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Dipartimento di Principi e Impianti di Ingegneria Chimica “I. Sorgato”

SCUOLA DI DOTTORATO DI RICERCA IN INGEGNERIA INDUSTRIALE

INDIRIZZO: INGEGNERIA CHIMICA

CICLO XXIII

MULTISCALE MODELING OF THREE-DIMENSIONAL
CELL CULTURES FOR TYPE 2 DIABETES STUDIES

Direttore della Scuola: Ch.mo Prof. Paolo Bariani

Coordinatore d’indirizzo: Ch.mo Prof. Alberto Bertucco

Supervisore: Dr. Nicola Elvassore

Dottorando: Enrico Magrofuoco

http://www.unipd.it
http://www.dipic.unipd.it
mailto:enrico.magrofuoco@unipd.it




To my parents





Sommario

Le forti necessità legate allo sviluppo di farmaci e terapie per malattie

quali il diabete di tipo 2, hanno portato alla crescente domanda di nuove

tecnologie e protocolli. Modelli in vitro sono estremamente utili per studi

fisiologici e screening farmacologici; tuttavia questi sono dispendiosi e

richiedono molto tempo.

Un approccio teorico attraverso la modellazione matematica può facil-

itare lo studio della biologia del sistema e aiutare nella razionalizzazione

degli esperimenti.

Lo scopo di questa tesi è stato lo sviluppo di un approccio multi-scala

e multi-disciplinare per modellare colture tridimensionali cellulari e di

tessuto.

L’applicazione finale ha previsto la razionalizzazione di un modello ex

vivo di tessuto adiposo umano con lo scopo di caratterizzare le condizioni

fisiopatologiche del diabete di tipo 2.

Modelli matematici sono stati sviluppati per descrivere colture cellu-

lari in sistemi dinamici, al fine di analizzare l’effetto di variabili macro-

scopiche sulle proprietà del micro-ambiente e quindi sull’evoluzione cel-

lulare.

Abbiamo investigato il ruolo delle condizioni sperimentali, come ad es-

empio la portata e la configurazione della camera di coltura, e tes-

tato l’efficienza di una gestione discontinua delle colture cellulari in pi-

attaforme microfluidiche.

Inoltre, nel caso di un bioreattore a perfusione per colture cellulari tridi-

mensionali, abbiamo studiato l’effetto di condizioni di coltura eterogenee

nel micro-ambiente cellulare (a causa dello scaffold poroso) sulla crescita



cellulare. Il modello relaziona le variabili macroscopiche alle proprietà

del micro-ambiente cellulare predicendo la crescita in funzione delle con-

dizioni sperimentali e della distribuzione della dimensione dei pori dello

scaffold.

In aggiunta è stato analizzato l’effetto di fattori endogeni ed esogeni sui

processi intra-cellulari. In particolare, abbiamo integrato il modello di

trasporto di materia con il modello per il signaling dell’insulina, stu-

diando l’influenza di questo ormone sul consumo cellulare di glucosio.

Infine, è stato proposto un modello matematico per descrivere la coltura

ex vivo di tessuto adiposo umano in una piattaforma microfluidica per as-

sistere nella fase di progettazione e realizzazione della piattaforma stessa.

Questo sistema è stato utilizzato per studiare la risposta del tessuto sot-

toposto ad uno stimolo di insulina e le condizioni fisiopatologiche del

diabete di tipo 2.

Questi risultati hanno interessanti risvolti applicativi per la progettazione

di esperimenti e l’ottimizzazione delle condizioni di coltura, segnando un

passo in avanti verso lo sviluppo di terapie e tests farmacologici.



Summary

The pressing needs related to the processes of drug and therapy devel-

opment for diseases such as type 2 diabetes, have increased the demand

for new technologies and protocols. In vitro models are extremely help-

ful for physiological and drug screening studies; however they are time

consuming and expensive.

A theoretical approach through mathematical modeling could help in

the understanding of the biology of the system and to rationalize these

experiments.

The aim of this thesis has been the development of a multiscale and

multidisciplinary approach to model three-dimensional cell and tissue

culture.

The final application was the rationalization of an ex vivo model of hu-

man adipose tissue to characterize the pathophysiological conditions of

type 2 diabetes mellitus.

Mathematical models were developed for describing cell culture in dy-

namic systems, aiming to analyze the effect of macroscopic variables on

cell microenvironment properties and therefore on their fate.

We investigated the role of experimental conditions like the flow rate and

the culture chamber configuration on cell proliferation, and we tested the

efficiency of a discontinuous management of cell cultures in a microfluidic

chip.

In addition, in a three-dimensional perfusion bioreactor, we studied the

effect of heterogeneous culture conditions (within porous scaffolds) in

the cell microenvironment on the cell growth. The model linked the

macroscopic variables to the cell microenvironment properties predicting



cell growth as a function of the experimental conditions and the scaffold

pore size distribution.

The effect of endogenous and exogenous factors on the intracellular pro-

cesses was also investigated. In particular, we coupled the mass transport

model to the insulin signaling pathways model, studying the influence of

this hormone on the cell glucose metabolism.

We finally proposed a mathematical model for the ex vivo human adi-

pose tissue culture in a microfluidic platform, supporting the design and

realization of the device itself. This system has been used for studying

the tissue response to an insulin stimulation and the pathophysiological

conditions of type 2 diabetes.

These results show interesting applications for the experimental design

and optimization of culture conditions, and they mark a step towards an

efficient development of drug tests or therapies.
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1

Introduction

After introducing the basic concepts of the tissue engineering, this chapter will

introduce the multiscale aspects of biology, and the mathematical models for the

cell cultures will be reviewed. The clinical relevance and motivations for applying

the modeling approach to type 2 diabetes study will be presented, at last the outline

of this thesis is reported.

1.1 Tissue engineering

Tissue engineering has been defined as “an interdisciplinary field that applies the

principles of engineering and the life sciences toward the development of biological

substitutes that restore, maintain, or improve tissue function” [1].

The aim of the tissue engineering is to provide organ replacement, moreover

it could be helpful in the process of the development of new drugs through the

generation of in vitro model of tissue and organ [2]. Indeed tissue engineering

plays a fundamental role for designing in vitro physiological models to study disease

pathogenesis and for developing molecular therapeutics [2].

In all these applications, the requirements are to supply the cells with the appro-

priate cues, to control the conditions in the cell microenvironment, and to monitor

cellular responses on multiple hierarchical levels [3].

The successful large–scale production of engineered tissue requires:
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1. INTRODUCTION

• a cell source;

• a scaffold;

• a bioreactor to mimic the in vivo environment.

The cell source is an important issue; it must be chosen based on the aim of the

culture, taking into account ethical and safety issues, and efficiency.

Scaffolds are porous and degradable structures made from either natural ma-

terials (collagen, fibrin) or synthetic polymers (polylactide, polyglycolide). These

three-dimensional structures are used to support cells during the culture and po-

tentially for releasing of growth factors. Scaffold are necessary to overcome the

constraint on the size of tissue engineered in vitro, that is the short distance over

which oxygen can diffuse before being consumed (a few hundred micrometers) [4, 5].

Bioreactors are used to recreate the in vivo cell microenvironment conditions

in order to provide the physical, mechanical, chemical, biological cues to guide cell

differentiation or proliferation. The 3D cell structure obtained from these devices are

results of cell–cell and cell–microenvironment interactions. A theoretical multiscale

approaches, such as mathematical models [6], are essential tools for studying and

for rationalizing the three-dimensional cell cultures.

1.2 Multiscale modeling of biological systems

Living organisms are organized in multiple, interrelated scales and no single scale

can be considered in isolation from the others, they are influenced by information

which moves both up and down through scales. The time scales range from seconds

(i.e. cell signaling) to years (for organism development and life span), the spatial

scales involved vary from nanometers (e.g. biomolecules) to meters (organisms).

Thanks to the advent of all new quantitative experimental technologies, in par-

ticular to the high-throughput “-omics” techniques (genomics, transcriptomics, pro-

teomics, and metabolomics) the life sciences are becoming data rich and cover a

wide range of length and time scales.

Biomedical and biological researches frequently involve experiments that link

different scales of biological systems, for instance, the scales of intracellular molecular
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1.2 Multiscale modeling of biological systems

interactions to the scale of cellular behavior and beyond to the behavior of cell

populations. Two examples of the multiscale modeling applications are the heart

[7] and brain [8] research. Indeed modeling the heart means to describe quantities

from the macroscopic scale such as blood flow, and active and passive changes in

stress and strain, to the microscopic level, for instance chemical concentrations, and

electric potentials.

The understanding of function and pathology of tissue requires modeling and

coupling phenomena to link microscopic information to macroscale effects. Compu-

tational modeling aims to quantitatively explore such multiscale systems, simula-

tions have to incorporate different modeling techniques because of the different time

and space scales [9]. The “-omics” data can potentially be used to bridge between

cellular and physiological states and fill the modeling gap between the microscopic

and the macroscopic levels.

The development of in silico mathematical models has two main aims, under-

standing and prediction [10, 11]. When the fine details are not known, modeling is

a tool for testing hypotheses, providing a mathematical representation of the exper-

imentally observed phenomena; in this case, the modeling enhances understanding

of the system. On the other hand, when biological details of a system are known,

a mathematical model can be used in place of the biological system, making pre-

dictions about the results of virtual experiments. In this scenario the model does

not add to our understanding, it simply replicates the system. This may be used to

conduct experiments which are too difficult or costly to carry out directly guiding

the experimental research.

The development of any integrated multiscale theoretical framework includes the

selection of an appropriate modeling scale [11, 12]. This first step is usually guided by

the experimental data available, in addition the sub–models, that compose the main

framework, must be linked together. Furthermore the complexity of the model must

be chosen, indeed the more detailed a model is, the more parameters are involved

and thus the higher the computational cost of running the algorithm. It is clear

that a compromise between the biological complexity to be represented and the

computational resources is required.
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1. INTRODUCTION

1.3 State of the art of biological models

In this section we will review some of the mathematical models in literature which

focus on the modeling of tissue growth within a dynamic culture environment.

The development of a mathematical model for describing the behavior of a cell

population, it must be decided whether to formulate a model considering the in-

teractions between single cells in the population (discrete models) or to consider

such system as a continuum (continuum models). In addition, stochastic modeling

in biological system have been extensively used, e.g. for understanding phenomena

ranging from molecular-level fluctuations to cellular movement, or for introducing

stochastic “noise” [13].

Discrete models are based on the interactions of individual cells in space and

time and can easily incorporate biological phenomena. However, these models can

study a relatively small numbers of cell system due to the high computational costs.

Hence a typical discrete model is usually designed with a sub–millimeter or even

lower domain size [14]. Simplest discrete models describe cells as point–wise objects

and it has been applied for studying process like the cell signaling [15–19]. Other

models have been used to describe cell–cell interactions [20] or for studying cell

populations [21–23].

In contrast, continuum models describe system such as a whole tissue as a con-

tinuum domain rather than at the resolution of individual cells. These models are

usually expressed in terms of a system of partial differential equations (PDEs).

Over the last years, several mathematical models have been developed for de-

scribing the cell growth in a dynamic culture environment, in particular on three-

dimensional construct. Many studies have focused on the development of models to

predict the steady state distribution of key nutrients (such as oxygen and glucose)

inside bioartificial tissues [5, 24–29]. They are able to associate the mass transport

and consumption of nutrients in tissues, however they cannot provide the dynamic

process of tissue development inside biomaterial scaffolds.

Other authors have studied the mass transport of oxygen: in static conditions

[30–33], rotating bioreactors [34–38], spinner flask bioreactors [27, 39], concentric

cylinder bioreactors [24], a vascularising scaffold implanted in vivo [40], perfu-
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1.4 Application of mathematical modeling to type 2 diabetes mellitus

sion bioreactor [41–44]. These models are generally based on classical diffusion–

convection equations, coupled with momentum transport equations if necessary.

The quantification of shear stress acting on tissue, especially cartilage, has been

analyzed by several authors to model the hydrodynamic environment in a spinner

flask bioreactor [45], in a wavy walled bioreactor [46] or within cultured porous

implants [47, 48].

Biological phenomena, such as cell proliferation and/or tissue growth, have also

been modeled based on the nutrient spatial distribution [34, 36, 40, 41, 49–52] and/or

the mechanical loading [35, 53, 54].

1.4 Application of mathematical modeling to type

2 diabetes mellitus

In healthy individuals, glucose homeostasis control the blood sugar concentration.

High glucose level triggers the secretion of insulin from the pancreas which increases

the glucose uptake and reduces the glucose production from the liver. Low glucose

concentration leads to glucagon release for enhancing the glucose production. Type

1 diabetes occurs when pancreatic cells are destroyed by the body’s own immune

system. In contrast, people with type 2 diabetes produce insulin, but the target

cells (muscle and adipose) are insulin resistant, that is the insulin cannot raise the

glucose uptake.

Type 2 diabetes constitutes about 85 to 95 % of all diabetes in developed coun-

tries, it means that the global number of people with this disease is about 246 million

people in the age group 20-79 and the worldwide estimate is expected to increase to

380 million of the adult population by 2025. Compare to the other causes of death,

the percentage of death attributed to diabetes is about 10 of the total. In addition

type 2 diabetes is associated with several complications like:

• cardiovascular disease;

• nephropathy;

• neuropathy;

7
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• amputation;

• retinopathy.

Because of its relevance, type 2 diabetes has become so important that the annual

global health expenditure for diabetes in 2007 was estimated between USD 230 and

420 billion [55].

Although the prevention and early detection are the best ways for curing dis-

eases, a widely applicable and cost-effective screening strategy is difficult to develop

because of the marked differences between ethnic groups in the development of type

2 diabetes [56].

Nowadays there are many drugs which lower blood sugar concentration in dif-

ferent way and acting on various tissue, especially muscle and fat cells. Therefore it

is crucial to perform selective drug screening to determine which is the best combi-

nation of drug for the specific patient.

An in vitro model could be an important step towards the treatment of the

disease. To this end we applied the mathematical model for supporting the devel-

opment of an ex vivo model for studying the pathophysiological condition of type 2

diabetes.

1.5 Thesis objectives and structure

The aim of this thesis is to rationalize three-dimensional cell and tissue culture for

supporting the design of bioreactors and to interpret the biological outcomes; a

multiscale and multidisciplinary approach was necessary to achieve such objective.

Mathematical modeling was applied to develop ex vivo human adipose tissue culture

for studying the pathophysiological condition of type 2 diabetes mellitus.

In chapter 2 the experimental approach to the dynamic cell culture is presented.

Ad hoc analysis techniques and experiments were setup to collect physical and bio-

physical data.

In chapter 3 a theoretical study of cell niche properties, and its temporal evolu-

tion under perfusion in a microfluidc platform is described. The analysis considers

the effect of operative parameters on the cell fate, in particular on the cell growth.

8



1.6 Thesis outline and experimental plan

In chapter 4 the variability of a three-dimensional dynamic cell culture is con-

sidered. The system is analyzed by means of microscopic mathematical model to

study the effect of extrinsic heterogeneities on the cell microenvironment properties

and therefore on the cell growth.

In chapter 5 the influence of endogenous factors on the intracellular activities in

a three-dimensional cell culture is presented. A rational understanding of a specific

signaling cascade process is analyzed in order to coupled this phenomenon with the

mass transport phenomena in a bioreactor system.

In chapter 6 all the theoretical and experimental developed skills have been

coupled for supporting the design of a microfluidic platform for ex vivo human

adipose tissue culture. The device has been applied for studying the pathophysiology

of a metabolic disorder such as type 2 diabetes mellitus.

1.6 Thesis outline and experimental plan

Figure 1.1 shows the timeline of the PhD project schedule in these three years.

The modeling of the biological systems developed during the three years has been

coupled with an experimental approach to the dynamic cell culture to support and

validate the theoretical analysis.

Figure 1.1: Time line of the PhD project schedule during the three years of program.
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2

Experimental techniques

This chapter is aimed to describe the experimental and theoretical techniques used

to determine the physical and biological parameters required for the mathematical

models described in chapter 4. In particular, the evaluation of the glucose con-

sumption rate of murine skeletal muscle cell line C2C12 and the porous scaffold

morphology characterization will be presented.

2.1 Introduction

The behavior of a biological system is the result of the complex interactions of phe-

nomena which occur at different spatial and time scale [10]. Integrating the biological

information into models, mathematical tools have enhanced the understanding of

life system [6, 57].

Having a model able to describe the response of a specific biological system

such as a cell culture, requires biological and physical data. Indeed a cell culture

system is defined by a kinetic (i.e. cell growth rate, specific oxygen consumption

rate) and physical parameters (e.g. mass transport properties or 3D configuration).

These values depend on the cell type, moreover, within each cell type the range of

variation can cover several orders of magnitude [58].

Thus, it is clear that all the physical and biological parameters are essential to

obtain a model for describing a cell culture system, and when these information are

11



2. EXPERIMENTAL TECHNIQUES

not available in literature, ad hoc experiments must be set up for their determination.

2.2 Bioreactors in tissue engineering

Tissue engineering aims to obtain tissue clinically valuable to be used as in vitro

model for physiological studies and for generating of graft for transplantation in

order to replace, repair, or facilitate the regeneration of damaged or diseased tissue.

Engineered tissues are typically composed of cellular and non cellular components,

with at least a few mm in size to serve as grafts for tissue replacement [59].

The in vitro formation of engineered tissue requires the 3D organization of cells

via biomaterial scaffolds. A first generation of three-dimensional cell culture was

the static loading of cells onto a scaffold, but several studies reported low seeding

efficiencies [60–64] and non-uniform cell distribution within constructs [60, 61, 63,

65, 66].

In vivo, the blood capillaries network provides the nutrients to the cells, whereas

in vitro static cell cultures are subjected to the diffusion mass transfer limitations

[4, 5]. Because of this limitation, 3D cell culture must be coupled with a device that

enhances the mass transport to and from the cells, bioreactors have been developed

and applied to overcome such problem.

Bioreactors are generally defined “as devices in which biological and/or biochem-

ical processes develop under closely monitored and tightly controlled environmental

and operating conditions (e.g. pH, temperature, pressure, nutrient supply and waste

removal)” [59]. The main objective in the design of a bioreactor is the achieving of

a high cell density and uniformly distributed throughout the scaffold volume.

Therefore all bioreactors designed for tissue growth require a porous structure

(scaffold) where cells are seeded and the enhancement of the mass transport. Usually

it is considered mass transport limited relatively to oxygen [67, 68], but also the shear

stress applied on the cells plays an important role on their fate [45, 46, 48]. In

this section the most common bioreactors configurations used for tissue engineering

applications [59, 69] will be presented:

• spinner-flask;

• rotating wall;
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2.2 Bioreactors in tissue engineering

Figure 2.1: Representative bioreactors for tissue engineering applications. (a) Spinner-flask,
(b) rotating-wall, (c) hollow fiber, (d) direct perfusion. Figure reprinted from Martin et al.
[59]

• hollow fiber;

• direct perfusion.

The spinner-flask bioreactor (Fig. 2.1a) induces mixing of nutrients and oxygen in

the cell media reducing the boundary layer at the construct surface [59], nonetheless

it yields low seeding efficiencies [61, 70] and non-uniform distributions of cells [65],

with a higher cell density at the scaffold surface [71].

Rotating wall vessel (Fig. 2.1b) [72–74] provides dynamic culture environment to

the construct, with low shear stresses and high mass transfer rates, but the growth

rate could be non-uniform [35]. Finally, it needs control systems to modify the

rotation speed of the vessel in function of the tissue size for maintaining the growing

tissue in a state of free-fall.

Hollow fiber bioreactor (Fig. 2.1c) mimics in vivo blood vessels, it increases the

mass transport of nutrients and oxygen to the center of the growing tissue through

a semi-permeable hollow fiber. This configuration could generates gradients of both

nutrients and waste products resulting in a heterogeneous cell distribution [68].

In the direct perfusion bioreactor (Fig. 2.1d), medium flows through the pores

of the scaffold. It can be used both for seeding [75] to have a high uniform cell
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distribution and for 3D cell culture [76–78]; medium flowing through the construct

enhances mass transport at the periphery and also within the internal pores.

2.2.1 Murine skeletal muscle cell line C2C12

The mathematical model of a 3D cell growth in a perfusion bioreactor system (Fig.

2.2) developed in chapter 4 has a general form and it can be adapted to any type

of cell once the biological parameters are known. We studied the murine skeletal

muscle cell line C2C12. These cells were originally obtained by Yaffe and Saxel

[79] through selective serial passage of myoblasts cultured from the thigh muscle

of C3H mice 70 h after a crush injury. These cells were shown to be capable of

differentiation in functional myotubes. C2C12 cells are a useful model to study the

differentiation of myogenic cells to skeletal muscle cells and express muscle proteins

and the androgen receptor (AR).

2.2.2 Three-dimensional perfusion bioreactor system

The perfusion bioreactor system for three-dimensional cell culture was designed and

developed in our laboratory [76] (Fig. 2.2). It is composed of four units: a peri-

Figure 2.2: Perfusion bioreactor system composed of the peristaltic pump, the gas exchanger,
and eight independent culture chambers.

staltic pump, a gas exchanger, a medium reservoir, and eight independent culture
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chambers. The former is a volumetric pump that control the medium flow rate

through the scaffold independently from the pressure drop. The gas exchanger is

required to control the oxygen concentration and the pH, according to the carbon

dioxide concentration in the medium. The medium reservoir provides all the nutri-

ents and metabolites necessary for length of the experiment, it can be a separated

unit or the hold-up volume of the bioreactor itself could be this reservoir. The

scaffold used for the 3D cell culture is allocated in the culture chamber. In this

three-dimensional configuration, cells are seeded onto the scaffold surface and the

medium is constrained to flow through the construct. It is a porous materials with

a defined porosity, pore size distribution, and tortuosity; usually these pores are

interconnected to form channels with different size and length.

The bioreactor can work both in a closed configuration (with recirculation - Fig.

2.3A) and in a open one (without recirculation - Fig. 2.3B). Once the bioreactor

Figure 2.3: Scheme of a perfusion bioreactor. (A) Configuration with recirculation of cell
media. (B) Configuration without recirculation of cell media.

is setup, in the closed configuration the scaffold is perfused by the same medium

introduced into the system at the beginning of the experiment; by contrast, in the

open configuration, fresh cell media continuously flows through the scaffold.
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2.3 Analysis of a three-dimensional porous colla-

gen scaffold

All the cell culture experiments with the perfusion bioreactor were carried out using

a collagen scaffold. To describe the cell growth in a porous material, all the scaffold

properties must be known. Because in chapter 4 we are interested in describing the

microscopical properties of a cell culture we determined the pores scaffold distribu-

tion sorting the equivalent diameter distribution.

2.3.1 Scaffold morphology

The scaffold morphology, i.e. the channel diameter distribution and the mean

channel diameter, was determined by means of a fluorescence microscope (Leica

CTR6000). The collagen construct is a cylinder with diameter and height of 5

and 3 mm, respectively, and it was immersed in a 0.1 g /L solution of fluorescein

sodium salt for 10 hours to allow the molecule adsorption onto the collagen. After

dyeing, the scaffold was embedded in OCT (Optimal Cutting Temperature) and

immediately snap-frozen in liquid nitrogen. Cross sections of the frozen scaffold

were cryosectioned at 20 µm thickness on a cryostat (Leica CM1950) at −22 ◦C and

mounted on Superfrost Plus glass slides (Fig. 2.4A). Cross sections were analyzed

using the fluorescence microscope in order to collect RGB images (Fig. 2.4B) of the

scaffold.

2.3.1.1 Morphological scaffold processing and reconstruction

Since the images were subjected to noises due to the analysis process, it was im-

possible to obtain a scaffold image without discontinuities. Therefore the digitized

fluorescent images were processed using the image toolbox of MATLAB (The Math-

works, Natick, MA). Images were enhanced to separate the scaffold from the back-

ground and the noise; each frame were subject to the following processes:

• brightness-contrast;

• basic global thresholding;
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Figure 2.4: Cross sections of a collagen scaffold. (A) Phase contrast image. (B) Fluorescence
image. Scale bars 2.5 mm.

• median filter;

• segmentation by morphological watershed.

The first two operations produce an indexed (black and white) image where the

background is separated by the scaffold, nevertheless its morphology can be recognize

only qualitatively. Hence images were processed with a median filter for removing the

presence of impulse noise, also called salt-and-pepper noise because of its appearance

as white and black dots superimposed on the image. Finally images were analyzed

by means of segmentation by morphological watershed to quantitatively identify the

frame of the scaffold (Fig. 2.5). At the end of the process, manual inspection was

performed to find out all the scaffold discontinuities missed by the segmentation

algorithm.

2.3.1.2 Channel distribution

After the scaffold reconstruction, each pore was identified and classified by the equiv-

alent diameter, that is the diameter of a circle with the same area of the pore. A

specific algorithm was developed and implemented in MATLAB to detect and an-

alyze the scaffold morphology, obtaining the channel diameter distribution. After-
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Figure 2.5: Merge of the fluorescence scaffold image (Fig. 2.4B) and scaffold reconstruction.

wards, it was fitted using the fitting toolbox of MATLAB obtaining an analytical

expression of this distribution (Fig. 2.6). The Rayleigh distribution (Eq. (2.1))

was chosen as fitting function because it well describes the channel distribution and

because of its simple expression defined by a single parameter, b:

f (x) =
x

b2
exp

(
− x2

2b2

)
, (2.1)

b = 148.26 µm.

The mean and variance of the Rayleigh distribution may be expressed as:

µ (x) = b

√
π

2
= 185.82 µm, (2.2)

σ2 (x) =
4− π

2
b2 = 9435 µm2. (2.3)
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Figure 2.6: Channel equivalent diameter distribution obtained from image analysis and its
fitting with the Rayleigh function.

2.3.2 Cell counting and distribution

The scaffold morphology technique previously described was applied for the cell

growth distribution analysis as well. It has been a fundamental step in the model

validation as explain in chapter 4.

After the cell culture in the perfusion bioreactor, the scaffold was treated as

reported in section 2.3.1, but sections were cryosectioned at 15 µm thickness instead.

After this process, cell nuclei were dyed with Hoechst 33342 in order to detect cells

in each pore (Fig. 2.7). After the image acquisition the number of cells in each

pore were determine to obtain their distribution in a single section. Three different

areas were analyzed, the top, the middle and the bottom section of the scaffold in

order to have a cell growth profile along its height.

2.4 Parameter estimation of cell culture

Besides the physical system properties, the mathematical model requires an expres-

sion for all the kinetics which describe the cell behavior, such as the oxygen and

glucose consumption rate. The former can be found in the literature since it is a

very important nutrient for the cell culture and it has been studied by various au-
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Figure 2.7: Middle cross section of scaffold with Hoechst staining, the magnification shows
two pores with cells inside.

thors for different cell type [27, 28, 80]; nevertheless glucose has not been studied as

well as oxygen, hence the glucose consumption rate expression for murine skeletal

muscle cell line C2C12 must be experimentally determined.

2.4.1 Glucose measurement

The glucose consumption rate was determined by means of an indirect measurement,

that is the average glucose concentration in the cell culture media. There are several

methods to determine metabolites concentration in biological systems as reported

in literature [81]. In particular two techniques were considered for this experiment:

• HPLC with evaporative light scattering detector (HPLC-ELSD);

• enzymatic glucose assay kit (BioVision, Inc.).

Both methods were tested to select the more suitable technique for this analysis,

and the following features were evaluated:
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• analysis time;

• number of metabolites measured;

• sensitivity;

• costs.

The HPLC system is time-consuming due to the operative conditions setup, sample

pretreatment and analysis, on the other hand the enzymatic kit ensures easier and

faster analysis. Nevertheless, liquid chromatography has a high sensitivity, in the

vicinity of micromolar (up to femtomolar thanks to a liquid chromatography-mass

spectrometry system), while the enzymatic kit has a sensitivity three order of mag-

nitude greater than chromatography (millimolar); moreover the HPLC system has

a high repeatability. For these reasons the glucose measurements were performed

by means of the chromatography technique.

