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Abstract

In this thesis, we present new developments for the analytic calculation of tree- and multi-loop
level amplitudes. Similarly, we study and extend their analytic properties.

We propose a Four-dimensional formulation (FDF) equivalent to the four-dimensional helicity
scheme (FDH). In our formulation, particles propagating inside the loop are represented by
four-dimensional massive internal states regulating the divergences. We provide explicit four-
dimensional representations of the polarisation and helicity states of the particles propagating
in the loop. Within FDF, we use integrand reduction and four dimensional unitarity to perform
analytic computations of one-loop scattering amplitudes. The calculation of tree level scattering
amplitude, in this framework, allows for a simultaneous computation of cut-constructible and
rational parts of one-loop scattering amplitudes. We present a set of non-trivial examples,
showing that FDF scheme is suitable for computing important 2 → 2, 3, 4 partonic amplitudes at
one-loop level. We start by considering two gluons production by quark anti-quark annihilation.
Then, the (up to four) gluon production, gg → ng with n = 2, 3, 4. And finally, the Higgs and
(up to three) gluons production via gluon fusion, gg → ng H with n = 1, 2, 3, in the heavy top
mass limit.

We also investigate, by following a diagrammatic approach, the role of colour-kinematics
(C/K) duality of off-shell diagrams in gauge theories coupled to matter. We study the behaviour
of C/K-duality for theories in four- and in d-dimensions. The latter follows the prescriptions given
by FDF. We show that the Jacobi relations for the kinematic numerators of off-shell diagrams,
built with Feynman rules in axial gauge, reduce to a C/K-violating term due to the contributions
of sub-graphs only. We discuss the role of the off-shell decomposition in the direct construction of
higher-multiplicity numerators satisfying C/K-duality. We present the QCD process gg → qq̄g.
An analogous study, within FDF, is carried out for d-dimensionally regulated amplitudes.

The computation of dual numerators generates, as byproduct, relations between tree-level
amplitudes with different orderings. These relations turn to be the Bern-Carrasco-Johansson
(BCJ) identities for four- and d-dimensionally regulated amplitudes. We combine BCJ identities
and integrand reduction methods to establish relations between one-loop integral coefficients for
dimensionally regulated QCD amplitudes.

We also elaborate on the radiative behaviour of tree-level scattering amplitudes in the soft
regime. We show that the subleading soft term in single-gluon emission of quark-gluon amplitudes
in QCD is controlled by differential operators, whose universal form can be derived from both
Britto-Cachazo-Feng-Witten recursive relations and gauge invariance, as it was shown to hold
for graviton and gluon scattering.

In the last part of the thesis, we describe the main features of the multi-loop calculations. We
briefly describe the adaptive integrand decomposition (AID), a variant of the standard integrand
reduction algorithm. AID exploits the decomposition of the space-time dimension in parallel and
orthogonal subspaces. We focus, in particular, on the calculation of 2 → 2, 3 partonic amplitudes
at two loop-level
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Introduction

After about a century of efforts to get unified theories for describing the fundamental forces
in nature (strong nuclear, electromagnetic, weak nuclear and gravitational), the situation is
perhaps reverse. Apart from the success of the unification of the weak interaction, still, there is
the effort to try to unify gravitation and all the interactions. This investigation can start from
mathematical schemes and then, look for the physical interpretation. Or, start with the physical
principle and then, codify it into a mathematical form. Start from mathematical schemes always
allows to create a delightful theory able to presume the physical behaviour of any physical system.

In order to describe the fundamental forces, we need to combine Special Relativity (SR)
and Quantum Mechanics (QM) to formulate a Quantum Field Theory (QFT). QFT describes
particles as quantum mechanical objects or quantum fields, in the sense that they obey the rules
of QM. Furthermore, the definition and interactions of those fields are mathematically described
by a symmetry group.

Currently, the Standard Model of Particle Physics (SM) is the best QFT model able to de-
scribe the interaction among elementary particles due to three of four forces existing in nature [9–
13]. Gravitation, although being the most evident force is the weakest of the four forces and its
proper quantum description is still an open issue. The SM consists of two basic ingredients: the
electroweak theory, based on the symmetry group SU(2)L × U(1)Y , which describes the elec-
troweak interactions by combining the electromagnetic interaction of Quantum Electro-Dynamics
(QED) and the weak interactions. And, Quantum Chromodynamics (QCD), whose symmetry
group SU(3)c, deals with strongly interacting particles. The latter is understood as an exact
symmetry, while the former is predicted to be broken spontaneously via the Brout-Englert-Higgs
mechanism. The Higgs particle is a scalar responsible of the spontaneous symmetry breaking
and for all the masses of the other particles of the SM.

The huge success of the SM in predicting the experimental data confirmed its validation with
the discovery of the Higgs boson by ATLAS and CMS experiments at the Large Hadron Collider
(LHC), announced on the 4th of July of 2012 [14, 15]. This was, indeed, the missing piece to
authenticate the validity of this theory. Nevertheless, the SM does not provide all the information
of the subatomic world. The evidence of neutrino oscillations, which has been confirmed at the
Super-Kamiokande experiment [16] and at the Sudbury Neutrino Observatory [17, 18], proved
the existence of neutrino masses, that are not described by the SM. Additionally, the SM does
not describe the existence of dark matter and dark energy, as well as, the asymmetric content of
baryonic and antibaryonic matter in the universe.

Since the SM leaves too much physics without descriptions, the scientific community believes
it must be part of a more complete and fundamental theory. Hence, new directions to describe
physics beyond Standard Model (BSM) have been considered. So far there has been no evidence of
new physics in the TeV region. Moreover, with the unexplored energy scales the LHC is currently
running at, the evidence of new physics by either the production of new heavy particles or slight
deviation of the measured SM parameter might manifest the physics BSM.

From these considerations, the LHC results point towards a refinement of our understanding
of the SM physics. High precision predictions in such background processes are necessary in order
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to possibly find and understand new physics at the TeV scale. Relevant observables are obtained
from the computation of QCD scattering amplitudes. In particular, QCD is asymptotically free.
Therefore, the strong coupling constant g becomes weak at large momentum transfers, justifying
a perturbative expansion.

Scattering amplitudes have two main motivations. Firstly for their practical application
in particle physics. Secondly, they have a mathematical elegance which attracts theoretical
physicists. These motivations are very important and they complement each other. The first
attempt to compute any scattering amplitude is based on a Lagrangian approach. Feynman rules
are extracted and used to calculate a scattering amplitude, A, as a sum of Feynman diagrams
organised perturbatively in the loop expansion. From the scattering amplitudes we calculates
the observables of interest for particle physics experiments, such as cross section, σ ∝ |A|2. The
scattering amplitudes are gauge invariant objects.

The Lagrangian approach is, in principle, suitable to compute any kind of process. Moreover,
when increasing the multiplicity of the external particles or the order in the perturbation theory,
we find that the calculation becomes cumbersome. The complexity of the calculation might
arise from the intermediate states, due to the amount of indices contracted up and down in all
the directions. And also, the number of Feynman diagrams to be considered starts increasing
exponentially, not allowing to show any insight of the physics and any hint of simplicity.

Another issue is that each Feynman diagram, a gauge-dependent quantity, gets more compli-
cated in its evaluation and in many cases impossible. It is true that the use of computer programs,
that automatically generate matrix elements for multi-particle processes, can be really helpful.
Nevertheless, the numerical evaluation sometimes does not take place, since spurious poles that
might appear are canceled out between diagrams. Hence, compact expressions are desirable.

Despite of this, we can follow an alternative approach, where, instead of considering an
unpolarised amplitude, whose squared will allow to write the cross section in terms of momentum
invariants (Maldestam variables) and masses, we can split the calculation in several pieces.
These pieces are the polarised or helicity amplitudes, which, can be seen as a complex number,
whereby the cross section is obtained by simply squaring that number and sum over all possible
configurations.

The helicity amplitudes are computed by picking a basis for the polarisation states of the
external particles. In high energy physics, most of the particles are effectively massless. For
massless fermions, their chirality and helicity coincide. Vector bosons are also described from
their helicity. This fact allows us to write fermion and boson wave functions in terms of spinors, a
procedure that is usually referred to as spinor-helicity formalism [19–22] and is used throughout
this thesis. In this basis many tree-level amplitudes were found to vanish. In addition, compact
and nice expressions were found, in particular the tree-level scattering amplitude with maximal
helicity violation (MHV) found by Parke and Taylor [23]. This result was later proved recursively
by Berends and Giele [24].

The use of the spinor-helicity formalism generated several outcomes in the computation of
high-multiplicity tree-level processes. One of them, was that fact that by deforming real momenta
in complex ones, keeping their on-shellness and asking them to satisfy momentum conservation,
new properties for amplitudes arise. Indeed, Britto, Cachazo, Feng and Witten (BCFW) in
Ref.s [25, 26] realised that with the use of complex kinematics and the analyticity of the S-
matrix it is possible to work with on-shell quantities only. Consequently, this observation yields
a recursive construction of the amplitude, in which, any colour-ordered helicity amplitude can
be evaluated by breaking it down into amplitudes with a smaller number of legs. For instance,
any n-point gluon amplitude can be straightforwardly computed by applying this recursion. The
required ingredients are the basic building blocks, which are exactly, the MHV amplitudes. Be-
sides massless theories, BCFW recursion formula has been successfully used in theories involving
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the interplay of massless and massive particles [27–29].

In the context of one-loop calculations, the unitarity of the S-matrix has allowed to re-
construct an amplitude as the product of simpler ones. This framework defines the so-called
unitarity based methods [30–41], nowadays, developed in a consistent way to perform one-loop
calculations. Instead of the explicit set of loop Feynman integrals, the basic reference point is
the linear expansion of the amplitude in terms of basis of Master Integrals (MIs), multiplied by
coefficients that are rational functions of the kinematic variables, known as Passarino-Veltman
decomposition [42]. The availability of the analytic expressions of MIs [43] has allowed us to
focus on the development of efficient algorithms for extracting the coefficients multiplying each
MI. Improved tensor decomposition [44], complex integration and contour deformation [45], on-
shell and generalised unitarity methods, and integrand reduction techniques [41, 46–48] led to
the explosion of new results in the computation of high multiplicity process at one-loop level.
Several techniques have been automated [49–60], allowing to make phenomenological predictions
in QFT.

The unitarity based methods, by putting on shell more than two propagators, allow to obtain
the coefficients of the MIs by expanding the integrand of the tree level cut amplitudes into an
expression that resembles the cut of the basis integrals. The dimensional regularisation is incor-
porated in this complex machinery. In fact, in dimensional regularisation, all one-loop amplitudes
are cut-constructible, provided that the full dimensional dependence is kept in evaluating the
branch cut. Each MI has a distinct branch cut, uniquely determined by its logarithmic and
dilogarithmic arguments. Therefore, the decomposition in MIs can be used to solve for their
coefficients separately using analytic properties. However, at integrand level a mathematical
structure of the integrated amplitudes has been shown to be related to an universal decomposi-
tion valid for the integrand, called Ossola-Papadoupulos-Pittau (OPP) decomposition [46]. The
coefficients of the MIs can be found by evaluating the integrand on multiple cuts.

More recently, a new approach to one-loop integrand reduction has been developed, namely
the integrand reduction via Laurent expansion method [61], which elaborates on techniques
first proposed in [39, 62] for analytic calculations. It turns out that within this approach, the
computation of the coefficients of the MIs gets simpler when performing a Laurent expansion of
the integrands with respect to the components of the loop momentum which are not constrained
by the multiple-cut conditions.

Within integrand reduction methods, different approaches are available, according to the
strategies adopted for the determination of cut-constructible and rational terms. In some algo-
rithms, the computation of the two ingredients proceeds in two steps: the cut-constructible part
is obtained by reducing the un-regularised integrand while the rational one is computed by intro-
ducing new counterterm-like diagrams which depend on the model under consideration [63, 64].

Other methods, instead, aim at the combined determination of the two ingredients by reduc-
ing the dimensionally regulated integrand. Therefore the numerator of the integrand has to be
generated and manipulated in d dimensions and acquires a dependence on (d − 4) and on the
square of the (d−4)-dimensional components of the loop momentum [65–67]. The multi-particle
residues are finally determined by performing generalised cuts by setting d-dimensional particles
on shell.

If the integrand at a generic multiple cut is obtained as a product of tree-level amplitudes,
the issues related to factorisation in presence of dimensional regularisation have to be addressed.
An interesting approach [65] uses the linear dependence of the amplitude on the space-time
dimensionality to compute the d-dimensional amplitude. In particular the latter is obtained by
interpolating the values of the one-loop amplitude in correspondence to two different integer
values of the space-time. When fermions are involved, the space-time dimensions have to admit
an explicit representation of the Clifford algebra [66]. More recently, this idea has been combined
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with the six-dimensional helicity formalism [68, 69] for the analytic reconstruction of one-loop
scattering amplitudes in QCD via generalised unitarity.

In the context of multi-loop calculations, and in particular at two-loop, we can keep working
with integrand reduction methods. However, it turns out that the basis of MIs is not known
apriori as in the one-loop case. Therefore, the needed MIs are identified at the end of the re-
duction procedure. The most successful reduction method for higher loop amplitudes has been
the so called integration by parts identities [70, 71], especially using the Laporta algorithm [72].
The computation of amplitudes beyond one-loop have been addressed using a wide range of tech-
niques, such a difference [72, 73] and differential [74] equations, Mellin-Barnes integration [75],
asymptotic expansions [76], sector decomposition [77], complex integration and contour defora-
tion [78]. In the same manner, unitarity based methods at two-loop have been introduced for
supersymmetric [79] and later applied to the case of QCD [80] amplitudes. More recently, a
generalised unitarity approach has been proposed [81–88], which extracts the coefficients of the
MIs by extending the one-loop OPP decomposition.

The use of the on-shell recursive relations within the spinor-helicity formalism allows to
study, easily and directly, the behaviour of amplitudes in the soft regime. An amplitude displays
an universal factorisation, into a soft and a hard contribution, when a particle becomes soft.
Such factorisation is governed by the non-radiative process, perturbed by the action of operators
that depend on the quantum numbers of the emitter, whose form can be derived by taking the
soft limit when constructing the amplitude from recursive relations. At tree-level, for photon-,
or similar gluon emission, as well as for graviton-emission, the leading terms in the momentum-
expansion of a radiative amplitude are controlled by soft factors, whose shape was identified a long
time ago [89, 90]. The recent study of Cachazo and Strominger, based on an on-shell recursive
construction, about gravity [91], later extended to Yang-Mills [92, 93] and QCD amplitudes [94],
pointed to the existence of differential operators that control the subleading behaviour. Likewise,
these subleading-soft operators are found to depend on the total angular momentum (orbital and
spin) of the radiator as explicit shown in Ref. [93] by following the proof of Low’s theorems [89,
95, 96]. The connection between the two derivations is carried out by comparing the results
obtained from BCFW recursive relations and from gauge invariance.

The leading and subleading soft theorems have been generalised to arbitrary dimensions and
other theories [97–110]. In [111–130], the theorem has been understood from various perspectives,
especially those constraint by gauge and Poincarè symmetry. Double (or multiple) soft theorem
limits [131–136], and generalisation to loop level [102, 137–142], have also been discussed.

Moreover, scattering amplitudes are found to admit the well known colour-kinematics (C/K)
duality. The kinematic part of numerators of Feynman diagrams obey Jacobi identities and
anti-symmetry relations similar to the ones holding for the corresponding structure constants
of the Lie algebra. This property was discovered by Bern, Carrasco and Johansson [143, 144].
While first studies were interested in scattering amplitudes involving massless particles only,
more recent ones drew their attention to the C/K-duality in gauge theory amplitudes containing
(massless or massive) quarks or other particles in the fundamental representation of the gauge
gauge [3, 145–152].

The C/K-duality led to linear relations between primitive tree amplitudes with different
ordering in gauge theories, usually known as Bern-Carrasco-Johansson (BCJ) relations, whose
coefficients depend on Lorentz-invariant combination of the momenta of the particles. These
results together with U(1) symmetry and Kleiss-Kuifj relations [153], can be used further to
reduce the number of primitive amplitudes to be considered in tree-level calculations. C/K also
yields a gauge-gravity dual representation of gravity amplitudes. The knowledge of the Yang-
Mills amplitudes is recycled, in the sense that gauge-group structure constants are replaced by
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a second copy of the C/K-dual numerator once the latter are organised to respect the duality.
This is usually referred to as the double copy property [93, 154–182]. More details of these
implications can be found in the recent review [183].

The BCJ relations were proved at tree-level by employing both string theory [156, 157, 161–
164] and BCFW recursive relations [167–169]. Also, the generation of dual numerators starting
from an effective Lagrangian was achieved in Ref. [184]. However, at loop level the duality is still
a conjecture and has only been verified in examples. Up to two-loops in non-supersymmetric
theories [93, 185, 186], and up to four loops in supersymmetric ones [144, 187–193]

Despite of the conjecture at multi-loop level, strong relations between one-loop integral co-
efficients have been studied for N = 4 super Yang-Mills [157] and then, extended to the cut-
constructible part of the QCD [194] one-loop amplitudes, by showing that the BCJ relations can
significantly decrease the number of independent coefficients needed in one-loop calculations.
When moving to d-dimensional generalised unitarity, extensions of tree-level identities to one-
loop amplitudes are expected to hold also between rational contributions, as it was investigated
in [195, 196].

By following a different approach, the BCJ relations have been used in [197] to reconstruct
the non-planar two-loop integrand contributions to the all plus five-gluon amplitude from the
planar ones.

In this thesis, we propose a four dimensional formulation (FDF) regularisation scheme, which
at one-loop turns to be the extension of the four-dimensional helicity (FDH) scheme [32, 198, 199].
Within FDF, the d-dimensional regularisation of amplitudes can be carried out by using four
dimensional ingredients only. In fact, the states in the loop are described as four dimensional
massive particles. The four-dimensional degrees of freedom of the vector boson are carried by
massive vectors bosons, while the (d−4)-dimensional ones by real scalar particles obeying a simple
set of four-dimensional Feynman rules. Instead, d-dimensional fermions are treated as tachyonic
Dirac fields. The d-dimensional algebraic manipulations are replaced by four-dimensional ones
complemented by a set of multiplicative selection rules.

Within integrand reduction methods, FDF allows for the simultaneous computation of both
cut-constructible and rational part of one-loop amplitudes. By employing a four-dimensional
representation, the formulation of generalised states running around the loop can be formulated.
Therefore, a straightforward implementation of d-dimensional generalised unitarity within ex-
actly four space-time dimensions can be realised, avoiding any higher-dimensional extension of
either the Dirac [65, 66] or the spinor algebra [68].

The calculation of one-loop amplitudes, through generalised unitarity and integrand reduction
methods from d-dimensional regulated amplitudes, is automated within the framework of FDF.
This automation allows us to compute the one-loop QCD corrections of the processes: gg →
qq̄, gg → ng with n = 2, 3, 4 [1, 6], and the Higgs and (up to three) gluons production via gluon
fusion, gg → ngH with n = 1, 2, 3, in the heavy top mass limit [7].

Besides calculations of one-loop amplitudes within FDF, we also investigate the C/K-duality
for dimensionally regulated amplitudes. We notice that the duality obeyed by the numerators
of tree-level amplitudes within the FDF scheme are non-trivial relations involving the interplay
of massless and massive particles. Furthermore, from the construction of dual numerators, we
follow a diagrammatic approach and account for the knowledge of the gauge invariance of the am-
plitudes, finding BCJ relations for dimensional regulated amplitudes, whose (d− 4)-dependence
becomes explicit [3, 7].

Additionally, we combine the integrand reduction method via Laurent expansion and the set
of BCJ identities to find relations between one-loop integral coefficients [4]. These relations can
be established for the cut constructible contributions as well for the ones responsible for rational
terms.
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We also investigate on the low-energy behaviour of single-gluon radiation from QCD am-
plitudes with a quark pair and gluons. Upon colour decomposition [200], we can identify two
situations according to the position of the soft gluon: (i) between an (anti)quark and a gluon,
and (ii) between two gluons. Since the case (ii) is similar to the Yang-Mills case, discussed in
Ref.s [92, 116] we focus on case (i), where, the soft gluon can be radiated either from a gluon
or from an (anti)quark. In order to derive the soft behaviour from fermionic emitters, we first
analyse the QED case of photon bremsstrahlung from the quark line. For this case, we show the
equivalence of the soft operators derived from gauge invariance and from the on-shell construc-
tion. This result is then, easily, extended to the quark-gluon amplitudes in QCD. We show that
the leading and subleading soft terms in single-gluon emission of quark-gluon amplitudes in QCD
is controlled by differential operators, whose universal form can be derived from both BCFW
recursion and gauge invariance, as it was shown to hold for graviton- and gluon-scattering [2].

Finally, we review the development and applications of the integrand decomposition method
for two-loop amplitudes. Since these methods rely on a new reformulation of the one-loop
calculations. Firstly, we focus on the ones given by polynomial division module Gröbner basis.
Within this framework, the calculation of the two-loop four-gluon amplitude [80] is carried out
by following a diagrammatic approach. Similarly, we study basic and useful concepts of the new
adaptive integrand decomposition (AID) method [201]. This method exploits the decomposition
of space-time dimension in parallel and orthogonal subspaces, d = d‖ + d⊥.

We apply AID to the two-loop five-gluon amplitude [8], finding agreement with known re-
sults [88]. These results correspond to a warming-up calculation and are oriented to develop
algorithms and tools for the automated evaluation of two-loop scattering amplitudes, which,
currently, is one of the main challenges the community is trying to solve.

This thesis is organised as follows: In Chapter 1, we recall all the concepts of QCD theory that
are going to be useful throughout this thesis. From the Lagrangian and its symmetry group we
show, as a first consequence of the theory, how the colour-dressed amplitudes can be decomposed
in two terms. One depending on Lorentz variables only, usually called primitive amplitudes. The
other one containing all the information regarding the colour-structure. The choice of the basis
to compute helicity amplitudes are revisited, giving the proper study to fermion and boson wave
functions. Within the spinor-helicity formalism we present the MHV amplitudes and the BCFW
recursive relation, giving the main ingredients that are used in Chapter 2.

In Chapter 2, we study the behaviour of a radiative scattering amplitude in the soft regime.
Since it is governed by the non-radiative process, perturbed by the action of operators that
depend on the quantum numbers of the emitter, we approach it in two different and equivalent
ways. The first one is based on recursive relations, whereas the second one takes into account
the gauge invariance of the amplitude. While previous studies dealt with graviton and gluon
amplitudes, we focus our description on QCD scattering amplitudes, in which the emitter can
be either a fermion or a gluon. Each calculation is accompanied by explicit examples.

Chapter 3 is devoted to studying the relation between colour and kinematics of colour-dressed
scattering amplitudes. As one of the main consequences of this duality, we review the fundamen-
tal BCJ relations and their properties. An alternative study of the colour-kinematics duality,
based on a diagrammatic approach, is presented, which, with the knowledge of the gauge invari-
ance of the amplitude, allows to end up with the set of BCJ relations. Explicit calculations for
particles belonging to the adjoint (gluons and scalars) and fundamental (quarks) representations
are considered. Furthermore, the derivation of the five-point BCJ relation is performed.

The description of one-loop amplitudes is presented in Chapter 4. We present a coherent
description of the integrand reduction methods, staring from the tensor decomposition until the
computation of one-loop amplitude via Laurent series expansion. Furthermore, we study the
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formalism based on unitarity based methods, which turns out to be one of the main ingredients
for the computations of multi-loop scattering amplitudes.

The four-dimensional-formulation (FDF) scheme is introduced in Chapter 5. All its features
to compute one-loop amplitudes, by following either the traditional way of Feynman diagrams or
the unitarity based approach, are discussed. For the latter, we provide explicit four-dimensional
representations for the d-dimensional particles circulating into the the loop. Also, in order to
satisfy the Clifford algebra in d-dimensions within FDF, we include a set of selection rules, which
turn out to be just an internal symmetry and can be performed before doing any kind of reduction
algorithm. Simple applications of the FDF, for the computation of d-dimensional regulated
amplitudes, are given by presenting the one-loop analytic contribution of representatives four-
point processes.

In Chapter 6, we show the analytic one-loop contributions, obtained by using the FDF
scheme and the computation of one-loop via the Laurent series expansion, of multi-gluon- and
Higgs plus gluon- amplitudes up to six external particles. We provide the full expression for
the finite gluon amplitudes, A1-loop

n (1+, . . . , n+) and A1-loop
n (1−, . . . , n+), with n = 5, 6. While

for the Higgs plus gluon amplitudes, we discuss the structure of A1-loop
5 (H, 1+, 2+, 3+, 4+) and

A1-loop
6 (H, 1+, 2+, 3+, 4+, 5+). Moreover, for the remaining helicity configurations of five-, six-

gluon- and Higgs plus four-gluon-amplitudes we provide, for each one, a mathematica notebook
file containing the list of coefficients for each MIs. The coefficients of the MIs are written in terms
of momentum twistors variables.

The discussion of the C/K duality in d-dimensions is addressed in Chapter 7. Within FDF,
we follow the very same diagrammatic approach of Chapter 3. The C/K-duality for the d-
dimensional case, as for the four-dimensional case, is recovered by using momentum conservation
and on-shellness of the particles. The d-dimensional regulated particles satisfy p2i = µ2. Also,
the BCJ relations are obtained for d-dimensional regulated amplitudes. On top of it, we show
that the use of these BCJ relations together with the generalised unitarity and the integrand
reduction yields the existence of relations between the integrand residues of partial amplitudes
with different orderings of the external particles.

An introduction to two-loop techniques, based on integrand reduction methods is addressed
in Chapter. 8. We first provide a description of the most used algorithm, which turns out to
be the polynomial division module Gröbner basis. Then, we study the main feature of the
adaptive integrand decomposition. The computation of the all plus two-loop four- and five-gluon
amplitudes is presented.

Finally, in appendix B we collect additional features of the FDF, such as the one-loop equiva-
lence between the regularisation schemes FDH and FDF. We also prove the completeness relation
of generalised fermions and give the set of colour-order Feynman rules. In Appendix C we extend
the results of Section 7.4 by providing the set of coefficient relations that can be derived from
the BCJ identities between five-point amplitudes.

All algebraic manipulations and numerical evaluations have been carried out by using the
mathematica packages FeynArts [202], FeynCalc [203, 204], S@M [205] and T@M [206].
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Chapter 1

QCD Scattering Amplitudes

Quantum Chromodynamics (QCD) is a non-abelian gauge theory based on the local symmetry
group SU(Nc) with Nc = 3. There exist nf flavours of quarks (fermions of spin 1/2) and gluons
(gauge bosons that mediate the interactions). This theory allows us to describe the dynamics of
the strong nuclear force. The action for the path integral quantisation of the theory is

L = −1

4
F a
µνF

aµν +

nf∑

f=1

ψ̄ī
f

(
iγµDij̄

µ −mfδ
ij̄
)
ψj
f + LGF + LFP , (1.1)

where the field tensor F a
µν can be written in terms of the gluon field, Aa

µ, as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν , (1.2)

which also defines the covariant derivative in the fundamental representation

(Dµ)ij̄ = δij̄∂µ − igst
a
ij̄A

a
µ . (1.3)

Furthermore, the ψi
f ’s are the flavours f of quarks (anti-quarks) transforming into the funda-

mental (anti-fundamental) representation of SU(Nc). Fundamental colour indices are denoted
by i1, i2, . . . ∈ {1, 2, . . . , Nc}. Whereas, adjoint colour indices are denoted by a, b, c, . . . ai ∈
{1, 2, . . . , N2

c − 1}. In these equations, gs is the coupling constant of the interaction, whereas
fabc and ta are the structure constants and the generators of the symmetry group SU(Nc) re-
spectively. The suffixes of the Lagrangian (1.1) stand for “gauge fixing” and “Faddeev-Popov”,

LGF = − 1

2ξ
(∂µA

µ)2 , LFP = ∂µχaDab
µ χ

b . (1.4)

with

Dab
µ = δab∂µ − gsf

abcAc
µ , (1.5)

the covariant derivative in the adjoint representation. The choice of the parameter ξ determines
the choice of the gauge. The typical choices of ξ are the Landau gauge, obtained by taking the
limit ξ → 0 and the Feynman-’t Hooft gauge, in which ξ = 1.

In the following, we review the efficient techniques to compute scattering amplitudes in QCD,
which on the one hand, are based on the colour and helicity information and, on the other, on
the analyticity and unitarity of the scattering-matrix. These techniques will allow us to work
with gauge invariant objects only.
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1.1 Colour-ordered amplitudes

The calculation of multi-gluon scattering amplitudes in perturbative QCD is very challenging,
since the number of Feynman diagrams describing a given process grows very quickly. This
proliferation of terms is due to the redundancy of the gauge-dependent pieces. Therefore, one
way to simplify those calculations is dividing our amplitude (or set of diagrams) in terms of
gauge-invariant pieces, meaning invariant under redefinition of the polarisation:

εµi (pi) → εµi (pi) + αi (pi) p
µ
i , (1.6)

with αi (pi)’s being arbitrary functions.
In general, any scattering amplitude in a non-Abelian gauge theory can be decomposed in an

orthogonal basis in the colour space. This decomposition brings to gauge invariant pieces. We
identify the orthogonal linear independent colour structures by strings of SU(N) generators.

We represent the generators of SU (Nc) by the rescale Hermitian traceless matrices T a
ij̄

=

ta
ij̄
/
√
2, so that T a

ij̄
’s are normalised to

Tr(T aT b) = δab . (1.7)

The structure constants, defined by,

[T a, T b] = i
√
2fabcT c , (1.8)

fabc = − i√
2
Tr
(
[T a, T b]T c

)
, (1.9)

satisfy the Jacobi identity,

fadef bce + f bdef cae + f cdefabd = 0 . (1.10)

Writing all structure constants according to (1.9) produces linear combinations of strings of T a’s.
Therefore, in order to reduce the number of traces we perform a “Fierz rearrange”,

T a
i1 j̄1

T a
i2j̄2

= δi1 j̄2δi2 j̄1 −
1

Nc
δi1 j̄2δi2 j̄1 . (1.11)

Thus, an n-gluon tree amplitude can be reduced by a trace-based colour decomposition to a sum
of colour-ordered amplitudes [207–211],

Atree
n ({pi, hi, ai}) = gn−2

∑

σ∈Sn/Zn

Tr(T aσ(1) . . . T aσ(n))Atree
n (σ(1h1), . . . , σ(nhn)) . (1.12)

Moreover, we can stay with the colour structure or often called ‘f ’-basis of Del Duca-Dixon-
Maltoni [212–214]

Atree
n ({pi, hi, ai}) = (ig)n−2

∑

σ∈Sn−2

fa1a2x1fx1a3x2 · · · fxn−3aσn−1abAtree
n (1h1 , σ(2h2), . . . , nh) .

(1.13)

In Eq.s (1.12,1.13), Atree
n is the full amplitude, with dependence on the external gluon momentum

pi, i = 1, 2, . . . , n, helicities hi = ±1, and adjoint indices ai. Whereas, Atree
n ’s are the primitive

amplitudes stripped by the colour factors but with all the kinematic informations. Primitive
amplitudes accompanied by colour factors are called colour-ordered amplitudes.

These primitive amplitudes, denoted here generically by Atree
n (1, 2, . . . , n), are by construction

colour independent and satisfy a number of important properties and relationships1:

1A detailed discussion about the topic can be found in Ref.s [215, 216]
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• Atree
n (1, 2, . . . , n) is gauge invariant.

• Factorisation of Atree
n (1, 2, . . . , n) on multi-gluon poles.

• Cyclic invariance:
Atree

n (1, 2, . . . , n) = Atree
n (2, . . . , n, 1) , (1.14)

This statement follows from the trace structure of the colour-order amplitude. Cyclic
invariance allows us to fix one external particle at a specified position, say position 1. This
reduces the number of independent primitive amplitudes to (n− 1)!.

• Reflection invariance:

Atree
n (n, n− 1, . . . , 2, 1) = (−1)nAtree

n (1, 2, . . . , n) . (1.15)

• The photon decoupling identity:

Atree
n (1, 2, 3, . . . , n) +Atree

n (2, 1, 3, . . . , n) + . . .+Atree
n (2, 3, . . . , 1, n) = 0 . (1.16)

This relation follows from taking one of the generators T a proportional to the identity
matrix.

• Kleiss-Kuijf relations:

Atree
n (1, α1, ..., αj , n, β1, ..., βn−2−j) = (−1)n−2−j

∑

σ∈~α�~βT

Atree
n (1, σ1, ..., σn−2−j , n) . (1.17)

Here, ~α = {α1, ..., αn}, ~βT = {βn−2−j , ..., β2, β1}, and ~α� ~βT denotes the set of all shuffles

of ~α with ~βT , i.e. the set of all perturbations of the elements ~α and ~βT , which preserve
the relative order of the elements of ~α and of the elements ~βT . The Kleiss-Kuijf relations
allow us to fix two external particles, say 1 and n. This reduces the number of independent
primitive amplitudes to (n− 2)! [153].

• Bern-Carrasco-Johansson relations:

n∑

i=3




i∑

j=3

s2j


Atree

n (1, 3, . . . , i, 2, i+1, . . . , n) = 0 . (1.18)

where s2j = (p2+pj)
2. The Bern-Carrasco-Johansson relations allow us to fix three external

particles, say 1, 2 and n. Therefore, the number of independent primitive amplitudes is
reduced to (n− 3)! [143].

A deep study of the Bern-Carrasco-Johansson relations shall be given in Chap.s 3 and 7,
for tree-level amplitudes in four- and in d-dimensions respectively.

Similarly, tree amplitudes with two external quarks and (n− 2) gluons can be reduced to single
strings of T a matrices,

Atree
n (1q, 2, . . . , n− 1, nq̄)

= gn−2
∑

σ∈Sn/Zn

(T aσ(2) . . . T aσ(n−1))i1 j̄nA
tree
n (1q, σ(2), . . . , σ(n − 1), nq̄) . (1.19)

In Eq. (1.19), we have omitted the helicity labels, and numbers without subscripts in the ar-
gument of Atree

n refer to gluons. There are (n− 2)! terms corresponding to all possible gluon
orderings between quarks.
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With the prescriptions given in Eq.s. (1.12,1.19), we can write a set of colour-ordered Feynman
rules for QCD in ’t Hooft-Feynman gauge,

α β

k

= −i gαβ

k2 + i0
, (1.20a)

k
= i

/k +m

k2 −m2 + i0
, (1.20b)

a b

k
= i

1

k2 + i0
, (1.20c)

1, α

2, β

3, γ

=
i√
2

[
gαβ(k1 − k2)γ + gβγ(k2 − k3)α + gγα(k3 − k1)β

]
, (1.20d)

1, α

4, δ

2, β

3, γ

= igαγgβδ −
i

2

(
gαβgγδ + gαδgβγ

)
, (1.20e)

1

2, β

3

= − i√
2
γβ ,

1

2, β

3

=
i√
2
γβ , (1.20f)

1, a, α

2, b

3, c

=
i√
2
kα2 . (1.20g)

In order to understand how the colour decomposition works, we consider the simplest example
of the four-gluon tree-level amplitude. Starting with the diagrams that contribute to this process,
0 → 1(p1) 2(p2) 3(p3) 4(p4),

1

2 3

4
+

1

2 3

4
+

1

2 3

4
+

1

2 3

4
, (1.21)

The four diagram in (1.21) can be split into

c4n4 = n4;s f
a1a2bfa3a4b + n4;t f

a4a1bfa2a3b + n4;u f
a1a3bfa2a4b , (1.22)

adding the four contributions up, the amplitude becomes,

Atree
4 (1, 2, 3, 4) =

(ns
s

+ n4;s

)
fa1a2bfa3a4b +

(nt
t
+ n4;t

)
fa4a1bfa2a3b

+
(nu
u

+ n4;u

)
fa1a3bfa2a4b . (1.23)

being s, t and u the Mandelstam invariants and, n’s the numerators of each diagram. Working
out the product of the structure constants, we get,

−fa1a2bfa3a4b =
{
1

2
[tr(T a1T a2T a3T a4) + tr(T a4T a3T a2T a1)]

}
− {[1 ↔ 2)]} , (1.24)
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Hence, the colour-dressed four-gluon amplitude admits the following decomposition

Atree
4 (1, 2, 3, 4) =Atree

4 (1, 2, 3, 4) [tr(T a1T a2T a3T a4) + tr(T a4T a3T a2T a1)]

+ non-cyclic perm’s . (1.25)

This confirms that only the primitive amplitude Atree
4 (1, 2, 3, 4) is needed as stated in Eq (1.12).

A similar study can be done for one-loop scattering amplitudes, where, instead of single
strings of T a matrices we have the product of strings. For instance, in the pure gluon case, we
have [211]

A1-loop
n =gn

[n/2]+1∑

c=1

∑

σ∈Sn/Sn;c

Grn;c(σ)A
1-loop
n;c (σ),

Grn;1(σ) = NcTr(T aσ(1) · · · T aσ(n)),

Grn;c(σ) = NcTr(T aσ(1) · · ·T aσ(c−1))Tr(T aσ(c) · · ·T aσ(c−1)), c > 1. (1.26)

As described before, A1-loop
n;c ’s are the primitive amplitudes computed through the set of colour-

ordered Feynman rules (1.20), and ⌊m⌋ is the greatest integer less than or equal to m.

1.2 Spinor-Helicity Formalism

The spinor helicity formalism [19–22] has shown delightful results due to the compact repre-
sentation one achieves in the perturbative computation of scattering amplitudes at tree- and
multi-loop level. Since this formalism relies on the fundamental spinor products, it clearly cap-
tures the analytic properties of amplitudes, like the factorisation behaviour on multi-particle
channels. As well, the study of soft and collinear limits.

This section is devoted to reviewing the main features of this formalism. We start with the
definition of spinor products and polarisation vectors. Further details on the topic can be found
in Ref.s [217, 218].

1.2.1 Massless fermion wave functions

Consider a massless fermion of momentum pµi . The spinor for this fermion satisfies the Dirac
equation

/pi u(pi) = 0. (1.27)

This equation has two solutions, u−(pi) and u+(pi), for the left- and right-handed fermions
respectively. These satisfy,

P±u±(pi) =
1

2
(1± γ5)u±(pi) = u±(pi) , (1.28)

The spinors v for anti-particles, in the massless case, obey the same equation. Therefore, we can
choose them to be equal to the ones for particles, namely v±(pi),= u∓(pi).

We define the square and angle brackets

|i〉 ≡ u+ (pi) = v− (pi) , |i] ≡ u− (pi) = v+ (pi) ,

〈i| ≡ ū− (pi) = v̄+ (pi) , [i| ≡ ū+ (pi) = v̄− (pi) , (1.29)

The anti-symmetric spinor products

〈ij〉 ≡ ū− (pi) u+ (pi) , [ij] ≡ ū+ (pi) u− (pi) .
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Furthermore, because of the Gordon identity, we can connect the momentum pµi to spinor prod-
ucts,

pµi =
1

2
〈i |γµ| i] = 1

2
[i |γµ| i〉 , (1.30)

or vice versa,

|i〉 [i| = 1

2

(
1 + γ5

)
/pi, |i] 〈i| = 1

2

(
1− γ5

)
/pi. (1.31)

These spinor products satisfy a series of useful identities,

〈ij〉 = −〈ji〉 , [ij] = − [ji] , 〈ii〉 = [ii] = 0, 〈ij] = [ij〉 = 0, sij = 〈ij〉 [ji] . (1.32)

We can express tr(γ5/p1/p2/p3/p4) and tr(/p1/p2/p3/p4) as

tr(γ5/p1/p2/p3/p4) = tr5(1234) = [1 |234| 1〉 − 〈1 |234| 1] ,
tr(/p1/p2/p3/p4) = tr(1234) = 〈1 |234| 1] + [1 |234| 1〉 . (1.33)

The Fierz rearrangement,

〈i |γµ| j] 〈k |γµ| l] = 2 〈ik〉 [lj] , (1.34)

charge conjugation,

〈i |γµ| j] = [j |γµ| i〉 , (1.35)

Schouten identity,

〈ij〉 〈kl〉+ 〈ik〉 〈lj〉+ 〈il〉 〈jk〉 = 0,

[ij] [kl] + [ik] [lj] + [il] [jk] = 0 . (1.36)

We set the convention to convert spinors |−k〉 into |k〉,

|−k〉 = i |k〉 , |−k] = i |k] . (1.37)

So far we have not made use of the explicit representations for angle and square-spinors; this
is because we can work abstractly with |i〉 and |i] and, later relate the results to the momentum
vectors. Nevertheless, in order to carry out numerical computations, we define those spinors in
terms of momentum vector components. In more details, we define the components of angle and
square spinors as follows,

|i〉 =
(
ξi
ηi

)
, |i] =

(
ξ̄i
η̄i

)
, (1.38)

with the anti-symmetric spinor products,

〈ij〉 = −ξiηj + ξjηi, [ij] = ξ̄iη̄j − ξ̄j η̄i, (1.39)

being automatically satisfied all Schouten identities.
The calculable expressions of angle and square spinors in terms of momenta are

|i〉 = 1√
p+i

(
p+i

p−i e+iϕk

)
, |i] = 1√

p+i

(
p−i e−iϕk

−p+i

)
. (1.40)

with

p±i = p0i ± p3i , p⊥i = p1i + i p2i =
∣∣∣p⊥
∣∣∣ eiϕk =

√
p+i p

−
i eiϕk , e±iϕk =

p±i√
p+i p

−
i

, (1.41)
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1.2.2 Massless vector boson wave functions

One can also define polarisation vectors for right- and left-handed massless gauge bosons as,

εµ+ (pi; q) = −〈i |γµ| q]√
2 [qi]

, εµ− (pi; q) =
[i |γµ| q〉√

2 〈qi〉
,

ε∗µ+ (pi; q) =
〈q |γµ| i]√

2 〈qi〉
, ε∗µ− (pi; q) = − [q |γµ| i〉√

2 [qi]
, (1.42)

which are defined in terms of both, the momentum vector pi and a reference vector qi. The gauge
invariance of the scattering amplitudes allows to choose any arbitrary reference momentum qi
satisfying pi · qi 6= 0. This arbitrariness can be seen by examining the difference between two
choices of qi,

ε∗µ+ (pi; r)− ε∗µ+ (pi; s) =
√
2

〈sr〉
〈ri〉 〈si〉p

µ
i , (1.43)

showing that this “gauge-function” will not give any contribution to the amplitudes because of
gauge invariance, (1.6).

These vectors have the usual properties
(
ε±
)∗

= ε∓ , ε± · ε± = 0 , ε± · ε∓ = −1 ,

εµ+ε
∗ν
+ + εµ−ε

∗ν
− = −gµν + pµi q

ν + qµpνi
q · pi

. (1.44)

In addition, under an azimuthal rotation about pi axis, polarisation vectors left- and right-
handed transform as required for helicities +1 and −1,

εµ+ (pi, q) →
〈i′ |γµ| q]√

2 [qi′]
= eiφεµ+ (pi, q) ,

εµ− (pi, q) →
[i′ |γµ| q〉√

2 [qi′]
= e−iφεµ− (pi, q) , (1.45)

due to the transformation of the angle and square bracket,

|i〉 →
∣∣i′
〉
= eiφ/2 |i〉 , |i] →

∣∣i′
]
= e−iφ/2 |i] . (1.46)

1.2.3 Parity and Charge Conjugation

Within the spinor-helicity formalism, we get further simplifications by simply making use of
the discrete symmetries of parity and charge conjugation. Parity simultaneously reverses all
helicities in an amplitude; for example Eq.s (1.42) show that it is implemented by the exchange
〈qk〉 ↔ [kq]. Charge conjugation is related to the anti-symmetry of the colour-ordered rules; for
pure gluon primitive amplitudes it takes the form of a reflected identity

Atree
n (1, 2, . . . , n) = (−1)nAtree

n (n, . . . , 2, 1) , (1.47)

whereas, for amplitudes with external quarks, it allows us to exchange a quark and an anti-quark.

1.2.4 Maximally Helicity Violating amplitudes

An important and compact result obtained within the spinor helicity formalism was observed by
Parke and Taylor [23]. It classifies n-gluon amplitudes by the number of negative-helicity gluons
occurring in them. Tree amplitudes with less than two negative helicity gluons vanish,

Atree
n

(
1±, . . . , i+, . . . , j+ . . . , n+

)
= 0, (1.48)
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whereas, their formula for a maximally-helicity-violating (MHV) gluon amplitude, with two
negative helicity gluons reads

Atree
n

(
1+, . . . , i−, . . . , j− . . . , n+

)
= i

〈ij〉4
〈12〉 〈23〉 · · · 〈(n− 1)n〉 〈n1〉 . (1.49)

Similarly, the MHV amplitudes for processes with a pair of massless quark-antiquark,

Atree
n (1−q , 2

+, . . . , i−, . . . , (n− 1)+ , n+
q̄ ) = i

〈1i〉3 〈ni〉
〈12〉 〈23〉 · · · 〈(n− 1)n〉 〈n1〉 . (1.50)

In order to build the MHV amplitudes for n gluons, we start considering the three-gluon
amplitude

Atree
3

(
1−, 2−, 3+

)
= i

〈12〉4
〈12〉 〈23〉 〈31〉 . (1.51)

Moreover, there is an implication coming from momentum conservation, p1 + p2 + p3 = 0, that
says s12 = s13 = s23 = 0. Therefore, Eq. (1.51) has a meaning when the momenta is promoted
to be complex. Making this distinction, we set

〈12〉 6= 〈23〉 6= 〈31〉 6= 0, [12] = [23] = [31] = 0, (1.52)

where all three left-handed spinors haven been chosen to be proportional, |1] = c1 |3] , |3] = c2 |2],
while the right-handed spinors are not proportional, but obey the relation, c1 |1〉+c2 |2〉+|3〉 = 0.
For this kinematic choice, the tree-level primitive amplitude Atree

3 (1−, 2−, 3+) is non-zero, even
though all momentum invariants vanish.

1.3 Britto-Cachazo-Feng-Witten Recursive relations

An important fact of the MHV amplitudes is their simplicity and what is extremely useful is
that any n-point amplitude can be computed by considering their simplest block, Eq. (1.51).
This, indeed, can be done working with off-shell quantities only. Moreover, thanks to Britto,
Cachazo, Feng and Witten (BCFW) there was a transition between off- and on-shell quantities,
which allowed to use main ideas of the analyticity of the S-matrix to reconstruct full scattering
amplitudes [25, 26]. As shown in the previous section, the extension of real to complex momenta
makes sense when reusing null amplitudes that vanish for the former. In addition, complex
kinematics exploits analytic properties that are not visible for real ones.

BCFW recursive formula introduces an algorithm to calculate efficiently, and in a recur-
sive way, all tree-level scattering amplitudes for various theories under certain conditions. These
scattering amplitudes are generated as a sum over terms constructed from the product of two am-
plitudes with fewer particles times a propagator. Being these amplitudes with shifted momenta
physical, in the sense that all particles are on-shell and momentum conservation is preserved. In
the following, we illustrate the derivation of this method.

