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Abstract

This thesis collects the research works I performed as a Ph.D. candidate,

where the common thread running through all the works is Bayesian reasoning

with applications in wireless networks. The pivotal role in Bayesian reasoning

is inference: reasoning about what we don’t know, given what we know. When

we make inference about the nature of the world, then we learn new features

about the environment within which the agent gains experience, as this is

what allows us to benefit from the gathered information, thus adapting to

new conditions. As we leverage the gathered information, our belief about the

environment should change to reflect our improved knowledge.

This thesis focuses on the probabilistic aspects of information processing

with applications to the following topics: Machine learning based network

analysis using millimeter-wave narrow-band energy traces; Bayesian forecast-

ing and anomaly detection in vehicular monitoring networks; Online power

management strategies for energy harvesting mobile networks; Beam training

and data transmission optimization in millimeter-wave vehicular networks. In

these research works, we deal with pattern recognition aspects in real-world

data via supervised/unsupervised learning methods (classification, forecasting

and anomaly detection, multi-step ahead prediction via kernel methods). Fi-

nally, the mathematical framework of Markov Decision Processes (MDPs),

which also serves as the basis for reinforcement learning, is introduced, where

Partially Observable MDPs use the notion of belief to make decisions about

the state of the world in millimeter-wave vehicular networks.

The goal of this thesis is to investigate the considerable potential of infer-

ence from insightful perspectives, detailing the mathematical framework and

how Bayesian reasoning conveniently adapts to various research domains in

wireless networks.
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Sommario

Questa tesi raccoglie i lavori di ricerca svolti durante il mio percorso di

dottorato, il cui filo conduttore è dato dal Bayesian reasoning con applicazioni

in reti wireless. Il contributo fondamentale dato dal Bayesian reasoning sta nel

fare deduzioni: ragionare riguardo a quello che non conosciamo, dato quello

che conosciamo. Nel fare deduzioni riguardo alla natura delle cose, impari-

amo nuove caratteristiche proprie dell’ambiente in cui l’agente fa esperienza,

e questo è ciò che ci permette di fare uso dell’informazione acquisita, adattan-

doci a nuove condizioni. Nel momento in cui facciamo uso dell’informazione

acquisita, la nostra convinzione (belief) riguardo allo stato dell’ambiente cam-

bia in modo tale da riflettere la nostra nuova conoscenza.

Questa tesi tratta degli aspetti probabilistici nel processare l’informazione

con applicazioni nei seguenti ambiti di ricerca: Machine learning based network

analysis using millimeter-wave narrow-band energy traces; Bayesian forecast-

ing and anomaly detection in vehicular monitoring networks; Online power

management strategies for energy harvesting mobile networks; Beam-training

and data transmission optimization in millimeter-wave vehicular networks.

In questi lavori di ricerca studiamo aspetti di riconoscimento di pattern in

dati reali attraverso metodi di supervised/unsupervised learning (classifica-

tion, forecasting and anomaly detection, multi-step ahead prediction via ker-

nel methods). Infine, presentiamo il contesto matematico dei Markov Decision

Processes (MDPs), il quale sta anche alla base del reinforcement learning,

dove Partially Observable MDPs utilizzano il concetto probabilistico di con-

vinzione (belief) al fine di prendere decisoni riguardo allo stato dell’ambiente

in millimeter-wave vehicular networks.

Lo scopo di questa tesi è di investigare il considerevole potenziale nel fare

deduzioni, andando a dettagliare il contesto matematico e come il modello

probabilistico dato dal Bayesian reasoning si possa adattare agevolmente a

vari ambiti di ricerca con applicazioni in reti wireless.
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Chapter 1

Introduction

1.1 Motivation and Objectives

In the last decades we have seen a growing interest in Machine Learning.

In the broadest sense, this field aims to learn new features about the environ-

ment within which the agent gains experience. How gathered information is

processed leads to the development of learning algorithms, i.e., how to process

the collected data and deal with the uncertainty about the nature of the world.

This thesis focuses on the probabilistic aspects of information processing

with applications in wireless networks via Bayesian reasoning. The pivotal role

in Bayesian reasoning is inference: reasoning about what we don’t know, given

what we know. When we make inference about the nature of the world, then

we learn new features about the environment within which the agent gains

experience, as this is what allows us to benefit from the gathered information,

thus adapting to new conditions. In this respect, Bayesian probability theory

provides a mathematical framework for reasoning about the nature of the world

in an effective, elegant, and precise fashion. When we make inference about

the nature of the world, what we need is a means of discussing statements

that have different levels of uncertainty. In other words, statements that have

varying degrees of belief. In addition to modeling these statements within a

mathematical framework, we want to be able to process the collected data. As

we leverage the gathered information, our belief about the environment should

change to reflect our improved knowledge. This is what defines learning.
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1.2 Contributions

This thesis collects the research works I performed as a Ph.D. candidate,

where the common thread running through all the works is Bayesian reasoning

with applications in wireless networks. In the last decades we have seen a grow-

ing interest in the design of adaptive models that exploit contextual informa-

tion to enhance the overall network performance. In contrast to conventional

distributed optimization techniques, Machine Learning inspired mechanisms

are able to operate in an online fashion, learning the current states of the

wireless environment and the network’s users, improving the overall network

performance over time. This, in turn, enables smarter network decision mak-

ing, which is essential for most applications in wireless networks, particularly

those that require real-time, low latency operations. The use of contextual

information is also crucial to our analysis. Next, we provide an overview of the

content of this thesis, which is organised in the following topics: Machine learn-

ing based network analysis using millimeter-wave narrow-band energy traces;

Bayesian forecasting and anomaly detection in vehicular monitoring networks;

Online power management strategies for energy harvesting mobile networks;

Beam training and data transmission optimization in millimeter-wave vehicu-

lar networks. In particular, while Chapters 2,3,4 deal with pattern recognition

aspects in real-world data via supervised/unsupervised learning methods (clas-

sification, forecasting and anomaly detection, multi-step ahead prediction via

kernel methods), Chapter 5 is different from the previous ones: here, the math-

ematical framework of Markov Decision Processes (MDPs), which also serves

as the basis for reinforcement learning, is introduced, where Partially Observ-

able MDPs use the notion of belief to make decisions about the state of the

world in millimeter-wave vehicular networks. Specifically, we are concerned

with the problem of finding the optimal actions to take in a given situation

in order to maximize a reward (or minimize a cost). Nowadays, reinforcement

learning continues to be an active research area of Machine Learning. In this

sense, even if Chapter 5 does not exploit state-of-the-art reinforcement solu-

tions (where the agent gains experience while interacting with the environment,

without prior knowledge of the exact mathematical model), it paves the way

for pioneering research domains in millimeter-wave vehicular networks, where
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deep reinforcement learning architectures can be designed to solve real-time

optimization problems based on real-world data. Hereinafter, we provide an

overview of the content of this thesis, in a chapter-by-chapter manner, detailing

the mathematical framework and how Bayesian reasoning conveniently adapts

to various research domains in wireless networks.

In Chapter 2, Hidden Markov Models (HMMs) and Explicit Duration

HMMs (EDHMMs) are introduced to perform protocol frames classification in

millimeter-wave wireless networks. Gaining information from spectrum usage

is becoming important to provide smart adaptation capabilities to future net-

work protocol stacks. Issues such as deafness, misaligned antennas, or blockage

may severely impact network performance, and their identification is crucial.

Despite the complexity of full analytical models, Machine Learning techniques

are progressively being considered to improve spectrum usage at higher layers.

In this chapter, we design a signal processing technique that uses narrowband

physical layer energy traces, obtained from one or multiple channel sniffers.

The proposed technique utilizes a combination of template matching and an

EDHMM to correctly classify frames, while coping with the non-stationarity

of the traces. This leads to a protocol level monitor that does not need to

decode the channel at the physical layer, but just infers the type of packets

that are exchanged based on sub-sampled energy traces. The performance of

this framework is evaluated using off-the-shelf millimeter-wave wireless devices,

quantifying its detection performance in the presence of one or multiple snif-

fers, and assessing the impact of physical layer parameters such as noise power

and signal levels. The idea is that different viewpoints of the same channel

can provide diverse information and lead to higher decoding accuracies. We

remark that our tool is the first automatic classifier of IEEE 802.11ad energy

traces for network diagnosis. The uniqueness of our approach prevents direct

comparison with earlier work. However, the resulting knowledge is extremely

valuable, as it provides useful insights for network planners and administrators.

In Chapter 3, Graphical Models are introduced to design a Bayesian fore-

casting and anomaly detection framework for vehicular monitoring networks.

This problem is tackled through localized and small-size Bayesian Networks

(BNs), which are utilized to capture the spatio-temporal relationships under-

pinning traffic data from nearby road links. A dedicated BN is set up, trained,

and tested for each road in the monitored geographical map. The joint prob-
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ability distribution between the cause nodes and the effect node in the BN is

tracked through a Gaussian Mixture Model (GMM), whose parameters are es-

timated via Bayesian Variational Inference (BVI) operating on unlabeled data.

Optimal forecasting follows from the criterion of Minimum Mean Square Error

(MMSE). Moreover, we also perform anomaly detection by devising a proba-

bilistic score associated with the marginal conditional distribution of the effect

node. The so obtained GMMs are time-dependent, i.e., several GMMs can be

estimated for the same target road for different days of the weeks and/or hours

of the day. Also, our framework is distributed, lightweight, and capable of op-

erating in realtime and, in turn, it appears to be a promising candidate to deal

with Internet of Things (IoT) applications in large-scale networks, where new

data is to be processed on-the-fly. The effectiveness of the proposed framework

is tested using a large dataset from a real network deployment, comparing its

prediction performance with that of selected regression algorithms from the

literature, while also quantifying its anomaly detection capabilities.

In Chapter 4, Gaussian Processes (GPs) are presented within the frame-

work of Energy Cooperation and Model Predictive Control (MPC). The design

of self-sustainable Base Station (BS) deployments is addressed in this chapter.

We target deployments featuring small BSs with Energy Harvesting (EH) and

storage capabilities. These BSs can use ambient energy to serve the local traffic

or store it for later use. A dedicated power packet grid is utilized to transfer

energy across them, compensating for imbalance in the harvested energy or

in the traffic load. Some BSs are offgrid, i.e., they can only use the locally

harvested energy and that transferred from other BSs, whereas others are on-

grid, i.e., they can additionally purchase energy from the power grid. Within

this setup, an optimization problem is formulated where: harvested energy

and traffic processes are estimated (at runtime) at the BSs through GPs, and

a MPC framework is devised for the computation of energy allocation and

transfer across base stations. The combination of prediction and optimization

tools leads to an efficient and online solution that automatically adapts to

EH and load dynamics. Numerical results, obtained using real EH and traffic

profiles, show substantial improvements with respect to the case where the

optimization is carried out without predicting future system dynamics. The

main improvements are in the outage probability (zero in most cases), and in

the amount of energy purchased from the power grid, that is more than halved
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for the same served load.

In Chapter 5, Partially Observable MDPs (POMDPs) use the notion of

belief to make decisions about the state of the world in millimeter-wave ve-

hicular networks. Future vehicular communication networks call for new so-

lutions to support their capacity demands, by leveraging the potential of the

millimeter-wave (mm-wave) spectrum. Mobility, in particular, poses severe

challenges in their design, and as such shall be accounted for. A key question

in mm-wave vehicular networks is how to optimize the trade-off between di-

rective Data Transmission (DT) and directional Beam Training (BT), which

enables it. In this chapter, learning tools are investigated to optimize this

trade-off. In the proposed scenario, a Base Station (BS) uses BT to establish

a mm-wave directive link towards a Mobile User (MU) moving along a road.

To control the BT/DT trade-off, a POMDP is formulated, where the system

state corresponds to the position of the MU within the road link. The goal

is to maximize the number of bits delivered by the BS to the MU over the

communication session, under a power constraint. In order to address the re-

source constraints in our problem, we propose a Lagrangian method, and an

online algorithm to optimize the Lagrangian variable based on the target cost

constraint. Specifically, the Lagrangian variable is properly tuned within the

main loop of the routine according to a gradient descent technique. Numerical

results reveal that common-sense heuristic schemes cannot achieve the per-

formance of the optimal policies, which take advantage of the belief update

mechanism and provide adaptive BT/DT procedures according to the current

belief, being able to maximize the transmission rate while showing robustness

against BT errors.

Final remarks and considerations are given in Chapter 6.
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Chapter 2

Machine Learning Based Network

Analysis using Millimeter-Wave

Narrow-Band Energy Traces

Next-generation wireless networks promise to provide extremely high data

rates, especially exploiting the so-called millimeter-wave frequency range. Gain-

ing information from spectrum usage is becoming important to provide smart

adaptation capabilities to future network protocol stacks. Issues such as deaf-

ness, misaligned antennas, or blockage may severely impact network perfor-

mance, and their identification is crucial. Despite the complexity of full ana-

lytical models, Machine Learning techniques are progressively being considered

to improve spectrum usage at higher layers. In this chapter, we design a sig-

nal processing technique that uses narrowband physical layer energy traces,

obtained from one or multiple channel sniffers. The proposed technique uti-

lizes a combination of template matching and an Explicit Duration Hidden

Markov Model (EDHMM) to correctly classify frames, while coping with the

non-stationarity of the traces. This leads to a protocol level monitor that does

not need to decode the channel at the physical layer, but just infers the type

of packets that are exchanged based on sub-sampled energy traces. The per-

formance of this framework is evaluated using off-the-shelf millimeter-wave

wireless devices, quantifying its detection performance in the presence of one

or multiple sniffers, and assessing the impact of physical layer parameters such

as noise power and signal levels.
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2.1 Introduction

Next-generation wireless networks are called to provide extremely high data

rates, especially exploiting the so-called millimeter-wave frequency range [1].

Applications and services will benefit from these high rates and the radio

spectrum will become more and more densely utilized. As wireless networks

turn into increasingly complex systems, accurate and scalable analytical mod-

els to characterize their behavior are not yet available and very challenging

to obtain. Instead, a promising approach is provided by machine learning

tools that learn from data [2–4]. Gaining information from spectrum usage is

deemed important to provide smart adaptation capabilities to future network

protocol stacks. Possible applications include: (i) channel diagnosis: detect

communication problems such as a link blockage, (ii) Quality of Service (QoS)

tracking and adaptation, i.e., efficiently manage channel resources according

to the detected energy level, (iii) information security: discovery of malicious

signaling messages, etc.

As for the millimeter-wave (mm-wave) channel, its directional nature re-

sults in communication issues that strongly impact higher layers, but which

are hard to identify without detailed information of the underlying physical

layer effects. This includes, e.g., deafness [5], misaligned antennas, and link

blockage. Commercial Off-The-Shelf (COTS) devices are typically a black

box regarding this physical layer information. As a result, troubleshooting

COTS-based, real-world mm-wave network deployments often translates into

time-consuming “trial-and-error” analysis. While understanding performance

issues in such deployments is challenging [6–8], the resulting knowledge is ex-

tremely valuable. It provides useful insights for network planners and admin-

istrators. For instance, a missing acknowledgment after a data packet hints

at a deafness issue, overlapping packet frames suggest a collision, and so on.

However, gaining such insights from a COTS node that forms part of the net-

work is virtually impossible. On top of the aforementioned lack of lower-layer

access, a single node would be restricted to its particular point of view—the

directivity of the communication limits the insights that one could gain. To

prevent this, we need to capture and compare the behavior of the network from

multiple viewpoints. Given the extreme bandwidth available in mm-wave com-
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munications (e.g., 2 GHz per channel in the 60 GHz band), this requires an

inordinate amount of data processing, and thus would be highly challenging.

In this chapter, we start filling the above identified gaps through the design

and evaluation of an automatic tool for mm-wave channel analysis based on

COTS hardware. Specifically, the tool uses machine learning techniques to in-

fer protocol-level details such as packet types, their energy level and duration,

and can help detect performance bottlenecks in 60 GHz networks using nar-

rowband physical layer energy traces from one or multiple (omnidirectional)

sniffers. That is, we do not record and decode the full communication but only

require the energy level that the sniffers receive.

Our key contribution is developing a machine learning framework that

correctly classifies the transmitted frame types (data, acknowledgements and

training sequences) and can help infer network issues. This is far from triv-

ial due to (a) the non-stationarity of the traces and (b) the complexity of

the IEEE 802.11ad protocol [9]. To address (a), we dynamically update the

parameters of the underlying machine learning model such that it adjusts to

variations in the received energy level due to, e.g., node movement. Regard-

ing (b), we use a combination of template matching and an Explicit Duration

Hidden Markov Model (EDHMM) to correctly classify frames. The core idea

of our approach is also applicable to networks operating at lower frequencies

such as IEEE 802.11ac. Still, in this chapter we focus on the mm-wave case,

which is more challenging due to the use of directional antennas and the large

bandwidth. Since we do not need to decode any of the data, our approach

preserves privacy, works regardless of whether the network uses encryption,

and does not require accurate time/frequency synchronization. As a result,

the proposed technique is simple yet highly effective. Our contributions are

summarized as follows:

• We design a machine learning framework based on template matching

and an EDHMM to automatically infer protocol layer information, e.g.,

transmitted packet types, their energy and duration, in 60 GHz net-

works. The main challenge lies in the variability of the traces and in the

complexity of identifying the structural elements in the traces given their

noisiness, aperiodicity, and unpredictable behavior. Here, this is solved

through a combination of statistical and machine learning techniques.
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• We introduce a time-adaptive learning mechanism to cope with the non-

stationarity of energy traces due to gain control adjustments and node

movement. This run-time adaptation is barely explored in specialized

work in the field of statistics but is critical for our approach. It also

sets our scheme apart from existing work based on simple clustering or

thresholding, which is highly sensitive to non-stationary behavior and

thus often fails.

• We extend the learning framework to jointly process mm-wave channel

traces from multiple time-synchronized sniffers. The idea is that different

viewpoints of the same channel can provide diverse information and lead

to higher decoding accuracies.

• We evaluate our approach in an extensive measurement campaign us-

ing COTS 60 GHz hardware to analyze its performance in a range of

practical scenarios. Besides, we numerically quantify the ability of the

framework to correctly identify protocol sequences (beacon pairs, data

and acknowledgment frames) from single and multiple channel sniffers,

looking at the impact of channel noise and its distribution across different

sniffers.

This chapter is organized as follows. The related work is surveyed in Sec-

tion 2.2. In Section 2.3, we discuss typical IEEE 802.11ad energy traces. Some

mathematical background on the standard HMM and the extended EDHMM

framework is provided in Section 2.4. The machine learning framework is in-

troduced in Sections 2.5, 2.6, 2.7 and 2.8. In Section 2.9, this framework is

generalized to perform decoding from multiple sniffers and a mm-wave channel

trace generator that helps to evaluate the accuracy of our approach is presented

in Section 2.10. We finally evaluate the proposed technique using experimen-

tal and simulated energy traces in Section 4.5 and provide some concluding

remarks in Section 2.12.

2.2 Related work

In the following, we give an overview of performance analysis and trou-

bleshooting in mm-wave networking. As sketched in Section 2.1, mm-wave
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networks suffer from high path-loss and high absorption. To overcome this,

nodes typically use directional antennas and Line-Of-Sight (LOS) paths. How-

ever, this makes links very susceptible to blockage. State-of-the-art work in

this field [10–12] focuses on correctly identifying such blockage at the nodes

involved in the communication, and reacting in a timely manner. For instance,

BeamSpy [11] measures the set of available paths between a transmitter and a

receiver. This “path skeleton” serves as a reference whenever blockage occurs—

the nodes compute which of the paths in the skeleton is most likely to be

unaffected by the blockage and steer their antennas accordingly. As a result,

BeamSpy can avoid costly beam steering overhead. Further, earlier work by

the same authors [12] looks into differentiating device movement from block-

age based on Received Signal Strength (RSS) measurements. This is key to

ensure that nodes react correctly when links degrade. Similarly, MOCA [10]

transmits a very short control message to assess the link state. If the trans-

mitter does not obtain a reply, it assumes that the antennas are misaligned.

Otherwise, it adapts the Modulation and Coding Scheme (MCS) according to

the current channel state. All of the above approaches aim at improving the

performance of mm-wave networks. In contrast, our work troubleshoots the

operation of such approaches and is thus orthogonal to them. While Beam-

Spy and MOCA also try to identify specific issues in the communication, they

are constrained to the specific “viewpoint” of a certain node. Our framework

runs on one or more external sniffers which we can place at multiple locations,

thus providing richer insights. Earlier work proposes an equivalent concept

based on external sniffers. However, such approaches typically consider lower

frequency bands, and focus on security issues [13, 14] such as realizing an In-

trusion Detection System (IDS). The key difference to our study is that such

security sniffers are designed to continuously operate along with the network,

thus increasing the complexity of the deployment. In contrast, our tool does

not need to be part of the network, and can be used on-demand only. Hence,

we do not add complexity to the network. Moreover, we focus on performance

issues in directional wireless networks while the above work deals with secu-

rity in the omni-directional case. However, [14] and references therein also

deal with raw physical layer data, similarly to our case. Specifically, they

suggest overhearing the communication and jamming unwanted packets based

on, for instance, header information. Our narrow band sniffer for wide band
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signals also overhears the communication but does not (and in fact cannot)

decode any preambles and headers to identify the packets. Instead, we use

machine learning on the timing of frames from simple energy traces to obtain

the information required for network analysis.

In recent years, machine learning techniques are increasingly being used to

address high-dimensional problems with multiple unpredictable factors, e.g.,

for traffic classification, and previous papers typically use it after demodulating

and decoding frames at the physical layer [15, 16] (although these approaches

are not tailored to IEEE 802.11ad). In contrast, our framework uses ma-

chine learning on the raw physical layer trace. Thus, it eliminates the need

for the above operations, which are particularly complex and resource inten-

sive in mm-wave networks and would require a sufficiently wide band channel

sniffer. However, this poses additional challenges, such as identifying frames.

In this chapter, we provide solutions to these challenges, which sets us apart

from existing work. On top of the latest trends in wireless communications,

machine learning based solutions for spectrum sensing/sharing in Cognitive

Radio (CR) represent a promising approach for improving the utilization of

the radio electromagnetic spectrum [17, 18]. To promote this, the Defence

Advance Research Projects Agency (DARPA) [19] intends to develop tech-

nologies for extensive spectrum sensing/sharing, both in the Radio Frequency

Machine Learning Systems (RFMLS) program [2] as well as in another ma-

jor DARPA effort known as the Spectrum Collaboration Challenge (SC2) [3],

which is regarded as the first-of-its-kind collaborative machine-learning com-

petition to overcome spectrum scarcity. Also the National Science Foundation

(NSF) [4] is promoting projects to leverage machine learning solutions in CR.

In the literature, automatic network recognition offers a promising framework

for the integration of cognitive concepts at the network layer, bearing simi-

larities with the mm-wave channel analyzer proposed in Section 2.5. In [20],

the authors address the problem of automatic classification of technologies,

with particular focus on Wi-Fi vs. Bluetooth recognition. Previous work, as

for example [21], has addressed a related problem, allowing cooperative spec-

trum sensing in peer-to-peer cognitive networks by using distributed detection

theory [22] for identifying overlapping air interfaces based on time-frequency

analysis and feature extraction. The same problem is tackled in [23], where

two kinds of neural classifiers are adopted. Again, the authors focus on Wi-Fi
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vs. Bluetooth recognition. While this work is related to ours, none of these

studies perform protocol analysis from narrow band channel traces. We re-

mark that our tool is the first automatic classifier of IEEE 802.11ad energy

traces for network diagnosis. The uniqueness of our approach prevents direct

comparison with earlier work.

2.3 A look into IEEE 802.11ad energy traces

The IEEE 802.11ad standard operates at 60 GHz. In this band, propa-

gation conditions are worse than at lower bands, such as at 2.4 or 5 Ghz,

which are used by the IEEE 802.11n/ac standards [24]. Specifically, the path

loss is much higher at 60 GHz than at 2.4 or 5 GHz. To compensate for this

attenuation, IEEE 802.11ad provides a mechanism for the establishment of

a directional communication link between a transmitter/receiver pair using a

beam training process. As a result of this process, the transmitting station

focuses its energy towards the intended receiver. This compensates for the

high path loss and reduces the potential interference to other stations that are

located nearby.

IEEE 802.11ad divides the channel access into so called Beacon Intervals

(BIs). Each BI is split into different access periods, which have different ac-

cess rules and provide specific functionalities to the stations (STAs) within

communication range. A typical BI is composed of a Beacon Header Inter-

val (BHI) and a Data Transmission Interval (DTI). The BHI contains several

sub-intervals and is basically used to transmit control messages, such as bea-

cons that enable beam training. In the DTI period, STAs exchange data

frames either exploiting a contention-based access period or a scheduled ser-

vice period. The former entails a contention mechanism (“floor acquisition”) to

acquire the medium, which uses the enhanced distributed coordination func-

tion. Conversely, in the scheduled service period, stations access the channel

in a contention-free manner.

An example IEEE 802.11ad energy trace corresponding to a data exchange

is shown in Fig. 2.1. This trace depicts the start of a typical data burst. The

data burst starts with a pair of beacons which contain control information.

This pair of beacons is followed by a sequence of data (DATA) packets and
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Figure 2.1: Energy trace example of a DATA/ACK burst starting with a pair
of beacons.

acknowledgments (ACKs). In general, each DATA packet is followed by a

corresponding ACK, which is the shorter packet in the figure and which has

a higher energy level. Note that the higher amplitude of ACKs is due to the

position of the sniffer, which in this case was near the receiver. The beam

training process is composed of the following two phases.

• Sector Level Sweep (SLS). During the SLS, a STA selects a coarse

grain antenna sector. This phase can be implemented in two ways: 1)

through a transmit sector sweep (TXSS), i.e., a STA tries to select the

best transmit antenna sector towards a particular receiving STA by trans-

mitting Sector Sweep (SSW) frames using each of its antenna sectors or

2) through a receive sector sweep (RXSS), i.e., a receiving STA trains

its receive antenna sector by requesting its peer STA to transmit SSW

frames using a fixed antenna pattern, while the receiving STA sweeps

across its receive antenna sectors.

• Beam Refinement (BR). To refine the sectors obtained in the SLS

phase, multiple mechanisms are used. Basically, the two communicating

STAs iteratively search for the optimal alignment starting from the coarse

grain sector provided by the SLS. Occasional BR sequences retrain the

antenna beams in case of, e.g., mobility, to ensure that both nodes remain

in the boresight of each other.

Sequences of control packets are not difficult to identify within IEEE 802.11ad

channel traces. The SLS sweeps that are used during the connection setup have

32 different energy levels. The BR sequences, which are used for re-alignement,

e.g., when there is a drop in the link quality, have 35 levels [25]. The particular
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Figure 2.2: Example IEEE 802.11ad beam refinement sequence (top) and cor-
relation coefficient (bottom) with respect to the beacon template. This BR
sequence has 35 energy levels.

number of energy levels depends on the number of sectors of the antenna. Ex-

isting hardware implements the above number of sectors. An example energy

trace corresponding to a BR phase is shown in Fig. 2.2.

In general, it is not difficult to recognize the individual frame types (bea-

cons, DATA, ACKs, and BR sweeps) in the energy traces by visual inspection.

This enables one to infer the dynamics of the communication. For instance,

a missing acknowledgment after a data packet hints at a deafness issue, over-

lapping packet frames suggest a collision, and so on. However, while this

is visually evident, manually inspecting the energy traces is infeasible given

the number of packets when communicating at multi-gigabit-per-second rates.

At the same time, recognizing frame types in an automated manner is hard.

In this chapter, our goal is to devise and validate a technique for the au-

tomatic identification and labeling of IEEE 802.11ad energy traces. Notably,

BR/SLS sweeps can be reliably identified through a standard pattern matching

technique, as we briefly describe next. Each sequence is composed of beacon

frames, each having a different energy level, but all of them having the same
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Figure 2.3: Beam Refinement (BR) sequence of Fig. 2.2 (top) and correspond-
ing correlation coefficient (bottom) with respect to the beacon template. A
correlation threshold (horizontal line in the bottom plot) is used to single
out beacon messages (top graph), whereas the inter-beacon distance reveals
whether a beacon is part of the BR sweep. The BR sequence has 35 energy
levels and is correctly identified, see the green line in the top plot.

