, the lower order of the MMF harmonic corresponds to the machine periodicity
t and the other harmonics are multiple of t.

Referring to the double–layer winding, the MMF harmonics are only of odd order
when Q/t even, so that the harmonic order can be expressed as (2n−1) times t, where
n is an integer positive number. This property holds with a single–layer winding too,
provided that Q/(2t) is even, thanks to the presence of the opposite phasors in the
star of slots.

Conversely, with the other winding combinations, the order of the MMF harmonics
are both odd and even. Then the harmonic orders are expressed as n times t. This
result is referable to the odd number of spokes of the star of slots.

It has to be observed that, when the double–layer winding is transformed into
a single–layer winding and Q/t is odd (the transformation is possible only if the
machine periodicity t (2.12) is even), the machine periodicity decreases to t/2. Thus,
harmonics of lower order (i.e. sub–harmonics) appear.

An example is reported in Fig. 2.7. The machine with 12 slots and 10 poles
yields t=1, Q/t and Q/(2t) even. Due to the low machine periodicity (t=1), the
sub–harmonic of order ν=1 exists, as shown in the upper part of Fig. 2.7. Then, only
harmonics of odd order exist (i.e. ν=5, 7, 11, 13, ...). When the double–layer winding
is transformed into a single–layer one, the harmonics remain of the same order, but
their amplitude increases. The winding factor of the main harmonic (i.e. of order
ν=p=5) slightly increases.

The machine with 12 slots and 8 poles yields t=p=4 and Q/t odd. There are
no sub–harmonics, but harmonics of odd and even order, multiply of 4 (i.e. ν=4, 8,
16, 20, ...). When the double–layer is transformed into a single–layer winding, the
machine periodicity decreases to t/2=2. Various harmonics grow up, among them the
sub–harmonics of order ν=2.

2.5 Winding factor

The winding factor can be graphically computed from the star of slots, as the ratio
between the geometrical and the arithmetical sum of the phasors of the same phase.
It can be computed for each harmonic order. In the following, some considerations
are given for the winding factor kw referring to the main harmonic (harmonic of order
equal to the pole pair number p).

When all phasors of each phase are parallel, a unity winding factor is obtain. This
occurs when the number of spokes of the star of slots are 3 or 6. In the other cases,
the geometrical sum of the phasors is always lower than the arithmetical sum, and the
winding factor is lower than 1. The main winding factor of fractional–slot winding
can be computed as reported in [4].
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Figure 2.7: MMF harmonic contents of 12–slot 10–pole motor and 12–slot 8–pole mo-
tor respectively (black bars refer to double–layer winding, white bars refer to single–
layer winding)

From the star of slots it is possible to verify that a single–layer winding can exhibit
a winding factor even higher than that of the corresponding double–layer winding.
It occurs when the number of spokes of the star of slots decreases. It is possible to
demonstrate that this occurs when Q/(2t) is even: the opposite phasors of the star of
slots are both even and both odd [2]. Then, when the even phasors are removed, all
spokes containing them are removed. As a consequence, the main kw increases. This
is generalized in Table 2.1.

2.6 Mutual inductance equal to zero

If the fractional–slot winding has to be designed for fault–tolerant applications a
common requirement is that the mutual coupling among the phases is zero, i.e. M=0.
This is to avoid the interaction between the healthy and the faulty phases.

To this purpose, windings with non–overlapped coils (i.e. with a unity coil throw
yq = 1) are firstly adopted.

Secondly, the winding of each phase can be split in couples of coils producing
rectangular–shaped MMF distributions of opposite sign. The positive contribution
of one coil is compensated by the negative contribution of the other coil. Therefore
the resulting MMF distribution is zero in any point not embraced by these two coils.
An example is shown in Fig. 7.13 that reports the armature MMF distribution due
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Table 2.1: Harmonic order (HO) and winding factor (kw) change for different combi-
nations of slots and pole pairs

Machine periodicity t = G.C.D.{Q, p}
Feasibility: number of spokes per phase Q/(mt) integer

Q/t even Q/t odd
• Adjacent phasors are odd and even

alternatively
Double • Superimposed phasors are all odd • Superimposed
Layer or all even phasors odd

• HO: (2n− 1)t or even
• Mutual inductance M = 0 when yq = 1 alternatively

Q/(2t) even Q/(2t) odd • HO: nt
• Opposite phasors • Opposite phasors • M 6= 0

are both even are one even and
or both odd the other odd

Transformation from double– to single–layer winding
Geometrical constraints: Q even and yq odd

(only if t is even)
• kw increases • kw unchanged • kw unchanged

Single • HO: (2n− 1)t • HO: nt • HO: nt/2
Layer • M = 0 remains • M 6= 0 • M 6= 0

when yq = 1
n is an integral positive number

to only one phase of a 12–slot 10–pole machine and a 12-slot 8–pole machine. In the
upper case, the MMF is different from zero only where there are the supplied coils.
In the lower case, the MMF distribution is never equal to zero, which means that a
flux is linked also by the coils that are not supplied. Further examples are in [10] and
in [11] where a 36–slot 30–pole motor and a 36–slot 42–pole PM motor have been
considered respectively.

2.6.1 General rule to achieve M=0

A general rule can be found to achieve a winding with no coupling among the phases.
It occurs when Q/t is even with a double–layer winding, and when Q/(2t) is even
with a single–layer winding. This general result is also reported in Table 2.1.

The examples mentioned above (12–slot 10–pole, 36–slot 30–pole, and 36–slot 42–
pole motors) belong to this group. In fact all of them have yq=1 and Q/t even. In
the case of single–layer winding, they show Q/(2t) even so as M=0 as well.
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Figure 2.8: Armature MMF distribution of a 12–slot 10–pole (with M = 0) and of a
12–slot 8–pole motor (with M 6= 0)

2.7 Magnetic loading against the PM

In this section, the magnetic loading due to stator currents of a fractional–slot winding
motor is compared with that of a full–pitch winding motor, characterized by one slot
per pole per phase, i.e. q=1. For the sake of a correct comparison, the two motors have
to exhibit a winding distribution with the same main harmonic. This is achieved by
rearranging the number of series conductors per slot nc of the fractional–slot winding
according to the main winding factor kw and the slot number, yielding

nc(f) = nc(i)

Q(i)

Q(f)

kw(i)

kw(f)
(2.14)

where subscript (f) refers to fractional–slot winding, while subscript (i) refers to
integer–slot full–pitch winding. Eqn. (2.14) holds for both double– and single–layer
windings.

Adopting non–overlapped coil windings, each coil contributes to the stator mag-
netic potential independently. Then, referring to the time instant in which one phase
current assumes the maximum value Î and the other two phases the value −Î/2, the
peak value of the stator magnetic potential is given by

Ûs =
nc(f)

2
Î (2.15)

for a double–layer winding. This value doubles for a single–layer winding. For the
sake of comparison, the peak value of the stator magnetic potential of full–pitched
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winding corresponds to

Ûs = nc(i)

Q(i)

m2p
Î (2.16)

that reduces to nc(i)Î when q=1. Let us remember that the number of conductors
per slot has to be rearranged as in (2.14) when integer– and fractional–slot windings
are compared.

Then (2.15) is useful during the design of the machine: it allows to identify the
maximum PM demagnetization. Letting g and tm be the air–gap and the PM thick-
ness respectively, the peak flux density due to stator currents is given by

B̂g ≈ µ0
Ûs

g + tm
(2.17)

2.8 Magnetizing inductance

In this section, the magnetizing inductance of a fractional–slot winding motor is com-
pared with that of a full–pitch winding motor, characterized by one slot per pole per
phase, i.e. q=1. The main difference in the inductance of the various configurations is
mainly due to the magnetizing rather than the leakage inductance, so that the former
is investigated here.

The magnetizing inductance of the machine is computed from the magnetic energy
when the unique source of magnetic field is the stator current. The PMs are de–
energized (demagnetized) and only the stator coils are supplied, then the magnetic
energy is computed in the air–gap and in the volume occupied by the de–energized
PMs [12].

It is interesting to consider the magnetic energy, to which the magnetizing induc-
tance is proportional, as the sum of the contributions of the various MMF harmonics.
The superposition of the effects of the magnetic energy terms is possible only because
the MMF harmonics form a series of orthogonal functions. In comparing integer– and
fractional–slot windings, the magnetic energy term corresponding to the main har-
monic (of order ν = p) is the same due to gauge taken in (2.14). The other magnetic
energy terms correspond to all but the main magnetic potential harmonics (i.e. of
order ν 6= p) and vary according to the harmonic contents of the winding distribution.

Referring to the peak value of the air–gap flux density due to the stator currents,
i.e. B̂g of (2.17), the average magnetic energy density can be expressed as

wm =
1

2µ0


 1

Q/t

Q/t∑

k=1

(
Bk

B̂g

)2

 B̂2

g (2.18)

where Bk represents the air–gap flux density in front of the kth tooth. The compu-
tation can be done at the time instant in which one phase current is Î and the others
are −Î/2. It is easy to verify that in full–pitch integer–slot windings, the term within
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the square brackets is equal to 0.5 with q=1, while this term decreases as the number
of slot per pole per phase q increases.

In fractional–slot windings with non–overlapped coil (yq = 1), each coil contributes
independently to the air–gap flux density in front of the corresponding tooth. Then,
it can be verified that the term within the square brackets of (2.18) is equal to 0.5
as well. Thus, in comparing the full–pitch winding with q=1 and the fractional–slot
winding with yq=1, the ratio between the magnetizing inductances corresponds to
the ratio between the peak air–gap flux density squared, i.e. B̂2

g .
When a single–layer winding is adopted, the air–gap flux density becomes double,

but the energized air–gap volume halves, with respect the double–layer winding. Thus,
the magnetic energy and then the magnetizing inductance become double too.

Due to the non–ideal paths of the flux density lines, the effective increment is
slightly lower. In the finite element analysis of the two configurations under test,
see Fig. 2.9, it has been computed an increase of the magnetic energy in the air–
gap volume of almost 85 %. Anyways, (2.18) gives preliminary information of the
influence of the slot and pole combination on the magnetizing inductance.

Due to the moderate variation of the slot leakage inductance (whose value is com-
parable with that of the magnetizing inductance in an SPM machine), the variation
of the total phase inductance of the two motors of Fig. 2.9 results lower. It has
been computed that the inductance of the single–layer winding motor is 50 % higher
than the inductance of the double–layer winding. The experimental test confirms
substantially the finite element computation: an increase of 59 % has been measured.

Finally, let us remember that a high magnetic energy (and magnetizing induc-
tance) means a lower power factor, but also a reduced short–circuit current. This is
a further requirement in fault–tolerant applications.

2.9 Stator yoke flux density

A characteristic of several fractional–slot machines with double–layer winding is that
only a portion of the stator yoke is interested by the flux produced by the stator
current. Fig. 2.9(a) shows the flux map of a 12–slot 10–pole motor due to the stator
currents only (PMs have been de–energized). The stator yoke is only partially inter-
ested by the flux of the stator winding and these parts of the stator yoke carry the
flux of the PM only.

In order to draw generalizations from this result, this happens adopting a double–
layer winding in which adjacent teeth are wound by coils of the same phase but with
opposite polarity. In the corresponding star of slots each phasor has opposite and
following phasors that are adjacent, i.e. αe

s = π ± αph. This is the case of 12–slot
10–pole machine or of 24–slot 20–pole machine, shown in Fig. 2.3. Rearranging this
equation, one obtains

2p = Q± 2t (2.19)

An immediate consequence of these considerations is that a portion of the stator
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(a) (b)

Figure 2.9: Flux plot of a 12–slot 10–pole motor, with (a) double– and (b) single–layer
winding

yoke can be reduced, yielding an additional space for clamping the laminations or for
improving the cooling of the coils. The stator can be even split in pieces that are
wound separately and then assembled together. In [13] a different magnetic loading
in the stator teeth has been also observed, so as unequal teeth have been designed.

2.10 Examples

Some common combinations of number of poles 2p and slots Q are reported in Ta-
ble 2.2. All combinations refer to a PM machine with a number of phases m=3 and
to a slot throw yq=1. The winding factor kw, the machine periodicity t, and the
ratio Q/t are reported for each combination. According to the values of t and Q/t, as
depicted in Section 2.3, Table 2.2 marks if the single–layer winding (S.L.) is possible
or not.

The even values of Q/t are reported in bold type. Since yq=1, the configurations
with Q/t even yield a mutual inductance M equal to zero. In addition, if Q/t is
multiple of 4, the property M = 0 remains also after the transformation into a single–
layer winding. This is the case of the 12–slot 10–pole configuration (an asterisk has
been added in Table 2.2).

The second–last column of Table 2.2 reports the peak of the stator magnetic
potential Ûs, as a percentage of the corresponding potential of the full–pitch q=1
winding. It is the ratio between (2.15) and (2.16). For instance, the value of the
9–slot 8–pole motor is compared with that of the 24–slot 8–pole motor (where the
number 24 comes from 2pqm=8·1·3). In all comparisons it is assumed that the stator
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bore diameter and length remain the same, as well as the current amplitude, while
nc(f) are adjusted as in (2.14). Therefore the average torque remains the same for
each configuration.

For the sake of comparing solutions with different pole number, it is worth to
consider that the number of conductors per slot nc(i) varies in inverse relation to p,
to have q=1. Thus, for given current, the stator magnetic potential Ûs (2.16) also
varies in inverse relation to p. The percentage numbers reported in Table 2.2 should
be divided by p for an overall comparison.

Finally, the last column of Table 2.2 reports the magnetic energy, expressed as the
percentage of the corresponding energy of the full–pitch q=1 winding motor. Once
again the comparison makes sense for the same number of poles. For the sake of
comparing solutions with different p, the percentage values have to be divided by p2.

Table 2.2: Combinations of poles and slots, winding factor, MMF peak and magnetic
energy (all values for m=3 and yq=1)

2p Q kw t Q/t S.L. Ûs Wm

(%) (%)
2 3 0.866 1 3 — 115 133
4 3 0.866 1 3 — 231 534

6 0.866 2 3 yes 115 133
6 9 0.866 3 3 — 115 133
8 6 0.866 2 3 yes 231 534

9 0.945 1 9 — 141 199
12 0.866 4 3 yes 115 133
15 0.711 1 15 — 113 127

10 9 0.945 1 9 — 176 310
12 0.933 1 12∗ yes 134 180
15 0.866 5 3 — 115 133
18 0.735 1 18 yes 113 128

12 9 0.866 3 3 — 231 534
18 0.866 6 3 yes 115 133

14 12 0.933 1 12∗ yes 188 352
15 0.951 1 15 — 147 217
18 0.902 1 18 yes 129 167
21 0.866 7 3 — 115 133

Even Q/t are printed in bold type.
When Q/(2t) is even an asterisk is added.
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Mechanical Redundancy
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Chapter 3

Definitions

Redundancy in engineering is the duplication of critical components of a system with
the intention of increasing reliability of the system, usually in the case of a backup or
fail-safe.

In many safety-critical systems, such as fly-by-wire aircraft, some parts of the
control system may be triplicated. An error in one component may then be out-voted
by the other two. In a triply redundant system, the system has three sub components,
all three of which must fail before the system fails. Since each one rarely fails, and
the sub components are expected to fail independently, the probability of all three
failing is calculated to be extremely small.
Three example of mechanical redundancy are shown in the following section.

3.1 Automotive

The electric power steering EPS (see Fig. 3.1) presents several advantages over the
conventional hydraulic power steering, e.g. improved fuel economy, ability to vary the
assist as a function of vehicle speed, ability to provide assist even when the engine
is off, simplified engine accessory drive, modular assembly, easily tunable steering
characteristics, and elimination of the hydraulic fluid. On the other hand a fault-
tolerant electric motor drive with mechanical redundancy is required. A flexible motor
configuration is proposed to increase the redundancy against motor failures. It is
recommended that the use of direct-drive multiple motors on the same shaft improves
redundancy Fig. 3.4.

For safety’s sake, a redundant system is adopted, in which all the electric com-
ponents of the EPS are doubled. In particular, the solution adopted by the authors
makes provision for two batteries, two inverters, two feeding circuits and two electric
motors driving the steering–rack. Fig. 3.4 shows the two rotating electric motors that
are fitted on the same shaft. They drive the linear movement of the steering–rack by
means of a ball–screw system.
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Figure 3.1: Scheme of the steer-by-wire system

Figure 3.2: Electric power steering rack highlighting the two motors and the ballscrew
system

The steering functions are then guaranteed even in case of failure of one of the
two drives or motors, although with reduced performance. Such a reduction is a
function of the type of failure. At worst, a complete loss of one inverter or one motor
is considered, so that only one healthy motor drive can operate. The corresponding
EPS performance (force, acceleration and speed) are halved, and full operations are
temporarily allowable.
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However, a further aspect has to be considered: it is essential that the faulty IPM
machine does not brake so as to jam the steer mechanism and the remaining healthy
motor has to be able to move the steering–rack. Braking torque may occur in PM
motors since a short–circuit current is sustained by the back EMF induced by the
PM buried in the rotor.

3.2 Marine Propulsion

A diesel-electric power station secures multiple redundancy as shown in Fig. 3.3.
In the event of malfunction of a main engine adequate power remains available for
the ship to operate safely under any circumstances. Plant reliability is further en-
hanced by a reduced number of ancillary support systems for the engines. Twin
electric propulsion drives secure redundancy and get-you-home capability. Attrac-
tions of Electric Propulsion Operations in heavy weather in restricted waters without
tug assistance or during dynamic positioning are supported by the impressive torque
characteristics, also at low speeds, of the electric propulsion drive. Machinery avail-
ability and fire safety are enhanced by the ability to arrange the key power station
elements in separate self-sufficient watertight compartments.

