
DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Advances in System Identification:
Gaussian Regression and Robot Inverse Dynamics Learning

Ph.D. candidate

Diego Romeres

Advisor

Prof. Alessandro Chiuso

Co-Advisor

Prof. Gianluigi Pillonetto

Director & Coordinator

Prof. Matteo Bertocco

Ph.D. School in

Information Engineering

.

Department of

Information Engineering

University of Padova

2017

ii

Abstract

Nonparametric Gaussian regression models are powerful tools for supervised learning

problems. Recently they have been introduced in the field of system identification as an

alternative to classical parametric models used in prediction error methods. The focus

of this thesis is the analysis and the extension of linear Gaussian regression models and

their applications to the identification of the inverse dynamics of robotic platforms.

When Gaussian processes are applied to linear systems identification, according

to the Bayesian paradigm the impulse response is modeled a priori with a Gaussian

distribution encoding the desired structural properties of the dynamical system (e.g.

smoothness, BIBO stability, sparsity, etc.). The inference on the impulse response

estimate is obtained through the posterior distribution which combines the information

of the a priori distribution together with the information given by the data.

The Bayesian framework naturally allows the adaptation of the model class and its

complexity while also accounting for uncertainty and noise, thus providing a robust mean

to trade bias versus variance. On the other hand, one disadvantage of these nonparametric

methods is that their aim to identify directly the impulse response of the predictor model

does not guarantee the stability of the forward model. These general advantages and

disadvantages inspired the research on this manuscript.

Gaussian Regression and Parametric PEM: a Comparison. The term of

comparison for these Gaussian regression models will be the classical parametric technique.

In addition to an analysis of the two approaches in terms of error in fitting the impulse

response estimates, we are interested in comparing the confidence intervals around these

estimates. A new definition of the confidence intervals is proposed in order to pave the

way for a fair comparison between the two approaches. Numerical simulations show that

the Bayesian estimates have higher prediction performance.

iv

Online Gaussian Regression. In an on-line system identification setting, new data

become available at given time steps and real-time estimation requirements have to be

satisfied. The goal is to compute the model estimate with low and fixed computational

complexity and a reduced memory storage. We developed a tailored Bayesian procedure

which updates the quantities to compute the marginal likelihood and the impulse response

estimate iteratively and performs the estimation of the hyperparameters by computing

only one iteration of a suitable optimization algorithm to maximize the marginal likelihood.

Both quasi-Newton methods and EM algorithm are adopted as optimization algorithms.

When time-varying systems are considered, the property of ‘forgetting the past data’

is required. Accordingly we propose two schemes: the usage of a temporal window

which slides over the data and the usage of a forgetting factor which is a variable

that exponentially decreases the weight of the old data. In particular, we propose to

consider the forgetting factor both as a fixed constant or as an estimating variable. The

proposed nonparametric procedures have satisfactory performances compared to the

batch algorithm and outperform the classical parametric approaches both in terms of

computational time and adherence of the model estimate to the true one.

Enforcing model stability in nonparametric Gaussian regression. The main

idea of the Bayesian approach is to frame linear system identification as predictor

estimation in an infinite dimensional space with the aid of regularization techniques.

This approach is based on the prediction error minimization and can guarantee the

identification of stable predictors. Unfortunately, the stability of the predictors does not

guarantee the stability of the impulse response of the forward model in general. Various

techniques are successfully proposed to guarantee the stability of this model.

Online semiparametric learning for inverse dynamics modeling. Dynamic

models can be obtained from the first principles of mechanics, using the so called Rigid

Body Dynamics. This approach results in a parametric model in which the values

of physically meaningful parameters must be provided in order to complete the fixed

structure of the model. Alternatively, the nonparametric Gaussian regression modeling can

be employed extrapolating the dynamics directly from the experimental data, without

making any unrealistic approximation on the physical system (e.g. assuming linear

frictions models, ignoring the dynamics of the hydraulic actuators, etc.). Nevertheless,

nonparametric models deteriorate their performance when predicting unseen data that

are not in the “neighbourhood” of the training dataset. In order to exploit the advantages

of both techniques, semiparametric models which combine the parametric and the

nonparametric models are analyzed.

Acknowledgement

To my family Chiara, Giuseppe, Irene, Elisa, Davide and Viola who supported me

through all these years and without who this thesis would not have been possible.

To my Advisor Alessandro, who introduced me with passion to the world of system

identification and wisely guided in these years of research.

To all the members of Office 330 and the other PhD and PostDoc researchers who

not only helped and inspired my research but filled the working place of new friends. In

particular, I thank Giulia for all the idea shared, the long philosophical discussions about

Bayesian system identification and the nice moments spent together.

To all the persons and my numerous and irreplaceable friends who recently or in the

past have been present in my life and made this thesis possible.

vi

Contents

1 Introduction 5

1.1 Outline . 7

2 System Identification Overview 9

2.1 System Identification Problem . 10

2.2 Prediction Error Methods . 14

2.3 Parametric PEM: the Classical Approach 16

2.3.1 Linear Dynamical Systems . 17

2.3.2 Online Approach . 18

2.4 Nonparametric PEM: Gaussian Regression 19

2.4.1 Posterior Approximation . 22

2.4.2 Connection with Regularized PEM 24

2.4.3 Hyperparameters Tuning . 26

2.4.4 Linear Dynamical Systems . 27

2.4.5 Online Approach . 29

2.5 Motivations: Advantages and Disadvantages of Gaussian Regression . . . 30

3 Gaussian Regression and Parametric PEM: a Comparison 35

3.1 Problem Statement . 37

3.2 Confidence Sets of Classical Parametric PEM 38

3.3 Confidence Sets of Bayesian Identification Methods 41

3.4 A Common Framework: “Particle” Confidence Sets on the Impulse Re-

sponse Space . 45

3.5 Simulations Results . 50

3.6 Conclusions . 57

4 Online Gaussian Regression 59

4.1 Problem Statement . 61

viii Contents

4.2 Online Efficient Regularization Update . 62

4.2.1 1-Step Marginal Likelihood Maximization 65

4.2.2 Connection with Existing Methodologies 72

4.2.3 Simulations with Time Invariant Dynamical Systems 77

4.3 Time-Varying Dynamical Systems . 83

4.3.1 Fixed Forgetting Factor . 84

4.3.2 Treating the Forgetting Factor as a Hyperparameter 85

4.3.3 Sliding Window . 87

4.4 Simulations Results . 87

4.5 Conclusions . 93

5 Enforcing Model Stability in Nonparametric Gaussian Regression 95

5.1 Introduction . 95

5.2 Problem Statement . 97

5.3 Stabilization via LMI constraint . 99

5.4 Stabilization via Penalty Function . 101

5.5 Stabilization via a Full Bayes Sampling Approach 104

5.6 Simulations Results . 110

5.7 Conclusions . 114

6 Online semiparametric learning for inverse dynamics modeling 117

6.1 Problem Statement . 119

6.2 Semiparametric Models . 122

6.3 Model Approximation to Regularized Least Squares 124

6.3.1 Kernel Approximation in Random Features 125

6.3.2 Approximated Models . 126

6.3.3 Online Learning . 132

6.4 Derivative-free Model . 134

6.5 Simulations Results . 137

6.6 Conclusions . 147

References 151

Notational Conventions

Symbols

n Dimension of the impulse response

N Number of data

θ Parameter vector

θ0 Parameters of the true system

Θ Parameter space

d Dimension of the parameters θ

η Hyperparameters

dη Dimension of the hyperparameters θ

y(t) System output at time t

u(t) System input at time t

e(t) System noise at time t, typically assumed to be a white noise

DN Dataset composed of N input-output data pairs

f∗ True predictor model

g Impulse response from u to y

h Impulse response from e to y

t− Vector of the past time instants t− = t− 1, t− 2, . . .

y(t−) Vector of the past measurements at time t, y(t−) = [y(t− 1) y(t− 2) . . .]>

ŷ(t|t−) Predicted value at time instant t based on the data up to time t− 1

IN Identity matrix of dimension N

χ2(d) Chi-squared distribution with d−degree of freedom

On×d Matrix composed of zeros with dimension n× d
M Model structure

M(θ) Model structure depending on the parameters θ

2 Contents

Operators

E [·] Expectation

E [·|·] Conditional expectation

Eq[·] Expectation w.r.t. the probability density q

Pr{A} Probability of the event A

N (µ,Σ) Multivariate Gaussian (normal) distribution with mean vector µ

and covariance matrix Σ

U(a, b) Uniform distribution with support defined in the interval [a, b]

p(x) Probability density function of the random variable x

px(x′) Probability density function of the random variable x evaluated at

x′. This notation will be used only when necessary, the notation

p(x) is in general preferred.

⊗ Kronecker product

arg minx f(x) Optimal solution of the minimization problem of f(x)

arg maxx f(x) Optimal solution of the maximization problem of f(x)

A−1 Inverse of the matrix A

R Set of real numbers

R
n Euclidean n-dimensional space

R
n×m Space of real matrices with n rows and m columns

N Set of natural numbers

Z Set of integers

Contents 3

Acronyms

ARMA AutoRegressive Moving Average

ARMAX AutoRegressive Moving Average with eXternal input

BIBO Bounded Input Bounded Output

EB Empirical Bayes

FBS Full Bayes Sampling

FIR Finite Impulse Response

LTI Linear Time Invariant

LS Least Squares

MAP Maximum A Posteriori

MCMC Markov Chain Monte Carlo

PEM Prediction Error Methods

PPEM Parametric Prediction Error Methods

RPPEM Recusrsive Parametric Prediction Error Methods

RKHS Reproducing Kernel Hilbert Space

NPPEM NonParametric Prediction Error Methods

NPGR NonParametric Gaussian Regression

SGP Scaled Gradient Projection

SISO Single-Input-Single-Output

w.l.o.g. Without loss of generality

w.r.t. With respect to

4 Contents

1
Introduction

System identification is concerned with the problem of estimating dynamical systems

from data measurements.

The systems are the entities that describe every cause and effect reaction. They can

be described by suitable mathematical laws called models. As a consequence, the models

can be seen as the mathematical description of the phenomena we experience in our

daily life. The wide spread class of dynamical systems is described by sets of differential

equations in the continuous-time case and of difference equations in the discrete-time

one.

The standard set-up of a system identification problem involves sets of input data

which excite the system under consideration and sets of output data which record the

response produced by the system. System identification has the fascinating aim to build

models for the underlying system from the observed data.

The art of building models from observed data is treated in several scientific fields

6 Introduction

like robotics, machine learning, statistics, data mining, econometrics, neuroscience,

biology, and industry to report only a few of them. Back in the 50-th the term “System

Identification” has been coined in Zadeh (1956) for the Automatic Control area.

The majority of the approaches proposed to face the system identification problem

can be categorized in two groups.

The first one is called Prediction Error Methods (PEM). A fundamental property

that distinguishes the dynamical systems is the temporal relation to the data, i.e., the

future data depends on the past data. Consequently, a natural manner for validating the

quality of the system identification procedure is to evaluate the prediction capability of

the estimated models. The aim of prediction error methods is to minimize a scalar cost

function, depending on the data and on the model, which represents the prediction error.

A classical approach is to provide a specific parametric structure to the models. This

turns the system identification problem into the identification of the model parameters.

The pioneer works of this approach are Åström and Bohlin (1966); Söderström and Stoica

(1989); Ljung (1999).

Recently, a new approach has been introduced in the system identification community

which, rather than postulating a parametric model structure, aims at estimating the

model in a possible infinite dimensional space. This method is based on the Gaussian

regression framework and admits a Bayesian interpretation. While Gaussian regression is

a well known technique in the Machine Learning community Rasmussen and Williams

(2006), its application to system identification problems has appeared only lately and it

represents a fundamental turning point for the community. The pioneer works of this

approach are Pillonetto and De Nicolao (2010); Pillonetto, Chiuso, and Nicolao (2011a).

The second main group is called Subspace methods. In this paradigm, the models are

not obtained by the optimization of a cost function, but the relation between input and

output is characterized by the evolution of a state variable in the so called state-space

models. See among the others Overschee and Moor (1995); Viberg (1995); Katayama

(2006); Qin (2006); Chiuso (2007).

The focus of this dissertation is on the nonparametric Gaussian regression framework,

which offers a new effective tool for system identification to tackle the famous bias-

variance dilemma. Indeed, while the classical parametric PEM (PPEM) are concerned

with the search of the best model structure, which requires a tradeoff between accuracy

of the estimate and model complexity, the nonparametric PEM (NPPEM) allow to

account for the model complexity directly in the estimation procedure. The purpose

of the dissertation is to give new insights on the Gaussian regression technique applied

to system identification, to analyze pros and cons of both theoretical and applicative

1.1 Outline 7

aspects and to offer extensions to the current state-of-art. The classical PEM are also

discussed as a benchmark to refer to. The subspace methods instead are not treated

since the comparison is meant only within PEM appraoches.

System identification plays also a fundamental role in robotic applications where

accurate models are needed for high performance control design. Indeed, estimation of

the inverse dynamics is a challenging problem that finds a direct application in robotic

control. The inverse dynamics model can be used as a feedforward term in classical

closed loop control schemes, improving the performances in tracking desired trajectories

and reducing the gain of the controller. It is known, that parametric models often rely

on too restrictive simplification of the physical model to effectively describe the dynamics

of the robot. A valuable option is given by the use of semiparametric techniques which

could allow to exploit the advantages of both parametric and nonparametric methods.

1.1 Outline

The dissertation aims at providing extensions to the system identification techniques

based on Gaussian regression, focusing on theoretical aspects and on a robotic application.

A brief description of each chapter follows.

Chapter 2 presents the prediction error problem for system identification. The problem

is mathematically formalized and the two main techniques to face this problem are

described, namely the classical parametric prediction error method (PPEM) and the

nonparametric prediction error method (NPPEM). The last method is also known as

Gaussian regression or Bayesian inference or regularization approach. The chapter

concludes highlighting the pros and cons of NPPEM that are discussed in the subsequent

chapters.

Chapter 3 performs a comparison between PPEM and NPPEM in terms of both the

uncertainty and the accuracy of the estimators. The intrinsic difference between the

two approaches leads to a new definition of confidence regions in order to evaluate the

uncertainty property. These regions are obtained through sampling techniques and are

denoted as “Particle” confidence sets.

The presented results are based on the paper:

Prando G., Romeres D., Pillonetto G., and Chiuso A. Classical vs. bayesian

methods for linear system identification: point estimators and confidence sets. In Proc.

of ECC, 2016a

8 Introduction

Chapter 4 introduces an extension of the NPPEM to cope with the problem of the

online system identification. In this framework, new data becomes available at each sam-

pling time interval and the estimates need to be updated exploiting the new information

before the subsequent data becomes available. Real-time algorithms based on efficient

update of the quantities, related to the data, are developed. Particular attention is given

to time-varying systems and a comparison with the recursive PPEM is provided. The

results of this chapter are based on the papers:

Romeres D., Prando G., Pillonetto G., and Chiuso A. Online bayesian system

identification. In Proc. of ECC, 2016b

Prando G., Romeres D., and Chiuso A. Online identification of time-varying

systems: a bayesian approach. In Proc. of IEEE CDC, 2016b

Chapter 5 deals with stability issues that arise when dealing with NPPEM. Indeed,

recent works show how these methods can be characterized to estimate naturally stable

predictors. Yet stability of predictor models does not guarantee the stability of the

simulation models. Several algorithms are proposed to guarantee the stability of both

models. The results of this chapter are based on the paper:

Romeres D., Pillonetto G., and Chiuso A. Identification of stable models via

nonparametric prediction error methods. In Control Conference (ECC), 2015 European,

pages 2044–2049. IEEE, 2015

Chapter 6 considers the problem of learning the inverse dynamics of a robotic plat-

form in an online scenario. The semiparametric models, which are a combination of the

nonparametric and parametric models, are considered. It is shown how these models

can be still considered as a Gaussian process. Their effectiveness is demonstrated in the

data collected from the humanoid robot iCub. Moreover, all the inverse dynamics models

used in robotics rely on physical quantities that are often not available, namely joint

velocities and accelerations. The latter quantities have to be obtained through numerical

differentiation from the joint positions measured by the sensor. Since numerical differ-

entiation presents several numerical problems, new derivative free models are proposed.

The results of this chapter are based on the paper:

Romeres D., Zorzi M., and Chiuso A. Online semi-parametric learning for

inverse dynamics modeling. In Proc. of IEEE CDC, 2016c

2
System Identification Overview

This chapter is meant to give the theoretical system identification tools that will be used

in the remainder of the dissertation. In particular, two main approaches to tackle the

prediction error minimization problem are discussed: the classical parametric approach

and the Gaussian regression framework.

The scientific literature about these topics is extremely extended; as such this is

only a brief introduction without any aim of completeness. Thus, in this chapter the

main concepts necessary to understand the reminder of the dissertation are introduced,

providing however to the reader, a general overview on what it has already been done

and referring to appropriate literature.

Section 2.1 introduces the problem faced by system identification. In Section 2.2, the

prediction error problem is specified, while Section 2.3 and Section 2.4 introduce the two

main approaches to tackle this problem, namely, the classical parametric methods and

the nonparametric Gassian regression framework. Finally, in Section 2.5 discussions of

10 System Identification Overview

the advantages and disadvantages of the nonparametric methods over the parametric

ones is carried out.

2.1 System Identification Problem

The core of the system identification process is the estimation of a model from measure-

ment data. This dissertation considers the identification of discrete-time causal dynamical

systems: the focus will be on linear and nonlinear, time invariant as well as time-varying

systems dependently on the specific problem we will look at. In this section the general

system identification problem is formalized using a model that includes all the previously

mentioned cases; furthermore, the linear case will be also explicitly discussed due to its

relevance for the future chapters.

Let u(t), y(t) ∈ R be, respectively, the measured input and output signals of a Single-

Input-Single-Output (SISO) dynamical system1. Given a finite collection of input-output

data points DN := {D(t)}Nt=1 = {u(t), y(t)}Nt=1, system identification aims at estimating

an accurate (under some criteria) model to describe the phenomenon under consideration.

Consider the time series {u(t)}t∈N and {y(t)}t∈N as jointly stationary zero-mean

stochastic process, the one-step ahead predictor can be defined in a general form as

ŷ∗(t|t−) = f∗
t (y(t−), u(t−)) := E

[
y(t)|y(t−), u(t−)

]
(2.1)

where the conditional expectations are assumed to be always well defined, t− is the

vector of all the past time instants and f∗
t is the “true” one-step-ahead predictor and the

subscript t indicates the time variance of the function f∗.

The definition of a strictly causal predictor, i.e, it does not depend upon u(t), grants

the description of the prediction (or forward) model in the innovation form

y(t) = f∗
t (y(t−), u(t−)) + e(t) (2.2)

where {e(t)} is the innovation signal and it is defined as

e(t) := y(t)− ŷ∗(t|t−) = y(t)− E
[
y(t)|y(t−), u(t−)

]
(2.3)

The innovation sequence {e(t)} is, by construction, a martingale difference sequence

Hannan and Deistler (1988) w.r.t. the sigma algebra generated by past measurements

y(t−), u(t−). In this thesis we shall also postulate that e(t) is considered to be a zero

1The theory presented in this chapter could be extended to the multi-input multi-output case, but for
ease of notation the exposition is restricted to the single-input single-output case.

2.1 System Identification Problem 11

mean Gaussian process with variance

var (e(t)) = var
(
e(t)|y(t−), u(t−)

)
= var

(
y(t)|y(t−), u(t−)

)
= σ2. (2.4)

The System Identification Problem can be cast as the problem of estimating

the one-step-ahead predictor f∗
t from the available input-output data pairs by satisfying

a specific criterion: in this dissertation the criterion used is the minimization of the

prediction error and it will be described in Section 2.2.

“Stability” Assumption

In principle, model (2.2) belongs to an infinite-dimensional space. The main issue

that arises working in a infinite dimensional framework is that the problem of finding

estimators of the predictor f∗
t from data might be an ill-posed inverse problem Tikhonov

and Arsenin (1977).

However, it is commonly considered that in physical systems the effect of a pair of

data (y(s), u(s)) over y(t) with t > s decreases as t − s goes to infinity. This concept

of fading memory is related to the concept of BIBO stability in the predictor impulse

responses of linear dynamical systems. In nonlinear systems the concept of stability is

more involved and out of the scope of this dissertation, the interest reader is referred

to e.g., Chen (2004); Lakshmikantham, Leela, and Martynyuk (1990); Bai, Tempo, Liu,

et al. (2007).

For this reasons, it is general practice to estimate a finite-length predictor, which

means that f∗
t is assumed to be dependent only on a finite number of previous temporal

lags, denoted from here on as n. The length n has to be chosen large enough to capture

the dynamics of the system.

Notice that all the results presented in the following could be also formulated in

the infinite dimension thanks to recent identification techniques that aim to search for

candidate estimators in a suitable Reproducing Kernel Hilbert Space (RKHS) Aronszajn

(1950); Saitoh (1988); Kimeldorf and Wahba (1971) where the norms act as a regularizer;

“stability” of the predictor (e.g. in linear dynamical systems making sure that the

estimated impulse responses are BIBO stable with probability 1), can also be accounted

for. See Pillonetto et al. (2011a); Pillonetto and De Nicolao (2010) for the linear case

and Pillonetto, Quang, and Chiuso (2011b) for the nonlinear case.

12 System Identification Overview

Linear Dynamical Systems

System (2.2) is a general description that contains nonlinear and time-varying models.

Clearly, the particular case of linear time invariant (LTI) systems (see e.g. the highly

cited books Ljung (1999); Söderström and Stoica (1989)) extensively used throughout

this dissertation, is included. In this class of systems, the outputs are described by a

linear transformation of the inputs and corrupted by an additive noise, the innovation

defined in (2.3). That is:

y(t) =
∞∑

k=1

g(k)u(t− k) +
∞∑

k=1

h(k)e(t− k) (2.5)

where g := {g(k)}k∈N is the so called impulse response, which is the response of the

system when an impulse signal is fed into the systems. Notice that in this general case

the additive noise can be seen as the realization of another LTI system with input the

innovation {e(t)}k∈N and impulse response h := {h(k)}k∈N which will be called the error

impulse response. For normalization reasons and w.l.o.g. it is assumed that h(0) = 1.

An equivalent representation of (2.5) is given in terms of the transfer functions

y(t) = G(z)u(t) +H(z)e(t) (2.6)

where

G(z) =
∞∑

k=1

g(k)z−k, H(z) =
∞∑

k=1

h(k)z−k (2.7)

Hereafter, it is assumed that G(z) is stable and H(z) is stable and minimum phase,

that is, both H(z) and its inverse are causal and stable (i.e. all the poles and zeros of

H(z) are inside the unit circle).

The one-step-ahead predictor associated to (2.6) and corresponding to the general

description in the linear case of (2.1) is given by

ŷ(t|t−) = H−1(z) [(H(z)− 1)y(t) +G(z)u(t)] (2.8)

= W y(z)y(t) +W u(z)u(t) (2.9)

see (Ljung, 1999, Chp. 3) for the derivation.

Notice that the predictor transfer functions can also be described as:

W y(z) =
∞∑

k=1

wy(k)z−k, W u(z) =
∞∑

k=1

wu(k)z−k (2.10)

where wy := {wy(k)}k∈N and wu := {wu(k)}k∈N are the predictor impulse responses.

2.1 System Identification Problem 13

Since wy and wu are BIBO transfer functions, the linear predictor model (2.11) can

be approximated in a finite dimensional space as

ŷ(t|t−) ≈
n∑

k=1

wy(k)z−ky(t) +
n∑

k=1

wu(k)z−ku(t) (2.11)

which means that the impulse responses wy ∈ R
n and wu ∈ R

n are truncated to the

finite space of dimension n. Referring to the previous discussion about the “stability”

assumption, this approximation into a finite space is up to an arbitrary small error

because the systems considered are BIBO stable (recall that {y(t), u(t)}k∈Z are jointly

stationary), which means the coefficients wy(k) decays to 0 as k →∞.

A straightforward and useful way to reformulate the predictor model (2.11) is to

rewrite the predictor model in a linear regression form

Y = Φf + E (2.12)

where f :=
[
wy>

, wu>
]>

is the finite dimensional impulse response and

Φ(y(t−), u(t−)) = ΦN = Φ :=




φ(1)>

...

φ(N)>


 (2.13)

is the regressor matrix with φ(t) = [−y(t−1) . . .−y(t−n)u(t−1) . . . u(t−n)]> ∈ R
2n×1.

Notice that the structure of Φ(·) is in general dependent on the linear model considered,

see Chen, Ohlsson, and Ljung (2012), Pillonetto et al. (2011a) for details. Finally, the

output vector, the error vectors and the input vector are defined as

Y = YN :=




y(1)
...

y(N)


 , E = EN :=




e(1)
...

e(N)


 , U = UN :=




u(1)
...

u(N)


 ∈ R

N

The subscript N will be omitted in the sequel unless specifically needed to avoid

confusion.

14 System Identification Overview

2.2 Prediction Error Methods

The Prediction Error Methods (PEM) are probably the most widespread approach

to identification of dynamical systems. They have been introduced in the system

identification community by the seminal paper Åström and Bohlin (1966) which was

considering parametric SISO ARMAX models. Nowadays, this approach in the parametric

perspective is well established and it has extensively developed both in the Control and

in the Statistics community, as it can be demonstrated by the books Ljung (1999);

Söderström and Stoica (1989); Hannan and Deistler (1988); Box, Jenkins, Reinsel, and

Ljung (2015); Brockwell and Davis (2013).

The interest of this identification approach is on the ability of predicting unobserved

data. This focus arises naturally when considering that in dynamical system the future

is a function of the past.

In order to solve the system identification problem discussed in Section 2.1 a model

class,M, for the predictor f∗
t in (2.2) has to be selected. A model represents a hypothesis

we are making on the system. The choice of the model class M is fundamental and

significant difference may arise between parametric and nonparametric approach that are

discussed in Sections 2.3 and 2.4.

In the PEM framework, the optimal ft is found by minimizing an appropriate average

loss.

The prediction error problem results to be:

f̂P EM
t = arg min

ft∈M

1
N

N∑

t=1

lt(y(t)− ft(y(t−), u(t−))) (2.14)

where lt : R→ R
+ is the loss function and e(t) = y(t)− ft(y(t−), u(t−)) is the prediction

error.

The most commonly used criteria is called mean squared error and it is defined by

specifying the loss function as:

lt(·) = (y(t)− ft(y(t−), u(t−)))2 (2.15)

The solution of problem (2.14) with loss function (2.15) is called mean squared

predictor, see for more details (Ljung, 1999, Chp. 3) and (Söderström and Stoica, 1989,

Chp. 7).

However, problem (2.14) may be in general ill conditioned making the estimation of

the predictor difficult. This ill conditioning might be due to the fact that the predictor

f∗
t lives in a finite dimensional space of dimension n and this integer has to be large

2.2 Prediction Error Methods 15

enough to include all the dynamical behaviour of the system, which in principle could

be even larger than the number of data available N . In the literature, several attempts

have been made to tackle this problem, the most relevant either impose a parametric

structure to the model class or use a nonparametric approach that can be described in a

probabilistic framework (Gaussian regression / Bayesian formulation) or in a deterministic

one (regularization). These two approaches, parametric and nonparametric, are outlined

in the Sections 2.3 and 2.4.

Maximum Likelihood Approach

The PEM problem is strictly related to the Maximum Likelihood approach which aims at

maximizing the likelihood function, p(Y |ft) i.e., the probability density function of the

data given the model class.

Consider model (2.2) and the dataset DN then the likelihood function is:

py(Y |ft) =
N∏

t=1

pe(y(t)− ft(y(t−), u(t−))|ft(y(t−), u(t−))) =
N∏

t=1

pe(e(t)) (2.16)

Notice, that these equivalences are exact only after a sufficient long transient depending

on the choice of the initial conditions. However for ease of exposition this error is not

treated here, see (Ljung, 1999, Chp. 7) for more details.

The maximum likelihood estimator (MLE) can therefore be written as

f̂MLE
t = arg max

ft

py(Y |ft)

= arg max
ft

N∏

t=1

pe(y(t)− ft(y(t−), u(t−)))

≡ arg min
ft

1
N

N∑

t=1

− log pe(e(t)) (2.17)

which yields the equivalence between the PEM and the MLE estimator when the cost

function in (2.14) matches the cost function in (2.17), i.e., lt(e(t)) = − log pe(e(t)).

The logarithmic transformation taken in (2.17) is particularly interesting when

considering e(t) an independent Gaussian random variable with zero mean and variance

σ2
e . Indeed, the likelihood function becomes a Gaussian py(Y |ft) ∼ N

(
y|ft, σ

2
eIN

)
and

the MLE corresponds to the mean squared predictor

16 System Identification Overview

f̂MLE
t = arg max

ft

py(Y |ft)

= arg min
ft

N∑

t=1

(y(t)− ft(y(t−), u(t−)))2 +
N

2
log σ2

e (2.18)

2.3 Parametric PEM: the Classical Approach

In the classical parametric identification framework, it is assumed that the system

to identify belongs to a specific model class M characterized through a finite set of

parameters θ ∈ Θ ⊂ R
d, i.e., M(θ). Hence, the prediction model (2.2) becomes

M(θ) : y(t) = ft(y(t−), u(t−), θ) + e(t) = ŷθ(t|t−) + e(t) (2.19)

where ŷθ(t|t−) is the parametrization of the one-step-ahead predictor induced by the

choice of the model class M(θ) and e(t) is the prediction error.

Given the dataset {DN} the PEM problem (2.14) turns into the problem of estimating

the parameters θ by minimizing a scalar function of the prediction error, that is

θ̂P EM = arg min
θ∈Θ

1
N

N∑

t=1

lt
(
y(t)− ŷθ(t|t−)

)
(2.20)

The choice of the model structure is a crucial step in the identification procedure to

effectively tackle problem (2.20) and it requires two main steps:

1. The selection of the “type” of model class which is the a priori information im-

posed to the model that can be nonlinear, linear, input-output transfer functions,

parametrized state-space models, etc. The huge literature on nonlinear modeling is

only sketched here to give the reader an idea of the main research directions that

have been proposed.

The Volterra series, which can be seen as an expansion of the system with coefficients,

called Volterra kernels given by ‘higher-order impulse responses’, Volterra (2005);

Ikeara (1951); the Wiener-Hammerstain models which are a block-oriented sub

case of the Volterra series and exploit the physics of the systems, see the survey

Billings (1980) or (Ljung, 1999, Chp. 5); the Neural Networks, which are based on

the idea of imitating the network of neurones in the brain, Kubat (1999); Hunt,

Sbarbaro, Żbikowski, and Gawthrop (1992); Nelles (2013); Bishop (2006); the family

2.3 Parametric PEM: the Classical Approach 17

of NARMAX models Billings (2013) and the Linear Time-Varying modeling which

are able to describe nonlinear dynamics by considering the model parameters as

time-varying functions of a signal called scheduling variable, Rugh and Shamma

(2000); Bachnas, Tóth, Ludlage, and Mesbah (2014).

In this dissertation, the discussion will be restricted to the parametric class of linear

dynamical systems considering input-output models; further details on classical

parametric PEM will be given within this class in Section 2.3.1. The state space

approach mentioned in Chapter 1 is not treated here.

2. The selection of “size” of the model. Once the ‘type’ of the model class is fixed it is

likewise important to choose the dimension d of the parameters θ, or in other words

the complexity of the model, using the available data. This step is fundamental

because it implies the control on the famous ‘bias-variance tradeoff’ that will be

discussed in Section 2.5. The model order selection step is typically accomplished

by estimating models with different complexities and choosing the one with highest

performance according to some criteria. The most used criteria are: the information

criteria (AIC, BIC, MDL), cross-validation, SURE estimator, bootstrap and Cp.

See (Ljung, 1999, Chp. 16) for an extensive overview of these methods and Efron

(2004) for the latter method.

2.3.1 Linear Dynamical Systems

Consider the ‘true’ linear model (2.6); the Parametric PEM (PPEM) approach specifies

a parametric model structure depending on the parameters θ, M(θ) which describes the

transfer functions G(z) and H(z) as Gθ(z) and Hθ(z), respectively.

y(t) = Gθ(z)u(t) +Hθ(z)e(t) (2.21)

As mentioned earlier, this parametrization induces a parametrization of the one-step-

ahead predictor, ŷθ(t|t−). The most common predictor (and the one that will be used

from here on) is the mean square predictor which minimizes the variance of the prediction

error

θ̂P EM = arg min
θ∈Θ

V (θ,DN) = arg min
θ∈Θ

1
N

N∑

t=1

(
y(t)− ŷθ(t|t−)

)2 (2.22)

The PEM problem is now translated into the estimation of the parameters θ̂P EM

which can be used to determine the one-step-ahead predictor. Considering the prediction

model the mean square predictor can be explicitly formulated as

18 System Identification Overview

ŷθ(t|t−) = W y
θ (z)y(t) +W u

θ (z)u(t) (2.23)

= (1−H−1
θ (z))y(t) +H−1

θ (z)Gθ(z)u(t) (2.24)

see (Ljung, 1999, Sec. 3.2) and (Söderström and Stoica, 1989, Sec. 7.3) for the derivation.

The model class ‘type’ selection for linear parametric approaches is a well established

topic. The first idea that one might have is to set the parameters equal to the coefficients

of the numerator and denominator of the transfer functions in model (2.21). Starting

from this basic idea several types of models can be formulated, the most famous are:

Finite Impulse Response (FIR), Output-Error (OE), AutoRegressive with eXogenous

input (ARX), AutoRegressive Moving Average with eXogenous input (ARMAX) and Box

Jenkins (BJ). These types of models can be found in any system identification textbook,

the reader is referred to (Ljung, 1999, Chp. 4).

Many interesting properties of these estimators are derived using asymptotic argu-

ments, i.e. when N →∞. For instance, for Gaussian innovations e(t) and for fixed model

complexity, these methods have proved to be asymptotically efficient and consistent.

However, model complexity, which strongly affects their effectiveness, has to be estimated

from the data. Some of the approaches commonly exploited for this purpose have been

already mentioned for the nonlinear case; here are recalled the Information Criteria

(AIC/FPE, BIC/MDL, etc.) because are derived from asymptotic arguments. From

these considerations a natural question arises: how many data have to be considered for

these asymptotic properties to be reliable in a finite-sample domain? The answer is not

general and could be really application-dependent. Asymptotic properties will be treated

in Section 3.2.

Once θ̂P EM has been determined, the corresponding predictor impulse response

estimate fθ̂P EM
can be computed.

2.3.2 Online Approach

The extension of parametric batch approaches to an online setting relies on Recursive

Least Squares (or pseudo LS) methods. In the online setting we assume that at time t = i,

an estimate of the parameters θ̂(i), based only on the data up to time i, is available and

the estimate has to be updated when new data arrive. The update has to be efficiently

computed in order to get the new estimate, θ(i+1), within the sampling interval.

Suppose that at time i+ 1 a new input-output data pair D(i+ 1) is provided, two

possibilities to compute the estimate can be considered: solving the “complete” problem

2.4 Nonparametric PEM: Gaussian Regression 19

(2.22) which may not meet the “real time” computational performance required or update

θ̂(i) using the recursive formula:

θ̂(i+1) = θ̂(i) − µ(i+1)Q(i+1)−1∇θVi+1(θ̂(i),D(i+ 1)) (2.25)

where ∇θVi+1(θ̂(i),D(i+ 1)) denotes the gradient of the loss function computed in the

previous estimate and in the new data; µ(i+1) ∈ R and Q(i+1) ∈ R
d×d are appropriate

scalings which depend on the specific algorithm which is adopted (see Ljung and Söder-

ström (1983) and (Ljung, 1999, Chp. 11) for further details). Notice that (2.25) is simply

a scaled gradient step w.r.t. the loss function Vi+1(θ̂(i),D(i+ 1)).

In order to cope with time-varying systems, a possible strategy involves the inclusion

of a forgetting factor γ̄ in the loss function:

V γ̄
N (θ,DN) =

1
2

N∑

t=1

γ̄N−t (y(t)− ŷθ(t|t−)
)2
, γ̄ ∈]0, 1] (2.26)

In this way old measurements become less relevant for the computation of the estimate.

A recursive update of the estimate θ̂(i) (as the one in (2.25)) can be derived (Ljung

(1999), Ch. 11).

As an alternative, a sliding window approach can be adopted: at each time step

only the last Nw data are used for computing the current estimate (with Nw being the

window length). However, since this approach does not admit an update rule as the

one in (2.25), the computational complexity of the new estimate will depend on the

window length. At each time step, a new estimate has to be estimated from scratch, thus

significantly slowing down the method. Hence, the estimation of multiple models within

the sampling interval has to be computed in order to find the best estimate, this may

be computationally expensive, making this procedure possibly not suited for the online

identification of time-varying systems.