Glucose concentration in the medium was determined using HPLC system. It

consists of a Jasco PU-1580 isocratic pump and Alltech 800 ELS detector. Sepa-

ration was achieved at ambient temperature with an Alltech Prevail Carbohydrate

ES, 5 µm, (4.6 mm× 250 mm) column preceded by Alltech Prevail Carbohydrate ES

All-Guard cartridge to eliminate interferences. The mobile phase was a mixture

of water and acetonitrile (25:75, v/v); it was filtered through a 0.22 µm filter and

degassed by vacuum before using. Separation was carried out by isocratic solvent

elution at a flow rate of 1 mL /min for 15 minutes analysis time. The external stan-

dard method was chosen to quantify the samples (Fig. 2.8). To avoid precipitation

inside the HPLC, samples were pretreated before the analysis: the medium samples

(20 µL) were diluted with acetonitrile, centrifuged and the supernatant was collected

and filtered, solutions were stored at −80 ◦C.

2.4.2 Experimental setup

In order to fit the glucose kinetic parameters, a cell culture in a 2D system was

conducted assuming that the glucose consumption rate is not affect by the cell

system structure (2D or 3D).
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Figure 2.8: Calibration curve for glucose in cell culture media.

The C2C12 cells were grown in Dulbecco’s modified Eagle medium supplemented

with 10 % fetal bovine serum and 1 % penicillin-streptomycin solution (1000 U /mL)

on standard 100 mm Petri Tissue Culture dishes. Cells were seeded with a density

of about 760 cell /cm2 and incubated for 12 h with 10 mL of medium. After the

incubation the cell culture media was replaced by 12 mL of fresh media, this denotes

the initial time of the experiment; cells were allowed to growth for 3 days. At

each time point the medium was homogenized by mixing and a 500 µL sample was

collected to determine the average glucose concentration.

2.4.3 Mathematical model

The glucose measurement as described in the previous section is the average value

of the whole system, which is different from the local value at which the cells are

exposed to. The characteristic time scale of the consumption, τkin, and diffusion,

τD, must be considered; indeed if the ratio τkin/τD is less than 1, it means that there

is a diffusion profile along the height of the medium which limits the glucose uptake

(diffusion regime). Since we aimed to determine the local glucose consumption rate

as a function of the glucose concentration in the cell microenvironment, a mathe-

matical model was developed to describe 2D cell culture on a Petri dish in term of

the metabolite profiles and cell growth.
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In the system, glucose diffuses from the medium bulk to the cell surface where it is

consumed, hence the transient diffusion-reaction equation was applied. Moreover the

model takes into account the culture medium sampling, indeed each measurement:

• decreases the total medium volume at each time point;

• equalizes the medium glucose concentration.

In the governing equation, the reaction term was assumed to be a function of the

cell growth rate and the specific uptake of glucose. The former was expressed with

an exponential law because we were interested in describing the exponential growth.

On the other hand, it was hypothesized a linear relationship between the specific

uptake of glucose and the local glucose concentration.

2.4.3.1 Mass transport

For this system we assumed that all the mass transport phenomena occur only along

the height of the Petri dish, therefore the one dimensional form of the equation of

continuity for glucose was applied:

∂cG
∂t

= −∂NG

∂z
, (2.4)

NG = −DG
∂cG
∂z

. (2.5)

Where cG is the glucose concentration, t is the time, NG is the diffusive flux expressed

by the Fick’s law (Eq. (2.5)) and DG is the diffusion coefficient of the metabolite in

medium at 37 ◦C. The boundary and initial conditions required for Eqs. (2.4) and

(2.5) are:

∂cG
∂z

∣∣∣∣
z=0

= 0, NG|z=L = RG, (2.6)

cG (z, tin) = cG,0. (2.7)

The expressions in Eq. 2.6 show the insulation condition at the top of the medium

surface and the molar flux at the bottom of the dish due to the cell uptake. The ini-

tial condition (Eq. 2.7) is a uniform glucose concentration. The glucose consumption
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rate, RG, is expressed by the following equations:

RG = ρQG, (2.8)

QG = k1 + k2t, (2.9)

ρ = ρ0 exp (µt) . (2.10)

Where ρ is the cell density, QG is the glucose uptake, k1 and k2 are the fitting

parameters and µ is the specific growth rate coefficient calculated by means of the

doubling time.

2.4.3.2 Fitting and parameter estimation

In Eq. 2.9 the glucose uptake is a function of the time instead of the local glucose

concentration in order to have a more generic expression for the kinetic. The system

of equations (Eqs. 2.6 - 2.10) was solved fitting the experimental glucose data (Fig.

2.9) at every time point with the average glucose concentration profile calculated

Figure 2.9: Temporal profile of the average glucose concentration with the standard deviation
in a Petri dish culture system.
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from the mathematical model with Eq. 2.11:

〈cG〉 =

∫
V

cG dV∫
V

dV

. (2.11)

To evaluate the glucose consumption rate, we considered the experimental points

with a significant variation of the glucose concentration, that is during the exponen-

tial cell growth. The model adjusts the parameters of the glucose uptake expression

(Eq. 2.9), fits the the experimental points (Fig. 2.10) minimizing the objective

function (Eq. 2.12):

εtot =
n∑
i=1

(
〈c〉i,exp − 〈c〉i,th
〈c〉i,exp

)2

, (2.12)

where 〈c〉i,exp and 〈c〉i,th are, respectively, the experimental and theoretical average

concentration at each time point. The glucose uptake as a function of the local

Figure 2.10: Comparison of the average glucose concentration obtained from the simulation
with the experimental data during the exponential cell growth.

glucose level was correlated to the concentration cells are exposed to at the bottom

of the Petri dish.
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2.5 Results

Using the model developed for the Petri dish and the fitting algorithm, an explicit

expression for the glucose uptake was achieved; Fig. 2.11 shows the cellular uptake

as a function of the local glucose concentration. A linear dependence of the glucose

Figure 2.11: Glucose consumption rate dependence from the local glucose concentration.
The error bars were obtained from the average measurements by means of the error propaga-
tion theory.

uptake, QG, from the local glucose concentration was obtained, as reported by Eq.

2.13:

QG = (mcG + q)ϕ, (2.13)

ϕ = tanh (λcG) , (2.14)

where m and q are two kinetic parameters, and ϕ is a damping factor in order to

set to zero the uptake when the glucose concentration goes to zero without discon-

tinuities. It is defined by Eq. 2.15:

λ ∈ R :

{
0 ≤ λ ≤ 1, if 0 ≤ cG ≤ 1,

λ = 1, if cG > 1.
(2.15)
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The values of the three kinetic parameters required by Eq. (2.13) and Eq. (2.14),

are listed in Table 2.1.

Table 2.1: Glucose consumption rate parameters: their symbols and the respective values.

Symbol Value

m 1.73× 10−16 m3 cell−1 s−1

q 1.14× 10−16 mol cell−1 s−1

λ 5.3
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3

Macroscopic cell growth modeling

in a 2D microfluidic bioreactor

In this chapter the analysis of microfluidic chips for cell culture will be presented.

Two published examples were studied focusing on the operative conditions and how

to carry out a dynamic cell culture taking into account both nutrients and en-

dogenous factors. This work is aimed to investigate the optimal management of

microfluidic integrated cell culture systems. This technology will be further discuss

in chapter 6.

3.1 Introduction

The traditional cell culture systems have been modified in the recent years thanks

to the new culture technologies. Dynamic culture systems (bioreactor) can better

control the cell microenvironment [3, 59] and enhance the mass transport of nutrients

and metabolic waste products to and from cells [69]. The miniaturization of these

systems, thanks to the microfabrication technologies, brought to the development

of microscale devices which have been used in several applications ranging from

biological analysis [82], drug testing [83, 84], and cell studies, both single cell [85]

and cell culture system [86].
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Microfluidic platform enables to decrease costs, allows to perform high-throughput

analysis for multi-parametric testing [87, 88], a better fluid control [89] and cellular

microenvironment [86, 90]. For instance Cimetta et al. [86] have studied the effects

of cell density and transport regime on cell morphology and differentiation in human

embryonic stem cells (hESC). In addition, the reduced system volume promotes a

fast cell response to spatial and temporal stimuli [91], and the higher cell–medium

volume ratio (low medium volume), promotes an higher signal-stimulus ratio, thus

the cell response can be measured.

A microfluidic cell culture (microbioreactor) is basically composed of a culture

chamber, where cells are seeded, an inlet and outlet channel for the medium delivery

to and from the cells, a medium reservoir upstream the chamber, a discharged

medium collector downstream, and, if required a gas exchanger.

Cell fate is highly related to its microenvironment properties, i.e. mechanical and

physical stimuli, electrical and biochemical signals, such as autocrine and paracrine

secretion, endogenous and metabolites molecules.

In a traditional static culture (e.g. Petri dish), medium is usually replaced every

1 or 2 days in order to remove the waste products accumulated in the cell microenvi-

ronment and to provide nutrients, such as glucose, necessary for the cell metabolism.

Since glucose plays a central role in biological processes, its concentration in the sys-

tem could be considered as an index of the cell activities .

In dynamic cell cultures, medium continuously flows through the system to en-

hance mass transport to and from the cells. As in the static condition, cell media

replacement is required for providing nutrients and for catabolite removal. Unlike

the traditional culture, providing fresh media in a dynamic systems can damage the

microenvironment surrounding the cells (defined stem cell niche). Indeed medium

flow rate could wash out the endogenous factors secreted by cells altering the bio-

chemical composition of soluble factors in contact with cell membrane.

Several microfluidic bioreactor have been proposed in literature, starting from a

simple configuration where the culture chamber is represented by an enlargement of

the microfluidic channel (Fig. 3.1A) [92], to a more complex systems where cells are

seeded at the bottom of a well, therefore they are separated from the inlet and outlet

channels [90]. This configuration adds a further mass transfer resistance because the

mass transport takes place for higher characteristic distance due to the separation
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Hc (Fig. 3.1B). This configuration reduces the efficiency of metabolic delivery to

the cell culture, but it avoids that the cell microenvironment is negatively affected

by the fluid dynamic regime (i.e. soluble factors wash out).

In this perspective, for both configurations, depending on the uptake and the

release rate of metabolites and growth factors, an optimal flow rate value should be

defined. This optimal flow rate value could range from 1× 10−5 to 1× 103
µL /min,

depending on specific conditions. This wide value range raises technological issues

for the management of microfluidic platform.

For this reasons, we aimed to use a discontinuous cell media flow would ensure

a suitable glucose level range for cell metabolism, and at the same time it preserves

the cell niche maintaining all hormones and endogenous factors above the threshold

values required for cell processes such as cell signaling and proliferation.

In this work we studied the cell uptake of oxygen and glucose, and the secretion

of epidermal growth factor (EGF) as a function of the most common microfluidic

configurations. Afterwards, we analyzed the effect of a discontinuous flow in order

to provide nutrients without impairing the cell microenvironment. Such condition

was achieved with a pulsatile flow, that is switching from a dynamic to a static

state. The flow rate, the duration and the frequency of the medium feeding were

fixed based on the cell glucose metabolism.

The full optimization of this system is not behind the aim of this chapter, here we

discuss potential alternative to conventional microfluidic cell culture system setup.

3.2 Theoretical framework

Two main configurations (Fig. 3.1) were used as model to investigate the role of

discontinuous flow rate: I) the microfluidic platform reported by Gómez-Sjöberg et

al. [92], II) the microfluidi chip developed by Figallo et al. [90]. The first one

is composed of a rectangular culture chamber with a microchannel at its inlet and

outlet that crosses the chamber in the middle; the chamber has the same height of

the channel (Fig. 3.1A). The latter configuration is composed of a cylindrical culture

chamber with a microchannel at its inlet and outlet which crosses the chamber at

its top (Fig. 3.1B).
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Figure 3.1: Representation of the two microfluidic platform configurations type developed
by (A) Gómez-Sjöberg et al. [92] and by (B) Figallo et al. [90]. The black arrows from the
top of the geometry depict the oxygen inward flux from the PDMS, the red arrows show the
outward flux of nutrients to the cells, and the blue arrows are the flux of factors secreted by
the cells

For this study a typical size for a microfluidic platform was used, that is a channel

height of 50 µm, a culture chamber length equals to 1 mm (as reported by Gómez-

Sjöberg et al. [92]), while the flow rate ranges from 1× 10−4 to 1× 10−1
µL /min.

In both cases, cells adhere at the bottom of the culture chambers and fresh

cell media flows through the microfluidic platform by means of perfusion, it means

that convection and diffusion regulate the species mass transport. Because of the

cell metabolism, there is a concentration gradient between cell microenvironment

and the medium bulk, hence a flux of nutrients from the bulk to the cells. In

contrast there is an inward flux of waste products and factors secreted by cells. Since

systems are made in PDMS (Polydimethylsiloxane), an inward oxygen flux must be

considered during the overall experiment duration due to the high gas-permeability

of the PDMS.

In this study we considered the embryonic stem cells (ESCs) growth, taking

into account, as species of interest, oxygen, glucose, and epidermal growth factor

(EGF). ESCs are very sensitive to an in vitro microenvironment on their phenotypic

expression. In addition, we analyzed the effect of the chamber geometry on the
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cell behavior, along with the two configurations, a third one was chosen changing

the chamber length-height ratio. The comparison between these three cases was

performed based on a variable Q̃ which is the ratio between the glucose demand by

the system and the glucose provided (Eq. (3.1)):

Q̃ =
Inlet glucose flux

Consumed glucose
. (3.1)

After the comparison between different configurations, a discontinuous cell media

flow case was described. Such experimental condition could be required if we want

to preserve the cell activities providing the nutrients without affecting the cell niche.

3.3 Mathematical model

Equations of change have been used to describe the microfluidic cell culture system

and to develop the mathematical model. Specifically we utilized the Navier-Stokes

equation and the equation of continuity for species. Both the continuous and dis-

continuous cases will be presented pointing out their differences.

3.3.1 Medium fluid dynamic

The medium fluid dynamics in the culture chamber was described by the Navier-

Stokes equations for incompressible fluids:

ρ
Dv

Dt
= −∇p+ µ∇2v + ρg, (3.2)

where ρ is the medium density, v is the velocity field, p is the pressure, µ the medium

viscosity, and g the gravity. The boundary conditions were set as a wall, except for

the inlet and the outlet of the system, they were defined as:

v (x, y, t) = Q̇/A x = 0, (3.3)

poutlet = 0 x = Lp, (3.4)
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where Q̇ is the medium flow rate which enters in the system and A is the channel

cross section. For the discontinuous case, when there is no medium convection, the

velocity was set to zero.

3.3.2 Mass transport equations

The temporal species concentration profile was studied by the convection and dif-

fusion mass transport equation, no reactions occurred in the medium. Indeed cells

are seeded at the bottom of the cell culture chamber, therefore its cellular activity

(uptake or production) can be assumed as a flux (outward or inward) at the cell

interface. The mass transport for oxygen, glucose and EGF were expressed by the

species mass balance:
∂ci
∂t

= −∇Ni. (3.5)

In Eq. (3.5), ci is the species concentration, and Ni is the flux, it considered both

convection and diffusion phenomena:

Ni = vci −Di∇ci, (3.6)

where Di is the species diffusion coefficient in medium at 37 ◦C.

3.3.2.1 Initial conditions

The initial conditions for the Navier-Stokes equation (Eq. (3.2)) and for the mass

balance equations (Eq. (3.5)) follow:

v (x, y, t) = 0 t = tin, (3.7)

cO2 (x, y, t) = cO2,0 t = tin, (3.8)

cG (x, y, t) = cG,0 t = tin, (3.9)

cEGF (x, y, t) = 0 t = tin. (3.10)

At the beginning, in the culture chamber there is fresh cell media in equilibrium with

the incubator atmosphere. cO2,0 is the oxygen concentration in equilibrium with the

incubator atmosphere and cG,0 is the glucose concentration in fresh medium.

34



3.3 Mathematical model

3.3.2.2 Boundary conditions

Two different fluid dynamics cases were studied, continuous and discontinuous, so

we had two sets of boundary conditions; they are summarized in Table 3.1 for the

continuous case, and in Table 3.2 for the discontinuous one. In the transient phase,

Table 3.1: Boundary conditions for the mass transport equations for the continuous config-
uration.

Continuous
Boundary Oxygen Glucose EGF

Channel inlet csatO2
cphysG cEGF = 0

Channel outlet Convective flux Convective flux Convective flux
Chamber bottom NO2 = RO2 NG = RG NEGF = REGF

Channel top NO2 = N ext
O2

Insulation Insulation
Others Insulation Insulation Insulation

fresh media is pumped into the chamber and leaves the system due to the convection.

Cell metabolism generates a concentration gradient of oxygen and glucose from the

medium bulk to the bottom of the channel, moreover there is an inward flux of EGF

from the cells to the medium. At the top of the system an oxygen inward flux was

considered due to the PDMS gas permeability [93]. In this second condition there is

Table 3.2: Boundary conditions for the mass transport equations for the discontinuous
configuration.

Discontinuous
Boundary Oxygen Glucose EGF

Channel inlet Insulation Insulation Insulation
Channel outlet Insulation Insulation Insulation
Chamber bottom NO2 = RO2 NG = RG NEGF = REGF

Channel top NO2 = N ext
O2

Insulation Insulation
Others Insulation Insulation Insulation

no medium flow, thus at the inlet and outlet insulation conditions were used, while

the conditions at the top and the bottom of the system are the same depicted in

Table 3.1 .
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3.3.3 Phenomenological expressions

To solve the mathematical model, Eq. (3.2) and Eq. (3.5) must be coupled with

the expression for the flux at the top of the chamber, and for the kinetic of uptake

and production. The inward oxygen flux through the PDMS follows [93]:

N ext
O2

= K0 (pO2 − kO2cO2) , (3.11)

where K0 is the global mass transfer coefficient (K0 = Pm/σ, Pm is the oxygen

permeability in PDMS [94] and σ is the PDMS thickness), pO2 is the oxygen partial

pressure in atmosphere and kO2 is Henry’s coefficient for oxygen.

The oxygen and glucose uptake were described, respectively, as a Michaelis-

Menten equation and a first order kinetic, as reported in literature [95] for the

mESCs:

RO2 = −
[
(k1cG + k2)

cO2

cO2 + k3

]
ρcell, (3.12)

RG = − [k4cGψ + (k5cO2 + k6) k4cG (1− ψ)] ρcell. (3.13)

In Eq. (3.12), k1, k2, and k3 are the oxygen kinetic parameters and ρcell is the overall

cell density; whereas in Eq (3.13), k4, k5, and k6 are the glucose kinetic parameters

and ψ is a damping function. It accounts for a shift in glucose uptake due to

low oxygen concentration (Pasteur effect) without discontinuities in Eq. (3.13), it

follows:

ψ =
tanh

[
k7
(
cO2 − climO2

)]
+ 1

2
, (3.14)

where k7 is the damping coefficient and climO2
is the oxygen threshold value at which

the glucose consumption rate switches.

The secretion rate of the epidermal growth factor was described as a linear

function of the cell number [96–98]:

REGF = qEGFρcellS, (3.15)

where qEGF is the specific production rate and S is the culture chamber surface.
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3.3.4 Cell growth equation

The cell growth was described with a logistic cell growth model [44, 99]; growth

depends on the average oxygen concentration, caverO2
, in the cell culture and on the

overall cell density, ρcell:

dρcell
dt

=

(
1− ρcell

ρmaxcell

)
µcell

caverO2

K + caverO2

ρcell. (3.16)

In Eq. (3.16) ρmaxcell is the maximum cell density supported by the bioreactor or rather

the density at cell confluence, µcell is the maximum growth rate, and K is the half-

saturation coefficient. The average glucose concentration in the culture chamber

was expressed by:

caverO2
=

∫
V

cO2 dV∫
V

dV

, (3.17)

where V is the volume of the chamber. The initial condition for Eq. (3.16) was

expressed by the initial cell density, ρcell,0:

ρcell (t) = ρcell,0 t = tin. (3.18)

3.4 Numerical model

Both the continuous and discontinuous model were numerically solved using the

finite element method (FEM), the algorithm was implemented in COMSOL Mul-

tiphysics 3.5 (COMSOL Inc., Burlington, MA). The solution for the first case is

straightforward, one the other hand, the second model requires the resolution of

several loops, each loop is composed of two models:

• dynamic state (medium flow);

• steady state (static condition);

to speed up the algorithm, the two codes were developed in COMSOL and then

embedded in a main MATLAB (The MathWorks, Natick, MA) code (Fig. 3.2). To
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Figure 3.2: Scheme of the algorithm for solving the microfluidic platform model.

this end a MATLAB/COMSOL interface was created: starting from the input data,

MATLAB solves the first step (tspan =
[
0, tstatfin

]
), that is the static condition, with

the COMSOL model, afterwards COMSOL outcomes are stored by MATLAB which

updates the time span and the initial conditions in order to solve the dynamic state.

Specifically this model uses the the solution at the final time of the previous model,

hence tspan =
[
tdynin , tdynfin

]
, where the initial time for the dynamic model (tdynin ) equals

the final time of the previous static model (tstatfin ). Then the code modifies again

the initial conditions and the time span according to the last solution; MATLAB

algorithm iterates this process, using COMSOL functions, until reaches the final

time.

38



3.5 Results

3.5 Results

The mathematical model describes the temporal evolution of species inside the mi-

crofluidic platform. All the following plots will consider concentration profiles mea-

sured at the bottom-center of the culture chamber; the model simulated experiments

for 20 days. First of all a base case using the Gómez-Sjöberg device will be presented,

afterwards we will focus on the analysis of the culture chamber configuration effect

on the cell behavior, at last we will compare the continuous medium flow condition

with the discontinuous one for a specific case.

3.5.1 Base case study

The device developed by Gómez-Sjöberg was considered as base case to show the

main model outcomes. Figure 3.3 shows the temporal profiles of cell density (solid

line), oxygen (dashed line), glucose (dotted line) and EGF (dash-dot line) concentra-

tion at the center of the culture chamber. All the values were normalized using the

basal condition (cO2,0, the oxygen concentration in equilibrium with the incubator

atmosphere and cG,0 the glucose concentration in fresh medium for glucose conti-

nuity equation) or the maximum value (cmaxEGF for EGF, and ρmaxcell for cell density).

Cells grow as a function of the cell density and oxygen concentration according to

Eq. (3.16), after 20 days the maximum cell density is reached. Since the EGF se-

cretion is proportional to the cell density (Eq. (3.15)) its trend is similar to the cell

density. The oxygen concentration maintains an high level for all the time because

the medium flow inlet and the inward flux through the PDMS supply the cellular

oxygen demand. On the other hand, the glucose concentration rapidly decreases in

time reaching the 20 % of the initial value after 10 days.

3.5.2 Effect of the microfluidic bioreactor configuration

The effect of the culture chamber configuration on the cell culture was studied

varying the ratio Hc/Lc (Fig. 3.1), in particular we used:

• Hc/Lc = 0 — Gómez-Sjöberg et al. configuration;

• Hc/Lc = 1/1 — Figallo et al. configuration;
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Figure 3.3: Temporal profiles at the center of the culture chamber for the Gómez-Sjöberg
microfluidic bioreactor. All the values were normalized using the basal condition (oxygen
and glucose) or the maximum value (cell density and EGF). Cell density (solid line), oxygen
(dashed line), glucose (dotted line) and EGF (dash-dot line) concentration.

• Hc/Lc = 10/1 — conventional culture system limit.

The analysis was performed changing the variable Q̃, it is the glucose rate normalized

by the maximum consumption rate; it is expressed by:

Q̃ =
Q̇cG,0

QG (cG,0) ρcellS
, (3.19)

where Q̇ is the medium flow rate, cG,0 is the glucose concentration in fresh medium,

QG (cG,0) is the maximum specific cell glucose uptake (calculated at the cG,0), and

S is the culture chamber area. In the following discussion only glucose and EGF

profiles will be analyzed since they are the limiting factors for the cells culture,

oxygen is usually at high level.

Figure 3.4 shows the effect of the chamber configuration and the flow rate on the

glucose (Fig. 3.4A) and on the EGF (Fig. 3.4B) concentration. At small values of

Q̃, the system is limited by the mass transport, glucose concentration approaches

to low values. On the other hand, at high value of Q̃, the glucose level is constant
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Figure 3.4: Effect of the culture chamber configuration on the temporal profile of glucose
(A) and EGF (B) concentration. The chamber height, Hc, equals 0 (×), 1 (•), and 10 mm
(�).

because the uptake is the limiting phenomenon. For halfway values of Q̃, the glucose

uptake and mass transport are in a competitive regime.

The flow rate has an opposite influence on the EGF concentration, the smaller

is the medium flow the higher is the EGF level. In fact a great medium flow washes

out EGF secreted by cells; nonetheless in the configuration with bigger chamber

height this effect is negligible because of the diffusion regime.

The configuration with a Hc/Lc ratio equals 1 has an average behavior between

the other two limiting cases; in the operative conditions range, it is able to maintain

a high glucose concentration, and at the same time avoids the cell microenvironment

wash out.

3.5.3 Discontinuous cell media perfusion

As previously described, the microfluidic platform developed by Figallo et al. [90]

can provide suitable culture conditions, nevertheless the this results is not guaran-

teed. A discontinuous medium flow rate (Fig. 3.5) could maintain glucose and EGF

concentration within an appropriate ranges for cell viability. The discontinuous

case (I) was simulated assuming an experiment duration of 20 days; every 24 hours

the cell media is pumped in the culture chamber for 5 minutes in order to replace

80 % of the medium inside the system. The two continuous cases were obtained
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Figure 3.5: Comparison between a discontinuous case (solid line) and two continuous cases
obtained using the same flow rate (bold dashed line) of the discontinuous conditions and the
same amount of glucose (bold dotted line).

using the same flow rate of the discontinuous condition (II) and proving the same

total amount of glucose to the cells (III).

The three experimental setups can provide a sufficient glucose level (Fig. 3.5A);

in the case I the dimensionless glucose level ranges from 0.2 to 0.8, on the other

hand, condition II maintains the maximum glucose concentration. However, this

configuration fails in preserving the cell niche, indeed the EGF concentration is al-

most 0. Condition III better maintains the cell microenvironment, however the flow

rate required could be impossible to setup because it is about 3 order of magni-

tude less than the discontinuous condition, therefore impossible to realize because

of technological limitations. The discontinuous setup gives the best results with the

higher EGF concentration.

3.6 Conclusions

In this chapter, a microfluidic bioreactor was analyzed developing a mathematical

model to describe the overall cell growth and the local mass transport in such system.

The cell microenvironment affects the cell processes [100], therefore in a dynamic

culture is important to sustain cell metabolism, providing nutrients, and at the same

time preserving the cell niche properties required for cell activities.
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The model depicts the cell growth and the temporal evolution of the local con-

centration of oxygen, glucose and epidermal growth factor. It shows the double

effect of the flow rate on the cell microenvironment, indeed it provides nutrients to

the cells, but also it could damage the cell niche.

The mathematical model was applied for studying the effect of two different cul-

ture chamber configurations [90, 92] on the system response. The analysis showed

that the geometrical configuration, along with the medium flow rate play a funda-

mental role in controlling the cell microenvironment; in addition an optimal config-

uration among those considered was detected.

At last the mathematical model was used to study the advantages of a discontin-

uous medium flow through the microfluidic culture chamber. The continuous case

which provides the same amount of nutrients to the system is almost equal to the

discontinuous case, however the first configuration required a flow rate 2 or 3 times

lower. Therefore due to technological limitations it could be impossible to guaran-

tee a constant flow rate at this condition. The discontinuous strategy is a better

compromise sine it is able to preserve the cell niche, in term of both nutrients and

factors released by cells.

A future development of this work could be the optimization of the discontinuous

case considering the experimental constraints, i.e. the frequency of the medium

flow, its length of time, the flow rate, and the length of time of the static condition.