Figure 3.3: Marine propulsion

3.3 Aircraft System

The aircraft utility hydraulic system can operate by splitting the production util-
ity system, with its two interconnected flow paths, single reservoir and redundant
hydraulic pumps (one driven by each engine or electric motor) or thanks to two
distinct systems with two totally independent flow paths, separate reservoirs and
non-redundant hydraulic pumps (each driven by only one engine or electric motor).
The second one insured that an actuator failure in one of the thrust vectoring nozzles
would not result in a complete loss of the utility hydraulic system.

The only common connection between the utility systems is at the emergency gen-
erator. A priority valve selects which utility system powers the emergency generator.
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Figure 3.4: Aircraft system

For redundancy, each nozzle has been designed to accommodate up to two inde-
pendent hydraulic sources, although only a single utility source is used per nozzle.
The aircraft’s Utility 1 system drives the left nozzle’s divergent actuators, while Util-
ity 2 powers the right nozzle’s actuators. Each utility supply line bifurcates into the
associated nozzle’s dual-line system at the nozzle/aircraft interface.
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Chapter 4

Fault Analysis

4.1 Analysis of a three–phase short–circuit

Among the different faults that may occur on the motor, the more dangerous condition
is considered the three–phase short–circuit [14]. Because of the PM flux linkage, the
IPM motor works as a brake, limiting the steering movement.

The analysis is carried out in the synchronous d− q reference frame. The voltages
are given by

vd = Rid +
dλd

dt
− ωλq

vq = Riq +
dλq

dt
+ ωλd

(4.1)

where the d– and q–axis flux linkages are λd = Λm +Ldid and λq = Lqiq respectively,
in the hypothesis of magnetic linearity.

In the case of a three–phase short–circuit, vd = vq = 0. The id and iq currents
are computed from (4.1). Fig. 4.1 shows the id and iq current behaviors versus time
during a three–phase short–circuit. The IPM motor data used in the simulation are
reported in the Appendix. Fig. 4.2 shows the id and iq currents in the (id, iq) plane.
The dashed line represents the ellipse trajectory described by the currents when the
stator resistance is zero. Conversely, the solid line refers to the case with a resistance
different from zero. The currents move from their initial value Id0 and Iq0 given by
the operating point before the fault (and highlighted by the circle in Fig. 4.2) towards
the steady–state short–circuit value, defined by

Id,shc = − ω2LqΛm

R2 + ω2LdLq
(4.2)

and
Iq,shc = − ωΛmR

R2 + ω2LdLq
(4.3)
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and the amplitude is

Ishc =

√
(ω2LqΛm)2 + (ωΛmR)2

R2 + ω2LdLq
(4.4)

In the example of Fig. 4.1 and Fig. 4.2, it corresponds to Id,shc = −3.85 p.u. and
Iq,shc = −0.083 p.u.

4.1.1 Simplified study with null stator resistance

In the case of zero resistance, the behaviors of the two–axis currents are given by

id(t) = −Λm

Ld
+

(
Id0 +

Λm

Ld

)
cos(ωt) +

(
Lq

Ld
Iq0

)
sin(ωt) (4.5)

and

iq(t) = −Ld

Lq

(
Id0 +

Λm

Ld

)
sin(ωt)− Iq0 cos(ωt) (4.6)

where Id0 and Iq0 are the initial values of the d– and q–axis currents. In the example
they are Id0 = −0.686 p.u. and Iq0 = 0.877 p.u.. At last, the steady–state short–
circuit value coincides with the point (Id,shc = −Λm/Ld, Iq,shc = 0). The ratio
Λm/Ld is called machine characteristic current [15].

In the case of null stator resistance, the behaviors of the two-axis currents are
given by

id(t) = −Λm

Ld
+

(
id0 +

Λm

Ld

)
cos(ωt) +

(
Lq

Ld
iq0

)
sin(ωt) (4.7)

and

iq(t) = −Ld

Lq

(
id0 +

Λm

Ld

)
sin(ωt)− iq0 cos(ωt) (4.8)

where id0 and iq0 are the initial values of the d-axis and the q-axis currents. The
steady-state value coincides with id,shc = −Λm/Ld and iq,shc = 0 when the stator
resistance is null.

The minimum d–axis current is important since it represents the peak negative
current that may demagnetize the PM. As a consequence, the IPM motor has to be
designed so as to sustain this current. It is computed as

Id,min = −Λm

Ld
−

√(
Id0 +

Λm

Ld

)2

+
(

Lq

Ld
Iq0

)2

(4.9)

In the reported example it is Id,min = −10 p.u. Its amplitude is more than nine
times the nominal current (see Appendix), that is, higher than 2.5 times the machine
characteristic current Λm/Ld. Assuming the nominal amplitude of the initial current,
the worst case is with q–axis current only, that is, Iq0 = IN and then Id0 = 0. In
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this case the ideal ellipse exhibits the largest area, and the minimum d–axis current
becomes

Id,min =
−Λm −√

Λ2
m + (LqIN )2

Ld
(4.10)

reaching Id,min = −11.58 p.u. in the considered example.
If the PM flux linkage is higher than the initial q–axis flux linkage, i.e. Λm >>

(LqIN ), then the minimum d–axis current can be approximated as Id,min ≈ −2Λm/Ld.
Conversely, in the case of a reluctance motor, where Λm = 0, the minimum d–axis
current becomes Id,min = −ξIN .
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Figure 4.1: Short–circuit current behavior of the IPM motor whose parameters are
reported in the Appendix
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4.2 Steady–state braking torque

The analysis of the steady–state braking torque is carried out in the synchronous d−q
reference frame. The voltage equations are expressed by (4.1) without derivatives and
with vd = vq = 0. The steady–state braking torque [15] results in

Tbrk = −3
2
pRΛ2

m ω
R2 + ω2L2

q

(R2 + ω2LdLq)2
(4.11)

and the short–circuit current amplitude is obtained by (4.2) and (4.3), resulting in

Ishc =

√
(ω2LqΛm)2 + (ωRΛm)2

R2 + ω2LdLq
(4.12)

It is possible to verify that the short–circuit current always increases with the
speed ω, approaching Λm/Ld.

A typical behavior of the braking torque (negative with the motoring convention)
and the short–circuit current are shown in Fig. 4.9 as a function of the motor speed.
It is worth noticing that a non appropriate choice of the motor may cause a braking
torque even higher than the rated torque. Its maximum is twice the rated torque,
with the IPM motor data reported in the Appendix.

4.2.1 Maximum braking torque

The maximum amplitude of Tbrk is computed by equating the derivative of (4.11)
with respect to the speed ω to zero. The maximum braking torque results in

T ∗brk =
3
2
p
Λ2

m

Lq
f(ξ) (4.13)

and it occurs at the speed

ω∗ =
R

Lq

√
χ (4.14)

where the function f(ξ) is

f(ξ) =
√

χ
1 + χ(

1 +
χ

ξ

)2 (4.15)

with
χ =

1
2

[
3(ξ − 1) +

√
9(ξ − 1)2 + 4ξ

]
(4.16)

It is worth noticing that f(ξ) in (4.15) is only a function of the saliency ratio
ξ = Lq/Ld. Its behavior is reported in Fig. 4.4. In the range between ξ = 2 and
ξ = 6, such a function can be approximated by the straight line f(ξ) ≈ ξ − 1, that is
shown in the same Fig. 4.4 by a dashed line.
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4.3 Examples

Some examples are reported referring to SPM and IPM motors, whose the p.u. value
of the parameters are reported in Table 4.1.

Table 4.1: p.u. value of the PM motor parameters
IPM #1 IPM #2 SPM #1 SPM #2

Λm 0.8 0.15 0.98 0.707 PM flux linkage
Lq 0.744 0.824 0.2 0.5 q-axis inductance
Ld 0.186 0.206 0.2 0.5 d-axis inductance
ξ 4 4 1 1 saliency ratio
R 0.05 0.05 0.05 0.05 resistance
In 1.052 1.632 1.02 1.414 nominal current
ω 1 1 1 1 speed

The p.u. parameters are normalized with respect the mechanical power, thus all
the motors exhibit a unity torque at unity speed, when they are fed with nominal
current and unity nominal voltage. In particular, SPM motors are characterized by
Ld = Lq = Λm

√
1− Λ2

m and In = 1/Λm.
Fig. 4.5 and Fig. 4.6 show the id and iq current behaviors computed from (4.1)

during a three–phase short–circuit, referring to the SPM motors #1 and #2. Such
behaviors are reported versus time and in the id–iq plane. The dashed line represents
the ideal ellipse described by the currents when the stator resistance is null, while the
solid line refers to the case with a finite value of resistance.

Similar results are reported in Fig. 4.7 and Fig. 4.8, referring to the IPM motors
#1 and #2.

4.4 Selection of the IPM motor parameters

The choice of the IPM motor parameters is determined by various requirements, often
yielding different results. Such requirements are summarized hereafter, adopting the
p.u. values in order to extend the result to motor drives of any power.

i. The motor has to satisfy the base operating point. This corresponds to a motor
exhibiting a unity torque TB = 1 p.u. at a unity electric speed ω = ωB = 1 p.u.,
and fed by a unity voltage V = VB = 1 p.u.

ii. The motor has to satisfy the flux–weakening operating point. This corresponds
to satisfy a prefixed torque–to–speed characteristic. In the case under study, a
constant power is required up to a flux–weakening speed ω = ωFW = 3 p.u.

iii. Finally, the motor has to exhibit a prefixed maximum braking torque T ∗brk. In
the case under study, a p.u. value of T ∗brk = 0.1 p.u. is fixed.
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Figure 4.5: Short–circuit current behaviors of SPM motor #1

Thus, the design of the IPM motor has to be bound to the constraints above. The
saliency ratio ξ is supposed to be given, according to the adopted configuration of the
rotor (e.g. with one, two, or more flux–barrier per pole). In the following procedure,
the adopted criterion is to minimize the nominal current of motor and inverter.

4.4.1 Parameters to limit the braking torque

The third item deals with the maximum braking torque of the motor during a three–
phase short–circuit, that has to be kept lower than a fixed value (e.g. 0.1 p.u.). The
maximum braking torque can be computed for the various combinations of the IPM
motor parameters, using (4.13) with f(ξ) computed for ξ = 6. The constraint of its
maximum value implies a further reduction of the feasible combinations.

Referring to the example reported in Fig. 2.2, T ∗brk is drawn versus Λm. It increases
rapidly with Λm, thus only a portion is drawn. The solution with Λm = 0.434 p.u.
that satisfies the first two items yields a braking torque higher than T ∗brk = 0.95 p.u.,
that can not be accepted. The constrain T ∗brk ≤ 0.1 p.u. is highlighted in Fig. 2.2: it
limits PM flux linkage Λm to be lower than 0.136 p.u., with a corresponding nominal
current IN ≥ 1.51 p.u..

The cost of reducing the maximum braking torque under a fixed value depends on
different factors, among which the saliency ratio and the flux–weakening requirements.
In the example above, such a cost can be considered as the increase of the volt–ampere
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Figure 4.6: Short–circuit current behaviors of SPM motor #2
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Figure 4.7: Short–circuit current behaviors of IPM motor #1
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Figure 4.8: Short–circuit current behaviors of IPM motor #2

rating of the motor drive of about 25% (computed as 1.51/1.213).
Similar computation can be carried out fixing a different saliency ratio, for instance

if ξ = 4 is fixed, it results Λm = 0.18 p.u. and IN = 1.56 p.u.

4.4.2 Parameters for given maximum short–circuit current

If the value of the steady–state short–circuit current is fixed, it is possible to identify
analytically the IPM motor parameters. Let kshc be the ratio between the short–
circuit current Ishc and the nominal current IN , that is, Ishc = kshcIN , fixed to a
given value. Assuming the resistance to be zero, it results Ishc = Λm/Ld, so that the
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Figure 4.9: The p.u. brake torque as a function of the p.u. motor speed
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PM flux linkage becomes Λm = kshcLdIN .
The torque and voltage relationships can be arranged as

T =
3
2
p

[
kshc

ξ
sin αe

i +
(

1
ξ
− 1

)
sin 2αe

i

2

]
LqI

2
N

= cτLqI
2
N

(4.17)

and (
V

ω

)2

=

[(
kshc

ξ
+

cos αe
i

ξ

)2

+ (sin αe
i )

2

]
(LqIN )2

= c2
λ (LqIN )2

(4.18)

where αe
i is the vector current angle, determined by imposing the maximum torque–

to–current ratio [1]. Finally, the saliency ratio ξ is supposed to be known according
to the adopted rotor configuration. Since at base operating point T = TB = 1 p.u.,
V = VB = 1 p.u., and ω = ωB = 1 p.u., then (4.17) and (4.18) define a system of two
equations where the two unknowns Lq and IN can be determined as

Lq =
cτ

c2
λ

IN =
cλ

cτ
(4.19)

As an example, Fig. 4.10 shows the reduction of the PM flux linkage Λm as a
function of ξ for different values of the ratio kshc. As expected, Λm increases when
kshc increases (a higher short–circuit current is tolerated). Besides, it can be observed
that the higher the saliency ratio, the lower the PM flux linkage. This implies that
the reluctance torque becomes predominant with respect to the PM torque, with a
slight increase of the nominal current (without considering the saturation).

4.5 IPM design

4.5.1 Performance requirement to each motor

Let us refer to the steer–by–wire system shown in Fig. 4.11 to transform the rotary
movement into linear movement a ball–screw is adopted The ball–screw gear ratio
has been selected to be 5 mm per revolution. Its mechanical efficiency is about 80%.
From the mechanical requirements, the maximum speed of the motor results equal to
3000 rpm (i.e. 314.2 rad/s).

In order to guarantee the peak force, the maximum torque required to the couple
of motors is 10 Nm (including the ball–screw efficiency). Therefore, the maximum
torque of each motor is 5 Nm, with a duty cycle of 8.5%.

The maximum angular acceleration is about 10000 rad/s2 (corresponding to the
acceleration of 8 m/s2). This value is a reasonable value for PM machines [16].
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Figure 4.12: Electric power steering rack highlighting the two motors and the
ballscrew system

In order to guarantee the other operating conditions, each motor has to be satisfy
3.8 Nm at a speed 480 rpm (duty–cycle 60%), and 1.5 Nm at a speed 2400 rpm
(duty–cycle 25%).

4.5.2 Geometrical constraints

A commercial lamination has been selected for the stator. The external diameter was
imposed to be De = 120 mm by the application. The corresponding inner diameter
is D = 70 mm for a 4–pole motor. For this size, commercial laminations are found
with a number of slots Q = 24. As far as the harmonics contents due of the air–gap
M.M.F. distribution is concerned, a different number of slots should be preferred, e.g.
Q = 36.

The air–gap thickness was fixed equal to g = 0.5 mm, and the stack length equals
Lstk = 40 mm. As will be described hereafter, the total length was obtained by means
of two modules, of 20 mm each, skewed of an appropriate angle.

In order to facilitate the experimental tests in the laboratory, the motor was
designed for a voltage higher than 42 V, that is becoming a standard in automotive
applications. The motor winding was designed for a D.C. bus of 300 V.

Due to the high temperature that can occur in the considered application, so that
the temperature rise is low, the current density has to be adequately reduced.

4.5.3 Design considerations

From the required specifications, it is found that the mechanical characteristic of
the IPM motor has a constant–torque region, followed by a constant–power region.
Therefore the IPM motor has to exhibit a flux–weakening capability. Fixing the base
speed equal to 900 rpm, the flux–weakening speed–range is 3.33.

The consideration above, together with that of a low braking torque in case of fault,
yield an IPM motor characterized by a limited amount of PM. As a consequence, the
IPM motor has to be characterized by a high saliency. The solution adopted is an
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IPM rotor with three flux–barriers per pole. With such a rotor configuration, the
estimated saliency ratio approaches ξ = 6.

As regards the maximum braking torque, a value T ∗brk = 0.33 Nm has been fixed.
The number of poles is 2p = 4, the saliency ratio ξ = 6, and then f(ξ) ≈ 5. Since the
air–gap volume is fixed (D = 70 mm, Lstk = 40 mm, and g = 0.5 mm), the maximum
air–gap flux–density (the peak value of the ideally sinusoidally distributed waveform)
results B̂g0 = 0.1 T.

4.5.4 Finite element simulations

A finite element analysis is used to refine the IPM motor design. The IPM motor
configuration that has been chosen is reported in Fig. 4.14 and Fig. 4.13, that reports
the flux plot and the computed flux linkages of the motor.

The computed unsaturated q–axis inductance results Lqu = 0.317 H, while the d–
axis inductance is Ld = 0.055 H. Thus the unsaturated saliency ratio results almost
ξ = 5.7.

Figure 4.13: Finite element analysis of the IPM motor: Structure and flux plot at
no–load
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Figure 4.14: Finite element analysis of the IPM motor: d − q axis flux linkages vs.
currents

4.5.5 Torque ripple minimization

The finite element analysis helped in the research of that IPM motor configuration
suitable to reduce the torque ripple.

At first the rotor length Lstk = 40 mm was split in two modules of 20 mm. These
two modules have been connected to the shaft with a skewing angle to reduce the
torque harmonic of 24–th order. This is shown in Fig. 4.15, showing that the torque
harmonic of 12–th order remains almost the same, that of 24–th order is almost
cancelled, while these of upper order are reduced.

Finally, thanks to the special applications, requiring two motors on the same
shaft, it is possible to skewed one motor with respect to the other, so that the torque
harmonics are 180 degrees out of phase. This is accomplished to the aim to cancel
the torque harmonic of 12–th order. The final effect is shown in the third part of
Fig. 4.15, that refers to the average torque of the combination of the two motors.

Referring to a rated torque of 2.6 Nm, the estimated torque ripple is slightly higher
than 2%.

