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Chapter 1

Introduction

The minimum time problem is classical in control theory. Given a nonempty
closed target S and a control system






ẏ(t) = f(t, y(t), u(t)) a.e.
u(t) ∈ U a.e.
y(0) = x,

(1.0.1)

where the function f : R×RN ×U → RN is smooth enough and the control
set U is a compact nonempty subset of RM , for each admissible control
u(·) ∈ Uad, i.e. u(·) is measurable and takes value in U , there exists a unique
solution yx,u(·) of (1.0.1) which is the trajectory starting from x under the
control u(·). The minimum time needed to steer x to S, regarded as a
function of x, is called the minimum time function and is denoted by

TS(x) := inf {θS(x, u) | u(·) ∈ Uad},

where θS(x, u) := inf {t ≥ 0 | yx,u(t) ∈ S}. In general, TS ∈ [0,∞]. The
controllable set R consists of all points x ∈ RN such that TS(x) is finite.
The regularity of the minimum time function is related on one hand to the
controllability properties of system (1.0.1), on the other one to the regularity
of the target and of the dynamics, together with suitable relations between
them.

Such topics were studied by several authors (see, e.g., [11, 12, 16, 17,
20, 21, 23, 29, 65] and reference therein) under different viewpoints. In par-
ticular, it is well known that in general the minimum time function T is
not everywhere differentiable. It is also well known that suitable controlla-
bility conditions imply the Hölder continuity of T (see, e.g., [11, Chapter
IV] and references therein). However, the latter fact does not provide in-
formation on differentiability. In a 1995 paper (see [20] and also Chapter
8 in the book [21]), Cannarsa and Sinestrari found a connection between
the control system and the target which actually implies the semiconcavity
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(or the semiconvexity) of T . Semiconcave functions are – essentially – C2-
perturbations of concave functions and therefore inherit several regularity
properties from convexity. Several features of semiconcavity were thoroughly
studied (see Chapters 3, 4, 5 in [21] and references therein), thus providing
a rich set of information on the structure of the minimum time function and
suggesting semiconcavity/semiconvexity as a good regularity class for such
value functions. The main result in [20] shows that if the target satisfies a
uniform internal ball condition (see Definition 2.2.2 below) and the control
system is smooth enough, then T is semiconcave, provided a strong control-
lability assumption, called Petrov condition, holds. A partially symmetric
result, contained in [20], states that if the target is convex and the control
system is linear, then T is semiconvex, provided, again, Petrov condition
holds. The latter requires that the minimized Hamiltonian at all boundary
points of S, computed along unit normal vectors, be bounded away from
zero locally uniformly, i.e., for all R > 0 there exists µ > 0 such that for all
x ∈ bdryS ∩B(0, R),

min
u∈U

〈f(x, u), ζ〉 < −µ, for all ζ ∈ NS(x), ‖ζ‖ = 1. (1.0.2)

It is well known that Petrov condition is equivalent to the local Lipschitz
continuity of T (see, e.g., [21, Section 8.2]).

In an entirely different setting, a class of sets which includes both convex
and C2-sets was studied independently by several authors (including Federer
[39], Canino [14], Clarke, Stern and Wolenski [26], Poliquin, Rockafellar and
Thibault [53]) under different names, for example sets with positive reach
[39], ϕ-convex sets [14], proximally smooth sets [26], and prox-regular sets
[53]. Such sets, which in this thesis will be called sets with positive reach,
are characterized by a strong external sphere condition (see Definition 2.2.1
below): every normal vector must be realized by a locally uniform ball.
By observing that a convex set satisfies the same type of external sphere
condition with an arbitrarily large radius, it is natural to expect that sets
with positive reach enjoy locally several properties that convex sets enjoy
globally. In particular, this holds for the metric projection, which is unique
in a neighborhood of a set with positive reach K. This fact is used in
proving all the regularity properties which are satisfied by sets with posi-
tive reach (see, e.g., [39, Section 4]). Semiconcave functions and sets with
positive reach, through the hypograph, are linked together (see, e.g., Theo-
rem 5.2 in [26], where semiconvex functions are called lower–C2): a locally
Lipschitz function is semiconcave if and only if its hypograph has positive
reach. Of course an entirely symmetric characterization for semiconvex func-
tions can be expressed using the epigraph. Trying to generalize to functions
whose hypo/epigraph has positive reach some regularity properties enjoyed
by semiconcave/convexity functions was therefore a natural challenge. Some
results on this line were obtained in [27, 28], including the a.e. twice differ-
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entiability (see Theorem 2.2.2 below) together some results on the structure
of singularities.

In several control problems, controllability assumptions weaker than
Petrov condition hold, and therefore the minimum time function is not lo-
cally Lipschitz. A natural question therefore is trying to understand whether
the structure of the minimum time function remains unchanged if in the
above setting the controllability assumptions are weakened. In other words
it is natural to investigate whether the hypograph/epigraph of T has posi-
tive reach if T is supposed to be only continuous.

This thesis has been inspired by the above question. It is divided into
two parts. The first one is devoted to the analysis of the minimum time
function. The second one is motivated by the first part, and contains results
on the regularity of merely continuous functions.

Part I: On the structure of the minimum time function
This part is dedicated to two types of regularity of the minimum time

function T . More precisely, we will study in Chapter 3 semiconcavity type
results for T . We first assume that the nonlinear control system is (es-
sentially) C2, the target S satisfies an internal sphere condition, and T is
continuous, and study the hypograph of T in the complement of S. Since
the internal sphere property is closed with respect to the union operator,
one can see intuitively that the reachable set Rt, which is the set of points
reachable from S in time less than t, inherits such property from S. By
combining this fact and the Hamiltonian function, a regularity result on the
hypograph of T can be obtained. The corresponding theorem is as follows:

Theorem 1.0.1 Under the above assumptions, the hypograph of T satisfies
an external sphere condition.

From this theorem, we obtain that if T is Lipschitz then T is semiconcave (see
[50]). However, here the situation is more complicated than in the Lipschitz
case: the main results depend on the pointedness of the normal cone to the
hypograph. Indeed, from a representation of generalized supergradient of
T , we prove that

Theorem 1.0.2 Together with the above assumptions, if the normal cone
to the hypograph is pointed in the complement of S, then the hypograph of
T has positive reach.

In the last section of this chapter, we also prove Theorem 1.0.1 for a class
of differential inclusions taken from [22]. Moreover, in the spirit of [17] we
finally extend this result to arbitrary target S.

The next chapter is devoted to semiconvexity type results for T . For a
linear control system and a convex target, the result is contained in [29].
However, for a nonlinear control system, one has to face the difficulty that
the convexity (even the external sphere property) of the reachable set Rt
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can be easily broken after any small time t (see example 4.3 in [20]). This
is quite natural since the union of convex sets usually has inner corners or
even cusps. Moreover, the ”external normal regularity” of the reachable set
is also related to the uniqueness of the optimal trajectory from a point to
the target S. Hence, finding a class of nonlinear control systems such that
the convexity (or the external sphere property) of Rt still holds up to small
time t is a natural problem.

This chapter is first devoted to a result of this type. Indeed, we assume
that the target is the origin and the linear part of the nonlinear control sys-
tem at the origin is normal (see the definition in Theorem 1.0.3 below) and
study the reachable set Rt. More precisely, for t > 0 small the normality
of the linearization together with a further condition on the Taylor develop-
ment at 0 of the nonlinear control system yields the strict convexity of the
reachable set Rt

L corresponding to the linear nonautonomous systems which
are obtained by linearizing the nonlinear control system along the optimal
trajectories. Therefore, it is reasonable to conjecture that the convexity of
the reachable set, for t > 0 small, still holds also for a suitable nonlinear
control system. For this approach, the main preliminary result is as follows:

Theorem 1.0.3 Consider the linear control system

ẋ = Ax + Bu, (1.0.3)

where A ∈ MN×N , B ∈ MN×M , M ≤ N and u = (u1, u2, ..., uM ) ∈ RM ,
|uj | ≤ 1 for j = 1, 2, ...,M .

Assume that (1.0.3) is normal, i.e., for every column bj , j = 1, 2, ...,M
of B,

rank [bj , Abj , ..., A
N−1bj] = N.

Then for all T > 0 there exists a constant γ > 0, depending only on
N,M,A,B, T such that for all x, y ∈ RT , for all ζ ∈ NRT (x), it holds

〈ζ, y − x〉 ≤ −γ ‖ζ‖ ‖y − x‖N . (1.0.4)

However, the exponent of strict convexity of Rt
L is N as in (1.0.4), while

the exponent of the perturbative term appearing from the linearization is 2.
Therefore, this approach is effective only in the two dimensional case (see
Theorem 4.3.1). On the basis of the preceding result, we will prove that
the epigraph of T in a neighborhood of 0 has positive reach (see Theorem
4.3.3). This will require proving that all points close enough to the origin
are indeed optimal.

Part II: The regularity of a class of continuous functions
Since verifying that a set has positive reach is often demanding, finding

sufficient conditions for this property appears of some interest. In [49], a
class of sets which are characterized by an external sphere condition (at each
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point on the boundary, there exists one proximal normal vector realized by a
locally uniform ball) is considered. The authors proved that if a set satisfies
this condition and is wedged (this concept was introduced by Rockafellar in
[54]) then it has positive reach. This results was later generalized in [50]
by the same authors to investigate the relationships among functions whose
hypograph satisfies an external sphere condition, the functions with posi-
tive reach hypograph and semiconcave functions. Wedgedness of a set C is
equivalent to the pointedness of the Clarke normal cone to C, i.e. the normal
cone does not contain lines (see [25] and [58]). Moreover, the pointedness
assumption for the proximal normal cone to the hypograph of the minimum
time function T appears pivotal in our result [19] (mentioned in the first
part) for computing generalized gradients of T and then for proving that
the hypograph of T has positive reach.

Several counterexamples (see. e.g, [49]), though, show that the external
sphere condition is in general weaker than positive reach. In particular, in
Example 2 in Section 6 of Chapter 3, we constructed a minimum time func-
tion with a constant dynamics and a C1,1 target such that its hypograph
satisfies an external sphere condition but has not positive reach everywhere.
On the other hand, the pointedness assumption for the normal cone to the
hypograph of a continuous function is hard to verify since it is related to
the representation formula for its generalized supergradient (this problem is
studied in [30]). Therefore, the problem of understanding whether some con-
cavity features are preserved under the external sphere condition appears
natural. In Chapter 5 an answer to this question is provided. Our main
result reads -essentially- as follows

Theorem 1.0.4 Let Ω ⊂ RN be open and let f : Ω −→ R be continuous.
Assume that the hypograph of f satisfies the weak external sphere condition.
Then there exists a closed set Γ with zero Lebesgue measure such that the
hypograph of the restricted function fΩ\Γ has positive reach.

Consequently, a function satisfying the assumption of the above theorem
enjoys several regularity properties inherited by functions whose hypograph
has positive reach. Therefore, using Theorem 1.0.1 and Theorem 1.0.4 the
pointedness assumption of the hypograph of T in Chapter 3 is removed and
the a.e. twice differentiability of T for a class of differential inclusions is also
obtained.

In general, however, sets with null Lebesgue measure can be very irreg-
ular and possess almost no structure. A natural question is then that of
investigating the properties of the singular set Σ(f) for special classes of a.e.
differentiable functions f .

When f is convex or concave, the properties of Σ(f) were first investi-
gated in [36] and then developed in [64], [63], [61], [62], [2] and [3]. The basic
approach in such papers is that of estimating the size of Σ(f). We mention
here a result which is essentially due to L. Zaj́ıček and was later extended
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to semiconcave functions by G. Alberti, L. Ambrosio and P. Cannarsa [1].
By ∂F f(x) we denote here the Fréchet supergradient of f at x.

Theorem 1.0.5 ([1]) Let f be locally semiconcave. Then, for any k =
1, . . . ,N the singular set Σk(f) := {x ∈ Ω | dim ∂F f(x) = k} is countably
(N − k)-rectifiable. In particular, Σ(f) is countably (N − 1)-rectifiable and
ΣN (u) is at most countable.

The result also holds for the case of a continuous function f which has the
hypograph with positive reach (see in [27]). Therefore, at the end we will
study in Chapter 6 the rectifiability of the zero Lebesgue measure set Γ.
The corresponding result is Theorem 1.0.4.



Chapter 2

Premilinary

2.1 Nonsmooth analysis and geometric measure
theory

2.1.1 Nonsmooth analysis

We quickly review in this subsection some basic concepts from nonsmooth
analysis. Standard references are in [25, 44, 58].

Let x ∈ Q and v ∈ RN . We say that v is a proximal normal to Q at x
(and we will denote this fact by v ∈ NP

Q (x)) if there exists σ = σ(v, x) ≥ 0
such that

〈v, y − x〉 ≤ σ ‖y − x‖2 for all y ∈ Q; (2.1.1)

equivalently v ∈ NP
Q (x) if and only if there exists λ > 0 such that πQ(x +

λv) = {x}. We say that the proximal normal v is realized by a ball of radius
ρ > 0 if ρ is the supremum of all λ such that πQ(x+λv) = {x}. In this case
the best constant σ such that (2.1.1) holds true is ‖v‖ /(2ρ). The following
further concepts of normal vectors will be used (see [25, Chapter I] and [58,
Chapter VI]). Let x ∈ Q and v ∈ RN . We say that:

1. v is a Fréchet normal (or Bouligand normal) to K at x (v ∈ NF
Q (x))

if
lim sup
Q$y→x

〈v,
y − x

‖y − x‖〉 ≤ 0;

2. v is a limiting, or Mordukhovich, normal to Q at x (v ∈ NL
Q(x)) if

v ∈ {w|w = limwn, wn ∈ NP
Q (xn), xn → x}

and is a Clarke normal (v ∈ NC
Q (x)) if v ∈ coNL

Q(x). It is well known
that NP

Q (x) is convex.

Let f : RN → R ∪ {+∞} be a lower semicontinuous function. By using
epi(f) := {(x, ξ)| ξ ≥ f(x)} and hypo(f) := {(x, ξ)| ξ ≤ f(x)} one can
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define some concepts of generalized differential for f at x ∈ dom(f) = {x ∈
RN | f(x) < +∞}. Let x ∈ dom(f), v ∈ RN . We say that:

1. v is a proximal subgradient of f at x (v ∈ ∂P f(x)) if (v,−1) ∈
NP

epi(f)(x, f(x)); equivalently (see [25, Theorem 1.2.5]), v ∈ ∂P f(x)
iff there exist σ, η > 0 such that for all y ∈ B(x, η)∩ dom (f), it holds

f(y) ≥ f(x) + 〈v, y − x〉 − σ ‖y − x‖2 ; (2.1.2)

2. v is a proximal supergradient of f at x (v ∈ ∂P f(x)) if (−v, 1) ∈
NP

hypo(f)(x, f(x)); equivalently v ∈ ∂P f(x) iff −v ∈ ∂P (−f)(x), i.e., iff
there exist σ, η > 0 such that for all y ∈ B(x, η) ∩ dom (f), it holds

f(y) ≤ f(x) + 〈v, y − x〉 + σ ‖y − x‖2 ; (2.1.3)

3. v is a Fréchet subgradient of f at x (v ∈ ∂F f(x)) if (v,−1) ∈
NF

epi(f)(x, f(x)), i.e.,

lim inf
y→x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖ ≥ 0;

4. v is a Fréchet supergradient of f at x (v ∈ ∂F f(x)) if (−v, 1) ∈
NF

hypo(f)(x, f(x));

5. v is a limiting subgradient of f at x (v ∈ ∂Lf(x)) if (v,−1) ∈
NL

epi(f)(x, f(x)).

6. v is a limiting supergradient of f at x (v ∈ ∂Lf(x)) if (−v, 1) ∈
NL

hypo(f)(x, f(x)).

7. v is a Clarke generalized gradient of f at x (v ∈ ∂f(x)) if (v,−1) ∈
NC

epi(f)(x, f(x)). We recall that if f is Lipschitz continuous in a neigh-
borhood of x, then v ∈ ∂f(x) if and only if v ∈ co{ζ| ζ = limDf(xi), xi ∈
dom(Df), xi → x} (see [25, Theorem 8.1]).

It follows readily from the definitions that the inclusions

NP
Q (x) ⊆ NF

Q (x) ⊆ NL
Q(x) ⊆ NC

Q (x)

hold, together with their analogues for the sub- and supergradient. More-
over, if a vector v belongs to both the Fréchet sub- and supergradient of f
at x, then f is Fréchet differentiable at x and Df(x) = v.

For a not necessarily Lipschitz function f , the horizon subgradient ∂∞f
plays an important role. This is defined as

∂∞f(x) = {v ∈ RN | (v, 0) ∈ NC
epi(f)(x, f(x))},



2.1 Nonsmooth analysis and geometric measure theory 9

and is clearly a closed convex cone. In particular, if f is not locally Lipschitz
in a neighborhood of x, then ∂f(x) may be represented using ∂∞, namely
(see [44, Prop. 2.6] or [58, Theorem 8.49])

∂f(x) = cl (co ∂Lf(x) + co ∂∞f(x)) . (2.1.4)

Finally, we also consider a notion of proximal horizon supergradient, namely
the convex cone

∂∞f(x) = {v ∈ RN | (−v, 0) ∈ NP
hypo(f)(x, f(x))}.

2.1.2 Geometric measure theory

We just introduce in this subsection some definitions needed our results. For
basic concepts of geometric measure theory we refer to [5, 37].

Let k ≥ 0 and A ⊂ RN be fixed. The k-dimensional Hausdorff measure
of A is defined as

Hk(A) := lim
δ→0+

Hk
δ (A) = sup

δ>0
Hk
δ (A)

where for any δ > 0 we set

Hk
δ (A) := inf

{
∑

i∈I

(diam Ai)k | A ⊂
⋃

i∈I

Ai, diam Ai < δ

}
.

The Hausdorff dimension of A is

H-dim(A) := inf{k ≥ 0 | Hk(A) = 0} = sup{k ≥ 0 | Hk(A) = ∞} .

It is well known (see e.g. [40, 46]) that Hk is a Borel measure on RN ; H0 is
the counting measure. Moreover, if k ∈ N and S is a k-dimensional Lipschitz
surface, then the surface measure of S coincides with 2k

ωk
Hk S.

Let k ∈ N; we say that A ⊂ RN is countably k-rectifiable if

A ⊂ N ∪
∞⋃

i=1

Si

where Si are suitable Lipschitz k-dimensional surfaces and N is a Hk-
negligible set. We say that A is k-rectifiable if it is countably k-rectifiable
and Hk(A) < ∞.
Any countably k-rectifiable set A satisfies H-dim(A) = k. It is well known
that, if f : A ⊂ Rk → RN is Lipschitz continuous, then f(A) is countably
k-rectifiable; if A is bounded, then f(A) is k-rectifiable.

In what follows, given A ⊂ RN we define its ε-neighborhood (A)ε by

(A)ε := {x ∈ RN | there exists y ∈ A such that ‖x − y‖ < ε} .
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Let K denote the set of closed subsets of SN−1 ⊂ RN ; for A,B ∈ K we
introduce the Hausdorff distance dH(A,B) by

dH(A,B) = inf{ε > 0 | A ⊂ (B)ε and B ⊂ (A)ε}.

It turns out (see e.g. [6]) that (K, dH) is a complete compact metric space.

2.2 Positive reach and external sphere condition

2.2.1 Positive reach

The concept of reach originates from the unique nearest point property.
More precisely, the reach of a subset Q of RN is the largest r (possibly ∞)
such that if x ∈ RN and the distance , dQ(x), from x to Q smaller than r,
then Q contains a unique point, πQ(x), nearest to x.

Let Q ⊆ RN be closed. We denote by ∂Q the topological boundary of
Q, and, for x ∈ RN ,

dQ(x) = inf{‖y − x‖ | y ∈ Q} (the distance of x from Q)
πQ(x) = {y ∈ Q| ‖y − x‖ = dQ(x)}(the metric projections of x into Q).

Moreover, we set

Unp(Q) = {x ∈ RN : πQ(x) is a singleton}.

If x ∈ Q then

reach(x,Q) = sup{r | B(x, r) ⊂ Unp(Q)}

where B(x, r) = {y | ‖y − x‖ < r}.
Also

reach(Q) = inf{reach(Q,x) | x ∈ Q}.

Remark 2.2.1 The function reach(Q, ·) is continuous in Q. Moreover if
reach(Q) > 0 then Q is closed.

If reach(Q) > 0 we say that Q has positive reach. Moreover, a set with
positive reach can be alternatively defined as follow (see in [14, 35]).

Definition 2.2.1 Let Q ⊂ RN be closed. We say that Q has positive reach
if there exists a continuous function ϕ : Q → [0,∞) be continuous such that
for all x, y ∈ Q, v ∈ NP

Q (x), the inequality

〈v, y − x〉 ≤ ϕ(x) ‖v‖ ‖x − y‖2

holds, i.e. v ∈ NP
Q (x) is realized by a ball of radius 1

2ϕ(x) .
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Remark 2.2.2 If a set Q has positive reach then the function ϕ(·) in the
definition (2.2.1) can be replaced by 1

2 reach(·,Q) .

Proof. The proof can be found in [39, Theorem 4.8 (7)]. !
It is therefore clear that every closed and convex set has positive reach,

with reach(Q) = ∞, and every closed set with a C1,1-boundary has positive
reach, with reach(Q) = L/2, where L is the Lipschitz constant of a suitable
parametrization of ∂Q. Some properties of the distance from a set with
positive reach Q and the metric projection onto Q are important features of
this class of sets.

Theorem 2.2.1 Let Q ⊂ RN be a set with positive reach. Then there exists
an open set U ⊃ K such that

(1) dQ ∈ C1,1(U \ Q) and DdQ(y) = y−πQ(y)
dK(y) for every y ∈ U \ Q;

(2) πQ : U → Q is a locally Lipschitz single-valued map. In particular,
the function πQ : {x ∈ RN | d(x,Q) < reach(Q)

2 } → Q is Lipschitz with
Lipschitz ratio 2.

Moreover,

(3) Q has finite perimeter in RN (provided it is compact);

(4) for every x ∈ Q, NP
Q (x) = NC

Q (x);

(5) the set valued map NP
Q (·) has closed graph in ∂Q × RN .

Proof. The proof of (1) and (2) can be found in [14, Proposition 2.6, 2.9,
Remark 2.10] or in [39, §4]. The proof of (3) is in [27, §5], while (4) and (5)
can be found in several papers, including [53]. !

Remark 2.2.3 Conditions (1) and (2) in Theorem 2.2.1 are actually equiv-
alent to positive reach, as it is proved, e.g., in [39, §4]. Examples of finite
dimensional sets with positive reach can be found, e.g., in [39].

We also give here Lemma 3.1 in [32] which concerns an estimate of the excess
of the convex hull of a set with positive reach Q over Q .

Lemma 2.2.1 Let Q be a set with positive reach and let x ∈ coQ and
dQ(x) < reach(Q). Then

‖x − πQ(x)‖ ≤ 1
2 reach(Q)

N+1∑

i,j=1

titj‖xi − xj‖2,

where ti ≥ 0,
∑N+1

i=1 ti = 1, xi ∈ Q, and x =
∑N+1

i=1 tixi.
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Proof. From Remark 2.2.2, we have for each i = 1, . . . ,N + 1,

< x − πQ(x), xi − πQ(x) >≤ 1
2 reach(Q)

‖x − πQ(x)‖ ‖xi − πQ(x)‖2 ,

so that

< x − πQ(x),
N+1∑

i=1

tixi − πQ(x) >≤ ‖x − πQ(x)‖
2 reach(Q)

N+1∑

i=1

ti ‖xi − πQ(x)‖2 .

Recalling that x =
∑N+1

i=1 tixi, we thus obtain

‖x − πQ(x)‖ ≤ 1
2 reach(Q)

N+1∑

i=1

ti ‖xi − πQ(x)‖2 . (2.2.1)

Putting I =
∑N+1

i=1 ti ‖xi − x‖2, from an elementary computation taking into
account the condition

∑N+1
i−1 ti(x − xi) = 0, we obtain, for all v ∈ RN ,

N+1∑

i=1

ti ‖xi − v‖2 = ‖x − v‖2 + I. (2.2.2)

Now we compute I. Taking v = xj in (2.2.2), we have

N+1∑

i=1

ti ‖xi − xj‖2 = ‖x − xj‖2 + I.

Thus we obtain both

tj

N+1∑

i=1

ti ‖xi − xj‖2 = tj ‖x − xj‖2 + tjI

and
N+1∑

j=1

N+1∑

i=1

tjti ‖xi − xj‖2 =
N+1∑

j=1

tj ‖x − xj‖2 +
N+1∑

j=1

tjI.

From
∑N+1

j=1 tj = 1 and I =
∑N+1

j=1 tj ‖x − xj‖2, we obtain

I =
1
2

N+1∑

j=1

N+1∑

i=1

tjti ‖xi − xj‖2 .

Using this expression in (2.2.2) with πQ(x) in place of v, we obtain

N+1∑

i=1

ti ‖xi − πQ(x)‖2 = ‖x − πQ(x)‖2 +
1
2

N+1∑

j=1

N+1∑

i=1

tjti ‖xi − xj‖2 .
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Thus

‖x − πQ(x)‖ ≤ 1
2 reach(Q)

(
‖x − πQ(x)‖2 +

1
2

N+1∑

j=1

N+1∑

i=1

tjti ‖xi − xj‖2
)
.

Since ‖x − πQ(x)‖ = dQ(x) < reach(Q), the proof is concluded. !
In both optimal control and partial differential equations theory, semi-

concave functions play an important role (see, e.g., [11, 21]). Let Ω ⊂ RN

be open: a function f : Ω −→ R is said to be semiconcave if for every x ∈ Ω
and every δ > 0 there exists a constant C > 0 such that

f(x)− C ‖x‖2 is concave in B(x, δ).

Semiconcave functions are therefore locally Lipschitz. Moreover, thanks to
Theorem 5.2 in [26], the hypograph of such functions has positive reach.
More in general, upper semicontinuous functions which have hypograph with
positive reach (or l.s.c. functions which have epigraph with positive reach)
enjoy several of the regularity properties, except Lipschitz continuity, that
semiconcave functions satisfy. Such functions identify the class which we
want to show that our minimum time belongs to. To this aim, we state a
result which collects the main properties.

Theorem 2.2.2 Let Ω ⊂ RN be open, and let f : Ω → R∪{+∞} be proper,
upper semicontinuous, and such that hypo(f) has positive reach. Then there
exists a sequence of sets Ωh ⊆ Ω such that Ωh is compact in dom(f) and

(1) the union of Ωh covers LN -almost all dom(f);

(2) for all x ∈
⋃

h Ωh there exist δ = δ(x) > 0, L = L(x) > 0 such that f is
Lipschitz on B(x, δ) with ratio L, and hence semiconcave on B(x, δ).

Consequently,

(3) f is a.e. Fréchet differentiable and admits a second order Taylor ex-
pansion around a.e. point of its domain.

Moreover, the set of points where the graph of f is nonsmooth has small
Hausdorff dimension. More precisely, for every k = 1, . . . ,N , the set

{x ∈ int dom(f) | Dim(∂P f(x)) is ≥ k}

is countably HN−k-rectifiable.

This result is essentially Theorem 5.1 in [27].
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2.2.2 External sphere condition

Definition 2.2.2 Let Q ⊂ RN be closed and let θ(·) : ∂Q → (0,∞]. We
say that Q satisfies the θ(·)-external sphere condition if and only if for every
x ∈ ∂Q, there exists a vector vx 0= 0 such that vx ∈ NP

Q (x) is realized by a
ball of radius θ(x), i.e.,

〈 vx

‖vx‖
, y − x

〉
≤ 1

2θ(x)
‖y − x‖2.

for all y ∈ Q.

Moreover, denote Q′ by the closure of the complement of Q, we also say
that the set Q satisfies the θ(·)-internal sphere condition if Q′ satisfies the
θ(·)-external sphere condition.

In general, a set which satisfies an θ(·)-external sphere condition doesn’t
have positive reach (see. e.g, [49]). However, under a wedgedness assumption
these two concepts are equivalent in [49]. The wedgedness assumption was
first introduced by Rockafellar in [54].

Let C ⊂ RN be a cone (i.e., if x ∈ C and λ ≥ 0, then λx ∈ C). We say
that C is wedged if C ∩ (−C) = {0}. In [55, Corollary 18.7.1, p. 169] it is
proved that

if C is closed, convex, and wedged,
then it is the closed convex hull of its exposed rays.

(2.2.3)

We recall (see [55, p.163]) that an exposed ray R+v of a convex cone C is
defined by the property that there exists a linear functional h which is zero
on it and is such that if h(p) = 0 and p ∈ C then p ∈ R+v.

Theorem 2.2.3 Let Q satisfy the θ(·)-external sphere condition. Assume
that the Clarke normal cone NC

Q (x) is wedged at every x ∈ ∂Q then Q has
positive reach.

To end up this subsection, we expose here the relationships among functions
whose hypograph satisfies an external sphere condition, the functions with
positive reach hypograph and semiconcave functions (see in [50]).

Theorem 2.2.4 Let f : Ω ⊂ RN → R be Lipschitz. Then f is semiconcave
if and only if the hypograph of f satisfies a θ(·)-external sphere condition.

Proof. The proof is based on Theorem 2.2.3 under remark that Clarke
normal cones to hypo(f) at every point on graph(f) are wedged. !
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2.3 Control theory

2.3.1 Control systems

We just consider here autonomous control systems, namely, f(x, u) does not
depend on t; this is done for the sake of simplicity since the results we present
can be easily extended to the nonautonomous case. Standard references are
in [11, 21, 13].

Definition 2.3.1 A control system consists of a pair (f,U), where U ⊂ RN

is a closed set and f : RN ×U is a continuous function. The set U is called
the control set, while f is called the dynamics of the system. The state
equation associated with the system is






ẏ(t) = f(y(t), u(t)), t ∈ [0,+∞) a.e.
u(·) ∈ Uad,
y(0) = x,

(2.3.1)

where Uad the set of admissible controls, i.e., the measurable functions u :
R → Rm, such that u(t) ∈ U a.e.

Two basic assumptions of the control systems are

(H1) The control set U is nonempty and compact.

(H2) The function f satisfies:

‖f(y, u) − f(x, u)‖ ≤ L‖y − x‖ ∀x, y ∈ RN ,∀u ∈ U ,

for a positive constant L.

Under the assumption (H2), for any u(·) ∈ Uad, there is a unique Carathéodory
solution of (2.3.1) denoted by yx,u(·). The solution yx,u(·) is called the tra-
jectory starting from x associated with the control u(·). The attainable set
A(T ) from x in time T is thus defined by

AT (x) = {y(u,x)(t) | t ≤ T, u(·) ∈ Uad} (2.3.2)

Observe that assumption (H1) and (H2), together with the continuity of
f , imply

‖f(x, u)‖ ≤ C + L‖x‖, x ∈ RN , u ∈ U ,

where C = max{‖f(0, u)‖ | u ∈ U}. Therefore, the set AT (x) is bounded for
all x ∈ RN and T < ∞. An upper bound of norm of points in the attainable
set AT (x) can be found in the Appendix.

The set AT (x) is in general not closed. However, by standard results,

Remark 2.3.1 AT (x) is compact if f(z,U) is convex for every z ∈ RN .

Proof. The proof is based on Filippov’s Lemma and the compactness prop-
erty for the trajectories for the control system (see Theorem 7.1.5 and The-
orem 7.1.6 in [21]). !
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2.3.2 Minimum time function

Together with the system 2.3.1, we consider a closed nonempty set S ⊂ RN ,
which is called the target.

We first set T (x) = 0 for all x ∈ S. For a fixed x ∈ RN \ S, we define

θ(x, u) := min {t ≥ 0 | yx,u(t) ∈ S}.

Of course, θ(x, u) ∈ (0,+∞], and θ(x, u) is the time taken for the trajectory
yx,u(·) to reach S, provided θ(x, u) < +∞. The minimum time T (x) to
reach S from x is defined by

T (x) := inf {θ(x, u) | u(·) ∈ Uad}. (2.3.3)

Equivalently,
T (x) := inf {t ≥ 0 | At(x) ∩ S 0= ∅}.

Remark 2.3.2 If f(z,U) is convex for every z ∈ RN then

T (x) := min {θ(x, u) | u(·) ∈ Uad}. (2.3.4)

Proof. This is a consequence of Remark 2.3.1. !
A minimizing control in (2.3.4), say ū(·), is called an optimal control.

The trajectory yx,ū(·) associated with ū()̇ is called an optimal trajectory.
We finally give in this subsection a result which one can see intuitively

from the definition of the minimum time function:

Theorem 2.3.1 (Dynamic Programming Principle) Assume that the con-
trol system satisfies (H1) and (H2). For x ∈ RN\S, and for 0 < t ≤ T (x),
we have

T (x) = t + inf {T (y) | y ∈ At(x)}. (2.3.5)

Equivalently, for all u(·) if we set x(·) = yx,u(·) then the function t 2−→
t + T (x(t)) is increasing in [0, T (x)].

Moreover, if x(·) is an optimal trajectory then t 2−→ t + T (x(t)) is con-
stant in [0, T (x)], i.e.,

T (x(t)) = t − s + T (x(s)) for 0 ≤ s ≤ t ≤ T (x).

Proof. The proof can be found in several books, e.g.,[11, 21, 13]. !

2.3.3 Controllability and continuity

Continuity properties of the minimal time function is a widely studied topic,
mainly in connection with controllability. In this subsection, we will give
shortly some definitions and some basic results which are concerned with
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our works. For the references we prefer to quote [11, 21].
We first introduce the notations

R(t) = {x ∈ RN | T (x) < t}, t > 0,

R =
⋃

t>0

R(t) = {x ∈ RN | T (x) < ∞},

where the letter R stands for reachable: R(t) is the set of points which can
reach to the target S with the control dynamics in time less than t, namely,
for all x ∈ R(t)

At(x) ∩ S 0= ∅.

The set R is also called the controllable set.

Definition 2.3.2 The system (f,U) is small-time controllable on S (briefly
STCS) if S ⊆ intR(t) for all t > 0. If S = {0} this property is called small-
time local controllability (STLC).

Note that STLC is equivalent to the continuity of T in 0 if S = {0}, since
T (0) = 0 by definition. The next Proposition extends this observation to
the general case.

Proposition 2.3.1 Assume that the control system (f,U) satisfies (H1),
(H2) and the target S is compact. Then the following statements are equiv-
alent:

(i) the system (f,U) is STCS;

(ii) T is continuous in x for all x ∈ ∂S;

(iii) there exists δ > 0 and ωT : [0, δ] → [0,∞[ such that lims→0 ωT (s) = 0
and T (x) ≤ ωT (dS(x)) for all x ∈ B(S, δ) = {z ∈ RN | dS(z) < δ}.

Proof. The proof is in [11, Proposition 1.2, Chapter IV] . !

Remark 2.3.3 Under assumption in Proposition 2.3.1, T (x) > 0 if and
only if x /∈ S.

Some consequence of STCS which is in [11, Chapter IV].

Proposition 2.3.2 Under assumptions in Proposition 2.3.1, if the system
(f,U) is STCS then:

(i) the controllable set R is open;

(ii) T is continuous in R;

(iii) limx→x0 T (x) = +∞ for any x0 ∈ ∂R.
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We now introduce a special controllability condition which implies the Lip-
schitz continuity of the minimum time function.

Definition 2.3.3 We say that the control system (f,U) and the target S
satisfy the Petrov condition if, for any R > 0, there exists µ > 0 such that

min
u∈U

〈f(x, u), ν〉 ≤ −µ‖ν‖, ∀x ∈ ∂S ∩ B(0, R), ν ∈ NP
S (x). (2.3.6)

Theorem 2.3.2 Under assumptions (H0),(H1) and the compactness of S,
if the control system (f,U) then:

(i) for any R > 0, there exist δ, k > 0 such that

B(S, δ) ∩ B(0, R) ⊂ R and T (x) ≤ kdK(x), x ∈ S, δ) ∩ B(0, R);

(ii) the minimum time function T is locally Lipschitz continuous on R.

Proof. Standard reference for the proof is in [21, Chapter VIII]. !
We finally give in the subsection a theorem in which the minimum time

function is just continuous under the weak Petrov condition.

Theorem 2.3.3 Under the assumptions (H1), (H2) and the compactness of
the target S, if the control system satisfies the weak Petrov condition, i.e.,
there exist δ > 0 and a continuous nondecreasing function µ : [0, ] → [0,+∞)
with the properties

(a) µ(0) = 0, µ(ρ) > 0 for ρ > 0 and
∫ δ
0

dρ
µ(ρ)dρ < +∞;

(b) for all x ∈ B(S, δ)\S, there exists s̄ ∈ πS(x) such that

min
u∈U

〈f(x, u), x − s̄〉 ≤ −µ(dS(x))dS(x).

Then the control system (f,S) is SCTS and T is continuous in R.

Proof. There are various versions, obtained with different methods, which
can be found, e.g., in [20, 42, 45, 51, 60]. !

2.4 Differential inclusions

We shall give here some basic definitions and theorems which are needed in
Subsection 3.7. For the reference, we refer to [9].
Consider differential inclusions of the form

{
ẋ(t) ∈ F (x(t)),
x(0) = x0,

(2.4.1)

where F : RN ⇒ RN is a multifunction, and x0 ∈ RN is the starting point.
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Definition 2.4.1 Let yx0(·) : (a, b) → RN where a < 0 < b be such that
yx0(0) = x0. We say that yx0(·) is a solution of (2.4.1) if yx0(·) is absolutely
continuous and

ẏx0(t) ∈ F (yx0(t)) a.e. t ∈ (a, b).

The solution yx0(·) is usually called a trajectory starting from x0 and asso-
ciated with (2.4.1).

There are several results about the existence of solution to the differential
inclusion (2.4.1). For the reference, we refer to Chapter 2 and Chapter 3 in
[9].
The attainable AT (x0) from x0 in time T is now denoted by

AT (x0) = {yx0(t) |0 ≤ t ≤ T}.

We will end this subsection with a theorem which gives the existence of
a minimal time T . In the following statement, we prefer to consider assump-
tions which will be used in Section 3.7.

The multifunction F : RN ⇒ RN is Lipschitz with respect to the Haus-
dorff distance if there exists a constant M > 0 such that

dH(F (x, F (y))) ≤ M‖y − x‖.

Theorem 2.4.1 Assume that F is Lipschitz with respect to the Hausdorff
distance and F (x) is nonempty, convex, and compact for each x ∈ Rn. If
there exists a constant M2 > 0 so that max{‖v‖ | v ∈ F (x)} ≤ M2(1 + ‖x‖)
then for all T > 0 the attainable set AT (x0) is compact.