For example, setting the minimum glucose concentration, we could performed a

frequency optimization, that is a frequency of medium feeding as function of the cell

growth in order to tightly control the oscillatory system behavior, maintaining the

concentration above the threshold level.
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4

Microscopic cell growth modeling

in a perfusion three-dimensional

bioreactor

In this chapter the three-dimensional cell growth in a porous system where the

proliferation depends on the cell microenvironment properties will be analyzed. The

system is described by means of a mathematical model which considers the most

important phenomena that characterized a perfused bioreactor; finally two case

studies will be presented: (a) the optimization of the experimental conditions for

hepatic precursor cell culture, and (b) the validation of the mathematical model

using murine skeletal muscle cell line C2C12.

4.1 Introduction

In vivo, cells are part of a three-dimensional (3D) complex multiscale organization

that starts from small cell clusters, and extends to tissues, and to large volume or-

gans. The physiology of an organ depends on the single cell behavior and the cell

microenvironment defined by mass transport phenomena of biochemical species, me-

chanical and hydrodynamic stimuli, electrical signals, and physical and biochemical

45



4. MICROSCOPIC CELL GROWTH MODELING IN A PERFUSION
THREE-DIMENSIONAL BIOREACTOR

interaction with the neighboring cells [101].

In contrast, conventional in vitro cell culture is based on a two-dimensional (2D)

cell culture system where many of the complex in vivo stimuli and interactions can

be altered or not properly reproduced. Therefore, there is a pressing need of scaling

cell culture systems from the 2D to 3D environment to more closely recreate the

behavior of the tissue in vivo, which may better simulate in vivo biology, physiology,

or pathophysiology [102–104].

One of the main objective of the three-dimensional cell cultures is the control of

the cell behavior to achieve an homogeneous system. The cell fate is characterized

by intrinsic and extrinsic variability, related, respectively, to the cell itself and to

the microenvironmental properties [105]. Both of them can induce heterogeneity

in the cell response, leading to a heterogeneous 3D cell culture; the extrinsic vari-

ability is the only one that can be reduced by controlling the properties of the cell

microenvironment manipulating the macroscopic operative conditions.

In vivo 3D dynamic cell culture are characterized by two fundamental compo-

nents: a porous construct for the cell adhesion (scaffold), and a technological device

(bioreactor) to overcome the mass transport limitations. The scaffold may be fab-

ricated from natural or synthetic materials [3, 106] and it is selected based on the

cell culture and on its morphological properties (i.e. porosity and tortuosity).

The bioreactor promotes the mass transport by means of the medium convection;

one of the most promising devices is the perfusion bioreactor where the cell media

flows through the scaffold and the cells, providing all the nutrients to the system and

removing the waste products. The medium perfusion and the scaffold morphology

affect the cell microenvironment properties, hence the cell heterogeneity.

It is fundamental to rationalize the correlation between macroscopic variables

such as scaffold morphology and medium flow rate and the microscopic properties

of the cell culture in order to optimize the experimental parameters for achieving a

high and homogeneous cell density.

In the following sections the modeling of the 3D dynamic cell culture will be

treated for describing the cell heterogeneity and its dependence from the operative

variables.
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4.2 Theoretical framework

A bioreactor system is usually composed of four units: a medium reservoir, a volu-

metric pump, a gas exchanger and a culture chamber. The medium reservoir ensures

all the nutrients necessary for the duration of the experiment while the volumetric

pump guarantees a constant flow independently from the pressure drop. The gas

exchanger controls the oxygen and carbon dioxide (i.e. pH) level in the cell media,

the culture chamber holds a 3D structure (scaffold) and cells are seeded onto its

surface; in this configuration the medium is constrained to flow through the scaffold

(in detail a collagen scaffold). It is composed of a complex network of interconnected

pores with different size, length and tortuosity.

Since this project focused on the cell growth heterogeneity, we assumed the

scaffold geometry as a bundle of independent parallel channels [107] with a defined

channel diameter distribution. Under this assumption, for a given channel diameter

distribution, it is possible to determine the flow rate partitioning based on the

channel diameter (Fanning equation) considering that the isohead loss is the same

for each channel. Hence for each channel is defined an external diameter, Dext
i , and

a specific flow rate, Qi, and for a short interval of time, each channel geometry can

be studied independently.

In this subsystem we assumed that cells adhere on the inner channel surface cre-

ating a uniform layer, hence an effective diameter is defined (D = 2S), that is the

difference between the outer channel diameter and the cell thickness. Two different

domain are identified, the medium (domain I) and the cell domain (domain II). In

cell cultures, cells are subjected to a variety of molecular, structural, hydrodynamic,

mechanical, and electrical cues and their spatial and temporal levels and combina-

tions [3] which affect cell fate. Herein we studied the effect of the oxygen on the cell

behavior, since it is one of the most important metabolite for the cell viability and

proliferation [39]. Inside a channel, medium, having oxygen concentration cIO2
, flows

from the top to the bottom of it with velocity field vz, and oxygen diffuses toward

the domain II. In this domain the transport of the metabolite (cIIO2
) is governed by

the intracellular diffusion, since there is no medium convection here, finally oxygen

is consumed by the cell uptake. Because of the metabolism, cell growth modifies

the channel geometry, therefore the domain I/domain II interface position change
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in time, that the effective diameter (2S) is reduced changing also the whole system

fluid dynamics. Moreover it was assumed an inhibition of the cell proliferation due

to the lack of oxygen and to the shear stress imposed by medium flow on the cell

surface.

4.3 Mathematical model

As previously described, the bioreactor system, hence the 3D porous scaffold can be

approximated as a bundle of stream-flow oriented parallel channels. Considering a

period of time shorter than the cell doubling time, the cell growth does not affect

the flow rate partitioning, therefore each single channel is independent and they can

be studied separately.

4.3.1 Bioreactor model

For a given channel diameter distribution, the Fanning equation provides the flow

rate, Qi, for a single channel i as a function of the total pressure drop, ∆P :

Qi =
πD4

i∆P

128µL
, (4.1)

where µ is the medium viscosity and L and Di are the channel length (that is the

scaffold height) and the channel diameter, respectively. The flow rate partitioning

must satisfy the overall mass balance expressed as followed:

Qtot =

ND∑
k=1

pk(Dk)Qk. (4.2)

In Eq. (4.2) Qtot is the total medium flow rate, ND is the number of channel classes

and pk is the probability from the channel diameter distribution. The flow rate

partitioning is obtained combining Eq. (4.1) and Eq. (4.2). Figure 4.1 shows the

algorithm used for solving the bioreactor model. It is composed of two main for

loops, one for the time and one for the diameters. Starting from the input data
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Figure 4.1: Scheme of the algorithm for solving the bioreactor model.

such as biological and physical properties, operative conditions and the channel dis-

tribution, the code determines the flow rate partitioning, hence each single channel

system is solved for a ∆t period of time. When all the channel classes have been

solved, since the cell growth modifies the effective channel diameter distribution,

the new flow rate partitioning is recalculated and the model solves all single channel

systems for the new ∆t. The algorithm iterates until reaching the final time.

4.3.2 Single channel model

The single channel geometry is reported in Fig. 4.2. The region in the center is

the medium domain, the one at the inner wall is the cell domain. The governing

equation for domain I was solved in the range 0 ≤ r < S (z, t), while the equations for

domain II were solved in the range S (z, t) ≤ r ≤ R, where R is the channel radius.

All the equation were derived for a cylindrical geometry, that is in term of axial

and radial coordinates, indeed we assumed that all the phenomena are independent
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Figure 4.2: Scheme of the single channel geometry.

from the angular coordinate. The generic equation of continuity for oxygen for both

domains are given by Eq. (4.3) and (4.4):

∂cIO2

∂t
= −∇N I

O2
r ∈ [0, S (t)) , (4.3)

∂cIIO2

∂t
= −∇N II

O2
+RO2 r ∈ [S (t) , R] . (4.4)

Hereafter the superscript I and II denote variables of domain I and II, respectively;

cO2 is the oxygen concentration, NO2 is the oxygen flux and RO2 is the cell oxygen

uptake which occurs only in domain II. In this domain, also the cell growth equation

must be considered:

dn

dt
= Rcell r ∈ [S (t) , R] , (4.5)

where n is the number of cells and Rcell is the cell growth rate.
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4.3.2.1 Equations of Change

In domain I, we assumed that the convective flux is relevant only in the axial direc-

tion, moreover in the normal operative conditions, the axial diffusive flux is negligible

if it is compared to the convection (Pe > 1). The microscopic oxygen mass balance

follows:
∂cIO2

∂t
= −

[
1

r

∂

∂r

(
rN I

O2,r

)]
− vz (r, t)

∂cIO2

∂z
. (4.6)

In Eq. (4.6) NO2,r is the radial diffusive flux and vz is the axial velocity. In domain

II, oxygen flux is expressed only by the radial diffusion:

∂cIIO2

∂t
= −

[
1

r

∂

∂r

(
rN II

O2,r

)]
+RO2 . (4.7)

Eq. (4.6) and (4.7) were solved with respect to the oxygen concentration with the

following boundary and initial conditions.

Boundary conditions. Boundary conditions required to solved the microscopic

mass balance equations are:

cIO2
(r, z, t) = cO2,0 z = 0, (4.8)

∂cIO2
(r, z, t)

∂r
= 0 r = 0, (4.9)

N I
O2

(r, z, t) = N II
O2

(r, z, t) r = S (t) , (4.10)

∂cIIO2
(r, z, t)

∂r
= 0 r = R, (4.11)

where cO2,0 is the oxygen concentration in equilibrium with the incubator atmosphere

hence at the inlet of the channel. Eq. (4.9) and (4.11) show, respectively, a symmetry

and insulation condition in the center and at the wall of the channel, and Eq. (4.10)

denotes the balance of fluxes at domain I/domain II interface.
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Initial conditions. At the initial time, in both domains oxygen is in equilibrium

with the incubator atmosphere, therefore the initial conditions follow:

cIO2
(r, z, t) = cO2,0 t = tin, (4.12)

cIIO2
(r, z, t) = cO2,0 t = tin. (4.13)

4.3.2.2 Phenomenological expressions

For solving the system of equations, the previous Eq. (4.6) and (4.7) must be

coupled with the constitutive expression for the oxygen flux in both domains, for

the medium velocity, and for the oxygen uptake. The radial diffusive oxygen flux is

expressed by Fick’s law [108]:

N I
O2,r

= −DI
O2

∂cIO2

∂r
, (4.14)

N II
O2,r

= −DII
O2

∂cIIO2

∂r
, (4.15)

where DO2 is the oxygen diffusion coefficient at 37 ◦C. The medium velocity is

obtained by Hagen-Poiseuille equation [108] because of the low Reynolds value in

all channels:

vz (r, z, t) = vz,max

[
1−

(
r

S (z, t)

)2
]

=
2Q

πS(z, t)2

[
1−

(
r

S (z, t)

)2
]
. (4.16)

The cell oxygen uptake was assumed as a Michaelis-Menten kinetic; it depends on

the local oxygen concentration and on the specific cell volume [5, 34, 109]:

RO2 = − 1

ṽcell

Qmc
II
O2

Cm + cIIO2

, (4.17)

where ṽcell is the cell specific volume, Qm is the maximal oxygen consumption rate,

and Cm is the oxygen concentration at half-maximal oxygen consumption.

Finally an expression for the cell growth rate is necessary for solving Eq. (4.5)

in order to determine the position of the interface between the two domains as

52



4.3 Mathematical model

function of the time and the axial coordinate. The expression was simplified as a

first-order kinetic as reported in literature [39, 50, 51, 110], where the growth rate

is proportional to the local oxygen concentration and to the number of cells:

Rcell = Fdampkcellc
II
O2
n. (4.18)

In Eq. (4.18), Fdamp is a damping function, and kcell is the cell growth kinetic

constant. The damping function takes into account the inhibitory effect on the cell

growth because of a low oxygen level and of a high shear stress on the cell surface;

when the oxygen concentration reaches the minimum value necessary for the cell

viability and/or the medium flow generate shear stress higher than the value that

cells can tolerate, the growth stops. It was formulate as follow:

Fdamp =
1

π

{π
2

+ arctan
[
kdamp

(
cIIO2
− climO2

) (
S (z, t)− Slim

)]}
, (4.19)

Slim =

(
4µQ

πτshear

)1�3
, (4.20)

kdamp is the tunable damping coefficient which determines the steepness of the damp-

ing function between 1 and 0, climO2
is the minimum threshold of oxygen concentration

necessary for the cell growth, and Slim is the effective channel radius below which

the shear stress inhibits the cell growth or induces cell detachment at a rate equal

to cell growth rate. Assuming a constant specific cell volume the number of cells

can be expressed as:

n =
Vcell
ṽcell

=
1

ṽcell

∫ 2π

0

∫ L

0

∫ R

S(z,t)

r drdzdϑ, (4.21)

where Vcell is the total cell volume. Combining Eq. (4.5), (4.18) and (4.21) the rate

of displacement of the effective channel radius, dS/dt, is obtain:

dS

dt
= − kcell

S (z, t)

∫ R

S(z,t)

Fdampc
II
O2
r dr. (4.22)

The initial condition for Eq. (4.22) derived from the initial cell number which was
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converted to an initial effective channel radius, S0:

S (z, t) = S0 t = tin, (4.23)

4.4 Numerical model

Since there is no analytical solution for the mathematical model, a numerical algo-

rithm was developed; first and foremost, all the equations were normalized in order

to:

• reduce numerical instability;

• avoid round-off due to manipulations with large/small numbers;

• assess the relative importance of terms in the model equations.

The dimensionless form of the model was obtained using the following scaling factors:

τ =
DI
O2

L2
t, r̃ =

r

R
, z̃ =

z

L
, s̃ (z̃, τ) =

S (z, t)

R
, (4.24)

cI (r̃, z̃, τ) =
cIO2

(r, z, t)

cO2,0

, cII (r̃, z̃, τ) =
cIIO2

(r, z, t)

cO2,0

. (4.25)

The moving boundary condition (Eq. (4.22)) was solved by the front fixing method

[111]. A further coordinate system transformation was applied to both domains of

the model to solve the moving boundary problem:

ξI =
r̃

s̃ (z̃, τ)
, (4.26)

ξII =
r̃ − 1

s̃ (z̃, τ)− 1
. (4.27)

In this coordinate system, both ξI and ξII range from 0 to 1. The finite volume

method was used to implement the new channel model obtained from from Eq.

(4.6), (4.7) and (4.22); we chose this technique since it is a conservative method

and therefore it guarantees the mass conservation. The spatial discretization of

the PDEs leads to a system of ordinary differential equations (ODEs) which was
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solved using MATLAB (The MathWorks, Natick, MA), and the function ode15s to

compute the equations.

Two different type of spatial discretization were used in the model, a linear

one along the axial coordinate, by contrast a geometric discretization in the radial

direction. Starting from the domain I/domain II interface, the dimensionless width

of the mesh i (h̃i) follows:

h̃1 =
(1− 2q)[

1− (2q)Nr

] , (4.28)

h̃i+1 = 2qh̃i, (4.29)

where q is a discretization parameter and Nr is the number of mesh in the radial

direction. Using this kind of spatial discretization it was possible to locally refine

the mesh where the oxygen gradient is steeper, that is at the interface, with a

reasonable computational cost. Several simulations were run in order to optimize

the mesh size resulting with 10 meshes in the axial direction and 20 meshes in the

radial coordinate, for each domain.

The implementation of the moving boundary scheme by means of the front fixing

method was validated comparing the numerical solution to the analytical one of the

Stefan problem [111]; moreover the model was tested to ensure the conservation of

the mass.

4.5 Results

The mathematical model of the three-dimensional bioreactor describes the hetero-

geneity properties of the system providing the spatiotemporal evolution of several

outcomes:

• the effective channel diameter distribution;

• the flow rate partitioning;

• the cell volume (i.e the cell growth);

• the oxygen concentration;
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• the shear stress on the cell surface.

First of all we will focus on the single channel results to depict the evolution in

time of a simple system like this one, after that the whole model outcomes will be

presented where the initial channel distribution is a Gaussian distribution.

4.5.1 Single channel

Figure 4.3 shows the spatiotemporal evolution of the cell volume as changing of the

position of the domain I/II interface (s̃) and the oxygen concentration profiles (c)

for a 300 µm diameter channel.

The effective diameter, 2s̃, decreases from the uniform initial condition of s̃0 =

0.91 which corresponds to a thickness of domain II equal to 9 % of the channel diam-

eter. The model points out different cell growth rates at different axial positions,

resulting in a modifying of the interface line slope line in Fig. 4.3A. The cell domain

at the channel inlet (z̃ = 0) grows faster than at the channel outlet (z̃ = 1). At the

steady state, s̃ reaches a uniform value along the z-direction equal to 0.30, which

corresponds to a cell thickness of 0.70.

The grayscale maps (Fig. 4.3B and C) represent the dimensionless oxygen con-

centration in domain II after 1 and 11 days, respectively. Oxygen value is higher

near the inlet of the channel, and it decreases along the axial and radial coordinates,

it reduces more as domain II is thicker. After 1 day, the cell domain is thicker at

the inlet than the outlet section and the minimum oxygen value is about 0.95, while

after the 11 days, the cell layer is uniform along the channel and equals 0.70, and

the lower oxygen value is about 0.85.

Figures 4.3D and E show the temporal evolution of the oxygen concentration for

z̃ = 0.25 and z̃ = 0.9, respectively. The dashed line in Fig. 4.3D and E denotes

the position of domain interface at different time for the two z-sections. In domain

II the oxygen concentration is reduced by the cell consumption; the thicker cell

domain means lower concentrations not only in this region but also in the center

of the channel. Figures 4.3D and E show the oxygen concentration reduction with

time and the cell volume growth. At the outlet of the channel (Fig. 4.3E), the

concentration is lower than at the inlet (Fig. 4.3D), and the different shape of

the dashed lines underlines the difference in cell volume growth as observed in Fig.
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Figure 4.3: Outcomes for a 300µm diameter channel. (A) Temporal evolution of the domain
I/domain II interface in the channel; the bold lines show the interface position at 1 day and
at 11 days, the same time reported in (B) and (C). (B,C) Grayscale maps of the oxygen
concentration in the cell domain at 1 day (B) and 11 days (C). (D,E) Evolution in time of
the normalized oxygen concentration streamline in the radial direction at z̃ = 0.25 (D) and
z̃ = 0.9 (E). Dashed lines depict the position of the domain I/II interface.
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4.3A-C. The oxygen concentration is always much higher than the critical value of

0.25, hence the cell growth is inhibited by the shear stress.

4.5.2 Bioreactor

Figures 4.4 and 4.5 show an example of the outputs obtained from the model. In

particular a scaffold with a Gaussian channel diameter distribution with mean and

variance value equal, respectively, to 2.8× 10−4 m and 2.5× 10−9 m2 [112] was con-

sidered. Figure 4.4 shows the evolution in time of the effective channel diameter

distribution and the flow rate partitioning. At first, effective diameters (Fig. 4.4A)

has a Gaussian distribution (bold dashed line centered in 2.78× 10−4 m), in time it

becomes narrower, then lognormal, and at last, it resembles a bimodal distribution

(bold line on the left) with the two modes, the highest centered at 4.7× 10−5 m,

while the second, smaller and wider, at 1.2× 10−4 m.

Similarly, it is possible to analyze the temporal evolution of the total volumetric

flow rate partitioning between channels (Fig. 4.4B). The initial distribution (bold

dashed line on the left) is obtained from the Gaussian diameter distribution and

it is asymmetric because the flow rate is related to the channel effective diameter

through a four power law (Fanning equation). The discontinuity that can be seen for

a diameter of 3.8× 10−4 m in each profile is due to a change of diameter sampling.

In channels with a smaller external diameter (less than 3.1× 10−4 m), the medium

flow rate decreases in time approaching almost to zero; on the other hand above

this threshold value the flow rate increases. The presence of this threshold value

is visible also in Fig. 4.4C, which summarizes the information of the previous two

plots, showing the temporal evolution of the effective diameter versus the relative

channel flow rate. Each line represents a class of channels defined by the value of

the external diameter (D). During the first 4 days, the flow rates are constant in

almost all channel classes, while the effective diameters decrease. After this initial

trend, channels follow two different evolutions, a first group which effective diameter

approaches to a unique value (about 4.7× 10−5 m) as discussed above for Fig. 4.4A,

and the flow rates come closer to zero, as shown in Fig. 4.4B. While a second group

of channels hold a higher effective diameter values and at the final time they create

a second diameter distribution centered at 1.2× 10−4 m, as discussed above for Fig.
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Figure 4.4: Temporal evolution of effective channel diameters and volumetric flow rates in
a multichannel scaffold. (A) Probability function of the effective diameters at different time
points. Bold dash line represents the initial distribution, and the thicker solid line is the
final distribution. (B) Evolution of the volumetric flow rate partitioning per each channel.
Bold dash line corresponds to the initial distribution, and the thicker solid line is the final
distribution. (C) Temporal evolution of the effective channel diameter versus the volumetric
flow rate of that channel. Each line corresponds to a class of channel defined by the external
diameter; the top part of the figure denotes the initial condition, while the bottom one denotes
the condition at the final time; the points on the lines indicate time steps of 12 h.
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4.4A and the flow rates increase, as seen in Fig. 4.4B. The threshold value between

these two groups is the class with external diameter equals to 3.1× 10−4 m.

For each channel, Fig. 4.5 reports data of the average cell volume fraction (Fig.

4.5A), the uniformity of cell growth along the z-direction (Fig. 4.5B), the shear

stress on the cells at the inlet (Fig. 4.5C), and the oxygen concentration at outlet

(Fig. 4.5D).

In this particular case, the model predicts a cell volume fraction raising in every

channel up to a value higher than 0.8 (Fig. 4.5A). The cell volume grows at the

same rate in all of the channels until a cell fraction of about 0.45 (points on the

line indicate time step of 12 h), after that in the channels with external diameters

around 2.5× 10−4 m the growth rate becomes higher; the steady state is reached

earlier and at lower final cell volume fraction in the larger channels. As previously

reported in Fig. 4.4A-C, Fig. 4.5A shows once more how the effective diameters

of the smaller channels approach to the same value. Figure 4.5A and 4.4 show the

cell growth heterogeneity in the whole scaffold system using an effective diameter

calculated as the average value along the z-direction. By contrast, Fig. 4.5B shows

the variance of the s̃ value along the z-direction in each channel, which represents

the heterogeneity along this direction. In this graph, the effective average diameter

is plotted versus the absolute value of the difference between s̃ evaluated at the inlet

and at the outlet of each channel. At the beginning, it increases and the inlet value

is lower than the outlet one. This difference reaches a maximum and then decreases.

In the larger channels, the difference reaches almost the zero value at the stationary

state; in the smaller channels (e.g., inset in Fig. 4.5B) after a decreasing phase,

the difference increases again up to 0.25 at the end of the culture in the smallest

channel.

The shear stress on the cell surface was evaluated at the inlet of the channels,

since this is the zone where the s̃ is always the minimum of the channel, and thus

the shear stress reaches the higher values. The shear stress distribution in time

is reported in Fig. 4.5C. The shear stress depends on the flow rate partitioning,

and in channels with external diameter greater than 3.1× 10−4 m, it increases with

time overcoming the shear stress limit (dashed line at 0.1 Pa). In addition to the

shear stress, oxygen concentration is the other factor that can inhibit the cell growth.

Figure 4.5D reports the temporal evolution of the oxygen concentration at the outlet
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Figure 4.5: Outcomes of a simulation of a multichannel scaffold. The temporal evolution of
the effective diameter of different classes of channels is reported versus the cell volume fraction
in that channel (A) or versus the absolute value of the difference between s̃ at the inlet and
at the outlet of every channel (B). Each line corresponds to a class of channel defined by
the external diameter; the left side corresponds to the initial Gaussian distribution, and the
points on the lines indicate time steps of 12 h. Inset in (B) shows the temporal evolution of the
effective diameter for a channel with small diameter value. Temporal profile of the shear stress
evaluated at the inlet of the channels as a function of the external channel diameter; the dash
line shows the threshold shear stress value above which it inhibits cell growth (0.1 Pa) (C).
Dimensionless oxygen concentration evaluated at the outlet of the channels versus the external
diameter and parametric in time; the dashed line indicates the minimum dimensionless oxygen
concentration necessary for cell growth (5.26× 10−2 mol /m3) (D).
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of each channel as a function of the external channel diameter. Starting from the

initial value (Eq. (4.12) and (4.13)), the oxygen level decreases with time. The

decrement is almost negligible in channels greater than 3.1× 10−4 m, on the other

hand, in the smaller channels the oxygen level drops below the minimum oxygen

concentration necessary for the cell growth (dashed line at 0.25), reaching values

close to zero.

Sensitivity analysis on the model parameters was performed showing that the

presented results are quite insensitive to the parameters. For instance, a 100 %

variation of the cell growth kinetic constant kcell or the maximal oxygen consumption

rate Qm induces a change in the mean cell volume fraction of about 4 % and 1 %,

respectively, without modifying the general trend.

Analysis of the effect of operative variables on the cell growth was studied, in

particular the diameter variance and the medium flow rate were taken into account

(results are reported in appendix B). Briefly, changing the diameter distribution

(i.e. variance), the mean cell volume fraction is not sensible affected, nevertheless

the dispersion, that is the difference between the highest and the lowest cell volume

is enhanced, increasing the variance value of the Gaussian distribution. In contrast,

the medium flow rate highly affects the cell growth heterogeneity, indeed at low flow

rate cells grow slowly and they are mainly inhibited by the lack of oxygen resulting

in a uniform, but low cell volume fraction at the final time. While, at high flow rate,

the cell growth is characterized by a high heterogeneity (cell volume ranges from 0.1

to about 1) due to the effect of both inhibitor factors. In particular in the bigger

channels the growth stops only because of a shear stress higher than the threshold

limit. On the other hand, in the smaller channels, both a shear stress equals to the

limit and an oxygen concentration equals to zero inhibit the cell growth. Between

these two limit cases an optimum flow rate value can be found in order to obtain a

high and uniform cell fraction.

4.6 Applications

The developed mathematical model was applied to the two different cases, the in

vitro differentiation of hepatic precursor cells and the cell growth of C2C12 mus-

cle cell. In particular, the operative conditions for hepatic precursor cell culture
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were optimized through model simulations, whereas muscle cell line C2C12 culture

experiment was setup for validating the mathematical model.

4.6.1 Optimization of the experimental conditions for hep-

atic precursor cell culture

The model was used for rationalize the precursor liver cells culture in a 3D perfusion

bioreactor. The model supported the design of an optimal experimental plan to

improve the differentiation of adult precursor liver cells to mature hepatic cells.

In this work, the mathematical model was applied to optimize the medium flow

rate in order to obtain a high and uniform cell fraction within the 3D scaffold

maintaining an oxygen concentration greater than the threshold value for avoiding

growth inhibition due to the formation of hypoxic region. In particular, a single

channel model was used considering the average channel diameter of the scaffold

and its flow rate. Simulations were run changing the flow rate to determine the

optimum; three values were studied, 0.1 mL /min, 0.5 mL /min and 2.5 mL /min.

All these conditions ensure an oxygen level above the limit value through the

channel (see Appendix A), however, the flow rate equals to 0.1 mL /min should be

considered the lower limit because in this case the oxygen level at the outlet almost

reaches the threshold oxygen concentration. Figure 4.6 shows the effect of the flow

rate on the cell growth and heterogeneity. At low values, cells reach higher density,

Figure 4.6: Time variation of the percentage of cell volume. Data are given for three flow
rates: 0.1 mL /min (left), 0.5 mL /min (center), 2.5 mL /min (right). Each graph shows the
data for three z-coordinates, that is at the channel inlet (continuous line), midline (dashed
line), and outlet (dashed and dotted line).
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especially at the inlet of the channel, nevertheless the growth is heterogeneous, in

fact the cell volume percentage at the inlet of the channel is three times bigger

than the outlet. On the other hand, increasing the flow rates ensures a uniform cell

growth, but at lower values. In conclusion flow rate equals to 0.5 mL /min is the

optimal value since it guarantees high and uniform cell volume fraction.