2.4 Nonparametric PEM: Gaussian Regression

Gaussian regression (GR) has been treated from the scientific community since decades.

The initial theory applied to time series appears in the fifties in the book Wiener (1949)

and some of the first applications have been in geostatistics under the name ‘kriging’,

Matheron (1973) and in meteorology, Daley (1993). These works were then extended in

the books Cressie (2015); Ripley (2005)(originally published in the eighties and nineties).

The explicit application of Gaussian process in the regression context can be found in the

highly cited works of O’Hagan and Kingman (1978); Sacks, Welch, Mitchell, and Wynn

20 System Identification Overview

(1989); Santner, Williams, and Notz (2013). Finally, Gaussian regression for function

approximation has been introduced in the machine learning community by Williams and

Rasmussen (1996); Rasmussen and Williams (2006). A more detailed historical literature

review can be found in Rasmussen and Williams (2006).

The contributions in the machine learning community inspired the recent development

in system identification: in the latest years new nonparametric techniques to face the

PEM estimation problem (2.14) have been defined. These methods have attracted

considerable attention because they go beyond the classical PPEM described in Section

2.3. In particular, the candidate models are searched for in infinite dimensional model

classes, thus avoiding to perform the delicate ‘order selection’ step needed in parametric

methods. Needless to say, this is not entirely free of difficulties, since an alternative way

to control the model complexity, i.e., to face the so called bias-variance tradeoff, needs to

be found. It has been shown in the recent literature Pillonetto and De Nicolao (2010);

Pillonetto et al. (2011a); Chen et al. (2012) that the apparatus of Reproducing Kernel

Hilbert Spaces (RHKS) or, equivalently, Bayesian Statistics provide powerful tools to

face this trade-off, see also Chiuso (2016); Pillonetto, Dinuzzo, Chen, Nicolao, and Ljung

(2014).

The multiple connections of the Gaussian regression framework applied to the system

identification PEM problem created several ways to name these techniques. First,

the model “type” selection described for classical parametric approach is no longer

needed because NonParametric Prediction Error Methods (NPPEM) are based on a

mathematical tools that does not impose a parametric structure, from which the adjective

‘nonparametric’. Second, the connection between Gaussian regression and the regularized

kernel methods applied to function estimation, see e.g. Wahba (1990); Rasmussen

and Williams (2006), arises the name of Regularized methods. Third, the recent works

Pillonetto and De Nicolao (2010); Pillonetto et al. (2011a); Chen et al. (2012) enlightened

how Gaussian regression applied to system identification relies on Bayesian inference,

thus the name Bayesian methods.

Consider now the general problem statement considered in Section 2.1, when the

NPPEM are adopted the predictor f∗
t in the simulation model (2.2) is interpreted as the

realization of a Gaussian random field, see e.g. (Rasmussen and Williams, 2006, Chp.

2) denoted by ft. In the spirit of the Bayesian philosophy the aim of this identification

procedure is to estimate the posterior distribution of ft given the available data DN ,

p(ft|DN). From hereafter, the dependency on the inputs U will be omitted, consequently

the posterior distribution is defined as p(ft|Y).

The a priori probability distribution given to ft in Bayesian terminology is called

2.4 Nonparametric PEM: Gaussian Regression 21

prior

ft ∼ pη(ft) (2.27)

and in general depends upon some unknown parameters η ∈ Ω ⊂ R
dη , called hyperparam-

eters, which need to be estimated from data. The subscript η denotes that the probability

distribution of ft is a function of the hyperparameters.

In the Gaussian regression framework pη(ft) is assumed to be Gaussian, implying that

ft can be defined through only its second order statistics, i.e., its mean and covariance.

That is:

ft ∼ N (µ(·), kη(·, ·)) (2.28)

where kη(·, ·) is the covariance function defined as

kη(D(t),D(s)) := cov(ft(D(t)), ft(D(s))) (2.29)

The corresponding covariance matrix Kη(DN ,DN) ∈ R
N×N is defined as the matrix

of the covariances evaluated at all the pairs of (D(t),D(s)) points with t, s = [1, N]. This

matrix is called kernel matrix in the Machine Learning community, see (Rasmussen and

Williams, 2006; Scholkopf and Smola, 2001). The kernel matrix is a symmetric positive

semi-definite matrix:

Kη(D(t),D(s)) = K>
η (D(t),D(s)) ≥ 0

If not differently specified we rely on the common assumption that the prior mean in

(2.28) is set to 0, i.e., µ(·) = 0

The choice of the structure of Kη and the estimation of η are crucial points because

the quality and the features of the final estimate are encoded in this choice. Loosely

speaking, this choice can be seen as the counterpart of the model selection in the PPEM

procedure.

According to the Bayesian paradigm, once a prior on the predictor has been selected

and a dataset, DN , is available the posterior of the predictor is defined as following

pη(ft|DN) =
p(DN |ft)pη(ft)

pη(DN)
(2.30)

where p(DN |ft) and of pη(DN) are the likelihood and marginal likelihood function,

respectively. In order to simplify the notation, in what follows, the symbol DN will be

replaced in the notation with Y ; therefore, we shall use pη(Y) and pη(ft|Y) in lieu of

pη(DN) and pη(ft|DN), respectively.

22 System Identification Overview

The marginal likelihood is defined as:

pη(Y) =
∫
p(Y |ft)pη(ft)dft (2.31)

This quantity is a fundamental tool that Bayesian inference provides to estimate the

hyperparameters, as it will be seen in Section 2.4.3.

Given the posterior distribution, the predictor minimum variance estimate, (Pillonetto

and De Nicolao, 2010; Pillonetto et al., 2011a,b) is given by:

f̂t =
∫
ftpη(ft|Y)dft

=
∫ ∫

ftp(ft|Y, η)p(η|Y)dftdη

=
∫

E [ft|Y, η] p(η|Y)dη

(2.32)

where E [ft|Y, η] is the conditional estimate of ft when η are fixed.

Unfortunately, in a general framework these integrals are not analytically tractable

and it is necessary to resort to effective approximations of the posterior, e.g. stochastic

techniques as Markov Chain Monte Carlo (MCMC) methods or analytical approximations.

These approximations lead to different approaches, such as the Full Bayesian Sampling

(FBS) and the so-called Empirical Bayes (EB) estimators, described in Section 2.4.1.

2.4.1 Posterior Approximation

In this section, two fundamental approximations of the posterior in Bayesian inference

are presented.

Considering the Bayesian hierarchical model described in Section 2.4, the problem of

determining the posterior distribution can be formulated as the problem of determining

the hyperparameters of the prior. Consequently, an approximation of the posterior

distribution corresponds to an approximation of the hyperparameters distribution.

In terms of solutions to the PEM problem, the approximations on the hyperparameters

lead to different approximations of the minimum variance estimate defined in (2.32) that

will be named FBS and EB, accordingly to the paradigm used. In practice, what we are

wondering is:

“How can we approximate the integral
∫
p(ft|Y, η)p(η|Y)dη in order to compute the

Bayesian minimum variance estimate?”

2.4 Nonparametric PEM: Gaussian Regression 23

Full Bayes Sampling

The Fully Bayesian paradigm is in principle interested in determining the whole posterior

distribution. As mentioned earlier, the posterior in general cannot be computed and one

possible approximation relies on a sampling approximation technique; from which the

name Full Bayes Sampling (FBS).

In this context, η is considered as a random vector with distribution p(η|Y) and the

posterior is approximated as follows

pη(ft|Y) =
∫
p(ft|Y, η)p(η|Y)dη ≈

T∑

i=1

p(ft|Y, η(i)) (2.33)

where η(i), i = [1, T] are samples from the distribution p(η|Y). How to perform the

sampling is a user’s choice. One possibility is to adopt he stochastic simulation technique

MCMC Gilks, Richardson, and Spiegelhalter (1995); Andrieu, Doucet, and Holenstein

(2010); Ninness and Henriksen (2010) which is a well known techniques to efficiently

sample from unknown distributions.

From this approximation, the minimum variance estimate of ft can be computed.

Notice that one interesting property of this estimator is that is takes into account also

the variability of the hyperparameters, for further discussion see Magni, Bellazzi, and

Nicolao (1998); Pillonetto and Bell (2007) and the results of Chapter 3.

In Chapters 3 and 5 two implementations of the FBS approximation will be formulated.

Empirical Bayes

A common choice of the Empirical Bayes (EB) approach (Robbins, 1958) is based on

the idea that, the parameters (or hyperparameters), at the highest level of the Bayesian

hierarchical model, are fixed to a value estimated from the data, e.g., maximizing the

(marginal) likelihood.

In the Bayesian framework described in Section 2.4 the Empirical Bayes estimate we

consider is based on the assumption that the marginal on the hyperparameters p(η|Y) is

approximated by a delta-function centred at its mode η̂; under this approximation the

outer integral in (2.32) is trivially equal to E [ft|Y, η] evaluated at η̂. According to this

distribution only one set of hyperparameters has to be estimated and it will be denoted

by η̂.

Under the assumption that the error affecting the output data is an additive indepen-

dent identically distributed zero mean Gaussian noise with covariance σ2 and the hyperpa-

rameters are fixed to a certain value, η̂, the vector composed by [ft(DN), y(1), . . . , y(N)]

24 System Identification Overview

is jointly Gaussian. This is true for any point in the domain space of DN , including also

the ones not available in the dataset DN . In practical applications this consideration is

of interest when one wants to make prediction on a point in the input space not seen yet.

Therefore, considering a point D∗ := (y(t), u(t)) ∈ R
2 with the joint distribution between

the predictor and the available data is defined as

[
ft(D∗)

Y

]
∼ N

([
0N

0N

]
,

[
Kη̂(D∗,D∗) Kη̂(D∗,DN)

Kη̂(DN ,D∗) K̂η̂(DN ,DN) + σ2IN

])
(2.34)

Consequently, from basic calculus on conditioning jointly Gaussian random variable,

the posterior distribution pη̂(ft|Y) is Gaussian

pη̂(ft|Y) = N
(
ft|µpost,Σpost

)
(2.35)

where

µpost = Kη̂(D∗,DN)
(
Kη̂(DN ,DN) + σ2IN

)−1
Y (2.36)

Σpost = Kη̂(D∗,D∗)−Kη̂(D∗,DN)
(
Kη(DN ,DN) + σ2IN

)−1
Kη̂(DN ,D∗) (2.37)

Finally, the EB estimator (see Robbins (1958); Carlin and Louis (1997); Pillonetto

and Chiuso (2015)) of ft coincides with the posterior mean and it can be written as

f̂EB
t := E [ft|Y, η̂] = µpost (2.38)

The posterior mean obtained in this setting is also called the maximum a posteriori

(MAP) estimator of ft. It follows that the minimum variance estimator and the MAP

estimators coincide.

In machine learning this approach is also called Gaussian regression functional space

view, see (Rasmussen and Williams, 2006, Chp. 2).

Remark 2.4.1. The noise variance σ2 can be treated as a hyper-parameter or estimated by

solving a low-bias LS estimate of f∗
t . Anyhow, it is unknown and it has to be estimated

in order to compute an estimate of f∗
t .

2.4.2 Connection with Regularized PEM

There is an interesting link between the probabilistic Bayesian inference and the deter-

ministic framework of regularized problems.

The minimum variance estimate in (2.38) coincides with the MAP estimator, conse-

quently it can be formulated as

2.4 Nonparametric PEM: Gaussian Regression 25

f̂MAP
t = µpost = arg max

ft

pη(ft|Y) (2.39)

= arg max
ft

pη(Y |ft)pη(ft) (2.40)

≡ arg min
ft

− log pη(Y |ft)− log pη(ft) (2.41)

≡ arg min
ft

1
σ2
‖Y − ft‖2 − log pη(ft) (2.42)

The first fundamental observation that this formulation highlights is that Gaussian

regression aims to solve a prediction error problem. Indeed, the first term in expression

(2.42) coincides exactly with the mean square loss function in (2.15); the estimate f̂MAP
t

is an approximation of the mean squared predictor.

As discussed earlier, problem (2.14) is an ill-conditioned problem and expression

(2.42) suggests that one way to see how Gaussian regression tackle this issue is to add a

regularization term that is given by the prior knowledge assumed on the system.

Under the assumption of a Gaussian prior distribution (2.28) the regularization

problem (2.42) becomes

f̂REG
t = f̂MAP

t = arg min
ft

‖Y − ft‖2 + σ2f>
t K

−1
η̂ (DN ,DN)ft (2.43)

where η̂ indicates that η is fixed to a certain value, typically estimated from the data.

Expression (2.43) is now a l2-type regularized problem. The solution to the prediction

error problem is now restricted to a set of estimates such that the term f>
t K

−1
η ft is

“small”. This underlines the importance of the choice of the prior: the kernel matrix

gives the directions where the solution has to be searched for in the space and reduce the

ill-conditioning of the problem.

The regularized inverse problem (2.43) is also known as Tikhonov-regularization

Tikhonov and Arsenin (1977).

For future use, it is also pointed out that the regularized (or MAP, or minimum

variance) estimate coincides with

f̂REG
t =

N∑

i=1

ciKη̂(D(t),D(i)) (2.44)

26 System Identification Overview

where ci is the i-th component of the vector

c =
(
Kη̂(DN ,DN) + σ2IN

)−1
Y ∈ R

N (2.45)

This result follows from the representer theorem, see Kimeldorf and Wahba (1971);

Wahba (1990).

2.4.3 Hyperparameters Tuning

The last question we need to answer is: ‘How can we estimate the hyperparameters η

from the data ?’

Marginal Likelihood

The Bayesian framework offers directly a tool to estimate the hyperparameters. Indeed,

the marginal likelihood, pη(Y), defined in (2.31) expresses the likelihood of the hyper-

parameters given the data, once the unknown model component ft has been integrated

out.

Under the assumption that ft and the innovation are Gaussian and independent (see

Section 2.1 for more details), the marginal density can be computed in closed form, as

discussed in Pillonetto and De Nicolao (2010); Pillonetto et al. (2011a) for linear systems

and generalized in Pillonetto et al. (2011b) to the nonlinear case, and is given by

pη(Y) = exp
(
−1

2
log(det[2πΣY (η)])− 1

2
Y > (ΣY (η))−1 Y

)
(2.46)

where

ΣY (η) := Kη(DN ,DN) + σ2IN (2.47)

is the prior covariance on the noisy observations and σ2 := V ar{e(t)} is the variance of

the innovation process.

The hyperparameters vector η is estimated by minimizing the negative log marginal

likelihood:

η̂ML = arg max
η

pη(Y)

≡ arg min
η
− log pη(Y)

≡ arg min
η

log(det[2πΣY (η)]) + Y > (ΣY (η))−1 Y (2.48)

2.4 Nonparametric PEM: Gaussian Regression 27

Notice that the optimization of the marginal likelihood is equivalent to the maximiza-

tion on the posterior of the hyperparameters given the data p(η|Y) once a non-informative

prior on the hyperparameters is considered, i.e., all the sets of hyperparameters have a

uniform distribution.

The robustness of this approach has been discussed in Aravkin, Burke, Chiuso, and

Pillonetto (2012); Carli, Chen, Chiuso, Ljung, and Pillonetto (2012); Pillonetto and

Chiuso (2015).

Cross Validation

In a deterministic framework, such as the regularization, an alternative technique to

estimate the hyperparameters is known as Cross Validation (CV). The dataset used

for the identification is split into two data sets: the training set and the validation set.

The goal is to estimate the set of hyperparameters having the best performance on the

prediction of unseen data, accordingly to some criteria. The training set is used to

estimate the model for different values of the hyperparameters and the validation set

is used to verify the prediction capability. This kind of validation is called hold-out

validation (James, Witten, Hastie, and Tibshirani, 2013, Chapter 6).

This is probably the simplest version of CV, an extension could consider the splitting

of the dataset into several subsets. Each subset is considered in turn the training set and

the others as validation sets. The prediction capability obtained in the validation sets

are somehow averaged in all the cases to decide the best model. One common technique

of this kind is called k-fold.

These are only few of the possible variants of CV, some others are e.g., PRESS and

GCV. Moreover, in the deterministic framework there can be also other techniques as

the Cp statistics or the SURE estimator. See (Pillonetto et al., 2014, Sec. 14) for an

overiview.

2.4.4 Linear Dynamical Systems

Consider the linear model (2.12) and assume the noise signal e is a white independent

Gaussian noise, then all the theory and results obtained for NPPEM for the more general

problem (2.2) still hold. Nevertheless, it is of interest to report explicitly the main results

and formula in the class of LTI systems, due to the wide usage of linear systems in the

literature and also in the remainder of this dissertation.

Y = Φf + E (2.49)

28 System Identification Overview

where f :=
[
wy>

, wu>
]>

is the infinite dimensional impulse response and Φ is defined as

in (2.13).

The impulse response f is modelled as a zero mean Gaussian process Rasmussen and

Williams (2006) with covariance given by the Kernel matrix Kη

pη(f) ∼ N (f |0,Kη) (2.50)

Under the assumption that the innovation is Gaussian and independent of f and

because of the linearity, then of Y and f are jointly Gaussian yielding also a Gaussian

posterior for a fixed η:

pη(f |Y) ∼ N (µpost
f (η),Σpost

f (η)) (2.51)

µpost
f (η) = E [f |Y, η] := KηΦ>(ΦKηΦ> + σ2In)−1Y (2.52)

Σpost
f (η) := Kη −KηΦ> (ΣY (η))−1 ΦKη (2.53)

where the a priori covariance of the data is

ΣY (η) = ΦKηΦ> + σ2IN (2.54)

and σ2 := V ar{e(t)} is the variance of the innovation process.

Hence, the minimum variance estimate f̂EB can be computed in closed form using

(2.52)

f̂EB = µpost
f (η̂) = Kη̂Φ> (ΣY (η))−1 Y (2.55)

In this framework also the marginal pη(Y) can be computed as in (2.46) and its closed

form results to be:

pη(Y) = exp{−0.5(ln |2πΣY (η)|+ Y > (ΣY (η))−1 Y)} (2.56)

In machine learning this approach is called the Gaussian regression weight-space view

(Rasmussen and Williams, 2006, Chp. 2).

As pointed out in Section 2.4.2 the minimum variance Empirical Bayes estimate can

be interpreted in the regularization framework, which results in:

2.4 Nonparametric PEM: Gaussian Regression 29

f̂REG = f̂EB = := E [f |Y, η̂] (2.57)

= arg min
f∈Rn

(Y − Φf)> (Y − Φf) + σ2f>K−1
η̂ f (2.58)

=
(
Φ>Φ + σ2K−1

η̂

)−1
Φ>Y (2.59)

2.4.5 Online Approach

On the contrary to the parametric approach, there is not a standard online procedure for

NPEM. In the following, an overview of the main works present in literature is reported.

Unfortunately, Gaussian regression requires computations that scale with O(N3) for

training, as can be seen from equations (2.36)-(2.38). In order to reduce the computational

complexity, several sparse approximations have been proposed in the recent years (see for

example Lawrence, Seeger, and Herbrich (2002); Smola and Bartlett (2001); Snelson and

Ghahramani (2006); Tresp (2000); Williams and Seeger (2001); Ranganathan, Yang, and

Ho (2011); Csató and Opper (2002). The main idea of these approximations is to select

only a fixed limited number of data based on some criteria, consequently the computational

complexity can be arbitrarily reduced. However, most of these approximations operate in

a batch mode, assuming that all the data are available and performing the computation

offline.

Based on similar ideas also online approaches have been proposed in the literature. We

mention the nonparametric algorithm selecting a sparse subset of training data points (i.e.

dictionary), Nguyen-Tuong and Peters (2011a) and the local Gaussian process regression

approach proposed in Nguyen-Tuong, Seeger, and Peters (2009). In Gijsberts and Metta

(2011) the complexity is kept constant approximating the kernel function using so called

“random features”, Rahimi and Recht (2007); Quinonero-Candela and Rasmussen (2005).

Only few approaches propose methods to sequentially update data. In Gilks et al.

(1995) the new available data are clustered in a sequential manner that leads to the

final estimate. However, the number of clusters and the number of data of clusters

have to be carefully tuning accordingly to the application. In Hartikainen and Särkkä

(2010) and in De Nicolao, Ferrari-Trecate, and Lecchini (1998), GR is seen as a Kalman

filtering that scales with O(N) for specific choice of the kernel. In Hartikainen and Särkkä

(2010) and Huber (2014) a method called Recursive Gaussian Process (RGP) is proposed.

Gaussian regression is seen as a Bayesian filtering problem, where the regression function

is represented by means of a finite set of basis vectors. The update of the estimate can be

computed recursively thanks to this fixed number of basis vectors. This method has been

30 System Identification Overview

applied to system identification of nonlinear functions in Prüher and Simandl (2014).

2.5 Motivations: Advantages and Disadvantages of

Gaussian Regression

The purpose of this section is to discuss some of the main issues that have to be faced

when dealing with system identification and that have inspired this manuscript.

The discussion focuses on the points where we believe that the Gaussian regression

framework could effectively outperform the parametric approach or where we encountered

limitations in this nonparametric approach; these points are the motivations of the work

in the remainder of this dissertation.

Bias-Variance Tradeoff

Selecting the model complexity, e.g. trading bias versus variance is an important aspect

which makes the identification of a system given a finite number of data still an open

issue.

Even in the “easy” linear system identification, which is sometimes considered to be

a mature field (in particular for PPEM which are by now well developed and understood,

see e.g. Ljung (1999); Söderström and Stoica (1989); Pintelon and Schoukens (2012))

facing in an effective manner the bias-variance dilemma trading model complexity vs.

data fit is still a challenge. The recent regularization methods for system identification

are offering new effective tools to tackle this issue, see e.g. Pillonetto and De Nicolao

(2010); Banbura, Giannone, and Reichlin (2010); Pillonetto et al. (2011a); Chen et al.

(2012); Pillonetto et al. (2014); Chiuso (2016); Rasmussen and Williams (2006).

The bias-variance dilemma takes root in the fact that the residuals in the training

data are not a good measure of the estimate capability in predicting unseen data. In

the interest of only the training data the estimator would tend to interpolate the points

creating an overfitting effect and likely an underfitting in the test data.

Assume the data are generated from a model as (2.2), the error is a zero mean

independent Gaussian noise and we are provided with an estimate of the predictor f̂(D0),

at the point D0 := (y(t), u(t)) then the mean squared error can be decomposed as:

2.5 Motivations: Advantages and Disadvantages of Gaussian Regression 31

MSE = E

[(
f∗

t (D0)− f̂(D0)
)2
]

(2.60)

=
(
f∗

t (D0)− E

[
f̂(D0)

])2
+ E

[(
f̂(D0)− E

[
f̂(D0)

])2
]

(2.61)

= bias2 + variance

where (2.60) follows from the independence of the noise and the model and (2.61)

because the true model f∗
t (D0) is a deterministic quantity.

The final expression of the MSE (2.61) is composed of the sum of two quantities:

the square of the bias term, which is the difference between the true model and the

expectation of the estimate f̂(D0) w.r.t. the randomness in the training data and the

variance of the estimate f̂(D0).

These two terms can be controlled through the estimation procedure and it is well

known that as the complexity of the estimator increases the bias term tends to decrease

while the variance tends to increase. How to trade between these two quantities should

be ideally based on the minimization of the MSE on the test data, which is clearly

unavailable. Unfortunately, the training error is a bad estimator of the MSE, indeed,

while the former decreases with the increase of the model complexity the latter has been

shown to have its minimum (as a function of the complexity) in a ‘middle’ point between

low and high complexity, see e.g., (Hastie, Tibshirani, and Friedman, 2008, Chp. 2 and 7)

In the parametric approach, these considerations have a clear explanation once the

model “type” has been selected: on the one hand, a complex model (i.e. with a ‘high’

number of parameters) guarantees an accurate adherence to the training data, on the

other hand, a simple model (i.e. with a ‘low’ number of parameters) results to be more

flexible in describing the unseen data. In the nonparametric approach, after the selection

of the Kernel structure (that somehow corresponds to the choice of the parametric model

‘type’) the model complexity is regulated by the value of the hyperparameters. This way

of controlling the model complexity has been experimented to bring advantages in some

situations w.r.t. the parametric approach. Moreover, the NPPEM presented in Section

2.4 have typically a smaller number of hyperparameters w.r.t. the number of parameters

of PPEM leading to optimization problems in a smaller dimension space.

A further insight on the possible superiority of NPPEM methods can be seen in

linear models when introducing the concept of error model, see e.g., Goodwin, Gevers,

and Ninness (1992). The error model is the displacement between the assumed class of

models and the true system. In machine learning this concept appears e.g. in (Hastie

32 System Identification Overview

et al., 2008, Chp. 7) where the bias term in equation (2.61) is split as:

bias2 = bias2
model + bias2

estimate (2.62)

with bias2
model a function of the error model and bias2

estimate a function of the error

returned by the estimation procedure.

In the linear NPPEM, it has been shown that when kernels of the Stable Spline family

are considered Pillonetto and De Nicolao (2010); Pillonetto et al. (2011a), the error model

goes to zero because the class of functions generated from these kernels is sufficiently

rich to describe all the possible stable impulse responses. Therefore, the tradeoff is made

between the biasestimate and the variance while keeping null the biasmodel. In the PPEM

this is in general not true. Indeed, a zero error model is obtained only in the case that

the selected model “type” coincides with the true system. Notice that choosing always

the most general class cannot be a solution because this increases the model complexity.

Model complexity selection is actually one of the crucial steps in any parametric

procedure: experimental evidence has shown that parametric approaches may give rather

unreliable results when model complexity is not fixed but has rather to be determined

from data. Furthermore, many useful properties concerning the parameter estimators

are derived under asymptotic conditions, i.e. assuming to deal with infinite data lengths.

For instance, most criteria for determining model complexity are based on asymptotic

arguments.

All the previous considerations are still open issues in the system identification

community. Chapter 3 will be dedicated to an extensive comparison between PPEM and

NPPEM, with the final goal of validating some of the points previously discussed.

Moreover, the criticality of the model selection complexity emerges especially in

the online framework, where new data become available as the time goes. Indeed,

model complexity has to be modified in response to the changes of the system dynamics.

In general, dealing with parametric model classes in which the order changes over

time is a non-trivial issue, for which no clear guide-lines exist. In addition, classical

complexity selection rules may not be applicable in online settings, because of the excessive

computational effort they require. The recursive methods outlined in Section 2.3.2 do

not take into account the possibility of changes in the dimension of the parameters.

In Section 2.4.5 it has been discussed that NPPEM are for their nature less suitable

to recursive procedures, therefore they also present issues for applications in online

settings. However, in this framework model complexity is tuned in a continuous manner

by estimating the hyperparameters which describe the prior distribution and consequently

the size of the class of models. This property joint with a typical reduced dimensionality

2.5 Motivations: Advantages and Disadvantages of Gaussian Regression 33

of the domain of the hyperparameters makes the NPPEM particularly appealing for the

online identification of time-varying systems. This extension of NPPEM is discussed in

Chapter 4.

System Stability

It has been shown, that for linear dynamical systems NPPEM can guarantee the identifi-

cation of stable predictors based on an appropriate choice of the prior, see Pillonetto and

De Nicolao (2010); Pillonetto et al. (2011a). Unluckily, the stability of the predictors

does not guarantee the stability of the impulse responses of the forward model, as it can

be seen observing the relation between the transfer functions of the two models in (2.23).

In PPEM approaches this issue is solved imposing the stability requirements of both

forward and predictor model in the a priori structure of the parameters.

In control theory terminology we are dealing with the problem of having a stable

closed loop system and a possible unstable open loop plant. This problem can affect

scientific area also outside the control community since in some applications working

with the open loop plant can be more of a interest than the closed loop system. Some

preliminary and successful techniques are discussed in Chapter 5.

Local and Global Models

The previous discussion has highlighted how NPPEM effectively faces the bias-variance

tradeoff, exploiting data-driven procedures which allow to tune the model complexity in

a continuous manner. Yet the price to be paid is that, typically, nonparametric models

for nonlinear systems can only provide good local approximation, in the neighbourhood

of input locations visited by the training data. Their prediction performance deteriorates

significantly when tested on input locations which are far (in a suitable metric) from

those visited in the training phase. On the other hand, parametric models can be based

on physical considerations thus providing, in principle, global approximation properties.

The advantages of both methods can be successfully combined, to some extent, in

semiparamteric models. In Chapter 6 these models are analyzed and extended in a

robotic application.

34 System Identification Overview

3
Gaussian Regression and Parametric PEM: a

Comparison

A model can never be the perfect description of a real system. Consequently, the evaluation

of the quality of the estimate obtained by an identification procedure is fundamental. In

linear dynamical systems, when the knowledge of the real system is available, e.g. in

simulative experiments, a natural performance index to test an identification algorithm

is given by the fit of the impulse response estimate to the real one. Nevertheless, the

information given by this index can be misleading if not combined with the precise

knowledge of the uncertainty bounds around the impulse response.

This chapter focuses on the comparison between the linear PPEM, defined in section

2.3.1 and the linear Gaussian regression defined in section 2.4.4. In particular, the focus

will be on the uncertainty sets which can be determined under the two approaches. The

comparison between the confidence intervals derived under a frequentist framework and

the credible intervals defined under a Bayesian paradigm is a widely discussed topic (see

36 Gaussian Regression and Parametric PEM: a Comparison

e.g. Jaynes and Kempthorne (1976); Efron (2005)); the comparison carried out in our

contribution will be restricted to the system identification framework.

In PPEM, the asymptotic theory has been widely exploited to derive the statistical

properties of the estimate and therefore to construct a confidence region around it, see

(Ljung, 1999, Chp 9) among the others. However, in practice the amount of available

data is limited: assessing the reliability of these confidence regions under finite sample

situations is of crucial importance and has been discussed for instance in Goodwin

et al. (1992); Weyer, Williamson, and Mareels (1999); Campi and Weyer (2002); Garatti,

Campi, and Bittanti (2004). Some authors have also explored the possibility to define

non-asymptotic confidence regions for parametric system identification procedures (see

e.g. Campi and Weyer (2005); Csáji, Campi, and Weyer (2015)).

It should be also recalled that the asymptotic derivation of confidence regions assume

that the model class is fixed to the correct one, while in practice this is estimated from the

available data, making the PPEM estimator a Post Model Selection Estimator (PMSE):

Leeb and Potscher (2005) have pointed out how the asymptotic analysis becomes rather

delicate in this case.

On the other hand, NPPEM relying on the Bayesian inference perform an implicit

model selection step, thus not requiring the user to explicitly select the complexity of the

model to be estimated. Furthermore, under the Bayesian framework, confidence regions

can be directly derived from the posterior distribution, without relying on the asymptotic

theory. Of course, the quality of these confidence sets directly depends on the goodness

of the chosen prior.

Contribution

1. The PPEM and NPPEM are based on different paradigms that lead to the formu-

lation of the solution to the prediction error minimization problem either in the

space of the parameters or in the space of the impulse responses. We believe that

the latter space is the correct one to perform the comparison and we define and

evaluate the quality of confidence sets in it. In order to include all the methods we

propose and define “particle” confidence sets, i.e., based on sampling procedures.

The evaluation of the quality of the two PEM methods is carried out considering

also the precision of the point estimators.

2. In addition to the comparison between parametric and nonparametric approaches

we are also interested in other two analysis.

3.1 Problem Statement 37

First, focusing on the NPPEM the effectiveness of the Empirical Bayes and of the

Full Bayes Sampling paradigms is evaluated.

Second, focusing on the PPEM, the quality of the confidence sets relying on the

asymptotic distribution and on the likelihood function are counterposed.

The chapter is organized as follows. Section 3.1 reports the problem statement. In

Section 3.2 a brief summary of the confidence sets arising from the asymptotic and

likelihood distribution in the parametric approach is illustrated, while in Section 3.3

presents the confidence sets that arise from the EB and FBS posterior distribution

approximation. In Section 3.4 the proposed definition of confidence set is formalized.

Section 3.5 provides an experimental comparison of the parametric and nonparametric

methods in terms of point estimators and confidence sets, while Section 3.6 offers some

final remarks and conclusions.

3.1 Problem Statement

Consider, for the sake of the exposition, the SISO Output-Error model (a simplified

version of model (2.6) with H(z) = 1) :

y(t) = [g ∗ u](t) + e(t) (3.1)

where y(t), u(t) ∈ R are respectively the measurable input and output, e(t) is a zero

mean Gaussian white noise uncorrelated to u(t) and g(t) is the model impulse response.

Also consider {u(t)} and {y(t)} as jointly stationary zero-mean stochastic processes.

Thus, the assumptions of the system identification problem in Section 2.1 hold.

Given a finite set of input-output data pointsDN = {u(t), y(t)}Nt=1, we are interested in

1. estimating the impulse response g(t) as solution of the PEM problem described in

Section 2.2,

2. determining a (random) set which is likely to include the unknown true g(t). This

set is generally referred to as confidence set,

3. comparing on both the previous points, the PPEM and NPPEM illustrated in

Sections 2.3.1 and 2.4.4, respectively.

The questions we are trying to answer are: how accurate are the estimated model

w.r.t. the true system? Is it possible to find a common “fair” framework to compare the

parametric and nonparametric approaches?

38 Gaussian Regression and Parametric PEM: a Comparison

3.2 Confidence Sets of Classical Parametric PEM

Asymptotic

The analysis of this section assumes that an infinite number of data is available, i.e.,

N →∞. It is worth mentioning that the limit properties of the PPEM estimate (2.22)

are related to the chosen criteria function V (θ,DN), see (Ljung, 1999, Chp. 8).

Consider the PPEM estimate (2.22), under the assumption that the true system

belongs to the chosen model class M(θ) and some other mild assumptions (e.g. θ̂P EM

gives rise to a uniformly stable model and the given data {y(t)} , {u(t)} are jointly

quasi-stationary signals), it holds that as N → ∞, θ̂P EM is a consistent and efficient

estimator. This means that with increasing number of data, θ̂P EM converges to the true

system and its covariance matrix approaches the Cramér-Rao limit, so that no unbiased

estimator can be better.

In mathematical formula this can be written as

θ̂P EM → N
(
θ0,

Σθ

N

)
, as N →∞ (3.2)

where θ0 is the unique value in Θ such that

θ̂P EM → θ0, w.p. 1 as N →∞ (3.3)

and

Σθ = σ2

{
lim

N→∞

1
N

N∑

t=1

E

[
ψ(t, θ0)ψ>(t, θ0)

]}−1

(3.4)

ψ(t, θ0) =
d

dθ
ŷθ(t|t−)|θ=θ0 (3.5)

Notice that, in case of Gaussian innovations Σθ coincides with the Cramer-Rao lower

bound, thus proving the aforementioned asymptotic efficiency of the PEM estimators.

The interested reader is referred to (Ljung, 1999, Chp. 8,9) for more details and extensions

to different criteria function VN (DN , θ).

Once θ̂P EM has been determined from DN , the given N input-output pairs, the

asymptotic covariance (3.4) can be approximated as

Σ̂θ = VN (DN , θ̂P EM)

{
1
N

N∑

t=1

ψ(t, θ̂P EM)ψ>(t, θ̂P EM)

}−1

(3.6)

ψ(t, θ̂P EM) =
d

dθ
ŷθ(t|t−)|θ=θ̂P EM

(3.7)

3.2 Confidence Sets of Classical Parametric PEM 39

It follows that the asymptotic distribution of the estimator can be approximated as

pN (·) ∼ N
(
θ̂P EM , N−1Σ̂θ

)
(3.8)

Considering distribution (3.8), it is known that the quantityN(θ̂P EM−θ)>Σ̂−1
θ (θ̂P EM−

θ) is distributed as a χ2(d), which is a chi-squared distribution with d−degree of freedom,

where d is the dimension of θ̂P EM .

Hence, the ellipsoidal confidence set around the estimate θ̂P EM with coverage of the

1− α percentile, for a fixed probability level α consists of

EP P EM+ASY MP
α := {θ ∈ R

d : (θ̂P EM − θ)>Σ̂−1
θ (θ̂P EM − θ) ≤ χα,d} (3.9)

where χα,d is the value for which Pr
(
χ2(d) < χα,d

)
= α.