Proof. One can find an original version and the proof in Section 2, Chapter
2 [9]. !
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Part I

On the structure of the
minimum time function





Chapter 3

Semiconcavity type results

We will first study in this Chapter a minimum time problem with a nonlinear
smooth dynamics and a target satisfying an internal sphere condition. Under
the assumptions that the minimum time T be continuous and the proximal
normal cone to the hypograph of T be wedged, we show that hypo(T ) has
positive reach. Consequently, T satisfies the list of properties in Theorem
(2.2.2). In particular, T is a.e. twice differentiable.

The result is based on an analysis of how proximal normals (to the
complement of the target) are transported by the adjoint flow, which in
turn permits a representation of the generalized gradient of T in terms of
suitable adjoint vectors (Theorems 3.2.1 and 3.2.2). Here the wedgedness
assumption plays a major role: actually exposed rays of the normal cone to
the hypograph are special normals, as they can be approximated by normals
at differentiability points of T (Lemma 3.3.7). Moreover, wedgedness is used
in Theorem 3.2.3 in order to obtain a uniform estimate for radii of the balls
realizing proximal normals to the hypograph. We show also through an
example (Example 2 in Section 3.6) that if the normal cone is not wedged,
then Theorem 3.2.3 may fail. However, an external sphere condition to the
hypograph of T still holds (see Proposition 3.2.1). An analysis of this general
case will be discussed in Chapter 5 and Chapter 6 , where topological and
measure theoretic results on the set where the normal cone is not wedged
are given.

Moreover, on the basis in Chapter 5 and Chapter 6, we also study the
minimum time function for a class of differential inclusions. For such class,
under an internal sphere condition on the target S the hypograph of T
still satisfies an external sphere condition. The proof will be based on the
Hamiltonian function and Pontryagin’s maximum principle. At the end of
this chapter, we will partially extend our result to an arbitrary target S.

The chapter is structured as follows: Section 3.1 is devoted to some
notations, while Section 3.2 contains assumptions and statement of the main
results. Detailed arguments begin in Section 3.3, which contains several
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lemmas whose geometrical meaning is illustrated, and ends with a result
(Theorem 3.3.1) giving a representation of the normal cone to the hypograph
of (T ), under the wedgedness assumption. Section 3.4 is devoted to the
conclusion of the proof of the main theorems, which is now only a simple
use of the lemmas contained in Section 3.4. Section 3.5 is dedicated to
an improvement of Theorems 3.2.1 and 3.2.2 for an optimal point, i.e. a
point which is crossed by a time-optimal trajectory and Section 3.6 contains
examples. Finally, our results will be extended for a class of differential
inclusion in Section 3.7.

3.1 Nonlinear control system

We consider throughout the chapter a nonlinear control system of the form





ẏ(t) = f(y(t), u(t)) a.e.
u(t) ∈ U a.e.
y(0) = x,

(3.1.1)

where the Lipschitz function f : RN × U −→ RN and the control set U , a
compact nonempty subset of Rm, are given. We recall that Uad the set of
admissible controls, i.e., the measurable functions u : R → Rm, such that
u(t) ∈ U a.e. For any u(·) ∈ Uad, the unique Carathéodory solution of (3.1.1)
is denoted by yx,u(·).
The adjoint vectors associated with a trajectory yx,u(·) can be represented
using the fundamental solution matrix M(·, x, u) of the linear equation

ṗ(t) = Dxf(yx,u(t), u(t)) p(t), p(0) = IN×N . (3.1.2)

We also define M−1(·, x, u) to be the fundamental solution matrix of the
time reversed adjoint equation

q̇(t) = −q(t) Dxf(yx,u(t), u(t)), q(0) = IN×N . (3.1.3)

Suppose we are now given a closed nonempty set S ⊂ RN , which is called
the target. For a fixed x ∈ RN \ S, we define

θ(x, u) := min {t ≥ 0 | yx,u(t) ∈ S}.

Of course, θ(x, u) ∈ (0,+∞], and θ(x, u) is the time taken for the trajectory
yx,u(·) to reach S, provided θ(x, u) < +∞. The minimum time T (x) to
reach S from x is defined by

T (x) := inf {θ(x, u) | u(·) ∈ Uad}. (3.1.4)

In general, an optimal trajectory, i.e., a trajectory which attains the infimum
in (3.1.4) does not exist. Therefore, we need also to consider minimizing
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sequences and limiting optimal trajectories steering x to the target S. In
particular, we will consider the limits of end-points (thus belonging to S) of
minimizing sequences of trajectories. More precisely,

Sx = {x̄ ∈ S | there exist sequences {xn} ⊂ Sc and {ūn(·)} ⊂U ad

such that xn → x, θ(xn, ūn) → T (x), yxn,ūn(θ(xn, ūn)) → x̄}.

Observe that if T (x) < +∞, then ∅ 0= Sx ⊆ bdryS.
For any x̄ ∈ Sx we define also

Ux̄ = {{ūn(·)} ⊂ Uad | there exists a sequence {xn} satisfying
xn → x, θ(xn, ūn) → T (x), and yxn,ūn(θ(xn, ūn)) → x̄},

i. e., the set of minimizing sequences of controls steering x to x̄. Together
with Ux̄ we define also

Tx̄ = {{yxn,ūn(·)} | xn → x, ūn ∈ Uad,

θ(xn, ūn) → T (x), and yxn,ūn(θ(xn, ūn)) → x̄},

i. e., the set of trajectories corresponding to minimizing sequences of con-
trols steering x to x̄.
Correspondingly, the limiting adjoint trajectories related to minimizing se-
quences of controls are defined by the following

Mx̄ = {M : [0, T (x)] → MN×N | ∃{ yxn,ūn(·)} ⊂ Tx̄ such that
M(·) is uniform limit on [0, T (x)] of M(·, xn, ūn)}.

(3.1.5)

Remark 3.1.1 If T (·) is everywhere finite, both Sx, Tx̄ are nonempty. By
compactness, Mx̄ is nonempty as well for all x̄ ∈ Sx. Moreover, if F (x) :=
{f(x, u)|u ∈ U} is convex for all x, then the infimum is attained and the
sets Sx, Ux̄, and Tx̄ can be substituted by the simpler sets

Sx = {x̄ ∈ S | there exists ū ∈ Uad such that
θ(x, ū) = T (x), x̄ = yx,ū(T (x))}

Ux̄ = {ū ∈ Uad | θ(x, ū) = T (x), yx,ū(T (x)) = x̄}
Tx̄ = {yx,ū | ū ∈ Ux̄}.

Finally, the Maximized Hamiltonian, namely the function

H : RN × RN −→ R, H(x, p) = max
u∈U

〈f(x, u), p〉 ,

will be important in our analysis.



26 Semiconcavity type results

3.2 Statement of the main results

We repeat first the setting we are concerned with and specify our assump-
tions.
We consider the nonlinear system (3.1.1) under the following assumptions:

(H1) U ⊂ RN is compact.

(H2) f : RN × U → RN is continuous and satisfies:

‖f(x, u) − f(y, u)‖ ≤ L ‖x − y‖ ∀ x, y ∈ RN , u ∈ U ,

for a positive constant L. Moreover, the differential of f with respect
to the x variable, Dxf , exists everywhere, is continuous with respect
to both x and u and satisfies the following Lipschitz condition:

‖Dxf(x, u)− Dxf(y, u)‖ ≤ L1 ‖x − y‖ ∀ x, y ∈ RN , u ∈ U ,

for a positive constant L1.

(H3) The minimum time function T : RN −→ [0,+∞) is everywhere fi-
nite and continuous, (i.e. controllability and small time controllability
hold).

(H4) The target S is nonempty, closed, and satisfies the internal sphere
condition of radius ρ > 0.

Remark 3.2.1 Conditions ensuring small time controllability when the tar-
get is not necessarily a singleton can be found in the previous chapter.

Our analysis will be based on the transportation of certain vectors, normal
to the closure of the complement of the target S, by means of the (limit-
ing) adjoint flow. More precisely, two sets of transported normals will be
considered, according with the Hamiltonian:

N0(x) = {MT (r)v | M(·) ∈ Mx̄, v ∈ NP
Sc(x̄), x̄ ∈ Sx and H(MT (r)v, x) = 0}

N1(x) = {MT (r)v | M(·) ∈ Mx̄, v ∈ NP
Sc(x̄), x̄ ∈ Sx and H(MT (r)v, x) = 1}

Our main results are the following three theorems, together with the corol-
lary.

Theorem 3.2.1 Let x ∈ Sc and r = T (x). Under the conditions (H1),
(H2), (H3), and (H4), together with the further assumption

NP
hypo(T )(x, T (x)) is wedged, (3.2.1)

the (proximal) horizontal supergradient of the minimum time function T (·)
at the point x can be computed as follows:

∂∞T (x) = −co(N0(x)). (3.2.2)
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Theorem 3.2.2 Let x ∈ Sc and r = T (x). Under the same assumptions of
Theorem 3.2.1, the proximal supergradient of the minimum time function at
the point x can be computed as follows:

∂P T (x) = −[co(N1(x)) + co(N0(x))]. (3.2.3)

Theorem 3.2.3 Let the assumptions of Theorem 3.2.1 hold for all x ∈ Sc.
Then for every closed set S ′ ⊂ Sc, hypo(T ) ∩ (S ′ × R) has positive reach.

Corollary 3.2.1 Let the assumptions of Theorem 3.2.1 hold. Then the
minimum time function T satisfies all the properties listed in Theorem 2.2.2.

The last result is concerned with the case where the wedgedness assump-
tion (3.2.1) does not hold. We will present here, for the sake of brevity,
only a partial result together with two examples, a thorough analysis being
postponed to the next chapter.

Proposition 3.2.1 Let the assumptions (H1), (H2) , (H3), and (H4) hold.
Then the hypograph of the minimum time function T satisfies the external
sphere condition with a locally uniform radius, namely for every x ∈ Sc there
exists a unit proximal normal v to hypo(T ) at (x, T (x)) which is realized by
a sphere with a locally constant radius σ > 0.

The proof of the previous Proposition is a straightforward consequence of
Lemmas 3.3.2 and 3.3.3.

Remark 3.2.2 The constant σ can be explicitly computed, and depend only
on x, on f and U , and on the constants L, L1 and ρ appearing in the
assumptions (H2) and (H4).

3.3 Preparatory Lemmas

This section is devoted to several partial results which are needed to prove
Theorem 3.2.2 and Theorem 3.2.2. In particular, the proof of “⊇” inclusions
in (3.2.1) and (3.2.2) will be based on Lemma 3.3.2 and Lemma 3.3.3 below.

3.3.1 Transporting proximal normals

In this subsection we do not assume that S satisfies the internal sphere
condition, nor that the normal cone to the hypograph of T (·) at (x, T (x)) is
wedged.

The following notation for sublevels of the minimum time function will
be used: for r > 0 we set

S(r) := {x ∈ RN | T (x) < r}
Sc(r) := {x ∈ RN | T (x) ≥ r}
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We state first a technical lemma, showing that the limiting adjoint flow
transports proximal normals to the complement of the target to proximal
normals to the complement of sublevels of T . Moreover, the radius of the
ball which realizes the transported normal can be explicitly estimated.

Lemma 3.3.1 Assume that S is closed and let the assumptions (H1), (H2),
and (H3) hold. Let x ∈ Sc and set r = T (x) > 0. Fix x̄ ∈ Sx, v ∈ NP

Sc(x̄)
and M(·) ∈ Mx̄. Then

MT (r)v ∈ NP
Sc(r)(x).

More precisely, assume that v is realized by a ball of radius ρ > 0. Then
there exists an explicitly computable continuous function K depending only
on r, ‖x‖, ρ such that for all z ∈ Sc(r) we have

〈
MT (r)v, z − x

〉
≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ ‖z − x‖2 . (3.3.1)

Proof. Let xn → x, x̄ ∈ Sx, and {ūn} ⊂ Uad be such that {yxn,ūn(·)} ∈ Tx̄

and M(·, xn, ūn) converges to M(·) uniformly on [0, T (x)]. By definition of
proximal normal realized by a ρ-ball,

〈v , z̄ − x̄〉 ≤ ‖v‖
2ρ

‖z̄ − x̄‖2 for all z̄ ∈ Sc.

Fix z ∈ Sc(r). We define

x̄n = yxn,ūn(θ(xn, ūn)), z̄n = yz,ūn(θ(xn, ūn)),

and observe that x̄n ∈ S, x̄n → x̄ and we can assume without loss of gener-
ality that z̄n converges to a point z̄ which belongs to Sc since θ(xn, ūn) →
r ≤ T (z).

We set for simplicity αn(·) = yxn,ūn(·), βn(·) = yz,ūn(·), tn = θ(xn, ūn),
so that

x̄n = xn +
∫ tn

0
f(αn(s), ūn(s))ds , z̄n = z +

∫ tn

0
f(βn(s), ūn(s))ds,

whence

z̄n − x̄n = z − xn+
∫ tn

0

(∫ 1

0
Dxf(αn(s) + τ(βn(s) − αn(s)), ūn(s))dτ

)
(βn(s)− αn(s))ds.

We define now

A1
n(s) = Dxf(αn(s), ūn(s)),

A2
n(s) =

∫ 1

0
Dxf(αn(s) + τ(βn(s) − αn(s)), ūn(s))dτ,
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and observe that, thanks to (H2), for all s ∈ [0, tn] we have

∥∥A2
n(s) − A1

n(s)
∥∥ ≤ L1

2
‖βn(s) − αn(s)‖ . (3.3.2)

Using (iv) in Lemma 7.1.1 and the definition of L2 in (7.1.1), we obtain
∥∥A1

n(s)
∥∥ ≤ L2(s, ‖xn‖) (3.3.3)

for all s ∈ [0, tn]. Thus

∥∥A2
n(s)
∥∥ ≤ L2(s, ‖xn‖) +

L1

2
‖βn(s) − αn(s)‖ (3.3.4)

for all s ∈ [0, tn]. Now, Gronwall’s Lemma yields

‖βn(s) − αn(s)‖ ≤ eLs ‖z − xn‖ , (3.3.5)

so that combining (3.3.4) and (3.3.5) we obtain

∥∥A2
n(s)
∥∥ ≤ L2(s, ‖xn‖) +

L1

2
eLs ‖z − xn‖ . (3.3.6)

Define M2
n(·) to be the solution of the problem

ṗ(s) = A2
n(t)p(s), p(0) = IN×N .

Recalling that M(·, x, u) is the fundamental solution of (3.1.2) set M1
n(·) =

M(·, xn, ūn), z1
n(s) = M1

n(s)(z − xn) and z2
n(s) = M2

n(s)(z − xn), for all
s ∈ [0, tn]. Using these notations, we can write

〈v, z̄n − x̄n〉 =
〈
v, z2

n(tn)
〉

=
〈
v, z1

n(tn)
〉

+
〈
v, z2

n(tn) − z1
n(tn)

〉

=
〈
v,M1

n(tn)(z − xn)
〉

+
〈
v, (M2

n(tn) − M1
n(tn))(z − xn)

〉

≥
〈
v,M1

n(tn)(z − xn)
〉
− ‖v‖

∥∥(M2
n(tn) − M1

n(tn))(z − xn)
∥∥ .

(3.3.7)

To simplify our writing, we set, for all s ≥ 0 and y, z ∈ RN , L3(s, y, z) =
L1
2 eLs ‖z − y‖. By (3.3.3), (3.3.6), Lemma 7.1.3, and (3.3.2), we have

∥∥(M2
n(tn) − M1

n(tn))(z − xn)
∥∥

≤ e[2L2(tn,‖xn‖)+L3(tn,xn,z)]tn

∫ tn

0

∥∥A2
n(s)− A1

n(s)
∥∥ ds ‖z − xn‖

≤ L1

2
e[2L2(tn,‖xn‖)+L3(tn,xn,z)]tn

∫ tn

0
‖βn(s)− αn(s)‖ ds ‖z − xn‖ .
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Recalling (3.3.5), we obtain
∥∥(M2

n(tn) −M1
n(tn))(z − xn)

∥∥

≤ L1

2
e[2L2(tn,‖xn‖)+L3(tn,xn,z)+L]tn ‖z − xn‖2 .

(3.3.8)

Therefore, by passing to the limit in (3.3.7) and (3.3.8) (recall that M1
n(·) →

M(·) uniformly), we have
〈
MT (r)v, z − x

〉

≤ 〈v, z̄ − x̄〉+ ‖v‖ L1

2
e[2L2(r,‖x‖)+L3(r,x,z)+L]r ‖z − x‖2

≤ ‖v‖
2ρ

‖z̄ − x̄‖2 + ‖v‖ L1

2
e[2L2(r,‖x‖)+L3(r,x,z)+L]r ‖z − x‖2 .

Moreover, from (3.3.5) we have ‖z̄ − x̄‖ ≤ eLr ‖z − x‖. Therefore,

〈
MT (r)v, z − x

〉
≤
(

L1

2
e[2L2(r,‖x‖)+L3(r,x,z)+L]r +

e2Lr

2ρ

)

‖v‖ ‖z − x‖2

(3.3.9)
for all z ∈ Sc(r).
Observe that

‖v‖ =
∥∥(MT (r))−1MT (r)v

∥∥

≤
∥∥M(r)−1

∥∥∥∥MT (r)v
∥∥ .

By (ii) in Lemma 7.1.2 we obtain
∥∥M(r)−1

∥∥ ≤ eL2(r,‖x‖)r.

Combining the above inequalities with (3.3.9) we thus have

〈
MT (r)v, z − x

〉

≤
(

L1

2
e[3L2(r,‖x‖)+L3(r,x,z)+L]r +

e2Lr+L2(r,‖x‖)

2ρ

)
∥∥MT (r)v

∥∥ ‖z − x‖2 .

(3.3.10)

In order to complete the proof, we consider two cases.
If ‖z − x‖ < 1, then L3(r, x, z) ≤ L1

2 eLr. Thus, by (3.3.10) we have

〈
MT (r)v, z − x

〉

≤
(

L1

2
e[3L2(r,‖x‖)+ L1

2 eLr+L]r +
e2Lr+L2(r,‖x‖)

2ρ

)
∥∥MT (r)v

∥∥ ‖z − x‖2 .

(3.3.11)
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If instead ‖z − x‖ ≥ 1, then
〈
MT (r)v, z − x

〉
≤
∥∥MT (r)v

∥∥ ‖z − x‖2.
Therefore, in both cases we have that
〈
MT (r)v, z − x

〉
≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ ‖z − x‖2 for all z ∈ Sc(r),

(3.3.12)
where the continuous function K, defined for r, δ ≥ 0 and ρ > 0 as

K(r, δ, ρ) := max

{

1,
L1

2
e[3L2(r,δ)+

L1
2 eLr+L]r +

e2Lr+L2(r,δ)

2ρ

}

, (3.3.13)

depends only on the variables r, δ, ρ and on the constants L, L1, K1, K2.
The proof is complete. !

Remark 3.3.1 It follows from (3.3.13) that K(r, δ, ρ) is nondecreasing with
respect to both r and δ.

The next lemma establishes that normals transported along the limiting
adjoint flow generate horizontal proximal normals to the hypograph of T (·),
provided their Hamiltonian is zero. Moreover, the radius of the ball realizing
them can be explicitly estimated.

Lemma 3.3.2 Let S be closed and let the assumptions (H1), (H2), and
(H3) hold. Let x ∈ Sc, set r := T (x) > 0, and let ξ ∈ N0(x). Then
−ξ ∈ ∂∞T (x), or, equivalently, (ξ, 0) ∈ NP

hypo(T (x))(x, T (x)).
More precisely, let x̄ ∈ Sx and let v ∈ NP

Sc(x̄), M(·) ∈ Mx̄ be such
that H(MT (r)v, x) = 0. Assume that v is realized by a ball of radius ρ.
Then there exists an explicitly computable continuous function K3(r, x, ρ),
depending only on r, x, ρ, such that for all z ∈ Sc and all β ≤ T (z) we have

〈
MT (r)v, z − x

〉
≤ K3(r, x, ρ)

∥∥MT (r)v
∥∥
(
‖z − x‖2 + |β − T (x)|2

)
.

(3.3.14)

Proof. Let v ∈ NP
Sc(x̄) be such that

〈v, z̄ − x̄〉 ≤ ‖v‖
2ρ

‖z̄ − x̄‖2 ∀z̄ ∈ Sc. (3.3.15)

Recalling Lemma 3.3.1, for all z ∈ Sc(r) we have
〈
MT (r)v, z − x

〉
≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ ‖z − x‖2 . (3.3.16)

Let z ∈ Sc. Two cases may occur:
(i) T (z) ≥ T (x),
(ii) T (z) < T (x).
In the first case, (3.3.14) follows immediately from (3.3.16).
In the second case, define r1 = T (z) and take sequences {xn}, with xn → x,
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{ūn} ⊂U ad and {αn(·) := yxn,ūn(·)} corresponding to M(·), according to
the definition given in (3.1.5). For all n large enough there exists r1

n < r for
which

x̄1
n := αn(r − r1

n) = xn +
∫ r−r1

n

0
f(αn(s), ūn(s))ds

is such that T (x̄1
n) = r1. We can assume without loss of generality that αn(·)

converges uniformly to some α(·) and that r1
n → r̄1. Observe that r̄1 < r.

Setting x̄1 = α(r − r̄1)(= lim x̄1
n), one can easily see that T (x̄1) = r1 by the

continuity of T (x). Then, by Lemma 3.3.1 we obtain that
〈
MT (r1)v, z − x̄1

〉
≤ K(r1,

∥∥x̄1
∥∥ , ρ)

∥∥MT (r1)v
∥∥ ∥∥z − x̄1

∥∥2
. (3.3.17)

We write
〈
MT (r)v, z − x

〉
=
〈
MT (r)v, z − x̄1

〉
+
〈
MT (r)v, x̄1 − x

〉

and perform some estimates.
First, we consider
〈
MT (r)v, z − x̄1

〉
=
〈
MT (r1)v, z − x̄1

〉
+
〈
(MT (r) − MT (r1))v, z − x̄1

〉
.

By (3.3.17) we have
〈
MT (r)v, z − x̄1

〉
≤ K(r1,

∥∥x̄1
∥∥ , ρ)

∥∥MT (r1)v
∥∥ ∥∥z − x̄1

∥∥2

+
∥∥(MT (r) − MT (r1))v

∥∥ ∥∥z − x̄1
∥∥ .

Moreover from (ii) in Lemma 7.1.2 we have
∥∥MT (r1)v

∥∥ ≤
∥∥(MT (r − r1))−1

∥∥ ∥∥MT (r)v
∥∥

≤ eL2(r−r1,‖x‖)(r−r1)
∥∥MT (r)v

∥∥

≤ eL2(r,‖x‖)r ∥∥MT (r)v)
∥∥ .

Also, using (iv) in Lemma 7.1.1 we obtain

∥∥(MT (r) − MT (r1))v
∥∥ ≤

∫ r

r1

∥∥∥ṀT (s)v
∥∥∥ ds

≤
∫ r

r1

eL2(r,‖x‖)r ∥∥MT (r)v)
∥∥ ds

= eL2(r,‖x‖)r ∥∥MT (r)v)
∥∥ |r − r1|.

Therefore,
〈
MT (r)v, z − x̄1

〉
≤ K(r1,

∥∥x̄1
∥∥ , ρ) eL2(r,‖x‖)r ∥∥MT (r)v

∥∥ ∥∥z − x̄1
∥∥2

+eL2(r,‖x‖)r ∥∥(MT (r)v)
∥∥ |r − r1|

∥∥z − x̄1
∥∥ .
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Recalling (i) in Lemma 7.1.1 for α(·) = yxn,ūn(·), t = r− r1, and then taking
n → ∞, we obtain

∥∥x̄1 − x
∥∥ ≤ (L ‖x‖ + K1)(eL(r−r1) − 1)

L
≤ (L ‖x‖+ K1)(eLr − 1)

L
, (3.3.18)

from which it follows that
∥∥x̄1
∥∥ ≤ eLr ‖x‖+ (eLt−1)K1

L . Hence,

〈
MT (r)v, z − x̄1

〉
≤ R1(r, ‖x‖ , ρ) eL2(r,‖x‖)r ∥∥MT (r)v

∥∥ ∥∥z − x̄1
∥∥2

+ eL2(r,‖x‖)r ∥∥MT (r)v)
∥∥ |r − r1|

∥∥z − x̄1
∥∥ ,

(3.3.19)

where

R1(r, δ, ρ) = K

(
r, eLrδ +

(eLt − 1)K1

L
, ρ

)
, for r, δ ≥ 0, ρ > 0.

Observe also that we obtain from (iii) in Lemma 7.1.1 that

∥∥z − x̄1
∥∥ ≤ lim

n→∞

(

‖z − xn‖+
∫ r−r1

n

0
‖f(αn(s), ūn(s))‖ ds

)

≤ lim
n→∞

(

‖z − xn‖+
∫ r−r1

n

0

(
LeLs ‖xn‖+ eLsK1

)
ds

)

≤ ‖z − x‖+ L4(r, ‖x‖) |r − r1|,

where L4(s, δ) = LeLsδ + eLsK1 for s, δ ≥ 0.
Combining the above inequality and (3.3.19), we obtain
〈
MT (r)v, z − x̄1

〉
≤ R2(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ (‖z − x‖2 + |r−r1|2), (3.3.20)

where we have defined, for r, δ ≥ 0, ρ > 0,

R2(r, δ, ρ) = eL2(r,δ)r

(
2R1(r, δ, ρ)

(3
2

+ L2
4(r, δ)

)
+ L4(r, δ)

)
. (3.3.21)

Second, we consider

〈
MT (r)v, x̄1

n − x
〉

=
〈
MT (r)v, xn − x

〉
+

〈
MT (r)v,

∫ r−r1
n

0
f(αn(s), ūn(s))ds

〉

=
〈
MT (r)v, xn − x

〉
+

〈
MT (r)v,

∫ r−r1
n

0
f(x, ūn(s))ds

〉

+

〈
MT (r)v,

∫ r−r1
n

0
(f(αn(s), ūn(s)) − f(x, ūn(s))) ds

〉
.
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Recalling that H(MT (r)v, x) = 0, we obtain from the above expression that
〈
MT (r)v, x̄1

n − x
〉
≤
〈
MT (r)v, xn − x

〉
+

〈
MT (r)v,

∫ r−r1
n

0
(f(αn(s), ūn(s)) − f(x, ūn(s))) ds

〉

≤
∥∥MT (r)v

∥∥
(
‖xn − x‖+

∫ r−r1
n

0
‖f(αn(s), ūn(s)) − f(x, ūn(s))‖ ds

)

≤
∥∥MT (r)v

∥∥
(
‖xn − x‖+ L

∫ r−r1
n

0
‖αn(s) − x‖ ds

)

≤
∥∥MT (r)v

∥∥
(
(L + 1) ‖xn − x‖ + L

∫ r−r1
n

0

∫ s

0
‖f(αn(τ), ūn(τ))‖ dτds

)
.

By (iii) in Lemma 7.1.1, recalling that r̄1 < r we now obtain that
〈
MT (r)v, x̄1

n − x
〉
≤
∥∥MT (r)v

∥∥
(
(L + 1) ‖xn − x‖

+ L

∫ r−r1

0

∫ s

0

(
LeLr ‖xn‖ + eLrK1

)
dτds

)
,

whence, taking n → ∞,

〈
MT (r)v, x̄1 − x

〉
≤ L(LeLr ‖x‖+ eLrK1)

2
∥∥MT (r)v

∥∥ |r − r1|2. (3.3.22)

Set now, for r, δ ≥ 0, ρ > 0,

K3(r, δ, ρ) = R2(r, δ, ρ) +
L(LeLrδ + eLrK1)

2
. (3.3.23)

Recalling (3.3.20) and (3.3.22), the proof is complete. !
Now we prove a similar result for normals such that the Hamiltonian

along the limiting adjoint flow is 1. Actually, if ξ is such a vector, we show
that (ξ, 1) is a proximal normal to the hypograph of T (·), and again the
radius of the sphere which realizes it can be explicitly estimated.

Lemma 3.3.3 Let S be closed and let the assumptions (H1), (H2), and
(H3) hold. Let x ∈ Sc, set r := T (x) > 0, and let ξ ∈ N1(x). Then
−ξ ∈ ∂P T (x), or, equivalently, (ξ, 1) ∈ NP

hypo(T (x))(x, T (x)).
More precisely, let x̄ ∈ Sx and let v ∈ NP

Sc(x̄), M(·) ∈ Mx̄ be such that
H(MT (r)v, x) = 1 and assume that v is realized by a ball of radius ρ > 0.
Then there exists an explicitly computable continuous function K6(r, ‖x‖ , ρ)
depending only on r, ‖x‖, ρ such that for all z ∈ Sc and all β ≤ T (z) we
have
〈
MT (r)v, z − x

〉
+β−r ≤ K6(r, ‖x‖ , ρ)

∥∥(MT (r)v, 1)
∥∥ (‖z − x‖2+ |β−r|2).

(3.3.24)
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Proof. Let v ∈ NP
Sc(x̄) be such that

〈v, z̄ − x̄〉 ≤ ‖v‖
2ρ

‖z̄ − x̄‖2 ∀z̄ ∈ Sc.

Let z ∈ Sc. Two cases may occur:
(i) T (z) ≥ T (x),
(ii) T (z) < T (x).
First case. Recalling that H(MT (r)v, x) = 1, one can find ū ∈ U such that

〈
MT (r)v, f(x, ū)

〉
= 1.

Set zū(·) := yz,ū(·) to be the trajectory starting from z with the constant
control ū, namely zū(t) = z +

∫ t
0 f(zū(s), ū)ds.

Taking T (x) ≤ r1 ≤ T (z), we have that zū(r1 − r) ∈ Sc(r). Recalling
Lemma 3.3.1, we obtain that
〈
MT (r)v, zū(r1 − r)− x

〉
≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ ‖zū(r1 − r)− x‖2 .

(3.3.25)
We estimate
〈
MT (r)v, z − zū(r1 − r)

〉
=
〈

MT (r)v,−
∫ r1−r

0
f(zū(t), ū)dt

〉

=
〈

MT (r)v,−
∫ r1−r

0
f(x, ū)dt

〉

+
〈

MT (r)v,

∫ r1−r

0
(f(x, ū)− f(zū(t), ū)) dt

〉

≤ r − r1 + L
∥∥MT (r)v

∥∥
∫ r1−r

0
‖zū(t) − x‖ dt.

Combining the above inequality with (3.3.25) we get

〈
MT (r)v, z − x

〉
≤ r − r1 + L

∥∥MT (r)v
∥∥
∫ r1−r

0
‖zū(t)− x‖ dt

+K(r, ‖x‖ , ρ)
∥∥MT (r)v

∥∥ ‖zū(r1 − r) − x‖2 .

(3.3.26)

Moreover,

‖zū(s)− x‖ ≤ ‖z − x‖ +
∫ s

0
‖f(zū(τ), ū)‖ dt

≤ ‖z − x‖ + K̃(‖x‖)s + L

∫ s

0
‖zū(τ) − x‖ dτ,

where we set, for δ ≥ 0, K̃(δ) := Lδ + K1. Thus, Gronwall’s inequality
yields, for all 0 ≤ s ≤ r1 − r,

‖zū(s)− x‖ ≤ eLs ‖z − x‖+ K̃(‖x‖)
(
s +

eLs − Ls− 1
L

)
. (3.3.27)
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Since eLs − Ls− 1 ≤ L(eL − 1)s for all s ∈ [0, 1], we obtain from (3.3.27)

‖zū(s)− x‖ ≤ eL ‖z − x‖ + K̃(‖x‖)eLs for all s ∈ [0, 1]. (3.3.28)

Now we consider two subcases.
First subcase: 0 ≤ r1 − r ≤ 1. Combining (3.3.28) with (3.3.26) we

obtain
〈
MT (r)v, z − x

〉
+ r1 − r ≤ K5(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ (‖z − x‖2 + |r1 − r|2),

(3.3.29)
where for r, δ ≥ 0, ρ > 0 we set

K5(r, δ, ρ) = eL

(
L

2
+ 2eLK(r, δ, ρ)

(
1 + K̃(δ)2

)
+

K̃(δ)
2

)

. (3.3.30)

Second subcase: r1 − r > 1. Recalling Lemma 3.3.1, we obtain
〈
MT (r)v, z − x

〉
+ r1 − r

≤ (K(r, ‖x‖ , ρ) + 1)
∥∥(MT (r)v, 1)

∥∥ (‖z − x‖2 + |r1 − r|2).
(3.3.31)

Observe now that, if β ≤ T (x), recalling Lemma 3.3.1 we have
〈
MT (r)v, z − x

〉
+β−T (x) ≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ (‖z − x‖2+|β−T (x)|2).

(3.3.32)
We are now ready to conclude the first case. Indeed, it suffices to combine
(3.3.29), (3.3.32), and (3.3.31) and recall (3.3.30), obtaining, for all z ∈ Sc(r)
and β ≤ T (z),
〈
MT (r)v, z − x

〉
+ β − T (x)

≤ (K5(r, ‖x‖ , ρ) + 1)
∥∥(MT (r)v, 1)

∥∥ (‖z − x‖2 + |β − T (x)|2).
(3.3.33)

Second case. It is entirely similar to the proof of the second case of Lemma
(3.3.2). Indeed, by using the condition H(MT (r)v, x) = 1 we can replace
(3.3.22) with

〈
MT (r)v, x̄1 − x

〉
≤ T (x)− T (z) +

L(LeLr ‖x‖+ eLrK1)
2

|r− r1|2. (3.3.34)

Then, combining (3.3.20) and (3.3.34) we obtain
〈
MT (r)v, z − x

〉
+ β − T (x)

≤ K3(r, ‖x‖ , ρ)
∥∥MT (r)v

∥∥ (‖z − x‖2 + |β − T (x)|2) (3.3.35)

for all β ≤ T (z), z ∈ Sc and T (z) ≤ T (x).
To conclude the proof of the Lemma we recall (3.3.35), (3.3.33), (3.3.30) and
set, for r, δ ≥ 0, ρ > 0,

K6(r, δ, ρ) = max{K5(r, δ, ρ) + 1,K3(r, δ, ρ)}. (3.3.36)
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!
The next subsection is to show that singularities of T may be only of

“upwards type”. Assuming that the target satisfies the internal sphere con-
dition of radius ρ, we show that if ξ belongs to the proximal subgradient
of T (·) at x, then it belongs also to the proximal supergradient. Moreover
−ξ is the transported vector by the limiting adjoint flow of a normal to Sc,
which is realized by ρ, and the radius of the sphere realizing (−ξ, 1) as a
proximal normal to the hypograph of T (·) can be explicitly estimated. In
this lemma, the internal sphere condition (H4) is used for the first time.

3.3.2 Type of singularities of the minimum time function

In order to simplify our writing, we will replace the functions K, K3, and
K6 appearing respectively in Lemma 3.3.1, Lemma 3.3.2, and Lemma 3.3.3
by the explicit (continuous) function

k(r, ‖x‖ , ρ) = max{K6(r, ‖x‖ , ρ),K(r, ‖x‖ , ρ)}. (3.3.37)

Lemma 3.3.4 Let the assumptions (H1) – (H4) hold and let x ∈ Sc and
let ξ ∈ ∂P T (x). Then
(i) ξ ∈ ∂P T (x) and therefore T is differentiable at x;
(ii) −ξ ∈ N1(x).
Moreover, for all z ∈ Sc and for all β ≤ T (z),

〈−ξ, z − x〉+ β − T (x) ≤ k(T (x), ‖x‖ , ρ) ‖(−ξ, 1)‖ (‖z − x‖2 + |β − T (x)|2).
(3.3.38)

Proof. Set r = T (x) and let ξ ∈ ∂P T (x). By Proposition IV.2.3 in [11],
H(x,−ξ) ≥ 1, so that ξ 0= 0. It follows from the definition of proximal
subgradient that there exists σ ≥ 0 such that

〈ξ, z − x〉 ≤ σ ‖z − x‖2 , ∀z ∈ S(r). (3.3.39)

Let x̄ ∈ Sx and M(·) ∈ Mx̄, and take a sequence {yxn,ūn(·)} ⊂ Tx̄ such
that M(·) is the uniform limit of M(·, xn, ūn). We claim that (MT (r))−1ξ ∈
NP

S (x̄).
Indeed, take z̄ ∈ S and set z̄−n (·) = y−(·, z̄, ūn) where y−(·, z̄, ūn) is the
solution of {

ẏ(t) = −f(y(t), ūn(r − t)) a.e.
y(0) = z̄.

We set zn = z−n (θ(xn, ūn)) and consider z̄n = yzn,ūn(θ(xn, ūn)). We can
assume without loss of generality that {zn} converges to some z, which is
easily seen belonging to S(r).
To simplify our writing, we set tn = θ(xn, ūn), αn(·) = yxn,ūn(·), x̄n =
αn(tn), and M1

n(·) = M(·, xn, ūn). Let also βn(·) = yzn,ūn(·), An(t) =
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∫ 1
0 Dxf(αn(t)+τ(βn(t)−αn(t)), ūn(t)) dτ and let M2

n(·) be the fundamental
solution of ṗ(t) = An(t)p(t), p(0) = IN×N . Finally, we set wi

n(t) = M i
n(zn −

xn) for i ∈ {1, 2}.
Using Lemma 7.1.2 and the same argument leading to (3.3.8) we can perform
the following estimate:

〈
MT (r)−1ξ, z̄n − x̄n

〉
=
〈
MT (r)−1ξ, w2

n(tn)
〉

=
〈
MT (r)−1ξ, w1

n(tn)
〉

+
〈
MT (r)−1ξ, w2

n(tn) − w1
n(tn)

〉

≤
〈
MT (r)−1ξ, w1

n(tn)
〉

+
∥∥MT (r)−1

∥∥ ‖ξ‖
∥∥w2

n(tn) − w1
n(tn)

∥∥

≤
〈
MT (r)−1ξ, w1

n(tn)
〉

+ K̃0 ‖zn − xn‖2

≤
〈
MT (r)−1ξ, w1

n(tn)
〉

+ K̃1 ‖z̄ − x̄n‖2 ,

where K̃0 and K̃1 are suitable constants. Taking n → ∞ in the above
inequalities, we obtain

〈
MT (r)−1ξ, z̄ − x̄

〉
≤
〈
MT (r)−1ξ,MT (r)(z − x)

〉
+ K̃1 ‖z̄ − x̄‖2

= 〈ξ, z − x〉 + K̃1 ‖z̄ − x̄‖2 .