These results were used to design an optimal experimental plan for developing

an efficient differentiation method of adult precursor liver cells to mature hepatic

cells. Complete discussion of this research is reported in Appendix A; these results

are published by Carraro et al. [113].

4.6.2 Validation of the mathematical model using murine

skeletal muscle cell line C2C12

A three-dimensional C2C12 cell culture in a perfusion bioreactor was used for vali-

dating the mathematical model; the cell growth and its distribution in the porous

scaffold were considered.

The experimental device used for the model validation is the perfusion bioreactor

described in chapter 2 with recirculation of cell media. In the original configuration

[76] (Fig. 4.7A), inside the chamber is allocated a perforated PDMS (polydimethyl-

siloxane) holder which holds the scaffold; medium was forced to flow inside the hole

through the construct. The adhesion between PDMS and the chamber is guaran-

Figure 4.7: Longitudinal section of the bioreactor culture chamber. (A) Original configura-
tion, (B) New configuration.

teed by a Teflon film placed at the bottom of the culture chamber, nevertheless, if
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the holder or the scaffold are not well positioned, medium bypass can occur. To fix

this problem, a new culture chamber setup was developed (Fig. 4.7B). In this new

configuration, the scaffold is inserted into a removable Teflon holder and it is sealed

with an O-ring. This holder is held in place by a PDMS holder with a cone shape

in order to ensure the adhesion to the culture chamber.

Figure 4.8 shows a scaffold cross section after 7 days of culture with the new

chamber configuration, cell nuclei were dyed with Hoechst 33342. It presents almost

a uniform cell distribution in the whole section, although there is a small region at

the periphery with a high cell density. In addition, this new setup facilitates the

operation of insertion and extraction of the scaffold.

Figure 4.8: Cross section of the scaffold after 7 days of culture in the bioreactor. Nuclei are
counterstained with Hoechst. Scale bars 1 mm.

For validating the mathematical model, C2C12 cells were cultured in the per-

fusion bioreactor; cells were seeded on each scaffold with a cell density equals to

5× 105 cells /scaffold, and cell media was pumped at a flow rate of 0.65 mL /min for

7 days. At every time step, that is day 0, 2, 4 and 7, two scaffolds were collected

and frozen for the cell count. Cell analysis were performed with Hoechst 33342 as

reported in chapter 2, three values were measured for each scaffold:

• the total number of cells;
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• the cell distribution for the top, the middle and the bottom region;

• the cell distribution along the height of the scaffold.

Using the last type of data at the initial time as input for the model, a simulation

was run to compare its results with the experimental data. Figure 4.9 shows the

cell distribution (as number of cells for each channel class) in the scaffold middle

section at the final time. The blue bars represent the experimental data with their

Figure 4.9: Comparison between the experimental data (blue bars) with the model data
(green line) for the cell heterogeneity for the middle section of the scaffold after 7 days of
culture in the perfusion bioreactor

standard deviation, while the green line is the data obtained from the simulation

using all the proper parameters for this case. As shown, the model well represents

the experimental data both in term of number of cells and in term of cell distribution.

The development of the mathematical model is published by Flaibani et al. [41],

while the experimental validation is in preparation for the submission.
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4.7 Conclusions

In this chapter, a mathematical model of the cell growth in a three-dimensional

porous scaffold in a perfusion bioreactor was developed. In particular, we focused

on the cell volume fraction evolution in time and its degree of heterogeneity in a

porous scaffold with a known pore size distribution. The cell microenvironment

controls the cell fate, such as the cell metabolism and the cell growth [100, 104] and

there are not any techniques to monitor the local properties of a 3D cell culture.

Therefore a mathematical model which can predict these properties and their spatial

and temporal profile is necessary to estimate how the operative conditions affect the

cell growth and to achieve a uniform 3D cell culture. In particular, we studied the

effect of the oxygen on the cell growth since it has a great influence on the cell

culture [39].

The model provides information on the temporal evolution of the microscopic

variables of the system and their distribution inside each channel in the radial and

axial direction. Moreover, the model takes into account the cell growth inhibition

due to chemical and/or mechanical stimuli, such as the oxygen concentration and

the shear stress imposed on the cell surface.

The mathematical model was applied in two different cases, for the hepatic pre-

cursor cells culture and for C2C12 cells culture. In the former it was used in order to

optimize the operative conditions, in particular we focused on the medium flow rate

to ensures a high oxygen level inside the scaffold and a uniform cell proliferation. In

the second case a C2C12 culture was carried out for validating the model; at every

time step scaffolds were taken from the culture chamber to perform the cell analysis.

The comparison between the experimental data and the simulation outcomes shows

that the model is able to predict the cell growth heterogeneity as function of the

operative variables.

At last the model can be adapted to different cell types or other molecules, since

it has been written in a generic form. For example it could be used to study the effect

of endogenous and exogenous factors in the microenvironment on the cell processes.
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5

Cell signaling model in a perfusion

three-dimensional bioreactor

In this chapter we will use the model framework developed in chapter 4 for studying

the cell response to an exogenous stimulation, we focused on the influence of an

insulin stimulation to the cell glucose metabolism. The insulin signaling pathways

was analyzed and it was coupled with the previous cell growth model for describing

the cell signaling in a cell culture system.

5.1 Introduction

The possibility of obtaining in vitro 3D cell culture model which can reproduce the

in vivo physiology is becoming of paramount importance for assisting the process of

drug development and drug screening.

Three-dimensional cell culture systems are characterized by high complexity

[101], indeed they require a spatial organization, spatially and temporally controlled

stimuli such as all the biological, chemical, mechanical cues must be provided to the

cells for controlling their fate.

In vitro cell models are commonly used as step for therapy discovery program

because they allow to perform low cost and quick experiments, moreover high-

throughput analysis can be carried out. However this approach could not describe
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the response of a complex functional tissue due to the lack of structural and topolog-

ical cues, the different of chemical and mechanical properties and the not controlled

spatio-temporal combination of soluble factors in a conventional cell culture sys-

tems [114]. The other type of models, the animal models (spontaneous, induced or

transgenic), are not able to represent human biology, cannot guarantee the efficiency

of drug on human models, and experimentations are time consuming with usually

highly sophisticated and costly procedure for the maintenance of animals. Thus

there is a need of “something between a Petri dish and a mouse”, to represent a cell

environment in a living organism and to be more predictive of in vivo systems [115].

An ex vivo tissue culture model could be an intermediate approach which resembles

the complexity of an in vivo physiology and at the same time the achievement of

this experiment is as easy as a standard cell culture.

A rational understanding of the correlation between the experimental conditions,

the cell microenvironment and therefore the cell response is important for accurately

investigate biological problems, and, furthermore for the experiment optimization.

Several models that describe the pathways related to signal transduction have

been developed. Most of them focus on specific steps of the whole signaling, for

example the insulin receptor binding kinetics [116–118], protein kinase cascade

[119, 120] and GLUT4 translocation [121, 122]. In addition, models which study

the diffusion of protein kinases and intracellular enzymes during signaling transduc-

tion have been developed [123]. Nevertheless there are only a few insulin signaling

models which describe the system beginning from the binding of the insulin to its

receptor until the translocation of GLUT4, the most used is the model proposed by

Sedaghat et al. [15]. This particular signaling model has been applied for studying

its interaction with other pathways [124, 125] or for analyzing the effect of the insulin

signaling of the whole-body blood glucose regulation system [126, 127]. These whole-

body models although, does not consider the in vivo mass transport of molecules

and their fluid dynamics, and the different time and spatial scales that characterized

each subsystem.

In this project, we aimed to study the intracellular response of a three-dimensional

cell culture in a perfusion bioreactor to an insulin stimulation. All the phenomena

which occur at a bioreactor level have lengths scale and characteristic times which
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are different from those that characterized the intracellular insulin processes. There-

fore to analyze such system from the macroscopic scale to the single cell level, we

must also model the signaling pathways and subsequently couple it with the mass

transport model in order to (a) describe the effect of the system heterogeneity on the

insulin signaling pathways and on the glucose consumption rate, (b) determine if the

cell response is experimentally measurable, and (c) detect which are the variables

that most affect the signal transduction cascade.

Glucose was considered along with the insulin because it plays an important role

in the cell processes and most importantly it is involved in metabolic disorder such

as type 2 diabetes mellitus [128, 129]. Such model could be a fundamental step for

the understanding of the physiology of this disease. Having a tool that predicts the

biological response to an insulin stimulation of both healthy and diabetic patient can

be used to characterized tissues and therefore determine the optimal experimental

conditions with a view to perform drug screening tests.

5.2 Multiscale theoretical framework

Before defining the theoretical framework, a brief description of three-dimensional

cell culture in perfusion bioreactor (Fig. 5.1) follows. Medium flows through the

Figure 5.1: Representative scheme of multiscale mass transport between bioreactor and
single cell.

scaffold from the top to the bottom and its geometry was simplified by reducing the

interconnected pores network to a bundle of parallel, stream-flow oriented, cylin-

drical channels with a defined channel diameter distribution. In each channel, cells
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adhere at the inner wall creating a continuous and uniform layer, so there are two

regions, the medium and the cell domain, respectively at the center and at the wall

of the channel. The cell media flows in the center and the mass transport of all

the molecules, such as nutrients, metabolites, oxygen, waste products is governed

by axial convection and radial diffusion; because of the concentration gradient be-

tween the two domains, there is a flux of molecules toward the interface medium/cell

domain. In the latter, the mass transport is governed by the interstitial diffusion,

then substances are internalized and consumed by cell metabolism. When insulin is

internalized it triggers its signaling pathways (Fig. 5.2).

Figure 5.2: Kinetic framework, insulin signaling pathways without feedback, adapted from
Sedaghat et al. [15]. The bold arrows represent insulin and glucose outcomes from the mass
transport model.

Insulin receptors, on the cell membrane, bind one or two molecules of insulin,

hence both once- and twice-bound phosphorylated receptors phosphorylate IRS-1,

which then binds and activates PI 3-kinase. Consequently activated PI 3-kinase con-

verts the substrate phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to the product

PI(3,4,5)P3, which promotes the activation of the downstream reactions, that is the

serine/threonine protein kinase (Akt) and PKC-ζ. The final reactions involve the

GLUT4 translocation. Under basal conditions it recycles between an intracellu-

lar compartment and the cell surface, on the other hand, on insulin stimulation,
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there is an increase of GLUT4 trafficking from the cytosol to the membrane. It is

explained by the presence of a separate pool of intracellular GLUT4 recruited to

the cell surface, this raise is a linear function of the metabolic effect produced by

phosphorylated Akt and PKC-ζ. Since the glucose consumption rate is mediated

by the cell surface GLUT4, and an inward insulin flux promotes the translocation

of the protein from the cytosol to the cell membrane, it is straightforward that the

increasing of GLUT4m raises the flux of glucose internalization and therefore the

glucose uptake.

5.2.1 Bioreactor model

All the assumptions necessary to model this system have been described in chapter 4,

where the oxygen mass transport was analyzed. In this model we also studied other

molecules, that is glucose and insulin which have different experimental conditions

compare to the oxygen, in particular the inlet conditions. Indeed oxygen is always

in equilibrium with the incubator atmosphere thanks to the gas exchanger and its

concentration is calculated taking into account of its composition [32]. The oxygen

concentration in the incubator is reduced by both the supplemental carbon dioxide

(CO2 at 5 %) and water vapor (95 % RH) [130]; this conditions yield pO2 values

of 142 Torr. Oxygen is slightly less soluble in tissue culture medium than water,

reported at 1.29 nmol /(cm3 Torr) at 37 ◦C in DMEM [131]. The product of this

solubility coefficient and pO2 gives the boundary conditions for dissolved O2 in the

model.

Glucose inlet concentration depends on the bioreactor configuration; for an open

configuration it means that scaffold is always perfused by fresh media and therefore

the glucose level equals the physiological condition, on the other hand for a closed

configuration, without make up of medium, glucose decreases in time as a function

of the cell metabolism.

At last, insulin has a defined profile as function of time since it is a stimulus

fixed by the experimental plan.

The mathematical bioreactor model will be describe in two main parts: mass

transport model and kinetic model.

73



5. CELL SIGNALING MODEL IN A PERFUSION
THREE-DIMENSIONAL BIOREACTOR

5.2.1.1 Mass transport model

In this section we will present an upgraded version of the single channel model

to include all the species, where all the assumptions made in chapter 4 are still

reasonable.

The system was described considering adipose cell since the signaling model was

developed for this cell type, however it has been used for studying muscle cell [127].

As previously reported, the governing equations for the medium (domain I) and

for cell (domain II) domain were solved in the range 0 ≤ r < S (z, t) and S (z, t) ≤
r ≤ R, respectively, with S (z, t) the medium/cell interface and R the channel radius.

In domain I and II the 2D mass balances follow:

∂cIi
∂t

= −
[

1

r

∂

∂r

(
rN I

i,r

)]
− vz (r, t)

∂cIi
∂z

, (5.1)

∂cIIi
∂t

= −
[

1

r

∂

∂r

(
rN II

i,r

)]
+Ri. (5.2)

Where the subscript i stands for oxygen, glucose and insulin, Ni,r is the diffusive

molar flux in the radial direction, vz is the axial medium velocity and Ri is the

i-species uptake rate. In both Eqs. (5.1) and (5.2) the radial diffusive molar fluxes

were expressed by Fick’s law [108] and the axial velocity by the Hagen-Poiseuille

equation [108]. The rate of consumption of oxygen and glucose were described using

data from literature [58, 132] and they are reported, respectively, by Eqs. (5.3) and

(5.4):

RO2 = − 1

ṽcell

Vm,O2c
II
O2

Km,O2 + cIIO2

, (5.3)

RG = −
(

GLUT4m

GLUT4m|basal

)(
1

ṽcell

Vm,Gc
II
G

Km,G + cIIG

)
. (5.4)

Where ṽcell is the cell specific volume, Vm is the maximal species consumption

rate and Km is the concentration at half-maximal consumption, for both species.

GLUT4m is the percentage of protein on cell surface, GLUT4m|basal is the percent-

age of protein on cell surface at basal condition, that is without insulin stimulation.

These two variables are outcomes of the insulin signaling model and their ratio rep-
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resents the increment of the glucose consumption rate due to the raise of cell surface

GLUT4 expressed by cells after an insulin perturbation. A linear dependence of

glucose metabolism from cell surface GLUT4 was assumed [15]. By contrast the

insulin depletion due to the insulin signaling internalization is negligible compare to

the total amount which enters in the system.

Eqs. (5.1) and (5.2) were solved respect to cIi and cIIi along with the insulin

signaling model (see Appendix C for details), the boundary conditions in the radial

direction are equals to those reported in chapter 4, that is symmetry at the center

of the channel, insulation at the channel wall and balance of fluxes at domain I/II

interface. The channel inlet conditions (z = 0) depend on the metabolites; it is a

Dirichlet boundary condition for oxygen (Eq. (5.5)):

cIO2
(r, z, t) = cO2,0 z = 0, (5.5)

where cO2,0 is the oxygen concentration in equilibrium with the incubator atmo-

sphere. Regarding glucose, its inlet condition is determined by the bioreactor config-

uration: without recirculation or with recirculation. The former brings to a Dirichlet

boundary condition like oxygen expressed by Eq (5.6):

cIGlu (r, z, t) = cphysGlu z = 0, (5.6)

where cphysGlu is the glucose concentration in the cell media. On the other hand with

recirculation (without glucose make up), glucose decreases in time because of the

total cell metabolism (Eq. (5.7)):

dcIGlu (r, z, t)

dt
=

1

Vholdup

∫
VR

RG dVR z = 0, (5.7)

In Eq. (5.7), Vholdup id the holdup bioreactor volume and VR is the reaction volume,

i.e. the total cell volume. The inlet insulin concentration is given by the stimulus,

for example, with a pulse perturbation (t2 − t1) long as described by Sedaghat et
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al. [15], the condition follows:

cIIns (r, z, t) :

{
cIns,0, if t1 ≤ t ≤ t2,

0, otherwise.
z = 0, (5.8)

In Eq. (5.8), cIns,0 is the intensity of the perturbation, that is the concentration of

the insulin solution used to stimulate the system. The initial conditions (t = tin) for

the oxygen and glucose is a uniform concentration in the whole system (Eq. (5.9)):

cIi (r, z, t) = cIIi (r, z, t) = ci,0 t = tin, (5.9)

where ci,0 is the the oxygen concentration in equilibrium with incubator atmosphere

for oxygen continuity equation; and the glucose concentration in fresh medium for

glucose continuity equation. Initial condition for insulin must be consistent with the

boundary condition, therefore, since t1 > 1 in most cases, it gives (Eq. (5.10)):

cIIns (r, z, tin) = cIIIns (r, z, t) = 0 t = tin. (5.10)

To solve the system of equation defined by Eqs. (5.1)-(5.2) for each i-species, these

equations must be coupled with the cell growth equation for describing the temporal

displacement of the domain I/domain II interface. The cell growth is defined by a

Monod expression [99]:

dn

dt
= Rcell (z, t) , (5.11)

Rcell = Fdampµn = Fdampµmax
cIIO2

K + cIIO2

n. (5.12)

In Eqs. (5.11) and (5.12), n is the number of cells, Rcell is the cell growth rate,

Fdamp is a damping function, µ is the specific growth rate and µmax is the maximum

growth rate, K is the half-saturation coefficient. As reported in chapter 4, the

damping function takes into account the cell growth inhibition effect of low oxygen

concentration. The kinetic decreases once the oxygen concentration approaches the

limit value, when it is reached the growth stops. In this system the shear stress

inhibition was not considered since the adipose cell growth rate is slow compare to
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an experiment duration of 24 h (the doubling time equals about 240 hours [133].

The damping function has been defined as:

Fdamp =
1

2

{
1 + tanh

[
kdamp

(
cIIO2
− climO2

)]}
(5.13)

Similarly to what has been done in chapter 4, Eqs. (5.11) and (5.12) were rearrange

to obtain the time profile of the interface displacement (Eq. (5.14)):

dS

dt
= − µmax

S (z, t)

∫ R

S(z,t)

Fdampc
II
O2

K + cIIO2

r dr. (5.14)

Eq. (5.11) satisfies the given initial condition (n (z, tin) = n0 (z, )), hence the initial

number of cells is converted in the interface position:

S (z, t) = S0 (z) t = tin, (5.15)

where S0 (z) is the initial domain I/domain II interface position as function of the

axial coordinate. Following the procedure showed in chapter 4 the whole model

was rewritten in dimensionless form before its implementation and resolution in

MATLAB (The MathWorks, Natick, MA).

5.2.2 Kinetic insulin signaling pathways model

One of the most mechanistically detailed model of the insulin signaling pathways

that can be find in literature was developed by Sedaghat et al. [15]. Two variations

of the model were proposed by the authors, one without the feedback mechanisms

and one with feedback. Ordinary differential equations, derived using the mass-

action principles, were used to describe the time-varying concentration of the state

variables. The model with feedback mechanisms is more detailed and better fits

the experimental data showed by the authors [15], nevertheless we utilized the one

without feedback. The latter one was used because it is easier to implement and its

numerical resolution is faster; moreover the error introduced with this approximated

model does not strongly affect the cell surface GLUT4 determination giving an

average error equals to 8.5 %, as depicted in Fig. 5.3. In this project we mainly
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Figure 5.3: Comparison in the temporal GLUT4m profile between the two model reported
by [15].

focused on the GLUT4m, which is the most important outcome of the signaling

model since its temporal profile affects the glucose consumption rate.

5.2.2.1 Model reduction

Before coupling the bioreactor model with the cell signaling model, the insulin path-

ways has been analyzed to reduce its order and therefore its complexity, obtaining

a new version which preserves its input-output behavior while reducing the com-

putational costs. The Sedaghat [15] model has been simplified using the following

assumptions:

• the production and degradation of receptors, specifically for insulin and glucose

receptor, were not considered because they are slow processes [134] compare

to the signaling process;

• it is reasonable considering the conservation of the total amount of proteins

[134], such as insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phos-

phatidylinositide 3-kinase (PI 3-kinase), phosphatidylinositol bi/tri-sphosphates,

Akt, protein kinase C (PKC-ζ), glucose transporter type 4 (GLUT4);
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• the dependency of original kinetic parameters from state variables was re-

moved.

The first hypothesis allowed to neglect the production and degradation of insulin

and glucose receptor as showed in Fig. 5.4. The second hypothesis allowed to

Figure 5.4: Modifications (red crosses) of the insulin signaling pathways model after the
model reduction.

replace 7 ordinary differential equations with so many algebraic equations. The

third simplification involved a modification of 4 parameters introduced by Sedaghat

et al. [15], hence Eqs. (C.9)-(C.13) have been modified.

The reduced model was compared with the original one (Fig. 5.5), in particular

the cell surface GLUT4 was taken into account; its temporal profile evaluated with

the new model closely represents the original data with an average error equals to

0.3 %. Thanks to the model reduction approach, the new system of equations is

composed of 13 ordinary differential equations and 7 algebraic equations, while the

Sedaghat model is composed of 20 ordinary differential equations. All the equations

of the simplified insulin signaling pathways model are listed in Appendix C.
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Figure 5.5: Comparison between original and simplified model outcome for cell surface
GLUT4.

5.3 Results

In this section the results will be presented; first of all, the single cell and the

single channel model will be compared to show the difference between these two

elementary systems. Secondly the whole bioreactor will be analyzed focusing both on

the macroscopic outcomes and on the cell microenvironment properties distribution.

5.3.1 Comparison between single cell and single channel

model

Signaling model are usually developed to describe the complex networks involved in

the intracellular processes such as metabolism, proliferation, apoptosis and the in-

teractions between different pathways. In this work we applied an already developed

signaling model to a bioreactor model, that is a fluid dynamics and mass transport

model, because we wanted to analyzed the mass transport effect on the cell pro-

cesses and fate. First of all the difference between a single cell and a single channel

will presented reminding that the latter is the fundamental unit in the bioreactor
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model. Although the insulin signaling pathways model describes up to 20 species,

only the most important for this work will be presented, that is the insulin and the

cell surface GLUT4 concentration profile.

In the single cell system, once the insulin stimulus is defined by the duration

and the concentration (Fig. 5.6A), it is the value the cell are exposed to and which

triggers the pathways.

Figure 5.6: Comparison of the temporal insulin profile in the single cell (A) and single
channel (B) system.

In the channel system (Fig. 5.6B), the insulin signal has a delay along the

channel, this means that the original pulse stimulus becomes a wide distribution

with lower intensity along the axial coordinate.

This modification affects all the signal transduction, in fact for the single cell

there is a well defined cell surface GLUT4 profile which transient lasts about 1 h

(Fig. 5.7A). While in the single channel the GLUT4m profile marginally depends

on the axial coordinate (Fig. 5.7B). Even though the maximum concentration peak

is the same as in the single cell (40 %), the temporal evolution is different. In all

sections the transient is more than 3 h long; it quickly reaches the maximum value

in about 15 minutes and then it slowly decreases to return to its basal condition.

The profiles are quite similar in all sections, except for the inlet (dashed line) which

lasts longer because it was subjected to a higher concentration (Fig. 5.7B), similar

to the original pulse.
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Figure 5.7: Comparison of the temporal cell surface GLUT4 profile in the single cell (A)
and single channel (B) system.

5.3.2 Spatial evolution of the single channel system

In the single channel system the spatiotemporal species distribution can be obtained.

In this case we considered the concentration of four variables: insulin, glucose,

phosphorylated insulin receptor and cell surface GLUT4 (Fig. 5.8). After the

Figure 5.8: Effect of the insulin signaling pathway on cell metabolism in a single channel
system. Plots show the dimensionless concentration profile insulin, glucose, once and twice
bound phosphorylated insulin receptor and cell surface GLUT4. (A) Average concentration
value along the axial coordinate at the end of the stimulation. (B) Temporal evolution of the
average species concentration.

stimulation, along the channel axis, Figure 5.8A shows a decreasing insulin profile,

because of the operative conditions medium has a high residence time (about 1 h),
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consequently both the insulin receptors and GLUT4m reach the maximum value

at the inlet, but at the outlet their value is the basal one. Therefore the glucose

concentration is lower at the inlet compare to the other sections of the channel since

cells in this area are affected by the glucose uptake raising by the insulin.

Figure 5.8B shows the temporal profile of the average species value with a 100 nM

insulin pulse stimulation of 15 minutes which starts after 6 h. Although the stimulus

is short, its effect lasts longer in this geometry, in fact the insulin concentration

returns to the zero value after about 3 h, while the other species needs even more

time to restore their basal condition. Moreover the average insulin concentration

reaches only the 20 % of the original stimulus due to the mass transport limitation.

5.3.3 Bioreactor outcomes

To evaluate the whole bioreactor system response subjected to an insulin stimulation

is more useful to consider the macroscopic outcomes, in particular the average glu-

cose concentration downstream the culture chamber. In this case a bioreactor with

recirculation was considered in Figure 5.9; it shows the comparison between two

identical simulations, one in the basal condition and one perturbed with a 100 nM

insulin pulse stimulation of 15 minutes which starts after 6 h. The green line is the

insulin profile at the inlet of the system, the blue lines represent the system evolu-

tion without insulin; the bold line is the average glucose value at the outlet of the

system, whereas the other two lines depict the glucose dispersion due to the scaffold

channel distribution. Similarly, the bold red line is the average glucose value in

the stimulation case and the red region represents the glucose concentration disper-

sion. Without stimulation glucose concentration decreases in time because of the cell

metabolism and the dispersion is almost constant with the higher concentration in

the bigger channels. With insulin, the glucose level drops after the stimulus reaching

a minimum value in about 2.5 h, then it raises approaching a trend parallel to the

basal condition case. Also in this situation, in the bigger channels the concentration

maintains a high glucose level with a small decreasing trend after the stimulus; on

the other hand, in the smaller channels glucose is reduced by 80 %. For a fixed time

point, Figure 5.9 depicts the glucose distribution at the outlet of each channel, its

temporal evolution is represented in Figure 5.10.
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Figure 5.9: Temporal average glucose concentration profile downstream the culture chamber.
The green line represents the insulin profile, the blue lines relate to the glucose concentration
in a bioreactor system without stimulation and the similarly the red lines to the system with
stimulation.

Figure 5.10: Temporal distribution of glucose concentration at the outlet of each channel.
The red line depicts the glucose profile at the final time.
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At the begin, all the channels are in the same condition, that is the physiological

glucose level, which decreases in time due to the glucose uptake; the reduction is

greater in the smaller channels. After the insulin perturbation the glucose drops

faster in the channels with a diameter close to the average diameter. After that,

this minimum value moves toward the smaller channels, while in the bigger glucose

maintains a high value. Finally, when the effect of the insulin is over, the glucose

concentration between channels is rather uniform (red line in Fig. 5.10).

5.3.4 Parameter sensitivity analysis

A parameter sensitivity analysis was performed to point out the most important

variables, suggesting the accuracy to which they must be calculated; the study was

performed by means of the local sensitivity method. Local sensitivity coefficients are

the partial derivatives of the model state variables to the model parameters evaluated

at the normal operating point where all the parameters have their nominal values.