1.3.1 Derivation

We consider a primitive amplitude Atree
n (1, . . . , n), where the external particles can be either

gluons or quarks. We pick two legs for special treatment; we define the shift [j, l〉 shift to be

|j] → |ĵ] = |j]− z |l] , |l〉 = |l̂〉 → |l〉+ z |j〉 , (1.53)
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where z is a complex parameter. This shift leaves untouched the spinors |j〉 , |l] and the spinors
for all the other particles in the process. Under this shift, the correspondent momenta are

pµj → p̂µj (z) = pµj − z ηµ,

pµl → p̂µl (z) = pµl + z ηµ, (1.54)

with ηµ = 1
2 〈j |γµ| l] a massless complex momentum orthogonal to pµj and pµl . These shifts are

chosen in a particular form in order not to alter the momentum conservation, p̂µj + p̂µl = pµj + pµl ,

and on-shellness of the particles, p̂2j = p̂2i = 0.
This shift allows us to define the complex function

Atree
n (z) := Atree

n (1, 2, . . . , ĵ, . . . , l̂, . . . , n), (1.55)

the analytic continuation of Atree
n , which is a rational function of z with simple poles in its

variables. Also, by the polology theorem [219] the poles correspond to the exchanged of virtual
particles and the corresponding residues to the coupling of such particles to all the spectrum of
the theory. Hence, the physical amplitude is given by Atree

n (0).
Now, we consider the integral

∮

C

dz

2πi

Atree
n (z)

z
, (1.56)

the contour is taken around a large circle in the complex plane. If Atree
n (z) → 0 as z → ∞, the

integral vanishes and, because of the Cauchy’s residue theorem, we obtain a relationship between
the physical amplitude, at z = 0, and a sum over residues for the poles of Atree

n (z) located at zα,

lim
C→∞

∮

C

dz

2πi

Atree
n (z)

z
=Resz→0

[
Atree

n (z)

z

]
+
∑

poles α

Resz→zα

Atree
n (z)

z
= 0,

Atree
n (0) =−

∑

poles α

Resz→zα

Atree
n (z)

z
. (1.57)

Further poles in the amplitude come from the dependence on z of the propagators, which corre-
spond to factorising the amplitude Atree

n (z) by separating the particles kj and kl. In consequence,
any propagator of this form splits the external particles in two groups

• (a, a+ 1, . . . , ĵ, . . . , b) on its left,

• (b+ 1, , . . . , l̂, . . . , b− 1) on its right.

In this case, the propagator P̂ab becomes

P̂µ
ab = Pµ

ab − z ηµ (1.58)

being Pµ
ab the momentum flowing before the shift. Therefore, the residues in Eq. (1.57) take this

parametric form,

Resz→zα

Atree
n (z)

z
= −

∑

h

Atree(a, . . . , ĵ, . . . , b, P̂ab)
i

P 2
ab

Atree(−P̂ab, b+ 1, , . . . , l̂, . . . , b− 1),

(1.59)

where the sum is over all intermediate states. This expression is evaluated at z = zα, which is
set when the internal propagator is put on-shell, P̂ 2

ab = 0, giving

zα =
P 2
ab

2Pab · η
. (1.60)
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Doing the same for the other propagators, one finds,

Atree
n (1, 2, , . . . , n)

=
∑

partitions r

∑

h

Atree
L (ar, . . . , ĵ, . . . , br, P̂arbr)

i

P 2
ab

Atree
R (−P̂arbr , br + 1, , . . . , l̂, . . . , br − 1) . (1.61)

The first sum goes over all the partitions r that separates the particles j and l. Also, each term
of this sum has to be evaluated at the respective pole z = zα.

Recursive diagrams containing three-point amplitudes often vanish because of the “wrong”
kinematics. In general, if a [j, l〉 shift is used, meaning that the momenta kj and kl are shifted,
and the recursive diagram contains a three-point amplitude with two positive helicities, one of
which is j, the diagram vanishes. The reason is that the spinor |j〉 is unaffected by the shift,
hence, its product with the spinor for the other external leg a in the three-point amplitude, 〈ja〉,
remains non-vanishing. Therefore, [ja] and all of the left-handed spinor products must vanish,
and so the three-vertex with two helicities vanishes. Similarly, three-vertices with two negative
helicities can also dropped, when one of the three legs is kl.

1.4 Little group scaling

In Sec. 1.2 we introduced the spinors |i〉 and |i], which, through the Gordon identity, allow to
write the momentum as pµi = 1

2 〈i|γµ|i]. It is worth to see that this relation is invariant under
the scaling

|i〉 → t |i〉 , |i] → t−1 |i] , (1.62)

This is called little group scaling. The little group is a group of transformations that leaves
the momentum of an on-shell particle invariant [219]. For real momenta, t has to be a complex
phase such that |i]∗ = |i〉 is preserved. For complex momenta, |i〉 and |i] are considered as
independent quantities and, we can exploit the holomorphicity and anti-holomorphicity of these
spinors, where t can be any non-zero complex number [215, 216].

Since amplitudes that contain massless particles can always be written in terms of spinor
products we need to scale the external line rules under (1.62); the internal ones are made of the
invariant momenta,

• The scalar rules is a constant factor 1: it does not scale.

• Angle and square spinors for fermions: scale as t−2h for h = ±1
2 .

• Polarisation vectors for spin-1 bosons: scale as t−2h for h = ±1. They do not scale under
scaling of the reference momentum.

Thus, for an amplitude of massless particles only, we have the following result

An({|1〉, |1], h1}, . . . , {ti|i〉, t−1
i |i], hi}, . . . ) = t−2hi

i An(. . . , {|i〉, |i], hi}, . . . ) , (1.63)

where hi is the helicity of the the particle i.
As a consequence of the little group scaling, all three-point tree amplitudes are fixed.

Three-point amplitudes – As we saw in Sec. 1.2.4, three-point amplitudes can only depend
on either angle or square brackets, therefore, we can write a general ansatz

Atree
3 (1h1 , 2h2 , 3h3) = c 〈12〉x12〈13〉x13〈23〉x23 . (1.64)
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Little group scaling (1.62) fixes,

tx12+x13
1 tx12+x23

2 tx13+x23
3 = t−2h1

1 t−2h2
2 t−2h3

3 , (1.65)

solving the system for xij

Atree
3 (1h1 , 2h2 , 3h3) = c 〈12〉h3−h1−h2〈13〉h2−h1−h3〈23〉h1−h2−h3 , (1.66)

where the helicity structure has fixed the three-point amplitude up to an overall constant. The
same behaviour is obtained for the three-point correlation function in a conformal field theory
(see for instance Ref. [220]).

Working out a three-gluon amplitude with two negative and one positive helicity gluons,

Atree
3 (1−, 2−, 3+) = gYM

〈12〉3
〈13〉〈23〉 , (1.67)

This matches our calculation (1.49). Moreover, if we change our general ansatz and assume that
the amplitude depends on square brackets, we get

Atree
3 (1−, 2−, 3+) = g′

[13][23]

[12]3
. (1.68)

In order to distinguish between (1.67) and (1.68), we use dimensional analysis. The momen-
tum dependence in the former is (mass)1, which is compatible with the three-gluon interaction,
(1.20d). While the latter has a mass dimension (mass)−1, which is discarded, since there is not
such interaction in the local Lagrangian.

1.5 Momentum twistors

In this section, we show that starting from formal properties we can achieve efficient results in
the computation of scattering amplitudes. We describe the momentum twistors, which allow
us to write any n-point amplitude made of massless particles in term of 3n − 10 variables.
This approach is going to be used in the extraction of the coefficients of MIs for the analytic
computations of gluon and Higgs one-loop amplitudes.

1.5.1 Definition

The momentum conservation can be seen geometrically. The fact that n momenta pµi add to
zero implies that the vectors close into a contour, see Fig. 1.1 for n = 6.

②✶

②✷ ②✸

②✹

②✺②✻

♣✶

♣✷

♣✸

♣✹

♣✺

♣✻

Figure 1.1: Relation between the ordered set of 6 four-vectors (y1, . . . , y6) and the ordered set of
6 four-vectors (p1, . . . , pn) constrained by p1 + . . .+ p6 = 0.

It means that the contour can be defined by the edges or by the cusps. The former is the usual
representation. For the latter, we take the cusps to be located at point yµi in a dual space [221].
They are defined by their relation to the momentum vectors

pαi = (yi − yi+1)
α . (1.69)
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The dual coordinates yi are not space-time coordinates and have mass-dimension 1. In dual space,
n-point momentum conservation simply corresponds to the periodicity condition that yn+1 = y1.
Since the ordering of the external particles matters, we restrict our discussion to colour-ordered
amplitudes, where, we can define

yαij ≡ (yi − yj)
α = (pi + pi+1 + . . .+ pj−1)

α . (1.70)

Moreover, we can provide a definition of the dual coordinates in terms of spinors, by simply
taking into account the Dirac equation,

/pi|i〉 = (/yi − /yi+1
)|i〉 = 0 , (1.71)

This relation is usually called incidence relation and allows to define a new variable |µi],

|µi] = /yi|i〉 = /yi+1
|i〉 . (1.72)

These prescriptions amount to

yαi =
1

2

〈i|γα|µi−1]− 〈i− 1|γα|µi]
〈i− 1 i〉 . (1.73)

We have translated the dual coordinates yi to Zi ≡ (|i〉, |µi]). The new four-component spinor
variables Zi are called momentum twistors [222], which have been exhaustive studied in super-
symmetric theories [223–226].

Under the little group scaling (1.62) the momentum twistors transform an uniform scaling

Zi → ti Zi(|i〉, |µi]) = Zi(ti |i〉, ti |µi]) . (1.74)

Furthermore, the relation between yi and pαi = 1
2〈i|γα|i] implies that |i] can be expressed in

terms of |i〉 and |µi]. Indeed, we find

[i| = 〈i+ 1 i〉 [µi−1|+ 〈i i− 1〉 [µi+1|+ 〈i− 1 i+ 1〉 [µi|
〈i− 1 i〉 〈i i+ 1〉 . (1.75)

Starting from n momentum twistors (Z1, Z2, . . . , Zn), we see that a momentum pi satisfies,
by definition the massless condition, p2i = 0, and momentum conservation,

∑n
i=1 pi = 0. This

outcome suggests us that all momentum twistors can freely be chosen without any constraint.
In addition, the momentum twistor has the following symmetries:

• Poincarè symmetry.

• U(1) symmetry.

Therefore, any n-point amplitude that originally is written in terms of 4n twistor components,
will be written, because of the symmetries, in terms of 4n− 10− n = 3n− 10 free components.

Working out the expressions for yi, we notice that the arbitrariness of choosing the momentum
twistor components can be seen from another point of view,

yαi = − 1

〈i− 1, i〉
(
Υ (i, µi−1) ε

α
−
(
pi, qµi−1

)
− Υ (i− 1, µi) ε

α
− (pi−1, qµi)

)
, (1.76)

with

Υ (i, µi−1) =
〈i i− 1〉 [µi−1 µi+1] + 〈i− 1 i+ 1〉 [µi−1 µi]√

2 〈i− 1 i〉 〈i i+ 1〉
. (1.77)
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From the definition of pi in (1.69) we find

pαi = − 1√
2 〈i− 1 i〉2 〈i i+ 1〉2

{
〈i− 1 i〉 〈i i+ 1〉 [µi−1µi+1]

(
εα−
(
pi, qµi−1

)
− εα−

(
pi, qµi+1

))

+ 〈i i+ 1〉 〈i+ 1 i− 1〉 [µiµi−1]
(
εα− (pi, qµi)− εα−

(
pi, qµi−1

))

+ 〈i+ 1 i− 1〉 〈i− 1 i〉 [µi+1µi]
(
εα−
(
pi, qµi+1

)
− εα− (pi, qµi)

)}
, (1.78)

which, allows us to write any momentum pi as a combination of three polarisation vectors with
the same momentum but different reference momenta. The explicit value of pi in the r.h.s of
(1.78) is recovered by simply taking into account Eq. (1.43).

Since the aim of our discussion is to review the link between momentum twistors and spinors
to compute efficiently scattering amplitudes we refer, for more details, to Ref.s. [215, 216].

1.5.2 Momentum twistors variables

In this subsection we review the representation of momentum twistors [88, 224, 227–229].

Four-point momentum twistors

The momentum twistor parametrisation at four-point needs two variables, say z1 and z2. A
possible choice of the Z matrix is

Z =

(
|1〉 |2〉 |3〉 |4〉
|µ1] |µ2] |µ3] |µ4]

)
=




1 0 1
z1

1
z1

+ 1
z2

0 1 1 1
0 0 −1 −1
0 0 0 1


 . (1.79)

The components of the angle and square brackets were defined in Eq. (1.39). This matrix allows
us to write the spinor products as follows,

{
〈12〉 → −1, [21] → −z1, 〈13〉 → −1, [31] → z1 (z2 + 1) , 〈14〉 → −1, [41] → −z1z2,

〈23〉 → 1

z1
, [32] → z21z2, 〈24〉 →

z2 + 1

z1z2
, [42] → −z21z2, 〈34〉 →

1

z1z2
, [43] → z21z2

}
. (1.80)

Therefore, we can see that z1 and z2 are related to the Maldestam variables, s = s12 and t = s14,

z1 = s12, z2 =
s14
s12

. (1.81)

Let us write the four-gluon MHV amplitude in terms of momentum twistor variables

Atree
4 (1−, 2−, 3+, 4+) = i

〈12〉4
〈12〉〈23〉〈34〉〈41〉

mt
= i z21z2 = i s12s14 . (1.82)

Since we are working with free-phase variables, in the sense that there is no physical information
of the helicity, the r.h.s of (1.82) is what we call phase-free amplitude. Hence, the physical
amplitude is recovered by Lorentz symmetry (see. Sec. 1.4),

Atree
4 (1−, 2−, 3+, 4+) = Φ−−++

4 Ãtree
4 (1−, 2−, 3+, 4+) . (1.83)
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We set, under momentum twistors,

Φ−−++
4

mt
= 1 , (1.84)

where, because of the structure of Z, we have [230]

〈i1〉 mt
= 1 For i = 2, . . . , 4 ,

〈31〉
[1|2|3〉

mt
= 1 , (1.85)

and Φ−−++
4 takes the form

Φ−−++
4 =

〈12〉2
〈3|2|1]2〈14〉2 . (1.86)

Five-point momentum twistors

A possible choice of the Zi for the five-point parametrisation matrix is

Z =

(
|1〉 |2〉 |3〉 |4〉 |5〉
|µ1] |µ2] |µ3] |µ4] |µ5]

)
=




1 0 1
z1

1
z1

+ 1
z1z2

1
z1

+ 1
z1z2

+ 1
z1z2z3

0 1 1 1 1
0 0 −1 −1 z5

z4
− 1

0 0 0 z4
z2

1


 .

(1.87)

This parametrisation allows to write the Lorentz invariants as

s12 = z1 , s23 = z1z4 , s34 =
z1((z5 − 1)z2z3 + (z3 + 1)z4)

z2
,

s45 = z1z5 , s51 = z1z3(z2 − z4 + z5) , (1.88)

and for tr5(1234),

tr5(1234) = −z
2
1((z5 − 1)z3z

2
2 + (2z3 + 1)z4z2 − (z3 + 1)z4(z4 − z5))

z2
. (1.89)

The system can be inverted to give

z1 = s12 , z2 =
〈14〉〈23〉
〈12〉〈34〉 , z3 =

〈15〉〈34〉
〈13〉〈45〉 ,

z4 =
s23
s12

, z5 =
s123
s12

. (1.90)

Momentum twistors at higher multiplicity

For n ≥ 5, a choice of Z is given by [231],

Z =




1 0 f1 f2 f3 · · · fn−3 fn−2

0 1 1 1 1 · · · 1 1
0 0 0 zn−1

z2
zn · · · z2n−6 1

0 0 1 1 z2n−5 · · · z3n−11 1− z3n−10

zn−1


 , (1.91)

with

fi =
i∑

k=1

1
∏k

l=1 zl
, (1.92)
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and

zi =





s12 i = 1 ,

− 〈i i+1〉〈i+2 1〉
〈1 i〉〈i+1 i+2〉 i = 2, . . . , n − 2 ,

s23
s12

i = n− 1 ,∑i−n1+4
j=2

〈i−n+5|j|2]
[12]〈1 i−n+5〉 i = n, . . . , 2n− 6

∑i−2n+9
j=2

〈1|(2+3)j|i−2n+10〉
s23〈1,i−2n+10〉 i = 2n − 5, . . . , 3n− 11

s123
s12

i = 3n − 10

. (1.93)

As we saw for the four-point case, any physical quantity W can be, in general, decomposed as

Wn = Φn W̃n (1.94)

being W̃n phase-free and Φn a function that contains all the helicity information of W . We set
under momentum twistors

Φh1...hn
n

mt
= 1 . (1.95)

From the choice of Z, Φh1...hn
n can be generalised to

Φh1...hn
n =

( 〈31〉
[1|2|3〉

)−h1 n∏

i=2

(〈1i〉2[1|2|3〉
〈31〉

)−hi

. (1.96)

We have written a mathematica package, T@M [206] based on S@M [205], that implements
the technology of the spinor-helicity formalism through momentum twistor variables. The main
outcome of this implementation is that we do not have to care about the re-organisation of the
amplitude, since it is written in the minimal basis, namely the 3n− 10 variables.

1.6 Discussion

In this chapter we have introduced the spinor helicity formalism, which allows to write compact
expressions for amplitudes. The definition of spinor products accounts for Lorentz invariants. A
remarkable result, within the spinor helicity formalism, is the structure of the Maximally Helicity
Violating (MHV) amplitudes.

In the same line, we have shown the relation between spinor and momentum twistors. Due
to the nice properties the momentum twistors have, we were able to express all spinors products
in terms 3n− 10 independent variables, with n the number of massless momenta.

Althought the momentum twistors provide non-redundant analytical expressions in terms
of a minimal set of variables it becomes cumbersome when increasing the number of external
legs (n ≥ 6). Nevertheless, their numerical evaluation is faster than spinor products. In the
same manner, numerical codes are more stable when using a kinematics provide by momentum
twistors.

We have reviewed traditional and modern techniques to compute tree-level amplitudes. While
the diagrammatic approach of Feynman diagrams produces enormous expressions as the number
of legs increases, the modern techniques take advantage of the analyticity of the S-matrix. The
latter allows us to work with gauge invariant objects only, dropping spurious poles that appear
when considering individually Feynman diagrams. This construction allowed the formulation
of the Britto-Cachazo-Feng-Witten (BCFW) recursive relation, in which the calculation of any
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n-point amplitude is under control. In particular, for N = 4 SYM there is the automatic BCFW
Recursion in mathematica [224].

In the next chapters, we will use these tools to build our fundamental pieces or inputs. These
inputs correspond to the gauge invariant object or tree-level amplitudes needed to recover any
multi-loop amplitude.
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Chapter 2

On the Subleading-Soft Behaviour of

QCD Amplitudes

In this chapter, we study the behaviour of tree-level scattering amplitudes in the soft regime.
We make use of the techniques presented in Chap. 1. Apart from the leading contribution, we
also consider the subleading one. It turns out that the latter is gauge invariant by itself.

Scattering amplitudes display an universal factorisation when a massless particle is radiated
from an external leg. Such factorisation is governed by the non-radiative process, perturbed by
operators. These operators depend on the quantum numbers of the emitter. In order to derive the
leading and subleading soft operators we make use of the gauge invariance and on-shell recursive
construction of the amplitude. From the former, it can be shown that the soft operators depend
on the total angular momentum (orbital and spin) of the radiator, as explicitly shown for gluon
and graviton amplitudes by Bern et al [116]. The latter, based on the spinor helicity formalism,
writes these operators as differential operators, as pointed out by Cachazo and Strominger [91]
and Casali [92] for graviton and gluon amplitudes respectively.

Since previous studies dealt with Yang-Mills and gravity amplitudes, we elaborate on the low
energy behaviour of single gluon radiation for QCD amplitudes with a quark-pair and gluons.
Upon colour decomposition [200], we can identify two situations according to the position of the
soft gluon: (i) between a (anti-)quark and a gluon, and (ii) between two gluons. Case (ii) is
similar to the pure Yang-Mills (YM) case, where the emitter is necessarily a gluon, and it can
be considered well studied [91, 92, 116]. In case (i), instead, the soft gluon can be radiated
either from a gluon or from a (anti-)quark. In order to derive the soft behaviour from fermionic
emitters, we analyse the case of photon bremsstrahlung from the quark-line in QED [219]. For
this case, we show the equivalence of the soft operators derived from gauge invariance and from
the on-shell construction. This result is, then, easily extended to the quark-gluon amplitudes in
QCD [2].

Furthermore, we explicitly apply the soft operators to describe the low-energy behaviour of
quark-gluon amplitudes, emitting either a photon or a gluon, for non-trivial helicity configura-
tions of six-parton scattering.

2.1 Soft limit of gluon-amplitudes

According to little group transformation (1.63), we recall the scaling behaviour of tree-level
scattering amplitudes involving massless particles,

Atree
n ({|1〉, |1], h1}, . . . , {ti|i〉, t−1

i |i], hi}, . . . ) = t−2hi
i Atree

n (. . . , {|i〉, |i], hi}, . . . ) , (2.1)

Without loose of generality, we consider an n-gluon amplitude, Atree
n , with the gluon s as soft,

helicity hs = +1 and momentum kµs = 1
2ǫ 〈s |γµ| s]. ǫ parametrises the energy loss. As represented
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Figure 2.1: Soft-gluon behaviour of pure-gluon amplitudes

in Eq. (2.1), the corresponding amplitude transforms as

Atree
n (. . . , {√ǫ|s〉,√ǫ|s],+1}, . . . ) = ǫAtree

n (. . . , {ǫ|s〉, |s],+1}, . . . ) , (2.2)

which means the soft limit can be taken through the holomorphic limit ǫ|s〉 → 0, while keeping
the anti-holomorphic variable, |s], as finite [91, 92].

The low-energy behaviour derived from the BCFW construction [25, 26], for primitive am-
plitudes, shows that in the soft-limit reads [92],

Atree
n ({ǫ |s〉 , |s]} , {|1〉 , |1]} , . . . , {|n− 1〉 , |n− 1]})

=

(
1

ǫ2
S
(0)λ
G +

1

ǫ
S
(1)λ
G

)
Atree

n−1 (1, ..., n − 1) +O
(
ǫ0
)

(2.3)

where the leading and the subleading terms are,

S
(0)λ
G =

〈n− 1 1〉
〈s 1〉 〈n− 1 s〉 , (2.4a)

S
(1)λ
G =

1

〈s 1〉 [s ∂1] +
1

〈n− 1 s〉 [s ∂n−1] . (2.4b)

Operators [s ∂i] act on spinor products, according to

[s ∂i][• i] = [• s] , [s ∂i]
1

[• i] = − [• s]
[• i]2 . (2.5)

As shown in [116], gauge invariance can also be used to determine the next-to-leading soft
behaviour of the non-Abelian gauge theory. The primitive amplitude gets contribution from
the three types of diagrams shown in Fig. 2.1. Diagrams (a) and (b) contribute to the leading
pole term in the soft regime, while the third one, with the soft-gluon emitted from an internal
propagator, is regular in this limit. By using gauge invariance, we obtain the soft behaviour,

Atree
n (ks; k1, . . . , kn−1) =

[
S
(0)
G + S

(1)
G

]
Atree

n−1(k1, . . . , kn−1) +O(ks) (2.6)

with

S
(0)
G ≡ k1 · ε(ks; rs)√

2(k1 · ks)
− kn−1 · ε(ks; rs)√

2(kn−1 · ks)
, (2.7)

S
(1)
G ≡ − iεµ(ks; rs)ksσ√

2

(
Jµσ
G1

(k1 · ks)
−

Jµσ
Gn−1

(kn−1 · ks)

)
. (2.8)

Here, J is the total angular momentum of the emitter, written in terms of the orbital momentum
L and spin Σ,

Jµσ
Gi ≡ Lµσ

Gi +Σµσ
Gi ,

Lµσ
Gi ≡ i

(
kµi

∂

∂kiσ
− kσi

∂

∂kiµ

)
,
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Σµσ
Gi ≡ i

(
εµi

∂

∂εiσ
− εσi

∂

∂εiµ

)
. (2.9)

In the derivation of this result [116], Lµσ
Gi does not act on explicit polarisation vectors, i.e.

Lµσ
Giε

ν
i = 0.

As discussed in [116], the equivalence between the operators S
(1)
G , derived from gauge in-

variance, and S
(1)λ
G , derived from on-shell recurrence, can be seen through their explicit action

on polarisation vectors. In fact, the next-to-soft operators S
(1)
G and S

(1)λ
G acting on ε±ρ (k1; r1)

amount to,

S
(1)
G ε+ρ(k1; r1) = − 〈r1 s〉

〈r1 1〉 〈1 s〉
ε+ρ(ks; r1) , (2.10)

S
(1)
G ε−ρ(k1; r1) = +

[r1 s]

[r1 1] [1 s]
ε+ρ(ks; r1) , (2.11)

and

S
(1)λ
G ε+ρ(k1; r1) = − 〈r1 s〉

〈r1 1〉 〈1 s〉
ε+ρ(ks; r1) , (2.12)

S
(1)λ
G ε−ρ(k1; r1) = +

[r1 s]

[r1 1] [1 s]

[
ε+ρ(ks; r1)−

√
2 [r1 s]

[r1 1] 〈1 s〉
kρ1

]
. (2.13)

The second term in the last equation is proportional to kρ1 , and vanishes after contracting it with
the polarisation stripped Atree

n−1 amplitude, due to Ward identity. Therefore, the next-to-leading
soft (differential) operators obtained in these two frameworks are completely equivalent.

2.2 Photon bremsstrahlung from quark-gluon amplitudes

Since previous studies considered the radiation of gluons from gluon amplitudes [92, 116], one
needs the radiation from fermion lines only. Hence, in order to isolate this contribution, we
consider the radiation of a photon from a quark-pair of a quark-gluon amplitude. The radiation
of a gluon from quark-gluon amplitudes will be studied in the next section.

The derivations of the leading and next-to-leading soft terms are done by following both,
on-shell recurrence and gauge invariance approaches. Furthermore, we prove the equivalence of
the respective results.

2.2.1 Derivation from on-shell recursion

✖q

✌s
q

✭❛✮

✌s

q

✖q

✭❜✮

✖q

✌s

q

✭❝✮

Figure 2.2: Soft-photon behaviour of quark-gluon amplitudes

We consider a colour-ordered amplitude Atree
n+3(Λq̄, γ

+
s ,Λq, g1, · · · , gn), where Λq and Λq̄ denote

a quark and an antiquark, and γ+s stands for a soft photon of helicity hs = +1, emitted from the
fermionic current. Under the BCFW deformation involving γs and gn we define the shift [n, s〉,

|ŝ〉 = |s〉+ z |n〉 , (2.14)
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|n̂] = |n]− z |s] , (2.15)

the amplitude factorises as,

Atree
n+3

(
Λq̄, γ

+
s ,Λq, g1, · · · , gn

)
=
∑

h=± 1
2

Atree
L

(
γ̂+s ,Λq, P̂

h
) 1

P 2
s,q

Atree
R

(
−P̂−h, g1, . . . , ĝn,Λq̄

)

+
∑

h=± 1
2

Atree
L

(
Λq̄, γ̂

+
s , P̂

h
) 1

P 2
q̄,s

Atree
R

(
−P̂−h,Λq, g1 . . . , ĝn

)

+
∑

h=±1

Atree
L

(
Λq̄, γ̂

+
s ,Λq, g1, . . . , gj , P̂

h
) 1

P 2
q̄,s,q,1,...,j

Atree
R

(
−P̂−h, gj+1, . . . , ĝn

)
, (2.16)

as depicted in fig. 2.2.
In the first term, the on-shellness requires z = − 〈q s〉

〈q n〉 , and P̂ stands for a fermion with an

opposite helicity with respect to Λq. By taking the soft limit, |s〉 → ǫ|s〉, this term reads

1

ǫ2
〈n q〉

〈n s〉 〈s q〉A
tree
n+2 ({|q〉, |q̂]}, . . . , {|n〉, |n̂]}, {|q̄〉, |q̄]})

=

[
1

ǫ2
〈n q〉

〈n s〉 〈s q〉 +
1

ǫ

(
1

〈s q〉 [s ∂q] +
1

〈n s〉 [s ∂n]
)]

Atree
n+2 ({|q〉, |q]}, . . . , {|n〉, |n]}, {|q̄〉, |q̄]})

(2.17)

with |q̂] = |q] + ǫ 〈n s〉
〈n q〉 |s] and |n̂] = |n] + ǫ 〈s q〉〈n q〉 |s].

In the second term of eq. (2.16), the on-shell condition implies z = − 〈q̄ s〉
〈q̄ n〉 , and P̂ stands for a

fermion with an opposite helicity with respect to Λq̄. Under the soft limit, |s〉 → ǫ|s〉, this term
becomes

− 1

ǫ2
〈n q̄〉

〈n s〉 〈s q̄〉A
tree
n+2

(
{|q̄〉, |ˆ̄q]}, {|q〉, |q]}, . . . , {|n〉, |n̂]}

)

= −
[
1

ǫ2
〈n q̄〉

〈n s〉 〈s q̄〉 +
1

ǫ

(
1

〈s q̄〉 [s ∂q̄] +
1

〈n s〉 [s ∂n]
)]

Atree
n+2 ({|q̄〉, |q̄]}, {|q〉, |q]}, . . . , {|n〉, |n]})

(2.18)

with | ˆ̄q] = |q̄] + ǫ 〈n s〉
〈n q̄〉 |s] and |n̂] = |n] + ǫ 〈s q〉〈n q〉 |s].

The third term of eq. (2.16) is finite under the soft limit, hence does not contribute to any
soft operators [91, 92].
Adding the first and second term up, the amplitude in the soft regime reads,

Atree
n+3

(
Λq̄, γ

+
s ,Λq, g1, · · · , gn

)
=

(
1

ǫ2
S(0)λ +

1

ǫ
S(1)λ

)
Atree

n+2 (Λq̄,Λq, g1, · · · , gn) +O(1) , (2.19)

with

S(0)λ =
〈n q〉

〈n s〉 〈s q〉 −
〈n q̄〉

〈n s〉 〈s q̄〉 =
〈q̄ q〉

〈q̄ s〉 〈s q〉 , (2.20)

S(1)λ =
1

〈s q〉 [s ∂q]−
1

〈s q̄〉 [s ∂q̄], (2.21)

where Atree
n+2 is the non-radiative quark-gluon amplitude.
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2.2.2 Derivation from gauge invariance

Within a diagrammatic approach, the amplitude Atree
n+3 (Λq̄, γ

+
s ,Λq, g1, · · · , gn) gets contributions

from the three diagrams in Fig. 2.2, and can be obtained by contracting the soft-photon polari-
sation εµ(ks; rs) and the current Aµ

n+3,

Atree
n+3 = εµ(ks; rs) A

µ
n+3 , (2.22)

with

Aµ
n+3 (ks; kq̄, kq, k1, . . . , kn) = − i√

2
u(kq)Ã(kq̄ + ks, kq, k1, . . . , kn)

i
(
/kq̄ + /ks

)

(kq̄ + ks)2
γµv(kq̄)

+
i√
2
u(kq)γ

µ i
(
/kq + /ks

)

(kq + ks)2
Ã(kq̄, kq + ks, k1, . . . , kn)v(kq̄) +Nµ

n+3(ks; kq̄, kq, k1, . . . , kn) . (2.23)

The first term, corresponding to fig. 2.2 (a), represents the case of soft-photon emission from
an outgoing antiquark; the second term, corresponding to fig. 2.2 (b), represents the case of
soft-photon emission from an outgoing quark; while the third term Nµ

n+3 represents the case

of soft-photon emission from internal fermion lines, as shown in fig. 2.2 (c). Ã is the internal
part sandwiched by two free-particle states of fermions. By using the massless Dirac equation,
u(p) /p = /p v(p) = 0, the transversality conditions, ks · ε±(ks; rs) = 0, and the relation γµ/p =
pν(η

µν + [γµ, γν ]/2) from the anti-commutation of γ-matrix (for an arbitrary momentum p), the
current Aµ

n+3 can be cast as,

Aµ
n+3 (ks; kq̄, kq, k1, . . . , kn) =

kµq̄√
2kq̄ · ks

u(kq)Ã(kq̄ + ks, kq, k1, . . . , kn)v(kq̄)

+
i ksν√
2kq̄ · ks

u(kq)Ã(kq̄+ks, kq, k1, . . . , kn)Σ
µν
F v(kq̄)−

kµq√
2kq · ks

u(kq)Ã(kq̄, kq+ks, k1, . . . , kn)v(kq̄)

+
i ksν√
2kq · ks

u(kq)Σ
µν
F Ã(kq̄, kq + ks, k1, . . . , kn)v(kq̄) +Nµ

n+3(ks; kq̄, kq, k1, . . . , kn) , (2.24)

where

Σµν
F ≡ i

4
[γµ, γν ] (2.25)

is the spin operator in a 4-dimensional representation of the Lorentz algebra corresponding to
spin 1/2. Following [89, 116], we can determine Nµ by imposing gauge invariance. In fact, the
condition

ks µA
µ
n+3(ks; kq̄, kq, k1, . . . , kn) = 0 , (2.26)

together with the on-shell massless condition k2s = 0, implies

ks µN
µ
n+3(0; kq , kq̄, k1, . . . , kn)

= −ks µ√
2
u(kq)

[
∂

∂kq̄µ
Ã(kq̄, kq, k1, . . . , kn)−

∂

∂kqµ
Ã(kq̄, kq, k1, . . . , kn)

]
v(kq̄) . (2.27)

Consequently, we can write Aµ
n+3 as,

Aµ
n+3(ks; kq̄, kq, k1, . . . , kn) =

(
kµq̄√

2kq̄ · ks
− kµq√

2kq · ks

)
u(kq)Ã(kq̄, kq, k1, . . . , kn)v(kq̄)
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+
i ksν√
2kq̄ · ks

u(kq)Ã(kq̄, kq, k1, . . . , kn)Σ
µν
F v(kq̄)

+
i ksν√
2kq · ks

u(kq)Σ
µν
F Ã(kq̄, kq, k1, . . . , kn)v(kq̄)

− i ks ν√
2kq̄ · ks

u(kq)

[
i

(
kµq̄

∂

∂kq̄ν
− kνq̄

∂

∂kq̄µ

)
Ã(kq̄, kq, k1, . . . , kn)

]
v(kq̄)

+
i ks ν√
2kq · ks

u(kq)

[
i

(
kµq

∂

∂kqν
− kνq

∂

∂kqµ

)
Ã(kq̄, kq, k1, . . . , kn)

]
v(kq̄) +O (ks) . (2.28)

Then, we contract back the polarisation vector of the soft-photon ε+µ (ks; rs), obtaining the fol-
lowing expression of the amplitude,

Atree
n+3(ks; kq̄, kq, k1, . . . , kn) =

(
ε+(ks; rs) · kq̄√

2kq̄ · ks
− ε+(ks; rs) · kq√

2kq · ks

)
An+2(kq̄, kq, k1, . . . , kn)

+
i ε+µ (ks; rs) ksν√

2

{
u(kq)

(
Lµν
q

kq · ks
− Lµν

q̄

kq̄ · ks

)
v(kq̄)

+
1

kq̄ · ks
u(kq)Ã(kq̄, kq, k1, . . . , kn)Σ

µν
F v(kq̄) +

1

kq · ks
u(kq)Σ

µν
F Ã(kq̄, kq, k1, . . . , kn)v(kq̄)

}

+O (ks) , (2.29)

with

Atree
n+2(kq̄, kq, k1, . . . , kn) = u(kq)Ã(kq̄, kq, k1, . . . , kn)v(kq̄) (2.30)

being the lower-point, non-radiative amplitude. In the above expression,

Lµν
fi

= i

(
kµi

∂

∂kiν
− kνi

∂

∂kiµ

)
, (2.31)

is the orbital angular momentum of fermion i, which does not act on Dirac fields of incom-
ing/outgoing spin 1/2 particles, namely

Lµν
fi
u±(ki) = Lµν

fi
v±(ki) = 0 , (2.32a)

u±(ki)L
µν
fi

= v±(ki)L
µν
fi

= 0 . (2.32b)

On the other hand, the Lorentz generators Σµν
F of spin 1/2 act only on the Dirac fields u±(ki)

or v±(ki) (u±(ki) or v±(ki)).

2.2.3 Connection between the two derivations

In this section, we prove the equivalence of the limiting behaviour of quark-gluon amplitudes in
the soft-photon emission regime obtained in (2.19) from BCFW recurrence, and in (2.29) from
gauge invariance.

Leading soft singularity

The leading singularity factor of order 1/ks in (2.29) can be denoted as

S(0) =
ε+(ks; rs) · kq̄√

2kq̄ · ks
− ε+(ks; rs) · kq√

2kq · ks
. (2.33)
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In spinorial notations, we indeed find,

S(0) =
ε+(ks; rs) · kq̄√

2kq̄ · ks
− ε+(ks; rs) · kq√

2kq · ks
=

〈q q̄〉
〈q̄ s〉 〈s q〉 = −S(0)λ , (2.34)

where S(0)λ was defined in (2.20). This proves the equivalence of the leading soft term in the
two approaches (up to an overall sign)

Next-to-leading soft singularity

The action of the differential operator S(1)λ, defined in (2.21), on the lower-point amplitude
Atree

n+2(q̄, q, g1 . . . , gn) can be written as,

S(1)λAtree
n+2(q̄, q, g1 . . . , gn) = S(1)λ

[
u(kq)Ã(kq̄, kq, k1, . . . , kn) v(kq̄)

]

= u(kq)Ã(kq̄, kq, k1, . . . , kn)
[
S(1)λ v(kq̄)

]
+
[
S(1)λu(kq)

]
Ã(kq̄, kq, k1, . . . , kn) v(kq̄)

+ u(kq)
[
S(1)λ Ã(kq̄, kq, k1, . . . , kn)

]
v(kq̄) . (2.35)

On the other hand, the next-to-leading soft singularity as derived in Sec. 2.2.2, is

Atree
n+3(ks; kq̄, kq, k1, . . . , kn)

∣∣
S(1) =

i ε+µ (ks; rs) ksν√
2

{
u(kq)

(
Lµν
q

kq · ks
− Lµν

q̄

kq̄ · ks

)
v(kq̄)

+
1

kq̄ · ks
u(kq)Ã(kq̄, kq, k1, . . . , kn)Σ

µν
F v(kq̄) +

1

kq · ks
u(kq)Σ

µν
F Ã(kq̄, kq, k1, . . . , kn)v(kq̄)

}
.

(2.36)

We proceed by identifying (2.35) and (2.36) term by term.

Proposition 1:

S(1)λ v(kq̄) = −
[
i ε+µ (ks; rs) ksν√

2kq̄ · ks
Σµν v(kq̄)

]
. (2.37)

Proof.
Outgoing antiquark with different helicities in terms of spinor notations are

hq̄ = +
1

2
, v+(kq̄) = |q̄] , (2.38)

hq̄ = −1

2
, v−(kq̄) = |q̄〉 . (2.39)

For hq̄ = +1
2 case, the action of the next-to-soft operator on field v+(kq̄), corresponding to the

first term in (2.35), is

S(1)λ v+(kq̄) =

(
1

〈s q〉 [s ∂q]−
1

〈s q̄〉 [s ∂q̄]
)
λ̃ḃq̄ = − 1

〈s q̄〉 |s] , (2.40)

and the counter-part from (2.36), in spinor notation, is

i ε+µ (ks; rs) ksν√
2kq̄ · ks

Σµν
F v+(kq̄) = +

1

〈s q̄〉 |s] . (2.41)
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The results of (2.40) and (2.41) differ only for a minus sign, which is an overall phase factor at
the amplitude level and irrelevant for the physical content of cross-sections.

On the other side, for hq̄ = −1
2 case, one has

S(1)λ v−(kq̄) =
i ε+µ (ks; rs) ksν√

2kq̄ · ks
Σµν v−(kq̄) = 0 . (2.42)

Proposition 2:

S(1)λ u(kq) = −
[
u(kq)

i ε+µ (ks; rs) ksν√
2kq · ks

Σµν
F

]
. (2.43)

Proof.
Outgoing quark with different helicities in terms of spinor notations are

h = +
1

2
, u+(kq) = [q̄| , (2.44)

h = −1

2
, u−(kq) = 〈q| . (2.45)

With a similar procedure dealing with outgoing antiquark, we have

−
(
u+(kq)

i ε+µ (ks; rs) ksν√
2kq · ks

Σµν
F

)
= +

1

〈s q〉 [s| , (2.46)

and

S(1)λ u−(kq) = u−(kq)
i ε+µ (ks; rs) ksν√

2kq · ks
Σµν
F = 0 . (2.47)

Also in this case, the two results differ by an overall sign.

Proposition 3:

S(1)λÃ(kq̄, kq, k1, . . . , kn) = −i
ε+µ (ks; rs)ksν√

2

(
Lµν
q

kq · ks
− Lµν

q̄

kq̄ · ks

)
Ã(kq̄, kq, k1, . . . , kn) . (2.48)

Proof.
Since Ã is a function that depends on gluon polarisations and momenta, it can, therefore, be

expressed in terms of spinor chains.
Because tree-level amplitudes are rational functions of spinor products, we can focus on the

action of the operators S(1)λ and (−ig/
√
2) ε+µ (ks; rs)ks ν

(
Lµν
q

kq·ks −
Lµν
q̄

kq̄·ks

)
onto each ingredient

separately.
The next-to-leading soft operator gives non-trivial result when acting on spinor products

involving q, as

S(1)λ [• q̄] = − 1

〈s q̄〉 [• s] , (2.49a)

S(1)λ 1

[p q̄]
= +

1

[p q̄]

[p s]

〈s q̄〉 [p q̄] . (2.49b)

On the other hand, the operator from gauge invariance acts on terms depending on the antiquark
momentum, like

i ε+µ (ks; rs) ks ν√
2

(
Lµν
q

kq · ks
− Lµν

q̄

kq̄ · ks

)
kρq̄ = +

1

〈s q̄〉
〈q̄|γρ|s]

2
, (2.50)
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i ε+µ (ks; rs) ks ν√
2

(
Lµν
q

kq · ks
− Lµν

q̄

kq̄ · ks

)
1

p · kq̄
= − 1

p · kq̄
[p s]

〈s q̄〉 [p q̄] . (2.51)

The coefficients are identical up to a physically irrelevant overall minus sign.
The same conclusion can be drawn from comparing the action of the subleading soft operators

on the variables associated to quarks,

S(1)λ [• q] = +
1

〈s q〉 [• s], S(1)λ 1

[p q]
= − 1

[p q]

[p s]

〈s q〉 [p q] , (2.52)

and

i ε+µ (ks; rs) ks ν√
2

(
Lµν
q

kq · ks
− Lµν

q̄

kq̄ · ks

)
kρq = − 1

〈s q〉
〈q|γρ|s]

2
, (2.53)

i ε+µ (ks; rs) ks ν√
2

(
Lµν
q

kq · ks
− Lµν

q̄

kq̄ · ks

)
1

p · kq
= +

1

p · kq
[p s]

〈s q〉 [p q] . (2.54)

This complete the proof that the (leading and subleading) soft operators derived from BCFW
recurrence and gauge invariance are indeed equivalent (up to a physically irrelevant overall minus
sign).

2.2.4 Examples

We consider amplitudes with one quark-antiquark pair and gluons, and a plus-helicity photon
emitted from the fermion line.

MHV and MHV amplitudes

• The MHV amplitude is

Atree
n+3(Λ

+
q̄ , γ

+
s ,Λ

−
q , g

+
1 , · · · , g−I , · · · , g+n ) =

i 〈q I〉3 〈q̄ I〉
〈q̄ s〉 〈s q〉 · · · 〈n q̄〉 . (2.55)

By taking the holomorphic soft limit |s〉 → ǫ|s〉, one gets,

Atree
n+3(Λ

+
q̄ , γ

+
s ,Λ

−
q , g

+
1 , · · · , g−I , · · · , g+n )

∣∣∣∣
|s〉→ǫ|s〉

=
1

ǫ2
〈q̄ q〉

〈q̄ s〉 〈s q〉 ×
i 〈q I〉3 〈q̄ I〉

〈q̄ q〉 〈1 2〉 · · · 〈n q̄〉 .

(2.56)

On the other hand, the action of the operators S(0)λ and S(1)λ on the lower-point, non-
radiative amplitude, Atree

n+3(Λ
+
q̄ ,Λ

−
q , g

+
1 , · · · , g−I , · · · , g+n ) reads,

(
1

ǫ2
S(0)λ +

1

ǫ
S(1)λ

)
Atree

n+2(Λ
+
q̄ ,Λ

−
q , g

+
1 , · · · , g−I , · · · , g+n )

=
1

ǫ2
〈q̄ q〉

〈q̄ s〉 〈s q〉 ×
i 〈q I〉3 〈q̄ I〉

〈q̄ q〉 〈1 2〉 · · · 〈n q̄〉 . (2.57)

The two results are identical, and in particular, for the MHV amplitude, no next-to-soft
contribution arises, because S(1)λAtree

n+2(Λ
+
q̄ ,Λ

−
q , g

+
1 , · · · , g−I , · · · , g+n ) = 0.

• The case of the MHV amplitude is trivial. Since the amplitude has an anti-holomorphic
expression,

Atree
n+3(Λ

+
q̄ , γ

+
s ,Λ

−
q , g

−
1 , . . . , g

−
n ) =

i [q̄ s]3 [q s]

[q̄ s] [s q] [q 1] [1 2] · · · [n q̄] , (2.58)

the holomorphic soft limit, |s〉 → ǫ|s〉, has no effect. On the other hand, the soft operators
S(0)λ and S(1)λ act on a vanishing amplitude, Atree

n+2(Λ
+
q̄ ,Λ

−
q , g

−
1 , . . . , g

−
n ).
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NMHV 6–point amplitudes

The first non-trivial soft-behaviour can be found when considering next-to-MHV (NMHV) he-
licity configurations of six-point amplitudes.
Let us consider the amplitude Atree

6

(
γ+s , 1

−
q , 2

−
g , 3

−
g , 4

+
g , 5

+
q̄

)
≡ Atree

6

(
s+, 1−q , 2

−, 3−, 4+, 5+q̄
)
,

Atree
6

(
s+, 1−q , 2

−, 3−, 4+, 5+q̄
)

=
i 〈35〉 〈3 |4 + 5| s]2

P 2
s12 〈34〉 〈45〉 〈5 |s+ 1| 2] [12] +

i 〈1 |s+ 5| 4]2 〈5 |s+ 1| 4]
P 2
s15 〈s1〉 〈s5〉 〈5 |s+ 1| 2] [32] [43] , (2.59)

with Pij = ki+kj and Pijl = ki+kj+kl. We construct the soft limit, first by rescaling |s〉 → ǫ|s〉,

Atree
6

(
s+, 1−q , 2

−, 3−, 4+, 5+q̄
) |s〉→ǫ|s〉

= − i

ǫ〈5|s|2] + 〈5|1|2]

×
(

(ǫ〈5|s|4] + 〈5|1|4])(ǫ〈1|s|4] + 〈1|5|4])2
ǫ2[32][43]〈s1〉〈s5〉

(
ǫ(P 2

1s + P 2
5s) + P 2

15

) + 〈35〉〈3|4 + 5|s]2
[21]〈34〉〈45〉

(
ǫ(P 2

1s + P 2
2s) + P 2

12

)
)
, (2.60)

and then, by expanding around ǫ→ 0,

Atree
6

(
s+, 1−q , 2

−, 3−, 4+, 5+q̄
) ǫ→0

=
a−2

ǫ2
+
a−1

ǫ
+O(1) , (2.61)

with

a−2 =− i[41][54]2〈15〉
[21][32][43][51]〈s1〉〈s5〉 , (2.62)

a−1 =
1

〈s1〉

(
− i[54]2[4s]

[21][32][43][51]
+

i[41][54]2[2s]

[21]2[32][43][51]
+

i[41][54]2[5s]

[21][32][43][51]2

)

+
1

〈s5〉

(
− i[54][41]2 [5s]

[21][32][43][51]2
− i[54][41][4s]

[21][32][43][51]

)
. (2.63)

Alternatively, the soft expansion can be obtained through the action of the differential soft
operators on the non-radiative five-point amplitude, according to,

a−2 = S(0)λAtree
5 (1−q , 2

−, 3−, 4+, 5+q̄ ) , (2.64)

a−1 = S(1)λAtree
5 (1−q , 2

−, 3−, 4+, 5+q̄ ) , (2.65)

where, the operators S(0)λ and S(1)λ, respectively defined in (2.20) and (2.21), read

S(0)λ =
〈15〉

〈s1〉〈s5〉 , (2.66)

S(1)λ =
1

〈s1〉 [s ∂1]−
1

〈s5〉 [s ∂5] , (2.67)

while the five-point quark-gluon amplitude is,

Atree
5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
=

i[14][54]3

[12][23][34][45][51]
. (2.68)

In this case, the leading soft singularity is,

a−2 =
〈15〉

〈s1〉〈s5〉A
tree
5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
= − i[41][54]2〈15〉

[21][32][43][51]〈s1〉〈s5〉 (2.69)
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in full agreement with the result of (2.62).
To compute the next-to-leading soft term, we combine the derivatives,

1

〈s1〉 [s ∂1]A
tree
5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
= − 1

〈s1〉

(
[42][1s]

[21][41]
+

[5s]

[51]

)
Atree

5

(
1−q , 2

−, 3−, 4+, 5+q̄
)

=
1

〈s1〉

(
i[42][54]2 [1s]

[21]2[32][43][51]
+

i[41][54]2 [5s]

[21][32][43][51]2

)
, (2.70)

and

− 1

〈s5〉 [s ∂5]A
tree
5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
=

1

〈s5〉

(
[4s]

[54]
+

[41][5s]

[51][54]

)
Atree

5

(
1−q , 2

−, 3−, 4+, 5+q̄
)

=
1

〈s5〉

(
− i[54][41]2 [5s]

[21][32][43][51]2
− i[54][41][4s]

[21][32][43][51]

)
, (2.71)

yielding,

a−1 =
1

〈s1〉

(
i[42][54]2 [1s]

[21]2[32][43][51]
+

i[41][54]2 [5s]

[21][32][43][51]2

)
(2.72)

− 1

〈s5〉

(
i[54][41]2 [5s]

[21][32][43][51]2
+

i[54][41][4s]

[21][32][43][51]

)
. (2.73)

After applying the Schouten identity, the result in (2.63) becomes identical to (2.73).

