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Abstract

This research work presents a novel neuromusculoskeletal (NMS) model of the

human lower limb that is physiologically accurate and computationally fast. The

NMS model uses electromyography (EMG) signals recorded from 16 muscles to

predict the force developed by 34 musculotendon actuators (MTAs). The operation

of each MTA is constrained to simultaneously satisfy the joint moments generated

with respect to 4 degrees of freedom (DOF) including: hip adduction-abduction, hip

flexion-extension, knee flexion-extesion and ankle dorsi-plantar flexion. Advanced

methods are developed to capture the human movement and produce realistic

motion simulations. These are used to provide dynamic consistency to the NMS

model operation. Pattern recognition and machine learning technology is used to

predict the human motor intention from the analysis of EMG signals and integrate

context knowledge into the EMG-driven NMS model.

This research develops the technology needed to establish an EMG-driven

human-machine interface (HMI) for the simultaneous actuation of multiple joints

in a lower limb powered orthosis. This work, indeed, shows for the first time it

is possible to use EMG signals to estimate the joint moments simultaneously

produced about multiple DOFs and this is crucial to provide better estimates of

muscle force with respect to the state of the art. This thesis also suggests the

NMS model can be exploited to address the challenge of autonomous locomotion

in musculoskeletal humanoids.

The objective of this work therefore, is to provide effective solutions and readily

available software tools to improve the human interaction with robotic assistive

devices. This is achieved by advancing research in neuromusculoskeletal modeling

to better understand the mechanisms of actuation provided by human muscles.

Understanding these mechanisms is the key to realize human interaction with

wearable assistive devices. This work designs and develops the technology for

achieving this.
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Sommario

Questo lavoro di ricerca presenta un innovativo modello neuromuscoloscheletrico

(NMS) dell’arto inferiore umano. Il modello è fisiologicamente accurato e compu-

tazionalmente efficiente. Utilizza segnali elettromiografici (EMG) acquisiti da 16

muscoli per predire la forza sviluppata da 34 attuatori muscolo-tendinei (MTAs).

Ogni MTA è vincolato a soddisfare i momenti articolari generati rispetto a 4 gradi

di libertà: adduzione-abduzione e flessione-estensione dell’anca, flessione-estensione

del ginocchio e flessione plantare-dorsale della caviglia. Sono stati sviluppati me-

todi avanzati per digitalizzare il movimento umano e creare simulazioni motorie

realistiche. Queste vengono utilizzate per assicurare consistenza dinamica durante

l’esecuzione del modello NMS. Tecniche di pattern recognition e machine learning

vengono poi utilizzate per predire il tipo di movimento che il soggetto umano

vuole compiere attraverso l’analisi dei segnali EMG. Questa ricerca sviluppa gli

strumenti necessari per realizzare un interfaccia uomo macchina (HMI) comandata

da segnali EMG che consenta l’attuazione simultanea dei giunti articolari in un

esoscheletro dell’arto inferiore.

Viene mostrato, infatti, per la prima volta, che è possibile usare segnali EMG

per stimare i momenti articolari prodotti rispetto a più gradi di libertà e che

questo è fondamentale per ottenere stime corrette della forza muscolare. Questa

tesi illustra anche la possibilità di implementare strategie di locomozione per robot

umanoidi dotati di una struttura muscoloscheletrica.

L’obiettivo di questo lavoro è quindi quello di fornire soluzioni efficaci e

strumenti software avanzati per migliorare l’interazione umana con dispositivi

robotici di assistenza. Questo è ottenuto attraverso una ricerca nel campo della

modellazzione neuromuscoloscheletrica per comprendere i meccanismi di attuazione

propri dei muscoli uniarticolari e biarticolari umani. La comprensione di tali

meccanismi rappresenta il punto chiave per lo sviluppo di soluzioni efficaci per

il controllo di sistemi assistivi indossabili. Questo lavoro mette a disposizione la

tecnologia necessaria per ottenere tali risultati.
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Chapter 1

Introduction

The skeletal muscles are the natural actuators responsible for human movement [1–

4]. Understanding how muscles activate and generate force about multiple joints

and propel the human body towards a specific motion will significantly impact

several research areas ranging from physical therapy to neuro-rehabilitation, from

computer animation to robotics [5]. Research in rehabilitation robotics strongly

relies on understanding the mechanisms underlying human muscle activation for

the purpose of improving the interaction between the human and the machine [5–7].

The design of intelligent assistive devices such as powered orthoses or exoskeletons

requires indeed a deep understanding of the force the patient’s muscles are able

to produce. Such knowledge will better define the dynamics and the magnitude

of support the machine will have to provide the user with [7–11]. Research in

humanoid robots is also moving toward human-inspired methodologies. The new-

generation of humanoid robots will have highly complex skeletal structures and

artificial muscle actuators that increasingly resemble the human musculoskeletal

system [12, 13]. Understanding how muscles are activated to actuate the human

body will directly allow designing motion and balance controller to move humanoid

robots in a more sophisticated way.
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4 1. INTRODUCTION

1.1 The Problem

Research on assistive devices to support disabled people’s mobility or to augment

healthy subjects’ capabilities has always been an important topic in the robotics

community. In 1970’s the pioneer group around Vukobratovic proposed one of

the first wearable exoskeletons to help patients with defects in their locomotion

system regain their motor capabilities [14]. However, lack of computer processor

power, heavy actuators (both pneumatic and electrical), and heavy power supplies

limited the realization of interesting theoretical results. Since then, the mechanics

and electronics design has significantly improved. This led to light-weight and

reduced-size devices that the operator can easily wear and carry [7–10, 15–17].

The fast advancement of mechatronics design (i.e. mechanics and electronics), was

not followed however by an equally fast advancement in the design of effective

interfaces between the operator and the device [18]. Whatever the application of

the assistive device is, there is the need for a human-machine interface (HMI) to

realize the online device control. The HMI needs to be intuitive, i.e. it has to allow

the operator to concentrate on fulfilling a task in cooperation with the assistive

device rather than on the control.

A HMI essentially has to estimate the subject’s motor intention and provide

an adequate device control command. The motor intention can be evaluated in

different ways. A common solution is that of evaluating the dynamics of the

operator together with that of the assistive device and use them to calculate the

support moment for the joints. In other words, the HMI evaluates the current

contribution of both subject and assistive device to the movement and defines

how much extra support has to be given. In case of the BLEEX exoskeleton for

example, the evaluation of the inverse dynamics model of the exoskeleton results

in the joint moments that are currently applied [19]. By contributing a certain

share of these moments through the actuation of the exoskeleton, the operator is

relieved of some of the load. In other projects the exoskeletons add fixed shares

of the moment that is required to maintain a static pose with the current joint

configuration [16, 20]. The drawback of these HMIs is that to perform a movement,

the operator has to be able to initiate the movement before they can receive
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support from the system. As a result, the assistive device operation is not directly

coupled to that of the operator. Furthermore, the utilized dynamic models are

very sensitive to kinematic measurements and to changes in the mass of operators,

exoskeletons, payloads, and to external contact forces that have not been modeled

or have not been accurately measured [9].

In recent years a body of research has been conducted on connecting the control

system to biological signals generated by the operator that are directly linked to

the desire of motion [7–9, 15, 17]. The process of generation of movement is dealt

by the central and peripheral nervous systems. That is, movements are generated in

the brain, some in the brain stem, and some in the spinal cord. As a result, muscles

are activated to actuate the human joints. HMIs have been proposed in which

EEG1 signals recorded from the brain motor cortex are evaluated [21–23]. EEG

signals are described using a series of parameters in both the frequency and time

domain. These are used to generate a set of features that can be used to identify

EEG patterns as members of specific classes associated to a type of movement.

This approach uses pattern recognition and machine learning technology and does

not need biologically relevant models of the human neuromusculoskeletal system.

Once the specific movement is recognized, predefined trajectories are used to

actuate the assistive device and passively move the patient limb. This technique

is mostly used for the control of prosthetic upper limbs. Indeed, rhythmic and

cyclic movements such as walking are generated in the spinal cord rather than in

the brain and EEG classification cannot be exploited effectively [24, 25].

An alternative solution is that of recording the final output of the process of

generation of movement, that is the muscle activity. This can be done by using

electromyography (EMG). According to [26], electromyography is the study of

muscle function through the inquiry of the electrical signals the muscles emanate.

EMG signals are emitted prior to muscle contraction and can be detected by

superficial non-invasive electrodes. EMG signals appear in lower limb muscles

approximately 10ms before the muscle actually contracts [27]. In the upper limb

muscles, delays are between 20 and 80ms. This is called electromechanical delay

(EMD). If the EMD can be exploited in the assistive device control system, the

1Abbreviation for Electroencephalography
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evaluation of the signal can be done by the time muscles contract and a robust

coupling between human and machine can be achieved [9, 10]. Furthermore, even

if the muscles are too weak to perform any movement, a support can still be

given as long as a proper evaluation can be done within the EMD. Furthermore,

EMG signals are generated unconsciously and no additional mental load is needed

by the operator. This makes EMG signals good candidates for establishing an

intuitive and effective HMI. A lot of interest was therefore paid in the development

of EMG-driven HMIs.

Pattern recognition and machine learning methods have also been used to

classify EMG activation patterns for the detection of different lomotion modes

[7, 28–30]. Likewise the EEG-based approach, this one does not need biologically

relevant models of the human musculoskeletal system and predefined trajectories

are used to actuate the assistive device and passively move the patient limb.

Neuromusculoskeletal (NMS) models of the human joints can alternatively be

used in which EMG signals are continuously evaluated and used as input to the

NMS model to estimate somatosensory information including: length, contraction

velocity and force of the muscles crossing a joint. These are then used to estimate

the moments produced at the subject’s joints during movement which are used

to subsequently control the actuation of the powered orthosis joints as in [9, 10].

EMG-driven NMS models allow designing HMIs that allow the user to actively

control the assistive device at all times as opposed to pattern-recognition-based

techniques that use predefined trajectories to actuate the device. The idea is that

of exploiting the natural actuation provided by muscles to create human-machine

interaction.

The most important problem in the study of human movement is the devel-

opment of accurate, non-invasive methods of calculating individual muscle and

ligament forces [31]. Furthermore, the use of EMG-driven NMS models to estimate

somatosensory informations has also been regarded as a key-point for the design

of assistive device control systems that can robustly embody humans ability of

moving. Citing Nakamura et al.: when the man-machine interface obtains access to

the somatosensory information, machines would make the first step to understand

humans [6].



1.2. STATEMENT OF THE PROBLEM 7

1.2 Statement of the Problem

The role of technology in the health sector has been growing increasingly in the

past years as well as the capability and the power of the systems involved. People

suffering from a debilitating disease can now benefit from the recent progresses in

healthcare technologies but many issues are still open. Current motor rehabilitation

therapies still cannot give back to patients their lost motor capabilities within a

short time frame or at affordable cost. The possibility of integrating robot-assisted

treatments in the physiotherapy could help decrease the length of the recovery

process as well as the costs involved. Researchers are currently developing models

of the human body that can simulate the motion of the human limbs and help

design better assistive robotic devices for people with disabilities. Indeed, the

availability of accurate and comprehensive human limbs models is required for the

development of effective human-machine interfaces (HMIs) and control systems

for rehabilitation robotic devices such as powered orthoses.

Mobility represents a basic need that has to be guaranteed to ensure inde-

pendence and to boost the integration of disabled people in the society. This is

one motivation that led this study to focus on lower limbs. A significant lack of

research on lower limbs compared to upper limbs was another reason.

This work presents the design and development of a novel NeuroMusculoSkeletal

(NMS) model of the human lower extremity. This model aims to be used as an

innovative HMI for the continuous active control of wearable assistive devices such

as powered orthoses to support disabled people’s lower limbs.

Because the intended HMI has to be able to recognize the motor intention of

disabled people, the use of methods that evaluate the subject’s dynamics (i.e. as

in the BLEEX example [19]) were regarded as unsuitable. The operator would

have to be able to move autonomously before receiving support from the system.

Because the intended HMI has to be able to recognize the motor intention

associated to lower limbs, EEG-based HMIs were regarded as unsuitable as

rhythmic movements such as walking are generated at the spinal cord level

[24, 25].

In this research work, EMG signals were therefore chosen to establish the HMI.
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Figure 1.1: Man-in-the-Loop approach using an EMG-driven NMS model to control a powered
orthosis.

Because the HMI has to provide active and continuous control, the use of pattern

recognition and machine learning techniques were regarded as unsuitable because

they use predefined joint trajectories to control the device. In this context the

operator plays a passive role. This fact leads to poor rehabilitation processes as

the user passively adapts to the imparted movements [7].

To ensure the user can continuously control the assistive device, EMG signals

were used in this work to drive a novel biologically relevant neuromusculoskeletal

model of the lower limb for the estimation of somatosensory information including:

length, contraction velocity, activation and force of the muscles crossing a joint.

The model is designed so that it can provide accurate estimates of forces produced

by the lower limb muscles during the human movement as well as the moments

simultaneously produced at the hip, knee and ankle joints. Pattern recognition

and machine learning methods were still investigated in this work with the plan

to combine this technology to that based on NMS models.
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1.2.1 Man in the Loop

The general idea behind the use of the NMS model to control assistive devices

is depicted in Fig. 1.1. The human subject is placed in a loop within which

the NMS model evaluates motion data and biological signals generated by the

subject as they move. Evaluations are used by the NMS model to predict the

force the subject’s muscles are able to generate. These are then further evaluated

to calculate the amount of support the assistive device will have to provide the

user with, in order to allow for the proper execution of the desired movement.

The assistive device will then actively support the subject by providing a force

feedback. For this to work, by the time the human muscles contract, the entire

loop has to be completed. This will allow actuating the orthosis as soon as the

human muscles activate. The real-time constraint for our proposed NMS model is

therefore the EMD. That is, the NMS model has to be able to produce estimates

of muscle forces and joint moments in less than 10ms.

1.3 EMG-driven NMS Modeling: An Overview

A great body of research has been previously conducted in the field of neuromus-

culoskeletal modeling. In the literature there have been adopted either simplified

neuromusculoskeletal models that are suitable for applications with real-time

constraints or very detailed and physiologically accurate models that are not

efficients from a computational point of view.

Biomechanists have developed complex NMS models that combine together

kinematic and kinetic data with EMG signals to study human muscle behavior

in vivo. This technique has been separately applied to various joints in the

human body such as the elbow [32], lower back [33], shoulder [34] and the knee

[1–3, 35–37]. These models are extremely accurate in the way they represent

physiological properties of the musculoskeletal system but are not suitable for

robotics applications with stringent real-time constraints. Only recently, robotics

researchers have developed models that are suitable for real-time applications [8–

10, 15, 38]. In [10], the authors present a model of the elbow joint that is able

to predict flexion-extension moments as a function of the joint kinematics and
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muscle neural activation level. The controlled device is an arm exoskeleton in

which the user straps into and performs exercises imparted by the machine. In [9]

EMG signals are used as input for a simplified EMG-driven model to derive the

force generated by 6 thigh muscles and estimate the knee joint flexion-extension

moment used to control a lower limb powered orthosis. These works, however,

utilize very simplified models of the human joint and the predicted somatosensory

information is often not representative of the actual muscle behavior. This makes

them not ideal for being integrated into the control system of assistive devices

that are to support a wide range of movements. The availability of accurate and

comprehensive human limbs models, combining high reliability and real-time

operation, is therefore needed for the development of effective HRIs and control

systems for rehabilitation robotic devices.

An additional limitation of current EMG-driven NMS models is they only

predict forces of muscles crossing one joint and moments about one single degree

of freedom (DOF), i.e. knee flexion-extension, elbow flexion-extension, etc. We will

refer to these models to as single-DOF EMG-driven NMS models. This limitation

poses questions on whether the estimated muscle forces are truly representative

of the real muscle behavior. Indeed, muscles normally develop forces that satisfy

multiple DOFs in multiple joints. Furthermore, when single-DOF EMG-driven

NMS models are used to control assistive devices, only the control of one DOF in

one joint only is allowed.

In [6] a whole-body NMS model was presented. However, it was not driven by

EMG signals and the muscle redundancy problem, i.e. the way muscles share the

load about a joint, was solved using optimization models. Optimisation models

typically involve partitioning individual muscle forces based upon an objective

function using a set of adjustable parameters within the model. Parameters

such as activation are optimised to achieve a solution for the objective function,

for example, achieving a movement with minimal joint contact force, minimal

muscle stress, or minimal muscle force. Achieving a solution to satisfy equilibrium

equations based on a single objective criterion give rise to questions regarding

the physiological validity of optimisation models [39]. The question arises then,

how do we know what the body is trying to optimise? And can an assumption on
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this optimisation process be generalised across all individuals? Challis et al [40]

showed that by using appropriate constraints, muscle forces can be kept within

physiological boundaries using optimisation techniques, however, the inferred

activation used to achieve a result is not necessarily related to the activation

patterns that are actually used by the central nervous system. Buchanan et al. [41]

also showed that any of a number of optimisation criteria could not adequately

represent actual muscle activity in their elbow joint experiments. These problems

remain if assumptions are made concerning the relative activations from individual

muscles surrounding a joint.

A hybrid approach that used optimisation criteria and muscle activation

patterns (measured using EMG) was presented in [42]. This is to overcome the

indeterminate biomechanical model. Selected gains were used to change individual

muscle forces and satisfy moment constraints about multiple joints using an

optimisation process whilst preserving the biological muscle recruitment patterns.

Although moment constraints were satisfied using this technique, the physiological

basis for using a set of gains to satisfy moment constraints must be questioned.

1.4 Novelty of this Research

This research work develops advanced methods for the realistic simulation of the

human movement from motion capture data. These data are used as input to the

NMS model to provide dynamic and anatomical consistency in the process. A new

knee joint model is developed in which functional axes can be defined and scaled

to the subject’s characteristics. Also, a new foot-ground contact model is created

and used to derive more accurate estimates of joint loading during movement

(Chapter 2).

This work proposes a novel EMG-driven NMS model that combines together

the physiological accuracy of the models proposed by the biomechanists, to the fast

operation of those proposed by robotics researchers. This work also demonstrates

the proposed NMS model can meet the real-time deadline associated to the control

of a lower limb powered orthosis (Chapters 3 and 4).

An effective way to speed up the calibration of complex NMS models is achieved
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by exploiting the fast operation of the NMS model proposed in this thesis (Chapter

5).

This work shows for the first time it is possible to use EMG signals to accu-

rately estimate muscle forces from all major muscles in the lower limb. A novel

methodology is proposed that allows constraining the operation of muscles so that

the forces they produce satisfy the joint moments simultaneously generated at

multiple DOFs including: hip adduction-abduction, hip flexion-extension, knee

flexion-extension and ankle dorsi-plantar flexion. This is achieved by the use of a

novel calibration algorithm. We will refer to this to to as the multi-DOF EMG-

driven NMS model (Chapter 6). Single-DOF models such as knee flexion-extension

(FE) models [2–4, 9, 35, 43] allow estimating the muscle forces involved in the

production of FE moments at the knee joint only. However, most of the muscles

spanning the knee also span the hip and the ankle joints too. Therefore, the forces

the muscles generate for the production of knee FE moment also have to satisfy

the generation of moments about hip and ankle joints. Results obtained in this

work show that the force that a muscle can generate during a specific movement

can be predicted in extremely different ways when different single-DOF models

are used, i.e. the force of a muscle crossing the hip joint can be estimated by a

hip flexion-extension NMS model as well as by a hip adduction-abduction model

as well as by a hip internal-external rotation model. If this muscle was biarticular,

its force could also be predicted by a knee flexion-extension model. The problem

is, it is not possible to know what single-DOF model is best using. The proposed

multi-DOF NMS model allows removing this indeterminacy by providing a single

solution for each muscle. Results show this model has the potential to better

estimate muscle force than single-DOF models.

A novel method is developed that uses physiologically-based rationales to

better scale important musculotendon parameters (Chapter 7).

1.5 Delimitations

This research develops the technology needed to achieve power orthosis continuous

control and the simultaneous EMG-driven actuation of multiple DOFs in multiple
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joints. The work is focused on the design and validation of the core component,

that is, the EMG-driven NMS model. This work does not realize real-time syn-

chronization with powered orthoses. Neither does it improve disabled people’s

mobility using robotics assistive devices. This work provides the theoretical results

and the methodology needed to achieve this.

Below are summarized the key-points that delimit the boundaries within which

this research work investigates:

∙ The EMG-driven NMS model is used to predict muscle force and joint

moments using data previously collected during the subject’s movement.

This work represents the first step in the development of a neuromuscular

HMI for assistive device control. The study is focused on the pure model

design and validation and not on its synchronization with real-time data

acquisition systems.

∙ The proposed multi-DOF EMG-driven NMS model is not used to control

real assistive devices.

∙ Experiments are conducted on a population of healthy subjects.

∙ A motion capture system is used to collect human movement data.

1.6 Research Questions to be Addressed

This work addresses a number of research questions including:

∙ Is it possible to ensure dynamic consistency in the operation of the EMG-

driven NMS model (Chapter 2)?

∙ To which extent physiological accuracy in the NMS model design has to be

sacrificed to achieve real-time operation (Chapters 3, 4 and 5)?

∙ Can tendons be assumed infinitely stiff during walking and running with no

loss in the NMS model predictive ability (Chapter 3)?

∙ Can estimations of musculotendon kinematics (i.e. musculotendon length and

moment arms) be done with the same accuracy of third-party musculoskeletal
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softwares such as SIMM [44, 45] and OpenSim [11, 46] and with the possibility

of integration into custom softwares? Can fast computation time be also

achieved (Chapter 4)?

∙ How can a NMS model be used to provide effective control strategies for

powered orthoses and musculoskeletal humanoid robots (Chapters 3)?

∙ Do single-DOF NMS models provide reliable muscle force estimates (Chap-

ter 6)?

∙ Is it possible to constrain the operation of lower limb muscles to satisfy

joint moments produced about multiple DOFs in EMG-driven modeling

(Chapter 6)?

∙ How do muscle force estimates change with respect to those obtained by

single-DOF NMS models (Chapter 6)?

∙ Is it possible to achieve accurate estimates of the joint moments simulta-

neously produced about multiple DOFs using an EMG-driven NMS model

(Chapter 6)?

∙ Is it possible to define physiologically-based rationales to better scale mus-

culotendon parameters (Chapter 7)?

∙ Can pattern recognition and machine learning techniques be combined to

NMS modeling and provide a superior way to extract motor information

from EMG signals (Chapter 8)?

1.7 Significance of this Research

The real time execution of the EMG driven NMS model will have a substantial

contribution to the design and implementation of robotic exoskeletons and powered

orthoses. Indeed, a better understanding of the real-time behavior of muscles can

improve the actuation of these devices and their control algorithms, resulting in

enhanced biomimetic control systems. Also, the ability to directly study muscles

behavior in healthy and impaired people will be readily possible.



1.8. THESIS OVERVIEW 15

The possibility to constrain the operation of each single muscle in the model

to satisfy joint moments about multiple DOFs will allow estimating more physio-

logically accurate muscle forces. This will permit expanding the number of studies

into how the nervous system controls muscles in both healthy and impaired

populations.

The possibility of estimating the moments simultaneously produced at multiple

joints can be applied to the design of more intuitive assistive devices control systems

for the simultaneous actuation of multiple joints and the support of an even wider

range of movements.

The NMS model can also provide effective solutions for the actuation of

humanoid robots that have a musculoskeletal architecture and artificial muscles.

The proposed NMS model allows taking inspiration from the way humans move and

addressing the challenge of autonomous locomotion in musculoskeletal humanoids.

Indeed, a better understanding of the dynamics of muscles during movement

will allow designing more sophisticated systems to actuate and control artificial

muscles.

This research development aims to integrate musculoskeletal dynamics into

robotics systems to achieve more advanced bio-inspired control strategies. Neu-

romusculoskeletal modeling technology not only can offer great solutions for

exoskeletons control and humanoids actuation, but can also boost research that

aims to realize comprehensive virtual humans by providing a more realistic esti-

mation of the human internal state [5].

1.8 Thesis Overview

This thesis consists of nine Chapters inclusive of this introduction. Chapter 2

illustrates the general workflow that goes from the collection of motion data to

the creation of a digital representation of the human musculoskeletal system to

achieve realistic simulations of the musculoskeletal dynamics. The novel method-

ologies proposed in this thesis will be illustrated. Furthermore, an overview of the

main components forming the physiologically accurate single-DOF NMS model

developed by the biomechanics group around David G. Lloyd is given [3, 4, 35, 43].
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This model will be used as a baseline for comparison to the NMS model pro-

posed in this thesis. Chapter 3 describes the development of a novel single-DOF

NMS model of the knee joint that combines together physiological accuracy to

real-time operation. A discussion on how the proposed NMS model can be used

to control powered orthoses and musculoskeletal humanoids is given. Chapter

4 presents a novel methodology to estimate musculotendon kinematics in large

musculoskeletal models. This is used within the NMS model to achieve real-time

operation. Chapter 5 shows the proposed single-DOF NMS model can be used to

achieve a faster calibration of the more complex NMS model developed by Lloyd

et al. presented in Chapter 2. Chapter 6 extends the single-DOF NMS model

(Chapter 3) to a multi-DOF NMS model of the whole human lower extremity

and shows it is more robust in the estimation of muscle forces than single-DOF

models. Chapter 7 presents a physiologically-based methodology to scale the

resting length of tendons in NMS models showing this helps achieving better

prediction performances. Chapter 8 presents the use of Support Vector Machine

to classify locomotion modes from EMG patterns and suggests how this technique

can be integrated with the EMG-driven NMS model. Chapter 9 summarizes the

results of this research and sketches future research paths.