Recalling (3.3.39) and Lemma 7.1.2, we thus obtain
〈
MT (r)−1ξ, z̄ − x̄

〉
≤ σ ‖ξ‖ ‖z − x‖2 + K̃1 ‖z̄ − x̄‖2

≤ K̃2 ‖z̄ − x̄‖2 ,

for a suitable constant K̃2. The above inequality in turn implies that

(MT (r))−1ξ ∈ NP
S (x̄). (3.3.40)

Thanks to (H4), there exists 0 0= ζ ∈ NP
Sc(x̄). Therefore, both S and

Sc admit at x̄ an external nonzero proximal normal. This means that S is
smooth at x̄, and so, by (H4), the unique external normal to Sc at x̄, namely
−MT (r)−1ξ, must be realized by a ball of radius ρ.
Using Proposition IV.2.3 in [11] we see that H(x,−ξ) ≥ 1, and so we can
choose λ ∈ (0, 1) such that H(−λξ, x) = 1. Applying Lemma 3.3.3 for
v = λMT (r)−1ξ, we obtain that λξ ∈ ∂P T (x). Therefore, T is differentiable
at x and so λξ = ξ. Thus both (i) and (ii) are proved.
In order to complete the proof, we apply the last statement of Lemma 3.3.3.
!

The next lemma classifies limiting normals, and shows that limiting sub-
gradients generate proximal normals to the hypograph which are horizontal/
non-horizontal according to the unboundedness/boundedness of the corre-
sponding sequence of proximal subgradients. Also, the radius of the sphere
realizing the limiting vector can be explicitly estimated.
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Lemma 3.3.5 Let the assumptions (H1) – (H4) hold, and let {xn} be a
sequence converging to x ∈ Sc. Assume that there exists a sequence {ξn}
satisfying ξn ∈ ∂P T (xn).
Then the following alternatives hold true:
(i) If lim supn→∞ ‖ξn‖ < +∞ then there exists a subsequence {ξnk} converg-
ing to a vector ξ such that −ξ ∈ N1(x). Moreover, (−ξ, 1) ∈ NP

hypo(T )(x, T (x))
and, for all z ∈ Sc and all β ≤ T (z) the inequality

〈−ξ, z − x〉+β−T (x) ≤ k(T (x), ‖x‖ , ρ) ‖(−ξ, 1)‖ (‖z − x‖2 + |β−T (x)|2)
(3.3.41)

holds.
(ii) If lim supn→∞ ‖ξn‖ = +∞ then there exists a subsequence of { ξn

‖ξn‖}
converging to a vector ξ such that −ξ ∈ N0(x). Moreover, (−ξ, 0) is in
NP

hypo(T )(x, T (x)) and for all z ∈ Sc and all β ≤ T (z), the inequality

〈−ξ, z − x〉 ≤ k(T (x), ‖x‖ , ρ)(‖z − x‖2 + |β − T (x)|2) (3.3.42)

holds.

Proof. Set r = T (x). Recalling Lemma (3.3.4), the function T (·) is differ-
entiable at xn. Taking x̄n ∈ Sxn and Mn(·) ∈ Mx̄n , it follows from Lemma
3.3.4 that for all n ∈ N
a) −MT

n (T (xn))−1ξn ∈ NP
Sc(x̄n) and each −MT

n (T (xn))−1ξn is realized by a
ball of radius ρ, namely

〈
−MT

n (T (xn))−1ξn, z̄ − x̄n
〉
≤
∥∥MT

n (T (xn))−1ξn
∥∥

2ρ
‖z̄ − x̄n‖2 , ∀z̄ ∈ Sc.

(3.3.43)
b) H(−ξn, xn) = 1.

If lim supn→∞ ‖ξn‖ < +∞, we choose subsequences {x̄nk} and {ξnk}
converging respectively to x̄ ∈ S and ξ̄. By compactness, without loss of
generality we can assume that {Mnk(·)} converges uniformly to M(·). We
now take nk → ∞ in (3.3.43) and obtain

〈
−MT (r)−1ξ̄, z̄ − x̄

〉
≤
∥∥MT (r)−1ξ̄

∥∥
2ρ

‖z̄ − x̄‖2 . (3.3.44)

Thus −MT (r)−1ξ̄ ∈ NP
Sc(x̄) and −MT (r)−1ξ̄ is realized by a ball of radius

ρ .
On the other hand, we also take nk → ∞ in b) and obtain H(−ξ̄, x) = 1.
One can also easily show that MT (·) ∈ Mx̄, so that −ξ̄ ∈ N1(x). Recalling
Lemma 3.3.3 and setting ξ := ξ̄ the proof of (i) is concluded.

Analogously, if lim supn→∞ ‖ξn‖ = +∞, we can assume that −ξ̄ =
− limnk→∞

ξnk

‖ξnk‖
, together with −MT (r)−1ξ̄ ∈ NP

Sc(x̄) and H(−ξ̄, x) = 0.

Thus −ξ̄ ∈ N0(x). Finally, recalling Lemma 3.3.2 and setting ξ := ξ̄ we
conclude the proof of (ii). !
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3.3.3 Wedgedness and exposed rays

The final results of this section use for the first time the wedgedness as-
sumption for the normal cone NP

hypo(T )(x, T (x)). They show essentially that
NP

hypo(T )(x, T (x)) is a closed cone, and that horizontal (resp. non-horizontal)
exposed rays of NP

hypo(T )(x, T (x)) belong to N0(x) (resp. N1(x)). As a
byproduct of our argument we obtain a representation of NP

hypo(T )(x, T (x))
through N0(x) and N1(x) (see Theorem 3.3.1).

Lemma 3.3.6 Let s ∈ Sc and let the assumptions (H1) - H(4) hold. As-
sume that NP

hypo(T )(x, T (x)) is wedged and set

Ñ0(x) = {(ξ, 0) | ξ ∈ N0(x)},
Ñ1(x) = {λ(ξ, 1) | ξ ∈ N1(x), λ ≥ 0},
N(x) = coÑ0(x) + coÑ1(x).

Then N(x) ⊆ NP
hypo(T )(x, T (x)) is a closed, convex, and wedged cone.

Proof. Thanks to Lemmas 3.3.2 and 3.3.3 and the definition of k in (3.3.37),
every ζ ∈ Ñ0(x) ∪ Ñ1(x) satisfies the following property: for every y ∈ Sc

and every β ≤ T (y), the inequality

〈ζ, (y − x, β − T (x))〉 ≤ k(T (x), ‖x‖ , ρ) ‖ζ‖
(
‖y − x‖2 + |β − T (x)|2

)

(3.3.45)
holds. It follows immediately from the above property that both Ñ0(x)
and Ñ1(x) are cones contained in NP

hypo(T )(x, T (x)). Thus coÑ0(x) and
coÑ1(x) are contained in NP

hypo(T )(x, T (x)), and so they are wedged. Set
N1

0 = {ξ ∈ RN | ξ ∈ N0(x), ‖ξ‖ = 1}, and observe that on one hand
Ñ0(x) = {λ(ξ, 0) | ξ ∈ N1

0 , λ ≥ 0}, on the other N1
0 (by the continuity of

the Hamiltonian) is compact and 0 0∈ N1
0 . Analogously, observe that N1(x)

is compact and does not contain zero. Therefore, using Lemma 7.2.1, we
obtain that both coÑ0(x) and coÑ1(x) are closed, and the proof is concluded.
!

Lemma 3.3.7 Let x ∈ Sc and let the assumptions of Theorem 3.2.1 hold.
Let Ñ be a closed convex cone in RN+1 with the property

N(x) ⊆ Ñ ⊆ NP
hypo(T )(x, T (x)). (3.3.46)

Let ζ belong to an exposed ray of Ñ . The following statements hold true:

(i) if ζ = (ξ, 0), with ξ ∈ RN , then ξ ∈ N0(x);

(ii) if ζ = (ξ, λ), with ξ ∈ RN and λ > 0, then ξ/λ ∈ N1(x).
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Moreover, ζ satisfies (3.3.45) for all y ∈ Sc and all β ≤ T (y).

Proof. By our assumption on ζ, there exists v̄ = (v0, λ0) satisfying v0 ∈ RN ,
‖v0‖ = 1, and λ0 ∈ R such that






〈(v0, λ0), ζ〉 = 0
〈(v0, λ0), w〉 ≤ 0 ∀w ∈ Ñ

〈(v0, λ0), w〉 = 0, and 0 0= w ∈ Ñ ⇒ w
‖w‖ = ζ

‖ζ‖ .
(3.3.47)

We now begin proving (i). Since ζ = (ξ, 0) ∈ NP
hypo(T )(x, T (x)), there

exists a constant σ ≥ 0 such that, for all z ∈ Sc and all β ≤ T (z), the
inequality

〈ξ, z − x〉 ≤ σ(‖z − x‖2 + |β − T (x)|2) (3.3.48)

holds. Set now xn = x + v0
n + ξ

n
√

n
. Then, by the Density Theorem (see [25,

Theorem 1.3.1]), for each n there exists zn such that

∂P T (zn) 0= ∅, (3.3.49)

‖zn − xn‖ ≤ 1
n2

. (3.3.50)

First, we show that

T (zn) ≤ T (x) for all n large enough. (3.3.51)

Indeed, assume by contradiction that T (zn) > T (x). Taking z = zn and
β = T (x) in (3.3.48), we obtain

〈ξ, zn − x〉 ≤ σ ‖zn − x‖2 .

It follows from the above inequality, (3.3.47), and (3.3.50) that there exists
a suitable constant σ1 for which

‖ξ‖2

n
√

n
≤ σ1

n2

for all n large enough, a contradiction.
Second, we claim that there exists σ2 such that

|T (zn) − T (x)| > σ2n
− 3

4 for all n large enough. (3.3.52)

Indeed, taking z = zn and β = T (zn) in (3.3.48) we obtain

〈ξ, zn − x〉 ≤ σ (‖zn − x‖2 + |T (zn) − T (x)|2).

From the above inequality, (3.3.47), and (3.3.50), one can easily see that
(3.3.52) holds.
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On the other hand, by (3.3.49) and Lemma 3.3.4 we know that T is differ-
entiable at zn and we write ξn = DT (zn). Recalling (3.3.38), for all z ∈ Sc

and all β ≤ T (z) the inequality

〈−ξn, z − zn〉 + β − T (zn)

≤ k(T (zn), ‖zn‖ , ρ) ‖(−ξn, 1)‖ (‖z − zn‖2 + |β − T (zn)|2) (3.3.53)

holds.
We claim that ‖ξn‖ → +∞.
Assume by contradiction that there exists a constant Q such that ‖ξn‖ ≤ Q
for all n. Taking z = x, β = T (x) in (3.3.53) and recalling (3.3.51), we
obtain that

(T (x) − T (zn))
(
1 − k(T (zn), ‖zn‖ , ρ)

√
Q2 + 1|T (x) − T (zn)|

)

≤ ‖x − zn‖
(
Q + k(T (zn), ‖zn‖ , ρ)

√
Q2 + 1 ‖x − zn‖

)
.

By the continuity of T (·) and k(·) and by (3.3.51), (3.3.50), and (3.3.52),
there exists a constant Q1 > 0 such that

Q1

n
3
4

≤ 1
n

for all n large enough,

a contradiction.
Now, recalling (ii) in Lemma 3.3.5 and assuming without loss of generality
that limn→∞− ξn

‖ξn‖ = −ξ̄, we see that (−ξ̄, 0) ∈ Ñ0(x) ⊆ Ñ . By (3.3.51) we
can take z = x and β = T (zn) in (3.3.53), obtaining

〈
− ξn
‖(−ξn, 1)‖

,
x − zn

‖x − zn‖

〉
≤ k(T (zn), ‖zn‖ , ρ) ‖x − zn‖ .

Taking n → ∞ in the above inequality and recalling (3.3.50) we obtain

〈
−ξ̄,−v0

〉
≤ 0,

or, equivalently,
〈
(−ξ̄, 0), (v0, λ0)

〉
≥ 0. Therefore, we obtain from (3.3.47)

that (−ξ̄, 0) = (ξ,0)
‖ξ‖ . Thus ξ = −ξ̄ and the proof of claim (i) is concluded .

Ad (ii). We now take ζ = (ξ, 1) and take v̄ = (v0, λ0) satisfying (3.3.47).
Set xn = x + v0

n . Then by the Density Theorem (see Theorem 1.3.1 in [25])
for each n there exists zn such that

∂P T (zn) 0= ∅, (3.3.54)

‖zn − xn‖ ≤ 1
n2

. (3.3.55)
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Recalling Lemma 3.3.4, (3.3.54) implies that T (·) is differentiable at zn.
Moreover, if we set ξn = DT (zn), then −ξn ∈ N1(zn) and for all z ∈ Sc and
β ≤ T (z) we have

〈−ξn, z − zn〉 + β − T (zn)

≤ k(T (zn), ‖zn‖ , ρ) ‖(−ξn, 1)‖ (‖z − zn‖2 + |β − T (zn)|2).
(3.3.56)

We claim that the sequence {ξn} is bounded.
Suppose by contradiction that lim supn→∞ ‖ξn‖ = +∞. Then assuming
without loss of generality that − ξn

‖ξn‖ → −ξ̄, (ii) of Lemma 3.3.5 yields that
−ξ̄ ∈ N0(x) and (−ξ̄, 0) ∈ Ñ0(x).
In order to obtain a contradiction, we consider two cases:
a) T (x) ≥ T (zn) for infinitely many n;
b) T (x) < T (zn) for infinitely many n.

In the first case, we can choose z = x, β = T (zn) in (3.3.56), obtaining
〈
− ξn
‖(−ξn, 1)‖

,
x − zn

‖x − zn‖

〉
≤ k(T (zn), zn, ρ) ‖x − zn‖ .

Taking n → ∞ and recalling (3.3.55) we get
〈
−ξ̄ , −v0

〉
≤ 0, (3.3.57)

which implies
〈
(−ξ̄, 0), (v0, λ0)

〉
≥ 0. Thus, combining (−ξ̄, 0) ∈ Ñ0(x) with

(3.3.47) we obtain (−ξ̄,0)
‖−ξ̄‖ = (ξ,1)

‖(ξ,1)‖ , a contradiction.

In the second case, since (ξ, 1) ∈ NP
hypo(T )(x, T (x)) there exists σ ≥ 0

such that

〈ξ, zn − x〉+ T (zn) − T (x) ≤ σ (‖zn − x‖2 + |T (zn) − T (x)|2) for all n.
(3.3.58)

The above inequality implies that there exists σ1 such that, for all n large
enough,

T (zn) − T (x) = |T (zn)− T (x)| ≤ σ1 ‖zn − x‖ . (3.3.59)

Recalling (3.3.56) and taking z = x, β = T (x), we have, for all n large
enough,
〈

−ξn
‖(−ξn, 1)‖ ,

x − zn

‖zn − x‖

〉
+

T (x)− T (zn)
‖(−ξn, 1)‖ ‖zn − x‖ ≤

≤ k(T (zn), ‖zn‖ , ρ)
(
‖x − zn‖ +

|T (x) − T (zn)|2

‖x − zn‖

)
.

(3.3.60)

Taking n → ∞ in both (3.3.59) and (3.3.60) we obtain
〈
−ξ̄ , v0

〉
≥ 0, (3.3.61)
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which implies in turn that
〈
(−ξ̄, 0), (v0, λ0)

〉
≥ 0. Thus, combining the

condition (−ξ̄, 0) ∈ Ñ0(x) with (3.3.47), we obtain (−ξ̄,0)
‖ξ̄‖ = (ξ,1)

‖(ξ,1)‖ , a contra-
diction.

We can now assume that

‖ξn‖ ≤ Q for all n, (3.3.62)

for a suitable constant Q, and without loss of generality that

lim
n→∞

ξn = ξ̄. (3.3.63)

From (i) of Lemma 3.3.5 we have that −ξ̄ ∈ N1(x), (−ξ̄, 1) ∈ Ñ1(x), and
(3.3.41) with ξ̄ in place of ξ holds.
We claim that there exists a constant σ2 such that

|T (zn) − T (x)| ≤ σ2 ‖zn − x‖ ∀n. (3.3.64)

In the case T (x) < T (zn), this was already proved (see (3.3.59)).
Assume now T (x) ≥ T (zn). Then, using (3.3.56) with z = x and β = T (x),
we obtain, for all n large enough,

〈−ξn, x − zn〉 + T (x)− T (zn)

≤ k(T (zn), ‖zn‖ , ρ) ‖(−ξn, 1)‖ (‖x − zn‖2 + |T (x) − T (zn)|2).
(3.3.65)

The above inequality and (3.3.62) imply, for all n large enough,

T (x) − T (zn) ≤ k(T (zn), ‖zn‖ , ρ)
√

Q2 + 1(‖x − zn‖2

+ |T (x) − T (zn)|2) + Q ‖zn − x‖ ,

from which, by the local boundedness of k, the inequality (3.3.64) follows.
Summing (3.3.58) and (3.3.65) we obtain, for a suitable constant σ3 ≥ 0
that for all n large enough

〈
ξn + ξ,

zn − x

‖zn − x‖

〉
≤ σ3

(
‖zn − x‖ +

|T (zn) − T (x)|2

‖zn − x‖

)
.

Taking n → ∞ in the above inequality and using (3.3.64), (3.3.55) we obtain
〈
ξ̄ + ξ , v0

〉
≤ 0,

or, equivalently,

〈(ξ, 1) , (v0, λ0)〉 ≤
〈
(−ξ̄, 1) , (v0, λ0)

〉
.
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Recalling (3.3.47), we have 〈(ξ, 1) , (v0, λ0)〉 = 0, whence
〈
(−ξ̄, 1), (v0, λ0)

〉
≥

0. Note that (−ξ̄, 1) ∈ Ñ1(x), so that
〈
(−ξ̄, 1) , (v0, λ0)

〉
= 0 by (3.3.47).

Moreover, using again (3.3.47), we finally arrive to

(−ξ̄, 1)∥∥(−ξ̄, 1)
∥∥ =

(ξ, 1)
‖(−ξ, 1)‖

.

Therefore we see that ξ = −ξ̄ ∈ N1(x) and the proof is concluded. !
The lemmas contained in this section yield immediately the following

result.

Theorem 3.3.1 Let x ∈ Sc and let the assumptions of Theorem 3.2.1 hold.
Then

NP
hypo(T )(x, T (x)) = N(x),

where N(x) was defined in the statement of Lemma 3.3.6, so that
NP

hypo(T )(x, T (x)) is a closed (convex) cone.

Proof. Assume by contradiction that there exists ζ ∈ NP
hypo(T )(x, T (x)) \

N(x). Set
Ñ = co (N(x) ∪ {λζ | λ ≥ 0})

and observe that Ñ is a closed convex cone which satisfies (3.3.46). Clearly, ζ
belongs to an exposed ray of Ñ , so that, by Lemma 3.3.7, ζ ∈ Ñ0(x)∪Ñ1(x),
a contradiction. !

3.4 Proof of the main results of Chapter 3

3.4.1 Proof of Theorem 3.2.1

It is clear that the “⊇” inclusion in (3.2.2) follows from Lemma 3.3.2 and
the convexity of ∂∞T (x).

In order to prove the “⊆” inclusion, take ξ ∈ ∂∞T (x), i.e, (−ξ, 0) ∈
NP

hypo(T )(x, T (x)). Since NP
hypo(T )(x, T (x)) is wedged and closed (see The-

orem 3.3.1), recalling (2.2.3) we can find numbers αi, βi ≥ 0 and vectors
ξi, ζi ∈ RN , i ∈ {1, . . . ,N + 2}, such that





(−ξi, 1) belongs to an exposed ray of NP
hypo(T )(x, T (x))

(−ζi, 0) belongs to an exposed ray of NP
hypo(T )(x, T (x))

(−ξ, 0) =
∑N+2

i=1 αi(−ξi, 1) +
∑N+2

i=1 βi(−ζi, 0).
(3.4.1)

From the above equality we deduce that αi = 0 for all i ∈ {1, . . . ,N + 2}.
Thus, we have

(−ξ, 0) =
N+2∑

i=1

βi(−ζi, 0). (3.4.2)
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Recalling (i) in Lemma 3.3.7 we obtain−ζi ∈ N0(x). Setting ζ̄i = (
∑N+2

j=1 βj)ζi
and β̄i = βiPN+2

i=1 βi
, one can easily see −ζ̄i ∈ N0(x) and

∑N+2
i=1 β̄i = 1.

From (3.4.2), we obtain

ξ = −
N+2∑

i=1

β̄i(−ζ̄i).

The proof is concluded. !
Proof of Theorem 3.2.2. Observe that from the very definition it follows
that if ξ ∈ ∂P T (x) and ζ ∈ ∂∞T (x) then ξ + ζ ∈ ∂P T (x). Thus the “⊇”
inclusion in (3.2.3) follows from Lemma 3.3.3, Lemma 3.3.2 and the above
observation.

In order to prove the “⊆” inclusion, take ξ ∈ ∂P T (x), i.e, (−ξ, 1) ∈
NP

hypo(T )(x, T (x)). Since NP
hypo(T )(x, T (x)) is wedged and closed (see The-

orem 3.3.1), recalling (2.2.3) we can find numbers αi, βi ≥ 0 and vectors
ξi, ζi ∈ RN , i ∈ {1, ...,N + 2}, such that





(−ξi, 1) belongs to an exposed ray of NP
hypo(T )(x, T (x))

(−ζi, 0) belongs to an exposed ray of NP
hypo(T )(x, T (x))

(−ξ, 1) =
∑N+2

i=1 αi(−ξi, 1) +
∑N+2

i=1 βi(−ζi, 0).
(3.4.3)

From the above equality we deduce that
∑N+2

i=1 αi = 1. Thus, recalling (ii)
in Lemma 3.3.7 we obtain that

∑N+2
i=1 αi(−ξi) ∈ co(N1(x)).

On the other hand, arguing similarly to the above proof we see that∑N+2
i=1 βi(−ζi) ∈ co(N0(x)). Therefore,

ξ = −
(

N+2∑

i=1

αi(−ξi) +
N+2∑

i=1

β̄i(−ζ̄i)
)
∈ −[co(N1(x)) + co(N0(x))].

The proof is concluded. !

3.4.2 Proof of Theorem 3.2.3

We need the following technical lemma.

Lemma 3.4.1 Assume that NP
hypo(T )(x, T (x)) is wedged for all x ∈ Sc.

Then for each continuous function θ : Sc → [0,∞), there exists a continuous
function ψθ : Sc → (0, 1] such that

〈ζ1, ζ2〉 ≥ ψθ(x) − 1 (3.4.4)

for all x ∈ Sc and for all ζ1, ζ2 ∈ NP
hypo(T )(x, T (x)) satisfying both ‖ζ1‖ =

‖ζ2‖ = 1 and

〈ζj, (z − x, β − T (x))〉 ≤ θ(x)(‖z − x‖2 + |β − T (x)|2) (3.4.5)

for all z ∈ Sc, β ≤ T (x), and j = 1, 2.
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Proof. We only need to show that for every n ∈ N there exists a continuous
function ψn : B(0, n) ∩ Sc → (0, 1] satisfying (3.4.4) with ψθ(x) replaced by
ψn(x). It is easy to see that the following statement is sufficient to this aim.

Let, for all m,n ∈ N, Km
n = B(0, n) ∩ Sc( 1

m), and observe that, by the
continuity of T (·), Km

n is compact. Fix n. We claim that for each m ∈ N
there exists a constant km ∈ (0, 1] such that

〈ζ1 , ζ2〉 ≥ km − 1, (3.4.6)

for all x ∈ Km
n , ζ1, ζ2 ∈ NP

hypo(T )(x, T (x)) satisfying ‖ζ1‖ = ‖ζ2‖ = 1 and
(3.4.5).

Indeed, assume by contradiction that there exists a sequence {xi} ⊂ Km
n

together with vectors ζi
1, ζi

2 ∈ NP
hypo(T )(xi, T (xi)) satisfying

∥∥ζi
1

∥∥ =
∥∥ζi

2

∥∥ = 1
and

〈
ζi
j, (z − xi, β − T (xi))

〉
≤ θ(xi)(‖z − xi‖2 + |β − T (xi)|2), (3.4.7)

for all z ∈ Sc, β ≤ T (xi) and j ∈ {1, 2}, but such that

lim
i→∞

〈
ζi
1 , ζi

2

〉
= −1. (3.4.8)

We can assume without loss of generality that {xi}, {ζi
1} and {ζi

2} converge
respectively to x̄ ∈ Km

n , ζ̄1 and ζ̄2. By the continuity of T (·), θ(·) and (3.4.7)
we obtain

ζ̄i ∈ NP
hypo(T )(x̄, T (x̄)) for i ∈ {1, 2}.

On the other hand, from
∥∥ζi

1

∥∥ =
∥∥ζi

2

∥∥ = 1 and (3.4.8) we get

ζ̄1 = −ζ̄2.

But then the normal cone NP
hypo(T )(x̄, T (x̄)) contains a line, and this is a

contradiction. !
End of the proof of Theorem 3.2.3.
We need to find a continuous function ϕ : Sc → [0,∞) such that for all

x ∈ Sc, ζ ∈ NP
hypo(T )(x, T (x)) and for all z ∈ Sc, β ≤ T (z) we have

〈ζ, (z − x, β − T (x))〉 ≤ ϕ(x) ‖ζ‖ (‖z − x‖2 + |β − T (x)|2). (3.4.9)

Observe that for every ζ ∈ NP
hypo(T )(x, T (x)), by the wedgedness assumption

and recalling Theorem 3.3.1, we have

ζ =
N+2∑

i=1

ζi, (3.4.10)
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where each ζi belongs to an exposed ray of NP
hypo(T )(x, T (x)). For k ∈

{1, 2, ..,N + 2}, we set

NP
k (x) =

{
ζ | ζ =

k∑

i=1

ζi,

where ζi belongs to an exposed ray of NP
hypo(T )(x, T (x))

}
.

(3.4.11)

Of course NP
k (x) ⊆ NP

hypo(T )(x, T (x)) and NP
N+2(x) = NP

hypo(T )(x, T (x)).
Now, we are going to construct by induction a continuous function ϕk(·)

such that
〈
ζk, (z − x, β − T (x))

〉
≤ ϕk(x)

∥∥∥ζk
∥∥∥ (‖z − x‖2 + |β − T (x)|2), (3.4.12)

for all x ∈ Sc, ζk ∈ NP
k (x) and for all z ∈ Sc, β ≤ T (z).

For k = 1 we choose ϕ1(x) := k(T (x), ‖x‖ , ρ). Recalling Lemma 3.3.7 and
Lemma 3.3.3, 3.3.2, we obtain that for all ζ1 ∈ NP

1 (x) and for all z ∈ Sc,
β ≤ T (z)
〈
ζ1, (z − x, β − T (x))

〉
≤ ϕ1(x)

∥∥ζ1
∥∥ (‖z − x‖2 + |β − T (x)|2). (3.4.13)

Thus (3.4.12) holds.
Assume now that (3.4.12) is satisfied for k = h ≥ 1. We want to show that
(3.4.12) holds for k = h + 1, with

ϕh+1(x) =

√
ϕh(x)2 + ϕ1(x)2

ψmax{ϕ1,ϕh}(x)
, (3.4.14)

where the function ψmax{ϕ1,ϕh}(·) is given by Lemma 3.4.1 for θ(·) =
max{ϕ1(·), ϕh(·)}. Indeed, given ζh+1 ∈ NP

h+1(x), one can write

ζh+1 = ζh + ζ1,

where ζh ∈ NP
h (x) and ζ1 ∈ NP

1 (x). From (3.4.13) and the inductive as-
sumption, one can easily see that
〈
ζh+1, (z − x, β − T (x))

〉

≤
(
ϕ1(x)

∥∥ζ1
∥∥+ ϕh(x)

∥∥∥ζh
∥∥∥
)
(‖z − x‖2 + |β − T (x)|2), (3.4.15)

for all z ∈ Sc, β ≤ T (z).
On the other hand, by inductive assumption, (3.4.13) and Lemma 3.4.1
applied for θ(·) = max{ϕ1(·), ϕh(·)}, we obtain

〈
ζh

‖ζh‖
,
ζ1

‖ζ1‖

〉
≥ ψmax{ϕ1,ϕh}(x)− 1.
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Thus, since ψ(x) ∈ (0, 1], we see that
∥∥∥ζh + ζ1

∥∥∥
2
≥ ψmax{ϕ1,ϕh}(x)

( ∥∥∥ζh
∥∥∥

2
+
∥∥ζ1
∥∥2
)
.

Therefore,

∥∥∥ζh + ζ1
∥∥∥

2
≥
ψmax{ϕ1,ϕh}(x)
ϕh(x)2 + ϕ1(x)2

(
ϕh(x)

∥∥∥ζh
∥∥∥+ ϕ1(x)

∥∥ζ1
∥∥
)2

.

Combining the above inequality, (3.4.14) and (3.4.15) we obtain that
〈
ζh+1, (z − x, β − T (x))

〉
≤ ϕh+1(x)

∥∥∥ζh+1
∥∥∥
(
‖z − x‖2 + |β − T (x)|2

)
,

for all z ∈ Sc, β ≤ T (z).
To conclude the proof, we choose ϕ(·) = ϕN+2(·). !

3.5 The case of optimal points

This section is devoted to the representation of supergradient and horizontal
gradient at optimal points. The corresponding formulas are easier than
in the general case and the structure of the Hamiltonian exhibits special
properties.

The definition of optimal points here is based on the classical definition
(see, e.g., Definition 2.24, p. 119 in [11]), but is adapted to limiting optimal
trajectories, since optimal trajectories may not exist.

Definition 3.5.1 Let x ∈ Sc and set r = T (x). The point x is called an
optimal point if there exist τ > 0 and xτ ∈ Sc such that

(i) T (xτ ) = r + τ ;

(ii) there exist x̄τ ∈ Sxτ and {ūn} ⊂ Ux̄τ , together with the corresponding
sequence xn → xτ , such that yxn,ūn(τ) → x.

At optimal points, the Hamiltonian has a special behavior. More precisely,
let x be an optimal point with T (x) = r > 0. Then the Hamiltonian H(x, ·)
is additive on the proximal normal cone to Sc(r). It follows from this prop-
erty that the supergradient and horizontal supergradient of T are contained,
respectively, in the 1-level set and the 0-level set of the Hamiltonian.

Theorem 3.5.1 Let x ∈ Sc be an optimal point. Under the same assump-
tions of Theorem 3.2.1, the (proximal) horizontal gradient and the supergra-
dient of the minimum time function T (·) at the point x can be computed as
follows:

(a) ∂∞T (x) = [−co(N(x))] ∩ {−ξ | H(ξ, x) = 0},
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(b) ∂P T (x) = [−co(N(x))] ∩ {−ξ | H(ξ, x) = 1},

where

N(x) = {MT (r)v | M(·) ∈ Mx̄, v ∈ NP
Sc(x̄), x̄ ∈ Sx}. (3.5.1)

The proof of Theorem 3.5.1 requires some preliminary lemmas. The first
one gives an information on a lower bound of the Hamiltonian computed at
a proximal normal of the sublevel of T at an optimal point.

Lemma 3.5.1 Let x ∈ Sc be an optimal point, and let ξ ∈ NP
Sc(T (x))(x).

Then H(x, ξ) ≥ 0.

Proof. Set r = T (x). Let τ , xτ , x̄τ , ūn and xn be with the properties
stated in Definition 3.5.1. To simplify our writing, we set γn(·) = yxn,ūn(·).
Assuming without loss of generality that γn(·) converges uniformly to γ(·),
one can easily check that γ(t) ∈ Sc(r) for all t ∈ [0, τ ]. For, should t̄ ∈
(0, τ ] exist such that T (γ(t̄)) < r, then one would have T (xτ ) < r + τ , a
contradiction. Now, since ξ ∈ NP

Sc(r)(x) there exists σ > 0 such that for all
t ∈ [0, τ ] we have

〈ξ , γ(t) − x〉 ≤ σ ‖γ(t) − x‖2 , (3.5.2)

namely, for all t ∈ [0, τ ],

lim
n→∞

〈ξ, γn(t) − x〉 ≤ σ lim
n→∞

‖γn(t) − x‖2 .

Equivalently, for all t ∈ [0, τ ]

lim
n→∞

〈
ξ, γn(τ) −

∫ τ

τ−t
f(γn(s), ūn(s))ds − x

〉
≤

≤ σ lim
n→∞

∥∥∥∥γn(τ) −
∫ τ

τ−t
f(γn(s), ūn(s))ds − x

∥∥∥∥
2

.

Recalling (ii) in Definition 3.5.1, we obtain that for all t ∈ [0, τ ]

lim
n→∞

〈
ξ , −

∫ τ

τ−t
f(γn(s), ūn(s))ds

〉
≤ σ lim

n→∞

∥∥∥∥
∫ τ

τ−t
f(γn(s), ūn(s))ds

∥∥∥∥
2

.

From (iii) of Lemma 7.1.1 and (i), (ii) in Definition 3.5.1, one can see that

lim
n→∞

〈
ξ , −

∫ τ

τ−t
f(γn(s), ūn(s))ds

〉
≤ O(t2) for t → 0+.

Thus, for t → 0+,

lim sup
n→∞

〈
ξ,−

∫ τ

τ−t
f(x, ūn(s))ds

〉

≤ O(t2) + lim sup
n→∞

〈
ξ,

∫ τ

τ−t

(
f(γn(s), ūn(s)) − f(x, ūn(s))

)
ds

〉
.
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Applying the Lipschitz condition of the function f(·, ·) and (iii) of Lemma
7.1.1 we easily obtain that

lim sup
n→∞

〈
ξ,−

∫ τ

τ−t
f(x, ūn(s))ds

〉
≤ O(t2) for t → 0+.

Therefore, there exists a constant Q > 0 such that for each t ∈ [0, τ ] one
can find nt ∈ N with the property

〈
ξ,−

∫ τ
τ−t f(x, ūnt(s))ds

t

〉
≤ Qt.

Set f̄t =
R τ

τ−t f(x,ūnt (s))ds

t . Since f̄t ∈ co(f(x,U)), by the compactness of U ,
there exits a sequence {tn} ⊆ [0, τ ] converging to 0 and f̄ ∈ cof(x,U) such
that both

f̄ = lim
n→∞

f̄tn

and 〈
ξ , f̄

〉
≥ 0

hold. Since
H(x, ξ) = max{〈ξ , f〉 | f ∈ cof(x,U)},

the proof is concluded. !
The next Lemma is the key point in order to obtain the additivity of the

Hamiltonian.

Lemma 3.5.2 Let x ∈ Sc be an optimal point, and set T (x) = r. Then
there exists f̄ ∈ cof(x,U) such that, for all ξ ∈ NP

Sc(r)(x),

H(x, ξ) =
〈
ξ , f̄

〉
.

Proof. Let τ , xτ , x̄τ , ūn and xn be with the properties stated in Definition
3.5.1.
To simplify our writing, we set γn(·) = yxn,ūn(·). Assuming without loss
of generality that γn(·) converges uniformly to γ(·), we see that γ(τ) = x
and T (γ(τ − t)) = r + t for all t ∈ [0, τ ]. Pick v ∈ U , and define, for each
t ∈ [0, τ ], βv,t(·) = yγ(τ−t),v(·), where v(·) is the constant control v(t) ≡ v.
Observe that βv,t(t) ∈ Sc(r) for all t ∈ [0, τ ].

Let now ξ ∈ NP
Sc(r), together with a constant σ ≥ 0 such that for all

t ∈ [0, τ ]
〈ξ , βv,t(t) − x〉 ≤ σ ‖βv,t(t)− x‖2 .

Recalling (ii) in Definition 3.5.1, the latter is equivalent to

lim
n→∞

〈
ξ,

∫ t

0
(f(βv,t(s), v) − f(γn(τ − t + s), ūn(τ − t + s))) ds

〉

≤ σ lim
n→∞

∥∥∥∥

∫ t

0
(f(βv,t(s), v) − f(γn(τ − t + s), ūn(τ − t + s))) ds

∥∥∥∥
2

(3.5.3)
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for all t ∈ [0, τ ]. Moreover, by (iii) of Lemma 7.1.1, there exists a constant
M such that, for all n ∈ N, t ∈ [0, τ ] and s ∈ [0, t],

‖γn(τ − t + s)− γn(τ)‖ ≤ Mt,

so that for all t ∈ [0, τ ] and s ∈ [0, t]

lim
n→∞

‖γn(τ − t + s)− x‖ ≤ Mt.

Combining the above inequality with (3.5.3) and recalling the Lipschitz con-
dition on f , we obtain that, for t → 0+,

lim sup
n→∞

〈
ξ,

∫ t

0

(
f(x, v) − f(x, ūn(r − t + s))

)
ds

〉
≤ O(t2),

or, equivalently,

lim sup
n→∞

〈

ξ, f(x, v) −
∫ t
0 f(x, ūn(r − t + s))ds

t

〉

≤ O(t).

By arguing as in the proof of Lemma 3.5.1, we can find f̄ ∈ co(f(x,U))
independent of ξ and v such that

〈ξ, f(x, v)〉 ≤
〈
ξ, f̄
〉
.

The proof is therefore complete. !
The desired additivity property follows immediately from the above

Lemma.

Corollary 3.5.1 Let x ∈ Sc be an optimal point, and set T (x) = r. Then
for all ξ1, ξ2 ∈ NP

Sc(r)(x), the property

H(x, ξ1 + ξ2) = H(x, ξ1) + H(x, ξ2)

holds.

We are now ready to prove Theorem 3.5.1.
Proof of Theorem 3.5.1.
Proof of part a). It is clear that the “⊆” inclusion of the equality in (a)
follows from Theorem 3.2.1 and Corollary 3.5.1.

To prove the “⊇” inclusion, take ξ ∈ [−co(N(x))]∩ {−ξ | H(x, ξ) = 0},
namely,

ξ = −
m∑

i=1

MT
i (r)vi, where MT

i (r)vi ∈ N(x) (3.5.4)

and

H(x,
m∑

i=1

MT
i (r)vi, ) = 0. (3.5.5)
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Applying Lemma 3.3.1 we get that MT
i (r)vi ∈ NP

Sc(r)(x) for all i ∈ {1, 2, ...,m}.
Thus it follows from Lemma 3.5.1 that

H(x,MT
i (r)vi) ≥ 0 for all i ∈ {1, 2, ...,m}. (3.5.6)

Combining (3.5.5) and (3.5.6), we obtain from Corollary 3.5.1 that for all
i ∈ {1, 2, ...,m}, H(x,MT

i (r)vi) = 0 . Therefore MT
i (r)vi ∈ N0(x) for all

i ∈ {1, 2, ...,m}. We conclude the proof using (3.5.4) and Theorem 3.2.1.
Proof of part b). Similarly to part (a), that the “⊆” inclusion of the

equality in (b) follows from Theorem 3.2.2 and Corollary 3.5.1.
To show the “⊇” inclusion, let ξ ∈ [−co(N(x))] ∩ {−ξ | H(x, ξ) = 1}.

