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Abstract (English)

Toxoplasma gondii is a zoonotic parasite with a wide diffusion, a high human seroprevalence 

and the potential for causing severe harm when infection occurs in at-risk individuals such as 

pregnant women, HIV-positive individuals, recipients of organ transplants or other 

immunocompromised subjects. The consumption of contaminated food is estimated to account 

for about half of all infections worldwide, with variations across years and countries. Among 

food, meat is of high concern, as it is consumed in large amounts, not always well cooked, by a 

large part of the population. 

The aim of the present project was to gain insight into the role of food as a source of human 

toxoplasmosis. The first step in this path was to assess the prevalence of T. gondii in livestock 

species commonly used as sources of meat for human consumption. To obtain relevant 

scientific evidence, a double-sided approach was applied. Firstly, a systematic review of all 

published studies dealing with the direct detection of T. gondii in meat belonging to relevant 

livestock species was carried out. This work allowed the estimation of the worldwide T. gondii 

prevalence in each species (cattle, pigs and sheep), and also the evaluation of differences due 

to the geographical origins and to the laboratory methods applied for diagnostic purposes. Two 

species were selected for a biomolecular investigation of prevalence at local level: cattle and 

pigs. Different reasons supported the choice to focus on these species, such as the wide 

consumption, the inconsistent epidemiological evidence (cattle) or the primary importance as a

source of meatborne toxoplasmosis (pigs). Samples were collected from retail or ready to retail 

processing stages.

To support the outcomes of different activities, both from the systematic review and from 

experimental results, the best available epidemiological evidence about the role of different 

food consumption habits in human infection was systematically collected. 

Finally, a quantitative risk assessment model was built, thanks to all the previously collected 

information, to estimate the yearly probability of infection due to bovine meat and pork 

consumption, in Italy.

The investigations carried out within the present research project allowed us to conclude that T.

gondii prevalence in meat animals worldwide, as well as in Europe and Italy, is not negligible. 

Sheep meat displayed the highest prevalence rate, followed by pork and beef. However, our 

survey confirmed that meat preparation habits make beef a relevant risk factor for T. gondii 

infection in humans, as confirmed by the epidemiological evidence from the literature. In 

addition, the model allowed us to observe that, In Italy, bovine meat contributes more to the 

annual toxoplasmosis incidence than does pork.

 



Abstract (Italian)

Toxoplasma gondii è un parassita di interesse zoonosico con una notevole diffusione su scala 

mondiale, un’elevata sieroprevalenza nell’uomo ed è in grado di causare sintomatologia grave 

in soggetti a rischio come le donne in gravidanza e tutti i soggetti immunocompromessi. Si 

stima che il consumo di alimenti contaminati sia responsabile di circa la metà dei casi totali di 

infezione nell’uomo, con alcune differenze tra paesi. La carne, in particolare, è di notevole 

interesse epidemiologico in quanto viene consumata in grandi quantità dalla maggior parte 

della popolazione e non sempre viene cotta adeguatamente prima del consumo. L’obiettivo di 

questo progetto era quello di approfondire le conoscenze circa il ruolo degli alimenti come 

causa di toxoplasmosi umana tenendo in considerazione l’intera filiera alimentare. 

Il primo passo è stato quello di stimare la prevalenza di T. gondii negli animali da reddito più 

comunemente utilizzati per la produzione di carne utilizzando un duplice approccio. In primis, 

sono stati sistematicamente raccolti gli studi pubblicati nella letteratura scientifica e 

riguardanti la ricerca di T. gondii nella carne di specie animali da reddito comunemente 

consumate. Questi studi hanno consentito di ottenere una stima di prevalenza per ogni specie 

selezionata (bovini, maiali e pecore) e di valutare le differenze dovute alla diversa origine 

geografica e al metodo diagnostico applicato. Successivamente sono state selezionate due 

specie (bovini, maiali) per un’indagine molecolare in grado di stimare la prevalenza su carni 

locali. Le specie sono state selezionate per ragioni diverse: la grande diffusione del loro 

consumo, evidenze epidemiologiche contrastanti (bovini), o il ruolo epidemiologico riconosciuto

nella trasmissione di T. gondii (maiali). I campioni analizzati erano tutti idonei alla vendita. Per 

sostenere i risultati ottenuti dalle diverse attività di questo progetto, sia sul fronte della sintesi 

delle ricerche già pubblicate sia per quanto riguarda le attività sperimentali, una seconda 

systematic review è stata realizzata. In questo caso sono stati raccolti tutti gli studi 

epidemiologici (caso-controllo) pubblicati, indirizzati all’identificazione degli alimenti 

responsabili delle infezioni alimentare da T. gondii. Infine, è stato realizzato un modello di 

valutazione del rischio quantitativo, in grado di considerare tutti i dati e le evidenze 

precedentemente ottenute, con l’obiettivo di stimare la probabilità annua di contrarre 

toxoplasmosi a seguito del consumo di carne bovina o suina, in Italia.

Le analisi effettuate nel contesto di questo progetto di ricerca consentono di concludere che la 

prevalenza di T. gondii in specie animali comunemente consumate, nel mondo e in Europa, non

è trascurabile. La carne di pecora ha la prevalenza più elevata, seguita dalla carne suina e 

bovina. Tuttavia l’abitudine di consumare la carne bovina cruda o poco cotta aumenta il rischio 

derivante da essa. Tale osservazione è confermata dagli studi epidemiologici ottenuti con la 

ricerca sistematica della letteratura cosi come dal modello statistico realizzato, che identifica il 

consumo di carne bovina come più probabile causa di toxoplasmosi nella popolazione italiana 

rispetto al consumo di carne suina.
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1. Introduction

Toxoplasma gondii is a zoonotic coccidian parasite with a striking diffusion across species and 

countries. Its evolutionary success made scientists define it as one of the more polyxenous 

parasites (Flegr, 2013; Tenter et al., 2000). T. gondii is able to infect nearly any nucleated cell 

in any warm-blooded animal (Harker et al., 2013). Seroprevalence in the human population, 

despite its decrease over time, is still remarkably high, being up to 30%, on average (Flegr, 

2013).

In most aspects, T. gondii seems to be almost the ideal parasite thanks to set of features 

making it extremely widespread and highly prevalent:

-it does not affect host survival, at least in the short term;

-it can infect almost all warm blooded animals;

-it can be transmitted between different hosts in different ways (horizontally and vertically);

-it has three infective forms (sporozoites, tachyzoites, bradyzoites);

-it can rely both on the sexual and asexual life cycle for transmission.

Most of these features, and in particular the asymptomatic infection that the parasite triggers 

in the majority of subjects, probably explain why the fight against T. gondii has never been a 

priority for the food risk manager. In some cases, symptoms can be manifested but the real 

danger is for pregnant women and immunocompromised individuals. As regards the latent 

infection, it seems to cause no worries among practitioners and infected people despite the 

fact that the consequences of the cysts’ presence in human tissues are largely unknown.

1.1 History of T. gondii research

One hundred years ago, the French physiologist Charles Richet (1850-1925), later awarded the 

Nobel Prize for physiology thanks to his research on anaphylaxis, decided to commercialize a 

new product, at the boundary between food and drugs: Zomine.

Figure 1: Zomine  Advertisement 

Zomine was an industrial lyophilized raw meat juice that, according to Richet, was necessary to

widen the application of zoomotherapy. This therapy, based on the daily consumption of large
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amounts of raw meat juice,  was firstly used in experiments on dogs and subsequently,  on

humans. According to Richet, zoomotherapy was able to heal tuberculosis, or at least to halt

the development of the disease. Despite several attempts, Richet was never able to prove the

efficacy of the therapy, while remaining strongly convinced of its benefits. On the other hand,

most  peers  attributed the  health  restoration  to  the  nutritional  benefits  delivered from the

protein-rich diet supplied to the treated patients  (Lowy, 2010). Efficient or not, in the 1960s,

the therapy was still being applied to children hospitalised in the pulmonary tuberculosis unit of

Brevanne Hospital in Paris. In this hospital, the history of zomine crossed paths with the history

of toxoplasmosis.

Toxoplasmosis is a disease caused by the protozoan T. gondii, first isolated in 1908 from 

Ctenodactilus gondii, and so called because of its curved shape. Even as late as 1937, T. gondii 

was not fully recognized as a human pathogen (Anonymous, 1937).

The first recorded case of human toxoplasmosis dates back to 1928, the existence of tissue 

cysts as the persistent parasite stage within tissues was unknown until 1928 and the potential 

for vertical transmission in humans was disclosed only in 1942. 

In the fifties, the possibility of transmission through meat consumption had been hypothesized 

and from 1960, it was clear that the high seroprevalence of T. gondii in humans could hardly be

explained by a single transmission route.  

The theory of foodborne transmission to humans, already recognized for animals, was 

supported by the following data, as described by Desmonts and colleagues:

- T. gondii had been isolated from pork, mutton and beef (Jacobs et al., 1960), and its diffusion 

in animals was supported by seroprevalence data;

- the parasite’s virulence was preserved after treatment with pepsin in chloride media and with 

trypsin, and thus, was unaffected by gastric digestion (Jacobs et al., 1960);

- animals became infected after ingestion of cysts (Desmonts et al., 1965).

However, the final proof of meat’s involvement in human infection was obtained only when 

research about toxoplasmosis met zoomotherapy. Desmonts and colleagues (1965) noticed a 

higher seroprevalence in children hospitalised at Brevanne than in the general French 

population. This finding was thought to be linked to the special diet supplied to these children. 

From six months of age onward, the diet at the hospital was based on a high frequency of raw 

meat consumption (horse, beef and meat juice) in line with Richet’s beliefs. To better 

investigate this first observation, Desmonts and colleagues, starting from the belief that 

toxoplasmosis was a benign infection, decided to increase the daily intake of raw meat, 

supplying additional portions of raw mutton to a group of child patients. As a result, a 

corresponding increase in the infection rate was observed (Desmonts et al., 1965). Other 

relevant milestones in the study of T. gondii biology were the 1970 descriptions of the 

protozoan’s sexual reproduction in the small intestine of cats (Dubey et al., 1970; Frenkel et al.,

1970) , with the recognition of the centrality of felines’ epidemiological role. In the 90s, the 

largest outbreak of acute toxoplasmosis in humans (100 cases) due to municipal drinking water

was described. 
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Year Event Reference

1908 Description of T. gondii merozoites in Ctenodactilus 
gondii

(Nicolle and Manceaux, 1909)

1909 Introduction of the genus Toxoplasma (Nicolle and Manceaux, 1909)

1923 First recorded case of toxoplasmosis in humans, in an 
11-month-old infant

1928 First description of a tissue cyst as a persistent stage (Levaditi et al., 1928)

1942 Vertical transmission recognized in humans (Paige et al., 1942)

1954-56 Hypothesis about meat’s role in T. gondii transmission

1965 Epidemiological evidence of transmission to humans 
through undercooked meat

(Desmonts et al., 1965)

1970 Description of the sexual phase of the life cycle in the 
small intestine of cats

(Dubey et al., 1970; Frenkel et 
al., 1970; Hutchison et al., 
1970)

1969-72 1969-72 Recognition of epidemiological role of cats (Munday, 1972; Wallace, 1969)

1995-99 Largest recorded outbreak of toxoplasmosis due to 
water consumption

(Bowie et al., 1997)

2005 T. gondii genome annotated (Khan et al., 2005)

2010 Development of a Magnetic Capture RealTime PCR 
method for T. gondii detection

(Opsteegh et al., 2010)

Table 1: milestones in Toxoplasma gondii research, from the first isolation to recent years

1.2 Biology

T. gondii is a ubiquitous parasite with an extremely complex life cycle. Definitive hosts are 

members of the family Felidae, whereas almost all warm blooded animals can be intermediate 

hosts of the parasite (Tenter et al., 2000).

In intermediate hosts, T. gondii can complete its asexual life cycle where tachyzoites are able to

actively penetrate in nucleated cells and to establish a non-fusogenic vacuole where it 

multiplies, originating in two offspring (endodiogeny). After that, tachyzoites enter the 

bloodstream, disseminate to other tissues and form cysts. During this phase, a strong 

inflammatory response takes place with the potential to control the infection and reduce 

parasite burden. In tissue cysts, tachyzoites differentiate to bradyzoites, another T. gondii 

developmental stage, which multiply slowly, increasing the dimension and the parasite content 

of the cysts up to 500/1000 parasites and setting up the chronic infection. These cysts can 

persist for the entire life of the host and are mainly located in brain, eye, skeletal and cardiac 

muscles. During strong immunosuppression events, cysts can break down and potentiate other 

tissue invasions during the host life (Harker et al., 2015).

In the definitive host, the parasite can behave in the same way as in intermediate hosts, but in 

addition to endodyogeny, it can also carry out endopolygeny in intestinal cells, a reproductive 

process characterized by the genesis of several parasites in a single event. 

In addition to endopolygeny, the other peculiarity of the life cycle in the definitive host is the 

sexual propagation that initiates after gamete formation. The sexual reproduction produces 

millions of oocysts in the intestinal lumen, which are subsequently delivered into the 

environment through faeces and are able to cause huge environmental contamination with the 

potential for infecting other hosts.

According to the previously described life cycle, there are three infectious stages in the T. 

gondii life cycle: 
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-sporozoites, included in oocysts delivered into the environment by cat faeces. Oocysts become

infective after a few days of maturation and can be horizontally transmitted through the 

ingestion of contaminated matrices (e.g. water, soil, vegetables);

-bradyzoites, contained in tissue cysts and able to be transmitted horizontally by ingestion of 

meat from infected animals;

-tachyzoites, available in body fluids during acute infection or during reactivation of latent 

infections and able to be transmitted vertically during gestation or through milk during 

lactation.

Figure 2: Toxoplasma gondii life cycle

1.2.1 Evolution and phylogenesis

The scientific knowledge about T. gondii is quite recent, as previously described, but the history

of this protozoan is far more ancient. It has been argued that T. gondii evolutionary success is 

linked to the acquisition of the ability to circumvent sexual reproduction and to rely on oral 

transmission between intermediate hosts. This ability not only differentiate T. gondii from its 

closely related parasites, such as Neospora, Sarcocystis, and Hammondia, but also is probably 

the characteristic that gave T. gondii the possibility to infect a wide range of hosts. 

Interestingly, this ability probably originated from a recent single genetic cross (1 million years 

ago) that differentiate the three most common serotype with exotic ones, the last not always 

showing oral infectivity. This meiotic event not only gave T. gondii a selective advantage, but 

was also a mean of fixing the entire genotype via the hitchhiking effect. According to 

epidemiological data there are three main strains of the parasite circulating worldwide with 

some additional genotypes categorised as “wild” or exotic. The wide epidemiological pattern 
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and the predominance of a sexual life cycle probably would hardly explain this population 

feature. The estimated origin of direct oral transmission, in T. gondii, is concurrent with the 

time of human agricultural expansion and adaptation of the cat as a companion animal, 

developments that created an unprecedented concentration of hosts and opportunities for new 

routes of transmission (Su, 2003)

With the acquisition of oral infectivity, T. gondii became able to transmit from definitive to 

intermediate hosts and vice versa, between definitive hosts and between intermediate hosts. 

This unique transmission pathway is of capital importance for the parasite success, however it 

is still unclear which route of transmission is more important epidemiologically (Tenter et al., 

2000).

T. gondii has a complex population structure comprising several strains. Existing genotypes 

belong to three major groups, I, II or III. However, a variety of genotypes not included in these 

major groups have been isolated worldwide and are defined as "atypical", "wild" or "ancient" 

strains. The importance of the genomic study of T. gondii is not limited to taxonomical 

investigations or epidemiological concerns but has a direct link to the severity of the disease. 

Genotypes I, II and III are similar on a genetic basis but they differ in terms of virulence. 

Genotype I shows the highest virulence and migratory capacity, whereas atypical genotypes 

are more different to each other. The majority of strains isolated in Europe and North America 

belong to types I, II or III, whereas a fourth strain is commonly found in wildlife in North 

America. In South America, these major lineages are rarely isolated and a variety of atypical 

strains exists (Xiao and Yolken, 2015). A link between human disease and T. gondii strains has 

been recently highlighted for the most common pathological conditions caused by the parasite:

ocular infection in immunocompetent adults, congenital infection in the foetus or newborn, 

infection in adults with AIDS or other immunocompromised states, and severe diseases (e.g. 

disseminated, pulmonary toxoplasmosis and psychosis) in immunocompetent patients. 

Despite the incidence of different genotypes reflecting the geographical origins of cases, a 

significant association has been observed between type I and ocular disease, congenital 

toxoplasmosis and some neurological disorders (Saeij et al., 2005; Xiao and Yolken, 2015).

The different pathogenicity among strains can be explained by the different load reached by 

parasites belonging to different genotypes in affected human tissues. In immunocompromised 

individuals, genotype I, reaching the highest burden, causes the most severe diseases. Atypical

strains show the highest virulence in immunocompetent individuals, probably because of the 

lack of parasite-human co-evolution with host adaptation, as in the case of typical strains. 

Differences among strains, however, do not completely explain the variability of the effects 

that T. gondii can cause in humans, as other factors can play important roles, such as the 

characteristics of the host and co-infections (Saeij et al., 2005; Xiao and Yolken, 2015).

1.2.2 Distribution in animals

Among T. gondii transmission routes, the horizontal one, between intermediate hosts, is of high

concern. It is well-known that meat from infected animals can lead to human infection but the 

relative role of different animal species as well as the cysts distribution within animals is still 
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unclear. Recently, the presence of T. gondii in different animal tissues has been extensively 

reviewed with the identification of a tissue ranking system based on the number of positives 

samples from different tissues described in the relevant literature (Opsteegh et al., 2016) The 

most important tissues are listed in Table 2. Brain, heart and meat/muscle are the highest-

ranking tissues with higher frequency of T. gondii. 

Swine Cattle Ovine Caprine Chickens Turkeys Horses
Brain 1 - 1 3 2 2 4
Heart 2 - 2 4 1 1 1
Meat/muscle 3 4 3 1 3 4 -
Tongue 4 - - - - - 2
Diaphragm - - 4 - - - -
Lymph nodes - 1 - - - - -
Small intestine - 2 - - - - 2
Liver - 3 - - - 3 -
Kidneys - - - 2 - - -
Ovary duct - - - - 4 - -

Table 2: ranking of tissues most commonly infected by T. gondii in different species (Opsteegh 
et al., 2016)

Quantitative data describing parasite concentration in animal tissues are available for pork 

(Juránková et al., 2014), goats (Juránková et al., 2013) and sheep (Opsteegh et al., 2010).

Brain was confirmed as the favoured site in pigs by quantitative techniques as well. After 

experimental infection, the median (range) number of parasites per gram was estimated to be: 

brain 553.7 (3858-122), lungs 0.3 (61-0.02), heart 2.6 (7.32-0.37), dorsal muscle 0.6 (2.81-0.3),

forelimb, hindlimb, kidney and liver 0.2 (Juránková et al., 2014).

In goats, brain and lungs were the tissues with the highest concentrations of parasites, whereas

lower numbers, between 10 and 100 parasites/gram were detected in heart and muscles 

(forelimbs, hindlimbs and dorsal muscle) (Juránková et al., 2013).

As regards sheep heart, a distribution with a mean value of 3.6 parasites/gram was used by 

Opsteegh and colleagues (2011) after the elaboration by PCR results from a previous study 

(Opsteegh et al., 2011).

1.3 Zoonosis potential and impact on the human population

Seroprevalence

T. gondii seroprevalence in the human population has been frequently investigated. Reported 

rates of infection range from 0 to 100% across years and countries (Tenter et al., 2000). As 

regards Italy, seroprevalence has been recently described in some studies. A survey of 13,000 

individuals living in the area of Massa and Carrara (Central Italy) measured a seroprevalence of 

24.4% (2010) with a decreasing trend from previous years (31% in 2007), and an increasing 

trend according to age (Mosti et al., 2013).

Immunocompetent individuals

Primary T. gondii infection in children and adults (including pregnant women) is often 

asymptomatic, although in certain cases a mild lymphadenopathy can be observed for 4-6 

weeks. Inflammation is a rare event in this population.
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Chorioretinitis can be observed after congenital, postnatally acquired infection, as a result of 

acute events or after reactivation of latent disease. Patients shows noticeably white focal 

lesions with an overlying and intense vitreal inflammatory reaction (Harker et al., 2015; 

Montoya and Liesenfeld, 2004; Tenter et al., 2000).

Immunocompromised individuals

The disease course is life-threatening in immunocompromised individuals with or without AIDS. 

In these cases, the illness is often a consequence of infection reactivation, as the 

seroprevalence, and thus latent/chronic infection, is high among this group, especially in 

developing countries and with increasing age. The central nervous system is the site most 

typically affected by infection, with inflammation leading to an evolving encephalitis causing an

acute confusional state. Clinical manifestations include mental status changes, seizures, focal 

motor deficits, cranial nerve disturbances, sensory abnormalities, cerebellar signs, movement 

disorders, and neuropsychiatric findings. Toxoplasmosis in immunocompromised patients can 

also present as chorioretinitis, pneumonia, or multi organ involvement presenting with acute 

respiratory failure and haemodynamic abnormalities similar to septic shock. T. gondii 

pneumonia seems to be more frequent in recipients of bone-marrow transplants and in patients

with AIDS (Harker et al., 2015; Montoya and Liesenfeld, 2004; Tenter et al., 2000).

Congenital toxoplasmosis

Congenital toxoplasmosis is the most severe form of infection, especially when acquired by 

pregnant women early in pregnancy. The mother-to-foetus transmission rate increases with 

gestational age from 9% in the first trimester to 59% in the last three months. The severity of 

symptoms shows an inverse trend. The most severe consequences of infection occur in 

foetuses during the first trimester, with clinically apparent disease occurring in 79% of 

newborns and a mortality rate up to 5% (Montoya and Liesenfeld, 2004).

Pre-natal lesions include intracranial calcifications, ventricular dilatation, hepatic enlargement, 

ascites, and increased placental thickness. Neonatal clinical manifestations of congenital 

toxoplasmosis vary widely and include hydrocephalus, microcephaly, intracranial calcifications, 

chorioretinitis, strabismus, blindness, epilepsy, psychomotor or mental retardation, petechia 

due to thrombocytopenia, and anaemia. The classic triad of chorioretinitis, hydrocephalus, and 

cerebral calcifications is rather rare. None of the signs described in newborns with congenital 

disease is pathognomonic for toxoplasmosis.

Latent infection

Latent T. gondii infection sets up after the acute phase in both in immunocompromised and 

immunocompetent individuals. Tissue cysts develop in different organs, with tissue tropism 

varying according to host and strength of the immune response. The worst effect caused by 

latent T. gondii is the potential for reactivation during strong immunosuppression events such 

as HIV infection or organ transplantation. The reactivation of an old infection can be life 

threatening for the host. 

However, recently, the presence of tissue cysts in the host brain has become associated with 

neurological disorders. This is a fascinating chapter of Toxoplasma research. In mice, T. gondii 

has been demonstrated to have the potential to modify host behaviour, with advantages for 

parasite transmission, despite an uneven distribution within the brain (Berenreiterová et al., 
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2011). The apparent randomness of T. gondii distribution within the brain makes investigation 

of the effect on host behaviour quiet difficult. However, evidence exists in the scientific 

literature supporting the behavioural manipulation hypothesis in humans as well as in mice 

(Flegr, 2013), and also linking T. gondii infection with neurological disorders (Fabiani et al., 

2015; Sutterland et al., 2015).