Chapter 2

Workflow

This work uses motion capture technology together with sophisticated algorithms

for motion kinematics and dynamics computation to produce the most accurate

inputs for the neuromusculoskeletal (NMS) model of the lower limb presented

in this thesis. Fig. 2.1 illustrates the workflow that goes from the acquisition

of motion data from the human subject to the execution of the NMS model

to estimate somatosensory information. The next sections will first illustrate

the Human Movement and the Movement Modeling steps. Then, the general

structure of the single-DOF EMG-driven NMS model developed by Lloyd et al.

[3, 35, 37, 43] will be presented. This is a well established model of the knee joint

that is physiologically accurate and that has been extensively validated in the

past. Muscles are modeled using a modified Hill-type model with non-linear elastic

tendons. Within this thesis, this model is regarded as the gold standard with

respect to the physiological and predictive accuracy because no simplifications in

the modeling design have been done to achieve faster operation.

The NMS model that is proposed in this thesis has the same general structure

of the elastic-tendon model proposed by Lloyd et al. However, novel components

are introduced to achieve faster execution and to constrain the operation of muscles

to satisfy all moments in the lower extremity joints (Chapters 3, 4 and 6). The

operation of the NMS model proposed in this thesis is always compared to that

of the elastic-tendon model developed by Lloyd et al.[3] and presented in this

Chapter.

17



18 2. WORKFLOW

Figure 2.1: Motion data are collected from the human subject. These are used by sophisticated
algorithms for the dynamic motion simulation to calculate 3D joint angles and joint moments.
These are then used, together with EMG signals, as inputs for the NMS model. The NMS model
input data are highlighted in red.

2.1 Human Movement

This is the first step of the workflow in which the data from the subject’s movement

is collected using motion capture technology and surface electromyography.

A data set for the calibration of the model is initially created. This includes:

1) static trials, in which the subject stands still, 2) swinger trials, in which the

subject performs specific exercises to repeatedly flex and extend their hip, knee

and ankle joints, 3) dynamic trials, in which the subject performs specific motor

tasks. Data collected from the static and swinger trials are used in the Movement

Modeling step to create a musculoskeletal model scaled to the subject’s anatomical

dimensions (Fig. 2.2) as described in Section 2.2. Data collected from the dynamic

trials are used to calibrate the biomechanical parameters of the NMS model as

described in Section 2.3.

A 12 camera motion capture system (Vicon, Oxford, UK) is used to record the

human body kinematics with sampling frequency at 250Hz. A set of reflecting

markers are placed on the human body and their instantaneous three-dimensional

position is then reconstructed and used to measure the movement of body segments



2.2. MOVEMENT MODELING 19

including: arms, trunk, pelvis, thigh, shank, and foot. Ground reaction forces

(GRFs) generated during the dynamic trials are collected using a multi-axis in-

ground force plate (AMTI, Watertown, USA) with a sampling frequency at 2kHz.

Double-differential surface electrodes are used to collect EMG signals from the

selected muscles. A telemetered system (Noraxon, Scottsdale, USA) transfers the

EMGs to a 16 channel amplifier (Delsys, Boston, USA) with sampling frequency

at 2kHz.

Both body kinematics and GRFs are low-pass filtered with cut-off frequencies

ranging from 2 to 8Hz depending on the motor task, i.e. walking, running, etc.

Raw EMG signals are first band-pass filtered (10− 150Hz), and then full-wave

rectified and low-pass filtered (6Hz) subsequently. The processed signal is the

linear envelope which is then normalized against the maximum values from EMG

linear envelopes obtained from a range of extra trials including: running and squat

jumps.

2.2 Movement Modeling

This is the second step in which three-dimensional joint angles and moments

are recorded during the human movement. 3D joint angles and joint moments

in general are not easily recordable using external sensors. To have accurate

measurements of those quantities, the external sensor would have to be centered

on the joint centre of rotation. For some joints, like the hip, it is practically

impossible because of the amount of tissues surrounding it. Furthermore, the

human joints are not ideal hinge joints. Therefore, the centre of rotation is not

a fixed point but it moves as a function of the joint angle itself. The knee joint

centre of rotation, for instance, moves on an elliptical surface. Therefore, the

use of an external sensor would not give satisfactory results. This work therefore

uses motion capture technology to drive a dynamic motion simulation of the

human movement. This has the advantage of giving the possibility of modeling

the morphology of the joint such as the shape of the surfaces of the bones that

make up the joint, and the location of the joint centre of rotation as a function of

the joint angle.
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Figure 2.2: (a) Model to define the subject’s musculoskeletal system. (b) Angles conventions
used in this thesis. Orientations with a positive sign are shown.

The freely available musculoskeletal modeling software OpenSim [11, 46] is

used to customize a generic musculoskeltal model of the human body1 (Fig. 2.2a).

The musculoskeletal model is customized to include all muscles of interest and to

define 6 degrees of freedom across the joints (Fig. 2.2b).

Most of the muscles in the model are described by a single musculotendon

actuator (MTA). That is, muscle fibers and tendons together are modeled as a

single wire which has only an origin and an end and can have internal via points

that appear when the muscle line of action touches a bone as a function of the

3D joint angle (Fig. 2.3). Some muscles are instead described by multiple MTAs.

That is, muscle fibers and tendons together are modeled as a multi wire complex

composed of multiple single MTAs. This is to describe large muscles composed of

a great complex of fibers. This model includes 34 MTAs per leg (Table 2.1). It

1The musculoskeletal model is freely available from the Neuromuscular Models Library:
https://simtk.org/home/nmblmodels/
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Figure 2.3: Muscles are defined as complexes of musculotendon actuators (MTAs). These are
wire-like components that wrap around bones defining via points as a function of the joint angle.

Figure 2.4: Functional axes at hip, knee and ankle are first computed. Then the model is
scaled to match the subject’s anthropometry. Then IK and RRA are used to measure joint
angles and moments. A foot-ground contact model is used to further improve the joint moment
computation.

defines 6 generalized coordinates (GCs) in the lower limb (Fig. 2.2b) including:

hip flexion-extension (HF), hip abduction-adduction (HA), hip internal-external

rotation (HR), knee flexion-extension (KF), ankle plantar-dorsi flexion (AF), ankle

abduction-adduction (AA), and ankle internal-external rotation (AR).

The movement modeling process involves four steps (Fig. 2.4).

2.2.1 Optimal Joint Centres and Functional Axes

As described in [47], the repeatability of traditional kinematic and kinetic models

is affected by the ability to accurately locate anatomical landmarks (ALs) to
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Table 2.1: The 34 musculotendon actuators included in the model and the joints they span

Joints Musculotendon Actuators

Hip Adductor Brevis, Adductor Longus, Adductor Mag-
nus1, Adductor Magnus2, Adductor Magnus3, Glu-
teus Maximus1, Gluteus Maximus2, Gluteus Maximus3,
Gluteus Medius1, Gluteus Medius2, Gluteus Medius3,
Gluteus Minimus1, Gluteus Minimus2, Gluteus Min-
imus3, Illiacus, Psoas

Knee Vastus Interioris, Vastus Lateralis, Vastus Medialis,
Biceps Femoris Short Head

Ankle Peroneus Brevis, Peroneus Longus, Peroneus Tertis,
Soleus, Tibialis Anterior

Hip, Knee Biceps Femoris Long Head, Semimembranosus, Semi-
tendinosus, Gracilis, Rectus Femoris, Sartorius, Tensor
Fascia Latae

Knee, Ankle Gastrocnemius Lateralis, Gastrocnemius Medialis

define joint centres and anatomical coordinate systems (ACS) (Fig. 2.5). The

development of numerical methods that define joint centres and axes of rotation

independent of ALs may therefore improve the repeatability of kinematic and

kinetic data. In this thesis, the numerical methodology presented in [47] is used to

derive the three-dimensional position of the centre of rotation for the hip, knee and

ankle joints. Furthermore the three dimensional orientation of the flexion-extension

axis of the knee joint is calculated.

To determine the three-dimensional position and orientation of each lower limb

segment, clusters of three retro-reflective markers (20 mm) were firmly adhered

to the subject’s pelvis, thighs, shank, and feet (Fig. 2.5). For the hip joint, a

functional method is employed, whereby subjects are required to consecutively

move the right and left thigh through a range of flexion, abduction, adduction,

and extension [47]. These data are used in a constrained optimization program

written in MATLAB (Optimization Toolbox, Mathworks Inc.; Natick, MA), where

spheres are fit to each thigh marker to find a left and right hip joint centre (HJC)

location relative to the pelvis coordinate system and sphere radii. Fig. 2.6 shows

the results of this computation.

For the knee joint, a mean helical axis is used to define the knee joint centre
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Figure 2.5: Experimental and virtual markers used in this work. The anatomical coordinate
system (ACS) for each joint is also visible.

and flexion-extension axis. To achieve this, subjects stand on one leg and flex the

contra-lateral thigh to enable the shank to freely flex and extend about the knee

from full extension to approximately 100 degrees of flexion. This is performed

for at least three cycles for each limb. Using the custom MATLAB program, the

tibia markers are expressed in the femoral coordinate system and instantaneous

helical axes are calculated throughout the range of motion using a singular value

decomposition method from [48, 49]. A mean helical axis is then calculated for

each knee, analogous to the method presented in [50] for the elbow joint. The

mean helical axis is used to define the flexion-extension axis of the knee relative

to the thigh coordinate system. The KJC is then defined relative to the mean

helical axis, at a point along the helical axis that intersects a plane that is normal
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(a) (b)

Figure 2.6: Swinger trial for the calculation of the optimal hip joint centre. The blue trajectories
represent the motion of the thigh markers. (a) The three-dimensional range of motion of the
thigh markers is computed throughout the whole swinger trial. A sphere per marker is then
created to fit the respective trajectory. (b) The optimal centre (green circle) is then calculated
with respect to the pelvis anatomical coordinate system.

to the transepicondylar line, midway between the epicondyles. Fig. 2.7a shows the

results of this computation. Furthermore, Fig. 2.7b shows the knee helical axes

(KHA) that have been imported and visualized into the motion capture system

software. An analogous procedure is used to define the ankle joint centre in which

the relative movement of foot marker with respect to the shank ones is used.

The computed 3D positions of the hip, knee and ankle joint centres are then

integrated in the OpenSim musculoskeletal model (Fig. 2.2).

For the integration of the 3D orientation of the knee joint flexion-extension

axis, a novel procedure was developed in this thesis to define a 3-DOF knee joint

in the OpenSim musculoskeletal model. The estimated mean helical axis is used

to compute its 3D orientation with respect to the thigh reference frame. The

OpenSim musculoskeletal model is then integrated with this information in the

following way. The generic OpenSim musculoskeletal model that is used in this

thesis has a knee joint that is based on the work presented by Delp et al. [44]. In

this work the pelvis, thigh, shank and foot bones are digitized to create 3D meshes

of polygons to define each bone surface. Based on the anatomical digitized bone

surfaces the motion of the tibia with respect to the femur bone was determined as
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(a) (b)

Figure 2.7: (a) The motion of the 3 shank markers (red trajectories) is calculated with respect
to the left thigh (LTH1, LTH2, LTH3) and right thigh (RTH1, RTH2, RTH3) markers. Then the
mean helical axes are calculated (blue lines). (b) helical knee axes placed in the marker-based
model.

a function of knee joint angle. Fig. 2.8a shows the geometry used in this model

for determining knee moments and kinematics in the sagittal plane. The femoral

condyles were represented as an ellipse; the tibial plateau was represented as a

line segment. The transformation from the femoral reference frame to the tibial

reference frame was then determined so that the femoral condyles remain in

contact with the tibial plateau throughout the range of knee motion. The tibia

is therefore constrained to move on an elliptical surface defined by the femur

medial-lateral condyles. From a numerical point of view, this is defined by two

uni-dimensional spline functions that respectively associate a vertical (y-axis) and

an anterior-posterior (x-axis) translation of the tibia to the current knee angle

with respect to the femur reference frame. These two translations are combined

with the rotation of the tibia about the origin of its reference frame as a linear

function of the knee angle. As a result, the tibia moves and rotates simultaneously

on an elliptical trajectory. The OpenSim model used in this thesis defines the

spline functions with the assumption that the knee joint flexion-extension axis has

an orientation of zero degrees. That is, it is perpendicular to the vertical axis of the

femur reference frame. In this thesis a custom MATLAB routine was implemented

to apply the 3D orientation of the knee helical axis to the two uni-dimensional
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(a) (b)

Figure 2.8: (a) Geometry for determining knee moments and kinematics in the sagittal plane.
�k is the knee angle; � is the patellar ligament angle; � is the angle between the patella and the
tibia; Fq, is the quadriceps force; lpl is the length of the patellar ligament. From these kinematics,
the moment of the quadriceps force about the instant center of knee rotation can be computed.
(b) The knee joint angle is defined by the orientation of the tibia reference frame (located on the
tibia head) with respect to the femur reference frame (located on the femur head). The yellow,
red and green axes represent the y, x and z coordinate axes respectively. This figure shows the
computation of the flexion-extension angle (about the z-axis).

spline functions defined in the OpenSim model. This allows moving the tibia on

an inclined elliptical surface. In the OpenSim musculoskeletal model, the knee

angle is defined by the orientation of the tibia reference frame with respect to

the femur reference frame (Fig. 2.8b). The tibia reference frame was first rotated,

in the femur reference frame, with respect to the anterior posterior axis (x-axis)

according to the computed knee helical axis. This caused the tibia to move on a

circle whose radius was the distance from the femur reference frame to that of the

tibia. Then, the two translational spline functions were counter rotated, about

the same axis using a rotation matrix. This process produced a third spline that

translates the tibia on the medial-lateral axis (z-axis) as a function of the knee

angle.
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Figure 2.9: Experimental marker trajectories recorded during a static trial are used to scale the
generic OpenSim musculoskeletal model to match the subject’s anthropometry.

2.2.2 Scaling

Marker trajectories collected during the static trials are used in the scaling process

to adjust a number of variables in the OpenSim musculoskeletal model including:

1) length of each bone and muscle, 2) position of the centre of mass of each bone,

3) mass of each segment, i.e. mass of a specific bone and all of the attached

muscles. This process starts with the unscaled OpenSim musculoskeletal model

(Fig. 2.9) and places a set of virtual markers on the model based on the location

of the experimental markers (Fig. 2.5). The unscaled model has predefined weight,

height, inertia and position of centre of mass for each body segment. A scaling

factor for each segment is then calculated and used to linearly scale length and

mass. Scaling factors are obtained by computing the ratio between the subject’s

segments mass and dimension and the generic OpenSim model segments mass and

dimension. The dimension of the subject’s segments are estimated by computing

the distance between the centres of the joints the segment is connected to (Section

2.2.1). In the case of the femur for instance, the length of the segment is calculated

by computing the distance between hip and knee joint centres. The mass of each

segment is derived from the subject’s total mass using anthropometric tables [11].

The scaling process is an OpenSim built-in tool [11, 46].
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Figure 2.10: The unscaled model (grey) is first scaled to subject’s real dimension. During the
inverse kinematics step the scaled model (blue model) is driven so that the displacement error
between virtual markers (pink markers) and the experimental ones (blue markers) is minimized
at each time step.

2.2.3 Inverse Kinematics

Marker trajectories recorded during dynamic movements are used by an Inverse

Kinematics (IK) model to calculate 3D joint angles (Fig. 2.10). This is done using

the OpenSim Inverse Kinematics tool in which an IK algorithm solves for the

joint angles that minimize the difference between the experimentally measured

marker positions and the virtual markers on the model (Section 2.2.2).

2.2.4 Residual Reduction Analysis

Ground reaction forces (GRF) recorded during motor tasks are used in conjunc-

tion with the thee-dimensional joint angles computed through IK to derive the

experimental joint moments. This is usually done by performing standard Inverse

Dynamics (ID). However, this method does not provide optimal solutions. Due to

limitations in marker trajectory acquisition and processing, there is an inherent

mismatch between the recorded trajectories and the recorded GRF. As a results,

in traditional ID algorithms, a non-physical external force and moment (i.e.,

residuals) are applied to a body in the model (e.g.,the pelvis) to resolve dynamic

inconsistency between the measured kinematics and GRF. This implies that, the
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Figure 2.11: Comparison between the joint moments computed using standard inverse dynamics
(ID) and residual reduction analysis (RRA).

moments computed via ID do not match the motion computed via IK. In this work

Residual Reduction Analysis (RRA) is used to minimize the mismatch between

trajectories and GRF and to compute the joint moments needed to track the

subject’s motion. RRA is an optimization procedure that slightly adjusts the

joint kinematics and model mass properties until an inverse dynamic solution is

found that minimizes the magnitude of the residuals [11]. Fig. 2.12 and 2.11 show

how estimates of joint moments and angles change when using standard ID as

opposed to RRA. Fig. 2.13 shows how the motion simulation differs when using

ID and RRA. Experiments are obtained from one male subject (age:28, weight:

67Kg, height: 183cm) who performed walking trials at self selected speed. The

residuals held in the pelvis body associated to the ID simulation were as follows:

FX = −19.31N , FY = 108.608N , FZ = −4.94242N , MX = −13.9448Nm,

MY = −4.00663Nm and MZ = 26.8262Nm. These were significantly reduced by

the RRA algorithm: FX = −0.692733N , FY = −0.709131N , FZ = −0.104057N ,

MX = −9.7929Nm, MY = 0.285471Nm and MZ = −18.4733Nm. The terms

F and M represent the magnitude of forces and moments respectively, that are

applied to the pelvis body to resolve the dynamic inconsistency.
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Figure 2.12: Comparison between the joint angles computed using standard inverse dynamics
(ID) and residual reduction analysis (RRA).

(a) (b) (c) (d)

Figure 2.13: (a) Motion simulation using standard inverse dynamics (red model) is compared to
the dynamically consistent one obtained using RRA (green model). The global reference frame
is shown. (b) Lateral view. (c) Posterior view. (d) Anterior view.

2.2.5 Contact Model

The RRA approach has the disadvantage that while it allows perturbing the

whole-body kinematics it does not allow perturbing the feet kinematics when they

are in contact with the ground. This is because RRA can only use GRFs obtained

experimentally. Therefore, if the foot kinematics was changed, the experimental
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(a)

(b) (c) (d)

Figure 2.14: (a) Contact model working with RRA (b) Contact meshes are placed in the corre-
spondence of the foot anatomical landmarks. (c) Contact meshes are placed on the same plane
of the floor contact mesh. (d) More sophisticated meshes can be used in future implementations
such as a foot-shaped mesh. This one is anatomically accurate and was obtained from the study
presented in [5].

GRF would not be valid anymore and a further dynamic inconsistency would

be included in the process. Furthermore, RRA assumes that by changing the

whole-body kinematics but the feet kinematics, the GRF do not change. This

assumption is not necessarily true.

In this thesis work, a novel foot-ground contact model was developed (Fig.

2.14a) in a custom C++ program using the OpenSim Application Programming

Interface2 (API). The foot-ground contact model allows modeling contact between

objects that are defines by 3D meshes by utilizing an elastic foundation model

[51]. It places a spring at the center of each face of each contact mesh it acts on.

Those springs interact with all objects the mesh comes in contact with. It is then

2The Doxygen documentation is available at: https://simtk.org/api docs/opensim/api docs20b/
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possible to assign different physical properties to each contact mesh including:

stiffness, dissipation and static, dynamic and viscous frictions.

Four spheres were placed on the OpenSim musculoskeletal model’s in the

correspondence of heel, first and fifth metatarsal bones and toe (Fig. 2.14b). This

was done using the 3D position of the experimental markers obtained from motion

capture data. Because no experimental marker was placed on the toe, the position

of the associated contact sphere was placed at 2cm from the first metetarsal bone.

Then, the four spheres were placed on the same plane and the floor contact mesh

was consequently aligned as in Fig. 2.14c. Finally, the dynamic contact parameters

were assigned a meaningful physical value to define appropriate contact. In this

work both floor location and contact parameter values were defined manually. In

future implementations an optimization algorithm will be used to find optimal

position of the floor and optimal contact parameters. The optimization procedure

will minimize the difference from the experimental GRF recorded during a static

standing trial and those simulated by the proposed contact model. Furthermore,

more sophisticated meshes will be used (Fig. 2.14d).

Once the contact model is calibrated it is possible to use it in conjunction with

RRA to also adjust the foot kinematics (Fig. 2.14a) and subsequently recompute

the associated GRF. In general, at each time step, the contact model computes the

the GRF generated by the RRA kinematics change. A more accurate ID solution

can then be used in RRA. The contact model presented in this section was not

used in the studies reported within this thesis due to lack of time. Although it is

very promising, further validation is needed.

In future work, the presented contact model can be also utilized to create

dynamic motion simulations of humanoid robots.

2.3 An Elastic-Tendon NMS Model of the Knee

Joint

This section briefly reviews the NMS model developed by Lloyd et al. and previously

presented in [2, 3, 35, 37]. Lloyd’d NMS model is used to validate the novel NMS
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Figure 2.15: Flow chart depicting the 4-step process of Lloyd et al. EMG-Driven model [3, 4].
Musculotendon lengths, velocities, and moment arms are obtained from the SIMM anatomical
musculoskeletal model (1) which along with the processed EMG (2) are incorporated into a
Hill-Type muscle model (3) to estimate net muscle forces and resultant joint moments. The
calibration process (4) adjusts selected parameters to minimise the difference between these
joint moment estimates and those obtained from standard inverse dynamics.

model that is presented in this thesis. This comparison allows quantifying how,

changes and extensions applied to the NMS model design, affect its global operation

and performances.

The NMS model developed by Lloyd et al. was chosen as a baseline for

comparison for several reasons:

1. it has been extensively validated in the past,

2. it is anatomically and physiologically accurate,

3. it represents the state of the art of the EMG-driven NMS models of the

knee joint.

Lloyd’s EMG-driven NMS model (Fig. 2.15) consists of 4 fundamental components:

anatomical musculoskeletal model (Fig. 2.15-(1)), Muscle Activation model (Fig.

2.15-(2)), Muscle Dynamics model (Fig. 2.15-(3)), Calibration (Fig. 2.15-(4)). It

uses these in conjunction with raw EMG and segmental movement to estimate
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Figure 2.16: Raw EMGs are low-lass filtered (30Hz), full-wave rectified and low-pass filtered
(6Hz). Signals are then normalized to maximal voluntary contraction (MVC) to obtain the nor-
malized linear envelope. A second order recursive filter is applied to model the electromechanical
delay and to include the muscle’s twitch response [3]. Signals are then non-linearly mapped to
account for the non-linear relationship between EMG amplitude and muscle force [3].

individual muscle force and subsequently joint moments and soft tissue loading.

This is a forward dynamic model because it estimates muscle force directly from

muscle EMG signals in an open-loop fashion.

2.3.1 Musculoskeletal Model

The musculoskeletal model of the lower limb (Fig. 2.15-(1)) is created using the

SIMM Biomechanics Software Suite (Musculographics, Inc.) [45] based on the

results presented in [37, 44]. It consists of line segment representations of 13 muscu-

lotendon actuators (MTAs) spanning the knee joint including: semimembranosus,

semitendinosus, biceps femoris long head, biceps femoris short head, sartorius,

tensor fascia latae, gracilis, vastus lateralis, vastus medialis, vastus intermedius,

rectus femoris, gastrocnemius medialis, and gastrocnemius lateralis. Only two

muscles crossing the knee are not included: the plantaris and the popliteus. They

are assumed to have a negligible contribution to the total flexion-extension (FE)

moment due to their relatively small physiological cross sectional area (PCSA).

The lengths of the modeled bones and MTAs are linearly scaled to the actual
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Figure 2.17: Hill-type elastic-tendon muscle model. Each tendons is represented by a single
elastic passive element. The fibre is represented by an active contractile element in parallel with
a passive element. The two-element fibre is placed between the two tendons. The fibre is oriented
with respect to the tendon according to the pennation angle '. lmt is the musculotendon length.
lm is the fibre length. lts is the tendon slack length. FA is the force produced by the fibre active
element. FP is the force produced by the fibre passive element. Fmt musculotendon force, i.e.
the fibre force projected on to the tendon line of action.

subject’s size. This muscuoskeletal model is used in SIMM to perform a kinematic

driven simulation to determine muscletendon lengths, lmt, velocities, vmt, and

moment arms, r during movement. These values are then input in the Muscle

Dynamics model together with muscle activation to estimate muscle force (Section

2.3.3).