4.5.6 Measurements on the prototype

At first, the PM flux linkage has been measured at no–load. The IPM motor was ro-
tated at a speed of 1000 rpm, and the back E.M.F. has been measured. By integrating
the back E.M.F. the flux linkages due to the PM are obtained. Fig. 4.16 shows the
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Figure 4.15: Torque harmonics in different motor solutions

measured flux linkages due to the PM.
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Figure 4.16: Measured flux linkages due to the PM

The electromechanical torque has been tested at different d– and q–axis currents.
The dots in Fig. 4.17 refer to the measured torque in the d– q–axis current plane. In
the same Fig. 4.17 the solid line refer to the torque values resulting from the finite
element simulation. The comparison shows a good agreement between measurements
and simulations.
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In order to measure the short–circuit current and the corresponding braking
torque, the three terminals were short–circuited, and the IPM motor was rotated
at different speeds. The three–phase current waveforms are almost sinusoidal, as
shown in Fig. 4.18 according to a motor speed of 1000 rpm.

The short–circuit current and the corresponding braking torque at different motor
speed are reported in Fig. 4.19. With R = 7.3 Ω (according to a temperature rise of
60C), a saliency ratio ξ = 5.7, and a PM flux linkage Λm = 75 mVs, the maximum
braking torque is found from 4.13 to be T ∗brk = 0.25 Nm at the mechanical speed
ω∗ = 43.5 rad/s. The measurements reported in Fig. 4.19 confirm this analytical
result.

4.6 Conclusion

This chapter has presented the whole electrical drive system for a steerbywire ap-
plication, in particular the design hints of the electric motors. The electrical motors
have been designed to exhibit an inherent faulttolerant capability, in order to enhance
driver safety. For critical application, a redundant solution with two motors placed
on the same shaft is imperative. However this is not enough when PM motors are
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Figure 4.18: Measured short–circuit currents
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Figure 4.19: Measured short–circuit current (peak value) and braking torque at dif-
ferent motor speed

used, due to the presence of PMs on the rotor that induce an e.m.f. on the winding.
Thus, in case of fault, a short-circuit current is forced in the stator winding. The
analysis of the three-phase short-circuit fault, considered the worst case, is carried
out. From the computation of the maximum brake torque it is possible to achieve a
suitable relationship to determine the more appropriate parameters of the motor. In
particular, reduced braking torque and torque ripple have been accomplished. The
design was oriented to the application to a commercial car, already mass-produced
with the conventional power assisted steering. All of the technical specifications and
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parameters used in the design and test of the proposed system have derived from a
tight collaboration with the car manufacturer, which will also look after the details
of the final transposition on the vehicle.
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Chapter 5

Motor Design for Electric
Redundancy

This chapter describes experimental results from a permanent magnet machine, which
has been designed with fault tolerance in mind. The main thrust of this contribution
is concerned with demonstrating that the fault-tolerant electromagnetic performance
can be achieved. The machine must be designed so that even with a winding or
switching device short circuit, the fault currents are limited to a level within steady
state thermal limits. Penalties must be considered in terms of machine volume and
power switching device rating, although it is shown that these penalties are not severe.

5.1 Requirements of a fault-tolerant drive

There are many potential faults which can occur in a drive system: inevitably within
this work the range of faults under consideration must be restricted. For example,
a design which is insensitive to the failure of a position transducer would probably
require sensorless operation, which is beyond the scope of this thesis. The principal
electromagnetic faults which may occur within the machine are:

• winding open circuit

• winding short circuit (phase-ground or within a phase)

• winding short circuit at the terminals.

Within the power converter the faults under consideration are:

• power device open circuit

• power device short circuit
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• DC link capacitor failure

The aim is to develop a drive which can continue to operate with any one of these
faults. The first solution is a complete redundant system of two motors and two
inverters as shown in Fig.5.1. This solution increase the fault tolerance of the system
but in case of fault the output rating torque is half of the torque in healthy mode.

Figure 5.1: double motor and double inverter

It has become clear that the most successful design approach involves a multiple
phase drive in which each phase may be regarded as a single module. The operation
of any one module must have minimal impact upon the others, so that in the event
of that module failing the others can continue to operate unaffected.

Fig.5.2 shows the first solution with modular approach where the converters are
commercial three–phase inverter. On the contrary, the motor shows a special winding
with complete electrical, magnetic and thermal isolation between phases. More details
will be shown in chapter 7.

An alternative solution is to adopt a multi–phase motor drive. A five–phase drive
is shown in Fig.5.3. The performance of this system is greater than the previous
solution but it demands a special lamination (see chapter 6) and a five–phase inverter
with five separate modules as will be described in section 5.2.

The modular approach requires that there should be minimal electrical, magnetic
and thermal interaction between phases of the drive. This philosophy must extend to
both the machine and the power converter.

5.1.1 Fault tolerance in permanent magnet machine drive

The requirements outlined in the previous Section naturally fix certain features of the
machine design and drive configuration. These requirements will be considered for a
voltage fed inverter drive.
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Figure 5.2: single motor and double inverter

Complete electrical isolation between phases

This can be shown to be an essential requirement if continued operation is to occur
with either a power device or winding short-circuited. For instance, in a star connected
system the star point may rise to the DC link voltage, so that no net torque capability
remains. The clear alternative is to drive each phase from a separate single-phase
bridge. This doubles the number of power devices but only marginally increases
the total power electronic device volt-ampere rating, because each device need only
withstand the phase voltage rather than the line voltage of star connected systems.

Implicit limiting of fault currents

The most difficult machine fault to accommodate is a winding short-circuit. A power
electronic device short-circuit failure produces a similar condition to a winding termi-
nal short circuit, except that the fault current flows through the converter as well as
the winding. Thus, a phase terminal short-circuit has received particular attention.
The system was designed without any fuses incorporated into the drive, as the re-
liability of fuses is generally poor. This leaves two possibilities for dealing with the
above fault conditions.

• The machine can be deliberately designed with a low per unit inductance, so
that a large fault current flows. Thus, a winding short–circuit fault will result in
a very large winding short-circuit fault current, the faulted winding will overheat
and subsequently produce an open-circuit. Equally a device short circuit will
produce a very large faulted device current, and the subsequent heating will
eventually produce an open-circuit condition.
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Figure 5.3: Five–phase drive

• Alternatively, the machine can be designed with a per unit inductance approach-
ing 1.0 per unit, so that a phase terminal short circuit will not result in steady
state motor currents beyond 1.0 per unit. The thermal limit of the faulted
winding will not be exceeded and the short circuit can be accommodated over
an extended period.
Torque ripple resulting from the short-circuit current in the faulted phase will
inevitably be large unless special measures are employed. The second of the
above approaches provides a more reliable, fault-tolerant solution, as the first
option allows very large per unit fault currents to flow in failed power electronic
devices until they turn open circuit. The faulted device will experience large
thermal stresses, which may lead to disintegration of the packaging and propa-
gation of the fault into surrounding power devices.
Producing an effective d axis inductance of one per unit is generally considered
difficult to achieve in a small permanent magnet machine, but it is shown in a
later section that this can in fact be achieved relatively easily.

Magnetic isolation between phases

Without magnetic isolation, fault currents in one phase induce large voltages in other
phases, preventing adequate control of them. Furthermore, the current flowing in
unfaulted phases supplements the magnet MMF and so increases the EMF driving
fault current.

Thus it becomes clear that for a given unfaulted armature reaction field the single
phase short-circuit fault current is substantially greater when there is mutual coupling
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between phases. A torque controller has been developed to minimize the machine out-
put torque ripple when operating in the faulted condition. The controller identifies
current profiles which produce a given torque demand for minimum Joule loss un-
der both normal and faulted conditions, thus giving closed loop torque control. This
torque control was found to be severely impaired by substantial phase-phase mutual
coupling.

The above results show that both the faulted and unfaulted phases perform sub-
stantially worse when there is mutual coupling between phases, so the machine should
be designed with minimal phase-phase mutual coupling. In surface mounted magnet
designs the airgap flux due to armature reaction is small and a substantial amount of
the phase inductance arises due to cross-slot leakage flux. If this is to remain solely a
self inductance component then each slot should contain the conductors of one phase
only. The component of armature reaction flux which crosses the airgap will always
contain an element which links the other phases.

However, if a surface mounted magnet design with a nonmagnetic retaining sleeve
is employed, then the presence of the sleeve, combined with relatively deep magnets,
greatly reduces the airgap component of the armature reaction field, so that in effect
the mutual coupling is often insignificant.

Effective thermal isolation between phases

If the stator outer surface is well cooled then the dominant temperature rise in the
machine is within each slot. By ensuring that each slot contains only a single phase
winding then thermal interaction between phases is minimized.

Physical isolation between phases

A phase-phase fault is especially serious, since it will disable two phases. By placing
each winding round a single tooth then all phase windings (including the end windings)
are physically separated, thus virtually eliminating the possibility of a phase to phase
fault.

Number of phases

The basic criteria used is that the drive should continue to produce rated power in
the event of the failure of one phase. Hence, if there are n phases, each phase must
be overrated by a fault-tolerant rating factor, F, where F = n/(n - 1). Thus, if there
are three phases, each drive must be overrated by 50% in order to give full capability
when faulted. Clearly, F falls as the number of phases rises, but this must be balanced
against the increasing complexity of a high phase number and the inevitably greater
chance of a failure.
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Summary

With regard to the machine design, the essential conclusions are that the machine
should have (i) a surface mounted magnet rotor design, (ii) a one per-unit armature
self inductance, (iii) each winding wound around a single tooth and (iv) only one
phase winding per slot. The first two conclusions appear to be in conflict because a
surface mounted magnet machine generally has a low per unit reactance. However,
the key to achieving these requirements is to design a machine with a large leakage
inductance by controlling the depth and width of the slot opening, commonly called
the stator reactance slot. In the event of a phase winding short circuit then one half
of the magnet flux which normally passes up one tooth must be shunted across each
reactance slot. To avoid undue saturation the reactance slot depth is designed to
be approximately one half of the tooth width, with the reactance slot width chosen
according to the required inductance.

5.2 The full–bridge vs. half–bridge inverter for five–
phase PM motor

For the sake of limiting the electrical interaction, the phases have to be supplied
separately. To this aim, both the terminals of each phase are brought out to the
motor and each phase is supplied by a full–bridge inverter as shown in Fig. 5.4. The
advantage of this solution is the high partitioning among the phases: the motor drive
can operate even with a short–circuited phase, since it is no longer supplied by the
corresponding bridge of the inverter [17]. As far as the cost of the half– and full–
bridge inverters solutions is concerned, it is convenient to refer to the same output
motor power Pout, so that the motor cost remains the same. In the first solution the
rms phase voltage is

E′ =
Vdc

2
√

2 sin
(

2π

5

) (5.1)

while in the second solution it is
E′′ =

Vdc√
2

(5.2)

As a consequence, according to a lossless system and unity power factor, the rms
current results:

I ′ =
2
√

2 sin (2π/5) Pout

5Vdc
(5.3)

I ′′ =
2
√

2Pout

5Vdc
(5.4)

It results that the Volt–Amps rating (given by the product of rated current by dc
voltage and by the switch numbers) of the full–bridge inverter is about 105% the
Volt–Amps rating of the half–bridge inverter.
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Figure 5.4: 5–phase inverter: half–bridge and full–bridge

5.3 Multi-phase inverter

A multi–phase inverter has been built in Laboratory. For each phase a full–bridge
converter is used, so as to achieve a complete electrical insulation between phases.
In order to avoid the design of the control regulators of the test bench, a hysteresis
current control has been implemented.

The basic principle of current control is based on the classical hysteresis control.
The voltage applied to each phase (see Fig.5.5) is +Vdc/2 (switching on the switches,
S1 and S4), - Vdc/2 (switching on the switches S3 and S2) and 0 volts (switching
on the switches S1 and S2 or S3 and S4).

The commutation frequency depends on phase voltages v and e, the current band
∆I and inductance L. The motor equation is:

u = Ri + L
di

dt
+ e (5.5)

Defining i∗ as the current reference and u∗ the voltage reference, the equation becomes

u∗ = Ri∗ + L
di∗

dt
+ e (5.6)
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Figure 5.5: Full–bridge inverter

Subtracting (5.6) to (5.5) it is

Rδ + L
dδ

dt
= u− u∗ (5.7)

where δi is error signal as shown in Fig.5.6.

δ = i− i∗ (5.8)

Neglecting the resistance, (5.7) becomes

L
∆δ

τp
= u− u∗ (5.9)

The inverter supplies a phase voltage equal to ±Vdc, therefore the rise time and
the descend time can be expressed as

τp =
4L∆I

V dc− u∗
τn =

4L∆I

V dc− u∗
(5.10)

The period is the sum of the rise time and the descend time, therefore the frequency
is

f =
1
T

=
Vdc

(
1− u∗

Vdc

2)

8L∆I
(5.11)

The frequency is a function of the band amplitude ∆I and of the inductance L.
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Michele Dai Prè — Ph.D. Thesis

—– p. 62—–



Chapter 6

Five–Phase PM Motor

This chapter deals with the analysis of five–phase fractional–slot PM motors with
non–overlapped coils, suitable for fault–tolerant applications.

In order to verify the fault–tolerant capability of the motor, some post–fault op-
erations are analyzed. Proper current control strategies can be adopted, so as to
guarantee safe drive operation after fault occurrence. As an example two faults are
considered: one open–circuited phase and one short–circuited phase. Two motors
with two different windings are compared, under each fault type.

6.1 Five–phase PM machines

The five–phase PM motor has been proposed recently for its inherently high fault–
tolerant capability [18,19]: to reduce the fault occurrence, as well as to operate indef-
initely in the presence of fault [3]. In fact, many applications require a fault–tolerant
capability to electrical motor drives, for instance automotive [20] and aeronautic ap-
plications [21].

The electric power in a five–phase motor is divided into more inverter legs, reducing
the current of each switch [17, 22]. In addition, with five independent phases, in the
event of failure of one or more phases, the remaining healthy phases let the motor to
operate properly [23].

Proper current control strategies have been proposed for the post–fault opera-
tions [24], sometimes accepting a few additional (redundant) components. These
control strategies can be successfully adjusted to face the post–fault situation, with a
minimum impact of the fault on torque ripple, noise [25–27] and losses [28].

Two five–phase PM motor prototypes are considered. An example of a five–phase
PM motor with 10 slots and 8 poles is shown in Fig. 6.1. They are characterized by
a double– and a single–layer winding, respectively.
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Figure 6.1: Five–phase 10–slot 8–pole PM motors with double– and single–layer wind-
ing.

6.2 Five–phase motor prototypes

The experimental results described hereafter in this chapter refer to two five–phase
20–slot 18–pole motor prototypes.

Fig. 6.2 and Fig. 6.3 show a double– and single–layer fractional–slot winding with
unity coil throw and their star of slots, respectively.

In the single–layer winding each slot contains only coil sides of the same phase.
This winding type reduces the physical contact between phases [4, 16,29].

Figure 6.2: 5–phase 20–slot 18–pole PM motor: star of slots with double–layer wind-
ing.

A special stator lamination has been used, to get a number of slots Q multiple of
5. The external diameter is 120 mm and the stack length is 50 mm. The first stator is
characterized by a double–layer fractional–slot winding with unity coil throw shown
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Figure 6.3: 5–phase 20–slot 18–pole PM motor: star of slots with single–layer winding.

on the left hand side of Fig. 6.4. The second stator is characterized by a single–layer
winding, as shown in the right hand side of Fig. 6.4. The two windings have been
designed as described in [2].

Figure 6.4: A 5–phase 20–slot stator with double–layer and single–layer winding

The machine with 20 slots and 18 poles yields a machine periodicity t=1. There-
fore, both Q/t and Q/(2t) are even. Both motors exhibit only odd–order harmonics
in the air–gap MMF distribution. However, the single–layer winding is characterized
by a high MMF sub–harmonic, as also shown in Fig. 6.5.

Due to the low machine periodicity (t=1), the sub–harmonic of order ν=1 exists,
as shown in Fig. 6.5. Then, only harmonics of odd order exist. When the double–
layer winding is transformed into a single–layer one, the harmonics remain of the
same order, but their amplitude increases. The winding factor of the main harmonic
(i.e. of order ν=p=9) slightly increases.

In both 20–slot 18–pole motors, the mutual coupling between phases is almost
zero. It is easily recognizable from the distribution of the magnetic scalar potential,
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Figure 6.5: 5–phase 20–slot stator MMF harmonic contents (black bars refers to the
double–layer winding, white bars refers to the single–layer winding)

as in Fig. 6.6.

The PM flux–linkage Λm, the self inductance La, and mutual inductances Mba and
Mca between adjacent and non–adjacent phases respectively, are reported in Table 6.1.
The phase resistance is R = 24.6 Ω at 25oC (R = 32 Ω at 100oC). Nominal current is
Î1=0.85 A (peak value) and the nominal torque Tn is slightly lower than 6 Nm, for
both motors.

When a single phase is supplied by sinusoidal current, in phase with the corre-
sponding back EMF, the torque has an average value and other oscillating terms. The
amplitudes of the first three harmonic terms are used to determine the suitable cur-
rent waveforms in post–fault operations. They are the average torque T1, the second
order term T3 and the fourth order term T5. Their value is reported in the second
part of Table 6.1.

Table 6.1: Flux–linkage, self and mutual inductances, and coefficients Tν of the two
motors under test

motor type double–layer single–layer
Λm (Vs) 0.288 0.292
La (mH) 31.19 47.00
Mba (mH) 0.002 0.005
Mca (mH) 0.011 0.032
T1 (Nm) 2.346 2.373
T3 (Nm) -0.330 -0.364
T5 (Nm) 0.041 0.052
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Figure 6.6: Magnetic scalar potential of the 5–phase 20–slot 18–pole PM motor with
double– and single–layer winding.

6.3 Motor model

Because of the zero mutual inductance between phases, the motor model results par-
ticularly simple. Let us assume also that mutual coupling between phases is zero even
in presence of iron saturation and the motor losses are negligible. This lets the torque
contribution of each phase be considered individually, and then summed to that of
the other phases, as in [29].

The air–gap flux–density distribution due to the PMs can be expressed by means
of the Fourier series expansion. Let us suppose that the rotor position is ϑe

m = 0 at
the time instant t = 0, so that ϑe

m = ωt. Then

B(ϑe
s, t) =

∑

ξ

B̂ξ cos ξ(ϑe
s − ωt) (6.1)

where θe
s is the angular coordinate in the stator reference frame in electrical radians.