(although noisy) distinctive shape. To capture this shape, we obtained a bea-

con template, that is basically a smoothed out version of the beacons that

were measured experimentally. Hence, a standard convolution is performed

between the input energy trace and the beacon template; for an example see

the bottom plot in Fig. 2.2. As we show in Fig. 2.3, setting a proper threshold

on the correlation signal allows one to single out the start of each beacon in

the original sequence. It is then not difficult to check when exactly 32 or 35

properly spaced energy levels appear in a row and, in turn, detect the SLS/BR

sweeps, see again Fig. 2.3. Further details on the template matching procedure

are given in Section 2.6, whilst additional results on BR sequence detection

are provided in Section 2.11.1.

While the identification of SLS/BR sweeps is doable through simple pro-

cessing techniques, the characterization of DATA exchange phases is much

more complex. In this case, we do not know in advance the duration of DATA
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frames. Similarly, we do not know the number of DATA/ACK exchanges in

the data burst. There may be missing ACKs and the energy levels of ACKs

and DATA frames can be arbitrary, as they depend on the location of the

sniffer with respect to the transmitter and the receiver. In addition, the start

of each data burst has to be reliably identified, and the start and end points

of each frame transmitted therein have to be reliably assessed as well. All of

this leads to a sequential estimation problem that is the subject of the work

that we expound in the following sections.

2.4 EDHMM preliminaries

Next, some mathematical background on the standard HMM and the ex-

tended EDHMM framework is provided as a basis for the machine learning

framework, which is introduced in Sections 2.5, 2.6, 2.7 and 2.8. Specifically,

we demonstrate how the standard HMM is inadequate for our purpose. Still,

we use it to calibrate the initial EDHMM.

We use uppercase and calligraphic fonts for sets, except for N pX;µ, σ2q,

which refers to a Gaussian random variable X with mean µ and variance σ2.

We denote a random sequence of length T by X1:T “ pX1, . . . , XT q, where the

random variable Xt at time index t P t1, . . . , T u takes values in the set X ,

with cardinality |X |. Realizations are indicated by lowercase letters, i.e., xt

is the realization of Xt, and with x1:T “ px1, . . . , xT q we denote a sequence of

realizations. Vectors are indicated by bold letters, e.g., bbb, and we refer to their

elements as bbb “ rb1, . . . , bKs, with |bbb| “ K. For matrices we use uppercase bold

letters, e.g., AAA “ taiju is a matrix with elements aij.

Markov models, whose states correspond to observable events, are inade-

quate to solve our mm-wave channel estimation problem. The reason is that we

measure a noisy version of the transmitted energy levels, as they are corrupted

by random channel fluctuations. Instead, Hidden Markov Models (HMMs) [26]

are a more appropriate tool, as their observations are probabilistic functions of

the (hidden) state. Specifically, an HMM is composed of embedded stochastic

processes, where an unobservable hidden random process is revealed to the

observer through another set of random processes that produce the sequence

of observations.

39



We now consider a data burst and aim to solve the following estimation

problem. The observed channel samples in the data burst, O1:T “ pO1, . . . , OT q,

are modeled as a sequence of real-valued random variables corresponding to

one of the following basic elements: “1” inter-frame space (IFS), “2” data packet

(DATA) and “3” acknowledgement (ACK). Accordingly, the hidden state St at

time t is a discrete random variable that can take values in the set S “ t1, 2, 3u.

We define S1:T “ pS1, . . . , ST q as the sequence of random variables describing

the hidden states in the data burst, i.e., t P t1, . . . , T u. Our objective is then to

reliably estimate the sequence of hidden states s1:T “ ps1, . . . , sT q from obser-

vations o1:T “ po1, . . . , oT q. The standard HMM makes two basic assumptions

regarding the embedded stochastic processes:

A1) The first assumption is that S1:T is a first-order Markov chain, i.e.,

P pSt`1|S1, . . . , Stq “ P pSt`1|Stq. In particular, we have P pSt`1 “ j|St “

iq “ aij, whereAAA “ taiju, i, j P S, is the single-step transition probability

matrix of the HMM.1

A2) The second assumption is that the random variable Ot is statistically

independent of pO1, . . . , Ot´1q.
2

Moreover, Ot is a probabilistic function of the hidden state St, i.e., it obeys

a suitable conditional probability P pOt|Stq and each random variable Ot can

use a private distribution P pOt|Stq over the hidden state. We use a Gaussian

observation model with P pOt|St “ iq “ N pOt;µi, σ
2
i q, where µi and σ2

i specify

the mean and the variance of the random variable Ot, given that the hidden

state is i P S. This is known to well approximate the noise distribution for mm-

wave channels [27]. For all hidden states i P S, we collect the parameter pairs

bi “ pµi, σ
2
i q through vector bbb “ rb1, . . . , b|S|s. We define πππ “ rπ1, . . . , π|S|s,

where πi is the probability that the HMM is in state i P S in the first time slot

of the burst.

1Conversely, in the extended EDHMM, the entire process is not Markovian (memoryless).
Instead the process is Markovian only at specified time instants.

2Specifically, one observation per state is assumed in the standard HMM model while
in the extended EDHMM each state emits a sequence of observations. The length of the
sequence while in state i P S is determined by the length of time spent in state i P S, i.e.,
the duration d. Observations are assumed to be independent of time t, while in state i P S.
Also, in the extended EDHMM, the transition probability aij is independent of the duration
d of state i P S and the duration d is only conditioned on the current state j P S.
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The HMM model is described through a further parameter vector Θ “ rπππ,AAA,bbbs.

Its maximum likelihood estimate given a sequence of observations is obtained

through the Expectation-Maximization (EM) algorithm [28], which entails

two-step iterations. Briefly, initial values for Θ are chosen, and using assump-

tions A1 and A2 the posterior distribution for the whole sequence P pS1:T |O1:T ,Θq

is computed. Hence, this posterior is used to compute the expected log-likelihood

(the Baum’s auxiliary function), QpΘnew,Θq, as

QpΘnew,Θq “
ÿ

S1:T PST

P pS1:T |O1:T ,Θq logP pS1:T , O1:T |Θnewq , (2.1)

which is finally maximized with respect to Θ
new, where Θ

new is the new pa-

rameter vector (HMM model) from the EM iteration. This process is repeated

until convergence to a local maximum. A proper initialization of Θ (with par-

ticular regard for bbb) is crucial for a good convergence of the EM algorithm.

For a Gaussian-observation model, applying the two-step iterations of the EM

algorithm is equivalent to using Baum’s re-estimation approach [29], which is

as follows. Consider two new variables ξtpi, jq and γtpiq, with i, j P S, that are

defined as ξtpi, jq “ P pSt “ i, St`1 “ j|O1:T ,Θq and γtpiq “
ř|S|

j“1 ξtpi, jq. We

have:

πnew
i “ γ1piq, a

new
ij “

řT´1

t“1 ξtpi, jq
řT´1

t“1 γtpiq

µnew
i “

řT

t“1 γtpiqotřT

t“1 γtpiq
, σ2 new

i “

řT

t“1 γtpiqpot ´ µiq
2

řT

t“1 γtpiq

(2.2)

where ξtpi, jq and γtpiq are computed using the Forward-Backward algorithm,

see [30, 31].

We observe that the standard HMM is inadequate for our purpose. In fact,

it uses a geometric Probability Mass Function (PMF) gpdq “ paiiq
d´1p1 ´ aiiq

to describe the dwell time of any hidden state St “ i P S with self-transition

probability aii, i.e., gpdq is the probability of staying in any hidden state

St “ i P S for d ´ 1 subsequent time steps and then leave the state (proba-

bility p1 ´ aiiq). It has been argued that this poorly models real phenom-

ena, since most real-life applications do not obey this temporally-decaying

function [32]. To tackle this, we consider the Extended Duration Hidden
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Figure 2.4: Flow diagram of the mm-wave channel pre-processing phase.

Figure 2.5: EDHMM training procedure: initial state duration estimates are
obtained through HMM training and are refined using EDHMM learning tools.

Markov Model (EDHMM), where for each hidden state i P S we have aii “ 0

and a state-specific distribution pipdq is defined over the discrete set Di “

tdmin
i , . . . , dmax

i u, where dmin
i and dmax

i are the minimum and maximum dura-

tions for the protocol element transmitted when the EDHMM is in state i,

respectively. Hence, upon entering state i P S, the sequence of observations

in that state is assumed to be conditionally independent (i.e., i.i.d. once the

state is entered), of length d P Di (sampled from pipdq), and is emitted from

P pOt|St “ iq “ N pOt;µi, σ
2
i q. For the EDHMM, the duration distributions are

collected into a vector ppp, with ppp “ rp1p¨q, . . . , p|S|p¨qs and the EDHMM is de-

scribed through the parameter vector ΘEDHMM “ rπππ,AAA,bbb,ppps. In the following

analysis, we use the HMM model to initialize the state duration distribution

of the EDHMM (see Section 2.7 for further details on the EDHMM training).

Also, we use the forward-backward algorithm proposed by Yu and Kobayashi

in [33, 34], as an alternative and efficient approach to solve Eq. (2.2).

Figure 2.6: EDHMM runtime mm-wave channel analysis.
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2.5 High level description of the framework

The aim of the mm-wave channel analyzer that we present in this chapter

is twofold. First, we want to track when data bursts are transmitted and, for

each, detect which packets are exchanged, their duration, and average energy.

This allows to obtain statistics on their number, duration, whether there are

channel problems (which may be detected from missing ACKs). As a second

objective, we track the transmission of control packets, which are sent for link

management purposes. These control packets appear in two flavors as follows:

C1) Beacon pairs that mark the beginning of a data burst.

C2) BR sequences that are utilized to maintain the radio link.

Our approach consists of three steps.

Step 1 – Pre-processing (Fig. 2.4): beacon detection and data burst ex-

traction are implemented through the pre-processing chain of Fig. 2.4, which

operates on the raw channel trace, through filtering, downsampling and tem-

plate matching (see Section 2.6). We design the pre-processing chain for the

case of 802.11ad but we can easily adapt it to suit other protocols. This

pre-processing phase identifies all the beacons, classifies their occurrences into

C1 and C2 and outputs a collection of N data bursts of the form to
pnq
1:Tn

|n “

1, . . . , Nu, which are disjoint and contiguous channel subsequences.3

After Step 1, we delve into the semantic decoding of the protocol elements

that are transmitted within each data burst, i.e., the elements in the above

defined set S. To assess which elements are transmitted, along with their av-

erage energy and timing, we utilize an EDHMM model, which is first trained

(Fig. 2.5), and then used at runtime (Fig. 2.6) with non-stationary traces.

Let yyy “ py1, y2, . . . q be a sequence of channel samples. In general, yyy can be

written as yyy “ xxx ` www [35, Chapter 14], where xxx “ px1, x2, . . . q is the signal

of interest at the receiver, that is, after transmission, and www “ pw1, w2, . . . q is

the background noise. From our experimental measurements, we know that

yyy is highly non-stationary across data bursts, i.e., there are substantial varia-

tions in the energy associated with the signal xxx and the noise www, which entail

changes in µi and σ2
i , for i P S. Moreover, they can also be caused by power

3A contiguous subsequence is made up of consecutive channel samples.
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control adjustments to compensate for channel attenuation and device mobil-

ity. Nevertheless, the transmission time of the elements in set S are channel

and protocol-specific. We proceed through the following steps.

Step 2 – EDHMM training (Fig. 2.5): we use stationary channel traces4

for a preliminary and robust training of the EDHMM parameters. Channel

traces were picked so as to encompass a wide range of data rates and MCSs,

which determine the different lengths of the physical layer data frames. The

distance between transmitter and receiver is kept fixed and the surrounding

environment (indoor for our experiments) is kept as stable as possible (i.e., no

user mobility, etc.). From these stationary channels, the state-specific distri-

butions pipdq for i P S do not undergo major changes during each trace and

this allows their accurate estimation. Then, all the trace-specific distributions

are combined into a global distribution considering a wide range of protocol

settings, see Section 2.7. Note that training is needed only once for a given

technology (e.g., IEEE 802.11ad).

Step 3 – Runtime trace analysis (Fig. 2.6): the EDHMM parameters µi

and σ2
i , for i P S do depend on channel attenuation and noise. Thus, these

parameters are estimated at runtime for each data burst using a clustering

algorithm, whereas the pipdq are known from Step 2. The so obtained EDHMM

model is used to estimate the most likely sequence in S (called the Viterbi

path) from the samples in the current data burst. This step is explained in

Section 2.8.

Steps 2 and 3 rely on the further assumption that:

A3) Channel attenuation and noise are stationary within bursts.

2.6 Pre-processing

Data acquisition, filtering, and downsampling: to obtain the energy

traces that we use as input for our machine learning algorithm, we overhear the

communication of COTS 60 GHz devices using one or more external sniffers.

Each sniffer consists of a Sivers IMA FC1005V/00 V-Band converter. The

4These stationary channel traces do not exhibit any particular trend. This means that
µi and σ2

i do not significantly vary across data bursts.
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Table 2.1: Average synchronization error versus template length τ .

τ “ 1 ms τ “ 2 ms τ “ 3 ms τ “ 4 ms τ ě 5 ms
36.36 ms 13.43 ms 2.63 ms 1.17 ms 0

converter receives signals in the 60 GHz band either via a directional (20˝) or

omni-directional antenna and outputs them at 2 GHz intermediate frequency

(IF). We capture the IF signal using a Universal Software Radio Peripheral

(USRP) X310 Software Defined Radio (SDR) at a sample rate of 30 MHz. That

is, we only need to capture a fragment of the bandwidth of the signal to obtain

an energy trace which is suitable for our machine learning technique. To obtain

a second trace from a different angle, we connect a second sniffer to the same

USRP to ensure perfect time synchronization among traces. Since the coverage

area of a mm-wave AP is limited due to high path loss, sniffers are typically

close to each other and can thus be connected to the same USRP. Moreover,

if traces are recorded on different USRPs, it is possible to synchronize them

in post-processing using a variant of template matching, see Fig. 2.7, where a

subsequence from SN2 is used as a template. In Tab. 2.1, we report the average

synchronization error as a function of the template length τ . To obtain these

results, we have run 1, 000 simulations for each value of τ picking a random

subsequence from SN1 and a subsequence from SN2 (used as a template) with

random temporal offset with respect to the subsequence from SN1. We obtain

perfect synchronization by choosing τ ě 5 ms. Synchronizing traces from

multiple sniffers is thus doable and only requires picking a sufficiently long

template length.

Fig. 2.8 shows our measurement setup. The original raw trace yyy is first

filtered and then downsampled to a lower rate for scaling purposes, so that

each sample of the new trace is computed as the mean of three subsequent

samples in the original raw trace. This new trace is then smoothed using a fast

and robust discretized spline filtering algorithm for data of large size [36] [37],

thus obtaining the trace ỹyy. This pre-processing phase is needed to remove part

of the noise due to hardware impairments during data acquisition. It does not

harm the EDHMM classification performance, but generally improves it, as

the noise variance in the energy traces is reduced.

Template matching algorithm: after the data acquisition, filtering, and

downsampling, a collection of N data bursts of the form to
pnq
1:Tn

|n “ 1, . . . , Nu
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Figure 2.7: Synchronization using a variant of template matching, where a
subsequence from SN2 is used as a template.

is extracted from the mm-wave trace ỹyy. This requires a reliable identification

technique for the data bursts and, recalling that each data burst is preceded by

a pair of beacons, this corresponds to reliably detecting beacon pairs. What

we observe from the collected channel traces is that the beacon duration and

the inter-frame spacing between them are almost constant within and across

experiments. Moreover, we note that the beacon shape is quite particular,

showing different energy levels at the beginning and at the end. These char-

acteristics make it possible to exploit a template matching technique for the

beacon detection. Here, we are interested in finding C1) beacon pairs, and C2)

BR sequences, as these are key to understand the protocol behavior.

At the core of our template matching approach, we use Pearson’s correla-

tion coefficient r P r´1, 1s [38], which is a statistical measure of the strength of

a linear relationship between two vectors uuu “ ru1, . . . , uKs and vvv “ rv1, . . . , vKs

(with mean µu and µv, respectively). It is defined as the ratio of their covari-

ance Cuv and the square root of the product of their variances σ2
u and σ2

v , i.e.,

r “ Cuv{pσuσvq, where Cuv is the sample covariance, given by:
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Figure 2.8: Practical sniffer setup for trace capture. The antennas at the
sniffers can be both directional or omni-directional, and sniffer location can be
varied.

Cuv “
1

K ´ 1

Kÿ

k“1

puk ´ µuqpvk ´ µvq . (2.3)

Pearson’s correlation coefficient is suitable to deal with the non-stationarity

of the traces, since it just evaluates some internal relationship between the pro-

vided vectors. Moreover, template matching is known to be the optimal de-

tection technique in the presence of white Gaussian noise [39], which we found

to be a good assumption for our mm-wave channel traces [27]. Henceforth,

for our template matching technique, uuu corresponds to the average shape of a

beacon frame (i.e., the template with a length of K samples), which the system

can easily obtain from channel idle times. During those idle times, nodes only

transmit periodic beacons which can be clearly identified and used as a tem-

plate. Vector vvv contains the channel samples from the current K-dimensional

sliding window, which moves over the signal trace ỹyy, obtained after the acquisi-

tion, filtering, and downsampling of yyy. We adopted the fast template matching

scheme of [40] [41], which exploits the Fast Fourier Transform (FFT), thus ob-

taining dot products in the frequency domain. For a generic channel sequence ỹyy

of L ą K samples, this allows the computation of the covariance in OpL logLq

time. Hence, the template matching operates on ỹyy “ pỹ1, . . . , ỹLq, outputting

a sequence of correlation estimates pr1, . . . , rL´K`1q. We detect a possible bea-

con at sample ℓ if rℓ is greater than a threshold rth. Then, since multiple trivial
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matches (i.e., rℓ ą rth) are likely to occur within a window of samples, we per-

form a further peak detection within the regions containing multiple matches,

by taking the default timing parameters of the IEEE 802.11ad communication

standard into account [42]. That is, two beacons can never be placed at a

distance smaller than the minimum allowed by the protocol rules. As the final

step, we assess which beacon pairs actually mark the start of data bursts by

assessing the distance between them, as this is constant. Through this, we can

reliably detect false positives, such as isolated beacons due to communication

errors or to packets that are erroneously detected as beacons as their shape

closely resembles that of the template. We found excellent results across all

our experiments setting rth “ 0.75. Note that rth is independent of the trace

amplitude. Thus, we do not need to readjust it for each scenario and/or trace.

The identification of pairs of beacons (C1) allows extracting the data bursts

to
pnq
1:Tn

|n “ 1, . . . , Nu from ỹyy, which are fed as input to the following EDHMM

training phase. Longer beacon sequences (C2) are likewise detected by looking

at the number of energy levels of the beacons therein and at their inter-frame

spacing, as dictated by the standard [42]. These events are semantically de-

coded as described below.

2.7 EDHMM training

For the EDHMM training we refer to Fig. 2.5. We recall that the objective

of this training phase is to reliably estimate the distribution vector ppp, modeling

the duration of inter-frame spaces, packets and acknowledgements. This phase

is executed once offline and is not scenario dependent. Essentially, it is a

calibration step for the specific mm-wave technology used in the network, which

in our case is IEEE 802.11ad. The traces used in this step should be as much as

possible stationary. This means that µi and σ2
i do not significantly vary across

data bursts. As a first processing stage, we use the pre-processing procedure

of Section 2.6, which returns the data burst set to
pnq
1:Tn

|n “ 1, . . . , Nu. Next, for

illustration purposes we refer to the n-th data burst o
pnq
1:Tn

“ po1, . . . , oTn
q, but

in our implementation the HMM parameters are estimated using the entire

burst set (i.e., the N bursts in the mm-wave trace). For burst n, each of the

samples ot, t “ 0, . . . , Tn, maps to an element st P S, where state “1” means
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IFS, “2” DATA and “3” ACK. Our goal is to accurately associate each ot in the

data burst with the actual protocol element i P S and, most importantly, to

reliably estimate its duration PMF pip¨q. This estimation is performed having

access to the noisy observations po1, . . . , oTn
q of the actual protocol elements.

EDHMM initialization: we consider o
pnq
1:Tn

as training data and our aim is

to get accurate state duration estimates for the EDHMM. This is achieved by

deriving initial estimates for ppp through a simpler HMM model. Once this vector

is found, it is refined using EDHMM training tools. The HMM parameter

vector is ΘHMM and the three fundamental steps involved in the HMM model

estimation are:

E1) The forward-backward algorithm is used to compute metrics γtpiq and

ξtpi, jq with t “ 1, . . . , Tn, i, j P S (see Eq. (2.2)) for a given HMM tran-

sition structure and a list of observations. These weigh the probability

of getting the observed sequence from the current model.

E2) The model parameter vector ΘHMM is adjusted through the EM algo-

rithm.

E3) The Viterbi algorithm [43] is used to compute the most probable path

via a Maximum Likelihood (ML) approach.

Step E2 returns the optimal parameter vector Θ‹
HMM, whereas E3 outputs the

sequence of hidden states ps1, . . . , sTn
q that most likely generated the observed

samples po1, . . . , oTn
q.

Specifically, we assume π1 “ 1 as all the data bursts start with a silence,

right after the beacon pair. Moreover, the HMM transition matrix AAA is con-

strained in the sense that the hidden state sequence evolves according to struc-

tured trajectories [44]. In particular, we have a23 “ a32 “ 0, as there must be

some minimum inter-frame spacing between subsequent messages. Also, we

set aii “ 1 ´ 1{Ts for i P S, where Ts “ 0.1 µs is the channel sampling period

after the downsampling of Section 2.6. The initialization implies geometri-

cally distributed state dwell-time distributions. This serves as a sufficiently

good initialization of the transition matrix, and increases the robustness of

the HMM model against random fluctuations in the channel dynamics. Next,

we use the Viterbi algorithm output (step E3) to initialize the state duration

distribution of the EDHMM model.
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The final parameter estimates Θ‹
HMM strongly depend on the initial vector

Θ
0
HMM for the EM evaluation (step E2). To obtain good initial parameter

estimates, we use the K-means clustering algorithm, see [45,46], which classifies

the channel samples in the data bursts around |S| centers. The |S| initial values

of the centers can be randomly picked or taken as the locations of the peaks in

the empirical distribution of the observed samples. The latter approach was

implemented and found to perform satisfactorily across all datasets. Upon

completion, the K-means algorithm returns |S| values for the cluster centers,

which are used as initial values for µi for i P S. The |S| variances σ2
i are

derived from the distribution of the samples clustered around the centers µi

so obtained.

At this point, we use the Viterbi algorithm output (step E3) to fit |S|

two-parameter inverse Gaussian distributions [47] [48] for vector ppp, where the

range Di “ tdmin
i , . . . , dmax

i u for state i P S is such that dmin
1 “ ¨ ¨ ¨ “ dmin

|S| “ 1

and dmax
1 “ ¨ ¨ ¨ “ dmax

|S| “ D. In particular, we set D according to the timing

parameters of the IEEE 802.11ad communication standard [42] and filter out

all the state durations that are outside these boundaries. The authors in [48]

show how to find maximum likelihood solutions for the parameters of any

family of exponential distributions. Since the exponential family is log-concave,

the global maximum can be found by setting derivatives equal to zero, yielding

the maximum likelihood equations. For some distributions in the exponential

family (e.g., Gaussian), these equations can be solved analytically, while most

distributions must be solved numerically. In the present work, two-parameter

inverse Gaussian distributions have been preferred over non-parametric state

duration distributions, as parametric models require far less training data and

generalize better to new data. Note also that, even if we expect a fixed set

of timing parameters for the IEEE 802.11ad communication standard [42],5 it

is still possible that the duration of the protocol frames in the training data

differs from that in the test data, due to MCS adjustments. Thus, a rigid

setting that only allows for a few fixed values, although correct in theory, may

lead to unsatisfactory results in real cases, overfitting the training data and

generalizing poorly over the test cases.

EDHMM model refinement: the initial estimate ppp that we have found

5That is, only a few fixed durations for ACK, DATA and silence are possible, as DATA
depend on the adopted modulation and coding scheme.
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with the above HMM model is subsequently refined through EDHMM training

tools. Here, we opted for the forward-backward algorithm proposed by Yu

and Kobayashi in [33, 34] as it is efficient and solves practical issues such as

numerical underflows occurring in the EM iterations.

2.8 Runtime trace analysis

In this section, we present a runtime analyzer that effectively deals with

the non-stationarity of the traces, i.e., variations in µi and σ2
i for i P S across

data bursts. As a first step, we run the pre-processing block of Section 2.6,

which returns the data burst sequences to
pnq
1:Tn

|n “ 1, 2, . . . u through template

matching. For each sequence, the energy levels associated with the states IFS,

DATA and ACK are re-estimated, as explained in the following.

Gaussian-observation model update: we rely on assumption A3, i.e., that

channel statistics are stationary within each data burst. Of course, µi and σ2
i

may change considerably across data bursts and we tackle this by running the

K-means clustering algorithm for each burst sequence o
pnq
1:Tn

, so as to re-initialize

vector bbb in an online fashion. The |S| final values of the centers initialize µi,

whereas the variances of the samples clustered around these centers initialize

σ2
i , for i P S. Upon completing the K-means algorithm, we obtain the updated

parameter set Θ
pnq
EDHMM for the current data burst, whereas vector ppp (which

represents the “average” time-frame duration statistics) remains fixed. We

remark that, for the current burst n, Θ
pnq
EDHMM may differ from the optimal

parameter set Θ
‹
EDHMM, as for the latter vectors ppp and bbb would be obtained

through the ML approach of [33,34], whereas in Θ
pnq
EDHMM the energy levels in bbb

are estimated on-the-fly through K-means. Since the latter approach does not

take into account the joint re-estimation of ppp and bbb, the resulting energy levels

are less accurate. However, this approach provides a substantial speedup as

neither the re-estimation of the transition matrix AAA nor that of vector ppp are

required and these computations account for most of the EDHMM complexity.

Hence, the benefit due to the increased speed outweighs the loss in accuracy.

Online estimation via time-adaptive EDHMM: upon obtaining Θ
pnq
EDHMM

for the current data burst o
pnq
1:Tn

, the corresponding hidden state sequence

ps1, . . . , sTn
q is reconstructed using the Viterbi algorithm with samples o

pnq
1:Tn

“
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Figure 2.9: Communication recorded from two different locations SN1 and
SN2.

po1, . . . , oTn
q, i.e., each sample ot is mapped onto one of the elements in S. As

suggested in [32], we implemented the Viterbi algorithm using logarithms to

avoid numerical underflows. Also, given the sequence of observations o
pnq
1:Tn

, the

time complexity of the Viterbi algorithm for EDHMM is Op|S|ZTnDq, where

Z is the average number of predecessors for each state i P S. In our case,

Z ă |S|, since we set a23 “ a32 “ 0 (states 2 and 3 respectively denote DATA

and ACK). Moreover, since durations are explicitly accounted through pip¨q,

we have aii “ 0, @ i P S and Z “ 4{3. Hence, the computational cost of the

Viterbi algorithm is primarily affected by the data burst length Tn and by the

maximum duration D.

2.9 Generalization to multiple dimensions

Up to this point, we have considered that the observed channel samples

in the data burst are modeled as a sequence of real-valued random variables

corresponding to one of the following basic elements: “1” IFS, “2” DATA and

“3” ACK. Accordingly, the hidden state St at time t is a discrete real-valued

random variable that can take values in the set S “ t1, 2, 3u. This corresponds

to capturing the channel from a single measurement point.

In this section, we are concerned with the case where multiple channel

traces from the same source are concurrently monitored from different measure-
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ment points. This amounts to deploying multiple time-synchronized receivers

(sniffers) and have them listening to the same transmitter. The rationale is

that the channel realizations that they respectively see are likely to be uncorre-

lated. This can provide significant improvements to the detection performance.

In Fig. 2.9, we show the same transmission captured by two different sniffers,

labeled SN1 and SN2.

In this scenario, the observed channel samples in the data burst are mod-

eled as a sequence of multi-dimensional, real-valued random variables, OOO1:T “

pOOO1, . . . ,OOOT q, where T is the data burst length. The observation vector as-

sociated with channel sample t, OOOt, is a probabilistic function of the hid-

den state St. According to the Gaussian-observation model, P pOOOt|St “ iq “

N pOOOt;µµµi,ΣΣΣiq, where µµµi andΣΣΣi respectively specify the multi-dimensional mean

and the diagonal covariance matrix of the random vector OOOt, given that the

hidden state is i P S. For all hidden states i P S, we collect the parameter

pairs bi “ pµµµi,ΣΣΣiq through vector bbb “ rb1, . . . , b|S|s, as for the one-dimensional

case. For Baum’s re-estimation approach [29], we have:

µµµnew
i “

řT

t“1 γtpiqoootřT

t“1 γtpiq

ΣΣΣnew
i “

řT

t“1 γtpiqpooot ´ µµµiq
Tpooot ´ µµµiqřT

t“1 γtpiq
, (2.4)

where ooot is the realization of OOOt, ξtpi, jq and γtpiq are computed using the

Forward-Backward algorithm, see [30, 31], and p¨qT denotes vector transpose.