1.3.1 Burden of disease

Another aspect that has contributed to the increased attention toward T. gondii in recent years 

is the study of disease impact on the human population. This technique is able to quantify the 

impact of a disease, taking into account different consequences of infection, such as death and 

disability, and accounting also for illness severity and duration. Different metrics can be used 

to go beyond the consideration of single aspects of disease consequences, but the most 

commonly used metric is Disability Adjusted Life Years (DALY). DALY is the sum of Years of Life 

Lost (YLL) and Years Lived with Disability (YLD). YLL is the number of years of life lost due to 

mortality of a specific disease in a specified population, calculated by summation of all fatal 

cases due to all health outcomes of that specific disease, each case multiplied by the expected 

individual life span at the age of death. YLD is the number of years lived with a disability, 

calculated by accumulation over all cases and all health outcomes of the product of the 

duration of the illness and the disability weight of a specific disease (Havelaar et al., 2012).

In a global effort, a WHO working group recently published global estimates and regional 

comparisons of the burden of foodborne disease in 2010 (Havelaar et al., 2015; WHO, 2014). 

T. gondii was included as a foodborne parasite and its burden was estimated with reference to 

a previous work targeting congenital disease (Torgerson and Mastroiacovo, 2013). T. gondii, 

together with T. solium, contributed significantly to the foodborne disease burden in Central 

and South American subregions. Prenatal infections accounted for 32% of the toxoplasmosis 

burden. Among all the investigated hazards, it ranked 13th considering the median DALY. T. 

gondii DALY was 829,071 with a foodborne YLD of 763,326 and a YLL of 62,899 as a results of 

684 deaths and 10,280,089 cases of illness (Havelaar et al., 2015). Among foodborne parasites,

Toxoplasma and Ascaris proved to be the pathogens with the highest DALYs, as reported by a 

recent review about helminths and toxoplasmosis, summarizing different reports (Havelaar et 

al., 2015).

A similar study, carried out in the Netherlands, resulted in a high DALY for both congenital and 

acquired toxoplasmosis. The former was the highest ranked of the foodborne pathogens 

(Havelaar et al., 2012).

1.3.2 Prevention strategies

In the European Union as well as elsewhere, there are no control strategies in place to identify 

and mitigate the risk of T. gondii presence in slaughtered animals. 

In the recent EFSA opinions on meat inspection, the authority has carefully addressed the T. 

gondii hazard, stating that under the current system, meat inspection procedures are unable to

detect T. gondii in meat from slaughtered animals. In the documents published by EFSA, the 

following conclusions have been drawn:
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- T. gondii is one of the most relevant biological hazards for goats and sheep; however, the lack

of methodologies easily applicable to detect cysts impairs the possibility of risk-based 

categorization. More studies are needed to evaluate the effect of processing in the reduction of 

parasite burden (EFSA, 2013a).

- T. gondii was ranked as a high priority for farmed wild boar and farmed deer, and studies 

defining the baseline prevalence of T. gondii are warranted.

- T. gondii was defined as an undetermined priority in bovine and horses due to the lack of data

in scientific literature (EFSA, 2013b)

- T. gondii was defined as of medium relevance in swine due to the reduction in prevalence 

levels as obtained by commercial farming practices (EFSA, 2011).

1.4 Detection in food

Toxoplasmosis in food animals (e.g. sheep, goats, pigs) can be diagnosed by direct and indirect 

laboratory methods.  

1.4.1 Direct methods

Histology and immunohistochemistry

Tachyzoites (during the acute phase of infection) and tissue cysts of Toxoplasma can be 

visualized in sections of tissues and organs of affected animals by histology (haematoxylin and 

eosin stain) and immunohistochemistry. 

Tissues/organs eligible for this kind of analysis are: skeletal muscle, heart and brain. 

Tachyzoites can also be detected in impression smears from the same organs.

In vitro culture

T. gondii can be isolated in cell culture. This technique allows the propagation of the parasite. 

However, cell culture is time-consuming and expensive and less sensitive than other methods. 

PCR

Polymerase chain reaction (PCR) assays are widely used in the detection of parasite in food and

animal tissues, and also in the detection of blood-circulating tachyzoites during acute infection.

End-point PCR, Nested PCR and Real Time PCR are all described in published studies. They can 

be highly specific, but the small size of the sample required for the tests (usually 25 mg for 

commercial extraction methods) may limit their sensitivity, since the distribution of the tissue 

cysts is random, and the density of the parasite in affected tissues can be low (Juránková et al.,

2014, 2013).

The original protocol for Nested PCR was set up by Burg et al. and was demonstrated to be 

highly specific for the 35-fold repetitive T. gondii B1 gene, despite the short target sequence. 

The alternative method is a Real Time protocol by Homan et al. and targets 200 to 300-fold 

repetitive T. gondii DNA fragments (Burg et al., 1989; Homan et al., 2000)

Both methods are valuable solutions to detect T. gondii, but they suffer from low sensitivity due

to the tiny amount of tissue used for analysis. The choice of repetitive target sequence is a 

solution able to increase sensitivity and making detection of the 529-bp element preferable to 

the B1 sequence, despite the recent observation that the copy number of both is lower than 

was previously estimated (Costa and Bretagne, 2012). However, it was recently observed that 
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the 529-bp AF146527 repeat element is not present in all T. gondii isolates (Wahab et al., 

2010).

If both techniques and targets are valuable solutions, the low amount of tissue used for 

analysis is still a concern. For this reason, studies have investigated potential solutions and the 

more interesting of them has been the recourse to a magnetic capture PCR. This technique 

allows the detection of parasite DNA presence in a large amount of tissue, up to 100g. The 

method is based on homogenization of meat sample and the capture of DNA through a 

magnetic system that exploits biotin-labelled capture oligonucleotides able to identify and 

associate with target sequences (Opsteegh et al., 2010).  The DNA concentration is a valuable 

solution to increase sensitivity. However, it obviously does not provide a solution to the inability

of PCR to distinguish between live and dead parasites. 

Bioassay

The gold standard for T. gondii detection in animal tissue, with a high sensitivity, specificity and

the ability to identify the infective status of the parasite, is cat bioassay. This in vivo diagnostic 

technique consists of feeding Toxoplasma-free cats with up to 500g of the tissue under 

investigation and subsequent evaluation of infection, usually demonstrated by oocysts 

excretion.

Cats are the laboratory animals of choice, in that they are the definitive hosts of T. gondii and 

allow isolation of oocysts for genotyping purposes. However, they are not so easily manageable

under laboratory conditions and are unavailable in most facilities. Therefore, recourse to 

bioassay in mice has emerged has an alternative solution. The lower sensitivity of the mouse 

model to oral infection has been addressed with the intraperitoneal or subcutaneous 

inoculation of the pre-digested tissue under investigation. Usually 50-200 g of tissue is 

digested. Samples such as brain or peritoneal fluid are tested by microscopy or PCR to detect 

the infection. The acquisition of infection is usually evaluated in the brain through direct 

detection techniques. 

The comparison between direct detection methods, recently carried out in the context of an 

EFSA external scientific report through a systematic review approach, showed that cat and 

mouse bioassays are the best available direct methods, with cat bioassay outperforming mouse

bioassays when direct comparison was made. Microscopy proved to be the least sensitive 

method, whereas PCR was better than microscopy but never performed better than cat 

bioassays. Comparison of PCR with mouse bioassays was unclear in terms of performance 

results, but underlined the possibility that specific PCR protocols could equate with mouse 

bioassay performance, and also produce clear advantages in terms of costs and feasibility 

(Opsteegh et al., 2016).

1.4.2 Indirect methods

Serological methods

Serological methods for T. gondii detection are based on the detection of T. gondii antibodies in 

blood or in other bloody fluids such as thoracic fluid of aborted foetuses, milk or samples of 

fluid obtained by freezing and thawing portions of muscular tissue (meat juice).

The plethora of serological solutions includes:
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- Immunofluorescence antibody test (IFAT)

- Enzyme-linked immunosorbent assay (ELISA)

- Carbon immunoassay (CIA)

- Modified agglutination test (MAT)

- Direct agglutination test (DAT)

- Latex agglutination test (LAT)

- Indirect haemagglutination test (IHAT)

Beyond the technical differences among tests, the main problems are linked to the scarce 

correlation between serological results and the effective presence of infective cysts, as 

observed in bovines and swine (Opsteegh et al., 2016).

This has been clearly demonstrated for cattle, where the discordance between direct and 

indirect techniques have demonstrated that seroprevalence cannot be used as an indicator of 

the number of cattle carrying infectious parasites. Parasite DNA was detected in seronegative 

animals, suggesting that only recent infections were detectable (Opsteegh et al., 2011). In 

addition to the low predictive value of seroprevalence, another circumstance is of concern, as 

the application of serology to food would imply the use of meat juice as the analytical matrix. 

The antibody titre in meat juice has been demonstrated to be lower than in serum or specific 

muscles. In addition, low titres in meat juice were defined as unreliable for diagnostic purposes 

(Wallander et al., 2015).
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2. Thesis outline

Toxoplasma gondii is a zoonotic parasite with a wide diffusion, a high human seroprevalence 

and the potential for causing severe harm in those contracting infection, especially in at-risk 

individuals such as pregnant women, HIV-positive individuals, recipients of organ transplants or

other immunocompromised categories. Food is estimated to account for about half of all 

infections worldwide, with variations across years and countries. Among food, meat is of high 

concern as it can harbour infectious parasites and can be consumed raw or undercooked by 

different parts of the population. 

It is a consolidated practice, in the food safety system, to confront foodborne hazards in the 

context of a farm to fork approach as the strong relationships between different phases of the 

food chain cannot be neglected. Knowledge about the behaviour of a pathogen of interest 

along the food chain allows assessment of factors that are more important in the pathogen 

diffusion, and of which prevention measures are expected to give the best results. Knowledge 

of the farm-to-fork behaviour of a foodborne hazard is also essential for the risk manager and 

risk communicator to implement control strategies and for a communication campaign able to 

reduce the impact of the disease on the population. Veterinarians play a major role in this 

context, as they are responsible for animal health and also for the safety of derived food.

The aim of the present project was to gain insight into the role of meat as source of human 

toxoplasmosis by using a farm-to-fork approach. The underlying hypothesis was that meat 

other than pork could be important routes of transmission of the parasite due to food 

preparation habits rather than to high prevalence in the animals. The first step in this path was 

to estimate the prevalence of T. gondii in livestock species commonly used as sources of meat 

for human consumption. To obtain relevant scientific evidence, a double-sided approach was 

used. Firstly, a systematic review of all published literature dealing with the direct detection of 

T. gondii in commonly consumed livestock species was carried out. This process allowed the 

collection of data from primary research that, thanks to the meta-analytical method, were 

summed up to obtain average estimates of prevalence for different animal species worldwide 

and to evaluate differences according to the geographical origins and to the laboratory 

methods applied for diagnostic purposes (Manuscript 1). Two species were selected for a 

laboratory-based investigation of prevalence at local level through biomolecular techniques: 

cattle and pigs. Cattle and pigs were selected because of their wide consumption in Italy, as 

well as in the Veneto region that was targeted by these investigations (Manuscript 2). 

In addition, to obtain the best available epidemiological evidence about the role of different 

food consumption habits in human infection, in order to assess the validity of other outcomes 

of the present project, a second systematic review was carried out addressing this topic. In 

particular, relevant published case-control studies were collected and their results were 

summed up to obtain final risk measures (Manuscript 3). 

After that, before the building of the final risk assessment model, two important data sets were 

needed, addressing local consumers: data about food consumption and food preparation 

habits.
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The first data were obtained by the last Italian survey on food consumption carried out by 

INRAN in 2005-06. To obtain relevant data on food consumption habits, in terms of frequency of

cooking and freezing of meat, an ad hoc survey was designed and disseminated through social 

networks and a consumer mailing list (Survey).

Finally, the data from manuscript 1 and Survey were used to build a Quantitative Microbial Risk 

Assessment Model with the aim of estimating the yearly probability of an Italian consumer 

acquiring toxoplasmosis through the consumption of fresh meat from pigs or cattle. The final 

probability was used to predict the number of new cases of toxoplasmosis per year in the 

population between 5 and 65 years of age, attributable to the these meat sources. In addition, 

the model, properly refined, was used to predict the number of newborns with congenital 

toxoplasmosis, as well as the number of foetuses expected to acquire the infection through 

vertical transmission in the first trimester, with the worst consequences (Manuscript 4). 

Finally, the model output was evaluated in the context of manuscript 4 and also of the available

epidemiological human incidence data.

Figure 3: Flowchart showing project outline and the contribution of different activities to the 
final risk assessment model
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3. Conclusions

- The prevalence of Toxoplasma gondii varies across countries and its estimate is influenced by 

the diagnostic method applied. However, on average, considering data obtained through direct 

detection techniques (bioassays, PCR) at a worldwide level, the T. gondii prevalence is 2.6% for 

cattle (2.2% in Europe), 12.3% for pigs (8.7% in Europe) and 14.7% for sheeps (9.6% in 

Europe). Few data are available in the scientific literature concerning horses and goats.

- The prevalence in the Veneto region, according to Nested PCR, was 8.5% for pigs, confirming 

systematic review results for Europe, and 20% for beef belonging to emergency slaughter. The 

latter result was quite unexpected, as prevalences in bovine have been shown to be low, as 

described in the scientific literature (see conclusion 1). The high prevalence in emergency 

slaughter beef can partly be explained by the particularity of sample composition in terms of 

age and productive category.

- The survey carried out to understand the frequency of meat consumption habits in terms of 

cooking and freezing, highlighted that, among the different meat species investigated (cattle, 

pigs, sheep, horse), meat from cattle is more likely to be consumed raw or undercooked, 

followed by horse meat.

- The aggregation of case-control studies collected from scientific literature and dealing with 

food related risk factors linked to T. gondii infection in humans identified the consumption of 

raw/undercooked beef or sheep meat as significant risk factors. However, it failed to identify 

consumption of raw/undercooked pork, eggs and milk as significant factors.

- The Quantitative Microbial Risk Assessment Model, informed by data from literature and from 

primary research carried out within this project, compared the yearly probability of infection for

an Italian consumer, due to bovine meat and pork consumption. The model showed that bovine

meat accounted for a higher proportion of cases than pork, due in particular to the absence of 

mitigation strategies at consumer levels.

-The main evidence which has emerged from this project is that bovine meat has the potential 

for a non-negligible role in T. gondii human epidemiology, despite the low prevalence rates in 

animals. Proper cooking or freezing of meat, including bovine meat, is suggested to mitigate 

the risk of toxoplasmosis, particularly for at-risk categories of people, such as pregnant women 

and immunocompromised individuals.
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4. Future perspective

Toxoplasma gondii is a fascinanting parasite with a very complex life cycle allowing a variety of 

transmission routes. The infection of humans with T. gondii can generate important 

symptomatological patterns particularly in some categories such as pregnant women and 

immunocompromised person where abortus, ocular lesions and neurological diseases are 

possible consequences. However, pathogenic strains also showed the ability to cause 

symptomatic disease in immunocompetent individuals, and the link between seropositivity and 

various neurologial disorders has been hypothesized and demonstrated, in the light of the 

parasite’s ability to manipulate host behaviour. Further research adressing this topic is 

warranted to disclose the real burden of this disease and to give adequate priority to 

prevention strategies addressing this neglected parasite.

In the meantime, it is important to understand to which extent each transmission route 

contributes to T. gondii epidemiology. This research topic should take advantage of the recent 

development of genomics and the ability to implement source attribution studies. The life cycle

of T. gondii greatly relies on its definitive hosts (felids) and research into potential vaccination 

strategies is warranted, as a reduced delivery of oocysts into the enviroment would reduce 

prevalence in humans, in particular in the urban context. However, the parasite can succesfully

rely on the horizontal transmission route among intermediate hosts, reducing the potential 

effect of a prevention strategy based exclusively on the definitive host. For this reason, 

mitigation strategies based on the food transmission route should not be neglected, as the 

potential presence of parasites is recognized in foods. Among foods, meat and vegetables are 

recognized as potential vehicles of T. gondii. The role of vegetables is largely unknown and 

should be targeted by future research to understand their real impact on cases of infection.

Along the meat chain, prevention could be partially based on primary production, warranting 

the control of recognized risk factors linked to higher prevalences in animal populations, such 

as the presence of cats or wild animals on farms. As an additional, necessary measure, it would be 

important to address processing stages with reliable identification methods. Due to the 

inhability to easily detect live parasites in meat, historically, the T. gondii risk has never been 

managed through meat inspection strategies, as in the case of echinococcosis, or through 

analytical procedures, as in the case of Trichinella spiralis in the EU. The development of 

methods able to fill this gap has to be encouraged and suitable methods implemented to 

guarantee consumer safety.

Currently, the risk of acquiring T. gondii infection rely on an "unluckly" combination of events 

such as the presence of cysts in the meat portion, the lack of inactivation stages (freezing or 

cooking) and the immunological status of the consumer. 

The education of consumers to properly manage food is the only sporadic mitigation strategy 

currently applied for avoidance of T. gondii infection. However, education is limited to at-risk 

individuals, and depends on health practicioners’ knowledge. Information campaigns should be 

better planned and delivered, should go beyond education of at-risk individuals and should take

into account food preparation habits. 
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In an ideal risk-based food safety system, meat harbouring live parasites should be identified 

and directed toward processing stages able to inactivate parasites, which would the exposure 

of consumers to T. gondii.
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Abstract

Background

Toxoplasma gondii is one of the most widespread parasites in humans and can cause

severe illness in immunocompromised individuals. However, its role in healthy people is

probably under-appreciated. The complex epidemiology of this protozoan recognizes sev-

eral infection routes but consumption of contaminated food is likely to be the predominant

one. Among food, consumption of raw and undercooked meat is a relevant route of trans-

mission, but the role of different meat producing animal species and meats thereof is

controversial.

Objectives

The aim of the present work is to summarize and analyse literature data reporting preva-

lence estimates of T. gondii in meat animals/meats.

Data Sources

We searched Medline, Web of Science, Science Direct (last update 31/03/2015).

Eligibility Criteria

Relevant papers should report data from primary studies dealing with the prevalence of T.
gondii in meat from livestock species as obtained through direct detection methods. Meta-

analysis and meta-regression were performed.

Results

Of 1915 papers screened, 69 papers were included, dealing mainly with cattle, pigs and

sheep. Pooled prevalences, based on random-effect models, were 2.6% (CI95 [0.5–5.8]) for

cattle, 12.3% (CI95 [7.6–17.8]) for pigs and 14.7% (CI95 [8.9–21.5]) for sheep. Due to the

high heterogeneity observed, univariable and multivariable meta-regression models were
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fitted showing that the geographic area for cattle (p = 0.032), the farming type for pigs (p =

0.0004) and the sample composition for sheep (p = 0.03) had significant effects on the prev-

alences of Toxoplasma detected/estimated. Moreover, the role of different animal species

was dependent on the geographic location of animals’ origin.

Limitations

Limitations were due mainly to a possible publication bias.

Conclusions and Implications

The present work confirms the role of meat, including beef, as T. gondii sources, and high-

lights the need for a control system for this parasite to be implemented along the meat pro-

duction chain. Moreover, consumer knowledge should be strengthened in order to reduce

the impact of disease.

Introduction
Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii, one of the most widespread
parasites among humans. The clinical importance of this disease is due largely to infection
occurring during pregnancy or in immunocompromised individuals [1]. In contrast, its impact
on healthy individuals is probably underestimated. Toxoplasmosis can cause serious health
problems in immunocompetent people [1–4], and the parasite can reactivate in chronically
infected individuals as a consequence of immunosupression due, for example, to organ trans-
plant or HIV infection. In addition, there is a growing interest in the study of the potential rela-
tionship between T. gondii latent infections and neurological disorders [5]. T. gondii, both
congenital and perinatal, has the greatest impact on public health in terms of Disability
Adjusted Life Years (DALY) among all foodborne pathogens according to a study performed
in the Netherlands [6], and the burden is suggested to be even higher in other countries [7].

The complex life cycle of T. gondii recognizes felids as definitive hosts, in which the parasite
can complete its sexual cycle and from there spread millions of oocysts into the environment.
Although the number of oocysts produced is a key element in environmental contamination
and consequently in parasite transmission, T. gondii is able to rely also on its asexual cycle in
almost all warm blooded animals. This is a key adaptation of life cycle [8], and enables the par-
asite to be transmitted through the ingestion of infected meat, as observed several decades ago
[9]. Consumption of raw or undercooked meat is likely to be the major transmission route for
humans [10].

T. gondii infection in food producing animals is a critical issue and, despite the high number
of studies estimating prevalence through serology and/or direct detection of the parasite in ani-
mal samples, there is disagreement about the relative importance of different food animal spe-
cies. The most controversial role concerns cattle. Their importance in T. gondii transmission
was judged to be unresolved several years ago as the parasite was never isolated from beef tissue
[11]. Moreover, a large study performed in the US recently failed to detect T. gondii in more
than 2000 samples, supporting the theory that cattle are a poor host for the parasite [12]. In
contrast, other authors support different theories. For example, Opsteegh and colleagues,
despite agreeing on the low prevalence in cattle, argued that the risk posed to consumers by
ingestion of contaminated beef is likely to be high due to consumption habits [13]. Efforts to
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collect data on T. gondii prevalence have been made [14,15] but without recourse to meta-anal-
ysis, which, together with meta-regression, is a helpful technique to obtain insight into the rea-
sons for such differences and to depict the current knowledge in an evidence-based way.

The aims of the present study are to systematically review literature on the prevalence and
determinants of T. gondii in meat of food producing animals and analyse the data through
meta-analysis and meta-regression.

Methods

Data sources and searches
Relevant studies were identified by searching multiple literature databases including Medline
(through PubMed), Web of Science Core Collection, SciELO citation index (through Web of
Science) and Science Direct. No time limitation was imposed. The search was executed on 30/
06/2014 and last updated on 31/03/2015.

The search string used was the following: (Toxoplasma OR Toxoplasmosis) AND (“Dairy
Products” ORMeat OR poultry OR beef OR pork OR horse OR vegetables OR milk OR con-
sumption OR food OR carcas�). Only papers in English, Italian, French, Spanish and Portu-
guese were considered. References were imported in EPPI-4 software [16] and duplicates were
removed. Relevant papers were manually cross checked in order to identify further references.

Study selection and data extraction
Several criteria were used to select eligible studies: 1) the prevalence of T. gondii had to be
detected by direct methods (bioassay, PCR, microscopy); 2) samples had to originate from
food of animal origins (except milk and dairy products) belonging to the main livestock species
(cattle, pigs, sheep, goat and horses); 3) samples had to be collected from animals which had
not been experimentally infected; 4) sampling strategy had to be directed toward a random
population.

The selection process is detailed in Fig 1. Briefly, the screening process, both Title/Abstract
and Full text, was performed by two reviewers (SB, DC) independently (parallel method). Dis-
agreements were resolved through consensus. Data were extracted by one reviewer and
checked by a second (sequential method). All studies were coded according to the previously
chosen parameters and data were recorded on customized tables. The collective noun for each
animal species (cattle, pigs, sheep, horses and goats) is used throughout the current paper to
describe tissue (mostly edible) deriving from that meat-producing animal species.