The agreement between the direct soft-limit expansion and the application of the soft opera-
tors can be analogously verified for the other NMHV helicity configurations, Atree

6

(
s+, 1−q , 2

+, 3−, 4−, 5+q̄
)

and Atree
6

(
s+, 1−q , 2

−, 3+, 4−, 5+q̄
)
.

2.3 Soft-limit of quark-gluon amplitudes

In this section, we discuss the low-energy behaviour of soft-gluon radiation from quark-gluon
tree-level amplitudes. Depending on the position of the soft-gluon, gs, in the colour-ordered
amplitude, we may have three situations [200],

Atree
n+3 (Λq; g1, · · · , gn, gs; Λq̄) , (2.74)

Atree
n+3 (Λq; gs, g1, · · · , gn; Λq̄) , (2.75)

Atree
n+3 (Λq; g1, · · · , gm, gs, gm+1, · · · , gn; Λq̄) . (2.76)

The second case is analogous to the first one, since they both describe the soft-gluon adjacent to
one fermion and one gluon, while the third case represents the soft-gluon adjacent to two gluons.
Therefore, we will consider as independent only the first and the third configurations, which are
discussed in the following. For both cases, by making use of the results in sections 2.1 and 2.2,
we will establish the equivalence of the soft operators derived via gauge invariance and on-shell
recurrence, representing the main result of this work.

2.3.1 Case 1: soft-gluon adjacent to the anti-quark and one gluon

The colour-ordered amplitude Atree
n+3 (Λq; g1, · · · , gn, gs; Λq̄) describes the radiation of a soft-gluon

emitted from either the external anti-quark q, the external gluon gn or, internal gluon lines
between gn and q. This amplitude receives contributions from three types of diagrams, as shown
in fig. 2.3.
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Figure 2.3: Soft-gluon behaviour of quark-gluon amplitudes: case 1

Following the procedure presented in sec. 2.2, from on-shell recursion relation, we can derive the
soft behaviour,

Atree
n+3 (Λq; g1, · · · , gn, gs; Λq̄) =

(
1

ǫ2
S
(0)λ
QCD +

1

ǫ
S
(1)λ
QCD

)
Atree

n+2 (Λq; g1, · · · , gn; Λq̄) +O(1) , (2.77)

with

S
(0)λ
QCD =

〈n q̄〉
〈q̄ s〉 〈s n〉 , (2.78)

S
(1)λ
QCD =

1

〈s q̄〉 [s ∂q̄]−
1

〈s n〉 [s ∂n] , (2.79)

and Atree
n+2 the non-radiative quark-gluon amplitude.

Gauge invariance, on the other side, requires the amplitude to have the following expression,

Atree
n+3(kq; k1, . . . , kn, ks; kq̄) =

(
ε+(ks; rs) · kq̄√

2kq̄ · ks
− ε+(ks; rs) · kn√

2kn · ks

)
Atree

n+2(kq; k1, . . . , kn; kq̄)

+
i ε+µ (ks; rs) ksν√

2

{
1

kq · ks
Jµν
Gn

[
u(kq) Ã(kq; k1, . . . , kn; kq̄)v(kq̄)

]

+
1

kq̄ · ks
u(kq)Ã(kq; k1, . . . , kn; kq̄)Σ

µν
F v(kq̄)

− u(kq)

[
Lµν
q̄

kq̄ · ks
Ã(kq; k1, . . . , kn; kq̄)

]
v(kq̄)

}
+O (ks) , (2.80)

with the non-radiative amplitude being

Atree
n+2(kq̄, kq, k1, . . . , kn) = u(kq)Ã(kq̄, kq, k1, . . . , kn)v(kq̄). (2.81)

In the above expression, Jµν
Gn is the total angular momentum for gluon gn, defined in (2.9), while

Lµν
q̄ and Σµν

F are respectively the orbital and spin angular momenta of anti-quark q, given in
(2.29).

The equivalence of the two derivations can be established as follows.

Leading soft singularity

The leading soft term coming from S
(0)λ
QCD in (2.78) and

(
ε+(ks;rs)·kq̄√

2kq̄·ks
− ε+(ks;rs)·kn√

2kn·ks

)
in (2.80) agree

with each other, once they are expressed in spinor variables, exactly as in (2.34).

Next-to-leading soft singularity

The expression (2.80), obtained from gauge invariance, contains two contributions:

36



1. the operator
i ε+µ (ks;rs) ksν√

2kq·ks
Jµν
Gn, related to the gluon gn comes from fig. 2.3 (a) and (c). This

term is equivalent to − 1
〈s n〉 [s ∂n] of S

(1)λ
QCD defined in (2.79). The proof comes from the

equivalence in the pure-gluon cases [116], whose result we recall in sec. 2.1, eqs. (2.10)-
(2.13).

2. the operators − i ε+µ (ks;rs) ks ν√
2kq̄·ks

Lµν
q̄ and

i ε+µ (ks;rs) ksν√
2kq̄·ks

Σµν
F related to the anti-quark q arise from

fig. 2.3 (b) and (c). According to discussions in sec 2.2.3, eqs.(2.40)-(2.42) and (2.49)-(2.51),

the combination of these two terms is equivalent to 1
〈s q̄〉 [s ∂q̄] in S

(1)λ
QCD of (2.79).

Therefore we can consider the soft behaviour of (2.79) equivalent to (2.80).

2.3.2 Case 2: soft-gluon adjacent to two gluons

In the colour-ordered amplitude Atree
n+3 (Λq; g1, . . . , gm, gs, gm+1, . . . , gn; Λq̄), the soft-gluon, gs, can

be emitted from either external gluons, internal gluon or fermion lines, as shown in fig. 2.4.
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Figure 2.4: Soft-gluon behaviour of quark-gluon amplitudes: case 2

The proof of the equivalence between the derivation from the on-shell formalism and gauge-
invariance is identical to the pure-gluon case [116]. The only difference is the term fixed by gauge
invariance, called N in [116] and coming from fig. 2.1 (c), it receives now contributions from two
pieces, corresponding to fig. 2.4 (c) and (d).

2.3.3 Examples

Atree
6

(
1−q , 2

−
g , 3

−
g , 4

+
g , s

+
g , 5

+
q̄

)

We derive the soft behaviour for a colour-ordered six-point NMHV amplitude corresponding to
the case in Sec. 2.3.1.
Let us consider Atree

6

(
1−q , 2

−
g , 3

−
g , 4

+
g , s

+
g , 5

+
q̄

)
≡ Atree

6

(
1−q , 2

−, 3−, 4+, s+, 5+q̄
)
, where the ampli-

tude is written in [232],

Atree
6

(
1−q , 2

−, 3−, 4+, s+, 5+q̄
)

= − i〈5|2 + 3|4]〈1|2 + 3|4]2
P 2
234[32][43]〈15〉〈s|3 + 4|2]〈s5〉 −

i〈3|s + 4|1]〈3|s + 4|5]2
P 2
s34[21][51]〈34〉〈s|3 + 4|2]〈s4〉 . (2.82)

We first construct the soft limit by rescaling |s〉 → ǫ |s〉

Atree
6

(
1−q , 2

−, 3−, 4+, s+, 5+q̄
) |s〉→ǫ|s〉

=
i

ǫ2〈s|3 + 4|2]

(
(ǫ〈1|s|4] + 〈1|5|4])2(ǫ〈5|s|4] + 〈5|1|4])
[32][43]〈15〉〈s5〉

(
ǫ〈s|1 + 5|s] + P 2

15

)

− (ǫ〈3|s|1] + 〈3|4|1])(ǫ〈3|s|5] + 〈3|4|5])2
[21][51]〈34〉〈s4〉

(
ǫ〈s|3 + 4|s] + P 2

34

)
)
, (2.83)

and then by expanding around ǫ→ 0

Atree
6

(
1−q , 2

−, 3−, 4+, s+, 5+q̄
)
=
a−2

ǫ2
+
a−1

ǫ
+O (1) , (2.84)
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with

a−2 =− i[54]2〈3|4|1]
[21][51]〈s|3 + 4|2]〈s|4|3] −

i [4|5|1〉 [14][54]
[32][43]〈s|3 + 4|2]〈s|5|1] , (2.85)

a−1 =
i[54]

[21][51]〈s|3 + 4|2]

(
[41][54][4s]

[43]2
− [54]〈3|s|1]

〈s|4|3] +
[41][54]〈s|3|s]
[43]〈s|4|3] +

2[41]〈3|s|5]
〈s|4|3]

)

+
i[54]

[32][43]〈s|3 + 4|2]

(
[54][4s]

[51]
− [41][54]〈s|1|s]

[51]〈s|5|1] − [41][54][5s]

[51]2
+

2 [4|1|s〉 [s4]
〈s|5|1]

)
. (2.86)

On the other hand, we obtain the soft expansion by acting the differential operators on the
non-radiative five-point amplitude,

a−2 = S(0)λA5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
, (2.87)

a−1 = S(1)λA5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
, (2.88)

where operators S(0)λ and S(1)λ read

S(0)λ =
〈45〉

〈s4〉〈s5〉 , (2.89)

S(1)λ =
1

〈s5〉 [s ∂5]−
1

〈s4〉 [s ∂4] . (2.90)

The leading soft singularity is

a−2 =
〈45〉

〈s4〉〈s5〉A5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
=

i[41][54]2〈45〉
[21][32][43][51]〈s4〉〈s5〉 , (2.91)

and for the next-to-leading order soft terms,

1

〈s5〉 [s ∂5]A5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
=

1

〈s5〉

(
[41][5s]

[51][54]
− [4s]

[54]

)
A5

(
1−q , 2

−, 3−, 4+, 5+q̄
)

=
1

〈s5〉

(
i[41][54][4s]

[21][32][43][51]
− i[41]2[54][5s]

[21][32][43][51]2

)
, (2.92)

and

− 1

〈s4〉 [s ∂4]A5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
= − 1

〈s4〉

(
[1s]

[14]
− [3s]

[34]
+

2[5s]

[54]

)
A5

(
1−q , 2

−, 3−, 4+, 5+q̄
)

=
1

〈s4〉

(
− i[54]2[1s]

[21][32][43][51]
+

i[41][54]2[3s]

[21][32][43]2 [51]
+

2i[41][54][5s]

[21][32][43][51]

)
(2.93)

yielding

a−1 =
1

〈s5〉

(
i[41][54][4s]

[21][32][43][51]
− i[41]2[54][5s]

[21][32][43][51]2

)

+
1

〈s4〉

(
− i[54]2[1s]

[21][32][43][51]
+

i[41][54]2[3s]

[21][32][43]2 [51]
+

2i[41][54][5s]

[21][32][43][51]

)
. (2.94)

Eqs. (2.85) and (2.86) agree numerically with (2.91) and (2.94) respectively.
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Atree
6

(
1−q , 2

−
g , 3

−
g , s

+
g , 4

+
g , 5

+
q̄

)

We derive the soft behaviour for a colour-ordered six-point NMHV amplitude corresponding to
the case in Sec. 2.3.2.
Let us consider Atree

6

(
1−q , 2

−
g , 3

−
g , s

+
g , 4

+
g , 5

+
q̄

)
≡ Atree

6

(
1−q , 2

−, 3−, s+, 4+, 5+q̄
)
,

Atree
6

(
1−q , 2

−, 3−, s+, 4+, 5+q̄
)

=
i〈1|2 + 3|s]2〈5|2 + 3|s]

P 2
s23[32]〈15〉〈45〉[3s]〈4|s + 3|2] −

i〈3|s + 4|1]〈3|s + 4|5]2
P 2
s34[21][51]〈4|s + 3|2]〈s3〉〈s4〉 . (2.95)

Taking the soft limit, |s〉 → ǫ |s〉,

Atree
6

(
1−q , 2

−, 3−, s+, 4+, 5+q̄
) |s〉→ǫ|s〉

=
i

ǫ〈4|s|2] + 〈4|3|2]

( 〈1|2 + 3|s]2〈5|2 + 3|s]
[32]〈15〉〈45〉[3s]

(
ǫ〈s|2 + 3|s] + P 2

23

)

− (ǫ〈3|s|1] + 〈3|4|1])(ǫ〈3|s|5] + 〈3|4|5])2
ǫ2[21][51]〈s3〉〈s4〉

(
ǫ〈s|3 + 4|s] + P 2

34

)
)
, (2.96)

then, expanding around ǫ→ 0

Atree
6

(
1−q , 2

−, 3−, s+, 4+, 5+q̄
)
=
a−2

ǫ2
+
a−1

ǫ
+O (1) (2.97)

with

a−2 =
i[41][54]2〈34〉

[21][32][43][51]〈s3〉〈s4〉 , (2.98)

a−1 =
1

〈s3〉

(
i[41][54]2 [2s]

[21][32]2[43][51]
− i[41][54]2[4s]

[21][32][43]2 [51]

)

+
1

〈s4〉

(
i[54]2[1s]

[21][32][43][51]
− i[41][54]2 [3s]

[21][32][43]2 [51]
− 2i[41][54][5s]

[21][32][43][51]

)
. (2.99)

The soft expansion is obtained by the action of differential soft operators on the non-radiative
five-point amplitude as

a−2 = S(0)λAtree
5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
, (2.100)

a−1 = S(1)λAtree
5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
, (2.101)

where the operators S(0)λ and S(1)λ read

S(0)λ =
〈43〉

〈s4〉〈s3〉 , (2.102)

S(1)λ =
1

〈s4〉 [s ∂4]−
1

〈s3〉 [s ∂3] . (2.103)

The leading soft singularity is

a−2 =
〈34〉

〈s4〉〈3s〉A
tree
5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
=

i[41][54]2〈45〉
[21][32][43][51]〈s4〉〈s5〉 , (2.104)

which agrees with the result of (2.98).
As well, for the next-to-leading order soft terms

1

〈s4〉 [s ∂4]A
tree
5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
=

1

〈s4〉

(
[1s]

[14]
− [3s]

[34]
+

2[5s]

[54]

)
Atree

5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
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=
1

〈s4〉

(
i[54]2[1s]

[21][32][43][51]
− i[41][54]2[3s]

[21][32][43]2 [51]
− 2i[41][54][5s]

[21][32][43][51]

)
(2.105)

− 1

〈s3〉 [s ∂3]A
tree
5

(
1−q , 2

−, 3−, 4+, 5+q̄
)
= − 1

〈s3〉

(
− [2s]

[23]
− [4s]

[43]

)
Atree

5

(
1−q , 2

−, 3−, 4+, 5+q̄
)

=
1

〈s3〉

(
i[41][54]2 [2s]

[21][32]2[43][51]
− i[41][54]2 [4s]

[21][32][43]2 [51]

)
(2.106)

yielding

a−1 =
1

〈s3〉

(
i[41][54]2[2s]

[21][32]2[43][51]
− i[41][54]2[4s]

[21][32][43]2 [51]

)

+
1

〈s4〉

(
i[54]2[1s]

[21][32][43][51]
− i[41][54]2 [3s]

[21][32][43]2 [51]
− 2i[41][54][5s]

[21][32][43][51]

)
(2.107)

in full agreement with (2.99).

2.4 Discussion

The study of the low-energy behaviour of radiative tree-level amplitudes in QCD has allowed to
see a factorisation between the non-radiative process and the quantum data of the emitter. Our
result, based on recursive relations and gauge invariance, points that the non-radiative process
is perturbed by the action of universal operators.

The low-energy expansion is captured by universal operators, whose form is dictated by gauge
invariance. While the leading soft term is expressed as an eikonal factor, the subleading soft term
is found to be proportional to the total angular momentum (orbital and spin). The latter is gauge
invariance by itself and requires conservation of angular momentum only.

Nevertheless, leading terms are often linked to infrared singularities, while subleading ones
can also arise from contributions not linked to infrared singularities.

We have shown that, within the spinor formalism, the subleading soft operator of single-
gluon emission from quark-gluon amplitudes appears as a differential operator. Its form does
not depend on the spin of the emitter. Our result, derived from gauge invariance and on-shell
recursive construction, is, therefore, in line with the results recently derived for pure gluon- and
graviton-scattering.

Besides the results presented in this chapter, there has been an enormous development on
this area. At tree-level, the behaviour of soft theorems in arbitrary dimensions and other theories
has been generalised in Ref.s [97–110]. In the same manner, a very formal approach, based on
gauge and Poincarè symmetry, has been considered in Ref.s [111–130]. The extension to double
and multiple soft theorem limits has been achieved in Ref.s [131–136]. Finally, a generalisation
to loop level [102, 137–142], has also been discussed.

Although the study of the new soft theorems is rather complete, this is not the end of the story.
More work on the extension to one-loop and multiple-soft-theorem is desired. Similarly, studies of
gravity from gauge theories are still in progress. We refer, for instance, to Ref.s [123, 233–235].
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Chapter 3

Off-shell Currents and

Colour-Kinematics Duality

In Sec. 1.1, we described the properties of the primitive amplitudes. In particular, we mentioned
that by making use of cyclic, the Kless-Kuijf and the Bern-Carrasco-Johansson relations the
number of independent primitive n-point amplitudes reduces to (n− 3)!.

In this chapter, we show that the kinematic terms of Feynman diagrams in QCD obey special
relations that looks like the Jacobi identities for the colour factors [236]. Bern, Carrasco and
Johansson have exploited these relations to establish a novel set of identities for the colour
stripped (primitive) amplitudes, establishing a duality between the colour and kinematics [143].

Indeed, tree-level amplitudes in gauge theories are found to admit a colour-kinematics (C/K)
dual representation in terms of diagrams involving only cubic vertices. The kinematic part of
the numerators obeys Jacobi identities and anti-symmetry relations similar to the ones holding
for the corresponding structure constants of the Lie algebra [143, 144], as depicted in Fig. 3.1.
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Figure 3.1: The Jacobi combination: it can be applied both to Lie group structure constants and
to the kinematic part of numerators.

This chapter studies the role of colour-kinematics duality within off-shell currents. Off-shell
currents allow for constructing both higher-multiplicity tree and multi-loop level amplitudes.
We investigate, in a purely diagrammatic approach, the origin of possible deviations from the
C/K-dual behaviour, providing concrete evidence of their relation to contact interactions, which
was already pointed out in [143, 237].

First, we consider the tree-level diagrams for gg → X, for massless final state particles, with
X = ss, qq̄, gg. We work in axial gauge, describing scalars, s, in the adjoint representation. We
deal with the Jacobi relation of the kinematic numerators keeping the partons off-shell. Due
to the off-shellness of the external particles, the C/K-duality is broken, and an anomalous term
emerges. This anomaly vanishes in the on-shell massless limit, as it should, recovering the exact
C/K-duality.

❏ ❂ � ✰ ✰

Figure 3.2: Embedding of the Jacobi combination into either higher-point or multi-loop diagrams.
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Later, we show that when the Jacobi combination of numerators is immersed into a richer
topology, as depicted in Fig. 3.2, the anomaly corresponds to the contribution of subdiagrams,
obtained by pinching the external lines of the Jacobi combination.

We discuss how our result, which provides a precise identification of the anomalies, can
be used, together with generalised gauge transformations [143, 144, 155, 237], in order to re-
shuffle contact terms between diagrams and build on-shell C/K-dual representations for higher-
point tree-level amplitudes. We present the explicit calculation for the tree-level contribution to
gg → qq̄g.

As byproduct of this procedure, we obtain linear relations between primitive tree-level am-
plitudes with different ordering. These relations usually known as Bern-Carrasco-Johansson
relations, have coefficients that depend on Lorentz-invariant combination of the momenta of the
particles.

3.1 Review of Colour-Kinematics duality

3.1.1 General considerations

Consider an m-point tree-level amplitude, which, we write in terms of cubic vertices

Atree
m (1, 2, . . . ,m) =

N∑

i=1

ci ni
Di

, Di =
∏

αi

sαi , (3.1)

where the sum runs over all diagrams i with only three-point vertices, the ci are the colour factors,
the ni are the kinematic numerators, and Di collect the denominators of all internal propagators.
As we shall see in Sec.s 3.2.1 and 3.2.3, contact terms are absorbed once they are replaced with
numerator factors cancelling propagators, i.e., sα/sα and assigning the contribution to the proper
diagram according to the colour factor as done in Eq. (1.23).

The main property of the colour factors is that they satisfy the Jacobi identities, recalling
Eq.s (1.8,1.10),

−f̃a1a2bf̃ ba3a4 + f̃a4a1bf̃ ba2a3 + f̃a4a2bf ba3a1 = 0 , (3.2)

−T a4
3j̄
T a1
j2̄

+ T a1
3j̄
T a4
j2̄

+ f̃a4a1bT b
32̄ = 0 , (3.3)

where f̃abc = i
√
2fabc . The structure constant of Eq. (1.9) has been rescaled in order to avoid

prefactors in the next calculations.
Furthermore, for any m-point amplitude, we can always find three colours factors built from

Eq.s (3.2,3.3), say

ci = . . . f̃a1a2bf̃ ba3a4 . . . , cj = . . . f̃a4a1bf̃ ba2a3 . . . , ck = . . . f̃a4a2bf̃ ba3a1 . . . ,

where the ‘. . . ’ state for common terms in the three colour factors. Therefore, the Jacobi identity
takes the form

−ci + cj + ck = 0 , (3.4)

The Colour-Kinematics (C/K) duality states that the numerators ni can always be found in
such a way they satisfy Jacobi identities in the kinematical sector,

− ci + cj + ck = 0 ⇒ −ni + nj + nk = 0 . (3.5)

C/K-duality also requires that the ni have to satisfy the same anti-symmetry relations as the ci,
i.e. if a colour factor is anti-symmetric ander the change of two legs, the corresponding numerator
has to transform in the way,

ci → −ci ⇒ ni → −ni .
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3.1.2 Bern-Carrasco-Johansson relations

According to Eq. (3.1), a four-point amplitude can be written as

Atree
4 (1, 2, 3, 4) =

c1 n1
s14

+
c2 n2
s12

+
c3 n3
s13

, (3.6)

the three colour factors are related by the Jacobi identity

− c1 + c2 + c3 = 0 . (3.7)

Firstly, we demand that the corresponding numerators ni fulfil the same identity

− n1 + n2 + n3 = 0 , (3.8)

Secondly, we write the colour-ordered amplitudes

Atree
4 (1, 2, 3, 4) =

n1
s14

+
n2
s12

, (3.9a)

Atree
4 (1, 2, 4, 3) =− n1

s14
− n3
s13

, (3.9b)

Atree
4 (1, 4, 2, 3) =− n2

s12
+
n3
s13

. (3.9c)

We shall show in Sec. 3.3.2, by following an alternative procedure of the one describe in
Ref. [143], that Eq.s. (3.7-3.9) allow us to end up with relations between colour-ordered ampli-
tudes

s24A
tree
4 (1, 2, 4, 3) = s23A

tree
4 (1, 2, 3, 4) , (3.10)

These relations are usually called Bern-Carrasco-Johansson (BCJ) relations for four-point am-
plitudes. In the same manner, BCJ relations for five- and six-point turn out to be

s24A
tree
5 (1, 2, 4, 3, 5) =(s14 + s45)A

tree
5 (1, 2, 3, 4, 5) + s14A

tree
5 (1, 2, 3, 5, 4) , (3.11)

s24A
tree
5 (1, 2, 4, 3, 5, 6) =(s14 + s46 + s45)A

tree
6 (1, 2, 3, 4, 5, 6) + (s14 + s46)A

tree
6 (1, 2, 3, 5, 4, 6)

+ s14A
tree
6 (1, 2, 3, 5, 6, 4) . (3.12)

Thus, the BCJ relations among n-point colour-ordered amplitudes, usually called fundamental
BCJ relations, can be written as [143]

n∑

i=3




i∑

j=3

s2j


Atree

n (1, 3, . . . , i, 2, i+1, . . . , n) = 0 . (3.13)

3.2 Off-shell Colour-Kinematics Duality

In this section we study the C/K duality for off-shell diagrams in gauge theories coupled to matter.
By investigating the scattering process gg → ss, qq̄, gg, we show that the Jacobi relations for
the kinematic numerators of off-shell diagrams, built with Feynman rules in axial gauge, reduce
to an anomalous term. Such anomaly vanishes when the four particles connected by the Jacobi
relation are on their mass shell with vanishing squared momenta, being either external or cut
particles, where the validity of the colour-kinematics duality is recovered.
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3.2.1 Scalars

The process gg → ss gets contributions from four tree-level diagrams, three of which contain
cubic interactions, due to either ggg or gss couplings, while one is given by the quartic vertex
ggss. Their colour factors satisfy the Jacobi identity (3.2), where a similar relation can be
established for the kinematic part of the numerators of suitably defined graphs involving only
cubic vertices.
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Figure 3.3: Jacobi combination for gg → ss.

The four-point vertex can be distributed to the numerators of the diagrams with cubic vertices
only, as done in Eq. (1.23), hence, yielding the identification of three colour-kinematics dual
diagrams [143]. The corresponding numerators, say n1, n2 and n3, can be combined in Jacobi-
like fashion,

Ns = −n1 + n2 + n3 , (3.14)

as shown in Fig. 3.3.
In axial gauge - that we will consider throughout our calculations - the numerator of the

gluon propagator takes the form

Πµν(p, q) = Πµν
Fey +Πµν

Ax(p, q) , (3.15)

where Πµν
Fey corresponds to the numerator of the propagator in Feynman gauge and Πµν

Ax(p, q)
labels the term depending on an arbitrary light-like reference momentum qµ,

Πµν
Fey = −i gµν , Πµν

Ax(p, q) = i
pµqν + qµpν

q · p . (3.16)

The explicit form of (3.14) is given by the contraction of an off-shell current with gluon polari-
sations as

Ns =
(
Jµ1µ4

s-Fey + Jµ1µ4

s-Ax

)
εµ1 (p1) εµ4 (p4) = Ns-Fey +Ns-Ax , (3.17)

where Jµ1µ4

s-Fey is the sum of the Feynman gauge-like terms of the three numerators,

−i Jµ1µ4

s-Fey(p1, p2, p3, p4) =p
µ1
1 (pµ4

1 + 2pµ4
3 )− (2pµ1

3 + pµ1
4 ) pµ4

4 (3.18)

and

− i Jµ1µ4

s-Ax (p1, p2, p3, p4) =
1

q · (p1 + p4)

{
−
(
pµ1
1 p

µ4
1 − pµ1

4 p
µ4
4 −

(
p21 − p24

)
gµ1µ4

)
q · (p2 − p3)

+
(
p22 − p23

)
[(p4 + 2p1)

µ4 qµ1 + q · (p4 − p1) g
µ1µ4 − (p1 + 2p4)

µ1 qµ4 ]

}
(3.19)

is the contribution, depending on the reference momentum, which only originates from n2.

From this Jacobi-like tensor we see that the colour-kinematics duality on the kinematics side
holds, i.e. Ns = 0, once the four external particles are put on-shell, p2i = 0, and, imposed
transversality condition for gluons, pi · ε(pi) = 0. We want to remark that Ns-Fey and Ns-Ax
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Figure 3.4: Off-shell colour-kinematics duality for gluons and scalars. The Jacobi combination
of tree-level numerators (l.h.s) is expressed in terms of subdiagrams only (r.h.s.).

vanish separately, so that the C/K duality is satisfied at tree-level also in ordinary Feynman
gauge.

A similar calculation was performed in [236], where tree-level numerators for gg → X were
studied as well. This result differs in the choice of axial gauge, which, as we are going to show,
plays an important role in the identification of the C/K-duality violating terms in the numerator
of higher-multiplicity graphs.

The expressions of the currents in Eqs. (3.18,3.19) are valid for off-shell kinematics. Therefore,
they can be exploited for providing a better understanding of C/K-duality within more complex
numerators obtained by embedding the Jacobi-like combination of tree-level numerators into a
generic diagram, as depicted in Fig. 3.2, where the double circle shall represent an arbitrary
number of loops and external legs.
In the most general case, the legs p1, p2, p3 and p4 become internal lines and polarisations as-
sociated to the particles are replaced by the numerator of their propagators, which, for the
scalar case, simply corresponds to a factor i. Accordingly, Eq. (3.14) generalises to the following
contraction,

Ns = (Ns)α1α4X
α1α4 . (3.20)

between the tensor (Ns)α1α4 , defined as,

(Ns)α1α4 = −
(
Jµ1µ4

s-Fey + Jµ1µ4

s-Ax

)
Πµ1α1(p1, q1) Πµ4α4(p4, q4) . (3.21)

and the arbitrary tensor Xα1α4 , standing for the residual kinematic dependence of the diagrams,
associated to either higher-point tree-level or to multi-loop topologies.

Using momentum conservation, we find that the r.h.s. of (3.21) can be cast in the following
form,

(Ns)α1α4 = p21(A
1
s)α1α4 + p24(A

4
s)α1α4 + p22(B

2
s )α1α4 + p23(B

3
s )α1α4

+ p21p
2
2(C

12
s )α1α4 + p21p

2
3(C

13
s )α1α4 + p24p

2
2(C

24
s )α1α4 + p24p

2
3(C

34
s )α1α4 , (3.22)

where Ai
s, B

i
s and Cij

s are tensors depending both on the momenta pi of gluons and scalars,
eventually depending on the loop variables, and on the reference momenta qi of each gluon
propagators.

Remarkably, Eq.(3.22) shows the full decomposition of a generic numerator built from the
Jacobi relation in terms of squared momenta of the particles entering the Jacobi combination
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defined in Fig. 3.3. In particular, this result implies that the C/K duality is certainly satisfied
when imposing the on-shell cut-conditions p2i = 0.

A diagrammatic representation of the consequences of the decomposition (3.22) in (3.20)
is given in Fig. 3.4, where the eight terms appearing in r.h.s. of (3.22) generate subdiagrams,
obtained by pinching one or two denominators. In these subdiagrams Ai

s, B
i
s and Cij

s play the
role of effective vertices contracted with the tensor Xα1α4 .

The existence of contact terms responsible for the violation of the C/K-duality was concep-
tually pointed out already in [143]. Here, we identified, by following a purely diagrammatic
approach, the source of such anomaly, exposed in the (single and double) momentum-square
dependance of formula (3.22).

The choice of axial gauge turned out to be crucial within our derivation, since the p2-terms
appear, besides from the trivial contraction pµpµ, also from the contraction of Πµν(p, q) with the
corresponding gluon momentum (Ward identity),

pµΠ
µν(p, q) = i pµ

(
− gµν +

pµqν + qµpν

q · p

)
= i p2

qν

q · p . (3.23)

By inspection of (3.18) and (3.19), we observe that Js-Fey only gives contribution to A1
s and

A4
s , while Js-Ax produces terms proportional to the momenta of all the four particles as well as

to all the possible pairs of gluon-scalar denominators, i.e. contributes to all the eight effective
vertices.

In addition, because of the explicit symmetries of Js-Fey and Js-Ax under 1 ↔ 4 and 2 ↔ 3,
the two effective vertices associated to the pinch of one scalar propagator, namely A1

s and A4
s , are

related to each other by particle relabelling. The same happens for B2
s and B3

s , which correspond
to the pinch of one gluon propagator. For the same reason, there is only one independent Cs

function, corresponding to the pinch of two denominators, say p2i p
2
j , which are originated from

terms proportional to pµi p
2
j in Eq.(3.19).

3.2.2 Quarks

For the tree-level scattering gg → qq̄ there are three Feynman graphs contributing to it, each
one contains only cubic interactions due to ggg and gqq̄ couplings. The corresponding colour
factors obey the Jacobi identity (3.3), which allows to build the combination of colour-kinematics
numerators for the tree-level graph (3.14), as shown in Fig. 3.5.
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Figure 3.5: Jacobi combination for gg → qq̄.

Following the same derivation as for gluons and scalars, the Jacobi relation for gluons and
fermions can be built from the contraction of fermion currents and polarisations,

Nq = ū(p3)(J
µ1µ4

q-Fey + Jµ1µ4

q-Ax )v(p2)εµ4(p4)εµ1(p1) = Nq-Fey +Nq-Ax. (3.24)

Using Dirac algebra and momentum conservation, Jµ1µ4

q-Fey and Jµ1µ4

q-Ax can be organised into compact
forms as,

−i Jµ1µ4

q-Fey(p1, p2, p3, p4) = −/p3γ
µ4γµ1 − γµ1γµ4/p2 + (/p3 + /p2)g

µ1µ4pµ4
4 γ

µ1 − pµ1
1 γ

µ4 (3.25)
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Figure 3.6: Off-shell colour-kinematics duality for gluons and quarks.

and

− i Jµ1µ4

q-Ax (p1, p2, p3, p4) =
1

q · (p4 + p1)

{
(/p3 + /p2)

[
gµ1µ4q · (p4 − p1)

− qµ4(p1 + 2p4)
µ1 + qµ1(p4 + 2p1)

µ4
]
+ /q
[
pµ4
1 p

µ1
1 − pµ4

4 p
µ1
4 + gµ1µ4(p24 − p21)

]}
. (3.26)

We observe that (3.24) vanishes when the four external particles are on-shell, due to transver-
sality conditions and Dirac equation, ū(p3) /p3 = /p2v(p2) = 0.

The C/K duality is satisfied at tree-level also in Feynman gauge, since on-shellness enforces
Nq-Fey and Nq-Ax to vanish independently.

In order to study the Jacobi combination within higher-point numerators or multi-loop inte-
grands, we repeat the procedure adopted in Section 3.2.1. Accordingly, we promote the external
states of gluons and quarks to propagating particles, and define the off-shell tensor,

(Nq)α1α4 = i/p3(J
µ1µ4

q-Fey + Jµ1µ4

q-Ax )i/p2Πµ4α4(p4, q4) Πµ1α1(p1, q1) , (3.27)

by replacing the polarisation vectors with the numerators of the gluon propagators, and the
spinors ū(p3) and v(p2) with the numerators of fermionic propagators. As before, the full nu-
merator is obtained contracting (3.27) with a generic tensor Xα1α4 .

Manipulating the r.h.s. of (3.27), we obtain an expression analogous to the decomposition
(3.22), where the denominators of the four particles are manifestly factored out,

(Nq)α1α4 = p21(A
1
q)α1α4 + p24(A

4
q)α1α4 + p22(B

2
q )α1α4 + p23(B

3
q )α1α4

+ p21p
2
2(C

12
q )α1α4 + p21p

2
3(C

13
q )α1α4 + p24p

2
2(C

24
q )α1α4 + p24p

2
3(C

34
q )α1α4 . (3.28)

In the above expression, Ai
q and Bi

q receive contribution both from Jq-Fey and Jq-Ax while Cij
q ’s are

determined only by Jq-Ax. This can be understood by inspection of (3.25) and (3.26), observing
that denominators may appear because of (3.23), as well as because of the identity /p/p = p2. Also
in this case, we only have three independent functions: two for the effective vertices corresponding
to the pinch of one quark- or one gluon- propagator, namely Ai

q and Bi
q, and a single vertex Cij

q

for the pinch of a quark-gluon pair. We remark that these functions contain non-trivial Dirac
structure. The interpretation of (3.28) is similar to the one of (3.22) and it is illustrated in
Fig. 3.6.

3.2.3 Gluons

Finally, we consider the C/K duality for the pure gauge interaction process gg → gg. As for
gg → ss, there are four diagrams to be considered, three involving the tri-gluon interaction, and
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one containing the four-gluon vertex. The colour factors obey the Jacobi identity (3.2). After
distributing the contribution of the four-gluon vertex into the three structures according to the
colour decomposition, we can define three graphs with cubic vertices only whose numerators
enter a Jacobi combination, as shown in Fig. 3.7.
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Figure 3.7: Jacobi combination for gluons.

With this prescription, the kinematic Jacobi identity takes the form

Ng =
(
Jµ1...µ4

g-Fey + Jµ1...µ4

g-Ax

)
εµ1(p1)εµ2(p2)εµ3(p3)εµ4(p4) = Ng-Fey +Ng-Ax, (3.29)

where

− i Jµ1µ2µ3µ4

g-Fey (p1, p2, p3, p4) = pµ1
1 [gµ3µ4(p1 + 2p4)

µ2 − gµ2µ4(p1 + 2p4)
µ3 + gµ2µ3(p1 + 2p3)

µ4 ]

− pµ2
2 [gµ3µ4(p2 + 2p4)

µ1 − gµ1µ4(p2 + 2p4)
µ3 + gµ1µ3(p2 + 2p3)

µ4 ]

+ pµ3
3 [gµ2µ4(p3 + 2p4)

µ1 − gµ1µ4(p3 + 2p4)
µ2 + gµ1µ2(p3 + 2p2)

µ4 ]

− pµ4
4 [gµ2µ3(p4 + 2p3)

µ1 − gµ1µ3(p4 + 2p3)
µ2 + gµ1µ2 (p4 + 2p2)

µ3 ] (3.30)

and

− i Jµ1µ2µ3µ4

g-Ax (p1, p2, p3, p4) =
1

q · (p1 + p2)

{

(
pµ1
1 p

µ2
1 − pµ2

2 p
µ1
2 −

(
p21 − p22

)
gµ1µ2

)
[q · (p4 − p3) g

µ3µ4 − (p3 + 2p4)
µ3 qµ4 + (p4 + 2p3)

µ4 qµ3 ]

+
(
pµ3
3 p

µ4
3 − pµ3

4 p
µ4
4 −

(
p23 − p24

)
gµ3µ4

)
[q · (p1 − p2) g

µ1µ2 + (p1 + 2p2)
µ1 qµ2 − (p2 + 2p1)

µ2 qµ1 ]

}

− [(1234) → (4123)] − [(1234) → (4231)]. (3.31)

With the by-now usual arguments, we observe that the tree-level C/K duality, Ng-Fey =
Ng-Ax = 0, holds when the external particles are on-shell, separately for the Feynman- and
axial-gauge contributions.
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Figure 3.8: Off-shell colour-kinematics duality for gluons.
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As in the previous Sections, we can build a generic off-shell tensor, to be embedded in a more
complex topology, either with more loops or more legs, by replacing polarisation vectors with
the numerator of the corresponding propagators,

(Ng)α1...α4
=
(
Jµ1..µ4

g-Fey + Jµ1...µ4

g-Ax

)
Πµ1α1(p1, q1)Πµ2α2(p2, q2) Πµ3α3(p3, q3)Πµ4α4(p4, q4) , (3.32)

and by contracting this expression with an appropriate tensor Xα1...α4 .
Because of the Ward identity (3.23), (Ng)α1...α4

turns out to be decomposed as

(Ng)α1...α4
=

4∑

i=1

p2i (A
i
g)α1...α4 +

4∑

i,j=1
i 6=j

p2i p
2
j(C

ij
g )α1...α4 . (3.33)

We observe that, differently from the scalar and fermionic cases, Jg-Ax produces all the possible
combinations of two different denominators. This is a consequence of the permutation symmetry
of the gauge-dependent part of the numerators, which is an exclusive feature of the Jacobi
identity for pure gauge interactions. The same symmetry reduces from three to two the number
of independent effective vertices, corresponding to the pinch of one or two gluon propagators.

The diagrammatic effect of (3.33) contracted with Xα1...α4 is depicted in Fig. 3.8, which shows
that, as it happened for the gg → ss, and gg → qq̄, the Jacobi combination of the kinematic
numerators for gg → gg with off-shell particles always reduces to subdiagrams.

Let us, finally, remark that the form factors Ai-, Bi- and Cij-type appearing in the decom-
positions (3.22), (3.28), and (3.33) still depend on the momenta pi and pj. Therefore, within
multiloop integrands, they can generate tensor integrals which can be subject to further integral
reductions.

3.3 Construction of dual numerators for higher-point amplitudes

In the previous sections, we saw that the Jacobi-like identity for kinematic numerators is satisfied
for all four-point tree amplitudes. Moreover, once the number of external legs start increasing
those numerators do not satisfy it anymore, giving rise to anomalous terms. Nevertheless, in
order to satisfy it we can always absorb that anomaly in the re-definition of the numerators.
This re-definition can be done as a consequence of the gauge invariance of the amplitude. The
non-uniqueness of the kinematic numerators is referred to as generalised gauge-invariance [143,
144, 155, 237].

In this Section we illustrate how the previous results can be used, together with generalised
gauge invariance in order to explicitly determine dual representation of higher-point amplitudes
starting from Feynman diagrams. In addition, we show that our construction allows a purely
diagrammatic derivation of monodromy relations for amplitudes, [157].

3.3.1 Algorithm

From Eq. (3.1) we can see that any amplitude can be written in terms of N colour factors, which,
satisfy a set of M,M < N , Jacobi identities, (3.4), whose solution allows us to express M colour
factors in terms of N −M independent ones {cσ(1), ..., cσ(N−M)}, so that (3.1) can be organised
as

Atree
m (p1, p2, ..., pm) =

N−M∑

i=1

cσ(i)Kσ(i)({n}), (3.34)
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where

Kσ(i)({n}) =
N∑

j=1

ασ(i)jnj

Dj
, ασ(i)j ∈ {0,±1}. (3.35)

The set of identities (3.4) is not, in general, trivially satisfied by the corresponding kinematic
numerators, whose Jacobi combinations produce non-vanishing anomalous terms,

−ni + nj + nk = φ[i,j,k]. (3.36)

We observe that the two sets of equations (3.35) and (3.36) can be conveniently organised into
the matrix equation,

An = K+ φ, (3.37)

with

n = (n1, n2, ..., nN )T ,

K = ({Kσ(i)}, 0, 0, ..., 0)T ,
φ = (0, 0, ..., 0, {φ[i,j,k]})T (3.38)

and

Aij ∈ {0,±1,±Dj
−1}. (3.39)

As shown by the decompositions (3.22), (3.28) and (3.33), the anomalies are proportional to the
off-shell momenta of the particle entering the Jacobi combination itself. Therefore, the rise of
these anomalies seems to be related to the allocation of contact terms between cubic diagrams,
which naturally provides numerators satisfying C/K-duality in the four-point case only. As a
consequence, in order to obtain a dual representation of the amplitude, we need to re-shuffle
contact terms, leaving (3.1) unchanged. This can be achieved through a generalised gauge
transformation, which consists in a set of shifts of the kinematic numerators,

ni → n′i = ni −∆i, (3.40)

satisfying

δAtree
m (p1, p2, ..., pm) ≡

N−M∑

i=1

cσ(i)

N∑

j=1

ασ(i)j∆j

Dj
= 0, (3.41)

in such a way that the amplitude can still be written as

Atree
m (p1, p2, ..., pm) =

N∑

i=1

ci n
′
i

Di
=

N−M∑

i=1

cσ(i)Kσ(i)({n′}). (3.42)

By imposing the vanishing of the coefficient of each cσ(i) in (3.41), the gauge invariance require-
ment is translated into a set equations for the shifts, which leaves M of them undetermined.
This means that, in principle, we have enough freedom to ask the shifts to be solution of M
additional equations,

−∆i +∆j +∆k = φ[i,j,k], (3.43)
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which, inserted in (3.36), make the new set of numerators n′i manifestly dual. Thus, the si-
multaneous imposition of (3.41) and (3.43) leads the determination of numerators satisfying the
C/K-duality back to the solution of the N ×N linear system

A∆ = φ, (3.44)

with

∆ = (∆1,∆2, ...,∆N )T , (3.45)

whereas the vector φ and the matrix A are the ones defined by (3.38) and (3.39).
By solving (3.44), we can determine the shifts to be performed on the numerators obtained

from Feynman diagrams ensuring C/K-duality as a function of anomalies φ[i,j,k] and denominators
Di. We note that the existence of a dual representation of the amplitude is bound to the
consistency of the non-homogenous system (3.44), i.e. to the condition

rank(A|φ) = rank(A), (3.46)

where A|φ is the augmented matrix associated to A.
In particular, if the system had maximum rank N , the expression of the numerators would

be completely fixed by C/K-duality. However, as we will show in an explicit example, the rank of
the system turns out to be smaller than N , so that its solution will depend on a set of arbitrary
shifts, which are left completely undetermined by the imposition of C/K-duality. The existence
of a residual freedom in the choice of the dual representation was first observed in [143] and
more recently, in [238], where the reduction of the tree-level C/K-duality to an underconstrained
linear problem is addressed in terms of a pseudo-inverse operation, it has been interpreted as
the hint of a possible analogous construction at loop-level.

Moreover, we observe that, because of (3.37) and (3.44), applying the matrix A to the new
set of numerators n′i, we obtain

An′ = K, (3.47)

with K given by (3.38).
Also, if rank(A) < N , the consistency condition

rank(A|K) = rank(A), (3.48)

implies the existence of N − rank(A) constraints between the kinematic factors Kσ(i), which are
in one-by-one correspondence with the relations between colour ordered amplitudes. Therefore,
this construction shows that all these non-trivial relations can be derived from the expansion of
the amplitudes in terms of Feynman graphs through purely algebraic manipulation on the matrix
A.

Summarising the diagrammatic approach to the construction of C/K-dual numerators for
higher-point amplitudes:

• given the decomposition of an amplitude in terms of Feynman diagrams, it is organised
into N cubic graphs, whose numerators satisfy the system of equations

An = K+ φ. (3.49)

• A generalised gauge transformation

ni → n′i +∆i, (3.50)
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such that

A∆ = φ, (3.51)

An′ = K, (3.52)

is performed on the amplitude in order to obtain a new set of numerators satisfying the
C/K-duality. The solution of (3.51) determines the shifts linking the starting set of nu-
merators to the dual representation.