Here, we assume that there is no correlation among the observed channel

samples from multiple viewpoints, hence ΣΣΣi is a diagonal covariance matrix for

i P S. In the following, the sniffers are denoted by SNdim, where dim “ 1, 2, . . . .

Moreover, when the hidden state is i P S, we refer to the element in position

dim in µµµi as µ
pdimq
i and to the dim-th diagonal element of ΣΣΣi as Σ

pdimq
i .

2.10 Mm-wave trace generator

Need for the ground truth: a ground truth signal is necessary to precisely

quantify the reconstruction performance of the one- and the multi-dimensional

protocol analyzers. This would amount to acquire the actual protocol state
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that is associated with each sample in OOO1:T . In practice, this could be achieved

using a tool such as Wireshark on a monitor node. Unfortunately, state-of-the-art

802.11ad hardware is still unable to reliably provide such information to the

higher layers. The protocol state sequence that is extracted by the radio is usu-

ally incomplete (some frames are missing), the states are shifted in time (with

distorted inter-spaces) and often their order is also affected. The only metric

that current devices can reliably provide are cumulative counters of packet

types (see Section 2.11.1 for further discussion and experimental results).

To overcome this, we have developed a realistic mm-wave trace generator,

with the goal of reproducing narrowband physical layer energy traces from one

or multiple sniffers in a fast and accurate manner. This makes the evaluation of

our diagnosis tool possible, providing quantitative results in a range of prac-

tical scenarios. The developed generator reproduces typical IEEE 802.11ad

data burst sequences, mimicking random fluctuations in the channel dynam-

ics, variability in the number and duration of DATA and ACK frames, etc.

These burst sequences are separated by beacon pairs (also affected by channel

noise), whereas other control messages, appearing outside the data bursts, are

not modeled as they are not involved in our performance assessment.

This tool has been instrumental in the fine tuning of the EDHMM model,

as it allows for a precise control of the energy levels associated with transmis-

sions from the source and channel noise. Next, we detail its structure, which

is organized into macro- and micro-states. Macro-states describe different in-

stances of the channel transmission setup, i.e., a specific combination of coding

and modulation schemes, and we assume that macro-state transitions can only

occur at the end of data bursts. Instead, micro-states track the duration of

DATA and ACK frames within a data burst, for any given setup (macro-state).

Each data burst starts with a beacon pair and the system remains in the same

macro-state for the entire duration of the burst. Once in a data burst, the

micro-state model returns the sequence of DATA and ACK frames.

Notation: the superscript p0q is used for the macro-model parameters. The

macro-state takes values in the set Mp0q “ t1, . . . , |Mp0q|u and evolves accord-

ing to the transition matrix TTT p0q, with steady state distribution πππp0q. If the

current macro-state is M P Mp0q, the micro-state m takes values in the set

MpMq “ t1, . . . , |MpMq|u and evolves according to the transition matrix TTT pMq,
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with steady state distribution πππpMq.

The macro-model: macro-states capture different instances of the channel

transmission setup, i.e., |Mp0q| different combinations of coding and modu-

lation schemes. For each macro-state M P Mp0q, the following statistics are

specified: (i) the PMF P pd
pMq
IDLEq of the idle time d

pMq
IDLE between subsequent

packets, (ii) the joint PMF P pd
pMq
DATA, d

pMq
ACKq of DATA and ACK durations,

respectively termed d
pMq
DATA and d

pMq
ACK, where the ACK is the frame following

the DATA one in the hidden state sequence ps1, . . . , sTn
q, and (iii) the PMF

P pd
pMq
burstq of the duration of data bursts, d

pMq
burst.

The following remarks are in order:

• We have experimentally verified that P pd
pMq
DATA, d

pMq
ACKq ‰ P pd

pMq
DATAqP pd

pMq
ACKq,

which means that there exists some correlation between the marginal

random variables modeling DATA and ACK durations. This is due to

frame aggregation, which results in block acknowledgments. Such ac-

knowledgments are longer than the regular acknowledgments used for

shorter, non-aggregated frames.

• Stationary channel traces are utilized to obtain the duration statistics

of idle times, DATA packets and ACKs. As done for the online estima-

tion via time-adaptive EDHMM, upon obtaining Θ
pnq
EDHMM for the current

data burst o
pnq
1:Tn

, the corresponding hidden state sequence ps1, . . . , sTn
q is

reconstructed using the Viterbi algorithm with samples o
pnq
1:Tn

“ po1, . . . , oTn
q.

From these estimates, duration statistics for the elements in the set

S “ t1, 2, 3u and for the data burst itself are obtained.

• Transitions between macro-states occur at the end of each data burst

according to the transition matrix TTT p0q. This makes it possible to prob-

abilistically model variations in the protocol behavior due to, e.g., soft

link blockages (e.g., waiving a hand in the boresight of the antenna) or

to modifications of the received energy due to a change in the orientation

of the device.

The micro-model: consider a data burst in any macro-state M . Within this

data burst, a sequence of DATA-ACK frames is exchanged, and the duration of

such packets is controlled by the micro-model. Specifically, the domain of the
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PMF P pd
pMq
DATA, d

pMq
ACKq is clustered into |MpMq| rectangular subdomains through

the Elbow method, which is a clustering technique to automatically determine

the number of clusters K [49]. We run this clustering algorithm twice: for

the dimension associated with td
pMq
DATAu and for that associated with td

pMq
ACKu,

obtaining K
pMq
DATA and K

pMq
ACK clusters for DATA and ACK frames, respectively.

This leads to |MpMq| rectangular subdomains with |MpMq| “ K
pMq
DATA ˆ K

pMq
ACK.

Each of such domains m P MpMq defines a micro-state with conditional PMF

P pd
pMq
DATA, d

pMq
ACK|mq, representing the joint distribution of DATA and ACK dura-

tions within that region (conditioned on the model being in region m). Tran-

sitions between micro-states occur according to the transition matrix TTT pMq,

which is estimated from empirical data. The steady-state probability vector

πππpMq is obtained through numerical integration of P pd
pMq
DATA, d

pMq
ACKq within re-

gion m, for all m P MpMq.

Outline of the algorithm: the pseudo-code of the mm-wave trace generator

is given in Algorithm 4. The algorithm’s output consists of sequences of data

bursts, delimited by beacon pairs. The algorithm starts by picking macro- and

micro-states according to the respective steady-state distributions (see function

pickpq in lines 1 and 2). ỹyypdimq is the noisy output sequence, which is initialized

as an empty vector (line 3). In line 5, the data burst duration T is sampled

from the PMF P pd
pMq
burstq and time-synchronized burst sequences are generated

for two sniffers SN1 and SN2 (dim “ 1 and 2), see line 6. Each burst starts with

a beacon pair, denoted by tmptmptmppdimq, which is a noisy version of the template

used by the template matching algorithm of Section 2.6. The beacons are

concatenated to the output sequence ỹyypdimq in line 7, and the noisy data burst

is created through the “while” cycle starting from line 9. Durations of DATA

(d2), ACK (d3) frames and of the IDLE time between them (d1) are respectively

sampled from the PMFs P pd
pMq
DATA, d

pMq
ACK|mq and P pd

pMq
IDLEq. A noisy sequence

composed of DATA (d2 samples), IDLE (d1 samples), ACK (d3 samples) and

IDLE (d1 samples) is generated through the “create_framespq” function of

line 12. The so obtained output samples ooo1 (of length 2d1 ` d2 ` d3 samples) is

then appended to the current sequence ooopdimq (line 13). When the while cycle

ends, ooopdimq contains the noisy samples associated with the new data burst.

The noisy samples in the sequence, which are associated with hidden state

i P t1, 2, 3u (respectively IDLE, DATA and ACK), are computed as (additive
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Algorithm 1 Pseudo-code of the mm-wave trace generator

1: M “ pickpπππp0qq; // pick macro-state
2: m “ pickpπππpMqq; // pick micro-state
3: Set ℓ “ 0; ỹyypdimq “ empty_vectorpq;
4: while ℓ ă L do
5: T “ pickpP pd

pMq
burstqq;

6: for dim “ 1 to 2 do
7: ỹyypdimq “ concatenatepỹyypdimq, tmptmptmppdimqq;
8: Set t “ 0; ooopdimq “ empty_vectorpq;
9: while t ă T do

10: d1 “ pickpP pd
pMq
IDLEqq;

11: pd2, d3q “ pickpP pd
pMq
DATA, d

pMq
ACKq|mq;

12: ooo1 = create_framespd1, d2, d3q;
13: ooopdimq “ concatenatepooopdimq, ooo1q;
14: // Change current micro-state?
15: m “ next_statepTTT pMq,mq;
16: t “ lengthpooopdimqq;
17: end while
18: ỹyypdimq “ concatenatepỹyypdimq, ooopdimqq;
19: end for
20: Mprev “ M ;
21: // Change current macro-state?
22: M “ next_statepTTT p0q,Mq;
23: if M ‰ Mprev then
24: // resample from steady-state distribution
25: m “ pickpπππpMqq;
26: end if
27: ℓ “ lengthpỹyypdimqq;
28: end while

Gaussian noise): µ
pdimq
i `

b
Σ

pdimq
i randnp1, diq, where “randnp1, diq” denotes

a random vector of di elements, with Gaussian distributed entries N p0, 1q.

Although not explicitly indicated, the sequence of hidden states is saved along

with the noisy version ỹyypdimq and used as ground truth for the performance

evaluation of Section 2.11.2.

We now discuss some example results for the case of two macro-states.

M “ 1: distance TX-RX 1.5 m, MCS 11. M “ 2: distance TX-RX 2.5 m, MCS

10. Empirical pd
pMq
DATA, d

pMq
ACKq pairs are shown in Fig. 2.10 for M P t1, 2u, along

with the rectangular regions obtained using the Elbow clustering algorithm.

We observe that the duration statistics are more spread in macro-model 1 with
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Figure 2.10: Empirical measurements pd
pMq
DATA, d
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ACKq for two marco-states.

Rectangular regions are obtained using the Elbow method. Values in the
axes are expressed in number of channel samples (the sampling frequency is
Ts “ 0.1 µs).

respect to macro-model 2, meaning less data aggregation. Also, the length of

the data burst is shorter in macro-model 1, see Fig. 2.11. For each macro-state

M , the domain pd
pMq
DATA, d

pMq
ACKq is split into clusters using the Elbow method:

the number of clusters is greater in macro-model 1, i.e., K
p1q
DATA “ K

p1q
ACK “ 6

and K
p2q
DATA “ K

p2q
ACK “ 3.6 Fig. 2.12 shows empirical points pµ

pdimq
i ,Σ

pdimq
i q for

different channel setups. In this plot, we do not distinguish between states

i P t1, 2, 3u, as our purpose is to establish a suitable relation between mean

(µ) and variance (Σ) of the received energy levels, and the difference in the

received energy levels captured by the sniffers depends on the relative position

of the sniffers with respect to the communicating devices. These empirical

points were fitted through the following curve (the red solid curve in the plot):

Σi “ c1µ
c2
i , i P t1, 2, 3u , (2.5)

with c1 “ 0.105 and c2 “ 1.905. The coefficients c1 and c2 were found through

a linear regression in the logarithmic domain, i.e., we fit the dataset taking into

account the logarithmic counterpart of the datapoints and minimize the total

6The number of clusters is chosen such that the percentage of variance explained by them
is greater than 90%, where this percentage represents the ratio between the group variance
and the total variance.
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Figure 2.11: PMF of the burst length P pd
pMq
burstq for macro-models 1 and 2.

residual error, obtaining an excellent goodness of fit (R2 “ 0.9595, where R2

is the coefficient of determination). The linear relationship in the logarithmic

domain of Eq. (2.5), that we obtained empirically, is also confirmed by previous

analytical work on RSS localization, see, e.g., [50].

As a final consideration, we note that the average energy levels µi and their

variances Σi remain constant for the entire duration of the data bursts, which

is a key assumption in the developed EDHMM algorithm (see assumption A3,

in Section 2.5). In the numerical results, we assess the performance of our

algorithms when assumption A3 is no longer verified, i.e., when µi and Σi do

change within a DATA burst. This is achieved through an additive sinusoidal

noise of frequency f , which is added to the generated energy traces, by tuning

f and the noise amplitude.

2.11 Performance results

Next, we present some selected performance results. Experimental re-

sults are discussed in Section 2.11.1, considering single and multiple time-

synchronized sniffers. The performance of our tool is further quantified in

Section 2.11.2, using the mm-wave trace generator of Section 2.10.

59



0   0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

µi, i ∈ {1, 2, 3}

0

0.001

0.002

0.003

0.004

0.005

Σ
i,
i
∈
{
1
,
2
,
3
}

Dataset

Fitted curve

Figure 2.12: Gaussian observation model: empirical values and fitting curve
for mean (µ) and variance (Σ) of the received energy levels associated with
IDLE periods, DATA and ACK frames.

2.11.1 Evaluation with experimental data

We consider the setup in Section 2.6. First, we validate our machine learn-

ing framework in controlled scenarios. Next, we study the behavior of indoor

links during regular operation to check how our framework can identify and

characterize effects such as beam misalignment.

Validation in controlled scenarios: Fig. 2.13 shows a trace decoding ex-

ample for our diagnosis tool. In the upper part of the figure, we show the

raw trace as captured by the Sivers IMA converter. The two initial frames

are beacons that indicate the start of a data burst. After that, we observe a

sequence of data and acknowledgment frames (c.f. Fig. 2.1). The lower part

of the figure shows that our framework can correctly identify all frames in

the trace. We observe that the framework successfully classifies data packets,

acknowledgments, beacons, and inter-frame spacing. Moreover, Fig. 2.13 also

demonstrates the need for our EDHMM approach. The HMM method wrongly

classifies many of the samples—within a data or acknowledgment frame, it of-

ten fluctuates between states. In contrast, the EDHMM classifies all samples
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Figure 2.13: Trace decoding example for our machine learning framework.

correctly, even in case of varying data packet lengths.

In addition to the visual inspection in Fig. 2.13, we validate our framework

using two approaches. First, we compare the number of data packets that our

tool identifies with the number of packets that the driver of our 60 GHz device

reports. For the case without blockage in Fig. 2.14, the driver reports 31960

sent packets at the end of the trace. This matches the data packet counter in

our results. Second, we record the same data exchange using two independent

sniffers SN1 and SN2, and process the resulting traces using our framework.

For no blockage, Fig. 2.14 shows that both sniffers count the same number

of both data and control packets. This again validates that our framework is

correctly decoding the trace. For data packets, the counter stabilizes at one

second at which point we stop the data transmission. Still, the control packet

counter increases steadily because the devices continue to exchange control

packets even if no data transmission is taking place.

Fig. 2.14 also depicts similar measurements for two blockage cases. The

first is a “hard blockage”, i.e., crossing the link and thus interrupting it com-

pletely for a few milliseconds. The second is a “soft blockage”, which refers to

partial blockage such as waiving a hand in the boresight of the antenna. These
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Figure 2.14: Number of data and control packets identified by our tool. We
show the results for two sniffers SN1 and SN2 placed at different locations.

blockages cause a drop in the energy levels captured by the two independent

sniffers SN1 and SN2, which actually perceive a different number of both data

and control packets due to the different relative positions of the sniffers with

respect to the mm-wave link.

Regular operation: in the following, we show some selected diagnosis capa-

bilities of our tool for regular link operation. Fig. 2.15 depicts the Empirical

Cumulative Distribution Function (ECDF) of the packet and burst lengths

that our tool computes for different links. All links have the same length and

are deployed in the same location. However, we change their orientation to in-

duce different antenna beam patterns which result in suboptimal performance,

and which our framework can identify. The protocol used by our 60 GHz test

devices defines that the maximum burst length is two milliseconds and the

maximum aggregated packet length is 20 microseconds [6]. Since we perform

this experiment with full transmission buffer at the nodes, the burst and packet

lengths should match the maximum values.

For the different measurements, the link distance is maintained to be equal

to 3 meters, while the rotation of the nodes varies, resulting in changes in the
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Figure 2.15: CDF of packet and burst lengths for three links deployed in the
same environment but with varying performance. “BP” stands for beampat-
tern.

MCS and frame duration. Specifically, for Link 3 the antennas of the devices

are facing one another, whereas for Link 1 and 2 they are not. While the MCS

of Link 1 and 2 are the same, for Link 1 in Fig. 2.15 we observe smaller packet

durations. To reduce the packet error rate when the link quality is worse,

the MAC reduces the level of aggregation, i.e., the MAC layer aggregates

fewer data packets than the maximum into a single MAC packet. Indeed, our

framework also reveals that the trace energy level differs compared to Link 2,

which suggests antenna misalignment. We omit the energy trace level in the

interest of space but the device driver reveals that both Links 1 and 2 operate

otherwise identically in terms of MCS and traffic load. In other words, our

framework successfully identifies the suboptimal device orientation for Link 1.

Fig. 2.15 shows that Link 3 performs even better in terms of packet length.

Again, the device driver confirms this insight since Link 3 uses a more robust

MCS than Link 2. Thus, Link 3 is more likely to succeed when transmitting

longer packets.

External disturbance: regarding external disturbances, we focus on the case

of link blockage. Our tool is able to identify and classify such blockage. This

provides means for network operators to determine how often blockage actually

occurs for a certain mm-wave link during a certain time-frame, for instance, a

day.
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Figure 2.16: Blockage recorded from two different locations SN1 and SN2. The
figure shows a fraction of the blockage, i.e., the blockage affects all samples.

Identifying blockage is challenging because it may block the LOS path to

the sniffer, too. To prevent this, our framework can record and compare the

channel activity from two or more sniffers at different locations, as shown in

Fig. 2.16. We observe that while sniffer SN1 barely receives any of the activity

prior to second 1.93, SN2 is able to receive all frames during the blockage. This

allows our framework to obtain a much more complete view of the activity

on the channel. Based on this information, we automatically identify beam

refinement (BR) sequences. Such sequences are rare in static scenarios but are

likely to occur if the link is impaired. Fig. 2.17 depicts a segment of the trace

in Fig. 2.16, overlapped with the locations at which our framework identifies

BR sequences. We observe that the BRs identified by both sniffers match but

that not all sniffers capture all sequences due to the blockage. This highlights

again the benefit of being able to analyze the network behavior from multiple

viewpoints. Moreover, Fig. 2.16 depicts a soft blockage. Thus, the connection

does not break and the device continuously adapts its beampattern, resulting

in a large number of BRs. In contrast, hard blockage results in less BRs since

the transmitter and the receiver cannot communicate during the blockage. As

per our measurements, the average number of BRs per trace for no blockage,

hard blockage, and soft blockage is 0 BRs/trace, 0.42 BRs/trace, and 4.02

BRs/trace, respectively. The difference in terms of BR frequency allows our

diagnosis tool to classify blockage. This is highly valuable to determine why a
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Figure 2.17: Beam refinement sequences during soft link blockage.

mm-wave link is performing poorly.

In Fig. 2.14, we also show packet counters for the case of blockage. The

data packet counter for hard blockage stabilizes at roughly 40, 000 packets

because we stop transmission at that point. For soft blockage, we transmit

continuously and thus the packet counter increases throughout the trace. We

observe that the data packet counters for each sniffer disagree as soon as block-

age occurs. The underlying reason is that one of the sniffers does not receive

the full channel activity while the other one does. While not as unambiguous

as the detection of BRs, this also hints at potential blockage scenarios. We

observe that hard blockage causes a stronger disagreement than soft blockage,

providing means to differentiate them. The mismatch among sniffers is less

explicit for control packets since the shape of such patterns is easier to iden-

tify than the shape of data packets. Hence, both sniffers are more likely to

correctly classify such control packets even in case of blockage.

Combining different viewpoints: next, we exploit the learning framework

to jointly process mm-wave channel traces from multiple time-synchronized

sniffers, since different viewpoints of the same channel will provide comple-

mentary information and thus can lead to higher decoding accuracies. To this

end, we perform several experiments deploying the transmitter, the receiver

and the sniffers as shown in Fig. 2.18. While multiple sniffer combinations

were tested, for the sake of brevity we only report the results for the sniffer

pairs SN1 and SN2, as we found it very instructive and sufficient to reveal the
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Figure 2.18: Indoor measurement setup. Specifically, sniffers SN1 and SN2 are
time-synchronized.

dynamics behind the decoding process. In Fig. 2.19, we compare the num-

ber of data packets that our tool identifies using two independent sniffers SN1

and SN2 in a controlled scenario (no link blockage). In this case, while both

sniffers count the same number of control packets (as beacon pairs are ro-

bustly detected via template matching), the number of data packets differ. In

this case, SN2 provides better decoding accuracy compared to SN1, as can be

also observed from the ECDF in Fig. 2.20 (left plot). The multi-dimensional

(joint) processing of the two traces allows us to estimate the packet duration

statistics in a much more reliable fashion, see the left plot of Fig. 2.20 (dashed

line), and to correct the bias in the DATA count for SN1, see Fig. 2.19 (right

plot). The reason why SN2 provides higher decoding performance compared

to SN1 is that SN2 records more distinctive values for the amplitude mean

and standard deviation (std) of the EDHMM states i P t1, 2, 3u, whereas for

SN1 it is difficult to discriminate among different energy levels at the receiver.

This is shown in Fig. 2.21, where we plot the estimated amplitude mean and

standard deviation (std) of the EDHMM states i P t1, 2, 3u for the sniffers SN1

and SN2, together with the other (omnidirectional) sniffers from the measure-

ment setup of Fig. 2.18. In the barplot, we note that DATA and ACK packets

for SN1 are more likely to be erroneously classified by the EDHMM, as they

present almost indistinguishable energy levels. Further, we remark that the

estimated amplitude mean and standard deviation (std) of the EDHMM states

i P t1, 2, 3u do not necessarily directly reflect the distances of the sniffers with

respect to the mm-wave link, as the sniffers are deployed close to each other in
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Figure 2.19: Number of data and control packets identified by our tool. The
results are for two sniffers SN1 and SN2 placed at different locations. The left
plot shows the results from decoding the two traces independently; the results
for the multi-dimensional trace (joint) processing are shown in the right plot.

an indoor measurement setup.7 However, the difference in the received energy

levels captured by the sniffers depends on the relative position of the latter

with respect to the communicating devices.

2.11.2 Reconstruction from generated traces

For the performance evaluation in this section, we define the reconstruc-

tion factor ρ P r0, 1s as the fraction of samples in the received sequence that

are correctly reconstructed by the algorithm. To this end, we compare the

reconstructed sample sequence obtained by the Viterbi algorithm against the

ground truth, see Section 2.10. ρ “ 1 means perfect reconstruction.

We consider two time-synchronized sniffers, dim “ 1, 2. Moreover, with

∆
pdimq
ij we indicate the difference in the received energy levels associated with

IDLE periods, DATA and ACKs frames for the channel acquired by sniffer

7As sniffers are omnidirectional, we do not experience errors in the estimated amplitude
mean and standard deviation (std) of the EDHMM states i P t1, 2, 3u due to antenna
misalignment.
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Figure 2.20: ECDF of packet and burst lengths for the single trace and the
multi-dimensional (joint) trace processing (SN1 & SN2).

dim, i.e., ∆
pdimq
ij “ µ

pdimq
j ´µ

pdimq
i , with i, j P t1, 2, 3u and i ă j. Specifically, we

aim to evaluate the reconstruction factor ρ P r0, 1s as a function of ∆
pdimq
12 and

∆
pdimq
23 , as ∆

pdimq
13 can be obtained from ∆

pdimq
13 “ ∆

pdimq
12 ` ∆

pdimq
23 . In principle,

the difference in the received energy levels captured by the sniffers depends on

the relative position of the latter with respect to the communicating devices.

For the performance evaluation in this section, without loss of generality, we

consider ∆pdimq “ ∆
pdimq
12 “ ∆

pdimq
23 to conveniently evaluate the reconstruction

factor ρ P r0, 1s through a single free parameter ∆pdimq, simplifying the param-

eter space, and allowing a compact graphical representation of the results.

In Fig. 2.22, we plot ρ when the decoding is jointly performed over the

traces from two sniffers as a function of ∆p1q (energy gaps for sniffer 1, on

the abscissa), keeping ∆p2q fixed for each curve. For this plot, µ
pdimq
1 “ 0.001

for dim “ 1, 2, the remaining energy levels follow from ∆pdimq, whereas the

variances Σ
pdimq
i are obtained through Eq. (2.5). For comparison, the case of a

single sniffer (dim “ 1) is also shown through the solid blue curve. As expected,

the reconstruction factor ρ increases with an increasing ∆p1q, since the runtime

mm-wave analyzer in this case better initializes the EDHMM parameters for

each data burst. A single trace (dim “ 1) leads to excellent results even for

∆p1q “ 0.001, and using two traces allows for a further improvement.

However, we remark that this good performance is not always possible and

this very much depends on the chosen initial levels µ
pdimq
1 , dim “ 1, 2. To see
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Figure 2.21: Estimated amplitude mean and standard deviation (std) of the
EDHMM states i P t1, 2, 3u for the sniffers SN1 and SN2, together with other
(omnidirectional) sniffers, as shown in the measurement setup of Fig. 2.18.

this, we have considered a scenario where the distance between energy levels

is rather small, i.e., ∆p1q “ ∆p2q “ 0.001, whereas µ
p1q
1 and µ

p2q
1 are allowed

to change. These results are plotted in Fig. 2.23, where µ
p1q
1 appears on the

x-axis and µ
p2q
1 is kept fixed for each curve. The single trace performance

is shown for comparison through a solid blue line. In this case, we observe

that the reconstruction performance is heavily affected by an increasing back-

ground noise level µ1. In fact, as µ1 gets larger, according to Eq. (2.5), the

noise variance also increases (almost quadratically) and since the energy gap

(∆) between levels remains constant, it becomes increasingly difficult to dis-

criminate among different energy levels at the receiver. (ii) Moreover, there

is a fundamental tradeoff in the number of sniffers to use. For example, for

µ
p1q
1 “ 0.003, the addition of a second sniffer helps if µ

p2q
1 is smaller than or

equal to 0.004. However, if the second trace has a very poor quality (e.g.,

µ
p2q
1 “ 0.005) a single trace provides a better reconstruction performance. In-

terestingly, when µ
p1q
1 « µ

p2q
1 , it always pays off to use two sniffers, no matter

the value of µ1.
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Figure 2.22: ρ as a function of ∆p1q, keeping ∆p2q fixed for each curve. For
this plot, µ

pdimq
1 “ 0.001 for dim “ 1, 2, the remaining energy levels follow from

∆pdimq, whereas the variances Σ
pdimq
i are obtained through Eq. (2.5).

In the above paragraph (referring to Fig. 2.23), we have considered a sce-

nario where the distance between energy levels is rather small, i.e., ∆p1q “

∆p2q “ 0.001, and the background noise dominates the overall performance. It

turns out that this choice of parameters is critical for proper EDHMM func-

tionality. Note that, even though these are extreme cases, such small values of

∆ have been found in our measurements. However, if we allow for a slightly

greater distance between energy levels, i.e., ∆p1q “ ∆p2q “ 0.002, then the

overall performance increases significantly (see Fig. 2.24). Using two traces

can lead to much better results, especially when the noise affecting the first

one is significant, e.g., µ
p1q
1 ě 0.005.