Considering a dynamic system defined by a set of Nx ordinary differential equations

with Np time-invariant parameters p:

ẋ = f (x, t; p) ; x (0) = x0, (5.16)

then the absolute sensitivity is defined as:

Sij =

(
∂xi
∂pj

)
x=x(t,p̂),p=p̂

. (5.17)

These coefficients are useful for calculating errors due to parameter variations and

for assessing the times at which a parameter has its greatest or least effect. The

relative sensitivity of the function xi to variations in the parameter pj is given by:

S̄ij =
pj
xi
Sij =

pj
xi

(
∂xi
∂pj

)
x=x(t,p̂),p=p̂

. (5.18)

The relative sensitivity functions are formed multiplying the absolute sensitivity

function (Sij) by the nominal value of the parameter and dividing by the value of
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the function. The computing of the local sensitivities was calculated using the finite

difference approximation; it is based on changing one parameter at a time (usually

1 %) and rerunning the model. These are the parameters considered for the analysis:

• flow rate;

• insulin concentration;

• initial seeding density;

• mean channel diameter of the distribution;

• variance of the channel distribution;

and the cell membrane GLUT4 is the observed function since the glucose consump-

tion rate is linearly proportional to this variable. The average GLUT4m was used

as variable, calculated as the mean value in the channel with the average diameter.

Figure 5.11 shows the influence of the parameters on the cell membrane GLUT4.

Figure 5.11: Sensitivity plot of the experimental variables: flow rate, insulin concentration,
initial seeding density, average channel diameter and variance of the channel distribution. (A)
Sensitivity analysis of the entire experiment duration. (B) Magnification of the sensitivity
analysis for the 6 h after the insulin stimulation, framed in black in panel A.

The effect of all parameters last up to 6 hours after the beginning of the insulin
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perturbation, however insulin concentration and the initial seeding have a small ef-

fect than the others. On the other hand, the accuracy in the determination of the

flow rate, the average diameter and the variance strongly affect the model, even if

opposite effect. The average diameter and variance of the distribution have the same

effect because the scaffold distribution was described with a Rayleigh distribution

and the mean value and variance of this distribution are linearly dependent.

5.3.5 Operative conditions analysis

The developed model was applied to study the influence of the operative conditions

and bioreactor configuration on the system response, that is the glucose consumption

rate. Specifically the following variables were analyzed:

• flow rate;

• bioreactor configuration;

• stimulus type.

The flow rate was taken into account since it is easier to manipulate and in chapter

4 we have demonstrated that it highly affects the cell behavior. Considering the

bioreactor configuration (open and closed) we have analyzed two limit cases; it is

worth to note that the closed configuration is not easily feasible because we assumed

that the cell media is continuously recirculated and at the end of the stimulus the

insulin can be removed from the system without modify anything else. At last we

determined if the stimulus type can influence the system behavior changing the

stimulus duration and the perturbation shape.

Figure 5.12 shows the effect of the flow rate (3, 30 and 300 µL /min) on the

GLUT4m expression (Fig. 5.12A-C) and on the glucose concentration and dispersion

downstream the system (Fig. 5.12D-F). The simulation were run with a 100 nM

insulin pulse stimulation of 15 minutes which started after 6 h from the initial time.

The lower is the flow rate the higher is the effect of the glucose metabolism, i.e.

the lower is the average glucose concentration at the outlet of the scaffold; in fact

the system needs long time to remove all the insulin (GLUT4m level is still high

after 18 hours from the stimulation). Moreover the glucose has a high dispersion
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Figure 5.12: Effect of Peclet number on the temporal evolution of the cell glucose metabolism
in the three-dimensional system. Total volumetric flow rate equals 3 µL /min (A, D),
30 µL /min (B, E), and 300µL /min (C, F). (A, B, C) Temporal evolution of the GLUT4m
concentration in the channel that has the mean diameter value; concentration was calculated
as the average value in the whole channel. (D, E, F) Temporal evolution of the glucose
metabolism after a 100 nM insulin pulse stimulation of 15 minutes. The green line represents
the dimensionless input insulin concentration, the red line represents the dimensionless glu-
cose concentration downstream the scaffold system, and the red area depicts the dimensionless
glucose concentration distribution between the all channels of the scaffold.

between the smaller and the bigger channels due to the fluid dynamics; at 15 hours

there is no insulin in the bigger channels, that is the glucose concentration at their

outlet raise up, while in the smaller channels cells still are exposed to insulin. The

increasing of the flow rate has two effects: (I) reduces the residence time, thus the

effect of the insulin is shorter, and the average glucose variation is smaller; (II) the

glucose dispersion at the outlet of the channels is lower. At high flow rate the effect

on the average glucose level is negligible, but the dispersion is still present.

Table 5.1 summarize the influence of all evaluated variables on the average glu-

cose concentration; two values were considered (Fig. 5.13):

• ∆c, the difference between the concentration at the begin of the stimulation

and its minimum value;
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• R = ∆c/∆t;

∆t is the interval of time for the determination of ∆c. Figure 5.13 shows the two

variables ∆c and ∆t in a generic glucose concentration profile plot. Maximize

Figure 5.13: Representation of the variables ∆c and ∆t employed for evaluating the system
response to an insulin stimulation

both ∆c and R means to determine the optimal experimental conditions because

the system response will be faster and detectable. Changing the amount of insulin

Table 5.1: Effect of the operative variables on the cell response to an insulin stimulation.

Base case Low flow High flow Open config. 30 min. pulse Ramp up

∆c (mol /m3) 0.196 0.649 0.041 0.182 0.215 0.202
R (mol /(m3 h)) 0.074 0.041 0.059 0.075 0.078 0.072

(30 minutes pulse) or changing the stimulus shape (ramp up) does not significantly

modify the cell behavior, as well as varying the bioreactor configuration. By contrast

the flow rate have a double effect, indeed the lower is its value and the higher are

∆c and ∆t, on the other hand high flow rates reduce the response time but also its

intensity.

However, if the purpose would be the maximization of ∆c and R a code must be

written for optimizing the perturbation; a simple example is to choose the number of

insulin pulses and their initial time, then the algorithm can determine their duration
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and intensity. For this specific system, however, the computational cost is quite high

and it is not the objective of the present study.

5.4 Conclusions

In this work we studied the effect of the cell microenvironment heterogeneity in a

3D dynamic cell culture on the intracellular processes. Specifically the effect of an

exogenous insulin stimulation on the cell metabolism (glucose consumption rate) was

considered. To achieve this objective, our microscopic mass transport model was

coupled with an insulin signaling model to describe the insulin mass transport in a

3D porous scaffold and thus study its effect on the cell signaling and on the glucose

metabolism. Because of its importance for the cell physiology, insulin signaling

pathways have been widely studied [15, 118, 124, 135], especially single cell model

have been proposed. In this project one of the most important model [15] was

analyzed and with the model reduction it was slightly simplified for computational

costs reasons.

The new developed model is able to describe the spatiotemporal evolution of

metabolites in a 3D geometry and to determine the local cell response to an exoge-

nous insulin stimulation. First of all, it catches the difference of a 3D system, for

example a single channel, compare to the single cell case (Fig. 5.6 and 5.7), pointing

out the mass transport effect on the whole system behavior.

In addition the influence of different experimental conditions was evaluated, in

particular the flow rate, the bioreactor configuration and the stimulus type were

considered; above all, the medium flow rate is the variable which most affects the

cell response (Tab. 5.1).

This model could play an important role for studying metabolic disorder such

type 2 diabetes, indeed it can reproduce the physiological response of a cell system to

an insulin stimulation and therefore modifying the signaling model it could describe

the cell response for a type 2 diabetes case. Such model could be a helpful tool in

the bioreactor design for diagnosis of the disease and for drug screening.

90



6

Cell signaling modeling of a

three-dimensional tissue culture in

microfluidic platform

In the last chapter of the thesis, the mathematical and numerical framework devel-

oped in chapter 3, 4, and 5 were used for creating a model of cell signaling for a

tissue culture in a microfluidic platform. The final aim of this study is the develop-

ment of tools for supporting the design and the realization of microfluidic platform

to be used as drug signaling pathways screening assay.

6.1 Motivations

In human body, blood glucose level is regulated by hormonal control to brings back

the glucose concentration to the normal range whenever a perturbation occurs; this

regulatory mechanism is the glucose homeostasis. There are mainly two molecules

involved in the controlling of glucose level: insulin and glucagon. Insulin is a pep-

tide hormone produced in the pancreas within the β-cells of the islets of Langerhans,

glucagon is a hormone secreted by the α-cells of the islets of Langerhans. Insulin

and glucagon are part of a feedback system that keeps blood glucose levels at the
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right level (Fig. 6.1). When glucose concentration increases, for example after

Figure 6.1: Representation of glucose homeostasis. High glucose concentration triggers the
secretion of insulin from the pancreas which increases the glucose uptake and reduces the
glucose production from the liver. Low glucose level leads to glucagon release to enhance the
glucose production. Figure reprinted from Karlsson and Zierath [136].

a meal, insulin is secreted from the pancreatic β-cells into the body to decrease

the endogenous hepatic glucose production and to promote the glucose uptake into

insulin-sensitive tissues, such as skeletal muscle and adipose tissue. By contrast,

when the glucose level is low, the pancreatic α-cells release glucagon into the circu-

lation, in the liver it promotes the conversion of stored glycogen into glucose, which

is released into the bloodstream.

However, in diabetic individual, this regulatory system fails to control the blood

sugar resulting in a hyperglycemia condition. Lack of or severe reduction in insulin

secretion due to autoimmune destruction of β-cells is responsible for type 1 diabetes

mellitus. The more prevalent form, type 2 diabetes mellitus (T2DM) accounts about

90 % of all diabetes in developed countries.

Type 2 diabetes is a complex metabolic disorder that involves progressive de-

velopment of insulin resistance and deficient insulin secretion by pancreatic β-cells,

leading to hyperglycemia [137–140]. Early in the natural history of type 2 diabetes,

insulin resistance is well established [141–143], that is cells fail in the insulin signal-

ing transduction pathways starting from the binding of insulin to insulin receptor

to the translocation of GLUT4. Glucose transporter type 4 (GLUT4) is a protein
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found in adipose tissues and striated muscle that regulates the glucose transport into

the cells. At basal conditions, GLUT4 is mainly in the cytoplasm within vesicles, in

contrast, insulin increases the fraction of GLUT4 at the cell membrane.

Glucose tolerance remains normal because of a compensatory increase in insulin

secretion [128, 144–146]. As adaptive response to this condition, plasma insulin

concentration progressively rises (hyperinsulinemia), but when the blood glucose

level exceeds a threshold value (about 140 mg /dL), β-cells are unable to maintain

the elevated production rate of insulin secretion and the its concentration declines.

The causes of type 2 diabetes are still not well known, however studies have asso-

ciated this disease with genetic [147, 148] and environmental factors [149]. Because

of the economical and sociological impact of the this disease, early diagnosis and

adequate treatment are important to decrease the long-term adverse effects of dia-

betes. There are several oral antidiabetic drugs, as well as insulin, and the common

practice is the trial and error approach to determine the right medication for each

patient. Therefore it would be extremely relevant the development of a fast drug

screening protocol able to determine the more suitable drug for a specific individual.

To this end we have designed and developed a microfluidic platform for culturing

adipose tissue from human biopsy in order to characterize cells in term of glucose

uptake for obtaining specific metabolic information. This microfluidic device is a

complex system characterized by multiscale phenomena and its design and operative

conditions can strongly affect the final results, hence the information that we could

acquire from a tissue culture.

A mathematical model was developed to rationalize such system and assisting

the design of the microfluidic platform for an ex vivo human adipose tissue culture

for the optimization of the system readouts. In addition it was applied to reproduce

in vitro the pathophysiological response of type 2 diabetes to an insulin stimulation

in adipose tissue culture through the inhibition of insulin receptor effector, according

to a chronic inflammatory response.

6.2 Theoretical framework

The PDMS microfluidic platform (Fig. 6.2A) designed for the tissue culture and

characterization is composed of a culture chamber where the adipose tissue is allo-
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cated. Medium flows through the well and an online biosensor monitors the tissue

response, that is the glucose concentration.

Figure 6.2: Representative scheme of the microfluidic multiscale system. (A) Microfluidic
platform, (B) culture chamber, (C) cell cluster, (D) single cell system.

The chamber (Fig. 6.2B) is a cylindrical well with diameter (D) equals to 4 mm,

a bottom inlet/outlet configuration was used. A microfuidic channel at the bottom

of the well delivers fresh cell media, while the waste medium exits by means of

the outlet channel on the other side of the chamber. The whole channel has a

rectangular cross section, it is 100 µm height and 40 µm width and 3.5 cm long. The

human adipose tissue biopsy is allocated at the top of the culture chamber since its

density is lower than the medium density, so it floats. Experimentally we are able

to obtain biopsy of 1 mg, and we assumed that it occupies a cylindrical volume with

the same diameter of the well and its height ranges from 1 to 2 mm.

In this system there are two regions, the medium domain (I) and the tissue

domain (II). Fresh cell media in equilibrium with the incubator atmosphere is con-
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tinuously pumped in the system using a syringe pump, here the mass transport of

the molecules is governed by both convection and diffusion. In the culture chamber

there is a gradient from the bulk to the medium/biopsy interface (red arrows in Fig.

6.2B), therefore glucose enters in the tissue where the mass transport is governed

only by the intracellular diffusion (black arrows in Fig. 6.2C). Finally glucose is con-

sumed by cell metabolism. The model describes also the perturbation of the system

by means of an insulin stimulation; it diffuses in the tissue where it is internalized

by cells and triggers the insulin signaling pathways (Fig. 6.2D) that increases the

glucose consumption rate. Since the objective of these experiments is the character-

ization of the adipose tissue in term of glucose consumption, a period of adaptive

behavior of a ex vivo tissue culture has not been considered. New steady state is

assumed to be reached after 24 h.

6.3 Mathematical model

The microfluidic platform was modeled considering the medium fluid dynamic, the

glucose and insulin mass transport and the insulin signaling pathways. To reduce

the computational costs the 2D geometry was studied.

6.3.1 Microfluidic platform model

The Navier-Stokes equation for incompressible flow was used to describe the fluid

dynamic in the medium domain (no convection in the tissue domain):

ρ
Dv

Dt
= −∇p+ µ∇2v + ρg, (6.1)

where ρ is the medium density, v is the velocity field, µ is the medium viscosity, p is

the pressure, and g is the gravity. The species mass balance for glucose and insulin,

for both domains, are given by Eq. (6.2):

∂c

∂t
= −∇N +R, (6.2)
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with c is the concentration, N is the flux and R is the cell substrates uptake. The

term R equals zero in domain I because no reactions occur in this region, whereas

the fluxes are expressed in the two domains by:

N I = −DI∇cI + vcI , (6.3)

N II = −DII∇cII , (6.4)

where D is the species diffusion coefficient at 37 ◦C. The glucose consumption rate

was described using Michaelis-Menten kinetic model from literature [132], as re-

ported in chapter 5, and it follows:

RG = −
(

GLUT4m

GLUT4m|basal

)(
1

ṽcell

Vm,Gc
II
G

Km,G + cIIG

)
. (6.5)

In Eq. (6.5) ṽcell is the cell specific volume, Vm,G is the maximal glucose consumption

rate and Km,G is the glucose concentration at half-maximal glucose consumption,

GLUT4m is the percentage of protein on cell membrane, and GLUT4m|basal is the

percentage of protein on cell membrane at basal condition, i.e. in absence of insulin

stimulation. Both GLUT4m concentrations are outputs of the insulin signaling

model, and glucose consumption rate is proportional to their ratio due to the raise of

cell membrane GLUT4 expressed by cells after an insulin perturbation. As assumed

in chapter 5, a linear dependence of glucose metabolism from cell surface GLUT4

was considered. On the other hand, the insulin depletion due to the insulin binding

with its receptor at the cell membrane and its internalization is negligible compare

to the total amount inside the system.

The model, composed of the Navier-Stokes equation, a mass balance equation for

each domain and the insulin signaling model (see Appendix C for signaling model

details), were solved with the following inlet boundary conditions:

v (x, y, t) = vinlet x = 0, (6.6)

cG (x, y, t) = cG,0 x = 0, (6.7)

cIns (x, y, t) :

{
cIns,0, if tstimin ≤ t ≤ tstimfin ,

0, otherwise.
x = 0. (6.8)
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Where the vinlet is the medium velocity in inlet microfluidic channel, cG,0 is the

glucose concentration in fresh medium, cIns,0 is the concentration of the insulin

solution used to stimulate the system, tstimin and tstimfin are the initial and final time of

the stimulation, respectively. At the outlet a pressure condition was applied (p = 0)

for Eq. (6.1), while a convective flux condition was used for both species. All other

boundaries were set as a wall for Eq. (6.1) and an insulation condition was used for

the mass balance equations. The initial conditions for the Navier-Stokes equation

and for the mass balance equations follow:

v (x, y, t) = 0 t = tin, (6.9)

cG (x, y, t) = cG,0 t = tin, (6.10)

cIns (x, y, t) = 0 t = tin. (6.11)

All the initial conditions for species concentration involved in the signaling model

are reported in Appendix C.

6.3.2 Signaling model

The reduced model derived in chapter 5 from the Sedaghat model [15] was applied to

describe insulin signaling pathway. Using the outputs of the mass balance equations,

the model locally describes the temporal evolution of all state variables in domain

II and most importantly provides the GLUT4m expression for the determination of

the local glucose consumption rate. All the equations with their kinetic parameters

all listed in Appendix C.

6.4 Numerical model

The tissue culture in the microfluidic platform model was numerically solved using

the finite element method (FEM) and it was implemented in COMSOL Multiphysics

3.5 (COMSOL Inc., Burlington, MA). Two test were conducted on this approach:

• the solution and the computational validation of the original insulin signaling

model [15];
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• the mass conservation was tested for all species;

The signaling model was implemented in COMSOL for a 1D geometry for simulating

a single cell system and obtain all the state variables temporal profiles. The outcomes

were compared with the published data [15], specifically we compared the once and

twice bound phosphorylated insulin receptor and cell surface GLUT4 since they are,

respectively, the firsts and the last variables in the signal cascade. These results are

in agreement with the original outcomes, and the average percentage error in the

GLUT4m determination equals 1.7 %. For testing the mass conservation, the whole

model was run for a long simulation time to allow the insulin to leave the system,

and the amount of insulin at the inlet and at the outlet was determine as:

nIns =

∫
t

∫
L

cIns dxdt, (6.12)

Comparing these two values we achieved a percentage error equals to 0.01 %.

6.5 Results

The developed mathematical model was applied to support in the process of de-

sign and realization of the microfluidic platform for tissue culture; finally a type 2

diabetes case study will be presented.

6.5.1 Microfluidic platform outcomes

Figure 6.3 shows an example of the outcomes of the mathematical model for a three-

dimensional tissue culture in the microfluidic platform. Both macroscopic variables

and microscopic distribution of species are represented. The three main species

in the glucose uptake under insulin stimulation were considered, that is insulin,

cell membrane GLUT4 and glucose. The average concentration downstream the

chamber was evaluated for insulin and glucose; in contrast the local distribution of

insulin, cell membrane GLUT4 and glucose were detect in the tissue domain. These

distributions were studied along the length (section A–A in Fig. 6.3a) and the height

of the domain (section B–B in Fig. 6.3a).
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Figure 6.3: Outcomes of a 3D tissue culture in the microfluidic platform model. (a) Repre-
sentation of the tissue culture chamber. (b) Temporal evolution of the insulin concentration
at the inlet (solid line) and at the outlet (dashed line) of the chamber, and glucose concen-
tration at the outlet (dotted line). (c) Temporal evolution of insulin, cell membrane GLUT4,
and glucose distribution along section A-A of the biopsy. (d) Temporal evolution of insulin,
cell membrane GLUT4, and glucose distribution along section B-B of the biopsy. In both (c)
and (d) figures, the bold dashed line represent the initial condition, each line represents a 30
minutes time step; for glucose plots, red lines show the temporal evolution during the first
hours until reaching the maximum effect of the insulin stimulation (lower glucose concentra-
tion), then black lines represent the evolution in time of the system during the recovery of the
system.
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The system at the steady state (without insulin) was stimulated with a 100 nM

insulin perturbation of 15 minutes after 1 hour from the beginning (Fig. 6.3b). After

the stimulation, insulin exits the system with a delay, its signal is wider and has a

lower intensity than the inlet condition due to the fluid dynamics in the platform.

After the perturbation, glucose level decreases in time because of the activation of

the insulin signaling pathway, the signal cascade reaches the maximum effect after

about 3 hours, then the glucose level slowly goes up.

Figure 6.3c shows the species distribution along the height of the tissue. In these

experimental conditions, the maximum insulin concentration the cells are exposed

to is only the 20 % of the inlet value. Moreover only 400 µm in depth of the adipose

tissue is subjected to this value, in the other regions the insulin is about the 5 %.

Although the stimulation within the tissue is heterogeneous, the GLUT4m almost

reaches the maximum value all over the domain, moreover the inner region is affected

for longer time. Because of its higher residence time, the insulin has a stronger effect

in the regions far from the medium, here, the glucose concentration decrement is

greater than the cells closer to the medium.

Figure 6.3d depicts the species distribution along the length of the tissue. The

species profiles are quite uniform, but due to the residence time, there is a delay on

the tissue region close to the outlet, therefore the GLUT4m increases slowly and its

effect lasts longer. The glucose concentration is lower in this region due to a high

demand glucose uptake.

6.5.2 Microfluidic platform optimization

The mathematical model was developed mainly for helping in the design of the

microfluidic chip, that is defining the experimental parameters to have a detectable

and fast tissue response to an insulin stimulation. To achieve this goal we used the

same approach presented in chapter 5; variables ∆c and R were maximized changing

the following parameters:

• culture chamber geometry;

• flow rate;

• stimulus type and duration.
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For the culture chamber, the height of the biopsy (Hb) and the height of the cham-

ber interlayer (Hc)(Fig. 6.2B) were determined; once the chamber geometry was

fixed the flow rate (Q̇) and the stimulus were optimized. Unlike the original initial

conditions (Eq. (6.9) and (6.10)), all the simulations were run using the steady state

at basal level (without insulin) as initial condition; the system was perturbed with

a 100 nM insulin pulse stimulation of 15 minutes (except for the stimulus duration

analysis) which started after 1 h from the initial time. Simulations were stopped

after 9 h because we were interested in a fast system response and in the positive

variation of glucose uptake rate.

Figure 6.4A shows the effect of the culture chamber configuration on the average

glucose concentration downstream the system. The red line depicts the insulin

Figure 6.4: Effect of the microfluidic platform configuration on the glucose uptake. (A)
Average glucose concentration profile downstream the culture chamber after a 100 nM insulin
pulse stimulation of 15 minutes at the inlet of the chamber (red line). Solid line and dashed
lines denote a biopsy height of 1 and 2 mm, respectively. Each biopsy condition was studied
changing the culture chamber height, 0 mm (×), 1 mm (+) and 2 mm (∗). (B) Quantification
of the influence of the microfluidic platform configuration, in term of the variables ∆c (blue
bars) and R (red bars).

stimulation, while all the others lines are the glucose concentration. In detail solid

lines represent simulations with a biopsy height of 1 mm, while the dashed lines is

the case with a thickness equals to 2 mm. Each group has three distinct lines, they

represent the culture chamber height (Hc):

• 0 mm (×);
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• 1 mm (+);

• 2 mm (∗);

The configuration with a small biopsy (solid lines in Fig. 6.4A) has a faster response,

i.e. it reaches the minimum of concentration in a shorter time, because the mass

transport in the tissue is governed only by interstitial diffusion. However in the case

with Hb = 2 mm the minimum glucose concentration is lower because of the grater

reaction volume. The chamber height has a negative effect on the tissue response,

indeed the higher is the chamber, the slower and the smaller is the outcome because

the holdup volume acts as a buffer for the system. The intensity of the variables (∆c)

and R were analyzed to determine the optimal configuration (Fig. 6.4B). Chambers

with the thicker biopsy has a higher concentration drop, however configuration A

is preferred; it has a ∆c about 20 % smaller than the 2 mm biopsy cases, but the

highest value of R. Once the culture chamber geometry is optimized, different

operative conditions were investigated. Figure 6.5A shows the effect of the medium

flow rate on the tissue response (black lines) subjected to the insulin perturbation

(red line); flow rate value ranges from 0.5 to 0.005 µL /min. The lower is the cell

Figure 6.5: Effect of the medium flow rate on the glucose uptake. (A) Average glucose
concentration profile downstream the culture chamber after a 100 nM insulin pulse stimulation
of 15 minutes at the inlet of the chamber (red line) at different flow rate: 0.5µL /min (×),
0.1 µL /min (+), 0.05 µL /min (∗), 0.025 µL /min (•), 0.01 µL /min (◦), 0.005 µL /min (�). (B)
Quantification of the influence of the medium flow rate, in term of the variable R (red line)
and ∆c (blue line).

media flow, the lower is the downstream glucose concentration, it almost approaches
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to zero for the minimum flow value. On the other hand, at the highest flow rate the

variation is only about 3 %.

The R and the ∆c profiles as function of the flow rate are represented in Figure

6.5B; the R value approaches to a maximum with a flow rate of 0.025 µL /min, this

condition is characterized by a concentration drop of about 55 %.

At last the stimulus was analyzed, i.e. changing the pulse duration from 1 min

to 1 h, up to a step perturbation (Fig. 6.6). The longer is the stimulation the

Figure 6.6: Effect of the stimulus duration on the glucose uptake. (A) Average glucose
concentration profile downstream the culture chamber after a 100 nM insulin stimulation at
the inlet of the chamber with different duration, 1 min (×), 5 min (+), 10 min (∗), 15 min (•),
30 min (◦), 60 min (�), step (5). (B) Quantification of the influence of the stimulus duration,
in term of the variable ∆c (blue bars) and R (red bars).

lower is the downstream average glucose concentration while the system response

time raises. Since the ∆c values are quite similar for stimulation longer that 10

minutes we picked the 30 minutes pulse which has the highest value of R, although

it is worth to observe that from 10 to 30 minutes the experimental results could be

the same.

6.5.3 Simulation of insulin resistance case study

Recent studies have demonstrated that adipose tissue is not only a passive reservoir

for energy storage, but also an endocrine organ [150, 151]. Indeed, adipose cell is

actively involved in sensing the nutritional and metabolic status of the organism

through several different signaling pathways and regulates energy metabolism by
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secreting molecules in response to these cues [152]. These hormones (adipokines)

act at both the local (autocrine/paracrine) and systemic (endocrine) level. Tumor

necrosis factor α (TNF-α) is one of these cytokines secreted by adipocytes and

it potentially has a physiological or pathophysiological roles in the regulation of

adipocyte differentiation, lipid metabolism and in vivo insulin sensitivity. Eighty

percent of type 2 diabetes mellitus patients are obese and obesity is associated with

insulin resistance [153]. Obese subjects have a higher TNF-α level [154] and it has

been demonstrated to regulate or interfere with adipocyte metabolism at different

sites such as the insulin receptor, so it has been linked with the development of

insulin resistant [154–158].

In cultured adipocytes TNF-α increases the phosphorylation of insulin receptor

substrate-1 (IRS-1) at serine residues, hence this adipokine acts as an inhibitor of

the insulin receptor (IR) tyrosine kinase [159, 160]. Such a modification of IRS-1

has been observed in obesity [161] and is sufficient to block the downstream events

of IR signaling, including the association of IRS-1 with phosphotidylinositol (PI)

3-kinase [159, 161, 162].

The effect of the TNF-α on the insulin signaling pathways (Fig. 6.7) presented

in chapter 5, was described as an inhibition reaction which reduces the tyrosine-

phosphorylated IRS-1, therefore the amount of activated PI 3-kinase [163]. Using

the microfluidic culture chamber with the operative conditions previously defined

we compared the biological response of two different cases: a human biopsy from

healthy patient and one from an insulin resistance subject. In Figure 6.8 the black

line depicts a 100 nM insulin pulse stimulation of 30 minutes which, while the other

solid lines represent the glucose concentration downstream the culture chamber; the

blue solid line shows the healthy case profile, by contrast the red solid line is the

insulin resistant patient. The dashed lines depicts the experimental error (5 %) for

the glucose measurement using for example a standard glucose meter for testing the

blood glucose level. The glucose concentration decreases in time due to the stimu-

lation, and the reduction is greater in the healthy patient case. Nevertheless it must

be noted that the difference between the two cases is experimentally measurable, it

is about 50 %.
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Figure 6.7: Reduced insulin signaling pathways model with the TNF-α inhibition effect on
the IRS-1 tyrosine phosphorylation.

