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Abstract

The existence of bias in inferential procedures based on the likelihood function has

given rise to a great deal of research in the statistical literature. The magnitude of

such bias plays a crucial role in estimation: if large, misleading conclusions on the

quantities of interest are likely to be drawn. This is a matter of serious concern when

the available sample size is small to moderate or when the model under study does not

meet the regularity conditions for usually reliable maximum likelihood inference. In the

present thesis, we attempt to reduce the impact of bias in both these circumstances,

by following distinct paths. For finite-sample problems, we propose a convenient way

to refine Wald-type inference in regression settings through asymptotic bias correction

of the z-statistic. Such approach stems from the intuition of seeing that pivot as the

estimator of a model reparametrization. For non-regular problems, with special focus on

scenarios characterized by the presence of incidental parameters, we suggest a strategy

to extend the current range of applications of the modified profile likelihood. This

solution, founded on Monte Carlo simulation, is versatile enough to cope with several

nonstandard modeling frameworks for grouped data.





Sommario

L’esistenza di distorsione nelle procedure inferenziali basate sulla funzione di verosi-

miglianza ha dato origine ad un grande flusso di ricerca nella letteratura statistica.

L’entità di tale distorsione detiene un ruolo cruciale nel processo di stima: se gran-

de, può portare a conclusioni fuorvianti sulle quantità di interesse. Tale questione è

oggetto di particolare preoccupazione quando la numerosità campionaria è modesta o

quando il modello oggetto di studio non rispetta le condizioni di regolarità necessarie

ad ottenere risultati affidabili tramite le usuali techniche di massima verosimiglianza.

In questa tesi, si tenta di ridurre l’impatto della distorsione in entrambe le circostanze,

seguendo vie differenti. Per problemi in campioni di modesta grandezza, viene propo-

sto un modo pratico per migliorare l’inferenza condotta col test di Wald in modelli di

regressione. Tale approccio, incentrato sulla correzione asintotica della distorsione della

statistica utilizzata, deriva dall’intuizione di guardare ad essa come allo stimatore di

una riparametrizzazione del modello. Per problemi non regolari di stima caratterizzati

dalla presenza di parametri incidentali, si suggerisce una strategia volta ad estendere

il campo di applicazione della verosimiglianza profilo modificata. La versatilità di que-

sta soluzione, fondata sulla simulazione Monte Carlo, permette di trattare vari modelli

complessi per dati raggruppati.
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Introduction

Overview

The general notion of bias, i.e. systematic distortion in mean of some quantity, is

unquestionably central to statistics. Both researchers and practitioners are concerned

with the problem of bias in estimation, since reliability of inferential conclusions is

closely tied to its magnitude.

The frequency-decision paradigm is the one which gives more emphasis to the unbi-

asedness of a statistical procedure. In that theoretical framework, the purpose of such

property is twofold: it is both a fundamental criterion to restrict the class of potential

inference techniques in order to find the optimal one and a condition to guarantee the

impartiality of one method with respect to the various parameter values (Lehmann and

Romano, 2006, Section 1.5).

From a Fisherian viewpoint, unbiasedness of usual statistical procedures in regular

models (see, for example, Pace and Salvan, 1997, Section 3.4, for a characterization of

regularity conditions) is ensured only asymptotically. Indeed, likelihood-based quanti-

ties are generally biased when the sample is of small or even moderate size. Particularly,

inferential inaccuracies caused by the bias of the maximum likelihood (ML) estimator

have given rise to an ongoing stream of research on disparate ways for reducing it. In

the related body of literature, the rich diversity of approaches admits to be classified

according to several aspects.

A useful distinction can be made between methods for bias correction and methods

for bias reduction (Kosmidis, 2007). Techniques belonging to the first category foresee

the derivation of a bias-corrected estimator by subtracting from the ML one a suitable

approximation of its bias. One popular manner to estimate such bias is via bootstrap

resampling (Efron, 1979). Asymptotic corrective procedures require instead the analyti-

cal expression of the leading term in the asymptotic bias expansion of the ML estimator.

For a broad family of regular scenarios, this was obtained by Cox and Snell (1968), in

their investigation of higher-order properties of residuals in parametric models. On the

3



4 Overview

grounds of that finding, Anderson and Richardson (1979) and Schaefer (1983) computed

specific formulae for bias correction in the logistic regression. Later on, Efron (1975)

studied the bias-corrected estimator derived upon evaluation of the first-order bias at

the ML estimate. Such quantity was shown both to have bias of smaller order than

the classical ML estimator and to be second-order efficient (refer also to Section 9.4.3

in Pace and Salvan, 1997). Asymptotic bias correction was also successively applied

by Cook et al. (1986) in nonlinear regressions with normal errors and by Cordeiro and

McCullagh (1991) in the context of generalized linear models (Nelder and Wedderburn,

1972).

The main advantage of bias-correction methods is the simplicity of their implemen-

tation, once an approximation to the bias is available. Yet, such procedures also suffer

from one serious limitation: bias-corrected estimates inherit the instabilities of ML ones.

This represents a critical drawback in situations with categorical responses, where there

is a positive probability that the ML estimator is infinite. Among others, Bull et al.

(2002) and Kosmidis and Firth (2009) examined the topic. Besides that, asymptotic

bias correction poses an additional problem because is performable only when the first

term in the bias expansion of the ML estimator may be expressed in closed form. For

some models this exercise is tiresome, if not impracticable.

The class of bias-reduction methods differentiates from the former in one crucial

respect: these techniques do not depend directly on the ML estimator. To some extent,

they can be interpreted as bias-preventive (Kosmidis, 2007). In fact, a new estimator

is obtained in such a way that its bias is known to be asymptotically smaller than that

of the ML one. Eminent examples of bias-reduced estimators are based on modified

score functions (Warm, 1989). Formalization of such approach in regular settings is

owed to Firth (1993), who setup a general methodological framework for finding first-

order unbiased estimators by solution of an adjusted score equation. This procedure has

proved to be notably useful when dealing with models for discrete dependent variable.

More precisely, empirical evidence in Heinze and Schemper (2002) and Zorn (2005)

indicated that bias-reduced estimates in logistic regressions are always finite, even in

cases where ordinary ML estimates are not. The desirable attributes of the bias-reduced

estimator under a number of categorical-response scenarios were also investigated by

Bull et al. (2007) and Kosmidis and Firth (2011). Nevertheless, such technique shares

a defect with asymptotic bias-corrective methods: in order to be implemented, not only

the score function and the Fisher information need to be explicitly available, but also

the first-order bias of the ML estimator.
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The discussion above has focused on methods to reduce the impact of the finite-

sample bias of the ML estimator in regular estimation problems. However, if the model

under study does not fulfill the standard conditions, even the habitual asymptotic un-

biasedness can fail. This happens, for instance, in models where the dimension of the

parameter space increases along with the sample size. Inappropriateness of ML infer-

ential procedures due to such deviation from regularity was first brought to light by

Neyman and Scott (1948) and in fact is well-known in the statistical and econometric

literatures as Neyman & Scott or incidental parameters problem (Lancaster, 2000).

As pointed out by Kosmidis (2014), in these circumstances reduction of bias may be

achieved by means of the modified profile likelihood function (Barndorff-Nielsen, 1983).

Indeed, the implicated adjustment to the profile likelihood eliminates the highest-order

term in the asymptotic bias expansion of the profile score. Since such part can get

considerably large in models subject to Neyman & Scott problems (McCullagh and

Tibshirani, 1990), that inferential instrument has been found especially suited for draw-

ing trustworthy conclusions on the parameter of interest in the presence of many nui-

sance parameters. Specifically, when data are collected in clusters and each incidental

component is related to a group in the sample, the modified profile likelihood delivers

estimators with improved properties. In a way, respecting the preceding lines of reason-

ing, this function may then be thought of as a bias-reduction method in the two-index

asymptotic setting (Sartori, 2003).

Main contributions of the thesis

For providing a motivation of our work, the previous section was essentially dedicated

to depict the prominence of the role of bias in likelihood-based inference. To this aim,

only few of the numerous attempts to limit its effects on estimation have been cited. In

this thesis, two separate routes toward the reduction of bias are taken.

On one hand, we tackle the typical bias of likelihood quantities in small-to-moderate

samples. This task, as already seen, has been extensively carried out in the past with

reference to the ML estimator via bias-corrective and bias-reducing methods. However,

the biased quantity considered here is a statistic. Precisely, it is the Wald z-statistic,

largely used in regression contexts to test the significance of one predictor’s influence.

The original idea in this first analysis lies in looking at the z-statistic as at an estimator

of a model reparametrization. Such expedient allows to obtain a convenient closed-form

expression of its first-order bias for performing asymptotic bias correction.
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On the other hand, we address the asymptotic bias (meaning inconsistency) of like-

lihood quantities in non-regular problems. In particular, the attention is turned to the

erroneous inferences supplied by the profile likelihood when incidental parameters are

present. The employment of the modified profile likelihood and of its approximation

proposed by Severini (1998b) has already proven fruitful in several models for clustered

data, where problems of Neyman & Scott can be severe. Nonetheless, the difficulty of

their computation prevents these two functions from being fully exploited. Our main

contribution in this regard is to propose a new strategy to calculate the modified pro-

file likelihood even in nonstandard modeling frameworks. Such recommended solution,

based on Monte Carlo simulations, is simple and widely applicable.

The rest of the current dissertation is organized in the following way. In Chapter 1,

we set up some of the notation which is used throughout the thesis and we outline the

general features of likelihood-related quantities, highlighting their connection with the

bias issue. Special heed is paid to the strengths and weaknesses of the Wald pivot and

to those functions used for making inference on the component of interest in the global

parameter. Section 1.4.3 closes the chapter by giving an account of the properties of

the modified profile likelihood under the two-index asymptotic scenario.

In Chapter 2, an approach for enhancing the normal approximation to the null distri-

bution of the z-statistic in small-to-moderate-sized samples is suggested. Such procedure

basically consists in the correction of the moments of the combinant. Section 2.2 inves-

tigates the validity of this strategy in specific single-parameter models. A more general

proposal to derive an adjusted z-test in regression settings is put forward in Section

2.3. Characteristics of the associated location adjusted z-statistic are studied both an-

alytically and empirically by Sections 2.4 and 2.5, in the relevant context of generalized

linear models. Section 2.6 delineates open topics and traces future avenues of research

in the area.

Chapter 3 is dedicated to demonstrate how the domain of applicability of the modi-

fied profile likelihood is expanded by taking advantage of simulation. In Section 3.2 we

present the Monte Carlo approximation to Severini’s function, with particular mention

to the great generality of its implementation. In the remaining parts of the chapter,

the helpfulness of this solution is illustrated through simulation experiments consid-

ering fairly complex modeling assumptions. In more detail, Section 3.3 deals with an

econometric model for dependent observations, Section 3.4 discusses inference on binary

datasets with missing values and Section 3.5 examines a regression scenario for censored

survival data. We make some final remarks in Section 3.6, where also the agenda for

further investigations is established.



Chapter 1

Likelihood-based inference in the

presence of bias

1.1 Likelihood and related quantities

Let F =
{
pY (y; θ), θ ∈ Θ ⊆ IRk

}
be a family of probability density functions for the

random variable Y which varies in the sample space Y . Such class of models is indexed by

the parameter θ, taking values in the compact non-empty set Θ. The random variable Y

describes the available data, which in basic settings can be expressed as y = (y1, . . . , yn),

with n representing the total sample size. Obviously, complexity of the experimental

design can be higher and more than one index might be convenient to identify the units

in the sample. Circumstances like the latter will be considered in Section 1.4 and better

investigated in Chapter 3. Note that, here and henceforth, in order to avoid clutter

we omit the transpose symbol acting on vectors unless such an omission could result in

ambiguity. Furthermore, the theory in this first part of the thesis is presented referring

to absolutely continuous and independent random variables, but all results apply in fact

also to the discrete case and to more general frameworks where the information supplied

by the data increases along with the sample size n.

The likelihood function for θ takes the form

L(θ) = L(θ; y) = pY (y; θ),

and the associated log-likelihood function is simply its logarithm, i.e. l(θ) = l(θ; y) =

logL(θ). The maximum likelihood (ML) estimate for model F can then be defined as

θ̂= θ̂(y) = arg maxθ∈Θ l(θ). With a slight abuse of notation, we shall also use θ̂ = θ̂(Y )

to denote the corresponding random variable, known as ML estimator, since the specific

7
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meaning will always be evident by the context. Inferential techniques resulting from the

likelihood are founded on the probability distributions of the random variable l(θ;Y )

and of its related quantities, for θ fixed and y varying in Y according to some density

pY (y; θ̃) in F , where θ̃ ∈ Θ is a parameter value not necessarily equal to θ. On the same

lines as Pace and Salvan (1997, Section 1.4), when considering θ̃ = θ we will speak of null

distribution and of null moments for a certain likelihood-based quantity. Furthermore,

symbols such as Pθ(·), Eθ(·) and Varθ(·) shall indicate the event probability, expected

value and variance, respectively, computed with reference to pY (y; θ).

An important feature of the log-likelihood function is its invariance to the parametri-

zation of the model. In particular, if ω = ω(θ) is a one-to-one infinitely differentiable

smooth function from Θ ⊆ IRk to Ω ⊆ IRk, the log-likelihood under the transformation ω

is lΩ(ω) = lΘ(θ(ω)), where lΘ(θ) is the log-likelihood in the parametrization θ and θ(ω)

is the inverse function of ω(θ). From this follows the important property of equivariance

under reparametrization of the ML estimate, implying that ω̂ = ω(θ̂) and θ̂ = θ(ω̂).

Now assume that, possibly after a change in the parametrization of the model, the

global k-dimensional parameter θ can be partitioned into (ψ, λ), where ψ is the param-

eter of interest having dimension k0 and λ is the nuisance component, of dimension

k − k0. Given that in this case it is possible to write θ̂ = (ψ̂, λ̂), let θ̂ψ = (ψ, λ̂ψ) be the

constrained ML estimate of θ, with λ̂ψ indicating the ML estimate of λ for a fixed value

of ψ. In such situations, one desirable property of a statistical procedure is invariance

under interest-respecting parametrization (Pace and Salvan, 1997, Section 4.2.4). This

principle advocates that inferential conclusions for ψ obtained in respect of the origi-

nal parametrization θ = (ψ, λ) are compatible with those derived for the component of

interest τ = τ(ψ) under the interest-preserving transformation ω = (τ, ζ), where τ is

one-to-one and ζ = ζ(ψ, λ).

The full k-dimensional score vector is lθ = ∂l(θ)/∂θ, whereas the observed informa-

tion and the Fisher expected information k × k matrices are defined as j(θ) = −lθθ =

−∂2l(θ)/(∂θ∂θT) and i(θ) = Eθ{j(θ)}, respectively. Partial derivatives of l(θ) with

respect to specific subset components of the global parameter θ will be consequently de-

noted by lλ = ∂l(θ)/∂λ, lψλ = ∂2l(θ)/(∂ψ∂λT), lψλλ = ∂lψλ/∂λ and so forth. We shall

also express the null expectations of these likelihood quantities and of their products as

νλ = Eθ(lλ), νψλλ = Eθ(lψλλ), νλ,ψλ = Eθ(lλlψλ), etc. In dealing instead with a generic

function g = g(θ), the notation g/ψ will usually be adopted for its first-order partial

derivative with respect to ψ. However, whenever the argument of differentiation is clear

enough, we shall prefer the simpler symbols g′, g′′, . . . , to indicate the derivatives of g.

Moreover, in the sequel, expressions such as jψψ or iλλ will be helpful for denoting blocks
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of j(θ) and i(θ) related to the coordinates of the corresponding suitable component of

θ. In order to index blocks of the inverse matrices j(θ)−1 and i(θ)−1, superscripts like

those in jψψ and iλλ shall be used.

Hypothesis testing and interval estimation for the unknown parameter of interest

derived from the likelihood function are tasks generally performed by taking advantage of

first-order asymptotic results regarding fundamental likelihood quantities (Reid, 2003).

Specifically, the log-likelihood ratio statistic, which takes the form

W = W (ψ) = 2
{
l(θ̂)− l(θ̂ψ)

}
,

and its two other asymptotically equivalent versions, i.e. the score statistic

Wu = Wu(ψ) = lψ
(
θ̂ψ
)T
iψψ
(
θ̂ψ
)
lψ
(
θ̂ψ
)

and the Wald statistic

We = We(ψ) =
(
ψ̂ − ψ

)T
iψψ
(
θ̂ψ
)−1(

ψ̂ − ψ
)
, (1.1)

all have χ2
k0

asymptotic null distribution under standard regularity conditions on the

model F (see, e.g., Pace and Salvan, 1997, Section 3.4). In addition, when ψ is scalar,

one is allowed to rely on the corresponding signed versions of the combinants:

Z = Z(ψ) = sgn
(
ψ̂ − ψ

)√
W,

Zu = Zu(ψ) = lψ
(
θ̂ψ
)√

iψψ
(
θ̂ψ
)
,

Ze = Ze(ψ) =
(
ψ̂ − ψ

)/√
iψψ
(
θ̂ψ
)
, (1.2)

that for large n have null N(0, 1) distribution (Skovgaard, 1989).

In what follows, special attention will be given to the Wald statistic, since inferential

procedures based on it are perhaps the ones most affected by the presence of bias in the

ML estimation of θ (see Section 1.2.3).

1.2 The Wald statistic

1.2.1 Null distribution

Asymptotic results about the null distribution of the combinants introduced in Section

1.1 stem from limit theorems of probability theory whose validity depends on the amount
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of information available for the study. If we define i1(θ) = limn→+∞ i(θ)/n to be the

average limit information in a sample of n independent observations, the central limit

theorem gives
lθ√
n

d→ Nk

(
0, i1(θ)

)
. (1.3)

Such large-sample null distribution of the score represents also the starting point for

obtaining that of the Wald statistic. In the rest of the section, this derivation will

be briefly reviewed for the simpler case where the interest is on the full parameter θ,

following what reported in Section 3.4.1 of Pace and Salvan (1997). Expressions (1.1)

and (1.2), when k = k0, can be thus rewritten as

We(θ) = (θ̂ − θ)Ti(θ)(θ̂ − θ),
Ze(θ) = (θ̂ − θ)

√
i(θ). (1.4)

In order to learn how comparable results shall be obtained for the pivots We(ψ) and

Ze(ψ) in the presence of a nuisance component λ, the reading of Section 9.3 in Cox and

Hinkley (1974) is highly recommended.

Let us first consider the case k = 1, to further simplify the present exposition. Assume

that F is a regular model and θ̂ is a consistent solution of the likelihood equation lθ = 0.

Then, the score function admits the Taylor expansion about the value θ

0 = lθ(θ̂) = lθ + (θ̂ − θ)lθθ +Op(1).

Recalling that lθθ = −j(θ), a simple manipulation of the previous expression gives

lθ√
n

=
√
n(θ̂ − θ)j(θ)

n
+Op

(
n−1/2

)
.

Since, by a law of large numbers, j(θ)/n
p→ i1(θ), it is possible to rearrange the terms

and write
√
n(θ̂ − θ) = i1(θ)−1 lθ√

n
+Op

(
n−1/2

)
.

Now, exploiting the well known properties of the normal distribution and the limiting

result (1.3) about the score in the one-parameter case, it is evident that

√
n(θ̂ − θ) d→ N

(
0, i1(θ)−1

)
, (1.5)

and this immediately leads to the null asymptotic N(0, 1) distribution of the pivotal

quantity Ze(θ) in (1.4). Furthermore, thanks to the consistency of the ML estimator,
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we have ni1(θ̂)
p→ i(θ), causing also the combinant (θ̂ − θ)

√
i(θ̂) to be approximately

standard normally distributed when n tends to infinity.

If k > 1, the result reported in (1.5) holds with a k-dimensional normal limit dis-

tribution. This implies that We(θ) has asymptotic χ2
k null distribution, as well as the

same statistic which estimates the null Fisher information by i(θ̂). We finally stress

that, when the partition θ = (ψ, λ) is adopted, by similar arguments concerning the

null asymptotic properties of the constrained ML estimator (Pace and Salvan, 1997, p.

145) it is possible to use iψψ(θ̂) in place of iψψ(θ̂ψ) in both formulae (1.1) and (1.2), still

mantaining the large-sample distribution of those original combinants.

1.2.2 Advantages and disadvantages

As anticipated in Section 1.1, the three versions of the likelihood ratio combinant are

asymptotically equivalent. More formally, provided that the asymptotic order of mag-

nitude of the absolute error in an rth-order approximation to a random variable is

Op(n
−r/2), their equivalence in probability holds to the first order and the reciprocal

relationships

W = Wu +Op

(
n−1/2

)
,

W = We +Op

(
n−1/2

)
apply (Pace and Salvan, 1997, Section 3.4.1). Such pivotal quantities are generally used

to build confidence regions for or to test hypotheses about the parameter of interest ψ.

The signed statistics Z(ψ0), Zu(ψ0) and Ze(ψ0) are particularly useful when k0 = 1 and

H0 : ψ = ψ0 is tested against the one-sided alternative H1: ψ > ψ0 or H1: ψ < ψ0.

Forasmuch as accuracy in the approximation to the null distribution of the three test

statistics is the same, the choice between them has to be made on the basis of different

criteria. With respect to its competitors, straightforward interpretation and extremely

simple implementation are definitely the main strengths of the Wald pivot. Indeed, when

testing H0 :ψ = ψ0, the latter’s formulation consists in a direct comparison between the

estimated value and the hypothetical one, taking also the error of such estimation into

account. Furthermore, since the block iψψ of the information matrix in formulae (1.1)

and (1.2) can be evaluated at the global estimate θ̂ without affecting the asymptotic

properties of the combinants (see Section 1.2.1), We(ψ0) and Ze(ψ0) require only the

unconstrained model fitting, which represents common practice for any basic statistical

software. On the contrary, both the likelihood ratio and the score tests need the ML

estimate under H0 to be computed. Finally, particularly in regression settings where
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one is interested in the construction of confidence intervals for scalar coefficients, the

inversion of Ze is particularly convenient.

All the reasons listed above justify somehow the extensive use of the Wald statistic in

general applications, despite the drawbacks associated with it. One of them is undoubt-

edly the lack of interest-respecting parametrization invariance: inferential conclusions

based on We or Ze depend upon the way the collection of probability distributions F
is indexed. Among the consequences, we have that the observed significance level of

the Wald test can be different when derived for testing H0 : τ = τ0 = τ(ψ0) instead of

H0 : ψ = ψ0 = ψ(τ0), unless τ0 is a linear transformation of ψ0. Conversely, W, Wu and

the corresponding signed versions are invariant. For a deeper discussion pertaining this

matter, the reader can refer to Section 1.3 in Barndorff-Nielsen (1988) and Section 2.11

in Pace and Salvan (1997).

Another aspect which makes the Wald statistic less appealing for inference, espe-

cially with respect to the likelihood ratio pivot, lies in the fact that its expression does

not account for the curvature of the log-likelihood function. Hence, confidence regions

and tests based on We are reasonably accurate if l(θ̂ψ) is almost quadratic around its

maximum, but those based on W are much more adequate if the log-likelihood has

alternatively a pronounced asymmetrical shape, as commonly occurs when the sample

size is small to moderate. In the most extreme cases, inverting the Wald statistic can

even lead to confidence regions including values of ψ outside the parameter space.

Moreover, when one is concerned with testing a simple null hypothesis about the

component of interest, adopting the score pivot may be preferable to avoid the compu-

tation of the global estimate ψ̂, which happens to be quite demanding if the unrestricted

model has a complex form or k0 is significantly large. Nonetheless it is important notic-

ing that the quantities lψ and iψψ appearing in the formulation of Wu and Zu still have

to be obtained starting from the original complete likelihood of the model.

Here the focus was put on mainly practical advantages and disadvantages relating to

the employment of the Wald combinant for making inference on the parameter ψ. In

Chapter 2, we will suggest a way to improve the quality of such inferential conclusions

by preserving at the same time those features which make We so suited for statistical

applications. Of course, other grounds of comparison between the three pivots defined in

Section 1.1 might have been considered: the non-null distribution under the alternative

hypothesis, playing a crucial role in decision theory, is probably the most popular. A

review of results concerning the power of those tests is outside the scope of this work,

but relevant references on the topic certainly are Cox and Hinkley (1974), in particular

Chapter 5 and Chapter 9 for derivation of both exact and asymptotic optimal properties,
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Section 3.5 in Pace and Salvan (1997) and Chapter 4 in Young and Smith (2005).

1.2.3 The effect of bias in hypothesis testing

It is well known (see, e.g, Kosmidis, 2014) that the bias of the ML estimator under

standard regularity conditions can be expanded in decreasing powers of n as

Eθ(θ̂ − θ) =
b(θ)

n
+
b2(θ)

n2
+
b3(θ)

n3
+O(n−4), (1.6)

where all functions in the sequence b(θ), b2(θ), b3(θ), . . . , are of asymptotic order O(1).

Expression (1.6) clearly suggests that such bias is vanishing for n→ +∞, thus the ML

estimator is asymptotically unbiased.

However, unbiasedness of θ̂ is generally lost in finite samples and this presence of

bias in the estimation of the unknown parameter can significantly affect the adequacy

of ordinary statistical procedures. As an example, in Kosmidis (2014) it is illustrated

how in Beta regressions a remarkable bias of the ML estimator for the dispersion pa-

rameter can lead to inaccurate Wald-type inference for the parameters of interest, even

if the latter are estimated with sufficient precision. In this framework, and usually in

generalized linear models, the downward-biased estimate of the dispersion parameter

enters multiplicatively in the denominator of the Wald statistic, yielding to excessively

narrow confidence intervals and anti-conservative tests for the regression coefficients.

More broadly speaking, the general expression of the pivot itself conveys the in-

tuition that bias in point estimation has also consequences on Wald-based inferential

conclusions. Consider for illustration a problem of hypothesis testing at an approximate

significance level α when k0 = 1 and H0 : ψ = ψ0. The Wald test statistic for the scalar

parameter of interest in this case may be formulated as

Ze(ψ0) =
ψ̂ − ψ0√
iψψ(θ̂)

(1.7)

and is also named z-statistic after its standard normal asymptotic distribution under

the null hypothesis (see Section 1.2.1). In the same spirit, the corresponding test is

typically referred to as the z-test. Note that under H0 it is not assigned a specific value

to the nuisance component, hence the hypothesis is said to be composite and might be

equivalently expressed as H0 : θ = θ0 with θ0 = (ψ0, λ) ∈ Θ0 ⊆ IRk−1. In such occasions,

the exact size of the z-test is defined as ᾰ = supθ∈Θ0
Pθ(y ∈ YR), where YR ⊂ Y is the

region of the sample space that leads to reject the null, depending on the alternative

hypothesis and on the given value of α (Pace and Salvan, 1997, Section 3.5.3).
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By looking at (1.7), it does not seem so illogical to speculate on the possibility that

the farther the ML estimate θ̂ from θ0, the farther the null moments of the Wald statistic

from those of the N(0, 1) random variable. Indeed, the approximation to the distribution

of Ze(ψ0) can be particularly poor in small samples where the bias of the ML estimator

is noticeable, as already pointed out. This, in its turn, may cause the exact size ᾰ of

the z-test to differ considerably from the nominal level α.

In order to alleviate such problems in inferences based on the approximate normality

of θ̂, a rich stream of statistical literature touched upon in the Introduction has been

devoted to propose useful techniques for reducing the bias of estimators. Once again,

we refer to Kosmidis (2014) for a thorough review of such so-called implicit and explicit

methods, which share the purpose of deriving a new estimator whose bias is asymp-

totically smaller than that of the original one. Specifically, when applied to improve

the finite properties of θ̂, all the various procedures deliver an estimator with bias of

asymptotic order o(n−1). A quite natural way to conduct a more reliable test on the

component of interest consists then in using the same statistic (1.7), but with θ̂ replaced

by the corresponding bias-corrected estimate.

To show how this strategy can be effective, a simple simulation study may be per-

formed. First, a dataset is generated starting from the covariates xi1 and xi2 (i =

1, . . . , 15), independently drawn from the N(1, 1) distribution. Responses yi are then

simulated under the assumption Yi ∼ Γ(φ−1, ϑi), where ϑi = (φµi)
−1 and Eθ(Yi) =

µi = exp(β1 + β2xi1 + β3xi2), with θ = (β1, β2, β3, φ) = (1, 1, 2, 0.5). Notice that here

φ is the nuisance parameter controlling the dispersion in the dependent variable, since

Varθ(Yi) = φµ2
i . A Gamma regression model can now be fitted on the data by ML

method, and standard deviations of the parameter estimates are obtained using the

square root of the diagonal elements in the inverse Fisher information matrix. Table

1.1 shows these ML estimates with corresponding estimated standard errors and 0.95

Wald confidence intervals. In addition, a parametric bootstrap based on 5000 replicates

Table 1.1: ML fit of the Gamma regression model with log-link and Wald 0.95
confidence intervals for the parameters.

Estimate Estimated Standard Error 0.95 Confidence Interval

β1 0.361 0.250 (-0.128, 0.851)
β2 1.507 0.170 (1.174, 1.839)
β3 1.859 0.165 (1.535, 2.183)
φ 0.223 0.079 (0.069, 0.377)
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(Efron and Tibshirani, 1993, Section 6.5) is implemented to estimate the bias of the com-

ponents of θ̂; such values result equal to -0.006, -0.006, -0.007 and -0.043 for β̂1, β̂2, β̂3

and φ̂, respectively. Following the argument expressed above, in order to check whether

the Wald intervals are shorter than expected due to the significant downward bias of

the dispersion parameter, we can compare their empirical coverages to those obtained

by inversion of the Wald pivots which instead employ the bias-corrected ML estimates.

Coverage estimation is performed through a study based on 5000 simulations, each using

5000 bootstrap replications to derive the bias. Results for confidence levels 0.90, 0.95

and 0.99 are reported in Table 1.2 and confirm that the use of estimates corrected via

bootstrap helps the Wald-type intervals to approach the larger nominal coverage.

Table 1.2: Empirical coverages of individual confidence intervals based on the Wald
statistic and on the Wald statistic which uses bias-corrected estimates of the model
parameters.

Wald
Wald with Bias-corrected

Estimates

0.90 0.95 0.99 0.90 0.95 0.99

β1 0.828 0.900 0.962 0.869 0.926 0.976
β2 0.834 0.893 0.961 0.861 0.921 0.973
β3 0.828 0.892 0.961 0.865 0.913 0.975

Different methods to refine the quality of first-order inference in finite samples have

been subjects of much of the classical research. Whereas the approach adopted in Table

1.2 attempts to design more accurate tests by adjusting the ML estimator, such other

techniques focus directly on the test statistic as a whole. In particular, the task has been

addressed following two main avenues: the first consists in obtaining a new test statistic

whose null distribution is closer to the limiting one, the second consists in obtaining

a new reference distribution which better approximates the test statistic’s exact null

distribution.

The pioneer of the first strategy is Bartlett (1937), who introduced a special correction

for the likelihood ratio statistic which was later generalized to regular problems by

Lawley (1956). A similar methodology was employed by Cordeiro and Ferrari (1991) to

derive Bartlett-type corrections for statistics other than the likelihood ratio, including

score and Wald. Both Bartlett and Bartlett-type corrections are aimed at bringing the

exact size of asymptotic tests closer to the nominal level, yet in the second case the

adjustment is commonly a function of the unmodified statistic itself. A recent overview



16 Section 1.3 - Treatment of nuisance parameters

of this kind of corrections to the Wald test can be found in Section 3.4 of Cordeiro

and Cribari-Neto (2014). Moreover, even the renowned t variable for testing hypotheses

about the population mean was considered for a modification intended to account for

skewed distributions of the data (Johnson, 1978).

The procedure based on the concept of prepivoting (Beran, 1987) perhaps combines

the two possible solutions. Indeed, prepivoting is defined as the transformation of a

statistic by the cumulative distribution function of its bootstrap null distribution. The

prepivoted test, obtained comparing this new statistic to a suitable quantile of the

U(0, 1) distribution, has usually a smaller asymptotic order of error in level than the

original one. Beran (1988) also showed that Bartlett’s adjustment to likelihood ratio

tests can be regarded as an analytical approximation to such prepivoted test. Whilst

being originally thought for enhancing the accuracy of confidence regions, the approach

based on bootstrap resampling was then reformulated by Hall and Martin (1988) so as

to deal with several statistical problems under the same unifying theoretical framework.

More recent developments of the topic concern the employment of weighted bootstrap

iterations to make prepivoting more efficient. Theoretical and practical benefits of this

modified procedure are well illustrated by Lee and Young (2003) and Young (2003).

The idea which focuses on deriving a more apposite reference distribution for some

standard test statistic has principally leaned on the use of Edgeworth and saddlepoint

approximations. Statistical applications of such techniques were discussed by, among

others, Barndorff-Nielsen and Cox (1979) and Reid (1988). Furthermore, this general

type of approach for improving hypothesis testing is particularly popular in the mis-

specified and composite likelihood literatures. Under those scenarios, the likelihood

ratio statistic has been shown to have an unconventional limiting null distribution,

corresponding with that of a linear combination of independent χ2 random variables.

Readers interested in this material should consult Kent (1982), Varin et al. (2011) and

references therein.

In Chapter 2, a new attempt to improve the adequacy of first-order inference based

on the Wald pivot will be presented. The proposed method, involving a correction to the

usual z-statistic, belongs to the first class of techniques described above, but stems from

the general idea of bias reduction discussed at the beginning of this section. Indeed, as

will be later described, such adjustment may be conveniently obtained by exploiting the

asymptotic bias expansion of the ML estimator.
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1.3 Treatment of nuisance parameters

1.3.1 Introduction

More and more often nowadays, researchers are concerned about drawing inferential

conclusions only about some aspects of the phenomenon under study, which are cap-

tured during the modelling phase by the partial component ψ of the global parameter.

Whenever this is the case, to work with a likelihood function depending just on this

component of interest seems advisable, especially if the configuration of the nuisance

parameter is complex and no loss of information about ψ takes place. In the statistical

theory, such valuable tool is called pseudo-likelihood, since it behaves in some respects

as a genuine likelihood but may be not deduced from a density function. Under regu-

larity conditions, pseudo-likelihoods usually share with L(θ) useful properties like, for

instance, zero null expectation of the score function, approximate normality of maxi-

mum likelihood estimators and χ2-asymptotically null distributed log-likelihood ratio

statistics.

Marginal and conditional likelihoods (Pace and Salvan, 1997, Section 4.3) are classical

examples of pseudo-likelihoods which are in fact proper likelihoods. Specifically, they

derive from a statistical model defined as a reduction of the original one. As long as the

order of information in this simplified model remains equal to O(n), it can be shown

that usual asymptotic results about likelihood quantities apply (Severini, 2000, Chapter

8). However, outside the class of exponential and group family models, these particular

pseudo-likelihoods are either impossible or computationally cumbersome to obtain. This

drawback makes then arise the need for a more general approach, described in the next

section.

1.3.2 Profile likelihood

In parametric models, one simple idea to define a pseudo-likelihood function for the

parameter of interest is to replace λ in the original likelihood expression with some

consistent estimate. When this substitution is done with λ̂ψ, the ML estimate of the

nuisance component for fixed ψ introduced in Section 1.1, the ensuing function is the

profile likelihood LP (ψ) = L(ψ, λ̂ψ).

Although not a genuine likelihood, LP (ψ) has several interesting traits which can be

taken advantage of in order to make inference about ψ. First of all, the maximum profile

likelihood estimate computed by maximization of LP (ψ) coincides with the component

relating to the parameter of interest of the overall ML estimate, i.e. ψ̂. Furthermore,
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the profile log-likelihood ratio statistic is equal to the one built from L(θ) for testing

hypotheses on ψ when λ is unknown. In mathematical notation, one can write

WP = WP (ψ) = 2
{
lP (ψ̂)− lP (ψ)

}
= 2
{
l(ψ̂, λ̂)− l(ψ, λ̂ψ)

}
= W,

where, as usual, lP (ψ) = logLP (ψ) and lP (ψ̂) = logLP (ψ̂). Similarly, we have that

WuP = Wu and WeP = We. The same relationships obviously hold for the one-sided

versions of the combinants, ZP , ZuP and ZeP . Another relevant feature of the profile

likelihood concerns the profile observed information. It is easy to show that (see, for

example, Section 4.6 of Pace and Salvan, 1997)

jP (ψ) = − ∂2

∂ψ∂ψT
l
(
θ̂ψ
)

= −
[
lψψ
(
θ̂ψ
)
− lψλ

(
θ̂ψ
){
lλλ
(
θ̂ψ
)}−1

lλψ
(
θ̂ψ
)]
,

and therefore jP (ψ)−1 = jψψ(θ̂ψ), the ψ-block in the inverse of the full observed infor-

mation matrix evaluated at the restricted ML estimate. It is finally noteworthy that

even LP (ψ) enjoys the property of invariance with respect to interest-preserving trans-

formations (see Section 1.1).

The peculiarities of the profile likelihood just presented undoubtedly motivate its

leading position among pseudo-likelihoods. Indeed, the standard practice for conduct-

ing statistical analyses when also characteristics of not immediate interest need to be

accounted for is to base inference on LP (ψ). Nevertheless, the fact that this pseudo-

likelihood is not directly derived from a density function does have some consequences.