Now, we test the performance of our diagnosis tool by also inducing ran-

dom fluctuations in the channel dynamics. That is, we account for an addi-

tive sinusoidal noise signal with frequency f , which is added to the generated

traces. Then, we compare the performance of our diagnosis tool as a func-

tion of the frequency f , which is related to the average length of the data

burst TB. To do this, we proceed as follows: 1) given the channel transmission
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Figure 2.23: ρ as a function of µp1q with ∆p1q “ ∆p2q “ 0.001, whereas µ
p1q
1 and

µ
p2q
1 are allowed to change.

setup M P Mp0q, we compute the average length of the data burst TB (in sec-

onds); 2) we design an additive sinusoidal noise signal sinp2πftq as a function

of the frequency f , which is related to the average length of the data burst

TB, i.e., sinp2πftq “ sinp2πk{TBℓTsq, where ℓ “ 1, . . . , L counts the samples

in vector ỹyypdimq and Ts is the sampling time of the generated traces (we use

Ts “ 0.1 µs); 3) we test the runtime mm-wave analyzer for varying k, where

f “ k{TB, and TB depends on P pd
pMq
burstq. Specifically, the sinusoidal (noise) sig-

nal A ¨ rsinp2πk{TBℓTsq ` 1s{2 is added to the generated traces, where A is the

maximum amplitude of the sine wave. In principle, superimposed sinusoidal

noise can occur for several reasons, such as interference from another trans-

mission, and mobility. Also, hardware impairments during data acquisition

are a major cause of superimposed sinusoidal noise. These distortion effects

are very hardware specific and, as such, the value of f can vary significantly,

depending on the experimental setting. An example of sinusoidal noise which

was found in the measured channel traces is shown in Fig. 2.25, together with

a reconstructed signal which is representative of the superimposed sinusoidal

noise.
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Figure 2.24: ρ as a function of µp1q with ∆p1q “ ∆p2q “ 0.002, whereas µ
p1q
1 and

µ
p2q
1 are allowed to change.

In Fig. 2.26, we plot ρ when the decoding is jointly performed over the

traces from two sniffers as a function of kp1q (the value of k associated with

sniffer 1), thus f “ kp1q{TB, whereas kp2q (sniffer 2) is kept fixed for each curve.

Specifically, we considered TB “ 1 ms, which is close to the average length of

the data burst, measured from real channel traces (see Fig. 2.11). For this plot,

µ
pdimq
1 “ 0.001 for dim “ 1, 2, the remaining energy levels follow from ∆pdimq,

whereas the variances Σ
pdimq
i are obtained through Eq. (2.5). Also, ∆ “ 0.001

for both traces. If we do not consider any additive sinusoidal noise signal,

this choice of parameters leads to ρ » 1. On the contrary, the performance of

the runtime mm-wave analyzer decreases as a function of frequency f . This

is reasonable, since channel attenuation and noise are no longer stationary

within each data burst (see assumption A3, in Section 2.5). Then, taking

advantage of the joint information from two different viewpoints can lead to

better results (with respect to a single trace) as long as at least one of the traces

is not affected by heavy channel fluctuations, see, for example the curves with

kp2q “ 0.001 (f “ 1 Hz). Finally, the overall performance drastically drops for

an increasing A, where A is the maximum amplitude of the sine wave. For this
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Figure 2.25: An example of sinusoidal noise which was found in the channel
dynamics. The reconstructed signal is given as a sum of N “ 3 sine waves,
by looking at the N “ 3 highest peaks in the Fourier transform of the trace.
Specifically, the main component has frequency 300 Hz, amplitude 0.0035 V.

plot, we set A equal to 1, 10, and 100 times the gap between energy levels ∆.

It results that A “ ∆ ¨ 100, combined with values of f above 100 Hz, always

results in ρ ă 0.5.

2.12 Conclusions

In this chapter we have designed and evaluated a machine learning frame-

work to automatically perform protocol layer analysis and diagnose physical

layer issues in 60 GHz networks. The main challenge lies in the variabil-

ity of the channel traces and in the complexity of identifying their structural

elements given their noisiness, aperiodicity, and unpredictable behavior. Stan-

dard machine learning approaches fail in such a scenario. Our tool uses nar-

rowband physical layer energy traces from one or multiple sniffers to identify

lower-layer performance issues. Network planners, administrators, as well as

researchers can use it to improve the performance of mm-wave networks even

though COTS networking devices provide very limited access to lower-layer

information. The developed approach provides a convenient trade-off between

the efficient but limited monitoring capabilities of IEEE 802.11ad devices in

monitor mode, and the highly detailed but costly decoding of full bandwidth
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Figure 2.26: ρ in the presence of an additive sinusoidal noise with frequency f .

signals through software-defined radios. Our algorithms are tested through an

extensive measurement campaign using COTS 60 GHz hardware, considering a

range of practical scenarios. Besides, the ability of the framework to correctly

identify protocol sequences (beacon pairs, data and acknowledgment frames)

from single and multiple channel sniffers is quantified, looking at the impact

of channel noise, energy levels and their distribution across different sniffers.
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Chapter 3

A Bayesian Forecasting and

Anomaly Detection Framework for

Vehicular Monitoring Networks

In this chapter, we are concerned with the automated and runtime analysis

of vehicular data from large scale traffic monitoring networks. This problem

is tackled through localized and small-size Bayesian Networks (BNs), which

are utilized to capture the spatio-temporal relationships underpinning traffic

data from nearby road links. A dedicated BN is set up, trained, and tested

for each road in the monitored geographical map. The joint probability dis-

tribution between the cause nodes and the effect node in the BN is tracked

through a Gaussian Mixture Model (GMM), whose parameters are estimated

via Bayesian Variational Inference (BVI) operating on unlabeled data. Fore-

casting and anomaly detection are performed on statistical measures derived at

runtime by the trained GMMs. Our design choices lead to several advantages:

the approach is scalable as a small-size BN is associated with and independently

trained for each road and the localized nature of the framework allows flagging

atypical behaviors at their point of origin in the monitored geographical map.

The effectiveness of the proposed framework is tested using a large dataset from

a real network deployment, comparing its prediction performance with that of

selected regression algorithms from the literature, while also quantifying its

anomaly detection capabilities.
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3.1 Introduction

Smart cities are witnessing a digital revolution involving a constellation of

sensing technologies, which are being employed to gather a range of environ-

mental, parking and traffic data. Application examples for such data abound:

park monitoring networks are being installed in major cities such as Los Ange-

les [51], San Francisco [52], and Barcelona [53], among others. Parking sensor

data can be utilized to identify free parking lots and, moreover, to pinpoint

atypical parking patterns [54, 55]. Solutions to manage traffic flows are also

being developed. For example, in [56,57] video processing techniques are used

to estimate the traffic density based on video frames from surveillance cam-

eras deployed on traffic light poles, devising smart control strategies for traffic

lights. Other works address traffic forecasting, see, e.g., [58]. A common trait

of these systems is that data is generated in large amounts and, in turn, its

manual inspection is impractical. Moreover, the patterns of interest are often

hidden and difficult to observe through a mere visual inspection, even by skilled

personnel. Machine learning tools are deemed a natural means to efficiently

and effectively process these data.

In this chapter, a Bayesian framework for vehicular traffic monitoring net-

works is proposed. Its core idea is that information from road links that are

in close proximity is likely to be highly correlated with that in the current

(target) road link, at any time interval. Moreover, temporal correlation is also

relevant, i.e., past observations from nearby links also tend to be correlated

with the current reading at any target road. Owing to these facts, we model

the spatio-temporal evolution of vehicular streams among multiple road links

in large-scale scenarios through localized and small-size Bayesian Networks

(BNs). These, are implemented as Directed Acyclic Graphs (DAG), represent-

ing conditional independence relations among random variables. Specifically, a

dedicated BN is configured, trained, and tested for each target road in the mon-

itored (urban) geographical map. The joint probability distribution between

the cause nodes (data utilized for forecasting) and the effect node (data to be

predicted at any “current” time, belonging to the target road link) is described

through a Gaussian Mixture Model (GMM) whose parameters are estimated

via Bayesian Variational Inference (BVI) operating on unlabeled data. Op-
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timal forecasting follows from the criterion of Minimum Mean Square Error

(MMSE). Moreover, we also perform anomaly detection by devising a proba-

bilistic score associated with the marginal conditional distribution of the effect

node. The so obtained GMMs are time-dependent, i.e., several GMMs can be

estimated for the same target road for different days of the weeks and/or hours

of the day. Also, our framework is distributed, lightweight, and capable of op-

erating in realtime and, in turn, it appears to be a promising candidate to deal

with Internet of Things (IoT) applications in large-scale networks, where new

data is to be processed on-the-fly. The key features of the model are: i) the

approach is scalable as a BN is associated with and independently trained for

each road, ii) spatio-temporal information is considered (for increased robust-

ness and accuracy of the statistical model so obtained) and iii) the localized

nature of the framework allows flagging atypical behaviors at their point of

origin in the monitored geographical map. In addition, the approach is here

validated against a number of popular regression schemes from the literature,

to quantify its predictive power, testing it on data from a large real-world

deployment, featuring readings from 686 measurement points for a full year.

Finally, we quantify the framework’s capability of detecting anomalies in the

presence of injected noise, which we precisely control in terms of power, lo-

cation (road link) and position in time. Our numerical results reveal that a

localized and small size DAG, implemented for each road in the monitored

area suffices to obtain very good prediction and anomaly detection accuracies.

This means that large monitoring networks can be tackled by training indepen-

dent and small-size DAGs, a process that can be efficiently parallelized across

disjoint processors, ensuring scalability as the size of the network increases.

This chapter is organized as follows. In Section 3.2, the state of the art

on anomaly detection and prediction in vehicular data is reviewed. In Sec-

tion 5.2.1, the Bayesian framework is formulated, detailing the dataset (Sec-

tion 3.3.1), the BN/GMM models (Section 3.3.2), the use of real data for train-

ing/validation (Section 3.3.3). Numerical results are provided in Section 3.4,

assessing the prediction (Section 3.4.1) and anomaly detection (Section 3.4.2)

performance of the new scheme. Future research directions are discussed in

Section 5.5.
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3.2 State of the Art Analysis

A substantial amount of research has been carried out to provide anomaly

detection techniques in a wide range of application domains such as cyber-

intrusion detection, fraud detection, medical anomaly detection, industrial

damage detection, image processing, textual anomaly detection, sensor net-

works, etc., and has been reviewed in several surveys [59–61]. We direct the

reader to these sources for a detailed and comprehensive treatment of the

anomaly detection problem. Next, we solely focus on works dealing with traf-

fic analysis.

In [62], the authors introduce a road segment based anomaly detection prob-

lem, observing the road segment whose traffic condition deviates the most from

the expected behavior. This work departs from other scientific papers [63,64],

which are region/grid specific, and not road based. First, a deviation-based

method is put forward to quantify the anomaly by means of a score in the

range r0, 1s. Second, a diffusion-based algorithm exploiting a heat diffusion

model is proposed to infer the major anomaly causes on the transportation

network, given that an abnormal traffic trend in a road segment can trigger

another abnormal traffic trend in a road segment located nearby. This model

does not include historical information streams from adjacent road links, but

represents the expected behavior of the road segment as a normal random

variable. In [65], a more sophisticated scheme is presented. There, a Tempo-

ral Outlier Discovery (TOD) framework is proposed to quantify the anomaly

based on drastic changes in the agglomerated temporal information of the en-

tire dataset. Specifically, at each time step, every road segment checks its

similarity with respect to every other segment, and historical similarity values

are stored in a temporal neighborhood vector. Anomaly detection for each

road is accomplished by jointly considering mobility data from all the streets

in the data set. While this should be quite robust in terms of detection ca-

pability, as it is expected to be reliable even when all the neighborhood of

the current road is experiencing a traffic anomaly, it is hardly scalable and

difficult to train and use at runtime as the number of roads to monitor in-

creases. It is therefore deemed impractical for the large-scale network that we

consider in this chapter. [66] adopts a Bayesian framework, as we do here. The
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authors focus on the short-term traffic flow forecasting task, which amounts

to determine the traffic condition of a target road in the near future, usually

within a time range of 5 ´ 30 minutes. Historical information streams from

the adjacent road links and the target link are taken into account by means of

Bayesian networks, where the joint probability distribution between the cause

nodes (directional information streams from the adjacent road links) and the

effect node (traffic condition of the target link in the next time interval, to

be predicted) is represented through a Gaussian Mixture Model (GMM), and

forecasting is performed by computing the expectation of the Probability Den-

sity Function (PDF) associated with the predicted traffic condition. Also, the

authors improve the analysis carried out in [67, 68] by including historical in-

formation streams from the adjacent road links and the target link. However,

besides forecasting, the authors do not provide any reasonable anomaly detec-

tion criterion to state whether the distribution associated with the predicted

traffic condition deviates from the expected behavior. In a sense, the authors

do not exploit Bayesian networks to their full extent. Furthermore, the scheme

is tested on a limited dataset (only 2, 400 sample points from real world traffic

data), which make their numerical evaluation quite preliminary.

In this chapter, we propose a Bayesian framework for vehicular traffic mon-

itoring networks. Our approach bears similarities with [66], as both use a BN

and an associated GMM. Nevertheless, we demonstrate the effectiveness of

localized Bayesian networks in large and real datasets, extending their capa-

bilities to anomaly detection, validating the framework with a large real-world

deployment and comparing it against a number of regression approaches from

the literature, to test its ability to capture the spatio-temporal structure un-

derpinning real data.

3.3 Bayesian Framework

As briefly discussed above, in vehicular traffic monitoring networks it makes

sense to exploit information from multiple road links at past time intervals to

forecast the traffic flow in any target road link at any (current) time interval. In

the following, we consider a (any) target road in the topology, interchangeably

referring to it as the current road. The objective of the BN is to jointly track
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current and past speed values for the current road, along with past speed

values of upstream roads. To cut down the number of connections among

multiple road links in the associated DAG, we have chosen to only consider

the target road link and its upstream road links in the DAG construction,

while neglecting downstream links. This choice allows reducing the number

of possible connections in the DAG and, in turn, its complexity. This can be

justified from the way BNs represent conditional independence relations among

random variables: a node is independent of its ancestors given its parents,

where the ancestor/parent relationship is with respect to some fixed topological

ordering of the nodes [69].

3.3.1 Traffic Readings

Mobility data was acquired from 686 Bitcarrier sensor nodes scanning

Bluetooth/Wi-Fi signals of mobile devices traveling on road links [70] for a

full year. This sensing system has been deployed by Worldsensing in a ma-

jor city (details are not provided to protect the company’s industrial plans).

Readings were taken with a time granularity of 5 minutes (the time slot du-

ration), and each reading from any of the sensors corresponds to the average

traveling speed (in [km/h]) gathered during the corresponding time slot (with

timestamps in UTC format). For 686 Bitcarrier sensor nodes, this amounts

to a total of 54, 591, 660 data points in the considered time period from Jan-

uary 2016 to December 2016. To account for missing/unavailable data points,

the entire dataset is pre-processed via linear interpolation, jitter removal, and

low-pass filtering. After this pre-processing phase, we obtain time series (one

per sensor) with one point every 5 minutes. Our Bayesian learning routines

operate on these time slotted signals.

3.3.2 Probabilistic inference via GMM

As per the above discussion, we assume that the traffic flow in the current

road link at current time interval is independent of other road links, given

the traffic flow in the current link and in its upstream road links at past time

intervals. Taking advantage of conditional independence relations, we can

analyze the trends of the current link statistically, computing the marginal

conditional distribution of the effect (i.e., current) node, as we now describe.
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Figure 3.1: Bayesian network associated with any target node in the physical
network topology.

At any current time t, let z “ px, yq denote a multidimensional random

vector: x is a random vector containing the random variables (r.v.s) associated

with the cause nodes in the DAG and y denotes a (scalar) r.v. representing the

speed value of the current node (to be estimated). In the BN, we keep track of

past measures: if t is the current time slot, the memory spans those samples

in tt ´ 1, . . . , t ´ W u, where W is the memory size. Let U be the number of

upstream roads in the physical network topology. For each upstream road we

define a cause node u in the DAG with r.v.s. xu “ pxu
t´1, x

u
t´2, . . . , x

u
t´W q, where

u “ 1, . . . , U and xu
t´i represents the speed reading for road u at time t ´ i,

with i “ 1, . . . ,W . For the current road, we define a further cause node in the

DAG, with associated vector xc “ pxc
t´1, x

c
t´2, . . . , x

c
t´W q. Hence, x is obtained

as the concatenation of xu (u “ 1, . . . , U) and xc, i.e., x “ px1,x2, . . . ,xU ,xcq.

The r.v. y contains the speed at the current time t for the current road c. A

diagram of the just described Bayesian network is shown in Fig. 3.1. For the

numerical results in this chapter we considered a memory of W “ 5 time slots,

i.e., 25 minutes of historical data.

To approximate the joint probability distribution of z we adopt a GMM.

Besides forecasting, we also perform anomaly detection by taking into account

a probabilistic score associated with the marginal Cumulative Distribution

Function (CDF) of the effect node, as we detail shortly in Section 3.4.2. We

remark that, to the best of our knowledge, the use of a probabilistic score

associated with the marginal CDF of the effect node sets us apart from existing

works on anomaly detection via probabilistic inference.
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The GMM is defined as:

P pz|Θq “
Mÿ

m“1

αmPmpz|θmq , (3.1)

where M is the number of Gaussians in the mixture, whose parameters are

Θ “ tα1, . . . , αM ,θ1, . . . ,θMu. αm are scalars such that
řM

m“1 αm “ 1. Each

Pmp¨|θmq is a Probability Density Function (PDF) characterized by θm “ pµm,Σmq,

m “ 1, . . . ,M , i.e., Pmpz|θmq “ Gpz;µm,Σmq. In this chapter, the parame-

ters are estimated via Bayesian Variational Inference (BVI) with unlabeled

data [69]. BVI can be seen as an extension of the Expectation-Maximization

(EM) algorithm from a maximum a posteriori estimation of the single most

probable value of each parameter to a complete Bayesian estimation, which

computes (an approximation to) the entire posterior distribution of the pa-

rameters and latent variables. The marginal conditional distribution of the

effect node is computed as:

P py|xq “
P px, yq

P pxq
“

P px, yqř
y P px, yq

, (3.2)

where the sum is over the domain of r.v. y and P px, yq “ P pz|Θq. Exploit-

ing the properties of Gaussian PDFs [71], we can derive a concise optimal

forecasting relationship, which allows new data to be processed on-the-fly:

py “

ż
yP py|xqdy

“

ż
y

«
Mÿ

m“1

βmGpy|x;µm,y|x,Σm,y|xq

ff
dy “

“
Mÿ

m“1

βm

„ż
yGpy|x;µm,y|x,Σm,y|xqdy


“

“
Mÿ

m“1

βmµm,y|x .

(3.3)
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Specifically, for m “ 1 . . . ,M ,

µm,y|x “ µm,y ´ Σm,yxΣ
´1
m,xxpµm,x ´ xq

Σm,y|x “ Σm,yy ´ Σm,yxΣ
´1
m,xxΣm,xy

µm “ pµm,x, µm,yq

Σm “

˜
Σm,xx Σm,xy

Σm,yx Σm,yy

¸

βm “
αmGpx;µm,x,Σm,xxq

řM

n“1 αnGpx;µn,x,Σn,xxq
.

(3.4)

For the numerical results in this chapter, M is set to 20 and the GMM param-

eters Θ are initialized via K-means clustering [69].

3.3.3 Data Matrices and Typical Weekly Profiles

Upon collecting and pre-processing the raw data from the sensor nodes, we

define two additional data objects: 1) the data matrix and 2) the typical weekly

profile. These are defined for each target road as follows. 1) The data matrix

is the collection of readings gathered from the target road (effect node in the

DAG) for all times t and from the cause nodes in the previous W time slots

(i.e., variable z, see Section 3.3.2). 2) The typical weekly profile is a polished

time series, which is anomaly-free and will be used in Section 3.4.2 as a ground

truth signal to quantify the Bayesian framework’s ability to detect anomalies.

This profile is obtained as follows: for each time t in a certain day of the week

d (e.g., Monday), we take a window of data points before and after it (the

window size is equal to 15 minutes, for a total of 30 minutes with the current

time t being in the center of it). We then collect all the data points belonging

to this time window for this same day of the week for an entire year (e.g., all

Mondays in a year for a window of 30 minutes centered on t) and compute the

PDF associated with the readings in this time window. For each time t, we

finally take the median of this PDF, which becomes the new datapoint for the

considered target road at time t and day d. The typical weekly profile may

be seen as a sort of expected behavior for the traffic on each road across the

entire year.
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3.4 Numerical Results

In this section, we assess the performance of the Bayesian framework of

Section 5.2.1 (referred to in the following as Bayesian net) from two points

of view: 1) its forecasting capability (Section 3.4.1) and 2) its anomaly

detection accuracy (Section 3.4.2).

1) Forecasting: for the forecasting capability, Bayesian net is evaluated

in terms of the error (residual) between the original and the predicted data

points, i.e., Respyt, pytq “ yt´pyt, where yt is the speed reading at time t for any of

the deployed sensors with t “ 1, . . . , T , with T being the number of readings

for that sensor in a full year. The following state-of-the-art algorithms are

also considered in the performance assessment: Last Sample (“Last sample”),

Bayesian Regression (“Bayes regr”), Lasso Regression (“Lasso regr”), Linear

Regression (“Linear regr”), Ridge Regression (‘Ridge regr”), and Regression

Tree (“Tree regr”). Numerical results are obtained using 75% of the data matrix

(training set) to estimate the GMM parameters for each road in the physical

network topology, whereas the remaining 25% (validation set) is employed

to test the obtained GMM. The forecasting capability of the above schemes

is obtained aggregating the results of the data points in the validation set for

each sensor node, computing various statistics for the residuals. The prediction

performance is shown and discussed in Section 3.4.1.

2) Anomaly detection: the typical weekly profile of Section 3.3.3 is uti-

lized as a ground-truth signal to evaluate the anomaly detection accuracy, as

follows. For each sensor node, we inject artificial anomalies consisting of ran-

dom noise sequences whose duration is D “ 5 time slots (5 minutes each), in

random non-overlapping positions of the sensor’s weekly profile. This artificial

signal is a D-sequence of additive, zero-mean white Gaussian noise samples

with standard deviation σn. For the anomaly detection, a probabilistic score is

obtained from the marginal distribution of the effect node applied to the noisy

weekly profile. Hence, we compare the anomaly rating against a sensor-specific

threshold ζ. This threshold is set according to a network requirement quanti-

fying the percentage of anomalies that a sensor is expect to flag in a day in the

considered vehicular network. To evaluate the anomaly detection accuracy, we

aggregate the results of all sensor nodes, each evaluated considering a noisy
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Figure 3.2: PDF of the residual Respyt, pytq.

version of its weekly profile. Numerical results are discussed in Section 3.4.2.

3.4.1 Forecasting Capability

In Fig. 3.2 we show the PDF of the residual Respyt, pytq. From this plot

we see that Bayesian net has a greater forecasting capability that the other

schemes. In fact, its PDF is more sharply peaked around zero, meaning a

smaller difference between the actual and the predicted samples, |yt ´ pyt|. As

a consequence, the Root Mean Squared Error (RMSE) is also smaller, where

we define RMSE “ p
řT

t“1pyt ´ pytq2{T q1{2.

Fig. 3.3 shows the (empirically measured) complementary CDF of the

residual Respyt, pytq, i.e., P rRespyt, pytq ě Rsq, where R is kept fixed for all

sensor nodes. Bayesian net reports a lower number of events for which

Respyi, pyiq ě R and, in turn, its curve in Fig. 3.3 decreases the fastest, reaching

a minimum of 10´6 for R “ 11 km/h. These results indicate that a Bayesian

approach is an appropriate tool to perform forecasting, achieving competitive

performance with the best algorithms from the literature.
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Figure 3.3: Complementary CDF of the residual Respyt, pytq.
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3.4.2 Anomaly Detection Accuracy

Next, the typical weekly profiles are used as ground-truth signals to evalu-

ate the anomaly detection accuracy. This makes it possible to work with labeled

time series and, in turn, to precisely quantify the classification performance of

Bayesian net in terms of: i) Precision, ii) True Positive Rate (TPR) and iii)

F measure.

In Fig. 3.4, we plot a segment from a typical weekly profile for sensor

(target) node with ID 1000003 and cause nodes 1000003, 1000090, 1000197

(the speed traces in this plot are synchronized in time). According to the DAG

construction method of Section 3.3.2, the target node 1000003 is also among

the cause nodes in the DAG, and it contains the past readings txc
t´1, . . . , x

c
t´W u.

Instead, the effect node contains yt, i.e., the speed measured at the target road

at time t.

Let us now consider Fig. 3.4 to illustrate how anomalies are injected and

detected. For each sensor node, we inject random artificial anomalies of length

D time slots in random non-overlapping positions, as explained above. Hence,

we compute a probabilistic score from the marginal CDF of the effect node

(that is computed taking the noisy profile as the input sequence). Whenever

the anomaly rating exceeds the (sensor-specific) threshold ζ, the corresponding

time slot is flagged as containing an anomaly (see the circular markers in the

top subplot of Fig. 3.4). In the bottom subplot, we show the score for the

trace in the top subplot, which is defined as:

SCOREt “

$
&
%
log10pCtq ´ log10p0.5q Ct ă 0.5

´ log10p1 ´ Ctq ` log10p0.5q Ct ě 0.5 ,
(3.5)

where Ct “ CDFpyt|xtq is the Cumulative Distribution Function computed

for yt and conditioned on the past readings (xt in the DAG). Using Eq. (3.5),

the further the current speed yt is from the median of the PDF P pyt|xtq, the

greater is the score. A high score means that the speed value yt is atypical

with respect to what would be predicted by the (marginalized) PDF. In this

example, we use σn “ 5 km/h, which is the maximum noise level that was

considered in our experiments. As for the threshold ζ, for Fig. 3.4 we have set

log10pno. of anomalies{no. of samplesq “ ´3 (application requirement), where
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Figure 3.4: Anomaly detection example for sensor node with ID 1000003 and
cause nodes 1000003, 1000090, 1000197.

“no. of samples” is the total number of data points in the validation set for

each sensor node; ζ is numerically found to meet this. For a given threshold

ζ, anomalies are detected (circular markers in the top subplot of Fig. 3.4) by

assessing whether |SCOREt| ě ζ. Note that in Fig. 3.4 we consider a single

target road and, as such, the given application requirement is used to compute

a single threshold ζ for that road. However, for an entire network, this same

requirement is employed to derive one threshold per DAG (i.e., one for each

target road in the physical topology).

Referring to α as the total number of (artificial) anomalies that were in-

jected, we have that the number of time slots that may be possibly affected is

S “ αpD `W q. This is because anomalies are non-overlapping, each anomaly

lasts D time slots and its effect could propagate for W further time slots due

to the memory in the DAG, i.e., D ` W is the support of a single anomaly.

Given this, we define S (with |S| “ S) as the set of time slots that could

possibly contain an anomalous reading, as per the previous reasoning. From

this definition, it follows that the maximum number of True Positives (TP) is
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Figure 3.5: BN performance, when used as an anomaly classifier.
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|S| “ S. We also track the number of False Negatives (FN), False Positives

(FP), and True Negatives (TN) and with
ř

X we mean the total number of

time slots that are flagged as being of type X, with X P tTP, FP, TN, FNu. For

instance, in the example of Fig. 3.4, we have α “ 2, D “ 5, W “ 5, S “ 20,
ř

TP “ 13,
ř

FN “ 7,
ř

FP “ 0, and
ř

TN “ T 1 ´ S, where T 1 is the number

of time slots in the graphs. For the following results, we used α “ 70, which

corresponds to an average of 10 artificial anomalies that are added per day.

Fig. 3.5 shows the classification performance of the proposed score-based

anomaly detector in terms of: i) Precision, ii) TPR and iii) F measure (F ).

These metrics are defined as follows: Precision “
ř

TP{
ř

pTP ` FPq, TPR “
ř

TP{
ř

pTP` FNq, and F , which is a weighted average of Precision and TPR,

i.e., F “ 2
ř

TP{p2
ř

TP `
ř

pFP ` FNqq. In Fig. 3.5, these metrics are plot-

ted as a function of the application requirement (i.e., log10pno. of anomalies {

no. of samplesq), which is reported in the abscissa. As an example, a require-

ment equal to zero means that all the time samples are flagged as containing

an anomaly and, as such, the true positive rate is TPR “ 1. However, in this

case, the Precision is heavily impacted by the number of false positives (FP),

which is at least T ´S, where S is the maximum number of time slots affected

by real anomalies (true positives) and T corresponds to the number of time

slots in the time series. As expected, the anomaly detection accuracy increases

with an increasing noise level, approaching F “ 0.8 for σn “ 5 km/h (when the

requirement on the x-axis is ´2). Also, a higher Precision entails a smaller

TPR and vice-versa.

In Fig. 3.6, we show the Receiver Operating Characteristic (ROC) space,

obtained plotting the TPR (i.e., Sensitivity) against the False Positive Rate,

FPR “
ř

FP{
ř

pFP ` TNq (i.e., 1 ´ Specificity) varying the application re-

quirement as a free parameter. This space shows the discrimination capability

of the score-based anomaly classifier as we vary the requirement. Ideally, we

would like to get TPR Ñ 1 and FPR Ñ 0, which means that desirable working

points lie in the upper-left corner of the ROC space. As expected, the anomaly

detection accuracy increases with an increasing noise level (increasing σn).