2.3.2 Muscle Activation

Raw EMG signals are processed as in Section 2.1 to obtain normalized linear

envelopes. Then, a second order recursive filter is applied to characterize the muscle

electromechanical delay and twitch response [3]. We will refer to the processed

signals to as, u(t). Then, a non-linear map is applied to account for the non-linear

relationship between EMG amplitude and muscle force [3] (Fig. 2.16). To achieve

this step, an exponential relationship is used which includes a single parameter A
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(a) (b) (c)

Figure 2.18: (a) Active and passive force length curves. Values are normalised by Fm
0 and

lm0 with 1.0 being 100% activation. Optimal muscle fibre length was scaled with activation
by a relationship experimentally determined in [52] (b) Normalised force-velocity relationship.
Note the parallel damping element added to prevent singularities when activation or isometric
force = 0.0 of the inverted force-velocity relationship [36]. (c) Exponential tendon force-strain
relationship.

to control the extent of the non-linear relationship [2]:

a(u(t)) =
eAu(t) − 1

eA − 1
(2.1)

where A is the non-linear shape parameter and it is constrained to −5 < Ai < 0,

with 0 being a linear relationship.

2.3.3 Muscle Dynamics

A Hill-type muscle model is used to represent each musculotendon actuator (MTA),

and consists of a contractile element in series with a non-linear elastic-tendon

[1, 53] (Fig. 2.17). The tendon is modeled using an exponential force-strain curve

(Fig. 2.18c). This is scaled by tendon slack length lts and maximal isometric force

at optimal fibre length Fm
0 . It is used to interpolate musculotendon forces [1].

The muscle fibre is composed of an active force-generating contractile element in

parallel with a passive elastic one. The contractile element consists of a generic

active force-length function fA(l̃m) (Fig. 2.18a, active curve) and a force-velocity

function fV (l̃m) (Fig. 2.18b). A passive parallel damping element (dm) is added to

fV (l̃m) as suggested by [36] to prevent any singularities of the mass-less model

when activation or isometric force are zero. The passive elastic component in the

muscle fibre is modeled using the exponential relationship fP (l̃m) in Fig. 2.18a
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(passive curve). The final MTA force depends on a number of parameters including:

maximum isometric muscle force at optimal fibre length Fm
0 , optimal muscle fibre

length lm0 , instantaneous pennation angle ', instantaneous muscle fibre length lm,

instantaneous fibre contraction velocity vm, and instantaneous muscle activation

a(u). It is the contractile element of the model that represents the culmination of

the forward dynamics component of the EMG-driven NMS model, as the muscle

fibre velocities are numerically integrated to predict the time evolution of the

muscle fibre length. The dependence of lm0 on muscle activation [54] is modeled

using a linear relationship [3]:

new lm0 (t) = lm0 ⋅ (
 ⋅ (1− a(t)) + 1) (2.2)

where:

∙ 
 = percentage change in optimal fibre length

∙ new lm0 = new optimal fibre length

∙ lm0 = current optimal fibre length

∙ a(t) = activation at time t

The effect of this relationship is illustrated in Figure 2.18a. The percentage change

in optimal fibre length, 
, is altered in the calibration process between 0 and 20%

as a function of activation (Section 2.3.4). Muscle fibre lengths are calculated

by forward integration of the fibre velocities obtained from the force-velocity

and force-length relationships using a Runge-Kutta-Fehlberg algorithm. Using a

method developed by Loan [55], initial muscle fibre lengths and fibre velocities

are determined by calculating the stiffnesses of muscle fibre and tendon, and

apportioning the total muscle tendon velocity to the muscle fibre and tendon

based on their relative stiffnesses. A schematic diagram of the complete muscle

model is shown in Figure 2.19.

Muscle fibre force can then be expressed as:

Fm = (fA(l̃m) ⋅ fV (vm) ⋅ a(u) + fP (l̃m) + dm ⋅ ṽm) ⋅ Fm
0 ⋅ � (2.3)
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where the term � is the muscle strength coefficient (Section 2.3.4) whereas all

other terms have been defined previously. The force produced by the MTA, Fmt,

can then be derived by projecting the fiber force Fm onto the tendon line of action

as follows:

Fmt = Fm ⋅ cos(') (2.4)

Indeed, the pennation angle, ' defines the angle at which fibers are oriented with

respect to the tendon (Fig. 2.17).

Net knee joint flexion-extension (FE) moments (M) are obtained by summing

the product of each MTA’s force by its flexion-extension moment arm r:

M =
N∑
i=1

riF
mt
i (2.5)

where riF
mt
i represents the individual FE moment generated by the itℎ muscle.

2.3.4 Validation and Calibration

To validate a model, it is usually desirable to compare the output of that model

with data measured empirically. Unfortunately, the methodological difficulties in

measuring individual muscle forces prevent any direct validation of the EMG-driven

model on humans. An indirect validation process is instead used to validate and

calibrate the model to an individual. The validation process involves comparing

the predicted net knee flexion-extension moments with the net moments measured

experimentally. If the muscle forces are accurate, then the model estimates of net

joint moments should be equal to the external moments measured experimentally.

Lloyd et al. used standard Inverse Dynamics to calculate experimental knee

FE moments. It is here clear the importance of utilizing dynamically consistent

joint moments in the calibration. If this is not done, the calibration will constrain

muscles to satisfy join moments that are not truly representative of the actual

joint dynamics.

The aim of the calibration process is to obtain a set of model parameters for an

individual to accurately estimate the net FE moments at the knee. The calibration

process uses a set of calibration trials to learn the muscle dynamics across a
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wide range of muscle contractile conditions. Starting from a set of uncalibrated

parameters a simulated annealing algorithm [56] is used to alter the selected

parameters so that the moments estimated by the NMS model fit the net joint

moments experimentally measured and minimize the sum of squared difference

between the estimated and experimental moments. Once the calibration process

has completed it is possible to use the subject-specific calibrated parameters to

estimate muscle forces and joint moments during the subject’s movement. It is

worth noting that once calibrated, the NMS model only requires EMG signals and

joint angles and can execute in open-loop. That is, no tracking is required to match

the experimental joint moments. If properly calibrated, the model will naturally

track novel data with no need for optimization. Tracking the experimental moment

is required during the calibration step only. This feature allows deceasing the

amount of information required during the model run-time execution and maximize

its speed.

The adjustable parameters used in the calibration process are divided into

two groups. One group includes activation parameters, chosen from the Muscle

Activation model and the other group includes muscle parameters from the Muscle

Dynamics model. Activation filtering parameters are constrained in the calibration

process to realize a stable positive solution to the discrete linear dynamic model

and used to determine the gain and recursive coefficients of the recursive filter.

These coefficients are dimensionless and are varied between -1 and 1. They take

into account changes in muscle excitation levels due to different EMG electrode

placement, skin preparation, and impedance. It is assumed that these values

may differ between individuals, different muscles, and different testing sessions.

The non-linear muscle activation shape factor A in (2.1) is also altered in the

calibration process between -5 and 0 (2.1). The non-linearity of the EMG to

force relationship has been well documented and has shown that the inclusion

of this parameter within a transfer function improves model estimates of stress

from EMG data [57]. Parameters in the Hill-type Muscle model that are adjusted

include:

1. muscles strength coefficients
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2. resting tendon slack length

3. muscle optimal fiber length

The strength coefficients allow scaling the relative maximum isometric force a

muscle can produce to account for well documented individual differences in muscle

strength, i.e. Physiological cross-sectional area and difference in strength between

different muscles. To maintain relative strength across all muscles, global gains

were used as opposed to individual muscle gains. The inclusion of muscle dependent

force coefficients is physiologically valid to account for strength differences between

individuals and has been used previously in EMG-Driven models. However, care

must be taken when increasing the number of parameters within an optimisation

process as this may compromise the physiological construct of the model, as

each parameter becomes a fix for a general solution to be obtained. Constraints

on muscle gain coefficients were used to prevent unrealistic muscle forces being

estimated by the model. These were applied such that each strength coefficient

was allowed to vary from 0.5 to 1.5. In the NMS model presented in this Chapter,

strength coefficients grouped muscles into three categories: knee extensors, knee

flexors and gastrocnemious muscles.

Resting tendon slack length (lts) directly defines the length of the fibers and

the force they can produce. Furthermore, there is very little information in the

literature in regards to tendon slack lengths of lower limb musculature. The reason

for this lack of information is mostly due to the difficulty in measuring these values

and the ill-defined junction between muscle and tendon. This further motivated

the need for calibrating this parameter. Initial values were obtained from [37] and

constrained such that: lts = initial value± 5%.

Optimal fibre length (lm0 ) is also calibrated as it has been shown to vary

between individuals and to have a strong impact on the behavior of each muscle

[37]. Initial values were obtained from [37] and constrained such that: lm0 =

initial value± 2.5%.

The objective function used in the calibration algorithm is defined as follows:

min
∑
Nt

M2−M̂2

var(M̂)
+ Penalty

Nt

(2.6)
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Penalty =
Nt∑
i=1

Nm∑
j=1

P (i, j) (2.7)

P (i, j) =

⎧⎨⎩ 0, if 0.5 < l̃m(i, j) < 1.5

0.5, otherwise
(2.8)

where M̂ and M are the measured and predicted knee FE moments respectively.

The var(M̂) term is the variance of M̂ over all time steps Nt. The Nm term

represents the number of muscles in the NMS model. A penalty is included in the

objective function to penalize instances of l̃m being less than 0.5 or greater than

1.5. This is to discourage the algorithm from adopting solutions that results in

the muscle operating in a range that is not physiological. The structure of this

penalty factor is such that it is incremented for every time point that any muscle

has l̃m outside of the range 0.5 < l̃m < 1.5. The magnitude of this increment is

set such that a muscle operating outside of the specified range for the entire trial

would approximately double the cost function value.

2.4 Differences to Lloyd’s NMS model

The model developed by Lloyd at al. [3] is used in this thesis as a baseline for

comparison. From here on we will refer to it to as the baseline NMS model or to

as the elastic-tendon NMS model.

While the structure of the NMS model proposed in this thesis is like that of

the baseline model, it also differs in many parts including:

1. Anatomical musculoskeletal model. Section 2.2 presents the methodology

used in this thesis. Section 2.3.1 presents the methodology used in the

baseline NMS model.

2. Hill-type muscle model. Chapter 3.5 presents the methodology used in this

thesis. Section 2.3.3 presents the methodology used in the baseline model.

3. Musculotendon kinematics computation. Chapter 4 presents the methodology

used in this thesis. Section 2.3.1 presents the methodology used in the baseline

model.
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4. Number of DOFs. Chapter 6 presents the methodology used in this thesis.

Section 2.3.1 presents the methodology used in the baseline model.

5. Calibration. Chapters 5, 6 and 7 present the methodology used in this thesis.

Section 2.3.4 presents the methodology used in the baseline model.

2.5 Conclusions and Future Work

In this chapter the general workflow that was used in this research work was

presented. This included: 1) the acquisition and processing of data from the

subject’s movement, 2) the creation of a dynamic musculoskeletal simulation to

estimate joint kinematics and moments, 3) the execution of the NMS model.

Advanced methods were developed and used to scale a generic OpenSim

musculoskeletal model to match the subject’s anthropometry and anatomy and to

define optimal centres and axes in the hip, knee and ankle joints. Advanced motion

simulation methods were used to calculate three-dimensional joint kinematics and

moments and to ensure dynamic consistency between kinematics and kinetics. To

further improve this process a foot-ground contact model was also implemented.

These methods were used to generate the best input data for the NMS model

developed and presented in this thesis. The aim of this specific work was that

of introducing anatomical and dynamic consistency into EMG-driven modeling.

The quality of the data used to calibrate the EMG-driven NMS model strongly

affects its operation post-calibration. Because the EMG-driven NMS model is

physiologically accurate and it uses real muscles excitation signals (i.e. EMG

signals), the hypothesis is that by providing calibration data that better represent

the dynamics of the human movement, the model will learn more naturally the

prescribed muscle dynamics. Future work will therefore compare the NMS model

performances when both traditional and advanced techniques are used to obtain

calibration data.

The last two sections of the chapter illustrated the general structure of the

NMS model developed by Lloyd et al. and the main differences with respect to

the model presented in this thesis.





Chapter 3

A Stiff-Tendon

Neuromusculoskeletal Model of

the Knee Joint

In this Chapter motion capture technology is used together with a novel neu-

romusculoskeletal (NMS) model of the knee joint and sophisticated algorithms

for motion kinematics and dynamics computation, to estimate somatosensory

information during the human movement. Although the NMS model represents

the single knee joint, it has been designed so that it is straightforward to extend

to whole-body level with minor loss of computational time performances. This

Chapter shows the proposed NMS model is as accurate as the complex models

previously presented in the literature. It shows it achieves superior computational

time performances. It validates the model on a population of 6 male subjects and

directly compares its behavior to that of the model previously developed by a

leading research group in musculoskeletal modeling. The Chapter illustrates how

the proposed model can be used as a human-machine interface for the control

of a powered orthosis of the lower limb and discusses how it can be used for

the actuation of humanoid robots equipped with artificial muscles. This research

development aims to integrate musculoskeletal dynamics into robotics systems to

achieve more advanced bio-inspired control strategies.

45
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3.1 Introduction

The development of computer simulation methods based on biologically relevant

neuromusculoskeletal (NMS) models has gained particular emphasis in recent

years in the field of robotics for effectively helping understand mechanisms of

motion in humans [25, 58]. The need for better understanding the role of muscle

function during movement is regarded as a key-point for the design of robotic

systems that can robustly embody humans ability of moving. This trend can be

identified as Musculoskeletal Robotics [59].

Indeed, the human musculoskeletal system provides form, support and stability

to the body. The extraordinary capacity to efficiently use muscles allows us to

realize challenging tasks including: 1) the ability to actively move in a huge variety

of unknown environments, 2) the ability to add compliance to our movements

and make interaction with humans and real-world objects, 3) the ability to realize

multi-modal locomotion, i.e. different locomotion modes such as walking, running

or hopping.

As a result, several bio-inspired humanoid robots have been proposed in which

artificial muscle and tendon structures are attached to different parts of the

humanoid body just like real muscles are attached in the human body [12, 13, 60–

62]. This gives the robot more degrees of freedom of actuation than could be

achieved with motorized rotary joints and the potential ability of moving around

and interacting with the physical world in the same way our flesh bodies do

[60, 62]. Despite this great advancement in the musculoskeletal design, no effective

solutions have been proposed yet to activate the artificial muscles and actuate the

humanoid robots. In this context, the development of accurate musculoskeletal

software models can help defining the humanoids artificial muscles contraction

dynamics. For this purpose, human muscle contraction dynamics can be used as a

means of bio-inspired control system for humanoids.

The need for understanding muscle contraction dynamics also plays a central

role in the design of assistive devices such as powered orthoses and exoskeletons.

In this case, a better understanding of the real-time behavior of human muscles

can improve the actuation of these devices and their control algorithms, resulting
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in enhanced biomimetic control systems [6, 8]. Citing Nakamura et al.: when the

man-machine interface obtains access to the somatosensory information, machines

would make the first step to understand humans. Such implicit communication

between humans and machines could be termed as a cognitive-level communication

[6]. Bringing human musculoskeletal models into robotics will open the door to a

new generation of human-machine interfaces (HMIs) for a more intuitive device

control.

Therefore, it is crucial to develop models that reflect the action of muscles

while minimizing processing time in musculoskeletal robotics research.

This Chapter presents a novel neuromusculoskeletal (NMS) model of the knee

joint that is used together with motion capture technology and sophisticated

algorithms for motion kinematics and dynamics computation, to estimate so-

matosensory information during the human movement (Fig. 2.1). Although the

model represents a single joint, it has been designed so that it is straightforward to

extend to whole-body level with minor loss of computational time performances.

Chapter 6 will present an extension to the lower extremity level. The somatosen-

sory information includes activation, force, length and contraction velocity of the

muscles spanning the knee joint. This information is also used to estimate the

knee flexion-extension moments as well as contact forces between bones generated

during movement. The Chapter also shows the proposed model can be used as a

human-machine interface (HMI) for the real-time control of a powered orthosis

of the lower limb. It is then discussed how the NMS model can be used for the

actuation of humanoid robots equipped with artificial muscles.

A great body of research has been previously conducted in the field of neu-

romusculoskeletal modeling. In the literature there have been adopted either

simplified neuromusculoskeletal models that are suitable for applications with

real-time constraints or very detailed and physiologically accurate models that

are not efficients from a computational point of view.

Biomechanists have developed complex models of the human joints that com-

bine together kinematic and kinetic data with neural signals to study human

muscle behavior in vivo [1–3, 35, 36]. These models are extremely accurate in

the way they represent physiological properties of the musculoskeletal system. To
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enable the estimation of muscle force and joint moment, musculoskeletal models

usually require explicit expressions of muscle-tendon kinematics including: muscu-

lotendon length, three-dimensional muscle moment arms, muscle fiber length and

contraction velocity.

A main limitation of these models is they usually do not integrate these

operations into a common framework. Third party musculoskeletal geometry

software is used to estimate musculotendon length and three-dimensional muscle

moment arms and include: SIMM [44, 45], OpenSim [11, 46] and AnyBody [63].

These are driven by graphical user interfaces (GUIs) and are difficult to implement

in custom software or micro controllers due to their extreme detail of complexity

in modeling the pathways of the musculo-tendon complexes. This prevents the

NMS model, that uses them, to be entirely executed on line.

A second limitation is their complexity. These NMS models have complex

muscle models in which tendons and fibers are represented as elastic bodies capable

of stretching and contracting. An ordinary differential equation (ODE) has to

be integrated at each time step to estimate the instantaneous value of muscle

fiber length and contraction velocity (Section 2.3). This usually requires a great

amount of computational time which quickly grows with the number of muscles in

the model. Therefore, these models are unsuitable for robotics applications with

real-time constraints.

Only recently, robotics researchers have developed models that are suitable for

real-time applications [6, 8–10, 15, 38, 64]. These works, however, either utilize

very simplified models of the human joints or they do not integrate information of

the human musculoskeletal system at all. In general, real-time performances are

obtained by simplifying the model design. One main simplification is that of using

simple musculoskeletal geometry models that estimate musculotendon length and

muscle moment arms on a plane only, i.e. the joint flexion-extension plane. This

leads to inaccurate estimations of musculotendon kinematics and represents a

critical point because small errors in their values can result in large errors in

musculotendon force and joint moment prediction.

A second simplification is that of including a very limited number of muscles

spanning a specific joint. This implies the impossibility of correctly estimating
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the moments developed by the user at that joint. In fact joint moments can only

be correctly estimated if all muscles spanning that joints are considered and their

force is estimated.

Another limitation is that of not taking into consideration the change in muscle

force due to fibers contraction velocity. This plays an important role when the

subject transitions from one locomotion mode to another, i.e. from walking to

running.

Furthermore these models allow calibrating a small number of subject-specific

parameters thus making the scaling process less able to adapt to different subjects.

Finally, validation of the model is not paid much attention and the model is

usually evaluated on one subject only and on a small number of motor tasks. In

general, the degree of simplification often makes these models unsuitable for being

integrated into the control system of assistive devices that are to support a wide

range of movements.

This Chapter shows the proposed NMS model is accurate and achieves superior

computational time performances and proposes a solution that addresses the

limitations of the complex but slow models developed by biomechanists and the

fast but simplified ones developed by robotics engineers [65–67].

A novel methodology is proposed to produce accurate estimates of musculo-

tendon length and three-dimensional muscle moment arms eliminating the need

for using an off-line GUI-driven software. This allows executing the entire NMS

model on line and.

Fast operation of the NMS model is achieved by designing a novel muscle

model that allows estimating muscle fiber length and contraction velocity much

faster than the NMS models developed by biomechanics and with comparable

predictive accuracy.

The muscle redundancy problem is solved using electromyographic (EMG)

signals produced by the human muscles during movement. Previously presented

approaches [6, 9] assume the muscles share the load about a joint based on some

objective function that has to be carefully chosen before hand or based upon

statistical assumptions. This is a limitation because muscles in general use different

criteria depending on the subject and on the movement and it is often impossible
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to assess the appropriateness of the chosen optimization criteria or statistical

approach.

A robust validation methodology of the model is adopted. The NMS model is

used on a population of 6 male subjects who performed 75 of motor tasks. The

prediction accuracy was assessed by comparing the proposed methodology to the

well established model developed by biomechanists Lloyd et al. [2, 3, 35, 37, 47].

Real-time operation was assessed by running the proposed NMS model on an

embedded system that could be used for the real-time control of a powered orthosis.

This research development aims to integrate musculoskeletal dynamics into

robotics systems to achieve more advanced bio-inspired control strategies. Neu-

romusculoskeletal modeling technology not only can offer great solutions for

exoskeletons control and humanoids actuation, but can also boost research that

aims to realize more realistic virtual humans by providing a more realistic estima-

tion of human internal state [5].

3.2 Workflow

Fig. 2.1 gives a schematic view of the three steps that involve the acquisition of data

from the human movement, the use of sophisticated algorithms for the dynamic

simulation of the human motion and the execution of the neuromusculoskeletal

(NMS) model for the estimation of somatosensory information.

3.3 Human Movement

This is the first step in which the data needed for the model calibration and

validation are collected and processed.

A data set for the calibration of the model is initially created which includes:

1 static trial, 3 swinger trials, 2 walking trials and 2 running trials per subject.

Data collected from the static trial are used to scale the anatomical dimensions of

the musculoskeletal model (Fig. 3.1). Data collected from the swinger trials are

used to compute the optimal centre of the hip, knee and ankle joints.

Data collected from the 4 dynamic trials are used to calibrate the biomechanical
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parameters of the Muscle Activation Model (Section 3.5.2) and those of the Muscle

Dynamics Model (Section 3.5.3).

A different data set is instead used for the validation of the NMS model. This in-

cludes 10 walking trials (2meters/second) and 3 running trials (5meters/seconds)

per subject. The validation is performed as described in Section 3.5.5.

A 12 camera motion capture system (Vicon, Oxford, UK) is used to record the

human body kinematics with sampling frequency at 250Hz. A set of reflecting

markers are placed on the human body and their instantaneous three-dimensional

position is then reconstructed and used to measure the movement of body segments

including: trunk, pelvis, thigh, shank, and foot. Ground reaction forces (GRFs)

generated during the dynamic trials are collected using a multi-axis in-ground

force plate (AMTI, Watertown, USA) with a sampling frequency at 2kHz. Double-

differential surface electrodes are used to collect EMG signals from the selected

muscles. A telemetered system (Noraxon, Scottsdale, USA) transfers the EMGs to

a 16 channel amplifier (Delsys, Boston, USA) with sampling frequency at 2kHz.

Both body kinematics and GRFs are low-pass filtered with cut-off frequencies

ranging from 2 to 8Hz depending on the trial.

Raw EMG signals are first band-pass filtered (10− 150Hz), and then full-wave

rectified and low-pass filtered (6Hz) subsequently. The processed signal is the

linear envelope which is then normalized against the maximum values from EMG

linear envelopes obtained from a range of extra trials including: running and squat

jumps.

3.4 Movement Modeling

The second step in the process, depicted in Fig. 2.1, uses the scaled musculoskeletal

model (Fig. 3.1) to perform an accurate motion dynamic simulation using motion

data collected at step one. This produces three-dimensional joint angles and

joint moments generated during the human movement. This work uses the freely

available OpenSim software [46] to perform such a simulation. The simulation is

driven by GRFs and three-dimensional marker trajectories.

Before the simulation is performed, the real dimensions of the subject have to
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Figure 3.1: Experimental marker trajectories recorded during a static trial are used to scale the
generic OpenSim musculoskeletal model to match the subject’s anthropometry (also see Fig.
2.2.2). Discrete combinations of joint angles are used to obtain nominal values of musculotendon
length (lmt). These are used to create the coefficients for a multidimensional B-spline function
per muscle that can interpolate the discrete lmt nominal values. The spline function can then be
differentiated with respect to the generalized coordinate (�i) of interest to obtain the respective
moment arm. The process is here shown in the 2-dimensional case.

be taken into account. Optimal joint centres and axes are computed as previously

described in Section 2.2.1. The OpenSim musculoskeletal model is scaled as

previously described in Section 2.2.2. Three-dimensional joint angles and moments

are measured using Inverse Kinematics and Residual Reduction Analysis as

previously explained in Sections 2.2.3 and 2.2.4 respectively.

3.5 NMS Model

The third step in the process depicted in Fig. 2.1 is the execution of the NMS model.

This is a digital representation of the human neuro-musculoskeletal organization.

It reproduces the transformations that take place from the generation of the

EMG signals to the production of muscle forces and knee joint flexion-extension

moments. It comprises 5 main components (Fig. 3.2). The main structure is similar

to that of the baseline model (Section 2.3). However, the here proposed NMS

model introduces novel components including a musculotendon kinematic model
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Figure 3.2: Schematic view of the NMS model structure. Model inputs are highlighted in red.
Main outputs are muscle force and estimated joint moment.