Risk of bias in individual studies
Study-level risk of bias was likely to be high mainly because of differences in study design and
sampling management. Studies describing a sampling campaign on farms already recognized
as being at risk were excluded [17,18]. Additional efforts were made to collect data about ran-
domization and sample selection, such as size of the population from which the animals origi-
nated, method of selection of individuals and geographic distribution, but these factors were
poorly described in primary studies, impairing further analysis.

The minimum sample size was set to ten, and this choice caused the exclusion of two studies
reporting data for cattle and pigs with four and nine samples respectively [19]. In addition, the
impact of sample size on the pooled prevalence estimate was assessed, for each species, through
a cumulative meta-analysis based on decreasing sample size. Moreover, potential sources of
bias, such as sample composition, analytical technique and study design were assessed through
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meta-regression. Outcome-level biases were not evaluated. However, an accurate sensitivity
analysis was performed to detect influential studies.

The outcome selected for meta-analysis (event rate, defined as the number of events over
the total sample size) was obtained from studies with the following rules. If studies reported dif-
ferent prevalence estimates obtained through different analytical methods or in different target

Fig 1. Flowchart describing the selection of relevant studies. *papers added during the last update ** papers added through cross checking.

doi:10.1371/journal.pone.0153856.g001
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organs, the highest value was retained (prevalence at animal level), assuming that it represented
the most sensitive estimate. When direct methods were applied only to seropositive samples,
the proportion of positives was adjusted according to the size of the entire study population
(i.e. 100 animals in the population, 50 seropositive, 10% of seropositive confirmed through
direct method, prevalence in total population = 5%). Moreover, when direct methods were
applied only to a fraction of seropositive animals, the proportion of positives was adjusted pro
rata considering all seropositives and then by calculating according to the size of the original
population (i.e. 100 animals in the population, 50 seropositive animals, 30 seropositive animals
tested through direct method, 10 confirmed positive, prevalence in total population =
((30�10)/50)�100 = 16.7%).

Data analysis
Pooled prevalence. Meta-analyses were performed using themetafor package [20] of the

statistical software R [21]. The proportion of positives among the total study population (event
rate) was chosen as effect size. A study was designated as the unit of analysis, and was defined
as an investigation performed on a group of animals which shared the same features (e.g. spe-
cies, geographic location) in terms of variables used as moderators.

Meta-analysis is a statistical method that combines outcomes of primary studies with a
weight assigned according to the inverse of the variance. For this reason, the variance is a critical
parameter to be taken into account, and must also be calculated when studies reporting zero
prevalences are included. The Freeman and TukeyDoubleArcsin transformation of the preva-
lence was used to obtain a variance stabilizing transformation without applying continuity cor-
rections or removing studies from the meta-analysis, and to give an appropriate weight to those
studies with zero prevalence and high numerousness [20,22]. Transformed prevalence estimates
were combined in meta-analysis using a random-effect model and later back-transformed in the
original metrics. The amount of heterogeneity was estimated using the Q, T2 and I2 [23] statis-
tics obtained by Restricted Maximum Likelihood (REML), which is considered approximately
unbiased and relatively efficient [24]. A separate meta-analysis was performed for each species
(cattle, pigs and sheep). Data belonging to goats and horses were only described qualitatively.

Sensitivity analyses were performed in order to evaluate the presence of outliers or leverage
studies and their potential influence on each model per species. Several parameters were exam-
ined: the externally studentized residuals, the DFFITS (DiFference in FIT, Standardized), the
Cook’s distance, the hat function and the covariance ratio. Influence was defined according to
metafor package criteria (absolute DFFITS value> 3

p
[p/(k-p)], where p is the number of

model coefficients and k is the number of studies OR the lower tail area of a chi-square distri-
bution with p degrees of freedom cut off by the Cook’s distance being larger than 50% OR hat
value> 3(p/k)). In addition, studies were excluded one by one from the model to evaluate rele-
vant changes in heterogeneity (T2 and Q) and pooled estimate. P-value<0.05 was considered
significant in the statistical meta-analysis.

Heterogeneity. Heterogeneity was explored through uni-variable and multivariable meta-
regression using the mixed-effects models [25]. Moderator significance for (nested) models
was assessed through the Likelihood Ratio Test (LRT) by comparing the proportional reduc-
tion in the amount of heterogeneity (T2 value) of the full and reduced models. Therefore, it was
possible to evaluate the amount of (residual) heterogeneity accounted for by the moderator
(R2). Maximum Likelihood (ML) estimate instead of REML was use to evaluate the importance
of the moderators [20].

Attempts were made to explain heterogeneity through epidemiological and methodological
moderators: publication year (as a proxy variable for study year), geographic origin, animal age,
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farming system, analytical technique, sampling location, serological screening presence and
sample composition (details in Table 1). In addition, a multivariable meta-regression was per-
formed, pooling all studies across species. This allowed us to use species as moderator and to
evaluate the interaction between species and geographic area. In cases of moderator significance,
determined according to the Likelihood Ratio Test, a pairwise comparison multitest was per-
formed using the False Discovery Rate correction [26]. Publication bias was evaluated through
the Trim and Fill method [27,28] and cumulative meta-analysis was based on sample size.

Results

Study selection and data extraction
The original literature search provided a total of 1677 records after duplicate removal, and 238
records were obtained during the last update (Details in Fig 1). After the first screening based
on Title and Abstract, 149 papers remained and at the end of the selection procedure, 69 of
which were considered as relevant according to the eligibility criteria. The final number
included papers belonging to the original literature search, papers belonging to the last update
and papers retrieved through cross checking the references in the included papers. Studies
were identified within the included papers and coded according to review criteria. Details
showing the result of study coding on the basis of relevant characteristics are presented in
Table 1, whereas details for each eligible study are shown in Tables 2–4.

Cattle
The systematic review process identified 22 studies, presented in 18 papers, dealing with the
direct identification of T. gondii in bovine meat [12,19,29–44]. However, one paper was not
included in statistical analysis as it investigated only four samples [19]. General information
about the 21 studies retrieved is presented in Table 2.

Meta-analysis, as summarized in S1 Fig, identified a pooled T. gondii prevalence of 2.6%
(CI95 [0.5–5.8]). The 95% prediction interval ranged from 0% to 22%. Heterogeneity was high
with significant Q test (p<0.0001), T2 = 0.0215 and I2 = 92% (details in Table 5).

Sensitivity analysis identified study n°1 [29] and n°6 [32] as outliers according to externally
studentized residuals, and their removal one by one resulted in a noticeable reduction of com-
bined estimate, with a final pooled prevalence that would reach 1.9% in both cases. However,
the other sensitivity indexes applied (DFFITS, the Cook’s distance, the hat function and the
covariance ratio) did not identify these studies as influencing the final model according to
metafor parameters. As regards publication bias, although the Trim and Fill test did not iden-
tify any asymmetry, a cumulative meta-analysis based on the number of samples (N) showed
increasing prevalences as the number of samples in the studies decreased (Fig 2).

Because of the high level of heterogeneity observed, univariable meta-regressions were
performed on publication year, geographic area, analytical technique, sample composition
and sampling location. A significant effect was associated with geographic area, according to
the Likelihood Ratio Test (p = 0.032), with a R2 of 61.9%. The multitest for pairwise compari-
son identified only one statistically significant difference (p = 0.0397), between Central
America (K = 3 in one paper) and North America (K = 3 in three papers) prevalence esti-
mates. The other moderators tested through meta-regression did not show any relevant
impact according to the Likelihood Ratio Test (Table 5), suggesting that neither the analytical
technique used, nor sample type or sampling location influenced T. gondii prevalence in a
statistically significant way. Details of model coefficients and prevalence estimates are pre-
sented in Table 6.
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Pigs
The systematic review process identified 41 studies, presented in 36 papers, dealing with the
direct identification of T. gondii in pigs and meat thereof (details in Table 3)

Table 1. Characteristics of 91 studies reporting prevalence for T. gondii gondii that were tested as sources of heterogeneity.

Cattle Pigs Sheep

K N K N K N

Total 21 3785 41 10894 29 4150

EPIDEMIOLOGICAL MODERATORS

Geographic area

-Africa - - 2 100 4 351

-Asia 3 170 2 439 8 376

-Central America 3 100 1 48 - -

-Europe 4 651 14 3074 8 1061

-North America 3 2429 7 6318 2 469

-Oceania 1 80 1 30 2 64

-South America 7 355 14 885 5 1829

Animal age

-<12 months - - - - 8 991

->12 months - - - - 9 543

-NS - - - - 12 2616

Farming system

-Conventional - - 2 397 - -

-Organic - - 4 86 - -

-Small farms - - 2 433 - -

-NS - - 33 9978 - -

Publication Year

METHODOLOGICAL MODERATORS

Analytical technique

-Bioassay in cats 2 2369 1 2094 - -

-Bioassay in mice 12 600 28 5695 11 2137

-PCR 7 816 12 3105 16 1913

-Microscopy - - - - 2 100

Sample type

-Single 14 3095 21 4670 17 2123

-Pooled within animal 7 690 12 5321 12 2027

-Meat products - - 5 336 - -

-Cured meat products - - 3 567 - -

Sampling location

-Slaughterhouse 9 1315 21 7094 21 3686

-Retail 9 2332 18 3739 7 414

-NS 3 138 2 61 1 50

Serological screening

-No - - 35 6808 22 1946

-Yes - - 6 4086 7 2204

K = number of studies (note that some individual published papers contained more than one study), N = number of samples, NS = non specified in the

primary study.

doi:10.1371/journal.pone.0153856.t001
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[12,31,33,36,37,39,40,45–69]. A univariable meta-regression was performed considering, as
moderators, publication year, geographic area, analytical technique, farming system, sample
type and sampling location.

The meta-analytical model (S2 Fig), without moderators, identified a T. gondii prevalence of
12.3% (CI95[7.6–17.7]). The 95% prediction interval ranged from 0% to 55%. Heterogeneity
was high with significant Q test (p<0.0001), T2 = 0.0534 and I2 = 98% (details in Table 7).

Sensitivity analysis identified one study [70] as an outlier according to externally studen-
tized residuals, but it was judged non influential according tometafor parameters. Its removal
from the analysis resulted in a reduction of estimated prevalence up to 11.2%.

A meta-regression based on publication year showed no significance. According to the
Trim and Fill method, no asymmetry was identified. However, a cumulative meta-analysis
based on the number of samples (N) showed increasing prevalences as the number of samples
in the studies decreased (Fig 3).

Geographic area, analytical technique, sample type, sampling location and the presence of
serological screening were not significant (p = 0.172, p = 0.239, p = 0.476, p = 0.576 and p = 0.25
respectively), and residual heterogeneity continued to be high according to T2 and I2 statistics
(details in Table 7). Details of model coefficients and prevalence estimates are presented in

Table 2. General information about eligible studies reporting data for cattle.

ID Reference Country Geographic
area

Sampling location Analytical
technique

Technique
specifications

Sampled organ

1 Arias 1994 Costa Rica Central America Retail Bio mice Feed Liver

2 Arias 1994 Costa Rica Central America Retail Bio mice Feed Heart

3 Arias 1994 Costa Rica Central America Retail Bio mice Feed Muscle

4 Azizi 2014 Iran Asia NS PCR Nested Brain/Liver/Muscle

5 Berger Scoch
2011

Switzerland Europe Slaughterhouse PCR Real-T PCR Diaphragm

6 Campo-Portacio
2014

Colombia South America Retail PCR Nested Muscle

7 Catar 1969 Czech
Republic

Europe NS Bio mice IP Brain/Diaphragm

8 Dubey 1976 US North America Slaughterhouse Bio cats Feed Heart/Diaphragm

9 Dubey 2005 US North America Retail Bio cats Feed Muscle

10 Ergin 2009 Turkey Asia Slaughterhouse PCR Nested Brain/Muscle

11 Fortier 1990 Portugal Europe Slaughterhouse Bio mice IP Brain/Heart/
Diaphragm

12 Jacobs 1960 US North America Slaughterhouse Bio mice IP Diaphragm

13 Jacobs 1963 New Zealand Oceania Slaughterhouse Bio mice IP Diaphragm

14 Jamra 1969 Brazil South America Retail Bio mice IP Muscle

15 Jamra 1969 Brazil South America Retail Bio mice IP Liver

16 Jamra 1969 Brazil South America Retail Bio mice IP Brain

17 Martins 1989 Brazil South America NS Bio mice IP Muscle

18 Opsteegh 2011 The
Netherlands

Europe Slaughterhouse PCR MC-PCR Heart

19 Passos 1984 Brazil South America NS Bio mice IP Diaphragm

20 Rahdar 2012 Iran Asia Slaughterhouse/
Retail

PCR PCR Tongue/Heart/
Muscle

21 Santos 2010 Brazil South America Slaughterhouse PCR Nested Brain/Heart

Bio mice = Bioassays in mice, IP = intra-peritoneal, MC-PCR = magnetic capture PCR, NS = not specified in the primary study.

doi:10.1371/journal.pone.0153856.t002
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Table 3. General information about eligible studies reporting data for pigs.

ID Reference Country Geographic area Farm Serological screening Analytical technique Sampled organ

1 Aspinall 2002 UK Europe NS NA PCR PCR Meat products (Mixed)

2 Bacci 2015 Italy Europe O NA PCR Nested Heart

3 Bayarri 2012 Spain Europe NS NA Bio mice IP Muscle

4 Bayarri 2012 Spain Europe NS NA Bio mice IP Cured Ham

5 Belfort-Neto 2006 Brazil South America NS NA PCR PCR Tongue/Diaphragm

6 Berger Scoch 2011 Switzerland Europe NS NA PCR Real-T PCR Diaphragm

7 Bezerra 2012 Brazil South America O NA Bio mice SC Brain/Tongue

8 Cademartori 2014 Brazil South America SF Sero + Bio mice IP Brain/heart

9 Catar 1969 Czech Republic Europe NS NA Bio mice IP Brain/Diaphragm

10 Clementino andrade 2013 Brazil South America NS Sero + Bio mice IP Heart

11 Dias 2005 Brazil South America NS NA Bio mice Inoculation Sausages

12 Dubey 1995 US North America NS NA Bio mice SC Heart

13 Dubey 2005 US North America NS Bio cats Bio cats Feed Muscle

14 Dubey 2012 US North America O Na Bio mice SC Heart

15 Esteves 2014 Portugal Europe NS Sero + PCR Nested Brain/Diaphragm

16 Fortier 1990 Portugal Europe C NA Bio mice IP Brain/Heart/Diaphragm

17 Frazao-Texeira 2006 Brazil South America O NA Bio mice IP Brain

18 Frazao-Texeira 2011 Brazil South America NS NA Bio mice Inoculation Heart

19 Frazao-Texeira 2011 Brazil South America NS NA Bio mice Inoculation Brain

20 Feitosa 2014 Brazil South America NS Sero + Bio mice SC Brain/Heart/Muscle

21 Gajadhar 1998 Canada North America NS NA Bio mice SC Heart/Diapraghm

22 Galvan-Ramirez 2010 Mexico Central America NS NA Bio mice SC Muscle

23 Gomez-Samblas 2015 Spain Europe NS NA PCR MC-PCR Serrano ham

24 Halova 2012 Ireland Europe NS NA PCR Nested Diaphragm

25 Jacobs 1960 US North America NS NA Bio mice IP Diaphragm

26 Jamra 1969 Brazil South America NS NA Bio mice IP Muscle

27 Jamra 1969 Brazil South America NS NA Bio mice IP Sausages

28 Martins 1989 Brazil South America NS NA Bio mice IP Muscle

29 Medonca 2004 Brazil South America NS NA PCR SC Sausages

30 Navarro 1992 Brazil South America NS NA Bio mice IP Muscle

31 Navarro 1992 Brazil North America NS NA Bio mice IP Brain

32 Rothe 1985 Australia Oceania NS NA Bio mice IP Muscle

33 Samico Fernandes 2012 Brazil North America NS NA PCR Nested Heart

34 Siam 1979 Egypt Africa NS NA Bio mice IP Diaphragm/Muscle

35 Siam 1979 Egypt Africa NS NA Bio mice IP Sausages and Mortadella

36 Sousa 2006 Portugal Europe SF Sero + Bio mice SC Brain/Heart

37 Turcekova 2013 Slovakia Europe NS Sero + PCR Nested Brain/Heart

38 Vostalova 2000 Czech Republic Europe C NA Bio mice IP Brain/Diaphragm

39 Wang 2012 China Asia NS NA PCR Real-T PCR Muscle

40 Wang 2013 China Asia NS NA Bio mice IP Brain

41 Warnekulasuriya 1998 UK Europe NS NA PCR Nested Sausages dried/ cured

Bio mice = Bioassays in mice, IP = intra-peritoneal, SC = subcutaneous, MC-PCR = magnetic capture PCR, NS = not specified in the primary study,

NA = Not Appliable, Sero+ = seropositive.

doi:10.1371/journal.pone.0153856.t003
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Table 8. The only significant moderator was farming system (p = 0.0004) with R2 of 37.31, as
organically farmed pigs had significantly higher T. gondii prevalences than pigs from conven-
tional farms, small farms and from farms where this data was not reported (see Table 7).

Sheep
The systematic review process identified 29 studies, presented in 24 papers, dealing with the
direct identification of T. gondii in sheep meat [31,35,37–39,43,59,62,71–84]. General informa-
tion about the 29 studies retrieved is presented in Table 9. Geographic area, analytical tech-
nique and animal age (coded in two categories) were included in the univariable meta-analysis
as moderators.

The meta-analytical model (S3 Fig), without moderators, identified a prevalence of 14.7%
(CI95[8.9–21.5]. The 95% prediction interval ranged from 0% to 57%. Heterogeneity was high
with significant Q test (p<0.0001), T2 = 0.0513 and I2 = 97% (details in Table 9).

Table 4. General information about eligible studies reporting data for sheep.

ID References Country Geographic area Animal age Analytical technique Sampled organ

1 Asgari 2011 Iran Asia >12 PCR Nested Brain/Liver/Muscle

2 Azizi 2014 Iran Asia <12 PCR Nested Brain/Liver/Muscle

3 Azizi 2014 Iran Asia <12 PCR Nested Brain/Liver/Muscle

4 Berger Scoch 2011(1) Switzerland Europe <12 PCR Real Time PCR Diaphragm

5 Berger Scoch 2011(2) Switzerland Europe >12 PCR Real Time PCR Diaphragm

6 Belbacha 2004 Morocco Africa NS Bio mice Feed/IP Brain

7 Boughattas 2013* Tunisia Africa >12 PCR PCR Heart

8 da Silva 2009* Brazil South America NS Bio mice NS Heart/Diaphragm

9 Dubey 2008* US North America <12 Bio mice Feed Heart

10 Dumetre 2006* France Europe >12 Bio mice IP Heart

11 Ergin 2009 Turkey Asia NS PCR Nested Brain/Muscle

12 Ergin 2009 Turkey Asia NS PCR Nested Brain

13 Gharbi 2013 Tunisia Africa NS PCR Nested Heart

14 Glor 2013* Switzerland Europe NS PCR Real Time PCR Brain/Muscle

15 Halos 2010 France Europe <12 Bio mice IP Heart

16 Halos 2010 France Europe >12 Bio mice IP Heart

17 Halova 2012 Ireland Europe NS PCR Nested Diaphragm

18 Jacobs 1960 US North America NS Bio mice IP Diaphragm

19 Jacobs 1963 New Zealand Oceania >12 Bio mice IP Brain/Diaphragm/Muscle

20 Jamra 1969 Brazil South America >12 Bio mice IP Muscle

21 Khayeche 2013 Tunisia Africa >12 PCR Nested Heart

22 Maciel 2014 Brazil South America NS PCR Nested Brain

23 Opsteegh 2010 The Netherlands Europe NS PCR MC-PCR Heart

24 Ragozo 2008* Brazil South America NS Bio mice NS Heart/Brain/Diaphragm

25 Rahdar 2012 Iran Asia <12 PCR PCR Tongue/Heart/Muscle

26 Rothe 1985 Australia Oceania <12 Bio mice IP Muscle

27 Yildiz 2014 Turkey Asia <12 Micro NA Brain/Diaphragm/Muscle

28 Yildiz 2014 Turkey Asia >12 Micro NA Brain/Diaphragm/Muscle

29 Vieira 2001* Brazil South America NS PCR PCR Brain/Diaphragm

Bio mice = Bioassays in mice, IP = intra-peritoneal, SC = subcutaneous, MC-PCR = magnetic capture PCR, NS = not specified in the primary study,

NA = Not Appliable,

*studies that performed a serological screening.

doi:10.1371/journal.pone.0153856.t004
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Sensitivity analysis identified study n° 19 [38] as an outlier according to externally studen-
tized residuals, but no influences in the model were highlighted according to other indexes
investigated.

Cumulative meta-analysis based on publication year did not show any relevant trend.
According to the Trim and Fill method, no asymmetry was identified. However, a cumulative
meta-analysis based on the number of samples (N) showed increasing prevalences as the num-
ber of samples in the studies decreased (Fig 4).

None of the following moderators, studied using univariable meta-regression, were signifi-
cant: geographic area (p = 0.0553), analytical technique (p = 0.1173), animal age (p = 0.1273),
serological screening (p = 0.615), sampling location (p = 0.541), as summarized in Table 9.
Sample composition was significant, with p = 0.031 and R2 value of 14.12%. Details of meta-
regression coefficients and prevalence estimates are presented in Table 10.

Multivariable meta-regression (cattle, pig, sheep)
Multivariable meta-regression was performed based on species, geographic origin of sampled
animals and their interaction. Univariable analysis on the full dataset, using species as the

Table 5. Summary of heterogeneity measures and Likelihood Ratio Test for eachmoderator tested in studies describing T. gondii prevalence in
cattle.

T2 (95%CI) I2 (95%CI) LRT p-value R2

No moderators 0.0215 (0.0113–0.0620) 91.6 (85.3–96.9) - -

Geographic area* 0.0150 (0.0066–0.0589) 84.8 (71–95.6) 0.032 61.86

Publication year 0.0206 (0.0106–0.0613) 90.76 (83.48–96.69) 0.16 10.86

Analytical technique 0.0166 (0.0084–0.0601) 85.56 (74.91–95.54) 0.063 38.37

Sample composition 0.0232 (0.0121–0.0674) 91.33 (84.58–96.84) 0.89 0

Sampling location 0.0213 (0.0107–0.0626) 88.52 (79.52–95.78) 0.22 13.74

LRT = Likelihood Ratio Test

*statistically significant results.

doi:10.1371/journal.pone.0153856.t005

Fig 2. Cumulative meta-analysis on cattle studies based on decreasing sample size. T+ = positive
samples, N = number of samples.

doi:10.1371/journal.pone.0153856.g002
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moderator, resulted in a significant Likelihood Ratio Test (p = 0.0078). Moreover, the multitest
pairwise comparison identified the estimate of T. gondii prevalence in cattle to be significantly
lower than in sheep and pigs, whereas no differences were observed between these last two spe-
cies. The addition of geographic area to this model gave no significant results, whereas the
interaction between the two moderators was significant (p = 0.0212).

The multitest performed on the final model allowed the comparison of species prevalence
within different geographic areas. In North America, Asia and Oceania, the T. gondii preva-
lences in sheep and pigs were significantly lower than the prevalence in cattle. In Europe and
South America, T. gondii prevalences in sheep were significantly higher than in cattle but there
was no difference in T. gondii prevalences in pigs and cattle.