Moreover, we can further improve the performance of the proposed Bayesian

framework through the following TP aggregation criterion (“TP aggr.”). As

discussed above, each anomaly has an associated support of D`W time slots.

Hence, whenever the score exceeds the threshold at any given time instant,
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Figure 3.6: The ROC space.

D ` W data points per anomaly instance are counted as true positives if at

least one alarm is raised within the real (and known) support of the injected

anomaly. With aggregation, the ROC curves effectively move towards the

upper-left corner of the space, leading to some major improvement. For the

example in Fig. 3.4, this strategy leads to
ř

TP “ 20,
ř

FN “ 0,
ř

FP “ 0, and

the total number of true negatives is
ř

TN “ T 1 ´ S, where T 1 is the number

of time slots in the plot. The rationale about this approach is that, if there is

at least one alarm within the support of an anomaly instance, in practice, this

may be sufficient to declare the entire anomaly instance as detected.

3.5 Open Research Questions

With this analysis we have demonstrated that localized Bayesian networks

are an efficient and lightweight means to tackle prediction and anomaly detec-

tion problems in large vehicular networks. Nevertheless, a few research avenues

remain open. An automated procedure could be set up to adapt the memory
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size W and the considered upstream nodes in the DAG in a sensor-specific

fashion. Suitable dimensionality reduction tools could be used to reduce the

complexity associated with the BN training task. A more refined Bayesian

model could be defined, associating a state to each sensor according to the

locally experienced traffic condition (e.g., normal, congested) and specializing

the GMMs to it.
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Chapter 4

Online Power Management

Strategies for Energy Harvesting

Mobile Networks

The design of self-sustainable Base Station (BS) deployments is addressed

in this chapter. We target deployments featuring small BSs with Energy Har-

vesting (EH) and storage capabilities. These BSs can use ambient energy to

serve the local traffic or store it for later use. A dedicated power packet grid is

utilized to transfer energy across them, compensating for imbalance in the har-

vested energy or in the traffic load. Some BSs are offgrid, i.e., they can only use

the locally harvested energy and that transferred from other BSs, whereas oth-

ers are ongrid, i.e., they can additionally purchase energy from the power grid.

Within this setup, an optimization problem is formulated where: harvested

energy and traffic processes are estimated (at runtime) at the BSs through

Gaussian Processes (GPs), and a Model Predictive Control (MPC) framework

is devised for the computation of energy allocation and transfer across base

stations. The combination of prediction and optimization tools leads to an ef-

ficient and online solution that automatically adapts to energy harvesting and

load dynamics. Numerical results, obtained using real energy harvesting and

traffic profiles, show substantial improvements with respect to the case where

the optimization is carried out without predicting future system dynamics. The

main improvements are in the outage probability and in the amount of energy

purchased from the power grid, that is more than halved for the same load.
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4.1 Introduction

The massive use of Information and Communications Technologies (ICT)

is increasing the amount of energy drained by the telecommunication infras-

tructure and its footprint on the environment. Forecast values for 2030 are

that 51% of the global electricity consumption and 23% of the carbon foot-

print by human activity will be due to ICT [72]. As such, energy efficiency

and self-sufficiency are becoming key considerations for any development in

the ICT sector.

In this chapter, we advocate future networks where small Base Stations

(BSs) are densely deployed to offer coverage and high data rates, and Energy

Harvesting (EH) hardware (e.g., solar panels and energy storage units) is in-

stalled to power them [73]. BSs collect energy from the environment, and

have a local energy storage, which they can use to accumulate energy when

the harvested inflow is abundant. This local energy reserve can be utilized to

serve the local traffic and can be transferred to other BSs (energy routing) to

compensate for imbalance in the harvested energy or in the traffic load, see

Fig. 4.1. Some of the Base Stations (BSs), referred to as ongrid, are connected

to the power grid, whereas the others are offgrid and, as such, rely on ei-

ther the locally harvested energy or on the energy transferred from other BSs.

Within this setup, intelligent policies are to be devised to transfer the surplus

energy to offgrid BSs, to ensure the self-sustainability of the mobile system.

Energy transfer is an important feature of these networks and can be accom-

plished in two ways: i) through Wireless Power Transfer (WPT) or ii) using a

Power Packet Grid (PPG) [74]. For i), previous studies [75] have shown that

its transfer efficiency is too low for it to be a viable solution when distances

exceed a few meters, but ii) looks promising. In analogy with communications

networks, in a PPG a number of power sources and power consumers exchange

power (Direct Current, DC) in the form of “packets”, which flow from sources to

consumers thanks to power lines and electronic switches. The energy routing

process is controlled by a special entity called the energy router [76]. Following

this architecture, a local area packetized power network consisting of a group

of energy subscribers and a core energy router is presented in [77], where a

strategy to match energy suppliers and consumers is devised.
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Figure 4.1: Power packet grid topology.

Within this setting, in the present chapter the allocation and transfer of

energy among the BSs is performed through the PPG infrastructure, where

a centralized energy router is responsible for deciding the power allocation

and transfer among the BSs over time (Fig. 4.1). This energy allocation and

transfer problem is solved devising an online framework combining: 1) pat-

tern learning (time series forecasting), 2) Model Predictive Control (MPC), 3)

energy allocation and 4) energy routing, see Fig. 4.2. Pattern learning is

performed via Gaussian Processes (Gaussian Processes (GPs)), to learn the BS

energy harvesting and consumption (load) patterns over time. This knowledge

is utilized within the multi-step ahead MPC block, that is in charge of deter-

mining the role of each BS, i.e., whether it should act as an energy source or

consumer, and the maximum energy amount that it can either supply (if acting

as a source) or demand (consumer), in order to keep the BS system as much as

possible energetically self-sufficient over time. The energy allocation block
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Figure 4.2: Overview of the optimization framework.

computes the actual amount of energy to transfer from energy sources to con-

sumers: two schemes are proposed, one based on convex optimization and one,

used as a benchmark, based on an optimal assignment problem, that is solved

via the Hungarian method. Finally, once the energy allocations are computed,

the fourth block accomplishes the energy routing within the network. An

algorithm is presented to find a feasible schedule that implements the required

energy transfers from sources to consumers. Since the PPG is operated in a

Time Division Multiplexing (TDM) fashion, each power link can only be used

for a single energy transfer operation at a time. Thus, the proposed routing

strategy seeks to find disjoint routes between energy sources and consumers,

while minimizing the time needed to perform the energy transfer. Further

details are provided in Section 4.4.

The solution extends a previous work in [78], adding online control and fore-

sighted optimization, and obtaining remarkable improvements, see Section 4.5.

Although the considered online optimization problem can be solved with other

tools, such as a monolithic formulation or dynamic programming, the presented

decomposition into four sub-problems and the use of MPC make it possible

to deal with low-complexity convex problems, without introducing significant

approximations and/or quantization to the involved variables. The resulting

approach is practical and appealing for real-world applications.

Numerical results, obtained with real-world harvested energy traces and

traffic load patterns, show that the proposed approach effectively keeps the
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outage probability1 to nearly zero for a wide range of traffic load and system

configurations. Also, the amount of energy purchased from the power grid

to operate the mobile network is reduced by more than 50% with respect to

computing energy schedules solely based on the present network status [78],

i.e., disregarding future energy arrivals and load conditions. As we elaborate

in Section 4.2, we have not identified previous works coping with distributed

BS deployments with energy harvesting, storage and transfer capabilities (via

PPGs), and proposing an energy management solution based on statistical

learning and predictive control. The main contributions of the present chapter

are:

• We present an online statistical learning framework based on Gaussian

Processes, which is customized to learn the Energy Harvesting (EH) and

consumption (load) patterns over time. Specifically, a specific composite

kernel is designed and tuned with optimal hyperparameters to cope with

local quasi-periodic structures in the data, with noise operating at dif-

ferent scales. GPs are then utilized to predict these processes in future

time slots, in an online and adaptive fashion (based on the most recent

samples).

• We formulate an online and predictive optimization problem for the en-

ergy transfer across EH BSs with the goal of making the mobile network

energetically self-sustainable.

• We provide numerical results, quantifying the effectiveness of the pro-

posed solution with real-world harvested energy and load traces. An

important finding is that the combination of forecasting and predictive

control can substantially reduce the total amount of energy that the

BS system drains from the power grid, halving it in most cases. This

descends from a more intelligent redistribution of the harvested energy.

The chapter is organized as follows. In Section 4.2, we present the litera-

ture on energy cooperation, the mathematical tools used in this chapter and

highlight the novel aspects of our design. The network scenario is described

in Section 4.3. Our optimization framework is detailed in Section 4.4. The

1Computed as the ratio between the number of BSs that are unable to serve the users
within range due to energy scarcity, and the total number of BSs.
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numerical results are presented in section 4.5, and final remarks are provided

in section 4.6.

4.2 Related Work

Energy transfer in mobile cellular networks: the concept of energy trans-

fer, also referred to as energy cooperation [79–81] or energy exchange [82], is

motivated by the fact that the distributed renewable energy generated at the

BSs can be leveraged upon through a microgrid connecting them [83], with

the aim of improving the network self-sustainability, while reducing the cost

entailed in purchasing the energy from the power grid. Energy sharing among

BSs is investigated in [80] through the analysis of several multiuser network

structures. A two-dimensional and directional water-filling-based offline algo-

rithm is proposed to control the harvested energy flows in time and space,

with the objective of maximizing the system sum-rate throughput. In [81], the

authors introduce a new entity called the aggregator, which mediates between

the grid operator and a group of BSs to redistribute the energy flows, reusing

the existing power grid infrastructure: one BS injects power into the aggrega-

tor and, simultaneously, another one draws power from it. This scheme does

not consider the use of energy storage devices, and for this reason some of the

harvested energy can be lost if none of the base stations drains it when it is

injected. The authors of [84] consider BSs with energy harvesting capabilities

connected to the power grid as a means to carry out the energy trading. A

joint optimization tackling BS operation and power distribution is performed

to minimize the on-grid power consumption of the BSs. Wired energy trans-

fer to/from the power grid, and a user-BS association scheme based on cell

zooming are investigated. The problem is solved using heuristics. A similar

approach is considered in [85], where two problems are addressed: the first one

consists of optimizing the energy allocation at individual BSs to accommodate

for the temporal dynamics of harvested energy and mobile traffic. Considering

the spatial diversity of mobile traffic patterns, the second problem amounts to

balancing the energy consumption among BSs, by adapting the cell size (radio

coverage) to reduce the on-grid energy consumption of the cellular network.

Again, the solutions are obtained through heuristic algorithms. Also, in these
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works, differently to what we propose here, BSs do not perform any actual

energy transfer among them.

A two-cell renewable-energy-powered system is studied in [86], where the

sum-rate over all users is maximized while determining the direction and

amount of energy to be transferred between the two BSs. Energy can be trans-

ferred across the network either through power lines or wireless transfer and the

energy transfer efficiency is taken into account. This resource allocation prob-

lem is formulated under a Frequency Division Multiple Access (FDMA) setup

and is solved numerically. A low-complexity heuristic approach is also proposed

as a practical near-optimal strategy when the transfer efficiency is sufficiently

high and the channel gains are similar for all users. A similar two-BS scenario

is considered in [79], where BSs gather energy from the power grid and from

renewable energy sources, have a limited energy storage capability, and are

connected through power lines. The authors study the case where renewable

energy and energy demand profiles are deterministically known ahead of time,

and find the optimal energy cooperation policy by solving a linear program.

They then consider a more realistic case where the profiles are stochastic and

propose an online greedy algorithm. Finally, an intermediate scenario is ad-

dressed, where the energy profiles are obtained from a deterministic pattern,

adding a small amount of random noise at each time step.

The authors of [82] consider a setup similar to ours, i.e., multiple BSs,

energy harvesting with local storage devices and energy exchange among BSs

through the power grid. The main differences are that perfect knowledge of

hourly varying energy demand profile (BS load) and hourly harvested energy is

assumed, and energy routing is not studied. An optimal constrained problem

is formulated, assessing its performance via simulation. Other relevant papers

are [83,87]. There, energy sharing takes place either via physical power lines or

through the power grid (virtual energy exchange). Interestingly, the authors

investigate the impact of the power line infrastructure topology: agglomera-

tive and divisive hierarchical clustering algorithms are utilized to determine

it. Upon establishing the physical connections among BSs, an optimization

framework for day-to-day cost optimization is developed for the cases of 1)

zero knowledge, 2) perfect knowledge, and 3) partial future knowledge of the

harvested energy process. The main differences with respect to our analysis

are: for the partial future knowledge case, a static model is adopted, where
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the amount of energy harvested through the day is given by an average value

for each time slot, plus a random displacement. Average values are obtained

from historical data, but are kept fixed during the day. In contrast to this,

we devise an online estimation algorithm through which future harvested en-

ergy incomes are estimated based on those measured in the most recent time

slots, providing online adaptation and tracking capabilities. Also, in [83] per-

fect knowledge of the BS consumption pattern across a whole day is assumed,

whereas we estimate and track it at runtime. Online predictive control takes

these estimates into account for the computation of optimal energy transfers,

making our solution applicable to real settings.

Techniques exploiting energy trading / sharing through, e.g., spectrum

sharing or Coordinated MultiPoint (CoMP), are combined for energy cost re-

duction in EH BS networks and a power grid in [88]. While the authors discuss

interesting future research directions, their system model does not consider

time dynamics. Following the idea of energy trading and CoMP, a framework

focusing on beamforming designs for CoMP downlink communication systems

is introduced in [89]. Formulated as a convex problem, the proposed scheme

provides an offline ahead-of-time beamformer and energy schedule over a fi-

nite time horizon. Online solutions are left for future research. The joint

energy purchase and wireless load sharing among mobile network operators is

exploited in [90] to reduce energy costs. The authors of this chapter propose a

scheme named energy group buying with load sharing, where the two operators

are aggregated into a single group to implement a day-ahead and real-time

energy purchase, and their BSs share the wireless traffic to maximally put

lightly-loaded BSs into sleep mode. This scenario is tackled using two-stage

stochastic programming. The scenario that we consider here is different, as we

focus on actual energy exchange among BSs belonging to the same operator.

Finally, the authors of [91] consider a delay minimization problem in an en-

ergy harvesting communication network with energy cooperation. Their study

considers fixed data and energy routing topologies, determining optimum data

rates, transmit powers, and energy transfers through an iterative algorithm,

subject to flow and energy conservation constraints, to minimize the network

delay.

On combining pattern learning with multi-step optimization tech-
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niques: next, we briefly review the mathematical tools that we use in the

present chapter, namely, MPC and GPs.

MPC has its roots in optimal control theory. The main idea is to use a

dynamic model to forecast the system behavior, and exploit the forecast state

sequence to obtain the control at the current time. The system usually evolves

in slotted time, the control action is obtained by solving, at each time slot,

a finite horizon optimal control problem where the initial state is the current

state of the system. The optimization yields a finite control sequence, and the

first control action in this sequence is applied [92]. MPC has the ability to

anticipate future events and makes control decisions accordingly. It has been

widely used in industrial processes, including chemical plants [93–95] and oil

refineries [96,97] and, recently, to balance energy consumption in smart energy

grids [98–100]. Moreover, it has been applied to supply chain management

problems, with promising results [101–104].

It is known that using time-series forecasting within an MPC framework

can improve the quality of the control actions by providing insight into the fu-

ture [105]. Over the last decades, numerous forecasting approaches have been

developed, including Autoregressive Integrated Moving Average (ARIMA) pro-

cesses and Artificial Neural Networks (ANNs). ARIMA models (introduced by

Box and Jenkins in [106]) are known for their prediction accuracy, but their

main limitation lies in the assumption that the data follows a linear model.

Conversely, ANNs capture non-linear models and, in turn, can be a good al-

ternative to ARIMA [107]. Nonetheless, ANNs give rise to mixed results for

purely linear correlation structures. In [108,109], hybrid schemes that combine

them are put forward to take advantage of their unique strengths. Experimen-

tal results with real-world data indicate that their combined use can improve

the prediction accuracy achieved by either of the techniques when used in

isolation.

Several authors have proposed the use of non-linear models to build non-linear

adaptive controllers. In most applications, however, these non-linearities are

unknown, and non-linear parameterization must be used instead. In time-series

analysis, where the underlying structure is largely unknown, one of the main

challenges is to define an appropriate form of non-linear parameterization for

the forecasting model. Some implementations claim to be non-parametric,

such as GPs, which can be considered (in some sense) as equivalent to models
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based on an infinite set of non-linear basis functions [110]. The basic idea of

GPs is to place a prior distribution directly on the space of functions, without

finding an appropriate form of non-linear parameterization for the forecasting

model. This can be thought of as a generalization of a Gaussian distribution

over functions. Moreover, a GP is completely specified by the mean func-

tion and the covariance function or kernel, which has a particular (but simple)

parametric structure, defined through a small number of hyperparameters. The

term non-parametric does not mean that there are no parameters, but that the

parameters can be conveniently adapted from data. While GPs have been used

in time-series forecasting [111], to the best of the authors’ knowledge, [112] is

the first application of GPs to electrical load forecasting [113–116].

The electricity supply is mainly influenced by meteorological conditions and

daily seasonality. Nevertheless, forecasting for short-term horizons of about a

day is often performed using univariate prediction models, which are considered

to be sufficient because the weather tends to change in a smooth fashion, which

is reflected in the electricity demand itself. Also, in a real-world online fore-

casting scenario, multivariate modeling is usually considered impractical [117].

Due to daily seasonality, we can say that the electrical load data bears some

similarities with the time series that we consider in this chapter, i.e., the har-

vested energy profile of Section 4.3.2 and the traffic load of Section 4.3.3.

The idea of combining MPC and GPs was first proposed in [118], where the

framework is evaluated by means of a simple (simulated) first order non-linear

process. Other practical implementations can be found in application domains

such as greenhouse temperature control systems [119], gas-liquid separation

plant control systems [120], combustion power plants control systems [121]

and in a number of other cases [122–125]. To the best of our knowledge, the

present analysis is the first where MPC and GPs are combined to control an

energy harvesting mobile network. Our purpose is thus to demonstrate the

feasibility of application and realization of a GP based control algorithm for

online power management, highlighting its potentials for the development of

greener technologies, with the aim of improving the network self-sustainability.

Novelty of the present analysis: despite the existence of previous works

on energy cooperation, here we consider a more complete setup, where: (i)

EH BSs are equipped with storage capabilities, (ii) the harvesting process and
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traffic load in the system are unknown and fully stochastic, (iii) the harvested

energy and traffic load in BSs that we use for GP training and for our numerical

results come from real-world traces, and (iv) the physical power grid is based

on the novel concept of PPG. The combination of MPC and GPs has already

been considered in the literature. However, to the best of our knowledge, this

is the first time where this tool chain is used in an energy-aware mobile network

scenario. Also, in the proposed optimization architecture, the overall problem

is split into sub-blocks, where optimization problems are convex, can be solved

at runtime and have low-complexity. This makes it possible to implement the

presented solution in real systems.

4.3 System Model

We consider a mobile network comprising a set S of ns “ |S| BSs, each with

energy harvesting capabilities, i.e., a solar panel, an energy conversion module

and an energy storage device. Some of the BSs are ongrid (termed ongrid BSs,

being part of set Son) and, in turn, can obtain energy from the power grid.

The remaining BSs are offgrid (set Soff). The proposed optimization process

evolves in slotted time t “ 1, 2, . . . , where the slot duration corresponds to

the time granularity of the control and can be changed without requiring any

modifications to the following algorithms.

4.3.1 Power Packet Grids

A PPG is utilized to distribute energy among the BSs. The grid architec-

ture is similar to that of a multi-hop network, see Fig. 4.1, where circles are

BSs and the square is the energy router, which is in charge of energy routing

decisions and power allocation. As assumed in [77], BSs are connected through

Direct Current (DC) power links (electric wires) and the transmission of en-

ergy over them is operated in a TDM fashion. Energy transfer occurs by first

establishing an energy route, which corresponds to a sequence of power links

between the energy source and the destination. Each power link can only be

used for a single transfer operation at a time. Power distribution losses along

the power links follow a linear function of the distance between the source and

the destination [77]. They depend on the resistance of the considered trans-
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mission medium and are defined by [126]: R “ ρℓ{A, where ρ is the resistivity

of the wire in Ωmm2{m, ℓ is the length of the power link in meters, and A is

the cross-sectional area of the cable in mm2. In this chapter, we consider a

PPG with a single energy router in the center of the topology. A number of

sub-trees originates from the router and, without loss of generality, each hop

is assumed to have the same length ℓ, i.e., the same power loss.

4.3.2 Harvested Energy Profiles

Solar energy generation traces have been obtained using the SolarStat

tool [127]. For the solar modules, the commercially available Panasonic N235B

photovoltaic technology is considered. Each solar panel has 25 solar cells, lead-

ing to a panel area of 0.44m2, which is deemed practical for installation in a

urban environment, e.g., on light-poles. As discussed in [73,127], the EH inflow

is generally bell-shaped with a peak around mid-day, whereas the energy har-

vested during the night is negligible. Here, the framework in [127] is utilized

to obtain the amount of energy harvested for each BS n P t1, . . . , nsu in time

slot t, which is denoted by Hnptq.

4.3.3 Traffic Load and Power Consumption

Traffic load traces have been obtained using real mobile data from the Big

Data Challenge organized by Telecom Italia Mobile (TIM) [128]. The dataset

is the result of a computation over Call Detail Records (CDRs), logging the

user activity within the TIM cellular network for the city of Milan during the

months of November and December 2013. For the traffic load traces we use

the CDRs related to SMS, calls and Internet activities, performing spatial and

temporal aggregation. In this way, we obtain a daily traffic load profile for

each BS.

Clustering techniques have been applied to the dataset to understand the

behavior of the mobile data. To this end, we use DBSCAN unsupervised clus-

tering [129] to classify the load profiles into several categories. In Fig. 4.3, we

show the typical traffic behavior of two clusters, corresponding to the heaviest

(cluster 1) and lightest (cluster 2) daily load. As noted in previous works,

the traffic is time-correlated (and daily periodic) [73, 130]. In our numerical

results, each BS has an associated load profile, which is picked at random as
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Figure 4.3: Load pattern profiles (two classes).

one of the two clusters in Fig. 4.3. Depending on the cluster association prob-

abilities, there is some imbalance in the load distribution across BSs that, as

we shall see, plays a key role in the performance of energy transfer algorithms.

Given the traffic load profile Lnptq, intended as the percentage of the total

bandwidth that a BS n allocates to serve the users in its radio cell, the BS

energy consumption (energy outflow), referred to in the following as Onptq, is

computed through the linear model in [73] (see Eq. (1) in that paper).

4.3.4 Energy Storage Units

Energy storage units are interchangeably referred to as Energy Buffers

(EBs). The EB level for BS n P t1, . . . , nsu is denoted by Bnptq and three

thresholds are defined: Bup, Bref and Blow, respectively termed the upper, ref-

erence and lower energy threshold, with 0 ă Blow ă Bref ă Bup ă Bmax. Bmax

is the EB capacity, Bref is the desired (reference) EB level and Blow is the lowest

energy level that any BS should ever reach. Bup is used in the energy purchase

process from the power grid, as detailed shortly below. For an offgrid BS, i.e.,

n P Soff , if t is the current time slot, Bnptq is the EB level at the beginning of
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time slot t, which is updated at the beginning of the next time slot t ` 1 as:

Bnpt ` 1q “ ξptqpBnptq ` Hnptq ´ Onptq ` Tnptqq , (4.1)

where Tnptq is the amount of energy transferred to/from BS n in time slot t,

which is positive if BS n is a consumer or negative if BS n acts as an energy

source. In fact, for a source we have Tnptq ă 0, as this models the outflow

energy, i.e., the energy that the BS transfers, which is drained from its energy

buffer, while for a consumer we use Tnptq ą 0, as this models inflow energy, i.e.,

the new energy that is injected into the buffer. Hnptq, Onptq are the amount of

energy harvested and the energy that is locally drained (to support the local

data traffic), respectively. Finally, ξptq represents the losses in the EB due to

charging and discharging. It depends upon the current state of charge of the

EB, which is a realistic assumption. For example, using the model in [131], we

have:

ξptq “ 1 ´
pBnptq ´ Bmax{2q2

βlosspBmax{2q2
, (4.2)

where βloss ą 1 is a constant depending upon the technology in use. Note

that, as βloss increases, the storage losses decrease, whereas βloss Ñ 8 models

an ideal battery.

The EB level of an ongrid BS n P Son is updated as:

Bnpt ` 1q “ ξptqpBnptq ` Hnptq ´ Onptq ` Tnptq ` θnptqq , (4.3)

where θnptq ě 0 represents the energy purchased by BS n from the power grid

during time slot t. The behavior of a BS (i.e., Tnptq and θnptq) depends on its

EB level. If the BS behaves as an energy source, it is eligible for transferring

a certain amount of energy Tnptq to other BSs. In this chapter, we assume

that if the total energy in the buffer at the beginning of the current time

slot t is Bnptq ă Bup and the BS n is ongrid, then the difference θnptq “

Bup ´Bnptq is purchased from the power grid in slot t, as an ongrid BS should

always be a source, i.e., in the position of transferring energy to other BSs.

If instead the BS behaves as an energy consumer, it demands energy from

the sources. For example, the energy demand in time slot t may be set to

Bref ´ Bnptq, so that the EB level would ideally become no smaller than the
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reference threshold Bref by the end of the current time slot t. Note that, this

can only be strictly guaranteed if Hnptq´Onptq ě 0. However, Bnptq is updated

at the beginning of time slot t, whereas Hnptq and Onptq are only known by the

end of it. To cope with this, the theory of Sections 4.4.2 and 4.4.3 computes

Tnptq accounting for the expected behavior ErHnptq ´ Onptqs, where Er¨s is the

expectation operator.

4.4 Optimization for online energy management

Next, we present an optimal online algorithm for power allocation and

transfer, whose objective is to make the offgrid BSs as energy self-sustainable

as possible.

4.4.1 Overview of the optimization framework

A diagram of the optimization process is shown in Fig. 4.2, involving 1)

pattern learning (forecasting), 2) model predictive control, 3) energy allocation

and 4) energy routing. These algorithms are executed at runtime.

1) Pattern learning (Section 4.4.2): the harvested energy and traffic

load processes are statistically modeled through Bayesian non-parametric tools

(“pattern learning” in Fig. 4.2). This allows each BS n to independently track

its own energy (Hnptq) and load (Lnptq) processes, capturing their statistical

behavior and obtaining multi-step ahead forecasts for the corresponding time

series. Our forecasting method is agnostic to the type of signal, and for this

reason can be extended to other processes, if need be. These forecasts are

then fed into the MPC optimization approach of Section 4.4.3. Their use

allows taking the future system evolution into account.

2) Model predictive control (Section 4.4.3): the goal of the MPC

block is to determine the BS role (source or consumer) and obtain Tnptq, for

all BSs n and t. At any time t, if BS n gets Tnptq ą 0, then it behaves as a

consumer and its energy demand is dn
∆
“ Tnptq, if instead Tnptq ă 0, then BS

n behaves as a source and |Tnptq| represents the energy it offers to the other

BSs. The MPC block considers the current system state, i.e., traffic load,

harvested energy and EB levels, but also future ones (based on the forecasts

from the pattern learning block). This is a main difference with respect to the

107



work in [78], where BS energy roles are solely determined based on the current

system state at time t. Further, in our solution the forecasts of harvested

energy and traffic load, and the control actions, are adapted in an online fashion

during the day, according to the most recent samples. This is in contrast to [87]

and [83], where the harvested energy forecasts are estimated one day ahead

and the load profile is known.

3) Energy allocation (Section 4.4.4): once Tnptq is obtained for each

BS n, in a third optimization step we compute how the energy Tnptq from the

sources is to be split among the consumers in time slot t. To understand this,

let us indicate the set of sources and consumers by Ys and Yc, respectively. We

have that i P Ys if Tiptq ă 0 and j P Yc if Tjptq ą 0. If BS i is a source, |Tiptq|

can be split as |Tiptq| “
ř

jPYc
T

j
i ptq, where T

j
i ptq is the share of |Tiptq| that

source i sends to consumer j. The objective of this optimization block is to find

these shares (energy allocations) for each source. To this end, two approaches

are proposed, one based on convex optimization and another one formulated

as an assignment problem. Their objective is to maximize the number of

consumers that receive energy, while maximizing the energy transfer efficiency

(accounting for the number of links that separate sources and consumers).