In general, lP (ψ) does not satisfy the Bartlett identities (Bartlett, 1953, Section 2): even

in regular cases, for instance, the null expectation of the profile score function is not

zero. More specifically, DiCiccio et al. (1996) proved the validity of the equation

Eθ
(
lP/ψ

)
= −ρψ +O

(
n−1
)
,

where the dominant bias term ρψ is of order O(1) and takes the form

ρψ =
(
iψλi

−1
λλνλλ,λ − νψλ,λ

)
i−1
λλ −

1

2

(
νψλλ − iψλi−1

λλνλλλ
)
i−1
λλ . (1.8)

McCullagh and Tibshirani (1990) pointed out that, when the dimension of λ is large

relative to the sample size, such bias may even critically affect the accuracy of ordinary

asymptotic results. In the next sections, some of the adjustments to the profile likelihood

proposed for reducing the order of its score bias shall be examined.



Chapter 1 - Likelihood-based inference in the presence of bias 19

1.3.3 Adjusted profile likelihoods

The inferential issues associated with the use of lP (ψ) can be ascribed to the lack of

knowledge about λ. In particular, acting as the nuisance component were known and

equal to λ̂ψ is not sensible if the data do not contain a sufficient amount of information

about it. During the last decades, various modified forms of the profile likelihood have

been developed with the intention of taking into consideration the uncertainty implied

by the estimation of λ.

Loosely speaking, a typical expression for the logarithmic version of some adjusted

profile likelihood LA(ψ) is simply

lA(ψ) = logLA(ψ) = lP (ψ) + A(ψ), (1.9)

where the adjustment term A(ψ) represents a suitable smooth function having deriva-

tives of order Op(1). Several propositions have been put forward as plausible formula-

tions of such term; despite having been obtained from different perspectives, all of them

generally introduce a correction able to reduce the bias of the profile score. In fact, one

can see that

Eθ(A/ψ) = ρψ +O
(
n−1
)
.

Yet, within the usual asymptotic framework, this correction does not translates into

enhanced formal properties of quantities related to lA(ψ): the log-likelihood ratio pivot

has still a χ2
k0

null approximate distribution to the first order and the rate of conver-

gence of the corresponding adjusted ML estimator to the true parameter ψ remains of

order Op

(
n−1/2

)
. Nonetheless, statistical procedures descending from adjusted profile

likelihoods are typically more reliable than those from LP (ψ), especially when k − k0

is large (see, e.g., DiCiccio and Stern, 1994). The most extreme situation where the

number of nuisance parameters grows with the sample size deserves special attention

and will be closely discussed in Section 1.4.

A prominent example of adjustment is surely the one proposed by Cox and Reid

(1987). The major quality of their approximate conditional log-likelihood is the sim-

plicity, as it only requires the computation of quantities delivered as output by standard

numerical procedures for fitting the constrained model. Its expression is

lAC(ψ) = lP (ψ)− 1

2
log
∣∣jλλ(θ̂ψ)∣∣,

so this function may be viewed as a sort of penalized profile log-likelihood, where the

penalty serves to account for the knowledge about λ as the component of interest varies.
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Unfortunately, the employment of this adjusted version of lP (ψ) is restricted to models

where ψ and λ are orthogonal, meaning iψλ = 0. Such a parametrization is definitely

useful from a practical point of view, but exists for any value of ψ only when k0 =

1. Furthermore, even if the parameter of interest is scalar, orthogonality between the

components of θ can be quite hard to achieve (Pace and Salvan, 1997, Section 4.7).

Lastly, another disadvantage connected with the use of lAC(ψ) lies in its lack of exact

invariance under interest-respecting parametrizations.

As already emphasized, a variety of expressions for the modification term A(ψ) is

available in the literature in addition to that just described. References to these different

proposals are Fraser and Reid (1988, 1989), McCullagh and Tibshirani (1990), DiCiccio

and Stern (1993), Stern (1997) and Pace and Salvan (2006), to name but a few. This

thesis will instead deal extensively with the modified profile likelihood, which represents

in most respects the ideal pseudo-likelihood and is presented below.

1.3.4 Modified profile likelihood and its approximations

In 1983 Barndorff-Nielsen introduced a new method to reduce the score bias of lP (ψ).

Further developments of such approach were then published in his later papers of 1988,

1994 and 1995. The modified profile log-likelihood is defined as

lM(ψ) = lP (ψ) +M(ψ)

= lP (ψ)− 1

2
log
∣∣jλλ(θ̂ψ)∣∣+ logD(ψ), (1.10)

where

D(ψ) =

∣∣∣∣∂λ̂ψ∂λ̂
∣∣∣∣ =

∣∣jλλ(θ̂ψ)∣∣∣∣lλ;λ̂

(
θ̂ψ
)∣∣ . (1.11)

The quantity lλ;λ̂(θ̂ψ) = ∂l(θ̂ψ; θ̂, a)/(∂λ∂λ̂T) is called sample space derivative, because

the log-likelihood is differentiated with regard to some ML estimate. Note that here a

stands for ancillary statistic, either exact or approximate, in the meaning provided by

Section 2.8 of Pace and Salvan (1997); therefore a has, at least approximately, a proba-

bility distribution independent of θ and (θ̂, a) is minimal sufficient since summarizes all

and only the relevant information in the data.

The reasons why LM(ψ) = exp{lM(ψ)} has a central role in the class of adjusted

profile likelihoods are numerous. For instance, in contrast with Cox and Reid’s modi-

fication, it is invariant under interest-preserving transformations and does not require

to find an orthogonal partition of the overall parameter. Perhaps more importantly, it

was originally conceived as an highly accurate approximation to proper likelihoods for
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ψ, such as conditional or marginal ones, whenever they exist (Barndorff-Nielsen and

Cox, 1994, Section 8.2). More favourable attributes of the modified profile likelihood

are investigated in DiCiccio et al. (1996) and Severini (1998a).

On the other hand, applicability of the inferential tool developed by Barndorff-Nielsen

is limited by the necessity of specifying some ancillary statistic a, so that the term

D(ψ) can be computed. This results straightforward in full exponential models, where

the ML estimate is a sufficient statistic itself, and in transformation models, where

the configuration ancillary is available. However, outside these particular families one

usually has to resort to approximate solutions.

In the case of orthogonality between ψ and λ, the relation λ̂ψ = λ̂ + Op

(
n−1
)

holds

(Pace and Salvan, 1997, Section 4.7) and consequently D(ψ) = 1 + Op

(
n−1
)
, so the

term logD(ψ) in (1.10) can be in some sense neglected, like in Section 9.5.2 of Severini

(2000). This entails that lM(ψ) and lAC(ψ) are asymptotically equivalent to the second

order, as one can also write lM(ψ) = lAC(ψ) + logD(ψ). Based on what previously said,

though, the approximation of the modified profile likelihood via the function proposed

by Cox and Reid comes at the price of exact invariance.

When parameters are not orthogonal, the calculation of D(ψ) cannot be avoided

and thus approximating somehow the sample space derivative in (1.11) is generally

needed. To this aim, covariances, empirical covariances or tangential directions to an

approximate ancillary may be used. All these methods return invariant adjustments of

LP (ψ) which differ from the original modified profile likelihood by the asymptotic order

Op

(
n−1
)

when the component of interest stays in the moderate deviation region, i.e.

ψ = ψ̂ +Op

(
n−1/2

)
(Severini, 2000, Section 9.5).

The first technique was initially suggested by Skovgaard (1996) to approximate the

modification of directed log-likelihood ratio tests defined by Barndorff-Nielsen (1986),

but its specific application to the modified profile likelihood dates back to Severini

(1998b). In broad terms, such approach allows the approximation of sample space

derivatives by covariances between particular components of the score function. Ac-

cording to this general principle, lλ;λ̂(θ) can be considered asymptotically equivalent to

the quantity Iλλ(θ; θ̂), where

Iλλ(θ; θ̂) = Eθ̂
{
lλ(θ)lλ(θ̂)

T
}
.

Substitution of Iλλ(θ̂ψ; θ̂) for the sample space derivative in (1.11) and simple manipu-

lation of formula (1.10) yield to Severini’s approximate version of the modified profile
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log-likelihood:

lM̃(ψ) = lP (ψ) + M̃(ψ)

= lP (ψ) +
1

2
log
∣∣jλλ(θ̂ψ)∣∣− log

∣∣Iλλ(θ̂ψ; θ̂
)∣∣. (1.12)

The function LM̃(ψ) = exp{lM̃(ψ)} is probably the most popular approximation

to the modified profile likelihood. In fact, it has proved to be a solid statistical tool

for drawing precise inferences on the parameter of interest in models not necessarily

belonging to exponential or group families. Severini’s proposal is also the main object

under analysis in Chapter 3, where a procedure to handle even quite complex sampling

and/or modelling assumptions will be illustrated.

Here, we have limited ourselves to give explicit formulation of lM̃(ψ), yet of course

other expressions of approximate modified profile log-likelihood exist; see, e.g., Barndorff-

Nielsen (1994) for the case k0 = 1. Moreover, we remark that one detailed exposition

concerning the three approximation methods mentioned above is Section 9.5 in Severini

(2000).

1.4 Reducing the bias of the profile score for inde-

pendent clustered data

1.4.1 Introduction

The first ones who characterized the now famous incidental parameters problem were

Neyman and Scott (1948). Such a name refers in particular to the scalar components

of λ which increase with the sample size. In these situations, regularity of the model is

not met and usual first-order approximations for inferences on the so-called structural

parameter ψ fail. Among others, also Portnoy (1988), Pierce and Peters (1992) and

Lancaster (2000) dealt with this topic.

The same issue is commonly found when units in the sample are organized in many

distinct clusters and the dimension of the nuisance component is assumed to be depen-

dent on the total number of groups; this last part of the chapter is indeed dedicated to

models of this type, known in the econometric literature under the name of fixed effects

models (see also Section 3.1).

Before proceeding, it is worth highlighting the fact that an ordinary asymptotic

setting like that studied so far, where approximation errors are expressed only in terms

of powers of the total sample size n, does not enable to mathematically formalize the
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inferential superiority of the modified profile likelihood with respect to LP (ψ). Thus, in

the sequel, a two-index asymptotic setting shall be introduced for deeper comprehension

of the theoretical results about the refined properties of LM(ψ) and its approximations

contained in Section 1.4.3.

1.4.2 Notation and setup

Let us consider parametric statistical models for independent and clustered data taking

form

Yit ∼ pYit(yit;ψ, λi), i = 1, . . . , N, t = 1, . . . , Ti. (1.13)

The total sample size is n =
∑N

i=1 Ti and the nuisance component is λ = (λ1, . . . , λN) ∈
IRN . Notice also that definition (1.13) is appropriate to include in the specification

regression models, where one can write pYit(yit;ψ, λi) = pYit(yit;ψ, λi, xit), where xit are

known covariates. For the sake of simplicity but without loss of generality, assume that

ψ ∈ IR and Ti = T for every i, with n = TN . In particular, the second requirement

of balanced groups might be relaxed in such a way as to consider situations where

Ti = KiT , for A ≤ Ki ≤ B and with A, B positive and finite numbers (Sartori, 2003).

The two-index asymptotic setting, named (T × N)-asymptotics, permits both the

number of clusters, N , and the cluster sample size, T , to tend to infinity. Standard

asymptotic theory in fact applies when the number of incidental parameters N is fixed,

but if instead N increases and T does not, Neyman & Scott problems are likely to be

observed, since N = O(n). Specifically, the latter circumstance can be reproduced in

the context of (T ×N)-asymptotics simply by letting N go to infinity much faster than

T .

The log-likelihood for model (1.13) may conveniently be expressed by

l(θ) =
N∑
i=1

li(θ) =
N∑
i=1

li(ψ, λi),

where

li(ψ, λi) =
T∑
t=1

log pYit(yit;ψ, λi)

is the log-likelihood function related to the ith cluster, assumed to be regular in the

usual sense. Separability of l(θ) with respect to incidental parameters is a direct conse-

quence of independence among clusters. Similarly, as λ̂ψ comes from the solution of N
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independent likelihood equations, the profile log-likelihood admits to be written as

lP (ψ) = l
(
ψ, λ̂ψ

)
=

N∑
i=1

li
(
ψ, λ̂iψ

)
=

N∑
i=1

liP (ψ). (1.14)

After a standard expansion of the profile score for the ith cluster liP/ψ (see Sartori, 2003,

and references therein for further computational details), it is fairly simple to show that

Eθ
(
liP/ψ

)
= −ρiψ +O

(
T−1

)
, (1.15)

where ρiψ is of asymptotic order O(1) and has the same structure as the quantity in

(1.8). Now, it may be immediately checked that the major impediment to adequate

ML inferences in the presence of clustered data with group-specific nuisance parameters

has to do with the accumulation of the score bias across clusters. More explicitly, by

combining equations (1.14) and (1.15), one shall conclude with little difficulty that in

this case the leading term in the expected value of the profile score lP/ψ equals −∑N
i=1 ρ

i
ψ

and hence is, asymptotically, of order O(N).

1.4.3 Results in the two-index asymptotic setting

The present part revisits the various (T × N)-asymptotic properties of the profile and

modified profile likelihood, derived by Sartori (2003) under the model hypotheses stated

in Section 1.4.2. It is important to specify that such results were in fact obtained

referring to any general adjusted profile log-likelihood lA(ψ) as defined in (1.9), with

adjustment term satisfying two key requirements. Specifically,

A(ψ) =
N∑
i=1

Ai(ψ), (1.16)

where Ai(ψ) is a suitable smooth function, having derivatives of order Op(1) whose null

expected value is such that

Eθ
(
Ai/ψ

)
= ρiψ +O

(
T−1

)
. (1.17)

In plain words, the modification for each group needs to eliminate the leading term of

the ith profile score bias in order to be effective.

Even though both adjustments M(ψ) and M̃(ψ) in (1.10) and (1.12), repectively,

may be shown to enjoy properties (1.16) and (1.17), for clarity purpose the following

theoretical results are presented with reference to the modified profile log-likelihood
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lM(ψ) only. We stress here that all of them can actually be extended to Severini’s

approximation lM̃(ψ).

The first notable findings pertain to the (T×N)-asymptotic distribution of the profile

and modified profile score statistics

WuP = l2P/ψ(ψ)/jP (ψ),

WuM = l2M/ψ(ψ)/jM(ψ),

where jM(ψ) = −∂2lM(ψ)/(∂ψ∂ψT) is the modified profile observed information. In

particular, it was shown that WuP has the usual χ2
1 asymptotic distribution as long as

N = o(T ), meaning if the number of clusters increases at a slower rate than the sample

size in every cluster. On the other hand, WuM is asymptotically χ2
1-distributed when

N = o(T 3), meaning if the number of clusters grows slower than the cube of the cluster

size. Therefore, the condition to be satisfied by LM(ψ) is weaker than that to be satisfied

by LP (ψ). To put it simply, whenever N increases faster than T , but not faster than

T 3, WuM has the ordinary approximate distribution, while this cannot be guaranteed

for WuP . Moreover, even in situations when both pivots are χ2-distributed, WuM may

be proved to have a smaller upper bound of the approximation error. Conclusions do

not change if expected informations iP (ψ) and iM(ψ) are used to compute the score

statistics in place of jP (ψ) and jM(ψ), respectively.

Formal acknowledgment of the better consistency properties of the modified profile

likelihood estimator in the two-index scenario is certainly another important result.

Under the (T ×N)-asymptotics, denoting by ψ̂M the maximizer of lM(ψ), both ψ̂ and

ψ̂M are consistent in so far as N and T go to infinity, no matter what the relative

behaviour of the indexes is. Nevertheless, the rate of convergence to the true parameter

value changes according to the mutual relationship between N and T . Indeed, by

expanding the likelihood equations associated with lP (ψ) and lM(ψ) around ψ, it is not

difficult to see that

ψ̂ = ψ +Op

(
n−1/2

)
if N = o(T ), with ψ̂ = ψ +Op

(
T−1

)
otherwise, and

ψ̂M = ψ +Op

(
n−1/2

)
if N = o(T 3), with ψ̂M = ψ+Op

(
T−2

)
otherwise. Hence, whether the number of groups

increases faster than the cluster size, the ML estimator ψ̂ may converge to ψ at a slower

rate with respect to ψ̂M .
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Interestingly, the three popular likelihood-based combinants, both those deriving

from LP (ψ) and those deriving from LM(ψ), are first-order asymptotically equivalent

even in the two-index setting. One may write the profile and modified profile log-

likelihood ratio statistics as

WP = 2
{
lP (ψ̂)− lP (ψ)

}
,

WM = 2
{
lM(ψ̂M)− lM(ψ)

}
,

and the profile and modified profile Wald statistics as

WeP = (ψ̂ − ψ)2jP (ψ),

WeM = (ψ̂M − ψ)2jM(ψ),

where, as usual, the observed information might be replaced by its expectation. For-

mally, equivalence to the first order in the (T ×N)-asymptotics for the statistics related

to the profile likelihood is expressed, when N = o(T ), by equations

WeP = WuP

{
1 +Op

(
n−1/2

)}
,

WP = WeP

{
1 +Op

(
n−1/2

)}
,

otherwise the same hold with relative approximation errors of order Op

(
T−1

)
. It is

perhaps helpful underlining that in these cases we speak of relative error because the

order actually considered is the one of the absolute error divided by the quantity to be

approximated. Similarly, it can be found that

WeM = WuM

{
1 +Op

(
n−1/2

)}
,

WM = WeM

{
1 +Op

(
n−1/2

)}
,

if N = o(T 3), otherwise equivalence is achieved to relative order Op

(
T−1

)
. Roughly

speaking, when one of the three pivots has the χ2 asymptotic distribution, the other

two are equivalent to it with a relative error of order Op

(
n−1/2

)
for both lP (ψ) and

lM(ψ), as can be shown to happen in standard asymptotics. The crucial point here

is that the sufficient condition to obtain such distribution for the quantities based on

the modified profile likelihood is less stringent than the one applying to the profile

likelihood. Ultimately, to conclude this survey of asymptotic results, it is correct to

highlight that the same (T × N)-properties of LP (ψ) and LM(ψ) can be derived by

considering formulations of the score and Wald pivots which involve the information
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evaluated at the appropriate estimator of ψ.

In terminating the part devoted to the treatment of incidental parameters, an ap-

proach alternative to the profile likelihood and its modifications within the same fre-

quentist paradigm of inference is worth quoting. Particularly, we refer to the integrated

likelihood of Severini (2007), where elimination of the nuisance parameters occurs via in-

tegration with respect to some carefully selected density of λ. Such function was proved

to be asymptotically equivalent to the modified profile likelihood in general frameworks

and to benefit of analogue (T × N)-properties in the two-index context for clustered

data just examined (De Bin et al., 2015).





Chapter 2

Adjusted z-tests

2.1 Introduction

In this chapter we propose a method to adjust the z-statistic for a scalar parameter of

interest, like the one defined in formula (1.7). Specifically, this is done having in mind the

goal of enhancing the quality of Wald-type inference, which is particularly unsatisfactory

when carried out on samples of small-to-moderate size, without undermining the merits

connected with the outstanding ease of its implementation (see Section 1.2.2).

The reader will beyond doubt notice that, in what follows, the case k = 1 is initially

treated separately. Indeed, at least in the first place, the modification of the Wald pivot

suggested for this special circumstance differs from our general proposition, mainly

because of the higher complexity of the problem when k > 1. Nevertheless, we find

that part of the thesis particularly meaningful for its function of motivating the basic

idea behind the methodology used. Such idea essentially consists in raising the extent

of testing accuracy by correcting the z-statistic in order to make its null moments closer

to those of the reference standard normal random variable.

Thus, the next section will deal with the rather uncommon yet interesting single-

parameter setting, which also gives the chance to explicitly derive the relevant proper-

ties of the adjusted Wald combinant and compare them to those of its standard version.

Later on, the general location adjustment for the case k ≥ 1 will be presented and its

theoretical features in the situation of a scalar global parameter investigated. Lastly,

closing considerations will be anticipated by a special mention to the importance of

improving z-tests in the context of generalized linear models, illustrating also the per-

formance of the location adjusted z-statistic through some simulation results.

29
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2.2 Motivation of the study: one-parameter models

2.2.1 Notation and setup

For a random sample y = (y1, . . . , yn) of independent observations, assume a very ele-

mentary parametric statistical model defined as

Yi ∼ pYi(yi; θ), θ ∈ Θ ⊆ IR, i = 1, . . . , n. (2.1)

In the presence of a unique parameter θ, let us adopt the convenient power notation

(Pace and Salvan, 1997, p. 344) to indicate products of log-likelihood derivatives and

their expected values. For instance, we will write

lr = lr(θ) =
∂rl(θ)

∂θr
,

νr1,...,rm = νr1,...,rm(θ) = Eθ
(
lr1· · · lrm

)
, m ≥ 1.

If one is interested in making inference on the scalar parameter and needs to verify

the simple null hypothesis H0 : θ = θ0, for some value θ0 ∈ IR, the most widespread

choice is to conduct a z-test. As already seen, such a test relies on the popular Wald

z-statistic, which in this case may have the two asymptotically equivalent formulations:

T̊ = T̊ (θ0) = (θ̂ − θ0)̊ν
1/2
1,1 , (2.2)

T̂ = T̂ (θ0) = (θ̂ − θ0)ν̂
1/2
1,1 , (2.3)

where ν̊1,1 = i(θ0) and ν̂1,1 = i(θ̂) are the expected information under model (2.1)

evaluated at the hypothesized value and at the ML estimate, respectively. Notice, in

particular, that formula (1.7) coincides with T̂ when k = k0 = 1, yet here the subset of

the parameter space compatible with the null Θ0 has only one element and the exact size

of the z-test equals then ᾰ = Pθ0(y ∈ YR), where YR is the rejection region introduced

in Section 1.2.3.

When all usual regularity conditions are satisfied by model (2.1), according to what

shown in Section 1.2.1, both T̊ and T̂ are approximately N(0, 1)-distributed under H0.

For this reason, a z-test generally consists in comparing to the quantiles of the standard

normal distribution the observed value of the Wald statistic used. However, it is well

known that such limiting result is reliable only if the sample size n is large enough.

When this is not the case, inferential conclusions drawn from z-tests can be misleading.

For the purpose of fixing the aforementioned problem, in the following we will derive
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the null mean and variance of T̊ and T̂ ; such quantities, as will be seen, play in fact a

primary role in the correction of the Wald test statistic applicable when k = 1.

2.2.2 Cumulants of the Wald statistics

Cumulants of the pivotal quantities (2.2) and (2.3) are tightly connected with those

of the ML estimator. In particular, T̊ , which evaluates the standard error of the ML

estimator at the fixed hypothetical value θ0, simply consists of a linear transformation

of θ̂. The statistical literature hosts a rich variety of results regarding the theoretical

features of the ML estimator. Just to cite a few, in 1977 Shenton and Bowman, ex-

panding their previous work of 1963, derived the first four moments of the distribution

of θ̂ to orders O
(
n−2
)
, O
(
n−3
)
, O
(
n−3
)

and O
(
n−4
)
, respectively; later, Peers and Iqbal

(1985) obtained also asymptotic expansions for the cumulants of θ̂ till the fourth order,

in the case of vector parameter.

In order to perform the adjustment in this simple setting, only the first two cumulants

of T̊ and T̂ will be needed. For computing those, good starting points are the expansions

of Eθ(θ̂−θ)r for r = 1, . . . , 4, where the order of asymptotic approximation can be chosen

according to the result

Eθ(θ̂ − θ)r =

O
(
n−r/2

)
if r is even

O
(
n−(r+1)/2

)
if r is odd,

(2.4)

which are implied by (9.30) and (9.36) in Sections 9.2 and 9.3, respectively, of Pace and

Salvan (1997). Such expansions for the scalar case were derived using the procedure

described in Section 9.4 of Pace and Salvan (1997) and take the form:

Eθ(θ̂ − θ) =
ν3 + 2ν1,2

2ν2
1,1

••
+ O

(
n−2
)
, (2.5)

Eθ(θ̂ − θ)2 =
1

ν1,1

••
+
ν4 − ν2

1,1 + 3ν1,3 + 3ν2,2 + 2ν1,1,2

ν3
1,1

+
11ν2

3 + 36ν3ν1,2 + 24ν2
1,2

4ν4
1,1

••
+ O

(
n−3
)
, (2.6)

Eθ(θ̂ − θ)3 =
7ν3 + 12ν1,2

2ν3
1,1

••
+ O

(
n−3
)
, (2.7)

Eθ(θ̂ − θ)4 =
3

ν2
1,1

••
+ O

(
n−3
)
, (2.8)

where for ease of reading, here and elsewhere in this chapter, we write
••
+ every time the
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terms which follow are asymptotically smaller for an order Op

(
n−1
)

than are the preced-

ing terms in the formula. Likewise, the symbols
•
+ and

•••
+ will be used to indicate a fall of

order Op

(
n−1/2

)
and of Op

(
n−3/2

)
, respectively, adopting the same convenient notation

as in Chapter 9 of Pace and Salvan (1997). Note that simplification of expressions (2.5)–

(2.8) was achieved by exploiting Bartlett’s identities and well-known relations between

cumulants and central moments of a distribution (see, e.g, Pace and Salvan, 1997, p.

83). Another useful formula to bear in mind when doing this kind of calculations is the

one reported in Stern (2006), which directly links the mean of a product of log-likelihood

derivatives to its asymptotic order. Namely, νr1,...,rm = O
(
nm−b(m1+1)/2c), where m1 is

the number of elements in the subscript partition equal to 1 such that 0 ≤ m1 ≤ m and

bxc denotes the integer part of x.

Let us now start with T̊ , defined in (2.2). Such combinant was already studied by

Pfanzagl (1973), who obtained a two-term Edgeworth expansion (Hall, 1992, Chapter 2)

for the null distribution under fulfilment of mild regularity conditions. Using expansions

(2.5) and (2.6), it is immediate to derive approximations to the first two moments of

the statistic under H0. Specifically, we can write

Eθ0
(
T̊
)

=
ν̊3 + 2ν̊1,2

2ν̊
3/2
1,1

••
+ O

(
n−3/2

)
= E̊1

(
T̊
) ••

+ O
(
n−3/2

)
, (2.9)

Eθ0
(
T̊ 2
)

=
2ν̊1,1,2

ν̊2
1,1

••
+
ν̊4 + 3ν̊1,3 + 3ν̊2,2

ν̊2
1,1

+
11ν̊2

3 + 36ν̊3ν̊1,2 + 24ν̊2
1,2

4ν̊3
1,1

••
+ O

(
n−2
)
, (2.10)

stressing that E̊1

(
T̊
)

= O
(
n−1/2

)
. Thus, the null variance is equal to:

Varθ0
(
T̊
)

=
6ν̊2,2 − ν̊1,1,1,1

3ν̊2
1,1

••
+

2ν̊4 + 5ν̊1,3

3ν̊2
1,1

+
7ν̊2

1,2 + 14ν̊1,2ν̊1,1,1 + 5ν̊2
1,1,1

2ν̊3
1,1

••
+ O

(
n−2
)

= V̊1

(
T̊
) ••

+ V̊2

(
T̊
) ••

+ O
(
n−2
)
, (2.11)

where V̊1

(
T̊
)

and V̊2

(
T̊
)

are the quantities of order O(1) and O
(
n−1
)
, respectively, in

the expansion. Since the first-order asymptotic variance of T̊ was shown to be 1 in

Section 1.2.1, the last expression might look a bit odd. However, it is possible to see

that there is no contradiction between the two results, because in fact the only term in

V̊1

(
T̊
)

which is O(1) equals 1. Indeed, using the fourth Bartlett’s identity, we have

V̊1

(
T̊
)

= −2ν̊4 + 8ν̊1,3 + 12ν̊1,1,2 + 3ν̊1,1,1,1

3ν̊2
1,1

= 1
••
+ O

(
n−1
)
,
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as the validity of relations ν̊1,1,2 = −ν̊2
1,1 +O(n) and ν̊1,1,1,1 = 3ν̊2

1,1 +O(n) can easily be

checked.

Computing the same cumulants for the z-statistic T̂ in (2.3) demands a bit more

effort. The complication in doing so is given by the fact that the Fisher information

is evaluated at the ML estimate, and hence needs to be expanded itself about the null

value θ0. To the best of our knowledge, no publication has dealt with this specific matter

up to now. The statistic equivalent to T̂ in the multiparameter setting was considered

by Hayakawa and Puri in 1985. For the case k = 1, Taniguchi (1991) obtained the

Edgeworth expansion of the χ2
1 distribution of T̂ 2 for a wide class of stochastic processes,

while dos Santos and Cordeiro (1999) focused on the Bartlett-type correction of T̂ 2 in

exponential family models. Moreover, Stafford (1992) derived the first four cumulants

of the z-statistic formulated yet with the observed information in place of its expected

value. Unfortunately, despite the undeniable relevance to different extents of all these

works to our problem, we could not find a manner to take advantage of the results

therein; thus, the necessary steps to calculate the moments of T̂ shall be detailed below.

The procedure begins with the application of the stochastic Taylor formula (Pace

and Salvan, 1997, Section 9.3.1) to ν̂1,1. In particular, recalling that ν1,1 is of order O(n)

as well as its derivatives, it is fairly simple to get the following asymptotic expansion

around θ0:

ν̂1,1 = ν̊1,1

[
1
•
+

{
−(θ̂ − θ0)

ν̊2+ν̊1,2

ν̊1,1

}
•
+

{
−(θ̂ − θ0)2 ν̊4 +2ν̊1,3+ν̊2,2+ν̊1,1,2

2ν̊1,1

}]
•
+Op

(
n−1/2

)
= ν̊1,1

(
1
•
+ A1

•
+ A2

) •
+ Op

(
n−1/2

)
,

where A1 = Op

(
n−1/2

)
and A2 = Op

(
n−1
)
. Then, we have that

ν̂
1/2
1,1 = ν̊

1/2
1,1

(
1
•
+ A1

•
+ A2

)1/2 •
+ Op

(
n−1
)

= ν̊
1/2
1,1

(
1
•
+
A1

2

•
+
A2

2
− A2

1

8

)
•
+ Op

(
n−1
)
,

where the second equality results from the popular Maclaurin series (1 + x)1/2 = 1 +

x/2−x2/8 + o(x2), with x = A1 +A2. Lastly, the asymptotic expansion for T̂ takes the

form

T̂ = (θ̂ − θ0)ν̂
1/2
1,1 = (θ̂ − θ0)̊ν

1/2
1,1

(
1
•
+
A1

2

•
+
A2

2
− A2

1

8

)
•
+ Op

(
n−3/2

)
= T̊

(
1
•
+
A1

2

•
+
A2

2
− A2

1

8

)
•
+ Op

(
n−3/2

)
.
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At this stage, expansions for the moments of order one and two of the distribution

under H0 of T̂ may be found with no great difficulty, employing formulae (2.6)–(2.10).

Specifically,

Eθ0
(
T̂
)

=
ν̊1,2

2ν̊
3/2
1,1

••
+ O

(
n−3/2

)
= E̊1

(
T̂
) ••

+ O
(
n−3/2

)
, (2.12)

Eθ0
(
T̂ 2
)

=
3ν̊2,2 + ν̊1,1,2

2ν̊2
1,1

••
+

{
−
(

ν̊4

2ν̊2
1,1

+
3ν̊2

3 + 2ν̊3ν̊1,2

4ν̊3
1,1

)}
••
+ O

(
n−2
)
,

where, in parallel with what seen in equation (2.9), E̊1

(
T̂
)

= O
(
n−1/2

)
. This allows the

expansion of the second null cumulant of (2.3) to be written as

Varθ0
(
T̂
)

=
15ν̊2,2−ν̊1,1,1,1

12ν̊2
1,1

••
+

{
−
(

7ν̊4+4ν̊1,3

12ν̊2
1,1

+
22ν̊2

1,2+16ν̊1,2ν̊1,1,1+3ν̊2
1,1,1

4ν̊3
1,1

)}
••
+ O

(
n−2
)

= V̊1

(
T̂
) ••

+ V̊2

(
T̂
) ••

+ O
(
n−2
)
, (2.13)

being, as usual, V̊1

(
T̂
)

= O(1) and V̊2

(
T̂
)

= O
(
n−1
)
. Furthermore, along the line of

reasoning used earlier for T̊ , one can also prove that V̊1

(
T̂
)

= 1
••
+ O

(
n−1
)
.

It is probably noteworthy that expressions for the asymptotic approximations to the

null cumulants of T̊ and T̂ can be remarkably simplified if one wishes to exclusively refer

the results to exponential families with canonical parameter θ ∈ Θ (Pace and Salvan,

1997, p. 176). Indeed, as in this framework log-likelihood derivatives of order higher

than 1 do not depend on the data, we have that lr = νr for every r ≥ 2. This implies

that formulae (2.9) and (2.11) for T̊ reduce to

Eθ0
(
T̊
)

=
ν̊3

2ν̊
3/2
1,1

••
+ O

(
n−3/2

)
, (2.14)

Varθ0
(
T̊
)

= 1
••
+

ν̊4

ν̊2
1,1

+
5ν̊2

3

2ν̊3
1,1

••
+ O

(
n−2
)
, (2.15)

while (2.12) and (2.13) for T̂ become

Eθ0
(
T̂
)

= O
(
n−3/2

)
, (2.16)

Varθ0
(
T̂
)

= 1
••
+

{
−
(

ν̊4

2ν̊2
1,1

+
3ν̊2

3

4ν̊3
1,1

)}
••
+ O

(
n−2
)
. (2.17)

Therefore, in canonical exponential family models evaluating the expected information

at the ML estimate instead of the true parameter value has the appreciable consequence

of centering the null distribution of the Wald combinant closer to 0.
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2.2.3 Location and scale correction of the Wald statistics

What has been obtained in the last section will now be helpful for adjusting T̊ and T̂

in such a way as to get new pivots whose finite-sample null distribution agrees better

with that of a standard normal random variable.

One possible strategy to pursue this objective is imitating the system of mean and

variance correction adopted in DiCiccio and Stern (1994) to construct more accurate

asymptotic combinants based on the signed root of the likelihood ratio test for a scalar

parameter of interest ψ. The same methodology was later employed by Stern (2006),

who considered statistics derived from the general objective function of an M -estimator

within a certain statistical class.

Consequently, by reference to expansions (2.9), (2.11), (2.12) and (2.13) for the

null cumulants of the unmodified Wald pivotal quantities (2.2) and (2.3) introduced

in Section 2.2.1, the location-scale adjusted z-statistics in the single-parameter case

may be defined as

T̊ (ls) = T̊ (ls)(θ0) =
T̊ − E̊1

(
T̊
){

V̊1

(
T̊
)
+V̊2

(
T̊
)}1/2

, (2.18)

T̂ (ls) = T̂ (ls)(θ0) =
T̂ − E̊1

(
T̂
){

V̊1

(
T̂
)
+V̊2

(
T̂
)}1/2

, (2.19)

given that V̊1

(
T̊
)
+V̊2

(
T̊
)
> 0 and V̊1

(
T̂
)
+V̊2

(
T̂
)
> 0, respectively. Whenever one of such

requirements is not complied with for some particular pair (θ0, n), only the correction

in mean is performed instead. Therefore, just in these situations, we shall rely on the

pivot with simpler form T̊ (l) = T̊ − E̊1

(
T̊
)

or T̂ (l) = T̂ − E̊1

(
T̂
)
, respectively.

Now, it is not too involving to prove that the mean and variance of both the proposed

combinants resemble more closely those of the reference standard normal distribution

when the null hypothesis is true. To start, let us compare the first two cumulants of

T̊ and T̊ (ls). From results of the previous part, we have learned that for the standard

z-statistic those quantities can be expressed by

Eθ0
(
T̊
)

= O
(
n−1/2

)
,

Varθ0
(
T̊
)

= V̊1

(
T̊
) ••

+ V̊2

(
T̊
) ••

+ O
(
n−2
)

= 1
••
+ O

(
n−1
)
.

With the purpose to derive similar expressions for the corresponding location-scale
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adjusted pivot formulated in (2.18), it is useful to write:

T̊ (ls) =
{
T̊ − E̊1

(
T̊
)}{

V̊1

(
T̊
)
+V̊2

(
T̊
)}−1/2

=
{
T̊ − E̊1

(
T̊
)}
V̊1

(
T̊
)−1/2

{
1
••
+
V̊2

(
T̊
)

V̊1

(
T̊
)}−1/2

=
{
T̊ − E̊1

(
T̊
)}
V̊1

(
T̊
)−1/2

[
1
••
+

{
− V̊2

(
T̊
)

2V̊1

(
T̊
)} ••+ O

(
n−2
)]
,

where the last equality sign applies because (1 + x)−1/2 = 1− x/2− 3x2/8 + o(x2), with

x = V̊2

(
T̊
)
/V̊1

(
T̊
)

= O
(
n−1
)
. Denoting by v̊(T̊

)
the ratio V̊2

(
T̊
)
/V̊1

(
T̊
)

and proceeding

with the calculations, one finally obtains

T̊ (ls) = V̊1

(
T̊
)−1/2

[
T̊
•
+
{
− E̊1

(
T̊
)} •

+

{
− T̊ v̊

(
T̊
)

2

}]
•
+ Op

(
n−3/2

)
.