Likelihood Sampling

As an alternative, instead of relying on the approximation (3.6) to the asymptotic

covariance (3.4), one could define a confidence set sampling from the likelihood function

p(Y |θ, σ̂2), with σ̂2 being a noise variance estimate (obtained e.g. through a Least-Squares

model). In fact, assuming a flat prior distribution p(θ) for the parameters, the likelihood

function is proportional to the posterior distribution:

p(θ|Y, σ̂2) ∝ p(Y |θ, σ̂2) = (2πσ̂2)−N/2 exp

{
− 1

2σ̂2

N∑

t=1

(y(t)− ŷθ(t|t−))2

}
(3.10)

An MCMC algorithm is designed in order to obtain T samples θ(i) from (3.10). The

interested reader is referred to the book Gilks et al. (1995) for an exhaustive explanation

of the standard MCMC algorithms. Here, there are reported only the three quantities

that need to be specified in order to perform these types of algorithms. First, the target

distribution is the posterior distribution defined in (3.10). Second, the proposal density

is given by a random walk with increments regulated by the asymptotic distribution

(3.8). This can appear counter intuitive, but the asymptotic distribution is a convenient

proposal candidate, since it expresses an appropriate distribution over the parameter

in opportune conditions, as mentioned in the previous section. Recall that, MCMC

algorithms are proved to return the correct target distribution, after a sufficiently high

number of samples, independently from the chosen proposal. Third, the acceptance

probability for each candidate sample θ(i) is β(θ(i), θ(i−1)) = min
(
1 , p(Y |θ(i),σ̂2)

p(Y |θ(i−1),σ̂2)

)
.

3.3 Confidence Sets of Bayesian Identification Methods 41

confidence set, we should take into account also the uncertainty related to the model

selection step. However, as emphasized in Leeb and Potscher (2005), the finite-sample

distribution of a PMSE generally has a quite intricate shape; moreover, even if one

tries to estimate it through a sampling method, one has to recall that the finite-sample

distribution of a PMSE is not uniformly close to its asymptotic limit (3.4).

Remark 3.2.1. The reader might wonder why a bootstrap procedure has not been adopted.

Indeed, a bootstrap approach could be considered to obtain the samples to compute

a particle confidence set in the parameters. The idea behind the bootstrap is that if

the model that generated the data is known, it could be possible to generate several

datasets corresponding to different realizations of the error, estimate models from these

datasets and compute the desired statistics on them. This is clearly not possible since

the true model is in general unknown and the only available information are the data

DN . Bootstrap techniques therefore resort on estimating a model from the available data

using a PPEM technique, from this model an estimation error and a variance of the error

can be computed. At this point, the estimated model can be simulated with an additive

noise sampled from the distribution of the previously estimated error. See e.g.,Efron and

Tibshirani (1994); Zoubir and Boashash (1998) for an extensive traction of the bootstrap

methods. In this way several datasets are generated as in the original idea, then from

each dataset a model can be estimated which is a candidate for the particle confidence

set.

Notice that this is different from the likelihood sampling above proposed. The

difference consists in the fact that in our approach the parameters sets are sampled

from a distribution (the posterior) in the bootstrap technique “samples” of datasets

are generated and then there is a further estimation step to obtain the parameters

samples. A discussion could be set in which of the two methods is more efficient. We rely

in the likelihood sampling, which consists in sampling from the posterior distribution,

because this is strictly connected with the way confidence sets are naturally defined in

the Bayesian framework, as it will be more clear in the next sections. This allows a more

fair comparison.

3.3 Confidence Sets of Bayesian Identification Methods

Within the Bayesian framework, the confidence of the final estimator is described by the

posterior density p(g|Y). The Empirical Bayes (EB) and the Full Bayesian Sampling

(FBS) estimators are derived in Section 2.4.1 from different approximations of the

posterior, therefore also different definitions of confidence set are associated to the two

42 Gaussian Regression and Parametric PEM: a Comparison

estimators.

Empirical Bayes (EB)

When the Emprical Bayes approach is considered, the posterior pη(g|Y) is the Gaussian

distribution defined in (2.51) with η fixed to η̂EB. Hence, one can define the ellipsoidal

confidence region in R
n, with n being the length of the estimated impulse response, i.e.

ĝEB ∈ R
n:

EEB
α :=

{
x ∈ R

n : (x− ĝEB)>Σpost
g (η̂EB)−1(x− ĝEB) ≤ χα,n

}
(3.12)

For a fixed probability level α, χα,n is the value for which Pr(χ2(n) < χα,n = α. EEB
α

defines the region in which a sample from p(g|Y) will end up with probability α.

Full Bayes Sampling (FBS)

The Full Bayesian Sampling approach has the advantage that treats η as a random

variable and aims to reconstruct the joint distribution of g and η. Therefore in principle,

the FBS estimate should be closer to the true system than the EB estimate (under the

assumption that the a priori Bayesian model is correct). As a disadvantage, in general it

requires a much higher computational effort which, when the marginal posterior p(η|Y)

is sufficiently peaked, may not be counterbalanced by a significant performance increase.

As discussed in Section 2.4.1 FBS can be implemented through a MCMC sampling

algorithm. Here, the FBS estimator of the impulse response g is obtained by an Adaptive

Metropolis-Hastings (AM) algorithm, an adaptive version of the more famous Metropolis-

Hastings algorithm; see Gilks et al. (1995), Haario, Saksman, and Tamminen (2001). We

choose to use this adaptive version instead of the classical counterpart because it allows

to tune the proposal distribution exploiting the new knowledge which becomes available

through the sampling. This property renders the method robust w.r.t. the initial choice

of the proposal distribution.

Recall that the target is to compute the posterior distribution of the impulse response

given the data which cannot be computed analytically. For this reason, we tackle the

problem by approximating the posterior as

p(g|Y) =
∫

η
pη(g|Y)p(η|Y) dη ' 1

N

N∑

i=1

p(g|Y, η(i)) (3.13)

where p(g|Y, η(i)) is the posterior density (2.51) when the hyperparameters are fixed

equal to η(i).

3.3 Confidence Sets of Bayesian Identification Methods 43

In order to do this, we need to design an MCMC algorithm to draw samples η(i) from

p(η|Y). Observe that:

p(η|Y) =
pη(Y)p(η)
p(Y)

∝ pη(Y) (3.14)

where we have assumed that p(η) is a non informative prior distribution. Thus, by using

(2.56) we can evaluate p(η|Y) apart from the normalization constant p(Y).

As mentioned earlier, we have exploited Adaptive Metropolis-Hastings algorithm

proposed in Haario et al. (2001) to obtain the samples η(i). At each iteration i, the

algorithm adopts a Gaussian proposal distribution, qi(·), centred at the previous sample

η(i−1) and with a covariance matrix, Πi, which is adaptively updated based on the samples

η(1), ..., η(i−1). The updating recursion formula for the covariance matrix given in Haario

et al. (2001) is:

Πi+1 =
i− 1
i

Πi +
sdη

i
(iη̄(i)η̄(i)>

+ η(i)η(i)>
+ εIdη

) (3.15)

where η̄(i) is the mean after i samples, sdη
is a regularization parameter, dη is the

dimension of the hyperparamters and ε > 0 is an arbitrarily small constant. The value of

the regularization parameter sdη
has been initially set to sdη

= 2.42

dη
, a value which gives

good mixing properties in the Metropolis chain under the assumption of Gaussian target

and proposal (as shown in Gelman, Roberts, and Gilks (1996)). Successively, sdη
has

been empirically adjusted in order to guarantee an acceptance rate around 30% for the

AM algorithm.

The covariance matrix of the proposal density has been initialized with the inverse of

the Hessian matrix of the marginal likelihood (2.56) computed at the mode η̂EB, as it

was successfully used e.g., in Pillonetto and Chiuso (2009).

The algorithm we implemented in order to obtain the FBS estimate ĝF B is outlined

in Algorithm 1. The chain length T and the burn-in length have been determined by

applying twice the method proposed in Raftery and Lewis (1992).

Remark 3.3.1. In addition to the minimum variance estimate (3.16) also the Maximum a

Posteriori estimate have been estimated, i.e.,:

ḡF B = arg max
g(i)

p(g|Y) (3.17)

However, the results are analogous to the minimum variance estimate and therefore

omitted.

44 Gaussian Regression and Parametric PEM: a Comparison

Algorithm 1 FBS estimate through an AM algorithm

Sample hyperparameters through an AM algorithm
Inputs: η̂EB, Π0 and bin the burn-in length

1: Init: The proposal density is set to q0(·) = N (η̂EB,Π0)
2: for i = 1 to bin + T do

• Sample η from qi(·|η(i−1)) ∼ N (η(i−1),Πi)

• Sample u from a uniform distribution on [0, 1]

• Set

η(i) =

{
η if u ≤ p(Y |η)p(η)

p(Y |η(i−1))p(η(i−1))

η(i−1) otherwise

• Compute Πi+1 according to equation (3.15).

3: Retain the last T samples η(i) which are (approximately) samples from p(η|Y).

Estimate the impulse response:
4: for i = 1 to T do

• Compute µpost
g (η(i)), Σpost

g (η(i)) as in (2.52), (2.53).

• Sample g(i) from N (µpost
g (η(i)),Σpost

g (η(i)))

5: The samples g(i) obtained above are samples from p(g|Y). Compute ĝF B as:

ĝF B = N−1∑N
i=1 g

(i) (3.16)

46 Gaussian Regression and Parametric PEM: a Comparison

different confidence sets both in terms of domain (parameter space or impulse response

space) and typology (“Particle” or closed sets). Thus making the comparison between

the two particularly delicate.

Indeed, the parametric confidence sets are defined in the space of the parameters of

dimension d and the asymptotic approach lead to the ellipsoidal region, EP P EM+ASY MP
α

in (3.9), while the likelihood approach lead to the “Particle” region, CP P EM+LIK
α in

(3.11). Instead, the Bayesian confidence sets are defined in the space of the impulse

responses of dimension n and the EB approach lead to the ellipsoidal region, EEB
α in

(3.12), while the FBS approach leads to a “Particle” region, SF BS
α in (3.18).

In order to evaluate and compare the quality of all the approaches in a common

framework we propose to define the confidence sets as “Particle” regions in the impulse

response space.

Recall that, the impulse response is the output obtained exciting the systems with a

Kronecker-delta and it corresponds to the inverse Z-transform of the transfer functions

of the systems. The map that goes from the parameters to the impulse response is

therefore a nonlinear map and it depends on the specific model class M(θ). This map

can generally defined as:

I : Θ → R
n (3.19)

θ 7→ g

Our belief is that performing the comparison in the impulse response space is a fair

choice, since the impulse response explicitly describes the input-output relation of the

system to be identified. A comparison in the parameter space would have required a

model reduction step on the Bayesian estimates: we believe that this step is more delicate

than the non-linear transformation we had to apply on parametric estimates in order to

map parameter estimators to impulse response estimators.

Notice that the FBS confidence set is already in the desired form for the comparison.

In the following it is shown how the confidence regions of the three remaining approaches

are transformed and they will be indicated with the symbol SX
α , where X denotes the

specific approach.

Asymptotic

Observe that the covariance (3.6) describes the approximated asymptotic confidence

set in R
d, the space of the parameters θ. In order to map the confidence set (3.9) in a

3.4 A Common Framework: “Particle” Confidence Sets on the Impulse
Response Space 49

pη̂EB
(g|Y) defined in (2.51), with η fixed to η̂EB , is sampled using a Monte-Carlo approach

and only the samples which belong to EEB
α are retained. That is:

SEB
α = {g(i) ∈ R

n : g(i) ∈ EEB
α } (3.22)

where EEB
α was defined in (3.12).

Remark 3.4.1. At this point one could argue that the sets SX
α , where X denotes a generic

method among the ones previously illustrated, that is, PPEM+LIK, PPEM+ASYMP,

EB and FBS, are only “sample” approximations of a confidence set, while one may be

interested in having a bounded region, in the impulse response space, as a confidence

set. In the case of the EB estimator this region is directly defined since the posterior

distribution is Gaussian, thus naturally leading to ellipsoidal confidence regions (3.12).

For all the other estimators, it is in principle possible to build outer approximations of

the confidence sets e.g. building a minimum size set which includes all the points in SX
α ;

examples are the convex hull or an ellipsoid. The convex hull can be computed with

off-the-shelf algorithms (such as the Matlab routine convhulln.m), while the smallest

ellipsoid (in terms of sum of squared semi-axes length) can be found solving the following

problem:

P opt
α , copt

α := arg minP,c Trace P

s.t.

[
P (g(i) − c)

(g(i) − c)> 1

]
� 0,

g(i) ∈ SX
α (3.23)

See Calafiore (2002) for further details. The corresponding ellipsoid is

Eopt
α =

{
x ∈ R

n : (x− copt
α)>(P opt

α)−1(x− copt
α) ≤ 1

}
(3.24)

However, the computation of the convex hull as well as the solution of the optimization

problem (3.23) become computationally intractable for moderate ambient space and

sample sizes. E.g. when the impulse response lives in R
n, n = 100 and the set SX

α

contains thousands of points (as in the situation we are facing), these computations are

prohibitive with off-the-shelf methods. To overcome this issue, we tried to approximate

the optimal ellipsoid Eopt
α by using the sample mean ḡSX

α
and the sample covariance ΣSX

α

50 Gaussian Regression and Parametric PEM: a Comparison

of the elements in SX
α ; namely:

EX
α =

{
x ∈ R

n : (ΠX
α)>Σ−1

SX
α
dX

α ≤ kX
α

}
,

dX
α = x− ḡSX

α
(3.25)

where kX
α is a constant appropriately chosen so that all the elements of SX

α fall within

EX
α . However, it can be observed that these ellipsoids are rather rough approximations

of the sets SX
α . E.g., inspecting 2D sections of the n-dimensional ellipsoids, it can be

seen that often the axis orientation was not correct, thus leading to sets which are much

larger than needed. This fact was mainly observed for the confidence sets related to PEM

estimates.

These observations suggest that the quality of the confidence sets obtained through

the ellipsoidal approximation (3.25) would have been highly dependent on the quality

of the fitted ellipsoid. Therefore, we concluded that a comparison among the different

estimators, based on this kind of confidence set, would have led to unreliable results;

therefore such results have not been reported.

3.5 Simulations Results

The experiment consists in a Monte-Carlo simulation with 200 runs. At each run, a

model such as (3.1) is estimated together with its confidence for the PPEM and NPPEM.

The quality of the estimators are compared in terms of both the impulse response fit and

the accuracy of the corresponding confidence set, determined as illustrated in Section 3.4.

Data

The data-bank of systems and input-output data used in our experiments have been

introduced in Chen, Andersen, Ljung, Chiuso, and Pillonetto (2014). In particular, we

applied the identification techniques to the data set “D4” which is briefly described in

the following.

The data set consists of 30th order random SISO dicrete-time systems having all the

poles inside a circle of radius 0.95. These systems were simulated with a unit variance

band-limited Gaussian signal with normalized band [0, 0.8]. A zero mean white Gaussian

noise, with variance adjusted so that the Signal to Noise Ratio (SNR) is always equal to

1, was then added to the output data. Refer to Chen et al. (2014) for further details on

dataset “D4”. We consider three different data lengths: N1 = 250, N2 = 500, N3 = 2500.

In addition, we experimented also the data set “D2” from the same data-bank, in

3.5 Simulations Results 51

which the input signals are not filtered with a low pass filter, and the data set “S1D2”

introduced in Chen et al. (2012) which have a different SNR. The results obtained from

these data sets are similar to the ones obtained from dataset “D4” and therefore are not

reported here.

Estimators

Parametric PEM. The MATLAB routine oe to implement the PPEM procedure is

adopted. Model selection has been performed through BIC criterion, since it generally

outperforms AIC. We will denote this estimator as PPEM+BIC.

Moreover, as a reference we also consider an oracle estimator, denoted by PPEM+OR,

which has the (unrealistic) knowledge of the impulse response of the true system, g:

among the OE models with complexity ranging from 2 to 30, it selects the one which

gives the best fit to g.

Nonparametric PEM. The Bayesian estimates have been obtained adopting a zero-

mean Gaussian prior with a covariance matrix (kernel) given by the so-called DC-kernel:

KDC
η (k, j) = cρ|k−j|λ(k+j)/2 (3.26)

where c ≥ 0, 0 ≤ λ ≤ 1 and |ρ| ≤ 1 are the hyperparameters which form the set

η = {c, ρ, λ}. For further details on the meaning of these hyperparameters and on the

properties they induce in the estimated impulse response we refer to Chen et al. (2012),

where the DC kernel has been proposed. The length n of the estimated impulse responses

has been set to 100.

For ease of notation, we will use the apex (or the subscript) X to denote a generic

estimator among the ones previously illustrated, that is, PPEM+BIC, PPEM+OR, EB

and FBS.

Impulse Response Fit

As a first comparison, we would like to evaluate the ability of the considered identification

techniques on the reconstruction of the true impulse response. Thus, for each estimated

system and for each estimator X we compute the so-called impulse response fit:

FX = 100 ·
(

1− ‖g − ĝX‖2
‖g‖2

)
(3.27)

where g, ĝX are the true and the estimated impulse responses of the considered system.

52 Gaussian Regression and Parametric PEM: a Comparison

PPEM+OR PPEM+BIC EB FBS

60

80

100
N = 250

PPEM+OR PPEM+BIC EB FBS

60

80

100
N = 500

PPEM+OR PPEM+BIC EB FBS

70

80

90

100
N = 2500

Figure 3.5: Monte Carlo results. Boxplots of the impulse response fit for the compared
identification techniques and for different data lengths N.

Figure 3.5 and Table 3.1 displays the boxplots and the average of index (3.27) for the

4 estimators and for increasing data lengths N.

PPEM+OR PPEM+BIC EB FBS

Fit Mean N = 250 71.4341 56.2997 69.9300 68.2640
Fit Mean N = 500 78.3256 67.1082 77.5604 76.7928
Fit Mean N = 2500 88.8431 74.8353 87.0588 85.9443

Table 3.1: Comparison of average impulse response fit and for different data lengths N.

The oracle estimator PPEM+OR sets an upper bound on the achievable performance

by parametric methods; we can note that EB performs remarkably well, with only a

slightly inferior fit. The FBS estimator performs similarly to EB, but it requires the

implementation of a MCMC, which is highly computationally expensive. These results

suggest that the marginal posterior p(η|Y) is sufficiently well peaked to be approximated

by a delta function (meaning that p(g|Y) ' p(g|Y, η̂EB)).

3.5 Simulations Results 53

The PPEM+BIC estimator has weaker performances: a lower median and a long

tail of systems with low fit (cut out from the figure for readability reasons) are obtained.

This is most likely due to the low pass characteristics of the input signal, which make

the order estimation step particularly delicate. Indeed, in the dataset “S1D2” where

the inputs were Gaussian white noises, PPEM+BIC performed similar to the Bayesian

estimators.

Note that, as expected, when a larger number of data is available the fit of the 4

estimators improve and in particular, the parametric estimate for N = 2500, becomes

competitive with the Bayesian ones. Recall that if the order model is chosen correctly

the parametric estimates are consistent.

Confidence Set Indexes

The confidence sets which have been introduced in Section 3.4 associated to the estimators

proposed previously are: SP P EM+OR+ASY MP
α , SP P EM+OR+LIK

α , SP P EM+BIC+ASY MP
α ,

SP P EM+BIC+LIK
α , SEB

α and SF BS
α . As before, SX

α will generically denote one of them.

In the simulations we present, we have set α = 0.95. Furthermore, the number of

samples N that are used to construct the above-mentioned confidence sets takes different

values for each of the considered Monte-Carlo runs. Specifically, it has been set as the

maximum chain length of the three MCMC algorithms exploited in our setting (i.e. the

MCMC algorithms used for Likelihood Sampling for the two PEM estimators and the

AM used to compute the Full Bayes estimator). Recall that for each of these algorithms,

the chain length and the burn-in length have been set by applying twice the method

proposed in Raftery and Lewis (1992).

Given that the confidence sets we consider are only approximations of a “true” α-level

confidence set, our aim is to study how well they perform both in term of “coverage” (how

often does the α-level confidence set contain the “true” value?) as well as of size (how

big is an α-level confidence set?). Unfortunately, since our sets are only defined through

a set of points, it is not possible to define a notion of inclusion (does the true system

belong to the confidence set?) and as a proxy to this we thus consider the following index

which measures the relative distance from the true system and the closest point within

the confidence set:

1. Coverage Index: For a fixed probability level α, it is given by

IX
1 (α) := min

x∈SX
α

‖x− g‖2
‖g‖2

(3.28)

54 Gaussian Regression and Parametric PEM: a Comparison

where g denotes the true impulse response. For future analysis the usage of the

concept “coverage” will be meant as in definition (3.28).

2. Confidence Set Size: It evaluates the area of the interval which includes all the

impulse responses contained in SX
α . Let us define the vectors ḡX ∈ R

n and g
X
∈ R

n

whose j-entries are ḡX(j) := maxi g
(i)(j) and g

X
(j) := mini g

(i)(j), respectively,

with g(i) ∈ SX
α ; the index we consider is defined as:

IX
2 (α) =

n∑

j=1

ḡX(j)− g
X

(j) (3.29)

Time [s]
0 5 10 15 20 25 30

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Illustration of Confidence Set Size

ĥ
X

h̄
X

h
X

h
(i)

Figure 3.6: Illustration of the idea of the Confidence set size index for a single system. The
blue line represents the point estimator ĝX , the dashed red line and the dot-dashed red line
represent the lower values g

X
and the upper values ḡX(j) of the confidence set, respectively,

and the gray lines represent the impulse responses samples within the confidence set.

Referring to Figure 3.6, a large confidence set is more likely to contain the true

impulse response, giving a low value of IX
1 (α), but it will also denote a high uncertainty

in the returned estimate, thus leading to a large value of IX
2 (α).

Figure 3.7 illustrates the boxplots for index (3.28) when different data lengths N

are considered. The Bayesian confidence sets have higher coverage performances then

the parametric ones equipped with BIC. The unique exception is for the PPEM+BIC

ASYMP confidence set when the data length is N = 2500, that is, when the asymptotic

theory is more reliable. Their accuracy is comparable with the one achieved by the

3.5 Simulations Results 55

N = 250

N = 500

N = 2500

Figure 3.7: Monte Carlo results. Boxplots of the Coverage Index for the compared identifi-
cation techniques and for different amounts of data in the dataset.

PPEM+OR LIK confidence set, which is favoured by the knowledge of the true system.

No substantial differences are detected between the two Bayesian approaches we compare.

Among the parametric confidence sets, as expected, the PPEM+OR outperform

the PPEM+BIC, whereas surprisingly, the asymptotic confidence sets outperform the

PPEM+BIC which are built precisely for finite data lengths. This result can be explained

analysing also index (3.29) displayed in Figure 3.8, the discussion is therefore postponed.

Note that the asymptotic confidence set have, correctly, a significant improvement for

larger data lengths.

Figure 3.8 illustrates the boxplots for index (3.29), for different data lengths.

The EB confidence set has a slightly smaller size than the FBS, which is rather

obvious since in the latter also uncertainty related to the hyper-parameters is accounted

for.

In this case the parametric approaches equipped with the likelihood sampling return

the smallest confidence sets, even smaller than the Bayesian ones. However, the coverage

index in Figure 3.7 shows that they are less accurate than the Bayesian one.

56 Gaussian Regression and Parametric PEM: a Comparison

N = 250

N = 500

N = 2500

Figure 3.8: Monte Carlo results. Boxplots of the Confidence Set Size for the compared
identification techniques and for different data lengths N.

Furthermore, notice that the two PPEM+OR confidence sets are larger than the

ones returned by the PPEM+BIC estimator: this can be explained from the fact that

PPEM+OR tends to select higher-order models, thus bringing more uncertainty into the

estimated systems. Comparing the Asymptotic and the Likelihood Sampling confidence

sets it is clear that the latter is the more precise one. Indeed, the Asymptotic confidence

set is an approximation which holds for large data sets, while the Likelihood Sampling

is correct for any finite sample size; however, this improvement comes at a rather high

computational price needed to run the MCMC sampler.

This explains why the asymptotic confidence sets outperform the likelihood ones in

the metric (3.28): being much larger they have higher coverage performances. Analysing

the size and coverage properties of the likelihood confidence sets they seems to be too

much self-confident giving a small uncertainty to their estimate but with not satisfactory

performances in terms of coverage.

It is important to note that the asymptotic theory does not take into account stability

issues: namely, the confidence set derived from the Gaussian asymptotic distribution (3.2)

3.6 Conclusions 57

could contain unstable impulse responses. Therefore the sampling procedure described in

Section 3.2 could yield to diverging confidence set size. In order to avoid this problem we

truncated the asymptotic Gaussian distribution within the stability region. Clearly, this

fact shows an intrinsic problem of the asymptotic theory. We should also recall that the

asymptotic as well as likelihood based confidence intervals do not account for uncertainty

in the order estimation step.

By comparing the results in both Figures 3.7-3.8 we can conclude that: among

the feasible identification methods, EB and FBS are preferable taking into account

performances in terms of both coverage and size. In this case there seems to be no gain

in using the more computationally expensive FBS.

3.6 Conclusions

For the best of our knowledge this is the first tentative of an exhausting comparison

between the PPEM and the NPPEM accounting also the confidence set and we believe in

the fairness of the proposed method and experiments. However, the proposed framework

does not pretend to be the only possible solution, how to perform the comparison can be

still a matter of discussions, other possibilities can be achieved and contrasting opinions

about the fairness of the comparison can arise.

The achieved results complement previous findings showing that Bayesian methods

not only outperform parametric methods in terms of point estimators, but also provide

better approximations for uncertainty regions.

From the limited experience acquired in the simulations proposed, there seems to

be very little advantage in using Full Bayes Sampling approaches which entail a much

higher computational load than Empirical Bayes methods.

It is interesting to note that Bayesian estimators and their confidence sets are

competitive even with the parametric methods equipped with an oracle which has the

knowledge of the true impulse response.

Finally, with regard to the parametric techniques, the confidence sets obtained from

the likelihood probability distribution are in general more accurate than the ones returned

by the “asymptotic” approximation.

Discussion

The results obtained in this chapter confirm the general discussion on the bias-variance

tradeoff and model complexity carried in Section 2.5. The benefits of using the NPPEM

w.r.t. the PPEM in terms of tradeoff among the accuracy of the confidence sets, the size

58 Gaussian Regression and Parametric PEM: a Comparison

of the confidence sets and the accuracy of the point estimators reflect the effectiveness of

the former techniques to tackle the bias-variance tradeoff.

4
Online Gaussian Regression

The identification of time-varying systems plays a key role in different applications, such

as adaptive and model predictive control, where a satisfactory real-time tracking of the

system to be controlled is necessary. In addition, the detection of changes or drifts in

plant parameters is crucial in terms of process monitoring and fault detection.

Online system identification and the estimation of time-varying systems are typically

strictly connected problems: one would like to exploit the new data that become available

in order to track real-time possible changes in the system dynamics, e.g., situations in

which a sensor provides new measurements at fixed time intervals.

Recursive parametric prediction error method (RPPEM), a variant of the classical

parametric PEM Ljung (1999); Ljung and Söderström (1983), represents nowadays a

well-established technique, through which the current estimate can be efficiently updated,

as soon as new data are provided, see Section 2.3.2 for a brief description. RPPEM

approaches rely on recursive least-squares (or pseudo LS) routines, which compute the

60 Online Gaussian Regression

parameter estimate by minimizing a function of the prediction errors (Ljung, 1999, Chp.

11).

An extension of these approaches for the identification of time-varying systems

involves the adoption of a forgetting factor, through which old data become less relevant

in the estimation criterion. Convergence and stability properties of Forgetting Factor

RPPEM have been well-studied within the system identification community Lozano

(1983); Bittanti, Bolzern, and Campi (1990); Guo, Ljung, and Priouret (1993); Dasgupta

and Huang (1987). Alternative approaches model the coefficients trajectories and regard

them as stochastic processes, thus exploiting Kalman filtering for parameter estimation

Guo (1990). Within this research direction, some authors considered the approximation

of the parameters time evolution through a combination of some bases sequences, e.g.

wavelet basis, Tsatsanis and Giannakis (1993).

The above-mentioned parametric procedures share the criticality of the model selection

complexity. It is well known that selecting the model complexity is a critical issue in

parametric system identification (Ljung, 1999; Söderström and Stoica, 1989; Pillonetto

and De Nicolao, 2010; Pillonetto et al., 2011a; Chen et al., 2012; Pillonetto et al., 2014)

and it gets more critical in the recursive framework, in particular when the system under

analysis is time-varying. In fact, model complexity selection rules, which trade model

complexity versus fit, may turn out to give different answers as new data become available;

of course if the “true system” is also time varying one should actually expect that also

the estimator follows these variations. Dealing with parametric model classes in which

the order changes over time is definitely a delicate (and possibly nontrivial) issue.

The nonparametric Gaussian regression techniques, recently introduced in the system

identification community by Pillonetto et al. (2011a, 2014), see Section (2.4.4), do not

offer a structure naturally suitable for recursive update as it is for PPEM. For this reason,

there is not a standard technique for recursive NPPEM. See Section 2.4.5 for an overview

on the literature.

In this Chapter, the NPPEM framework is extended by introducing an incremental

procedure, which is suitable for an online setting and for coping with time invariant and

time-varying systems.

Contributions

We propose an online NPPEM identification procedure, with fixed1 computational

complexity and memory storage, in which

1i.e., independent on the number of data available.

4.1 Problem Statement 61

1. the hyperparameters are recursively estimated through one-step-updates of an

algorithm optimizing the marginal likelihood,

2. the system impulse response estimate is computed with fixed computational com-

plexity,

3. time-varying changes of the system dynamics can be identified.

1. The one-step-updates of the hyperparameters are obtained by gradient-based as well

as EM-based algorithms and comparisons among these methods will be provided through

simulation results in terms of both accuracy and computational time. Some connections

between EM-based, gradient-based methods and iteratively reweighted schemes will be

also provided, showing that there is a strong similarity among these seemingly different

approaches.

2. This result is straightforward a consequence of the efficient hyperparameters

update at point a). Since the hyperparameters become available with fixed computational

complexity by applying standard recursive rules also the computation of the impulse

response is independent on the number of data.

3. In order to deal with time-varying systems, three approaches, relying on the use

of a forgetting factor or of a sliding window over the data, are proposed. In particular,

we investigate the estimation of the forgetting factor by treating it as a hyperparameter

of the Bayesian inference procedure. These techniques are experimentally compared

with the classical parametric counterparts described in Section 2.4.5: the results appear

favourable and promising for the methods we propose.

The chapter is organized as follows. Section 4.1 presents the problem statement of

the online setup, while Section 4.2 provides the online identification algorithm for linear

NPPEM and some first experimental results to validate the method. Section 4.3 focuses

on the techniques to extend the proposed method to the estimation of time-varying

systems. In Section 4.4 final experiment showing the efficiency of the proposed setting

are presented. Finally, in Section 4.4 future research directions and connections to the

the bias-variance dilemma are drawn.

4.1 Problem Statement

Consider a dynamical system described through a SISO Output-Error model, i.e.,:

y(t) = [gt ∗ u] (t) + e(t), y(t), u(t) ∈ R (4.1)

62 Online Gaussian Regression

where e(t) is assumed to be a zero-mean Gaussian noise with variance σ2 and gt(t) denotes

the model impulse response and is assumed to be time-varying i.e., its coefficients might

vary along with time passing by.

Model (4.1) cannot be considered as a simplified version of model (2.6) considering

H(z) = 1 because here the coefficients of the impulse response are allowed to change

along with time. Anyway, model (4.1) is a particular case of model (2.2).

System identification techniques are designed in order to estimate the impulse response

g of the system, once a set D = {u(t), y(t)}Nt=1 of measurements of its input and output

signals is provided.

In this chapter an “online” setting is considered, in which a new set of input-output

measurements becomes available every T time steps. Specifically, let us define the

variable i := k/T by assuming, w.l.o.g., that k is a multiple of T and the ith−dataset as

Di = {u(t), y(t)}iTt=(i−1)T +1. The variable i is the cardinality of the datasets referred to

the data points [k − T, . . . , k]. In the remaining of the chapter, the superscript (i) will

denote quantities that are computed after dataset Di becomes available.

The framework is such: at time k an impulse response estimate ĝ(i) has been computed

using the data coming from a collection of previous datasets
⋃i

l=1Dl = {u(t), y(t)}iTt=1, at

time k + 1 new data Di+1 are provided and the aim is to update the previous estimate

ĝ(i) by exploiting them. Furthermore, online applications typically require that the

new estimate is available before the new dataset Di+2 is provided, thus limiting the

computational complexity and the memory storage of the adopted estimation methods.

The interesting case of study is when the underlying system undergoes certain

variations that have to be tracked: this situation could often arise in practice, as a

consequence of variations in the physical system e.g. internal heating up, alteration

of the masses (e.g. after grasping an object in a robotic platform), aging, weather

conditions, etc.

For these reasons the time-varying model (4.1) is considered. However, time invariant

systems, as a special case of the time-varying, are also considered.

4.2 Online Efficient Regularization Update

Consider the online setting outlined in Section 4.1. As pointed out there, identification

procedures that are suitable for online applications need to be inexpensive in terms of

both execution time and of memory storage. From the computational cost perspective,

the critical step in NPPEM outlined in Section 2.4 is the marginal likelihood optimization

in (2.48). Indeed, this step is typically performed by adopting iterative routines, such

4.2 Online Efficient Regularization Update 63

as 1st or 2nd order optimization algorithms or the Expectation-Maximization (EM)

algorithm. These methods may require a large number of iterations before reaching

convergence, thus possibly making the estimation routine outlined in Section 2.4 too

slow for being applied in an online setting. When applied to the marginal likelihood

optimization problem (2.48), each iteration of these algorithms has a computational

complexity of O(n3) due to the objective function evaluation.

In this regard, let us define for ease of notation, the so called “negative marginal log

likelihood” from the definition in (2.56) as

fN (η) := − ln pη(YN) = Y >
N ΣY (η)−1YN + ln det ΣY (η) (4.2)

ΣY (η) = ΦNKηΦ>
N + σ2IN (4.3)

where ΦN ∈ R
N×n:

ΦN :=




u(0) u(−1) · · · u(−n+ 1)
...

.
...

u(N) u(N − 1) · · · u(N − n+ 1)


 (4.4)

and where the kernel is defined as

Kη = λKβ , λ ∈ R, β ∈ R
dη−1 (4.5)

Ω =
{
η = [λ, β] ∈ R

dη : λ ≥ 0, 0 ≤ β ≤ 1
}

(4.6)

The hyperparameters domain is kernel dependent and Ω in (4.6) is defined for the

family of the stable splines kernels. However, the choice of the kernel is not restrictive

for the theory developed in the reminder of the chapter. The estimation of the hyperpa-

rameters via maximization of the mariginal likelihood described in (2.48) is equivalent

to:

η̂ = arg min
η∈Ω

− ln pη(YN) = arg min
η∈Ω

fN (η) (4.7)

The approach followed here, to adapt the “batch” technique described in Section 2.4

to the online framework, is the one proposed in Romeres, Prando, Pillonetto, and Chiuso

(2016a): at time k + T , when new data Di+1 = {u(t), y(t)}(i+1)T
t=iT +1 are provided, the

hyperparameters estimate η̂(i) is set equal to the value returned after just one iteration of

a 1st order optimization algorithm (or of the EM algorithm) applied to solve problem (4.7).

64 Online Gaussian Regression

These iterative algorithms are initialized with the previous estimate η̂(i+1) (obtained using

the data
⋃i

l=1Dl) which is likely to be close to a local optimum of the objective function

fiT (η) ≡ fk(η). If the number of new data T << k, it is reasonable to suppose that

arg minη∈Ω fiT (η) ≈ arg minη∈Ω f(i+1)T (η). Therefore, by performing only one iteration

of the chosen optimization algorithm, we expect η̂(i+1) to be sufficiently close to a local

optimum of f(i+1)T (η).

In other words, the algorithm that we are proposing can be seen as an online tracking

of a local optimum point of the marginal likelihood that is changing when new data

become available.

Let us define the following data matrices, useful for the formulation of the recursive

procedure

R(i+1) := Φ>
(i+1)T Φ(i+1)T = R(i) +

(
Φ(i+1)T

iT +1

)>
Φ(i+1)T

iT +1 (4.8)

Ỹ (i+1) := Φ>
(i+1)TY(i+1)T = Ỹ (i) +

(
Φ(i+1)T

iT +1

)>
Y

(i+1)T
iT +1 (4.9)

Y
(i+1)

:= Y >
(i+1)TY(i+1)T = Y

(i)
+
(
Y

(i+1)T
iT +1

)>
Y

(i+1)T
iT +1 (4.10)

where Y(i+1)T = [y(1) · · · y((i+ 1)T)]> ∈ R
(i+1)T , while Y (i+1)T

iT +1 = [y(iT + 1) · · · y((i+ 1)T)];

Φi has been defined in (4.4) while Φ(i+1)T
iT +1 has the same structure of matrix (4.4) but it

contains the data from iT − n+ 1 to (i+ 1)T , i.e.,

Φ(i+1)T
iT +1 :=




u(iT + 1) u(iT) · · · u(iT − n+ 1)
...

.
...

u((i+ 1)T) u(i+ 1)T − 1) · · · u(i+ 1)T − n+ 1)


 (4.11)

The computational cost of (4.8)-(4.10) is, O(n2T), O(nT) and O(T 2), respectively.