4) Energy routing (Section 4.4.5): for every time t, once the energy

allocations T
j
i ptq are assessed, the last step is to find a feasible schedule that

implements the required energy transfers (energy routing) from sources to con-

sumers. Since the PPG is operated in a TDM fashion, each power link can

only be used for a single energy transfer operation at a time. Thus, the pro-

posed routing strategy seeks to find disjoint routes between energy sources and

consumers, while minimizing the time needed to perform the energy transfer.

The list of symbols that we use in the mathematical framework is provided

in Table 4.1, Table 4.2, and Table 4.3.

4.4.2 Pattern learning

In this section, we present statistical models to automatically capture

the hidden structure in harvested energy and load processes. GPs have be-

come popular for regression and classification, often showing impressive per-

formance [132]. Hereinafter, we will focus on GPs for regression, according

to the function-space view applied to the Bayesian linear model [132]. The
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Table 4.1: List of symbols used in the chapter.

Definition Variable name

Base station set S

Ongrid base station set Son

Offgrid base station set Soff

Number of base stations ns “ |S|

Traffic load profile in slot t Lptq

Harvested energy profile in slot t Hptq

BS energy consumption in slot t Optq

Effective energy income W ptq Hptq ´ Optq

Energy buffer level in slot t Bptq

Maximum energy buffer capacity Bmax

Upper, lower and reference buffer thresholds Bup, Blow, Bref

Transferred energy in slot t T ptq

Purchased grid energy in slot t θptq

Bayesian linear model for regression is defined as:

fpxq “ φpxqJ
w, r “ fpxq ` ǫ, (4.4)

where w is a vector of weights, also known as model parameters, fpxq is the

function value, which is linear in the weights w, r is the observed real value,

and φp¨q : RD Ñ R
F maps the D-dimensional input column vector x into an

F -dimensional feature vector φpxq “ φ. Assume we are given with a training

dataset with N observations, D “ tpxi, riquNi“1, where each pair pxi, riq consists

of the D-dimensional input column vector xi and the scalar target ri. We can

aggregate inputs and targets in a D ˆ N matrix X and an N -dimensional

column vector r, so that D “ pX, rq, and φpXq “ Φ becomes an F ˆ N

matrix in the feature space. We are interested in the conditional distribution

of the targets, given the inputs in the feature space and the model parameters.

We further assume that r differs from fpxq by additive noise, which follows

an independent identically distributed (i.i.d.) Gaussian distribution with zero

mean and variance σ2
n, i.e., ǫ „ N p0, σ2

nq. From the i.i.d. assumption, it follows

that the likelihood (i.e., the conditional distribution of the targets given the
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Table 4.2: List of symbols used by the pattern analysis block.

Definition Variable name

Number of observations (training dataset) N

Number of observations (test set) N˚

The transpose of vector x xJ

The weights of the Bayesian linear model w

The function value fpxq “ φpxqJ
w fpxq

The observed real value r “ fpxq ` ǫ r

N -dimensional column vector of targets r

Map in the feature space φp¨q : RD Ñ R
F

Training dataset D “ tpxi, riquNi“1 D

D-dimensional input column vector x

D-dimensional input column vector (test set) x˚

F -dimensional feature vector φpxq “ φ

D ˆ N matrix of inputs X

D ˆ N˚ matrix of inputs in the test set X˚

F ˆ N matrix in the feature space φpXq “ Φ

Gaussian dist. with zero mean and variance σ2
n ǫ „ N p0, σ2

nq

Covariance matrix of the model parameters w Σw

Gaussian process GPpmpxq, kpx, pxqq

Gaussian process: mean function mpxq

Gaussian process: covariance function (kernel) kpx, pxq

Gaussian process: predictive mean vector µ

Gaussian process: predictive covariance matrix Σ

N ˆ N covariance matrix (training dataset) K

N ˆ N identity matrix IN

Function values (training dataset) f

Function values (test set) f˚

inputs in the feature space and the model parameters) is factorized over cases

for the N observations, i.e., r|X,w „ N pΦJw, σ2
nINq.

We can perform regression in the function-space view by using a GP, mod-

eling a distribution over functions. Formally: a GP is a collection of ran-

dom variables, any finite number of which have a joint Gaussian distribution.
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Table 4.3: List of symbols used by the optimization block.

Definition Variable name

MPC optimization horizon (time steps) M

Weight parameter for MPC α

Set of energy sources in slot t Ys

Set of energy consumers in slot t Yc

Energy availability matrix in slot t E

Energy allocation matrix in slot t Y

Energy demand vector in slot t d

Maximum transmission energy capacity emax

Matrix of number of hops in the electrical grid G

Weight parameter for energy allocation β

Cost matrix for Hungarian method C

Moreover, it is completely specified by the mean function and the covariance

function (or kernel). We define the mean function and the covariance function

of process fp¨q „ GPpmpxq, kpx, pxqq as

mpxq “ Erfpxqs

kpx, pxq “ Erpfpxq ´ mpxqqpfppxq ´ mppxqqJs.
(4.5)

Next, we consider the zero mean function, i.e., mpxq “ 0, which is a very

typical choice [132]. In the Bayesian linear model of Eq. (4.4), the prior dis-

tribution is set to be Gaussian with zero mean and covariance matrix Σw, i.e.,

w „ N p0,Σwq. Thus, we can derive an example GP as:

mpxq “ φpxqJ
Erws “ 0

kpx, pxq “ φpxqJ
ErwwJsφppxq “ φpxqJ

Σwφppxq.
(4.6)

Assume the training dataset has N observations, then vector f “ rfpx1q,

. . . , fpxNqsJ has a joint Gaussian distribution, i.e., f |X „ N p0,Kq, where

the N ˆ N covariance matrix K can be computed evaluating the covariance

function or kernel for the N observations, i.e., Kij “ φpxiq
J
Σwφpxjq for i, j “

1, . . . , N . Given the noise ǫ „ N p0, σ2
nq, it follows from the i.i.d. assumption

that a diagonal matrix σ2
nIN must be added to K, as compared to the noise-free
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model in the GP literature [132]. To make prediction for the test case fpx˚q “

f˚ given φpx˚q “ φ˚, we consider the joint Gaussian prior distribution over

functions

«
r

f˚

ff
“ N

ˆ
0,

«
K ` σ2

nIN k˚

kJ
˚ kpx˚,x˚q

ff ˙
, (4.7)

where we define the N -dimensional column vector k˚ such that the i-th element

equals φpxiq
J
Σwφpx˚q. To derive the posterior distribution over functions we

need to condition the joint Gaussian prior distribution over functions on the

data, so that we get the key predictive equations of GPs for regression:

f˚|x˚,X, r „ N pµ,Σq

µ “ kJ
˚ rK ` σ2

nIN s´1r

Σ “ kpx˚,x˚q ´ kJ
˚ rK ` σ2

nIN s´1k˚.

(4.8)

In practice, the predictive mean µ is used as a point estimate for the func-

tion output, while the variance Σ can be translated into uncertainty bounds

(predictive error-bars) on this point estimate, thus making Gaussian Process

(GP) for regression very appealing for MPC applications (see [118,133–135]).

For any set of basis functions in the feature space, we can compute the

corresponding covariance function or kernel ; conversely, for every (positive

definite) covariance function or kernel, there exists a (possibly infinite) expan-

sion in terms of basis functions in the feature space. As we show shortly, the

choice of the kernel deeply affects the performance of a GP for a given task, as

much as the choice of the parameters (architecture, activation functions, learn-

ing rate, etc.) does for a neural network. Specifically, the hyperparameters of

the kernel must be set in order to optimize the marginal likelihood,

ppr|Xq “

ż
ppr|f ,Xqppf |Xqdf . (4.9)

Under the Gaussian assumption, the prior distribution is Gaussian, f |X „

N p0,Kq, and the likelihood is a factorized Gaussian, r|f ,X „ N pf , σ2
nINq,

thus r|X „ N p0,K ` σ2
nINq. Extensive derivation for the formulation of

f˚|x˚,X, r and generalization to more that one test case can be found in [132].

Suppose we have N˚ observations in the test set, i.e., pX˚, r˚q, to make
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prediction for the test cases fpX˚q “ f˚ given φpX˚q “ Φ˚, we consider the

joint Gaussian prior distribution over functions

«
r

f˚

ff
“ N

ˆ
0,

«
K ` σ2

nIN K˚

KJ
˚ K˚˚

ff ˙
, (4.10)

where we define the N ˆ N˚ matrix K˚ similarly to k˚, such that K˚,ij “

φpxiq
J
Σwφpx˚,jq for i “ 1, . . . , N , j “ 1, . . . , N˚, and x˚,j is a column vector

in X˚. Finally, we define the N˚ ˆ N˚ matrix K˚˚ similarly to kpx˚,x˚q,

such that K˚˚,ij “ φpx˚,iq
J
Σwφpx˚,jq for i, j “ 1, . . . , N˚, thus we get the key

predictive equations of GPs for regression:

f˚|X˚,X, r „ N pµ,Σq

µ “ KJ
˚ rK ` σ2

nIIs´1r

Σ “ K˚˚ ´ KJ
˚ rK ` σ2

nIIs´1K˚.

(4.11)

The choice of the kernel: this choice deeply affects the performance of a

GP for a given task, as it encodes the similarity between pairs of outputs in

the function domain. There has been significant work on constructing base

and composite kernels [136]. Common base kernels include the Squared Ex-

ponential (SE) kernel, the Rational Quadratic (RQ) kernel, and the Standard

Periodic (SP) kernel, defined as:

kSEpx, pxq “ σ2
SE expp´||x ´ px||2{p2ℓ2SEqq

kRQpx, pxq “ σ2
RQp1 ` ||x ´ px||2{p2αRQℓ

2
RQqq´αRQ

kSPpx, pxq “ σ2
SP expp´2 sin2pπ||x ´ px||pSPq{ℓ2SPq.

(4.12)

The properties of the functions under a GP with a SE kernel can display

long range trends, where the length-scale ℓSE determines how quickly a process

varies with the inputs. The RQ kernel is derived as a scale mixture of SE

kernels with different length-scales. The SP kernel is derived by mapping the

two dimensional variable pcospxq; sinpxqq through the SE kernel. Derivations

for the RQ and SP kernels are in [132].

Note that valid kernels (i.e., those having a positive-definite covariance

function) are closed under the operators ` and ˆ. This allows one to cre-

ate more representative (and composite) kernels from well-understood basic
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components, according to the following key rules [136]:

• Any subexpression2 P can be replaced with P ` B, where B is any base

kernel family.

• Any subexpression P can be replaced with P ˆ B, where B is any base

kernel family.

• Any base kernel B can be replaced with any other base kernel family B1.

In time series, summing kernels can express superpositions of different pro-

cesses, operating at different scales, whereas multiplying kernels may be a way

of converting global data properties onto local data properties. From here on,

we will use one-dimensional kernels in the form RQ ˆ SP with period pSP,

which correspond to a local quasi-periodic structure in the data, with noise

operating at different scales. Note that kernels over multidimensional inputs

can be constructed via the operators ` and ˆ over individual dimensions.

Next, we consider models based on zero-mean GPs for the runtime multi-step

ahead forecasting of time series, with application to a) Harvested Energy Pro-

file Hnptq (defined in Section 4.3.2) and b) Traffic Load Lnptq (Section 4.3.3).

The basic routine for prediction: we use models based on zero-mean GPs

for the runtime forecasting of time series, with application to Hnptq and Lnptq,

n P t1, . . . , nsu, t “ 1, . . . , T . The strong daily seasonality of the data is

evident for both time series, as well as the presence of noise at different scales.

Therefore, we define composite kernels for Hnptq and Lnptq in the form RQˆSP

with period pSP, i.e.,

kpx, pxq “σ2 expp´2 sin2pπdpSPq{ℓ2SPqp1 ` d2{p2αRQℓ
2
RQqq´αRQ (4.13)

where σ “ σRQσSP and d “ |x´px| is the Euclidean distance between inputs. At

this point, the hyperparameters of the kernel must be set in order to optimize

the marginal likelihood, which is defined in Eq. (4.9), and here implemented

using the toolbox of [137]. For compactness, we aggregate the hyperparameters

of the kernel in the initialization set θpsq “ tσ, pSP, ℓSP, αRQ, ℓRQu. Here, we

opt for σ “ 1, pSP “ 24, and select the free parameters (ℓSP, αRQ, ℓRQ) via

2Subexpression refers to any valid kernel family, either basic or composite.
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a grid search, scanning combinations in the range r10´2, 102s. To model the

strong daily seasonality in the data, we also opt for a prior distribution on

the period pSP, which is a delta function, i.e., δppSP ´ 24q “ 1 if and only if

pSP “ 24, so that we treat the period pSP as a constant, excluding it from the

optimization (see [137]).3

Algorithm 2 Pseudo-code for the basic routine

1: Pre-training phase: find the optimal hyperparameters θp0q for the kernel
kp¨, ¨q, starting from θpsq and minimizing the marginal likelihood on the
training dataset tpxi, riquNi“1

2: Set t “ 1

3: while t ď T ´ pN ` N˚q do
4: Set Dptq “ pXptq, rptqq “ tpxi, riqut´1`N

i“t´1`1

5: Set D
ptq
˚ “ pX

ptq
˚ , r

ptq
˚ q “ tpxi, riqut´1`N`N˚

i“t´1`N`1

6: if pt ´ 1 modSq “ 0 then % t ´ 1 is a multiple of S
7: Training phase: find the optimal hyperparameters θptq for the kernel

kp¨, ¨q, starting from θp0q and minimizing the marginal likelihood on the
training dataset pXptq, rptqq

8: end if
9: Forecasting phase: get pµ,Σq with test set pX

ptq
˚ , r

ptq
˚ q and using the

key predictive equations of GPs in Eq. (4.11)

10: Compute RMSEptq
˚ “

b
p
řN˚

i“1 e
2
i q{N˚, e “ r

ptq
˚ ´ µ

11: Set t “ t ` 1

12: end while

Algorithm 2 describes the basic routine for the pre-training phase (line 1),

training phase (line 7), and forecasting phase (line 9) for both zero-mean GPs,

i.e., the same basic reasoning holds for Hnptq and Lnptq, where xt contains

the time indices (in either the training or test dataset) and rt refers to either

process Hnptq or Lnptq, at time t and BS n. Also, we assume that we can

access the N values in the training dataset, and we wish to predict the N˚ val-

ues in the test set, where Dptq “ pXptq, rptqq refers to the training dataset and

D
ptq
˚ “ pX

ptq
˚ , r

ptq
˚ q refers to the test set, at time t, respectively. According to

the pre-training phase, we first have to find the optimal hyperparameters θp0q

for the kernel kp¨, ¨q, starting from θpsq and minimizing the marginal likelihood

on the training dataset tpxi, riquNi“1. Note that θp0q will serve as initialization

3In our numerical results, we have considered a time step duration of one hour, so setting
pSP “ 24 entails a periodicity of one day.
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for the optimal hyperparameters θptq at each step of the online forecasting rou-

tine, as the optimal hyperparameters θptq are found over the training dataset

pXptq, rptqq, which changes at each step of the online forecasting routine. As-

suming Gaussian noise with variance σ2
n, thus Gaussian likelihood, it follows

that we can perform exact inference. To do it, we use the Conjugate Gradi-

ents (CG) optimization tool implemented in toolbox [137]. We get pµ,Σq via

Eq. (4.11) given the test set pX
ptq
˚ , r

ptq
˚ q with N˚ test cases, at time t. Finally,

we derive the Root Mean Square Error (RMSE) RMSEptq
˚ over the N˚ test

cases, starting from residuals e, at time t, and iterating the procedure (except

for the pre-training phase) up to time T ´pN `N˚q. For the numerical results,

the training phase (line 7) is performed once every S steps: in Algorithm 2,

we write pt ´ 1 modSq “ 0, i.e., t ´ 1 is a multiple of S. Thus, the training

phase (line 7) is performed when t “ 1.

4.4.3 Model predictive control

System dynamics: the system to be controlled is described by means of a

discrete-time model:

Bpt ` 1q “ Bptq ` T ptq ` W ptq, (4.14)

where t is the current time slot. The M ˆ ns matrix Bptq with elements

rBptqsk,n “ Bnpkq denotes the system state, representing for each BS n P S

the energy buffer level for time slot k, with k “ t, t ` 1, . . . , t ` M ´ 1, were

M is the optimization horizon. Note that the system state in the first time slot

t is known, whereas those in the following M´1 time slots have to be estimated.

Referring to Section 4.4.2, we thus have M “ N˚ ` 1. The M ˆ ns matrix

T ptq with elements rT ptqsk,n “ Tnpkq denotes the control matrix, representing

the amount of energy that each BS n shall either transfer (if Tnpkq ă 0) or

receive (Tnpkq ą 0) in time slot k “ t, . . . , t`M ´1. The M ˆns matrix W ptq

with elements rW ptqsk,n “ Hnpkq ´ Onpkq models the effective energy income,

i.e., the stochastic behavior of the forecast profiles (harvested and consumed

energy), with:

W ptq „ N p ĎW ptq,ΣW ptqq, (4.15)
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where ĎW ptq and ΣW ptq contain the mean and variance of the forecast estimates,

respectively. Note that processes Hnpkq and Onpkq are statistically character-

ized through the prediction framework of Section 4.4.2, and their difference

is still a Gaussian r.v. (in fact, Onpkq is derived from Lnpkq through a linear

model, and as such is still Gaussian distributed). Following [138], due to the

stochastic nature of Eq. (4.15), the system state Bptq can also be written in a

probabilistic way:

Bptq „ N p sBptq,ΣBptqq, (4.16)

where sBptq and ΣBptq are the mean and the variance of Bptq, respectively.

Objective functions: the goal of the MPC controller is to determine the

amount Tnpkq that each BS n should either transfer or receive in time slots

k “ t, . . . , t ` M ´ 1, so that all the energy buffers remain as close as possible

to the reference value Bref . A first quadratic cost function tracks the total

amount of energy that is to be exchanged among BSs in the optimization

horizon k “ t, . . . , t ` M ´ 1:

fMPC
1 pT ptqq “

t`M´1ÿ

k“t

nsÿ

n“1

Tnpkq2. (4.17)

fMPC
1 p¨q is used to minimize the total amount of energy exchanged, so as to keep

the energy losses low during the subsequent energy transfer phase. Through a

second objective function, the MPC controller seeks to equalize the BS energy

buffer levels as close as possible to the reference threshold Bref (defined in

Section 4.3.4). To achieve this, a second cost function is defined as follows:

fMPC
2 pBptq, Brefq “

t`M´1ÿ

k“t

nsÿ

n“1

pBnpkq ´ Brefq
2. (4.18)

Control problem: the following finite-horizon multi-objective optimization

problem is formulated:
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min
T ptq

E
“
αfMPC

1 pT ptqq ` p1 ´ αqfMPC
2 pBptq, Brefq

‰
(4.19a)

subject to: Bptq „ N p sBptq,ΣBptqq, (4.19b)

W ptq „ N p ĎW ptq,ΣW ptqq, (4.19c)

Blow ď Bnpkq ď Bmax, (4.19d)

Tnpkqmin ď Tnpkq ď Tnpkqmax, (4.19e)

with: k “ t, t ` 1, . . . , t ` M ´ 1

where α P r0, 1s is a weight to balance the relative importance of the two

cost functions. Blow and Bmax are the energy buffer limitations defined in

Section 4.3.4. Finally, constraint Eq. (4.19e) defines the amount of energy

that each BS n P S can exchange in slot k and depends on the system state,

i.e., the energy buffer level Bnpkq, the expected harvested energy and expected

traffic load: the system state defines the limits of the control action for each

k.

For any fixed value of α, and since the optimization problem must be

solved at runtime, it is strongly preferable to choose a convex optimization

formulation such as Eq. (4.19), which can be solved through standard tech-

niques. Here, we have used the CVX tool [139] to obtain the optimal solution

T ptq˚ “ rTnpkq˚s, which represents the amount of energy that BS i P S shall

either offer or demand in time slot k “ t, . . . , t ` M ´ 1.

Optimization algorithm: the MPC controller performs as follows [140]:

1. Step 1: at the beginning of time slot k, the system state is obtained,

that is energy buffer levels for all BSs, the harvested energy and traffic

load forecasts for the next M time slots (the optimization horizon).

2. Step 2: the control problem in Eq. (4.19) is solved yielding a sequence

of control actions over the horizon M .

3. Step 3: only the first control action is performed and the system state

is updated upon implementing the required energy transfers.

4. Step 4: Forecasts are updated and the optimization cycle is repeated
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from Step 1.

4.4.4 Energy allocation

Solving Eq. (4.19), we obtain Tnptq for each BS n in any given slot t. In

this section, we solve the energy allocation problem, i.e., we compute for each

source n, how to split Tnptq among the consumers. Note that this also depends

on the distribution losses between sources and consumers and, in turn, on the

electrical PPG topology.

Notation: at time t, we use indices i and j to respectively denote an arbitrary

BS source (set Ys) and an arbitrary BS consumer (set Yc). gij is the number

of hops in the PPG topology between source i P Ys and consumer j P Yc, in

matrix notation G “ rgijs. We assume that all hops have the same physical

length and apgijq P r0, 1s is the attenuation coefficient between i and j, due

to the power loss (depending on the number of hops, i.e., on the physical dis-

tance that the energy has to travel, see Section 4.3.1). Let i be a source, the

maximum amount of energy that a consumer j can receive from i is defined

as eij
∆
“ |Tiptq|apgijq, i P Ys, j P Yc. In matrix notation E “ reijs. For nota-

tion compactness, we collect the energy demands from all consumers j into a

demand vector d “ rd1, d2, . . . , d|Yc|s, where element dj
∆
“ Tjptq is the energy

demand from consumer j.

Objective functions: as a first objective, we seek to minimize the difference

between the amount of energy that the BS sources i P Ys deliver to the BS

consumers j P Yc and the consumers’ energy demand. As stated above, the

maximum energy that i can send to j is eij. However, this energy amount can

possibly be distributed among multiple consumers and we denote by yij P r0, 1s

the fraction of eij that is actually allocated from source i to consumer j, in

matrix notation Y “ ryijs. We thus write a first cost function as:

f1pY ,E,dq “
ÿ

iPYs

˜
ÿ

jPYc

yijeij ´ dj

¸2

. (4.20)

Due to the existence of a single path between any source and consumer pair

and due to the fact that each power link can only be used for a single transfer
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operation at a time, a desirable solution shall: i) pick source and consumer

pairs pi, jq in such a way that the physical distance (gij) between them is mini-

mized and ii) achieve the best possible match between sources and consumers,

i.e., use source i, whose available energy is the closest to that required by con-

sumer j, for all pi, jq pairs. Ideally, for each i we would like yij to be equal to

1 for a single value of j and zero for any other consumer (i.e., 1-of-|Yc| coding

scheme, where |Yc| gives the number of consumers). If this is infeasible, mul-

tiple sources will supply the consumer, leading to yij ą 0 for multiple values

of j and
ř

j yij “ 1. Minimizing the following cost function, amounts to min-

imizing the number of hops gij between sources and consumers and favoring

solutions with 1-of-|Yc| coding for y:

f2pY ,Gq “
ÿ

iPYs

˜
ÿ

jPYc

´ exp

ˆ
yij

gij

˙¸
. (4.21)

With this cost function we are looking for a sparse solution (i.e., a small num-

ber of sources with yij close to 1). Note that when yij Ñ 1 and gij is minimized,

the argument yij{gij is maximized and the negative exponential is minimized.

Also, the exponential function was picked as it is convex, but any increasing

and convex function would do.

Solution through convex optimization: at each time slot t, each BS n

updates its buffer level Bnptq, using either Eq. (4.1) or Eq. (4.3) (note that

Bnpt ´ 1q, Hnpt ´ 1q, Onpt ´ 1q, Tnpt ´ 1q and θnpt ´ 1q are all known in slot

t, see Section 4.3). The MPC problem of Section 4.4.3 is solved. Each source

i evaluates eij for all j P Yc through eij “ |Tiptq|apgijq, and each consumer j

sets its energy demand as dj “ Tjptq. Hence, using Eq. (4.20) and Eq. (4.21),

the following convex optimization problem is formulated:

min
Y

βf1pY ,E,dq ` p1 ´ βqf2pY ,Gq (4.22a)

subject to: 0 ď yij ď 1, @i P Ys, @j P Yc, (4.22b)
ÿ

jPYc

yij ď 1, @i P Xs, (4.22c)

where β P r0, 1s is a weight used to balance the relative importance of the two

cost functions. The first constraint represents the fact that yij is a fraction of
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the available energy eij from source i, and the second constraint encodes the

fact that the total energy i that each source transfers cannot exceed its offer

|Tiptq|. For any fixed value of β, Eq. (4.22) is a convex minimization prob-

lem which can be solved through standard techniques. The optimal solution

Y ˚ “ ry˚
ijs dictates the energy fraction tat any source i must send to consumer

j, this energy share is precisely given by T
j
i ptq “ yij|Tiptq|.

Solution as an assignment problem: at any time t, the energy distribution

problem from sources to consumers can alternatively be modeled as an assign-

ment problem, where each source i P Ys has to be matched with a consumer

j P Yc. This approach can be solved through the Hungarian method [141], an

algorithm capable of finding an optimal assignment for a given square m ˆ m

cost matrix, where m “ maxp|Ys|, |Yc|q. An assignment is a set of m entry

positions in the cost matrix, no two of which lie in the same row or column.

The sum of the m entries of an assignment is its cost. An assignment with

the smallest possible cost is referred to as optimal. Let C “ rcijs be the

cost matrix, where rows and columns respectively correspond to sources i and

consumers j. Hence, cij is the cost of assigning the i-th source to the j-th

consumer and is obtained as follows:

cij “ βpeij ´ djq
2 ` p1 ´ βq

ˆ
´ exp

ˆ
1

gij

˙˙
, (4.23)

where β P r0, 1s, the first term weighs the quality of the match (dj should be

as close as possible to eij) and the second the quality of the route. To ensure

the cost matrix is a square matrix, additional rows or columns are to be added

when the number of sources and consumers differs. As typically assumed, each

element in the added row or column is set equal to the largest number in the

matrix.

The main difference between the optimal solution found by solving the

convex optimization problem (Eq. (4.22)) and that found by the Hungarian

method is that the latter always returns a one-to-one match between sources

and consumers, i.e., each consumer can only be served by a single source (1-of-

|Yc| coding). While this is desirable to diminish losses, it is not always optimal

and can lead to inefficient allocations in some cases, as we shall see shortly.
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4.4.5 Energy routing

Next, we describe how the energy transfer from source i to consumer j,

in time slot t, is implemented. The following algorithm is executed at the

beginning of each time slot t, upon obtaining 1) Tiptq for each BS source

(Section 4.4.3) and 2) the allocation matrix Y ˚ (Section 4.4.4).

Each time slot is further split into a number of mini slots. Given a certain

maximum transmission energy capacity emax for a power link in a mini slot,

the required number of mini slots to transfer a certain amount of energy yijeij

from source i to consumer j is obtained as nij “ ryijeij{emaxs. We consider

tree topologies, see Fig. 4.1. Since each power link can only be used for a

single energy transfer operation at a time, we seek to minimize the number

of mini slots that are required, while using disjoint routes. An energy route

for the source-consumer pair pi, jq is defined as the collection of intermediate

nodes to visit when transferring energy from i to j. If the nodes are direct

neighbors in the PPG topology (BSs k and m in Fig. 4.1), or are within the

same forward path toward the energy router (k and h), energy is transmitted

directly, without passing through the energy router. If instead the nodes belong

to different branches, e.g., nodes i and j in Fig. 4.1, the energy router is

involved in the transfer. Also, we assume that the energy router is the only

node capable of concurrently handling multiple flows that cross at the root of

the tree.

The algorithm proceeds as follows (Algorithm 3): 1) a route rij is identified

for each source i and consumer j by using the Dijkstra algorithm. Note that

for the given tree topology (see Fig. 4.1) this route is unique, 2) the disjoint

routes, with no power links in common, are found and are allocated to as many

pi, jq pairs as possible, 3) for each of these pairs pi, jq, the energy transfer

yijeij is accomplished using route rij for a number of mini slots nij, 4) when

the transfer for a pair pi, jq is complete, we check whether a new route is

released (i.e., no longer used and available for subsequent transfers). If that

is the case, and if this route can be used to transfer energy for any of the

remaining pairs pi1, j1q (not yet considered), this route is allocated to any of

the eligible pairs pi1, j1q for ni1,j1 further mini slots. This process is repeated

until all source-consumer pairs have completed their transfer. For the system

configuration of Section 4.5, energy routing is always completed within the
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time granularity of the control.