Table 6. Summary of the output of univariable meta-regression in cattle or meat thereof for each category within moderators.

Moderator K N Β SE Prevalence (95%CI)

Epidemiological moderators

Geographic area* 3 170 Asia 0.2776 0.0806 0.060 (0.002–0.166)

3 100 Central America 0.4263 0.0969 0.159 (0.040–0.328)

4 655 Europe 0.1933 0.0661 0.022 (0.000–0.087)

3 2429 North America 0.0592 0.0744 0.000 (0.000–0.026)

1 80 Oceania 0.0557 0.1347 0.000 (0.000–0.085)

7 355 South America 0.1988 0.0558 0.024 (0.000–0.078)

Publication year 21 3785 0.0027 0.0021

Methodological moderators

Analytical technique 2 2369 Bio cats 0.0203 0.0926 0.000 (0.000–0.025)

12 600 Bio mice 0.19836 0.0447 0.024 (0.001–0.065)

7 820 PCR 0.2672 0.0536 0.055 (0.012–0.0119)

Sample composition 14 3095 Single 0.2087 0.0460 0.032 (0.004–0.076)

7 690 Pooled within 0.1973 0.0616 0.027 (0.000–0.087)

Sampling location 9 1315 Slaughterhouse 0.1499 0.0490 0.011 (0.000–0.048)

9 2332 Retail 0.2792 0.0611 0.065 (0.014–0.142)

3 138 NS 0.2256 0.0966 0.039 (0.000–0.154)

N = number of samples, K = number of studies, SE = Standard error, Bio = Bioassay,

*statistically significant results.

doi:10.1371/journal.pone.0153856.t006

Table 7. Summary of heterogeneity measures and Likelihood Ratio Test for eachmoderator tested in studies describing T. gondii prevalence in
pigs.

T2 (95%CI) I2 (95%CI) LRT p-value R2

No moderators 0.0534 (0.0346–0.0931) 98.1 (97.1–98.9) - -

Geographic area 0.0499 (0.0313–0.0930) 97.8 (96.6–98.8) 0.17 22.79

Farming system* 0.0365 (0.0223–0.0629) 97.2 (95.5–98.4) 0.0004 37.31

Publication year 0.0545 0.0351 0.0952 98 (97–98.9) 0.52 0.65

Analytical technique 0.0524 (0.0335–0.0930) 97.4 (96–98.5) 0.24 7.86

Sample composition 0.0547 (0.0348–0.0971) 97.8 (96.6–98.7) 0.48 6.32

Sampling location 0.0550 (0.0353 0.0970) 98 (96.8–98.8) 0.58 2.64

Serological screening 0.0529 (0.0341–0.0934) 97.8 (96.6–98.7) 0.25 3.9

LRT = Likelihood Ratio Test

*statistically significant results.

doi:10.1371/journal.pone.0153856.t007
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Goats and Horses
This systematic review process allowed the retrieval of the few studies available dealing with
goats and horses, five and two studies, respectively.

Prevalence in goats is, according to literature, quiet heterogeneous. Samples of brain, tongue,
liver, plus neck, intercostal, and femoral muscles from 22 goats from Shiraz abattoirs (Iran)
were analysed in 2008. T. gondii was detected in five (23%) animals, and in at least one tissue,
through nested PCR [85]. In East Brazil, mice bioassay demonstrated the presence of viable T.
gondii in 1 out of 10 seropositive goats identified through ELISA anti IgG antibodies (DAT)
among the total of 50 goats tested (prevalence 2.5%) [47]. A similar prevalence was described in
the North East of Brazil after examination of tongues, brains and hearts from 102 goats at
slaughter and positive results to nested PCR were found in 2.9%, 3.9% and 1% of these organs,
respectively [86]. In North America, the hearts of 234 goats aged between 6 and 12 months and
collected from local retail meat stores in Maryland were tested using Modified Agglutination
Test (MAT) and 112 of them also using mice bioassay. T. gondii was isolated from 29 of 112
goats (26%) [87]. Finally, in China, liver, lung and lymph nodes from 403 Yunnan black goats
were collected randomly from different administrative regions in Yunnan province, and B1
gene (a marker of T. gondii) was identified using PCR in 20 (5%) of the animals [88].

As regards horses, in a Brazilian study, Evers and colleagues in 2013 detected T. gondii in 14
out of 398 (3.5%) brain samples using bioassays in mice. The parasite was identified through
PCR in two mice, but the others were found to be positive by IFAT (Indirect Fluorescent Anti-
body Test). All 398 horses were also tested by serology, and interestingly, 13 out of 14 horses
positive by mouse bioassays tested negative by IFAT (<1:64). Moreover, only two bioassay pos-
itive horses tested positive by PCR [89]. In Egypt, meat and tissue samples from 150 horses
were bioassayed in mice (pool of heart, liver, skeletal and diaphragmatic muscle) and 79 were
positive (52.6%), with consequent isolation of the parasite from peritoneal fluid of inoculated
animals [90].

Fig 3. Cumulative meta-analysis on pig studies based on decreasing sample size. T+ = positive
samples, N = number of samples.

doi:10.1371/journal.pone.0153856.g003
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Table 9. Summary of heterogeneity measures and Likelihood Ratio Test for eachmoderator tested in studies describing Toxoplasma prevalence
in sheep.

T2 (95%CI) I2 (95%CI) LRT p-value R2

No moderators 0.0513 (0.0309–0.0988) 96.6 (94.4–98.2) - -

Geographic area 0.046 (0.0241–0.0887) 95.6 (92.5–97.8) 0.055 33.8

Animal Age 0.0470 (0.0279–0.0956) 96.1 (93.6–98.1) 0.13 15.9

Publication year 0.0532 (0.0319–0.1040) 96.7 (94.6–98.3) 0.88 0.2

Analytical technique 0.0470 (0.0278–0.0947) 96.2 (93.7–98.1) 0.11 15.9

Sample composition* 0.0458 (0.0269–0.0868) 96 (93.3–97.8) 0.03 14.1

Sampling location 0.0536 (0.0316–0.1044) 96.8 (94.7–98.3) 0.54 3.48

Serological screening 0.0529 (0.0316–0.1032) 96.6 (94.3–98.2) 0.61 1

LRT = Likelihood Ratio Test

*statistically significant results.

doi:10.1371/journal.pone.0153856.t009

Table 8. Summary of the output of univariable meta-regression analysis in pigs for each category within moderators.

Moderator K N β SE Prevalence (95%CI)

Epidemiological moderators

Geographic area 2 100 Africa 0.1201 0.1657 0.005 (0.000–0.178)

2 493 Asia 0.4430 0.1660 0.176 (0.005–0.483)

1 48 Central America 0.1734 0.2347 0.020 (0.000–0.347)

14 3074 Europe 0.3159 0.0622 0.087 (0.027–0.172)

7 6318 North America 0.3427 0.0868 0.104 (0.019–0.235)

1 30 Oceania 0.2187 0.2411 0.037 (0.000–0.404)

14 885 South America 0.4974 0.0643 0.221 (0.123–0.337)

Farming system* 2 397 Conventional 0.1253 0.1383 0.006 (0.000–0.141)

4 86 Organic 0.8189 0.1106 0.534 (0.316–0.746)

2 433 Small Farms 0.3558 0.1381 0.112 (0.000–0.140)

33 9978 NS 0.3386 0.0355 0.101 (0.061–0.149)

Publication year 41 10894 0.0020 0.0026

Methodological moderators

Analytical technique 1 2094 Bio cats 0.0598 0.2292 0.000 (0.000–0.231)

28 5695 Bio mice 0.3563 0.0459 0.113 (0.059–0.179)

12 3105 PCR 0.4314 0.0681 0.167 (0.076–0.281)

Sample composition 21 4670 Single 0.4080 0.0541 0.149 (0.079–0.236)

12 5321 Pooled within 0.3475 0.0694 0.107 (0.034–0.209)

5 336 Meat products 0.3935 0.1109 0.139 (0.020–0.325)

3 567 Cured meat products 0.1881 0.1404 0.025 (0.000–0.0193)

Sampling location 21 7094 Slaughterhouse 0.3649 0.0531 0.119 (0.057–0.197)

18 3739 Retail 0.3604 0.0585 0.116 (0.049–0.202)

2 61 NS 0.5496 0.1789 0.267 (0.029–0.616)

Serological screening 35 6808 No 0.3911 0.0417 0.137 (0.083–0.200)

6 4086 Yes 0.2805 0.0889 0.067 (0.003–0.186)

K = number of studies, N = number of samples, SE = Standard error,

*statistically significant results.

doi:10.1371/journal.pone.0153856.t008
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Fig 4. Cumulative meta-analysis on sheep studies based on decreasing sample size. T+ = positive
samples, N = number of samples.

doi:10.1371/journal.pone.0153856.g004

Table 10. Summary of the output of univariable meta-regression analysis in sheep for each category within moderators.

Moderator K N β SE Prevalence (95%CI)

Epidemiological moderators

Geographic area 4 351 Africa 0.4752 0.1074 0.203 (0.059–0.399)

8 376 Asia 0.5525 0.0786 0.271 (0.143–0.420)

8 1061 Europe 0.3297 0.0750 0.096 (0.023–0.204)

2 469 North America 0.4003 0.1489 0.144 (0.003–0.405)

2 64 Oceania 0.5295 0.1586 0.250 (0.038–0.556)

5 1829 South America 0.1946 0.0964 0.028 (0.000–0.132)

Age 8 991 <12 months 0.4125 0.0807 0.153 (0.054–0.287)

9 543 >12 months 0.5171 0.0768 0.239 (0.120–0.381)

12 2616 NS 0.3177 0.0643 0.089 (0.027–0.177)

Publication year 30 4150 0.0004 0.0031

Methodological moderators

Analytical technique 11 2137 Bio mice 0.4020 0.0685 0.146 (0.061–0.256)

16 1913 PCR 0.3662 0.565 0.120 (0.055–0.204)

2 100 Micro 0.7147 0.1616 0.428 (0.143–0.741)

Sample composition* 17 2123 Single 0.3287 0.0540 0.096 (0.039–0.170)

12 2027 Pooled within 0.5116 0.0651 0.234 (0.133–0.353)

Sampling location 21 3686 Slaughterhouse 0.4289 0.0510 0.166 (0.096–0.249)

7 414 Retail 0.3084 0.1004 0.083 (0.004–0.228)

1 50 Slaughter/retail 0.2419 0.3934 0.139 (0.000–0.584)

Serological screening 22 1946 No 0.4163 0.0514 0.156 (0.088–0.239)

7 2155 Yes 0.3666 0.0886 0.120 (0.027–0.259)

K = number of studies, N = number of samples, SE = Standard Error, Bio = Bioassays,

*statistically significant results.

doi:10.1371/journal.pone.0153856.t010
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Discussion
This review describes the current knowledge about T. gondii prevalence in meat-producing ani-
mals in a systematic way. The results showed a pooled prevalence for cattle, pigs and sheep of,
respectively, 2.6% (CI95[0.5–5.8]), 12.3% (CI95[6–17.7]), and 14.7% (CI95[8.9–21.5]). For goats
and horses, the retrieved results can only provide some partial indications, but show that T.
gondii infection is relevant in both species, and deserving of further attention.

Although pooling prevalence estimates originating from different animal species could be
considered of limited value, it enabled us to statistically define T. gondii prevalence differences
among them. Cattle are generally described as poor hosts for T. gondii and the role of this spe-
cies is generally judged of limited importance in toxoplasmosis epidemiology [11]. Our results
showed that prevalence estimates in cattle were usually lower than those of pigs and sheep.
Interestingly, this lower prevalence was not observed in Europe and South America, highlight-
ing the importance of geographic area in T. gondii prevalence estimation.

It should be noted that the pooled estimate of prevalence in cattle may suffer from some
limitations that are likely to have caused an overestimation of mean prevalence. The first limi-
tation is due to the problem of calculating variance for 0 prevalence estimates. The present
work, in order to account for such results, applied the double arcsin transformation on event
rates. This has the advantage of allowing this calculation without the use of continuity correc-
tions that cause an underestimation of study weight [22]. The second limitation is due to a
potential publication bias that was not detected by the Trim and Fill method but is suggested
by the cumulative meta-analysis based on sample size. As an example, if we had considered
only studies with sample sizes greater than 50, the pooled prevalence would have been 1%
(CI95 [0.00–3.6]). This potential bias was not detected by the Trim and Fill method. This was
probably because of the wide Confidence Interval in the final estimate that, starting from 0% in
the case of cattle, also included the CI obtained after the exclusion of studies with n<50. How-
ever, this decreasing trend cannot be ignored. It can be supposed that an unknown number of
small studies with results showing T. gondii prevalences of 0 would have failed to be published,
or indeed, never started the publication procedure, thus supporting the theory of “winner’s
curse” [91]. The inclusion of grey literature in the search strategies probably would have cor-
rected this overestimation. However, the present review focused solely on papers published in
peer-reviewed journals to enhance the methodological rigor of the current study and the con-
clusions drawn regarding prevalence. The low prevalence in cattle, confirmed by our estimates,
together with the short persistence of viable T. gondii in bovine tissues [11] can be used to sup-
port the theory of limited bovine role in T. gondii epidemiology. However, despite these consid-
erations, the role of beef in T. gondii human epidemiology cannot be easily ruled out, as this
meat is eaten raw or undercooked in several countries with a consequent high probability of
infection if T. gondii is present, as demonstrated elsewhere [13].

As regards the other meat-producing animal species, a lack of difference was observed
between sheep and pigs in each investigated area. This lack of difference was partly due to the
inclusion, within pigs, of studies reporting T. gondii prevalence in organically farmed pigs.
Pooled estimates from pigs and sheep suffered problems, in term of publication bias, similar to
that already observed for cattle. Therefore, in these cases too, the T. gondii prevalence could be
overestimated.

The pooled prevalences obtained in the present work should be interpreted cautiously, due to
the high level of heterogeneity observed. Nonetheless, they provide important clues regarding the
ranking of different meat-producing animal species that is of critical importance in the context
of food safety. This is because, currently, there are no measures in place at the slaughter level able
to identify animals carrying T. gondii [92–94] and prevention is left to consumer behaviour.
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Univariable meta-regression models were fitted to account for variables explaining the high
level of heterogeneity observed. A summary of moderators included is available in Table 1.
Geographic area was an important variable affecting T. gondii prevalence in cattle, as it
accounted for 61.87% of observed heterogeneity. Its significance was probably due to different
farming systems in countries from which the different studies originated. However, this signifi-
cance was not seen in studies dealing with sheep and pigs. In the case of sheep, it could be sup-
posed that the lack of a widespread intensive farming system determines a common level of
exposure in different countries. In the case of pigs, the lack of significance of geographic area is
difficult to explain, although it could simply be due to a high level of heterogeneity within the
geographic areas examined.

Analytical technique was expected to be a relevant moderator. Bioassay in cats is considered
to be the gold standard because of the high sensitivity of these definitive host animals to T. gon-
dii infection, and because samples of high quantity can be fed to cats, maximizing the probabil-
ity of parasite ingestion [51]. Moreover, diagnosis of infection is performed through oocyst
recovery from faeces, with widely accepted techniques optimized due to their routine use in
small animal clinics. Only three studies were found reporting the use of bioassays in cats to
assess prevalence, two performed with cattle samples and one with pig samples. Moreover, these
studies were performed by the same research group in the same geographic area, and thus, it is
difficult to evaluate the significance of these different factors. An alternative, more frequently
used, bioassay technique is performed using mice, an animal more familiar to researchers and
research centres. However mice are not the definitive hosts of T. gondii and their sensitivity is
considered to be lower [12]. This disadvantage is commonly addressed through the intra perito-
neal or subcutaneous injection of the parasite to maximize the likelihood of infection. However,
a major drawback is the consistent low quantity of sample analysed compared to the amount
used in cat bioassay. PCR is often applied as an alternative solution but in this case too, the low
quantity of sample analysed is a cause for concern. Moreover, PCR is unable to assess parasite
viability, so consequently, overestimation of prevalence can occur. This weakness could be bal-
anced out by the presence of false negatives due to the low amount of tissue from which DNA is
extracted. The meta-regression applied in the current study failed to detect such differences in
the meat-producing animal species investigated, due to the wide confidence interval produced,
within different species, by each technique. Despite the Likelihood Ratio Test never being signif-
icant, pairwise comparison with p = 0.063 was found in the comparison between PCR and bio-
assays in cats within studies dealing with cattle. It is worth mentioning, in this case, that studies
using cat bioassay always reported a 0 prevalence. However, due to the low number of such
studies, statistical analysis was unable to define the estimate as significantly different from other
techniques. PCR was not shown to overestimate prevalence in a statistically significant way, but
was shown to result in a large confidence interval among different studies. PCR can be consid-
ered as a useful and more ethical method than bioassays to assess T. gondii prevalence in meat,
but needs to be improved. In this context, methods able to concentrate DNA from larger quanti-
ties of samples through innovative techniques should be preferred [81].

Animal age is considered an important factor, as higher seropositivity is usually found in
older animals [95], because the probability of an animal having had contact with the parasite
increases with age. Papers retrieved in the current study rarely reported the age of tested ani-
mals and the use of this variable was possible only in the case of sheep, where differences
between young (<12 months) and old (>12 months) animals were not observed.

Another important factor is farming system, as increased biosecurity level is able to mini-
mize the contact of farmed animals with wildlife, cats and other potential sources of T. gondii.
This information would be very interesting to rank as a relevant risk factor for T. gondii in ani-
mals/meat. Unfortunately, farming systems were rarely reported in the analysed studies,
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whereas these data are more common in studies dealing with seroprevalence as summarized
elsewhere [15]. In the present work, only the organic farming system for pigs was able to be
examined, and this system resulted in a significantly higher T. gondii prevalence rate in pigs/
pork compared with pigs/pork from conventional pig farming. This result confirms published
evidence, obtained through serological studies [96], and extends it, confirming T. gondii was
significantly more prevalent in pork from organic farms than from conventional meat.

Other moderators classified as methodological were tested. Studies included in the present
review considered different types of matrix and sample composition. We feel that examination
of analysed organ as a moderator would have been very interesting. However, this was not pos-
sible because, often, studies reported that tissues from different organs were pooled within ani-
mals. Where analyses of individual organs were reported, results could not be defined as
independent, impairing both subgroup analysis and moderator analysis.

Sample type was used as variable to differentiate samples composed of a single organ, sam-
ples composed of different organs from the same animal, meat products, assumed to be com-
posed of meat from different animals, and cured meat products, assumed to be less
contaminated. It is arguable that, following the uneven distribution of T. gondii within an ani-
mal [97], the pooling of different organs would increase the risk of positive findings. Moreover,
meat products are considered to be of increased risk since they are, in effect, similar to a pooled
sample [19]. Our analysis was not able to identify such differences according to a univariable
meta-regression, in cattle and pigs. However, in sheep, samples pooled within the animal
resulted in a significantly higher prevalence compared to single organ samples.

As expected, sampling location was found to be unrelated to prevalence because T. gondii
exists along the meat chain, from freshly-slaughtered animals to meat and meat products.
Finally the use of serological screening to detect seropositive samples, which were then further
analysed through direct methods were applied in some studies within the pigs and sheep cate-
gories. There were no significant differences in T. gondii prevalences between studies where
serological screening was used and studies where it was not used.

Goats are commonly considered as a species at high risk of T. gondii contamination and this
has been confirmed by the collected data. However, the evidence is not strong and further anal-
yses are needed. This is true in the case of horses too, as only two studies were retrieved, due,
probably, to the fact that horse consumption is a local phenomenon. However the first isolation
of T. gondii in this species dates back to 1979 [98] and horse meat is sometimes consumed raw
or undercooked. Therefore, the role of this meat-producing animal species in the spread of T.
gondii should no longer be overlooked.

Conclusions
The results of this systematic review show that T. gondii prevalence in meat animals worldwide
is not negligible and that direct detection of this parasite in meat presents a heterogeneous situ-
ation. The relative prevalence of T. gondii in different meat-producing animal species varies
worldwide, and no generalized assumption can be made regarding the role of these animals
and meat thereof in the dissemination of the parasite to humans. This observation, together
with differences in food habits suggests a high variability of human T. gondii infection world-
wide. Further research should better evaluate and report the risk factors of the animal popula-
tion in each study (and in each published paper), which would allow their proper evaluation.
Furthermore, methodological and epidemiological sources of heterogeneity need to be clarified.
In general, raw or undercooked meat from cattle, pigs, sheep, horses and goats is a potential
source of T. gondii and should not be consumed by at-risk groups in the population. Control
options should be studied to lower T. gondii impact on the human population.
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Abstract

Toxoplasma gondii is a protozoan parasite with striking epidemiological success due to its 

ability to rely on several transmission routes. Food, particularly meat, is one of the most 

common infection sources, but the relative importance of commonly consumed meat from 

different animal species is debated and varies across years and countries. In Italy, the most 

widely consumed meats are pork and beef and both are able to harbour T. gondii cysts and 

transmit the parasite. This study estimated the parasite prevalence in cattle and pig meat 

through a nested PCR protocol. Investigated beef originated from emergency slaughter 

outside the slaughterhouse, whereas pork was obtained from a random sampling plan 

implemented at retail level. Results showed the T. gondii prevalence in beef was 20%, very 

high if compared with data from other studies, and a prevalence of 8.7% in pork, in 

agreement with literature data. Results confirm the potential for beef and pork to transmit T.

gondii in Italy and the importance of properly cooking beef and pork before consumption, 

especially for at risk individuals.

Keywords

Pork, beef, PCR, Toxoplasma gondii, meat
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Introduction

Toxoplasma gondii is one of the world’s most successful parasites, with an estimated 

worldwide prevalence up to about 30% among the human population (Flegr, 2013). The 

clinical importance of this disease is largely due to infection occurring during pregnancy or 

in immunocompromised individuals (Montoya and Liesenfeld, 2004). Commonly used 

disease burden indicators, such as DALY (Disability Adjusted Life Years), rank T. gondii at the 

top of foodborne pathogens in the Netherlands (Havelaar et al., 2012) and worldwide 

(Torgerson and Mastroiacovo, 2013).

The complex life cycle of T. gondii recognizes felids as definitive hosts, in which the parasite

can complete its sexual cycle and from there spread millions of oocysts into the 

environment. Although the number of oocysts produced is a key element in environmental 

contamination and consequently in parasite transmission, T. gondii is also able to rely on its 

asexual cycle in almost all warm blooded animals. 

Food, particularly meat, has been shown to be a major route of transmission for human 

infection (Cook et al., 2000; Desmonts et al., 1965). The prevalence of T. gondii in meat-

producing animals varies according to species (Belluco et al., 2016) and farming practices 

(Guo et al., 2015). 

It is well established that sheep have the highest prevalence among common livestock, 

followed by pigs and bovines, the latter showing a low to null prevalence rate (Belluco et al., 

2016; Dubey et al., 2005; Guo et al., 2015). Some authors argued that pork could be an 

important source due to high prevalence and huge consumption (Dubey et al., 2005). Others

support the importance of bovine meat due to a high risk linked to the frequent consumption

of raw or undercooked beef (Opsteegh et al., 2011). Epidemiological studies and risk 

assessment models are needed to solve this issue. Prevalence data from retail meats are 

useful to feed into risk assessment models and have special value for the geographical area 

from which they originate.

The main difficulty in obtaining reliable prevalence data is the laboratory method used. 