• The existence of solutions for the the systems (3.51) and (3.52) is related to the constraint

rank(A|φ) = rank(A|K) = rank(A). (3.53)

This consistency condition is able to detect all N − rank(A) non-trivial constraints both
between the C/K-violating terms φ[i,j,k] and the kinematic factors Kσ(i), the latter corre-
sponding to the well-known relations between colour ordered amplitudes which were first
observed, for gluon amplitudes, in [143].Note the N − rank(A) also determines the number
of completely free parameters the set of C/K-dual numerators will depend on.

In the following Section we give an example of this method, determining the C/K-dual represen-
tation for gg → qq̄g and showing that the knowledge of the matrix A can be used to determine
the constraints on kinematic factors Kσ(i) as well on the anomalies φ[i,j,k], which rise as direct
consequence of the off-shell decompositions worked out in Sections 3.2.1-3.2.3.

3.3.2 Colour-kinematics duality for gg → gg

Starting from Eq. (3.6), we see that the colour factor c2 can be eliminated because of the Jacobi
identity, Eq. (3.7). It allows us to rewrite the amplitude in terms of two colour factors only,

A4(p1, p2, p3, p4) = c1K1 + c3K3, (3.54)

with

K1 =
n1
s23

+
n2
s12

, K3 =
n3
s24

− n2
s12

. (3.55)

The kinematic numerators obey the same Jacobi identity as the colour factors, (3.8). The set of
equations (3.8,3.55) can be conveniently organised into a linear system An = K,




1
s23

1
s12

0

0 − 1
s12

1
s24

−1 1 1






n1
n2
n3


 =




K1

K3

0


 . (3.56)

Due to momentum conservation, s12 + s23 + s24 = 0, we can verify that the matrix A has

rank(A) = 2 (3.57)

or, equivalently, that a linear relation can be established between its rows,

s23 A1 − s24A2 +A3 = 0. (3.58)

Therefore, because of the consistency condition of the inhomogeneous system (3.56),

rank(A) = rank(A|K) = 2, (3.59)
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Figure 3.9: Feynman diagrams for gg → qq̄g

a constraint analogous to (3.58) must hold between the elements of the vector K,

s24K3 = s24K1. (3.60)

Starting from the Feynman diagram expansions (3.55), it can be checked that the kinematic
factors Ki exactly correspond to two different colour-orderings of the amplitude,

K1 = Atree
4 (1, 2, 3, 4), K3 = Atree

4 (1, 2, 4, 3), (3.61)

so that (3.60) can be rewritten as

s24A
tree
4 (1, 2, 4, 3) = s24A

tree
4 (1, 2, 3, 4). (3.62)

With similar considerations we can verify that

s24A
tree
4 (1, 3, 2, 4) = s12A

tree
4 (1, 2, 3, 4), s23A

tree
4 (1, 4, 2, 3) = s12A

tree
4 (1, 2, 4, 3). (3.63)

3.3.3 Colour-kinematics duality for gg → qq̄g

In this subsection we provide a further example of C/K-duality in QCD, by determining dual
numerators for gg → qq̄g. Analogous considerations of C/K duality in QCD amplitudes with
fundamental matter have been discussed in [145, 148], where manifest duality has been verified
for several processes. The process under consideration contains a single external quark-antiquark
pair and, as a consequence, receives contribution from the four-gluon vertex. This allows us to
show, in a concrete case, how contact interactions can be treated. We go step by step through
the procedure outlined in Sec. 3.3, adopting notation and conventions similar to [143].

Fig. 3.9 shows the 16 Feynman diagrams for the process gg → qq̄g. The contribution of n16,
which, containing the four-gluon vertex, depends on three different colour structures,

c16n16 = c3n3;16 + c5n5;16 + c8n8;16 (3.64)
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can be split between n3, n5 and n8, so that the new cubic numerators read

n3 + s12n3;16 → n3,

n5 + s15n5;16 → n5,

n8 + s25n3;16 → n8. (3.65)

Thus, the decomposition of the amplitude in terms of cubic graphs reads

Atree
5

(
g(1), g(2), q(3), q̄(4), g(5)

)
=
c1n1
s12s45

+
c2n2
s32s51

+
c3n3
s34s12

+
c4n4
s45s23

+
c5n5
s15s34

(3.66)

+
c6n6
s14s25

+
c7n7
s23s14

+
c8n8
s25s34

+
c9n9
s13s25

+
c10n10
s24s13

(3.67)

+
c11n11
s15s24

+
c12n12
s12s35

+
c13n13
s35s24

+
c14n1
s14s35

+
c15n15
s13s45

, (3.68)

where only n3, n5 and n8 differ for an additional contact term from the expression given by
Feynman rules.

The colour factors,

c1 = f̃a1a2bT b
3k̄T

a5
k4̄
, c2 = T a2

3k̄
T b
k4̄f̃

ba5a1 ,

c3 = −T b
34̄f̃

ba5cf̃ ca1a2 , c4 = −T a2
3k̄
T a1
kl̄
T a5
l4̄
,

c5 = −f̃a5a1bf̃ ba2cT c
34̄, c6 = T b

3k̄T
a1
k4̄
f̃ ba2a5 ,

c7 = T a2
3k̄
T a5
kl̄
T a1
l4̄
, c8 = −f̃a2a5bf̃ ba1cT c

34̄,

c9 = T a1
3k̄
T b
k4̄f̃

ba2a5 , c10 = −T a1
3k̄
T a5
kl̄
T a2
l4̄
,

c11 = f̃a5a1bT b
3k̄T

a2
k4̄
, c12 = T a5

3k̄
T b
k4̄f̃

ba1a2 ,

c13 = T a5
3k̄
T a1
kl̄
T a2
l4̄
, c14 = −T a5

3k̄
T a2
kl̄
T a1
l4̄
,

c15 = T a1
3k̄
T a2
kl̄
T a5
l4̄
. (3.69)

satisfy a set of 10 Jacobi identities,

− c1 + c3 + c12 = 0,

− c1 + c4 + c15 = 0,

− c2 + c4 + c7 = 0,

− c2 + c5 + c11 = 0,

− c6 + c7 + c14 = 0,

− c6 + c8 + c9 = 0,

− c9 + c10 + c15 = 0,

− c11 + c10 + c13 = 0,

− c12 + c13 + c14 = 0,

(−c5 + c3 + c8 = 0). (3.70)

The system is redundant, since any of the above equations, for instance the last one, can be
expressed as a linear combination of the others 9. Therefore, it can be freely dropped.

We solve (3.70), choosing {c1, c2, c3, c4, c5, c6} as independent colour factor, and we re-express
the amplitude as

Atree
5

(
g(1), g(2), q(3), q̄(4), g(5)

)
=

6∑

i=1

ciKi (3.71)
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with

K1 =
n1

s12s45
+

n12
s12s35

+
n13
s24s35

− n10
s13s42

+
n15
s13s45

,

K2 =
n2

s23s51
+

n7
s14s32

− n14
s14s35

+
n13
s24s35

+
n11
s42s51

,

K3 =
n3

s12s34
+

n9
s13s25

− n12
s12s35

− n13
s24s35

+
n10
s13s42

− n8
s25s43

,

K4 =
n4

s23s45
− n7
s14s32

+
n14
s14s35

− n13
s24s35

+
n10
s13s42

− n15
s13s45

,

K5 =
n5

s34s51
− n9
s13s25

− n10
s13s42

+
n8

s25s43
− n11
s42s51

,

K6 =
n6

s14s25
+

n9
s13s25

+
n14
s14s35

− n13
s24s35

+
n10
s13s42

. (3.72)

We remark that this choice is by no means unique and other admissible sets of independent
colour factors lead to different but equivalent decompositions.

Now we introduce the shifts (3.40) and, by imposing generalised gauge invariance on (3.71),
δAtree

5 = 0, we obtain a set of 6 homogenous equations. Furthermore, in order to establish C/K-
duality for the new numerators n′i, we require the shifts to absorb the anomalous terms, i.e. to
be solution of an additional set of 9 non-homogeneous equations, that are obtained from (3.70)
by replacing each colour factors ci with the corresponding shift ∆i and the r.h.s. with the proper
anomaly. Thus, dual numerators are determined from the solution of the linear system (3.44),
where A is the 15× 15 matrix

A =



0 0 0 0 1
s34s15

0 0 1
s25s34

− 1
s13s25

− 1
s13s24

− 1
s24s15

0 0 0 0

0 0 1
s12s34

0 0 0 0 − 1
s25s34

1
s13s25

1
s13s24

0 − 1
s12s35

− 1
s24s35

0 0

0 1
s23s15

0 0 0 0 1
s14s23

0 0 0 1
s24s15

0 1
s24s35

− 1
s14s35

0

0 0 0 0 0 1
s14s25

0 0 1
s13s25

1
s13s24

0 0 − 1
s24s35

1
s14s35

0

0 0 0 1
s23s45

0 0 − 1
s14s23

0 0 1
s13s24

0 0 − 1
s24s35

1
s14s35

− 1
s13s45

1
s12s45

0 0 0 0 0 0 0 0 − 1
s13s24

0 1
s12s35

1
s24s35

0 1
s13s45

−1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
−1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 −1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 −1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 1 0




(3.73)

and the vector φ is given by

φ = (0, 0, 0, 0, 0, 0, φ[1,3,12] , φ[1,4,15], φ[2,4,7], φ[2,5,11], φ[6,7,14], φ[6,8,9], φ[9,10,15], φ[11,10,13], φ[12,13,14])
T .

(3.74)

The anomalies φ[i,j,k] can be directly obtained from our off-shell decompositions. We observe that,
since we decided to drop, without loss of generality, the last of equations (3.70), which involves
a Jacobi identities for gluons, we can express all anomalies in terms of the fermionic current
Jq = Jq-Feyn + Jq-Ax, whose explicit expression is given by equations (3.25) and (3.26). Likewise,
the three anomalies involving the numerators n3, n5 and n8 receive an additional contribution
from the four-gluon interaction, since no contact term was considered in the definition of Jq,

φ[1,3,12] = ū3[Jq(p1 + p2, p4, p3, p5)αα5 ]v4Π
αβ(p1 + p2, q)Vβα1α2(−p1 − p2, p1, p2)ε

α1
1 εα2

2 εα5
5

+ n3;16 = s12ϕ[1,3,12],
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φ[1,4,15] = ū3[Jq(p2, p4 + p5, p3, p1)α2α1(/p4 + /p5)/ε5]v4 ε
α1
1 εα2

2 = s45ϕ[1,4,15],

φ[2,4,7] = ū3[/ε2(/p3 + /p2)Jq(p1, p4, p3 + p2, p5)α1α5 ]v4 ε
α1
1 εα5

5 = s23ϕ[2,4,7],

φ[2,5,11] = ū3[Jq(p1 + p5, p4, p3, p2)αα2 ]v4 Π
αβ(p1 + p5, q)Vβα1α5(−p1 − p5, p1, p5)ε

α1
1 εα2

2 εα5
5

+ n5;16 = s15ϕ[2,5,11],

φ[6,7,14] = ū3[Jq(p5, p4 + p1, p3, p2)α5α2(/p4 + /p1)/ε1]v4 ε
α2
2 εα5

5 = s14ϕ[6,7,14],

φ[6,8,9] = ū3[Jq(p2 + p5, p4, p3, p1)αα1 ]v4 Π
αβ(p2 + p5, q)Vβα2α5(−p2 − p5, p2, p5)ε

α1
1 εα2

2 εα5
5

+ n8;16 = s25ϕ[6,8,9],

φ[9,10,15] = ū3[/ε1(/p3 + /p1)Jq(p5, p4, p3 + p1, p2)α5α2 ]v4 ε
α2
2 εα5

5 = s13ϕ[9,10,15],

φ[11,10,13] = ū3[Jq(p1, p4 + p2, p3, p5)α1α5(/p4 + /p2)/ε2]v4 ε
α1
1 εα5

5 = s24ϕ[11,10,13],

φ[12,13,14] = ū3[/ε5(/p3 + /p5)Jq(p2, p4, p3 + p5, p1)α2α1 ]v4 ε
α1
1 εα2

2 = s35ϕ[12,13,14], (3.75)

where Vµ1µ2µ3(p1, p2, p3) stands for the kinematic part of three-gluon vertex.
We remark that in (3.75) the factorisation of Mandelstam invariants sij follows from the decom-
position (3.28) and that, for the anomalies with an internal gluon propagator, namely φ[1,3,12],
φ[2,5,11] and φ[6,8,9], it can be achieved in a straightforward way thanks to the choice of axial gauge.

As we have already anticipated, the system of equations is redundant. In fact, by using
momentum conservation to express all the invariants sij in terms of 5 independent ones, for
instance {s12, s23, s34, s45, s51}, we obtain

rank(A) = 11. (3.76)

Therefore, if a solution exists, there must be constraints between the non-zero elements of φ able
to lower the rank of the adjoint matrix. In particular, we expect these relations to correspond
to four independent vanishing linear combinations of rows of the matrix A. This observation
provides a constructive criterion to find out the constraints between anomalous terms.

First, we build the most general linear combination of rows of the matrix A and we fix the
coefficients by requiring

15∑

i=1

βiAi = 0. (3.77)

According to (3.76), one can find at most four linear independent solutions {β(j)i } to (3.77).

Secondly, after selecting an arbitrary complete set of solutions {β(j)i }, j = 1, 2, 3, 4, we can verify
that

15∑

i=1

β
(j)
i φi = 0, ∀j = 1, 2, 3, 4, (3.78)

that gives the desired constraints between the C/K-violating terms.
For this specific case we find,

φ[6,7,14]

s14
+
φ[9,10,15]

s13
−
φ[12,13,14]

s35
−
φ[1,4,15]

s45
= 0,

φ[6,8,9]

s25
+
φ[9,10,15]

s13
−
φ[12,13,14]

s35
−
φ[1,3,12]

s12
= 0,

φ[6,7,14]

s14
+
φ[9,10,15]

s13
−
φ[11,10,13]

s24
−
φ[2,4,7]

s23
= 0,
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φ[6,8,9]

s25
+
φ[11,10,13]

s24
+
φ[2,5,11]

s15
− φ[6,7,14]

s14
= 0,

(3.79)

which, thanks to (3.75), can be written as

ϕ[6,7,14] + ϕ[9,10,15] − ϕ[12,13,14] − ϕ[1,4,15] = 0, (3.80)

ϕ[6,8,9] + ϕ[9,10,15] − ϕ[12,13,14] − ϕ[1,3,12] = 0, (3.81)

ϕ[6,7,14] + ϕ[9,10,15] − ϕ[11,10,13] − ϕ[2,4,7] = 0, (3.82)

ϕ[6,8,9] + ϕ[11,10,13] + ϕ[2,5,11] − ϕ[6,7,14] = 0. (3.83)

These relations follow as a direct consequence of the off-shell decomposition (3.28). For instance,
if we specify it for the anomalies appearing in (3.80) by using the explicit form of Jq, we obtain

ϕ[1,4,15] = ū3

[
γα2γα1γα5 − gα1α2γα5 − gα1α2q · (p1 − p2)− 2(qα1pα2

1 − qα2pα1
2 )

q · (p1 + p2)
γα5

]
v4εα1εα2εα5 ,

ϕ[6,7,14] = ū3

[
γα5γα2γα1 − gα2α5γα1 − gα2α5q · (p2 − p5)− 2(qα2pα5

2 − qα5pα2
5 )

q · (p2 + p5)
γα1

]
v4εα1εα2εα5 ,

ϕ[12,13,14] = ū3

[
− γα5γα1γα2 + gα1α2γα5 +

gα1α2q · (p1 − p2)− 2(qα1pα2
1 − qα2pα1

2 )

q · (p1 + p2)
γα5

]
v4εα1εα2εα5 ,

ϕ[9,10,15] = ū3

[
− γα1γα2γα5 + gα2α5γα1 +

gα2α5q · (p2 − p5)− 2(qα2pα5
2 − qα5pα2

5 )

q · (p2 + p5)
γα1

]
v4εα1εα2εα5 .

(3.84)

By using Clifford algebra we can verify that

ϕ[1,4,15] + ϕ[12,13,14] − ϕ[6,7,14] − ϕ[9,10,15] = 2εα1εα2εα5 ū3
[
gα1α2γα5 − gα1α2γα5

]
v4 = 0. (3.85)

Similar cancellation are encountered in all other cases.
The constraints (3.79) make the consistency relation satisfied,

rank(A|φ) = rank(A) = 11. (3.86)

As a consequence, the system admits a solution which leaves four shifts completely undetermined
and the amplitude has a C/K-dual representation, consistent with generalised gauge invariance,
whose numerators depend of four free parameters. This number agrees with the (n−2)!−(n−3)!
degrees of freedom found in [143] for the pure Yang-Mills case.

In order to find an explicit expressions for the shifts, we build a maximum-rank system
by selecting a subset of 11 independent equations and proceed by Gaussian elimination. We
observe that, as for the solution of the Jacobi identities for colour factors, also in this case
there is a remarkably large freedom in the choice of the independent equations to be solved and,
furthermore, in the set of four arbitrary shifts to appear in the solution.

In our case, by selecting equations corresponding to rows 1-2 and 9-15 of (3.73), we express
∆i, i = 5, 6, ..., 15 as linear combination of the anomalies φ[i,j,k] and of the four arbitrary shifts
{∆1,∆2,∆3,∆4},

∆i =
4∑

j=1

Rij(skl)∆j+
∑

[m,n,p]

Ri[m,n,p](skl)φ[m,n,p], for i = 5, ...15, (3.87)

where Rij and Ri[mnp] are dimensionless rational functions of the invariants skl.
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The analytic expression of (3.87), which is not provided here for sake of simplicity, has been
obtained for arbitrary polarisations and has been numerically checked for all helicity configura-
tions. In particular, the complete independence on the actual values of the four independent
shifts has been verified for the full colour-dressed amplitude as well as for each ordering appear-
ing in (3.71). We observe that the choice ∆i = 0, i = 1, ..., 4 leads to a dual representation
where four numerators correspond exactly to the starting ones and three anomalous terms are
attributed to single diagrams

∆7 = φ[2,4,7], ∆12 = φ[1,3,12], ∆15 = φ[1,4,15]. (3.88)

In addition, for any choice of the free parameters, the set of new numerators n′i, satisfies the
system of equations (3.47), where

K = (K1,K2, ...,K6, 0, 0, ..., 0)
T . (3.89)

Therefore, the consistency requirement

rank(A|K) = rank(A) = 11 (3.90)

allow us to use the exactly the same solutions {β(j)i } of (3.77), to establish relations between the
kinematic factors,

15∑

i=1

β
(j)
i Ki = 0, ∀j = 1, 2, ..., 4, (3.91)

which, in this case, read

s45K1 − s34K3 − s14K6 = 0,

s12K1 − s23K4 − s25K6 = 0,

s15K2 − s45K4 − s25K6 = 0,

s23K2 − s34K5 + (s23 + s35)K6 = 0. (3.92)

This set of constraints reduces from 6 to 2 the number of independent kinematic factors.
Therefore, as we have already pointed out, (3.92) can be considered as equivalent to the

well-known monodromy relations which have been shown, for the pure-gluon case, to reduce to
(n− 3)! the number of independent colour ordered amplitudes.

Nevertheless, we want to remark that, in the approach we have presented, the origin of (3.92),
as well as the one of (3.79), is shown to be purely diagrammatic. In particular, whereas in [157]
monodromy relations analogous to (3.92) are derived from the field-limit of string theory and
a set of relations equivalent to (3.79) is presented as a parametrisation of their solution, here
both are derived as a necessary consequence of the redundancy of kinematic matrix A and they
have be shown to naturally emerge from the off-shell decomposition of the Jacobi-combination
of kinematic numerators in axial gauge.

3.4 Discussion

In this chapter we have studied the colour-kinematics (C/K) duality by following a diagrammatic
approach. We reviewed the main features, known in the literature, of this duality. Firstly, the
relation between kinematic terms of Feynman diagrams and their colour factors. Secondly, the
fundamental Bern-Carrasco-Johansson (BCJ) relations, which turned to be a consequence of an
elaborated study of the C/K-duality.
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The diagrammatic approach has allowed to investigate the off-shell C/K duality for ampli-
tudes in gauge theories. This duality, first observed at tree-level for on-shell four-point ampli-
tudes, is non-trivially satisfied within higher-multiplicity tree-level or multi-loop graphs, due to
presence of contact terms which violate the Jacobi identity for numerators. We studied the source
of such anomalous terms in gg → ss, qq̄, gg scattering processes. Working in axial gauge, we have
explicitly shown that, whenever the Lie structure constants obey a Jacobi identity, the analo-
gous combination of their kinematic numerators can always be reduced to a sum of numerators
of sub-diagrams, with one or two denominators less.

Furthermore, we want to remark that, whereas in the usual top-down approach [143, 144, 155,
237], the numerators appearing in the r.h.s. of (3.1) are interpreted as abstract re-organisation of
Feynman rules-numerators on which, by assumptions, the C/K-duality is imposed. Instead, our
approach provides a systematic way to identify the link between dual numerators and Feynman
diagrams. Starting from the set of explicitly C/K-violating but well-defined Feynman rule-
numerators we determine, by mean of generalised gauge transformations, the actual redistribution
of contact terms which has to be performed in order to establish the duality.

We have focused on the C/K-duality for tree-level amplitudes, nevertheless, the construction
of dual numerators for multi-loop amplitude follows the very same algorithm presented in Sec. 3.3.
Moreover, for non-supersymmetric theories, say QCD, we need to provide dimensionally regulated
amplitudes. This extension is presented in chapter 7. In the same manner, the structure of the
BCJ identities in d-dimensions.
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Chapter 4

One-loop amplitudes

Tree-level or Leading-Order (LO) computations provide a qualitative information, affected by
large uncertainties due to the poor convergence of the coupling constant. Therefore, to establish a
proper comparison between theory and data, Next-to-Leading-Order (NLO) is needed. As a main
ingredient of the NLO contributions we consider one-loop corrections, in which, any amplitude
can be decomposed in a explicit set of Master Integrals (MIs), where the coefficients appearing in
this combination are rational functions of the kinematic variables, known as Passarino Veltman
tensor reduction [42]. It is possible to recover the structure of scattering amplitudes at integral
level by constructing the integrands through the multi-particle pole expansion rising from the
analyticity and unitarity properties of the S-matrix [239]. In fact, scattering amplitudes analyt-
ically continued to complex momenta, reveal their singularity structures in terms of poles and
branch cuts. The unitarity based methods [240–247] allow to determine the coefficients of the
MIs by expanding the integrand of tree level cut amplitudes into an expression that resembles
the cut of the basis integrals.

Integrand-reduction methods [46, 248], instead, allow one to decompose the integrands of
scattering amplitudes into multi-particle poles, and the multi-particle residues are expressed in
terms of irreducible scalar products (ISPs) formed by the loop momenta and either external
momenta or polarisation vectors constructed out of them. The polynomial structure of the
multi-particle residues is a qualitative information that turns into a quantitative algorithm for
decomposing arbitrary amplitudes in terms of Master Integrals (MIs) by polynomial fitting at
the integrand level. In this context, the on-shell conditions have been used as a computational
tool reducing the complexity of the algorithm. A more intimate connection among the idea of
reduction under the integral sign and analyticity and unitarity has been pointed out recently.
Using basic principles of algebraic geometry, Ref.s [85, 86, 249–251] have shown that the struc-
ture of the multi-particle poles is determined by the zeros of the denominators involved in the
corresponding multiple cut. This new approach to integrand reduction methods allows for their
systematisation and for their all-loop extension.

This chapter is organised as follows: Sec. 4.1 is devoted to the description of the tensor de-
composition. Sec. 4.2 reviews the main features of the unitarity based methods, while Sec.s 4.3
and 4.4 describe the Ossola-Papadopoulos-Pittau method and the Laurent series expansion re-
spectively.

4.1 Tensor reduction

The Passarino-Veltman [42] tensor reduction (PV) has become an important tool in the compu-
tation of one-loop integrals. This algorithm has the advantage of expressing any tensor integral
as the sum of scalar integrals only, each one multiplied by some coefficients depending on the
external kinematics.
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In order to compute any process at one-loop level, one has to deal with integrals of the form

Ii1···ik
[
N (l̄)

]
= h(µ2R, d)

∫
dd l̄

Ni1···ik(l̄)
Di1 · · ·Dik

, (4.1)

where i1 · · · in are indices labeling loop propagators. The numerator N and denominators Di’s
are polynomials of the loop momentum l̄. The function h is a conventional normalisation factor
given by [252]

h
(
µ2R, d

)
= h

(
µ2R, 4− 2ǫ

)
=

µ−2ǫ
R

iπ2−ǫ

Γ (1− 2ǫ)

Γ2 (1− ǫ) Γ (1 + ǫ)
, (4.2)

as a function of the renormalisation scale µ2R and the dimension d = 4− 2ǫ.

In general, the loop denominators are quadratic polynomials, Di =
(
l̄i + qi

)2 −m2
i , where qi

is a linear combination of external momenta, qi = p2 + p2 + . . .+ pi, and mi’s are the masses of
the particles running in the loop.

The scalar master integrals are obtained by setting N = 1,

Ii1···ik [1] = Ii1···ik . (4.3)

Integral reduction [42, 253] has allowed to express any one-loop Feynman integral as a linear
combination of scalar pentagons, boxes, triangles, bubbles and, tadpoles

Ii1···ik
[
N (l̄)

]
=

∑

{i1,i2,i3,i4,i5}
c
(i1i2i3i4i5)
0 Ii1i2i3i4i5 +

∑

{i1,i2,i3,i4}
c
(i1i2i3i4)
0 Ii1i2i3i4 +

∑

{i1,i2,i3}
c
(i1i2i3)
0 Ii1i2i3

+
∑

{i1,i2}
c
(i1i2)
0 Ii1i2 +

∑

i1

c
(i1)
0 Ii1 , (4.4)

where the coefficients are rational functions that depend on the dimensional regulator, d − 4.
Additionally, tadpole contributions arise with internal masses. Pentagon scalar integrals appear
if we keep higher order contributions in the dimensional regulator.

In order to see how the tensor decomposition works, we consider N = l̄µ, one power of loop
momentum in the numerator

Ii1···ik [l̄
µ] = h(µ2R, d)

∫
dd l̄

l̄µ

Di1 · · ·Dik

, (4.5)

the value of this integral must be a function of external momenta p1, p2, . . . , pn−1,

Ii1···ik [l̄
µ] =

n−1∑

k=1

Ck p
µ
k , (4.6)

contracting both sides with pµj ,

Ii1···ik [l̄ · pj] =
n−1∑

k=1

Ck ∆jk, (4.7)

here ∆jk = pj · pk is the “Gram” matrix. Since pj = qj − qj−1 (with q0 = 0) we can write the
numerator of the integral as

l̄ · pj =
1

2

(
Dj −Dj−1 +m2

j −m2
j−1 − q2j + q2j−1

)
, (4.8)
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this is the PV reduction formula, which allows us to write a system of n− 1 linear equations for
the coefficients C,

n−1∑

k=1

Ck ∆jk =
1

2

(
I
(j)
i1···ik − I

(j−1)
i1···ik + (m2

j −m2
j−1 − q2j + q2j−1)Ii1···ik

)
, (4.9)

where I
(j)
i1···ik stands for MIs where the propagator Dj has been canceled. Therefore, the set of

coefficients is given by

Cj =
1

2

n−1∑

k=1

∆−1
jk

(
I
(j)
i1···ik − I

(j−1)
i1···ik + (m2

j −m2
j−1 − q2j + q2j−1)Ii1···ik

)
. (4.10)

As a second example, we consider N = l̄µ l̄ν . Since the integral is a rank two tensor it can be
formed out of the outer products of external momenta pµj p

ν
k and the metric tensor ḡµν ,

Ii1···in [l̄
µ l̄ν ] = C00ḡ

µν +
∑

j,k=1

Cjk p
µ
j p

ν
k, (4.11)

The first set of equation can be derived by contracting both sides with ḡµν ,

Ii1···in [l̄
2] = C00d+

∑

j,k=1

Cjk ∆jk, (4.12)

the other set of equations is obtained by contracting both sides with pµj p
ν
k and using (4.8).

4.2 Unitarity based methods

As saw in Sec. 1.3, the S-matrix has a lot of properties that can be exploited to compute efficiently
scattering amplitudes in perturbation theory. Besides its analyticity, it is also unitarity, SS† = 1.
This fact has allowed to compute the imaginary (absorptive) part of one-loop amplitudes by
taking products of (or sewing) on-shell tree amplitudes, where the full loop amplitude can be
reconstructed using dispersion relations. Moreover, it has been show that the unitarity method,
allows to compute the full amplitude, not only the imaginary parts, by simply considering the
discontinuities across the branch cuts in different channels.

4.2.1 Optical theorem

The optical theorem is a consequence of the unitarity of the S-matrix, given by SS† = 1. Inserting
S = 1 + iT , where T is the interaction matrix, it translates into a condition for the T -matrix

−i(T − T †) = T †T. (4.13)

We now consider the matrix element of this equation between two particle states |a〉 and |b〉. In

order to evaluate the r.h.s of this equation we insert a complete set of final states
(
1 =

∑
f |f〉〈f |

)

between T and T † to obtain

〈b|TT †|a〉 =
∑

f

〈b|T |f〉〈f |T †|a〉 =
∑

f

∫
dΠf A

∗ (a→ f)A (b→ f) (2π)4δ4(a− b), (4.14)

where dΠf = Πn
i=1

d3fi
(2π)3

1
2Ei

and the sum runs over all possible sets f of final-state particles. This

term is related to the sum of all possible cuts where the final states f are on-shell and have
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Figure 4.1: The optical theorem: the imaginary part of a forward scattering amplitudes arises
from a sum of contributions from all possible intermediate state particles

positive energy.
While for the l.h.s.

−i(〈b|T |a〉 − 〈b|T |†a〉) = −i [A (a→ b)−A∗ (a→ b)] , (4.15)

is clearly related to the discontinuity or imaginary part of a diagram in a given channel:

−i [A (a→ b)−A∗ (a→ b)] =
∑

f

∫
dΠf A

∗ (a→ f)A (b→ f) (2π)4δ4(a− b). (4.16)

Finally, for the important case of forward scattering, we set a = b to obtain the optical theorem,

−i [A (a→ a)−A∗ (a→ a)] =
∑

f

∫
dΠf A

∗ (a→ f)A (a→ f) ,

2ImA1-loop (a→ a) =
∑

f

∫
dΠf A

tree∗ (a→ f)Atree (a→ f) , (4.17)

shows pictorical in fig. 4.2. Where the imaginary part of the amplitude is related to a product
of two tree amplitudes. Effectively, two loop propagators are put on-shell. This imaginary part
can be understood as a discontinuity across a branch cut singularity of the amplitude.

We can use perturbation theory to build an one-loop amplitude A1-loop(s) as analytic function
of the complex variable s = E2

cm. We consider s0 to be threshold energy for production of the
lightest multi-particle states. For real s < s0 the intermediate states cannot go on-shell, so
A1-loop(s) is real and we have the Schwartz reflection principle

A1-loop(s) = A1-loop(s∗)∗. (4.18)

Being A1-loop(s) an analytic function it can be analytically continued to the entire complex s
plane. In particular, near the real axis for s < s0,

ReA1-loop(s+ iǫ) = ReA1-loop(s− iǫ), ImA1-loop(s+ iǫ) = −ImA1-loop(s− iǫ), (4.19)

there is a branch cut across the real axis, starting at the threshold energy s0,

DiscA1-loop(s) = 2i ImA1-loop(s− iǫ),

which, allow to state that physical scattering amplitudes have to be evaluated above the cut, at
s+ iǫ.

In order to calculate the discontinuity in the s-channel, we need to consider the sum of all
Feynman diagrams and then the optical theorem dictates the diagrams we have to cut in tree
diagrams (see fig. 4.2). This procedure for computing the physical discontinuity is specified by
a set of rules, usually, called “Cutkosky rules” and are based on the following algorithm [254]:

1. We cut the diagram so that the two propagators can simultaneously be put on-shell.
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Figure 4.2: Unitarity: The two propagators are put on-shell. The disks represent the sum of all
Feynman diagrams linking the fixed external lines and the two cut propagators.

2. For each propagator, we replace

i

l2 −m2 + iǫ
→ −2πiδ(+)(l2 −m2), (4.20)

here, the superscript “+” on the delta functions of the cut propagators denotes the choice
of a positive-energy solution.

3. Perform the loop integrals

4. Sum the contributions over all cuts.

By using this set of rules the optical theorem can be proven at all orders in perturbation theory.
Moreover, we can apply the Cutkosky rules at the amplitude level, rather than at the diagram

level [30, 32, 255]. This is advantageous because amplitudes are generally more compact than
diagrams. Therefore, in order to compute the amplitude we study its discontinuity in various
momentum channels,

DiscA1-loop
n

∣∣
i−cut

=

∫
d4l1
(2π)4

d4l2
(2π)4

2πiδ(+)(l21 −m2
1)2πiδ

(+)(l22 −m2
2)

×Atree(−l1, 1, 2, . . . , k, l2)Atree(−l2, k+1, . . . , n, l1), (4.21)

where, because of the tensor reduction, we get information about the coefficient of the MIs, since,
the branch cuts are located only in the MIs. Thus eq.(4.4) becomes

DiscA1-loop
n

∣∣
i−cut

=
∑

k

c(j1···jk)n Disc Ij1···jk . (4.22)

This result has two important features i) we see from eq.(4.21) that it is a relation involving
tree-level quantities and ii) many of the terms of the r.h.s vanish, because only a subset of MIs
have a cut involving the given i-cut.

4.2.2 Generalised Unitarity

As studied in Sec. 4.1 any tensor integral can be written as a linear combination of scalar MIs
with coefficients that are rational functions. Each coefficient can be independently computed
by “generalising” the unitarity cuts in the sense of putting a different number of propagators
on-shell. This procedure distinguishes different kind of singularities of the amplitude and allows
us to isolate the coefficient of each MI.
These generalised unitarity techniques for quadruple-[31, 62], triple-[38, 39, 62], double-[34, 36]
and single-[256–258] cut allowed tremendous simplifications in one-loop calculations by simply
recycling the knowledge of tree amplitudes.

In the following, we show how we can extract the box contribution to the amplitude by
performing a quadruple-cut. While, in the next sections we will describe the contribution of
lower topologies.
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Quadruple-cut The direct application of generalised unitarity is to use a 4-cut to find any box
coefficient. If we cut or put on-shell four propagators according to Eq. (4.20) the four dimensional
integral becomes trivial

Disc4A
1-loop
n =

∫
dΠ4(2π)

4δ(+)(l21 −m2
1)δ

(+)(l22 −m2
2)δ

(+)(l23 −m2
3)δ

(+)(l24 −m2
4)

×Atree
1 Atree

2 Atree
3 Atree

4 , (4.23)

with dΠ4 =
∏4

i=1
d li

(2π)4
. This 4-cut selects the contribution from one box integral, namely with

momenta (K1,K2,K3,K4) at the corners. Therefore, the cut expansion collapses to a single term

Disc4A
1-loop
n = c

(i1i2i3i4)
0 Disc Ii1i2i3i4 . (4.24)

The value of the coefficient is simply

c
(i1i2i3i4)
0 =

1

2

∑

l∈S
Atree

1 (l)Atree
2 (l)Atree

3 (l)Atree
4 (l) , (4.25)

where S is the solution set for the four delta functions of the cut propagators,

S =
{
l|l2 = m2

1, (l −K1)
2 = m2

2, (l −K1 −K2)
2 = m2

3, (l +K4)
2 = m2

4

}
. (4.26)

There are exactly two solutions, provided that momenta are allowed to take complex values.

4.3 Ossola-Papadoupulos-Pittau decomposition

An arbitrary one-loop amplitude in d-dimensions is a sum of contributions M of the form

M = h
(
µ2R, d

) ∫
ddl̄ Ii1···in , Ii1···in ≡ Ni1···in

Di1 · · ·Din

, (4.27)

where i1 · · · in are indices labeling loop propagators. The numerator N and denominators Di’s
of the integrand Ii1···in are polynomials of the loop momentum l̄.

Since now on, d-dimensional quantities are denoted by a bar, whereas objects living in −2ǫ-
dimensions by a tilde. The d-dimensional loop momentum is split as follows,

l̄ = l + l̃, l̄2 = l2 − µ2, (4.28)

being µ2 the scalar product of the extra dimensional component, i.e. µ2 ≡ −l̃ · l̃. Therefore, the
integrand will be a rational function of five loop coordinates, namely the components of the four
dimensional vectors li and the extra-dimensional coordinate µ2.

Since we are working with five loop coordinates, every loop integrand in dimensional regu-
larisation can be decomposed as a sum of integrands with five or less denominators

I ≡ N
D0 · · ·Dn−1

=

5∑

k=1

∑

{i1,··· ,ik}

∆i1···ik
Di1 · · ·Dik

, (4.29)

where the residues ∆i1···ik ’s are irreducible polynomials, which means they cannot be expressed
in terms of the set of propagators. The second sum on the r.h.s. runs over all the denominator
indices {0, . . . , n− 1} containing k elements.

In order to find their parametric structure according to the cut (Di,Dj , . . . ,Dk) under consid-
eration, the loop momentum is parametrised with respect to a suitable basis of four-dimensional
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massless momenta [39, 46, 47] E(i1...ik) = {e1, e2, e3, e4}. The first two elements of this basis are
the massless projections of two external momenta K1 and K2 of the subdiagrams represented by
the loop denominators presented in the cut.

More explicitly, we define

eµ1 =
1

1− r1r2
(Kµ

1 − r1K
µ
2 ) , eµ2 =

1

1− r1r2
(Kµ

2 − r2K
µ
1 ) (4.30)

with

r1 =
K2

1

γ
, r2 =

K2
2

γ
, γ = (K1 ·K2)

(
1 +

√
1 +

K2
1K

2
2

(K1 ·K2)
2

)
. (4.31)

It turns out that when K1 and K2 are massive momenta spurious squared roots arise. In this
context, spurious terms are referred to terms that drop when all contributions are added up.
This cancellation is not evident and becomes problematic for analytic computations. Moreover,
we can make use of the relation that γ obeys in order to cancel its dependence,

γ2 − 2γ K1 ·K2 +K2
1K

2
2 = 0 . (4.32)

A detailed explanation of the cancelation of spurious terms is addressed in chapter 6.

For subdiagrams that have less than two independent external momenta, the remaining ones
are replaced by arbitrary massless vectors in the definition of e1 and e2. On the other hand, the
momenta e3 and e4 are chosen to be orthogonal to e1,2 and can be written, in terms of spinor
products, as

eµ3 =
1

2
〈e1|γµ|e2], eµ4 =

1

2
〈e2|γµ|e1], (4.33)

satisfying the property e3 · e4 = −e1 · e2. For box diagrams we define the massive vectors v and
v⊥,

vµ = (e4 ·K3) e
µ
3 + (e3 ·K3) e

µ
4 , vµ⊥ = (e4 ·K3) e

µ
3 − (e3 ·K3) e

µ
4 , (4.34)

being vµ⊥ an orthogonal vector to all the external legs of the box diagram.
With a suitable choice of the basis E(i1...ik), the loop momentum l can be written as [57, 259]

lα = −pαi +
1

e1 · e2
(x1e

α
1 + x2e

α
2 − x3e

α
3 − x4e

α
4 ) , (4.35)

being the coordinates x′is written as scalar products

x1 = (L1 · e2) , x2 = (L1 · e1) , x3 = (L1 · e4) , x4 = (L1 · e3) , (4.36)

with L1 = l + pi.
For diagrams of k = 4 loop denominators, the loop momentum takes the form,

lα = −pαi +
1

e1 · e2
(x1e

α
1 + x2e

α
2 ) +

1

v2
(x3,vv

α − x4,vv
α
⊥) , (4.37)

with

x3,v = (L1 · v) , x4,v = (L1 · v⊥) , (4.38)
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According to this parameterisation, the numerator N becomes a polynomial in the coordi-
nates xi,

N (q̄) = N
(
q, µ2

)
= N

(
x1, x2, x3, x4, µ

2
)
, (4.39)

therefore, it admits the universal parametric form

Ni1···in ≡
∑

j1,j2,j3,j4,j5

nj1j2j3j4j5 x
j1
1 x

j2
2 x

j3
3 x

j4
4 µ

2j5 , j1 + j2 + j3 + j4 + 2j5 ≤ rmax, (4.40)

here rmax is the number of loop denominators presented in the diagram under consideration.
Given such decomposition of the loop momentum, (4.35) and (4.37), the parametric ex-

pression of ∆i1···ik is process independent and, for renormalisable theories, it turns out to
be [41, 46, 249, 251]

∆i1i2i3i4i5 = c0 µ
2,

∆i1i2i3i4 = c0 + c1 x4,v + µ2
(
c2 + c3 x4,v + µ2 c4

)
,

∆i1i2i3 = c0 + c1 x4 + c2 x
2
4 + c3 x

3
4 + c4 x3 + c5 x

2
3 + c6 x

3
3 ++µ2 (c7 + c8 x4 + c9 x3) ,

∆i1i2 = c0 + c1 x1 + c2 x
2
1 + c3 x4 + c4 x

2
4 + c5 x3 + c6 x

2
3 + c7 x1x4 + c8 x1x3 + c9 µ

2,

∆i1 = c0 + c1 x1 + c2 x2 + c3 x3 + c4 x4, (4.41)

where, for each coefficient, a superscript labelling the specific cut is understood, cm = c
(i···k)
m .

Althought the residue of the pentagon is just a constant, it is useful to use a different
parametrisation in which the µ2-dependence is explicit [67]. The advantage of this choice is
that this residue vanishes upon integration. In addition, this parametrisation recovers the four-
dimensional part of the lower residues in the reduction, i.e. q̄ = q, µ2 = 0.

As a consequence of the (4.41), by neglecting all spurious terms which vanish upon integration,
the contribution M can be written in terms of MI’s,

Ii1···ik [α] = h(µ2R, d)

∫
dd l̄

α

Di1 · · ·Dik

, Ii1···ik [1] = Ii1···ik (4.42)

and of the coefficients of the residues as

M =
∑

{i1,i2,i3,i4}

{
c
(i1i2i3i4)
0 Ii1i2i3i4 + c

(i1i2i3i4)
4 Ii1i2i3i4 [µ

4]
}

+
∑

{i1,i2,i3}

{
c
(i1i2i3)
0 Ii1i2i3 + c

(i1i2i3)
7 Ii1i2i3 [µ

2]
}

+
∑

{i1,i2}

{
c
(i1i2)
0 Ii1i2 + c

(i1i2)
1 Ii1i2 [(l + pi) · e2] + c

(i1i2)
2 Ii1i2 [((l + pi) · e2)2] + c

(i1i2)
9 Ii1i2 [µ

2]
}

+
∑

i1

c
(i1)
0 Ii1 . (4.43)

The relations between two-point tensor and scalar integrals are presented in App. A.

4.3.1 Fit on the cut at one loop

The fitting of the coefficients of eq.(4.43) is obtained by evaluating the numerator of the integrand
on multiple cuts, i.e. values of the loop momentum where the loop denominators of an specific
subset (cut) vanish. In the same manner, residues are computed by sampling the numerator of the
integrand, after all non-vanishing contributions to higher-point residues have been subtracted on
a finite set of on-shell solution of the multiple cuts. This algorithm based on a top-down approach
have been automated in several codes, some of which are public CutTools [260] and Samurai [47].

In the following we briefly review this method, as proposed in Ref.s [41, 46, 47], studying in
details the computation of 5-, 4-, 3- 2- and 1-point residues.
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5-point residues The maximal cut in d = 4 − 2ǫ of any one-loop amplitude is a 5-ple cut,
which, corresponds to putting five propagators on-shell. This on-shellness allows us to write the
cut solution, eq.(4.35), by solving the system of equations of Di1 = · · · = Di5 = 0, where all
coordinates xi and µ2 are fixed. Hence, the coefficient c0 of the pentagon is found as

c0 =
1

µ2s

N
(
ls, µ

2
s

)
∏

h 6=i1,...,i5
Dh

, (4.44)

where ls and µ2s are the 5-ple cut solution and value of µ2 at the cut, respectively.

4-point residues The 4-ple cut solution is obtained by solving the on-shell conditions Di1 =
· · · = Di4 = 0. This cut has two solutions l+ and l− which are used to fix the residue ∆i1···i4 ,

∆i1i2i3i4 =
N
(
l, µ2

)
∏

h 6=i1,...,i4
Dh

−
∑

i5

∆i1i2i3i4i5

Di5

, (4.45)

Coefficients c0, c2 and c4 are fitted from the average of the integrand evaluated on the two
solutions,

1

2


 N (l, µ2)∏

h 6=i1,...,i4
Dh

−
∑

i5

∆i1i2i3i4i5

Di5

∣∣∣∣∣
l=l+

+
N (l, µ2)∏
h 6=i1,...,i4

Dh
−
∑

i5

∆i1i2i3i4i5

Di5

∣∣∣∣∣
l=l−


 , (4.46)

while c1 and c3 from the difference.

3-point residues For the 3-ple cut solution there are three on-shell conditions Di1 = Di2 =
D3 = 0. On the solutions, the integrand decomposition reads,

∆i1i2i3 =
N (l, µ2)∏
h 6=i1,i2,i3

Dh
−
∑

i4

∆i1i2i3i4

Di4

−
∑

i4,i5

∆i1i2i3i4i5

Di4Di5

, (4.47)

where the coefficients of the residue are computed by sampling the integrand at ten different
values of l. These solutions, parametrised, according to Eq. (4.35) have two fulfil the on-shell
conditions.

2-point residues In order to compute the 2-ple cut solution, l is parametrised by solving the
on-shell conditions Di1 = Di2 = 0. For this cut there is only one solution and the integrand
decomposition reads

∆i1i2 =
N (l, µ2)∏
h 6=i1,i2

Dh
−
∑

i3

∆i1i2i3

Di3

−
∑

i3,i4

∆i1i2i3i4

Di3Di4

−
∑

i3,i4,i5

∆i1i2i3i4i5

Di3Di4Di5

, (4.48)

As for the 2-point residues, the coefficients of the residue are fitted by sampling the integrand at
ten different values of l.

1-point residues Finally, the single cut solution is obtained by solving the on-shell condition
Di1 = 0. The integrand decomposition becomes,

∆i1 =
N (l, µ2)∏
h 6=i1

Dh
−
∑

i2

∆i1i2

Di2

−
∑

i2,i3

∆i1i2i3

Di2Di3

−
∑

i2,i3,i4

∆i1i2i3i4

Di2Di3Di4

−
∑

i2,i3,i4,i5

∆i1i2i3i4i5

Di2Di3Di4Di5

,

(4.49)

the coefficients of the residue are fitted by sampling the integrand at five different values of l.
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4.4 One-loop amplitudes via Laurent series expansion

In the previous section, we saw how any numerator can be decomposed in terms of irreducible
polynomials, called residues, which admit a parametric form independent of the process. In
addition, we can promote them to be the full integrand of an amplitude, which, depending on
the cut under consideration, can be extracted from the product of tree amplitudes. In this
section, we review the integrand reduction of one-loop scattering amplitudes through Laurent
series expansion, proposed by Mastrolia, Mirabella and Peraro [61].