Algorithm 3 Pseudo-code for energy routing

1: Inputs: Ys, Yc and Y ˚

2: for each source i P Ys do
3: for each consumer j P Ys do
4: if yij ą 0 then
5: Find route between i and j (Dijkstra)
6: end if
7: end for
8: end for
9: Sort all routes in descending order of nij.

10: Create a route table rtable.
11: while rtable is not empty do
12: for each mini slot nij do
13: Check status of power links: used, available.
14: Find the first implementable route r1

ij in rtable.
15: if r1

ij is found then
16: Find all possible disjoint routes wrt r1

ij.
17: Remove route(s) from rtable.
18: Set route(s) and perform the routing.
19: end if
20: Release power link(s) if any route is completed.
21: Update status of power links.
22: end for
23: end while

4.5 Numerical Results

The forecasting approach based on GPs is evaluated in Section 4.5.1, whereas

results of the proposed optimization framework are provided in Section 4.5.2,

using the algorithm of [78] as a benchmark.

4.5.1 Performance evaluation of the Pattern Learning

scheme

The proposed GP-based forecasting method proposed in Section 4.4.2 is

here assessed for the runtime multi-step ahead forecasting of time series Hptq

and Lptq. The time slot duration is set to one hour, N “ 24 ˆ 14 “ 336 hours
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Table 4.4: Average RMSEptq
˚ .

N˚ “ 1 N˚ “ 2 N˚ “ 12 N˚ “ 24

S “ 1 0.0119 0.0170 0.0385 0.0512
S “ T 0.0116 0.0166 0.0383 0.0511

(a) Average RMSE
ptq
˚ for Hptq.

N˚ “ 1 N˚ “ 2 N˚ “ 12 N˚ “ 24

S “ 1 0.0389 0.0464 0.0670 0.0740
S “ T 0.0415 0.0483 0.0671 0.0743

(b) Average RMSE
ptq
˚ for Lptq.

(i.e., two weeks of data), T “ 24ˆ60 “ 1, 440 hours (i.e., two months of data),

and σn “ 10´5. This choice of parameters is valid for both time series, as

well as the use of the kernel kp¨, ¨q in Eq. (4.13), whereas the hyperparameters

differ, depending on the nature of data.

In Table 4.4a and Table 4.4b we show the average RMSE for Hptq and Lptq,

computed evaluating the mean of the RMSE measures up to time T ´pN`N˚q,

where we track RMSEptq
˚ over the N˚ test cases, given N˚ “ 1, 2, 12, 24. Also,

as we perform the training phase once every S steps, comparing the numerical

results when S “ 1 and S “ T , i.e., when we update the free GP parameters

at each step of the online forecasting routine (S “ 1), or just once every T

steps (S “ T ), at time t “ 1. In general, the average RMSEptq
˚ increases as

we increase the N˚ test cases up to 24, which corresponds to predicting the

time series one day into the future. However, the worst performance is 0.0743,

which is still rather small if we consider that both time series are normalized

in r0, 1s prior to processing. Also, predictions for Hptq (Fig. 4.4a) are more

precise than predictions for Lptq (Fig. 4.4b), and this is due to the nature

of the data, given that we use the same kernel for both time series. In fact,

values in Hptq (Fig. 4.4a) follow a more regular behavior than those in Lptq

(Fig. 4.4b), with quasi-periodic streams of zero values corresponding to zero

solar energy income during the night. These quasi-periodic streams of zero

values help reinforcing prediction, while allowing for a higher confidence at

nighttime (see Fig. 4.5a). Finally, tuning parameter S explains the impact of

re-optimizing the hyperparameters according to the most recent history (i.e.,

two weeks of data), but with a longer execution time. Numerical results suggest

that tuning parameter S could be reasonable when data exhibit multiple strong
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local behaviors rather than just a strong daily seasonality, and the kernel has

to adapt to these. However, S “ 1 could not be the obvious optimal choice

(see Table 4.4a).

In Fig. 4.4a and Fig. 4.4b we show real values and predictions for two

weeks of data, where we track the one-step (i.e., N˚ “ 1) predictive mean

value at each time slot of the online forecasting routine. The strong daily

seasonality is evident, as well as the quasi-periodic structure in data with noise

operating at different scales. Note that predictions for Hptq (Fig. 4.4a) are

more accurate than those for Lptq (Fig. 4.4b), and this result can be confirmed

by comparing the average RMSEptq
˚ in Tables 4.4a and 4.4b for N˚ “ 1. As

expected, predictions may be far from real values when some unusual events

occur, see, for example, the low solar energy income within hours 456 and 480

(sixth peak from the left), in Fig. 4.4a, or the sudden peaks in the traffic load

profile of Fig. 4.4b, which are very day-specific.

In Figs. 4.5a and 4.5b we show real and predicted values for three days of

data, i.e., the last two days of the training dataset, and 24 hours for the test

set, plotting the multi-step predictive mean value with N˚ “ 24. Here, we

compare the use of the kernel kp¨, ¨q in Eq. (4.13) with common base kernels

from the literature, such as the popular Squared Exponential (SE) kernel,

the Rational Quadratic (RQ) kernel, and the Standard Periodic (SP) kernel,

see Eq. (4.13). Also, we compare the use of the kernel kp¨, ¨q in Eq. (4.13) in

terms of generalization capabilities over the training dataset and the test set,

i.e., we perform forecasting over the training dataset and the test set, after

the optimization of the hyperparameters given the observations. Note that the

proposed kernel (solid line) shows the best performance in terms of forecasting,

since composite kernels are more representative than base ones. Specifically,

the RMSE is close to zero over the training dataset (due to the fact that we

set σn “ 10´5, i.e., σn ‰ 0), and this result also holds for both the SE and

RQ cases. However, the generalization capabilities over the test set are quite

limited for SE and RQ. In fact, these base kernels have limited expressive

power, and simply act like smoothers. Finally, the SP kernel succeeds in

recovering the strong daily seasonality in the data, but it fails to model noise

at different scales. Again, its expressive power is quite limited, with respect

to our proposed kernel in Eq. (4.13).
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4.5.2 Performance evaluation of the Optimization Frame-

work

In this section, the following schemes are compared: i) no energy exchange

(NOEE), i.e., the offline BSs only have to rely on the locally harvested en-

ergy, ii) convex solution (CONV): this is the scheme of [78], which com-

putes energy allocations solely based on the system configuration in the current

time slot. This approach is myopic, as no knowledge into the future behav-

ior of the system is exploited. iii) Hungarian solution (HUNG): the energy

allocation is found through the Hungarian method of Section 4.4.4; this is

also a myopic approach. iv) Convex solution with model predictive control

(GPs+MPC+CONV): this is the combined optimization approach of Sec-

tions 4.4.2, 4.4.3 and 4.4.4, and v) Hungarian solution with model predictive

control (GPs+MPC+HUNG). ii) and iii) carry out energy allocation and

routing only considering the current time slot, while iv) and v) also take into

account the future system evolution, exploiting pattern learning and multi-step

ahead adaptive control.

Before discussing the numerical results, some considerations are in order.

All the algorithms purchase some energy from the power grid, although the way

in which they use it differs. With NOEE, the energy purchased is exclusively

used to power the base stations that are ongrid, whereas those being offgrid

have to uniquely rely on the harvested energy. Convex and Hungarian solutions

allow some energy redistribution among the base stations. With these schemes,

an energy rich BS can transfer energy to other BSs whose energy buffer is

depleted. Note that an energy rich base station may belong to either the

ongrid set or to the offgrid one. The latter case occurs when, for instance,

a BS experiences no traffic during the day and all the energy it harvests is

stored locally. In this case, this BS is likely to be “energy rich”, and energy

transfer schemes consider it as an energy source for other BSs. Looking at the

whole BS network, it can gather energy in two ways: i) harvesting it from the

environment and ii) purchasing it from the power grid. The harvested energy is

basically free of charge and shall be utilized to the best extent: energy transfer

among BSs makes this possible. The energy bought by the ongrid BSs is costly

and shall also be utilized as efficiently as possible. Below, we shall evaluate

both aspects.
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Table 4.5: System parameters used in the numerical results.

Parameter Value

Number of BSs, ns (set S) 18

Number of ongrid BSs (set Son) 6

Cable resistivity, ρ 0.023Ωmm2/m

Cable cross-section, A 10mm2

Length of a power link, ℓ 100m

Energy buffer capacity, Bmax 360 kJ

Upper energy threshold, Bup 0.7Bmax (70%)

Reference energy threshold, Bref 0.5Bmax (50%)

Lower energy threshold, Blow 0.1Bmax (10%)

Time slot duration 1 h

Mini slot duration 60 s

Maximum transmission energy capacity, emax 90 kJ/mini-slot

MPC optimization horizon M 24 h

MPC weight parameter α 0.5

Energy allocation weight parameter β 0.5

For the numerical results, we consider the scenario of Section 4.3. For

the EBs, we set Bmax “ 360 kJ, which corresponds to a battery capacity of

100Wh (e.g., a small size Li-Ion battery). The slot time is set to one hour,

solar EH traces are obtained using SolarStat [127] for the city of Chicago,

and the BS topology is that of Fig. 4.1, with 6 ongrid BSs and a total of

ns “ 18 BSs. The other simulation parameters are listed in Table 4.5. The

curves plotted in Figs. 4.6, 4.7, 4.9 and 4.10 are obtained averaging over 1, 000

simulation instances. Each simulation instance accounts for 168 hours, i.e.,

one week. The harvested energy profile for each BS is set at the beginning

of each simulation instance starting from a specific date, which is picked at

random from the real-trace dataset. For the traffic load, each BS picks one of

the two available load clusters at random, with probability p (in the abscissa).

Moreover, Figs. 4.6, 4.7 and 4.8 are obtained with ideal EBs, i.e., βloss Ñ 8.

This changes in Figs. 4.9 and 4.10 where both cases, ideal and non-ideal (βloss “

3), are shown. Finally, the location of the ongrid BSs within the topology of

Fig. 4.1 changes randomly at every simulation instance.
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In Fig. 4.6, we show the average BS energy buffer level over different traffic

load configurations. For the load assignment, each BS independently picks one

of the two traffic clusters in Section 4.3.3: cluster 2 (low traffic load) is picked

with probability p and cluster 1 (high load) is picked with probability 1´ p. p

is then varied as a free parameter along the abscissa. As expected, the average

energy buffer level when p “ 0 is lower than that with p “ 1, as the traffic load

in cluster 1 is higher. Regarding the approaches, the highest difference in the

energy buffer levels is found between NOEE and GPs+MPC+HUNG, with an

increment of around 60% (on average) when MPC is adopted. Moreover, the

Hungarian methods outperform convex solutions because, with their assign-

ment policy, any consumer is matched to a single source and this reduces the

amount of energy that is distributed, leaving more energy in the energy rich

buffers. As we show shortly, this behavior is not really desirable as, e.g., it

leads to higher outage probabilities.

As a proxy to the network Quality of Service (QoS), the outage probability

at time t, γptq, is here defined as the ratio between the number of BSs whose

energy buffer level gets completely depleted, and the total number of BSs in

the system ns. The outage probability γptq as a function of the traffic load

is plotted in Fig. 4.7. For all schemes, γptq is an increasing function of the

load. The probability that a BS runs out of service due to energy scarcity

is higher when energy cannot be transferred among BSs (NOEE) and is in

general very high across the whole day for HUNG-based solutions. However,

applying MPC to the Hungarian method leads to a reduction in the average

outage probability of about 54%. Moreover, from Fig. 4.8 we see that with the

Hungarian method, γptq increases when the amount of energy harvested is very

little (i.e., nighttime). The problem is that the Hungarian allocation technique

returns a matching of source-consumer pairs, where each source is allocated to

a single consumer and, in turn, some of the BSs may not be allocated in some

time slots (due to the imbalance between number of sources and number of

consumers). This leads to high outage probabilities for the considered scenario.

CONV-based techniques are more flexible in this respect, as they allow energy

transfer from multiple BSs and in different amounts. This translates into a

zero outage probability in both cases, with and without MPC.

From the previous graphs, one may conclude that CONV and GPs+MPC+

CONV (foresighted optimization) provide the same benefits, being both capa-
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ble of lowering the outage probability down to zero. However, looking at addi-

tional metrics reveals that the two approaches show important differences. For

example, in Fig. 4.9 we compare these solutions in terms of amount of energy

that ongrid BSs purchase from the power grid. A big gap can be observed

between the two schemes, proving that the application of pattern learning and

MPC is indeed highly beneficial, leading to a reduction of more that 55% in

the amount of energy purchased from the power grid.

Along these lines, we perform another set of simulations by putting a cap

on the maximum amount of energy that can be bought during a full day by the

ongrid BSs. Specifically, we define a purchased energy threshold η as the ratio

between the amount of energy that each ongrid BS is allowed to purchase and

the total amount of energy it would require to serve a fully loaded scenario

across an entire day, i.e., the BS purchases energy up to Bmax every time slot.

A plot of γptq against threshold η is shown in Fig. 4.10. From this graph,

we see that predictive control (GPs+MPC+CONV) leads to a much smaller

outage probability than CONV. Moreover, as η increases beyond 0.5 the outage

probability drops to zero, which is a big improvement with respect to CONV,

for which γ is about 10%. Similar results are obtained for GPs+MPC+HUNG

when compared with HUNG, although in this case the gain is slightly smaller.

The use of non-ideal energy buffers is evaluated in Figs. 4.9 and 4.10, using

βloss “ 3. In this case, the energy losses incurred in the charging and discharg-

ing processes lead to an increase in the energy purchased from the power grid

(« 10%) and in the outage probability (« 15%) over time, due to the smaller

EB levels with respect to the ideal EB scenario.

4.6 Conclusions

In this chapter, we have considered small cell deployments where energy

harvesting and packet power networks are combined to provide energy self-

sustainability through the use of own-generated energy and carefully planned

power transfers among network elements. This amounts to a combined learn-

ing and optimization problem (resource scheduling), where learning is carried

out on energy arrival (harvested ambient energy) and traffic load traces and

this knowledge is exploited, at runtime, for the computation of optimal en-

129



ergy transfer policies among the distributed energy buffers. This foresighted

optimization is performed combining model predictive control and convex op-

timization techniques. Numerical results reveal great advantages over the case

where energy transfer schedules are optimized disregarding future energy and

load forecasts: the amount of energy purchased from the power grid is reduced

by more than 50% and the outage probability is lowered to zero in nearly all

scenarios.
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(a) One-step predictive mean value for Hptq.

400.0 500.0 600.0 700.0 800.0 900.0 1,000.0

Time [h]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
m

p
lit

u
d
e

real values

predictions

(b) One-step predictive mean value for Lptq.

Figure 4.4: One-step online forecasting for two weeks of data.
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(b) Multi-step predictive mean value for Lptq.

Figure 4.5: Multi-step prediction with different kernels.
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Figure 4.6: Energy buffer level vs cluster probability p.
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Figure 4.7: Outage probability γptq vs cluster probability p.
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Figure 4.8: Outage probability γptq over a day.
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Figure 4.9: Purchased energy vs cluster probability p.
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Chapter 5

Beam Training and Data

Transmission Optimization in

Millimeter-Wave Vehicular

Networks

Future vehicular communication networks call for new solutions to sup-

port their capacity demands, by leveraging the potential of the millimeter-wave

(mm-wave) spectrum. Mobility, in particular, poses severe challenges in their

design, and as such shall be accounted for. A key question in mm-wave vehic-

ular networks is how to optimize the trade-off between directive Data Trans-

mission (DT) and directional Beam Training (BT), which enables it. In this

chapter, learning tools are investigated to optimize this trade-off. In the pro-

posed scenario, a Base Station (BS) uses BT to establish a mm-wave directive

link towards a Mobile User (MU) moving along a road. To control the BT/DT

trade-off, a Partially Observable (PO) Markov Decision Process (MDP) is for-

mulated, where the system state corresponds to the position of the MU within

the road link. The goal is to maximize the number of bits delivered by the BS

to the MU over the communication session, under a power constraint. The

resulting optimal policies reveal that adaptive BT/DT procedures significantly

outperform common-sense heuristic schemes, and that specific mobility fea-

tures, such as user position estimates, can be effectively used to enhance the

overall system performance and optimize the available system resources.
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5.1 Introduction

The state-of-the-art protocols for vehicular communication address vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication systems,

generally termed V2X. Currently, these communication systems enable a max-

imum data rate of 100 Mbps for high mobility (using 4G) [142, 143], which

are not deemed sufficient to support applications such as autonomous driv-

ing, augmented reality and infotainment, which will populate next-generation

vehicular networks. Therefore, future vehicular communication networks call

for new solutions to support their capacity demands, by leveraging the huge

amount of bandwidth in the 30´300 GHz band, the so called millimeter-wave

(mm-wave) spectrum. While communication at these frequencies is ideal to

support high capacity demands, it relies on highly directional transmissions,

which are extremely susceptible to the vehicle mobility. Therefore, a key ques-

tion is: How do we leverage mobility information to optimize the trade-off be-

tween directive Data Transmission (DT) and directional Beam Training (BT),

which enables it, to optimize the communication performance? How much do

we gain by doing so? To address these questions and optimize this trade-off, in

this chapter we envision the use of learning tools. We demonstrate significant

gains compared to common-sense beam alignment schemes.

Compared to conventional lower frequencies, propagation at mm-waves

poses several challenges, such as high propagation loss and sensitivity to block-

age. To counteract these effects, mm-wave systems are expected to use large

antenna arrays to achieve a large beamforming gain via directional transmis-

sions. However, these techniques demand extensive beam training, such as

beam sweeping, estimation of angles of arrival and of departure, and data-

assisted schemes [144], as well as beam tracking [145]. Despite their simplicity,

the overhead incurred by these algorithms may ultimately offset the benefits

of beamforming in highly mobile environments [142, 143]. While wider beams

require less beam training, they result in a lower beamforming gain, hence

smaller achievable capacity [146]. While contextual information, such as GPS

readings of vehicles [144], may alleviate this overhead, it does not eliminate the

need for beam training due to noise and GPS acquisition inaccuracy. Thus,

the design of schemes that alleviate this overhead is of great importance.
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In all of the aforementioned works, a priori information on the vehicle’s

mobility is not leveraged in the design of BT/DT protocols. In contrast, we

contend that leveraging such information via adaptive beam design techniques

can greatly improve the performance of automotive networks [147,148]. In this

chapter, we bridge this gap by designing adaptive strategies for BT/DT that

leverage a priori mobility information via Partially Observable (PO) Markov

Decision Processes (MDPs). Our numerical evaluations demonstrate that these

optimized policies significantly outperform common-sense heuristic schemes,

which are not tailored to the vehicle’s observed mobility pattern. Compared

to [149], which develops an analytical framework to optimize the BT/DT

trade-off and the BT parameters based on the “worst-case" mobility pattern,

in this chapter, we assume a statistical mobility model.

In the proposed scenario, a Base Station (BS) attempts to establish a

mm-wave directive link towards a Mobile User (MU) moving along a road.

To this end, it alternates between BT and DT. The goal is to maximize the

number of bits delivered by the BS to the MU over the communication ses-

sion, under a power constraint. To manage the BT/DT trade-off, we exploit

a POMDP formulation, where the system state corresponds to the position

of the MU within the road link. Specifically, we implement a POMDP with

temporally extended actions (i.e., actions with different durations) to model

the different temporal scales of BT and DT, and a constraint on the available

resources of the system. POMDPs model an agent decision process in which

the system dynamics are determined by the underlying MDP (in this case,

the MU dynamics), but the agent cannot directly observe the system state.

Instead, it maintains a probability distribution (called belief ) over the world

states, based on observations and their distribution, and the underlying MDP.

An exact solution to a POMDP yields the optimal action for each possible be-

lief over the world states. POMDPs have been successfully implemented in a

variety of real-world sequential decision processes, including robot navigation

problems, machine maintenance, and planning under uncertainty [150,151]. To

address the complexity of POMDPs, we use PERSEUS [152], an approximate

solution technique which uses a sub-set of belief points as representative of the

belief state. However, in contrast to the original formulation using random be-

lief point selection, we tailor it by selecting a deterministic set of belief points

representing uncertainty in MU position, and demonstrate significant perfor-
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mance gains. A unified approach for constrained MDP is given by [153, 154].

Notably, there has been relatively little development in the literature for in-

corporating constraints into the POMDP [155–158]. In order to address the

resource constraints in our problem, we propose a Lagrangian method, and an

online algorithm to optimize the Lagrangian variable based on the target cost

constraint.

This chapter is organized as follows. In Section 5.2, we introduce the system

model, followed by the optimization in Section 5.3. We present numerical

results in Section 5.4, followed by concluding remarks in Section 5.5.

5.2 System Model

We consider a scenario where a BS aims at establishing a mm-wave directive

link with a MU moving along a road. To this end, it alternates between BT and

DT: with BT, the BS refines its knowledge on the position of the MU within

the road link, to perform more directive DT. Our goal is to maximize the

number of bits that the BS delivers to the MU during a transmission episode,

defined as the time interval between the two instants when the MU enters and

exits the coverage range of the BS, under a power constraint. The mm-wave

link is in Line-Of-Sight (LOS), thus knowledge on the position of the MU is

sufficient for aligning the beams [148].

5.2.1 Problem formulation

We consider a dense cell deployment, as shown in Fig. 5.1. The MU is

associated with its closest BS, at a distance d0 from the road link. The road

link served by the reference BS is divided into S road sub-links of equal length

∆s “ 2d0 tanpΘ{2q{S, where Θ is the maximum coverage range of the BS.

We let S ” t1, . . . , Su be the set of indices of the S road sub-links. The BS

associates a beam with each one of the S road sub-links, with angular support,

for the s-th beam,

Φs “

„
tan´1 ´d0 tanpΘ{2q ` ps ´ 1q∆s

d0
, tan´1 ´d0 tanpΘ{2q ` s∆s

d0


(5.1)

and beamwidth θs “ |Φs|, so that YsPSΦs “ r´Θ{2,Θ{2s and
ř

sPS θs “ Θ.
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Figure 5.1: A dense cell deployment.

The time is discretized into micro time-slots of duration ∆t, with ∆t being

the time for a Primary Synchronization Signal (PSS), which allows a proper

channel estimation at the receiver [146]. At time t, the MU is located in one

of the S road sub-links, until it exits the coverage area of the BS, denoted by

the absorbing state s̄ “ S ` 1. We denote the sub-link occupied by the MU at

time t as Xt P S. We assume that the position of the MU within the road link

evolves among the S road sub-links following a random walk with probabilities

0 ď q ă p ă 1, with 1´ p´ q ą 0, where p “ PrXt`1 “ s` 1 | Xt “ ss and q “

PrXt`1 “ s´ 1 | Xt “ ss. Under this model, the MU will exit the BS coverage

area at some point. We can view such random walk as an abstraction of the

following physical mobility model, where the MU moves with average speed

Ervs and speed variance Varrvs: assume that the MU moves at speed vt at time

t, with vt P t0, vmax,´vmaxu. Also, let Prvt “ vmaxs “ p, Prvt “ ´vmaxs “ q,

and Prvt “ 0s “ 1 ´ p ´ q. Note that the maximum speed supported by

this model is vmax ď ∆s{∆t (otherwise, the MU may move more than one

sub-link within a single micro-slot). It follows that Ervs “ vmaxpp´ qq ą 0 and

Varrvs “ v2maxpp ` qq ´ pErvsq2 ą 0. Thus, given average Ervs and Varrvs, we
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obtain p and q as

p “
Varrvs ` pErvsq2

2v2max

`
Ervs

2vmax

,

q “
Varrvs ` pErvsq2

2v2max

´
Ervs

2vmax

.

(5.2)

To meet the conditions for the probabilities 0 ď q ă p ă 1, with 1´ p´ q ą 0,

the following inequalities must hold:

p ă 1 Ñ Varrvs ă ´pErvsq2 ´ vmaxErvs ` 2v2max,

q ě 0 Ñ Varrvs ě ´pErvsq2 ` vmaxErvs,

1 ´ p ´ q ą 0 Ñ Varrvs ` pErvsq2 ă v2max,

(5.3)

which defines a region of feasible pairs pErvs,Varrvsq. This model can be

extended, e.g., to account for memory in the velocity process, although we

leave it for future work.

During BT or DT, at time t, the BS transmits using a beam that covers

a sub-set of sub-links, Ŝt Ď S, part of our design. Assuming a large antenna

array, which allows for arbitrarily sharp beam patterns (i.e., the beams are

much larger than the minimum resolution of the antenna array), the beam

is designed in order to support a target SNR SNRt on the beam support,

Bt ” YsPŜt
Φs. To this end, we let Ptpφq be the power per radian projected in

the angular direction φ P Bt, and Ptpφq “ 0, φ R Bt. To attain the target SNR

constraint, we must have that

ΓPtpφq

dpφq2
“ SNRt, (5.4)

where Γ “∆ λ2ξ{p8πN0Wtotq is the SNR scaling factor, λ “ fc{c is the wave-

length, N0 is the noise power spectral density, ξ is the antenna efficiency, Wtot

is the bandwidth, and dpφq “ d0
a
1 ` tanpφq2 is the distance of the point in

the road link at angular direction φ, so that dpφq´2 models distance dependent

path loss. It follows that the total transmit power is given by

Pt “

ż

Bt

Ptpφqdφ “ SNRt

ÿ

sPŜt

ż

Φs

d20
Γ

r1 ` tanpφq2sdφ. (5.5)
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Using the change of variables φ Ñ ℓ “ d0 tanpφq, we obtain

Pt “ SNRt

1

Γ

ÿ

sPŜt

ż ´d0 tanpΘ{2q`s∆s

´d0 tanpΘ{2q`ps´1q∆s

d0dℓ “ SNRt

∆sd0

Γ
|Ŝt|. (5.6)

In other words, the total transmit power is independent of the sub-link indices,

but depends solely on the number of sub-links |Ŝt| and on the target SNR.

This result is in line with the intuition that larger distances are achievable via

smaller beamwidths, and vice versa [148].

During DT, assuming isotropic reception at the MU, such target SNR im-

plies an achievable rate given by

Rt “ Wtot log2

ˆ
1 `

Γ

∆sd0

Pt

|Ŝt|

˙
. (5.7)

During BT, the SNR is set so as to achieve target mis-detection and

false-alarm probabilities. To design this parameter, the generic signal detec-

tion problem corresponds to receiving a signal yrls, l “ 1, . . . , L, over a noisy

channel. The two hypotheses are

H0 : yrls “ wrls (no signal at the RX)

H1 : yrls “ xrls ` wrls (signal at the RX)
(5.8)

where wrls, l “ 1, . . . , L, are independent random variables, wrls „ N p0, σ2
wq,

with σ2
w “ N0. Our task is to decide in favor of H0 or H1 on the basis of the

measurements yrls, l “ 1, . . . , L, i.e.,

Ppyr1s, . . . , yrLs|H1qPpH1q ż Ppyr1s, . . . , yrLs|H0qPpH0q,

or equivalently,

Lÿ

l“1

yrlsxrls ż σ2
w ln

ˆ
PpH0q

PpH1q

˙
`

1

2
Ex , (5.9)

where Ex “
řL

l“1 xrls2 is the energy of the pilot signal xrls. If the Neyman-

Pearson formulation is used, then the right hand side of Eq. (5.9) is replaced

by a decision threshold ρ̄, function of the target error probability. According to
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the Neyman-Pearson Lemma [159], for a given target error probability, we can

derive a decision rule as follows. The false-alarm probability, PFA (accept H1

when H0 is true), is given as PFA “
ş8
ρ̄
Ppy | H0qdy “ Qp ρ̄

σw

?
Ex

q, where Qp¨q

is the Q-function. The mis-detection probability, PMD (accept H0 when H1

is true), is given as PMD “ 1 ´ PD, where the probability of correct detection

is given by PD “
ş8
ρ̄
Ppy | H1qdy “ Qp ρ̄´Ex

σw

?
Ex

q “ QpQ´1pPFAq ´
?
Ex

σw
q, which

shows that PD is a function of PFA. Applying the inverse Q´1p¨q to both sides

of the last equation, leads to a measure of the SNR required to attain the

target error performance:

SNRt “
Ex

σ2
w

“ pQ´1pPFAq ´ Q´1pPDqq2, (5.10)

which is plugged into Eq. (5.6) to find the transmit power as a function of the

number of sub-links covered, |Ŝt|.