Definition (4.2) shows that the computation of the negative marginal log likelihood

depends on the number of data. However, in Chen and Ljung (2013) a robust way for

computing (4.2) is shown, which in the online setting can be evaluated with computational

complexity of order O(n3). That is:

f(i+1)T (η) = ((i+ 1)T − n) ln σ2 + 2 ln |S|+

Y

(i+1)

σ2
− ‖S

−1L>Ỹ (i+1)‖22
σ2


 (4.12)

4.2 Online Efficient Regularization Update 65

where L and S are Cholesky factors, defined as

Kη =: LL> = λLβL
>
β , SS> := σ2In + L>R(i+1)L (4.13)

whose computation is O(n3). The definition of Lβ, the Cholesky factor of the kernel

without considering the scaling factor λ, has been added for future use.

Algorithm 2 summarizes the implementation of the whole procedure.

Algorithm 2 Online Bayesian System Identification

Inputs: previous estimates
{
η̂(i), η̂(i−1)

}
, previous data matrices

{
R(i), Ỹ (i),Y

(i)
}

,

new data Di+1 = {u(t), y(t)}(i+1)T
t=iT +1

1: R(i+1) ← R(i) +
(
Φ(i+1)T

iT +1

)>
Φ(i+1)T

iT +1

2: Ỹ (i+1) ← Ỹ (i) +
(
Φ(i+1)T

iT +1

)>
Y

(i+1)T
iT +1

3: Y
(i+1) ← Y

(i)
+
(
Y

(i+1)T
iT +1

)>
Y

(i+1)T
iT +1

4: ĝ
(i+1)
LS ← R(i+1)−1

Ỹ (i+1)

5: σ̂(i+1)2 ← 1
īT −n

(
Ȳ (i+1) − 2Ỹ (i+1)>

ĝ
(i+1)
LS + ĝ

(i+1)>

LS R(i+1)ĝ
(i+1)
LS

)

6: Compute η̂(i+1) through 1-step Marginal Likelihood maximization initialized with
η̂(i) and η̂(i−1)

7: ĝ(i+1) ←
(
R(i+1) + σ̂(i+1)2

K−1
η̂(i+1)

)−1
Ỹ (i+1)

Output: ĝ(i+1)

The key step of the procedure outlined in Algorithm 2 is the hyperparameter estimation

at step 6. Regarding the computational complexity of the remaining steps in Algorithm

2, the most demanding ones are Steps 4 and 7, which are both O(n3), because of the

matrix inversion that has to be computed. If the new dataset Di+1 consists on only

few (<< n) input-output pairs, then Shermann-Morrison formula can be exploited to

compute R(i+1)−1
with a complexity of O(n2).

Furthermore, notice that the memory storage requirements of Algorithm 2 are O(n2),

thanks to the updates at Steps 1-3.

4.2.1 1-Step Marginal Likelihood Maximization

Two different approaches are considered to solve problem (4.7), the 1st order optimization

methods (also known as gradient methods) and the EM algorithm, which is suited to

compute maximum likelihood solutions for models having latent variables. As anticipated

in the previous section, only one iteration of these algorithms will be performed, in order

66 Online Gaussian Regression

to address the requirement that the online setting imposes, Algorithm 2 step 6.

The approaches are now described.

Gradient Descent Methods

The gradient descent methods search for a local minimum of a function taking the steps

proportional to the negative of the gradient function at the current point. A common

approach to choose these steps is given by the Newton’s method, where the step size is

chosen proportional to the inverse of the Hessian of the function at the current point.

Specifically, in our setup, Newton’s update rule for the hyperparameters would be

ηk+1 = ηk − γ
(
H(ηk)

)−1
∇f(ηk) (4.14)

where H(ηk) and ∇f(ηk) are the Hessian and the gradient of f(ηk), respectively, γ ∈ (0, 1)

is scalar to control the step length and k refers to the k-th iteration of the Newton’s

algorithm. This approach does not suit our framework because the Hessian matrix is

computationally too expensive to obtain.

The algorithms considered belong to the family of Quasi-Newton methods (introduced

in Davidon (1991); J. E. Dennis and Moré (1977)), where only an approximation of the

inverse Hessian is computed.

Quasi-Newton methods approximate the Hessian by using only gradient information.

Different algorithms can be derived according to the specific Hessian approximation that

is chosen. They essentially differ in the way they attempt to satisfy the so-called secant

equation (Nocedal and Wright, 2006, Chp. 6):

B(i)w(i−1) = r(i−1) (4.15)

where B(i) represents the approximation to the inverse Hessian computed at η̂(i), while

r(i−1) = η̂(i) − η̂(i−1), w(i−1) = ∇f(i+1)T (η̂(i))−∇f(i+1)T (η̂(i−1))

Recall for the following of this Chapter, that the superscript (i) refers to the value

taken by a certain quantity after the datasets
⋃i

l=1Dl have been seen; it does not refer

to the iteration number of the considered gradient method (since we are performing just

one iteration).

The one-step implementation of a gradient method is summarized in Algorithm 3.

The update rule for η̂(i) in Algorithm 3 Step 10 is a Quasi-Newton method and

the approximation of inverse Hessian at Step 4 becomes crucial. According to this

4.2 Online Efficient Regularization Update 67

Algorithm 3 1-step Gradient Method

Inputs: previous estimates
{
η̂(i), η̂(i−1)

}
, ∇fiT (η̂(i−1)), R(i+1), Ỹ (i+1),Y

(i+1)
, σ̂(i+1)2

Parameters initialization: c = 10−4 and δ = 0.4
1: Compute ∇f(i+1)T (η̂(i))
2: r(i−1) ← η̂(i) − η̂(i−1)

3: w(i−1) ← ∇f(i+1)T (η̂(i))−∇f(i+1)T (η̂(i−1))
4: Compute the inverse Hessian approximation B(i) using one among Algorithm 4,5,6
5: Project onto Ω: z ← ΠΩ,W

(
η̂(i) −B(i)∇f(i+1)T (η̂(i))

)

6: ∆η̂(i) ← z − η̂(i)

7: γ ← 1
8: while f(i+1)T (η̂(i) + γ∆η̂(i)) ≤ f(i+1)T (η̂(i)) + cγ∇f(i+1)T (η̂(i))>∆η̂(i) do
9: γ ← δγ

10: η̂(i+1) ← η̂(i) + γ∆η̂(i)

Output: η̂(i+1)

approximation, the projection operator ΠΩ,W onto the feasible set Ω in Algorithm 3

Step 5 changes; namely, it is defined as:

ΠΩ,W (z) = arg min
x∈Ω

(x− z)>W (x− z) (4.16)

and the matrix W takes different values according to how B(i) is computed.

The loop in Step 8 ensures that the value of the cost function decreases at each

iteration; these steps are called the Armijo bactracking loop, see (Bertsekas, 1995, Ch.

2).

The purpose of this work is not to define a new efficient approximation of the inverse

Hessian, but to compare successful techniques adopted in literature in order to achieve

high performance in the online system identification problem outlined in Section 4.1.

In the following three possible procedures to approximate the inverse Hessian are

illustrated.

Barzilai-Borwein

This approach sets B(i) = α(i)Idη
, with dη the dimension of the hyperparameters and

α(i) > 0 is computed as a variant of Barzilai-Borwein (BB) rules, Barzilai and Borwein

(1988), proposed in Bonettini, Chiuso, and Prato (2015) . In practice, the α(i) are

68 Online Gaussian Regression

determined as the solution of one of the problems:

α
(i)
1 := arg min

α
‖αr(i−1) − w(i−1)‖2 =

r(i−1)>
r(i−1)

r(i−1)>w(i−1)
(4.17)

α
(i)
2 := arg min

α
‖r(i−1) − α−1w(i−1)‖2 =

r(i−1)>
w(i−1)

w(i−1)>w(i−1)
(4.18)

It is known by recent literature that the inverse Hessian is approximated more

accurately by adaptively alternating the two solutions α(i)
1 and α

(i)
2 and bounding them

into a prefixed interval. Our implementation follows the one proposed in (Bonettini et al.,

2015, Sec 4.1) and outlined in Algorithm 4.

In this case, the matrix W in the projection ΠΩ,W (4.16) is set equal to the identity

matrix Idη
.

Algorithm 4 Barzilai-Borwein Alternation Strategy

Inputs: τ (i), r(i−1), w(i−1)

Set 0 < αmin < αmax

1: α1 ← (r(i−1)>
r(i−1))/(r(i−1)>

w(i−1))
2: α2 ← (r(i−1)>

w(i−1))/(w(i−1)>
w(i−1))

3: α̃1 ← min {max {αmin, α1} , αmax}
4: α̃2 ← min {max {αmin, α2} , αmax}
5: if α̃2/α̃1 ≤ τ (i) then
6: α(i) ← α̃2

7: τ (i+1) ← 0.9τ (i)

8: else
9: α(i) ← α̃1

10: τ (i+1) ← 1.1τ (i)

Outputs: B(i) = α(i)Idη
, τ (i+1)

In the first iteration of Algorithm 4 the scalar τ is initialized in the range τ (1) ∈ (0, 1).

This alternating strategy has been successfully applied in different convex, nonlinear,

constrained problems in Barzilai and Borwein (1988); Bonettini, Zanella, and Zanni

(2009); Bonettini and Prato (2010); Bonettini (2011) and for the maximization of the

marginal likelihood in (4.7) in Bonettini et al. (2015).

Scaled Gradient Projection (SGP)

The inverse Hessian in this approach is approximated as:

B(i) = α(i)D(i), α(i) > 0, D(i) ∈ R
d×d (4.19)

4.2 Online Efficient Regularization Update 69

The step-size α(i) is set by alternating the Barzilai-Borwein rules and D(i) is a scaling

matrix whose choice depends on the objective function and on the constraints set of the

problem we are considering.

Our implementation follows the one proposed in (Bonettini et al., 2015, Sec. 4.2),

where D(i) is a diagonal matrix, namely, D(i) = blockdiag(D(i)
λ , D

(i)
β) where D(i)

λ ∈ R and

D
(i)
β ∈ R

(d−1)×(d−1) respectively denote the scaling matrices built for the two components

of η.

The definition of matrix D(i)
λ in relation to the constraint λ ≥ 0 is of interest also for

future consideration and therefore it is briefly outlined. For the derivation of D(i)
β refer

to (Bonettini et al., 2015, Sec. 4.2).

The definition of D(i)
λ relies on the gradient decomposition:

∇λf(i+1)T (η) = Vλ(η)− Uλ(η) (4.20)

Vλ(η) = ∇λ ln |ΣY (η)| > 0

Uλ(η) = −∇λY
(i+1)>

ΣY (η)Y (i+1) ≥ 0

where ∇λ denotes the gradient w.r.t. λ. Notice that the inequalities in (4.20) hold because

of the positive semi-definiteness of Kβ defined in (4.5) which occurs in the construction of

ΣY (η) (see (2.54)). In view of decomposition (4.20), the 1st order optimality conditions

w.r.t. λ for problem (4.7),

λ∇λf(i+1)T (η) = 0, λ ≥ 0, ∇λf(i+1)T (η) ≥ 0 (4.21)

can be rewritten as the fixed point equation λ = λUλ(η)/Vλ(η). By exploiting the fixed

point update method, we can then define

D
(i)
λ = min{max{dmin, λ̂

(i)(Vλ(η̂(i)))−1}, dmax} (4.22)

Refer to Bonettini et al. (2015) for a more detailed derivation.

Algorithm 5 summarizes how B(i) at Step 4 of Algorithm 3 is computed through SGP.

In this case ΠΩ,W at Step 5 of Algorithm 3 is defined setting W = D(i)−1
.

70 Online Gaussian Regression

Algorithm 5 Scaled Gradient Projection Algorithm (SGP)

Inputs: ∇f(i+1)T (η̂(i)), τ (i), r(i−1), w(i−1)

Set the values of dmin and dmax such that 0 < dmin < dmax

1: Vλ(η̂(i))← ∇λ ln det(ΣY (η))
∣∣∣
η=η̂(i)

2: Uλ(η̂(i))← −∇λY
(i+1)>

ΣY (η)Y (i+1)
∣∣∣
η=η̂(i)

3: D
(i)
λ ← min{max{dmin, λ̂

(i)(Vλ(η̂(i)))−1}, dmax}
4: Compute Vβ(η̂(i)) > 0 and Uβ(η̂(i)) > 0 s.t. ∇βf(i+1)T (η̂(i)) = Vβ(η̂(i))− Uβ(η̂(i))

5: Compute D(i)
β as illustrated in (Bonettini et al., 2015, Sec. 4.2)

6: D(i) ← blockdiag(D(i)
λ , D

(i)
β)

7: Run Algorithm 4 to compute α(i), τ (i+1)

Outputs: B(i) = α(i)D(i), τ (i+1)

BFGS

When adopting the inverse Hessian approximation provided by the BFGS algorithm, B(i)

at step 4 of Algorithm 3 is computed as the unique solution of

min
B
‖B −B(i−1)‖M

s.t. B = B>, B � 0, (4.23)

Bw(i−1) = r(i−1)

where ‖A‖M = ‖M1/2AM1/2‖F denotes the weighted Frobenius norm, with M chosen

such that Mr(i−1) = w(i−1), see (Nocedal and Wright, 2006, Chp. 6). The unique solution

B(i) to problem (4.23) is given by

B(i) = ρ(i−1)r(i−1)r(i−1)>
+
(
I − ρ(i−1)r(i−1)w(i−1)>

)
B(i−1)

(
I − ρ(i−1)w(i−1)r(i−1)>

)

where ρ(i−1) = 1/
(
w(i−1)>

r(i−1)
)
.

Algorithm 6 summarizes the implementation of BFGS. The projection operator ΠΩ,W is

in this case defined with W = Idη
.

Algorithm 6 BFGS

Inputs: B(i−1), r(i−1), w(i−1)

1: ρ← 1/(w(i−1)>
r(i−1))

2: B(i) ← ρr(i−1)r(i−1)>
+
(
I − ρr(i−1)w(i−1)>

)
B(i−1)

(
I − ρw(i−1)r(i−1)>

)

Outputs: B(i)

4.2 Online Efficient Regularization Update 71

EM Algorithm

As already said in the beginning, another method to update η̂(i) is the Expectation-

Maximization (EM) algorithm which is used to compute maximum likelihood solutions

for models having latent variables. Recall that at Step 6 of Algorithm 2 we need to

compute η̂(i+1) by maximizing

p(Y(i+1)T |η) = Ep(g|η)

[
p(Y(i+1)T , g|η)

]

where Eq denotes the expectation w.r.t. the probability distribution q. Hence, in our

setting g plays the role of the latent variable. Consider the following decomposition

(Bishop, 2006, Chp. 9):

ln p(Y(i+1)T |η) = L(q(g), η) +KL(q(g)||p(g|Y(i+1)T , η))

L(q(g), η) = Eq(g)

[
p(Y(i+1)T , g|η)

q(g)

]
(4.24)

where L(q, η) represents a lower bound for ln p(Y(i+1)T |η), while KL(·||·) denotes the

Kullback-Leibler divergence between two probability distributions.

A standard EM algorithm finds the optimal value for η by alternating the Expectation

(E) and the Maximization (M) steps until convergence is reached. The idea behind the

algorithm is that, instead of maximizing the marginal likelihood, which in general is a

nontrivial problem, it is possible to maximize the lower bound L(q(g), η) first w.r.t. q(g),

which corresponds to the E-step and then w.r.t. η which corresponds to the M-step. This

algorithm is proven to converge to a local optimum of the marginal likelihood.

Specifically, the E-step arises from fixing η̂(i) in L(q(g), η) and maximizing it w.r.t.

q(g). It is easy to see that

L(p(g|Y(i+1)T , η̂
(i)), η) = max

q(g)
L(q(g), η̂(i)) (4.25)

since KL(q(g)||p(g|Y(i+1)T , η̂
(i))) = 0 when q(g) equals the posterior distribution

obtained with η̂(i). It can be directly computed as

L
(
p(g|Y(i+1)T , η̂

(i)), η
)

= Ep(g|Y(i+1)T ,η̂(i))

[
ln p(Y(i+1)T , g|η)− ln p(g|Y(i+1)T , η̂

(i))
]

(4.26)

= Ep(g|Y(i+1)T ,η̂(i))

[
ln p(Y(i+1)T |g, η) + ln p(g|η)

]

− Ep(g|Y(i+1)T ,η̂(i))

[
ln p(g|Y(i+1)T , η̂

(i))
]

72 Online Gaussian Regression

Recalling that p(Y(i+1)T |g, η) ∼ N (Φ(i+1)g, σ2I(i+1)T), using the prior p(g|η) in (4.5)

and assuming a non-informative prior on η, it results that

L
(
p(g|Y(i+1)T , η̂

(i)), η
)

=
1
2

ln |P (i)|+ n

2
− (i+ 1)T

2
ln σ2

− 1
2σ2

(
Y

(i+1) − 2Ỹ (i+1)>
ĝ(i) + tr{R(i+1)P (i)}+ ĝ(i)>

R(i+1)ĝ(i)
)

− 1
2

(
tr{K−1

η P (i)}+ ĝ(i)>
K−1

η ĝ(i)
)
− 1

2
ln |Kη| (4.27)

where ĝ(i) = 1
σ2P

(i)Ỹ (i+1) is the impulse response estimate and

P (i) = (σ−2R(i+1) +K−1
η̂(i))

−1 (4.28)

In the M-step of the EM algorithm the update of the hyperparameters is computed

as:

η̂(i+1) = arg max
η∈Ω

L(p(g|Y (i+1), η̂(i)), η) (4.29)

According to our “1-step” approach, when EM is adopted at Step 6 of Algorithm 2,

only one E-step and one M-step are performed. The 1-step EM algorithm is summarized

in Algorithm 7.

Algorithm 7 EM

Inputs: η̂(i), R(i+1), Ỹ (i+1), Y
(i+1)

, σ̂(i+1)2

1: E-step: Compute L
(
p(g|Y (i+1), η̂(i)), η

)
as in (4.25)

2: M-step: η̂(i+1) ← arg maxη∈Ω L(p(g|Y (i+1), η̂(i)), η)
Outputs: η̂(i+1)

4.2.2 Connection with Existing Methodologies

In this section it is considered the case that hyperparameter β in (4.5) has been fixed to

β̂ and only the scaling factor λ has to be updated by the identification procedure.

Under this assumption, two connections of the EM algorithm can be verified:

1. the EM update rule coincides with a gradient-based update if a specific step-size is

chosen,

2. the EM algorithm is equivalent to the iterative reweighted methods, which have

been introduced for compressed sensing applications Candes, Wakin, and Boyd

(2008); Chartrand and Yin (2008).

4.2 Online Efficient Regularization Update 73

Connection between EM and Gradient Methods

Consider the EM update in (4.29) and assume the Kernel is Kη = λKβ̂ (i.e., β is fixed).

Then, the optimization problem (4.29) can be reformulated as

λ̂
(i+1)
EM = arg max

λ∈R+

L(p(g|Y (i+1), η̂(i)), λ) (4.30)

= arg max
λ∈R+

− ln |λKβ̂ | −
1
λ

tr{K−1

β̂
P (i)} − ĝ(i)>

K−1

β̂
ĝ(i)

from which by imposing that d
dλL(p(g|Y (i+1), η̂(i)), λ) = 0 the EM update can be

computed as

λ̂
(i+1)
EM =

1
n

[
ĝ(i)>

K−1

β̂
ĝ(i) + tr

{
(Kβ̂)−1P (i)

}]
(4.31)

Notice that the first term in the update rule (4.31) corresponds to the current

approximation of the value of λ which asymptotically maximizes the Marginal Likelihood,

i.e. λ̂∗ = 1
ng

>K−1

β̂
g, with g denoting the true impulse response Aravkin et al. (2012).

Whereas, the second term in (4.31) accounts for the uncertainty in the λ estimate, due

to the use of a finite amount of data.

Consider now the gradient update rule for λ̂(i+1) to solve problem (4.7)

λ̂
(i+1)
GR = λ̂(i) − α(i)

λ ∇λf(i+1)T (λ̂(i)) (4.32)

Since the quantity to optimize is a scalar the step-size is also a scalar, namely α(i)
λ .

The following result can now be proven.

Lemma 4.2.1. Consider the optimization problem (4.7) where η = λ, that is, the only

hyperparameter to estimate is the scaling factor of the Kernel Kη = λKβ̂, and the two

update rules (4.31) and (4.32). Then, the following result holds.

If α
(i)
λ = (λ̂(i))2

n in (4.32), then

λ̂
(i+1)
GR = λ̂

(i+1)
EM (4.33)

Proof: We want to show that computing explicitly f(i+1)T (λ̂(i)) the gradient update

equals the EM update (4.32) (4.31).

Letting η = λ and fixing β to β̂ function (4.2) can be rewritten as:

74 Online Gaussian Regression

f(i+1)T (λ) = Y >
(i+1)T

(
Φ(i+1)TλKβ̂Φ>

(i+1)T + σ2I(i+1)T

)−1
Y(i+1)T (4.34)

+ ln det
(
Φ(i+1)TλKβ̂Φ>

(i+1)T + σ2I(i+1)T

)
(4.35)

Using the Woodbury matrix identity and the definition of P (i) in (4.28)

(
Φ(i+1)TλKβΦ>

(i+1)T + σ2I(i+1)T

)−1
=
I(i+1)T

σ2
− Φ(i+1)T

σ2

(
(λKβ)−1 +

Φ>
(i+1)T Φ(i+1)T

σ2

)−1
Φ>

(i+1)T

σ2

=
I(i+1)T

σ2
− 1
σ4

Φ(i+1)TP
(i)Φ>

(i+1)T

the first term in the marginal likelihood can be rewritten as

Y >
(i+1)T

(
Φ(i+1)TλKβ̂Φ>

(i+1)T + σ2I(i+1)T

)−1
Y(i+1)T =

Y
(i+1)

σ2
− Ỹ (i+1)>

σ2
P (i) Ỹ

(i+1)

σ2

The gradient of f(i+1)T (λ̂(i)) w.r.t. λ can be rewritten as

∇λf(i+1)T (λ) = − Ỹ
(i+1)>

σ2

∂P (i)

∂λ

Ỹ (i+1)

σ2
+ Tr

{(
Φ(i+1)TλKβΦ>

(i+1)T + σ2I
)−1

Φ(i+1)TKβΦ>
(i+1)T

}

=
Ỹ (i+1)>

σ2
P (i)

(
−
K−1

β

λ2

)
P (i) Ỹ

(i+1)

σ2
+ Tr

{(
Φ(i+1)TλKβΦ>

(i+1)T + σ2I
)−1

Φ(i+1)TKβΦ>
(i+1)T

}

= − 1
λ2

Ỹ (i+1)>

P (i)

σ2
K−1

β

P (i)Ỹ (i+1)

σ2
+ Tr

{(
Φ(i+1)TλKβΦ>

(i+1)T + σ2I
)−1

Φ(i+1)TKβΦ>
(i+1)T

}

The second term in the gradient can be rewritten by means of the inversion lemma:

4.2 Online Efficient Regularization Update 75

Tr
{(

Φ(i+1)TλKβΦ>
(i+1)T + σ2I

)−1
Φ(i+1)TKβΦ>

(i+1)T

}

= Tr
{(

I

σ2
− 1
σ4

Φ(i+1)TP
(i)Φ>

(i+1)T

)
Φ(i+1)TKβΦ>

(i+1)T

}

= Tr

{
Φ(i+1)T

σ2
P (i)

[(
(λKβ)−1 +

Φ>
(i+1)T Φ

σ2

)
KβΦ>

(i+1)T −
Φ>

(i+1)T Φ(i+1)TKβΦ>
(i+1)T

σ2

]}

= Tr

{
Φ(i+1)T

σ2
P (i)

Φ>
(i+1)T

λ

}

=
1
λ

Tr





Φ>
(i+1)T Φ

σ2

(
Φ>

(i+1)T Φ

σ2
+ (λKβ)−1

)−1




=
1
λ

Tr





(
Φ>

(i+1)T Φ(i+1)T

σ2
+ (λKβ)−1 − (λKβ)−1

)(
Φ>

(i+1)T Φ(i+1)T

σ2
+ (λKβ)−1

)−1




=
1
λ

Tr





(
Φ>

(i+1)T Φ(i+1)T

σ2
+ (λKβ)−1

)(
>Φ(i+1)T

σ2
+ (λKβ)−1

)−1

− (λKβ)−1P (i)





=
n

λ
− 1
λ2

Tr
{
K−1

β P (i)
}

Eventually, the gradient function of f(i+1)T (λ) w.r.t. λ evaluated in λ = λ̂(i) is

∇λf(i+1)T (λ̂(i)) = n(λ̂(i))−1 − (λ̂(i))−2Tr{K−1

β̂
P (i)} − (σ2λ̂(i))−2Ỹ (i+1)>

P (i)K−1

β̂
P (i)Ỹ (i+1)

Replacing this expression and α
(i)
λ = (λ̂(i))2

n into (4.32) the equality (4.33) is proven.

�

Connection between EM and Iterative Reweighted Methods

Iterative reweighted methods have been recently introduced in the compressive sensing

field in order to improve the recovery of sparse solutions. The focus of this section is

on the `2-reweighted scheme that has been proposed in Wipf and Nagarajan (2010) for

Sparse Bayesian Learning (SBL) Tipping (2001).

Consider the optimization problem (4.7) that in the current setting (i.e., with β fixed)

results in

min
λ≥0
− ln p(Y(i+1)T |λ) = min

λ≥0
Y >

(i+1)T ΣY (λ)−1Y(i+1)T + ln det ΣY (λ)

76 Online Gaussian Regression

In (Tipping, 2001, App. A) it has been shown that

Y >
(i+1)T ΣY (λ)−1Y(i+1)T = min

g

1
σ2
‖Y(i+1)T − Φ(i+1)T g‖22 + g>(λKβ̂)−1g

Thus, the minimization problem becomes

min
λ≥0
− ln p(Y(i+1)T |λ) = min

λ≥0,g

1
σ2
‖Y(i+1)T − Φ(i+1)T g‖22 + g>(λKβ̂)−1g + ln det ΣY (λ)

= min
g

1
σ2
‖Y(i+1)T − Φ(i+1)T g‖22 + ζ(g)

where

ζ(g) = min
λ≥0

g>(λKβ̂)−1g + ln det ΣY (λ)

is a non-separable penalty function, since it can not be expressed as a summation over

functions of the individual impulse response coefficients g(j) with j = [1, n]. Furthermore,

it is a non-decreasing concave function of g2 := [g(1)2 · · · g(n)2]>, thus allowing to

employ iterative reweighted `2 schemes to minimize the function above. Namely,

ζ(g) ≤ g>(λKβ̂)−1g + ln det ΣY (λ)

= g>(λKβ̂)−1g + ln det(λKβ̂) + ln det

(
Φ>

(i+1)T Φ(i+1)T

σ2
+ (λKβ̂)−1

)
+ (i+ 1)T ln σ2

(4.36)

≤ g>(λKβ̂)−1g + ln det(λKβ̂) + zλ−1 − s∗(z) + (i+ 1)T ln σ2 (4.37)

where s∗(z) denotes the concave conjugate of s(a) := ln det
(

Φ>
(i+1)T

Φ(i+1)T

σ2 + aK−1

β̂

)
,

a = λ−1, given by:

s∗(z) = min
a
za− ln det

(
Φ>

(i+1)T Φ(i+1)T

σ2
+ aK−1

β̂

)
, a = λ−1

Notice that in (4.36) the Silvester’s determinant identity is used and the bound (4.37)

holds for all z, λ ≥ 0.

4.2 Online Efficient Regularization Update 77

Hence, it follows

min
λ≥0
− ln p(Y(i+1)T |λ) =

= min
λ≥0,z≥0,g

1
σ2
‖Y(i+1)T − Φ(i+1)T g‖22 + g>(λKβ̂)−1g + ln det(λKβ̂) + zλ−1 − s∗(z)

(4.38)

where the irrelevant terms for the optimization problem have been omitted.

Now that the minimization problem in the reweighted `2 scheme has been defined,

the analogies with the two steps of the EM algorithm can be stated. Specifically, recall

that the E-step in the EM is equivalent to solving problem (4.25) whose solution is given

by the posterior distribution of g given λ̂(i), i.e. p(g|Y(i+1)T , λ̂
(i)). Analogously, solving

(4.38) w.r.t. g for fixed λ̂(i) leads to an a-posteriori estimate, namely the Empirical Bayes

estimator ĝ(i+1) = E[g|Y(i+1)T , λ̂
(i)], which coincides with the Maximum a Posteriori

estimator of g.

On the other hand, solving (4.38) for fixed ĝ(i) leads to

λ̂(i+1) =
1
n

(
ĝ(i)>

K−1

β̂
ĝ(i) + z∗

)
(4.39)

where Wipf and Nagarajan (2010)

z∗ =
∂

∂a
ln det

(
Φ>

(i+1)T Φ(i+1)T

σ2
+ aK−1

β̂

)
= Tr

{
P (i)K−1

β̂

}

Thus, the update (4.39) coincides with the M-step in (4.29).

4.2.3 Simulations with Time Invariant Dynamical Systems

The purpose of this section is to evaluate some preliminary performance of Algorithm 2

in a set-up easier than the one proposed in Section 4.1 because time invariant systems

(a particular case of time-varying systems) are considered. Moreover, it is aimed to

show which of the methods proposed in Section 4.2.1 to compute the unique step in the

marginal likelihood optimization outperforms the others.

Data

The experiment consisted of 200 Monte Carlo runs, in each of them a random SISO

discrete-time system has been generated through the Matlab routine drmodel.m. The

system orders have been randomly chosen in the range [5, 10], while the systems poles

78 Online Gaussian Regression

are all inside a circle of radius 0.95.

The input signal is a unit variance band-limited Gaussian signal with normalized

band [0, 0.8]. A zero mean white Gaussian noise, with variance adjusted so that the

Signal to Noise Ratio (SNR) is always equal to 5, has been added to the output data.

For each Monte Carlo run, a data set of N = 5000 input-output pairs has been generated,

while the length of the online upcoming datasets Di has been chosen to be T = 10.

Estimators

The procedures that perform only one iteration of the iterative algorithms SGP, BB, BFGS

and EM (illustrated in Algorithms 4-7)), are also compared to the standard iterative

algorithm which estimates the hyperparameters running the optimization algorithm until

convergence. In the following, the former procedures will be denoted 1-STEP, while we

will refer to the latter one as OPT. The OPT procedure exploits the SGP algorithm to

maximize the Marginal Likelihood.

The OPT procedure corresponds to the so called “batch” procedure equipped with

an ad-hoc initialization of the optimization problem (4.7) provided by the previous

hyperparameters estimate of the online procedure SGP and with the recursive update

of the data depending matrices, see Algorithm 2 steps 1-3 to reduce the computational

time.

In the experiments, a zero-mean Gaussian prior with a covariance matrix given by

the so-called TC-kernel, see Chen et al. (2012), is adopted:

KT C
η (k, j) = λmin(βk, βj) (4.40)

where λ ≥ 0 and 0 ≤ β ≤ 1 are the hyperparameters collected in η = [λ, β]. The length

n of the estimated impulse responses has been set to 80.

In the interest of exploring the solutions with higher computational time performance

of the online updates, two versions of BFGS, SGP, BB, EM are proposed.

• Update λ and β. Both the hyperparameters in η are updated whenever a new

dataset Di becomes available.

• Update only λ. Only the scaling factor λ is updated, retaining β fixed to its initial

value. This methodology reflects the framework where the theoretical results in

Section 4.2.2 has been achieved.

It is clear that the second case allows a faster computation, at the expenses of a less

precise impulse response estimator.

In addition, two cases of the EM version in which only λ is updated are considered:

4.2 Online Efficient Regularization Update 79

• EM1, where λ̂(i+1) = 1
n ĝ

(i)>
K−1

β̂
ĝ(i), which is the current approximation of the

asymptotically optimal value.

• EM2, where the update corresponds to (4.31).

The aim is to show a comparison between the asymptotic theory and the EM update,

see e.g. Bottegal, Aravkin, Hjalmarsson, and Pillonetto (2014); notice that the second

term of (4.31) tends to zero when the number of data tends to infinity.

Performance

As a first comparison, the adherence of the impulse response estimate to the true one is

evaluated. Thus, for each estimated system and for each procedure the impulse response

fit is performed:

F(ĝ) = 100 ·
(

1− ‖g − ĝ‖2‖g‖2

)
(4.41)

where g, ĝ are the true and the estimated impulse responses of the considered system,

respectively.

Figure 4.1 shows the impulse response fits (4.41) achieved in the Monte-Carlo sim-

ulations along with the increase of the number of observed data. OPT procedure is

compared with the 1-STEP SGP, BB, BFGS and EM. On the left hand side the obtained

results optimizing both hyperparameters in η are reported, while the results on the right

hand side are obtained by updating only λ.

All the 1-STEP procedures which update both hyperparameters perform remarkably

well, with the fit index being almost equivalent to the one obtained with the OPT

procedure. This suggests that the full optimization of problem (4.7) does not bring any

particular advantage in terms of fit in the online setting. Notice that we are taking a sort

of worst case approximation since we stop the optimization algorithm after only 1 step:

some more advanced techniques could be considered (e.g. an early stopping criterion Yao,

Rosasco, and Caponnetto (2007)). The 1-STEP updates optimizing only λ, as expected,

perform worse than the other update technique, having a bigger variance and slightly

inferior performance in terms of median. However, their behaviour is comparable to the

one when both hyperparameters are updated, therefore depending on the application

this technique can be taken in consideration. The only exception is represented by EM1

which achieves inferior fits, but it is expected that also this update reaches the same

performance when the number of data tends to infinity.

The second comparison is done in terms of cumulative computational time of the

procedures, see Figure 4.2 and Table 4.1.

80 Online Gaussian Regression

OPT SGP BB BFGS EM

70

80

90

100

SGP BB BFGS EM2 EM1

70

80

90

100

OPT SGP BB BFGS EM
85

90

95

100

SGP BB BFGS EM2 EM1
85

90

95

100

OPT SGP BB BFGS EM
85

90

95

100

SGP BB BFGS EM2 EM1
85

90

95

100

OPT SGP BB BFGS EM
85

90

95

100

SGP BB BFGS EM2 EM1
85

90

95

100

Figure 4.1: Monte Carlo results. Left: Boxplots of the impulse response fit obtained updating
both hyperparameters in η. Right: Boxplots of the impulse response fit obtained updating

only λ.

The OPT procedure, as expected, is much slower than the 1-STEP procedures. This

Update λ and β Update only λ
OPT SGP BB BFGS EM SGP BB BFGS EM2 EM1

mean 163.1 0.56 0.93 1.19 0.57 0.31 0.60 0.45 0.18 0.30
std 18.45 0.13 0.16 0.36 0.11 0.06 0.13 0.25 0.06 0.92

Table 4.1: MC results. Mean and standard deviation (std) of the cumulative computational
time after N = 5000 data have been used.

4.2 Online Efficient Regularization Update 81

OPT

0.5

1

1.5

T
im

e
 [

s
]

SGP BB BFGS EM
0

0.1

0.2

SGP BB BFGS EM2 EM1
0

0.1

0.2

OPT

60

80

100

T
im

e
 [

s
]

SGP BB BFGS EM
0

0.2

0.4

0.6

SGP BB BFGS EM2 EM1
0

0.2

0.4

0.6

OPT
100

150

200

T
im

e
 [

s
]

SGP BB BFGS EM
0

0.5

1

1.5

SGP BB BFGS EM2 EM1
0

0.5

1

1.5

OPT

150

200

250

T
im

e
 [

s
]

SGP BB BFGS EM
0

1

2

SGP BB BFGS EM2 EM1
0

1

2

Figure 4.2: Monte Carlo results. Boxplots of the cumulative computational time. Each row
of plots corresponds to the situation after T data are viewed. Left: OPT procedure. Mid:

1-STEP optimization of both hyperparameters. Right: 1-STEP optimization only of λ (β is
fixed).

could suggest that the 1-STEP procedures we consider appear to be excellent candidates

for real-time applications. Indeed, these techniques perform comparably in terms of fit

w.r.t. the OPT procedure, but demanding a computational time which is two or three

order of magnitude faster; furthermore the difference in terms of computational time

82 Online Gaussian Regression

diverges in favour of the 1-STEP procedure with the increase of the number of data

seen. Among the 1-STEP procedures SGP and EM provide the fastest updates: this is

surprisingly positive for the EM update since only λ has a closed form update, while β

is the solution of a maximization problem; indeed, in the right hand side of Figure 4.2,

where only λ is updated, EM1 and EM2 outperform SGP. The update BB is a particular

case of SGP, where D(i) = I (see Section 4.2.2), but it is significantly slower: this is due

to the backtracking loop at Step 8 in Algorithm 3. The right hand side of Figure 4.2

shows the advantage of updating only λ: the cumulative computational time is inferior.