(Section 3.5.1) and a stiff-tendon muscle model (Section 3.5.3). The EMG-driven

NMS model presented in this Chapter was entirely implemented in a C++ custom

program and no additional toolboxes were used.

3.5.1 Musculotendon Kinematics

The musculotendon kinematics (MTK) model uses the scaled musculoskeletal

model depicted in Fig. 3.1 to describe the organization of the muscular and

skeletal systems and to define the way muscles and bones interact with each other

towards the generation of joint motions. The MTK model is fed with 3D joint

angles and generates instantaneous estimates of musculotendon lengths lmt, and

moment arms r. It enables the subsequent estimation of musculotendon force Fmt

and joint moments. Models of the musculoskeletal geometry have been used in

the biomechanics community to estimate musculotendon kinematics including

software packages such as SIMM [45], OpenSim [46] and AnyBody [63]. These are

usually driven by graphical user interfaces (GUIs) and are difficult to implement in

custom software and/or micro controllers. To overcome these issues this Chapter

develops an alternative approach that can be easily integrated in custom programs.
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The freely available musculoskeletal software OpenSim is used in this work to

precompute subject-specific values of lmt at discrete joint configurations. That is,

the musculoskeletal model in Fig. 3.1 is set at different discrete joint configurations

and the length of each musculotendon actuator (MTA) is evaluated. A single

multidimensional cubic spline per MTA is then used to interpolate the discrete

values and thus generate lmt estimates at any joint configuration. Estimates of r

are obtained by calculating the partial derivative of the lmt spline with respect to

the DOF of interest (Fig. 3.1). A detailed description of this method is provided

in Chapter 4.

OpenSim Musculoskeletal Model: A freely available musculoskeletal model (Fig.

3.1) is used1 in OpenSim and customized to include only the muscles crossing

the knee joint and to define 6 generalized coordinates (GCs) in the lower limb.

The selected muscles include: semimembranosus (sm), semitendinosus (st), bi-

ceps femoris long head (bflh), biceps femoris short head (bfsh), sartorius (sar),

tensor fascia latae (tfl), gracilis (gra), vastus lateralis (vl), vastus medialis (vm),

vastus intermedius (vi), rectus femoris (rf), medial gastrocnemius (mg), and lat-

eral gastrocnemius (lg). The modelled GCs include: hip flexion-extension (HF),

hip abduction-adduction (HA), hip internal-external rotation (HR), knee flexion-

extension (KF), ankle plantar-dorsi flexion (AF), ankle subtalar angle (SA). By

adding more muscles to the musculoskeletal model it is possible to easily extend

it until the whole-body level.

Multidimensional Cubic Spline: The problem of finding musculotendon length

as a function of d joint angles generalized coordinates (�1, ..., �d) may be formu-

lated as determining the coefficients for the generic d-dimensional spline function

sd,n(�1, ..., �d). The terms x0(�1, ..., �d), ..., xn(�1, ..., �d), with xi, 0 ≤ i ≤ n, corre-

spond to n discrete configurations of the d joint angles (�1, ..., �d). To each joint

angle configuration there is a correspondent value of musculotendon length. These

musculotendon length values are the spline interpolation data and are used to

calculate the spline coefficients. The moment arm spline function can be found by

1Available to download from the musculoskeletal library: http://www.simtk.com
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differentiating sd,n(�1, ..., �d) with respect to the specific GC of interest.

To achieve better performances in terms of memory storage and computational

time B-Spline basis functions are used [68]. In general, a spline with n+ 1 nodes,

a = x0 < x1 < ... < xn = b ∈ ℝ (3.1)

where

Δn = [a = x0, x1, ..., xn = b]

can be written as a linear combination of n+ 3 cubic polynomials (B-Spline

functions) {u1, u2, ..., un+3} that define a basis. That is, any one-dimensional cubic

spline can be written as a linear combination of basis cubic polynomials ui:

s1,n(x) =
m∑
i=l

ciui(x) (3.2)

with some coefficients ci, where x ∈ ℝ is the point at which the spline is evaluated.

Furthermore l =
⌊
x−a
ℎ

⌋
+ 1 and m = min(l + 3, n + 3). The ℎ term is the

fixed-distance between the discrete nodes in (3.1). With this arrangement, to

compute a single spline value, m − l + 1 coefficients ci and basis ui are needed

where m − l + 1 ≤ 3. If the bounded interval Δn and the interpolation data

yi ∈ ℝ, i = 0, ..., n are given, a spline interpolates the data if it satisfies the n+ 1

conditions on the nodes: s1(xi) = yi for i = 0, ..., n. In the general d-dimensional

case a total number of Nc =
∏d

i=1(ni + 3) coefficients are needed to construct a

spline on the experimental data whereas the evaluation of a single spline value

requires
∏d

i=1(mi − li + 1) ≤ 3d coefficients and bases.

B-Spline functions provide a straightforward way to compute partial derivatives.

The partial derivative of a bivariate cubic spline function takes the form:

∂s2,n(x, z)

∂x
=

m1∑
i1=l1

m2∑
i2=l2

ci1i2u̇i1(x)vi2(z) (3.3)

where x and z are real-valued variables on the bounded intervals Δn1 = [a1, b1] and

Δn2 = [a2, b2]. The terms ui1(x) and vi2(z) are basis functions for the two variables
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respectively and u̇i1(x) is the x-basis function first derivative. The (n1 + 3)(n2 + 3)

coefficients ci1i2 for the non-differentiated spline function can therefore be reused

to estimate its derivative.

3.5.2 Muscle Activation

EMG linear envelopes are further processed and converted into muscle activation.

This is a percentage value that expresses how much a specific muscle is activated

toward the generation of force. The transformation from EMG to activation

accounts for the non-linear relationship between EMG and muscle force (Section

2.3.2). Fig. 2.16 shows the transformations involved from the acquisition of the

raw EMG signal to the derivation of muscle activation. The final activation time

series are obtained for 10 of the 13 muscles previously listed in Section 3.5.1

following the procedure described in [3]. Muscle activation from vi is estimated

as an average of the vm and vl activation, whilst st is assumed to have the same

activation as sm and bfsh is assumed to have the same activation as the bflh.

3.5.3 Muscle Dynamics

It calculates the force developed by each musculotendon actuator (MTA) in the

model. Section 2.3.3 described the structure of the elastic-tendon Hill-type muscle

model also depicted in Fig. 2.17. A brief summary will be given here and the

modifications that lead to the infinitely stiff-tendon model will be presented.

Each MTA consists of an active force generating component in series with two

passive elastic ones. These three components can be viewed as non-linear springs

whose force production ability is defined by specific functions (Fig. 2.18a, 2.18b

and 2.18c).

The active force generating component represents the muscle fibers. It is widely

accepted that the muscle fiber force depends on three factors. The first one, fA(l̃m),

is the non-linear active force-length function that expresses the ability of muscle

fibers to produce force at different lengths. The second factor, fP (l̃m), is the

non-linear passive force-length function that represents the passive element of the

fibers producing resistive force when stretched and compressed. These first two
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components relate the instantaneous length of the fibers (lm) to the force produced

in the muscle. The third factor, fV (vm), is the non-linear force-velocity function

that expresses the ability of muscle fibers to produce force as a function of the

fiber contraction velocity. Fiber length (lm) and velocity (vm), in this specific

work, are derived from the musculotendon length (lmt) and velocity (vmt) output

from the MTK model. The remaining two elastic passive components represent

the tendons. These are modeled to act like rubber bands. As the muscle fiber force

grows, the tendon gets stretched. When the tendon resting length is exceeded,

the tendon produces a resistive force that is non-linearly related to the amount

of tendon strain. Muscle fiber force and elastic-tendon force are then combined

together with muscle activation level computed by the Muscle Activation model

to estimate the total force produced by the MTA. To estimate the force produced

by the MTA at each time step, the equilibrium of the three-element system has

to be calculated using an ordinary differential equation (ODE). This involves the

execution of several computation steps including: the estimation of the current

musculotendon velocity, the apportion of it to the the muscle fibers and tendon

(based on their relative stiffness), and the integration of the derived fiber and

tendon contraction velocities. When several samples of lm need to be estimated,

the numerical integration of the ODE considerably increases the computational

time involved (Fig. 2.19).

To reduce the computational time, the elastic tendon was replaced with an

infinitely stiff one. The force produced by the MTA depends now on the action of

the muscle fibers only. This simplification was introduced under the hypothesis it

does not affect the model prediction ability. Indeed, according to [1] the tendon is

rather stiff. The strain, i.e. the percentage of length variation with respect to its

resting length, is only the 3.3% of the tendon length when the muscle generates the

maximum isometric force as shown in Fig. 2.18c. In the following of this Chapter

we will refer to this model to as the Stiff-tendon Hill-type Muscle (SHM) model

and to the previous one to as the Elastic-tendon Hill-type Muscle (EHM) model.

The force produced by the muscle fibers alone, is expressed in the SHM model
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in the same way it is expressed in the EHM. This can be written as follows:

Fm = (fA(l̃m) ⋅ fV (vm) ⋅ a(u) + fP (l̃m) + dm ⋅ ṽm) ⋅ Fm
0 ⋅ � (3.4)

where dm represents a passive parallel damping element that was added to the

force-velocity relationship to account for the muscles damping characteristics as

suggested in [36]. The term a(u) is the muscle activation as a function of the

post processed EMG signal u. The term Fm
0 expresses the force generated by the

muscle when fibers are at their optimal length, while the term � is the muscle

strength coefficients. The force produced by the musculotendon unit, Fmt can

then be derived by projecting the fiber force Fm onto the tendon line of action as

follows: Fmt = Fm ⋅ cos('), where the term ' is the pennation angle. This is the

angle at which fibers are oriented with respect to the tendon. The computation of

Fm and Fmt can then be done when the instant values of lm and vm are known

at all times.

The SHM model is designed so that the tendon length (lt) is constant regardless

of the force projected onto the tendon and is always equal to the resting tendon

slack length lts, i.e. lt = lts. Because of this, the muscle model has now one non-linear

spring only and the computation of its instantaneous length does not require the

integration of an ODE anymore. In fact lm is calculated as in (3.5):

lm =

√
(lm0 ⋅ sin('0))2 + (lmt − lt)2 (3.5)

where '0 is the pennation angle at optimal fiber length. The fiber contraction

velocity vm can then be found by differentiation. As shown in Sec. 3.7, SHM has

better time performances with respect to the EHM, with no loss of accuracy.

3.5.4 Moment Computation

The net knee FE moments, MKFE, are finally computed as the sum of the product

of each MTU force, Fmt, by its FE moment arm (rKFE) as in (3.6):

MKFE =
∑
i

Fmt
i ⋅ rKFE,i (3.6)
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where i is the itℎ muscle in the model.

3.5.5 Validation and Calibration

The NMS model presented in this Chapter is calibrated and validated likewise

the procedure described in Section 2.3.4.

3.6 Validation Procedure

Experiments were performed at the Gait Laboratory of the School of Sport Science

Exercise and Health of the University of Western Australia. Data were collected

from 6 healthy male subjects (mass = 81.73± 16.4Kg, height = 175.75± 6.39cm,

age= 30.67± 7.84years) who gave informed consent. The validation comprised of

three tests.

The first test compared the behavior of the stiff-tendon muscle model (SHM)

to that of the elastic-tendon muscle model (EHM). This was done for the purpose

of validating our hypothesis that the human tendon, in the lower limb muscles, is

rather stiff and its contribution to the production of muscle force and knee FE

moments can be neglected in the experiments conducted in this study. To quantify

how stiff the tendon actually was during the dynamic trials, the tendon strain

(�T ) was calculated using the EHM model, where �T is defined by the following

equation:

�T =
lt − lts
lts
× 100 (3.7)

and where all the terms in (3.7) are defined in Section 3.5. The term �T represents

the percentage of tendon length variation with respect to its resting length. The

instantaneous tendon strain associated to each muscle was computed at each

instant of time for all dynamic trials of all subjects. For each muscle, the average

tendon strain was then calculated. To quantify the impact of assuming the tendon

infinitely stiff (i.e. its length always equals the resting length), the percentage

of the variation of the muscle fibre length calculated using SHM with respect to
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EHM was computed using the following equation:

ΔF =
lms − lme
lme

× 100 (3.8)

where lms is the fibre length calculated using SHM, i.e. assuming the tendon

infinitely stiff, and lme is the fibre length calculated using EHM, i.e. assuming the

tendon is elastic. This is an important quantity because the force produced in

the musculotendon unit directly depends on the force produced by the muscle

fibers. Therefore, assessing how the fibre length varies when assuming the tendon

infinitely stiff or elastic, helps quantifying how important the role of the tendon is

in the NMS model design. The fibre length variation associated to each muscle

was computed for all trials of all subjects at each instant of time. For each muscle,

the average length variation was then calculated. Finally, the impact of assuming

the tendon infinitely stiff on the model ability of predicting knee FE moments

was quantified. Knee FE moments were estimated during the stance phase. This

is defined as the period of time between the heel-strike and toe-off events and it

represents the interval during which the foot is in contact with the ground floor

and the lower limb is supporting the entire body. The stance phase represents

about 60% of the gait cycle. The remaining 40% is associated to the swing of the

leg, that is the swing phase. Moments estimated by the SHM and EHM models

and those obtained experimentally were time normalized using a cubic spline. This

allowed comparing results associated to different trials and subjects. The time

normalized moments estimated by SHM, EHM, and those experimentally recorded

were respectively averaged across all trials from all subjects. This produced three

ensemble average curves of the knee FE moments. The SHM ensemble average

curve was then compared to that associated to EHM and to that associated to the

experimental moments. This allowed assessing how the predicted knee FE moments

changed with an infinitely stiff tendon and with an elastic one. Furthermore, it

allowed quantifying whether or not the assumption of an infinitely stiff tendon

produced a loss of accuracy in the prediction of the joint moments. Statistical

coefficients including Pearson Correlation and Root Mean Squared Error were

also used to better assess the prediction accuracy.
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The second test assessed the accuracy of the Musculotendon Kinematics

(MTK) Model. The model uses multidimensional cubic splines that are created

from nominal values of musculotendon length lmt obtained from OpenSim (Section

3.5.1). Therefore, the accuracy of the model is defined based on the capability of

reproducing the original OpenSim values of both lmt and r. The range of motion of

the lower limb joints about all associated GCs were sampled into equidistant nodes

that were input, together with the selected musculoskeletal model, into OpenSim

to compute the experimental lmt and r. Nominal values of lmt only, were used

to calculate the coefficients for both the lmt and the r spline functions (Section

3.5.1). The fitting accuracy was assessed both on the nodes used for coefficients

calculation as well as on a novel set of evaluation points located midway between

each pair of consecutive nodes. As a measure of error in estimated values we used

the Mean Fitting Error (MFE) and its standard deviation (�):

MFE =
1

N

N∑
i=1

∣∣∣X̂i −Xi

∣∣∣ , (3.9)

where X̂ is the OpenSim-generated value of lmt or r. The term X is the corre-

sponding estimated value from the MTK model. N is the number of points at

which the fitting function was evaluated. The created splines can now be used to

predict the musculotendon kinematics for any possible combination of 3D joint

angles (Fig. 3.1). A more detailed description of this process is provided in Chapter

4. The impact of the fitting error on the knee FE moment prediction was also

investigated. Moments calculated using OpenSim-generated values of lmt and r

were compared to the moments obtained using estimates of lmt and r from the

MTK model. Moments were time normalized and two ensemble average curves

were produced: one for the joint moments obtained from OpenSim estimates of

lmt and r (MOSIM ), and one obtained from estimates of the MTK model (MMTK).

The ensemble average curves were obtained from all dynamic trials of all subjects

during the stance phase. The percentage of the variation of MMTK with respect

to MOSIM was then computed:

ΔM =
MMTK −MOSIM

MOSIM

× 100 (3.10)



62 3. A STIFF-TENDON NMS MODEL OF THE KNEE JOINT

Figure 3.3: The EMG-driven NMS model can be integrated in the control loop for the actuation
of a lower limb powered orthosis as previously presented in [9]. The powered orthosis itself is
visible aside along with a schematic view of its mechanical structure.

The third test investigated whether the stiff-tendon muscle (SHM) model

executed faster than the elastic-tendon muscle (EHM) model. Finally, the time

performances of the entire NMS model were investigated for the purpose of

assessing whether the proposed SHM model can be used in robotics applications

with real-time constraints. In this work we assume the specific application is the

control of a powered orthosis for the lower limb, using EMG signals to establish an

interface between the human and the machine as in [9]. Fig. 3.3 gives a schematic

view of the control scheme. The powered orthosis control system can use the

EMG-driven NMS model to estimate the force the user’s muscles can produce and

the resulting user’s moments produced at the knee joint. When muscle forces are

not strong enough to allow for a proper joint movement, they can be amplified

to produce the target FE moment at the knee. This is the moment the subject

should produce to properly carry out the desired movement. The powered orthosis

controller can then be fed with the difference between the target moment and

the current moment produced by the user wearing the powered orthosis. This

difference defines the amount of extra moment the orthosis actuation system

should add to obtain the target motion. The muscle amplification factor that
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leads to the target moment can be initially defined by a medical doctor who

had previously analyzed the patient. However, automated procedures for the

calibration of this parameter can be implemented. Alternatively, if the subject

is healthy, the amplification factor can be used to further facilitate the user’s

movement and to augment their motor ability. For this to work, by the time

the human muscles contract, the NMS model has to provide a prediction on the

amount of force produced by each muscle and the FE moments produced at the

knee joint to be supported. This will allow actuating the orthosis as soon as the

human muscles activate. Recent studies have established that there is a delay

between the time instant the neural system generates EMG signals in the muscles

and the time instant when muscles contract mechanically and generate moments

around the joints. This is called the electromechanical delay (EMD). In the lower

limb muscles, the EMD is in the order of 10ms [27]. If the EMD is exploited

in the control algorithm of the powered orthosis, a non invasive and seamless

integration between the human operator and the assistive device is achievable and

the device can become a natural extension of the operator’s body. The real-time

constraint for the proposed NMS model is therefore the EMD. That is, the NMS

model has to be able to produce estimates of muscle forces and joint moments

in less than 10ms. Tests were performed on an embedded system (Digital Logic,

Switzerland) equipped with a 1.6Gℎz Atom CPU with 512MB RAM. This choice

was motivated by the fact of verifying whether the proposed NMS model would

run on a hardware architecture with low computation resources that could be

actually used for the control of a powered orthosis. The computational time of

the NMS model needed to produce one estimate of muscle force and one estimate

of knee FE moment, was calculated as the average time needed for computing

one thousand estimates.

3.7 Results

Results from the first tests are shown in Fig. 3.4. Fig. 3.4a shows that the tendon

strain associated to all muscles in the model was always less than 2% during all the

dynamic trials. This validated our hypothesis and suggested the contribution of the
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Table 3.1: Comparison of computational time performances (mean ± sdev) in ms

SHM EHM MTK NMS(SHM, MTK) NMS(EHM, MTK)

0.07± 0.00068 17.5± 0.072 1.1± 0.043 3.6± 0.064 21.1± 0.11

tendon to the production of muscle force and joint moment could be potentially

neglected in our experiments.

Fig. 3.4b shows that the fibre length variation associated to all muscles in the

model was always less than 9% during all dynamic trials. This suggested that the

impact of assuming the tendon infinitely stiff might not lead to drastic changes in

the predicion of muscle force with respect to the model with elastic tendons.

Fig. 3.4c shows that the SHM model predicted FE knee moments that were very

closely related to the reference knee FE moments. Both predicted and reference

moment curves had peaks that occurred at the same time instants. A small

discrepancy was noticeable at the edges of the graph and it was mostly due to

filtering issues. For each time step, filter algorithms needed to process data over a

predefined time window. At the edges of the data time series the window is not

full and therefore approximation errors were introduced. The Pearson correlation

coefficient R was 0.932. This means that the SHM model generated estimates that

were highly correlated to reference values over all subjects’ trials. The root mean

squared error RMSE was 7.898Nm. This means the SHM model introduced an

error that, on average, was less than the 10% of the range of variation observed

in the reference values (i.e. 86.673Nm). The maximum absolute error (emax) was

equal to 21.494Nm. It occurred at 73% of the stand phase and was located at the

edge region where the observed data was less significant due to the filtering issues.

The minimum absolute error (emin) was equal to 0.114Nm and occurred at 47%

that was the peak region. This proved that the model was capable of providing

high performances within the most significant part of the observed data.

Fig. 3.4c also shows the predictive ability of the EHM model. Surprisingly,

this was found to be slightly lower, on average, than that provided by the SHM.

Statistical coefficients assumed poorer values with respect to the SHM ones:

R = 0.893, RMSE = 9.714Nm. However, minimum and maximum absolute
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(a)

(b)

(c)

Figure 3.4: Average values of tendon strain (a) and fibre length variation (b) averaged all
dynamic trials for all subjects. Tendon strain and fibre length variation are calculated as in
(3.7) and (3.8) respectively. In (c) the ensemble average of the reference FE knee moment is
compared to that estimated by the SHM and to that estimated by the EHM. The standard
deviation of the ensemble average of the reference knee FE moment is represented by the dotted
lines and shaded area.
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errors provided better results: emax = 19.031Nm and emin = 0.012Nm. The

proposed results showed that by assuming the tendon infinitely stiff, the model

prediction accuracy did not decrease in our experiments but slightly increased

with respect to the case in which the tendon was modeled as an elastic body.

Results from the second tests are shown in Fig. 3.5. Fig. 3.5a and 3.5b show

that the MTK model was able to produce estimates of lmt and r with negligible

fitting errors which always were less then 0.004mm and 0.25mm respectively.

Fig. 3.5c shows that the lmt and r fitting errors introduced by the MTK model

produced a percent variation in the predicted knee FE moments that was always

less than the 2.5% of the moments obtained using OpenSim-generated estimates

of lmt and r.

The proposed results showed that the MTK model produces accurate estimates

of lmt and r and can be reliably used instead of GUI-driven third-party software

such as OpenSim to allow for an on-line execution of the entire NMS model.

Results from the third test are shown in Table 3.1. The SHM model executed

in 0.07ms, that is 250 times faster than the EHM model execution time, i.e.

17.5ms. This proved that modeling the tendon as an infinitely stiff body leads to

a substantial improvement in the computational time performances.

Table 3.1 also reports the time needed by the MTK model to execute. Because

the spline coefficients for each muscle are pre-calculated off-line, the total time

needed for the MTK model to execute is associated to the evaluation of both lmt and

r multidimensional spline functions for all muscles in the model. Spline functions

can be uni-dimensional in the case of uniarticular muscles crossing the knee joint

only, three-dimensional, in the case of biarticular muscles crossing the ankle and

knee joints and four-dimensional in the case of biarticular muscles crossing the hip

and knee joints. Spline function evaluation is done using generalizations to higher

dimensions of (3.2) and (3.3). The multidimensional spline evaluation time grows

as a function of the number of dimensions. In our tests, it ranged from 0.001ms

(uni-dimensional spline) to 0.08ms (four-dimensional spline).

Finally, Table 3.1 reports the time needed by the entire NMS model to execute.

Execution time significantly differed when using the NMS model with SHM

and MTK (NMS(SHM,MTK)) with respect to using the NMS model with
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(a)

(b)

(c)

Figure 3.5: Mean fitting error and standard deviation for musculotendon length (a) and for FE
moment arms (b) computed for all muscles in the model. In (c) the percentage variation of the
knee FE moments is estimated using (3.10). The upper standard deviation is shown (dotted
line) to quantify the maximum variation in knee FE moment due to the use of MTK as opposed
to OpenSim.

EHM and MTK (NMS(EHM,MTK)). The NMS(SHM,MTK) arrangement

demonstrated to execute in less than 4ms and showed to have computational time

performances that were suitable for the real-time control of the powered orthosis
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where the real-time deadline was set to be 10ms (Section 3.6). On the contrary,

the NMS(EHM,MTK) arrangement needed more than 20ms to execute and

was therefore regarded as unsuitable for the real-time control of the orthosis.

Finally we assessed the time needed to calibrate the NMS(SHM,MTK)

model (Sec. 2.3.4) on each subject separately and we compared it to that needed

by the NMS(EHM,MTK). For each subject the NMS models were calibrated on

4 trials (Section 3.3). While NMS(SHM,MTK) was calibrated in just 6 minutes

and 37 seconds it took 15 hours and 48 minutes for the NMS(EHM,MTK).

3.8 Musculoskeletal Humanoids Actuation

In the previous sections we illustrated how the proposed NMS model can be used

for the real-time control of a powered orthosis. However, the NMS model can

also provide effective solutions for the actuation of humanoid robots that have a

musculoskeletal architecture and artificial muscles.

The proposed NMS model allows taking inspiration from the way humans

move and addressing the challenge of autonomous locomotion in musculoskeletal

humanoids. A direct biological observation of how humans activate their muscles

and actuate their joints can therefore be done using the proposed NMS model.