Recalling Lemma 3.5.1, ξ can be represented as

ξ = −
m∑

i=1

αiM
T
0i(r)vi −

m∑

j=1

βjM
T
1j(r)wj , (3.5.7)

where αi ≥ 0, βj ≥ 0 and MT
0i(r)vi ∈ N0(x), MT

1j(r)wj ∈ N1(x).
From MT

0i(r)vi ∈ NP
Sc(r)(x), MT

1j(r)wj ∈ NP
Sc(r)(x), and Corollary 3.5.1, we

have

H(x, ξ) =
m∑

i=1

αiH(x,MT
0i(r)vi) +

m∑

j=1

βjH(x,MT
1j(r)wj) =

m∑

j=1

βj , (3.5.8)

so that
∑m

j=1 βj = 1. The proof is concluded by using (3.5.8), (3.5.7), and
Theorem 3.2.2. !

3.6 Examples

In this section we present some examples which illustrate our results. In
particular, we provide an example showing that Theorem 3.2.3 is no longer
valid if the wedgedness assumption (3.2.1) is dropped.
Example 1. Consider the dynamics x′′(·) ∈ [−1, 1] =: U , i.e.

(
ẋ1(t)
ẋ2(t)

)
= A

(
x1(t)
x2(t)

)
+
(

0
u

)
, u ∈ U , where A =

(
0 1
0 0

)
,

(3.6.1)
with the initial conditions x1(0) = x0

1, x2(0) = x0
2. The target is the set (see

Figure 1)

S = { (x1, x2) ∈ R2 | x1 ≤ 0 } ∪ { (x1, x2) ∈ R2 | x1 ≥ 0, x2 ≤ −x1}
∪ { (x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, x2 ≥ x1}
∪ { (x1, x2) ∈ R2 | x1 ≥ 1, x2 ≥ 1}.
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S

H1

H2

H3

P1

P2

P3

Figure 1

Optimal trajectories are arcs of parabolas

x1 =
1
2
(x2)2 −

1
2
(x0

2)
2 + x0

1 (corresponding to the control u ≡ 1),

and

x1 = −1
2
(x2)2 +

1
2
(x0

2)
2 + x0

1 (corresponding to the control u ≡ −1).

By direct computation, the minimum time function T is everywhere finite,
continuous on the whole of R2, and the open set Sc can be divided into three
regions, say H1, H2 and H3, where T has a different explicit expression.
More precisely, consider the curves

γ1(t) =
(√

2t(1 − t), t
)

, 0 < t ≤ 2 −
√

3,

γ2(t) =
(

1 + t2

2
, t

)
, 2 −

√
3 < t < 1,

γ3(t) =
(

3− 8t + 3t2

2
, t

)
, t ≥ 2 −

√
3.

Observe that γ1(2−
√

3) = γ2(2−
√

3) = γ3(2−
√

3) = 4−2
√

3 and moreover
all points γ2(t), with 2 −

√
3 < t < 1, are optimal (according to Definition
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3.5.1), while all points γ1(t), γ2(t) are not optimal. Set

H1 = {(x1, x2) ∈ Sc | 0 ≤ x2 ≤ 2−
√

3, γ1(x2) ≤ x1 ≤ γ3(x2)}
∪ {(x1, x2) ∈ Sc | x2 ≤ 0, −x2 ≤ γ3(x2)},

H2 = {(x1, x2) ∈ Sc | 0 ≤ x2 ≤ 2−
√

3, x2 ≤ x1 ≤ γ1(x2)}
∪ {(x1, x2) ∈ Sc | 2 −

√
3 ≤ x2 ≤ 1, x2 ≤ x1 ≤ γ2(x2)},

H3 = {(x1, x2) ∈ Sc | 2 −
√

3 ≤ x2 ≤ 1, x1 ≥ γ2(x2)}
∪ {(x1, x2) ∈ Sc | x2 ≤ 2 −

√
3, x1 ≥ γ3(x2)}.

The minimum time function T : Sc → R can be explicitly computed as

T (x1, x2) =






x2 − 1 +
√

1 + 2x1 + (x2)2 := θ1(x1, x2), (x1, x2) ∈ H1

1 − x2 −
√

1 − 2x1 + (x2)2 := θ2(x1, x2), (x1, x2) ∈ H2

1 − x2 := θ3(x1, x2), (x1, x2) ∈ H3.

In the interior of each region Hi, i = 1, 2, 3, T is differentiable. Singularities
appear of each point of the curves γi, i = 1, 2, 3. Moreover T is Hölder
continuous with exponent 1

2 .
In order to appreciate the role of nonsmoothness of the target, as well as
optimality/non optimality of a point and failure of Petrov’s condition, we
compute the generalized differential of T at the three points

P1 =
(

7
16

,
1
8

)
, P2 =

(
5
8
,
1
2

)
, P3 =

(
4 − 2

√
3, 2 −

√
3
)

.

Observe that T (P1) = 1
2 , T (P2) = 1

2 , T (P3) =
√

3− 1.
To this aim we compute the adjoint flow:

eAT t =
(

1 0
t 1

)
,

and the Hamiltonian

H ((x1, x2), (ξ1, ξ2)) = x2ξ1 + |ξ2|.

The point P1 belongs to the curve γ1, and is steered optimally in time
1
2 to both (5

8 , 5
8) and (3

8 ,−3
8 ), where the normal cones to Sc are respec-

tively R+(−1, 1) and R+(−1,−1), while P2 belongs to the curve γ2, and
is steered optimally to (1, 1) in time 1

2 , where the normal cone to Sc is
R+co{(−1, 1), (0, 1)}. P2 is an optimal point. Finally, P3 is steered op-
timally to both (2

√
3 − 3, 3 − 2

√
3) and (1, 1) in time

√
3 − 1. Observe

that H ((1, 1), (−1, 1)) = 0, i.e., Petrov’s condition fails, while at all other
(nonzero) points P of the boundary of S we have H(P, ζ) > 0 for all
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ζ ∈ NP
Sc(P ), ζ 0= 0.

According to Theorem 3.2.2, and, of course, also to explicit computations
from the expression of T , we have

∂cT (P1) = ∂P T (P1)

= −co






eAT 1
2 v | v =

(
−λ
λ

)

or v =
(

−λ
−λ

)
, H(P1, e

AT 1
2 v) = 1






= −co
{ ( 8

3
−4

3

)
,

( 8
11
−12

11

) }
,

∂∞T (P1) = {0};

∂cT (P2) = ∂P T (P2)

= −co
{

eAT 1
2 v | v ∈ NP

SC (1, 1),H(P2, e
AT 1

2 v) = 1
}

−co
{

eAT 1
2 v | v ∈ NP

SC (1, 1),H(P2 , e
AT 1

2 v) = 0
}

=
(

0
−1

)
+
{
λ

(
1
−1

2

)
| λ ≥ 0

}

=
{ (

λ
−1 − λ

2

)
| λ ≥ 0

}

= [−N(P2)] ∩
{
ζ | H(P2,−ζ) = 1

}

(where N(P2) was defined in (3.5.1)),

∂∞T (P2) =
{
λ

(
1
−1

2

)
| λ ≥ 0

}
;

∂cT (P3) = ∂P T (P3)

= −co
{
eAT (

√
3−1)v | v ∈ NP

Sc(1, 1)

or v ∈ NP
Sc(2

√
3 − 3, 3 − 2

√
3), and H(P3, v) = 1

}

= −co

{ (
0
1

)
,

( −1
2(
√

3−1)
−
√

3
2(
√

3−1)

) }

−
{ (

λ
(2 −

√
3)λ

)
| λ ≥ 0

}
,

∂∞T (P3) =
{ (

λ
(2 −

√
3)λ

)
| λ ≥ 0

}
.

Observe that the vector f̄ ∈ co(f(P2,U)) appearing in the statement of
Lemma 3.5.2 is given by f̄ = (1/2,−1).

If the target is modified to become S ′ := S \ {(x1, x2) ∈ R2 : x2 ≥
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1, x1 ≥ (x2)2/2 + 1/2 + (x2 − 1)4} (note that the boundary of S ′ is C2 at
(1, 1), see Figure 2), then the graph of the new minimum time function T ′

is smooth at all points of γ2, but the unique normal is horizontal, so that T ′

is not differentiable at those points.

S

H1

H2

H3
γ2

(1, 1)

Figure 2

The next two examples deal with the case where the normal cone to the
hypograph of T is not wedged. We show first that Theorem 3.2.3 does not
hold in general. Next we provide an example where – although the normal
cone is not wedged – the situation is entirely analogous to the case where
the cone is wedged.
Example 2. Set

γ1(y) =






(1 −
√
−y2 − 2y, y) −2 ≤ y ≤ −1

(−1 +
√
−y2 − 2y, y) −1 ≤ t ≤ 0

(−1 −
√
−y2 + 4y, y) 0 ≤ y ≤ 3,

and

γ2(y) =






(1 +
√
−y2 − 2y, y) −2 ≤ y ≤ 0

(1 −
√
−y2 + 2y, y) 0 ≤ y ≤ 1

(0, y) 1 ≤ y ≤ 2
(−1 +

√
−y2 + 4y, y) 2 ≤ y ≤ 3.

Observe now that the concatenation of γ1 with γ2 defines a C1,1-curve γ. We
set the target S to be the unbounded component of R2 \ {γ} (see Figure 3)
and the dynamics to be






ẋ(t) = u
ẏ(t) = 0

u ∈ U = [−1, 1].
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S
Γ

Figure 3

It is readily verified that the minimum time function is everywhere defined
and continuous. Observe furthermore that Petrov’s condition holds at no
points of the segment [−1, 1] × {0}.
Consider now the curve

Γ(t) =
γ1(t) + γ2(t)

2
, t ∈ [−1, 1],

together with the function

T (t) = γ2(t) − Γ(t)(= Γ(t)− γ1(t)), t ∈ [−1, 1],

which is the minimum time to reach S from the point Γ(t).
Observe that T (t) is constantly equal to 1 for −1 ≤ t ≤ 0 and in this
interval all points of Γ are maximum points for T . Therefore (0, 0, 1) is a
unit limiting normal vector to the hypograph of T at (0, 0, 1).
On the other hand, it can be easily computed that a unit tangent vector to
the graph of T at (0, 0, 1) is

(
−2 +

√
2

2
√

3
, 0,

2−
√

2
2
√

3

)
.

Since the latter has positive scalar product with the limiting normal (0, 0, 1),
it is clear that the hypograph of T is not regular at (0, 0, 1). In particular, the
normal vector (0, 0, 1) is not proximal, thus showing that hypo(T ) doesn’t
have positive reach (see (4) in Theorem 2.2.1).
Observe that both (1, 0, 0) and (−1, 0, 0) are unit proximal normals to hypo(T )
at (0, 0, 1), so that NC

hypo(T )(0, 0, 1) contains a line. Therefore, the assump-
tion (3.2.1) in Theorem 3.2.3 cannot be dropped in general.
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Observe finally that the hypograph of T satisfies the external sphere condi-
tion with radius ρ for a suitable ρ > 0. Therefore this is a simple example
showing that this condition is weaker than positive reach. !
Example 3. We consider again the dynamics (3.6.1) appearing in Example
1 and modify the target in order to allow lines in the normal cone to the
hypograph of T .
The target is the set (see Figure 4)

S = { (x1, x2) ∈ R2 | x1 ≤ 0 } ∪{ (x1, x2) ∈ R2 | x1 ≥ 1}
∪ { (x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, x2 ≤ x1 − 1}
∪ { (x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, x2 ≥ x1}.

S

P

Figure 4

The minimum time function is everywhere finite and continuous, but Petrov’s
condition does not hold. Computations of the same type of Example 1 show
that the normal cone to the hypograph of T at (1/2, 0, 1) is not wedged,
however NC

hypo(T )(1/2, 0, 1) can be represented exactly as in (3.2.3) and the
hypograph of T has positive reach. More precisely,

NP
hypo(T )(1/2, 0, 1) = NC

hypo(T )(1/2, 0, 1)

= R




1
0
0



+ R+co










1√
3

1√
3

1√
3



 ,




− 1√

3
− 1√

3
1√
3










and

∂P T (1/2, 0) = ∂CT (1/2, 0) = R
(

1
0

)
+ co

{(
1
1

)
,

(
−1
−1

)}
.

Observe that H((1/2, 0), (1, 0)) = 0, while

H((1/2, 0), (1, 1)) = H((1/2, 0), (−1,−1)) = 1,
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so that the conclusion of Theorem 3.2.2 holds. An explicit computation of
the minimum time function shows also that the conclusion of Theorem 3.2.3
holds as well. !

3.7 The case of differential inclusions

We study in this section the minimum time problems in the case of differ-
ential inclusions {

ẋ(t) ∈ F (x(t)) a.e.
x(0) = x0,

(3.7.1)

with the closed target S.
Here F : RN ⇒ RN is a multifunction that describes the dynamics, and
x0 ∈ RN is the starting point. For each trajectory yx0(·) satisfying (3.7.1),
we denote

θ(yx0(·)) := min {t ≥ 0 | yx0(t) ∈ S}.

Of course θ(yx0(·)) ∈ [0,∞], and θ(yx0(·)) is the taken time for the trajectory
yx0(·) to reach S. The minimum time T (x0) to reach S for x0 is defined by

T (x0) := inf {θ(yx0(·)) | θ(yx0(·)) is a trajectory satisfying (3.7.1)}.
(3.7.2)

Under standing hypotheses on F which we are now going to introduce,
(3.7.2) will admit a minimal value.

3.7.1 Hypotheses and some consequences

Hypothesys (F):

(F1) F (x) is nonempty, convex, and compact for each x ∈ Rn.

(F2) F is Lipschitz continuous with respect to the Hausdorff distance. Thus,
if K is the Lipschitz constant of F , then K|p| is the Lipschitz constant
of H(·, p), i.e.,

|H(y, p) − H(x, p)| ≤ K|p||y − x| ∀x, y ∈ Rn , ∀p ∈ Rn . (3.7.3)

(F3) There exists a constant K2 > 0 so that max{|v| | v ∈ F (x)} ≤ K2(1 +
|x|).

Hypothesys (H):

(H1) There exists a constant c0 ≥ 0 so that x 2→ H(x, p) is semiconvex with
semiconvexity constant c0|p|.
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(H2) For all p 0= 0, the gradient ∇pH(·, p) exists and is globally Lipschitz,
i.e.,

|∇pH(x, p)−∇pH(y, p)| ≤ K1|y− x| ∀x, y ∈ Rn , ∀p ∈ Rn \ {0} ,
(3.7.4)

for some constant K1 ≥ 0.

Remark 3.7.1 Global Lipschitz continuity in both (F2) and (H2) was as-
sumed just to simplify computations. Indeed, our results still hold if F is
locally Lipschitz with respect to the Hausdorff distance, and ∇pH(·, p) is
locally Lipschitz in x, uniformly so over p in Rn\{0} (as was supposed in
[22]).

The following lemma is proved in [22].

Lemma 3.7.1 Suppose f : Rn × Rm → R is Lipschitz in (x, y) on a boxed
neighborhood Ux × Uy = {(x, y) | max{|x − x̄|, |y − ȳ|} < δ}, and that for
each y ∈ Uy, the function x → f(x, y) is semiconvex on Ux with constant
independent of y. Then, for any ξ = (ξx, ξy) ∈ ∂f(x̄, ȳ), one has ξx ∈
∂xf(x̄, ȳ).

Corollary 3.7.1 Suppose H satisfies assumption (H1). Then

∂H(x, p) ⊆ ∂xH(x, p) × ∂pH(x, p) ∀p 0= 0 .

The following proposition is a consequence of [22, Proposition 1].

Proposition 3.7.1 Suppose F satisfies (F) and (H1). Then
(1) for each x, z ∈ Rn with x± = x ± z, we have

H(x+, p) + H(x−, p) − 2H(x, p) ≥ −c0|p||z|2; and

(2) for each x, y ∈ Rn, and ξ ∈ ∂xH(x, p), we have

H(y, p) −H(x, p) − 〈ξ, y − x〉 ≥ −c0|p||y − x|2.

The differentiability statement in the assumption (H2) is equivalent to
the argmax set of v 2→ 〈v, p〉 being a singleton, which equals ∇pH(x, p) and
will be also denoted by Fp(x). In view of (H2), for all p 0= 0 the function
Fp(·) is globally Lipschitz with constant K1.

The main use of (H2) is given by the following result whose proof is
straightforward.

Proposition 3.7.2 Assume (F) and (H), and let p(·) be an absolutely con-
tinuous arc on [0, T ], with p(t) 0= 0 for all t ∈ [0, T ]. Then, for each x ∈ Rn,
the initial value problem

{
ẋ(t) = Fp(t)(x(t)) a.e. t ∈ [0, T ]
x(0) = x.

(3.7.5)
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has a unique solution y(·, x). Moreover, x 2→ y(t, x) is Lipschitz on Rn and

|y(t, z) − y(t, x)| ≤ eK1t|z − x|. (3.7.6)

We conclude this section with some simple consequences of Gronwall’s
lemma.

Lemma 3.7.2 Let G : [0, T ] × Rn ⇒ Rn be an upper semicontinuous mul-
tifunction. Assume G(t, ·) satisfies hypotheses (F1), (F2) uniformly in t ∈
[0, T ], and is such that for some K0 > 0,

|v| ≤ K0|p| ∀v ∈ G(t, p) , ∀(t, p) ∈ [0, T ] × Rn .

Let p̄(·) a solution of the differential inclusion
{

ṗ(t) ∈ G(t, p(t)) a.e. t ∈ [0, T ]
p(0) = p0.

(3.7.7)

Then
e−K0t|p(0)| ≤| p(t)| ≤ eK0t|p(0)| ∀t ∈ [0, T ].

Moreover, for all 0 ≤ t1 ≤ t2 ≤ T ,

e−K0(t2−t1)|p(t2)| ≤ |p(t1)| ≤ eK0(t2−t1)|p(t2)|

and

|p(t2)− p(t1)| ≤ K0e
K0(t2−t1)(t2 − t1)|p(t2)|.

Proof. Since p(t) = p(0) +
∫ t
0 ṗ(s)ds, we have

|p(t)| ≤| p(0)| +
∫ t

0
|ṗ(s)|ds ≤ |p(0)| + K0

∫ t

0
|p(s)|ds.

So, using Gronwall’s inequality, we get: |p(t)| ≤ eK0t|p(0)|.
We are now going to prove that e−K0t|p(0)| ≤| p(t)| for all t > 0. Fixing

t > 0, we define g(s) := p(t − s) for all s ∈ [0, t]. Since ġ(s) = −ṗ(t − s) for
almost s ∈ [0, t], we have g(s) = g(0) +

∫ s
0 ġ(τ)dτ for all s ∈ [0, t]. Thus,

|g(s)| ≤| g(0)| +
∫ s

0
|ġ(τ)|dτ = |g(0)| +

∫ s

0
|ṗ(t − τ)|dτ

≤ |g(0)| + K0

∫ s

0
|p(t − τ)|dτ = |g(0)| + K0

∫ s

0
|g(τ)|dτ

Again by Gronwall’s inequality, we obtain |g(s)| ≤ eK0s|g(0)| for all s ∈
[0, t]. In particular, |g(t)| ≤ eK0t|g(0)|. The proof is completed noting that
g(t) = p(0) and g(0) = p(t). !
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Corollary 3.7.2 Let p(·) be a solution of (3.7.7). Then either p̄(t) = 0 for
all t ∈ [0, T ] or p(t) 0= 0 for all t ∈ [0, T ].

Lemma 3.7.3 Let y(·, x0) be a solution of (3.7.1). Then, for all t > 0, the
following holds:
i) |y(t, x0)| ≤ (|x0| + 1)eK2t − 1,
ii) |y(t, x0) − x0| ≤ (|x0| + 1)(eK2t − 1) ≤ K2(|x0| + 1)eK2tt.

Proof. Since

y(t, x0) = x0 +
∫ t

0
ẏ(s, x0)ds,

recalling (F3) we have

|y(t, x0)| ≤ |x0| + K2t + K2

∫ t

0
|y(s, x0)|ds.

Hence, Gronwall’s inequality yields (i). Then, observing that

|y(t, x0) − x0| ≤ K2

∫ t

0
(1 + |y(s, x0)|)ds,

(ii) follows using (i) in the above estimate. !

3.7.2 The hypograph of the minimum time function satisfies
an external sphere condition

In this part, we will assume that S is nonempty, closed and has the inner ball
property with balls of radius ρ0 > 0. Moreover, assumptions (F) and (H)
are also assumed throughout. Recall that c0,K,K1,K2 are the constants in
(H1), (F2), (H2), (F3). Let us define, for any r > 0,

S ′(r) = {x | T (x) ≥ r} , S ′ = {x | T (x) ≥ 0} and Sc = {x ∈ Rn | x /∈ S} .

Our main results are the following theorem, together with the corollary.

Theorem 3.7.1 Assume (F) and (H). Suppose further that S is nonempty,
closed and has the inner ball property balls of radius ρ0 > 0 and T (·) is
continuous in Sc. Then, the hypograph of T (·) satisfies a ρT (·)-exterior
sphere condition for some continuous function ρT (·) : Sc → (0,∞).

Remark 3.7.2 The function ρT (·) can be explicitly computed and depends
only on x, T (x), and on c0,K,K1,K2, ρ0.

Consequently, under the assumptions of Theorem 3.7.1, T (·) enjoys the regu-
larity properties will be described in Corollary 5.2.2. Moreover, the following
corollary follows from Theorem 3.7.1 and [50, theorem 21].
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Corollary 3.7.3 Under the assumptions of Theorem 3.7.1, if T (·) is locally
Lipschitz, then T (·) is locally semiconcave.

The main part of the proof of Theorem 3.7.1 is divided into three lemmas.

Lemma 3.7.4 Suppose T (·) has not a local maximum at the point x̄ ∈ Sc.
Let r = T (x̄) and let x̄+(·) be an optimal trajectory steering x̄ to S in time
r, and set x̄−(s) = x̄+(r−s). Then, there exists an arc p̄(·) defined on [0, r],
with p̄(s) 0= 0 for all s ∈ [0, r], such that

{
− ˙̄p(s) ∈ ∂xH(x̄−(s),−p̄(s)) a.e. s ∈ [0, r],
˙̄x−(s) = −F−p̄(s)(x̄−(s)) a.e. s ∈ [0, r]. (3.7.8)

Moreover, −p̄(r − t) ∈ NP
S′(r−t)(x̄

+(t)) is realized by a ball of radius ρ(r− t)
for all t ∈ (0, r], i.e.,

〈−p̄(r − t)
|p̄(r − t)| , ȳ − x̄+(t)

〉
≤ 1

2ρ(r − t)
|ȳ − x̄+(t)|2, ∀ ȳ ∈ S ′(r − t), (3.7.9)

where
ρ(s) =

ρ0
1 + 2c0ρ0s

e−(K+2K1)s. (3.7.10)

Proof. Set x̄1 = x̄+(r). Of course, x̄1 ∈ ∂S. Since S satisfies the ρ0-internal
sphere condition, there exists a proximal normal vector v 0= 0 to S ′ at x̄1

such that B
(
x̄1 + ρ0 v

|v| , ρ0
)
⊆ S, i.e.,

〈 v

|v|
, z − x̄1

〉
≤ 1

2ρ0
|z − x̄1|2 ∀z ∈ S ′. (3.7.11)

Now, consider the reversed differential inclusion with initial data
{

ẏ(s) ∈ −F (y(s)) a.e. s ∈ [0, r],
y(0) ∈ B

(
x̄1 + ρ0 v

|v| , ρ0
)
⊆ S.

(3.7.12)

The Hamiltonian associated with −F is defined by

H−(x, p) := sup
v∈−F (x)

〈v, p〉 = sup
w∈F (x)

〈w,−p〉 = H(x,−p). (3.7.13)

Let us recall that the attainable set from B(x̄1 + ρv, ρ), denoted A−(r), is
defined to be the set of all points y(r) where y(·) is a trajectory satisfying
(3.7.12). Since x̄−(·) is a solution of (3.7.12) with initial point y(0) = x̄1, and
T (·) has not a local maximum at the point x̄, one has that x̄−(r) = x̄ is on
the boundary of A−(r). Indeed, suppose x̄ is not on the boundary of A−(r),
then there exists ε > 0 such that B(x̄, ε) ⊂ A−(r). Thus, T (y) ≤ r = T (x̄)
for all y ∈ B(x̄, ε), and we get a contradiction since T (·) has not a local
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maximum at x̄. Now, since x̄ is on the boundary of A−(r), by [24, Theorem
3.4.5], there is an arc p̄(·), such that ‖p̄(·)‖∞ > 0, satisfying

(− ˙̄p(s), ˙̄x−(s)) ∈ ∂H−(x̄−(s), p̄(s)) a.e. s ∈ [0, r], (3.7.14)

and
p̄(0) ∈ N

B
(
x̄1+ρ0

v
|v| ,ρ0

)(x̄1). (3.7.15)

From (3.7.14), (3.7.13) and Corollary 3.7.1, we have

− ˙̄p(s) ∈ ∂xH(x̄−(s),−p̄(s)) a.e. s ∈ [0, r]. (3.7.16)

Moreover, owing to (3.7.3), for all v ∈ ∂xH(x, p) we have |v| ≤ K|p|. There-
fore, applying Lemma 3.7.2 to G(s,−p̄(s)) = ∂xH(x̄−(s),−p̄(s)), we get

e−Ks|p̄(0)| ≤ |p̄(s)| ≤ eKs|p̄(0)| ∀s ∈ [0, r]. (3.7.17)

Since ‖p̄‖ > 0, we have p̄(s) 0= 0 for all s ∈ [0, r]. Therefore, from (3.7.14)
and Corollary 3.7.1 we get

˙̄x−(s) = −∂pH(x̄−(s),−p̄(s)) = −F−p̄(s)(x̄−(s)) a.e. s ∈ [0, r]. (3.7.18)

We are now going to prove (3.7.9). Fix t ∈ (0, r] and let ȳ ∈ S ′(r − t),
i.e., T (ȳ) ≥ r − t. Let ȳ+(·) be the solution of the Cauchy problem

{
˙̄y+(s) = F−p̄(r−t−s)(ȳ+(s)) a.e. s ∈ [0, r − t],
ȳ+(0) = ȳ.

(3.7.19)

Note that ȳ1 := ȳ+(r − t) ∈ S ′. Then, ȳ−(s) := ȳ+(r − t − s) satisfies
ȳ−(r − t) = ȳ and

{
˙̄y−(s) = −F−p̄(s)(ȳ−(s)) a.e. s ∈ [0, r − t],
ȳ−(0) = ȳ1.

(3.7.20)

From (3.7.18), (3.7.20) and (3.7.6), we have

|ȳ−(s)− x̄−(s)| ≤ eK1(r−t)|ȳ1 − x̄1| ∀s ∈ [0, r − t]. (3.7.21)

In order to prove (3.7.9), observe that

〈−p̄(r − t), ȳ−(r − t)− x̄−(r − t)〉 =

〈−p̄(0), ȳ−(0) − x̄−(0)〉 +
∫ r−t

0

d

ds
〈−p̄(s), ȳ−(s) − x̄−(s)〉ds. (3.7.22)

Moreover,

d

ds
〈−p̄(s), ȳ−(s)− x̄−(s)〉

= 〈− ˙̄p(s), ȳ−(s) − x̄−(s)〉 + 〈−p̄(s), ˙̄y−(s)− ˙̄x−(s)〉
= 〈− ˙̄p(s), ȳ−(s) − x̄−(s)〉 + 〈−p̄(s),−F−p̄(s)(ȳ−(s)) + F−p̄(s)(x̄−(s))〉

= 〈− ˙̄p(s), ȳ−(s)− x̄−(s)〉 − H(ȳ−(s),−p̄(s)) + H(x̄−(s),−p̄(s)).
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Recalling (3.7.16) and Proposition 3.7.1 it follows that

〈− ˙̄p(s), ȳ−(s)−x̄−(s)〉−H(ȳ−(s),−p̄(s))+H(x̄−(s),−p̄(s)) ≤ c0 |p̄(s)| |ȳ−(s)−x̄−(s)|2.

Therefore,

d

ds
〈−p̄(s), ȳ−(s)− x̄−(s)〉 ≤ c0 |p̄(s)| |ȳ−(s) − x̄−(s)|2. (3.7.23)

Owing to (3.7.15) and the fact that p̄(0) 0= 0, we have − p̄(0)
|p̄(0)| = v

|v| . Thus,
by (3.7.11) and the fact that ȳ1 ∈ S ′ we obtain

〈
− p̄(0)

|p̄(0)| , ȳ1 − x̄1

〉
≤ 1

2ρ0
|ȳ1 − x̄1|2. (3.7.24)

Combining (3.7.22), (3.7.23), (3.7.24) and noting that x̄−(0) = x̄1, ȳ−(0) =
ȳ1, x−(r − t) = x+(t), ȳ−(r − t) = ȳ, we conclude that

〈−p̄(r− t), ȳ− x̄+(t)〉 ≤ |p̄(0)|
2ρ0

|ȳ1 − x̄1|2 + c0

∫ r−t

0
|p̄(s)||ȳ−(s)− x̄−(s)|2ds.

Thus, by (3.7.17) and (3.7.21),
〈 −p̄(r − t)
| − p̄(r − t)|

, ȳ − x̄+(t)
〉
≤
( 1

2ρ0
+ c0(r − t)

)
e(K+2K1)(r−t)|ȳ − x+(t)|2.

So, (3.7.9) follows (3.7.10), and the proof is complete. !

Lemma 3.7.5 Suppose T (·) has not a local maximum at the point x̄ ∈ Sc.
Let r = T (x̄) and let x̄+(·) be an optimal trajectory steering x̄ to S in time
r. If p̄(·) is the arc in Lemma 3.7.4, then H(x̄,−p̄(r)) ≥ 0.

Proof. Fixing t ∈ (0, r), by (3.7.9) and the fact that x̄ ∈ S ′(r − t), we have

〈−p̄(r − t), x̄ − x̄+(t)〉 ≤ 1
2ρ(r − t)

|p̄(r − t)| |x̄ − x̄+(t)|2.

Equivalently,
〈
−p̄(r−t),

∫ t

0
−F−p̄(r−s)(x̄+(s))ds

〉
≤ 1

2ρ(r − t)
|p̄(r−t)|

∣∣∣
∫ t

0
−F−p̄(r−s)(x̄+(s))ds

∣∣∣
2
.

Dividing by t both sides of the above inequality, we get
〈
−p̄(r−t),

∫ t
0 −F−p̄(r−s)(x̄+(s))ds

t

〉
≤ 1

2ρ(r − t)
|p̄(r−t)|

|
∫ t
0 −F−p̄(r−s)(x̄+(s))ds|2

t
.

As t → 0, we obtain
〈−p̄(r),−F−p̄(r)(x̄)〉 ≤ 0.

This implies that H(x̄,−p̄(r)) ≥ 0. !
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Lemma 3.7.6 Suppose T (·) has not a local maximum at the point x̄ ∈ Sc.
Let r = T (x̄) and let x̄+(·) be an optimal trajectory steering x̄ to S in time
r. If p̄(·) is the arc in Lemma 3.7.4, then there exists a positive constant ρT

such that (−p̄(r), λ) ∈ NP
hypo(T )(x̄, T (x̄)) is realized by a ball of radius ρT ,

i.e., for all ȳ ∈ Sc and β ≤ T (ȳ)
〈 (−p̄(r), λ)
|(−p̄(r), λ)| , (ȳ − x̄, β − r)

〉
≤ 1

2ρT
(|ȳ − x̄|2 + |β − r|2) (3.7.25)

where λ = H(x̄,−p̄(r)). Moreover, ρT = ρT (x̄) where ρT (·) : Sc → (0,∞) is
a continuous function that can be computed explicitly.

Proof. Let ȳ ∈ S ′. Two cases may occur:
(i) T (ȳ) < T (x̄),
(ii) T (ȳ) ≥ T (x̄).

First case: T (ȳ) =: r1 < r = T (x̄). Let x̄1 = x̄+(r − r1) and write

〈−p̄(r), ȳ − x̄〉 = 〈−p̄(r), ȳ − x̄1〉+ 〈−p̄(r), x̄1 − x̄〉. (3.7.26)

Recalling Lemma 3.7.4 and noting that ȳ ∈ S ′(r1), we can estimate the first
term in the right-hand side of the above identity as follows

〈−p̄(r), ȳ − x̄1〉 =〈−p̄(r1), ȳ − x̄1〉 + 〈−p̄(r) + p̄(r1), ȳ − x̄1〉

≤ 1
2ρ(r1)

|p̄(r1)| |ȳ − x̄1|2 + |p̄(r)− p̄(r1)| |ȳ − x̄1|.

From Lemmas 3.7.2 and 3.7.3, we have that

|p̄(r1)| ≤ eK(r−r1)|p̄(r)| , |p̄(r) − p̄(r1)| ≤ KeK(r−r1)(r − r1)|p̄(r)|

and

|ȳ − x̄1| ≤ |ȳ − x̄| + |x̄1 − x̄| ≤ |ȳ − x̄| + K2(|x̄| + 1)eK2(r−r1)(r − r1).

Thus, observing that ρ(r1) ≥ ρ(r), one can get the estimate

〈−p̄(r), ȳ − x̄1〉 ≤ L1(|x|, r)|p̄(r)|(|ȳ − x̄|2 + |r − r1|2) (3.7.27)

where

L1(|x|, r) =
1 + K2

2 (|x| + 1)2e2K2r

2ρ(r)
eKr + KK2(|x| + 1)e(K+K2)r + 2KeKr.

We rewrite the right-most term of (3.7.26) as follows

〈−p̄(r), x̄1 − x̄〉 = 〈−p̄(r),
∫ r−r1

0
F−p̄(r−s)(x̄+(s))ds〉

=
∫ r−r1

0
〈−p̄(r), F−p̄(r−s)(x̄+(s))〉ds
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and observe that

〈−p̄(r), F−p̄(r−s)(x̄+(s))〉 = 〈−p̄(r), F−p̄(r−s)(x̄+(s)) − F−p̄(r)(x̄+(s))〉
+ 〈−p̄(r), F−p̄(r)(x̄+(s)) − F−p̄(r)(x̄)〉 + 〈−p̄(r), F−p̄(r)(x̄)〉.

Moreover, recalling that λ = H(x̄,−p̄(r)), we have

〈−p̄(r), F−p̄(r)(x̄)〉 = H(x̄,−p̄(r)) = λ,

〈−p̄(r), F−p̄(r)(x̄+(s))− F−p̄(r)(x̄)〉 ≤ K |p̄(r)| |x̄+(s)− x̄|
≤ KK2(|x̄| + 1)eK2r |p̄(r)| s

and

〈−p̄(r), F−p̄(r−s)(x̄+(s)) − F−p̄(r)(x̄+(s))〉
= 〈−p̄(r), F−p̄(r−s)(x̄+(s))〉 − H(x̄+(s),−p̄(r))

= 〈−p̄(r)+p̄(r−s), F−p̄(r−s)(x̄+(s))〉+H(x̄+(s),−p̄(r−s))−H(x̄+(s),−p̄(r))

≤ 2K2|(x̄+(s)| + 1) |p̄(r) − p̄(r − s)| ≤ 2KK2(|x̄| + 1)e(K2+K)r|p̄(r)|s.

Therefore,

〈−p̄(r), F−p̄(r−s)(x̄+(s))〉 ≤ λ+ L2(|x̄|, r) |p̄(r)| s

where L2(|x̄|, r) = KK2(|x̄| + 1)(2eKr + 1)eK2r. Thus, in view of the above
estimates,

〈−p̄(r), x̄1 − x̄〉 ≤ λ(r − r1) +
L2(|x̄|, r)

2
|p̄(r)| |r − r1|2. (3.7.28)

Combining (3.7.26), (3.7.27) and (3.7.28), we get

〈−p̄(r), ȳ− x̄〉+λ(r1−r) ≤ 2L1(|x̄|, r) + L2(|x̄|, r)
2

|p̄(r)| (|ȳ− x̄|2 + |r1−r|2).

From Lemma 3.7.4, we have that λ ≥ 0. Therefore, since r1 < r, we conclude
that
〈 (−p̄(r), λ)
|(−p̄(r), λ)|

, (ȳ− x̄, β − r)
〉
≤ 2L1(|x̄|, r) + L2(|x̄|, r)

2
(|ȳ − x̄|2 + |β − r|2)

(3.7.29)
for all β ≤ r1. So, if T (ȳ) < T (x̄), then (3.7.25) holds true provided ρT (x̄)
is such that

ρT (x̄) ≤ ρ(r) and ρT (x̄) ≤ 2
2L1(|x̄|, r) + L2(|x̄|, r)

. (3.7.30)
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Second case: T (ȳ) = r1 ≥ r = T (x̄).
In view of Lemma 3.7.4, we already know that (3.7.25) holds for all β ≤ r.
So let’s prove (3.7.25) for r < β ≤ r1. Let ȳ+(·) be the solution of

{
˙̄y(s) ∈ F−p̄(r)(ȳ(s)) a.e. s ∈ [0, r1 − β]
ȳ(0) = ȳ.

(3.7.31)

Set ȳ1 = ȳ+(β − r) and compute

〈−p̄(r), ȳ − x̄〉 = 〈−p̄(r), ȳ − ȳ1〉+ 〈−p̄(r), ȳ1 − x̄〉. (3.7.32)

Since r < β ≤ r1, one can see that T (ȳ1) > r. Thus, ȳ1 ∈ S ′(r). Then,
recalling Lemma 3.7.4 we get

〈−p̄(r), ȳ1 − x̄〉 ≤ 1
2ρ(r)

|p̄(r)| |ȳ1 − x̄|2.

Using Lemma 3.7.3, we also have

|ȳ1 − x̄| ≤ |ȳ1 − ȳ| + |ȳ − x̄|
≤ K2(|ȳ| + 1)eK2(β−r)|β − r| + |ȳ − x̄|.

So,

〈−p̄(r), ȳ1 − x̄〉 ≤ K2
2 (|ȳ| + 1)2e2K2(β−r) + 1

2ρ(r)
|p̄(r)| (|ȳ − x̄|2 + |β − r|2).