Finally, Figure 4.3 reports the evolution of the fit and of the hyperparameters estimates,

for a single system, when new datasets of different lengths arrive. In this experiment,

datasets Di of lengths T = 1, 10, 50 are considered. It is of interest to observe that in

terms of both fit and hyperparameters update, the performance of the 1-step techniques

match closely the performance of the OPT procedure. The graph is cut after 3000 data

to highlight the transitory behaviour. As expected, the transitory is longer and more

accentuated in the case of T = 50, particularly in the behaviour of λ. However, this does

not affect the behaviour of the fit performance significantly.

4.3 Time-Varying Dynamical Systems 83

500 1000 1500 2000 2500 3000
70

80

90

100

F
it

SGP

OPT

T = 1

T = 10

T = 50

500 1000 1500 2000 2500 3000
0

1

2 OPT

T = 1

T = 10

T = 50

500 1000 1500 2000 2500 3000
0.6

0.7

0.8

0.9

OPT

T = 1

T = 10

T = 50

Figure 4.3: Comparison of OPT and a 1-STEP SGP update with different length T of the
dataset Di in the online identification of one system.

4.3 Time-Varying Dynamical Systems

The methodology proposed in Section 4.2 and validated for time invariant dynamical

systems in Section 4.2.3 is here extended to time-varying dynamical systems.

The NPPEM methods have good flexibility properties in adapting to the data, as

discussed in Section 2.5 and experimented in Chapter 3 and thanks to the update rules

proposed in Section 4.2 they have also an efficient way to include into the estimators the

information of the new data in the online scenario. All of these feature are fundamental

to cope with time-varying dynamical systems. In this section it is added to NPPEM the

ability to “forget” past data that would deteriorate the quality of the estimators due to

the time variance of the system.

In the following, three routines are presented which combine the “online Gaussian

84 Online Gaussian Regression

regression estimation” proposed in Section 4.2 with tools through which past data are

disregarded or become less relevant to the current estimation.

4.3.1 Fixed Forgetting Factor

Following a classical practice in parametric system identification (see Sec. 2.3.2), a

forgetting factor γ̄ ∈]0, 1] is applied to the available data, in order to base the estimation

mainly on the more recent data. Accordingly, the first k data are generated from the

following linear model:

Q̄kYk = Q̄kΦkg + E (4.42)

where Q̄kQ̄k =: Γ̄k and Γ̄k := diag
(
γ̄k−1, γ̄k−2, ..., γ̄0

)
and E = [e(1)...e(k)]> ∼

N (Yk|0, σ2Ik). Consequently, the Gaussian regression estimate at time k is obtained by

adapting the regularized regression criterion (2.58) as:

ĝγ̄ := arg min
g∈Rn

k∑

t=1

γ̄k−t
(
y(t)− Φt

tg
)2

+ σ2g>K−1
η̂ g (4.43)

= arg min
g∈Rn

(Yk − Φkg)> Γ̄k (Yk − Φkg) + σ2g>K−1
η̂ g

= (Φ>
k Γ̄kΦk + σ2K−1

η̂)−1Φ>
k Γ̄kYk (4.44)

and estimating the hyperparameters by solving:

η̂(i) = arg min
η∈Ω

Y >
k Q̄kΣγ̄

Y (η)−1Q̄kYk + ln det Σγ̄
Y (η) (4.45)

Σγ̄
Y (η) = Q̄kΦkKηΦ>

k Q̄k + σ2Ik (4.46)

Algorithm 8 illustrates the online implementation of the identification procedure based

on equations (4.44) and (4.45). In particular, it assumes that at time k the estimates

ĝ(i) and η̂(i) are the solutions of (4.43) and (4.45), respectively. These estimates are then

updated online when the new dataset Di+1 is provided. Once γ̄ is chosen by the user, it

is inserted in the data matrices

4.3 Time-Varying Dynamical Systems 85

R
(i+1)
γ̄ := Φ>

(i+1)T Γ̄(i+1)T Φ(i+1)T , (4.47)

Ỹγ̄(i+1) := Φ>
(i+1)T Γ̄(i+1)TY(i+1)T , (4.48)

Y γ̄(i+1) := Y >
(i+1)T Γ̄(i+1)TY(i+1)T (4.49)

updated at steps 1-3 of the algorithm.

Algorithm 8 Online Bayesian System Identification: Fixed Forgetting Factor

Inputs: forgetting factor γ̄, previous estimates {η̂(i), η̂(i−1)}, previous data matrices

{R(i)
γ̄ , Ỹ

(i)
γ̄ ,Y

(i)
γ̄ }, new data Di+1 = {u(t), y(t)}(i+1)T

t=iT +1

1: R
(i+1)
γ̄ ← γ̄TR

(i)
γ̄ +

(
Φ(i+1)T

iT +1

)>
Γ̄T Φ(i+1)T

iT +1

2: Ỹ
(i+1)

γ̄ ← γT Ỹ
(i)

γ +
(
Φ(i+1)T

iT +1

)>
Γ̄T Y

(i+1)T
iT +1

3: Y
(i+1)
γ̄ ← γ̄TY

(i)
γ̄ +

(
Y

(i+1)T
iT +1

)>
Γ̄T Y

(i+1)T
iT +1

4: ĝ
(i+1)
LS ← R

(i+1)−1

γ̄ Ỹ
(i+1)

γ̄

5: σ̂(i+1)2

← 1
(i+1)T −n

(
Ȳ

(i+1)
γ̄ − 2Ỹ

(i+1)>

γ̄ ĝ
(i+1)
LS + ĝ

(i+1)>

LS R
(i+1)
γ̄ ĝ

(i+1)
LS

)

6: η̂(i+1) ← arg minη∈Ω f(i+1)T (η) (use Algorithm 3)

7: ĝ(i+1) ←
(
R

(i+1)
γ̄ + σ̂

(i+1)2

γ̄ K−1
η̂(i+1)

)−1
Ỹ

(i+1)
γ̄

Output: ĝ(i+1), η̂(i+1)

We should stress that in this setting the forgetting factor γ̄ has to be a priori chosen

by the user and even if some range of values, γ̄ = [0.95, 0.99], have been suggested in

literature , Ljung (1999), the ‘correct’ value is data dependent and it has to be empirically

chosen in each application. In this regard, we propose to estimate it as a hyperparameter

in the next section.

4.3.2 Treating the Forgetting Factor as a Hyperparameter

The Bayesian framework provides the user with the possibility to treat the forgetting

factor as a hyperparameter and therefore to estimate it by standard techniques.

Accordingly, the first k data are generated from the following linear model:

Yk = Φkg + Eγ , Eγ = [eγ(1), ..., eγ(k)]> ∼ N (0, σ2Γ−1
k) (4.50)

where the GkGk =: Γk and Γk := diag
(
γk−1, γk−2, ..., γ0

)
.

Therefore, treating the forgetting factor as a hyperparameter is equivalent to modeling

the noise with a non-constant variance and to giving to the diagonal entries of the

86 Online Gaussian Regression

covariance matrix an exponential decaying structure.

Notice that model (4.50) is equivalent to model (4.42) but considering the forgetting

factor as an hyperparameter and not as a fixed variable. The hyperparameters can be

computed by solving:

η̂(i), γ̂(i) = arg min
η∈Ω,γ∈(0,1]

fk(η, γ) (4.51)

fk(η, γ) = Y >
k GkΣY (η, γ)−1GkYk + ln det ΣY (η, γ)− ln det Γk (4.52)

ΣY (η, γ) = GkΦkKηΦ>
k Gk + σ2Ik (4.53)

The online implementation of this approach is detailed in Algorithm 9, where

R
(i)
γ̂γγ :=

(
ΦiT

(i−1)T +1

)>
Γ̂(i)

T ΦiT
(i−1)T +1, (4.54)

Ỹ
(i)

γ̂γγ := ΦiT >

(i−1)T +1Γ̂(i)
T Y iT

(i−1)T +1, (4.55)

Y
(i)
γ̂γγ := Y iT >

(i−1)T +1Γ̂(i)
T Y iT

(i−1)T +1 (4.56)

with Γ̂(i)
T = diag((γ̂(i))T −1, .., (γ̂(i))0).

Algorithm 9 Online Bayesian System Identification: Forgetting Factor as a hyperpa-
rameter

Inputs: previous estimates {η̂(i), η̂(i−1), γ̂(i), γ̂(i−1)}, previous data matrices

{R(i)
γ̂γγ , Ỹ

(i)
γ̂γγ ,Y

(i)
γ̂γγ }, new data Di+1 = {u(t), y(t)}(i+1)T

t=iT +1

1: R
(i+1)
γ ← γTR

(i)
γ̂γγ +

(
Φ(i+1)T

iT +1

)>
ΓT Φ(i+1)T

iT +1

2: Ỹ
(i+1)

γ ← γT Ỹ
(i)

γ̂γγ +
(
Φ(i+1)T

iT +1

)>
ΓT Y

(i+1)T
iT +1

3: Y
(i+1)
γ ← γTY

(i)
γ̂γγ +

(
Y

(i+1)T
iT +1

)>
ΓT Y

(i+1)T
iT +1

4: ĝ
(i+1)
LS ← (R(i)

γ̂γγ)−1Ỹ
(i)

γ̂γγ

5: σ̂2(i+1)

← 1
(i+1)T −n

(
Y

(i)

γ̂γγ − 2(Ỹ
(i)

γ̂γγ
)> ĝ

(i+1)
LS + (ĝ

(i+1)
LS)>R

(i)
γ̂γγ

ĝ
(i+1)
LS

)

6: η̂(i+1), γ̂(i+1) ← arg minη∈Ω,γ∈(0,1] f(i+1)T (η, γ) (use Algorithm 3)

7: ĝ(i+1) ←
(
R

(i+1)
γ̂γγ + σ̂2(i+1)

K−1
η̂(i+1)

)−1
Ỹ

(i+1)
γ̂γγ

Output: ĝ(i+1), η̂(i+1)

4.4 Simulations Results 87

4.3.3 Sliding Window

As a third approach to cope with time-varying systems in the Gaussian Regression

framework, a “sliding window” over the data is proposed: whenever a new dataset

Di+1 is provided, the new impulse response estimate ĝ
(i+1)
w and the corresponding

hyperparameters η̂(i+1)
w are computed using the last Nw input-output data pairs. The

window length, Nw, has to be chosen by the user and it has a similar trading-off role,

between the tracking of rapidly-changing system parameters and the estimation accuracy,

as the forgetting factor does in the previous sections.

Notice that when the sliding window approach is adopted, there are no recursive

equations analogous to (4.8)-(4.9)-(4.10). However, the computational complexity of the

algorithm is still suitable for online applications since it is fixed and it can be regulated

by choosing the length of Nw.

Algorithm 10 outlines how the regularization/Bayesian framework can be equipped

with this technique in an “online” setting.

Algorithm 10 On-Line Bayesian System Identification - Sliding Window

Inputs: previous estimates
{
η̂

(i)
w , η̂

(i−1)
w

}
, new data Di+1 = {u(t), y(t)}(i+1)T

t=iT +1, win-

dowed data Dw
i+1 = {u(t), y(t)}(i+1)T

t=iT −Nw+T

1: R
(i+1)
w ←

(
Φ(i+1)T

iT −Nw+T

)>
Φ(i+1)T

iT −Nw+T

2: Ỹ
(i+1)

w ←
(
Φ(i+1)T

iT −Nw+T

)>
Y

(i+1)T
iT −Nw+T

3: Y
(i+1)
w ← γ

(
Y

(i+1)T
iT −Nw+T

)>
Y

(i+1)T
iT −Nw+T

4: ĝ
(i+1)
LS ← R

(i+1)−1

w Ỹ
(i+1)

w

5: σ̂
(i+1)2

w ← 1
(i+1)T −n

(
Ȳ

(i+1)
w − 2Ỹ

(i+1)>

w ĝ
(i+1)
LS + ĝ

(i+1)>

LS R
(i+1)
w ĝ

(i+1)
LS

)

6: η̂(i+1), γ̂(i+1) ← arg minη∈Ω,γ∈(0,1] f(i+1)T (η, γ) (use Algorithm 3)

7: ĝ
(i+1)
w ←

(
R

(i+1)
w + σ̂

(i+1)2

w K−1
η̂(i+1)

)−1
Ỹ

(i+1)
w

Output: ĝ(i+1)
w

The computational complexity of Algorithm 10 is O(N3
w) and it is determined by the

steps 7, while the required memory storage is O(N2
w) for the matrices in step 1.

4.4 Simulations Results

The purpose of this section is to test the standard online algorithms for PPEM described

in Sections 2.3.2 and the online algorithms for NPPEM for time-varying systems proposed

in Section 4.3.

88 Online Gaussian Regression

The experiments will focus on three main points.

First, the performance of the 1-step projected gradient methods and the 1-step EM

algorithm, outlined in Section 4.2, are compared here while coping with time-variant

systems; the algorithms will be called “SGP”,“BB”,“BFGS”,“EM”. A comparison of

these techniques have been already analysed in Section 4.2.3 for time invariant systems,

showing a superiority of the approach based on SGP and EM, see Section 4.2.1. For this

reason, the results will be only briefly discussed.

Second, the three different routines proposed in Section 4.3 are tested while dealing

with time-varying systems; from here on, we will use the acronyms “TC FF” when a

fixed forgetting factor is adopted, “TC est FF” when the forgetting factor is estimated as

a hyperparameter and “TC W” when a sliding window is used.

Third, the online PPEM and NPPEM approaches are compared.

Data

A Monte Carlo study experiment over 200 time-varying systems has been performed.

Each system generated a data set of 3000 input-output measurement pairs created as

follows: the first 1000 data are generated from one system contained in the data-bank

“D4” (proposed in Chen et al. (2014)), while the remaining 2000 data are generated by

perturbing the D4-system with two additional poles and zeros. These additional poles

are generated so that the order of the D4-system actually changes, which means that no

zero-pole cancellations apply and that they lead to a variation in the frequency response,

thus creating a significant switch on the data generating system at time k = 1001.

The data-bank “D4” consists of 30th order random SISO dicrete-time systems having

all the poles inside a circle of radius 0.95. These systems are simulated with a unit

variance band-limited Gaussian signal with normalized band [0, 0.8]. A zero mean white

Gaussian noise, with variance adjusted so that the Signal to Noise Ration (SNR) is always

equal to 1, is then added to the output data.

The above-mentioned experiments have been applied also on the data-bank “D2”

(proposed in Chen et al. (2014)), which only differs from “D4” because the input signal

is not filtered. The obtained results are analogous to the one reported for dataset “D4”;

therefore, they are not reported.

Estimators

The Recursive PPEM estimators are computed with the roe Matlab routine, using the

BIC criterion for the model complexity selection. In the following, this estimator will

be denoted as “PPEM BIC”. Furthermore, as a benchmark we introduce the parametric

4.4 Simulations Results 89

oracle estimator, called “PPEM OR”, which selects the model complexity by choosing the

order model that gives the best fit to the impulse response of the true system. The order

selection is performed every time a new dataset becomes available: multiple models with

orders ranging from 1 to 20 are estimated and the order selection is performed according

to the two criteria described above.

Regarding the methods relying on Bayesian inference, a zero-mean Gaussian prior is

adopted with a covariance matrix (kernel) given by the so-called “TC”-kernel defined in

(4.40). The length n of the estimated impulse responses is set to 100. In the following, we

will use the acronym “TC” to refer to these methods. Furthermore, the notation “OPT”

will refer to the standard Bayesian procedure, in which the SGP algorithm adopted to

optimize the marginal likelihood fk(η) is run until the relative change in fk(η) is less

than 10−9. From here on, the online counterpart will be referred to as the “1-step ML”.

Performance

For each of the 200 Monte Carlo runs, the identification algorithms are initialized using

the first batch of data Dinit = {u(t), y(t)}300
t=1; in the Bayesian procedures, the routines

adopted for the optimization of the marginal likelihood are run until convergence in the

initial step. After this initial step, the estimators are updated every T = 10 time steps,

when new data Di+1 = {u(t), y(t)}(i+1)T
t=iT are provided. The forgetting factor in the “TC

FF” and “PPEM” methods is set to 0.998, while its estimation in “TC est FF” method is

initialized with 0.995; “TC W” methods adopt a window length Nw = 800. The chosen

values of the forgetting factor and of the window length are comparable in the amount of

data they take in consideration, accordingly to Ljung (1999).

The performance we are interested in, regards the adherence of the estimated impulse

responses to the true ones and the computational cumulative time.

The adherence index we choose is the impulse response fit:

F(ĝ) = 100 ·
(

1− ‖g − ĝ‖2‖g‖2

)
(4.57)

where g, ĝ are the true and the estimated impulse responses of the considered system,

respectively.

As previously mentioned, the first comparison is in the “1-step marginal likelihood

optimization” algorithms. Table 4.2 summarizes the performance in terms of mean and

standard deviation achieved in the Monte Carlo study after the estimators “SGP”, “BB”,

“BFGS” and “EM” have been updated (every T = 10 new data) using all the k = 3000

input-output measurements in each data set. For each dataset in the MC study the

90 Online Gaussian Regression

impulse response fit has been averaged over time.

FF FIT mean FIT std Time mean Time std
TC SGP 69.35 8.25 0.44 0.03
TC BB 69.30 8.23 1.31 0.10

TC BFGS 69.33 8.46 1.80 0.38
TC EM 66.98 14.00 0.43 0.05

Table 4.2: “1-step marginal likelihood optimization” algorithms: mean and standard deviation
over the 200 data sets of the impulse response fit and the computational cumulative time after

all the D = {u(t), y(t)}3000
t=1 are processed.

The SGP algorithms outperform all the others when comparing both the impulse

response fit and the computational cumulative time. The comparison has been checked

also after a different amount of data k has been seen and in the overall SGP was the

outperforming technique. For this reason, in the following analysis only the SGP technique

will be considered and the acronym “TC” will refer to the online Bayesian estimates

updated with SGP.

At this point, Gaussian regression algorithms can be compared the classical recursive

PPEM proposed in Section 4.3 and 2.3.2, respectively. Figure 4.4 shows the performance

in terms of impulse response fit at five selected time instants.

As expected, using only the first batch of data Dinit, the “TC” estimators outperform

the recursive PPEM: it is well known that the regularized/Bayesian estimators are

particularly efficient when a reduced amount of data is available. It is interesting to note

that even when k = 1000 the “TC” methods reach a performance regime that slightly

outperform the ideal parametric estimator “PPEM OR”.

Until time k = 1000, the performance among the “TC” methods are similar since

both the forgetting factor and the window cover a comparable amount of the data and

the data considered so far can be associated to a time-invariant system.

After the switch in the data generating system, which occurs at k = 1001, performance

are subjected to an abrupt degradation, since most of the data that are passed to the

estimators are generated from the ‘wrong’ system. The “TC FF” methods are faster in

recovering the fit performance than “TC W”: this is because the latter equally weights

data before and after the switch, while through the forgetting factor effect, less importance

is given to the data from the original system.

When k = 1800 the “TC W” estimators are in the ideal situation because they are

fed only with data coming from the current system; instead, the cost function in “TC FF”

methods still takes into account also data from the old system (even if scaled down).

4.4 Simulations Results 91

TC OPT FF TC FF TC est FF TC OPT W TC W PEM OR PEM BIC
0

50

100
k = 300

TC OPT FF TC FF TC est FF TC OPT W TC W PEM OR PEM BIC

50

100
k = 1000

TC OPT FF TC FF TC est FF TC OPT W TC W PEM OR PEM BIC
0

50

100
k = 1300

TC OPT FF TC FF TC est FF TC OPT W TC W PEM OR PEM BIC

50

100
k = 1800

TC OPT FF TC FF TC est FF TC OPT W TC W PEM OR PEM BIC

60

80

100
k = 3000

Figure 4.4: Impulse response fit F(ĝ) achieved at five time instants k (corresponding to the
number of data available for the estimation).

92 Online Gaussian Regression

It is interesting to note that when k = 3000 the “TC FF” methods perform better

than the “TC W”: this gives an empirical evidence that the old (rescaled) data appearing

in the loss function of “TC FF” methods are still relevant to the computation of the

estimate. These results suggest a general qualitative guide-line: the use of the forgetting

factor seems preferable when the systems to be identified are either varying ‘rapidly’ or

‘very slowly’ and the sliding window approach appears a good choice in between these

(arbitrary defined) behaviours.

The conclusions derived for k = 1800 and k = 3000 might seem to go against the fact

that the length of the window and the decay given by the forgetting factor have been

chosen to cover a similar amount of data, but this fact is true only indicatively, and the

reported results give a better understanding on the behaviour of the two methodologies.

The “1-step ML” procedures and the correspondent “OPT” routines provide analogous

performance at each time step k, validating the method we propose to perform online

estimation and confirming the results obtained in Section 4.2.3.

Among the regularization/Bayesian routines,“TC est FF” seems to be preferable:

indeed, after the switch, it recovers the fit performance a bit slower than “TC FF” but

faster than “TC W”; on the other hand, at regime it outperforms all the other approaches

because it can choose forgetting factor values that retain a larger amount of data.

The unrealistic “PPEM OR” represents the reference on the achievable performance

of the PPEM estimators; it outperforms the “TC” methods in the transient after the

switch, while it has comparable performance at regime. Whereas, the recursive “PPEM

BIC” estimator performs very poorly.

TC PPEM
OPT FF FF est FF OPT W W OR BIC

mean 6.70 0.44 0.9 6.44 0.85 18.44 18.44
std 1.28 0.03 0.37 1.03 0.08 0.69 0.69

Table 4.3: Mean and standard deviation over 200 data sets of the computational cumulative
time after the data D = {u(t), y(t)}3000

t=1 are processed.

Finally, Table 4.3 summarizes the computational cumulative time of the proposed

algorithms in terms of mean and standard deviation after the estimators are fed with all

the data D = {u(t), y(t)}3000
t=1 .

The “1-step ML” procedures are one order of magnitude faster than the corresponding

“OPT” ones and two orders of magnitude faster than the recursive “PPEM” estimators.

This confirm how the “1-step ML” procedures are the most appealing techniques for

online applications.

4.5 Conclusions 93

4.5 Conclusions

In this chapter, the recently introduced system identification techniques relying on

Gaussian Regression have been extended to the online identification of dynamical systems.

In order to meet real-time requirements, the reduction of the computational time

required to update the impulse response estimate becomes essential. In a Bayesian

estimation procedure, the most demanding step in terms of computational complexity is

the marginal likelihood optimization required to determine the hyperparameters estimate.

Hence, an efficient version of different iterative procedures, typically used to solve the

marginal likelihood maximization problem, has been proposed: the hyperparameters are

updated by performing only one iteration of these procedures, each time a new dataset

becomes available.

Moreover, in order to cope with time-varying dynamical systems, three approaches,

based on the use of a forgetting factor or of a sliding window over the data, have been

proposed. We also investigate the estimation of the forgetting factor by treating it as an

hyperparameter of the Bayesian inference procedure.

The experimental results appear very promising, even for practical contexts. We

believe that the preliminary investigation performed in this work may pave the way

for further research in the online identification of dynamical systems using Gaussian

regression.

Discussion

The methodology and the experiments run in this chapter have confirmed what discussed

in Section 2.5.

The powerful capability revealed by the NPPEM methods of trading the model

complexity in a continuous a manner through the estimation of the hyperparameters

appears to be one key point to successful online applications for system identification.

Indeed, under the computational point of view, model complexity selection in PPEM

requires the solution of several possibly high-dimensional non-convex optimization prob-

lems at each update, whereas this step is much faster in NPPEM methods since it reduces

to tuning few hyperparameters.

The results in terms of impulse response fit obtained in this Chapter together with the

results in Chapter 3 give evidence that NPPEM effectively outperform classical PPEM

in facing the bias-variance tradeoff.

94 Online Gaussian Regression

Future Works

Future research directions could consider:

• the recursive update of the Bayesian estimate, resembling the update available for

parametric techniques; consequently, the impulse response would depend on the

multiple hyperparameters estimated at different time steps,

• the derivation of an appropriate criteria to select the number of optimization

iterations to be performed in the maximization of the marginal likelihood. Indeed,

the a priori choice of making only one iteration is arbitrary.

• the attempt of finding an approximation of the hyperparameters update, in order

to further reduce the computational complexity,

• the proof of the consistency of the estimators obtained with this one step update

rule.

5
Enforcing Model Stability in Nonparametric

Gaussian Regression

5.1 Introduction

The recent nonparametric Gaussian regression methods applied to linear system identifi-

cation describe the unknown system directly in terms of impulse response. It has been

shown in the recent literature Pillonetto et al. (2011a); Chen et al. (2012); Pillonetto and

De Nicolao (2010) that this approach supported by Bayesian Statistics provide powerful

tools to face the bias-variance tradeoff in the identification problem.

The paper Pillonetto et al. (2011a) has shown how these infinite dimensional model

classes can be used for identification of linear systems in the framework of prediction

error methods, leading naturally to stable predictors.

However, as discussed in Section 2.5, the stability of the predictor model does not

necessarily guarantee stability of the so called “forward” model.

96 Enforcing Model Stability in Nonparametric Gaussian Regression

In control theory terminology, the predictor is the closed-loop model and the forward

model is the open-loop model plant.

It can be argued that in general, imposing stability of the open-loop model is quite

a natural requirement given that the majority of the real-world systems are stable.

Moreover, in many contexts, not necessarily directly related to the control theory, what

is eventually used is the open-loop model.

As a matter of fact, we faced this stability issue when performing identification on

a real data set from EEG recordings. A physical insight in this case suggests that the

transfer function describing the link between potentials in different brain locations were

expected to be stable, while the identified models were not.

Contributions

The motivations given by the link to the real-world applications appear quite notable.

Hence, in this chapter we tackle the problem of identifying stable forward models when

NPPEM are used. Four possible solutions to this problem are described and compared.

1. Inspired by the works Chilali and Gahinet (1996); Miller and de Callafon (2013)

the so-called “LMI-constraint” approach is adapted to constrain the eigenvalues of

the estimated model within the unit circle.

2. A penalty term is added in the optimization procedure of the “classic” Stable-Spline

algorithm Pillonetto et al. (2011a); Pillonetto and De Nicolao (2010). This penalty

smoothly imposes the stability constrain to the eigenvalue of the forward model

with the maximum absolute value.

3. The posterior distribution over the impulse responses that exclude all the unstable

model is considered and it is called a “stable posterior”. This distribution cannot be

analytically computed and is obtained in a sampling form through a Markov Chain

Monte Carlo approach (MCMC). Two possible solutions are achieved thorugh this

technique: the minimum variance estimate and the maximum a posteriori estimate.

The last two techniques have the advantage, w.r.t. the first one, of being integrated

directly inside the pre-existing optimization problem and do not simply post-process the

estimates. An extensive simulation study comparing these techniques will be provided.

The chapter is structured as follows. In Section 5.2, the statement of the stable

forward model identification problem is formulated. Sections 5.3, 5.4 and 5.5 report

the procedure of the four different stabilization approaches used to tackle the problem

described in Section 5.2. The experiment to validate the used techniques and the results

are described in Section 5.6. Finally, our conclusions are drawn in Section 5.7.

5.2 Problem Statement 97

5.2 Problem Statement

Consider the dataset DN := {D(t)}Nt=1 = {u(t), y(t)}Nt=1 the discrete causal time-invariant

model defined in (2.6) called forward model

y(t) = G(z)u(t) +H(z)e(t) (5.1)

and the one-step ahead predictor model (2.23)

ŷ(t|t−) = H−1(z) [(H(z)− 1)y(t) +G(z)u(t)] (5.2)

= W y(z)y(t) +W u(z)u(t) (5.3)

where

W y(z) =
n∑

k=1

wy(k)z−k, W u(z) =
n∑

k=1

wu(k)z−k (5.4)

and n ∈ N is the length of the impulse responses.

Recall the assumptions made in Section 2.1 that are: G(z) is stable and H(z) is

stable and minimum phase, i.e., both H(z) and its inverse are causal and stable (all the

poles and zeros of H(z) are inside the unit circle).

In classic linear PPEM described in Section 2.3.1 the parameters θ ∈ R
d are usually

constrained in a domain Θ so as to account for prior knowledge such as stability of

Gθ(z), Hθ(z) and H−1
θ (z). Thus, the stability of both the forward model (5.1) and of

the predictor model (5.2) are guaranteed within these parametric methods.

The NPPEM approaches described in Section 2.4 aim to find the estimators ŵy and

ŵu of wy := {wy(k)}nk=1 and wu := {wu(k)}nk=1. How to find these estimates has been

shown in Section 2.4.4. The estimates were derived for an equivalent formulation of

the model; here we report, for the sake of the understanding, the equivalent estimates

explicitly distinguishing the two impulse responses wy and wu. Specifically, wy and wu

are assumed to be independent with the same covariance matrix, that is:

Kη(D(t),D(s)) = cov (wy(t), wy(s)) = cov (wu(t), wu(s)) ,

pη(wy, wu) = pη(wy)pη(wu)

Under the assumption that the innovation process is Gaussian and independent of

wy and wu, the marginal pη(Y) and the posterior pη(wy, wu|Y) are Gaussian. Then,

following the Empirical Bayes paradigm and fixing the hyperparameters to their estimated

98 Enforcing Model Stability in Nonparametric Gaussian Regression

value η̂ML, see Section 2.4.3, the impulse responses estiamte are found as:

ŵy := Eη̂ML
[wy|Y] ŵu := Eη̂ML

[wu|Y] (5.5)

where Eη̂ML
[·|·] denotes the minimum variance estimator having fixed η = η̂ML.

Unfortunately, BIBO stability of the predictor impulse responses ŵy and ŵu does

not guarantee BIBO stability of the transfer function estimates G(z) and H(z) of the

forward model (5.1)

Ĝ(z) :=

n∑

k=1

ŵu(k)z−k

1−
n∑

k=1

ŵy(k)z−k

=
∞∑

k=1

g(k)z−k, Ĥ(z) :=
1

1−
n∑

k=1

ŵy(k)z−k

=
∞∑

k=1

h(k)z−k

(5.6)

Indeed, BIBO stability of the sequences ŵy = {ŵy(k)}k∈Z+ and ŵu = {ŵu(k)}k∈Z+

has no relation with stability of Ĝ(z) and Ĥ(z) which, if no cancellations occur, depends

on the zeros of the polynomial 1− Ŵ y(z) = 1−
n∑

k=1

ŵy(k)z−k.

Recall that g := {g(k)}k=Z+ and h := {h(k)}k=Z+ are the impulse responses of the

forward model, obtained by inverse Z transform of G(z) and H(z), respectively.

Thus, the problem of identifying stable forward models via NPPEM can be formulated

as follows:

Problem 5.2.1. Given the data {u(t), y(t)}Nt=1, estimate the impulse response coefficients

{ŵy(k)}k∈[1,n] and {ŵu(k)}k∈[1,n] of the predictor model so that the transfer functions

of the forward model, Ĝ(z) and Ĥ(z) in (5.6), are BIBO stable. A sufficient generic1

condition for this to happen is that

A(z) = 1− Ŵ y(z) = zn(1−∑n
k=1 ŵ

y(k)z−k) = zn − [zn−1 . . . 1]ŵy

ŵy := [ŵy(1), ŵy(2), . . . , ŵy(n)]>
(5.7)

is (Schur) stable, i.e., has all roots inside the open unit disc of the complex plane C.

Three techniques are described and compared in the following sections to achieve

this aim. For each technique, Problem 5.2.1 is reformulated accordingly in order to

understand the different ideas and approaches proposed.

1i.e., if no cancellations occur, which is generic for estimated impulse responses.

5.3 Stabilization via LMI constraint 99

5.3 Stabilization via LMI constraint

The first stabilization technique is based on formulating stability of the model (5.6) as a

constraint on the eigenvalues of the companion matrix of A(z) in (5.7). This constraint

can be characterized in terms of Linear Matrix Inequalities (LMI) as discussed in Chilali

and Gahinet (1996) and used later on in Miller and de Callafon (2013) to enforce stable

models in subspace identification. Accordingly, Problem 5.2.1 can be formulated as

follows.

Problem 5.3.1 (Reformulation). Given a preliminary estimate w̃y := [w̃y(1), .., w̃y(n)]>,

find a vector of coefficients ŵy so that

ŵy = arg min
wy∈WD

‖wy − w̃y‖2 (5.8)

where the set WD := {wy ∈ R
n : |λ| < 1 ∀λ s.t. Â(λ) = 0, Â(z) = zn − [zn−1 . . . 1]ŵy},

can be described by an LMI constraint as discussed below.

The quadratic programming problem (5.8) with LMI constraints can be easily solved

by available software, e.g., the CVX Toolbox in Matlab has been used, see Grant, Boyd,

and Ye (2006) for more details.

The estimator w̃y can be, in principle, any estimator of wy. In this chapter, the

Empirical Bayes estimate (5.5) is adopted and it will be denoted as w̃y := w̃y
EB.

It should be observed that the use of the 2-norm in (5.8) is entirely arbitrary and,

in fact, considering some form of model approximation error (e.g. difference of output

predictors) would be preferable. In addition, when w̃y is the outcome of a preliminary

estimation step, a principled solution would require accounting for the distribution of w̃y,

e.g., weighting the difference (wy − w̃y) by the inverse of the variance of w̃y, Wahlberg

(1989). However, this brings in some technical difficulties related to the formulation of

the quadratic problem, therefore, it is still a subject of research.

Formulation of the LMI constraint

Let D be the open unit disc of the complex plane:

D = {z ∈ C : |z| < 1} (5.9)

100 Enforcing Model Stability in Nonparametric Gaussian Regression

It is well known, see e.g. Chilali and Gahinet (1996), that the set D can be expressed in

terms of the matrix polynomial

qD(z) = I2 +

[
0 1

0 0

]
z +

[
0 0

1 0

]
z̄ (5.10)

as

D = {z ∈ C s.t. qD(z) > 0}

In Chilali and Gahinet (1996), the authors show that a matrix Q has all its eigenvalues

in the LMI region D if and only if there exists P = P> ≥ 0 s.t.

M(Q,P) = I2 ⊗ P +

[
0 1

0 0

]
⊗ (QP) +

[
0 0

1 0

]
⊗ (QP)> ≥ 0 (5.11)

Let Ψ(wy) be the companion matrix of wy

Ψ(wy) :=




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−wy(n) −wy(n− 1) −wy(n− 2) . . . −wy(1)




∈ R
n×n

Accordingly to (Miller and de Callafon, 2013, Theorem 1), which presents small

variations w.r.t. the original central theorem in Chilali and Gahinet (1996), the LMI

constraint to guarantee the stability of Ψ(wy) and therefore of wy is M(Ψ(wy), P) ≥ 0,

where M(Ψ(wy), P) is defined in (5.11). Unfortunately, M(Ψ(wy), P) is not linear in wy

and P since their product appears. This nonlinearity calls for a parametrization of the

constraint similarly to what has been done in Miller and de Callafon (2013).

In order to specify the parametrization, we introduce the quantities P ∈ R
n×n, Ψ ∈ R

n

such that ψ := Pwy and J := [On×1 In−1], and define

M(ψ, P) := M(Ψ(wy), P), with wy = P−1ψ

i.e.,

M(ψ, P) = I2 ⊗ P +

([
0 1

0 0

]
⊗
[
JP

Ψ>

])
+

([
0 1

0 0

]
⊗
[
JP

Ψ>

])>

(5.12)

which is linear in ψ and P .

Now, the stability property can be enforced adopting the LMI constraint M(ψ, P) ≥ 0,

5.4 Stabilization via Penalty Function 101

where M(ψ, P) has been defined in (5.12).

Thus, problem 5.3.1 can be formalized as:

ψ̂, P̂ = arg min
wy ,P

‖ψ − Pŵy
B‖

2

s. t. M(ψ, P) ≥ 0 (5.13)

Tr(P) = n

P = P> ≥ 0

where the constraint Tr(P) = n is added to improve the numerical conditioning, see

Miller and de Callafon (2013) for further details.

The solution ŵy of Problem 5.3.1 is finally computed as:

ŵy = P̂−1ψ̂ (5.14)

In the remaining of the chapter the model Ĝ(z) obtained by plugging in (5.6) the

estimators ŵy and ŵu
EB obtained respectively from (5.14) and the EB procedure in (5.5),

will be called “LMI” model.

5.4 Stabilization via Penalty Function

The second stabilization technique is developed to act directly inside the Gaussian

regression procedure. As discussed in Section 2.4, a crucial step is the estimation of the

hyperparameter vector η, that can be done e.g. through marginal likelihood optimization

(2.48). It turns out that some hyperparameters η may lead to estimators (5.5) which do

not correspond to stable models Ĝ(z) and Ĥ(z). Thus, one possible remedy is to restrict

the set of admissible hyperparameters to a subset ΩS which leads to stable models. This

is not entirely trivial as the estimators (and thus the set ΩS) depend on the measured

data Y,U . Accordingly, Problem 5.2.1 can be formulated as follows.