The model can be used to experimentally estimate the muscle forces generated

by the human subject during dynamic motor tasks. The estimated muscle force

patterns during a specific movement can then be mapped and used to actuate the

humanoids artificial muscles and produce the observed movement in the robot.

The human-humanoid mapping has to take into account the different number

of muscles in the humanoid robot, the different mass properties and size of the

humanoid limbs and the different number of DOF in the humanoid joints.

A similar approach can be based on the recent studies suggesting that muscle

activation patterns are generated by a functional module located in the spinal

cord primarily based on global kinematics parameters that define the orientation

of the human limbs [24]. The proposed NMS model can be used to establish a

function that relates joint angle and moments to the corresponding force produced

by the muscles crossing that joint. This can be done by observing a broad range of
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dynamic motor tasks from a great number of human subjects. It is then possible

to derive average muscle force patterns of the whole subject population using

the proposed EMG-driven NMS model. Finally it is possible to create a function

that maps a specific combination of joint angle and moment to the corresponding

muscle force level. This can be done for each muscle spanning the specific joint. It

is then possible to prescribe a specific force to each artificial actuator depending

on the angle and moment that has to be produced by the humanoid joint.

Finally the proposed NMS model can play a very important role in determining

joint stiffness in humanoid robots. This is a very important parameter that has

been intensively used for the design of compliant humanoids and artificial limbs.

Indeed, joint stiffness can be easily expressed as a function of the activation of

the antagonistic muscles crossing a specific joint.

3.9 Conclusions and Future Work

This Chapter presented a novel neuromusculoskeletal model of the knee joint that

was used to estimate somatosensory information during the human movement.

The presented model proved to be as accurate as the detailed ones developed in the

biomechanics community but with superior computational time performances. Our

proposed NMS model was directly compared to the well known model developed by

Lloyd et al. [2, 3, 35, 37, 47]. A robust validation methodology was also provided

in which data obtained from 6 male subjects who performed a total of 78 motor

tasks were used to assess the time performances and prediction accuracy of the

NMS model. This work demonstrated the proposed NMS model has computational

time performances that make it suitable for the control of powered orthosis. That

is, the NMS model computation loop executes in less than 10ms which is the

electromechanical delay (EMD) in the lower limb muscles. The EMD was identified

as the real-time deadline that is necessary to achieve intuitive real-time orthosis

control. Computational time tests were performed on an embedded system that

can be used as the orthosis control unit. The Chapter then illustrated a control

strategy in which the model can be effectively used as an intuitive EMG-driven

human-machine interface following research previously done in [9]. The NMS
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model can be easily extended to whole-body level and this can play a crucial role

for the the actuation of humanoid robots with artificial muscles.

Results demonstrated the NMS model can achieve faster execution and cali-

bration time by integrating the proposed stiff-tendon muscle model (SHM) and

musculotendon kinematics model (MTK) within a common framework. The lower

prediction performances of the elastic-tendon model (EHM) are related to the fact

that the model does not always correctly estimate the amount of stiffness in the

musculotendon actuator. This can be related to calibration issues or to limitations

in the elastic-tendon model design. On the contrary, the SHM does not rely on

tendon stiffness to compute the muscle force and joint moments. Results suggested

that assuming the tendon length always constant might better represents the real

tendon dynamics that actually occurred in the experiments and might be a better

approximation than that provided by the elastic-tendon model. Further studies

have to be carried out to assess whether this assumption is valid for a wider range

of movements including: squat, jump, fast running, side stepping and cross-over

cutting manoeuvres.

Fast operation in calibration can be further exploited in future research to

develop more advanced algorithms for the continuous calibration of the model

biomechanical parameters. As the NMS model executes, the continuous calibration

algorithm will keep refining those parameters that vary with muscle fatigue such

as: optimal fibre length, maximum isometric force, maximum EMG. This will

allow designing more advanced powered orthosis control systems that will be able

to adapt to the user’s conditions on the fly.

The time complexity of the NMS model is bound to increase as a function of

the number of muscles. The superior computational time performances provided

by the SHM model with respect to the EHM not only allow executing within the

real-time deadline but also will allow including a greater number of muscles in

the model. This in turn will allow estimating the moments generated at multiple

joints including: hip, knee and ankle and controlling powered orthosis for the

simultaneous support of those joints (Chapter 6).

Furthermore, integration of pattern recognition technology in the NMS model

will be used to extrapolate more information out of the EMG signals (Chapter 8).
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This research development aims to integrate musculoskeletal dynamics into

robotics systems to achieve more advanced bio-inspired control strategies.





Chapter 4

Estimation of Musculotendon

Kinematics

This Chapter presents a robust and computationally inexpensive method to

estimate lengths and three-dimensional moment arms for a large number of

musculotendon actuators of the human lower limb using a single multidimensional

B-spline function per muscle. This is the method that is used in the Musculotendon

Kinematics (MTK) Model briefly illustrated in Section 3.5.1. Also see Fig. 3.1

and 3.2.

This Chapter presents a more detailed explanation of this methodology and

compares it to the approach currently used in the literature which is based on

polynomial regression. Compared to the polynomial regression method, the multi-

dimensional spline method produced lower errors for estimating musculotendon

lengths and moment arms at the generalized coordinate boundaries. The fitting

accuracy was also less affected by the dependant number of degrees of freedom

and by the amount of experimental data available. Furthermore, a single spline

function can be used to estimate both musculotendon length and moment arms

as opposed to polynomial regression where different equations had to be chosen

depending on the shape of the surface to be fitted. Finally, the spline method was

further tested in conjunction with an EMG-driven musculoskeletal model for the

estimation of muscle force under different contractile conditions. This confirms the

spline methodology is actually suitable for the integration in predictive models.

73
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4.1 Introduction

The development of mathematical models of human physiology and biology is

enabling a better understanding of whole body function from the genome to the

tissue and organ levels [5]. Musculoskeletal-level models and simulation tools are

providing effective ways to study muscle contribution to human movement and

this is offering possibilities to investigate how in vivo tissue loading is implicated

in the mechanisms of musculoskeletal injury and disease [4, 11]. The availability of

comprehensive and fast musculoskeletal models may also play an important role

in establishing intuitive Human-Machine Interfaces (HMIs) at the neuromuscular

level and providing new solution to implement effective control systems for assistive

devices [8]. Therefore it is crucial to develop models that reflect the action of

muscles while minimizing processing time in musculoskeletal modeling research.

Musculoskeletal models usually require computation of musculotendon kinematics

including musculotendon length (lmt) and three-dimensional muscle moment arms

(r) that enable the estimation of musculotendon forces (Fmt) and joint moments

(Section 3.5). The estimation of these musculotendon kinematics is critical because

small variations in their values can result in large variations in musculotendon force

[35]. It is therefore important to develop methods that are capable of producing

estimates that accurately reflect results obtained from experimental techniques

such as MRI or ultrasound. This introduces reliability and consistency in the

modeling process and assures results are directly related to the experimental

data set that was used. Models of the musculoskeletal geometry can be used to

estimate musculotendon kinematics including software packages such as SIMM

[44, 45], OpenSim [11, 46] and AnyBody [63]. These are usually driven by graphical

user interfaces and are difficult to implement in custom software and/or micro

controllers. To overcome these issues, an alternative approach has been proposed

in the literature to fit the musculotendon kinematics using polynomial regression

on both lmt and r [69]. That is, different polynomial regression equations (P eq)

were individually fitted to experimental values of both lmt and r thus requiring

the gathering of both sets of experimental data. In this Chapter we develop

a novel inexpensive model that can produce accurate estimates of lmt and r
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and that can be integrated into large scale musculoskeletal models and custom

programs. The aim was to determine if a single piecewise multidimensional cubic

spline could be used to generate estimates for both lmt and r from nominal

values of musculotendon length only, corresponding to discrete combinations of

generalized coordinates (GC) that specify joint kinematics. Nominal values for lmt

can be obtained from experimental data using MRI or ultra-sound technologies.

Alternatively, nominal values can be derived from models of the musculoskeletal

geometry [3, 4, 11, 44]. An additional aim of the paper was that of comparing our

methodology to polynomial regression equations and assessing whether spline can

provide more robust solutions. The EMG-driven NMS model previously presented

in Chapter 3 was used to quantify to which extent lmt misfits compromised the

capability of the EMG-driven model to predict Fmt [3].

4.2 Methods

This section presents the two musculoskeletal biomechanical models of the human

lower-limb that were used (Table 4.1) and the theory of the proposed spline-based

approach. This was entirely implemented by the author of this Thesis in a custom

program and no additional toolboxes where used1. More details about spline

interpolation and the generalization to the multidimensional case can be found in

[68]. Please refer to Menegaldo et al. [69] for details about polynomial regression.

4.2.1 Musculoskeletal Models

The first model (LowerLimb4307 ) had 43 musculotendon actuators (MTAs) and 7

generalized coordinates (GCs), i.e. 7 joint angles [44]. The lengths and moment

arms for each MTA depended on all GCs associated to the corresponding joints. The

LowerLimb4307 model had a maximum number of 4 GCs per MTA corresponding

to the biarticular muscles crossing hip and knee. This model was used by Menegaldo

et al. [69] to study fitting accuracy of polynomial regression equations and was

also used in this study as the comparison to our method. The second model

1The software C++ implementation, MATLAB interface, User’s Manual and all original
data will be made freely available to download at http://www.massimosartori.net/
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Table 4.1: Generalized coordinates (GCs) and their range of motion (ROM). Angles that define
the ROM of each GC are expressed in degrees. The Metatarsus-phalangeal angle is not used
in the LowerLimb1310 model because the muscles included in this model do not cross the
Metatarsus-phalangeal joint.

LowerLimb4307 Model Min Max

Hip Rotation (HR) -20 20
Hip Adduction (HA) -50 15
Hip Flexion (HF) -10 95
Knee Flexion (KF) -10 95
Subtalar Angle (SA) -20 20
Ankle Flexion (AF) -30 30
Metatarsus-phalangeal angle (MA) -30 30

LowerLimb1310
Reduced Extended

Min Max Min Max

Hip Rotation (HR) -20 20 -30 20
Hip Adduction (HA) -50 15 -50 30
Hip Rotation (HR) 0 95 -10 95
Knee Rotation (KR) -5 5 -10 10
Knee Adduction (KA) -3 3 -5 5
Knee Flexion (KF) 0 120 -10 120
Subtalar Angle (SA) -10 10 -20 20
Ankle Adduction (AA) -10 10 -20 20
Ankle Flexion (AF) -30 30 -40 30
Metatarsus-phalangeal angle (MA) -30 -30 30 30

(LowerLimb1310 ) had 13 MTAs and 10 GCs [35, 43] with a maximum number of

6 GCs associated with the biarticular muscles crossing hip and knee and those

crossing knee and ankle. This model was used to study the fitting capabilities

of spline functions and polynomial regression equations with a wider range of

conditions.

4.2.2 Multidimensional Cubic B-Splines

Generally a cubic spline consists of a series of 3rd order polynomial segments

spliced together to preserve continuity of the first and second derivatives. The
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points at which polynomials are spliced together,

a = x0 < x1 < ... < xn = b ∈ ℝ (4.1)

are called nodes, where

Δn = [a = x0, x1, ..., xn = b]. (4.2)

If Δn and the interpolation data yi ∈ ℝ, i = 0, ..., n are given, a spline interpolates

the data if it satisfies the n+ 1 conditions on the nodes: s1(xi) = yi for i = 0, ..., n,

where s1 represents a 3rd order one-dimensional spline function on the bounded

interval Δn. To achieve better performances in terms of memory storage and

computation time B-Spline basis functions were used. In general, a spline with

n+ 1 nodes can be written as a linear combination of n+ 3 cubic polynomials (B-

Spline functions) u1, u2, ..., un+3 that define a basis. That is, any one-dimensional

cubic spline can be written as:

s1(x) =
m∑
i=l

ciui(x) (4.3)

with some coefficients ci, where l =
⌊
x−a
ℎ

⌋
+ 1 and m = min(l + 3, n+ 3). With

this arrangement, to compute a single spline value, only m− l + 1 coefficients ci

and basis functions ui are needed out of the n+ 3 ones, where m− l + 1 ≤ 3. In

the general d-dimensional case a total number of Nc =
∏d

i=1(ni + 3) coefficients

are needed to construct a spline on the experimental data whereas the evaluation

of a single spline value requires
∏d

i=1(mi − li + 1) ≤ 3d coefficients and basis

functions. B-Spline basis functions provide a straightforward way to compute

partial derivatives. The partial derivative of a bivariate cubic spline function takes

the form:
∂s2(x, z)

∂x
=

m1∑
i1=l1

m2∑
i2=l2

ci1i2u̇i1(x)vi2(z) (4.4)

where x and z are real-valued variables on the bounded intervals Δn1 = [a1, b1]

and Δn2 = [a2, b2]. The terms ui1(x) and vi2(z) represent basis functions for the

two variables respectively and u̇i1(x) is the x-basis function first derivative. The
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(n1 + 3) ⋅ (n2 + 3) coefficients ci1i2 for the non-differentiated spline function can

therefore be used to estimate its derivative.

The estimation of musculotendon lengths and moment arms can be done using

the B-spline function previously defined. The problem of finding musculotendon

length as a function of d joint GC-angles, (q1, ..., qd) may be formulated as deter-

mining the (n1 + 3) ⋅ ... ⋅ (nd + 3) coefficients ci1i2...id for the generic d-dimensional

spline function sd(q1, ..., qd) where the yi1,...id interpolation data are given by lmt.

The moment arm spline function can then be found by differentiating sd(q1, ..., qd)

with respect to the specific GC of interest.

4.2.3 Validation Procedure

The validation is comprised of three tests. In the first one, the same input data,

biomechanical model and procedure as published by Menegaldo et al. [69] were

used for a direct comparison to our methodology. The second test was performed

to study spline and polynomial regression equations under a wider range of

experimental conditions. In the third test the impact of lmt misfit on muscle force

estimation was assessed.

In all tests, the range of motion (ROM) of each GC was sampled into equidistant

nodes that were input, together with the selected biomechanical model, into

OpenSim to compute the experimental lmt and r. Coefficients were then computed

for the polynomial regression equations, P eq using nominal values of both lmt

and r. Data for lmt only were used to compute the coefficients for the spline

function. The fitting accuracy was assessed both on the nodes used for coefficients

calculation as well as on a novel set of evaluation points located midway between

each pair of consecutive nodes. In this work, the accuracy of a model is defined

based on the capability of reproducing the original values of lmt and r that were

generated using OpenSim. This is because the coefficients of both spline functions

and polynomial regression equations were obtained using nominal values produced

by OpenSim. Therefore, the accuracy of a spline function as well as that of a

polynomial regression equation depends on how well they are able to replicate

the same dataset that was used to calculate their coefficients. The third test also

involved the collection of experimental data from gait analysis trials, reported
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previously by Winby and collegaues [35, 43].

The evaluation of the LowerLimb4307 model was performed using the ROM

of each GC sampled at 20 points (Table 4.1). However, when four GCs were used,

only 15 nodes per GC were used for coefficients computation.

The evaluation using the LowerLimb1310 model concentrated on the biarticular

muscles and tested three different sets of GC across the lower limb joints. Tests

on 4 GCs included: hip internal-external rotation (HR), hip adduction-abduction

(HA), hip flexion-extension (HF) and knee flexion-extenion (KF) for the thigh

muscles and KF, ankle adduction-abduction (AA), subtalar flexion-extension

angle (SA), ankle dorsi-plantar flexion (AF) for the shank muscles. With 5 GCs,

internal-external rotation (KR) was added and the 6 GC tests also included knee

adduction-abduction (KA). In this model no muscles crossing the metatarso-

phalangeal joint were included therefore the metatarso-phangeal angle (MA) was

not used. All tests were executed with the two different ROM arrangements as

defined in Table 4.1, i.e. reduced and extended. The ROM of each GC was sampled

at 10 nodes both with the reduced and extended arrangements. As a result, the

distance from one node to another was greater in the extended ROM. These

tests assessed how the fitting accuracy was affected by a number of experimental

conditions including: the distance between interpolation nodes, the number of

dimensions (GCs) to interpolate and distance of the evaluation points from the

interpolation nodes.

The impact of using the spline model on muscle force estimations was eval-

uated using the LowerLimb1310 model in conjunction with the EMG-driven

NMS model presented in Chapter 3.5. In the current study, two different tests

were performed where muscle forces were computed using musculotendon length

estimates generated using OpenSim, polynomial regression and the spline-based

approach respectively. Muscle force derived using OpenSim estimates of lmt were

assumed to be the gold standard and were compared to the muscle force derived

by estimates produced by spline and P eq.

In the first muscle force test no EMG signals and kinematic data on real subjects

were recorded. The musculotendon lengths and KF moment arms as a function

of 4 GCs were estimated as described previously. The estimated musculotendon
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lengths were then used in the EMG-driven model to calculate the isometric muscle

force produced at each data point. Since this test assumed isometric conditions,

no velocity effects were modeled therefore Fmt was only a function of muscle fiber

length and muscle activation. Each muscle was assumed to be maximally activated

at each GC configuration. This represented the worst-case scenario because when

the muscle is maximally activated, the effects of the musculotendon length fitting

errors on muscle force are amplified.

The second test studied the impact of lmt fitting error in dynamic conditions.

Data were collected from one male subject who gave informed consent and who

performed 15 gait and 5 jogging trials. Kinematic and ground reaction force

data were input into a RRA model to calculate knee flexion-extension moments

(Section 3.4). The EMG-driven model was then scaled and calibrated to the subject

(Sections 3.4 and 3.5). OpenSim was used to generate values of lmt for each sampled

time instant. The same was done using spline functions and polynomial regression.

EMG signals were used to determine the activation in the muscles and the Hill-

type model was used to estimate Fmt. A measure of force prediction error due

to musculotendon misfit was calculated. This test also assessed whether during

jogging trials, the effect of lmt fitting error on muscle force prediction was magnified

by the increased muscle activation as opposed to walking.

As a measure of the differences in estimated values from the different methods

the Mean Fitting Error (MFE) and its standard deviation (�) were used:

MFE =
1

N

N∑
i=1

∣∣∣X̂i −Xi

∣∣∣ , (4.5)

where, X̂ is the OpenSim-generated value of lmt or r. The term X̂ can also refer

to Fmt calculated using OpenSim-generated lmt. The term X is the corresponding

estimated value from the P eq or spline methods. N is the number of points at

which the fitting function has been evaluated. Additionally, the percentage of the

MFE relative to the OpenSim-generated value averaged on all angle configurations

(E[X̂]) was computed:

%� =
MFE

E[X̂]
× 100 (4.6)
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Confidence Interval (CI) at at 90% and 95% of the MFE was estimated using

Chebyshev’s Theorem, which can be conservatively applied to any probability

distribution with known mean and standard deviation:

MEE = MFE + 3.16�, (90%) (4.7)

MEE = MFE + 4.47�, (95%) (4.8)

The number of errors that has fallen inside the previously defined CIs was counted

for all muscles and proposed in a histogram form.

As discussed, computation time is important for neuromuscular skeletal model-

ing so it can be potentially used in real-time applications. Therefore, computation

time was evaluated on repeated tests where the number of GC was increased from

1 to 6. In each test, the reported time needed to compute a single estimate of lmt

or r was the average time computed from the evaluation of 10000 estimates. A

desktop computer with a 2.26GHz Intel Xeon CPU and 3GB RAM memory was

used. Both spline and polynomial regression equations evaluation routines were

implemented in C++ to better compare their relative speeds.

4.3 Results

The tibialis anterior muscle was chosen to demonstrate the performance of the

spline method. In the LowerLimb4307 model the tibialis anterior kinematics

depended on two GCs (AF and SA) and the variation of lmt and r errors are easy

to visualize in 3D. Fig. 4.1a shows the space distribution of the spline fitting error

associated to the prediction of lmt is uniform throughout the workspace and is

substantially smaller than that associated to P eq which reaches larger values at

the boundaries2. In Fig. 4.1c the P eq fitting error associated to the prediction of

rAF is clearly visible and it gets larger at the boundaries reaching a maximum of

0.15cm. Fig. 4.1e shows a very good agreement between the OpenSim-generated

surface associated to rSA and that generated by the spline function. The error

2The polynomial regression equations that were chosen to generate the results presented in
this work are the ones that produced the smallest fitting error.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: All graphs report values for the tibialis anterior muscle. (a) The two surfaces
represent the space distribution of the difference between the musculotendon length computed
using OpenSim and those estimated by the P ep and by the spline function respectively. (c) The
distribution of the AF moment arms (rAF ) computed using OpenSim and using P eq respectively.
(e) The distribution of the SA moment arm (rSA) computed using OpenSim and using the spline
function respectively. Histograms (b), (d) and (f) show the fitting error distribution associated
to lmt, rAA and rSA respectively. The y-axis has been broken to focus on the most informative
part of the graph.

(distance) between the two surfaces is uniform throughout the workspace and it

reaches a maximum that is in the order of 8× 10−4cm. The histograms in Figs

4.1b, 4.1d and 4.1f, showed that spline generated errors were always contained

in an error class that was smaller than the first (smallest) polynomial regression

equation error class. Similar results were obtained with all the other muscles as

reported in Table 4.2. The spline method provided MFEs that were three orders
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Table 4.2: Mean fitting error (MFE) and standard deviation (�) expressed in meters for both
polynomial regression equation (P eq) and spline methods. Values are associated to the estimation
of musculotendon length and moment arms and were obtained by averaging MFE and � of all
muscles in the LowerLimb4307 model during the first test as described in Section 4.3.

(MFE ± �) P eq spline

lmt 7.2−4 ± 6.4−4 1.1−7 ± 3.2−7

rHR 2.1−3 ± 1.6−3 1.8−6 ± 3.3−6

rHA 2.8−3 ± 2.2−3 3.4−6 ± 1.2−5

rHF 2.9−3 ± 2.3−3 3.8−6 ± 1.4−5

rKR 4.7−4 ± 5.1−4 1.2−5 ± 4.1−5

rSA 9.4−4 ± 9.1−4 6.7−6 ± 1.9−5

rAF 4.4−4 ± 7.2−4 2.0−6 ± 3.8−6

rMA 1.6−4 ± 9.3−5 9.3−7 ± 9.9−7

Table 4.3: Error measures on semimembranosus musculotendon length interpolation expressed
in meters. The term P

eqm
n represents the m-th polynomial regression equation as a function of n

generalized coordinate (GC). The term sn represents the n-dimensional spline function. Both
polynomial regression and spine approaches have been used to estimate lmt using different ranges
of motion (ROM) for the GCs listed in Table 4.1. Furthermore, lmt has been estimated both on
the interpolation nodes (on) and a novel set of nodes placed midway between the interpolation
nodes (off ). Error measures have been used to quantify the fitting accuracy including: Mean
fitting error (MFE), error standard deviation (� ) and 95% confidence inerval using a Chebychev
distribution (CI).

Reduced ROM

MFE � C.I.(95%)

P eq1
4 2.15E-03 1.74E-03 9.92E-03

on
s4 2.39E-10 1.69E-10 9.97E-10

P eq1
4 1.86E-03 1.42E-03 8.19E-03

off
s4 6.93E-06 7.18E-06 3.90E-05

Extended ROM

MFE � C.I.(95%)

P eq0
4 2.35E-03 2.22E-03 1.23E-02

on
s4 2.25E-10 1.60E-10 9.42E-10

P eq0
4 1.91E-03 1.71E-03 9.54E-03

off
s4 1.62E-05 2.11E-05 1.11E-04

P eq1
5 2.16E-03 1.68E-03 9.69E-03

on
s5 2.46E-10 1.75E-10 1.03E-09

P eq1
5 1.87E-03 1.34E-03 7.85E-03

off
s5 6.92E-06 7.17E-06 3.90E-05

P eq0
5 2.45E-03 2.26E-03 1.26E-02

on
s5 2.31E-10 1.66E-10 9.74E-10

P eq0
5 2.02E-03 1.72E-03 9.71E-03

off
s5 1.62E-05 2.11E-05 1.11E-04

P eq1
6 2.17E-03 1.68E-03 7.49E-03

on
s6 2.56E-10 1.83E-10 1.07E-09

P eq1
6 1.86E-03 1.33E-03 7.81E-03

off
s6 1.35E-05 1.88E-05 9.74E-05

P eq0
6 2.53E-03 2.28E-03 1.27E-02

on
s6 2.51E-10 1.82E-10 1.06E-09

P eq0
6 2.08E-03 1.74E-03 9.86E-03

off
s6 2.66E-05 3.52E-05 1.84E-04

of magnitude smaller then the errors obtained using polynomial regression.