5.2.2 Partially Observable Markov Decision Process

Next, we define a constrained Partially Observable (PO) Markov Decision

Process (MDP).

States: S̄ is a finite set of states describing the position of the MU within the

road link, along with the absorbing state s̄ when the MU exits the coverage

area of the BS. Therefore, S̄ ” S Y ts̄u, and S ” t1, . . . , Su is the set of road

sub-links.

Actions: A is a finite set of actions that the BS can perform. Specifically, the

BS can perform actions for Beam Training (BT) and actions for Data Trans-

mission (DT), which involve selection of the transmission beam, power, and

duration. In general, a P A is in the form a “ pŜ, Pc, Tcq, where: c “ tBT,DTu

refers to the action class; Ŝ Ď S is a sub-set of sub-links, defining the sup-

port of the transmission beam; Pc is the transmission power per beam, such

that Pt “ Pc|Ŝ| in Eq. (5.6) is the total transmit power, Tc is the transmis-

sion duration of action a P A (number of micro time-slots of duration ∆t).

If c “ BT, then a “ pŜ, PBT, TBTq, where PBT and TBT are fixed parame-

ters of the model. Specifically, we assume that BT actions perform simul-

taneous beamforming over Ŝ in one interval of ∆t seconds (i.e., TBT “ 1).

Also, PBT “ Pmin, where Pmin is the power per beam required to attain the

target SNR constraint, i.e., Pmin “ SNR∆sd0
Γ

, and SNR is a function of false-
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alarm and mis-detection probabilities PFA and PMD, which are also fixed pa-

rameters of the model, via Eq. (5.10). If c “ DT, then a “ pŜ, PDT, TDTq,

where PDT and TDT are part of the optimization. Specifically, we assume that

DT actions perform simultaneous data communication over Ŝ for TDT ´ 1

micro time-slots, where the last interval of ∆t seconds is dedicated to the

ACK/NACK feedback transmission from the MU to the BS. During DT, the

transmission rate follows from Eq. (5.7). Note that the action space grows as

|Ŝ| “
řS

s“1 S!{s!{pS´sq! “ 2S ´1. To reduce its cardinality, we restrict A such

that Ŝ is a sub-set of consecutive indices in S, i.e., the beam directions specified

by Ŝ define a compact range of transmission for the BS. Thus, |Ŝ| “ SpS`1q{2.

Observations: O is a finite set of observations, defined as O ” tACK,NACK, s̄u.

Specifically, o “ s̄ means that the MU exited the coverage area of the BS; for

simplicity, in this chapter we assume that such event is observable, i.e., the BS

knows when the MU exited its coverage area.

Transition probabilities: Pps1|s, aq is the transition probability from s P S̄

to s1 P S̄ given a P A. Note that these probabilities are a function of the

duration Tc of action a. If the transmission duration of a P A is Tc “ 1,

then we store the 1-step transition probabilities into matrix M “ rMss1s, with

elements Mss1 “ Pps1|s, aq given by the 1-step mobility model, as:

Pps1|s, aq “ p s1 “ s ` 1, s “ 1, . . . , S

Pps1|s, aq “ q s1 “ s ´ 1, s “ 2, . . . , S

Pps1|s, aq “ 1 ´ p ´ q s1 “ s, s “ 2, . . . , S

Pps1|s, aq “ 1 ´ p s1 “ s, s “ 1

Pps1|s, aq “ 1 s1 “ s, s “ s̄.

(5.11)

If the transmission duration of a P A is Tc “ N , then we compute the N -step

transition probabilities into matrix M
N , i.e., we take the N -th power of matrix

M so as to account for the N -step evolution of the system state under a P A

with transmission duration Tc.

Observation model: Ppo|s, a, s1q is the probability of observing o P O given

s P S̄ and a P A with transmission duration Tc, ending in s1 P S̄. We assume

that the BS can successfully perform a “ pŜ, Pc, Tcq if the MU remains within

Ŝ for Tc subsequent micro time-slots, i.e., the MU does not exit from the beam

support, so that all signal is received. In this case, the MU feeds back an

145



ACK to the BS, o “ ACK. Therefore, we define XTc

0 “ tX0, . . . , XTc
u, as the

system state path from time 0 to time Tc, and the event EN
s,s1 “ tXTc

0 P ŜTc`1 |

X0 “ s,XTc
“ s1, Tc “ Nu, meaning that the system state path XTc

0 remains

within Ŝ for Tc subsequent micro time-slots, given that X0 “ s, XTc
“ s1,

Tc “ N . In order to compute it, we also define matrix M̃ as the transition

probability matrix restricted to the beam support Ŝ, i.e., M̃ “ rM̃ss1s, with

elements M̃ss1 “ Mss1 if ts, s1u P Ŝ, otherwise M̃ss1 “ 0. We derive PpEN
s,s1q as:

PpEN
s,s1q “ PpXTc

0 P ŜTc`1 | X0 “ s,XTc
“ s1, Tc “ Nq

“
1

MN
ss1

PpXTc

0 P ŜTc`1, XTc
“ s1 | X0 “ s, Tc “ Nq

“
1

MN
ss1

ÿ

sN0 PŜN`1

N´1ź

z“0

PpXz`1“sz`1 | Xz“szq“
M̃

N
ss1

MN
ss1

. (5.12)

Given a P A with transmission duration Tc, Ppo|s, a, s1q is defined as follows.

If c “ BT, we account for false-alarm and mis-detection errors in the beam

detection process. In particular, if ts, s1u P Ŝ (i.e., the MU is within the

beam support during the duration of BT) then PpACK|s, a, s1q “ PD (correct

detection) and PpNACK|s, a, s1q “ PMD (mis-detection); on the other hand, if

ts, s1u R Ŝ (i.e., the MU is outside of the beam support during the duration of

BT), then PpACK|s, a, s1q “ PFA (false-alarm) and PpNACK|s, a, s1q “ 1´PFA.

If c “ DT, then the transmission is successful if the event EN
s,s1 occurs, so

that PpACK|s, a, s1q “ PpEN
s,s1q for ts, s1u P S, and PpNACK|s, a, s1q “ 1 ´

PpACK|s, a, s1q. Finally, Pps̄|s, a, s1q “ 1 whenever either s “ s̄ or s1 “ s̄, i.e.,

the BS knows when the MU exited its coverage area.

Rewards: rps, aq is the expected reward given s P S̄ and a P A, defined as the

transmission rate (number of bits transmitted from the BS to the MU) during

DT if the MU remains within Ŝ for Tc subsequent micro time-slots. Formally,

rps, aq “
ř

s1PS̄ Pps1|s, aqrps, a, s1q “
ř

s1PS̄ M
N
ss1ErRpTDT ´ 1qX pEN

s,s1qs, where

X pEN
s,s1q “ 1 iff the event EN

s,s1 is true (thus rps, aq “ 0 if the MU exits from

the beam support). Note that ErX pEN
s,s1qs “ PpEN

s,s1q, which is computed in

Eq. (5.12). The transmission rate R follows from Eq. (5.7) when Pt “ PDT|Ŝ|.

Finally, rps, aq “ RpTDT ´ 1q
ř

s1PS̄ M̃
N
ss1 , where TDT ´ 1 refers to the fact that

we reserve one micro time-slot over the total DT duration for the feedback
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transmission. If c “ BT, then rps, aq “ 0, as no bits of data are transmitted.

Costs: cps, aq is the expected energy cost given s P S̄ and a P A. The total

expected cost during a transmission episode is subject to the constraint C.

If c “ DT, then cps, aq “ PDT|Ŝ|pTDT ´ 1q, @s P S (we reserve one micro

time-slot for the feedback transmission). If c “ BT, then cps, aq “ PBT|Ŝ|. In

this POMDP formulation, the overhead cost given by BT with respect to DT

is implicitly modelled with the total fraction of time spent by BT with respect

to DT.

5.3 Optimization Problem

Since the agent cannot directly observe the system state, we introduce the

notion of belief. A belief b P B is a probability distribution over S̄. The state

estimator must compute a new belief, b1 P B, given an old belief b P B, an

action a P A, and an observation o P O, i.e., b1 “ fpo, a, bq. It can be obtained

via Bayes’ rule as:

b1ps1q “ Pps1 | o, a, bq

“

ř
sPS̄ Ppo|s, a, s1qPps1|s, aqbpsq

Ppo|a, bq
.

(5.13)

where Ppo | a, bq is a normalizing factor,
ř

s1PS̄ b
1ps1q “ 1.

Our goal is to determine a policy π (i.e., a map from beliefs to actions) that

maximizes the total expected reward the agent can gather, under a constraint

on the total expected cost during a transmission episode, following π and

starting from b0 “ b:

max
π

Eπ

„ 8ÿ

t“0

rtpbt, πpbtqq | b0 “ b


,

s.t. Eπ

„ 8ÿ

t“0

ctpbt, πpbtqq | b0 “ b


ď C

(5.14)
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where we have defined expected rate and cost metrics under belief bt as

rtpbt, πpbtqq “
ÿ

sPS̄

rtps, πpbtqqbtpsq

ctpbt, πpbtqq “
ÿ

sPS̄

ctps, πpbtqqbtpsq .
(5.15)

At this point, we opt for a Lagrangian relaxation approach such that

Lps, aq “ rps, aq ´ λcps, aq is the metric to be maximized, for some La-

grangian multiplier λ ě 0, and the total expected cost during a transmission

episode is subject to the constraint C. Hereinafter, according to the notation,

Ltpbt, πpbtqq “
ř

sPS̄ Ltps, πpbtqqbtpsq. At the end of Section 5.3.2, we will con-

sider an online algorithm to optimize parameter λ so as to solve the original

problem in Eq. (5.14).

5.3.1 Value Iteration for POMDPs

In POMDPs, a policy π is a function over a continuous set B of proba-

bility distributions over S̄. A policy π is characterized by a value function

V π : B Ñ R, which is defined as:

V πpbq “ Eπ

„ 8ÿ

t“0

Ltpbt, πpbtqq | b0 “ b


. (5.16)

A policy π that maximizes V π is called an optimal policy π˚. The value of an

optimal policy π˚ is the optimal value function V ˚, that satisfies the Bellman

optimality equation V ˚ “ HV ˚ (with Bellman backup operator H):

V ˚pbq“max
aPA

„ ÿ

sPS̄

bpsqLps, aq`
ÿ

oPO
Ppo|a, bqV ˚pb1q


, (5.17)

where b1 “ fpo, a, bq (see Eq. (5.13)). When Eq. (5.17) holds for every belief

b P B we are ensured the solution is optimal. V ˚ can be arbitrarily well approx-

imated by iterating over a number of stages, at each stage considering a step

further into the future. Also, for problems with an infinite planning horizon,

V ˚ can be approximated, to any degree of accuracy, by a PieceWise Linear

and Convex (PWLC) value function [152]. Thus, Vn`1 “ HVn and we param-

eterize a value function Vn at stage n by a finite set of vectors (hyperplanes)
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tαi
nu

|Vn|
i“1 , such that Vnpbq “ maxtαi

nu|Vn|
i“1

b ¨ αi
n, where p¨q denotes inner product.

Each vector in tαi
nu

|Vn|
i“1 , is associated with an action apαi

nq P A, which is the

optimal one to take at stage n, and defines a region in the belief space for

which this vector is the maximizing element of Vn (thus πpbq “ apαi
nq). The

key idea is that for a given value function Vn at stage n and a belief b P B, we

can compute the vector αb
n`1 in tαi

n`1u
|HVn|
i“1 such that:

αb
n`1 “ argmax

tαi
n`1u|HVn|

i

b ¨ αi
n`1 , (5.18)

where tαi
n`1u

|HVn|
i“1 is the (unknown) set of vectors for HVn. We will denote

this operation αb
n`1 “ backuppbq. It computes the optimal vector for a given

belief b P B by back-projecting all vectors in the current horizon value func-

tion one step from the future and returning the vector that maximizes the

value of b P B. Defining vectors La such that Lapsq “ Lps, aq and gia,o such

that gia,opsq “
ř

s1PS̄ Ppo|s, a, s1qPps1|s, aqαi
nps1q (gia,o is a projected vector given

action a, observation o, and current horizon vector αi
n), we have [152]:

backuppbq “ argmax
tgbauaPA

b ¨ gba

“ argmax
tgbauaPA

b ¨ rLa `
ÿ

oPO
argmax

tgia,oui
b ¨ gia,os .

(5.19)

In general, computing optimal planning solutions for POMDPs is an intractable

problem for any reasonably sized task. This calls for approximate solution

techniques, e.g., PERSEUS [152], which we introduce next.

5.3.2 Randomized Point-based Value Iteration for POMDPs

PERSEUS is an approximate Point-Based Value Iteration (PBVI) algo-

rithm for POMDPs. It implements a randomized approximate backup oper-

ator H̃ that increases (or at least does not decrease) the value of all beliefs

b P B̃ Ă B. The key idea is that for a given value function Vn at stage n, we

can build a value function Vn`1 “ H̃Vn that improves the value of all beliefs

b P B̃ Ă B by only updating the value of a (randomly selected) subset of be-

liefs B̃ Ă B, i.e., we can build a value function Vn`1 “ H̃Vn that upper bounds

Vn over B̃ Ă B (but not necessarily over B): Vnpbq ď Vn`1pbq, @b P B̃ Ă B.
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Starting with V0, PERSEUS performs a number of backup stages until some

convergence criterion is met. Each backup stage is defined as in Algorithm 4

(where B̃temp is an auxiliary set containing the non-improved beliefs).

Algorithm 4 function PERSEUS

1: function Perseus(B̃, Vn)
2: Set Vn`1 “ 0. Initialize B̃temp to B̃.
3: while B̃temp ‰ H do
4: Sample b from B̃temp

5: Compute α “ backuppbq (see Eq. (5.19))
6: if b ¨ α ě Vnpbq then
7: Add α to Vn`1

8: else
9: Add α1 “ argmaxtαi

nu|Vn|
i

b ¨ αi
n to Vn`1

10: end if
11: Compute set B̃temp “ tb P B̃ : Vn`1pbq ă Vnpbqu
12: end while
13: return Vn`1

14: end function

Algorithm 5 function BELIEFS

1: function Beliefs

2: B̃ “ H
3: for w “ 1 : W do
4: for i “ 1 : S ` 1 ´ w do
5: Build b such that bi:i`w´1 “ 1{w and B̃ Ð b

6: end for
7: end for
8: return B̃

9: end function

Key to the performance of PERSEUS is the design of B̃. Several standard

schemes to select beliefs have been proposed for PBVI, mainly based on grids

of points in the belief space. A different option to select beliefs is to simulate

the model, i.e., sampling random actions and observations, and generating

trajectories through the belief space, as suggested in [152]. Although this

approach may seem reasonable, one may argue that the probability distribu-

tions collected in B̃ are not very representative of the system dynamics history,

where actions and observations must also depend on beliefs. Hereinafter, we
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leverage the structure of the POMDP presented in Section 5.2 and provide

an algorithm (Algorithm 5) to collect beliefs in B̃ in a smarter fashion. Our

approach is simple but effective, and does not require any prior knowledge of

the system dynamics: according to Algorithm 5, B̃ is made of uniform prob-

ability distributions over S̄, which are uniformly distributed over at most W

consecutive road sub-links. Then, this design of B̃ reflects the compact range

of transmission for the BS, where the BS degree of uncertainty on the MU

state scales with W .

The basic routine for PBVI is given in Algorithm 6, where Vn`1 “ V r
n`1 ´

λV c
n`1 approximates the optimal value function for a given value of λ. Note that

we are interested in the optimal policy π˚ when b0 is such that b0psq “ δps´1q,

i.e., the agent knows when the MU enters the maximum coverage range of the

BS.

Algorithm 6 Point-Based Value Iteration (PBVI)

1: B̃ “ BELIEFS
2: Set n “ 0, V0 “ 0, V c

0 “ 0, λ0 “ λ, Vopt “ ´8.
3: Define Lps, aq “ rps, aq ´ λ0cps, aq
4: for n “ 0, . . . do
5: Vn`1 “ PERSEUSpB̃, Vnq
6: if |

ř
bPB̃ Vn`1pbq{

ř
bPB̃ Vnpbq ´ 1| ă ǫV then

7: Break
8: end if
9: end for

10: V ˚pb0q “ Vn`1pb0q
11: V ˚

c pb0q “ V c
n`1pb0q

12: if V ˚
c pb0q ă C and V ˚pb0q ą Vopt then

13: λopt “ λ0

14: Vopt “ V ˚pb0q
15: end if

To find the optimal multiplier λopt, we have to run the routine for different

values of λ. PERSEUS performs a number of backup stages until some con-

vergence criterion is met. At this point, we check if the constraint V ˚
c pb0q ă C

is satisfied, update λopt if V ˚pb0q ą Vopt, and repeat the routine for differ-

ent values of λ. These values of λ can be sequentially selected from a sorted

sequence or properly tuned at the end of the routine in a smarter fashion.

However, in both cases we have to wait until convergence. To speed up the
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Algorithm 7 Point-Based Value Iteration (PBVI) - ONLINE

1: B̃ “ BELIEFS
2: Set n “ 0, V0 “ 0, V c

0 “ 0, λ0 “ λ, α0 “ α.
3: Define Lps, aq “ rps, aq ´ λ0cps, aq
4: for n “ 0, . . . do
5: Vn`1 “ PERSEUSpB̃, Vnq
6: if |

ř
bPB̃ Vn`1pbq{

ř
bPB̃ Vnpbq ´ 1| ă ǫV then

7: if pV c
n`1pb0q ´ Cq{C ă ǫc then

8: Break
9: end if

10: end if
11: λn`1 “ maxp0, λn ` αnpV c

n`1pb0q ´ Cqq
12: Define Lps, aq “ rps, aq ´ λn`1cps, aq
13: end for
14: V ˚pb0q “ Vn`1pb0q
15: V ˚

c pb0q “ V c
n`1pb0q

16: λopt “ λn

17: Vopt “ V ˚pb0q

search for the optimal multiplier λopt, we formulate an online version of Al-

gorithm 6, which is presented in Algorithm 7. Here, λ is properly tuned

within the main loop of the routine according to a gradient descent tech-

nique [160] 1: λn`1 “ maxp0, λn `αnpV c
n`1pb0q´Cqq, where the discount factor

is αn “ α0{pn ` 1q. Finally, given λn`1, we update the Lagrangian relaxation

as Lps, aq “ rps, aq ´ λn`1cps, aq. In addition to the convergence criterion of

the standard PBVI, we also consider the requirement pV c
n`1pb0q ´ Cq{C ă ǫc.

5.4 Numerical results

We set ∆t “ 10 µs. We consider the following parameters: Θ “ 120˝,

d0 “ 10 m, Wtot “ 400 MHz, fc “ 60 GHz, ξ “ 1, N0 “ ´174 dBm, S “ 10,

Ervs “ 20 m/s, PDT P t10, 20, 30u dBm, TDT P t1000, 2000, 3000u (number

of micro time-slots, i.e., t10, 20, 30u ms), TBT “ 1, PBT “ Pmin, where Pmin

follows from PFA “ PMD “ ǫ (specified below). Finally, we compare different

sets B̃. Let D be the average duration of a transmission episode. The average

1Note that a gradient descent technique adjusts the parameter λ after each iteration
in the direction that would reduce the error on that iteration the most. The target here
depends on the parameter λ, but if we ignore that dependence when we take the derivative,
then what we get is a semi-gradient update [161].
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rate (bit/s) and power (dBm) are computed as V r
n`1{D and V c

n`1{D.
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Figure 5.2: Rate and power as a function of λ and comparison with the heuristic
πH for different pairs (PDT, TDT) (black crosses) and PBVI with points in B̃

obtained by random sampling (R).

The average rate and power as a function of λ P r105, 1011s are plotted in

Fig. 5.2, with ǫ “ t0.1, 0.001u. As λ increases, both the average rate and power

decrease, and the optimal policies are more conservative: given the current

belief, the BS performs more directive DT over a smaller set Ŝ, using smaller

values of PDT and TDT. Conversely, as λ decreases, both the average rate and

power increse, and the optimal policies are more energy-demanding. Also,

as λ decreases, the impact of ǫ on the performance of the optimal policies

is slightly more evident: given the average power, we can achieve a larger

average rate with a smaller ǫ, i.e., a larger Pmin, meaning that the optimal

policies are more sensitive to the observation errors when performing BT than

to the actual value of Pmin. Overall, the plot suggests that the performance of

the optimal policies is quite robust to the observation errors when performing

BT, whereas this is not true for any heuristic policy. The heuristic πH works

as follows: the BS performs BT with (PBT, TBT) over Ŝ “ tsu (starting from

s “ 1). If the MU replies with ACK, then the BS performs DT with (PDT,
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TDT) over Ŝ, until the first NACK. At this point, the BS scans the two states

s ´ 1 and s ` 1 in two different micro time-slots. If the MU replies with

ACK, then the BS repeats the scheme (starting from the new state). The

heuristic πH for different pairs (PDT, TDT) (black crosses) cannot achieve the

performance of the optimal policies, which take advantage of the belief update

mechanism and provide adaptive BT/DT procedures according to the current

belief. The average rate and power for πH are plotted in Fig. 5.2 for ǫ “ 0.001.

The achievable rate drops significantly when considering ǫ “ 0.1 (not shown

in Fig. 5.2), since πH does not provide any countermeasure to the observation

errors when performing BT. An upper bound on the average rate is given when

performing DT over the system state (i.e., assuming that the BS knows the

position of the MU), thus achieving the maximum transmission rate without

wasting power. When the probability distributions collected in B̃ are not

very representative of the system dynamics history, then the performance of

the optimal policies can greatly degrade, see Fig. 5.2, where the probability

distributions are obtained by sampling random actions and observations, as

suggested in [152], and compared to the ones obtained by Algorithm 5 with

W “ S. Here, the total number of beliefs collected in B̃ is the same in

the two cases. However, the performance of the optimal policies with beliefs

obtained by Algorithm 5 can provide an improvement in the achievable rate

of „ 1 Gbit/s (1.15 Gbit/s gap using an average power of 35 dBm).

An example of the outcome of Algorithm 7 is given in Fig. 5.3, starting

from parameters λ “ 0 and α “ 100. Here, we set the constraint C (which

corresponds to V ˚
c pb0q for λ “ 105 in Algorithm 6), and we achieve convergence

of the rate to R̄, with λopt » 105. The average rate and power as a function of

n are plotted in Fig. 5.3, with R̄{D and C{D.

5.5 Conclusions

In this chapter, learning tools are investigated to optimize the trade-off be-

tween directive Data Transmission (DT) and directional Beam Training (BT)

in a mm-wave vehicular network. In the proposed scenario, a Base Station

(BS) has to face the issue of beam alignment/realignment towards a Mobile

User (MU) moving along a road and, furthermore, has to decide the trans-
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Figure 5.3: Rate and power as a function of λ, which is properly tuned accord-
ing to λn`1 “ maxp0, λn ` αnpV c

n`1pb0q ´ Cqq.

mission parameters to use in the DT phase. This leads to a complex problem

involving the estimation of the position of the MU within the road link, which

must be leveraged in the design of BT/DT protocols. Numerical results reveal

that adaptive BT/DT procedures do provide a major advantage over common-

sense heuristic schemes, being able to maximize the transmission rate while

showing robustness against BT errors, under a power constraint.
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Chapter 6

Conclusions

The goal of this thesis is to investigate the considerable potential of infer-

ence from insightful perspectives, detailing the mathematical framework and

how Bayesian reasoning conveniently adapts to various research domains in

wireless networks.

In Chapter 2, we have designed and evaluated a Machine Learning frame-

work to automatically perform protocol layer analysis and diagnose physical

layer issues in 60 GHz networks. The main challenge lies in the variability of

the channel traces and in the complexity of identifying their structural elements

given their noisiness, aperiodicity, and unpredictable behavior. Standard Ma-

chine Learning approaches fail in such a scenario. Our tool uses narrowband

physical layer energy traces from one or multiple sniffers to identify lower-layer

performance issues. Network planners, administrators, as well as researchers

can use it to improve the performance of millimeter-wave networks even though

off-the-shelf networking devices provide very limited access to lower-layer in-

formation. The developed approach provides a convenient trade-off between

the efficient but limited monitoring capabilities of IEEE 802.11ad devices in

monitor mode, and the highly detailed but costly decoding of full bandwidth

signals through software-defined radios. Our algorithms are tested through an

extensive measurement campaign using off-the-shelf 60 GHz hardware, consid-

ering a range of practical scenarios. Besides, the ability of the framework to

correctly identify protocol sequences (beacon pairs, data and acknowledgment

frames) from single and multiple channel sniffers is quantified, looking at the

impact of channel noise, energy levels and their distribution across different
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sniffers.

In Chapter 3, we have demonstrated that localized Bayesian Networks

(BNs) are an efficient and lightweight means to tackle prediction and anomaly

detection problems in large vehicular networks. The joint probability distribu-

tion between the cause nodes (data utilized for forecasting) and the effect node

(data to be predicted at any “current” time, belonging to the target road link)

is described through a Gaussian Mixture Model (GMM) whose parameters are

estimated via Bayesian Variational Inference (BVI) operating on unlabeled

data. Optimal forecasting follows from the criterion of Minimum Mean Square

Error (MMSE). Moreover, we also perform anomaly detection by devising a

probabilistic score associated with the marginal conditional distribution of the

effect node. The key features of the model are: i) the approach is scalable as

a BN is associated with and independently trained for each road, ii) spatio-

temporal information is considered (for increased robustness and accuracy of

the statistical model so obtained) and iii) the localized nature of the framework

allows flagging atypical behaviors at their point of origin in the monitored ge-

ographical map. Also, our framework is capable of operating in realtime and,

in turn, it appears to be a promising candidate to deal with Internet of Things

(IoT) applications in large-scale networks, where new data is to be processed

on-the-fly.

In Chapter 4, we have considered small cell deployments where Energy Har-

vesting (EH) and packet power networks are combined to provide energy self-

sustainability through the use of own-generated energy and carefully planned

power transfers among network elements. This amounts to a combined learn-

ing and optimization problem (resource scheduling), where learning is carried

out on energy arrival (harvested ambient energy) and traffic load traces and

this knowledge is exploited, at runtime, for the computation of optimal energy

transfer policies among the distributed energy buffers. This foresighted opti-

mization is performed combining Model Predictive Control (MPC) and convex

optimization techniques. Numerical results reveal great advantages over the

case where energy transfer schedules are optimized disregarding future energy

and load forecasts: the amount of energy purchased from the power grid is

reduced by more than 50% and the outage probability is lowered to zero in

nearly all scenarios.

In Chapter 5, learning tools are investigated to optimize the trade-off be-
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tween directive Data Transmission (DT) and directional Beam Training (BT)

in a mm-wave vehicular network. In the proposed scenario, a Base Station

(BS) has to face the issue of beam alignment/realignment towards a Mobile

User (MU) moving along a road and, furthermore, has to decide the trans-

mission parameters to use in the DT phase. This leads to a complex problem

involving the estimation of the position of the MU within the road link, which

must be leveraged in the design of BT/DT protocols. To control the BT/DT

trade-off, a Partially Observable (PO) Markov Decision Process (MDP) is for-

mulated, where the system state corresponds to the position of the MU within

the road link. Numerical results reveal that adaptive BT/DT procedures do

provide a major advantage over common-sense heuristic schemes, being able

to maximize the transmission rate while showing robustness against BT er-

rors, under a power constraint. At this point, some future research directions

need to be addressed. An automated procedure could be set up to learn the

parameters of the POMDP via state-of-the-art reinforcement solutions (where

the agent gains experience while interacting with the environment, without

prior knowledge of the exact mathematical model). Moreover, deep reinforce-

ment learning architectures can be designed to solve real-time optimization

problems based on real-world data, where the position of the MU evolves in

a more realistic fashion. Smarter network decision making can be evaluated

while taking into account the presence of channel blockage and the highly dy-

namic behavior of the mm-wave link, which can move in and out of the outage

condition on a very short time scale. In this respect, cell selection represents a

fundamental functionality to preserve communication, as it involves choosing

which BS the MU should be connected to in the event of link obstruction:

the MU will track the quality of the mm-wave link and rapidly switch to an-

other BS in response to the fast-varying link state. Finally, a proper mm-wave

antenna design could be investigated to precisely quantify the beam steering

performance with respect to the idealized antenna model.
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