Similarly, the conductor density distribution of the mth phase can be described as

nm(ϑe
s) =

∑
ν

n̂dν sin ν

(
ϑe

s − km
2π

5

)
(6.2)
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where n̂dν = 2kwνNs/(πD) is the peak of the νth order harmonic of the conductor
density distribution, the subscript m = a, b, c, d, e and ka = 0, kb = 1, kc = 2, kd = 3,
ke = 4. The mth phase current can be expressed as

im(t) = Înĩm(t) (6.3)

where În is the nominal current peak and ĩm(t) is a dimensionless function that
describes the current behavior vs. time (that is vs. rotor position, since ϑe

m = ωt).
Then, the mth phase electrical loading, given by nm(ϑe

s)im(t), becomes

Km(ϑe
s, t) =

∑
ν

K̂ν sin ν

(
ϑe

s − km
2π

5

)
ĩm(t) (6.4)

where K̂ν = 2kwνNsÎn/(πD). Then the torque produced by the mth phase is given
by

τm(t) = −D2Lstk

4

∫ 2π

0

B(ϑe
s, t)Km(ϑe

s, t)dϑe
s (6.5)

Only harmonics of flux–density and electrical loading of the same order (i.e. ξ = ν)
produce a torque contribution different from zero. After some arrangements, the
torque of the mth phase becomes

τm(t) = −
∑

ν

[π

4
D2LstkB̂νK̂ν

]
sin(νϕm)̃im(t) (6.6)

where ϕm is defined as

ϕm = ωt− km
2π

5
(6.7)

and B̂ν and K̂ν are the peaks of flux–density and electrical loading harmonic of νth
order. The terms within the square bracket in (6.6) are referred to as Tν . These torque
harmonics Tν are obtained by means of finite element analysis. For the predisposed
prototype, the first three terms were T1= 2.346 Nm, T3= –0.330 Nm, and T5= 0.041
Nm at the nominal current Î=0.85 A.

The current functions can be expressed as

ĩm(t) = cos(ϕm + αe
i ) (6.8)

where αe
i is the current phase and ϕm is given in (6.7). Adopting a surface–mounted

PM motor, αe
i is fixed to π/2 (i.e. the stator current is controlled to be along the

q–axis of the synchronous reference frame). Introducing (6.8) into (6.6), it can be
noted that the first addend (ν = 1) of (6.6) consists of a constant term and a term
oscillating at 2ω, the second addendum (ν = 3) consists of two terms oscillating at
2ω and 4ω, and so forth as shown in Fig.6.7. The motor total torque can be written
as

τn(t) = −
∑
m

∑
ν

Tν sin(νϕm)̃im(t) (6.9)
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Figure 6.7: Single–layer winding motor. Torque behavior of only one phase.

where m = a, b, c, d, e.
Finally, the total torque becomes

τn(t) = −
∑
m

∑
ν

Tν sin(νϕm) cos(ϕm + αe
i ) (6.10)

In healthy mode as shown in Fig. 6.8, only torque harmonics of order ν = 1 + 10k
with k = 0,±1,±2, ... (i.e. ν = 1, 9, 11, 19, 21, ...) are different from zero [30].
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Figure 6.8: Single–layer winding motor. Torque behavior in healthy mode operation
(experimental test).

6.4 Strategies for faulty mode current control

The faults that are investigated are the open circuit of one and two phases and the
short–circuit of one phase. The proposed current control strategies are chosen so as
to achieve a smooth and adequately high torque even in presence of one or two faulty
phases. Actually, even if torque amplitude falls down, due to the decreasing number
of active phases, the torque profile is maintained fairly smooth.

The motor drive can satisfactorily operate in the presence of fault with a minimum
torque ripple. Thanks to the analytical approach, the results can be applied to five–
phase motors in a broad power range. Since the current waveforms are sinusoidal or,
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at the most, with a third time–harmonic superimposed, they are easily implemented
in any control unit.

Current control strategies are considered to the aim of enabling a smooth running
after fault. Only fundamental and third time–harmonics of current are considered.
Every control strategy is tied by the null zero–sequence current bond (i.e.

∑
ĩ = 0)

and has to deliver a reasonable average torque. Symbol ĩm(t) is a dimensionless
function that describes the current behavior vs. time (that is vs. rotor position, since
ϑe

m = ωt) and subscript m could be m = a, b, c, d, e.
Purposely, a smooth torque after fault is sought, accepting a decrease in the aver-

age torque. This is not always acceptable: when the application is a compressor or a
pump, it is imperative to maintain the nominal torque and speed after fault [21, 29].
On the contrary, the motor considered in this chapter is a low–speed 18–pole motor.
An overrated post–fault torque is not a stringent requirement, and the after-fault
voltage demand is not a problem.

For each fault, the current control strategy is found by adopting a three–step
procedure:

1. the current phasors are tied to satisfy the bond
∑

ĩ = 0,

2. the second order torque harmonic is cancelled by means of a proper choice of
the current phasor angles of the healthy phases,

3. the fourth order torque harmonic is cancelled including the third time–harmonic
of current (together with a rearrangement of the angle of the fundamental cur-
rent phasors).

6.5 One–phase open–circuit fault

In this section, let us suppose that the a–phase remains continuously open due to a
fault, i.e. ĩa = 0. The resulting torque is obtained by subtracting (6.6) from (6.10),
yielding

τia=0(t) = τr(t)− τa(t)

=
∑

m=b,c,d,e

∑
ν

Tν sin(νϕm) cos(ϕm + αe
i ) (6.11)

where the loss of the a–phase in the series should be noted. Thus

τĩa=0(t) = T1[sin(ϕb) cos(ϕb + αe
i + β) + sin(ϕc) cos(ϕc + αe

i + γ) + ...] +
+T3[sin(3ϕb) cos(ϕb + αe

i + β) + sin(3ϕc) cos(ϕc + αe
i + γ) + ...] +

+T5[sin(5ϕb) cos(ϕb + αe
i + β) + sin(5ϕc) cos(ϕc + αe

i + γ) + ...] + ...

Since one of the five phases is missed and the torque produced by one–phase
contains an average and a pulsating value, thus it is expected a reduction of the
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average torque of about 20% and a peak–to–peak torque ripple of about 40% with
respect to the healthy–mode operation (that is a ripple of 50% referred to the average
torque in faulty–mode operation). Figs. 6.9 and 6.10 shows the torque behavior
during healthy–mode operation (dashed line) and under the open–circuited a–phase
fault without any change of the other currents (dotted line). The simulated average
torque results in 79.5% of the nominal torque (as expected), and the torque ripple is
44% (slightly lower than expected).
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Figure 6.9: Double–layer winding motor. Torque behavior with a–phase open–
circuited.

In case of fault, the a–phase current disappears, and the amplitude and phase of
the other currents are modified, as sketched in Fig. 6.11. The angles β, γ, δ, ε refer
to the phase b, c, d, and e respectively. In the research of the more suitable current
control, some reasonable constraints are fixed:

1. the first one is to maintain the current amplitude equal for each healthy phase;

2. the second one is to maintain the symmetry with respect the fault. This con-
straints the current angles to satisfy

ε = −β

δ = −γ (6.12)

3. the third requirement is that
∑

i = 0, that is, a null zero–sequence current.
Adopting the constraints 1. and 2., this requirement yields a further constraint
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Figure 6.10: Single–layer winding motor. Torque behavior with a–phase open–
circuited.

on the current angles, given by

β + γ =
π

5
(6.13)

The system of the currents becomes

ĩa(t) = 0
ĩb(t) = cos(ϕb + αe

i + β)

ĩc(t) = cos(ϕc + αe
i − β +

π

5
) (6.14)

ĩd(t) = cos(ϕd + αe
i + β − π

5
)

ĩe(t) = cos(ϕe + αe
i − β)

6.5.1 Fundamental harmonic of flux–density

As a first estimation, let us consider only the fundamental harmonic of flux–density
distribution (ξ=1 in (6.1)). In this case the torque (6.11), considering the constraint
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Figure 6.11: Current phasor diagram in case of open–circuited a–phase fault

(6.12), becomes

τ ′
ĩa=0

(t) = T1
2 [sin(2ϕb + αe

i + β) + sin(−αe
i − β) +

sin(2ϕc + αe
i − β + π

5 ) + sin(−αe
i + β − π

5 ) + (6.15)
sin(2ϕd + αe

i + β − π
5 ) + sin(−αe

i − β + π
5 ) +

sin(2ϕe + αe
i − β) + sin(−αe

i + β)]

The condition to obtain a zero torque ripple is to equate the time derivative of
(6.15) to zero, achieving

[
cos

(
β − 4π

5

)
+ cos

(
β +

7π

5

)]
= 0 (6.16)

that is β = π/5± nπ, with n = 0, 1, 2, ... Assuming β = π/5 (36 degrees), thus γ = 0
from (6.13), and δ = 0 and ε = −π

5 from (6.12). In Fig. 6.11(b) the variation of the
current phasors is represented.

Table 6.2: Average torque and ripple

case Tavg(Nm) Tavg/Tn ripple (%)
τnsin 5.863 1 0.69
τia=0 4.669 0.7954 49.75
τa0be36 3.897 0.7235 0.85

6.5.2 Complete flux–density waveform, sinusoidal currents

Unfortunately the effect of the harmonics in the flux–density distribution can not
negligible. The torque is given by (6.12) and, considering the constraints on the
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stator currents, can be rewritten (considering only the first three terms) as

τβ(t) = T1A1(t) + T3B1(t) + T5C1(t) (6.17)

in which

A1(t) = 2 cos
(
β − π

10

)
cos

π

10
+ 2 cos 2 (ϕa + αe

i ) cos
(

β +
3π

10

)
cos

11π

10

B1(t) = 2 cos 2 (ϕa + αe
i ) cos

(
β − π

2

)
cos

13π

10
+ (6.18)

+ 2 cos 4 (ϕa + αe
i ) cos

(
β +

7π

10

)
cos

3π

10
C1(t) = 0

In order to reduce the second harmonic of the torque to zero, from (6.17) and
(6.18), it has to be satisfy

T1 cos
(

β +
3π

10

)
cos

11π

10
+ T3 cos

(
β − π

2

)
cos

13π

10
= 0 (6.19)

that, after some manipulations, yields

tan β =
T1 cos 11π

10 cos 3π
10

T1 cos 11π
10 sin 3π

10 − T3 cos 13π
10

(6.20)

In the case of the motors under test, it has been computed:

β(ds)=0.581 rad (33.27 degrees) in the case of double–layer winding,

β(ss)=0.577 rad (33.04 degrees) in the case of single–layer winding.

Let us observe that the two value are slightly different, and they are also different
from β=π/5 rad (36 degrees) computed above when the higher order harmonic of
flux–density distribution are neglected.

The corresponding torque behaviors are reported in Figs. 6.9 and 6.10 using dot–
dash lines. Although the second harmonic has been reduced to zero, it is worth
noticing that a fourth–harmonic torque remains. Its amplitude is not negligible, the
torque ripple being about 19.5%

6.5.3 Complete flux–density waveform, third time-harmonic
current injection

The means to reduce also the fourth–harmonic torque to zero is to inject a third time–
harmonic of current. However, since this current harmonic produce both a second and
a fourth harmonic in the torque, the fundamental current harmonic has to be modify
consequently.
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The third current harmonic has been chosen in phase with the fundamental cur-
rent, and with an rms value I3. The new system of currents become

ĩa = 0
ĩb = cos(ϕb + αe

i + β) + ι cos 3(ϕb + αe
i3 + β3)

ĩc = cos
(
ϕc + αe

i − β +
π

5

)
+ ι cos 3

(
ϕc + αe

i3 − β3 +
π

5

)
(6.21)

ĩd = cos
(
ϕd + αe

i + β − π

5

)
+ ι cos 3

(
ϕd + αe

i3 + β3 − π

5

)

ĩe = cos(ϕe + αe
i − β) + ι cos 3(ϕe + αe

i3 − β3)

where ι = I3/I1. In the following it is assumed that αe
i3 = αe

i and β3 = β.
The torque can be rewritten as

τβι(t) = T1A1(t) + T3B1(t) + T5C1(t) + ι[T1D1(t) + T3E1(t) + T5F1(t)] (6.22)

where A1(t), B1(t), C1(t) remain as in (6.18), and

D1(t) = 2 cos 2 (ϕa + αe
i ) cos

(
3β3 +

π

10

)
cos

9π

10
+ 2 cos 4 (ϕa + αe

i ) cos
(
3β3 +

π

2

)
cos

π

10

E1(t) = 2 cos
(

3β3 − 3π

10

)
cos

3π

10
+ 2 cos 6 (ϕa + αe

i ) cos
(

β3 +
7π

10

)
cos

3π

10
(6.23)

F1(t) = 0

The two conditions to reduce the second and the fourth torque harmonics to zero
are

T1 cos(β + 3π
10 ) cos 11π

10 + T3 sin β cos 13π
10 + ιT1 cos(3β3 + π

10 ) cos 9π
10 = 0 (6.24)

T3 cos(β + 7π
10 ) cos 3π

10 + ιT1 cos(3β3 + π
2 ) cos π

10 = 0 (6.25)

where the two unknowns are β and ι. The solution of system (6.24) is

β = −3π

10
+ arccos

{
−T3 cos 3π

10

T1 cos π
10

[
sin β +

cos(β + 7π
10 ) cos(3β + π

10 )
sin 3β

]}
(6.26)

and

ι = −T3 cos 3π
10 cos(β + 7π

10 )
T1 cos π

10 cos(3β + π
2 )

(6.27)

In the case of the motors under test, it results

β(ds)=0.551 rad (31.6 degrees) and ι(ds)=0.0806 in the case of double–layer
winding,

β(ss)=0.546 rad (31.3 degrees) and ι(ss)=0.0876 in the case of single–layer wind-
ing.

By feeding the healthy phases using these values for β and ι a smooth torque
is obtain as shown in Figs. 6.9 and 6.10 (solid lines). Although the average torque
is slightly reduced, becoming about 73.5% or the nominal torque, the peak–to–peak
torque ripple remains limited to 2%. The results are reported in Table 6.3.
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Figure 6.12: Current phasors with β = −ε = 31.6o, ι = 0.08 and γ = −δ = 4.4o

Table 6.3: Average torque and torque ripple with different current control strategies
corresponding to Fig.6.9 and Fig.6.10

double–layer
case Tavg(Nm) Tavg/Tn ripple(%)
τn 5.863 1 0.4
τa0 4.669 0.796 44.12
τβ 4.31 0.735 16.67
τβι 4.31 0.735 1.16

single–layer
case Tavg(Nm) Tavg/Tn ripple(%)
τn 5.939 1 0.98
τa0 4.731 0.797 44.26
τβ 4.37 0.736 19.46
τβι 4.366 0.735 2.19
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6.5.4 Experimental results

The current control strategies computed above have been tested adopting a 3–phase
inverter. The coils of e– and c–phase are connected together (with opposite polar-
ity) and similarly the coils of the b–phase and d–phase. The currents are forced as
described above. The measured torque vs. mechanical angle is reported in Fig. 6.13
and Fig. 6.14.

Fig. 6.13(a) and Fig. 6.14(a) show the measured torque behaviors imposing β =
π/5 radians. It is evident a torque ripple higher than 25% and a decrease of the
average torque of 20%, as predicted in the analytical study (see Table 6.3). The
highest torque harmonics are of second and fourth order (i.e. with 18 and 36 periods
per rotor turn). Figs. 6.13(b) and 6.14(b) and Figs. 6.13(c) and 6.14(c) highlight
the favorable effect of the post fault control strategies, proposed above. It is worth
noticing that with this latter current control strategy both torque harmonics of second
and fourth order are strongly reduced.
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Figure 6.13: Double–layer winding motor. Open circuit of one phase: torque be-
haviors measured: (a) β = π/5 radians and ι=0, (b) β=0.581 radians and ι=0, (c)
β=0.551 radians and ι=0.0806. (Experimental tests)
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Figure 6.14: Single–layer winding motor. Open circuit of one phase: torque behaviors
measured: (a) β = π/5 radians and ι=0, (b) β=0.577 radians and ι=0, (c) β=0.546
radians and ι=0.0876. (Experimental tests)

6.6 Two open–circuited non–adjacent phases

6.6.1 Sinusoidal currents

In this subsection, let us consider that the amplitude of the healthy phase current is
equal. The fault implies ĩb = 0 and ĩe = 0, while the other currents can be expressed
as

ĩa = cos(ϕa + αe
i + α)

ĩc = cos(ϕc + αe
i + γ) (6.28)

ĩd = cos(ϕd + αe
i + δ)

where the positive direction of α, γ and δ is the counterclockwise direction.
The constraint of having symmetry with respect to the faulty phase yields

α = 0,

δ = −γ (6.29)
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and the constraint of having
∑

i = 0 yields

γ = 2π/15 rad(24degrees),
δ = −2π/15rad(−24degrees). (6.30)

The resulting system of currents corresponds to the well–known symmetrical
three–phase current system (three phasors of equal amplitude and 2π/3 rad out of
phase). However, only a marginal improvement is carried out as regards the resulting
torque behavior: the average torque reduces to 56.8% of the rated torque torque and
the torque ripple is about 33%.

From that results, it is realized that the imposed constraints are too heavy. The
requirement of equal amplitude of the current of the healthy phase is removed.