The test on the LowerLimb1310 model showed that, with the same conditions,

the spline method provided better performance than P eq (Table 4.3). The use of
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(a) (b)

Figure 4.2: (a) The error associated to the prediction of the maximal isometric Fmt. The
histogram combines values for all muscles in the LowerLimb1310 obtained during the third test.
A set of error classes have been defined, each one representing a different error range and the
number of points falling into each class have been counted and graphed. The x an y axes have
been broken to focus on the most informative part of the graph. (b) The semimembranosus
force prediction errors during all gait and jogging trials are estimated and the average errors are
here reported.

an extended ROM, significantly affected P eq accuracy. Furthermore, a different

regression equation had to be used on the extended ROM even though, experiments

were done on the same muscle and and kinematic variable. The spline method was

less affected than the P eq by the distance between interpolation nodes, and their

associated difference measures were always at least three orders of magnitude

smaller. When the number of GCs was increased, splines were not significantly

affected whereas P eq fitting accuracy showed higher variability. In general, spline

functions evaluated on the interpolation nodes produced negligible errors (10−10m)

thanks to the (n + 1) interpolation conditions that assure perfect fit on-nodes

(Section 4.2.2). When evaluated off-nodes, errors were still very small, i.e. in the

order of 10−5m. Interestingly, P eq produced slightly bigger errors when evaluated

on the interpolation nodes although always in the order of 10−2m. As shown in

Table 4.4, the percentage mean fitting error %� associated to the HA moment arm

(rHA) showed that the non-differentiated spline, that was individually fitted to

rHA
(
sℎa4

)
provided the best results. However, ∂slmt4 /∂qHA still produced very small

values of %� in the order of 0.1% of E[rHA] with better performances off-nodes.

Errors associated to P eq were higher and corresponded to a thick 10% of E[rHA].

The lmt fitting error impacted the estimates of muscle force. Estimations of

lmt using P eq reached a MEE of 1.23cm with four GCs and an extended ROM
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(Table 4.3). On the other hand, splines produced a MEE of only 0.01cm. When

muscles were maximally activated, a 1cm difference in lmt with respect to the true

length can result in variations of hundreds of newtons (N ) in the estimation of

the isometric musculotendon force. The force errors stemming from P eq fell into

error classes of hundreds of newtons whereas spline related errors were always

less than 20N and always contained in the first (smallest) error class (Fig. 4.2a).

In the LowerLimb1310 test, errors of all muscles from the spline-based approach

provided superior results than P eq (Fig. 4.2a). During tests involving dynamic

motor tasks, errors in force prediction associated to P eq were highly dependent on

the muscle activation level as opposed to errors associated to the spline method

(Fig. 4.2b). The force prediction instantaneous error during walking reached a

maximum error of 6N using P eq which increased up to almost 20N during jogging,

while the spline errors were not affected by the increased muscle activation and

was always less than 1N .( Fig. 4.2b).

The computation time needed to evaluate one point on the spline function

depends on the number of GCs [68]. This dimension dependency was observed in

the computational time tests although computational costs were always reasonably

low. Computational time ranged from 10−5ms (one-dimensional case) to 10−2ms

(six-dimensional case) both for spline and for its derivative. The P eq computation

time was always in the order of 10−6ms as the number of coefficients is not a

function of the number of GCs.

4.4 Conclusions and Future Work

In this study, multidimensional cubic B-splines were used to estimate musculoten-

don kinematics for a set of lower-limb musculotendon actuators. The proposed

methodology was compared to previous research work that used polynomial re-

gression [69]. A single spline function could be used to estimate both lmt and

r with only very small errors compared to the original data. Contrary to this,

different P eq had to be chosen according to the surface to be fitted. If 6 GCs were

involved, 7 different regression equations had to be chosen (i.e. one for lmt and six

for r) and their coefficients had to be calculated. This requires in general more
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Table 4.4: Percentage of the mean fitting error (MFE) relative to the OpenSim-generated value
averaged over the N data points %�. Values are from the estimation of the semimembranosus
muscle hip adduction-abduction moment arms (rHA). The term Pn represents the polynomial
regression equation used for the estimation of rHA as a function of n generalised coordinates
(GCs). The term sHA

n represents the n-dimensional spline function used for the direct estimation
of rHA. The term slmt

n represents the n-dimensional spline function used for the direct estimation

of the semimembranosus musculotendon length. The term
∂slmt

n

∂qHA
represents the first partial-

derivative of slmt
n with respect to the hip adduction-abduction GC (qHA) and represents the

approach that is presented in this research work. Values of %� were calculated using an extended
(E ) and a reduced (R) range of motion (ROM) for qHA as in Table 4.1. Furthermore, %� has
been calculated when rHA was estimated on the interpolation nodes (on) and on a novel set of
nodes placed midway between the interpolation nodes (off ).

R/on R/off E/on E/off

P4 10.35 8.39 12.01 9.94
∂slmt4 /∂qHA 0.18 0.05 0.26 0.06

sℎa4 4.6E-08 1.5E-03 5.3E-08 3.8E-03

P5 10.34 8.38 12.00 9.93
∂slmt5 /∂qHA 0.18 0.04 0.26 0.06

sℎa5 4.8E-08 1.5E-03 5.5E-08 3.8E-03

P6 10.34 8.38 12.00 9.95
∂slmt6 /∂qHA 0.18 0.05 0.26 0.07

sℎa6 5.0E-08 2.0E-03 5.9E-08 6.3E-03

experimental data to be available whereas the spline-based approach provides a

single solution to the problem.

Fitting accuracy was analyzed under different conditions including: number

of experimental nodes, number of GCs, distance of evaluation points from exper-

imental nodes. Splines always provided fitting errors of at least three orders of

magnitude smaller than errors associated to P eq.

Muscle force estimates were not affected by the use of the spline method to

estimate musculotendon kinematics. There was tight agreement between the forces

determined using the NMS model driven by the OpenSim and spline generated

lmt. This occurred for both isometric maximal contraction and dynamic trials. On
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the other hand, forces produced using P eq showed large discrepancies during the

isometric tests. During dynamic tests the force discrepancy significantly increased

with muscle activation.

Computational requirements associated to both spline and polynomial regres-

sion were compared. The computational time of P eq is not a function of the

number of GCs and was always in the order of 10−6ms. Because the number of

spline coefficients is a function of the number of GCs (Section 4.2), the compu-

tational cost associated to the spline approach varies with the number of GCs

too. However, results showed that good performances were obtained even with

6 GCs where the time needed to estimate a single data point for lmt and for

the 6 moment arms was estimated to be in the order of 0.1ms per muscle. The

splines’ first derivatives could be estimated at the same computational cost needed

for the non-differentiated spline. Computational performances provided by the

proposed spine method make this approach suitable for applications with real-time

requirements.

The use of splines is not limited to fitting lmt data from muscluotendon models

such as SIMM or OpenSim. Alternatively, lmt could be determined from the

centroids of three dimensional muscles based on MRI data [70, 71] or from three

dimensional geometric modeling of musculoskeletal systems [72–74]. These methods

allow modeling muscles as complex of fibers with different contraction properties,

mass distributions and shapes. However, the amount of information needed to

represent these models and the associated computational requirements would

prevent any direct implementation into real-time systems or micro controllers.

The approach proposed in this Chapter allows creating a multivariate function

that can reliably replicate the behavior of complex systems at low computational

cost.

In summary, the results obtained using the spline-based approach are promising

and further demonstrate the methodology can be reliably integrated in complex

neuromusculoskeletal models for the prediction of muscle force for a large number

of musculotendon actuators as previously shown in Chapter 3.





Chapter 5

Fast Calibration of the

Elastic-Tendon NMS Model

Chapters 3 and 4 presented the design of the proposed EMG-driven NMS model

based on infinitely stiff tendons. In some applications however, it may be useful to

have accurate estimates of the instantaneous tendon and muscle fibre lengths. In

such a situation, an elastic-tendon NMS model may be the best choice. The main

problem though, is the time required to properly calibrate it. Indeed, as explained

in Chapter 3 the calibration of the single-DOF knee joint model may take several

hours. This time is bounded to significantly increase with the number of muscles

and DOFs in the model but also with the number of calibration trials that are

used. The required calibration time can therefore easily become unmanageable

even with powerful machines.

This Chapter illustrates an alternative solution to the use of standard global

optimization algorithms (Section 2.3.4) to optimize the model. We will refer to the

NMS model that uses an elastic-tendon Hill-type muscle model to as the EHM.

We will instead refer to the NMS model that uses a stiff-tendon Hill-type muscle

model to as the SHM.

89



90 5. FAST CALIBRATION OF THE ELASTIC-TENDON NMS MODEL

Figure 5.1: Proposed procedure for the fast calibration of the elastic-tendon NMS model.

5.1 Methods

Chapter 3 showed that the SHM proposed in this thesis achieves faster execution

and calibration time with no loss of accuracy in the prediction of knee flexion-

extension (FE) moments with respect to the EHM. Because of this, it is reasonable

to hypothesize that the set of parameters obtained for the SHM may represent

a good sub-optimal solution for the EHM. If this hypothesis holds, it could be

possible to create a faster calibration procedure for the EHM that comprises two

steps:

1. Pre-calibration: the global optimization criteria (i.e. simulated annealing)

presented in Section 2.3.4 is used to calibrate the stiff-tendon model. The

resulting parameter set represents the initial sub-optimal solution for the

elastic-tendon model. The simulated annealing procedure will be referred to

as the standard calibration procedure.

2. Refinement: the fast local optimization criteria (i.e. downhill simplex) pre-

sented in [75] is used to further refine the initial sub-optimal solution to

obtain an optimal parameter set for the EHM. The pre-calibration step

allows localizing and avoiding all the locally optimal solutions in the work

space. The local optimization algorithm is then used to explore the neighbor-

hood of the sub-optimal solution and quickly converge towards the closest

optimum.

Fig. 5.1 gives a schematic view of the proposed calibration procedure.
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5.2 Validation Procedure

Experiments were performed at the Gait Laboratory of the School of Sport Science

Exercise and Health of the University of Western Australia. Data were collected

from one male subject (age: 28, weight: 67, height: 183 cm) who gave informed

consent and who performed 5 walking trials at self-selected speed. The same data

collection protocol and the same modeling process described in Chapter 2 were

used. The data collected during the 5 walking trials were used to calibrate the

elastic-tendon model presented in Section 2.3. A total number of 19 parameters

were adjusted during the calibration process. These included: muscle-specific

tendon slack length, global EMG-to-activation shape factor and recursive filter

coefficients and muscle strength coefficients (Section 2.3.4).

The validation procedure comprises three tests. In all tests knee FE moments

are estimated during the stance phase. Outputs are time-normalized using a cubic

spline and averaged over the 5 walking trials to produce a single ensemble average

knee FE moment curve. Furthermore, the mean fitting error (MFE), as described

in (3.9), is used as an additional measure of error in the estimated moments.

The first test assesses whether the set of parameters obtained from the standard

calibration of the SHM actually represents a good sub-optimal solution for the

EHM. This represents the pre-calibration step. The knee FE moments estimated

by the pre-calibrated EHM (P-EHM) are then compared to those obtained by the

standard-calibrated stiff (C-SHM) and elastic (C-EHM) tendon models.

The second test assesses whether the refinement step further improves the

solution found during the pre-calibration step. For this purpose, the refined pre-

calibrated solution (RP-EHM) is compared to that obtained from C-EHM and

C-SHM. Furthermore, to prove that the refinement step alone does not lead to

satisfactory solutions, the elastic-tendon NMS model (EHM) is calibrated using

the local downhill simplex algorithm starting with an uncalibrated parameter set.

We will refer to this model to as D-EHM (i.e. downhill simplex calibrated EHM

model).

The third test assesses whether the proposed calibration procedure is faster

than the standard one. For this purpose the calibration time is measured and
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(a) (b)

(c) (d)

Figure 5.2: (a) Stiff and elastic-tendon models using the uncalibrated parameter set. (b)
Standard-calibrated elastic (C-EHM) and stiff (C-SHM) models are compared to the pre-
calibrated elastic-tendon model (P-EHM). The reference knee FE moment curve is also shown
along with its standard deviation (dotted lines). (c) The refined pre-calibrated elastic-tendon
model (RP-EHM) is compared to the pre-calibrated elastic-tendon model (P-EHM). (d) The
refined pre-calibrated elastic-tendon model (RP-EHM) is compared to the standard-calibrated
elastic-tendon model (C-EHM) and to the downhill simplex calibrated elastic-tendon model
(D-EHM).

compared for both procedures. Tests are performed on an embedded system

(Digital Logic, Switzerland) equipped with a 1.6Gℎz Atom CPU with 512MB

RAM.

5.3 Results

Fig. 5.2a shows the behavior of both stiff and elastic-tendon models using the

uncalibrated parameter set. This represents the starting point for the optimization
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Figure 5.3: Mean fitting error (MFE) associated to: standard-calibrated elastic (C-EHM) and
stiff-tendon (C-SHM) models, downhill simplex calibrated elastic-tendon model (D-EHM), pre-
calibrated elastic-tendon model (P-EHM), refined pre-calibrated elastic-tendon model (RP-EHM).
The standard deviation of the MFE is represented by the lines on top of each bar.

procedures.

Fig. 5.2b shows the results from the first test. The P-EHM performs very

similarly to the C-EHM and C-SHM models with slightly higher fitting errors

(Fig. 5.3). This proves the pre-calibration step provides a sub-optimal solution

which represents a good starting point for refinement.

Fig. 5.2c and 5.2d show the results from the second test. The refinement step

improved the solution associated to the P-EHM producing an even more similar

curve to that associated to the C-EHM models (Fig. 5.2c). Using the downhill

simplex algorithm to calibrate the elastic-tendon model from scratch does not

lead to satisfactory solutions (Fig. 5.2d) thus proving this method only converges

towards the closest locally optimal solution. This further validates the proposed

idea of combining a global optimization approach with a fast local one (Section

5.1). The RP-EHM generates a knee FE moment curve that closely fits that

generated by the C-EHM model. Furthermore, the RP-EHM further decreases its
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Table 5.1: Comparison of computational time performances (h=hour, m=minute, s=second)

C-EHM C-SHM D-EHM P-EHM RP-EHM

19h,13m 8m,7s 55m,13s 8m,7s 63m,20s

MFE with respect to the P-EHM and reaches a similar value to that associated

to the C-EHM (Fig. 5.3).

Table 5.1 shows the results associated to the third test. The time needed

to calibrate the elastic-tendon model using the standard calibration procedure

(C-EHM) is approximately 19 hours. The time needed using the methodology

proposed in this Chapter (RP-EHM) is significantly lower, i.e. approximately 63

minutes.

5.4 Discussion

It is worth noting that the pre-calibrated elastic-tendon model (P-EHM) performed

very well with a MFE of 8.8 ± 5.3Nm. The time for its calibration is the time

required to calibrate the stiff-tendon model using the standard calibration approach

that is approximately 8 minutes. The refined pre-calibrated elastic-tendon model

(RP-EHM) performed slightly better than the P-EHM, i.e the associated MFE

was 7.8± 5.3Nm. However, the time for calibration was much higher (63 minutes).

This work shows that the stiff-tendon model alone can be used to calibrate the

elastic-tendon model in just 8 minutes as opposed to the 19 hours required from

the standard calibration and the 55 minutes required by the refinement step.

Furthermore, the loss of prediction accuracy is significantly low. The standard-

calibrated elastic-tendon model achieved a MFE of 6.01± 5.9Nm which is only

2.79Nm lower to that associated to the P-EHM and 1.79Nm lower than that

associated to the RP-EHM.
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5.5 Conclusions and Future Work

In this Chapter a novel methodology was presented to achieve faster calibration

of the elastic-tendon model. Results showed the proposed methodology allows

calibrating the elastic-tendon model achieving the same calibration accuracy of

the standard calibration procedure but in significantly less time.

This result is particularly significant when an elastic-tendon model is to be

used to simulate the behavior of a large number of musculotendon actuators or

when the NMS model has to be calibrated on a large number of trials. Indeed,

the calibration time is a function of the number of MTAs and DOF in the model

as well as number of calibration trials.

Future research will further assess the potential of the proposed calibration

methodology on the multi-DOF NMS model presented in Chapter 6. Furthermore,

the low calibration time associated to the stiff-tendon model will be exploited

to implement an on-line calibration algorithm that keeps refining the model

parameters as it executes. This will allow coping with time-varying parameters

associated to muscle fatigue including the muscle maximal isometric force. This

will allow creating NMS model that automatically adapt to the subject’s physical

conditions.





Chapter 6

A Neuromusculoskeletal Model of

the Human Lower Extremity

The previous Chapters presented the single-DOF EMG-driven NMS model de-

veloped in this thesis. The model can estimate the force from 13 musculotendon

actuators (MTAs) crossing the knee joint and the moments about the flexion-

extension (FE) DOF. It was compared to the previously developed single-DOF

NMS model based on elastic tendons (Section 2.3). It was demonstrated the single-

DOF NMS model proposed in this thesis achieves faster execution and calibration

time with no loss of accuracy in the prediction of knee flexion-extension (FE)

moments. It was also proved the model can be used to implement fast calibration

of the elastic-tendon model.

This Chapter further extends the work presented in the previous Chapters.

A novel neuromusculoskeletal (NMS) model of the human lower limb is here

presented. The model uses EMG signals from 16 muscles to estimate forces from

34 muscles and moments at the hip, knee and ankle joints. We will refer to the

model presented in this Chapter to as the multi-DOF EMG-driven NMS model.

Results show the multi-DOF model is capable of constraining the operation of

the muscles to satisfy the moments generated at all joints and about all degrees

of freedom during the human movement. This allows better estimating muscle

forces providing a single solution to the problem with respect to current NMS

models proposed in the literature that only constrain the operation of muscles

97
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to satisfy moments produced at one joint only. This technology can be applied

to the design of more intuitive human-machine interfaces for the simultaneous

EMG-driven actuation of multiple joints in powered orthoses.

6.1 Introduction

The study of how muscles activate, generate force and actuate multiple joints

simultaneously is crucial to understand the mechanisms behind human movement

[25]. This is becoming an important topic in the design of wearable assistive device

control systems such as powered orthoses. In recent years a body of research has

been conducted on connecting the control system to biological signals generated

by the operator that are directly linked to the desire of motion [8, 9, 15]. EMG

signals represent a good candidate for extracting motor information from the lower

limb and establishing an intuitive HMI for assistive device control (Chapter 1).

In this context, EMG-driven neuromusculoskeletal (NMS) models of the human

limbs provide a way to implement continuous active control of assistive devices as

opposed to pattern recognition and machine learning methods (Section 1.1).

To date though, only single-DOF EMG-driven NMS models have been proposed.

That is, muscle forces are used to predict moments about a single DOF of a single

joint. In [6] a whole-body NMS model was presented. However, it was not driven

by EMG signals and the muscle redundancy problem, i.e. the way muscles share

the load about a joint, was solved based on some objective function that had to

be carefully chosen before hand. This is a limitation because muscles in general

use different criteria depending on the subject and on the movement and it is

often impossible to assess the appropriateness of the chosen optimization criteria.

Furthermore, not using EMG signals has the drawback that to perform a movement,

the operator has to be able to initiate the movement before he or she can receive

support from the system.

This Chapter shows it is possible to use EMG signals to accurately estimate

muscle forces from all major muscles in the lower limb. A novel NMS model is

proposed which allows constraining the operation of muscles so that the forces

they produce can satisfy the moments simultaneously generated at multiple DOFs
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in multiple joints including the hip, knee and ankle joints. This is achieved by the

use of a novel calibration algorithm (Section 6.3.5). Single-DOF models such as

knee flexion-extension (FE) models allow estimating the muscle forces involved in

the production of FE moments only. However, most of the muscles spanning the

knee also span the hip and the ankle joints too. Therefore, the forces the muscles

generate for the production of knee FE moment also have to satisfy the generation

of moments about hip and ankle joints.

Single-DOF models, therefore, constrain the operation of muscles to satisfy

the moments generated at a single joint and about a single DOF only. Because

of this, Single-DOF models can usually fit the experimental single-DOF joint

moment with good accuracy. However, the underlying behavior of the simulated

muscles is questionable as it may not be truly representative of the real muscle

behavior. Results in this Chapter show that the force a muscle can generate during

a specific movement can be predicted in extremely different ways when different

single-DOF models are used and it is not possible to know what single-DOF

model gives the best estimates. The multi-DOF NMS model presented in this

Chapter allows removing this indeterminacy by providing a single solution for each

muscle. Results show the multi-DOF model has the potential to better estimate

somatosensory information than single-DOF models.

This research has the potential to help design effective HMIs that can provide a

better estimation of the human internal state. This research develops the technology

needed to achieve power orthosis continuous control and the simultaneous actuation

of multiple DOFs in multiple joints. This is a crucial requirement when the assistive

device is to be used for the support of the lower limb. Indeed, all functional motor

activities such as walking and climbing stairs involve the simultaneous actuation

of hip, knee and ankle joints. This will also allow supporting an even wider range

of movements.

6.2 Methods

Experiments were performed at the Gait Laboratory of the School of Sport Science

Exercise and Health of the University of Western Australia. One healthy, male



100 6. A NMS MODEL OF THE HUMAN LOWER EXTREMITY

subject volunteered for this investigation (age: 28years, height: 183cm, mass:

67kg). The subject was taken through the testing protocols and informed consent

was obtained prior to data collection.

A data set for the calibration of the model is initially created which includes

static and swinger trials. Furthermore, a number of dynamic trials are performed by

the subject including: walking, jogging, step jumps and lateral hops. Data collected

from the static and swinger trials are used to create a musculoskeletal model

that is scaled to the subject’s real dimensions (Section 2.2). The musculoskeletal

model that is used in this work is customized to include all the muscles of interest

and to define 6 degrees of freedom across the joints: hip adduction-abduction

(HAA), hip flexion-extension (HFE), hip internal-external rotation (HRO), knee

flexion-extension (KFE), ankle dorsi-plantar flexion (AFE), ankle subtalar angle

(ASA). Data collected from the dynamic trials are used to calibrate the NMS

model parameters (see Section 6.3.5).

A data set for the validation of the model (see Section 6.3.5) is then created

which includes 10 repeated trials per motor task: fast walking (FW), running (RN),

sidestepping (SS) and crossover (CO) cutting maneuvers. These tasks were chosen

as they involve the activation of all the lower limb muscles and the subsequent

production of moments across all joints.

A 12 camera motion capture system (Vicon, Oxford, UK) is used to record the

human body kinematics with sampling frequency at 250Hz. A set of reflecting

markers are placed on the human body and their instantaneous three-dimensional

position is reconstructed and used to measure the movement of body segments

including: trunk, pelvis, thigh, shank, and foot. Ground reaction forces (GRFs)

generated during the motor tasks are collected using a multi-axis in-ground force

plate (AMTI, Watertown, USA) with a sampling frequency at 2kHz. Both body

kinematics and GRFs are low-pass filtered with cut-off frequencies ranging from 2

to 8Hz depending on the trial. Marker trajectories recorded during dynamic trials

are used to drive the scaled musculoskeletal model. OpenSim Inverse Kinematics

(IK) tool is used to derive three-dimensional joint angles. GRFs are used in

conjunction with the thee-dimensional joint angles computed through IK to derive

the experimental joint moments. OpenSim Residual Reduction Analysis (RRA)
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tool is used to compute the experimental joint moments.

Double-differential surface electrodes are used to collect EMG signals from 16

selected muscles including: Gluteus Maximus (gmax ), Gluteus Medius (gmed),

Tensor Fascia Latae (tfl), Medial Hamstrings (medham), Lateral Hamstrings

(latham), Rectus Femoris (recfem), Sartorius (sar), Gracilis (gra), Adductor Mag-

nus (addmag), Vastus Medialis (vasmed), Vastus Lateralis (vaslat), Gastrocnemius

Lateralis (gaslat), Gastrocnemius Medialis (gasmed), Tibialis Anterior (tibant),

Peroneus (per) and Soleus (sol). A telemetered system (Noraxon, Scottsdale, USA)

transfers the EMGs to a 16 channel amplifier (Delsys, Boston, USA) with sampling

frequency at 2kHz. Raw EMG signals are first band-pass filtered (10− 150Hz),

and then full-wave rectified and low-pass filtered (6Hz) subsequently. The pro-

cessed signal is the linear envelope which is then normalized against the maximum

values from EMG linear envelopes obtained from a range of extra trials including:

running and squat jumps.

6.3 NMS Model

The multi-DOF EMG-driven NMS model comprises 5 main components (Fig. 6.1).

The main structure is similar to that of the single-DOF model previously presented

(Chapter 3). The multi-DOF NMS model extends each single component to allow

the estimation of forces from 34 muscle tendon actuators (see Table 2.1) and the

joint moments about the following 4 DOF: hip adduction-abduction (HAA), hip

flexion-extension (HFE), knee flexion-extension (KFE), ankle dorsi-plantar flexion

(AFE). The NMS model proposed in this Chapter is entirely implemented in C++

likewise that presented in Chapter 3.