Asymptotic expansions for the null expected value and variance of the location-scale

adjusted z-statistic T̊ (ls) are then:

Eθ0
(
T̊ (ls)

)
= V̊1

(
T̊
)−1/2

{
Eθ0
(
T̊
)
− E̊1

(
T̊
)
− Eθ0

(
T̊
) v̊(T̊)

2

}
+O

(
n−3/2

)
= O

(
n−3/2

)
,

Varθ0
(
T̊ (ls)

)
= V̊1

(
T̊
)−1
{
Eθ0
(
T̊ 2
)
+E̊1

(
T̊
)2−Eθ0

(
T̊ 2
)̊
v
(
T̊
)
−2Eθ0

(
T̊
)
E̊1

(
T̊
)}

+O
(
n−3/2

)
= V̊1

(
T̊
)−1
[{

V̊1

(
T̊
)
+V̊2

(
T̊
)
+E̊1

(
T̊
)2
}{

1−v̊
(
T̊
)}
−E̊1

(
T̊
)2
]

+O
(
n−3/2

)
= 1

•••
+ O

(
n−3/2

)
.

Moreover, provided the fact that when H0 : θ = θ0 is true the relations

Eθ0
(
T̂
)

= O
(
n−1/2

)
,

Varθ0
(
T̂
)

= 1
••
+ O

(
n−1
)

are valid, by essentially following the steps just reviewed in reference to T̊ , it can be

shown that the same expansions are valid for the cumulants of T̂ (ls) reported in (2.19):

Eθ0
(
T̂ (ls)

)
= O

(
n−3/2

)
,

Varθ0
(
T̂ (ls)

)
= 1

•••
+ O

(
n−3/2

)
.

As pointed out by Stafford (1992), the adequacy of the normal approximation to the

exact null distributions of competing combinants can be assessed by contrasting their
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cumulants with the corresponding values for the N(0, 1) random variable. In our case,

the leading terms in the expansions for the mean and variance of all the pivots are

equal to 0 and 1, respectively; the comparison must hence regard the remaining non-

zero terms, which represent departure from normality. As the asymptotic orders of such

remainders are smaller for T̊ (ls) and T̂ (ls), in principle one would expect these corrected

z-statistics to provide a better tool for inference on small-to-moderate-sized samples

with respect to T̊ and T̂ . Next, we will analyze the behaviour of such various pivotal

quantities in some specific single-parameter settings, so that to evaluate the foundation

of this conjecture.

2.2.4 Special modeling frameworks

Exponential model

Let us assume that independent observations in the sample y = (y1, . . . , yn) are drawn

from the exponential distribution defined by

Yi ∼ Exp
(
eθ
)
, θ ∈ IR, i = 1, . . . , n, (2.20)

where Eθ(Yi) = µi = e−θ > 0. The log-likelihood function for θ is simply l(θ) =

nθ−nȳeθ, where ȳ =
∑n

i=1 yi/n is the sample mean. From this quantity, it is immediate

to derive the score l1 = n − nȳeθ and the ML estimate θ̂ = − log ȳ, as well as the

expected information, which here does not depend on the parameter. Indeed, we can

write ν1,1 = ν̊1,1 = ν̂1,1 = n. As a consequence, according to formulations (2.2) and

(2.3), in order to test the hypothesis H0 : θ = θ0 we can use the z-statistic

T̊ = T̂ = −√n(log ȳ + θ0).

Now, by employing formulae (2.9) and (2.11) to derive expressions for E̊1

(
T̊
)
, V̊1

(
T̊
)

and

V̊2

(
T̊
)
, the corresponding location-scale adjusted z-statistic can be calculated. Observe

that in this case, as T̊ and T̂ coincide, the same pivot results when one uses instead

definitions in (2.12) and (2.13) of the quantities E̊1

(
T̂
)
, V̊1

(
T̂
)

and V̊2

(
T̂
)
. In formal

notation, we get

T̊ (ls) = T̂ (ls) = −
√
n(log ȳ + θ0) + (2

√
n)−1(

1 + 1
2n

)1/2
.

The great simplicity of model (2.20) allows to compute the exact distributions of

the two versions of the Wald z-statistic and compare them with the standard normal.

Indeed, the only thing we need to know is that Y =
∑n

i=1 Yi/n ∼ Γ(n, neθ0) under the
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null hypothesis. Then T̊ and T̊ (ls) are just transformations of this random variable,

whose null density may be found with ease.

In Figure 2.1, it is possible to appreciate the effectiveness of the location-scale ad-

justment in this framework: the cumulative distribution function (CDF) of T̊ (ls) = T̂ (ls)

is closer to that of the N(0, 1) than the CDF of the unmodified z-statistic. Moreover,

such discrepancy remains quite visible when the sample increases in size. Note also

that these plots can be referred to every value θ0 ∈ IR, as the null probability density

functions of the combinants do not depend on the true parameter.
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Figure 2.1: Comparison under the exponential model of the null CDFs of T̊ = T̂
and T̊ (ls) = T̂ (ls) to that of the N(0, 1), for any θ0 ∈ IR and for various sample sizes
n.

Under these assumptions, one may immediately see that the signed version of the

score statistic is

Zu = Zu(θ0) =
√
n
(
1− ȳeθ0

)
.

Since its exact distribution follows directly from that of Y too, the performance of our

adjusted Wald-type pivot may also be assessed with regard to this other popular likeli-

hood-based combinant. Figure 2.2, specifically, displays such comparison: even in these

pictures, the normal approximation looks more appropriate when used for the null CDF

of the location-scale adjusted z-statistic than for that of Zu, especially for smaller n.
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Figure 2.2: Comparison under the exponential model of the null CDFs of T̊ = T̂
and Zu to that of the N(0, 1), for any θ0 ∈ IR and for various sample sizes n.

Poisson model

The one-parameter Poisson log-linear model for independent units y1, . . . , yn may be

specified as

Yi ∼ Pois
(
eθ
)
, θ ∈ IR, i = 1, . . . , n, (2.21)

with Eθ(Yi) = µi = eθ > 0. In this case, the log-likelihood and score functions can be

written as l(θ) = nȳθ − neθ and l1 = nȳ − neθ, respectively. The ML estimate is then

equal to θ̂ = log ȳ, while the Fisher information is ν1,1 = neθ. Hence, the two versions

(2.2) and (2.3) of the Wald test statistic for H0 : θ = θ0 now differ and take the forms

T̊ =
√
neθ0/2(log ȳ − θ0),

T̂ =
√
nȳ(log ȳ − θ0).

At this point, it is convenient to recognize that model (2.21) belongs to a canonical

exponential family, as the logarithmic function was chosen for connecting the mean of the

ith Poisson random variable, µi, to the parameter θ, i.e. log µi = θ (i = 1, . . . , n). Such

consideration makes possible the employment of the simplified expressions (2.14)–(2.17)

to obtain the modifications of T̊ and T̂ . Specifically, we get the following location-scale
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adjusted z-statistics generally described in (2.18) and (2.19):

T̊ (ls) =

√
neθ0/2(log ȳ − θ0)− (2

√
n)−1e−θ0/2(

1 + 3e−θ0
2n

)1/2
,

T̂ (ls) =

√
nȳ(log ȳ − θ0)(
1− e−θ0

4n

)1/2
.

Recalling that, by the previous assumptions, nY is a Poisson random variable with

expectation equal to neθ, we can calculate once again the exact distribution of the four

pivots when H0 is true for checking whether the quality of the normal approximation

changes in the different cases. In doing so, some precautions need to be taken. First of

all, it is important to notice that in this setting the probability of observing an infinite

ML estimate is positive for any value of the parameter θ; in particular, θ̂ = −∞ when

all the units in the sample equal 0. By looking at the expressions of the various z-

statistics, it is not difficult to see that in such situations we can write T̊ = T̊ (ls) = −∞
and T̂ = T̂ (ls) = 0, due to the well-known results

lim
x→0

log x = −∞ and lim
x→0

x1/2 log x = 0. (2.22)

Furthermore, in the computation of the distribution of T̂ (ls), one must pay attention to

the possibility that the bracketed quantity in the denominator is not strictly positive.

When this occurs, according to what defined in Section 2.2.3, under such canonical

exponential model we shall have T̂ (ls) = T̂ (l) = T̂ for every θ0 ∈ IR.

Both the discreteness of the problem and the dependence on θ0 of the null distri-

butions of the combinants suggest to analyze their behaviour by means of the pictures

in Figure 2.3. Here, for each of the competitors, the exact coverage of the confidence

interval obtained by inversion of the z-statistic for testing H0 at level α = 0.05 ver-

sus the alternative H1 : θ 6= θ0 is plotted against the values of θ0. In all panels, the

theoretical coverage probability 0.95 is indicated by the horizontal red line to facilitate

interpretation. By looking at the various plots, a first comment to be made concerns

perhaps the discrepancy in coverage recorded for lower values of θ0 between the pairs

T̊ , T̊ (ls) and T̂ , T̂ (ls). This must be ascribed to the two distinct values the couples take

when the ML estimate is not finite. Such an event, more likely when the true parameter

is small, leads indeed to different conclusions of the test according to the statistic used:

H0 is rejected if one employs T̊ or T̊ (ls), whereas it is accepted otherwise. Based on the

pictures, the adoption of T̂ or T̂ (ls) appears generally more advisable, as it results in

better coverage properties even for larger values of θ0.
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Figure 2.3: Exact coverage probabilities under the Poisson model for the two-sided
interval at confidence level 0.95 based on pivots T̊ , T̂ , T̊ (ls) and T̂ (ls). Values are
shown as a function of θ0 ∈ IR and for various sample sizes n.

Turning now to consider the main object of our study, Figure 2.3 tells us that im-

provements generated by the location-scale correction of T̊ and T̂ are surely not as

unquestionable as in the exponential case. More in detail, the adjustment of T̊ seems

somewhat helpful for alleviating the excessive liberality of the corresponding test, while

the use of T̂ (ls) commonly generates lower exact coverage probabilities with respect to

T̂ . One can rightly argue that such probabilities are clearly not closer to the nominal

level for lower values of the true parameter. The reason of this visible drop in coverage

is in fact that, for specific combinations of θ0 and n, the denominator of T̂ (ls) approaches

0 and the whole test statistic becomes very large in absolute value, bringing about the

rejection of H0. Nevertheless, this inconvenient behaviour is observed for a range of θ0

which shifts to more and more negative parameter values as n grows. In the remaining

region, especially around θ0 = 0, the confidence interval based on T̂ (ls) appears instead

to be at least as accurate as that based on its classical counterpart.
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In case of independent Poisson-distributed random variables, the signed versions of

the score and log-likelihood ratio statistics are expressed by

Zu =
√
ne−θ0/2

(
ȳ − eθ0

)
,

Z = Z(θ0) = sign(log ȳ − θ0)
√

2n
{
ȳ(log ȳ − θ0)−

(
ȳ − eθ0

)}
,

respectively. Since both formulations correspond to simple functions of ȳ and under

model (2.21) we have nY ∼ Pois(neθ0) when H0 is true, also exact coverage probabilities

of the two-tailed confidence intervals resulting by inversion of Zu and Z may be checked

for better evaluating the performance of our suggested modification to the Wald pivot.

This is possible in Figure 2.4, where such coverages are directly contrasted with that

based on T̂ (ls). The indication offered by the plots here is again not as clear as in the

exponential model, but the score pivot looks the most recommendable for testing H0

with the various sample sizes considered. To conclude, keeping in mind that the prime

scope of our proposition is to improve Wald-type inference without complicating too

much the original procedure, we can say that in the one-parameter Poisson model the

location-scale adjusted z-statistic does not always serve the purpose.
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Figure 2.4: Exact coverage probabilities under the Poisson model for the two-sided
interval at confidence level 0.95 based on pivots T̊ (ls), Zu and Z. Values are shown as
a function of θ0 ∈ IR and for various sample sizes n.
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Logistic model

Consider a sample y with independent binary realizations y1, . . . , yn of the following

distribution:

Yi ∼ Bern

(
eθ

1 + eθ

)
, θ ∈ IR, i = 1, . . . , n, (2.23)

with Eθ(Yi) = µi = eθ/
(
1 + eθ

)
∈ (0, 1). The log-likelihood function for these data

results equal to l(θ) = nȳθ − n log
(
1 + eθ

)
and its differentiation with respect to the

scalar parameter θ delivers the score l1 = nȳ − neθ/
(
1 + eθ

)
. By solving the likelihood

equation l1 = 0, one straightforwardly obtains θ̂ = log
{
ȳ/(1 − ȳ)

}
. Moreover, the

expected information can be shown to take the form ν1,1 = neθ/
(
1 + eθ

)2
. Using these

results, it is possible to find the following expressions of the classical Wald z-statistics

defined in (2.2) and (2.3):

T̊ =

√
neθ0/2

1 + eθ0

(
log

ȳ

1− ȳ − θ0

)
,

T̂ =
√
n
(
ȳ − ȳ2

)(
log

ȳ

1− ȳ − θ0

)
.

If model (2.23) holds, one may write θ = log
{
µi/(1 − µi)

}
= logit(µi) and so the

link function between the parameter and the mean of Yi (i = 1, . . . , n) is canonical

(McCullagh and Nelder, 1989, Section 2.2.4). This permits to employ formulae (2.14)–

(2.17) to derive the location-scale corrections to T̊ and T̂ presented in (2.18) and (2.19).

Ultimately, we get

T̊ (ls) =

√
neθ0/2

1+eθ0

(
log ȳ

1−ȳ − θ0

)
− eθ0−1

2
√
neθ0/2(

1 + 3eθ0−2+3e−θ0
2n

)1/2
,

T̂ (ls) =

√
n(ȳ − ȳ2)

(
log ȳ

1−ȳ − θ0

)(
1− eθ0+2+e−θ0

4n

)1/2
.

As considered before, the exact distributions of the four combinants need to be

computed in order to evaluate their relative performance in terms of coverage properties

exhibited by the associated 0.95 two-sided confidence intervals. Because nY is a binomial

random variable of indexes n and eθ/(1 + eθ), even in this case such calculation is not

challenging, but requires to consider the fact that the ML estimate can also take infinite

values. Specifically, θ̂ = −∞ (+∞) if all units in the sample equal 0 (1). By applying the

popular limiting results reported in (2.22) to the current expressions of the z-statistics,

it is easy to prove that when θ̂ = ±∞, we have T̊ = T̊ (ls) = ±∞ and T̂ = T̂ (ls) = 0.

Furthermore, it should be recalled that the distribution of T̂ (ls) must be derived under
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the condition pertaining to the existence of its expression. In the habitual way, if the

quantity between parentheses at the denominator is not strictly positive, we refer to the

distribution of T̂ (l) instead.
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Figure 2.5: Exact coverage probabilities under the logistic model for the two-sided
interval at confidence level 0.95 based on pivots T̊ , T̂ , T̊ (ls) and T̂ (ls). Values are
shown as a function of θ0 ∈ IR and for various sample sizes n.

Exact coverages of the confidence intervals based on T̊ , T̊ (ls), T̂ and T̂ (ls) for varying

θ0 and several sample sizes n can then be seen in Figure 2.5. The decision in hypothesis

testing implied by the presence of an infinite ML estimate for the various pivots is now

revealed in the plots as the absolute value of the true parameter increases. Similarly to

the Poisson setting, the disagreement between the conclusions of the test based on T̊

or T̊ (ls) and the test based on T̂ or T̂ (ls) is indeed testified by the different trend of the

corresponding coverage probabilities for extreme values of θ0. In outline it seems that,

also for the logistic model, T̂ and T̂ (ls) are generally more reliable tools for inference.

In this framework, correcting the expectation and variance of the z-statistics looks

especially profitable, even when the sample size is quite large: both intervals related to

T̊ (ls) and T̂ (ls) have coverages remarkably closer to 0.95 than their regular version. The

sole exception being made for isolated cases where the denominator of T̂ (ls) approaches

0, recognisable in the various panels of Figure 2.5 by the two symmetrical spikes in the

coverage curve of its associated confidence interval. Unlike what seen for the Poisson
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model, though, such problem tends to arise just for a very specific set of |θ0| values

at each n, and this set moves farther away from 0 when the sample size increases.

Therefore, such complication does not look serious enough to impair the overall positive

performance of T̂ (ls).

Both exact distributions of the remaining likelihood-based pivotal quantities are easy

to obtain for model (2.23). The expressions of the signed versions of the score and

likelihood ratio statistics are indeed transformations of the sample mean ȳ too, namely

Zu =
√
n

1 + eθ0

eθ0/2

(
ȳ − eθ0

1 + eθ0

)
,

Z = sign

(
log

ȳ

1− ȳ − θ0

)√
2n

{
ȳ

(
log

ȳ

1− ȳ − θ0

)
+log(1− ȳ)+log

(
1 + eθ0

)}
.

Exact coverage probabilities of the corresponding two-tailed intervals at confidence level

0.95 are plotted in Figure 2.6 along with those referred to T̂ (ls), so as to offer a more

complete picture of the relative inferential adequacy delivered by the modified Wald

combinant in this framework. One more time, the images seem to suggest the use of
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Figure 2.6: Exact coverage probabilities under the logistic model for the two-sided
interval at confidence level 0.95 based on pivots T̊ (ls), Zu and Z. Values are shown as
a function of θ0 ∈ IR and for various sample sizes n.
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the score statistic for drawing correct conclusions on the unknown parameter. Yet we

can observe that, aside from those regions of the panels where the aforesaid instability

caused by values close to 0 of its denominator manifests itself, T̂ (ls) generally proves to

behave reasonably well with respect to both Zu and Z.

The present section has shown how the idea of correcting the moments of the z-

statistic to better match those of the standard normal distribution may be successful in

some single-parameter models. In fact, not only in most cases was accuracy of Wald-

based inferential procedures improved, but also their essential simplicity was maintained.

In the next part of this chapter, the same approach will be reformulated in such a way

as to cope also with more complex scenarios.

2.3 Adjusting z-tests in regression settings

2.3.1 Notation and setup

Let us now introduce a standard regression model, where the mean of the dependent

variable is related to a set of covariates through some specified function. To formalize

the problem, consider a random sample y = (y1, . . . , yn) of independent observations

from the generic distribution

Yi ∼ pYi(yi; θ, xi), θ ∈ Θ ⊆ IRk, i = 1, . . . , n, (2.24)

where xi = (xi1, . . . , xik0) is the k0-dimensional vector of fixed covariates for the ith

unit and the global parameter can be partitioned as θ = (ψ, λ). In particular, let the

component of interest ψ = β = (β1, . . . , βk0) ∈ IRk0 be the vector of scalar regression

coefficients, while λ = (λ1, . . . , λk−k0) ∈ Λ ⊆ IRk−k0 contains the remaining unknown

quantities supposed by the model (e.g. dispersion/precision parameters as defined in

Section 2.5.1). It is then possible to link the mean of the ith response variable with the

corresponding k0 so-called regressors in xi as:

Eθ(Yi) = µi = h

( k0∑
j=1

βjxij

)
, i = 1, . . . , n, (2.25)

where h is some suitably smooth function typically selected according to the support

of Yi. Notice that modeling frameworks like those considered in the last section are

in fact special cases of this more general scenario. Indeed, specification (2.1) follows

straightforwardly from (2.24) by setting k = k0 = 1 with xi = 1 for every i = 1, . . . , n
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and by choosing an appropriate function h. Below, we shall use the notation defined in

Section 1.1 to refer to the usual likelihood quantities.

In regression settings one of the most common ways to investigate the effect of a

specific covariate, accounting for all the others, on the dependent variable is via z-tests.

The procedure for testing H0: βj = β0j (j = 1, . . . , k0) is the same as the one exposed

in Section 2.2.1 for models with scalar global parameter. However, here the Wald z-

statistic for the jth coefficient which is standard output of many statistical software

takes the form

T̂ j = T j(θ̂; β0j) =
β̂j − β0j√
κj(θ̂)

, (2.26)

where κj indicates the (j, j)th element in the block iββ of the inverse Fisher information

matrix. Clearly, T̂ j = T̂ defined in (2.3) if k = 1. We stress that in the current context

the standard error of β̂j is usually evaluated at the global ML estimate so that to avoid

fitting the restricted model under the null hypothesis, which might be time-consuming

for large datasets and/or in the presence of many parameters.

As repeatedly emphasized in the preceding parts, the N(0, 1) distribution can be a

very poor approximation for the null behaviour of the pivot (2.26) in small-to-moderate-

sized samples. Moreover, in multiple regression models the failure of such asymptotic

result may occur also whether k is large relative to n (see, for example, McCullagh and

Nelder, 1989, Section 6.2.4). Thus, in the same vein as what already suggested for the

one-parameter case, the next section will present a convenient procedure to enhance

Wald-type inferences while allowing the overall parameter to be multidimensional.

2.3.2 Location adjusted z-statistic

The Wald combinant in (2.26) is undoubtedly not as easy to deal with as its analogue

(2.3) in the setting with scalar parameter is. In particular, the explicit computation of

the former’s cumulants is tedious and results in expressions that are much less handy

than those reported in Section 2.2.3. Consequently, under the present regression scenario

an alternative approach for obtaining the quantities required to perform the moments

correction of the z-statistic might be desirable.

The backbone of the insight behind the modification of the Wald pivot we are going

to propose is seeing the function

T j = T j(θ; β0j) =
βj − β0j√
κj(θ)

(2.27)

as a non-singular transformation of the full parameter θ and identifying T̂ j in (2.26) as
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its ML estimator. Then, similarly to θ̂, T̂ j may be considered to suffer from finite-sample

bias, which one can try to reduce by applying, for instance, the standard technique for

asymptotic bias correction described by Efron (1975, Remark 11, p. 1214).

In order to derive a general formula for the bias of the z-statistic, assume T j in (2.27)

is at least three times differentiable in the argument θ. Given the consistency of the ML

estimator, the Taylor expansion of T̂ j − T j about θ, written by adopting the Einstein

summation convention, is

T j(θ̂; β0j)− T j(θ; β0j) = (θ̂s − θs)T js (θ; β0j) +
1

2
(θ̂s − θs)(θ̂t − θt)T jst(θ; β0j) (2.28)

+
1

6
(θ̂s − θs)(θ̂t − θt)(θ̂u − θu)T jstu(θ; β0j) +Op

(
n−3/2

)
,

with T js (θ; β0j), T
j
st(θ; β0j) and T jstu(θ; β0j) gradient, hessian and third derivative, respec-

tively, of function (2.27) (s, t, u = 1, . . . , k), all of order O
(
n1/2

)
. Then the following

expression ensues straightforwardly from taking expectations in both sides of (2.28) and

applying result (2.4), as done in Remark 3 of Kosmidis and Firth (2010, Section 4.3):

Eθ
{
T j(θ̂; β0j)− T j(θ; β0j)

}
= Bs(θ)T js (θ; β0j) +

1

2
ξs,t(θ)T jst(θ; β0j) +O

(
n−3/2

)
= BT j(θ; β0j) +O

(
n−3/2

)
, (2.29)

where Bs(θ) is such that Eθ
(
θ̂s−θs

)
= Bs(θ)+o

(
n−1
)

and ξs,t(θ) is the (s, t)th element of

i(θ)−1(s, t = 1, . . . , k). The first term in the asymptotic bias expansion of T̂ j = T j(θ̂; β0j)

may thus be estimated by BT j(θ̂; β0j), so that to define the location adjusted z-statistic

in regression settings as

T̂ j,∗ = T j,∗(θ̂; β0j) = T̂ j −BT j(θ̂; β0j). (2.30)

Henceforth, we will refer to the test based on T̂ j,∗ as the adjusted z-test. Note that the

advantage of viewing T̂ j as an estimator of a transformation of θ lies in the simplicity

of the procedure to derive its bias. Indeed, BT j(θ; β0j) in formula (2.29) depends only

on quantities which are normally computed with no effort in regression frameworks.

The importance of our expedient justifies the choice of considering for correction

Wald pivots which use the expected information matrix to approximate the standard

error of β̂j. On this basis, the reparametrization trick is in fact readily applicable,

as data enter the expression only through the ML estimates. We are also aware that

definition (2.30) does not completely agree with what recommended for one-parameter

models. As the primary objective is approaching the null distribution of the z-statistic
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to the N(0, 1), in that case the correction was sensibly performed by using its moments

under H0. In the general scenario under analysis, the composite null hypothesis admits

the specification H0 : θ = θ0 with θ0 = (β1, . . . , β0j, . . . , βk0 , λ1, . . . , λk−k0) ∈ Θ0 ⊆ IRk−1,

so the null expected value of (2.26) can be expressed as

Eθ0(T̂
j) = BT j(θ0; β0j) +O

(
n−3/2

)
.

The most natural estimator of θ0, now partially unknown, is obviously θ̂β0j , thus in prin-

ciple the adjustment in location should be accomplished via BT j(θ̂β0j ; β0j). The decision

to lean rather on BT j(θ̂; β0j) is taken with the aim of keeping the computational cost of

classical Wald-type procedures unchanged, by avoiding the constrained maximization of

the log-likelihood function. However, such a resolution rests also on practical grounds:

simulation results not shown here have not detected sensitive improvements in the gen-

eral performance of the adjusted z-test when evaluation of the bias at the constrained

ML estimate is preferred. In closing, we acknowledge that a scale correction of the

Wald combinant is not being considered in this multiparameter setting because of the

difficulty implicit in the derivation of a convenient expression for the variance of T̂ j.

2.4 Location adjusted z-statistic when k = 1

2.4.1 Asymptotic results

In this part, focus is put back on models with scalar parameter θ. Such special framework

is indeed particularly suitable to illustrate in a clear and effective way some general fea-

tures of the location adjusted z-statistic defined in (2.30). Consider again assumptions

of model (2.1) and the notation adopted in Section 2.2.1. For coherence of exposition,

let us express the location adjusted z-statistic for single-parameter models as

T̂ ∗ = T̂ ∗(θ0) = T̂ −BT (θ̂; θ0). (2.31)

In fact, it is not complicated to see that formulation (2.30) when k = 1 reduces to

(2.31), recalling the definition of the Wald pivot T̂ given in (2.3). Now, provided that

the first-order bias of the ML estimate θ̂ can be written in power notation as

B(θ) =
ν3 + 2ν1,2

2ν2
1,1

= O
(
n−1
)

(2.32)

(see, e.g., Pace and Salvan, Example 9.11, p. 360), one may employ formula (2.29) to

derive the expression for the bias of T̂ . In particular, after some computational steps
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detailed in Appendix it results

BT (θ; θ0) =
ν1,2

2ν
3/2
1,1

− θ − θ0

8

(
3ν2

3 + 8ν3ν1,2 + 5ν2
1,2

ν
5/2
1,1

+
2ν4 + 4ν1,3 + 2ν2,2 + 2ν1,1,2

ν
3/2
1,1

)
,

which is of order O
(
n−1/2

)
, like its derivatives. Notice that such expression is consistent

with what obtained in Section 2.2.2, since

BT (θ0; θ0) =
ν̊1,2

2ν̊
3/2
1,1

= E̊1

(
T̂
)
.

In order to evaluate some asymptotic properties of T̂ ∗ as defined in (2.31), it is helpful

to observe that a valid asymptotic expansion around θ0 for the estimated correction in

mean of the Wald combinant is

BT (θ̂; θ0) =
ν̊1,2

2ν̊
3/2
1,1

•
+ (θ̂ − θ0)B′T (θ0; θ0)

•
+ Op

(
n−3/2

)
.

As a consequence, we can conclude that

Eθ0
(
T̂ ∗
)

= Eθ0
(
T̂
)
− Eθ0

{
BT (θ̂; θ0)

}
= O

(
n−3/2

)
,

and thus the efficacy of the location adjustment of the z-statistic is established. Let us

now try to study the behaviour of the null variance of T̂ ∗ by similar argument as that

used for the bias-corrected ML estimator in Section 9.4.3 of Pace and Salvan (1997).

Firstly, it is quite simple to find that

Varθ0
(
T̂ ∗
)

= Varθ0
{
T̂ −BT (θ̂; θ0)

}
= Varθ0

(
T̂
)

+ Varθ0
{
BT (θ̂; θ0)

}
− 2Covθ0

{
T̂ , BT (θ̂; θ0)

}
= Varθ0

(
T̂
)
− 2Covθ0

{
T̂ , BT (θ̂; θ0)

} ••
+ O

(
n−2
)
. (2.33)

Secondly, with some reasonable effort, expression (2.13) may be rewritten as

Varθ0
(
T̂
)

=
ν̊2,2

ν̊2
1,1

••
+

2B′T (θ0; θ0)

ν̊
1/2
1,1

− 2{BT (θ0; θ0)}2
••
+ O

(
n−2
)

(2.34)

and the null covariance between T̂ and BT (θ̂; θ0) can be expanded in the following way:

Covθ0
{
T̂ , BT (θ̂; θ0)

}
=
B′T (θ0; θ0)

ν̊
1/2
1,1

••
+ O

(
n−2
)
. (2.35)
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Finally, by replacement of the quantities (2.34) and (2.35) in formula (2.33), the variance

of the location adjusted z-statistic is

Varθ0
(
T̂ ∗
)

=
ν̊2,2

ν̊2
1,1

− 2{BT (θ0; θ0)}2
••
+ O

(
n−2
)
,

where, as one expects, the term of order O(1) is equal to 1, since ν2,2 = ν2
1,1 + O(n)

through well-known relations between cumulants and central moments. It is therefore

easy to see that the comparison between the O
(
n−1
)

terms in the variances of T̂ and

T̂ ∗ depends on the function B′T (θ0; θ0), which in Appendix is shown to take the form

B′T (θ0; θ0) = −
(
ν̊4 − ν̊2,2 − ν̊1,1,2

4ν̊
3/2
1,1

+
3ν̊2

3 + 2ν̊3ν̊1,2 − ν̊2
1,2

8ν̊
5/2
1,1

)
. (2.36)

Unfortunately, there seems to exist no general indication about the sign of such expres-

sion, so the relative variance properties of the two pivots need to be evaluated on a case

by case basis.

As usual, the special class of exponential families with canonical parameter θ offers

the chance to further simplify the present scenario. In particular, one can straightfor-

wardly obtain that in those models

BT (θ; θ0) = −θ − θ0

8

(
3ν2

3

ν
5/2
1,1

+
2ν4

ν
3/2
1,1

)

and

B′T (θ0; θ0) = −
(

3ν̊2
3

8ν̊
5/2
1,1

+
ν̊4

4ν̊
3/2
1,1

)
.

We highlight that the only quantity with ambiguous sign in the last expression is ν̊4.

Thus, for example, a useful observation might be that the term of order O
(
n−1
)

in the

variance of T̂ ∗ is smaller than that of the unmodified combinant T̂ if ν̊4 ≤ −3ν̊2
3/(2ν̊1,1).

2.4.2 Inference on a binomial proportion

To give some insight on the practical use of T̂ ∗ in a realistic setting, the problem of

inference on a binomial proportion may now be discussed. Indeed, such one-parameter

model has often been considered in the literature, primarily due to issues associated

with the erratic coverage properties of Wald-type confidence intervals (Brown et al.,

2001).
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Let the sample y consist of n independent units yi drawn from the Bernoulli distri-

bution

Yi ∼ Bern(θ), θ ∈ (0, 1), i = 1, . . . , n. (2.37)

The log-likelihood of the model is l(θ) = nȳ log
{
θ/(1−θ)

}
+n log(1−θ), thus the score

function equals l1 = n(ȳ − θ)/
{
θ(1 − θ)

}
. Moreover, it is easy to prove that the ML

estimate θ̂ = ȳ is unbiased and the expression of the Fisher information takes the form

ν1,1 = n/{θ(1− θ)}.
Consider a statistical test regarding the proportion θ which involves the null hypoth-

esis H0: θ=θ0 and the alternative H1: θ 6=θ0, for some specific value θ0 ∈ (0, 1). Several

pivotal quantities are available to address this inferential problem. Specifically, it is not

hard to see that under assumptions (2.37) the standard Wald z-statistics (2.2) and (2.3)

are, respectively,

T̊ =
√
n

ȳ − θ0√{
θ0(1− θ0)

} ,
T̂ =

√
n

ȳ − θ0√{
ȳ(1− ȳ)

} .
Expansions (2.11) and (2.13) for their variances cannot be written in a succinct form,

since the expectations of log-likelihood derivatives implicated are not as simple as those

for models in Section 2.2.4. Hence in this case we shall not report the location-scale

adjusted z-statistics T̊ (ls) in (2.18) and T̂ (ls) in (2.19) explicitly. On the other hand, the

general expression of the location adjusted z-statistic (2.31) here becomes:

T̂ ∗ =
√
n

ȳ − θ0√
ȳ(1− ȳ)

− 4ȳ2 − ȳ − 8ȳ2θ0 + 8ȳθ0 − 3θ0

8
{
ȳ(1− ȳ)

}3/2
.

Another sort of modified Wald combinant which is extremely popular in the research

area dedicated to interval estimation for binomial proportions is the one recommended

by Agresti and Coull (1998), namely

T̃ = T̃ (θ0) =
√
ñ

ỹ − θ0√{
ỹ(1− ỹ)

} , ỹ =
nȳ + 2

n+ 4
, ñ = n+ 4.

Evidently, as happens with T̂ , the latter basic expression makes T̃ particularly adequate

to construct confidence intervals for the unknown parameter by inversion. Unlike the

standard Wald pivotal quantity, though, the proposal of Agresti and Coull (1998) has

exhibited appreciable coverage properties in small to moderate samples, representing
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thus a valid benchmark to judge the effectiveness of our method. For what concerns the

rest of the likelihood combinants, it may be effortlessly shown that the one-sided version

of the score statistic Zu coincides with T̊ , whereas the signed root of the log-likelihood

ratio statistic can be written as

Z = sign(ȳ − θ0)
√

2n
{

(1− ȳ) log(1− ȳ) + ȳ log(ȳ/θ0)− (1− ȳ) log(1− θ0)
}
.

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

n = 8

θ0

E
xa

ct
 C

ov
er

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

n = 16

θ0
E

xa
ct

 C
ov

er
ag

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

n = 32

θ0

E
xa

ct
 C

ov
er

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

n = 64

θ0

E
xa

ct
 C

ov
er

ag
e

T

T°
(ls)

T (ls)

T*

Figure 2.7: Exact coverage probabilities under the binomial model for the two-sided
interval at confidence level 0.95 based on pivots T̂ , T̊ (ls), T̂ (ls) and T̂ ∗. Values are
shown as a function of θ0 ∈ (0, 1) and for various sample sizes n.

Adopting the procedure described in Section 2.2.4, exact coverage probabilities of

confidence intervals built from the variety of pivots above can be obtained and compared.

In Figure 2.7 it is possible to visualize in the usual way the relative testing performance of

T̂ , the two location-scale adjusted z-statistics and T̂ ∗. We observe that the simultaneous

correction in mean and variance of the Wald combinants under model (2.37) appears not

to be advisable. In greater detail, T̊ (ls) always leads to accept H0 because the quantity

at the denominator in its expression remains too large for any couple (θ0, n), while

T̂ (ls) is not able to enhance the coverage properties of the standard Wald pivot. The

performance of the adjusted z-test is not especially satisfying either and, surprisingly,

seems to deteriorate as the sample size increases from n = 8 to n = 16 for values of θ0

around 0.5. An additional matter to be explored is the unusual smoothness of its related
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coverage curve. Nevertheless, T̂ ∗ might be considered generally more reliable than its

standard version when n = 8. We shall then proceed with a further evaluation of its

testing properties with regard to the other statistics involved in the analysis. Panels of

Figure 2.8 allow to contrast the actual coverage of the confidence interval derived by

inverting the location adjusted z-statistic with those ensuing from the score, likelihood

ratio and Agresti and Coull combinants, respectively. As can be seen, despite the

exceptional simplicity of its formulation, T̃ proves to be the pivotal quantity ensuring the

highest general accuracy in inference. In this second comparison, even for the smallest

sample size, the performance of T̂ ∗ does not look as solid as those of its competitors.
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Figure 2.8: Exact coverage probabilities under the binomial model for the two-sided
interval at confidence level 0.95 based on pivots T̂ ∗, T̊ = Zu, T̃ and Z. Values are
shown as a function of θ0 ∈ (0, 1) and for various sample sizes n.

2.5 Generalized linear models

2.5.1 Introduction

In regression settings, a prime position among parametric statistical specifications is

enjoyed by generalized linear models (GLMs). Popularized by McCullagh and Nelder

(1989), such class of models was originally introduced as a flexible tool for relaxing the
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basic assumptions of classical linear regressions in order to allow the dependent variable

to have both a distribution other than normal and a variance depending on the covariates

(Nelder and Wedderburn, 1972). According to the general setup defined in Section 2.3.1,

under standard hypotheses of a GLM the response Yi (i = 1, . . . , n) follows a probability

distribution belonging to an exponential dispersion family (Jørgensen, 1987) such that

g(µi) = h−1(µi) =

k0∑
j=1

βjxij = ηi,

Varθ(Yi) = φV (µi),

where µi and h were defined in (2.25) and V is the so-called variance function. Com-

monly, g and ηi are known as link function and linear predictor, respectively, whereas φ

is the dispersion parameter, sometimes expressed as φ(λ) = 1/λ, with λ named precision

parameter.

GLMs are particularly relevant for our study in a number of respects. Indeed, a

considerable stream of research has focused on the analysis of bias in the estimation

of such models. The first noticeable result in this field was achieved by Cordeiro and

McCullagh (1991), who provided general expressions for the first-order biases of the ML

estimators, illustrating in addition a simple algorithm to derive bias-corrected estimates.

Subsequently, Cordeiro and Barroso (2007) went further by obtaining the term of order

O
(
n−2
)

in the bias expansion of the estimators and defined third-order bias-corrected

estimates. Removal of the leading bias term by adjustment of the score vector was dis-

cussed instead in Kosmidis and Firth (2009). Specifically, the authors gave a necessary

and sufficient condition for the existence of a penalized likelihood interpretation of that

method in GLMs.