(3.7.33)
On the other hand, recalling (3.7.4) we have

〈−p̄(r), ȳ−ȳ1〉 =
〈
−p̄(r),

∫ β−r

0
−F−p̄(r)(ȳ+(s))ds

〉
=
∫ β−r

0

〈
−p̄(r),−F−p̄(r)(ȳ+(s))

〉
ds

=
∫ β−r

0

〈
−p̄(r),−F−p̄(r)(ȳ+(s))+F−p̄(r)(x̄)

〉
ds+
∫ β−r

0

〈
−p̄(r),−F−p̄(r)(x̄)

〉
ds

≤ K1 |p̄(r)|
∫ β−r

0
|ȳ+(s) − x̄|ds +

∫ β−r

0
−H(x,−p̄(r))ds

= K1 |p̄(r)|
∫ β−r

0
|ȳ+(s)− x̄)|ds + λ(r − β).

Owing to Lemma 3.7.3, for all s ∈ [0, β − r]

|ȳ+(s)− x̄| ≤ |ȳ+(s) − ȳ| + |ȳ − x̄|
≤ K2(|ȳ| + 1)eK2(β−r)|β − r| + |ȳ − x̄|.

Therefore,

〈−p̄(r), ȳ−ȳ1〉 ≤ λ(r−β)+K1[1+K2(|ȳ|+1)eK2(β−r)] |p̄(r)| (|ȳ−x̄|2+|β−r|2).
(3.7.34)
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Combining (3.7.32), (3.7.33) and (3.7.34), we get

〈 (−p̄(r), λ)
|(−p̄(r), λ)|

, (ȳ − x̄, β − r)
〉
≤ L3 (|ȳ − x̄|2 + |β − r|2)

where L3 = K2
2 (|ȳ|+1)2e2K2(β−r)+1

2ρ(r) + K1[1 + K2(|ȳ| + 1)eK2(β−r)]. The depen-
dence of L3 on |ȳ| can be easily disposed of taking

L4(|x̄|, r) =
K2

2 (|x̄| + 2)2e2K2 + 1
2ρ(r)

+ K1[1 + K2(|x̄| + 2)eK2 ] + 1.

Then, the above inequality yields

〈 (−p̄(r), λ)
|(−p̄(r), λ)|

, (ȳ − x̄, β − r)〉 ≤ L4(|x̄|, r) (|ȳ − x̄|2 + |β − r|2). (3.7.35)

Recalling (3.7.30) and (3.7.35), and taking

ρT (x̄) :=
(
2max

{2L1(|x̄|, T (x̄)) + L2(|x̄|, T (x̄))
2

, L4(|x̄|, T (x̄))
})−1

,(3.7.36)

we obtain (3.7.25). Finally, since T (·) is continuous on Sc, one can easily
see that ρT (·) is also continuous on Sc. The proof is complete. !

Proof of Theorem 3.7.1. Let x̄ ∈ Sc. Let r = T (x̄) and let x̄+(·) be an
optimal trajectory steering x̄ to S in time r. By the dynamic programming
principle, T (x̄+(t)) = r − t for all t ∈ (0, r). This implies that T (·) has
a not local maximum at x̄+(t) for all t ∈ (0, r). Therefore, by applying
Lemma 3.7.6, we obtain that for all t ∈ (0, r), there exists a unit vector
q̄(t) ∈ NP

hypo(T )(x̄
+(t), T (x̄+(t))) realized by a ball of radius ρT (x̄+(t)) where

ρT (·) is given by (3.7.36), i.e, for all ȳ ∈ Sc and β ≤ T (ȳ)

〈
q̄(t) ,

(
ȳ − x̄+(t), β − T (x̄+(t))

)〉

≤ 1
2ρT (x+(t))

(|ȳ − x̄+(t)|2 + |β − T (x+(t))|2). (3.7.37)

Since q̄(t) is a unit vector in Rn+1 for all t ∈ (0, r), there exists a sequence
{tk} which converges to 0+ such that the sequence {q̄(tk)} converges to a
unit vector q̄ in Rn+1. Taking t = tk and then letting k → ∞ in (3.7.37), by
the continuity of T (·) and ρT (·), we obtain that for all y ∈ Sc and β ≤ T (x),

〈
q̄ ,
(
ȳ − x̄, β − T (x̄)

)〉
≤ 1

2ρT (x̄)
(|ȳ − x̄|2 + |β − T (x)|2)

where ρT (·) is given by (3.7.36). Therefore, q̄ ∈ NP
hypo(T )(x̄, T (x̄)) is realized

by a ball of radius ρT (T (x̄)). The proof is complete. !
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We conclude this part with an example in which the Petrov’s control-
lability condition does not hold and the minimum time function T is just
continuous. Moreover, in this example, the multifunction F does not admit
a C1 parameterization but the multifunction F and the Hamiltonian H sat-
isfy the assumptions (F) and (H).
Example 1. Set

γ(t) =






(1, t) t ≤ 0(
1 −

√
−t2 + 2t, t

)
0 ≤ t ≤ 1(

0, t
)

t ≥ 1.

We set the target S to be the right part of R2\{γ} (see Figure 1) and the
differential inclusion to be
(
ẋ1(t), ẋ2(t)

)
∈ F
(
x1(t), x2(t)

)
=
{(

u1, h(x2(t))u2
)
| u1, u2 ∈ [0, 1]

}
,

where

h(x2) =

{
0 if x2 ≤ 1
x2 − 1 if x2 ≥ 1.

S

G

0 1

1

Figure 1

Observe first that S has the inner ball property. Observe furthermore that
for 0 < t ≤ 1, the point zt =

(
1−

√
−t2 + 2t, t

)
is on the boundary of S, and

min
v∈F (zt)

〈v, ν〉 = −
√
−t2 + 2t |ν|,

where ν is the proximal vector to S. Therefore, since limt→0+

√
−t2 + 2t = 0,

one can see that the Petrov’s controllability condition does not hold in a
neighborhood of (1, 0) . Moreover, by computing explicitly the minimum
time function T ,

T (x1, x2) =






1− x1 if x1 ≤ 1, x2 ≤ 0
1−
√
−x2

2 + 2x2 − x1 if x1 ≤ 1−
√
−x2

2 + 2x2, 0 < x2 ≤ 1
−x1 if x1 ≤ 0, x2 > 1,
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one can prove that T is continuous, but is not Lipschitz at points (x1, 0) for
x1 ≤ 1.

We next show that F does not admit a C1 parameterization. We first
recall a criterion in [22, p3] that if F admit a C1 parameterization, then the
Hamiltonian H necessarily has the property

H(x, p) = −H(x,−p) =⇒ ∂xH(x, p) = −∂xH(x,−p), (3.7.38)

where ∂x denotes the Clarke partial subgradient in x. In this example, the
Hamiltonian H is computed as

H
(
(x1, x2), (p1, p2)

)
=






0 p1 < 0, p2 < 0,
p1 p1 ≥ 0, p2 < 0,
h(x2)p2 p1 < 0, p2 ≥ 0,
p1 + h(x2)p2 p1 ≥ 0, p2 ≥ 0.

At the point (x1, x2) = (1, 1), one has that H
(
(1, 1), (0,−1)

)
= H

(
(1, 1), (0, 1)

)
=

0. However,

∂xH
(
(1, 1), (0,−1)

)
= (0, 0) and ∂xH

(
(1, 1), (0, 1)

)
= (0, [0, 1]),

and so (3.7.38) is violated at the point (1, 1). Thus, F does not admit a C1

parameterization.
Finally, since h is a convex function, one can also prove that F and H
satisfies the assumptions (F) and (H). Therefore, by applying Theorem 3.7.1,
the hypograph of T satisfies a ρT (·)-exterior sphere condition.

3.7.3 The inner ball property of attainable sets

In this second part, we will study the attainable set A(T ) from 0 for the
reversed differential inclusion

{
ẋ(t) ∈ −F (x(t)) a.e.
x(0) = 0. (3.7.39)

For any T > 0, such set is defined by

A(T ) := {y(t) | t ∈ [0, T ] and y(·) is a solution of (3.7.39)}.

Let us recall that c0, K and K1 are the constants appearing in (H1),
(3.7.3) and (3.7.4), respectively.

Theorem 3.7.2 Assume F satisfies (F) and (H). In addition, suppose that,
for some R > 0, F (x) satisfies the R-interior sphere condition for all x ∈ Rn.
If T > 0 and e−3KT > 2c0RT 2, then the attainable set A(T ) satisfies the
R(T )-internal sphere condition with

R(T ) = R

(
e−3KT − 2c0RT 2

)

(1 + KT + K1T )2
. (3.7.40)
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Proof. Let x̄ ∈ ∂A(T ) and let x̄−(·) be a trajectory of (3.7.39) steering
0 to x̄ in time T . By the Pontryagin maximum principle, there exists an
arc p̄(·) defined in [0, T ], with p̄(s) 0= 0 for all s ∈ [0, T ], such that

{
− ˙̄p(s) ∈ ∂xH(x̄−(s),−p̄(s)) a.e. s ∈ [0, T ]
˙̄x−(s) = −F−p̄(s)(x̄−(s)) a.e. s ∈ [0, T ]. (3.7.41)

We want to prove that, for r0 := R(T ) (where R(T ) is defined in (3.7.40)),

B
(
x̄ + r0T

−p̄(T )
|p̄(T )|

, r0T
)
⊆ A(T ). (3.7.42)

Let θ ∈ B(0, 1). Considering the adjoint equation associated with p̄(·), that
is, 





˙̄z(s) = − 〈 ˙̄p(s),z̄(s)〉
|p̄(s)|2 p̄(s) a.e.

z̄(T ) = p̄(T )
|p̄(T )| − θ,

(3.7.43)

one can see that

〈 ˙̄z(s), p̄(s)〉 = −〈 ˙̄p(s), z̄(s)〉 for a.e. s ∈ [0, T ]. (3.7.44)

This implies that d
dt〈z̄(s), p̄(s)〉 = 0 for a.e. s ∈ [0, T ]. Therefore, 〈z̄(s), p̄(s)〉

is constant for all s ∈ [0, T ]. In particular,

〈z̄(s), p̄(s)〉 = 〈z̄(T ), p̄(T )〉 . (3.7.45)

On the other hand, from (3.7.43) we have | ˙̄z(s)| ≤ K|z̄(s)|. Thus, recalling
Lemma 3.7.2 we obtain

e−K(t2−t1)|z̄(t2)| ≤| z̄(t1)| ≤ eK(t2−t1)|z̄(t2)| for all 0 ≤ t1 ≤ t2 ≤ T.
(3.7.46)

We now set
ȳθ(s) = x̄(s)− r0sz̄(s). (3.7.47)

Our aim is to prove that ȳθ(T ) ∈ A(T ). Since ȳθ(0) = x̄(0) = 0 and
ȳθ(T ) = x̄(T ) − r0T ( p̄(T )

|p̄(T )| − θ), we need to show

˙̄yθ(s) ∈ −F (ȳθ(s)) for a.e. s ∈ [0, T ].

Observe that F−p̄(s)(ȳθ(s)) ∈ ∂F (ȳθ(s)). Since F (ȳθ(s)) is convex and sat-
isfies the R-internal sphere condition, we have that p̄(s) is an inner normal
vector to ∂F (ȳθ(s)) at the point F−p̄(s)(ȳθ(s)). Thus, − ˙̄yθ(s) ∈ F (ȳθ(s))
(equivalently to ˙̄yθ(s) ∈ −F (ȳθ(s))) if − ˙̄yθ(s) ∈ B(F−p̄(s)(ȳθ(s)) + r p̄(s)

|p̄(s)| , r).
Therefore,1 our conclusion will follow from
〈 p̄(s)
|p̄(s)| ,−

˙̄yθ(s) − F−p̄(s)(ȳθ(s))
〉
≥ 1

2r
| ˙̄yθ(s) + F−p̄(s)(ȳθ)(s)|2. (3.7.48)

1Observe that for all r > 0 and x ∈ RN , y ∈ B(x + rv, r) ⇔ 〈v, y − x〉 ≥ 1
2r |y − x|2

where v ∈ RN is any unit vector.
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Equivalently,
〈
− p̄(s)

|p̄(s)| ,
˙̄yθ(s) + F−p̄(s)(ȳθ(s))

〉
≥ 1

2r
| ˙̄yθ(s) + F−p̄(s)(ȳθ)(s)|2. (3.7.49)

We are now going to prove (3.7.49). On account of (3.7.47), we have

˙̄yθ(s) = −F−p̄(s)(x̄(s)) − r0z̄(s) − r0s ˙̄z(s).

Thus,
〈
− p̄(s)

|p̄(s)|
, ˙̄yθ(s) + F−p̄(s)(ȳθ(s))

〉

=
〈
− p̄(s)

|p̄(s)|
, F−p̄(s)(ȳθ(s)) − F−p̄(s)(x̄(s)) − r0z̄(s)− r0s ˙̄z(s)

〉

=
1

|p̄(s)| (H(ȳθ(s),−p̄(s)) −H(x̄(s),−p̄(s)))

+
r0

|p̄(s)| 〈p̄(s), z̄(s)〉+ r0s
1

|p̄(s)| 〈p̄(s), ˙̄z(s)〉.

Recalling (3.7.44), (3.7.47) and (3.7.45), we conclude that

〈
− p̄(s)

|p̄(s)|
, ˙̄yθ(s) + F−p̄(s)(ȳθ(s))

〉

=
1

|p̄(s)|
(
H(ȳθ(s),−p̄(s))−H(x̄(s),−p̄(s))−〈− ˙̄p(s), ȳθ(s)−x̄(s)〉

)
+

r0

|p̄(s)| 〈p̄(T ), z̄(T )〉

≥ −c0 |ȳθ(s)− x̄(s)|2 + r0
|p̄(T )|
|p̄(s)|

〈 p̄(T )
|p̄(T )| ,

p̄(T )
|p̄(T )| − θ

〉

≥ −c0r
2
0s

2|z̄(s)|2 +
r0

2
|p̄(T )|
|p̄(s)|

∣∣∣
p̄(T )
|p̄(T )| − θ

∣∣∣
2

= −c0r
2
0s

2|z̄(s)|2 +
r0

2
|p̄(T )|
|p̄(s)|

|z̄(T )|2.

Recalling Lemma 3.7.2 and (3.7.46), we obtain
〈
− p̄(s)

|p̄(s)| ,
˙̄yθ(s) + F−p̄(s)(ȳθ(s))

〉
≥ r0

2
(−2c0r0T

2 + e−3KT )|z̄(s)|2. (3.7.50)

Observe that 0 < r0 = R(T ) = R (e−3KT −2c0RT 2)
(1+KT+K1T )2 ≤ R. Then,

〈
− p̄(s)

|p̄(s)| ,
˙̄yθ(s)+F−p̄(s)(ȳθ(s))

〉
≥ r0

2
(−2c0RT 2 + e−3KT ) |z̄(s)|2. (3.7.51)

On the other hand,

| ˙̄yθ(s) + F−p̄(s)(ȳθ(s))| ≤| F−p̄(s)(ȳθ(s)) − F−p̄(s)(x̄(s))| + r0|z̄(s)| + r0s| ˙̄z(s)|
≤ K1r0s|z̄(s)| + r0|z̄(s)| + Kr0s|z̄(s)|
≤ r0(K1T + KT + 1)|z̄(s)|.
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Thus,

〈
− p̄(s)
|p̄(s)| ,

˙̄yθ(s)+F−p̄(s)(ȳθ(s))
〉
≥ e3KT − 2c0RT 2

2r0(K1T + KT + 1)2
| ˙̄yθ(s)+F−p̄(s)(ȳθ(s))|2,

and (3.7.49) follows . The proof is complete. !
Finally, let us denote by A(x, T ) the attainable set from x in time T for the
differential inclusion in (3.7.39). One can see from Theorem 3.7.2 that there
exists a time T0 > 0 such that for all 0 < T < T0, the set A(x, T ) satisfies
the R(T )-exterior sphere condition with R(T ) given by (3.7.40). Moreover,
for any closed set S ⊂ RN , let us set

A(S, T ) =
⋃

x∈S
A(x, T ).

Corollary 3.7.4 Suppose that S is nonempty and closed. Under the as-
sumptions in Theorem 3.7.2, there exists T0 > 0 such that, for all 0 < T <
T0, then the set A(S, T ) satisfies the R(T )-exterior sphere condition with
R(T ) given by (3.7.40).

Consequences on minimum time function for a general target.

Theorem 3.7.3 Assume (F), (H) and for some R > 0, F (x) satisfies
the R-interior sphere condition for all x ∈ Rn. Suppose further that S
is nonempty, closed and T (·) is continuous in Sc. Then, the hypograph of
T (·) satisfies a ρT (·)-exterior sphere condition for some continuous function
ρT (·) : Sc → (0,∞).

Corollary 3.7.5 Under the assumptions of Theorem 3.7.3, if T (·) is locally
Lipschitz, then T (·) is locally semiconcave.



76 Semiconcavity type results



Chapter 4

Semiconvexity type results

In this chapter we will be concerned with the minimum time function T
around the origin. Under some suitable assumptions on the nonlinear control
system, there exists an open neighborhood U of 0 such that the epigraph of
T|U has positive reach. Therefore, T enjoys several regularity properties of
a semiconvex function (see Theorem 2.2.2). In particular, T is a.e twice
differentiable in U .

Our approach is based on the linear nonautonomous control systems
which are obtained by linearizing the nonlinear control system along the
optimal trajectories. From the normality assumption at 0 of such linear
systems, the corresponding reachable sets up to small time will be strictly
convex. Furthermore, the reachable set of the nonlinear control systems
in 2D can inherit the strict convexity from linear systems. Consequently,
every point near 0 is optimal and is steered to the origin by a unique optimal
trajectory.

A fundamental analysis for this approach is the study on the reachable
set RT of the normal linear control system (see Definition 4.1.1). For such
systems, the Pontryagin maximum principle gives complete information on
optimal controls. More precisely, every optimal control ū on [0, T ] is a sign
function of a switching function g on [0, T ] which has finitely many zero
points, i.e., ū is a bang-bang control with finitely many switching points on
[0, T ]. Therefore, RT is strictly convex (see other proof in [41]). However,
to our aim, we need to have an optimal computation of the modulus of the
strict convexity of RT (Theorem 4.2.1). The crucial point of the proof is
classifying the set of zero points of g according to their multiplicity.

The chapter is organized as follows: in Section 4.1 recall some definitions
of linear control systems and some basic facts, while Section 4.2 contains our
results on the reachable set in the case of linear control system. The last
Section 4.3 is devoted a study on the minimum time function for a nonlinear
control system in 2D.
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4.1 Linear control system and normality

Consider the linear control system





ẏ(t) = Ay(t) + Bu(t) a.e.
u(t) ∈ U a.e.
y(0) = 0,

(4.1.1)

where A ∈ MN×N , B ∈ MN×M and the control set U = [−1, 1]M . For
any t > 0, we denote by U t

ad, the set of admissible controls on the interval
[0, t], i.e., the measurable function u : [0, t] → RN , such that u(s) ∈ U a.e.
s ∈ [0, t]. For any u(·) ∈ U t

ad, the unique Carathéodory solution of (4.1.1) is
denoted by yu(·). Moreover,

yu(t) =
∫ t

0
eA(t−s)Bu(s)ds.

Therefore, the reachable set from 0 in time T can be explicitly computed,
and reads as:

RT =
{∫ T

0
eA(T−s)Bu(s)ds) | u(·) ∈ UT

ad

}
.

One can see that the set RT is convex and compact.

Proposition 4.1.1 (Pontryagin maximum principle) Suppose x̄ ∈ RT

is realized by the control ū(·) ∈ UT
ad. Then x̄ ∈ ∂RT if and only if for all

ζ̄ ∈ NRT , it holds

ūi(t) = sign〈ζ, eA(T−t)bi〉, a.e. t ∈ [0, T ],

for all i = 1, 2, ...,M where u = (u1, u2, ..., uM ) and B = (b1, b2, ..., bM ).

A standard reference for the proof is in [41].

Definition 4.1.1 The system (4.1.1) is normal if and only if

Rank
[
bi, Abi, ..., A

N−1bi
]

= N

for i = 1, 2, ...,N where B = (b1, b2, ..., bM ).

Remark 4.1.1 If the system (4.1.1) is normal then (A,B) satisfies Kalman
rank condition. Therefore (4.1.1) is small time locally controllable.

We state here a classical result for such systems.

Theorem 4.1.1 The linear control system(4.1.1) is normal if and only if
the reachable set RT is strictly convex for any T > 0.

Proof. One can find a proof in [41]. !
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4.2 Quantitative strict convexity of reachable sets

4.2.1 Linear autonomous control systems

We will study in this subsection the modulus of strict convexity of the reach-
able sets in the case of normal linear autonomous control systems (4.1.1).
The first Lemma clarifies the role of the normality assumption in the behav-
ior of the switching functions g. The case of a single control is the pivotal
one.

Lemma 4.2.1 Let A ∈ MN×N and b ∈ RN be such that

Rank
[
b,Ab, ..., AN−1b

]
= N. (4.2.1)

Take ζ ∈ RN , with ‖ζ‖ = 1, and define, for s ∈ [0,∞)

g(s) = 〈eAsb , ζ〉. (4.2.2)

Then there exists a constant L, depending only on A, b,N such that

N−1∑

i=0

|g(i)(s)| ≥L e−‖A‖s. (4.2.3)

Proof. Set

K =





b
Ab
...

AN−1b





and observe that, by (4.2.1)

L = min
‖ζ‖=1

‖Kζ‖ > 0. (4.2.4)

Fix ζ ∈ RN with ‖ζ‖ = 1 and write ζ1(s) = esAT
ζ. Observe that ζ =

e−AT sζ1(s) and ‖ζ1(s)‖ ≥ e−s‖A‖. We compute now, for i = 0, 1, ...,N − 1,

g(i)(s) = 〈eAsAib, ζ〉 = 〈Aib, ζ1(s)〉.

Therefore,

Kζ1(s) =





b
Ab
...

AN−1b



 ζ1(s) =





g(0)(s)
g(1)(s)

...
g(N−1)(s)




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Using (4.2.4) we have that

‖Kζ1(s)‖ ≥ Le−s‖A‖.

On the other hand,

‖Kζ1(s)‖ ≤
N−1∑

i=0

|g(i)(s)|

and the proof is concluded. !
The next Lemma is crucial for estimating the number of zero points of

the switching function g (corresponding to the number of switching points
of the optimal control associated with g) and for studying the multiplicity
order at zero points of g.

Lemma 4.2.2 Let A ∈ MN×N and b ∈ RN be satisfying (4.2.1). Take
ζ ∈ RN , ‖ζ‖ = 1, and fix T > 0. Let g(s), s ∈ [0, T ], be defined as in
(4.2.34).

Then there exist disjoint sets I0, I1, ..., IN−1 and numbers Ni, depending
only on A, b, T and N such that

[0, T ] =
N−1⋃

i=0

Ii

and, for all i = 0, 1, ...,N − 1, the set Ii is the disjoint union of at most Ni

intervals. Moreover, for each i = 0, 1, ...,N − 1, for all s ∈ Ii, we have

|g(i)(s)| ≥ L
N

e−‖A‖s. (4.2.5)

Proof. We proceed by induction for i from 0 to N − 1. Set

c(s) =
Le−‖A‖s

N
, (4.2.6)

and
J0 = {s ∈ (0, T ) | |g(s)| < c(s)}.

Since J0 is open, we can write it as the disjoint union of countably many
intervals,

J0 =
∞⋃

k=1

(a2k, a2k+1), (4.2.7)

where 0 < a2 < a3 < a4 < ... < a2k < a2k+1... < T .
Observe that, by contradiction, if s ∈ [a2k+1, a2k+2], then |g(s)| ≥ c(s).

Now, fix k and consider the intervals (a2k, a2k+1), ..., (a2(k+N−1), a2(k+N)−1).
Set, for j = 0, 1, ...,N − 1

(a2(k+j), a2(k+j)+1) := I−j ,
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and, for j = 0, 1, ...,N − 2

[a2(k+j)+1, a2(k+j+1)] := I+
j .

Observe that
N−1⋃

j=0

I−j ∪
N−2⋃

j=0

I+
j = (a2k, a2(k+N)−1).

We are going to give a lower bound on |a2(k+N)−1 − a2k| independent of k,
from which it will follow that the intervals (a2k, a2k+1) are nonempty only
for finitely many k.

Observe that for each j = 0, 1, ...,N − 2, there exists at least one point
c1
j ∈ I+

j such that g′(c1
j ) = 0. Therefore, there exist at least N − 2 points,

say c2
j for j = 0, 1, ...,N − 3, such that

c2
j ∈ (c1

j , c
1
j+1) and g′′(c2

j ) = 0.

Proceeding by induction we see that, for each i = 1, ...,N − 1, there exists
at least one point ci ∈ (a2k+1, a2(k+N)−1) such that g(i)(ci) = 0.
Pick any s0 ∈ (a2k, a2k+1). We have

|g(s0)| < c(s0), (4.2.8)

|g(i)(s0)| = |g(i)(s0)− g(i)(ci)| =
∣∣∣
∫ ci

s0

g(i+1)(s)ds
∣∣∣

≤
∫ a2(k+N)−1

a2k

|g(i+1)(s)|ds ≤ (a2(k+N)−1 − a2k)e‖A‖T ‖Ai+1b‖.

Therefore,

N−1∑

i=1

|g(i)(s0)| ≤ (a2(k+N)−1 − a2k)e‖A‖T
N−1∑

i=1

‖Ai+1b‖. (4.2.9)

On the other hand, recalling (4.2.3), (4.2.6) and (4.2.8) we have

N−1∑

i=1

|g(i)(s0)| ≥ Le−‖A‖s0 − c(s0)

=
N − 1

N
Le−‖A‖s0 ≥ N − 1

N
Le−‖A‖T . (4.2.10)

From (4.2.9) and (4.2.10) we obtain

a2(k+N)−1 − a2k ≥ (N − 1)Le−2‖A‖T

N
∑N−1

i=1 ‖Ai+1b‖
, (4.2.11)
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which is the desired estimate. Observe that the right hand side of (4.2.11)
depends only on A, b, T and N .

We set now N0 to be the number of nonempty intervals appearing in
(4.2.7), and recall that we just proved that N0 depends only on A, b, T and
N , actually

N0 ≤
N

N − 1
T

Le2‖A‖T
N−1∑

i=1

‖Ai+1b‖ + N. (4.2.12)

Set I0 = [0, T ]\J0 and observe that we have completed the proof of the
lemma for i = 0.

Fix now a nonempty interval (a, b) appearing in (4.2.7). Set

J (a,b)
1 = {s ∈ (a, b) | |g′(s)| < c(s)}.

Pick any s0 ∈ J (a,b)
1 and observe that recalling (4.2.3) and (4.2.6),

∑N−1
i=1 |g(i)(s0)| ≥ N−1

N Le−‖A‖s. By using in J (a,b)
1 the same argument as

above, with g′ is place of g, we see that J (a,b)
1 is the union of finitely many

disjoint intervals (a1
2k, a1

2k+1), k = 1, 2, ...,N (a,b)
1 where

N (a,b)
1 ≤ N

N − 2
|b − a|

L e2‖A‖T
N−1∑

j=2

‖Aj+1b‖+ N − 1. (4.2.13)

We define
I(a,b)
1 = {s ∈ (a, b) | |g′(s)| ≥ c(s)}

and I1 to be the union of the I(a,b)
1 , over all the at most N0 nonempty

intervals (a, b) in J0, i.e.

I1 =
N0⋃

l=1

I(al,bl)
1 =

N0⋃

l=1

N l
1+1⋃

h=1

(ah
l , bh

l ).

Observe that the number N1 of intervals appearing in the above union is
bounded from above. More precisely, recalling (4.2.11) we have

N1 ≤
N

N − 2
T

L
e2‖A‖T

N−1∑

i=2

‖Ai+1b‖+ NN0. (4.2.14)

After this step, we formulate our induction process. We are going to
construct, for each i = 2, ...,N − 1, two disjoint sets Ii, Ji with the following
properties

(ind1) for every s ∈ Ii, |g(i)(s)| ≥ c(s),

(ind2) for every s ∈ Ji,
∑N−1

i+1 |g(j)(s)| ≥ N−i−1
N c(s),
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(ind3) Ji
⋃

Ii = Ji−1,

(ind4) Ji is a finite union of open intervals, whose number is at most Ni and
Ni depends only on T,L, A, b,N, i,

(ind5) Ii is the finite union of at most Ni + 1 intervals.

For i = 0, 1 the above construction was already performed (take J−1 =
(0, T )). Pick any i = 2, 3, ...,N − 3 and consider the set

Ji+1 := {s ∈ Ji | |g(i+1)(s)| < c(s)}.

For every connected component (a, b) of Ji, we are going to prove that
J (a,b)

i+1 := Ji+1 ∩ (a, b) is a finite union of intervals, and give a bound on their
number N (a,b)

i+1 . Recalling (ind2), for every s ∈ J (a,b)
i+1 we have

N−1∑

j=i+1

|g(i)(s)| ≥ N − i− 1
N

c(s).

By using the same argument developed for i = 0, with g(i+1) in place of
g, we see that J (a,b)

i+1 is the union of finitely many disjoint open intervals
(
ai+1

2k , ai+1
2k+1

)
, k = 1, 2, ...,N (a,b)

i+1 , where

N (a,b)
i+1 ≤ N

N − i− 2
|b − a|

L e2‖A‖T
N−1∑

j=i+2

‖Ab‖ + (N − i + 1). (4.2.15)

We define
I(a,b)
i+1 = {s ∈ (a, b) | |g(i+1)(s)| ≥ c(s)}

and observe that I(a,b)
i+1 is the union of at most N (a,b)

i+1 + 1 intervals.
We finally set Ii+1 to be the union of the I

(aj ,bj)
i+1 over all the (at most Ni)

connected components (aj , bj) of Ji. Therefore, Ii+1 is the union of at most
Ni+1 intervals, where

Ni+1 =
Ni∑

j=1

N (aj ,bj)
i+1 ≤ N

N − i− 2
T

L
e2‖A‖T

N−1∑

j=i+2

‖Aj+1b‖+ (N − i)Ni.

(4.2.16)
Finally we observe that Ji+1 is the union of at most Ni+1 open intervals.
If i = N −2, we observe that for each s ∈ JN−2, recalling (ind2) we have

|g(N−1)(s)| ≥ c(s). Therefore we set JN−1 = ∅ and IN−1 = JN−2. The proof
is concluded. !

We are now going to state our main result.
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Theorem 4.2.1 Consider the linear control system

ẋ = Ax + Bu, (4.2.17)

where A ∈ MN×N , B ∈ MN×M , M ≤ N and u = (u1, u2, ..., uM ) ∈ RM ,
|uj | ≤ 1 for j = 1, 2, ...,M .

Assume that (4.2.17) is normal, i.e., for every column bj , j = 1, 2, ...,M
of B,

rank [bj , Abj , ..., A
N−1bj] = N.

Then for all T > 0 there exists a constant γ > 0, depending only on
N,M,A,B, T such that for all x, y ∈ RT , for all ζ ∈ NRT (x), it holds

〈ζ, y − x〉 ≤ −γ ‖ζ‖ ‖y − x‖N . (4.2.18)

Remark 4.2.1 The power N in (4.2.18) is optimal, as the example, ...
x = u

for u ∈ [−1, 1], shows.

Proof. We first consider the case M = 1, so (4.2.17) reads as

ẋ = Ax + bu , |u| ≤ 1.

Fix x̄ ∈ ∂RT together with an optimal control ū(·) steering 0 to x̄ in time
T . By Pontryagin’s maximum principle, for a.e. t ∈ [0, T ],

ū(t) = sign〈ζ, eA(T−t)b〉.

Taking ȳ ∈ RT together with a control u(·) steering 0 to ȳ, we compute:

〈ζ, ȳ − x̄〉 =
∫ T

0
〈ζ, eA(T−t)b(u(t) − ū(t))dt〉

= −
∫ T

0
|〈ζ, eA(T−t)b〉||u(t) − ū(t)|dt.

Set K(t) = 1
2 |u(t)− ū(t)| and observe that 0 ≤ K(t) ≤ 1 a.e. t ∈ [0, T ], and

〈ζ, ȳ − x̄〉 = −2
∫ T

0
|〈ζ, eT−tb〉|K(t)dt = −2

∫ T

0
|〈ζ, eAtb〉|K(T − t)dt.

(4.2.19)
Moreover,

‖ȳ − x̄‖ = ‖
∫ T

0
eA(T−t)b(u(t) − ū(t))dt‖ ≤ 2eT‖A‖‖b‖

∫ T

0
K(t)dt. (4.2.20)

Set, for s ∈ [0,+∞),
g(s) = 〈eAsb , ζ〉.
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By Lemma 4.2.2 there exist disjoint sets I0, I1, ..., IN−1 and constants Ni

such that [0, T ] =
⋃N−1

i=0 Ii, each Ii is the disjoint union of at most Ni

intervals and (4.2.5) holds. We rewrite

〈ζ, ȳ − x̄〉 = −2
N−1∑

i=0

∫

Ii

|g(s)|K1(s)ds (4.2.21)

where K1(s) = K(T − s). We are now going to discuss separately the
integrals

∫
Ii
|g(s)|K1(s)ds, for all i = 0, 1, ...,N − 1.

For i = 0, we have, recalling (4.2.5) and (4.2.4)
∫

I0

|g(s)|K1(s)ds ≥ L
N

e−‖A‖T
∫

I0

K1(s)ds. (4.2.22)

Fix i = 1, 2, ...,N − 1, and write, recalling Lemma 4.2.2,

Ii =
Ni⋃

j=1

[ai,j, bi,j ]

and all open intervals (ai,j, bi,j) are disjoint. Recalling (4.2.5), we have,
for all s ∈ Ii, |g(i)(s)| ≥ L

N e−‖A‖T . Fix j ∈ {1, 2, ...,Ni}. We now apply
inductively Lemma 7.3.2 on [ai,j , bi,j] with the functions g(i−k−1) in place of
f , for k = 0, ..., i−1. Let k = 0 and set f = g(i−1), the assumption (7.3.1) is
satisfied with C = L

N e−‖A‖T . Then Lemma 7.3.2 yields that for some point
c0
i,j ∈ [ai,j , bi,j] we have both

|g(i−1)(s)| ≥ C(c0
i,j − s) ∀s ∈ [ai,j, c

0
i,j ],

and
|g(i−1)(s)| ≥ C(s− c0

i,j) ∀s ∈ [c0
i,j , bi,j ].

Let k = 1. By applying Lemma 7.3.2 on each of the two (possibly degener-
ate) intervals ai,j, c0

i,j , c0
i,j , bi,j to the function f = g(i−2) and the constant

C, we find a suitable points c1
i,j ∈ [ai,j , c0

i,j ] and c2
i,j ∈ [c0

i,j , bi,j] such that we
have both

|g(i−2)(s)| ≥ C

2
(c1

i,j − s)2 ∀s ∈ [ai,j, c
1
i,j ],

|g(i−2)(s)| ≥ C

2
(s − c1

i,j)
2 ∀s ∈ [c1

i,j, c
0
i,j ]

and

|g(i−2)(s)| ≥ C

2
(c2

i,j − s)2 ∀s ∈ [c0
i,j , c

2
i,j ],

|g(i−2)(s)| ≥ C

2
(s − c2

i,j)
2 ∀s ∈ [c2

i,j , bi,j].
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By continuing the induction process until k = i − 1, we split the interval
[ai,j , bi,j] into at most 2i intervals [ai,j = c0

i,j, c
1
i,j ], [c1

i,j , c
2i, j], ..., [c2i−1

i,j , bi,j =
c2i

i,j ] (some of them being possibly degenerate) such that for all l = 0, 1, ..., 2i−
1 and s ∈ [cl

i,j , c
l+1
i,j ] one has

either |g(s)| ≥ C

i!
(s − cl

i,j)
i or |g(s)| ≥ C

i!
(cl+1

i,j − s)i. (4.2.23)

Recalling (4.2.21), and the above discussion we have

〈ζ, ȳ − x̄〉 = −2
N−1∑

i=0

∫

Ii

|g(s)|K1(s)ds

= −2
[ ∫

I0

|g(s)|K1(s)ds +
N−1∑

i=1

Ni∑

j=0

2i−1∑

l=0

∫ cl+1
i,j

cl
i,j

|g(s)K1(s)|ds
]
.

Recalling (4.2.22) and (4.2.23), we obtain from the above inequality that

〈ζ, ȳ−x̄〉 ≤ −2L
N

e−‖A‖T
[ ∫

I0

K1(s)ds+
N−1∑

i=1

Ni∑

j=0

2i−1∑

l=0

∫ cl+1
i,j

cl
i,j

|s − c̄l
i,j |i

i!
K1(s)ds

]

(4.2.24)
where c̄l

i,j is either cl
i,j or cl+1

i,j , according to the two possibilities appearing in
(4.2.23). Applying Lemma 7.3.1 to each summand of (4.2.24) we therefore
obtain

〈ζ, ȳ − x̄〉 ≤ −2
L
N

e−‖A‖T
[ ∫

I0

K1(s)ds +
N−1∑

i=1

Ni∑

j=0

2i−1∑

l=0

( ∫ cl+1
i,j

cl
i,j

K1(s)ds
)i+1

(i + 1)!

]

(using the convexity of x 2→ xi+1 on the positive half line)

≤ −2L
N

e−‖A‖T
[ ∫

I0

K1(s)ds +
N−1∑

i=1

Ni∑

j=0

1
(i + 1)! 2i2

(∫ bi,j

ai,j

K1(s)ds
)i+1]

≤ −2L
N

e−‖A‖T
[ ∫

I0

K1(s)ds +
N−1∑

i=1

1
(i + 1)! 2i2N i

i

(∫

Ii

K1(s)ds
)i+1]

.

Thus,

〈ζ, ȳ − x̄〉 ≤ −2L
N

e−‖A‖T
[ 1
|I0|N−1

( ∫

I0

K1(s)ds
)N

+
N−1∑

i=1

1
(i + 1)! 2i2N i

i |Ii|N−i−1

( ∫

Ii

K1(s)ds
)N]

.