6.3.1 Musculotendon Kinematics

The musculotendon kinematics model estimates lengths and three-dimensional

moment arms of the musculotendon actuators (MTA) included in the model as

a function of the 3D angles of the joints each specific MTA crosses and was

presented in Chapter 4 (also see Fig. 3.1). Most of the muscles in the model

are described by a single MTA. That is, muscle fibers and tendons together are
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Figure 6.1: Schematic view of the NMS model structure. Experimental joint moments are
input only for calibration purposes before the execution of the model (Section 6.3.5). The
scaled OpenSim musculoskeletal model is used to create the muscle spline coefficients before
the execution of the model 6.3.1. EMG signals and 3D joint angles are continuosly input and
evaluated as the model executes.

modeled as a single wire which only has an origin and an end and can have

internal via points that appear when the muscle line of action comes in contact

with a bone, depending on the current 3D joint angle (Fig. 2.3). Some muscles

are instead described by multiple MTAs. That is, muscle fibers and tendons

together are modeled as a multi wire complex composed of multiple single MTAs.

This is to describe large muscles composed of a great complex of fibers such as

the Gluteus Maximus muscle (see Table 2.1). Using the scaled musculoskeletal

model, a set of nominal values are established for the length of each MTA at

predefined joint angles. A multidimensional spline function is then used to fit the

experimental data and derive a multivariate function that can estimate values

in between the experimental nominal values. Muscle moment arms are obtained

by differentiating the musculotendon length spline function with respect to the

generalized coordinate of interest. Spline coefficients are pre-calculated off-line

prior to the NMS model execution (Chapter 4).
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6.3.2 Muscle Activation

Muscles linear envelopes are processed and converted into muscle activation. This

is a percentage value that expresses how much a specific muscle is activated towards

the generation of force. The transformation from EMG to activation accounts for

the non-linear relationship between EMG and muscle force and a more detailed

description of the transformation involved as been presented previously (Section

2.3.2).

EMG signals recorded from 16 muscles (see Section 6.2) are used to estimate

the activation of 34 musculotendon actuators (MTAs). EMG signals that could

be experimentally recorded from those muscles that are modeled as a single wire

are assigned to their respective MTA. These include: vaslat, vasmed, sol, tibant,

tfl, recfem, sar, gra, gaslat, gasmed. EMG signals that could be experimentally

recorded from those muscles that are modeled as a multi wire complex are assigned

to all the MTAs that compose each muscle complex. That is, addmag EMG signals

are used to drive: addmag1, addmag2, addmag3. The gmax EMG signals are used to

drive: gmax1, gmax2 and gmax3. The gmed EMG signals are used to drive: gmed1,

gmed2 and gmed3. The per EMG signals are used to drive: Peroneus Longus

(perlong), Peroneus Brevis (perbrev), Peroneus Tertis (perter). The medham EMG

signals are used to drive: Semimembranosus (semimem) and Semitendinosus

(semiten). The latham EMG signals are used to drive: Biceps Femoris Short Head

(bicfemsh) and Biceps Femoris Long Head (bicfemlh). The EMG signals for the

remaining muscles can not be experimentally recorded because they are located

too deep under the skin surface. However, muscles that are innervated in the

same zone associated to those muscles whose EMG activity can be recorded, are

assumed to produce similar EMG activity and contraction patterns. Therefore,

the addmag EMG signal is used to also drive: Adductor Brevis (addbrev) and

Adductor Longus (addlong). In the case of muscles that are innervated in two

points, a linear combination of the EMG signals associated to the two innervations

locations is used. Therefore a linear combination of the vasmed and vaslat EMG

signals is used to drive the Vastus Interioris (vasint) MTA. Finally, a linear

combination of the gmax and gmed EMG signals is used to drive the Gluteus

Minimum (gmin) muscle that is composed of 3 MTAs. The Illiacus and Psoas
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muscles are not driven by EMG signals and their activation is not computed in

this current implementation of the model. However, these muscles still contribute

to the production of force at the hip joint because the passive force generated

during stretching and compression is calculated by NMS model anyway.

Some muscles of the lower extremity have not been included in the model

because either too small and therefore negligible or too deep under the skin surface.

However, the selected MTAs generate the majority of the moment in all selected

joints about all considered DOFs. That is, the muscles in the model that have a

HAA moment arm cover the 91% of the total physiological cross sectional area

(PCSA). Muscles that have a HFE moment arm cover the 87% of the total PCSA.

Muscles with a KFE moment arm in the model cover the 95% and muscles in the

model that have an AFE moment arm cover the 80% of the total PCSA.

6.3.3 Muscle Dynamics

It uses the values computed in the previous two blocks to calculate the force

developed by each MTA in the model as previously described in Section 3.5.

6.3.4 Moment Computation

This component evaluates the moments produced about all the DOFs of each

joint included in the model. The estimated muscle forces are combined with the

corresponding moment arms to calculate the torque about a specific DOF.

6.3.5 Validation and Calibration

To validate a model, it is usually desirable to compare the output of that model

with data measured empirically. Unfortunately, the methodological difficulties in

measuring individual muscle forces prevent any direct validation of the NMS model

on humans. An indirect process was therefore designed. This involves comparing

the net moments from muscles crossing the hip, knee and ankle joints with the

net moments measured experimentally. If the muscle forces are accurate, the net

joint moments estimated by the model should be equal to the external moments

measured experimentally.
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The calibration process is critical for the proper operation of the model. It

defines how muscles activate in response to EMG signals and generate moments

about multiple DOFs. Biarticular muscles crossing the hip and knee joints for

instance, have to produce a force that satisfy moments about up to 4 DOFs

(HROT, HAA, HFE and KFE). The aim of the calibration process therefore

is to obtain a set of parameters for each muscle to accurately estimate the net

experimental moments at the hip, knee, and ankle across all corresponding DOFs

(Section 6.2). An optimization procedure has been designed to alter the initial

uncalibrated parameters until the error function (Section 2.3.4) associated to the

joint moment prediction is minimized. The calibration process repeatedly calls

an optimization routine. The steps involved in the calibration of a 4-DOF NMS

models are here summarized:

1. objective function: min(EKFE). Adjust parameters for all muscles crossing

the knee joint (13 MTAs).

2. objective function: min(EKFE + EHFE). Adjust parameters for all muscles

crossing the knee joint (13 MTAs) and the hip joint (23 MTAs).

3. objective function: min(EKFE + EHFE + EHAA). Adjust parameters for all

muscles crossing the knee joint (13 MTAs) and the hip joint (23 MTAs).

4. objective function: min(EKFE +EHFE +EHAA +EAFE). Adjust parameters

for all muscles crossing the knee joint (13 MTAs) and the hip joint (23

MTAs) and the ankle joint (8 MTAs).

where EX is the error function associated to the prediction of the moments about

the X tℎ DOF with X ∈ {HAA, HFE, KFE, AFE}. At each step, the error

function is extended by including a new DOF. The parameter set to be calibrated is

also extended by adding the parameters associated to a new set of muscles. The first

call uses an uncalibrated set of parameters. At each step the optimization process

utilizes the optimal solution produced by the previous step. The optimization

process is designed so that it can only produce a better solution than the initial

one. This assures that by adding a new DOF to the objective function, the fitting

accuracy provided from the previous calls is always guaranteed. At each call,
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the parameters associated to the currently added muscles are calibrated in order

to fit the joint moments associated to the currently added DOF. Furthermore,

the parameters associated to the muscles added by the previous steps are also

re-calibrated. This ensures that muscle behavior accounts for the new DOF added

to the process. If this was not done the biarticular muscles calibrated at Step 1

would satisfy the knee FE moments only and would not be able to satisfy the hip

adduction-abduction and hip flexion-extension moments added in Step 2 and Step

3 respectively. The same applies to each step. Once calibrated, the NMS model

only requires EMG signals and joint angles as inputs. GRF and experimental joint

moments are needed during the calibration step only.

6.4 Validation Procedure

The validation procedure is comprised of three tests. In all tests the NMS model

outputs, i.e. muscle force and joint moments, are estimated during the stance phase.

Outputs are then time-normalized using a cubic spline. Time-normalized muscle

force predicted from each motor task respectively, i.e. fast walking (FW), running

(RN), side-stepping (SS), cross-over (CO) are averaged over the 10 repeated trials

and an ensemble average force curve per muscle is produced for each of the 4

motor tasks. The same procedure is applied to the time-normalized experimental

and predicted joint moments.

The first test assesses whether the force generated by the same MTA is

predicted in a different way by using different single-DOF NMS models. This

is done for the purpose of validating the hypothesis that single-DOF models

introduce indeterminacy and the impossibility to know what model to use for

the estimation of a specific muscle force. For this purpose, the ensemble average

force curves of the biarticular MTAs Gastrocnemius Lateralis and Medialis are

predicted during FW both using a KFE NMS model and an AFE NMS model.

The ensemble average force curves of the biarticular MTAs Semimembranosus

and Semitendinosus are predicted during RN both using a HFE and a KFE NMS

model. Finally the ensemble average force curves of the uniarticular MTAs Gluteus

Medius 1, 2 and 3 are predicted during SS both using a HFE and a HAA NMS
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model.

The second test assesses the ability of the proposed multi-DOF NMS model to

predict joint moments about 4 DOFs including: HAA, HFE, KFE and AFE. The

ensemble average curves associated to the predicted joint moments are directly

compared to those associated to the experimentally measured moments (Section

6.3.5) as well as to those associated to the moments predicted by the respective

single-DOF models i.e. HAA NMS model, HFE NMS model, KFE NMS model

and AFE NMS model. This is done for the purpose of assessing the impact, of

adding more DOFs to a NMS model, on its prediction capability. Furthermore,

it validates whether the proposed calibration scheme (Section 6.3.5) is capable

of producing a set of parameters that constraints the operation of the muscles

to satisfy the joint moments produced about all the DOFs of all the joints they

span. As an additional measure of error, the Mean Fitting Error (MFE) and its

standard deviation (�) are used : MFE = 1
N

∑N
i=1

∣∣∣M̂i −Mi

∣∣∣ , where M̂ is the

ensemble average curve associated to the experimentally measured joint moments.

The term M is the corresponding estimated value either from the multi-DOF

NMS model or from the single-DOF NMS model. N is the number of points the

ensemble average curves are composed of.

In the third test the forces of the muscles crossing the knee joint are predicted

both using the proposed multi-DOF NMS model and the single-DOF KFE NMS

model model during running trials. Forces estimated by both models are then

compared.

6.5 Results

Results from the first tests are showed in Fig. 6.2. The Gastrocnemius Medialis

force estimated by the KFE NMS model reached drastically higher values than

those estimated by the AFE NMS model. Also the Gastrocnemius Lateralis force

estimated by the KFE NMS model assumed higher values than that estimated by

the AFE model. The Semimembranosus and Semitendinosus forces estimated by

the KFE NMS models reached significantly higher values than those estimated by

the HFE NMS model. The Gluteus Medius forces estimated by the HFE NMS
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Figure 6.2: Comparison of muscle forces estimated by different single-DOF models. Gastrocne-
mius Medialis and Lateralis forces are estimated during fast walking trials. Semimembranosus
and Semitendinosus forces are estimated during running trials. Gluteus Medius forces are
estimated during side-stepping trials.

model were significantly higher than those estimated by the HAA NMS model.

In general different single-DOF models produced different force estimates for the

same muscle during the same specific movement. Similar results were obtained

for all other muscles. This validates the hypothesis defined in Section 6.4. This

test shows that although each single-DOF NMS model was driven by the same

EMG signals, a high discrepancy in the behavior of different models was still

produced. This is because the NMS model is not only EMG-driven but it is also

Optimization-driven. That is, the calibration process that is performed prior to

the model execution strongly influences the way muscles convert EMG into force

post-calibration. Therefore, the same EMG signal for the same muscle can be

converted in an extremely different muscle force if different single-DOF models

are used. Indeed, the parameter sets associated to different single-DOF models

are highly diverse.

Results from the second test are shown in Fig. 6.3. The multi-DOF NMS

model achieved better performances in the prediction of the AFE moments in

all 4 motor tasks. The multi-DOF NMS model behaved very similarly to the
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Figure 6.3: The joint moment prediction accuracy of the multi-DOF model was compared to
that of the 4 single-DOF models during fast walking (FW), cross-over (CO), side-stepping (SS)
and running (RN). The mean fitting error (MFE) was also used as measure of accuracy.

single-DOF KFE NMS model in the prediction of KFE moments in the FW ad

SS motor tasks. Slightly better results were produced by the single-DOF model in

the CO and RN tasks. Multi-DOF and single-DOF HFE NMS models produced

very similar results in the estimation of HFE moments during CO, SS and RN

tasks. Slightly better results during the FW task were produced by the single-DOF

model. Finally, the multi-DOF NMS model produced slightly worse estimates

of HAA moment during the FW task but significantly more accurate estimates

during the CO task and very similar results to the single-DOF HAA NMS model

during SS and RN tasks. This test suggests the proposed multi-DOF NMS model

was able to concurrently predict the joint moments preserving the accuracy of the

single-DOF models. The proposed multi-DOF calibration scheme (Section 6.3.5)

was therefore able to constrain the operation of the 34 lower limb MTAs to satisfy

the moments produced at multiple joints and DOFs simultaneously.

Results from the third test are shown in Fig. 6.4. Force estimates associated to

the Hamstrings group (i.e. bicfemsh, bicfemlh, semimem and semiten) generated by

the single-DOF KFE NMS model showed a predominant activity of the semimem

MTA with smaller and similar contributions from the bicfemlh and semiten MTAs



110 6. A NMS MODEL OF THE HUMAN LOWER EXTREMITY

Figure 6.4: Muscle forces estimated during running tasks. The estimates of the multi-DOF
model were compared to those of the single-DOF KFE model.

and very little force produced by the bicfemsh MTA. On the other hand, the

force dynamics estimated by the multi-DOF model suggested these MTAs shared

the load at the knee joint more equally. Indeed, the two MTAs comprising the

Lateral Hamstrings bicfemlh and bicfemsh were estimated to generate similar

curves. The same results were obtained for the semimem and semiten MTAs.

Results produced by the multi-DOF model are in line with findings from the

biomechanics community [24, 76].

Force estimates associated to the Quadriceps group (i.e. vaslat, vasint, vasmed

and recfem) generated by the single-DOF KFE NMS model showed a predominant

activity of the vasmed and vasint MTAs and a negligible production of force

from the Rectus Femoris (recfem) MTA. On the other hand, the forces estimated

by the multi-DOF model were more proportioned between the MTAs forming

the Quadriceps group. More importantly the estimated behavior of the Rectus

Femoris showed this MTA significantly produces force during running as also

demonstrated in [76, 77]. The single-DOF KFE model could not predict this

behavior because the recfem MTA is mostly active during running to support the

hip flexion-extension movement. The proposed multi-DOF NMS model did not
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fail to catch such important feature because it properly constrained its operation

to satisfy not only KFE moments but also HFE and HAA moments.

Force estimates associated to the Gastrocnemius group (i.e. gasmed and gaslat)

generated by the single-DOF KFE NMS model showed a drastically predominant

activity of the gasmed MTA towards the end of the stance phase. On the other hand

the dynamics estimated by the multi-DOF NMS model more equally apportioned

the force to both MTAs.

6.6 Conclusions and Future Work

The research work presented in this Chapter, developed a novel EMG-driven

neuromusculoskeletal model of the lower limb that uses EMG signals recorded

from 16 muscles to derive the activity of 34 muscles and to estimate moments

about hip, knee and ankle joints. Results showed that the force a muscle can

generate during a specific movement can be predicted in extremely different ways

when different single-DOF models are used. This fact introduces indeterminacy as

it is not possible to know what single-DOF model is best to use. The proposed

multi-DOF NMS model allows removing this indeterminacy by providing a single

solution to the problem. The proposed model was able to predict joint moments

with the same accuracy of the 4 individual single-DOF EMG-driven models thus

proving each muscle was successfully constrained to satisfy moments about all

associated joints and DOFs. As a result, the multi-DOF model was able to produce

force dynamics estimates that were more in line with biomechanics findings. The

single-DOF KFE model failed to estimate the force produced by the Rectus

Femoris muscle during running because this is a muscle that is mostly active to

support the hip flexion. The multi-DOF model correctly predicted this. Future

version of the multi-DOF NMS model will feature a predictive algorithm for the

estimation of the activation of muscles without EMG. This will allow estimating

muscle forces generated by the Illiacus and Psoas muscles. Pattern recognition

technology will be integrated in the NMS model and used to extrapolate more

information out of the EMG signals as discussed in Chapter 8. A study on a larger

population will be conducted to further validate the methodology.
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This technology can offer great solutions for the implementation of more

realistic virtual humans by providing a more accurate estimation of the human

internal state [5]. This can also be applied to the design of more intuitive assistive

devices control systems for the simultaneous actuation of multiple joints and the

support of an even wider range of movements.



Chapter 7

Scaling Tendons Preserving the

Consistency of the

EMG-to-Activation Relationship

Neuromusculoskeletal modeling is a powerful tool for understanding how the

nervous system controls muscles to generate movements. Experiments conducted

in this thesis and the results that were obtained demonstrated that to properly

scale NMS models to different subjects, physiological parameters that characterize

individual muscle properties must be integrated in the NMS model design and

properly calibrated. However, most of them cannot be measured directly unless

invasive or expensive approaches are adopted. This is the case for the tendon slack

length (lts). This is a key-parameter because it directly defines how muscle develop

force as a function of their fibre length.

There is very little information in the literature in regards to tendon slack

lengths of lower limb musculature mostly because of the difficulty in measur-

ing these values and the ill-defined junction between muscle and tendon. It was

therefore decided to investigate a robust methodology for properly deriving physi-

ologically relevant values for this important parameter.

This Chapter presents a method for scaling lts for muscles crossing the knee

joint. This method can be used alone or in addition to the standard calibration

procedure (Section 2.3.4) to significantly refine the parameter initial guess.

113
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7.1 Data Collection

Experiments were performed at the Gait Laboratory of the School of Sport Science

Exercise and Health of the University of Western Australia. Data were collected

from one male subject (age: 28, weight: 67, height: 183 cm) who gave informed

consent. The subject performed knee flexion-extension (FE) maximal isometric

trials using a Biodex dynamometer (Shirley, NY) at different knee joint angles:

−30∘, −60∘, −90∘, −120∘, where 0∘ represents the leg totally extended and aligned

with the thigh (Fig. 2.2). The hip joint was firmly held at 80∘ according to the

convention depicted in Fig. 2.2. During each FE trial, EMG signals were recorded

from the muscles crossing the knee as described in Section 3.5.2.

One walking trial was also performed and motion capture data were used to

measure the knee FE moment generated following the procedure presented in

Chapter 2.

7.2 Rationale

The aim of this study is to show that if lts is not properly calibrated, the EMG-

to-activation relationship (Fig. 2.16) is not consistent between different trials.

That is, a different curve is generated when the knee joint is placed at different

angles. The EMG-to-activation relationship becomes therefore a function of muscle

fiber length if lts is not properly calibrated. This should not happen because the

EMG-to-activation relationship is independent of muscle fibre length for definition

as described by equation (2.1).

In this study an initial guess of lts is obtained by using the standard calibration

procedure. This is used to also calibrate muscle strength coefficients, activation

shape factor and optimal fibre length. Then, the scaling procedure presented in

this Chapter is applied to further adjust the tendon slack length for every muscle

in such a way that the computation of the muscle activation based on the EMG

signal for a specific muscle is consistent for all joint angles.
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7.3 Methods

One table per muscle (i) per trial (k) is created. The normalized EMG linear

envelope ui is linearly mapped to a specific entry of the table as follows:

ℎi,k =
⌊ui
S

⌋
(7.1)

where ℎi,k is the ℎtℎ entry of the table associated to the itℎ muscle and

corresponding to the ktℎ trial. S is the entry width which was chosen to be

0.0025mV . At the end of this process every muscle owns K tables, where K is

the number of trials. The data stored in the ℎi,k entry is shown below:

uℎk,i l̃mℎk,i Fm
ℎk,i

na

The table is sorted based by increasing values of uℎk,i in the first column. The

l̃mℎk,i and Fm
ℎk,i

terms, represent the normalized muscle fiber length and the muscle

force generated during the ktℎ maximal isometric trial associated to the itℎ muscle.

These are calculated using the NMS model presented in this thesis (Chapter 3).

Every table row is averaged with new values whenever the table entry is selected

for storing new data. The na term represents the number of updates.

In isometric conditions, Fm
ℎk,i

is not a function of the fibre contraction velocity

and can be expressed as a function of muscle activation and muscle fibre length

only:

Fm = ((fA(l̃m))a(u) + (fP (l̃m)))Fm
0 (7.2)

where fA(l̃m) and fP (l̃m) are the active force length curve and the passive force

length curve respectively as a function of the normalized muscle fiber length l̃m.

Finally, Fm
0 denotes the maximum muscle force at optimal fiber length, lm0 .

It is possible now to rearrange (7.2) in the following way:

a(u) =

Fm

Fm
0
− fP (l̃m)

fA(l̃m)
(7.3)

which indirectly expresses a(u) as a function of the tendon slack length. Indeed,

l̃m is a function of lts (Chapter 3).
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We can now compute the standard deviation (�ℎ,i) of (7.3) for the table entry

ℎ from all K tables associated to the itℎ muscle:

�ℎ,i(l
t
s) =

√√√⎷ 1

K

K∑
k=1

(aℎk,i − aℎ,i)2 (7.4)

where aℎ,i is the average of aℎk,i over all K trials. The notation used in (7.4)

highlights the fact that the standard deviation is also a function of the tendon

slack length, i.e. �ℎ,i(l
t
s).

It is now possible to optimize lts so that it minimizes the average of �ℎ,i over

all table rows:

minlts(�(lts)) = minlts

(
1

Nℎ

Nℎ∑
ℎ=1

(�ℎ(l
t
s))

)
(7.5)

where Nℎ is the number of entries in the tables. A simulated annealing algorithm

(Section 2.3.4) was used to vary lts within a 15% of its initial guess for each muscle.

7.4 Results

In Fig. 7.1 it is shown the effect of the geometry calibration on one extensor muscle

(vastus lateralis) and one flexor muscle (biceps femoris). Same results were obtained

for the other muscles. When lts is not calibrated the muscle activation function

assumes different values in the correspondence of the same level of normalized

postprocessed EMG for different trials (Figs 7.1a and 7.1c). After the scaling

procedure discussed in Section 7.3 is performed, the muscle activation has a more

similar behavior over different trials.

Fig. 7.2 shows that using the proposed scaling procedure, the EMG-driven

NMS model better is capable of better estimating knee joint FE moments as

opposed to when the standard calibration alone is used. The results in Fig. 7.2

are obtained during one walking trial.
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Figure 7.1: Muscle activation functions behave differently for the same level of postprocessed
EMG over different trials when lts is not calibrated. (a) Vastus lateralis (lts not calibrated). (b)
Vastus lateralis (lts calibrated). (c) Biceps femoris (lts not calibrated). (d) Biceps femoris (lts
calibrated).

7.5 Conclusions and Future Work

In this Chapter a method for scaling the tendon slack length (lts) of muscles

crossing the knee joint was presented. Results showed that the standard calibration

procedure (Chapter 3) does not optimally scale the tendon slack length parameter.

As a result, the EMG-to-activation relationship changes as a function of muscle fibre

length. This is a dangerous inconsistency that the proposed scaling methodology

allows eliminating. A similar methodology was used in [9] to scale lts as well as Fm
0

and the EMG-to-activation shape factor A. However, an objective function was

used to solve the muscle redundancy problem. The joint flexion-extension moment

was recorded using external force sensor during isometric trials. Then a specific
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(a) (b)

Figure 7.2: (a) Prediction accuracy of the NMS model calibrated using standard calibration as
well as the lts adjustment described in this Chapter. (b) Prediction accuracy of the NMS model
calibrated using standard calibration only.

objective function was used to derive the force generated by 4 thigh muscles

from the experimental knee FE moment. However, no evidence of physiological

accuracy was given. The approach proposed in this Chapter does not make any

assumptions on the way muscles shares the load at the knee joint. In fact, the

muscle redundancy is solved by the experimental EMG signals and the developed

EMG-driven NMS model.

The presented methodology was not used in the studies presented in the

previous chapters due to lack of time. However, preliminary results here shown

are promising and future work will use ultra sound technology to experimentally

measure lts and further validate the proposed approach.



Chapter 8

Classification of Locomotion

Modes

The previous Chapters of this thesis focused on the design and validation of the

multi-DOF EMG-driven NMS model of the lower limb. This was presented as a

means for establishing an EMG-based interface for the continuous extraction of

somatosensory information from the human movement and provide an effective

solution to actively control lower limb powered orthoses.

This Chapter, takes a different path. EMG signals are evaluated by a phase-

dependent Support Vector Machine (SVM) classifiers for the identification of

locomotion modes. This approach does not rely on biologically relevant models of

the human musculoskeletal system and does not aim to realize continuous device

control. The aim is to obtain context knowledge from the movement the user wants

to perform, i.e. understanding whether the subject wants to walk rather than

turning left or right and so forth. This study was conducted with the plan of

combining the EMG-driven NMS model presented in the previous Chapters with

the EMG-classifier to achieve a superior neuromuscular HMI that maximizes the

information exchange between the human and the machine. More details about

this integration will be provided in the following Sections.
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8.1 Introduction

In the EMG-based pattern recognition venture, one of the main problems is that

lower limb EMG signals are highly non-stationary. Therefore it is not easy to

recognize patterns and subsequently classify the subject’s motor intentions.