Figure 6.8: Temporal glucose concentration profile downstream the culture chamber with a
100 nM insulin pulse stimulation of 30 minutes. The black line represents the insulin profile,
the blue lines relate to the glucose level for a healthy patient, while the red lines for an insulin
resistance case. Dashed lines represents an experimental error of 5 %.
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6.6 Conclusions

The project developed in this chapter has integrated together all the work presented

in the thesis:

• the analysis of multiscale systems;

• the mathematical modeling of biological system;

• the numerical approaches and techniques;

• the biological sensitivity derived from the laboratory experiences and applica-

tions.

In particular, a mathematical model was developed to describe an ex vivo human

adipose tissue culture in a microfluidic platform. The model considers the metabolic

response, in term of glucose concentration, of the tissue to an insulin stimulation.

Such model was applied for the optimization of the macroscopic system outcomes

because these are the experimental variables that could be easily measured. Specif-

ically, we determine the geometrical properties of the culture chamber (Fig. 6.4)

and the operative conditions (Fig. 6.5 and 6.6) to maximize the adipocytes glucose

consumption rate.

In addition, the model is able to reproduce the pathophysiological response of

ex vivo human adipose tissue from diabetic patient to an insulin stimulation. Com-

paring this result with a normal case study (healthy individual), the model predicts

an experimentally measurable difference between the two outcomes (Fig. 6.8). It

means that the effect of pharmacological treatments of diabetes (drug screening)

could be detected and it would be possible to evaluate their efficiency.
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Conclusions

This work focused on the development of a multiscale and multidisciplinary approach

for understanding biological and physical phenomena in three-dimensional dynamic

cell and tissue culture.

We used mathematical modeling to rationalize in vitro 3D model experiments of

the pathophysiological condition of type 2 diabetes mellitus. The theoretical study

of cell and tissue culture in a dynamic perfusion bioreactor has been supported by

experimental data.

The scaffold morphology has been characterized by means of image analysis. A

new protocol for the measurement of glucose levels in the cell medium has been

developed in order to determine the glucose consumption rates of C2C12 cell line.

As mentioned above, three-dimensional cell cultures in a perfusion bioreactor have

been carried out for the validation of the mathematical model.

Theoretical studies were performed on different dynamic cell culture systems.

We at first analyzed the influence of operative variables, such as medium flow rate

and culture chamber configuration, on a cell culture in a microfluidic platform. This

study showed that operative parameters could negatively affect the cell microenvi-

ronment. In addition, it has been proved that a discontinuous management of such

devices could be an alternative to the traditional microfluidic cell culture setup to

better preserve the cell niche.

Uniform cell culture is required for obtaining useful in vitro models or grafts for

transplantation. In a perfusion bioreactor, the extrinsic heterogeneity due to the
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pore size distribution and the operative conditions can affect the culture homogene-

ity.

To this end, we developed a mathematical model to link the experimental pa-

rameters to the local properties of the cell microenvironment and to the cell growth.

The model is able to describe the relations between macroscopic and microscopic

variables and it gives the temporal evolution of the local properties distribution.

The cells response to endogenous and exogenous factors, such as insulin, has

an important role for understanding the physiopathology of type 2 diabetes. For

this reason, we have studied the influence of insulin on the glucose consumption

rate; the insulin signaling model was integrated with a mass transport model in

order to describe the dynamic response of a cell or tissue culture to an insulin

stimulation. This study showed that the culture conditions (operative variables and

heterogeneities) highly affect the cell response to an insulin perturbation, moreover

such conditions can be controlled to have a detectable signal.

The relevant biological results have been obtained coupling all these skills. The

development of a microfluidic platform for an ex vivo human adipose tissue culture

from both healthy and diabetic patients has been supported by a mathematical

model. The model helped during the design of the microfluidic chip to determine the

geometrical parameters and also the experimental conditions to have a measurable

tissue response when subjected to insulin stimulation.

This application can be used for the characterization of human tissue and more-

over for testing the effect of pharmacological treatments of diabetes (drug screening)

and to evaluate their efficiency.
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A. A COMBINING METHOD TO ENHANCE THE IN VITRO
DIFFERENTIATION OF HEPATIC PRECURSOR CELLS

A.1 Abstract

The ideal bioartificial liver should be designed to reproduce as nearly as possible in

vitro the habitat that hepatic cells find in vivo. In the present work, we investigated

the in vitro perfusion condition with a view to improving the hepatic differentiation

of pluripotent human liver stem cells (HLSCs) from adult liver. Tissue engineering

strategies based on the cocultivation of HLSCs with hepatic stellate cells (ITO)

and with several combinations of medium were applied to improve viability and

differentiation. A mathematical model estimated the best flow rate for perfused

cultures lasting up to 7 days. Morphological and functional assays were performed.

Morphological analyses confirmed that a flow of perfusion medium (assured by the

bioreactor system) enabled the in vitro organization of the cells into liver clusters

even in the deeper levels of the sponge. Our results showed that, when cocultured

with ITO using stem cell medium, HLSCs synthesized a large amount of albumin

and the MTT test confirmed an improvement in cell proliferation. In conclusion,

this study shows that our in vitro cell conditions promote the formation of clusters of

HLSCs and enhance the functional differentiation into a mature hepatic population.

A.2 Introduction

Liver transplantation still represents the only effective treatment for patients with

liver failure, but the increasing demand for organs is unfortunately so great that

many patients die while awaiting transplantation.1 Many researchers have attempted

to develop various extracorporeal bioartificial liver systems to provide temporary

support for exhausted liver. The bioartificial liver is a cell-based life-support device

intended to enhance hepatic detoxification and protein synthesis functions. In the-

ory, it should compensate for the functions of a whole liver.2−5 For the time being,

however, such supports can only temporarily replace a subset of essential liver func-

tions; the most important challenge concerns how to maintain viable and functional

hepatocytes outside the native liver environment.6 The use of bioreactors is a fun-

damental requirement because of the high metabolic activity of liver cells. Several

hepatocyte bioreactors, based on different configurations, have been developed and

most attempts were focused on adapting bioreactor technologies to the development
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of an extracorporeal hybrid liver support device.2,7 Despite recent advances, isolated

hepatocytes usually begin to proliferate under suboptimal culture conditions, but

they have the tendency to lose most of the characteristic differentiated hepatic func-

tions progressively, dying within 3–4 days.8,9 In an effort to overcome this limitation,

which relates to the marked specialization of mature hepatocytes, several authors

turned their attention to stem cell biology. Herrera et al. were recently successful

in isolating a population of adult human liver stem cells (HLSCs).10 These HLSCs

differentiated into mature hepatocytes and in vivo they contributed to regenerating

the liver parenchyma in severe combined immunodeficient mice. In light of these

results, obtained with classical cell biology techniques (i.e., monolayer and static

growth conditions), we applied advanced tissue engineering strategies based on the

use of a bioreactor to create flow of perfusion medium through the scaffolds and on

the presence of supporting cells (such as hepatic stellate cells [ITO] cells) in HLSC

cultures in an effort to create a more natural hepatic milieu in vitro.

A.3 Material and Methods

A.3.1 Perfusion bioreactor: Mathematical model

We used a perfusion bioreactor in which eight porous scaffolds can be cultured

in eight independent chambers. In each chamber the medium flows from top to

bottom through a three-dimensional (3D) scaffold. HLSC growth in each scaffold

was described using a mathematical model. The model applied in this work was

derived from our previous work.11 Briefly, the geometry of a highly porous scaffold,

as the collagen sponge (Avitene Ultrafoam Collagen Hemostat; Davol Inc., Cranston,

RI) used in the experiment (Fig. A.1a), was approximated to a cylinder with parallel

cylindrical channels and no interconnections (Fig. A.1b). A channel diameter of

200 µm was the mean value used for the distribution, based on microscopic evidence

and image analysis of the collagen scaffolds, whereas the total scaffold porosity was

the maximum available for this geometry. The model contains a uniform cell layer

(Domain II) adhering to the channel wall while the medium flows through the central

portion of the channel (Domain I) as exemplified in Figure A.1c. The thickness of

the cell layer increases as the cells grow, while the axial velocity of the medium, vz,

111



A. A COMBINING METHOD TO ENHANCE THE IN VITRO
DIFFERENTIATION OF HEPATIC PRECURSOR CELLS

Figure A.1: Bioreactor model. (a) In vitro image of one channel of the scaffolds used for
the mathematical model. Vertical arrows: flow medium direction; horizontal arrows: scaffolds
fibers. (b) Scheme of the scaffold structure with parallel cylindrical channels considered in
the model (the white area is the collagen). Vertical arrows show the direction of medium
flow. The circle indicates the area corresponding to a. (c) Scheme of one channel of the
scaffold. Domain I, in gray, is the medium flow layer where the medium flows along the axial
coordinate z, while oxygen spreads along the radial coordinate r. Domain II, in white, is
the uniform layer of cells adhering to the channel wall. There is no convection of medium in
Domain II, but there is oxygen diffusion and uptake. Domain II thickness increases with cell
growth. The blue areas are the collagen where cells adhere. Color images available online at
www.liebertonline.com/ten.

depends on the total flow rate and the diameter of Domain I. Oxygen was chosen

as the reference species because its concentration strongly affects cell growth.12 The

phenomena governing oxygen concentration for each layer, and consequently also

cell growth, are summarized in Figure A.1c. Assuming that none of the phenomena

depend on angular coordinates, the governing equations were derived for cylindrical

geometry in term of axial and radial coordinates as follows:

Domain I: medium flow layer

∂cIO2

∂t
= −

[
1

r

∂

∂r

(
rN I

O2,r

)]
−
∂N I

O2,z

∂z
, (A.1)

N I
O2,r

= −DI
O2

∂cIO2

∂r
, (A.2)

N I
O2,z

= vzc
I
O2
. (A.3)

where cIO2
is the oxygen concentration, N I

O2,r
is the radial diffusive molar flux, and

N I
O2,z

is the axial convective molar flux. DI
O2

is the coefficient of oxygen diffusion in

the medium and vz is the medium axial velocity. Velocity profile was assumed to be

parabolic.
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Domain II: cell layer

∂cIIO2
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= −
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1
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∂

∂r

(
rN II
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)]
+RO2 , (A.4)
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dn

dt
= Fkcellc

II
O2
n, (A.7)
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π
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) (
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)]}
, (A.8)

Slim =

(
4µQch

πτshear

)1�3
, (A.9)

where cIIO2
is the oxygen concentration, N II

O2
is the radial diffusive molar flux, RO2 is

the oxygen uptake rate, DII
O2

is the coefficient of oxygen diffusion in the cell layer, n

is the total number of cell, Qm and Cm are parameters depending on the type of cells,

and kcell and Vcell are the cell doubling time and the cell volume, respectively. F is

a inhibitory function that stops the cell growth when oxygen concentration is below

the physiological limit climO2
(corresponding to 40 mmHg) or when the shear stress is

higher than τshear (0.5 Pa). Slim is the dimension of Domain II corresponding to the

limiting shear stress, kdamp is the damping coefficient that determines the steepness

of variation of F from 1 to 0, µ is viscosity of the medium, and Q is the flow rate

in the channel. The oxygen concentration at each channel inlet (cIO2
at z = 0)

equated to the concentration at equilibrium with air (cO2,0). The initial condition

with a uniform oxygen concentration (cIO2
= cIIO2

= cO2,0 at t = 0) in both domains

was applied. The values of the parameters and the respective references are given

in Table A.1. The system of equations (A.1), (A.4), and (A.7) was solved using

MATLAB (The MathWorks, Natick, MA) by means of the finite volume method.

Every channel was discretized in the axial and radial directions.
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Table A.1: Model Parameters, the Related Symbols, the Values Used in Simula-
tions, and the Reference Values

Parameter Symbol Value Reference

Cell growth kinetic constant kcell 2.55× 10−5 m3 mol−1 s−1 27
Cell specific volume vcell 4.19× 10−15 m3 /cell 28
Damping coefficient kdamp 10 m2 /mol 11
Diffusion coefficient oxygen-cell DII

O2
2.0× 10−9 m2 /s 29

Diffusion coefficient oxygen-medium DI
O2

3.29× 10−9 m2 /s 30
Dissolved oxygen concentration in equilibrium with air cO2,0 2.1× 10−1 mol /m3 31
Maximal oxygen consumption rate Qm 2.5× 10−16 mol cell−1 s−1 32
Medium viscosity µ 7.7× 10−4 Pa s 33
Oxygen concentration at half-maximal oxygen consumption Cm 6.9× 10−3 mol /m3 32
Threshold oxygen concentration climO2

5.26× 10−2 mol /m3 34
Threshold shear stress τshear 0.50 Pa 35

A.3.2 Cell culture and differentiation protocol

Human liver stem cells. These cells were isolated, purified, and characterized

as described by Herrera et al.10 Briefly, HLSCs were obtained by culturing cryop-

reserved hepatocytes obtained from Lonza Group Ltd., Basel, Switzerland (IRB

approval is not required). The cryopreserved cell population was quickly thawed

in a 37.1 ◦C water bath with gentle shaking, and then it was seeded in a flask for

cell expansion. Cell viability was determined using Trypan blue exclusion staining.

Characterization was done as described by Herrera et al.10 Briefly, immunofluores-

cence was used to confirm HLSCs purity in cell culture on chamber slides. The

absence of CD34, c-kit, and CK19 or markers for nonparenchymal liver cells (alpha-

smooth muscle actin [SMA]) confirmed their purity. These assays were randomly

performed in triplicate for the cryopreserved vials supplied. HLSCs purity was

98%. HLSCs were expanded in a flask in the presence of hepatic cell medium

(HCm): α-minimum essential medium/endothelial cell basal medium-1 (3:1) (from

Gibco, Carlsbad, CA/Cambrex, Charles City, IA) supplemented with l-glutamine

(5 mM), Hepes (12 mM, pH 7.4), penicillin (50 IU /mL), streptomycin (50 µg /mL),

dexamethasone 1 µM, glucagon 0.014 mg /mL, insulin 0.16 U /mL (all from Sigma,

St. Louis, MO), fetal calf serum (10%), and horse serum (10%) (from Gibco).

For the differentiation experiment, HLSCs were cultured differently with the afore-

mentioned medium (HCm) or with stem cell medium (SCm) Amniomed R© Plus

(Euroclone, Milan, Italy).
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ITO cells. These cells were isolated and characterized using a two-step collagenase

perfusion as described by Paik and colleagues.13 Briefly, ITO cells were obtained

by culturing cryopreserved cells obtained from Dr. M. Pinzani’s Lab, University

of Florence, Florence, Italy (IRB approval is not required). Collected ITO cells

were suspended at a concentration of 1× 105 cells /mL in Dulbecco’s modified Ea-

gle’s medium supplemented with fetal calf serum (20%), penicillin (50 IU /mL), and

streptomycin (50 µg /mL) (all from Sigma) and cultured on well plates coated with

collagen type I (10 µg /mL) (from Sigma) in a 5% CO2 humidified atmosphere.

3D cultures. For all the differentiation experiments, 3D cultures were conducted

in a perfusion bioreactor according to the protocol published elsewhere.14 Briefly,

cells between passages 3 and 8 were detached from the flask surface with trypsin-

EDTA, washed, and counted; then 5× 105 cells were seeded onto a collagen sponge15,16

(Avitene R© UltrafoamTMCollagen Hemostat; Davol, Inc.) with diameter 5 mm and

thickness 3 mm. Up to eight sponges were seeded for each experiment. On the

day after seeding, the sponges were placed, one in each separate chamber, in the

bioreactor, which assured a perfusion medium flow rate of 0.5 mL /min through each

scaffold.14 The differentiated conditions used in the bioreactor are shown in Table

A.2. All cultures were performed in triplicate; the scaffolds were analyzed at fixed

Table A.2: The Differentiated Conditions Used for Cell Culture in the Perfusion
Bioreactor

Perfusion medium
Hepatic cell medium (HCm) Stem cell medium (SCm) HCm + SCm (1:1)

Cell HLSCsa HLSCs HLSCs
ITOb ITO ITO
HLSCs + ITO (3:1) HLSCs + ITO (3:1) HLSCs + ITO (3:1)

aHLSCs, human liver stem cells.
bITO, hepatic stellate cells.

time points, in terms of their biochemical parameters on days 1, 3, 5 and 7, and

their morphological features on days 3 and 7.
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A.3.3 MTT assay

Cell proliferation rates were analyzed by the MTT (3-4,5-dimethylthiazol-2yl-2,5-

diphenyltetrazolium bromide)-based cytotoxicity test using the Denizot and Lang

method with minor modifications.17 3D cell cultures removed from the bioreactor

were placed on a culture plate with 1 mL of MTT solution (0.8 mg /mL in phosphate-

buffered saline). Cultures were returned to the incubator and the supernatant was

discarded after 3 h. Each scaffold was then transferred to an Eppendorf microtube,

and 1 mL of extraction solution (0.01 N of HCl in isopropanol) was added. The

Eppendorf microtubes were vortexed for 5 min to enable total color release from the

scaffolds and then centrifuged at 15.000 g for 5 min, and the optical density of the

supernatants was read at 540 nm.

A.3.4 Albumin ELISA assay

Albumin secretion from the HLSCs was determined using ELISA. Samples were

harvested daily from the circulating medium and frozen at −20 ◦C. The albumin

concentration was measured using the human albumin AssayMax Human Albumin

ELISA (Gentaur, Brussels, Belgium). The minimum detectable dose of albumin

with this kit is typically 100 ng /mL.

A.3.5 Histological and morphological analyses

Specimens were fixed in formalin, embedded in paraffin, and stained with hema-

toxylin and eosin. Cryostatic sections of 7 µm were used for morphological and

immunohistochemical analyses. They were layered over gelatine-coated glass slides,

fixed with absolute acetone for 10 min at room temperature, and cryopreserved at

−20 ◦C until use. Ck19 on HLSCs was identified using the acid phosphatase anti-

acid phosphatase procedure. Reactions were all conducted in humid chambers at

room temperature. Briefly, after saturating nonspecific antigen sites with 1:20 rab-

bit serum in 0.05 M Maleate TRIZMA (pH 7.6; Sigma) for 20 min, the first antibody

was added to samples (1:20 mouse anti-human CK19; Dako, Milano, Italy). After

incubation for 2 h, the samples were rinsed with buffer solution, and the second anti-

body was added for 30 min (Link Ab [Dako], rabbit anti mouse). After rinsing again,
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the sections were incubated for 30 min with 1:50 mouse acid phosphatase anti-acid

phosphatase Ab (Dako), then rinsed once more, and finally, reacted for 20 min with

Fast Red Substrate (Sigma). Counter staining was done with hematoxylin (Sigma).

A.3.6 Statistical analyses

Values are given as means ± standard deviation. The one-way analysis of variance

in the Excel software package was used for data analyses. Statistical significance

was assumed when p < 0.05.

A.4 Results

A.4.1 Bioreactor model

The bioreactor model was developed as reported in the Material and Methods section

(Fig. A.1). We considered the time-dependent profile of cell volume and oxygen

concentration along each channel as the main output of the system. Different flow

rates have been used in the model: Figures A.2 and A.3 show the results for three

of them, that is, 0.1, 0.5, and 2.5 mL /min. The results obtained with the model

confirmed that cell growth depends on the flow rate of the medium. Using the lowest

flow rate (0.1 mL /min) would enable a rapid cell growth at the channel inlet (Fig.

A.2, continuous line) where the oxygen concentration remains higher than 80% of

the saturation value. On the other hand, a flow rate of 0.1 mL /min would not be

able to avoid an oxygen gradient forming along the length of the channel: the O2

concentration would decrease moving from the inlet to the outlet of the channel.

The concentration at the outlet of the channel (dotted and dashed line in Fig. A.2)

would drop to the near-critical level of 5.26× 10−2 mol /m3 after 7 days of culture.

This oxygen gradient would lead to a slower cell growth rate in the central and

bottom portions of the scaffold (dashed lines, and dotted and dashed lines) and

consequently to an uneven distribution of the cell volume in the z-direction. A

flow rate of 0.5 mL /min would be able to maintain the oxygen concentration above

80% of the saturation value through the channel. However, the oxygen gradient

would be still present since few days of culture and it would correlate closely with
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Figure A.2: Time variation of the percentage of volume occupied by the cell (upper line)
and the O2 concentration related to the saturation value (bottom line). Data are given for
three flow rates, that is, 0.1 mL /min (left), 0.5 mL /min (center), and 2.5 mL /min (right).
Each graph shows the data for three z-coordinates, that is, at each channel’s inlet (continuous
line), midline (dashed line), and outlet (dashed and dotted line). The horizontal dotted line
in the O2 graphs corresponds to the threshold oxygen concentration of 5.26× 10−2 mol /m3.

Figure A.3: Percentage of mean cell volume (a) and minimum O2 concentration reached
in relation to the saturation value (b) for three flow rates, that is, 0.1, 0.5, and 2.5 mL /min.
Data are given at three time points, after 3 days (light gray), 5 days (dark gray), and 7 days
(black).
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a gradient in the percentage cell volume. Increasing the flow rate would lead to a

more homogeneous cell volume and oxygen concentration along the z-direction (Fig.

A.2). However, it also induced a high shear stress on the cell surface, which could

reduce the cell growth rate (Fig. A.3). Figure A.3 shows the prediction model for

the mean percentage of volume occupied by the cells in the whole scaffold for three

time points and the three flow rates. For short-term hepatocyte culture, a low flow

rate (around 0.5 mL /min and below) could give rise to the highest percentage cell

volume because the mean oxygen concentration does not strongly depend on the

flow rate when the cell volume is low. For longer-term culture (5 days or more), an

optimal flow rate (around 0.5 mL /min) achieved the highest mean percentage cell

volume. Still, as shown in Figure A.2, a uniform cell growth in the z-direction can

only be obtained with a flow rate of 2.5 mL /min or more. We considered a flow

rate of 0.5 mL /min as the best choice for maintaining high cell growth rate with

moderate heterogeneity in the cell distribution.

A.4.2 Morphological analyses

Figure A.4 (left column) shows the morphological features of the HLSCs cultivated

in the presence of HCm on day 3, in the previously described dynamic cell culture

conditions (0.5 mL /min). In these conditions, the cells have clearly become orga-

nized into clusters inside the small compartments of the sponge. The cells are able to

retain their phenotype, as confirmed by the red staining (showing positivity) for the

biliary marker (CK19) and by the presence of double-nucleated cells (cells inside the

circle). The direction of the flow of medium is indicated by white arrows, while the

presence of biomaterial fibers (horizontal black arrows) indicates the organization of

the small compartments in which the HLSCs could become organized into liver-like

tissue. Figure A.4 (right column) shows the 7-day cell cultures. Here again, the

cells were stained with classic hematoxylin and eosin and immunostained for biliary

markers (CK19; red cells). The cultured cells initially seeded on the surface coin-

ciding with the inlet for the flow of medium (white arrows) soon started to become

organized into multiple layers, migrating through the collagen sponge (horizontal

arrows). By day 7 (Fig. A.4), some clusters appeared to be trapped inside the
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Figure A.4: Morphological analyses of HLSCs on a three-dimensional scaffold in different
flow conditions on days 3 (left) and 7 (right). Cells are stained with classical H&E and biliary
markers (CK19) (red cells). White arrows: direction of flow of medium; horizontal black
arrows: collagen fibers. Circles: double nucleated cells. HLSC, human liver stem cell; H&E,
hematoxylin and eosin. Color images available online at www.liebertonline.com/ten.

sponge (red cluster), showing layered cells in the holes in the sponge. The differen-

tiated phenotype showed a “hexagonal shape” often associated with double nuclei

(cells inside the circle) in contrast to the flat shape initially seen, characteristic of

monolayer cultures (data not shown).

A.4.3 Proliferation test

Cells seeded onto the sponge were cultivated inside the bioreactor for up to 7 days

under different conditions, based on the type of medium (hepatic cell selective, stem
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cell selective, or both), the type of cell (HLSC, ITO, or both), and combinations

of the two (see Material and Methods section). Biological parameters were tested

on days 1, 3, 5, and 7, for example, the MTT was used to detect the proliferation

rate and albumin was quantified to establish differentiation status. The proliferation

rate (as detected with the MTT) is shown in Figure A.5a, where it is clear that cells

survived up to day 7 in all culture conditions (i.e., there was no drop in MTT values),

confirming the good functionality of the bioreactor. In more detailed analyses,

we found there was no detectable increase in the MTT value during the days of

culture when HLSCs were cultured alone; a slight increase was only visible when

SCm was used. A higher increase in MTT values over time was observable in

scaffolds containing ITO cells alone or HLSC and ITO cocultures, irrespective of the

combination of perfusion media used. The greatest improvement in cell proliferation

rate was obtained when HLSC and ITO cocultures were run in the presence of SCm.

The proliferation rate of ITO cultures showed a marked increase in the MTT result,

characteristic of the biology of nonparenchymal cell types.

A.4.4 Albumin production

Having established that a continuous flow of medium through the bioreactor is able

to sustain cell viability, we investigated liver functionality. Secreted albumin levels

for each of the above-described culture conditions were determined by ELISA in

samples of medium. Extracted DNA values from the cellularized scaffolds in the

different culture conditions were used to normalize all functional results. Results

in Figure A.5b confirm that albumin was synthesized by the liver cells grown in

the bioreactors throughout the experiment. We compared the ability of HLSCs

to maintain protein synthesis in the different culture conditions in the perfusion

bioreactors (Fig. A.5b). HLSCs cultured alone showed an albumin production

strongly related to the medium involved, the presence of SCm giving rise to a higher

production. The same trend was evident in coculture, where a higher albumin

secretion again coincided with the presence of SCm medium. There was naturally

no albumin production detectable in the culture containing ITO (nonparenchymal

cells) alone.
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Figure A.5: (a) MTT tests for proliferative activity was performed on days 1, 3, 5, and 7
in HCm (hepatic cell medium), SCm (stem cell medium), and HCm + SCm (hepatic cell +
stem cell media). Using analysis of variance, data were compared with HLSCs in HCm on the
same day (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001). (b) Albumin secretion was assayed for
HLSCs alone, ITO cells alone, and HLSC + ITO cell cultures in the bioreactor (no albumin
secretion was detected in ITO cell cultures). Using analysis of variance, data were compared
with HLSCs in HCm on the same day (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001).

A.5 Discussion

With a view to develop an efficient differentiation method to improve the com-

mitment of adult precursor liver cells to mature hepatic cells, we optimized the

culture method by using a 3D culture system in a perfusion bioreactor and test-

ing several combinations of cell cultures (HLSC, ITO, and both) and media (HCm,

SCm, and both). The first issue to consider was the well-known biological behavior

of primary hepatocytes18: because of their high metabolic activity in vivo, their

survival relies on an extensive vascularization to ensure an adequate nutrient and

waste exchange.19−21 With this in mind, our experiments were conducted in dy-

namic culture conditions using a perfusion bioreactor. This system enabled us to

simultaneously and separately culture eight porous scaffolds, ensuring an accurate

control of the flow rate of medium through each scaffold.14 The results obtained with

the mathematical model were used to decide a flow rate a priori, which was set to
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0.5 mL /min for up to 7 days. In these conditions, HLSCs in the presence of HCm

not only showed a good proliferation rate (Fig. A.5a, first histogram group from the

left) and a marked clustering within the collagen scaffolds (horizontal black arrows

in Fig. A.4), but also a good phenotype resembling mature hepatocytes, confirmed

by positivity for a biliary marker such as CK19 (red cells in Fig. A.4), the presence

of double-nucleated cells (cells inside the circle in Fig. A.4), and albumin secretion

(Fig. A.5b). Encouraged by these results, we focused on developing a system to im-

prove the proliferation rate and differentiated status of the HLSC population. Our

strategy was based on using a commercial SCm capable of influencing the stem cell

biology of the undifferentiated cells in the HLSC population and cocultivating the

HLSCs with a supporting cell population (ITO); the latter solution was prompted

by evidence that 3D coculture models involving parenchymal and nonparenchymal

cells can mimic the plate organization of the liver parenchyma, holding promise for

the reconstitution of the structure and matrix geometry of the hepatic microenvi-

ronment. Interaction between HLSCs and ITO cells may have an important role, for

instance, in modulating cell growth, migration, and differentiation.22−26 The cultures

obtained with different combinations of cells and media were analyzed according to

their proliferation rate and their ability to secrete albumin (Fig. A.5). In detail,

our results could be explained in the following text.