Problem 5.4.1 (Reformulation). Estimate the hyperparameters η restricting the search

η̂ = arg max
η∈ΩS

pη(Y) = arg min
η∈ΩS

− ln pη(Y) (5.15)

to the set ΩS = {η|Â(z) Stable }, i.e., the set of hyperparameters which leads to stable

models Ĝ(z), Ĥ(z).

Since the set ΩS cannot be determined a priori because it is data dependent, a

penalty term to the the criterion in (5.15) has been added. This penalty function can be

102 Enforcing Model Stability in Nonparametric Gaussian Regression

interpreted as a barrier to push the estimate η̂ into ΩS , or equivalently, to keep η̂ away

from the set of hyperparameters η which leads to an unstable A(z).

Denote with Aη(z) the polynomial A(z) in (5.7) built with the estimator

ŵy
η := Eη[wy|Y], (5.16)

which is to indicate that ŵy
η is obtained with the specific hyperparameters ŵy

η and

define the dominant root of Aη(z) as ρ̄η := max |σ(Aη(z))|, where σ(A(z)) denotes the

set of roots of the polynomial A(z).

Next, the penalty function J(ρ̄η) can be defined:

J(ρ̄η) =
1

(α(δ − ρ̄η))α
− 1

(αδ)α
(5.17)

where δ ≥ 1 is a scalar which determines the limit point corresponding to an infinite value

of the function and α is a positive scalar which adjusts the steepness of the function.

7;2

0.2 0.4 0.6 0.8 1

J
(7;
2
)

0

0.5

1

1.5

2

2.5

3

3.5

7;

A

!

/

,

Figure 5.1: Representation of the penalty function J(ρ̄η). The red bullet represents the
value of the penalty function associated to a specific ρ̄ in an illustrative example of an unstable
polynomial Aη(z). The blue arrows show the effects of the penalty function on ρ̄ while
estimating the hyperparameters. The black arrows show the effects of changing the parameters

α and δ.

The penalty function (5.17) is illustrated in Figure 5.1 and it can be seen that it

5.4 Stabilization via Penalty Function 103

diverges (J(ρ̄η) → ∞) when ρ̄ → δ and J(ρ̄η) → 0 when ρ̄ → 0. Thus, when (5.17) is

added to the minimization problem (5.15), the effect is of penalizing the solutions η

which yields ρ̄η outside the stability region.

As it will be shown in Algorithm 11, the two parameters α and δ are iteratively

adjusted until the estimated hyperparameters lead to a stable forward model which solves

the constrained problem (5.15).

Note that when α→ 0, J(ρ̄η) gives no penalty for η < δ and an infinite penalty for

η ≥ δ. Elaborating upon the intuition above, it is easy to prove that the solution of

Problem 5.4.1 can be found by the algorithm described below:

Algorithm 11 Stabilization via Penalty Function

1: Init:
2: Compute η0 through marginal likelihood maximization (Section 2.4.3),
3: Compute the predictor impulse response ŵy

η0
using (5.16),

4: Compute Aη0(z) and ρ̄η0 associated to ŵy
η0

,
5: Set α = 1.
6: while ρ̄ηk

≥ 1 do
7: Set δ = ρ̄ηk

(1 + ε),
8: Compute

ηk = arg min
η
− ln pη(Y) + J(ρ̄η) (5.18)

and the associated ρ̄ηk
,

9: if − ln pηk
(Y) + J(ρ̄ηk

) = − ln pηk−1
(Y) + J(ρ̄ηk−1

) then
10: α = α−∆α, with ∆α sufficiently small,
11: δ = δ −∆δ, with ∆δ sufficiently small,

12: Set α = ε and δ = 1.
13: The solution of Problem 5.4.1 is given by:

η̂ = arg min
η
− ln pη(Y) + J(ρ̄η) (5.19)

ŵy
η̂ = Eη̂[wy|Y], ŵu

η̂ = Eη̂[wu|Y] (5.20)

In the remaining of the paper the model obtained by (5.6) using (5.20) will be called

“ML + PF” model.

Remark 5.4.2. Notice that the iterative procedure which updates δ and α is needed

because, in general, there is no guarantee that one can find an initial value of η ∈ ΩS .

Note also that the set ΩS is always non-empty provided the hyperparameter η includes

a scaling factor for the Kernel, i.e., a scalar variable which multiplies the Kernel. In fact,

if this is the case, there exist values of η which leads to an estimator ŵy = On×1 which,

in turn leads to stable Ĝ(z) and Ĥ(z).

104 Enforcing Model Stability in Nonparametric Gaussian Regression

5.5 Stabilization via a Full Bayes Sampling Approach

The third stabilization technique is based on a variant of the FBS paradigm. Consider

the posterior distribution of the impulse responses wy and wu conditional to the data,

it is known that some of the impulse responses in its support lead to a stable forward

model and some others not.

“How can the domain of the posterior be restricted to only the impulse responses

that satisfies Problem 5.2.1?”.

Formally the “stable” posterior distribution is defined as

pS(wy, wu|Y) =
∫
pS(wy, wu, η|Y) dη

= 1
p(Y)

∫
p(Y |wy, wu)pS(wy, wu|η)p(η) dη

(5.21)

where pS(wy, wu|η) is the “truncated” Gaussian prior

pS(wy, wu|η) :=

{
kηpη(wy, wu) wy : A(z) stable

0 otherwise
(5.22)

which, a priori, excludes all impulse responses wy which lead to unstable A(z). Note that

the constant kη in (5.22) equals

kη :=
1∫

wy∈W p(wy, wu|η) dfdg
, with W := {wy|A(z) stable}

To the purpose of marginalizing over η we consider a non-informative prior2 p(η) on

the hyperparameters η. Unfortunately, the “stable” conditional

pS(wy, wu|Y, η) :=
p(Y |wy, wu)pS(wy, wu|η)

pS(Y, η)

is not Gaussian and, in addition, the integral in (5.21) cannot be computed in closed

form. Hence, we need to rely on a sampling approximation.

Accordingly, Problem 5.2.1 can be formulated as follows.

Problem 5.5.1 (Reformulation). Employ a Full Bayes Sampling algorithm to obtain a

sample form of the “stable” posterior distribution (5.21), composed by the samples wy
i , w

u
i ,

i = [1, . . . , T]. Compute from these samples the estimates ŵy, ŵu in (5.5) which leads to

stable Ĝ, Ĥ in (5.6). This will be done computing sample minimum variance estimate as

well as sample maximum a posteriori (MAP) estimate.

2This may be a uniform distribution if the domain is compact.

5.5 Stabilization via a Full Bayes Sampling Approach 105

As discussed in Section 2.4.1 a common manner to implement FBS is to adopt

MCMC algorithms. In order to sample from the stable posterior (5.21) one can use a

Metropolis-Hasting type of algorithm Gilks et al. (1995), described in Algorithm 12.

Algorithm 12 Metropolis Hastings sampling type

1: Init: Set (wy
1 , w

u
1) so that wy

1 corresponds to a stable A(z).
Set the proposal distribution to Q((·, ·)|(wy

1 , w
u
1))

2: for k = 1 to T do
3: Sample from a proposal distribution ((w̃y, w̃u) ∼ Q((w̃y, w̃u)|(wy

i , w
u
i))

4: Set the acceptance probability

α := min

(
1,
pS(w̃y, w̃u|Y)Q((wy

i , w
u
i)|(w̃y, w̃u))

pS(wy
i , w

u
i |Y)Q((w̃y, w̃u)|(wy

i , w
u
i))

)
(5.23)

5: if α > u, u ∼ U(0, 1) then
6: set (wy

k+1, w
u
k+1) = (w̃y, w̃u)

7: else
8: set (wy

k+1, w
u
k+1) = (wy

i , w
u
i).

Algorithm 12 relies on the possibility of evaluating the stable posteriori which is not

available in closed form. Hence, two fundamental issues need to be addressed for this

algorithm to be implementable, namely:

(i) Design the proposal density Q((w̃y, w̃u)|(wy
i , w

u
i))

(ii) Compute the posterior, up to a constant multiplicative factor3 pS(wy, wu|Y)

Moreover, a preliminary step for both items (i) and (ii) is required:

(◦) the computation of a set of samples ηi ∼ p(η|Y) from the posterior of the hyperpa-

rameters, without accounting for the stability constraint.

These three issues are addressed in the following.

(◦) Hyperparameters posterior density p(η|Y)

The goal is to draw points from the posterior density of η given Y . By applying the

Bayes’ rule the posterior can be written as:

p(η|Y) =
pη(Y)p(η)
p(Y)

(5.24)

3This is because only ratios of posterior probabilities need be computed in (5.35).

106 Enforcing Model Stability in Nonparametric Gaussian Regression

where, as mentioned earlier on, p(η) is assumed to be a non-informative prior distribution,

and p(Y) is the normalization constant. The marginal density pη(Y) of Y given η can be

computed in a closed form, as discussed in Pillonetto et al. (2011a) and is given by

pη(Y) = exp
(
−1

2
ln(det[2πΣY (η)])− 1

2
Y > (ΣY (η))−1 Y

)
(5.25)

where

ΣY (η) = ΦY KηΦ>
Y + ΦUKηΦ>

U + σ2IN (5.26)

and σ2 := V ar{e(t)} is the variance of the innovation process and ΦY ,ΦU are regressors

matrix computed as (2.13) with φY (t) = [−y(t− 1) . . .− y(t− n)]> ∈ R
n×1 and φU (t) =

[u(t− n)]> ∈ R
n×1.

In order to obtain samples from (5.24) a Metropolis-Hasting algorithm as the one

described in Algorithm 12 is implemented. As previously mentioned, the implementation

of the sampling algorithm requires the proposal and the target in order to evaluate

the acceptance rate. The proposal is a symmetric distribution qη(·|·) which describes a

random walk in the hyperparameter space, whose mean is centred at the current value

and its variance contains information about the local curvature of the target. To do so,

let us define:

η = arg min
η
− ln[pη(Y)p(η)] (5.27)

and

H = −
d2 ln[pη(Y)p(η)]

dηdη>
(5.28)

the Hessian matrix evaluated in η.

Thus, the proposal distribution is defined as:

qη(·|µ) = N (µ, γH−1) (5.29)

where γ is a positive scalar chosen to obtain an acceptance probability in the MCMC

algorithm around the 30% via a pilot analysis, see e.g. Roberts, Gelkman, and Gilks

(1997).

In the cases where the covariance γH−1 results to be inefficient to explore the support, it

can be exchanged by computing the sample covariance from the samples accepted during

an additional pilot analysis (e.g. starting from a diagonal covariance, obtaining a certain

amount of samples and computing the sample covariance of these samples).

5.5 Stabilization via a Full Bayes Sampling Approach 107

The acceptance rate of the MCMC results to be:

αηi
= min

(
1,

pηi
(Y)p(ηi)

pηi−1(Y)p(ηi−1)

)
(5.30)

which can be evaluated.

The MCMC to obtain hyperparameters distributed as a sampled form of (5.24) is

now characterized. Points (i) and(ii) can be addressed.

(i) Proposal density

It is well known in the MCMC literature that an accurate choice of the proposal

distribution may have a remarkable impact on the performance (burn in time) of the

Markov Chain. Here, a data-driven proposal is obtained from the posterior distribution

disregarding the stability constraint. The algorithm is based on the FBS approximation

presented in Section 2.4.1 and here reported:

p(wy, wu|Y) =
∫

η
p(wy, wu|Y, η)p(η|Y) dη ' 1

T

T∑

i=1

pηi
(wy, wu|Y) (5.31)

where ηi, i = 1, .., T are the samples from p(η|Y) built with the MCMC algorithm

described in point (◦) and

pηi
(wy, wu|Y) ∼ N

(
µMAP

ηi
,ΣMAP

ηi

)
(5.32)

is the (Gaussian) posterior density of wy, wu when the hyperparameters are fixed equal

to ηi. The posterior means and variance are, respectively:

µMAP
η := (Eη[wy|Y],Eη[wu|Y])

Eη[wy|Y] = KηΦ>
Y (ΣY (η))−1 y

Eη[wu|Y] = KηΦ>
U (ΣY (η))−1 y

ΣMAP
η = Kη −Kη

[
Φ>

Y

Φ>
U

]
(ΣY (η))−1

[
ΦY ΦU

]
Kη

Kη :=

[
Kη O

O Kη

]

(5.33)

and ΣY (η) is defined in (5.26).

Summarizing, equations (5.33) allow to compute the terms inside the sum in (5.31)

once the hyperparameters ηi are given. Consequently, in order to sample from the

proposal density p(wy, wu|Y) one can

108 Enforcing Model Stability in Nonparametric Gaussian Regression

1. Sample ηi ∼ p(η|Y) as described in point (◦),

2. Sample (wy, wu) ∼ pηi
(wy, wu|Y) in (5.32).

(ii) Evalution of the stable posterior pS(wy, wu|Y)

The stable posterior in equation (5.21) can be approximated as follows:

pS(wy, wu|Y) =
∫
pS(wy, wu, η|Y) dη

= 1
p(Y)

∫
p(Y |wy, wu)pS(wy, wu|η)p(η) dη

= 1
p(Y)

∫
p(Y |wy, wu)pS(wy, wu|η)p(η) q(η)

q(η) dη

' 1
T p(Y)

∑T
i=1

p(Y |wy ,wu)pS(wy ,wu|ηi)p(ηi)
q(ηi)

(5.34)

where ηi ∼ q(η). Notice that the quantities p(Y |wy, wu), pS(wy, wu|η) and p(η) can be

evaluated and the stable posterior pS(wy, wu|Y) can then be approximated (up to the

irrelevant normalization constant 1
T p(Y)) from equation (5.34).

Thus, setting q(η) := p(η|Y) and using the MCMC algorithm described in (i) to

obtain samples from the posterior p(η|Y), it is possible to sample from the stable posterior

pS(wy, wu|Y) (5.21). Algorithm provides our solution to Problem 5.5.1.

Note that, from (5.37), an estimate of G(z) is obtained directly. This is to guarantee

that G(z) is stable since the average
∑

i Ĝi(z) of BIBO stable function is BIBO stable.

On the other hand, if one would have averaged4 the wy
i directly, there would be no

guarantee that the average would lead to a stable A(z) (and thus a stable model). Of

course, if needed, an estimate of W y(z) can be obtained from (5.2) using Ĝ and Ĥ in

(5.37) :
Ŵ u(z) := Ĥ−1(z)Ĝ(z)

Ŵ y(z) := 1− Ĥ−1(z)

4Recall that the average of stable polynomial is not necessarily a stable polynomial unless the degree
is smaller than 3, see Gora (2007).

5.5 Stabilization via a Full Bayes Sampling Approach 109

Algorithm 13 Stabilization via a Full Bayes Sampling Approach

Hyperparameters Sampling: a Metropolis-Hastings approach
1: Init: set η0 = η using (5.27)
2: Set the proposal distribution to qη(·|η0) ∼ N (η0, γH

−1))
3: for k = 1 to T + NburnIn do
4: Sample η from qη(·|ηi−1) ∼ N (ηi−1, γH

−1))
5: Set the acceptance probability

α := min

(
1,

pηi
(Y)p(ηi)

pηi−1(Y)p(ηi−1)

)
(5.35)

6: if α > u, u ∼ U(0, 1) then
7: set ηi = η,
8: else
9: set ηi = ηi−1

10: Retain the last T samples ηi which are (approximately) i.i.d. samples from p(η|Y).

Predictor Impulse Response Estimate: an MCMC approach
11: Init: Consider the ηi with i = [1, T] obtained above
12: Compute [wy

0 , w
u
0] from η0 using (5.32)

13: for k = 1 to T do
14: Compute µMAP

i , ΣMAP
i with η fixed to ηi as in (5.33),

15: Sample (w̃y, w̃u) ∼ N (µMAP
i ,ΣMAP

i)
16: Compute the acceptance probability

α := min

(
1,
pS(w̃y, w̃u|Y)p(wy

i , w
u
i |Y)

pS(wy
i , w

u
i |Y)p(w̃y, w̃u|Y)

)
(5.36)

with pS(wy, wu|Y) and pS(wy, wu|Y) approximated as in (5.34) and (5.31),
17: if α > u, u ∼ U(0, 1) then
18: set (wy

i , w
u
i) = (w̃y, w̃u),

19: else
20: set (wy

i , w
u
i) = (wy

i−1, w
u
i−1) .

21: Samples (wy
i , w

u
i) are i.i.d. samples from pS(wy, wu|Y) as requested by Problem 5.5.1.

22: Compute Minimum Variance and MAP estimators of the forward model (5.1):

• Minimum Variance Estimate: Compute the averages of the impulse re-
sponses gi and hi obtained from each sample (wy

i , w
u
i) as in (5.6)

ĝ :=
1
T

T∑

i=1

gi, ĥ :=
1
T

T∑

i=1

hi (5.37)

in the remaining of the paper the model obtained by (5.6) using (5.37) will be
called “MCMC posterior mean” model.

• Maximum a Posteriori Estimate

w̄y, w̄u = arg max
wy

i
,wu

i

pS(wy, wu|Y) (5.38)

in the remaining of the paper the model obtained by (5.6) using (5.38) will be
called “MCMC MAP” model.

110 Enforcing Model Stability in Nonparametric Gaussian Regression

5.6 Simulations Results

The performances of the models obtained from the four5 techniques described in Section

5.3, 5.4 and 5.5 are compared by means of a Monte Carlo experiment. Recall that

the acronyms for the estimates associated to the stabilization technique are “LMI”,

“ML+PF”, “MCMC Posterior Mean” and “MCMC MAP”.

At each Monte Carlo run, the aim is to estimate stable ARMAX models from a

training data set, generated by a marginally stable model, using a NPPEM approach

equipped with the four stabilization techniques. By marginally stable model we mean

that its poles are close to the complex unit circle.

A comparison on the performance is given in terms of both prediction quality of new

data and of reconstruction of the “true” impulse response.

Generation of Marginally Stable Model

At each Monte Carlo run a 2nd-order SISO ARMAX model, called M , is generated:

A(z)y(t) = kz−1B(z)u(t) + C(z)e(t) (5.39)

The two complex conjugate roots of the monic polynomial A(z) are placed in 0.996 ·
exp(±j π

3), B(z) is a random polynomial whose roots are restricted to lie inside the circle

of radius 0.9 and C(z) has randomly roots with absolute value chosen in the interval

[0.65, 0.73] in order to ensure that the predictor impulse responses decay in no more then

30 steps. The roots of C(z) have a restricted domain only for simulation purposes, but

in principle they could be anywhere in the unit circle.

The system input u(t) and the disturbance noise e(t) are independent white noise

with unit variance (for both identification and test data sets). The constant k is designed

so that the signal-to-noise ratio of (5.39) equals 1. More specifically, let yu(t) := B(z)
A(z)u(t)

and ye(t) := C(z)
A(z)e(t), then k is set to k :=

√
var(ye)
var(yu) , where with the symbol var(x) we

mean the sample variance of the vector x.

Experiment description

A Monte Carlo study of 5000 runs is implemented. At each run, a model of the form of

(5.39) is used to generate a training set of 400 samples and a test set of 1000 samples.

The predictor impulse responses wy and wu are estimated via an Empirical Bayes

approach described in (2.4.4) , using the Stable Spline Kernel, Pillonetto and De Nicolao

5Recall that in 5.5 two estimators (MAP and Posterior Mean) are considered.

5.6 Simulations Results 111

(2010), as a priori covariance matrix and determining the hyperparameters by marginal

likelihood optimization (see Section 2.4.3).

The predictor impulse responses coefficients become negligible after 30 temporal

lags for how model (5.39) has been designed. Hence, the predictor impulse responses

truncation length is set to n = 30. The noise variance, σ2, is computed via a low bias

Least Squares identification method.

The system transfer functions in (5.6) obtained from the Empirical Bayes estimates

wy
EB and wu

EB ended up to be unstable about 150 times out of the 5000 Monte Carlo

runs. In these cases the stabilisation procedures have been applied. Thus, our Monte

Carlo analysis is limited to these 150 data sets which resulted in unstable forward model

estimates. All these 150 models became stable after applying any of our stabilisation

techniques.

The CVX toolbox, Grant et al. (2006) based on YALMIP, has been used in Matlab

to solve the convex optimization problem (5.13), with solver SeDuMi, Sturm (1999).

Instead, the optimization problem (5.18) has been solved using the Matlab function

fminsearch.m.

Performance

The experimental results are measured in terms of both capability of predicting new data

and reconstruction of the true impulse responses. A comparison among the different

techniques follow each performance index.

At each Monte Carlo run, after the predictor estimates ŵy and ŵu, solutions of

Problem 5.2.1 are obtained with the four stabilization techniques, the prediction quality

of the one-step-ahead prediction ŷ(t|t−) is evaluated by means of the one-step-ahead

coefficient of determination:

COD(i) = 100


1−

√√√√
∑1000

t=1

(
ytest(t)− ŷ(i)(t|t−)

)2
∑1000

t=1 y2
test(t)


 (5.40)

where i indicates the i-th Monte Carlo run.

Figure 5.2 displays the boxplots of the {COD(i)} obtained through all the Monte

Carlo runs by any of the four stabilization techniques as well as for the “true” model, M .

Index (5.40) obtained from the “true” model is used as a reference in the prediction

performance and the comparison shows that all the models identified perform remarkably

well, with no significant differences. This shows that the artefacts introduced by the

stabilization techniques into the Bayesian estimates do not affect negatively the prediction

112 Enforcing Model Stability in Nonparametric Gaussian Regression

76

78

80

82

84

86

88

90

92

M LMI ML+PF MCMC MCMC MAP
Posterior Mean

Figure 5.2: Monte Carlo results. Boxplots of the {COD(i)} obtained from the one-step
ahead predictor of the “true” model, M , and from the one-step ahead predictors estimated

with the four stabilization techniques.

performance.

The major interest of this work is in the quality of the impulse responses estimation

of the forward model after the four stabilization techniques have been applied. In order

to understand it better, previously, the dominant poles of the estimated forward models

are analysed. In particular, we are interested in the absolute values of the dominant

poles.

In Figure 5.3 the boxplots show the absolute values of the dominant poles of the

stabilized models in the Monte Carlo experiment, the horizontal line in 0.996 indicates

the one of the “true” models. Not surprisingly, all the estimation methods tend to place

the poles closer to the unit circle than 0.996.

Loosely speaking, the Bayesian estimates were unstable, which means that the

estimators were lead by the data to place the dominant pole outside the unit circle and

the proposed stabilization techniques suggest solutions with the dominant pole placed in

between the unstable and the true pole. In particular, “ML+PF” and “MCMC Posterior

Mean” estimate the poles almost at the border of the unit circle, while “MCMC MAP”

has the best approximation to the true dominant pole.

Finally, the estimated impulse responses can be compared to the true ones in terms

5.6 Simulations Results 113

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

LMI ML+PF MCMC MCMC MAP
Posterior Mean

Figure 5.3: Monte Carlo results. Boxplots of the absolute value of the dominant poles of the
identified models. The horizontal line represents the absolute value of the dominant pole of

the true model.

.

of relative errors:

err(i) =
1
2

√√√√
∑1000

t=1

(
g(k)− ĝ(i)(k)

)2
∑1000

t=1 g2(k)
+

1
2

√√√√√
∑1000

t=1

(
h(k)− ĥ(i)(k)

)2

∑1000
t=1 h2(k)

(5.41)

where {ĝ(i)} and {ĥ(i)} are the estimators of the (truncated) impulse responses {g} and

{h} of the true forward model (5.1).

Figure 5.4 reports the boxplots of the impulse responses relative error in the Monte

Carlo experiment for the forward models estimated with the four stabilization techniques.

The “MCMC Posterior Mean” estimator significantly outperforms all the others. The

remaining three techniques achieve rather poor performance in the identification of the

system and the cause can be researched in the estimation of the dominant modes. Indeed,

a higher absolute value of the dominant pole corresponds to a slower decay rate of the

impulse responses. The estimators place the dominant poles very close to the unit circle,

see Figure 5.3, which results in long tailed impulse responses that in turn yield a high

relative error.

The algorithm “MCMC Posterior Mean” deserves a separate discussion. In this case,

114 Enforcing Model Stability in Nonparametric Gaussian Regression

0

2

4

6

8

10

12

14

16

LMI ML+PF MCMC MCMC MAP
Posterior Mean

Figure 5.4: Monte Carlo results. Boxplots of the {err(i)}. Quantity to qualify the recon-
struction of the system impulse responses.

since the estimator Ĝ(z) is the average of all samples Ĝ(i)(z) obtained by the MCMC

algorithm, see (5.37), the dominant pole of Ĝ(z) is the slowest among the dominant

poles of the Ĝ(i)(z) with i = [1, T]. Indeed, in Figure 5.3 the “MCMC Posterior Mean”

procedure estimates among the highest absolute values of the dominant pole w.r.t. the

others procedures. Yet, the effect of these dominant modes in the average (5.37) is

mitigated by the factor 1/T , which have a shrinking effect into the impulse responses

tails. In turn, the estimated impulse responses well approximate functions with a decay

rate inferior to the one suggested by the dominant modes in Figure 5.3 and the relative

error (5.41) for this technique performs satisfactorily, as it can be seen in Figure 5.4.

5.7 Conclusions

Four different techniques have been presented to face the problem of identifying a stable

system using Gaussian regression based on the minimization of the predictor error. The

Monte Carlo experiment shows that the proposed techniques perform remarkably well in

the prediction of new data. The problem arises while reconstructing the system impulse

responses due to the tendency of estimating the dominant modes too close to the border

of the unit circle, thus inducing an excessively slow decay of the impulse responses. Only

the model estimated with the so called “MCMC Posterior Mean” technique performs

5.7 Conclusions 115

satisfactorily in terms of impulse response fit.

Future works

The computational load required by the proposed solution might be problematic in some

application. New techniques to overcome the stability problem of NPPEM approaches

could be designed without the usage of an MCMC algorithm.

In the authors opinion, it would be of particular interest to formalize a new regular-

ization problem which takes into account penalty terms both in the predictor and in the

forward model impulse responses. Some ideas have been developed by the authors but

should be further researched and therefore are omitted here.

116 Enforcing Model Stability in Nonparametric Gaussian Regression

6
Online semiparametric learning for inverse

dynamics modeling

Humanoid robots are sophisticated platforms controlled by a mathematical model to

relate to the actuator inputs to the interactions with the external world read by sensor

feedbacks. This model is called the dynamic model of the robot.

Inverse dynamics models are one possibility to describe the dynamics of the robot.

These models are very useful in robotic applications because they can be used in model-

based control applications to improve the tracking performances leading to high accuracy

and low control gains Craig (2005); Nguyen-Tuong et al. (2009), see the survey Nguyen-

Tuong and Peters (2011b) for a comprehensive overview.

Typically, inverse dynamic models can be obtained from physics first principles, using

the techniques of rigid body dynamics (RBD), Siciliano, Sciavicco, Villani, and Oriolo

(2010). This approach results in a parametric model in which the values of physically

meaningful parameters must be provided in order to complete the fixed structure of

118 Online semiparametric learning for inverse dynamics modeling

the model. Building an inverse dynamics model from the first principles might be very

demanding and, in most cases, out of reach and not suitable for online applications. For

this reason the model can be achieved from data and framed as a parametric estimation

problem, Hollerbach, Khalil, and Gautier (2008); Siciliano et al. (2010). The main

advantage of the parametric approach is that in principle it provides a global relationship

between the input (joint angles, velocities and accelerations) and the output (torques).

However, the linear model does not capture nonlinearities in the data.

Alternatively, the dynamical model can be obtained from experimental data using

machine learning techniques, resulting in a nonparametric model. With respect to the

parametric approach, the nonparametric modeling has the advantage of not requiring

any unrealistic assumption on the physical system, such as rigidity of the links or a

simplistic modeling of the friction; indeed, it can model the dynamics by extrapolating

the input-output relationship directly from the available data.

In order to exploit the advantages of both estimation techniques, semiparametric

models have been recently introduced as a combination of RBD and nonparametric

models, as for instance in Nguyen-Tuong and Peters (2010); Wu and Movellan (2012).

Two main alternatives are possible. The first one is to embed the rigid body dynamics as

a “mean” in the nonparametric part. The second one is to incorporate the rigid body

dynamics in the kernel function.

An important aspect in the inverse dynamics learning is the variation of the mechanical

properties caused by the change of the tasks. It is then necessary to update the model

online. In this framework, it is important that the online algorithm is able to take

advantage of the knowledge already acquired from previously available data, thus speeding

up the learning process. This concept is often called transfer learning Pan and Yang

(2010); Bocsi, Csató, and Peters (2013). Several online learning algorithms have been

proposed in the literature and the interest reader is referred to Section 2.4.5 for an

overview. In addition, we mention the semiparametric algorithms based on the locally

weighted projection approach, De la Cruz, Kulic, Owen, Calisgan, and Croft (2012),

where the parametric approach is used to initialize the nonparametric algorithm and

Camoriano, Traversaro, Rosasco, Metta, and Nori (2016), where a semiparametric online

algorithm, based on the approximation of the kernel function using the so called “random

features”, Rahimi and Recht (2007); Quinonero-Candela and Rasmussen (2005), has been

proposed.

Contributions

The main contributions of this research are the following.

6.1 Problem Statement 119

1. Various semiparametric models proposed in the literature Nguyen-Tuong and Peters

(2010); Wu and Movellan (2012); Camoriano et al. (2016) are shown to be sub-cases

of a unique general model, and an online algorithm is provided for this general

model, exploiting the random features approximation.

2. The online algorithm is used to compare the various modeling approaches (para-

metric, nonparametric, semiparametric) for estimating the inverse dynamics of one

arm of the iCub humanoid robot, using real data. In doing so, two different ap-

proaches for estimating the hyperparameters (the parameters in the nonparametric

approach), namely the marginal likelihood maximization and the cross validation,

are compared. These approaches are discussed in Section 2.4.3.

3. Joint positions, velocities and accelerations are the input locations suggested by the

physics in order to describe the inverse dynamics model. However, joint velocities

and accelerations cannot be measured in the majority of the experiments and

are approximated by numerical differentiation of the joint positions. This brings

significant numerical errors into the model. We propose to replace joint velocities

and accelerations by linear combination of past temporal lags of the joint positions,

thus learning the weight of the linear combination directly from data.

The chapter is organized as follows. In Section 6.1 the problem of inverse dynamic

estimation is formalized. In Section 6.2 parametric, nonparametric and semiparametric

models are introduced while in Section 6.3 these models are approximated to linear models

for which an online algorithm is available. Section 6.4 introduces learning methods to

avoid the numerical errors that might arise in computing the derivatives of the joint

positions. In Section 6.5 the different online algorithms are tested in the inverse dynamics

estimation of the robotic platform iCub. Finally, in Section 6.6 conclusions and future

works are drawn.

6.1 Problem Statement

Background

The dynamics of a robot (Siciliano et al., 2010) with ndof degrees of freedom (DOF), or

more in general of a dynamical system (Taylor, 2005), can be expressed as

τ(s) = M(q(s))q̈(s) + h(q(s), q̇(s)) , (6.1)

120 Online semiparametric learning for inverse dynamics modeling

where τ(s) ∈ R
ndof is the torque applied to the robot joints, q(s), q̇(s), q̈(s) ∈ R

ndof

are the joint positions, velocities and accelerations, M(q(s)) ∈ R
ndof×ndof represents the

generalized inertia matrix and h(q(s), q̇(s)) ∈ R
ndof accounts for the modeled contributions

of Coriolis, centrifugal, centripetal and gravitational and viscous, static and Coulomb

frictions, at time s ∈ Z.

Starting from the laws of physics it would in principle be possible to write a (direct)

dynamical model which, having as inputs the torques acting on the robot joints, outputs

the (sampled) trajectory of the free coordinates (joint angles) q(s), s ∈ Z. This is the so

called “direct dynamics”.

However, for the purpose of control design, it is of interest to know which torques

should be applied in order to obtain a certain trajectory q(s). This is the purpose of the

inverse dynamics modeling: finding a model which, having joint trajectories as inputs,

outputs the applied torques.

A common assumption for simplifying the modeling exercise is to measure not only

the joint positions q(s) but also joint velocities q̇(s) and joint accelerations q̈(s) even

when it is not possible for the robot to sense them. For this reason, velocities and

accelerations are computed by numerical differentiation. Clearly, this can be a rather

crude approximation. However, this assumption simplifies considerably the modeling

exercise because, given q(s), q̇(s), q̈(s), the inverse dynamics model is, in principle, linear

(as it will be shown in model (6.6)).

Inverse Dynamics Estimation

Consider the discrete nonlinear time invariant causal model

M : y(s) = f∗(x(s)) + e(s) s ∈ Z (6.2)

where y(s), x(s) ∈ R
ndof are the output and input measures at time s and e(s) is a zero

mean white Gaussian noise with unknown variance σ2Indof
. The inputs in this Chapter

are denoted with the symbol x instead of u for connection with the machine learning

literature and they will be called input locations, see e.g. Rasmussen and Williams

(2006).

Model (6.2) can be considered for solving the problem of inverse dynamics estimation.

The problem of learning the inverse dynamics becomes the problem of estimating

the model M (i.e. the function f∗) starting from a finite set of measured data samples

{y(s), x(s)}Ns=1. Furthermore, we are interested in performing the inverse dynamics

estimation in an online framework. Suppose that the robot is currently performing a

6.1 Problem Statement 121

trajectory and at each sampling interval a new pair of data becomes available, namely,

the desired next point in the trajectory xd(s) and the torques applied to the joints at the

previous time instant, y(s− 1), read by the sensors. Based on these informations we are

interested in updating the inverse dynamics model within the sampling time interval.

In the first part of the treatise, “standard” quantities are considered as inputs and

outputs: the outputs y(s) are the torques applied to the ndof joints of the robot at time

s and x(s) = [q(s)> q̇(s)> q̈(s)>]> ∈ R
m, with m = 3ndof, denotes the vector “input

locations” obtained by stacking positions, velocities and accelerations of all the ndof joints

of the robot. However, as mentioned in the Background part, we consider that the joint

velocities and accelerations cannot be sensed from the robot and they have been computed

through pre-processing filters. It is well known that applying numerical differentiation

operations to noisy data lead to an increasing amount of error in the derivative signals.

Consequently, joint velocities and accelerations might not be meaningful data. We analyze

the possibility of considering only the joint positions and learn some quantities from the

measurable data to replace the numerical derivatives and accelerations. These quantities

will be called features and they will be treated in Section 6.4 and in the experiments, in

the other sections the input locations will be considered as x(s).

The motivations and the challenges of tackling this identification problem are both

from a theoretical point of view, because there is a nonlinear possibly very complicated

function that has to be estimated from physically meaningful data and from a practical

point of view, because the inverse dynamics model can then be used for robot motion

control, see Figure 6.1.

Controller Robot

xd
s

+

-

+

xs

yd
s



Figure 6.1: Schematic for robot motion control.

More precisely, inverse dynamics is exploited to determine the feedforward joint torques

y(s)d which should be applied to follow a desired trajectory x(s)d, while employing a

feedback controller in order to stabilize the system. Clearly, the more accurate the inverse

dynamics model M, the more accurate the motion control is. In this work, several

approaches, depending on how the function f∗(·) in (6.2) is modelled, are considered.

122 Online semiparametric learning for inverse dynamics modeling

6.2 Semiparametric Models

The semiparametric models are a combination of models that contain physical knowledge

of the true system (the parametric part) and of data-driven models (the nonparametric

part).

In the following, several approaches to combine the global knowledge of the RBD

model and the flexibility of the NPPEM approaches are described. Moreover, it is shown

how these semiparametric models (and also parametric and nonparametric as particular

cases of them) can be recast in the Gaussian regression framework.

Specifically, consider f : Rm → R
ndof as the hypothesis we make to describe the true

system (6.2):

y(s) = f(x(s)) + e(s) (6.3)

where e(s) is a zero mean Gaussian noise with covariance σ2Indof
and f is a Gaussian

process

f(·) ∼ N
(
µ(·), K̃(·, ·)

)
(6.4)

with µ(·) := E[f(·)] the mean function and K̃(·, ·) := cov (g(·), g(·)) the positive definite

covariance matrix, also called kernel. See Section 2.4 for more details.

We shall show how all the semiparametric models can be described by appropriate

choice of the mean and of the covariance function of (6.4).

Linear Parametric Model

The rigid body dynamics (RBD) of a robot is described by the equation

y(s) = M(q(s))q̈(s) + C(q(s), q̇(s))q̈(s) +G(q(s)) (6.5)

where M(q(s)) is the inertia matrix of the robot, C(q(s), q̇(s)) the Coriolis and

centripetal forces and G(q(s)) the gravity forces, Siciliano et al. (2010). The terms on

the right hand side of (6.5) can be rewritten as ψ>(x(s))π which is linear in the robot

(base) inertial parameters π ∈ R
p and where ψ(x(s)) : R

m → R
p×ndof is the known

RBD regressor which is a nonlinear function of the joint trajectories described by x(s).