However, point estimation has not been the only topic of interest within this family

of models during the years. In fact, the non-gaussian and possibly discrete nature of the

dependent variable poses a significant challenge to the accuracy of the usual asymptotic

approximations for inferences in the moderate sample situation. Consequently, as many

times remarked, undesirable side-effects are likely to be observed both in interval estima-

tion and hypothesis testing. Such question was approached, for instance, by Sun et al.

(2000), who proposed to correct confidence bands for the mean response µi by applying

a Cornish-Fisher expansion (Pace and Salvan, 1997, Section 10.6) to the distribution

of the ML estimator. From our perspective, another interesting work on the subject is

that of Xu and Gupta (2005), where improvement of confidence regions in GLMs was

reached upon a modification of the Wald statistic which accounts for non-normality of

the response and finiteness of the sample.
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To summarize, both the substantial need of enhancing first-order inferential pro-

cedures and the immediate availability of closed-form expressions for the bias of ML

estimators make the GLMs framework the perfect statistical environment for the em-

ployment of our suggested location adjusted z-statistic. More specifically, let us em-

phasize the fact that all quantities appearing in the general correction formula (2.29)

are obtainable without difficulties under this scenario, not just the first-order bias of θ̂.

In fact, calculation of the derivatives of the function T j defined in (2.27) is markedly

facilitated by the simple general form taken by the expected information matrix in a

GLM (see, e.g., Pace and Salvan, 1997, p. 239). This aspect has led quite naturally

to develop the R package brglm2 (Kosmidis, 2016), which automatically implements

computations for obtaining the location adjusted z-statistic along with other methods

of bias reduction in GLMs.

2.5.2 Performance of the location adjusted z-statistic

In this last part of the chapter, some illustrations about the testing performance of the

location adjusted z-statistic are supplied. The effects of the proposed correction in mean

are assessed via simulation in experimental settings belonging to the class of GLMs. Such

evaluation involves not only the unadjusted z-statistic as first term of comparison, but

also other pivotal quantities typically adopted for asymptotic inference. To be consistent

with the notation defined for the two versions of Wald pivot, Zj
uP and Zj

P denote the

signed profile score and log-likelihood ratio statistics introduced in Section 1.3.2 which

correspond to the usual null hypothesis on the jth regression coefficient. Besides these

combinants, we consider also the second-order accurate modified root of the profile log-

likelihood ratio statistic in its variant derived by Skovgaard (1996). Particularly, the

latter takes the form

Z∗,jP = Zj
P +

1

Zj
P

log
Zj
P

Ũ j
, (2.38)

where

Ũ j =
[
Ŝ−1Q̂

]
j

∣∣j(θ̂)∣∣1/2∣∣i(θ̂)−1
∣∣∣∣Ŝ∣∣∣∣j−jj(θ̂β0j)∣∣−1/2

approximates the analogue term containing sample space derivatives in the original for-

mulation of Barndorff-Nielsen (1986, 1991). Note that [ · ]j indicates the jth coordinate

of the related vector, Ŝ = Covθ̂
{
lθ(θ̂), lθ(θ̂β0j)

}
, Q̂ = Covθ̂

{
lθ(θ̂), l(θ̂) − l(θ̂β0j)

}
and

j−jj(θ̂β0j) is the (k − 1)×(k − 1) matrix formed by deleting the jth row and jth column

of the observed information evaluated at the restricted ML estimate. In the next exper-

iments, the R package likelihoodAsy (Bellio and Pierce, 2015) is used for computing

Z∗,jP as reported in (2.38).
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Gamma regression

A first simulation study can be set up as follows: starting from n = 8, for every ith

unit, covariates xi1 and xi2 (i = 1, . . . , n) are generated as independent realizations

of a N(1, 1). The corresponding observed dependent variable yi in each of the 2000

simulated datasets is then randomly drawn from a Γ(φ−1, ϑi) distribution with dispersion

parameter φ = 0.5 and rate ϑi = (φµi)
−1, where µi = exp(β01 + β02xi1 + β03xi2) with

β01 = 1, β02 = 1 and β03 = 2. On every sample, the composite null hypothesis H0 : βj =

β0j (j = 1, 2, 3) is tested versus the two-tailed alternative taking the other regressors

into account and using several pivots, so that empirical rejection probabilities of the

corresponding tests at significance levels α = 0.01, 0.05 can be estimated. This procedure

is repeated for n = 16, 32, 64, but instead of generating a new set of covariates every

time, the same xi1 and xi2 (i = 1, . . . , 8) are used for adjacent blocks of 8 units. Results

of the study are available in Table 2.1, which displays estimated rejection probabilities

for tests based on the standard Wald statistic T̂ j, the location adjusted z-statistic T̂ j,∗,

the one-sided profile score statistic Zj
uP , the signed root of the profile log-likelihood ratio

statistic Zj
P and its modification Z∗,jP (j = 1, 2, 3). As may be seen, for small values of

n (especially n = 8, 16) the adjusted z-test has empirical rejection probabilities much

closer to α than the classical version, and does also better than the test associated

with the log-likelihood ratio combinant. Among first-order tests, Zj
uP appears to have

the best general performance, even comparable to the second-order accurate Z∗,jP . Not

surprisingly, such discrepancies tend to disappear as the sample size grows.

A more realistic scenario is considered in the next simulation experiment, involving

the clotting dataset (McCullagh and Nelder, 1989, p. 300). The data record observations

of n = 18 mean clotting times in seconds of blood (y) for nine percentage concentrations

of normal plasma (x1) and two lots of clotting agent (x2 = 1, 2). Assuming Y1, . . . , Yn

are independent Γ(φ−1, ϑi)-distributed random variables with ϑi = (φµi)
−1 and µi =

exp(β1 + β2xi1 + β3xi2 + β4xi1xi2) (i = 1, . . . , n), a Gamma regression with log link is

fitted to the data and 2000 samples of size n are simulated under the ML fit, namely

with θ = θ̂ = (β̂1, β̂2, β̂3, β̂4, φ̂). Similarly as before, to test H0 : βj = β0j = β̂j (j =

1, 2, 3, 4) while accounting for the other covariates in the model, the usual statistics

are computed on every dataset. Table 2.2 reports empirical rejection probabilities of

the associated two-sided tests at theoretical levels α = 0.01, 0.05. For each regression

coefficient, the adjusted z-test results in rejection probabilities closer to α than its

standard variant. Furthermore, the normal Q-Q plots in Figure 2.9 illustrate how the

adjustment in location enhances the normal approximation to the null distribution of

the z-statistic when testing H0 : β4 = β04. Table 2.2 gives also evidence that, although
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Table 2.1: Empirical rejection probabilities at nominal levels α = 0.01, 0.05 of
the two-sided tests related to T̂ j , its location adjusted version T̂ j,∗, the profile score
statistic ZjuP , the profile likelihood ratio statistic ZjP and its modification Zj,∗P (j =
1, 2, 3) in the Gamma regression model, estimated by a study based on 2000 simulated
datasets of size n = 8, 16, 32, 64.

α = 0.01 α = 0.05

n = 8 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.109 0.040 0.015 0.051 0.014 0.178 0.096 0.074 0.135 0.060
j = 2 0.113 0.048 0.004 0.062 0.015 0.199 0.105 0.068 0.147 0.072
j = 3 0.107 0.046 0.005 0.057 0.016 0.200 0.099 0.066 0.144 0.064

n = 16 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.043 0.026 0.015 0.027 0.015 0.107 0.068 0.062 0.087 0.057
j = 2 0.046 0.020 0.008 0.023 0.009 0.112 0.071 0.057 0.083 0.057
j = 3 0.039 0.020 0.006 0.024 0.011 0.116 0.068 0.051 0.081 0.051

n = 32 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.023 0.013 0.010 0.014 0.010 0.072 0.058 0.051 0.061 0.054
j = 2 0.022 0.014 0.008 0.013 0.011 0.076 0.059 0.048 0.061 0.049
j = 3 0.024 0.017 0.011 0.018 0.013 0.074 0.056 0.043 0.061 0.045

n = 64 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.020 0.016 0.013 0.014 0.018 0.071 0.063 0.058 0.062 0.065
j = 2 0.014 0.013 0.009 0.011 0.012 0.061 0.052 0.049 0.056 0.050
j = 3 0.014 0.011 0.008 0.010 0.009 0.063 0.056 0.050 0.058 0.053

not performing as well as Zj,∗
P , T̂ j,∗ is always preferable to the profile likelihood ratio

statistic and seems even more reliable than Zj
uP when the nominal size equals 0.05.
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Figure 2.9: Normal Q-Q plots based on 2000 values of T̂ 4 and T̂ 4,∗ computed under
the null hypothesis H0 : β4 = β04 in the clotting example.
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Table 2.2: Empirical rejection probabilities at nominal levels α = 0.01, 0.05 of the
two-tailed tests related to T̂ j , T̂ j,∗, ZjuP , ZjP and Zj,∗P (j = 1, 2, 3, 4) in the clotting
example. The figures are based on a simulation study with 2000 replications.

α = 0.01 α = 0.05

T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.036 0.016 0.006 0.023 0.006 0.106 0.059 0.070 0.089 0.051
j = 2 0.039 0.015 0.010 0.023 0.008 0.108 0.060 0.071 0.088 0.052
j = 3 0.035 0.015 0.010 0.024 0.008 0.092 0.056 0.064 0.076 0.046
j = 4 0.034 0.014 0.010 0.019 0.008 0.105 0.054 0.067 0.082 0.045

Given the impressively accurate behaviour exhibited by the location adjusted z-

statistic in the last setting, it is worth checking whether a correction in scale might be

helpful to further improve z-testing. A parametric bootstrap based on 1000 replicates

has thus been employed to estimate the variance of T̂ j,∗ (j = 1, 2, 3, 4) on each simulated

sample. Then, by standard implementation of the scale adjustment, the bootstrap

scale-corrected z-statistic T̂ j,∗boot has been obtained. Estimated rejection probabilities of

the corresponding test at level α = 0.01, 0.05 can be found in Table 2.3, which aids

comparison with the best performers of the previous analysis. The scale correction

of the location adjusted z-statistic surely succeeds in enhancing the agreement of the

empirical rejection probability of the z-test to its nominal level, especially when α =

0.05. Moreover, it might be of interest to note that empirical rejection probabilities based

on T̂ j,∗ are always larger than those based on T̂ j,∗boot, hence the variance of the location

adjusted z-statistic must exceed 1. To conclude, the adoption of bootstrap certainly adds

some computational burden to the Wald procedure, yet appears to assure a performance

of the location adjusted z-statistic comparable to second-order tests within the Gamma

regression framework.

Table 2.3: Empirical rejection probabilities at nominal levels α = 0.01, 0.05 of
the two-tailed tests related to T̂ j,∗, T̂ j,∗boot, Z

j
uP and Zj,∗P (j = 1, 2, 3, 4) in the clotting

example. Figures are based on a simulation study with 2000 replications and 1000
bootstrap iterations.

α = 0.01 α = 0.05

T̂ j,∗ T̂ j,∗boot Zj
uP Zj,∗

P T̂ j,∗ T̂ j,∗boot Zj
uP Zj,∗

P

j = 1 0.016 0.011 0.006 0.006 0.059 0.051 0.070 0.051
j = 2 0.015 0.014 0.010 0.008 0.060 0.053 0.071 0.052
j = 3 0.015 0.014 0.010 0.008 0.056 0.048 0.064 0.046
j = 4 0.014 0.012 0.010 0.008 0.054 0.047 0.067 0.045
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Poisson log-linear model

Consider now the following simulation setting. For each i = 1, . . . , 8, covariates xi1 and

xi2 are independently drawn from the N(0, 1) and Bern(0.6) distributions, respectively.

Responses yi are thus generated as realizations of Poisson random variables with mean

µi = exp(β01 + β02xi1 + β03xi2), where β01 = 1, β02 = 1 and β03 = 2. Datasets of larger

size n = 16, 32, 64 are also created using the same original set of covariates. Rejection

probabilities of the usual tests for H0 : βj = β0j (j = 1, 2, 3) at several significance

levels are then estimated by means of 5000 iterations for each sample size n. Table 2.4

presents such results for theoretical values of α = 0.01, 0.05, whereas Table 2.5 deals

with greater nominal levels α = 0.1, 0.2. Under this scenario, the number of simulation

trials is increased because less variation in testing performance may be observed among

the various statistics. For instance, unlike what seen in the studies concerning the

Gamma regression, here Zj,∗
P is not outclassing the other competitors. Moreover, even

the standard Wald test proves to be quite reliable, thus the room for refinement due to

the location adjustment is not as large as before. Nevertheless, the experiment suggests

that some profitable effects are still appreciable, especially as α grows and also for

moderate values of n.

2.6 Discussion and further work

The fundamental idea behind this chapter, introduced in Section 2.1, has been to im-

prove first-order Wald inference on small-to-moderate samples in regression settings by

adjusting the null moments of the z-statistic. Because such a method is not guaranteed

to succeed in increasing the overall agreement between the null distribution of the pivot

and the standard normal distribution, several scenarios were taken into consideration

to verify the actual usefulness of this approach.

Section 2.2 dealt with some motivating examples of our research. In simple frame-

works with scalar global parameter, obtaining explicit asymptotic expansions for the

mean and variance of the z-statistic was shown to be not so demanding. The location-

scale adjustment seems particularly effective in the exponential case: the normal approx-

imation to the distribution of the adjusted z-statistic is critically improved with respect

to that of the ordinary version and is even more accurate than that of the score statistic,

for all the sample sizes considered. In the Poisson setting the location-scale adjusted

z-statistic performs in a dubious way, while under the logistic model the corresponding

test confirmed to be typically more reliable than the ordinary one, although limitations

of its performance connected with the correction in variance cannot be denied.
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Table 2.4: Empirical rejection probabilities at nominal levels α = 0.01, 0.05 of
the two-sided tests related to T̂ j , its location adjusted version T̂ j,∗, the profile score
statistic ZjuP , the profile likelihood ratio statistic ZjP and its modification Zj,∗P (j =
1, 2, 3) in the Poisson log-linear model, estimated by a study based on 5000 simulated
datasets of size n = 8, 16, 32, 64.

α = 0.01 α = 0.05

n = 8 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.011 0.011 0.011 0.011 0.012 0.048 0.050 0.049 0.053 0.053
j = 2 0.009 0.010 0.010 0.010 0.012 0.048 0.049 0.049 0.051 0.053
j = 3 0.009 0.009 0.009 0.010 0.014 0.047 0.048 0.049 0.048 0.053

n = 16 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.009 0.009 0.010 0.010 0.014 0.043 0.044 0.044 0.046 0.048
j = 2 0.008 0.008 0.008 0.007 0.011 0.045 0.046 0.046 0.045 0.049
j = 3 0.010 0.010 0.010 0.011 0.014 0.047 0.047 0.047 0.046 0.049

n = 32 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.008 0.008 0.008 0.008 0.012 0.052 0.053 0.053 0.051 0.057
j = 2 0.008 0.008 0.008 0.007 0.013 0.044 0.044 0.044 0.046 0.050
j = 3 0.010 0.011 0.011 0.010 0.016 0.048 0.048 0.048 0.047 0.054

n = 64 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.010 0.009 0.010 0.010 0.016 0.044 0.044 0.045 0.045 0.051
j = 2 0.013 0.013 0.013 0.012 0.018 0.052 0.052 0.052 0.052 0.058
j = 3 0.012 0.012 0.012 0.012 0.016 0.047 0.047 0.047 0.048 0.052

In Section 2.3 a convenient way to implement the location adjustment of the z-

statistic under general regression scenarios was presented. The core intuition of viewing

the combinant as an estimator of a reparametrization permits the proposed approach to

enjoy the simplicity of original Wald-type inference. Indeed, the necessary ingredients

to compute the location-adjusted z-statistic are easily obtainable from standard output

of routines for fitting regression models. As a result, the computational effort implied

by the procedure is equal to that implied by classical z-testing. We remark also that

the same basic technique may be adopted to adjust z-statistics which use the observed

information for the estimates’ standard errors.

In Section 2.4 advantage was taken again of the single-parameter setting in order to

study some theoretical properties of the location adjusted z-statistic and to evaluate its

testing performance in a realistic situation. The asymptotic comparison between the

two versions of the z-statistic did not resulted in a comprehensive pattern of difference in

variability. For sure this analysis deserves to be further developed, both analytically and
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Table 2.5: Empirical rejection probabilities at nominal levels α = 0.1, 0.2 of the
two-sided tests related to T̂ j , its location adjusted version T̂ j,∗, the score statistic
ZjuP , the likelihood ratio statistic ZjP and its modification Zj,∗P (j = 1, 2, 3) in the
Poisson log-linear model, estimated by a study based on 5000 simulated datasets of
size n = 8, 16, 32, 64.

α = 0.1 α = 0.2

n = 8 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.100 0.101 0.102 0.105 0.106 0.206 0.208 0.207 0.212 0.210
j = 2 0.099 0.101 0.101 0.101 0.103 0.193 0.195 0.194 0.197 0.198
j = 3 0.095 0.098 0.097 0.102 0.104 0.193 0.196 0.194 0.198 0.201

n = 16 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.092 0.094 0.093 0.092 0.097 0.193 0.194 0.194 0.193 0.197
j = 2 0.090 0.091 0.090 0.092 0.096 0.185 0.187 0.186 0.185 0.191
j = 3 0.096 0.097 0.097 0.099 0.101 0.198 0.200 0.199 0.200 0.202

n = 32 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.100 0.100 0.100 0.101 0.106 0.197 0.198 0.197 0.198 0.204
j = 2 0.096 0.097 0.097 0.096 0.101 0.197 0.198 0.197 0.198 0.202
j = 3 0.099 0.100 0.099 0.102 0.108 0.202 0.204 0.203 0.204 0.210

n = 64 T̂ j T̂ j,∗ Zj
uP Zj

P Zj,∗
P T̂ j T̂ j,∗ Zj

uP Zj
P Zj,∗

P

j = 1 0.092 0.092 0.092 0.093 0.100 0.194 0.194 0.194 0.196 0.202
j = 2 0.099 0.099 0.099 0.099 0.105 0.199 0.199 0.199 0.200 0.206
j = 3 0.093 0.094 0.093 0.093 0.097 0.192 0.192 0.192 0.191 0.196

empirically. Within the problem of inference on a binomial proportion, the behaviour

of the location adjusted z-statistic was not found as satisfying as in the one-parameter

models examined in Section 2.2.4. Determining whether the presence of a bounded

parameter space may reduce the efficacy of the suggested approach appears then helpful.

Section 2.5 was devoted instead to the location adjustment of z-statistics in GLMs.

Such prominent modeling framework is in fact especially suited to the application of

our method. Among the practical aspects which contribute to further ease the steps

of calculation, the existence of closed-form expressions for the bias of ML estimators is

probably the most notable (Cordeiro and McCullagh, 1991).

The performance of the adjusted z-test in this context was illustrated through some

simulation studies. Results relating to the Gamma regression are very remarkable: the

location adjusted z-statistic always exhibits more adequate rejection probabilities than

its direct competitor. For smaller samples, the adjusted z-test seems even more reliable

than the profile likelihood ratio test and, in some cases, than the profile score test. Notice
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that, contrary to our proposal, both the latter require the constrained ML fit under the

null hypothesis in order to be obtained. The testing accuracy of the location adjusted z-

statistic was also shown to be comparable to that of higher-order tests when a bootstrap

is employed for correcting its scale. Beyond any doubt, the bootstrap implementation

makes the method much more intensive from a computational standpoint. It would

certainly be preferable to find a simpler way to perform the scale adjustment of the

z-statistic, similar to that used for centering its location.

Under the Poisson log-linear model, simulation evidence in support of the better

performance of the location adjusted z-statistic was not as strong as for the Gamma

regression case. However, the minor discrepancies in the empirical rejection probabilities

of the two variants of the z-test allow to conclude that the adjustment in location is

rather effective in this setting as well.

Of course, both the findings and the limitations of our study give rise to the need

for further work into this subject. Some open problems have already been mentioned

above, but there are more questions still left unanswered. Below, we delineate the main

future directions of research in the form of a list:

i) Elaborate on the analysis in Section 2.4.1 by comparing the variances of the stan-

dard and location adjusted z-statistics in special simple model settings, like those

of Section 2.2.4.

ii) Extend the variance analysis in Section 2.4.1 to the case of multidimensional pa-

rameter.

iii) Derive asymptotic (e.g. Edgeworth, Cornish-Fisher) expansions for the distri-

butions of the standard and location adjusted z-statistics to formally establish

whether the normal approximation is improved by the adjustment in location.

iv) Develop a power analysis to compare the distributions of the standard and location

adjusted z-statistics under the alternative hypothesis.

v) Perform other Monte Carlo experiments, involving both real and simulated datasets,

to empirically test the relative performance in the GLMs framework of the stan-

dard and location adjusted z-statistics, even with regard to the other likelihood-

based pivots considered in Section 2.5.2. In particular, consider Poisson and bi-

nomial distributions of the response variable.

vi) Derive the location adjustment and empirically test the relative performance of

the standard and location adjusted z-statistics under general regression scenarios,

like the Cox proportional hazards and Beta regression models.
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vii) Explore the possibility of implementing a fairly simple scale adjustment of the

z-statistic along with the proposed correction in location.

viii) Investigate ways to adopt the same general approach with other test statistics,

e.g. log-likelihood ratio or score statistics.

ix) Consider the potential application of the methodology suggested to p-values and/or

rejection probabilities of the z-statistic, rather than to the pivot itself. In fact, at

a given significance level of the test, such quantities may be viewed in their turn

as model reparametrizations.



Chapter 3

Monte Carlo modified profile

likelihood for clustered data

3.1 Introduction

The modified profile likelihood (MPL) (Barndorff-Nielsen, 1983) was introduced as

prime example among adjusted profile likelihoods in Section 1.3.4. Unfortunately, the

great beneficial impact of its employment can be directly observed only within the fam-

ilies of full exponential and composite group models, where the explicit derivation of an

ancillary statistic is either unnecessary or practically possible.

In Chapter 1, we saw that the approximation owed to Severini (1998b) to this pseudo-

likelihood function helps to overcome most of those computational difficulties, leaning

on expected values asymptotically equivalent to the sample space derivatives involved

in the original version of the MPL. Such expedient has thus sensitively extended the

scope of this inferential instrument. Nevertheless, it is not complicated to check that

covariances between score components like those present in Severini’s modification may

still not be readily available for a number of statistical problems.

The increasing complexity of phenomena nowadays dealt with is probably the main

reason of the unquestioned current dissemination in all applied areas of clustered data,

also known as grouped data, longitudinal data, stratified data or panel data (Hsiao,

2007). In Section 1.4 emphasis was placed on the fact that, due to their singular struc-

ture, datasets under those denominations are typically analyzed through statistical mod-

els intrinsically connoted by the incidental parameters problem. This character, more

specifically, has to do with the usual choice of capturing the unobserved heterogeneity

across groups via cluster-specific nuisance parameters, commonly named individual ef-

fects. Specifications of such type, especially popular in econometrics, are referred to as

65
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fixed effects models, in opposition to the so-called random effects models. The latter,

as their title suggests, on one hand enable to get around Neyman & Scott problems

by considering those group features as random variables, on the other introduce quite

serious complications. To cite a few, the selection of some suitable underlying distribu-

tion for the implicit individual effects and the assumption of their incorrelation with the

regressors (Lancaster, 2000). The last rather unrealistic postulate, in particular, drives

the most widespread decision to opt for fixed effects models, which do not constrain the

dependence of the distinguishing cluster-related traits on covariates.

The special significance held by the MPL for clustered data is then apparent. Based

on what shown in Section 1.4 with reference to the basic setup (1.13) of fixed effects

models, this adjustment to the profile likelihood can considerably refine ordinary infer-

ential accuracy in samples where the total number of groups is much larger than the

single cluster size. It would thus be useful to test whether similar results are retained

in the presence of nonstandard modeling and/or sampling assumptions. To such aim,

in the next section an automatic method to compute Severini’s MPL even in those

unconventional situations will be presented.

3.2 Monte Carlo approximation to Severini’s modi-

fied profile likelihood

Consider, as done in Section 1.4.2, clustered observations subdivided in N groups of

balanced size T . The hypothesis of independence among distinct clusters remains valid,

yet here sampling units within groups are allowed to be correlated with each other.

Hence, a general model with incidental parameters is now better expressed by

Yit|Xit = xit ∼ pYit|Xit(yit|xit;ψ, λi), i = 1, . . . , N, t = 1, . . . , T, (3.1)

to accommodate also dynamic specifications where the index t runs over consecutive

time periods and the temporal evolution of the dependent variable is explained by

including in the vector of covariates xit previously recorded responses belonging to the

same cluster.

The version of the MPL proposed by Severini to approximate the original function of

Barndorff-Nielsen can be found in (1.12). Under the assumption of independent groups,

we have M̃(ψ) =
∑N

i=1 M̃i(ψ) where

M̃i(ψ) =
1

2
log jλiλi(θ̂ψ)− log Iλiλi(θ̂ψ; θ̂), i = 1, . . . , N. (3.2)
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The quantity jλiλi is simply the (i, i)th element in the diagonal block jλλ of the observed

information, while Iλiλi(θ̂ψ; θ̂) = Eθ̂
{
lλi(θ̂ψ)lλi(θ̂)

}
is the (i, i)th element in the diagonal

matrix of expected values Iλλ(θ̂ψ; θ̂).

Section 3.1 already anticipated that, for a variety of reasons related to the complexity

of the model under study, a closed-form expression of Iλiλi(θ̂ψ; θ̂) cannot be always

obtained. When this happens, a possible strategy consists in rather using the following

Monte Carlo approximation based on R replicates:

I∗λiλi(θ̂ψ; θ̂) =
1

R

R∑
r=1

lrλi(θ̂ψ)lrλi(θ̂), i = 1, . . . , N, (3.3)

where lrλi is the scalar partial score computed for the rth sample yr = (yrit) (r = 1, . . . , R)

randomly generated from the ML fit of model (3.1), thus by setting (ψ, λ) = (ψ̂, λ̂).

Note that calculation of I∗λiλi(θ̂ψ; θ̂) only requires to derive the score function lλi and to

simulate from the assumed model, with no need of additional fitting. Indeed, θ̂ and θ̂ψ

in (3.3) are the estimates derived from the observed data. This makes the procedure

far less computationally expensive than a standard bootstrap. Moreover, the execution

time of such solution is not particularly influenced by the value of T and the number of

replications R usually does not need to exceed 500 for a reasonably adequate estimation

of ψ, as attested by sensitivity analyses not reported here.

The principal advantage of this Monte Carlo strategy is by all means its potential

broad applicability. Already experimented by Bartolucci et al. (2016), it allowed the

MPL of Severini to prove its competitiveness with econometric inferential methods in

estimating dynamic fixed effects models for binary panel data. In what follows, we will

make use of the same technique in order to calculate lM̃(ψ) and verify its superiority

with respect to usual ML procedures under different special scenarios. Of course, the

focus shall be on models with incidental parameters for which explicit formulation of

(3.2) is either impossible or too demanding.

For ease of reference, from now on Severini’s approximation to the MPL computed by

Monte Carlo simulation will be called Monte Carlo MPL and denoted by LM̃∗(ψ). The

corresponding log-likelihood function is then lM̃∗(ψ) = logLM̃∗(ψ) = lP (ψ) + M̃∗(ψ),

where the modification term may be written as

M̃∗(ψ) =
N∑
i=1

M̃∗
i (ψ) =

N∑
i=1

{
1

2
log jλiλi(θ̂ψ)− log I∗λiλi(θ̂ψ; θ̂)

}
, (3.4)

with I∗λiλi(θ̂ψ; θ̂) defined in (3.3).
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3.3 Nonstationary AR(1) model

3.3.1 Setup and background

The first object of our analysis belongs to the class of linear dynamic models for con-

tinuous panel data, largely employed in the field of econometrics. Specifically, let us

consider the nonstationary version of the first-order autoregressive specification

Yit|Yi,t−1 = yi,t−1 ∼ N(λi + ρyi,t−1, σ
2), i = 1, . . . , N, t = 1, . . . , T, (3.5)

with y0 = (y10, . . . , yN0) vector of unrestricted and given initial conditions. Here, the

structural parameter is ψ = (ρ, σ2) ∈ IR × IR+ and λ = (λ1, . . . , λN) ∈ IRN represents

the nuisance component of individual effects. The lack of stationarity of the stochastic

process Yit in each group implies the temporal variation of its mean or its autocovariance

function, i.e. the covariance of the response with itself at pairs of time points. As a

consequence, the autoregressive parameter ρ is left free to equal or exceed unity and the

fixed vector y0 does not need to meet any specific requirement, so that the likelihood

function is expressed by conditioning on these N starting values. In order to facilitate

the presentation, both exogenous covariates and further lagged responses yi,t−l (l > 1)

are excluded from the set of model regressors; however, no additional difficulties would

be encountered in applying the proposed methodology otherwise.

The incidental parameters problem occurring in the analogue stationary AR(1) model

has been addressed in the statistical literature several times. Particularly Cruddas et al.

(1989) proved that, if the first two moments of the process are assumed to stay constant

over time, an accurate marginal likelihood for ψ not only exists but also is asymptot-

ically equivalent to the first modification of LP (ψ) introduced by Barndorff-Nielsen.

Furthermore, in Example 1 of Bartolucci et al. (2016) it is shown how Severini’s MPL,

obtained upon orthogonal interest-preserving transformation, coincides in fact with the

conditional approximate likelihood of Cox and Reid. Not surprisingly, also econometri-

cians showed interest in this issue and produced a proliferation of possible solutions to

improve standard ML inference in general fixed effects dynamic models for panel data.

Among the most successful are, for instance, the instrumental-variable (Hsiao, 2003,

Section 4.3.3.c) and the generalized method of moments (Arellano and Bond, 1991)

estimators for ψ. One latest proposition which also allows for a multivariate response

is the bias-corrected estimator of Dhaene and Jochmans (2016), specially tailored for

macroeconomic settings with N = O(T ).

Here, though, a great deal of attention is paid to the nonstationarity assumption of
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model (3.5). Indeed, analytical derivation of Iλiλi(θ̂ψ; θ̂) in this case would be possible

but quite tedious, and Monte Carlo approximation dramatically reduces the amount of

effort demanded to use Severini’s modification. Moreover, we are specifically concerned

with datasets where T is much smaller than N , meaning with situations where lP (ψ)

exhibits its worst performance. Even estimation of ψ under these conditions was already

investigated applying procedures alternative to the MPL. By way of example, inference

in general autoregressions of order l was thoroughly examined in Dhaene and Jochmans

(2014). As the bias of lP (ψ) in such models was not found to depend on the incidental

parameters, an adjusted profile log-likelihood was obtained through integration of the

recentered score function. While exploring the various connections of their work with

past publications on the topic, the authors gave evidence of the equivalence existing be-

tween their solution and that of Lancaster (2002, Section 3) when l = 1. From a purely

statistical perspective, the latter proposed a Bayesian strategy grounded on the prelim-

inary orthogonalization of λ to the structural component. This served to integrate out

the individual effects from the likelihood, so as to derive a marginal posterior density

with consistent mode for ψ. Such ensuing posterior distribution, besides being a special

case of the adjustment to the profile likelihood prescribed by Dhaene and Jochmans

(2014), was also proved to be the Bayesian counterpart of Cox and Reid’s approximate

conditional likelihood. Another approach to make inference on the autoregressive pa-

rameter in (3.5), diverse in essence but equivalent in substance to the last one, was later

adopted by De Bin et al. (2015). Their results, obtained in a frequentist fashion via the

integrated likelihood of Severini (2007), in fact closely agree with the findings in both

Lancaster (2002) and Dhaene and Jochmans (2014).

3.3.2 Monte Carlo modified profile likelihood

It is easy to see that, under the hypothesis of independent groups, the log-likelihood of

model (3.5) conditioned on the initial vector y0 is

l(θ) = −NT
2

logσ2 − 1

2σ2

N∑
i=1

T∑
t=1

(yit − λi − ρyi,t−1)2. (3.6)

Differentiation with respect to the ith incidental parameter leads to the scalar partial

score function

lλi(θ) = lλi(ψ, λi) =
1

σ2

T∑
t=1

(yit − λi − ρyi,t−1), i = 1, . . . , N,
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and subsequent solution to the ith component of the likelihood equation lλi(θ) = 0

delivers the following constrained ML estimate of λi:

λ̂iψ = ȳi − ρȳi,−1 = λ̂iρ, (3.7)

where ȳi =
∑T

t=1 yit/T and ȳi,−1 =
∑T−1

t=0 yit/T . Clearly, the profile log-likelihood lP (ψ)

is then obtained by replacement of λi with λ̂iρ in expression (3.6) for each i = 1, . . . , N .

The next quantity needed for computing Severini’s modification is immediately available

from the derivative of the ith partial score with regard to λi, namely

jλiλi(θ̂ψ) =
T

σ2
, i = 1, . . . , N,

whereas Iλiλi(θ̂ψ; θ̂) requires more elaboration. The ML estimate of λi simply equals

λ̂i = λ̂iρ̂ = ȳi − ρ̂ȳi,−1, where we have that

ρ̂ =

∑N
i=1

∑T
t=1 yityi,t−1 − T

∑N
i=1 ȳiȳi,−1∑N

i=1

∑T
t=1 y

2
i,t−1 − T

∑N
i=1 ȳ

2
i,−1

(3.8)

is the ordinary least squares (OLS) estimate of the autoregressive parameter. Then, by

adding and subtracting the same quantity ρȳi,−1, one can write

λ̂i = ȳi − ρȳi,−1 + ρȳi,−1 − ρ̂ȳi,−1

= λ̂iρ − (ρ̂− ρ)ȳi,−1. (3.9)

Exploiting this last result with the aim of calculating Iλiλi(θ̂ψ; θ̂), let us express the

partial score evaluated at the constrained ML estimate in a more convenient way. In

particular, we begin from

lλi(θ̂ψ) =
1

σ2

T∑
t=1

(
yit − λ̂iρ − ρyi,t−1

)
=

1

σ2

T∑
t=1

(
yit − λ̂iρ + λ̂i − λ̂i − ρyi,t−1 + ρ̂yi,t−1 − ρ̂yi,t−1

)
, (3.10)

where the second equality holds because we simultaneously sum to and subtract from

the bracketed part both λ̂i and ρ̂yi,t−1. Now, since manipulating (3.9) leads to

λ̂iρ = λ̂i + (ρ̂− ρ)ȳi,−1,
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by substitution of the latter expression in (3.10) it is not hard to obtain

lλi(θ̂ψ) =
1

σ2

{ T∑
t=1

(
yit − λ̂i − ρ̂yi,t−1

)
+ T

(
λ̂i − λ̂iρ

)
+

T∑
t=1

(
ρ̂− ρ

)
yi,t−1

}
=

1

σ2

{
σ̂2lλi(θ̂) + T

(
λ̂i − λ̂iρ

)
+ T

(
ρ̂− ρ

)
ȳi,−1

}
.

Then, the necessary expectation results equal to a linear function of ρ, and specifically

to

Iλiλi(θ̂ψ; θ̂) = Eθ̂
{
lλi(θ̂ψ)lλi(θ̂)

}
=

1

σ2
Eθ̂

[{
σ̂2lλi(θ̂) + T

(
λ̂i − λ̂iρ

)
+ T

(
ρ̂− ρ

)
Y i,−1

}
lλi(θ̂)

]
=

1

σ2

{
σ̂2Ê1 + T

(
ρ̂− ρ

)
Ê2

}
,

(3.11)

with Ê1 = Eθ̂
{
l2λi(θ̂)

}
e Ê2 = Eθ̂

{
Y i,−1lλi(θ̂)

}
. Notice that, as the expected value

(3.11) is computed with reference to the distribution pY (y; θ̂), the last equality sign

applies because the quantities θ̂ = (ψ̂, λ̂) and θ̂ψ = (ψ, λ̂ψ) must be considered given

and Eθ̂
{
lλi(θ̂)

}
= 0.

Although possible in principle, the analytical calculation of Ê1 and Ê2 is not straight-

forward in practice. Conversely, for the reasons discussed in Section 3.2, estimating

Iλiλi(θ̂ψ; θ̂) via Monte Carlo simulation represents an easily implementable solution.