This approach elaborates on the techniques proposed to compute triangle and bubbles co-
efficients developed by Forde [39] for massless theories, then generalised to massive cases by
Kilgore [256] and, later extended to the calculation of finite parts of the amplitude by Bad-
ger [62]. The series expansion is applied systematically to the integrand decomposition formula
of OPP/EGKM.

The main features of this algorithm are the following

• The coefficients of the 5-point functions are never needed and do not have to be computed.

• The spurious coefficients of the 4-point functions do not enter into the reduction and are
not computed. Hence, the computation of 3-,2- and 1-point coefficients is independent of
the 4-point ones.

• The subtraction at integrand level is replaced by the subtraction at the coefficient level.

• The correction terms of 2- and 1-point functions are parametrised by universal functions
in terms of the higher point coefficients.

• The application of the Laurent expansion for the determination of 3-, 2- and 1-point co-
efficients is implemented via polynomial division. The Laurent series is obtained as the
quotient of the division between the numerator and the product of the uncut denominators,
neglecting the remainder.

In the following, we briefly review the extraction of coefficients by performing a suitable Laurent
expansion of the cut integrand with respect to one of the components of the loop momenta which
are left unconstrained by the on-shell conditions.

4.4.1 Reduction algorithm

In this subsection, we show how to get the coefficients c of each polynomial ∆ of (4.41)

5-ple cut The coefficient c0 of eq. (4.41) can be computed as explained in Sec. 4.3. Moreover,
this cut is not needed in the reduction, therefore, its computation is omitted.

4-ple cut The cut solution can be expressed, according to (4.37), as

lα = −pαi + x1e
α
1 + x2e

α
2 + x3,vv

α ±
√
α⊥ +

µ2

v2⊥
vα⊥, (4.50)

where the coefficients x1, x2, x3,v and α⊥ are frozen by the on-shell conditions, Di1 = · · · = Di4 =
0. The only two coefficients that are needed are obtained from [31, 61, 62]

1

2


 N (l, µ2)∏

h 6=i1,...,i4
Dh

∣∣∣∣∣ l=l+
µ2→0

+
N (l, µ2)∏
h 6=i1,...,i4

Dh

∣∣∣∣∣ l=l−
µ2→0


 = c0, (4.51)
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N (l, µ2)∏
h 6=i1,...,i4

Dh

∣∣∣∣∣
µ2→∞

= c4µ
4 +O(µ3). (4.52)

3-ple cut The solutions of the 3-cut can be parametrised, according to (4.35), as

lα+ = −pαi + x1e
α
1 + x2e

α
2 + teα3 +

α0 + µ2

2t(e3 · e4)
eα4 , (4.53a)

lα− = −pαi + x1e
α
1 + x2e

α
2 + teα4 +

α0 + µ2

2t(e3 · e4)
eα3 , (4.53b)

where x1, x2 and α0 are frozen by the three cut conditions, Di1 = Di2 = Di3 = 0. The coefficients
of the residue ∆i1i2i3 can be obtained in the large-t limit according to

N (l, µ2)∏
h 6=i1,...,i4

Dh

∣∣∣∣∣ l=l+
t→∞

= n+0 + n+7 µ
2 + (n4 + n9µ

2)t+ n5t
2 + n6t

3 +O(1/t), (4.54a)

N (l, µ2)∏
h 6=i1,...,i4

Dh

∣∣∣∣∣ l=l−
t→∞

= n−0 + n−7 µ
2 + (n1 + n8µ

2)t+ n2t
2 + n3t

3 +O(1/t), (4.54b)

where the relations between n′is and ci’s of (4.41) for the ∆i1i2i3 are given by,

c0,7 =
1

2
(n+0,7 + n−0,7), c1,4,8,9 =

n1,4,8,9
(e3 · e4)

, c2,5 =
n2,5

(e3 · e4)2
, c3,6 =

n3,6
(e3 · e4)3

. (4.55)

The Laurent expansion allows to determine the 3-point residues without any subtraction of
higher-point terms. The average of the two solutions cancels the spurious coefficients coming
from boxes. In addition, pentagon contributions behaves as O(1/t).

2-ple cut The solutions of the double cut Di = Dj = 0 are parametrised as follows

lα+ = −pαi + x1e
α
1 + (α0 + x1 α1)e

α
2 + teα3 +

β0 + β1x1 + β2x
2
1 + µ2

2t(e3 · e4)
eα4 , (4.56a)

lα− = −pαi + x1e
α
1 + (α0 + x1 α1)e

α
2 + teα4 +

β0 + β1x1 + β2x
2
1 + µ2

2t(e3 · e4)
eα3 , (4.56b)

in terms of three free parameters x, t and µ2, while the constants αi and βi are determined by
on-shell conditions, Di1 = Di2 = 0. The coefficients of the residue ∆i1i2i3 can be extracted from
the large-t expansion,

N (l, µ2)∏
h 6=i1,i2

Dh
−
∑

i3

∆i1i2i3

Di3

∣∣∣∣∣
l=l+
t→∞

= n0 + n9µ
2 + n1x1 + n2x

2
1 + n5t+ n6t

2 + n8x1t+O(1/t),

(4.57a)

N (l, µ2)∏
h 6=i1,i2

Dh
−
∑

i3

∆i1i2i3

Di3

∣∣∣∣∣
l=l+
t→∞

= n0 + n9µ
2 + n1x1 + n2x

2
1 + n3t+ n4t

2 + n7x1t+O(1/t).

(4.57b)

It turns out that the individual expansion of

N (l, µ2)∏
h 6=i1,i2

Dh

∣∣∣∣∣ l=l+
t→∞

and
∑

i3

∆i1i2i3

Di3

∣∣∣∣∣
l=l+
t→∞
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have the same polynomial structure of the r.h.s of eq. (4.57). For the “+” case we have

N (l, µ2)∏
h 6=i1,i2

Dh

∣∣∣∣∣ l=l+
t→∞

= a0 + a9µ
2 + a1x1 + a2x

2
1 + a5t+ a6t

2 + a8x1t+O(1/t), (4.58a)

∆i1i2i3

Di3

∣∣∣∣ l=l+
t→∞

= b
(i3)
0 + b

(i3)
9 µ2 + b

(i3)
1 x1 + b

(i3)
2 x21 + b

(i3)
5 t+ b

(i3)
6 t2 + b

(i3)
8 x1t+O(1/t).

(4.58b)

The “−” case is obtained by replacing (5, 6, 8) → (3, 4, 7). Therefore, the coefficients a and b can
be computed separately, obtaining the coefficients n by their difference,

nk = ak −
∑

j

b
(j)
k . (4.59)

As done for the 3-cut, the coefficients of the residue ∆i1i2 , after normalisation, are given by

c0,9 = n0,9, c1,3,5 =
n1,3,5

(e3 · e4)
, c2,4,6,7,8 =

n2,4,6,7,8
(e3 · e4)2

. (4.60)

Single cut We consider the following solutions of the single cut Di1 = 0,

lα+ = −pαi + teα3 +
µ2

2t(e3 · e4)
eα4 , lα− = −pαi + teα4 +

µ2

2t(e3 · e4)
eα3 , (4.61)

The non-spurious term c0 of eq. (4.41) is extracted from the large-t limit

N (l, µ2)∏
h 6=i1

Dh
−
∑

i2

∆i1i2

Di2

−
∑

i2,i3

∆i1i2i3

Di2Di3

∣∣∣∣∣∣ l=l+
t→∞

= n0 + n4t+O (1/t) ,

where bubble and triangle subtraction terms are non-vanishing.
Similarly to the 2-cut, the expansion of

N (l, µ2)∏
h 6=i1

Dh

∣∣∣∣∣ l=l+
t→∞

,
∑

i2

∆i1i2

Di2

∣∣∣∣∣
l=l+
t→∞

and,
∑

i2,i3

∆i1i2i3

Di2Di3

∣∣∣∣∣∣ l=l+
t→∞

(4.62)

have the same polynomial behaviour as the residue, i.e.

N (l, µ2)∏
h 6=i1

Dh

∣∣∣∣∣ l=l+
t→∞

= a0 + a4t+O (1/t) , (4.63)

∑

i2

∆i1i2

Di2

∣∣∣∣∣
l=l+
t→∞

= b
(i2)
0 + b

(i2)
4 t+O(1/t), (4.64)

∑

i2,i3

∆i1i2i3

Di2Di3

∣∣∣∣∣∣ l=l+
t→∞

= b
(i2i3)
0 + b

(i2i3)
4 t+O(1/t), (4.65)

The coefficients a, b(i2) and b(i2i3) give the 1-point coefficient, according to

c0 = n0 = a0 −
∑

j

b
(j)
0 −

∑

j<k

b
(jk)
0 . (4.66)
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4.5 Discussion

The methods studied in this chapter, used to compute one-loop amplitudes, are part of an arsenal
of tools for physicists to make physical predictions to the phenomenology of high energy physics.
Because of their analytical construction and the stablished algorithm, the automation of the
calculation of one-loop amplitudes could be carried out. Several numerical and semi-numerical
codes, capable of computing observables of the theory, were produced [49–60]. This dramatic
development allowed the scientific community to understand, with more accuracy, the behaviour
of the so-called interacting particles. In particular, processes given by QCD allow for reducing
the background of collisions produced by hadrons, giving, eventually, raise to new physics. In
the next chapters, we will make use of these modern methods to give phenomenological and
mathematical approaches to the computation of scattering amplitudes.

In chapter 5, we provide a new regularisation scheme which allows us to compute any one-loop
scattering amplitude. Within our regularisation scheme, this computation can be carried out by
using traditional and modern methods such a computation of Feynman diagrams or unitarity
based methods in d dimensions, respectively. For the latter, explicit representation of particles
circulating in the loop are given. Simple applications of 2 → 2 processes are addressed. In the
same manner, within our scheme, we provide renormalisation at one-loop of QED and QCD.

In chapter 6, we stress on the analytical computation of one-loop scattering amplitudes with
high multiplicity (up six external legs). Its procedure takes advantage of fundamental pieces, tree-
level amplitudes, as input. It also combines generalised unitarity in d-dimensions and Laurent
series expansion. In particular, the processes gg → ngH (n = 1, 2, 3), in the heavy top mass limit,
show how our regularisation scheme is suitable for effective theories. These analytical results,
besides contributing to the NLO, are also part of the ingredients for the NNLO prediction.

On the other side, chapter 7 studies the relations that the colour-kinematics (C/K) duality
can generate for the computation of d-dimensionally regulated amplitudes and integrands from
generalised unitarity. In general, both relations require as input a regularisation scheme, which,
in our case turns out to be the one proposed in chapter 5. It shall be shown that, because of
the C/K-duality and the integrand reduction methods via Laurent series expansion, relations
between integrands reduce the amount of needed coefficients to recover any one-loop amplitude.

Chapter 8 addresses the algorithms to compute multi-loop scattering amplitudes. Without
loose of generality, we consider the computation of two-loop scattering amplitudes. Firstly, we
present the integrand reduction methods via polynomial division module Gröbner basis. The all
plus four-gluon amplitude is studied in details by following this method. Secondly, we briefly
describe the adaptive integrand decomposition method, which relies on the decomposition of
the space-time, d = d‖ + d⊥, in parallel and perpendicular subspaces. The all plus five-gluon
amplitude is studied by following this algorithm, numerical results are presented.
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Chapter 5

Four-Dimensional-Formulation

In this chapter, we study the four dimensional formulation (FDF) regularisation scheme. This
scheme, at one-loop, is equivalent to the four-dimensional helicity (FDH) scheme [32, 198, 199],
and allows for a purely four-dimensional regularisation of the amplitudes. Within FDF, the
states in the loop are described as four dimensional massive particles. The four-dimensional
degrees of freedom of the gauge bosons are carried by massive vector bosons of mass µ and their
(d−4)-dimensional ones by real scalar particles obeying a simple set of four-dimensional Feynman
rules. A d-dimensional fermion of mass m is instead traded for a tachyonic Dirac field with mass
m + iµγ5. The d dimensional algebraic manipulations are replaced by four-dimensional ones
complemented by a set of multiplicative selection rules. The latter are treated as an algebra
describing internal symmetries.

Within integrand reduction methods, FDF allows for the simultaneous computation of both
the cut-constructible and the rational terms by employing a purely four-dimensional formulation
of the integrands. As a consequence, an explicit four-dimensional representation of generalised
states propagating around the loop can be formulated. Therefore, a straightforward implemen-
tation of d-dimensional generalised unitarity within exactly four space-time dimensions can be
realised, avoiding any higher-dimensional extension of either the Dirac [65, 66] or the spinor
algebra [68].

This chapter is organised as follows. Sec. 5.1 is devoted to the description of FDF, while
Sec. 5.2 describes how generalised unitarity method can be applied in presence of a FDF of
one-loop amplitudes. Sec. 5.3 shows the decomposition in terms of MIs of certain classes of
2 → 2 one-loop amplitudes. It is preliminary to Sec.s 5.3.1, 5.3.2 and 5.3.3, which collect the
applications of generalised unitarity methods within the FDF. In particular they present results
for representative helicity amplitudes of gg → gg, qq̄ → gg with massless quarks, and gg → Hg
in the heavy-top limit. In Sec. 5.4 we discuss the renormalisation at one-loop within FDF for
QED and QCD using on-shell and minimal subtraction scheme, respectively.

5.1 Four-dimensional Feynman rules

The FDH scheme [32, 198, 199] defines a d-dimensional vector space embedded in a larger ds-
dimensional space, ds ≡ (4− 2ǫ) > d > 4. The scheme is determined by the following rules

• The loop momenta are considered to be d-dimensional. All observed external states are
considered as four-dimensional. All unobserved internal states, i.e. virtual states in loops
and intermediate states in trees, are treated as ds-dimensional.

• Since ds > d > 4, the scalar product of any d- or ds-dimensional vector with a four-
dimensional vector is a four-dimensional scalar product. Moreover, any dot product be-
tween a ds-dimensional tensor and a d-dimensional one is a d-dimensional dot product.
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• The Lorentz and the Clifford algebra are performed in ds dimensions, which has to be kept
distinct from d. The matrix γ5 is treated using the ’t Hooft-Veltman prescription, i.e. γ5

commutes with the Dirac matrices carrying −2ǫ indices.

• After the γ-matrix algebra has been performed, the limit ds → 4 has to be performed,
keeping d fixed. The limit d→ 4 is taken at the very end.

Starting with the ds-dimensional metric tensor, we split it as

ḡµν = gµν + g̃µν , (5.1)

in terms of a four-dimensional tensor g and a −2ǫ-dimensional one, g̃, such that

g̃µρ gρν = 0 , g̃µµ = −2ǫ −→
ds→4

0 , gµµ = 4 , (5.2)

The tensors g and g̃ project a ds-dimensional vector l̄ into the four-dimensional and the −2ǫ-
dimensional subspaces respectively,

lµ ≡ gµν l̄
ν , l̃µ ≡ g̃µν l̄

ν . (5.3)

At one loop, the only d-dimensional object is the loop momentum l̄. The square of its −2ǫ
dimensional component is defined as:

l̃2 = g̃µν l̄µ l̄ν ≡ −µ2 . (5.4)

The properties of the matrices γ̃µ = g̃µν γ̄ν can be obtained from Eq. (5.2)

[γ̃α, γ5] = 0 , {γ̃α, γµ} = 0 , (5.5a)

{γ̃α, γ̃β} = 2 g̃αβ . (5.5b)

We remark that the −2ǫ tensors can not have a four-dimensional representation. Indeed, its
square is traceless

g̃µρg̃ρµ = g̃µµ −→
ds→4

0 . (5.6)

Moreover, the component l̃ of the loop momentum vanishes when contracted with the metric
tensor g,

l̃µ gµν = l̄ρ g̃
ρµ gµν = 0 , (5.7)

and in four dimensions the only four vector fulfilling (5.7) is the null one. Finally, in four
dimensions the only non-null matrices fulfilling the conditions (5.5a) are proportional to γ5,
hence γ̃ ∼ γ5. However, the matrices γ̃ fulfil the Clifford algebra (5.5b), thus

γ̃µ γ̃µ −→
ds→4

0 , while γ5γ5 = I . (5.8)

These arguments exclude any four-dimensional representation of the −2ǫ subspace. It is
possible, however, to find such a representation by introducing additional rules, called in the
following −2ǫ selection rules, (−2ǫ)-SRs. Indeed, as shown in App. B.1, the Clifford algebra (5.5b)
is equivalent to

· · · γ̃α · · · · · · γ̃α · · · = 0, /̃l /̃l = −µ2 . (5.9)
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Therefore, any regularisation scheme which is equivalent of FDH has to fulfil the conditions (5.2)
– (5.5a), and (5.9). The orthogonality conditions (5.2) and (5.3) are fulfilled by splitting a
ds-dimensional gluon onto a four-dimensional one and a coloured scalar, sg, while the other
conditions are fulfilled by performing the substitutions:

g̃αβ → GAB , l̃α → i µQA , γ̃α → γ5 ΓA . (5.10)

The −2ǫ-dimensional vectorial indices are thus traded for (−2ǫ)-SRs such that

GABGBC = GAC , GAA = 0, GAB = GBA, QAGAB = QB,

ΓAGAB = ΓB , ΓAΓA = 0, QAΓA = 1, QAQA = 1. (5.11)

The exclusion of the terms containing odd powers of µ completely defines the FDF, and allows
one to build integrands which, upon integration, yield the same result as in the FDH scheme.

The rules (5.11) constitute an abstract algebra which is similar to the algebras implementing
internal symmetries. For instance, in a Feynman diagrammatic approach the (−2ǫ)-SRs can be
handled as the colour algebra and performed for each diagram once and for all. In each diagram,
the indices of the (−2ǫ)-SRs are fully contracted and the outcome of their manipulation is either
0 or ±1. It is worth to remark that the replacement of γ̃α with γ5 takes care of the ds-dimensional
Clifford algebra automatically, thus we do not need to introduce any additional scalar particle
for each fermion flavour. These particles and their interactions have been instead introduced in
Ref. [261], where a method for the reconstruction of the µ2-dependent part of the numerator has
been proposed.

To summarise, the QCD colour-ordered d-dimensional Feynman rules in the ’t Hooft-Feynman
gauge may have the following four-dimensional formulation:

a, α b, β

k
= −i δab gαβ

k2 − µ2 + i0
(gluon), (5.12a)

a b

k

= i δab
1

k2 − µ2 + i0
(ghost), (5.12b)

a,A b, B

k
= −i δab GAB

k2 − µ2 + i0
, (scalar), (5.12c)

i j

k
= i δij

/k + iµγ5 +m

k2 −m2 − µ2 + i0
, (fermion), (5.12d)

1, a, α

2, b, β

3, c, γ

= −g fabc
[
(k1 − k2)

γgαβ + (k2 − k3)
αgβγ + (k3 − k1)

βgγα
]
, (5.12e)

1, a, α

2, b

3, c

= −g fabc kα2 , (5.12f)

1, a, α

2, b, B

3, c, C

= −g fabc (k2 − k3)
αGBC , (5.12g)
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1, a, α

2, b, B

3, c, γ

= ∓g fabc (iµ) gγαQB , (k̃1 = 0, k̃3 = ±l̃), (5.12h)

1, a, α

4, d, δ

2, b, β

3, c, γ

= −ig2
[
fxad fxbc

(
gαβgδγ − gαγgβδ

)
+ fxac fxbd

(
gαβgδγ − gαδgβγ

)

+ fxab fxdc
(
gαδgβγ − gαγgβδ

) ]
, (5.12i)

1, a, α

4, d, δ

2, b, B

3, c, C

= 2ig2 gαδ
(
fxab fxcd + fxac fxbd

)
GBC , (5.12j)

1, i

2, b, β

3, j

= −ig
(
tb
)
ji
γβ , (5.12k)

1, i

2, b, B

3, j

= −ig
(
tb
)
ji
γ5 ΓB . (5.12l)

In the Feynman rules (5.12) all the momenta are incoming and the scalar particle sg can circulate
in the loop only. The terms µ2 appearing in the the propagators (5.12a)–(5.12d) enter only if the
corresponding momentum k is d-dimensional, i.e. only if the corresponding particle circulates
in the loop. In the vertex (5.12h) the momentum k1 is four-dimensional while the other two are
d-dimensional. The possible combinations of the −2ǫ components of the momenta involved are

{k̃1 , k̃2 , k̃3 } = {0 ,∓l̃ ,±l̃ } . (5.13)

The overall sign of the Feynman rule (5.12h) depends on which of the combinations (5.13) is
present in the vertex.

As already pointed out, the (−2ǫ)-SRs constitute a formal algebra, thus they cannot have a
purely numerical matrix implementation. Therefore the manipulations related to the (−2ǫ)-SRs
have to be performed algebraically by using algebraic manipulations programs such as mathe-

matica [262] or form [263]. It is worth to mention that the manipulations are extremely simple
and have to be performed once and for all. In particular they can be performed before any other
manipulation or any recursive construction and would allow us to know in advance whether the
diagram or the cut vanishes. The selection rules (5.11) are more trivial than the colour algebra,
since no interference with tree-level is needed.

Our prescriptions, Eq. (5.10), can be related to a five-dimensional theory characterised by
g55 = −1, l5 = µ and a 4 × 4 representation of the Clifford algebra, {γ0, . . . , γ3, iγ5}. Regu-
larisation methods in five dimensions have been proposed as an alternative formulation of the
Pauli-Villars regularisation [264] or as regulators of massless pure Yang Mills theories at one
loop [265]. Our method distinguishes itself by the presence of the (−2ǫ)-SRs, a crucial ingredient
for the correct reconstruction of dimensionally-regularised amplitudes.

5.2 Fermion and Boson wave functions within FDF

Generalised-unitarity methods in d dimensions require an explicit representation of the polarisa-
tion vectors and the spinors of d-dimensional particles. The latter ones are essential ingredients
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for the construction of the tree-level amplitudes that are sewn along the generalised cuts. In this
respect, the FDF scheme is suitable for the four-dimensional formulation of d-dimensional gener-
alised unitarity. The main advantage of the FDF is that the four-dimensional expression of the
propagators of the particles in the loop admits an explicit representation in terms of generalised
spinors and polarisation expressions, whose expression is collected below.

In the following discussion the d-dimensional momentum, l̄, will be put on-shell and decom-
posed according to Eq. (4.28). Its four-dimensional component, l, will be expressed as

l = l♭ + q̂l , q̂l ≡
m2 + µ2

2 l · ql
ql , (5.14)

in terms of the two massless momenta l♭ and ql.

Spinors – The spinors of a d-dimensional fermion have to fulfil a completeness relation which
reconstructs the numerator of the cut propagator,

2(ds−2)/2∑

λ=1

uλ, (d)
(
l̄
)
ūλ, (d)

(
l̄
)
= /̄l +m,

2(ds−2)/2∑

λ=1

vλ, (d)
(
l̄
)
v̄λ, (d)

(
l̄
)
= /̄l −m. (5.15)

The substitutions (5.10) allow one to express Eq. (5.15) as follows:

∑

λ=±
uλ (l) ūλ (l) = /l + iµγ5 +m,

∑

λ=±
vλ (l) v̄λ (l) = /l + iµγ5 −m. (5.16)

As shown in the App. B.2, the generalised massive spinors

u+ (l) =
∣∣∣l♭
〉
+

(m− iµ)[
l♭ ql

] |ql] , u− (l) =
∣∣∣l♭
]
+

(m+ iµ)〈
l♭ ql

〉 |ql〉 ,

v− (l) =
∣∣∣l♭
〉
− (m− iµ)[

l♭ ql
] |ql] , v+ (l) =

∣∣∣l♭
]
− (m+ iµ)〈

l♭ ql
〉 |ql〉 , (5.17a)

ū+ (l) =
[
l♭
∣∣∣+ (m+ iµ)〈

ql l♭
〉 〈ql| , ū− (l) =

〈
l♭
∣∣∣ + (m− iµ)[

ql l♭
] [ql| ,

v̄− (l) =
[
l♭
∣∣∣− (m+ iµ)〈

ql l♭
〉 〈ql| , v̄+ (l) =

〈
l♭
∣∣∣ − (m− iµ)[

ql l♭
] [ql| , (5.17b)

fulfil the completeness relation (5.16). The spinors (5.17a) are solutions of the tachyonic Dirac
equations [264, 266–268]

(
/l + iµγ5 +m

)
uλ (l) = 0 ,

(
/l + iµγ5 −m

)
vλ (l) = 0 , (5.18)

which leads to a Hermitian Hamiltonian. It is worth to notice that the spinors (5.17) fulfil the
Gordon’s identities

ūλ (l) γ
ν uλ (l)

2
=
v̄λ (l) γ

ν vλ (l)

2
= lν . (5.19)

Polarisation vectors – The d-dimensional polarisation vectors of a spin-1 particle fulfil the
following relation

ds−2∑

i=1

εµi (d)
(
l̄, η̄
)
ε∗νi (d)

(
l̄, η̄
)
= −ḡµν + l̄µ η̄ν + l̄ν η̄µ

l̄ · η̄ . (5.20)
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Abusing a bit of the notation, the ds-metric tensor can be decomposed as

ḡµds = ḡµds−d + ḡµd . (5.21)

In Eq. (5.20) we have set ds = d. η̄ is an arbitrary d-dimensional massless momentum such that
l̄ · η̄ 6= 0. Gauge invariance in d dimensions guarantees that the cut is independent of η̄. In
particular the choice

η̄µ = lµ − l̃µ , (5.22)

with l, l̃ defined in Eq. (4.28), allows one to disentangle the four-dimensional contribution form
the d-dimensional one:

d−2∑

i=1

εµ
i (d)

(
l̄, η̄
)
ε∗νi (d)

(
l̄, η̄
)
=

(
−gµν + lµlν

µ2

)
−
(
g̃µν +

l̃µl̃ν

µ2

)
. (5.23)

The first term is related to the cut propagator of a massive gluon and can be expressed as follows

−gµν + lµlν

µ2
=
∑

λ=±,0

εµλ(l) ε
∗ν
λ (l) , (5.24)

in terms of the polarisation vectors of a vector boson of mass µ [269],

εµ+ (l) = −
[
l♭ |γµ| q̂l

〉
√
2µ

, εµ− (l) = −
〈
l♭ |γµ| q̂l

]
√
2µ

, εµ0 (l) =
l♭µ − q̂µl

µ
. (5.25)

The latter fulfil the well-known relations

ε2±(l) = 0 , ε±(l) · ε∓(l) = −1 , ε20(l) = −1 ,

ε±(l) · ε0(l) = 0 , ελ(l) · l = 0 . (5.26)

The second term of the r.h.s. of Eq. (5.23) is related to the numerator of cut propagator of the
scalar sg and can be expressed in terms of the (−2ǫ)-SRs as:

g̃µν +
l̃µ l̃ν

µ2
→ ĜAB ≡ GAB −QAQB . (5.27)

The factor ĜAB can be easily accounted by defining the cut propagator as

a,A b, B
= ĜAB δab . (5.28)

The generalised four-dimensional spinors and polarisation vectors defined above can be used
for constructing tree-level amplitudes with full µ-dependence.

5.3 One-loop four-point amplitudes

In this section we apply generalised-unitarity methods within FDF to some examples of one-loop
2 → 2 scattering amplitudes.

First, we consider one-loop four-point amplitudes with four outgoing massless particles

0 → 1(p1) 2(p2) 3(p3) 4(p4) , (5.29)
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As saw in Sec. 4.1, a massless four-point one-loop amplitude can be decomposed in terms MIs,
as follows

A4 =
1

(4π)2−ǫ

[
c1|2|3|4; 0 I1|2|3|4 +

(
c12|3|4; 0 I12|3|4 + c1|2|34; 0 I1|2|34 + c1|23|4; 0 I1|23|4 + c2|3|41; 0 I2|3|41

)

+
(
c12|34; 0 I12|34 + c23|41; 0 I23|41

)]
+R , (5.30a)

R =
1

(4π)2−ǫ

[
c1|2|3|4; 4 I1|2|3|4[µ

4] +
(
c12|3|4; 2 I12|3|4[µ

2] + c1|2|34; 2 I1|2|34[µ
2] + c1|23|4; 2 I1|23|4[µ

2]

+ c2|3|41; 2 I2|3|41[µ
2]
)(
c12|34; 2 I12|34[µ

2] + c23|41; 2 I23|41[µ
2]
)]
. (5.30b)

Also, we consider the process involving three gluons, 1, 2, 3, and a Higgs boson, H,

0 → 1(p1) 2(p2) 3(p3)H(pH) , (5.31)

in the large top-mass limit [270, 271]. The one-loop amplitude for this process is decomposed as
follows,

A4,H =
1

(4π)2−ǫ

[ (
c1|2|3|H; 0 I1|2|3|H + c1|2|H|3; 0 I1|2|H|3 + c1|H|2|3; 0 I1|H|2|3

)
+
(
c12|3|H; 0 I12|3|H

+ c12|H|3; 0 I12|H|3 + c1|23|H; 0 I1|23|H + c1|H|23; 0 I1|H|23 + c2|H|31; 0 I2|H|31

+ cH|2|31; 0 IH|2|31 + c1|2|3H; 0 I1|2|3H + c1|2H|3; 0 I1|2H|3 + c1H|2|3; 0 I1H|2|3
)

+
(
c12|3H; 0 I12|3H + c23|H1; 0 I23|H1 + cH2|31; 0 IH2|31

)
+ c123|H; 0 I123|H

]
+RH , (5.32a)

RH =
1

(4π)2−ǫ

[ (
c1|2|3|H; 4 I1|2|3|H

[
µ4
]
+ c1|2|H|3; 4 I1|2|H|3

[
µ4
]
+ c1|H|2|3; 4 I1|H|2|3

[
µ4
] )

+
(
c12|3|H; 2 I12|3|H

[
µ2
]
+ c12|H|3; 2 I12|H|3

[
µ2
]
+ c1|23|H; 2 I1|23|H

[
µ2
]
+ c1|H|23; 2 I1|H|23

[
µ2
]

+ c2|H|31; 2 I2|H|31
[
µ2
]
+ cH|2|31; 2 IH|2|31

[
µ2
]
+ c1|2|3H; 2 I1|2|3H

[
µ2
]
+ c1|2H|3; 2 I1|2H|3

[
µ2
]

+ c1H|2|3; 2 I1H|2|3
[
µ2
] )

+
(
c12|3H; 2 I12|3H

[
µ2
]
+ c23|H1; 2 I23|H1

[
µ2
]

+ cH2|31; 2 IH2|31
[
µ2
]
+ c123|H; 2 I123|H

[
µ2
] ) ]

, (5.32b)

In Eq. (5.30) and (5.32), the contribution generating the rational terms have been collected
in R and RH , respectively, hence distinguished by the so-called cut-constructible terms. We
remark that within the FDF this distinction is pointless and has been performed only to improve
the readability of the formulas. Indeed, within the FDF the two contributions are computed
simultaneously from the same cuts.

5.3.1 The gggg amplitude

As a first example we consider the all plus four-gluon colour-ordered helicity amplitude A4

(
1+g , 2

+
g , 3

+
g , 4

+
g

)
.

which, at tree-level vanished, while at one-loop its contribution is finite, rational and can be ob-
tained from the quadruple cut C1|2|3|4 [32, 198, 272–274]. Therefore, the relevant tree-level
three-point amplitudes are the ones involving either three gluons or two scalars and one gluon.
The tree-level amplitudes with two gluons and one scalar should be included as well but they are
not needed since their cut diagrams vanish because of the (−2ǫ)-SRs, see the discussion below.
The tree-level are computed by using the colour-ordered Feynman rules collected in App. B.3.

The general expression of the three-point all-gluon amplitude is given by
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2λ2

1λ1

3λ3

=
ig√
2

[
gµν (1− 2)σ + gνσ (2− 3)µ + gσµ (3− 1)ν

]
ελ1
µ (1) ελ2

ν (2, r2) ε
λ3
σ (3) .

(5.33)

Generalised massive momenta, carrying dependence on µ, are denoted by a bold font, and the
polarisation of the particle will be the superscript of the corresponding momentum. The momenta
are outgoing,

1+ 2 + 3 = 0 , (5.34)

and in general q̂1 and q̂3 can be chosen to be proportional,

q̂3 = ξ q̂1 . (5.35)

Moreover, the spinors associated to the momenta j♭ and q̂j are such that

〈j♭|q̂j〉 = [q̂j|j♭] = µ , j = 1,3 . (5.36)

The explicit expressions of the polarised amplitudes in the FDF are:

2+

1+

3+

= 0 ,

2+

1+

3−

= ig

(
[1♭|2][q̂1|2]

µ
+

〈r2|1|2]
〈r2|2〉

)
,

2+

10

3+

= 0 ,

2+

10

3−

=

√
2ig [q̂1|2]2

µ
,

2+

1−

3−

= ig
[q̂1|2] [q̂3|2] 〈1♭|3♭〉

µ2
,

2+

10

30

= − ig
〈r2|1|2]
〈r2|2〉

[
1− (1 + ξ)

ξ µ2
(
(1 + ξ)µ2 + ξ 〈q̂1|2|q̂1]

)]
. (5.37)

The three-point amplitude involving a gluon and two scalars is

2+

1

3

=
ig√
2
(3− 1)µ ε+µ (2, r2)G

AB = −ig 〈r2|1|2]〈r2|2〉
GAB . (5.38)

The tree-level amplitudes computed above can be used in the cut construction of the one-loop
amplitude.
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In the FDF, the quadruple-cut C1|2|3|4 and the coefficients c1|2|3|4; n can be decomposed into
a sum of five contributions,

C1|2|3|4 =
4∑

i=0

C
[i]
1|2|3|4 , c1|2|3|4;n =

4∑

i=0

c
[i]
1|2|3|4;n , (5.39)

where C [i] (c[i]) is the contribution to the cut (coefficient) involving i internal scalars. In the
picture below, internal lines are understood to be on-shell. The quadruple cuts read as follows

C
[0]
1|2|3|4 =

+−

+
−

+ −

+
−

1+

2+ 3+

4+

+

−+

−
+

− +

−
+

1+

2+ 3+

4+

+

00

0
0

0 0

0
0

1+

2+ 3+

4+

, (5.40a)

C
[1]
1|2|3|4 =

∑

hi=±,0

T1
−h1h1

h2

−h2

−h3h3

1+

2+ 3+

4+

+ c.p. , (5.40b)

C
[2]
1|2|3|4 =

∑

hi=±,0

T 2
1

−h1h1

−h2h2

1+

2+ 3+

4+

+ T2
−h1h1

h2

−h2

1+

2+ 3+

4+

+ c.p. , (5.40c)

C
[3]
1|2|3|4 =

∑

h1=±,0

T3
−h1h11+

2+ 3+

4+

+ c.p. , (5.40d)

C
[4]
1|2|3|4 = T4

1+

2+ 3+

4+

, (5.40e)

where the abbreviation “c.p." means “cyclic permutations of the external particles”. In Eqs. (5.40),
the (−2ǫ)-SR have been stripped off and collected in the prefactors Ti,

T1 = QAĜABQB = 0 ,

T2 = QAĜABGBCĜCDQD = 0 ,

T3 = QAĜABGBCĜCDGDEĜEFQF = 0 ,

T4 = tr
(
GĜGĜG ĜG Ĝ

)
= − 1 . (5.41)

The prefactors T1, . . . ,T3 force the cuts (5.40b) - (5.40d) to vanish identically. The only cuts
contributing, Eqs. (5.40a) and (5.40e), lead to the following coefficients

c
[0]
1|2|3|4; 0 = 0 , c

[0]
1|2|3|4; 4 = 3i

[12] [34]

〈12〉 〈34〉 ,

c
[4]
1|2|3|4; 0 = 0 , c

[4]
1|2|3|4; 4 = −i [12] [34]〈12〉 〈34〉 . (5.42)

Therefore, the only non-vanishing coefficient, c1|2|3|4; 4, is

c1|2|3|4; 4 = c
[0]
1|2|3|4; 4 + c

[4]
1|2|3|4; 4 = 2i

[12] [34]

〈12〉 〈34〉 . (5.43)
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The colour-ordered one-loop amplitude can be obtained from Eq. (5.30), which in this simple
case reduces to

A4

(
1+g , 2

+
g , 3

+
g , 4

+
g

)
= c1|2|3|4; 4 I1|2|3|4[µ

4] = − i

48π2
[12] [34]

〈12〉 〈34〉 , (5.44)

and is in agreement with the literature [272]. This example clearly shows the difference between
our computation and the one based on the supersymmetric decomposition [274]. In the latter one,
the result is uniquely originated by the complex scalar contribution. Instead, in this procedure
the result arises from both the massive gluons and the massive scalars sg.

For clarity reasons, in this example we have computed the (−2ǫ)-SRs factors, Ti, explicitly. It
is worth to notice that in practice the (−2ǫ)-SRs can be easily automated and can be performed
cut-by-cut once and for all, even before the tree-level amplitudes are computed. Therefore the
cut topologies which vanish because of the (−2ǫ)-SRs can be discarded at the beginning of the
computation without affecting its complexity.

5.3.2 The ggqq̄ amplitude

In this section we apply generalised-unitarity methods within the FDF scheme to a more involved
2 → 2 process. In particular we show the calculation of the leading colour one-loop contribution
to the helicity amplitude A4

(
1−g , 2

+
g , 3

−
q̄ , 4

+
q

)
, which at tree-level reads,

Atree
4 = −i 〈13〉3 〈14〉

〈12〉 〈23〉 〈34〉 〈41〉 . (5.45)

The leading-colour contribution to a one-loop amplitude with n particles and two external
fermions can be decomposed in terms of primitive amplitudes [275]. Following the notation
of Ref. [69], we have

A1 loop
4 = AL

4 − 1

N2
c

AR
4 +

Nf

Nc
A

L,[1/2]
4 +

Ns

Nc
A

L,[0]
4 , (5.46)

where Nc is the number of colours while Nf (Ns) the number of fermions (scalars). For the

helicity configuration we consider both A
L,[1/2]
4 and A

L,[0]
4 vanish, thus we will only focus on the

contributions of the left-turning amplitude AL
4 and on the right-turning one, AR

4 . The Feynman
diagrams leading to the relevant tree-level amplitudes are computed by using the colour-ordered
Feynman rules collected in App. B.3.

Left-turning amplitude – The quadruple cut is given by

C [L]

1|2|3|4 =
+−

+
−

+−

±
∓

1

2 3

4

+

−+

−
+

−+

±
∓

1

2 3

4

+

00

0
0

0 0

±
∓

1

2 3

4

+

1

2 3

4

,

c[L]

1|2|3|4; 0 =
1

2
Atree

4

(
1− s314

s313

)
s12s14 ,

c[L]

1|2|3|4; 4 = 0 . (5.47)

The first two cut diagrams contribute to both the cut-constructible and to the rational part,
while the last two cut diagrams cancel against each other.

The triple cuts are given by
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C [L]

12|3|4 =
−

+

−
+

±
∓1

2

3

4

+
+

−

+
−

±
∓1

2

3

4

+
0

0

+
−

±
∓1

2

3

4

+
+

−

0
0

±
∓1

2

3

4

+
0

0

0
0

±
∓1

2

3

4

+ ±
∓1

2

3

4

,

c[L]

12|3|4; 0 =
1

2
Atree

4

(
1− s314

s313

)
s12 ,

c[L]

12|3|4; 2 =
1

2
Atree

4

(
2− s212

s213

)
; (5.48a)

C [L]

1|2|34 = +
−

+
−

+
−

1

2

3

4
+ −

+
−

+

−
+

1

2

3

4
+ 0

0
0

0

0
0

1

2

3

4
+

1

2

3

4
,

c[L]

1|2|34; 0 = −1

2
Atree

4

(
1 +

s14
3

s133

)
s12 ,

c[L]

1|2|34; 2 = −1

2
Atree

4

s212
s213

; (5.48b)

C [L]

1|23|4 =
+−

+
− +

−

1

2 3

4

+

00

0
0 −

+

1

2 3

4

+
−
+

1

2 3

4

,

c[L]

1|23|4; 0 = −1

2
Atree

4

(
1 +

s314
s313

)
s14 ,

c[L]

1|23|4; 2 = −1

2
Atree

4

s14s12
s213

; (5.48c)

C [L]

2|3|41 =
+−

+
−

+
+

1

2 3

4

+

0 0

−
+

0
0

1

2 3

4

+ −
+

1

2 3

4

,

c[L]

2|3|41; 0 = −1

2
Atree

4

(
1 +

s314
s313

)
s14 ,

c[L]

2|3|41; 2 = −1

2
Atree

4

s14s12
s213

. (5.48d)

In all the triple cuts the last two cut diagrams cancel against each other. In the cut C [L]

12|3|4. The
double cuts read as follows

C [L]

12|34 = 1

2 3

4

+−

+−

+
1

2 3

4

00

+−

+
1

2 3

4

+−

0 0

+
1

2 3

4

00

0 0

+
1

2 3

4
,

c[L]

12|34; 0 = Atree
4

s14
s13

(
s14
s13

− 1

2

)
,

c[L]

12|34; 2 = 0 ; (5.49a)

C [L]

23|41 =

2 3

1 4

+
− +

− +

2 3

1 4

0
0 +

− +

2 3

1 4

0
0 −

+ +

2 3

1 4

−
+ ,

c[L]

23|41; 0 = Atree
4

(
3

2
− s214
s213

+
1

2

s14
s13

)
,
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c[L]

23|41; 2 = 0 . (5.49b)

In both cases the last two diagrams cancel against each other.

Right-turning amplitude – The quadruple cut is given by

C [R]

1|2|3|4 =
−+

∓
±

−+

−
+

1

2 3

4

+

+−

∓
±

+−

0
0

1

2 3

4

+

+−

∓
±

+−

1

2 3

4

,

c[R]

1|2|3|4; 0 = −1

2
Atree

4

s312
s313

s12s14 ,

c[R]

1|2|3|4; 4 = 0 . (5.50)

The first helicity configuration contributes only to the cut-constructible part while the second
one cancels against the box with internal scalars.

The triple cuts are given by

C [R]

12|3|4 =
−

+

−
+

±
∓1

2

3

4

+
+

−

+
−

+
−1

2

3

4

+
∓

±

∓
±

0
01

2

3

4

+
∓

±

∓
±

1

2

3

4

,

c[R]

12|3|4; 0 = −1

2
Atree

4

(
2 +

s312
s313

)
s12 ,

c[R]

12|3|4; 2 = −1

2
Atree

4

(
1 +

s214
s213

)
; (5.51a)

C [R]

1|2|34 = −
+

−
+

−
+

1

2

3

4
+ +

−
+

−

+
−

1

2

3

4
,

c[R]

1|2|34; 0 = −1

2
Atree

4

s312
s313

s12 ,

c[R]

1|2|34; 2 = −1

2
Atree

4

s12
s13

(
1− s14

s13

)
; (5.51b)

C [R]

1|23|4 =
−+

−
+ −

+

1

2 3

4

+

+−

+
− 0

0

1

2 3

4

+

+−

+
−

1

2 3

4

,

c[R]

1|23|4; 0 = −1

2
Atree

4

s312
s313

s14 ,

c[R]

1|23|4; 2 = −1

2
Atree

4

s12s14
s213

; (5.51c)

C [R]

2|3|41 =
−+

−
+

+
−

1

2 3

4

+

+−

0
0

−
+

1

2 3

4

+

+−

−
+

1

2 3

4

,

c[R]

2|3|41; 0 = −1

2
Atree

4

s312
s313

s14 ,

c[R]

2|3|41; 2 = −1

2
Atree

4

s12s14
s213

. (5.51d)
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In the case of the cuts C [R]

12|3|4 and C [R]

1|2|34 the first diagram gives contributions to the both cut-
constructible and the rational part, while the second one contributes to the rational part only.
In the cuts C [R]

12|3|4, C
[R]

1|23|4 and C [R]

2|3|41 the last two diagrams cancel against each other, i.e. the
scalar contribution exactly compensates the contribution of the longitudinal polarisation of the
gluon. The double cuts are

C [R]

12|34 = 1

2 3

4

−+

−+

,

c[R]

12|34; 0 = Atree
4

[
s12
s13

(
s14
s13

+
3

2

)
+

3

2

]
,

c[R]

12|34; 2 = 0 ; (5.52a)

C [R]

23|41 =

2 3

1 4

−
+ −

+ +

2 3

1 4

+
− 0

0 +

2 3

1 4

+
− ,

c[R]

23|41; 0 = −Atree
4

s12
s13

(
s14
s13

+
3

2

)
,

c[R]

23|41; 2 = 0 . (5.52b)

Leading-colour amplitude – The leading colour amplitude can be obtained from the decom-
position (5.30) by using the coefficients

ci1···ik;n = c[L]

i1···ik;n − 1

N2
c

c[R]

i1···ik;n , (5.53)

The result agrees with the one presented in Ref. [272].

5.3.3 The gggH amplitude

In this section, we show the calculation of the leading colour one-loop contribution to the helicity
amplitude A4

(
1−g , 2

+
g , 3

+
g ,H

)
in the heavy top-mass limit. This example allows us to show how

the FDF scheme can be applied in the context of an effective theory, where the Higgs boson
couples directly to the gluon. The Feynman rules for the Higgs-gluon and Higgs-scalar couplings
in the FDF are given in App. B.3. They are used to compute the tree-level amplitudes sewn
along the cuts. In the following, we present directly the determination of the coefficients by
means of generalised unitarity methods.

The leading-order contribution reads as follows

Atree
4,H = i

[23]4

[12] [23] [31]
. (5.54)

The quadruple cuts are given by:

C1|2|3|H =

1−

2+ 3+

H

+

1−

2+ 3+

H

,

c1|2|3|H; 0 = −1

2
Atree

4,Hs12s23 ,
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c1|2|3|H; 4 = 0 ; (5.55a)

C1|2|H|3 =

1−

2+ H

3+

+

1−

2+ H

3+

,

c1|2|H|3; 0 = −1

2
Atree

4,Hs13s12 ,

c1|2|H|3; 4 = 0 ; (5.55b)

C1|H|2|3 =

1−

H 2+

3+

+

1−

H 2+

3+

,

c1|H|2|3; 0 = −1

2
Atree

4,Hs23s13 ,

c1|H|2|3; 4 = 0 . (5.55c)

The triple cuts with two massive channels are

C12|3|H =
1−

2+

3+

H

+
1−

2+

3+

H

,

c12|3|H; 0 =
1

2
Atree

4,H (s13 + s23) ,

c12|3|H; 2 = 0 ; (5.56a)

C12|H|3 =
1−

2+

H

3+

+
1−

2+

H

3+

,

c12|H|3; 0 =
1

2
Atree

4,H (s13 + s23) ,

c12|H|3; 2 = 0 ; (5.56b)

C1|23|H =

1−

2+ 3+

H

+

1−

2+ 3+

H

,

c1|23|H; 0 =
1

2
Atree

4,H (s12 + s13) ,

c1|23|H; 2 = 0 ; (5.56c)

C1|H|23 =

H

2+ 3+

1−

+

H

2+ 3+

1−

,

c1|H|23; 0 =
1

2
Atree

4,H (s12 + s13) ,

c1|H|23; 2 = 0 ; (5.56d)

C2|H|31 =

1−

2+ H

3+

+

1−

2+ H

3+

,

c2|H|31 0 =
1

2
Atree

4,H (s12 + s23) ,
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c2|H|31 2 = 0 ; (5.56e)

CH|2|31 =

1−

H 2+

3+

+

1−

H 2+

3+

,

cH|2|31; 0 =
1

2
Atree

4,H (s12 + s23) ,

cH|2|31; 2 = 0 ; (5.56f)

while the ones with one massive channel only read as follows:

C1|2|3H =

1−

2+

3+

H
+

1−

2+

3+

H
,

c1|2|3H; 0 = 0 ,

c1|2|3H; 0 = 0 ; (5.57a)

C1|2H|3 =

3+

1−

2+

H
+

3+

1−

2+

H
,

c1|2H|3; 0 = 0 ,

c1|2H|3; 0 = 0 ; (5.57b)

C1H|2|3 =

2+

3+

1−

H
+

2+

3+

1−

H
,

c1H|2|3; 0 = 0 ,

c1H|2|3; 2 = −2Atree
4,H

s12s13
s223

. (5.57c)

Finally the double cuts are given by:

C12|3H =
1−

2+ 3+

H
+

1−

2+ 3+

H
,

c12|3H; 0 = 0 ,

c12|3H; 2 = 0 ; (5.58a)

C23|H1 =

2+ 3+

1− H

+

2+ 3+

1− H

,

c23|H1; 0 = 0 ,

c23|H1; 2 = 4Atree
4,H

s12s13
s323

; (5.58b)

CH2|31 =

3+ 1−

2+ H

+

3+ 1−

2+ H

,

cH2|31; 0 = 0 ,

cH2|31; 2 = 0 . (5.58c)
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The cut C123|H does not give any contribution.