Therefore, the RBD model becomes

y(s) = ψ>(x(s))π + e(s) (6.6)

where e(s) is a zero-mean Gaussian noise with covariance matrix σ2Indof
and it includes

6.2 Semiparametric Models 123

the nonlinearities of the robot that are not modeled in the rigid body dynamics (e.g.

actuator dynamics, frictions, etc.).

A known issues of this model (see e.g., Hollerbach et al. (2008)) is that the problem

of determining π from measured data y(s) is usually ill posed and the matrix ψ(x(s)) is

rank deficient. Possible solutions would be to design either efficient experiments to collect

data sufficiently rich to excite all the modes of the system or dedicated experiments

which are good to estimate parameters separately. Another possible solution is to add a

regularization term in the estimation problem, which is equivalent to modeling π as a

Gaussian random vector in a Bayesian view. The last option is here considered and the

following prior distribution is assigned to π :

π ∼ N (0p, γ
2Ip) (6.7)

Consequently, model (6.6) has a priori Gaussian distribution such as (6.4) with

µ(x) = 0p

K̃(x(t), x(s)) = γψ>(x(t))ψ(x(s)).

The covariance γψ>(x(t))ψ(x(s)) shall be also called RBD kernel or parametric

kernel.

Nonparametric Model

The robot inverse dynamics is modeled postulating

y(s) = g(x(s)) + e(s) (6.8)

where g(x(s)) is a zero mean vector valued (taking values in R
ndof) Gaussian random

process indexed in R
m, with covariance function

E[g(x(t))g(x(s))>] = ρ2K(x(t), x(s))Indof
. (6.9)

The hyperparameter ρ2 plays the role of scaling factor of the kernel function K which

shall be called nonparametric kernel and has to be chosen by the user.

In this case, there is a straightforward association with (6.4), i.e., f(x) ∼ g(x):

124 Online semiparametric learning for inverse dynamics modeling

µ(x) = 0p (6.10)

K̃(x(t), x(s)) = ρ2K(x(t), x(s))Indof
. (6.11)

Semiparametric model with RBD mean

Taking in consideration the global property of the parametric model and the flexibility of

the data-driven nonparametric models the first idea that might come up to combine the

two is to use the former as a mean term and the latter as covariance function.

This is equivalent to model the inverse dynamics as the Gaussian process in (6.4)

setting
µ(x(s)) = E[f(x(s))] = ψ>(x(s))π

K̃(x(t), x(s)) = cov (f(x(t)), f(x(s))) = ρ2K(x(t), x(s))Indof

(6.12)

where µ(x(s)) corresponds to the RBD model (6.6), π is the vector of inertial parameters

that has to be estimated from the data and ψ(x(s)) is the RBD regressor and K is the

same as the nonparametric kernel in (6.9).

Semiparametric model with RBD kernel

An alternative possibility for combining the parametric and nonparametric models in

model (6.8) is to incorporate the RBD structure in the kernel, Nguyen-Tuong and Peters

(2010). This means that the physical knowledge of the system accounts for its variability

instead of accounting as a mean term.

Therefore, the inverse dynamics model in (6.4) becomes a random process with zero

mean and covariance function

K̃(x(t)), x(s)) = E[f(x(t))f(x(s))>] = γ2ψ(x(t))>ψ(x(s)) + ρ2K(x(t), x(s))Indof
(6.13)

where the first term ψ(x(s)) is the RBD regressor and the second term, K, is again

the nonparametric kernel as in (6.9). As before, e(s) is white noise with covariance matrix

σ2Indof
.

6.3 Model Approximation to Regularized Least Squares

The problem of the Gaussian regression framework when applied to estimation or

prediction problems is that the estimator depends on the number of data making this

6.3 Model Approximation to Regularized Least Squares 125

approach intractable in big-data or online applications.

For this reason, it is proposed to approximate the kernel using the so called random

features (in Section 6.3.1) which transform the semiparametric models into equivalent

linear ones (in Section 6.3.2) and allows a well known recursive update suitable for online

settings, described in Section 6.3.3.

6.3.1 Kernel Approximation in Random Features

In robotics, a typical choice is the Gaussian kernel, Gijsberts and Metta (2011); Nguyen-

Tuong and Peters (2010); Wu and Movellan (2012); Rasmussen and Williams (2006),

KG(x(t), x(s)) = e−
‖x(t)−x(s)‖2

2τ (6.14)

where τ is the kernel width1 and it represents the metric to correlate the input

locations x(t) and x(s).

The Gaussian kernel has an interesting formulation in terms of Fourier transform.

Indeed, as a positive definite real function the kernel is the Fourier transform of a

probability density function, Rahimi and Recht (2007). Accordingly, the Gaussian kernel

becomes

KG(x(t), x(s)) =
∫

Rm
p(ω)ei

ω>(x(t)−x(s))
τ dω (6.15)

where p(ω) is the probability density defined as

p(ω) =
1

(
√

2π)m
e−

‖ω‖2

2 . (6.16)

The integral in (6.15) can be written as an infinite summation of appropriate terms,

therefore KG(x(t), x(s)) can be approximated by the sample mean of ei
ω>

k
(x(t)−x(s))

τ ,

k = 1, .., d provided wk ∼ p(ω), that is:

KG(x(t), x(s)) ≈ 1
d

d∑

k=1

ei
ω>

k
(x(t)−x(s))

τ = φ(x(t))>φ(x(s)) (6.17)

where the basis functions φ(x) ∈ R
2d are

φ(x) =
1√
d

[
cos

(
ω>

1 x
τ

)
. . . cos

(
ω>

d
x

τ

)
sin
(

ω>
1 x
τ

)
. . . sin

(
ω>

d
x

τ

)]>

. (6.18)

1Therefore, to be precise the function K as well as its approximation (6.17) depends on the parameter
τ which will be estimated from data. For simplicity of exposition this dependence is not made explicit in
the notation.

126 Online semiparametric learning for inverse dynamics modeling

This approximation has been introduced in Rahimi and Recht (2007).

6.3.2 Approximated Models

In the following it is shown how the semiparametric models described in Section 6.2 result

after applying the approximation in random features to their nonparametric kernels.

Consider a nonparametric Gaussian model with a generic mean function m(·) and

covariance function proportional to the Gaussian kernel (6.14):

y(s) = f(x(s)) + e(s), f(·) ∼ N
(
m(·), ρ2KG(·, ·)

)
(6.19)

by approximating KG with the kernel approximation (6.17) the model (6.19) is

equivalent (up to the approximation error) to model

y(s) = m(x(s)) + φ(x(s))>α+ e(s), α ∼ N
(
02d, ρ

2I2d

)
(6.20)

where φ(x(s)) is a basis function defined in (6.18) and α ∈ R
2d is a zero mean random

Gaussian vector with covariance function proportional to the identity matrix. Recall

that d is the number of the basis functions summed to compute the kernel in (6.17),

consequently, its value has to be chosen according to a trade-off between model and

computational complexity. We underline that a peculiarity of model (6.20) is that the

regressor φ(x) is depending on the width of the Gaussian Kernel τ which has to be

identified from the data.

In the following, the Gaussian kernel (6.14) is postulated for the nonparametric kernel

of all the semiparametric models described in Section 6.2. It will be shown for each

of them, i.e., (6.6), (6.26), (6.30) and (6.39), that when the approximation in random

features (6.17) is used, they can ultimately be written in the form:

y(s) = µ(x(s)) + ϕ(x(s))>θ + e(s) (6.21)

for a suitable choice of the mean function µ ∈ R
ndof , of the regressor vector ϕ(x(s))> ∈

R
ndof×c and of the random vector θ ∈ R

c which is modeled as a zero mean Gaussian

vector with a suitable covariance matrix Σ0. e(s) is white noise with covariance matrix

σ2Indof
.

Recalling the equivalence between the models (6.19) and (6.20), it is only a matter of

substitution to obtain the inverse dynamics models as the linear approximation in (6.21).

6.3 Model Approximation to Regularized Least Squares 127

Linear Parametric Model

Notice that the parametric model in (6.6) does not depend on any nonparametric kernel

and it is already in the form of (6.21) therefore there is no need to approximate it. This

model is denoted by “P”. The analogy with model (6.21) is given by

µ(x(s)) = 0ndof
∈ R

ndof (6.22)

ϕ(x(s))> = ψ>(x(s)) ∈ R
ndof×p (6.23)

θ = π ∈ R
p. (6.24)

Approximated Nonparametric Model

Applying the kernel approximation (6.17) to (6.9) is equivalent to model g(x) in the form

g(x) = (φ(x)> ⊗ Indof
)α (6.25)

where α is a zero mean Gaussian vector with variance ρ2I2dndof
. Therefore, the

nonparametric model of the robot inverse dynamics (6.8) can be approximated by

y(s) = (φ(x(s))> ⊗ Indof
)α+ e(s). (6.26)

This model is denoted by “NP”. The analogy with model (6.21) is given by

µ(x(s)) = 0ndof
∈ R

ndof (6.27)

ϕ(x(s))> = φ(x(s))> ⊗ Indof
∈ R

ndof×2dndof (6.28)

θ = α ∈ R
2dndof . (6.29)

Approximated Semiparametric Model with RBD Mean

Approximating, as above, the kernel K in (6.12) with the random features (6.17), the

semiparametric model of the inverse dynamics takes the form

y(s) = ψ(x(s))>π + (φ(x(s))> ⊗ Indof
)α+ e(s) (6.30)

where α is a random vector with zero mean and covariance matrix ρ2I2dndof
. As before,

e(s) is white noise with covariance matrix σ2Indof
.

128 Online semiparametric learning for inverse dynamics modeling

At this point two alternatives are possible. The first and most principled one is to

treat π as an unknown parameter which has to be estimated e.g., it can be considered

as a hyperparameter. In this case model (6.30) is denoted by “SP”. The analogy with

model (6.21) is given by

µ(x(s)) = ψ>(x(s))π ∈ R
ndof (6.31)

ϕ(x(s))> = φ(x(s))> ⊗ Indof
∈ R

ndof×2dndof (6.32)

θ = α ∈ R
2dndof . (6.33)

A suboptimal alternative but often applied in the literature is to assume that π is

known, here denoted by π̂, possibly estimated using some preliminary experiment as in

Nguyen-Tuong and Peters (2010) or estimated via Least Squares or it can be given from

some expert knowledge. Hence, only the residual vector is to be model, i.e.,

ỹ(s) := y(s)− ψ(x(s))>π̂ = (φ>(x(s))⊗ Indof
)α+ e(s). (6.34)

This strategy is denoted by “SP2” and it is followed, for instance, in Camoriano et al.

(2016), where the vector π̂ is obtained solving in the least squares sense the regression

model (6.6). The analogy with model (6.21) is given by

µ(x(s)) = ψ(x(s))>π̂ ∈ R
ndof (6.35)

ϕ(x(s))> = φ(x(s))> ⊗ Indof
∈ R

ndof×2dndof (6.36)

θ = α ∈ R
2dndof . (6.37)

Approximated Semiparametric Model with RBD Kernel

Approximating, as above, the kernel K in (6.13) with the random features (6.17), it turns

that

E[g(x(t))g(x(s))>] = γ2ψ(x(t))>ψ(x(s)) + ρ2φ(x(t))>φ(x(s))Indof
. (6.38)

Accordingly, the approximated semi-parametric model of the inverse dynamics with

RBD kernel is:

6.3 Model Approximation to Regularized Least Squares 129

y(s) =
[
ψ>(x(s)) φ>(x(s))⊗ Indof

] [π
α

]
+ e(s) (6.39)

where [π> α>]> ∈ R
p+2dndof is a zero mean Gaussian random vector with covariance

matrix blkdiag(γ2Ip, ρ
2I2dndof

).

The analogy with model (6.21) is given by

µ(x(s)) = 0ndof
∈ R

ndof (6.40)

ϕ(x(s))> =
[
ψ>(x(s))φ>(x(s))⊗ Indof

]
∈ R

ndof×p+2dndof (6.41)

θ =

[
π

α

]
∈ R

p+2dndof . (6.42)

The semiparametric model with RBD kernel described in this Section is connected,

under the Bayesian framework, with the RBD mean model. This analogy is stated in

Proposition 6.3.1 and beyond being interesting from a theoretical point of view it can be

also useful for the purpose of computing the estimator for model (6.30).

Proposition 6.3.1. The estimate of model (6.30) is equivalent to the estimate of model

(6.39) when γ →∞ and the parameters (ρ, σ, τ) are fixed.

Proof. We shall now show that the semi-parametric model with RBD mean (6.30) can be

obtained as a limiting case (as γ →∞) of model (6.39). To do so, let us assume that the

vector parameter π in (6.30) is a zero mean Gaussian random vector with covariance γ2I,

independent of α in (6.30). This implies that, conditionally on x(s), ψ>(x(s))π is a zero

mean Gaussian with covariance matrix γ2ψ>(x(s))ψ(x(s)) and it is independent of α.

Therefore f(x(s)) := ψ>(x(s))π + (φ>(x(s)) ⊗ Indof
)α is zero mean Gaussian with

covariance

E[f(x(t))f(x(s))>] = γ2ψ(x(t))>ψ(x(s)) + ρ2(φ(x(t))>φ(x(s))⊗ Indof
),

equal to (6.38).

A well known connection between Bayes and Fisher (i.e. assuming the parameter π

is an unknown but fixed quantity) estimators, is that the latter can be obtained as a

limiting case of the former when:

• the parameter π is modeled as a zero mean Gaussian vector with variance γ2I

130 Online semiparametric learning for inverse dynamics modeling

• the variance of the prior distribution of π is let go to infinity by letting γ2 →∞

To make this formal, let us stack the available data y(s), s = [1, N] in the vector Y

and stack correspondingly the regressors ψ>(x(s)) and φ>(x(s))⊗ I in the matrices Ψ

and Φ respectively, so that models (6.30) and (6.39) can be written as

Y = Ψπ + Φα+ E (6.43)

where E is defined with the same rule as Y . The minimum variance estimators of π and

α under (6.38) are thus given by:

π̂ = cov(π, Y)V ar−1{Y }Y
= γ2Ψ>

(
γ2ΨΨ> + ρ2ΦΦ2 + σ2I

)−1
Y

α̂ = Cov(α, Y)var−1{Y }Y
= ρ2Φ>

(
γ2ΨΨ> + ρ2ΦΦ2 + σ2I

)−1
Y.

(6.44)

Defining R := ρ2ΦΦ> + σ2I and using the matrix inversion lemma we have:

(
γ2ΨΨ> + ρ2ΦΦ> + σ2I

)−1
=
(
γ2ΨΨ> +R

)−1
=

= R−1 −R−1Ψ
(
Ψ>R−1Ψ + γ−2I

)−1
Ψ>R−1

so that, from (6.44)

π̂ = γ2

(
I −Ψ>R−1Ψ

(
Ψ>R−1Ψ + γ−2I

)−1
)

Ψ>R−1Y

=
(
Ψ>R−1Ψ + γ−2I

)−1
Ψ>R−1Y

and, similarly

α̂ = ρ2Φ>

(
I −R−1Ψ

(
Ψ>R−1Ψ + γ−2I

)−1
Ψ>

)
R−1Y

= ρ2Φ>R−1[Y −Ψπ̂]

Clearly, as γ →∞, we have that π̂ converges to the weighted least squares estimate

π̂W LS =
(
Ψ>R−1Ψ

)−1
Ψ>R−1Y (6.45)

and α̂ converges to

α̂ = ρ2Φ>R−1[Y −Ψπ̂W LS].

On the other hand the marginal likelihood function for model (6.43), under (6.12) i.e.

6.3 Model Approximation to Regularized Least Squares 131

when π is considered as an unknown parameter, has the form:

Lm(Y) = −2log(p(Y))

= log(det(R)) + (Y −Ψπ)>R−1(Y −Ψπ).

When (ρ, σ2, τ) are kept fixed, minimization w.r.t. π can be performed in closed form,

and yields exactly the weighted least squares solution (6.45). Note however that, even

for γ →∞, the marginal likelihoods of Y given the hyperparameters (ρ, σ2, τ) computed

using models (6.12) and (6.38) are different. In fact, if (6.12) is postulated, and π is solved

for as above, one obtains the profile marginal log-likelihood L̂m(Y) := Lm(Y)|π=π̂W LS

L̂m(Y) = log(det(R)) + (Y −Ψπ̂W LS)>R−1(Y −Ψπ̂W LS) (6.46)

where the hyperparameters (ρ, σ2, τ) which are hidden in the definition of R = ρ2ΦΦ> +

σ2I.

Instead, if (6.38) is postulated, the marginal log-likelihood takes the form

LK(Y) = log(det(γ2ΨΨ> +R)) + Y >(γ2ΨΨ> +R)−1Y.

Using, as above, the matrix inversion Lemma on (γ2ΨΨ> +R), Sylvester determinant

identity and defining π̂ := (Ψ>R−1Ψ + γ−2I)−1ΨR−1Y , we obtain

LK(Y) = log(det(R)) + log(det(I + γ2Ψ>R−1Ψ))

+(Y −Ψπ̂)>R−1(Y −Ψπ̂)

+π̂>Ψ>R−1(Y −Ψπ̂).

As γ →∞ we have that π̂ → π̂W LS and π̂>Ψ>R−1(Y −Ψπ̂)→ 0 so that

LK(Y) ' log(det(R)) + log(det(I + γ2Ψ>R−1Ψ))

+(Y −Ψπ̂W LS)>R−1(Y −Ψπ̂W LS).
(6.47)

The second term log(det(I + γ2Ψ>R−1Ψ)) can be manipulated as follows:

log(det(I + γ2Ψ>R−1Ψ)) = log(det(γ2I)) + log(det(γ−2I + Ψ>R−1Ψ))

' log(det(γ2I)) + log(det(Ψ>R−1Ψ))

where the last approximation hold when γ → ∞. Inserting the last expression in

132 Online semiparametric learning for inverse dynamics modeling

LK(Y) we obtain that, up to the constant log(det(γ2I)) which is not a function of ρ, σ2, τ ,

LK(Y) ' log(det(R)) + log(det(Ψ>R−1Ψ)) + (Y −Ψπ̂W LS)>R−1(Y −Ψπ̂W LS)

' Lm(Y) + log(det(Ψ>R−1Ψ))
(6.48)

where the last equation shows that the two log likelihoods differ for a nontrivial term

which have an influence on the location of their minima.

6.3.3 Online Learning

The problem of estimating model (6.3) from noise data y(s) with s = [1, N] is well known

in the literature and has been detailed in Section 2.4.

The minimum variance linear estimator of f givenN input-output data pair {y(s), x(s)}
is the solution of the Tikhonov regularization problem

f̂N = argmin
f∈Rt

1
σ2

N∑

s=1

‖y(s)− f(x(s))‖2 +
1
ρ2
‖f‖2

K̃
(6.49)

where ‖f‖2
K̃

= f>K̃−1f . By the Representer Theorem and considering w.l.o.g. the

kernel K̃ = ρ2KG the solution of (6.49) is equivalent to

f̂N (x) = ρ2
N∑

s=1

a(s)KG(x(s), x) (6.50)

where a(s) ∈ R
ndof . Unfortunately, the number of parameters a(s) is depending on

the number of data N , making the estimator intractable for an online (recursive) solution.

To overcome this limitation, it turns helpful for the approximation in random features

(6.17) of KG. Indeed, it has been shown that under this approximation model (6.3) can

be approximated as the model (6.21) linear in the parameters θ. Recall that model (6.21)

depends on the other parameters Σ0, τ and σ2. At the moment, we assume that these

parameters are known. How to estimate them is a crucial point and will be explained at

the end of this Section (see “Hyperparameters Tuning”). Thus, the vector θ ∼ N (0c,Σ0)

completely specifies the inverse dynamics model and, as such, our learning problem has

been reduced to estimating the vector θ in (6.21).

Therefore, the minimum variance linear estimator of θ given N input-output data

pair {y(s), x(s)} is the solution of the Tikhonov regularization problem:

θ̂N = argmin
θ∈Rp

1
σ2

N∑

s=1

‖y(s)− ϕ(x(s))>θ‖2 + ‖θ‖2Σ0
. (6.51)

6.3 Model Approximation to Regularized Least Squares 133

This coincides with the so called Regularized Least Squares problem and its optimal

solution can be computed recursively through the well known Recursive Least Squares

algorithm, see e.g (Ljung, 1999, Chapter 11). At a certain time instant t problem (6.51)

admists the solution

θ̂t = θ̂t−1 + Lt(yt − ϕ(xt)>θ̂t−1) (6.52)

Lt =
Pt−1ϕ(xt)

1 + ϕ(xt)>Pt−1ϕ(xt)
(6.53)

Pt = Pt−1 −
Pt−1ϕ(xt)ϕ(xt)>Pt−1

1 + ϕ(xt)>Pt−1ϕ(xt)
(6.54)

with initial conditions e.g.,

θ̂0 = 0c, P0 = Ic. (6.55)

Recursion (6.52)-(6.55) can be used to update the inverse dynamics model (6.21)

when new data become available.

In practice the Recursive Least Squares algorithm can be implemented taking advan-

tage of the square-root algorithms, e.g. propagating Cholesky factors Lt of Pt rather than

Pt as in (6.54). We have actually used the Cholesky-based update, see Björck (1996),

which has better numerical properties. The computational complexity of each update is

O(c2).

Hyperparameters Tuning

All the models presented in Section 6.2 depend on one or more parameters, called

hyperparameters, which describe the prior model. For instance, the hyperparameters in

model (6.30), used in the semiparametric learning with RBD mean, are η := (π, ρ2, τ2, σ2)

while those in model (6.39), used in the semiparametric learning with RBD kernel, are

η := (γ2, ρ2, τ2, σ2). These hyperparameters are not known and need to be estimated from

the data. In Section 2.4.3 two different approaches are outlined to address this problem,

namely the marginal likelihood maximization and the validation set or cross validation.

The validation set was described with several options while here the considered version is

specified.

The batch of data used for the identification is split in two data sets: the training set

and the validation set. A set of candidate hyperparameters is specified and denoted as

134 Online semiparametric learning for inverse dynamics modeling

Ω. The inverse dynamics model Mη is estimated for each η ∈ Ω using the training set.

Then, for any Mη the mean squared error MSE(η) is computed using the validation set.

Hence, the MSE(η) provides an estimate of the error rate. According to the validation

set approach, (James et al., 2013, Chapter 6), the optimal hyperparameters are given by

solving

η̂ = argmin
η∈Ω

MSE(η). (6.56)

6.4 Derivative-free Model

In this section the input locations x(s) are a subject of study. Until now it has been

considered that the input locations are composed by the joint positions, joint velocities

and joint accelerations, i.e., x(s) = [q(s)> q̇(s)> q̈(s)>]> ∈ R
m, with m = 3ndof. As

discussed in Section 6.1 the joint velocities and joint accelerations cannot be measured

from the robot but are obtained through numerical differentiation of the joint positions

leading to possible significant numerical errors. This is a very well known problem and

highly discussed, see e.g., Siciliano et al. (2010); Hollerbach et al. (2008); Kozlowski

(2012); Craig (2005); Nguyen-Tuong and Peters (2011b). Common solutions are to resort

to ad-hoc filter design or to not take into account the noisy derivatives.

Some qualitative considerations on choosing these input locations are drawn.

• The use of joint positions, velocities and accelerations as input locations is justified

by the physics because the RBD model is a second order dynamical system w.r.t.

the joint positions. The concept of using these quantities is therefore linked to

a parametric model and in nonparametric modeling, one can in principle rely on

different input quantities.

• The problems related to numerical differentiation can be partially addressed by

specific filter design. However, this requires the knowledge of the user how to do it,

ad-hoc tuning of the parameters and moreover, there is not a direct way to evaluate

how well the filtered signal results w.r.t. the unknown “true” one.

The issues listed above are only meant to be some discussion points that inspired the

following methodology.

Given the measured data joint torques y(s) and joint positions q(s) with s = [1, N],

we want to learn the inverse dynamics as a function of a vector of input locations x̃(s)

which depends on the past joint positions q(s−) := [q(s)>, q(s− 1)>, . . . , q(s−M)>]> ∈
R

(M+1)ndof . This means that the inverse dynamics model becomes

6.4 Derivative-free Model 135

y(s) = f(x̃(s)) + e(s), s = [1, N]

where f : R
m̃ → R

ndof is considered to be the nonparametric model2 (6.8) and

x̃ : R(M+1)ndof → R
m̃ is the input location map that takes as input the vector q(s−).

Specifically, x̃(s) is linearly dependent on q(s−), i.e.,

x̃(s) = Rq(s−) (6.57)

where R ∈ R
m̃×Mndof is a matrix of parameters that will be estimated as hyperparameters.

Notice that m̃ = kndof and k is the number of quantities that compose the input vector,

here called features. For example, in the standard case where the input locations are joint

positions, velocities and accelerations the input vector is composed by k = 3 features,

indeed, m̃ = m = 3ndof. In the following, all the degrees of freedom (joints) will have the

same features.

The number of features k, the number of past temporal lags M as well as the the

structure of R have to be defined. In the following two possibilities are proposed.

Features resembling joint velocities and accelerations

The first idea is based on the belief that joint positions, velocities and accelerations are

the correct features and the problem relies on the numerical differentiation operations.

Hence, in this case k = 3 features are considered.

We assume that the joint velocities and accelerations are computed by a 1st order

backward difference, B1(z), and by a 2nd order backward difference, B2(z), respectively.

In addition both are filtered by a first order low pass filter, that is

q̇(s) = B1(z)F1(z)q(s) =
1− z−1

Ts

z

z − β1
q(s)

q̈(s) = B2(z)F2(z)q(s) =
1− 2z−1 + z−2

T 2
s

z

z − β2
q(s)

where Ts > 0 is the sampling time and 0 < β1, β2 < 1 represent the poles of the filters.

We resort to a partial fraction decomposition to rewrite the above expressions as a

function of q(s−), that is:

2The extension to the semiparametric models is straightforward from a mathematical point of view.
However, the RBD component in semiparametric models requires that the input locations should be
consistent with the physical laws. More studies on that are needed and have not been done yet.

136 Online semiparametric learning for inverse dynamics modeling

q̇(s) = α1(1− z−1)
z

z − β1
q(s) = α1

z − 1
z − β1

q(s)

= α1q(s) +
M∑

t=1

α1β
t−1
1 (β1 − 1)q(s− t) (6.58)

q̈(s) = α2(1− 2z−1 + z−2)
z

z − β2
q(s) = α2

z − 2 + z−1

z − β2
q(s)

= α2q(s) + α2(β2 − 2)q(s− 1) +
M∑

t=2

α2β
t−2
2 (β2

2 − 2β2 + 1)q(s− t)

where α1 = 1/Tc and α2 = 1/T 2
c . Accordingly, the vector of the input locations

becomes

x̃(s) = R q(s−)

:=




Indof
0 0

α1Indof
α1(β1 − 1)Indof

. . . α1β
t−1
1 (β1 − 1)Indof

. . .

α2 α2(β2 − 2)Indof
. . . α2β

t−2
2 (β2

2 − 2β2 + 1)Indof
. . .







q(s)

q(s− 1)
...

q(s−M)




(6.59)

The hyperparameters that have to be estimated in order to characterise R are

η = [α1, β1, α2, β2].

This vector of input locations is denoted with the abbreviation “FVA” since its

Features resemble the structure of the joint Velocities and Accelerations.

A nice property of this characterization is that the number of hyperparameters is low

and it is independent on the length of the past temporal lags M , which can be arbitrarily

chosen.

6.5 Simulations Results 137

Structure-free features

An alternative is to consider the features “free” of any structure and let them be estimated

from the data. This means

x̃(s) = R q(s−) :=




r>
1 ⊗ Indof

...

r>
k Indof







q(s)

q(s− 1)
...

q(s−M)




(6.60)

where r>
i ∈ R

1×M+1 represent the i-th vector of hyperparameters. This input locations

vector will be denoted with the abbreviation “FSF” since its Features are Structure-Free.

However, the joint positions are usually measured with accurate sensors and it makes

sense to consider them as a feature; accordingly, the first row of hyperparameters is

considered known and set to r>
1 := [1, 0, . . . , 0].

Notice, that the input locations vector “FSF” includes “FVA” in (6.59) and all the

possible linear and causal numerical differentiation operations. The price of this generality

is that a large number of hyperparameters has to be estimated, i.e., (k − 1)(M + 1). As

it is well known in optimization this might lead to local minima problems. In order to

overcome this issue one might resort to regularization techniques on the hyperparameters

or to set appropriate initial conditions.

6.5 Simulations Results

An interesting aspect of this research has been the possibility to work with real data

collected from the humanoid robot iCub, Metta, Natale, Nori, Sandini, Vernon, Fadiga,

Von Hofsten, Rosander, Lopes, Santos-Victor, et al. (2010), shown in Figure 6.2.

The data have been kindly provided by the authors of Camoriano et al. (2016).

iCub is a full-body humanoid robot with 53 degrees of freedom. The aim of the

experiments is to test the models of Section 6.3.2 for learning online the inverse dynamics

of one iCub’s arm, while the others degree of freedom are fixed.

The inputs q(s) are the angular positions of the 3 degrees of freedom (dof) shoulder

joints and of the 1-dof elbow joint. Joint positions have been differentiated to obtain joint

velocities and accelerations by the authors of Camoriano et al. (2016) using a standard

module of the open source iCub project (the adaptWinPolyEstimator3 module) which

is based on the work Janabi-Sharifi, Hayward, and Chen (2000). The input locations

3Available at http : //wiki.icub.org/brain/adaptW inP olyEstimator_8cpp_source.html

138 Online semiparametric learning for inverse dynamics modeling

Figure 6.2: Humanoid Robot iCub.

vector x(s) is the stack of the joint positions, velocities and accelerations obtained in

this way, while the input locations vectors x̃(s) considered in Section 6.4 are obtained

starting from the q(s).

The outputs y(s) are the 3 force and 3 torque components measured by the six-axes

force/torque (F/T) sensor embedded in the shoulder of the iCub arm, see Figure 6.3.

Figure 6.3: iCub’s arm.

Notice that the measured forces/torques are not the applied joint forces and torques

and, as such, the model we learn is not, strictly speaking, the inverse dynamics model.

Yet, as explained in Ivaldi, Fumagalli, Randazzo, Nori, Metta, and Sandini (2011), the

6.5 Simulations Results 139

feedforward joint torques can be determined from components (forces and torques) of

y(s). Indeed, such a model has been used in the literature as a benchmark for the inverse

dynamics learning, Gijsberts and Metta (2011), Camoriano et al. (2016) .

Datasets

We consider the 2 datasets used in Camoriano et al. (2016), corresponding to different

trajectories of the end-effector. In the first one the end-effector tracks circles in the

XY plane of radius 10cm at an approximative speed of 6m/s; in the second one, the

end-effector tracks similar circles but in the XZ plane (the Z axis corresponds to the

vertical direction, parallel to the gravity force). The two circles are tracked using the

Cartesian controller proposed in Pattacini, Nori, Natale, Metta, and Sandini (2010).

Each dataset contains approximately 8 minutes of data collected at a sampling rate of

20Hz, for a total of 10000 points per dataset. One single circle is completed by the robot

in about 1.25 seconds which corresponds to 25 points.

Models

The models described in Sections 6.3.2 and 6.4 are considered, endowed with the marginal

likelihood approach (ML) for the estimation of the hyperparameters, as well as the

validation based methods4 (VS) discussed in Camoriano et al. (2016). For ease of

exposition the following shorthands are used:

• P: the parametric model (6.6).

• NP-ML: the approximated nonparametric model (6.26); hyperparameters estimated

with ML.

• SP-ML: the semi-parametric model with RBD mean (6.30); hyperparameters

estimated with ML.

• SP2-ML: the semi-parametric model with RBD mean (6.34), in which the mean is

computed via least squares as in Camoriano et al. (2016) and then the nonparametric

model is applied to the residuals; hyperparameters estimated with ML.

• SPK-ML: the semi-parametric model with RBD kernel (6.39); hyperparameters

estimated with ML.
4 Using validation based methods can become infeasible when the number of hyperparameters is large;

therefore we have not applied the validation set approach to four models: first, the semiparametric model
with RBD mean when the mean is to be considered as an hyperparameter, second, the semiparametric
model with RBD kernel which has the extra parameter γ and finally the two derivative-free models.

140 Online semiparametric learning for inverse dynamics modeling

• NP-VS : the nonparametric model (6.26); hyperparameters estimated with VS.

• SP2-VS : the semi-parametric model with RBD mean (6.34), in which the mean is

computed via least squares; hyperparameters estimated with VS.

• NP-ML-FVA: the nonparametric model (6.26); input locations “FVA”; hyperpa-

rameters estimated with ML.

• NP-ML-FSF : the nonparametric model (6.26); input locations “FSF’; hyperparam-

eters estimated with ML.

Experiment

The proposed algorithms have been implemented using Matlab. The RBD regressor ψ for

the right arm of iCub has been computed using the library iDynTree, Nori, Traversaro,

Eljaik, Romano, Del Prete, and Pucci (2015). The Marginal Likelihood has been optimized

using the Matlab fminsearch.m function. The recursive least square algorithms have

been implemented using GURLS library, Tacchetti, Mallapragada, Santoro, and Rosasco

(2013). The results of all validation based methods are obtained using code which has

been kindly provided by the authors of Camoriano et al. (2016).

For each model as above, the following online learning scenario is considered (with

reference to the general model structure (6.21)):

• Initialization: The first 1000 points in XY-dataset are used to estimate the hyper-

parameters with the two techniques considered, say η̂ML and η̂V S , as well as to

compute an initial estimate of parameter θ, say θ̂0.

• Stage 1: The remaining 9000 points of the XY-dataset are used to update online

parameter θ using the recursive least-squares algorithm, thus obtaining θ̂t, t =

1, . . . , 9000. Let us call θ̂1 = θ̂9000 the estimator that has seen all the data of the

XY-dataset.

• Stage 2: The XZ-dataset is split in 5 sequential subsets of 2000 points each

(approximately 100 seconds). In these subsets the performance of the online

estimators are evaluated. For each subset, the parameter θ is independently always

initialized with θ̂1. Then, θ̂1 is updated with the recursive least-squares algorithm

for all the data in the subset.

It is underlined that in Stage 2 the initial model has been computed from the

XY-dataset, which corresponds to a different motion with respect to XZ-dataset. There-

6.5 Simulations Results 141

fore, the evaluation of the performance in Stage 2 allows us to verify the property of

generalization to unseen data of the considered models.

Performance

This section is divided into two: in the first part the models described in Section 6.3.2 are

compared while in the second one the nonparametric models of Section 6.4 are compared.

The goal of the online algorithm is that the model estimated in the second dataset

quickly captures the new information gathered from the XZ-dataset, adapting to the

new task. For instance, in model predictive control the quality of the control depends on

the prediction capability of the model over a prescribed horizon, Maciejowski (2002). In

order to measure this ability we consider the following index:

ε
(i)
t =

∑T
s=1(y(i)

t+s − ŷ
(i)
t+s|t)

2

∑T
s=1(y(i)

t+s)2
(6.61)

where ŷ(i)
t+s|t is the estimate of the output y(i)

t+s at time t+ s using the model estimated

with data up to time t. Therefore, ε(i)
t represents the relative squared prediction error

over the horizon [t+ 1, . . . , t+ T] at time t. Let εF
t and εT

t be the average value of ε(i)
t

for the 3 forces and the 3 torques, respectively.

In Figure 6.4 we show εF
t and εT

t , averaged over the 5 subsets, with T = 25 (1.25

seconds), i.e. with the end-effector completing one circle during the prediction horizon.

Clearly, the parametric algorithm P exhibits a poor performance because it describes

only crude idealizations of the actual dynamics. The algorithms based on the VS approach

perform significantly worse in the first 60 seconds than those based on the ML approach.

This result is not unexpected because the ML approach represents a robust way to

estimate hyperparamters, Pillonetto and Chiuso (2015). The models with the best

performance are SP-ML and SPK-ML because they combine the benefit of the parametric

and the nonparametric approach. Although also SP2-ML exploits this benefit, it provides

a slightly worse performance especially in the estimation of the torques. This is probably

due to the fact that the first (least squares) step, i.e. estimation of the linear model, is a

subject to strong bias deriving from the unmodeled dynamics. Instead, a sound approach

is followed by SP-ML and SPK-ML in which the estimation of the hyperparameters is

performed jointly, avoiding such bias. In the steady state all these methods, with the

exception of P, provide similar performance; yet the two semi-parametric models (SP-ML

and SPK-ML) perform better in terms of both average and standard deviation, as clearly

shown in Figure 6.5 which reports the boxplots of εF
t and εT

t in “steady state”, i.e. after

142 Online semiparametric learning for inverse dynamics modeling

0.05 1 10 98.75

Seconds

10
0

10
2

ε
F t

P

NP-VS

SP2-VS

NP-ML

SP2-ML

SP-ML

SPK-ML

0.05 1 10 98.75

Seconds

10
0

10
2

ε
T t

Figure 6.4: Average (over the 5 subsets of c.a 100 seconds each) of the relative squared
prediction errors εF

t and εT
t , computed with T = 25 corresponding to a horizon of 1.25 seconds.

the first 30 seconds which is considered to be transient (see Figure 6.4).