A.5.1 Hepatic cell medium

This medium induces a lower proliferation rate and smaller albumin production in

all cell cultures. No albumin production is detectable on ITO cultures (Fig. A.5b),

which shows that there are no hepatic progenitors in the ITO cell population. The

coculture system with HLSCs and ITO cells showed the highest proliferation rate

and greatest albumin production (p < 0.05 compared with HLSCs alone at the

same time point). This might be due to a positive interaction between the stem cell

population inside the HLSCs and the ITO cells.
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A.5.2 Stem cell medium

In HLSC cultures, this medium induced a small increase in the MTT value by

comparison both with different time points in the same culture and with the same

time points in culture with HCm (p < 0.05; Fig. A.5a). The same trend was seen

in the effect on albumin production, but the differences were much more evident

(p < 0.01 compared with HLSCs in HCm; Fig. A.5b); this could be due to the

activation of the undifferentiated stem cell population in the HLSCs. There was

a clearly evident, considerable increase in the MTT value for the ITO cultures

(p < 0.01); as mentioned previously, ITO cells are unable to produce albumin. In

cocultures (HLSC and ITO), the presence of SCm induced a higher proliferation

rate and a greater albumin production (p < 0.001 compared with HLSCs alone in

HCm), probably because of a positive interaction between HLSCs and ITO cells.

A.5.3 Stem cell and hepatic media

This medium had a better effect on differentiation than on proliferation: the HLSC

proliferation rate in the coculture stopped around day 5, whereas albumin was also

produced during the last days of culture, with rising albumin concentrations. As in

the other two cases, when this medium was used the best results in terms of MTT

value and albumin production were obtained with the HLSC and ITO coculture.

In this particular case, ITO cells proved capable of enhancing the differentiation

of precursor hepatic progenitors. Our data showed that the hepatocytes exhibited

a differentiated morphology and much higher levels of mature functions, such as

albumin secretion, when compared with the monoculture system (in which only

hepatocytes were cultured) in the same condition. In addition, the higher values of

the MTT test (Fig. A.5a) of cocultures compared with the results of hepatocytes

or ITO cells alone, independent of the medium, indirectly support our hypothesis.

However, as revealed by proliferation rate, it is evident that cells survived up to day

7 in every culture condition; then a tendency for the initial tissue-like structures to

degrade started. This event could be likely related to the progressive death of ITO

cells, unable to further support hepatocytes. Thus, we came to the conclusion that

ITO cells are initially able to modulate the differentiation of HLSCs in cocultures

either by direct cell contacts or via soluble factors in the medium. In the light
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of these results, we can confirm that a combination of the SCm with a coculture

including ITO cells definitely increased both cell proliferation and cell maturation.

In conclusion, HLSCs were induced to proliferate as cells with hepatic character-

istics by creating and enhancing a mutual synergism with the medium and with

neighboring nonparenchymal cells. Our findings demonstrate the feasibility of this

protocol for the differentiation and amplification of HLSCs as a useful source for cell

transplantation as well as for use in pharmaceutical and toxicological investigations.

A.6 Acknowledgments

This study received partial funding from the University of Padova, Italy, and a

grant from Fresenius Medical Care. The authors thank Professor Massimo Pinzani

for kindly providing ITO cells.

A.7 Disclosure Statement

M.B. Herrera is the named inventor on a related patent application concerning liver

stem cells. C. Tetta is a full-time employee of Fresenius Medical Care (Deutschland).

U. Cillo has a financial interest in Fresenius Medical Care.

A.8 References

1. Lee, W.M., Squires, R.H., Jr., Nyberg, S.L., Doo, E., and Hoofnagle, J.H. Acute liver failure:

summary of a workshop. Hepatology 47, 1401, 2008.

2. Yu, C.B., Pan, X.P., and Li, L.J. Progress in bioreactors of bioartificial livers review. Hepato-

biliary Pancreat Dis Int 8, 134, 2009.

3. van de Kerkhove, M.P., Poyck, P.P., Deurholt, T., Hoekstra, R., Chamuleau, R.A., and van

Gulik, T.M. Liver support therapy: an overview of the AMC-bioartificial liver research. Dig Surg

22, 254, 2005.

4. Morsiani, E., Brogli, M., Galavotti, D., Pazzi, P., Puviani, A.C., and Azzena, G.F. Biologic

liver support: optimal cell source and mass. Int J Artif Organs 25, 985, 2002.

125



A. A COMBINING METHOD TO ENHANCE THE IN VITRO
DIFFERENTIATION OF HEPATIC PRECURSOR CELLS

5. van de Kerkhove, M.P., Hoekstra, R., Chamuleau, R.A., and van Gulik, T.M. Clinical applica-

tion of bioartificial liver support systems. Review. Ann Surg 240, 216, 2004.

6. Chamuleau, R.A., Poyck, P.P., and van de Kerkhove, M.P. Bioartificial liver: its pros and cons.

Review. Ther Apher Dial 10, 168, 2006.

7. Rozga, J. Liver support technology—an update. Review. Xenotransplantation 13, 380, 2006.

8. Catapano, G., Patzer, J.F., 2nd, and Gerlach, J.C. Transport advances in disposable bioreactors

for liver tissue engineering. Adv Biochem Eng Biotechnol 115, 117, 2010.

9. Tilles, A.W., Berthiaume, F., Yarmush, M.L., and Toner, M. Critical issues in bioartificial liver

development. Review. Technol Health Care 10, 177, 2002.

10. Herrera, M.B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M.C., Bussolati, B.,

and Camussi, G. Isolation and characterization of a stem cell population from adult human liver.

Stem Cells 24, 2840, 2006.

11. Flaibani, M., Magrofuoco, E., and Elvassore, N. Computational modeling of cell growth het-

erogeneity in a perfused 3D scaffold. IECR 49, 859, 2010.

12. Lewis, M., MacArthur, B., Malda, J., Pettet, G., and Please, C. Heterogeneous proliferation

within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol Bioeng 91, 607,

2005.

13. Paik, Y.H., Schwabe, R.F., Bataller, R., Russo, C., Jobin, C., and Brenner, D.A. Toll-like

receptor 4 mediates inflammatory signalling by bacterial lipopolysaccharide in human hepatic stel-

late cells. Hepatology 37, 1043, 2003.

14. Flaibani, M., Luni, C., Sbalchiero, E., and Elvassore, N. Flow cytometric cell cycle analysis of

muscle precursor cells cultured within 3D scaffolds in a perfusion bioreactor. Biotechnol Prog 25,

286, 2009.

15. Cannizzaro, C., Tandon, N., Figallo, E., Park, H., Gerecht, S., Radisic, M., Elvassore, N., and

Vunjak-Novakovic, G. Practical aspects of cardiac tissue engineering with electrical stimulation.

Methods Mol Med 140, 291, 2007.

16. Cimetta, E., Flaibani, M., Mella, M., Serena, E., Boldrin, L., Coppi, P.D., and Elvassore, N.

Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor. Int J

Artif Organs 30, 415, 2007.

17. Denizot, F., and Lang, R. Rapid colorimetric assay for cell growth and survival. J Immunol

Methods 89, 271, 1986. 18. Allen, J.W., and Bhatia, S.N. Engineering Liver therapies for the

future. Review. Tissue Eng 8, 725, 2002.
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B. COMPUTATIONAL MODELING OF CELL GROWTH
HETEROGENEITY IN A PERFUSED 3D SCAFFOLD

B.1 Abstract

Our goal was to develop a computational model describing the spatiotemporal evo-

lution of cell heterogeneity within a three-dimensional porous scaffold during cell

growth in a perfusion bioreactor. The scaffold was assumed formed by an ensemble

of independent parallel cylindrical channels with a defined diameter distribution.

The total flow rate partitioning in each channel depends on the effective diameter,

which is reduced by the cell growth on the channel wall. The mass balance for one

metabolite and the cell volume balance were solved. For each channel diameter,

the model simulation provide the spatiotemporal evolution of velocity, shear stress,

metabolite concentration, and cell volume growth. In particular, all of these out-

comes can be analyzed as a function of channel diameter providing an evaluation

of cell property heterogeneity. The model describes that the cell growth can be

substantially different in each channel diameter. For instance, in the small diameter

channel, cell growth is limited by metabolite mass transport, whereas in the larger

diameter channel, shear stress inhibits cell growth. This mathematical model could

be an important tool for a priori estimation of the time variation of the cell volume

fraction and its degree of heterogeneity as a function of operational parameters and

scaffold pore size distribution.

B.2 Introduction

In vivo, cells are part of a three-dimensional (3D) complex multiscale organization

that starts from small cell clusters, and extends to tissues, and to large volume or-

gans. The correct operation of an organ depends on the single cell behavior that

is affected by the cell microenvironment defined by mass transport phenomena of

biochemical species, mechanical and hydrodynamic stimuli, biochemical and elec-

trical signals, and physical interaction with the neighboring cells.1 On the other

hand, conventional in vitro cell culture is based on a two-dimensional (2D) cell cul-

ture system where many of the complex in vivo stimuli and interactions can be

altered or not properly reproduced. Therefore, there is a pressing need of scaling

cell culture systems from the 2D to 3D environment to more closely recreate the be-

havior of the tissue in vivo, which may better simulate in vivo biology, physiology,
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or physiopathology.2−4 The main challenge of 3D cultures is the accomplishment of

a controllable and homogeneous cell behavior within the entire 3D volume. The

cell behavior is characterized by both an intrinsic variability correlated with the

properties of the cell itself and an extrinsic variability related to the microenviron-

mental properties.5,6 These two sources of variability can both induce heterogeneity

of cell fate within the 3D domain, leading to an undesired nonhomogeneous 3D

culture structure. The intrinsic variability depends only on the cell source and

cannot be controlled during the culture, whereas the extrinsic variability can be

minimized by strictly controlling the microenvironmental properties that depend on

the experimental setup used for culturing the cells. In vitro 3D culture systems are

characterized by two main components that distinguish from 2D culture: the 3D-

like substrates, named scaffolds, where the cells grow, and the technological devices,

bioreactors, designed for dynamic cultures. Scaffolds of different shapes, structures,

and materials have been realized and studied.7,8 Among the different types, the

polymeric porous scaffolds are usually preferred for long-term culture of adherent

cells. The cells adhere to the internal wall of the scaffold channel; therefore, the

scaffold structure, morphology, and porosity at macro- and microscale are impor-

tant parameters that contribute to define the cell microenvironment, that is, the

metabolic and regulatory cell activity. Bioreactors with different characteristics and

functionality have been developed for the 3D cell culture in the past years.9,10 One of

the most promising systems for cell culture in 3D porous scaffolds is the direct per-

fusion bioreactor; in this experimental setup, the medium flows through the scaffold

channels.11,12 The medium perfusion influences mass transport, hydrodynamic, and

mechanical stimuli, defining cell microenvironment properties. As a consequence,

the properties of the cell microenvironment could be modified by tuning operative

variable, such as total flow rate. Moreover, the scaffold geometry and the bioreactor

flow rate affect the microenvironment properties and their homogeneity because: (a)

the total flow splits between channels of different diameters depending on the pore

size distribution, which is subject to changes with cell growth; and (b) concentration

gradients of metabolites and growth factors result from the combination between cell

uptake and mass transport limitations.13 A rational understanding of the correlation

between scaffold geometry, operative variables, and culture conditions at microscale

level is extremely relevant for the 3D culture optimization. The knowledge of this
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correlation would allow one to control the influence of these parameters on the cell

volume, the cell behavior, and the cell homogeneity within the entire 3D domain.

Mathematical models are useful tools for correlating measurable macroscopic vari-

ables to the microscale properties and therefore for interpreting experimental results,

identifying the dominating mechanisms, and understanding the biological phenom-

ena. Over the last years, an increasing number of mathematical models focused

on cell growth and nutrient transport and consumption in 3D constructs have been

developed.13 They have a fundamental role in helping people to understand mass

transport14−19 and fluid dynamics in biological systems,10,20 in developing imaging

techniques,21,22 and in optimizing culture by design of experiments.23 Furthermore,

predictive modeling offers huge potential in the optimization of culture conditions

and the design of experimental protocols.13 The models described above have limits

of either analyzing the steady-state condition (thus neglecting cell growth)16,19,24

or neglecting some mass transport phenomena14,16,17,25 or not considering the geo-

metrical heterogeneousness of the system, which can lead to heterogeneous culture

conditions.14,15,26 The purpose of this Article is to develop a computational model

able to describe not only the cell growth but also the cell heterogeneity by simu-

lating the spatiotemporal evolution of microenvironment properties within the 3D

scaffold domain. In particular, we aimed to take into account the heterogeneity of

the scaffold pore diameters, which is defined through an average pore size and an

associated pore size distribution. Using our mathematical model, we investigated

the time-evolution of cell volume heterogeneity as a function of scaffold geometry

such as the channel diameter distribution and operational parameters such as the

volumetric flow rate.

B.3 Methods

Theoretical Framework. Typical experimental setup of a perfusion bioreactor

is composed of four units: peristaltic pump, gas exchanger, medium reservoir, and

culture chamber. The peristaltic pump is a volumetric pump that allows us to

control the medium flow rate through the scaffold independently from the pressure

drop. The gas exchanger is required to saturate the oxygen and carbon dioxide

concentration in the medium. The culture chamber holds the scaffold used for the 3D
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cell culture. In this 3D configuration, the medium is constrained to flow through the

scaffold. The scaffold is normally formed by porous materials with defined porosity,

pore size dimension, and distribution; these pores are usually interconnected to form

channels with different size and length. We are mainly interested in studying the

effect of local mass transport properties on cell growth heterogeneity; consequently,

in our model we assumed that the scaffold is formed by an ensemble of independent

parallel oriented channels with defined diameter size distribution as shown in Figure

B.1A. Under this assumption, the flow rate entering the scaffold is partitioned

according to the principle that the pressure drop must be the same for all channels

(iso-headloss condition). Hence, the specific flow rate in each single channel of the

scaffold is established by the effective channel diameter shown in Figure B.1B. The

cell layer growth adhering to the wall of the scaffold channels, as a result the region

where the medium flows, is reduced. In our model, the effective channel diameter

represents the difference between the scaffold channel diameter and the thickness of

the cell layer. We defined two domains: domain I, the medium region, and domain

II, the cell layer. The effective diameter changes due to the cell growth, and the flow

is repartitioned according to the iso-pressure drop principle. In a single channel, the

cell growth is regulated by the local metabolite availability or hydrodynamic stresses.

Among different biochemical and mechanical stimuli, our work assumes that the

oxygen plays a major role in influencing the cell growth. This biological hypothesis

is supported by many contributions reporting oxygen influence in cell growth in

perfusion bioreactors.27 On the other hand, we assumed that the hydrodynamic

shear stress must be taken into account for high medium velocity that is likely to

appear for high cell density; in this case, the reduction of the effective diameter leads

to higher medium flow under the constriction of constant overall flow rate imposed

by the peristaltic volumetric pump. This latter phenomena is particular relevant in

inhibiting the cell growth;28 for this reason, we assumed that local shear stress values

greater than a defined threshold value strongly reduce the cell growth.29 Figure B.1C

summarizes all phenomena our model takes into account, all of the variables and

the relations between each of them distinguishing among the two domains and their

interface. The total flow rate Qtot is partitioned between all channels, resulting in

specific channel flow rateQch. The medium having oxygen concentration, cIO2
(r, z, t),

flows inside the channel with velocity field, vz (r, z, t). The oxygen diffuses along
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Figure B.1: Representation of the geometry and the phenomena considered in the model.
(A) The scaffold structure is a cylinder crossed by several cylindrical parallel channels with a
Gaussian distribution of diameters. (B) Every single channel is characterized by an external
radius R. It is composed of two regions, the medium domain (domain I, white) with radius
S (z, t), and the cellular domain (domain II, gray). The arrows show the parabolic profile
of medium velocity in domain I. (C) Bidimensional representation of the phenomena, the
variables, and their relations that our model takes into account; domain I is on the left
(convection diffusion model, white), while domain II is on the right (diffusion reaction model,
gray). The total volumetric flow rate, Qtot, is partitioned between all channels (1) creating a
convective flux with axial velocity vz (2). It generates both a shear stress on the cell surface
(3) and an oxygen concentration profile in domain I (4). Oxygen diffusion in the cell domain
(5) is induced by the gradient generated by the cell metabolism (6). Oxygen concentration in
domain II affects the cell growth that modifies the thickness of both domain (9), causing the
redistribution of the total flow rate between all channels (10). The cell growth can be stopped
by an oxygen concentration under the physiological value (7) and/or by a high shear stress
value on the cell surface (8).
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the radial direction toward the domain II where cell uptake decreases the oxygen

concentration in domain II (cIIO2
(r, z, t)). Oxygen depletion causes reduction of the

cell growth rate. However, the cell volume, Vcell (z, t), modifies the effective channel

diameter (2S (z, t)), altering the specific channel flow rate and, consequently, the

oxygen mass transport and the hydrodynamic shear stress, τ (z, t).

Mathematical Model. The diameter distribution of the channels is described

by a Gaussian distribution. The Fanning equation30 provides the flow rate in a

single channel, Qch, as a function of the pressure drop, ∆P :

Qch =
πD4

ch∆P

128µLch
, (B.1)

where µ is the medium viscosity, and Lch and Dch are the channel length (which

corresponds to the height of the scaffold) and channel diameter. The partitioning of

the flow rate between channel with different diameters must satisfy the overall mass

balance:

Qtot =
∑
k

p (Dk)Qk, (B.2)

pk is the probability from Gaussian distribution for the k−th channel diameter (Dk).

Combining eqs (B.1) and (B.2), the volumetric flow rate distribution is obtained.

The following section describes the development of the single channel model, which

was solved for each channel diameter. The governing equation for domain I was

solved in the range 0 < r < S (z, t), while the governing equations for domain II

were solved in the range S (z, t) < r < R, where R is the channel radius and S (z, t)

is the effective channel radius (Figure B.1B); R− S (z, t) is the cell layer thickness.

For both domains, the governing equations are derived for cylindrical geometry, and

they are expressed in terms of radial and axial coordinate; we assumed that all

phenomena are angular coordinate independent. For domain I, assuming that the

convective flux is relevant only in axial direction and the diffusive flux in the axial

direction is negligible as compared to the convective flux (Peclet number ¿ 1), the

oxygen mass balance follows:

∂cIO2

∂t
= −

[
1

r

∂

∂r

(
rN I

O2,r

)]
− vz (r, t)

∂cIO2

∂z
, (B.3)
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where N I
O2,r

is the diffusive molar flux in the radial direction. For domain II, assum-

ing diffusion only along radial coordinate, the oxygen mass balance follows:

∂cIO2

∂t
= −

[
1

r

∂

∂r

(
rN I

O2,r

)]
+RO2 , (B.4)

where RO2 is the oxygen uptake rate. The previous eqs (B.3) and (B.4) must be

coupled with the constitutive equations for the oxygen flux in both domains, for the

medium velocity, and for the oxygen uptake rate. Oxygen flux is expressed by Fick’s

law:30

N I
O2,r

= −DI
O2

∂cIO2

∂r
, (B.5)

N II
O2,r

= −DII
O2

∂cIIO2

∂r
, (B.6)

where DI
O2

and DII
O2

are the diffusion coefficients of the oxygen, respectively, in do-

mains I and II. The medium velocity is expressed by Poiseuille’s equation consistent

in the limit at low Reynolds number:

vz (r, t) =
2Qch

πS(z, t)2

[
1−

(
r

S (z, t)

)2
]
. (B.7)

The oxygen uptake rate was assumed to follow the Michaelis-Menten kinetics; it is

proportional to the local oxygen concentration and to the specific cell volume:15,18,31

RO2 = − 1

ṽcell

Qmc
II
O2

Cm + cIIO2

(B.8)

In the above equations, ṽcell is the cell specific volume, Qm is the maximal oxygen

consumption rate, and Cm is the oxygen concentration at half-maximal oxygen con-

sumption. Equations (B.3) and (B.4) were solved with respect to the variables cIO2
,
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cIIO2
. Boundary conditions required for eqs (B.3) and (B.4) are:

cIO2
(r, z, t) = cO2,0 z = 0, (B.9)

∂cIO2
(r, z, t)

∂r
= 0 r = 0, (B.10)

∂cIO2
II (r, z, t)

∂r
= 0 r = R, (B.11)

N I
O2,r

(r, z, t) = N II
O2,r

(r, z, t) r = S (z, t) . (B.12)

cO2,0 is the dissolved oxygen concentration at the inlet of the channel, eqs (B.10)

and (B.11) show, respectively, a symmetry and insulation condition in the center

and at the wall of the channel, and eq (B.12) denotes that the molar fluxes at the

interface are the same for both domains. Equations (B.13) and (B.14) are the initial

condition of uniform value of the oxygen concentration (cO2,0) in both domains.

cIO2
(r, z, t) = cO2,0 t = tin, (B.13)

cIIO2
(r, z, t) = cO2,0 t = tin. (B.14)

The size of domains I and II depends on the effective channel radius, S (z, t), ac-

cording to the cell growth. The solution of the mass balance eqs (B.3) and (B.4)

requires an expression for effective channel radius as function of time and the ax-

ial coordinate for each channel. Assuming a constant specific cell volume, the cell

volume balance equation follows:

d

dt
[δVcell (z, t)] = Rcell (z, t) , (B.15)

δVcell is the cell volume for a δz section, and Rcell is the cell growth rate. The cell

volume, δVcell, is defined as:

δVcell (z, t) = 2π

∫ z+δz

z

∫ R

S(z,t)

r dzdr. (B.16)

The specific cell growth rate was simplified to a first-order kinetics, proportional to

the local oxygen concentration and to the cell volume, which is similar to that used
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by others in the literature:14,27,32,33

Rcell (z, t) = kcellFdampc
II
O2
δVcell, (B.17)

kcell is the cell growth kinetic constant, and Fdamp is the damping function. It

is worth mentioning that eq (B.17) is a fair linear approximation of Monod-type

equation only for low oxygen concentration. To be consistent, we verified that

the results of simulation show negligible difference when eq (B.17) or Monod-type

equation34 was used. The damping function takes into account the inhibition for low

oxygen level and high shear stress. The cell growth rate decreases once the oxygen

concentration approaches to the minimum oxygen concentration and/or when the

effective channel radius approaches to the minimum value, which is determined by

the maximum shear stress that cells can tolerate. It is defined as:

F =
1

π

{π
2

+ arctan
[
kdamp

(
cIIO2
− climO2

) (
S (z, t)− Slim

)]}
, (B.18)

kdamp is the tunable damping coefficient, which determines the steepness of F vari-

ation from 1 to 0, climO2
is the minimum threshold of oxygen concentration necessary

for the cell growth, and Slim is the effective channel radius below which the shear

stress inhibits the cell growth or induces cell detachment at a rate equal to cell

growth rate:35

Slim =

(
4µQch

πτshear

)1�3
, (B.19)

τshear is the threshold shear stress, and Qch is the volumetric flow rate in the k− th
channel. Combining eqs (B.15)-(B.17), the rate of displacement of the effective

channel radius, dS/dt, is obtained:

dS

dt
= − kcell

S (z, t)

∫ R

S(z,t)

FcIIO2
r dr, (B.20)

The initial condition of eq (B.20) is given by:

S (z, t) = S0 t = tin, (B.21)

138



B.3 Methods

S0 is the initial medium/cell interface position. The resolution of the system of eqs

(B.3), (B.4), and (B.20) at the same time for each channel k, coupled with eqs (B.1)

and (B.2), gives: the temporal evolution of the volumetric flow rate partitioning in all

channels; the spatiotemporal evolution of the cell volume, the oxygen concentration,

and the effective channel radius; and the shear stress on the cell layer for each

channel of the Gaussian distribution. To analyze the model results, the average

channel properties are defined. The average cell volume fraction (χ) is defined as:

〈χ〉 =
1

R2

∫ Lch

0

∫ R

S(z,t)

r drdz∫ Lch

0

∫ R

0

r drdz

, (B.22)

The average effective diameter is defined as:

〈D〉 =

∫ Lch

0

2S dz∫ Lch

0

dz

. (B.23)

The average oxygen concentration at the outlet of the channel was evaluated by the

following expression:

〈cO2〉 =

∫ S(t)

0

cIO2
r dr∫ S(t)

0

r dr

. (B.24)

Parameter Estimation. All model parameters are listed in Table B.1. The

cell growth kinetic constant, kcell, was evaluated by the cell doubling time of cells

cultured in our laboratory (data not shown), the damping coefficient, kdamp, was set

to have a sharp profile of the damping function (i.e., a quickly inhibition of the cell

growth) without discontinuities, and the cell specific volume, ṽcell, was determined

measuring the size of cells cultured in our laboratory.

Numerical Solution. The model equations were rewritten in dimensionless
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Table B.1: Model Parameters: Their Symbol, the Respective Values Used in
Simulations, and the Reference

Parameter Symbol Value Reference

cell growth kinetic constant kcell 7.64× 10−5 m3 mol−1 s−1 this work
cell specific volume ṽcell 1.44× 10−15 m3 /cell experimental evaluated
damping coefficient kdamp 10 m2 /mol this work
diffusion coefficient oxygen, cell DII

O2
2.0× 10−9 m2 /s 40

diffusion coefficient oxygen, medium DI
O2

3.29× 10−9 m2 /s 41
dissolved oxygen concentration in equilibrium with air cO2,0 2.1× 10−1 mol /m3 42
maximal oxygen consumption rate Qm 1.86× 10−18 mol cell−1 s−1 31
medium viscosity µ 7.7× 10−4 Pa s 43
oxygen concentration at half-maximal oxygen consumption Cm 6× 10−3 mol /m3 31
threshold oxygen concentration climO2

5.26× 10−2 mol /m3 44
threshold shear stress τshear 0.10 Pa 45,46

form using the following scaling factors:

r̃ =
r

R
; z̃ =

z

Lch
; s̃ (z̃, τ) =

S (z, t)

R
; τ =

DI
O2

L2
ch

t, (B.25)

cI (r̃, z̃, tau) =
cIO2

(r, z, t)

cO2,0

; cII (r̃, z̃, tau) =
cIIO2

(r, z, t)

cO2,0

. (B.26)

Moving boundary conditions (eq (B.20)) have been solved by the front fixing method.

The following coordinate transformations were applied in domains I and II, to solve

this moving boundary problem:

ξI =
r̃

s̃ (z̃, τ)
, (B.27)

ξII =
r̃ − 1

s̃ (z̃, τ)− 1
. (B.28)

In this way, both coordinates ξI and ξII range from 0 to 1. Dimensionless equations

obtained from eqs (B.3), (B.4), and (B.20) were discretized using the finite volumes

technique. The discretization of the mathematical model leads to an ordinary differ-

ential equation (ODE) system, which was numerically solved using MATLAB (The

MathWorks, Natick, MA), and the function ode15s was utilized to compute the

equations. Along the axial direction, a linear discretization was used, while in the

radial direction, a geometrical discretization was used starting from the interface
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and applying the following expression:

h̃i+1 = 2qh̃i, (B.29)

h̃1 =
(1− 2q)(
1− 2qNr

) . (B.30)

In these two equations, h̃i is the dimensionless width of the mesh i, q is a discretiza-

tion parameter equals to 0.5 in domains I and II, and Nr is the number of meshes; it

is necessary to set the width of the first one utilizing eq (B.30). When the gradient

of oxygen concentration is steep at the interface, a higher value of q can be chosen

to better describe the oxygen profile. Optimal mesh size condition was achieved

varying the number of mesh in both directions (radial and axial) until a difference

less than 0.5% between the simulation’s results was reached; we used 10 meshes in

the z coordinate and 20 meshes in each domain in the r coordinate. The implemen-

tation of the moving boundary by means of the front fixing method was validated,

and the numerical solution was compared to the analytical solution of the Stefan

problem.36 To check the mass conservativity of the model, several tests were done

at every time step simulation and between the initial and the final time. The values

of all numerical parameters are shown in Table B.2.