Published studies range from cat (gold standard) and mouse bioassays to PCR methods and, 

within PCR, from end-point procedure to the Magnetic Capture Real time technique. The 

Magnetic Capture protocol has very high sensitivity (Opsteegh et al., 2010), whereas other 

techniques, such as the Nested PCR protocol applied in this work, have the advantage of 

being easier to apply, an advantage in the light of their potential use in the food chain for 

diagnostic purposes. 

The aim of this study was to estimate the prevalence of T. gondii in beef and pork produced 

or marketed in the Veneto region through a Nested PCR protocol and to discuss it in the 

context of epidemiological information. 
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2. Materials and methods

2.1 Sampling strategy

2.1.1 Beef sampling plan

The sampling plan for beef was defined to estimate the prevalence of T. gondii in meat from 

animals undergoing emergency slaughter in the Veneto region. T. gondii prevalence of 2.2% 

in European bovines was use to estimate the number of samples needed (Belluco et al., 

2016). The number of samples (n) was calculated in order to demonstrate a prevalence 

lower than 2% with a confidence level of 95% (a) if no positive meat samples were obtained 

according to the following formula, where D is the assumed number of positive animals, P 

the assumed prevalence and a the value due to the selected confidence level (Thrusfield, 

2005). 

n=[1− (1−a )
1
D ](N−

D−1
2 )

Where N, in the case of an infinite population, is estimated as: 

N=
ln (1−a)

ln(1−p)

Following these considerations 149 samples were needed to confirm the prevalence 

obtained from scientific literature. The investigated meat samples originated from 

emergency slaughter outside the slaughterhouse as defined by Chapter VI of Reg. (EC) 

853/2004. This emergency slaughter is practised when animals can’t be moved to the 

slaughterhouses without causing pain to the animals. This sample origin was chosen for 

convenience, as this kind of samples routinely reached the food microbiology laboratory of 

Istituto Zooprofilattico Sperimentale delle Venezie. Moreover, following the amendment of 

Reg. 854/2004 by Reg. 218/2014, this meat, after appropriate laboratory analyses, can be 

marketed freely in the EU thus is not expected to have any different food safety risk than 

meat originating from conventional slaughter. 

2.1.2 Pork sampling plan

The sampling plan for pork was defined to estimate the prevalence of T. gondii in meat at 

consumer level in the Veneto region. To provide wide coverage of the pork market, the 

sampling plan focused on food stores belonging to large-scale retailers active in the Veneto 

region. The total number of samples was divided proportionally among large-scale retail 

firms with more than 15 stores, according to the number of stores (data obtained from the 

Veneto region, 2014).

Given the prevalence of T. gondii in European pork is 8.7% (Belluco et al., 2016), a total of 

140 samples was considered appropriate to estimate the prevalence with a confidence level 

of 95%, according to the following formula where P is the supposed prevalence and D the 

absolute precision (Thrusfield, 2005):

n=
1.962 P (1−P )

D2
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Each store was visited one or more times, from March to June 2015, paying attention to 

avoid collecting duplicate samples by checking the traceability information as reported in 

the meat labels.

2.2 Biomolecular protocol

2.2.1 Extraction procedure

Briefly, 50g of muscular tissue were thoroughly homogenized using T25 digital Ultra Turrax®

(IKA®) and kept refrigerated until DNA extraction. To obtain genomic DNA, 25mg of 

homogenized tissue was added to 180 µl of buffer ATL and 20 µl of proteinase k and 

incubated at 56°C until the complete lysis of muscle fibres. After that, extraction was carried

out using a commercial kit (QIAamp DNA Mini Kit, Qiagen) according to the manufacturer’s 

instructions. 

2.2.2 Amplification technique

Nested PCR reactions were carried out in duplicate as described earlier (Burg et al., 1989) 

with the following primers: outer (5’-GGAACTGCATCCGTTCATGAG-3’ and 5’-

TCTTTAAAGCGTTCGTGGTC-3’) inner (5’-TGCATAGGTTGCAGTCACTG-3’ and 5’-

GGCGACCAATCTGCGAATACACC-3’). First round amplification was carried out as previously 

reported (Burg et al., 1989), whereas the protocol for the nested reaction was slightly 

modified as follows. The PCR reaction contained: 4mM of MgCl2, 0.2 mM of each dNTP, 0.2 

mM of each primer. The number of cycles was reduced to 30. A 2% agarose gel was used for 

fragment separation. 

2.2.3 Sensitivity of the B1 Nested PCR assays for T. gondii DNA detection

To assess the analytical sensitivity of the Nested-PCR assay, 10-fold serial dilutions of  T.

gondii DNA (RH strain, 50174D™, ATCC – American Type Culture Collection) were prepared,

ranging from 4 ng to 0.04 fg per 25 µl PCR reaction. Assuming a content of 112 fg genomic

parasite DNA (Opsteegh et al., 2010) the number of parasites per dilution would be 3.6 ×

104 down to 3.6 × 10-5. The dilution series were tested in duplicate.

2.2.4 Sequencing

Positive samples were processed using a Sanger sequencer ABI 3130 (Applied Biosystems) 

and sequence reader software (Data Collection Software v3.1. Applied Biosystems). The 

sequences obtained were checked against GenBank® sequences and then aligned through 

MultAlin (Multiple sequence alignment with hierarchical clustering) (Corpet, 1988).

2.3 Statistical analysis

Confidence interval and statistical analyses were carried out using R software facilities (R

Core Team, 2012). Differences between categories were assessed using the Z-test test for 

the equality of proportions.
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3. Results

3.1 Sample distribution and prevalence of T. gondii in beef

The 150 beef samples examined had an overall T. gondii prevalence of 0.2 (CI 95%; [0.14-

0.27]). 

The age distribution of animals in the investigated population was very different from the 

distribution of slaughtered animals as shown in figure 1.

The prevalence rate was significantly higher for female than for male (p=0.046) animals, for 

cattle belonging to breeding farms than to fattening farms (p=0.057), and for cattle of 

Italian origin (0.027) if compared with animals of French origin. No linear association was 

found with increasing bovine age.

3.2 Sample distribution and prevalence of T. gondii in pork

One hundred and forty-one samples of pork meat were obtained, 81 fresh meat and 60 meat

preparations. The estimated prevalence of T. gondii in pork was 0.085% (CI 95%; [0.045-

0.144]). No significant differences were observed between fresh meat (7/81) and meat 

preparations (5/60). No analysis of animal origins was possible because this was not 

reported in the label for the majority of the meat preparations and because when it was 

reported, the country of origin was commonly Italy. 

3.3 Sensitivity analysis

When the B1-Nested PCR protocol was applied to the 10-fold dilution series of T. gondii 

genomic DNA, a detection limit of 40 fg of DNA was determined. This corresponded to the 

DNA content of 0.36 of a parasite, calculated according to a total genomic DNA content of 

112 fg per parasite (Opsteegh et al., 2011). This level of analytical sensitivity agreed with 

results from the original method (Burg et al., 1989) and was better than the sensitivities 

obtained by some Real time PCR techniques (Reischl et al., 2003). 

3.4 Sequencing results

Positive samples were confirmed through sequencing, but a consensus sequence was not 

obtained in all cases due to the short amplification product. 

4. Discussion

The role of bovine meat in T. gondii transmission is debatable. The association between 

undercooked beef consumption and T. gondii has been demonstrated in epidemiological 

case-control studies (Cook et al., 2000). Worldwide, a mean T. gondii prevalence of 2.6% (CI 

95% [0.5–5.8]) was recently calculated, ranging from values very close to 0% in North 

America to up to 16% in Central America, depending also on the diagnostic test used 

(Belluco et al., 2016). In particular, an important study carried out in the US resulted in 0 

positives to cat bioassay out of 2,094 tested beef samples originating from the whole 

country (Dubey et al., 2005), and concluded that beef consumption is not an important risk 

factor for human toxoplasmosis in the US. 

In contrast, we determined a high T. gondii prevalence in bovine meat (20%), which is very 

different from prevalences given in the literature and comparable only to South American 

prevalences. To our knowledge, no other studies assessed the prevalence of T. gondii in 
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Italian bovine meat through direct methods. However, according to seroprevalence data, the

prevalence of positive bovines in Italy varies between 11.3% in Sicily to 92% in the North 

(Rinaldi and Scala, 2008). These rates are much higher than rates from all the other 

countries considered in a review with data from several countries worldwide (Tenter et al., 

2000). Seroprevalence alone cannot conclusively explain the high prevalence (20%) found in

the present investigation. However, the applied sampling plan, which investigated bovine 

meat from emergency slaughter outside the slaughterhouse, could partially explain this 

result. This slaughter practice is mainly applied to aged animals often belonging to the dairy 

sector. Only 7% of slaughtered bovines in Veneto in 2015 were more than 24 months old, 

whereas 43% of the bovines in the current study belonged to this age category. Despite no 

linear association being found with age, a higher prevalence was observed among bovines 

more than 24 months old. Moreover, significantly more bovines of Italian origin were T. 

gondii-positive than were bovines from France. Moreover, female bovines had a higher T. 

gondii prevalence than male bovines. This result can be explained by the fact that, in our 

sampled population, bovines of Italian origin and female bovines were more likely to belong 

to dairy farms. The management of dairy farms, at least in some temporal periods in the 

farming process, allows for outdoor farming, increasing the likelihood of bovine contact with 

potential environmental T. gondii sources. 

A recent risk assessment indicated beef was likely the major food source of T. gondii in the 

Netherlands (Opsteegh et al., 2011), not because of high prevalence rates, but because of 

the frequent consumption of this meat without any treatment able to inactivate parasites. 

According to this model, beef meat was responsible for 68% of the meatborne infections, 

followed by sheep (14%) and pork (11%). Beef was also the major transmission vehicle even

when a 0.5% prevalence rate was considered (Opsteegh et al., 2011). Interestingly, meat 

from animals older than 24 months, due to its lower cost, is more likely to be used in the 

preparation of some specific meat products (i.e. hamburger or typical regional food) which 

would be potentially higher risk for consumers. 

However, it is important to bear in mind that PCR is unable to discriminate between viable 

and non-viable parasites, and thus, not all positive samples are necessarily able to cause 

infection. This is why bioassay is recognized as a more reliable technique to predict the 

infectivity of T. gondii-positive meat. However, bioassays are costly, time consuming and 

rely on animal use, this last raising ethical concerns. For these reasons, despite some 

limitations, great interest has been generated for molecular techniques which have 

significant advantages in terms of costs, speed and feasibility.

The prevalence rate for T. gondii in pork in our study was 0.085%, comparable with a 

previous estimation (Belluco et al., 2016). In the current study, the sampling plan was 

designed to provide a reliable estimate of T. gondii in pork meat available for consumers 

from conventional retail channels and confirmed the potential role for this meat if consumed 

raw or undercooked. This result, on one hand, could be an overestimation of the real 

prevalence due to the inability of PCR technique to discriminate between non-viable and 

viable parasites, but on the other hand, it could be an under-estimation due to detection 
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limits of the protocol applied. It is also noteworthy that the risk of T. gondii infection for 

consumers depends strongly on their cooking habits (Cook et al., 2000) and on the amount 

of cysts in the edible tissues. The number of parasites in animal tissues varies widely, 

starting from <0.2 parasites per gram (in hind limb muscles, liver and kidney) as calculated 

under experimental conditions in inoculated pigs (Juránková et al., 2014). However, our 

method was unable to detect such low numbers of parasites. 

To conclude, our results confirm the T. gondii prevalence rate in pork from the Veneto region 

at retail level is not negligible. This supports the importance of consuming this meat well-

cooked, and suggests the need for studies directed towards local cured pork products to 

evaluate their epidemiological potential.

As regards beef, our study highlights a very high prevalence of T. gondii, suggesting that the

consumption of uncooked or rare meat from old bovines could have great potential to cause 

human toxoplasmosis.
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Abstract

Background Toxoplasmosis is a zoonotic disease causing severe diseases in pregnant women 

and immunocompromised individuals. On average, worldwide, around 30% of people are 

seropositive. The oral transmission route is of great significance and food, particularly meat, is 

an important transmission vehicle for T. gondii. However, the role of different food matrices is 

debated.

Objectives The aim of this review was to assess the risk of humans developing acute T. gondii 

infection via the foodborne route.

Study eligibility criteria Case-control studies including acute cases of toxoplasmosis were 

included after literature searches, without time limits, in several databases. All studies 

estimating the risk of acquiring toxoplasmosis after consumption of specific food categories 

were included.

Results Three risk factors proved to be significantly associated with acute T. gondii infection in 

humans: consumption of raw/undercooked meat OR 3.44 (1.29-9.16), consumption of 

raw/undercooked beef OR 2.22 (1.57–3.12) and consumption of raw/undercooked sheep meat 

OR 3.85 (1.85–8.00). Consumption of raw/undercooked pork, raw eggs and unpasteurised milk 

proved to be non-significant risk factors.

Limitations Limitations in the present review and meta-analysis are due to the low number of 

case-control studies available for analysis and by the lack of a search strategy targeting grey 

literature.

Conclusion Consumption of raw/undercooked beef and sheep meat are important risk factors 

for toxoplasmosis. Their consumption should be avoided in order to prevent toxoplasmosis, 

particularly by those in at-risk categories, including pregnant women. 

The review protocol is registered in PROSPERO database (CRD42016043295).

Keywords

Toxoplasma gondii, meat, beef, risk.
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Introduction

In 1965, when the of toxoplasma research (Desmonts et al., 1965) met zoomotherapy (Lowy, 

2010), the scientific community attained the first solid proof of meat’s role in T. gondii 

transmission to humans. However, some aspects of the role of meat in human toxoplasmosis 

remain unclear to this day.

Worldwide, T. gondii prevalences range up about to 30% (Flegr, 2013) and, according to 

disease burden indicators such as DALY, this parasite ranks at the top of foodborne disease-

causing agents (Havelaar et al., 2012; Torgerson and Mastroiacovo, 2013). T. gondii can cause 

abortions or severe foetal malformations when women acquire infection during pregnancy, but 

toxoplasmosis is also an important disease for immunocompromised individuals (Montoya and 

Liesenfeld, 2004). The impact of T. gondii in healthy individuals is still unclear but the parasite 

can encyst in human tissues with a potential for reactivation during strong immunosuppression 

events.

Felids hold a leading role in T. gondii epidemiology, as they are the only definitive host able to 

facilitate the sexual propagation of the parasite. Felids can spread millions of oocysts during 

infection, causing huge environmental contamination as, after sporulation, oocysts become 

infective for hosts accidentally ingesting contaminated products. Risk factors for oocyst 

ingestion are poor hygiene and consumption of contaminated water or vegetables. 

However, the epidemiological importance of bradyzoites from tissue cysts is well known, and 

food is estimated to contribute to a proportion (between 42-61%) of all cases, depending on 

the geographical area (WHO, 2014). Acquisition of infection via the oral route is a fundamental 

event for T. gondii biology. The route is independent from the parasite’s sexual reproduction, 

differentiating T.gondii from other closely related parasites such as Neospora, Sarcocystis, and 

Hammondia, and expediting the infection of almost all warm blooded animals (Su, 2003). The 

acquistion of this alternative transmission route probably explains the evolutionary success of 

T. gondii.

A third infective parasite stage is the tachyzoite, which can be transmitted by animal fluids. 

Milk is considered as a potential source of infection as, during acute animal infection, 

circulating tachyzoites can be transferred from blood to milk (Tenter et al., 2000), but debate 

on this is still ongoing in the scientific community (Boughattas, 2015a; Dehkordi et al., 2013; 

Dubey and Jones, 2014). According to this premise, food plays a critical role in T. gondii 

transmission but the differential role of food sources, particularly within the meat category, has

not been disclosed. 

Oral exposure to T. gondii through food mainly depends on parasite prevalence and people’s 

food consumption habits. T. gondii has been detected in different kinds of meats (Belluco et al.,

2016; Guo et al., 2015), vegetables (Lass et al., 2012) and milk (Dehkordi et al., 2013). 

Whatever the food source is, consumption habits play a critical role, as T. gondii can be 

inactivated through cooking, freezing and salting. 

Epidemiological studies provide the opportunity to assess the risk associated with a particular 

food in the absence of Randomized Control Trials. Among observational studies, cohort and 

case-control study designs offer the opportunity to evaluate the causality associations. 
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In this systematic review, we mapped all relevant literature reporting the result of primary 

observational studies on food-related risk factors associated with T. gondii infection in the 

human population. We then narrowed the review question to case-control studies and, after 

appraising the quality of individual studies, we summed up the evidence using meta-analysis to

estimate the risk of T. gondii infection associated with consumption of different foods.

Materials and methods

Selection of relevant studies

The review question was aimed at estimating the role of different foods (E) on T. gondii 

infection (O) in human population (P). We considered all studies published in peer reviewed 

journals in English, French, Italian, Spanish and Portuguese. No time limits were imposed. 

We searched multiple literature databases: PUBMED, Web of Science core collection - KCI-

Korean Journal Database - Russian Science Citation Index - SCIELO Citation Index, and CAB 

Abstracts with the following search terms: (Toxoplasma OR Toxoplasmosis) AND risk factor.

The last date searched was 7 April 2016. To implement the search process, we used the final 

list of studies to carry out both a backward and a forward reference search using Google 

scholar as a search engine.

The review design is presented in Figure 1. Due to our inability to estimate the available 

number of case-control and cohort studies, we decided not to use study design as an eligibility 

criterion in the first screening but to code this item and to use it to narrow the review question 

in the second stage. The review protocol is registered in PROSPERO database 

(CRD42016043295).

Several criteria were used to select eligible studies beyond language restriction: 1) reported 

data had to belong to primary research; 2) cases had to belong to the human population; 3) 

cases had to be diagnosed with T. gondii infection; 4) food-related risk factors had to be 

considered. In the case of a poorly explicative abstract or in the case of doubt about the 

available data, the study was included.

Thereafter, two reviewers (SB, GS) screened all studies obtained via the initial literature search 

according to Title/Abstract and Full text, independently (parallel method). Disagreements were 

resolved through consensus. One reviewer (SB) collected data from relevant articles and a 

second reviewer (GS) checked the collected data against the original studies (sequential 

method). All studies were coded according to the previously chosen parameters and data were 

recorded. In the case of reviewer doubt about the reported data or in the absence of useful 

effect size, the study authors were contacted via e-mail.

Review question Narrower review 
question

Map

Data 
extraction

Exclude studies

Synthesis

Figure 1 review design
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Data were sought for the following variables: country, study year, population studied, case 

definition, case selection, selection of controls, exposure window, investigated risk factor and 

outcome. Due to our study design, we used the Odds Ratio (OR) as the outcome. 

The review process was carried out using EPPI-4 Reviewer software (Thomas et al., 2010).  

Risk of bias in individual studies

Individual study quality was assessed using a score modified from the Newcastle-Ottawa 

Quality Assessment Scale for Case-Control Studies (GA Wells, B Shea, D O’Connell, J Peterson, V

Welch, M Losos, 1993). Relevant confounders eligible for scoring were age and residency. Both 

statistical adjustment and matching by design were considered. 

In addition to the Newcastle-Ottawa scale, we added two other relevant items; the inclusion of 

an exposure window (a time limitation) for exposure assessment purposes and the inclusion of 

only recent cases of infection. A recent case was defined as a patient with either: 1) a positive 

test result following a negative test result; 2) IgM and IgG positivity, or; 3) with serological 

positivity and low-avidity to IgG. 

Synthesis of results

Meta-analyses were performed using the metafor package (Viechtbauer, 2010) of the statistical

software R (R Core Team, 2012) through the interface developed in EPPI-4 Reviewer, and also 

directly without the interface.

A meta-analysis was run for each food-related risk factor considered, where the number of 

available studies was equal or higher than three and the risk factors investigated were suitable 

for aggregation. 

Some included studies considered more than one risk factor, and thus, outcomes within the 

same studies are not independent. This has been considered where relevant.

All the other results were collected and discussed. The OR was selected as a relevant outcome 

and collected from primary studies according to adjustment for relevant confounders, if 

present. If an OR was calculated in the original study from a subpopulation (e.g. consumption 

of raw beef among people consuming raw meat), the OR was used to extrapolate the result to 

the entire population of respondents. 

ORs from different studies were aggregated through a Random-Effects Model, using Restricted 

Maximum Likelihood (REML) as an estimator, which is considered approximately unbiased and 

relatively efficient. Knapp-Hartung adjustment was applied (Knapp and Hartung, 2003). 

Heterogeneity was assessed using the Q, T2 and I2 (Higgins and Thompson, 2002) parameters. 

Risk of bias across studies

The potential for publication bias was assessed through the Trim and Fill method (Duval and 

Tweedie, 2000). Sensitivity analyses were performed for each meta-analysis, to evaluate the 

potential for studies exerting high influence on the model. Briefly, several parameters were 

examined: the externally studentized residuals, the DFFITS (DiFference in FIT, Standardized), 

the Cook’s distance, the hat function and the covariance ratio. Influence was defined according 

to metafor package criteria (absolute DFFITS value>3p[p/(k-p)], where p is the number of 

model coefficients and k is the number of studies or the lower tail area of a chi-square 

distribution with p degrees of freedom cut off by the Cook’s distance being larger than 50% or 
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hat value>3(p/k)). In addition, studies were excluded one by one from the model to evaluate 

relevant changes in heterogeneity (T2 and Q) and pooled estimate. A P-value<0.05 was 

considered significant in the statistical meta-analysis (Viechtbauer, 2010). 

Results

Study selection

A total of 2215 articles were retrieved according to the search criteria. In total, 285 full text 

articles were considered eligible for the initial review question and mapped particularly against 

study design. After narrowing the review question to include only case-control designs, eleven 

studies were retained and considered eligible for data extraction (Details are shown in Figure 

2).

Fig 2 PRISMA diagram showing the detailed results of the study selection process 
*Web of Science allowed the search to be conducted in multiple databases as specified in the 
Materials and Methods section.
**Two studies were considered eligible but did not report results which could be included.

Study characteristics

All studies included after full-text screening were mapped against relevant characteristics to 

select criteria for narrowing the review question for meta-analytical purposes. The vast majority

of studies mapped in our systematic review were carried out according to the cross-sectional 

design, and targeted pregnant women. Details are reported in Figure 3.

Study characteristics of the 11 case-control studies were collected in detail and are reported in 

Table 1. Briefly, publication year ranged from 1980 to 2014, and studies were carried out in 
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Europe (6), South America (2), Asia (1) or in North America (1). The investigated populations 

comprised pregnant women (5) or the general population (4), whereas in one study only, 

mothers of newborns diagnosed with T. gondii were selected as the target population. Cases 

were always confirmed through serology and in general, all positive subjects were recruited. 

Several food-related risk factors were included in the exposure assessment design of the 

selected studies beyond the six food categories included in meta-analyses. A full list is reported

in Table S1.

Fig 3 circular relation diagram showing the results of mapping as regards study design and 
population. The thickness of the connection line is proportional to the number of studies

Risk of bias within studies

The Newcastle-Ottawa scale was used to evaluate the potential for bias within each included 

study. The case definition was of no concern, as all studies were based on serological findings. 