The MPL of Severini can then be employed to make inference on ψ in the autoregres-

sion for nonstationary panel data by replacing such expectation in its ith group-specific

adjustment term (3.2) with the following empirical mean:

I∗λiλi(θ̂ψ; θ̂) =
1

R

R∑
r=1

[{
1

σ2

T∑
t=1

(
yrit−λ̂iρ−ρyri,t−1

)}{ 1

σ̂2

T∑
t=1

(
yrit−λ̂i−ρ̂yri,t−1

)}]
, (3.12)

where yrit (i = 1, . . . , N, t = 1, . . . , T ) is generated by model (3.5) with (ψ, λ) = (ψ̂, λ̂),

but the starting vector is kept unchanged, namely yr0 = y0 for each r = 1, . . . , R. It can

be worthwhile adding that, in this specific case, one alternative strategy for obtaining

(3.11) could foresee analogue Monte Carlo approximations to Ê1 and Ê2, which may be

derived just once because they involve θ̂ only. However, the overall computational cost

of this procedure would be the same as that entailed by using (3.12), since the whole

expected value in (3.11) would still need to be calculated for any different value of ψ.
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3.3.3 Computational aspects

The global ML estimate θ̂ can be easily obtained in closed-form by applying the OLS

method to the linear autoregression with normally distributed errors corresponding to

the specification (3.5). As a consequence, the ML estimate for the variance parameter

σ2 is expressed by

σ̂2 =
N∑
i=1

T∑
t=1

(
yit − λ̂i − ρ̂yi,t−1

)2

NT
, (3.13)

where formulations of ρ̂ and λ̂i result directly from (3.8). On the contrary, maximization

of lM̃∗(ψ) to find the estimate ψ̂M̃∗ usually has to be performed by means of numerical

algorithms and estimated standard errors are obtained using the second derivative of

the function at its maximum. Under this particular scenario, nevertheless, it is more

convenient to derive σ̂2
M̃∗ by evaluation of the explicit constrained estimate

σ̂2
ρ,M̃∗ = σ̂2

M̃∗(ρ) =
N∑
i=1

T∑
t=1

(
yit − λ̂iρ − ρyi,t−1

)2

N(T − 1)

at ρ̂M̃∗ , i.e. the scalar solution to the optimization problem with objective function

lρ
M̃∗(ρ) = lM̃∗

(
ρ, σ̂2

ρ,M̃∗

)
. Observe that, similarly, also lP (ψ) can be further profiled in

order to get lρP (ρ) = lP (ρ, σ̂2
ρ), where σ̂2

ρ takes the form equivalent to (3.13), but with

estimates ρ̂ and λ̂i replaced by ρ and λ̂iρ as in (3.7), respectively.

According to expression (3.11), for values of the autoregressive parameter beyond a

certain threshold depending on ρ̂ the expectation Iλiλi(θ̂ψ; θ̂) is negative and lM̃(ψ) is

not computable, paralleling the integrated likelihood of De Bin et al. (2015). Therefore,

in its turn, even the approximate expectation I∗λiλi(θ̂ψ; θ̂) can be smaller than or equal

to 0 for not very large values of ρ. A potentially undefined modification term obviously

poses a problem for the numerical optimization of lρ
M̃∗(ρ). In addition, as will emerge

more clearly from the plots available in Section 3.3.4, the Monte Carlo MPL is found

to reach its global maximum as ρ → +∞ for any sample size, in accordance with the

distinct functions for inference on ψ studied in Lancaster (2002), Dhaene and Jochmans

(2014) and De Bin et al. (2015). On such grounds, we choose to maximize lρ
M̃∗(ρ) by

performing a one-dimensional search in a real bounded interval Υ through the algorithm

implemented by the R function optimize. Specifically, adopting the same notation as

Lancaster’s (2002), Υ = (−ρl, ρu) with ρl = ρu = 1.5, since in general applications the

autoregressive parameter is hardly observed to lie outside these extremes. The estimate

resulting from local maximization of lM̃∗(ψ) in this framework is then uniquely defined

as ψ̂M̃∗ =
(
ρ̂M̃∗ , σ̂2

M̃∗

)
, where ρ̂M̃∗ = arg maxρ∈Υ l

ρ

M̃∗(ρ) and σ̂2
M̃∗ = σ̂2

ρ̂
M̃∗ ,M̃∗ . We refer to
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Dhaene and Jochmans (2014) for a careful discussion about the conditions under which

consistency of the local maximizer of their adjusted profile log-likelihood is achieved.

3.3.4 Simulation studies and numerical examples

In the present section, the accuracy of the Monte Carlo MPL in drawing inferences on

ψ is assessed with regard to that of the standard profile likelihood through a series of

simulations. More in detail, two main experiments based on S = 2000 iterations are

performed, both considering datasets with T = 4, 8, 16 and N = 250, 500, 1000. The

performance of lP (ψ) and lM̃∗(ψ) is examined in respect of bias (B), median bias (MB),

root mean squared error (RMSE) and median absolute error (MAE) of the corresponding

estimators. Precisely, with specific reference to ρ̂ we compute

Bρ̂ =
S∑
s=1

(
ρ̂s − ρ

)
/S,

MBρ̂ =
(
ρ̂(S/2) + ρ̂(S/2+1)

)
/2− ρ,

RMSEρ̂ =

√√√√ S∑
s=1

(
ρ̂s − ρ

)2
/S,

MAEρ̂ =
(
|ρ̂− ρ|(S/2) + |ρ̂− ρ|(S/2+1)

)
/2,

where ρ is the value of the autoregressive parameter used to simulate the S datasets, ρ̂s

is its ML estimate on the sth sample (s = 1, . . . , S) and x(s) denotes the sth element in

the vector of order statistics (x(1), . . . , x(S)), with x(s1) ≤ x(s2) for s1 < s2. Obviously,

homologous quantities are obtained for σ̂2, ρ̂M̃∗ and σ̂2
M̃∗ . The empirical standard devi-

ation (SD) of the various estimates is also reported. In the habitual way, considering

again ρ̂ for illustration, one may write

SDρ̂ =
S∑
s=1

(
ρ̂s − ¯̂ρ

)2
/(S − 1), ¯̂ρ =

S∑
s=1

ρ̂s/S.

In addition, the ratio SE/SD of ρ̂ and ρ̂M̃∗ , where SE stands for the average over sim-

ulations of likelihood-based estimated standard errors, and empirical coverages of 0.95

Wald confidence intervals (CI) for ρ are shown. Note that, like remarked by Bartolucci

et al. (2016), the large values of N examined here ensure adequacy of the quadratic ap-

proximation around the maximum of both lP (ψ) and lM̃∗(ψ), hence the generally more

accurate coverages derived by inversion of the log-likelihood ratio statistic would be in

this case substantially identical.
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The two simulation setups differ only in the true value of the autoregressive parameter

set to generate the samples from model (3.5): in the first ρ = 0.5, while in the second

ρ = 0.9. For what concerns the remaining parameters, the conditional variance of the

response variable is σ2 = 1 and the individual effects are independently drawn from

a N(1, 1) distribution, following the example of Lancaster (2002). In every simulated

dataset, all N initial observations in the vector y0 are fixed equal to 0 with no loss

of generality, since this is equivalent to interpret each yit as yit − yi0 and each λi as

λi − yi0(1 − ρ) (t = 1, . . . , T, i = 1, . . . , N) (Lancaster, 2002). Lastly, the number of

Monte Carlo replicates employed to compute lM̃∗(ψ) is R = 500.

Table 3.1: Inference on ρ = 0.5 in the nonstationary AR(1) model for panel data.
Figures based on a simulation study with 2000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

250 4 lP (ψ) -0.186 -0.186 0.025 0.187 0.186 0.879 0.000
lM̃∗(ψ) 0.020 0.018 0.037 0.042 0.028 0.921 0.915

8 lP (ψ) -0.114 -0.115 0.018 0.116 0.115 0.921 0.000
lM̃∗(ψ) 0.002 0.002 0.020 0.020 0.013 0.989 0.942

16 lP (ψ) -0.070 -0.070 0.013 0.071 0.070 0.960 0.000
lM̃∗(ψ) -0.000 0.000 0.014 0.014 0.009 1.002 0.944

500 4 lP (ψ) -0.184 -0.183 0.017 0.184 0.183 0.896 0.000
lM̃∗(ψ) 0.018 0.019 0.025 0.031 0.022 0.952 0.881

8 lP (ψ) -0.113 -0.113 0.013 0.114 0.113 0.902 0.000
lM̃∗(ψ) 0.002 0.002 0.014 0.014 0.010 0.972 0.943

16 lP (ψ) -0.069 -0.069 0.009 0.069 0.069 0.983 0.000
lM̃∗(ψ) 0.000 0.000 0.009 0.009 0.007 1.029 0.959

1000 4 lP (ψ) -0.187 -0.187 0.013 0.187 0.187 0.879 0.000
lM̃∗(ψ) 0.019 0.018 0.019 0.026 0.019 0.923 0.795

8 lP (ψ) -0.115 -0.115 0.009 0.115 0.115 0.919 0.000
lM̃∗(ψ) 0.002 0.002 0.010 0.010 0.007 0.987 0.948

16 lP (ψ) -0.070 -0.070 0.007 0.070 0.070 0.935 0.000
lM̃∗(ψ) 0.000 0.000 0.007 0.007 0.005 0.977 0.940

Inferential results for ρ and σ2 of the first study are displayed in Tables 3.1 and

3.2, respectively. Similar comments as in Bartolucci et al. (2016) can be made. In all

cases, no significant differences between bias and median bias of the same estimator

are observed but the improvement determined by using the Monte Carlo MPL in this
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sense is undeniable. Consistently with the theory, the bias does not vary with N but

decreases as T increases, whereas the root mean squared error depends on both indexes.

Empirical coverage probabilities of confidence intervals for the autoregressive parameter

based on lM̃∗(ψ) are generally accurate, with larger departures from the nominal level

occurring when T = 4. Such conspicuous refinements to the poor interval estimation

supplied by lP (ψ) mainly stem from bias reduction. Yet some correction in curvature

also takes place, being SE/SD for the Monte Carlo MPL typically closer to 1 than for

the ordinary profile likelihood.

Table 3.2: Inference on σ2 = 1 in the nonstationary AR(1) model for panel data
with ρ = 0.5. Figures based on a simulation study with 2000 trials and R = 500
Monte Carlo replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE

250 4 lP (ψ) -0.300 -0.301 0.036 0.303 0.301
lM̃∗(ψ) 0.013 0.011 0.060 0.062 0.041

8 lP (ψ) -0.147 -0.148 0.029 0.150 0.148
lM̃∗(ψ) -0.000 -0.001 0.035 0.035 0.024

16 lP (ψ) -0.071 -0.071 0.022 0.074 0.071
lM̃∗(ψ) -0.001 -0.001 0.023 0.023 0.016

500 4 lP (ψ) -0.299 -0.299 0.026 0.300 0.299
lM̃∗(ψ) 0.013 0.013 0.043 0.045 0.029

8 lP (ψ) -0.147 -0.148 0.020 0.148 0.148
lM̃∗(ψ) -0.000 -0.001 0.024 0.024 0.017

16 lP (ψ) -0.070 -0.070 0.015 0.072 0.070
lM̃∗(ψ) -0.000 -0.000 0.017 0.017 0.011

1000 4 lP (ψ) -0.300 -0.299 0.018 0.301 0.299
lM̃∗(ψ) 0.013 0.014 0.030 0.033 0.022

8 lP (ψ) -0.147 -0.147 0.015 0.147 0.147
lM̃∗(ψ) 0.001 0.000 0.018 0.018 0.012

16 lP (ψ) -0.070 -0.070 0.011 0.071 0.070
lM̃∗(ψ) -0.000 -0.000 0.012 0.012 0.008

Tables 3.3 and 3.4 illustrate instead results of the simulation experiment run with

a true value of ρ approaching the boundaries of the stationary region (−1, 1), partic-

ularly ρ = 0.9. Relative behaviours of the two methods for estimating the structural

component are basically in line with those analyzed in the previous study. Perhaps,

one may argue that here the general improvements originating from the employment of
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lM̃∗(ψ) are somewhat milder than when the autoregressive parameter is farther away

from nonstationariety. This observation can be referred both to bias and, mostly, to

empirical coverages of Wald confidence intervals for ρ. Nonetheless, the quality of MPL-

based inference remains unquestionably higher than that achieved through standard ML

techniques.

Table 3.3: Inference on ρ = 0.9 in the nonstationary AR(1) model for panel data.
Figures based on a simulation study with 2000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

250 4 lP (ψ) -0.130 -0.130 0.018 0.131 0.130 0.894 0.000
lM̃∗(ψ) 0.022 0.021 0.028 0.036 0.024 0.899 0.871

8 lP (ψ) -0.051 -0.051 0.008 0.052 0.051 0.922 0.000
lM̃∗(ψ) 0.003 0.003 0.010 0.010 0.007 0.976 0.933

16 lP (ψ) -0.022 -0.023 0.004 0.023 0.023 0.957 0.001
lM̃∗(ψ) 0.000 0.000 0.005 0.005 0.003 1.003 0.950

500 4 lP (ψ) -0.128 -0.128 0.013 0.129 0.128 0.905 0.000
lM̃∗(ψ) 0.021 0.020 0.019 0.028 0.021 0.928 0.774

8 lP (ψ) -0.050 -0.050 0.006 0.050 0.050 0.933 0.000
lM̃∗(ψ) 0.003 0.003 0.007 0.007 0.005 0.980 0.928

16 lP (ψ) -0.022 -0.022 0.003 0.022 0.022 0.957 0.000
lM̃∗(ψ) 0.001 0.001 0.003 0.003 0.002 1.001 0.946

1000 4 lP (ψ) -0.131 -0.131 0.009 0.131 0.131 0.895 0.000
lM̃∗(ψ) 0.021 0.021 0.014 0.025 0.021 0.909 0.612

8 lP (ψ) -0.051 -0.051 0.004 0.051 0.051 0.923 0.000
lM̃∗(ψ) 0.003 0.003 0.005 0.006 0.004 0.969 0.884

16 lP (ψ) -0.022 -0.022 0.002 0.022 0.022 0.923 0.000
lM̃∗(ψ) 0.001 0.001 0.002 0.002 0.002 0.968 0.930

Figures 3.1 and 3.2 graphically show the different tendencies of the functions de-

scribed in Section 3.3.3, meaning lρP (ρ) and lρ
M̃∗(ρ), in their relative version. Specifically,

quantities in the former figure are referred to samples generated from model (3.5) with

ρ = 0.5, while those in the latter are computed starting from datasets simulated by

fixing ρ = 0.9. These plots substantially confirm the results of simulations discussed so

far. In each of them, the maximum of the profile log-likelihood is significantly smaller

than the true value of the autoregressive parameter, corresponding to the vertical line.

For this main reason, such value never belongs to the 0.95 confidence region defined



Chapter 3 - Monte Carlo modified profile likelihood for clustered data 77

by inversion of the profile likelihood ratio statistic and marked by the horizontal line.

This may also be attributed to the accentuated curvature of lρP (ρ). Conversely, the

local maximization of the Monte Carlo MPL yields to adequate both point and interval

estimation of ρ. The unusual trend of lρ
M̃∗(ρ), whose global maximizer lies at infinity,

was already anticipated in Section 3.3.3 and can now be directly checked. Indeed, the

absence of restrictions on the initial conditions yi0 (i = 1, . . . , N) causes the Monte

Carlo MPL to be re-increasing, sometimes already in the stationary parameter region

(Dhaene and Jochmans, 2014). Quite interestingly, especially for small values of T and

larger values of ρ, lρ
M̃∗(ρ) may also be everywhere increasing. Two representations of

this event with positive probability are given by Figure 3.3.

Table 3.4: Inference on σ2 = 1 in the nonstationary AR(1) model for panel data
with ρ = 0.9. Figures based on a simulation study with 2000 trials and R = 500
Monte Carlo replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE

250 4 lP (ψ) -0.297 -0.298 0.036 0.299 0.298
lM̃∗(ψ) 0.021 0.017 0.062 0.066 0.043

8 lP (ψ) -0.144 -0.145 0.029 0.147 0.145
lM̃∗(ψ) 0.002 0.000 0.035 0.035 0.024

16 lP (ψ) -0.070 -0.070 0.021 0.074 0.070
lM̃∗(ψ) -0.001 -0.001 0.023 0.023 0.016

500 4 lP (ψ) -0.295 -0.295 0.026 0.297 0.295
lM̃∗(ψ) 0.020 0.019 0.044 0.048 0.032

8 lP (ψ) -0.144 -0.144 0.020 0.145 0.144
lM̃∗(ψ) 0.001 0.001 0.024 0.025 0.017

16 lP (ψ) -0.069 -0.069 0.015 0.071 0.069
lM̃∗(ψ) 0.000 0.000 0.017 0.017 0.011

1000 4 lP (ψ) -0.296 -0.296 0.018 0.297 0.296
lM̃∗(ψ) 0.021 0.021 0.031 0.037 0.026

8 lP (ψ) -0.144 -0.144 0.015 0.144 0.144
lM̃∗(ψ) 0.003 0.002 0.018 0.018 0.012

16 lP (ψ) -0.070 -0.070 0.011 0.070 0.070
lM̃∗(ψ) 0.000 0.000 0.012 0.012 0.008
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Figure 3.1: Relative log-likelihoods for two datasets generated under the nonsta-
tionary AR(1) model with ρ = 0.5. The vertical line indicates the true value of the
autoregressive parameter, while the horizontal line gives the 0.95 confidence intervals
for ρ based on the profile and modified profile log-likelihood ratio statistics.

3.4 Models for binary data with missing values

3.4.1 Introduction

These days missing data are the rule rather than the exception in quantitative research

analysis. It comes then as no surprise that such a great deal of literature has been pro-

duced on the topic since the early 1970s, when opportunities given by the technological

developments in computer science could be fruitfully seized.
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Figure 3.2: Relative log-likelihoods for two datasets generated under the nonsta-
tionary AR(1) model with ρ = 0.9. The vertical line indicates the true value of the
autoregressive parameter, while the horizontal line gives the 0.95 confidence intervals
for ρ based on the profile and modified profile log-likelihood ratio statistics.

The lacking registration of some data in one study may occur in a multiplicity of

ways. According to Little and Rubin (2002, Sections 1.2 and 1.3) the classification of

missing values can be based on two main criteria: pattern of missingness and mechanism

of missingness. The former essentially describes which data are observed and which are

not. For instance, one usually speaks of univariate missing data whether missingness is

confined to a single recorded variable and of multivariate missing data otherwise. Under

the same framework, a further distinction which is useful in regression settings is made

between incomplete predictors and/or incomplete outcomes. Missing-data patterns are



80 Section 3.4 - Models for binary data with missing values

0.6 0.8 1.0 1.2 1.4

−
35

−
25

−
15

−
5

ρ

R
el

at
iv

e 
lo

g−
lik

el
ih

oo
ds

l P
ρ(ρ)

lM
*

ρ (ρ)

N = 500,T = 2

0.9 1.0 1.1 1.2 1.3 1.4 1.5

−
35

−
25

−
15

−
5

ρ

R
el

at
iv

e 
lo

g−
lik

el
ih

oo
ds

l P
ρ(ρ)

lM
*

ρ (ρ)

N = 500,T = 2

Figure 3.3: Relative log-likelihoods for two datasets generated under the nonsta-
tionary AR(1) model with ρ = 0.9 and ρ = 1.2, respectively. The vertical line indicates
the true value of the autoregressive parameter, while the horizontal line gives the 0.95
confidence intervals for ρ based on the profile and modified profile log-likelihood ratio
statistics.

a matter of particular importance for clustered observations. In longitudinal studies

collecting information on a set of cases repeatedly over time, like clinical trials or panel

surveys, a typical issue is indeed attrition, due to subjects dropping out prior to the

end of the follow-up occasions and not coming back. Such pattern of missingness is said

monotone to be distinguished from the general or arbitrary ones, when intermittent

observations may arise instead. For additional examples of incomplete-data patterns,

interested readers may also consult Schafer and Graham (2002).
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To put it simply, mechanisms leading to incomplete datasets appertain to the rela-

tionship between measured variables and the probability of missing data (Baraldi and

Enders, 2010). This concept found its first mathematical formalization in the semi-

nal paper by Rubin (1976), who explicitly treated the missing values as realizations of

a random variable with some probability distribution. Such an approach enabled the

author to develop the categorisation of data still in use today: missing completely at

random (MCAR), missing at random (MAR) and missing not at random (MNAR). The

first case naively supposes the missingness probability to be completely unrelated to the

data values, missing or not. More realistically, with an MAR mechanism missingness is

instead allowed to depend on the observed entries of the dataset. Alternatively, when

the probability of missing observations depends also on values that are unobserved, the

data are called MNAR. A meticulous elucidation of these definitions can be read in

Mealli and Rubin (2015), where an extended typology of missing-data mechanisms is

also presented.

Inferential procedures to handle missing values in the estimation of statistical models

must be selected taking into account both the pattern and the mechanism of missingness

occurring in the study. Notice that the latter substantially corresponds to an assumption

imposed by the analyst, which most of the times is empirically untestable (Baraldi

and Enders, 2010). Formulation of this hypothesis requires extreme care because the

true nature of the underlying missingness generation process deeply affects the validity

of inferential results obtained with the numerous missing-data methods. A complete

taxonomy of such techniques, along with many helpful references, is reported in Section

1.4 of Little and Rubin (2002). Accessible overviews of traditional and modern strategies

for coping with partially observed data are instead Schafer and Graham (2002) and

Baraldi and Enders (2010).

As throughout this thesis, here we only consider estimation procedures for incomplete

datasets directly depending on the likelihood function. In general, along the above lines

of argument, this model-based methodology asks to specify both a distribution for the

data with usual full parameter θ ∈ Θ and a mechanism for the missing values indexed

by, say, γ ∈ Γ. However, a fundamental result in Rubin (1976) entails that the weakest

sufficient conditions under which it is appropriate to ignore the missing-data mechanism

when conducting likelihood inferences on θ are two: missingness at random of the data

and distinctness between θ and γ, in the sense that the joint parameter space must be

expressible as Θ×Γ. This motivates the terminology which refers to MCAR and MAR

as ignorable mechanisms and to MNAR as nonignorable (Little and Rubin, 1987).

When data are MNAR and hence a model for the missingness process has to be
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formulated, different approaches can be adopted (Little and Rubin, 2002, Section 15.1).

Nevertheless, the main distinction lies between so-called selection models and pattern-

mixture models (Fitzmaurice et al., 2008, Chapter 18). To better describe the difference,

let us consider independent possibly missing clustered observations yit and define the

corresponding missingness indicators Mit such that Mit = 1 if yit is unobserved and

Mit = 0 otherwise (i = 1, . . . , N, t = 1, . . . , T ). From a likelihood-related standpoint,

the joint distribution of Yit and Mit in some global parametrization ϕ needs to be

specified and the manner in which it is factorized discriminates between the classes of

nonignorable models. Particularly, selection models assume a marginal distribution for

Yit and a conditional distribution of Mit given Yit, so that

pYit,Mit
(yit,mit;ϕ, xit) = pYit(yit; θ, xit)pMit|Yit(mit|yit; γ, xit), (3.14)

with ϕ = (θ, γ); rather, pattern-mixture models explicitly assign some marginal distribu-

tion to Mit and one conditional distribution to Yit given Mit, obtaining the factorization

pYit,Mit
(yit,mit;ϕ, xit) = pMit

(mit; δ, xit)pYit|Mit
(yit|mit;ω, xit),

where ϕ = (ω, δ). Each of these modeling frameworks has its own benefits and draw-

backs, thus the choice is usually made according to the special context of analysis. In

wide generality, selection models appear more sensible in situations of ignorable miss-

ingness; for a comprehensive discussion on the topic, see Michiels et al. (1999), Section

18.3 in Fitzmaurice et al. (2008) and references therein.

3.4.2 Computational methods

Computationally speaking, in moderately complex models for incomplete datasets with

general patterns, maximization of the log-likelihood function incorporating all the avail-

able information is quite an arduous task. Indeed this function, named observed log-

likelihood, often involves integrals or summations over the distribution of the missing

data which are hardly tractable.

It is well-known that the iterative EM algorithm (Dempster et al., 1977) is a possibly

advantageous strategy for ML estimation whenever data either are partially not observed

or may be viewed as such. In fact, this approach is pervasive in the literature of missing

data, and many extensions to the original version have been posited to tackle specific

combinations of pattern and mechanism of missingness. Other than those examined in

Section 8.5 of Little and Rubin (2002), it might be worth quoting a few more proposals
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somehow related with the studies reported in the following sections. Firstly, given that

the focus here is on maximization of profile and adjusted profile likelihoods, a due

reference is made to the work of Kim and Taylor (1995), who presented the general

EM routine to be applied under linear restrictions on the parameters. As for particular

missing-data problems, Ibrahim et al. (1999a) and Ibrahim et al. (1999b) generalized the

EM algorithm for handling MAR and MNAR covariates, respectively, under regression

scenarios. Both solutions rely on a Monte Carlo implementation of the EM procedure

(Wei and Tanner, 1990) and on a Gibbs sampler with adaptive rejection region (Gilks

and Wild, 1992) for reasons of computational efficiency. Another strategy is that of

Sinha and Maiti (2008), who developed an EM-type algorithm for the specific analysis

of matched case-control data with nonignorable missing exposure. Targeting instead

the missingness of the dependent variable, Ibrahim and Lipsitz (1996) used a weighted

EM procedure in binomial regressions with MNAR response, while Fitzmaurice et al.

(1994) considered EM estimation of models for MAR binary missing clustered data. The

stochastic EM algorithm for managing arbitrary patterns of nonignorable missingness in

the outcome of longitudinal studies was used instead by Gad and Ahmed (2006). Lastly,

one relevant contribution in this research area was recently provided by Yang and Kim

(2016), who approximated the observed log-likelihood for MAR data by importance

sampling in every EM iteration.

Obviously, ML estimation in missing-data problems can be performed by numerical

iterative algorithms alternative to the EM (Little and Rubin, 2002, Section 8.1). Among

the variety of examples hosted by the literature, we shall recall the Nelder-Mead sim-

plex method (Nelder and Mead, 1965) employed in Troxel et al. (1998a) and Troxel

et al. (1998b) for optimization purposes in presence of arbitrarily MNAR clustered ob-

servations. Furthermore, both Parzen et al. (2006) and Sinha et al. (2011) carried out

maximization of a pseudo-likelihood by the popular Newton-Raphson algorithm. Inter-

estingly, their approach can be interpreted as semiparametric in spirit, because it avoids

defining some joint distribution for the binary longitudinal data with nonignorable miss-

ingness and non-monotone patterns. As a result, the function to be optimized is much

more computationally tractable.

On a general note, the application of the EM algorithm notoriously eases numerical

complexities linked with the direct maximization of the observed log-likelihood when the

assumed distribution of the data belongs to the class of exponential families. However,

the basic iterative process does not automatically deliver estimated standard errors of

ML estimates and might converge very slowly if the portion of missing information

is large (Little and Rubin, 2002, Section 8.1). Some aforesaid variants of the original
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procedure manage to fix these issues, but at the expense of simplicity in implementation.

For certain, a universal best solution to maximize the log-likelihood in problems with

incomplete observations is impossible to prescribe, thus every situation needs to be

assessed individually. Before closing, it is important to point out that nonignorable

missing-data models must be carefully fitted regardless of the method employed, because

the available information may often be insufficient to estimate some parameters (Ibrahim

et al., 2001).

3.4.3 Binary regressions with missing response

In this section, special attention is given to possibly missing clustered binary observa-

tions. Several regression models for such kind of data have been reviewed and compared

in, for example, Fitzmaurice et al. (1995), with specific reference to nonignorable drop-

outs. By contrast, here we examine arbitrary patterns of missingness and not only

MNAR mechanisms, yet the key points of that work apply also to these situations. Fur-

thermore, until otherwise stated, covariates are considered given and entirely observed.

Adopting the typical factorization of selection models defined in (3.14), for indepen-

dent observations yit one can write the marginal distribution

Yit ∼ Bern(πit), πit = πit(θ) = F (λi + βxit), i = 1, . . . , N, t = 1, . . . , T, (3.15)

with F some suitable cumulative distribution function, whereas the conditional model

for the missingness indicator introduced in Section 3.4.1 may be expressed by

Mit|Yit = yit ∼ Bern(ζit), i = 1, . . . , N, t = 1, . . . , T, (3.16)

where ζit ∈ (0, 1). Specifically, choosing a canonical link as done in Diggle and Kenward

(1994) and denoting by logit−1 the distribution function of the logistic random variable,

the following general formulation is attributed to ζit:

ζit = ζit(γ) = P (Mit = 1|Yit = yit) = logit−1(γ1 + γ2xit + γ3yit). (3.17)

The parameter of interest in the joint model described by (3.15)–(3.17) coincides with

the unique regression coefficient β ∈ IR, and the usual incidental parameters are grouped

in λ = (λ1, . . . , λN) ∈ IRN , so that θ = (β, λ) ∈ IRN+1. As further nuisance component,

we also have the coefficients in the logistic model for the indicator of missingness, γ =

(γ1, γ2, γ3) ∈ IR3, thus the overall parameter here is ϕ = (θ, γ) ∈ IRN+4. The structural

component common to all groups in the sample is finally defined as ψ = (β, γ) ∈ IR4.
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Once again, for the purposes of this discussion it is sufficient to envisage only one

predictor, but extensions of the forthcoming analysis to cases with multiple regressors

are straightforward. We also stress that, although not contemplated here, substitution

of a cluster-specific intercept for γ1 in (3.17) might be deemed appropriate.

According to the assumption we make about the mechanism which generates the

missing values, it is possible to identify different relations between the missingness

probability and the variables in the study. Such relations, in their turn, translate into

constraints on the model parameters (Parzen et al., 2006). Particularly, since here co-

variates are nonrandom and their distribution is not modeled, from specification (3.17)

follows that data can be either MCAR, when γ3 = 0, or MNAR otherwise (Baker, 1995).

The primary objective of this part is to see whether Monte Carlo simulation effec-

tively improves the performance of the MPL by Severini when making inference on ψ

in situations with missing data. Indeed, models like (3.15) for complete observations

yit were already investigated in Bellio and Sartori (2003), who showed how analytically

deriving M̃(ψ) in order to consistently estimate ψ when N is much larger than T . Unfor-

tunately, the presence of missing values creates trouble in the explicit calculation of the

adjustment term. Generally, the expectation therein should be evaluated with regard

to the joint distribution p(yit,mit; ϕ̂, xit), taking also the missing-data mechanism into

account, but the correct way of doing so is not without ambiguity. More specifically,

in the light of the arguments made by Kenward and Molenberghs (1998), one expects

to be allowed to neglect the missingness process only when data are MCAR. Thus,

even in this setting, we shall see how the Monte Carlo strategy can easily overcome the

computational difficulties experienced during the use of the MPL.

Let us now obtain the necessary likelihood quantities for drawing inferences on the

parameter of interest under the most general MNAR framework. For the sake of clarity,

denote by yobs the observed entries of y = (yit) and by ymis the remaining missing compo-

nents. As highlighted in Section 6.2 of Little and Rubin (2002), the actual data consist

of yobs and the indicators of missingness m = (mit). The observed likelihood is then

obtained by summing over ymis the joint probability distribution of Y = (Y obs, Y mis)

and M . Precisely, one can write

L(ϕ) = L(ϕ; yobs,m) =
∑
ymis

pY
(
yobs, ymis; θ

)
pM |Y

(
m|yobs, ymis; γ

)
,

where the presence of fixed covariates is ignored for succinctness. In our case, since the

groups of observations are independent, the corresponding MNAR log-likelihood may

be written as usual in the additive form l(ϕ) =
∑N

i=1 l
i(ϕ) and its maximizer is the
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global ML estimate ϕ̂. By assumptions (3.15)–(3.17), it is not too difficult to derive the

expression for the ith summand:

li(ϕ) =
T∑
t=1

[
mit log

{
(1− πit)ζ0

it + πitζ
1
it

}
(3.18)

+ (1−mit)
{
yit log πit + (1− yit) log(1− πit) + log(1− ζit)

}]
,

where ζ0
it = logit−1(γ1 + γ2xit) and ζ1

it = logit−1(γ1 + γ2xit + γ3). Notice that li(ϕ) is

substantially divided in two parts: the first accounts for the missing observations ymis

and the second for the recorded yobs. After one differentiation with respect to the ith

incidental parameter λi, we get the partial score function

lλi(ϕ) =
T∑
t=1

{
mit log

fit(ζ
1
it − ζ0

it)

πitζ1
it + (1− πit)ζ0

it

+ (1−mit)
(yit − πit)fit
πit(1− πit)

}
, (3.19)

where fit = fit(θ) = ∂F (λi+βxit)/∂λi and the separate contribution of unobserved and

observed data is still evident. Then, differentiating one more time and changing the

sign of the obtained derivative lead to

jλiλi(ϕ) =
T∑
t=1

[
mit

{
f ′it
fit
− (ζ1

it − ζ0
it)fit

πitζ1
it + (1− πit)ζ0

it

}
+ (1−mit)(yit − πit)

{
f ′it − f 2

it

πit(1− πit)
− fit(1− 2πit)

π2
it(1− πit)2

}]
, (3.20)

where f ′it = f ′it(θ) = ∂2F (λi + βxit)/∂λ
2
i . The solution to the ith component of the

likelihood equation lλi(ϕ) = 0 can be found numerically, and we denote it by λ̂iψ.

Substituting this value for λi in (3.18) permits to obtain the MNAR profile log-likelihood

as lP (ψ) =
∑N

i=1 l
i
P (ψ). Defined the full constrained ML estimate ϕ̂ψ in the conventional

way, the same replacement in equation (3.20) gives instead jλiλi(ϕ̂ψ).

At this stage, we are left with the computation of Iλiλi(ϕ̂ψ; ϕ̂) = Eϕ̂
{
lλi(ϕ̂ψ)lλi(ϕ̂)

}
.

For this model, the intricacy of such task not only has practical but also conceptual

origins. Understanding how to take this expected value over the unconditional sampling

distribution, using the terminology of Kenward and Molenberghs (1998), is not that

obvious. In fact, the joint distribution of (Yit,Mit) was not specified directly, but divided

in the two factors (3.15) and (3.16). Viceversa, the Monte Carlo solution presented in

Section 3.2 may be applied quite plainly even in these circumstances. Particularly, the
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approximation (3.3) in the MNAR case takes the form

I∗λiλi(ϕ̂ψ; ϕ̂) =
1

R

R∑
r=1

lrλi(ϕ̂ψ)lrλi(ϕ̂), i = 1, . . . , N, (3.21)

where lrλi is the score of the rth partially observed sample yrit (r = 1, . . . , R) obtained in

two steps: first, a complete dataset yr,Cit is simulated under model (3.15) with θ = θ̂ and

second, some entries in this dataset are deleted and considered missing according to the

specification (3.16) with MNAR probability ζit = ζit(γ̂) = logit−1(γ̂1 + γ̂2xit + γ̂3y
r,C
it ).

Note that ψ̂ = (θ̂, γ̂) is the global maximizer of the MNAR profile log-likelihood which

also takes the generation process of missingness into consideration. Therefore, by such

procedure, the average of the score products over the R incomplete samples yrit properly

estimates the unconditional expectation required.

Before proceeding, it seems worthwhile making a few more comments about the

general formula (3.18). Supposing an ignorable MCAR missing-data mechanism by

imposing γ3 = 0 in (3.17) yields clearly to ζ0
it = ζ1

it = ζit = logit−1(γ1 +γ2xit), and hence

(3.18) simplifies in

li(ϕ) =
T∑
t=1

[
mit log ζit + (1−mit)

{
yit log πit + (1− yit) log(1− πit) + log(1− ζit)

}]
.

Since our interest is only on the parameter β and ζit does not carry any useful information

about it, we can rely on the equivalent function

li(θ) = li(θ; yobs) =
∑

t: yit∈yobs

{
yit log πit + (1− yit) log(1− πit)

}
, (3.22)

which is the ordinary group-related log-likelihood in binary regressions computed only on

the recorded data. Indeed, when the missingness mechanism is MCAR, a complete-case

analysis discarding units with missing values is unbiased, as the wholly observed cases

are basically a random sample from the reference population (Little and Rubin, 2002,

Section 3.2). For this specific model, it is also fully efficient because θ and γ are distinct,

provided that the full parameter space is Φ = IRN+1 × IR2 = Θ× Γ (Little and Rubin,

2002, p. 120). This means that likelihood inference can be conducted disregarding the

process which generates the missing observations. As a major implication for our study,

the expected value involved in Severini’s MPL may be derived from the conditional

distribution of Yit given Mit = 0. Specifically, it can be effortlessly shown (Bellio and

Sartori, 2003) that in situations like this such expectation has the following closed-form
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expression:

Iλiλi(θ̂β; θ̂) =
∑

t: yit∈yobs

fit
(
θ̂β
)
fit
(
θ̂
){

1− πit
(
θ̂β
)}
πit
(
θ̂β
) , i = 1, . . . , N, (3.23)

where estimates θ̂ = (β̂, λ̂) and θ̂β = (β, λ̂β) descend from ordinary ML inference on

the parameter of interest β via the MCAR profile log-likelihood lP (β) based on (3.22).

Furthermore, inasmuch as under the hypothesis of ignorable missingness it is possible to

utilize the function l(θ) with components (3.22), the general Monte Carlo approximation

reported in (3.21) admits to be reformulated in the MCAR case as

I∗λiλi(θ̂β; θ̂) =
1

R

R∑
r=1

lrλi(θ̂ψ)lrλi(θ̂), i = 1, . . . , N, (3.24)

where lrλi =
∑

t: yit∈yobs(y
r
it − πit)fit/{πit(1 − πit)} is the score of the incomplete sample

yrit simulated by the two-step procedure above but with an important difference: now θ̂

results from the maximization of l(θ), while γ̂ = (γ̂1, γ̂2) is obtained by a separate ML

fit of the logistic regression (3.17) subject to the constraint γ3 = 0, with the missingness

indicator as dependent variable and the covariate xit as unique predictor.

In the sequel, the utility of Monte Carlo approximation in the presence of incomplete

data will be evaluated through simulation experiments referring to binary regressions

with different missingness processes. Specifically, objects of comparison shall be the

unadjusted profile log-likelihood (either the MCAR lP (β) or the MNAR lP (ψ)), the

modification proposed by Severini lM̃(β) that ignores the missing values and is com-

puted analytically by formula (3.23) and the Monte Carlo MPL that accounts for some

presumed missingness mechanism. In order to avoid confusion, its MCAR variant em-

ploying the estimate (3.24) will be denoted by lM̃∗(β), whereas lM̃∗(ψ) shall indicate the

MNAR MPL with habitual expectation approximated by (3.21).