(4.2.25)
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Recalling (4.2.12), (4.2.15) and (4.2.16), we see that N0 ≤ N1 ≤ ... ≤
NN ≤ C(A, b,N)(e2‖A‖T + N !) where C(A, b,N) depends only on A, b,N .
Therefore, we obtain finally from (4.2.25) that

〈ζ, ȳ − x̄〉 ≤ −C(A, b,N, T )e−‖A‖T
(∫ T

0
|u(t) − ū(t)|

)N
, (4.2.26)

where C(A, b,N, T ) is a positive constant, depending only on A, b,N, T such
that

lim inf
T→0

C(A, b,N, T ) > 0. (4.2.27)

Recalling (4.2.20), we complete the proof for the case M = 1 (i.e., a scalar
control) by setting

γ = 2NeN+1‖b‖NC(A, b,N, T ).

In the case M > 1, pick x̄ ∈ ∂RT together with an optimal control
ū(·) = (ū1(·), ū2(·), ..., ūM (·)) steering the origin to x̄ in the optimal time T ,
together with ȳ ∈ RT and a control u(·) = (u1(·), u2(·), ..., uM (·)) steering
the origin to ȳ in time T . Then, for each ζ ∈ NRT (x̄), ‖ζ‖ = 1, we can write

〈ζ, ȳ − x̄〉 ≤
∫ T

0

〈
ζ, eA(T−s)Bw(s)

〉
ds =

M∑

i=1

∫ T

0

〈
ζ, eA(T−s)biwi(s)

〉
ds,

(4.2.28)
where B =

(
bi
)
i=1,2,...,M

and wi(s) = ui(s)− ūi(s).
Recalling Pontryagin’s maximum principle we have also

〈ζ, ȳ − x̄〉 = −
M∑

i=1

∫ T

0

∣∣〈ζ, eA(T−s)bi
〉∣∣∣∣ui(s)− ūi(s)

∣∣ds. (4.2.29)

Moreover,

‖ȳ − x̄‖ ≤ e‖A‖T
M∑

i=1

‖bi‖
∫ T

0
|ui(s)− ūi(s)|ds. (4.2.30)

We now apply M times (4.2.26) with each summand of the right hand side of
(4.2.28) in place of the left hand side of (4.2.26) and obtain, using (4.2.29),
that

〈ζ, ȳ − x̄〉 ≤ −C ′(A,B, T,N,M)e−||A‖T
M∑

i=1

(∫ T

0
|ui(s)− ūi(s)|ds

)N
,

where the positive constant C ′ depends only on A,B, T,N,M and

lim inf
T→0

C ′(A,B, T,N,M) > 0.

We conclude the proof by applying (4.2.30) and setting

γ = 2Ne−(N+1)‖A‖T ‖B‖C ′′(A,B, T,N,M),

where C ′′ is a constant enjoying the some properties as C ′. !
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4.2.2 Linear nonautonomous control system in the case N =
2

The following Lemma is a first step for studying the reachable sets in the
case of nonlinear control system by using our linearization approach. It says
that under the rank condition (normality) at 0 of the linear nonautonomous
control system (4.2.31), the strict convexity of the reachable sets still remain
up to sufficiently small time. For future use, we will consider that A is just
measurable instead of continuous.

Lemma 4.2.3 Let N = 2. Consider the linear nonautonomous control
system

ẋ(t) = A(t)x(t) + B(t)u(t), (4.2.31)

where A : R+ → M2×2 and B : R+ → M2×M , 1 ≤ M ≤ 2 and u = (u1, uM ),
|uj | ≤ 1 for j = 1,M , satisfying the following assumptions:

(C0) A(·) is measurable and

‖A(t) − A(0)‖ ≤ Lt for all t ≥ 0,

(C1) B(·) is of class C1 and

‖ d

dt
B(t)‖ ≤ 2Lt for all t ≥ 0,

where L is a positive constant;

(C2) Rank [bj(0), A(0)bj (0)] = 2 for j = 1,M where B(·) = [b1(·), bM (·)].

Then there exist a time T = T (A,B,L) > 0 and a constant γ > 0 depending
only on A(0), B(0), L such that for every 0 ≤ τ ≤ T , for every x, y ∈ Rτ ,
for every ζ ∈ NRτ (x), we have

〈ζ, y − x〉 ≤ −γ‖ζ‖‖y − x‖2.

Remark 4.2.2 Observe that condition (C0) implies that t = 0 is a conti-
nuity point for A(·), so that A(0) in (C0) is meaningful.

In order to prove Lemma 4.2.3 we need some notation and a preliminary
result. We denote by M(·, ·) the fundamental matrix solution of

{
∂
∂tM(t, s) = A(t)M(t, s) for t, s ≥ 0
M(s, s) = I (4.2.32)

and by M0(·, ·) the fundamental matrix solution of
{

∂
∂tM0(t, s) = A(0)M0(t, s) for t, s ≥ 0
M0(s, s) = I (4.2.33)
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Let b(·) be a column of B(·), let T > 0 and define

g(t) = 〈M(T , t)b(t), ζ〉, (4.2.34)

and
g0(t) = 〈M0(T , t)b(0), ζ〉. (4.2.35)

Our preliminary result will permit to transfer to g the properties of the
function g0 proved in Lemma 4.2.2.

Lemma 4.2.4 Let g be defined according to (4.2.34) and let the assump-
tions of Lemma 4.2.3 hold. Then for T > 0 sufficiently small there exist
disjoint sets I0,I1 and numbers N0, N1 depending only on A(0), B(0), L,T
such that

(a) [0,T ] = I0 ∪ I1;

(b) Ii is the disjoint of at most Ni intervals, i = 0, 1;

(c) for each x ∈ I0

|g(s)| ≥ L
4

e−‖A(0)‖s;

(d) g′ has constant sign in every connected component of I1 and, for each
s ∈ I1

|g′(s)| ≥ L
4

e−‖A(0)‖s.

Remark 4.2.3 I0 and I1 are exactly the intervals provided by Lemma 4.2.2
for the case N = 2 with g0 in place of g.

Proof of Lemma 4.2.4. Let g0 be defined according with (4.2.35). By
using Gronwall’s inequality and (C0), (C1) we can find a continuous function
K(T ) ≥ 0 such that

lim
T →0+

K(T )
T = K1 > 0,

|g(t) − g0(t)| ≤ K(T ) for all 0 ≤ t ≤ T , (4.2.36)

and
|g′(t) − g′0(t)| ≤ K(T ) for all 0 ≤ t ≤ T . (4.2.37)

Let T > 0 be such that

K(T ) ≤ L
4

e−‖A(0)‖T .

Let I0, I1 be given by lemma 4.2.2 with g0 in place of g. For each s ∈ I0 we
have |g0(s)| ≥ L

2 e−‖A(0)‖s. By (4.2.36), (c) follows.
Fix now a connected component J of I1 and observe that, being g′0

continuous, its sign is constant on J . Since on J we have on one hand
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that |g′0(s)| ≥ L
2 e−‖A(0)‖T and on the other hand that |g′(s) − g′0(s)| ≤

L
4 e−‖A(0)‖T , we obtain both that g′ does not change its sign on J and satisfies
the inequality in (d). The proof is concluded. !

Proof of Lemma 4.2.3. The same argument of the proof of the con-
stant coefficient case can be applied. !

4.3 Nonlinear control system in the case N = 2

4.3.1 Strict convexity of the reachable set

In this subsection, we will prove that under the rank condition at 0 to-
gether with the Taylor development at 0 of the nonlinear control system,
the reachable set is strictly convex up to sufficiently small time.

Theorem 4.3.1 Consider the control system
{

ẋ(t) = F (x(t)) + G(x(t))u(t),
x(0) = 0, (4.3.1)

where u = (u1, uM ) ∈ [−1, 1]2, F : R2 → R2, G : R2 → M2×M , 1 ≤ M ≤ 2,
are of class C1,1 (with Lipschitz constant L) and

(i) F (0) = 0,

(ii) Rank [Gi(0),DF (0)Gi(0)] = 2 for i = 1, 2 where G = (G1, G2),

(iii) DG(0) = 0.

Then there exists T > 0, depending only on L,DF (0), G(0) such that for
every 0 < τ < T the reachable sets Rτ is strictly convex. More precisely,
for every x1 ∈ ∂Rτ and x2 ∈ Rτ , for every ζ ∈ NP

Rτ (x1), one has

〈ζ, x2 − x1〉 ≤ −γ‖ζ‖‖x2 − x1‖2. (4.3.2)

where γ is a positive constant.

Proof. We first prove the Theorem for M = 1 (scalar control).
Fix τ > 0 and x1 ∈ ∂Rτ , together with a optimal control u1(·) steering 0

to x1 and associate trajectory x1(·) . Take any x2 ∈ Rτ together with u2(·)
steering 0 to x2 and associate trajectory x2(·). Set x(t) = x2(t) − x1(t).
Then, for a.e. t ∈ [0, τ ],

ẋ(t) = A1(t)x(t) + G(x2(t))w(t), (4.3.3)

where w(t) = u2(t) − u1(t) and

A1(t) =
∫ 1

0
DF (x1(t) + τx(t))dτ +

∫ 1

0
DG(x1(t) + τx(t))dτ u1(t).
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Let z(·) be the solution of the linear system which is defined along the
optimal trajectory x1(·):

{
ż(t) = A(t)z(t) + G(x1(t))w(t),
z(0) = 0, (4.3.4)

where A(t) = DF (x1(t)) + DG(x1(t))u1(t).
We have

d

dt
‖x(t) − z(t)‖ ≤ ‖A1(t)x(t) −A(t)z(t)‖ + |G(x2(t)) − G(x1(t))||w(t)|

≤ ‖A(t)‖‖x(t) − z(t)‖ + ‖A1(t)− A(t)‖‖x(t)‖ + Lt‖x(t)‖|w(t)|
≤ L1‖x(t) − z(t)‖ + L‖x(t)‖2 + Lt‖x(t)‖ |w(t)|,

where L1 = ‖DF (0)‖ + 2Le2Lτ .
Thus, by Gronwall inequality we get

‖x(t) − z(t)‖ ≤ eL1tL

∫ t

0

(
‖x(s)‖2 + s‖x(s)|‖w(s)|

)
ds. (4.3.5)

On the other hand, observing that

d

dt
‖ẋ(t)‖ ≤ L2‖x(t)‖ + L3|w(t)|,

we also have

‖x(t)‖ ≤ L3e
L2t
∫ t

0
|w(s)|ds, (4.3.6)

where L2 = ‖DF (0)‖ + 4Le2Lτ and L3 = |G(0)| + e2Lτ .
From (4.3.5) and (4.3.6), one obtains

‖x(t) − z(t)‖ ≤ L5t
(∫ t

0
w(s)ds

)2
, (4.3.7)

where L5 = LL2
3e

(L1+2L2)τ + LL3e(L1+L2)τ .
Since x̄1 ∈ ∂Rτ , by Pontryagin’s maximum principle there exists an

absolutely continuous function λ : [0, τ ] → R2 with the following properties

λ̇(t) = −λ(t)AT (t) , λ(τ) = ζ,

u1(t) = sign〈λ(t), G(x1(t))〉. (4.3.8)

We set now b(t) = G(x1(t)) and consider the linear nonautonomous control
system {

ẏ(t) = A(t)y(t) + b(t)u(t),
y(0) = 0, (4.3.9)
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together with the trajectory y1(·), corresponding to the control u1(·). Ob-
serve that A(·) is measurable. Moreover, since both F and G are Lipschitz
with constant L and DG(0) = 0, we have

‖A(t) − A(0)‖ = ‖DF (x1(t)) + DG(x1(t))u1(t) − DF (0)‖
≤ 2L‖x1(t)‖ ≤ 2L|G(0)|e2Ltt.

Moreover, b′(t) = DG(x1(t))ẋ1(t) so that

|b′(t) − b(0)| = |b′(t)| ≤ L‖x1(t)‖
(
2L‖x1(t)‖ + |G(0)|

)
≤ Kt

where K = Le2Lτ
(
2Le2Lτ + 1

)
|G(0)|2.

Therefore, by Lemma 4.2.3, if 0 ≤ τ < C1 where C1 > 0 depends only on
L,DF (0), G(0) then there exists a constant γ(τ) > 0, depending only on
L,DF (0), G(0), τ such that for all 〈ζ, y(τ)− y1(τ) ≤ −γ(τ)‖y(τ) − y1(τ)‖2.
In particular, recalling (4.2.26)

〈ζ, y2(τ) − y1(τ) ≤ −γ1(τ)
( ∫ τ

0
w(s)ds

)2
, (4.3.10)

where y2(·) is the trajectory of (4.3.9) associated with the control u2(·).
Remark that γ1(τ) is bounded away from 0 as τ → 0+. Moreover, one can
see that z(t) = y2(t) − y1(t). We compute

〈ζ, x2 − x1〉 = 〈ζ, x(τ) − z(τ)〉 + 〈ζ, z(τ)〉
≤ ‖x(τ) − z(τ)‖ + 〈ζ, z(τ)〉.

Recalling (4.3.7) and (4.3.10), we obtain

〈ζ, x2 − x1〉 ≤ (L5τ − γ1(τ))
( ∫ τ

0
w(s)ds

)2
. (4.3.11)

Thus if τ ≤ γ1(C1)
2 then

〈ζ, x2 − x1〉 ≤ −γ1(τ)
2

(∫ τ

0
w(s)ds

)2
.

Setting T = min{C1,
γ1(C1)

2 } and recalling (4.3.7) we obtain (4.3.2). The
proof is completed by applying Proposition 7.2.1.

In the case M = 2, the proof is done by following entirely the above
argument. !

The following Remark follows immediately from the proof of Theorem
4.3.1.

Remark 4.3.1 Let x1(·) and λ(·) be in the proof of Theorem 4.3.1. For all
0 < t ≤ τ = T (x1), one has λ(t) ∈ NRt(x1(T (x1 − t))), more precisely

〈λ(t), y − x1(T (x1)− t)〉 ≤ −γ‖λ(t)‖‖y − x1(T (x1) − t)‖2.

for all y ∈ Rt.
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4.3.2 Optimal points

We will study here the optimality of points near the origin. Before stating
our result, we prefer to give the classical definition of optimal point.

Definition 4.3.1 Let x ∈ RN\{0}. We say that x is optimal if and only if
there exists a point x1 such that T (x1) > T (x) and x = x1(T (x1) − T (x)),
where x1(·) is an optimal trajectory steering x1 to 0 in optimal time T (x1).

The following result on optimal points is important to prove the positive
reach of the epi-graph of the minimum time function, which will be consid-
ered in the next subsection.

Theorem 4.3.2 Let N = 2 and let the assumption of Theorem 4.3.1 hold.
Let T > 0 be such that T according with Theorem 4.3.1, for all 0 ≤ τ < T ,
the reachable set Rτ is strictly convex. Let x̄ be such that T (x̄) < T . Then
x̄ is an optimal point.

Proof. We consider first the case where G is a vector and the control u is
one-dimensional. Set τ = T (x̄) and let ū(·) be an admissible control steering
x̄ to 0 in the optimal time τ , together with the associated trajectory x̄(·).
Set, for all t ∈ [0, τ ],

A(t) = DF (x̄(t)) + DG(x̄(t))ū(t) , b(t) = G(x̄(t))

and let, by Maximum Principle, λ be a solution of
{
λ̇(t) = −λ(t)AT (t),
λ(τ) = ζ,

(4.3.12)

such that ζ ∈ NRτ (x̄) and for a.e. t ∈ [0, τ ],

ū(t) = sign〈λ(t), b(t)〉.

Set, for t ∈ [0, τ ],
g(t) = 〈λ(t), b(t)〉.

We are now going to extend ū(·) in an interval [τ, τ + δ] for a suitable δ > 0,
with the property that the extended control and its associate trajectory
satisfies the Maximum Principle.

Three cases may occur:

(i) g(τ) := δ1 > 0,

(ii) g(τ) < 0,

(iii) g(r) = 0.
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In the first case, we set ū(t) = 1 for all t > τ and let x̄(·) the associate
trajectory issuing from x̄ at time τ . We extend analogously A(·), b(·), λ(·)
and g(·) for t > τ . Observe that g is locally Lipschitz, so that, for t > τ ,

g(t) = g(τ) + g(t) − g(τ) > δ1 − L1(t − τ)

for suitable constant L1. Therefore we can find δ > 0 such that 0 ≤ τ+δ < T
and g(t) > 0 for all t ∈ [τ, τ + δ], i.e.,

ū(t) = sign g(t) ∀t ∈ [τ, τ + δ].

The second case is entirely analogous, by substituting 1 with −1.
We consider now the third case. Let the I0, I1 be given by Lemma 4.2.4 for
the function g in the interval [0, τ ]. Observe that necessarily τ ∈ I1, so that,
in particular, g′(τ) 0= 0. We set, for t > τ

ū(t) = 1 if g′(τ) > 0

or
ū(t) = −1 if g′(τ) < 0

and let x̄(·) be the associate trajectory issuing from x̄ at time τ . We extend
analogous A(·), b(·), λ(·) and g(·) for t > τ . One can compute that

g′(t) = 〈λ(t), [F,G](x̄(t))〉,

where [F,G] is Lie bracket.
It implies that g′ is continuous. So there exists δ > 0 such that the sign
of g′(t) equals the sign of g′(τ) for all t ∈ [τ − δ, τ + δ]. Therefore our
construction of ū(·) on [0, τ + δ] is such that for a.e. t ∈ [0, τ + δ],

ū(t) = sign g(t).

Thus, for all t ∈ [0, τ + δ], x̄(t) ∈ ∂Rt. So ū(·) steers x̄(τ + δ) to the origin
optimally in time τ + δ.

For the case G(·) ∈ M2×2, the proof is entirely done by the above argu-
ment.

Corollary 4.3.1 Under the same assumptions of Theorem 4.3.2, let τ =
T (x̄) < τ1 < T . Then there exists x1 ∈ ∂Rτ1 and a control u1 : [τ, τ1] →
[−1, 1]M such that the trajectory x̃(·) corresponding to the control

ũ(t) =
{

ū(t) 0 ≤ t ≤ τ,
u1(t) τ < t ≤ τ1.

and such that x̃(0) = x1 reaches 0 in the optimal time τ1 and moreover
x̃(τ1 − τ) = x̄.
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Remark 4.3.2 From Corollary 4.3.1, x̄(·) and λ(·) in the proof of Theorem
4.3.2 can be extended to time T . Then the maximized Hamiltonian along
x̄(·) associated with λ(·) is constant in [0,T ), i.e.,

H(x̄(t), λ(t)) = C ∀t ∈ [0,T ).

Proof. We will now consider here the case M = 1. From the proof of
Theorem 4.3.2, we have that

H(x̄(t), λ(t)) = 〈λ(t), F (x̄(t))〉 + |〈λ(t), G(x̄(t))〉|.

For a.e. t ∈ [0,T ), we compute

d

dt
H(x̄(t), λ(t))

= 〈λ(t), [G,F ](x̄(t))〉ũ(t) + 〈λ(t), [G,F ](x̄(t))〉sign〈λ(t), G(x̄(t))〉.

Since ũ(t) = sign〈λ(t), G(x̄(t))〉 for a.e. t ∈ [0,T ). We obtain that

d

dt
H(x̄(t), λ(t)) = 0 for a.e. t ∈ [0,T ).

Hence, the proof is concluded.
The proof of the case M = 2 is analogous. !

4.3.3 The epi-graph of the minimum time function has pos-
itive reach

We are now studying the convexity ”type” of the minimum time function
T (·) in which the control dynamics just satisfies a weak controllability con-
dition, i.e., the function T (·) is just continuous.

Theorem 4.3.3 Let N = 2 and let the assumptions of Theorem 4.3.1 hold.
Let T be given by Theorem 4.3.1. Then for every 0 < τ < T the epigraph
of the minimum time function T (·) on Rτ has positive reach.

Corollary 4.3.2 Under the same assumptions of Theorem 4.3.3 the mini-
mum time function satisfies the list of properties in Theorem 2.2.2.

Before beginning the proof of Theorem 4.3.3 we introduce the minimized
Hamiltonian and study its sign.

Definition 4.3.2 Let x, ζ ∈ RN . We define the minimized Hamiltonian as

h(x, ζ) = 〈ζ, F (x)〉 + min
u∈U

〈ζ,G(x)u〉.

Proposition 4.3.1 Let the standing assumptions on the dynamics hold. Let
x belong to the boundary of the sublevel set Rτ for some τ > 0. Let ζ ∈
NF

Rτ (x). Then h(x, ζ) ≤ 0.
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Proof. Let ū(·) be an admissible control steering x to 0 in the optimal time
τ , together with the associate trajectory x̄(·). Then, for all 0 ≤ t ≤ τ the
point x̄(t) belongs to Rτ , so that, by definition of Fréchet normal we have

lim sup
t→0+

〈
ζ,

x̄(t)− x

‖x̄(t)− x‖

〉
≤ 0.

Observing that ‖x(t) − x‖ ≤ Kt for a suitable constant K, we have

lim sup
t→0

〈
ζ,

x̄(t)− x

t

〉
≤ 0.

In other words,

0 ≥ lim sup
t→0

〈
ζ,

1
t

∫ t

0

(
F (x̄(s) + G(x̄(s))ū(s))

)
ds
〉

= 〈ζ, F (x)〉 + lim sup
t→0

〈
ζ,G(x)

∫ t
0 ū(s)ds

t

〉
.

Let tn → 0 be sequence such that limn→∞
1
tn

∫ tn
0 ū(s)ds := ũ exists. By the

convexity of U , ũ ∈ U , and so h(x, ζ) = 〈ζ, F (x)〉 + 〈ζ,G(x)ũ〉. !
We are now ready to prove Theorem 4.3.3.

Proof of Theorem 4.3.3. Let x 0= 0 such that T (x) ≤ T and let (ū(·), x̄(·))
be an optimal pair for x. By Maximum Principle there exists 0 0= ζ ∈
NRT (x)(x) such that the adjoint arc λ, with

{
λ̇(t) = λ(t)

(
DF (x̄(t)) + DG(x̄(t))ū(t)

)T
,

λ(T ) = ζ

satisfies 〈
λ(t), F (x̄(t)) + G(x̄(t))ū(t)

〉
= h(x̄(t), λ) a.e.

We claim that
(ζ, h(x, ζ)) ∈ NP

epi(T )(x, T (x)), (4.3.13)

i.e., there exists a constant σ > 0 such that, for all y ∈ RN such that
0 < T (y) < T , for all β ≥ T (y), we have

〈
(ζ, θ), (y, β) − (x, T (x))

〉
≤ σ‖(ζ, θ)‖

(
‖y − x‖2 + |β − T (x)|

)
, (4.3.14)

where θ = h(x, ζ), and, moreover

σ is independent of x and ζ. (4.3.15)

Indeed, we consider two cases:

(a) T (y) ≤ T (x);
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(b) T (y) > T (x).

In the first case, y ∈ RT (x), so that by Theorem 4.3.1

〈ζ, y − x〉 ≤ 0.

If β ≥ T (x) then (4.3.14) is automatically satisfied, since θ ≤ 0 by Proposi-
tion 4.3.1. If instead β < T (x), we set x1 = x̄(T (x) − β).

We estimate first 〈ζ, y − x1〉. We have since y ∈ Rβ, recalling Remark
4.3.1, for suitable constants K1,K2 given by Gronwall’s Lemma,

〈ζ, y − x1〉 = 〈λ(β), y − x1〉 + 〈λ(T (x)) − λ(β), y − x1〉
≤ 〈λ(T (x)) − λ(β), y − x1〉 ≤ K1‖λ(T )‖|T (x) − β|‖y − x1‖
≤ K1‖λ(T )‖|T (x) − β|

(
‖y − x‖+ ‖x1 − x‖

)

≤ K1‖ζ‖|T (x) − β|
(
‖y − x‖+ K2|T (x) − β|

)

≤ K3‖ζ‖
(
‖y − x‖2 + |T (x) − β|2

)

for a suitable constant K3.
Second, we estimate 〈ζ, x1 − x〉. We have

〈ζ, x1 − x〉 =
∫ T (x)−β

0

〈
λ(T ), F (x̄(s)) + G(x̄(s))ū(s)

〉
ds

=
∫ T (x)−β

0

〈
λ(s), F (x̄(s)) + G(x̄(s))ū(s)

〉
ds

+
∫ T (x)−β

0

〈
λ(T ) − λ(s), F (x̄(s)) + G(x̄(x))ū(s)

〉
ds

≤ (T (x) − β)h(x, ζ) + K4‖ζ‖|T (x) − β|2,

for a suitable constant K4, recalling the Maximum Principle and Gronwall’s
lemma. Therefore,

〈(ζ, θ), (y, β) − (x, T (x))〉 ≤ (K3 + K4)‖ζ‖
(
‖y − x‖2 + |T (x) − β|2

)
,

and the proof for the case (a) is concluded by observing that K3 and K4 are
independent of ζ and x.

In the second case we need to use the optimality of x. We observe first
that, since θ ≤ 0, we only need to prove (4.3.14) for β = T (y). Recalling
Corollary 4.3.1, we can extend the control ū up to the time T (y) so that the
associated trajectory (still denoted by x̄(·)) remains optimal. Let also λ be
the extend adjoint vector and denote by x̃(·) the trajectory of the reversed
dynamics associated with the extended control ū, i.e.,

{ ˙̃x(t) = −F (x̃(t)) − G(x̃(t))ū(t),
x̃(0) = 0
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where ũ(t) = ū(T (y) − t).
Set x1 = x̃(T (y)). We estimate first 〈ζ, y − x1〉. We have, by arguing
similarly as before,

〈ζ, y − x1〉 = 〈λ(T (y)), y − x1〉 + 〈λ(T (x)) − λ(T (y)), y − x1〉
(the first summand is less than 0

by the construction in Theorem 4.3.2)
≤ 〈λ(T (x)) − λ(T (y)), y − x1〉
≤ K5‖ζ‖

(
|T (y) − T (x)|2 + ‖y − x1‖2

)
.

On the other hand,

〈ζ, x1 − x〉 =
∫ T (y)

T (x)

〈
ζ,−F (x̃(s))− G(x̃(s))ũ(s)

〉
ds

=
∫ T (y)

T (x)

〈
λ(s),−F (x̃(s)) − G(x̃(s))ũ(s)

〉
ds

+
∫ T (y)

T (x)

〈
λ(T (x)) − λ(s),−F (x̃(s)) − G(x̃(s))ũ(s)

〉
ds

≤
∫ T (y)

T (x)
max
u∈U

〈
λ(s),−F (x̃(s)) − G(x̃(s))u

〉
ds + K6‖ζ‖(T (y) − T (x))2

(for a suitable constant K6 given by Gronwall’s Lemma).

Recalling Remark 4.3.2, the maximized Hamiltonian in the integral of
the first summand is constant. Therefore we obtain

〈ζ, x1 − x〉 ≤ −h(x, ζ)(T (y) − T (x)) + K6‖ζ‖|T (y) − T (x)|2.

Combining the above estimates we obtain finally

〈(ζ, θ), (y, T (y)) − (x, T (x))〉 ≤ (K5 + K6)‖ζ‖
(
‖y − x‖2 + |T (y) − T (x)|2

)
,

and the proof of the claim is concluded, by observing again, that K5,K6 are
independent of x and ζ.

In order to conclude the proof we observe that NP
epi(T ) is pointed at every

point (x, T (x)),x ∈ Rτ , since the projection of every (ζ, θ) ∈ NP
epi(T )(x, T (x))

onto RN is normal to the strictly convex set Rτ . Therefore, we can apply
Corollary 3.1 in [47], with ΩP = intRτ , which shows that epi(T ) has positive
reach. !



Part II

Regularity of a class of
continuous functions





Chapter 5

External sphere condition
and continuous functions

Our aim in this chapter is proving that if the hypograph of a continuous
function f : Ω ⊆ RN −→ R satisfies an external sphere condition then it
has ”essentially” positive reach, i.e., the hypograph of the restriction of f
outside a closed set of zero measure has (locally) positive reach. Hence such
a function enjoys some properties of a concave function, in particular a.e.
twice differentiability.

The result is based on studying the set of bad points where the proxi-
mal normal cones to such points are not wedged, i.e., the set of horizontal
proximal supergradients at ”bad point” x, ∂∞f(x), contains a nontrivial
subspace. Since the hypograph of f satisfies an external sphere condition,
we can construct a special subspace of ∂∞f(x) which is convex combination
of vectors v such that (−v, 0) is a proximal normal vector to hypo(f) at
(x, f(x)) realized by a ball of uniform radius θ > 0. Thus, the set of bad
points is closed in Ω. Finally, we prove that the density Lebesgue measure of
a bad point is zero by using our special subspace and the inductive method.
Therefore, the set of ”bad points” has zero Lebesgue measure.

The chapter is organized as follows: Section 5.1 is devoted to definitions
and basic facts, while Section 5.2 contains statements of main results. The
same section contains also an outline of the proof of Theorem 5.2.1, which
is a localized version of the main result and where all the basic arguments
appear. Detailed arguments begin in Section 5.3, which contains several
lemmas concerning the set of bad points (i.e., the normal cone to the hy-
pograph of the function at those points contains at least one line). Section
5.4 is finally devoted to proof of Theorem 5.2.1. On the basis of Theorem
5.2.1, our main theorem will be proved in the same section together with its
corollaries.
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5.1 Notation

We first rewrite quickly some basic notations which concern in the chapter.
Let Ω ⊆ RN be open and let f : Ω −→ R be continuous. The hypograph

of f is denoted by

hypo(f) = {(x, β) | x ∈ Ω, β ≤ f(x)}. (5.1.1)

The vector (−v, λ) ∈ RN × R is a proximal normal vector to hypo(f) (we
will denote this fact that (−v, λ) ∈ NP

hypo(f)(x, f(x))) at (x, f(x)) iff there
exists a constant σ > 0 such that for all y ∈ Ω and for all β ≤ f(y), it holds

〈(−v, λ) , (y, β) − (x, f(x))〉 ≤ σ (‖y − x‖2 + |β − f(x)|2). (5.1.2)

Equivalently, (−v, λ) ∈ NP
hypo(f)(x, f(x)) iff there exists a constant γ > 0

such that

BN+1((x, f(x)) + γ(−v, λ), γ‖(−v, λ)‖) ∩ hypo(f) = ∅ (5.1.3)

where
Bk(a, r) = {z ∈ Rk | ‖z − a‖ < r}

is the open ball with center a and radius r in Rk.
Moreover, the vector (−v, λ) ∈ NP

hypo(f)(x, f(x)) is realized by a ball of radius

ρ > 0 if (−v, λ) 0= 0 and (5.1.2) is satisfied for σ = ‖(−v,λ)‖
2ρ .

Remark 5.1.1 If (−v, λ) ∈ NP
hypo(f)(x, f(x)) then λ ≥ 0.

Associated with hypo(f), we define that

1. ∂P f(x) = {v | (−v, 1) ∈ NP
hypo(f)(x, f(x))} is set of proximal supergra-

dients of f at x .

2. ∂∞f(x) = {v | (−v, 0) ∈ NP
hypo(f)(x, f(x))} v is the set a proximal

horizon supergradients of f at x.

We are now giving some new notations. These notations are concerned
with the set of bad points where the proximal normal cone of hypo(f) con-
tains at least one line (i.e., it is not wedged). First we introduce two special
types of normal vectors, namely

1. Normal vectors which are limit of unique normals at nearby points

NL(x) = { ξ ∈ RN+1 | ∃ {xn} → x such that
i) f is Fréchet differentiable at xn and

ii) ξ = lim
n→∞

(−Df(xn), 1)
‖(−Df(xn), 1)‖ }.
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2. Among them we select the horizontal ones

NL
0 (x) = NL(x) ∩ (−∂∞f(x), 0).

We also denote the subspace which is generated by NL
0 (x) as

H0(x) = span{NL
0 (x)} = {

k∑

i=1

αiξi | ξi ∈ NL
0 (x) and αi ∈ R},

and the positive cone which is generated by NL
0 (x) as

H+
0 (x) = span+{NL

0 (x)} = {
k∑

i=1

αiξi | ξi ∈ NL
0 (x) and αi ≥ 0}.

3. The largest vector subspace contained in NP
hypo(f)(x, f(x)) will be de-

noted by

NL(x) = { ξ ∈ NP
hypo(f)(x, f(x)) | − ξ ∈ NP

hypo(f)(x, f(x))}.

From Remark 5.1.1, one can see that NL(x) ⊆ (−∂∞f(x), 0).

4. We denote the set of bad points of f by

BPf = {x ∈ Ω | NL(x) 0= 0} (5.1.4)

At each point x ∈ BPf , we write BPf as the union of the two sets

BP+
f (x) = {y ∈ BPf | f(y) ≥ f(x)}

BP−
f (x) = {y ∈ BPf | f(y) ≤ f(x)}.

5.2 Main results

5.2.1 Statement of main results

Our results are the following theorem, together with several corollaries. We
recall that the notation BPf was defined in (5.1.4).

Theorem 5.2.1 Let Ω ⊂ RN be open and let f : Ω −→ R be continuous.
Assume that hypo(f) satisfies the θ − external sphere condition, where
θ : Ω −→ (0,∞) is continuous. Then
i) ΩP := Ω\BPf is open.
ii) LN (Ω\ΩP ) = 0.

Corollary 5.2.1 Let Ω ⊂ RN be open and let f : Ω −→ R be continuous.
Assume that hypo(f) satisfies the θ − external sphere condition where θ :
Ω −→ [0,∞) is continuous. Then the hypograph of f|ΩP

has positive reach.
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Corollary 5.2.2 Let f : Ω −→ R be as in the statement of Theorem 5.2.1
then f satisfies properties (1)-(3) of Theorem 2.2.2.

In view of Proposition 3.2.1 in Chapter 3, we can apply the previous results
to the minimum time function.

Corollary 5.2.3 Let (f,U) be the control system 3.1.1 and S be a target in
Chapter 3 . Under the conditions (H1), (H2) , (H3), (H4), there exists an
open set Sc

P ⊂ Sc such that LN (Sc\Sc
P ) = 0 and the restricted continuous

function T|Sc
P

: Sc
P −→ [0,+∞) has the hypograph with positive reach.

Corollary 5.2.4 Under the conditions (H1), (H2) , (H3), (H4), the mini-
mum time function is twice differentiable a.e. in Sc.

In order to make our proof more clear, we prefer to state our main theorem
in a particular case (local case). The arguments are used in the proof of the
main part of the proof of Theorem 5.2.1.

Theorem 5.2.2 Let f : BN (0, 1) −→ R be continuous and let ρ > 0. As-
sume that hypo(f) satisfies the ρ− external sphere condition. Then
i) BPf ∪ ∂BN (0, 1) is closed.
ii) LN(BPf ) = 0.

5.2.2 Outline of proof of Theorem 5.2.2

The part (i) is precisely Lemma 5.3.4.
To prove the part (ii) we will use induction.

For the case N = 1. By using Lemma 5.4.1 and Corollary 5.3.5 we obtain
that the L1-density of BPf at x, D1

BPf
(x) = limσ→∞

L1(BPf∩B1(x,σ))
L1(B1(x,σ)) = 0 for

all x ∈ BPf . Therefore, the proof is completed by the Lebesgue theorem.
In order to get the conclusion for N = k + 1 from the inductive assump-

tion for N = k ≥ 1. We divide the set BPf into two parts:
The first part is BP ζ+

f ∪ BP ζ+

f (see the definition of BP ζ
f near Lemma

5.3.7) where ζ+ = (0, 1) and ζ− = (0,−1). Using Lemma 5.3.7, we get
LN (BP ζ+

f ∪BP ζ+

f ) = 0.

To prove LN [BPf\(BP ζ+

f ∪ BP ζ+

f )] = 0, we notice that Lemma 5.3.6

can be used at every point in the open set BN (0, 1)\(BP ζ+

f ∪ BP ζ+

f ). We

need to prove that for all BN (x, rx) ⊂ BN (0, 1)\(BP ζ+

f ∪ BP ζ+

f ), it holds
LN (BPf ∩ BN (x, rx)) = 0. Three small steps are considered

Step 1: Let f̄ = f|BN (x,rx). By Lemma 5.3.6, the hypo(f̄x2) (See the def-
inition of f̄x2 near Lemma 5.3.6) satisfies the θ− external sphere condition.

Step 2: From Lemma 7.2.3 and the inductive assumption, we obtain that
LN−1(BPf̄x2

) = 0.
Step 3: We use Fubini’s theorem to complete the proof.
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5.3 Preparatory Lemmas

This section is devoted to several partial results which are needed to prove
our main theorem. To simplify our statements, we agree that the continuous
function f in this section is defined on BN (0, 1) and hypo(f) satisfies the
ρ− external sphere condition for a given constant ρ > 0

5.3.1 Closedness of the set of bad points

The first lemma shows that the proximal normal unit vector to the hypo-
graph of f at (x, f(x)) where f is differentiable is unique and is realized by
a ball of radius ρ.

Lemma 5.3.1 Let x be in BN (0, 1) such that f(.) is differentiable at x.
Then (−Df(x),1)

‖(−Df(x),1)‖ is the unique proximal normal unit vector to hypo(f) at

(x, f(x)). Moreover, (−Df(x),1)
‖(−Df(x),1)‖ is realized by a ball of radius ρ, i.e, for all

y ∈ BN (0, 1) and for all β ≤ f(y), it holds:

〈 (−Df(x), 1)
‖(−Df(x), 1)‖ , (y, β) − (x, f(x))〉 ≤ 1

2ρ
(‖y − x‖2 + |β − f(x)|2).

Proof. Since f(.) is differentiable at x, (−Df(x),1)
‖(−Df(x),1)‖ is unique Fréchet nor-

mal unit vector to the hypograph of f(.) at (x, f(x)). Therefore, since
hypo(f) satisfies the ρ−external sphere condition, (−Df(x),1)

‖(−Df(x),1)‖ is the unique

proximal normal unit vector to hypo(f) at (x, f(x)). Thus, (−Df(x),1)
‖(−Df(x),1)‖ ∈

NP
hypo(f)(x, f(x)) is realized by a ball of radius ρ. !

From this lemma and the continuity of f , three corollaries follow.

Corollary 5.3.1 Let x ∈ BN (0, 1). Then

NL(x) ⊆ NP
hypo(f)(x, f(x)).

More precisely, for each 0 0= ξ ∈ NL(x) we have that ξ is a unit proximal
normal vector to hypo(f) at (x, f(x)) realized by a ball of radius ρ.

Proof. Let ξ ∈ NL(x), and take a sequence {xn} converging to x such that
f is differentiable at xn and { (−Df(xn),1)

‖(−Df(xn),1)‖} converges to ξ. By Lemma 5.3.1,
(−Df(xn),1)

‖(−Df(xn),1)‖ ∈ NP
hypo(f)(xn, f(xn)) is realized by a ball of radius ρ, i.e., for

all y ∈ BN (0, 1) and for all β ≤ f(y), we have

〈 (−Df(xn), 1)
‖(−Df(xn), 1)‖

, (y, β) − (xn, f(xn))〉 ≤ 1
2ρ

(‖y − x‖2 + |β − f(xn)|2).