Table B.2: Parameters of the Numerical Solutions: Symbol and Respective Values

Parameter Symbol Value

discretization parameter q 0.5
mesh in the z coordinate Nz 10
mesh in the domain I N I

r 20
mesh in the domain II N II

r 20
absolute tolerance in ode15s function 1× 10−7

B.4 Results

The results are presented in two sections: (i) the spatiotemporal evolution of a

single channel properties; and (ii) the temporal evolution of the averaged properties

of every class of channel for a Gaussian distribution of channel diameters.
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Spatiotemporal Evolution in a Single Channel. Figure B.2 shows the

spatiotemporal evolution of the cell volume (domain II) as variation of the position

of the domain I/II interface (s̃) and the oxygen concentration profiles (c) for a 300 µm

diameter channel. The dimensionless effective diameter, 2s̃, decreases from the

Figure B.2: Results obtained for a 300µm diameter channel. (A) Position of domain I/II
interface along the channel parametric in time. The thicker lines show the interface at t = 1
day and t = tfin (11 days), the same times reported in (B) and (C). (B,C) Color maps of
oxygen concentration in domain II (cell domain) at t = 1 day (B) and at t = tfin (11 days,
C); the legend on the right is the same for both figures. (D,E) Temporal evolution of the
dimensionless oxygen concentration streamline along the radial axis at z̃ = 0.25 (D) and at
z̃ = 0.9 (E). The dashed lines in both figures evidence the position of domain I/II interface.
All of the values of the parameters and operative variables are illustrated in Tables B.1 and
B.3.

initial condition of s̃0 = 0.91, which is constant along the axial coordinate and

corresponds to a thickness of domain II equal to 9% of the channel diameter. The

model highlights different cell growth rates at different axial positions, resulting in

the time-variation of the slope of the interfacial line in Figure B.2A. The cell domain

at the channel inlet (z̃ = 0) grows faster than at the channel outlet (z̃ = 1). At the

steady state, s reaches a uniform value along the z-direction equal to 0.30, which
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Table B.3: Symbols and Values of the Operative Variable Used in Single-Channel
and Multichannel Simulations

Single channel Multichannel
Operative variables Symbol Value Operative variables Symbol Value

volumetric flow rate Qch 1.0× 10−11 m3 /s volumetric flow rate Qtot 1.67× 10−8 m3 /s
final time tfin 11 days final time tfin 11 days
channel length L 3.0× 10−3 m channel length L 3.0× 10−3 m
channel diameter D 3.0× 10−4 m number of channel simulated ND 77

variance σ2 2.5× 10−9 m2

mean diameter Dmean 2.78× 10−4 m

corresponds to a cell thickness of 0.70. The color maps (Figure B.2B and C) represent

the dimensionless oxygen concentration within the domain II, respectively, after 1

and 11 days. cII is higher near the inlet of the channel, and it decreases along the

axial and radial coordinates; cII decreases more as domain II is thicker. In the case

reported, after 1 day the cell thickness is different between the inlet and the outlet

section and the minimum dimensionless oxygen value is about 0.95, while, after 11

days, the cell thickness is uniform and equals 0.70, and the lower oxygen value is

about 0.85. Figures B.2D and E shows the time evolution of the radial profiles

of oxygen concentration for z̃ = 0.25 and z̃ = 0.9, respectively. The dashed line in

Figures B.2D and E denotes the position of domain interface at different time for the

two z-sections. The oxygen consumption by the cells in the domain II reduces the

oxygen concentration inside it. The thicker cell domain means lower concentrations

not only in the cell domain but also in the center of the channel. Figures B.2D and E

show how the oxygen concentration decreases with time during cell volume growth.

Moreover, at the outlet of the channel (Figure B.2E), the concentration is lower than

at the inlet (Figure B.2D), and the different shape of the dashed lines underlines the

difference in cell volume growth as observed in Figures B.2A-C. In the case reported,

the oxygen concentration is always much higher than the critical value of 0.25, which

means the factor limiting the cell growth is the shear stress. Analogue simulations

were carried out modifying the flow rate by 10% for a two-channel diameter (300 and

150 µm)(data not shown). A change in the flow rate value influences the cell volume

fraction at stationary: reducing the flow rate by 10%, the s value increments of

3.5%, while increasing the flow rate by 10%, s decreases by 3.2%. The homogeneity

and the duration of the transitory state are not affected by this operative variable.

On the other hand, a decrement of the channel diameter led to a reduction of both
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the duration of the transitory and the final cell volume fraction. Simulation for 300

and 150 µm gave a uniform cell volume fraction at steady state. In any case, the

oxygen concentration did not reach the critical value of 0.25, and the factor limiting

the cell growth was the shear stress. Understanding the results of a single channel

is the basis to comprehending the more complex data given by simulation of a 3D

scaffold with a Gaussian distribution of the channel diameters.

Temporal Evolution for a Gaussian Channel Distribution. Typical ex-

amples of the outputs that can be obtained using this model are shown in Figures

B.3 and B.4. In this particular case, a scaffold characterized by a Gaussian distri-

bution of channel diameters with mean diameter and variance equal, respectively,

to 2.8× 10−4 and 2.5× 10−9 m2,37 was considered. Figure B.3 shows the temporal

evolution of the distribution of the channel effective diameters and the flow rate

per channel. In particular, the probability function of the effective channel diam-

Figure B.3: Temporal evolution of effective channel diameters and volumetric flow rates
in a multichannel scaffold. (A) Probability function of the effective diameters at different
time points. Thicker dashed line is the initial distribution, and the thicker solid line is the
final distribution. (B) Evolution of the volumetric flow rate distribution per each channel.
Thicker dashed line corresponds to the initial distribution, and the thicker solid line is the final
distribution. (C) Temporal evolution of the effective channel diameter versus the volumetric
flow rate of that channel. Each line corresponds to a class of channel defined by the external
diameter; the top part of the figure denotes the initial condition, while the bottom one denotes
the condition at the final time; the points on the lines indicate time steps of 12 h. All of the
values of the parameters and operative variables are summarized in Tables B.1 and B.3.

eter (2s̃) (Figure B.3A) has an initial symmetric Gaussian shape (thick dashed line
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centered in 2.78× 10−4 m) that becomes narrower, then log-normal, and finally it

becomes similar to a bimodal distribution (thick line on the left). The intermediate

values of diameter approach zero probability after 7 days. At the end of the sim-

ulated 11 days, the bimodal distribution has one high peak at 4.7× 10−5 m and a

second smaller and larger peak centered at 1.2× 10−4 m. Likewise, for the channel

diameter distribution, it is also possible to analyze the temporal evolution of the

distribution of the total volumetric flow rate between the different channels (Figure

B.3B). The initial distribution (thick dashed line on the left) is not symmetric be-

cause the flow rate is related to the diameter through a four power law (Fanning

equation). The discontinuity that can be seen for a diameter of 3.8× 10−4 m in each

profile is due to a change of diameter sampling. In the channels with the external

diameter smaller than 3.1× 10−4 m, the medium flow rate decreases in time, and it

comes closer to zero, while above this threshold value the flow rate increases. The

presence of this threshold value is visible also in Figure B.3C, which summarizes

the information of the previous two plots. Here, the effective diameters versus the

relative channel flow rate are reported at different time. Each line refers to a class

of channels defined by the value of the external diameter (2R). For the first 4 days,

the flow rates are constant in almost all of the classes, while the effective diameters

decrease; after that the curves follow two trends: for a first group of channels, the

effective diameter approaches to a unique value (about 4.7× 10−5 m) as discussed

above for Figure B.3A, and the flow rates come closer to zero, as shown in Figure

B.3B. While for a second group of channels, the effective diameters remain higher

(they create the second distribution of the final channel diameter distribution cen-

tered at 1.2× 10−4 m, as discussed above for Figure B.3A) and the volume flow

rates increase, as seen in Figure B.3B. The threshold between these two groups is

the external diameter equal to 3.1× 10−4 m. Figure B.4 reports data of the average

cell volume fraction for each channel (Figure B.4A), the uniformity of cell growth

along the z-direction for every channels (Figure B.4B), the shear stress on the cells

at the channel inlet (Figure B.4C), and the oxygen concentration at each channel

outlet (Figure B.4D). In this simulated case, the model shows that the cell volume

fraction increases in every channel up to a value higher than 0.8 (Figure B.4A).

The cell volume grows at the same rate in all of the channels up to a cell volume

fraction of about 0.45 (the points on the line indicate time step of 12 h), after that in
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Figure B.4: Outputs of a simulation of a multichannel scaffold. The temporal evolution of
the effective diameter of different classes of channels is reported versus the cell volume fraction
in that channel (A) or versus the absolute value of the difference between S at the inlet and
at the outlet of every channel (B). Each line corresponds to a class of channel defined by
the external diameter; the left side corresponds to the initial Gaussian distribution, and the
points on the lines indicate time steps of 12 h. Inset in (B) shows the temporal evolution of the
effective diameter for a channel with small diameter value. Shear stress evaluated at the inlet of
the channels as a function of the external channel diameter and parametric in time; the dashed
line shows the threshold shear stress value above which it inhibits cell growth (0.1 Pa) (C).
Dimensionless oxygen concentration evaluated at the outlet of the channels versus the external
diameter and parametric in time; the dashed line indicates the minimum dimensionless oxygen
concentration necessary for cell growth (5.26× 10−2 mol /m3) (D).

the channels with external diameters around 2.5× 10−4 m the growth rate becomes

higher; the stationary state is reached earlier and at lower final cell volume fraction

in the larger channels. Figure B.4A shows once more how the effective diameters of

the smaller channels approach to the same value. The effective diameters in Figure

B.4A, such as in Figure B.3, are the average value along the z-direction. Figure B.4B

shows the variance of the s value along the z-direction in each channel, which is the

heterogeneity along this direction. In this graph, the effective average diameter is

reported versus the absolute value of the difference of s at the inlet and at the outlet

of each channel. The difference between the inlet and the outlet increases at the

beginning, with the inlet value lower than the outlet one. This difference reaches a

maximum and then decreases. In the larger channels, the difference reaches almost

the zero value at the stationary state; in the smaller channels (e.g., inset in Figure

B.4B) after a decreasing phase, the difference starts to increase again up to 0.25 at
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the end of the culture in the smallest channel. The shear stress on the cells was eval-

uated at the inlet of the channels, because this is the zone where the s is always the

minimum of the channel, and thus the shear stress reaches the higher values. The

data parametric in time are reported in Figure B.4C. The shear stress depends on

the flow rate distribution, its value increases with time, and it goes over shear stress

limit (dashed line at 0.1 Pa) only in the channels with external diameter greater than

3.10× 10−4 m. The shear stress is one factor that can limit cell growth; the other

one we considered is the oxygen concentration. Figure B.4D reports the temporal

evolution of the oxygen concentration at the outlet of each channel as a function

of the external channel diameter. Starting from the initial value (eqs (B.13) and

(B.14)), the oxygen concentration decreases with time. The decrement is almost

negligible in channels greater than 3.10× 10−4 m, while in the smaller channel the

oxygen concentration goes below the minimum oxygen concentration necessary for

the cell growth (dashed line at 0.25 of dimensionless oxygen concentration), reaching

values close to zero. It is worth observing that these results are quite insensitive

to the model parameters. For instance, a 100% variation of the cell growth kinetic

constant kcell or the maximal oxygen consumption rate Qm induces a change in the

mean cell volume fraction of about 4% and 1%, respectively, without modifying

the general trend. Simulations were performed modifying the two most important

operative variables: the distribution of channel diameters and the total volumetric

flow rate. Figure B.5 shows the time evolution of the cell volume fraction for

four different scaffold geometry. Figure B.5A refers to the case of scaffolds with

equal channels of the diameter of 2.78× 10−4 m, while the other graphs are related

to scaffolds with a Gaussian distribution of the channel diameters with the mean

value equal to 2.78× 10−4 m and increasing variance value (1.56× 10−10 m2 (Figure

B.5B), 6.25× 10−10 m2 (Figure B.5C), 2.5× 10−09 m2 (Figure B.5D)). The case of

Figure B.5D is the same as in Figures B.3 and B.4. The four graphs show a similar

cell growth rate until the fourth day of culture (highlighted points); after that only

in Figure B.5D the smaller channels are not anymore the ones with the highest cell

volume fraction. In Figure B.5B and C, the cell volume growth is uniform over a

longer period of time, and the larger channels never have a higher cell volume fraction

than the smaller ones. At the steady-state condition (inset in each graph), the mean

cell volume fraction does not have sensible difference (Table B.4), but the difference
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Figure B.5: Effect of the channel diameter distribution on the cell growth. In the four
cases, the channel diameter distributions have the same mean value (Table B.3), but different
variance: 0 m2 (A), 1.56× 10−10 m2 (B), 6.25× 10−10 m2 (C), and 2.5× 10−09 m2 (D). The
smaller points on the lines indicate time steps of 12 h; the highlighted points denote the cell
volume fraction in channels after 4 days of culture. The magnifications at the top right in
each figure represent the cell volume fraction profile at the final time.

between the highest and the lowest cell volume is enhanced, increasing the variance

value of the Gaussian distribution. The investigation of the effects of a change

Table B.4: Mean, Lowest, and Highest Cell Volume Fraction Obtained from Sim-
ulations of 11 Days of Culture Using Different Variance Values of the Gaussian
Distribution of Channel Diameters

Variance Mean cell Lowest cell Highest cell
volume fraction volume fraction volume fraction

0 m2 0.88 0.88 0.88
1.56× 10−10 m2 0.91 0.84 0.97
6.25× 10−10 m2 0.92 0.81 0.97
2.5× 10−09 m2 0.93 0.78 0.97

in the total volumetric flow rate led to Table B.5 and Figure B.6 where the time

evolution of the cell volume fraction is reported in the cases of 1.67× 10−10 m3 /s

(Figure B.6A), 1.67× 10−09 m3 /s (Figure B.6B), 1.67× 10−08 m3 /s (Figure B.6C),

and 1.67× 10−07 m3 /s (Figure B.6D). In Figure B.6A, the growth of cell volume

fraction is slower than the other cases and reaches the lowest mean value at the
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Table B.5: Mean, Lowest, and Highest Cell Volume Fraction Obtained from Sim-
ulations of 11 Days of Culture Using Different Values of Total Volumetric Flow
Rate

Total volumetric Mean cell Lowest cell Highest cell
flow rate volume fraction volume fraction

1.67× 10−10 m3 /s 0.88 0.88 0.88
1.67× 10−09 m3 /s 0.91 0.84 0.97
1.67× 10−08 m3 /s 0.92 0.81 0.97
1.67× 10−07 m3 /s 0.93 0.78 0.97

Figure B.6: Effect of the total volumetric flow rate on the cell growth. The figures are
shown with an increasing flow rate value: 1.67× 10−10 m3 /s (A), 1.67× 10−09 m3 /s (B),
1.67× 10−08 m3 /s (C), and 1.67× 10−07 m3 /s (D). The smaller points on the lines indicate
time steps of 12 h; the highlighted points denote the cell volume fraction in channels after 4
days of culture. The magnifications at the top right in each figure represent the cell volume
fraction profile at the final time.

final time. Higher mean value is reached in the second considered case, and Figure

B.6B shows a good uniformity between the different class of channel diameters. A

discontinuity between cell volume values in the smaller and larger channels can be

observed using 1 ml /min (Figure B.6C) and is highlighted by a further increase in

the flow rate. A flow rate of 10 ml /min leads to a final mean cell volume fraction

of 0.705, which is lower than both cases B and C; furthermore, the heterogeneity is

the highest observed.

149



B. COMPUTATIONAL MODELING OF CELL GROWTH
HETEROGENEITY IN A PERFUSED 3D SCAFFOLD

B.5 Discussion

In this work, we focused on the mathematical description of the cell growth inside

a 3D porous scaffold that is perfused by the culture media. In particular, we devel-

oped a mathematical model that can be a useful tool for an a priori estimation of

the time variation of the cell volume fraction and its degree of heterogeneity in a

scaffold with a known distribution of pore diameters. It is known that the properties

of the cell microenvironment influence the cell metabolic regime and therefore the

cell growth rate.4,6 To ensure the uniformity of 3D culture condition, the microen-

vironmental properties should be measured and controlled; however, techniques for

experimentally monitoring these properties are still missing. Mathematical models

can help to overcome these difficulties, simulating the time variation of the proper-

ties of the cell microenvironment and evaluating their degree of heterogeneity. We

developed a model that allows the prediction of the cell volume growth within pores

of different diameters, showing the heterogeneity of the cell volume fraction not only

between different pores (Figure B.4A) but also between different axial positions for

a single pore (Figures B.2A and B.4B). The results obtained from a simulation of a

single channel (Figure B.2) can be compared to available literature. In particular,

our data, in agreement with previous work,26 show a gradient of oxygen concen-

tration along both directions parallel and perpendicular to the medium flow with

a profile that changes with time as the cells grow. Moreover, our model consid-

ers a cell growth inhibition due to chemical and/or mechanical stimuli, that is, the

oxygen concentration and the shear stress imposed on the cell layer. Our model

predicts the heterogeneity of cell volume fraction because it takes into account the

existing correlations between the macroscopic operative variables and the microen-

vironment fluid dynamics and transport regimes, and between these regimes and

the cell metabolism. In particular, the medium flow rate and the pore diameters

of the scaffold are two important operative variables easy to monitor and control.

They influence the oxygen transport and the shear stress at microscopic level, which

thereby are known to affect the cell growth of many cell types. To our knowledge,

the previous mathematical models of 3D cell culture did not discuss the heterogene-

ity sources of the cell microenvironment properties. Moreover, they either neglected

the cell growth (steady-state condition model)16,18,19 or they utilized averaged values
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of the properties of the scaffold such as the porosity or the pore diameters, without

considering its geometrical heterogeneousness,14,15,26 or they considered static cul-

ture with no medium convection.14,17,25 The addition of the cell growth contribution

allows the simulation of the time course of the cell volume fraction (CVF). This can

lead to important observations such as the absence of influence of the variance of

channel diameter on the average CVF and on the CVF homogeneity for a period of

time lower than a critical value (96 h for the cases in Figure B.5). For some specific

cell types, such as chondrocytes or osteocytes, it could be worth it to introduce in

the balance a term describing the production of extracellular matrix that can occupy

a relevant volume fraction. The scaffold geometry is an important parameter when

looking into cell culture heterogeneity. Figure B.5 demonstrates that the larger is

the distribution of the channel diameter, the higher is the difference in cell volume

fraction at the stationary state, while the average cell volume fraction is almost in-

variant. This suggests the use of scaffolds with channels of a single diameter value,

but this type of scaffold requires sophisticate and expensive technique for their pro-

duction. Because the model is solved using dimensionless variables, the contribution

of channel tortuosity can be simply considered by normalizing the axial coordinate

by the effective channel length. Concerning scaffold geometry, one relevant im-

provement can be done by introducing a rational description of the interconnection

between channels. The interconnectivity affects the homogeneity of medium compo-

sition by increasing it with increasing degree of interconnection. Our model can be

considered as the limiting case of zero interconnectivity and thus maximum medium

heterogeneity. By introducing the interconnection, the absolute value of heterogene-

ity will be modified, but the considerations done with this model when comparing

different flow rate or channel diameter distribution will remain valid. The medium

convection term is fundamental for simulating a perfusion system where the flow

rate is the most important operative variable. Figure B.6 shows how drastically the

choice of the flow rate can affect the result of a cell culture. For very low flow rate,

the perfused system acts as a static culture where the oxygen transport is governed

by diffusion, which provides enough oxygen only for an approximately 100 µm layer

of cells. Within a 3D culture the diffusion is not sufficient to allow a relevant cell

growth inside the scaffold because it is inhibited by the lacking of oxygen.38 Our
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model shows how in the case of low flow rate for every channel diameter the in-

hibitory mechanism is the hypoxia (Figure B.6A), and there are no channels with

high shear stress. Experimental data on dynamic culture refer that medium perfu-

sion promotes the cell growth because it enhances oxygen transport, but an excessive

increment of the flow rate induces high value of shear stress and then inhibition of

cell growth or cell detachment.39 The cell detachment can be compensated by the

duplication of other cells resulting in a global null cell volume growth. In a complex

3D scaffold, it is hard to understand experimentally if the inhibitory mechanism is

the same in the whole scaffold or if there are areas in hypoxic condition and others

with too high shear stress. Data obtained with the model and reported in Figure B.6

not only confirm the experimental observation but allow also further considerations.

An optimum flow rate for reaching the maximum mean CVF at the stationary state

exists, but it may be not coincident with the optimum one at early time point or

to the optimum for the point of view of the homogeneity. At the lower flow rate,

the inhibitory phenomenon is always and in every channel not a sufficient oxygen

transport (Figure B.6A and B), while by increasing the flow rate also the shear

stress becomes a non negligible variable. This is a cause of heterogeneity because

the growth of cell volume in the smallest channels is always governed by the oxygen

transport, while in the largest channels the cells feel the effect of high values of

shear stress (Figures B.4 and B.6C and D). The non homogeneity of CVF can be

drastically evident as in the case shown in Figure B.6D. An a priori estimation of

the optimal flow rate is important not only during the use of a bioreactor but also

during the design and development of a dynamic culture system. The knowledge

of the range of flow rate and the precision required is fundamental for a correct

definition of the pumping, the tubing, and the control system characteristics, which

thereby determine the cost of the dynamic culture equipment. The same principles

applied to correlate fluid dynamics and transport regimes to oxygen concentration

in the cell microenvironment can be used to involve other basic metabolites (i.e.,

glucose) for studying their influence on the metabolic regime. Moreover, the model

is easily extendible to investigate also the heterogeneity of the cell regulatory regime,

taking into account the concentration of endogenous and exogenous factors in the

microenvironment.
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Appendix C

Reduced insulin signaling

pathways model

In this section the simplified insulin signaling pathways model obtained in chapter

5 from the original version [15] will be presented. All the details on the model

reduction are described in chapter 5. The state variables with their description are

reported in Tab. C.1.
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C. REDUCED INSULIN SIGNALING PATHWAYS MODEL

Table C.1: State variables of the simplified insulin signaling pathways model.

Variable symbol Description

Ins Insulin input
Y1 Concentration of unbound surface insulin receptors
Y2 Concentration of phosphorylated twice-bound surface receptors
Y3 Concentration of phosphorylated once-bound surface receptors
Y4 Concentration of unbound unphosphorylated intracellular receptors
Y5 Concentration of phosphorylated twice-bound intracellular receptors
Y6 Concentration of phosphorylated once-bound intracellular receptors
Y7 Concentration of tyrosine-phosphorylated IRS-1
Y8 Concentration of tyrosine-phosphorylated IRS-1/activated PI 3-kinase complex
Y9 Percentage of PI(3,4,5)P3 out of the total lipid population
Y10 Percentage of PI(4,5)P2 out of the total lipid population
Y11 Percentage of activated Akt
Y12 Percentage of activated PKC-ζ
Y13 Percentage of cell surface GLUT4
C1 Concentration of unphosphorylated once-bound surface receptors
C2 Concentration of unphosphorylated IRS-1
C3 Concentration of inactivated PI 3-kinase
C4 Percentage of PI(3,4)P2 out of the total lipid population
C5 Percentage of inactivated Akt
C6 Percentage of inactivated PKC-ζ
C7 Percentage of intracellular GLUT4

The differential equations implemented in the model (see chapter 5 and chapter

6) to describe the mass balance of each component are as follows:

dY1/dt = k−1C1 + k−3[PTP ]Y3 − k1InsY1 + k−4Y4 − k4Y1, (C.1)

dY2/dt = k2InsY3 − k−2Y2 + k−5Y5 − k5Y2, (C.2)

dY3/dt = k3C1 + k−2Y2 − k2InsY3 − k−3[PTP ]Y3 + k−5Y6 − k5Y3, (C.3)

dY4/dt = k6[PTP ] (Y5 + Y6) + k4Y1 − k−4Y4, (C.4)

dY5/dt = k5Y2 − k−5Y5 − k6[PTP ]Y5, (C.5)

dY6/dt = k5Y3 − k−5Y6 − k6[PTP ]Y6, (C.6)

dY7/dt = k7C2 (Y2 + Y3)/IRp + k−8Y8 − (k−7[PTP ] + k8C3)Y7, (C.7)

dY8/dt = k8C3Y7 − k−8Y8, (C.8)

dY9/dt = k9,1Y8Y10 + k9,2Y10 + k10C4 − (k−9[PTEN ] + k−10[SHIP ])Y9, (C.9)

dY10/dt = k−9[PTEN ]Y9 − (k9,1Y8Y10 + k9,2Y10) , (C.10)

dY11/dt = k11,1Y9C5 − k11,2C5 − k−11Y11, (C.11)

dY12/dt = k12,1Y9C6 − k12,2C6 − k−12Y12, (C.12)
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dY13/dt = (k13 + k14,1Y11 + k14,2Y12)C7 − k−13Y13. (C.13)

Initial conditions are as follows, all the other state variables initial condition are

equal to zero:

Y1 (t) = 9.0× 10−13 M t = tin, (C.14)

Y4 (t) = 1.0× 10−13 M t = tin, (C.15)

Y9 (t) = 0.31 % t = tin, (C.16)

Y10 (t) = 99.4 % t = tin, (C.17)

Y13 (t) = 4 % t = tin. (C.18)

The algebraic equations implemented in the model along with the ordinary differ-

ential equations are:

C1 = IRtot −
6∑
i=1

Yi, (C.19)

C2 = IRS-1tot − (Y7 + Y8) , (C.20)

C3 = PI3-Ktot − Y8, (C.21)

C4 = PIP tot − (Y9 + Y10) , (C.22)

C5 = Akttot − Y11, (C.23)

C6 = PKC-ζtot − Y12, (C.24)

C7 = GLUT4tot − Y13. (C.25)

The simplified model parameters are listed in Tab. C.2.
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C. REDUCED INSULIN SIGNALING PATHWAYS MODEL

Table C.2: Kinetic parameters of the simplified insulin signaling pathways model.

Parameter symbol Value

k1 1.0× 106 M−1 s−1

k−1 3.33× 10−3 s−1

k2 1.0× 106 M−1 s−1

k−2 3.33× 10−1 s−1

k3 4.17× 101 s−1

k−3 3.33× 10−3 s−1

k4 5.56× 10−6 s−1

k−4 5.0× 10−5 s−1

k5 3.5× 10−5 s−1

k−5 3.5× 10−6 s−1

k6 7.68× 10−3 s−1

k7 6.93× 10−2 s−1

k−7 2.33× 10−2 s−1

k8 1.18× 1010 s−1

k−8 1.67× 10−1 s−1

k9,1 4.20× 1012 M−1 s−1

k9,2 2.19× 10−3 s−1

k−9 7.02× 10−1 s−1

k10 4.94× 10−2 s−1

k−10 4.62× 10−2 s−1

k11,1 4.14× 10−3 M−1 s−1

k11,2 1.28× 10−3 s−1

k−11 1.16× 10−1 s−1

k12,1 4.14× 10−3 M−1 s−1

k12,2 1.28× 10−3 s−1

k−12 1.16× 10−1 s−1

k13 1.16× 10−4 s−1

k−13 2.78× 10−3 s−1

k14,1 3.83× 10−5 M−1 s−1

k14,2 1.53× 10−4 M−1 s−1
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