6.6.2 Sinusoidal currents, but with different amplitude

The new current system becomes

ĩa = cos(ϕa + αe
i + α)

ĩc = ρ1 cos(ϕc + αe
i + γ) (6.31)

ĩd = ρ1 cos(ϕd + αe
i + δ)

where an equal factor ρ1 has been added to both the currents ic and id, to maintain
the symmetry with respect to the faulty phases. The symmetry yields (6.29), while
the constraint

∑
ĩ = 0 yields

ρ1 =
−1

2 cos(γ − 4π
5 )

(6.32)

Using the current system (6.31), the torque (neglecting the term T5 with respect
to T1 and T3) becomes

τργ(t) = T1A4(t) + T3B4(t) (6.33)

where

A4(t) =
1
2

+ ρ1 cos γ +
[
1
2

+ ρ1 cos
(

γ +
2π

5

)]
cos 2(ϕa + αe

i ) (6.34)

B4(t) =
[
1
2

+ ρ1 cos
(

γ − 2π

5

)]
cos 2(ϕa + αe

i ) + (6.35)

+
[
1
2

+ ρ1 cos
(

γ +
4π

5

)]
cos 4(ϕa + αe

i ) (6.36)

The condition to reduce the second harmonic of the torque to zero is

T1

[
1
2

+ ρ1 cos
(

γ +
2π

5

)]
+ T3

[
1
2

+ ρ1 cos
(

γ − 2π

5

)]
= 0 (6.37)
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from which, together with (6.32), one obtains

tan γ =
(T1 + T3) sin 3π

5 sin π
5

T1 sin 3π
5 cos π

5 + T3 sin π
5 cos 3π

5

(6.38)

In the case of the motors under test, from (6.38) and (6.32), it has been computed:

γ(ds)=0.544 rad (31.15 degrees) and ρ
(ds)
1 =1.287 in case of double–layer winding,

γ(ss)=0.536 rad (30.70 degrees) and ρ
(ss)
1 =1.264 in case of single–layer winding.

The corresponding torque behaviors are reported in Figs. 6.16 and 6.17. Dashed line
refers to the healthy operating condition, dotted line refers to the faulty operating
condition with no modification of the currents: a high second harmonic of the torque
is evident. The dot–dash line refers to the current control strategy just presented: the
second harmonic of the torque is reduced to zero and only a fourth torque harmonic
remains.

It is worth noticing that the currents in the c and d phases result 28.7% higher
than the nominal value (see factor ρ1). This implies that the Joule losses increase of
about 66%, however this is not dangerous since it compensates only partially the loss
of two–phase.

6.6.3 Third time-harmonic current injection

As in the previous case, a third time-harmonic current is injected to the aim of reduce
also the fourth torque harmonic. The system of the healthy currents becomes

ĩa(t) = cos(ϕa + αe
i ) + ι cos 3(ϕa + αe

i3)
ĩc(t) = ρ1 cos(ϕc + αe

i + γ) + ιρ3 cos 3(ϕc + αe
i3 + γ) (6.39)

ĩd(t) = ρ1 cos(ϕd + αe
i − γ) + ιρ3 cos 3(ϕd + αe

i3 − γ)

where factor ρ3 has been introduced for the third harmonic. In addition, αe
i3 = αe

i

and γ3 = γ are fixed. To the aim of satisfying the symmetry (6.29) holds, while of
satisfying the constraint

∑
i = 0 (6.32) and

ρ3 =
−1

2 cos(3γ − 2π
5 )

(6.40)

hold.
The torque can be expressed as

τργι(t) = T1A4(t) + T3B4(t) + ι[T1C4(t) + T3D4(t)] (6.41)
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where the terms A4(t) and B4(t) are given in (6.34), and

C4(t) =
[
1
2

+ ρ3 cos
(

3γ +
2π

5

)]
cos 2(ϕa + αe

i ) + (6.42)

+
[
1
2

+ ρ3 cos
(

3γ +
4π

5

)]
cos 4 (ϕa + αe

i ) (6.43)

D4(t) =
[
1
2

+ ρ3 cos 3γ

]
+

[
1
2

+ ρ3 cos
(

3γ − 4π

5

)]
cos 6 (ϕa + αe

i ) (6.44)

From (6.41) and (6.42), one can reduce the second and the fourth torque harmonics
to zero by setting

T1

[
1
2

+ ρ1 cos
(

γ +
2π

5

)]
+ T3

[
1
2

+ ρ1 cos
(

γ − 2π

5

)]
+

+ιT1

[
1
2

+ ρ3 cos
(

3γ +
2π

5

)]
= 0 (6.45)

T3

[
1
2

+ ρ1 cos
(

γ +
4π

5

)]
+ ι T1

[
1
2

+ ρ3 cos
(

3γ +
4π

5

)]
= 0 (6.46)

that, together with (6.32) and (6.40), form a system of four equations in the unknowns
γ, ι, ρ1 and ρ3. Its solution yields

γ =
π

5
+ arcsin

{
− T3 sin π

5

T1 sin 2π
5

[
sin(γ − 3π

5
)− sin γ sin 3γ

sin(3γ + π
5 )

]}
(6.47)

and

ι = − T3 sin 4π
5 cos(3γ − 2π

5 ) sin γ

T1 sin 3π
5 cos(γ − 4π

5 ) sin(3γ + π
5 )

. (6.48)

and then ρ1 and ρ3 are achieved from (6.32) and (6.40).
In case of the motors under test, it can be computed as

γ(ds)=0.495 rad (28.33 degrees), ι(ds)=-0.108, ρ
(ds)
1 =1.154, and ρ

(ds)
3 =-0.513 in

the case of double–layer winding,

γ(ss)=0.484 rad (27.75 degrees), ι(ss)=-0.112, ρ
(ss)
1 =1.130, and ρ

(ss)
3 =-0.510 in

the case of single–layer winding.

The resulting torque behaviors are shown in Fig. 6.16 and 6.17, while the numerical
results are reported in Table 6.4.
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Figure 6.15: Current phasors with γ=28.33 deg, ρ1=1.154, ρ3=-0.513 and ι=-0.108
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Figure 6.16: Double–layer winding motor. Torque behavior with the non–adjacent b–
and e–phase open circuit fault (Finite element simulation).

6.6.4 Experimental results

The currents are forced in the coils as described above, achieving τργ and τργι. The
measured torques vs. mechanical angle are reported in Fig. 6.18 and Fig. 6.19. As
far as the average value is concerned, both torques τργ and τργι reach the predicted
values (over than 3.7 Nm and over 3.5 Nm respectively for both motors).

The torque ripple is almost as predicted. The torque harmonic of fourth order
(i.e. with 36 periods per rotor turn) is visible in Fig. 6.18(a) and Fig. 6.19(a). It
disappears when the third time–harmonic is adopted, as shown in Fig. 6.18(a) and
Fig. 6.19(b). Although the behavior of the two motors is similar, the lower ripple are
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Figure 6.17: Single–layer winding motor. Torque behavior with the non–adjacent b–
and e–phase open circuit fault (Finite element simulation).

found with single–layer winding motor.
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Table 6.4: Average torque and torque ripple with different current control strategies
corresponding to Fig. 6.16 .

double–layer
case Tavg(Nm) Tavg/Tn ripple(%)
τn 5.863 1 0.40

τb0e0 3.560 0.607 91.21
τργ 3.758 0.641 13.72
τργι 3.569 0.609 1.59

single–layer
case Tavg(Nm) Tavg/Tn ripple(%)
τn 5.939 1 0.98

τb0e0 3.608 0.608 88.77
τργ 3.768 0.634 15.46
τργι 3.578 0.602 3.11
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Figure 6.18: Double–layer winding. Open circuit of two non–adjacent phases: torque
behavior (a) without and (b) with third time–harmonic of current (Experimental
test).
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Figure 6.19: Single–layer winding. Open circuit of two non–adjacent phases: torque
behavior (a) without and (b) with third time–harmonic of current (Experimental
test).
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6.7 Two open–circuited adjacent phases

6.7.1 Sinusoidal currents

In this subsection, let us consider that the amplitude of the healthy phase current is
equal. The fault implies ĩc = 0 and ĩd = 0, while the other currents can be expressed
as

ĩa(t) = cos(ϕa + αe
i + α)

ĩb(t) = cos(ϕb + αe
i + β) (6.49)

ĩe(t) = cos(ϕe + αe
i + ε)

where the positive direction of α, β and ε is the counterclockwise direction, as shown
in Fig. 6.23. The torque becomes

τc0d0(t) = T1[cos2(ϕa + αe
i ) + cos2(ϕb + αe

i ) + cos2(ϕe + αe
i )] +

+ T3[cos(ϕa + αe
i ) cos 3(ϕa + αe

i3) + (6.50)
+ cos(ϕb + αe

i ) cos 3(ϕb + αe
i3) + cos(ϕe + αe

i ) cos 3(ϕe + αe
i3)](6.51)

ε
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a
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Figure 6.20: Current phasor with open–circuited of b and e phases

The symmetry with respect the faulty phases requires

α = 0
ε = −β, (6.52)

while the constraint
∑

i = 0 imposes

β = −4π/15 (−48 degrees)
ε = 4π/15 (48 degrees) (6.53)
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coming back to the result of the symmetrical three–phase current system (three pha-
sors of equal amplitude and 2π/3 rad out of phase). However, as above, the result is
not acceptable: the average torque reduces to about 42% of the rated torque with a
torque ripple higher than 100%. Thus, the constraint of having an equal amplitude
of the current of the healthy phase has to be removed.

6.7.2 Sinusoidal currents, but with different amplitude

The new current system (with ĩc = 0 and ĩd = 0) becomes

ĩa(t) = cos(ϕa + αe
i + α)

ĩb(t) = ρ1 cos(ϕb + αe
i + β) (6.54)

ĩe(t) = ρ1 cos(ϕe + αe
i + ε)

The symmetry with the fault requires to satisfy (6.53) while the
∑

ĩ = 0 yields

ρ1 =
−1

2 cos(β − 2π
5 )

(6.55)

The torque becomes
τρβ(t) = T1A6(t) + T6B6(t) (6.56)

with

A6(t) =
1
2

+ ρ1 cosβ +
[
1
2

+ ρ1 cos
(

β − 4π

5

)]
cos 2(ϕa + αe

i ) (6.57)

B6(t) =
[
1
2

+ ρ1 cos
(

β +
4π

5

)]
cos 2(ϕa + αe

i ) + (6.58)

+
[
1
2

+ ρ1 cos
(

β +
2π

5

)]
cos 4(ϕa + αe

i ) (6.59)

The second torque harmonic is reduced to zero by imposing

T1

[
1
2

+ ρ1 cos
(

γ − 4π

5

)]
+ T3

[
1
2

+ ρ1 cos
(

γ +
4π

5

)]
= 0 (6.60)

that, together with the imposed constraints, yields

tan β =
(T1 + T3) sin π

5 sin 3π
5

T1 sin π
5 cos 3π

5 − T3 sin 3π
5 cos π

5

(6.61)

In the case of the motors under test, it has been computed:

β(ds) = -1.419 rad (-81.31 degrees) and ρ
(ds)
1 = 0.560 in the case of double–layer

winding,

β(ss) = -1.437 rad (-82.34 degrees) and ρ
(ss)
1 = 0.555 in the case of single–layer

winding.

The corresponding torque behaviors is shown in Figs. 6.21 and 6.22 using dot–dash
line. The numerical results are reported in Table 6.5.
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Figure 6.21: Double–layer winding motor. Torque behavior with c– and d–phases
open–circuited.

6.7.3 Third time-harmonic current injection

By introducing the third time-harmonic of the current, the current system becomes

ĩa(t) = cos(ϕa + αe
i ) + ι cos 3(ϕa + αe

i3)
ĩb(t) = ρ1 cos(ϕb + αe

i + β) + ιρ3 cos 3(ϕb + αe
i3 + β3) (6.62)

ĩe(t) = ρ1 cos(ϕe + αe
i − β) + ιρ3 cos 3(ϕe + αe

i3 − β3)

where αe
i3 = αe

i is fixed. Factor ρ3 is chosen with the constraint of having zero–
sequence current equal to zero, which is

ρ3 =
−1

2 cos(3β3 − 6π
5 )

(6.63)

The torque is given by

τρβi3(t) = T1A6(t) + T3B6(t) + ι[T1C6(t) + T3D6(t)] (6.64)

where A6(t) and B6(t) are given in (6.57) and

C6(t) =
[
1
2

+ ρ3 cos
(

3β3 − 4π

5

)]
cos 2(ϕa + αe

i ) +
[
1
2

+ ρ3 cos
(

3β3 +
2π

5

)]
cos 4(ϕa + αe

i )

D6(t) =
[
1
2

+ ρ3 cos 3β3

]
+

[
1
2

+ ρ3 cos
(

3β3 − 2π

5

)]
cos 6(ϕa + αe

i ) (6.65)
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Figure 6.22: Single–layer winding motor. Torque behavior with c– and d–phases
open–circuited.

The conditions to reduce the second and fourth torque harmonic to zero are

T1

[
1
2

+ ρ1 cos
(

β − 4π

5

)]
+ T3

[
1
2

+ ρ1 cos
(

β +
4π

5

)]
+

+ιT1

[
1
2

+ ρ3 cos
(

3β3 − 4π

5

)]
= 0 (6.66)

T3

[
1
2

+ ρ1 cos
(

β +
2π

5

)]
+ ιT1

[
1
2

+ ρ3 cos
(

3β3 +
2π

5

)]
= 0 (6.67)

that, together with (6.55) and (6.63), form a system of four equations in the four
unknown β, ι, ρ1, and ρ3 (with β3 = β).

However, this system does not yield any acceptable solution (there are problems
of instability of the solutions and high value of the currents). From the physical point
of view, effect of the third time–harmonic of the a–phase current tends to decrease
the effects of the third time–harmonic of the c– and d–phase currents, instead of
compensate the torque harmonics due to the loss of the b– and e–phases. To the aim
of obviating this limitation, a third time–harmonic current is supplied only in the c–
and d–phases. To satisfy the constraint

∑
i = 0, this current have equal amplitude (ρ3

will be fixed to unity) and an opposite phase angle. In this case we should distinguish
the angles β for the fundamental current and β3 for the third current harmonic. The
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condition i3b + i3e = 0 yields

cos 3(ϕb + αe
i + β3) + cos 3(ϕe + αe

i − β3) = 0 (6.68)

that is
3β3 +

4π

5
= ±π

2
(6.69)

In the following, it is fixed β3 = π/10.
In the torque equation (6.64), the factor C6(t) and D6(t) have to replaced by

C7(t) = cos
9π

10
cos 2(ϕa + αe

i ) + cos
π

10
cos 4(ϕa + αe

i ) (6.70)

D7(t) = cos
3π

10
+ cos

7π

10
cos 6(ϕa + αe

i )

The conditions to reduce the second and fourth torque harmonic to zero become

T1

[
1
2

+ ρ1 cos
(

γ − 4π

5

)]
+ T3

[
1
2

+ ρ1 cos
(

γ +
4π

5
v

)]
+ ιT1 cos

9π

10
= 0

T3

[
1
2

+ ρ1 cos
(

β +
2π

5

)]
+ ιT1 cos

π

10
= 0(6.71)

Using (6.55), from (6.71) the unknown ι can be expressed as a function of β:

ι = − T3 sin 2π
5 sin β

T1 cos π
10 cos(β − 2π

5 )
(6.72)

and β is computed by an iterative process from

β = −2π

5
− arcsin

{
T3 sin 2π

5

T1 sin π
5

[
sin(β +

π

5
) + sin β

]}
(6.73)

In case of the motors under test, it can be computed as

β(ds)=-1.696 rad (-97.15 degrees), ι(ds)=0.142, and ρ
(ds)
1 =0.509 in the case of

double–layer winding,

β(ss)=-1.742 rad (-99.84 degrees), ι(ss)=0.153, and ρ
(ss)
1 =0.505 in the case of

single–layer winding.

and the corresponding current phasors are shown in Fig. 6.23.
The resulting torque behavior is shown in Figs. 6.21 and 6.22 using solid line. It

is worth noticing that the torque ripple is minimized but the cost is a high reduction
of the average torque. The numerical values are reported in Table 6.5, referring the
ripple to the corresponding average torque.

From these results, one can observe that the effect of the constraint of
∑

i = 0
(a zero–sequence current equal to zero) on the average torque is well evident. The
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average torque collapses. A current control strategy exists able to achieve a smooth
torque behavior. For this purpose, the adoption of a full–bridge converter appears
advantageous. Each phase could be supplied independently and a zero–sequence
current is feasible. The average torque obtained removing this constraint highlights
the opportunity of using a converter that allows a zero–sequence current. A suitable
current control strategy can be found also in this case so as to achieve a smooth
torque (torque ripple about 8%), without a high decrease of average torque (about
58%). However, this falls out the objective of this chapter and will be not dealt with.

a

d

c

ε

β

α

ω

e

b

b

e

3ωa

e

b
ω

Figure 6.23: Current phasors with β=-97 degrees, ι=0.142 and ρ1 = 0.5

Table 6.5: Average torque and torque ripple with different current control strategies
corresponding to Fig. 6.21 and Fig. 6.22.

double–layer
case Tavg(Nm) Tavg/Tn ripple(%)
τn 5.863 1 0.40

τc0d0 3.499 0.597 37.18
τρβ 1.364 0.233 50.88
τρβι 0.999 0.170 7.86

single–layer
case Tavg(Nm) Tavg/Tn ripple(%)
τn 5.939 1 0.98

τc0d0 3.536 0.597 37.45
τρβ 1.359 0.229 55.07
τρβι 0.958 0.161 13.25
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6.7.4 Experimental results

The currents are forced in the coils as described above, achieving τρβ and τρβι3. The
measured torques vs. mechanical angle are reported in Fig. 6.24 and Fig. 6.25. The
estimated decrease of average torque is verified: the average torque is about 1.5 Nm
in both motors (i.e. 25% of nominal torque), when sinusoidal current waveforms are
imposed. The average torques decreases to about 1 Nm (i.e. 17% of nominal torque)
in both motors, when third time–harmonics of current are injected. It is worth to
observe the good agreement with the predicted results reported in Table 6.5.