Logistic regression: simulation studies

The first part of analyses is performed supposing a logit link between the mean of

the response and the predictors, meaning F = logit−1 in model (3.15). Pairing this

assumption with that of an MCAR mechanism brings about the equality

Iλiλi(θ̂β; θ̂) =
∑

t: yit∈yobs

[
1− πit

(
θ̂
)]2

=
∑

t: yit∈yobs

[
1− logit−1

(
λ̂i + β̂xit

)]
, i = 1, . . . , N,
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whose right-hand side does not depend on the parameter of interest. Hence the only

part of Severini’s modification term relevant to estimating β is 1
2

log |jλλ
(
θ̂β
)
| and one

can write

M̃(β) =
1

2

N∑
i=1

log

[ ∑
t: yit∈yobs

πit
(
θ̂β
){

1− πit
(
θ̂β
)}]

=
1

2

N∑
i=1

log

[ ∑
t: yit∈yobs

logit−1(λ̂iβ + βxit)
{

1− logit−1
(
λ̂iβ + βxit

)}]
. (3.25)

It is also simple to show that in such a setting the score component related to the ith

incidental parameter equals

lλi(θ) =
∑

t: yit∈yobs

{
yit − πit(θ)

}
=

∑
t: yit∈yobs

{
yit − logit−1(λi + βxit)

}
, i = 1, . . . , N,

thus the expression of the MCAR Monte Carlo estimate I∗λiλi(θ̂β; θ̂) follows immediately

from the previous formula and (3.24). Loosely speaking, if observations are MCAR,

lM̃(β) and lM̃∗(β) take the same forms as in general logistic regressions for panel data

with no missing values, yet are computed only on the complete units. The numerical

maximization of both functions may then be automatically implemented by the R pack-

age panelMPL (Bellio and Sartori, 2015), after some minor manipulation of the code

which enables to manage also unbalanced group sizes.

For the reasons extensively discussed earlier, a correct analytical formulation of Sev-

erini’s MPL is not available when missingness in the data is hypothesized to be non-

ignorable. On the contrary, M̃∗(ψ) can be calculated via Monte Carlo simulation as

indicated in (3.21). All the quantities appearing therein are very easy to derive in the

logistic case and their specific expressions are not included here for brevity purposes

only. Turning to examine the optimization step in the MNAR scenario, even though

the model under analysis belongs to an exponential family and would be suitable for an

EM-type routine, the functions lP (ψ) and lM̃∗(ψ) are directly maximized numerically

by the Nelder-Mead algorithm. This decision may be motivated by several arguments.

The first has to do with the form of the observed log-likelihood in regressions where

the possibly missing response is binary; indeed, such function is not as computation-

ally intractable as commonly is when dealing with continuous data (Gad and Ahmed,

2006). Secondly, our independence assumption avoids the specification of relationships

among observations that would introduce structural parameters of not direct interest to
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be estimated (Troxel et al., 1998b). Moreover, this choice permits not to worry about

the considerable percentage of missing values in the data and the calculation of stan-

dard errors, as always estimated by means of the second numerical derivative of the

maximized function. Notice that in the MNAR case the argument ψ = (β, γ) of the

objective functions to be optimized has dimension equal to 4, whereas in the MCAR

case β is scalar. The higher complexity in the maximization problem is reflected by

longer execution times and numerical instabilities, especially in the estimation of γ and

its variance. Both Baker (1995) and Ibrahim and Lipsitz (1996) came across issues of

this kind while fitting similar nonignorable missing-data models for binary responses.

The authors attribute such problems to the lack of information in the sample about

the parameters ruling the missingness process, which may then result not identifiable.

At the suggestion of Parzen et al. (2006), to further facilitate the estimation phase one

might try modeling in a simpler manner the nonignorable mechanism; yet, in our case,

dropping γ1 and/or γ2 in (3.17) does not appear very sensible.

Before going through the details of the experiments run, it is worth recalling that,

as is common practice for binary longitudinal regressions, the optimization stage needs

to be anticipated by the omission of non-informative groups (Bellio and Sartori, 2003)

from the sample under analysis. In missing-data situations, whatever the supposed

mechanism, the clusters which cannot contribute to estimate β are those with yobsit = 0

or yobsit = 1 for every t = 1, . . . , T and those which are totally unobserved, i.e. where

yit = ymisit for each t = 1, . . . , T (i = 1, . . . , N).

Let us now describe the basic setup of the simulation studies. The two principal

settings are recognisable according to the model used to select the missing values in the

experimental datasets. In both of them, the covariate xit is simulated by means of inde-

pendent draws from the standard normal distribution, while intercepts λi (i = 1, . . . , N)

are obtained as λi =
∑T

t=1 xit/T + ui, where ui ∼ N(0, 1). The values of the structural

components in (3.15) and (3.17) for generating the S = 2000 samples with MCAR ob-

servations are set equal to β = 1, γ1 = −0.5 and γ2 = 0.3. Rather, simulation of the

MNAR data is carried out with β = 2, γ1 = −1, γ2 = 0.3 and γ3 = 2. The true values

of γ are chosen in such a way as to observe a percentage of missing observations in the

resulting datasets varying between 40% and 50%. Changing the value of the regression

coefficient in the second framework seems instead to mitigate the computational insta-

bilities associated with the estimation of γ. One possible explanation for this finding is

that, with the fixed nonignorable probability of missing data, a larger value of β serves

to maintain the portion of informative clusters comparable to the MCAR case, reducing

so the lack of knowledge about the missingness process. Tables 3.5, 3.6 and 3.7 show
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results of the series of simulations conducted in the context of logistic regressions. Per-

formances of the compared inferential functions are reported by computing measures of

accuracy analogue to those described for the autoregressive model in Section 3.3.4. In

the study considering an underlying MCAR mechanism, dimensions of the simulated

datasets correspond to different combinations of T = 4, 6, 10 and N = 50, 100, 250. One

may directly contrast the behaviour of the likelihoods built under the correct MCAR hy-

pothesis by looking at Table 3.5. The latter visibly certifies the inadequacy of inference

Table 3.5: Inference on β = 1 in the logistic regression for MCAR longitudinal
data. Figures based on a simulation study with 2000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(β).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (β) 0.793 0.666 0.771 1.106 0.672 0.669 0.732
lM̃(β) 0.138 0.111 0.351 0.377 0.233 1.024 0.969
lM̃∗(β) 0.138 0.110 0.360 0.385 0.231 1.000 0.969

6 lP (β) 0.793 0.666 0.771 1.106 0.672 0.669 0.732
lM̃(β) 0.097 0.069 0.271 0.288 0.178 0.991 0.962
lM̃∗(β) 0.098 0.070 0.271 0.288 0.178 0.990 0.961

10 lP (β) 0.243 0.228 0.235 0.338 0.234 0.857 0.807
lM̃(β) 0.038 0.031 0.184 0.188 0.116 0.972 0.945
lM̃∗(β) 0.039 0.032 0.184 0.188 0.115 0.972 0.943

100 4 lP (β) 0.684 0.631 0.466 0.828 0.631 0.746 0.534
lM̃(β) 0.098 0.089 0.236 0.255 0.160 1.060 0.965
lM̃∗(β) 0.098 0.088 0.236 0.256 0.159 1.059 0.964

6 lP (β) 0.436 0.413 0.277 0.517 0.413 0.813 0.542
lM̃(β) 0.073 0.064 0.181 0.195 0.130 1.009 0.951
lM̃∗(β) 0.073 0.065 0.181 0.195 0.129 1.009 0.948

10 lP (β) 0.229 0.220 0.168 0.284 0.220 0.859 0.658
lM̃(β) 0.028 0.021 0.132 0.135 0.089 0.969 0.947
lM̃∗(β) 0.029 0.023 0.132 0.135 0.089 0.969 0.946

250 4 lP (β) 0.634 0.612 0.297 0.701 0.612 0.731 0.199
lM̃(β) 0.079 0.071 0.158 0.176 0.117 1.004 0.934
lM̃∗(β) 0.080 0.072 0.158 0.177 0.115 1.003 0.934

6 lP (β) 0.412 0.401 0.183 0.451 0.401 0.789 0.207
lM̃(β) 0.059 0.055 0.121 0.134 0.089 0.975 0.928
lM̃∗(β) 0.059 0.055 0.121 0.135 0.089 0.973 0.926

10 lP (β) 0.225 0.222 0.105 0.249 0.222 0.883 0.326
lM̃(β) 0.027 0.026 0.084 0.088 0.057 0.991 0.940
lM̃∗(β) 0.028 0.026 0.084 0.088 0.058 0.992 0.938
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on β deriving by the employment of the profile likelihood in this incidental parameters

setting. The introduction of the modification term, either explicitly calculated or ap-

proximated by Monte Carlo simulation with R = 500, conspicuously refines both point

estimation and the actual coverage of Wald confidence intervals. The overall effects of

the adjustment to lP (β) are essentially equivalent to those viewed in Section 3.3.4. Yet

the most important evidence supplied here by Table 3.5 is the absence of the need to

take the MCAR mechanism into consideration when computing Severini’s MPL. Indeed,

the performance of lM̃(β) is substantially identical to that of lM̃∗(β) for all the sample

sizes considered. This confirms what argued by Kenward and Molenberghs (1998).

Inference on the same MCAR datasets can also be made via the functions lP (ψ) and

lM̃∗(ψ), which assume a general nonignorable model of missingness. Experimental out-

comes of such analysis, presented in Table 3.6, are of doubtful interpretation. Contrary

to expectations, the global accuracy of the MNAR Monte Carlo MPL appears to worsen

as the group size raises. More precisely, the bias of its estimator is even higher than

Table 3.6: Inference on β = 1 in the logistic regression for MCAR longitudinal
data. Figures based on a simulation study with 2000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 0.628 0.500 0.840 1.048 0.540 0.571 0.775
lM̃∗(ψ) -0.002 -0.105 0.513 0.513 0.292 0.636 0.869

6 lP (ψ) 0.318 0.261 0.503 0.595 0.340 0.661 0.781
lM̃∗(ψ) -0.117 -0.150 0.336 0.356 0.253 0.693 0.752

10 lP (ψ) 0.165 0.153 0.280 0.325 0.214 0.756 0.818
lM̃∗(ψ) -0.187 -0.192 0.249 0.311 0.218 0.669 0.653

100 4 lP (ψ) 0.510 0.449 0.527 0.733 0.458 0.628 0.681
lM̃∗(ψ) -0.078 -0.114 0.276 0.287 0.198 0.798 0.862

6 lP (ψ) 0.264 0.263 0.350 0.438 0.307 0.646 0.697
lM̃∗(ψ) -0.190 -0.193 0.220 0.290 0.214 0.669 0.627

10 lP (ψ) 0.181 0.183 0.200 0.269 0.198 0.775 0.716
lM̃∗(ψ) -0.262 -0.220 0.225 0.345 0.227 0.498 0.460

250 4 lP (ψ) 0.459 0.438 0.381 0.597 0.440 0.559 0.469
lM̃∗(ψ) -0.133 -0.133 0.212 0.250 0.164 0.624 0.691

6 lP (ψ) 0.257 0.259 0.266 0.370 0.277 0.589 0.544
lM̃∗(ψ) -0.222 -0.184 0.189 0.292 0.189 0.484 0.471

10 lP (ψ) 0.205 0.210 0.124 0.240 0.210 0.803 0.430
lM̃∗(ψ) -0.344 -0.257 0.212 0.405 0.257 0.302 0.164
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Table 3.7: Inference on β = 2 in the logistic regression for MNAR longitudinal
data. Figures based on a simulation study with 2000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 10 lP (ψ) 0.559 0.445 0.794 0.971 0.492 0.547 0.782
lM̃(β) -0.082 -0.102 0.330 0.340 0.227 1.053 0.938
lM̃∗(ψ) -0.105 -0.180 0.630 0.638 0.340 0.526 0.746

20 lP (ψ) 0.211 0.195 0.291 0.359 0.225 0.820 0.859
lM̃(β) -0.097 -0.106 0.222 0.242 0.168 1.009 0.904
lM̃∗(ψ) -0.087 -0.084 0.255 0.270 0.176 0.888 0.883

30 lP (ψ) 0.144 0.137 0.201 0.247 0.162 0.891 0.879
lM̃(β) -0.112 -0.121 0.182 0.214 0.151 0.975 0.870
lM̃∗(ψ) -0.029 -0.036 0.174 0.177 0.119 0.996 0.941

100 10 lP (ψ) 0.442 0.402 0.519 0.681 0.434 0.581 0.677
lM̃(β) -0.104 -0.117 0.232 0.254 0.182 1.035 0.909
lM̃∗(ψ) -0.196 -0.239 0.423 0.466 0.317 0.543 0.642

20 lP (ψ) 0.189 0.177 0.202 0.277 0.184 0.837 0.808
lM̃(β) -0.110 -0.111 0.161 0.195 0.140 1.001 0.867
lM̃∗(ψ) -0.077 -0.084 0.171 0.188 0.129 0.962 0.914

30 lP (ψ) 0.148 0.144 0.140 0.203 0.147 0.904 0.796
lM̃(β) -0.116 -0.121 0.125 0.170 0.129 0.996 0.820
lM̃∗(ψ) -0.028 -0.032 0.121 0.124 0.085 1.027 0.950

250 10 lP (ψ) 0.440 0.409 0.348 0.561 0.410 0.537 0.498
lM̃(β) -0.131 -0.136 0.141 0.192 0.146 1.067 0.859
lM̃∗(ψ) -0.203 -0.244 0.344 0.399 0.281 0.434 0.541

20 lP (ψ) 0.198 0.193 0.133 0.239 0.193 0.788 0.558
lM̃(β) -0.117 -0.119 0.101 0.155 0.123 0.983 0.760
lM̃∗(ψ) -0.070 -0.075 0.118 0.137 0.093 0.886 0.884

30 lP (ψ) 0.136 0.134 0.088 0.161 0.134 0.909 0.609
lM̃(β) -0.126 -0.125 0.078 0.148 0.125 1.003 0.636
lM̃∗(ψ) -0.034 -0.035 0.075 0.083 0.056 1.028 0.929

that of the ML one if T = 10 and the empirical coverage of Wald confidence intervals,

always far below the nominal level, falls dramatically when T grows. This last issue

has also to do with the systematic underestimation of the estimates’ variability, which

seems exacerbated by the increasing number of within-cluster units. On the opposite

lP (ψ) exhibits the habitual behaviour, proving to be more reliable than lM̃∗(ψ) for in-

terval estimation when T = 6, 10 for every value of N . Notice that, while the MCAR
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profile log-likelihood in Table 3.5 results less adequate for inference on β than its MNAR

counterpart in Table 3.6, lM̃(β) and lM̃∗(β) neglecting the missing data process are typ-

ically much superior to lM̃∗(ψ). Therefore, in this logistic setting, one might claim that

unnecessary additional parameters to be estimated bring more harm than good and the

Monte Carlo MPL accounting for MNAR data is not robust to a simpler MCAR true

mechanism. The causes are unclear and surely merit further investigation.

A different picture is offered instead by Table 3.7, which refers to the second exper-

iment based on datasets generated with MNAR observations. Here, for reasons that

will soon be explained, the previous values of N are associated with larger group sizes,

i.e. T = 10, 20, 30. Classical ML inference through the MNAR profile log-likelihood is

found critically imprecise, especially in terms of the ensuing estimator’s bias, even when

T = 30. Yet the most significant simulation outcome concerns the relative pattern of in-

ferential results reached by the two versions of the MPL considered. Quite interestingly,

for any given number of clusters, as T increases the performance of lM̃(β) deteriorates

whereas that of lM̃∗(ψ) improves, in sharp contrast to what non- above. Probably, for

smaller T (we also tried T = 4, 6 like in the preceding study) the amount of informa-

tion carried by the data is not adequate to properly estimate the correct nonignorable

missingness mechanism. Therefore, accounting for it via Monte Carlo simulation has

the only effect to degrade the quality of inferences drawn. In particular, this appears to

be mostly due to underestimation of variability in the estimates resulting by the max-

imization of the MNAR MPL. Indeed, the numerical instabilities formerly mentioned

are more present when the cluster size is small. The fact that, conversely, the MPL

by Severini leads to worse results for large T may seem counterintuitive. A possible

motivation is that incompleteness of the data is more perceived in larger groups and

thus the harmful impact of the wrong MCAR assumption reveals itself as T grows. In

outline, one may conclude that, if the units in the clusters are not many, the analytical

version of the MPL by Severini is preferable even when the underlying mechanism of

missingness should not be ignored. The convenience of the Monte Carlo strategy may

instead be appreciated when groups are large and the process generating the missing

values is suspected to be nonrandom. As a final note, we observe that a fairer assess-

ment on the overall performance of Severini’s lM̃(β) and of the MNAR Monte Carlo

MPL lM̃∗(ψ) could be made by checking their inferential behaviours also in the presence

of MCAR datasets with larger clusters, by analogy with the latter experiment about

nonignorable missingness.
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Probit regression: simulation studies

Suppose now that specifications (3.15)–(3.17) hold with F = Φ, where Φ is the cumu-

lative distribution function of the standard normal random variable. Even in probit

regressions for clustered binary data yit (i = 1, . . . , N, t = 1, . . . , T ) an explicit formu-

lation for Severini’s adjustment exists. As in the former case, if the unobserved values

are presumed to be MCAR that same expression can be computed on the available

units. Specifically, denoting by φ the probability density function of the N(0, 1), the

expectation (3.23) simply becomes

Iλiλi(θ̂β; θ̂) =
∑

t: yit∈yobs

φ
(
λ̂iβ + βxit

)
φ
(
λ̂i + β̂xit

){
1− Φ

(
λ̂iβ + βxit

)}
Φ
(
λ̂iβ + βxit

) , i = 1, . . . , N. (3.26)

Under these hypotheses, it is immediate to show that the ith partial score function may

be expressed as

lλi(θ) =
∑

t: yit∈yobs

{
yit − Φ

(
λi + βxit

)}
φ
(
λi + βxit

)
Φ
(
λi + βxit

){
1− Φ

(
λi + βxit

)} , i = 1, . . . , N, (3.27)

and jλiλi(θ) is readily derived by changing sign to its first derivative with respect to λi.

Using (3.26) and (3.27), it is then possible to obtain both lM̃(β) in closed form and lM̃∗(β)

as described in (3.24), which postulate an MCAR missingness model. Furthermore,

observe that in the present probit regression framework the formula of the standard

profile log-likelihood lP (β) follows directly from (3.22) with πit = Φ(λi + βxit).

When, rather, we conjecture that incompleteness of the data originates from a nonig-

norable process, Monte Carlo simulation comes to our aid for approximating the uncon-

ditional expected value Iλiλi(ϕ̂ψ; ϕ̂), whose exact formulation remains undefined. The

expression of lM̃∗(ψ) in the probit setting may be obtained by double substitution of

Φ(λi + βxit) and φ(λi + βxit) for πit and fit, respectively, in equations (3.18)–(3.21).

The optimization methods employed for the various functions under forthcoming

comparison correspond to those of the logistic case. Also, all the comments and justi-

fications made on this point in the previous section apply here as well. It is certainly

worthwhile mentioning that, when the link in model (3.15) is non-canonical, the com-

putational instabilities driven by the problematic estimation of γ in case of MNAR as-

sumption appear to be more pronounced and execution times of numerical routines are

sensitively longer. Naturally, even in this framework, exclusion of the non-informative

clusters by the dataset must take place prior to the fitting phase.

The basic structure of the two experiments now performed considering a probit link
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Table 3.8: Inference on β = 1/1.6 in the probit regression for MCAR longitudinal
data. Figures based on a simulation study with 2000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(β).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (β) 0.495 0.419 0.459 0.675 0.421 0.645 0.677
lM̃(β) 0.086 0.076 0.198 0.216 0.135 1.075 0.977
lM̃∗(β) 0.092 0.077 0.213 0.232 0.140 1.001 0.964

6 lP (β) 0.284 0.259 0.241 0.373 0.261 0.760 0.686
lM̃(β) 0.053 0.046 0.152 0.161 0.103 0.989 0.957
lM̃∗(β) 0.050 0.042 0.154 0.162 0.102 0.968 0.951

10 lP (β) 0.150 0.144 0.136 0.203 0.147 0.865 0.766
lM̃(β) 0.026 0.022 0.107 0.110 0.070 0.986 0.948
lM̃∗(β) 0.024 0.019 0.107 0.109 0.070 0.985 0.948

100 4 lP (β) 0.445 0.398 0.300 0.536 0.398 0.678 0.464
lM̃(β) 0.071 0.063 0.142 0.159 0.102 1.057 0.954
lM̃∗(β) 0.075 0.064 0.151 0.169 0.107 0.995 0.941

6 lP (β) 0.264 0.251 0.165 0.312 0.251 0.776 0.485
lM̃(β) 0.046 0.040 0.108 0.117 0.075 0.992 0.944
lM̃∗(β) 0.041 0.035 0.109 0.116 0.074 0.974 0.942

10 lP (β) 0.140 0.137 0.098 0.171 0.137 0.855 0.620
lM̃(β) 0.018 0.017 0.077 0.079 0.052 0.974 0.950
lM̃∗(β) 0.016 0.014 0.077 0.078 0.052 0.971 0.948

250 4 lP (β) 0.398 0.384 0.171 0.433 0.384 0.720 0.129
lM̃(β) 0.054 0.050 0.087 0.102 0.068 1.068 0.943
lM̃∗(β) 0.056 0.051 0.092 0.108 0.070 1.006 0.931

6 lP (β) 0.252 0.247 0.105 0.273 0.247 0.796 0.172
lM̃(β) 0.038 0.037 0.069 0.079 0.054 1.001 0.932
lM̃∗(β) 0.034 0.033 0.070 0.078 0.052 0.983 0.932

10 lP (β) 0.136 0.134 0.061 0.149 0.134 0.858 0.295
lM̃(β) 0.016 0.015 0.048 0.051 0.033 0.976 0.942
lM̃∗(β) 0.014 0.013 0.048 0.050 0.033 0.975 0.942

between the response variable and the predictor is held unchanged. In the first, missing

observations are chosen according to an MCAR mechanism with γ1 = −0.5 and γ2 = 0.3;

in the second, the true missingness generation process is MNAR with γ1 = −1, γ2 = 0.3

and γ3 = 2. The unique covariate is again simulated from the N(0, 1) distribution

and the N incidental parameters are consequently set equal to λi =
∑T

t=1 xit/T + ui,

where ui ∼ N(0, 1) (i = 1, . . . , N). Exploiting the well-known relation between the



Chapter 3 - Monte Carlo modified profile likelihood for clustered data 97

logistic and normal distributions (Amemiya, 1981) in order to obtain data and quantity

of informative groups comparable to the logistic setting, the complete fictitious samples

are generated by fixing β = 1/1.6 under the MCAR scenario and β = 2/1.6 under the

MNAR one.

Tables 3.8 and 3.9 summarize in the customary manner results based on S = 2000

simulations of the study regarding MCAR data. Relative behaviours of the three MCAR

log-likelihoods illustrated by Table 3.8 do not differentiate from those viewed in Table 3.5

for the logit link. In more detail, the defective performance of lP (β) is greatly corrected

by the adjustment proposed by Severini, from any relevant inferential perspective and

for all possible couples (T,N) with T = 4, 6, 10 and N = 50, 100, 250. Moreover, even

in this case, accuracies achieved by lM̃(β) and lM̃∗(β) are basically indistinguishable,

thanks to the validity of the MCAR hypothesis.

Table 3.9: Inference on β = 1/1.6 in the probit regression for MCAR longitudinal
data. Figures based on a simulation study with 2000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 0.414 0.342 0.483 0.636 0.355 0.493 0.507
lM̃∗(ψ) 0.051 0.035 0.239 0.244 0.143 0.880 0.960

6 lP (ψ) 0.218 0.194 0.259 0.338 0.207 0.601 0.517
lM̃∗(ψ) 0.038 0.029 0.164 0.169 0.107 0.918 0.940

10 lP (ψ) 0.117 0.114 0.150 0.190 0.130 0.759 0.717
lM̃∗(ψ) 0.022 0.018 0.110 0.113 0.070 0.969 0.945

100 4 lP (ψ) 0.364 0.335 0.341 0.499 0.342 0.508 0.377
lM̃∗(ψ) 0.043 0.031 0.176 0.181 0.108 0.849 0.940

6 lP (ψ) 0.205 0.192 0.187 0.278 0.196 0.572 0.370
lM̃∗(ψ) 0.030 0.025 0.118 0.122 0.081 0.904 0.936

10 lP (ψ) 0.119 0.116 0.107 0.160 0.119 0.767 0.610
lM̃∗(ψ) 0.012 0.008 0.080 0.081 0.053 0.950 0.939

250 4 lP (ψ) 0.335 0.329 0.205 0.393 0.329 0.509 0.150
lM̃∗(ψ) 0.026 0.020 0.118 0.120 0.073 0.783 0.921

6 lP (ψ) 0.204 0.201 0.125 0.239 0.201 0.584 0.207
lM̃∗(ψ) 0.020 0.018 0.081 0.083 0.054 0.860 0.927

10 lP (ψ) 0.125 0.125 0.069 0.143 0.125 0.783 0.358
lM̃∗(ψ) 0.007 0.006 0.050 0.051 0.033 0.954 0.943

Like in the preceding part, inferences on β drawn using the MNAR methods for the

same samples are displayed by Table 3.9. However, in this probit regression setting the
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empirical properties of lM̃∗(ψ) are in line with the theory and much more favourable

than those of the corresponding unmodified function. This is well reflected by all bias

and Wald coverage indicators. In addition, the MNAR likelihoods seem to supply bet-

ter point estimation but less trustworthy confidence intervals compared to their MCAR

counterparts. The former in fact still tend to underestimate the variance of their max-

imizers. Altogether, we can say that with the probit link lM̃∗(ψ) succeeds in detecting

the underlying ignorable missingness process, which plainly represents a reduced form

of the full MNAR model presupposed by that Monte Carlo MPL.

Table 3.10: Inference on β = 2/1.6 in the probit regression for MNAR longitudinal
data. Figures based on a simulation study with 4000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 10 lP (ψ) 0.377 0.313 0.392 0.543 0.323 0.335 0.307
lM̃(β) -0.084 -0.102 0.174 0.193 0.145 1.097 0.920
lM̃∗(ψ) -0.054 -0.083 0.229 0.235 0.164 0.908 0.925

20 lP (ψ) 0.183 0.174 0.193 0.266 0.187 0.445 0.404
lM̃(β) -0.072 -0.080 0.130 0.148 0.109 0.985 0.886
lM̃∗(ψ) 0.015 0.005 0.147 0.148 0.094 0.927 0.947

30 lP (ψ) 0.104 0.101 0.129 0.166 0.110 0.613 0.618
lM̃(β) -0.082 -0.087 0.102 0.131 0.099 0.985 0.840
lM̃∗(ψ) 0.035 0.031 0.106 0.111 0.073 0.955 0.939

100 10 lP (ψ) 0.387 0.359 0.286 0.481 0.360 0.158 0.084
lM̃(β) -0.093 -0.100 0.122 0.154 0.116 1.109 0.887
lM̃∗(ψ) 0.025 -0.019 0.235 0.237 0.118 0.630 0.928

20 lP (ψ) 0.184 0.183 0.139 0.230 0.185 0.268 0.194
lM̃(β) -0.077 -0.080 0.091 0.119 0.089 1.001 0.837
lM̃∗(ψ) 0.039 0.033 0.107 0.114 0.070 0.884 0.955

30 lP (ψ) 0.105 0.105 0.097 0.143 0.108 0.556 0.500
lM̃(β) -0.082 -0.084 0.071 0.108 0.086 1.009 0.763
lM̃∗(ψ) 0.045 0.042 0.075 0.088 0.058 0.930 0.905

250 10 lP (ψ) 0.358 0.346 0.219 0.420 0.346 0.043 0.017
lM̃(β) -0.103 -0.106 0.077 0.128 0.107 1.110 0.768
lM̃∗(ψ) 0.032 -0.019 0.194 0.197 0.095 0.471 0.890

20 lP (ψ) 0.199 0.198 0.111 0.228 0.198 0.053 0.014
lM̃(β) -0.082 -0.085 0.057 0.100 0.085 1.010 0.679
lM̃∗(ψ) 0.041 0.030 0.090 0.099 0.051 0.648 0.932

30 lP (ψ) 0.120 0.120 0.076 0.142 0.122 0.203 0.104
lM̃(β) -0.089 -0.090 0.044 0.099 0.090 1.015 0.474
lM̃∗(ψ) 0.032 0.029 0.051 0.060 0.038 0.865 0.903
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Evidence resulting from the last simulation experiment is presented in Table 3.10,

which is referred to incomplete datasets with MNAR units having dimensions varying

in N = 50, 100, 250 and T = 10, 20, 30. Notice that the total number of iterations run is

raised to S = 4000 in order to compensate for the convergence difficulties encountered

throughout the estimation of the probit regression with nonignorable missing values.

Unlike what emerged by Table 3.7 for the second series of simulations in the MNAR

logistic framework, here lM̃∗(ψ) always appears to have higher inferential precision than

the analytical MPL which ignores the missingness model. Specifically, taking the true

nonignorable missing-data mechanism into account via Monte Carlo simulation is prac-

tically translated into improved bias and coverage properties of the MNAR MPL.

3.4.4 Logistic regression with missing covariates

In this section, attention is turned to clustered binary observations with incomplete

covariate data. Missing covariates are almost ubiquitous in biostatistics and especially

present a continual challenge in matched case-control studies (Cho Paik, 2004). A com-

parative review of methods for inference in GLMs with possibly unobserved predictors

is provided by Ibrahim et al. (2005). Hereafter, we consider in particular the approach

proposed by Lipsitz et al. (1998) to handle incomplete covariate information in gen-

eral logistic regressions with many nuisance parameters. Concentrating on the habitual

grouped structure of the data, let us assume the multiple logistic regression model for

independent binary observations yit

Yit ∼ Bern(πit), πit = πit(θ) = logit−1(λi + β1xit + β2zit),

i = 1, . . . , N, t = 1, . . . , T, (3.28)

where the global parameter θ = (ψ, λ) has components ψ = β = (β1, β2) ∈ IR2 and

λ = (λ1, . . . , λN) ∈ IRN . It is well established that in this framework one may eliminate

from L(θ) the cluster-specific intercepts by conditioning on suitable sufficient statistics

(see, e.g., Bellio and Sartori, 2003). The resulting function is called conditional likeli-

hood and enjoys standard first-order inferential properties (Andersen, 1970), not being

affected by the Neyman & Scott problems. Lipsitz et al. (1998) modified this function

in order to account also for the presence of MAR regressors. Since the MPL is a popular

approximation to the original conditional likelihood (Barndorff-Nielsen, 1983), we can

start from the intuition of Lipsitz et al. (1998) to derive a new version of lM̃(ψ) aimed

at dealing with missing covariates in logistic regressions.

By way of illustration, suppose that the response yit and the covariate xit are entirely
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recorded, whereas some values of zit are missing (i = 1, . . . , N, t = 1, . . . , T ). As

usual, generalization of the next steps to circumstances with more than one complete

predictor and/or more than one incomplete comes naturally. In this setting, redefine

the missingness indicator Mit, so that Mit = 0 if zit is observed and Mit = 1 if zit is

missing. Under the hypothesis of MAR covariate data, the conditional distribution of

such random variable may be formulated as

Mit|Yit = yit ∼ Bern(ζit), i = 1, . . . , N, t = 1, . . . , T, (3.29)

with

ζit = ζit(γ) = logit−1(γ1 + γ2xit + γ3yit). (3.30)

If one is willing to base inference only on cases with complete predictor information,

the reference distribution of the dependent variable is

Yit|Mit = 0 ∼ Bern(πcit), i = 1, . . . , N, t = 1, . . . , T, (3.31)

where the conditional probability of success πcit = P (Yit = 1|Mit = 0) can be obtained

by straightforward application of Bayes’ rule. Specifically, it is simple to prove that the

following equality holds:

πcit = πcit(θ, γ) =
P (Mit = 0|Yit = 1)P (Yit = 1)∑1

yit=0 P (Mit = 0|Yit = yit)P (Yit = yit)

= logit−1
(
λi + β1xit + β2zit + δit

)
,

where δit = δit(γ) = log{(1 − ζ1
it)/(1 − ζ0

it)}, with ζ0
it = logit−1(γ1 + γ2xit) and ζ1

it =

logit−1(γ1 + γ2xit + γ3). At this point, instead of removing the incidental parameters

by conditioning, we may compute the MPL on the grounds of model (3.31) in order to

make accurate inference on ψ. The presence of the offset δit in the logistic regression

permits to take the probability of a complete unit having totally observed data into

consideration, avoiding so the bias otherwise implied by the exclusion of incomplete

cases from the analysis (Lipsitz et al., 1998). Evidently, in practice δit is unknown

and needs to be estimated. One obvious consistent estimate is δ̂it = δit(γ̂), where γ̂

results from the ML fit of the logistic regression specified by formulae (3.29) and (3.30).

Henceforward, the conditional probability of success obtained upon plug-in of γ̂ will be

indicated by πĉit = πĉit(θ) = πcit(θ, γ̂). Such a substitution entails that the asymptotic

variance of the estimator for ψ shall depend upon the distribution of γ̂.

To facilitate the present exposition, refer to the partition z = (zit) = (zobs, zmis),
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where zit ∈ zobs ifmit = 0 and zit ∈ zmis ifmit = 1 (i = 1, . . . , N, t = 1, . . . , T ). Provided

the independence of groups in the sample, the expression of the ith contribution to the

log-likelihood function for the conditional model (3.31) with πcit = πĉit clearly is

li,ĉ(θ) =
∑

t: zit∈zobs

{
yit log πĉit + (1− yit) log(1− πĉit)

}
, i = 1, . . . , N. (3.32)

The partial score resulting from differentiating with regard to λi the right-hand side of

the last equality is then

lĉλi(θ) =
∑

t: zit∈zobs

{
yit − πĉit(θ)

}
=

∑
t: zit∈zobs

{
yit − logit−1

(
λi + β1xit + β2zit + δ̂it

)}
,

and numerical solution for λi of the ith cluster-related likelihood equation lĉλi(θ) = 0

gives the constrained ML estimate λ̂ĉiψ (i = 1, . . . , N). As always, by replacement of the

overall parameter with θ̂ĉψ = (ψ, λ̂ĉψ) in (3.32) one obtains the ith additive component

of the profile log-likelihood lĉP (ψ) =
∑N

i=1 l
i,ĉ
P (ψ) =

∑N
i=1 l

i,ĉ(θ̂ĉψ). Maximization of the

latter yields to the ML estimate ψ̂ĉ, so that θ̂ĉ = (ψ̂ĉ, λ̂ψ̂ĉ). In order to calculate the mod-

ification term of Severini M̃ ĉ(ψ), we derive the expression for |j ĉλλ(θ)| =
∏N

i=1 j
ĉ
λiλi

(θ),

where

j ĉλiλi(θ) =
∑

t: zit∈zobs
logit−1

(
λi+β1xit+β2zit+δ̂it

){
1−logit−1

(
λi+β1xit+β2zit+δ̂it

)}
.

Contrary to most of the situations discussed earlier in the chapter, now it is not

necessary to approximate the expectation in lM̃ ĉ(ψ) via the Monte Carlo method. In-

deed, in the current case computing such expected value with respect to the conditional

distribution of Yit given Mit = 0 is correct, as we found the manner to model it by

accounting also for the missingness mechanism. Particularly, one may easily show that

I ĉλiλi(θ̂ψ; θ̂) =
∑

t: zit∈zobs

[
1− logit−1

(
λ̂i + β̂1xit + β̂2zit + δ̂it

)]
, i = 1, . . . , N,

and hence, as typically occurs in the presence of a logit link, this part of Severini’s

adjustment does not play a role in the estimation of ψ. The appropriate version of

the MPL in this logistic regression with one MAR predictor can be then formulated as

lM̃ ĉ(ψ) = lĉP (ψ) + M̃ ĉ(ψ), where M̃ ĉ(ψ) = 1
2

log |j ĉλλ(θ̂ĉψ)|.
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In the subsequent part, results of simulation studies performed to compare the in-

ferential accuracy of several methods will be reported. Precisely, the competitors shall

be the profile and modified profile log-likelihoods lP (ψ) and lM̃(ψ), relating to the un-

conditional model (3.28) under the MCAR covariate assumption, and their homologous

in the MAR setting computed on the basis of the conditional distribution (3.31), i.e.

lĉP (ψ) and lM̃ ĉ(ψ).

Simulation studies

All the presented experiments are carried out on S = 2000 samples, simulated with

single group size equal to T = 4, 6, 10 and number of clusters equal to N = 50, 100, 250.

For each pair (T,N), complete covariates xit and zit are independently drawn from the

standard normal distribution and binary responses yit are generated under model (3.28)

with β1 = −1, β2 = 2 and λi =
∑T

t=1 xit/T +ui, where ui ∼ N(0, 1) (i = 1, . . . , N). The

simulation setups can be characterized by the specified probability of missing values in

zit. Specifically, in the first two studies we consider the MAR structure hypothesized

in (3.30), while in the other two the true missingness process is nonignorable, with

ζit = logit−1(γ1 + γ2xit + γ3yit + γ4zit).