Finally, the one-loop amplitude can be obtained by using the coefficients collected in Eqs. (5.55-
5.58) and the decomposition (5.32). The result agrees with the literature [276].

5.4 UV renormalisation at one-loop

In this section we study the renormalisation at one-loop. In order to do so, we firstly study the
known results that the conventional dimensional reduction (CDR) deliver. For this regularisation
scheme we set ds = d since the very begin of the calculation. The second one is FDF, we see
how the renormalisation at one-loop turns to be equivalent to what is expected from FDH. We
work out QED and QCD theories.

5.4.1 Renormalised QED Lagrangian

We start considering the renormalised QED Lagrangian

LQED = Lr + LCT , (5.59)

where

Lr = − 1

4
FµνFµν + ψ̄(i/∂ − e /A−m)ψ , (5.60)

LCT = − (Z3 − 1)
1

4
FµνFµν + (Z2 − 1)ψ̄i/∂ψ − (Z2Zm − 1)mψ̄ψ

+ (Z2Ze

√
Z3 − 1)eψ̄ /Aψ . (5.61)

The bare fields ψi, Aa
µ and bare parameters e,m have been redefined in terms of renormalised

quantities,

ψi
0 =

√
Z2ψ

i , A0a
µ =

√
Z3A

a
µ ,

e0 = Zee , m0 = Zmm, (5.62)

The counter-terms (CT), δ’s, are obtained by expanding the field strengths around 1,

Zx = 1 + δx , x = 2, 3, e,m . (5.63)

Counter-terms

The set of CTs is, in principle, obtained in the on-shell scheme. Moreover, the minimal sub-
traction (MS) or modified minimal subtraction (MS) schemes are easily recovered by taking the
divergent part plus an universal constant that arises along with the divergencies in Feynman
diagram calculations.

For the listed results, we write, with the help of integration by parts identities [70, 71], the
CTs in terms of one-point scalar integrals A0

(
m2

e

)
. This MI is chosen to be normalised as follows

A0

(
m2

e

)
=

m2
e

16π4

(
∆+ log

(
µ2

m2
e

)
+ 1

)
, ∆ =

1

ǫ
− γ + log 4π . (5.64)
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❛✮

❜✮

❝✮

Figure 5.1: Diagrams contributing to a) electron self energy, b) photon self energy, and c) vertex
correction at one-loop in CDR. The cross denotes the insertion of a coupling counter-term.

CDR – In CDR, the needed diagrams to compute the counter-terms are depicted in Fig. 5.1.
By setting ds = d, the counter-terms of (5.63), in the on-shell scheme, take the form

δ2 = −2π3α(d− 2)(d − 1)

(d− 3)m2
e

A0

(
m2

e

) d→4
= − α

4π

(
3∆ + 3 log

(
µ2

m2
e

)
+ 4

)

δ3 = −8π3α(d− 2)

3m2
e

A0

(
m2

e

) d→4
= − α

3π

(
∆+ log

µ2

m2
e

)

δe =
4π3α(d− 2)

3m2
e

A0

(
m2

e

) d→4
=

α

6π

(
∆+ log

(
µ2

m2
e

))

δm = −2π3α(d− 2)(d − 1)

(d− 3)m2
e

A0

(
m2

e

) d→4
= − α

4π

(
3∆ + 3 log

(
µ2

m2
e

)
+ 4

)
(5.65)

FDF – The needed diagrams to compute the counter-terms, within FDF, are collected in
Fig. 5.2.

❛✮

❜✮

❝✮

Figure 5.2: Diagrams contributing to a) electron self energy, b) photon self energy, and c) vertex
correction at one-loop in FDF. The cross denotes the insertion of a coupling counter-term. Dash
lines represents −2ǫ-scalars.

The diagrams with an internal −2ǫ-scalar vanish because of the (−2ǫ)-SRs.

In the on-shell scheme, the counter-terms of (5.63) take the form

δ2 = −4π3α(2d − 5)

(d− 3)m2
e

A0

(
m2

e

) d→4
= − α

4π

(
3∆ + 3 log

(
µ2

m2
e

)
+ 5

)
,

δ3 = −4π3α(d − 2)((d − 2)d + 10)

9(d − 1)m2
e

A0

(
m2

e

) d→4
= − α

3π

(
∆+ log

(
µ2

m2
e

))
,

δe =
2π3α(d − 2)((d − 2)d + 10)

9(d − 1)m2
e

A0

(
m2

e

) d→4
=

α

6π

(
∆+ log

(
µ2

m2
e

))
,
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δm = −4π3α(2d − 5)

(d− 3)m2
e

A0

(
m2

e

) d→4
= − α

4π

(
3∆ + 3 log

(
µ2

m2
e

)
+ 5

)
. (5.66)

5.4.2 Renormalised QCD Lagrangian

Consider the QCD Lagrangian

LQCD = Lr + LCT , (5.67)

with

Lr =ψ̄
i(iγµDij

µ −mδij)ψj − 1

4
F a
µνF

aµν + (∂µχa∗)Dab
µ χ

b (5.68)

LCT =(Z2 − 1)ψ̄iiγµ∂µψ
i − (Z2Zm − 1)mψ̄iψi

+ (Z3 − 1)
1

2
Aaµδab(gµν�− ∂µ∂ν)A

bν + (Z̃3 − 1)χaδab(−�)χb

+ (Z1F − 1)gsψ̄
iT a

ijγ
µψiAaµ − (Z1 − 1)

gs
2
fabc(∂µA

a
ν − ∂νA

a
µ)A

bµAcν

− (Z4 − 1)
g2s
4
fabef cdeAa

µA
b
νA

cµAdν − (Z̃1 − 1)gsf
abc (∂µχa)∗ χbAc

µ (5.69)

where

Dij
µ = δij∂µ − igs(T

c)ijAc
µ , Dab

µ = δab∂µ − gsf
abcAc

µ ,

Z1F = ZgZ2

√
Z3 , Z1 = Zg

√
Z3
3 ,

Z4 = Z2
gZ

2
3 , Z̃1 = ZgZ̃3

√
Z3 . (5.70)

We redefine bare fields ψi, Aa
µ, χ

a and bare parameters gs,m in terms of renormalised quan-
tities as follows

ψi
0 =

√
Z2ψ

i , A0a
µ =

√
Z3A

a
µ , χ0a =

√
Z̃3χ

a ,

gs,0 = Zggs , m0 = Zmm, (5.71)

Counter-terms

For the QCD renormalisation we compute the counter-terms in the MS scheme. We find agree-
ment between the CDR (Fig. 5.3) and FDF (Fig. 5.4) schemes.

We summarise the results for all the counter-terms in QCD at 1-loop in Feynman gauge:

δ1 =
αs(CA − 2Nf )

6πεUV
,

δ1F = −αs(CA + CF )

4πεUV
,

δ̃1 = − αsCA

8πεUV

,

δ2 = − αsCF

4πεUV
,

δ3 =
αs (5CA − 4Nf )

12πεUV

,

δ̃3 =
αsCA

8πεUV
,

90



❛✮

❜✮

❝✮

❞✮

❡✮

❢✮

❣✮

Figure 5.3: Diagrams contributing to a) gluon self energy, b) quark self energy, c) ghost self
energy, d) ghost-gluon vertex, e) quark-gluon vertex, f) three-gluon vertex and g) four-gluon
vertex at one-loop in CDR. The cross denotes the insertion of a coupling counter-term.

δ4 = −αs(CA + 4Nf )

12πεUV
,

δm = −3αsCF

4πεUV

. (5.72)

We remark that out results are normalised according to Eq. (1.7). Moreover, a general result is
easily recovered by shifting Nf → TRNf , being Tr(tatb) = TR δ

ab.
It is clear that the amount of terms to be computed within FDF increases with respect to

traditional computations, e.g. CDR. Nevertheless, the fact of using four-dimensional ingredients
allows to use exiting codes. In particular, we use FeynArts together with FeynCalc.

Additionally, according to the gauge we use, further simplifications can arise. In Feynman
gauge, used in these calculations, there are no contributions coming from scalar loops. This is
due to the (−2ǫ)-SRs,

GA1A2GA2A3 . . . GAkA1 = GA1A1 = 0 . (5.73)

Similarly, for diagrams with internal scalars and fermions we get the same cancellation,

ΓA1GA1A2 . . . GAk−1AkΓAk = ΓA1ΓA1 = 0 . (5.74)

With the use of axial gauge, we obtain the opposite behaviour. The contributions from
internal scalars have to be taken in account and the diagrams that contain interactions between
generalised gluons and scalars are dropped because of the (−2ǫ)-SRs. This subtlety was discussed
in Sec. 5.3.1 for the non-vanishing contribution of the four-gluon amplitudes (5.40e).
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❛✮

❜✮

❝✮

❞✮

❡✮

❢✮

❣✮

Figure 5.4: Diagrams contributing to a) gluon self energy, b) quark self energy, c) ghost self
energy, d) ghost-gluon vertex, e) quark-gluon vertex, f) three-gluon vertex and g) four-gluon
vertex at one-loop in CDR. The cross denotes the insertion of a coupling counter-term.
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5.5 Discussion

Within the Four dimensional formulation (FDF), particles that propagate inside the loop are
represented by massive particles regularising the divergences. Their interactions are described
by generalised four-dimensional Feynman rules. They include selection rules accounting for
the regularisation of the amplitudes. In particular, massless spin-1 particles in d-dimensions
were represented in four-dimensions by a combination of massive spin-one particle and a scalar
particle. Fermions in d-dimensions were represented by four-dimensional fermions obeying the
Dirac equation for tachyonic particles. The integrands of one-loop amplitudes in the FDF and in
the FDH scheme differ by spurious terms which vanish upon integration over the loop momentum.
Therefore, the two schemes are equivalent.

FDF, in the context of generalised unitarity, may be seen as a massive implementation of
d-dimensional regularisation. However, FDF is different from the most commonly used mas-
sive regularisation prescriptions, i.e. the one introducing a massive scalar particle [274] and the
six-dimensional helicity method [69]. The original amplitude is computed in two steps. The cut
constructible part is obtained by using four-dimensional unitarity while the rational one by using
the amplitude involving a d-dimensional scalar, which is traded with a massive four-dimensional
one. FDF does not rely on the existence of the supersymmetric decomposition and computes
the full amplitude without splitting it. The six-dimensional helicity method casts d-dimensional
on-shell momenta into a six-dimensional massless spinor and, on the cuts, uses six-dimensional
helicity spinors to compute efficiently the relevant tree-level amplitudes. However, since di-
mensional regularisation cannot be achieved in finite dimensions, the six-dimensional helicity
method delivers a result that has to be corrected by hand with the help of topologies involv-
ing six-dimensional scalars along the lines of Ref. [65]. FDF, instead, splits the d-dimensional
objects into their four-dimensional and (d − 4)-dimensional parts and finds a four-dimensional
representation for both of them. Moreover, it introduces the (−2ǫ)-SRs to account for the or-
thogonality of the subspaces and for the effects of the (ds − 4) → 0 limit. No further corrections
are needed since FDF properly takes care of the peculiar features of d-dimensional regularisation.
Therefore, in the context of on-shell and unitarity-based methods, they are a simple alternative
to approaches introducing explicit higher-dimensional extension of either the Dirac [65, 66] or
the spinor [68, 69] algebra.

Within FDF, we have also seen how renormalisation can be done. At the beginning of the
chapter, we saw that the difference between FDH and FDF lies at integrand level, since spurious
terms vanish after integration. Nevertheless, the computation of the counter-terms within FDF
produces the very same results as the ones from the FDH.

The approach of FDF is suitable for analytic as well as numerical implementation. Its
main asset is the use of purely four-dimensional ingredients for the complete reconstruction
of dimensionally-regulated one-loop amplitudes.
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Chapter 6

Multi-gluon and Higgs scattering

amplitudes

The calculation of multi-gluon scattering amplitudes at one-loop has been a very important test
to develop analytic techniques in perturbative gauge theories. The complete calculation of gluon
amplitudes took about 25 years, which started in the early 90’s with the computation of four-
gluon amplitudes [198, 277], whose methods were based on a string theory approach and, on
the standard unitarity in four-dimensions. By following the same approach, the calculation of
five-gluon amplitudes was done [32, 273]. Nevertheless, the computation of six-gluon scattering
amplitudes for all helicity configurations was not done in a straightforward way. In fact, many
techniques, based on unitarity and analyticity of the S-matrix, were invented to find the analytic
structure of the amplitude [30, 33, 34, 273, 278–285].

These techniques made use of the relation that exists between QCD and supersymmetric
amplitudes, where, the supersymmetric decomposition [274] allowed to decomposed any one-
loop amplitude into two types of amplitudes. The first one determined by the singularities or
branch cuts in the complex plane, called cut constructible and, the second one, called rational
part, being just a finite contribution with no singularities.

On the other hand, the calculation of one-loop Higgs associated with gluon amplitudes, in the
large mt limit, started with the production of the Higgs associated with 1 gluon [276], then, after
about a decade, the calculation of a Higgs associated with 2 gluons was done in Ref. [286, 287],
in which the Higgs field is decomposed in terms of self-dual and anti-self-dual fields [288–291].
This decomposition allows to write compact building blocks, since their structure is the same
structure as for the MHV case.

Despite of this, the calculation of the analytic amplitude of Higgs associated with 3 gluons is
still missing, moreover, there is its numerical computation, done in Ref. [292], which was obtained
with the combined use of GoSam, Sherpa, and the MadDipole/MadEvent framework.

In this chapter, we show how FDF is suitable for the computation of higher point amplitudes
in a straightforward way. Within FDF, there is no need of splitting the amplitude between cut
constructible and rational parts, as discussed in Chap. 5. Indeed, the fact of having d-dimensional
regulated amplitudes allows us to use knowledge of the d-dimensional unitarity.

This chapter is organised as follows. Sec. 6.1 is devoted to the calculation of one-loop gluon
amplitudes, whereas Sec. 6.2 collects all results regarding the calculation of one-loop Higgs as-
sociated with gluon amplitudes.
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6.1 Multi-gluon scattering amplitudes

We present the full analytic contributions of finite helicity configurations up to six gluons. How-
ever, since the expression for the remaining amplitudes could, eventually, be quite lengthy, we
include a Mathematica [262] notebook file for each helicity configuration1, which notation
is explained below, with the set of coefficients of MIs written in terms of momentum twistors
variables. We remark that all coefficients has been checked numerically against NJet [56].

6.1.1 Five-gluon amplitudes

Figure 6.1: Box, triangle and bubble topologies for the five-gluon amplitude. Solid lines can refer
either to generalised gluons or scalars.

As discussed in Sec. 1.5.2, we parametrise the five-point kinematics in terms of five indepen-
dent variables, defined in Eq. (1.90). All the results presented in this subsection are in agreement
with [273].

A1-loop
5 (1+, 2+, 3+, 4+, 5+)

The all plus helicity amplitude is a particularly simple example, since there are no triangle or
bubble type contributions. In such a way that the full finite contribution can be obtained from
the parametric form of the quadruple cut C12|3|4|5,

c12|3|4|5; 4 =
2i [21] [43] [53] [54]

〈12〉 tr5 (4, 1, 5, 3)
, (6.1)

where the finite colour-ordered one-loop amplitude reduces to

A1-loop
5

(
1+, 2+, 3+, 4+, 5+

)
= c12|3|4|5; 4 I12|3|4|5

[
µ4
]
+ cyclic perms. (6.2)

By adding all the box contributions up, and then writing the spinor product in terms of momen-
tum twistor variables, we find

A1-loop
5

(
1+, 2+, 3+, 4+, 5+

)
= −1

3
i z51z2z3

(
z3z

2
2 + z3

(
z25 − 2z4

)
z2 + (z3 + 1) z24

)
× Φ+++++

5 .

(6.3)

A1-loop
5 (1−, 2+, 3+, 4+, 5+)

The single minus amplitude, not as the previous amplitude, gets contribution from all topologies
and can be casted in this form

A1-loop
5

(
1−, 2+, 3+, 4+, 5+

)
=

∑

{i1,i2,i3,i4}
c
(i1i2i3i4)
4 Ii1i2i3i4 [µ

4] +
∑

{i1,i2,i3}
c
(i1i2i3)
7 Ii1i2i3 [µ

2]

+
∑

{i1,i2}
c
(i1i2)
9 Ii1i2 [µ

2] , (6.4)

1They can be obtained from this http URL.
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=− 1

6

∑

{i1,i2,i3,i4}
c
(i1i2i3i4)
4 +

1

2

∑

{i1,i2,i3}
c
(i1i2i3)
7 − 1

6

∑

{i1,i2}
c
(i1i2)
9 . (6.5)

Plugging the coefficients of the MIs of the notebook coe.mpppp.m into Eq. (6.5), we get

A1-loop
5

(
1−, 2+, 3+, 4+, 5+

)
= −1

3
i z61z

2
2z3

(
(z2 + 1)z4 + z22z3(z3 + 1)z5 −

z3(z2 − z4)
3

z2 − z4 + z5

)
× Φ−++++

5 .

(6.6)

All helicity configurations

Helicity Amplitude Notebook

1 A1-loop
5 (1+, 2+, 3+, 4+, 5+) coe.ppppp.m

2 A1-loop
5 (1−, 2+, 3+, 4+, 5+) coe.mpppp.m

3 A1-loop
5 (1−, 2−, 3+, 4+, 5+) coe.mmppp.m

4 A1-loop
5 (1−, 2+, 3−, 4+, 5+) coe.mpmpp.m

Table 6.1: Summary of the results for the one-loop five gluon amplitudes. For each helicity
configuration we list its mathematica notebook.

As seen in Fig. 6.1 there are four independent topologies, where each coefficient, in the
Mathematica notebook, is written as follows

coe[helicity ,cut ,ordering] = {c0 -> F[{x’s}],c2(4) -> G[{x’s}]}

where helicity is the number shown in the Table 6.1. cut and ordering correspond to
the cut under consideration and the ordering of the external particles, which always be a cyclic
permutation of {1, 2, 3, 4, 5}. In the r.h.s., c0 and c2(4) state for the coefficients of the MIs Icut
and Icut

[
µ2(4)

]
, respectively. For instance, C123|4|5 (1

−, 2−, 3+, 4+, 5+) we have

coe[3,{1,4,5},{Sp[4],Sp[5],Sp[1],Sp[2],Sp[3]}] = {c0 -> 0,

c2 -> (I*z[1]^3*z[2]^3*z[3]^2*(z[2]-z[4])^2*((1+z[3])*z[4]+

z[2]*z[3]*(-1+z[5]))*z[5])/((z[2]*z[3] -

(1+z[3])*z[4])^2*(z[2]-z[4]+z[5])) }

that means

c123|4|5: 0
(
1−, 2−, 3+, 4+, 5+

)
= 0 , (6.7a)

c123|4|5: 2
(
1−, 2−, 3+, 4+, 5+

)
=
iz31z

3
2z

2
3 (z2 − z4)

2 ((z5 − 1) z2z3 + (z3 + 1) z4) z5
(z2z3 − (z3 + 1) z4) 2 (z2 − z4 + z5)

. (6.7b)

On the other hand, each notebook contains the physical phase Φh1...h5 , that is called by simply
typing

\[Phi][helicity]

and follows the notation of the sam package, e.g. for Φ−+−++

\[Phi][4] =-(Spaa[Sp[1],Sp [3]]^5/(Spaa[Sp[1],Sp[2]]^2

*Spaa[Sp[1],Sp[4]]^2*Spaa[Sp[1],Sp [5]]^2

*Spab[Sp[3],Sp[2],Sp [1]]^3))
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Figure 6.2: Box, triangle and bubble topologies for the six-gluon amplitude. Solid lines can refer
either to generalised gluons or scalars.

6.1.2 Six-gluon amplitudes

We parametrise the six-point kinematics in terms of eight independent variables, defined in
Eq. (1.93), which take the form

z1 = s12 , z2 =
〈14〉〈23〉
〈12〉〈34〉 , z3 =

〈15〉〈34〉
〈13〉〈45〉 , z4 =

〈16〉〈45〉
〈14〉〈56〉 ,

z5 =
s23
s12

, z6 =
〈5|3 + 4|2]
[21]〈51〉 , z7 =

〈1|(2 + 3)(2 + 3 + 4)|5〉
s23〈15〉

, z8 =
s123
s12

.

All the results presented in this subsection are in agreement with [30, 33, 34, 273, 278–285].

A1-loop
6 (1+, 2+, 3+, 4+, 5+, 6+)

This amplitude gets contribution from boxes only, which, can be obtained from the parametric
form of C123|4|5|6, C12|34|5|6 and C12|3|45|6,

c123|4|5|6; 4 =
2i [56]

〈12〉 〈23〉 tr5 (5, 4, 6, 1) tr5 (5, 4, 6, 3)

(
s45 〈6 |1 + 2| 3] [51] [64]2 − s46 〈5 |1 + 2| 3] [54]2 [61]

)
,

(6.8)

c12|34|5|6; 4 =
2i 〈5 |1 + 2| 6] 〈6 |1 + 2| 5] [12] [43] [65]2
〈12〉 〈23〉 tr5 (5, 2, 6, 1) tr5 (5, 4, 6, 3)

, (6.9)

c12|3|45|6; 4 =
2i [12] [54] [63]2

〈12〉 〈45〉 tr5 (2, 3, 6, 1) tr5 (5, 3, 6, 4)
(〈3 |1 + 2| 3] 〈6 |1 + 2| 6]− s36s12) , (6.10)

The finite colour-ordered amplitude takes the form

A1-loop
6

(
1+, 2+, 3+, 4+, 5+, 6+

)
=c123|4|5|6; 4 I123|4|5|6

[
µ4
]
+ c12|34|5|6; 4 I12|34|5|6

[
µ4
]

+
1

2
c12|3|45|6; 4 I12|3|45|6

[
µ4
]
+ cyclic perms. (6.11)

Writing the coefficient in terms of momentum twistor variables, we get

A1-loop
6

(
1+, 2+, 3+, 4+, 5+, 6+

)
= 2i z61z

2
2z

2
3z4

[
z25+

z2z
2
3z4((z7 − 1)(z2 − z5)z5 + (z2z6 − z5)z8)

2

z25
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+ z3

(
z25 + z2

(
z25 + (z5(z7 − 2)z7 − 2z6)z5

+ z4((z7 − 1)z5 + z8)
2 + z2(z4(z6 − 1)2 + z26)

))]
×Φ++++++

6 . (6.12)

A1-loop
6 (1−, 2+, 3+, 4+, 5+, 6+)

The analytic structure of the single minus amplitude is recovered by plugging the coefficients of
the MIs of the notebook coe.mppppp.m into Eq. (6.5),

A1-loop
6

(
1−, 2+, 3+, 4+, 5+, 6+

)

=
1

3
z71z

3
2z

2
3z4

{
− (z2 + 1) z5 + (z7 − 1) (z3 + 1) z22z3z5 +

z2z
2
3z4z5 ((z7 − 1) z5 + z8)

3

z8 ((z7 − 1) z5 + z6z8)

− z22z4 (z4 + 1) (z2 ((z7 − 1) z5 + z6z8)− z5 ((z7 − 1) z5 + z8)) z
3
3

z5
+
z3 (z2z6 − z5)

3

z6 (z2z6 − z5z7)

+
1

z6(z5(z6 − z7)− z6z8)((z7 − 1)z5 + z6z8)(z5z6 + z4((((z7 − 1)z2 + z6 − 1)z3 + z6 − 1)z5 + z2z3z6z8))

×
[
(z4z5(z6 − 1)3((z7 − 1)((z7 − 1)z2z4z6z

2
3 + (((z4 + 1)z6 − 1)(z7 − 1)z2 + 1)z3 + 1)z45

+ z6(−2z22z4(z7 − 1)2z23 + 2(z7 − 1)((z3 + 1)z4z8 − 1)z2z3 + (z3 + 1)z8)z
3
5

+ z2z3z6((z7 − 1)2z3z4z
2
2 − (z4((2z3z8 − 1)z6 + 2z3z8 + 1)− z6)(z7 − 1)z2

+ ((z3 + 1)z4z8 − 2z6)z8)z
2
5 + ((2(z7 − 1)z2z3 − 2z8z3 + z6 − 1)z4

+ z6)z
2
2z3z

2
6z8z5 + z32z

2
3z4z

3
6z

2
8)z3)

]}
×Φ−+++++

6 . (6.13)

All helicity configurations

Helicity Amplitude Notebook

1 A1-loop
6 (1+, 2+, 3+, 4+, 5+, 6+) coe.pppppp.m

2 A1-loop
6 (1−, 2+, 3+, 4+, 5+, 6+) coe.mppppp.m

3 A1-loop
6 (1−, 2−, 3+, 4+, 5+, 6+) coe.mmpppp.m

4 A1-loop
6 (1−, 2+, 3−, 4+, 5+, 6+) coe.mpmppp.m

5 A1-loop
6 (1−, 2−, 3−, 4+, 5+, 6+) coe.mmmppp.m

6 A1-loop
6 (1−, 2+, 3−, 4+, 5−, 6+) coe.mpmpmp.m

Table 6.2: Summary of the results for the one-loop six-gluon amplitudes. For each helicity
configuration we list its mathematica notebook.

The coefficients of the MIs are collected in Table 6.1.

Three-mass-triangle coefficients

In Sec. 4.3 we saw that the parametrisation of the cut solution when particles are massive becomes
problematic. Hence, spurious terms have to be efficiently canceled out. In the following, we show
how to get rid of spurious terms, by using simple concepts of polynomial division.

Since the computation of three-mass-triangle coefficients is a bit cumbersome, we decide to
write these coefficients in terms of one variable more, γ, defined in Eq. (4.31).
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Let us recall the relation (4.32) satisfied by γ

γ2 − 2γ K1 ·K2 +K2
1K

2
2 = 0 . (6.14)

Hence, when dividing our coefficients by Eq. (6.14) we just need to take the remainder of the
division, where the dependence on γ has dropped. This division can be easily performed in
mathematica with the function PolynomialRemainder. This operation would look like

(* Expr states for the three -mass -triangle coefficient *)

rel = \[Gamma ]^2 - 2 \[Gamma] MP[K1, K2] + MP2[K1] MP2[K2];

PolynomialRemainder[Expr , rel , \[Gamma]]

We remark that this operation can be done either for the analytic or numerical expression.
Moreover, efficiency of evaluation is achieved for the numerical one by considering different
phase-space-points.

6.2 Higgs plus gluon amplitudes

We present the full analytic contributions of Higgs plus four gluons for all helicity configurations.
Due to the symmetry of the all plus amplitude we show its structure. As in the previous
section, the remaining helicity amplitudes are recovered from the set of coefficients collected in
the mathematica notebook files2.

On the other hand, we show preliminary results of analytic contributions of Higgs plus five
gluons amplitude.3

6.2.1 Higgs plus four gluon amplitudes

Figure 6.3: Box, triangle and bubble topologies for the Higgs plus four gluon amplitude. Solid
lines can refer either to generalised gluons or scalars.

In order to compute this amplitude, we parametrise all the Lorentz invariants in terms of six
variables. Differently from the five-gluon case, we need one variable more, which is chosen to be
the Higgs mass. Expressing all spinor products in terms of momentum twistor variables

z1 = s12 , z2 =
〈14〉〈23〉
〈12〉〈34〉 , z3 =

〈15〉〈34〉
〈13〉〈45〉 , z5 =

s23
s12

, z8 =
s123
s12

, m2
H = s1234 . (6.15)

All the results presented in this subsection are in agreement with [286, 287].

2They can be obtained from this http URL.
3We are grateful to Simon Badger and Francesco Buciuni for providing their set of coefficients for various

phase-space-points.
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A1-loop
5 (1+, 2+, 3+, 4+,H)

First we show the explicit structure of the analytic contribution of the one-loop Higgs plus four
gluon amplitude, originally computed in [286]. For sake of simplicity we do not write the explicit
form of the finite part of the amplitude.

The leading-order contribution of the five-point can be written as,

Atree
5

(
1+, 2+, 3+, 4+,H

)
=

−im4
H

〈12〉〈23〉〈34〉〈41〉 . (6.16)

Furthermore, the amplitude (6.16), in momentum twistor variables, takes the form

Atree
5

(
1+, 2+, 3+, 4+,H

) m.t.
= im4

Hz
2
1z2 . (6.17)

The all plus one-loop amplitude becomes

A1-loop
5

(
1+, 2+, 3+, 4+,H

)
=
1

2
Atree

5

[
s12s23 I1|2|3|4H + (s123s234 − s23m

2
H) I12|3|4|H

− (s123 −m2
H) I123|4|H − (s234 −m2

H) I1|234|H
]

+ c1|2|3|4H; 4 I1|2|3|4H
[
µ4
]
+ c1|2|34H; 2 I1|2|34H

[
µ2
]

+ c12|3|4H; 2 I12|3|4H
[
µ2
]
+ c1|23|4H; 2 I1|23|4H

[
µ2
]

+ c123|4H; 2 I123|4H
[
µ2
]
+ c12|34H; 2 I12|34H

[
µ2
]

+ cyclic perm.(1234) , (6.18)

with c non-vanishing coefficients, collected in the mathematica notebook coe.Hpppp.m.

All helicity configurations

Helicity Amplitude Notebook

1 A1-loop
5 (1+, 2+, 3+, 4+,H) coe.Hpppp.m

2 A1-loop
5 (1−, 2+, 3+, 4+,H) coe.Hmppp.m

3 A1-loop
5 (1−, 2−, 3+, 4+,H) coe.Hmmpp.m

4 A1-loop
5 (1−, 2+, 3−, 4+,H) coe.Hmpmp.m

Table 6.3: Summary of the results for the one-loop six-gluon amplitudes. For each helicity
configuration we list its mathematica notebook.

6.2.2 Higgs plus five gluon amplitudes

In this section we collect the results of the one-loop Higgs plus five gluon amplitude. We
parametrise the kinematics of this process in terms of nine independent variables,

z1 = s12 , z2 =
〈14〉〈23〉
〈12〉〈34〉 , z3 =

〈15〉〈34〉
〈13〉〈45〉 ,

z4 =
〈45〉〈1|H|2]
〈14〉〈5|H|2] , z6 =

s23
s12

, z9 =
〈1|(2 + 3)(2 + 3 + 4)|5〉

s23〈15〉
,

z10 =
〈1|(2 + 3)(2 + 3 + 4 + 5)H|2]

s23〈1|H|2] , z11 =
s123
s12

, m2
H = s12345 . (6.19)

The one-loop correction to this amplitude is obtained by considering the independent topologies
depicted in fig. 6.4.
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Figure 6.4: Box, triangle and bubble topologies for the Higgs plus five gluon amplitude. Solid
lines can refer either to generalised gluons or scalars.

A1-loop
6 (1+, 2+, 3+, 4+, 5+,H)

The leading-order contribution of the six-point can be written as,

Atree
6

(
1+, 2+, 3+, 4+, 5+,H

)
=

−im4
H

〈12〉〈23〉〈34〉〈45〉〈51〉
m.t.
= im4

Hz
3
1z

2
2z3 . (6.20)

The all plus one-loop amplitude becomes

A1−loop
6

(
1+, 2+, 3+, 4+, 5+,H

)
=

1

2
Atree

6

[
s12s23 I1|2|3|45H + (s123s234 − s23s1234) I1|23|4|5H

+ (s1234s2345 − s234m
2
H) I1|23|4|5H − (s2345 −m2

H) I1|2345|H − (s1234 −m2
H) I1234|5|H

]

+ c1|2|3|45H; 4 I1|2|3|45H
[
µ4
]
+ c1|23|4|5H; 4 I1|23|4|5H

[
µ4
]

+ c12|3|4|5H; 4 I12|3|4|5H
[
µ4
]
+ c1|2|34|5H; 4 I1|2|34|5H

[
µ4
]

+ c123|4|5H; 2 I123|4|5H
[
µ2
]
+ c1|234|5H; 2 I1|234|5H

[
µ2
]

+ c1|23|45H; 2 I1|23|45H
[
µ2
]
+ c12|3|45H; 2 I12|3|45H

[
µ2
]
+ c1|2|345H; 2 I1|2|345H

[
µ2
]

+ c12|345H; 2 I12|345H
[
µ2
]
+ c123|45H; 2 I123|45H

[
µ2
]
+ c1234|5H; 2 I1234|5H

[
µ2
]

+ cyclic perm.(1235) , (6.21)

with c non-vanishing coefficients, collected in the mathematica notebook coe.Hppppp.m.

6.3 Discussion

In this chapter, we have presented how the four dimensional formulation (FDF) regularisation
scheme allows for the computation of analytical expressions of one-loop amplitudes with high
multiplicity. This has been tested by re-computing the gluon helicity amplitudes with up to six
external legs and the production of Higgs, via gluon fusion, in association with up to two gluons.
As a preliminary result of the one-loop Higgs plus five gluon amplitudes, we have shown the
amplitude in which all gluons have the same helicity.

The one-loop amplitudes presented in this chapter have been reconstructed as a combina-
tion of box-, triangle- and bubble-scalar integrals. The coefficients of each master integral were
obtained using the integrand reduction method through Laurent series expansion [61]. For five-
and six- gluon amplitudes, we evaluated our analytic expression on several phase space points
getting agreement with NJet [56]. For the Higgs plus four gluons amplitudes, we compared our
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analytical results with the ones of Ref.s [286, 287]. Differently from the gluon amplitudes, a nu-
merical check was not performed, since these codes work with the structure of full colour-dressed
amplitudes. Hence, in order to extract what we need, which is the colour-ordered amplitude, a
non trivial modification on the codes has to be done.

In order to show the results for gluon and Higgs amplitudes, we provide ancillary files with the
set of coefficients of each MIs for all helicity configurations. These coefficients are written in terms
of momentum twistor variables, whose parametrisation follows the one presented in Sec. 1.5.2.
Despite of their lengthy expression, we can highlight a very important aspect regarding their
numerical evaluation. In fact, writing Lorentz products in terms of a minimal set of independent
variables produces a much faster evaluation.

The computation of the three-mass-triangle coefficients has been addressed in a particular
way. In our analytic expressions we have added an additional variable, γ, which turns out to be
spurious. We emphasise that γ does not have to be fit when evaluating our analytic expressions.
In fact, its cancelation is easily achieved by performing a polynomial division.

The idea of leaving all coefficients in terms of a minimal set of independent variables allows
for a much faster evaluation than existing numerical implementations. The advantage of having
analytic expressions for our amplitudes grants, indeed, to recycle these results in the NNLO
contribution.

Although the results presented in this chapter concentrate on applications to amplitudes with
massless internal particles, the main part of the procedure applies equally to the case of massive
ones.
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Chapter 7

Colour-Kinematics duality in

d-dimensions

In Chap. 3, we studied the C/K-duality for four-dimensional gauge theories. We showed how the
off-shell Jacobi-like combination of the kinematic numerators produces an anomalous term that
vanishes when the four particles are in their mass-shell. Additionally, we develop a new procedure
to generate dual numerators. This procedure, based on the generalised gauge transformation,
follows a pure diagrammatic approach.

This chapter extends the results of C/K-duality for four-dimensional theories to dimensional
regularisation. In order to study the C/K-duality in dimensional regularisation, we apply the
technology developed for the FDF scheme in Chap. 5. We anticipate that the C/K duality
obeyed by the numerators of tree-level amplitudes within the FDF scheme are non-trivial re-
lations involving the interplay of massless and massive particles. A set of BCJ identities for
d-dimensionally regulated amplitudes is found, which explicitly shows the dependence on the
(d− 4)-components.

Furthermore, we combine BCJ identities with integrand reduction methods to establish rela-
tions between one-loop integral coefficients for dimensionally regulated QCD amplitudes. These
relations can be established for the cut-constructible contributions as well as the ones respon-
sible for rational terms. We provide explicit examples for multi-gluon scattering amplitudes at
one-loop.

7.1 Tree-level identities in d-dimensions

As a starting point, we focus on four-point tree-level amplitudes, showing that C/K-duality can
be established for all interactions involving particles propagating within the FDF framework.
Envisaging one-loop applications of these results, we consider amplitudes with two d-dimensional
external particles and two four-dimensional ones. Following the by now familiar procedure of
Sec.s 3.2.1, 3.2.2 and 3.2.3, we build an off-shell Jacobi-like combination of kinematics numerators
for each of the seven processes involving, according to the Feynman rules of (5.12), two external
massive particles. We show that, in every case, C/K-duality holds after physical constraints are
imposed.

a) We start from the scattering of two generalised gluons producing two massless ones, g•g• →
gg, with on-shell conditions p22 = p23 = 0 and p22 = p23 = µ2. The amplitude receives contri-
bution from the four diagrams shown in Fig. 7.1. Exactly as in the massless case discussed
in Sec. 3.2.3, the four-point vertex contributes to the same colour structures as the trivalent
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Figure 7.1: Feynman diagrams for g•g• → gg.

diagrams. Hence it can be decomposed as

c4n4 = c1n1;4 + c2n2;4 + c3c3;4, (7.1)

so that, by absorbing its kinematic part into the numerators of the first three diagrams, the
amplitude can be expressed in terms of cubic graphs only.
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Figure 7.2: Jacobi combination for g•g• → gg.

Note that n2 is associated to the massless denominator (p1+p4)
2 while n1 and n3 sit, respec-

tively, on the massive propagators
(
(p1 + p2)

2 − µ2
)

and
(
(p1 + p3)

2 − µ2
)
.

Therefore, the proper definition of the cubic numerators absorbing the contact interaction is

n1 + ((p1 + p2)
2 − µ2

)
n1;4 → n1,

n2 + (p1 + p4)
2n2;4 → n2,

n3 + ((p1 + p3)
2 − µ2

)
n3;4 → n3. (7.2)

With this prescription, the Jacobi-combination of the kinematic numerators depicted in
Fig. 7.2 can be written as

Ng•g•gg = Jµ1...µ4
g•g•gg εµ1(p1)εµ2(p2)εµ3(p3)εµ4(p4), (7.3)

with

Jµ1µ2µ3µ4
g•g•gg =Jµ1µ2µ3µ4

g-Fey + Jµ1µ2µ3µ4

g•g•gg-Ax + Jµ1µ2µ3µ4

g•g•gg-µ2 . (7.4)

In Eq. (7.4) Jg-Fey is the same as in (3.30); Jg•g•gg-Ax is given by

− i Jg•g•gg-Ax =
1

(p2 + p3) · q
{ (
pµ1
4 p

µ4
4 − pµ1

1 p
µ4
1 +

(
p21 − p24

)
gµ1µ4

)
[q · (p2 − p3) g

µ2µ3

+ (2p3 + p2)
µ2 qµ3 − (2p2 + p3)

µ3 qµ2 ]

+
(
pµ2
3 p

µ3
3 − pµ2

2 p
µ3
2 +

(
p22 − p23

)
gµ2µ3

) [
q · (p4 − p1) g

µ1µ4

+ (2p1 + p4)
µ4 qµ1 − (2p4 + p1)

µ1 qµ4 ]
}
, (7.5)

whereas the µ-dependent term reads

−i Jµ1µ2µ3µ4

g•g•gg-µ2 =
1

µ2

{
gµ1µ3gµ2µ4

((
p21 − p23

) (
p24 − p22

)
− µ4

)
−gµ1µ2gµ3µ4

((
p21 − p22

) (
p24 − p23

)
− µ4

)

−
(
p24 − p22

)
gµ2µ4 (pµ1

1 p
µ3
1 − pµ1

3 p
µ3
3 ) +

(
p21 − p23

)
gµ1µ3 (pµ2

2 p
µ4
2 − pµ2

4 p
µ4
4 )
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−
(
p21 − p22

)
gµ1µ2 (pµ3

3 p
µ4
3 − pµ3

4 p
µ4
4 ) +

(
p24 − p23

)
gµ3µ4 (pµ1

1 p
µ2
1 − pµ1

2 p
µ2
2 )

+ (pµ1
3 p

µ3
3 − pµ1

1 p
µ3
1 ) (pµ2

2 p
µ4
2 − pµ2

4 p
µ4
4 ) + (pµ1

2 p
µ2
2 − pµ1

1 p
µ2
1 ) (pµ3

4 p
µ4
4 − pµ3

3 p
µ4
3 )
}
. (7.6)

We see that C/K duality, which corresponds to Ng•g•gg = 0, is recovered because of transver-
sality, εi · pi = 0, and on-shellness conditions.

b) Now we consider gg → s•s• (p21 = p24 = 0, p22 = p23 = µ2) amplitude, whose diagrams are
shown in Fig. 7.3.
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Figure 7.3: Feynman diagrams for gg → s•s•.

In this case, since the four-point interaction only contributes to two colour structures,

c4n4 = c1n1;4 + c3c3;4, (7.7)

we can absorb its kinematic part in the two diagrams involving a massive scalar propagator,
through the substitutions,

n1 + ((p1 + p2)
2 − µ2

)
n1;4 → n1,

n3 + ((p1 + p3)
2 − µ2

)
n3;4 → n3, (7.8)

whereas n2 stays the same as defined by Feynman rules. In this way, the Jacobi combination
of the cubic numerators, depicted in Fig. 7.4, becomes

Nggs•s• = Jµ1µ4
ggs•s•εµ1(p1)εµ4(p4), (7.9)

where the off-shell current is

Jµ1µ4
ggs•s• =

(
Jµ1µ4

g-Fey + Jµ1µ4

g-Ax

)
GAB . (7.10)

We observe that, although n1 and n3 depend on the mass of the scalar particle, the µ-
dependence cancels in their combination. Therefore, C/K-duality, i.e Nggs•s• = 0, holds in
this case as well as in the massless one, according to Eqs. (3.18) and (3.19).
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Figure 7.4: Jacobi combination for gg → s•s•.

The remaining processes, whose tree-level identities are depicted in Fig.7.5.(c)-(g) do not
involve contact interactions, so that the construction of their Jacobi-combinations directly follows
from the Feynman rules of (5.12). In order to avoid repetitive discussion, we simply list the
results giving, for each process, the corresponding on-shell conditions and the expression of the
Jacobi-combination in terms of off-shell currents.
According to the case, C/K-duality is recovered once transversality of the gluon polarisations and
Dirac equation are taken into account. We recall that, for a generalised gluon g• of momentum
pi, one has ελi · pi = 0 (λ = ±, 0), while for generalised quarks q• of momentum pi, one has
ū(pi)( /pi − iµγ5) = 0 and ( /pi + iµγ5)v(pi) = 0.
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Figure 7.5: Jacobi combinations for FDF particles.

c) g•g• → q̄q (p21 = p24 = µ2, p22 = p23 = 0):

Ng•g•q̄q = ū(p3)J
µ1µ4
g•g•q̄qv(p2)εµ1(p1)εµ4(p4), (7.11)

with

−Jµ1µ4
g•g•q̄q = Jµ1µ4

q-Fey + Jµ1µ4

q-Ax , (7.12)

where the terms in the r.h.s. are defined by Eq. (3.25) and (3.26).

d) s•s• → q̄q (p21 = p24 = µ2, p22 = p23 = 0):

Ns•s•q̄q = ū(p3)Js•s•q̄qv(p2), (7.13)

with

−i Js•s•q̄q =
1

(p2 + p3) · q
{
q · (p4 − p1)

(
/p2 + /p3

)
+
(
p24 − p21

)
/q
}
. (7.14)

e) gg → q̄•q• (p21 = p24 = 0, p22 = p23 = µ2):

Nggq̄•q• = ū(p3)J
µ1µ4
ggq̄•q•v(p2), (7.15)

with

− i Jµ1µ4
ggq̄•q• = −(/p3 − iµγ5)γµ4γµ1 − γµ1γµ4(/p2 + iµγ5) + (/p3 + /p2 + iµγ5)gµ1µ4

+ pµ4
4 γ

µ1 − pµ1
1 γ

µ4 + Jµ1µ4

q-Ax . (7.16)

f) g•g → q̄•q (p21 = p22 = µ2, p23 = p24 = 0):

Ng•gq̄•q = ū(p3)J
µ1µ4
g•gq̄•qv(p2)εµ1(p1)εµ4(p4) , (7.17)

with

− i Jµ1µ4
g•gq̄•q = −/p3γ

µ4γµ1 − γµ1γµ4(/p2 + iµγ5) + (/p3 + /p2 + iµγ5)gµ1µ4 + pµ4
4 γ

µ1 − pµ1
1 γ

µ4

+
1

µ2
(/p3 + /p2 + iµγ5)(pµ4

1 p
µ1
1 − pµ1

4 p
µ4
4 ) . (7.18)
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g) s•g → q̄•q (p21 = p22 = µ2, p23 = p24 = 0):

Ns•gq̄•q = ū(p3)J
µ4
s•gq̄•qv(p2)εµ4(p4), (7.19)

with
−i Jµ4

s•gq̄•q =
(
− /p3γ

µ4γ5 − γ5γµ4(/p2 + iµγ5) + pµ4
4 γ

5
)
ΓA. (7.20)

7.2 Colour-kinematics duality for g•g•(s•s•) → qq̄g

As a non-trivial example of C/K-duality for dimensionally regulated amplitudes, we consider
again the process gg → qq̄g, already discussed in Section 3.3.3, but now regarding the initial
state gluons as d-dimensional particles (whereas the final state remains fully four-dimensional).
This amplitude would contribute to a d-dimensional unitarity cut of a loop-level amplitude where
the gluons p1 and p2 appear as virtual states.
Within FDF, the full amplitude is obtained by combining the contributions of three different
processes involving generalised four-dimensional initial particles,

g•g• → qq̄g , s•s• → qq̄g , g•s• → qq̄g . (7.21)

However, because of the (−2ǫ)-SRs, Eq. (5.11), g•s• → qq̄g vanishes and the problem decouples in
the determination of the C/K-dual representation of two individually gauge invariant amplitudes,
g•g• → qq̄g and s•s• → qq̄g. The tree-level contributions to g•g• → qq̄g are shown in Fig. 7.6.
The Feynman diagrams for s•s• → qq̄g can be easily obtained by replacing all generalised gluons
lines g• with scalars s•.

♥✶ ♥✷ ♥✸ ♥✹

♥✺ ♥✻ ♥✼ ♥✽

❣

♥✾ ♥✶✵ ♥✶✶ ♥✶✷

♥✶✸ ♥✶✹ ♥✶✺ ♥✶✻

Figure 7.6: Feynman diagrams for g•g• → qq̄g. The contributions to s•s• → qq̄g are obtained
by replacing all generalised gluons g• with s• lines.