It can be also observed that a torque harmonic of fourth order (i.e. with 36 periods
per rotor turn) is evident in Fig. 6.24(a) and Fig. 6.25(a). It disappears when the
third time–harmonic is adopted, as shown in Fig. 6.24(b) and Fig. 6.25(b).
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Figure 6.24: Double–layer winding. Open circuit of two adjacent phases: torque
behavior (a) without and (b) with third time–harmonic of current (Experimental
test).
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Figure 6.25: Single–layer winding. Open circuit of two adjacent phases: torque be-
havior (a) without and (b) with third time–harmonic of current (Experimental test).

6.8 Short circuit fault of one phase

In this section, let us suppose that the a–phase is short–circuited. In the computation
of the short–circuit current the mutual inductances can be reasonably neglected with
respect to the self inductances (as verified in the 20–slot 18–pole motor under test). A
limited or null mutual coupling among the phases is essential in fault–tolerant motors:
it has to be avoided that the flux produced by the healthy phases may be coupled by
the short–circuited phase, sustaining the fault. Thus, considering the fundamental
components only, the short–circuit current is computed as

ishc(t) = − ωΛ̂
Zsch

sin(ωt− φshc) (6.74)

where e(t) = ωΛ̂ sin(ωt) is the back EMF, with Λ̂ the flux–linkage due to the PM,
Zshc =

√
R2 + (ωL)2 is the phase impedance formed by the series resistance and

reactance, φshc is the impedance phase (tan φshc = ωL/R). If the resistance R is
negligible with respect to the reactance ωL, the short–circuit current becomes Îshc =
−Λ̂/L. Then, from (6.74) it is evident that each phase of the fault–tolerant motor
has to exhibit a suitably high inductance, so as to limit the short–circuit current.

In order to test the short circuit effect, the terminal of the a–phase have been
short–circuited. The other four coils have been connected two by two, so as a 3–
phase inverter can be adopted.

The short circuit current is lower than nominal current at rotor speeds lower than
100 rpm, while it becomes 1.5 times higher at 200 rpm (nominal speed). It is shown
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in Fig. 6.26(a) and Fig. 6.26(b) with and without healthy phase currents, respectively,
at rotor speed of 43 rpm. From this test it is possible to note that (i) the amplitude
of the short circuit current is limited and (ii) it is the same in the two operating
conditions (due to the negligible mutual coupling between phases).

From Fig. 6.26 the experimented third time–harmonic current is about 14% of the
fundamental one. This confirms the presence of the third time–harmonic of the back
EMF, due to the third space harmonic of air–gap flux density distribution and the
winding factor of third harmonic different from zero.
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Figure 6.26: Measured short circuit current (a) with and (b) without currents in
healthy phases, at rotor speed of 43 rpm.

6.8.1 Sinusoidal currents of different amplitude

The considered system of current functions is

ĩa = ιshc sin(ωt− φshc)
ĩb = (1− κ) cos(φb + αe

i + π
5 + φ)

ĩc = (1 + κ) cos(φc + αe
i − φ)

ĩd = (1− κ) cos(φd + αe
i + φ)

ĩe = (1 + κ) cos(φe + αe
i − π

5 − φ)

(6.75)

where ιshc = Îshc/În is the ratio between short circuit and nominal currents, κ and φ
consider the variation of amplitude and phase of the healthy phase currents. It is also
assumed that ιshc and φshc are known, since they only depend on motor parameters
and operating speed. The system (6.75) implicitly satisfies the constraints of symme-
try with respect to the faulty phase and

∑
ĩ = 0: b– and d–phase currents are chosen
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π radians out of phase, and similarly the c– and e–phase currents. Consequently the
amplitude of the opposite currents are chosen to be equal.

The corresponding torque is computed introducing (6.75) into (6.9). To the aim
of reducing the torque ripple also in faulty mode, the second order torque harmonic
is equated to zero,

Of course ιshc and φshc vary with the frequency. Fig. 6.27 shows the values of φ
and κ as a function of ιshc and φshc.
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Figure 6.27: φ and κ as a function of ιshc and φshc

Assuming ιshc = 1 and φshc=80 degrees, it results φ=–4.83 degrees and κ=0.32.
Fig. 6.28(a) shows the torque behavior with a–phase short circuit fault and current

phasors rotated of δ = γ = 0 and β = −ε = π/5 (see left hand side of Fig. 6.11 for
reference angles) Referring to following subsection, this corresponds to κ=0 and φ=0
in (6.75). Fig. 6.28(b) shows the torque behavior with current phasors computed
according to the proposed strategy, that is, with κ and φ computed from Fig. 6.27 at
the actual motor speed. Thus, the average torque remains the same but the torque
ripple is effectively reduced.
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Figure 6.28: Short circuit of one phase: torque behaviors (a) with κ=0 and φ=0 and
(b) adopting the proposed strategy: κ and φ computed from Fig. 6.27 (Experimental
test).

6.9 Open circuit fault with zero–sequence current
control

The proposed current control strategies are chosen so as to achieve a smooth and
adequately high torque even in presence of one or two faulty phases. Actually, even if
torque amplitude falls down, due to the decreasing number of active phases, the torque
profile is maintained fairly smooth. The motor drive can satisfactorily operate in the
presence of fault with a minimum torque ripple. Thanks to the analytical approach,
the results can be applied to five–phase motors in a broad power range. Since the
current waveforms are sinusoidal or, at the most, with a third time–harmonic super-
imposed, they are easily implemented in any control unit. Current control strategies
are considered to the aim of enabling a smooth running after fault. With a full–bridge
converter as shown in Fig.5.4 fundamental, third time–harmonics and zero–sequence
current (i.e.

∑
i 6= 0) current are considered. Purposely, a smooth torque after

fault is sought, and the maximum average torque. This is possible thanks to the
zero–sequence current.
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6.10 One–phase open circuit fault with zero–sequence
current control

Each healthy phase maintains the same current amplitude. The current symmetry is
maintained by assuming that ε = −β and δ = −γ.
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Figure 6.29: Single–layer winding motor. Torque behavior with a–phase open–
circuited with zero–sequence current (Finite element simulation).

Then, by imposing these currents in the torque equation and equating the second
order harmonic of the torque to zero, the optimal value for β can be found analytically.
It is β = 0.516rad, for the single–layer winding prototype. The corresponding torque
behavior (labeled tβ) is drawn with a dot–dashed line in Fig. 6.29. Although the
second order harmonic has been reduced to zero, a fourth order torque harmonic still
remains. Its amplitude, higher than 15%,is not negligible at all.

In order to reduce also the fourth order torque harmonic to zero, a third time–
harmonic of current is injected. However, since this current harmonic produces a
torque harmonic of both second and fourth order, the fundamental current harmonic
has to be modified consequently. The current control strategies computed above have
been tested adopting a 5-phase full–bridge inverter. The measured torque vs. mechan-
ical angle is reported in Fig.6.30. Fig. 6.30(a) shows the measured torque behaviors
imposing in healthy–mode operation. Fig. 6.30(c) and Fig. 6.30(d) highlight the fa-
vorable effect of the post fault control strategies, proposed above. It is worth noticing
that with this latter current control strategy both torque harmonics of second and
fourth order are strongly reduced as shown in Table 6.6.
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Table 6.6: Average torque and torque ripple with different current control strategies
corresponding to Fig. 6.29 .

single–layer
case Tavg(Nm) Tavg/Tn ripple(%)
τn 5.939 1 0.98
τa0 4.731 0.797 44.26
τβ 4.447 0.749 17.57
τβι 4.476 0.754 2.19

Table 6.7: Average torque and torque ripple with different current control strategies
corresponding to Fig. 6.31 .

single–layer
case Tavg(Nm) Tavg/Tn ripple(%)
τn 5.939 1 0.98

τc0d0 3.607 0.607 88.77
τρβ 3.768 0.634 15.45
τρβι 3.578 0.602 3.10

6.11 Two open–circuited non–adjacent phases with
zero–sequence current control

The choice of the faulty phases is completely arbitrary: b− and e− phases are chosen
for the sake of simplicity. Assuming that healthy phase currents remain unchanged,
the torque behaviors are shown in Fig. 6.31. Dashed line (τn) refers to the healthy
operating condition, dotted line (τb0e0) refers to the faulty operating condition with no
variation of the currents: a high second order torque harmonic is evident. Numerical
values are reported in Table 6.11. The decrease of average torque results about 40%
of the nominal torque τn, as expected due to the loss of two of five phases, while the
torque ripple is about 90% that can not be accepted.

The currents are forced in the coils as described above, achieving τγ and τγι. The
measured torques vs. mechanical angle are reported in Fig.6.32. As far as the average
value is concerned, both torques τγ and τγι reach the predicted values (over than 3.7
Nm and over 3.5 Nm respectively for the single–layer winding). The torque ripple is
almost as predicted. The torque harmonic of fourth order (i.e. with 36 periods per
rotor turn) is visible in Fig. 6.32(b). It disappears when the third time–harmonic is
adopted, as shown in Fig. 6.32(d).
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Figure 6.30: Single–layer winding motor. Open circuit of one phase: torque behaviors
measured: (a) healthy operation mode, (b) β=0 radians and ι=0, (c) β=0.516 radians
and ι=0, (d) β=0.449 radians and ι=0.0867. (Experimental tests)

6.12 Two adjacent open–circuited phase with zero–
sequence current

In this case, the c− and d− phases are considered to be open circuited. Assuming that
healthy phase currents remain unchanged, the resulting torque behaviors are shown in
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Figure 6.31: Single–layer winding motor. Torque behavior with the non–adjacent
b– and e–phase open circuit fault and zero–sequence current control (Finite element
simulation).

Fig. 6.33 using dotted line (τc0d0). The motor performance are reported in Table 6.8.
As above, the decrease of average torque is again about 40% of the nominal torque,
as expected due to the loss of two of five phases. The torque ripple is about 60%, and
the zero–sequence current becomes 1.62 times higher than the nominal current.

The currents are forced in the coils as described above, achieving τβ and τβι. The
measured torques vs. mechanical angle are reported in Fig. 6.33. The estimated
decrease of average torque is verified: the average torque is about 3.1 Nm (i.e. 54%
of nominal torque), when sinusoidal current waveforms are imposed. The average
torques increases to about 3.2 Nm (i.e. 55% of nominal torque), when third time–
harmonics of current are injected. It is worth to observe the good agreement with
the predicted results reported in Table 6.8. It can be also observed that a torque
harmonic of fourth order (i.e. with 36 periods per rotor turn) is evident in Fig.6.34(b).
It disappears when the third time–harmonic is adopted, as shown in Fig.6.34(d).
Comparing the torque behavior with the same fault shown in Fig. 6.25(b) it results
that the injection of the zero sequence of current yields an increase of the mean torque
of almost 3 times.
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Figure 6.32: Single–layer winding. Open circuit of two non–adjacent phases: torque
behavior (a) healthy operation mode, (b) γ=0 radians and ι=0, (c) γ=0.619 radians
and ι=0, (d) γ=0.519 radians and ι=0.122. (Experimental test).
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Figure 6.33: Single–layer winding motor. Torque behavior with the adjacent c– and
d–phase open circuit fault and zero–sequence current control (Finite element simula-
tion).

Table 6.8: Average torque and torque ripple with different current control strategies
corresponding to Fig. 6.33 .

single–layer
case Tavg(Nm) Tavg/Tn ripple(%)
τn 5.939 1 0.98

τc0d0 3.607 0.607 88.77
τρβ 3.124 0.548 13.54
τρβι 3.256 0.548 3.19
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Figure 6.34: Single–layer winding. Open circuit of two adjacent phases: torque be-
havior (a) healthy operation mode, (b) β=0 radians and ι=0, (c) β=0.336 radians
and ι=0, (d) β=0.348 radians and ι=-0.107. (Experimental test).
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Michele Dai Prè — Ph.D. Thesis

6.13 Thermal analysis

This section highlights that the physically separation between the phases increase the
thermal isolation.

In case of one–phase short circuit fault the current in the faulty phase becomes
4-times the nominal current and the Joule losses in the coils produce an increase
of the temperature. The physically separation between the phases reduces the fault
propagation. A thermal analysis with finite element method is carried out as shown
in Fig.6.35. For a good agreement of the simulation and the measure on the real
prototype a special care has to devote to the thermal resistance, in particular it is
very important the air layer between stator and case with a width equal to 0.1 mm.
The machine losses considered in the thermal analysis are the winding losses PCu, the
back iron losses Pbi, the teeth losses Pt. The thermal resistances consider the radial
heat transmission in the shaft Rsh, the yoke Ryoke, the PM Rpm, the airgap Rgap,the
tooth Rt, the insulating lining Rins, the copper into the slot RCu, the back iron Rbi,
the case Rcase and, at last, the air layer Rair.

As regard the motor components conductivity, a radial section of the motor is
considered for the thermal analysis. The materials conductivities considered in the
radial analysis are reported in Table 6.9.

Table 6.9: Materials conductivity for radial analysis [W=mK]

MATERIAL SYMBOL (W/mK)
Insulating lining λins 0.15

Equivalent V arnish λCu−var 0.771
Iron λFe 83

Aluminium λAl 220
Air λair 0.026

Airgap λgap 0.097
Permanent magnet λpm 9

Shaft λsh 70

Fig.6.35 shows a thermal analysis with FEM and it shows the increase of the
temperature only in the slot with the faulty phase. Therefore the machine can operate
with a short circuit fault indefinitely and with 80% of nominal torque as shown in
section 6.8.
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Figure 6.35: Thermal analysis in case of short-circuit fault

6.14 Conclusions

In post–fault operations, optimal current amplitudes and current phases are only
slightly modified with respect to the healthy conditions. Sinusoidal currents are re-
quired or, at the most, with an additional third time–harmonic term.

It has been shown that the currents that have to be supplied in a five–phase PM
motor in presence of an open–circuit fault can be computed analytically. Simulations
and experimental tests confirmed that a smooth torque with a reasonably high average
value can be obtained. The experimental tests also verified the advantageous effect of
the introduction of the third time–harmonic of current on the torque ripple reduction.

It has been also verified that the current control strategies can be applied to
five–phase PM motor with both double–layer and single–layer winding. When cor-
rectly supplied, both motors exhibit a smooth and high torque, even in faulty–mode
operation.

Current amplitudes remain almost the same as in healthy–mode operation, with
a maximum overrating of 30%. Thus, the current reaction (which is higher in single–
layer winding motor) has a marginal effect on motor performance.
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Chapter 7

The 12–slot 10-pole PM
Motor

This chapter deals with the analysis of three–phase fractional–slot PM motors with
12-slots and 10-poles and non–overlapped coils. It is suitable for fault–tolerant appli-
cations.

In order to verify the fault–tolerant capability of the motor, some motor parameter
are measured. Two motors with two different windings are compared: double– and
single–layer respectively.

7.1 Three–phase PM machines

The three–phase PM motor with fractional slot winding has been proposed for its
inherently high fault–tolerant capability to reduce the fault occurrence, as well as
to operate indefinitely in the presence of fault. In fact, many applications require a
fault–tolerant capability to electrical motor drives, for instance automotive [20] and
aeronautic applications [21].

The electric power in a three–phase motor is divided into two inverters, reducing
the power of each inverter. In addition, with two independent inverters, in the event
of failure of one inverter, the remaining inverter let the motor to operate properly.

Two PM motor prototypes are considered.

They are characterized by a double– and a single–layer winding, respectively as
shown in Fig. 7.1 and their star of slots (Fig.7.2) are useful for calculation of several
coefficient, as explained in section 2.3.
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Figure 7.1: Three–phase 12–slot 10–pole PM motors with double– and single–layer
winding

Figure 7.2: Three–phase 12–slot 10–pole machine: double– and single–layer star of
slots

7.2 Prototypes used in experimental tests

Two 12–slot 10–pole prototype has been realized. Fig. 7.3 shows the 10–pole rotor
with surface–mounted PMs and Fig. 7.4 shows the two stators: with double– and
single–layer winding respectively. Finally, Fig. 7.5 shows a particular of the single–
layer winding. The physical separation between the phases is evident.

Figure 7.3: Ten–pole rotor used in the machine prototype
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Figure 7.4: The two stators used in the prototype

Figure 7.5: Particular of the single–layer winding
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Michele Dai Prè — Ph.D. Thesis

7.3 Torque ripple

A key advantage of the PM motors with fractional–slot winding is their low torque
ripple. The measured torques versus position of the two motor prototypes are reported
in Figs. 7.6 to 7.8. Fig. 7.6 shows the cogging torque, of course the same for the two
motors. The cogging torque is quite low, even though it results slightly higher than
predicted. This is probably due to a minor dissymmetry of the rotor.

Fig. 7.7 shows the torque at the nominal current of the motor with the double–
layer winding, and Fig. 7.8 shows the torque at the nominal current of the motor with
the single–layer winding. It is worth noticing that the peak to peak torque ripple is
quite low, with a higher value (about 9%) when the single–layer winding is adopted.
This is due to the higher MMF harmonic contents. The same ripple has be also found
in [10].

However, the unbalanced radial forces, which cause magnetic noise, have not to
be left out, as also observed in [8, 31, 32]. Minimum unbalanced radial forces occur
adopting solutions with t even and/or Q/t even (or Q/(2t) even in case of single–layer
winding).
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Figure 7.6: Cogging torque versus rotor position (experimental test)
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Figure 7.7: Torque versus rotor position at nominal current with the double–layer
winding (experimental test).
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Figure 7.8: Torque versus rotor position at nominal current with the single–layer
winding (experimental test).