Results in Tables 3.11 and 3.12 refer to inference on β1 and β2, respectively, under the

first MAR scenario, with true probability of unobserved zit fixed at ζit = logit−1(−1 −
0.5xit + 0.5yit) in order to get datasets with a proportion of missing values ranging

between 30% and 35%. In agreement with the simulation-based evidence shown by

Lipsitz et al. (1998), the former table is definitely the most interesting from the viewpoint

of comparing the procedures which do not acknowledge the missing-data problem to

those which do. Indeed, no such relevant differences in the estimation accuracy of the

coefficient associated to the incomplete regressor are recorded in Table 3.12. Conversely,

Table 3.11 not only illustrates the well-known inferential enhancements determined by

adjusting the profile likelihood in models with incidental parameters, but also reflects the

disparity in supposition about the generating process of missingness. Quite peculiarly,

at the same time the validity of such assumption seems to refine the precision of the MPL

on one side and to further deteriorate the quality of ordinary ML inference on the other.

In greater detail, the worse performance of lĉP (ψ) with regard to lP (ψ) is principally

due to the larger empirical bias of its estimator, but some plausible justification for this

finding at the moment cannot be provided. The opposite comment applies instead to

lM̃ ĉ(ψ) and lM̃(ψ): in this case, accounting for the MAR predictor sensibly results in

more adequate point and interval estimation of β1 for almost all the sample sizes in

question.
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Table 3.11: Inference on β1 = −1 in the logistic regression for stratified data with
MAR covariate generated with missingness probability ζit = logit−1(−1 − 0.5xit +
0.5yit). Figures based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) -0.916 -0.715 1.195 1.506 0.740 0.546 0.758
lM̃(ψ) 0.101 0.130 0.707 0.714 0.248 0.519 0.939
lĉP (ψ) -0.968 -0.761 1.196 1.538 0.775 0.546 0.725
lM̃ ĉ(ψ) 0.051 0.077 0.667 0.669 0.231 0.550 0.958

6 lP (ψ) -0.581 -0.502 0.557 0.805 0.507 0.723 0.736
lM̃(ψ) 0.091 0.108 0.241 0.257 0.176 1.104 0.948
lĉP (ψ) -0.630 -0.547 0.556 0.840 0.549 0.724 0.696
lM̃ ĉ(ψ) 0.042 0.052 0.240 0.244 0.165 1.107 0.967

10 lP (ψ) -0.277 -0.254 0.299 0.408 0.268 0.836 0.818
lM̃(ψ) 0.028 0.039 0.205 0.207 0.141 1.014 0.947
lĉP (ψ) -0.330 -0.305 0.298 0.445 0.309 0.839 0.748
lM̃ ĉ(ψ) -0.024 -0.014 0.204 0.206 0.135 1.018 0.958

100 4 lP (ψ) -0.785 -0.695 0.667 1.030 0.701 0.689 0.626
lM̃(ψ) 0.193 0.191 0.218 0.291 0.210 1.170 0.886
lĉP (ψ) -0.837 -0.742 0.667 1.070 0.743 0.689 0.587
lM̃ ĉ(ψ) 0.141 0.138 0.218 0.260 0.178 1.170 0.926

6 lP (ψ) -0.477 -0.444 0.351 0.592 0.444 0.757 0.590
lM̃(ψ) 0.089 0.098 0.178 0.199 0.141 1.059 0.924
lĉP (ψ) -0.527 -0.496 0.349 0.632 0.496 0.760 0.525
lM̃ ĉ(ψ) 0.039 0.045 0.177 0.181 0.127 1.066 0.958

10 lP (ψ) -0.236 -0.228 0.196 0.307 0.229 0.842 0.710
lM̃(ψ) 0.043 0.045 0.139 0.145 0.099 1.004 0.932
lĉP (ψ) -0.287 -0.280 0.194 0.347 0.280 0.848 0.603
lM̃ ĉ(ψ) -0.008 -0.006 0.138 0.138 0.091 1.014 0.955

250 4 lP (ψ) -0.693 -0.663 0.362 0.782 0.663 0.717 0.280
lM̃(ψ) 0.217 0.218 0.129 0.253 0.218 1.155 0.702
lĉP (ψ) -0.744 -0.714 0.361 0.827 0.714 0.719 0.215
lM̃ ĉ(ψ) 0.167 0.168 0.129 0.211 0.170 1.161 0.826

6 lP (ψ) -0.433 -0.424 0.210 0.481 0.424 0.780 0.277
lM̃(ψ) 0.102 0.103 0.112 0.152 0.111 1.062 0.864
lĉP (ψ) -0.484 -0.476 0.210 0.527 0.476 0.782 0.185
lM̃ ĉ(ψ) 0.052 0.052 0.111 0.123 0.083 1.066 0.924

10 lP (ψ) -0.230 -0.226 0.127 0.263 0.226 0.845 0.446
lM̃(ψ) 0.052 0.055 0.090 0.104 0.073 1.006 0.899
lĉP (ψ) -0.282 -0.279 0.127 0.309 0.279 0.849 0.266
lM̃ ĉ(ψ) 0.000 0.001 0.090 0.090 0.059 1.013 0.956
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Table 3.12: Inference on β2 = 2 in the logistic regression for stratified data with
MAR covariate generated with missingness probability ζit = logit−1(−1 − 0.5xit +
0.5yit). Figures based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 2.088 1.641 2.815 3.505 1.641 0.351 0.515
lM̃(ψ) -0.052 -0.158 2.317 2.317 0.265 0.188 0.964
lĉP (ψ) 2.080 1.640 2.600 3.329 1.640 0.376 0.515
lM̃ ĉ(ψ) -0.062 -0.159 2.067 2.067 0.265 0.210 0.965

6 lP (ψ) 1.342 1.170 0.979 1.661 1.170 0.624 0.440
lM̃(ψ) -0.079 -0.089 0.297 0.308 0.215 1.155 0.955
lĉP (ψ) 1.342 1.170 0.979 1.661 1.170 0.624 0.440
lM̃ ĉ(ψ) -0.079 -0.089 0.297 0.308 0.215 1.155 0.955

10 lP (ψ) 0.673 0.618 0.436 0.802 0.618 0.798 0.562
lM̃(ψ) 0.032 0.007 0.263 0.265 0.175 1.036 0.966
lĉP (ψ) 0.673 0.618 0.436 0.802 0.618 0.798 0.563
lM̃ ĉ(ψ) 0.032 0.007 0.263 0.265 0.175 1.036 0.966

100 4 lP (ψ) 1.766 1.599 1.036 2.048 1.599 0.617 0.197
lM̃(ψ) -0.247 -0.254 0.208 0.323 0.259 1.373 0.897
lĉP (ψ) 1.766 1.599 1.038 2.048 1.599 0.617 0.197
lM̃ ĉ(ψ) -0.248 -0.255 0.208 0.323 0.259 1.373 0.896

6 lP (ψ) 1.133 1.088 0.532 1.251 1.088 0.735 0.178
lM̃(ψ) -0.092 -0.091 0.203 0.223 0.150 1.181 0.942
lĉP (ψ) 1.133 1.087 0.532 1.251 1.087 0.735 0.178
lM̃ ĉ(ψ) -0.093 -0.091 0.203 0.223 0.150 1.181 0.942

10 lP (ψ) 0.606 0.588 0.290 0.672 0.588 0.806 0.286
lM̃(ψ) 0.017 0.012 0.186 0.187 0.129 1.007 0.962
lĉP (ψ) 0.606 0.589 0.290 0.672 0.589 0.806 0.286
lM̃ ĉ(ψ) 0.018 0.012 0.186 0.187 0.129 1.007 0.962

250 4 lP (ψ) 1.555 1.502 0.519 1.639 1.502 0.708 0.005
lM̃(ψ) -0.312 -0.313 0.124 0.335 0.313 1.382 0.559
lĉP (ψ) 1.555 1.502 0.519 1.639 1.502 0.708 0.005
lM̃ ĉ(ψ) -0.312 -0.313 0.124 0.335 0.313 1.382 0.558

6 lP (ψ) 1.034 1.026 0.314 1.081 1.026 0.752 0.007
lM̃(ψ) -0.087 -0.087 0.132 0.158 0.107 1.149 0.922
lĉP (ψ) 1.034 1.026 0.314 1.081 1.026 0.752 0.007
lM̃ ĉ(ψ) -0.087 -0.087 0.132 0.158 0.107 1.149 0.921

10 lP (ψ) 0.600 0.596 0.177 0.626 0.596 0.823 0.014
lM̃(ψ) 0.002 0.001 0.111 0.111 0.075 1.042 0.953
lĉP (ψ) 0.600 0.596 0.177 0.626 0.596 0.823 0.013
lM̃ ĉ(ψ) 0.002 0.001 0.111 0.111 0.075 1.042 0.953
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In the second setup with MAR covariate, the probability of one missing datum is

ζit = logit−1(−0.5 +xit +yit), so that about 50% of the values zit are deleted in the final

simulated samples. Results of the study conducted with such experimental design can

be found in Tables 3.13 and 3.14. Again, the latter basically outlines that inference on

β2 is unaffected by the incompleteness of the corresponding regressor. Rather, a more

careful analysis of Table 3.13 appears worthwhile. Relative patterns in the behaviour

of the two profile and the two modified profile log-likelihoods change when the amount

of unrecorded observations in the data grows. Now, lĉP (ψ) outperforms lP (ψ) in terms

of empirical bias and coverages properties for any values of T and N . By contrast, the

superiority of lM̃ ĉ(ψ) on lM̃(ψ) which incorrectly postulates an MCAR missing-covariate

process remains unquestionable only when T = 10. In our view, the reason of this trend

reversal is unfortunately not obvious.

The missingness mechanism considered in the third experiment is nonignorable, with

probability of not observing zit set equal to ζit = logit−1(−1 − 0.5xit + 0.5yit + 0.5zit).

The latter is chosen in such a way as to obtain in the artificial samples a percentage

of missing data varying in 30-35%, as was in the first MAR framework. Notice that,

against this background, lĉP (ψ) and lM̃ ĉ(ψ) now underspecify the true model of miss-

ingness, neglecting the dependence of ζit on the possibly unobserved predictor. Table

3.15 and 3.16 display the outcomes of this study. Usual comments are pertinent to

the second table associated with inference on β2. As for the estimation of the other

parameter of interest β1, the differing tendencies identified in the first simulation study

are recognisable also in Table 3.15. Furthermore, the global performance of lĉP (ψ) and

lM̃ ĉ(ψ) does not look particularly altered by the misspecification of the missing-data

process.

The last scenario examined relates to the case of an MNAR covariate whose miss-

ingness is described by the probability ζit = logit−1(−0.5 + xit + yit + 2zit). Such a

definition delivers datasets where zit results unrecorded around 50% of the times. The

various aspects pertaining to inference on β1 and β2 in this framework are detailed by

Tables 3.17 and 3.18. Unsurprisingly, the general accuracy achieved by the four meth-

ods is the least satisfactory among the several situations discussed, especially in terms

of empirical bias of the estimators. Similarly to the second MAR setting, properties of

lĉP (ψ) in Table 3.17 are surely more valuable than those of its direct competitor, even if

now the former does not take the right missing-data mechanism into consideration. Yet

lM̃(ψ), derived under the hypothesis of MCAR predictor, proves to be the most reliable

inferential tool for any couple (T,N). The performance of lM̃ ĉ(ψ) is remarkably poorer

than in the previous circumstance of nonignorable missingness. Aside from the larger
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Table 3.13: Inference on β1 = −1 in the logistic regression for stratified data with
MAR covariate generated with missingness probability ζit = logit−1(−0.5 + xit + yit).
Figures based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) -5.012 -1.539 30.978 31.373 1.557 0.177 0.767
lM̃(ψ) -3.268 -0.039 31.065 31.228 0.288 0.015 0.927
lĉP (ψ) -4.288 -1.317 17.465 17.979 1.347 0.310 0.849
lM̃ ĉ(ψ) -2.575 0.180 17.742 17.923 0.339 0.026 0.890

6 lP (ψ) -1.518 -1.136 2.118 2.606 1.137 0.395 0.576
lM̃(ψ) -0.203 -0.056 1.872 1.882 0.209 0.196 0.975
lĉP (ψ) -1.300 -0.920 2.102 2.471 0.925 0.386 0.704
lM̃ ĉ(ψ) 0.009 0.156 1.866 1.865 0.246 0.196 0.934

10 lP (ψ) -0.800 -0.761 0.459 0.923 0.761 0.763 0.382
lM̃(ψ) -0.197 -0.194 0.241 0.311 0.210 1.050 0.926
lĉP (ψ) -0.591 -0.553 0.451 0.744 0.553 0.775 0.640
lM̃ ĉ(ψ) 0.012 0.020 0.235 0.236 0.159 1.072 0.965

100 4 lP (ψ) -1.497 -1.269 1.207 1.923 1.269 0.603 0.504
lM̃(ψ) 0.036 0.063 0.560 0.561 0.179 0.591 0.978
lĉP (ψ) -1.287 -1.068 1.202 1.760 1.069 0.606 0.642
lM̃ ĉ(ψ) 0.240 0.275 0.616 0.661 0.287 0.535 0.883

6 lP (ψ) -1.099 -1.039 0.582 1.244 1.039 0.712 0.244
lM̃(ψ) -0.042 -0.042 0.205 0.209 0.142 1.164 0.983
lĉP (ψ) -0.892 -0.833 0.576 1.062 0.833 0.719 0.444
lM̃ ĉ(ψ) 0.164 0.162 0.202 0.260 0.187 1.176 0.908

10 lP (ψ) -0.738 -0.717 0.312 0.801 0.717 0.783 0.146
lM̃(ψ) -0.175 -0.171 0.174 0.247 0.177 1.044 0.877
lĉP (ψ) -0.529 -0.506 0.306 0.611 0.506 0.797 0.439
lM̃ ĉ(ψ) 0.034 0.038 0.170 0.173 0.118 1.069 0.953

250 4 lP (ψ) -1.294 -1.216 0.587 1.420 1.216 0.688 0.107
lM̃(ψ) 0.088 0.087 0.153 0.176 0.122 1.267 0.960
lĉP (ψ) -1.087 -1.011 0.583 1.233 1.011 0.693 0.246
lM̃ ĉ(ψ) 0.293 0.291 0.152 0.330 0.291 1.271 0.699

6 lP (ψ) -1.011 -0.991 0.354 1.071 0.991 0.729 0.029
lM̃(ψ) -0.073 -0.075 0.142 0.159 0.108 1.126 0.966
lĉP (ψ) -0.800 -0.774 0.351 0.874 0.774 0.735 0.157
lM̃ ĉ(ψ) 0.137 0.140 0.140 0.196 0.148 1.135 0.877

10 lP (ψ) -0.718 -0.716 0.197 0.744 0.716 0.800 0.006
lM̃(ψ) -0.156 -0.156 0.111 0.191 0.157 1.060 0.776
lĉP (ψ) -0.507 -0.506 0.194 0.543 0.506 0.813 0.126
lM̃ ĉ(ψ) 0.054 0.056 0.109 0.122 0.083 1.080 0.940
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Table 3.14: Inference on β2 = 2 in the logistic regression for stratified data with
MAR covariate generated with missingness probability ζit = logit−1(−0.5 + xit + yit).
Figures based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 8.029 2.210 51.457 52.067 2.210 0.179 0.761
lM̃(ψ) 5.167 -0.322 51.669 51.913 0.412 0.009 0.861
lĉP (ψ) 7.917 2.216 52.119 52.704 2.216 0.148 0.763
lM̃ ĉ(ψ) 5.102 -0.318 52.324 52.559 0.413 0.009 0.862

6 lP (ψ) 2.142 1.592 3.653 4.234 1.592 0.320 0.488
lM̃(ψ) -0.040 -0.262 3.373 3.372 0.288 0.111 0.911
lĉP (ψ) 2.139 1.592 3.416 4.029 1.592 0.324 0.487
lM̃ ĉ(ψ) -0.032 -0.263 3.152 3.151 0.290 0.119 0.909

10 lP (ψ) 0.957 0.880 0.638 1.150 0.880 0.736 0.507
lM̃(ψ) -0.035 -0.062 0.296 0.298 0.197 1.069 0.956
lĉP (ψ) 0.957 0.879 0.638 1.150 0.879 0.736 0.506
lM̃ ĉ(ψ) -0.036 -0.063 0.297 0.299 0.197 1.069 0.956

100 4 lP (ψ) 2.092 1.740 1.634 2.654 1.740 0.539 0.342
lM̃(ψ) -0.351 -0.395 0.851 0.920 0.396 0.381 0.813
lĉP (ψ) 2.095 1.748 1.612 2.643 1.748 0.549 0.337
lM̃ ĉ(ψ) -0.341 -0.392 0.873 0.937 0.395 0.372 0.814

6 lP (ψ) 1.454 1.343 0.821 1.669 1.343 0.665 0.242
lM̃(ψ) -0.245 -0.249 0.228 0.335 0.264 1.215 0.862
lĉP (ψ) 1.453 1.342 0.821 1.669 1.342 0.665 0.242
lM̃ ĉ(ψ) -0.245 -0.250 0.228 0.334 0.264 1.216 0.862

10 lP (ψ) 0.870 0.825 0.410 0.962 0.825 0.767 0.209
lM̃(ψ) -0.057 -0.069 0.197 0.205 0.141 1.104 0.951
lĉP (ψ) 0.870 0.825 0.410 0.962 0.825 0.767 0.208
lM̃ ĉ(ψ) -0.057 -0.070 0.197 0.205 0.140 1.104 0.952

250 4 lP (ψ) 1.823 1.701 0.780 1.983 1.701 0.662 0.034
lM̃(ψ) -0.471 -0.478 0.139 0.491 0.478 1.436 0.307
lĉP (ψ) 1.825 1.703 0.780 1.984 1.703 0.663 0.033
lM̃ ĉ(ψ) -0.470 -0.476 0.139 0.490 0.476 1.435 0.308

6 lP (ψ) 1.337 1.296 0.462 1.415 1.296 0.717 0.014
lM̃(ψ) -0.217 -0.223 0.142 0.260 0.224 1.254 0.796
lĉP (ψ) 1.337 1.296 0.462 1.415 1.296 0.717 0.014
lM̃ ĉ(ψ) -0.217 -0.223 0.142 0.260 0.224 1.253 0.796

10 lP (ψ) 0.837 0.828 0.243 0.872 0.828 0.790 0.009
lM̃(ψ) -0.087 -0.088 0.115 0.144 0.103 1.139 0.908
lĉP (ψ) 0.838 0.828 0.243 0.873 0.828 0.790 0.009
lM̃ ĉ(ψ) -0.086 -0.088 0.115 0.144 0.103 1.139 0.908
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Table 3.15: Inference on β1 = −1 in the logistic regression for stratified data with
MNAR covariate generated with missingness probability ζit = logit−1(−1 − 0.5xit +
0.5yit + 0.5zit). Figures based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) -0.928 -0.729 1.283 1.583 0.748 0.518 0.784
lM̃(ψ) 0.049 0.090 0.850 0.852 0.236 0.451 0.941
lĉP (ψ) -1.014 -0.816 1.260 1.617 0.826 0.527 0.744
lM̃ ĉ(ψ) -0.033 0.004 0.785 0.786 0.225 0.490 0.965

6 lP (ψ) -0.560 -0.479 0.562 0.793 0.489 0.699 0.734
lM̃(ψ) 0.066 0.081 0.255 0.264 0.180 1.046 0.940
lĉP (ψ) -0.652 -0.567 0.560 0.859 0.570 0.701 0.656
lM̃ ĉ(ψ) -0.027 -0.012 0.254 0.255 0.168 1.054 0.967

10 lP (ψ) -0.280 -0.256 0.297 0.408 0.274 0.835 0.809
lM̃(ψ) 0.021 0.025 0.205 0.206 0.138 1.009 0.949
lĉP (ψ) -0.372 -0.353 0.296 0.475 0.354 0.837 0.702
lM̃ ĉ(ψ) -0.072 -0.067 0.204 0.216 0.139 1.013 0.963

100 4 lP (ψ) -0.789 -0.706 0.693 1.050 0.707 0.663 0.619
lM̃(ψ) 0.165 0.173 0.258 0.307 0.202 1.002 0.901
lĉP (ψ) -0.878 -0.799 0.692 1.117 0.799 0.664 0.549
lM̃ ĉ(ψ) 0.078 0.083 0.227 0.240 0.163 1.142 0.954

6 lP (ψ) -0.464 -0.433 0.345 0.578 0.433 0.758 0.598
lM̃(ψ) 0.080 0.087 0.178 0.195 0.137 1.056 0.927
lĉP (ψ) -0.549 -0.513 0.343 0.648 0.513 0.763 0.472
lM̃ ĉ(ψ) -0.006 0.003 0.176 0.177 0.118 1.066 0.967

10 lP (ψ) -0.233 -0.224 0.193 0.302 0.225 0.849 0.714
lM̃(ψ) 0.039 0.045 0.138 0.143 0.100 1.009 0.940
lĉP (ψ) -0.320 -0.309 0.192 0.373 0.309 0.855 0.528
lM̃ ĉ(ψ) -0.048 -0.042 0.137 0.145 0.094 1.018 0.949

250 4 lP (ψ) -0.683 -0.654 0.355 0.770 0.654 0.736 0.284
lM̃(ψ) 0.200 0.204 0.130 0.238 0.204 1.174 0.767
lĉP (ψ) -0.774 -0.749 0.353 0.851 0.749 0.739 0.178
lM̃ ĉ(ψ) 0.109 0.114 0.129 0.169 0.126 1.183 0.919

6 lP (ψ) -0.428 -0.416 0.208 0.476 0.416 0.789 0.286
lM̃(ψ) 0.088 0.093 0.113 0.143 0.106 1.069 0.885
lĉP (ψ) -0.515 -0.505 0.207 0.555 0.505 0.792 0.139
lM̃ ĉ(ψ) 0.001 0.006 0.112 0.112 0.075 1.073 0.965

10 lP (ψ) -0.221 -0.216 0.126 0.255 0.216 0.856 0.478
lM̃(ψ) 0.050 0.051 0.091 0.104 0.074 1.007 0.913
lĉP (ψ) -0.311 -0.307 0.126 0.336 0.307 0.860 0.202
lM̃ ĉ(ψ) -0.040 -0.040 0.091 0.099 0.065 1.013 0.939
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Table 3.16: Inference on β2 = 2 in the logistic regression for stratified data with
MNAR covariate generated with missingness probability ζit = logit−1(−1 − 0.5xit +
0.5yit + 0.5zit). Figures based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 1.983 1.544 2.148 2.923 1.544 0.463 0.570
lM̃(ψ) -0.040 -0.124 1.303 1.304 0.268 0.357 0.961
lĉP (ψ) 1.980 1.543 2.133 2.910 1.543 0.466 0.569
lM̃ ĉ(ψ) -0.049 -0.124 1.231 1.232 0.269 0.378 0.962

6 lP (ψ) 1.212 1.070 0.899 1.509 1.070 0.663 0.521
lM̃(ψ) -0.078 -0.097 0.314 0.324 0.222 1.132 0.949
lĉP (ψ) 1.212 1.069 0.899 1.509 1.069 0.663 0.522
lM̃ ĉ(ψ) -0.078 -0.098 0.314 0.324 0.223 1.132 0.949

10 lP (ψ) 0.596 0.565 0.429 0.734 0.565 0.806 0.625
lM̃(ψ) -0.010 -0.027 0.268 0.268 0.181 1.023 0.953
lĉP (ψ) 0.596 0.565 0.429 0.734 0.565 0.806 0.625
lM̃ ĉ(ψ) -0.010 -0.026 0.268 0.268 0.181 1.023 0.953

100 4 lP (ψ) 1.656 1.487 1.040 1.956 1.487 0.613 0.262
lM̃(ψ) -0.253 -0.267 0.334 0.419 0.275 0.884 0.881
lĉP (ψ) 1.656 1.487 1.040 1.955 1.487 0.613 0.262
lM̃ ĉ(ψ) -0.259 -0.267 0.220 0.340 0.274 1.340 0.881

6 lP (ψ) 1.029 0.970 0.528 1.157 0.970 0.731 0.250
lM̃(ψ) -0.121 -0.125 0.211 0.243 0.170 1.157 0.927
lĉP (ψ) 1.029 0.970 0.528 1.156 0.970 0.730 0.251
lM̃ ĉ(ψ) -0.121 -0.125 0.211 0.243 0.170 1.157 0.926

10 lP (ψ) 0.533 0.504 0.288 0.606 0.504 0.807 0.404
lM̃(ψ) -0.024 -0.038 0.188 0.189 0.130 1.002 0.944
lĉP (ψ) 0.533 0.504 0.288 0.606 0.504 0.807 0.403
lM̃ ĉ(ψ) -0.024 -0.038 0.188 0.189 0.130 1.002 0.945

250 4 lP (ψ) 1.456 1.402 0.532 1.550 1.402 0.688 0.018
lM̃(ψ) -0.314 -0.318 0.133 0.341 0.318 1.329 0.578
lĉP (ψ) 1.456 1.402 0.532 1.550 1.402 0.688 0.018
lM̃ ĉ(ψ) -0.314 -0.318 0.133 0.341 0.318 1.329 0.578

6 lP (ψ) 0.944 0.923 0.313 0.994 0.923 0.753 0.022
lM̃(ψ) -0.107 -0.107 0.138 0.175 0.127 1.125 0.897
lĉP (ψ) 0.944 0.923 0.313 0.995 0.923 0.753 0.022
lM̃ ĉ(ψ) -0.107 -0.107 0.138 0.175 0.126 1.125 0.897

10 lP (ψ) 0.502 0.496 0.175 0.532 0.496 0.830 0.072
lM̃(ψ) -0.044 -0.048 0.115 0.123 0.084 1.025 0.931
lĉP (ψ) 0.503 0.496 0.175 0.532 0.496 0.830 0.072
lM̃ ĉ(ψ) -0.044 -0.048 0.115 0.123 0.084 1.025 0.932
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Table 3.17: Inference on β1 = −1 in the logistic regression for stratified data with
MNAR covariate generated with missingness probability ζit = logit−1(−0.5 + xit +
yit + 2zit). Figures based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) -11.264 -1.330 129.903 130.358 1.344 0.075 0.842
lM̃(ψ) -9.711 -0.161 129.982 130.312 0.362 0.004 0.936
lĉP (ψ) -8.080 -0.872 81.790 82.167 0.999 0.108 0.924
lM̃ ĉ(ψ) -6.503 0.299 81.868 82.105 0.457 0.007 0.860

6 lP (ψ) -1.167 -0.896 1.667 2.035 0.896 0.377 0.634
lM̃(ψ) -0.185 -0.104 1.376 1.388 0.230 0.266 0.971
lĉP (ψ) -0.753 -0.487 1.557 1.729 0.555 0.409 0.850
lM̃ ĉ(ψ) 0.229 0.294 1.232 1.252 0.332 0.296 0.862

10 lP (ψ) -0.660 -0.618 0.440 0.793 0.618 0.740 0.501
lM̃(ψ) -0.164 -0.156 0.249 0.298 0.196 0.989 0.941
lĉP (ψ) -0.209 -0.162 0.419 0.469 0.273 0.775 0.897
lM̃ ĉ(ψ) 0.285 0.297 0.234 0.369 0.303 1.048 0.736

100 4 lP (ψ) -1.352 -1.099 1.630 2.118 1.099 0.442 0.575
lM̃(ψ) -0.054 0.017 1.255 1.256 0.194 0.271 0.968
lĉP (ψ) -0.943 -0.693 1.646 1.897 0.720 0.429 0.808
lM̃ ĉ(ψ) 0.348 0.429 1.313 1.358 0.433 0.259 0.747

6 lP (ψ) -0.957 -0.904 0.515 1.087 0.904 0.741 0.294
lM̃(ψ) -0.060 -0.057 0.201 0.209 0.141 1.169 0.984
lĉP (ψ) -0.561 -0.505 0.503 0.753 0.506 0.757 0.712
lM̃ ĉ(ψ) 0.332 0.330 0.196 0.385 0.331 1.196 0.709

10 lP (ψ) -0.608 -0.592 0.284 0.671 0.592 0.798 0.252
lM̃(ψ) -0.155 -0.150 0.176 0.234 0.165 1.013 0.891
lĉP (ψ) -0.200 -0.188 0.272 0.338 0.221 0.830 0.851
lM̃ ĉ(ψ) 0.252 0.257 0.167 0.302 0.258 1.061 0.676

250 4 lP (ψ) -1.164 -1.096 0.590 1.305 1.096 0.674 0.187
lM̃(ψ) 0.033 0.035 0.179 0.182 0.124 1.171 0.974
lĉP (ψ) -0.780 -0.717 0.580 0.972 0.717 0.685 0.527
lM̃ ĉ(ψ) 0.413 0.410 0.174 0.448 0.410 1.204 0.480

6 lP (ψ) -0.861 -0.841 0.308 0.914 0.841 0.786 0.063
lM̃(ψ) -0.080 -0.078 0.140 0.161 0.111 1.151 0.967
lĉP (ψ) -0.453 -0.432 0.301 0.544 0.432 0.803 0.552
lM̃ ĉ(ψ) 0.326 0.328 0.136 0.353 0.328 1.183 0.462

10 lP (ψ) -0.598 -0.589 0.181 0.625 0.589 0.840 0.024
lM̃(ψ) -0.147 -0.142 0.112 0.185 0.143 1.068 0.803
lĉP (ψ) -0.197 -0.189 0.175 0.264 0.193 0.870 0.748
lM̃ ĉ(ψ) 0.253 0.256 0.108 0.275 0.256 1.111 0.424
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Table 3.18: Inference on β2 = 2 in the logistic regression for stratified data with
MNAR covariate generated with missingness probability ζit = logit−1(−0.5 + xit +
yit + 2zit). Figures based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 17.943 1.490 254.958 255.525 1.543 0.069 0.887
lM̃(ψ) 15.705 -0.233 255.094 255.513 0.534 0.003 0.879
lĉP (ψ) 12.350 1.505 124.928 125.506 1.544 0.121 0.889
lM̃ ĉ(ψ) 10.021 -0.221 125.052 125.422 0.528 0.006 0.883

6 lP (ψ) 1.315 0.927 2.087 2.466 0.943 0.430 0.785
lM̃(ψ) -0.240 -0.316 1.475 1.494 0.394 0.333 0.877
lĉP (ψ) 1.306 0.924 1.962 2.356 0.937 0.476 0.786
lM̃ ĉ(ψ) -0.253 -0.320 1.274 1.298 0.395 0.387 0.877

10 lP (ψ) 0.473 0.396 0.608 0.770 0.442 0.752 0.830
lM̃(ψ) -0.245 -0.265 0.346 0.424 0.317 1.006 0.855
lĉP (ψ) 0.473 0.396 0.609 0.771 0.441 0.752 0.830
lM̃ ĉ(ψ) -0.246 -0.267 0.346 0.425 0.317 1.006 0.855

100 4 lP (ψ) 1.585 1.180 2.047 2.588 1.192 0.460 0.680
lM̃(ψ) -0.345 -0.451 1.550 1.588 0.463 0.277 0.815
lĉP (ψ) 1.591 1.185 2.065 2.606 1.197 0.448 0.677
lM̃ ĉ(ψ) -0.334 -0.450 1.612 1.646 0.462 0.267 0.816

6 lP (ψ) 0.839 0.748 0.752 1.127 0.753 0.705 0.666
lM̃(ψ) -0.440 -0.450 0.290 0.527 0.452 1.117 0.694
lĉP (ψ) 0.838 0.749 0.752 1.125 0.752 0.705 0.666
lM̃ ĉ(ψ) -0.443 -0.452 0.289 0.529 0.455 1.118 0.692

10 lP (ψ) 0.395 0.368 0.391 0.555 0.385 0.800 0.762
lM̃(ψ) -0.278 -0.285 0.232 0.362 0.293 1.041 0.758
lĉP (ψ) 0.394 0.367 0.390 0.555 0.384 0.800 0.763
lM̃ ĉ(ψ) -0.278 -0.285 0.232 0.362 0.293 1.042 0.758

250 4 lP (ψ) 1.257 1.134 0.795 1.487 1.134 0.665 0.371
lM̃(ψ) -0.543 -0.544 0.212 0.583 0.544 1.222 0.426
lĉP (ψ) 1.258 1.135 0.795 1.488 1.135 0.665 0.372
lM̃ ĉ(ψ) -0.544 -0.545 0.212 0.583 0.545 1.223 0.425

6 lP (ψ) 0.777 0.741 0.445 0.895 0.741 0.742 0.392
lM̃(ψ) -0.380 -0.387 0.187 0.423 0.387 1.129 0.542
lĉP (ψ) 0.777 0.741 0.445 0.895 0.741 0.742 0.393
lM̃ ĉ(ψ) -0.379 -0.386 0.187 0.423 0.386 1.129 0.544

10 lP (ψ) 0.372 0.360 0.248 0.447 0.360 0.805 0.541
lM̃(ψ) -0.294 -0.295 0.149 0.329 0.295 1.037 0.514
lĉP (ψ) 0.372 0.360 0.248 0.447 0.361 0.806 0.542
lM̃ ĉ(ψ) -0.294 -0.295 0.149 0.329 0.295 1.039 0.514
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amount of incomplete data, the MPL assuming an MAR process might suffer from the

greater dependence of ζit on the unobserved regressor: the coefficient γ3 relating to zit is

larger than before in absolute value, so the impact of its omission from the missingness

model is likely to be more adverse.

3.5 Survival model for censored data

3.5.1 Introduction

Time-to-event data subject to censoring are routinely collected in a wide variety of

applied contexts: health science, engineering and biomedicine are just some of the ex-

amples. Subdivision in groups of such commonly named survival or failure times is very

frequent for reasons related with stratified sampling, confounding factors or adjustments

due to violation of model assumptions (Cortese and Sartori, 2016). Common clustering

variables in these settings range from geographical areas and individuals to measuring

methods and operating conditions. Nevertheless, as often occurs with grouped observa-

tions, the primary concern of the study is not the inter-cluster variability.

In survival analysis, the random effects approach outlined in Section 3.1 is put into

practice by the renowned frailty models. Although parsimonious, these formulations

are founded upon rather improbable presumptions and may lead to results which are

sensitive to the supposed distribution of the involved group-specific random variables.

However, when the amount of clusters in the sample is high relative to the within-group

size, fixed effects specifications are as always hampered by the incidental parameters

problem.

Under this special scenario, inferential solutions to the latter usual issue need also to

deal with the presence of censored observations. In fact, application of the MPL has been

experimented only to a limited extent because its computation is particularly far from

straightforward in regression frameworks with general censoring scheme. The technique

proposed by Pierce and Bellio (2006) to overcome such complications in fully parametric

settings relies on Monte Carlo simulations like ours, but benefits from the complete

definition of the censoring model. Later, Pierce and Bellio (2015) considered also higher-

order asymptotics for semiparametric Cox regressions. In that case, the likelihood-

based adjustment pertaining to effects of fitting nuisance parameters and equivalent to

the MPL was obtained either by implementation of a parametric bootstrap employing

a reference censoring model or by simulation. Instead, elimination of cluster-related

parameters in parametric survival models for highly grouped censored data was achieved

via Severini’s frequentist integrated likelihood in the work of Cortese and Sartori (2016).
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Importantly, the authors managed to prove the inferential superiority of their approach

to random effects models with seriously misspecified frailty distribution.

This part of the dissertation is devoted to illustrating how to approximate the MPL

through the expedient presented in Section 3.2 within the context of survival analysis.

We introduce below the general setup, which may be viewed as an extension of the

regression scenarios on which Cortese and Sartori (2016) focused on.

3.5.2 Notation and setup

Let independent clustered failure times Ỹit follow a Weibull distribution with probability

density function

pỸit(ỹit;ψ;λi, xit, zit) = ηitξ
(
ηitỹit

)ξ−1
exp
{
−
(
ηitỹit

)ξ}
, i = 1, . . . , N, t = 1, . . . , T,

(3.33)

for ỹit ≥ 0 and where ηit = exp
{
−(λi + β1xit + β2zit)

}
> 0 are the scale parameters.

The interest is on estimating the common shape parameter ξ > 0 and the regression

coefficients in β = (β1, β2) ∈ IR2 while treating the vector of group-related intercepts

λ = (λ1, . . . , λN) ∈ IRN as a nuisance component. Therefore we shall have θ = (ψ, λ),

with ψ = (ξ, β) ∈ IR+ × IR2. Note that, as usual, the presence of whatever number of

covariates in the study is not a paramount modeling aspect from the standpoint of the

methodology aimed at deriving the MPL. On the contrary, application of the integrated

likelihood in regressions similar to the present calls for extra computational effort, as

borne out by Section 8.3 of Cortese and Sartori (2016).

Provided these premises, Ỹit has survival function of the form SỸit(ỹit;ψ;λi, xit, zit) =

Pθ(Ỹit > ỹit) = exp
{
−
(
ηitỹit

)ξ}
and hazard function equal to

hỸit(ỹit;ψ;λi, xit, zit) =
pỸit(ỹit;ψ;λi, xit, zit)

SỸit(ỹit;ψ;λi, xit, zit)
= h0(ỹit; ξ)η

ξ
it

= h0i(ỹit; ξ, λi)e
−ξ(β1xit+β2zit),

where h0(ỹit; ξ) = ξỹ ξ−1
it is the baseline hazard parametrically modeled and shared by

all clusters, whereas h0i(ỹit; ξ, λi) = h0(ỹit; ξ)e
−ξλi can be seen as the equivalent for the

ith group (i = 1, . . . , N). Thus (3.33) has the advantage of being a proportional hazards

model. Moreover, its logarithmic transformation coincides with a so-called accelerated

failure time model, largely used in several scientific fields (for more details see Section

6 of Cortese and Sartori, 2016).