Since in both cases the number of graphs, the relations among their colour factors and, as con-
sequence, the set of constraints to be imposed on the shifted numerators (3.40) are exactly the
same as in the example of Sec. 3.3.3, we will simply discuss the relevant modifications to be
taken into account in order to adapt the calculation to generalised fields.
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We notice that, while for g•g• the redistribution of numerator n16 among cubic diagrams is
still given by Eq. (3.64), for the s•s• case we have, as discussed in Section 7.1(b),

c16n16 = c5n5;16 + c8n8;16 . (7.22)

Nevertheless, for both processes the diagrammatic expansion of the amplitude can be still read
from the r.h.s. of Eq. (3.68), provided the replacement

s1i → (s1i − µ2) for i 6= 2 ,

s2i → (s2i − µ2) for i 6= 1 , (7.23)

which account for internal massive propagators. These modifications affect the kinematic terms
of the decomposition (3.71), as well as the entries of the matrix (3.73). Finally, the anomalous
terms that enter the definition of the vector (3.74) are given, for g•g• → qq̄g, by

φ[1,3,12] = ū3[Jq(p1 + p2, p4, p3, p5)αα5 ]v4Π
αβ
FeyVβα1α2(−p1 − p2, p1, p2)ε

α1
1 εα2

2 εα5
5

+ n3;16 = s12ϕ[1,3,12],

φ[1,4,15] = ū3[Jg•g•q̄q(p2, p4 + p5, p3, p1)α2α1(/p4 + /p5)/ε5]v4 ε
α1
1 εα2

2 = s45ϕ[1,4,15],

φ[2,4,7] = ū3[/ε2(/p3 + /p2 + iµγ5)Jg•gq̄•q(p1, p4, p3 + p2, p5)α1α5 ]v4 ε
α1
1 εα5

5 = s23ϕ[2,4,7],

φ[2,5,11] = ū3[Jg•g•q̄q(p1 + p5, p4, p3, p2)αα2 ]v4Π
αβ
gen(p1 + p5, µ

2)

× Vβα1α5(−p1 − p5, p1, p5)ε
α1
1 εα2

2 εα5
5 + n5;16 = s15ϕ[2,5,11],

φ[6,7,14] = ū3[Jg•gq̄•q(p5, p4 + p1, p3, p2)α5α2(/p4 + /p1 + iµγ5)/ε1]v4 ε
α2
2 εα5

5 = s14ϕ[6,7,14],

φ[6,8,9] = ū3[Jg•g•q̄q(p2 + p5, p4, p3, p1)αα1 ]v4 Π
αβ
gen(p2 + p5, µ

2)

× Vβα2α5(−p2 − p5, p2, p5)ε
α1
1 εα2

2 εα5
5 + n8;16 = s25ϕ[6,8,9],

φ[9,10,15] = ū3[/ε1(/p3 + /p1 + iµγ5)Jg•gq̄•q(p5, p4, p3 + p1, p2)α5α2 ]v4 ε
α2
2 εα5

5 = s13ϕ[9,10,15],

φ[11,10,13] = ū3[Jg•gq̄•q(p1, p4 + p2, p3, p5)α1α5(/p4 + /p2 + iµγ5)/ε2]v4 ε
α1
1 εα5

5 = s24ϕ[11,10,13],

φ[12,13,14] = ū3[/ε5(/p3 + /p5)Jg•g•q̄q(p2, p4, p3 + p5, p1)α2α1 ]v4 ε
α1
1 εα2

2 = s35ϕ[12,13,14], (7.24)

and, for s•s• → qq̄g,

φ[1,3,12] = ū3[Jq(p1 + p2, p4, p3, p5)αα5 ]v4Π
αβ
Fey (p1 − p2)βε

α5
5 = s12ϕ[1,3,12],

φ[1,4,15] = ū3[Js•s•q̄q(p2, p4 + p5, p3, p1)(/p4 + /p5)/ε5]v4 = s45ϕ[1,4,15],

φ[2,4,7] = ū3[γ
5(/p3 + /p2 + iµγ5)Js•gq̄•q(p1, p4, p3 + p2, p5)α5 ]v4 ε

α5
5 = s23ϕ[2,4,7],

φ[2,5,11] = ū3[Js•s•q̄q(p1 + p5, p4, p3, p2)]v4(2p1 + p5) · ε5 + n5;16 = s15ϕ[2,5,11],

φ[6,7,14] = ū3[Js•gq̄•q(p5, p4 + p1, p3, p2)α5(/p4 + /p1 + iµγ5)/ε1]v4 ε
α5
5 = s14ϕ[6,7,14],

φ[6,8,9] = ū3[Js•s•q̄q(p2 + p5, p4, p3, p1)]v4(2p2 + p5) · ε5 + n8;16 = s25ϕ[6,8,9],

φ[9,10,15] = ū3[γ
5(/p3 + /p1 + iµγ5)Js•gq̄•q(p5, p4, p3 + p1, p2)α5 ]v4 ε

α5
5 = s13ϕ[9,10,15],

φ[11,10,13] = ū3[Js•gq̄•q(p1, p4 + p2, p3, p5)α5(/p4 + /p2 + iµγ5)γ5]v4 ε
α5
5 = s24ϕ[11,10,13],

φ[12,13,14] = ū3[/ε5(/p3 + /p5)Js•s•q̄q(p2, p4, p3 + p5, p1)]v4 = s35ϕ[12,13,14]. (7.25)

The systems A∆ = φ associated to both amplitudes still satisfy the condition (3.76), which
ensures the existence of a C/K-dual representation, depending on four arbitrary parameters,
whose expression follows the structure of (3.87).
As for the pure four-dimensional case, the analytic expressions of the dual numerators have been
obtained for generic polarisations and numerical checks of the result have been performed for
different helicity configurations, including longitudinal polarisations of generalised gluons.
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7.3 Bern-Carrasco-Johansson relations in d-dimensions

Since the rank of the matrix A turns out to be non-maximal and the consistency relation,
rank(A|K) = rank(A) = 11, implies the existence of four linear relations between the kine-
matic factors Ki’s, which can be simply found by determining a complete set of vanishing linear
combinations of the rows of A. In this way, we obtain the set of identities

s45K1 − s34K3 − (s14 − µ2)K6 = 0,

s12K1 − (s23 − µ2)K4 − (s25 − µ2)K6 = 0,

(s15 − µ2)K2 − s45K4 − (s25 − µ2)K6 = 0,

(s23 − µ2)K2 − s34K5 + (s23 + s35 − µ2)K6 = 0, (7.26)

which reduce to two the numbers of independent Ki’s. At higher multiplicities, rather than
corresponding to a single partial amplitude, each kinematic factor can be expressed as a linear
combination of colour-ordered amplitudes. The relations between the Ki’s and colour-ordered
amplitudes can be found either by comparing their expansions in terms of Feynman diagrams
or, more conveniently, by first performing the usual colour algebra on (3.71), in order to express
all c′is in terms of traces of generators T ai , and then by identifying the combinations of Ki’s that
multiply each single trace with the corresponding colour-ordered amplitude. In this case, it can
be shown that

K1 = A5(1, 2, 3, 4, 5) +A5(1, 2, 4, 3, 5) +A5(1, 3, 2, 4, 5),

K2 = −A5(1, 4, 2, 3, 5),

K3 = A5(1, 3, 4, 2, 5) −A5(1, 2, 4, 3, 5),

K4 = A5(1, 4, 2, 3, 5) −A5(1, 3, 2, 4, 5),

K5 = −A5(1, 3, 4, 2, 5),

K6 = A5(1, 3, 4, 2, 5) +A5(1, 4, 2, 3, 5) +A5(1, 4, 3, 2, 5). (7.27)

Therefore, by substituting (7.27) in (7.26), we can reduce from six to two the number of inde-
pendent colour-ordered amplitudes and express all the others through the set of relations

A5(1, 3, 4, 2, 5) =
−P 2

12P
2
45A5(1, 2, 3, 4, 5) + (P 2

14 − µ2)(P 2
24 + P 2

25 − 2µ2)A5(1, 4, 3, 2, 5)

(P 2
13 − µ2)(P 2

24 − µ2)
,

A5(1, 2, 4, 3, 5) =
−(P 2

14 − µ2)(P 2
25 − µ2)A5(1, 4, 3, 2, 5) + P 2

45(P
2
12 + P 2

24 − µ2)A5(1, 2, 3, 4, 5)

P 2
35(P

2
24 − µ2)

,

A5(1, 4, 2, 3, 5) =
−P 2

12P
2
45A5(1, 2, 3, 4, 5) + (P 2

25 − µ2)(P 2
14 + P 2

25 − 2µ2)A5(1, 4, 3, 2, 5)

P 2
35(P

2
24 − µ2)

,

A5(1, 3, 2, 4, 5) =
−(P 2

14 − µ2)(P 2
25 − µ2)A5(1, 4, 3, 2, 5) + P 2

12(P
2
24 + P 2

45 − µ2)A5(1, 2, 3, 4, 5)

(P 2
13 − µ2)(P 2

24 − µ2)
.

(7.28)

Identities involving other colour-ordered amplitudes can be obtained by making use of Kleiss-
Kuijf identities such as

A5(1, 2, 3, 4, 5) +A5(1, 2, 3, 5, 4) +A5(1, 2, 4, 3, 5) +A5(1, 4, 2, 3, 5) = 0,

(7.29)

which, substituted in (7.28), gives

A5(1, 2, 4, 3, 5) =
(P 2

14 + P 2
45 − µ2)A5(1, 2, 3, 4, 5) + (P 2

14 − µ2)A5(1, 2, 3, 5, 4)

(P 2
24 − µ2)

. (7.30)
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The same identities are satisfied by the colour-ordered amplitudes where the generalised gluons
in the initial state are replaced by massive scalars (s•s• → ggg).

Similar consideration can be made for the four-point BCJ relations, where, by following the
prescription (7.23) in the system (3.56), it becomes,

(s24 − µ2)A(1, 2, 4, 3) = (s23 − µ2)A(1, 2, 3, 4) . (7.31)

With similar considerations we can verify that

(s24 − µ2)A(1, 3, 2, 4) = s12A(1, 2, 3, 4), (s23 − µ2)A(1, 4, 2, 3) = s12A(1, 2, 4, 3) . (7.32)

The BCJ relations of Eq. (3.13), by following a pure diagrammatic approach, can be gener-
alised to

n∑

i=3




i∑

j=3

s2j − µ2δjn


Atree

n (1, 3, . . . , i, 2, i+1, . . . , n) = 0 . (7.33)

The structure of the identity (7.33) involving two generalised particles is analogous to the one of
the BCJ identities for QCD amplitudes with massive quarks [148, 149].

7.4 Coefficient relations for one-loop amplitudes in d dimensions

7.4.1 Relations for pentagon coefficients

Figure 7.7: Pentagon topologies for the cuts C12|3...k|(k+1)...l|(l+1)...m|(m+1)...n and
C21|3...k|(k+1)...l|(l+1)...m|(m+1)...n.

We recall the extraction of the pentagon coefficient,

C±
i|j|k|l|m =

N
(
l±, µ2

)
∏

h 6=i1,...,i5
Dh

= c(ijklm)±µ2 , (7.34)

In order to see how the BCJ identities for tree-level amplitudes can be used to relate different
pentagon coefficients, let us consider the contributions shown in Fig. 7.7, which share the same
cut solutions. In addition, since these two pentagons differ in the ordering of the external particles
p1 and p2 only, they can be obtained as the product of the same tree-level amplitudes, with the
only exception of the colour-ordering of the four-point amplitude involving p1 and p2. More
precisely, for the ordering {1, 2, ... , n} we have

C±
12|3...k|(k+1)...l|(l+1)...m|(m+1)...n =Atree

4

(
−l±1 , 1, 2, l±3

)
Atree

k

(
−l±3 , P3···k, l

±
k+1

)
Atree

l−k+2

(
−l±k+1, Pk+1...,l±, l

±
l

)

×Atree
m−l+2

(
−l±l+1, Pl±+1...,m, l

±
m

)
Atree

n−m+2

(
−l±m+1, Pm+1...,n, l

±
1

)

(7.35)
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and C±
21|3...k|(k+1)...l|(l+1)...m|(m+1)...n is obtained just by changing 1 ↔ 2. The tree-level amplitudes

Atree
4

(
−l±1 , 1, 2, l±3

)
and Atree

4

(
−l±1 , 2, 1, l±3

)
are related by the d-dimensional BCJ identity (7.32),

Atree
4 (−l±1 , 2, 1, l±3 ) =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
Atree

4 (−l±1 , 1, 2, l±3 ), (7.36)

which, substituted into the expression of C±
21|3...k|(k+1)...l|(l+1)...m|(m+1)...n, allow us to identify

C±
21|3...k|(k+1)...l|(l+1)...m|(m+1)...n =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
C±
12|3...k|(k+1)...l|(l+1)...m|(m+1)...n. (7.37)

The ratio of the two propagators appearing in (7.37) evaluates to same constant value for both
cut solutions,

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
= α, (7.38)

so that, by making use of (7.34), (7.37) becomes

c(21|...)± = αc(12|...)±. (7.39)

Therefore, as simple byproduct of the BCJ identities at tree-level, the knowledge of a single
pentagon coefficient completely determines the other one.

7.4.2 Relations for box coefficients

Figure 7.8: Box topologies for the cuts C12|3...k|k+1...l|l+1...n and C21|3...k|k+1...l|l+1...n.

Next we consider the box contribution to the amplitude. We recall the extraction of two

non-spurious coefficients c
(ijkl)
0 and c

(ijkl)
4 ,

C±
i|j|k|l =

N±∏
h 6=i,j,k,lDh,±

∣∣∣∣
µ2→0

= c
(ijkl)±
0 , c

(ijkl)
0 =

1

2
(c

(ijkl)+
0 + c

(ijkl)−
0 ) , (7.40a)

C±
i|j|k|l =

N±∏
h 6=i,j,k,lDh,±

∣∣∣∣
µ2→∞

= c
(ijkl)±
4 µ4 +O

(
µ3
)
, c

(ijkl)
4 ≡ c

(ijkl)+
4 = c

(ijkl)−
4 . (7.40b)

Analogously to the pentagon case, we consider two box topologies differing just from the ordering
of the external particles p1 and p2, as depicted in Fig. 7.8. When the integrand associated to the
ordering {1, 2, ... , n} is evaluated on the on-shell solutions it factorises into

C±
12|3...k|(k+1)...l|(l+1)...n =Atree

4

(
−l±1 , 1, 2, l±3

)
Atree

k

(
−l±3 , P3···k, l

±
k+1

)
Atree

l−k+2

(
−l±k+1, Pk+1...,l, l

±
l+1

)

×Atree
n−l+2

(
−l±l+1, Pl+1...,n, l

±
1

)
(7.41)
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and the expression of C±
21|3...k|(k+1)...l|(l+1)...n in terms of tree-level amplitudes can be obtained by

exchanging 1 ↔ 2. Therefore, thanks to the BCJ identity between tree-level amplitudes (7.36),
we can write

C±
21|3...k|(k+1)...l|(l+1)...n =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
C±
12|3...k|(k+1)...l|(l+1)...n. (7.42)

It can be verified that the ratio of propagators sampled on the cut solutions converges to a
constant both for µ2 → 0 and µ2 → ∞ limits,

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2

∣∣∣∣∣∣
µ2→0

= α±
0 , (7.43)

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2

∣∣∣∣∣∣
µ2→∞

= α±
4 +O

(
1

µ

)
, (7.44)

so that, by evaluating both sides of (7.42) in the two limits, we can trivially obtain the contri-
butions from C21|3...k|(k+1)...l|(l+1)...n, once C12|3...k|(k+1)...l|(l+1)...n has been calculated,

c
(21|...)±
i = α±

i c
(12|...)±
i , i = 0, 4. (7.45)

7.4.3 Relations for triangle coefficients

Figure 7.9: Triangle topologies for the cuts C12|3...k|(k+1)...n and C21|3...k|(k+1)...n.

As discussed in Sec. 7.4.3, by considering the expansion of the integrand in the large-t limit,

C±
i|j|k

(
t, µ2

)
=

N±∏
h 6=i,j,kDh,±

∣∣∣∣
t→∞

=
3∑

m=0

c
(ijk)±
m,0 tm + µ2

1∑

m=0

c
(ijk)±
m,2 tm . (7.46)

The C/K-duality for tree-level amplitudes can be used to relate all coefficients of the expansions
(7.46) for different triangles. As an example, we consider the two triangle contributions de-
picted in Fig. 7.9. When evaluated on the on-shell solutions, the triangle with external ordering
{1, 2, ... , n} factorises into

C±
12|3...k|(k+1)...n

= Atree
4

(
−l±1 , 1, 2, l±3

)
Atree

k

(
−l±3 , P3···k, l

±
k+1

)
Atree

n−k+2

(
−l±k+1, Pk+1...,n, l

±
1

)

(7.47a)

and the analogous expression for C±
21|3...k|(k+1)...n is obtained by changing 1 ↔ 2. As for the

previous cases, we can make use of the BCJ identity (7.36) in order to establish a relation
between C±

21|3...k|(k+1)...n and C±
12|3...k|(k+1)...n,

C±
21|3...k|(k+1)...n =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
C12|3...k|(k+1)...n. (7.48)
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According to the expansion (7.46), both C±
21|3...k|(k+1)...n and C±

12|3...k|(k+1)...n can be parametrised
as

C±
12|3...k|(k+1)...n =

3∑

m=0

c
(12|...)±
m,0 tm + µ2

1∑

m=0

c
(12|...)±
m,2 tm,

C±
21|3...k|(k+1)...n =

3∑

m=0

c
(21|...)±
m,0 tm + µ2

1∑

m=0

c
(21|...)±
m,2 tm. (7.49)

There, if we consider the large-t limit of the ratio of the two propagators evaluated on the cut
solution, which is found in the form

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2

∣∣∣∣∣∣
t→∞

=

0∑

m=−3

α±
m,0t

m + µ2
−2∑

m=−3

α±
m,2t

m +O
(
1

t4

)
, (7.50)

we can insert the expansions (7.49) and (7.50) into (7.48) and, by matching each monomial
between the two sides, obtain the set of relations

c
(21|...)±
m,0 =

3−m∑

l=0

α±
−l,0 c

(12|...)±
l+m,0 , c

(21|...)±
m,2 =

1−m∑

l=0

(
α±
−l−2,2 c

(12|...)±
l+m+2,0 + α±

−l0 c
(12|...)±
l+m,2

)
. (7.51)

Eqs. (7.51) show that C±
21|3...k|(k+1)...n can be fully reconstructed from the knowledge of C±

12|3...k|(k+1)...n.

7.4.4 Relations for bubble coefficients

Figure 7.10: Bubble topologies for the cuts C12|3...n and C21|3...n.

Finally, the bubble contribution is obtained by extracting the coefficients from the large-t
expansion,

C±
i|j
(
t, y, µ2

)
=

N±∏
h 6=i,jDh,±

−
n−1∑

k 6=i,j

∆ijk,±
Dk,+

∣∣∣∣∣∣
t→∞

=

2∑

l=0

2−l∑

m=0

c
(ij)±
l,m,0 t

l ym + µ2c
(ij)±
0,0,2 . (7.52)

As usual, in order to show the role of the C/K-duality in the reduction of the number of coeffi-
cients to be actually computed, we consider two bubble contributions differing by the ordering
of the external particles p1 and p2, as illustrated in Fig. 7.10. The two coefficients are given by

C±
12|3...n = Atree

4

(
−l±1 , 1, 2, l±3

)
Atree

n

(
−l±3 , P3···n, l

±
1

)
,

C±
21|3...n = Atree

4

(
−l±1 , 2, 1, l±3

)
Atree

n

(
−l±3 , P3···n, l

±
1

)
(7.53)

and, using (7.36) to relate Atree
4

(
−l±1 , 1, 2, l±3

)
and Atree

4

(
−l±1 , 2, 1, l±3

)
, we obtain

C±
21|3...n =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
C±
12|3...n. (7.54)
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The ratio of the two propagators in the large-t limit is parametrised as

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2

∣∣∣∣∣∣
t→∞

=

0∑

l=−2

−l∑

m=0

αl,m,0 t
l ym +

µ2

t2
α−2,0,2 +O

(
1

t3

)
, (7.55)

so that, by plugging in (7.54) the expansions

C±
12|3...n =

2∑

l=0

2−l∑

m=0

c
(12|...)±
l,m,0 tl ym + µ2c

(12|...)±
0,0,2 ,

C±
21|3...n =

2∑

l=0

2−l∑

m=0

c
(21|...)±
l,m,0 tl ym + µ2c

(21|...)±
0,0,2 , (7.56)

one can verify that the coefficients of C±
21|3...n are completely determined by

c
(21|...)±
l,m,0 =

2∑

r=l




min[m,2−r]∑

s=max[0,l+m−r]

α±
l−r,m−s,0 c

(12|...)±
r,s,0


 ,

c
(21|...)±
0,0,2 =α±

−2,0,2 c
(12|...)±
2,0,0 + α±

0,0,0 c
(12|...)±
0,0,2 . (7.57)

7.4.5 Examples

We hereby verify on some explicit examples the coefficient relations we have derived in the pre-
vious section. In order to obtain compact expressions and keep the discussion as simple possible,
we consider scalar loop contributions to gluon amplitudes only and we present analytic results
for convenient helicity configurations. Nevertheless, numerical checks of the coefficient relations
have been performed for all helicity configurations and gluon loop contributions have been in-
cluded as well. All results presented in this section have been numerically validated against the
ones provided by the C++ library NJet [56].
In addition, we would like to mention that, besides constituting one of the FDF ingredients
needed for the computation of the full amplitude, the scalar contributions presented in this sec-
tion can been thought as the generators of rational terms in alternative frameworks, such as
supersymmetric decomposition [255, 293].

Pentagons

Figure 7.11: Pentagon topologies for the cuts C12|3|4|5|6 and C21|3|4|5|6.

To begin with, we consider the six-gluon helicity amplitude A1-loop
6 (1+, 2+, 3+, 4+, 5+, 6+)

and we compute the quintuple cuts C±
12|3|4|5|6 and C±

21|3|4|5|6 of Fig. 7.11, with the use the basis

E(45012) = {e1, e2, e3, e4}, where

eν1 = pν4 , eν2 = pν5 , eν3 =
1

2
〈4 |γµ| 5] , eν4 =

1

2
〈5 |γµ| 4] , (7.58)
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The solutions of the quintuple cut are

l+ν
5 = c eν3 −

µ2

s45c
eν4 , l−ν

5 = c eν4 −
µ2

s45c
eν3 , (7.59)

where the parameters c and µ2 are fixed by the on-shell conditions. From the product of tree-level
amplitudes we obtain

C±
12|3|4|5 = Atree

4

(
−l±1 , 1+, 2+, l±3

)
Atree

3

(
−l±3 , 3+, l±4

)
Atree

3

(
−l±4 , 4+, l±5

)
Atree

3

(
−l±5 , 5+, l±6

)
Atree

3

(
−l±6 , 6+, l±1

)

=
iµ2[2|1]〈3|l5|4]〈4|l4|3]〈5|l1|6]〈6|l6|5]

〈1|2〉〈3|4〉2〈5|6〉2〈1|l1|1]
(7.60)

and

C21|3|4|5 = Atree
4

(
−l±1 , 2+, 1+, l±3

)
Atree

3

(
−l±3 , 3+, l±4

)
Atree

3

(
−l±4 , 4+, l±5

)
Atree

3

(
−l±5 , 5+, l±6

)
Atree

3

(
−l±6 , 6+, l±1

)
,

=
iµ2[2|1]〈3|l5|4]〈4|l4|3]〈5|l1|6]〈6|l6|5]

〈1|2〉〈3|4〉2〈5|6〉2〈2|l1|2]
. (7.61)

The two cuts are related by the BCJ identity (7.37),

C±
21|3|4|5 =

(
l±3 + p2

)2 − µ2
(
l±1 − p2

)2 − µ2
C±12|3|4|5|6. (7.62)

By using momentum conservation to express l±5 in terms of l±1 , l
±
3 , l

±
4 ,

l±1 = l±5 − p5 − p6, l±3 = l±5 + p3 + p4, l±4 = l±5 + p4, l±6 = l±5 − p5, (7.63)

one can verify that C±
12|3|4|5|6 takes the form

C±
12|3|4|5|6 =

iµ2s34
2s45

2s56
2[2|1][4|3][6|5]〈3|1 + 2|6]2〈6|1 + 2|3]2

tr5(6, 3, 5, 4)3〈1|2〉〈3|4〉〈5|6〉 (s45tr5(1, 5, 2, 6) + s345tr5(1, 5, 4, 6) − s16tr5(3, 4, 5, 6))
,

(7.64)

where sij = 〈ij〉[ji] and tr5(1, 2, 3, 4) = 〈1 |234| 1]− 〈1 |432| 1].
In a similar way, according to (7.38), we find

(
l±3 + p2

)2 − µ2
(
l±1 − p2

)2 − µ2
=
s45tr5(1, 5, 2, 6) + s345tr5(1, 5, 4, 6) − s16tr5(3, 4, 5, 6)

s45tr5(2, 5, 1, 6) + s345tr5(2, 5, 4, 6) − s26tr5(3, 4, 5, 6)
. (7.65)

Hence, substituting (7.64) and (7.65) in (7.62), we obtain

C±
21|3|4|5|6 =

iµ2s34
2s45

2s56
2[2|1][4|3][6|5]〈3|1 + 2|6]2〈6|1 + 2|3]2

tr5(6, 3, 5, 4)3〈1|2〉〈3|4〉〈5|6〉 (s45tr5(2, 5, 1, 6) + s345tr5(2, 5, 4, 6) − s26tr5(3, 4, 5, 6))
,

(7.66)

which reproduces the same result one could obtain from similar algebraic manipulations on (7.61).
The analytic expressions for the two cuts find numerical agreement with NJet.
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Figure 7.12: Box topologies for the cuts C12|3|4|5 and C21|3|4|5.

Boxes

As an example of identities between box coefficients, we consider the quadruple cuts C±
12|3|4|5

and C±
21|3|4|5 for the helicity amplitude A1-loop

5 (1−, 2+, 3+, 4+, 5−), depicted in Fig. 7.12. For this

configuration we use the basis E(40123) of eq. (7.58), where the cut solutions can be parametrised
as

l+ν
5 = c+ e

ν
3 −

µ2

s45c+
eν4 , l−ν

5 = c− e
ν
4 −

µ2

s45c−
eν3 , (7.67)

being c+ and c− coefficients determined by behaviour of the on-shell solutions for µ2 → 0 and
µ2 → ∞. By combining tree-level amplitudes we can write

C±
12|3|4|5 = Atree

4

(
−l±1 , 1−, 2+, l±3

)
Atree

3

(
−l±3 , 3+, l±4

)
Atree

3

(
−l±4 , 4+, l±5

)
Atree

3

(
−l±5 , 5−, l±1

)

=
〈1|l1|2]2〈3|l5|4]〈4|l4|3]〈5|l1|1]

s12[5|1]〈3|4〉2〈1|l1|1]
(7.68)

and

C±
21|3|4|5 = Atree

4

(
−l±1 , 2+, 1−, l±3

)
Atree

3

(
−l±3 , 3+, l±4

)
Atree

3

(
−l±4 , 4+, l±5

)
Atree

3

(
−l±5 , 5−, l±1

)

=
〈1|l1|2]2〈3|l5|4]〈4|l4|3]〈5|l1|1]

s12[5|1]〈3|4〉2〈2|l1|2]
(7.69)

and then relate two cuts through (7.42),

C±
21|3|4|5 =

(
l±3 + p2

)2 − µ2
(
l±1 − p2

)2 − µ2
C±
21|3|4|5. (7.70)

Momentum conservation allows us to write

l±1 = l±5 − p5, l±4 = l±5 + p4, l3 = l±5 + p3 + p4 (7.71)

and, consequently, to express C±
12|3|4|5 as

C±
12|3|4|5 = − iµ4[4|3]tr5(η1,2, 4, 3, 5)2

s12tr5(3, 4, 1, 5)[5|3][5|4]〈3|4〉2
, (7.72)

where we have introduced the complex momenta ηνi,j =
1
2 〈i |γν | j]. We have verified that, for this

particular helicity configuration, the box coefficient is given by the ∼ µ4 term only. Therefore,
we just need to compute the ratio of the propagators in the large-µ2 limit,

(
l±3 + p2

)2 − µ2
(
l±1 − p2

)2 − µ2

∣∣∣∣∣
µ2→∞

= −1 +O
(
1

µ

)
. (7.73)

Thanks to this result, the expression for C21|3|4|5 obtained from (7.72) is

C±
21|3|4|5 =

iµ4[4|3]tr5(η1,2, 4, 3, 5)2
s12tr5(3, 4, 1, 5)[5|3][5|4]〈3|4〉2

, (7.74)

which finds again agreement with NJet.
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Triangles

Figure 7.13: Triangle topologies for the cuts C123|4|5, C132|4|5 and C213|4|5.

For triple cuts we give an example of the coefficient relations obtained through identi-
ties between five-point tree-level amplitudes, which are discussed in App. C. Let us consider
A1-loop

5 (1+, 2+, 3−, 4−, 5−) and the three cuts of Fig. 7.13, C±
213|4|5, C

±
123|4|5 and C±

132|4|5, respec-

tively. We use the basis E(40123) of eq. (7.58), where the cut solutions are given by

l+ν
5 = t eν3 −

µ2

s45t
eν4 , l−ν

5 = t eν4 −
µ2

s45t
eν3 , (7.75)

and from the product of tree-level amplitudes we obtain

C±
123|4|5 = Atree

5

(
−l±1 , 1+, 2+, 3−, l±4

)
Atree

3

(
−l±4 , 4−, l±5

)
Atree

3

(
−l±5 , 5−, l±1

)

=
i〈5|l±1 |4|l±5 |5]〈3|1 + 2|l±1 |3〉2

s123[5|4]2〈1|2〉〈2|3〉〈1|l±1 |1 + 2|3〉 −
iµ2[2|1]〈3|l±4 |2]2〈5|l±1 |4|l5|5]

[5|4]2[3|l±4 |3|2]〈1|l±1 |1]〈1|2 + 3|l±4 |3〉
, (7.76)

C±
132|4|5 = Atree

5

(
−l±1 , 1+, 3−, 2+, l±4

)
Atree

3

(
−l±4 , 4−, l±5

)
Atree

3

(
−l±5 , 5−, l±1

)

= − i〈3|l±1 |1]2〈3|l±4 |2]2〈5|l±1 |4|l±5 |5]
[5|4]2[2|l±4 |2 + 3|1]〈1|l±1 |1|3〉〈2|l±4 |2|3〉

− iµ2[2|1]4〈5|l±1 |4|l±5 |5]
s123[3|1][3|2][5|4]2 [2|l4|2 + 3|1] , (7.77)

C±
213|4|5 = Atree

5

(
−l±1 , 2+, 1+, 3−, l±4

)
Atree

3

(
−l±4 , 4−, l±5

)
Atree

3

(
−l±5 , 5−, l±1

)

= − i〈5|l±1 |4|l±5 |5]〈3|1 + 2|l±1 |3〉2
s123[5|4]2〈1|2〉〈1|3〉〈2|l±1 |1 + 2|3〉 +

iµ2[2|1]〈3|l±4 |1]2〈5|l±1 |4|l±5 |5]
[5|4]2[3|l±4 |3|1]〈2|l±1 |2]〈2|1 + 3|l±4 |3〉

(7.78)

The three cuts are related by the BCJ identity (7.30),

C±
213|4|5 =

(
P 2
l±4 2

− µ2 + P 2
23

)

(
P 2
−l±1 2

− µ2
) C±

123|4|5 +

(
P 2
l±4 2

− µ2
)

(
P 2
−l±1 2

− µ2
)C±

132|4|5. (7.79)

By using momentum conservation,

l±1 = l±5 − p5, l±4 = l±5 + p4, (7.80)

and expanding C±
123|4|5 and C±

132|4|5 for t→ ∞, we obtain

C+
123|4|5

(
t, µ2

)
=
iµ2〈3|4〉2(〈1|4〉〈3|5〉 + 〈1|3〉〈4|5〉)

[5|4]〈1|2〉〈1|4〉2〈2|3〉 − iµ2〈3|4〉3
[5|4]〈1|2〉〈1|4〉〈2|3〉 t, (7.81a)

C−
123|4|5

(
t, µ2

)
=

iµ2〈3|4〉〈3|5〉2
[5|4]〈1|2〉〈1|5〉〈2|3〉 +

iµ2〈3|5〉3
[5|4]〈1|2〉〈1|5〉〈2|3〉 t, (7.81b)

C+
132|4|5

(
t, µ2

)
= − iµ

2〈3|4〉3(〈1|4〉〈3|5〉 + 〈1|3〉〈4|5〉)
[5|4]〈1|3〉〈1|4〉2〈2|3〉〈2|4〉 +

iµ2〈3|4〉4
[5|4]〈1|3〉〈1|4〉〈2|3〉〈2|4〉 t, (7.81c)

C−
132|4|5

(
t, µ2

)
= − iµ

2(〈2|5〉〈3|4〉 − 〈2|3〉〈4|5〉)〈3|5〉3
[5|4]〈1|3〉〈1|5〉〈2|3〉〈2|5〉2 − iµ2〈3|5〉4

[5|4]〈1|3〉〈1|5〉〈2|3〉〈2|5〉 t. (7.81d)
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In a similar way, the expansion for large-t of the ratio of propagators returns

(
P 2
l+4 2

− µ2 + P 2
23

)

(
P 2
−l+1 2

− µ2
)

∣∣∣∣∣∣∣
t→∞

=
µ2s12s24s25
s45t3〈4|2|5]3

+
s12s25

2

t3〈4|2|5]3 +
s12s25

t2〈4|2|5]2 +
s12

t〈4|2|5] − 1 +O
(

1

t4

)
,

(7.82a)
(
P 2
l−4 2

− µ2 + P 2
23

)

(
P 2
−l−1 2

− µ2
)

∣∣∣∣∣∣∣
t→∞

=
µ2s12s24s25
s45t3〈5|2|4]3

+
s12s25

2

t3〈5|2|4]3 +
s12s25

t2〈5|2|4]2 +
s12

t〈5|2|4] − 1 +O
(

1

t4

)
,

(7.82b)
(
P 2
l+4 2

− µ2
)

(
P 2
−l+1 2

− µ2
)

∣∣∣∣∣∣∣
t→∞

=− µ2s24s25 (s24 + s25)

s45t3〈4|2|5]3
− s25

2 (s24 + s25)

t3〈4|2|5]3 − s25 (s24 + s25)

t2〈4|2|5]2

− s24 + s25
t〈4|2|5] − 1 +O

(
1

t4

)
, (7.82c)

(
P 2
l−4 2

− µ2
)

(
P 2
−l−1 2

− µ2
)

∣∣∣∣∣∣∣
t→∞

=− µ2s24s25 (s24 + s25)

s45t3〈5|2|4]3
− s25

2 (s24 + s25)

t3〈5|2|4]3 − s25 (s24 + s25)

t2〈5|2|4]2

− s24 + s25
t〈5|2|4] − 1 +O

(
1

t4

)
. (7.82d)

Therefore, by inserting these results into (7.79) we obtain

C+
213|4|5

(
t, µ2

)
= − iµ

2〈3|4〉2(〈2|4〉〈3|5〉 + 〈2|3〉〈4|5〉)
[5|4]〈1|2〉〈1|3〉〈2|4〉2 +

iµ2〈3|4〉3
[5|4]〈1|2〉〈1|3〉〈2|4〉 t, (7.83)

C−
213|4|5

(
t, µ2

)
= − iµ2〈3|4〉〈3|5〉2

[5|4]〈1|2〉〈1|3〉〈2|5〉 − iµ2〈3|5〉3
[5|4]〈1|2〉〈1|3〉〈2|5〉 t, (7.84)

which agrees with the t→ ∞ expansion of (7.81d). The resulting contributions of the three cuts
to A1-loop

5 (1+, 2+, 3−, 4−, 5−) have been numerically checked with NJet.

Bubbles

Figure 7.14: Bubble topologies for the cuts C12|345 and C21|345.

As a final example, we compute the double cuts C12|345 and C21|345 of the helicity amplitude

A1-loop
5 (1−, 2+, 3+, 4+, 5+), which are depicted in Fig. 7.14. For sake of simplicity, we will consider

only pure bubble contributions but we remark that spurious terms originating from triangles,
which should subtracted in order to recover the full integral coefficient, can be related through
the BCJ identities in the same way as discussed in Section 7.4.4. For this cut we use the basis
E(02) = {e1, e2, e3, e4}, where

eν1 = (p1 + p2)
ν − s12

s14 + s24
pν4 , eν2 = pν4 , eν3 =

1

2
〈e1 |γν | e2] , eν4 =

1

2
〈e2 |γν | e1] , (7.85)
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and the cut solutions are parametrised by

l+ν
1 = y eν1 +

(1− y) s12
s14 + s24

eν2 + t eν3 +
(1− y) ys12 − µ2

(s14 + s24) t
eν4 , (7.86)

l−ν
1 = y eν1 +

(1− y) s12
s14 + s24

eν2 + t eν4 +
(1− y) ys12 − µ2

(s14 + s24) t
eν3 . (7.87)

By combining the tree amplitudes in which bubble factorises, we can write the two cuts as

C±
12|345 = Atree

4

(
−l±1 , 1−, 2+, l±3

)
Atree

5

(
−l±3 , 3+, 4+, 5+, l±1

)
=

µ2[5|3 + 4|l±3 |3]〈1|l±1 |2]2
s12〈3|4〉〈4|5〉〈1|l±1 |1]〈3|l±3 |3]〈5|l±1 |5]

,

(7.88)

C±
21|345 = Atree

4

(
−l±1 , 2+, 1−, l±3

)
Atree

5

(
−l±3 , 3+, 4+, 5+, l±1

)
=

µ2[5|3 + 4|l3|3]〈1|l±1 |2]2
s12〈3|4〉〈4|5〉〈2|l±1 |2]〈3|l±3 |3]〈5|l±1 |5]

(7.89)

and, according to (7.54), we can related them through

C±
21|345 =

(
l±3 + p2

)2 − µ2
(
l±1 − p2

)2 − µ2
C±
12|345. (7.90)

If we make use of l±3 = l±1 − p1 − p2 and we expand (7.88) in the large-t limit, we get

C+
12|345 = µ2

i[4|2]3〈1|2〉
s34s45[4|1]〈3|5〉2

, (7.91)

C−
12|345 = µ2

i〈1|4〉3
〈1|2〉〈2|4〉〈3|4〉2〈4|5〉2 , (7.92)

whereas the expansion of the ratios of propagators reads

(
l+3 + p2

)2 − µ2
(
l+1 − p2

)2 − µ2

∣∣∣∣∣
t→∞

=− (s14 − s24) [2|1]2[4|e1]2
(s14 + s24) [4|1]2[4|2]2

y

t2
− [2|1]2〈2|4〉[4|e1 ]2

(s14 + s24) t2[4|1]2[4|2]
1

t2

− [2|1][4|e1]
[4|1][4|2]

1

t
− 1 +O

(
1

t3

)
, (7.93)

(
l−3 + p2

)2 − µ2
(
l−1 − p2

)2 − µ2

∣∣∣∣∣
t→∞

=− (s14 − s24) 〈1|2〉2〈e1|4〉2
(s14 + s24) 〈1|4〉2〈2|4〉2

y

t2
− [4|2]〈1|2〉2〈e1|4〉2

(s14 + s24) 〈1|4〉2〈2|4〉
1

t2

− 〈1|2〉〈e1|4〉
〈1|4〉〈2|4〉

1

t
− 1 +O

(
1

t3

)
. (7.94)

These expansions allow us to obtain the analytic expression of C±
21|345 from (7.90),

C+
21|345 = −µ2 i[4|2]3〈1|2〉

s34s45[4|1]〈3|5〉2
= −C+

12|345, (7.95a)

C−
21|345 = −µ2 i〈1|4〉3

〈1|2〉〈2|4〉〈3|4〉2〈4|5〉2 = −C−
12|345, (7.95b)

which agree with what we would obtain by considering the large-t expansion of (7.89).
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7.5 Discussion

In this chapter we have extended the results of chapter 3 to amplitudes in gauge theories cou-
pled with matter in d-dimensions, within the Four-Dimensional-Formulation (FDF) scheme. We
have shown that the colour-kinematics (C/K) duality obeyed by the numerators of tree-level
amplitudes within FDF are non-trivial relations involving the interplay of massless and massive
particles.

We have derived the Bern-Carrasco-Johansson (BCJ) identities for dimensionally regulated
tree-level amplitudes. These identities have been derived by working in FDF, where the effects
of dimensional regularisation are carried by massive degrees of freedom.

We have also presented a set of relations between the coefficients appearing in the decom-
position of one-loop QCD amplitudes in terms of master integrals, which have been derived as
a byproduct of the C/K duality satisfied by tree-level amplitudes. These relations reduce the
number of independent integral coefficients to be individually computed and, being valid for
contributions to both cut-constructible part and rational terms, they could play an important
role in the optimisation of numerical calculations. The complete decomposition of a general one-
loop amplitude can be obtained via the d-dimensional integrand reduction algorithm, which can
be used to express the amplitude in terms of a known basis of loop integrals, whose coefficient
can be extracted through suitable Laurent expansions of the integrand evaluated on the on-shell
solutions. Since the on-shell integrand factorises into a product of tree-level amplitudes, the BCJ
identities at tree-level have been exploited in order to establish relations between the integral
coefficients themselves.

The coefficient identities derived in this chapter have been verified on a number of contribu-
tions to multi-gluon scattering amplitudes, for which we have provided analytic expressions of
the integral coefficients.

A natural extension of this work would be the study of higher-loop coefficient relations that are
expected to descend from the BCJ identities at tree-level. To this end, future work will require,
besides a general parametrisation of the residues of multi-loop integrands, the derivation of the
BCJ identities between dimensionally regulated amplitudes involving more than two external
generalised particles.
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Chapter 8

Two-loop amplitudes

In the previous chapters, we studied the LO and NLO corrections to several processes. Moreover,
we need more accuracy and precision, in order to compare the theoretical prediction with the
experiment data. It is important to reach results at higher order in the perturbation theory, which
allow us to study many observables with a low level of uncertainty. Hence, a Next-to-Next-to-
Leading-Order (NNLO) is needed. All the techniques used for the NLO showed in Chap. 4,
as integrand reduction, unitarity and, generalised unitarity, could be, in principle, recycled as
a first attempt, to compute two-loop amplitudes in non-supersymmetric gauge theories [81–
88, 193, 201, 249–251, 294–305].

However, the very same techniques could not be applied in a straightforward way. In fact,
the set of MIs is not known a priori. In addition, the interplay of more loop momenta makes
the classification of spurious and non-spurious terms less evident. Nevertheless, the systematic
determination of the residues at higher loops is carried out by performing a polynomial division
modulo Gröbner basis.

This chapter is organised as follows: in Sec. 8.1 we give a briefly review of the calculation of
two-loop amplitudes by consider the polynomial division module Gröbner basis. Within integrand
reduction methods, we show the calculation of the two-loop four-gluon amplitude. In Sec. 8.2
we describe the basic concepts of the new approach of Ref. [201], which treats the space-time
dimensions in terms of parallel and orthogonal subspaces, allowing an immediately classification
of spurious and non-spurious terms.

8.1 Basic notions

A generic l-loop Feynman integral with n external legs in a d-dimensional space can be written
as

I(ℓ)
i1···in [N ] =

∫ ( ℓ∏

i=1

dd l̄i
πd/2

)
Ni1···in(l̄i)∏

j Dj(l̄j)
, (8.1)

where the space-time dimensions are often split into a four-dimensional part and a (−2ǫ)-
dimensional one, according to Eq. (4.28). Moreover, there is a subtlety in higher loop (ℓ ≥ 2)
computations and is the definition of the (−2ǫ)-dimensional scalar products, which, now on are
defined as

µij = −l̃i · l̃j . (8.2)

Therefore, the numerator and denominator in (8.1) become polynomials in ℓ(ℓ+ 9)/2 variables,
that exactly correspond to the scalar products µij and the components of li with respect to a
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four-dimensional basis vectors E(i1...ik) as discussed in Sec. 4.3. This means that we can express
the integrals over the (−2ǫ)-dimensional subspace into spherical coordinates and integrate out
all directions orthogonal to the relative orientations of the vectors l̃αi , obtaining

I(ℓ)
i1···in [N ] = Ω

(ℓ)
d

∫ ℓ∏

i=1

d4li

∫ ∏

1≤i≤j≤ℓ

dµij [G(µij)]
d−5−ℓ

2
Ni1···in(li, µij)∏

j Dj(lj , µij)
, (8.3)

where G(µij) = det[(µi · µj)] is the Gram determinant and

Ω
(ℓ)
d =

ℓ∏

i=1

Ω(d−4−i)

2πd/2
, Ωn =

2π
n+1
2

Γ
(
n+1
2

) . (8.4)

8.1.1 Integrand recurrence relation

In the framework of the integrand reduction method [41, 46, 85, 86, 249, 251], the computation
of dimensionally regulated ℓ-loop integrals is rephrased in terms of the reconstruction of the
integrand function as a sum of integrands with residues and a subset of denominators Dik ,

Ii1...ir(qj) ≡
Ni1...ir(qj)

Di1(qj) · · ·Dir(qj)
=

r∑

k=0

∑

{i1···ik}

∆j1···jk(qj)
Dj1(qj) · · ·Djk(qj)

. (8.5)

For an integral with an arbitrary number n of external legs, the integrand decomposition
formula (8.5) can be obtained by observing that both numerator and denominators are polyno-
mials in the components of the loop momenta with respect to some basis, which we collectively
label as z = {z1, . . . , z ℓ(ℓ+9)

2

}. Thus, we can fix a monomial ordering and build a Gröbner basis

Gi1···ir(z) of the ideal Ji1···ir generated by the set of denominators,

Ji1···ir ≡
{ r∑

k=1

hk(z)Dik (z) : hk(z) ∈ P [z]

}
, (8.6)

being P [z] the ring of polynomials in z. By performing the polynomial division of Ni1···ir(z)
modulo Gi1···ir(z),

Ni1···ir(z) =
r∑

k=1

Ni1···ik−1ik+1···ir(z)Dik(z) + ∆i1···ir(z) (8.7)

we obtain the recurrence relation

Ii1···ir =

r∑

k=1

Ii1···ik−1ik+1···ir +
∆i1···ir(z)

Di1(z) · · ·Din(z)
, (8.8)

whose iterative application to the integrands corresponding to subtopologies with fewer loop
propagators yields to the complete decomposition (8.5).

8.1.2 All plus four-gluon amplitudes

In this section we study the two-loop corrections to the polarised all plus four-gluon amplitude.
This amplitude gets contributions from the Feynman diagrams shown in Fig. 8.1 only. This
amplitude has been studied in Ref.s [80, 88], whose computation is based on the product of tree-
and one-loop-amplitudes. We follow a diagrammatic approach, where internal particles, because
of the use of Feynman gauge, can be gluons and ghosts.
This computation is carried out in three steps:
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Figure 8.1: Representative topologies of the two-loop four-gluon amplitudes. Solid lines can
represent either gluons or ghosts in d-dimensions.

1. Generation of the integrand: the integrand is generated by using FeynArts [202] and
FeynCalc [203, 204]. At this point the integrand is in d-dimensions, then, because of
dimensional reduction or the prescriptions given in Eq.s (4.28,8.2) we end up with a 4-
dimensional integrand written in terms of {li, µij}.

2. Fit the residue: we impose the set of on-shell conditions according to the diagram under
consideration. This allows us to get a cut solution that is plugged into the numerator
of the integrand. In order to do so, we use the mathematica packages S@M [205] and
T@M [206]. Finally, we fit the residue by considering its generic representation at the cut,
which, was automated by the mathematica package BasisDet [249].