7.4 Presence of MMF harmonics and their order

The machine with 12 slots and 10 poles yields t=1, Q/t and Q/(2t) even. Due to
the low machine periodicity (t=1), the sub–harmonic of order ν=1 exists, as shown
in the upper part of Fig. 7.9. Then, only harmonics of odd order exist (i.e. ν=5, 7,
11, 13, ...). When the double–layer winding is transformed into a single–layer one,
the harmonics remain the same order, but their harmonic amplitude increases. The
winding factor of the main harmonic (i.e. of order ν=p=5) slightly increases.
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Figure 7.9: MMF harmonic contents of 12–slot 10–pole motor (black bars refer to
double–layer winding, white bars refer to single–layer winding)

7.4.1 Measurement of subharmonic EMF

For the sake of experimenting the presence of subharmonic and its different value when
a double– and a single–layer winding is adopted, a 2–pole rotor has been introduced
into the two stators. Since the winding factor of order one (i.e. corresponding to two
poles) is not zero for both of them, a EMF is induced in the windings. Its waveform
is shown in Fig. 7.10. The EMF induced in the single–layer winding is more than
three times higher than the EMF induced in the double–layer winding, verifying the
prediction reported in Fig. 2.7(a).
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Figure 7.10: Back EMF induced in the stator single– and double–layer windings by a
2–pole rotor (experimental test).

7.4.2 Measurement of EMF and torque

In order to verify the increase of winding factor, the back EMF has been measured
in both windings. The same 10–pole rotor of Fig. 7.3 has been used for the test of
the two stators. The measured back EMFs are reported in Fig. 7.11. Actually, they
have the same waveform, while the amplitude of the single–layer winding is slightly
higher. Theoretically an amplitude 3.5 % higher is expected, equal to the ratio of the
winding factors.

A further confirmation is given by the torque vs. current characteristic. The
torque at different stator currents has been measured, as reported in Fig. 7.12. Actu-
ally, the two motors shown the same characteristic. It is worth noticing that the motor
with single–layer winding exhibits a higher torque at nominal current (about 2 A).
However, it is mainly affected by the iron saturation: when the current increases, the
torque of the single–layer winding motor becomes lower than the torque of the other
motor (see the torque at current higher than 5.5 A).
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Figure 7.11: Back EMF induced in the two stator windings by the 10–pole rotor
(experimental test).
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Figure 7.12: Torque versus current with double–layer (dashed line) and single–layer
(solid line) windings

7.5 Mutual inductance equal to zero

If the fractional–slot winding has to be designed for fault–tolerant applications a
common requirement is that the mutual coupling among the phases is zero, i.e. M=0.
This is to avoid the interaction between the healthy and the faulty phases.

To this purpose, windings with non–overlapped coils (i.e. with a unity coil throw
yq = 1) are firstly adopted.

Secondly, the winding of each phase can be split in couples of coils producing
rectangular–shaped MMF distributions of opposite sign. The positive contribution of
one coil is compensated by the negative contribution of the other coil. Therefore the
resulting MMF distribution is zero in any point not embraced by these two coils. An
example is shown in Fig. 7.13 that reports the armature MMF distribution due to
only one phase of a 12–slot 10–pole machine. The MMF is different from zero only
in correspondence of the supplied coils.

7.5.1 General rule to achieve M=0

A general rule can be found to achieve a winding with no coupling among the phases.
The mutual inductance M results to be zero when Q/t is even with a double–layer
winding, and when Q/(2t) is even with a single–layer winding. This general result is
also reported in Table 2.1.
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The examples mentioned above belong to this group. They can be located in the
Table 2.1. In fact all of them have yq=1 and Q/t even. In the case of single–layer
winding, they show Q/(2t) even so as M=0 as well.

Figure 7.13: Armature MMF distribution of a 12–slot 10–pole (with M = 0) and of
a 12–slot 8–pole motor (with M 6= 0) RIFARE

7.5.2 Measurement of mutual coupling among the phases

In order to verify the absence of mutual coupling among the phases, the coils of one
phase have been supplied by an alternating voltage and the voltage induced in the
coils of the adjacent phase has been measured. The measured voltages are reported
in Fig. 7.14 for the double–layer winding and in Fig. 7.15 for the single–layer winding.
As expected, the induced voltage is zero for both windings.
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Figure 7.14: Measured voltages: in the supplied phase and in the adjacent open–
circuited phase (double–layer winding)
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Figure 7.15: Measured voltages: in the supplied phase and in the adjacent open–
circuited phase (single–layer winding)

7.6 Double inverter

For increasing the fault-tolerance of the drive two inverters supply the motor. This
choice increases the price of the system but in case of fault of one inverter as shown in
Fig.7.16, the motor can operate even in case of fault. The winding changes as shown
in Fig.7.17, but the symmetry of the machine is guaranteed, therefore no radial force
appears.
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Figure 7.16: Fault–tolerant scheme: two 3-phase inverter and the 12 slot 10 pole
motor

Figure 7.17: 12 slot 10 pole motor: healthy and faulty solution

Fig.7.18 shows the torque vs. angular position in healthy mode operation. The
mean torque is 2.4 Nm. When the fault appears the mean torque is halved and it
remains quite flat as shown in Fig.7.19
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Figure 7.18: 12 slot 10 pole motor: healthy solution
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Figure 7.19: 12 slot 10 pole motor: faulty solution

7.7 Conclusions

This chapter would claim to be a valid help for the choice of the more suitable combi-
nation of slots and pole of a synchronous fractional–slot machine with non–overlapped
coils. Several issues have been considered, among them the double– and single–layer
winding, the MMF harmonic order, the zero mutual coupling among the phases, the
peak magnetic potential due to the stator currents, and so on. Some reference ta-
bles are reported, summarizing the key performance of the fractional–slot motors.
The suggestions of the tables are commented in the chapter and verified by means of
examples and measures.
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Part III

Design concepts of a wave
generator
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Chapter 8

Wave Generator

This chapter reports the results of my activity during the period spent at ABB Cor-
porate Research, and my contribution to the EU project: Sustainable Economically
Efficient Wave Energy Converter (SEEWEC). My physical duty was the analysis and
design of the innovative electrical generator.

New concepts for the direct conversion of the movement of a vertical heaving buoy
point absorber to electricity are presented in this chapter. The low loss direct con-
version and generation system without intermediate hydraulic system permits hereto
unprecedented speed and force control flexibility of the buoy movement.

This chapter develops and studies concepts where the guide system of the buoy
is mechanically directly connected to the electrical generator. This can be either a
linear generator or a rotating generator with a gear mechanism. The energy conversion
from the resulting buoy forces and buoy speed is direct into electrical energy without
intermediate system. This approach is referred to as direct generation, or direct drive,
since the power electronic converter connected to the generator needs actively to
control speed and forces at all instances of time while following respectively damping
the incoming waves.

Three solutions are compared: an induction generator with a rack-pinion linear
to rotary motion conversion and a step-up gear, a high pole application specific per-
manent magnet (PM) generator with a belt-pulley linear to rotary conversion, and a
linear PM generator mounted directly on the guide of the buoy. The linear genera-
tor is the least robust and most challenging in design, while the induction generator
solution is found best due to its cost and maintenance advantages. The PM rotating
generator solution shows the highest efficiency.

A 1:5 scaled test system using this direct conversion was installed at shore in real
sea waves. Experimentally measured energy capture widths for wave-to-electricity in
the range of 25% are reported.
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Michele Dai Prè — Ph.D. Thesis

8.1 Description of power take-off (PTO) systems

The attempt to convert of water wave energy into electrical energy has a long history
and a vast plurality of technical approaches. One of the basic concepts is using point
absorbers, whereby the movement of the buoy is converted into useful energy. In the
present day 1:5 scaled model Fig. 8.1, five buoys are connected via a guide rod to a
hydraulic pump, pipe and control system, all mounted on a platform. The hydraulic
pressure is intended to turn a fixed speed generator that could be connected towards
the grid directly.

Figure 8.1: Buldra wave energy converter test platform (1:5 model) with hydraulic
PTO

Figure 8.2: Envisioned 1:1 prototype with 21 buoys and new energy conversion system

The guide system of the buoy is mechanically directly connected to the electrical
generator (linear or rotating) without intermediate system. The power electronic
converter connected to the generator needs actively to control speed and forces at all
instances of time while following respectively damping the incoming waves.
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Currently only the heaving motion (z-direction movement) is utilized. The 1:1
prototype (Fig. 8.2) is then to be equipped with a large number (presumably 21)
of heaving buoys 8 with the most favorable PTO system. The main subsystems
necessary for such a complete wave farm and the basic technical solutions for the
direct generation system are discussed in the next sections.

8.2 Wave Farm system with direct drive PTO

To establish a common terminology and clarify the system environment and the spe-
cific sub-systems in this chapter, Fig. 8.3 shows the key components of an entire wave
farm with direct drive energy take-off.

Figure 8.3: Complete Wave energy Farm Systems and sub-systems overview

The key system components are:
a) Plant control: The functions implemented here are for example related to the

waves climate, the grid demand, the farm operation, the main platform and platform
protection functions, operational status, land communication, etc. Only marginally
addressed at this stage in this report.

b) Higher control loops: Power Flow, Energy optimization through maximum
power tracking or dynamic (slow) model tuning. These functions may also include,
high wave protection, and grid protection/interaction functions.

c) Lower control loops: These loops control the generator forces or torques, the
buoy position, the guide speed, the mechanical accelerations, etc. Probably executed
in the 1kHz to several kHz range for dynamic response reasons and are usually in-
cluded in the electronics and software of the converter.

d) Buoy (or egg) point absorber.
e) Mechanical system to transport the energy from the buoy to the generator; this

may include a gear that can include a mechanical transformation from a linear move-
ment to a bi-directional or unidirectional rotating movement. This system may also
include brakes or end-stops or other mechanical components only indirectly related
to the actual conversion principle (but very relevant for survivability)

—– p. 123—–



Michele Dai Prè — Ph.D. Thesis

f) Electrical generator: Linear or rotating, utilizing various known electrical ma-
chine concepts.

g) Power electronic Converter on the generator side converter: This is the drive
converter that controls the power take out from the buoy movement. It implements
a generator control (PWM, Vector control, DTC ) similar in flexibility to a robotic
or other highly dynamic drive. The power electronics converts a variable voltage,
variable current, variable frequency to DC power

h) Line side converter: This converter transforms the DC voltage to a AC voltage
of fixed frequency (same as the grid). Many functions related to the grid, (reactive
control, voltage support, voltage sag rid-through control, protections ) are imple-
mented here. Not discussed in this report.

8.3 Direct electric power conversion

Direct conversion was in the past avoided due to the overrating of the system compared
to the average energy. One well known control principle with a claimed maximization
of the energy take out from the wave would require a peak power handling of typically
factor 4− 7 above the (RMS) rating of the system.

As it can be implemented in hydraulics where power flow smoothing is available
much cheaper than after conversion to electricity, direct drive was avoided. Further,
power electronic systems and their control techniques as used e.g. in robots may not
have been available or sufficiently robust in the past. The direct drive system, how-
ever, allows eliminating the entire hydraulic system, and the associated comparatively
low efficiencies and control complexity.

Active fully dynamic control of the generator force used to extract energy from the
buoy movement is expected to open new ways to optimize the energy absorbed from
the waves. It becomes possible to apply nearly arbitrary control concepts with any of
speed, force, and position conditions on the buoy system simply by software choices.
This is expected to improve the primary efficiency observed in practice significantly.

At this point, this primary energy take out from the wave i.e. from the wave
energy to the buoy energy is still by far the dominating loss. The power electronics is
fully rated, i.e. the fully electric energy from the generator flows through the drive and
line side converter. While each generator requires it own drive converter to have full
control of the primary power take out, a group of buoys or even a full platform requires
only one line side converter. The drive converter supplies the variable frequency,
voltage and current necessary to produce the desired generating force on the guide
and buoy. The power electronic drive hardware is identical, for unidirectional or for
bidirectional operation. This eliminates the need for a gear transforming the linear up
and down movement to a unidirectional rotating movement, and opens the flexibility
to use much further developed rotating generators rather than necessitating a linear
electric generators.

The line side converter converts the DC power to fixed frequency grid power.
This system, with one line converter and multiple drive converters is rather common
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in industrial multi-axis applications such as robots or material handling equipment.
Even axis control is very comparable to buoy control. As side remark is mentioned,
that further research will need to investigate if and under which conditions one drive
converter could control several buoy/generator units to further improve the economics
of the wave farm.

This work aims to optimize the size of the generator and the converter of the
described system only. However, that approach is based on an innovative but rather
complicated counter-rotating electromagnetic arrangement to achieve unidirectional
rotation only. No mention of force control, power take out optimization, dimensioning
optimization, or efficiency is made.

8.4 Contrasting options of the linear and rotating
generators

The last section established that the power electronic converters are identical fully-
rated units for most generator approaches and that one converter for each buoy and
generator is needed. Both unidirectional and bidirectional rotation or linear up and
down movement are very similar handled in this direct drive concept. Of course the
mechanical system, the system inertias, and other details do alter the concepts and
exact ratings of converter and generator, the power extraction efficiency, etc., and
each has its specific advantages.

The key advantage of constructing a specialized linear generator as sketch in Fig.
8.4 is that no mechanical conversion to rotating movement is needed and thereby
eliminates gears and the associated efficiencies. However, a linear generator does
require rather exact bearings and has high requirements on the mechanical stability.
No bending moments are permitted, as otherwise the carefully chosen air gap of the
generator cannot be maintained. Furthermore, the nature of the system and size of
the selected buoys leads to rather high forces and low or even very low speeds during
certain ranges of the wave operating cycle. Such linear generators do not exist on the
commercial markets.

The dominant disadvantage of rotating direct generation as sketch in Fig. 8.5 is
the need for a mechanical gear. The purpose of this gear is to transform the linear
up and down movement of the buoy and guide into rotating motion. A number of
options to achieve this are discussed in Section 8.8. This gear is an extra component
and introduces cost and (a small) power loss. However, it may implement protection
functions that handle the end-stop and other overload issues relevant for survivability.
It also allows the use of well established technologies for the electric generator such as
the robust induction generator manufactured in high volumes. The basic generator
efficiency may also be higher for rotating generators driven by a gear due to more
fortunate speed and force ratios. The dimensioning of two rotating generators options
potentially suitable for this system are discussed in Sections 4.2.4 and 4.2.6 and the
resulting systems in Section 5.4 and 5.6.
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Figure 8.4: Linear generator

Figure 8.5: Rotating generator

Hence, at this early state of development, it is not possible to decouple the devel-
opment of this level of control from the design of the generator and the preliminary
power efficiency calculations. Two schematic structures are shown in Fig.8.4 and
Fig.8.5 and is at that level identical for linear and rotating generator.

In summary, the hardware concept with buoy/guide, linear generator, alternative
gear and rotating generator, and a fully rated converter for each buoy have been
outlined as new power conversion concept for the new platform (Fig. 8.2). The
crucial and iterative nature of researching for appropriate control as basic necessity
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to learn about and establish the rating and operating conditions of this subsystem
are established.

8.5 Requirements and operating conditions of PTO
system

The preliminary simulation of the described power take-off, has even after the taken
simplifications, probably in excess of many dozens parameters relevant for the system
optimization efficiency of the power take-off. To avoid this impenetrable problem,
more narrow specifications for the exact conditions for which the system is calculated
are made in this chapter.

The buoy parameters, the wave parameters, the model approach, and the wave
climate are all defined and restricted to as few cases as possible. Likewise, it is de-
cided which few of the many possible mechanical and generator technological ideas
from Chapter 4 are further investigated for the complete optimization and dimen-
sioning. While this restricts the range and number of parameters significantly, the
approach still allows pointing out possible areas, where different choices should have
been made, or where another combination would have allowed further knowledge.
The chosen approach was to gather these observations in the section for future work,
so refinement for the chosen concepts can be made before the final report on this
deliverable. These restrictions resulted in essentially one specific buoy, a dimension-
ing procedure for only 3representative waves, with one additional irregular wave as
benchmark, one generalized algorithm of control but leaving some of the parameter
space open, and only 3 chosen technology combinations for gear and generator. The
converter technology was not varied as this is considered mature technology in this
context.

8.6 The buoy

In a complete optimization the buoy plays one of the most crucial roles in the en-
tire system. Primary are the mass/ weight, the buoyancy as controlled by the outer
geometric shape some examples are shown in Fig.8.6, the free degrees of motion and
limitations on the stroke length, and the shape determining the buoy water interac-
tion. Candidate buoys were those optimized and calculated in an anther project. For
the modeling of the PTO for the dimensioning of the electrical equipment, simplifying
assumptions regarding the buoy shape can safely be made.

The buoys characteristic are reported in Tab. 8.6.
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Figure 8.6: Defined buoy shapes for this work

Table 8.1: Buoys Characteristic

Buoys Dimension
Diameter 4.5 m
Total Height 1.389 m
Mass 3000 kg
Free height above static waterline 1.2 m
Max stroke length 5 m
Volume 22.08 m3

Static draft 0.189 m
Free buoyancy force 18723 N

8.7 The wave

Real waves feature rather complex traces versus time. While good statistical defin-
itions exist essentially the entire literature reverts to regular waves (see Tab. 8.2),
calculates under regular (linearized) motion assumptions. However, not only are irreg-
ular waves challenging to analyze, even statistically recreated wave amplitudes versus
time at the absorber location are to difficult to track in a first step of the design and
dimensioning of the PTO.

First, there is the Design Wave, whereby we have in mind to maximize the power
efficiency and optimize the system at this wave condition. There is Minimal Wave,
which represents the point in the wave climate where energy still is to be extracted.
At lower waves than this, it is possible to turn-off the plant. There is also the Maximal
Wave. At this point energy shall still be extracted, but the extraction efficiency does
not need to be at the highest anymore. Rather conditions stemming from survivability
aspects start to become relevant. At waves higher than the maximal wave, the plant
is allowed to turn off and go to a save mode where no energy at all is extracted.
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Table 8.2: Sinusoidal waves

Wave Peak to Peak Amplitude Wave Period
Design wave (optimal efficiency) 1.94 m 6.25 s
Minimal Wave for power take–off 0.88 m 4.75 s
Maximal Wave for power take–off 3.36 m 7.75 s

8.8 The mechanical converter

For extracting energy from the wave of the sea, there are two methods: the first one is
to use a linear generator and the second one is to use a rotating generator. The rotary
solution needs a system to transform the linear movement into rotating movement.
So, the first step is to look at several mechanical solutions for changing the linear
movement in rotating movement.This section explains the mechanics system, the key
equations of the system and the pros and cons.