The comparison of the models in Section 6.3.2 is concluded. The focus now is in

the evaluation of the nonparametric derivative-free models described in Section 6.4,

namely NP-ML-FVA and NP-ML-FSF. Their hyperparameters are estimated through

maximization of the marginal likelihood, therefore the comparison is done w.r.t. the

analogous model with “standard” input locations NP-ML, which also outperforms NP-VS.

The derivative-free models require to set two parameters: first, the number of past

temporal lags M , considered by the features, see (6.59) and (6.60) and second, the

number of features k. The former, after some empirical experiments, has been chosen

M = 10 and the latter, is fixed to k = 3 in the input locations FVA by definition and for

a fair comparison, the same value has been chosen for the input locations FSF.

The prediction capabilities are again measured by the average values for the 3 forces,

εF
t , and for the 3 torques, εT

t , of the relative squared prediction error in (6.61). Therefore,

the following figures are analogous to the Figures 6.4 and 6.5 for the three nonparametric

models.

The average values over the 5 subsets of εF
t and εT

t are illustrated in Figure 6.6,

with T = 25 (1.25 seconds), i.e. with the end-effector completing one circle during the

6.5 Simulations Results 143

NP-VS SP2-VS NP-ML SP2-ML SP-ML SPK-ML
0

0.5

1

1.5
F

o
rc

e
s

NP-VS SP2-VS NP-ML SP2-ML SP-ML SPK-ML
0

0.5

1

1.5

T
o
rq

u
e
s

Figure 6.5: Boxplots of the steady state (i.e. after 30 seconds, see Figure 6.4) relative squared
prediction errors εF

t and εT
t , computed with T = 25 corresponding to a horizon of 1.25 seconds.

prediction horizon.

Both nonparametric derivative-free models are high-performing and a significant

improvement in terms of transitory as well as steady-state can be seen w.r.t. the NP-ML

model.

At time instant t = 0.05, which means when the estimator obtained from the XY-

dataset, θ̂1, makes predictions in a different trajectory never seen before, the NP-ML

estimator performs 10 times worse in the forces and 6 times worse in the torques.

As before, the behaviour in steady state is analysed by boxplots of εF
t and of εT

t after

the first 30 seconds of simulations. The results are shown in Figure 6.7.

The derivative-free models significantly outperform NP-ML in terms of both median

and distribution.

The difference between NP-ML-FSF and NP-ML-FVA is less notable, however the

former slightly outperforms the latter in terms of transitory as well as steady state

performance, resulting to be the preferable method. However, it is remarkable that

NP-ML-FVA outperforms NP-ML; indeed, FVA resembles the most basic backwards

differentiation with a simple 1st order low pass (see (6.58)) and is characterised by a few

hyperparameters.

144 Online semiparametric learning for inverse dynamics modeling

0.05 1 10 98.75

Seconds

10
0tF

NP-ML

NP-ML-FSF

NP-ML-FVA

0.05 1 10 98.75

Seconds

10
-1

10
0

tT

Figure 6.6: Average (over the 5 subsets of c.a 100 seconds each) of the relative squared
prediction errors εF

t and εT
t , computed with T = 25 corresponding to a horizon of 1.25 seconds.

NP-ML NP-ML-FSF NP-ML-FVA
0

0.5

1

F
o
rc

e
s

NP-ML NP-ML-FSF NP-ML-FVA

0.2

0.4

0.6

0.8

T
o
rq

u
e
s

Figure 6.7: Boxplots of the steady state (i.e. after 30 seconds, see Figure 6.6) relative squared
prediction errors εF

t and εT
t , computed with T = 25 corresponding to a horizon of 1.25 seconds.

6.5 Simulations Results 145

As a final remark, the nonparametric derivative-free models achieved prediction

performances that neither the semiparametric models SPK-ML nor SP-ML could, as it

can be seen when comparing Figure 6.4 with Figure 6.6 and Figure 6.5 with Figure 6.7.

The prediction error is lower in the derivative-free models in terms of both transitory

and steady-state.

These results give an empirical evidence that learning the features from the input

location is a rather promising direction.

NP-ML-FSF resulted to be the most high-performing technique and, as a last com-

parison, it is of interest to examine its performance as the number of features changes.

The choice of k = 3 results from the physics5 that suggests three specific features: the

joint positions, velocities and accelerations. In terms of differential equations this means

that the RBD is a second order model of the joint positions. As already discussed the

choice of the number of features is arbitrary in the nonparametric model; consequently

one possible question that could arise is if the physical laws are right in yielding a second

order differential equation for the Rigid Body Dynamical model. The question is clearly

too ambitious and we do not claim to have an answer to it. However, the following results

give some empirical evidence on the question.

The model NP-ML-FSF is compared for different number of features, i.e., k = 2, 3, 4.

The way the comparison is carried out is the usual one: Figure 6.8 represents the

average over the 5 subsets of the prediction error (6.61) for the forces and the torques

(analogously to Figures 6.4, 6.6) and the steady state of εF
t and εT

t are analyzed in Figure

6.9 (analogously to Figures 6.5 and 6.7).

From the Figures 6.8 and 6.9 it can be observed that when only 2 features in the

input locations are considered the performance deteriorates, which means that input

space is not rich enough to describe the dynamics of the robot. Instead, in the cases of

k = 3 or k = 4 the performance are analogous, which means that adding a fourth feature

does not provide any helpful information in the input space to describe the dynamics.

Notice that also the case of k = 5 leads to similar results and therefore is omitted here.

Concluding, this experiment shows that the appropriate number of features required

to describe the dynamics of the system is 3, which confirms that the RBD model should

be a set of second order differential equations w.r.t. the joint positions.

5The choice k = 3 is set for a “fair comparison” with the method FVA, which indeed tries to resemble
the physics laws

146 Online semiparametric learning for inverse dynamics modeling

0.05 1 10 98.75

Seconds

10
0tF

NP-ML-FSF, k=3

NP-ML-FSF, k=2

NP-ML-FSF, k=4

0.05 1 10 98.75

Seconds

10
0

tT

Figure 6.8: Average (over the 5 subsets of c.a 100 seconds each) of the relative squared
prediction errors εF

t and εT
t , computed with T = 25 corresponding to a horizon of 1.25 seconds.

NP-ML-FSF, k=2 NP-ML-FSF, k=3 NP-ML-FSF, k=4
0

0.2

0.4

0.6

0.8

F
o
rc

e
s

NP-ML-FSF, k=2 NP-ML-FSF, k=3 NP-ML-FSF, k=4

0.2

0.4

0.6

T
o
rq

u
e
s

Figure 6.9: Boxplots of the steady state (i.e. after 30 seconds, see Figure 6.8) relative squared
prediction errors εF

t and εT
t , computed with T = 25 corresponding to a horizon of 1.25 seconds.

6.6 Conclusions 147

6.6 Conclusions

In this Chapter, several algorithms used for online learning of the robot inverse dynamics

are placed in a common framework. Such algorithms are classified according to the

following: the considered model (parametric, nonparametric, semiparametric with RBD

mean and semi-parametric with RBD kernel), the way the hyperparameters are estimated

(VS approach and ML approach) and the choice of the input locations (derivative-free

features and joint velocities and accelerations).

Those algorithms are applied to the online leaning of the inverse dynamics of one

iCub’s arm. The results showed the superiority of the ML approach to estimate the

hyperparameters and also that semiparametric models outperform the others, providing

the same input locations. The last result confirms the advantage of combining parametric

and nonparametric approaches together.

The introduction of the derivative-free models yields outstanding results: the nonpara-

metric models equipped with the procedure to learn the features of the input locations

outperform the companion nonparametric model and the semiparametric models with

input locations given by joint positions velocities and acceleration.

Future works

Several extensions are possible:

• Semiparametric models appear to be an effective resource to estimate the dynam-

ics of physical systems since they combine the qualities of both parametric and

nonparametric models. Nevertheless, it is not clear yet, what the best way to

combine the two is. Furthermore, in several applications one might be interested in

the real physical value of the parameters. This means that it should be granted

to the parametric component of the semiparametric models to describe as much

information as possible from the data. Indeed, in the current methods, it plausible

that the nonparametric component explains informations that could be in principle

described by the parametric model. This result is not addressed in the current

research but it would be an important turning point in further researches.

• in the proposed online algorithms tuning the hyperparameters is a fundamental

step which lead to very different performance. However, in this work the hyper-

parameters are retained fixed to the initial estimate. This is done in order to

achieve high computational performance in the update of the estimator, O(c2) if

c is the dimension of the estimator. However, in Chapter 4 it is shown that the

online update of the hyperparameters yield great advantages in the estimation

148 Online semiparametric learning for inverse dynamics modeling

performance (in particular when dealing with time-varying systems). The extension

of the online techniques proposed in Chapter 4 to the problem of estimating robotic

inverse dynamics could bring important advantages for the real-world applications.

• On the one hand, the introduction of the nonparametric derivative-free models

seems to be a promising direction in the estimation of the inverse dynamic models.

On the other hand, semiparametric models outperform the nonparametric ones.

Consequently, semiparametric derivative-free models are an appealing extension.

References

References 151

Andrieu C., Doucet A., and Holenstein R. Particle markov chain monte carlo

methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

72(3):269–342, 2010.

Aravkin A., Burke J., Chiuso A., and Pillonetto G. On the estimation of

hyperparameters for empirical bayes estimators: Maximum marginal likelihood vs

minimum mse. Proc. of SYSID 2012, 2012.

Aronszajn N. Theory of reproducing kernels. Trans. of the American Mathematical

Society, 68:337–404, 1950.

Åström K.-J. and Bohlin T. Numerical Identification of Linear Dynamic Systems

from Normal Operating Records, pages 96–111. Springer US, Boston, MA, 1966. ISBN

978-1-4899-6289-8. URL http://dx.doi.org/10.1007/978-1-4899-6289-8_12.

Bachnas A., Tóth R., Ludlage J., and Mesbah A. A review on data-driven linear

parameter-varying modeling approaches: A high-purity distillation column case study.

Journal of Process Control, 24(4):272–285, 2014.

Bai E.-W., Tempo R., Liu Y., and others . Identification of iir nonlinear systems

without prior structural information. IEEE transactions on automatic control, 52(3):

442–453, 2007.

Banbura M., Giannone D., and Reichlin L. Large Bayesian VARs. Journal of

Applied Econometrics, 25(1):71–92, 2010.

Barzilai J. and Borwein J. M. Two-point step size gradient methods. IMA Journal

of Numerical Analysis, 8(1):141–148, 1988.

Bertsekas D. Nonlinear Programming. Athena Scientific, 1995. ISBN 9781886529144.

URL https://books.google.it/books?id=QeweAQAAIAAJ.

Billings S. Identification of nonlinear systems¿ a survey. In IEE Proceedings D-Control

Theory and Applications, volume 127, pages 272–285. IET, 1980.

Billings S. A. Nonlinear system identification: NARMAX methods in the time, frequency,

and spatio-temporal domains. John Wiley & Sons, 2013.

Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006.

Bittanti S., Bolzern P., and Campi M. Convergence and exponential convergence of

identification algorithms with directional forgetting factor. Automatica, 26(5):929–932,

1990.

152

Björck A. Numerical Methods for Least Squares Problems. Society for Industrial

and Applied Mathematics, 1996. URL http://epubs.siam.org/doi/abs/10.1137/

1.9781611971484.

Bocsi B., Csató L., and Peters J. Alignment-based transfer learning for robot models.

In The 2013 International Joint Conference on Neural Networks (IJCNN), pages 1–7,

2013.

Bonettini S., Chiuso A., and Prato M. A scaled gradient projection methods for

Bayesian learning in dynamical systems. SIAM Journal on Scientific Computing, page

in press, 2015.

Bonettini S. and Prato M. Nonnegative image reconstruction from sparse fourier

data: a new deconvolution algorithm. Inverse Problems, 26(9):095001, 2010. URL

http://stacks.iop.org/0266-5611/26/i=9/a=095001.

Bonettini S., Zanella R., and Zanni L. A scaled gradient projection method for

constrained image deblurring. Inverse Problems, 25(1):015002, 2009. URL http:

//stacks.iop.org/0266-5611/25/i=1/a=015002.

Bonettini S. Inexact block coordinate descent methods with application to non-negative

matrix factorization. IMA Journal of Numerical Analysis, 2011. URL http://imajna.

oxfordjournals.org/content/early/2011/01/12/imanum.drq024.abstract.

Bottegal G., Aravkin A. Y., Hjalmarsson H., and Pillonetto G. Robust EM

kernel-based methods for linear system identification. CoRR, abs/1411.5915, 2014.

URL http://arxiv.org/abs/1411.5915.

Box G. E., Jenkins G. M., Reinsel G. C., and Ljung G. M. Time series analysis:

forecasting and control. John Wiley & Sons, 2015.

Brockwell P. J. and Davis R. A. Time series: theory and methods. Springer Science

& Business Media, 2013.

Calafiore G. Approximation of n-dimensional data using spherical and ellipsoidal

primitives. IEEE Transaction on System, Mand, And Cybernetics, 32, March 2002.

Camoriano R., Traversaro S., Rosasco L., Metta G., and Nori F. Incremental

semiparametric inverse dynamics learning. In 2016 IEEE International Conference on

Robotics and Automation (ICRA), pages 544–550, May 2016.

References 153

Campi M. C. and Weyer E. Guaranteed non-asymptotic confidence regions in system

identification. Automatica, 41(10):1751–1764, 2005.

Campi M. C. and Weyer E. Finite sample properties of system identification methods.

Automatic Control, IEEE Transactions on, 47(8):1329–1334, 2002.

Candes E. J., Wakin M. B., and Boyd S. P. Enhancing sparsity by reweighted l1

minimization. Journal of Fourier analysis and applications, 14(5-6):877–905, 2008.

Carli F., Chen T., Chiuso A., Ljung L., and Pillonetto G. On the estimation

of hyperparameters for bayesian system identification with exponentially decaying

kernels. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages

5260–5265. IEEE, 2012.

Carlin B. P. and Louis T. A. Bayes and empirical bayes methods for data analysis.

Statistics and Computing, 7(2):153–154, 1997.

Chartrand R. and Yin W. Iteratively reweighted algorithms for compressive sensing.

In Acoustics, speech and signal processing, 2008. ICASSP 2008. IEEE international

conference on, pages 3869–3872. IEEE, 2008.

Chen G. Stability of nonlinear systems. Encyclopedia of RF and Microwave Engineering,

2004.

Chen T., Andersen M., Ljung L., Chiuso A., and Pillonetto G. System identifica-

tion via sparse multiple kernel-based regularization using sequential convex optimization

techniques. IEEE Transactions on Automatic Control, 59(11):2933–2945, 2014.

Chen T., Ohlsson H., and Ljung L. On the estimation of transfer functions, regu-

larizations and Gaussian processes - revisited. Automatica, 48(8):1525–1535, 2012.

Chen T. and Ljung L. Implementation of algorithms for tuning parameters in

regularized least squares problems in system identification. Automatica, 49(7):2213–

2220, 2013.

Chilali M. and Gahinet P. H-infinity design with pole placement constraints:an lmi

approach. IEEE Transactions on Automatic Control, 41:358–367, 1996.

Chiuso A. The role of vector autoregressive modeling in predictor based subspace

identification. Automatica, 43:1034–1048, 2007. ISSN 0005-1098.

Chiuso A. Regularization and bayesian learning in dynamical systems: Past, present

and future. Annual Reviews in Control, 41:24–38, 2016.

154

Craig J. J. Introduction to robotics: mechanics and control, volume 3. Pearson Prentice

Hall Upper Saddle River, 2005.

Cressie N. Statistics for spatial data. John Wiley & Sons, 2015.

Csáji B. C., Campi M. C., and Weyer E. Sign-perturbed sums: A new system

identification approach for constructing exact non-asymptotic confidence regions in

linear regression models. Signal Processing, IEEE Transactions on, 63(1):169–181,

2015.

Csató L. and Opper M. Sparse on-line gaussian processes. Neural Comput., 14

(3):641–668, March 2002. ISSN 0899-7667. URL http://dx.doi.org/10.1162/

089976602317250933.

Daley R. Atmospheric data analysis. Cambridge university press, 1993.

Dasgupta S. and Huang Y. F. Asymptotically convergent modified recursive least-

squares with data-dependent updating and forgetting factor for systems with bounded

noise. Information Theory, IEEE Transactions on, 33(3):383–392, 1987.

Davidon W. C. Variable metric method for minimization. SIAM Journal on Optimiza-

tion, 1(1):1–17, 1991. URL http://dx.doi.org/10.1137/0801001.

De la Cruz J. S., Kulic D., Owen W. S., Calisgan E., and Croft E. A. On-line

dynamic model learning for manipulator control. In SyRoCo, pages 869–874, 2012.

De Nicolao G., Ferrari-Trecate G., and Lecchini A. MAXENT priors for stochastic

filtering problems. In Mathematical Theory of Networks and Systems, Padova, Italy, July

1998. URL http://control.ee.ethz.ch/index.cgi?page=publications;action=

details;id=1779.

Efron B. The estimation of prediction error. Journal of the American Sta-

tistical Association, 99(467):619–632, 2004. URL http://dx.doi.org/10.1198/

016214504000000692.

Efron B. Bayesians, frequentists, and scientists. Journal of the American Statistical

Association, 100(469):1–5, 2005.

Efron B. and Tibshirani R. J. An introduction to the bootstrap. CRC press, 1994.

Garatti S., Campi M. C., and Bittanti S. Assessing the quality of identified

models through the asymptotic theory-when is the result reliable? Automatica, 40(8):

1319–1332, August 2004. ISSN 0005-1098.

References 155

Gelman A., Roberts G., and Gilks W. Efficient Metropolis jumping rules., volume

Bayesian Statistics, chapter V. Oxford University Press, 1996.

Gijsberts A. and Metta G. Incremental learning of robot dynamics using random

features. In IEEE International Conference on Robotics and Automation (ICRA),

pages 951–956, 2011.

Gilks W., Richardson S., and Spiegelhalter D. Markov Chain Monte Carlo in

Practice. Chapman & Hall/CRC Interdisciplinary Statistics. Taylor & Francis, 1995.

ISBN 9780412055515.

Goodwin G., Gevers M., and Ninness B. Quantifying the error in estimated

transfer functions with application to model order selection. IEEE Transactions on

Automatic Control, 37(7):913–928, 1992.

Gora M. Stability of the convex combination of polynomials. Control and Cybernetics,

36, 2007.

Grant M., Boyd S., and Ye Y. Disciplined convex programming. In Liberti L.

and Maculan N., editors, Global Optimization: from Theory to Implementation,

Nonconvex Optimization and Its Applications, pages 155–210. Springer, New York,

2006.

Guo L. Estimating time-varying parameters by the kalman filter based algorithm:

stability and convergence. Automatic Control, IEEE Transactions on, 35(2):141–147,

1990.

Guo L., Ljung L., and Priouret P. Performance analysis of the forgetting factor

rls algorithm. International journal of adaptive control and signal processing, 7(6):

525–538, 1993.

Haario H., Saksman E., and Tamminen J. An adaptive Metropolis algorithm.

Bernoulli, 7, 2001.

Hannan E. and Deistler M. The Statistical Theory of Linear Systems. Wiley, 1988.

Hartikainen J. and Särkkä S. Kalman filtering and smoothing solutions to temporal

gaussian process regression models. In 2010 IEEE International Workshop on Machine

Learning for Signal Processing, pages 379–384, Aug 2010.

Hastie T., Tibshirani R., and Friedman J. The elements of statistical learning.

Springer series in statistics Springer, Berlin, 2008.

156

Hollerbach J., Khalil W., and Gautier M. Model identification. In Springer

Handbook of Robotics, pages 321–344. Springer, 2008.

Huber M. F. Recursive gaussian process: On-line regression and learning. Pattern Recog-

nition Letters, 45:85 – 91, 2014. ISSN 0167-8655. URL http://www.sciencedirect.

com/science/article/pii/S0167865514000786.

Hunt K. J., Sbarbaro D., Żbikowski R., and Gawthrop P. J. Neural networks

for control systems?a survey. Automatica, 28:1083–1112, 1992.

Ikeara S. A method of wiener in a nonlinear circuit. Technical report, MIT, 1951.

Ivaldi S., Fumagalli M., Randazzo M., Nori F., Metta G., and Sandini G.

Computing robot internal/external wrenches by means of inertial, tactile and f/t

sensors: theory and implementation on the icub. In Humanoid Robots (Humanoids),

2011 11th IEEE-RAS International Conference on, pages 521–528, 2011.

J. E. Dennis J. and Moré J. J. Quasi-newton methods, motivation and theory. SIAM

Review, 19(1):46–89, 1977. URL http://dx.doi.org/10.1137/1019005.

James G., Witten D., Hastie T., and Tibshirani R. An introduction to statistical

learning, volume 112. Springer, 2013.

Janabi-Sharifi F., Hayward V., and Chen C.-S. Discrete-time adaptive windowing

for velocity estimation. IEEE Transactions on control systems technology, 8(6):1003–

1009, 2000.

Jaynes E. T. and Kempthorne O. Confidence intervals vs bayesian intervals. In

Foundations of probability theory, statistical inference, and statistical theories of science,

pages 175–257. Springer, 1976.

Katayama T. Subspace Methods for System Identification. Communications and

Control Engineering. Springer London, 2006. ISBN 9781846281587. URL https:

//books.google.it/books?id=Ge_HTdCBtZAC.

Kimeldorf G. and Wahba G. Some results on tchebycheffian spline functions. Journal

of Mathematical Analysis and Applications, 33(1):82 – 95, 1971. ISSN 0022-247X. URL

http://www.sciencedirect.com/science/article/pii/0022247X71901843.

Kozlowski K. R. Modelling and identification in robotics. Springer Science & Business

Media, 2012.

References 157

Kubat M. Neural networks: a comprehensive foundation by simon haykin, macmillan,

1994, isbn 0-02-352781-7., 1999.

Lakshmikantham V., Leela S., and Martynyuk A. A. Practical stability of

nonlinear systems. World Scientific, 1990.

Lawrence N., Seeger M., and Herbrich R. Fast sparse gaussian process methods:

The informative vector machine. In Proceedings of the 15th International Conference on

Neural Information Processing Systems, NIPS’02, pages 625–632, Cambridge, MA, USA,

2002. MIT Press. URL http://dl.acm.org/citation.cfm?id=2968618.2968696.

Leeb H. and Potscher B. Model selection and inference: Facts and fiction. Econometric

Theory, 21(01):21–59, 2005.

Ljung L. System Identification - Theory for the User. Prentice-Hall, Upper Saddle

River, N.J., 2nd edition, 1999.

Ljung L. . and Söderström T. Theory and Practice of Recursive Identificationn.

Signal Processing, Optimization, and Control. The MIT Press, 1983.

Lozano L. Convergence analysis of recursive identification algorithms with forgetting

factor. Automatica, 19(1):95–97, 1983.

Maciejowski J. M. Predictive control: with constraints. Pearson education, 2002.

Magni P., Bellazzi R., and Nicolao G. D. Bayesian function learning using mcmc

methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):

1319–1331, Dec 1998. ISSN 0162-8828.

Matheron G. The intrinsic random functions and their applications. Advances in

applied probability, pages 439–468, 1973.

Metta G., Natale L., Nori F., Sandini G., Vernon D., Fadiga L., Von Hofsten

C., Rosander K., Lopes M., Santos-Victor J., and others . The icub humanoid

robot: An open-systems platform for research in cognitive development. Neural

Networks, 23(8):1125–1134, 2010.

Miller D. N. and de Callafon R. A. Subspace identification with eigenvalue con-

straints. Automatica, 49:2468–2473, 2013.

Nelles O. Nonlinear system identification: from classical approaches to neural networks

and fuzzy models. Springer Science & Business Media, 2013.

158

Ng T., Goodwin G., and Andersson B. Identifiability conditions for linear multi-

variable systems operating under feedback. Automatica, 13:477–485, 1977.

Nguyen-Tuong D. and Peters J. Using model knowledge for learning inverse dynamics.

In IEEE International Conference on Robotics and Automation, 2010.

Nguyen-Tuong D. and Peters J. Incremental online sparsification for model learning

in real-time robot control. Neurocomputing, 74(11):1859–1867, 2011a.

Nguyen-Tuong D. and Peters J. Model learning for robot control: a survey. Cognitive

Processing, 12(4):319–340, 2011b.

Nguyen-Tuong D., Seeger M., and Peters J. Model learning with local gaussian

process regression. Advanced Robotics, 23(15):2015–2034, 2009.

Ninness B. and Henriksen S. Bayesian system identification via markov chain monte

carlo techniques. Automatica, 46(1):40–51, 2010.

Nocedal J. and Wright S. J. Numerical Optimization, second edition. World Scientific,

2006.

Nori F., Traversaro S., Eljaik J., Romano F., Del Prete A., and Pucci D. icub

whole-body control through force regulation on rigid non-coplanar contacts. Frontiers

in Robotics and AI, page 18, 2015.

O’Hagan A. and Kingman J. Curve fitting and optimal design for prediction. Journal

of the Royal Statistical Society. Series B (Methodological), pages 1–42, 1978.

Overschee P. V. and Moor B. D. A unifying theorem for three subspace system

identification algorithms. Automatica, 31(12):1853 – 1864, 1995. ISSN 0005-1098. URL

http://www.sciencedirect.com/science/article/pii/0005109895000720.

Pan S. J. and Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge

and Data Engineering, 22(10):1345–1359, 2010.

Pattacini U., Nori F., Natale L., Metta G., and Sandini G. An experimental

evaluation of a novel minimum-jerk cartesian controller for humanoid robots. IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 1668–1674, 2010.

Pillonetto G. and Chiuso A. A bayesian learning approach to linear system identifi-

cation with missing data. In Proceedings of the 48th IEEE International Conference

on Decision and Control 2009 Shangai China, 2009.

References 159

Pillonetto G., Chiuso A., and Nicolao G. D. Prediction error identification of

linear systems: a nonparametric Gaussian regression approach. Automatica, pages

291–305, 2011a.

Pillonetto G. and De Nicolao G. A new kernel-based approach for linear system

identification. Automatica, 46(1):81–93, 2010.

Pillonetto G., Dinuzzo F., Chen T., Nicolao G. D., and Ljung L. Kernel

methods in system identification, machine learning and function estimation: a survey.

Automatica, 50(3):657–682, 2014.

Pillonetto G., Quang M., and Chiuso A. A new kernel-based approach for nonlinear

system identification. IEEE Transactions on Automatic Control [accepted], 2011b.

Pillonetto G. and Bell B. M. Bayes and empirical bayes semi-blind deconvolu-

tion using eigenfunctions of a prior covariance. Automatica, 43(10):1698 – 1712,

2007. ISSN 0005-1098. URL http://www.sciencedirect.com/science/article/

pii/S0005109807001999.

Pillonetto G. and Chiuso A. Tuning complexity in regularized kernel-based regression

and linear system identification: The robustness of the marginal likelihood estimator.

Automatica, 58:106 – 117, 2015.

Pintelon R. and Schoukens J. System identification: a frequency domain approach.

John Wiley & Sons, 2012.

Prando G., Romeres D., Pillonetto G., and Chiuso A. Classical vs. bayesian

methods for linear system identification: point estimators and confidence sets. In Proc.

of ECC, 2016a.

Prando G., Romeres D., and Chiuso A. Online identification of time-varying

systems: a bayesian approach. In Proc. of IEEE CDC, 2016b.

Prüher J. and Simandl M. Gaussian process based recursive system identification.

Journal of Physics: Conference Series, 570(1), 2014. URL http://stacks.iop.org/

1742-6596/570/i=1/a=012002.

Qin S. J. An overview of subspace identification. Computers & Chemical Engineering, 30

(10–12):1502 – 1513, 2006. ISSN 0098-1354. URL http://www.sciencedirect.com/

science/article/pii/S009813540600158X. Papers form Chemical Process Control

{VIICPC} {VIISeventh} international conference in the Series.

160

Quinonero-Candela J. and Rasmussen C. E. A unifying view of sparse approximate

gaussian process regression. The Journal of Machine Learning Research, 6:1939–1959,

2005.

Raftery A. and Lewis S. One long run with diagnostics: Implementation strategies

for Markov chain Monte Carlo. Statistical Science, 7:493–497, 1992.

Rahimi A. and Recht B. Random features for large-scale kernel machines. In Advances

in neural information processing systems, pages 1177–1184, 2007.

Ranganathan A., Yang M. H., and Ho J. Online sparse gaussian process regression

and its applications. IEEE Transactions on Image Processing, 20(2):391–404, Feb 2011.

ISSN 1057-7149.

Rasmussen C. and Williams C. Gaussian Processes for Machine Learning. The MIT

Press, 2006.

Ripley B. D. Spatial statistics, volume 575. John Wiley & Sons, 2005.

Robbins H. The empirical bayes approach to statistical decision problems. In Herbert

Robbins Selected Papers, pages 49–68. Springer, 1958.

Roberts G., Gelkman A., and Gilks W. Weak convergence and optimal scaling of

random walk Metropolis algorithms, volume 7. Ann. Appl. Prob, 1997.

Romeres D., Prando G., Pillonetto G., and Chiuso A. On-line bayesian system

identification. In Proc. of ECC 2016, 2016a.

Romeres D., Pillonetto G., and Chiuso A. Identification of stable models via

nonparametric prediction error methods. In Control Conference (ECC), 2015 European,

pages 2044–2049. IEEE, 2015.

Romeres D., Prando G., Pillonetto G., and Chiuso A. Online bayesian system

identification. In Proc. of ECC, 2016b.

Romeres D., Zorzi M., and Chiuso A. Online semi-parametric learning for inverse

dynamics modeling. In Proc. of IEEE CDC, 2016c.

Rugh W. J. and Shamma J. S. Research on gain scheduling. Automatica, 36(10):

1401–1425, 2000.

Sacks J., Welch W. J., Mitchell T. J., and Wynn H. P. Design and analysis of

computer experiments. Statistical science, pages 409–423, 1989.

References 161

Saitoh S. Theory of reproducing kernels and its applications. Pitman research notes in

mathematics series. Longman Scientific & Technical, 1988. ISBN 9780582035645. URL

https://books.google.it/books?id=YzxPAQAAIAAJ.

Santner T. J., Williams B. J., and Notz W. I. The design and analysis of computer

experiments. Springer Science & Business Media, 2013.

Scholkopf B. and Smola A. J. Learning with kernels: support vector machines,

regularization, optimization, and beyond. MIT press, 2001.

Siciliano B., Sciavicco L., Villani L., and Oriolo G. Robotics: modelling, planning

and control. Springer Science & Business Media, 2010.

Smola A. J. and Bartlett P. L. Sparse greedy gaussian process regression. In Leen

T. K., Dietterich T. G., and Tresp V., editors, Advances in Neural Information

Processing Systems 13, pages 619–625. MIT Press, 2001. URL http://papers.nips.

cc/paper/1880-sparse-greedy-gaussian-process-regression.pdf.

Snelson E. and Ghahramani Z. Sparse gaussian processes using pseudo-inputs. In

Advances in Neural Information Processing Systems, pages 1257–1264. MIT press,

2006.

Söderström T., Ljung L., and Gustafsson I. Identifiability conditions for linear

multivariable systems operating under feedback. IEEE Trans. on Aut. Contr., 21:

837–840, 1976.

Söderström T. and Stoica P. System Identification. Prentice-Hall, 1989.

Sturm J. F. Using sedumi 1.02, a matlab toolbox for optimization over symmetric

cones. Optimization Methods and Software, 11(1-4):625–653, 1999. URL http://dx.

doi.org/10.1080/10556789908805766.

Tacchetti A., Mallapragada P., Santoro M., and Rosasco R. Gurls: A least

squares library for supervised learning. Journal of Machine Learning Research, 14:

3201–3205, 2013.

Taylor J. Classical Mechanics. University Science Books, 2005. ISBN 9781891389221.

URL https://books.google.de/books?id=P1kCtNr-pJsC.

Tikhonov A. and Arsenin V. Solutions of Ill-Posed Problems. Washington, D.C.:

Winston/Wiley, 1977.

162

Tipping M. E. Sparse bayesian learning and the relevance vector machine. Journal of

Machine Learning Research, 1:211–244, 2001.

Tresp V. A bayesian committee machine. Neural Comput., 12(11):2719–2741, November

2000. ISSN 0899-7667. URL http://dx.doi.org/10.1162/089976600300014908.

Tsatsanis M. K. and Giannakis G. B. Time-varying system identification and model

validation using wavelets. Signal Processing, IEEE Transactions on, 41(12):3512–3523,

1993.

Viberg M. Subspace-based methods for the identification of linear time-invariant

systems. Automatica, 31(12):1835–1851, December 1995. ISSN 0005-1098. URL

http://dx.doi.org/10.1016/0005-1098(95)00107-5.

Volterra V. Theory of functionals and of integral and integro-differential equations.

Courier Corporation, 2005.

Wahba G. Spline models for observational data, volume 59. Siam, 1990.

Wahlberg B. Estimation of autoregressive moving-average models via high order

autoregressive approximations. Journal of Time Series Analysis, 10(3):283–299, 1989.

Weyer E., Williamson R. C., and Mareels I. M. Y. Finite sample properties of

linear model identification. IEEE Transactions on Automatic Control, 44:1370–1383,

1999.

Wiener N. Extrapolation, interpolation, and smoothing of stationary time series,

volume 2. MIT press Cambridge, 1949.

Williams C. and Seeger M. Using the nyström method to speed up kernel machines.

In Advances in Neural Information Processing Systems 13, pages 682–688. MIT Press,

2001.

Williams C. K. and Rasmussen C. E. Gaussian processes for regression. Advances

in Neural Information Processing Systems, 1996.

Wipf D. P. and Nagarajan S. S. Iterative reweighted l1 and l2 methods for finding

sparse solutions. J. Sel. Topics Signal Processing, 4(2):317–329, 2010.

Wu T. and Movellan J. Semi-parametric gaussian process for robot system identi-

fication. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 725–731, 2012.

References 163

Yao Y., Rosasco L., and Caponnetto A. On early stopping in gradient descent

learning. Constructive Approximation, 26(2):289–315, 2007. ISSN 0176-4276. URL

http://dx.doi.org/10.1007/s00365-006-0663-2.

Zadeh L. On the identification problem. IRE Transactions on Circuit Theory, 3(4):

277–281, 1956.

Zoubir A. M. and Boashash B. The bootstrap and its application in signal processing.

IEEE signal processing magazine, 15(1):56–76, 1998.

	Introduction
	Outline

	System Identification Overview
	System Identification Problem
	Prediction Error Methods
	Parametric PEM: the Classical Approach
	Linear Dynamical Systems
	Online Approach

	Nonparametric PEM: Gaussian Regression
	Posterior Approximation
	Connection with Regularized PEM
	Hyperparameters Tuning
	Linear Dynamical Systems
	Online Approach

	Motivations: Advantages and Disadvantages of Gaussian Regression

	Gaussian Regression and Parametric PEM: a Comparison
	Problem Statement
	Confidence Sets of Classical Parametric PEM
	Confidence Sets of Bayesian Identification Methods
	A Common Framework: ``Particle'' Confidence Sets on the Impulse Response Space
	Simulations Results
	Conclusions

	Online Gaussian Regression
	Problem Statement
	Online Efficient Regularization Update
	1-Step Marginal Likelihood Maximization
	Connection with Existing Methodologies
	Simulations with Time Invariant Dynamical Systems

	Time-Varying Dynamical Systems
	Fixed Forgetting Factor
	Treating the Forgetting Factor as a Hyperparameter
	Sliding Window

	Simulations Results
	Conclusions

	Enforcing Model Stability in Nonparametric Gaussian Regression
	Introduction
	Problem Statement
	Stabilization via LMI constraint
	Stabilization via Penalty Function
	Stabilization via a Full Bayes Sampling Approach
	Simulations Results
	Conclusions

	Online semiparametric learning for inverse dynamics modeling
	Problem Statement
	Semiparametric Models
	Model Approximation to Regularized Least Squares
	Kernel Approximation in Random Features
	Approximated Models
	Online Learning

	Derivative-free Model
	Simulations Results
	Conclusions

	References