Since observations may be right-censored, data actually consist of realizations of the
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pair
(
Yit,∆it

)
, where Yit = min

(
Ỹit, Cit

)
with Cit censoring time and ∆it is the censoring

indicator equal to 1 if Ỹit ≤ Cit and equal to 0 otherwise. The random censoring mech-

anism is only hypothesized to be independent and non-informative, meaning that each

Cit is unrelated to the other survival or censoring times and its continuous distribution

does not depend on θ. In particular, as opposed to what done in Section 4 of Cortese

and Sartori (2016), we prefer to avoid the formal specification of a parametric density

for Cit. On the one hand, such choice relaxes the assumptions of the analysis, but on

the other, it prevents Severini’s MPL from being exactly calculated. Nonetheless, in the

next part our Monte Carlo approach will be shown flexible enough to tackle also this

difficulty.

3.5.3 Monte Carlo modified profile likelihood

Consider the observed couple
(
yit, δit

)
introduced above. If the censoring times cit are

independent realizations of a continuous random variable with generic density pCit(cit; ς)

and survival function SCit(cit; ς) = Pς(Cit > cit), then those data are drawn from the

joint density

pYit,∆it
(yit, δit; θ, ς) =

{
pỸit(yit; θ)SCit(yit; ς)

}δit {pCit(yit; ς)SỸit(yit; θ)}1−δit , (3.34)

where, in the interests of conciseness, dependence on covariates is disregarded. Notwith-

standing, since the distribution of Cit is independent of the parameter θ, the likelihood

function based on the whole dataset
(
yit, δit

)
(i = 1, . . . , N, t = 1, . . . , T ) can be formu-

lated by

L(θ) =
N∏
i=1

T∏
t=1

{
pỸit(yit; θ)

}δit {SỸit(yit; θ)}1−δit ,

as pointed out in Example 1.2 of Pace and Salvan (1997). Denoting the number of

failures recorded in the ith cluster by δi· =
∑T

t=1 δit (i = 1, . . . , N) and consequently

their total number in the sample by δ·· =
∑N

i=1 δi· allows to write the corresponding

log-likelihood as

l(θ) = ξ

N∑
i=1

T∑
t=1

δit log ηit + δ·· log ξ + (ξ − 1)
N∑
i=1

T∑
t=1

δit log yit −
N∑
i=1

T∑
t=1

(ηityit)
ξ, (3.35)

where we remark that ηit = ηit(θ) = exp
{
−(λi + β1xit + β2zit)

}
. Now, differentiation

with respect to the ith nuisance component gives the connected element of the partial
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score

lλi(θ) = lλi(ψ, λi) = −ξδi· + ξ
T∑
t=1

(ηityit)
ξ, i = 1, . . . , N. (3.36)

By equating (3.36) to 0 and solving analytically for λi, one may find the group-specific

constrained ML estimate

λ̂iψ =
1

ξ

{
log

T∑
t=1

yξite
−ξ(β1xit+β2zit) − log δi·

}
, i = 1, . . . , N, (3.37)

which in its turn delivers λ̂ψ = (λ̂1ψ, . . . , λ̂Nψ) and θ̂ψ = (ψ, λ̂ψ). If in (3.35) we substi-

tute each incidental parameter with the last expression, we get the profile log-likelihood

function for ψ

lP (ψ) =
N∑
i=1

δi·

{
log δi· − log

T∑
t=1

yξite
−ξ(β1xit+β2zit)

}
− ξ

N∑
i=1

T∑
t=1

δit(β1xit + β2zit)

+ δ··(log ξ − 1) + (ξ − 1)
N∑
i=1

T∑
t=1

δit log yit, (3.38)

reaching its maximum at ψ̂ = (ξ̂, β̂). Once the latter is obtained numerically, the full

ML estimate of the model clearly is θ̂ = (ψ̂, λ̂), with λ̂ = λ̂ψ̂.

The first quantity to be computed in the ith summand of Severini’s modification

term follows immediately from the derivative of (3.36) with regard to λi. Specifically,

after a change of sign, it is possible to express it as

jλi,λi(θ̂ψ) = ξ2

T∑
t=1

(η̃ityit)
ξ, i = 1, . . . , N,

where η̃it = ηit(θ̂ψ) = exp
{
−(λ̂iψ + β1xit + β2zit)

}
. With right-censored data, explicit

calculation of the expected value Iλiλi(θ̂ψ; θ̂) should be carried out with reference to the

joint probability density function (3.34), comprising also the distribution of the censor-

ing times. Yet, as claimed at the end of Section 3.5.1, we are not willing to constrain

pCit(cit; ς) and SCit(cit; ς) to take one specific parametric form. Fortunately, such a re-

striction is not required to calculate the MPL through the Monte Carlo strategy reported

in (3.3), because estimation of such functions can be implemented nonparametrically.

Turning to the technicalities of the procedure prescribed in the current situation, the

empirical mean (3.3) is given by

I∗λiλi(θ̂ψ; θ̂) =
1

R

R∑
r=1

[{
− ξδri· + ξ

T∑
t=1

(η̃ity
r
it)
ξ

}{
− ξ̂δri· + ξ̂

T∑
t=1

(η̂ity
r
it)
ξ̂

}]
, (3.39)
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where η̂it = ηit(θ̂) = exp
{
−(λ̂i+β̂1xit+β̂2zit)

}
, δri· =

∑T
t=1 δ

r
it and (yrit, δ

r
it) are the data in

the rth Monte Carlo sample (r = 1, . . . , R) simulated as explained in the sequel. Firstly,

failures ỹrit are generated from the ML fit of model (3.33). Secondly, new censoring times

crit are determined by performing the conditional bootstrap described in Algorithm 3.1

of Davison and Hinkley (1997, p. 85). In particular, if the original indicator δit equals 0

we set crit = cit, otherwise we draw crit from the conditional distribution of Cit|Cit > yit

computed as

ŜCit|Cit>yit(cit) =
ŜCit(cit)

ŜCit(yit)
,

where ŜCit is the Kaplan-Meier nonparametric estimator of the survival function of Cit

(Kaplan and Meier, 1958). Precisely, each crit corresponding to δit = 1 is found as the

unique solution c to the equation ŜCit(c) = uritŜCit(yit), with urit ∼ U(0, 1). Eventually,

the censored survival times are yrit = min(ỹrit, c
r
it) and hence the new failure indicators

δrit are defined accordingly (i = 1, . . . , N, t = 1, . . . , T ).

Complying with the practice adopted during all this chapter, in what follows some

simulation results will shed light on the possibility to solve the Neyman & Scott problems

using the MPL in the Weibull regression model for clustered time-to-event data with

unspecified random censoring scheme. The studies will especially examine on a com-

parative basis the profile log-likelihood lP (ψ) in (3.38) and its Monte Carlo adjustment

lM̃∗(ψ) derived by the approximation (3.39).

3.5.4 Simulation studies

Two experiments of S = 2000 simulations are conducted to study inference on ψ in the

survival model for censored observations presented in Section 3.5.1. Focusing on the

two-index asymptotic setting at issue, the within-group size and the number of clusters

in the artificial datasets are T = 4, 6, 10 and N = 50, 100, 250, respectively. The first

binary covariate xit in each ith group (i = 1, . . . , N) is obtained by imposing xit = 0 for

t = 1, . . . , T/2 and xit = 1 for t = T/2 + 1, . . . , T . The second regressor zit, differently,

is drawn from the standard normal distribution. We set the common shape parameter

ξ equal to 1.5 and β = (−1, 1), while each cluster-related intercept is independently

sampled as λi ∼ N(0.5, 0.52). Failures ỹit are then simulated via the Weibull density

function (3.33). The censoring times cit can be obtained by random generation from

the distribution Exp(ς), where the parameter is chosen in such a way as to control the

overall proportion Pc of censored data. In detail, given the quantities above and for a
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certain Pc, ς is fixed to the value solving the equation

1

TN

N∑
i=1

T∑
t=1

P%(Ỹit > Cit) =
1

TN

N∑
i=1

T∑
t=1

∫ +∞

0

SỸit(y;ψ;λi, xit, zit)pCit(y; ς)dy = Pc,

where % = (θ, ς) and pCit(y; ς) = ςe−ςy. Then, in each one of the S fictitious samples,

observations
(
yit, δit

)
stem from the usual definitions of censored failures and censoring

indicators, i.e. yit = min(ỹit, cit) and δit = 1 when ỹit ≤ cit, otherwise δit = 0 (i =

1, . . . , N, t = 1, . . . , T ).

The first series of simulations considers data with average censoring probability

Pc = 0.2, the second relates instead to situations with higher proportion of censored ob-

servations, namely Pc = 0.4. Inferences from the profile likelihood and from the Monte

Table 3.19: Inference on ξ = 1.5 in the Weibull regression model for grouped survival
data with unspecified censoring scheme and probability of censoring Pc = 0.2. Figures
based on a simulation study with 2000 trials and R = 500 Monte Carlo replicates to
compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 0.392 0.385 0.145 0.418 0.385 0.858 0.111
lM̃∗(ψ) 0.010 0.004 0.112 0.112 0.074 0.979 0.956

6 lP (ψ) 0.231 0.228 0.102 0.252 0.228 0.884 0.291
lM̃∗(ψ) 0.008 0.005 0.087 0.088 0.056 0.964 0.943

10 lP (ψ) 0.124 0.123 0.066 0.141 0.123 0.976 0.517
lM̃∗(ψ) 0.005 0.004 0.060 0.061 0.041 1.029 0.961

100 4 lP (ψ) 0.371 0.369 0.103 0.385 0.369 0.840 0.015
lM̃∗(ψ) -0.006 -0.006 0.079 0.079 0.053 0.966 0.936

6 lP (ψ) 0.219 0.216 0.070 0.230 0.216 0.903 0.063
lM̃∗(ψ) -0.000 -0.003 0.060 0.060 0.041 0.987 0.947

10 lP (ψ) 0.119 0.117 0.048 0.128 0.117 0.938 0.259
lM̃∗(ψ) 0.001 -0.001 0.044 0.044 0.030 0.989 0.943

250 4 lP (ψ) 0.366 0.366 0.065 0.372 0.366 0.847 0.000
lM̃∗(ψ) -0.009 -0.011 0.050 0.050 0.034 0.972 0.939

6 lP (ψ) 0.214 0.213 0.045 0.218 0.213 0.890 0.000
lM̃∗(ψ) -0.005 -0.005 0.038 0.039 0.026 0.972 0.934

10 lP (ψ) 0.116 0.116 0.030 0.120 0.116 0.943 0.018
lM̃∗(ψ) -0.002 -0.002 0.028 0.028 0.019 0.993 0.949
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Table 3.20: Inference on β1 = −1 in the Weibull regression model for grouped
survival data with unspecified censoring scheme and probability of censoring Pc = 0.2.
Figures based on a simulation study with 2000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) -0.001 0.001 0.122 0.122 0.082 0.825 0.898
lM̃∗(ψ) 0.006 0.007 0.120 0.120 0.082 0.973 0.944

6 lP (ψ) -0.003 -0.003 0.097 0.097 0.066 0.867 0.911
lM̃∗(ψ) 0.002 0.001 0.096 0.096 0.065 0.969 0.940

10 lP (ψ) -0.000 -0.002 0.070 0.070 0.047 0.943 0.933
lM̃∗(ψ) 0.002 0.001 0.070 0.070 0.048 1.008 0.950

100 4 lP (ψ) -0.007 -0.006 0.089 0.089 0.062 0.804 0.885
lM̃∗(ψ) 0.001 0.001 0.088 0.088 0.061 0.950 0.940

6 lP (ψ) -0.004 -0.004 0.069 0.069 0.044 0.864 0.901
lM̃∗(ψ) 0.001 -0.000 0.069 0.069 0.044 0.964 0.935

10 lP (ψ) -0.003 -0.002 0.050 0.050 0.034 0.932 0.928
lM̃∗(ψ) 0.000 0.001 0.050 0.050 0.034 0.996 0.954

250 4 lP (ψ) -0.007 -0.007 0.056 0.056 0.037 0.814 0.894
lM̃∗(ψ) 0.002 0.002 0.055 0.055 0.037 0.961 0.946

6 lP (ψ) -0.003 -0.003 0.042 0.042 0.027 0.893 0.920
lM̃∗(ψ) 0.002 0.003 0.042 0.042 0.027 0.997 0.954

10 lP (ψ) -0.003 -0.002 0.032 0.032 0.022 0.936 0.926
lM̃∗(ψ) 0.000 0.000 0.032 0.032 0.022 1.002 0.945

Carlo MPL on the structural component ψ are investigated as already done in the pre-

vious examples. Notice that, before proceeding to maximize the two functions for every

simulated dataset, non-informative clusters with only censored failure times need to be

discarded from the study. Indeed, (3.37) shows that λ̂iψ is not finite if δi· = 0 and hence

the ith group does not make any contribution to estimating ψ (i = 1, . . . , N). Numer-

ical optimization of both lP (ψ) and lM̃∗(ψ) is implemented by the R function optim.

Specifically, in the former case we choose the method L-BFGS-B (Byrd et al., 1995)

which enables to find the solution ψ̂ in a bounded set, while in the latter we search for

ψ̂M̃∗ =
(
ξ̂M̃∗ , β̂M̃∗

)
by means of the Nelder-Mead algorithm, with no constraints imposed

on the parameters but initial value set to the ML estimate.

Results of the first experiment may be seen in Tables 3.19, 3.20 and 3.21 by refer-

ence to ξ, β1 and β2, respectively. The accuracy of lM̃∗(ψ) is extremely good for all
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Table 3.21: Inference on β2 = 1 in the Weibull regression model for grouped survival
data with unspecified censoring scheme and probability of censoring Pc = 0.2. Figures
based on a simulation study with 2000 trials and R = 500 Monte Carlo replicates to
compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 0.006 0.005 0.074 0.074 0.051 0.835 0.905
lM̃∗(ψ) -0.001 -0.002 0.073 0.073 0.050 0.985 0.946

6 lP (ψ) 0.003 0.003 0.056 0.056 0.037 0.863 0.911
lM̃∗(ψ) -0.002 -0.002 0.055 0.055 0.036 0.963 0.936

10 lP (ψ) 0.002 0.002 0.041 0.041 0.027 0.931 0.933
lM̃∗(ψ) 0.000 0.000 0.041 0.041 0.027 0.997 0.947

100 4 lP (ψ) 0.008 0.008 0.053 0.054 0.037 0.828 0.890
lM̃∗(ψ) 0.000 0.000 0.052 0.052 0.037 0.980 0.946

6 lP (ψ) 0.005 0.004 0.040 0.040 0.027 0.868 0.906
lM̃∗(ψ) -0.001 -0.001 0.040 0.040 0.026 0.971 0.944

10 lP (ψ) 0.001 0.001 0.028 0.028 0.018 0.937 0.936
lM̃∗(ψ) -0.001 -0.001 0.028 0.028 0.018 1.000 0.952

250 4 lP (ψ) 0.006 0.006 0.033 0.033 0.022 0.834 0.890
lM̃∗(ψ) -0.002 -0.002 0.032 0.032 0.021 0.984 0.946

6 lP (ψ) 0.004 0.005 0.025 0.025 0.017 0.887 0.917
lM̃∗(ψ) -0.000 0.000 0.025 0.025 0.016 0.990 0.944

10 lP (ψ) 0.002 0.002 0.018 0.018 0.012 0.949 0.936
lM̃∗(ψ) -0.001 -0.001 0.017 0.018 0.012 1.017 0.952

unknown quantities and diverse dimensions of the data. The presence of many nuisance

parameters does not seem to be of great importance to the estimation of the regression

coefficients, yet inferential conclusions on ξ drawn via lP (ψ) are found quite misguided.

In particular, Table 3.19 testifies how the Monte Carlo modification is capable not only

of greatly reducing the severe empirical bias of the ML estimator but also of correcting

the excessively low actual Wald coverages derived by the profile likelihood. In fact, these

can also be ascribed to the supplied standard errors of ξ̂, prominently downward biased

for smaller T , independently of N . Estimated variability of ξ̂M̃∗ is, conversely, much

more trustworthy. Although Tables 3.20 and 3.21 confirm the sufficient adequacy of the

profile likelihood to make inference on β, due to better estimation of the standard errors

of β̂M̃∗ = (β̂1M̃∗ , β̂2M̃∗) the Monte Carlo MPL is still undoubtedly superior in terms of

appropriateness of confidence intervals’ coverage for both coefficients.
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Performances of the two inferential tools under examination in the second simulation

study are summarized by Tables 3.22, 3.23 and 3.24. For what concerns the shape

parameter, Table 3.22 proves the convenience of lM̃∗(ψ) even in the occasion of more

observations subject to censoring. Indeed, also when Pc = 0.4 the empirical bias of ξ̂M̃∗ is

systematically lower than that of ξ̂, reaching negligible values when N and T increase. In

contrast, the imprecise point estimation provided by lP (ψ) is especially critical when the

within-group size is smaller and remains basically constant as N grows, coherently with

the existing theoretical knowledge (Sartori, 2003). Furthermore, the empirical coverage

probabilities based on the Monte Carlo MPL are all very close to the nominal level,

while those based on the profile likelihood are well below it, even for the aforementioned

unreliable estimated standard errors of ξ̂. Statistical indicators displayed in Tables

3.23 and 3.24 about inference on β let us conclude once again that when Neyman &

Scott problems arise the Monte Carlo adjustment is still valuable to further improve the

quality of standard ML procedures under the regression scenario.

Table 3.22: Inference on ξ = 1.5 in the Weibull regression model for grouped survival
data with unspecified censoring scheme and probability of censoring Pc = 0.4. Figures
based on a simulation study with 2000 trials and R = 500 Monte Carlo replicates to
compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 0.462 0.449 0.179 0.495 0.449 0.834 0.122
lM̃∗(ψ) -0.001 -0.010 0.125 0.125 0.084 0.994 0.950

6 lP (ψ) 0.266 0.258 0.120 0.292 0.258 0.880 0.312
lM̃∗(ψ) -0.002 -0.008 0.097 0.097 0.069 0.985 0.949

10 lP (ψ) 0.143 0.141 0.082 0.165 0.141 0.910 0.524
lM̃∗(ψ) 0.001 -0.001 0.073 0.073 0.049 0.974 0.946

100 4 lP (ψ) 0.445 0.436 0.126 0.462 0.436 0.827 0.009
lM̃∗(ψ) -0.013 -0.017 0.089 0.090 0.060 0.982 0.940

6 lP (ψ) 0.254 0.251 0.084 0.268 0.251 0.889 0.067
lM̃∗(ψ) -0.009 -0.012 0.068 0.068 0.047 0.993 0.940

10 lP (ψ) 0.142 0.142 0.057 0.153 0.142 0.915 0.234
lM̃∗(ψ) 0.000 0.000 0.051 0.051 0.033 0.981 0.947

250 4 lP (ψ) 0.430 0.427 0.080 0.437 0.427 0.815 0.000
lM̃∗(ψ) -0.021 -0.022 0.056 0.060 0.041 0.969 0.915

6 lP (ψ) 0.248 0.247 0.053 0.254 0.247 0.888 0.002
lM̃∗(ψ) -0.014 -0.015 0.043 0.045 0.031 0.993 0.938

10 lP (ψ) 0.135 0.134 0.035 0.139 0.134 0.941 0.018
lM̃∗(ψ) -0.006 -0.006 0.031 0.032 0.022 1.004 0.945
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Table 3.23: Inference on β1 = −1 in the Weibull regression model for grouped
survival data with unspecified censoring scheme and probability of censoring Pc = 0.4.
Figures based on a simulation study with 2000 trials and R = 500 Monte Carlo
replicates to compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) -0.018 -0.018 0.152 0.153 0.104 0.787 0.880
lM̃∗(ψ) -0.001 -0.002 0.149 0.149 0.100 0.970 0.948

6 lP (ψ) -0.007 -0.008 0.116 0.116 0.080 0.856 0.905
lM̃∗(ψ) 0.003 0.003 0.114 0.114 0.079 0.984 0.946

10 lP (ψ) -0.005 -0.006 0.083 0.083 0.057 0.943 0.941
lM̃∗(ψ) 0.000 -0.000 0.082 0.082 0.056 1.026 0.955

100 4 lP (ψ) -0.016 -0.014 0.106 0.107 0.074 0.798 0.882
lM̃∗(ψ) -0.000 0.001 0.104 0.104 0.071 0.983 0.949

6 lP (ψ) -0.012 -0.010 0.081 0.081 0.056 0.875 0.912
lM̃∗(ψ) -0.001 -0.001 0.079 0.079 0.053 1.006 0.947

10 lP (ψ) -0.007 -0.006 0.059 0.059 0.039 0.939 0.926
lM̃∗(ψ) -0.002 -0.001 0.058 0.058 0.039 1.017 0.947

250 4 lP (ψ) -0.014 -0.012 0.067 0.069 0.044 0.796 0.868
lM̃∗(ψ) 0.004 0.006 0.065 0.065 0.043 0.988 0.945

6 lP (ψ) -0.008 -0.008 0.052 0.053 0.036 0.854 0.901
lM̃∗(ψ) 0.003 0.003 0.051 0.051 0.035 0.985 0.947

10 lP (ψ) -0.004 -0.004 0.038 0.038 0.025 0.931 0.932
lM̃∗(ψ) 0.001 0.001 0.037 0.037 0.025 1.010 0.953

Ultimately, a thorough comparison between the outcomes of the two experiments

reviewed in this section may be helpful to check whether and how the incidence of

censored data in the sample affects the accuracy of the statistical techniques employed

for inferences on the parameter of interest in the Weibull survival model. In general, to

recognize a clear performance pattern by looking at the various tables is not immediate.

Perhaps, with special regard to the quantity whose estimation is the most harmed by

the presence of incidental parameters, lP (ψ) appears to suffer more than lM̃∗(ψ) from

a high average censoring probability. Indeed, in making inference on ξ via the profile

likelihood, only the empirical coverages when N = 50 are slightly more adequate with

Pc = 0.4. To the contrary, conclusions descending from the MPL look less impacted by

the percentage of observations subject to censoring.

To end the discussion, it seems worthwhile stressing that such empirical findings are
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substantially in accordance with those relating to the contrast between the profile like-

lihood and the integrated likelihood in Cortese and Sartori (2016). Nonetheless, there

exist three main motivations to prefer the Monte Carlo MPL approach illustrated here.

First, it is far less computationally expensive, as the effort implied by the numerical

integration to calculate Severini’s integrated likelihood in the regression setting is con-

siderable. Second, its basic procedure easily lends itself to encompass the bootstrap for

nonparametric estimation of the censoring mechanism, permitting to protect against

misspecification risks. And third, it may be readily generalized to cope with a different

distribution of the failure times Ỹit, such as logNormal or Gamma, whereas the method

of Cortese and Sartori (2016) demands to derive ad hoc formulae for finding a suitable

reparametrization of the model (Severini, 2007).

Table 3.24: Inference on β2 = 1 in the Weibull regression model for grouped survival
data with unspecified censoring scheme and probability of censoring Pc = 0.4. Figures
based on a simulation study with 2000 trials and R = 500 Monte Carlo replicates to
compute l

M̃∗(ψ).

N T Method B MB SD RMSE MAE SE/SD 0.95 CI

50 4 lP (ψ) 0.020 0.018 0.104 0.106 0.071 0.776 0.874
lM̃∗(ψ) 0.003 0.001 0.101 0.101 0.067 0.964 0.941

6 lP (ψ) 0.015 0.013 0.068 0.070 0.047 0.870 0.909
lM̃∗(ψ) 0.005 0.003 0.067 0.067 0.046 1.003 0.954

10 lP (ψ) 0.006 0.005 0.051 0.052 0.036 0.920 0.929
lM̃∗(ψ) 0.001 0.001 0.051 0.051 0.035 0.997 0.953

100 4 lP (ψ) 0.017 0.017 0.070 0.072 0.048 0.787 0.867
lM̃∗(ψ) 0.001 0.001 0.068 0.068 0.046 0.974 0.943

6 lP (ψ) 0.009 0.009 0.049 0.050 0.033 0.871 0.909
lM̃∗(ψ) -0.000 -0.001 0.048 0.048 0.032 1.002 0.946

10 lP (ψ) 0.005 0.004 0.034 0.034 0.022 0.920 0.926
lM̃∗(ψ) -0.000 -0.001 0.034 0.034 0.022 0.995 0.941

250 4 lP (ψ) 0.014 0.014 0.041 0.044 0.030 0.822 0.869
lM̃∗(ψ) -0.001 -0.002 0.040 0.040 0.028 1.017 0.958

6 lP (ψ) 0.009 0.010 0.031 0.033 0.022 0.858 0.895
lM̃∗(ψ) -0.001 -0.000 0.031 0.031 0.020 0.986 0.943

10 lP (ψ) 0.006 0.006 0.022 0.022 0.015 0.942 0.931
lM̃∗(ψ) 0.000 -0.000 0.021 0.021 0.015 1.021 0.954
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3.6 Discussion and further work

The prime objective of the present chapter has been to show how to exploit Monte Carlo

simulation for widening the field of application of the MPL (Barndorff-Nielsen, 1983).

Severini (1998b) made a first valuable step in this direction, yet his approximation is

still not approachable enough to deal with the today’s degree of modeling sophistication.

A new solution was then needed to fill such a gap in accessibility.

Clustered data are often collected from studies designed with extreme care, like

clinical trials. As a consequence, statistical models for grouped observations not only are

particularly subject to Neyman & Scott problems for the reasons discussed in Section 3.1,

but also are likely to incorporate complex assumptions due to the experimental design.

Section 3.2 served the purpose to introduce the Monte Carlo strategy for computing the

MPL in those nonstandard situations. The procedure essentially foresees to approximate

the expected value implicated in Severini’s modification by means of an empirical mean.

Such approach is easy, implementable in broad generality and reasonably fast.

In Section 3.3 the suggested methodology was applied to the nonstationary autore-

gressive model for panel data with fixed effects. Under these hypotheses, analytical

calculation of Severini’s MPL is practicable but is not a simple task. By contrast, we

saw that Monte Carlo simulation may be used in a straightforward manner to estimate

the required expectation. Results of simulations reported in Section 3.3.4 empirically

confirm the (T ×N)-asymptotic properties of the profile and modified profile likelihoods

derived by Sartori (2003) for the case of independent observations (see Section 1.4.3).

In fact, inferential improvements determined by the adjustment when the group size T

is much smaller than the number of clusters N seem to be remarkable even allowing for

dependence in the data. Moreover, the findings concerning the unconventional form of

the MPL function in this setting are consistent with previous works (Lancaster, 2002;

Dhaene and Jochmans, 2014; De Bin et al., 2015).

Issues in inferences on the structural parameter related to the presence of missing

values in binary grouped data were addressed by Section 3.4. Specifically, in Section

3.4.3 we considered univariate arbitrary patterns of missingness in the response. In this

case, since the density of the dependent variable and the mechanism of missingness is

not jointly specified but factorized in two parts, the usual expected value in the function

by Severini is not exactly computable. On the opposite its approximation, stemming

from a two-step procedure to simulate the Monte Carlo samples, permits to correctly

take the missing-data generation process into account with no need to assume a common

distribution.
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Results of two simulation studies were initially presented for the logistic regression

scenario. From the first analysis of MCAR observations, Monte Carlo simulation was

found unnecessary to compute the MPL. In particular, the greater inferential precision

of the MCAR Monte Carlo MPL relative to the profile likelihood appears equivalent to

that of the analytical MPL by Severini which disregards the missing data. Indeed the

MCAR hypothesis implies that complete units are a random sample from the original

population, hence the expectation taken on the unconditional sampling distribution

equals the conditional one based only on the observed data (Kenward and Molenberghs,

1998). Furthermore it turned out that, curiously, the MNAR variant of the MPL is

inappropriate to reliably estimate the parameter of interest, although the model of

nonrandom missingness supposed is just a generalization of the true one. Additional

investigations regarding larger within-group sizes may contribute to clarify this aspect.

The second experiment under the logit framework examined instead the situation of

nonignorable missing data. In this case, the MNAR Monte Carlo MPL accounting for

the missing values proved to be more accurate than Severini’s function provided that

T was not too small, for any value of N considered. Justifications for this outcome

were already given in Section 3.4.3, nevertheless it might be worth understanding why

the quality of fitting for the missingness model seems to depend on the amount of

information in the specific group and not on the global sample size.

Analogue simulation studies in the binary regression setting with probit link and

possibly missing response showed a quite different inferential behaviour of the MNAR

Monte Carlo MPL. Firstly, when used to analyze MCAR data, the latter set an example

of robustness against nonignorable incompleteness. Secondly, with a correct specification

of the missingness mechanism, its application was more recommendable than that of

Severini’s function even for the lowest value of T taken into consideration. Given the

aforesaid ability of the MNAR MPL to identify the true ignorable process of missingness

in datasets with smaller groups, it is likely that the same performance pattern under

the MNAR scenario is retained when T < 10, as opposed to what observed within the

logistic setup.

At the time being, such discrepancies following the change of link function from logit

to probit have reasons not apparent to the writer. One rather vague presumption is

that the two logistic models in the former framework, the one for the dependent variable

and the one for the missingness indicator, come somehow into conflict with each other,

causing convergence difficulties perhaps related to identifiability issues during the global

fit through the MNAR Monte Carlo MPL. Future studies, preferably involving probit

specifications for the missing-data mechanism, might be helpful to elaborate on this
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matter.

Section 3.4.4 coped with inference in the event of MAR regressors in fixed-effect lo-

gistic regressions for clustered observations. Differently from before, in this case the

Monte Carlo expedient was not used to compute the MPL, because one analytical ver-

sion which is able to account for the incomplete covariate information was derived as

an approximation to the modified conditional likelihood of Lipsitz et al. (1998). The

main indication resulting from the simulation experiments is that this approach seems

more suitable than the classical MPL to estimate the parameters of interest when the

percentage of missing predictors does not exceed 35%. When such percentage grows,

the solution is advisable only for larger groups. Note that these observations apply both

to the circumstance of correctly specified MAR mechanism and to that of underpecified

true MNAR mechanism. Under this last scenario, however, the inferential accuracy

might be refined by considering the nonignorability of the missingness process, as done

in the conditional likelihood proposed by Cho Paik (2004).

Clustered survival times subject to right-censoring were discussed by Section 3.5. In

the context of a Weibull regression model with group-related intercepts, our proposed

approximation to Severini’s MPL was made necessary by the lack of distributional as-

sumptions on the random censoring mechanism. Indeed, an explicit calculation of the

modification term requires full parametric specification of the density for the censoring

times, whereas the Monte Carlo strategy allows to estimate it nonparametrically, using

a conditional bootstrap (Davison and Hinkley, 1997, Algorithm 3.1). Experimental out-

comes examined in Section 3.5.4 substantially corroborated for this other framework the

theory pertaining to inference in the standard two-index asymptotic setting, described

at the end of Chapter 1. Estimation of the parameter of interest via the Monte Carlo

MPL is notably preferable to that via the profile likelihood in every relevant respect,

even though inferences on regression coefficients were found less affected by Neyman &

Scott problems. In addition, the proportion of censored data in the sample does not

appear to have a significant effect on the ensuing precision of the MPL. Note finally

that the computational burden demanded by existing alternative statistical procedures

(Cortese and Sartori, 2016) is much heavier than that of the one adopted here.

In this area, the potential room for future developments is extremely vast. The

generality inherent in the suggested method enables in fact to take advantage of the

MPL’s properties in numerous models suffering from the incidental parameters problem.

Furthermore, several aspects of our study, emerged here or earlier in this chapter, deserve

to be further investigated. Among others, some open topics we plan to tackle in the

forthcoming work are listed below:



126 Section 3.6 - Discussion and further work

i) Explore the usefulness of the Monte Carlo strategy in the presence of MAR binary

response, considering also possible misspecifications of the missingness generation

process.

ii) Apply the Monte Carlo strategy to clustered data with continuous incomplete

response.

iii) Derive a MPL function for handling MNAR covariates in logistic regressions by

approximating the conditional likelihood of Cho Paik (2004).

iv) Analyze real clustered data from a clinical trial involving HIV-infected patients

(Carlin and Hodges, 1999;Cohn et al., 1999) adopting a version of the Monte Carlo

MPL equivalent to that described in Section 3.5; compare such results with those

obtained by means of the integrated likelihood in Cortese and Sartori (2016).

v) Extend the application of the Monte Carlo strategy to semiparametric regression

models where the incidental nuisance parameters are expressed as unknown real-

valued functions, like those treated by He and Severini (2014) via the integrated

likelihood.







Appendix

Recalling that, when k = 1, under model (2.1) the Wald z-statistic is T̂ = (θ̂ − θ0)ν̂
1/2
1,1 ,

the analogue of function (2.27) is simply

T = T (θ; θ0) = (θ − θ0)ν
1/2
1,1 . (A.1)

Therefore, by the general definition (2.29), one shall derive the first term in the asymp-

totic bias expansion of T̂ as

BT (θ; θ0) = B(θ)T ′(θ; θ0) +
1

2
ν−1

1,1T
′′(θ; θ0), (A.2)

where T ′(θ; θ0) and T ′′(θ; θ0) are the first and the second derivative, respectively, of

(A.1) with respect to the scalar argument θ. In particular, they take the form

T ′(θ; θ0) = ν
1/2
1,1 −

θ − θ0

2

ν ′1,1

ν
1/2
1,1

,

T ′′(θ; θ0) =
ν ′1,1

ν
1/2
1,1

+
θ − θ0

2

(
ν ′′1,1

ν
1/2
1,1

− ν ′ 21,1

2ν
3/2
1,1

)
.

By exploiting Bartlett’s identities and adopting the power notation, it is not hard to

check that double differentiation of the expected information leads to

ν ′1,1 = −(ν3 + ν1,2),

ν ′′1,1 = −(ν4 + 2ν1,3 + ν2,2 + ν1,1,2),

and so we have

T ′(θ; θ0) = ν
1/2
1,1 −

θ − θ0

2

ν3 + ν1,2

ν
1/2
1,1

,

T ′′(θ; θ0) = −
{
ν3 + ν1,2

ν
1/2
1,1

+
θ − θ0

2

(
ν4 + 2ν1,3 + ν2,2 + ν1,1,2

ν
1/2
1,1

+
ν2

3 + 2ν3ν1,2 + ν2
1,2

2ν
3/2
1,1

)}
,
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which are both O
(
n1/2

)
like T . From the latter expressions, the first-order bias of the

ML estimate in (2.32) and equation (A.2) follows directly

BT (θ; θ0) =
ν1,2

2ν
3/2
1,1

− θ − θ0

8

(
3ν2

3 + 8ν3ν1,2 + 5ν2
1,2

ν
5/2
1,1

+
2ν4 + 4ν1,3 + 2ν2,2 + 2ν1,1,2

ν
3/2
1,1

)
.

Differentiating (A.2) once with regard to θ gives

B′T (θ; θ0) = B′(θ)T ′(θ; θ0) +B(θ)T ′′(θ; θ0) +
1

2

{
− ν ′1,1
ν2

1,1

T ′′(θ; θ0) + ν−1
1,1T

′′′(θ; θ0)

}
, (A.3)

and it is straightforward to show that

B′(θ) =
ν4 + 3ν1,3 + 2ν2,2 + 2ν1,1,2

2ν2
1,1

+
ν2

3 + 3ν3ν1,2 + 2ν2
1,2

ν3
1,1

, (A.4)

T ′′′(θ; θ0) =
3

2

(
ν ′′1,1

ν
1/2
1,1

− ν ′ 21,1

2ν
3/2
1,1

)
+
θ − θ0

2

(
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ν
1/2
1,1

− 3ν ′1,1ν
′′
1,1

2ν
3/2
1,1

+
3ν ′ 31,1

2ν
5/2
1,1

)
.

In order to express B′T (θ0; θ0) as reported in (2.36), we need to evaluate the derivatives

of T (θ; θ0) at θ0. Precisely, we obtain:

T ′(θ0; θ0) = ν̊
1/2
1,1 ,

T ′′(θ0; θ0) =
ν̊ ′1,1

ν̊
1/2
1,1

= −
(
ν̊3 + ν̊1,2

ν̊
1/2
1,1

)
,

T ′′′(θ0; θ0) =
3

2

(
ν̊ ′′1,1

ν̊
1/2
1,1

− ν̊ ′ 21,1

2ν̊
3/2
1,1

)
= −3

2

(
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1/2
1,1

+
ν̊2

3 + 2ν̊3ν̊1,2 + ν̊2
1,2

2ν̊
3/2
1,1

)
.

Furthermore, terms B(θ0) and B′(θ0) are readily available by substitution of θ with

θ0 in formulae (2.32) and (A.4), respectively. Finally, employing such quantities and

following definition (A.3), it is easy to see that

B′T (θ0; θ0) = −
(
ν̊4 − ν̊2,2 − ν̊1,1,2

4ν̊
3/2
1,1

+
3ν̊2

3 + 2ν̊3ν̊1,2 − ν̊2
1,2

8ν̊
5/2
1,1

)
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