As regards case selection in general and due to the low number of acute cases identified, all 

positive subjects giving consensus were included. However, in one study (Kapperud et al., 

1996) the number of cases was increased by 22 individuals from sporadic testing. Controls 

were selected within the same community as the cases, with two exceptions (Carellos et al., 

2014; Chiang et al., 2014), where controls were selected from previous programs or from the 

general population. In particular, the study of Carellos et al. (2014) has a major limitation, as 

controls were not serologically tested to exclude T. gondii antibodies, whereas they were in all 

the other studies. Different matching strategies were applied and most studies matched cases 

and controls according to age and/or residency. Details are reported in Table 2. 

Assessments of exposure were always carried out through questionnaire or interview but 

blinding was never reported. In one case, there is no detail about how exposure was assessed 

(Bobić et al., 2007). As regards the non-respondent rate, it was generally reported in the 

included studies.

Synthesis of results

Eleven studies were eligible for meta-analysis, although of these, two studies did not have 

eligible data for inclusion. One study reported data from multivariate analysis accounting for 
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different risk factors (Jones et al., 2009), but our e-mail request to be supplied with univariate 

data garnered no response. The other study reported only one risk factor relevant for inclusion, 

but due to the low number of exposed people did not estimate the OR for such risk (Lopez-

Castillo et al., 2005). Additional data and explanations were obtained by e-mail for two studies 

(Bobić et al., 2007, 2010).

Three food consumption risk factors were significantly associated with T. gondii infection: 

raw/undercooked meat, OR 3.44 (1.29-9.16) (Fig 4), raw/undercooked beef, OR 2.22 (1.57–3.12)

(Fig 5) and raw/undercooked sheep meat, OR 3.85 (1.85–8.00) (Fig 6). No heterogeneity was 

observed according to I2 statistics in the cases of beef and sheep meat consumption, 

confirming the agreement among the results of individual studies. A high heterogeneity of 73% 

was observed within the category raw meat consumption, producing a more uncertain result as

the prediction interval (0.47-25.20) had the potential to generate non-significant results. 

Consumption of raw/undercooked pork (Fig 7), raw milk (Fig 8) and raw eggs (Fig 9) were not 

significantly associated with toxoplasmosis. In the case of raw eggs, slightly different risk 

factors were considered in the studies included in our meta-analysis: eating raw eggs (Baril et 

al., 1999; Kapperud et al., 1996), eating eggs with soft yolk (Carellos et al., 2014), and frequent

consumption of soft-boiled eggs (Stray-Pedersen and Lorentzen-Styr, 1980). Details of 

individual study results are shown in Figure 4, while details of our meta-analysis results are 

reported in Table 3. 

Publication bias analysis was carried out to account for potentially missing studies. Results 

should be interpreted cautiously due to the low k of different meta-analyses. Publication bias 

was observed in the raw meat analysis, with a potential loss of statistical significance, in the 

raw beef analysis, suggesting underestimation of the real OR, and more interestingly in the 

pork analysis, where, according to the Trim and Fill test, missing studies could lead to the 

acquisition of statistical significance.

Sensitivity analyses were performed for meta-analyses involving raw meat and raw beef as 

other meta-analyses included only a limited number of studies. No individual study influenced 

the model according to the statistical parameter evaluated. The multicentric study of Cook et 

al. (2000) contributed heavily to the result of our meta-analysis when it was included, but the 

high appraised methodological quality of this study makes the introduction of potential biases 

unlikely. Meta-analysis on raw/undercooked beef was conducted both with and without the 

study by Carellos et al. (2014) due to methodological concerns we observed in that study. 

When the study was not included, the resultant OR 2.10 (1.21-3.64) did not significantly differ 

from the OR obtained when meta-analysis was conducted on all studies. 
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Author Country
Study 
year

P Case definition
Case number 
and selection

Control number 
and selection

EW

Baril 1999 France 1995 PW

Seroconversion
Negative test to specific 
IgG and IgM followed by 
a positive test

80 
All positives
Giving 
consensus

80
Non random
Matched

1

Bobić 2007 Serbia 2001-05 PW IgG and IgM positivity
53
All positives

53, Non random
Matched

NS

Bobić 2010 Serbia 2004-08 GP
IgG and IgM positivity
IgG avidity low

35
All positives

35, Non random
Matched

NS

Carellos 
2014

Brazil

2006-07 
cases, 
2011 
controls

M
Clinical and serologiocal 
on newborns

175
All positives

278
Random 
(stratified per 
municipalities). 

9

Chiang 
2014

Taiwan
2008-
2013

GP

IgG and IgM positivity 
IgG avidity low or PCR 
positive in blood or body 
fluids

30
All positives 
(from 
surveillance)

224
Random (from 
blood donors)

NS

Cook 2000

Italy, 
Switzerla
nd, 
Denmark,
Norway, 
Belgium

1994-
1995

PW

Negative test to specific 
IgG and IgM followed by 
a positive test or IgG and
IgM positivity, IgG avidity
low, or IgA positive

252
All positives

852
Random (Next 4 
women negative 
for Toxoplasma)

4

Jones 2006 Brazil 2003-04 GP IgG and IgM positivity

All positives
Patients from an
opthalmology 
clinic 

Non random (Next
patient which was
seronegative)

12

Jones 2009 USA 2002-07 GP
IgG and IgM positivity, 
IgG avidity low, or IgA 
positive

All positives
>18 years, 
infection within 
6 months

Random (Among 
T.gondii 
seronegative 
tested in the 
laboratory)

12

Kapperud 
1996

Norway 1992-94 PW
Seroconversion OR dye 
test > 300IU/ml and 
specific IgM

All positive to 
specific program
+ positives from
sporadic testing

Non Random
Matched

4

Lopez-
Castillo 
2005

Colombia
2004-
2005

PW
IgG and IgM or IgA 
positivity or newborn 
with T.gondii

Not described
Non Random
Matched

9

Stray-
Pedersen 
1980

Norway NS PW

Negative test to specific 
IgG and IgM followed by 
a positive test or IgM 
detection

Random 
(specified)

Randomisation 
non described

NS

Table 1 relevant information collected from relevant papers. PW= Pregnant women, 
GP=General Population, M=mothers of positive newborns; NS=not specified, EW= Exposure 
Window (months)

Other results

Results not included in our meta-analyses comprised the multivariate model of Jones et al. 

(2009) and individual ORs from relevant but sporadic food-related risk factors investigated in 

the studies.

The results from the multivariate model identified several risk factors which increased the risk 

of T. gondii infections. These were: eating raw ground beef, eating rare lamb, eating locally 
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produced cured, dried or smoked meat and drinking unpasteurized goat milk (Jones et al., 

2009).

All other relevant but sporadic risk factors, which were not included in our meta-analysis, are 

available in Table S2. In some cases, different risk factors from different studies looked to be 

classifiable in a common category, but due to heterogeneity in the definitions of these factors, 

we finally judged them as not suitable for aggregation. 

Cook et al. (2000) found a significant association between toxoplasmosis and consumption of 

dry or cured meat and salami more than once a week, whereas this association was not found 

in the other study (Stray-Pedersen and Lorentzen-Styr, 1980). Several eating habits were 

investigated by Cook et al. (2009), and participant’s preference for raw/rare beef was 

significantly associated with an increased risk of toxoplasmosis, similarly to actual consumption

of this kind of meat. Among hygienic habits, only infrequent knife washing was significantly 

associated with infection (Kapperud et al., 1996) whereas none of the other eight risk factors 

similarly associated with the potential for cross-contamination were significant. Meat 

consumption and meat consumption frequency were never associated with an increased risk of 

toxoplasmosis. As regards other raw/undercooked meat or fish, data for which were not 

included in our meta-analysis, there was a high variation in the definitions of risk. Therefore, 

details from these studies can be found in Table S2.

Interestingly, tasting meat while cooking was found to be a significant risk factor for 

toxoplasmosis in two studies (Cook et al., 2000; Kapperud et al., 1996), whereas the tasting of 

condiments in general was not significant (Carellos et al., 2014). Finally, as regards the 

consumption of vegetables, acquisition of toxoplasmosis was significantly associated with 

eating raw vegetables or unpeeled fruit (Kapperud et al., 1996) and with eating raw vegetables

away from home (Baril et al., 1999). However, other similar risk factors failed to be significantly

associated with T.gondii infection in four studies (Baril et al., 1999; Carellos et al., 2014; Chiang

et al., 2014; Kapperud et al., 1996).
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 1999 2007 2010 2014 2014 2000 2006 2009 1996 2005 1980
SELECTION
1) Independent case 
definition
2) Representativeness of 
the cases
3) Selection of controls
4) Definition of controls (no 
history of disease)
COMPARABILITY
1) Comparability of cases 
and controls
a) study controls for age*
b) study controls for residency*
EXPOSURE
1)Blinded ascertainment of 
exposure
2) Same method of 
ascertainment for cases and
controls
3) Same non-Response rate
ADDITIONAL ITEMS FOR QUALITY EVALUATION
Is the exposure window 
specified?
Are selected case acutes?
Quality SCORE 8 6 7 4 6 9 8 8 8 9 8

Table 2 Ottawa-Newcastle checklist details for each relevant study with items added for quality
assessment purpose

Fig 4 Forest plot of studies investigating the consumption of raw/undercooked meat as a risk 
factor for T. gondii infection in humans
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Fig 5 Forest plot of studies investigating the consumption of raw/undercooked beef as a risk 
factor for T. gondii infection in humans

Fig 6 Forest plot of studies investigating the consumption of raw/undercooked sheep meat as a
risk factor for T. gondii infection in humans

Fig 7 Forest plot of studies investigating the consumption of raw/undercooked pork as a risk 
factor for T. gondii infection in humans
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Fig 8 Forest plot of studies investigating the consumption of unpasteurized milk as a risk factor
for T. gondii infection in humans

Fig 9 Forest plot of studies investigating the consumption of raw/undercooked eggs as a risk 
factor for T. gondii infection in humans

Food

consumed
K OR (95%CI)

 OR
Prediction

interval
(95%)

T2 (95%CI) I2 PB

Raw meat 5 3.44 (1.29-9.16) 0.47-25.20 0.39 (0.00-5.20) 73% Yes, 2.27 (0.98-5.24)
Raw beef 6 2.22 (1.57–3.12) - 0.00 (0.00–1.50) 0% Yes, 2.35 (1.89-2.91)
Raw pork 4 1.85 (0.72–4.73) 0.40–8.46 0.14 (0.00–6.36) 45% Yes, 1.94 (1.13-3.33)
Raw sheep 4 3.85 (1.85–8.00) - 0.00 (0.00–4.08) 0% No
Raw milk 3 1.56 (0.81–3.02) - 0.00 (0.00–13.52) 0% NC
Raw eggs 4 1.44 (0.97 – 2.14) - 0.00 (0.00 – 1.93) 0% No
Table 3 results of meta-analyses carried out on different risk factors associated with food-
related acquisition of acute T. gondii infection K= number of studies, PB=Publication Bias, 
NC=Not Calculated
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Discussion

Summary of evidence

The consumption of raw/undercooked beef or sheep meat is significantly associated with acute 

T.gondii infection. The recognition of sheep meat as an important risk factor for toxoplasmosis 

is not surprising, since sheep meat has been shown to have, on average, the highest 

prevalence among the commonly eaten livestock species (Belluco et al., 2016). The association

of raw/undercooked beef consumption with toxoplasmosis is more interesting and holds major 

implications. The role of beef in toxoplasma transmission has not always been acknowledged. 

Despite epidemiological evidence, now included in our meta-analysis, showing that the 

consumption of raw/undercooked beef is a risk factor for human toxoplasmosis (Baril et al., 

1996; Cook et al., 2000), and that the seroprevalence in bovines can be as high as 92% (Tenter 

et al., 2000), scepticism exists about the role of this animal species. Experimental studies 

showed that cattle is a poor host for T. gondii (Dubey and Jones, 2008) and in the US, beef has 

been judged as an unlikely source of T. gondii infection for humans (Dubey et al., 2005). Some 

authors support the opinion that conclusive evidence able to correlate toxoplasmosis with the 

ingestion of naturally infected beef is lacking (Dubey, 1986; Kijlstra and Jongert, 2008). An 

outbreak has been reported following consumption of raw beef (Kean et al., 1969), but the 

evidence was judged to be uncertain (Dubey and Jones, 2008). Our result shows that not only is

the overall OR significant, but also that heterogeneity is null and that the effect size of all the 

six individual studies included in the model lie in the same direction. The importance of 

applying the meta-analytical technique in this case is clear, as using the vote counting 

technique would have produced inconsistent evidence, whereas looking at individual effect 

sizes and at their aggregation gives a clear picture. This result is supported by a risk 

assessment model carried out in the Netherlands where beef, even though it had very low 

prevalence levels, proved to be the major source of human cases due to consumption habits 

(Opsteegh et al., 2011).

As regards the general category “raw/undercooked meat” our result is significant but with a 

high heterogeneity and a prediction interval which also included non-significant values. 

However, the high heterogeneity is a logical consequence of the width of this category, with 

the potential for inclusion of different kinds of meat and meat consumption patterns according 

to the population studied. 

Another interesting result occurred for the consumption of raw/undercooked pork; this did not 

prove to be a significant risk factor in the current study. This result is in contrast with published 

literature, as swine are recognized as an important source of T. gondii (Dubey and Jones, 2008; 

Kijlstra and Jongert, 2008; Tenter et al., 2000). However, the inability of the present meta-

analysis to find a significant result could be due to several factors. Firstly, the final estimate of 

the OR had wide confidence intervals and noticeable heterogeneity (44%). Secondly, the low 

number of included studies (4) might not be enough to uncover small effects. This 

consideration is supported by the fact that the effect size of three out of four studies lie to the 

right of the plot, showing a positive but not significant association. Thirdly, the potential for 

missing studies, as disclosed by Trim and Fill, suggests that the real OR could be significant. 
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Finally, the categorization of pork meat in the primary studies is a concern, as it was not always

clear if cured meat was included or excluded, nor how the meat was categorised. In our 

opinion, the consumption of undercooked pork could often be an accidental event due to 

improper cooking, but consumers may not be aware of the cooking status of pork they cook 

and/or eat. 

As regards milk and eggs, no statistically significant evidence of association with toxoplasmosis

was found. The literature contains only sporadic evidence of T. gondii isolation from eggs 

(Pande et al., 1961). 

Milk could be theoretically a source for T. gondii tachyzoites, the infective T. gondii stage 

responsible for mother-to-foetus transmission. However, their low resistance to environmental 

stresses makes tachyzoites unlikely to survive the acidic conditions of the stomach during 

digestion. The available evidence about the potential for T. gondii transmission, highlighting the

potential for goat milk to act as a transmission vehicle, has been discussed elsewhere (Dubey 

and Jones, 2008; Tenter et al., 2000). Significant prevalence rates were found in a study 

conducted in Iran (Dehkordi et al., 2013) but results have been debated (Boughattas, 2015a; 

Dubey and Jones, 2014), and a demand for analysis repetition has been invoked to produce 

more conclusive evidence. A more detailed discussion about milk and T. gondii transmission 

can be found elsewhere (Boughattas, 2015b).

The results from the studies we were unable to include in our meta-analysis (Jones et al., 2009; 

Lopez-Castillo et al., 2005) agree with what we observed and these data, if included, would 

have strengthened our outcomes. The only difference between the results of our meta-analysis 

and other studies concerns milk. However, in Jones et al. (2009), goat milk only was 

considered, whereas in our current systematic review, milk was included as a general category,

and was not species-specific. Finally, we were unable to include some risk factors in the meta-

analysis but which are worthy of more investigation. These are the habit of tasting raw meat 

while cooking and the consumption of vegetables, as these factors were found to be significant 

risks for toxoplasmosis in some studies.

Limitations

Our systematic review has some limitations that have been taken into account during the 

analysis and discussion stages. Firstly, a limitation could be linked to the search strategy, as it 

lacked complex search strings. Although we made every attempt to find additional evidence for

case-control studies not included in the initial search strategy, all such attempts failed. This 

was despite our recourse to forward and backward reference searches of both the included 

studies and of relevant reviews. A second limitation is due to our not searching in the grey 

literature, and this could account for publication bias due to the file drawer effect. However, the

studies we finally included were never based on the evaluation of a single exposure and thus, it

is unlikely that a non-significant result for a relevant risk factor could have influenced the 

publication success of any of the 11 primary studies, despite the potential for publication bias 

which we observed in three meta-analyses. The included studies were of varied quality, and the

main risk of bias at individual study level was linked to exposure assessment for two main 

reasons: the absence of blinding and the recall bias. As regards our meta-analysis, it is 
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noteworthy that the number of studies for each risk factor was limited. In spite of that, the 

major results, concerning the link of toxoplasmosis with consumption of raw/undercooked beef 

or sheep meat, were in agreement among individual studies, as discussed before. On the other 

hand, the low number of studies could have impaired the ability to disclose other significant 

relationships and further studies are warranted in this direction. Another strategy to increase 

the number of studies could be to include cross-sectional designs. In this case, the amount of 

evidence would greatly increase, as the results of our mapping exercise showed. This is an 

interesting solution that should, however, take into account the different effect sizes and also 

the limitation of cross-sectional studies in disclosing causality.

Conclusions

Consumption of raw or undercooked beef or sheep meat is an important source of T. gondii 

transmission to humans as shown by epidemiological studies. It is important to take this risk 

into account, particularly when counselling at-risk individuals, due to the severe effects of 

toxoplasmosis in particular circumstances. In general, proper cooking is needed for meat of all 

species. Moreover, even for healthy individuals, caution must be suggested for the 

consumption of undercooked meat due to the unknown effect of chronically encysted T. gondii 

bradyzoites. Furthermore the role of improper cooking, tasting while cooking and/or 

consumption of cured and/or dried products deserves to be elucidated in future studies on the 

epidemiology of T. gondii in humans.
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Appendix

 Baril Bobić Carellos Chiang Cook Jones Kapperud
Lopez-
Castillo

Stray-
Pedersen

 1999 2007 2010 2014 2014 2000 2006 2009 1996 2005 1980
SELECTION
1) Is the case definition 
adequate?
a) yes, with independent 
validation*

1 1 1 1 1 1 1 1 1 1 1

b) yes (record linkage or 
self reports)
c) no description
2) Representativeness of
the cases
a) consecutive/obviously 
series of cases*

1 1 1 1 1 1 1 1 1 1

b) potential for selection 
biases 

1

3) Selection of controls
a) community controls * 1 1 1 1 1 1 1 1 1
b) hospital controls 1 1
c) no description

4) Definition of controls
a) no history of disease 
(endpoint) *

1 1 1 1 1 1 1 1 1 1

b) no description of source 1
COMPARABILITY
1) Comparability of 
cases and controls
a) control for age* 1 1 1 1 1 1 1
b) control for residency* 1 1 1 1 1 1
c) control for sex 1 1
d) control for gestational 
age

1 1 1

e) control for period 
infection-diagnosis

1 1

EXPOSURE
1) Ascertainment of 
exposure
a) secure record (eg 
surgical records)*
b) interview blind to 
case/control status*
c) interview not blind 
(case/control status)

1 1 1 1 1 1 1

d) written self 
report/medical record only

1 1 1

e) no description 1
2) Same method of ascertainment for cases 
and controls
a) yes* 1 1 1 1 1 1 1 1 1
b) no 1 1
3) Non-Response rate
a) same rate for both 
groups *

1

b) non respondents 
described

1 1 1 1

c) rate different and no 
designation

1 1

ADDITIONAL ITEMS FOR QUALITY EVALUATION
Is the exposure window 
specified?
a) Yes* 1 1 1 1 1 1 1 1
b) No 1 1 1
Are selected case 
acutes?
a) Yes* 1 1 1 1 1 1 1 1 1 1
b) No
Quality SCORE 8 6 7 4 6 9 8 8 8 9 8

Table 4 Details of the Quality appraisal process for each included study *item that assign a 
score point according to Newcastle-Ottawa scale
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Authors Ca Co Category Risk factor OR LL UL
Baril et al. 1999 80 80 Dairy products Eating unpasteurised cheese 0.6 0.3 1.2
Cook et al. 2000 252 852 Dry/cured product Eating dry or cured meat < 1/week 1.2 0.8 1.7
Cook et al. 2000 252 852 Dry/cured product Eating dry or cured meat > 1/week 1.8 1.2 2.8
Cook et al. 2000 252 852 Dry/cured product Eating salami < 1/week 1 0.7 1.6
Cook et al. 2000 252 852 Dry/cured product Eating salami > 1/week 1.6 1.1 2.4
Stray Pedersen  1980 27 85 Dry/cured product Frequently eating cured meat 0.6
Baril et al. 1999 80 80 Eating habits Eating away from home 0.3 .003 1.3
Carellos et al. 2014 175 278 Eating habits Eating away from home pregnancy 0.68 0.38 1.24
Cook et al. 2000 252 852 Eating habits Eating food prepared in microwave 1.3 0.8 2.2
Kapperud et al. 1996 63 128 Eating habits Preferring beef raw or rare 3.5 1.1 10.7
Kapperud et al. 1996 63 128 Eating habits Eating meat at a barbecue 1.1 0.4 2.6
Kapperud et al. 1996 63 128 Eating habits Eating meat prepared in microvawe 2 0.6 6.9
Lopez Castillo 2005 14 34 Eating habits Eating at restaurant 2.16 0.4 11.6
Baril et al. 1999 80 80 Frozen meat Never or rarely freezing meat 2 1 4.2
Carellos et al. 2014 175 278 Frozen meat Eating fresh (not frozen) meat 3.59 2.19 5.89
Cook et al. 2000 252 852 Frozen meat Eating frozen meat 0.8 0.5 1.2
Jones et al. 2006 131 110 Frozen meat Eating frozen lamb 1.89 1.01 3.52
Baril et al. 1999 80 80 Hygienic habits Not washing hands after prep food 3.4 0.75 16.7
Baril et al. 1999 80 80 Hygienic habits Not washing hands before meals ND
Baril et al. 1999 80 80 Hygienic habits Unwashed knives for vegetables 2.5 0.49 12.5
Carellos et al. 2014 175 278 Hygienic habits Washing hands after cooking 0.94 0.58 1.54
Carellos et al. 2014 175 278 Hygienic habits Washing hands before eating 0.63 0.4 0.99
Kapperud et al. 1996 63 128 Hygienic habits Washing hands infrequently 3 0.9 10.4
Kapperud et al. 1996 63 128 Hygienic habits Washing knives infrequently 4.6 1.2 17.6
Kapperud et al. 1996 63 128 Hygienic habits Washing cutting boards infrequently 4 1 15.6
Kapperud et al. 1996 63 128 Hygienic habits Washing countertops infrequently 3.7 0.9 14.6
Baril et al. 1999 80 80 Meat Consumption Eating meat daily 1.3 0.7 2.7
Baril et al. 1999 80 80 Meat Consumption Eating beef ND
Baril et al. 1999 80 80 Meat Consumption Eating lamb 1.3 0.4 3.6
Baril et al. 1999 80 80 Meat Consumption Eating pork 0.7 0.2 2.1
Baril et al. 1999 80 80 Meat Consumption Eating horse meat 2 0.5 9.1
Baril et al. 1999 80 80 Meat Consumption Eating chicken ND
Baril et al. 1999 80 80 Meat Consumption Eating rabbit meat 0.7 0.3 1.6
Baril et al. 1999 80 80 Meat Consumption Eating duck 0.6 0.2 1.6
Baril et al. 1999 80 80 Meat Consumption Eating game 1.8 0.4 8.2
Cook et al. 2000 252 852 Meat Consumption Eating cooked meat < 1/week 0.8 0.3 2.1
Cook et al. 2000 252 852 Meat Consumption Eating cooked meat > 1/week 0.8 0.3 1.9
Kapperud et al. 1996 63 128 Meat Consumption Frequency of meat consumption 1.5 0.7 3
Baril et al. 1999 80 80 Raw/UC meat Eating UC meat outside home 8.3 2.5 43.1
Carellos et al. 2014 175 278 Raw/UC meat Eating raw or UC meat (<1 a week) 1.31 0.58 2.97
Carellos et al. 2014 175 278 Raw/UC meat Eating raw or undercooked chicken ND
Cook et al. 2000 252 852 Raw/UC meat Eating raw sausage < 1/week 1.2 0.7 2
Cook et al. 2000 252 852 Raw/UC meat Eating raw sausage > 1/week 3.2 1.2 9
Cook et al. 2000 252 852 Raw/UC meat Eating other raw/undercooked meat 3.9 1.6 9.5
Kapperud et al. 1996 63 128 Raw/UC meat Eating raw or UC minced meat 3.2 1.5 6.6
Kapperud et al. 1996 63 128 Raw/UC meat Eating raw or undercooked poultry 8.9 1.9 41.5
Kapperud et al. 1996 63 128 Raw/UC meat Eating tartare meat 4.6 1.4 15.1
Kapperud et al. 1996 63 128 Raw/UC meat Eating roast beef 0.7 0.4 1.2
Kapperud et al. 1996 63 128 Raw/UC meat Eating gravet meat 8 0.9 71.6
Jones et al. 2009 89 79 Raw/UC meat Eat raw ground beef 0.78
Jones et al. 2009 88 78 Raw/UC meat Eat raw ground chicken ND
Lopez Castillo 2005 14 34 Raw/UC meat Eating raw/undercooked meat ND
Carellos et al. 2014. 175 278 Raw/UC fish Eating raw or undercooked fish ND
Chiang et al. 2014 30 224 Raw/UC fish Eating raw fish 1.4 0.6 3.5
Chiang et al. 2014 30 224 Raw/UC fish Eating raw oysters 1.5 0.6 3.4
Chiang et al. 2014 30 224 Raw/UC fish Eating raw clams 3.6 1.4 9.3