8.8.1 The rack and pinion mechanism

A rack and pinion set-up is a pair of gears which convert rotational motion into
linear motion. The circular pinion engages teeth on a flat bar - the rack. Rotational
motion applied to the pinion will cause the rack to move to the side, up to the limit
of its travel. The rack and pinion arrangement is commonly found in the steering
mechanism of cars or other wheeled, steered vehicles. This arrangement provides a
lesser mechanical advantage than other mechanisms such as recirculating ball, but
much less backlash and greater feedback, or steering ”feel”. The scheme of Fig. 8.7
shows one solution in where the buoy produces a linear movement of the rack. The
pinion transforms the linear movement into rotating movement, and the radius of the
pinion fixes the torque and the speed of the generator.

The system is controlled fron the equations 8.1. explains the

T − rF = Iθ̈
F = mẍ

(8.1)

where:
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T is the input torque applied on the pinion
F is the reaction force at the contact point between rack and pinion
I is the rotational inertia of the pinion along the z-axis
r is the pitch radius of the pinion
m is the mass of the rack
θ is the rotation angle of the pinion
x is the translational displacement of the rack
θ̈ is the angular acceleration of the pinion
ẍ is the linear acceleration of the rack

Figure 8.7: The rack and pinion mechanism: scheme and commercial solution

8.8.2 The ball-screw mechanism

A ball screw is a mechanical device for translating rotational motion to linear motion
and vice versa. A threaded shaft provides a spiral raceway for ball bearings which
act as a precision screw as shown in Fig.8.8(b). As well as being able to apply or
withstand high thrust loads they can do so with minimum internal friction. They are
made to close tolerances and are therefore suitable for use in situations in which high
precision is necessary.

The ball assembly acts as the nut while the threaded shaft is the screw. While
reducing friction, ball screws can operate with some preload, effectively eliminating
backlash (slop) between input (rotation) and output (linear motion). This feature is
essential when they are used in computer-controlled motion-control systems, e.g. CNC
(computer numerical control) machine tools. To maintain their inherent accuracy and
ensure long life, great care is needed to avoid contamination with dirt and abrasive
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particles. This may be achieved by using rubber or leather bellows to completely or
partially enclose the working surfaces. Another solution is to use a positive pressure
of filtered air when they are used in a semi-sealed or open enclosure. Low friction
in ball screws yields high mechanical efficiency compared to other alternatives. A
typical ball screw may be 90% efficient. The higher cost of ball screws may thus be
offset by lower power requirements for the same net performance. Due to their low
internal friction, ball screws can be back-driven. Ball screw shafts may be fabricated
by rolling, yielding a less precise, but inexpensive and mechanically efficient product.
Rolled ball screws have a positional precision of several thousandths of an inch per
foot. High-precision types are ground, and are typically precise to one thousandth
of an inch per foot or better. Fig. 8.8 shows an example of the linear into rotating
converter, the buoy pushes the screw and the nut with the rotor of the motor rotating.
The effort of this solution is the small size of the system, on the other hand the cost
the ball-screw yields less interesting this solution.

(a) (b)

Figure 8.8: Mechanic scheme of the ball-screw system

The ball-screw system is reversible but with different efficiency when the mech-
anism transform the rotating movement into linear movement and vice versa. The
ball-screw is characterized by the dimensions of the screw and the lead, when these
two parameters are set the torque can be computed with the 8.2.
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Michele Dai Prè — Ph.D. Thesis

η =
1

1 +
Kd0

Ph

η′ = 2− 1
η

The dimensions of the ball–screw are determined thanks 8.2

T =
FPh

2000ηπ
(8.2)

where:

K is the ball screw constant ( 0.0180.02)
d0 is the nominal screw diameter
Ph is the lead
η is the direct efficiency
η′ is the mass of the rack
θ is the indirect efficiency
F is the linear force
T is the torque

8.8.3 The piston-crankshaft mechanism

A crank is a bent portion of an axle, or shaft, or an arm keyed at right angles to the
end of a shaft, by which motion is imparted to or received from it. It is also used
to change circular into reciprocating motion, or reciprocating into circular motion.
Familiar examples of a crank for manual use include the crank on a manual pencil
sharpener and the crankset that drives a bicycle via the pedals. Fig. 8.9 shows the
functioning modalities of the system. Equations 8.3 explains the system movement.
The maximum length of the system need to correspond to the maximum length of the
wave. This system is able to have a complete rotation only with the maximum wave
but with the other waves the rotation is not complete. In the following, the equations
for determining the length of the component are reported.

C = −M cosα + B sin β

β =
M sinα

B
T = FM

(8.3)

8.8.4 The belt-pulleys mechanism

Belts are used to mechanically link two or more rotating items. They may be used as
a source of motion, to transmit power at up to 98% efficiency between two points, or
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Figure 8.9: Piston system

to track relative movement. As a source of motion, a conveyor belt is one application
where the belt is adapted to continually carry a load between two points. A belt may
also be looped between two points so that the direction of rotation is reversed at the
other point. Fig. 8.10 shows the mechanism that transform the linear to rotating
movement; the belt is fixed to the buoys shaft and it transmits all the force. The
equations of the system are the same as for the other solutions as shown in 8.4, where
F is the force of the buoy, T the torque of the generator and r the radius of the wheel
that transmits the torque to the generator.

Figure 8.10: Belt system
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T = Fr (8.4)

To choose the proper belt solution for the considered application, a short de-
scription of the different belt system is provided. Power transmission is achieved
by specially designed belts and pulleys. The demands on a belt drive transmission
system are large and this has led to many variants.

• The earliest was the flat belt, used with line shafting. It is a simple system of
power transmission that was well suited to its time in history. The flat belt
also tends to slip on the pulley face when heavy loads are applied. In practice,
such belts were often given a half-twist before joining, so that wear was evenly
distributed on both sides of the belt.

• Round belts are a circular cross section belt designed to run in a pulley with a
circular groove. They are for use in low torque situations and may be purchased
in various lengths or cut to length and joined, either by a staple, gluing or
welding.

• Vee belts are an early solution that solved the slippage and alignment problem.
The ”V” shape of the belt tracks in a mating groove in the pulley, with the
result that the belt cannot slip off. The belt also tends to wedge into the groove
as the load increases, the greater the load, the greater the wedging, action
improving torque transmission and making the vee belt an effective solution.
The belts can be supplied at various fixed lengths or as a segmented section,
where the segments are linked to form a belt of the required length. For high-
power requirements, two or more vee belts can be joined side-by-side in an
arrangement called a multi-V, running on matching multi-groove sheaves.

• Timing belts (also known as Toothed, Notch or Cog) belts can track relative
movement. These belts have teeth that fit into a matching toothed pulley.
When correctly tensioned, they have no slippage and are often used to transfer
direct motion for indexing or timing purposes.

Belts normally transmit power only on the tension side of the loop. However, designs
for continuously variable transmissions exist that use belts that are a series of solid
metal blocks, linked together as in a chain, transmitting power on the compression
side of the loop.

Pros and cons of this solution are:

• elasticity: the robustness increases but the demand upon control of the system
becomes more complicate;

• cheaper solution: the cost for the entire system is cheaper than the other solu-
tions;

• maintenance is cheaper: the simple system means cheaper maintenance.
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8.8.5 The friction wheel system

Fig. 8.11 shows a simple solution where two rubber wheels are pressed on the buoy
shaft that transform the linear movement of the buoys into rotating movement. The
movement is guaranteed to the friction of the rubber of the wheel on the shaft.

Figure 8.11: The friction wheel system

This solution has several problems. Rolling friction is the resistance that occurs
when a tire rolls as shown in Fig. 8.12(a). It is much smaller than sliding friction. It
is caused by the deformation of the wheel or tire or the deformation of the shaft. It
depends very much on the material of the tire and the sort of shaft. It is classified
under static friction because the patch of the tire in contact with the shaft, at any
point, while the tire spins, is stationary relative to the ground. It is due to the
different pressure of the wheel on the shaft and it is proportional to the speed of the
wheel.

In addition, little slip occurs near the contact zone of the tire that increases the
losses of the system.

Another problem is the maximum force applied to the system. When the force in-
creases more than the maximum force value the wheel slips and the friction coefficient
changes as shown in 8.12(b). The wear and tear of the tire need also considered.

8.8.6 The gear reduction mechanism

A gearbox is a system of gears that transmits mechanical power from a prime mover
such as an engine or electric motor to some form of useful output device, usually, at a
reduced rate of angular speed but at a higher shaft torque. Generally, transmissions
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(a) (b)

Figure 8.12: Rolling friction and friction factor

will provide a significant speed-power conversion known as gear reduction (in speed
or torque) to a higher torque or speed. Two example of gear reduction are shown in
Fig.8.13 and Fig.8.14.

Figure 8.13: Gear reduction

8.8.7 Summary of gear options

In signs Table 8.7, a comparison between the above discussed solutions is made. The
number of + increases with favorability.

8.9 The generator solutions

The generator design is aimed at having the physical dimensions and the performance
parameter of the generator like the efficiency. The constant parameters are the nomi-
nal torque and the nominal speed for the thermal design, and the maximum force for
the magnetic design. Different generator solution are presented. The first approach
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Figure 8.14: Epicyclic gearing

Table 8.3: Summary of gear options

Solutions Efficiency Weight Control Cost
Rack and pinion 0.96 ++ ++++ +++

Ball-screw 0.90 ++++ ++ +
Piston-crankshaft 0.95 + +++ +++

Belt-pulley 0.96 +++ + ++++
Friction wheel 0.95 +++ + ++++

is to consider possibilities that are close to the wind generator concepts. This means
that both gear and gearless solutions are considered.

8.9.1 The induction machine

The first solution is the induction generator (see Fig. 8.15) due to its robustness and
its cost. However, the efficiency and the power factor are less than a PM motor. An
optimization analysis is needed for choosing the best dimension of the generator for
this application.

For designing the generator the application imposes several constrains: the motor
can operate in flux weakening and the inertia of the system must be as less as possible.
The design of the generator respects the input data ( torque and speed) and several
constrains. The typical parameters of the induction machine are reported in Table 8.4

A constrain of the wave generator is to operate with high speed and low force
but also with low speed and high force, therefore the efficiency of the generator is not
constant and Fig. 8.16 shows the map of the efficiency for different working point. The
system is sensitive to inertia, so an optimization is necessary. The nominal frequency
of the system and the power take off from the buoy is fixed. If the number of pole pairs
increases the angular speed decreases as shown by 8.7, but the torque increases as
shown by 8.8 and for each angular speed a suitable gear ratio is adopted. In addition
the inertia of the rotor is proportional to the rotor diameter which depends upon the
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Figure 8.15: Induction generator

Table 8.4: Typical Induction Generator parameter

Typical Data Value
Ks 30000 A/m
V 400 V

BgM 0.8 T
J 6 A/mm2

hc 6
kfill 0.4
η 0.90

torque.
P = Tω (8.5)

Pgen = Tωη (8.6)

ω =
2πf

p
(8.7)

T ∝ p (8.8)

Ti = Iω̇ (8.9)
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Figure 8.16: Measured voltages: in the supplied phase and in the adjacent open–
circuited phase (single–layer winding)

8.9.2 The linear PM generator

The linear PM (see Fig. 8.17) generator is the most challenging solution being a
non-mature variant compared to the commercial products. Even though it doesnt
require a mechanical transducer and gear reduction, the robustness of the generator
structure is a very serious issue. A PM generator is chosen because the power density
and the efficiency are bigger than the other solutions. A tubular structure is investi-
gated because a flat structure shows severe problems with structure stability. For this

Figure 8.17: Linear PM generator

application an axial flux generator is chosen because it is the only relatively mature
solution with a few industrial applications. The other PM configuration, the transver-
sal flux generator has a low power factor and a more mechanically weak structure and
is thus not considered.

For designing the linear generator the typical parameters are assumed stated be-
low. For reducing the design dimensions the water cooling is adopted. So the para-
meters change as shown below:

Draw backs of linear generator are:
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Table 8.5: Buoys Characteristic

Typical Data Value
Ks 30000 A/m
V 400 V

BgM 0.8 T
J 6 A/mm2

hc 6
kfill 0.4
η 0.93

Water Cooling
Ks 60000 A/m
J 12 A/mm2

• the dimensions of the generator are quite big in comparison to the rotating gen-
erator because the dimensioning depends only upon the force. In the discussed
application, the force is high but the speed is low therefore this results in a lower
power to volume ratio.

• A section of either the stator or the translator of a linear machine is always
inactive as shown in Fig. 8.18.

• There is a magnetic discontinuity both in the stator and in the translator,
which reduces power transfer capability of end poles. The back iron and the
poles requires a higher amount for reducing the saturation.

Figure 8.18: Linear machine definitions
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8.9.3 The low speed PM generator

The low speed PM generator isnt a standard solution, but it is cheaper than traditional
PM and it is a fault-tolerant solution. The high pole motor can be a fractional-slot
winding motor with modular teeth. The weight of this generator is high because
it produces high torque but with low speed. The cost for building the generator is
decreased due to the modular structure. As regards the fault-tolerant capability, this
generator allows the reduction of the possibility of the fault. The phases are physically
separated, the mutual inductance is very low and the short circuit current is less than
the traditional solutions.

Figure 8.19: The low speed PM generator (SPM)

The flux-weakening capability is a constrain of this application so the surface
mounted generator (see Fig. 8.19) is not suitable for this application. A single-layer
winding with internal PM is proposed as shown in Fig. 8.20.

Fig. 8.21 shows the efficiency map of the generator for different working point.
The wave generator is sensitive of the inertia and this solution shows an high

inertia due to the high number of poles therefore a low speed with high torque.

8.9.4 Summary

In Table 8.7, a comparison between the above discussed solutions is made. The
number of + signs increases with favorability.
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Table 8.6: Buoys Characteristic

Typical Data Value
Ks 30000 A/m
V 400 V

BgM 0.8 T
J 6 A/mm2

hc 6
kfill 0.4
η 0.95

Figure 8.20: The low speed PM generator (IPM)

From Table 8.7 it can be seen, that the induction machine is the best compromise
for the discussed application. It has the lowest weight, is very cheap and quite robust.
Unfortunately, the efficiency is less than the other solutions, and a slightly bigger
converter may be required.
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Figure 8.21: Efficiency map of the PM generator

Table 8.7: Summary of gear options

Solutions Efficiency Weight Dimension Robustness Cost
Generator of the converter
Induction 0.90 ++++ ++ ++++ ++++

Linear 0.93 ++ ++ + +
PMHP 0.95 + +++ ++ ++

8.10 Concept System

The different generator solution possibilities are mentioned but only the more ap-
plicable solutions are discussed in details. Three solution are proposes:

• induction generator with two step gear and standard components, see Fig. 8.22;
This solution is the cheapest solution because it uses standard components. In
order to minimize the generator dimensions and the torque inertia a 2 pole pairs
generator is used. The mechanical transducer is a rack and pinion plus a gear
box.

Figure 8.22: Standard components solution
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• linear PM generator, gear less, see Fig. 8.23; This solution is a true direct drive
solution because it has no mechanical transformation of the movement. The
buoy produces a big force and the speed of the system is low, so the power is
the same as that of the previous solution but the dimensions of the generator
are increased.

Figure 8.23: linear PM generator solution

• low speed generator with single step gear, see Fig. 8.24. This solution is a mix
of the previous solutions, it needs only a mechanical converter from linear into
rotating movement then it characterized to low speed and high dimensions.

Figure 8.24: Low speed generator

The generator parameter and performance are reported in Tables 8.8, 8.9 and 8.10.
As regard the maximum energy extraction , the tables highlight that the best solution
is the low speed PM generator. Its efficiency and its cos ϕ allows to choose an inverter
with lower V A rating than the other solution. On the other hand the low speed of
the generator involves that the dimension of the generator are greater than the other
solutions.Therefore the first realistic solution is the induction generator due to its
robustness and costs.

Table 8.8: Generator performance

Generator Power Speed η cos ϕ In Tn/Fn Tmax/Tn

(kW ) (A) Fmax/Fn

Induction 37 1475 rpm 0.93 0.85 68 240 Nm 3.1
Linear PM 32 0.475 m/s 0.93 0.68 69 67 N 3

Low speed PM 32 49.2 rpm 0.95 0.9 52 6077 N 3
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Table 8.9: Mechanical parameters of the generator

Generator Inertia Whight Dest Lest

(kgm2) (kg) (mm) (mm)
Induction 0.32 216 386 698
Linear PM / 825 220 2480

Low speed PM 96 1538 1186 334

Table 8.10: Inverter characteristic

Generator Power Vn In Weight
(kV A) (V ) (A) (kg)

Induction 90 380− 480 180 69
Linear PM 110 380− 480 180 69

Low speed PM 75 380− 480 180 69

8.11 Conclusion

This chapter would claim a comparison among several solution for an innovative and
efficient wave energy converter. Different mechanical converters and generator have
been compared. The innovative aspects and the innumerable unknown problems of
this application impose to chose a commercial solution. Therefore a commercial IM
motor and inverter will be adopted on the 1:1 prototype (Fig. 8.2).
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Nicola Bianchi, Michele Dai Pré, Giorgio Grezzani, and Silverio Bolognani,
”Design considerations on fractional-slot fault-tolerant synchronous motors”,
in IEEE Trans. on Industry Applications, Vol. 42, No. 4, July-August 2006,
pp. 997-1006.

3. Nicola Bianchi, Diego Bon, and Michele Dai Pré, ”Investigation of fault-tolerant
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tolerant IPM motor for electric power steering” in Proc. of IEEE Power Elec-
tronics Specialist Conference, PESC’05, Recife, Brazil, 13-16 June 2005, pp.2873-
2880.

republished as

Nicola Bianchi, Silverio Bolognani and Michele Dai Pré, ”Design of a fault-
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