Double box contribution

In order to compute the residue at the cut we use the constraints of the polynomial division
over Gröbner basis. As mention before, this procedure has been automated by the mathemat-

ica package BasisDet. The residue ∆1234567 can be expressed as a combination of at most 160
coefficients multiplying various powers of the ISPs

(k1 · ω) , (k2 · ω) , (k1 · p4) , (k2 · p1) , µ11 , µ22 , µ12 , (8.9)

where

ωµ =
2

s12
v⊥ =

〈2|3|1]
s12

〈1|γµ|2]
2

− 〈1|3|2]
s12

〈2|γµ|1]
2

. (8.10)

That is

∆1234567 =
∑

i1···i7
ci1···i7 (k1 · ω)i1(k2 · ω)i2(k1 · p4)i3(k2 · p1)i4 µi511 µi622 µi712 . (8.11)

With BasisDet, all the information described above can be extracted by typing the following
lines in a mathematica notebook

L = 2;

Dim = 4 - 2 \[Epsilon];

n = 4;

ExternalMomentaBasis = {p1 , p2 , p4};

Kinematics = {p1^2 -> 0, p2^2 -> 0, p4^2 -> 0, p1 p2 -> s/2,

p1 p4 -> t/2, p2 p4 -> -(s + t)/2, \[Omega ]1^2 -> -t (s + t)/s};

numeric = {s -> 11, t -> 3};

Props = {l1 - p1 , l1 , l1 - p1 - p2 , p3 + p4 - l2 , -l2,

p4 - l2 , -l1 - l2};

RenormalizationCondition = {{{1, 0}, 4}, {{0, 1}, 4}, {{1, 1}, 6}};

GenerateBasis[1]
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We now proceed to find the set of coefficients of (8.11). For this topology, we express the
loop momenta as follows

l̄1 = k̄1 , l̄2 = k̄1 − p1 , l̄3 = k̄1 − p1 − p2 , l̄4 = −k̄2 + p3 + p4 ,

l̄5 = −k̄2 + p4 , l̄6 = −k̄2 , l̄7 = −k̄1 − k̄2 , (8.12)

where, because of the on-shell conditions, Di = l̄2i = 0, the 4-dimensional loop momenta, k1 and
k2, can be parametrised as

kα1 = pα1 +
〈23〉
〈13〉

〈1|γα|2]
2

+
[23]

[13]

〈2|γα|1]
2

, (8.13a)

kα2 = pα4 +
〈41〉
〈31〉

〈3|γα|4]
2

+
[41]

[31]

〈4|γα|3]
2

. (8.13b)

Where the three extra-dimensional parameters µij are determined by substituting

µ11 = k21 , µ22 = k22 , µ12 = 2k1 · k2 . (8.14)

Inserting Eq. (8.13) into Eq. (8.11), ∆1234567 at the cut becomes

∆1234567|cut =
∑

i1···i4
di1···i4 τ

i1
1 τ i22 τ i33 τ

i4
4 . (8.15)

Expressions (8.11) and (8.15) are related through the relation

M c = d , (8.16)

Since we are following a diagrammatic approach, the integrand of the double box, I1234567,
gets contributions from

∆1234567 = ∆

(
4

3

1

2

)
+∆

(
4

3

1

2

)
+∆

(
4

3

1

2

)
+∆

(
4

3

1

2

)

+∆

(
4

3

1

2

)
+∆

(
4

3

1

2

)
+∆

(
4

3

1

2

)
, (8.17)

where, because of the use of Feynman gauge, dashed lines represent d-dimensional ghosts circu-
lating in the loop. Let us consider the first residue of the r.h.s., which at the cut takes the form

∆

(
4

3

1

2

)
=
iτ1τ2τ3τ4z

7
1z

4
2

64 (z2 + 1) 2
=

1

64
iµ11µ22z

5
1z

2
2 . (8.18)

By following the same procedure with the other residues, we get

∆

(
4

3

1

2

)
= ∆

(
4

3

1

2

)
, (8.19)

∆

(
4

3

1

2

)
= ∆

(
4

3

1

2

)
=

1

16
iµ22 (µ11 + µ12 + µ22) z

5
1z

2
2 , (8.20)
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∆

(
4

3

1

2

)
= ∆

(
4

3

1

2

)
=

1

16
iµ11 (µ11 + µ12 + µ22) z

5
1z

2
2 , (8.21)

∆

(
4

3

1

2

)
= − 1

32
iz51z

2
2

[
4(8ds − 15)µ211 + µ11(4(8ds − 15)µ12

+ (96ds − 695)µ22) + 4((8ds − 15)µ22µ12

+ (8ds − 15)µ222 + 32µ212)
]
. (8.22)

Adding all contributions up, the residue at the cut, ∆1234567, becomes

∆1234567|cut = i z51z
2
2 F1(ds, µ11, µ22, µ12)×Φ++++

4 , (8.23)

with

F1(ds, µ11, µ22, µ12) = (ds − 2)(µ211 + µ12µ11 + 3µ22µ11 + µ222 + µ12µ22) + 4(µ212 − 4µ11µ22) .
(8.24)

Butterfly contribution

For the butterfly topology, we repeat all the steps described above. It turns out that for this
topology we have one constraint less, D7 6= 0. Therefore, we parametrise µ12 = s12τ5, in order
to make τ5 dimensionless.

The ISPs are the same as for the double-box-case and the general structure of the residue is
obtained by typing the following lines in a mathematica notebook

L = 2;

Dim = 4 - 2 \[Epsilon];

n = 4;

ExternalMomentaBasis = {p1 , p2 , p4};

Kinematics = {p1^2 -> 0, p2^2 -> 0, p4^2 -> 0, p1 p2 -> s/2,

p1 p4 -> t/2, p2 p4 -> -(s + t)/2, \[Omega ]1^2 -> -t (s + t)/s};

numeric = {s -> 11, t -> 3};

Props = {l1 - p1 , l1 , l1 - p1 - p2 , p3 + p4 - l2 , -l2, p4 - l2};

RenormalizationCondition = {{{1, 0}, 3}, {{0, 1}, 3}};

GenerateBasis[1]

In this case the residue ∆123456 can be expressed as combination of at most 146 coefficients
multiplying various powers of the ISPs.
Besides the diagrams with six loop momentum propagators (see Fig. 8.1) we also need to subtract
the contribution coming from the double box, therefore, I123456 becomes

∆123456 = ∆

( )
+∆

( )
+∆

( )
+∆

( )

+∆

( )
+∆

( )
+∆

( )
+∆

( )

+∆

( )
+∆

( )
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+∆

(
1

D7

4

3

1

2

)
+∆

(
1

D7

4

3

1

2

)
+∆

(
1

D7

4

3

1

2

)

+∆

(
1

D7

4

3

1

2

)
+∆

(
1

D7

4

3

1

2

)
+∆

(
1

D7

4

3

1

2

)

+∆

(
1

D7

4

3

1

2

)
−∆

(
1

D7
∆1234567

)
, (8.25)

By performing a hexa-cut, the residue at the cut becomes,

∆123456|cut = i z31z
2
2

[
(ds − 2)2µ11µ22((k̄1 + k̄2)

2 + z1) + 2(ds − 2)µ12(µ11 + µ22)z1
]
× Φ++++

4 .
(8.26)

From Eq.s (8.23,8.26), the two-loop all plus four-gluon amplitude takes the form

A2-loop
4

(
1+, 2+, 3+, 4+

)
=

∫
ddk̄1

πd/2
ddk̄2

πd/2

{
∆1234567

D1D2D3D4D5D6D7
+

∆123456

D1D2D3D4D5D6

}

+ cycl. perm. (8.27)

8.2 Adaptive Integrand Decomposition

8.2.1 Definition

In this section we describe the main ingredients of an alternative algorithm of integrand decom-
position of multi-loop scattering amplitudes. This recent method proposed by Mastrolia, Primo
and Peraro in Ref. [201] decomposes the space-time dimension, d = 4 − 2ǫ, into parallel (or
longitudinal) and orthogonal (or transverse) dimensions, as

d = d‖ + d⊥ . (8.28)

While first studies [306–311] dealt with the structure of the integral, the recent work of Ref. [201]
provides an exhaustive interpretation at integrand and integral level, purely, based on the de-
composition of the space-time dimension.

Parallel and orthogonal directions show particular properties for topologies with less than
five external legs. The parallel space is spanned by the n independent four-dimensional external
momenta, namely d‖ = n − 1. Whereas, the orthogonal one is spanned by the complementary
orthogonal directions. In particular, for diagrams with a number of legs n ≥ 5, the orthogonal
space embeds the −2ǫ regulating dimensions, d⊥ = −2ǫ, while, for diagrams with n ≤ 4, the
orthogonal space is larger and it embeds also the four-dimensional complement of the parallel
space, namely d⊥ = (5− n)− 2ǫ.

Since the decomposition of the space-time dimension, in parallel and orthogonal directions,
depends on the number of external legs of individual diagrams this method is referred to as
adaptive.

Recalling the structure of the Feynman integrals (8.1) at multi-loop level, we can see that
numerator and denominators are written in a different set of variables. Denominators are now
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in terms of ℓ(ℓ + 2d‖ + 1)/2 variables. While numerator will have a polynomial dependence on
the remaining ℓ(4− d‖). Thus, loop momenta in d = d‖ + d⊥ read

l̄αi = lα‖ i + λαi , (8.29)

with

l̄α‖ i =

d‖∑

j=1

xji e
α
j , λαi =

4∑

j=d‖+1

xji e
α
j + µαi , λij =

4∑

l=d‖+1

xli xlj + µij . (8.30)

The basis E(i1...ik) can be chosen to lie into a subspace orthogonal to the external kinematics,
i.e. ei · pj = 0 (i > d‖, ∀j), and ei · ej = δij (i, j > d‖). In Eq. (8.29) l‖ i is a vector of
the d‖-dimensional space spanned by the external momenta, and λi belongs the d⊥-dimensional
orthogonal subspace. In this parametrisation, all denominators become independent of the trans-
verse components of the loop momenta,

Di = l2‖ i +
∑

j,l

αijαil λjl +m2
i , lα‖ i =

∑

j

αijq
α
‖ i +

∑

j

βijp
α
j , λij =

4∑

l=d‖+1

xlixlj + µij,

(8.31)

with α, β ∈ {0,±1}.
It is worth to mention that the decomposition (8.29) allows to express a subset of components

of qα‖i and λij as combinations of loop denominators by solving linear relations. Therefore, we can
always build differences of denominators which are linear in the loop momenta and independent
of λij , while the relation between λij and the denominators is always linear by definition, as it
can be seen from Eq. (8.31).

On the other side, the integral (8.1) with the decomposition (8.29) can rewritten as

Id (ℓ)n [N ] = Ω
(ℓ)
d

∫ ℓ∏

i=1

dn−1q‖ i

∫
d

ℓ(ℓ+1)
2 Λ

∫
d(4−d‖)ℓΘ⊥

N (qi ‖,Λ,Θ⊥)∏
j Dj(q‖ i,Λ)

, (8.32)

where
∫
d

ℓ(ℓ+1)
2 Λ =

∫ ∏

1≤i≤j

dλij [G(λij)]
d⊥−1−ℓ

2 (8.33)

defines integral over the norm of the transverse vectors λαi and their relative orientations and
Θ⊥ parametrises the integral over the components of λαi lying in the four-dimensional space.

From Eq. (8.32) we see that denominators do not depend on Θ⊥-components, therefore, their
integration can be easily performed. In fact, we have to deal with integrals of the form

∫ 1

−1
dcos θij(sin θij)

α(cos θij)
β . (8.34)

The values of α and β depend on the specific expression of the numerator. The structure of these
integrals allows to compute once and for all up to the desired rank and re-use them in every
calculation. Additionally, these integrals can be evaluated by performing the Passarino-Veltman
tensor reduction in the orthogonal space. Alternatively, they can be evaluated by exploiting the

properties of of Gegenbauer polynomials C
(α)
n (cos θ), a particular class of orthogonal polynomials

over the interval [−1, 1], which obey the orthogonality relation

∫ 1

−1
dcos θ (sin θ)2α−1C(α)

n (cos θ)C(α)
m (cos θ) = δmn

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (8.35)
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8.2.2 Algorithm

In the previous subsection we saw how numerators and denominators are written in terms of
different variables. In fact, when considering integrals with n ≤ 4 external legs, the decomposition
of d = d‖+d⊥ starts making sense and allows a lot of simplifications. For instance, the dependence
of the denominators on the transverse components of the loop momenta is dropped.

Let us indicate with z the full set of ℓ(ℓ+ 9)/2 variables

z ={x‖ i,x⊥ i, λij}, i, j = 1, . . . ℓ, (8.36)

where x‖ i (x⊥ i) are the components of the loop momenta parallel (orthogonal) to the external
kinematics, the denominators are reduced to polynomials in the subset of variables

τ ={x‖, λij}, τ ⊂ z, (8.37)

so that the general r-point integrand has the form

Ii1...ir(τ ,x⊥) ≡
Ni1...ir(τ ,x⊥)

Di1(τ ) · · ·Dir(τ )
. (8.38)

The new representation of numerators and denominators in terms of the variables τ and the
expansion of x⊥ in terms of Gegenbauer polynomials allows for a straightforwardly identification
of the spurious terms.

Therefore, the algorithm, with this adaptive integrand decomposition (AID) method, is or-
ganised in three steps:

1. Divide: we divide the numerator Ni1...ir(τ ,x⊥) modulo the Gröbner basis Gi1···ir(τ ) of
the ideal Ji1···ir(τ ) generated by the denominators. The polynomial division is performed
be adopting the lexicographic ordering λij ≪ x‖,

Ni1...ir(τ ,x⊥) =
r∑

k=1

Ni1...ik−1ik+1...ir(τ ,x⊥)Dik(τ ) + ∆i1...ir(x‖,x⊥) . (8.39)

Because of the polynomial division, the dependence on the transverse variables, x⊥, in the
residue ∆i1...ir , is left untouched as well as on x‖ but not on λij that are expressed in terms
of denominators and irreducible physical scalar products.

As anticipated at the end of Sec. 8.1.1, the Gröbner basis does not need to be explicitly
computed, since, with the choice of variables and the ordering described here, the division
is equivalent to applying the set of linear relations described above.

2. Integrate: Since denominators do not depend on transverse variables, x⊥, we can integrate
the residue ∆i1...ir over transverse directions. This integration is carried out by expressing
∆i1...ir in terms of Gegenbauer polynomials, i.e.,

∆int
i1...ir(τ ) =

∫
d(4−d‖)ℓΘ⊥∆i1...ir(τ ,Θ⊥) . (8.40)

Where ∆int
i1...ir

is a polynomial in τ whose coefficients depend on the space-time dimension
d. Likewise, this polynomial is free of spurious terms.

3. Divide: the structure of the integrated residue suggests a second division. This can be
seen from the dependence ∆int

i1...ir
has on the variables τ . In fact, after applying the division,

similarly as in the first step of this algorithm, we get

∆int
i1...ir(τ ) =

r∑

k=1

N int
i1...ik−1ik+1...ir

(τ )Dik(τ ) + ∆′
i1...ir(x‖), (8.41)
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where the new residue ∆′
i1...ir

(x‖) can only depend on x‖. Therefore, this additional poly-
nomial division allows us to obtain an integrand decomposition formula (8.5), where all
irreducible numerators are function of the components of the loop momenta parallel to the
external kinematics.

In the next subsection we apply this algorithm to the computation of the two-loop five-gluon
amplitude. We describe, in all details, how the AID method is carried out. Nonetheless, we focus
on two of three steps of this algorithm, leaving the second division as future work.

8.2.3 All plus five-gluon amplitudes

✷

Figure 8.2: Selection of Feynman diagrams contributing to the five-gluons amplitude. Curly lines
represent gluons and dashed ones indicate ghosts.

As an application of the AID we consider the leading colour contribution to the two-loop all
plus five gluon amplitude [8]. This amplitude admits a decomposition of the form [88, 305, 312–
314]

A2-loop
5

(
1+, 2+, 3+, 4+, 5+

)
=

∫
ddk̄1

πd/2
ddk̄2

πd/2

{
∆12345678

D1D2D3D4D5D6D7D8
+

∆1234567

D1D2D3D4D5D6D7

+
∆1235678

D1D2D3D5D6D7D8
+

∆1345678

D1D3D4D5D6D7D8
+

∆1245678

D1D2D4D5D6D7D8

∆123567

D1D2D3D5D6D7
+

∆123567

D1D3D4D5D6D7
+

∆124567

D1D2D4D5D6D7

}

+ cycl. perm. (8.42)

The residues of Eq. (8.42) are computed by following an analogous approach of Sec. 8.1.2 and
checked numerically with [88]. The representatives topologies of this process are shown in Fig. 8.2.
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In the following, we recall how the polynomial division is performed. As mentioned earlier,
there is no need to pass by the Gröbner basis. In fact, AID decomposition allows us to perform
the polynomial division in a straightforwardly way.

The loop momenta circulating in Fig. 8.2 can be parametrised as follows,

l̄1 = k̄1 , l̄2 = k̄1 − p1 , l̄3 = k̄1 − p1 − p2 , l̄4 = k̄1 − p1 − p2 − p3 ,

l̄5 = k̄2 + p4 + p5 , l̄6 = k̄2 + p5 , l̄7 = k̄2 , l̄8 = −k̄1 − k̄2 . (8.43)

The loop momenta, k̄1 and k̄2, are parametrised according to the topology under consideration:

• In order to compute the residues ∆12345678 and ∆1235678, we parametrise the four-dimensional
momenta as

k̄α1 = x1 p
α
1 + x2 p

α
2 + x3 p

α
3 + x4 p

α
4 + λα1 ,

k̄α2 = y1 p
α
1 + y2 p

α
2 + y3 p

α
3 + y4 p

α
4 + λα2 , (8.44)

with λαi = µαi . This parametrisation allows us to express some components of the loop, xi’s
and yi’s, and λij in terms of loop denominators. In particular, for ∆12345678, all variables
xi, yi and λij are written in terms of x4, y3 and y4 and the loop denominators.

• For topologies with less than five external legs and factorised ones, the loop momenta are
parametrised according to the one-loop subtopologies they are made of.

The factorised topology ∆1234567 is made of one box and one triangle. Therefore, as in the
one-loop case, the loop momenta admit the following decomposition

k̄α1 = x1 p
α
1 + x2 p

α
2 + x3 p

α
3 + λα1 , λα1 = x4 ω

α
123 + µα1 ,

k̄α2 = y1 p
α
1 + y2 p

α
2 + λα2 , λα2 = y3 ω

α
+ + y4 ω

α
− + µα2 , (8.45)

where, ω123 is an orthogonal momenta to p1, p2 and p3. While ω+ and ω− are orthogonal
to p4 and p5 and satisfy the constraint ω+ · ω− = 0. As in the previous case, the vari-
ables xi, yi and λii are obtained from the difference of denominators. These variables are,
again, expressed in terms of x4, y3 and y4 and the loop denominators. We remark that, for
factorised topologies, the value of λ12 has non-meaning, since this term is spurious, in the
sense that it vanishes upon integration.

The residue ∆124567 is made of two subtopologies, which turn to be boxes. Hence, the loop
momenta are parametrised as follows

k̄α1 = x1 p
α
1 + x2 p

α
4 + x3 p

α
5 + λα1 , λα1 = x4 ω

α
145 + µα1 ,

k̄α2 = y1 p
α
1 + y2 p

α
4 + y3 p

α
5 + λα2 , λα2 = y4 ω

α
145 + µα2 , (8.46)

with ω145 an orthogonal momenta to p1, p4 and p5. From this decomposition, all the com-
ponents of the loop are expressed in terms of x3, x4, y3 and y4 and the loop denominators.

The main outcome of the AID is the role of the new components of the loop. In fact,
numerators and denominators in the integrand are written in terms of a different set variables.
This difference, originated from the splitting of the space-time dimension in terms of parallel
and orthogonal dimensions, allows for new roles of these variables. The traditional integrand
reduction methods are slightly modified. The polynomial division is simplified, no need of passing
by the Gröbner basis.
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Ii1···ir ∆i1···ir ∆+++++
i1···ir ∆int

i1···ir ∆int +++++
i1···ir

76
{1, x4, y3, y4} 48 – –

160
{1, x3, x4, y3, y4}

64 – –

100
{1, x3, x4, y3, y4} 36

4
{1, λ11, λ22} 1

50
{1, x4, y3, y4} 30

6
{1, λ11, λ22} 3

160
{1, x3, x4, y3, y4}

38
93

{1, x3, y3, λ11, λ22, λ12}
39

100
{1, x3, x4, y3, y4} 36

4
{1, λ11, λ22} 1

Table 8.1: Residue parametrisation within AID for the non-vanishing two loop topologies of
the all plus five gluon-amplitude. In the second column, we list the number of monomials of
a generic residue and the set of variables appearing in it. In the third column, we list the
number of monomials that contribute to our process. Columns fourth and fifth correspond to
the number of monomials for a generic residue and the one we are fitting according to our
kinematics, respectively.

In order to compute the two loop contribution to the five gluon amplitude, we plug the
loop momenta, according to AID algorithm. The results of this calculation are summarised
in Tab. 8.1. This table shows a comparison between what is expected to obtain for any topol-
ogy, generic structure of the residue, and the number of terms that contributes to this amplitude.

Since we are not providing analytical results for this computation, we attach a mathemat-

ica notebook, 5g.2L.m1., that sketches the structure of the residues after fitting. This notebook,
firstly, contains the list of monomial we refer to in Tab. 8.1. For instance, the residue ∆+++++

1234567

is written in terms of the following monomials

∆+++++
1234567 =c0y

2
4 + c1y

3
4 + c2y3y

2
4 + c3y

2
3 + c4y

2
3y4 + c5y

3
3 + c6x4y

2
4 + c7x4y

3
4 + c8x4y3y

2
4

+ c9x4y
2
3 + c10x4y

2
3y4 + c11x4y

3
3 + c12x

2
4y

2
4 + c13x

2
4y

3
4 + c14x

2
4y3y

2
4 + c15x

2
4y

2
3

+ c16x
2
4y

2
3y4 + c17x

2
4y

3
3 + c18x

3
4y

2
4 + c19x

3
4y

3
4 + c20x

3
4y3y

2
4 + c21x

3
4y

2
3 + c22x

3
4y

2
3y4

+ c23x
3
4y

3
3 + c24x

4
4y

2
4 + c25x

4
4y

3
4 + c26x

4
4y3y

2
4 + c27x

4
4y

2
3 + c28x

4
4y

2
3y4 + c29x

4
4y

3
3 .
(8.47)

Similarly, for topologies with less than five external legs or factorised ones, we can integrate
the residues of Eq. (8.42) over the transverse directions. This procedure, for each residue, is
presented in the second part of the mathematica notebook. It clearly shows, as anticipated

1This notebook together with auxiliary files can be downloaded from this http URL.
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in the discussion, the dependence of the coefficients on the dimension. In order to make this
statement clear, we integrate the residue ∆+++++

1234567 , getting

∆int +++++
1234567 =

(c0 + c3)λ22
d− 2

+
(c12 + c15)λ11λ22
(d− 3)(d − 2)

+
3(c24 + c27)λ

2
11λ22

(d− 3)(d− 2)(d − 1)
. (8.48)

Additionally, the integrated residues may lead to a new representation of the amplitude,
whose discussion is, nevertheless, beyond the scope of this chapter.

8.3 Discussion

We have briefly described the extension of the unitarity based methods at multi-loop level.
In particular, we have stressed on the two-loop case, reviewing the available techniques for
their computation. Firstly, we described the calculation of multi-loop amplitudes by considering
the polynomial division module Gröbner basis. This algorithm, based on algebraic geometry,
has allowed to understand main ingredients of the integrand reduction methods. At one-loop,
for instance, the structure of the residues proposed by the OPP method were elucidated. In
the same manner, an automation at multi-loop level was provided by the mathematica code
BasisDet [249]. The role of irreducible scalar products and spurious terms were made clear by
cleverly using algebraic geometry.

This algorithm has been employed on the calculation of the well known two-loop four gluon
amplitudes. The difference with previous approaches [80, 88] lies on the way the integrand is
produced. We generated the two-loop integrand by following a diagrammatic study, whose set
of Feynman rules is written in Feynman gauge. The reduction relies on two steps: generation of
the integrand and fit the residues according to the parametric structure of the residue given by
BasisDet.

As an alternative procedure, we have also reviewed the recent algorithm, adaptive integrand
decomposition (AID) [201]. This algorithm decomposes the space-time dimension, d = d‖+d⊥, in
parallel and perpendicular subspaces, allowing us to extract new properties for the calculation of
multi-loop amplitudes. The polynomial division is straightforwardly computed by just applying
a list of substitutions, no need of passing by the Gröbner basis. Because of the way how the cut
solutions are parametrised, the spurious terms are easily identified. This identification allows us
to perform a simple integration, which just takes into account the properties of the Gegenbauer
polynomials.

As an application of this new method, we provided the computation of the two-loop all
plus five gluon amplitude. Similar to the four-gluon amplitude, we generated, by following
a diagrammatic approach, the integrands needed for the computation of the amplitude. The
comparison of our results is done against the ones of Ref. [88]. Since this check was performed
numerically, we provided parametric structure for non-zero residues. Consequently, we apply
the second step of the algorithm, by means of the integration of the residues over the transverse
variables.
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Conclusion

In this thesis, we presented developments in calculating perturbative scattering amplitudes in
QCD theory. In particular, we discussed computational techniques for gauge boson and fermion
scattering amplitudes at tree and multi-loop level. The main focus of the thesis was the study
of the on-shell methods, that exploit analyticity and unitarity properties of the S-matrix.

We introduced a four dimensional formulation (FDF) of d-dimensional regularisation of one-
loop scattering amplitudes. Particles in d-dimensions propagating inside the loop are represented
by massive ones. Their interactions are described by generalised four-dimensional Feynman
rules. Gauge bosons in d-dimensions were represented in four-dimensions by a combination of
massive gauge boson and a scalar particle. Fermions in d-dimensions were represented by four-
dimensional fermions obeying the Dirac equation for tachyonic particles. Within FDF, we used
the four-dimensional representation of the spinor-helicity formalism to express the polarisation
and helicity states of the particles inside the loop. This representation allowed for a complete,
four-dimensional, unitarity-based construction of d-dimensional amplitudes.

Within FDF, we calculated, through four-dimensional generalised unitarity and integrand
reduction methods, relevant processes for the physics of the LHC. We presented a set of very
non-trivial examples, showing that FDF scheme is suitable for computing important 2 → 2, 3, 4
partonic amplitudes at one-loop level. We first considered two gluons production by quark
anti-quark annihilation. Then, the (up to four) gluon production, gg → ng with n = 2, 3, 4.
And finally, the Higgs and (up to three) gluons production via gluon fusion, gg → ngH with
n = 1, 2, 3, in the heavy top mass limit.

On the colour-kinematics (C/K)-duality side, we investigated, from a diagrammatic point of
view, its off-shellness. We considered gauge theories couple with matter in four- as well as in
d-dimensions. For the former we studied the scattering processes gg → ss, qq̄, gg , while for the
latter we took into account all the interactions of the d-dimensional particles described by FDF. It
turned out that the C/K-duality is non-trivially satisfied within higher multiplicity tree or multi-
loop level graphs, originating anomalous terms. We provided an alternative procedure for the
construction of dual numerators. This procedure, based on the generalised gauge transformation,
accounts for the structure of the anomalous terms. We presented the explicit calculation for the
tree-level contribution to gg → qq̄g for the four- and d-dimensional case.

As byproduct of our procedure we found a set of relations between primitive amplitudes,
which corresponded to the BCJ identities for four- and d-dimensionally regulated amplitudes.
Additionally, we combined the integrand reduction method via Laurent expansion and the set
of BCJ identities for d-dimensionally regulated amplitudes, finding relations between one-loop
integral coefficients. Because of FDF, these relations can be established for the cut constructible
contributions as well for the ones responsible for rational terms.

We showed that low-energy behaviour of radiative tree-level amplitudes in QCD is governed
by the non-radiative process and depends on the quantum data of the emitter. The non-radiative
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process is perturbed by universal operators. We showed that these operators can be derived from
gauge invariance and from the on-shell construction. Indeed, within the spinor-helicity formal-
ism, we showed that the subleading soft operator of single gluon emission from quark-gluon
amplitudes appears as a differential operator. The form of this operator does not depend on the
spin of the emitter. Our study is complement to the results derived for Yang-Mills and gravity
theories.

In the multi-loop level case, we showed examples of the application of both the fit-on-the-cut
and the adaptive integrand decomposition. We showed how these techniques accompanied by the
OPP decomposition allowed the computation of any amplitude at multi-loop level. We believed
that the technology used to compute these amplitudes will be, in the future, very useful for
phenomenological studies in particle physics.
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Appendix A

One-loop 2-point integrals

In this appendix we show how the 2-point tensor integrals presented in the one-loop decom-
position (4.43) can be reduced to scalar integrals. While in this appendix we focus on 2-point
functions, an exhaustive study of the algebraic reduction of the one-loop tensor integrals to scalar
integrals was done in [315].

Let us consider the following master integrals (MIs)

B0; Bµ; Bµν

(
p2; m1; m2

)
=

∫
dnq

iπ2
1; qµ; qµqν

q2 (q + p)2
. (A.1)

By covariant decomposition

Bµ = pµB1 , (A.2)

Bµν = pµpνB21 + ḡµνB22 , (A.3)

with

B1

(
p2, 0, 0

)
= −1

2
B0

(
p2, 0, 0

)
, (A.4)

B21

(
p2, 0, 0

)
=

1

3
B0

(
p2, 0, 0

)
+

1

18
, (A.5)

Let us write down the explicit MIs we need

Iij [1] = B0 , (A.6)

Iij [(q · e2)] = e2 ·B = (e2 · p)B1 = −1

2
(e2 · p)B0 , (A.7)

Iij

[
(q · e2)2

]
= eµ2e

ν
2Bµν = (e2 · p)2B21 =

1

3
(e2 · p)2B0 +

1

18
(e2 · p)2 , (A.8)

Iij
[
µ2
]
= −1

6
p2 . (A.9)

We remark the bubble contributions from Eq. (4.43)

n−1∑

i<j

{
c
(ij)
2,0 Iij [1] + c

(ij)
2,1 Iij [(q · e2)] + c

(ij)
2,2 Iij

[
(q · e2)2

]
+ c

(ij)
2,9 Iij

[
µ2
]}

. (A.10)

The cut-constructible part takes the form

n−1∑

i<j

{
c
(ij)
2,0 − 1

2
(e2 · p) c(ij)2,1 +

1

3
(e2 · p)2 c(ij)2,2

}
B0 , (A.11)
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whereas the rational part

n−1∑

i<j

{
1

18
(e2 · p)2 c(ij)2,2 + c

(ij)
2,9 Iij

[
µ2
]}

, (A.12)

where the coefficient of c
(ij)
2,2 can be written in terms of Iij

[
µ2
]

as

1

18
(e2 · p)2 = − 1

3p2
(e2 · p)2 Iij

[
µ2
]
. (A.13)

This relation allows us to write the rational part as

n−1∑

i<j

{
− 1

3p2
(e2 · p)2 c(ij)2,2 + c

(ij)
2,9

}
Iij
[
µ2
]
. (A.14)

In the computation presented in this thesis, we always consider gauge independent quantities.
Therefore, the final results must be gauge independent as well. It turns out that the coefficients
c2,i are gauge dependent. Moreover, as soon as we reduce tensor integrals into scalar integrals
everything becomes gauge independent, by meaning of the linear combination of c2,i.
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Appendix B

Further features of the

Four-dimensional-formulation

B.1 One-loop equivalence

In this Appendix we show that, at one loop, the FDH scheme defined by Eqs. (5.2) – (5.5b) is
equivalent to the one defined by Eqs. (5.2) – (5.5a) and (5.9).

In the two approaches the only differences may arise from the manipulations of the −2ǫ
components of the Dirac matrices contracted among each others. Therefore potential differences
in their predictions can only be rational contributions of divergent diagrams involving at least
an open fermion line. The loop-dependent part of the integrand of a one-loop diagram is a sum
of integrands of the type

I r,a,k ≡ ℓµ1 · · · ℓµr (µ2)a

Di1 · · ·Dik

, Dj ≡ (ℓ+ pj)
2 −mj − µ2 . (B.1)

An integrand I r,a,k leads to a divergent integral if it satisfies the conditions

4 + r + 2 a− 2 k ≥ 0 . (B.2)

At one loop in QCD the diagrams involving at least an open fermion line and integrands fulfilling
the conditions (B.2) are

ℓ̄

, ℓ̄ ,
ℓ̄ + p

ℓ̄

.

For these diagrams, the numerators obtained by using the two schemes differ by terms of the
type

· · · γ̃α(/ℓ + /̃ℓ +m)γ̃α · · · ,
· · · γ̃α(/ℓ + /̃ℓ +m)γµ(/ℓ + /p+ /̃ℓ +m)γ̃α · · · , (B.3)

where “ · · · " represent four dimensional spinorial objects. In the FDH scheme it is easy to show
that the terms (B.3) vanish in the ds → 4 limit, while in the other scheme they vanish as a
consequence of Eq. (5.9). Therefore the two sets of prescriptions lead to the same integrand.

The FDF fulfills the prescriptions (5.2) – (5.5a) and (5.9), thus, at one loop, it leads to the
same amplitudes of the FDH scheme.
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B.2 Proof of the completeness relations

In this Appendix we show that the generalised spinors (5.17) fulfil the completeness relation (5.16).
For later convenience we define the chirality projectors

ω± =
I± γ5

2
, (B.4)

and we show that:

|qℓ][ℓ♭| − |l♭][qℓ|
[ℓ♭qℓ]

=
|qℓ]〈qℓ ℓ♭〉[ℓ♭|+ |ℓ♭]〈ℓ♭ qℓ〉[qℓ|

2ℓ♭ · qℓ
=

(|qℓ]〈qℓ|)(|ℓ♭〉[ℓ♭|) + (|ℓ♭]〈ℓ♭|)(|qℓ〉[qℓ|)
2ℓ♭ · qℓ

=
ω−/qℓω+/ℓ

♭
+ ω−/ℓ

♭
ω+/qℓ

2ℓ♭ · qℓ
=
ω2
−{/qℓ /ℓ

♭}
2ℓ♭ · qℓ

= ω− , (B.5a)

and similarly

|ℓ♭〉〈qℓ| − |qℓ〉〈ℓ♭|
〈qℓ ℓ♭〉

= ω+ . (B.5b)

Using Eqs. (B.5) we get

∑

λ=±
uλ(ℓ)ūλ(ℓ) =

(
|ℓ♭〉+ (m− iµ)

[ℓ♭ qℓ]
|qℓ]
)(

[ℓ♭|+ (m+ iµ)

〈qℓ ℓ♭〉
〈qℓ|
)

+
(
|ℓ♭] + (m+ iµ)

〈ℓ♭ qℓ〉
|qℓ〉
)(

〈ℓ♭|+ (m− iµ)

[qℓ ℓ♭]
[qℓ|
)

= /ℓ
♭
+
m2 + µ2

2ℓ♭ · qℓ /
q
ℓ
+ (m− iµ)

|qℓ][ℓ♭| − |ℓ♭][qℓ|
[ℓ♭ qℓ]

+ (m+ iµ)
|ℓ♭〉〈qℓ| − |qℓ〉〈ℓ♭|

〈qℓ ℓ♭〉
Eq. (B.5)

= /ℓ
♭
+
m2 + µ2

2ℓ♭ · qℓ /
q
ℓ
+ (m− iµ)ω− + (m+ iµ)ω+

Eq. (5.14)
= /ℓ + iµγ5 +m. (B.6)

B.3 Colour-ordered Feynman rules

In the FDF, the d-dimensional colour-ordered Feynman rules collected in Ref. [217] become:

α β

k
= −i 1

k2 − µ2 + i0

[
gαβ − kαkβ

µ2

]
, (gluon), (B.7a)

A B

k
= −i 1

k2 − µ2 + i0

[
GAB −QAQB

]
, (scalar), (B.7b)

k

= i
/k + iµγ5 +m

k2 −m2 − µ2 + i0
, (fermion), (B.7c)

1, α

2, β

3, γ

=
i√
2

[
gαβ(k1 − k2)γ + gβγ(k2 − k3)α + gγα(k3 − k1)β

]
, (B.7d)
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1, α

2, B

3, C

=
i√
2
(k2 − k3)αG

BC , (B.7e)

1, α

2, B

3, γ

= ± i√
2
gαγ(iµ)Q

B (k̃1 = 0, k̃3 = ±ℓ̃) , (B.7f)

1, α

4, δ

2, β

3, γ

= igαγgβδ −
i

2

(
gαβgγδ + gαδgβγ

)
, (B.7g)

1, α

4, δ

2, B

3, C

= − i

2
gαδG

BC , (B.7h)

1

2, β

3

= − i√
2
γβ , (B.7i)

1

2, β

3

=
i√
2
γβ , (B.7j)

1

2, B

3

= − i√
2
γ5ΓB , (B.7k)

1

2, B

3

=
i√
2
γ5ΓB , (B.7l)

The colour-ordered Feynman rules describing the interaction among an external Higgs boson
and gluons in the infinite top-mass limit are given by

H

2, β

3, γ

= −2i
[
kβ3 k

γ
2 − gβγ(k2 · k3 + µ2)

]
, (B.8a)

H

2, B

3, γ

= ±2 kγ2 µQ
B , (k̃3 = ±ℓ̃) , (B.8b)

H

2, β

3, C

= ±2 kβ3 µQ
C , (k̃2 = ±ℓ̃) , (B.8c)

H

2, B

3, C

= −2i
[
µ2QBQC −GBC(k2 · k3 + µ2)

]
, (B.8d)
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H

4, δ

2, β

3, γ

= i
√
2
[
gβγ(k2 − k3)δ + gβδ(k4 − k2)γ + gγδ(k3 − k4)β

]
, (B.8e)

H

4, D

2, β

3, C

= i
√
2GCD(k3 − k4)β , (B.8f)

H

4, δ

2, β

3, C

= ∓
√
2gβδ µQ

C , (k̃4 − k̃2 = ±ℓ̃) . (B.8g)

In the Feynman rules (B.7), (B.8) all the momenta are outgoing. The terms µ2 appearing in
the the propagators (B.7a)–(B.7c) enter only if the corresponding momentum k is d-dimensional,
i.e. only if k contains the loop momentum ℓ̄. In the vertex (B.7f) the momentum k1 is four-
dimensional while the other two are d-dimensional. For these vertices the overall sign depend
on which of the combinations (5.13) is present in the vertex. Similarly the overall sign of the
Feynman rules (B.8b), (B.8c) and (B.8g) depend on the flow of the loop momentum ℓ̄. As already
mentioned each cut scalar propagator carries a (−2ǫ)-SRs factor of the type

A B
= ĜAB , (B.9)

where ĜAB is defined in Eq. (5.27).
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Appendix C

Coefficient relations from 5-point BCJ

identities

In this Appendix we collect the set of identities, obtained through the use of the d-dimensional
BCJ relations for five-point amplitudes of the type (7.30), that can be used to relate integral
coefficients associated to multiple cuts which, besides sharing the same on-shell solutions, differ
from the ordering of three external particles.

C.1 Relations for pentagon coefficients

Figure C.1: Pentagon topologies for the cuts C123|4...k|(k+1)...l|(l+1)...m|(m+1)...n,
C132|4...k|(k+1)...l|(l+1)...m|(m+1)...n and C231|4...k|(k+1)...l|(l+1)...m|(m+1)...n.

We consider the three quintuple-cuts shown in Fig C.1, which differ from the ordering of the
particles p1, p2, p3. The contribution from the ordering {1, 2, 3} is given by

C±
123|4...r|(r+1)...s|(s+1)...t|(t+1)...n =Atree

5

(
−l±1 , 1, 2, 3, l±4

)
Atree

r−1

(
−l±4 , P4···r, l

±
r+1

)
Atree

s−r+2

(
−l±r+1, Pr+1...,s, l

±
s+1

)

×Atree
s−t+2

(
−l±s+1, Ps+1···t, l

±
t+1

)
Atree

n−t+2

(
−l±t+1, Pt+1···n, l

±
1

)

(C.1)

and the other two cuts are obtained from the corresponding permutations of {1, 2, 3}. Eq. (7.30)
can be used in order to relate the amplitudes Atree

5

(
−l±1 , 1, 2, 3, l±4

)
, Atree

5

(
−l±1 , 1, 3, 2, l±4

)
and

Atree
5

(
−l±1 , 2, 1, 3, l±4

)
and, thus, to identify

C±
213|4...r|(r+1)...s|(s+1)...t|(t+1)...n

=

(
P 2
l±4 2

+ P 2
23 − µ2

)
C±
123|4...r|(r+1)...s|(s+1)...t|(t+1)...n +

(
P 2
l±4 2

− µ2
)
C±
132|4...r|(r+1)...s|(s+1)...t|(t+1)...n(

P 2
−l±1 2

− µ2
) .

(C.2)
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Analogously to the case discussed in Section 7.4.1, the constant ratios of propagators

P 2
l±4 2

− µ2

P 2
−l±1 2

− µ2
= α±,

P 2
l±4 2

+ P 2
23 − µ2

P 2
−l±1 2

− µ2
= β±, (C.3)

allow us to translate (C.2) into a simple identity between the coefficients of the expansion (7.34)
for the three cuts,

c(213|...)± = β±c(123|...)± + α±c(132|...)±. (C.4)

C.2 Relations for box coefficients

Figure C.2: Box topologies for the cuts C123|4...k|k+1...l|l+1...n, C132|4...k|k+1...l|l+1...n and
C231|4...k|k+1...l|l+1...n.

Similarly to the previous case, we can use the BCJ identities to relate the quadruple cuts
depicted in Fig. C.2, given by

C±
123|4...r|(r+1)...s|(s+1)...n =Atree

5

(
−l±1 , 1, 2, 3, l±4

)
Atree

r−1

(
−l±4 , P4···r, l

±
r+1

)

×Atree
s−r+2

(
−l±r+1, Pr+1...,s, l

±
s+1

)
Atree

n−s+2

(
−l±s+1, Ps+1···n, l

±
1

)

(C.5)

and suitable permutations of {1, 2, 3} for C±
132|4...r|(r+1)...s|(s+1)...n and C±

213|4...r|(r+1)...s|(s+1)...n.

If we make use of (7.30) on the amplitudes involving the particles p1, p2 and p3, we obtain

C±
213|4...r|(r+1)...s|(s+1)...n

=

(
P 2
l±4 2

+ P 2
23 − µ2

)
C±
123|4...r|(r+1)...s|(s+1)...n +

(
P 2
l±4 2

− µ2
)
C±
132|4...r|(r+1)...s|(s+1)...n(

P 2
−l±1 2

− µ2
) . (C.6)

As shown in Section 7.4.2, the two box coefficients contributing to the amplitude can be extracted
by taking the µ2 → 0 and µ2 → ∞ limits, where the ratios of propagators behave like

P 2
l±4 2

− µ2

P 2
−l±1 2

− µ2

∣∣∣∣∣∣
µ2→0

= α±
0 ,

P 2
l±4 2

− µ2

P 2
−l±1 2

− µ2

∣∣∣∣∣∣
µ2→∞

= α±
4 +O

(
1

µ

)
,

P 2
l±4 2

+ P 2
23 − µ2

P 2
−l±1 2

− µ2

∣∣∣∣∣∣
µ2→0

= β±0 ,
P 2
l±4 2

+ P 2
23 − µ2

P 2
−l±1 2

− µ2

∣∣∣∣∣∣
µ2→∞

= β±4 +O
(
1

µ

)
. (C.7)

Thus, starting from (C.6) we can relate the coefficients of the expansions (7.40a)-(7.40b) of the
three quadruple cuts trough the identities

c
(213|...)±
i = β±i c

(123|...)±
i + α±

i c
(132|...)±
i , i = 0, 4. (C.8)
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C.3 Relations for triangle coefficients

Figure C.3: Triangle topologies for the cuts C123|4...k|(k+1)...n, C132|4...k|(k+1)...n and
C213|4...k|(k+1)...n.

Now we turn our attention to the triangle topologies shown in Fig. C.3. The expression of
the cut with external ordering {1, 2, 3, ... n} in terms of tree-level amplitudes is given by

C±
123|4...k|(k+1)...n = Atree

5

(
−l±1 , 1, 2, 3, l±4

)
Atree

k−1

(
−l±4 , P4···k, l

±
k+1

)
Atree

n−k+2

(
−l±k+1, Pk+1...,n, l

±
1

)

(C.9)

and, as usual, C±
132|4...k|(k+1)...n and C±

213|4...k|(k+1)...n are obtained from the corresponding per-

mutations of {1, 2, 3}. Eq. (7.30) allow us to identify

C±
213|4...k|(k+1)...n =

(
P 2
l±4 2

+ P 2
23 − µ2

)
C±
123|4...k|(k+1)...n +

(
P 2
l±4 2

− µ2
)
C±
132|4...k|(k+1)...n(

P 2
−l±1 2

− µ2
) (C.10)

and, following the procedure of Section 7.4.3, we can take the large-t limit of the two ratios of
propagators,

P 2
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− µ2

P 2
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− µ2

∣∣∣∣∣∣
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1
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0∑

m=−3

β±m,0t
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−2∑
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β±m,2t
m +O

(
1

t4

)
, (C.11)

and use it in (C.10) in order to express the coefficients of the expansion (7.46) of C±
213|4...k|(k+1)...n

in terms of the ones of C123|4...k|(k+1)...n and C132|4...k|(k+1)...n,

c
(213|...)±
m,0 =

3−m∑

l=0

[
β±−l,0 c

(123|...)±
l+m,0 + α±

−l,0 c
(132|...)±
l+m,0

]
, (C.12)

c
(213|...)±
m,2 =

1−m∑

l=0

[
β±−l−2,2 c

(123|...)±
l+m+2,0 + β±−l,0 c

(123|...)±
l+m,2 + α±

−l−2,2 c
(132|...)±
l+m+2,0 + α±

−l,0 c
(132|...)±
l+m,2

]
. (C.13)

C.4 Relations for bubble coefficients

Finally, we use the BCJ identities in order to determine relations between the coefficients of the
bubble contributions shown in Fig. C.4. The double cut with external ordering {1, 2, 3 ... , n} is
given by

C±
123|4...n =Atree

5

(
−l±1 , 1, 2, 3, l±4

)
Atree

n−1

(
−l±4 , P4···n, l

±
1

)
, (C.14)
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Figure C.4: Bubble topologies for the cuts C123|4...n, C132|4...n and C213|4...n.

whereas C±
132|4...n and C±

213|4...n are obtained from the corresponding permutations of {1, 2, 3}.
Hence, thanks to (7.30), we can identify

C±
213|4...n =

(
P 2
l±4 2

+ P 2
23 − µ2

)
C±
123|4...n +

(
P 2
l±4 2

− µ2
)
C±
132|4...n(

P 2
−l±1 2

− µ2
) . (C.15)

As we did in Section 7.4.4, after taking the t→ ∞ limit of the two ratios of propagators,
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)
, (C.16)

we can substitute the expansion (7.52) for the three cuts in (C.15) and determine the coefficients
of C±

213|4...n from the knowledge of the ones of C±
123|4...n and C±

132|4...n,

c
(213|...)±
l,m,0 =

2∑

r=l




min[m,2−r]∑
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(
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)

 , (C.17a)

c
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