Table 5 Odds Ratio or eligible risk factors not included in meta-analysis. Ca=case; Co= 
Controls; UC=Undercooked
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Authors Ca Co Category Risk factor OR LL UL

Carellos et al. 2014 175 278 Tasting Tasting condiments while cooking 1.05 0.67 1.65

Cook et al. 2000 252 852 Tasting Tasting meat when cooking < 1/week 2.5 1.5 3.4

Cook et al. 2000 252 852 Tasting Tasting meat when cooking > 1/week 4.7 2.1 10.9

Kapperud et al. 1996 63 128 Tasting Tasting raw meat while preparing food 5.6 2.4 13.1

Baril et al. 1999 80 80 Vegetables Raw vegetables prepared at home ND

Baril et al. 1999 80 80 Vegetables Frequently eating raw vegetables 
outside the home

2.8 1.4 5.9

Baril et al. 1999 80 80 Vegetables Eating garden produce 2 0.5 9.1

Carellos et al. 2014 175 278 Vegetables Eating raw vegetables outside the home 1.1 0.74 1.64

Chiang et al. 2014 30 224 Vegetables Eating uncooked vegetables 1.5 0.5 3.9

Kapperud et al. 1996 63 128 Vegetables Eating unwashed raw vegetables 5.7 2 15.7

Kapperud et al. 1996 63 128 Vegetables Eating unwashed unpeeled fruit 2.4 1.2 4.8

Kapperud et al. 1996 63 128 Vegetables Eating unwashed raw 
vegetables/unpeeled fruit

2.3 1.2 4.5

Kapperud et al. 1996 63 128 Vegetables Eating unwashed berries 1.6 0.7 3.4

Table 5 (continue) Odds Ratio or eligible risk factors not included in meta-analysis. Ca=case; 
Co= Controls; UC=Undercooked
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Survey

Survey on meat preparation habits (cooking and freezing) carried out to

inform the Quantitative Microbial risk Assessment model.

Data on meat consumption habits of the Italian population were acquired through an ad hoc de-

signed survey. Briefly, a questionnaire comprising 23 multiple-choice questions, nine about so-

cio-demographic features and 14 about food manipulation habits, was created. 

The questionnaire was first validated on a subsample of 25 individuals and modified according 

to feedback received. The survey then investigated the frequency of raw/undercooked meat 

consumption and the frequency of consumption of frozen meat for different meat categories 

(beef and veal, pork, pork sausages, horse meat, ovine meat). Raw/undercooked meat was 

defined with photographs showing meat which had undergone various degrees of cooking. A 

temperature of 60° was considered effective for parasite inactivation (Dubey, 1990) and thus, 

qualitative data was obtained to describe the impact of cooking on T. gondii inactivation. Freez-

ing was considered as an effective strategy for parasite inactivation at temperature <8 °C for 

one hour. 

The questionnaire was built through the online free tool Google Forms and disseminated 

through social networks and a mailing list of consumers, available at the Istituto Zooprofilattico 

Sperimentale delle Venezie, for survey purposes.
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Questions

Gender

Male

Female

Date of birth

Italian region of residency

Which is your level of education?

Primary school

Junior High school

High school

Undergraduate degree

Post graduate degree

Do you live alone?

Yes/No

If not, who do you live with?

Do you have any sons?

If yes, how many are under 16 years of age?

What is your occupation?

Student

Employed

Unemployed

Retired

Other

Meat categories investigated in the present survey:

-Bovine meat: veal, beef.

-Swine meat: meat from pigs excluding sausages

-Sausages: fresh products with minced pork.

-Horse meat

-Sheep meat
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Meat consumption after freezing

Management of meat at home: how many times do you eat frozen meat out of the 
total times you eat that kind of meat?

I never eat this
kind of meat

Never
(0/5)

Rarely
(1/5)

Seldom 
(2/5)

Often
(3/5)

Very often
(4/5)

Always
(5/5)

Don’t
know

Bovine meat

Swine meat

Sausages

Horse meat

Sheep meat

Meat consumption after cooking

Management of meat at home: how many times do you eat well-done meat out of 
the total times you eat that kind of meat?
The picture helps to define a well-done piece of meat

                                                                   WELL-DONE

I never eat this
kind of meat

Never
(0/5)

Rarely
(1/5)

Seldom 
(2/5)

Often
(3/5)

Very often
(4/5)

Always
(5/5)

Don’t
know

Bovine meat

Swine meat

Sausages

Horse meat

Sheep meat

How many times do you eat raw bovine meat which has not been previously frozen?

(How many portions are raw out of a total of 10 portions you eat?)

I do not eat bovine meat

I do not eat raw bovine meat

Only in exceptional cases (1/10)

Rarely (1 or 2 times every 10)

Sometimes (3 or 4 times every 10)

Often (5, 6, 7 times every 10)

Very often (8 or 9 times every 10)

Always
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Survey results

Number of respondents: 313

Description of the investigated population

Age (left panel) and geographical (right panel) sex based distribution of respondents to the 
survey on meat consumption habits. Northwest (Piemonte, Lombardia, Liguria), Northeast 
(Veneto, Friuli Venezia Giulia, Trentino-Alto Adige, Emilia Romagna), Center (Toscana, Marche, 
Lazio), South and Islands (Campania, Calabria, Puglia, Sicilia)

Results of meat preparation habits (cooking and freezing) for different
species.

The bar charts describe the frequency of different behaviours (cooking and 
freezing) on the total number of times a specific meat is consumed, according 
to the answers obtained trough the web based survey.

Freezing habits

PIGS

Freezing 
habits
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PORK
SAUSAGES

Freezing habits

BOVINE MEAT

Freezing habits

HORSE MEAT

Freezing habits
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SHEEP MEAT

Freezing habits

Cooking habits

PIGS

Cooking habits

PORK
SAUSAGES

Cooking habits
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BOVINE MEAT

Cooking habits

HORSE MEAT

Cooking habits

SHEEP MEAT

Cooking habits
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Consumption of raw bovine meat
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Abstract

Toxoplasma gondii is a widespread zoonotic parasite with a high seroprevalence among the 

human population and the ability to infect almost all warm blooded animals. Humans can 

acquire Toxoplasma infection from different transmission routes and food plays a critical role as 

it accounts for about half of the total number of infections. Within the food category, meats are 

of the utmost importance, as meat can contain bradyzoites inside tissue cysts, which can 

potentially cause infection after ingestion if parasites are not inactivated through freezing or 

cooking before consumption. In Italy, the most commonly consumed meat animal species are 

bovines and pigs. However, T. gondii prevalences and meat consumption habits for meat of 

these animal species are very different. There is debate within the scientific community 

concerning which of these meat species is the main source of meat-derived human Toxoplasma

infection. The aim of this work was to build a quantitative risk assessment model to estimate 

the yearly probability of acquiring toxoplasmosis infection due to consumption of bovine meat 

and pork in Italy, taking into account different food habits. The model was fitted with the data 

obtained from relevant literature describing: bradyzoite concentrations, portion size, dose-

response curves, prevalence of T. gondii in bovines and pigs, meat consumption and meat 

preparation habits. The model estimated the risk of acquiring T. gondii infection from bovine 

meat consumption was 0.034% and from pork consumption, it was 0.019%. Alternative 

handling scenarios were considered.

Keywords: Beef, veal, pork, risk assessment, toxoplasmosis, meat.
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1. Introduction

T. gondii is one of the most successful parasites at the worldwide level (Flegr, 2013). Oral 

infectivity has been demonstrated to be a key adaptation, giving a selective advantage over 

closely related parasites and ancestral strains (Su, 2003). The ability of T. gondii  to circumvent 

sexual propagation and to infect hosts directly through ingestion of tissue cysts explains the 

importance of meat as a risk factor for foodborne T. gondii infection, as first observed in 1965 

(Desmonts et al., 1965). This particular horizontal route of transmission accounts for almost 

60% of T. gondii infections (WHO, 2014).

T. gondii infection in immunocompetent individuals is considered of minor importance due to 

the absence or mildness of associated symptoms, although the long-term effect of tissue cysts,

particularly when located in the brain region, are poorly understood. On the other hand, 

infection in pregnant women can be a severe event causing death of the foetus or important 

congenital malformations (Montoya and Liesenfeld, 2004). The limited proportion of individuals 

at risk of disease among the human population is probably the reason why control programs 

along the meat chain are lacking in most countries and prevention relies only on the education 

of people in at-risk categories and, in some countries, on serological monitoring during 

pregnancy. Pregnant women are counselled about hygienic precautions in the case of cat 

ownership and about the avoidance of high-risk foods. However, it has been reported that not 

all medical professionals are aware of the most important risk factors for T. gondii infection 

(Kravetz and Federman, 2005). 

Moreover, the role of meats of different animal origins is debated among experts. Sheep meat 

is historically recognized as a highly contaminated meat source (Desmonts et al., 1965), 

together with goat meat and pork, whereas the role of meat from bovines is not always 

acknowledged (Dubey and Jones, 2008; Kijlstra and Jongert, 2008). 

Due to the null prevalence rate determined in the US after a nation-wide study involving more 

than two thousand beef samples, the consumption of raw/undercooked beef was not 

considered as a risk factor for Toxoplasma infection (Dubey et al., 2005). In contrast, starting 

from an estimated 2% T. gondii prevalence in cattle, a QMRA model developed in the 

Netherlands indicated beef was the most important meatborne source of T. gondii infection 

(Opsteegh et al., 2011). Epidemiological evidence is not always consistent, but consumption of 

raw/undercooked beef has been recognized as a significant risk factor (Baril et al., 1999; Cook 

et al., 2000). 

The ingestion of raw/undercooked pork is generally emphasized as an important risk factor, due

to the prevalence rates in pigs being higher than in bovines (Belluco et al., 2016) and to the 

isolation of infective parasites from pork meat (Dubey et al., 2005). Bovine meat and pork are 

the most commonly consumed meats in Italy (Leclercq et al., 2009), but evidence about their 

importance as risk factors for human Toxoplasma infection in Italy are lacking. 

The aim of this study was to quantify the yearly probability that an Italian consumer would be 

infected with T. gondii due to the consumption of fresh or previously frozen meat from pigs and 

cattle. Quantification took into account parasite prevalence and concentration in meat, 

consumption data, consumption habits and the dose-response relationship.  
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2. Materials and methods

2.1 Model building

This model was inspired by the structure of the Quantitative Microbial Risk Assessment model 

for meatborne T. gondii infection developed in the Netherlands (Opsteegh et al., 2011) and 

modified according to available data. The model design with input parameters and 

intermediate outputs is depicted in Figure 1. 

Figure 4: structure of the T. gondii risk assessment model presented in this work

2.2 Data sources and calculations

2.2.1 Selection of meat species and types

Meats were selected for inclusion in the model according to data availability. Commonly 

consumed livestock in Italy comprises cattle and calf, pigs and poultry, whereas meat from 

sheep, goats and horses follows more local, smaller consumption patterns. Consumption data 

were obtained from the 2005-06 Italian National Food Consumption Survey INRAN-SCAI 

(Leclercq et al., 2009). Poultry were not included in the model because of the low expected 

prevalence and because poultry meat is generally consumed well-cooked. Horse, goat and 

sheep meat were not included because their consumption data were available at an aggregate 

level in the “other meat” category. The final model included consumption data related to fresh 

and previously frozen unprocessed meat from cattle and pigs, and excluded all data related to 
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offal and to meat products (e.g. salami, ham, bacon-style meats, fermented sausages, dried 

meat and preserved meat).

2.2.2 Number of bradyzoites per unprocessed meat portion

Few studies are available in the literature estimating the concentration of bradyzoites in meat. 

To our knowledge, data are available for sheep heart (Opsteegh et al., 2010), goat muscle 

(Juránková et al., 2013) and pig muscle (Juránková et al., 2014). As our model included only 

pigs and cattle, we chose to use the bradyzoites concentrations as estimated for pigs, for both 

meat categories. For our purposes, only the subgroup of data referring to muscle tissues were 

retained. Selected data were obtained from different tissues (left forelimb, right forelimb, left 

hindlimb, right hindlimb and dorsal muscle) isolated from five pigs, experimentally infected 

with T. gondii (Juránková et al., 2014). The selected data were used to fit a distribution using 

@Risk 6 Software. A Weibull distribution (Weibull (0.85115; 54.584)) was selected according to 

the Kolmogorov-Smirnov statistic among a set of possible solutions.

The number of bradyzoites per gram was extrapolated to the portion size to obtain the number 

of parasites per meat portion. The portion size was 100 g, as suggested by Italian National 

Guidelines (SINU, 2014). 

2.2.3 Dose-response curve

The definition of a dose-response curve for T. gondii infection in humans is challenging. 

However, the Dutch QMRA model (Opsteegh et al., 2011) and also a recent paper defining a 

dose-response curve for T. gondii in humans (Guo et al., 2015b) agreed in using data obtained 

from an investigation carried out in a mouse model where the infectivity of different T. gondii 

strains was assessed. The difference in the final dose-response curves produced by the two 

studies is explained by the application of a scaling factor. Opsteegh and colleagues applied the 

original mouse-based curve, whereas Guo and colleagues defined a scaling factor of 0.003 

(beta-Poisson model) to account for differences between humans and mice. Our model (the 

base model; see below) was fitted using the final curve obtained by Guo through the beta-

Poisson model. 

2.2.4 Prevalence of T. gondii in pigs and cattle

Prevalence estimates vary across countries and years and are influenced by farming systems 

and the presence of other risk factors (Belluco et al., 2016; Guo et al., 2015a). To account for 

potential differences, we chose to use estimates from a recent meta-analysis of T. gondii 

prevalences in common livestock species, selecting the estimates resulting from studies carried

out in Europe: 2.2% (CI 95% 0-8.7%) for cattle and 8.7% (CI 95% 2.7-17.2%) for pigs (Belluco et

al., 2016).

2.2.5 Meat consumption data 

Meat consumption data were obtained from the 2005-06 Italian National Food Consumption 

Survey INRAN-SCAI. This cross sectional survey was carried out on randomly selected 

households. The final study sample comprised 3328 respondents (1501 males and 1822 

females) of all ages belonging to 1329 households (Leclercq et al., 2009). Mean (SD), median, 

95th and 99th percentiles for consumption data (grams/day) were available in detail according to 

residency (geographical area) and sex (Input data in Appendix A). The survey reported 
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consumption data both for the total population and for only the actual consumers (respondents

who actually consumed the food item). The latter estimate was selected for inclusion in our 

model. The most appropriate continuous distributions using known quantiles were calculated 

for bovine meat and pork (“beef and veal not preserved excluding offal” and “pork not 

preserved, excluding offal” within the “meat, meat products and substitutes category”), and 

separately for male and female consumers. This analysis was performed in the R environment  

using the rriskDistributions package (R Core Team, 2012).  The resulting distributions were 

selected according to the Kolmogorov-Smirnov statistic among a set of possible solutions.

The estimated number of meat portions consumed per year was calculated by multiplying 

values resulting  from these distributions (g/day) by 365.25 and dividing them by the 

recommended portion size (100g) (SINU, 2014).

2.2.6 Meat consumption habits survey

Data on meat consumption habits of the Italian population were acquired through an ad hoc 

designed survey. Briefly, a questionnaire comprising 23 multiple-choice questions, nine about 

socio-demographic features and 14 about food manipulation habits, was created. The 

questionnaire was first validated on a subsample of 25 individuals and modified according to 

feedback received. The survey then investigated the frequency of raw/undercooked meat 

consumption and the frequency of consumption of frozen meat for different meat categories 

(beef and veal, pork, pork sausages, horse meat, ovine meat). Raw/undercooked meat was 

defined with photographs showing meat which had undergone various degrees of cooking. A 

temperature of 60° was considered effective for parasite inactivation (Dubey et al., 1990) and 

thus, qualitative data was obtained to describe the impact of cooking on T. gondii inactivation. 

Freezing was considered as an effective strategy for parasite inactivation at temperature <8 °C

for one hour.

The questionnaire was built through the online free tool Google Forms and disseminated 

through social networks and mailing lists of consumers available at the Istituto Zooprofilattico 

Sperimentale delle Venezie for survey purposes.

A descriptive analysis of data about the frequency of raw/undercooked meat consumption and 

the frequency of previously frozen meat consumption acquired through the ad hoc survey was 

carried out. Thus, the resulting information was translated into @Risk distributions (one for 

each meat species) to model the set of possible values and corresponding probabilities. 

Seroprevalence

Because T. gondii infection produces long-life immunity, a seropositive subject is no longer 

susceptible to the infection. A seroprevalence estimate of 24.4% (Mosti et al., 2013) was used 

to obtain the probability of new infections in the Italian population. Thus, the final probability of

infection was multiplied by a factor of 0.756. 

2.3 Yearly probability of infection

The final base model was obtained by integrating the previously described data to obtain an 

estimate of the distribution of the yearly probabilities of acquiring T. gondii infection from both 

pork and bovine meat consumption. The final distributions were obtained by a Monte Carlo 
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simulation with 200000 iterations performed with @Risk 6 Software. For each iteration, the 

model extracts a value from the bradyzoite concentration distribution, and from this value, the 

dose-response equation calculates the probability of infection for an infected meat portion. The 

resulting probability is then multiplied by the prevalence (0.022 for cattle, 0.087 for pigs). In 

the following steps, the model extracts a male or female profile from the consumption 

distribution and values corresponding to number of meat portions consumed per year, freezing 

habits and cooking habits. The last two input parameters are expressed in terms of frequency 

of effective cooking and freezing which induce parasite death. The value resulting from the 

multiplication of these three quantities by the previously calculated factor (i.e. probability x 

prevalence) is then inserted in a binomial model to calculate, for each iteration, the probability 

that at least one positive (infection causing) event per year occurs. This probability is finally 

multiplied by 0.74, which is the proportion of the Italian population susceptible to Toxoplasma 

gondii infection, to produce the yearly probability of infection.

Finally, the yearly probability of infection was multiplied by the total Italian population 

according to the 2011 census data (ISTAT, 2016) to obtain an estimate of the number of new 

toxoplasmosis cases according to the model. Two values were selected for study; the total 

present population and the adjusted population after removal of children (<5 years) and aged 

people (>65 years).

As congenital toxoplasmosis is the most severe consequence of parasite infection, especially 

when acquire during the first trimester, the model was modified to obtain an estimate of the 

probability that a pregnant woman could acquire infection during pregnancy or during the first 

trimester. To obtain these estimates data inputted in the base model were limited to 

consumption data reported by women, limited to a period of nine or three months, assuming a 

seronegativity at the beginning of this period, and to meat preparation habits reported by 

women aged between 20 and 50 years. Finally, the model also took into account the probability

that vertical transmission from mother to foetus occurs. The probability of vertical transmission

was 9% in the first trimester, 31% in the second and 59% in the third (Montoya and Liesenfeld, 

2004). The resulting probability was multiplied by the number of children born alive in Italy in 

2014 (494,550) to obtain the predicted yearly number of vertically transmitted cases. 

2.4 Alternative scenarios

Alternative scenarios were considered to account for the uncertainty of some parameters. In 

particular, the following three modifications were considered to assess their impact on the final 

estimates:

- Meat consumption and preparation habits were restricted by geographic region to only 

the northeast of Italy. This was because most survey respondents lived in the Veneto 

region and a more precise estimate could be obtained with this subset of data.

- The prevalence of T. gondii in cattle was lowered to 0.5% as suggested by a previous 

model (Opsteegh et al., 2011). This accounted for the potential overestimation of 

prevalence due to the frequent recourse to PCR in primary studies contributing to the 

prevalence estimate included in our model.
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- An unscaled mouse dose-response curve was applied to account for the uncertainty in 

the calculation of the scaling factor and to obtain results comparable with the Dutch 

model (Opsteegh et al., 2011).

2.5 Sensitivity analysis

To investigate the elements which most affected the total probability estimate, a sensitivity 

analysis was performed using @Risk 6 Software, separately for pork and bovine meat. A 

regression analysis was carried out. Sampled input variable values were regressed against 

output values, leading to a measurement of sensitivity by input variable. With this analysis, 

regression coefficients were calculated between the output values and each set of sampled 

input values. 

3. Results

3.1 Meat consumption habits survey

A total of 313 responded to the survey about meat consumption habits, 184 (59%) women and 

129 (41%) men. The majority of respondents were aged between 20 and 40 years (71%) and 

none was below 20 years. Due to the snowballing distribution of the survey, a large proportion 

of respondents were from the northeast part of Italy. Details about sex, age and residency 

distribution are shown in Figure 2. 

The distribution of respondents according to meat consumption and preparation habits is 

shown in Figures 3 and 4, respectively. Freezing habits are almost comparable between the two 

meat categories but a noticeable difference exists in the case of cooking habits (Figure 3). 

About 70% of the respondents consume bovine meat raw or undercooked at least once out of 5

times, whereas in the case of pork, less than 20% of respondents declared this habit. Detailed 

results of the discrete distributions are reported in Appendix B.

Figure 5: age (left panel) and geographical (right panel) sex based distribution of respondents 
to the survey on meat consumption habits. Northwest (Piemonte, Lombardia, Liguria), 
Northeast (Veneto, Friuli Venezia Giulia, Trentino-Alto Adige, Emilia Romagna), Center (Toscana, 
Marche, Lazio), South and Islands (Campania, Calabria, Puglia, Sicilia)
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Figure 6: distribution of respondents according to freezing and cooking habits regarding pork 
(left) and bovine meat (right) consumption.