(5.3.1)
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By letting n approach to ∞ in (5.3.1), the inequality

〈ξ , (y, β) − (x, f(x))〉 ≤ 1
2ρ

(‖y − x‖2 + |β − f(x)|2)

holds for all y ∈ BN (0, 1) and for all β ≤ f(y).
The proof is completed. !

Corollary 5.3.2 NL
0 (x) is closed for all x ∈ BN (0, 1). Moreover, if ξ ∈

NL
0 (x) then ξ is a proximal normal unit vector to hypo(f) at (x, f(x)) real-

ized by a ball of radius ρ.

Proof. Let {ξn} ⊆ NL
0 (x) converge to ξ̄. We need to prove that ξ̄ ∈

NL
0 (x). Indeed, for each n, there exists a sequence {xk

n} converging to x such
that f is differentiable at xk

n and { (−Df(xk
n),1)

‖(−Df(xk
n),1)‖} converges to a unit vector

ξn ∈ (−∂∞f(x), 0). For each n we can take a point yn ∈ {xk
n} such that

‖yn−x‖ ≤ 1
n and ‖ (−Df(yn),1)

‖(−Df(yn),1)‖−ξ̄‖ ≤
1
n . Therefore {yn} and { (−Df(yn),1)

‖(−Df(yn),1)‖}
converge respectively to x and ξ̄. This implies that ξ̄ ∈ NL(x). On the other
hand, since {ξn} ⊆ NL

0 (x) converges to ξ̄ we have ξ̄ ∈ (−∂∞f(x), 0). The
proof is completed. !

With a similar proof, we get the third corollary.

Corollary 5.3.3 Let {xn} ∈ BN (0, 1) converge to x ∈ BN (0, 1) and let
ξn ∈ NL

0 (xn) converge to ξ̄, then ξ̄ ∈ NL
0 (x).

The next lemma says that if there exists a vector 0 0= p0 ∈ (−∂∞f(x))
then we can find a vector in NL

0 (x). This vector is found by considering a
sequence which converges to x along the ray {x + tp0 | t > 0} such that f
is differentiable at each point of this sequence. This idea is inspiredly the
proof of Lemma 4.7 in [19].

Lemma 5.3.2 Let x ∈ BN (0, 1) such that ∂∞f(x) 0= 0. Then NL
0 (x) is

nonempty.

Proof. Let 0 0= −p0 ∈ ∂∞f(x). By the definition of ∂∞f(x), (p0, 0) ∈
NP

hypo(f)(x, f(x)), i.e. there exists a constant σ0 > 0 such that

〈(p0, 0) , (y, β) − (x, f(x))〉 ≤ σ0 (‖y − x‖2 + |β − f(x)|2) (5.3.2)

for all y ∈ BN (0, 1) and for all β ≤ f(y).
Set xn = x + p0

n . By the density theorem (see Theorem 1.3.1 in [25]), for
each n there exists zn such that

∂P f(zn) 0= ∅ (5.3.3)

‖zn − xn‖ ≤ 1
n2

(5.3.4)
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(5.3.3) implies that there exists a vector (ζn,−1) which is a proximal nor-
mal vector to the epigraph of f(.) at (zn, f(zn)). Therefore, since hypo(f)
satisfies the ρ− external sphere
condition we obtain that f(.) is differentiable at zn. Recalling Lemma 5.3.1,
for all z ∈ BN (0, 1) and for all β ≤ f(z), we have

〈(−Df(zn), 1) , (z, β) − (zn, f(zn))〉

≤ 1
2ρ

‖(−Df(zn), 1)‖ (‖z−zn‖2 + |β − f(zn)|2). (5.3.5)

Recalling (5.3.4), zn ∈ BN (0, 1) for n large enough. Thus by taking y = zn

in (5.3.2), we obtain

〈p0 , zn − x〉 ≤ σ0 (‖zn − x‖2 + |β − f(x)|2) (5.3.6)

for all β ≤ f(zn).
We have

〈p0 , zn − x〉 = 〈p0 ,
p0

n
〉+ 〈p0 , zn − xn〉

=
‖p0‖2

n
+ 〈p0 , zn − xn〉.

Combining the above inequality with (5.3.4), we get

〈p0 , zn − x〉 ≥ ‖p0‖2

n
− ‖p0‖

n2
. (5.3.7)

Moreover, from (5.3.4) we get

‖zn − x‖ = 0(
1
n

). (5.3.8)

Recalling (5.3.6), (5.3.7) and (5.3.8), for n large enough, the estimate

‖p0‖2

n
≤ 0(

1
n2

) + |β − f(x)|2 (5.3.9)

holds for all β ≤ f(zn).
Therefore, there exists a constant C > 0 such that

f(x)− f(zn) ≥ C√
n

. (5.3.10)

for n large enough.
We are now going to prove that : lim supn→∞ ‖(−Df(zn), 1)‖ = +∞.

Assume by contradiction that there exists a constant K > 0 such that

‖(−Df(zn), 1)‖ ≤ K for all n. (5.3.11)
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By taking z = x and β = f(x) in (5.3.5) and by recalling (5.3.11) we have

(f(x)−f(zn))(1− K

2ρ
(f(x)−f(zn))) ≤ K(1+

‖x − zn‖
2ρ

)‖x−zn‖. (5.3.12)

for n large enough. Therefore, by (5.3.10) and (5.3.8), we get from the above
inequality that there exists a constant C1 > 0 such that

1√
n

≤ C1
1
n

.

for n large enough.
This is a contradiction.

We now assume without of loss of generality that limn→∞
(−Df(zn),1)

‖(−Df(zn),1)‖ =
(−ζ0, 0). Since {zn} converges to x, we have (−ζ0, 0) ∈ NL

0 (x). The proof
is completed. !

Corollary 5.3.4 If x ∈ BPf then NL
0 (x) is nonempty.

The following lemma is a crucial observation. At every bad point, we can
extract a line from H+

0 (x) ⊆ NL(x) ⊆ NP
hypo(f)(x, f(x)). It is also pivotal

to prove Lemma 5.3.4 and Theorem 5.4.1. The difference between the proof
of this lemma and the proof of the previous lemma is the way of choosing a
sequence which allows us to get a vector in NL

0 (x).

Lemma 5.3.3 If x ∈ BPf then H+
0 (x) contains at least one line.

Proof.. We recall that by Corollary 5.3.4, NL
0 (x) is nonempty. Assume

by contradiction that H+
0 (x) does not contain lines. From Corollary 5.3.2,

NL
0 (x) is compact and does not contain 0. Thus by applying Lemma 7.2.1

for C = NL
0 (x), there exists a constant δ0 > 0 such that for all 0 0= ξ1, ξ2 ∈

H+
0 (x), one has

〈 ξ1‖ξ1‖
,
ξ2
‖ξ2‖

〉 > −1 + δ0.

Therefore, there exist a vector (v0, 0) ∈ H0(x) and a constant δ1 > 0 such
that v0 ∈ RN , ‖v0‖ = 1 and

〈−(v0, 0) ,
ξ

‖ξ‖〉 ≥ δ1 for all 0 0= ξ ∈ H+
0 (x). (5.3.13)

Since x ∈ BPf (namely, NL(x) contains at least one line) there exists a unit
vector p0 ∈ RN such that (p0, 0) ∈ NL(x) and 〈p0 , v0〉 ≥ 0.
Setting v1 = v0 + δ1

2 p0, one can easily get from (5.3.13) that:

〈−(v1, 0) ,
ξ

‖ξ‖〉 ≥ δ1
2

for all 0 0= ξ ∈ H+
0 (x). (5.3.14)
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Setting xn = x + v1
n . By the density theorem (see Theorem 1.3.1 in [25]),

for each n there exists zn such that

∂P f(zn) 0= ∅ (5.3.15)

‖zn − xn‖ ≤ 1
n2

(5.3.16)

(5.3.15) implies that there exists a vector (ζn,−1) which is a proximal nor-
mal vector to the epigraph of f(·) at (zn, f(zn)). Therefore, since hypo(f)
satisfies the ρ-external sphere
condition we obtain that f(·) is differentiable at zn (see Proposition 3.15,
p.51, [21]). Recalling Lemma 5.3.1, for all z ∈ BN (0, 1) and for all β ≤ f(z),
we have

〈(−Df(zn), 1) , (z, β) − (zn, f(zn))〉

≤ 1
2ρ

‖(−Df(zn), 1)‖ (‖z−zn‖2 + |β − f(zn)|2). (5.3.17)

On the other hand, since (p0, 0) ∈ NL(x), there exists a constant σ0 > 0
such that

〈(p0, 0) , (y, β) − (x, f(x))〉 ≤ σ0 (‖y − x‖2 + |β − f(x)|2) (5.3.18)

for all y ∈ BN (0, 1) and for all β ≤ f(y).
Recalling (5.3.16), zn ∈ BN (0, 1) for n large enough. Thus by taking y = zn

in (5.3.18), we have

〈p0 , zn − x〉 ≤ σ0 (‖zn − x‖2 + |β − f(x)|2) (5.3.19)

for all β ≤ zn.
We have

〈p0 , zn − x〉 = 〈p0 ,
v0

n
〉 + 〈p0 ,

δ1
2n

p0〉 + 〈p0 , zn − xn〉

≥ δ1
2n

+ 〈p0 , zn − xn〉.

Combining the above inequality with (5.3.16), we get

〈p0 , zn − x〉 ≥ δ1
2n

− 1
n2

. (5.3.20)

Moreover, from (5.3.16) we get

‖zn − x‖ = 0(
1
n

). (5.3.21)

Recalling (5.3.19), (5.3.20) and (5.3.21), for n large enough, the estimate
holds

δ1
2n

≤ 0(
1
n2

) + |β − f(x)|2 (5.3.22)



110 External sphere condition and continuous functions

for all β ≤ f(zn).
Therefore, there exists a constant C > 0 such that

f(x)− f(zn) ≥ C√
n

. (5.3.23)

for n large enough.
We are now going to prove that : lim supn→∞ ‖(−Df(zn), 1)‖ = +∞.

Assume by contradiction that there exists a constant K > 0 such that

‖(−Df(zn), 1)‖ ≤ K for all n. (5.3.24)

By taking z = x and β = f(x) in (5.3.17) and by recalling (5.3.24) we have

(f(x)−f(zn))(1− K

2ρ
(f(x)−f(zn))) ≤ K(1+

‖x − zn‖
2ρ

)‖x−zn‖. (5.3.25)

for n large enough. Therefore, by (5.3.23) and (5.3.21), we get from the
above inequality that there exists a constant C1 > 0 such that

1√
n

≤ C1
1
n

.

for n large enough.
This is a contradiction.

We now assume without of loss of generality that limn→∞
(−Df(zn),1)

‖(−Df(zn),1)‖ =
(−ζ0, 0). Moreover, since {zn} converges to x, we have (−ζ0, 0) ∈ NL

0 (x).
On the other hand, by (5.3.23), we can take z = x and β = f(zn) in (5.3.17)
to get

〈 (−Df(zn), 1)
‖(−Df(zn), 1)‖ ,

(x − zn, 0)
‖x − zn‖

〉 ≤ ‖x − zn‖
2ρ

. (5.3.26)

Let n tend to +∞. Recalling (5.3.21), (5.3.16) we obtain

〈(−ζ0, 0) , (−v1, 0)〉 ≤ 0. (5.3.27)

Since (−ζ0, 0) ∈ NL
0 (x), we get a contradiction from (5.3.27) and (5.3.14).

!

Lemma 5.3.4 BPf ∪ ∂BN (0, 1) is closed.

Proof. Letting {xn} ⊆ BPf ∪ ∂BN (0, 1) converge to x, we need to prove
that x ∈ BPf ∪ ∂BN (0, 1) ⊆ BN (0, 1).
If x ∈ ∂BN (0, 1), there is nothing to prove.
If x ∈ BN (0, 1), we will prove that x ∈ BPf , namely, NL(x) contains at
least one line.
Assume by contradiction that NL(x) = 0. In particular, H+

0 (x) does not
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contain lines. Similarly by the previous proof, there exist a vector (v0, 0) ∈
H0(x) and a constant δ1 > 0 such that v0 ∈ RN , ‖v0‖ = 1 and

〈−(v0, 0) ,
ξ

‖ξ‖〉 ≥ δ1 for all 0 0= ξ ∈ H+
0 (x). (5.3.28)

On the other hand, since x ∈ BN (0, 1) we have xn ∈ BN (0, 1) for n large
enough. Thus xn ∈ BPf . From Lemma 5.3.3, for n large enough, H+

0 (xn)
contains at least one line. Therefore, for each n large enough, there exists a
vector ξn ∈ NL

0 (xn) such that

〈−(v0, 0) , ξn〉 ≤ 0. (5.3.29)

By Corollary 5.3.2, ‖ξn‖ = 1. We assume without of loss of generality that
limn→∞ ξn = ξ̄. Recalling Corollary 5.3.3, we have that ξ̄ ∈ NL

0 (x).
Moreover, by taking n → ∞ in (5.3.29) we get

〈−(v0, 0) , ξ̄〉 ≤ 0. (5.3.30)

Recalling (5.3.28), we get a contradiction. !

5.3.2 Zero Lebesgue measure of some special subsets of the
set of bad points

The below lemma is the first step to prove that the LN -density of BPf at
x ∈ BPf has zero value.

Lemma 5.3.5 Define, for x ∈ BPf , F+(x) = {y ∈ B(0, 1) |f(y) ≥ f(x)}.
Then the LN -density of F+(x) at x is zero, i.e.,

DN
F+(x)(x) := lim

δ→0

LN (BN (x, δ) ∩ F+(x))
LN (BN (x, δ))

= 0.

Proof. Since x ∈ BPf (i.e., NL(x) contains at least one line), there exists
(ζ0, 0) ∈ NP

hypo(f)(x, f(x)) such that (−ζ0, 0) ∈ NP
hypo(f)(x, f(x)) and ‖ζ0‖ =

1. Thus there exists a constant σ0 > 0 such that for all y ∈ BN (0, 1) and
for all β ≤ f(y), it holds
{

〈(ζ0, 0) , (y − x, β − f(x))〉 ≤ σ0 (‖y − x‖2 + |β − f(x)|2),
〈(−ζ0, 0) , (y − x, β − f(x))〉 ≤ σ0 (‖y − x‖2 + |β − f(x)|2).

(5.3.31)
Therefore, for all y ∈ F+(x) ∩ BN (x, δ), by taking β = f(x) in (5.3.31) we
obtain {

〈ζ0 , y − x〉 ≤ σ0‖y − x‖2 ≤ σ0δ2,
〈−ζ0 , y − x〉 ≤ σ0‖y − x‖2 ≤ σ0δ2.

(5.3.32)

From (5.3.32), the set

F+(x) ∩ BN (x, δ) ⊆ x + {tζ0 + v | t ∈ [−σ0δ
2, σ0δ

2], v ∈ BN (0, δ) ∩ ζ⊥0 }
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where ζ⊥0 = {w ∈ RN | 〈w, ζ0〉 = 0}. Therefore,

DN
F+(x)(x) := lim

δ→0+

LN (BN (x, δ) ∩ F+(x))
LN (BN (x, δ))

≤ lim
δ→0+

σ0δN+1

ωNδN
= lim

δ→0+

σ0δ

ωN
= 0

where ωN = LN (BN (0, 1)). The proof is completed. !
Since BP+

f (x) ⊆ F+(x), the next corollary follows immediately

Corollary 5.3.5 If x ∈ BPf then the LN -density of BP+
f (x) at x

DN
BP+

f (x)
(x) := lim

δ→0+

LN (BN (x, δ) ∩ BP+
f (x))

LN (BN (x, δ))
= 0.

In order to use induction in the proof of Theorem 5.2.2, we need the following
two lemmas. In the first lemma, we are working on the cases N ≥ 2. For
every vector x ∈ RN we rewrite x = (x1, x2) where x1 ∈ RN−1 and x2 ∈ R.
For every x2 ∈ (−1, 1), the function restricted to the first n − 1 variables,
fx2 : BN−1(0,

√
1 − x2

2) −→ R, is denoted by fx2(x1) = f(x1, x2) for all
x1 ∈ BN−1(0,

√
1 − x2

2).

Lemma 5.3.6 Let (x1, x2) ∈ BN (0, 1) and let (ξ1, ξ2, λ) be a proximal nor-
mal vector to hypo(f) at (x1, x2, f(x1, x2)) realized by a ball of radius ρ. If
(ξ1, λ) 0= 0 then (ξ1, λ) is also a proximal vector to hypo(fx2) at (x1, fx2(x1))
realized by a ball of radius ‖(ξ1,λ)‖

‖(ξ1,ξ2,λ)‖ρ.

Proof. The vector (ξ1, ξ2, λ) being a proximal normal to the hypograph of
f at (x1, x2) ∈ BN (0, 1) realized by a ball of radius ρ means that for all
(y1, y2) ∈ RN and for all β ≤ f(y1, y2), we have

〈 (ξ1, ξ2, λ)
‖(ξ1, ξ2, λ)‖

, (y1, y2, β) − (x1, x2, f(x1, x2))〉

≤ 1
2ρ

(‖y1 − x1‖2 + |y2 − x2|2 + |β − f(x1, x2)|2). (5.3.33)

By taking y2 = x2 in (5.3.33), and by replacing f(x1, x2) = fx2(x1), f(y1, y2)
= f(y1, x2) = fx2(y1) in (5.3.33), we obtain that for all y1 ∈ BN−1(0,

√
1− x2

2)
and for all β ≤ fx2(y1), it holds

〈 (ξ1, λ)
‖(ξ1, ξ2, λ)‖

, (y1, β) − (x1, fx2(x1))〉 ≤ 1
2ρ

(‖y1 − x1‖2 + |β − fx2(x1)|2).

(5.3.34)
Since (ξ1, λ) 0= 0, from (5.3.34) we get that for all y1 ∈ BN−1(0,

√
1− x2

2)
and for all β ≤ fx2(y1), it holds

〈 (ξ1, λ)
‖(ξ1, λ)‖

, (y1, β)−(x1, fx2(x1))〉 ≤ 1

2ρ ‖(ξ1,λ)‖
‖(ξ1,ξ2,λ)‖

(‖y1−x1‖2+|β−fx2(x1)|2).
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The proof is completed. !
The second lemma is used to treat the case (ξ1, λ) = 0 in Lemma 5.3.6

in the proof of our main theorem. Some notations are needed in this lemma:
Let ζ be a unit vector in RN , we denote by:
i) N ζ

0 = {x ∈ BN (0, 1) | (ζ, 0) ∈ NP
hypo(f)(x, f(x)) is realized by a ball

of radius ρ},
ii) BP ζ

f = BPf ∩ N ζ
0 .

Lemma 5.3.7
i) BP ζ

f ∪ ∂BN (0, 1) is closed.
ii) BP ζ

f has zero N-Lebesgue measure.

Proof of (i). By Lemma 5.4.17, the set BPf ∪ ∂BN (0, 1) is closed. Thus
we only need to prove that N ζ

0 ∪ ∂BN (0, 1) is closed.
Let {xn} ⊆ N ζ

0 ∪ ∂BN (0, 1) converge to x, we need to show that x ∈
N ζ

0 ∪ ∂BN (0, 1).
If x ∈ ∂BN (0, 1) there is nothing to prove.
If x ∈ BN (0, 1) then for n large enough we have xn ∈ BN (0, 1). Thus xn ∈
N ζ

0 , namely, (ζ, 0) ∈ NP
hypo(f)(xn, f(xn)) is realized by a ball of radius ρ, i.e,

for all z ∈ BN (0, 1) and for all β ≤ f(z), one has

〈 (ζ, 0)
‖(ζ, 0)‖

, (z, β)− (xn, f(xn))〉 ≤ 1
2ρ

(‖z − xn‖2 + |β − f(xn)|2). (5.3.35)

Since {xn} converges to x and f(·) is continuous, by taking n → ∞ we have

〈 (ζ, 0)
‖(ζ, 0)‖ , (z, β) − (x, f(x))〉 ≤ 1

2ρ
(‖z − x‖2 + |β − f(x|2). (5.3.36)

for all z ∈ BN (0, 1) and for all β ≤ f(z).
Thus x ∈ N ζ

0 . The proof is completed. !
Proof of (ii). First, we prove that for all x ∈ BP ζ

f , it holds

DN
BP ζ

f

(x) = lim
δ→0+

LN (BN (x, δ) ∩ BP ζ
f )

LN (BN (x, δ))
≤ 1

2
. (5.3.37)

Indeed, since BP ζ
f ⊆ BPf , recalling Corollary 5.3.5 we obtain

DN
BP ζ

f ∩BP+
f (x)

(x) = lim
δ→0+

LN (BN (x, δ) ∩ BP ζ
f ∩ BP+

f (x))
LN (BN (x, δ))

= 0.

Thus the inequality (5.3.37) will hold if

DN
BP ζ

f ∩BP−
f (x)

(x) = lim
δ→0+

LN (BN (x, δ) ∩BP ζ
f ∩ BP−

f (x))
LN (BN (x, δ))

≤ 1
2
. (5.3.38)
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If y ∈ BP ζ
f , we have (ζ, 0) ∈ N ζ

0 (y). Thus for all z ∈ BN (0, 1) and for all
β ≤ f(z), it holds

〈(ζ, 0) , (z − y, β − f(y))〉 ≤ 1
2ρ

(‖z − y‖2 + |β − f(y)|2). (5.3.39)

Thus, if y ∈ BP ζ
f ∩BP−

f (x) we can take z = x and β = f(y) in 5.3.39 to get

〈ζ , x − y〉 ≤ 1
2ρ

‖x − y‖2. (5.3.40)

Therefore, for all δ > 0 small enough, we have

〈ζ , x− y〉 ≤ 1
2ρ
δ2 for all y ∈ [BN (x, δ) ∩ BP ζ

f ∩ BP−
f (x)]. (5.3.41)

(5.3.41) says that

[BN (x, δ)∩BP ζ
f ∩BP−

f (x)] ⊂ x + {tζ + v| t ∈ [− δ
2

2ρ
, δ], v ∈ BN (0, δ) ∩ ζ⊥}

where ζ⊥ = {w ∈ RN | 〈w, ζ〉 = 0}. Thus, (5.3.38) follows. From (i), BP ζ
f is

a Borel set. Moreover, from (5.3.38), the LN -density of BP ζ
f at every point

which is in BP ζ
f is less than 1

2 . Therefore, by the Lebesgue theorem we have
LN (BP ζ

f ) = 0. !

5.4 Proof of our main results of Chapter 5

5.4.1 Proof of Theorem 5.2.2

One dimension case

In this part, we are working on R. The function f(·) is defined on B1(0, 1) =
{x ∈ R | |x| < 1}. Therefore the proximal normal cone NP

hypo(f)(x, f(x)) ⊂
R2 contains at most one line.

Lemma 5.4.1 For all x ∈ BPf , we have NL
0 (x) = {(1, 0), (−1, 0)}.

Proof. Since NL
0 (x) ⊆ (−∂∞f(x), 0), we have NL

0 (x) ⊆ {(t, 0) | t ∈ R}.
Therefore, from the fact that ‖ξ‖ = 1 for all ξ ∈ NL

0 (x), we obtain

NL
0 (x) ⊆ {(1, 0), (−1, 0)} (5.4.1)

Recalling Lemma 5.3.3, the set H+
0 (x) = span+{NL

0 (x)} contains at least
one line. Thus, the proof is completed by (5.4.1).

The following statement is a one dimensional version of Theorem 5.2.2.
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Theorem 5.4.1 Let f : B1(0, 1) −→ R be continuous. Assume that hypo(f)
satisfies the ρ− external sphere condition. Then
i) BPf ∪ ∂B1(0, 1) is closed.
ii) L1(BPf ) = 0.

(i) is the particular case (N=1) of Lemma 5.3.4 .
Proof of (ii). We prove first that, for all x ∈ BPf , the L1-density of BPf

at x is zero, namely,

D1
BPf

(x) := lim
δ→0+

L1(B1(x, δ) ∩ BPf )
L1(B1(x, δ))

= 0. (5.4.2)

Recalling Corollary 5.3.5 for N=1, we have

D1
BP+

f (x)
(x) = lim

δ→0+

L1(B1(x, δ) ∩ BP+
f (x))

L1(B1(x, δ))
= 0.

Therefore, 5.4.2 follows from

D1
BP−

f (x)
(x) = lim

δ→0+

L1(B1(x, δ) ∩BP−
f (x))

L1(B1(x, δ))
= 0. (5.4.3)

From Lemma 5.4.1, for every y ∈ BPf , we have NL
0 (y) = {(1, 0), (−1, 0)}.

Thus, for all y ∈ BPf it holds
{

〈(1, 0) , (z − y, β − f(y))〉 ≤ 1
2ρ (|z − y|2 + |β − f(y)|2),

〈(−1, 0) , (z − y, β − f(y))〉 ≤ 1
2ρ (|z − y|2 + |β − f(y)|2). (5.4.4)

for all z ∈ B1(0, 1) and for all β ≤ f(z).
Since f(y) ≤ f(x) for all y ∈ BP−

f (x), we can take z = x and β = f(y) in
(5.4.4) to get

|x − y| ≤ 1
2ρ

|x − y|2 for all y ∈ BP−
f (x). (5.4.5)

Thus B1(x, δ) ∩ BP−
f (x) = {x} for all 0 < δ < 2ρ and so 5.4.3 follows.

We are now going to complete the proof of (ii).
Since BPf ∪ ∂B1(0, 1) is closed, BPf is a Borel set. From 5.4.2, the L1-
density of BPf at x has zero value for all x ∈ BPf . Therefore, by the
Lebesgue theorem, we have L1(BPf ) = 0. !

General case

(i) of Theorem 5.2.2 is precisely Lemma 5.3.4.
We are going to prove (ii) of Theorem 5.2.2 by induction.

If N = 1, (ii) of Theorem 5.2.2 follows from Theorem 5.4.1.
Assume that (ii) of Theorem 5.2.2 holds for N = k ≥ 1. We prove that (ii)
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of Theorem 5.2.2 will hold for N = k + 1.
Let ζ+ = (0, 1) and ζ− = (0,−1) be in Rk+1. Recalling Lemma 5.3.7,
we obtain that (BP ζ+

f ∪ ∂Bk+1(0, 1)) and (BP ζ−

f ∪ ∂Bk+1(0, 1)) are closed.
Moreover,

Lk+1(BP ζ+

f ) = Lk+1(BP ζ−

f ) = 0. (5.4.6)

Set E = Bk+1(0, 1)\[N ζ+

0 ∪ N ζ−

0 ∪ ∂Bk+1(0, 1)]. One can easily see that E
is an open set in Rk+1. From (5.4.6), the conclusion of (ii) of Theorem 5.2.2
follows from the equality

Lk+1(E ∩ BPf ) = 0. (5.4.7)

Recalling Lemma 5.3.4, BPf ∩ ∂Bk+1(0, 1) is closed. Thus E ∩ BPf is a
Borel set. Therefore, by the Lebesgue theorem, (5.4.7) will follow if for
every x ∈ E ∩ BPf , the Lk+1-density Dk+1

E∩BPf
(x) at x has zero value.

We divide the proof into several steps:
The first step is pivotal (see the below inequality (5.4.8)) to show that

the restricted functions (defined before Lemma 5.3.6) which are restricted
from the function f|Bk+1(x,rx) where x ∈ E, have the hypograph satisfying
the ρx − external sphere condition.
Step1: Let x ∈ E. Since E is open, there exists rx > 0 such that Bk+1(x, rx)
⊂ E. By the external sphere assumption on f , for each y ∈ Bk+1(x, rx),
there exists 0 0= (ξy1 , ξy2 , λy) ∈ NP

hypo(f)(y, f(y)) realized by a ball of radius ρ
where ξy1 ∈ Rk and ξy2 , λy ∈ R. We claim that there exists a constant αx > 0
such that

‖(ξy1 , λy)‖
‖(ξy1 , ξy2 , λy)‖ ≥ αx > 0 for all y ∈ Bk+1(x, rx). (5.4.8)

Assume by contradiction that there exists a sequence {yn} ⊆ Bk+1(x, rx)
such that

lim
n→∞

‖(ξyn
1 , λyn)‖

‖(ξyn
1 , ξyn

2 , λyn)‖
= 0. (5.4.9)

Assume without loss of generality that limn→∞ yn = ȳ ∈ Bk+1(x, rx) and
limn→∞

(ξyn
1 ,ξyn

2 ,λyn)
‖(ξyn

1 ,ξyn
2 ,λyn)‖ = (ξ̄1, ξ̄2, λ̄). From (5.4.9), one can see that

(ξ̄1, ξ̄2, λ̄) ∈ {(0, 1, 0), (0,−1, 0)} = {(ζ+, 0), (ζ−, 0)}. (5.4.10)

Moreover, (ξ̄1, ξ̄2, λ̄) is a proximal normal vector to hypo(f) at (ȳ, f(ȳ)) real-
ized by a ball of radius ρ. Indeed, since 0 0= (ξyn

1 , ξyn
2 , λyn) and (ξyn

1 , ξyn
2 , λyn)

∈ NP
hypo(f)(yn, f(yn)) is realized by a ball of radius ρ, we have

〈 (ξn1 , ξn2 , λn)
‖(ξn1 , ξn2 , λn)‖

, (z, β) − (yn, f(yn))〉 ≤ 1
2ρ

(‖z − yn‖2 + |β − f(yn)|2)
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for all z ∈ Bk+1(0, 1) and for all β ≤ f(z).
By taking n → ∞, we obtain that

〈(ξ̄1, ξ̄2, λ̄) , (z, β) − (ȳ, f(ȳ))〉 ≤ 1
2ρ

(‖z − ȳ‖2 + |β − f(ȳ)|2)

for all z ∈ Bk+1(0, 1) and for all β ≤ f(z).
Therefore, by (5.4.10), we get ȳ ∈ N ζ+

0 ∪ N ζ−

0 . This is a contradiction
because ȳ ∈ Bk+1(x, rx) ⊂ E = Bk+1(0, 1)\[N ζ+

0 ∪N ζ−

0 ∪ ∂Bk+1(0, 1)].
The second step allows us to make a connection between the set of bad

points of f and the set of bad points of restricted functions of f .
Step 2: Let x ∈ E ∩BPf . We claim that there exists a line {tξx | t ∈ R} ⊆
NP

hypo(f)(x) such that {tξx | t ∈ R} 0= {t(ζ+, 0) | t ∈ R}.
Assume by contraction, since x ∈ BPf , i.e. NL(x) 0= 0, we have NL(x) =
{t(ζ+, 0) | t ∈ R}. Recalling Lemma 5.3.3, the set H+

0 (x) ⊆ NL(x) contains
at least one line. Therefore H+

0 (x) = {t(ζ+, 0) | t ∈ R} which implies that
(ζ+, 0) ∈ NL

0 (x). Recalling Corollary 5.3.2, (ζ+, 0) ∈ NP
hypo(f)(x, f(x)) is

realized by a ball of radius ρ. Thus x ∈ N ζ+

0 and this is a contradiction
because x ∈ E.

In the next step, we are going to prove that Lk+1(Bk+1(x, rx)∩BPf) = 0
by our inductive assumption .
Step 3: Let f̄ = f|Bk+1(x,rx) : Bk+1(x, rx) −→ R be the restricted function of
f on Bk+1(x, rx). From Lemma 7.2.2, the continuous function f̄ has hypo(f̄)
satisfying the ρ−external sphere condition, and

BPf ∩Bk+1(x, rx) = BPf̄ . (5.4.11)

Moreover, two properties which we claimed in Step 1 and Step 2 still hold
for the function f̄ .

Since (5.4.11) holds, we only need to prove Lk+1(BPf̄ ) = 0.
In order to make the proof more clear, we restate our above problem by

replacing x = 0, rx = 1 and f̄ = f . The statement is that
Let f : Bk+1(0, 1) −→ R be continuous. Assume that hypo(f) satisfies

ρ− external
sphere condition. Moreover,
i) For all y ∈ Bk+1(0, 1), there exists a non zero vector (ξy1 , ξy2 , λy) ∈
NP

hypo(f)(y, f(y)) realized by a ball of radius ρ such that

‖(ξy1 , λy)‖
‖(ξy1 , ξy2 , λy)‖

≥ α0 > 0. (5.4.12)

ii) For all x ∈ BPf , there exists a line {tξx | t ∈ R} ⊆ NL(x) such that
{tξx | t ∈ R} 0= {t(ζ+, 0) | t ∈ R}.
Then Lk+1(BPf ) = 0.
Proof. Since k ≥ 1, for every x ∈ Rk+1, we write x = (x1, x2) where
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x1 ∈ Rk and x2 ∈ R. For each x2 ∈ (−1, 1), the restricted function
fx2 : Bk(0,

√
1− x2

2) −→ R is denoted by fx2(x1) = f(x1, x2) for all x1 ∈
Bk(0,

√
1 − x2

2).
First, we claim that hypo(fx2) satisfies ρα0-external sphere condition.

Indeed by assumption (i) of the above statement we have that , for each
x1 ∈ Bk(0,

√
1 − x2

2), or (x1, x2) ∈ Bk+1(0, 1), there exists a vector

0 0= (ξ(x1,x2)
1 , ξ(x1,x2)

2 , λ(x1,x2)) ∈ NP
hypo(f)((x1, x2), f(x1, x2))

realized by a ball of radius ρ such that

‖(ξ(x1,x2)
1 , λ(x1,x2))‖

‖(ξ(x1,x2)
1 , ξ(x1,x2)

2 , λ(x1,x2))‖
≥ α0 > 0. (5.4.13)

Recalling Lemma 5.3.6 for N = k + 1 ≥ 2 and observing that (ξ1, ξ2, λ) =
(ξ(x1,x2)

1 , ξ(x1,x2)
2 , λ(x1,x2)), and by (5.4.13) we obtain that (ξ(x1,x2)

1 , λ(x1,x2))
is also a proximal normal vector to hypo(fx2) at (x1, fx2(x1)) realized by a
ball of radius ρα0.

Second, we claim that

Lk(BPfx2
) = 0 for all x2 ∈ (−1, 1). (5.4.14)

Indeed, set γ(x2) = 1√
1−x2

2

and let hx2 = fγ(x2)
x2 be the γ(x2)-stretched

function of fx2 (see Lemma 7.2.3). By Lemma 7.2.3 and by the first step,
the continuous function hx2 : Bk(0, 1) −→ R has hypograph satisfying the

ρ1-external sphere condition where ρ1 = ρα0
(1−x2

2)
1
2

(2−x2
2)

3
2
. Therefore, by the

inductive assumption, we have

Lk(BPhx2
) = 0. (5.4.15)

Moreover, recalling Corollary 7.2.1 for g = fx2 and γ = γ(x2) we get

BPhx2
= (1 − x2

2)
− 1

2 BPfx2
. (5.4.16)

Combining (5.4.15) and (5.4.16), we get (5.4.14).

Thirdly, we claim that

BPf ⊆
⋃

x2∈(−1,1)

BPfx2
× {x2}. (5.4.17)

Assume x = (x1, x2) ∈ BPf . By (ii) there exists a line {tξx | t ∈ R} ⊆
NL(x) ⊆ (−∂∞f(x), 0) such that {tξx | t ∈ R} 0= {t(ζ+, 0) | t ∈ R} and
‖ξx‖ = 1. Therefore, ξx = (ξ1, ξ2, 0) and −ξx = (−ξ1,−ξ2, 0) are proximal
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normal vectors to hypo(f) at (x, f(x)) realized by a ball of radius σ where
σ > 0, 0 0= ξ1 ∈ Rk, x2 ∈ R and ‖(ξ1, ξ2)‖ = 1. Recalling Lemma 5.3.6, we
obtain that (ξ1, 0) and (−ξ1, 0) are proximal normal vectors to the hypograph
of fx2 at (x1, fx2(x1). This implies that NP

hypofx2
(x1, fx2(x1)) contains the

line {t(ξ1, 0) | t ∈ R}. Thus, x1 ∈ BPfx2
or (x1, x2) ∈ (BPfx1

, x2).
Finally, since BPf is a Borel set contained in Bk+1(0, 1), the indicator

function 1BPf is in Lk+1(Bk+1(0, 1)). From Fubini’s theorem, we have

Lk+1(BPf ) =
∫

Bk+1(0,1)
1BPf dx =

∫ 1

−1

∫

Bk(0,
√

1−x2
2)

1BPf dx1dx2.(5.4.18)

Combining the above equality and (5.4.17), we get

Lk+1(BPf) ≤
∫ 1

−1

∫

Bk(0,
√

1−x2
2)

1BPfx2
dx1dx2 =

∫ 1

−1

Lk(BPfx2
)dx1.

(5.4.19)
The proof is completed using (5.4.19) and (5.4.14). !

5.4.2 Proof of Theorem 5.2.1

Proof of (i). It is equivalent to prove that BPf ∪ ∂Ω ⊂ Ω is closed. Let
{xn} ⊆ BPf ∪ ∂Ω converge to x. We need to show that x ∈ BPf ∪ ∂Ω.
If x ∈ ∂Ω, there is nothing to prove.
If x ∈ Ω, we will prove x ∈ BPf . Indeed, there exist rx > 0 and M > 0
such that xn ∈ BN (x, rx) ⊂ BN (x, rx) ⊂ Ω for all n > M . From Lemma
7.2.2, we have xn ∈ BPf|BN (x,rx)

for all n > M . On the other hand, from
Corollary 7.2.1, and (i) of Theorem 5.2.2, one can easily see that the set
BPf|BN (x,rx)

∪ ∂BN (x, rx) is closed. Therefore, the sequence {xn} converge
to x ∈ BPf|BN (x,rx)

∪ ∂BN (x, rx). Recalling again Lemma 7.2.2, we obtain
x ∈ BPf .
Proof of (ii). Since BPf ∪ ∂Ω is closed, BPf is a Borel set. Therefore, it
is sufficient to prove that for all x ∈ BPf , the LN -density of BPf at x has
zero value, i.e, for all x ∈ BPf

DN
BPf

(x) = lim
δ→0

LN (BPf ∩ BN (x, δ))
LN (BN (x, δ))

= 0. (5.4.20)

Indeed, for all x ∈ BPf ⊆ Ω, there exists rx > 0 such that BN (x, rx) ⊂ Ω.
From Lemma 7.2.2 , Lemma 7.2.3, Corollary 7.2.1 and Theorem 5.2.2, one
can easily get

LN (BPf ∩ B(x, rx)) = LN (BPf|BN (x,rx)
) = 0, (5.4.21)

and (5.4.20) follows. !
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5.4.3 Proof of Colloraries

Proof of Corollary 5.2.1. From Theorem 5.2.1 we have
The set ΩP is open. The function f|ΩP

:−→ R is a continuous function and
i) The set hypo(f|ΩP

) satisfies the θ − external sphere condition.
ii) For every x ∈ ΩP , the set NP

hypo(f|ΩP
)(x, f|ΩP

(x)) is pointed.
The remainder of the proof is done by the argument in [19]. More pre-
cisely, one can prove that NP

hypo(f|ΩP
)(x, f|ΩP

(x)) = Co{tNL(x) | t ≥ 0} (see
Lemma 4.7, Theorem 4.1, Theorem 3.1, Theorem 3.2 in [19]). From Corol-
lary 5.3.1 in this paper, if ξ ∈ NL(x) then ξ ∈ NP

hypo(f|ΩP
)(x, f|ΩP

(x)) is
realized by a ball of radius θ(x), the proof is completed by following the
proof of Theorem 3.3 in [19]. !