However, it has been recently shown that the difficulties in classifying different

motor tasks could be partially overcome by reducing the duration of the time

windows where task-characterizing features are captured [29, 78].

This Chapter investigates the suitability of Support Vector Machine (SVM) [79]

to recognize locomotion modes when EMG features are computed in a 150ms time

window. To date, the adoption of SVM methods for the classification of EMG

signals is limited and was mostly applied to the upper limb [80]. Experimental

results presented in this Chapter demonstrate the current implementation of the

classifier allows predicting the different locomotion modes from EMG signals

recorded from lower limb muscles with a high accuracy.

8.2 Methods

Experiments were performed at the Gait Laboratory of the Department of Informa-

tion Engineering, University of Padova. Three healthy subjects were consecutively

recruited for this study, 2 females and 1 male, with a mean age of 29±8.9 years

and a mean body mass index (BMI) of 21.9±0.2 kg
m2 . The subjects were taken

through the testing protocols and informed consent was obtained prior to data

collection.

Each subject’s right leg muscular activity was monitored through a sixteen

channels surface electromyography (EMG) system (Pocket EMG, BTS Spa, fre-

quency 1KHz). EMG signals were detected from the following muscles: gluteus

maximus (GLMA), gluteus medius (GLME), sartorius (SAR), rectus femoris

(RF), vastus lateralis (VAL), vastus medialis (VAM), gracilis (GR), biceps femoris

(BFCL), semitendinosus (ST), tibialis anterior (TA), peroneus longus (PEL),

gastrocnemius lateralis (GAL), gastrocnemius medialis (GAM), soleus (SOL) and

extensor digitorum brevis (EXD). Three foot switches were attached under the



8.2. METHODS 121

monitored foot in correspondence of the first and fifth metatarsal head, and the

calcaneus. A 6-camera (150Hz) motion capture system (BTS SpA, Padova) was

used to collect lower limb kinematics, synchronized with the EMG acquisition

system. Each subject performed the motion tasks bare foot including: level walk-

ing, stepping over an obstacle, turning right, ascending stairs, descending stairs,

standing still. Stepping over an obstacle was performed asking the subject to step

over a wooden block of 14.5 cm hight, 40 cm width and 28.5 cm depth, while

walking. In this context the non-tested side passed over the obstacle first, followed

by the instrumented leg. A two-step staircase 16 cm high, 80 cm wide, and 28

cm deep was used for the stair ascending and descending test. The turning right

was acquired asking the subject to perform a 90∘ turn while walking, pivoting on

their own controlateral leg. Each subject performed the 6 motion modes randomly

during each trial within the same experimental session. At least 12 complete stride

cycles of each task were acquired.

8.2.1 Signal Analysis

The first and the last strides were excluded from each trial due to noise introduced

by gait initiation and termination. Each subject’s gait speed was measured by

using the foot switch to verify whether it fell within the normal range. Indeed,

muscle activation patterns are related to gait velocity [81]. Timings of footContact

and footOff events were identified by means of basographic and motion analysis

data. The footContact event is characterized by the activation of any of the three

foot switch signals. The footOff event is recognized by the deactivation of all

signals. Analysis windows within which data were processed and classified, were

identified as occurring immediately before the foot-contact and after the foot-

off events. Four phases were taken into consideration: preContact, postContact,

preOff and postOff (Fig. 8.1). The window length was set to 150ms following

recommendations in literature: EMG signals can be considered quasi-stationary

within 200ms intervals, while they are not sufficiently informative when analysis

windows shorter than 50ms are used [29]. Features were extracted from EMG

linear envelopes (Section 2.1).

Features defined in the time-domain were used. These included: mean absolute
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Figure 8.1: Example of filtered EMG signals for two types of locomotion modes (left: level
ground walking; right: ascending stairs). A contact-to-contact cycle is reported. footContact and
footOff events are shown (green and red vertical lines, respectively). Analysis windows that are
taken into consideration are also highlighted: from left to right, the first green area corresponds
to postContact phase, then preOff and postOff (red areas) occur respectively before and after
footOff, finally preContact is shown as occurring before the following footContact event (last
green area).

value (MAV), number of zero-crossings (ZC), waveform length (WFL), number

of slope sign changes (SSC), root mean square (RMS) [78]. Furthermore, 3rd-

order auto-regression coefficients (AR1, AR2, AR3) as defined in [29] were also

considered.

8.2.2 Support Vector Machine

Support vector machine (SVM) is a well-established technique used to classify

a novel set of data after a training process that is conducted on a collection of

pre-classified events. In this study, the pre-classified events are feature vectors

associated to the same phase but generated during different locomotion modes.

During the training process, the pre-classified event vectors are prescribed to SVM

together with the information associated to the respective locomotion mode.



8.2. METHODS 123

Figure 8.2: Two classes are not linearly separable in the input space X. A kernel function is
used to map X in a feature space H where the two classes become linearly separable. The
hyperplane built by SVM algorithm in H corresponds to a non-linear solution in the input space
X.

A detailed description of the theoretical foundations and applications associated

to SVM can be found in [79, 82]. This Section briefly describes the ideas and

motivations behind SVM, explaining its four basic concepts: 1) the separating

hyperplane, 2) the kernel function, 3) the optimal separating hyperplane, and 4)

the soft margin. An introduction on the extension to multi-class classification will

be also given.

The main objective of a SVM algorithm is to identify a line, or hyperplane in a

n-dimensional space H (Fig. 8.2), separating a set of input points, each one known

to belong to either one of two different classes. If the algorithm is successful in

finding an hyperplane that reduces the probability of misclassifying future data,

the new sample is easily classified based on what side of the hyperplane it lies on.

However, it is often not possible to linearly separate the data represented in

the original space X. The idea is that, by mapping the input data into a higher

dimensional space H, a linear separation my be achievable. The mapping is done

by using the kernel function. The objective is to find the kernel function that

allows the data to be linearly separated while keeping the final dimension of the

H space reasonable.

In the higher dimensional space H, it is usually possible to identify several

linear classifiers that separate the data. The optimal separating hyperplane (OSH)

allows maximizing the margin that separates the distance between the hyperplane

and the nearest data points of each class. The points closest to OSH are called



124 8. CLASSIFICATION OF LOCOMOTION MODES

support vectors.

Data can often contain errors. To deal with the noise in the training data, the

standard OSH algorithm would usually overfit the data. That is, the solution is

found, but the price you pay is a useless increment in the dimension of the feature

space H. To tolerate training errors, the SVM algorithm was modified introducing

the concept of soft margin. This allows accepting a few outliers on the wrong side

of the hyperplane. The definition of the proper number of outliers and the size of

the margin, requires a process of parameter tuning for the specific problem.

The generalization to multiclass SVM classification can be achieved with

different methods. Two common strategies include: 1) one-against-all and 2) one-

against-one. In the one-against-all approach, SVM compares one pre-classified

class to the samples of all the other classes. This is done for each class. The one-

against-one approach is often a more robust solution because it allows minimizing

the amount of misclassifications [83]. This approach is based on binary classifiers

which compare one given class to another one. Given m classes, m(m− 1) binary

classifiers are generated and trained to recognize the right class from a given pair.

A bottom-up binary tree is created to perform the pair-classification on the whole

data set. The given m classes are first arranged in m/2 pairs. At the binary tree

lowest level, m/2 classes are selected by m/2 classifiers from the initial m/2 pairs.

Each classifier is trained with data taken from a different pair. The m/2 selected

classes as regarded as winner-classes. These access the next upper-level. Here, m/4

classifiers, which are trained on the pairs associated to the winner classes, select

the next m/4 winner-classes that are allowed to access the next step. The class

that reaches the root of the binary tree, is the class predicted by the multiclass

SVM.

8.3 Validation Procedure

To quantify the classification accuracy of our methodology, the leave-one-out

cross-validation (LOOCV) approach was used. This is used in situations in which

a limited set of samples is available for validation. Every sample in the dataset is

used to test the multiclass SVM trained on the rest of the samples. Performances



8.3. VALIDATION PROCEDURE 125

can therefore be quantified in terms of overall classification error, i.e. the ratio

between the number of samples that are not classified correctly and the size of

the whole dataset. LOOCV ratios are summarized in a confusion matrix. This is

a square matrix of size m, where m is the number of the classes. The cij element

represents the percentage of samples belonging to class j that are misclassified as

belonging to class i. If no errors occur, the confusion matrix is an identity matrix

with non-zero elements only on the main diagonal. The confusion matrix allows

identifying the pairs of classes that are not properly separated by the OSH.

The proposed multiclass SVM classifier was implemented in a custom C++ us-

ing the Open-Source library libSVM [84]. This provides standard implementations

of different SVM algorithms as well as a set of tools to automatically optimize

SVM parameters. A RBF kernel function was used in this study as previous

research demonstrated it achieves good performances in the classification of upper

limb motions [80].

Validation comprised three tests. For each phase, results were averaged over all

subjects and locomotion modes. The first test assessed what combination of EMG

features gives the best classification performances on different phases. The second

test assessed whether the classification accuracy of the proposed multiclass SVM

method varies depending on the phase that is used to extract the features from.

The third test assessed how classification accuracy was influenced by reducing the

number of muscles to extract the EMG features from. This was done to obtain the

optimal minimum set of muscles that allows minimizing the the amount of input

data and sensors needed. In the context of the design of wearable devices this

plays an important role. The muscles selected for this study were chosen based on

the physiology governing their recruitment during the analyzed motion modes.

Furthermore, their activation timing was also considered. The GLMA, GLME,

and BFCL muscles regulate hip extension, which is particularly important during

preContact and postContact phases. The GLMA and BFCL muscles, together

with GR, are also hip adductors and are activated in preOff and postOff phases.

The GLME muscles acts as hip abductor during the footContact phase. Hip flexion

is mainly regulated by RF, GR and SAR during postContact, preOff and postOff

phases. As for knee motion, it is mainly regulated by quadriceps’ VAL, VAM,
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Figure 8.3: Classification accuracy for different sets of feature combinations.

RF and by GLMA (extension, pre and postContact), and by GAL, GAM, SAR,

BFCL, GR (flexion, postContact, pre and postOff ). Finally, the ankle joint motion

can be described efficiently by means of its dorsal (TA, EXD) and plantarflexors

(GAL, GAM, SOL, PEL). The latter are generally active during postContact,

while activity of the formers can be registered during all four phases, as they often

participate in the control of plantarflexion velocity reduction during contact [81, 85].

Some muscles are therefore responsible for the motion of more than one joint,

while others regulate a specific joint function completely overlapping the action

of other muscles. The influence of single muscles’ EMG signal on the classifier

was verified by testing its performance while excluding one muscle at the time.

A full set of muscles was finally excluded: GLME, VAL, GR, GAL, SOL. These

are the muscles who are not entirely responsible of the actuation of a specific

joint and their action can be replaced by the other muscles in the model. This

may be considered as a good trade-off between reduced instrumental set up and

classification performance.
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Figure 8.4: Average classification errors for each locomotion mode in the four phases.

(a) (b)

Figure 8.5: (a) Hinton diagram of the average confusion matrix. This represents classification
accuracy on the optimal set of features extracted from all muscles. The size of the squares is
proportional to matrix values. Full size corresponds to 100% accuracy. Classification errors
mainly occur for turn right class. (b) Average confusion matrix obtained using the minimal set
of muscles (GLME, SAR, RF, BFCL, ST, TA PEL, GAM, EXD).

8.4 Results

Results from the first test are shown in Fig. 8.3. Time-domain features outper-

formed autoregressive coefficients as previously demonstrated in [29]. The best

classification performances were obtained by combining together all time-domain

features: MAV, ZC, WL, SSC and RMS. Accuracy ranged from 90% in the corre-

spondence of the postContact phase, to 95%, in the correspondence of the postOff



128 8. CLASSIFICATION OF LOCOMOTION MODES

Figure 8.6: SVM classification accuracy for reduced sets of muscles, and optimal set of feature
types. Muscles have been removed one at a time from the set; the legend shows the corresponding
acronym. Accuracy for the proposed minimal set (GLME, SAR, RF, BFCL, ST, TA, PEL,
GAM, EXD) is also shown.

phase.

Results from the second test are shown in Figs 8.4 and 8.5a. Results showed

the multiclass SVM classification accuracy significantly depended on the phase

used to extract the EMG features from. As an example, the postContact phase

provided good accuracy for the classification of the descending stair movement. On

the other hand, it provided poor classification performances in the classification

of the stepping over an obstacle movement. Total consistency between all phases

was achieved during the standing movement which was never misclassified. The

confusion matrix depicted in Fig 8.5a gives a broader overview of classification

performances associated to different phases.

Results from the third test are shown in Figs 8.5 and 8.6. Better performances

were achieved using the complete set of muscles (Fig. 8.5a). However, the use of the

reduced set of muscles produced comparable performances and produced extremely

similar confusion matrices. This demonstrate the potential to successfully classify
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locomotion modes using a reduced set of lower limb muscles.

In general, the misclassification errors were associated to tasks that were quite

similar and the corresponding EMG features naturally assumed similar trends.

Misclassification is mainly associated to walking, stepping over an obstacle and

turning. In this study the obstacles that were used were particularly narrow and

low. Furthermore, turning were not abrupt. There were therefore classified as

ground-level walking.

8.5 Combining the EMG-driven NMS Model to

the SVM Classifier

The study presented in this Chapter aims to be directly integrated with the

EMG-driven NMS model presented in the previous Chapters. This integration

can be implemented in two ways.

The first way is to use the EMG-driven NMS model to provide more stationary

and more descriptive input data for the classifier. In this context the NMS model is

used to convert EMG signals into muscle force. This is a more stable signal which

better describes the action of single muscles and better differentiate locomotion

modes. The hypothesis is that classifying muscle forces instead of EMG signals

will provide a straightforward solution to improve classification performances. This

will also allow using wider time windows to extract the force features from. This

application can help improve the control of robotics prostheses.

The second way is to use the context knowledge on the locomotion mode

provided by the classifier to improve the operation of the EMG-driven NMS model.

This will help improving the force prediction for those muscles whose EMG activity

cannot be recorded experimentally such as the Psoas and Illiacus muscles. Indeed,

by knowing what kind of movement the subject wants to perform it is possible to

use task-specific objective functions in optimization problems to share the residual

joint moments to those two muscles. This approach is superior to the approach

currently used in literature in which one single objective function is used to solve

an optimization problem for all movements.
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8.6 Conclusions and Future Work

This paper presented a classifier based on support vector machine. Experimental

results showed that SVM provides good accuracy when a time dependent multi-

feature set is used. Misclassification errors were mostly on pair of tasks with high

similarity, such as walking and stepping over an obstacle. Results on the selection

of important muscles demonstrated that it is possible to reduce the number of

EMG signals without significantly affecting the classifier accuracy. This allows to

reduce the number of electrodes to place on the leg, thus improving the usability

of powered orthoses. Future studies will integrate the SVM classifier and the

EMG-driven NMS model presented in the previous Chapters within a common

framework. This will allow reducing the limitation that both methods inherently

have.



Chapter 9

Conclusions

This work presented the design and development of a novel EMG-driven Neuro-

MusculoSkeletal (NMS) model of the human lower limb. The theoretical results

that were obtained provided solutions to better understand the mechanisms of

human muscle actuation. Understanding these mechanisms is the key to realize

effective human interaction with wearable assistive devices. This work did not

realize real-time synchronization with powered orthoses. Neither did it improve

disabled people’s mobility using robotics assistive devices.

This work provided the technology needed to achieve this, i.e. to establish an

EMG-driven human-machine interface (HMI) for the simultaneous actuation of

multiple joints in a lower limb powered orthosis. The software developed in this

thesis will be made available to researchers who wish to use this technology.

Neuromusculoskeletal modeling technology not only can offer great solutions

for exoskeletons control and humanoids actuation, but can also boost research

that aims to realize more realistic virtual humans by providing a more accurate

estimation of the human internal state.

9.1 Summary

Chapter 1 defined the research problem investigated within this thesis. It gave an

overview of the research conducted in the field of EMG-driven musculoskeletal

modeling, it highlighted the novelty and the significance of the proposed research

131
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as well as the research questions to be addressed and the boundaries within which

this research work investigates.

Chapter 2 presented the general workflow used in this study. It described how

the the human movement can be recorded utilizing motion capture technology

and digitized to create realistic motion simulations. The OpenSim Application

Programming Interface (API) was used in a custom C++ program to develop

advanced methods for the simulation of the human movement and provide the

most accurate input for the NMS model. A new knee joint model was developed in

which functional axes could be defined and scaled to the subject’s characteristics.

Also, a foot-ground contact model was created using an elastic foundation model

and used in conjunction with Residual Reduction Analysis (RRA) to derive even

more accurate estimates of joint loading during movement. The use of the OpenSim

API allowed for a direct integration of OpenSim’s optimization algorithms into

the NMS model framework. This provided full access to a number of powerful

software tools including: Functional Scaling, Inverse Kinematics, and Residual

Reduction Analysis.

Chapters 3 and 4 presented a novel muscle dynamics model and a novel mus-

culotendon kinematics model respectively. These are used by the EMG-driven

NMS model to achieve fast operation and high muscle force and joint moment

predictive accuracy. The muscle dynamics model was designed under the assump-

tion that tendons are infinitely-stiff. This allowed eliminating the need for solving

an ordinary differential equation at each time step for the computation of mus-

cle fibre length and the subsequent musculotendon force. The infinitely stiffness

assumption allowed obtaining a closed-form expression that could be computed

inexpensively. Results showed the stiff-tendon model could be executed 250 times

faster than the elastic-tendon model with no loss of accuracy in the prediction of

joint moments. The musculotendon kinematics model was design to allow fast and

accurate estimation of musculotendon length (lmt) and muscle moment arms (r).

These values are used by the muscle dynamics model to compute musculotendon

force. The musculotendon kinematics model uses a single multidimensional cubic

spline per muscle to generate estimates for both lmt and r from nominal values of

musculotendon length only, corresponding to discrete combinations of generalized
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coordinates. This method provided fast and accurate estimation of musculotendon

kinematics and superior results in terms of fitting accuracy with respect to the

approach currently used in literature that is based on polynomial regression.

Chapter 3 also illustrated how the proposed NMS model can be used to control

a powered orthosis for the knee joint support. Furthermore, it demonstrates the

proposed EMG-driven NMS model is fast enough to meet the real-time deadline

associated to this specific application. Chapter 3 suggested how the NMS model

can be used to actuate humanoid robots equipped with artificial muscles.

In Chapter 5 a novel method is developed to achieve faster calibration of

EMG-driven models based on elastic tendons. Indeed, some applications may

require accurate estimates of the instantaneous tendon and muscle fibre lengths.

The idea was that of using the stiff-tendon muscle model to quickly solve a

global optimization problem and obtain a sub-optimal parameter set for the

elastic-tendon model. A refinement step is then performed to further refine the

initial sub-optimal solution. Results showed the proposed methodology allowed

calibrating the elastic-tendon model achieving the same calibration accuracy of

the procedures currently used in literature but in significantly less time.

Chapter 6 extended the results obtained in the previous Chapter to realize a

novel multi-DOF EMG-driven NMS model. It was shown it is possible to use EMG

signals recorded from 16 muscles to estimate the activity of 34 musculotendon

actuators (MTAs) in the lower limb. A novel calibration algorithm was designed

to constrain the operation of each MTA in the model to satisfy the moments

simultaneously produced at the hip, knee and ankle joints about 4 degrees of

freedom including: hip adduction-abduction, hip flexion-extension, knee flexion-

extension and ankle dorsi-plantar flexion. To date, only single-DOF EMG-driven

NMS models were proposed. That is, EMG signals were used to estimate muscle

forces that satisfy moments about a single DOF of a single joint only. Results

showed that the force that a muscle can generate during a specific movement

can be predicted in extremely different ways when different single-DOF models

are used. This fact introduces indeterminacy as it is not possible to know what

single-DOF model is best to use. The proposed multi-DOF NMS model allows

removing this indeterminacy by providing a single solution to the problem. As
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a result, the multi-DOF model was able to produce muscle force estimates that

were more in line with biomechanics findings. The multi-DOF EMG-driven model

significantly improved the estimation of the force produced by biarticular muscles.

Results obtained using the single-DOF knee flexion-extension model showed it

could not properly predict the activity of the Rectus Femoris muscle. This is a

muscle crossing both the hip and knee joint and it is mostly active during running

to support the hip flexion-extension movement. The proposed multi-DOF NMS

model did not fail to catch such important feature because it properly constrained

its operation to satisfy not only the knee flexion-extension moments but also the

hip flexion-extension moments.

Chapter 7 presented a new technique to scale the tendon slack length of each

individual musculotendon unit in the model. Experiments proved that a good

rationale to scale tendons is to preserve the consistency of the EMG-to-activation

relationship across the whole joint operating range of motion. Results proved this

new scaling technique allows deriving physiologically appropriate estimates of the

tendon length and significantly contributes to improve the prediction accuracy of

the NMS model.

In Chapter 8, EMG signals were evaluated by a phase-dependent Support

Vector Machine (SVM) classifier for the identification of locomotion modes. This

approach did not rely on biologically relevant models of the human musculoskeletal

system and did not aim to realize continuous device control. The aim was to obtain

context knowledge of the movement the user wants to perform, i.e. understanding

whether the subject wants to walk rather than turning left or right and so forth.

This study was conducted with the plan of combining the EMG-driven NMS

model presented in this thesis with the EMG-classifier to achieve a superior

neuromuscular HMI that maximizes the information exchange between the human

and the machine.

9.2 Future Work

This research work was conducted on healthy subjects only. Future work will

therefore test the behavior of the model on disabled people.
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In this work, the EMG-driven NMS model was used to predict muscle force

and joint moments using data previously collected during the subject’s movement.

This work represented the first step towards the creation of a neuromuscular

HMI for assistive device control. Therefore, the study was focused on the pure

validation of the model operation and not on its synchronization with real-time

data acquisition systems. Future studies will integrate the proposed EMG-driven

NMS model into real-time systems. This will allow executing the NMS model in

parallel to the subject’s movement and obtaining real-time estimates of muscle

force and joint moments. This work designed and developed the technology for

achieving this. The next step will then be that of utilizing the real-time NMS

model to control a real powered orthosis.

This research work combined for the first time advanced motion simulation

techniques (Chapter 2) to EMG-driven NMS modeling (Chapters 3 and 6). This

process integrated anatomical and dynamic consistency into NMS model. Future

work will validate whether providing input data that better represent the dynamics

of the human movement, improves the ability of the EMG-driven NMS model to

learn the prescribed muscle dynamics.

Fast operation in calibration will be further exploited in future research to

develop more advanced algorithms for the continuous calibration of the model

biomechanical parameters. As the NMS model executes, the on-line calibration

algorithm will keep refining those parameters that vary with muscle fatigue such

as: optimal fiber length, maximum isometric force, maximum EMG. This will

allow designing more advanced powered orthosis control systems that will be

able to adapt to the user’s conditions on the fly. Fast operation in execution will

be exploited in future research to further extend the multi-DOF EMG-driven

NMS model (Chapter 6) to whole-body level. This study will assess whether the

proposed approach can be scaled up to simulate all muscles in the human body

maintaining fast execution and calibration.

The use of the proposed spline method in Chapter 4 is not limited to fitting

lmt data from musculoskeletal geometry software packages such as OpenSim [46].

Alternatively, lmt could be determined from the centriods of three dimensional

muscles based on MRI data or from three dimensional geometric modeling of
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musculoskeletal systems. In this context the spline approach can be used to create

a multivariate function that can reliably replicate the behavior of complex systems

at low computational cost.

The multi-DOF NMS model presented in Chapter 6 will be extended to include

predictive algorithms for the estimation of the activation of muscles without EMG.

This will be achieved by using the context knowledge from the locomotion mode

provided by the SVM classifier presented in Chapter 8. Indeed, by knowing what

kind of movement the subject wants to perform it is possible to use task-specific

objective functions in optimization problems to share the residual joint moments

to muscles for which EMG signals are not available. This approach is superior to

the approach currently used in literature in which one single objective function is

used to solve an optimization problem for all movements.

The multi-DOF NMS model (Chapter 6) will be also used to actuate humanoid

robots that have a musculoskeletal architecture and artificial muscles by following

the approach illustrated in Section 3.8. Experiments will be done in simulation.

The approach proposed in Chapter 7 to scale tendon slack length will be

further validated using ultra sound technology to experimentally measure the

tendon length and compare experimental values to the predicted estimates.

The EMG-driven NMS model will be used in future studies to provide more

stationary and more descriptive input data for the SVM classifier (Chapter 8).

Precisely, the NMS model will convert EMG signals into muscle force. Experiments

will then assess whether classification performance will benefit from this.
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