Figure 4: distribution of pork (left panel) and bovine meat (right panel) consumption habits 
according to sex. Female=full line, Male=dotted line.

3.2 Models

3.2.1 Base model

The base model estimated a mean yearly probability of T. gondii infection of 0.019% caused by 

pork and 0.034% caused by bovine meat. This predicts a mean number of 8,460 and 15,151 

infections per year from pork and bovine meat, respectively, among the Italian population 

between 5 and 65 years of age (Table 1). The contribution from bovine meat consumption to 

human infections resulted to be 1.8 times higher than contribution form pork consumption.

The mean yearly probability of congenital T. gondii infection was 0.0218% caused by pork and 

0.0718% caused by bovine meat, with the estimated number of newborns with congenital 
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toxoplasmosis being 10 and 32, respectively, among all newborns in Italy (based on live births 

in 2014; ISTAT).

Limiting the risk to three months, which were assumed to correspond to the first trimester of 

pregnancy, resulted in mean yearly probabilities of 0.0072% and 0.0239% for pork and bovine 

meat, respectively, with the predicted number of cases being 1 and 3, respectively.

Results of the sensitivity analysis for the base model are reported in Figure 5, all other results 

of sensitivity evaluations are available in Appendix C.

3.2.2 Alternative scenarios

When consumption and preparation habits were considered only for the northeast part of Italy, 

variations were observed in the relative contribution of the two meat species considered. In this

case, the number of T. gondii infections attributed to bovine meat was 2.3 times higher than 

the number caused by pork (Table 1).

In the scenario considering a 0.5% prevalence value of T. gondii infection in cattle, a switch of 

the most important meat category from bovine meat to pork was observed. In this case, pork 

accounted for 2.4 times more cases of Toxoplasma infection than bovine meat (Table 1).

The third alternative scenario used an unscaled mouse dose-response relationship in which 

original data from a mouse infection model were incorporated. In this case, the relative 

contribution of pork and bovine meat was similar to that calculated by our base model (Table 

1). However, a marked increase in the estimated number of T. gondii infections per year was 

predicted. 

Scenario  
Mean

probability of
infection

Mean number of
infections per year

Mean number of
infections per year

(age adjusted)

Base
Pork 0.019% 11426 8460

Bovine
meat

0.034% 20461 15151

Northeast
Pork 0.014% 1664 1219

Bovine
meat

0.032% 3801 2784

Cattle 0.5%
Pork 0.019% 11426 8460

Bovine
meat

0.008% 4657 3448

Unscaled mouse 
dose-response

Pork 2.973% 1797357 1330892

Bovine
meat

6.712% 4058234 3005007

Table 1: results of the base model and the alternative scenarios. Adjustment was made to 
consider only the population between 5 and 65 years.

Scenario Base Northeast Cattle 0.5%
Unscaled mouse
dose-response

Minimum 0 0 0 0

Maximum 0.138729 0.1012829 0.1386718 1.50873

Mean 0.000527 0.00046639 0.000266009 0.09685402
Std 
Deviation

0.001415 0.001178448 0.001106178 0.1519947
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Variance 2E-06 1.38874E-06 1.22363E-06 0.02310238

Skewness 13.49048 11.02676 22.89889 2.379472

Kurtosis 628.6025 411.8377 1585.34 9.465725

5% Perc 0 0 0 0

50% Perc 9.73E-05 8.60914E-05 2.38293E-05 0.02954687

95% Perc 0.002369 0.00211899 0.001173283 0.4353082
Table 2: output parameters of the base model and of alternative scenarios.

Figure 5: output of the sensitivity analysis carried out on the base model for pork (left panel) 
and bovine meat (right panel).

4. Discussion

The present study aimed to estimate the yearly probability of an Italian consumer acquiring T. 

gondii, through the consumption of pork or bovine meat. This parasite can be acquired by food 

other than pork and bovine meat, and also by different routes, and thus, our result was not 

expected to explain the whole seroprevalence rate estimated for the entire Italian population. 

The model resulted in a yearly probability of infection of 0.019% and 0.034% for pork and 

bovine meat, respectively. This would result in 8,460 and 15,151 new cases of Toxoplasma 

infection caused by pork and bovine meat, respectively, among the Italian population between 

five and 65 years of age. 

Interestingly, bovine meat proved to be responsible for twice the number of infections that pork

produced. The role of bovine meat is surprising if compared to what is commonly supported 

within the scientific community, where bovine meat’s importance in T. gondii transmission is 

not always acknowledged (Dubey and Jones, 2008; Hofhuis et al., 2011; Kijlstra and Jongert, 

2008). However, if this result is compared with recent studies, with different approaches to the 

topic, the initial surprise can be replaced by increasing certainty that bovine meat is an 

important source of T. gondii infection. T. gondii prevalence has been shown to be 2.6% 

worldwide (2.2% in Europe) (Belluco et al., 2016). A multicentre case-control study carried out 

in Europe identified the consumption of raw or undercooked bovine meat as a significant risk 

factor OR 2.4 (1.6-3.4), whereas consumption of raw or undercooked pork was unable to be 

identified as a risk factor for infection (Cook et al., 2000). This result is not isolated in the 

scientific literature, as was confirmed by other case-control studies (Baril et al., 1999; Carellos 

et al., 2014). In addition to this observational evidence, a recent Quantitative Microbial Risk 
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Assessment Model, estimating the number of T. gondii infections in humans in the Netherlands,

identified beef as the most important meat source contributing to 68% of human cases 

(Opsteegh et al., 2011). In contrast, Dubey and colleagues, after a nationwide bioassay-based 

survey of meat products sold in the USA, estimated the risk of infection due to beef 

consumption near 0%, due to the inability to find positive meats (Dubey et al., 2005). 

Obviously, with 0% prevalence, the risk is null, but it is noteworthy that in the present model, 

the probability estimate for beef is strongly correlated to the prevalence value due to the lower 

(compared with pork) impact of cooking as a protective factor (Figure 3). In our pork model, 

cooking habits, and not prevalence, are ranked in first place according to the regression-based 

sensitivity analysis. This observation confirms the common perception, that pork should be 

properly cooked, and demonstrates the efficacy of cooking in reducing the probability of T. 

gondii infection. Unfortunately, cooking is not always applied to beef in Italy, as raw or rare 

beef is considered a delicacy and is consumed in different forms and dishes. 

The most severe consequences of T. gondii infection occur in women acquiring acute infection 

during pregnancy. The parasite can cross the placenta with a probability of success that 

increases with the advance of pregnancy, rising from 9% in the first trimester to 59% in the last

one. The severity of clinical manifestations showed an inverse temporal trend, as earlier 

infections can cause more serious consequences on foetus health (Montoya and Liesenfeld, 

2004). Our model, when modified to examine the role of pork and bovine meat in 

toxoplasmosis in unborn foetuses, showed a very low probability of congenital infection in Italy 

due to pork (0.0218% - 10 cases) and bovine meat (0.0718% - 32 cases). A three year cohort 

study carried out in Italy from 2011 to 2013 on 11,147 infants (23.5% from non-native women) 

resulted in an incidence rate of 0.77% and a probability of congenital toxoplasmosis of 0.06%. 

All cases of congenital toxoplasmosis were in non-native pregnant women (Capretti et al., 

2014). The incidence estimated from our base model was higher compared to the incidence 

from that cohort study, although the fact that the present model estimates only cases due to 

consumption of fresh or previously frozen pork or bovine meat meat should be taken into 

account. However, an overestimation of true rates was expected because pregnant women are 

likely to have different meat preparation behaviour, with an avoidance of raw meat.

To better investigate the risk difference between bovine meat and pork consumption, beyond 

the suggestions obtained by sensitivity analysis, alternative scenarios were created. The 

northeast scenario was restricted to input data belonging to this geographical area (food 

consumption and meat preparation habits), and confirmed the results of the base model with a 

slight difference in the relative contributions, even higher for bovine meat in this case. 

The second alternative scenario considered a lower T. gondii prevalence in cattle (0.5%). This 

was to account for a potential overestimation of the real prevalence, because the 2.2% 

prevalence resulted from a meta-analysis of European studies in which biomolecular 

techniques, unable to differentiate between dead and live parasite, were also used (Belluco et 

al., 2016). Moreover, T. gondii persistence in bovine tissues has been estimated to be low 

(Dubey and Thulliez, 1993) and the parasite is not necessarily able to survive along the entire 

production cycle. A prevalence of 0.5% was chosen according to the Dutch model (Opsteegh et 
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al., 2011) and to be near to 0%, as suggested by Dubey and colleagues (Dubey et al., 2005). 

Because prevalence, as previously stated, was the top influencer in the model, its 4-fold 

reduction led to a switch in the relative contribution between pork and bovine meat, with pork 

now predicted to be 2.4 times more likely to cause infection than bovine meat. This could be a 

more credible estimate for most experts, but it is not confirmed by relevant epidemiological 

literature (Baril et al., 1999; Carellos et al., 2014; Cook et al., 2000; Opsteegh et al., 2011), as 

we described above. 

Finally, a different dose-response curve was used, similar to that applied in the Dutch model. 

This curve was obtained from previous work using a mouse model of infection, is not adapted 

to humans, and is unscaled, whereas the curve used for our base model was scaled according 

to previous estimates (Guo et al., 2015b). This unscaled model resulted in similar estimates of 

the relative contributions of pork and bovine meat to those produced by our base model. 

However, this unscaled model also produced extremely high yearly probabilities of infection, 

which are not justified by the epidemiological data on T. gondii prevalences in Italians (Mosti et 

al., 2013). This overestimation is in line with the dutch model, but it was well controlled by our 

base model, underlining the likelihood that the scaled dose-response curve better models the 

real scenario.

The higher contribution that bovine meat consumption makes towards T. gondii infections in 

humans could also be explained by some of the data we chose as model inputs. The 

concentration of bradyzoites in muscles was obtained from an experimental study carried out 

in pigs (Juránková et al., 2014), since no similar study in cattle was available. However, it is 

possible that bovine muscle holds a different concentration of bradyzoites than does swine 

muscle. The dose-response curve by Guo et al.  (2015) allowed for a plausible probability 

estimate and, according to our sensitivity analysis (Figure 5, Appendix C), was ranked as an 

important influencer only in the scenario where cattle had a lower prevalence. Obviously, as 

can be seen by the comparison between the base model and the unscaled mouse dose-

response model, the dose-response curve greatly affects the predicted number of cases, but 

not the relative contribution of the two investigated meat species.

In the current study, consumption data was not among the main determinants of model output,

whereas meat preparation strategies played an important role. In particular, when the risk of 

infection from pork was modelled, cooking habits were correlated with predicted T. gondii 

infections. This well explains how, in the presence of a far from negligible T. gondii prevalence 

in meat (8.7% in pork), the consumer phase could well be the main mitigation strategy to 

reduce the resultant risk of infection. As far as pork is concerned, it is also possible to speculate

that survey results could have underestimated the true consumption of undercooked pork. In 

fact, while bovine meat is voluntarily keep rare in many meat dishes, pork is probably eaten 

undercooked as an accidental event, leaving the consumer unaware of its real status, and 

believing that the pork they are consuming is well-cooked. 

These previous considerations explain the potential uncertainties of the model. Moreover, it is 

important to bear in mind that the current study was aimed at estimating the yearly probability

of infection due to the consumption of fresh or previously frozen pork and bovine meat meat, 
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and does not account for the contribution of other important sources of T. gondii infection: 

sheep and goats. In addition, preserved pork meat (ham, salami, etc.) were excluded from both

the meat consumption data and meat consumption habits. Thus, the role of pork and all pork-

derived products could have been underestimated.

Despite some limitations, the model indicates the potential for bovine meat to act as a source 

of human toxoplasmosis, even in the scenario where bovine meat has a low prevalence of this 

parasite. In fact, the model predicts that bovine meat plays a more significant role in human T. 

gondii infections than does pork. Results also highlighted the importance of cooking habits in 

limiting the number of infections, particularly in the case of pork that has higher T. gondii 

prevalence than other meats. Lowering the T. gondii prevalence at farm level and counselling 

consumers about the important of domestic mitigation strategies (cooking and freezing) are 

the most suitable prevention options. More studies are warranted in the light of estimating the 

role of preserved meats, widely consumed in Italy, and to account for different food sources 

such as sheep, goats, horses and vegetables as transmission routes. 

98



References

Baril, L., Ancelle, T., Goulet, V., Thulliez, P., Tirard-Fleury, V., Carme, B., 1999. Risk factors for 
toxoplasma infection in pregnancy: a case-control study in France. Scand. J. Infect. Dis. 31, 
305–309.

Belluco, S., Mancin, M., Conficoni, D., Simonato, G., Pietrobelli, M., Ricci, A., 2016. Investigating 
the Determinants of Toxoplasma gondii Prevalence in Meat: A Systematic Review and 
Meta-Regression. PLoS One 11, e0153856. doi:10.1371/journal.pone.0153856

Capretti, M.G., De Angelis, M., Tridapalli, E., Orlandi, A., Marangoni, A., Moroni, A., Guerra, B., 
Arcuri, S., Marsico, C., Faldella, G., 2014. Toxoplasmosis in pregnancy in an area with low 
seroprevalence: is prenatal screening still worthwhile? Pediatr. Infect. Dis. J. 33, 5–10. 

Carellos, E.V.M., de Andrade, G.M.Q., Vasconcelos-Santos, D.V., Januário, J.N., Romanelli, R.M.C.,
Abreu, M.N.S., da Silva, F.M., Loures, I.R.C., de Andrade, J.Q., Caiaffa, W.T., 2014. Adverse 
Socioeconomic Conditions and Oocyst-Related Factors Are Associated with Congenital 
Toxoplasmosis in a Population-Based Study in Minas Gerais, Brazil. PLoS One 9, e88588. 
doi:10.1371/journal.pone.0088588

Cook, A.J.C., Gilbert, R.E., Buffolano, W., Zufferey, J., Petersen, E., Jenum, P.A., Foulon, W., 
Semprini, A.E., 2000. Sources of toxoplasma infection in pregnant women : European 
multicentre case-control study. BMJ 321, 142–147.

Desmonts, G., Couvreur, J., Alison, F., Baudelot, J., Gerbeaux, J., Lelong, M., 1965. Etude 
épidémiologique sur la toxoplasmose: de l’influence de la cuisson des viandes de 
boucherie su la frequence de l’infection humaine. Rev. Fr. études Clin. Biol. 952–958.

Dubey, J.P., Hill, D.E., Jones, J.L., Hightower, A.W., Kirkland, E., Roberts, J.M., Marcet, P.L., 
Lehmann, T., Vianna, M.C.B., Miska, K., Sreekumar, C., Kwok, O.C.H., Shen, S.K., Gamble, 
H.R., 2005. Prevalence of viable Toxoplasma gondii in beef, chicken, and pork from retail 
meat stores in the United States: risk assessment to consumers. J. Parasitol. 91, 1082–
1093.

Dubey, J.P., Jones, J.L., 2008. Toxoplasma gondii infection in humans and animals in the United 
States. Int. J. Parasitol. 38, 1257–1278. doi:10.1016/j.ijpara.2008.03.007

Dubey, J.P., Kotula, A.W., Sharar, A., Andrews, C.D., Lindsay, D.S., 1990. Effect of High 
Temperature on Infectivity of Toxoplasma gondii Tissue Cysts in Pork. J. Parasitol. 76, 201. 
doi:10.2307/3283016

Dubey, J.P., Thulliez, P., 1993. Persistence of tissue cysts in edible tissues of cattle fed 
Toxoplasma gondii oocysts. Am. J. Vet. Res. 54, 270–3.

Flegr, J., 2013. How and why Toxoplasma makes us crazy. Trends Parasitol. 29, 156–163. 
doi:10.1016/j.pt.2013.01.007

Guo, M., Dubey, J.P., Hill, D., Buchanan, R.L., Gamble, H.R., Jones, J.L., Pradhan, A.K., 2015a. 
Prevalence and Risk Factors for Toxoplasma gondii Infection in Meat Animals and Meat 
Products Destined for Human Consumption. J. Food Prot. 78, 457–76. doi:10.4315/0362-
028X.JFP-14-328

Guo, M., Mishra, A., Buchanan, R.L., Dubey, J.P., Hill, D.E., Gamble, H.R., Jones, J.L., Du, X., 
Pradhan, A.K., 2015b. Development of Dose-Response Models to Predict the Relationship 
for Human Toxoplasma gondii Infection Associated with Meat Consumption. Risk Anal. 
doi:10.1111/risa.12500

Hofhuis, A., W, V.P., Duynhoven, V., H., Y.T.P., M, N.C.D., Mollema, L., Klis, V. der, M, F.R., 
Havelaar, A.H., Kortbeek, L.M., 2011. Decreased prevalence and age-specific risk factors 

99



for Toxoplasma gondii IgG antibodies in The Netherlands between 1995/1996 and 
2006/2007. Epidemiol. Infect. 530–538.

ISTAT, 2016. Resident population on 1st January [WWW Document]. I.stat, your direct access to 
Ital. Stat.

Juránková, J., Basso, W., Neumayerová, H., Baláž, V., Jánová, E., Sidler, X., Deplazes, P., Koudela,
B., 2014. Brain is the predilection site of Toxoplasma gondii in experimentally inoculated 
pigs as revealed by magnetic capture and real-time PCR. Food Microbiol. 38, 167–70. 
doi:10.1016/j.fm.2013.08.011

Juránková, J., Opsteegh, M., Neumayerová, H., Kovařčík, K., Frencová, A., Baláž, V., Volf, J., 
Koudela, B., 2013. Quantification of Toxoplasma gondii in tissue samples of experimentally 
infected goats by magnetic capture and real-time PCR. Vet. Parasitol. 193, 95–9. 
doi:10.1016/j.vetpar.2012.11.016

Kijlstra, A., Jongert, E., 2008. Control of the risk of human toxoplasmosis transmitted by meat. 
Int. J. Parasitol. 38, 1359–70. doi:10.1016/j.ijpara.2008.06.002

Kravetz, J.D., Federman, D.G., 2005. Prevention of toxoplasmosis in pregnancy: knowledge of 
risk factors. Infect. Dis. Obstet. Gynecol. 13, 161–165. doi:10.1080/10647440500068305

Leclercq, C., Arcella, D., Piccinelli, R., Sette, S., Le Donne, C., Turrini, A., 2009. The Italian 
National Food Consumption Survey INRAN-SCAI 2005-06: main results in terms of food 
consumption. Public Health Nutr. 12, 2504–2532. doi:10.1017/S1368980009005035

Montoya, J.G., Liesenfeld, O., 2004. Toxoplasmosis. Lancet 363, 1965–76. doi:10.1016/S0140-
6736(04)16412-X

Mosti, M., Pinto, B., Giromella,  a, Fabiani, S., Cristofani, R., Panichi, M., Bruschi, F., 2013. A 4-
year evaluation of toxoplasmosis seroprevalence in the general population and in women 
of reproductive age in central Italy. Epidemiol. Infect. 141, 2192–5. 
doi:10.1017/S0950268812002841

Opsteegh, M., Langelaar, M., Sprong, H., den Hartog, L., De Craeye, S., Bokken, G., Ajzenberg, 
D., Kijlstra, A., van der Giessen, J., 2010. Direct detection and genotyping of Toxoplasma 
gondii in meat samples using magnetic capture and PCR. Int. J. Food Microbiol. 139, 193–
201. doi:10.1016/j.ijfoodmicro.2010.02.027

Opsteegh, M., Prickaerts, S., Frankena, K., Evers, E.G., 2011. A quantitative microbial risk 
assessment for meatborne Toxoplasma gondii infection in The Netherlands. Int. J. Food 
Microbiol. 150, 103–14. doi:10.1016/j.ijfoodmicro.2011.07.022

R Core Team, 2012. R: a language and environment for statistical computing. [WWW 
Document]. Vienna R Found. Stat. Comput. URL http://www.r-project.org/

SINU, 2014. Livelli di Assunzione di Riferimento di Nutrienti ed energia per la popolazione 
italiana. IV edizione.

Su, C., 2003. Recent Expansion of Toxoplasma Through Enhanced Oral Transmission. Science 
(80-. ). 299, 414–417.

WHO, 2014. WHO estimates of the global burden of diseases. WHO 46, 1–15. 

100



Appendix A: data used to estimate the distribution of consumption habits used in the model 
as obtained from INRAN-SCAI .

Meat Area Sex mean median p95 p99 DS
Pork Base F 39 38 94 140 29

M 48 47 101 177 36
Northeas
t

F 40 38 83 105 24

M 47 47 99 128 27
Beef Base F 52 42 118 179 35

M 64 54 147 233 44
Northeas
t

F 50 41 119 171 35

M 61 58 139 203 41

Appendix B: data obtained by the survey of meat consumption habits in terms of frequency of
the investigated habit on the total number of consumption events. Data are shown per 
geographic origins and sex of respondents.

Meat Habits
Base Northeast

F M F M

Pork

Freezing
habits

Never 24.1% 25.4% 21.1% 28.9%

1 of 5 38.3% 42.4% 40.4% 43.3%

2 of 5 17.9% 16.9% 17.4% 13.4%

3 of 5 6.2% 6.8% 6.4% 6.2%

4 of 5 8.6% 7.6% 8.3% 8.2%

Always 4.9% 0.8% 6.4% 0.0%

Cooking
habits

Never 88.3% 78.5% 88.2% 81.8%

1 of 5 10.4% 13.2% 11.8% 12.1%

2 of 5 0.0% 3.3% 0.0% 3.0%

3 of 5 0.6% 3.3% 0.0% 2.0%

4 of 5 0.0% 0.8% 0.0% 1.0%

Always 0.6% 0.8% 0.0% 0.0%

Beef

Freezing
habits

Never 14.6% 16.4% 12.8% 18.0%

1 of 5 27.4% 41.0% 28.4% 37.0%

2 of 5 22.0% 20.5% 22.9% 24.0%

3 of 5 15.9% 13.1% 12.8% 11.0%

4 of 5 17.1% 7.4% 19.3% 9.0%

Always 3.0% 1.6% 3.7% 1.0%

Cooking
habits

Never 30.1% 27.4% 30.2% 29.4%

1 of 5 29.5% 22.6% 31.0% 23.5%

2 of 5 13.3% 20.2% 11.2% 18.6%

3 of 5 11.0% 10.5% 12.9% 9.8%

4 of 5 10.4% 12.9% 10.3% 11.8%

Always 5.8% 6.5% 4.3% 6.9%

Appendix C: outcome of the sensitivity analyses carried out in the base model and in 
alternative scenario models. Regression coefficients indicate the correlation between input 
parameters and probability estimates.
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Scenario  
Cooking
habits

Prevalence
Portions per

year
Freezing
habits

Dose-
response

Base Pork 0.509 0.207 0.094 -0.059  ---
Beef 0.348 0.449 0.268 -0.155  ---

Northeast Pork 0.522 0.210 0.089 -0.058  ---
Beef 0.362 0.452 0.249 -0.159  ---

Cattle 0.5% Pork 0.509 0.207 0.094 -0.059  ---
Beef 0.347 --- 0.267 -0.155 0.448

Unscaled 
mouse dose-
response

Pork 0.714 0.199 0.096 -0.082  ---

Beef 0.499 0.471 0.302 -0.218  ---
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