Proof of Corollary 5.2.3. Using the Proposition (3.1) in [19], the
hypo(T ) satisfies the θ − external sphere condition. Applying Corollary
5.2.1 for f = T (·), we get the conclusion. !



Chapter 6

Rectifiability of the set of
bad points

We prove here some rectifiability properties of the set of bad points BPf of
f where the hypograph of f doesn’t require an external sphere condition.
The set BPf will be also defined more generally (see Section 6.1 for the
definition). We partition the set BPf (see (6.1.6)) into sets BPf,k, k =
1, . . . ,N , where, roughly speaking, the suffix k corresponds to the dimension
of the largest vector space contained in the set ∂F,∞f of Fréchet horizon
supergradients of f (see Section 6.1 for the definition). We are able to prove
that BPf,k is countably (N − k)-rectifiable.

Theorem 6.0.2 Let Ω ⊆ RN be open and let f : Ω → R be upper semi-
continuous. Then the set BPf,k is countably (N − k)-rectifiable.

Moreover, under an external sphere condition on the hypograph of f , the
definition of BPf here will coincide with the one in the previous chapter.
Therefore, we also refine Theorem 5.2.2 as follows:

Theorem 6.0.3 Let Ω ⊆ RN be open and let f : Ω → R be continuous. If
the hypograph of f satisfies the θ-exterior sphere condition for some θ > 0,
then the set of bad points BPf is locally (N − 1)-rectifiable. In particular,
HN−1(BPf ∩K) is finite for any compact set K ⊂ RN .

Finally, in Section 6.3 we provide an example showing that, in general, the
set BPf,k, k ≥ 2 may not have finite (N − k)-Hausdorff measure even under
the exterior sphere condition.

6.1 Notations

To make the reader easy to follow, we prefer to rewrite shortly some basic
notations.
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Let Ω ⊆ RN be open and let f : Ω → R be upper semi-continuous. The
hypograph of f is denoted by

hypo(f) = {(x, β) | x ∈ Ω, β ≤ f(x)}. (6.1.1)

The vector (−v, λ) ∈ RN × R is a Fréchet normal vector to hypo(f) at
(x, f(x)) iff

lim sup
hypo(f)$(y,β)→(x,f(x))

〈
(−v, λ) ,

(y, β) − (x, f(x))
|y − x| + |β − f(x)|

〉
≤ 0. (6.1.2)

We denote by NF
hypo(f)(x, f(x)) the set of Fréchet normal vectors to hypo(f)

at (x, f(x)).

Remark 6.1.1 If (−v, λ) ∈ NF
hypo(f)(x, f(x)) then λ ≥ 0.

Recalling that NP
hypo(f)(x, f(x)) is the set of proximal normal vectors to

hypo(f) at (x, f(x)), we have:

Remark 6.1.2 NP
hypo(f)(x, f(x)) ⊆ NF

hypo(f)(x, f(x)) for all x ∈ Ω.

Associated with hypo(f), we define that

1. ∂F f(x) = {v | (−v, 1) ∈ NF
hypo(f)(x, f(x))} is set of Fréchet supergra-

dients of f at x .

2. ∂F,∞f(x) = {v | (−v, 0) ∈ NP
hypo(f)(x, f(x))} v is the set a Fréchet

horizon supergradients of f at x.

The largest vector subspace contained in NF
hypo(f)(x, f(x)) will be denoted

by

NL(x) = { ξ ∈ NF
hypo(f)(x, f(x)) | − ξ ∈ NF

hypo(f)(x, f(x))}. (6.1.3)

From Remark 6.1.1, one can see that NL(x) ⊆ {(v, 0) | −v ∈ ∂∞f(x)}. Let
us define

Vx := {v ∈ RN | (v, 0) ∈ NL(x)}; (6.1.4)

clearly, Vx is the largest vector space contained in ∂∞f(x) and dimVx =
dimNL(x). We say that v ∈ Vx is realized by a ball of radius θ if (v, 0) ∈
NP

hypo(f)(x, f(x)) is realized by a ball of radius θ.
The set of bad points BPf of f is defined by

BPf = {x ∈ Ω | NL(x) 0= {0}}. (6.1.5)

According to the dimension of NL(x), for k = 1, . . . ,N we introduce

BPf,k = {x ∈ BPf | dim NL(x) = k} = {x ∈ BPf | dim Vx = k}. (6.1.6)

It is clear that BPf =
⋃N

k=1 BPf,k.

Now, let k ≥ 0 and A,B ⊂ RN be fixed. We recall that:
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(i) Hk(A) is the k-dimensional Hausdorff measure of A;

(ii) dH(A,B) is the Hausdorff distance between A and B.

Finally, we will denote by G(N, k) the Grassmann manifold of all k − di-
mensional vector subspaces of RN ; we endow G(N, k) with the distance

dG(V1, V2) := dH(V1 ∩ SN−1, V2 ∩ SN−1).

The metric space (G(N, k), dG) is separable and, in particular, the following
property holds:

∀ R > 0 ∃ V1, . . . , Vm ∈ G(N, k) s.t. G(N, k) ⊂
m⋃

i=1

BG(Vi, R) (6.1.7)

where BG(Vi, R) denote the open ball (with respect to dG) with center Vi

and radius R.

6.2 Rectifiability results for the set of bad points

6.2.1 Preparatory Lemmas

Let V ∈ G(N, k) be fixed; each z ∈ RN can be written in a unique way as
z = zV + zV ⊥ where zV ∈ V and zV ⊥ ∈ V ⊥. For α ∈ (0, 1) we denote by
Cα(V ) the open cone along V of aperture 1/α defined by

Cα(V ) := {z ∈ RN | ‖zV ‖ > α ‖z‖} .

If x ∈ RN we set

Cα(x, V ) := x + Cα(V ) = {z ∈ RN | ‖(z − x)V ‖ > α ‖z − x‖} ;

It is easily seen that

z ∈ Cα(x, V ) ⇐⇒ ∃v ∈ V ∩SN−1 such that 〈v, z−x〉 > α ‖z − x‖ . (6.2.1)

We also point out the following implication:

dG(V1, V2) < R =⇒ Cα+R(x, V1) ⊂ Cα(x, V2) (6.2.2)

which holds provided α+R < 1. To prove (6.2.2) it is enough to notice that
for any z ∈ Cα+R(x, V1)

there exists v1 ∈ V1 ∩ SN−1 such that 〈v1, z − x〉 > (α+ R) ‖z − x‖
there exists v2 ∈ V2 ∩ SN−1 such that ‖v1 − v2‖ ≤ R

whence

〈v2, z − x〉 = 〈v1, z − x〉 − 〈v1 − v2, z − x〉 > α ‖z − x‖ ,
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i.e., z ∈ Cα(x, V2).
For any fixed ρ > 0, let us introduce the sets

BP ρ
f,k =

{
x ∈ BPf,k |

〈
vx,

y − x

|y − x| + |β − f(x)|

〉
≤ ‖vx‖

8

∀vx ∈ Vx, y ∈ B(x, ρ), β < f(y)
}

.

(6.2.3)

Remark 6.2.1 If ρ1 > ρ2 > 0 then BP ρ1
f,k ⊆ BP ρ2

f,k.

As the following Lemma shows, the sets BP ρ
f,k give a partition of BPf,k.

Lemma 6.2.1 We have

BPf,k = ∪ρ>0BP ρ
f,k. (6.2.4)

In particular, from Remark 6.2.1 it holds

BPf,k = ∪i∈N\{0}BP 1/i
f,k . (6.2.5)

Proof. Fix x ∈ BPf,k and let v1, v2, ..., vk be an orthonormal basis for Vx.
By the definition of Vx we have −vi ∈ Vx for all i ∈ {1, 2, ..., k}. Recall-
ing (6.1.4), (6.1.3) and (6.1.2), there exists a constant ρx > 0 such that
B(x, ρx) ⊂ Ω and for all i ∈ {1, 2, ..., k} one has
〈
vi,

y − x

|y − x| + |β − f(x)|

〉
≤ 1

8
√

k
and

〈
− vi,

y − x

|y − x| + |β − f(x)|

〉
≤ 1

8
√

k

for all y ∈ B(x, ρx) and β ≤ f(y). Thus
∣∣∣
〈
vi,

y − x

|y − x| + |β − f(x)|

〉∣∣∣ ≤
1

8
√

k
(6.2.6)

for all y ∈ B(x, ρx) and β ≤ f(y).
Fix vx ∈ Vx; we have vx =

∑k
i=1 αivi for suitable αi ∈ R. From (6.2.6), we

get
〈
vx,

y − x

|y − x| + |β − f(x)|

〉
≤
∑k

i=1 |αi|
8
√

k

for all y ∈ B(x, ρx) and β ≤ f(y). On the other hand,

‖vx‖ =
( k∑

i=1

α2
i

)1/2

≥
∑k

i=1 |αi|√
k

.

Therefore 〈
vx,

y − x

|y − x| + |β − f(x)|

〉
≤ ‖vx‖

8
for all y ∈ B(x, ρx) and β ≤ f(y). Thus x ∈ BP ρx

f,k and the proof is
accomplished. !

In view of a rectifiability result for the sets BPf,k, we begin with a
technical result.
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Lemma 6.2.2 Let a ∈ RN , ρ > 0 and x, y ∈ BP ρ
f,k ∩ B(a, ρ2 ) be such that

dG(Vx, Vy) < 1
8 ; then

y ∈ RN\C 1
4
(x, Vx) .

Proof. Since x, y ∈ B(a, ρ2 ), we have x ∈ B(y, ρ) and y ∈ B(x, ρ). There-
fore, from (6.2.3) if vx ∈ Vx ∩ SN−1 we have

〈vx, y − x〉 ≤ 1
8
(‖y − x‖ + |β − f(x)|) for all β ≤ f(y). (6.2.7)

Similarly, for any vy ∈ Vy ∩ SN−1 we obtain

〈vy, y − x〉 ≤ 1
8
(‖y − x‖ + |β − f(y)|) for all β ≤ f(x). (6.2.8)

We have to distinguish two cases: if f(y) ≥ f(x), we choose β = f(x) in
(6.2.7) to get

〈vx, y − x〉 ≤ 1
8
‖y − x‖ ∀ vx ∈ Vx ∩ SN−1 .

Recalling (6.2.1), this implies that y /∈ C 1
4
(x, Vx), as desired.

If f(y) ≤ f(x), we choose β = f(y) in (6.2.8) to get

〈vy, y − x〉 ≤ 1
8
‖y − x‖ ∀ vy ∈ Vy ∩ SN−1.

Since dG(Vx, Vy) < 1
8 , for any vx ∈ Vx ∩ SN−1 there exists vy = vy(vx) ∈

Vy ∩ SN−1 such that ‖vx − vy‖ < 1
8 . Therefore, for any vx ∈ Vx ∩ SN−1 it

holds

〈vx, y − x〉 ≤ 〈vy, y − x〉 + |〈vx − vy, y − x〉| ≤ 1
4
‖y − x‖ (6.2.9)

i.e. y /∈ C 1
4
(x, Vx), as desired. !

We now fix R := 1/16 and let V1, . . . , Vm ∈ G(N, k) be given by (6.1.7).
We thus divide BP ρ

f,k into m sets

BP ρ
f,k =

m⋃

j=1

BP ρ,j
f,k (6.2.10)

where
BP ρ,j

f,k = {x ∈ BP ρ
f,k | dG(Vx, Vj) < 1/16}.

For j = 1, . . . ,m we denote by πj the orthogonal projection Rn → V ⊥
j ;

clearly, πj(z) = zV ⊥
j

= z − zVj .
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Lemma 6.2.3 The projection πj : BP ρ,j
f,k∩B(a, ρ/2) → πj(BP ρ,j

f,k∩B(a, ρ/2))
is invertible and its inverse map is Lipschitz continuous with Lipschitz con-
stant at most 2.

Proof. Let x, y ∈ BP ρ,j
f,k ∩ B(a, ρ/2) be fixed. We have dG(Vx, Vy) < 1/8

and Lemma 6.2.2 ensures that y /∈ C1/4(x, Vx). Since dG(Vx, Vj) < 1/16,
by (6.2.2) we deduce that C1/2(x, Vj) ⊆ C5/16(x, Vj) ⊆ C1/4(x, Vx) and, in
particular, that y /∈ C1/2(x, Vj). This implies that ‖(y − x)Vj‖ ≤ 1

2 ‖y − x‖,
whence

‖πj(y)− πj(x)‖ = ‖πj(y − x)‖ =
∥∥(y − x)− (y − x)Vj

∥∥ ≥ 1
2 ‖y − x‖ .

This is enough to conclude. !
The rectifiability of the sets BP ρ

f,k is now a consequence of Lemma 6.2.3.

6.2.2 Proof of main results

Theorem 6.2.1 The set BP ρ
f,k ∩K is (N −k)-rectifiable for any ρ > 0 and

any compact set K ⊂ RN ; in particular

HN−k(BP ρ
f,k ∩ K) < +∞. (6.2.11)

Proof. It will be sufficient to show that for any j = 1, . . . ,m the set
BP ρ,j

f,k ∩ K is k-rectifiable. Since K is compact, there exist a1, . . . , ah ∈ RN

such that

BP ρ,j
f,k ∩ K ⊂

h⋃

i=1

(
BP ρ,j

f,k ∩ B(ai, ρ/2)
)
.

By Lemma 6.2.3, for any i = 1, . . . , h the set BP ρ,j
f,k ∩B(ai, ρ/2) is the image

of
π−1

j : πj
(
BP ρ,j

f,k ∩ B(ai, ρ/2)
)
→ RN ,

i.e. of a Lipschitz map defined on a bounded subset of V ⊥
j ≡ RN−k with

Lipschitz constant at most 2. In particular, BP ρ,j
f,k ∩ B(ai, ρ/2) is (N − k)-

rectifiable and this allows to conclude. !
We can finally pass to the proof of our main results.

Proof of Theorem 6.0.2. It is an easy consequence of Lemma 6.2.1
and Theorem 6.2.1. !

Before passing to the proof of Theorem 6.0.3, we would like to discuss
the relation between BPf and the set of bad points BPP

f considered in [47],
namely,

BPP
f := {x ∈ Ω |NLP (x) 0= {0}},
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where NLP (x) = { ξ ∈ NP
hypo(f)(x, f(x)) | − ξ ∈ NP

hypo(f)(x, f(x))}. From
Remark 6.1.2 it is clear that BPP

f ⊆ BPf , but in general the two sets do
not coincide.
However, the equality BPf = BPP

f holds under the assumptions of Theorem
6.0.3. Indeed, from Corollary 3.1 in [47] it follows that the hypograph of
f|ΩP

has positive reach, where ΩP is the open set defined by ΩP := Ω\BPP
f .

Therefore (see [31, Proposition 6.2 and 4.2] and [40, Theorem 4.8 (12)]) one
has

NP
hypo(f|ΩP

)(x, f|ΩP
(x)) = NF

hypo(f|ΩP
)(x, f|ΩP

(x)) for all x ∈ ΩP .

and thus

NP
hypo(f)(x, f(x)) = NF

hypo(f)(x, f(x)) for all x ∈ ΩP .

Consequently, NL(x) = NLP (x) for all x ∈ ΩP . By the definition of BPP
f ,

we have NLP (x) = {0} for all x ∈ ΩP . This implies that NL(x) = {0} for
all x ∈ ΩP , i.e. BPf ∩ ΩP = ∅. Thus, BPf ⊆ BPP

f , as claimed. !

Proof of Theorem 6.0.3. Recalling 6.0.2, we have HN−1(BPf,k) = 0
for all k ∈ {2, 3...,N}. Since

BPf = BPf,1 ∪
N⋃

k=2

BPf,k,

the proof will be accomplished after proving that the set BPf,1 is locally
(N − 1)-rectifiable. From the definition (6.1.6), for every x ∈ BPf,1 the set

Vx = {tvx | vx ∈ RN , ‖vx‖ = 1 and t ∈ R}

is a line along vx. Therefore by [47, Lemma 4.3], (±vx, 0) ∈ NP
hypo(f)(x, f(x))

is realized by a ball of radius θ, i.e.

〈
± vx, y − x

〉
≤ 1

2θ
(‖y − x‖2 + |β − f(x)|2) ∀y ∈ Ω, β ≤ f(x).

From the above inequality, reasoning as in the proof of Lemma 6.2.2 one can
obtain that the following holds. If a ∈ RN , ρ ∈ (0, θ/8], x, y ∈ BPf,1∩B(a, ρ2 )
are such that dG(Vx, Vy) < 1

8 , then

y ∈ RN\C 1
4
(x, Vx) .

From this fact, the local (N − 1)-rectifiability of BPf,1 follows (up to con-
sidering BPf,1 instead of BP ρ

f,k) as in the proof of Theorem 6.2.1. !
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6.3 A counterexample

By virtue of Theorem 6.0.3, the set of bad points BPf is locally (N − 1)-
rectifiable provided the θ-exterior sphere condition holds. On the contrary,
an analogous (N − k)-rectifiability result does not hold for BPf,k; in other
words, Theorem 6.0.2 cannot be refined to show that HN−k(BPf,k∩K) < ∞
for any compact set K ⊂ RN . We are going to provide an example of
a continuous function f : (−1, 1) × (−1, 1) → R satisfying the θ-exterior
sphere condition with θ = 1 and such that H0(BPf,2 ∩ K) = +∞ for any
neighborhood K of the origin. It will be clear from the construction that
what is missing is a uniform control on the radii of exterior balls (recall that,
by Theorem 6.2.1, BP ρ

f,k is locally (N − k)-rectifiable for any ρ > 0).
Let Ω := (−1, 1)× (−1, 1); for n ∈ N, n ≥ 0 let us define x+

n , x−
n ∈ Ω by

x+
n := (2−n, 0), x−

n := (−2−n, 0) .

We also set

c+
n :=

x+
n + x+

n+1

2
= (3·2−n−2, 0) ∈ Ω , c−n :=

x−
n + x−

n+1

2
= (−3·2−n−2, 0) ∈ Ω

and

rn :=
‖x+

n − xn+1‖
2

=

∥∥x−
n − x−

n+1

∥∥
2

= 2−n−2 .

Notice that the closed balls B(c±n , rn) are pairwise disjoint except for the
case of consecutive balls, which instead are tangent, i.e., for any n ≥ 1 one
has

B(c+
n , rn) ∩B(c+

n−1, rn−1) = {x+
n } , B(c−n , rn) ∩ B(c−n−1, rn−1) = {x−

n } .

Define f1 : Ω → R by

f1(x) =






−
√

r2
n −
∥∥x − c+

n

∥∥2 if x ∈ B(c+
n , rn)

−
√

r2
n −
∥∥x − c−n

∥∥2 if x ∈ B(c−n , rn)

0 if x ∈ Ω \
(⋃

n B(c+
n , rn) ∪

⋃
n B(c−n , rn)

)
.

It is easily seen that f1 is continuous and that {x+
n , x−

n : n ≥ 1} ⊂ BPf1 ;
more precisely

(1, 0) ∈ ∂∞f1(x+
n ) is realized by a ball of radius rn−1

(−1, 0) ∈ ∂∞f1(x+
n ) is realized by a ball of radius rn

(1, 0) ∈ ∂∞f1(x−
n ) is realized by a ball of radius rn

(−1, 0) ∈ ∂∞f1(x−
n ) is realized by a ball of radius rn−1.

(6.3.1)

For any x = (ξ, η) ∈ Ω we also define

f2(x) = −
√
η2 − |η| = −

√
1 − (1 − |η|)2 .
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One can easily check that f2 is continuous on Ω and that BPf2 = {(ξ, 0) :
ξ ∈ (−1, 1)}; more precisely, for any ξ ∈ (−1, 1)

(0, 1), (−1, 0) ∈ ∂∞f2(ξ, 0) are realized by balls of radius 1. (6.3.2)

Notice also that f1(x±
n ) = f2(x±

n ) = 0 for any n ≥ 1. Therefore, the function
f := inf{f1, f2} is continuous on Ω and f(x±

n ) = f1(x±
n ) = f2(x±

n ) = 0.
Taking (6.3.1) and (6.3.2) into account we obtain that

(1, 0), (−1, 0), (0, 1), (0,−1) ∈ ∂∞f(x±
n ) for any n ≥ 1

whence
{x+

n , x−
n : n ≥ 1} ⊂ BPf,2

which in turn implies H0(BPf,2) = ∞, as desired. !
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Chapter 7

Appendix

7.1 Appendix A

In this section, under the assumptions (H1) and (H2) on (3.1.1) in Chapter
3, we prove some elementary estimates which are needed in Lemma 3.3.1,
Lemma 3.3.2 and Lemma 3.3.3. For future use, we set

K1 = max
u∈U

‖f(0, u)‖ ,

K2 = max
u∈U

‖Dxf(0, u)‖ ,

L2(s, δ) = L1e
Lsδ +

L1(eLs − 1)K1

L
+ K2 for all s, δ ≥ 0. (7.1.1)

Lemma 7.1.1 Let α(·) := yx,u(·) be the solution of (3.1.1). The following
estimates hold true for all t > 0:

(i) ‖α(t) − x‖ ≤ (L‖x‖+K1)(eLt−1)
L .

(ii) ‖α(t)‖ ≤ eLt ‖x‖+ (eLt−1)K1

L .

(iii) ‖f(α(t), u(t))‖ ≤ LeLt ‖x‖ + eLtK1.

(iv) ‖Dxf(α(t), u(t))‖ ≤ L2(t, ‖x‖).

Proof. Since α(·) is the solution of (3.1.1), for all t > 0 we have

‖α(t) − x‖ =
∥∥∥∥
∫ t

0
f(α(s), u(s))ds

∥∥∥∥ ≤
∫ t

0
‖f(α(s), u(s))‖ ds

≤
∫ t

0
‖f(α(s), u(s)) − f(x, u(s))‖ ds

+
∫ t

0
‖f(x, u(s)) − f(0, u(s))‖ ds +

∫ t

0
‖f(0, u(s))‖ ds

≤ L

∫ t

0
‖α(s) − x‖ ds + L ‖x‖ t + K1t.
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Applying Gronwall’s inequality we obtain

‖α(t) − x‖ ≤ (L ‖x‖+ K1)(eLt − 1)
L

, (7.1.2)

whence

‖α(t)‖ ≤ eLt ‖x‖ +
(eLt − 1)K1

L
. (7.1.3)

Recalling the condition (H2), we obtain

‖f(α(t), u(t))‖ ≤ LeLt ‖x‖+ eLtK1 (7.1.4)

and also

‖Dxf(α(t), u(t))‖ ≤ L1e
Lt ‖x‖+

L1(eLt − 1)K1

L
+ K2. (7.1.5)

The proof is concluded. !
In the next Lemma, we will give some estimates related to the limiting

adjoint trajectories MT (·) in Chapter 3.

Lemma 7.1.2 Let x ∈ Sc, set r = T (x) > 0, and take x̄ ∈ Sx and M(·) ∈
Mx̄. Then

(i) ‖M(t)‖ ≤ eL2(t,‖x‖)t for all t ∈ [0, r],

(ii)
∥∥M(t)−1

∥∥ ≤ eL2(t,‖x‖)t for all t ∈ [0, r].

Proof. Let xn → x, {ūn} ⊂ Uad be such that {yxn,ūn(·)} ⊂ Tx̄ and
M(·, xn, ūn) converges to M(·) uniformly on [0, T (x)]. By (iv) in Lemma
7.1.1 and Theorem 2.2.1, p. 23, in [13], we obtain that for all w ∈ RN

‖M(t, xn, ūn)w‖ ≤ e[L1eLt‖x‖+ L1(eLt−1)K1
L +K2]t ‖w‖ .

Taking n → ∞ we conclude the proof of (i).
The proof of (ii) proceeds exactly as the proof of (i), by replacing

M(·, xn, ūn) with M(·, xn, ūn)−1. !
The following result is essentially Theorem 2.2.4, pp. 25, 26 in [13].

Lemma 7.1.3 Let A1, A2 : [0, T ] → MN×N be matrices with L∞-entries,
and set ‖Ai‖ = Li, i = 1, 2. Let M1,M2 be the fundamental solution of,
respectively,

ṗ(t) = A1(t)p(t), p(0) = IN×N

ṗ(t) = A2(t)p(t), p(0) = IN×N .

Then, for every t ∈ [0, T ] and every unit vector v ∈ RN we have

‖(M2(t)− M1(t))v‖ ≤ e(L1+L2)t
∫ t

0
‖A2(s)− A1(s)‖ ds.
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7.2 Appendix B

The first Lemma is to prove that the angle of a wedged cone H+
C which is

generated by a compact set C ⊂ RN\{0} is far from π.

Lemma 7.2.1 Let C ∈ RN be a compact set which does not contain 0. We
denote the positive cone generated by C as

H+
C = span+(C) = {

k∑

i=1

αici | ci ∈ C and αi ≥ 0}.

Assume that H+
C is wedged. Then:

i) H+
C is closed.

ii) There exists a constant δ0 > 0 such that for all 0 0= x1, x2 ∈ H+
C , it

holds
〈 x1

‖x1‖
,

x2

‖x2‖
〉 > −1 + δ0. (7.2.1)

Proof of (i). Let a sequence {xn} ⊂ H+
C converge to x. We need to prove

that x ∈ H+
C . By Caratheodory theorem, we can write

xn =
N+1∑

i=1

αn
i ci

n, where αi
n ≥ 0, ci

n ∈ C. (7.2.2)

Assume without loss of generality that limn→∞ ci
n = ci ∈ C for all i ∈

{1, 2, ..,N + 1}.
If
∑N+1

i=1 α
i
n is unbounded, we extract subsequences {αi

nk
} ⊆{ αi

n} such
that

αi
nk∑N+1

i=1 α
i
nk

= αi ≥ 0 and lim
nk→∞

N+1∑

i=1

αi
nk

= +∞.

Therefore, from (7.2.2) and limn→∞ xn = x we get

N+1∑

i=1

αi ci = lim
nk→∞

xnk∑N+1
i=1 α

i
nk

= 0. (7.2.3)

Note that αi ≥ 0,
∑N+1

i=1 α
i = 1 and ci 0= 0. We recall (7.2.3) to obtain that

the cone H+
C contains at least one line. This is a contradiction.

Thus
∑N+1

i=1 α
i
n is bounded. It implies that the sequences {αi

n} are bounded
for all i ∈ {1, 2, ...,N + 1} since αi

n ≥ 0. We extract subsequences {αi
nk
} ⊆

{αi
n} such that

lim
nk→∞

αi
nk

= αi ≥ 0 for all i ∈ {1, 2, ...,N + 1}.
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From the above equality and (7.2.2) , we have

x = lim
n→∞

xn = lim
nk→∞

xnk = lim
nk→∞

N+1∑

i=1

αi
nk

ci
nk

=
N+1∑

i=1

αi ci.

This implies x ∈ H+
C .

Proof of (ii). Assume by contradiction that there exist two sequences {xn
1},

{xn
2} contained in H+

C such that ‖xn
1‖ = ‖xn

2‖ = 1 and

lim
n→∞

〈xn
1 , xn

2 〉 = −1. (7.2.4)

Assume without loss of generality that limn→∞ xn
1 = x1 and limn→∞ xn

1 =
x2. Recalling (7.2.4), we obtain that −x1 = x2. Moreover, since H+

C is
closed, we have x1, x2 ∈ H+

C . Therefore H+
C contains at least one line. This

is a contradiction. !
The following Proposition provides a sufficient condition for the strict

convexity of a set.

Proposition 7.2.1 Let K ⊂ RN be compact and assume that there exist
γ > 0 and p > 1 with the following property: for every x ∈ ∂K, there exists
ζ 0= 0 such that for every y ∈ K one has

〈ζ, y − x〉 ≤ −γ‖ζ‖‖y − x‖p. (7.2.5)

Then K is convex (with nonempty interior) and (7.2.5) is satisfied by all
ζ ∈ NK(x) for each x ∈ ∂K.

Proof. We show first that K is convex. To this aim, assume by contradic-
tion that three exist points x1 0= x2 ∈ K such that the segment [x1, x2] is
not contained in K. Let 0 < t < 1 be such that xt = (1 − t)x1 + tx2 ∈ ∂K
and let ζ 0= 0 be such that (7.2.5) holds with xt in place of x. Obviously,
ζ⊥x2 − x1 and this is a contradiction. It is also easy to see that K must
have nonempty interior. Since K is convex with nonempty interior, for each
x ∈ ∂K the normal cone NK(x) is pointed and so it is the convex hull of its
exposed rays (see [54]).

We now see Theorem 4.6 in [27] and see that for every unit vector w
belonging to our exposed ray of NK(x), there exists a sequence xn → x such
that

NK(xn) = R+wn, ‖wn‖ = 1.

Of course (7.2.5) holds with xn (resp, wn) in place of x (resp, ζ), so that by
passing to the limit, w also satisfies (7.2.5). By taking convex combinations,
we conclude the proof. !

The second lemma is necessary to use Theorem 5.2.2 in the proof of the
main theorem in Chapter 4.
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Lemma 7.2.2 Let Ω ⊆ RN be open and let g : Ω −→ R be continu-
ous. Assume that hypo(g) satisfies the θ− external sphere condition where
θ : Ω −→ [0,+∞) is continuous. Let, for all x ∈ Ω, rx > 0 be such that
BN (x, rx) ⊂ Ω. Then
i) The hypograph of the restricted function g|BN (x,rx) : BN (x, rx) → R satis-
fies the θx−external sphere condition with θx = max{θ(y) | y ∈ B̄N (x, rx)}.
ii) BPg ∩ BN (x, rx) = BPg|BN (x,rx)

.

Proof of (i). Let z ∈ BN (x, rx), there exists a vector 0 0= ξ ∈ NP
hypo(g)(z, g(z))

realized by a ball of radius θ(z), i.e, for all y ∈ Ω and for β ≤ g(y), it holds

〈 ξ
‖ξ‖

, (y, β) − (z, g(z))〉 ≤ θ(z) (‖y − z‖2 + |β − g(z)|2). (7.2.6)

Thus, for all y ∈ BN (x, rx) and for all β ≤ g|BN (x,rx)(y), we have

〈 ξ‖ξ‖ , (y, β) − (z, g|BN (x,rx)(z))〉 ≤ θx (‖y − z‖2 + |β − g|BN (x,rx)(z)|2).

(7.2.7)
The proof is completed. !

Proof of (ii). It is similar to the previous proof. Indeed, if 0 0= ξ ∈
NP

hypo(g)(z, g(z)) then 0 0= ξ ∈ NP
hypo(g|BN (x,rx))

(z, g|BN (x,rx)(z)). Therefore,
BPg ∩ BN (x, rx) ⊆ BPg|BN (x,rx)

.
We are going now to prove BPg|BN (x,rx)

⊆ BPg. It is sufficient to prove
that if 0 0= ξ ∈ NP

hypo(g|BN (x,rx))
(z, g|BN (x,rx)(z)) then 0 0= ξ ∈ NP

hypo(g)(z, g(z)).

Indeed, 0 0= ξ ∈ NP
hypo(g|BN (x,rx))

(z, g|BN (x,rx)(z)), i.e, there exists a constant
σ > 0 such that for all y ∈ BN (x, rx) and for all β ≤ g|BN (x,rx)(y), it holds

〈 ξ
‖ξ‖

, (y, β)−(z, g|BN (x,rx)(z))〉 ≤ σ (‖y−z‖2+|β−g|BN (x,rx)(z)|2). (7.2.8)

Therefore, for all y ∈ BN (x, rx) and for all β ≤ g(y), one has

〈 ξ‖ξ‖ , (y, β) − (z, g(z))〉 ≤ σ (‖y − z‖2 + |β − g(z)|2). (7.2.9)

Since z ∈ BN (x, rx), one can easily get from (7.2.9) that there exists a
constant σ1 > 0 such that the inequality

〈 ξ‖ξ‖ , (y, β) − (z, g(z))〉 ≤ σ1 (‖y − z‖2 + |β − g(z)|2)

holds for all y ∈ Ω and for all β ≤ g(y).
It means that ξ ∈ NP

hypo(g)(z, g(z)). The proof is completed. !
The last one is a technical lemma which is used in Chapter 4.
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Lemma 7.2.3 Let g : Ω −→ R be continuous and let γ > 0. We denote by
gγ : γΩ −→ R, the γ−stretched function of g, as follows:

gγ(y) = g(
y

γ
) for all y ∈ γΩ.

Assume that (ξ, λ) is a proximal normal vector to hypo(g) at (x, g(x)) re-
alized by a ball of radius ρ. Then ( ξγ , λ) is a proximal normal vector to

hypo(gγ) at (γx, gγ(γx)) realized by a ball of radius ρ γ2

(1+γ2)3/2 .

Proof. For all z ∈ Ω and for all β ≤ g(z), it holds

〈 (ξ, λ)
‖(ξ, λ)‖

, (z, β) − (x, g(x))〉 ≤ 1
2ρ

(‖z − x‖2 + |β − g(x)|2).

Equivalently, for all γz ∈ γΩ and for all β ≤ gγ(γz), it holds

〈
( ξγ , λ)
‖(ξ, λ)‖ , (γz, β) − (γx, gγ(γx))〉 ≤ 1

2ρ
(

1
γ2

‖γz − γx‖2 + |β − gγ(γx)|2).

(7.2.10)
Since ‖(ξ, λ)‖ ≤

√
γ2 + 1 ‖( ξγ , λ)‖, one can easily get from (7.2.10) that for

all z̄ = γz ∈ γΩ and for all β ≤ gγ(z̄), it holds

〈
( ξγ , λ)

‖( ξγ , λ)‖
, (z̄, β)−(γx, gγ (γx))〉 ≤ 1

2ρ γ2

(1+γ2)3/2

(‖z̄−γx‖2+|β−gγ(γx)|2) .

(7.2.11)
The proof is completed. !

The following result is an immediate consequence of the previous lemma.

Corollary 7.2.1 for every γ > 0, it holds

BPgγ = γBPg.

7.3 Appendix C

We will give here some inequalities on one variable functions which are used
in Chapter 4.

Lemma 7.3.1 Let K : (a, b) → [0, 1] be measurable and let k ∈ N. Then
∫ b

a
(t − a)kK(t)dt ≥ 1

k + 1

(∫ b

a
K(t)dt

)k+1
,

and ∫ b

a
(b − t)kK(t)dt ≥ 1

k + 1

( ∫ b

a
K(t)dt

)k+1
.
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Proof. Indeed,
∫ b

a
K(t)dt = k!

∫ b

a

∫ b

tk

...

∫ b

t1

K(t0)dt0...dtk

Since K(t) ∈ [0, 1] for a.e. t ∈ [0, 1], we obtain that
∫ b

a
K(t)dt = k!

∫ b

a
K(tk)

∫ b

tk

K(tk−1)...
∫ b

t1

K(t0)dt0...dtk

By using induction, one can easily prove that
∫ b

a
K(tk)

∫ b

tk

K(tk−1)...
∫ b

t1

K(t0)dt0...dtk =
1

k + 1

(∫ b

a
K(t)dt

)k+1

The proof is completed. !

Lemma 7.3.2 Let f : [a, b] → R be of class C1 and fix k ≥ 0. Assume that
there exists C ∈ R such that

|f ′(s)| ≥ C(s− a)k ∀s ∈ [a, b]. (7.3.1)

Then, either f has no zeros in (a, b) and then, for all s ∈ (a, b) either

|f(s)| ≥ C

k + 1
(s − a)k+1 or |f(s)| ≥ C

k + 1
(b − s)k+1

or there exists c ∈ (a, b) such that g(c) = 0 and then, for all s ∈ [a, c],

|f(s)| ≥ C

k + 1
(c − s)k+1

and for all s ∈ [c, b]

|f(s)| ≥ C

k + 1
(s − c)k+1.

The same conclusion hold if (7.3.1) is substituted by

|f ′(s)| ≥ C(b − s)k ∀s ∈ [a, b].

Proof. Observe that by our assumptions f ′ has constant sign on [a, b]. We
treat the case f ′ ≥ 0, while the other one can be obtained by taking −f . So
(7.3.1) now reads as

f ′(s) ≥ C(s− a)k ∀s ∈ [a, b].

If f has no zeros, we have two cases, namely f(s) > 0 for all s ∈ (a, b) or
f(s) < 0 for all s ∈ (a, b). For the first case

f(s)− f(a) =
∫ s

a
f ′(t)dt ≥ C

∫ s

a
(t − a)dt =

C

k + 1
(s − a)k+1,



138 Appendix

therefore,

f(s) ≥ C

k + 1
(s − a)k+1.

In the second case,

f(b)− f(s) =
∫ b

s
f ′(t)dt ≥ C

∫ b

s
(t − a)kdt

=
C

k + 1
[
(b − a)k+1 − (s − a)k+1

]
≥ C

k + 1
(b − s)k+1.

Therefore,

f(s) ≤ f(b)− C

k + 1
(b − s)k+1 ≤ − C

k + 1
(b − s)k+1.

Assume now that there exists c ∈ (a, b) such that f(c) = 0. Then, for all
c ∈ [a, c] we have

−f(s) = f(c) − f(s) =
∫ c

s
f ′(t)dt ≥ C

k + 1
(c − s)k+1,

while for all s ∈ [c, b] we have

f(s) = f(s)− f(c) =
∫ s

c
f ′(t)dt ≥ C

k + 1
[
(s − a)k+1 − (c − a)k+1

]

≥ C

k + 1
(s − c)k+1.

and the proof is completed. !
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